SCS ENGINEERS

Environmental Consultants & Contractors

May 17, 2021 File No. 25221008.02

TECHNICAL MEMORANDUM

- TO: Trevor Bannister, WDNR
- FROM: Sherren Clark and Eric Oelkers, SCS Engineers

SUBJECT: Land and Gas Reclamation Landfill - Changed Site Conditions

SCS Engineers (SCS) prepared this memo on behalf of Glacier Ridge Landfill, LLC (GRL) in response to Recommendation #1 in the 5-Year Review Report. The memo documents the observed changes in site conditions resulting from the relocation of waste from the former Land and Gas Reclamation Landfill (LGRL).

As established in the 1994 Record of Decision (ROD) for LGRL, the site consists of two operable units (OUs). OU1 is the source control remedy, and OU2 is the groundwater remedy (long-term monitoring). The OU1 source control remedy originally included installation of a clay cap and expansion of the landfill gas collection system, which were completed in the early 1990s. The relocation of the LGRL waste in 2014 through 2016 essentially completed the OU1 response by removing the source.

The LGRL waste removal has been documented in Construction Documentation Reports that were prepared by Cornerstone Environmental Group (Cornerstone) after each of the three phases of waste removal and submitted to the Wisconsin Department of Natural Resources (WDNR). This memo references information contained in those reports to document the changes that have occurred with respect to the OU1 and OU2 remedies selected in the ROD.

In recognition of the completion of source control activities under OU1 through source removal, finalization of the Explanation of Significant Differences (ESD) is an appropriate next step.

CHRONOLOGY AND INFORMATION SOURCES

A chronology of the approval and implementation process for the LGRL waste removal is provided below. Milestone reports and approvals leading up to the waste removal are listed, followed by the dates of the waste removal activities and corresponding documentation reports. Planning and approvals for the waste relocation were integral to the planning and approvals for the Southeast Expansion of GRL (Subtitle D landfill) into the former LGRL area after the waste was removed; therefore, many of the document titles reference the GRL Southeast Expansion. The Southeast Expansion documents and approvals included detailed plans and conditions for the LGRL waste relocation.

3

Waste Relocation Chronology

Date	Event
7/23/2009	Initial Site Report, Southeast Expansion, Veolia ES Glacier Ridge Landfill, submitted by BT Squared
12/8/2010	Feasibility Report, Proposed Southeast Expansion, Veolia ES Glacier Ridge Landfill, submitted by BT Squared
6/30/2011	Addendum No. 1 – Feasibility Report, Proposed Southeast Expansion, Veolia ES Glacier Ridge Landfill, submitted by BT Squared
4/17/2012	WDNR Determination of Site Feasibility, Veolia ES Glacier Ridge Landfill Southeastern Horizontal and Vertical Landfill Expansion, License #3068
4/23/2013	Plan of Operation, Advanced Disposal Services Glacier Ridge Landfill, Southeast Expansion, submitted by SCS Engineers (SCS), including LGRL Waste Removal Plan; Addendum 1 submitted 6/28/2013; Addendum 2 submitted 10/3/2013
10/13/2013	WDNR approval of Southeast Expansion Plan of Operation and Hazardous Waste Remediation Variance
12/2013	LGRL Waste Removal Plan for Glacier Ridge Landfill Expansion, Revision 1, issued by SCS
3/10/2014 to 7/18/2014	Phase A of LGRL waste excavation
2/13/2015	Construction Documentation Report, Glacier Ridge Landfill – LGRL Phase A Waste Relocation, submitted by Cornerstone Environmental Group (Cornerstone)
2/3/2015 to 5/5/2015	Phase B of LGRL waste excavation
10/29/15	Construction Documentation Report, Glacier Ridge Landfill – LGRL Phase B Waste Relocation, submitted by Cornerstone
1/4/2016 to 3/21/2016	Phase C of LGRL waste excavation
12/23/16	Construction Documentation Report, Glacier Ridge Landfill – LGRL Phase C Waste Relocation, submitted by Cornerstone

TECHNICAL MEMORANDUM May 17, 2021 Page 3

For reference, a site map with monitoring well and private well locations is provided on **Figure 1**. Drawings from the Plan of Operation showing the phasing of the waste relocation are provided as **Attachment A**. Selected text, tables, and drawings from the waste relocation construction documentation reports are provided as **Attachments B**, **C**, and **D**.

ACTIONS MODIFYING SITE CONDITIONS

Waste Removal

The volumes of waste removed during each phase of excavation are summarized below. Soil within the waste was not segregated from the waste. No salvageable waste was identified during the waste relocation process.

The total mass of volatile organic compounds (VOCs) removed as part of the waste removal was calculated based on the median value for total concentrations of VOCs detected in each of the 24 samples of waste collected during waste characterization investigation activities in 2006 and 2007 (SCS 2013 Waste Removal Plan, Table 1). Because the waste samples collected during the waste characterization investigation were selected for analysis based in part on field screening indicating the potential presence of contamination, the estimated VOC mass based on these test results is likely biased high relative to the concentrations in the waste as a whole. The median total VOC concentration for the waste samples (38 milligrams per kilogram [mg/kg]) was used rather than the mean concentration (100 mg/kg) because it is believed to be more representative of typical waste. An estimated dry waste density of 1,200 pounds per cubic yard was assumed.

Phase	Typical Waste (cubic yards)	Suspicious Waste (cubic yards)	Salvageable Waste (cubic yards)	Estimated VOC Mass Removed (pounds)
А	584,394	120	0	27,000
В	413,758	20,472	0	20,000
C	301,252	8,410	0	14,000
Total	1,299,404	29,002	0	Approx. 61,000

Waste Relocation Quantities and Estimated VOC Mass Removed

The VOC mass removal calculations for the waste are provided in Attachment E.

Soil Excavation Below Waste

Soil excavation below the LGRL waste consists of two categories: 1) soil between the bottom of the waste and the design subbase grades for the GRL Southeast Expansion, which was excavated to facilitate construction of the GRL southeast expansion; and 2) soil below the subbase grades that was excavated for the purposes of contaminant remediation in accordance with the Waste Removal Plan.

For soil excavation from the bottom of LGRL waste to the subbase grades, the total mass of VOCs removed was calculated for each Phase based on the soil samples collected after the waste was removed, as documented in the waste removal documentation reports prepared by Cornerstone. Samples were typically collected from test pits excavated from the post-waste-removal soil surface to the approximate subbase grade. The depth to the subbase grade ranged from 0 to approximately

18 feet. The sample results were used to separate contaminated soil from soil meeting NR 720 standards that could be beneficially used on site without restrictions. The total VOC mass removal for each Phase was calculated based on the volume of contaminated soil reported in the documentation report and the average total VOC concentration for samples identified as contaminated (at least one VOC result above the NR 720 standard). For Phase C, the volume of contaminated soil was estimated based on the total estimated volume of soil between the LGRL waste and the subbase grades (133,600 cubic yards, from Sheet 10 in **Attachment A**) and the percent of the soil samples that exceeded an NR 720 soil standard (33 percent). A soil dry unit weight of 3,100 pounds per cubic yard (115 pounds per cubic foot) was assumed based on soil testing results from the 2010 Glacier Ridge Feasibility Report.

Each Phase of waste removal also included some targeted soil excavation below the subbase grades in one or more areas where higher VOC concentrations were present. For the excavation below the subbase, the total mass of VOCs removed was calculated based on the volume of contaminated soil reported in the documentation report and the average VOC concentration for the samples collected from the targeted soil excavation area.

Phase	Excavation to Subbase (cubic yards)	Excavation Below Subbase (cubic yards)	Average VOC Concentration (mg/kg)	Estimated VOC Mass Removed (pounds)
А	8,497		18	470
		570	207	370
В	89,014		10	2,800
		800	158	390
С	Approx. 44,000		141	19,000
		2,856	4	35
Total	Approx. 142,000	4,200		Approx. 23,000

Contaminated Soil Excavation Quantities and Estimated VOC Mass Removed

The VOC mass removal calculations and assumptions for the excavated soil are provided in **Attachment E**.

Remaining VOC Concentrations in Soil

The estimated remaining VOC concentrations in soil following the soil excavation are summarized in **Table 1**. These results include the deepest sample from each post-waste-removal test pit (at approximate subbase grade), plus additional test pit or confirmation samples in the areas of targeted excavation below the subbase. The sample location maps and complete soil sample summary tables from the previously submitted waste removal documentation reports for each Phase are included in **Attachments B**, **C**, and **D**. The laboratory reports were provided in the documentation reports. During the data review for Phase C, SCS noted that the sample results from the base of the Phase C targeted soil excavation (SS-28 to SS-36) were not included in the previously submitted Phase C documentation report. The laboratory report for these samples is included in **Attachment D**.

Average VOC concentrations in the remaining soil below the subbase are significantly lower than in the excavated soil. Concentrations above the NR 720 soil standards were detected in some samples, for chlorinated VOCs (CVOCs), petroleum VOCs, and 2-butanone (also known as methylethylketone (MEK)). Of these, only CVOCs have been identified as contaminants of concern in the groundwater

TECHNICAL MEMORANDUM May 17, 2021 Page 5

investigations at the site. Because the subbase grades for the GRL expansion were designed to be just above the water table, the majority of the contaminated soil above the water table was removed with the soil excavation.

Operation and Monitoring System Changes

The LGRL operating and monitoring systems in place prior to the waste removal project included the landfill gas collection and control system and the environmental monitoring system. The landfill gas system included gas extraction wells, header and lateral piping, blower, flare, and condensate tank. The landfill gas collection system was dismantled and the gas extraction wells were abandoned as the waste removal progressed.

Environmental monitoring system components affected by the waste removal included groundwater monitoring wells, leachate head wells, and gas monitoring probes. Portions of the environmental monitoring system that were located with the LGRL footprint and/or within the construction limits of the GRL Southeast Expansion were abandoned. Groundwater monitoring wells that were outside the construction limits were maintained for future monitoring.

All operation and monitoring systems associated with OU1 (source control) were removed with the waste removal. The remaining monitoring system components are groundwater monitoring wells associated with OU2 (groundwater).

Monitoring system changes completed for each phase were as follows:

- Phase A
 - Leachate head wells MW-2 and MW-3 abandoned by removal
 - Monitoring wells MW13AR, MW13R, P303A, P5R and P421B abandoned by overdrilling
- Phase B
 - Leachate head well MW-4 abandoned by removal
 - Gas probes GMP-1 through GMP-4 abandoned by removal (screened within waste)
 - Monitoring wells MW311R and P311A abandoned by over-drilling
- Phase C
 - Monitoring well MW407 abandoned by over-drilling

Monitoring well nest MW-428/P-428A was installed in the same area of the site as the former MW-407 after the Phase C waste removal was completed and the Southeast Expansion perimeter berm was constructed in this area.

The LGRL groundwater monitoring system remaining after completion of the waste removal included the following wells:

 Wells in approved landfill environmental monitoring plan under Waste and Materials Management (WMM) program: MW-1AR, MW-1RR, MW-6R, MW-7R, MW-8R, MW-201, MW-201A, MW-201B, MW-203A, MW-210, MW-210A, MW-210B, MW-214, MW-214A, W-3AR, W-3R, W-163, and W-163A • Wells installed for bedrock groundwater investigation under WDNR Remediation & Redevelopment (R&R) program: MW-1B, P-401D, P-402E, P-422B, P-423D, P-424D, P-424SS, P-426D, and P-429SS

Glacier Ridge Landfill Construction

After each phase of waste removal, a phase of liner construction for the GRL Southeast Expansion was completed, on the following schedule:

- 2014: LGRL waste removal Phase A, Southeast Expansion Phase 6
- 2015: LGRL waste removal Phase B, Southeast Expansion Phase 7
- 2016: LGRL waste removal Phase C, Southeast Expansion Phase 8

Additional phases of GRL have been constructed since the completion of the waste removal and will be constructed in the future, but are outside the LGRL footprint.

Construction of the GRL Phases 6, 7, and 8 in the LGRL footprint provides several benefits for OU2, including the following:

- Waste and soil removal: Excavation to achieve the design subbase grades removed all of the LGRL waste and a significant volume of VOC-impacted soil that was below the waste but above the water table. These materials are no longer a continuing source of VOCs to the groundwater.
- **Composite liner:** Construction of the composite liner and leachate collection system provides a cap above the remaining VOC-impacted soil and groundwater in the source area. The liner includes 4 feet of compacted clay overlain by a 60-mil high density polyethylene liner. The leachate collection system includes a stone drainage layer sloped to leachate collection piping to minimize hydraulic head on the liner system. These elements reduce infiltration reaching the impacted soil and groundwater relative to the pre-waste removal conditions.
- Underdrain: Installation and operation of a groundwater underdrain system below the GRL liner system removes VOC-impacted groundwater from the source area. The underdrain is designed to maintain separation between the bottom of the liner and the water table, using drainage piping installed below the liner. The groundwater from the underdrain can be treated by an air stripper, if necessary, and the discharge is covered by a general Wisconsin Pollution Discharge Elimination System (WPDES) permit. Operation of the underdrain from 2016 through 2020 removed over 82 million gallons of VOC-impacted groundwater and approximately 25 pounds of VOCs. The VOC mass removal calculations for the underdrain operation are provided in Attachment E.

OBSERVED OR ANTICIPATED CHANGES IN SITE CONDITIONS

The major change in site conditions is the complete removal of the LGRL waste and underlying soil, and subsequent construction of the GRL Southeast Expansion in the former LGRL footprint as discussed above.

TECHNICAL MEMORANDUM May 17, 2021 Page 7

With respect to groundwater conditions (OU2), the LGRL waste relocation is anticipated to improve groundwater conditions below and downgradient from the former LGRL. This improvement will not occur immediately. The ongoing monitoring programs in the shallow and deep aquifers will continue to monitor progress toward achieving the groundwater remediation objectives. Groundwater monitoring results to date were summarized in the 2019 Annual Report dated May 29, 2020.

In the shallow aquifer monitoring well sampling, no significant short-term changes were observed that appeared to be directly related to the waste removal. The planning for the waste removal anticipated a possible short-term increase in impacts due to removing the LGRL final cover and temporarily opening up the site; however, significant increases in VOC concentrations were not observed. In general, VOC concentrations in the shallow aquifer continued to follow long-term trends. Conclusions from the 2019 Annual Report related to the shallow aquifer monitoring activities included the following:

- Consistent with previous observations, the primary CVOC plume in the shallow aquifer extends north-northeast from the north end of LGRL. CVOCs have also been detected at lower concentrations in monitoring wells adjacent to the east and south limits of the former LGRL.
- CVOC concentrations within the shallow plume continue to indicate that the overall mass of CVOCs in the groundwater has decreased with time, particularly in the source area.
- Vinyl chloride concentrations at the furthest downgradient mid-depth piezometer (MW214A) increased beginning in 2008, but now appear to have leveled off. This well nest is located approximately 1,500 feet from the downgradient property line.

In the bedrock aquifer, the only significant change that occurred during or after the LGRL waste removal was the detection of cis-1,2-dichloroethene (DCE) in samples from water supply well PW-J, which is owned by GRL and is part of the routine monitoring program for GRL. Although DCE is one of the primary CVOCs associated with the LGRL groundwater impacts, it has not been determined conclusively whether LGRL is the source of DCE at PW-J. DCE was first detected in the October 2016 sample and in 2019 and 2020 concentrations were near the NR 140 preventive action limit (PAL) of 7 micrograms per liter (μ g/L), ranging from 6.8 to 8.4 μ g/L. Additional investigation of the PW-J area is in progress, including geophysical logging of the well completed in 2020 and installation of one or more monitoring wells planned for 2021.

Conclusions from the 2019 Annual Report related to the bedrock groundwater investigation activities included the following:

- Groundwater flow direction in the bedrock aquifer in 2019 was to the northeast, consistent with the northeastern flow direction observed during all previous monitoring events, with the exception of October 2018.
- The lack of CVOCs in groundwater samples from monitoring well P429SS suggests that CVOC contamination in the sandstone aquifer does not extend to the northeast beyond the Andrew Oechsner property.

- Hydrogeologic and laboratory analytical data from the P424D/P424SS monitoring well
 nest on the All-Line property continue to support that horizontal movement of the CVOCs
 away from LGRL in groundwater is primarily occurring in the upper, fractured zone of the
 dolomite.
- Given the apparently low hydraulic conductivity of the lower portion of the dolomite and the low vertical hydraulic gradient across the lower dolomite observed at the P424 well nest, there appears to be little potential for significant vertical flow within the dolomite under ambient conditions.
- CVOC concentrations in the monitoring wells along the center of the bedrock plume, including P402E, P424D, and P423D, continue to show mostly stable or decreasing long-term concentration trends, with continuing decreasing concentrations in 2019.
- The slight increasing trend of DCE concentrations in PW-28, and the consistent presence of low concentrations of DCE in PW-19 with a slight increase in DCE in 2019, suggest that the leading edge of the dissolved CVOC plume may be continuing to migrate; however, vinyl chloride has not been detected in these wells, and the DCE concentrations remain well below the NR 140 PAL.

Tables, figures, and graphs supporting these conclusions were provided in the 2019 Annual Report. The 2020 Annual Report is currently in preparation.

EFFECT OF CHANGES TO OPERABLE UNIT 1 ON LONG-TERM PROTECTIVENESS

The LGRL waste relocation project improved the long-term protectiveness of the OU1 remedy due to several factors, including:

- Removal of 1.3 million cubic yards of municipal and industrial waste from an unlined disposal area.
- Removal of approximately 130,000 cubic yards of contaminated soil below the LGRL waste.
- Removal of an estimated 84,000 pounds of VOCs in waste and soil.
- Construction of a composite liner (60-mil HDPE geomembrane and 4 feet of compacted clay) over remaining VOC-contaminated soil, eliminating recharge
- Installation of an underdrain system below the GRL liner, providing for collection, treatment, and discharge of shallow groundwater impacted with VOCs from LGRL

With the LGRL waste entirely removed, OU1 no longer exists at the site. Remaining activities are focused on groundwater monitoring under OU2.

TECHNICAL MEMORANDUM May 17, 2021 Page 9

In recognition of the completion of source control activities under OU1 through source removal, the appropriate next step is finalization of an ESD documenting completion of the OU1 remedy of source control and indicating that only the OU2 remedy (groundwater) remains to be completed before the site can be deleted from the National Priorities List (NPL.)

REFERENCES

Cornerstone Environmental Group, 2015a, Construction Documentation Report, Glacier Ridge Landfill – LGRL Phase A Waste Relocation, Horicon, Dodge County, Wisconsin, February 13, 2015.

Cornerstone Environmental Group, 2015b, Construction Documentation Report, Glacier Ridge Landfill – LGRL Phase B Waste Relocation, Horicon, Dodge County, Wisconsin, October 29, 2015.

Cornerstone Environmental Group, 2016, Construction Documentation Report, Glacier Ridge Landfill – LGRL Phase C Waste Relocation, Horicon, Dodge County, Wisconsin, December 23, 2016.

SCS Engineers, 2020, 2019 Annual Report, Land & Gas Reclamation Landfill/Hechimovich Sanitary Landfill Site, Dodge County, Wisconsin, BRRTS #02-14-000906, May 29, 2020.

Wisconsin Department of Natural Resources, 1995, Record of Decision, Final Remedy, Land and Gas Reclamation Landfill, September 6, 1995.

Wisconsin Department of Natural Resources, 2019, Fifth Five-Year Review Report for Hechimovich Sanitary Landfill Superfund Site, Dodge County, Wisconsin, June 10, 2019.

