

December 21, 2023

Ms. Cindy Koepke Hydrogeologist Wisconsin Department of Natural Resources 3911 Fish Hatchery Road Fitchburg, WI 53711

Subject: Refuse Hideaway Landfill November 2023 Operation Monitoring and Maintenance Activities

Dear Cindy:

TRC completed the following operation, monitoring, and maintenance activities at the Refuse Hideaway Landfill (the Site) in Middleton, WI in November 2023.

- November 2, 2023 Gas Probe Monitoring
- November 8, 2023 Bi-weekly Site Inspection
- November 20, 2023 Bi-weekly and Monthly Site Inspections
- November 20, 2023 Cap Inspection

### Gas Extraction System

The gas extraction system (GES) was restarted by TRC on September 6, 2023 following the electrical service repairs. The system was operated for the month of November.

Field data from the gas extraction well monitoring and gas probe monitoring is included in Attachment 1.

### Leachate Extraction System

The leachate extraction system was restarted on October 25, 2023 following repair of the compressor system. However, based on exterior temperatures the system was kept off during the month of October. Winter operation conditions are being evaluated to ensure the compressor can operate through the winter. TRC has coordinated and discussed options for cold weather operation with subcontractors and the WDNR.

The leachate tank level was gauged during each Site visit and the following measurements were recorded:

- November 2, 2023 39.75 Inches
- November 8, 2023 30 Inches
- November 20, 2023 71 Inches

### Cap Inspection

TRC conducted a monthly inspection of the landfill cap and stormwater conveyance features on November 20, 2023. The landfill cap and stormwater conveyance features are operational. TRC will

Ms. Cindy Koepke Wisconsin Department of Natural Resources December 21, 2023 Page 2

continue to observe the condition of the features. An inspection form with further details is provided in Attachment 1 and a photographic log is provided in Attachment 2.

If you have any questions, please contact Andrew Stehn at astehn@trccompanies.com or 608-807-8112.

Sincerely,

TRC

Molly Wagler, EIT

**Project Engineer** 

Andrew M. Stehn

Andrew Stehn, PE **Project Manager** 

Attachments: 1. November 2023 Monitoring Results



Attachment 1

**November 2023 Monitoring Results** 

### REFUSE HIDEAWAY LANDFILL GAS PROBE MONITORING FORM

TECHNICIAN(S): J. Roelke

DATE: 11/2/2023

START TIME: 7:50 AM

END TIME: 1:15PM

GAS/INSTRUMENT TYPE: GEM 2000

SERIAL NO.: 11668

DATE LAST CALIBRATED: 11/2/2023

METHOD: Standard Calibration Gases

PRESS INSTRUMENT : Manometer

BAROMETRIC PRESSURE & TREND: 30.19 in. Hg, rising

WEATHER CONDITIONS: sunny

TEMPERATURE: 31 °F

GROUND CONDITIONS: dry

| GAS PROBE NAME | Time | PRESSURE<br>(in. WC) | METHANE<br>(% LEL) | METHANE<br>(%, by vol.) | CARBON<br>DIOXIDE<br>(%, by vol.) | OXYGEN<br>(%, by vol.) | COMMENTS                          |
|----------------|------|----------------------|--------------------|-------------------------|-----------------------------------|------------------------|-----------------------------------|
| GP-1D          | 8:20 | -0.02                | 0.0                | 0.0                     | 5.5                               | 13.0                   | (2)                               |
| GP-1S          | 8:22 | 0.0                  | 0.0                | 0.0                     | 0.1                               | 20.7                   | (2)                               |
| GP-2D          | 8:26 | 0.00                 | 0.0                | 0.0                     | 2.4                               | 18.8                   | (1)                               |
| GP-2S          | 8:28 | 0.0                  | 0.0                | 0.0                     | 1.7                               | 19.3                   | (1)                               |
| GP-3           | 8:30 | -0.01                | 2                  | 0.1                     | 6.0                               | 18.1                   | (1) Stable readings at 2 minutes. |
| GP-4           | 8:36 | 0.0                  | 0.0                | 0.0                     | 4.2                               | 17.2                   | (1)                               |
| GP-5           | 8:38 | 0.0                  | 0.0                | 0.0                     | 3.5                               | 18.5                   | (2)                               |
| GP-6           | 8:44 | 0.0                  | 0.0                | 0.0                     | 2.1                               | 19.2                   | (1)                               |
| GP-7           | 8:51 | -0.07                | 0.0                | 0.0                     | 4.1                               | 16.4                   | (2)                               |
| GP-8           | 8:59 | -0.02                | 0.0                | 0.0                     | 6.1                               | 16.2                   | (2)                               |
| GP-9           | 9:04 | -0.02                | 0.0                | 0.0                     | 3.6                               | 17.7                   | (1)                               |
| GP-10          | 9:10 | 0.0                  | 0.0                | 0.0                     | 4.9                               | 17.1                   | (1)                               |
| GP-11D         | 9:15 | -0.02                | 0.0                | 0.0                     | 0.8                               | 20.0                   | (2)                               |
| GP-11S         | 9:17 | 0.0                  | 0.0                | 0.0                     | 2.0                               | 19.0                   | (2)                               |
| GP-12D         | 9:22 | 0.0                  | >100               | 6.2                     | 12.7                              | 8.2                    | (1) Stable readings at 2 minutes. |
| GP-12S         | 9:25 | -0.03                | 0.0                | 0.0                     | 2.6                               | 18.5                   | (1)                               |
| GP-13D         | 9:32 | 0.0                  | 2                  | 0.1                     | 1.9                               | 18.6                   | (2)                               |
| GP-13S         | 9:34 | 0.0                  | 0.0                | 0.0                     | 1.6                               | 19.1                   | (2)                               |

