FOURTH FIVE-YEAR REVIEW REPORT FOR STOUGHTON CITY LANDFILL SUPERFUND SITE City of Stoughton, Dane County, Wisconsin

Prepared by

Wisconsin Department of Natural Resources for the U.S. Environmental Protection Agency Region 5 Chicago, Illinois

4/12/2018

VeryA

Robert A. Kaplan Acting Director, Superfund Division Signed by: DOUGLAS BALLOTTI

Table of Contents

LIST OF ABBREVIATIONS & ACRONYMS	1
I. INTRODUCTION	2
FIVE-YEAR REVIEW SUMMARY FORM	3
II. RESPONSE ACTION SUMMARY	4
Basis for Taking Action	4
Response Actions	4
Status of Implementation	5
Institutional Controls	6
III. PROGRESS SINCE THE LAST REVIEW	9
IV. FIVE-YEAR REVIEW PROCESS	12
Community Notification, Involvement & Site Interviews	12
Data Review	12
Site Inspection	13
V. TECHNICAL ASSESSMENT	
QUESTION A: Is the remedy functioning as intended by the decision documents?	14
QUESTION B: Are the exposure assumptions, toxicity data, cleanup levels, and remedial action	
objectives (RAOs) used at the time of the remedy selection still valid?	15
QUESTION C: Has any other information come to light that could call into question the	
protectiveness of the remedy?	15
VI. ISSUES/RECOMMENDATIONS	15
VII. PROTECTIVENESS STATEMENT	
VIII. NEXT REVIEW	16

Figure 1: Site Plan

Appendix A: Annual Groundwater Monitoring Report, SCS Engineers, July 13, 2017

Appendix B: Support Agency O&M Contractor Semiannual Facility Inspection Report

Appendix C: Five-year Review Public Notice

Appendix D: Data Plots For Groundwater and Gas Monitoring

Appendix E: Five-Year Review Site Inspection Checklist, Photo Key Map, Photographs

Appendix F: DNR Landfill Compliance Inspection Report, September 22, 2017

LIST OF ABBREVIATIONS & ACRONYMS

CD	Consent Decree
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act
CFR	Code of Federal Regulations
DCDFM	Dichlorodifluoromethane
DCE	1,2-Dichloroethylene
EPA	United States Environmental Protection Agency
ES	Ch. NR 140, Wisconsin Administrative Code (WAC) Enforcement Standard
FYR	Five-Year Review
HI	Hazard Index
HQ	Hazard Quotient
ICs	Institutional Controls
MCL	Maximum Contaminant Level
NCP	National Oil and Hazardous Substances Pollution Contingency Plan
NPL	National Priorities List
O&M	Operation and Maintenance
OU	Operable Unit
PAL	Ch. NR 140, Wisconsin Administrative Code (WAC) Preventive Action Limit
PCE	Tetrachloroethylene
RA	Remedial Action
RAO	Remedial Action Objectives
RD	Remedial Design
RI/FS	Remedial Investigation/Feasibility Study
ROD	Record of Decision
RSL	Regional Screening Level
Site	Stoughton City Landfill Superfund Site
SWRAU	Site-Wide Ready for Anticipated Use
TCE	Trichloroethylene
THF	Tetrahydrofuran
ug/L	Micrograms per Liter
UU/UE	Unlimited Use and Unrestricted Exposure
VC	Vinyl Chloride
VOC	Volatile Organic Compound
WAC	Wisconsin Administrative Code
WDNR	Wisconsin Department of Natural Resources

I. INTRODUCTION

The purpose of a Five-Year Review (FYR) is to evaluate the implementation and performance of a remedy in order to determine if the remedy is and will continue to be protective of human health and the environment. The methods, findings, and conclusions of reviews are documented in FYR reports such as this one. In addition, FYR reports identify issues found during the review, if any, and document recommendations to address them.

The Wisconsin Department of Natural Resources (WDNR) is preparing this FYR pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Section 121, consistent with the National Contingency Plan (NCP)(40 CFR Section 300.430(f)(4)(ii)), and considering the United States Environmental Protection Agency (EPA) policy.

This is the fourth FYR for the Stoughton City Landfill Superfund Site (Site). The triggering action for this **statutory** review is April 15, 2013. The FYR has been prepared due to the fact that hazardous substances, pollutants, or contaminants remain at the site above levels that allow for unlimited use and unrestricted exposure (UU/UE).

The Site consists of one operable unit (OU) which was reviewed and addressed in this FYR. OU1 addresses both landfill gas migration and groundwater quality.

The Stoughton City Landfill Superfund Site FYR was led by Jason Lowery from WDNR. Other participants included Eli Sankey and Leslie Busse, Engineers from SCS Engineers, and Giang-Van Nguyen, Remedial Project Manager from EPA. The public notice was published on April 13, 2017 to notify the initiation of the FYR. The review began on 4/13/2017.

Site Background

The Stoughton City Landfill site is located in the northeast portion of Stoughton, Dane County, Wisconsin. The property containing the landfill site encompasses approximately 27 acres and occupies a portion of section 4, township 5 north, range 11 east. Although the landfill property originally occupied approximately 40 acres, landfilling has occurred on only about 15 acres of the property. Since 1982, land exchanges between the city and the owner of an adjacent property have modified the original property boundaries.

A wetland area that existed in the southeast portion of the current property boundary was the initial area of waste disposal. Wetlands occur adjacent to the southeast portion of the site, in the north portion of the site, and west of the site along the Yahara River. The river comes within approximately 400 feet of the waste disposal area. Approximately 1/8th of the site (the northeastern section, which consists of wetlands) is situated within the 100-year flood plain. The nearest developed land occurs along Amundson Parkway, the site access road to the south, and Skogdalen Drive, a road off Amundson Parkway just south of the site, where residential homes have been built. An extensive residential area occurs approximately 1/4 mile south of the site, where the city street grid pattern begins. The land immediately adjacent to the southern site boundary was undeveloped at the time of the remedial investigation. Then, as now, there was no developed land in the vicinity of the site to the west, north or east. The City of Stoughton has a population of about 12,611 per the 2010 census. The residents of Stoughton are connected to city water.

Quaternary/glacial deposits, composed primarily of lacustrine plain and ice-contact stratified deposits, are approximately 200 feet thick at the site. Ice-contact stratified deposits generally include significant sand and gravel deposits and land forms such as kames and eskers. These deposits occupy higher ground within the landfill site and south of it. Lacustrine plain or glacial lake-bottom sediments are generally composed of fine-grained silt and clay. Some sand is present near former shorelines and stream inlets. These areas are often flat, poorly drained, and show evidence of peat accumulation. Lacustrine plain deposits occupy the southeast portion of the current property boundary, which was initially developed for waste disposal, and the low-lying ground adjacent to the east, north, and west portion of the site. Lacustrine plain sediments are generally overlain by younger marsh deposits. Under these deposits is reported to be Cambrian sandstone bedrock.

Regional groundwater flow is toward the Yahara River, which serves as a groundwater discharge. However, the groundwater flow in the surficial aquifer was radial beneath the site at the time of the remedial investigation. The surficial aquifer and the aquifer in the bedrock are hydraulically connected. Municipal well #3 is situated about 3000 ft west of the site and is set in the sandstone bedrock as an open pipe from roughly 210 ft below ground surface to 940 ft below ground surface.

SITE IDENTIFICATION						
Site Name: Stoughton Ci	Site Name: Stoughton City Landfill					
EPA ID: WID980901219	9					
Region: 5	State: WI	City/County: Stoughton, Dane County				
	S	SITE STATUS				
NPL Status: Final						
Multiple OUs? No	Has th Yes	e site achieved construction completion?				
	RE	EVIEW STATUS				
Lead agency: State	Lead agency: State					
Author name (Federal or State Project Manager): Jason B. Lowery, State Project Manager						
Author affiliation: Wisconsin Department of Natural Resources						
Review period: 4/13/2017 - 1/16/2018						
Date of site inspection: 10/27/2017						
Type of review: Statutory						
Review number: 4						
Triggering action date: 4/15/2013						
Due date (five years after	Due date (five years after triggering action date): 4/15/2018					

FIVE-YEAR REVIEW SUMMARY FORM

II. RESPONSE ACTION SUMMARY

Basis for Taking Action

Actual or threatened releases of hazardous substances from this site, if not addressed by implementation of the response action selected in the Record of Decision (ROD), might present an imminent and substantial endangerment to public health, welfare, or the environment. This determination was based on the findings in the remedial investigation and the baseline risk assessment.

The City of Stoughton purchased the original 40-acre site in July 1952 and annexed it in September 1952 when landfill operation began. Between 1952 and 1969 the facility was operated as an uncontrolled dump site. Common municipal waste and both dry and liquid wastes were disposed of at the site. Some sludge materials containing 2-butanone, acetone, tetrahydrofuran, toluene, and xylene mixtures were disposed of at the site from 1954 until 1962. During this period, the liquid wastes were commonly poured over garbage and burned. It was also reported that some liquid wastes were poured down holes drilled to test auger drilling equipment in the west-central portion of the landfill. In 1969, the facility began operation as a state-licensed landfill. In 1977, the WDNR required that the site be closed according to state regulations. Closure activities included construction of a trash transfer station, placement of cover material borrowed from the northwest portion of the site and from agricultural areas, application of topsoil also derived from an agricultural area, and seeding. From 1978 to 1982 only brick, rubble, and similar construction materials were accepted at the site while closure work was performed. The landfill was officially closed in 1982.

Response Actions

The remedial action objectives for the site are:

- Minimize direct contact with the wastes;
- Minimize the further movement of contaminants to groundwater by reducing the amount of precipitation which infiltrates the landfill;
- Contain the movement of contaminants in the groundwater in order to prevent contaminants from leaving the site boundary;
- Extract and treat groundwater to meet state water quality discharge limits; and
- Restore the groundwater to state groundwater quality standards.

The remedy selected in the September 30, 1991 ROD was:

- Excavation of wastes in contact with groundwater to the southeast and northeast and placement of these materials under the cap;
- Placement of a solid waste landfill cover (cap) system over the waste disposal area;
- Extraction and treatment of contaminated groundwater unless additional investigations indicated that this might not be required;
- Placement of a fence around the cap, or slightly within the edges of the cap;
- Land use restrictions to prevent the installation of drinking water wells within 1,200 feet of the property boundary and to prevent residential development of the property; and
- Long-term groundwater monitoring to confirm the effectiveness of the other components of the selected remedy.

A February 29, 1996 Explanation of Significant Differences reduced the amount of wastes that were to be relocated under the cap. Further investigation of the groundwater during the remedial design indicated that it was not necessary to implement the extraction and treatment of the groundwater at the time of the construction of the cap and the other parts of the remedy.

Status of Implementation

The closure of the Stoughton City Landfill site involved the excavation and relocation of saturated waste deposited in wetlands, construction of a multilayer soil cover system, installation of a passive gas venting system, and construction of an access road and a perimeter security fence. Construction took place between April and December 1998.

The closure included the following:

- Construction of temporary facilities and security fencing;
- Construction of a decontamination pad and development of a water management plan for water resulting from decontamination and dewatering;
- Clearing, grubbing, and stripping of existing topsoil within the limits of the cap;
- Installation of soil erosion control measures, including a temporary flood control berm along the edge of the existing wetlands;
- Demolition and onsite consolidation of existing on-site facilities and debris, including a water line and picnic shelter;
- Abandonment of some existing monitoring wells on the site;
- Removal and onsite disposal and consolidation of drummed wastes from remedial investigation activities;
- Test pit investigations to determine the limits of the wastes;
- Excavation, dewatering, and on-site consolidation of saturated wastes, including the construction of a dewatering pad;
- Construction of the multilayer soil cover system (cap) after completion of a clay test pad;
- Installation of a passive landfill gas vent system;
- Construction of a permanent access road;
- Installation of a permanent perimeter fence and gates; and
- Final grading and restoration, including construction of a storm water and erosion system.

Additional wastes were encountered during the abandonment of the existing water line and, consequently, additional test pits were excavated in areas outside the originally defined waste relocation areas. It was found that wastes to the south extended to within a few feet of Skogdalen Drive. Due to the additional wastes discovered outside the original limits and some waste found to be at a greater depth than was anticipated, the actual amount of wastes relocated was nearly 25,000 cubic yards. This resulted in the cover being raised about two feet at the highest point.

Construction completion for the site was achieved with the issuance of the Preliminary Close Out Report on December 15, 1998.

Table 1: Site Chronology

Event	Date
Landfill began operation (initially as an uncontrolled dump)	September 1952
Operation as a state-licensed landfill began	1969
Wisconsin Department of Natural Resources required closure	1977
Closure completed following operation for landfilling of construction debris since 1978	1982
Site proposed for the National Priority List (NPL)	10/15/84
Placed as final on the NPL	6/10/86
Administrative Order by Consent for the remedial investigation (RI) and feasibility study (FS)	April 15, 1988 effective May 2, 1988
RI field work begins	March 1989
Proposed Plan released	7/12/91
Public meeting to discuss Proposed Plan and RI and FS reports	7/24/91
End of public comment period for the Proposed Plan	8/12/91
Record of Decision (ROD)	9/30/91
Fund lead remedial design (RD) began	9/28/92
Negotiations for RD and remedial action (RA) completed	9/28/92
Explanation of Significant Differences released	2/29/96
RD completed	1/30/97
Consent decree for cost settlement between City of Stoughton and United States and State of Wisconsin	lodged 6/5/97 entered 8/13/97
Fund lead RA began	9/27/97
On-site mobilization for RA began	4/10/98
Preliminary Close Out Report (construction completion under CERCLA)	12/15/98
Site inspection for the first FYR	4/08/03
First FYR report completed	4/17/03
Site inspection for second FYR	10/17/07
Second FYR report completed	4/16/08
Restrictive Covenant recorded at Dane County recorder's office	11/23/2010
Site inspection for third FYR	10/12/12
Sitewide Ready for Anticipated Use (SWRAU) completed	1/24/13
Completion of third FYR report	4/15/13
Site inspection for fourth FYR	10/27/17

Institutional Controls

Institutional controls (ICs) are non-engineered instruments, such as administrative and/or legal controls, that help minimize the potential for exposure to contamination and protect the integrity of the remedy. Compliance with ICs is required to assure long-term protectiveness for any areas which do not allow for UU/UE.

The map in Figure 1 shows the area within the fence line that does not support UU/UE. Table 2 summarizes ICs for these restricted areas.

Table 2: Summary of ICs					
Media, engineered controls, and areas that do not support UU/UE based on current conditions	ICs Needed	ICs Called for in the Decision Documents	Impacted Parcel(s)	IC Objective	Title of IC Instrument Implemented and Date
Soil and Groundwater– Constructed Subtitle C landfill cap over waste area disposal area within fence	Yes	Yes	281/0511- 043-8500-5	Prohibit interference of cap and assure integrity of the landfill cap; Prohibit residential use	-Environmental Protection Easement and Declaration of Restrictive Covenant recorded at Dane County recorder's office on 11/23/2010. Document # 4717518. -State of Wisconsin Chapter NR 506 (requires a prior approval from WDNR to build on a closed or abandoned landfill)
North of Stoughton Landfill on Property – Area of site beyond landfill treated to recreational cleanup standards	Yes	Yes	281/0511- 042-9340-8	Prohibit residential use	 -Environmental Protection Easement and Declaration of Restrictive Covenant recorded at Dane County recorder's office on 11/23/2010. Document # 4717518. -State of Wisconsin Chapter NR 506 (requires a prior approval from WDNR to build on a closed or abandoned landfill)
Groundwater – current area on Stoughton Property that exceeds groundwater cleanup standards	Yes	Yes	281/0511- 043-8500-5	Prohibit groundwater use (until cleanup standards are achieved)	-Environmental Protection Easement and Declaration of Restrictive Covenant recorded at Dane County recorder's office on 11/23/2010. Document #4717518.
Groundwater – current area beyond Stoughton property that exceeds groundwater cleanup standards	Yes	Yes	Various	Prohibit groundwater use (until cleanup standards are achieved)	State of Wisconsin Chapter NR 812 (prohibits construction of well within 1,200 feet of landfill waste boundary without prior written approval from WDNR)

Table 2: Summary of ICs

<u>The IC ROD Requirements</u>: Cleanup goals for the Site, within the fence, include containment of soils and groundwater and a prohibition of residential use of the Site. Cleanup goals for groundwater beyond the site are based upon residential use.

The September 1991 ROD states that the remedy includes "Land use restrictions to prevent the installation of a well within 1,200 feet of the property boundary and to prevent residential development of the site." It also states that a component of the remedy is "Groundwater use in the area would be prevented by obtaining deed restrictions on the use and placement of wells in the affected area." Finally, the ROD states that the remedy includes "...the placement of institutional controls such as deed

restrictions to control future land use..." One of the deed restrictions that was to be placed on the two parcels of property at the site states: "No water wells, other than monitoring wells, shall be located on the property." In addition, the ROD calls for the prohibition of wells within 1,200 feet of the property boundary. The ROD 1,200 feet separation requirement is generally being met by the requirements of NR 812, Wis. Adm. Code, that a well not be constructed within 1,200 feet of a landfill unless a written variance is granted by WDNR.

<u>The Consent Decree IC Requirements</u>: The City of Stoughton entered into a Consent Decree (CD) with the agencies in 1997 to settle their Superfund liability for the site. In the ICs section of the CD, it refers to the ROD, and Appendices B, C, and D of the CD address ICs. In Appendix B, "Declaration of Restrictions", section 1(e), it specifically states: "No recreational use within the fence installed pursuant to the ROD".

<u>November 2010 Deed Instrument</u>: An Environmental Protection Easement and Declaration of Restrictive Covenants for the site was recorded at Dane County's office on November 23, 2010. This easement and restrictive covenant prevents installation of drinking water wells in the area of concern, prohibits residential and recreational reuse, and cap interference.

<u>Other Existing ICs</u>: Several Wisconsin regulations are governmental ICs which help to ensure the protectiveness of the remedy. These are as follows:

• Chapter NR 812, Wisconsin Administrative Code, requires anyone who wishes to construct a well within 1,200 feet of a landfill to obtain a prior written variance from WDNR.

• Chapter NR 506, Wisconsin Administrative Code, requires anyone who wishes to build on a closed or abandoned landfill to get prior approval from WDNR.

<u>Current Compliance</u>: Based on the inspection conducted as part of this FYR, no site uses which are inconsistent with the implemented ICs or the remedy IC objectives were noted.

IC Follow up Actions needed: No follow up actions are required at this time.

<u>Long-Term Stewardship</u>: WDNR regularly inspects ICs at the Site and provides annual certification to EPA that ICs are in place and effective.

Systems Operations/Operation & Maintenance

WDNR is providing the operation and maintenance (O&M) required under the state's regulations for a closed landfill and the monitoring required by the ROD. This consists of groundwater monitoring, gas probe monitoring and inspection and maintenance of the fence, cover, drainage features and gas vents.

WDNR has performed O&M since July of 2000. A repair contractor is hired on an as-needed basis to conduct non-routine repairs. The current site map, showing monitoring wells, gas vents, gas probes, the fence, gates, site topography and the access road is attached as Figure 1.

The following landfill maintenance issues were noted and addressed during the past five years:

• Broken slats were observed in the fence at multiple locations during various site inspections. Ayres Associates and the City of Stoughton subsequently repaired the broken slats.

- Site signage near the west gate was observed to be missing during the April 4, 2015 site inspection. The sign was subsequently replaced by Ayres Associates on November 7, 2015.
- Riprap in a stormwater drainage channel in the southern portion of the site was observed to be clogged with sediment, cattails, and woody vegetation during the site inspection on April 30, 2013. Additional heavy vegetation was observed at several culverts during the site inspection on April 17, 2017. These obstructions were not repaired because they were minor enough that they were not causing significant ponding.
- Several animal burrows and woody vegetation around gas vents and monitoring wells were observed during various site inspections. Woody vegetation was removed and animal burrows were plugged during subsequent site visits.
- The protective casings for monitoring wells MW4D, MW14I, and MW15D were found to interfere with the locking clasp mechanisms during various site inspections. Ayres modified the locks/locking process during subsequent site visits to address the issues.
- The lock for gas probe GMP-3 was corroded and replaced by Ayres Associates in December 2015.
- Artesian/flowing conditions were observed at monitoring wells OW-1, OW-2, MW7B, MW10D, MW13I, and MW13D during various site inspections. Monitoring wells OW-1, MW7B, MW10D and MW13D were subsequently abandoned during the past five years. Inflatable plugs were installed at monitoring wells MW13I and OW-2.

III. PROGRESS SINCE THE LAST REVIEW

This section includes the protectiveness determinations and statements from the last FYR as well as the recommendations from the last FYR and the current status of those recommendations.

OU #	Protectiveness Determination	Protectiveness Statement
1	Short-term Protective	The remedy is protective of human health and the environment in the short-term. Exposure pathways that could result in unacceptable risks are being controlled and monitored. Institutional controls are in place and effective. However, in order for the remedy to be protective in the long-term, groundwater monitoring and gas migration monitoring results need to continue to be assessed for increasing trends and appropriate action taken if needed.
Sitewide	Short-term Protective	The remedy is protective of human health and the environment in the short-term. Exposure pathways that could result in unacceptable risks are being controlled and monitored. Institutional controls are in place and effective. However, in order for the remedy to be protective in the long-term, groundwater monitoring and gas migration monitoring results need to continue to be assessed for increasing trends and appropriate action taken if needed.

Table 3: Protectiveness Determinations/Statements from the 2013 FYR

OU#	Issue	Recommendations	Current Status	Current Implementation Status Description	Completion Date (if applicable)
1	Groundwater Quality	Based on an evaluation of the groundwater monitoring results, the monitoring program should continue. If wells show increasing trends, then the need for additional groundwater action would be evaluated prior to or in the next five-year review report.	Ongoing	Annual monitoring	N/A
1	Landfill Gas Migration	Determine through additional gas probe monitoring if landfill gas migration is occurring to the south; develop and implement corrective measures if they are needed.	Ongoing	Bi-monthly monitoring	N/A

Table 4: Status of Recommendations from the 2013 FYR

Recommendation #1

Groundwater monitoring is ongoing. A copy of the most recent Annual Groundwater Monitoring Report, prepared by SCS Engineers and dated July 13, 2017, is attached as Appendix A. In addition to quality assurance/quality control samples, the most recent scope of work includes collecting groundwater samples from monitoring wells every spring for the following parameters:

Table 5: Groundwater Monitoring Schedule

Well	GEMS	Parameters
	ID	
MW3D	112	Water elevation – MSL, FI, DCDFM, THF
MW4D	115	Water elevation – MSL, FI, DCDFM, THF
MW5D	117	Water elevation – MSL, FI, DCDFM, THF
MW7I	119	Water elevation – MSL, FI, DCDFM, THF
MW8I	122	Water elevation – MSL, FI, DCDFM, THF
MW9S	124	Water elevation – MSL, FI, DCDFM, THF, Full VOCs
MW9I	125	Water elevation – MSL, FI, DCDFM, THF, Full VOCs
MW9B	126	Water elevation – MSL, FI, DCDFM, THF, Full VOCs
MW10S	127	Water elevation – MSL, FI, DCDFM, THF, Full VOCs
MW10I	128	Water elevation – MSL, FI, DCDFM, THF, Full VOCs
MW13I	131	Water elevation – MSL, FI, DCDFM, THF

MW14S	133	Water elevation – MSL, FI, DCDFM, THF, Full VOCs
MW14I	134	Water elevation – MSL, FI, DCDFM, THF, Full VOCs

Key: GEMS ID= Groundwater and Environmental Monitoring System Identification; MSL = Mean Sea Level; DCDFM = Dichlorodifluoromethane; THF = Tetrahydrofuran; FI = Field Indicators = pH, temperature, and specific conductance; VOC = volatile organic compounds

For the compounds analyzed, detections have generally been below applicable groundwater standards. The only ch. NR 140, Wisconsin Administrative Code (WAC), Preventive Action Limit (PAL) exceedance in spring 2017 was tetrachloroethylene (PCE) in groundwater at monitoring well MW10I (1.8 micrograms per liter (ug/L)). The following PAL or ch. NR 140 WAC Enforcement Standard (ES) exceedances have also been detected in groundwater samples collected from the following wells over the past five years. The table indicates that the highest concentrations generally occurred in 2013 or 2014 and have declined to being below detection limits since then.

Well	Compounds	Standards (ug/L) – highest	Highest Concentration Past 5
		standard exceeded in bold	Years and 2017 Concentration
		font	(ug/L)
MW3D	THF	PAL = 10 , ES = 50	17 (2013), 6.5 J (2017)
MW7I	THF	PAL = 10, ES = 50	18 (2013), 6.9 J (2017)
MW9S	VC	PAL = 0.02, ES = 0.2	0.23 (2013), <0.20 (2017)
MW9I	TCE	PAL = 0.5 , ES = 5	0.98 (2013), <0.16 (2017)
MW9I	VC	PAL = 0.02, ES = 0.2	0.25 (2013), <0.20 2017
MW10I	TCE	PAL = 0.5 , ES=5	0.94 (2013), <0.16 (2017)
MW10I	PCE	PAL = 0.5 , $ES = 5$	5 (2013), 1.8 (2017)
MW10I	VC	PAL = 0.02 , ES = 0.2	0.19 (2013), <0.20 (2017)
MW13I	THF	PAL = 10, ES = 50	19 (2014), <1.9 (2017)
MW14S	PCE	PAL = 0.5, ES = 5	1.2 (2013), <0.37 (2017)
MW14I	PCE	PAL = 0.5, ES = 5	0.51 (2013), <0.37 (2017)
MW14I	VC	PAL = 0.02, ES=0.2	0.28 (2014), <0.20 (2017)

Table 6: Groundwater Standard Exceedances

J = detected below Limit of Quantitation

Recommendation #2

In addition to general maintenance of the landfill, gas migration is monitored through bi-monthly measurements at three gas probes near the south edge of the site as follows:

Table 7: Gas Probe Monitoring Schedule

Probe	Parameters
GMP-1	
GMP-2	% LEL as methane, % O ₂ , % CO ₂ , PID (ppm), and pressure (in. H ₂ O)
GMP-3	

Key: LEL = lower explosive limit; PID = photoionization detector; ppm = parts per million

Indications of significant landfill gas migration have generally not been noted during the past five years. Landfill gas probe results are shown in Table 8. The most recent Semiannual Facility Inspection Report, dated November 14, 2017, is attached as Appendix B.

Probe	% Methane	% O2	%CO2	PID (ppm)	Pressure (in.
					H ₂ O)
GMP-1	0.0 to 0.7%	18.9 (Dec '14) to	0.0 to 3.4	0.0 to 0.1 (Apr	-0.16 to +0.03
	(Dec '14)	21.0	(Dec '14)	'17)	(Aug '17)
GMP-2	0.0 to 0.1%	11.9 (Feb '13) to	0.0 to 3.3 (Jun	0.0 to 0.2 (June	-0.10 to 0.00
	(Dec '14)	21.3	' 14)	'16)	(Oct '17)
GMP-3	0.0 to 7.6%	10.2 (Apr '13) to	0.0 to 8.1 (Jun	0.0 to 0.3 (Feb	-0.10 to +0.01
	(>LEL, Jun '13)	21.6	' 15)	'17)	(Apr '17)

Table 8: Gas Probe Results

Note: Year of highest or lowest results indicated in parentheses after highest or lowest value LEL for methane is 5%

Gas probe monitoring results have indicated greater concerns at gas probe GMP-3 than the other two probes but results have generally improved over the past few years. The highest methane and CO₂ and lowest O₂ results occurred at least two years ago. The three most recent monitoring events indicated greater than 19% O₂ and 0.0 ppm PID at each probe. CO₂ concentrations recently increased but are still significantly below concentrations measured in 2015 and earlier. Methane was detected at 0.4% at gas probe GMP-1 in October 2017, which was the first methane detection since December 2014, when methane was detected as high as 0.7% at gas probe GMP-1. The 7.6% methane result at gas probe GMP-3 in June 2013 occurred immediately after a thunderstorm that saturated the ground. Methane was measured at 0.0% during the subsequent monitoring event in August 2013.

IV. FIVE-YEAR REVIEW PROCESS

Community Notification, Involvement & Site Interviews

A public notice was made available by WDNR in the Stoughton Courier Hub on April 13, 2017, stating that there was a FYR and inviting the public to submit any comments to WDNR. The public notice is attached as Appendix C. The results of the review and the report will be made available at the Stoughton Public Library located at 304 South Fourth St., Stoughton, WI 53589.

Data Review

Groundwater

The main objectives of the groundwater monitoring are to track the concentrations of THF and DCDFM, which were identified during the earlier studies as the two substances that were of primary concern. Other organics are also tracked. Compounds of secondary concern are PCE, trichloroethylene (TCE), and vinyl chloride (VC).

Groundwater monitoring results from April 2013 to April 2017 were reviewed. In summary, the following was found:

 The sampling results show that all organic compounds of primary and secondary concern are most recently below ch. NR 140 ESs. VC exceeded its ES at least once in groundwater at three monitoring wells in 2013 or 2014. The VC concentrations remain below the federal Maximum Contaminant Level (MCL) of 2.0 ug/L. The federal MCLs for TCE and PCE are equal to the ES of 5.0 ug/L for both compounds.

- A few ch. NR 140 PAL exceedances are still being detected for the organic compounds of primary and secondary concern in each sampling event. The total number of detected PAL exceedances (all compounds at all wells) steadily decreased from 12 in April 2013 to one (PCE at monitoring well MW10I) in May 2017.
- All the organic compounds data from April 2013 to May 2017 for wells where the results exceeded PALs were reviewed and plotted on graphs to determine if any increasing trend could be noted. Increasing trends were not evident; however, due to continued exceedances of PALs in a number of wells for organics, a continued VOC monitoring program is warranted. The graph plots are attached as Appendix D.

It is to be noted that THF and DCDFM do not have federal MCLs. EPA Region 9 publishes a table of generic Regional Screening Levels (RSL). In this table, concentrations in water are given that result from a specified scenario and correspond to a cancer risk of 10⁻⁶ for carcinogens or a hazard quotient (HQ) of 1.0 for non-carcinogens (the sum of the HQs, when there is more than one non-carcinogen, gives the hazard index (HI); a HQ or HI of 1 is the maximum acceptable value); if a substance falls into both categories, then the lower concentration is presented in the table. The tap water RSL for THF is 3,400 ug/L and the tap water RSL for DCDFM is 200 ug/L. Both RSLs are based upon the HI of 1 since the compounds are not considered carcinogenic. The Wisconsin PAL and ES for DCDFM are 200 ug/l and 1,000 ug/L, respectively. The Wisconsin PAL and ES for THF are 10 and 50 ug/L, respectively.

Soil Gas

As indicated earlier, elevated methane levels were detected at gas probe GMP-3 in June 2013, under saturated soil conditions, but the next highest methane concentration at this probe was 0.1% in December 2014. Some elevated CO_2 concentrations have also been detected at gas probe GMP-3. Plots of CO_2 and O_2 concentrations at the gas probes are included as Appendix D. Additional testing is needed to provide a larger data set to confirm that that the marked improvement is ongoing.

Site Inspection

The inspection of the Site was conducted on 10/27/2017. In attendance were Jason Lowery, WDNR, Giang-Van Nguyen of EPA, and Eli Sankey of SCS Engineers. The purpose of the inspection was to assess the protectiveness of the remedy. The Site Inspection Checklist including photographs associated with the issues identified below is included as Appendix E. A separate inspection report competed by a WDNR Waste Management Specialist on September 22, 2017 is included as Appendix F.

The state O&M contractor also completed their regular semi-annual site inspection on 10/27/2017 and their report, including photographs, is attached as Appendix B.

The landfill cover (photo 3) appeared to be in generally good condition. No bare spots or sparse vegetation were noted. Two animal burrows were observed near monitoring well MW-2D (photo 5).

All monitoring wells except for monitoring wells MW-12S, MW-12I, and MW-12D were inspected in October 2017. The monitoring well MW-12 cluster was not located. Monitoring wells were in generally

good condition and locked. Several monitoring wells were unlabeled (example, photo 4) and water was observed to be flowing out of three of the monitoring wells (photos 14, 15, and 16).

The gas vents were found to be undamaged and no stressed vegetation was found near the vents. All vent screens were clear. However, gas vents were unlabeled (photo 6).

The fence was in good condition. One minor break in a fence slat was observed (photo 17) in the southwest portion of the landfill. The chain-link fence was in good condition. Both access gates were in good condition and the padlocks operated properly. The warning signs on the gates were noted (photos 1 and 2). The access road was in very good condition with no ruts, ponding, or erosion noted.

WDNR did observe a disc golf player jumping over the fence along the west side of the landfill (area shown in photo 12). WDNR discussed the issue with EPA and recommended adding "no trespassing" signs to that particular area. This would dissuade disc golf players from climbing over the fence and also minimize damage to the fence line that occurs when this happens.

The storm water drainage system around the site was in generally good condition. No visible erosion was found. The culverts were undamaged. Some ponding and cattails were observed in the south storm water ditch (photos 10 and 11). Several dead branches were also observed to be partially blocking the drainage slightly downstream of the ponded areas and adjacent west of the culvert near the Main Gate (photo 18).

The City of Stoughton, O&M contractor, or other contractor(s) will be tasked with the following repairs:

- Filling in animal burrows near monitoring well MW-2D.
- Clearing branches out of storm water ditch adjacent west of culvert near the Main Gate.
- Labeling gas vents and monitoring wells and, in some cases, re-painting the monitoring well protops.
- Plugging the three flowing monitoring wells to minimize the amount of flow.
- Replacing the broken fence slat in the southwest portion of the landfill.
- Adding signs along the west fence line to dissuade disc golf players from entering the landfill property.

V. TECHNICAL ASSESSMENT

QUESTION A: Is the remedy functioning as intended by the decision documents?

Yes.

In general, the integrity of the cap and other landfill components have been adequately maintained over the past 5 years. The review of the available information indicates that the remedy is functioning as it was intended. None of the monitoring wells currently sampled for organics are showing increasing trends and concentrations are generally decreasing. Based on the results, it is recommended that the annual organics monitoring program continue for at least another 5 years to allow continued evaluation of the data over that time by the agencies and report the results and make any recommendations prior to or in the next FYR, to be completed by April 2023. If wells start to show increasing trends, then the need for some sort of additional groundwater action would be evaluated.

No Site uses which are inconsistent with the implemented ICs or the remedy IC objectives have been noted during the Site inspection or via interviews.

QUESTION B: Are the exposure assumptions, toxicity data, cleanup levels, and remedial action objectives (RAOs) used at the time of the remedy selection still valid?

Yes.

There have been no major changes in the physical conditions of the site that would affect the protectiveness of the remedy. The site is being used as anticipated (that is, the waste disposal area is not being used). Therefore, there are no new exposure pathways and new exposure assumptions are not needed at this time.

The primary applicable or relevant and appropriate requirements that the site has to meet fall into two general categories of regulations: landfill and groundwater. Most of the landfill requirements have been met through the construction that has taken place and the remedy is progressing as expected. Of primary concern now is continuing to meet the standards for the gas and groundwater.

There have been no changes to toxicity factors for the applicable compounds or risk assessment methods that would impact the protectiveness of the remedy.

QUESTION C: Has any other information come to light that could call into question the protectiveness of the remedy?

No. There has been no new information that would suggest that the selected remedy is not protective.

VI. ISSUES/RECOMMENDATIONS

Issues/Recommendations

 ${\bf OU}(s)$ without Issues/Recommendations Identified in the Five-Year Review:

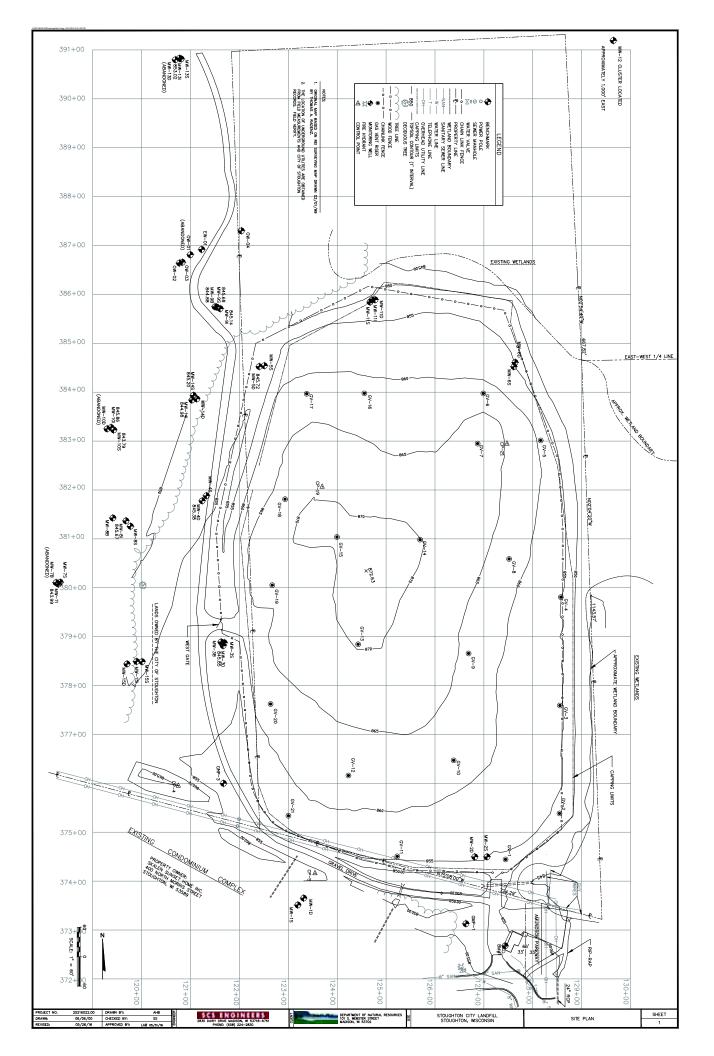
None

Issues and Recommendations Identified in the Five-Year Review: None

OU(s): 1	Issue Category: Me	onitoring		
	Issue: Groundwate	er Quality		
	results, the monitori	Based upon an evalua ng program should co ditional action would	ontinue. If wells show	v increasing trends,
Affect Current Protectiveness	Affect Future Protectiveness	Party Responsible	Oversight Party	Milestone Date
No	Yes	State	EPA	4/15/2023

OU(s): 1	Issue Category: Me	onitoring		
	Issue: Landfill Gas	Migration		
		Determine through ac urring to the south; do needed.	v .	U U
Affect Current Protectiveness	Affect Future Protectiveness	Party Responsible	Oversight Party	Milestone Date
No	Yes	State	EPA	4/15/2023

VII. PROTECTIVENESS STATEMENT


OU1 and Sitewide Protectiveness Statement

Protectiveness Determination: Short-term Protective

Protectiveness Statement: The remedy is currently protective of human health and the environment. Exposure pathways that could result in unacceptable risks are being controlled and monitored. ICs are in place and effective. However, in order for the remedy to be protective in the long-term, the following actions need to be taken to ensure protectiveness: groundwater monitoring and gas migration results need to continue to be assessed and appropriate action taken if needed.

VIII. NEXT REVIEW

The next FYR report for the Stoughton City Landfill Superfund Site is required no less than five years from EPA's signature date of this review.

APPENDIX A: Annual Groundwater Monitoring Report

608 224-2830 FAX 608 224-2839 www.scsengineers.com

SCS ENGINEERS

July 13, 2017 File No. 25216022.00

Mr. Jason Lowery Wisconsin Department of Natural Resources Bureau for Remediation and Redevelopment – RR/5 P.O. Box 7921 Madison, WI 53707

Subject: Annual Groundwater Monitoring Report May 2017 Monitoring Event Stoughton City Landfill FID #113005950 – License #133 USEPA ID #WID980901219 WDNR Purchase Order #37000-0000006548

Dear Mr. Lowery:

This letter provides the Annual Groundwater Monitoring Report for the May 2017 monitoring event for the Stoughton City Landfill site. The annual groundwater monitoring events are scheduled for April of each year; however, due to wet conditions this year the monitoring did not occur until May. The 2017 groundwater monitoring well sampling was conducted on May 4, 2017 and May 5, 2017. Two copies of this report and a compact disk with the electronic data file is being submitted to the Wisconsin Department of Natural Resources (WDNR) Central Office, along with the Groundwater Monitoring Data Certification Form. A copy is also being sent to the U.S. Environmental Protection Agency (USEPA).

ANNUAL GROUNDWATER MONITORING FIELD PROCEDURES

The field procedures and the groundwater sampling were performed in accordance with the Quality Assurance Project Plan (QAPP) Revision 2 submitted to the WDNR on March 31, 2016. TestAmerica, Inc. of University Park, IL, analyzed the groundwater samples for volatile organic compounds (VOCs) including dichlorodifluoromethane (DCDFM) and tetrahydrofuran (THF) by EPA Method SW 8260B.

Groundwater Analytical Results

Table 1 is a summary of analytical results for the groundwater monitoring at the site. The new water table elevations summary is included as **Table 2**. Field parameter results are summarized in **Table 3**. Historical target compound detections are summarized in **Table 4**. The original laboratory analytical and quality control report are enclosed as **Attachment A**. A summary of NR 140 standard exceedances is provided in **Attachment B**. The field data form is provided in **Attachment C**.

Mr. Jason Lowery July 13, 2017 Page 2

Quality Assurance

The laboratory's quality control data were all within acceptable limits. The laboratory's percent Surrogate recoveries were all within acceptance limits. All LCS spike recoveries were within the acceptance limits, as were all the MS/MSD recoveries.

It should be noted that all the historical site data were analyzed by the USEPA Contract Laboratory Program (CLP) Routine Analytical Services (RAS) using the Low/Medium Concentration Organic Target Compound List (TCL) and Contract Required Quantitation Limits (CRQL) of 10 micrograms per liter (μ g/L). The current analytical laboratory, TestAmerica, Inc., provides detection limits for SW 8260B VOCs ranging from 0.15 μ g/L for benzene to 2.0 μ g/L for 1,2-Dibromo-3-Chloropropane.

Volatile Organic Compounds Detected

The following VOC was detected above the preventive action limit (PAL) or enforcement standard (ES):

• Tetrachloroethene – MW10I at 1.8 μ g/L (PAL of 0.5 μ g/L)

This is consistent with past results. Several other VOCs were detected at levels below their respective PAL and ES limits (see **Table 1**).

Sampling Plan Deviations

There were no noted deviations from the sampling plan.

A compact disk is enclosed containing a copy of this report as a PDF file. If you have any questions about the results or any other aspect of the project, please call us at (608) 224-2830.

Sincerely,

Eli I. Sankey Associate Engineer, EIT SCS ENGINEERS

ES/lmh/LAB

Lesla Busse

Leslie A. Busse, PE Senior Project Manager SCS ENGINEERS

cc: Ms. Giang Van Nguyen – USEPA Region V (w/o CD)

Mr. Jason Lowery July 13, 2017 Page 3

 Enclosures: CD Containing Electronic Copy of Report Table 1 – Groundwater Analytical Results Summary - VOCs Table 2 – Water Level Summary Table 3 – Groundwater Monitoring Results for Field Parameters Table 4 – Historical Target Compound Detections Figure 1 – Site Plan Attachment A – Laboratory Analytical Report Attachment B – Groundwater Monitoring Data Certification Form (with Exceedances Report) Attachment C – Field Data Form

I:\25216022.00\Deliverables\Annual GW Report and Semiannual Inspection\2017\2017_Annual_GW_Report_170713.docx

TABLES

- 1 Groundwater Analytical Results Summary VOCs
- 2 Water Level Summary
- 3 Groundwater Monitoring Results for Field Parameters
- 4 Historical Target Compound Detections

Table 1. Groundwater Analytical Results Summary - VOCs Stoughton City Landfill / SCS Engineers Project #2521 6022.00 (Results are in µg/L)	
--	--

		ſ	ļ		-	-	-		-					ſ
Sample	Date	Lab Notes	DRO	GRO	Benzene	Ethylbenzene	Toluene	Xylenes	TMBs	MTBE	Naphthalene	Lead	Other VOCs	
MW3D	4/7/2016		NA	AN	NA	NA	NA	NA	NA	NA	NA	NA	DN	
	5/4/2017	-	AN	NA	NA	NA	٨A	NA	AN	NA	NA	NA	Tetrahydrofuran	6.5 J
MW4D	4/7/2016	:	AA	NA	NA	NA	NA	NA	NA	NA	NA	NA	DN	
	5/4/2017		AN	٨A	٨A	NA	٩N	NA	٧N	NA	AN	AN	DN	
MW5D	4/7/2016		AN	٨A	٨A	NA	NA	NA	٩N	NA	NA	NA	DN	
	5/4/2017	-	AN	NA	NA	NA	٨A	NA	AN	NA	NA	NA	DN	
MW5D Dup	4/7/2016	:	AN	AN	NA	NA	٨A	NA	٧N	NA	AN	AN	DN	
	5/4/2017		AN	AN	NA	NA	NA	NA	NA	NA	NA	AN	QN	
MW7I	4/7/2016	1	AN	٩	NA	AN	AN	AN	AN	AN	AN	AA	QN	
	5/5/2017	1	AN	AN	NA	AN	AN	AN	NA	NA	NA	AN	Tetrahydrofuran	6.9 J
MW8I	4/7/2016	-	AN	NA	NA	NA	٨A	NA	٧N	NA	AN	AN	DN	
	5/5/2017		٩N	٨A	٨A	NA	٩N	NA	٩N	NA	AN	AN	DN	
WW/9B	4/7/2016	:	NA	NA	<0.15	<0.18	<0.15	<0.22	<0.61	<0.39	<0.34	NA	Dichlorodif luoromethane Trichlorof luoromethane	11 7.9
	5/5/2017	1	AN	AN	<0.15	<0.18	<0.15	<0.22	<0.61	<0.39	<0.34	AN	Dichloro dif luoromethane Dichloro fluorome thane	3.1 1.5
S6WW	4/7/2016		AN	AN	<0.15	<0.18	<0.15	<0.22	<0.61	<0.39	<0.34	NA	Dichlorodifluoromethane	23
	5/5/2017		NA	NA	<0.15	<0.18	<0.15	<0.22	<0.61	<0.39	<0.34	NA	Dichlorodif luoromethane Dichlorof luorome thane	26 30
16/MW	4/7/2016	:	NA	ΝA	<0.15	<0.18	<0.15	<0.22	19:0>	<0.39	<0.34	NA	Dichlorodif luoromethane Trichloroethene	19 <u>0.59</u>
	5/5/2017	-	NA	AN	<0.15	<0.18	<0.15	<0.22	<0.61	<0.39	<0.34	NA	Dichlorodif luoromethane Dichlorofluoromethane	24 13
MW9I Dup	4/7/2016	:	٩N	AN	<0.15	<0.18	<0.15	<0.22	<0.61	<0.39	<0.34	AN	Dichlorodifluoromethane	21
	5/5/2017	1	AN	NA	<0.15	<0.18	<0.15	<0.22	<0.61	<0.39	<0.34	NA	Dichlorodifluoromethane Dichlorofluoromethane Trichloroethene	26 14 0.39 J
MW10S	4/7/2016	:	AA	٨A	<0.15	<0.18	<0.15	<0.22	<0.61	<0.39	<0.34	NA	ND	
	5/5/2017		AN	NA	<0.15	<0.18	<0.15	<0.22	<0.61	<0.39	<0.34	NA	DN	
MW10I	4/7/2016	:	NA	NA	<0.15	<0.18	<0.15	<0.22	<0.61	<0.39	<0.34	NA	Dichlorodif luoromethane Tetrachloroethene	8.2 1.3
	5/5/2017	1	AN	ЧA	<0.15	<0.18	<0.15	<0.22	<0.61	<0.39	<0.34	NA	Dichlorodifluoromethane Dichlorofluoromethane Tetrachloroethene	12 6.1 <u>1.8</u>

Stoughton City Landfill / SCS Engineers Project #2521 6022.00 Table 1. Groundwater Analytical Results Summary - VOCs

(Results are in µg/L)

Sample	Date	Lab Notes	DRO	GRO	Benzene	Ethylbenzene	Toluene	Xylenes	TMBs	MTBE	Naphthalene	Lead	Other VOCs	
MW13I	4/7/2016	:	NA	AN	AN	٨A	NA	٧N	٧N	NA	٧N	NA	Dichlorodifluoromethane Tetrahydrofuran	4.1 <u>13</u>
	10/18/2016	:	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Tetrahydrofuran	4.6 J
	5/5/2017	:	AN	NA	NA	NA	NA	٧N	٩N	NA	AN	AN	DN	
MW14S	4/7/2016	:	AN	AN	<0.15	<0.18	<0.15	<0.22	<0.61	<0.39	<0.34	AN	DN	
	5/5/2017	:	AN	AN	<0.15	<0.18	<0.15	<0.22	<0.61	<0.39	<0.34	AN	DN	
MW14I	4/7/2016	:	NA	NA	<0.15	<0.18	<0.15	<0.22	<0.61	<0.39	<0.34	NA	Dichlorodifluoromethane	2.8
	5/5/2017	:	NA	NA	<0.15	<0.18	<0.15	<0.22	<0.61	<0.39	<0.34	NA	Dichlorodif luoromethane Dichlorof luorome thane	4.6 12
Field Blank	4/7/2016	:	NA	NA	<0.15	<0.18	<0.15	<0.22	<0.61	<0.39	<0.34	NA	ND	
	5/5/2017	:	AN	AN	<0.15	<0.18	<0.15	<0.22	<0.61	<0.39	<0.34 *F1	AN	DN	
Trip Blank	4/7/2016	:	AN	AN	<0.15	<0.18	<0.15	<0.22	<0.61	<0.39	<0.34	AN	DN	
	10/18/2016	:	NA	NA	NA	NA	NA	٨A	AN	NA	AN	NA	Tetrahydrofuran	2.5 J
	5/4/2017	:	AN	AN	<0.15	<0.18	<0.15	<0.22	<0.61	<0.39	<0.34	AN	DN	
NR 140 Enforcement Standards (ESs)	ent Standards (E	Ss)	В Х	Ξ	ν	200	800	2,000	480	\$0	001	15	Dichlora dif luoromethane Dichlora fluoromethane Terradhoraethane Trichloraethane Trichloraethane Trichloraethane	1,000 NE 50 3,490
NR 140 Preventive Action Limits (PALs)	e Action Limits (P	ALs)	Щ.	۳	0.5	140	160	400	96	12	0	1.5	Dichlora difluoromethane Dichlora fluoromethane Terrahydrochran Tetrachloraethene Trichloraethene Trichloraethene	200 NE 10 0.5 0.5 698

Abbreviations:

DRO = Diesel Range Organics MTBE = Methyl-tert-butyl ether ND = Not Detected -- = Not Applicable µg/L = micrograms per liter or parts per billion (ppb) TMBs = 1,2,4- and 1,3,5-trimethylbenzenes NA = Not Analyzed (Dup) = Duplicate Sample

GRO = Gasoline Range Organics VOCs = Volatile Organic Compounds NE = No Standard Established

Notes:

NR 140 ESs - Wisconsin Administrative Code (WAC), Chapter NR 140.10 Table 1 - Public Health Groundwater Quality Standards from February 2017. NR 140 PALs - WAC, Chapter NR 140.10 Table 1 - Public Health Groundwater Quality Standards from February 2017. <u>Bold+underlined</u> values meet or exceed NR 140 enforcement standards. Italic+underlined values meet or exceed NR 140 preventive action limits.