Attachments

	Analytical Results for Remaining Soil Below LGRL - Detected VOCs and Metals Monitoring Well and Private Well Locations Plan of Operation Waste Removal Phasing Drawings LGRL Phase A Waste Relocation Documentation (Report Text and Selected Tables and Drawings)
Attachment C	LGRL Phase B Waste Relocation Documentation (Report Text and Selected Tables and Drawings)
Attachment D	LGRL Phase C Waste Relocation (Report Text, Selected Tables and Drawings, and Lab Report for Samples SS-28 to SS-36)
Attachment E	VOC Mass Removal Calculations

EO/jsn_lmh/SCC

I:\25221008.02\Deliverables\Changed Conditions Memo\210517_Bannister_Changed Conditions Memo.docx

Table 1

Analytical Results for Remaining Soil Below LGRL – Detected VOCs and Metals

Table 1. Analytical Results for Remaining Soil Below LGRL - Detected VOCs and Metals Land and Gas Reclamation Landfill / SCS Engineers Project #25221008.02

	Metals	(mg/kg)								D	etected VC	DCs (ug/kg)]
Phase/Sample ID	Cadmium	Lead	cis-1,2- Dichloroethene	Methylene Chloride	Trichloroethene	Vinyl Chloride	2-Butanone (MEK)	n-Butylbenzene	sec-Butylbenzene	Ethylbenzene	lsopropylbenzene (Cumene)	Naphthalene	n-Propylbenzene	p-lsopropyltoluene	Toluene	1,2,4- Trimethylbenzene	1 ,3,5- Trimethylbenzene	m&p-Xylene	o-Xylene	Total VOCs
Phase A - 2014																				
TVOC 7	0.2	3.7					15,900								623					16,523
TVOC 9	0.19	3.8								31.3								89.3	37.2	158
TVOC 11	0.18	3.7								33.4						29.2		100		163
TVOC 13	0.14	3.4					13,500			83.6					225			198		14,007
TVOC 15	0.17	2.7								127								355	94.6	577
TVOC 17	0.13	1.9													102			56.5		159
TVOC 24B	0.27	32.6								190					105	84.7	29.2	368	71.0	848
TVOC 25A	0.15	2.1								32.4								237		269
TVOC 26B																				
TVOC 31	0.21	3.8																		
TVOC 32	0.31	7.1																		
TVOC 33	0.41	11																		
TVOC 35	0.2	3													104					104
TVOC 37	0.09	2.3								80.6						30.7		326	83.6	521
TVOC 39/39A	0.12	2.8		35.6						52.4						34.0		222		344
TVOC 41		1.8																		0
TVOC 43	0.1	1.9								261			32.7		40.1	128	45.1	812	190	1,509
TVOC 45		1.8					458													458
TVOC 46		4.7																		
TVOC 47	0.08	3.8					1,350													1,350
TVOC 48	0.11	4.8								30.9								108		139
TVOC 49	0.25	8.2																		
TVOC 51	0.11	6.4																		
TVOC 52	0.28	23																61.8		62
TVOC 53	0.08	10.7																		
TVOC 54	0.71	88.9																68.6		69
50A	0.28	9.1	703			243														946
50B	0.11	9.3								207										207
50C	0.082	10																		
50D	0.13	8.1	539			537				410					643	42		742	126	3,039
CON-1	NA	NA	289		438	29.8				114					563	44		406	94	1,977
CON-2	NA	NA	67900		14,700	1,960		932		49,300	1,970		5,970		183,000	22,800	6,970	151,000	39,300	545,802
CON-3	NA	NA	56							1,250			34		678	114	33	6,590	1,000	9,755
CON-4	NA	NA	567					933	398	12,800	1,110	286	4,110	206	14,300	13,900	4,330	39,900	10,500	103,340
Phase B - 2015	•	•			•						-	-	•					-	-	
SS-1-14		2.5																		
SS-2-16	0.077	3.1								235								267	234	736
SS-3-14.7	0.072	2.7								820					51.3	73.3		2,470	800	4,215
SS-4-5.5		2.6	1,300				29,500			152					2,810			396	172	34,330
SS-5-11		2.2					5,350			59.9					104	40.5		192	60	5,806
SS-6-8		3.4																		
SS-7-11		3.2	1,560			136	1,670			448					895	34.5		1,070	252	6,066
SS-8-5		2.6					300													300

Table 1. Analytical Results for Remaining Soil Below LGRL - Detected VOCs and Metals Land and Gas Reclamation Landfill / SCS Engineers Project #25221008.02

	Metals	(mg/kg)								D	etected VC	Cs (ug/kg))							
	admium	eαd	cis-1,2- Dichloroethene	Methylene Chloride	Trichloroethene	Vinyl Chloride	-Butanone (MEK)	Butylbenzene	c-Butylbenzene	Ethylbenzene	lsopropylbenzene (Cumene)	Naphthalene	-Propylbenzene	-Isopropyltoluene	oluene	1,2,4- Trimethylbenzene	1,3,5- Trimethylbenzene	m&p-Xylene	-Xylene	Total VOCs
Phase/Sample ID	Ö		ם פֿי	۲	L L	Ż	5	Ę	se	ц	lso (Cu	Ž	Ę	<u>6</u>	Ĕ	エー	エー	2	6	
SS-9-14		3.8					410													410
SS-10-14		3.9																		
SS-11-1		2.2																		
SS-12-1		6.2																		
SS-13-1		3.5																		
SS-14-12.4		2.4			166															166
SS-15-11.4		2.5	143		52.9															196
SS-17-7	NA	NA								425					114	101	30.5	1,320	528	2,519
SS-20	NA	NA	33.5			28.2	438								79.3					579
\$\$-21	NA	NA	113				1,220								72.1			60.5		1,466
SS-22	NA	NA	229							74.6					82.9	26.8		195	49.6	658
SS-23	NA	NA	278							148					50.9			284	71.6	833
Phase C - 2016	1	2.4													51 7		I			50
SS-1-19'		2.4													51.7					52
SS-2-20'		2.7	11,100		436	596	1,140	73.0	28.1	618	38.9	69.3	94.4	33.5	825	632	260	2,150	476	18,570
SS-3-16'		2.8								172						93.0	40.0	552	128	985
SS-4-10'		2.3					10,300			73.8					196			206	46.5	10,822
SS-5-16'		3.8					60,300								459					60,759
SS-6-15'		5								48.3								128	40.7	217
SS-7-17' SS-8-19'		1.9					392			35.2					402			79.5		909
		1.8																		
SS-9-16'		3.1																		
SS-10-17'		2.3	651			101	783			30.2					29.8			94.2		1,689
SS-11-18'		2.3 9.3					209			32.7					107			75.3		424
SS-12-4.6' SS-13-5'																				
SS-13-5 SS-14-3.5'		8.2 9.1																		
		9.1																		
SS-15-3.5' SS-16-14'		9.2 2.9																		
SS-17-9' SS-18-19'	0.61	9.2 3.4																		
SS-18-19 SS-19-20'		3.4																		
SS-19-20 SS-20-21'		3.3																		
SS-20-21 SS-21-13'		3.3					358													 358
SS-21-13 SS-22-12.5'		3.4																		
SS-22-12.5 SS-23-14.5'		3.9																		
SS-23-14.5 SS-24-11'		2.4	 5,090			 190	 8,190	 246	 91.1	 8 3 5 0	 186	330	 418	 80.7	 4,620	2,090	 704	21,000	 5,250	 56,836
SS-24-11 SS-25-18'	0.12	1.9								8,350										
SS-25-18 SS-26-18.6'	0.12	1.9																		
SS-20-18.0 SS-27-16'	0.072	1.4																		
SS-28		2													0.40					
SS-29 SS-30		2.1 2.3	 92.4			67.3				125					243			331	65.9	832
SS-30 SS-31	0.18	2.3	92.4		 58.8	711 551	3,620			27.1 86.9	 54.9				29.1 101	 93.3	 39.2	82.1 293	 70.9	4,562
	0.16	2.0	20/		00.0	551	5,520			00.9	54.7					73.3	37.2	293	70.9	7,136

Table 1. Analytical Results for Remaining Soil Below LGRL - Detected VOCs and MetalsLand and Gas Reclamation Landfill / SCS Engineers Project #25221008.02

	Metals	(mg/kg)								D	Detected VC	DCs (ug/kg)							
Phase/Sample ID	Cadmium	ead	cis-1,2- Dichloroethene	Methylene Chloride	Frichloroethene	/inyl Chloride	2-Butanone (MEK)	-Butylbenzene	sec-Butylben zene	: thy lbenzene	lsopropylbenzene (Cumene)	Vaphthalene	-Propylbenzene	o-Is opropyltol uene	Ioluene	1,2,4- Trimethylbenzene	1,3,5- Trimethylbenzene	n&p-Xylene	o-Xylene	Fotal VOCs
SS-32		2.7	119		41.0	35.9	2,960	27.5		93.7	55.7				80	145.0	55.7	352	68.3	4,034
SS-33	0.18	2.4	62.6																	63
SS-34		2.4																		
SS-35		1.7	84.4		52.9					80.1	54.2				56.4	102	47.4	278	64.6	820
SS-36		1.9	453			3,030	12,300									28				15,811
NR 720 Groundwater Pathway RCLs with a Wisconsin-Default Dilution Factor of 2	0.752	27	41.2	2.6	3.6	0.1	1,666.1	NE	NE	1,570.0	NE	658.2	NE	NE	1,107.2	1,378.	7 Total	NE	NE	
NR 720 Non-Industrial Direct Contact RCLs	71.1	400	156,000	61,800	1,300	67	28,400,000	108,000	145,000	8,020	268,000	5,520	264,000	268,000	818,000	219,000	182,000	388,000	434,000	
NR 720 Industrial Direct Contact RCLs	985	800	2,340,000	1,150,000	8,410	2,080	28,400,000	108,000	145,000	35,400	268,000	24,100	264,000	268,000	818,000	219,000	182,000	388,000	434,000	
Background Threshold Value	1	52	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	

Abbreviations:

 $\mu g/kg = micrograms$ per kilogram or parts per billion (ppb) NA = Not Analyzed

Bold values exceed December 2018 NR 720 RCL for Groundwater Pathway

mg/kg = milligrams per kilogram or parts per million (ppm) -- = Not Detected

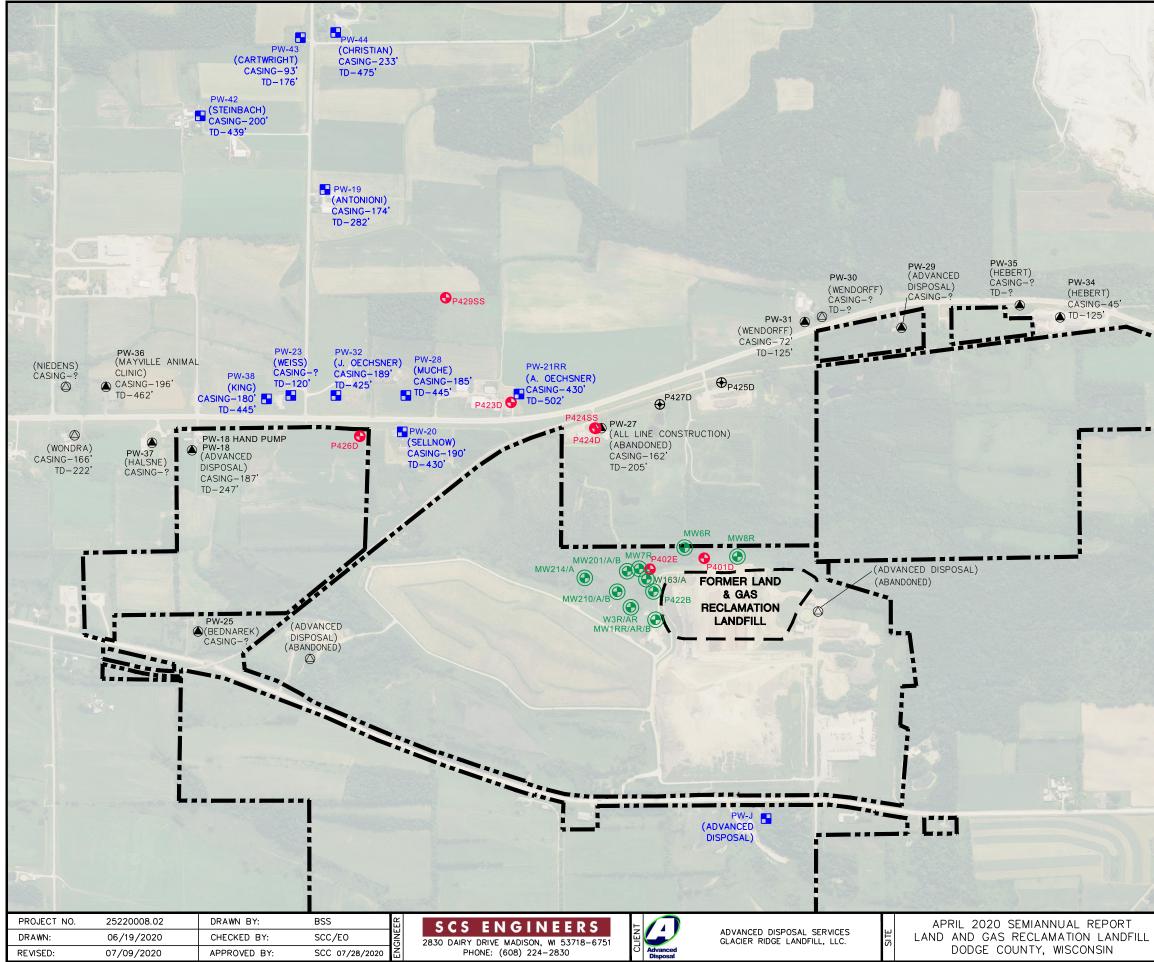
Bold+underlined values exceed December 2018 NR 720 RCL for Industrial Direct Contact Pathway

Notes:

1. Analytical results for Phase A are from Construction Documentation Report, Glacier Ridge Landfill, LGRL Phase A Waste Relocation, February 2015, prepared by Cornerstone Environmental. Results taken from Appendix E and Appendix F, including the deepest samples collected at each sampling location (approximate subbase elevation or bottom of targeted supplemental excavation in the TVOC 50 area).

2. Analytical results for Phase B are from Construction Documentation Report, Glacier Ridge Landfill, LGRL Phase B Waste Relocation, October 2015, prepared by Cornerstone Environmental. Results taken from Appendix F and Appendix G, including the deepest samples collected at each sampling location (approximate subbase elevation) plus 4 additional samples from targeted supplemental excavation (SS20-SS23).

3. Analytical results for Phase C samples SS-1 to SS-27 are from Construction Documentation Report, Glacier Ridge Landfill, LGRL Phase C Waste Relocation, December 2016, prepared by Cornerstone Environmental. Results taken from Appendix E, including the deepest samples collected at each sampling location (approximate subbase elevation). Results for Phase C samples SS-28 to SS-36 (bottom of targeted supplemental investigation) are from laboratory report included in Attachment D.

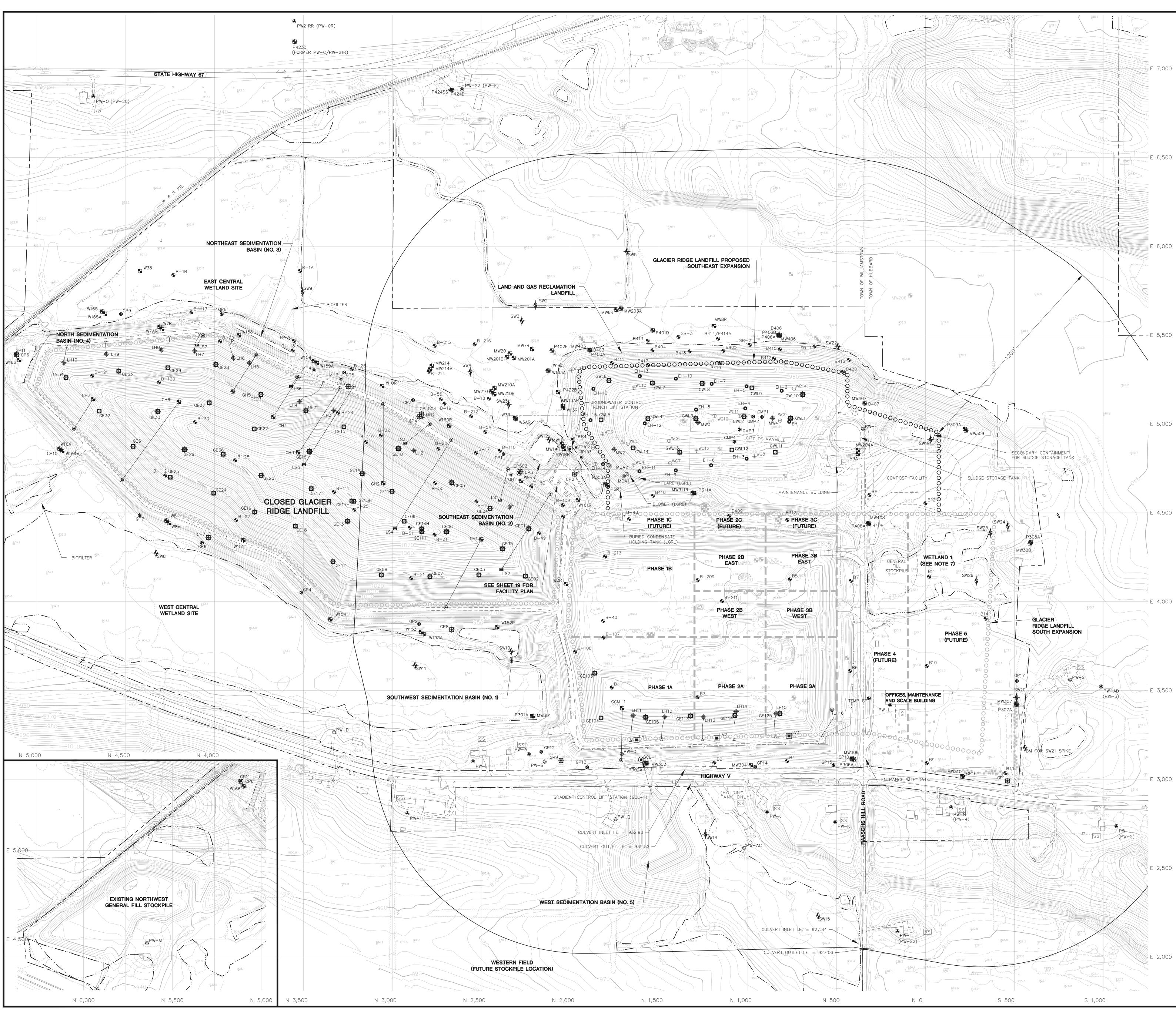

Prepared by: SCC, 4/2/2021 Checked by: EO; 4/9/2021

\\Mad-fs01\data\Projects\25221008.02\Deliverables\Changed Conditions Memo\[Table1_Remaining Soil Analytical.xlsx]Table 1 - Remaining Soil

