

FIVE-YEAR REVIEW REPORT FOR HECHIMOVICH SANITARY LANDFILL SUPERFUND SITE DODGE COUNTY, WISCONSIN

June 2014

Prepared by

Wisconsin Department of Natural Resources South Central Region Fitchburg, Wisconsin

w

Richard C. Karl, Director Superfund Division U.S. EPA Region 5

2014 Date

TABLE OF CONTENTS

List	of Acronyms4
Exe	cutive Summary5
Five	e-Year Review Summary Form7
I.	Introduction
п.	Progress Since the Last Review
	Remedy Implementation Activities
	Institutional Controls
	System Operations/Operation and Maintenance Activities
Ш.	Five-Year Review Process
	Administrative Components
	Community Notification and Involvement
	Document Review
	Data Review
	Site Inspection
	Interviews
w	Technical Assessment
⊥ V •	Ouestion A: Is the remedy functioning as intended by the decision documents?
	Question B: Are the exposure assumptions toxicity data cleanup levels and remedial
	action objectives used at the time of the remedy selection still valid?
	Question C: Has any other information come to light that could call into question the
	protectiveness of the remedy?
	Technical Assessment Summary 19
V.	Issues/Recommendations and Follow-up Actions
VI	Protectiveness Statements
* 2.	
VII	. Next Review
Tal	bles
	Table 1 – Protectiveness Determinations/Statements from the 2009 FYR
	Table 2 – Status of Recommendations from the 2009 FYR
	Table 3 – Summary of Remedial Activities since June 2009
	Table 4 – Summary of Implemented ICs
	Table 5 – Deep Aguifer Groundwater Bedrock Well Concentrations
	Table 6 – Issues and Recommendations/Follow-up Actions

Appendix A – Existing Site Information

Appendix B – Figures

Figure 1 – Site Location Map

Figure 2 – Sample Point Location Map

Figure 3 – Bedrock Monitoring Well Locations

Figure 4 – Cross Section

Figure 5 – Southeast Expansion Plan of Operation; Base Grades and Leachate Collection System

Appendix C – Historical Groundwater Data

Appendix C-1 – Shallow Groundwater Data Appendix C-2 – Deep Groundwater Data

Appendix D – Site Inspection Checklist

LIST OF ACRONYMS

ARARs	Applicable or Relevant and Appropriate Requirements
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act
CFR	Code of Federal Regulations
cis-1,2-DCE	cis-1,2-dichloroethene
EPA	U.S. Environmental Protection Agency
FYR	Five-Year Review
ICs	Institutional Controls
LGRL	Land and Gas Reclamation Landfill
NCP	National Contingency Plan
NPL	National Priorities List
O&M	Operation and Maintenance
OU	Operable Unit
ppb	Parts per Billion
PRP	Potentially Responsible Party
RI/FS	Remedial Investigation/Feasibility Study
ROD	Record of Decision
TCE	Trichloroethene
μg/L	Micrograms per Liter
UU/UE	Unlimited Use/Unrestricted Exposure
VOC	Volatile Organic Compound
WDNR	Wisconsin Department of Natural Resources

4

EXECUTIVE SUMMARY

This is the fourth five-year review (FYR) for the Hechimovich Sanitary Landfill Superfund site (also known as the Land and Gas Reclamation Landfill) located in the town of Williamstown, Dodge County, Wisconsin. The purpose of this FYR is to review information to determine if the remedy is and will continue to be protective of human health and the environment. The triggering action for this statutory FYR was the signing of the previous FYR on June 17, 2009.

The site began as the City of Mayville dump in 1959. From 1959 to 1970, the City of Mayville operated the site as a licensed landfill that accepted wastes including battery cracking wastes, spent solvents, and waste paints. In the early 1970's, site operations were continued by George Hechimovich and the site became known as the Hechimovich Sanitary Landfill. During much of the 1970s, the site was licensed to accept toxic and hazardous wastes. In 1980, the site was no longer permitted to accept hazardous wastes. In July 1985, the landfill's name was changed to Land and Gas Reclamation Landfill (LGRL) and in October 1986, the site was closed to all waste disposals.

Following completion of the Remedial Investigation and Feasibility Study (RI/FS) the Wisconsin Department of Natural Resources (WDNR) wrote a Source Control Interim Record of Decision (ROD) which was signed on January 13, 1994. This ROD documented the installation of a new clay cap and an active landfill gas extraction system. The U.S. Environmental Protection Agency (EPA) concurred with the ROD. The final remedy for the site, documented in a ROD signed on September 6, 1995, included the existing clay cap and gas extraction system, operational changes to the gas system to emphasize gas removal from those areas of the waste fill believed to be major contributors of contaminants to the groundwater, and long-term groundwater monitoring. EPA concurred with the ROD. The Hechimovich site consists of two operable units (OUs). OU1 is the source control remedy, and OU2 is groundwater.

Long-term and recent groundwater monitoring downgradient of the site has shown some improvement in the shallow groundwater quality in impacted monitoring wells. Operation of the remedial action selected in the 1995 ROD appears to be improving the groundwater quality in the shallow unconsolidated aquifer directly north of the landfill. However, in the spring of 2009, the information concerning site conditions changed. As a result of contamination exceeding state and federal drinking water standards found in two private drinking water wells located 1,800 – 4,000 feet northeast of the waste boundary, it was determined that a deeper, previously unknown, groundwater contaminant plume may be leaving the landfill moving to the northeast through various bedrock units and possibly impacting private wells cased 180-190 feet below the ground surface. Since 2009, sampling has been conducted at various private wells in the area and investigations are currently being conducted by the potentially responsible parties (PRPs). These investigations are being conducted to determine the source(s) of the new contaminant groundwater plume, including the landfill; to define the degree and extent of the plume; to assess potential human and environmental risks; to identify remedial options; and to implement any necessary remedial actions.

As an interim public health protection measure, bottled drinking water is being provided to one home with contaminant levels exceeding drinking water standards. A filtration system was also installed at this home and the sampling indicates that it is working properly. The only other well that exceeded drinking water standards was converted to a monitoring well and is no longer useable as a drinking water supply well.

As a part of the expansion of the nearby Glacier Ridge Landfill, the Hechimovich Landfill is being dismantled and the waste relocated into Glacier Ridge. Upon completion of the waste relocation, the Glacier Ridge Landfill will then be expanded over the footprint of Hechimovich. The project includes a diversion of the piping for the gas extraction system. Best management practices will be utilized to minimize the time waste is exposed.

The source control OU1 remedy currently protects human health and the environment in the short term because human and ecological exposures are currently under control, since the waste relocation project is being carried out in such a way as to maintain protectiveness. The workers are following a Health and Safety Plan to prevent exposure to the waste and the site is completely fenced with controlled access at the gate. However, in order for the remedy to be protective in the long term, the source control remedy will need to be evaluated after the waste relocation project is completed and a determination made whether any further actions are necessary to ensure protectiveness.

The groundwater OU2 remedy currently protects human health and the environment in the short term because human health and ecological exposures are currently under control. There are no known uses of the shallow aquifer and the monitoring data shows it to be stable with reducing concentrations within the plume. For the deep groundwater aquifer, the human exposure pathway was eliminated via provision of bottled water and installation of a filter to one resident, and the other impacted drinking water well is not being used, having been converted to a monitoring well. There are no other known users of the deep aquifer where drinking water standards are exceeded. However, in order for the remedy to be protective in the long-term the following actions need to be taken: completion of the investigation of the deep aquifer contamination to determine the source and extent of the contaminant plume, implementation of possible further remedial measures, and compliance with effective institutional controls (ICs). Compliance with effective ICs will be ensured by conducting additional IC evaluation activities to ensure that effective ICs have been implemented. The ICs must also be maintained, monitored and enforced via long-term stewardship as well as maintaining the site remedy components.

The site-wide remedy currently protects human health and the environment in the short term because human health and ecological exposures are currently under control. However, in order for the remedy to be protective in the long term the following actions need to be taken: completion of the investigation of the deep aquifer to define degree, extent, and source of the groundwater contaminant plume, evaluation of the source area OU1 remedy once the waste relocation project is completed, determination if further remedial measures are necessary, and compliance with effective ICs.

Five-Year Review Summary Form

	SITE I	DENTIFICATION				
Site Name: Hech	imovich Sanitary Land	fill Superfund Site				
EPA ID: WID0	52906088					
Region: 5	State: WI	City/County: Tow	vn of Williamstown/Dodg	e County		
	SI SI	ITE STATUS				
NPL Status: Final		-				
Multiple OUs? Yes	Has the	site achieved constr	uction completion? Yes	5		
	REN	VIEW STATUS				
Lead agency: State						
Author name State Pr	roject Manager: Will	(Woody) Myers				
Author affiliation: Wi	isconsin Department of	f Natural Resources				
Review period: 9/12/2	013 - 6/17/2014					
Date of site inspection: 10/14/2013						
Type of review: Statutory						
Review number: 4						
Triggering action date	e: 6/17/2009					
Due date (five years a	fter triggering action a	late): 6/17/2014				

OU(s) without Issues/Recommendations Identified in the Five-Year Review:

 DULES - DUDUE REPORTER STRUCTURE SECTOR SECTOR 	A second state second s	DATE STARBARE BERERARD STARLING ST STARLING STARLING STARL	CONTRACTOR STOCKED AND A CONTRACTOR	and the second
2.1011年11月1日日日日日日本の市内市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市	STREET STRE	CONTRACTOR STREET, AND AND A CONTRACTOR OF A C	*33038880383289204~************************************	IS ICASED CONTRACTOR AND
	- CONTRACTOR OF A CONTRACTOR OF	A DEL SESSORIE TELESCONSCIENCE AND ADDRESS	BRORD STOLEN UNDER THE	I bout the point operation of a second second
A 1 A THE STATE DOUBLE STATE STATE STATE AND A	STREET PROPERTY STREET, MADE STREET, AND STREET, STREE	 Ity II is sealed in the conservation. A statistical principal 	 THERE ARE A SECTION. 	Hitishili mandalari Budu baba
				b) Local Science and Science as Social Review.
			1.3.4.3 T A MILLINGHILL	10 - 31 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 2
		and the second se	Definition of the second se	THE REPORT OF A DESCRIPTION OF A DESCRIP
TO UNITATION OF THE PROPERTY AND	CORES OF COMPLETE AND INCOMESSION AND A SUBJECT OF COMPLETE AND A SUBJECT AND A SUBJECT OF COMPLETE AND A SUBJECT OF COMPLETE AND A SUBJECT AND A SUBJECT OF COMPLETE AND A SUBJECT AND A SUBJECT A SUBJECT AND A SUBJECT A	 Calification and a second secon	 ADDRESSANCE ASSOCIATED BY AND INCOMENTATION OF A DECIMAL AND A DECIMAL AN	HIS CONTRACTOR OF THE OWNER OWNE
INTERFECTIVE AND	CONTRACTOR OF A DESCRIPTION OF A	1 Second Hereit and a second state of the second s second second se second second sec second second sec	COLUMN TRANSPORT OF THE OWNER OWNER OF THE OWNER OWNE	CONTRACTOR OF CONT

OU(s): 1	Issue Category: Changed Site Conditions					
	Issue: Site being deconstructed with waste relocated to adjacent Glacier Ridge landfill, then remaining site footprint to become an expansion to Glacier Ridge landfill.					
	Recommendation: Utilize best management practices to limit waste exposure and groundwater infiltration, operate gas extraction system as long as practicable, and expand State oversight of project.					
Affect Current Protectiveness	Affect FuturePartyOversight PartyMilestone DateProtectivenessResponsible					
No	YesPRPState6/30/2017					

OU(s): 2	Issue Category: Monitoring					
	Issue: Site waste relocation/expansion project impacts current groundwater monitoring program.					
	Recommendation: Revise groundwater monitoring program to add new monitoring wells, and other changes as appropriate.					
Affect Current Protectiveness	t Affect Future Party Oversight Party Milestone Protectiveness Responsible					
No	Yes PRP State/EPA 6/30/2017					

OU(s): 2	Issue Category: Remedy Performance				
	Issue: New contaminant plume in deeper bedrock aquifer.				
	Recommendation: Complete groundwater investigation.				
Affect Current Protectiveness	Affect FuturePartyOversight PartyMilestone IProtectivenessResponsible				
No	Yes PRP		State/EPA	6/17/2019	

OU(s): 1 and 2	Issue Category: Institutional Controls						
	Issue: The required ICs have not been fully evaluated on-site and off-site. A review of the ICs is needed to assure that the remedy is functioning as intended with regard to the ICs and to ensure effective procedures are in place for long-term stewardship at the site.						
	Recommendation: An IC Plan will be prepared by EPA and WDNR documenting required IC activities necessary by the PRPs and the agencies to further evaluate and implement additional ICs, as necessary, and to ensure that effective ICs are in place and effective and are monitored, maintained and enforced.						
Affect Current Protectiveness	Affect FuturePartyOversight PartyMilestone DateProtectivenessResponsible						
No	YesEPA/StateEPA6/17/2019						

Protectiveness Statement(s)

Operable Unit:

Protectiveness Determination: Short-term Protective

Protectiveness Statement:

The source control OU1 remedy currently protects human health and the environment in the short term because human and ecological exposures are currently under control, since the waste relocation project is being carried out in such a way as to maintain protectiveness. The workers are following a Health and Safety Plan to prevent exposure to the waste and the site is completely fenced with controlled access at the gate. However, in order for the remedy to be protective in the long-term, the source control remedy will need to be evaluated after the waste relocation project is completed and a determination made whether any further actions are necessary to ensure protectiveness.

Protectiveness Statement(s)

Operable Unit: 2

Protectiveness Determination: Short-term Protective

Protectiveness Statement:

The groundwater OU2 remedy currently protects human health and the environment in the short term because human health and ecological exposures are currently under control. There are no known uses of the shallow aquifer and the monitoring data shows it to be stable with reducing concentrations within the plume. For the deep groundwater aquifer, the human exposure pathway was eliminated via provision of bottled water and installation of a filter to one resident, and the other impacted drinking water well is not being used, having been converted to a monitoring well. There are no other known users of the deep aquifer where drinking water standards are exceeded. However, in order for the remedy to be protective in the long-term the following actions need to be taken: completion of the investigation of possible further remedial measures, and compliance with effective ICs. Compliance with effective ICs will be ensured by conducting additional IC evaluation activities to ensure that effective ICs have been implemented. The ICs must also be maintained, monitored and enforced via long-term stewardship as well as maintaining the site remedy components.

Sitewide Protectiveness Statement

Protectiveness Determination: Short-term Protective

Protectiveness Statement:

The site-wide remedy currently protects human health and the environment in the short term because human health and ecological exposures are currently under control. However, in order for the remedy to be protective in the long-term the following actions need to be taken: completion of the investigation of the deep aquifer to define degree, extent, and source of the groundwater contaminant plume, evaluation of the source area OU1 remedy once the waste relocation project is completed, determination if further remedial measures are necessary, and compliance with effective ICs.

I. INTRODUCTION

The purpose of a five-year review (FYR) is to evaluate the implementation and performance of a remedy in order to determine if the remedy will continue to be protective of human health and the environment. The methods, findings, and conclusions of reviews are documented in FYR reports. In addition, FYR reports identify issues found during the review, if any, and document recommendations to address them.

EPA prepares FYRs pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Section 121 and the National Contingency Plan (NCP). CERCLA Section 121 states:

"If the President selects a remedial action that results in any hazardous substances, pollutants, or contaminants remaining at the site, the President shall review such remedial action no less often than each five years after the initiation of such remedial action to assure that human health and the environment are being protected by the remedial action being implemented. In addition, if upon such review it is the judgment of the President that action is appropriate at such site in accordance with section [104] or [106], the President shall take or require such action. The President shall report to the Congress a list of facilities for which such review is required, the results of all such reviews, and any actions taken as a result of such reviews."