| GAS PROBE NAME          | Time  | PRESSURE<br>(in. WC) | METHANE<br>(% LEL) | METHANE<br>(%, by vol.) | CARBON<br>DIOXIDE<br>(%, by vol.) | OXYGEN<br>(%, by vol.) | COMMENTS |
|-------------------------|-------|----------------------|--------------------|-------------------------|-----------------------------------|------------------------|----------|
| GP-16D                  | 9:55  | 0.0                  | 0.0                | 0.0                     | 0.5                               | 20.2                   | (2)      |
| GP-16S                  | 9:57  | 0.0                  | 0.0                | 0.0                     | 0.8                               | 20.0                   | (2)      |
| GP-17D                  | 9:48  | 0.0                  | 0.0                | 0.0                     | 2.4                               | 18.8                   | (1)      |
| GP-17M                  | 9:50  | 0.0                  | 0.0                | 0.0                     | 0.6                               | 20.2                   | (1)      |
| GP-17S                  | 9:52  | 0.0                  | 0.0                | 0.0                     | 0.3                               | 20.5                   | (1)      |
| GP-18D                  | 10:01 | 0.0                  | 0.0                | 0.0                     | 0.4                               | 20.4                   | (2)      |
| GP-18M                  | 10:03 | 0.0                  | 0.0                | 0.0                     | 0.2                               | 20.7                   | (2)      |
| GP-18S                  | 10:05 | 0.0                  | 0.0                | 0.0                     | 0.2                               | 20.6                   | (2)      |
| GP-19 <sup>85-100</sup> | 10:48 | 0.0                  | 0.0                | 0.0                     | 2.2                               | 18.6                   | (1)      |
| GP-19 <sup>50-70</sup>  | 10:50 | 0.0                  | 0.0                | 0.0                     | 1.6                               | 19.9                   | (1)      |
| GP-19 <sup>25-40</sup>  | 10:52 | 0.0                  | 0.0                | 0.0                     | 1.4                               | 20.0                   | (1)      |
| GP19 <sup>2-15</sup>    | 10:54 | 0.0                  | 0.0                | 0.0                     | 1.2                               | 20.2                   | (1)      |
| GP-20 <sup>85-100</sup> | 10:41 | 0.0                  | 0.0                | 0.0                     | 0.5                               | 20.1                   | (2)      |
| GP-20 <sup>50-70</sup>  | 10:43 | 0.0                  | 0.0                | 0.0                     | 1.1                               | 19.9                   | (2)      |
| GP-20 <sup>25-40</sup>  | 10:45 | 0.0                  | 0.0                | 0.0                     | 1.3                               | 20.0                   | (2)      |
| GP-20 <sup>2-15</sup>   | 10:47 | 0.0                  | 0.0                | 0.0                     | 1.6                               | 19.7                   | (2)      |
| GP-21 <sup>85-100</sup> | 10:32 | 0.0                  | 0.0                | 0.0                     | 0.4                               | 20.5                   | (2)      |
| GP-21 <sup>50-70</sup>  | 10:34 | 0.0                  | 0.0                | 0.0                     | 0.7                               | 20.4                   | (2)      |
| GP-21 <sup>25-40</sup>  | 10:36 | 0.0                  | 0.0                | 0.0                     | 1.7                               | 19.8                   | (2)      |
| GP-21 <sup>2-15</sup>   | 10:38 | 0.0                  | 0.0                | 0.0                     | 1.2                               | 20.1                   | (2)      |
| GP-22 <sup>85-100</sup> | 10:59 | 0.0                  | 0.0                | 0.0                     | 2.4                               | 18.6                   | (2)      |
| GP-22 <sup>50-70</sup>  | 11:01 | 0.0                  | 0.0                | 0.0                     | 1.9                               | 19.0                   | (2)      |
| GP-22 <sup>25-40</sup>  | 11:03 | 0.0                  | 0.0                | 0.0                     | 1.9                               | 19.2                   | (2)      |
| GP-22 <sup>2-15</sup>   | 11:05 | 0.0                  | 0.0                | 0.0                     | 2.4                               | 18.8                   | (2)      |

|                         |       | PPEQQUPE             |                    |                         | CARBON                  |                        |                                   |
|-------------------------|-------|----------------------|--------------------|-------------------------|-------------------------|------------------------|-----------------------------------|
| GAS PROBE NAME          | Time  | PRESSURE<br>(in. WC) | METHANE<br>(% LEL) | METHANE<br>(%, by vol.) | DIOXIDE<br>(%, by vol.) | OXYGEN<br>(%, by vol.) | COMMENTS                          |
| GP-23 <sup>85-100</sup> | 11:11 | 0.0                  | 0.0                | 0.0                     | 0.9                     | 19.9                   | (2)                               |
| GP-23 <sup>50-70</sup>  | 11:13 | 0.0                  | 0.0                | 0.0                     | 0.8                     | 20.1                   | (2)                               |
| GP-23 <sup>25-40</sup>  | 11:15 | 0.0                  | 0.0                | 0.0                     | 0.8                     | 20.2                   | (2)                               |
| GP-23 <sup>2-15</sup>   | 11:17 | 0.0                  | 0.0                | 0.0                     | 2.7                     | 18.7                   | (2)                               |
| GP-24 <sup>85-100</sup> | 11:21 | 0.0                  | 0.0                | 0.0                     | 0.2                     | 20.6                   | (2)                               |
| GP-24 <sup>50-70</sup>  | 11:23 | 0.0                  | 0.0                | 0.0                     | 2.2                     | 18.3                   | (2)                               |
| GP-24 <sup>25-40</sup>  | 11:25 | 0.0                  | 0.0                | 0.0                     | 2.0                     | 18.5                   | (2)                               |
| GP-24 <sup>2-15</sup>   | 11:27 | 0.0                  | 0.0                | 0.0                     | 2.5                     | 18.1                   | (2)                               |
| GPW-1D                  | 13:01 | -0.38                | 0.0                | 0.0                     | 2.4                     | 18.3                   | (1)                               |
| GPW-1M                  | 13:03 | -0.34                | 0.0                | 0.0                     | 1.4                     | 19.5                   | (1)                               |
| GPW-1S                  | 13:05 | 0.0                  | 0.0                | 0.0                     | 1.8                     | 18.9                   | (1)                               |
| G-1D                    | 8:12  | 0.0                  | 0.0                | 0.0                     | 0.0                     | 20.8                   | (1)                               |
| G-1S                    | 8:14  | 0.0                  | 0.0                | 0.0                     | 1.2                     | 19.8                   | (1) Stable readings at 2 minutes. |
| G-2D                    | 9:37  | 0.0                  | 0.0                | 0.0                     | 0.3                     | 20.4                   | (1)                               |
| G-2S                    | 9:39  | 0.0                  | 86                 | 4.3                     | 18.8                    | 0.2                    | (1) Stable readings at 2 minutes. |
| G-5                     | 8:57  | -0.04                | 2                  | 0.1                     | 5.6                     | 14.1                   | (1)                               |
| G-6                     | 8:03  | 0.0                  | 0.0                | 0.0                     | 0.0                     | 20.8                   | (1)                               |
| G-8                     | 10:26 | 0.0                  | 0.0                | 0.0                     | 0.1                     | 19.2                   | (1)                               |
| G-9                     | 10:13 | -0.04                | 0.0                | 0.0                     | 0.4                     | 18.8                   | (1)                               |
| G-10                    | 11:32 | -0.14                | 0.0                | 0.0                     | 0.2                     | 20.5                   | (1)                               |
| Speedway Office         | 8:18  | 0.0                  | 0.0                | 0.0                     | 0.0                     | 20.8                   | Open to ATM                       |

