

March 21, 2024

Ms. Cindy Koepke Hydrogeologist Wisconsin Department of Natural Resources 3911 Fish Hatchery Road Fitchburg, WI 53711

Subject: Refuse Hideaway Landfill February 2024 Operation Monitoring and Maintenance Activities

Dear Cindy:

TRC completed the following operation, monitoring, and maintenance activities at the Refuse Hideaway Landfill (the Site) in Middleton, WI in February 2024.

- February 1, 2024 Gas Probe Monitoring
- February 1, 2024 Bi-weekly Site Inspection
- February 12, 2024 Monthly Site Inspections
- February 26, 2024 Bi-weekly Site Inspection

Gas Extraction System

The gas extraction system (GES) was operated through the month of February 2024.

Field data from the gas extraction well and gas probe monitoring conducted in February 2024, are included in Attachment 1.

Leachate Extraction System

The leachate extraction system was restarted on October 25, 2023 following repair of the compressor system. However, based on exterior temperatures the system was kept off during the month of February. Winter operation conditions have been evaluated and TRC has coordinated and discussed options for cold weather operation with subcontractors. Recommendations have been provided to the WDNR.

The leachate tank level was gauged during each Site visit and the following measurements were recorded:

- February 1, 2024 52.25 Inches
- February 12, 2024 67 Inches
- February 26, 2024 73 Inches

Cap Inspection

TRC conducted a monthly inspection of the landfill cap and stormwater conveyance features on February 12, 2024. The landfill cap and stormwater conveyance features are operational. TRC will

Ms. Cindy Koepke Wisconsin Department of Natural Resources March 21, 2024 Page 2

continue to observe the condition of the features. An inspection form with further details is provided in Attachment 1 and a photographic log is provided in Attachment 2.

If you have any questions, please contact Andrew Stehn at astehn@trccompanies.com or 608-807-8112.

Sincerely,

TRC

olly Wagler

Molly Wagler, EIT **Project Engineer**

(Indrew M. Stehn

Andrew Stehn, PE **Project Manager**

Attachments: 1. February 2024 Monitoring Results 2. Photographic Log

Attachment 1

February 2024 Monitoring Results

REFUSE HIDEAWAY LANDFILL GAS PROBE MONITORING FORM

 TECHNICIAN(S):
 J. Roelke

 GAS/INSTRUMENT TYPE:
 GEM 2000

 SERIAL NO.:
 11668

 DATE LAST CALIBRATED:
 2/1/2024

 METHOD:
 Standard Calibration Gases

 PRESS INSTRUMENT :
 Manometer

DATE: 2/1/2024

START TIME: 7:55AM

END TIME: 1:45 PM

WEATHER CONDITIONS: sunny TEMPERATURE: 33 °F BAROMETRIC PRESSURE & TREND: 29.94 in. Hg, rising GROUND CONDITIONS: snow covered

GAS PROBE NAME	Time	PRESSURE (in. WC)	METHANE (% LEL)	METHANE (%, by vol.)	CARBON DIOXIDE (%, by vol.)	OXYGEN (%, by vol.)	COMMENTS
GP-1D	8:25	0.0	0.0	0.0	1.7	19.2	(2)
GP-1S	8:27	0.0	0.0	0.0	0.1	20.7	(2)
GP-2D	8:30	0.03	0.0	0.0	0.7	20.0	(1)
GP-2S	8:32	0.00	0.0	0.0	1.2	19.5	(1)
GP-3	8:35	0.0	34	1.7	11.4	7.1	(1)
GP-4	8:40	0.07	0.0	0.0	1.2	19.9	(1)
GP-5	8:45	0.12	0.0	0.0	0.3	20.4	(2)
GP-6	8:52	0.07	0.0	0.0	0.2	20.5	(1)
GP-7	9:04	0.19	0.0	0.0	2.0	18.8	(2)
GP-8	9:12	0.0	0.0	0.0	3.8	17.6	(2)
GP-9	9:16	0.0	0.0	0.0	1.6	18.9	(1)
GP-10	9:21	0.0	0.0	0.0	4.4	15.2	(1) Stable readings at 2 minutes
GP-11D	9:25	0.0	0.0	0.0	0.2	20.6	(2)
GP-11S	9:27	0.0	0.0	0.0	0.8	19.8	(2)
GP-12D	9:31	0.0	60	3	6.2	14	(1)
GP-12S	9:34	0.0	0.0	0.0	0.2	20.7	(1)
GP-13D	9:38	0.0	0.0	0.0	0.5	20.2	(2)
GP-13S	9:40	0.0	0.0	0.0	0.8	20.0	(2)