EPA interpreted this requirement further in the NCP; 40 Code of Federal Regulations (CFR) Section 300.430(f)(4)(ii), states:

"If a remedial action is selected that results in hazardous substances, pollutants, or contaminants remaining at the site above levels that allow for unlimited use and unrestricted exposure, the lead agency shall review such actions no less often than every five years after the initiation of the selected remedial action."

The WDNR is the lead agency for developing and implementing the remedy at the Hechimovich Sanitary Landfill Superfund site in Williamstown, Dodge County, Wisconsin. As the lead agency, the WDNR conducted a FYR on the remedy implemented at the site. EPA has reviewed the supporting documentation and provided input to WDNR during the FYR process. See Figures 1 and 2 in Appendix B for site maps which show the site location and sampling locations, respectively.

This is the fourth FYR for the site. The triggering action for this statutory review is the completion date of the previous FYR. The FYR is required due to the fact that hazardous substances, pollutants, or contaminants remain at the site above levels that allow for unlimited use and unrestricted exposure (UU/UE). The site consists of two Operable Units, all of which are addressed in this FYR. OU1 is for source control and consists of a permanent cover (capping) and a gas extraction system. OU2 is groundwater.

II. PROGRESS SINCE THE LAST REVIEW

This is the fourth FYR for the site. The key actions over the last five years have been:

1. The discovery in early 2009 of private water supply well contamination from vinyl chloride at concentrations exceeding state and federal drinking water standards;

2. Continued operation of the landfill gas extraction system as a remedial response to reduce volatile organic compound (VOC) concentrations within the waste fill; and

3. The decision by the PRPs to move all the waste from the Hechimovich Landfill to an adjacent landfill as part of the Glacier Ridge Landfill expansion project.

OU #	Protectiveness Determination	Protectiveness Statement
1, 2 and sitewide	Short-term Protective	Based on the 2009 site inspection, as it exists today, with the provision of bottled water and the relocation of some of those residents with vinyl chloride contaminated water, the remedy selected in the ROD is protective of human health and the environment in the short term. The bottled water and relocation activities are mitigating the groundwater/drinking water exposure pathway. If the landfill is found to be the source of these known threats, the exposure pathways will need to be addressed through one or more response actions to be taken by the potential responsible party group. However, long-term protectiveness will require further investigation of the deep aquifer contamination, implementation of possible further remedial measures, and compliance with effective ICs. Compliance with effective ICs will be ensured by conducting additional IC evaluation activities to ensure that effective ICs have been implemented. The ICs must also be maintained, monitored and enforced via long-term stewardship as well as maintaining the site remedy components.

Table 1: Protectiveness Determinations/Statements from the 2009 FYR

Table 2: Status of Recommendations from the 2009 FYR

OU #	Issue	Recommendations/ Follow-up Actions	Party Responsible	Oversight Party	Original Milestone Date	Current Status	Completion Date (if applicable)
2	The deep aquifer contamination and water supply contamination concerns are affecting the future protectiveness of the remedy.	An investigation of the contamination in the deep aquifer will be conducted by the landfill owner.	PRP	State	Fall 2009	Ongoing	N/A
Sitewide	Institutional Controls: The required ICs have not been fully evaluated. A review of the institutional controls is needed to assure that the remedy is functioning as intended with regard to the ICs and to ensure effective procedures are in place for long-term stewardship at the site.	An IC Plan will be prepared by EPA and WDNR documenting required IC activities necessary by the PRPs and the agencies to further evaluate and implement additional ICs, as necessary, and to ensure that effective ICs are in place and effective and are monitored, maintained and enforced	EPA/State	EPA	June 2010	Addressed in Next FYR	N/A

Recommendation 1

An investigation of the contamination in the deep aquifer is ongoing. There are currently three on-site wells located in the bedrock aquifer (one of which is up-gradient and used as a background well). There are also two-off site wells installed into the bedrock aquifer. See Figures 2 and 3 in Appendix B for locations of the bedrock wells. Sampling has also been conducted at several private wells in the area. The sampling locations can be found on Figure 3 in Appendix B. Additional monitoring wells are proposed to define the degree and extent of contamination in the deep aquifer. The proposed locations of these wells are shown in Figure 3 in Appendix B. The PRP (the landfill's owner/operator, Advanced Disposal) is using a phased approach to this investigation. As the information from the additional sampling points becomes available, it will be reviewed. At this time additional sampling points may be needed.

Recommendation 2

No ICs have been executed for this or the surrounding properties. As a Wisconsin licensed landfill, the State has restrictions for any construction on landfills. Furthermore the site is the location of an active landfill. It is standard operating procedure to wait to execute any ICs (in the form of deed restrictions) on landfills until after the facility stops accepting waste and is in the process of closure. These ICs are a condition of landfill closure.

No casing requirements have been executed due to the lack of information as to the degree and extent of groundwater contamination in the deep aquifer. However the State reviews all applications for new wells and would provide recommendations on any new private drinking water wells in the proximity of Hechimovich.

As described above, certain State regulations that govern landfills have already been implemented, however an IC Plan/IC evaluation will be needed going forward in order to evaluate any additional ICs that may be needed on-site and off-site in the future.

Remedy Implementation Activities

A plan has been developed and initiated by the PRP (Advanced Disposal) and approved by WDNR on October 13, 2013, to expand the adjacent commercial landfill, Glacier Ridge Landfill. The plan involves expanding the liner and leachate collection system of the Glacier Ridge Landfill to the east, located between Glacier Ridge and Hechimovich. After this is completed, Advanced will relocate all of the waste from Hechimovich with some of the underlying soil, most of which is expected to be contaminated, place the waste and soil into the expanded adjacent landfill, and deconstruct Hechimovich. Upon the completion of these actions, the liner from the expanded Glacier Ridge Landfill will be expanded again, as part of the Southeast Expansion, to encompass the footprint of the current Hechimovich landfill. This action will be carried out in accordance with the state-approved Plan of Operation and if carried out in accordance with the requirements of those approvals, is expected to have no – or a minimal temporary – adverse impact on the groundwater. The Hechimovich waste relocation will be conducted in four phases over four separate calendar years. The first phase that affects Hechimovich (known as Phase 6) is currently underway and addresses the north end of Hechimovich. This area includes what is believed to be the source of the groundwater contamination of the site.

The waste will be removed and once at the base, soil sampling will be conducted to determine the degree and extent of soil contamination. If the soils are contaminated, they will be segregated and treated depending on the levels of contamination. Once the base is cleared the liner from Glacier Ridge

will again be extended and will then begin accepting new waste. This process will continue for three additional phases: the second phase (Phase 7) includes the center portion of Hechimovich, the third phase (Phase 8) includes the south end of Hechimovich, and the fourth phase (Phase 9) encompasses a small remaining portion of the south end of Hechimovich. See Figure 5 in Appendix B for a map of the phases. Each phase will take approximately one calendar year to complete. The waste relocation is expected to result in a long-term improvement to the shallow groundwater quality over time. It is not likely that there would be a noticeable improvement in the deep aquifer, but removing the source should shorten the time till the aquifer contamination concentrations fall below standards. The Hechimovich gas collection system will continue to operate until the waste has been completely moved and measures will be taken to limit the time waste is exposed so as to limit groundwater infiltration.

The expansion of the Glacier Ridge liner and removal of the Hechimovich cap began in February 2014. The relocation of the Hechimovich waste is expected to be completed by June 2017.

Outside of the waste relocation project, additional investigations are being conducted of the OU2 deep groundwater contamination.

In the spring of 2009, the information concerning site conditions changed. As a result of contamination exceeding state and federal drinking water standards found in two private drinking water wells located 1,800 – 4,000 feet northeast of the waste boundary, it was determined that a deeper, previously unknown, groundwater contaminant plume may be leaving the landfill moving to the northeast through various bedrock units and possibly impacting private wells cased 180-190 feet below the ground surface. As an interim public health protection measure, bottled drinking water is being provided to one home with contaminant levels exceeding drinking water standards. A filtration system was also installed at this home and the sampling indicates that it is working properly. The only other well that had exceedances was converted to a monitoring well (PW-27) and is no longer useable as a drinking water supply well. It is believed that there is not a pathway for vapor intrusion into the residences due to the fact that the contamination is located approximately 180-190 feet below ground surface and because there is a shale layer between the shallow and deep aquifer.

Since 2009, sampling has been conducted at over 25 private wells in the area with continued sampling at 11 private wells. Investigations are currently being conducted to determine the source(s) of the deep contaminant groundwater plume, including the landfill; to define the degree and extent of the plume; to assess potential human and environmental risks; to identify remedial options; and to implement any necessary remedial actions. The results of the sampling that has been conducted can be found in Appendix C-2 and are discussed in more detail in the Data Review section of this FYR. Table 3 lists a summary of the remedial activities that have been conducted since the last FYR in June 2009.

September 2009	Two monitoring wells were installed to the bedrock aquifer (P401D and P402D)
January 2010	P402D was replaced by P402E due to a low flow zone over its screened interval
July 2010	Monitoring wells P421D and P422D were installed
October 2010	New private drinking water well (PW-21RR) was installed to replace impacted well
November 2010	Decommissioned private well was converted to a sampling point (PW-27)
August 2012	Monitoring well P424D (dolomite) was installed
October 2012	Monitoring well P424SS (sandstone) was installed
February 2014	Two proposed sampling points were installed and are being evaluated

Table 3: S	Summary of	f Remedial	Activities	since Ju	ine 2009
------------	------------	------------	------------	----------	----------

More information regarding the deep groundwater investigation can be found in the document entitled "Status of Off-Site Investigation of Chlorinated Volatile Organic Compounds in Groundwater in Bedrock" dated August 13, 2013, from SCS Engineers to WDNR.

Institutional Controls

Institutional controls are non-engineered instruments, such as administrative and legal controls, that help to minimize the potential to exposure to contamination and that protect the integrity of the remedy. ICs in the form of enforceable solid waste landfill regulations are required by the NR 500, Wisconsin Administrative Code series, and outlined in the 1995 Record of Decision for the site to restrict property use, maintain the integrity of the remedy, and assure the long term protectiveness for areas which do not allow for unlimited use or unrestricted exposure. A summary of the implemented ICs for the site is listed in Table 4 and ICs are further discussed below.

Specific to this site, the applicable ICs are the state prohibition to building on a closed landfill and the state prohibition of drilling a water supply well within 1200 feet of the landfill boundary without permission from the WDNR. Both of these prohibitions are set in state administrative code and are enforced by the WDNR. To date there have been no problems with the enforcement of these controls.

Media, Engineered Controls, and Areas that do not Support UU/UE Based on Current Conditions	ICs Needed	ICs Called for in the Decision Documents	Impacted Parcel(s)	IC Objective	Title of IC Instrument Implemented and Date (or planned)
Groundwater	Yes	Yes	All of landfill and 1200 feet from the waste boundary	Prohibition of the drilling of water supply wells within 1200 feet of the landfill boundary without prior approval from the WDNR	Wisconsin Administrative Code, already in effect
Engineered Landfill Cover	Yes	No	All of covered landfill area	Prohibition of construction of any sort on the landfill cover without prior approval from the WDNR	Wisconsin Administrative Code, already in effect

 Table 4: Summary of Implemented ICs

Note: Additional ICs may be determined to be necessary off-site based on the results of the deep groundwater investigation being conducted.

<u>Current Compliance</u>: Specific to this site, the applicable ICs are the state prohibition to building on a closed landfill and the state prohibition of drilling a water supply well within 1200 feet of the landfill boundary without permission from the WDNR. Both of these prohibitions are set in state administrative code and are enforced by the WDNR. Based on oversight of the site by the assigned WDNR Waste Management and Remediation and Redevelopment staff, to date there have been no problems with the enforcement of these controls.

Long-Term Stewardship:

Long-term protectiveness at the site requires compliance with the above restrictions to assure the remedy continues to function as intended.

System Operation/Operation and Maintenance Activities

Advanced Disposal, a successor corporation to Veolia Environmental and the company that now owns the Hechimovich Landfill, has been conducting long-term monitoring and maintenance activities according to state approvals. The primary activities associated with operation and maintenance (O&M) include the following:

- Visual inspection of the cap with regard to vegetative cover, settlement, stability, and any need for corrective action;
- Inspection of the drainage swales and ditches for blockage, erosion and instability, and any need for corrective action;
- Inspection of the condition of groundwater monitoring wells;
- Environmental monitoring: Monitoring of groundwater quality, leachate head wells and gas probes; and
- Annual reports to the WDNR documenting the operation of the remedy.

III. FIVE-YEAR REVIEW PROCESS

Administrative Components

The PRP (Advanced Disposal) was notified of the initiation of the FYR on 10/3/2013. The FYR was led by the WDNR project manager for the site.

The review, which began on 9/12/2013, consisted of the following components:

- Community Notification and Involvement;
- Document Review;
- Data Review;
- Site Inspection;
- Interviews; and
- Five-Year Review Report Development and Review.

Community Notification and Involvement

Activities to involve the community in the five-year review process were initiated with a meeting in October 2013 between the PRP (Advanced Disposal) and the state project manager. A notice was published in the local newspaper, the "Dodge County Pioneer," on 2/28/2014, stating that there was a five-year review and inviting the public to submit any comments to the WDNR.

The results of the review and the report will be made available at the site information repository located at:

Mayville Public Library 111 North Main Street Mayville, WI 53050

Document Review

This FYR consisted of a review of relevant documents including O&M records and monitoring data. Applicable soil and groundwater cleanup standards, as listed in the January 1994 ROD, were also reviewed.

Data Review

Groundwater monitoring has been conducted at the site since the early 1980s. However, groundwater quality data collected since the early 1990s are primarily used to make decisions about the condition of the site. The shallow groundwater contamination plume is stable in both the concentration of detectable contamination and in the plume boundaries. See the tables in Appendix C-1 for historic monitoring results at the shallow groundwater wells. As detailed in the 1995 ROD, the cleanup goals for the primary contaminants of concern are Wis. Adm. Code NR 140 Groundwater Quality Preventive Action Limits and the Maximum Contaminant Levels set in the Safe Drinking Water Act. Since June 2009, the end of the third five-year review period, the gas extraction system has removed in excess of 5,000 pounds of VOCs from the waste mass.

Groundwater monitoring discovered contamination northeast of the landfill in the bedrock units underlying the site during the sampling of more than 20 private wells in 2009. Two of the private drinking water wells (PW-21R/PW-21RR and PW-27) that capture water from the dolomitic aquifers beneath the dolomite and shale layers of the Maguoketa Formation were found to have contamination of chlorinated VOCs above the state and federal drinking water standards and detections of other chlorinated VOCs. (See Figure 4 in Appendix B for a cross section that shows the layers and aquifers at the site). Both PW-21 and PW-27 had exceedances of vinyl chloride and PW-27 also had exceedances of cis-1,2-dichloroethene (cis-1,2-DCE). Two other private drinking water wells (PW-28 and PW-32) had low detections of cis-1,2-DCE, but were well below the state and federal drinking water standards. The rest of the wells sampled in 2009 were non-detects. Continued sampling was conducted in eleven private wells; the results from these wells are presented in Appendix C-2 and the well locations are shown on Figure 3 in Appendix B. The latest sample results show that the vinyl chloride and cis-1,2-DCE concentrations in the replacement water supply well, PW-21RR, have shown an overall declining trend since mid-2012. In samples from PW-27, concentrations of cis-1,2-DCE and vinyl chloride have declined slightly since monitoring started in 2009. Samples from PW-28, PW-32 and PW-19 (which was not sampled in 2009), show low detections of cis-1,2-DCE, however the detected cis-1,2-DCE concentrations are well below the state and federal drinking water standards. The rest of the private wells sampled do not show detections for chlorinated VOCs. These wells draw water from depths of 205 to 445 feet below ground surface. The combination of organic parameters found in the drinking water wells match, to a large degree, the combination of organic contaminants found in the groundwater at the landfill. In addition to the sampling of the private drinking water wells, two monitoring wells were installed on-site and two monitoring wells were installed off-site into the deep bedrock aquifer. The chlorinated VOC concentrations found in these wells are listed in Table 5. Additional monitoring wells

are planned to be installed off-site to further define the deep groundwater plume. The proposed locations of these wells are shown in Figure 3 in Appendix B. Additional monitoring of existing and planned new monitoring wells will help determine the source and nature of this deep groundwater contamination.