Laboratory Notes/Qualifiers:

F1 = MS and/or MSD Recovery is outside acceptance limits.
J = Results reported between the Method Detection Limit (MDL) and Limit of Quantitation (LOQ) are less certain than results at or above the LOQ.
* = LCS or LCSD is outside acceptance limits.

Created by:

6/29/2017 7/6/2017 4/29/2016 Date: Date: Date: AV MOB EIS Last revision by: Checked by: Table 2. Water Level Summary Stoughton City Landfill SCS Engineers Project #25216022.00

					Dept	Depth to Water in feet below top of well casing	feet below to	p of well cas	ing				
Raw Data	MW03D	MW04D	MW05D	MW07I	180MW	S60MW	160MW	860MW	SOLWM	IOLMW	181 WW	MW14S	MW14I
Measurement Date													
May 4, 2017	8.74	6.14	6.08										
May 5, 2017				0.00	0.12	11.1	1.48	1.25	3.18	0.00	0.00	2.94	1.68
					Ground Wa	Ground Water Elevation in feet above mean sea level (amsl)	in feet above	mean sea lev	vel (amsl)				
Well Number	MW03D	MW04D	MW05D	MW071	180MM	S60WM	160MW	860WW	MW105	I01/MW	MW13I	MW14S	MW14I
Top of Casing Elevation (feet amsl)	855.17	852.08	852.35	843.99	846.32	847.23	847.14	846.68	846.88	845.86	853.02	848.73	847.38
Screen Length (Ħ)	10.00	1 0.00	10.00	10.00	1 0.00	1 0.00	1 0.00	10.00	10.00	1 0.00	1 0.00	10.00	10.00
Total Depth (ft from top of casing)	73.0	74.0	0'22	60.0	62.4	13.4	21.5	83.3	16.9	39.8	57.5	26.2	51.2
Top of Well Screen Elevation (ft)	792.17	788.08	785.35	793.99	793.92	843.83	835.64	773.38	839.98	816.06	805.52	832.53	806.18
Measurement Date													
May 4, 2017	846.43	845.94	846.27										
May 5, 2017				843.99	846.20	846.12	845.66	845.43	843.70	845.86	853.02	845.79	845.70
Bottom of Well Elevation (ft)	782.17	778.08	775.35	783.99	783.92	833.83	825.64	763.38	829.98	806.06	795.52	822.53	796.18

Date: 6/28/17	Date: 6/28/17	Date: 6/29/17
ES	ES	MOB
Created by:	Last revision by:	Checked by:

I:\25216022.00\Deliverables\Amual GW Report and Semiamual Inspection\2017/[Table 2_Water level summary.xts]levels

Well Number	Date	Temperature ([°] C)	Specific Conductivity (us/cm)	pH (Std. Units)
MW03D	5/4/17	9.0	793	7.53
MW04D	5/4/17	8.7	878	7.37
MW05D	5/4/17	8.9	717	7.58
MW071	5/5/17	10.1	774	7.40
MW08I	5/5/17	9.9	898	7.27
MW09S	5/5/17	9.3	646	7.56
MW091	5/5/17	9.8	626	7.44
MW09B	5/5/17	9.5	635	7.34
MW10S	5/5/17	8.0	523	7.29
MW10I	5/5/17	10.0	647	7.25
MW13I	5/5/17	9.8	528	7.60
MW14S	5/5/17	9.2	321	7.68
MW14I	5/5/17	10.3	652	7.40

Table 3. Groundwater Monitoring Results for Field ParametersStoughton City LandfillSCS Engineers Project #25216022.00

Created by:	ES	Date: 6/28/17
Last revision by:	ES	Date: 6/28/17
Checked by:	MOB	Date: 6/29/17

I:\25216022.00\Deliverables\Annual GW Report and Semiannual Inspection\2017\[Table 3_Field_Parame

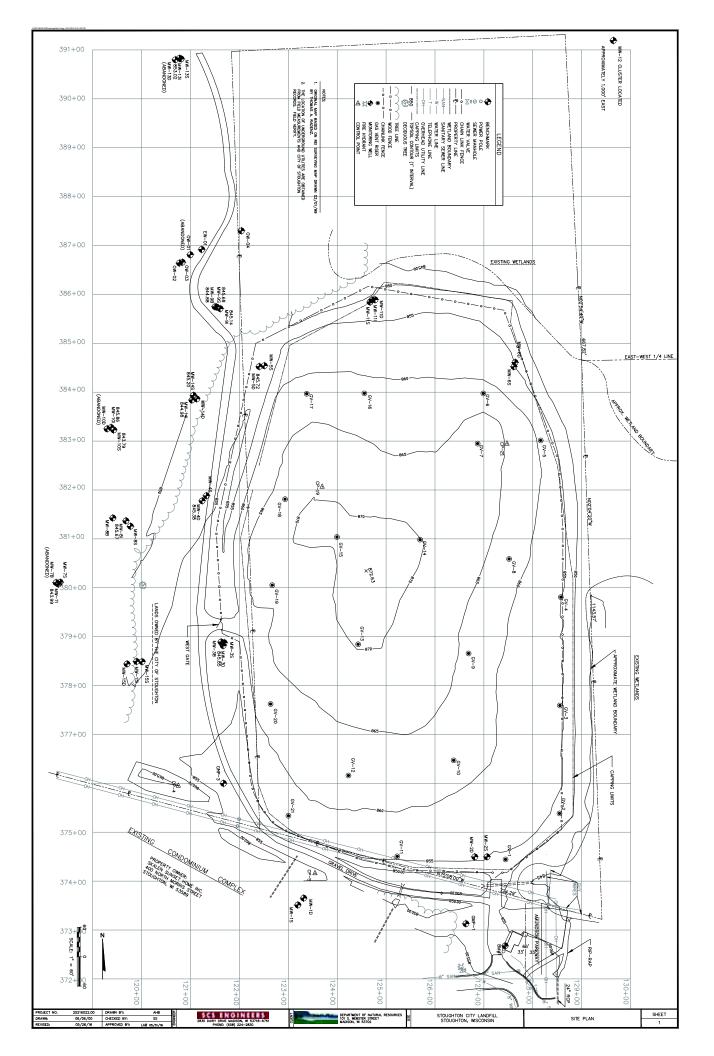
Table 4. Historical Target Compound DetectionsAnnual Groundwater Report - May 2017Stoughton City Landfill / SCS Engineers Project #25216022.00

		Shallow Monitoring	Wells	
	Current Event Co	oncentration (µg/L)	Historical R	ange (µg/L)
Well	DCDFM	THF	DCDFM	THF
MW9S	26	ND	22-400	ND-22
MW10S	ND	ND	ND-20	ND-20
MW13S	NA	NA	ND	ND
MW14S	ND	ND	2.5-710	ND-50

	Inter	mediate and Deep Mon	itoring Wells	
	Current Event Co	ncentration (µg/L)	Historical Ro	ange (µg/L)
Well	DCDFM	THF	DCDFM	THF
MW3D	ND	6.5	ND	3.2-310
MW4D	ND	ND	ND-0.05	ND-2.2
MW5D	ND	ND	0.92-10	1.1-4.0
MW7I	ND	6.9	ND-0.026	ND-16
MW8I	ND	ND	ND	ND-20
MW8B	NA	NA	ND	ND
MW9I	26	ND	12-340	ND-12
MW9B	3.1	ND	2.3-25	ND-2.4
MW10I	12	ND	ND-280	ND-21
MW13I	ND	ND	ND-9.2	ND-22
MW14I	4.6	ND	4.4-590	ND-2.4

Abbreviations:

 $\mu g/L =$ micrograms per liter DCDFM = dichlorodifluoromethane THF = tetrahydrofuran NA = Not Analyzed ND = No Detections


Created by:	ES	Date: <u>6/28/2017</u>
Last revision by:	ES	Date: 6/28/2017
Checked by:	LMH	Date: 7/10/2017

I:\25216022.00\Deliverables\Annual GW Report and Semiannual Inspection\2017\[Table

4_Historical_Target_Compound_Detections_May_2017.xlsx]GW Natural Attenuation

FIGURE 1

Site Plan

ATTACHMENT A

Laboratory Analytical Report

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Chicago 2417 Bond Street University Park, IL 60484 Tel: (708)534-5200

TestAmerica Job ID: 500-127911-1

Client Project/Site: Stoughton LF - 25216022

For: SCS Engineers 2830 Dairy Dr Madison, Wisconsin 53718

Attn: Mr. Tom Karwoski

Sanda Jeduich

Authorized for release by: 5/23/2017 8:19:02 PM

Sandie Fredrick, Project Manager II (920)261-1660 sandie.fredrick@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

LINKS **Review your project** results through Total Access **Have a Question?** ne xpert

Visit us at: www.testamericainc.com

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Detection Summary	4
Method Summary	6
Sample Summary	7
Client Sample Results	8
Definitions	25
QC Association	26
Surrogate Summary	27
QC Sample Results	28
Chronicle	39
Certification Summary	42
Chain of Custody	43
Receipt Checklists	45

Job ID: 500-127911-1

Laboratory: TestAmerica Chicago

Narrative

Job Narrative 500-127911-1

Case Narrative

Comments

No additional comments.

Receipt

The samples were received on 5/10/2017 9:05 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.7° C.

GC/MS VOA

Method(s) 8260B: The laboratory control sample (LCS) for batch 385529 recovered outside control limits for Naphthalene. This analyte was biased high in the LCS and was not detected in the associated samples: Trip Blank (500-127911-1) and Field Blank (500-127911-2); therefore, the data has been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Detection Summary

RL

10

LOD Unit

1.9 ug/L

Client Sample ID: Trip Blank

Client Sample ID: Field Blank

Client Sample ID: MW3D

Client Sample ID: MW4D

Client Sample ID: MW5D

Lab Sample ID: 500-127911-1

Lab Sample ID: 500-127911-2

Lab Sample ID: 500-127911-3

Lab Sample ID: 500-127911-4

Lab Sample ID: 500-127911-5

Lab Sample ID: 500-127911-6

Lab Sample ID: 500-127911-8

Dil Fac D Method

1

8260B

Prep Type

Total/NA

No Detections.	
-	

Client Sample ID: MW5D DUP

No Detections.

No Detections.

No Detections.

Tetrahydrofuran

No Detections.

Analyte

Client Sample ID: MW7I Lab Sample ID: 500-127911-7

Result Qualifier

6.5 J

Analyte	Result Qualifier	RL	LOD Unit	Dil Fac D Method	Prep Type
Tetrahydrofuran	<u> </u>	10	1.9 ug/L	1 8260B	Total/NA

Client Sample ID: MW8I

No Detections.

Client Sample ID: MW9S					Lab Sample ID: 500-127911					
	Analyte	Result Qualifier	RL	LOD	Unit	Dil Fac	DI	Method	Prep Type	
	Dichlorodifluoromethane	26	2.0	0.67	ug/L	1	- 8	8260B	Total/NA	
	Dichlorofluoromethane	30	1.0	0.38	ug/L	1	8	8260B	Total/NA	

Client Sample ID: MW9D Lab Sample ID: 500-127911-10 Analyte **Result Qualifier** LOD Unit Dil Fac D Method RL Prep Type Dichlorodifluoromethane 2.0 3.1 8260B Total/NA 0.67 ug/L 1 Trichlorofluoromethane 1.5 1.0 0.43 ug/L 1 8260B Total/NA

Client Sample ID: MW9I					Lab Sample ID: 500-127911-1			
_ Analyte	Result Qualifier	RL	LOD	Unit	Dil Fac	D Method	Prep Type	
Dichlorodifluoromethane	24	2.0	0.67	ug/L	1	8260B	Total/NA	
Dichlorofluoromethane	13	1.0	0.38	ug/L	1	8260B	Total/NA	

Client Sample ID: MW9I DUP

This Detection Summary does not include radiochemical test results.

TestAmerica Chicago

Lab Sample ID: 500-127911-12

Dichlorofluoromethane

1

8260B

Total/NA

Client Sample ID: MW9I DUF	P (Conti	nued)				Lab Sa	nple ID:	500-127911-12
Analyte	Result	Qualifier	RL	LOD	Unit	Dil Fac	D Method	Prep Type
Dichlorodifluoromethane	26		2.0	0.67	ug/L	1	8260B	Total/NA
Dichlorofluoromethane	14		1.0	0.38	ug/L	1	8260B	Total/NA
Trichloroethene	0.39	J	0.50	0.16	ug/L	1	8260B	Total/NA
Client Sample ID: MW10S						Lab Sa	nple ID: {	500-127911-13
No Detections.								
Client Sample ID: MW10I						Lab Sa	nple ID:	500-127911-14
Analyte	Result	Qualifier	RL	LOD	Unit	Dil Fac	D Method	Prep Type
Dichlorodifluoromethane	12		2.0	0.67	ug/L	1	8260B	Total/NA
Dichlorofluoromethane	6.1		1.0	0.38	ug/L	1	8260B	Total/NA
Tetrachloroethene	1.8		1.0	0.37	ug/L	1	8260B	Total/NA
Client Sample ID: MW13I						Lab Sa	nple ID: {	500-127911-15
No Detections.								
Client Sample ID: MW14S						Lab Sa	nple ID: {	500-127911-16
No Detections.								
Client Sample ID: MW14I						Lab Sa	nple ID:	500-127911-17
Analyte	Result	Qualifier	RL	LOD	Unit	Dil Fac	D Method	Prep Type
Dichlorodifluoromethane	4.6		2.0	0.67	ug/L	1	8260B	Total/NA

1.0

0.38 ug/L

Client: SCS Engineers Project/Site: Stoughton LF - 25216022

Method Description	Protocol	Laboratory	3
Volatile Organic Compounds (GC/MS)	SW846	TAL CHI	4
rences: Test Matheds For Evaluating Solid Wasta, Physical/Chamical Matheds", Third Editi	on November 1086 And Its Lindat	2 5	5

Protocol References:

Method

8260B

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

Sample Summary

Matrix

Water

Client: SCS Engineers Project/Site: Stoughton LF - 25216022

Client Sample ID

Trip Blank

Field Blank

MW5D DUP

MW3D

MW4D

MW5D

MW7I

MW8I

MW9S

MW9D

MW9I

MW10S

MW10I

MW13I

MW14S

MW14I

MW9I DUP

Lab Sample ID

500-127911-1

500-127911-2

500-127911-3

500-127911-4

500-127911-5

500-127911-6

500-127911-7

500-127911-8

500-127911-9

500-127911-10

500-127911-11

500-127911-12

500-127911-13

500-127911-14

500-127911-15

500-127911-16

500-127911-17

TestAmerica Job ID: 500-127911

	00 407044 4	1
erica Job ID: 5	00-127911-1	
Collected	Received	
05/04/17 00:00	05/10/17 09:05	
05/05/17 16:15	05/10/17 09:05	
05/04/17 13:30	05/10/17 09:05	E
05/04/17 14:40	05/10/17 09:05	Ο
05/04/17 14:00	05/10/17 09:05	C
05/04/17 14:00	05/10/17 09:05	6
05/05/17 11:50	05/10/17 09:05	
05/05/17 13:35	05/10/17 09:05	
05/05/17 15:10	05/10/17 09:05	
05/05/17 15:40	05/10/17 09:05	ŏ
05/05/17 16:00	05/10/17 09:05	
05/05/17 16:00	05/10/17 09:05	9
05/05/17 13:15	05/10/17 09:05	
05/05/17 12:45	05/10/17 09:05	
05/05/17 12:15	05/10/17 09:05	
05/05/17 14:15	05/10/17 09:05	
05/05/17 14:30	05/10/17 09:05	

Client Sample Results

Lab Sample ID: 500-127911-1

Matrix: Water

5 6 7

Client Sample ID: Trip Blank

Date Collected: 05/04/17 00:00 Date Received: 05/10/17 09:05

Analyte	Result Qualifier	RL	LOD		D	Prepared	Analyzed	Dil Fa
Benzene	<0.15	0.50	0.15	ug/L			05/17/17 23:14	
Bromobenzene	<0.36	1.0	0.36	ug/L			05/17/17 23:14	
Bromochloromethane	<0.43	1.0	0.43	ug/L			05/17/17 23:14	
Bromodichloromethane	<0.37	1.0	0.37	ug/L			05/17/17 23:14	
Bromoform	<0.48	1.0	0.48	ug/L			05/17/17 23:14	
Bromomethane	<0.80	2.0	0.80	ug/L			05/17/17 23:14	
Carbon tetrachloride	<0.38	1.0	0.38	ug/L			05/17/17 23:14	
Chlorobenzene	<0.39	1.0	0.39	ug/L			05/17/17 23:14	
Chloroethane	<0.51	1.0	0.51	ug/L			05/17/17 23:14	
Chloroform	<0.37	2.0	0.37	ug/L			05/17/17 23:14	
Chloromethane	<0.32	1.0	0.32	ug/L			05/17/17 23:14	
2-Chlorotoluene	<0.31	1.0	0.31	ug/L			05/17/17 23:14	
4-Chlorotoluene	<0.35	1.0	0.35	ug/L			05/17/17 23:14	
cis-1,2-Dichloroethene	<0.41	1.0	0.41	-			05/17/17 23:14	
cis-1,3-Dichloropropene	<0.42	1.0	0.42	-			05/17/17 23:14	
Dibromochloromethane	<0.49	1.0	0.49	-			05/17/17 23:14	
1,2-Dibromo-3-Chloropropane	<2.0	5.0		ug/L			05/17/17 23:14	
.2-Dibromoethane	<0.39	1.0	0.39	-			05/17/17 23:14	
Dibromomethane	<0.27	1.0	0.27	-			05/17/17 23:14	
I.2-Dichlorobenzene	<0.33	1.0	0.33	-			05/17/17 23:14	
,3-Dichlorobenzene	<0.40	1.0	0.40	-			05/17/17 23:14	
,4-Dichlorobenzene	<0.36	1.0	0.36	•			05/17/17 23:14	
Dichlorodifluoromethane	<0.67	2.0	0.67	-			05/17/17 23:14	
I.1-Dichloroethane	<0.41	1.0	0.41	-			05/17/17 23:14	
,2-Dichloroethane	<0.39	1.0	0.39	-			05/17/17 23:14	
,1-Dichloroethene	<0.39	1.0	0.39	-			05/17/17 23:14	
Dichlorofluoromethane	<0.38	1.0	0.38	-			05/17/17 23:14	
I,2-Dichloropropane	<0.43	1.0	0.43	-			05/17/17 23:14	
I,3-Dichloropropane	<0.36	1.0	0.36	-			05/17/17 23:14	
2,2-Dichloropropane	<0.44	1.0	0.30	-			05/17/17 23:14	
I,1-Dichloropropene	<0.30	1.0	0.30	-			05/17/17 23:14	
Ethylbenzene	<0.18	0.50	0.30	-			05/17/17 23:14	
lexachlorobutadiene	<0.18	1.0	0.18	-			05/17/17 23:14	
	<0.45		0.45	-			05/17/17 23:14	
sopropylbenzene sopropyl ether	<0.39	1.0 1.0	0.39	-			05/17/17 23:14	
Methylene Chloride	<1.6	5.0		ug/L ug/L				
							05/17/17 23:14 05/17/17 23:14	
Methyl tert-butyl ether	<0.39	1.0	0.39					
Naphthalene	<0.34 *	1.0		ug/L			05/17/17 23:14	
n-Butylbenzene	<0.39	1.0	0.39	-			05/17/17 23:14	
N-Propylbenzene	<0.41	1.0	0.41				05/17/17 23:14	
-Isopropyltoluene	< 0.36	1.0	0.36	-			05/17/17 23:14	
ec-Butylbenzene	<0.40	1.0	0.40				05/17/17 23:14	
Styrene	<0.39	1.0	0.39	-			05/17/17 23:14	
ert-Butylbenzene	<0.40	1.0	0.40	-			05/17/17 23:14	
I,1,1,2-Tetrachloroethane	<0.46	1.0	0.46				05/17/17 23:14	
I,1,2,2-Tetrachloroethane	<0.40	1.0	0.40	-			05/17/17 23:14	
Tetrachloroethene	<0.37	1.0	0.37	-			05/17/17 23:14	
Tetrahydrofuran	<1.9	10	1.9	ug/L			05/17/17 23:14	

RL

1.0

1.0

1.0

1.0

1.0

1.0

0.50

1.0

1.0

1.0

1.0

1.0

Limits

72 - 124

75 - 120

75 - 126

75 - 120

0.50

LOD Unit

0.35 ug/L

0.36 ug/L

0.46 ug/L

0.34 ug/L

0.38 ug/L

0.35 ug/L

0.16 ug/L

0.43 ug/L

0.41 ug/L

0.36 ug/L

0.25 ug/L

0.20 ug/L

0.22 ug/L

D

Prepared

Prepared

Client Sample ID: Trip Blank Date Collected: 05/04/17 00:00 Date Received: 05/10/17 09:05

Analyte

trans-1,2-Dichloroethene

1,2,3-Trichlorobenzene

1,2,4-Trichlorobenzene

1,1,1-Trichloroethane

1.1.2-Trichloroethane

Trichlorofluoromethane

1,2,3-Trichloropropane

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

4-Bromofluorobenzene (Surr)

1,2-Dichloroethane-d4 (Surr)

Dibromofluoromethane

Toluene-d8 (Surr)

Trichloroethene

Vinyl chloride

Xylenes, Total

Surrogate

trans-1,3-Dichloropropene

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Result Qualifier

< 0.35

< 0.36

< 0.46

< 0.34

< 0.38

< 0.35

<0.16

<0.43

< 0.41

<0.36

<0.25

<0.20

< 0.22

%Recovery Qualifier

94

94

105

90

Lab Sample ID: 500-127911-1 Matrix: Water

Analyzed

05/17/17 23:14

05/17/17 23:14

05/17/17 23:14

05/17/17 23:14

05/17/17 23:14

05/17/17 23:14

05/17/17 23:14

05/17/17 23:14

05/17/17 23:14

05/17/17 23:14

05/17/17 23:14

05/17/17 23:14

05/17/17 23:14

Analyzed

05/17/17 23:14

05/17/17 23:14

05/17/17 23:14

05/17/17 23:14

Dil Fac

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Dil Fac

12 13

Client Sample ID: Field Blank Date Collected: 05/05/17 16:15 Date Received: 05/10/17 09:05

Lab Sample ID: 500-127911-2 Matrix: Water

Method: 8260B - Volatile Organic Compounds (GC/MS)

Analyte	Result Qualifier	RL	LOD	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.15	0.50	0.15	ug/L			05/18/17 00:54	1
Bromobenzene	<0.36	1.0	0.36	ug/L			05/18/17 00:54	1
Bromochloromethane	<0.43	1.0	0.43	ug/L			05/18/17 00:54	1
Bromodichloromethane	<0.37	1.0	0.37	ug/L			05/18/17 00:54	1
Bromoform	<0.48	1.0	0.48	ug/L			05/18/17 00:54	1
Bromomethane	<0.80	2.0	0.80	ug/L			05/18/17 00:54	1
Carbon tetrachloride	<0.38	1.0	0.38	ug/L			05/18/17 00:54	1
Chlorobenzene	<0.39	1.0	0.39	ug/L			05/18/17 00:54	1
Chloroethane	<0.51	1.0	0.51	ug/L			05/18/17 00:54	1
Chloroform	<0.37	2.0	0.37	ug/L			05/18/17 00:54	1
Chloromethane	<0.32	1.0	0.32	ug/L			05/18/17 00:54	1
2-Chlorotoluene	<0.31	1.0	0.31	ug/L			05/18/17 00:54	1
4-Chlorotoluene	<0.35	1.0	0.35	ug/L			05/18/17 00:54	1
cis-1,2-Dichloroethene	<0.41	1.0	0.41	ug/L			05/18/17 00:54	1
cis-1,3-Dichloropropene	<0.42	1.0	0.42	ug/L			05/18/17 00:54	1
Dibromochloromethane	<0.49	1.0	0.49	ug/L			05/18/17 00:54	1
1,2-Dibromo-3-Chloropropane	<2.0	5.0	2.0	ug/L			05/18/17 00:54	1
1,2-Dibromoethane	<0.39	1.0	0.39	ug/L			05/18/17 00:54	1
Dibromomethane	<0.27	1.0	0.27	ug/L			05/18/17 00:54	1
1,2-Dichlorobenzene	<0.33	1.0	0.33	ug/L			05/18/17 00:54	1
1,3-Dichlorobenzene	<0.40	1.0	0.40	ug/L			05/18/17 00:54	1
1,4-Dichlorobenzene	<0.36	1.0	0.36	ug/L			05/18/17 00:54	1
Dichlorodifluoromethane	<0.67	2.0	0.67	ug/L			05/18/17 00:54	1
1,1-Dichloroethane	<0.41	1.0	0.41	ug/L			05/18/17 00:54	1

RL

1.0

1.0

1.0

1.0

LOD Unit

0.39 ug/L

0.39 ug/L

0.38 ug/L

0.43 ug/L

D

Prepared

Analyte

1,2-Dichloroethane

1,1-Dichloroethene

Dichlorofluoromethane

1,2-Dichloropropane

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Result Qualifier

<0.39

<0.39

<0.38

<0.43

Lab Sample ID: 500-127911-2 Matrix: Water

Analyzed

05/18/17 00:54

05/18/17 00:54

05/18/17 00:54

05/18/17 00:54

Dil Fac

1

1

1

7	7
8	3
ę	

1,2-Dichloropropane	~0.45		1.0		uy/L		05/16/17 00.54	1
1,3-Dichloropropane	<0.36		1.0		ug/L		05/18/17 00:54	1
2,2-Dichloropropane	<0.44		1.0		ug/L		05/18/17 00:54	1
1,1-Dichloropropene	<0.30		1.0	0.30	ug/L		05/18/17 00:54	1
Ethylbenzene	<0.18		0.50	0.18	ug/L		05/18/17 00:54	1
Hexachlorobutadiene	<0.45		1.0	0.45	ug/L		05/18/17 00:54	1
Isopropylbenzene	<0.39		1.0	0.39	ug/L		05/18/17 00:54	1
Isopropyl ether	<0.28		1.0		ug/L		05/18/17 00:54	1
Methylene Chloride	<1.6		5.0		ug/L		05/18/17 00:54	1
Methyl tert-butyl ether	<0.39		1.0	0.39	ug/L		05/18/17 00:54	1
Naphthalene	<0.34	* F1	1.0	0.34	ug/L		05/18/17 00:54	1
n-Butylbenzene	<0.39		1.0	0.39	ug/L		05/18/17 00:54	1
N-Propylbenzene	<0.41		1.0	0.41	ug/L		05/18/17 00:54	1
p-Isopropyltoluene	<0.36		1.0	0.36	ug/L		05/18/17 00:54	1
sec-Butylbenzene	<0.40		1.0	0.40	ug/L		05/18/17 00:54	1
Styrene	<0.39		1.0	0.39	ug/L		05/18/17 00:54	1
tert-Butylbenzene	<0.40		1.0	0.40	ug/L		05/18/17 00:54	1
1,1,1,2-Tetrachloroethane	<0.46		1.0	0.46	ug/L		05/18/17 00:54	1
1,1,2,2-Tetrachloroethane	<0.40		1.0	0.40	ug/L		05/18/17 00:54	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L		05/18/17 00:54	1
Tetrahydrofuran	<1.9	F1	10	1.9	ug/L		05/18/17 00:54	1
Toluene	<0.15		0.50	0.15	ug/L		05/18/17 00:54	1
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L		05/18/17 00:54	1
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L		05/18/17 00:54	1
1,2,3-Trichlorobenzene	<0.46	F1	1.0	0.46	ug/L		05/18/17 00:54	1
1,2,4-Trichlorobenzene	<0.34	F1	1.0	0.34	ug/L		05/18/17 00:54	1
1,1,1-Trichloroethane	<0.38		1.0	0.38	ug/L		05/18/17 00:54	1
1,1,2-Trichloroethane	<0.35		1.0	0.35	ug/L		05/18/17 00:54	1
Trichloroethene	<0.16		0.50	0.16	ug/L		05/18/17 00:54	1
Trichlorofluoromethane	<0.43		1.0	0.43	ug/L		05/18/17 00:54	1
1,2,3-Trichloropropane	<0.41		1.0	0.41	ug/L		05/18/17 00:54	1
1,2,4-Trimethylbenzene	<0.36		1.0	0.36	ug/L		05/18/17 00:54	1
1,3,5-Trimethylbenzene	<0.25		1.0	0.25	ug/L		05/18/17 00:54	1
Vinyl chloride	<0.20	F1	0.50	0.20	ug/L		05/18/17 00:54	1
Xylenes, Total	<0.22		1.0		ug/L		05/18/17 00:54	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		72 - 124				05/18/17 00:54	1
Dibromofluoromethane	94		75 - 120				05/18/17 00:54	1
1,2-Dichloroethane-d4 (Surr)	106		75 - 126				05/18/17 00:54	1
Toluene-d8 (Surr)	90		75 - 120				05/18/17 00:54	1

Lab Sample ID: 500-127911-3 Matrix: Water

Lab Sample ID: 500-127911-4

Date Collected: 05/04/17 13:30 Date Received: 05/10/17 09:05

_

Client Sample ID: MW3D

Analyte	Result	Qualifier	RL	LOD	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	<0.67		2.0	0.67	ug/L			05/18/17 05:57	1
Tetrahydrofuran	6.5	J	10	1.9	ug/L			05/18/17 05:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	113		72 - 124					05/18/17 05:57	1
Dibromofluoromethane	98		75 - 120					05/18/17 05:57	1
1,2-Dichloroethane-d4 (Surr)	116		75 - 126					05/18/17 05:57	1
Toluene-d8 (Surr)	99		75 - 120					05/18/17 05:57	1

Client Sample ID: MW4D Date Collected: 05/04/17 14:40

Date Received: 05/10/17 09:05

Method: 8260B - Volatile O	rganic Compounds (GC	C/MS)						
Analyte	Result Qualifier	RL	LOD	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	<0.67	2.0	0.67	ug/L			05/18/17 06:24	1
Tetrahydrofuran	<1.9	10	1.9	ug/L			05/18/17 06:24	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	115	72 - 124					05/18/17 06:24	1
D.1 (1)	07	75 100					05/40/47 00:04	1
Dibromofluoromethane	97	75 - 120					05/18/17 06:24	1
Dibromofluoromethane 1,2-Dichloroethane-d4 (Surr)	97 118	75 - 120 75 - 126					05/18/17 06:24 05/18/17 06:24	1

Client Sample ID: MW5D

Date Collected: 05/04/17 14:00 Date Received: 05/10/17 09:05

Analyte	Result	Qualifier	RL	LOD	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	<0.67		2.0	0.67	ug/L			05/18/17 06:51	1
Tetrahydrofuran	<1.9		10	1.9	ug/L			05/18/17 06:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			72 - 124					05/18/17 06:51	1
Dibromofluoromethane	100		75 - 120					05/18/17 06:51	1
1,2-Dichloroethane-d4 (Surr)	119		75 - 126					05/18/17 06:51	1

Client Sample ID: MW5D DUP Date Collected: 05/04/17 14:00 Date Received: 05/10/17 09:05

Method: 8260B - Volatile Or	rganic Compo	unds (GC/	MS)						
Analyte	Result	Qualifier	RL	LOD	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	<0.67		2.0	0.67	ug/L			05/18/17 07:17	1
Tetrahydrofuran	<1.9		10	1.9	ug/L			05/18/17 07:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	117		72 - 124			-		05/18/17 07:17	1
Dibromofluoromethane	97		75 - 120					05/18/17 07:17	1

TestAmerica Chicago

Matrix: Water

Lab Sample ID: 500-127911-5 **Matrix: Water**

Lab Sample ID: 500-127911-6

Matrix: Water

Client Sample Results

TestAmerica Job ID: 500-127911-1

Lab Sample ID: 500-127911-6

Lab Sample ID: 500-127911-7

Matrix: Water

Matrix: Water

Client Sample ID: MW5D DUP Date Collected: 05/04/17 14:00 Date Received: 05/10/17 09:05

Method: 8260B - Volatile Orga	nic Compo	unds (GC/I	MS) (Continu	(beu		
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	119		75 - 126		05/18/17 07:17	1
Toluene-d8 (Surr)	100		75 - 120		05/18/17 07:17	1

Client Sample ID: MW7I Date Collected: 05/05/17 11:50 Date Received: 05/10/17 09:05

Analyte	Result	Qualifier	RL	LOD	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	<0.67		2.0	0.67	ug/L			05/18/17 07:44	1
Tetrahydrofuran	6.9	J	10	1.9	ug/L			05/18/17 07:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			72 - 124					05/18/17 07:44	1
Dibromofluoromethane	96		75 - 120					05/18/17 07:44	1
1,2-Dichloroethane-d4 (Surr)	117		75 - 126					05/18/17 07:44	1
Toluene-d8 (Surr)	100		75 - 120					05/18/17 07:44	1

Client Sample ID: MW8I Date Collected: 05/05/17 13:35 Date Received: 05/10/17 09:05

Method: 8260B - Volatile Organic Compounds (GC/MS) Result Qualifier Analyzed Analyte RL LOD Unit D Prepared Dichlorodifluoromethane < 0.67 2.0 0.67 ug/L 05/18/17 23:43 Tetrahydrofuran <1.9 10 1.9 ug/L 05/18/17 23:43 Surrogate %Recovery Qualifier Limits Prepared Analyzed 4-Bromofluorobenzene (Surr) 113 72 - 124 05/18/17 23:43 Dibromofluoromethane 93 75 - 120 05/18/17 23:43 1,2-Dichloroethane-d4 (Surr) 114 75 - 126 05/18/17 23:43 Toluene-d8 (Surr) 102 75 - 120 05/18/17 23:43

Client Sample ID: MW9S

Date Collected: 05/05/17 15:10 Date Received: 05/10/17 09:05

Method: 8260B - Volatile Organic Compounds (GC/MS)

Welliou. 0200D - Volatile C	nyanic compounds (Gen	13)						
Analyte	Result Qualifier	RL	LOD	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.15	0.50	0.15	ug/L			05/19/17 00:10	1
Bromobenzene	<0.36	1.0	0.36	ug/L			05/19/17 00:10	1
Bromochloromethane	<0.43	1.0	0.43	ug/L			05/19/17 00:10	1
Bromodichloromethane	<0.37	1.0	0.37	ug/L			05/19/17 00:10	1
Bromoform	<0.48	1.0	0.48	ug/L			05/19/17 00:10	1
Bromomethane	<0.80	2.0	0.80	ug/L			05/19/17 00:10	1
Carbon tetrachloride	<0.38	1.0	0.38	ug/L			05/19/17 00:10	1
Chlorobenzene	<0.39	1.0	0.39	ug/L			05/19/17 00:10	1
Chloroethane	<0.51	1.0	0.51	ug/L			05/19/17 00:10	1
Chloroform	<0.37	2.0	0.37	ug/L			05/19/17 00:10	1
Chloromethane	<0.32	1.0	0.32	ug/L			05/19/17 00:10	1

TestAmerica Chicago

Lab Sample ID: 500-127911-8 Matrix: Water

5/23/2017

Lab Sample ID: 500-127911-9

Matrix: Water

Dil Fac

Dil Fac

1

1

1

1

TestAmerica Job ID: 500-127911-1

Lab Sample ID: 500-127911-9 Matrix: Water

Date Collected: 05/05/17 15:10 Date Received: 05/10/17 09:05

Client Sample ID: MW9S

Analyte	Result Qualifier	RL	LOD		D Prepared	Analyzed	Dil Fac
2-Chlorotoluene	<0.31	1.0	0.31	ug/L		05/19/17 00:10	1
4-Chlorotoluene	<0.35	1.0	0.35	ug/L		05/19/17 00:10	1
cis-1,2-Dichloroethene	<0.41	1.0	0.41	ug/L		05/19/17 00:10	1
cis-1,3-Dichloropropene	<0.42	1.0	0.42	ug/L		05/19/17 00:10	1
Dibromochloromethane	<0.49	1.0	0.49	ug/L		05/19/17 00:10	1
1,2-Dibromo-3-Chloropropane	<2.0	5.0	2.0	ug/L		05/19/17 00:10	1
1,2-Dibromoethane	<0.39	1.0	0.39	ug/L		05/19/17 00:10	1
Dibromomethane	<0.27	1.0	0.27	ug/L		05/19/17 00:10	1
1,2-Dichlorobenzene	<0.33	1.0	0.33	ug/L		05/19/17 00:10	1
1,3-Dichlorobenzene	<0.40	1.0	0.40	ug/L		05/19/17 00:10	1
1,4-Dichlorobenzene	<0.36	1.0	0.36	ug/L		05/19/17 00:10	1
Dichlorodifluoromethane	26	2.0	0.67	ug/L		05/19/17 00:10	1
1,1-Dichloroethane	<0.41	1.0	0.41	ug/L		05/19/17 00:10	1
1,2-Dichloroethane	<0.39	1.0	0.39	ug/L		05/19/17 00:10	1
1,1-Dichloroethene	<0.39	1.0	0.39	ug/L		05/19/17 00:10	1
Dichlorofluoromethane	30	1.0	0.38	ug/L		05/19/17 00:10	1
1,2-Dichloropropane	<0.43	1.0	0.43	ug/L		05/19/17 00:10	1
1,3-Dichloropropane	<0.36	1.0	0.36	ug/L		05/19/17 00:10	1
2,2-Dichloropropane	<0.44	1.0	0.44	ug/L		05/19/17 00:10	1
1,1-Dichloropropene	<0.30	1.0	0.30	ug/L		05/19/17 00:10	1
Ethylbenzene	<0.18	0.50	0.18	ug/L		05/19/17 00:10	1
Hexachlorobutadiene	<0.45	1.0	0.45	ug/L		05/19/17 00:10	1
Isopropylbenzene	<0.39	1.0	0.39	ug/L		05/19/17 00:10	1
Isopropyl ether	<0.28	1.0	0.28	ug/L		05/19/17 00:10	1
Methylene Chloride	<1.6	5.0	1.6	ug/L		05/19/17 00:10	1
Methyl tert-butyl ether	<0.39	1.0	0.39	ug/L		05/19/17 00:10	1
Naphthalene	<0.34	1.0	0.34	ug/L		05/19/17 00:10	1
n-Butylbenzene	<0.39	1.0	0.39	ug/L		05/19/17 00:10	1
N-Propylbenzene	<0.41	1.0	0.41	ug/L		05/19/17 00:10	1
p-Isopropyltoluene	<0.36	1.0	0.36	ug/L		05/19/17 00:10	1
sec-Butylbenzene	<0.40	1.0	0.40	ug/L		05/19/17 00:10	1
Styrene	<0.39	1.0	0.39	ug/L		05/19/17 00:10	1
tert-Butylbenzene	<0.40	1.0	0.40	ug/L		05/19/17 00:10	1
1,1,1,2-Tetrachloroethane	<0.46	1.0	0.46	ug/L		05/19/17 00:10	1
1,1,2,2-Tetrachloroethane	<0.40	1.0	0.40	ug/L		05/19/17 00:10	1
Tetrachloroethene	<0.37	1.0	0.37	ug/L		05/19/17 00:10	1
Tetrahydrofuran	<1.9	10		ug/L		05/19/17 00:10	1
Toluene	<0.15	0.50	0.15	ug/L		05/19/17 00:10	1
trans-1,2-Dichloroethene	<0.35	1.0	0.35			05/19/17 00:10	1
trans-1,3-Dichloropropene	<0.36	1.0	0.36			05/19/17 00:10	1
1,2,3-Trichlorobenzene	<0.46	1.0	0.46	ug/L		05/19/17 00:10	1
1,2,4-Trichlorobenzene	<0.34	1.0	0.34	ug/L		05/19/17 00:10	1
1,1,1-Trichloroethane	<0.38	1.0	0.38	ug/L		05/19/17 00:10	1
1,1,2-Trichloroethane	<0.35	1.0		ug/L		05/19/17 00:10	1
Trichloroethene	<0.16	0.50	0.16	-		05/19/17 00:10	1
Trichlorofluoromethane	<0.43	1.0	0.43	-		05/19/17 00:10	1
1,2,3-Trichloropropane	<0.41	1.0	0.41			05/19/17 00:10	1
1,2,4-Trimethylbenzene	<0.36	1.0	0.36			05/19/17 00:10	1
1,3,5-Trimethylbenzene	<0.25	1.0		ug/L		05/19/17 00:10	1

RL

0.50

1.0

Limits

72 - 124

75 - 120

75 - 126

75 - 120

LOD Unit

0.20 ug/L

0.22 ug/L

D

Prepared

Prepared

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Result Qualifier

<0.20

<0.22

%Recovery Qualifier

117

93

112

103

Analyte

Vinyl chloride

Xylenes, Total

Surrogate

Lab Sample ID: 500-127911-9 Matrix: Water

Analyzed

05/19/17 00:10

05/19/17 00:10

Analyzed

05/19/17 00:10

05/19/17 00:10

05/19/17 00:10

05/19/17 00:10

Dil Fac

Dil Fac

1

1

1

1

1

1

Lab Sample ID: 500-127911-10 Matrix: Water

Date Collected: 05/05/17 15:40 Date Received: 05/10/17 09:05

Client Sample ID: MW9D

4-Bromofluorobenzene (Surr)

1,2-Dichloroethane-d4 (Surr)

Dibromofluoromethane

Toluene-d8 (Surr)

Analyte	Result Qualifier	RL	LOD	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.15	0.50	0.15	ug/L			05/19/17 00:36	1
Bromobenzene	<0.36	1.0	0.36	ug/L			05/19/17 00:36	1
Bromochloromethane	<0.43	1.0	0.43	ug/L			05/19/17 00:36	1
Bromodichloromethane	<0.37	1.0	0.37	ug/L			05/19/17 00:36	1
Bromoform	<0.48	1.0	0.48	ug/L			05/19/17 00:36	1
Bromomethane	<0.80	2.0	0.80	ug/L			05/19/17 00:36	1
Carbon tetrachloride	<0.38	1.0	0.38	ug/L			05/19/17 00:36	1
Chlorobenzene	<0.39	1.0	0.39	ug/L			05/19/17 00:36	1
Chloroethane	<0.51	1.0	0.51	ug/L			05/19/17 00:36	1
Chloroform	<0.37	2.0	0.37	ug/L			05/19/17 00:36	1
Chloromethane	<0.32	1.0	0.32	ug/L			05/19/17 00:36	1
2-Chlorotoluene	<0.31	1.0	0.31	ug/L			05/19/17 00:36	1
4-Chlorotoluene	<0.35	1.0	0.35	ug/L			05/19/17 00:36	1
cis-1,2-Dichloroethene	<0.41	1.0	0.41	ug/L			05/19/17 00:36	1
cis-1,3-Dichloropropene	<0.42	1.0	0.42	ug/L			05/19/17 00:36	1
Dibromochloromethane	<0.49	1.0	0.49	ug/L			05/19/17 00:36	1
1,2-Dibromo-3-Chloropropane	<2.0	5.0	2.0	ug/L			05/19/17 00:36	1
1,2-Dibromoethane	<0.39	1.0	0.39	ug/L			05/19/17 00:36	1
Dibromomethane	<0.27	1.0	0.27	ug/L			05/19/17 00:36	1
1,2-Dichlorobenzene	<0.33	1.0	0.33	ug/L			05/19/17 00:36	1
1,3-Dichlorobenzene	<0.40	1.0	0.40	ug/L			05/19/17 00:36	1
1,4-Dichlorobenzene	<0.36	1.0	0.36	ug/L			05/19/17 00:36	1
Dichlorodifluoromethane	3.1	2.0	0.67	ug/L			05/19/17 00:36	1
1,1-Dichloroethane	<0.41	1.0	0.41	ug/L			05/19/17 00:36	1
1,2-Dichloroethane	<0.39	1.0	0.39	ug/L			05/19/17 00:36	1
1,1-Dichloroethene	<0.39	1.0	0.39	ug/L			05/19/17 00:36	1
Dichlorofluoromethane	<0.38	1.0	0.38	ug/L			05/19/17 00:36	1
1,2-Dichloropropane	<0.43	1.0	0.43	ug/L			05/19/17 00:36	1
1,3-Dichloropropane	<0.36	1.0	0.36	ug/L			05/19/17 00:36	1
2,2-Dichloropropane	<0.44	1.0	0.44	ug/L			05/19/17 00:36	1
1,1-Dichloropropene	<0.30	1.0	0.30	ug/L			05/19/17 00:36	1
Ethylbenzene	<0.18	0.50	0.18	ug/L			05/19/17 00:36	1
Hexachlorobutadiene	<0.45	1.0	0.45	ug/L			05/19/17 00:36	1
Isopropylbenzene	<0.39	1.0	0.39	ug/L			05/19/17 00:36	1
Isopropyl ether	<0.28	1.0	0.28	-			05/19/17 00:36	1