GAS PROBE NAME	Time	PRESSURE (in. WC)	METHANE (% LEL)	METHANE (%, by vol.)	CARBON DIOXIDE (%, by vol.)	OXYGEN (%, by vol.)	COMMENTS
GP-16D	9:59	0.0	0.0	0.0	7.5	8.7	(2)
GP-16S	10:01	0.0	0.0	0.0	0.6	19.5	(2)
GP-17D	9:52	0.0	0.0	0.0	1.8	18.5	(1)
GP-17M	9:54	0.0	0.0	0.0	0.3	20.3	(1)
GP-17S	9:56	0.0	0.0	0.0	0.3	20.4	(1)
GP-18D	10:03	0.0	0.0	0.0	1.0	19.6	(2)
GP-18M	10:05	0.0	16.0	0.8	3.5	14.3	(2) Stable readings at 2 minutes.
GP-18S	10:08	0.0	0.0	0.0	0.2	20.6	(2)
GP-19 ⁸⁵⁻¹⁰⁰	10:58	0.0	0.0	0.0	2.8	17.2	(1)
GP-19 ⁵⁰⁻⁷⁰	11:00	0.0	0.0	0.0	2.0	18.6	(1)
GP-19 ²⁵⁻⁴⁰	11:02	0.0	0.0	0.0	2.3	18.5	(1)
GP19 ²⁻¹⁵	11:04	0.0	0.0	0.0	1.2	18.9	(1)
GP-20 ⁸⁵⁻¹⁰⁰	10:51	0.0	0.0	0.0	1.5	18.9	(2)
GP-20 ⁵⁰⁻⁷⁰	10:53	0.0	0.0	0.0	1.9	18.6	(2)
GP-20 ²⁵⁻⁴⁰	10:55	0.0	0.0	0.0	1.3	19.2	(2)
GP-20 ²⁻¹⁵	10:57	0.0	0.0	0.0	1.4	19.4	(2)
GP-21 ⁸⁵⁻¹⁰⁰	10:42	0.0	0.0	0.0	0.7	19.9	(2)
GP-21 ⁵⁰⁻⁷⁰	10:44	0.0	0.0	0.0	0.3	20.5	(2)
GP-21 ²⁵⁻⁴⁰	10:46	0.0	0.0	0.0	1.8	19.1	(2)
GP-21 ²⁻¹⁵	10:48	0.0	0.0	0.0	1.1	19.9	(2)
GP-22 ⁸⁵⁻¹⁰⁰	11:10	0.0	0.0	0.0	1.9	19.1	(2)
GP-22 ⁵⁰⁻⁷⁰	11:12	0.0	0.0	0.0	2.0	18.3	(2)
GP-22 ²⁵⁻⁴⁰	11:14	0.0	0.0	0.0	1.7	19.4	(2)
GP-22 ²⁻¹⁵	11:16	0.0	0.0	0.0	1.4	19.7	(2)

GAS PROBE NAME	Time	PRESSURE (in. WC)	METHANE (% LEL)	METHANE (%, by vol.)	CARBON DIOXIDE (%, by vol.)	OXYGEN (%, by vol.)	COMMENTS
GP-23 ⁸⁵⁻¹⁰⁰	11:21	0.0	0.0	0.0	2.3	17	(2)
GP-23 ⁵⁰⁻⁷⁰	11:23	0.0	0.0	0.0	1.5	18.2	(2)
GP-23 ²⁵⁻⁴⁰	11:25	0.0	0.0	0.0	0.5	20.0	(2)
GP-23 ²⁻¹⁵	11:27	0.0	0.0	0.0	2.8	17.1	(2)
GP-24 ⁸⁵⁻¹⁰⁰	11:31	0.0	0.0	0.0	3.9	16.1	(2)
GP-24 ⁵⁰⁻⁷⁰	11:33	0.0	0.0	0.0	3.4	16.3	(2)
GP-24 ²⁵⁻⁴⁰	11:35	0.0	0.0	0.0	2.7	17.9	(2)
GP-24 ²⁻¹⁵	11:37	0.0	0.0	0.0	2.8	18.1	(2)
GPW-1D	13:30	0.0	0.0	0.0	2.1	18.7	(1)
GPW-1M	13:32	0.0	0.0	0.0	1.1	19.4	(1)
GPW-1S	13:34	0.0	0.0	0.0	1.5	19.5	(1)
G-1D	8:16	0.0	0.0	0.0	0.0	20.8	(1)
G-1S	8:18	0.0	0.0	0.0	0.1	20.7	(1)
G-2D	9:42	0.0	0.0	0.0	0.2	20.6	(1)
G-2S	9:44	0.0	100.0	7.4	18.6	0.0	(1) Stable readings at 2 minutes.
G-5	9:08	0.09	0.0	0.0	2.4	16.7	(1)
G-6	8:07	0.0	0.0	0.0	0.1	20.7	(1)
G-8	10:36	0.0	0.0	0.0	0.1	20.6	(1)
G-9	10:20	0.0	0.0	0.0	2.6	16.2	(1)
G-10	11:44	0.21	0.0	0.0	0.4	19.6	(1)
Speedway Office	8:22	0.0	0.0	0.0	0.2	20.6	Open to ATM

NOTES:

(1); Locked probe casing.(2): Probe is above casing and cannot be locked.(3): No cap for probe casing and cannot be locked.

Key:

Shallow or 2'-15'	
Medium or 25'-40'	
Deep or 50'-70'	
85'-100'	

Entered by: J. Roelke 2/ 1 /2024 Checked by: M. Wagler 3/2/2024

Bi-weekly - System Inspection Log Landfill Gas Extraction and Leachate Pump System WDNR - Refuse Hideaway Landfill Middleton, Wisconsin

TRC Operator Name: J. Roelke Date: 2/1/2024	Arrival Time: 11:58 A	M Departure Tim	e: 12:42 PM	
Dute: 2/1/2024	Annu finic. 11.50 A		C. 12.72 W	
Site Cond	itions	Equipment		
Weather Conditions:	sunny	Gas/Instrument Type:	GEMS 2000	
Ground Condition:	snow covered	Serial Number:	11668	
Barometric Pressure:	29.93 in Hg	Date Last Calibrated:	2/1/2024	
Barometric Pressure Trend:	falling	Method:	standard field calibration gas	
Temperature:	42 °F	Pressure Instrument:	Dwyer Manometer	