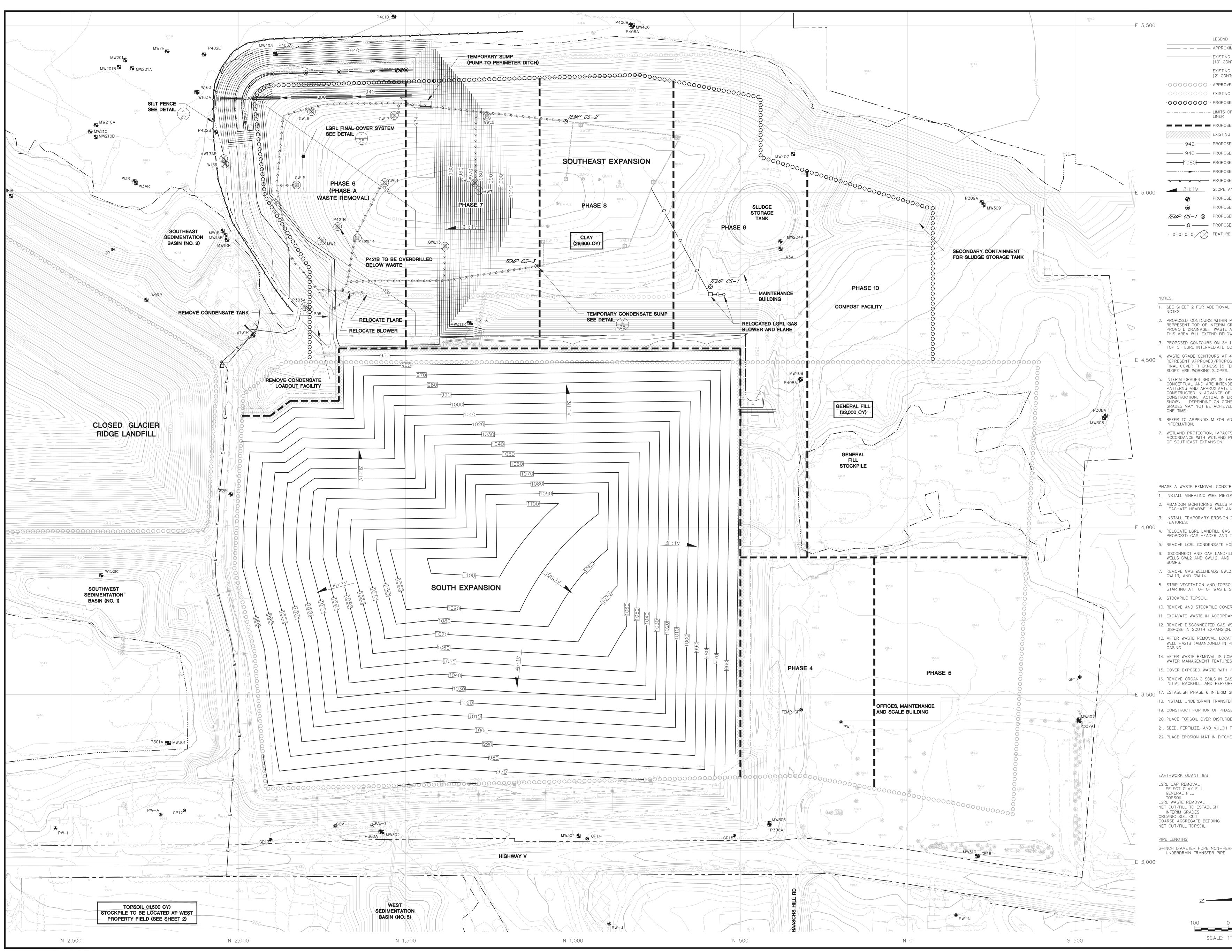
VOC = Volatile organic compoundNE = Not Established

dix E and Appendix F, including the deepest samples collected at each ix F and Appendix G, including the deepest samples collected at each results taken from Appendix E, including the deepest samples collected Figure 1

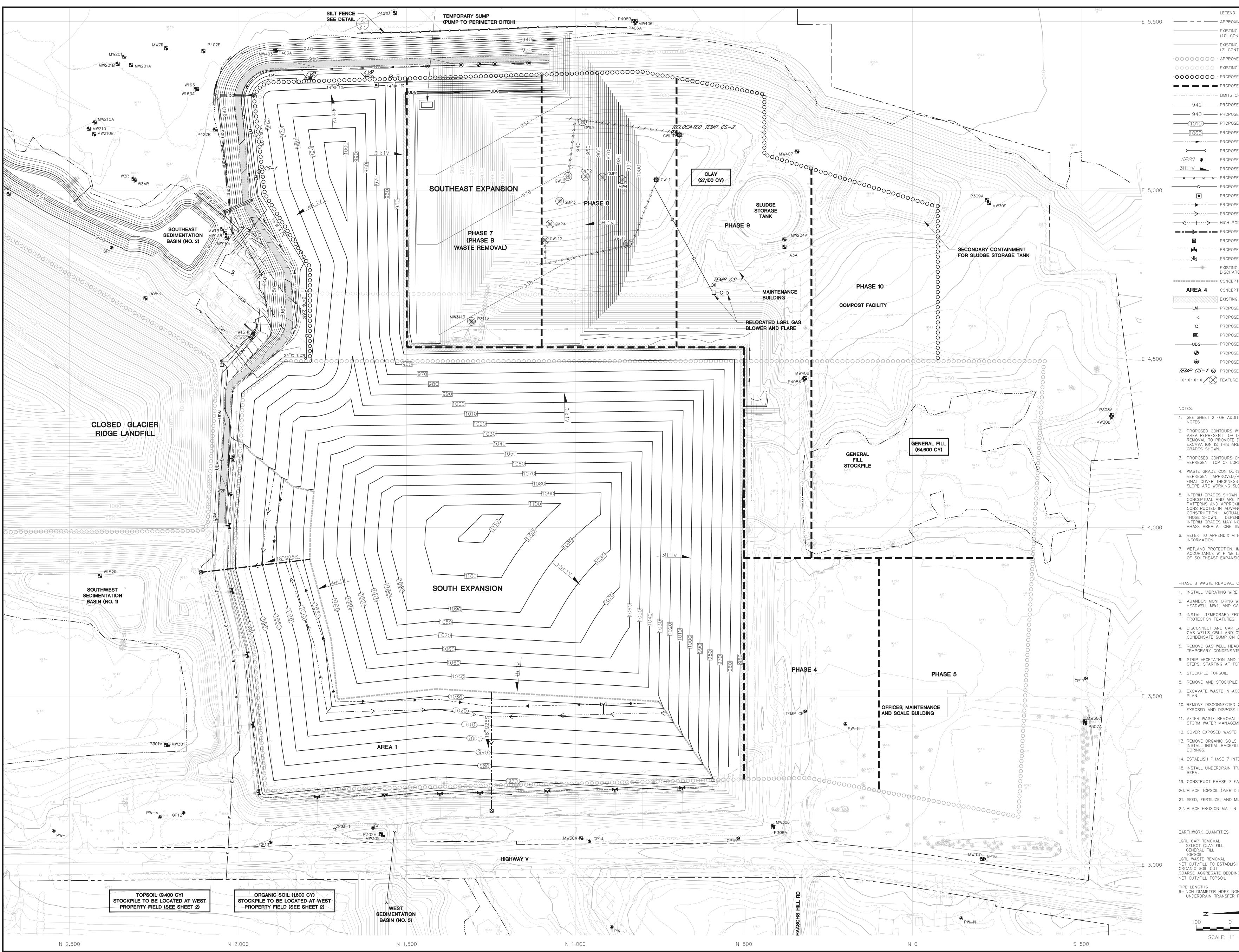
Monitoring Well and Private Well Locations