TestAmerica Job ID: 500-127911-1

Matrix: Water

Lab Sample ID: 500-127911-10

5 6 7

Client Sample ID: MW9D Date Collected: 05/05/17 15:40 Date Received: 05/10/17 09:05

Analyte	Result (Qualifier	RL	LOD	Unit	D	Prepared	Analyzed	Dil Fac
Methylene Chloride	<1.6		5.0	1.6	ug/L			05/19/17 00:36	1
Methyl tert-butyl ether	<0.39		1.0	0.39	ug/L			05/19/17 00:36	1
Naphthalene	<0.34		1.0	0.34	ug/L			05/19/17 00:36	1
n-Butylbenzene	<0.39		1.0	0.39	ug/L			05/19/17 00:36	1
N-Propylbenzene	<0.41		1.0	0.41	ug/L			05/19/17 00:36	1
p-Isopropyltoluene	<0.36		1.0	0.36	ug/L			05/19/17 00:36	1
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			05/19/17 00:36	1
Styrene	<0.39		1.0	0.39	ug/L			05/19/17 00:36	1
tert-Butylbenzene	<0.40		1.0	0.40	ug/L			05/19/17 00:36	1
1,1,1,2-Tetrachloroethane	<0.46		1.0	0.46	ug/L			05/19/17 00:36	1
1,1,2,2-Tetrachloroethane	<0.40		1.0	0.40	ug/L			05/19/17 00:36	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			05/19/17 00:36	1
Tetrahydrofuran	<1.9		10	1.9	ug/L			05/19/17 00:36	1
Toluene	<0.15		0.50	0.15	ug/L			05/19/17 00:36	1
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L			05/19/17 00:36	1
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			05/19/17 00:36	1
1,2,3-Trichlorobenzene	<0.46		1.0	0.46	ug/L			05/19/17 00:36	1
1,2,4-Trichlorobenzene	<0.34		1.0	0.34	ug/L			05/19/17 00:36	1
1,1,1-Trichloroethane	<0.38		1.0	0.38	ug/L			05/19/17 00:36	1
1,1,2-Trichloroethane	<0.35		1.0	0.35	ug/L			05/19/17 00:36	1
Trichloroethene	<0.16		0.50	0.16	ug/L			05/19/17 00:36	1
Trichlorofluoromethane	1.5		1.0	0.43	ug/L			05/19/17 00:36	1
1,2,3-Trichloropropane	<0.41		1.0	0.41	ug/L			05/19/17 00:36	1
1,2,4-Trimethylbenzene	<0.36		1.0	0.36	ug/L			05/19/17 00:36	1
1,3,5-Trimethylbenzene	<0.25		1.0	0.25	ug/L			05/19/17 00:36	1
Vinyl chloride	<0.20		0.50	0.20	ug/L			05/19/17 00:36	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			05/19/17 00:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	112		72 - 124			-		05/19/17 00:36	1
Dibromofluoromethane	93		75 - 120					05/19/17 00:36	1
1,2-Dichloroethane-d4 (Surr)	113		75 - 126					05/19/17 00:36	1
Toluene-d8 (Surr)	102		75 - 120					05/19/17 00:36	1

Client Sample ID: MW9I Date Collected: 05/05/17 16:00 Date Received: 05/10/17 09:05

Analyte	Result Qualifier	RL	LOD	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.15	0.50	0.15	ug/L			05/19/17 01:04	1
Bromobenzene	<0.36	1.0	0.36	ug/L			05/19/17 01:04	1
Bromochloromethane	<0.43	1.0	0.43	ug/L			05/19/17 01:04	1
Bromodichloromethane	<0.37	1.0	0.37	ug/L			05/19/17 01:04	1
Bromoform	<0.48	1.0	0.48	ug/L			05/19/17 01:04	1
Bromomethane	<0.80	2.0	0.80	ug/L			05/19/17 01:04	1
Carbon tetrachloride	<0.38	1.0	0.38	ug/L			05/19/17 01:04	1
Chlorobenzene	<0.39	1.0	0.39	ug/L			05/19/17 01:04	1
Chloroethane	<0.51	1.0	0.51	ug/L			05/19/17 01:04	1
Chloroform	<0.37	2.0	0.37	ug/L			05/19/17 01:04	1

TestAmerica Chicago

Lab Sample ID: 500-127911-11

Matrix: Water

Lab Sample ID: 500-127911-11 Matrix: Water

5 6 7

Client Sample ID: MW9I Date Collected: 05/05/17 16:00 Date Received: 05/10/17 09:05

Analyte	Result Qualifier	RL	LOD	Unit	D Prepared	Analyzed	Dil Fac
Chloromethane	<0.32	1.0	0.32	ug/L		05/19/17 01:04	1
2-Chlorotoluene	<0.31	1.0	0.31	ug/L		05/19/17 01:04	1
4-Chlorotoluene	<0.35	1.0	0.35	ug/L		05/19/17 01:04	1
cis-1,2-Dichloroethene	<0.41	1.0	0.41	ug/L		05/19/17 01:04	1
cis-1,3-Dichloropropene	<0.42	1.0	0.42	ug/L		05/19/17 01:04	1
Dibromochloromethane	<0.49	1.0	0.49	ug/L		05/19/17 01:04	1
1,2-Dibromo-3-Chloropropane	<2.0	5.0	2.0	ug/L		05/19/17 01:04	1
1,2-Dibromoethane	<0.39	1.0	0.39	ug/L		05/19/17 01:04	1
Dibromomethane	<0.27	1.0	0.27	ug/L		05/19/17 01:04	1
1,2-Dichlorobenzene	<0.33	1.0	0.33	ug/L		05/19/17 01:04	1
1,3-Dichlorobenzene	<0.40	1.0	0.40	ug/L		05/19/17 01:04	1
1,4-Dichlorobenzene	<0.36	1.0	0.36	ug/L		05/19/17 01:04	1
Dichlorodifluoromethane	24	2.0	0.67	ug/L		05/19/17 01:04	1
1,1-Dichloroethane	<0.41	1.0	0.41	ug/L		05/19/17 01:04	1
1,2-Dichloroethane	<0.39	1.0	0.39	ug/L		05/19/17 01:04	1
1,1-Dichloroethene	<0.39	1.0	0.39	ug/L		05/19/17 01:04	1
Dichlorofluoromethane	13	1.0	0.38	-		05/19/17 01:04	1
1,2-Dichloropropane	<0.43	1.0	0.43	-		05/19/17 01:04	1
1,3-Dichloropropane	<0.36	1.0	0.36	-		05/19/17 01:04	1
2,2-Dichloropropane	<0.44	1.0	0.44	-		05/19/17 01:04	1
I,1-Dichloropropene	<0.30	1.0	0.30	ug/L		05/19/17 01:04	1
Ethylbenzene	<0.18	0.50	0.18	-		05/19/17 01:04	1
Hexachlorobutadiene	<0.45	1.0	0.45	-		05/19/17 01:04	1
sopropylbenzene	<0.39	1.0	0.39			05/19/17 01:04	1
sopropyl ether	<0.28	1.0	0.28	-		05/19/17 01:04	1
Methylene Chloride	<1.6	5.0		ug/L		05/19/17 01:04	1
Methyl tert-butyl ether	<0.39	1.0	0.39	-		05/19/17 01:04	1
Naphthalene	<0.34	1.0	0.34	-		05/19/17 01:04	1
n-Butylbenzene	<0.39	1.0	0.39	-		05/19/17 01:04	1
N-Propylbenzene	<0.41	1.0	0.41	-		05/19/17 01:04	1
p-Isopropyltoluene	<0.36	1.0	0.36	-		05/19/17 01:04	1
sec-Butylbenzene	<0.40	1.0	0.40	-		05/19/17 01:04	1
Styrene	<0.39	1.0	0.39	-		05/19/17 01:04	1
ert-Butylbenzene	<0.40	1.0	0.40	-		05/19/17 01:04	1
1,1,1,2-Tetrachloroethane	<0.46	1.0	0.46	-		05/19/17 01:04	1
1,1,2,2-Tetrachloroethane	<0.40	1.0	0.40			05/19/17 01:04	1
Fetrachloroethene	<0.37	1.0	0.37	0		05/19/17 01:04	1
Fetrahydrofuran	<1.9	10		ug/L		05/19/17 01:04	1
Foluene	<0.15	0.50	0.15			05/19/17 01:04	1
rans-1,2-Dichloroethene	< 0.35	1.0	0.35			05/19/17 01:04	1
rans-1,3-Dichloropropene	<0.36	1.0	0.36			05/19/17 01:04	1
1,2,3-Trichlorobenzene	<0.46	1.0	0.46			05/19/17 01:04	1
I,2,4-Trichlorobenzene	<0.34	1.0	0.34			05/19/17 01:04	1
1,1,1-Trichloroethane	<0.38	1.0	0.38	-		05/19/17 01:04	1
1,1,2-Trichloroethane	<0.35	1.0	0.35	-		05/19/17 01:04	1
Trichloroethene	<0.16	0.50	0.16			05/19/17 01:04	1
Trichlorofluoromethane	<0.43	1.0	0.43	-		05/19/17 01:04	1
1,2,3-Trichloropropane	<0.41	1.0	0.41			05/19/17 01:04	1
1,2,4-Trimethylbenzene	<0.36	1.0	0.36	-		05/19/17 01:04	1

Lab Sample ID: 500-127911-11 Matrix: Water

Date Collected: 05/05/17 16:00 Date Received: 05/10/17 09:05

Client Sample ID: MW9I

Analyte	Result	Qualifier	RL	LOD	Unit	D	Prepared	Analyzed	Dil Fac
1,3,5-Trimethylbenzene	<0.25		1.0	0.25	ug/L			05/19/17 01:04	1
Vinyl chloride	<0.20		0.50	0.20	ug/L			05/19/17 01:04	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			05/19/17 01:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			72 - 124					05/19/17 01:04	1
Dibromofluoromethane	91		75 - 120					05/19/17 01:04	1
1,2-Dichloroethane-d4 (Surr)	110		75 - 126					05/19/17 01:04	1
			75 - 120					05/19/17 01:04	

Client Sample ID: MW9I DUP Date Collected: 05/05/17 16:00 Date Received: 05/10/17 09:05

Lab Sample ID: 500-127911-12

Matrix: Water

Method: 8260B - Volatile Organic C									
Analyte		Qualifier	RL	LOD		D	Prepared	Analyzed	Dil Fac
Benzene	<0.15		0.50		ug/L			05/19/17 01:31	1
Bromobenzene	<0.36		1.0	0.36	-			05/19/17 01:31	1
Bromochloromethane	<0.43		1.0	0.43	-			05/19/17 01:31	1
Bromodichloromethane	<0.37		1.0	0.37	ug/L			05/19/17 01:31	1
Bromoform	<0.48		1.0	0.48	ug/L			05/19/17 01:31	1
Bromomethane	<0.80		2.0	0.80	ug/L			05/19/17 01:31	1
Carbon tetrachloride	<0.38		1.0	0.38	ug/L			05/19/17 01:31	1
Chlorobenzene	<0.39		1.0	0.39	ug/L			05/19/17 01:31	1
Chloroethane	<0.51		1.0	0.51	ug/L			05/19/17 01:31	1
Chloroform	<0.37		2.0	0.37	ug/L			05/19/17 01:31	1
Chloromethane	<0.32		1.0	0.32	ug/L			05/19/17 01:31	1
2-Chlorotoluene	<0.31		1.0	0.31	ug/L			05/19/17 01:31	1
4-Chlorotoluene	<0.35		1.0	0.35	ug/L			05/19/17 01:31	1
cis-1,2-Dichloroethene	<0.41		1.0	0.41	ug/L			05/19/17 01:31	1
cis-1,3-Dichloropropene	<0.42		1.0	0.42	ug/L			05/19/17 01:31	1
Dibromochloromethane	<0.49		1.0	0.49	ug/L			05/19/17 01:31	1
1,2-Dibromo-3-Chloropropane	<2.0		5.0	2.0	ug/L			05/19/17 01:31	1
1,2-Dibromoethane	<0.39		1.0	0.39	ug/L			05/19/17 01:31	1
Dibromomethane	<0.27		1.0	0.27	ug/L			05/19/17 01:31	1
1,2-Dichlorobenzene	<0.33		1.0	0.33	ug/L			05/19/17 01:31	1
1,3-Dichlorobenzene	<0.40		1.0	0.40	ug/L			05/19/17 01:31	1
1,4-Dichlorobenzene	<0.36		1.0	0.36	ug/L			05/19/17 01:31	1
Dichlorodifluoromethane	26		2.0	0.67	-			05/19/17 01:31	1
1,1-Dichloroethane	<0.41		1.0	0.41	ug/L			05/19/17 01:31	1
1,2-Dichloroethane	<0.39		1.0	0.39	ug/L			05/19/17 01:31	1
1,1-Dichloroethene	<0.39		1.0	0.39	ug/L			05/19/17 01:31	1
Dichlorofluoromethane	14		1.0	0.38	ug/L			05/19/17 01:31	1
1,2-Dichloropropane	<0.43		1.0	0.43	ug/L			05/19/17 01:31	1
1,3-Dichloropropane	<0.36		1.0		ug/L			05/19/17 01:31	1
2,2-Dichloropropane	<0.44		1.0	0.44	•			05/19/17 01:31	1
1,1-Dichloropropene	< 0.30		1.0		ug/L			05/19/17 01:31	1
Ethylbenzene	<0.18		0.50	0.18	-			05/19/17 01:31	1
Hexachlorobutadiene	< 0.45		1.0	0.45	-			05/19/17 01:31	1
Isopropylbenzene	< 0.39		1.0		ug/L			05/19/17 01:31	

Client Sample ID: MW9I DUP Date Collected: 05/05/17 16:00 Date Received: 05/10/17 09:05

Lab Sample ID: 500-127911-12 **Matrix: Water**

Analyte	Result	Qualifier	RL	LOD	Unit	D	Prepared	Analyzed	Dil Fac
Isopropyl ether	<0.28		1.0	0.28	ug/L			05/19/17 01:31	1
Methylene Chloride	<1.6		5.0	1.6	ug/L			05/19/17 01:31	1
Methyl tert-butyl ether	<0.39		1.0	0.39	ug/L			05/19/17 01:31	1
Naphthalene	<0.34		1.0	0.34	ug/L			05/19/17 01:31	1
n-Butylbenzene	<0.39		1.0	0.39	ug/L			05/19/17 01:31	1
N-Propylbenzene	<0.41		1.0	0.41	ug/L			05/19/17 01:31	1
p-Isopropyltoluene	<0.36		1.0	0.36	ug/L			05/19/17 01:31	1
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			05/19/17 01:31	1
Styrene	<0.39		1.0	0.39	ug/L			05/19/17 01:31	1
tert-Butylbenzene	<0.40		1.0	0.40	ug/L			05/19/17 01:31	1
1,1,1,2-Tetrachloroethane	<0.46		1.0	0.46	ug/L			05/19/17 01:31	1
1,1,2,2-Tetrachloroethane	<0.40		1.0	0.40	ug/L			05/19/17 01:31	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			05/19/17 01:31	1
Fetrahydrofuran	<1.9		10	1.9	ug/L			05/19/17 01:31	1
Foluene	<0.15		0.50	0.15	ug/L			05/19/17 01:31	1
rans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L			05/19/17 01:31	1
rans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			05/19/17 01:31	1
1,2,3-Trichlorobenzene	<0.46		1.0	0.46	ug/L			05/19/17 01:31	1
1,2,4-Trichlorobenzene	<0.34		1.0	0.34	ug/L			05/19/17 01:31	1
I,1,1-Trichloroethane	<0.38		1.0	0.38	ug/L			05/19/17 01:31	1
I,1,2-Trichloroethane	<0.35		1.0	0.35	ug/L			05/19/17 01:31	1
Frichloroethene	0.39	J	0.50	0.16	ug/L			05/19/17 01:31	1
Trichlorofluoromethane	<0.43		1.0	0.43	ug/L			05/19/17 01:31	1
1,2,3-Trichloropropane	<0.41		1.0	0.41	ug/L			05/19/17 01:31	1
1,2,4-Trimethylbenzene	<0.36		1.0	0.36				05/19/17 01:31	1
1,3,5-Trimethylbenzene	<0.25		1.0	0.25	ug/L			05/19/17 01:31	1
Vinyl chloride	<0.20		0.50	0.20	ug/L			05/19/17 01:31	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			05/19/17 01:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	117		72 - 124			-		05/19/17 01:31	1
Dibromofluoromethane	95		75 - 120					05/19/17 01:31	1
1,2-Dichloroethane-d4 (Surr)	115		75 - 126					05/19/17 01:31	1

Client Sample ID: MW10S Date Collected: 05/05/17 13:15 Date Received: 05/10/17 09:05

Toluene-d8 (Surr)

Analyte	Result Qualifier	RL	LOD	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.15	0.50	0.15	ug/L			05/19/17 01:58	1
Bromobenzene	<0.36	1.0	0.36	ug/L			05/19/17 01:58	1
Bromochloromethane	<0.43	1.0	0.43	ug/L			05/19/17 01:58	1
Bromodichloromethane	<0.37	1.0	0.37	ug/L			05/19/17 01:58	1
Bromoform	<0.48	1.0	0.48	ug/L			05/19/17 01:58	1
Bromomethane	<0.80	2.0	0.80	ug/L			05/19/17 01:58	1
Carbon tetrachloride	<0.38	1.0	0.38	ug/L			05/19/17 01:58	1
Chlorobenzene	<0.39	1.0	0.39	ug/L			05/19/17 01:58	1
Chloroethane	<0.51	1.0	0.51	ug/L			05/19/17 01:58	1

75 - 120

103

TestAmerica Chicago

05/19/17 01:31

Lab Sample ID: 500-127911-13

1

Matrix: Water

Lab Sample ID: 500-127911-13 Matrix: Water

5 6 7

Client Sample ID: MW10S Date Collected: 05/05/17 13:15 Date Received: 05/10/17 09:05

Method: 8260B - Volatile Org Analyte	Result Qualifier	RL	LOD	Unit	D Prepared	Analyzed	Dil Fac
Chloroform	<0.37	2.0	0.37	ug/L		05/19/17 01:58	1
Chloromethane	<0.32	1.0	0.32	ug/L		05/19/17 01:58	1
2-Chlorotoluene	<0.31	1.0	0.31	ug/L		05/19/17 01:58	1
4-Chlorotoluene	<0.35	1.0	0.35	ug/L		05/19/17 01:58	1
cis-1,2-Dichloroethene	<0.41	1.0	0.41	ug/L		05/19/17 01:58	1
cis-1,3-Dichloropropene	<0.42	1.0	0.42	ug/L		05/19/17 01:58	1
Dibromochloromethane	<0.49	1.0	0.49	ug/L		05/19/17 01:58	1
1,2-Dibromo-3-Chloropropane	<2.0	5.0	2.0	ug/L		05/19/17 01:58	1
1,2-Dibromoethane	<0.39	1.0	0.39	ug/L		05/19/17 01:58	1
Dibromomethane	<0.27	1.0	0.27	ug/L		05/19/17 01:58	1
1,2-Dichlorobenzene	<0.33	1.0	0.33	ug/L		05/19/17 01:58	1
1,3-Dichlorobenzene	<0.40	1.0	0.40	-		05/19/17 01:58	1
1,4-Dichlorobenzene	<0.36	1.0		ug/L		05/19/17 01:58	1
Dichlorodifluoromethane	<0.67	2.0		ug/L		05/19/17 01:58	1
1,1-Dichloroethane	<0.41	1.0		ug/L		05/19/17 01:58	1
1,2-Dichloroethane	<0.39	1.0		ug/L		05/19/17 01:58	1
1,1-Dichloroethene	<0.39	1.0		ug/L		05/19/17 01:58	1
Dichlorofluoromethane	<0.38	1.0		ug/L		05/19/17 01:58	1
1,2-Dichloropropane	<0.43	1.0		ug/L		05/19/17 01:58	1
1,3-Dichloropropane	<0.36	1.0		ug/L		05/19/17 01:58	1
2,2-Dichloropropane	<0.44	1.0		ug/L		05/19/17 01:58	1
1,1-Dichloropropene	<0.30	1.0		ug/L		05/19/17 01:58	1
Ethylbenzene	<0.18	0.50		ug/L		05/19/17 01:58	1
Hexachlorobutadiene	<0.45	1.0	0.45	-		05/19/17 01:58	1
sopropylbenzene	<0.39	1.0	0.39	-		05/19/17 01:58	1
sopropyl ether	<0.28	1.0	0.28	-		05/19/17 01:58	1
Methylene Chloride	<1.6	5.0		ug/L		05/19/17 01:58	1
Methyl tert-butyl ether	<0.39	1.0		ug/L		05/19/17 01:58	1
Naphthalene	<0.34	1.0	0.34	-		05/19/17 01:58	1
n-Butylbenzene	<0.39	1.0		ug/L		05/19/17 01:58	1
N-Propylbenzene	<0.41	1.0		ug/L		05/19/17 01:58	1
p-Isopropyltoluene	<0.36	1.0		ug/L		05/19/17 01:58	1
sec-Butylbenzene	<0.40	1.0		ug/L		05/19/17 01:58	1
Styrene	<0.39	1.0		ug/L		05/19/17 01:58	1
tert-Butylbenzene	<0.40	1.0	0.40	-		05/19/17 01:58	1
1,1,1,2-Tetrachloroethane	<0.46	1.0	0.46	-		05/19/17 01:58	1
1,1,2,2-Tetrachloroethane	<0.40	1.0		ug/L		05/19/17 01:58	1
Tetrachloroethene	<0.37	1.0		ug/L		05/19/17 01:58	1
Tetrahydrofuran	<1.9	10		ug/L		05/19/17 01:58	1
Toluene	<0.15	0.50		ug/L		05/19/17 01:58	1
rans-1,2-Dichloroethene	<0.35	1.0		ug/L		05/19/17 01:58	1
rans-1,3-Dichloropropene	<0.36	1.0		ug/L		05/19/17 01:58	1
1.2.3-Trichlorobenzene	<0.46	1.0		ug/L		05/19/17 01:58	1
1,2,4-Trichlorobenzene	<0.34	1.0		ug/L		05/19/17 01:58	1
1,1,1-Trichloroethane	<0.38	1.0		ug/L		05/19/17 01:58	1
1,1,2-Trichloroethane	<0.35	1.0		ug/L		05/19/17 01:58	1
Trichloroethene	<0.16	0.50		ug/L		05/19/17 01:58	1
Trichlorofluoromethane	<0.43	1.0		ug/L		05/19/17 01:58	1
1,2,3-Trichloropropane	<0.43	1.0		ug/L		05/19/17 01:58	1

Lab Sample ID: 500-127911-13 Matrix: Water

Lab Sample ID: 500-127911-14

Matrix: Water

Date Collected: 05/05/17 13:15 Date Received: 05/10/17 09:05

Client Sample ID: MW10S

Analyte	Result	Qualifier	RL	LOD	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trimethylbenzene	<0.36		1.0	0.36	ug/L			05/19/17 01:58	1
1,3,5-Trimethylbenzene	<0.25		1.0	0.25	ug/L			05/19/17 01:58	1
Vinyl chloride	<0.20		0.50	0.20	ug/L			05/19/17 01:58	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			05/19/17 01:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			72 - 124					05/19/17 01:58	1
Dibromofluoromethane	90		75 - 120					05/19/17 01:58	1
1,2-Dichloroethane-d4 (Surr)	112		75 - 126					05/19/17 01:58	1
Toluene-d8 (Surr)	103		75 - 120					05/19/17 01:58	

Client Sample ID: MW10I

Date Collected: 05/05/17 12:45

Date Received: 05/10/17 09:05

Method: 8260B - Volatile Org Analyte	Result Qualifier	S) RL	LOD	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	- <u>- <0.15</u> <u>- </u> -	0.50	-			Tiepareu	- 05/19/17 02:25	1
Bromobenzene	<0.36	1.0	0.36	0			05/19/17 02:25	1
Bromochloromethane	<0.43	1.0	0.43	-			05/19/17 02:25	1
Bromodichloromethane	<0.37	1.0	0.37				05/19/17 02:25	1
Bromoform	<0.48	1.0	0.48	-			05/19/17 02:25	1
Bromomethane	<0.80	2.0	0.80	-			05/19/17 02:25	1
Carbon tetrachloride	<0.38	1.0	0.38	0			05/19/17 02:25	1
Chlorobenzene	<0.39	1.0	0.39	-			05/19/17 02:25	1
Chloroethane	<0.51	1.0	0.51	0			05/19/17 02:25	1
Chloroform	<0.37	2.0	0.37	-			05/19/17 02:25	1
Chloromethane	<0.32	1.0	0.32	-			05/19/17 02:25	1
2-Chlorotoluene	<0.31	1.0	0.31	ug/L			05/19/17 02:25	1
4-Chlorotoluene	<0.35	1.0	0.35				05/19/17 02:25	1
cis-1,2-Dichloroethene	<0.41	1.0	0.41	-			05/19/17 02:25	1
cis-1,3-Dichloropropene	<0.42	1.0	0.42	-			05/19/17 02:25	1
Dibromochloromethane	<0.49	1.0	0.49	ug/L			05/19/17 02:25	1
1,2-Dibromo-3-Chloropropane	<2.0	5.0	2.0	ug/L			05/19/17 02:25	1
1,2-Dibromoethane	<0.39	1.0	0.39	ug/L			05/19/17 02:25	1
Dibromomethane	<0.27	1.0	0.27	ug/L			05/19/17 02:25	1
1,2-Dichlorobenzene	<0.33	1.0	0.33	ug/L			05/19/17 02:25	1
1,3-Dichlorobenzene	<0.40	1.0	0.40	ug/L			05/19/17 02:25	1
1,4-Dichlorobenzene	<0.36	1.0	0.36	ug/L			05/19/17 02:25	1
Dichlorodifluoromethane	12	2.0	0.67	ug/L			05/19/17 02:25	1
1,1-Dichloroethane	<0.41	1.0	0.41	ug/L			05/19/17 02:25	1
1,2-Dichloroethane	<0.39	1.0	0.39	ug/L			05/19/17 02:25	1
1,1-Dichloroethene	<0.39	1.0	0.39	ug/L			05/19/17 02:25	1
Dichlorofluoromethane	6.1	1.0	0.38	ug/L			05/19/17 02:25	1
1,2-Dichloropropane	<0.43	1.0	0.43	ug/L			05/19/17 02:25	1
1,3-Dichloropropane	<0.36	1.0	0.36	ug/L			05/19/17 02:25	1
2,2-Dichloropropane	<0.44	1.0	0.44	-			05/19/17 02:25	1
1,1-Dichloropropene	<0.30	1.0	0.30	-			05/19/17 02:25	1
Ethylbenzene	<0.18	0.50	0.18	ug/L			05/19/17 02:25	1
Hexachlorobutadiene	<0.45	1.0	0.45	ug/L			05/19/17 02:25	1

Lab Sample ID: 500-127911-14 Matrix: Water

5 6 7

Client Sample ID: MW10I Date Collected: 05/05/17 12:45 Date Received: 05/10/17 09:05

Analyte	Result	Qualifier	RL	LOD	Unit	D	Prepared	Analyzed	Dil Fac
Isopropylbenzene	<0.39		1.0	0.39	ug/L			05/19/17 02:25	1
Isopropyl ether	<0.28		1.0	0.28	ug/L			05/19/17 02:25	1
Methylene Chloride	<1.6		5.0	1.6	ug/L			05/19/17 02:25	1
Methyl tert-butyl ether	<0.39		1.0	0.39	ug/L			05/19/17 02:25	1
Naphthalene	<0.34		1.0	0.34	ug/L			05/19/17 02:25	1
n-Butylbenzene	<0.39		1.0	0.39	ug/L			05/19/17 02:25	1
N-Propylbenzene	<0.41		1.0	0.41	ug/L			05/19/17 02:25	1
p-Isopropyltoluene	<0.36		1.0	0.36	ug/L			05/19/17 02:25	1
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			05/19/17 02:25	1
Styrene	<0.39		1.0	0.39	ug/L			05/19/17 02:25	1
tert-Butylbenzene	<0.40		1.0	0.40	ug/L			05/19/17 02:25	1
1,1,1,2-Tetrachloroethane	<0.46		1.0	0.46	ug/L			05/19/17 02:25	1
1,1,2,2-Tetrachloroethane	<0.40		1.0	0.40	ug/L			05/19/17 02:25	1
Tetrachloroethene	1.8		1.0	0.37	ug/L			05/19/17 02:25	1
Tetrahydrofuran	<1.9		10	1.9	ug/L			05/19/17 02:25	1
Toluene	<0.15		0.50	0.15	ug/L			05/19/17 02:25	1
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L			05/19/17 02:25	1
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			05/19/17 02:25	1
1,2,3-Trichlorobenzene	<0.46		1.0	0.46	ug/L			05/19/17 02:25	1
1,2,4-Trichlorobenzene	<0.34		1.0	0.34	ug/L			05/19/17 02:25	1
1,1,1-Trichloroethane	<0.38		1.0	0.38	ug/L			05/19/17 02:25	1
1,1,2-Trichloroethane	<0.35		1.0	0.35	ug/L			05/19/17 02:25	1
Trichloroethene	<0.16		0.50	0.16	ug/L			05/19/17 02:25	1
Trichlorofluoromethane	<0.43		1.0	0.43	ug/L			05/19/17 02:25	1
1,2,3-Trichloropropane	<0.41		1.0	0.41	ug/L			05/19/17 02:25	1
1,2,4-Trimethylbenzene	<0.36		1.0	0.36	ug/L			05/19/17 02:25	1
1,3,5-Trimethylbenzene	<0.25		1.0	0.25	ug/L			05/19/17 02:25	1
Vinyl chloride	<0.20		0.50	0.20	ug/L			05/19/17 02:25	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			05/19/17 02:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	116		72 - 124			-		05/19/17 02:25	1
Dibromofluoromethane	92		75 - 120					05/19/17 02:25	1
1,2-Dichloroethane-d4 (Surr)	114		75 - 126					05/19/17 02:25	1
Toluene-d8 (Surr)	103		75 - 120					05/19/17 02:25	1

Client Sample ID: MW13I

Date Collected: 05/05/17 12:15 Date Received: 05/10/17 09:05

Method: 8260B - Volatile O	rganic Compo	unds (GC/	MS)						
Analyte	Result	Qualifier	RL	LOD	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	<0.67		2.0	0.67	ug/L			05/19/17 02:52	1
Tetrahydrofuran	<1.9		10	1.9	ug/L			05/19/17 02:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	117		72 - 124					05/19/17 02:52	1
Dibromofluoromethane	95		75 - 120					05/19/17 02:52	1
1,2-Dichloroethane-d4 (Surr)	118		75 - 126					05/19/17 02:52	1
Toluene-d8 (Surr)	102		75 - 120					05/19/17 02:52	1

TestAmerica Chicago

Lab Sample ID: 500-127911-15

Matrix: Water

Lab Sample ID: 500-127911-16 Matrix: Water

5 6 7

Client Sample ID: MW14S Date Collected: 05/05/17 14:15 Date Received: 05/10/17 09:05

Analyte	Result Qualifier	RL	LOD		D	Prepared	Analyzed	Dil Fac
Benzene	<0.15	0.50	0.15	ug/L			05/19/17 03:18	1
Bromobenzene	<0.36	1.0	0.36	ug/L			05/19/17 03:18	1
Bromochloromethane	<0.43	1.0	0.43	ug/L			05/19/17 03:18	1
Bromodichloromethane	<0.37	1.0	0.37	ug/L			05/19/17 03:18	1
Bromoform	<0.48	1.0	0.48	ug/L			05/19/17 03:18	1
Bromomethane	<0.80	2.0	0.80	ug/L			05/19/17 03:18	1
Carbon tetrachloride	<0.38	1.0	0.38	ug/L			05/19/17 03:18	1
Chlorobenzene	<0.39	1.0	0.39	ug/L			05/19/17 03:18	1
Chloroethane	<0.51	1.0	0.51	ug/L			05/19/17 03:18	1
Chloroform	<0.37	2.0	0.37	ug/L			05/19/17 03:18	1
Chloromethane	<0.32	1.0	0.32	-			05/19/17 03:18	1
2-Chlorotoluene	<0.31	1.0	0.31	-			05/19/17 03:18	1
4-Chlorotoluene	<0.35	1.0	0.35	-			05/19/17 03:18	1
cis-1,2-Dichloroethene	<0.41	1.0	0.41	-			05/19/17 03:18	1
cis-1,3-Dichloropropene	<0.42	1.0	0.42	-			05/19/17 03:18	1
Dibromochloromethane	<0.49	1.0	0.49	-			05/19/17 03:18	1
1,2-Dibromo-3-Chloropropane	<2.0	5.0		ug/L			05/19/17 03:18	-
1.2-Dibromoethane	<0.39	1.0	0.39	-			05/19/17 03:18	-
Dibromomethane	<0.27	1.0	0.35	-			05/19/17 03:18	· · · · · · .
I,2-Dichlorobenzene	<0.33	1.0	0.33	-			05/19/17 03:18	
,3-Dichlorobenzene	<0.40	1.0	0.30	-			05/19/17 03:18	
,4-Dichlorobenzene	<0.36	1.0	0.40	-			05/19/17 03:18	,
				-				
Dichlorodifluoromethane	<0.67 <0.41	2.0 1.0	0.67	-			05/19/17 03:18 05/19/17 03:18	
			0.41	-				
1,2-Dichloroethane	<0.39	1.0	0.39	-			05/19/17 03:18	
,1-Dichloroethene	<0.39	1.0	0.39	-			05/19/17 03:18	
Dichlorofluoromethane	<0.38	1.0	0.38	-			05/19/17 03:18	
I,2-Dichloropropane	<0.43	1.0	0.43	-			05/19/17 03:18	-
I,3-Dichloropropane	<0.36	1.0	0.36	-			05/19/17 03:18	
2,2-Dichloropropane	<0.44	1.0	0.44	-			05/19/17 03:18	•
I,1-Dichloropropene	<0.30	1.0	0.30	-			05/19/17 03:18	
Ethylbenzene	<0.18	0.50	0.18	-			05/19/17 03:18	
lexachlorobutadiene	<0.45	1.0	0.45	•			05/19/17 03:18	• • • • • • • •
sopropylbenzene	<0.39	1.0	0.39	-			05/19/17 03:18	
sopropyl ether	<0.28	1.0	0.28	-			05/19/17 03:18	
Methylene Chloride	<1.6	5.0	1.6	ug/L			05/19/17 03:18	
Methyl tert-butyl ether	<0.39	1.0	0.39	ug/L			05/19/17 03:18	
Naphthalene	<0.34	1.0	0.34	ug/L			05/19/17 03:18	
n-Butylbenzene	<0.39	1.0	0.39	ug/L			05/19/17 03:18	
I-Propylbenzene	<0.41	1.0	0.41	ug/L			05/19/17 03:18	•
p-Isopropyltoluene	<0.36	1.0	0.36	ug/L			05/19/17 03:18	
ec-Butylbenzene	<0.40	1.0	0.40	ug/L			05/19/17 03:18	
Styrene	<0.39	1.0	0.39	ug/L			05/19/17 03:18	• • • • • • •
ert-Butylbenzene	<0.40	1.0	0.40	-			05/19/17 03:18	
I,1,1,2-Tetrachloroethane	<0.46	1.0	0.46	-			05/19/17 03:18	
,1,2,2-Tetrachloroethane	<0.40	1.0	0.40				05/19/17 03:18	
Fetrachloroethene	<0.37	1.0	0.37	-			05/19/17 03:18	
Fetrahydrofuran	<1.9	10		ug/L			05/19/17 03:18	
Foluene	<0.15	0.50	0.15				05/19/17 03:18	

Client Sample ID: MW14S Date Collected: 05/05/17 14:15 Date Received: 05/10/17 09:05

Lab Sample ID: 500-127911-16 Matrix: Water

Analyte	Result	Qualifier	RL	LOD	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L			05/19/17 03:18	1
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			05/19/17 03:18	1
1,2,3-Trichlorobenzene	<0.46		1.0	0.46	ug/L			05/19/17 03:18	1
1,2,4-Trichlorobenzene	<0.34		1.0	0.34	ug/L			05/19/17 03:18	1
1,1,1-Trichloroethane	<0.38		1.0	0.38	ug/L			05/19/17 03:18	1
1,1,2-Trichloroethane	<0.35		1.0	0.35	ug/L			05/19/17 03:18	1
Trichloroethene	<0.16		0.50	0.16	ug/L			05/19/17 03:18	1
Trichlorofluoromethane	<0.43		1.0	0.43	ug/L			05/19/17 03:18	1
1,2,3-Trichloropropane	<0.41		1.0	0.41	ug/L			05/19/17 03:18	1
1,2,4-Trimethylbenzene	<0.36		1.0	0.36	ug/L			05/19/17 03:18	1
1,3,5-Trimethylbenzene	<0.25		1.0	0.25	ug/L			05/19/17 03:18	1
Vinyl chloride	<0.20		0.50	0.20	ug/L			05/19/17 03:18	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			05/19/17 03:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	113		72 - 124					05/19/17 03:18	1
Dibromofluoromethane	95		75 - 120					05/19/17 03:18	1
1,2-Dichloroethane-d4 (Surr)	113		75 - 126					05/19/17 03:18	1
Toluene-d8 (Surr)	101		75 - 120					05/19/17 03:18	1

Client Sample ID: MW14I Date Collected: 05/05/17 14:30 Date Received: 05/10/17 09:05

Lab Sample ID: 500-127911-17

Matrix: Water

Analyte	Result Qualifier	RL	LOD	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.15	0.50	0.15	ug/L			05/19/17 03:46	1
Bromobenzene	<0.36	1.0	0.36	ug/L			05/19/17 03:46	1
Bromochloromethane	<0.43	1.0	0.43	ug/L			05/19/17 03:46	1
Bromodichloromethane	<0.37	1.0	0.37	ug/L			05/19/17 03:46	1
Bromoform	<0.48	1.0	0.48	ug/L			05/19/17 03:46	1
Bromomethane	<0.80	2.0	0.80	ug/L			05/19/17 03:46	1
Carbon tetrachloride	<0.38	1.0	0.38	ug/L			05/19/17 03:46	1
Chlorobenzene	<0.39	1.0	0.39	ug/L			05/19/17 03:46	1
Chloroethane	<0.51	1.0	0.51	ug/L			05/19/17 03:46	1
Chloroform	<0.37	2.0	0.37	ug/L			05/19/17 03:46	1
Chloromethane	<0.32	1.0	0.32	ug/L			05/19/17 03:46	1
2-Chlorotoluene	<0.31	1.0	0.31	ug/L			05/19/17 03:46	1
4-Chlorotoluene	<0.35	1.0	0.35	ug/L			05/19/17 03:46	1
cis-1,2-Dichloroethene	<0.41	1.0	0.41	ug/L			05/19/17 03:46	1
cis-1,3-Dichloropropene	<0.42	1.0	0.42	ug/L			05/19/17 03:46	1
Dibromochloromethane	<0.49	1.0	0.49	ug/L			05/19/17 03:46	1
1,2-Dibromo-3-Chloropropane	<2.0	5.0	2.0	ug/L			05/19/17 03:46	1
1,2-Dibromoethane	<0.39	1.0	0.39	ug/L			05/19/17 03:46	1
Dibromomethane	<0.27	1.0	0.27	ug/L			05/19/17 03:46	1
1,2-Dichlorobenzene	<0.33	1.0	0.33	ug/L			05/19/17 03:46	1
1,3-Dichlorobenzene	<0.40	1.0	0.40	ug/L			05/19/17 03:46	1
1,4-Dichlorobenzene	<0.36	1.0	0.36	ug/L			05/19/17 03:46	1
Dichlorodifluoromethane	4.6	2.0	0.67	ug/L			05/19/17 03:46	1
1,1-Dichloroethane	<0.41	1.0	0.41	ug/L			05/19/17 03:46	1

TestAmerica Chicago

Lab Sample ID: 500-127911-17 Matrix: Water

5 6 7

Client Sample ID: MW14I Date Collected: 05/05/17 14:30 Date Received: 05/10/17 09:05

Analyte	Result	Qualifier	RL	LOD	Unit	D Prepared	Analyzed	Dil Fac
1,2-Dichloroethane	<0.39		1.0	0.39	ug/L		05/19/17 03:46	1
1,1-Dichloroethene	<0.39		1.0	0.39	ug/L		05/19/17 03:46	1
Dichlorofluoromethane	12		1.0	0.38	ug/L		05/19/17 03:46	1
1,2-Dichloropropane	<0.43		1.0	0.43	ug/L		05/19/17 03:46	1
1,3-Dichloropropane	<0.36		1.0	0.36	ug/L		05/19/17 03:46	1
2,2-Dichloropropane	<0.44		1.0	0.44	ug/L		05/19/17 03:46	1
1,1-Dichloropropene	<0.30		1.0	0.30	ug/L		05/19/17 03:46	1
Ethylbenzene	<0.18		0.50	0.18	ug/L		05/19/17 03:46	1
Hexachlorobutadiene	<0.45		1.0	0.45	ug/L		05/19/17 03:46	1
Isopropylbenzene	<0.39		1.0	0.39	ug/L		05/19/17 03:46	1
Isopropyl ether	<0.28		1.0	0.28	ug/L		05/19/17 03:46	1
Methylene Chloride	<1.6		5.0	1.6	ug/L		05/19/17 03:46	1
Methyl tert-butyl ether	<0.39		1.0	0.39	ug/L		05/19/17 03:46	1
Naphthalene	<0.34		1.0	0.34	ug/L		05/19/17 03:46	1
n-Butylbenzene	<0.39		1.0	0.39	ug/L		05/19/17 03:46	1
N-Propylbenzene	<0.41		1.0	0.41	ug/L		05/19/17 03:46	1
p-Isopropyltoluene	<0.36		1.0	0.36	ug/L		05/19/17 03:46	1
sec-Butylbenzene	<0.40		1.0	0.40	ug/L		05/19/17 03:46	1
Styrene	<0.39		1.0	0.39	ug/L		05/19/17 03:46	1
ert-Butylbenzene	<0.40		1.0	0.40	ug/L		05/19/17 03:46	1
1,1,1,2-Tetrachloroethane	<0.46		1.0	0.46	ug/L		05/19/17 03:46	1
1,1,2,2-Tetrachloroethane	<0.40		1.0	0.40	ug/L		05/19/17 03:46	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L		05/19/17 03:46	1
Tetrahydrofuran	<1.9		10	1.9	ug/L		05/19/17 03:46	1
Toluene	<0.15		0.50	0.15	ug/L		05/19/17 03:46	1
rans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L		05/19/17 03:46	1
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L		05/19/17 03:46	1
1,2,3-Trichlorobenzene	<0.46		1.0	0.46	ug/L		05/19/17 03:46	1
1,2,4-Trichlorobenzene	<0.34		1.0	0.34	ug/L		05/19/17 03:46	1
1,1,1-Trichloroethane	<0.38		1.0	0.38	ug/L		05/19/17 03:46	1
1,1,2-Trichloroethane	<0.35		1.0	0.35	ug/L		05/19/17 03:46	1
Trichloroethene	<0.16		0.50	0.16	ug/L		05/19/17 03:46	1
Trichlorofluoromethane	<0.43		1.0	0.43	ug/L		05/19/17 03:46	1
1,2,3-Trichloropropane	<0.41		1.0	0.41	ug/L		05/19/17 03:46	1
1,2,4-Trimethylbenzene	<0.36		1.0	0.36	ug/L		05/19/17 03:46	1
1,3,5-Trimethylbenzene	<0.25		1.0	0.25	ug/L		05/19/17 03:46	1
Vinyl chloride	<0.20		0.50	0.20	ug/L		05/19/17 03:46	1
Xylenes, Total	<0.22		1.0	0.22	ug/L		05/19/17 03:46	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			72 - 124				05/19/17 03:46	1
Dibromofluoromethane	94		75 - 120				05/19/17 03:46	1
1,2-Dichloroethane-d4 (Surr)	114		75 - 126				05/19/17 03:46	1

4 5

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description	
*	LCS or LCSD is outside acceptance limits.	
J	Reported value was between the limit of detection and the limit of quantitation.	
F1	MS and/or MSD Recovery is outside acceptance limits.	
F2	MS/MSD RPD exceeds control limits	

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.	8
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	9
CFL	Contains Free Liquid	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	13 14
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

QC Association Summary

GC/MS VOA

500-127911-8 MSD

MW8I

Analysis Batch: 385529

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-127911-1	Trip Blank	Total/NA	Water	8260B	
500-127911-2	Field Blank	Total/NA	Water	8260B	
MB 500-385529/6	Method Blank	Total/NA	Water	8260B	
LCS 500-385529/29	Lab Control Sample	Total/NA	Water	8260B	
500-127911-2 MS	Field Blank	Total/NA	Water	8260B	
500-127911-2 MSD	Field Blank	Total/NA	Water	8260B	
nalysis Batch: 38	5531				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-127911-3	MW3D	Total/NA	Water	8260B	
500-127911-4	MW4D	Total/NA	Water	8260B	
500-127911-5	MW5D	Total/NA	Water	8260B	
500-127911-6	MW5D DUP	Total/NA	Water	8260B	
500-127911-7	MW7I	Total/NA	Water	8260B	
MB 500-385531/7	Method Blank	Total/NA	Water	8260B	
LCS 500-385531/4	Lab Control Sample	Total/NA	Water	8260B	
nalysis Batch: 38	5770				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-127911-8	MW8I	Total/NA	Water	8260B	
500-127911-9	MW9S	Total/NA	Water	8260B	
500-127911-10	MW9D	Total/NA	Water	8260B	
500-127911-11	MW9I	Total/NA	Water	8260B	
500-127911-12	MW9I DUP	Total/NA	Water	8260B	
500-127911-13	MW10S	Total/NA	Water	8260B	
500-127911-14	MW10I	Total/NA	Water	8260B	
500-127911-15	MW13I	Total/NA	Water	8260B	
500-127911-16	MW14S	Total/NA	Water	8260B	
	MW14I	Total/NA	Water	8260B	
500-127911-17 MB 500-385770/6	MW14I Method Blank	Total/NA Total/NA	Water Water	8260B 8260B	
500-127911-17					

Total/NA

Water

8260B

Prep Type: Total/NA

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water

					•	very (Acceptance Limits)	
		BFB	DBFM	12DCE	TOL		
Lab Sample ID	Client Sample ID	(72-124)	(75-120)	(75-126)	(75-120)		
500-127911-1	Trip Blank	94	94	105	90		
500-127911-2	Field Blank	92	94	106	90		
500-127911-2 MS	Field Blank	86	98	105	91		
500-127911-2 MSD	Field Blank	88	96	106	92		
500-127911-3	MW3D	113	98	116	99		
500-127911-4	MW4D	115	97	118	100		
500-127911-5	MW5D	116	100	119	101		
500-127911-6	MW5D DUP	117	97	119	100		
500-127911-7	MW7I	116	96	117	100		- 2
500-127911-8	MW8I	113	93	114	102		1
500-127911-8 MS	MW8I	114	94	110	101		
500-127911-8 MSD	MW8I	117	97	111	101		
500-127911-9	MW9S	117	93	112	103		
500-127911-10	MW9D	112	93	113	102		
500-127911-11	MW9I	117	91	110	103		
500-127911-12	MW9I DUP	117	95	115	103		
500-127911-13	MW10S	114	90	112	103		
500-127911-14	MW10I	116	92	114	103		
500-127911-15	MW13I	117	95	118	102		
500-127911-16	MW14S	113	95	113	101		
500-127911-17	MW14I	117	94	114	103		
LCS 500-385529/29	Lab Control Sample	86	96	101	93		
LCS 500-385531/4	Lab Control Sample	112	100	119	98		
_CS 500-385770/4	Lab Control Sample	115	99	114	101		
VB 500-385529/6	Method Blank	96	95	107	90		
VIB 500-385531/7	Method Blank	117	100	120	100		
MB 500-385770/6	Method Blank	118	96	117	102		