Cueta	Logitton	T			Tuning Damas	
System	Location	Tag #	Equipment Description			Field Reading
			Amperage	-		3.2
	Remote		Speed	-		954.11
Blower Motor		GHS-BLR-301	Frequency	-		15.96
	HMI		Amperage	-	3 -4 amps	3.1
	HMI	_	Speed	-		18
	HMI		Hours	- 3 - 4 amps - 1800 - 1900 rpm - 30 - 35 Hz - 3 - 4 amps - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	-	11457
Blower Operating (yes/no). Note	e excessive noise o	r issues observed.			
	HMI	PT-301	Blower Inlet Vacuum	7 in. w.c.	7 in. w.c.	-7.0
	HMI	TE-301	Blower Inlet Temperature	-	50 - 90 °F	49
	Local	GHS-PI-301	Blower Inlet Vacuum	7 in. w.c.	7 in. w.c.	0.02
Blower Inlet	Local	GHS-TI-301	Blower Inlet Temperature	-	50 - 90 °F	52
Blower Inlet			Gas Composition - % Methane	-		14.6
	Local	Sample Dert	Gas Composition - % CO2	-		15
	Local	Sample Port	Gas Composition - % Oxygen	-		10
			Gas Composition - % Balance	-		60.0%
	Local	GHS-PDI-301	Demister Differential Pressure	-	1-2 in w.c	0.4
Demister	Local		Slight Glass: Liquid Present	-	-	no
	Demister Local HMI LS-7 HMI PT-3		Level Indication	-	-	-
		PT-302	Blower Outlet Flow Pressure	-	-	0.1
		TE-302	Blower Outlet Temperature	-	50 - 90 °F	55
-	HMI	PDT-301	Blower Outlet Flow Differential Pressure	-		0.26
	HMI	-	Blower Outlet Flow Rate	-		76
	Local	GHS-PI-302	Blower Outlet Flow Pressure		-	0.02
Blower Outlet	Local	GHS-TI-302	Blower Outlet Temperature		50 - 90 °F	46
	2000.	0.10 11 002	Gas Composition - % Methane	-	50 50 .	14.5
			Gas Composition - % CO2	-		14.9
	Local	Sample Port	Gas Composition - % Oxygen	-		10.1
			Gas Composition - % Balance	-		60.5%
	Local	North	North Branch Vacuum	_	6 - 7 in w c	-6.7
	Local	North	Valve Position	6 turns open /6		6
	LUCAI	North	Gas Composition - % Methane		o turns open	25.8
		North Sample	Gas Composition - % Methane			18.3
	Local	Port	Gas Composition - % Oxygen			6.4
			Gas Composition - % Balance			49.0%
	Local	Central	Central Branch Vacuum		6 - 7 in w c	-6.65
	Local	Central	Valve Position			-6.65
	LUCAI	Central	Gas Composition - % Methane		o turns open	8.1
Branch Headers		Central	Gas Composition - % Methane Gas Composition - % CO2		<u>├</u>	8.1
	Local	Sample Port			<u>├</u>	15
		Sample Purt	Gas Composition - % Oxygen		┨────┤	-
	1	Court	Gas Composition - % Balance		6.75	68.9%
	Local	South	South Branch Vacuum			-6.71
	Local	South	Valve Position		6 turns open	6
			Gas Composition - % Methane		┥────┤	20
	Local	South Sample	Gas Composition - % CO2			21.5
		Port	Gas Composition - % Oxygen	-		5.4
			Gas Composition - % Balance	-		53.1%

		A	Air Compres	sor System ¹	^{I,3,4} (Off Lin	e)			
		Pres	sure Set Poin	ts		Condensate Set Points			
Operational Settings	Tank Low (psi)	Tank High (psi)	Well Field (psi) On (min.) Off (min.)		Open (sec.)	Closed (min.)	Test Operation		
Air Dryer Syste	em ² (Off Line)			Electrical Status			HMI Heater	/Air Conditioner	
System Operatio	System Operational: YES			3-Phase Power Indicator:			Operational	Yes	
Condensate Drain Ope	Condensate Drain Operational: YES		GFI 1 Status:			(Green)	Temperature	58 °F	
Alarm Indictor	:	OFF	GFI 2 Status:			(Green)	Filter Cleaned	no	
Condenser Clean	ed ² :	NO	Leachate Tank/Loadout						
Dew Point	Indicator:		Liquid Level (inches):			52.25	Visual Check:		
			Contact V	VDNR if level	is above	71	Evidence of Tank Overflow: no		
			Leak Dete	ction Test Co	ompleted:	no	 Inspect concrete pad and storm 		
		Indicate which bars are green(G) or red (R) and note (F) if flashing.		Overfill Float Functional ⁵ :			Yes sewer for damage or backup		
						Exhaust Stac	ck		
			Drain Stac	k Sump (vol.	removed)	0.5 gallons	Stack Condition ⁴ :	ion ⁴ : good	

1. Check all air lines and gas extraction lines for leaks during each site visit. Drain inline air filters and replace as needed.

2. Air Dryer - Clean the condenser monthly using an air jet (max. 2 bar / 30 psig) inside out. Make sure not to damage the aluminum lamellae of the cooling package.

3. On a quarterly basis change the oil and check/clean the air filters and intercoolers for the air compressor.

4. Inspect mounting brackets and bolts for the air compressor and effluent stack for tightness.

5. Test overfill float operation on a monthly basis.

Comments/Notes: Heat tape is in working order, warm to the touch. Stack sump drained, 0.5 gallons.

Data Entered By: J. Roelke 2/1/2024 Checked By: M. Wagler 3/2/2024

LANDFILL GAS MONITORING FORM REFUSE HIDEAWAY GAS MONITORING PROGRAM (EPA ID: WID980610604, Facility ID: 113112010)

				,
			STARTING	ENDING
TECHNICIAN(S):	J. Roelke	DATE:	2/12/24	2/12/24
GAS/INSTRUMENT TYPE:	GEM 2000	TIME:	8:30 AM	11:00 PM
SERIAL NO.:	11668	BAROMETRIC PRESSURE [25]	29.95 in. Hg	29.90 in. Hg
DATE LAST CALIBRATED:	2/12/2024	BAROMETRIC TREND [46381]	falling	falling
METHOD:	Standard Calibration Gases	WEATHER CONDITIONS:	sunny	sunny
PRESSURE INSTRUMENT:	Dwyer Digital Manometer	TEMPERATURE [21]	32 °F	43 °F
		GROUND CONDITIONS [No DNR ID]:	frozen	frozen