NOTES:

(1); Locked probe casing.(2): Probe is above casing and cannot be locked.(3): No cap for probe casing and cannot be locked.

### Key:

| Shallow or 2'-15' |
|-------------------|
| Medium or 25'-40' |
| Deep or 50'-70'   |
| 85'-100'          |

Entered by: J. Roelke 11/2/2023 Checked by: M. Wagler 11/20/2023

#### Bi-weekly - System Inspection Log Landfill Gas Extraction and Leachate Pump System WDNR - Refuse Hideaway Landfill Middleton, Wisconsin

| TRC Op             | erator Name:<br>Date:                                                 | J. Roelke<br>11/8/2023 | Arrival Time: 14:37                                   |               | Departure Time:                                                | 15:32                                                             |                  |
|--------------------|-----------------------------------------------------------------------|------------------------|-------------------------------------------------------|---------------|----------------------------------------------------------------|-------------------------------------------------------------------|------------------|
|                    |                                                                       | Site Conditio          | ns                                                    |               |                                                                | Equipment                                                         |                  |
| Gro<br>Baroi       | ther Conditior<br>ound Conditior<br>metric Pressur<br>cric Pressure 1 | n:<br>re:              | light rain<br>dry<br>29.69 in. Hg<br>falling          | Sei<br>Date L | nstrument Type:<br>rial Number:<br>Last Calibrated:<br>Method: | GEMS 2000<br>11668<br>11/8/2023<br>standard field calibration gas |                  |
|                    | emperature:                                                           |                        | 49 °F                                                 |               | ure Instrument:                                                |                                                                   |                  |
|                    |                                                                       |                        | Landfill Gas Extra                                    | ation Custo   | <sup>1</sup>                                                   |                                                                   |                  |
| System             | Location                                                              | Tag #                  | Equipment Description                                 | ction Syste   | Set Point                                                      | Typical Range                                                     | Field Reading    |
|                    |                                                                       |                        | Amperage                                              |               | -                                                              | 3 - 4 amps                                                        | 3.32             |
|                    | Remote                                                                |                        | Speed<br>Frequency                                    |               | -                                                              | 1800 - 1900 rpm<br>30 - 35 Hz                                     | 1421.60<br>23.82 |
| Blower Motor       | НМІ                                                                   | GHS-BLR-301            | Amperage                                              |               | -                                                              | 3 -4 amps                                                         | 3.3              |
|                    | HMI                                                                   | _                      | Speed                                                 |               | -                                                              |                                                                   | 32               |
|                    | HMI                                                                   |                        | Hours                                                 |               | -                                                              | -                                                                 | 9540             |
| ower Operating (   | yes). Note exc                                                        | cessive noise or i     | ssues observed.                                       |               |                                                                |                                                                   |                  |
|                    | HMI                                                                   | PT-301                 | Blower Inlet Vacuum                                   |               | 7 in. w.c.                                                     | 7 in. w.c.                                                        | -7.0             |
|                    | HMI                                                                   | TE-301                 | Blower Inlet Temperature                              |               | -                                                              | 50 - 90 °F                                                        | 54               |
|                    | Local                                                                 | GHS-PI-301             | Blower Inlet Vacuum                                   |               | 7 in. w.c.                                                     | 7 in. w.c.                                                        | -6.93            |
| Blower Inlet Local | Local                                                                 | GHS-TI-301             | Blower Inlet Temperature                              |               | -                                                              | 50 - 90 °F                                                        | 49               |
|                    |                                                                       |                        | Gas Composition - % Methar                            | e             | -                                                              |                                                                   | 7.6              |
|                    | Local                                                                 | Sample Port            | Gas Composition - % CO2                               |               | -                                                              |                                                                   | 8.6              |
| Demister           |                                                                       |                        | Gas Composition - % Oxyge                             |               | -                                                              |                                                                   | 14.9             |
|                    |                                                                       |                        | Gas Composition - % Balanc                            |               | -                                                              | 1.21                                                              | 68.9%            |
| Domistor           | Local<br>Local                                                        | GHS-PDI-301            | Demister Differential Pressu                          |               | -                                                              | 1-2 in w.c                                                        | 0.1              |
| Demister           | HMI                                                                   | LS-701                 | Slight Glass: Liquid Present<br>Level Indication      |               | -                                                              | -                                                                 | None             |
|                    | HMI                                                                   | PT-302                 | Blower Outlet Flow Pressure                           | 2             |                                                                | -                                                                 | 0.1              |
|                    | HMI                                                                   | TE-302                 | Blower Outlet Temperature                             |               | -                                                              | 50 - 90 °F                                                        | 59               |
|                    | HMI                                                                   | PDT-301                | Blower Outlet Flow Differential Pr                    |               | -                                                              | 1-2 in w.c                                                        | 0.81             |
|                    | HMI                                                                   | -                      | Blower Outlet Flow Rate                               |               | -                                                              | 180 - 190 scfm                                                    | 134              |
|                    | Local                                                                 | GHS-PI-302             | Blower Outlet Flow Pressure                           | 9             | -                                                              | -                                                                 | 0.2              |
| Blower Outlet      | Local                                                                 | GHS-TI-302             | Blower Outlet Temperature                             | 5             | -                                                              | 50 - 90 °F                                                        | 56               |
|                    |                                                                       |                        | Gas Composition - % Methar                            | e             | -                                                              |                                                                   | 7.7              |
|                    | Local                                                                 | Sample Port            | Gas Composition - % CO2                               |               | -                                                              |                                                                   | 8.6              |
|                    | Local                                                                 | sumple i ore           | Gas Composition - % Oxyge                             |               | -                                                              |                                                                   | 15.0             |
|                    |                                                                       |                        | Gas Composition - % Balanc                            | e             | -                                                              |                                                                   | 68.7%            |
|                    | Local                                                                 | North                  | North Branch Vacuum                                   |               | -                                                              | 6 - 7 in w.c.                                                     | -6.11            |
|                    | Local                                                                 | North                  | Valve Position                                        |               | 6 turns open /6                                                | 6 turns open                                                      | 6/6              |
|                    |                                                                       | North Sample           | Gas Composition - % Methar<br>Gas Composition - % CO2 | ie            | -                                                              |                                                                   | 22.5<br>17.5     |
|                    | Local                                                                 | Port                   | Gas Composition - % Oxyge                             | n             | -                                                              |                                                                   | 7.3              |
|                    |                                                                       | TOR                    | Gas Composition - % Balance                           |               | -                                                              |                                                                   | 52.7%            |
|                    | Local                                                                 | Central                | Central Branch Vacuum                                 | -             | -                                                              | 6 - 7 in w.c.                                                     | -6.08            |
|                    | Local                                                                 | Central                | Valve Position                                        |               | -                                                              | 6 turns open                                                      | 6/6              |
| ranch Handar       |                                                                       | 1                      | Gas Composition - % Methar                            | e             | -                                                              |                                                                   | 5.2              |
| ranch Headers      | Local                                                                 | Central                | Gas Composition - % CO2                               |               | -                                                              |                                                                   | 6.5              |
|                    | LUCAI                                                                 | Sample Port            | Gas Composition - % Oxyge                             |               | -                                                              |                                                                   | 16.3             |
|                    |                                                                       |                        | Gas Composition - % Balance                           | e             | -                                                              |                                                                   | 72.0%            |
|                    | Local                                                                 | South                  | South Branch Vacuum                                   |               | -                                                              | 6 - 7 in w.c.                                                     | -6.02            |
|                    | Local                                                                 | South                  | Valve Position                                        |               | -                                                              | 6 turns open                                                      | 6/6              |
|                    |                                                                       |                        | Gas Composition - % Methar                            | е             | -                                                              |                                                                   | 9.5              |
|                    | Local                                                                 | South Sample           | Gas Composition - % CO2                               |               | -                                                              | ┨─────┤                                                           | 10.5             |
|                    |                                                                       | Port                   | Gas Composition - % Oxyge                             |               | -                                                              | $\downarrow$                                                      | 13.9             |
|                    |                                                                       |                        | Gas Composition - % Balance                           | e             | -                                                              |                                                                   | 66.1%            |