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr) DBFM = Dibromofluoromethane 12DCE = 1,2-Dichloroethane-d4 (Surr) TOL = Toluene-d8 (Surr)

Client Sample ID: Method Blank

2 3 4 5 6

Method: 8260B -	Volatile O	rganic Com	pounds ((GC/MS)	

Lab Sample ID: MB 500-385529/6 Matrix: Water

Benzene Bromobenzene	Result	МВ						Prep Type: To	
Analyte Benzene Bromobenzene	Result	МВ							
Benzene Bromobenzene	Result								
Benzene Bromobenzene		Qualifier F	RL I	LOD	Unit	D	Prepared	Analyzed	Dil Fac
	<0.15	0.		0.15			· ·	05/17/17 22:25	1
December 11 and 14 and 1	<0.36	1	.0	0.36	ug/L			05/17/17 22:25	1
Bromochloromethane	<0.43	1	.0	0.43	ug/L			05/17/17 22:25	1
Bromodichloromethane	<0.37	1		0.37	-			05/17/17 22:25	1
Bromoform	<0.48	1	.0	0.48	ug/L			05/17/17 22:25	1
Bromomethane	<0.80	2		0.80	-			05/17/17 22:25	1
Carbon tetrachloride	<0.38	1	.0	0.38	ug/L			05/17/17 22:25	1
Chlorobenzene	<0.39	1		0.39	-			05/17/17 22:25	1
Chloroethane	<0.51	1		0.51	-			05/17/17 22:25	1
Chloroform	<0.37	2		0.37	-			05/17/17 22:25	1
Chloromethane	<0.32	1		0.32	-			05/17/17 22:25	1
2-Chlorotoluene	<0.31	1	.0	0.31	ug/L			05/17/17 22:25	1
4-Chlorotoluene	<0.35	1	.0	0.35	ug/L			05/17/17 22:25	1
cis-1,2-Dichloroethene	<0.41			0.41				05/17/17 22:25	1
cis-1,3-Dichloropropene	<0.42	1		0.42	-			05/17/17 22:25	1
Dibromochloromethane	<0.49	1		0.49	-			05/17/17 22:25	1
1,2-Dibromo-3-Chloropropane	<2.0	5	5.0		ug/L			05/17/17 22:25	1
1,2-Dibromoethane	<0.39	1	.0	0.39	-			05/17/17 22:25	1
Dibromomethane	<0.27			0.27	-			05/17/17 22:25	1
1,2-Dichlorobenzene	<0.33	1		0.33				05/17/17 22:25	1
1,3-Dichlorobenzene	<0.40	1		0.40	-			05/17/17 22:25	1
1,4-Dichlorobenzene	<0.36	1		0.36	-			05/17/17 22:25	1
Dichlorodifluoromethane	<0.67	2		0.67	-			05/17/17 22:25	1
1,1-Dichloroethane	<0.41			0.41	-			05/17/17 22:25	1
1,2-Dichloroethane	<0.39	1		0.39	-			05/17/17 22:25	1
1,1-Dichloroethene	<0.39			0.39	-			05/17/17 22:25	1
Dichlorofluoromethane	<0.38	1		0.38	-			05/17/17 22:25	1
1,2-Dichloropropane	<0.43	1	.0	0.43	ug/L			05/17/17 22:25	1
1,3-Dichloropropane	<0.36	1		0.36	-			05/17/17 22:25	1
2,2-Dichloropropane	<0.44	1		0.44	-			05/17/17 22:25	1
1,1-Dichloropropene	<0.30	1		0.30	-			05/17/17 22:25	1
Ethylbenzene	<0.18	0.		0.18				05/17/17 22:25	1
Hexachlorobutadiene	<0.45	1		0.45	-			05/17/17 22:25	1
Isopropylbenzene	<0.39	1	.0	0.39	ug/L			05/17/17 22:25	1
Isopropyl ether	<0.28	1		0.28				05/17/17 22:25	1
Methylene Chloride	<1.6	5	5.0		ug/L			05/17/17 22:25	1
Methyl tert-butyl ether	<0.39	1	.0	0.39				05/17/17 22:25	1
Naphthalene	<0.34			0.34				05/17/17 22:25	1
n-Butylbenzene	<0.39	1		0.39				05/17/17 22:25	1
N-Propylbenzene	<0.41	1		0.41				05/17/17 22:25	1
p-Isopropyltoluene	<0.36			0.36				05/17/17 22:25	1
sec-Butylbenzene	<0.40	1		0.40				05/17/17 22:25	1
Styrene	<0.39			0.39				05/17/17 22:25	1
tert-Butylbenzene	<0.40			0.40				05/17/17 22:25	1
1,1,1,2-Tetrachloroethane	<0.46			0.46	-			05/17/17 22:25	1
1,1,2,2-Tetrachloroethane	<0.40			0.40	-			05/17/17 22:25	1
Tetrachloroethene	<0.37			0.37				05/17/17 22:25	1
Tetrahydrofuran	<1.9		10		ug/L			05/17/17 22:25	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 500-385529/6

Matrix: Water Analysis Batch: 385529

Analysis Baton. 000020									
	MB	MB							
Analyte	Result	Qualifier	RL	LOD	Unit	D	Prepared	Analyzed	Dil Fac
Toluene	<0.15		0.50	0.15	ug/L			05/17/17 22:25	1
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L			05/17/17 22:25	1
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			05/17/17 22:25	1
1,2,3-Trichlorobenzene	<0.46		1.0	0.46	ug/L			05/17/17 22:25	1
1,2,4-Trichlorobenzene	<0.34		1.0	0.34	ug/L			05/17/17 22:25	1
1,1,1-Trichloroethane	<0.38		1.0	0.38	ug/L			05/17/17 22:25	1
1,1,2-Trichloroethane	<0.35		1.0	0.35	ug/L			05/17/17 22:25	1
Trichloroethene	<0.16		0.50	0.16	ug/L			05/17/17 22:25	1
Trichlorofluoromethane	<0.43		1.0	0.43	ug/L			05/17/17 22:25	1
1,2,3-Trichloropropane	<0.41		1.0	0.41	ug/L			05/17/17 22:25	1
1,2,4-Trimethylbenzene	<0.36		1.0	0.36	ug/L			05/17/17 22:25	1
1,3,5-Trimethylbenzene	<0.25		1.0	0.25	ug/L			05/17/17 22:25	1
Vinyl chloride	<0.20		0.50	0.20	ug/L			05/17/17 22:25	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			05/17/17 22:25	1
	MB	МВ							
Surrogate	%Recoverv	Qualifier	Limits				Prepared	Analvzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene (Surr)	96		72 - 124	-		05/17/17 22:25	1	
Dibromofluoromethane	95		75 - 120			05/17/17 22:25	1	
1,2-Dichloroethane-d4 (Surr)	107		75 - 126			05/17/17 22:25	1	
Toluene-d8 (Surr)	90		75 - 120			05/17/17 22:25	1	

Lab Sample ID: LCS 500-385529/29 Matrix: Water Analysis Batch: 385529

LCS LCS Spike %Rec. Analyte Added **Result Qualifier** Unit D %Rec Limits Benzene 50.0 45.0 ug/L 90 70 - 120 Bromobenzene 50.0 41.8 ug/L 84 70 - 122 Bromochloromethane 50.0 98 65 - 122 49.2 ug/L Bromodichloromethane 69 - 120 50.0 41.8 ug/L 84 Bromoform ug/L 50.0 43.1 86 56 - 132 Bromomethane 50.0 50.9 ug/L 102 40 - 130 65 - 122 Carbon tetrachloride 50.0 43.3 ug/L 87 Chlorobenzene 50.0 44.3 ug/L 89 70 - 120 Chloroethane 50.0 50.9 102 45 - 127 ug/L Chloroform 50.0 43.2 ug/L 86 70 - 120 Chloromethane 50.0 59.0 118 54 - 147 ug/L 2-Chlorotoluene 50.0 39.1 ug/L 78 70 - 125 4-Chlorotoluene 50.0 40.1 ug/L 80 68 - 124 70 - 125 cis-1,2-Dichloroethene 50.0 43.8 ug/L 88 cis-1,3-Dichloropropene 50.0 42.1 ug/L 84 64 - 127 68 - 125 Dibromochloromethane 50.0 43.4 ug/L 87 50.0 42.3 85 56 - 123 1,2-Dibromo-3-Chloropropane ug/L 45.8 92 1,2-Dibromoethane 50.0 ug/L 70 - 125 Dibromomethane 50.0 46.1 92 70 - 120 ug/L 46.6 93 70 - 125 1.2-Dichlorobenzene 50.0 ug/L 1,3-Dichlorobenzene 50.0 44.4 ug/L 89 70 - 125 1,4-Dichlorobenzene 50.0 44.6 ug/L 89 70 - 120

TestAmerica Chicago

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 500-385529/29

Matrix: Water Analysis Batch: 385529

			Spike		LCS				%Rec.
Analyte			Added		Qualifier	Unit	D	%Rec	Limits
Dichlorodifluoromethane			50.0	44.4		ug/L		89	40 - 150
1,1-Dichloroethane			50.0	51.5		ug/L		103	70 - 125
1,2-Dichloroethane			50.0	50.0		ug/L		100	68 - 127
1,1-Dichloroethene			50.0	42.9		ug/L		86	67 - 122
Dichlorofluoromethane			50.0	51.7		ug/L		103	69 - 124
1,2-Dichloropropane			50.0	53.8		ug/L		108	67 - 130
1,3-Dichloropropane			50.0	45.3		ug/L		91	62 - 136
2,2-Dichloropropane			50.0	37.9		ug/L		76	58 - 129
1,1-Dichloropropene			50.0	45.1		ug/L		90	70 - 121
Ethylbenzene			50.0	45.8		ug/L		92	70 - 120
Hexachlorobutadiene			50.0	58.7		ug/L		117	51 - 150
sopropylbenzene			50.0	42.2		ug/L		84	70 - 126
Methylene Chloride			50.0	44.7		ug/L		89	69 - 125
Methyl tert-butyl ether			50.0	44.9		ug/L		90	70 - 120
Naphthalene			50.0	65.7	*	ug/L		131	59 - 130
n-Butylbenzene			50.0	43.5		ug/L		87	68 - 125
N-Propylbenzene			50.0	40.3		ug/L		81	69 - 127
o-Isopropyltoluene			50.0	45.1		ug/L		90	70 - 125
sec-Butylbenzene			50.0	44.4		ug/L		89	70 - 123
Styrene			50.0	47.2		ug/L		94	70 - 120
ert-Butylbenzene			50.0	43.5		ug/L		87	70 - 121
1,1,1,2-Tetrachloroethane			50.0	45.8		ug/L		92	70 - 125
,1,2,2-Tetrachloroethane			50.0	42.9		ug/L		86	67 - 127
Tetrachloroethene			50.0	48.6		ug/L		97	70 - 128
Fetrahydrofuran			100	120		ug/L		120	59 - 139
Toluene			50.0	44.2		ug/L		88	70 - 125
rans-1,2-Dichloroethene			50.0	43.4		ug/L		87	70 - 125
rans-1,3-Dichloropropene			50.0	41.0		ug/L		82	62 - 128
1,2,3-Trichlorobenzene			50.0	66.3		ug/L		133	55 - 140
1,2,4-Trichlorobenzene			50.0	61.3		ug/L		123	66 - 127
1,1,1-Trichloroethane			50.0	40.2		ug/L		80	70 - 125
1,1,2-Trichloroethane			50.0	45.1		ug/L		90	70 - 122
Trichloroethene			50.0	49.1		ug/L		98	70 - 125
Trichlorofluoromethane			50.0	46.6		ug/L		93	70 - 126
1,2,3-Trichloropropane			50.0	40.1		ug/L		80	50 - 133
1,2,4-Trimethylbenzene			50.0	43.7		ug/L		87	70 - 123
1,3,5-Trimethylbenzene			50.0	43.6		ug/L		87	70 - 123
Vinyl chloride			50.0	62.7		ug/L		125	64 - 126
Xylenes, Total			100	86.9		ug/L		87	70 - 125
- <u>j</u>			100	00.0		~ . . –		0,	
		LCS							
Surrogate	%Recovery	Qualifier	Limits						
4-Bromofluorobenzene (Surr)	86		72 - 124						
Dibromofluoromethane	96		75 - 120						

Client Sample ID: Field Blank

Prep Type: Total/NA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 500-127911-2 MS

Matrix: Water Analysis Batch: 385529

Analyte		Sample Qualifier	Spike Added		MS Qualifier	Unit	D	%Rec	%Rec. Limits	
Benzene	<0.15		50.0	49.4		ug/L		99	70 - 120	
Bromobenzene	<0.36		50.0	46.2		ug/L		92	70 - 122	
Bromochloromethane	<0.43		50.0	54.7		ug/L		109	65 - 122	
Bromodichloromethane	<0.37		50.0	46.0		ug/L		92	69 - 120	
Bromoform	<0.48		50.0	45.5		ug/L		91	56 - 132	
Bromomethane	<0.80		50.0	58.0		ug/L		116	40 - 130	
Carbon tetrachloride	<0.38		50.0	47.3		ug/L		95	65 - 122	
Chlorobenzene	<0.39		50.0	47.7		ug/L		95	70 - 120	
Chloroethane	<0.51		50.0	47.8		ug/L		96	45 ₋ 127	
Chloroform	<0.37		50.0	47.9		ug/L		96	70 - 120	
Chloromethane	<0.32		50.0	66.7		ug/L		133	54 ₋ 147	
2-Chlorotoluene	<0.31		50.0	42.7		ug/L		85	70 ₋ 125	
4-Chlorotoluene	<0.35		50.0	42.8		ug/L		86	68 - 124	
cis-1,2-Dichloroethene	<0.41		50.0	48.1		ug/L		96	70 - 125	
cis-1,3-Dichloropropene	<0.42		50.0	45.8		ug/L		92	64 - 127	
Dibromochloromethane	<0.49		50.0	46.9		ug/L		94	68 - 125	
1,2-Dibromo-3-Chloropropane	<2.0		50.0	42.2		ug/L		84	56 - 123	
1,2-Dibromoethane	<0.39		50.0	50.2		ug/L		100	70 - 125	
Dibromomethane	<0.27		50.0	50.3		ug/L		101	70 - 120	
1,2-Dichlorobenzene	<0.33		50.0	50.3		ug/L		101	70 - 125	
1,3-Dichlorobenzene	<0.40		50.0	47.9		ug/L		96	70 ₋ 125	
1,4-Dichlorobenzene	<0.36		50.0	47.2		ug/L		94	70 - 120	
Dichlorodifluoromethane	<0.67		50.0	50.6		ug/L		101	40 - 150	
1,1-Dichloroethane	<0.41		50.0	56.4		ug/L		113	70 - 125	
1,2-Dichloroethane	<0.39		50.0	56.1		ug/L		112	68 - 127	
1,1-Dichloroethene	<0.39		50.0	47.2		ug/L		94	67 - 122	
Dichlorofluoromethane	<0.38		50.0	56.9		ug/L		114	69 - 124	
1,2-Dichloropropane	<0.43		50.0	59.6		ug/L		119	67 - 130	
1,3-Dichloropropane	<0.36		50.0	48.3		ug/L		97	62 - 136	
2,2-Dichloropropane	<0.44		50.0	40.5		ug/L		81	58 - 129	
1,1-Dichloropropene	<0.30		50.0	48.5		ug/L		97	70 - 121	
Ethylbenzene	<0.18		50.0	49.1		ug/L		98	70 - 120	
Hexachlorobutadiene	<0.45		50.0	61.9		ug/L		124	51 - 150	
Isopropylbenzene	<0.39		50.0	45.6		ug/L		91	70 - 126	
Methylene Chloride	<1.6		50.0	49.6		ug/L		99	69 - 125	
Methyl tert-butyl ether	<0.39		50.0	50.5		ug/L		101	70 - 120	
Naphthalene	<0.34	* F1	50.0	72.6	F1	ug/L		145	59 - 130	
n-Butylbenzene	<0.39		50.0	45.8		ug/L		92	68 - 125	
N-Propylbenzene	<0.41		50.0	43.6		ug/L		87	69 - 127	
p-Isopropyltoluene	<0.36		50.0	48.4		ug/L		97	70 - 125	
sec-Butylbenzene	<0.40		50.0	47.5		ug/L		95	70 - 123	
Styrene	<0.39		50.0	50.7		ug/L		101	70 - 120	
tert-Butylbenzene	<0.40		50.0	48.0		ug/L		96	70 - 121	
1,1,1,2-Tetrachloroethane	<0.46		50.0	49.6		ug/L		99	70 - 125	
1,1,2,2-Tetrachloroethane	<0.40		50.0	46.2		ug/L		92	67 - 127	
Tetrachloroethene	<0.37		50.0	52.5		ug/L		105	70 - 128	
Tetrahydrofuran	<1.9	F1	100	135		ug/L		135	59 - 139	
Toluene	<0.15		50.0	47.7		ug/L		95	70 - 125	

Client Sample ID: Field Blank

Client Sample ID: Field Blank

Prep Type: Total/NA

Prep Type: Total/NA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 500-127911-2 MS

Matrix: Water Analysis Batch: 385529

Analysis Datch. 505525	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
trans-1,2-Dichloroethene	<0.35		50.0	47.1		ug/L		94	70 - 125
trans-1,3-Dichloropropene	<0.36		50.0	43.8		ug/L		88	62 - 128
1,2,3-Trichlorobenzene	<0.46	F1	50.0	73.1	F1	ug/L		146	55 - 140
1,2,4-Trichlorobenzene	<0.34	F1	50.0	64.2	F1	ug/L		128	66 - 127
1,1,1-Trichloroethane	<0.38		50.0	44.8		ug/L		90	70 - 125
1,1,2-Trichloroethane	<0.35		50.0	50.0		ug/L		100	70 - 122
Trichloroethene	<0.16		50.0	52.9		ug/L		106	70 - 125
Trichlorofluoromethane	<0.43		50.0	47.1		ug/L		94	70 - 126
1,2,3-Trichloropropane	<0.41		50.0	43.6		ug/L		87	50 - 133
1,2,4-Trimethylbenzene	<0.36		50.0	47.2		ug/L		94	70 - 123
1,3,5-Trimethylbenzene	<0.25		50.0	47.1		ug/L		94	70 - 123
Vinyl chloride	<0.20	F1	50.0	69.8	F1	ug/L		140	64 - 126
Xylenes, Total	<0.22		100	93.7		ug/L		94	70 - 125

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	86		72 - 124
Dibromofluoromethane	98		75 - 120
1,2-Dichloroethane-d4 (Surr)	105		75 - 126
Toluene-d8 (Surr)	91		75 - 120

Lab Sample ID: 500-127911-2 MSD Matrix: Water Analysis Batch: 385529

Analysis Batch. 505529	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	•	Qualifier	Added	-	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.15		50.0	50.2		ug/L		100	70 - 120	2	20
Bromobenzene	<0.36		50.0	48.9		ug/L		98	70 - 122	6	20
Bromochloromethane	<0.43		50.0	55.6		ug/L		111	65 - 122	2	20
Bromodichloromethane	<0.37		50.0	46.1		ug/L		92	69 - 120	0	20
Bromoform	<0.48		50.0	45.6		ug/L		91	56 - 132	0	20
Bromomethane	<0.80		50.0	52.7		ug/L		105	40 - 130	10	20
Carbon tetrachloride	<0.38		50.0	48.2		ug/L		96	65 - 122	2	20
Chlorobenzene	<0.39		50.0	48.7		ug/L		97	70 - 120	2	20
Chloroethane	<0.51		50.0	38.7	F2	ug/L		77	45 - 127	21	20
Chloroform	<0.37		50.0	49.2		ug/L		98	70 - 120	3	20
Chloromethane	<0.32		50.0	63.3		ug/L		127	54 - 147	5	20
2-Chlorotoluene	<0.31		50.0	44.5		ug/L		89	70 - 125	4	20
4-Chlorotoluene	<0.35		50.0	44.6		ug/L		89	68 - 124	4	20
cis-1,2-Dichloroethene	<0.41		50.0	48.5		ug/L		97	70 - 125	1	20
cis-1,3-Dichloropropene	<0.42		50.0	45.9		ug/L		92	64 - 127	0	20
Dibromochloromethane	<0.49		50.0	47.5		ug/L		95	68 - 125	1	20
1,2-Dibromo-3-Chloropropane	<2.0		50.0	45.8		ug/L		92	56 - 123	8	20
1,2-Dibromoethane	<0.39		50.0	51.7		ug/L		103	70 - 125	3	20
Dibromomethane	<0.27		50.0	51.3		ug/L		103	70 - 120	2	20
1,2-Dichlorobenzene	<0.33		50.0	51.5		ug/L		103	70 - 125	2	20
1,3-Dichlorobenzene	<0.40		50.0	49.4		ug/L		99	70 - 125	3	20
1,4-Dichlorobenzene	<0.36		50.0	48.8		ug/L		98	70 - 120	3	20
Dichlorodifluoromethane	<0.67		50.0	46.0		ug/L		92	40 - 150	10	20

Client Sample ID: Field Blank

Prep Type: Total/NA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 500-127911-2 MSD

Matrix: Water Analysis Batch: 385529

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethane	<0.41		50.0	56.4		ug/L		113	70 - 125	0	20
1,2-Dichloroethane	<0.39		50.0	57.7		ug/L		115	68 - 127	3	20
1,1-Dichloroethene	<0.39		50.0	46.1		ug/L		92	67 - 122	2	20
Dichlorofluoromethane	<0.38		50.0	52.4		ug/L		105	69 - 124	8	20
1,2-Dichloropropane	<0.43		50.0	60.6		ug/L		121	67 - 130	2	20
1,3-Dichloropropane	<0.36		50.0	50.1		ug/L		100	62 - 136	4	20
2,2-Dichloropropane	<0.44		50.0	40.6		ug/L		81	58 ₋ 129	0	20
1,1-Dichloropropene	<0.30		50.0	49.1		ug/L		98	70 - 121	1	20
Ethylbenzene	<0.18		50.0	50.0		ug/L		100	70 - 120	2	20
Hexachlorobutadiene	<0.45		50.0	62.0		ug/L		124	51 ₋ 150	0	20
Isopropylbenzene	<0.39		50.0	46.5		ug/L		93	70 - 126	2	20
Methylene Chloride	<1.6		50.0	51.3		ug/L		103	69 ₋ 125	3	20
Methyl tert-butyl ether	<0.39		50.0	51.9		ug/L		104	70 - 120	3	20
Naphthalene	<0.34	* F1	50.0	75.7	F1	ug/L		151	59 - 130	4	20
n-Butylbenzene	<0.39		50.0	46.7		ug/L		93	68 - 125	2	20
N-Propylbenzene	<0.41		50.0	44.0		ug/L		88	69 - 127	1	20
p-Isopropyltoluene	<0.36		50.0	49.8		ug/L		100	70 - 125	3	20
sec-Butylbenzene	<0.40		50.0	48.8		ug/L		98	70 - 123	3	20
Styrene	<0.39		50.0	51.7		ug/L		103	70 - 120	2	20
tert-Butylbenzene	<0.40		50.0	49.0		ug/L		98	70 - 121	2	20
1,1,1,2-Tetrachloroethane	<0.46		50.0	49.8		ug/L		100	70 - 125	0	20
1,1,2,2-Tetrachloroethane	<0.40		50.0	49.0		ug/L		98	67 _ 127	6	20
Tetrachloroethene	<0.37		50.0	51.8		ug/L		104	70 - 128	1	20
Tetrahydrofuran	<1.9	F1	100	143	F1	ug/L		143	59 ₋ 139	6	20
Toluene	<0.15		50.0	48.7		ug/L		97	70 ₋ 125	2	20
trans-1,2-Dichloroethene	<0.35		50.0	48.0		ug/L		96	70 - 125	2	20
trans-1,3-Dichloropropene	<0.36		50.0	44.9		ug/L		90	62 - 128	3	20
1,2,3-Trichlorobenzene	<0.46	F1	50.0	75.0	F1	ug/L		150	55 ₋ 140	3	20
1,2,4-Trichlorobenzene	<0.34	F1	50.0	65.3	F1	ug/L		131	66 - 127	2	20
1,1,1-Trichloroethane	<0.38		50.0	45.4		ug/L		91	70 ₋ 125	1	20
1,1,2-Trichloroethane	<0.35		50.0	50.1		ug/L		100	70 - 122	0	20
Trichloroethene	<0.16		50.0	53.6		ug/L		107	70 - 125	1	20
Trichlorofluoromethane	<0.43		50.0	46.8		ug/L		94	70 ₋ 126	1	20
1,2,3-Trichloropropane	<0.41		50.0	46.3		ug/L		93	50 - 133	6	20
1,2,4-Trimethylbenzene	<0.36		50.0	48.6		ug/L		97	70 - 123	3	20
1,3,5-Trimethylbenzene	<0.25		50.0	48.2		ug/L		96	70 - 123	2	20
Vinyl chloride	<0.20	F1	50.0	66.0	F1	ug/L		132	64 - 126	6	20
Xylenes, Total	<0.22		100	95.0		ug/L		95	70 - 125	1	20
						•					
		MSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	88		72 - 124								
Dibromofluoromethane	96		75 - 120								
1,2-Dichloroethane-d4 (Surr)	106		75 - 126								
Toluene-d8 (Surr)	92		75 - 120								

Matrix: Water

Client Sample ID: Method Blank Prep Type: Total/NA 5 6 7 8 9

11

Lab Sample ID: MB 500-385531/7

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Analysis Batch: 385531									
-	MB	MB							
Analyte	Result	Qualifier	RL	LOD	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	<0.67		2.0	0.67	ug/L			05/17/17 22:48	1
Tetrahydrofuran	<1.9		10	1.9	ug/L			05/17/17 22:48	1
	МВ	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	117		72 - 124			-		05/17/17 22:48	1
Dibromofluoromethane	100		75 - 120					05/17/17 22:48	1
Dibromofluoromethane 1,2-Dichloroethane-d4 (Surr)	100 120		75 - 120 75 - 126						1 1

Lab Sample ID: LCS 500-385531/4 **Matrix: Water** Analysis Batch: 385531

Analysis Daten. 303031			Spike	LCS	LCS				%Rec.
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits
Dichlorodifluoromethane			50.0	48.8		ug/L		98	40 - 150
Tetrahydrofuran			100	86.3		ug/L		86	59 - 139
	LCS	LCS							
Surrogate	%Recovery	Qualifier	Limits						
4-Bromofluorobenzene (Surr)	112		72 - 124						
Dibromofluoromethane	100		75_120						
1,2-Dichloroethane-d4 (Surr)	119		75_126						
Toluene-d8 (Surr)	98		75 - 120						

Lab Sample ID: MB 500-385770/6 **Matrix: Water** Analysis Batch: 385770

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Datch. 303770	МВ	МВ							
Analyte	Result	Qualifier	RL	LOD	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.15		0.50	0.15	ug/L			05/18/17 23:16	1
Bromobenzene	<0.36		1.0	0.36	ug/L			05/18/17 23:16	1
Bromochloromethane	<0.43		1.0	0.43	ug/L			05/18/17 23:16	1
Bromodichloromethane	<0.37		1.0	0.37	ug/L			05/18/17 23:16	1
Bromoform	<0.48		1.0	0.48	ug/L			05/18/17 23:16	1
Bromomethane	<0.80		2.0	0.80	ug/L			05/18/17 23:16	1
Carbon tetrachloride	<0.38		1.0	0.38	ug/L			05/18/17 23:16	1
Chlorobenzene	<0.39		1.0	0.39	ug/L			05/18/17 23:16	1
Chloroethane	<0.51		1.0	0.51	ug/L			05/18/17 23:16	1
Chloroform	<0.37		2.0	0.37	ug/L			05/18/17 23:16	1
Chloromethane	<0.32		1.0	0.32	ug/L			05/18/17 23:16	1
2-Chlorotoluene	<0.31		1.0	0.31	ug/L			05/18/17 23:16	1
4-Chlorotoluene	<0.35		1.0	0.35	ug/L			05/18/17 23:16	1
cis-1,2-Dichloroethene	<0.41		1.0	0.41	ug/L			05/18/17 23:16	1
cis-1,3-Dichloropropene	<0.42		1.0	0.42	ug/L			05/18/17 23:16	1
Dibromochloromethane	<0.49		1.0	0.49	ug/L			05/18/17 23:16	1
1,2-Dibromo-3-Chloropropane	<2.0		5.0	2.0	ug/L			05/18/17 23:16	1
1,2-Dibromoethane	<0.39		1.0	0.39	ug/L			05/18/17 23:16	1
Dibromomethane	<0.27		1.0	0.27	ug/L			05/18/17 23:16	1

RL

LOD Unit

D

Prepared

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

MB MB

Result Qualifier

Lab Sample ID: MB 500-385770/6

Analysis Batch: 385770

Matrix: Water

Analyte

Client Sample ID: Method Blank

Analyzed

Prep Type: Total/NA

2 3 4 5 6 7

Dil Fac

Analyte	Result	Qualifier	RL	LOD		D	Prepared	Analyzed	DII Fac
1,2-Dichlorobenzene	<0.33		1.0	0.33	ug/L			05/18/17 23:16	1
1,3-Dichlorobenzene	<0.40		1.0	0.40	ug/L			05/18/17 23:16	1
1,4-Dichlorobenzene	<0.36		1.0	0.36	ug/L			05/18/17 23:16	1
Dichlorodifluoromethane	<0.67		2.0	0.67	ug/L			05/18/17 23:16	1
1,1-Dichloroethane	<0.41		1.0	0.41	ug/L			05/18/17 23:16	1
1,2-Dichloroethane	<0.39		1.0	0.39	ug/L			05/18/17 23:16	1
1,1-Dichloroethene	<0.39		1.0	0.39	ug/L			05/18/17 23:16	1
Dichlorofluoromethane	<0.38		1.0	0.38	ug/L			05/18/17 23:16	1
1,2-Dichloropropane	<0.43		1.0	0.43	ug/L			05/18/17 23:16	1
1,3-Dichloropropane	<0.36		1.0	0.36	ug/L			05/18/17 23:16	1
2,2-Dichloropropane	<0.44		1.0	0.44	ug/L			05/18/17 23:16	1
1,1-Dichloropropene	<0.30		1.0	0.30	ug/L			05/18/17 23:16	1
Ethylbenzene	<0.18		0.50		ug/L			05/18/17 23:16	1
Hexachlorobutadiene	<0.45		1.0		ug/L			05/18/17 23:16	1
Isopropylbenzene	<0.39		1.0		ug/L			05/18/17 23:16	1
Isopropyl ether	<0.28		1.0	0.28	-			05/18/17 23:16	1
Methylene Chloride	<1.6		5.0		ug/L			05/18/17 23:16	1
Methyl tert-butyl ether	<0.39		1.0		ug/L			05/18/17 23:16	1
Naphthalene	<0.34		1.0		ug/L			05/18/17 23:16	1
n-Butylbenzene	<0.39		1.0		ug/L			05/18/17 23:16	1
N-Propylbenzene	<0.41		1.0		ug/L			05/18/17 23:16	1
p-Isopropyltoluene	<0.36		1.0	0.36	•			05/18/17 23:16	1
sec-Butylbenzene	<0.40		1.0		ug/L			05/18/17 23:16	1
Styrene	<0.39		1.0		ug/L			05/18/17 23:16	
tert-Butylbenzene	<0.40		1.0		ug/L			05/18/17 23:16	1
1,1,1,2-Tetrachloroethane	<0.46		1.0		ug/L			05/18/17 23:16	1
1,1,2,2-Tetrachloroethane	<0.40		1.0		ug/L			05/18/17 23:16	
Tetrachloroethene	<0.37		1.0		ug/L			05/18/17 23:16	1
Tetrahydrofuran	<1.9		10		ug/L			05/18/17 23:16	1
Toluene	<0.15		0.50		ug/L			05/18/17 23:16	1
trans-1,2-Dichloroethene	<0.35		1.0		ug/L			05/18/17 23:16	1
trans-1,3-Dichloropropene	<0.36		1.0		ug/L			05/18/17 23:16	1
1,2,3-Trichlorobenzene	<0.46		1.0	0.46	-			05/18/17 23:16	1
1.2.4-Trichlorobenzene	<0.34		1.0		ug/L			05/18/17 23:16	1
1,1,1-Trichloroethane	<0.38		1.0		ug/L			05/18/17 23:16	1
1,1,2-Trichloroethane	<0.35		1.0		ug/L			05/18/17 23:16	
Trichloroethene	<0.16		0.50		ug/L			05/18/17 23:16	1
Trichlorofluoromethane	<0.43		1.0	0.43	-			05/18/17 23:16	1
1,2,3-Trichloropropane	<0.43		1.0	0.43				05/18/17 23:16	
1,2,4-Trimethylbenzene	<0.36		1.0		ug/L			05/18/17 23:16	1
1,3,5-Trimethylbenzene	<0.30		1.0		ug/L ug/L			05/18/17 23:16	1
Vinyl chloride	<0.23		0.50		ug/L			05/18/17 23:16	· · · · · · · · 1
Xylenes, Total	<0.20		1.0						
Ayiches, Iulai			1.0	0.22	ug/L			05/18/17 23:16	1
Surrogate	MB %Recovery	MB Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			72 - 124			-	Tepateu	<u>05/18/17 23:16</u>	<u> </u>
Dibromofluoromethane	96		72 - 124 75 - 120					05/18/17 23:16	
	90		75-120					00/10/11 20.10	1

TestAmerica Chicago

05/18/17 23:16

75 - 126

117

Lab Sample ID: MB 500-385770/6

Client Sample ID: Method Blank

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 500-385770/6 Matrix: Water							Client San	ple ID: Metho	
								Prep Type: T	Olai/NA
Analysis Batch: 385770									
-		MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	102		75 - 120					05/18/17 23:16	1
_ Lab Sample ID: LCS 500-38	5770/4					Clie	ont Sample ID	: Lab Control	Samnlo
Matrix: Water	011014					ond		Prep Type: T	
Analysis Batch: 385770									
			Spike	LCS	LCS			%Rec.	
Analyte			Added	Result	Qualifier	Unit	D %Rec	Limits	
Benzene			50.0	42.9		ug/L		70 - 120	
Bromobenzene			50.0	47.0		ug/L	94	70 - 122	
Bromochloromethane			50.0	42.7		ug/L	85	65 - 122	
Bromodichloromethane			50.0	44.2		ug/L	88	69 - 120	
Bromoform			50.0	34.7		ug/L	69	56 - 132	
Bromomethane			50.0	39.6		ug/L	79	40 - 130	
Carbon tetrachloride			50.0	39.7		ug/L	79	65 - 122	
Chlorobenzene			50.0	44.9		ug/L	90	70 - 120	
Chloroethane			50.0	33.7		ug/L	67	45 ₋ 127	
Chloroform			50.0	47.3		ug/L	95	70 ₋ 120	
Chloromethane			50.0	40.3		ug/L	81	54 ₋ 147	
2-Chlorotoluene			50.0	50.7		ug/L	101	70 ₋ 125	
4-Chlorotoluene			50.0	50.3		ug/L	101	68 - 124	
cis-1,2-Dichloroethene			50.0	42.9		ug/L	86	70 - 125	
cis-1,3-Dichloropropene			50.0	45.3		ug/L	91	64 - 127	
Dibromochloromethane			50.0	40.8		ug/L	82	68 - 125	
1,2-Dibromo-3-Chloropropane			50.0	46.9		ug/L	94	56 - 123	
1,2-Dibromoethane			50.0	46.9		ug/L	94	70 - 125	
Dibromomethane			50.0	46.1		ug/L	92	70 - 120	
1,2-Dichlorobenzene			50.0	45.5		ug/L	91	70 ₋ 125	
1,3-Dichlorobenzene			50.0	45.2		ug/L	90	70 ₋ 125	
1,4-Dichlorobenzene			50.0	44.8		ug/L	90	70 ₋ 120	
Dichlorodifluoromethane			50.0	48.8		ug/L	98	40 - 150	
1,1-Dichloroethane			50.0	42.7		ug/L	85	70 - 125	
1,2-Dichloroethane			50.0	51.2		ug/L	102	68 - 127	
1,1-Dichloroethene			50.0	39.8		ug/L	80	67 - 122	
Dichlorofluoromethane			50.0	46.7		ug/L	93	69 - 124	
1,2-Dichloropropane			50.0	43.0		ug/L	86	67 ₋ 130	
1,3-Dichloropropane			50.0	50.1		ug/L	100	62 - 136	
2,2-Dichloropropane			50.0	46.5		ug/L	93	58 - 129	
1,1-Dichloropropene			50.0	44.5		ug/L	89	70 - 121	
Ethylbenzene			50.0	45.4		ug/L	91	70 - 120	
Hexachlorobutadiene			50.0	45.4		ug/L	91	51 - 150	
Isopropylbenzene			50.0	48.2		ug/L	96	70 ₋ 126	
Methylene Chloride			50.0	47.2		ug/L	94	69 - 125	
Methyl tert-butyl ether			50.0	47.2		ug/L	94 95	70 - 120	
Naphthalene			50.0	44.9		ug/L	90	59 - 130	
n-Butylbenzene			50.0	44.9		ug/L	90	68 - 125	
N-Propylbenzene			50.0 50.0	40.0		ug/L ug/L	93	69 - 127	
p-Isopropyltoluene			50.0 50.0	49.7 45.7		ug/L	99 91	70 - 125	
							91		
sec-Butylbenzene			50.0	47.5		ug/L	95	70 - 123	

QC Sample Results

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 500-385770/4

Matrix: Water Analysis Batch: 385770

Analysis Datch: 300770								
-	Spike	LCS	LCS				%Rec.	5
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Styrene	50.0	45.6		ug/L		91	70 - 120	6
tert-Butylbenzene	50.0	47.6		ug/L		95	70 ₋ 121	
1,1,1,2-Tetrachloroethane	50.0	41.4		ug/L		83	70 - 125	
1,1,2,2-Tetrachloroethane	50.0	49.5		ug/L		99	67 - 127	
Tetrachloroethene	50.0	39.3		ug/L		79	70 - 128	8
Tetrahydrofuran	100	78.0		ug/L		78	59 - 139	
Toluene	50.0	46.0		ug/L		92	70 - 125	9
trans-1,2-Dichloroethene	50.0	41.8		ug/L		84	70 - 125	
trans-1,3-Dichloropropene	50.0	43.9		ug/L		88	62 - 128	
1,2,3-Trichlorobenzene	50.0	51.1		ug/L		102	55 - 140	
1,2,4-Trichlorobenzene	50.0	43.6		ug/L		87	66 - 127	11
1,1,1-Trichloroethane	50.0	44.4		ug/L		89	70 - 125	
1,1,2-Trichloroethane	50.0	45.9		ug/L		92	70 - 122	
Trichloroethene	50.0	39.0		ug/L		78	70 - 125	
Trichlorofluoromethane	50.0	60.7		ug/L		121	70 - 126	
1,2,3-Trichloropropane	50.0	47.5		ug/L		95	50 - 133	
1,2,4-Trimethylbenzene	50.0	49.2		ug/L		98	70 - 123	
1,3,5-Trimethylbenzene	50.0	48.9		ug/L		98	70 - 123	
Vinyl chloride	50.0	43.2		ug/L		86	64 - 126	
Xylenes, Total	100	92.8		ug/L		93	70 - 125	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	115		72 - 124
Dibromofluoromethane	99		75 - 120
1,2-Dichloroethane-d4 (Surr)	114		75 - 126
Toluene-d8 (Surr)	101		75 - 120

Lab Sample ID: 500-127911-8 MS Matrix: Water Analysis Batch: 385770

Analysis Baton. 000770	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Dichlorodifluoromethane	<0.67		50.0	51.5		ug/L		103	40 - 150	
Tetrahydrofuran	<1.9		100	65.4		ug/L		65	59 - 139	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	114		72 - 124
Dibromofluoromethane	94		75 - 120
1,2-Dichloroethane-d4 (Surr)	110		75 - 126
Toluene-d8 (Surr)	101		75 - 120

Lab Sample ID: 500-127911-8 MSD **Matrix: Water**

Analysis Batch: 385770 Spike MSD MSD %Rec. RPD Sample Sample **Result Qualifier** Limits Analyte Added **Result Qualifier** Unit RPD Limit D %Rec Dichlorodifluoromethane <0.67 50.0 49.2 ug/L 98 40 - 150 4 20 59 - 139 Tetrahydrofuran <1.9 100 73.4 ug/L 73 20 12

TestAmerica Chicago

Client Sample ID: MW8I

Prep Type: Total/NA

Client Sample ID: MW8I

Prep Type: Total/NA

QC Sample Results

Client: SCS Engineers Project/Site: Stoughton LF - 25216022

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	117		72 - 124
Dibromofluoromethane	97		75 - 120
1,2-Dichloroethane-d4 (Surr)	111		75 - 126
Toluene-d8 (Surr)	101		75 - 120

Total/NA

Analysis

8260B

Client Sam	ple ID: Trip	o Blank					Lab Sa	mple ID:	500-127911- 1
Date Collecte	d: 05/04/17 0	0:00							Matrix: Wate
Date Received	d: 05/10/17 0	9:05							
_	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260B			385529	05/17/17 23:14	-	TAL CHI	
_	,								
Client Sam	ole ID: Fiel	d Blank					Lab Sa	mple ID:	500-127911-2
Date Collecte									Matrix: Wate
Date Received									
-	Datab	Batab		Dilution	Detek	Drenered			
Bron Tuno	Batch	Batch	Bun	Dilution	Batch	Prepared	Analyst	Lab	
Prep Type Total/NA	Type Analysis	8260B	Run	_ Factor	Number 385529	or Analyzed 05/18/17 00:54	Analyst	- Lab TAL CHI	
	Analysis	82008		I	303329	05/10/17 00.54		TAL OTI	
Client Sam	ple ID: MW	/3D					Lab Sa	mple ID:	500-127911-3
Date Collecte									Matrix: Wate
Date Received									
_	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260B			385531		-	TAL CHI	
	, analysis	02002		·	000001				
Client Sam	ple ID: MW	/4D					Lab Sa	mple ID:	500-127911-4
Date Collecte									Matrix: Wate
Date Received									
_	Datab	Batch		Dilution	Poteb	Drenered			
Prep Type	Batch Type	Method	Run	Factor	Batch Number	Prepared or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260B	Kuli		385531		-		
	Analysis	0200B		I	300001	05/16/17 00.24	FINE		
Client Sam	ple ID: MW	/5D					Lab Sa	mple ID:	500-127911-
Date Collecte									Matrix: Wate
Date Received									
_	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	- 8260B			385531	05/18/17 06:51	-	TAL CHI	
	Analysis	02000		I	000001	00/10/17 00.01	1 1011		
Client Sam	ple ID: MW	5D DUP					Lab Sa	mple ID:	500-127911-6
Date Collecte									Matrix: Wate
Date Received									
-	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	-	Analyst	Lab	
i ich i ìhe	136						-		

TestAmerica Chicago

TAL CHI

1

385531 05/18/17 07:17 PMF

			Prepared	Batch	Dilution		Batch	Batch	ate Received
	Lab	Analyst	or Analyzed	Number	Factor	Run	Method	Туре	Ргер Туре
	TAL CHI	PMF	05/18/17 07:44	385531	1		8260B	Analysis	Total/NA
500-127911-8	mple ID:	Lab Sa					81	le ID: MW	Client Samp
Matrix: Water									Date Collected
							9:05	: 05/10/17 0	Date Received
			Prepared	Batch	Dilution		Batch	Batch	-
	Lab	Analyst	or Analyzed	Number	Factor	Run	Method	Туре	Ргер Туре
	TAL CHI	PMF	05/18/17 23:43	385770	1		8260B	Analysis	Total/NA
500-127911-9	mple ID:	Lab Sa					98	le ID: MW	Client Samp
Matrix: Water							5:10	: 05/05/17 1	Date Collected Date Received
			Ducurant	Datah	Dilution				
	Lab	Analyst	Prepared or Analyzed	Batch Number	Dilution Factor	Run	Batch Method	Batch Type	Prep Type
	TAL CHI	PMF	05/19/17 00:10				- 8260B	Analysis	Total/NA
00-127911-10	nple ID: 5	.ab San	L				'9D	le ID: MW	- Client Samp
Matrix: Water									Date Collected Date Received
			Prepared	Batch	Dilution		Batch	Batch	-
	Lab	Analyst	or Analyzed	Number	Factor	Run	Method	Туре	Ргер Туре
	TAL CHI	PMF	05/19/17 00:36	385770	1		8260B	Analysis	Total/NA
00-127911-11	nple ID: 5	.ab San	L				91	le ID: MW	Client Samp
Matrix: Water									Date Collected Date Received
									-
		• • •	Prepared	Batch	Dilution	_	Batch	Batch	B
	Lab TAL CHI	Analyst PMF	or Analyzed 05/19/17 01:04	Number 385770	_ Factor 1	Run	8260B	Type	Prep Type Total/NA
			05/19/17 01.04	303770	I		0200D	Analysis	

Lab Chronicle

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	385770	05/19/17 01:31	PMF	TAL CHI