Well No.	Time	Well Temp. (°F)	Available Header Pressure (in. W.C.)	Applied Well Pressure (in. W.C.)	Differential Pressure (in. W.C.)	Final Well Pressure (in. W.C.)	Final Deferential Pressure (in. W.C.)	Estimated Gas Flow ⁽³⁾ (scfm)	Methane (%, by vol.)	Carbon Dioxide (%, by vol.)	Oxygen (%, by vol.)	Initial Valve Setting (% open)	Final Valve Setting (% open)	Pump Counter
GW-1	9:10	38	-6.41	-0.80	0.02	-0.8	0.02	9.0	8.6	24.0	0.4	0.75 / 12	0.75 / 12	Counter #: NM
GW-2	9:16	44	-6.28	-0.60	0.01	-0.6	0.01	6.4	0.0	0.2	20.7	0.00 / 12	0.00 / 12	Counter #: NM
GW-3	9:22	50	-6.16	-5.80	0.07	-5.8	0.07	17.0	30.2	30.5	0.00	5 / 12	5.0 / 12	Counter #: NM
GW-4	9:30	46	-6.18	-0.30	0.01	-0.7	0.01	6.4	33.2	21.9	2.6	0.5 / 12	0.8 / 12	Counter #: NM
GW-5	9:40	52	-6.21	1.00	0.01	-3.30	0.02	9.0	66.1	32.9	0.0	0.125 / 12	0.50 / 12	Counter #: NM
GW-6	10:59	44	-6.35	-3.30	0.11	-2.80	0.01	6.4	23.9	30.7	0.0	1.0 / 12	0.50 / 12	Counter #: NM
GW-7	10:53	44	-6.28	-6.10	0.01	-6.10	0.01	6.4	28.0	24.5	1.1	7.0 / 12	7.0 / 12	Counter #: NM
GW-8	10:42	44	-6.27	-6.10	0.02	-6.10	0.15	25.0	45.2	14.7	7.8	7.0 / 12	9.0 / 12	Counter #: NM
GW-9	10:36	42	-6.18	-0.10	0.01	-0.10	0.01	6.4	14.0	6.4	9.4	0.125 / 12	0.125 / 12	Counter #: NM
GW-10	10:28	42	-6.47	-0.80	0.01	-0.80	0.01	6.4	28.2	23.7	0.3	0.50 / 12	0.50 / 12	Counter #: NM
GW-11	9:54	68	-6.46	0.20	0.01	-0.40	0.01	6.4	79.0	20.7	0.0	0.25 / 12	0.75 / 12	Counter #: NM
GW-12	10:04	44	-6.48	-0.6	0.01	-0.60	0.01	6.4	26.5	16.1	9.5	0.25 / 12	0.25 / 12	Counter #: NM
GW-13	10:15	52	-6.56	0.5	0.01	-0.10	0.01	6.4	71.8	28.0	0.0	0.25 / 12	0.75 / 12	Counter #: NM

Notes:

(1): Sample port frozen and no measurement taken.

(2): Air compressor system was down and no counter numbers were reported.

(3): Flowrate calculated using LANDTEC's Flow Charts provided in the ACCU-Flo Wellhead Installation and Operation Manual.

"NA" = Data Not Available

"NM" = Not Monitored

Data Entered By: J. Roelke 2/12/2024 Checked By: M. Wagler 3/2/2024

Monthly System Inspection Log Landfill Gas Extraction and Leachate Pump System WDNR - Refuse Hideaway Landfill Middleton, Wisconsin

TRC Operator Name: John Roelke/N	TRC Operator Name: John Roelke/Maddie Holicky										
Date: 2/12 /2024	Arrival Time: 8:30 AM	Departure Tir	me: 12:15 PM								
			-								
Site Conditions	Initial ¹	Final ²		Equipment							
Weather Conditions:	sunny	sunny	Gas/Instrument Type:	GEMS 2000							
Ground Condition:	frozen	frozen	Serial Number:	11668							
Barometric Pressure:	29.95 in. Hg	29.90 in. Hg	Date Last Calibrated:	2/12/2024							
Barometric Pressure Trend:	falling	falling	Method:	Standard field calibration							
Temperature:	32 °F	43 ⁰ F	Pressure Instrument:	Dwyer Series 475 Manometer							