|                       |                           |                                                                       | Air Comp               | ressor Syst                              | em <sup>1,3,4</sup> (Off | Line)           |                                                              |                |     |
|-----------------------|---------------------------|-----------------------------------------------------------------------|------------------------|------------------------------------------|--------------------------|-----------------|--------------------------------------------------------------|----------------|-----|
|                       |                           | Press                                                                 | sure Set Point         | S                                        |                          |                 | Condensate Set I                                             | Points         |     |
| Operational Settings  | Tank Low (psi)            | Tank High<br>(psi)                                                    | Well Field<br>(psi)    | On<br>(min.)                             | Off<br>(min.)            | Open (sec.)     | Closed (min.)                                                | Test Operation |     |
| Air Dryer Syster      | m <sup>2</sup> (Off Line) |                                                                       |                        | Elect                                    | trical Status            |                 | HMI Heater/Air Conditioner                                   |                |     |
| System Operation      | YES                       | 3-Phase Power Indicator:                                              |                        |                                          | <u>3</u> of 3            | Operational Yes |                                                              | 'es            |     |
| Condensate Drain Oper | ational:                  | YES                                                                   | GFI 1 Status:          |                                          |                          | (Green)         | Temperature                                                  | 5              | 1°F |
| Alarm Indictor:       |                           | OFF                                                                   | GFI 2 Status:          |                                          | (Green)                  | Filter Cleaned  | No                                                           |                |     |
| Condenser Cleane      | d <sup>2</sup> :          | NO                                                                    | Leachate Tank/Loadout  |                                          |                          |                 |                                                              |                |     |
| Dew Point In          | dicator:                  |                                                                       | Liquid Level (inches): |                                          |                          | 39.75           | Visual Check:                                                |                |     |
|                       |                           |                                                                       | Contact W              | DNR if level                             | is above                 | 71              | • Evidence of Tank (                                         | Overflow:      | No  |
|                       |                           |                                                                       | Leak Dete              | ction Test Co                            | ompleted:                | no              | <ul> <li>Inspect concrete pad and storm sewer for</li> </ul> |                |     |
|                       |                           | Indicate which bars are green(G) or red (R) and note (F) if flashing. |                        | Overfill Float Functional <sup>5</sup> : |                          |                 | no damage or backup                                          |                |     |
|                       |                           | . ,                                                                   |                        |                                          |                          | Exhaust St      | ack                                                          |                |     |
|                       |                           |                                                                       | Drain Stacl            | k Sump (vol.                             | removed)                 | 0.75 gallons    | 0.75 gallons Stack Condition <sup>4</sup> : Good             |                |     |

1. Check all air lines and gas extraction lines for leaks during each site visit. Drain inline air filters and replace as needed.

2. Air Dryer - Clean the condenser monthly using an air jet (max. 2 bar / 30 psig) inside out. Make sure not to damage the aluminum lamellae of the cooling package.

3. On a quarterly basis change the oil and check/clean the air filters and intercoolers for the air compressor.

4. Inspect mounting brackets and bolts for the air compressor and effluent stack for tightness.

5. Test overfill float operation on a monthly basis.

Comments/Notes: Heat tape is in working order, warm to the touch. Stack sump drained 0.75 gallons and was transferred into the leachate tank. The insulation for the air compressor motor was installed.