ngs\2020 April Semiannual Report\Well Locations.dwg. 7/28/2020 11:01:41 AM

PRIVATE WELL LOCATIONS

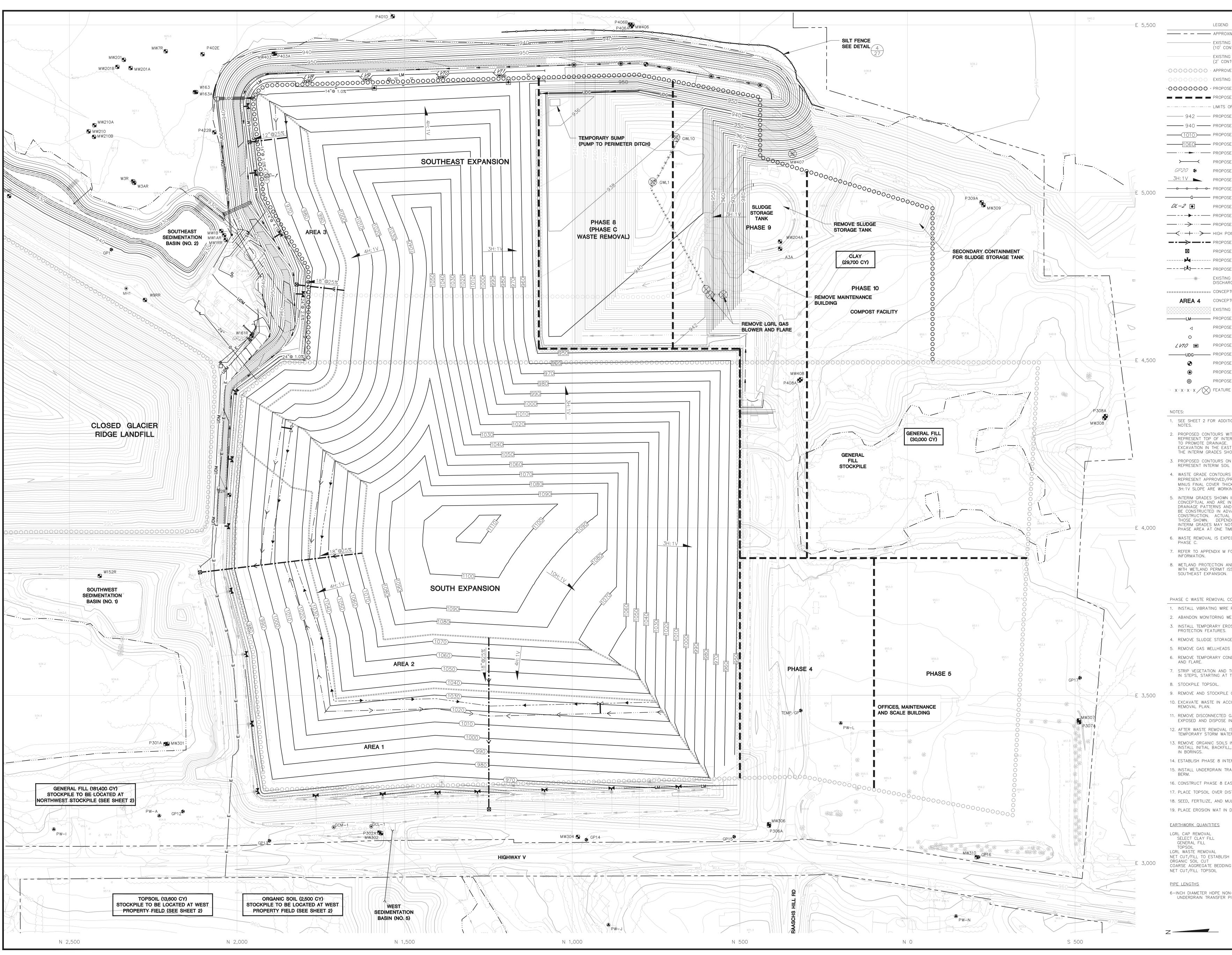

Attachment A

Plan of Operation Waste Removal Phasing Drawings



CP3 2286.82 4723.40 965.61 DISK SET IN CONCRETE CP4 2848.39 5040.10 966.89 DISK SET IN CONCRETE CP5 3248.34 5210.36 965.57 DISK SET IN CONCRETE CP6 5114.67 5389.34 946.56 DISK SET IN CONCRETE CP7 4035.42 4360.68 960.67 DISK SET IN CONCRETE CP9 2051.18 3105.17 956.05 DISK SET IN CONCRETE CP10 404.26 3112.90 949.30 DISK SET IN CONCRETE CP 503 2280.78 4733.45 963.31 DISK SET IN CONCRETE CP 504 2836.12 5055.26 962.38 DISK SET IN CONCRETE CONTROL POINTS PROVIDED BY CQM, INC, MARCH 2013. 200 0 200 200 0 200 200 200			LEGEND		
Control Address (C) (Control (C) (Control (C) (Control (C) (C) (Control (C)			APPROXIMATE PROPERTY LINE	HEET	
				S	
Image: Description Image: Description Image: Description Image: Description					1
Image: Section of the sectio					
NUMBER OF TABLE SALESARD NUMBER			PAVED ROAD		
	====				Ś
	++++++++				
					CON
	\sim		VEGETATION		SIING
OCCUPIENCE OCCUPIE					ΕXΙ
ODOUGLOUD - PROPORTIONAL DELATION MUTTER DE MARCE DEDUCICIÓN - TRAIT FUNTER CENTRAL					
12.00 TOOT PRIVATE VELL SETEROX Image: Intermediate intermedinate intermediate intermediate intermediate intermedi					
	$\cdot \bigcirc \bigcirc \bigcirc \bigcirc ($	00000	LGRL LIMITS OF WASTE		
THE S. G. CONNECT ID CLAP 1941 THE S. G. CONNECT ID CLAP 1941 CONNECT AND COLLECTOR FEE OROUNDATES CONTROL TRENCH DISCHARGE PRE OROUNDATES CONTROL OF AFTER STATED OROUNDATES CONTROL OF AFTER STATED OROUNDATES CONTROL PREVIOUS STATED OROUNDATES CONTROL AND CONTROL STATED ONE CONTROL AND CONTROL AND CONTROL STATED OROUNDATES CONTROL AND CONTROL STATED ONOT DECOMPOSE OROUNDATES CONTROL AND CONTROL STATED ONOT DECOMPOSE OROUNDATES CONTROL AND CONTROL STATED ONOT DECOMPOSE OROUNDATES CONTROL AND CONTROL ONOT DECOMPOSE OROUNDATES CONTROL AND CONTROL ONOT DECOMPOSE ONOT DEC					
Non-construction ORDER DATE: OUTED OF THE CALL AND COLLECTION PRE Image: Construct of College Date: ORDER DA				PORT	
S ABANCONED YATES QUELY YALL APPROX WATE LOCATON OF SERIES SYSTEM APPROX WATE LOCATON OF SERIES APPROX WATE LOCATON OF SALE APPROX WATE LOCATON OF SERIES APPROX WATE LOCATON VAL APPROX WATE LOCATON APPROX APPROX APPROX APPROX APPROX WATE LOCATON VAL A	::::::::::::::::::::::::::::::::::::::				
S ABANCONED YATES QUELY YALL APPROX WATE LOCATON OF SERIES SYSTEM APPROX WATE LOCATON OF SERIES APPROX WATE LOCATON OF SALE APPROX WATE LOCATON OF SERIES APPROX WATE LOCATON VAL APPROX WATE LOCATON APPROX APPROX APPROX APPROX APPROX WATE LOCATON VAL A	=	= =	GROUNDWATER CONTROL TRENCH DISCHARGE PIPE	RATIC	SIN SIN
AAMAGALD WATER SUPPLY WELL APPROXMATE LOCATION OF ABANDONED SEPTIC SYSTEM APPROXMATE LOCATION OF ABANDONED SEPTIC SYSTEM MONTOR NO WEL APPROXMATE LOCATION OF ABANDONED SEPTIC SYSTEM MONTOR NO WEL APPROXMATE LOCATION OF ABANDONED SEPTIC SYSTEM MONTOR NO WEL APPROXMATE LOCATION OF ABANDONED SEPTIC SYSTEM MONTOR NO WEL APPROXMATE LOCATION OF ABANDONED SEPTIC SYSTEM MONTOR NO WEL APPROXMATE LOCATION OF ABANDONED SEPTIC SYSTEM MONTOR NO WELL APPROXMATE CONTOCIN SEAL APPROXMATE CONTOCIN SEAL HORZONTAL BADGET APPROXMATE CONTOCIN SEAL APPROXMATE CONTOCIN SEAL HORZONTAL BADGET APPROXMATE CONTOCINO SEAL APPROXMATE APPROXMENT SEAL APPROXMATE APPROXMENT SEAL APPROXMATE APPROXMENT SEAL APPROXMENT APPLOATES APPROXMENT APPLOATES APPROXMENT SEAL APPROXMENT APPLOATES APPROXMENT SEAL APPROXMENT APPLOATES APPROXMENT SEAL APPROXMENT APPLOATES APPROXMENT APPLOATES APPROXMATE APPLOATES APPLOATES APPLOATES APPROXMENT APPLOATES APPLOATES APPLOATES APPROXMENT APPLOATES APPROXMENT APPLOATES APPROXMENT APPLOATES APPLOATES APPLOATES APPROXMENT APPLOATES APPROXED APPROXMENT APPLOATES APPROXMENT APPLOATES APPROXED APPROXMENT APPLOATES APPROXMENT APPLOATES APPROXED APPROXMENT APPLOATES APPROXMENT APPLOATES APPLOATES APPROXED APPLOATES APPLOATES APPROXED APPROXED APPROXES APPROXMENT APPLOATES APPROXED APPROXEME APPROXEMENT APPLOATES APPROXMENT APPLOATES A		- OU		_	SCONS
APPEOXIMATE LOCATION OF SETTIC SYSTEM APPEOXIMATE LOCATION OF ADAMONAL SEPTIC SYSTEM APPEOXIMATE LOCATION OF ADAMONAL SEPTIC SYSTEM APPEOXIMATE SUPPLY VALL (SEE MOTE 5) Sol /WASTE ROR NS SOL NOWATE FF STATION JOSVELL STAFE GAUSE SOL NOWATE FF STATION JOSVELL SAS EXTRACTION WELL SOL STAFE GAUSE SOL NOWATE FF STATION JOSVELL SAS EXTRACTION WELL SOL OS SYSTEM MONITORING WELL SAS EXTRACTION WELL SOL OS SYSTEM MONITOR ON COMPANY ADD CONTROL ADD PROVIDENTIAL PLAD WONTORING WELL SOL OS SYSTEM MONITOR ON COMPANY ADD CONTROL ADD PROVIDENT DAVISE DAVISE SOLONOWER STATE ADD PROVIDENT DAVISE DAVISED SOLONOWER STATE ADD PROVIDENT DAVISED DAVISED SOLONOWER STATE ADD PROVIDENT DAVIS DAVISE DAVISED SOLONOWER STATE ADD PROVIDENT DAVIS DAVISED SOLONOWER STATE ADD PROVIDENT DAVIS DAVISE DAVIS DAVISED SOLONOWER STATE ADD PROVIDENT DAVIS				- ·	
APPROX MATE LOCATION OF ARAADGAED SEPTIC SYSTEY YON TORNE W.L. WATER SUPPLY WILL (SEE NOTE 5) So J /WASTE ROAMS GOVINGUMENT GAS PROBE LEACHATE HEADWELE JANUTCH GAS PROBE LEACHATE HEADWELE JANUTCH GAS CREATE HEADWELE JANUTCH J					UNN ⁻
WATER SJUPLY WELL (SEE NOTE 5) Good Track AND VANASTE DOGMAS CONTROL MONUMELT GOOD TOKENT DOGMAS CONTROL MONUMELT GOOD TOKENT DIALAWELL GOOD TOKENT STATUE			APPROXIMATE LOCATION OF ABANDONED SEPTIC SYSTEM		<u></u>
BOTTONE AND AND THE ADDITION OF ADDIT			MONITORING WELL		DOL
CASE FROME FACHATE HEADWEIL FACHATE HEADWEIL FACHATE HEADWEIL FACHATE CONFORMATION INFORMATION WILL FACHATE CONFORMATION INFORMATION WILL FACHATE CONFORMATION INFORMATION WILL FACHATE CONFORMATION INFORMATION WILL FACHATE CONFORMATION WILL FACHATE SUPPORTUNAL STATEMETICON FACHATE CONFORMATION WILL FACHATE SUPPORTUNAL STATEMETICON FACHATE SUPPORTUNAL STATEMETICON SUPPORTUNAL STATEMETICON FACHATE SUPPORTUNAL STATE SUPPORT				IEAST	
CASE FROME FACHATE HEADWEIL FACHATE HEADWEIL FACHATE HEADWEIL FACHATE CONFORMATION INFORMATION WILL FACHATE CONFORMATION INFORMATION WILL FACHATE CONFORMATION INFORMATION WILL FACHATE CONFORMATION INFORMATION WILL FACHATE CONFORMATION WILL FACHATE SUPPORTUNAL STATEMETICON FACHATE CONFORMATION WILL FACHATE SUPPORTUNAL STATEMETICON FACHATE SUPPORTUNAL STATEMETICON SUPPORTUNAL STATEMETICON FACHATE SUPPORTUNAL STATE SUPPORT				SOUTH	
CARLATE READABLE CONTROL AT REPARABLE CONTROL AND ARE REPARABLE CONTROL ASSEMBLE S CONTROL ASSEMBLES CONTROL AND THE COLLOWNING CONTROL AND THE AND THE COLLOWNING CONTROL AND THE AND THE COLLOWNING CONTROL AND THE AND THE COLLING CONTROL CONTROL AND THE AND THE COLLING CONTROL CONTROL AND THE AND THE COLLING CONTROL					17-
CONTROL ON THE STATE OF TH	—		LEACHATE HEADWELL	S	ιΈ
COUNTROL SUIT STATION HORIZONTAL GROUNDWATER HEAD MONITORING WELL LEACI ATE COLLECTION VALLE	М	•			
HORIZONTAL GROUNDWATER HEAD MONITORING WELL LEACHATE COLLECTION VAULT LEACHATE COLLECTION VALT LEACHATE LEACHATE LEACHATE COLLECTION VALT LEACHATE LEACHATE LEACHATE LEACHATE LEACHATE LEACHATE LEACHATE LEACHATE LEACHATE		•			
IF LEACHATE COLLECTION VALLT TEST PIT GAS EXTRACTON WELL GAS EXTRACTON GAND FORX. NOTE: CALL AND CONTROL ASSEMPTION SOUTH FOR ASSEMPTION WALK 2006 AS-BUILT TOPOCRAPTIC GAN TO COT SUCH EXTRACTON OF AN EXTRACTON SOUTH STATEMENT TO OTTIN GAS EXTRACTON WELL SUCH EXTRACTON GAND TO COT SUCH EXTRACTON GAND TO COT SUCH EXTRACTON GAND TO COT SUCH EXTRACTON GAS EXTRACTON ON U.S.G.S. DAT.M. SUCHNA AND SUCCEMENT. C2445 SBN .004 COPERATION SUCH EXTRACTON SUCH EXTRACTON ON U.S.G.S. DAT.M. SUCHNA TAND LINES FROMPED BY MMI, APRIL 2005, SINIEC GAS EXTRACTON SUCH EXPRASSION PLAN OF OPERATION SUCH EXTRACTON CONCOUND AND TOPORATIONS WERE ASSIGNED DELINATION MEAN PREPARED BY MMI, APRIL 2005, CALL AND TOP SUCHAR AND DELINATION WET AND DECEMBATIONS WERE ASSIGNED SUCH EXATION COMPARY AND AS A ASSOC. ADDITIONED SUCH EXATION CONCELL SET BAC CONCELL OF N 256 ON SUCH EXATION CONCELL OF N 256 ON TOP SUCH AS AND UNDERSERVENT ON THE REQUIRED PREVOUSES SUCH AS AND UNDERSERVENT ON THE REQUIRE ASSOCRED PREVOUSES SUCH AS AND UNDERSERVENT ON THE REQUIRE ASSOCRED PREVOUSES SUCH AS AND UNDERSERVENT ON THE REPORT ON THE RE	-				
CAS FATRACTION WE I CONTOUR OF SUCCIMENT AS COMPLETE FROM THE FOLLOWING SUCCIMENT RATE COLUMN AS COMPLETE OF CATERAL TO POCKATION CONTORS SUCCIMENT RATE COLUMN AS COMPLETE OF CATERAL TO POCKATION CONTORS AND SECTION STATES FROM SOUTH EXCLUSION AND ARE BASED ON LOCAL GRID. CLICATIONS AND SW CEPART OF AF6 SAN JOAC SOUTH AND AN EXCLUSION (CONTONS AND FREPARSION PLAY OF CPERATION EXCLUSION NUCLIONAL WET AND INDERVATION SOUTH EXCLUSION OF A 2800 NO THE ASSOCIATION OF ASSOCIATION OF A 2800 NO THE ASSOCIATION OF A 2800 NO THE ASSOCIATION OF ASSOCIA			LEACHATE COLLECTION VAULT	LL.	
		×	TEST PIT	A F R	FILL,
Control of the c		¥		NSAI	LAND
AND CONTROL ASSEMBLIES NOTES: SUBJECT					<u>, 0</u>
1. IDPOCRAPHE DASK WAP WAS COMPILED FROM THE FOLLOWING SUBJECTS (DB), INC, CRAND FORS, NORTH DAKOTA; DATES OF ACRA L PHOTOGRAPHY ARE 2012, 2011, 2003 AND COTOBER 3, 2006; COM TOC OF SLOPE SLAVEY D'ATED JULY'S, 2012; WEST SEDMENTATION, BASIN FROM JULY 2006 AS-BUILT. "OPOGRAPHIC CONTOUR INTERVAL IS TWO FEL. 2. THE GRID SYSTEM IS BASED ON W 1/4 CORNER: 30+00.00N, 30-03.00E; AND SW CORNER: 03+46.58N, 30+23.37/L. BO'H IN; WISCONSIN (SOCIMIN ASD TAY JULY) AND ARE BASED ON LOCAL GRID. 4. EVATIONS AS, TT2Y, HEF, TOWN (DATE NOW, DODO COUNTY, WISCONSIN (COCNTUNATES PROVIDED BY WELS+, HANSON & ASSED ON LOCAL GRID.). 4. ELEVATIONS ARE HASED ON U.S.C.S. DATUM. 4. WETLAND L N'TS FROM SOUTH CARD, SOCIAL CARD, OF OFFRATION EXISTING CONDITIONS MAP PREPARED BY RMT, APRIL 2005, DELINETING CONTINUES, NOTOBER CONDITIONS WARE ASSIGNED PREVIOUSLY AND UNDERGROUND ELECTRIC POWERLING SOUTH EAST EXPANSION PLANTING PROCESS. 700 WATER SUPPLY WELLS, LETTER DESIGNATIONS WERE ASSIGNED PREVIOUSLY AND UNDERGROUND ELECTRIC POWERLINE LOCATIONS AND ARE ASSIGNED PREVIOUSLY AND UNDERGROUND ELECTRIC POWERLINE LOCATIONS TO THE SITE MOUSLY AND UNDERGROUND ELECTRIC POWERLINE LOCATIONS TO THE SITE MOUSLY AND THE SOUTH EXAMINES ADDRAMATE AND MOST BE VERNITING PROCESS. 700 WATER AND MOST BE VERNITED IN THE FIELD PRIOT TO THE SITE MOUSLY AND THE SOUTH EXAMINES ADTERVIOUS Y CONTINUE DRIVENAL EXAMPTION THE REVERNING CONSTRUCTION ACTIVITY. 701 HOR TON I FASTING TELEVATION DESCRIPTION THE PROVIDES TO THE OST AND ARE ASSIGNED PREVINING CONSTRUCTION ACTIVES. 701 HOR TON I FASTING TELEVAT			AND CONTROL ASSEMBLIES		1
SOURCES: KEM, INC., GRAND FORKS, NORTH DAKOTA; DATES OF AFRIAL PHOTOGRAPHY ARE 2012, 2017, 2003 AND OCTOBER 3, 2008; COM TOL OF SLOPE SURVEY DATED JULY 6, 2012, WEST SEDMENTATION. BASIN FROM JUNE 2006 AS-BUILT, TOPOGRAPHIC CONTOLR INTERVAL IS TWO FEET. 2. THE GRID SYSTEM IS BASED ON W 1/4 CORNER: 30+00.00N, 30+00.000; AND SW CORNER: 00+03.0923.974. BOTH IN SECTION 35, TI24, RT6C, TOWN OF WILLIAMSTOWN, DODE COUNTY, ASSOCIATES, INC., OCCNOWOWOC, WSCONSIN, AND ARE BASED ON LOCAL GRID. 3. ELEVATIONS ARE BASED ON U.S.GS. DATUM. 4. WITLAND LIMITS FROM SOUTH EXPANSION PLAN OF CPERATION ELEVATIONS ARE BASED ON U.S.GS. DATUM. 5. ELEVATIONS ARE BASED ON U.S.GS. DATUM. 6. WITLAND LIMITS FROM SOUTH EXPANSION PLAN OF CPERATION ELEVATIONS ARE BASED ON U.S.GS. DATUM. 7. WITLAND ELINIS FROM SOUTH EXPANSION PLAN OF CPERATION ELEVATIONS ARE BASED ON U.S.GS. DATUM. 7. WITLAND ELINIS FROM SOUTH EXPANSION PLAN OF CPERATION ELEVATIONS AND PREPARED BY RMIT. AFRIL 2005. DELINEATION BY ANY TURAL REPORT OF COUNTING THE BASED ON LOCAL GRID. 7. FOR WATLAND ALONG THE EAST SUBCE OF GLADER RIDGE LANDTIL AND TAND AND GAS REC AMATION AND 2002. STANTEC (FORMERLY NATURAL REPORT ON REPORTATION IS PREVIDED IN MITLAND ELINIS TRUE PLANTON IN APPENDIX F. DE TREACK EXPANSION FLAN OF OFGRATION REPORTATION IS SEED TO MITLAND FROM LAND ON COTOGER 2008 AND NORTH OF M 2550 IN JULY 2010, ADDITIONAL METADING PROGRAM. 7. OVERITED AND UNDERGROUND ELECTRIC POWERLINE LOCATIONS FOR THE PRIVATE WELL SAMPLING PROGRAM. 7. FULLING OF WETLAND 1 WAS APPROVED AS PART OF THE SITE FORTONS, NUMBER DESIGNATIONS WERE ASSIGNED PREVIOUSLY FOR THE PRIVATE WELL SAMPLING PROGRAM. 7. FULLING OF WETLAND 1 WAS APPROVED AS PART OF THE SITE HORIZON LAL AND VERTICAL CONTROL POINTS FORTHER SUPPLY SEED AND SEED IN CONCRETE POINT NORTHING EASTING CONSETE FOR ALL AND VERTICAL CONTROL POINTS PROVIDED POINT NORTHING EASTING CONCRETE CP1 4042.83				ADV	GLAG
2000; COM TOE OF SLOPE SURVEY DATED JULY 6, 2012; WEST SEDMENTATION BASIN FROM JUNE 2006 AS-BUILT, TOPOGRAPHIC CONTOUR INTERVAL IS TWO FEEL. 2. THE GRID SYSTEM IS EASED ON W 1/4 CORNER; 30+00.00N, 30+00.000F; AND SW CORNER; 03+45.58N, 30+73.97K. BOTH IN SECTION 35, T12N, RIFE, TOWN OF WILLIAWSTOWN, DODGE COUNTY, WISCONSIN (COORDINATES PROVIDED BY WELSE, HANSON & ASSOCIATES, INC., CCONOMOWOG, WISCONSIN, AND ARE BASED ON LOCAL GRID). 3. ELEVATIONS ARE BASED ON U.S.G.S. DATUM. 4. WELTAND LIMITS FROM SOLTH EXPANSION PLAN OF OPERATION EXISTING CONDITIONS WAP PREPARED BY RMT, AFRIC 2005. DELINEATION BY APRES & ASSOCI. IN 2001 AND 2002, STATEC (FORWERLY NATURAL RESQUIRCES CONSULTING, INC.) UPDATED THE WITLAND DELINITATION ALONG THE CAST SIDE OF CLACING REDGE ANDERLIC AND LAND AND GAS RECLAMATION IS PROVIDED IN WITLAND DELINITATION ALONG THE CAST SIDE OF CLACING EXPANSION PLAN OF OPERATION REPORT. 5. FOR WATER SUPPLY WELLS, LETTER DESIGNATIONS WERE ASSIGNED PREVMOUSLY AND USED IN REFERENCE TO WHELL SITHACK EXPANSION PLAN OF OPERATION REPORT. 5. FOR WATER SUPPLY WELLS, LETTER DESIGNATIONS WERE ASSIGNED REFERENCE TO WELL SAMPLING PROGRAM. 6. OVERHEAD AND UNDERGROUND ELECTRIC POWERLINE LOCATIONS ARE APPROXIMATE AND MUST BE VERTICE IN THE TELLD PRIOR TO BEGINNING CONSTRUCTION ACTIVITES. 7. FILLING OF WETLAND THE SOUTH EXPANSION PERMITING PROCESS.	SO	URCES: KE	M, INC., GRAND FORKS, NORTH DAKOTA; DATES OF		
CONTOCK INTERVAL IS TAKENOLOGY 200005, AND SYSTEM IS BASED ON WITH CONNER: 30-00.001, 30-00.001, 200, 200, 200, 200, 200, 200, 200,	20 SE	00; CQM T DIMENTATIC	OE OF SLOPE SURVEY DATED JULY 6, 2012; WEST ON BASIN FROM JUNE 2006 AS-BUILT. TOPOGRAPHIC		Advan
30-00.00; AND SW CORVER: 03+46.59N, 30+23.97F. BOTH IN SECTION 35, T12N, R16F, TOWN OF WILLMANSTOWN, DODER COUNTY, WISCONSIN (COORDINATES PROVIDED BY WELSH, HANSON & ASSOCIATES, INC., COONGMOWOG, WISCONSN, AND ARE BASED ON LOCAL CRID). 3. ELEVATIONS ARE BASED ON U.S.C.S. DATUM. 4. WETLAND, LINTS FROM SOLTH EXPANSION PLAN OF OPERATION EXISTING CONDITIONS MAP PERPARED BY WIT, APREL 2005. DELINEATION BY AYRES & ASSOC. IN 2001 AND 2002, STANTEC (FORMERLY NATURAL RESOLRECES CONSULTING, NC) UPDATED THE WETLAND, DELINEATION ALONG THE EAST SIDE OF CLACER RIDGE LAND PLAND. AND CAS RECLAMATION LANDFILL BETWEEN N 2850 AND S 650 IN OCTOBER 2003 AND NORTH OF N. 2830 N JULY 2010. ADDITIONAL WETLAND. INFORMATION IS PROVIDED IN WETLAND, PERMIT APPLICATION IN APPENDIX E OF THE SOUTHEAST EXPANSION PLAN OF OPERATION REPORT. 5. FOR WATER SUPPLY WELLS, LETTER DESIGNATIONS WERE ASSIGNED PREVIOUSLY AND USED IN REFERENCE TO WELL SETBACK EXEMPROXIMALER DESIGNATIONS WERE ASSIGNED PREVIOUSLY FOR THE PRIVATE WELL SAMPLING PROGRAM. 6. OVER-EAD AND UNDERGROUND ELECTRIC POWERLINE LOCATIONS ARE APPROXIMATE AND MUSE DESIGNATIONS WERE ASSIGNED PREVIOUSLY AND USED IN REFERENCE TO WELL SETBACK EXEMPROXIMATE AND MUSER DESIGNATIONS WERE ASSIGNED PREVIOUSLY AND USED IN REFERENCE TO WELL SETBACK EXEMPROXIMATE AND MUSER DESIGNATIONS WERE ASSIGNED PREVIOUSLY AND USED IN REFERENCE TO MELL SETBACK EXEMPROXIMATE AND MUSER CONSTRUCTION SET IN CONCRETE DEGINING CONSTRUCTION ACTIVITIES. 7. FILLING OF WEILAND THE SECUTH EXPANSION PERMITTING PROCESS. 7. FILLING OF WEILAND THE SECUTH EXPANSION PERMITTING PROCESS. 7. FILLING OF WEILAND THE SECUTH EXPANSION PERMITTING FROCESS. 7. FILLING OF WEILAND THE SECUTH EXPANSION PERMITTING FROCESS. 7. FILLING OF WEILAND AND THE SECUTH EXPANSION PERMITTING FROCESS. 7. FILLING OF WEILAND THE SECUTH EXPANSION PERMITTING FROCESS. 7. FILLING OF WEILAND THE SECUTH EXPANSION PERMITTING FROCESS. 7. FILLING OF WEILAND THE SECUTH EXPANSION PERMITTING FROCESS. 7. FILING CONSTRUCTION ACTIVITIES FROWIDED BY				UL	ENI
ASSOCIATES, INC., OCONOMOWOC, WISCONSIN, AND ARE BASED ON LOCAL GRID. 3. ELEVATIONS ARE BASED ON U.S.G.S. DATUM. 4. WETLAND UNITS FROM SOUTH EXPANSION PLAN OF OPERATION LNS ING CONDITIONS MAP PREPARED BY RMI, APRIL 2005, DELINEATION BY AIRES & ASSOC. IN 2001 AND 2002, STANTEC (FORMERLY NATURAL RESOURCES CONSULTING, INC.) UPDATED THE WETLAND DELINEATION ALONG THE EAST SIDE OF GLACER RIGGE LANDOTLA AND LAND AND GAS ROLCAMATION, IANOTIL BETWELT N 255G AND 5 650 IN OCTOBER 2009 AND NORTH OF N 255G IN ULLY 2010. ADD IONAL WETLAND INFORMATION IS PROVIDED IN WUTLAND PERMIT APPLICATION IN APPENDIX E OF THE SOUTHEAST EXPANSION PLAN OF OPERATION REPORT. 5. FOR WATER SUPPLY WELLS, LETTER DESIGNATIONS WERE ASSONED PREVIOUSLY AND USED IN REFERENCE TO WELL SETBACK EXPANSION PLAN OF OPERATION STREFT ASSONED PREVIOUSLY FOR THE PRIVATE WELL SAMPLING PROGRAM. 6. OVER-FAD AND UNDERSROUND FLECTRIC POWERLINF LOCATIONS ARE APPOXIMATE AND MUSE BY VERIFIED IN THE FIELD PRIOR TO BEGINNING CONSTRUCTION ACTIVITIES. 7. FILLING OF WETLAND I WAS APPROVED AS PART OF THE SITE HOLISTIC PLAN AND THE SOUTH EXPANSION PERMITTING PROCESS. 7. FILLING OF WETLAND I WAS APPROVED AS PART OF THE SITE HOLISTIC PLAN AND THE SOUTH EXPANSION PERMITTING PROCESS. 7. FILLING OF WETLAND I WAS APPROVED AS PART OF THE SITE HOLISTIC PLAN AND THE SOUTH EXPANSION PERMITTING PROCESS. 7. FILLING OF WETLAND 1 WAS APPROVED AS PART OF THE SITE HOLISTIC PLAN AND THE SOUTH EXPANSION PERMITTING PROCESS. 7. FILLING 6 WAS AND WERTICAL CONTROL POINTS 7. FILLING 6 ASTING 7. FILLING 6 AND VERTICAL CONTROL POINTS 7. FILLING 6 AND VERTICAL CONTROL POINTS 7. FILLING 6 ASTING ELEVATION 7. FILLING 6 ASTING ELEVATION DESCRIPTION 7. FILLING 7. STREFT AND MUSE BET IN CONCRETE 7. FILLING 6 ASTING ELEVATION DISK SET IN CONCRETE 7. FILLING 6 ASTING 2003 DISK SET IN CONCRETE 7. FOR 4035.42 4360.68 960.67 DISK SET IN CONCRETE 7. FOR 4035.42 4360.68 960.67 DISK SET IN CONCRETE 7. FOR 4035.42 4360.68 963.31 DISK SET IN CONCRETE 7. FOR 403.512 5055.26 962.38 DISK SET IN CONC	30 SE	+00.00E; CTION 35,	AND SW CORNER: 03+46.59N, 30+23.97E. BOTH IN T12N, R16E, TOWN OF WILLIAMSTOWN, DODGE COUNTY,		