			Landfill Gas Extract	ion System ³			
	Location	Tag #	Equipment Description	Set Point	Typical Range	Initial Field Reading ¹	Final Field Reading
			Amperage	-	3 - 4 amps	3.21	
	Remote		Speed	-	1800 - 1900 rpm	1067.84	
			Frequency	-	30 - 35 Hz	17.91	
Blower Motor	HMI	GHS-BLR-301	Amperage	-	3 -4 amps	3.2	
	HMI		Speed	-		21	
	HMI		Hours	-	-	11717	
Blower Operating (YES). Note exces	sive noise or issue	s observed.	·			
	HMI	PT-301	Blower Inlet Vacuum	7 in. w.c.	7 in. w.c.	-7	-7
•	HMI	TE-301	Blower Inlet Temperature	-	50 - 90 °F	42	46
•	Local	GHS-PI-301	Blower Inlet Vacuum	7 in. w.c.	7 in. w.c.	-6.94	-6.75
•	Local	GHS-TI-301	Blower Inlet Temperature	-	50 - 90 °F	36	40
Blower Inlet	Local	0115 11 501	Gas Composition - % Methane	-	50 50 1	11.3	11.6
			Gas Composition - % CO2	-		12.1	11.6
	Local	Sample Port	Gas Composition - % Oxygen	-		12.4	12.1
		-	Gas Composition - % Balance	-		64.2%	64.7%
	Local	GHS-PDI-301	Demister Differential Pressure	-	1-2 in w.c	0.04	
Demister	Local	0115-1 01-501	Slight Glass: Liquid Present	-	1-2 III W.C	no	
Demister	HMI	LS-701	Level Indication	-			
	HMI	PT-302	Blower Outlet Flow Pressure	-	-	0.1	0.1
-	HMI	TE-302	Blower Outlet Temperature	-	- 50 - 90 °F	48	53
	HMI	PDT-301	Blower Outlet Flow Differential Pressure	-	1-2 in w.c	0.38	0.4
	HMI	PD1-501	Blower Outlet Flow Bilder	-	1-2 m w.c 180 - 190 scfm	93	94
-	Local	GHS-PI-302	Blower Outlet Flow Pressure	-	180 - 190 Scilli	0.04	0.05
Blower Outlet	Local	GHS-TI-302	Blower Outlet Temperature	-	- 50 - 90 °F	42	50
-	LUCAI	GH3-11-302	Gas Composition - % Methane		30-30 F	11.3	11.9
		-	Gas Composition - % CO2	-		11.5	11.5
	Local	Sample Port	Gas Composition - % Oxygen			12.1	11.8
			Gas Composition - % Balance	-		64.3%	64.3%
	Local	North	North Branch Vacuum	-	6 - 7 in w.c.	-6.68	-6.67
-	Local	North	Valve Position	6 turns open /6	6 turns open	-0.08	-0.07
-	LUCAI	NOTUI	Gas Composition - % Methane	o turns open /o	o turns open	25.1	32.3
		North Sample	Gas Composition - % CO2	-		18	17.3
	Local	Port	Gas Composition - % Oxygen	-		6.7	6.2
		FUIL	Gas Composition - % Balance	-		50.2%	44.2%
ł	Local	Central	Central Branch Vacuum	-	6 - 7 in w.c.	-6.63	-6.67
-	Local	Central	Valve Position	-		-0.03	-6.67
-	Local	Central	Gas Composition - % Methane	-	6 turns open	5.7	5.6
Branch Headers		Central	Gas Composition - % CO2	-		6.1	4.9
	Local	Sample Port		-		16.9	4.9
		Sample Full	Gas Composition - % Oxygen Gas Composition - % Balance	-	├	71.3%	72.7%
ł	Local	South		-	6 7 in w c		
ŀ	Local	South	South Branch Vacuum	-	6 - 7 in w.c.	-6.67	-6.61
ŀ	Local	South	Valve Position	-	6 turns open	6	6
		South Comela	Gas Composition - % Methane	-		15.7 17.7	16.7
	Local	South Sample Port	Gas Composition - % CO2		<u> </u>	8.4	18.3 7.5
		Port	Gas Composition - % Oxygen	-		58.2%	7.5

			Air Compre	ssor System	^{3,5,6} (Off Lin	e)					
		Pres	sure Set Poin	ts			Condensate Set Points				
Operational Settings	Tank Low (psi)	Tank High (psi)	Well Field (psi)	On (min.)	Off (min.)	Open (sec.)	Closed (min.)	Test C	peration		
Air Dryer Syste		Electi	ical Status		HMI Heat	ter/Air Condi	tioner				
System Operation	System Operational: YES			3-Phase Power Indicator:			Operational	Yes			
Condensate Drain Ope	rational:		GFI 1 Status:			GREEN	Temperature	5	1°F		
Alarm Indictor	:			GFI 2 Status:		GREEN	Filter Cleaned		NO		
Condenser Clean	ed²:	NO	Leachate Tank/Loadout								
Dew Point I	ndicator:		Liqu	id Level (incl	nes):	67 inches	V	isual Check:			
			Contact V	/DNR if level	is above	71 inches	Evidence of Tank Overflow: No		No		
				ction Test Co	ompleted:	no	 Inspect concrete pad and storm sewer f 				
		Indicate which bars are green(G) or red (R) and note (F) if flashing.		Overfill Float Functional ⁷			damage or backup. Good				
	red (K) and note				tack						
			Drain Stac	Drain Stack Sump (vol. removed)			Stack Condition ⁶ : good				

1. Initial site conditions represents readings collected upon arrival to the site and initial field readings are collected prior to the landfill balancing.

2. Final site conditions represents readings collected upon departure from the site and final field readings are collected following the landfill balancing.

3. Check all air lines and gas extraction lines for leaks during each site visit. Drain inline air filters and replace as needed.

4. Air Dryer - Clean the condenser monthly using an air jet (max. 2 bar / 30 psig) inside out. Make sure not to damage the aluminum lamellae of the cooling package.

5. On a quarterly basis change the oil and check/clean the air filters and intercoolers for the air compressor.

6. Inspect mounting brackets and bolts for the air compressor and effluent stack for tightness.

7. Test overfill float operation on a monthly basis.

Comments/Notes: Heat tape is warm to the touch. Cap inspection was completed.