XX7-U NI-res Lore	Samela Data	Concentration in µg/L or ppb								
well Number	Sample Date	ТСЕ	cis-1,2 DCE	Vinyl Chloride						
P-401D	10/7/2009	<0.4	<0.4	<0.4						
	4/6/2010	<0.4	<0.4	<0.4						
	10/27/2010	<0.4	<0.4	<0.4						
	11/29/2010	<0.4	<0.4	<0.4						
	4/8/2011	<0.4	<0.4	<0.4						
	10/6/2011	<0.4	<0.4	<0.4						
	4/13/2012	<0.4	<0.4	<0.4						
	1/4/2012	<0.48	<0.83	<0.18						
P-402E	1/22/2010	2.71	120	23.6						
	2/24/2010	2.66	200	35						
	4/7/2010	4.84J	395	48.8						
	10/27/2010	11.1J	459	39.4						
	11/29/2010	9.16J	346	40.6						
	4/8/2011	15.7	499	53.5						
	10/7/2011	13.6	344	41.9						
	4/13/2012	11.5J	412	41.4						
	10/4/2012	12.5	360	39.3						
	4/5/2013	10.2	330	35.5						
P-423D	21/16/2010	0.9Ј	62.1	2.53						
	4/8/2011	0.73J	52	1.2						
	10/7/2011	0.74J	44.9	2.19						
	4/13/2012	0.92J	61.9	0.91J						
	10/5/2012	0.68J	51.8	1.5						
	4/5/2013	0.72J	59.4	2.1						
P-424D	12/17/2012	1.7J	91.2	7.0						
	2/20/2013	2.5	105	5.8						

 Table 5: Deep Aquifer Groundwater Bedrock Well Concentrations

Site Inspection

The inspection of the site was conducted on 10/14/2013. In attendance were Woody Myers of the WDNR, Joseph Falle of Cornerstone Environmental Group, Joe Kwiatkowski from Advanced Disposal, and Ann Bekta and Adam Hogan of WDNR. The purpose of the inspection was to assess the protectiveness of the remedy.

The inspection of the site consisted of a walk-over of the capped landfill, a visual inspection of the gas extraction system, and an interview with the current site manager. The cap was intact and covered with short vegetation. There were no signs of erosion and the cap was free of pockets where rain water could collect. There were no seeps around the perimeter of the cap and there was no waste protruding through the cap. Adjacent to the site is an active landfill. The gates are open and monitored during business hours and secured after hours. The fencing around the facility was in good repair. Monitoring wells onsite were observed and since no damage to the protective caps was obvious, no additional inspection of the wells was made.

The results of the site inspection show that the cap and active gas extraction system have been maintained in accordance with state and federal regulations. The site inspection checklist can be found in Appendix D.

Interviews

The PRP's site manager was interviewed as part of this FYR during the site inspection, as noted above. No interviews of the public were conducted.

IV. TECHNICAL ASSESSMENT

Question A: Is the remedy functioning as intended by the decision documents?

No. The review of documents, applicable or relevant and appropriate requirements (ARARs), risk assumptions, and the results of the ongoing monitoring indicate that the remedy may not be functioning as intended by the 1995 ROD. The capping of contaminated wastes within the landfill is working to achieve the remedial objectives to minimize the migration of contaminants to shallow groundwater and prevent significant ecological exposures through surface waters. Operation and maintenance of the cap and gas extraction system have been effective. The 10-year trend in the shallow groundwater quality results shows a stable plume with reducing concentrations within the plume. However, the landfill may be the source of a deeper groundwater contamination plume to the northeast which raises concerns about the current remedy. Two private drinking water wells located northeast of the site have been contaminated with VOCs; one of the wells exceeded state and federal drinking water standards for vinyl chloride and cis-1.2-DCE and another well for only vinyl chloride. The human exposure pathway to these two wells has been eliminated. The landfill may be the source of groundwater contamination that has migrated 1,800-4,000 feet from the site and as deep as 180-190 feet within the bedrock aquifer. An investigation of this contamination is underway. If the landfill is determined to be the source of the deeper groundwater contamination, an adjustment to the current remedies would be necessary to comply with state and federal regulations and ensure protection of human health and the environment.

The impact of the waste relocation/expansion project on the remedy in the 1995 ROD will be evaluated after the waste relocation project is complete. Best management efforts are being utilized to minimize waste exposure, groundwater infiltration, and to operate the gas extraction system as long as possible until the project is completed. WDNR oversight of this project has been expanded.

Question B: Are the exposure assumptions, toxicity data, cleanup levels, and remedial action objectives used at the time of the remedy selection still valid?

No. There have been no changes in the state or federal groundwater standards for the key contaminants

of cis-1,2-DCE, trichloroethene, and vinyl chloride. However, there have been changes in the site conditions that may affect the future protectiveness of the remedy, and the assumptions used during the development of the baseline risk assessment may not be valid. The earlier risk assessments were based on no known exposures to contaminants through drinking water. Since contamination has been discovered in the deep bedrock aquifer, there may be a potential contaminant exposure through drinking water ingestion in the future. Currently, the exposure pathway for drinking water has been eliminated through interim measures by providing drinking water and/or filtration systems to those affected. If the landfill is found to be the source of this contamination, a new assessment of the risks will be required once the deep groundwater aquifer investigation is complete.

Question C: Has any other information come to light that could call into question the protectiveness of the remedy?

Yes. As a part of the expansion of the Glacier Ridge Landfill, the Hechimovich Landfill is being dismantled and the waste relocated into Glacier Ridge. Upon completion of the waste relocation, the Glacier Ridge Landfill will then be expanded over the footprint of Hechimovich. The project includes a diversion of the piping for the gas extraction system. While best management practices will be utilized to minimize the time waste is exposed, there are concerns for potential impacts to the groundwater resulting from precipitation while the waste is being relocated and before the new liner can be constructed in the footprint of the site.

Technical Assessment Summary

According to the data reviewed the remedy may not be functioning as intended by the ROD. There have been changes in the site conditions that may affect the future protectiveness of the remedy. The landfill may be the source of a deeper groundwater contamination plume to the northeast which raises concerns about the current remedy. Two private drinking water wells located northeast of the site have been contaminated with VOCs; one of the wells exceeded state and federal drinking water standards for vinyl chloride and cis-1,2-DCE and another well for only vinyl chloride. The human exposure pathway to these two wells has been eliminated. The landfill may be the source of groundwater contamination that has migrated 1,800-4,000 feet from the site and as deep as 180-190 feet within the bedrock aquifer. An investigation is underway. If the landfill is determined to be the source of the deeper groundwater contamination, an adjustment to the current remedies would be necessary to comply with state and federal regulations and ensure protection of human health and the environment.

The earlier risk assessments were based on no known exposures to contaminants through drinking water. Since contamination has been discovered in the deep bedrock aquifer, there may be a potential contaminant exposure through drinking water ingestion in the future. Currently, the exposure pathway for drinking water has been eliminated through interim measures by providing drinking water and/or filtration systems to those affected. If the landfill is found to be a source of this contamination, a new assessment of the risks will be required once the deep groundwater aquifer investigation is complete.

There have been no changes in the toxicity factors for the contaminants of concern that were used in the baseline risk assessment, and there has been no change to the standardized risk assessment methodology that could affect the protectiveness of the remedy. The expansion of the Glacier Ridge Landfill and relocation of the Hechimovich waste into it may result in impacts to the groundwater. Best management practices are being employed to minimize waste exposure and groundwater infiltration. The waste relocation project began in March 2014 and should be completed by summer 2017.

19

There is no other known information that further calls into question the protectiveness of the remedy.

V. ISSUES/RECOMMENDATIONS AND FOLLOW-UP ACTIONS

OU#	Issue	Recommendations/	Party	Oversight	Milestone	Affe Protecti	ects veness?
		Follow-up Actions	Responsible	Agency	Date	Current	Future
1	Site being deconstructed with waste relocated to adjacent Glacier Ridge landfill, then remaining site footprint to become an expansion to Glacier Ridge landfill.	Utilize best management practices to limit waste exposure and groundwater infiltration, operate gas extraction system as long as practicable, and expand State oversight of project.	PRP	State	6/30/2017	No	Yes
2	Site waste relocation/ expansion project impacts current groundwater monitoring program.	Revise groundwater monitoring program to add new monitoring wells, and other changes as appropriate.	PRP	State/EPA	6/30/2017	No	Yes
2	New contaminant plume in deeper bedrock aquifer.	Complete groundwater investigation.	PRP	State/EPA	6/17/2019	No	Yes
Site- wide	The required ICs have not been fully evaluated on-site and off-site. A review of the ICs is needed to assure that the remedy is functioning as intended with regard to the ICs and to ensure effective procedures are in place for long-term stewardship at the site.	An IC Plan will be prepared by EPA and WDNR documenting required IC activities necessary by the PRPs and the agencies to further evaluate and implement additional ICs, as necessary, and to ensure that effective ICs are in place and effective and are monitored, maintained and enforced.	EPA/State	EPA	6/17/2019	No	Yes

Table 6: Issues	and Recomm	endations/I	Follow-up	Actions
-----------------	------------	-------------	-----------	---------

VI. PROTECTIVENESS STATEMENTS

Protectiveness Statement(s)

Operable Unit: 1

Protectiveness Determination: Short-term Protective

Protectiveness Statement:

The source control OU1 remedy currently protects human health and the environment in the short term because human and ecological exposures are currently under control, since the waste relocation project is being carried out in such a way as to maintain protectiveness. The workers are following a Health and Safety Plan to prevent exposure to the waste and the site is completely fenced with controlled access at the gate. However, in order for the remedy to be protective in the long-term, the source control remedy will need to be evaluated after the waste relocation project is completed and a determination made whether any further actions are necessary to ensure protectiveness.

Protectiveness Statement(s)

Operable Unit: 2

Protectiveness Determination: Short-term Protective

Protectiveness Statement:

The groundwater OU2 remedy currently protects human health and the environment in the short term because human health and ecological exposures are currently under control. There are no known uses of the shallow aquifer and the monitoring data shows it to be stable with reducing concentrations within the plume. For the deep groundwater aquifer, the human exposure pathway was eliminated via provision of bottled water and installation of a filter to one resident, and the other impacted drinking water well is not being used, having been converted to a monitoring well. There are no other known users of the deep aquifer where drinking water standards are exceeded. However, in order for the remedy to be protective in the long-term the following actions need to be taken: completion of the investigation of the deep aquifer contamination to determine the source and extent of the contaminant plume, implementation of possible further remedial measures, and compliance with effective ICs. Compliance with effective ICs have been implemented. The ICs must also be maintained, monitored and enforced via long-term stewardship as well as maintaining the site remedy components.

Sitewide Protectiveness Statement

Protectiveness Determination: Short-term Protective

Protectiveness Statement:

The site-wide remedy currently protects human health and the environment in the short term because human health and ecological exposures are currently under control. However, in order for the remedy to be protective in the long term the following actions need to be taken: completion of the investigation of the deep aquifer to define degree, extent, and source of the groundwater contaminant plume, evaluation of the source area OU1 remedy once the waste relocation project is completed, determination if further remedial measures are necessary, and compliance with effective ICs.

VII. NEXT REVIEW

The next FYR report for the Hechimovich Landfill Superfund site is required five years from the completion date of this review.

APPENDIX A Existing Site Information

A. SITE CHRONOLOGY

Table 1: Site Chronology

Event	Date
City of Mayville dump operations	1959-70
Site operated by George Hechimovich	1970-85
WDNR issues conditional license to Hechimovich Sanitary Landfill	September 1970
WDNR issues renewal including toxic and hazardous waste disposal	December 1972
WDNR notifies Hechimovich Landfill that hazardous wastes are no	1979
longer allowed	
WDNR issues extension to 1980	November 1979
Site accepts liquid hazardous wastes	1970-80
Site name changed to Land and Gas Reclamation Landfill (LGRL)	July 1985
LGRL ceases accepting all wastes	October 1986
State-enforcement action requires a landfill cap and gas collection	July 1987
system	
Hechimovich Landfill proposed to NPL	June 24, 1988
Final NPL listing	March 31, 1989
Remedial Investigation	April 1993
Interim Source Control ROD signature	January 13, 1994
Landfill capping, gas control and long-term monitoring selected as	February 1994
final remedy /Feasibility Study complete	
Final ROD signed	September 6, 1995
Preliminary Close-out Report signed	September 16, 1997
First five-year-review completed	February 19, 1999
Second five-year review completed	June 21, 2004
Third five-year review completed	June 17, 2009

B. BACKGROUND

Physical Characteristics

The site is located in a rural area in the town of Williamstown, approximately 2 miles south of the City of Mayville, and approximately 3.5 miles east of the City of Horicon, Wisconsin. This 24.3-acre closed landfill is located in the east one-half of the southwest quarter of Section 35, Township 12 North, Range 16 East, Williamstown, Dodge County, Wisconsin. See Figure 1 in Appendix B for a site map. The site is fenced and access is controlled by a monitored gate. The site contains an estimated 1 million cubic yards of waste. The waste is a mix of hazardous and non-hazardous waste.

Hydrology

The geology of the area consists of multiple layers of bedrock overlaid by unconsolidated glacial material. The unconsolidated material varies between 20 and 150-feet thick. The bedrock units are (in order of youngest to oldest) the Maquoketa Shale, Galena-Platteville Dolomite and the Saint Peter Sandstone. The Maquoketa is encountered between 20 to 150-feet below ground surface (bgs) and

1

ranges in thickness between 80 to 160-feet thick. The Galena-Platteville is approximately 260-feet thick which is relatively uniform across the site. The Saint Peter Sandstone is found at depths greater than 400-feet bgs.

The site bears two distinct aquifers, a shallow and a deep. The communication between the two aquifers is still not clear, but appears to be greater than the original work showed. The shallow aquifer is in unconsolidated material; its depth varies between 15 to 30-feet bgs with a groundwater flow direction of northeast. This aquifer does not appear to extend into the Maquoketa.

The deep aquifer originates in the Maquoketa at approximately 80 to 120-feet bgs and extends down into the Galena-Platteville and Saint Peter. The groundwater flow direction has not been confirmed, but by looking at the contamination plume within this aquifer, it is assumed to be east-northeast. Little information is known about the flow speed, but is assumed to be relatively slow.

Land and Resource Use

The historic land use of the site prior to waste operations was agriculture. From the 1950s until 1986, hazardous waste activities conducted at the site included, at differing time intervals, battery cracking, paint disposal and waste solvent disposal. For an undetermined period of time, solvent disposal involved dumping the liquid wastes into evaporation pits either placed on the land surface or dug into the top of the waste. The majority of the waste is residential, commercial and industrial solid waste. The closed, licensed Hechimovich Sanitary Landfill (also known as the Land and Gas Reclamation Landfill or LGRL) is now incorporated in Advanced Disposal's Glacier Ridge Landfill. An expansion of the Glacier Ridge Landfill, called the Veolia Glacier Ridge South Expansion, is currently operating on the property and accepts non-hazardous waste only and is an engineered facility incorporating leachate and gas control systems. (See Figure 2 in Appendix B.)