						· · · ·			
Client Sam	•					L	.ab Sar	mple ID: 5	500-127911-13
Date Collecte									Matrix: Water
_	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260B		1	385770	05/19/17 01:58	PMF	TAL CHI	
Client Sam	ple ID: MW	/10				L	.ab Sar	mple ID: 5	500-127911-14
Date Collecte									Matrix: Water
Date Receive	d: 05/10/17 0	9:05							
_	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260B		1	385770	05/19/17 02:25	PMF	TAL CHI	
Client Sam	ple ID: MW	'13I				L	.ab Sar	nple ID: 5	500-127911-15
Date Collecte	d: 05/05/17 1	2:15				L	.ab Sar	nple ID: 5	500-127911-15 Matrix: Water
Date Collecte	d: 05/05/17 1 d: 05/10/17 0	2:15 9:05		Dilution	Batch		.ab Sar	mple ID: 5	
Date Collecte Date Received	d: 05/05/17 1 d: 05/10/17 0 Batch	2:15	Run	Dilution Factor	Batch Number	Prepared		nple ID: {	
Client Sam Date Collecte Date Received Prep Type Total/NA	d: 05/05/17 1 d: 05/10/17 0	2:15 9:05 Batch	Run			Prepared or Analyzed	Analyst	·	
Date Collecte Date Received Prep Type Total/NA	d: 05/05/17 1 d: 05/10/17 0 Batch Type Analysis	2:15 9:05 Batch <u>Method</u> 8260B	Run	Factor	Number	Prepared or Analyzed 05/19/17 02:52	Analyst PMF	- Lab TAL CHI	
Date Collecte Date Received Prep Type Total/NA Client Sam	d: 05/05/17 1 d: 05/10/17 0 Batch Type Analysis	2:15 9:05 Batch Method 8260B	Run	Factor	Number	Prepared or Analyzed 05/19/17 02:52	Analyst PMF	- Lab TAL CHI	Matrix: Water
Date Collecte Date Received Prep Type	d: 05/05/17 1 d: 05/10/17 0 Batch Type Analysis ple ID: MW d: 05/05/17 1	2:15 9:05 Batch Method 8260B	Run	Factor	Number	Prepared or Analyzed 05/19/17 02:52	Analyst PMF	- Lab TAL CHI	Matrix: Water
Date Collecte Date Received Prep Type Total/NA Client Sam Date Collecte	d: 05/05/17 1 d: 05/10/17 0 Batch Type Analysis ple ID: MW d: 05/05/17 1	2:15 9:05 Batch Method 8260B	Run	Factor	Number 385770	Prepared or Analyzed 05/19/17 02:52	Analyst PMF	- Lab TAL CHI	Matrix: Water
Date Collecte Date Received Prep Type Total/NA Client Sam Date Collecte Date Received	d: 05/05/17 1 d: 05/10/17 0 Batch Type Analysis ple ID: MW d: 05/05/17 1 d: 05/10/17 0 Batch	2:15 9:05 Batch Method 8260B 14S 4:15 9:05	Run	Factor 1	Number	Prepared or Analyzed 05/19/17 02:52	Analyst PMF .ab Sar	- Lab TAL CHI	Matrix: Water
Date Collecte Date Received Prep Type Total/NA Client Sam Date Collecte	d: 05/05/17 1 d: 05/10/17 0 Batch Type Analysis ple ID: MW d: 05/05/17 1 d: 05/10/17 0	2:15 9:05 Batch Method 8260B 714S 4:15 9:05 Batch		Dilution	Number 385770 Batch	Prepared or Analyzed 05/19/17 02:52	Analyst PMF	- Lab TAL CHI mple ID: {	Matrix: Water
Date Collecte Date Received Prep Type Total/NA Client Sam Date Collecte Date Received Prep Type Total/NA	d: 05/05/17 1 d: 05/10/17 0 Batch Type Analysis ple ID: MW d: 05/05/17 1 d: 05/10/17 0 Batch Type Analysis	2:15 9:05 Batch Method 8260B 14S 4:15 9:05 Batch Method 8260B		Dilution	Number 385770 Batch Number	Prepared or Analyzed 05/19/17 02:52	Analyst PMF .ab Sar Analyst PMF	Lab TAL CHI mple ID: 5	Matrix: Water
Date Collecte Date Received Prep Type Total/NA Client Sam Date Collecte Date Received Prep Type Total/NA Client Sam Date Collecte	d: 05/05/17 1 d: 05/10/17 0 Batch Type Analysis ple ID: MW d: 05/05/17 1 d: 05/10/17 0 Batch Type Analysis ple ID: MW d: 05/05/17 1	2:15 9:05 Batch Method 8260B 714S 4:15 9:05 Batch Method 8260B 714I 4:30		Dilution	Number 385770 Batch Number	Prepared or Analyzed 05/19/17 02:52	Analyst PMF .ab Sar Analyst PMF	Lab TAL CHI mple ID: 5	Matrix: Water
Date Collecte Date Received Prep Type Total/NA Client Sam Date Collecte Date Received Prep Type Total/NA Client Sam	d: 05/05/17 1 d: 05/10/17 0 Batch Type Analysis ple ID: MW d: 05/05/17 1 d: 05/10/17 0 Batch Type Analysis ple ID: MW d: 05/05/17 1	2:15 9:05 Batch Method 8260B 714S 4:15 9:05 Batch Method 8260B 714I 4:30		Dilution	Number 385770 Batch Number	Prepared or Analyzed 05/19/17 02:52	Analyst PMF .ab Sar Analyst PMF	Lab TAL CHI mple ID: 5	Matrix: Water
Date Collecte Date Received Prep Type Total/NA Client Sam Date Collecte Date Received Prep Type Total/NA Client Sam Date Collecte	d: 05/05/17 1 d: 05/10/17 0 Batch Type Analysis ple ID: MW d: 05/05/17 1 d: 05/10/17 0 Batch Type Analysis ple ID: MW d: 05/05/17 1	2:15 9:05 Batch Method 8260B 714S 4:15 9:05 Batch Method 8260B 714I 4:30		Dilution	Number 385770 Batch Number	Prepared or Analyzed 05/19/17 02:52	Analyst PMF .ab Sar Analyst PMF	Lab TAL CHI mple ID: 5	Matrix: Water
Date Collecte Date Received Prep Type Total/NA Client Sam Date Collecte Date Received Prep Type Total/NA Client Sam Date Collecte	d: 05/05/17 1 d: 05/10/17 0 Batch Type Analysis ple ID: MW d: 05/05/17 1 d: 05/10/17 0 Batch Type Analysis ple ID: MW d: 05/05/17 1 d: 05/10/17 0	2:15 9:05 Batch Method 8260B 714S 4:15 9:05 Batch Method 8260B 714I 4:30 9:05		Factor 1 Dilution Factor 1	Number 385770 Batch Number 385770	Prepared or Analyzed 05/19/17 02:52	Analyst PMF .ab Sar Analyst PMF .ab Sar	Lab TAL CHI mple ID: 5	Matrix: Water

Lab Chronicle

Laboratory References:

TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

13 14

Laboratory: TestAmerica Chicago

The accreditations/certifications listed below are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Wisconsin	State Program	5	999580010	08-31-17

Accreditation/Certification Summary

TestAmerica Chicago

TestAmerico	Contect to	(Janeitys)	1	Bitt 5	(sptime)	Chain o	Chain of Custody Record
	Company.			Company. Address		Chehrof Chehrof	Lab Job N. 200- 10. 1211
	Address: Phone			Phone .		Page	1.2
500-1	500-127911 COC Fac			Fac. POM/Beleasersed		Temperat	Temperature 'C of Cooler. 3.7
Chef SCS Contra	Clert Puert 1 25216033	Preservative	1 1				Preservative Key 1, HCL, Cool to 4
City 1	1 <u>5</u> 11	Paraneiar	1	five w			2, H2SD4, Coelte 4" 3, NHCK, Coelte 4" 4, NHCK, Coelte 4" 5, NACH/25, Coelte 4" 6, NAL9324, Coelte 4"
Page A. Grover Loon			100 J	110			7, Cootto 4* 8, Nore 9, Other
CSM/SM CSM/SM CSM/SM	Sampleg Date Time	# of Containens Mehrix	1HL 28) 291	0			Commeda
	3/24/19	1 -2	X				
1	5-5-17 16:15	-	Х				
MW3.	5-417 13:30	2	X				
4 mw 40	04:41	9	X				
5 mw 50	14:20	0	X				
\$ mw 50 000	→		X				
I IL MU Z	5-5-11 11:50	0	X				
TE MM ST	13:35	M	X				
4 mw 95	15:10		X				
0 mw 9.0	AHISI A	21/1	X		_		
Tarraround Time Haqued (Blainess Dive) 1 Day 2 Days5 Days5 Days10 Requested Due Dow	10 Days 15 Days Other	Semple	Clerit	Disposal by Leb Archive br.	Months	to assessed if samples a	(A fee stary be assessed if samples are relatived longer than 1 month)
	El Bliry	11:00	WWW Barnes	- Hespert	NAT B/10/1)	Sans	· Life Counter
with Carpeny		Ine	Received By	Austral	Ted 1	fie	Stepe Ton K
Rolecyldrod By Carspany	Date	a.	Reariest By	Output	Date	Tauo	Hand Delivered
WW - Wastewater Mattic Sky WW - Wastewater Sc - Staffment W - Mans S - Sual S - Sual S - Statys S - Statys S - Statys S - Statys S - Statys D - Offer D - Offer A - Nr	Clear Commerts			<u>a</u>	Lab Connects:	-	
			Page	Page 43 of 45			5/23/2017

lest,	estAmerica	Raport Ib Contact.				Contact			Clian	Chain of Custody Record
THE LEADED	THE LEADED IN CHIMDONNCHI'M TEETING	Company:	11			Company:			Lab Job	11/11/2002 # 11/11
INE LEAUEN	LIN ENVIRONMENTAL TEATING	Address:				Address.			Children of Children	
Phone: 706	Phone: 708.534.5200 Fas: 706.534.5211	Address:				Address:				crass or crassory regions:
		Phone:				Phone			C Mag	A a 2
		Fac				Far				
		E-Met.				POMillelence			aduai	leriperature 10 of Godler:
SZS		01000 Traject #	Æ	Preservethe						Preservative Kay 1. HCL, Cool to 4°
Project Name	10	dfill	a:	Parameter	91 (9	firo u				2. HSSA, Loon or 3. HNCS, Cool to 4" 4. NaCH, Cool to 4" 5. NaRHSCH, Cool to 4" 6. NaHSCH
Sample AN	A. Groven work		Π		19 - 992	oti				7. Cool to 4° 8. None 9. Other
Uswysw USwysw USWysw		Sanging Data	Contrines # of 0	anteld	391	200				Comments
1 mi	I'm GI	E-5-17 16:00	6:00 3	(m)	X					
	UFT DWD		16:00	4	X					
13 mw	105	/	13:15	-	X	_			-	
cnu 1	INTO (13:45		X					
mm c	0 13I		12:15	-	4	V				
mm g	0 14S		14:15		X					
on un lo	IH 0	>	H:30	2	X					
Numeround Time Required (Businees Dayle 1 Day 2 Days6 Days Recoverant Due Date	red (Business Days) rs 6 Days 7 Days 10 Days	16 Days	- Ster	Sample Dispose Return to Clant	Cleat	Disposed by Lath	Archive for	Months (A fee may	be socceed if sartples	(A fee may be seseered if semples are retrined longer than 1 month)
Perchald.	Lappen 505	5-8-19	00:11		Maria	when the	CHEL	Sho/17	SOPO	Leb Courier
inquiried By	Contamy	ŧ	00L	œ	Received By	Contrary		1	la	Stiped Loly
Fallingulation By	Contrary	Cete	the	α	Fiscewad By	Gentary		1	£	Hard Delivered
WV - Wastewater W - Wastewater W - Waster S - Soll St Studge MS - Macelareoue M Or A Or	Matrix Key SE – Sedmart S0 – Sol L – Leochate WI – Wipe DM – Drhång Water DM – Other	and the second					Lab Comments	. 25		
E.										

Login Sample Receipt Checklist

Client: SCS Engineers

Login Number: 127911 List Number: 1 Creator: Scott, Sherri L

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	3.7
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

Job Number: 500-127911-1

List Source: TestAmerica Chicago

ATTACHMENT B

Groundwater Monitoring Data Certification Form (with Exceedances Report) State of Wisconsin Department of Natural Resources dnr.wi.gov

Environmental Monitoring Data Certification

Form 4400-231 (R 5/17)

also provide this information to requesters as required under Wisconsin's Open Records law, ss. 19.31 to 19.39, Wis. Stats. When submitting monitoring data, the owner or operator of the facility, practice or activity is required to notify the Department in writing that a groundwater standard or an explosive gas level has been attained or exceeded, as specified in ss. NR 140.24(1)(a); NR 140.26(1)(a); NR 507.30NR 635.14(9)(a); NR 635.18(20) and NR 507.30, Wis. Adm. Code. Failure to report may result in fines, forfeitures or other penalties resulting from enforcement under ss. 289.97, 291.97 or 299.95, Wis. Stats Instructions: Prepare one form for each license or monitoring ID. Please type or print legibly. Attach a notification of any values that attain or exceed groundwater standards (that is, preventive action limits, enforcement standards or alternative concentration limits). The notification must include a preliminary analysis of the cause and significance of each value. Attach a notification of any gas values that attain or exceed explosive gas levels. Send the original signed form, any notification, and Electronic Data Deliverable [EDD] to: GEMS Data Submittal Contact - WA/5 Wisconsin Department of Natural Resources P.O. Box 7921 Madison, WI 53707-7921 Monitoring Data Submittal Information Name of entity submitting data (laboratory, consultant, facility owner) TestAmerica Inc. Contact for guestions about data formatting. Include data preparer's name, telephone number and Email address; Name Phone No. (include area code) Sandra Fredrick. (920) 261-1660 Email Sandra.Fredrick@testamericainc.com Facility Name Stoughton City Landfill -25216022 License # / Monitoring ID Facility ID (FID) 133 113005950 Actual sampling dates (e.g., July 2-6, 2003) The enclosed results are for sampling required in the month(s) of: (e.g., June 2003) May 4-5, 2017 May 2017 Type of Data Submitted (Check all that apply): Control Con Gas monitoring data Groundwater monitoring data from private water supply wells Air monitoring data Leachate monitoring data Other (specify): Notification attached? No. No groundwater standards or explosive gas limits were exceeded. X Yes, a notification of values exceeding a groundwater standard is attached. It includes a list of monitoring points, dates, sample values, groundwater standard and preliminary analysis of the cause and significance of any concentration. Yes, a notification of values exceeding an explosive gas limit is attached. It includes the monitoring points, dates, sample values and explosive gas limits. Certification To the best of my knowledge, the information reported and statements made on this data submittal and attachments are true and correct. Furthermore, I have attached complete notification of any sampling values meeting or exceeding groundwater standards or explosive gas levels, and a preliminary analysis of the cause and significance of concentrations exceeding groundwater standards. Facility Representative Name (Print) Title Phone No. (include area code) Paula Buckley Mgr. of Proj. Mgmt. Assistants (708) 534-5200 Ula Buckley bate Signed (mm/dd/yyyy) Signature

Notice: Personally identifiable information collected will be used for program administration and enforcement purposes. The Department may

For DNR Use Only	
Check action taken, and record date and your initials. Describe on back side if necessary.	
Found uploading problems on Initials	
Notified contact of problems on Uploaded data successfully on	· · ·
EDD format(s): Diskette CD (initial submittal and follow-up) E-mail (follow-up only)	Other:

Stoughton L										
Sample No	Well ID	Well Name	Date Sampled	Parameter	Description	RESULT		ES 70	LOD	Units
500-127911-1 500-127911-1	999 999	Trip Blank Trip Blank	05/04/2017 05/04/2017	77562 34506	1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane		7 40	200	0.46 0.38	ug/L ug/L
500-127911-1	999	Trip Blank	05/04/2017	34516	1,1,2,2-Tetrachloroethane		0.02	0.2	0.4	ug/L
500-127911-1	999	Trip Blank	05/04/2017	34511	1,1,2-Trichloroethane		0.5	5	0.35	ug/L
500-127911-1	999	Trip Blank	05/04/2017	34496	1,1-Dichloroethane		85	850	0.41	ug/L
500-127911-1	999	Trip Blank	05/04/2017	34501	1,1-Dichloroethene		0.7	7	0.39	ug/L
500-127911-1 500-127911-1	999 999	Trip Blank Trip Blank	05/04/2017 05/04/2017	77168 77613	1,1-Dichloropropene 1,2,3-Trichlorobenzene				0.3 0.46	ug/L ug/L
500-127911-1	999	Trip Blank	05/04/2017	77443	1,2,3-Trichloropropane		12	60	0.40	ug/L
500-127911-1	999	Trip Blank	05/04/2017	34551	1,2,4-Trichlorobenzene		14	70	0.34	ug/L
500-127911-1	999	Trip Blank	05/04/2017	77222	1,2,4-Trimethylbenzene		96	480	0.36	ug/L
500-127911-1	999	Trip Blank	05/04/2017	38437	1,2-Dibromo-3-Chloropropane		0.02	0.2	2	ug/L
500-127911-1 500-127911-1	999 999	Trip Blank Trip Blank	05/04/2017 05/04/2017	77651 34536	1,2-Dibromoethane 1,2-Dichlorobenzene		0.005 60	0.05 600	0.39 0.33	ug/L ug/L
500-127911-1	999	Trip Blank	05/04/2017	32103	1.2-Dichloroethane		0.5	5	0.33	ug/L
500-127911-1	999	Trip Blank	05/04/2017	34541	1,2-Dichloropropane		0.5	5	0.43	ug/L
500-127911-1	999	Trip Blank	05/04/2017	77226	1,3,5-Trimethylbenzene		96	480	0.25	ug/L
500-127911-1	999	Trip Blank	05/04/2017	34566	1,3-Dichlorobenzene		120	600	0.4	ug/L
500-127911-1	999	Trip Blank	05/04/2017	77173	1,3-Dichloropropane		45	75	0.36	ug/L
500-127911-1 500-127911-1	999 999	Trip Blank Trip Blank	05/04/2017 05/04/2017	34571 77170	1,4-Dichlorobenzene 2,2-Dichloropropane		15	75	0.36 0.44	ug/L ug/L
500-127911-1	999	Trip Blank	05/04/2017	77275	2-Chlorotoluene				0.31	ug/L
500-127911-1	999	Trip Blank	05/04/2017	77277	4-Chlorotoluene				0.35	ug/L
500-127911-1	999	Trip Blank	05/04/2017	34030	Benzene		0.5	5	0.15	ug/L
500-127911-1	999	Trip Blank	05/04/2017	81555	Bromobenzene				0.36	ug/L
500-127911-1	999 999	Trip Blank Trip Blank	05/04/2017	77297 32101	Bromochloromethane Bromodichloromethane		0.06	0.6	0.43 0.37	ug/L
500-127911-1 500-127911-1	999 999	Trip Blank	05/04/2017 05/04/2017	32101	Bromoform		0.08	4.4	0.37	ug/L ug/L
500-127911-1	999	Trip Blank	05/04/2017	34413	Bromomethane		1	10	0.8	ug/L
500-127911-1	999	Trip Blank	05/04/2017	32102	Carbon tetrachloride		0.5	5	0.38	ug/L
500-127911-1	999	Trip Blank	05/04/2017	34301	Chlorobenzene		20	100	0.39	ug/L
500-127911-1	999	Trip Blank	05/04/2017	34311	Chloroethane		80	400	0.51	ug/L
500-127911-1 500-127911-1	999 999	Trip Blank Trip Blank	05/04/2017 05/04/2017	32106 34418	Chloroform Chloromethane		0.6 3	6 30	0.37 0.32	ug/L ug/L
500-127911-1	999	Trip Blank	05/04/2017	77093	cis-1,2-Dichloroethene		7	70	0.41	ug/L
500-127911-1	999	Trip Blank	05/04/2017	34704	cis-1,3-Dichloropropene		0.04	0.4	0.42	ug/L
500-127911-1	999	Trip Blank	05/04/2017	32105	Dibromochloromethane		6	60	0.49	ug/L
500-127911-1	999	Trip Blank	05/04/2017	77596	Dibromomethane				0.27	ug/L
500-127911-1	999	Trip Blank	05/04/2017	34668	Dichlorodifluoromethane		200	1000	0.67	ug/L
500-127911-1 500-127911-1	999 999	Trip Blank Trip Blank	05/04/2017 05/04/2017	77119 78113	Dichlorofluoromethane Ethylbenzene		140	700	0.38 0.18	ug/L ug/L
500-127911-1	999	Trip Blank	05/04/2017	34391	Hexachlorobutadiene		140	700	0.45	ug/L
500-127911-1	999	Trip Blank	05/04/2017	81577	Isopropyl ether				0.28	ug/L
500-127911-1	999	Trip Blank	05/04/2017	77223	Isopropylbenzene				0.39	ug/L
500-127911-1	999	Trip Blank	05/04/2017	78032	Methyl tert-butyl ether		12	60	0.39	ug/L
500-127911-1	999	Trip Blank	05/04/2017	34423	Methylene Chloride		0.5	5	1.6	ug/L
500-127911-1 500-127911-1	999 999	Trip Blank Trip Blank	05/04/2017 05/04/2017	34696 77342	Naphthalene n-Butylbenzene		10	100	0.34 0.39	ug/L ug/L
500-127911-1	999	Trip Blank	05/04/2017	77224	N-Propylbenzene				0.41	ug/L
500-127911-1	999	Trip Blank	05/04/2017	77356	p-lsopropyltoluene				0.36	ug/L
500-127911-1	999	Trip Blank	05/04/2017	77350	sec-Butylbenzene				0.4	ug/L
500-127911-1	999	Trip Blank	05/04/2017	77128	Styrene		10	100	0.39	ug/L
500-127911-1 500-127911-1	999 999	Trip Blank	05/04/2017 05/04/2017	77353 34475	tert-Butylbenzene Tetrachloroethene		0.5	5	0.4 0.37	ug/L
500-127911-1	999 999	Trip Blank Trip Blank	05/04/2017	81607	Tetrahydrofuran		10	5 50	0.37 1.9	ug/L ug/L
500-127911-1	999	Trip Blank	05/04/2017	34010	Toluene		160	800	0.15	ug/L
500-127911-1	999	Trip Blank	05/04/2017	34546	trans-1,2-Dichloroethene		20	100	0.35	ug/L
500-127911-1	999	Trip Blank	05/04/2017	34699	trans-1,3-Dichloropropene		0.04	0.4	0.36	ug/L
500-127911-1 500-127911-1	999	Trip Blank	05/04/2017	39180	Trichloroethene		0.5	5	0.16	ug/L
500-127911-1	999 999	Trip Blank Trip Blank	05/04/2017 05/04/2017	34488 39175	Trichlorofluoromethane Vinyl chloride		698 0.02	3490 0.2	0.43	ug/L ug/L
500-127911-1	999	Trip Blank	05/04/2017	81551	Xylenes, Total		400	2000		ug/L
500-127911-10	126	MW9B	05/05/2017	77562	1,1,1,2-Tetrachloroethane		7	70	0.46	ug/L
500-127911-10	126	MW9B	05/05/2017	34506	1,1,1-Trichloroethane		40	200	0.38	ug/L
500-127911-10	126	MW9B	05/05/2017	34516	1,1,2,2-Tetrachloroethane		0.02	0.2	0.4	ug/L
500-127911-10	126	MW9B	05/05/2017	34511	1,1,2-Trichloroethane		0.5	5	0.35	ug/L
500-127911-10 500-127911-10	126 126	MW9B MW9B	05/05/2017 05/05/2017	34496 34501	1,1-Dichloroethane 1,1-Dichloroethene		85 0.7	850 7	0.41 0.39	ug/L ug/L
500-127911-10	126	MW9B	05/05/2017	77168	1,1-Dichloropropene		0.7	'	0.3	ug/L
500-127911-10	126	MW9B	05/05/2017	77613	1,2,3-Trichlorobenzene				0.46	ug/L
500-127911-10	126	MW9B	05/05/2017	77443	1,2,3-Trichloropropane		12	60	0.41	ug/L
500-127911-10	126	MW9B	05/05/2017	34551	1,2,4-Trichlorobenzene		14	70	0.34	ug/L
500-127911-10 500-127911-10	126 126	MW9B MW9B	05/05/2017 05/05/2017	77222 38437	1,2,4-Trimethylbenzene 1,2-Dibromo-3-Chloropropane		96 0.02	480 0.2	0.36 2	ug/L
500-127911-10	120	MW9B	05/05/2017	77651	1,2-Dibromoethane		0.02	0.2	2 0.39	ug/L ug/L
500-127911-10	126	MW9B	05/05/2017	34536	1,2-Dichlorobenzene		60	600	0.33	ug/L
500-127911-10	126	MW9B	05/05/2017	32103	1,2-Dichloroethane		0.5	5	0.39	ug/L
500-127911-10	126	MW9B	05/05/2017	34541	1,2-Dichloropropane		0.5	5	0.43	ug/L
500-127911-10	126	MW9B	05/05/2017	77226	1,3,5-Trimethylbenzene		96	480	0.25	ug/L
500-127911-10 500-127911-10	126 126	MW9B MW9B	05/05/2017 05/05/2017	34566 77173	1,3-Dichlorobenzene		120	600	0.4 0.36	ug/L
500-127911-10 500-127911-10	126	MW9B	05/05/2017	77173 34571	1,3-Dichloropropane 1,4-Dichlorobenzene		15	75	0.36	ug/L ug/L
500-127911-10	126	MW9B	05/05/2017	77170	2,2-Dichloropropane				0.44	ug/L
500-127911-10	126	MW9B	05/05/2017	77275	2-Chlorotoluene				0.31	ug/L
500-127911-10	126	MW9B	05/05/2017	77277	4-Chlorotoluene				0.35	ug/L
500-127911-10	126	MW9B	05/05/2017	34030	Benzene		0.5	5	0.15	ug/L
500-127911-10 500-127911-10	126 126	MW9B MW9B	05/05/2017 05/05/2017	81555 77297	Bromobenzene Bromochloromethane				0.36 0.43	ug/L
500-127911-10	126	MW9B	05/05/2017	32101	Bromochloromethane		0.06	0.6	0.43	ug/L ug/L
500-127911-10	126	MW9B	05/05/2017	32104	Bromoform		0.44	4.4	0.48	ug/L
500-127911-10	126	MW9B	05/05/2017	34413	Bromomethane		1	10	0.8	ug/L
500-127911-10	126	MW9B	05/05/2017	32102	Carbon tetrachloride		0.5	5	0.38	ug/L
500-127911-10	126	MW9B	05/05/2017	34301	Chlorobenzene		20	100	0.39	ug/L
500-127911-10 500-127911-10	126 126	MW9B MW9B	05/05/2017 05/05/2017	34311 32106	Chloroethane Chloroform		80 0.6	400 6	0.51 0.37	ug/L
500-127911-10 500-127911-10	126	MW9B	05/05/2017	32106 34418	Chlorotorm		0.6 3	ь 30	0.37	ug/L ug/L
										- 9, -

May-17
PAL Exceeded? ES Exceeded?

Stoughton I										
Sample No 500-127911-10	Well ID 126	Well Name MW9B	Date Sampled 05/05/2017	Parameter 77093	Description cis-1,2-Dichloroethene	RESULT	PAL 7	ES 70	LOD 0.41	Units ug/L
500-127911-10	120	MW9B	05/05/2017	34704	cis-1,3-Dichloropropene		0.04	0.4	0.41	ug/L
500-127911-10	126	MW9B	05/05/2017	32105	Dibromochloromethane		6	60	0.49	ug/L
500-127911-10	126	MW9B	05/05/2017	77596	Dibromomethane				0.27	ug/L
500-127911-10 500-127911-10	126 126	MW9B MW9B	05/05/2017 05/05/2017	34668 77119	Dichlorodifluoromethane Dichlorofluoromethane	3.1	200	1000	0.67 0.38	ug/L ug/L
500-127911-10	120	MW9B	05/05/2017	78113	Ethylbenzene		140	700	0.38	ug/L
500-127911-10	126	MW9B	05/05/2017	34391	Hexachlorobutadiene				0.45	ug/L
500-127911-10	126	MW9B	05/05/2017	81577	Isopropyl ether				0.28	ug/L
500-127911-10 500-127911-10	126 126	MW9B MW9B	05/05/2017 05/05/2017	77223 78032	lsopropylbenzene Methyl tert-butyl ether		12	60	0.39 0.39	ug/L ug/L
500-127911-10	126	MW9B	05/05/2017	34423	Methylene Chloride		0.5	5	1.6	ug/L
500-127911-10	126	MW9B	05/05/2017	34696	Naphthalene		10	100	0.34	ug/L
500-127911-10	126	MW9B	05/05/2017	77342	n-Butylbenzene				0.39	ug/L
500-127911-10 500-127911-10	126 126	MW9B MW9B	05/05/2017 05/05/2017	77224 77356	N-Propylbenzene p-lsopropyltoluene				0.41 0.36	ug/L ug/L
500-127911-10	126	MW9B	05/05/2017	77350	sec-Butylbenzene				0.4	ug/L
500-127911-10	126	MW9B	05/05/2017	77128	Styrene		10	100	0.39	ug/L
500-127911-10 500-127911-10	126 126	MW9B MW9B	05/05/2017 05/05/2017	77353 34475	tert-Butylbenzene Tetrachloroethene		0.5	5	0.4 0.37	ug/L
500-127911-10	126	MW9B	05/05/2017	81607	Tetrahydrofuran		10	5 50	1.9	ug/L ug/L
500-127911-10	126	MW9B	05/05/2017	34010	Toluene		160	800	0.15	ug/L
500-127911-10	126	MW9B	05/05/2017	34546	trans-1,2-Dichloroethene		20	100	0.35	ug/L
500-127911-10 500-127911-10	126 126	MW9B MW9B	05/05/2017 05/05/2017	34699 39180	trans-1,3-Dichloropropene Trichloroethene		0.04 0.5	0.4 5	0.36 0.16	ug/L ug/L
500-127911-10	120	MW9B	05/05/2017	34488	Trichlorofluoromethane	1.5	698		0.10	ug/L
500-127911-10	126	MW9B	05/05/2017	39175	Vinyl chloride		0.02	0.2	0.2	ug/L
500-127911-10	126	MW9B	05/05/2017	81551	Xylenes, Total		400	2000		ug/L
500-127911-11 500-127911-11	125	MW9I	05/05/2017	77562	1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane		7 40	70 200	0.46 0.38	ug/L
500-127911-11	125 125	MW9I MW9I	05/05/2017 05/05/2017	34506 34516	1,1,2,2-Tetrachloroethane		40 0.02	200	0.38	ug/L ug/L
500-127911-11	125	MW9I	05/05/2017	34511	1,1,2-Trichloroethane		0.5	5	0.35	ug/L
500-127911-11	125	MW9I	05/05/2017	34496	1,1-Dichloroethane		85	850	0.41	ug/L
500-127911-11	125	MW9I	05/05/2017	34501	1,1-Dichloroethene		0.7	7	0.39	ug/L
500-127911-11 500-127911-11	125 125	MW9I MW9I	05/05/2017 05/05/2017	77168 77613	1,1-Dichloropropene 1,2,3-Trichlorobenzene				0.3 0.46	ug/L ug/L
500-127911-11	125	MW9I	05/05/2017	77443	1,2,3-Trichloropropane		12	60	0.40	ug/L
500-127911-11	125	MW9I	05/05/2017	34551	1,2,4-Trichlorobenzene		14	70	0.34	ug/L
500-127911-11	125	MW9I	05/05/2017	77222	1,2,4-Trimethylbenzene		96	480	0.36	ug/L
500-127911-11	125	MW9I	05/05/2017	38437	1,2-Dibromo-3-Chloropropane		0.02	0.2	2	ug/L
500-127911-11 500-127911-11	125 125	MW9I MW9I	05/05/2017 05/05/2017	77651 34536	1,2-Dibromoethane 1,2-Dichlorobenzene		0.005 60	0.05 600	0.39 0.33	ug/L ug/L
500-127911-11	125	MW9I	05/05/2017	32103	1,2-Dichloroethane		0.5	5	0.39	ug/L
500-127911-11	125	MW9I	05/05/2017	34541	1,2-Dichloropropane		0.5	5	0.43	ug/L
500-127911-11	125	MW9I	05/05/2017	77226	1,3,5-Trimethylbenzene		96	480	0.25	ug/L
500-127911-11	125 125	MW9I	05/05/2017	34566	1,3-Dichlorobenzene		120	600	0.4 0.36	ug/L
500-127911-11 500-127911-11	125	MW9I MW9I	05/05/2017 05/05/2017	77173 34571	1,3-Dichloropropane 1,4-Dichlorobenzene		15	75	0.36	ug/L ug/L
500-127911-11	125	MW9I	05/05/2017	77170	2,2-Dichloropropane		10	10	0.44	ug/L
500-127911-11	125	MW9I	05/05/2017	77275	2-Chlorotoluene				0.31	ug/L
500-127911-11	125	MW9I	05/05/2017	77277	4-Chlorotoluene		0.5	~	0.35	ug/L
500-127911-11 500-127911-11	125 125	MW9I MW9I	05/05/2017 05/05/2017	34030 81555	Benzene Bromobenzene		0.5	5	0.15 0.36	ug/L ug/L
500-127911-11	125	MW9I	05/05/2017	77297	Bromochloromethane				0.30	ug/L
500-127911-11	125	MW9I	05/05/2017	32101	Bromodichloromethane		0.06	0.6	0.37	ug/L
500-127911-11	125	MW9I	05/05/2017	32104	Bromoform		0.44	4.4	0.48	ug/L
500-127911-11 500-127911-11	125 125	MW9I MW9I	05/05/2017 05/05/2017	34413 32102	Bromomethane Carbon tetrachloride		1 0.5	10 5	0.8 0.38	ug/L ug/L
500-127911-11	125	MW9I	05/05/2017	34301	Chlorobenzene		20	100	0.38	ug/L ug/L
500-127911-11	125	MW9I	05/05/2017	34311	Chloroethane		80	400	0.51	ug/L
500-127911-11	125	MW9I	05/05/2017	32106	Chloroform		0.6	6	0.37	ug/L
500-127911-11	125	MW9I	05/05/2017	34418	Chloromethane		3	30	0.32	ug/L
500-127911-11 500-127911-11	125 125	MW9I MW9I	05/05/2017 05/05/2017	77093 34704	cis-1,2-Dichloroethene cis-1,3-Dichloropropene		7 0.04	70 0.4	0.41 0.42	ug/L ug/L
500-127911-11	125	MW9I	05/05/2017	32105	Dibromochloromethane		6	60	0.42	ug/L
500-127911-11	125	MW9I	05/05/2017	77596	Dibromomethane				0.27	ug/L
500-127911-11	125	MW9I MW0I	05/05/2017	34668	Dichlorodifluoromethane	24	200	1000	0.67	ug/L
500-127911-11 500-127911-11	125 125	MW9I MW9I	05/05/2017 05/05/2017	77119 78113	Dichlorofluoromethane Ethylbenzene	13	140	700	0.38 0.18	ug/L ug/L
500-127911-11	125	MW9I	05/05/2017	34391	Hexachlorobutadiene				0.45	ug/L
500-127911-11	125	MW9I	05/05/2017	81577	Isopropyl ether				0.28	ug/L
500-127911-11	125	MW9I MW0I	05/05/2017	77223	Isopropylbenzene Motbul tort butul other		10	60	0.39	ug/L
500-127911-11 500-127911-11	125 125	MW9I MW9I	05/05/2017 05/05/2017	78032 34423	Methyl tert-butyl ether Methylene Chloride		12 0.5	60 5	0.39 1.6	ug/L ug/L
500-127911-11	125	MW9I	05/05/2017	34696	Naphthalene		10	100	0.34	ug/L
500-127911-11	125	MW9I	05/05/2017	77342	n-Butylbenzene				0.39	ug/L
500-127911-11	125	MW9I	05/05/2017	77224	N-Propylbenzene				0.41	ug/L
500-127911-11 500-127911-11	125 125	MW9I MW9I	05/05/2017 05/05/2017	77356 77350	p-lsopropyltoluene sec-Butylbenzene				0.36 0.4	ug/L
500-127911-11	125	MW9I	05/05/2017	77128	Styrene		10	100	0.4	ug/L ug/L
500-127911-11	125	MW9I	05/05/2017	77353	tert-Butylbenzene		-		0.4	ug/L
500-127911-11	125	MW9I	05/05/2017	34475	Tetrachloroethene		0.5	5	0.37	ug/L
500-127911-11	125	MW9I	05/05/2017	81607	Tetrahydrofuran		10 160	50 800	1.9	ug/L
500-127911-11 500-127911-11	125 125	MW9I MW9I	05/05/2017 05/05/2017	34010 34546	Toluene trans-1,2-Dichloroethene		160 20	800 100	0.15 0.35	ug/L ug/L
500-127911-11	125	MW9I	05/05/2017	34699	trans-1,3-Dichloropropene		0.04	0.4	0.36	ug/L
500-127911-11	125	MW9I	05/05/2017	39180	Trichloroethene		0.5	5	0.16	ug/L
500-127911-11	125	MW9I	05/05/2017	34488	Trichlorofluoromethane		698		0.43	ug/L
500-127911-11 500-127911-11	125 125	MW9I MW9I	05/05/2017 05/05/2017	39175 81551	Vinyl chloride Xylenes, Total		0.02 400	0.2	0.2 0.22	ug/L ug/L
500-127911-11	125	MW9I DUP	05/05/2017	77562	1,1,1,2-Tetrachloroethane		400 7	2000 70	0.22	ug/L ug/L
500-127911-12	125	MW9I DUP	05/05/2017	34506	1,1,1-Trichloroethane		40	200	0.38	ug/L
500-127911-12	125	MW9I DUP	05/05/2017	34516	1,1,2,2-Tetrachloroethane		0.02	0.2	0.4	ug/L
500-127911-12 500-127911-12	125 125	MW9I DUP	05/05/2017	34511 34496	1,1,2-Trichloroethane		0.5 85	5 850	0.35	ug/L
500-127911-12 500-127911-12	125 125	MW9I DUP MW9I DUP	05/05/2017 05/05/2017	34496 34501	1,1-Dichloroethane 1,1-Dichloroethene		85 0.7	850 7	0.41 0.39	ug/L ug/L
	. 20				,			•	2.00	- 9/ -

Stoughton I										
Sample No 500-127911-12	Well ID 125	Well Name MW9I DUP	Date Sampled 05/05/2017	Parameter 77168	Description	RESULT	PAL	ES	LOD 0.3	Units ug/L
500-127911-12	125	MW9I DUP	05/05/2017	77613	1,1-Dichloropropene 1.2.3-Trichlorobenzene				0.3	ug/L ug/L
500-127911-12	125	MW9I DUP	05/05/2017	77443	1,2,3-Trichloropropane		12	60	0.41	ug/L
500-127911-12	125	MW9I DUP	05/05/2017	34551	1,2,4-Trichlorobenzene		14	70	0.34	ug/L
500-127911-12 500-127911-12	125 125	MW9I DUP MW9I DUP	05/05/2017 05/05/2017	77222 38437	1,2,4-Trimethylbenzene 1,2-Dibromo-3-Chloropropane		96 0.02	480 0.2	0.36 2	ug/L ug/L
500-127911-12	125	MW9I DUP	05/05/2017	77651	1,2-Dibromoethane		0.005	0.05	0.39	ug/L
500-127911-12	125	MW9I DUP	05/05/2017	34536	1,2-Dichlorobenzene		60	600	0.33	ug/L
500-127911-12	125 125	MW9I DUP	05/05/2017	32103 34541	1,2-Dichloroethane		0.5 0.5	5 5	0.39 0.43	ug/L
500-127911-12 500-127911-12	125	MW9I DUP MW9I DUP	05/05/2017 05/05/2017	77226	1,2-Dichloropropane 1,3,5-Trimethylbenzene		0.5 96	5 480	0.43	ug/L ug/L
500-127911-12	125	MW9I DUP	05/05/2017	34566	1,3-Dichlorobenzene		120	600	0.4	ug/L
500-127911-12	125	MW9I DUP	05/05/2017	77173	1,3-Dichloropropane				0.36	ug/L
500-127911-12 500-127911-12	125 125	MW9I DUP MW9I DUP	05/05/2017 05/05/2017	34571 77170	1,4-Dichlorobenzene 2,2-Dichloropropane		15	75	0.36 0.44	ug/L ug/L
500-127911-12	125	MW9I DUP	05/05/2017	77275	2-Chlorotoluene				0.31	ug/L
500-127911-12	125	MW9I DUP	05/05/2017	77277	4-Chlorotoluene				0.35	ug/L
500-127911-12	125	MW9I DUP	05/05/2017	34030	Benzene		0.5	5	0.15	ug/L
500-127911-12 500-127911-12	125 125	MW9I DUP MW9I DUP	05/05/2017 05/05/2017	81555 77297	Bromobenzene Bromochloromethane				0.36 0.43	ug/L ug/L
500-127911-12	125	MW9I DUP	05/05/2017	32101	Bromodichloromethane		0.06	0.6	0.37	ug/L
500-127911-12	125	MW9I DUP	05/05/2017	32104	Bromoform		0.44	4.4	0.48	ug/L
500-127911-12 500-127911-12	125 125	MW9I DUP MW9I DUP	05/05/2017 05/05/2017	34413 32102	Bromomethane Carbon tetrachloride		1 0.5	10 5	0.8 0.38	ug/L ug/L
500-127911-12	125	MW9I DUP	05/05/2017	34301	Chlorobenzene		20	100	0.30	ug/L
500-127911-12	125	MW9I DUP	05/05/2017	34311	Chloroethane		80	400	0.51	ug/L
500-127911-12	125	MW9I DUP	05/05/2017	32106	Chloroform		0.6	6	0.37	ug/L
500-127911-12 500-127911-12	125 125	MW9I DUP MW9I DUP	05/05/2017 05/05/2017	34418 77093	Chloromethane cis-1,2-Dichloroethene		3 7	30 70	0.32 0.41	ug/L ug/L
500-127911-12	125	MW9I DUP	05/05/2017	34704	cis-1,3-Dichloropropene		0.04	0.4	0.42	ug/L
500-127911-12	125	MW9I DUP	05/05/2017	32105	Dibromochloromethane		6	60	0.49	ug/L
500-127911-12	125 125	MW9I DUP MW9I DUP	05/05/2017	77596 34668	Dibromomethane Dichlorodifluoromethane	26	200	1000	0.27 0.67	ug/L
500-127911-12 500-127911-12	125	MW9I DUP	05/05/2017 05/05/2017	77119	Dichlorofluoromethane	20 14	200	1000	0.87	ug/L ug/L
500-127911-12	125	MW9I DUP	05/05/2017	78113	Ethylbenzene		140	700	0.18	ug/L
500-127911-12	125	MW9I DUP	05/05/2017	34391	Hexachlorobutadiene				0.45	ug/L
500-127911-12 500-127911-12	125 125	MW9I DUP MW9I DUP	05/05/2017 05/05/2017	81577 77223	lsopropyl ether Isopropylbenzene				0.28 0.39	ug/L ug/L
500-127911-12	125	MW9I DUP	05/05/2017	78032	Methyl tert-butyl ether		12	60	0.39	ug/L ug/L
500-127911-12	125	MW9I DUP	05/05/2017	34423	Methylene Chloride		0.5	5	1.6	ug/L
500-127911-12	125	MW9I DUP	05/05/2017	34696	Naphthalene		10	100	0.34	ug/L
500-127911-12 500-127911-12	125 125	MW9I DUP MW9I DUP	05/05/2017 05/05/2017	77342 77224	n-Butylbenzene N-Propylbenzene				0.39 0.41	ug/L ug/L
500-127911-12	125	MW9I DUP	05/05/2017	77356	p-lsopropyltoluene				0.36	ug/L
500-127911-12	125	MW9I DUP	05/05/2017	77350	sec-Butylbenzene				0.4	ug/L
500-127911-12	125	MW9I DUP	05/05/2017	77128	Styrene		10	100	0.39	ug/L
500-127911-12 500-127911-12	125 125	MW9I DUP MW9I DUP	05/05/2017 05/05/2017	77353 34475	tert-Butylbenzene Tetrachloroethene		0.5	5	0.4 0.37	ug/L ug/L
500-127911-12	125	MW9I DUP	05/05/2017	81607	Tetrahydrofuran		10	50	1.9	ug/L
500-127911-12	125	MW9I DUP	05/05/2017	34010	Toluene		160	800	0.15	ug/L
500-127911-12	125	MW9I DUP	05/05/2017	34546	trans-1,2-Dichloroethene		20	100	0.35	ug/L
500-127911-12 500-127911-12	125 125	MW9I DUP MW9I DUP	05/05/2017 05/05/2017	34699 39180	trans-1,3-Dichloropropene Trichloroethene	0.39	0.04 0.5	0.4 5	0.36 0.16	ug/L ug/L
500-127911-12	125	MW9I DUP	05/05/2017	34488	Trichlorofluoromethane	0.00	698	3490		ug/L
500-127911-12	125	MW9I DUP	05/05/2017	39175	Vinyl chloride		0.02	0.2	0.2	ug/L
500-127911-12	125	MW9I DUP MW10S	05/05/2017	81551 77562	Xylenes, Total		400 7	2000 70	0.22	ug/L
500-127911-13 500-127911-13	127 127	MW10S	05/05/2017 05/05/2017	34506	1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane		7 40	200	0.46 0.38	ug/L ug/L
500-127911-13	127	MW10S	05/05/2017	34516	1,1,2,2-Tetrachloroethane		0.02	0.2	0.4	ug/L
500-127911-13	127	MW10S	05/05/2017	34511	1,1,2-Trichloroethane		0.5	5	0.35	ug/L
500-127911-13 500-127911-13	127 127	MW10S	05/05/2017	34496 34501	1,1-Dichloroethane 1,1-Dichloroethene		85 0.7	850 7	0.41 0.39	ug/L
500-127911-13	127	MW10S MW10S	05/05/2017 05/05/2017	77168	1,1-Dichloropropene		0.7	1	0.39	ug/L ug/L
500-127911-13	127	MW10S	05/05/2017	77613	1,2,3-Trichlorobenzene				0.46	ug/L
500-127911-13	127	MW10S	05/05/2017	77443	1,2,3-Trichloropropane		12	60	0.41	ug/L
500-127911-13 500-127911-13	127 127	MW10S MW10S	05/05/2017 05/05/2017	34551 77222	1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene		14 96	70 480	0.34 0.36	ug/L ug/L
500-127911-13	127	MW10S	05/05/2017	38437	1,2-Dibromo-3-Chloropropane		0.02	0.2	2	ug/L
500-127911-13	127	MW10S	05/05/2017	77651	1,2-Dibromoethane		0.005	0.05	0.39	ug/L
500-127911-13	127	MW10S	05/05/2017	34536	1,2-Dichlorobenzene		60 0 5	600 5	0.33 0.39	ug/L
500-127911-13 500-127911-13	127 127	MW10S MW10S	05/05/2017 05/05/2017	32103 34541	1,2-Dichloroethane 1,2-Dichloropropane		0.5 0.5	5 5	0.39	ug/L ug/L
500-127911-13	127	MW10S	05/05/2017	77226	1,3,5-Trimethylbenzene		96	480	0.25	ug/L
500-127911-13	127	MW10S	05/05/2017	34566	1,3-Dichlorobenzene		120	600	0.4	ug/L
500-127911-13 500-127911-13	127 127	MW10S MW10S	05/05/2017 05/05/2017	77173 34571	1,3-Dichloropropane 1,4-Dichlorobenzene		15	75	0.36 0.36	ug/L
500-127911-13	127	MW103	05/05/2017	77170	2,2-Dichloropropane		15	75	0.30	ug/L ug/L
500-127911-13	127	MW10S	05/05/2017	77275	2-Chlorotoluene				0.31	ug/L
500-127911-13	127	MW10S	05/05/2017	77277	4-Chlorotoluene		0.5	~	0.35	ug/L
500-127911-13 500-127911-13	127 127	MW10S MW10S	05/05/2017 05/05/2017	34030 81555	Benzene Bromobenzene		0.5	5	0.15 0.36	ug/L
500-127911-13	127	MW10S	05/05/2017	77297	Bromochloromethane				0.36	ug/L ug/L
500-127911-13	127	MW10S	05/05/2017	32101	Bromodichloromethane		0.06	0.6	0.37	ug/L
500-127911-13	127	MW10S	05/05/2017	32104	Bromoform		0.44	4.4	0.48	ug/L
500-127911-13 500-127911-13	127 127	MW10S MW10S	05/05/2017 05/05/2017	34413 32102	Bromomethane Carbon tetrachloride		1 0.5	10 5	0.8 0.38	ug/L ug/L
500-127911-13	127	MW10S	05/05/2017	34301	Chlorobenzene		20	5 100	0.30	ug/L ug/L
500-127911-13	127	MW10S	05/05/2017	34311	Chloroethane		80	400	0.51	ug/L
500-127911-13	127	MW10S	05/05/2017	32106	Chloroform		0.6	6	0.37	ug/L
500-127911-13 500-127911-13	127 127	MW10S MW10S	05/05/2017 05/05/2017	34418 77093	Chloromethane cis-1,2-Dichloroethene		3 7	30 70	0.32 0.41	ug/L ug/L
500-127911-13	127	MW10S	05/05/2017	34704	cis-1,3-Dichloropropene		0.04	0.4	0.41	ug/L ug/L
500-127911-13	127	MW10S	05/05/2017	32105	Dibromochloromethane		6	60	0.49	ug/L
500-127911-13 500-127911-13	127 127	MW10S	05/05/2017	77596 34668	Dibromomethane Dichlorodifluoromethane		200	1000	0.27	ug/L
500-127911-13 500-127911-13	127	MW10S MW10S	05/05/2017 05/05/2017	34668 77119	Dichlorodifiuoromethane		200	1000	0.67	ug/L ug/L
										5

May-17 is PAL Exceeded? ES Exceeded?