1. ELEVATIONS ARE BASED ON U.S.G.S. DATUM. 1. WETLAND LIMITS FROM SOUTH EXPANSION PLAN OF OPERATION EXISTING CONDITIONS MAP PREPARED BY RMT. APRIL 2005. DELINEATION BY ARES & ASSOC. IN 2001 AND 2002. STANTED (FORMERLY NATURAL RESOLRCES CONSULTING, INC.) UPDATED THE WETLAND DELINEATION ALONG THE EAST SIDE OF GLADER RIDGE LANOPTICAL AND AND CAS RECLAMANTON LANDELL BETWEEN N 2850 AND 5 650 IN OCTOBER 2009 AND NORMATION IS PROVIDED IN WETLAND PERMIT APPLICATION IN APPENDIX F OF THE SOUTHEAST EXPANSION PLAN OF OPERATION REPORT. 5. FOR WATER SUPPLY WELLS, LETTER DESIGNATIONS WERE ASSIGNED PREVIOUSLY AND USED IN REFERENCE TO WELL SETBACK EXPANSION PLAN OF OPERATION REPORT. 5. FOR WATER SUPPLY WELLS, LETTER DESIGNATIONS WERE ASSIGNED PREVIOUSLY AND USED IN REFERENCE TO WELL SETBACK EXPANSION PLAN OF OPERATION REPORT. 5. FOR WATER SUPPLY WELLS, LETTER DESIGNATIONS WERE ASSIGNED PREVIOUSLY AND USED IN REFERENCE TO WELL SETBACK EXPANSION PLAN OF OPERATION REPORT. 5. FOR WATER SUPPLY WELLS ANPUING PROGRAM. 6. OVERTEDS, NUMBER DESIGNATIONS WERE ASSIGNED PREVIOUSLY FOR THE PRIVATE WELL SAMPLING PROGRAM. 6. OVERTED AND UNDERSPOND ELECTRIC POWERLINE LOCATIONS ARE APPROXIMATE AND NUTER SOUTH EXPANSION PERMITTING PROCESS. 7. FILLING OF WETLAND 1 WAS APPROVED AS PART OF THE SITE HOUIST O PLAN AND THE SOUTH EXPANSION PERMITTING PROCESS. 7. FILLING OF WETLAND 1 WAS APPROVED AS PART OF THE SITE POINT NORTHING FASTING FLEVATION DESCRIPTION CP1 4461.37 2990.53 958.68 DISK SET IN CONCRETE CP2 1974.16 4717.15 948.41 P.K. 2.3' FROM BUILDING CP3 2246.82 4723.40 965.61 DISK SET IN CONCRETE CP4 2848.39 5040.10 966.89 DISK SET IN CONCRETE CP4 4035.42 4360.68 960.67 DISK SET IN CONCRETE CP4 4035.42 4360.68 960.67 DISK SET IN CONCRETE CP3 2266.24 93811.46 946.67 DISK SET IN CONCRETE CP3 2260.78 4733.45 963.31 DISK SET IN CONCRETE CP10 444.26 3112.90 449.301 DISK SET IN CONCRETE CP10 444.26 3112.90 449.301 DISK SET IN CONCRETE CP10 444.26 3112.90 449.301 DISK SET IN CONCRETE	AS	SOCIATES,			_
EXISTING CONDITIONS WAP PREPARED BIT RWIT APPLIE 2020. STANTEC (FORMERLY NATURAL RESOURCES CONSULTING, INC.) UPDATED THE WETLAND DELINSTION ALONG THE EAST SIDE OF GLACHER NORTH OF N 2850 IN 2850 AND S 650 IN OCTOBER 2003 AND NORTH OF N 2850 IN WETLAND PREMIT APPLICATION IN APPENDIX E OF THE SOUTHEAST EXPANSION PLAN OF OPERATION REPORT. 5. FOR WATER SUPPLY WELLS, LETTER DESIGNATIONS WERE ASSIGNED PREVIOUSLY AND USED IN REFERENCE TO WELL SETBACK EXEMPTIONS. NUMBER DESIGNATIONS WERE ASSIGNED PREVIOUSLY FOR THE PRIVATE WELL SAMPLING PROGRAM. 6. OVERHEAD AND UNDERBOUND ELECTRIC POWELINE LOCATIONS ARE APPROXIMATE AND MUSE DE VERTIED IN THE FIELD PRIOR TO BEGINNING CONSTRUCTION ACTIVITIES. 7. FILLING OF WETLAND 1 WAS APPROVED AS PART OF THE SITE HOLISTIC PLAN AND THE SOUTH EXPANSION PERMITTING PROCESS. YM WO CP1 - 461.37 2990.53 958.88 DISK SET IN CONCRETE CP2 1974.16 4717.15 948.41 P.K. 2.3' FROM BUILDING CP3 2286.82 4723.40 965.61 DISK SET IN CONCRETE CP4 2848.33 5040.10 966.89 DISK SET IN CONCRETE CP4 2848.33 5040.10 965.67 DISK SET IN CONCRETE CP5 3248.34 5210.36 965.57 DISK SET IN CONCRETE CP5 3248.34 5210.36 965.67 DISK SET IN CONCRETE CP5 3248.34 5210.36 960.67 DISK SET IN CONCRETE CP5 3248.34 530.517 956.05 DISK SET IN CONCRETE CP5 2051.18 3105.17 956.05 DISK SET IN CONCRETE CP5 20		,	ARE BASED ON U.S.G.S. DATUM.	R S	-67
EXISTING CONDITIONS WAP PREPARED BIT RWIT APPLIE 2020. STANTEC (FORMERLY NATURAL RESOURCES CONSULTING, INC.) UPDATED THE WETLAND DELINSTION ALONG THE EAST SIDE OF GLACHER NORTH OF N 2850 IN 2850 AND S 650 IN OCTOBER 2003 AND NORTH OF N 2850 IN WETLAND PREMIT APPLICATION IN APPENDIX E OF THE SOUTHEAST EXPANSION PLAN OF OPERATION REPORT. 5. FOR WATER SUPPLY WELLS, LETTER DESIGNATIONS WERE ASSIGNED PREVIOUSLY AND USED IN REFERENCE TO WELL SETBACK EXEMPTIONS. NUMBER DESIGNATIONS WERE ASSIGNED PREVIOUSLY FOR THE PRIVATE WELL SAMPLING PROGRAM. 6. OVERHEAD AND UNDERBOUND ELECTRIC POWELINE LOCATIONS ARE APPROXIMATE AND MUSE DE VERTIED IN THE FIELD PRIOR TO BEGINNING CONSTRUCTION ACTIVITIES. 7. FILLING OF WETLAND 1 WAS APPROVED AS PART OF THE SITE HOLISTIC PLAN AND THE SOUTH EXPANSION PERMITTING PROCESS. YM WO CP1 - 461.37 2990.53 958.88 DISK SET IN CONCRETE CP2 1974.16 4717.15 948.41 P.K. 2.3' FROM BUILDING CP3 2286.82 4723.40 965.61 DISK SET IN CONCRETE CP4 2848.33 5040.10 966.89 DISK SET IN CONCRETE CP4 2848.33 5040.10 965.67 DISK SET IN CONCRETE CP5 3248.34 5210.36 965.57 DISK SET IN CONCRETE CP5 3248.34 5210.36 965.67 DISK SET IN CONCRETE CP5 3248.34 5210.36 960.67 DISK SET IN CONCRETE CP5 3248.34 530.517 956.05 DISK SET IN CONCRETE CP5 2051.18 3105.17 956.05 DISK SET IN CONCRETE CP5 20	4. WE	TLAND LIM	TS FROM SOUTH EXPANSION PLAN OF OPERATION	Ш	WI 5371 -2830
LANDFILL AND LAND AND GAS RECLAMATION LANDFILL BETWEEN N 2850 AND S 650 IN OCTOBER 2009 AND NORTH OF N 2850 IN JULY 2010. ADDITIONAL WETLAND INFORMATION IS PROVIDED IN WETLAND DERMIT APPLICATION IN APPENDIX E OF THE SOUTHEAST EXPANSION PLAN OF OPERATION REPORT. 5. FOR WATER SUPPLY WELLS, LETTER DESIGNATIONS WERE ASSIGNED PREVIOUSLY AND USED IN REFERENCE TO WELL SETBACK EXEMPTIONS. NUMBER DESIGNATIONS WERE ASSIGNED PREVIOUSLY FOR THE PRIVATE WELL SAMPLING PROGRAM. 6. OVERHEAD AND UNDERGOUND ELECTRIC POWERLINE LOCATIONS ARE APPROXIMATE AND MUST BE VERIFIED IN THE FIELD PRIOR TO BEGINNING CONSTRUCTION ACTIVITIES. 7. FILLING OF WETLAND 1 WAS APPROVED AS PART OF THE SITE HOLISTIC PLAN AND THE SOUTH EXPANSION PERMITTING PROCESS. WE WORD THE APPLICATION VERTICAL CONTROL POINTS POINT NORTHING EASTING ELEVATION DESCRIPTION CP1 - 461.37 2990.53 958.88 DISK SET IN CONCRETE CP2 1974.16 4717.15 948.41 P.K. 2.3' FROM BUILDING CP3 2286.82 4723.40 965.61 DISK SET IN CONCRETE CP4 2848.39 5040.10 966.89 DISK SET IN CONCRETE CP5 31246.34 5210.36 965.57 DISK SET IN CONCRETE CP5 1246.34 2510.36 965.57 DISK SET IN CONCRETE CP4 2848.39 5040.10 966.89 DISK SET IN CONCRETE CP5 4035.42 4380.68 960.67 DISK SET IN CONCRETE CP5 4035.42 4380.68 960.67 DISK SET IN CONCRETE CP1 404.26 3112.90 949.30 DISK SET IN CONCRETE CP5 503 2280.78 4733.45 963.31 DISK SET IN CONCRETE CP1 404.26 3112.90 949.30 DISK SET IN CONCRETE CP1 404.26 3112.90 949.30 DISK SET IN CONCRETE CP5 503 2280.78 4733.45 963.31 DISK SET IN CONCRETE CP5 504 2836.12 5055.26 962.38 DISK SET IN CONCRETE CP5 504 2836.12 5055.26 962.38 DISK SET IN CONCRETE CP5 504 2836.12 5055.26 962.38 DISK SET I	DE	LINEATION	BY AYRES & ASSOC. IN 2001 AND 2002. STANTEC	N N	
WETLAND PERMIT APPLICATION IN APPENDIX E OF THE SOUTHEAST EXPANSION PLAN OF OPERATION REPORT. Image: Construction of the southeast expension of the previously and used in reference to well setBack expensions. NUMBER DESIGNATIONS WERE ASSIGNED PREVIOUSLY FOR THE PRIVATE WELL SAMPLING PROGRAM. 6. OVERHEAD AND UNDERGROUND ELECTRIC POWERLINE LOCATIONS ARE APPROXIMATE AND MUST BE VERIFIED IN THE FIELD PRIOR TO BEGINNING CONSTRUCTION ACTIVITIES. 7. FILLING OF WETLAND 1 WAS APPROVED AS PART OF THE SITE HOLISTIC PLAN AND THE SOUTH EXPANSION PERMITTING PROCESS. POINT NORTHING EASTING ELEVATION DESCRIPTION CONCRETE CP2 1974.16 CP4 2848.39 S248.82 4723.40 965.61 DISK SET IN CONCRETE CP4 2848.39 5040.10 966.89 CP5 3248.34 5210.36 965.57 DISK SET IN CONCRETE CP4 2848.39 5040.10 966.67 DISK SET IN CONCRETE CP5 3248.34 5210.36 965.57 DISK SET IN CONCRETE CP4 2848.39 5040.10 966.67 DISK SET IN CONCRETE CP5 3248.146 946.57 DISK SET IN CONCRETE CP3 CP6 5114.67 5389.34 963.31 DISK SET IN CONCRETE CP3 CP64	ŴE	TLAND DEL	INEATION ALONG THE EAST SIDE OF GLACIER RIDGE	Z	RIVE MA
EXPANSION PLAN OF OPERATION REPORT. 5. FOR WATER SUPPLY WELLS, LETTER DESIGNATIONS WERE ASSIGNED PREVIOUSLY AND USED IN REFERENCE TO WELL SETBACK EXEMPTIONS. NUMBER DESIGNATIONS WERE ASSIGNED PREVIOUSLY FOR THE PRIVATE WELL SAMPLING PROGRAM. 6. OVERHEAD AND UNDERGROUND ELECTRIC POWERLINE LOCATIONS ARE APPROXIMATE AND MUST BE VERIFIED IN THE FIELD PRIOR TO BEGINNING CONSTRUCTION ACTIVITIES. 7. FILLING OF WETLAND 1 WAS APPROVED AS PART OF THE SITE HOLISTIC PLAN AND THE SOUTH EXPANSION PERMITTING PROCESS. 7. FILLING OF WETLAND THE SOUTH EXPANSION PERMITTING PROCESS. 7. FILLING OF WETLAND 1 WAS APPROVED AS PART OF THE SITE HOLISTIC PLAN AND THE SOUTH EXPANSION PERMITTING PROCESS. 7. FILLING 2 WELLS AND VERTICAL CONTROL POINTS POINT NORTHING EASTING ELEVATION DESCRIPTION CP1 - 461.37 2990.53 958.88 DISK SET IN CONCRETE CP2 1974.16 4717.15 948.41 P.K. 2.3' FROM BUILDING CP3 2286.82 4723.40 965.61 DISK SET IN CONCRETE CP4 2848.39 5040.10 966.89 DISK SET IN CONCRETE CP5 3248.34 5210.36 965.57 DISK SET IN CONCRETE CP6 5114.67 5389.34 946.56 DISK SET IN CONCRETE CP7 4035.42 4360.68 960.67 DISK SET IN CONCRETE CP6 2011.8 3105.17 956.05 DISK SET IN CONCRETE CP8 2666.49 3841.46 946.67 DISK SET IN CONCRETE CP9 2051.18 3105.17 956.05 DISK SET IN CONCRETE CP10 404.26 3112.90 949.30 DISK SET IN CONCRETE CP5 504 2836.12 5055.26 962.38 DISK SET IN CONC	JU	LY 2010.	ADDITIONAL WETLAND INFORMATION IS PROVIDED IN		AIRY DF PHON
PREVIOUSLY AND USED IN REFERENCE TO WELL SETBACK EXEMPTIONS. NUMBER DESIGNATIONS WERE ASSIGNED PREVIOUSLY FOR THE PRIVATE WELL SAMPLING PROGRAM. 6. OVERHEAD AND UNDERGROUND ELECTRIC POWERLINE LOCATIONS ARE APPROXIMATE AND MUST BE VERIFIED IN THE FIELD PRIOR TO BEGINNING CONSTRUCTION ACTIVITIES. 7. FILLING OF WETLAND 1 WAS APPROVED AS PART OF THE SITE HOLISTIC PLAN AND THE SOUTH EXPANSION PERMITTING PROCESS. 7. FILLING OF WETLAND 1 WAS APPROVED AS PART OF THE SITE HOLISTIC PLAN AND THE SOUTH EXPANSION PERMITTING PROCESS. 7. FILLING CONTAL AND VERTICAL CONTROL POINTS POINT NORTHING EASTING ELEVATION DESCRIPTION CP1 -461.37 2990.53 958.88 DISK SET IN CONCRETE CP2 1974.16 4717.15 948.41 P.K. 2.3' FROM BUILDING CP3 2286.82 4723.40 965.61 DISK SET IN CONCRETE CP4 2848.39 5040.10 966.89 DISK SET IN CONCRETE CP5 3248.34 5210.36 965.57 DISK SET IN CONCRETE CP6 5114.67 5389.34 946.56 DISK SET IN CONCRETE CP7 4035.42 4360.68 960.67 DISK SET IN CONCRETE CP6 2051.18 3105.17 956.05 DISK SET IN CONCRETE CP10 404.26 3112.90 949.30 DISK SET IN CONCRETE CP10 404.26 3112.90 949.30 DISK SET IN CONCRETE CP10 404.26 3112.90 949.30 DISK SET IN CONCRETE CP5 503 2280.78 4733.45 963.31 DISK SET IN CONCRETE CP5 504 2836.12 5055.26 962.38 DI				1000	2830 D
FOR THE PRIVATE WELL SAMPLING PROGRAM. 6. OVERHEAD AND UNDERGROUND ELECTRIC POWERLINE LOCATIONS ARE APPROXIMATE AND MUST BE VERIFIED IN THE FIELD PRIOR TO BEGINNING CONSTRUCTION ACTIVITIES. 7. FILLING OF WETLAND 1 WAS APPROVED AS PART OF THE SITE HOUISTIC PLAN AND THE SOUTH EXPANSION PERMITTING PROCESS. HORIZONTAL AND VERTICAL CONTROL POINTS POINT NORTHING EASTING ELEVATION DESCRIPTION CP1 -461.37 2990.53 958.88 DISK SET IN CONCRETE CP2 1974.16 4717.15 948.41 P.K. 2.3' FROM BUILDING CP3 2286.82 4723.40 965.61 DISK SET IN CONCRETE CP4 2848.39 5040.10 966.89 DISK SET IN CONCRETE CP5 3248.34 5210.36 965.57 DISK SET IN CONCRETE CP5 3248.34 5210.36 965.57 DISK SET IN CONCRETE CP5 3248.34 5210.36 965.57 DISK SET IN CONCRETE CP7 4035.42 4360.68 960.67 DISK SET IN CONCRETE CP9 2051.18 3105.17 956.05 DISK SET IN CONCRETE CP9 2051.18 3105.17 956.05 DISK SET IN CONCRETE CP9 2051.18 3105.17 956.05 DISK SET IN CONCRETE CP9 2051.2 5055.26 962.38 DISK SET IN CONCRETE CP10 404.26 3112.90 949.30 DISK SET IN CONCRETE CP5 504 2836.12 5055.26 962.38 DISK SET IN CONCRETE CP5 504 2836.12 5055.26 962.38 DISK SET IN CONCRETE CP5 504 2836.12 5055.26 962.38 DISK SET IN CONCRETE CP10 404.26 3112.90 949.30 DISK SET IN CONCRETE CP5 504 2836.12 5055.26 962.38 DISK SET IN CONCRETE CP5 504 2836.12 5055.26 962.38 DISK SET IN CONCRETE CP10 404.26 3112.90 949.30 DISK SET IN CONCRETE CP5 504 2836.12 5055.26 962.38 DISK SET IN CONCRETE CP10 404.26 3112.90 949.30 DISK SET IN CONCRETE CP5 504 2836.12 5055.26 962.38 DISK SET IN CONCRETE CP5 504 2836.	PR	EVIOUSLY ,	AND USED IN REFERENCE TO WELL SETBACK		
ARE APPROXIMATE AND MUST BE VERIFIED IN THE FIELD PRIOR TO BEGINNING CONSTRUCTION ACTIVITIES. 7. FILLING OF WETLAND 1 WAS APPROVED AS PART OF THE SITE HOLISTIC PLAN AND THE SOUTH EXPANSION PERMITTING PROCESS. HORIZONTAL AND VERTICAL CONTROL POINTS POINT NORTHING EASTING ELEVATION DESCRIPTION CP1 -461.37 2990.53 958.88 DISK SET IN CONCRETE CP2 1974.16 4717.15 948.41 P.K. 2.3' FROM BUILDING CP3 2286.82 4723.40 965.61 DISK SET IN CONCRETE CP4 2848.39 5040.10 966.89 DISK SET IN CONCRETE CP4 53248.34 5210.36 965.57 DISK SET IN CONCRETE CP5 3248.34 5210.36 965.57 DISK SET IN CONCRETE CP6 5114.67 5389.34 946.56 DISK SET IN CONCRETE CP6 5114.67 5389.34 946.56 DISK SET IN CONCRETE CP9 2051.18 3105.17 956.05 DISK SET IN CONCRETE CP9 2051.18 3105.17 956.05 DISK SET IN CONCRETE CP9 503 2280.78 4733.45 963.31 DISK SET IN CONCRETE CP5 504 2836.12 5055.26 962.38 DISK SET IN CONCRETE CP5 504 2836.12 505					
7. FILLING OF WETLAND 1 WAS APPROVED AS PART OF THE SITE HOLISTIC PLAN AND THE SOUTH EXPANSION PERMITTING PROCESS. HORIZONTAL AND VERTICAL CONTROL POINTS POINT NORTHING EASTING ELEVATION DESCRIPTION CP1 -461.37 2990.53 958.88 DISK SET IN CONCRETE CP2 1974.16 4717.15 948.41 P.K. 2.3' FROM BUILDING CP3 2286.82 4723.40 965.61 DISK SET IN CONCRETE CP4 2848.39 Soldo.10 966.89 DISK SET IN CONCRETE CP5 3248.34 S210.36 965.57 DISK SET IN CONCRETE CP4 2848.39 CP5 3248.34 S210.36 960.67 DISK SET IN CONCRETE CP5 2280.78 43112.90 949.30 DISK SET IN CONCRETE CP5 03 2280.78 200 0 201 404.26 3112.90 949.30 DISK SET IN CONCRETE	AR	E APPROXI	MATE AND MUST BE VERIFIED IN THE FIELD PRIOR TO		
HOLISTIC PLAN AND THE SOUTH EXPANSION PERMITTING PROCESS. HORIZONTAL AND VERTICAL CONTROL POINTS POINT NORTHING EASTING ELEVATION DESCRIPTION CP1 -461.37 2990.53 958.88 DISK SET IN CONCRETE CP2 1974.16 4717.15 948.41 P.K. 2.3' FROM BUILDING CP2 1974.16 4717.15 948.41 P.K. 2.3' FROM BUILDING CP4 2848.39 5040.10 966.89 DISK SET IN CONCRETE CP5 3248.34 5210.36 965.57 DISK SET IN CONCRETE CP6 5114.67 5389.34 946.56 DISK SET IN CONCRETE CP7 4035.42 4360.68 960.67 DISK SET IN CONCRETE CP9 2051.18 3105.17 956.05 DISK SET IN CONCRETE CP5 504 2836.12 5055.26 962.38 DISK SET IN CONCRETE CP5 504 2836.12 5055.26 962.38 DISK SET IN CONCRETE CONTROL POINTS PROVIDED BY CQM, INC, MARCH 2013.				ENG	INEEF
HORIZONTAL AND VERTICAL CONTROL POINTS POINT NORTHING EASTING ELEVATION DESCRIPTION CP1 -461.37 2990.53 958.88 DISK SET IN CONCRETE CP2 1974.16 4717.15 948.41 P.K. 2.3' FROM BUILDING CP3 2286.82 4723.40 965.61 DISK SET IN CONCRETE CP4 2848.39 5040.10 966.89 DISK SET IN CONCRETE CP5 3248.34 5210.36 965.57 DISK SET IN CONCRETE CP6 5114.67 5389.34 946.56 DISK SET IN CONCRETE CP4 28666.49 3841.46 946.67 DISK SET IN CONCRETE CP5 3248.34 5210.36 965.05 DISK SET IN CONCRETE CP6 5114.67 5389.34 946.56 DISK SET IN CONCRETE CP9 2051.18 3105.17 956.05 DISK SET IN CONCRETE CP9 2051.18 3105.17 963.31 DISK SET IN CONCRETE CP 503 2280.78 4733.45 963.31 DISK SET IN CONCRETE CP 504 2836.12 5055.26 962.38					
HORIZONTAL AND VERTICAL CONTROL POINTS POINT NORTHING EASTING ELEVATION DESCRIPTION CP1 -461.37 2990.53 958.88 DISK SET IN CONCRETE CP2 1974.16 4717.15 948.41 P.K. 2.3' FROM BUILDING CP3 2286.82 4723.40 965.61 DISK SET IN CONCRETE CP4 2848.39 5040.10 966.89 DISK SET IN CONCRETE CP5 3248.34 5210.36 965.57 DISK SET IN CONCRETE CP6 5114.67 5389.34 946.56 DISK SET IN CONCRETE CP4 28666.49 3841.46 946.67 DISK SET IN CONCRETE CP5 3248.34 5210.36 965.05 DISK SET IN CONCRETE CP6 5114.67 5389.34 946.56 DISK SET IN CONCRETE CP9 2051.18 3105.17 956.05 DISK SET IN CONCRETE CP9 2051.18 3105.17 963.31 DISK SET IN CONCRETE CP 503 2280.78 4733.45 963.31 DISK SET IN CONCRETE CP 504 2836.12 5055.26 962.38					2 /13
HORIZONTAL AND VERTICAL CONTROL POINTS POINT NORTHING EASTING ELEVATION DESCRIPTION CP1 -461.37 2990.53 958.88 DISK SET IN CONCRETE CP2 1974.16 4717.15 948.41 P.K. 2.3' FROM BUILDING CP3 2286.82 4723.40 965.61 DISK SET IN CONCRETE CP4 2848.39 5040.10 966.89 DISK SET IN CONCRETE CP5 3248.34 5210.36 965.57 DISK SET IN CONCRETE CP6 5114.67 5389.34 946.56 DISK SET IN CONCRETE CP7 4035.42 4360.68 960.67 DISK SET IN CONCRETE CP9 2051.18 3105.17 956.05 DISK SET IN CONCRETE CP 503 2280.78 4733.45 963.31 DISK SET IN CONCRETE CP 503 2280.78 4733.45 963.31 DISK SET IN CONCRETE CP 503 2280.78 4733.45 963.31 DISK SET IN CONCRETE CP 503 2280.78 4733.45 963.31 DISK SET IN CONCRETE CP 504 2836.12 5055.26 962.				e i	
CP1 -461.37 2990.53 958.88 DISK SET IN CONCRETE CP2 1974.16 4717.15 948.41 P.K. 2.3' FROM BUILDING CP3 2286.82 4723.40 965.61 DISK SET IN CONCRETE CP4 2848.39 5040.10 966.89 DISK SET IN CONCRETE CP5 3248.34 5210.36 965.57 DISK SET IN CONCRETE CP6 5114.67 5389.34 946.56 DISK SET IN CONCRETE CP7 4035.42 4360.68 960.67 DISK SET IN CONCRETE CP8 2666.49 3841.46 946.67 DISK SET IN CONCRETE CP9 2051.18 3105.17 956.05 DISK SET IN CONCRETE CP10 404.26 3112.90 949.30 DISK SET IN CONCRETE CP 503 2280.78 4733.45 963.31 DISK SET IN CONCRETE CP 504 2836.12 5055.26 962.38 DISK SET IN CONCRETE CP 504 2836.12 5055.26 962.38 DISK SET IN CONCRETE CONTROL POINTS PROVIDED BY CQM, INC, MARCH 2013. 200 200 200		HORIZON	ITAL AND VERTICAL CONTROL POINTS	× .	2 0.
CP2 1974.16 4717.15 948.41 P.K. 2.3' FROM BUILDING CP3 2286.82 4723.40 965.61 DISK SET IN CONCRETE CP4 2848.39 5040.10 966.89 DISK SET IN CONCRETE CP5 3248.34 5210.36 965.57 DISK SET IN CONCRETE CP6 5114.67 5389.34 946.56 DISK SET IN CONCRETE CP7 4035.42 4360.68 960.67 DISK SET IN CONCRETE CP8 2666.49 3841.46 946.67 DISK SET IN CONCRETE CP9 2051.18 3105.17 956.05 DISK SET IN CONCRETE CP10 404.26 3112.90 949.30 DISK SET IN CONCRETE CP 503 2280.78 4733.45 963.31 DISK SET IN CONCRETE CP 504 2836.12 5055.26 962.38 DISK SET IN CONCRETE CONTROL POINTS PROVIDED BY CQM, INC, MARCH 2013. TOSTING TOSTING					
CP4 2848.39 5040.10 966.89 DISK SET IN CONCRETE CP5 3248.34 5210.36 965.57 DISK SET IN CONCRETE CP6 5114.67 5389.34 946.56 DISK SET IN CONCRETE CP7 4035.42 4360.68 960.67 DISK SET IN CONCRETE CP8 2666.49 3841.46 946.67 DISK SET IN CONCRETE CP9 2051.18 3105.17 956.05 DISK SET IN CONCRETE CP10 404.26 3112.90 949.30 DISK SET IN CONCRETE CP 503 2280.78 4733.45 963.31 DISK SET IN CONCRETE CP 504 2836.12 5055.26 962.38 DISK SET IN CONCRETE CONTROL POINTS PROVIDED BY CQM, INC, MARCH 2013. 200 100 100 200 0 200 200 100 100	CP2	1974.16	4717.15 948.41 P.K. 2.3' FROM BUILDING	;; ;;	BY: BY:
CP6 5114.67 5389.34 946.56 DISK SET IN CONCRETE CP7 4035.42 4360.68 960.67 DISK SET IN CONCRETE CP8 2666.49 3841.46 946.67 DISK SET IN CONCRETE CP9 2051.18 3105.17 956.05 DISK SET IN CONCRETE CP10 404.26 3112.90 949.30 DISK SET IN CONCRETE CP 503 2280.78 4733.45 963.31 DISK SET IN CONCRETE CP 504 2836.12 5055.26 962.38 DISK SET IN CONCRETE CONTROL POINTS PROVIDED BY CQM, INC, MARCH 2013. TOUR TOUR TOUR	CP4	2848.39	5040.10 966.89 DISK SET IN CONCRETE	AWN B	PROVE
CP8 2666.49 3841.46 946.67 DISK SET IN CONCRETE CP9 2051.18 3105.17 956.05 DISK SET IN CONCRETE CP10 404.26 3112.90 949.30 DISK SET IN CONCRETE CP 503 2280.78 4733.45 963.31 DISK SET IN CONCRETE CP 504 2836.12 5055.26 962.38 DISK SET IN CONCRETE CONTROL POINTS PROVIDED BY CQM, INC, MARCH 2013. 700/71 700/71	CP6	5114.67	5389.34 946.56 DISK SET IN CONCRETE	DF	
CP10 404.26 3112.90 949.30 DISK SET IN CONCRETE CP 503 2280.78 4733.45 963.31 DISK SET IN CONCRETE CP 504 2836.12 5055.26 962.38 DISK SET IN CONCRETE CONTROL POINTS PROVIDED BY CQM, INC, MARCH 2013. 1000000000000000000000000000000000000	CP8	2666.49	3841.46 946.67 DISK SET IN CONCRETE		
CP 504 2836.12 5055.26 962.38 DISK SET IN CONCRETE CONTROL POINTS PROVIDED BY CQM, INC, MARCH 2013. 1000000000000000000000000000000000000	CP10	404.26	3112.90 949.30 DISK SET IN CONCRETE		
	CP 504	2836.12	5055.26 962.38 DISK SET IN CONCRETE	570.11 `	5/12 2/13
	LUNINUL			252113	12/0(04/22
SCALE: 1" = 200'		-		\vdash	
		2	SCALE: 1" = 200'	PROJEC	UKAWN: REVISED:
				 - '	<u>ل</u>