Data Entered By: J. Roelke 11/9/2023 Checked By: M. Wagler 11/20/2023

#### LANDFILL GAS MONITORING FORM REFUSE HIDEAWAY GAS MONITORING PROGRAM (EPA ID: WID980610604, Facility ID: 113112010)

|                       |                            |                                | STARTING     | ENDING       |
|-----------------------|----------------------------|--------------------------------|--------------|--------------|
| TECHNICIAN(S):        | J. Roelke                  | DATE:                          | 11/20/23     | 11/20/23     |
| GAS/INSTRUMENT TYPE:  | GEM 2000                   | TIME:                          | 8:27 AM      | 11:23 AM     |
| SERIAL NO.:           | 11668                      | BAROMETRIC PRESSURE [25]       | 30.20 in. Hg | 30.21 in. Hg |
| DATE LAST CALIBRATED: | 11/20/2023                 | BAROMETRIC TREND [46381]       | rising       | rising       |
| METHOD:               | Standard Calibration Gases | WEATHER CONDITIONS:            | cloudy       | cloudy       |
| PRESSURE INSTRUMENT:  | Dwyer Digital Manometer    | TEMPERATURE [21]               | 41 °F        | 45 °F        |
| Project #             |                            | GROUND CONDITIONS [No DNR ID]: | dry          | dry          |

| Well<br>No. | Time  | Well<br>Temp. | Available<br>Header<br>Pressure | Applied<br>Well<br>Pressure | Differential<br>Pressure | Final<br>Well<br>Pressure | Final<br>Deferential<br>Pressure | Estimated<br>Gas<br>Flow | Methane      | Carbon<br>Dioxide | Oxygen       | Initial<br>Valve<br>Setting | Final<br>Valve<br>Setting | Pump Counter  |
|-------------|-------|---------------|---------------------------------|-----------------------------|--------------------------|---------------------------|----------------------------------|--------------------------|--------------|-------------------|--------------|-----------------------------|---------------------------|---------------|
| NO.         |       | (°F)          | (in. W.C.)                      | (in. W.C.)                  | (in. W.C.)               | (in. W.C.)                | (in. W.C.)                       | (scfm)                   | (%, by vol.) |                   | (%, by vol.) | (% open)                    | (% open)                  |               |
| GW-1        | 9:12  | 40            | -5.61                           | -0.26                       | 0.03                     | -0.26                     | 0.03                             | -                        | 21.3         | 31.2              | 0.3          | 0.5 / 12                    | 0.5 / 12                  | Counter #: NM |
| GW-2        | 9:26  | 40            | -5.49                           | -0.44                       | 0.02                     | -0.44                     | 0.02                             | -                        | 0.0          | 0.2               | 20.5         | 0.00 / 12                   | 0.00 / 12                 | Counter #: NM |
| GW-3        | 9:32  | 52            | -5.37                           | -5.01                       | 0.07                     | -5.01                     | 0.07                             | -                        | 29.3         | 31.3              | 0.00         | 0.50 / 12                   | 5.00 / 12                 | Counter #: NM |
| GW-4        | 9:38  | 48            | -5.40                           | -1.31                       | 0.03                     | -0.93                     | 0.02                             | -                        | 6.6          | 17.6              | 5.1          | 1.00 / 12                   | 0.5 / 12                  | Counter #: NM |
| GW-5        | 9:45  | 42            | -5.34                           | -1.85                       | 0.03                     | -1.85                     | 0.03                             | -                        | 25.5         | 16.3              | 8.9          | 0.50 / 12                   | 0.50 / 12                 | Counter #: NM |
| GW-6        | 10:45 | 44            | -5.80                           | -3.31                       | 0.04                     | -3.31                     | 0.04                             | -                        | 25.9         | 30.7              | 0.0          | 1.50 / 12                   | 1.50 / 12                 | Counter #: NM |
| GW-7        | 10:36 | 44            | -5.61                           | -5.59                       | 0.04                     | -5.59                     | 0.04                             | -                        | 37.7         | 28.5              | 0.8          | 7.00 / 12                   | 7.00 / 12                 | Counter #: NM |
| GW-8        | 10:31 | 44            | -5.48                           | -5.44                       | 0.04                     | -5.44                     | 0.04                             | -                        | 40.4         | 15,5              | 7.4          | 3.50 / 12                   | 3.50 / 12                 | Counter #: NM |
| GW-9        | 10:27 | 42            | -5.42                           | -0.08                       | 0.02                     | -0.08                     | 0.02                             | -                        | 10.6         | 6.7               | 10.5         | 0.25 / 12                   | 0.25 / 12                 | Counter #: NM |
| GW-10       | 10:20 | 44            | -6.00                           | -0.77                       | 0.03                     | -0.77                     | 0.03                             | -                        | 30.9         | 25.3              | 0.6          | 0.5 / 12                    | 0.50 / 12                 | Counter #: NM |
| GW-11       | 10:02 | 44            | -6.09                           | 0.05                        | 0.02                     | -5.41                     | 0.03                             | -                        | 81.5         | 17.8              | 0.0          | 0.5 / 12                    | 1.50 / 12                 | Counter #: NM |
| GW-12       | 10:08 | 44            | -6.08                           | 0.04                        | 0.02                     | -1.69                     | 0.02                             | -                        | 63.4         | 29.1              | 0.0          |                             |                           | Counter #: NM |
| GW-13       | 10:14 | 46            | -6.02                           | -0.02                       | 0.02                     | -3.64                     | 0.03                             | -                        | 70.6         | 28.9              | 0.0          | 0.25 / 12                   | 0.75 / 12                 | Counter #: NM |
| Notes:      |       |               |                                 |                             |                          |                           |                                  |                          |              |                   |              |                             |                           |               |