NR 140 PAL	-ES Exc	ceedance l	Report								
Stoughton L	F - 252	16022									May-17
Sample No	Well ID	Well Name	Date Sampled	Parameter	Description	RESULT	PAL	ES	LOD	Units	PAL Exceeded? ES Exceeded?
500-127911-13	127	MW10S	05/05/2017	78113	Ethylbenzene		140	700	0.18	ug/L	
500-127911-13	127	MW10S	05/05/2017	34391	Hexachlorobutadiene				0.45	ug/L	
500-127911-13	127	MW10S	05/05/2017	81577	Isopropyl ether				0.28	ug/L	
500-127911-13	127	MW10S	05/05/2017	77223	Isopropylbenzene		10		0.39	ug/L	
500-127911-13	127	MW10S	05/05/2017	78032	Methyl tert-butyl ether		12	60	0.39	ug/L	
500-127911-13	127	MW10S	05/05/2017	34423	Methylene Chloride		0.5	5	1.6	ug/L	
500-127911-13 500-127911-13	127 127	MW10S MW10S	05/05/2017 05/05/2017	34696 77342	Naphthalene n-Butylbenzene		10	100	0.34 0.39	ug/L ug/L	
500-127911-13	127	MW10S	05/05/2017	77224	N-Propylbenzene				0.39	ug/L	
500-127911-13	127	MW10S	05/05/2017	77356	p-lsopropyltoluene				0.36	ug/L	
500-127911-13	127	MW10S	05/05/2017	77350	sec-Butylbenzene				0.4	ug/L	
500-127911-13	127	MW10S	05/05/2017	77128	Styrene		10	100	0.39	ug/L	
500-127911-13	127	MW10S	05/05/2017	77353	tert-Butylbenzene				0.4	ug/L	
500-127911-13	127	MW10S	05/05/2017	34475	Tetrachloroethene		0.5	5	0.37	ug/L	
500-127911-13	127	MW10S	05/05/2017	81607	Tetrahydrofuran		10	50	1.9	ug/L	
500-127911-13	127	MW10S	05/05/2017	34010	Toluene		160	800	0.15	ug/L	
500-127911-13	127	MW10S	05/05/2017	34546	trans-1,2-Dichloroethene		20	100	0.35	ug/L	
500-127911-13	127	MW10S	05/05/2017	34699	trans-1,3-Dichloropropene		0.04	0.4	0.36	ug/L	
500-127911-13	127 127	MW10S MW10S	05/05/2017 05/05/2017	39180 34488	Trichloroethene		0.5 698	5	0.16 0.43	ug/L	
500-127911-13 500-127911-13	127	MW10S	05/05/2017	34466 39175	Trichlorofluoromethane Vinyl chloride		0.02	0.2	0.43	ug/L ug/L	
500-127911-13	127	MW10S	05/05/2017	81551	Xylenes, Total		400	2000		ug/L	
500-127911-14	128	MW100	05/05/2017	77562	1,1,1,2-Tetrachloroethane		7	70	0.46	ug/L	
500-127911-14	128	MW10I	05/05/2017	34506	1,1,1-Trichloroethane		40	200	0.38	ug/L	
500-127911-14	128	MW10I	05/05/2017	34516	1,1,2,2-Tetrachloroethane		0.02	0.2	0.4	ug/L	
500-127911-14	128	MW10I	05/05/2017	34511	1,1,2-Trichloroethane		0.5	5	0.35	ug/L	
500-127911-14	128	MW10I	05/05/2017	34496	1,1-Dichloroethane		85	850	0.41	ug/L	
500-127911-14	128	MW10I	05/05/2017	34501	1,1-Dichloroethene		0.7	7	0.39	ug/L	
500-127911-14	128	MW10I	05/05/2017	77168	1,1-Dichloropropene				0.3	ug/L	
500-127911-14	128	MW10I	05/05/2017	77613	1,2,3-Trichlorobenzene				0.46	ug/L	
500-127911-14	128	MW10I	05/05/2017	77443	1,2,3-Trichloropropane		12	60	0.41	ug/L	
500-127911-14	128	MW10I	05/05/2017	34551	1,2,4-Trichlorobenzene		14	70	0.34	ug/L	
500-127911-14	128	MW10I	05/05/2017	77222	1,2,4-Trimethylbenzene		96	480	0.36	ug/L	
500-127911-14	128	MW10I	05/05/2017	38437	1,2-Dibromo-3-Chloropropane		0.02	0.2	2	ug/L	
500-127911-14	128	MW10I	05/05/2017	77651	1,2-Dibromoethane		0.005	0.05	0.39	ug/L	
500-127911-14	128	MW10I	05/05/2017	34536	1,2-Dichlorobenzene		60	600	0.33	ug/L	
500-127911-14	128	MW10I	05/05/2017	32103	1,2-Dichloroethane		0.5	5	0.39	ug/L	
500-127911-14	128	MW10I	05/05/2017	34541	1,2-Dichloropropane		0.5	5	0.43	ug/L	
500-127911-14	128	MW10I	05/05/2017	77226	1,3,5-Trimethylbenzene		96	480	0.25	ug/L	
500-127911-14	128	MW10I	05/05/2017	34566	1,3-Dichlorobenzene		120	600	0.4	ug/L	
500-127911-14	128	MW10I	05/05/2017	77173	1,3-Dichloropropane		15	75	0.36 0.36	ug/L	
500-127911-14 500-127911-14	128 128	MW10I MW10I	05/05/2017 05/05/2017	34571 77170	1,4-Dichlorobenzene 2,2-Dichloropropane		15	75	0.30	ug/L ug/L	
500-127911-14	128	MW10I	05/05/2017	77275	2-Chlorotoluene				0.44	ug/L ug/L	
500-127911-14	128	MW10I	05/05/2017	77277	4-Chlorotoluene				0.31	ug/L	
500-127911-14	128	MW10I	05/05/2017	34030	Benzene		0.5	5	0.15	ug/L	
500-127911-14	128	MW10I	05/05/2017	81555	Bromobenzene		0.5	5	0.36	ug/L	
500-127911-14	128	MW10I	05/05/2017	77297	Bromochloromethane				0.43	ug/L	
500-127911-14	128	MW10I	05/05/2017	32101	Bromodichloromethane		0.06	0.6	0.37	ug/L	
500-127911-14	128	MW10I	05/05/2017	32104	Bromoform		0.44	4.4	0.48	ug/L	
500-127911-14	128	MW10I	05/05/2017	34413	Bromomethane		1	10	0.8	ug/L	
500-127911-14	128	MW10I	05/05/2017	32102	Carbon tetrachloride		0.5	5	0.38	ug/L	
500-127911-14	128	MW10I	05/05/2017	34301	Chlorobenzene		20	100	0.39	ug/L	
500-127911-14	128	MW10I	05/05/2017	34311	Chloroethane		80	400	0.51	ug/L	
500-127911-14	128	MW10I	05/05/2017	32106	Chloroform		0.6	6	0.37	ug/L	
500-127911-14	128	MW10I	05/05/2017	34418	Chloromethane		3	30	0.32	ug/L	
500-127911-14	128	MW10I	05/05/2017	77093	cis-1,2-Dichloroethene		7	70	0.41	ug/L	
500-127911-14	128	MW10I	05/05/2017	34704	cis-1,3-Dichloropropene		0.04	0.4	0.42	ug/L	
500-127911-14	128	MW10I	05/05/2017	32105	Dibromochloromethane		6	60	0.49	ug/L	
500-127911-14 500-127911-14	128 128	MW10I MW10I	05/05/2017 05/05/2017	77596 34668	Dibromomethane Dichlorodifluoromethane	12	200	1000	0.27 0.67	ug/L	
500-127911-14	128	MW10I	05/05/2017	77119	Dichlorofluoromethane	6.1	200	1000	0.07	ug/L ug/L	
500-127911-14	128	MW10I	05/05/2017	78113	Ethylbenzene	0.1	140	700	0.18	ug/L	
500-127911-14	128	MW10I	05/05/2017	34391	Hexachlorobutadiene		140	100	0.45	ug/L	
500-127911-14	128	MW10I	05/05/2017	81577	Isopropyl ether				0.28	ug/L	
500-127911-14	128	MW10I	05/05/2017	77223	Isopropylbenzene				0.39	ug/L	
500-127911-14	128	MW10I	05/05/2017	78032	Methyl tert-butyl ether		12	60	0.39	ug/L	
500-127911-14	128	MW10I	05/05/2017	34423	Methylene Chloride		0.5	5	1.6	ug/L	
500-127911-14	128	MW10I	05/05/2017	34696	Naphthalene		10	100	0.34	ug/L	
500-127911-14	128	MW10I	05/05/2017	77342	n-Butylbenzene				0.39	ug/L	
500-127911-14	128	MW10I	05/05/2017	77224	N-Propylbenzene				0.41	ug/L	
500-127911-14	128	MW10I	05/05/2017	77356	p-lsopropyltoluene				0.36	ug/L	
500-127911-14	128	MW10I	05/05/2017	77350	sec-Butylbenzene				0.4	ug/L	
500-127911-14	128	MW10I	05/05/2017	77128	Styrene		10	100	0.39	ug/L	
500-127911-14	128	MW10I	05/05/2017	77353	tert-Butylbenzene		0.7	~	0.4	ug/L	
500-127911-14	128	MW10I	05/05/2017	34475	Tetrachloroethene	1.8	0.5	5	0.37	ug/L	PAL Exceeded
500-127911-14	128	MW10I	05/05/2017	81607	Tetrahydrofuran		10	50 800	1.9	ug/L	
500-127911-14 500-127911-14	128 128	MW10I MW10I	05/05/2017	34010 34546	Toluene trans_1 2-Dichloroethene		160 20	800 100	0.15 0.35	ug/L	
500-127911-14 500-127911-14	128	MW10I MW10I	05/05/2017 05/05/2017	34546 34699	trans-1,2-Dichloroethene trans-1,3-Dichloropropene		20 0.04	0.4	0.35	ug/L ug/L	
500-127911-14 500-127911-14	128	MW10I	05/05/2017	34699 39180	Trichloroethene		0.04	0.4 5	0.36	ug/L ug/L	
500-127911-14 500-127911-14	128	MW10I	05/05/2017	39180	Trichlorofluoromethane		0.5 698		0.16	ug/L ug/L	
500-127911-14	128	MW10I	05/05/2017	34466 39175	Vinyl chloride		0.02	0.2	0.43	ug/L ug/L	
500-127911-14	128	MW101	05/05/2017	81551	Xylenes, Total		400		0.22	ug/L	
500-127911-15	131	MW13I	05/05/2017	34668	Dichlorodifluoromethane		200		0.67	ug/L	
500-127911-15	131	MW13I	05/05/2017	81607	Tetrahydrofuran		10	50	1.9	ug/L	
500-127911-16	133	MW14S	05/05/2017	77562	1,1,1,2-Tetrachloroethane		7	70	0.46	ug/L	
500-127911-16	133	MW14S	05/05/2017	34506	1,1,1-Trichloroethane		40	200	0.38	ug/L	
500-127911-16	133	MW14S	05/05/2017	34516	1,1,2,2-Tetrachloroethane		0.02	0.2	0.4	ug/L	
500-127911-16	133	MW14S	05/05/2017	34511	1,1,2-Trichloroethane		0.5	5	0.35	ug/L	
500-127911-16	133	MW14S	05/05/2017	34496	1,1-Dichloroethane		85	850	0.41	ug/L	
500-127911-16	133	MW14S	05/05/2017	34501	1,1-Dichloroethene		0.7	7	0.39	ug/L	
500-127911-16	133	MW14S	05/05/2017	77168	1,1-Dichloropropene				0.3	ug/L	
500-127911-16	133	MW14S	05/05/2017	77613	1,2,3-Trichlorobenzene				0.46	ug/L	
500-127911-16	133	MW14S	05/05/2017	77443	1,2,3-Trichloropropane		12	60	0.41	ug/L	
500-127911-16	133	MW14S	05/05/2017	34551	1,2,4-Trichlorobenzene		14	70	0.34	ug/L	

Stoughton I	LF - 252	16022								
Sample No	Well ID	Well Name	Date Sampled	Parameter	Description	RESULT		ES	LOD	Units
500-127911-16	133	MW14S	05/05/2017	77222	1,2,4-Trimethylbenzene		96	480	0.36	ug/L
500-127911-16 500-127911-16	133 133	MW14S MW14S	05/05/2017 05/05/2017	38437 77651	1,2-Dibromo-3-Chloropropane 1,2-Dibromoethane		0.02 0.005	0.2 0.05	2 0.39	ug/L ug/L
500-127911-16	133	MW14S	05/05/2017	34536	1,2-Dichlorobenzene		60	600	0.39	ug/L
500-127911-16	133	MW14S	05/05/2017	32103	1,2-Dichloroethane		0.5	5	0.39	ug/L
500-127911-16	133	MW14S	05/05/2017	34541	1,2-Dichloropropane		0.5	5	0.43	ug/L
500-127911-16	133	MW14S	05/05/2017	77226	1,3,5-Trimethylbenzene		96	480	0.25	ug/L
500-127911-16 500-127911-16	133 133	MW14S MW14S	05/05/2017 05/05/2017	34566 77173	1,3-Dichlorobenzene		120	600	0.4 0.36	ug/L
500-127911-16	133	MW14S	05/05/2017	34571	1,3-Dichloropropane 1,4-Dichlorobenzene		15	75	0.36	ug/L ug/L
500-127911-16	133	MW14S	05/05/2017	77170	2,2-Dichloropropane				0.44	ug/L
500-127911-16	133	MW14S	05/05/2017	77275	2-Chlorotoluene				0.31	ug/L
500-127911-16	133	MW14S	05/05/2017	77277	4-Chlorotoluene			_	0.35	ug/L
500-127911-16 500-127911-16	133 133	MW14S MW14S	05/05/2017	34030	Benzene Bromobenzene		0.5	5	0.15	ug/L
500-127911-16	133	MW143	05/05/2017 05/05/2017	81555 77297	Bromochloromethane				0.36 0.43	ug/L ug/L
500-127911-16	133	MW14S	05/05/2017	32101	Bromodichloromethane		0.06	0.6	0.37	ug/L
500-127911-16	133	MW14S	05/05/2017	32104	Bromoform		0.44	4.4	0.48	ug/L
500-127911-16	133	MW14S	05/05/2017	34413	Bromomethane		1	10	0.8	ug/L
500-127911-16 500-127911-16	133 133	MW14S MW14S	05/05/2017 05/05/2017	32102 34301	Carbon tetrachloride Chlorobenzene		0.5 20	5 100	0.38 0.39	ug/L ug/L
500-127911-16	133	MW14S	05/05/2017	34311	Chloroethane		80	400	0.55	ug/L
500-127911-16	133	MW14S	05/05/2017	32106	Chloroform		0.6	6	0.37	ug/L
500-127911-16	133	MW14S	05/05/2017	34418	Chloromethane		3	30	0.32	ug/L
500-127911-16	133	MW14S MW14S	05/05/2017	77093	cis-1,2-Dichloroethene		7	70 0.4	0.41	ug/L
500-127911-16 500-127911-16	133 133	MW14S MW14S	05/05/2017 05/05/2017	34704 32105	cis-1,3-Dichloropropene Dibromochloromethane		0.04 6	0.4 60	0.42 0.49	ug/L ug/L
500-127911-16	133	MW14S	05/05/2017	77596	Dibromomethane		Ū	00	0.27	ug/L
500-127911-16	133	MW14S	05/05/2017	34668	Dichlorodifluoromethane		200	1000	0.67	ug/L
500-127911-16	133	MW14S	05/05/2017	77119	Dichlorofluoromethane				0.38	ug/L
500-127911-16	133	MW14S	05/05/2017	78113	Ethylbenzene		140	700	0.18	ug/L
500-127911-16 500-127911-16	133 133	MW14S MW14S	05/05/2017 05/05/2017	34391 81577	Hexachlorobutadiene Isopropyl ether				0.45 0.28	ug/L ug/L
500-127911-16	133	MW14S	05/05/2017	77223	Isopropylbenzene				0.39	ug/L
500-127911-16	133	MW14S	05/05/2017	78032	Methyl tert-butyl ether		12	60	0.39	ug/L
500-127911-16	133	MW14S	05/05/2017	34423	Methylene Chloride		0.5	5	1.6	ug/L
500-127911-16	133	MW14S	05/05/2017	34696	Naphthalene		10	100	0.34	ug/L
500-127911-16 500-127911-16	133 133	MW14S MW14S	05/05/2017 05/05/2017	77342 77224	n-Butylbenzene N-Propylbenzene				0.39 0.41	ug/L ug/L
500-127911-16	133	MW14S	05/05/2017	77356	p-lsopropyltoluene				0.36	ug/L
500-127911-16	133	MW14S	05/05/2017	77350	sec-Butylbenzene				0.4	ug/L
500-127911-16	133	MW14S	05/05/2017	77128	Styrene		10	100	0.39	ug/L
500-127911-16	133	MW14S	05/05/2017	77353	tert-Butylbenzene		0.5	~	0.4	ug/L
500-127911-16 500-127911-16	133 133	MW14S MW14S	05/05/2017 05/05/2017	34475 81607	Tetrachloroethene Tetrahydrofuran		0.5 10	5 50	0.37 1.9	ug/L ug/L
500-127911-16	133	MW14S	05/05/2017	34010	Toluene		160	800	0.15	ug/L
500-127911-16	133	MW14S	05/05/2017	34546	trans-1,2-Dichloroethene		20	100	0.35	ug/L
500-127911-16	133	MW14S	05/05/2017	34699	trans-1,3-Dichloropropene		0.04	0.4	0.36	ug/L
500-127911-16	133	MW14S	05/05/2017	39180	Trichloroethene		0.5	5	0.16	ug/L
500-127911-16 500-127911-16	133 133	MW14S MW14S	05/05/2017 05/05/2017	34488 39175	Trichlorofluoromethane Vinyl chloride		698 0.02	3490 0.2	0.43 0.2	ug/L ug/L
500-127911-16	133	MW14S	05/05/2017	81551	Xylenes, Total		400		0.22	ug/L
500-127911-17	134	MW14I	05/05/2017	77562	1,1,1,2-Tetrachloroethane		7	70	0.46	ug/L
500-127911-17	134	MW14I	05/05/2017	34506	1,1,1-Trichloroethane		40	200	0.38	ug/L
500-127911-17	134	MW14I	05/05/2017	34516	1,1,2,2-Tetrachloroethane		0.02	0.2	0.4	ug/L
500-127911-17 500-127911-17	134 134	MW14I MW14I	05/05/2017 05/05/2017	34511 34496	1,1,2-Trichloroethane 1,1-Dichloroethane		0.5 85	5 850	0.35 0.41	ug/L ug/L
500-127911-17	134	MW14I	05/05/2017	34501	1,1-Dichloroethene		0.7	7	0.39	ug/L
500-127911-17	134	MW14I	05/05/2017	77168	1,1-Dichloropropene				0.3	ug/L
500-127911-17	134	MW14I	05/05/2017	77613	1,2,3-Trichlorobenzene				0.46	ug/L
500-127911-17 500-127911-17	134 134	MW14I MW14I	05/05/2017 05/05/2017	77443 34551	1,2,3-Trichloropropane 1,2,4-Trichlorobenzene		12 14	60 70	0.41 0.34	ug/L
500-127911-17	134	MW14I	05/05/2017	77222	1,2,4-Trimethylbenzene		96	480	0.34	ug/L ug/L
500-127911-17	134	MW14I	05/05/2017	38437	1,2-Dibromo-3-Chloropropane		0.02	0.2	2	ug/L
500-127911-17	134	MW14I	05/05/2017	77651	1,2-Dibromoethane		0.005	0.05	0.39	ug/L
500-127911-17	134	MW14I	05/05/2017	34536	1,2-Dichlorobenzene		60	600	0.33	ug/L
500-127911-17 500-127911-17	134 134	MW14I MW14I	05/05/2017 05/05/2017	32103 34541	1,2-Dichloroethane 1,2-Dichloropropane		0.5 0.5	5 5	0.39 0.43	ug/L ug/L
500-127911-17	134	MW14I	05/05/2017	77226	1,3,5-Trimethylbenzene		96	480	0.25	ug/L
500-127911-17	134	MW14I	05/05/2017	34566	1,3-Dichlorobenzene		120	600	0.4	ug/L
500-127911-17	134	MW14I	05/05/2017	77173	1,3-Dichloropropane				0.36	ug/L
500-127911-17	134	MW14I MW14I	05/05/2017	34571 77170	1,4-Dichlorobenzene		15	75	0.36	ug/L
500-127911-17 500-127911-17	134 134	MW141	05/05/2017 05/05/2017	77275	2,2-Dichloropropane 2-Chlorotoluene				0.44 0.31	ug/L ug/L
500-127911-17	134	MW14I	05/05/2017	77277	4-Chlorotoluene				0.35	ug/L
500-127911-17	134	MW14I	05/05/2017	34030	Benzene		0.5	5	0.15	ug/L
500-127911-17	134	MW14I	05/05/2017	81555	Bromobenzene				0.36	ug/L
500-127911-17	134	MW14I	05/05/2017	77297	Bromochloromethane		0.06	0.6	0.43	ug/L
500-127911-17 500-127911-17	134 134	MW14I MW14I	05/05/2017 05/05/2017	32101 32104	Bromodichloromethane Bromoform		0.06 0.44	0.6 4.4	0.37 0.48	ug/L ug/L
500-127911-17	134	MW14I	05/05/2017	34413	Bromomethane		1	10	0.40	ug/L
500-127911-17	134	MW14I	05/05/2017	32102	Carbon tetrachloride		0.5	5	0.38	ug/L
500-127911-17	134	MW14I	05/05/2017	34301	Chlorobenzene		20	100	0.39	ug/L
500-127911-17 500-127911-17	134 134	MW14I	05/05/2017	34311 32106	Chloroethane Chloroform		80 0.6	400 6	0.51	ug/L
500-127911-17 500-127911-17	134 134	MW14I MW14I	05/05/2017 05/05/2017	32106 34418	Chlorotorm Chloromethane		0.6 3	6 30	0.37 0.32	ug/L ug/L
500-127911-17	134	MW14I	05/05/2017	77093	cis-1,2-Dichloroethene		7	70	0.32	ug/L
500-127911-17	134	MW14I	05/05/2017	34704	cis-1,3-Dichloropropene		0.04	0.4	0.42	ug/L
500-127911-17	134	MW14I	05/05/2017	32105	Dibromochloromethane		6	60	0.49	ug/L
500-127911-17 500-127911-17	134 134	MW14I	05/05/2017	77596 34668	Dibromomethane	4.6	200	1000	0.27	ug/L
500-127911-17 500-127911-17	134 134	MW14I MW14I	05/05/2017 05/05/2017	34668 77119	Dichlorodifluoromethane Dichlorofluoromethane	4.6 12	200	1000	0.67	ug/L ug/L
500-127911-17	134	MW141	05/05/2017	78113	Ethylbenzene		140	700	0.18	ug/L
500-127911-17	134	MW14I	05/05/2017	34391	Hexachlorobutadiene				0.45	ug/L
500-127911-17	134	MW14I	05/05/2017	81577	Isopropyl ether				0.28	ug/L
500-127911-17	134	MW14I	05/05/2017	77223	lsopropylbenzene				0.39	ug/L

Stoughton											Ma
Sample No 500-127911-17	Well ID 134	Well Name MW14I	Date Sampled 05/05/2017	Parameter 78032	Description Methyl tert-butyl ether	RESULT	PAL 12	ES 60	LOD 0.39	Units ug/L	PAL
500-127911-17	134	MW14I	05/05/2017	34423	Methylene Chloride		0.5	60 5	0.39 1.6	ug/L ug/L	
500-127911-17	134	MW14I	05/05/2017	34696	Naphthalene		10	100	0.34	ug/L	
500-127911-17	134	MW14I	05/05/2017	77342	n-Butylbenzene				0.39	ug/L	
500-127911-17 500-127911-17	134 134	MW14I MW14I	05/05/2017 05/05/2017	77224 77356	N-Propylbenzene p-lsopropyltoluene				0.41 0.36	ug/L ug/L	
500-127911-17	134	MW141	05/05/2017	77350	sec-Butylbenzene				0.30	ug/L	
500-127911-17	134	MW14I	05/05/2017	77128	Styrene		10	100	0.39	ug/L	
500-127911-17	134	MW14I	05/05/2017	77353	tert-Butylbenzene		0.5	-	0.4	ug/L	
500-127911-17 500-127911-17	134 134	MW14I MW14I	05/05/2017 05/05/2017	34475 81607	Tetrachloroethene Tetrahydrofuran		0.5 10	5 50	0.37 1.9	ug/L ug/L	
500-127911-17	134	MW14I	05/05/2017	34010	Toluene		160	800	0.15	ug/L	
500-127911-17	134	MW14I	05/05/2017	34546	trans-1,2-Dichloroethene		20	100	0.35	ug/L	
500-127911-17	134	MW14I	05/05/2017	34699	trans-1,3-Dichloropropene		0.04	0.4	0.36	ug/L	
500-127911-17 500-127911-17	134 134	MW14I MW14I	05/05/2017 05/05/2017	39180 34488	Trichloroethene Trichlorofluoromethane		0.5 698	5 3490	0.16	ug/L ug/L	
500-127911-17	134	MW14I	05/05/2017	39175	Vinyl chloride		0.02	0.2	0.2	ug/L	
500-127911-17	134	MW14I	05/05/2017	81551	Xylenes, Total		400	2000	0.22	ug/L	
500-127911-2	997	Field Blank	05/05/2017	77562	1,1,1,2-Tetrachloroethane		7 40	70 200	0.46 0.38	ug/L	
500-127911-2 500-127911-2	997 997	Field Blank Field Blank	05/05/2017 05/05/2017	34506 34516	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane		40 0.02	200	0.38	ug/L ug/L	
500-127911-2	997	Field Blank	05/05/2017	34511	1,1,2-Trichloroethane		0.5	5	0.35	ug/L	
500-127911-2	997	Field Blank	05/05/2017	34496	1,1-Dichloroethane		85	850	0.41	ug/L	
500-127911-2 500-127911-2	997 997	Field Blank Field Blank	05/05/2017 05/05/2017	34501 77168	1,1-Dichloroethene 1,1-Dichloropropene		0.7	7	0.39 0.3	ug/L ug/L	
500-127911-2	997	Field Blank	05/05/2017	77613	1,2,3-Trichlorobenzene				0.3	ug/L	
500-127911-2	997	Field Blank	05/05/2017	77443	1,2,3-Trichloropropane		12	60	0.41	ug/L	
500-127911-2	997	Field Blank	05/05/2017	34551	1,2,4-Trichlorobenzene		14	70	0.34	ug/L	
500-127911-2 500-127911-2	997 997	Field Blank Field Blank	05/05/2017 05/05/2017	77222 38437	1,2,4-Trimethylbenzene 1,2-Dibromo-3-Chloropropane		96 0.02	480 0.2	0.36 2	ug/L ug/L	
500-127911-2	997	Field Blank	05/05/2017	77651	1,2-Dibromoethane		0.02	0.2	2 0.39	ug/L	
500-127911-2	997	Field Blank	05/05/2017	34536	1,2-Dichlorobenzene		60	600	0.33	ug/L	
500-127911-2	997	Field Blank	05/05/2017	32103	1,2-Dichloroethane		0.5	5	0.39	ug/L	
500-127911-2 500-127911-2	997 997	Field Blank Field Blank	05/05/2017 05/05/2017	34541 77226	1,2-Dichloropropane 1,3,5-Trimethylbenzene		0.5 96	5 480	0.43 0.25	ug/L ug/L	
500-127911-2	997	Field Blank	05/05/2017	34566	1,3-Dichlorobenzene		120	600	0.20	ug/L	
500-127911-2	997	Field Blank	05/05/2017	77173	1,3-Dichloropropane				0.36	ug/L	
500-127911-2	997	Field Blank	05/05/2017	34571	1,4-Dichlorobenzene		15	75	0.36	ug/L	
500-127911-2 500-127911-2	997 997	Field Blank Field Blank	05/05/2017 05/05/2017	77170 77275	2,2-Dichloropropane 2-Chlorotoluene				0.44 0.31	ug/L ug/L	
500-127911-2	997	Field Blank	05/05/2017	77277	4-Chlorotoluene				0.35	ug/L	
500-127911-2	997	Field Blank	05/05/2017	34030	Benzene		0.5	5	0.15	ug/L	
500-127911-2	997	Field Blank	05/05/2017	81555	Bromobenzene				0.36	ug/L	
500-127911-2 500-127911-2	997 997	Field Blank Field Blank	05/05/2017 05/05/2017	77297 32101	Bromochloromethane Bromodichloromethane		0.06	0.6	0.43 0.37	ug/L ug/L	
500-127911-2	997	Field Blank	05/05/2017	32104	Bromoform		0.44	4.4	0.48	ug/L	
500-127911-2	997	Field Blank	05/05/2017	34413	Bromomethane		1	10	0.8	ug/L	
500-127911-2 500-127911-2	997 997	Field Blank Field Blank	05/05/2017 05/05/2017	32102 34301	Carbon tetrachloride Chlorobenzene		0.5 20	5 100	0.38 0.39	ug/L	
500-127911-2	997	Field Blank	05/05/2017	34311	Chloroethane		80	400	0.55	ug/L ug/L	
500-127911-2	997	Field Blank	05/05/2017	32106	Chloroform		0.6	6	0.37	ug/L	
500-127911-2	997	Field Blank	05/05/2017	34418	Chloromethane		3	30	0.32	ug/L	
500-127911-2 500-127911-2	997 997	Field Blank Field Blank	05/05/2017 05/05/2017	77093 34704	cis-1,2-Dichloroethene cis-1,3-Dichloropropene		7 0.04	70 0.4	0.41 0.42	ug/L ug/L	
500-127911-2	997	Field Blank	05/05/2017	32105	Dibromochloromethane		6	60	0.49	ug/L	
500-127911-2	997	Field Blank	05/05/2017	77596	Dibromomethane				0.27	ug/L	
500-127911-2	997	Field Blank	05/05/2017	34668	Dichlorodifluoromethane		200	1000		ug/L	
500-127911-2 500-127911-2	997 997	Field Blank Field Blank	05/05/2017 05/05/2017	77119 78113	Dichlorofluoromethane Ethylbenzene		140	700	0.38 0.18	ug/L ug/L	
500-127911-2	997	Field Blank	05/05/2017	34391	Hexachlorobutadiene				0.45	ug/L	
500-127911-2	997	Field Blank	05/05/2017	81577	Isopropyl ether				0.28	ug/L	
500-127911-2	997	Field Blank	05/05/2017	77223	Isopropylbenzene		40	~~	0.39	ug/L	
500-127911-2 500-127911-2	997 997	Field Blank Field Blank	05/05/2017 05/05/2017	78032 34423	Methyl tert-butyl ether Methylene Chloride		12 0.5	60 5	0.39 1.6	ug/L ug/L	
500-127911-2	997	Field Blank	05/05/2017	34696	Naphthalene		10	100	0.34	ug/L	
500-127911-2	997	Field Blank	05/05/2017	77342	n-Butylbenzene				0.39	ug/L	
500-127911-2 500-127911-2	997 997	Field Blank Field Blank	05/05/2017	77224 77356	N-Propylbenzene p-lsopropyltoluene				0.41 0.36	ug/L ug/L	
500-127911-2 500-127911-2	997 997	Field Blank	05/05/2017 05/05/2017	77356	p-isopropyitoluene sec-Butylbenzene				0.36	ug/L ug/L	
500-127911-2	997	Field Blank	05/05/2017	77128	Styrene		10	100	0.39	ug/L	
500-127911-2	997	Field Blank	05/05/2017	77353	tert-Butylbenzene		o -	-	0.4	ug/L	
500-127911-2 500-127911-2	997 997	Field Blank Field Blank	05/05/2017 05/05/2017	34475 81607	Tetrachloroethene Tetrahydrofuran		0.5 10	5 50	0.37 1.9	ug/L ug/L	
500-127911-2	997 997	Field Blank	05/05/2017	34010	Toluene		160	50 800	0.15	ug/L ug/L	
500-127911-2	997	Field Blank	05/05/2017	34546	trans-1,2-Dichloroethene		20	100	0.35	ug/L	
500-127911-2	997	Field Blank	05/05/2017	34699	trans-1,3-Dichloropropene		0.04	0.4	0.36	ug/L	
500-127911-2 500-127911-2	997 997	Field Blank Field Blank	05/05/2017 05/05/2017	39180 34488	Trichloroethene Trichlorofluoromethane		0.5 698	5 3490	0.16	ug/L ug/L	
500-127911-2	997	Field Blank	05/05/2017	39175	Vinyl chloride		0.02	0.2	0.43	ug/L	
500-127911-2	997	Field Blank	05/05/2017	81551	Xylenes, Total		400	2000	0.22	ug/L	
500-127911-3	112	MW3D	05/04/2017	34668	Dichlorodifluoromethane	0.5	200	1000		ug/L	
500-127911-3 500-127911-4	112 115	MW3D MW4D	05/04/2017 05/04/2017	81607 34668	Tetrahydrofuran Dichlorodifluoromethane	6.5	10 200	50 1000	1.9 0.67	ug/L ug/L	
500-127911-4	115	MW4D MW4D	05/04/2017	81607	Tetrahydrofuran		10	50	1.9	ug/L	
500-127911-5	117	MW5D	05/04/2017	34668	Dichlorodifluoromethane		200	1000	0.67	ug/L	
500-127911-5	117	MW5D	05/04/2017	81607	Tetrahydrofuran		10	50	1.9	ug/L	
500-127911-6 500-127911-6	117 117	MW5D DUP MW5D DUP	05/04/2017 05/04/2017	34668 81607	Dichlorodifluoromethane Tetrahydrofuran		200 10	1000 50	0.67 1.9	ug/L ug/L	
500-127911-6	117	MW5D DOP MW7I	05/05/2017	34668	Dichlorodifluoromethane		200	50 1000		ug/L ug/L	
500-127911-7	119	MW7I	05/05/2017	81607	Tetrahydrofuran	6.9	10	50	1.9	ug/L	
500-127911-8	122	MW8I	05/05/2017	34668	Dichlorodifluoromethane		200	1000		ug/L	
500-127911-8 500-127911-9	122 124	MW8I MW9S	05/05/2017 05/05/2017	81607 77562	Tetrahydrofuran 1,1,1,2-Tetrachloroethane		10 7	50 70	1.9 0.46	ug/L ug/L	
500-127911-9	124	MW9S	05/05/2017	34506	1,1,1-Trichloroethane		7 40	200	0.46	ug/L ug/L	
500-127911-9	124	MW9S	05/05/2017	34516	1,1,2,2-Tetrachloroethane		0.02	0.2	0.4	ug/L	
500-127911-9	124	MW9S	05/05/2017	34511	1,1,2-Trichloroethane		0.5	5	0.35	ug/L	

May-17
PAL Exceeded? ES Exceeded?

Stoughton LI	F - 2521	6022									
Sample No	Well ID	Well Name	Date Sampled	Parameter	Description	RESULT	PAL	ES	LOD	Units	1
500-127911-9	124	MW9S	05/05/2017	34496	1,1-Dichloroethane		85	850	0.41	ug/L	
500-127911-9	124	MW9S	05/05/2017	34501	1,1-Dichloroethene		0.7	7	0.39	ug/L	
500-127911-9	124	MW9S	05/05/2017	77168	1,1-Dichloropropene				0.3	ug/L	
500-127911-9	124	MW9S	05/05/2017	77613	1,2,3-Trichlorobenzene				0.46	ug/L	
500-127911-9	124	MW9S	05/05/2017	77443	1,2,3-Trichloropropane		12	60	0.41	ug/L	
500-127911-9	124	MW9S	05/05/2017	34551	1,2,4-Trichlorobenzene		14	70	0.34	ug/L	
500-127911-9	124	MW9S	05/05/2017	77222	1,2,4-Trimethylbenzene		96	480	0.36	ug/L	
500-127911-9	124	MW9S	05/05/2017	38437	1,2-Dibromo-3-Chloropropane		0.02	0.2	2	ug/L	
500-127911-9	124	MW9S	05/05/2017	77651	1,2-Dibromoethane		0.005	0.05	0.39	ug/L	
500-127911-9	124	MW9S	05/05/2017	34536	1,2-Dichlorobenzene		60	600	0.33	ug/L	
500-127911-9	124	MW9S	05/05/2017	32103	1,2-Dichloroethane		0.5	5	0.39	ug/L	
500-127911-9	124	MW9S	05/05/2017	34541	1,2-Dichloropropane		0.5	5	0.43	ug/L	
500-127911-9	124	MW9S	05/05/2017	77226	1,3,5-Trimethylbenzene		96	480	0.25	ug/L	
500-127911-9	124	MW9S	05/05/2017	34566	1,3-Dichlorobenzene		120	600	0.4	ug/L	
500-127911-9	124 124	MW9S	05/05/2017	77173	1,3-Dichloropropane		45	75	0.36 0.36	ug/L	
500-127911-9	124	MW9S MW9S	05/05/2017	34571 77170	1,4-Dichlorobenzene		15	/5		ug/L	
500-127911-9 500-127911-9	124	MW9S MW9S	05/05/2017 05/05/2017	77275	2,2-Dichloropropane 2-Chlorotoluene				0.44 0.31	ug/L ug/L	
500-127911-9	124	MW9S	05/05/2017	77277	4-Chlorotoluene				0.31	ug/L ug/L	
500-127911-9	124	MW9S	05/05/2017	34030	Benzene		0.5	5	0.35	ug/L	
500-127911-9	124	MW9S	05/05/2017	81555	Bromobenzene		0.5	5	0.36	ug/L	
500-127911-9	124	MW9S	05/05/2017	77297	Bromochloromethane				0.43	ug/L	
500-127911-9	124	MW9S	05/05/2017	32101	Bromodichloromethane		0.06	0.6	0.37	ug/L	
500-127911-9	124	MW9S	05/05/2017	32104	Bromoform		0.44	4.4	0.48	ug/L	
500-127911-9	124	MW9S	05/05/2017	34413	Bromomethane		1	10	0.8	ug/L	
500-127911-9	124	MW9S	05/05/2017	32102	Carbon tetrachloride		0.5	5	0.38	ug/L	
500-127911-9	124	MW9S	05/05/2017	34301	Chlorobenzene		20	100	0.39	ug/L	
500-127911-9	124	MW9S	05/05/2017	34311	Chloroethane		80	400	0.51	ug/L	
500-127911-9	124	MW9S	05/05/2017	32106	Chloroform		0.6	6	0.37	ug/L	
500-127911-9	124	MW9S	05/05/2017	34418	Chloromethane		3	30	0.32	ug/L	
500-127911-9	124	MW9S	05/05/2017	77093	cis-1,2-Dichloroethene		7	70	0.41	ug/L	
500-127911-9	124	MW9S	05/05/2017	34704	cis-1,3-Dichloropropene		0.04	0.4	0.42	ug/L	
500-127911-9	124	MW9S	05/05/2017	32105	Dibromochloromethane		6	60	0.49	ug/L	
500-127911-9	124	MW9S	05/05/2017	77596	Dibromomethane				0.27	ug/L	
500-127911-9	124	MW9S	05/05/2017	34668	Dichlorodifluoromethane	26	200	1000	0.67	ug/L	
500-127911-9	124	MW9S	05/05/2017	77119	Dichlorofluoromethane	30			0.38	ug/L	
500-127911-9	124	MW9S	05/05/2017	78113	Ethylbenzene		140	700	0.18	ug/L	
500-127911-9	124	MW9S	05/05/2017	34391	Hexachlorobutadiene				0.45	ug/L	
500-127911-9	124	MW9S	05/05/2017	81577	Isopropyl ether				0.28	ug/L	
500-127911-9	124	MW9S	05/05/2017	77223	Isopropylbenzene		40	~~	0.39	ug/L	
500-127911-9	124 124	MW9S	05/05/2017	78032	Methyl tert-butyl ether		12 0.5	60 5	0.39	ug/L	
500-127911-9 500-127911-9	124	MW9S MW9S	05/05/2017 05/05/2017	34423 34696	Methylene Chloride Naphthalene		0.5 10	5 100	1.6 0.34	ug/L	
500-127911-9	124	MW9S	05/05/2017	77342	n-Butylbenzene		10	100	0.34	ug/L ug/L	
500-127911-9	124	MW9S	05/05/2017	77224	N-Propylbenzene				0.39	ug/L	
500-127911-9	124	MW9S	05/05/2017	77356	p-lsopropyltoluene				0.41	ug/L	
500-127911-9	124	MW9S	05/05/2017	77350	sec-Butylbenzene				0.30	ug/L	
500-127911-9	124	MW9S	05/05/2017	77128	Styrene		10	100	0.39	ug/L	
500-127911-9	124	MW9S	05/05/2017	77353	tert-Butylbenzene		10	100	0.4	ug/L	
500-127911-9	124	MW9S	05/05/2017	34475	Tetrachloroethene		0.5	5	0.37	ug/L	
500-127911-9	124	MW9S	05/05/2017	81607	Tetrahydrofuran		10	50	1.9	ug/L	
500-127911-9	124	MW9S	05/05/2017	34010	Toluene		160	800	0.15	ug/L	
500-127911-9	124	MW9S	05/05/2017	34546	trans-1,2-Dichloroethene		20	100	0.35	ug/L	
500-127911-9	124	MW9S	05/05/2017	34699	trans-1,3-Dichloropropene		0.04	0.4	0.36	ug/L	
500-127911-9	124	MW9S	05/05/2017	39180	Trichloroethene		0.5	5	0.16	ug/L	
500-127911-9	124	MW9S	05/05/2017	34488	Trichlorofluoromethane		698	3490	0.43	ug/L	
500-127911-9	124	MW9S	05/05/2017	39175	Vinyl chloride		0.02	0.2	0.2	ug/L	
500-127911-9	124	MW9S	05/05/2017	81551	Xylenes, Total		400	2000	0.22	ug/L	

ATTACHMENT C

Field Data Form

Job. No. 25216022.00

I

By: Eli Sankey

Location: Stoughton, Wisconsin

Job Name: Stoughton City Landfill

Project Mgr. Leslie Busse

SCS ENGINEERS Page 1 of 2

Notes: 2017 Annual GW Monitoring

Well No.	DNR ID	Sample Date	Time Sampled	Depth to Water	Total Depth	Volume Purged	Odor	Color	Turb.	Dissolved Oxygen (ppm)	Temp. ([°] C)	Specific Conductivity (µs/cm)	Hq
Param #	I	I	. 1	I		' 1	-	2	3		10	94	400
MW3S	111	5/4/2017	1	8.74	19.4								
MW3D	112	5/4/2017	1330	8.74	73	50 gal	Slight	Rust	Mod.	0.32	9.0	793	7.53
MW3B	113	5/4/2017	I	9.63	95								
MW4S	114	5/4/2017	I	6.23	15.2								
MW4D	115	5/4/2017	1440	6.14	74	50 gal	Swampy	Black	Very	0.21	8.7	878	7.37
MW5S	116	5/4/2017	I	6.22	16.6								
MW5D	117	5/4/2017	1400	6.08	77	22 gal, dry	Swampy	Black	Very	0.4	8.9	717	7.58
MW7S	118	5/5/2017	I	3.79	15.1								
MW7I	119	5/5/2017	1150	0.00	60	Artesian	z	ပ	N	0.11	10.1	774	7.40
MW8S	120	5/4/2017	I	0.30	33								
MW8I	122	5/5/2017	1335	0.12	62.4	220 gal	z	U	z	0.28	9.9	898	7.27
MW8B	123	5/4/2017	I	0.93	39.5								
S6WM	124	5/5/2017	1510	1.11	13.4	11 gal, dry	≻	Lt. brown	Mod.	0.24	9.3	646	7.56
I6WM	125	5/5/2017	1600	1.48	47.2	30 gal	z	U	z	0.12	9.8	626	7.44
MW9B	126	5/5/2017	1540	1.25	83.3	60 +	z	U	z	3.79	9.5	635	7.34
MW10S	127	5/5/2017	1315	3.18	16.9	4 gal, dry	Slight	Lt. gray	Very	4.14	8.0	523	7.29
MW101	128	5/5/2017	1245	0.00	I	Artesian	z	U	z	0.32	10.0	647	7.25
MW13S	130	5/5/2017	I	3.90	16.7								

Job Name: Stoughton City Landfill

Job. No. 25216022.00

By: Eli Sankey

Project Mgr. Leslie Busse

Ē

Notes: 2017 Annual GW Monitoring

Location: Stoughton, Wisconsin

Well No.	DNR ID	Sample Date	Time Sampled	Depth to Water	Total Depth	Volume Purged	Odor	Color	Turb.	Dissolved Oxygen (ppm)	Temp. ([°] C)	Specific Conductivity (µs/cm)	Hq
Param #	I	I	I	I	I	-	٢	2	3		10	94	400
MW13I	131	5/5/2017	1215	0.00	I	Artesian	z	U	N	0.26	9.8	528	7.60
MW14S	133	5/5/2017	1415	2.94	26.2	8 gal, dry	Slight	Lt. brown	Mod.	1.16	9.2	321	7.68
MW14I	134	5/5/2017	1430	1.68	51.2	50 gal	z	U	Z	0.11	10.3	652	7.40
MW14D	135	5/4/2017	I	1.24	89.6								
MW15S	136	5/4/2017	I	4.02	16.6								
MW15I	137	5/4/2017	-	1.57	57.4								
MW15D	138	5/4/2017	-	1.68	85.9								
MW5D DUF		5/4/2017	1100		-	1	1				-	-	1
MW9I DUP	1	5/4/2017	1250	1	I	-	1	I					I
Trip Blank	666	5/4/2017	800	:	1	-	I				-	-	1
Field Blank	997	5/4/2017	1530		-	1	I	-			1	1	1

Comments: Purge water from MW9I was containerized and disposed of at MMSD.

 $i \ 2012 \ b \ 2012$

SCS ENGINEERS Page 2 of 2 APPENDIX B: Support Agency O&M Contractor Semiannual Facility Inspection Report

608 224-2830 FAX 608 224-2839 www.scsengineers.com

SCS ENGINEERS

November 14, 2017 File No. 25216022.00

Mr. Jason Lowery Wisconsin Department of Natural Resources 101 S. Webster St. P.O. Box 7921 Madison, WI 53707-7921

Subject: Semiannual Facility Inspection Report Stoughton City Landfill FID #113005950 – License #133 USEPA ID #WID980901219 WDNR Purchase Order #37000-000000548

Dear Mr. Lowery:

This letter provides the semiannual facility inspection report information for the Stoughton City Landfill site. We have included two copies for you and an electronic copy on a compact disk. One copy has been mailed to the U.S. Environmental Protection Agency (USEPA).

SCS Engineers (SCS) performed the gas probes monitoring on June 16, August 16, and October 27, 2017. SCS performed the semiannual facility inspection at the site on October 27, 2017. The semiannual facility inspection reports are included in **Attachment B**. The following inspection items were noted:

Bimonthly Gas Monitoring – The bimonthly monitoring of the three perimeter gas probes was conducted on June 16, August 16, and October 27, 2017. All gas probes except for GMP-1 had methane readings of 0.0 percent. On October 27, GMP-1 had a methane reading of 0.4 percent which is 8 percent of the lower explosive limit (LEL) of 5 percent as methane. Based on the monitoring results from these three events, it does not appear that high concentration landfill gas, exceeding the LEL of 5 percent for methane, is migrating to the south of the landfill towards occupied homes. The completed bimonthly gas monitoring report forms are included in **Attachment A**.

Landfill Cover – The quality of the vegetative cover across the landfill was in very good condition. The annual cover mowing of the facility occurred on August 31, 2017. No bare spots, signs of erosion, or sparse vegetation were found (photographs in **Attachment C**). No drainage gullies were apparent on the cover. No rutting was observed as noted in the last semiannual inspection on May 2, 2017. Several small burrow holes were present near MW-2D. The burrow holes appear shallow and there is no evidence that the cap has been compromised.

Mr. Jason Lowery November 14, 2017 Page 2

Storm Water Management System – No visible erosion was found in the drainage channels. The culverts were undamaged. Dense vegetation, including large shrubs, are present near many of the culverts restricting flow. A map depicting these culvert locations is included in **Attachment D**. Best management practices would be to clear this vegetation and debris in front of the culverts to allow for unrestricted storm water flow.

Landfill Gas Venting System – Gas vent eight (GV-8) was inspected and remains in a fixed upright position. No damage was found at any of the remaining gas venting wells, and no stressed vegetation was found near any of the wells. Gas vent well screens were clear. Labels are to be attached to the gas vents for easy identification.

Perimeter Security Fencing – The chain-link fencing on the north and east sides of the site were in good condition. Both access gates are in good condition, and the padlocks operated properly. Signage was present and legible on both access gates. The wooden perimeter fence was in good condition with the exception of one broken slat located on the southwest side of property.