Most of the land adjacent to the site is privately owned. Single family homes in a rural setting surround the site. Wetlands lie to the east, north and west of the site. Horicon National Wildlife Refuge lies about 3.5 miles west of the landfill. The City of Mayville is 2 miles to the north. Mayville draws its drinking water from underlying sandstone units from a depth greater than 227 feet.

The fractured dolomite and shale bedrock underlying the site at a depth greater than 60 feet is used as a drinking water source for nearby private wells. The dominant ground water flow direction in the shallow aquifer is north towards the wetlands north of the site. The groundwater flow direction in the deep bedrock aquifers is unknown.

History of Contamination

The site was a licensed landfill. It was first operated as the Mayville Dump by the City of Mayville from 1959 to 1970. The Mayville landfill was a small open dump that now is part of the northern end of the closed landfill. A variety of waste disposal activities occurred at the Mayville site including open burning, battery recycling operations and solvent disposal. It appears these past activities may be a significant contributor to the current shallow groundwater problems as the highest shallow groundwater contamination levels are directly downgradient and adjacent to the old dump site.

Beginning in 1970, the site was operated by George Hechimovich and was called the Hechimovich Sanitary Landfill. The Mayville site was sold to and became part of the Hechimovich Sanitary Landfill in 1971. In March 1984 site ownership and operations were transferred to Land and Gas Reclamation,

Inc. and the site name was subsequently changed to LGRL in July 1985. The site was closed in October 1986.

During part of the 1970-1980 time period, the site was licensed to accept hazardous waste. Paint sludge and cutting oils from local industries, possibly containing lead, chromium and solvents, were disposed of in several on-site lagoons. It is estimated by EPA that 53,000 gallons of liquid hazardous waste were disposed of at this site. In addition, the site accepted approximately one million cubic yards of non-hazardous household and commercial wastes. The landfill does not have a liner. An initial cover, consisting of 2 to 4 feet of local till soils and 6 inches of topsoil, was placed in 1987. A system of groundwater and surface water monitoring locations was included in a monitoring program required by the WDNR at site closure.

In spring 2009, routine sampling identified private water supply well contamination in wells northeast of the fill. These wells lie about 1,800-4,000 feet from the site and are cased through the Maquoketa Formation. The identification of contamination in the deep aquifers downgradient of the landfill is a serious concern. The current landfill owners are conducting a site investigation to determine if the landfill is the source of the deep bedrock impacts.

Initial Response

In July 1987, the site was the subject of a WDNR state enforcement action, resulting in a Stipulation and Order signed by the Dodge County Circuit Court, which directed George Hechimovich, Hechimovich Sanitary Landfill, Inc., and Land and Gas Reclamation, Inc. to undertake certain actions at the landfill, including the installation of a clay cap and a gas collection system. The court-ordered clay cap was installed, under WDNR supervision and approval, in 1991 and 1992. To date, the cap has been satisfactorily installed and maintained. In addition, since March 1992, the active gas extraction system has been operating according to design specifications. The installation and operation of these measures were documented and approved as a source control interim action in the January 1994 Record of Decision (ROD) signed by WDNR. EPA concurred with the ROD. The modification of this gas extraction system was the main activity in the final remedy for the site.

Based on a request from the WDNR, EPA proposed the site to the NPL in 1988. The site was listed on the NPL, as the Hechimovich Sanitary Landfill, in March 1989. Based on the information obtained from landfill records in the possession of Daniel and George Hechimovich, the WDNR issued special notice letters to fourteen potentially responsible parties (PRPs) on August 15, 1990, and to two additional PRPs on September 20, 1990.

The PRPs entered into an environmental repair contract with the WDNR, which became effective on September 28, 1990, to perform a remedial investigation/feasibility study (RI/FS) pursuant to s. 144.442, Wisconsin Statutes. After the environmental repair contract was signed, the WDNR decided that, due to the timing of the remedial actions, remediation at the site should be divided into two operable units: a source control (landfill closure) operable unit and a groundwater operable unit. The January 1994 ROD documented successful completion of the source control operable unit. The final ROD, signed by the State on September 6, 1995, with EPA concurrence, established the final remedy for the site.

Subsequent to the signing of the final ROD, site monitoring activities appear to show the site shallow groundwater impacts to be stable. The known groundwater plume extending north from the north end of the waste fill appears to be unchanging. However, in spring 2009 routine sampling identified potential

new site impacts. Two private drinking water wells were discovered contaminated with vinyl chloride concentrations exceeding maximum contaminant levels. In one of the wells the vinyl chloride was of such a concentration that the well water could not be used for any domestic purposes. Follow-up sampling in April 2009 identified these two drinking water wells with various levels of contamination.

Basis for Taking Action

Contaminants

Hazardous substances that have been released at the site in each media include:

Groundwater/Drinking Water

tetrachloroethene trichloroethene cis-1,2-dichloroethene trans-1,2-dichloroethene vinyl chloride

The July 1993 Baseline Human Health Risk Assessment conducted for the site found no human health risks in excess of levels identified by EPA as warranting remedial action. The primary pathway reviewed was groundwater ingestion. A screening level ecological risk assessment was also conducted. The assessment found the potential for exposure to contaminants in the ditches that drain the wetlands north of the landfill. However, no adverse ecological effects were observed. The ditches do not appear to be able to support a sustainable population due to frequent drying out.

Subsequent to the July 1993 risk assessment, water supply sampling in the spring of 2009 has shown there to be a potential for unacceptable human health risk from the site. Two private drinking water wells, downgradient of the landfill, had vinyl chloride concentrations exceeding state drinking water enforcement standards. Much of the current regulatory attention at the site is aimed at investigating a possible link between the landfill and these water supply impacts.

C. REMEDIAL ACTIONS

Remedy Selection

The ROD for the source control interim remedy at the Hechimovich Landfill was signed on January 13, 1994, and the final ROD was signed on September 6, 1995. EPA concurred with both RODs. Remedial action objectives (RAOs) were developed as a result of data collected during the Remedial Investigations to aid in the development and screening of remedial alternatives. The RAOs for the Hechimovich Landfill were intended to protect human health and the environment and to meet applicable or relevant and appropriate requirements.

Remedial Action Objectives

- Reduce groundwater contaminant concentrations to levels below the Preventive Action Levels established in NR 140 Wis. Adm. Code at the landfill waste edge;
- Maintain human exposure levels to contaminants below state and federal guidelines. These are

primarily the state and federal groundwater and drinking water standards. The federal standards are Maximum Contaminant Levels set in the Safe Drinking Water Act and the state drinking water standards are set in NR 809 Wis. Adm. Code; and

- Maintain ecological exposure levels to contaminants below potential levels of concern based on state and federal criteria such as the federal surface water quality criteria.

Access and use restrictions on the property, as provided in state solid waste management codes, are restricting future uses of licensed landfills and state drinking water codes are restricting placement of wells within 1200 feet of landfills. The site access restrictions are implemented by the site owner under the state trespass laws. There is a gate restricting vehicle access to the site. The private well restrictions are implemented by the state through its regulation of well drillers.

The Source Control ROD was written and signed in January 1994 and called for no further source control actions other than those being implemented under state authority. These source control actions included clay capping, installing an active landfill gas collection system, and groundwater monitoring. The final ROD was signed in September 1995. The major components of the final remedy were the following:

- Placement and compaction of at least 2 feet of clay overlain by 24 inches of rooting zone material and 6 inches topsoil;
- Seeding and mulching the finished slopes;
- Installation and enhancement of the active gas extraction system;
- Deed restrictions; and
- Establishment of a groundwater monitoring system.

Remedy Implementation

The Remedial Design (RD) and Remedial Action (RA) phase of the project was conducted through state solid waste management authority granted through ch. NR 500-526 of the Wisconsin Administrative Code. The WDNR reviewed and approved the report entitled, "Construction Observation Report Site Closure/Final Cover System and Gas Collection System Land and Gas Reclamation Landfill" dated August 6, 1992. The WDNR issued its approval on November 19, 1992. The RD and RA were conducted in conformance with the RODs.

The RA consisted of installing a clay cap and active gas extraction system on the waste mass. The activities for this phase were initiated in 1991 and completed in 1992.

The contractors for the PRPs conducted remedial activities as planned. The WDNR conducted several inspections following completion of the site work. During the inspections several leachate seeps and areas of excess settlement were identified and subsequently repaired. The series of inspections concluded that construction had been completed in accordance with the RD plans and specifications.

The WDNR and EPA determined that all RA construction activities were performed according to specifications. It is expected that cleanup levels for the shallow groundwater contaminants will be reached within approximately thirty years after completion of the RA. After groundwater cleanup levels have been met the WDNR and EPA will issue a Final Close Out Report.

APPENDIX B Figures

E0701/Drawings-General/Flan of Operation/Figures/FISURE 1.dwg, 4/22/2013 12:30:34 PM

APPENDIX C Historical Groundwater Data

APPENDIX C-1 Shallow Groundwater Data

Historic VOC Monitoring Results Land Gas Reclamation Landfill (concentrations in ug/L)

	MW-	IRR		MW-1AR							
Date	cis-1,2-DCE	TCE	VC	Date	cis-1,2-DCE	TCE	vc				
NR 140 ES	70	5	0.2	NR 140 ES	70	5	0.2				
11/21/91		1,900	2,900	11/19/91		130	3,000				
5/29/92		2,800	4,300	5/29/92		100	2,800				
6/17/93		580	1,800	6/17/93		30	2,200				
6/21/94		10.7	198	6/21/94		24.9	1,160				
4/14/95	1,500	2,000	3,800	4/14/95	7,100	200	2,900				
10/4/95	6,400	620	3,400	10/4/95	6,100	180	2,800				
4/4/96	1,900	130	1,300	4/4/96	6,600	150	2,600				
10/12/96	16,000	1,600	3,600	10/12/96	8,500	200	2,300				
4/10/97	3,800	80	3,100	4/10/97	6,000	86	2,400				
10/3/97	2,500	190	1,600	10/3/97	6,300	0	2,700				
4/10/98	2,800	120	2,300	4/10/98	7,200	150	2,500				
10/14/98	11,000	820	3,100	10/15/98	6,500	95	1,900				
4/6/99	2,100	0	2,300	4/6/99	5,500	0	2,300				
10/7/99	13,000	6,800	3,400	10/8/99	6,100	0	2,000				
4/3/00	2,400	77	1,500	4/3/00	5,700	54	2,200				
10/4/00	4,600	0	1,210	10/5/00	4,920	0	1,190				
4/4/01	2,260	0	1,240	4/4/01	5,040	0	1,300				
10/3/01	6,090	411	2,300	10/3/01	4,910	0	2,000				
4/3/02	4,890	274	535	4/3/02	5,320	0	795				
10/1/02	4,800	525	1,180	10/1/02	5,660	0	1,220				
4/2/03	1,260	29.2	593	4/2/03	4,860	17	1,100				
10/9/03	2,020	0	700	10/9/03	4,470	0	1,200				
4/5/04	1,220	26.7	1,220	4/5/04	4,130	16.8	1,550				
10/4/04	4,590	440	2,060	10/4/04	3,950	0	1,800				
4/1/05	2,510	0	736	4/1/05	3,990	0	882				
10/1/05	5,130	351	1,150	10/1/05	4,420	0	951				
4/6/06	2,680	0	785	4/6/06	3,820	0	659				
10/5/06	4,340	295	1,160	10/5/06	3,590	· 0	1,020				
4/5/07	708	0	360	4/5/07	2,020	0	887				
10/22/07	605	8.46	351	10/22/07	2,280	<20	1,060				
4/10/08	. 265	1.92	207	4/10/08	590	0.51	196				
10/9/08	199	<4	221	10/9/08	2.020	<40	1.070				
4/8/09	145	<4.0	245	4/8/09	2,260	<4.0	1,780				
10/6/09	90.2	<4	232	10/6/09	1,610	<40	1,520				
4/6/10	77.5	<4	152	4/6/10(1)	24.000	<4.0	17,500				
10/26/10	94.4	1.41	190	10/26/10	2,370	1.49	1,630				
4/7/11	63.6	<4	137	4/7/11	1,700	<40	1,170				
10/5/11	90.3	<4	168	10/5/11	1,400	<40	1,110				
4/12/12	62.7	<4	136	4/12/12	2,090	<4	1.620				
10/2/12	49.9	0.68	107	10/2/12	2.090	<4.8	1.390				
4/1/13	23.1	0.58	75.1	4/1/13	1,940	<12	1,310				
10/3/13	29.5	0.65	85.7	10/1/13	1,620	<3.6	1.580				
10/0/10	1	1	1			1	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				

Historic VOC Monitoring Results Land Gas Reclamation Landfill (concentrations in ug/L)

	W-	3R		W-3AR						
Date	cis-1,2-DCE	TCE	VC	Date	cis-1,2-DCE	TCE	٧c			
NR 140 ES	70	5	0.2	NR 140 ES	70	5	D.2			
11/13/91		0	0	11/14/91		5	770			
5/29/92		0	0	5/29/92		78	1,000			
6/17/93		0	0.5	6/17/93		57	1,300			
6/21/94		0	0	6/21/94		12	720			
4/14/95	0	0	2.2	4/14/95	1,200	6.6	110			
10/4/95	0	0	1.2	10/4/95	1,200	12	1,400			
4/4/96	0_	0	0	4/4/96	1,000	0	550			
10/12/96	0	0	4	10/12/96	1,800	13	1,100			
4/10/97	0	0	0.56	4/10/97	1,100	0	740			
10/3/97	0	0	1.5	10/3/97	1,200	0	780			
4/7/9B	0.44	0	0.89	4/7/98	1,000	0	720			
10/14/98	0	0	6.4	10/14/98	1,200	0	660			
4/6/99	0.3	0	0.65	4/6/99	900	0	710			
10/6/99	0.27	0	2.9	10/7/99	1,200	0	650			
4/3/00	0.29	0	0.17	4/3/00	1,000	0	890			
10/3/00	0	0	0.133	10/3/00	1,100	0	404			
4/3/01	0	0	0	4/3/01	1,050	0	554			
10/2/01	0	0	2.74	10/2/01	1,130	0	901			
4/4/02	0	0	0	4/4/02	1,150	0	375			
10/1/02	0	0	14.1	10/1/02	1,230	0	446			
4/1/03	0	0	0.703	4/1/03	674	0	601 \			
10/8/03	0	0	1.98	10/8/03	712	0	407			
4/7/04	0	0	0	4/7/04	753	0	519			
10/4/04	0	0	0	10/4/04	685	0	626			
4/1/05	0	0	0	4/1/05	567	0	265			
10/1/05	0	0	0	10/1/05	628	0	258			
4/6/06	0	0	0	4/6/06	700	1.15	352			
10/5/06	0	0	0	10/4/06	450	0	279			
4/4/07	0	0	0	4/4/07	418	0	402			
10/22/07	<0.2	<0.2	3.20	10/22/07	421	<2	410			
4/11/08	<0.3	<0.4	14.30	4/11/08	476	<4	382			
10/9/08	<0.3	<0.4	5.32	10/9/08	322	<4	281			
4/7/09	< 0.3	<0.4	2.48	4/7/09	351	0.8	357			
10/7/09	<0.4	<0.4	<0.2	10/7/09	339	<4.0	358			
4/7/10	<0.4	<0.4	0.95	4/7/10	339	<4	334			
10/27/10	<0.4	<0.4	2.46	10/27/10	257	<4	194			
4/6/11	<0.4	<0.4	3.14	4/6/11	201	0.51	256			
10/5/11	<0.4	<0.4	1.45	10/5/11	170	<4	181			
4/11/12	<0.4	<0.4	3.18	4/11/12	190	0.51	205			
10/2/12	<0.83	<0.48	18.50	10/2/12	183	0.55	190			
4/1/13	<0.83	<0.48	2.90	4/4/13	164	<0.48	146			
10/3/13	<0.42	<0.36	3.40	10/3/13	87.8	<0.33	99.3			