		LEGEND - APPROXIMATE PROPERTY LINE	SHEET	
		- APPROXIMATE MUNICIPAL BOUNDARY	L S H	
		- GROUND SURFACE (10' CONTOUR)	┢	
	× 910.9	- GROUND SURFACE (2' CONTOUR)		
_		SPOT ELEVATION PAVED ROAD		
==	========	UNPAVED ROAD		
++++		- RAILROAD		TIONS
		- DRAINAGE SWALE		EXISTING CONDITIONS
		- WATER/WETLAND VEGETATION		NG
	[7]	BUILDING		EXISTI
x	x x x	- FENCE		
· () (0000000	APPROVED LIMITS OF WASTE		
		PROPOSED EXPANSION LIMITS OF WASTE		
. () (LGRL LIMITS OF WASTE - 1,200-FOOT PRIVATE WELL SETBACK		
_		APPROVED PHASE LIMITS		
_ · · ·		- LIMITS OF CONSTRUCTED CLAY LINER	REPORT	
199631		GROUNDWATER CONTROL TRENCH AND COLLECTION PIPE		
=	: = =	GROUNDWATER CONTROL TRENCH DISCHARGE PIPE	OPERATION	
	ou	OVERHEAD ELECTRIC ABANDONED MONITORING WELL	OF OP	_ANDFI
		ABANDONED WATER SUPPLY WELL	Z	Ц U
	SS	APPROXIMATE LOCATION OF SEPTIC SYSTEM	Ē	
	SS	APPROXIMATE LOCATION OF ABANDONED SEPTIC SYSTEM	EXPANSION	GLACIER
	.	MONITORING WELL		GL
	۵ ۲	WATER SUPPLY WELL (SEE NOTE 5)	1EAST	
	€ €	SOIL/WASTE BORING CONTROL MONUMENT	SOUTHEAST	
	 ₽	GAS PROBE		
÷		LEACHATE HEADWELL		SITE
I		LYSIMETER		
	◆	STAFF GAUGE		
	•	GROUNDWATER LIFT STATION HORIZONTAL GROUNDWATER HEAD MONITORING WELL		
		LEACHATE COLLECTION VAULT		С Г - С Г - С
	×	TEST PIT		
	-	GAS EXTRACTION WELL		
	0	ELEVATION HUB		UINTUNAL VER
	\otimes	LGRL GAS SYSTEM MONITORING AND CONTROL ASSEMBLIES		ארבע היה
NO	DTES:			AU VAINCEU
1.	SOURCES: K AERIAL PHO 2000; CQM SEDIMENTATI	C BASE MAP WAS COMPILED FROM THE FOLLOWING BM, INC., GRAND FORKS, NORTH DAKOTA; DATES OF TOGRAPHY ARE 2012, 2011, 2003 AND OCTOBER 3, TOE OF SLOPE SURVEY DATED JULY 6, 2012; WEST ON BASIN FROM JUNE 2006 AS-BUILT. TOPOGRAPHIC TERVAL IS TWO FEET.	9	
2.	30+00.00E; SECTION 35, WISCONSIN (YSTEM IS BASED ON W 1/4 CORNER: 30+00.00N, AND SW CORNER: 03+46.59N, 30+23.97E. BOTH IN T12N, R16E, TOWN OF WILLIAMSTOWN, DODGE COUNTY, COORDINATES PROVIDED BY WELSH, HANSON &		
3.	LOCAL GRID)	A INC., OCONOMOWOC, WISCONSIN, AND ARE BASED ON). ARE BASED ON U.S.G.S. DATUM.		
4.	EXISTING CO	MITS FROM SOUTH EXPANSION PLAN OF OPERATION NDITIONS MAP PREPARED BY RMT, APRIL 2005.		
	DELINEATION (FORMERLY I	BY AYRES & ASSOC. IN 2001 AND 2002. STANTEC NATURAL RESOURCES CONSULTING, INC.) UPDATED THE	د ا	
	LANDFILL AN	LINEATION ALONG THE EAST SIDE OF GLACIER RIDGE ID LAND AND GAS RECLAMATION LANDFILL BETWEEN N 650 IN OCTOBER 2009 AND NORTH OF N 2850 IN	Z	1
	JULY 2010. Wetland Pe	ADDITIONAL WETLAND INFORMATION IS PROVIDED IN RMIT APPLICATION IN APPENDIX E OF THE SOUTHEAST		
		PLAN OF OPERATION REPORT. SUPPLY WELLS, LETTER DESIGNATIONS WERE ASSIGNED	V	
5.		AND USED IN REFERENCE TO WELL SETBACK	1	
5.	PREVIOUSLY EXEMPTIONS.	NUMBER DESIGNATIONS WERE ASSIGNED PREVIOUSLY		
	PREVIOUSLY EXEMPTIONS. FOR THE PR			
	PREVIOUSLY EXEMPTIONS. FOR THE PR OVERHEAD A ARE APPROX	. NUMBER DESIGNATIONS WERE ASSIGNED PREVIOUSLY IVATE WELL SAMPLING PROGRAM.	EN	GIN
	PREVIOUSLY EXEMPTIONS. FOR THE PR OVERHEAD A ARE APPROX BEGINNING O FILLING OF W	NUMBER DESIGNATIONS WERE ASSIGNED PREVIOUSLY IVATE WELL SAMPLING PROGRAM. AND UNDERGROUND ELECTRIC POWERLINE LOCATIONS KIMATE AND MUST BE VERIFIED IN THE FIELD PRIOR TO	ENG	GIN
6.	PREVIOUSLY EXEMPTIONS. FOR THE PR OVERHEAD A ARE APPROX BEGINNING O FILLING OF W	NUMBER DESIGNATIONS WERE ASSIGNED PREVIOUSLY IVATE WELL SAMPLING PROGRAM. AND UNDERGROUND ELECTRIC POWERLINE LOCATIONS KIMATE AND MUST BE VERIFIED IN THE FIELD PRIOR TO CONSTRUCTION ACTIVITIES. WETLAND 1 WAS APPROVED AS PART OF THE SITE	ENG	GIN
6.	PREVIOUSLY EXEMPTIONS. FOR THE PR OVERHEAD A ARE APPROX BEGINNING O FILLING OF W	NUMBER DESIGNATIONS WERE ASSIGNED PREVIOUSLY IVATE WELL SAMPLING PROGRAM. AND UNDERGROUND ELECTRIC POWERLINE LOCATIONS KIMATE AND MUST BE VERIFIED IN THE FIELD PRIOR TO CONSTRUCTION ACTIVITIES. WETLAND 1 WAS APPROVED AS PART OF THE SITE	ENC	GIN
6.	PREVIOUSLY EXEMPTIONS. FOR THE PR OVERHEAD A ARE APPROX BEGINNING O FILLING OF W	NUMBER DESIGNATIONS WERE ASSIGNED PREVIOUSLY IVATE WELL SAMPLING PROGRAM. AND UNDERGROUND ELECTRIC POWERLINE LOCATIONS KIMATE AND MUST BE VERIFIED IN THE FIELD PRIOR TO CONSTRUCTION ACTIVITIES. WETLAND 1 WAS APPROVED AS PART OF THE SITE	EN0 dy	BIN
6.	PREVIOUSLY EXEMPTIONS. FOR THE PR OVERHEAD A ARE APPROS BEGINNING C FILLING OF V HOLISTIC PLA	NUMBER DESIGNATIONS WERE ASSIGNED PREVIOUSLY IVATE WELL SAMPLING PROGRAM. AND UNDERGROUND ELECTRIC POWERLINE LOCATIONS KIMATE AND MUST BE VERIFIED IN THE FIELD PRIOR TO CONSTRUCTION ACTIVITIES. WETLAND 1 WAS APPROVED AS PART OF THE SITE AN AND THE SOUTH EXPANSION PERMITTING PROCESS.		
6. 7. POIN CP1	PREVIOUSLY EXEMPTIONS. FOR THE PR OVERHEAD A ARE APPROX BEGINNING C FILLING OF V HOLISTIC PLA HORIZO IT NORTHIN 1 – 461.3	NUMBER DESIGNATIONS WERE ASSIGNED PREVIOUSLY IVATE WELL SAMPLING PROGRAM. AND UNDERGROUND ELECTRIC POWERLINE LOCATIONS KIMATE AND MUST BE VERIFIED IN THE FIELD PRIOR TO CONSTRUCTION ACTIVITIES. WETLAND 1 WAS APPROVED AS PART OF THE SITE AN AND THE SOUTH EXPANSION PERMITTING PROCESS.		MH
6. 7. POIN CP1 CP2 CP3	PREVIOUSLY EXEMPTIONS. FOR THE PR OVERHEAD A ARE APPROX BEGINNING C FILLING OF W HOLISTIC PLA HORIZO IT NORTHIN 1 - 461.3 2 1974.16 3 2286.8	NUMBER DESIGNATIONS WERE ASSIGNED PREVIOUSLY IVATE WELL SAMPLING PROGRAM. AND UNDERGROUND ELECTRIC POWERLINE LOCATIONS KIMATE AND MUST BE VERIFIED IN THE FIELD PRIOR TO CONSTRUCTION ACTIVITIES. WETLAND 1 WAS APPROVED AS PART OF THE SITE AN AND THE SOUTH EXPANSION PERMITTING PROCESS. WITAL AND VERTICAL CONTROL POINTS IG EASTING ELEVATION DESCRIPTION 7 2990.53 958.88 DISK SET IN CONCRETE 6 4717.15 948.41 P.K. 2.3' FROM BUILDING 2 4723.40 965.61 DISK SET IN CONCRETE	BY: KP	BY: MH
6. 7. POIN CP1 CP2 CP3 CP4 CP5	PREVIOUSLY EXEMPTIONS. FOR THE PR OVERHEAD A ARE APPROX BEGINNING C FILLING OF M HOLISTIC PLA HORIZO IT NORTHIN 1 - 461.3 2 1974.16 3 2286.8 4 2848.3 5 3248.3	NUMBER DESIGNATIONS WERE ASSIGNED PREVIOUSLY IVATE WELL SAMPLING PROGRAM. AND UNDERGROUND ELECTRIC POWERLINE LOCATIONS KIMATE AND MUST BE VERIFIED IN THE FIELD PRIOR TO CONSTRUCTION ACTIVITIES. WETLAND 1 WAS APPROVED AS PART OF THE SITE AN AND THE SOUTH EXPANSION PERMITTING PROCESS. WETLAND THE SOUTH EXPANSION PERMITTING PROCESS. AN AND THE SOUTH EXPANSION PERMITTING PROCESS. AN AND THE SOUTH EXPANSION DESCRIPTION 7 2990.53 958.88 DISK SET IN CONCRETE 63 4717.15 948.41 P.K. 2.3' FROM BUILDING 72 4723.40 965.61 DISK SET IN CONCRETE 95040.10 966.89 DISK SET IN CONCRETE 45210.36 965.57 DISK SET IN CONCRETE	ΚP	MH
6. 7. POIN CP1 CP2 CP3 CP4 CP5 CP6 CP7	PREVIOUSLY EXEMPTIONS. FOR THE PR OVERHEAD A ARE APPROX BEGINNING C FILLING OF M HOLISTIC PLA HOLISTIC PLA HORIZO IT NORTHIN 1 - 461.3 2 1974.16 3 2286.8 4 2848.3 5 3248.3 5 5114.6 7 4035.4	NUMBER DESIGNATIONS WERE ASSIGNED PREVIOUSLY IVATE WELL SAMPLING PROGRAM. AND UNDERGROUND ELECTRIC POWERLINE LOCATIONS (IMATE AND MUST BE VERIFIED IN THE FIELD PRIOR TO CONSTRUCTION ACTIVITIES. WETLAND 1 WAS APPROVED AS PART OF THE SITE AN AND THE SOUTH EXPANSION PERMITTING PROCESS. NTAL AND VERTICAL CONTROL POINTS IG EASTING ELEVATION DESCRIPTION 7 2990.53 958.88 DISK SET IN CONCRETE 5 4717.15 948.41 P.K. 2.3' FROM BUILDING 2 4723.40 965.61 DISK SET IN CONCRETE 9 5040.10 966.89 DISK SET IN CONCRETE 4 5210.36 965.57 DISK SET IN CONCRETE 7 5389.34 946.56 DISK SET IN CONCRETE 2 4360.68 960.67 DISK SET IN CONCRETE	BY: KP	BY: MH
6. 7. 7. POIN CP1 CP2 CP3 CP4 CP5 CP6 CP7 CP8 CP5	PREVIOUSLY EXEMPTIONS. FOR THE PR OVERHEAD A ARE APPROX BEGINNING C FILLING OF M HOLISTIC PLA HOLISTIC PLA HORIZO IT NORTHIN 1 - 461.3 2 1974.16 3 2286.8 4 2848.3 5 3248.3 5 3248.3 5 5114.6 7 4035.4 8 2666.4 9 2051.18	NUMBER DESIGNATIONS WERE ASSIGNED PREVIOUSLY IVATE WELL SAMPLING PROGRAM. AND UNDERGROUND ELECTRIC POWERLINE LOCATIONS KIMATE AND MUST BE VERIFIED IN THE FIELD PRIOR TO CONSTRUCTION ACTIVITIES. WETLAND 1 WAS APPROVED AS PART OF THE SITE AN AND THE SOUTH EXPANSION PERMITTING PROCESS. WETLAND THE SOUTH EXPANSION PERMITTING PROCESS. IG EASTING ELEVATION DESCRIPTION 7 2990.53 958.88 DISK SET IN CONCRETE 5 4717.15 948.41 P.K. 2.3' FROM BUILDING 2 4723.40 965.61 DISK SET IN CONCRETE 9 5040.10 966.89 DISK SET IN CONCRETE 4 5210.36 965.57 DISK SET IN CONCRETE 5 389.34 946.56 DISK SET IN CONCRETE 2 4360.68 960.67 DISK SET IN CONCRETE 9 3841.46 946.67 DISK SET IN CONCRETE 8 3105.17 956.05 DISK SET IN CONCRETE 9 3040.17 956.05 DISK SET IN CONCRETE	BY: KP	BY: MH
6. 7. POIN CP1 CP2 CP3 CP4 CP5 CP6 CP5 CP6 CP5 CP10 CP5	PREVIOUSLY EXEMPTIONS. FOR THE PR OVERHEAD A ARE APPROX BEGINNING C FILLING OF M HOLISTIC PLA HOLISTIC PLA HORIZO IT NORTHIN 1 – 461.3 2 1974.16 3 2286.8 4 2848.3 5 3248.3 5	NUMBER DESIGNATIONS WERE ASSIGNED PREVIOUSLY IVATE WELL SAMPLING PROGRAM. AND UNDERGROUND ELECTRIC POWERLINE LOCATIONS KIMATE AND MUST BE VERIFIED IN THE FIELD PRIOR TO CONSTRUCTION ACTIVITIES. WETLAND 1 WAS APPROVED AS PART OF THE SITE AN AND THE SOUTH EXPANSION PERMITTING PROCESS. NETLAND THE SOUTH EXPANSION PERMITTING PROCESS. NG EASTING ELEVATION DESCRIPTION 7 2990.53 958.88 DISK SET IN CONCRETE 5 4717.15 948.41 P.K. 2.3' FROM BUILDING 2 4723.40 965.61 DISK SET IN CONCRETE 9 5040.10 966.89 DISK SET IN CONCRETE 4 5210.36 965.57 DISK SET IN CONCRETE 5 389.34 946.56 DISK SET IN CONCRETE 2 4360.68 960.67 DISK SET IN CONCRETE 9 3841.46 946.67 DISK SET IN CONCRETE 9 3841.46 946.67 DISK SET IN CONCRETE 8 3105.17 956.05 DISK SET IN CONCRETE 8 3112.90 949.30 DISK SET IN CONCRETE 8 4733.45 963.31 DISK SET IN CONCRETE 8 4733.45 963.31 DISK SET IN CONCRETE	DRAWN BY: KP	BY: MH
6. 7. 7. POIN CP1 CP2 CP3 CP4 CP5 CP6 CP5 CP1 CP5	PREVIOUSLY EXEMPTIONS. FOR THE PR OVERHEAD A ARE APPROY BEGINNING C FILLING OF W HOLISTIC PLA HORIZO IT NORTHIN 1 – 461.3 2 1974.16 3 2286.8 4 2848.3 5 3248.3 5 3248	NUMBER DESIGNATIONS WERE ASSIGNED PREVIOUSLY IVATE WELL SAMPLING PROGRAM. AND UNDERGROUND ELECTRIC POWERLINE LOCATIONS KIMATE AND MUST BE VERIFIED IN THE FIELD PRIOR TO CONSTRUCTION ACTIVITIES. WETLAND 1 WAS APPROVED AS PART OF THE SITE AN AND THE SOUTH EXPANSION PERMITTING PROCESS. NG EASTING ELEVATION DESCRIPTION 7 2990.53 958.88 DISK SET IN CONCRETE 5 4717.15 948.41 P.K. 2.3' FROM BUILDING 2 4723.40 965.61 DISK SET IN CONCRETE 9 5040.10 966.89 DISK SET IN CONCRETE 4 5210.36 965.57 DISK SET IN CONCRETE 5 4360.68 960.67 DISK SET IN CONCRETE 9 3841.46 946.67 DISK SET IN CONCRETE 9 3841.46 946.67 DISK SET IN CONCRETE 8 3105.17 956.05 DISK SET IN CONCRETE 8 4733.45 963.31 DISK SET IN CONCRETE 8 4733.45 963.31 DISK SET IN CONCRETE	DRAWN BY: KP	CHECKED BY: MH
6. 7. 7. POIN CP1 CP2 CP3 CP4 CP5 CP6 CP5 CP1 CP5 CP5	PREVIOUSLY EXEMPTIONS. FOR THE PR OVERHEAD A ARE APPROY BEGINNING C FILLING OF W HOLISTIC PLA HORIZO IT NORTHIN 1 – 461.3 2 1974.16 3 2286.8 4 2848.3 5 3248.3 5 3248	NUMBER DESIGNATIONS WERE ASSIGNED PREVIOUSLY IVATE WELL SAMPLING PROGRAM. AND UNDERGROUND ELECTRIC POWERLINE LOCATIONS KIMATE AND MUST BE VERIFIED IN THE FIELD PRIOR TO CONSTRUCTION ACTIVITIES. WETLAND 1 WAS APPROVED AS PART OF THE SITE AN AND THE SOUTH EXPANSION PERMITTING PROCESS. NETLAND THE SOUTH EXPANSION PERMITTING PROCESS. NG EASTING ELEVATION DESCRIPTION 7 2990.53 958.88 DISK SET IN CONCRETE 6 4717.15 948.41 P.K. 2.3' FROM BUILDING 2 4723.40 965.61 DISK SET IN CONCRETE 9 5040.10 966.89 DISK SET IN CONCRETE 4 5210.36 965.57 DISK SET IN CONCRETE 7 5389.34 946.56 DISK SET IN CONCRETE 9 3841.46 946.67 DISK SET IN CONCRETE 9 3841.46 946.31 DISK SET IN CONCRETE 9 3841.46 946.331 DISK SET IN CONCRETE 9 3112.90 949.30 DISK SET IN CONCRETE 9 5055.26 962.38 DISK SET IN CONCRETE	BY: KP	BY: MH
6. 7. 7. POIN CP1 CP2 CP3 CP4 CP5 CP6 CP5 CP1 CP5 CP5	PREVIOUSLY EXEMPTIONS. FOR THE PR OVERHEAD A ARE APPROY BEGINNING C FILLING OF W HOLISTIC PLA HORIZO IT NORTHIN 1 – 461.3 2 1974.16 3 2286.8 4 2848.3 5 3248.3 5 3248	NUMBER DESIGNATIONS WERE ASSIGNED PREVIOUSLY IVATE WELL SAMPLING PROGRAM. AND UNDERGROUND ELECTRIC POWERLINE LOCATIONS KIMATE AND MUST BE VERIFIED IN THE FIELD PRIOR TO CONSTRUCTION ACTIVITIES. WETLAND 1 WAS APPROVED AS PART OF THE SITE AN AND THE SOUTH EXPANSION PERMITTING PROCESS. NETLAND THE SOUTH EXPANSION PERMITTING PROCESS. NG EASTING ELEVATION DESCRIPTION 7 2990.53 958.88 DISK SET IN CONCRETE 6 4717.15 948.41 P.K. 2.3' FROM BUILDING 2 4723.40 965.61 DISK SET IN CONCRETE 9 5040.10 966.89 DISK SET IN CONCRETE 4 5210.36 965.57 DISK SET IN CONCRETE 7 5389.34 946.56 DISK SET IN CONCRETE 9 3841.46 946.67 DISK SET IN CONCRETE 9 3841.46 946.31 DISK SET IN CONCRETE 9 3841.46 946.331 DISK SET IN CONCRETE 9 3112.90 949.30 DISK SET IN CONCRETE 9 5055.26 962.38 DISK SET IN CONCRETE	DRAWN BY: KP	CHECKED BY: MH
6. 7. 7. POIN CP1 CP2 CP3 CP4 CP5 CP6 CP5 CP1 CP5 CP5	PREVIOUSLY EXEMPTIONS. FOR THE PR OVERHEAD A ARE APPROY BEGINNING C FILLING OF W HOLISTIC PLA HORIZO IT NORTHIN 1 – 461.3 2 1974.16 3 2286.8 4 2848.3 5 3248.3 5 3248	NUMBER DESIGNATIONS WERE ASSIGNED PREVIOUSLY IVATE WELL SAMPLING PROGRAM. AND UNDERGROUND ELECTRIC POWERLINE LOCATIONS KIMATE AND MUST BE VERIFIED IN THE FIELD PRIOR TO CONSTRUCTION ACTIVITIES. WETLAND 1 WAS APPROVED AS PART OF THE SITE AN AND THE SOUTH EXPANSION PERMITTING PROCESS. NTAL AND VERTICAL CONTROL POINTS IG EASTING ELEVATION DESCRIPTION 7 2990.53 958.88 DISK SET IN CONCRETE 6 4717.15 948.41 P.K. 2.3' FROM BUILDING 2 4723.40 965.61 DISK SET IN CONCRETE 9 5040.10 966.89 DISK SET IN CONCRETE 9 5040.10 966.57 DISK SET IN CONCRETE 7 5389.34 946.56 DISK SET IN CONCRETE 2 4360.68 960.67 DISK SET IN CONCRETE 9 3841.46 946.67 DISK SET IN CONCRETE 9 3841.46 946.67 DISK SET IN CONCRETE 9 3112.90 949.30 DISK SET IN CONCRETE 8 4733.45 963.31 DISK SET IN CONCRETE 9 ATTIVE DISK	: 25211370.11 DRAWN BY: KP	CHECKED BY: MH
6. 7. 7. POIN CP1 CP2 CP3 CP4 CP5 CP6 CP5 CP1 CP5 CP5	PREVIOUSLY EXEMPTIONS. FOR THE PR OVERHEAD A ARE APPROY BEGINNING C FILLING OF W HOLISTIC PLA HORIZO IT NORTHIN 1 – 461.3 2 1974.16 3 2286.8 4 2848.3 5 3248.3 5 3248	NUMBER DESIGNATIONS WERE ASSIGNED PREVIOUSLY IVATE WELL SAMPLING PROGRAM. AND UNDERGROUND ELECTRIC POWERLINE LOCATIONS KIMATE AND MUST BE VERIFIED IN THE FIELD PRIOR TO CONSTRUCTION ACTIVITIES. WETLAND 1 WAS APPROVED AS PART OF THE SITE AN AND THE SOUTH EXPANSION PERMITTING PROCESS. NETLAND THE SOUTH EXPANSION PERMITTING PROCESS. NG EASTING ELEVATION DESCRIPTION 7 2990.53 958.88 DISK SET IN CONCRETE 6 4717.15 948.41 P.K. 2.3' FROM BUILDING 2 4723.40 965.61 DISK SET IN CONCRETE 9 5040.10 966.89 DISK SET IN CONCRETE 4 5210.36 965.57 DISK SET IN CONCRETE 7 5389.34 946.56 DISK SET IN CONCRETE 9 3841.46 946.67 DISK SET IN CONCRETE 9 3841.46 946.31 DISK SET IN CONCRETE 9 3841.46 946.331 DISK SET IN CONCRETE 9 3112.90 949.30 DISK SET IN CONCRETE 9 5055.26 962.38 DISK SET IN CONCRETE	F NO.: 25211370.11 DRAWN BY: KP	CHECKED BY: MH