"NA" = Data Not Available "NM" = Not Monitored

Data Entered By: J. Roelke 11/20/2023 Checked By: M. Wagler 11/20/2023

#### Monthly System Inspection Log Landfill Gas Extraction and Leachate Pump System WDNR - Refuse Hideaway Landfill Middleton, Wisconsin

| TRC Operator Name:     John Roelke       Date:     11/20/2023     Arrival Time:     8:27 AM     Departure Time:     11:23 AM |                      |                    |                       |                            |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------|-----------------------|----------------------------|--|--|--|--|
| Site Conditions                                                                                                              | Initial <sup>1</sup> | Final <sup>2</sup> |                       | Equipment                  |  |  |  |  |
| Weather Conditions:                                                                                                          | cloudy               | cloudy             | Gas/Instrument Type:  | GEMS 2000                  |  |  |  |  |
| Ground Condition:                                                                                                            | dry                  | dry                | Serial Number:        | 11668                      |  |  |  |  |
| Barometric Pressure:                                                                                                         | 30.20 in. Hg         | 30.21 in. Hg       | Date Last Calibrated: | 11/20/2023                 |  |  |  |  |
| Barometric Pressure Trend:                                                                                                   | rising               | rising             | Method:               | Standard field calibration |  |  |  |  |
| Temperature:                                                                                                                 | 41 °F                | 45 °F              | Pressure Instrument:  | Dwyer Series 475 Manometer |  |  |  |  |

|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     | Landfill Gas Extra                                     | ction System <sup>3</sup> |                 |                                    |                     |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------|---------------------------|-----------------|------------------------------------|---------------------|
|                    | Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Tag #               | Equipment Description                                  | Set Point                 | Typical Range   | Initial Field Reading <sup>1</sup> | Final Field Reading |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     | Amperage                                               | -                         | 3 - 4 amps      | 3.38                               |                     |
|                    | Motor         Remote         Anticipation           HMI         HMI         GHS-BLR-301         Image: Constraint of the second seco | Speed               | -                                                      | 1800 - 1900 rpm           | 1473            |                                    |                     |
| Blower Motor       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     | Frequency                                              | -                         | 30 - 35 Hz      | 24.73                              |                     |
| Blower Motor       | HMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GHS-BLK-301         | Amperage                                               | -                         | 3 -4 amps       | 3.3                                |                     |
|                    | HMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                   | Speed                                                  | -                         | -               | 34                                 |                     |
|                    | HMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T [                 | Hours                                                  | -                         | -               | 3.38<br>1473<br>24.73<br>3.3       |                     |
| Blower Operating ( | YES). Note ex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | cessive noise or is | sues observed.                                         | -                         |                 |                                    |                     |
|                    | нмі                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PT-301              | Blower Inlet Vacuum                                    | 7 in. w.c.                | 7 in. w.c.      | -7                                 | -7                  |
|                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | Blower Inlet Temperature                               | -                         | 50 - 90 °F      |                                    | 51                  |
|                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | Blower Inlet Vacuum                                    | 7 in. w.c.                | 7 in. w.c.      |                                    | -6.9                |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     | Blower Inlet Temperature                               | -                         | 50 - 90 °F      |                                    | 48                  |
| Blower Inlet       | Local                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0115-11-501         | Gas Composition - % Methane                            |                           | 30-301          |                                    | 8.4                 |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                   | Gas Composition - % CO2                                | -                         |                 |                                    | 8.1                 |
|                    | Local                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sample Port         | Gas Composition - % Oxygen                             | -                         |                 |                                    | 15.1                |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                   | Gas Composition - % Balance                            | -                         |                 |                                    | 68.4%               |
|                    | Local                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     | Demister Differential Pressure                         |                           | 1-2 in w.c      |                                    | 00.470              |
| Demister           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GH3-PDI-501         | Slight Glass: Liquid Present                           | -                         | 1-2 III W.C     |                                    |                     |
| Definister         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15 701              | Level Indication                                       | -                         | -               |                                    |                     |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     | Blower Outlet Flow Pressure                            |                           | -               |                                    | 0.1                 |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |                                                        | -                         | -<br>50 - 90 °F |                                    | 56                  |
|                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | Blower Outlet Temperature                              |                           |                 |                                    |                     |
|                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PD1-301             | Blower Outlet Flow Differential Pressure               | -                         | 1-2 in w.c      |                                    | 0.99                |
|                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                   | Blower Outlet Flow Rate<br>Blower Outlet Flow Pressure | -                         | 180 - 190 scfm  |                                    | 147<br>0.12         |
| Blower Outlet      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |                                                        | -                         | -<br>50 - 90 °F |                                    | 52                  |
|                    | Local                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GH3-11-302          | Blower Outlet Temperature                              | -                         | 50-90 F         |                                    |                     |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sample Port         | Gas Composition - % Methane                            | -                         |                 |                                    | 8.4                 |
|                    | Local                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     | Gas Composition - % CO2                                | -                         |                 |                                    | 8.1<br>15           |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                   | Gas Composition - % Oxygen                             | -                         |                 |                                    | -                   |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     | Gas Composition - % Balance                            |                           |                 |                                    | 68.5%               |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     | North Branch Vacuum                                    | -                         | 6 - 7 in w.c.   |                                    | -6.07               |
|                    | Local                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | North               | Valve Position                                         | 6 turns open /6           | 6 turns open    |                                    | 6                   |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     | Gas Composition - % Methane                            | -                         |                 |                                    | 44.6                |
|                    | Local                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · · -               | Gas Composition - % CO2                                | -                         |                 |                                    | 21.1                |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Port                | Gas Composition - % Oxygen                             | -                         |                 |                                    | 5                   |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     | Gas Composition - % Balance                            | -                         |                 |                                    | 29.3%               |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     | Central Branch Vacuum                                  | -                         | 6 - 7 in w.c.   |                                    | -5.88               |
|                    | Local                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Central             | Valve Position                                         | -                         | 6 turns open    |                                    | 6                   |
| Branch Headers     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I                   | Gas Composition - % Methane                            | -                         |                 |                                    | 4.3                 |
|                    | Local                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Central             | Gas Composition - % CO2                                | -                         |                 |                                    | 5.9                 |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sample Port         | Gas Composition - % Oxygen                             | -                         |                 |                                    | 16.4                |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     | Gas Composition - % Balance                            | -                         |                 |                                    | 73.4%               |
|                    | Local                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | South               | South Branch Vacuum                                    | -                         | 6 - 7 in w.c.   |                                    | -6.05               |
|                    | Local                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | South               | Valve Position                                         | -                         | 6 turns open    |                                    | 6                   |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     | Gas Composition - % Methane                            | -                         |                 |                                    | 7.6                 |
|                    | Local                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | South Sample        | Gas Composition - % CO2                                | -                         |                 |                                    | 8.8                 |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Port                | Gas Composition - % Oxygen                             | -                         |                 |                                    | 14.8                |
| Demister           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     | Gas Composition - % Balance                            | -                         |                 | 67.7%                              | 68.8%               |