Data Entered By: J. Roelke 2/12/2024 Checked By: M. Wagler 3/2/2024

Bi-weekly - System Inspection Log Landfill Gas Extraction and Leachate Pump System WDNR - Refuse Hideaway Landfill Middleton, Wisconsin

TRC Operator Name: J. Roelke		_		
Date: 2/26/2024	Date: 2/26/2024 Arrival Time: 10:03 AM		Departure Time: 11:05 PM	
Site Con	ditions		Equipment	
Weather Conditions:	cloudy	Gas/Instrument Type:	GEMS 2000	
Ground Condition:	frozen	Serial Number:	11668	
Barometric Pressure:	29.79 in Hg	Date Last Calibrated:	2/26/2024	
Barometric Pressure Trend:	falling	Method:	standard field calibration gas	
Temperature:	44 °F	Pressure Instrument:	Dwyer Manometer	

		· · · · · ·	Landfill Gas Extraction System	Set Point	· · · ·		
System Location Tag #		Tag #	Tag # Equipment Description		Typical Range	Field Reading	
Blower Motor –			Amperage	-	3 - 4 amps	3.22	
	Remote		Speed	-	1800 - 1900 rpm	1132.00	
		GHS-BLR-301	Frequency	-	30 - 35 Hz	18.96	
	HMI	GHS BER SOI	Amperage	-	3 -4 amps	3.2	
	HMI		Speed	-		23	
	HMI		Hours	-	-	12055	
lower Operating (yes/no). Note	e excessive noise o	r issues observed.				
	HMI	PT-301	Blower Inlet Vacuum 7 in. w.c.		7 in. w.c.	-7.0	
	HMI	TE-301	Blower Inlet Temperature	-	50 - 90 °F	47	
	Local	GHS-PI-301	Blower Inlet Vacuum 7 in. w.c. 7 in. w.c		7 in. w.c.	-6.85	
Blower Inlet	Local	GHS-TI-301	Blower Inlet Temperature	-	50 - 90 °F	42	
BIOWEI IIIIEL			Gas Composition - % Methane	-		10.4	
	Local	Sample Port	Gas Composition - % CO2	-		11.1	
	LUCAI	Sample Fort	Gas Composition - % Oxygen	-		12.7	
			Gas Composition - % Balance	-		65.8%	
	Local	GHS-PDI-301	Demister Differential Pressure	-	1-2 in w.c	0.6	
Demister	Local		Slight Glass: Liquid Present	-	-	no	
HMI		LS-701	Level Indication	-	-	-	
Blower Outlet	HMI	PT-302	Blower Outlet Flow Pressure	-	-	0.1	
	HMI	TE-302	Blower Outlet Temperature	-	50 - 90 °F	54	
	HMI	PDT-301	Blower Outlet Flow Differential Pressure	-	1-2 in w.c	0.45	
	HMI	-	Blower Outlet Flow Rate	-	180 - 190 scfm	100	
	Local	GHS-PI-302	Blower Outlet Flow Pressure		-	0.05	
	Local	GHS-TI-302	Blower Outlet Temperature	-	50 - 90 °F	54	
			Gas Composition - % Methane	-		10.5	
			Gas Composition - % CO2	-		11.1	
	Local	Sample Port	Gas Composition - % Oxygen	-		12.6	
			Gas Composition - % Balance	-		65.8%	
	Local	North	North Branch Vacuum	-	6 - 7 in w.c.	-6.59	
	Local	North	Valve Position	6 turns open /6	6 turns open	6	
			Gas Composition - % Methane	-		22.8	
		North Sample	Gas Composition - % CO2	-		14.9	
	Local	Port	Gas Composition - % Oxygen	-		8.7	
			Gas Composition - % Balance	-		53.6%	
	Local	Central	Central Branch Vacuum	-	6 - 7 in w.c.	-6.51	
	Local	Central	Valve Position	-	6 turns open	6	
	20001		Gas Composition - % Methane	-		3.6	
Branch Headers		Central	Gas Composition - % CO2			3.7	
	Local	Sample Port	Gas Composition - % Oxygen	-	1	17.9	
		campier of	Gas Composition - % Balance	-		74.8%	
	Local	South	South Branch Vacuum		6-7 in w.c	-6.55	
	Local Local	South South	Valve Position	8 / III 1110I		-6.55	
	LOCAI	South		-	6 turns open		
		South Samala	Gas Composition - % Methane			15.4	
	Local	South Sample	Gas Composition - % CO2	-		17.4	
		Port	Gas Composition - % Oxygen	-	<u> </u>	8.2	
			Gas Composition - % Balance	-		59.0%	

Air Compressor System ^{1,3,4} (Off Line)									
	Pressure Set Points			Condensate Set Points					
Operational Settings	Tank Low (psi)	Tank High (psi)	Well Field (psi)	On (min.)	Off (min.)	Open (sec.)	Closed (min.)	Test O	peration
Air Dryer System ² (Off Line)			Electrical Status			HMI Heater/Air Conditioner		ioner	
System Operational: YES		3-Phase Power Indicator:		3 of 3	Operational	Ň	'es		
Condensate Drain Ope	Condensate Drain Operational: YES		GFI 1 Status:		(Green)	Temperature	4	7 °F	
Alarm Indictor	Alarm Indictor:		GFI 2 Status:		(Green)	Filter Cleaned		no	
Condenser Cleaned ² : NO		Leachate Tank/Loadout							
Dew Point	Dew Point Indicator:		Liquid Level (inches):		73	Visual Check:			
			Contact WDNR if level is above		71	Evidence of Tank Overflow: no		no	
	Indicate which bars are green(G) or red (R) and note (F) if flashing.		Leak Detection Test Completed:		no	 Inspect concrete pad and storm sewe 		torm sewer	
<i></i>			Overfill Float Functional ⁵ :		Yes	for damage or backup			
		,		Exhaust Stack		ck			
			Drain Stack Sump (vol. removed)		0.25 gallons	Stack Condition ⁴ : good			

1. Check all air lines and gas extraction lines for leaks during each site visit. Drain inline air filters and replace as needed.

2. Air Dryer - Clean the condenser monthly using an air jet (max. 2 bar / 30 psig) inside out. Make sure not to damage the aluminum lamellae of the cooling package.

3. On a quarterly basis change the oil and check/clean the air filters and intercoolers for the air compressor.

4. Inspect mounting brackets and bolts for the air compressor and effluent stack for tightness.

5. Test overfill float operation on a monthly basis.

Comments/Notes: Heat tape is in working order, warm to the touch. Stack sump drained, 0.25 gallons.