Monitoring Wells and Wellhead Covers – No signs of tampering or damage were found at any of the site monitoring wells. All monitoring wells were properly covered and locked. Identification markings were missing or illegible on some of the monitoring wells. All un-marked monitoring wells should be labeled during the next monitoring event. Three artesian monitoring wells: OW-2, MM-7I, and MW-13I were flowing. Standing water was present around the wells and the casings were corroding. Best management practices would be stop, or greatly reduce, water flowing from the wells by property capping the wells.

Access Road – The site access road was in good condition with no ruts, or erosion noted. The site inspection was conducted during dry conditions so ponding was not detectable; however, no major grading issues were visible.

If you have any questions about this report or any other aspect of the project, please call us at 608-224-2830.

Sincerely,

Sang

Eli Sankey Associate Engineer SCS ENGINEERS

ES/AV/LAB

esta Busse

Leslie A. Busse, PE Senior Project Manager SCS ENGINEERS

Mr. Jason Lowery November 14, 2017 Page 3

cc: Ms. Giang Van Nguyen, USEPA Region V

Enclosures: Attachment A – Bimonthly Gas Monitoring Report Forms Attachment B – Semiannual Facility Inspection Form Attachment C – Photograph Log Attachment D – Culvert Maintenance Locations CD Containing Electronic Copy of Report

I:\25216022.00\Deliverables\Facility Inspection Report\171027_Facility Inspection Report\171027_Facility Inspection Report.docx

ATTACHMENT A

Bimonthly Gas Monitoring Report Forms

Gas Probe Monitoring Report Stoughton City Landfill Stoughton, Wisconsin

Probe	%LEL (as methane)	% Oxygen	% CO ₂	PID (ppm)	Pressure (inches of water)
GMP-1	0.0	20.2	0.2	0.0	+0.01
GMP-2	0.0	19.6	1.2	0.0	-0.02
GMP-3	0.0	19.7	1.4	0.0	0.00

Instruments Used: <u>GEM 5000/HNU</u>

Operator: Paul Grover

017	5, 2017	16,	June	Date:
-----	---------	-----	------	-------

Weather Conditions:

Barometric Pressure (inches of Hg): <u>29.70</u> Temperature (Degrees F): <u>87°F</u>

Relative Humidity (%): <u>42</u> Dewpoint (Degrees F): <u>61°F</u> Wind: <u>S@9mph</u>

Sky Conditions: Sunny

Ground Conditions:

_____Snow X___No Snow ____Frozen Ground/Frost

Gas Probe Monitoring Report Stoughton City Landfill Stoughton, Wisconsin

Probe	%LEL (as methane)	% Oxygen	% CO ₂	PID (ppm)	Pressure (inches of water)
GMP-1	0.0	20.6	0.4	0.0	0.03
GMP-2	0.0	19.9	1.3	0.0	0.00
GMP-3	0.0	20.4	0.8	0.0	0.00

Instruments Used: Gem 5000

Operator: Paul Grover

Date:	August 16, 2017
	-

Weather Conditions:

Barometric Pressure (inches of Hg): <u>29.87</u> Temperature (Degrees F): <u>83°F</u>

Relative Humidity (%): <u>63</u> Dewpoint (Degrees F): <u>69°F</u> Wind: <u>ESE@12</u>

Sky Conditions: Partly Sunny

Ground Conditions:

_____Snow X___No Snow _____Frozen Ground/Frost

Gas Probe Monitoring Report Stoughton City Landfill Stoughton, Wisconsin

Probe	%LEL (as methane)	% Oxygen	% CO ₂	PID (ppm)	Pressure (inches of water)
GMP-1	8.0	19.9	2.3	0.0	-0.02
GMP-2	0.0	20.2	0.9	0.0	0.00
GMP-3	0.0	20.0	2.7	0.0	-0.01

Instruments Used: <u>Gem 5000, MiniRAE PID</u>

Operator: Eli Sankey

Date: October 27, 2017

Weather Conditions:

Barometric Pressure (inches of Hg): <u>29.67</u> Temperature (Degrees F): <u>37°F</u>

Relative Humidity (%): <u>78</u> Dewpoint (Degrees F): <u>31°F</u> Wind: <u>SW@20</u>

Sky Conditions: Overcast

Ground Conditions:

_____Snow X___No Snow ____Frozen Ground/Frost

ATTACHMENT B

Semiannual Facility Inspection Form

Operation and Maintenance Semi Annual Inspection Report Stoughton City Landfill Stoughton, Wisconsin

Inspector	Eli Sankey					
Company	SCS Enginners	Weather	Clear	P. Cloudy	<u>Cloudy</u>	Fog
Project	Stoughton LF Monitoring	Temperature	Low	<u>37 F</u>		
Location	Stoughton, WI	Wind	Calm	Medium	<u>High</u>	
Date/Time	10/27/17, 1:00 P.M	Precipitation	None	Light	Moderate	Heavy
Project No.	25216022.0		Snow	Light	Moderate	Heavy

Type of Inspection Routine 🛛 Special 🗌

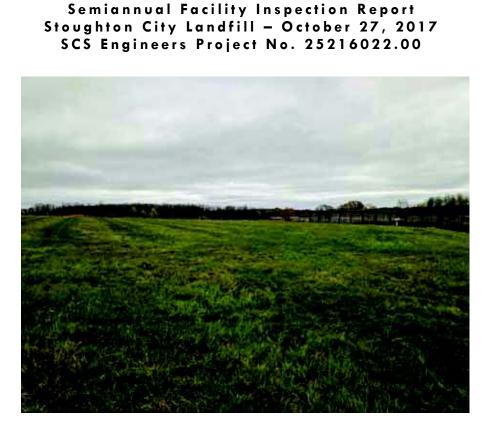
Persons/Equipment Present: Jason Lowry (WDNR), Giang Van Nguyen (EPA), Eli Sankey (SCS Engineers)

General Description of Site Conditions: <u>The cover area was dry however perimeter ditches contained some water</u>. <u>Cover vegitation was in good condition and an acceptable length</u>.

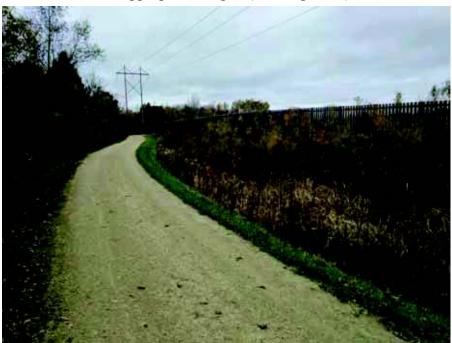
Specific Inspection Items	Potential Problem Areas	Status *	Notes
Perimeter Security Fencing	Broken or missing wood slats, torn chain link fabric.	2	Partial slat missing on the SW fence line neat GMP-3. Additonal signage along the west perimeter fence near the disc golf hole.
Entrance Gate and Locking Mechanism	Lock broken/missing, mechanism inoperative.	1	Lock present and functional.
Monitoring Wells and Wellhead Covers	Signs of tampering, casing damaged, lock missing.	2	Cap artesian wells: OW2, 7I, 13I. Water is corroding well casings. Label all MW's, only several wells are curerntly labeled.
Final Cover Vegetation	Bare spots, stressed vegetation, deep rooted vegetation.		Vegetation appear heathly, no bare spots obsreved.
Final Cover Slope (explain below)	Gullies, lack of vegetation, subsidence, ponding.	1	No erosion observed, slopes in good conditon.
Evidence of Burrowing Animals	Damage to final cover, evidence of waste.	2	Fill burrow holes near MW-2D with soil. Burrow holes appear to be shallow, no evidence that the cover has been compromised.
Stormwater Drainage Channels	Gullies, erosion, debris, culvert blocked.	2	Several large shrubs impeding storm water flow into the culvert near the south entrance gate.
Landfill Gas Venting System	Damaged or blocked vent risers, stressed vegetation.	2	Landfill gas vents should be labeled.
Access Road	Ponding, rutting, erosion.	1	Access road in good condition no issues observed.
Cover Mowing and Tall Vegetation Removal (October Inspection Only)	Mowing and tall vegetation removal done to specified vegetation hight, any missed areas	1	Vegetation is an acceptable height on landfill cap.

* (1) Acceptable - No Maintenance Required. (2) Not Acceptable - Identify Required Maintenance.

Summary of Deficiencies and/or Corrective Actions: <u>Label GV's and MW's, repair slat near GMP-3, cap artesian wells, fill burrow holes near</u> <u>MW-2D, and remove shrubs in drainage way near south entrance gate.</u>


Signature of Inspector Eli Sankey

Date 10/27/17


C:\Users\4070eis\Desktop\Stoughton Landfill\171027\Operation and Maintenance Semiannual Inspection Report_171027.docx

ATTACHMENT C

Photograph Log

Photo 1: Photo taken just inside the south access gate. Final cover vegetation was in good condition and of the appropriate length (Looking north)

Photo 2: Gravel drive and storm water channel on the south side of the landfill (Looking west)

Semiannual Facility Inspection Report Stoughton City Landfill - October 27, 2017

Photo 3: GV-1 is functional but is missing an identification label (Looking south)

Photo 4: Animal burrow present near MW-2D (looking down)

Semiannual Facility Inspection Report Stoughton City Landfill - October 27, 2017

Photo 5: Large shrubs inhibiting water flow into culvert near the south gate entrance (Looking west)

West perimeter security fencing depicted, slats were recently repaired (Looking Photo 6: east)

Semiannual Facility Inspection Report Stoughton City Landfill - October 27, 2017

Photo 7: OW-2 casing flooded with water, well plug was floating (Looking down)

MW-5D depicted, well locked and no signs of tampering (Looking east) Photo 8:

ATTACHMENT D

Culvert Maintenance Locations

APPENDIX C: Five-year Review Public Notice

Bovs lacrosse

Vikings look to finally get past Catholic Memorial at state

The Stoughton boys lacrosse team returns 17 letterwinners this season after winning a Madison Area white lacrosse conference championship, with a 13-1 record.

Stoughton (20-4 overall) went on to earn a state championship appear-ance, where the team lost to Catholic Memorial for the third straight year. "Overall, this a group that is obvi-

ously led by a very strong senior class: Dylan Gross, Zach Scheel, Sam Onsager and Nathan Krueger," head coach Josh Wollin said. "This roup is very motivated from losing the state championship game three years in a row. I have not seen a more motivated and focused squad in my six years as head coach." The Vikings are expecting the

same success this season with all three starting defensemen returning, including captains Scheel and Krueger, as well as junior Matt Krc-ma. Stoughton also welcomes back junior captain face-off/defensive middie Quinn Link.

New starters include: junior attackers Cam Furseth and Matt Read, junior middies Chase Kotlowski and Isaak Olson, long stick sophomore midfielder Drew Pasold and sophomore goalie Jack Sundby.

The team's offensive returning starters include attackman Onsager, who is also a captain, and offensive

What's next Stoughton boys lacrosse host

Sauk Prairie in a conference game at 5 p.m. Thursday.

middle Gross, who has a surprising

15 goals so far. Stoughton has played in three games so far this season, including a doubleheader in which the Vikings beat Neenah 11-10 but fell 9-5 against defending Division 1 state champion Kettle Moraine. Stoughton opened the conference season last Friday, beating La Crosse 17-4.

Furseth is second on the team in goals so far this season with six, while Read and Kotlowski each have three goals, and Onsager and Olson have two apiece.

Stoughton 15, Baraboo 4

Gross (four), Read (three) and Onsager (two) combined for nine goals Monday in a 15-4 blowout of Baraboo. Furseth led the team with four assists

Link (seven) and Krueger (six) collected 13 ground balls. Link also won have of Stoughton's 22 faceoffs. Sunby stopped seven of 12 shots on goal.

The Stoughton High School baseball team travels to

Monroe at 5 p.m. Thursday and hosts Portage in a Bad-

ger crossover at 5 p.m. Tuesday, April 18

Returning letterwinners for the Stoughton lacrosse team (front, from left) are: Jake Mathias, Cam Furseth, Isaak Olson, Dylan Gross, Drew Pasold, Chase Kotlowski and Quinn Link; (back) Chad Clark, Matt Krcma, Carson Roisum, Nathan Krueger, Luke Geister-Jones, Sam Onsager, Matt Read, Jack Sunby and Zach Scheel; (not pictured) Jake Lenz

Baseball Stoughton drops fifth straight to open season ANTHONY IOZZO What's next Assistant sports edito

The Stoughton High School baseball team is still searching for its first win of the season following Tues-day's 6-4 loss to Badger South rival Milton.

The host Vikings scored three runs in the bottom of the seventh, but that is where their rally ended.

Stoughton's offense man-aged just five hits, but the Vikings threatened with 13 total baserunners with Milton committing six errors. In the seventh, Mitch Full-

er and Brady Schipper both scored on an error, and Matt Curry hit an RBI single to plate Andy Johnson.

Alec Tomzcyk put Stough-ton up 1-0 early with an RBI single that scored Dillon Nowicki

Nowicki took the loss. He allowed no earned runs on five hits in 5 1/3 innings, striking out six and walking

Noah Schafer finished the game and allowed an earned run on one hit in 1 2/3 innings, striking out one.

Dakota Cude earned the win for Milton. He went the distance and allowed one earned run on five hits, striking out six and walking two.

Monona Grove 4, Stoughton 3

The Vikings opened the Badger South Conference season Thursday and fell 4-3 against Monona Grove at Firemen's Park in Cottage Grove.

Stoughton led 3-2 in the bottom of the seventh, but the Silver Eagles scored twice for the win.

Marshall Lehman hit the game-winning RBI single on a bunt that scored Jackson Thomsen.

Graham Arndt scored on an error to tie the game with one out.

Johnson scored on a wild pitch in the sixth to give the Vikings a 3-2 lead.

Stoughton also took a onerun lead in the third on an RBI single by Nick Waldorf (3-for-4) that plated Schipper (2-for-4), but the Silver Eagles tied the game in the bottom of the inning when Mitch Kelsey scored on an error

Waldorf also brought home Schipper on an RBI single in the first, but the lead was once again short lived as Kolten Koch (2-for-4) scored on an error in the bottom of the inning. Bryan Wendt (2-for-3) also

had multiple hits for Stoughton.

Ethan Sehmer took the loss. He allowed an earned run on four hits in 1 1/3 innings, striking out two and walking one. Nowicki started and

allowed no earned runs on two hits and three walks. He struck out seven in five innings

Eau Claire North 15, Stoughton 0

The Vikings opened a tournament at the Woodside Sports Complex in the Wis-consin Dells Friday and lost 15-0 to Eau Claire North, which is ranked No. 3 in the state

Brock Wanninger took the loss after allowing nine earned runs on 13 hits in 4 1/3 innings, striking out four and walking five. Schipper struck out one and allowed a hit and no earned runs in 1/3 of an inning, and Saxton Shore allowed a hit in 1/3 of an inning.

Carson Lemanski earned the win with a strikeout in one inning. Stoughton was held to four hits.

Menomonie 12, Stoughton 9

The Vikings offense did much better Saturday morning in the tournament, but Stoughton still fell 12-9 to Menomonie.

Tomczyk (triple) and Nowicki both had two RBIs, and Schipper was 2-for-3 with a triple and a run scored. Shore, Waldorf and Wendt all added RBIs

Cole Mensing picked up the win for Menomonie. He allowed seven earned runs on seven hits in 6 2/3 innings, striking out eight and walk-

ing seven. Schafer took the loss for Stoughton. He allowed five earned runs on three hits and seven walks in 4 1/3 innings. striking out three.

Schipper pitched in relief and allowed three earned runs on six hits and a walk in 2 2/3 innings, striking out one.

E.C. Memorial 11, Stoughton 6

The Vikings dropped to 0-4 overall with an 11-6 loss to state honorable mention Eau Claire Memorial Saturday afternoon.

Stoughton scored five runs in the final three innings, but

wasn't enough. Schipper finished 2-for-3 with a double and two RBIs, and Nowicki was 2-for-3 with a run scored. Tomczyk was 3-for-4 with a double. two RBIs and a run scored.

Turn to Baseball/Page 12

Softball Vikes short in close games JEREMY JONES What's next

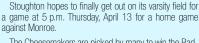
Sports editor

After graduating ace Holly Brickson from the circle this year, Stoughton softball coach Kristin Siget expected the opposition to put more balls in play this spring. And while that's been the case so far, it's the Vikings' bats that have yet to come around.

MG 3, Stoughton 2

Stoughton played well defensively Thursday but struggled to string hits togeth-er in a 3-2 loss at home against Monona Grove

"Defensively, we've only committed a couple of errors so far this season; it's the bats that haven't come along yet,' Siget said.


She attributed at least some of her team's struggles at the plate to only being able to get outside and hit so far this season.

"We still have yet to get outside and even practice on our field," said Siget whose varsity team played Thurs-day's game on the Stoughton JV field. "We've been hitting inside, but it's just not the same as getting outside and facing live pitching."

Scoreless through the first three innings, the Badger South debut turned into a back-and-forth game in the fourth and fifth innings, with Jordan Dahlhauser and Carly Patton putting the Silver Eagles on top for good after a lead-off single by Hannah Grossman.

Grossman singled over second base, Kayley Novotny and came around to score one out later on a Dahlhauser single. Patton followed that up, hitting a ball that caromed off Stoughton pitcher Mol-ly Skonning to give Monona Grove a 3-1 advantage. The Vikings, who left six

runners on base in the loss pulled within a run in the

The Cheesemakers are picked by many to win the Badger South this season. Stoughton will follow that up Monday, April 17 at home against Oregon.

gan Neuenfeld ricocheted a ball off the MG first baseman to score Maddy Brickson. Monona Grove pitcher

ton off-balance all night, sitting the Vikings down in order in the sixth. Stoughton

EPA and WDNR to Review

City of Stoughton, Wisconsin

status review of the Stoughton City Landfill Superfund site, of sites (at least every five years) where the cleanup has been These reviews are done to ensure that the cleanup continues to protect human health and the environment.

ways for EPA to operate the site cleanup more efficiently.

consolidating waste, capping the consolidated waste and the rest of the landfill, installing a passive landfill gas extraction system and fencing the site.

Landfill. The last five-year review report was completed for the site on April 15, 2013.

2018, will detail the site's progress. Further information about this review can be obtained by

contacting: Jason B. Lowery, Hydrogeologist

(608)267-7570

Jason.Lowery@wisconsin.gov Site-related documents are available for review at: Stoughton Public Library

bottom of the fifth when Mor-

Alyssa Guerton kept Stough-

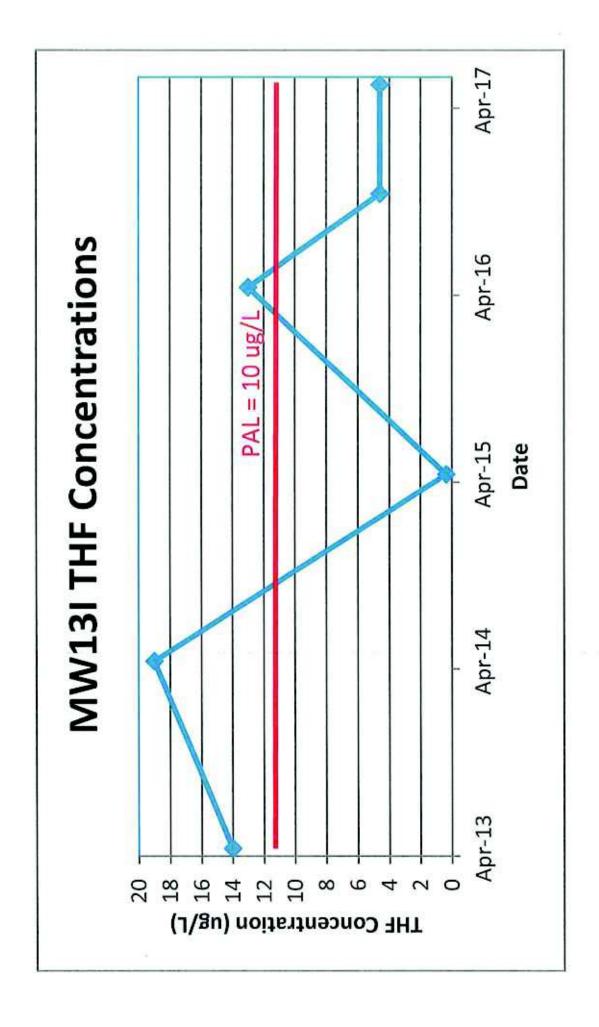
Turn to Softball/Page 12

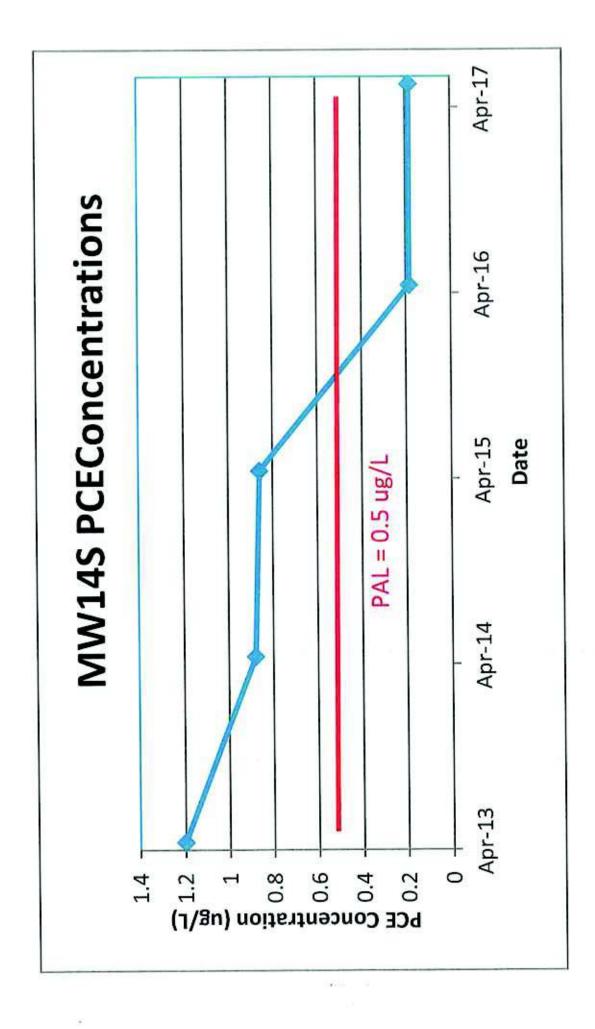
Stoughton City Landfill Superfund Site

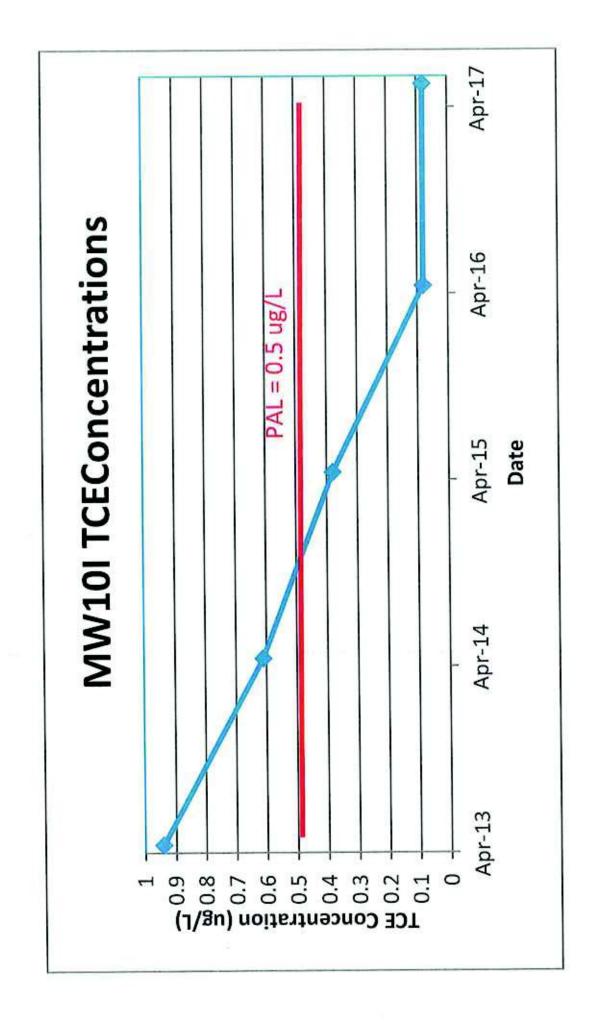
U.S. Environmental Protection Agency (EPA) and the Wisconsin Department of Natural Resources (WDNR) are conducting a Stoughton, Wis. The Superfund law requires regular reviews conducted but hazardous materials remain managed on site.

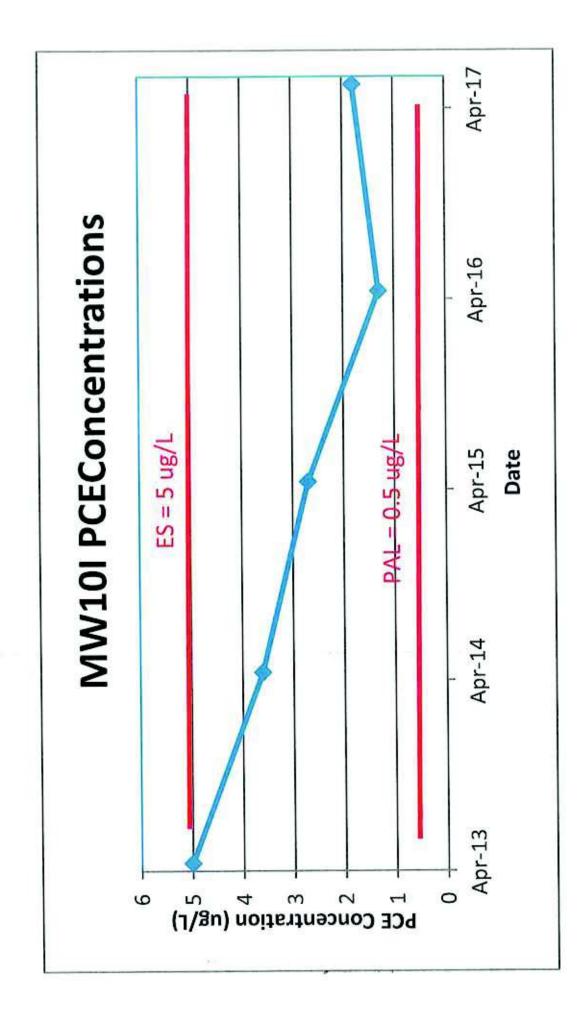
The review will include an evaluation of site background information, cleanup requirements, effectiveness of the cleanup and any anticipated future actions. It will also look at

EPA selected several cleanup actions for the site that were implemented: The landfill cleanup included excavating/

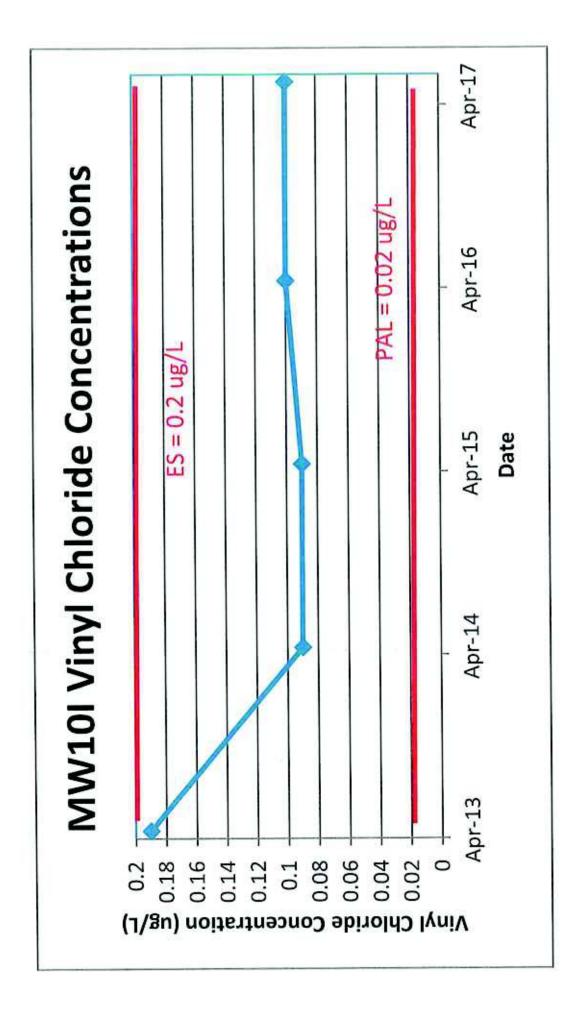

This is the fouth five-year review report for the Stoughton City

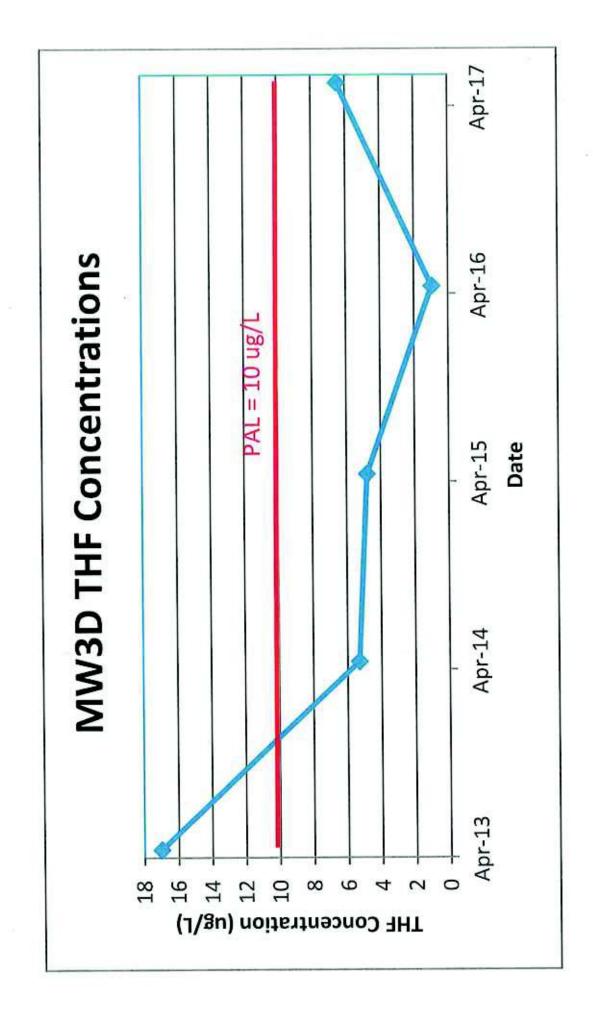

The five-year-review report, which will be available by April,

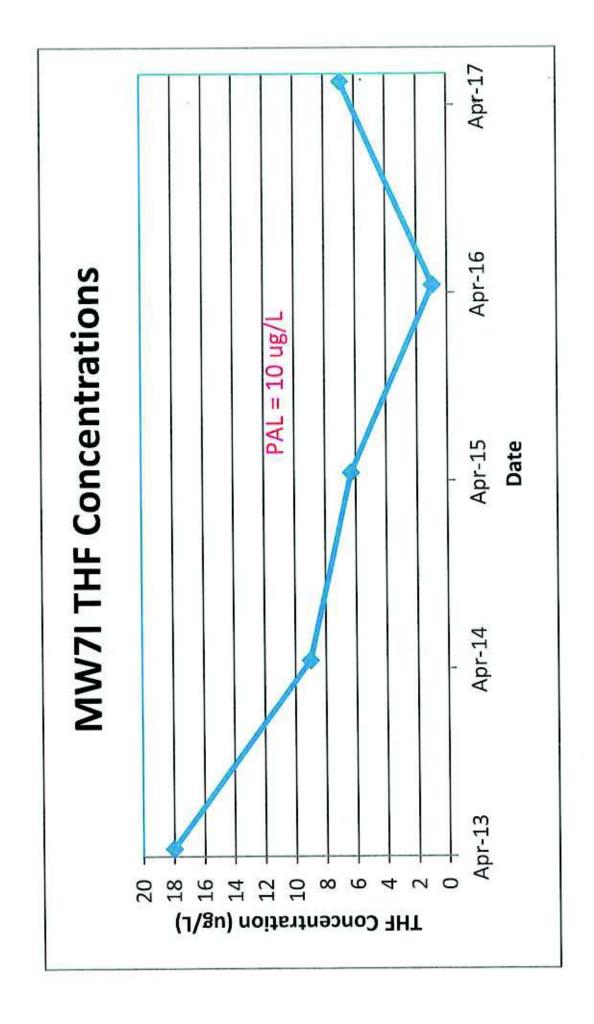

Wisconsin Department of Natural Resources

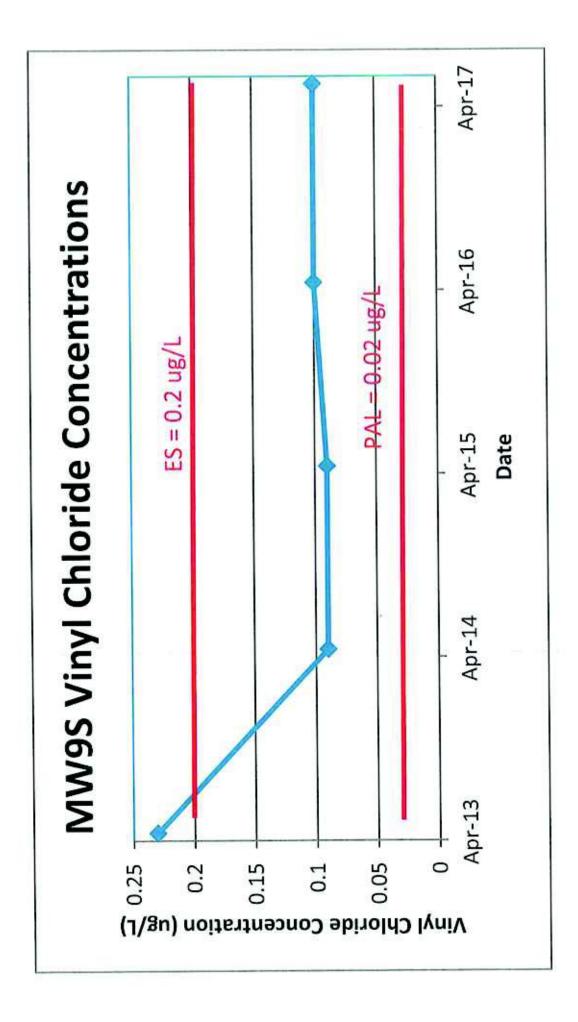

304 South Fourth St. • Stoughton, WI 53589

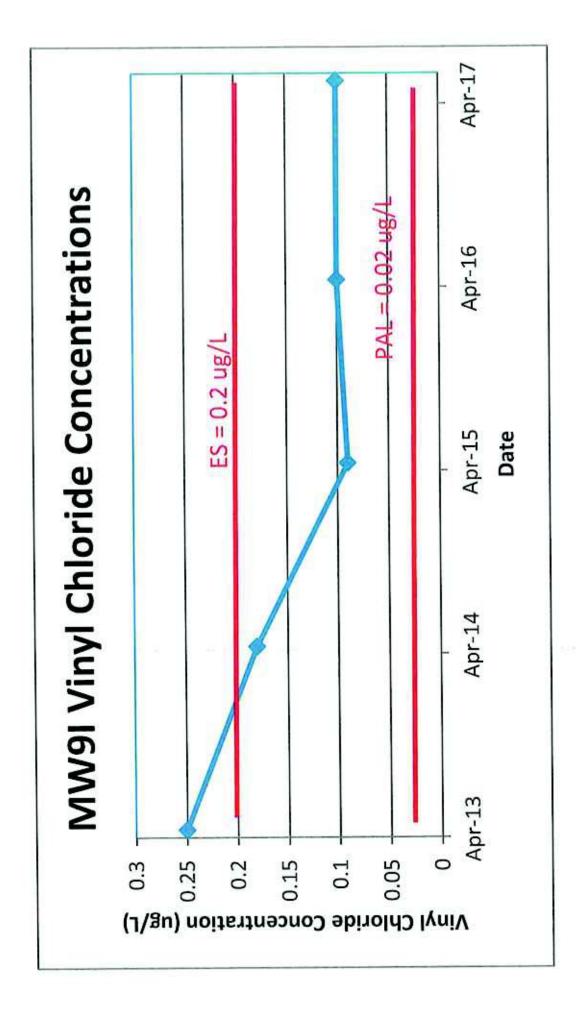
APPENDIX D: Data Plots For Groundwater and Gas Monitoring

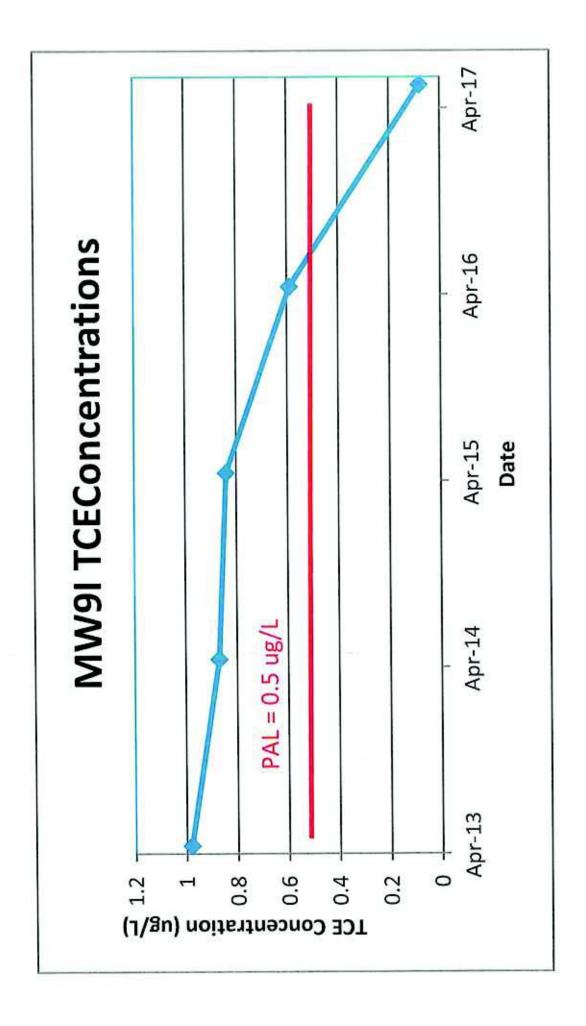


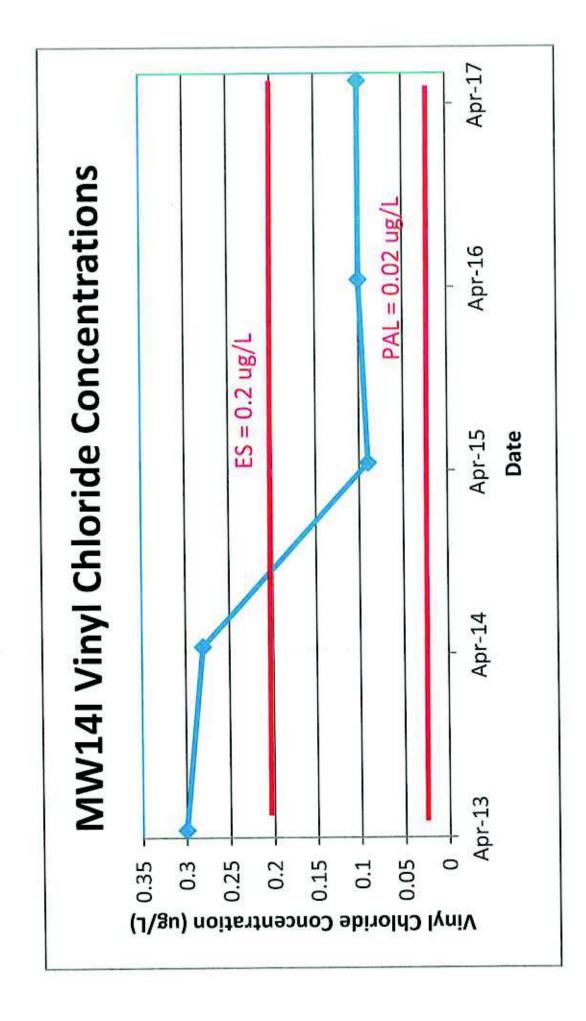


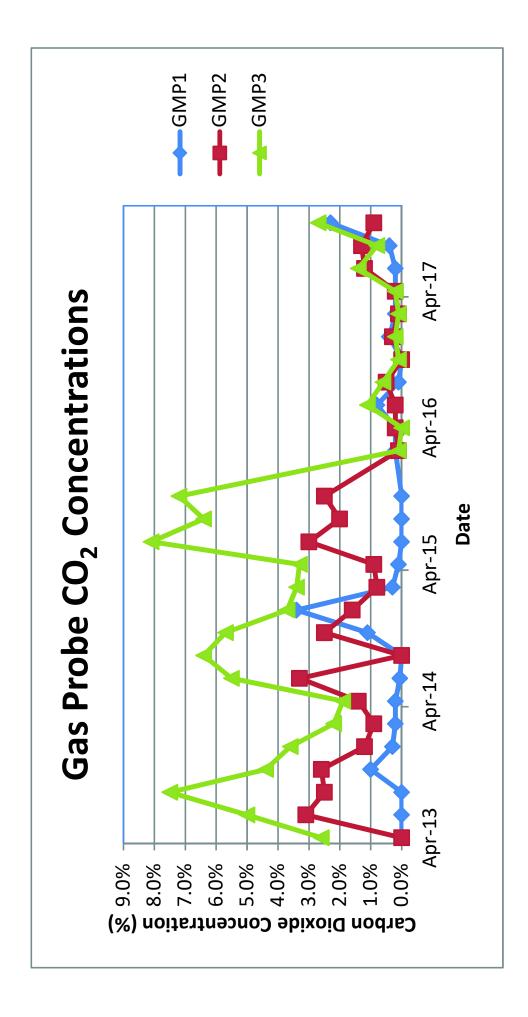


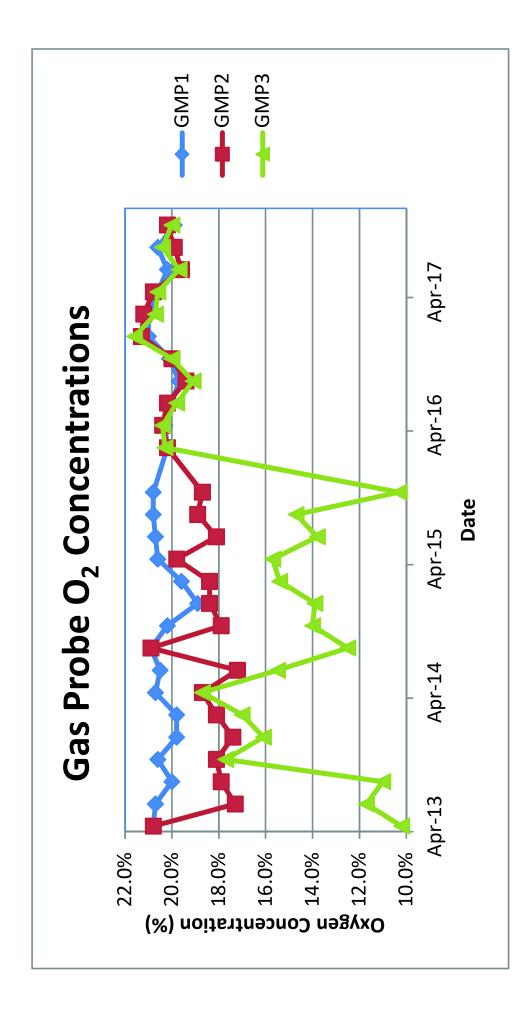



. .









APPENDIX E: Five-Year Review Site Inspection Checklist, Photo Key Map, Photographs

I. SITE INFORMATION				
Site name: City of Stoughton Landfill	Date of inspection: 10/27/2017			
Location and Region: Stoughton, WI (Region V)	EPA ID: WID980901219			
Agency, office, or company leading the FYR: Jason Lowery, Wisconsin DNR	Weather/temperature: 37 degrees F and cloudy			
Remedy Includes: ((Check all that apply)			
⊠ Landfill cover/containment	□ Monitored natural attenuation			
\boxtimes Access controls	Groundwater containment			
⊠ Institutional controls	□ Vertical barrier walls			
 Groundwater pump and treatment Surface water collection and treatment 	⊠ Other: Waste consolidation; passive LF gas collection; stormwater controls/drainage controls			
Attachments:				
□ Inspection team roster attached	⊠ Site map attached			

	II. INTERVIEWS (Check all that apply)					
1.	O&M Site Manager	Jason Low	very, Hyo	drogeologist,	10/27/2017	
	Interviewed: at site	\Box at office	\Box by phone	Phone Number:	608-267-7570	
	Problems, suggestions:			⊠ Report attac	hed	
	See comments on form; in	iside				
2.	O&M Staff	<u>Eli Sankey</u> <u>SCS</u> ,	<u>.</u> Fiel	Engineer,	10/27/2017	
	Interviewed: \boxtimes at site	\Box at office	\Box by phone	Phone Number:	715-308-0187	
	Problems, suggestions:			\boxtimes Report attack	hed	
	See comments on form; in out by a contractor worki perform additional fence	ng for WI DN	R. The City of	Stoughton has		
3.	Local regulatory authorit response office, police depa recorder of deeds, or other	artment, office	of public health	or environment	al health, zoning office,	
	Agency: <u>City of Stoughte</u>	on Parks Dept.	Pat Groom			
	Contact: Name , Maint	enance Superv	visor, 10/27/201	7, P: 608-873-6	5746	
	Problems, suggestions:			⊠ Report attac	hed	
	See comments attached in f that the City of Stoughton v add "No trespassing" signs	would replace	the broken slat i			
	Agency: Click or tap here	e to enter text.				
	Contact: Name , Title	, Click or ta	ap to enter a dat	e., P : Phone Nu	umber	
	Problems, suggestions:			□ Report attach	ned	
	Click or tap here to enter te	xt.				
	Agency: Click or tap here	e to enter text.				
	Contact: Name , Title	, Click or ta	ap to enter a dat	e., P : Phone Nu	umber	
	Problems, suggestions:			□ Report attach	ned	
	Click or tap here to enter te	xt.				
	Agency: Click or tap here	e to enter text.				
	Contact: Name , Title	, Click or ta	ap to enter a dat	e., P : Phone Nu	umber	
	Problems, suggestions:					
	Click or tap here to enter te	xt.				