|                         |                                  |                                                                       | Air Compr              | essor Syste                            | em <sup>3,5,6</sup> (Off L | .ine)         |                                       |           |               |  |
|-------------------------|----------------------------------|-----------------------------------------------------------------------|------------------------|----------------------------------------|----------------------------|---------------|---------------------------------------|-----------|---------------|--|
|                         |                                  | Pres                                                                  | sure Set Poin          | ts                                     |                            |               | Condensate Set Points                 |           |               |  |
| Operational Settings    | Tank Low (psi)                   | Tank High                                                             | Well Field             | On                                     | Off                        |               |                                       |           |               |  |
| operational settings    | Talik Low (psi)                  | (psi)                                                                 | (psi)                  | (min.)                                 | (min.)                     | Open (sec.)   | Closed (min.)                         | Test C    | peration      |  |
|                         |                                  |                                                                       |                        |                                        |                            |               |                                       | (ye       | es/no)        |  |
| Air Dryer Syste         |                                  | Elect                                                                 | rical Status           |                                        | HMI Heat                   | ter/Air Condi | tioner                                |           |               |  |
| System Operational: YES |                                  |                                                                       | 3-Phas                 | e Power Ind                            | icator:                    | <u>3</u> of 3 | Operational                           | Yes       |               |  |
| Condensate Drain Ope    | Condensate Drain Operational: NO |                                                                       |                        | GFI 1 Status:                          |                            |               | Temperature                           | 4         | 5°F           |  |
| Alarm Indictor          | :                                | YES                                                                   | GFI 2 Status:          |                                        |                            | GREEN         | Filter Cleaned                        |           | no            |  |
| Condenser Clean         | ed²:                             | NO                                                                    | Leachate Tank/Loadout  |                                        |                            |               |                                       |           |               |  |
| Dew Point I             | ndicator:                        |                                                                       | Liquid Level (inches): |                                        |                            | 30            | Visual Check:                         |           |               |  |
|                         |                                  |                                                                       | Contact V              | /DNR if leve                           | l is above                 | 71 inches     | · Evidence of Tank                    | Overflow: | None          |  |
|                         |                                  |                                                                       | Leak Dete              | ction Test C                           | ompleted:                  | no            | ·Inspect concrete pad and storm sewer |           | orm sewer for |  |
|                         |                                  | Indicate which bars are green(G) or red (R) and note (F) if flashing. |                        | Overfill Float Functional <sup>7</sup> |                            |               | Yes damage or backup                  |           |               |  |
| 니다다나다니니니                | rea (ity and note                |                                                                       |                        |                                        |                            | Exhaust St    | ack                                   |           |               |  |
|                         |                                  |                                                                       | Drain Stac             | Drain Stack Sump (vol. removed)        |                            |               | Stack Condition <sup>6</sup> :        | Good      |               |  |

1. Initial site conditions represents readings collected upon arrival to the site and initial field readings are collected prior to the landfill balancing.

2. Final site conditions represents readings collected upon departure from the site and final field readings are collected following the landfill balancing.

3. Check all air lines and gas extraction lines for leaks during each site visit. Drain inline air filters and replace as needed.

4. Air Dryer - Clean the condenser monthly using an air jet (max. 2 bar / 30 psig) inside out. Make sure not to damage the aluminum lamellae of the cooling package.

5. On a quarterly basis change the oil and check/clean the air filters and intercoolers for the air compressor.

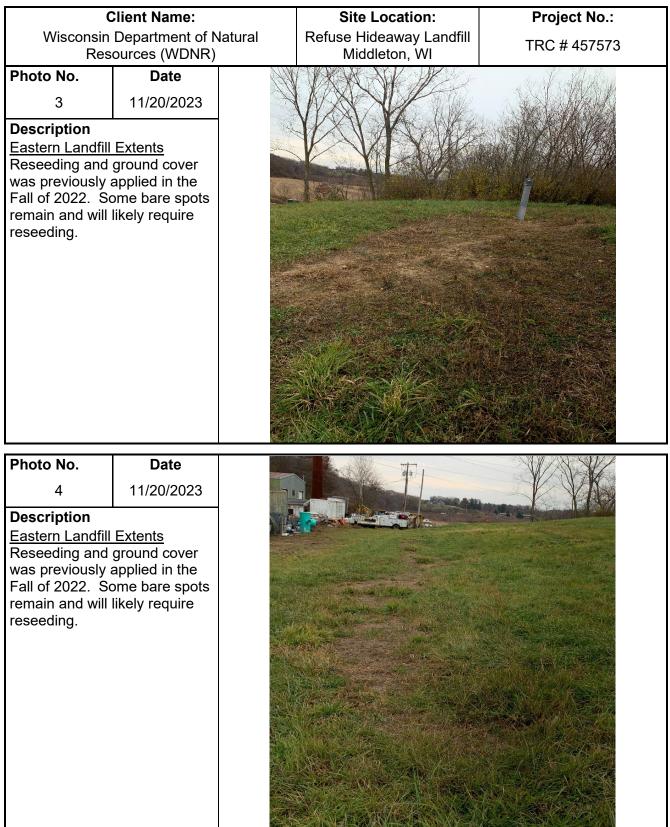
6. Inspect mounting brackets and bolts for the air compressor and effluent stack for tightness.