Data Entered By: J. Roelke 2/26 /2024 Checked By: M. Wagler 3/2/2024

Iote: Photograph all issues encountered during inspection Iote: Keep vehicle traffic to gravel roadways, avoid driving on the landfill surface is the landfill surface covered in snow (Y/N)? No rspect the landfill surface when not covered in snow. Describe the condition and any issues observed for each category below: Tage the landfill surface when not covered in snow. Describe the condition and any issues observed for each category below: Tage the landfill surface when not covered in snow of the condition and any issues observed for each category below: Tage integrity is acceptable Fencing around GW-1 and GW-2 is damaged but still provides well protection from mowing operations (see photo #6). GW-2 and GW-4 on the south side have wildlife burrowing inside the fencing. GW-13 on the north side has burrowing outside the fencing. (see photo #5) Snow fencing was installed to protect the airlines for the Gas Extraction Wells during mowing events at GW-2, GW-4, GW-7, GW-8, GW-9, GW-10, GW-11, GW-12, GW-13 see photo #6). Protective fencing remains in place. Total the previous inspections, areas of vegetation die off were observed at the drainage path to the north. This area was previously regraded furing the 2020-2021 grading work at the site. Currently, the area showed improvement but will still be monitored moving forward. ast Drainage Ditch - Drainage ways are acceptable with minimal to no changes from previous conditions aside from those described below.
s the landfill surface covered in snow (Y/N)? No spect the landfill surface when not covered in snow. Describe the condition and any issues observed for each category below: ap integrity: Cap integrity is acceptable Fencing around GW-1 and GW-2 is damaged but still provides well protection from mowing operations (see photo #6). GW-2 and GW-4 on the south side have wildlife burrowing inside the fencing. GW-13 on the north side has burrowing outside the fencing. (see photo #5) Snow fencing was installed to protect the airlines for the Gas Extraction Wells during mowing events at GW-2, GW-4, GW-7, GW-8, GW-9, GW-10, GW-11, GW-12, GW-13 see photo #6). Fordition of drainage ways: Vest Drainage Ditch - During the previous inspections, areas of vegetation die off were observed at the drainage path to the north. This area was previously regraded during the 2020-2021 grading work at the site. Currently, the area showed improvement but will still be monitored moving forward.
s the landfill surface covered in snow (Y/N)? No spect the landfill surface when not covered in snow. Describe the condition and any issues observed for each category below: ap integrity: Cap integrity is acceptable Fencing around GW-1 and GW-2 is damaged but still provides well protection from mowing operations (see photo #6). GW-2 and GW-4 on the south side have wildlife burrowing inside the fencing. GW-13 on the north side has burrowing outside the fencing. (see photo #5) Snow fencing was installed to protect the airlines for the Gas Extraction Wells during mowing events at GW-2, GW-4, GW-7, GW-8, GW-9, GW-10, GW-11, GW-12, GW-13 see photo #6). Protective fencing remains in place. ondition of drainage ways: Vest Drainage Ditch - During the previous inspections, areas of vegetation die off were observed at the drainage path to the north. This area was previously regraded during the 2020-2021 grading work at the site. Currently, the area showed improvement but will still be monitored moving forward.
ap integrity: Cap integrity is acceptable Fencing around GW-1 and GW-2 is damaged but still provides well protection from mowing operations (see photo #6). GW-2 and GW-4 on the south side have wildlife burrowing inside the fencing. GW-13 on the north side has burrowing outside the fencing. (see photo #5) Snow fencing was installed to protect the airlines for the Gas Extraction Wells during mowing events at GW-2, GW-4, GW-7, GW-8, GW-9, GW-10, GW-11, GW-12, GW-13 see photo #6). Protective fencing remains in place. iondition of drainage ways: Vest Drainage Ditch - During the previous inspections, areas of vegetation die off were observed at the drainage path to the north. This area was previously regraded Juring the 2020-2021 grading work at the site. Currently, the area showed improvement but will still be monitored moving forward.
Cap integrity is acceptable Fencing around GW-1 and GW-2 is damaged but still provides well protection from mowing operations (see photo #6). GW-2 and GW-4 on the south side have wildlife burrowing inside the fencing. GW-13 on the north side has burrowing outside the fencing. (see photo #5) Snow fencing was installed to protect the airlines for the Gas Extraction Wells during mowing events at GW-2, GW-4, GW-7, GW-8, GW-9, GW-10, GW-11, GW-12, GW-13 see photo #6). Protective fencing remains in place. iondition of drainage ways: Vest Drainage Ditch - During the previous inspections, areas of vegetation die off were observed at the drainage path to the north. This area was previously regraded Juring the 2020-2021 grading work at the site. Currently, the area showed improvement but will still be monitored moving forward.
Fercing around GW-1 and GW-2 is damaged but still provides well protection from mowing operations (see photo #6). GW-2 and GW-4 on the south side have wildlife burrowing inside the fencing. GW-13 on the north side has burrowing outside the fencing. (see photo #5) Snow fencing was installed to protect the airlines for the Gas Extraction Wells during mowing events at GW-2, GW-4, GW-7, GW-8, GW-9, GW-10, GW-11, GW-12, GW-13 see photo #6). Protective fencing remains in place. Sondition of drainage ways: Vest Drainage Ditch - During the previous inspections, areas of vegetation die off were observed at the drainage path to the north. This area was previously regraded Juring the 2020-2021 grading work at the site. Currently, the area showed improvement but will still be monitored moving forward.
GW-2 and GW-4 on the south side have wildlife burrowing inside the fencing. GW-13 on the north side has burrowing outside the fencing. (see photo #5) Snow fencing was installed to protect the airlines for the Gas Extraction Wells during mowing events at GW-2, GW-4, GW-7, GW-8, GW-9, GW-10, GW-11, GW-12, GW-13 see photo #6). Protective fencing remains in place. Condition of drainage ways: Vest Drainage Ditch - During the previous inspections, areas of vegetation die off were observed at the drainage path to the north. This area was previously regraded Juring the 2020-2021 grading work at the site. Currently, the area showed improvement but will still be monitored moving forward.
Snow fencing was installed to protect the airlines for the Gas Extraction Wells during mowing events at GW-2, GW-4, GW-7, GW-8, GW-9, GW-10, GW-11, GW-12, GW-13 see photo #6). Protective fencing remains in place. Condition of drainage ways: Vest Drainage Ditch - During the previous inspections, areas of vegetation die off were observed at the drainage path to the north. This area was previously regraded during the 2020-2021 grading work at the site. Currently, the area showed improvement but will still be monitored moving forward.
see photo #6). Protective fencing remains in place. Condition of drainage ways: Vest Drainage Ditch - During the previous inspections, areas of vegetation die off were observed at the drainage path to the north. This area was previously regraded during the 2020-2021 grading work at the site. Currently, the area showed improvement but will still be monitored moving forward.
condition of drainage ways: Vest Drainage Ditch - During the previous inspections, areas of vegetation die off were observed at the drainage path to the north. This area was previously regraded during the 2020-2021 grading work at the site. Currently, the area showed improvement but will still be monitored moving forward.
Vest Drainage Dited - During the previous inspections, areas of vegetation die off were observed at the drainage path to the north. This area was previously regraded during the 2020-2021 grading work at the site. Currently, the area showed improvement but will still be monitored moving forward.
during the 2020-2021 grading work at the site. Currently, the area showed improvement but will still be monitored moving forward.
ast Drainage Ditch - Drainage ways are acceptable with minimal to no changes from previous conditions aside from those described below.
ast Drainage Ditch - Drainage ways are acceptable with minimal to no changes from previous conditions aside from those described below.
ast Drainage Ditch - Drainage ways are acceptable with minimal to no changes from previous conditions aside from those described below.
xtent of vegetation cover:
regetation cover is acceptable over the majority of the site (see photo #7). Various areas were reseeded and ground cover was applied in the fall of 2022.
ome bare spots were observed (see photo #3 and #4).
Per discussion with the WDNR, TRC will evaluate the areas in Spring of 2024 and apply seed as needed at that time.
ignificant erosion:
Io evidence of significant erosion was observed at the site.
lepeated erosion:
lo evidence of significant erosion was observed at the site.
legetation die-off:
reas at the west drainage ditch and east drainage ditch previously showed signs of vegetation die-off and were reseeded in the fall of 2022.
Ground cover in these areas remains and TRC will continue to monitor and apply seed as needed in 2024. (see photo #1).
Aaintain surface water conveyances and the sedimentation basin by completing the following:
sspect drainage ditches for erosion, blockages, and vegetation, describe and note any issues:
vidence of erosion at the eastern drainage ditch above the sediment basin was observed. Vegetation is in place, but ruts are starting to form (See photo #2).
RC will continue to monitor the area.
sspect sedimentation basin banks and outfalls for erosion, describe and note any issues:
lo erosion or other issues at sedimentation basin banks or outfalls.
Aeasure the distance between the invert of the sedimentation basin outlet and the top of the sediments accumulated in the basin (June Only!): NM