Historic VOC Monitoring Results Land Gas Reclamation Landfill - (concentrations in ug/L)

	MW-2	10			MW-2	10A		MW-210B				
Date	cis-1,2- DCE	TCE	VC	Date	cîs-1,2- DCE	TCE	VC	Date	cis-1,2- DCE	TCE	VC	
NR 140 ES	70	5	0.2	NR 140 ES	70	5	0.2	NR 140 ES	70	5	0.2	
12/6/91		0	0	12/6/91		0	180	12/6/91		0	0	
5/28/92		0.	0	5/28/92		0	200	5/27/92		0	0	
				6/17/93		7	370					
7/6/94		0	28.3	7/6/94		8.6	220	7/6/94		0	0	
4/14/95	41	0	27	4/14/95	1,400	13	350	4/14/95	0	0	0	
10/4/95	26	0	22	10/4/95	1,600	20	600	10/4/95	0	0	0	
4/4/96	32	0	27	4/4/96	1,900	35	450	4/4/96	0	0	0	
10/12/96	12	0	7.9	10/12/96	2,300	47	670	10/12/96	0	0	0	
4/10/97	13	0	20	4/10/97	1,900	38	420	4/10/97	0	0	0	
10/3/97	10	0	23	10/3/97	1,700	66	480	10/3/97	0	0	0	
4/7/98	6.5	0	14	4/7/98	1,600	57	540	4/7/98	0	0	0	
10/15/98	46	0	44	10/15/98	1,600	47	510	10/15/98	0	0	no data	
4/6/99	7.3	0	10	4/6/99	1,200	40	500	4/6/99	0	0	0	
10/11/99	98	0	240	10/11/99	800	40 .	440	10/11/99	0	0	0	
4/4/00	2.9	0	6.3	4/4/00	820	32	440	4/4/00	0	0	0	
10/5/00	1.61	0	5.3	10/5/00	372	0	157	10/5/00	0	0	0	
4/5/01	1.12	0	2.47	4/5/01	421	0	214	4/5/01	0	0	0	
10/3/01	1.21	0	13.2	10/3/01	520	55.9	425	10/3/01	0	0	0	
4/4/02	0.384	0	3.22	4/4/02	730	0	206	4/4/02	0	0	0	
10/3/02	1.59	D	12.8	10/3/02	940	0	327	10/3/02	0	0	0	
4/2/03	0	0	0.386	4/2/03	401	0	233	4/2/03	0	0	0.591	
10/8/03	0	0	1.02	10/8/03	293	10	29.2	10/8/03	0	0	0.274	
4/7/04	0	0	0.383	4/7/04	272	0	76.3	4/7/04	0	0	0.891	
10/5/04	0	0	1.46	10/5/04	230	7.38	45.6	10/5/04	0	0	1.15	
4/1/05	0	0	0	4/1/05	220	0	52.7	4/1/05	0	0	0.549	
10/1/05	0	0	0	10/1/05	220	0	29.5	10/1/05	0	0	0.706	
5/6/06	0.82	0	0	5/6/06	252	7.32	109	5/6/06	0.	0	1.13	
10/4/06	0.49	0	0.45	10/4/06	184	5.62	45.2	10/4/06	0	0	1.65	
5/30/07	0.28	0	0.23	5/30/07	198	5.66	33.7	5/30/07	0	0	1.42	
10/25/07	0.23	<0.2	<0.2	10/25/07	251	5.71	73.2	10/25/07	<2	<2	<2	
5/27/08	<0.3	<0.4	<0.2	5/27/08	237	8.1	74.1	5/27/08	0.51	<0.4	<0.2	
10/9/08	0.41	<0.4	<0.2	10/9/08	325	7.72	124	10/9/08	<0.3	<0.4	2.26	
											No. of the	
10/7/09	0.63	<0.4	0.65	10/7/09	284	5.3	125	10/7/09	<0.4	<0.4	2.72	
4/7/10	0.56	<0.4	0.43	4/7/10	222	4.66	111	4/7/10	<0.4	<0.4	2.64	
11/29/10	0.64	<0.4	<0.2	11/29/10	192	<4	87.6	11/29/10	<0.4	<0.4	.2.5	
4/8/11	0.66	<0.4	0.46	4/8/11	163	<4 .	94.7	4/8/11	<0.4	<0.4	2.76	
10/6/11	0.64	<0.4	0.48	10/6/11	177	<4	120	10/6/11	<0.4	<0.4	2.52	
4/11/12	0.66	<0.4	0.54	4/11/12	164	3.54	74.3	4/11/12	<0.4	<0.4	2.5	
10/1/12	<0.83	<0.48	1.1	10/1/12	182	3.8	28.3	10/1/12	<0.83	<0.48	2.2	
4/2/13	<0.83	<0.48	0.21	4/2/13	169	2.6	102	4/2/13	<0.2	<0.48	3.5	
10/2/13	<0.42	<0.36	0.19	10/2/13	221	2.2	97.4	10/2/13	<0.29	<0.36	3.4	

Historic VOC Monitoring Results Land Gas Reclamation Landfill (concentrations in ug/L)

	MW-21	4		MW-214A							
Date	cis-1,2-DCE	TCE	vc	Date	cis-1,2-DCE	TCE	VC				
NR 140 ES	70	5	0.2	NR 140 ES	70	5	0.2				
6/9/92		0	0	6/9/92		0	0				
7/6/94		0	0	7/6/94		0	0				
10/4/95	0	0	0	10/4/95	0	0	0				
4/4/96	0	0	0	4/4/96	0	0	0				
10/12/96	0	0	0	10/12/96	0	0	0				
4/10/97	0	0	0	4/10/97	0	0					
NUMBER OF STREET				CONTRACTOR OF							
4/7/98	0	0	0	4/7/98	0	0					
4/6/99	0	0	0	4/6/99	0	0 North Management of States	0				
1/1/00		and the second second		11/100							
4/0/00		0	U	4/6/00	0	U	U I				
10/4/01		0	0	10/4/01	0	0					
10/4/01			Contraction of the	10/4/01		U	THE REAL PROPERTY.				
10/3/02	0	0	0	10/3/02	0		0				
10/3/02				10/3/02	in a second second						
10/8/03	1 0	0	0	10/8/03	0	0	0.225				
				A BASA BASA		Ne Works					
10/6/04	0	0	0	10/6/04	0	0	0.912				
10/1/05	0	0	0	10/1/05	0	0	0.488				
10/5/06	0	0	. D	10/4/06	0	0	1.67				
	ALC: NO.										
10/24/07 ^[2]	<0.2	<0.2	2.93	10/24/07 (2)	<0.2	<0.2	<0.2				
3/14/08	<0.3	<0.4	<0.2	3/14/08	<0.3	<0.4	4.74				
10/9/08	<0.3	<0.3	<0.4	10/9/08	<0.3	<0.4	6.54				
						教育 的问题。					
10/7/09	<0.4	<0.4	<0.2	10/7/09	<0.4	<0.4	15.1				
	1000000										
10/27/10	<0.4	<0.4	<0.2	10/27/10	<0.4	<0.4	16.9				
			e (overlight)								
10/6/11	<0.4	<0.4	<0.2	10/3/11	<0.4	<0.4	23.4				
10/1/12	<0.83	<0.48	<0.18	10/1/12	<0.83	<0.48	29.6				
10/3/13	<0.42	<0.36	<0.18	10/1/13	<0.42	<0.36	19.3				

Notes:

(1) Results for MW-1AR for April 2010 are suspected to be elevated 10 times due to a dilution error, but this cannot be verified. (2) Based on sample results for MW-214 and MW-214A for October 2007, it appears that the sample vials were switched, but this cannot be confirmed.

Updated for 2013 by: AWH 3/2/14 Checked for 2013 by: Reviewed for 2013 by:

LC 3/3/14 SCC 4/1/14

I:\25214008\Reports\2013 Annual Report\[LGRL VOC graphs 2013.xls]Sheet1

APPENDIX C-2 Deep Groundwater Data

Table LGRL VOC Investigation Water Supply Well Sample Results (Results are in $\mu g/L$)

114141 000 191	n page fer anere fertenten															
Well Number	Well Owner	Sample Date	Lap	Chloride (mg/L)	Alkalinity (mg/L)	Chloroethane	Chloromethane	1,1-Díchloroethane	1,1-Dichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	Tetrachloroethene	Trichloroethene	Vinyl Chloride		Other VOCs
Monthly Mon	itoring Locations															
PW-21R	A. Oechsner	1/29/2009	NLS	12.	310	<0.79	<0.31	<0.21	< 0.13	11	0.26 J	<0.15	<0.18	0.61	1	1D
	N7548 Hwy. 67		NLS			<0.79	<0.31	<0.21	<0.13	10	0.26 J	<0.15	<0.18	0.56	1	1D
	mayrine	2/24/2009	NLS	,		<0.79	<0.31	<0.21	<0.13	10	<0.19	<0.15	<0.18	<u>0.35</u> J	١	1D .
			CT			<0.40	0.56 JB	<0.21	<0.24	8.6	<0.27	<0.30	<0.24	0.39	· N	1D .
		6/30/2009	NLS			<0.95	<0.16	<0.25	<0.18	19	0.52 J	<0.20	0.26	0.53	1	1D
	1 . A.	7/14/2010	NLS			<1.0	<0.16	<0.14	<0.11	12	0.23 J	<0.10	-<0,12	<u>0.40</u> J	٨	1D
PW-21RR	A. Oechsner	10/7/2010	Siemens			<0.70	<0.40	<0.40	<0.40	2.74	<0.50	<0.30	<0.40	<u>0.58</u> J	٨	1D
	N7548 Hwy. 67		TA			<1.0	<0.30	<0.50	<0.50	2.0	<0.50	<0.50	<0.20	0.37 J	٨	1D
	ind y the	11/11/2010	TA	13	320	<1.0	0.47 J	<0.50	<0.50	2.6	<0.50	<0.50	<0.20	0.76 J	Chloroform	0.29
										t'e	-				Tolvene	21
		11/29/2010	Siemens	12.4	347	<0.70	<0.40	<0.40	<1.30	3.12	<0.50	<0.30	<0.40	<u>0.61</u> J	Tolvene	1.25
		12/16/2010	Siemens			<0.70	<0.40	<0.40	<0.40	3.75	<0.50	<0.30	<0.40	0.65 J	Toluene	0.99 J
		1/12/2011	NLS			<1.0	<0.16	<0.14	<0.11	4.4	0.13 J	<0.10	<0.12	<u>0.75</u>	٨	1D
		2/10/2011	Siemens			<0.70	<0.40	<0.40	<0.40	6	<0.50	<0.30	<0.40	0.79	. N	1D
		3/1/2011	TA			<0.070	<0.063	<0.074	< 0.059	6.1	<0.13	<0.067	<0.060	0.92	N	1D
		4/5/2011	NLS			<1.6	<0.29	<0.23	<0.13	8.9	0.32 J	<0.11	<0.28	0.94	٨	ID
			TA			<0.10	<0.20	<0.050	< 0.050	7.3	0.27 J	<0.050	< 0.050	0.79	N	1D
		5/26/2011	TA			0.34 J	<0.20	0.080 J	< 0.050	12	0.44 J	<0.050	<0.050	1.0	٨	ID
		6/28/2011	TA			<0.50	<0.30	<0.25	<0.15	9.8	0.37 J	<0.15	<0.25	0.78	. N	ID
	1 C	7/14/2011	TA			<0.50	0.33 J	<0.25	<0.15	10	0.40 J	<0.15	<0.25	0.75	٨	ID
		8/16/2011	TA			<0.50	<0.30	<0.25	<0.15	9.7	0.31 J	<0.15	<0.25	0.46 J	h	ID
		9/1/2011	TA			<0.50	0.46 J	<0.25	<0.15	11	0.45 J	<0.15	<0.25	0.67	N	ID
		10/6/2011	TA	'		0.52	<0.30	<0.25	<0.15	10	0.40 J	<0.15	<0.25	0.63	N	ID

Note: See last page for abbreviations, notes, and groundwater standards.

Table 3, Page 1 of 9

Table LGRL VOC Investigation Water Supply Well Sample Results (Results are in $\mu g/L)$

Note: See last page for abbreviations, notes, and groundwater standards.

				loride (mg/L)	kalinity (mg/L)	loroethane	loromethane	-Dichloroethane	-Dichloroethene	-1,2-Dichloroethene	ns-1,2-Dichloroethene	Irachloroethene	chloroethene	nyl Chloride	her VOCs	
Well Number	Well Owner	Sample Date	Lap	<u>5</u>	All	<u>5</u>	5			<u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>	line in the second seco	Ĕ	ir I	5	ð	
PW-21RR	A. Oechsner N7548 Hwy, 67	11/14/11*	IA			<0.50	< 0.30	<0.25	<0.15	11	0.43 J	<0.15	<0.25	0.82	ND	
(continued)	Mayville	11/14/11 **	TA			0.64	<0.30	<0.25	<0.15	12	0.43 J	<0.15	<0.25	0.81	ND	
		12/12/2011	TA			<0.50	<0.30	<0.25	<0.15	12	0.42 J	<0.15	<0.25	0.83	ND	
		12/27/2011	TA			<0.50	<0.30	<0.25	<0.15	12	0.45 J	<0.15	<0.25	0.74	ND	
			Siemens			<0.70	<0.40	<0.40	<0.40	13.9	0.57 J	<0.30	<0.40	<u>0.85</u> J	ND	
	6	1/4/2012	Siemens			<0.70	<0.40	<0.40	<0.40	15.4	0.62 J	<0.30	<0.40	<u>1.09</u>	ND	
	7	1/11/2012	Siemens			<0.70	<0.40	<0.40	<0.40	15.5	0.66 J	<0.30	<0.40	1.02	ND	
		1/18/2012	Siemens			<0.70	<0.40	<0.40	<0.40	15.2	0.66 J	<0.30	<0.40	1.01	ND	
	-	1/25/2012	Siemens			<0.70	<0.40	<0.40	<0.40	16.6	0.61 J	<0.30	<0.40	1.10	ND	
		2/15/2012	TA			<0.50	<0.30	<0.25	<0.15	13	0.47 J	<0.15	<0.25	0.86	ND	
		3/1/2012	TA			<0.50	<0.30	<0.25	<0.15	13	0.48 J	<0.15	<0.25	0.96	ND	
		4/11/2012	TA	16	290	<0.50	<0.30	<0.25	<0.15	14	0.69	<0.15	<0.25	0.89	ND	
		5/2/2012	Siemens	Ŧ		0.92 J	<0.40	<0.40	<0.40	19.8	0.80 J	<0.30	<0.40	<u>1.52</u>	ND	
		6/20/2012	Pace			0.25 J	0.73 J	0.11 J	<0.16	15.1	0.51	<0.16	<0.11	0.62	ND	
		7/18/2012	Pace			<0.20	<0.13	<0.072	<0.16	16	0.47 J	<0.16	<0.11	0.62	ND	
	<u> </u>	8/2/2012	Pace			0.46 J	<0.13	0.12 J	<0.16	18.6	0.64	<0.16	<0.11	0.75	ND	
	1 X X X	9/13/2012	Pace			< 0.31	<0.13	<0.072	<0.16	16.1	0.49 J	<0.16	<0.11	0.55	Benzene	0.050 J
															Toluene	0.088 J
ж		10/5/2012	Pace	13.6	316	<0.31	<0.13	<0.072	<0.16	14.6	0.51	<0.16	<0.11	0.63	ND	
		11/29/2012	Pace			<0.31	<0.13	<0.072	<0.16	10.9	0.30 J	<0.16	<0.11	0.44	ND	
		12/17/2012	Pace			<0.31	<0.13	<0.072	<0.16	14.8	0.45 J	<0.16	<0.11	0.62	ND	
1		1/8/2013	Pace			0.62 J	<0.13	<0.072	<0.16	14.4	0.40 J	<0.16	<0.11	0.52	ND	
		2/20/2013	Pace			<0.31	<0.13	<0.072	<0.16	14	0.39 J	<0.16	<0.11	0.52	ND	
		3/21/2013	Pace		'	< 0.31	<0.13	<0.072	<0.16	13.2	0.42 J	<0.16	<0.11	0.48	ND	
	×	4/2/2013	Pace	13.1	294	<0.31	<0.13	<0.072	<0.16	9.2	0.25 J	<0.16	<0.11	0.34 1	ND	
		5/7/2013	Pace	-	-	<0.31	<0.13	<0.072	<0.16	14.4	0.43 J	<0.16	<0.11	0.64	ND	
D		6/27/13 before	Pace		-	<0.50	<0.50	<0.25	<0.24	12.5	0.32 J	<0.25	<0.12	0.5	m&p-Xylene	0.22 JB
		6/27/13 after	Pace		-	<0.50	<0.50	<0.25	<0.24	1.5	<0.21	<0.25	<0.12	<0.20	m&p-Xylene	0.25 JB