4. Other Interviews (optional): \boxtimes Report attached Giang Van Nguyen of US EPA Region 5 attended the inspection. O&M Contractor semiannual inspection was also conducted on the same date. Their report is attached as Appendix B, dated November 14, 2017. A photo key map and photos taken by the author are also attached as part of this checklist. **III. ON-SITE DOCUMENTS & RECORDS VERIFIED** (Check all that apply) 1. **O&M** Documents \boxtimes O&M manual \boxtimes Readily available \boxtimes Up to date $\Box N/A$ \Box N/A \boxtimes As-built drawings \boxtimes Readily available \boxtimes Up to date \Box N/A \boxtimes Maintenance logs \boxtimes Readily available \boxtimes Up to date Remarks: Kept by WI DNR and also O&M Contractor 2. Site-Specific Health and Safety Plan \boxtimes Readily available Contingency Plan/Emergency Response Plan \boxtimes Readily available Remarks: Kept by WI DNR and also O&M Contractor 3. O&M and OSHA Training Records \Box N/A \boxtimes Readily available \boxtimes Up to date Remarks: Kept by O&M Contractor 4. Permits and Service Agreements \Box Air discharge permit \Box Readily available \Box Up to date \boxtimes N/A $\bowtie N/A$ □ Effluent discharge \Box Readily available \Box Up to date \boxtimes N/A \Box Readily available □ Waste disposal, POTW \Box Up to date □ Other permits: Click or tap here to enter text. **Remarks:** Click or tap here to enter text. 5. Gas Generation Records \boxtimes N/A \Box Readily available \Box Up to date Remarks: passive system 6. **Settlement Monument Records** \boxtimes N/A \Box Readily available \Box Up to date Remarks: none maintained

7. Groundwater Monitoring Records

		🛛 Readily available	\Box Up to date	\Box N/A
	Remarks: Kept by WI DNR as p	aper and electronic GEM	S system. Paper on file	with USEPA
8.	Leachate Extraction Records			
		□ Readily available	\Box Up to date	🖾 N/A
	Remarks: Click or tap here to en	ter text.		
9.	Discharge Compliance Records			
	□Air	\Box Readily available	\Box Up to date	X/A
	□Water (effluent)	\Box Readily available	\Box Up to date	🖾 N/A
	Remarks: Click or tap here to en	ter text.		
10.	Daily Access/Security Logs			
		\Box Readily available	\Box Up to date	🖾 N/A
	Remarks: No daily access or acti	vities		
		IV. O&M COS	TS	
1.	O&M Organization			
	□ State in-house	$\boxtimes C$	Contractor for State	
	□ PRP in-house	\Box C	ontractor for PRP	
	□ Federal Facility in-house	\Box C	ontractor for Federal Fa	acility
	Remarks: Click or tap here to en	ter text.		
2.	O&M Cost Records			

	\square Readily available \square Up to date		\Box Funding mec	□ Funding mechanism/agreement in place		
		Original O&M cost estin	mate Click or tap her	e to enter text.	□ Breakdown attached	
		Tota	al annual cost by year	r for review period if avail	lable	
		From 4/1/2016	To 10/27/2017	Total cost \$12,875	□ Breakdown attached	
		From Click or tap to enter a date.	To Click or tap to enter a date.	Total cost Click or tap here to enter text.	□ Breakdown attached	
		From Click or tap to enter a date.	To Click or tap to enter a date.	Total cost Click or tap here to enter text.	□ Breakdown attached	
		From Click or tap to enter a date.	To Click or tap to enter a date.	Total cost Click or tap here to enter text.	□ Breakdown attached	
		From Click or tap to enter a date.	To Click or tap to enter a date.	Total cost Click or tap here to enter text.	□ Breakdown attached	
ľ	3.	Unanticipated or Unus	sually High O&M C	Usis During Keview I er	lou	
	3.	Describe costs and reaso	ons:	-		
	3.	Describe costs and reason N/A V. A	ACCESS AND INS	TITUTIONAL CONTRO	OLS	
		Describe costs and reason N/A V. A X Applicat	ACCESS AND INS	TITUTIONAL CONTROL	OLS	
	Fe	Describe costs and reason N/A V. A Application	ACCESS AND INSt ble	TITUTIONAL CONTRO	OLS	
pho	Fe Re oto 1	Describe costs and reason N/A V. A Second Applicate ncing Damaged smarks: One broken slat w	ACCESS AND INS' ble	TITUTIONAL CONTRO	OLS □ N/A ⊠ Gates secured □ N/A	
<u>pho</u> 2. nee	Fe Re oto 1 Of Re eded	Describe costs and reason N/A ✓ V. A ✓ Applicate marks: One broken slat we key map) wher Access Restrictions marks: Signs were up-to-	ACCESS AND INS ble	TITUTIONAL CONTR shown on site map e southwest portion of the shown on site map as 1 & 2). Additional signs	OLS □ N/A ⊠ Gates secured □ N/A landfill (see photograph 17 and	
pho 2. nee dis	Fe Re oto 1 Ot Re eded c go	Describe costs and reaso N/A ✓ V. A ✓ Applicat marks: One broken slat w (cey map) ther Access Restrictions marks: Signs were up-to- to minimize the chances	ACCESS AND INS ble Location was observed near the Location date (see photograph of disc golf players of west of the landfill.	TITUTIONAL CONTR shown on site map e southwest portion of the shown on site map as 1 & 2). Additional signs	OLS □ N/A ⊠ Gates secured □ N/A landfill (see photograph 17 and □ Gates secured s along the west fence line are	
pho 2. nee dis	Fe Re oto 1 Of Re eded c go In	Describe costs and reason N/A ✓ V. A ✓ Applicate marks: One broken slat we key map) Ther Access Restrictions marks: Signs were up-to- to minimize the chances If on the course adjacent of	ACCESS AND INST ble	TITUTIONAL CONTR shown on site map e southwest portion of the shown on site map as 1 & 2). Additional signs	OLS □ N/A ⊠ Gates secured □ N/A landfill (see photograph 17 and □ Gates secured s along the west fence line are	
pho 2. nee dis	Fe Re oto 1 Of Re eded c go In	Describe costs and reason N/A ✓ V. A ✓ Applicate marks: One broken slat we key map) Ther Access Restrictions marks: Signs were up-to- to minimize the chances If on the course adjacent of stitutional Controls (ICs)	ACCESS AND INST ble Del	TITUTIONAL CONTRO shown on site map e southwest portion of the shown on site map as 1 & 2). Additional signs climbing over the fence to	OLS □ N/A ⊠ Gates secured □ N/A landfill (see photograph 17 and □ Gates secured s along the west fence line are	
2.	Fe Re oto 1 Of Re eded c go In	Describe costs and reason N/A V. A ⊠ Applicate marks: One broken slat we key map) ther Access Restrictions marks: Signs were up-to- to minimize the chances If on the course adjacent to stitutional Controls (ICs) Implementation and En	ACCESS AND INST ble De	TITUTIONAL CONTResident shown on site map e southwest portion of the shown on site map as 1 & 2). Additional signs climbing over the fence to nented	OLS □ N/A ⊠ Gates secured □ N/A landfill (see photograph 17 and □ Gates secured s along the west fence line are retrieve frisbees when playing	
pho 2. nee dis	Fe Re oto 1 Of Re eded c go In	Describe costs and reason N/A V. A ⊠ Applicate marks: One broken slat way ther Access Restrictions marks: Signs were up-to- to minimize the chances If on the course adjacent to stitutional Controls (ICs) Implementation and En Site conditions imply ICs	ACCESS AND INST ble Location vas observed near the Location date (see photograph of disc golf players of west of the landfill. s) nforcement s not properly impler s not being fully enfor	TITUTIONAL CONTResident shown on site map e southwest portion of the shown on site map as 1 & 2). Additional signs climbing over the fence to nented orced	OLS □ N/A ⊠ Gates secured □ N/A landfill (see photograph 17 and □ Gates secured s along the west fence line are retrieve frisbees when playing Yes ⊠ No □ N/A	

		Responsible party/agency			WI DNR		
		Contact: Jason Lowery, Hyd	rogeologist, 10/27/20	017, P: (608-267	-7570		
		Reporting is up-to-date			□ Yes	□ No	🖾 N/A
		Reports are verified by the le	ad agency		□ Yes	🗆 No	🖾 N/A
		Specific requirements in deemet	d or decision docume	ents have been	🛛 Yes	□ No	□ N/A
		Violations have been reporte	d		□ Yes	🗆 No	🖾 N/A
		Other problems or suggestion	ns:				
		Deed restrictions required by by the City of Stoughton. The	-	e		-	-
	B.	Adequacy 🛛 ICs are	adequate	\Box ICs are inade	equate	\Box N/A	
		Remarks: Click or tap here t	o enter text.				
4.	Ge	eneral					
	A.	Vandalism/Trespassing	\Box Location show:	n on site map	\Box No var	ndalism evide	ent
		Remarks: A disc golf player over the fence and into the la		ing the west fenc	e line to retr	ieve a frisbee	e that flew
	B.	Land use changes on site		🖾 N/A			
		Remarks: Click or tap here t	o enter text.				
	C.	Land use changes off site		🖾 N/A			
		Remarks: Click or tap here t	o enter text.				
			VI. GENERAL SIT	E CONDITION	S		
1.	Ro	pads	□ Applica	able	□ N/A		
	A.	Roads damaged	ocation shown on sit	e map	\boxtimes Roads	adequate	□ N/A
		Remarks: Click or tap here t	o enter text.				
	B.	Other Site Conditions					
		Remarks: Click or tap here t	o enter text.				
			VII. LANDFII	LL COVERS			
1.	L	andfill Surface	🛛 Applica	ble	□ N/A		
	A.	Settlement (Low Spots)	□ Location Shown of	on Site Map	⊠ Settle	ement Not Ev	vident
		Areal Extent: Click or tap he	ere to enter text.	Deptl	n: Click or ta	p here to ent	er text.
		Remarks: Click or tap here t	o enter text.				

B.	Cracks	□ Location Shown on Site Map)	⊠ Cracking Not Evident
	Lengths: Click or tap h to enter text.	Widths: Click or tap here to ent	er text.	Depths: Click or tap here to enter ext.
	Remarks: Click or tap	here to enter text.		
C.	Erosion	□ Location Shown on Site Map) [⊠ Erosion Not Evident
	Areal Extent: Click or	tap here to enter text.	Depth: Cli	ick or tap here to enter text.
	Remarks: Click or tap	here to enter text.		
D.	Holes	□ Location Shown on Site Map) [□ Holes Not Evident
	Areal Extent: Click or	tap here to enter text.	Depth: Cli	ick or tap here to enter text.
	Remarks: Animal burre repaired.	ows noted near monitoring well MW-	2D (see ph	otograph 5) and will be
E.	Vegetative Cover	□ Grass	[□ Cover Properly Established
	□ Tress/Shrubs (indica	ate size and locations on a diagram	[⊠ No Signs of Stress
	Remarks: Recently mo	wed and in good condition.		
F.	Alternative Cover (ar	mored rock, concrete, etc.)	[⊠ N/A
	Remarks: Click or tap	here to enter text.		
G.	Bulges	□ Location Shown on Site Map)	⊠ Bulges Not Evident
	Areal Extent: Click or	tap here to enter text.	Height: Cl	ick or tap here to enter text.
	Remarks: Click or tap	here to enter text.		
H.	Wet Areas/Water Day	mage	ater Dama	age Not Evident
	□ Wet Areas	□ Location Shown on Site Map	Areal Extension text.	ent: Click or tap here to enter
	⊠ Ponding [□ Location Shown on Site Map	Areal Extension text.	ent: Click or tap here to enter
	□ Seeps [□ Location Shown on Site Map	Areal Extension text.	ent: Click or tap here to enter
	\Box Soft Subgrade \Box Location Shown on Site Map $\frac{\text{Areal B}}{\text{text.}}$			ent: Click or tap here to enter
	Remarks: Ponding was observed in the south storm water ditch (ph be mitigated with removal of vegetation in downstream culvert (ph		<u> </u>	, E
I.	Slope Instability	□ Location Shown on Site Map	⊠ Slope I	nstability Not Evident
	Γ	□ Slides	Areal Extension text.	ent: Click or tap here to enter
	Remarks: Click or tap	here to enter text.		

2.	Bei	nches	□ Applicable	⊠ N/A
	· ·	•	1 1	and fill side slope to interrupt the slope in and convey the runoff to a lined channel.)
	A.	Flows Bypass Bench	□ Location Shown on Site Map	⊠ N/A or Okay
		Remarks: Click or tap	here to enter text.	
	B.	Bench Breached	\Box Location Shown on Site Map	\boxtimes N/A or Okay
		Remarks: Click or tap	here to enter text.	
	C.	Bench Overtopped	\Box Location Shown on Site Map	\boxtimes N/A or Okay
		Remarks: Click or tap	here to enter text.	
3.	Let	tdown Channels	□ Applicable	⊠ N/A
	slo		l allow the runoff water collected by t	gabions that descend down the steep side he benches to move off of the landfill cover
	A.	Settlement	□ Location Shown on Site Map	⊠ Settlement Not Evident
		Areal Extent: Click or	tap here to enter text.	Depth: Click or tap here to enter text.
		Remarks: Click or tap	here to enter text.	
	B.	Material Degradatio	n 🗆 Location Shown on Site Ma	p 🛛 Degradation Not Evident
		Material Type: Click of	or tap here to enter text.	Areal Extent: Click or tap here to enter text.
		Remarks: Click or tap	here to enter text.	
	C.	Erosion	□ Location Shown on Site Ma	p 🛛 Erosion Not Evident
		Areal Extent: Click or	tap here to enter text.	Depth: Click or tap here to enter text.
		Remarks: Click or tap	here to enter text.	
	D.	Undercutting	□ Location Shown on Site Ma	p 🛛 Undercutting Not Evident
		Areal Extent: Click or	tap here to enter text.	Depth: Click or tap here to enter text.
		Remarks: Click or tap	here to enter text.	
	E.	Obstructions	\boxtimes Location Shown on Site Ma	p 🛛 Undercutting Not Evident
		Type: Dead vegetation	n I culvert	
		Areal Extent: Click or	tap here to enter text.	Size: Click or tap here to enter text.
		southwest portion of t	ranches were observed in the water or he site (photograph 18). Branches may g in the storm water ditch on the south	y be partially blocking flow into the culvert

	F.	Excessive Vegetative Growth	□ Location S	hown on Site Map	Excessive Growth Not Evident
		Areal Extent: Click or tap here to	enter text.	□ Vegetation flow	on in channels does not obstruct
		Remarks: Click or tap here to ente	er text.		
4.	Co	ver Penetrations	\boxtimes Applical	ble	□ N/A
	A.	Gas Vents	□ Active		□ Passive
		□ Properly secured/locked		\Box Functioning	□ Routinely sampled
		\Box Good condition		\Box Evidence of leaf	kage at penetration
		⊠ Needs Maintenance		\Box N/A	
		Remarks: Gas vents need to be la	beled (see phot	tograph 6)	
	B.	Gas Monitoring Probes			
		\boxtimes Properly secured/locked		□ Functioning	□ Routinely sampled
		\Box Good condition		\Box Evidence of leaf	kage at penetration
		□ Needs Maintenance		\Box N/A	
		Remarks: Click or tap here to enter	er text.		
	C.	Monitoring Wells			
		\boxtimes Properly secured/locked		□ Functioning	\boxtimes Routinely sampled
		\Box Good condition		\Box Evidence of leaf	kage at penetration
		⊠ Needs Maintenance		\Box N/A	
		Remarks: Several groundwater m flowing out of three monitoring w			hotograph 4). Groundwater was
	D.	Leachate Extraction Wells			
		□ Properly secured/locked		□ Functioning	□ Routinely sampled
		\Box Good condition		\Box Evidence of leaf	kage at penetration
		□ Needs Maintenance		🖾 N/A	
		Remarks: Click or tap here to enter	er text.		
	E.	Settlement Monuments	Located	□ Routinely Surv	eyed 🛛 N/A
		Remarks: Click or tap here to enter	er text.		
5.	Ga	s Collection and Treatment	□ Applicat	ple	⊠ N/A
	A.	Gas Treatment Facilities			
		□ Flaring	□ Thermal	Destruction	\Box Collection for Reuse

		□ Good condition Remarks: Click or tap here to ent	Needs Maintenance		
	B.	Gas Collection Wells, Manifold			
	2.	□ Good condition	□ Needs Maintenance	⊠ N/A	
		Remarks: Click or tap here to enter text.			
	C.	. Gas Monitoring Facilities (e.g. gas monitoring of adjacent homes or buildings)			
		\Box Good condition	□ Needs Maintenance	🖾 N/A	
		Remarks: Click or tap here to ent	er text.		
6.	Co	wer Drainage Layer	□ Applicable	\boxtimes N/A	
	A.	Outlet Pipes Inspected	□ Functioning	⊠ N/A	
		Remarks: Click or tap here to ent	er text.		
	B.	Outlet Rock Inspected	□ Functioning	⊠ N/A	
		Remarks: Click or tap here to ent	er text.		
7.	De	tention/Sediment Ponds	□ Applicable	⊠ N/A	
	A.	Siltation	□ Siltation Not Evident	⊠ N/A	
		Areal Extent: Click or tap here to	enter text. Depth: Click	or tap here to enter text.	
		Remarks: Click or tap here to ent	er text.		
	B.	Erosion	□ Erosion Not Evident		
		Areal Extent: Click or tap here to	enter text. Depth: Click	or tap here to enter text.	
		Remarks: Click or tap here to ent	er text.		
	C.	Outlet Works	□ Functioning	⊠ N/A	
		Remarks: Click or tap here to ent	er text.		
	D.	Dam	□ Functioning	⊠ N/A	
		Remarks: Click or tap here to ent	er text.	Γ	
8.	Re	taining Walls	□ Applicable	⊠ N/A	
	A.	Deformations	\Box Location Shown on Site Map	□ Deformation Not Evident	
		Horizontal Displacement: Click or tap here to enter text.			
		Vertical Displacement: Click or t	ap here to enter text.		
		Rotational Displacement: Click of	r tap here to enter text.		
		Remarks: Click or tap here to ent	er text.		

	B.	Degradation	\Box L	location Shown on Site Map	□ Deformation Not Evident
		Remarks: Click or tap here to ent	ter ter	xt.	
9.	Pei	rimeter Ditches/Off-Site Dischar	rge	⊠ Applicable	□ N/A
	A.	Siltation	\boxtimes I	Location Shown on Site Map	□ Siltation Not Evident
		Areal Extent: Click or tap here to	o ente	r text. Depth: Click	or tap here to enter text.
		Remarks: Some siltation may hav appear to be significant.	ve oc	curred in south ditch near location	on of standing water. Does not
	B.	Vegetative Growth	\boxtimes I	Location Shown on Site Map	□ N/A
		□ Vegetation Does Not Impede	Flow		
		Areal Extent: Click or tap here to	o ente	r text. Type: Click o	r tap here to enter text.
		Remarks: Siltation may have allo culverts are clean. Dead vegetation		e	1 0
	C.	Erosion	ΠL	location Shown on Site Map	\boxtimes Erosion Not Evident
		Areal Extent: Click or tap here to	o ente	r text. Depth: Click	or tap here to enter text.
		Remarks: Click or tap here to ent	ter tez	xt.	
	D.	Discharge Structure	\Box F	unctioning	⊠ N/A
		Remarks: Click or tap here to ent	ter ter	xt.	
		VIII.	VE	RTICAL BARRIER WALLS	
					⊠ N/A
1.	Set	tlement 🗆 L	ocati	on Shown on Site Map	□ Settlement Not Evident
	Are	eal Extent: Click or tap here to ent	ter ter	kt. Depth: Cl	lick or tap here to enter text.
	Re	marks: Click or tap here to enter to	ext.		
2.	Per	rformance Monitoring Typ	e of N	Monitoring: Click or tap here to a	enter text.
		Performance Not Monitored		□ Evidence of Brea	ching
	Fre	equency: Click or tap here to enter	text.	Head Differential: C	lick or tap here to enter text.
	Re	marks: Click or tap here to enter to	ext.		
		IX. GROUND	WA	FER/SURFACE WATER REN	AEDIES
					⊠ N/A
1.	Gr	oundwater Extraction Wells, Pu	imps,	, and Pipelines 🛛 🗆 Ap	pplicable 🛛 🕅 N/A
	A.	Pumps, Wellhead Plumbing, an	nd El	ectrical	□ N/A
		□ Good Condition □	All 1	Required Wells Properly Operat	ing D Needs Maintenance

		Remarks: Click or tap here to	enter text.			
	B.	Extraction System Pipelines	s, Valves, Valve Boxes, and Other A	Appurtenances		
		□ Good Condition		□ Needs Maintenance		
		Remarks: Click or tap here to enter text.				
	C.	Spare Parts and Equipment		□ Needs to be Provided		
		□ Readily Available □ Good Condition		□ Requires Upgrade		
		Remarks: Click or tap here to	enter text.			
2.	Su	rface Water Collection Struc	tures, Pumps, and Pipelines	Applicable 🛛 N/A		
	A.	Collection Structures, Pum	os, and Electrical			
		\Box Good Condition	□ Needs Maintenance			
		Remarks: Click or tap here to	enter text.			
	B.	Surface Water Collection S	ystem Pipelines, Valves, Valve Box	es, and Other Appurtenances		
		\Box Good Condition	□ Needs Maintenance			
		Remarks: Click or tap here to enter text.				
	C.	Spare Parts and Equipment		\Box Needs to be Provided		
		□ Readily Available	\Box Good Condition	□ Requires Upgrade		
		Remarks: Click or tap here to	enter text.			
3.	Tr	eatment System		⊠ N/A		
	A.	Treatment Train (Check co	mponents that apply)			
		\Box Metals removal	□ Oil/Water Separation	□ Bioremediation		
		□ Air Stripping	□ Carbon Absorbers			
		\Box Filters Click or tap here to	enter text.			
		\Box Additive (e.g. chelation age	ent, flocculent) Click or tap here to en	nter text.		
		\Box Others Click or tap here to	enter text.			
		\Box Good Condition		□ Needs Maintenance		
		\Box Sampling ports properly marked and functional				
		□ Sampling/maintenance log	displayed and up to date			
		Equipment properly identia	fied			
		\Box Quantity of groundwater tr	eated annually Click or tap here to each	nter text.		
		\Box Quantity of surface water t	reated annually Click or tap here to e	enter text.		
	12					

	Remarks: Click or tap here to enter text.					
	B. Electrical Enclosures and Panels (pro	perly rated and funct	tional)			
	× N/A	□ Good Condition	□ Needs Maintenance			
	Remarks: Click or tap here to enter text.	•				
	C. Tanks, Vaults, Storage Vessels	× N/A				
	□ Proper Secondary Containment	□ Good Condition	□ Needs Maintenance			
	Remarks: Click or tap here to enter text.					
	D. Discharge Structure and Appurtenances					
	× N/A	□ Good Condition	□ Needs Maintenance			
	Remarks: Click or tap here to enter text.					
	E. Treatment Building(s)					
	⊠ N/A	Good condition	on (esp. roof and doorways)			
	□ Needs repair	\Box Chemicals an	d equipment properly stored			
	Remarks Click or tap here to enter text.					
	F. Monitoring Wells (Pump and Treatm	ent Remedy)	\bowtie N/A			
	□ Properly secured/locked	\Box Functioning				
	□ Routinely sampled	\Box All required v	wells located			
	\Box Good condition	\Box Needs Mainte	enance			
	Remarks Click or tap here to enter text.	•				
4.	Monitoring Data					
	A. Monitoring Data:					
	\boxtimes Is Routinely Submitted on Time	\Box Is of Acc	eptable Quality			
	B. Monitoring Data Suggests:					
	Groundwater plume is effectively contain	ned 🛛 Contamin	nant concentrations are declining			
5.	Monitored Natural Attenuation					
	A. Monitoring Wells (natural attenuatio	n remedy)	□ N/A			
	\boxtimes Properly secured/locked \boxtimes Function	oning	\boxtimes Routinely sampled			
	\Box All required wells located \boxtimes Needs	Maintenance	\Box Good condition			
	Remarks: Monitoring wells need to be lab stop artesian flow conditions. Unable to loo					

X. OTHER REMEDIES

If there are remedies applied at the site which are not covered above, attach an inspection sheet describing the physical nature and condition of any facility associated with the remedy. An example would be soil vapor extraction.

XI. OVERALL OBSERVATIONS

1. Implementation of the Remedy

Describe issues and observations relating to whether the remedy is effective and functioning as designed. Begin with a brief statement of what the remedy is to accomplish (i.e., to contain contaminant plume, minimize infiltration and gas emission, etc.).

See text of FYR for detailed discussion.

2. Adequacy of O&M

Describe issues and observations related to the implementation and scope of O&M procedures. In particular, discuss their relationship to the current and long-term protectiveness of the remedy.

See text of FYR for detailed discussion.

3. Early Indicators of Potential Remedy Problems

Describe issues and observations such as unexpected changes in the cost or scope of O&M or a high frequency of unscheduled repairs that suggest that the protectiveness of the remedy may be compromised in the future.

Click or tap here to enter text.

4. Early Indicators of Potential Remedy Problems

Describe possible opportunities for optimization in monitoring tasks or the operation of the remedy.

Click or tap here to enter text.



Photo 1: View east toward West Gate. Sign is up-to-date.

Photo 2: View north toward Main Gate at SE corner of site. Sign is up-to-date.

Stoughton Landfill Photographs, October 27, 2017

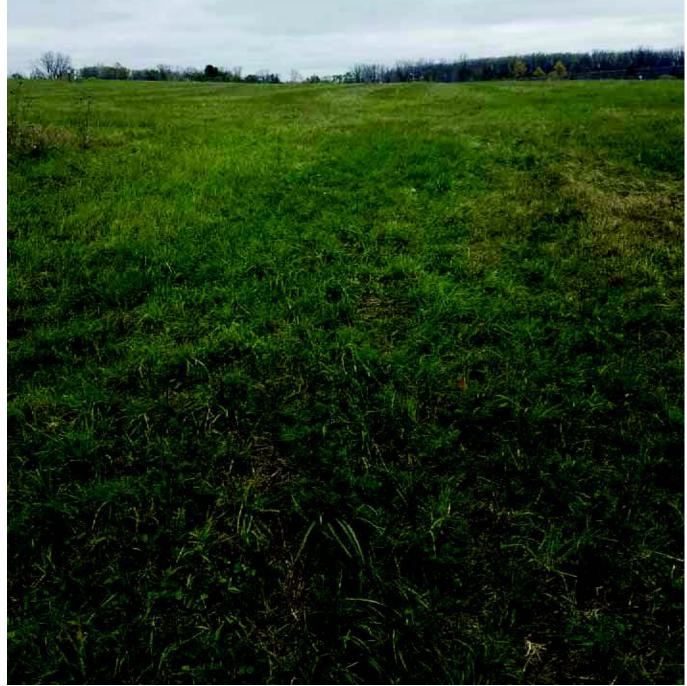


Photo 3: View north from south portion of site. Cap was in good condition.

Photo 4: View toward monitoring well MW-2S. Several wells were not properly labeled.

Stoughton Landfill Photographs, October 27, 2017

Photo 5: Animal burrows surrounding monitoring well MW-2D

Photo 6: View NE toward Gas Vent GV-21. Gas vents were not properly labeled.

Photo 7: View west toward polyethylene tank in western portion of the site and next to West Gate

Photo 8: View south toward monitoring well MW-5D and storm water drainage along west edge of landfill.

Photo 9: View north toward monitoring well MW-11S, 11I, and 11D nest followed by north fenceline.

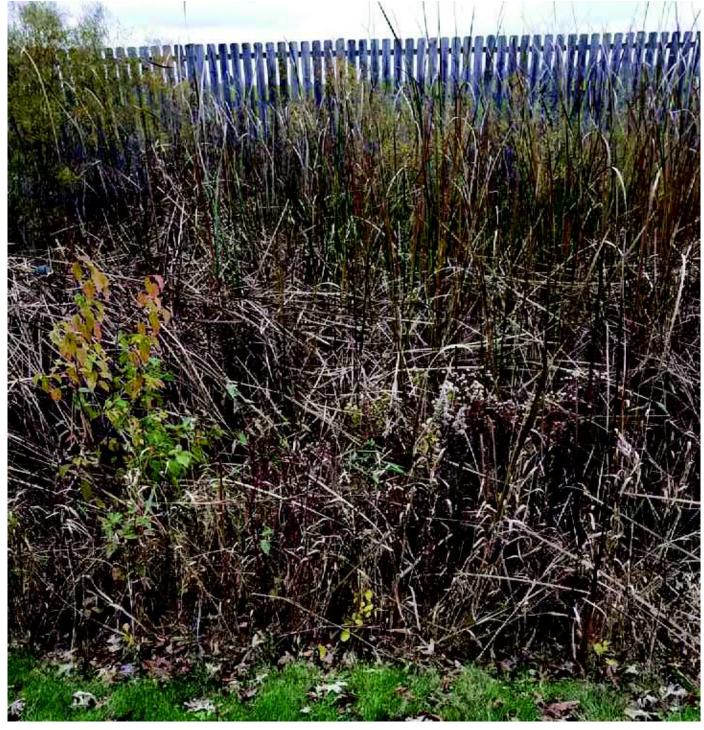


Photo 10: View north toward drainage channel (with cattails) south of landfill.

Photo 11: Close-up of ponded water in drainage channel shown in previous photograph (south drainage channel)

Photo 12: View north along west fence line. Disc golf players were observed climbing the fence to retrieve frisbees.

Photo 13: View west toward gas probe GMP-3.

Photo 14: View toward monitoring well OW-02. Well is flowing and cap is floating on top of casing.

Photo 15: View toward monitoring well 13I. Well is flowing and plug is on ground.

Photo 16: View toward monitoring well MW-7I. Well is flowing.

Photo 17: View east toward broken slat on west fence line.

Photo 18: View west toward west end of culvert near Main Gate. Drainage channel partially blocked with branches.

APPENDIX F: DNR Landfill Compliance Inspection Report, September 22, 2017

State of Wisconsin DEPARTMENT OF NATURAL RESOURCES SCR Headquarters 3911 Fish Hatch Fitchburg WI 53711

Scott Walker, Governor Kurt A. Thiede, Interim Secretary Telephone 608-266-2621 Toll Free 1-888-936-7463 TTY Access via relay - 711

File Ref: FID 113005950 Dane SW / CMEL

September 22, 2017

Jason Lowery Wisconsin DNR PO Box 7921 Madison, WI 53701

Subject: Compliance At Closed Landfill Inspection at City of Stoughton #133 (Amundson Park)

Dear Mr. Lowery:

On September 7, 2017, the department conducted a closed landfill compliance inspection at Amundson Park located at Amundson Pkwy & Skogdalen Dr, Stoughton, Wisconsin. A copy of the completed inspection form and the 22 photos are enclosed.

At the time of the inspection the Department found no evidence of noncompliance with the solid waste requirements stated in Chapters NR 500 to 538, Wisconsin Administrative Code. The inspection form identified 2 items that were not inspected (NI). Since the items were not inspected a compliance determination was not made. There was one area of concern. Several of the monitoring wells that were located were not labeled per NR 507.04(4). Please see that the wells are labeled with, at a minimum, the devices name and 3-digit identification number assigned to each well by the department.

If you have any questions or comments, please feel free to contact me at (608) 273-5608.

Thank you for your cooperation.

Sincerely

Daniel Werner Waste Management Specialist

cc: John Halverson, Streets Supervisor, City of Stoughton Leslie Busse, PE, SCS Engineers SC Facility File

Naturally WISCONSIN

State of Wisconsin Department of Natural Resources

Form 4430-5 (R. 03/06)

COMPLIANCE MONITORING AND EVALUATION FORM

A. GENERAL	INFORMATION					FIST	SEQ #: 60518
Facility Name (STOUGHT(FID # 113005950	EPA ID # WID980901219	Case # 60518	Complaint #
Street/Location	N PKWY & SKOGD	ALEN DR		Notification St	atus UNCLASSIFIED		
City STOUGHT(unty ANE	Type of Contact FIELD		Contact Date/Time 09/07/2017 00:00	
Contact Name/Phone Number			Staff Assigned	to Site	Case Close (Out Date	
STEVEN B	SMITH, BT2 CONS	ULT (60	08) 224-2830	WERNER, DANIEL			
B. FACILITY	INSPECTED AS						
Inspection Typ	e JNCLASSIFIED						
C. NOTIFICA	TION CHANGE						
D. ACTIVITY	TYPES						
Lic/RU/RA	A Staff Person		Lead Program		Activity Type		
133	WERNER, DANIEL B		SOLID WASTE		COMPLIANCE CLOSED LANDFILL		
E. ACTIONS	AND VIOLATIONS		1				
Action Date	Action Type	Close Date	SNC	Comments			
09/22/2017	LETTER	09/22/2017					
F. CASE CO	NTACTS						
G. COMMEN	ITS						
Closed landfill	inspection						
SITE NARR	ATIVE						

Narrative:

On 9/7/17, Dan Werner met with John Halverson (City of Stoughton Streets Supervisor) at the Stougthon Closed Landfill #133. Werner and Halverson walked the site. The cap was in good shape, vegetation looked recently mown. Werner and Halverson could not find all of the monitoring wells, but all those found were locked. About half were labeled.

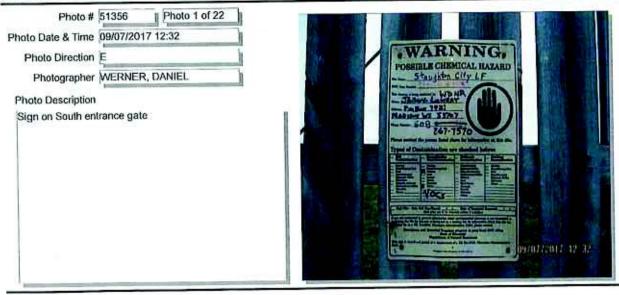
Region Signature(s) PBCe	WERNER, DANIEL	Date Signed	Page 1 of 10
Please 10	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		

CLOSED LANDFILL INSPECTION FORM

Se

A. Gate provided at the entrance and kept locked when authorized personnel not on site.	С	506.07(1)()
B. Entrance area clean and no solid waste indiscriminately dumped (e.g., operating an unlicensed storage or disposal facility).	С	289.31(1)
C. Sign posted at the entrance to the facility indicating that the landfill is closed, and includes the landfill name, license number, penalty for unauthorized use and any other pertinent information unless the approved final use does not require signage.	NA	506.08(1)(b)
D. Access to the landfill restricted by use of gates, fencing, or other appropriate means unless approved final use allowing access (e.g. baseball playfields, soccer fields, dog runs, etc.) does not require these restrictions.	С	506.08(2)
tion 2: Sediment and Erosion Control		
A. Runoff channels are protected to prevent scour and erosion that generates sediment.	С	506.07(2)(a)(5)
B. Storm water drainage ditches, structures and sedimentation basins cleaned and maintained.	С	506.07(2)(b)
C. The entire solid waste disposal area is covered with compacted earth and final grades are adequately sloped to allow storm water runoff. (e.g. no depressions with ponded water or wetland vegetation on the disposal area).	С	506.08(3)(a)
D. Storm water run-on diverted around all areas used for solid waste disposal to limit erosion of the cover solls and infiltration.	С	506.08(3)(b)
E. The finished surface of the disposal area is covered with a minimum of 6 inches of topsoll.	С	506.08(3)(d)
F. Vegetation established to minimize erosion (e.g. no bare spots or woody vegetation).	С	506.08(4)
tion 3: Gas Control		
A. Effective means being utilized to prevent migration of explosive gases generated by the waste fill (e.g. no noticeable gas odors or indication of stressed vegetation, and gas control system operating, if applicable).	С	506.07(4)
tion 4: Leachate Collection System		
A. Any liquid that comes in contact with waste being handled as leachate and properly managed (e.g. no		508.07(E)(b)

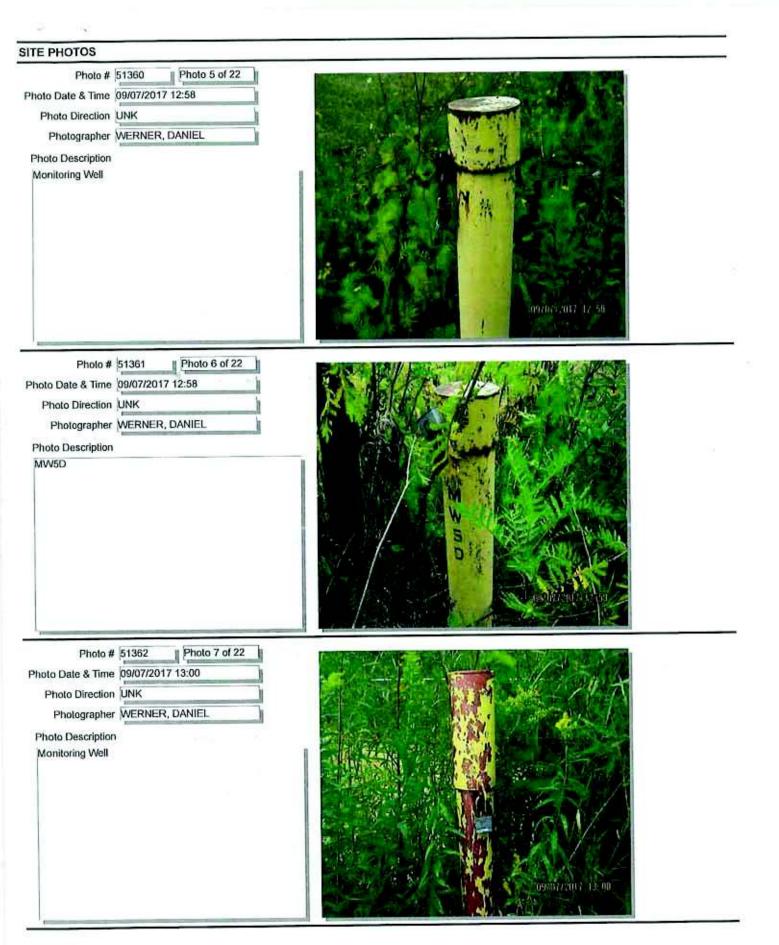
leachate seeps or discolored surface water/soil).	NA	506.07(5)(b)
B. Leachate removal from all leachate storage structures to maintain gravity flow (e.g. no leachate storage on landfill base or liner).	NA	506.07(5)(a)
C. All leachate removed from the leachate collection system is being disposed of at a wastewater treatment facility unless the facility has approval to recirculate leachate or gas condensate.	NA	506.07(5)(a)
D. Leachate lines cleaned on an annual basis or other frequency approved by the Department.	NA	506.07(5)(c)
E. Leachate head wells protected and being monitored for leachate head levels.	NA	507.04(3)

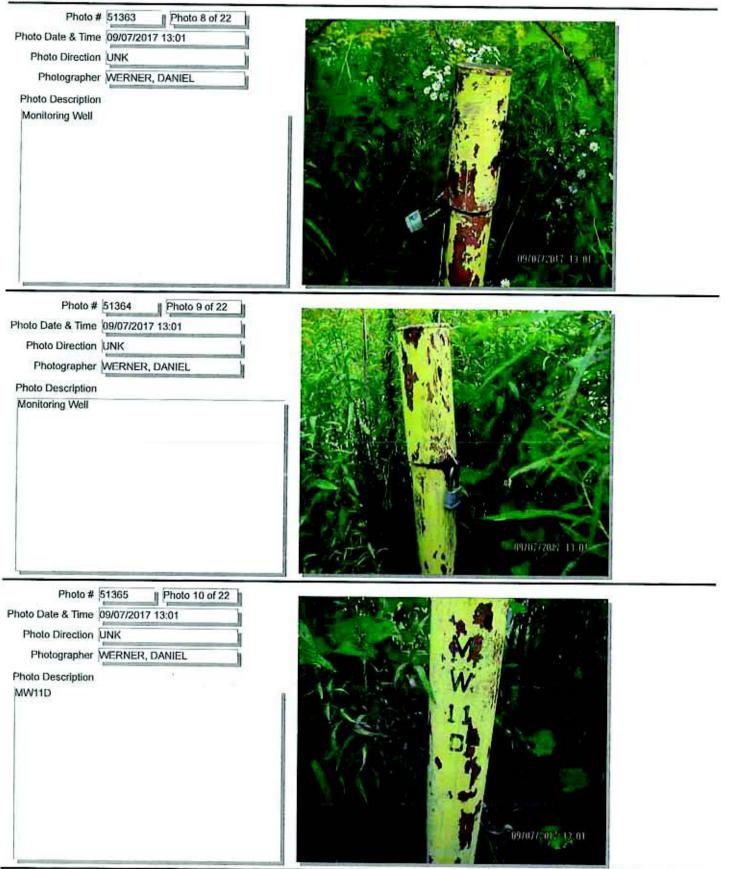

SITE INSPECTION FORM(S)

CLOSED LANDFILL INSPECTION FORM

Section 5: Monitoring Devices

A. Monitoring and sampling devices protected to prevent contaminant entry and damage (e.g. caps present and locked, protective casing in good condition and not affected by frost heave or sunk relative to the well	С	507.04(3)
casing that provents closure).		
B. All monitoring devices clearly and permanently labeled on the outside of the device.	CA	507.04(4)
C. Any permanent monitoring well no longer being used to gather information is properly abandoned within 60 days after its use has been discontinued.	NI	141.25(1)(b)
D. Any monitoring devise that has been damaged, provides a conduit to the subsurface or otherwise falls to function is properly abandoned and replaced within 60 days after discovery.	NI	507.13
E. Surface water sampling locations surveyed and permanently and clearly marked.	NA	507.23(2)
ction 6: Final Use		
A. Waste disposal area not being used for agricultural purposes unless approved by the Department.	С	506.085(1)
B. No structures or other development over waste disposal area unless approved by the Department.	С	506.085(2)
C. No excavation of the final cover or any waste materials.	С	506.085(3)
Key: C: Compliance CA: Compliance with Concern R: Returned to Compliance X: Non-Compliance NA: Not Applicable ND: Y: Yes N: No UN: Unknown	Not Determi	Revision : 10/02/2013
Notes : 1.* Dept. approved alternate may apply 2. Questions without a status entry use narrative responses		and the second sec


SITE PHOTOS

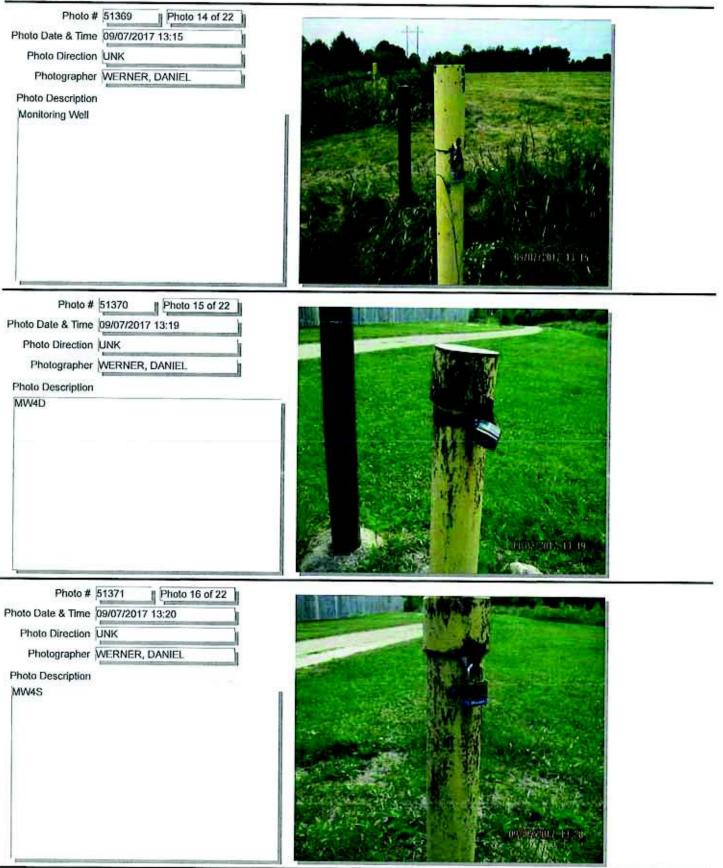

FIST SEQ #: 60518

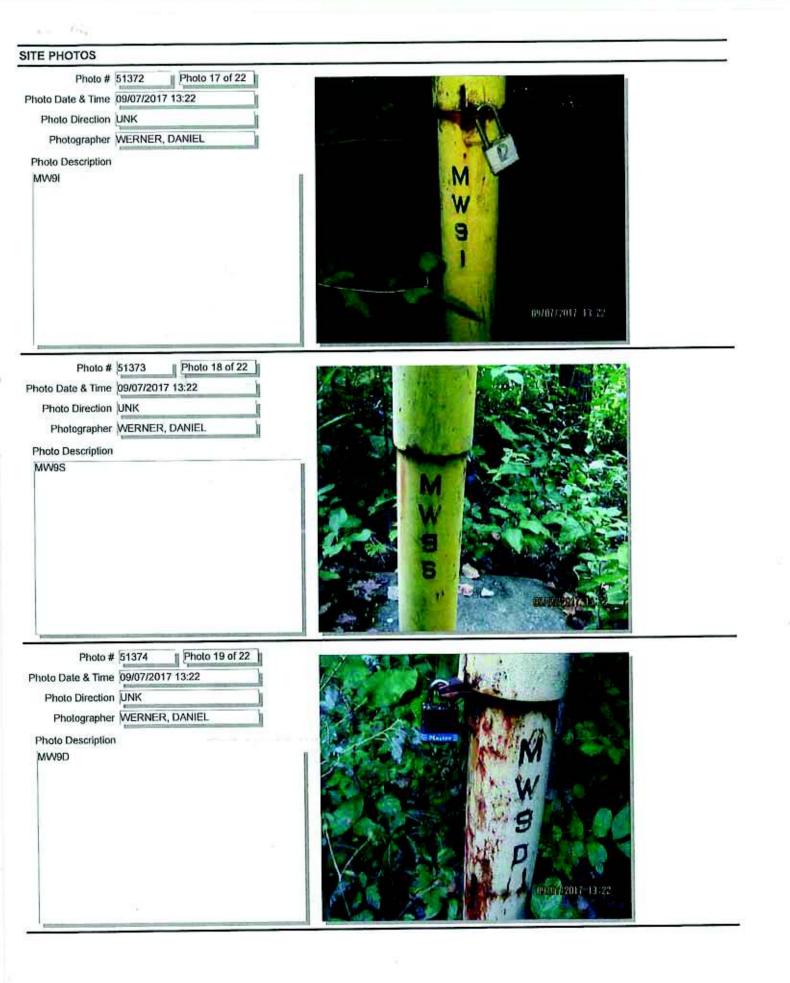
SITE PHOTOS		
Photo Date & Time Photo Direction	WERNER, DANIEL	
Photo # Photo Date & Time Photo Direction Photographer Photo Description Monitoring well Gt	09/07/2017 12:48 W WERNER, DANIEL	
Photo # Photo Date & Time Photo Direction Photographer Photo Description Monitoring well GM	09/07/2017 12:51 UNK WERNER, DANIEL	

Marianazora 12-51

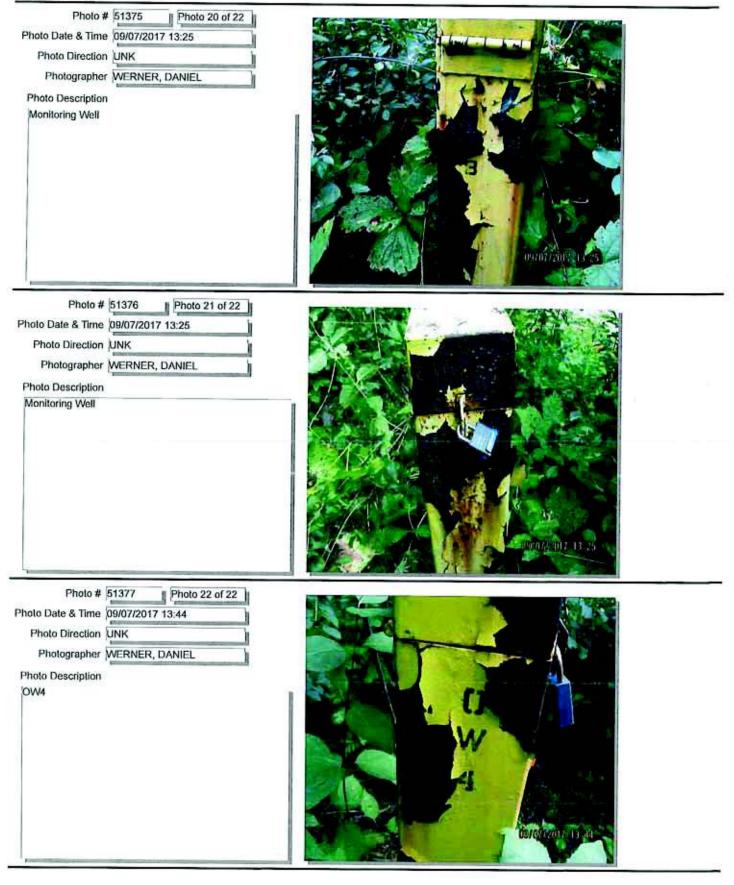


SITE	PHO	TOS
------	-----	-----


FIST SEQ #: 60518


STOUGHTON CTY (AMUNDSON PARK)

FIST SEQ #: 60518



FIST SEQ #: 60518

SITE PHOTOS

FIST SEQ #: 60518

STOUGHTON CTY (AMUNDSON PARK)