Data Entered By: J. Roelke 2/12/2024 Checked By: M. Wagler 3/2/2024 Attachment 2 Photographic Log

	1 110	biographic Log	
C	Client Name:	Site Location:	Project No.:
Wisconsin Department of Natural Resources (WDNR)		Refuse Hideaway Landfill Middleton, WI	TRC # 457573
Photo No.	Date		15 MARINA
1	2/12/2024		
1 2/12/2024 Description Eastern Drainage Ditch: Bare spots are present to the north, above the drainage way and will likely require reseeding.			
Photo No.	Date		
2	2/12/2024		State State
Description <u>Eastern Drainage Ditch:</u> Evidence of erosion starting to occur was observed at the north portion of the eastern drainage ditch leading to the sediment basin. Vegetation is still intact but ruts are starting to form.			

		·	
	Client Name:	Site Location:	Project No.:
Wisconsin Department of Natural Resources (WDNR)		al Refuse Hideaway Landfil Middleton, Wl	TRC # 457573
Photo No.	Date	A AN A A A A A A A A A A A A A A A A A	
3	2/12/2024		Contraction of the
Description			- CANADA
Eastern Landfill			
Reseeding and was previously a			
Fall of 2022. So		and the second	
remain and will		A COLORED AND A	
reseeding.			the second
			P
Photo No.	Date		
4	2/12/2024		E AN PACIFICA
Description			ANY INL
Eastern Landfill	Extents	and the second s	
Reseeding and was previously a			
Fall of 2022. So	ome bare spots		
remain and will reseeding.	likely require		
reseeding.			A STREET OF THE STREET
			AL ALLAN
		The second se	

				1
Client Name:			Site Location:	Project No.:
	Wisconsin Department of Natural Resources (WDNR)		Refuse Hideaway Landfill Middleton, Wl	TRC # 457573
Photo No.	Date			
5	2/12/2024	E.		
Description Southern Landfi GW-2 and GW- burrowing from fencing. GW-13 from wildlife out	4 have wildlife inside 3 has burrowing			
Photo No.	Date			All A
6	2/12/2024			THE THE SAME
Description <u>Southern Landfill Extents</u> : GW-1 protective fencing is falling apart. Fencing still provides protection during mowing operations. GW-1 protective fencing is in the same condition as GW-2.				

Client Name:		Site Location:	Project No.:	
Wisconsin Department of Natural Resources (WDNR)			Refuse Hideaway Landfill Middleton, WI	TRC # 457573
Photo No.	Date			
7	2/12/2024			
Description Northern Landfi Cap remains in with full vegetat	good condition			