Table 3, Page 2 of 9

LGRL VOC Investigation Water Supply Well Sample Results Table (Results are in $\mu g/L$)

Note: See las	t page for appreviations	, notes, and grou	nawater si	anaaras.												
Well Number	Well Owner	Sample Date	ίαb	Chloride (mg/L)	Alkalinity (mg/L)	Chloroethane	Chloromethane	1,1-Dichloroethane	1,1-Dichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	Tetrachloroethene	Trichloroethene	Vinyl Chloride	Other VOCs	
Semi-annual i	Monitoring Locations				-					Į	-	-		~		
PW-19	Antonioni	6/28/2011	TA			<0.50	<0.30	<0.25	<0.15	0.30 J	<0.30	<0.15	<0.25	<0.032	ND	
×	Mayville	10/5/2012	Pace	45.1	372	<0.31	<0.13	<0.072	<0.16	<0.080	<0.14	<0.16	<0.11	<0.16	ND	
		4/3/2013	Pace	40.2	339	< 0.31	<0.13	<0.072	<0.16	0.55	<0.14	<0.16	<0.11	<0.16	ND	
PW-20	Sellnow	3/11/2009	NLS			<0.95	<0.16	<0.25	<0.18	<0.10	<0.28	<0.20	<0.25	<0.19	ND	
	N7627 Hwy. 67		СТ			<0.40	0.22 JB	<0.21	<0.24	<0.21	<0.27	<0.30	<0.24	<0.11	ND	
	ind y fine	1/21/2010	NLS			<0.95	<0.16	<0.25	<0.18	<0.10	<0.28	<0.20	<0.25	< 0.19	. ND	
		7/14/2010	NLS			<1.0	<0.16	<0.14	<0.11	<0.13	<0.11	<0.10	<0.12	<0.13	ND	
		4/6/2011	NLS			<1.6	<0.29	<0.23	<0.13	<0.30	<0.30	<0.11	<0.28	<0.20	ND	
			TA			<0.10	<0.20	<0.050	<0.050	<0.050	<0.050	<0.050	< 0.050	< 0.032	ND	
		10/6/2011	TA			<0.50	<0.30	<0.25	<0.15	<0.30	< < 0.30	<0.15	<0.25	<0.032	ND	
		4/13/2012	TA	33	310	<0.50	<0.30	<0.25	<0.15	<0.30	<0.30	<0.15	<0.25	< 0.032	ND	-
<i>n</i> .		10/5/2012	Pace	45.6	323	<0.31	<0.13	<0.072	<0.16	<0.080	<0.14	<0.16	<0.11	<0.16	ND	
		4/2/2013	Pace	29.3	340	<0.31	<0.13	<0.072	<0.16	<0.080	<0.14	<0.16	<0.11	<0.16	ND	
PW-23	Weiss	3/11/2009	NLS			<0.95	<0.16	<0.25	<0.18	<0.10	<0.28	<0.20	<0.25	<0.19	ND	
	W2978 Zion Church Rd.		CT			<0.40	0.25 JB	<0.21	<0.24	<0.21	<0.27	<0.30	<0.24	<0.11	ND	
		7/14/2010	NLS			<1.0	<0.16	<0.14	<0.11	<0.13	<0.11	<0.10	<0.12	<0.13	ND	
	×	4/6/2011	NLS			<1.6	<0.29	<0.23	<0.13	<0.30	<0.30	<0.11	<0.28	<0.20	ND	
			TA			<0.10	<0.20	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.032	ND	
2		10/6/2011	TA	/		<0.50	<0.30	<0.25	<0.15	<0.30	<0.30	<0.15	<0.25	< 0.032	ND	
		4/11/2012	TA	<u>160</u>	320	<0.50	<0.30	<0.25	<0.15	<0.30	<0.30	<0.15	<0.25	<0.032	ND	*
		10/5/2012	Pace	<u>135</u>	358	<0.31	<0.13	<0.072	<0.16	<0.080	<0.14	<0.16	<0.11	<0.16	ND	
. •		4/2/2013	Pace	108	385	< 0.31	<0.13	<0.072	<0.16	<0.080	<0.14	<0.16	<0.11	<0.16	ND	-

Table 3, Page 3 of 9

- Table LGRL VOC Investigation Water Supply Well Sample Results - (Results αre in μg/L)

Note: See last page for abbreviations, notes, and groundwater standards.

Note: See lus	puge for apprestations	i notes, una grou	ind worder at	unuurus			1						1	1		
Well Number	Well Owner	Sample Date	Lαb	Chloride (mg/L)	Alkalinity (mg/L)	Chloroethane	Chloromethane	1,1-Dichloroethane	1,1-Dichloroethene	cis-1,2-Dichloroethene	trans–1,2-Dichloroethene	Tetrachioroethene	Trichloroethene	Vinyl Chloride	Other VOCs	
PW-27	All Line Construction	2/24/2009	NLS			<0.79	<0.31	0.91	0.36 J	120	3.9	<0.15	2.9	12	ND	na (Calorine al Cultural de Lincola, de entre
1977 J	N7477 Hwy. 67		СТ			3.0	1.1 B	1.0	0.47 J	110	4.4	<0.30	2.8	9.4	ND	- Four data line data da An
	Mayville	3/11/2009	NLS			<0.95	<0.16	0.70 J	0.26 J	100	3.2	<0.20	2.4	8.3	ND	
12	· ·		СТ			2.4	<0.22	0.81	0.41 J	<u>89</u>	4.1	<0.30	2.7	7.1	ND	
		6/30/2009	Siemens			2.55	<0.40	0.91 J	0.45 J	115	3.71	<0.30	2.83	8.26	ND	
	20	2/10/2011	Slemens	32.3	386	1.98 J	<0.40	0.74 J	<0.40	<u>101</u>	3.45	<0.30	2.31	6.48	ND	
	-	5/2/2012	Siemens	26.4	334	1.42 J	<0.40	0.42 J	<0.40	53.6	1.81	<0.30	1.19 J	4.02	ND	
	- 4	12/17/2012	Pace	39.9	349	2.3	<0.13	0.69	0.17 J	<u>86.2</u>	2.8	<0.16	1.2	9.1	Methyl-tert-butyl ether	0.092 J
				19											1,2,4 Trimethylbenzene	0.052 J
	- 8	2/20/2013	Pace	36.7	360	2.3	<0.13	0.77	<0.16	<u>87</u>	3.3	<0.16	1.9	<u>Z.1</u>	ND	
PW-28	W. Muche	3/11/2009	NLS			<0.95	<0.16	<0.25	<0.18	0.18 J	<0.28	<0.20	<0.25	<0.19	ND	
	N7650 Hwy. 67		СТ			<0.40	<0.22	<0.21	<0.24	0.24 J	<0.27	<0.30	<0.24	<0.11	ND	1
	ind fine	6/30/2009	NLS			<0.95	<0.16	<0.25	<0.18	0.19 J	<0.28	<0.20	<0.25	<0.19	ND	i
	×.	7/14/2010	NLS			<1.0	<0.16	<0.14	<0.11	0.28 J.	<0.11	<0.10	<0.12	<0.13	ND	
		4/6/2011	NLS			<1.6	<0.29	<0.23	<0.13	0.39 J	<0.30	<0.11	<0.28	<0.20	ND	Z.
		14	TA			<0.10	<0.20	<0.050	< 0.050	0.30 J	<0.050	<0.050	<0.050	< 0.032	ND	
		10/6/2011	. TA			<0.50	<0.30	<0.25	<0.15	0.33 J	<0.30	<0.15	. <0.25	<0.032	ŅD	
		4/11/2012	TA	17	280	<0.50	<0.30	<0.25	< 0.15	0.45 J	<0.30	< 0.15	<0.25	<0.032	ND	
.8	8 B 19 1	10/5/2012	Pace	15.3	316	< 0.31	<0.13	<0.072	<0.16	0.74	<0.14	<0.16	<0.11	<0.16	ND	÷ .
	r 3	4/3/2013	Pace	16.1	339	< 0.31	<0.13	<0.072	<0.16	1	<0.14	<0.16	<0.11	<0.16	ND	
PW-32	J. Oechsner	4/7/2009	NLS			<0.95	<0.16	<0.25	<0.18	0.12 J	<0.28	<0.20	<0.25	<0.19	ND	
	W2983 Zion Church Rd. Mayville	1	СТ			<0.40	<0.22	<0.21	<0.24	<0.21	<0.27	<0.30	<0.24	<0.11	ND	
		9/23/2009	NLS			<1.2	<0.48	<0.19	<0.22	<0.17	<0.19	<0.17	<0.23	<0.21	ND	
	78.1	7/14/2010	NLS			<1.0	<0.16	<0.14	<0.11	0.14 J	<0.11	<0.10	<0.12	<0.13	ND	
		4/5/2011	NLS			, <1.6	<0.29	<0.23	<0.13	<0.30	<0.30	<0.11	<0.28	<0.20	ND	
			TA			<0.10	<0.20	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.032	Chlorobenzene	0.050 J
		10/6/2011	TA			<0.50	<0.30	<0.25	<0.15	<0.30	<0.30	<0.15	<0.25	<0.032	ND	
		4/11/2012	TA	41	300	<0.50	<0.30	<0.25	<0.15	<0.30	<0.30	<0.15	<0.25	<0.032	ND	
		10/5/2012	Pace	40.2	349	<0.31	<0.13	<0.072	<0.16	<0.080	<0.14	<0.16	<0.11	<0.16	ND	
		4/2/2013	Pace	39.8	478	< 0.31	<0.13	<0.072	<0.16	0.27 J	<0.14	<0.16	<0.11	<0.16	ND	

Table 3, Page 4 of 9

Table LGRL VOC Investigation Water Supply Well Sample Results (Results are in $\mu g/L$)

Nole: See lus	puge for apprestation	is, notes, and groo	nu wulet si	unuurus.													
Well Number	Well Owner	Sample Date	Lab	Chloride (mg/L)	Alkalinity (mg/L)	Chloroethane	Chloromethane	1, 1-Dichloraethane	1,1-Dichloroethene	cis-1 ,2-Dichloroethene	trans-1,2-Dichloroethene	Tetrachloroethene	Trichloroethene	Vinyl Chloride		Other VOCs	
PW-38	King	5/14/2009	NLS			<0.95	<0.16	<0.25	<0.18	<0.10	<0.28	<0.20	<0.25	<0.19		ND	I I I I I I I I I I I I I I I I I I I
	N7746 Hwy. 67		СТ			<0.40	0.57 J	<0.21	<0.24	<0.21	<0.27	. <0.30	<0.24	<0.11	1	ND	
	Mayville	7/14/2010	NLS			<1.0	<0.16	<0.14	<0.11	<0.13	<0.11	<0.10	<0.12	<0.13		ND	
		4/6/2011	NLS ·			<1.6	<0.29	<0.23	<0.13	< 0.30	<0.30	<0.11	<0.28	<0.20		ND	
		1	TA			<0.10	<0.20	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.032	Tolvene		0.22 J
		10/6/2011	TA			<0.50	<0.30	<0.25	<0.15	<0.30	<0.30	. <0.15	<0.25	< 0.032	Toluene		0.35 J
		4/11/2012	TA	<3.1	310	<0.50	<0.30	<0.25	<0.15	<0.30	<0.30	<0.15	<0.25	< 0.032	3	ND	
	L.	10/5/2012	Pace	<2.0	338	< 0.31	<0.13	<0.072	<0.16	<0.080	<0.14	- <0.16	<0.11	<0.16		ND	
		4/2/2013	Pace	2.4 J	268	< 0.31	<0.13	<0.072	<0.16	<0.080	<0.14	<0.16	<0.11	<0.16		ND	
PW-42	Steinbach W2772 Zion Church Rd. Mayville	10/5/2012	Pace	<2.0	324	<0.31	<0.13	<0.072	<0.16	<0.080	<0.14	<0,16	<0.11	<0.16		. ND	· · ·
	1	4/2/2013	Pace	2.2 J	320	< 0.31	< 0.13	<0.072	<0.16	<0.080	<0.14	<0.16	<0.11	<0.16		ND	
PW-43	Hinz W2698 Zion Church Rd.	10/5/2012	Pace	11.4	215	<0.31	<0.13	<0.072	<0.16	<0.080	<0.14	<0.16	<0.11	<0.16		ND	-
	Muyvine	4/3/2013	Pace	10.8	211	< 0.31	<0.13	< 0.072	<0.16	<0.080	<0.14	<0.16	<0.11	<0.16		ND	
PW-44	Christian N7686 Ekren Rd. Mayville	10/5/2012	Pace	<2.0	291	<0.31	<0.13	<0.072	<0.16	<0.080	<0.14	<0.16	<0.11	<0.16		ND	
	instruction and a second se	4/2/2013	Pace	2.3 /	316	< 0.31	<0.13	< 0.072	. <0.16	<0.080	<0.14	<0.16	< 0.11	<0.16		ND	

Note: See last page for abbreviations, notes, and groundwater standards.

Table 3, Page 5 of 9

Table LGRL VOC Investigation Water Supply Well Sample Results (Results are in µg/L)

Note: See last page for abbreviations, notes, and groundwater standards.