7. Test overfill float operation on a monthly basis.

Comments/Notes: Heat tape is in working order, warm to the touch. Leachate pumps were tested on 10/27/23, and all pumps were in working order. NM - Not Measured

Data Entered By: J. Roelke 11/20/2023 Checked By: M. Wagler 11/20/2023

| Cap Inspection                                                                                                                                                            |   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Note: Photograph all issues encountered during inspection                                                                                                                 |   |
| Note: Keep vehicle traffic to gravel roadways, avoid driving on the landfill surface                                                                                      |   |
| ste landfill surface covered in snow (Y/N)? No                                                                                                                            |   |
| spect the landfill surface when not covered in snow. Describe the condition and any issues observed for each category below:                                              |   |
| ap integrity:                                                                                                                                                             |   |
| Cap integrity is acceptable                                                                                                                                               |   |
| Fencing around GW-1 and GW-2 is damaged but still provides well protection from mowing operations (see photo #6).                                                         |   |
| GW-2 and GW-4 on the south side have wildlife burrowing inside the fencing (see photo #5)                                                                                 |   |
| Snow fencing was installed to protect the airlines for the Gas Extraction Wells during mowing events at GW-2, GW-4, GW-7, GW-8, GW-9, GW-10, GW-11, GW-12, GW-13          |   |
| see photo #5 & #7). Protective fencing remains in place.                                                                                                                  |   |
| Condition of drainage ways:                                                                                                                                               |   |
| Vest Drainage Ditch - During the May inspection, areas of vegetation die off were observed at the drainage path to the north. This area was previously regraded           |   |
| during the 2020-2021 grading work at the site. Currently, the area showed improvement but will still be monitored moving forward.                                         |   |
|                                                                                                                                                                           |   |
| ast Drainage Ditch - Drainage ways are acceptable with minimal to no changes from previous conditions aside from those described below.                                   |   |
|                                                                                                                                                                           |   |
|                                                                                                                                                                           |   |
| ixtent of vegetation cover:                                                                                                                                               |   |
| /egetation cover is acceptable over the majority of the site. Various areas were reseeded and ground cover was applied in the fall of 2022. Some bare spots were observed |   |
| see photo #3 and #4). Per discussion with the WDNR, TRC will evaulate the areas in Spring of 2024 and apply seed as needed at that time.                                  |   |
|                                                                                                                                                                           |   |
| ignificant erosion:                                                                                                                                                       |   |
| No evidence if significant erosion was observed at the site.                                                                                                              |   |
|                                                                                                                                                                           |   |
| Repeated erosion:                                                                                                                                                         |   |
| No evidence if significant erosion was observed at the site.                                                                                                              |   |
|                                                                                                                                                                           |   |
| /egetation die-off:                                                                                                                                                       |   |
| Areas at the west drainage ditch and east drainage ditch previously showed signs of vegetation die-off and were reseeded in the fall of 2022. Ground cover in these areas |   |
| emains and TRC will continue to monitor and apply seed as needed in 2024. (see photo #1).                                                                                 |   |
| Alaintain surface water conveyances and the sedimentation basin by completing the following:                                                                              |   |
| nspect drainage ditches for erosion, blockages, and vegetation, describe and note any issues:                                                                             |   |
| vidence of erosion at the eastern drainage ditch above the sediment basin was observed. Vegetation is in place, but ruts are starting to from (See photo #2).             |   |
| RC will continue to monitor the area.                                                                                                                                     |   |
| nspect sedimentation basin banks and outfalls for erosion, describe and note any issues:                                                                                  | — |
| No erosion or other issues at sedimentation basin banks or outfalls.                                                                                                      |   |
|                                                                                                                                                                           |   |
| Veasure the distance between the invert of the sedimentation basin outlet and the top of the sediments accumulated in the basin (June Only!): NM                          |   |


Inspected By: J. Roelke 11/20/23 Checked By A.Stehn 12/21/23

Attachment 2 Photographic Log



# Project No.: Site Location: **Client Name:** Wisconsin Department of Natural Refuse Hideaway Landfill TRC # 457573 Resources (WDNR) Middleton, WI Photo No. Date 11/20/2023 1 Description Eastern Drainage Ditch: Bare spots are present to the north, above the drainage way and will likely require reseeding. Photo No. Date 2 11/20/2023 Description Eastern Drainage Ditch: Evidence of erosion starting to occur was observed at the north portion of the eastern drainage ditch leading to the sediment basin. Vegetation is still intact but ruts are starting to form.







| Client Name:                                        |            | Site Location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Project No.:           |  |  |  |
|-----------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--|--|--|
| Wisconsin Department of Natural<br>Resources (WDNR) |            | Refuse Hideaway Landfill<br>Middleton, WI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TRC # 457573           |  |  |  |
| Photo No.                                           | Date       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |  |  |
| 5                                                   | 11/20/2023 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |  |  |
| Description                                         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |  |  |
| Southern Landfill Extents                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |  |  |
| GW-2 and GW-4 have                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |  |  |
| burrowing from wildlife inside                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |  |  |
| fencing.                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |  |  |
|                                                     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |  |  |
|                                                     |            | Mar Andrews                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |  |  |  |
|                                                     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |  |  |
|                                                     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |  |  |
|                                                     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |  |  |
|                                                     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |  |  |
|                                                     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |  |  |
|                                                     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |  |  |
|                                                     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |  |  |
|                                                     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |  |  |
|                                                     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |  |  |
| Dhote No                                            | Dete       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |  |  |
| Photo No.                                           | Date       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |  |  |
| 6                                                   | 11/20/2023 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | in the second la       |  |  |  |
| Description                                         |            | to Amazona and a state of the s | a stated i             |  |  |  |
| Southern Landf                                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |  |  |
| GW-1 protective falling apart. Fe                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |  |  |
| provides protect                                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second second  |  |  |  |
| mowing operation                                    | ons. GW-1  | FRUEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |  |  |  |
| protective fencing is in the                        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |  |  |
| same condition as GW-2.                             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |  |  |
|                                                     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | has a first the second |  |  |  |
|                                                     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |  |  |
|                                                     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |  |  |
|                                                     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |  |  |
|                                                     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |  |  |
|                                                     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |  |  |
|                                                     |            | AND A CONTRACT OF A CONTRACT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E-NY KARE              |  |  |  |
|                                                     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |  |  |
|                                                     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |  |  |
|                                                     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |  |  |
|                                                     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |  |  |



| Client Name:                                                                                              |            |  | Site Location:                            | Project No.: |
|-----------------------------------------------------------------------------------------------------------|------------|--|-------------------------------------------|--------------|
| Wisconsin Department of Natural<br>Resources (WDNR)                                                       |            |  | Refuse Hideaway Landfill<br>Middleton, WI | TRC # 457573 |
| Photo No.                                                                                                 | Date       |  |                                           |              |
| 7                                                                                                         | 11/20/2023 |  |                                           |              |
| Description<br>Northern Landfill Extents:<br>Cap remains in good condition<br>with full vegetation cover. |            |  |                                           |              |