Well Number Well Owner Sample Date Lab Y <	Diffeer VOCs
Non-Routine Monitoring Locations PW-1 Church View Farms J. Qualmann N7110 Hwy, V Horicon 4/7/2009 NLS 34 240 <0.95	ND
PW-1 Church View Farms J. Qualmann N7110 Hwy, V Horicon 4/7/2009 NLS 34 240 <0.95 <0.16 <0.25 <0.18 <0.10 <0.28 <0.20 <0.25 <0.19 PW-3 Horicon Marsh Bowmen N7240 Hwy, V Horicon A/30/2009 NLS <0.95	ND
PW-3 Horicon Marsh Bowmen N7240 Hwy, V Horicon 4/30/2009 NLS <0.95 <0.16 <0.25 <0.18 <0.10 <0.28 <0.20 <0.25 <0.19 PW-4 Advanced Disposal 4/3/2009 NLS <0.40	
N7240 Hwy, V CT <0.40 <0.22 <0.21 <0.24 <0.27 <0.30 <0.24 <0.11 PW-4 Advanced Disposal 4/3/2009 NLS <0.95	ND
PW-4 Advanced Disposal 4/3/2009 NLS <0.95 <0.16 <0.25 <0.10 <0.28 <0.20 <0.25 <0.19	ND
	· ND
Horizon CT <0.40 <0.22 <0.21 <0.24 <0.21 <0.27 <0.30 <0.24 <0.11	ND
None Wondra 10/22/2009 NLS <0.95 <0.16 <0.25 <0.10 <0.28 <0.20 <0.25 <0.19 Chloroform N7877 Hwy 67 Mayville Mayville <0.95	0.36
PW-18 Advanced Disposal 4/3/2009 NLS <0.95 <0.16 <0.25 <0.10 <0.28 <0.20 <0.25 <0.19 N7785 Hwy. 67	ND
Mayville CT <0.40 <0.22 <0.21 <0.24 <0.21 <0.27 <0.30 <0.24 <0.11	ND
PW-18 Hand Advanced Disposal 4/3/2009 NLS <0.95 <0.16 <0.25 <0.10 <0.28 <0.20 <0.25 <0.19 Pump N7785 Hwy, 67 N7785 Hwy, 67 NLS <0.95	ND
Mayville CT <0.40 <0.22 <0.21 <0.24 <0.21 <0.27 <0.30 <0.24 <0.11	ND
PW-24 St. John's Lutheran Church 4/30/2009 NLS 33 320 <0.95 <0.16 <0.25 <0.18 <0.20 <0.25 <0.19	ND
CT <0.40 0.3 J <0.21 <0.21 <0.27 <0.30 <0.24 <0.11	ND ·
PW-26 Goodearle 4/30/2009 NLS 13 310 <0.95 <0.16 <0.25 <0.18 <0.10 <0.28 <0.20 <0.25 <0.19 W3653 Decora Rd. Horicon	ND
PW-29 Persha 4/3/2009 NLS <0.95 <0.16 <0.25 <0.18 <0.10 <0.28 <0.20 <0.25 <0.19	ND
N7241 Hwy. 67 Mayville CT <0.40 <0.22 <0.21 <0.24 <0.21 <0.27 <0.30 <0.24 <0.11	ND
PW-30 Wendorff 6/23/2009 NLS <0.95 <0.16 <0.25 <0.18 <0.10 <0.28 <0.20 <0.25 <0.19	ND
Mayville CT <0.40 <0.22 <0.21 <0.24 <0.21 <0.27 <0.30 <0.24 <0.11	
PW-31 Wendorff 4/3/2009 NLS <0.95 <0.16 <0.25 <0.18 <0.10 <0.28 <0.20 <0.25 <0.19	ND
CT <0.40 <0.22 <0.21 <0.21 <0.27 <0.30 <0.24 <0.11	ND ND

Table 3, Page 6 of 9

LGRL VOC Investigation Water Supply Well Sample Results Table (Results are in µg/L)

Note: See las	t page for abbreviation	s, notes, and grou	ndwater st	andards.		-									14	
Well Number	Well Owner	Sample Date	Lap	Chloride (mg/L)	Alkalinity (mg/L)	Chloroethane .	Chloromethane	1, 1-Dichloroethane	1,1-Dichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	Tetrachloroethene	Trichloroethene	Vinyl Chloride	Other VOCs	e E
PW-33	Lagerman W3230 STH 33	4/3/2009	NLS			<0.95	<0.16	<0.25	<0.18	<0.10	<0.28	<0.20	<0.25	<0.19	ND	
	Iron Ridge	12	CT			<0.40	<0.22	<0.21	<0.24	<0.21	<0.27	<0.30	<0.24	<0.11	ND	
PW-34	R H Equipment	4/13/2009	NLS			<0.95	<0.16	<0.25	<0.18	<0.10	<0.28	<0.20	<0.25	<0.19	ND	
2	Mayville		CT			<0.40	<0.22	<0.21	<0.24	<0.21	<0.27	<0.30	<0.24	<0.11	ND	
PW-35	Lewis	4/13/2009	NLS			<0.95	<0.16	<0.25	<0.18	<0.10	<0.28	<0.20	<0.25	<0.19	ND	
	Mayville		CT			<0.40	<0.22	<0.21	<0.24	<0.21	<0.27	<0.30	<0.24	<0.11	ND	
PW-36	Mayville Animal Clinic	4/21/2009	NLS	1.47		<0.95	<0.16	<0.25	<0.18	<0.10	<0.28	<0.20	<0.25	<0.19	ND	
	Mayville		CT			<0.40	<0.22	<0.21	<0.24	<0.21	<0.27	<0.30	<0.24	<0.11	. ND	
PW-37	Halsne	4/30/2009	NLS			<0.95	<0.16	<0.25	<0.18	<0.10	<0.28	<0.20	<0.25	<0.19	. ND	
	Mayville		СТ			<0.40	0.40 J	<0.21	<0.24	<0.21	<0.27	<0.30	<0.24	<0.11	ND	
PW-Office	Advanced Disposal	4/7/2009	NLS			<0.95	<0.16	<0.25	<0.18	<0.10	<0.28	3.5	<0.25	<0.19	1,4 Dichlorobenzene	0.27 J
Well	N7296 Hwy. V Horicon		СТ			<0.40	<0.22	<0.21	<0.24	<0.21	<0.27	3.3	<0.24	<0.11	1,4 Dichlorobenzene	0.22 J
	100 a. 100 a.	4/30/2009	NLS			<0.95	<0.16	<0.25	<0.18	<0.10	<0.28	<0.20	<0.25	<0.19	ND	5
			CT .			<0.40	<0.22	<0.21	<0.24	<0.21	<0.27	<0.30	<0.24	<0.11	ND	
Trip Blank	-	4/21/2009	CT			<0.40	<0.22	<0.21	<0.24	<0.21	<0.27	<0.30	<0.24	<0.11	ND	
		4/30/2009	NLS			<0.95	<0.16	<0.25	<0.18	<0.10	<0.28	<0.20	<0.25	<0.19	ND	
			CT			<0.40	<0.22	<0.21	<0.24	<0.21	<0.27	<0.30	<0.24	<0.11	ND	
		5/14/2009	СТ			<0.40	<0.22	<0.21	<0.24	<0.21	<0.27	<0.30	<0.24	<0.11	ND	
	a log	7/14/2010	NLS		5 5	<1.0	<0.16	<0.14	<0.11	<0.13	<0.11	<0.10	<0.12	<0.13	ND	
		10/7/2010	Siemens			<0.70	· <0.40	<0.40	<0.40	<0.40	<0.50	<0.30	<0.40	<0.20	. ND	-
		72	TA			<1.0	<0.30	<0.50	<0.50	<0.50	<0.50	<0.50	<0.20	<0.20	· ND	

Table LGRL VOC Investigation Water Supply Well Sample Results

(Results are in µg/L)

Note: See las	t page for abbreviations	, notes, and grou	undwater st	andards.						1						1
				loride (mg/L)	lkalinity (mg/L)	nloroethane	hloromethane	1 - Dichloroethane	1-Dichloroethene	s-1,2-Dichloraethene	ans-1, 2-Dichloroethene	strachloroethene	ichloroethene	inyl Chloride	ther VOCs	
Well Number	Well Owner	Sample Date	Lap	0	4	0.70	0 10			.0.40	-0.50	F (0.30	F (0.40	>	ND ND	
		2/10/2011	Siemens			<0.70	<0.40	<0.40	<0.40	<0.40	<0.30	<0.30	<0.40	<0.20	ND	
(continued)		3/1/2011				<0.070	<0.003	<0.074	<0.039	<0.12	<0.13	<0.007	<0.000	<0.037	ND	
	÷	10/7/2011	IA			<0.50	<0.30	<0.25	<0.15	<0.30	<0.30	<0.15	<0.25	<0.032	. ND	
		12/12/2011	IA			< 0.50	<0.30	<0.25	<0.15	<0.30	<0.30	<0.15	<0.25	<0.032	ND	
	* * v	12/27/2011	Siemens			<0.70	<0.40	<0.40	<0.40	<0.40	<0.50	<0.30	<0.40	<0.20	ND	
			TA			<0.50	<0.30	<0.25	<0.15	<0.30	<0.30	<0.15	<0.25	<0.032	ND	
		2/15/2012	TA			<0.50	<0.30	<0.25	<0.15	<0.30	<0.30	<0.15	<0.25	<0.032	ND	
		4/11/2012	TA			<0.50	<0.30	<0.25	<0.15	<0.30	<0.30	<0.15	<0.25	<0.032	ND	
		4/13/2012	TA			<0.50	<0.30	<0.25	<0.15	<0.30	<0.30	<0.15	<0.25	< 0.032	ND	
		5/2/2012	Siemens	·		<0.70	<0.40	<0.40	<0.40	<0.40	<0.50	<0.30	<0.40	<0.20	ND	
		6/20/2012	Pace			<0.20	<0.13	<0.072	. <0.16	<0.080	<0.14	<0.16	<0.11	<0.16	Chloroform	0.13 J
		7/18/2012	Pace			<0.20	<0.13	<0.072	<0.16	<0.080	<0.14	<0.16	<0.11	<0.16	ND	
		8/2/2012	Pace			<0.31	<0.13	<0.072	<0.16	<0.080	<0.14	<0.16	<0.11	<0.16	ND	
		9/13/2012	Pace			< 0.31	<0.13	<0.072	<0.16	<0.080	<0.14	<0.16	<0.11	<0.16	ND	
		10/5/2012	Pace	,		<0.31	<0.13	<0.072	<0.16	<0.080	<0.14	<0.16	<0.11	<0.16	ND	
		11/29/2012	Pace			< 0.31	<0.13	<0.072	<0.16	<0.080	<0.14	<0.16	<0.11	<0.16	ND	
		12/17/2012	Pace			< 0.31	<0.13	<0.07.2	<0.16	<0.080	<0.14	<0.16	<0.11	<0.16	ND	
		4/2/2013	Pace			< 0.31	<0.13	<0.072	<0.16	<0.080	<0.14	<0.16	<0.11	<0.16	ND	
		4/3/2013	Pace			<0.31	<0.13	<0.072	<0.16	<0.080	<0.18	<0.16	<0.11	<0.16	ND	
NR 140 Ground	water Enforcement Standar	d		250	NS	400	30	850	7	70	100	5	5	0.2	1,4 Dichlorobenzene Benzene Chloroform Methyl-tert-butyl ether Toluene Trimethylbenzenes	75 5 60 800 480
Drinking Water	Standard (Maximum Conta	minant Level)		125	NS	NS	N5	NS	7	70	100	5	5	0.2	1,4 Dichlorobenzene Benzene Chloroform (TTHM) Toluene	75 5 80 1,000

I:\25213032\Tables-General\Water Supply Wells\[_Water Supply Well VOCs_120904.xlsx]Results

Table LGRL VOC Investigation Water Supply Well Sample Results

NS = No standard established TTHM = Trihalomethanes (disinfection byproducts including chloroform)

B = Compound also detected in blank sample

J = Estimated value below laboratory limit of quantitation

ND = Not detected

mg/L = Milligrams per Liter

* Sample collected at the pressure tank prior to the iron filtration system. ** Sample collected at the kitchen tap after the water passed through the iron filtration system.

By: JSN 4/27/09

Revised: EO 3/17/10; LMH 10/13/2010; SC 10/14/2010; MOB 9/17/12; JSN 1/10/2013; LMH 1/29/2013; MOB 3/11, 4/10, 5/21, 6/6 & 7/18/13 Checked: JSN 3/19/10; EO 10/13/2010; 10/25/2010; 10/10/12; LMH 1/16/2013; JSN 1/29/2013; EO 3/12/13; EO 6/5/13

l:\25213032\Tables-General\Water Supply Wells\[_Water Supply Well VOCs_120904.xlsx]Notes

CT = CT Laboratories, Baraboo, WI NLS.= Northern Lake Service, Inc., Crandon, WI Siemens = Siemens Water Technologies TA = TestAmerica, Watertown, WI Pace = Pace Analytical, Green Bay, WI Bold indicates detected compound. <u>Bold and underline</u> indicates result above drinking water standard. -- = Not Analyzed $\mu g/L = Micrograms per Liter$

Table 3, Page 9 of 9

APPENDIX D Site Inspection Checklist

Site Inspection Checklist

I. SITE INFO	ORMATION
Site name: Hechimovich Landfill	Date of inspection: October 14, 2013
Location and Region: Mayville, WI Region V	EPA ID: WID052906088
Agency, office, or company leading the five-year review: Wisconsin Department of Natural Resources	Weather/temperature:
Remedy Includes: (Check all that apply) B-Landfill cover/containment D-Access controls Institutional controls Groundwater pump and treatment Surface water collection and treatment Other GAS Extraction	Aonitored natural attenuation Froundwater containment Vertical barrier walls
Attachments: □ Inspection team roster attached	□ Site map attached
II. INTERVIEWS	Check all that apply)
1. O&M site manager Name Interviewed Q at site □ at office □ by phone Phone Problems, suggestions; □ Report attached	OPERATESUS MAJALER_ 10/14/13 Title Date
2. O&M staff JDE FALLE P.E. Name Interviewed ⊠.at site □ at office □ by phone Phone Problems, suggestions; □ Report attached	Риозпест Манацеа. <u>10/14/13</u> Title Date no

Agency WDNZ		
Contact ANN BENTA	ENKEDEER	10/14/13 (608)743
Name	Title	Date Phone no.
Problems; suggestions; \Box Report attached		
Agency		
Contact		
Name Problems; suggestions; □ Report attached _	Title	Date Phone no.
	-0	
Agency		
Contact	Title	Data Dhana na
Problems; suggestions; Report attached	The	Date Phone no.
Agency		
Contact		
Name Problems; suggestions; □ Report attached	Title	Date Phone no.
Other interviews (optional) Report attack	hed.	
	-	
	a a constant	·
and a second	-	

Ι.	O&M Documents			
	Ø O&M manual	Readily available BUp t	to date □N/A	
	□ As-built drawings	Readily available	\Box Up to date	AS N/A
	L Maintenance logs	Readily available	M. Up to date	LIN/A
2.	Site-Specific Health and Safety Plar	n 🖉 Readily available	包·Up to date	□N/A
	□ Contingency plan/emergency responses Remarks	nse plan □ Readily available	□ Up to date	□N/A
3.	O&M and OSHA Training Records Remarks	s ,&Readily available	,⊠Up to date	□N/A
4.	Permits and Service Agreements			
	Air discharge permit	Readily available	⊠Up to date	\Box N/A
	□ Effluent discharge	□ Readily available	□ Up to date	SIN/A
	□ Waste disposal, POTW □	Readily available □ Up t	o date SN/A	
	Other permits Remarks	□ Readily available	□ Up to date	□N/A
5.	Gas Generation Records 53 Remarks	Readily available AUp t	o date □N/A	
5. 6.	Gas Generation Records 52 Remarks Settlement Monument Records Remarks	Readily available AUp t ÆReadily available	o date □N/A ∑Up to date	□ N/A
5. 6. 7.	Gas Generation Records 52 Remarks Settlement Monument Records Remarks Groundwater Monitoring Records Remarks	Readily available &Up t ÆReadily available ÆReadily available	o date □ N/A ☞ Up to date ☞ Up to date	□ N/A □ N/A
 5. 6. 7. 8. 	Gas Generation Records Remarks Settlement Monument Records Remarks Groundwater Monitoring Records Remarks Leachate Extraction Records Remarks	Readily available AUp t A Readily available A Readily available A Readily available	o date □ N/A ☞ Up to date ☞ Up to date	□ N/A □ N/A □ N/A
 5. 6. 7. 8. 9. 	Gas Generation Records Remarks Settlement Monument Records Remarks Groundwater Monitoring Records Remarks Leachate Extraction Records Remarks Discharge Compliance Records	Readily available AUp t A Readily available D Readily available D Readily available	o date □ N/A ☞ Up to date ☑ Up to date ﷺ Up to date	□ N/A □ N/A □ N/A
 5. 6. 7. 8. 9. 	Gas Generation Records Remarks Settlement Monument Records Remarks Groundwater Monitoring Records Remarks Leachate Extraction Records Remarks Discharge Compliance Records SAir	Readily available AUp t A Readily available A Readily available A Readily available A Readily available	o date □ N/A └ Up to date I Up to date ☆ Up to date . E Up to date	□ N/A □ N/A □ N/A
5. 6. 7. 8. 9.	Gas Generation Records	Readily available AUp to AReadily available AReadily available AReadily available AReadily available Readily available	o date □ N/A └ Up to date CUp to date CUp to date CUp to date □ Up to date	□ N/A □ N/A □ N/A □ N/A

					IV. (O&M COSTS		
	O&M Or A State in- □ PRP in- □ Federal	ganiza -house house Facility	tion y in-ho	use	□ Cont ⊠ Cont □ Cont	ractor for State ractor for PRP ractor for Feder	al Facility	
	O&M Co	et Rec	arde		k o construire	and the second se		
	□ Readily	availat	ole	DInt	o date			
	D Funding	a mech	niem/a	oreement	in place			
	Original)&M cu	net esti	mate	in place		reakdown attached	
	Original C		USI CSII.			LDI	cardown anached	
			Tot	al annual	cost by ve	ear for review n	eriod if available	
				un unnuur	cost of j	cui foi foificit p		
	From		То				□ Breakdown attached	
		Date		Date		Total cost		
	From	2	То				□ Breakdown attached	
		Date		Date		Total cost	_	
	From	Dute	To	Duit		i otar oost	Breakdown attached	
	11011	Date	_ 10	Date		Total cost		
	Erom	Date	To	Date		1 otar cost	D Preakdown attached	
	FIOII	Data	_ 10	Data	-	Total past		
	Ensure	Date	Te	Date		Total Cost	Dreakdown attached	
	FIOII	Dete	_ 10	Data		Total goot		
		Date		Date		Total cost		
	Unanticip Describe c	oated o	r Unus	sually Hig	h O&M	Costs During I	Review Period	
	١	/. ACC	CESS	AND INS	ΓΙΤUΤΙΟ	DNAL CONTR	ROLS ⊠ Applicable □ N/A	
	ncing						·/	
Fei	Fencing d	lamage	d	🗆 Loca	tion show	n on site map	Ø Gates secured □ N/A	
Fei	Remarks_							
Pei	Remarks_	lestric	tions					

1. Remarks

C. 1	nstitutional Controls (ICs)				-
1.	Implementation and enforcement Site conditions imply ICs not properly implemented Site conditions imply ICs not being fully enforced	□ Yes □ Yes	□No □No	□ N/A □ N/A	eh.
	Type of monitoring (e, self-reporting, drive by)				
	Contact				
	Name Title	Da	te Phon	e no.	
	Reporting is up-to-date Reports are verified by the lead agency	□ Yes □ Yes	□ No □ No	□ N/A □ N/A	
	Specific requirements in deed or decision documents have been met Violations have been reported	□ Yes □ Yes	□No □No	□N/A □N/A	
2.	Adequacy ⊠ICs are adequate □ICs are inadequate	quate		□N/A	
D. G	eneral				
1.	Vandalism/trespassing □ Location shown on site map PNo w Remarks	andalism	evident		
2.	Land use changes on site > N/A Remarks				
3.	Land use changes off site AN/A Remarks				
	VI. GENERAL SITE CONDITIONS				
A. R	oads ,⊠Applicable □N/A				
1.	Roads damaged □ Location shown on site map ☑ Road Remarks □ □	ls adequa	te⊡ N/A		

в. С	Other Site Conditions		
	Remarks		
	-		
	VII. LAND	FILL COVERS Z Applicable	⊐ N/A
A. L	andfill Surface		
1.	Settlement (Low spots)	□ Location shown on site map	Settlement not evident
	Areal extent	Depth	
	Remarks		
2.	Cracks	□ Location shown on site map	Cracking not evident
	Lengths Widths	5 Depths	
	Remarks		
3.	Erosion	□ Location shown on site map	Erosion not evident
	Areal extent	Depth	,
	Remarks ELOSSON REPANED	REGULARIY	
4.	Holes	L Location shown on site map	Holes not evident
	Remarks	Deptil	
5.	Vegetative Cover & Gras	s □ Cover properly establ	ished ØNo signs of stress
	□ Trees/Shrubs (indicate size and	locations on a diagram)	
	Remarks		and the second
	Alternative Cover (armored roc	ek, concrete, etc.) □N/A	
6.	Remarks		s
6.		□ Location shown on site map	Ø-Bulges not evident
6. 7.	Bulges	TT 1 1	
6. 7.	Bulges Areal extent	Height	
6. 7.	Areal extent Remarks	Height	
6. 7.	Areal extent Remarks	Height	
5. 7.	Bulges Areal extent Remarks Wet Areas/Water Damage	M.Wet areas/water damage not ev	vident
5. 7. 8 <i>.</i>	Areal extent Remarks Wet Areas/Water Damage	Meight Ø.Wet areas/water damage not ev □ Location shown on site map	vident Areal extent
5. 7. 8.	Bulges Areal extent Remarks Wet Areas/Water Damage Wet areas Ponding	Meight Ø.Wet areas/water damage not ev □ Location shown on site map □ Location shown on site map	vident Areal extent Areal extent
6. 7. 8.	Bulges Areal extent Remarks Wet Areas/Water Damage Wet areas Ponding Seeps	 Height Ø.Wet areas/water damage not ev □ Location shown on site map □ Location shown on site map □ Location shown on site map 	vident Areal extent Areal extent Areal extent
6. 7. 8 <i>.</i>	Bulges Areal extent Remarks Wet Areas/Water Damage Wet areas Ponding Seeps Soft subgrade	Height Ø.Wet areas/water damage not ev □ Location shown on site map □ Location shown on site map	vident Areal extent Areal extent Areal extent Areal extent

9.	Slope Instability □ Slides □ Location shown on site map 忽No evidence of slope instability Areal extent Remarks
В.	Benches □ Applicable ▷ N/A (Horizontally constructed mounds of earth placed across a steep landfill side slope to interrupt the slope in order to slow down the velocity of surface runoff and intercept and convey the runoff to a lined channel.)
1.	Flows Bypass Bench □ Location shown on site map $\Delta N/A$ or okay Remarks
2.	Bench Breached □ Location shown on site map ▷ N/A or okay Remarks
3.	Bench Overtopped □ Location shown on site map □ N/A or okay Remarks □ □
C.	Letdown Channels
1.	Settlement □ Location shown on site map And the settlement Areal extent Depth And the settlement Remarks Image: Settlement settlement And the settlement
2.	Material Degradation □ Location shown on site map
3.	Erosion □ Location shown on site map PNo evidence of erosion Areal extent Depth Providence of erosion Remarks Remarks Depth

4.	Undercutting □ Location shown on site map Ø No evidence of undercutting Areal extent Depth
5.	Obstructions Type Description D Location shown on site map Areal extent Size Remarks
6.	Excessive Vegetative growth Type ØNo evidence of excessive growth Vegetation in channels does not obstruct flow D Location shown on site map Areal extent Remarks
D. C	over Penetrations StApplicable
1.	Gas Vents ⊠-Active□ Passive Ø Properly secured/locked,Ø Functioning Ø Routinely sampled Ø Good condition □ Evidence of leakage at penetration □ Needs Maintenance □ N/A Remarks
2.	Gas Monitoring Probes Ø-Properly secured/locked Ø-Functioning Ø Routinely sampled Ø Good condition □ Evidence of leakage at penetration □ Needs Maintenance □ N/A Remarks □ Needs Maintenance □ N/A
3.	Monitoring Wells (within surface area of landfill) ,ØProperly secured/locked ØFunctioning PRoutinely sampled ØGood condition □ Evidence of leakage at penetration □ Needs Maintenance □ N/A Remarks
4.	Leachate Extraction Wells
5.	Settlement Monuments

E. G	as Collection and Treatment ZApplicable DN/A
1.	eas Treatment Facilities □ Thermal destruction □ Collection for reuse □ Collection for reuse □ Collection for reuse □ Collection for reuse □ Collection for reuse
2.	Gas Collection Wells, Manifolds and Piping ØGood condition□ Needs Maintenance Remarks
3.	Gas Monitoring Facilities (e.g., gas monitoring of adjacent homes or buildings) GaGood condition□ Needs Maintenance □ N/A Remarks
F. C	over Drainage Layer
1.	Outlet Pipes Inspected Ø Functioning □ N/A Remarks
2.	Outlet Rock Inspected ØFunctioning DN/A Remarks
D. D	etention/Sedimentation Ponds
1.	Siltation Areal extent Depth MA Siltation not evident Remarks Depth
2.	Erosion Areal extent Depth Areal extent Depth Areal extent Depth Areal extent Depth
3.	Outlet Works □ Functioning ∠N/A Remarks
4.	Dam □ Functioning ⊉N/A Remarks

H. R	etaining Walls	□ Applicable	CD/N/A	
1.	Deformations Horizontal displacement_ Rotational displacement_ Remarks	□ Location show	wn on site map Vertical displa	EfDeformation not evident
2.	Degradation Remarks	□ Location show	wn on site map	,⊠.Degradation not evident
I. Pe	rimeter Ditches/Off-Site Di	scharge	愛 Applicable	□ N/A
1.	Siltation □ Locat Areal extent Remarks	ion shown on site Depth_	e map ASSiltation	n not evident
2.	Vegetative Growth Vegetation does not im Areal extent Remarks	□ Location show pede flow Type	wn on site map	□N/A
3.	Erosion Areal extent Remarks Eroszer	Depth Depth NEPANED 725	wn on site map	∠Erosion not evident
4.	Discharge Structure Remarks	Exerctioning	□N/A	
	VIII. VEF	TICAL BARRI	ER WALLS	□ Applicable ⊈N/A
1.	Settlement Areal extent Remarks	□ Location show Depth	vn on site map	A Settlement not evident
2.	Performance Monitorin Deferformance not monito Frequency Head differential Remarks	g Type of monitor pred	ring Evidenc	ce of breaching

IX. GROUNDWATER/SURFACE WATER REMEDIES Applicable N/A
Groundwater Extraction Wells, Pumps, and Pipelines
Pumps, Wellhead Plumbing, and Electrical □ Good condition□ All required wells properly operating □ Needs Maintenance ANA Remarks
Extraction System Pipelines, Valves, Valve Boxes, and Other Appurtenances Good condition Needs Maintenance Remarks
Spare Parts and Equipment □ Readily available □ Good condition □ Requires upgrade □ Needs to be provided Remarks
Surface Water Collection Structures, Pumps, and Pipelines
Collection Structures, Pumps, and Electrical Good condition Needs Maintenance Remarks
Surface Water Collection System Pipelines, Valves, Valve Boxes, and Other Appurtenances
Spare Parts and Equipment □ Readily available □ Good condition □ Requires upgrade □ Needs to be provided Remarks

С. Т	reatment System	□ Applicable /	S.N/A	
1.	Treatment Train (Che ☐ Metals removal ☐ Air stripping ☐ Filters ☐ Additive (<i>e.g.</i> , chelati	ck components that ap □ Oil/water separa □ Carbon on agent, flocculent)	oply) tion □Bioremediatic absorbers	9N
	□ Others			1
	□ Good condition	□ Needs Maintena	nce	
	□ Sampling ports prope	rly marked and function	onal	
	□ Sampling/maintenanc	e log displayed and up	p to date	
	Equipment property i	ter treated appually		
	\Box Quantity of groundwa	ater treated annually		
	Remarks	ater freated annually_		· ·
	Remarks		ан талан талар жилүү.	
2	Electrical Enclosures	and Panels (properly	rated and functional)	a benerali manana ana ana ana ana ana ana ana ana
2.	DN/A DGo	d condition	Maintenance	
	Remarks		Humber	
3	Tanks Vaults Storage	Vessels	t with the growth and the second s	
5.	$\Box N/A$ $\Box Goo$	d condition Proper	secondary containment	□ Needs Maintenance
	Remarks	F	,	
4.	Discharge Structure a	nd Appurtenances		2
	□N/A □Goo	od condition□ Needs 1	Maintenance	
	Remarks		C CONSTRUCTION OF THE OWNER OF THE	
5.	Treatment Building(s)			
	□N/A □Goo	od condition (esp. root	f and doorways)	□ Needs repair
	□ Chemicals and equipr	nent properly stored		
	Remarks			
				······································
6.	Monitoring Wells (pun	np and treatment reme	edy)	
1	□ Properly secured/lock	ed □ Functioning [□ Routinely sampled	\Box Good condition
	□ All required wells loc	ated DNeeds 1	Maintenance	\Box N/A
	Remarks			
				Automatica and an
D. M	onitoring Data		1	
1.	Monitoring Data			
	As routinely submitted	on time	ØHs of acceptable qu	ality
2.	Monitoring data sugges	ts:		
	□ Groundwater plume is	s effectively contained	I □ Contaminant conc	entrations are declining

D. N	Ionitored Natural Attenuation
1.	Monitoring Wells (natural attenuation remedy) AProperly secured/locked AFunctioning All required wells located Needs Maintenance Remarks N/A
•	X. OTHER REMEDIES
14	If there are remedies applied at the site which are not covered above, attach an inspection sheet describing the physical nature and condition of any facility associated with the remedy. An example would be soil vapor extraction.
	XI. OVERALL OBSERVATIONS
A.	Implementation of the Remedy
	Describe issues and observations relating to whether the remedy is effective and functioning as desined Begin with a brief statement of what the remedy is to accomplish (i.e., to contain contaminant plume, minimize infiltration and nas emission, etc.).
B.	Adequacy of O&M
	Describe issues and observations related to the implementation and scope of O&M procedures. In particular, discuss their relationship to the current and long-term protectiveness of the remedy.

7	Early Indicators of Potential Remedy Problems
	Describe issues and observations such as unexpected changes in the cost or scope of O&M or a high frequency of unscheduled repairs, that suggest that the protectiveness of the remedy may be compromised in the future.
D.	Opportunities for Optimization
D.	Opportunities for Optimization Describe possible opportunities for optimization in monitoring tasks or the operation of the remedy.
D.	Opportunities for Optimization Describe possible opportunities for optimization in monitoring tasks or the operation of the remedy.
D.	Opportunities for Optimization Describe possible opportunities for optimization in monitoring tasks or the operation of the remedy.
D.	Opportunities for Optimization Describe possible opportunities for optimization in monitoring tasks or the operation of the remedy.
D.	Opportunities for Optimization Describe possible opportunities for optimization in monitoring tasks or the operation of the remedy.
D.	Opportunities for Optimization Describe possible opportunities for optimization in monitoring tasks or the operation of the remedy.