)	SHFFT		6 of 33
XIMATE PROPERTY LINE NG GROUND SURFACE ONTOUR) NG GROUND SURFACE	╞		
NTOUR) VED LIMITS OF WASTE NG LGRL LIMITS OF WASTE	(
SED EXPANSION LIMITS OF WASTE OF EXISTING 4' COMPACTED CLAY		WASIE REMUVAL ANU	GLADES
SED PHASE LIMITS NG PHASE DELINEATION BERM		NIT REM	
SED GRADE (2' CONTOUR) SED GRADE (10' CONTOUR)	.	∢ L	
SED WASTE GRADE (SEE NOTE 4) SED PERIMETER DITCH SED SILT FENCE		PHASE DLA	
AND DIRECTION SED VIBRATING WIRE PIEZOMETER			
SED VANE SHEAR TEST BORING SED TEMPORARY CONDENSATE SUMP SED GAS HEADER	┝		
RE TO BE ABANDONED	OPERATION		
		FILL	NISIN
	PLAN (SE LANDI	Y, WISCONSIN
AL BASE MAP LEGEND ITEMS AND	EXPANSION PLAN OF	IER RIDGE	COUNTY
I PHASE 6 LINER CONSTRUCTION GRADES AFTER WASTE REMOVAL TO AND ORGANIC SOIL EXCAVATION IN		GLACIE	DODGE
OW THE INTERIM GRADES SHOWN. 1:1V LGRL WASTE SLOPE REPRESENT COVER.	SOUTHEAST		
- 4H:1V AND 10H:1V SLOPES POSED FINAL COVER GRADES MINUS FEET). WASTE GRADES AT 3H:1V S.		SITE	
THE WASTE REMOVAL AREAS ARE NDED TO SHOW GENERAL DRAINAGE E LENGTH OF BERM TO BE DF THE NEXT PHASE OF LINER	╞	3110	_
ERIM GRADES MAY VARY FROM THOSE INSTRUCTION SEQUENCING, INTERIM VED THROUGHOUT THE PHASE AREA AT			
ADDITIONAL MATERIAL QUANTITY CTS, AND RESTORATION TO BE IN PERMIT ISSUED FOR CONSTRUCTION		VICES	
		OSAL SERV	·ILL,
			ЧСГ
ZOMETERS IN EAST BERM AREA.		ADVANCED	-ACIER 7
S P5R, P303A, W13R, AND MW13AR, AND AND MW3. N CONTROLS AND WETLAND PROTECTION		A	
AS BLOWER AND FLARE AND INSTALL D TEMPORARY CONDENSATE SUMP.	C		☐ Advance Dispose
HOLDING TANK AND LOADOUT PAD. FILL GAS HEADER PIPING NORTH OF GAS ID INSTALL TEMPORARY CONDENSATE			
/L3, GWL4, GWL5, GWL6, GWL7, GWL8, SOIL OVER WASTE REMOVAL AREA IN STEPS,		751	-
SLOPE.			224-2830
DANCE WITH LGRL WASTE REMOVAL PLAN. WELLS AND GAS PIPING AS EXPOSED AND			(80)
DN. CATE REMAINING PORTION OF MONITORING PLACE) AND OVERDRILL TO REMOVE			PHONE: (6
OMPLETE, CONSTRUCT TEMPORARY STORM RES. I INTERMEDIATE COVER MATERIAL.	v		2 7 0 7 0 7
AST PERIMETER BERM AREA, INSTALL DRM VANE SHEAR TESTS IN BORINGS. GRADES.			
FER PIPES BELOW PHASE 6 EAST BERM. ASE 6 EAST BERM AND DITCH.	EN	gine	EER
RBED AREAS.			
HES.			04/22/13
VOLUME.	ΥΥ	ЧМ	SC
29,600 CY 78,800 CY 9,900 CY		BY:	BY:
628,000 CY 25,900 CY (FILL) 422 CY 400 CY	DRAWN BY:	CHECKED E	APPROVED
400 CY 8,900 (CUT) <u>QUANTITY</u>	╞		
ERF. 2,735 FT	1	~	~
	25211370.11	12/06/12	04/22/12
0 100	PROJECT NO.	DRAWN:	REVISED:

\Drawings-General\Plan of Operation\Phase B.dwg, Layout1, 4/22/2013 6:27

		_		
D DXIMATE PROPERTY LINE NG GROUND SURFACE		SHFFT	-	OF 33
ONTOUR) NG GROUND SURFACE INTOUR)		<i>C</i>)	Ø
, DVED LIMITS OF WASTE NG LGRL LIMITS OF WAS	TE			
DSED EXPANSION LIMITS				
OF EXISTING 4' COMPAC			AND	C L C
dsed grade (2' contou dsed grade (10' contou			REMUVAL ANU	I GRAL
osed final grade osed waste grade (see	E NOTE 4)			
DSED PERIMETER DITCH			אר אר ט מא	`
DSED GAS PROBE	10N	L (THAVE	\leq
SED SILT FENCE			1	
DSED GAS HEADER DSED DRIPLEG				
DSED INTERMEDIATE DRAI	Ν	┝		
POINT OF DIVERSION BER DSED DOWNSLOPE FLUME	M	Z		
DSED ENERGY DISSIPATOR		OPERATION		
DSED INTERMEDIATE DRAI		-	_	WISCONSIN
PTUAL FINAL COVER SE		PLAN OF	LANDFIL	WISC
PTUAL FINAL COVER AR			RIDGE	COUNTY,
DSED LEACHATE FORCEM	AIN	EXPANSION	GLACIER	-
DSED LEACHATE HEADWEI		SOUTHEAST	GL	DOL
DSED LEACHATE VAULT DSED UNDERDRAIN GRAVI	TY TRANSFER PIPE	SOUTH		
DSED VIBRATING WIRE PIE				
DSED CONDENSATE SUMP RE TO BE ABANDONED		F	SITE	-
DITIONAL BASE MAP LEG WITHIN PHASE 7 LINER			ы М	
OF INTERIM GRADES AF DRAINAGE. WASTE AN AREA WILL EXTEND BELO	TER WASTE ID ORGANIC SOIL		SERVIC	LL, LL
ON 3H:1V LGRL WASTE GRL INTERMEDIATE COVE			OSAL 3	-ANUFI
JRS AT 4H:1V AND 10H:)/PROPOSED FINAL COVE	1V SLOPES ER GRADES MINUS			(IDGE I
SS (5 FEET). WASTE GR SLOPES. VN IN THE WASTE REMO ^V			ADVANCED DISPOSAL SERVICES	ч С Ц С
E INTENDED TO SHOW GE DXIMATE LENGTH OF BER ANCE OF THE NEXT PHA JAL INTERIM GRADES MA	ENERAL DRAINAGE RM TO BE SE OF LINER		AD<	GLA
ENDING ON CONSTRUCTION NOT BE ACHIEVED THRC TIME.	ON SEQUENCING,			vanced sposal
I FOR ADDITIONAL MATE	RIAL QUANTITY	C	LIEN	ĕë ∖⊤
IMPACTS, AND RESTOR TLAND PERMIT ISSUED F ISION.				
_ CONSTRUCTION ACTIVIT	IFS			-
RE PIEZOMETER IN EAST	BERM AREA.		2719 675	224-2830
WELLS MW311R AND P3 GAS PROBES GMP2, GMP EROSION CONTROLS AND	P3, AND GMP4.	L Z		24-2830
S. LANDFILL GAS HEADER GWL10 AND RELOCATE		2		(80)
N EAST HEADER. Ads gwl2, gwl9, gwl11	I, GWL12, AND			PHONE: (6
ATE SUMP ON WEST HEA D TOPSOIL OVER WASTE TOP OF WASTE SLOPE.		U V		10 0007
LE COVER SOILS.				
ACCORDANCE WITH LGRL	WASTE REMOVAL			
D GAS WELLS AND GAS E IN SOUTH/SOUTHEAST	EXPANSION.	EN	GIN	EER
AL IS COMPLETE, CONSTR EMENT FEATURES. TE WITH INTERMEDIATE C				
E WITH INTERMEDIATE C S IN EAST PERIMETER E FILL, AND PERFORM VAN	BERM AREA,			2/13
NTERIM GRADES.		КР	ΗМ	SC 04/22/13
TRANSFER PIPES BELOW	PHASE 7 EAST			
EAST BERM AND DITCH. DISTURBED AREAS.				
MULCH TOPSOIL AREAS. N DITCHES.		WN ΒΥ:	СНЕСКЕР ВҮ:	APPROVED BY:
		DRAWN	CHEC	APPR
	<u>VOLUME</u> 27.100 CY			
	27,100 CY 72,300 CY 9,000 CY 435,000 CY			
SH INTERIM GRADES NNG	107,300 CY (CUT) 1,200 CY 220 CY	25211370.11	12/06/12	04/22/13
ION-PERF.	8,600 CY (CUT) <u>Quantity</u>	2521	12/	04/.
R PIPE	1,460 CY			
100		NO.		
" = 100'		PROJECT NO	DRAWN:	REVISED:

01\Drawings-Genera\Plan of Operation\Phase C.dwg, Layout1, 4/22/20

) XIMATE PROPERTY LINE		SHFFT	- -	OF 33
NG GROUND SURFACE ONTOUR) NG GROUND SURFACE) (10
NTOUR) VED LIMITS OF WASTE NG LGRL LIMITS OF WAS	TE			
ISED EXPANSION LIMITS	OF WASTE			о О
OF EXISTING 4' COMPA	JR)		REMUVAL ANU Rim cranfs	N 617401
SED GRADE (10' CONTO	, ,	L H	Ч Н Н Н И	
ISED WASTE GRADE (SEI ISED PERIMETER DITCH ISED CULVERT	e noie 4)	L	SE C WA Harf R I	1041
SED GAS PROBE	ΓΙΟΝ		Ч Ч Ц	_
ISED SILT FENCE				
ISED DRIPLEG	IN	┝		
SED DIVERSION BERM		NOI		
SED DOWNSLOPE FLUME SED ENERGY DISSIPATO		OPERATION		_
SED TOE DRAIN AND DI SED INTERMEDIATE DRA		ОF	LANDFILL	WISCONSIN
NG DROP INLET STRUCTI ARGE PIPE PTUAL FINAL COVER SE		N PLAN	ليا	
PTUAL FINAL COVER AF	REA	EXPANSION	СШ	COUNTY
SED LEACHATE FORCEM	AIN			DODGE
SED LEACHATE CLEANO		SOUTHEAST		
ISED UNDERDRAIN GRAV	EZOMETER	Ň		
ISED VANE SHEAR TEST ISED CONDENSATE SUMF RE TO BE ABANDONED		\vdash	SITE	
ITIONAL BASE MAP LEGI	END ITEMS AND		ഗ	
WITHIN PHASE 8 LINER FERIM GRADES AFTER W . WASTE AND ORGANIC ST BERM AREA WILL EX	ASTE REMOVAL C SOIL		ADVANCED DISPOSAL SERVICES	
HOWN. ON 3H:1V SLOPE IN PH. IL GRADES.	ASE 9		SPOSAL	
RS AT 4H:1V AND 10H: /PROPOSED FINAL COVE IICKNESS (5 FEET). WAS	R GRADES		CED DIS	A RIDGE
KING SLOPES. N IN THE WASTE REMOV INTENDED TO SHOW GE ND APPROXIMATE LENG DVANCE OF THE NEXT F	'AL AREAS ARE NERAL TH OF BERM TO		ADVANC	ULAUER
DVANCE OF THE NEXT F AL INTERIM GRADES MA' NDING ON CONSTRUCTIC NOT BE ACHIEVED THRO 'IME.	Y VARY FROM N SEQUENCING,	6	3	Advanced Disposal
PECTED TO BE COMPLET		С	LIEN	 IT
AND IMPACTS TO BE IN ISSUED FOR CONSTRUC	ACCORDANCE			
		U U	.6751	0.0
CONSTRUCTION ACTIVITI		4 1	WI 53718-)8) 224–2830
WELL MW407. ROSION CONTROLS AND				(608) 224-2
GE TANK AND MAINTEN			IRY DRIVE	PHONE: (60
)S GWL1 AND GWL10. ONDENSATE SUMPS, LGF	RL GAS BLOWER	v v v		K 2 0007
TOPSOIL OVER WASTE TOP OF WASTE SLOPE	REMOVAL AREA			
E COVER SOILS. CCORDANCE WITH LGRL	WASTE	EN	GINE	EER
GAS WELLS AND GAS IN SOUTH/SOUTHEAST	EXPANSION.			
IS COMPLETE, CONSTR TER MANAGEMENT FEAT IN EAST PERIMETER B LL, AND PERFORM VANE	URES. ERM AREA,			04/22/13
TERIM GRADES. RANSFER PIPES BELOW		КР	ΗM	SC 04/2
AST BERM AND DITCH.				
DISTURBED AREAS. MULCH TOPSOIL AREAS. I DITCHES.		WN ΒΥ:	СНЕСКЕД ВҮ:	APPROVED BY:
	<u>VOLUME</u>	DRAWN	CHE	APPI
	29,700 CY 79,100 CY 9,900 CY			
H INTERIM GRADES NG	291,000 CY 133,600 CY (CUT) 2,500 CY 170 CY 9,000 CY (CUT)	370.11	6/12	2/13
DN-PERF.	QUANTITY	25211370.11	12/06/12	04/22/13
JN-PERF. PIPE	1,115 FT			
100 C	100	PROJECT NO.	Ž:	ED:
SCALE: 1	" = 100'	ROJE	DRAWN:	REVISED

Attachment B

Construction Documentation Report, Glacier Ridge Landfill – LGRL Phase A Waste Relocation (Text and Selected Tables and Drawings only)

Building lifetime relationships with our clients and employees.

Construction Documentation Report

Glacier Ridge Landfill – LGRL Phase A Waste Relocation

35 East Mill Street, Suite 3 Plymouth, WI 53073 (845) 695-0200

REPORT CERTIFICATION

Construction Documentation Report Glacier Ridge Landfill – LGRL Phase A Waste Relocation Horicon, Dodge County, Wisconsin

I, Joseph J. Falle IV, P.E., hereby certify that I am a Registered Professional Engineer in the State of Wisconsin, registered in accordance with the requirements of ch. A-E4, Wisconsin Administrative Code (Wis. Adm. Code); that this document has been prepared in accordance with the Rules of Professional Conduct in ch. A-E8, Wis. Adm. Code; and that, to the best of knowledge, all information contained in this document is correct, and the document was prepared in compliance with all applicable requirements of chs. NR 500 to NR 538, Wis. Adm. Code.

Joseph J. Falle IV, P.E. Wisconsin P.E. No. 41106

TABLE OF CONTENTS

REPO	ORT C	CERTIFICATION II					
LIST	LIST OF TABLES, FIGURES AND DRAWINGS						
1	INTF	NTRODUCTION1					
	1.1 1.2 1.3	GENERAL INFORMATION					
2	CON	ONSTRUCTION DOCUMENTS AND PARTIES					
	2.1 2.2	REFERENCE DOCUMENTS					
3	ERO	ROSION CONTROL AND WETLAND PROTECTION					
4	cov	OVER SOIL EXCAVATION					
5	LANDFILL GAS SYSTEM ABANDONMENT/FLARE RELOCATION						
	5.1 5.2 5.3	LFG WELL AND PIPING ABANDONMENT					
6	MON	ONITORING WELL ABANDONMENT					
	6.1 6.2						
7	WAS	STE EXCAVATION					
	7.1 7.2	INTRODUCTION9ENVIRONMENTAL MONITORING / PROTECTION97.2.1AMBIENT AIR MONITORING7.2.2DUST AND ODOR CONTROL MEASURES7.2.3SURFACE WATER MANAGEMENT7.2.4CONTACT WATER / LEACHATE MANAGEMENT					
	7.3	7.2.5GROUNDWATER DEWATERING12WASTE HANDLING, SCREENING AND CHARACTERIZATION127.3.1TYPICAL WASTE127.3.2SALVAGEABLE WASTE13					

		7.3.3	Suspicious Waste	3				
		7.3.4	HAZARDOUS WASTE	4				
	7.4	WASTE	E TYPES AND QUANTITIES14	4				
8	SOIL		/ATION	5				
	8.1	Introi	DUCTION	5				
	8.2 SOIL TYPES							
	8.3	SOIL SAMPLING, ANALYSIS AND CLASSIFICATION						
		8.3.1	LGRL FINAL COVER SOILS	6				
		8.3.2	Soil Within the LGRL Waste	6				
		8.3.3	Soil Between the Bottom of LGRL Waste and Above Phase 6 Liner					
			SUBBASE GRADES1	6				
		8.3.4	Additional Soil Excavation for Remediation1	7				
9	EAS	T BERN	I CONSTRUCTION / UNDERDRAIN TRANSFER CONSTRUCTION 18	B				
10	CON	ICLUSIC	DN19	9				
LIMI	TATI	ONS		0				
FIGU	FIGURESERROR! BOOKMARK NOT DEFINED.							
DRAWINGS								

Rev. 0, 2/15/15 Project 140225

APPENDICES

- APPENDIX A DAILY FIELD REPORTS / WETLAND INSEPCTION FORMS
- APPENDIX B PHOTOGRAPHIC LOG
- APPENDIX C MONITORING WELL ABANDONMENT FORMS
- APPENDIX D AIR MONITORING RESULTS
- APPENDIX E SUSPICIOUS WASTE TEST SUMMARY REPORTS
- APPENDIX F SOIL TEST SUMMARY REPORTS
- APPENDIX G WDNR SOIL ADDITIONAL SOIL REMOVAL TESTS

List of Figures and Drawings

Figures

Figure 1	Soil Sample Locations
Figure 2	Sample Locations around TVOC 50

Drawings

01	Title Sheet
02	Abbreviations, Legends and Notes
03	Existing Conditions and Erosion Control
04	LFG Collection System Relocation Plan
05	As-Built Waste Excavation Grades
06	Details
07	Details

1 INTRODUCTION

1.1 General Information

This Construction Documentation Report documents the Land and Gas Reclamation Landfill (LGRL) Phase A Waste Relocation Project. LGRL is a Superfund site, Wisconsin Department of Natural Resources (WDNR) License No. 1118, Environmental Protection Agency (EPA) ID No. WID0529060888 that is located within the approved Advanced Disposal Services (Advanced) Glacier Ridge Landfill (GRL) Southeast Expansion footprint. LGRL is located in the SW ¼ of Section 35 T12N, R16E, Town of Williamstown, Dodge County, Wisconsin.

LGRL is part of the larger Advanced GRL facility which is comprised of LGRL, the Closed North Landfill, the South Expansion and the Southeast Expansion. With the exception of LGRL all of the other landfill areas accept or accepted only municipal solid waste in accordance with Chapter NR 500 Wisconsin Administrative Code. The facility is owned and operated by Advanced Disposal Services Glacier Ridge Landfill, LLC.

1.2 Site History

LGRL is a Superfund site that began accepting waste in the 1950s and was closed in the mid-1980s. A combination of municipal solid waste, construction debris, and solvent waste were accepted at LGRL over its life. LGRL is located in the footprint of the proposed GRL Southeast Expansion. As part of the Plan of Operation for the GRL Southeast Expansion, prepared by SCS Engineers, Madison, WI (date of WDNR approval October 2013), LGRL would be removed in three phases to remediate the site and to allow for the construction of the Southeast Expansion. Phase A of the waste relocation was completed in 2014.

A plan for relocating the LGRL waste (LGRL Waste Removal Plan, Dec. 2013) was prepared as part of the Plan of Operation for the Southeast Expansion. The LGRL Waste Removal Plan was used as the basis for the relocation of the LGRL waste.

1.3 Purpose and Scope

Cornerstone was retained by Advanced to provide construction quality assurance (CQA) and oversight during Phase A of the LGRL Waste Relocation Project to ensure completion of the project in accordance with the GRL Southeast Expansion Plan of Operation, the LGRL Waste Removal Plan, and the GRL Southeast Expansion Plan of Operation WDNR Conditions of Approval.

Rev. 0, 2/15/15 Project 140225

The services provided by Cornerstone on behalf of Advanced included observation of the LGRL cover soils excavation, LGRL waste excavation, and LGRL contaminated soil excavation. The east berm construction was also observed as part of the project, the documentation for the east berm construction was submitted to the WDNR with the Phase 6 Liner Construction Documentation Report. Throughout the course of the project Cornerstone monitored the waste excavation for signs of suspect wastes as defined in the LGRL Waste Removal Plan, conducted air monitoring, collected waste, soil and water samples, and recorded daily activities during waste excavation.

This report has been prepared in accordance with Chapter NR 500 Wis. Adm. Code, Condition No. 6 of the Plan of Operation Approval Dated October 13, 2014, and includes the information required as part of the LGRL Waste Removal Plan.

2 CONSTRUCTION DOCUMENTS AND PARTIES

2.1 Reference Documents

The following reference documents were utilized during the execution of the LGRL Phase A Waste Relocation:

- Chapter NR 500 Wisconsin Administrative Code
- Chapter NR 600 Wisconsin Administrative Code
- Chapter NR 140 Wisconsin Administrative Code
- USEPA SW-846, "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods"
- Southeast Expansion Conditional Plan of Operation Approval and Hazardous Waste Remediation Variance dated October 13, 2014
- Document Titled: "Land & Gas Reclamation Landfill Waste Removal Plan for Glacier Ridge Landfill Southeast Expansion" (Revision 1) prepared by SCS Engineers, Madison, WI dated December 2013.
- Document Titled: "Plan of Operation Advanced Disposal Services Glacier Ridge Landfill Southeast Expansion" prepared by SCS Engineers, Madison, WI dated April 23, 2013.
- Document Titled: "Plan of Operation Addendum No. 1 Advanced Disposal Services Glacier Ridge Landfill Southeast Expansion" prepared by SCS Engineers, Madison, WI dated June 28, 2013.
- Document Titled: "Plan of Operation Addendum No. 2 Advanced Disposal Services Glacier Ridge Landfill Southeast Expansion" prepared by SCS Engineers, Madison, WI dated October 3, 2013.

2.2 Parties

The following parties were involved in the LGRL Phase A Waste Relocation:

Wisconsin Department of Natural Resources (WDNR)

Ann Bekta, P.E. - Waste Management Engineer

Adam Hogan, P.G. - Hydrogeologist

Will (Woody) Myers - Hydrogeologist

Advanced Disposal Glacier Ridge Landfill, LLC

Jay Warzinski - Corporate Director of Landfill Operations

Doug Coenen - Regional Landfill Operations Manager

Lonn Walter - General Manager

Jake Margelofsky - Operations Manager

Cornerstone Environmental Group, LLC (Project Management / CQA)

Joe Falle, P.E. - Certifying Engineer / Project Manager

Jason Whitman - Project Technician

SCS Engineers, Inc. (Design Engineer)

Sherren Clark, P.E., P.G. - Design Engineer Project Manager

Hoffman Construction Company (General Contractor)

Chad Sell -Project Manager

Jay Kahl - Project Superintendent

CQM, Incorporated (Survey, Physical Soil Analysis)

Nick Sturzl, P.E. - Project Manager

Aaron Shroeder, R.L.S. – Surveyor

Rick Wiemann - Project Technician

PACE Analytical (Soil/Waste/Liquid Analytical Laboratory)

Dan Milewsky – Project Manager

Air Technology Laboratories, Inc. (Air Sample Analytical Laboratory)

Joann De La Ossa - Project Manager

3 EROSION CONTROL AND WETLAND PROTECTION

Prior to construction startup, erosion control measures were installed to protect the wetland areas to the north and east of the LGRL Phase A Excavation Area. The wetland protection included the protection provisions specified in the Wetland Protection and Erosion Control Plan. The Wetland Protection and Erosion Control Plan was included in Appendix E of the Southeast Expansion Plan of Operation. At the beginning of the project steel backed silt fence with a warning ribbon was installed prior to any construction commencing. The silt fence was installed along the approved line as specified in the Plan of Operation and as shown on Drawing No. 3 of the attached plan set. On a weekly basis, the project technician inspected the silt fence and recorded the results on wetland inspection forms. The wetland inspection forms are included in Appendix A.

No work occurred in the wetland outside of the predetermined boundaries specified in the Wetland Protection and Erosion Control Plan. In addition, during construction all non-contact surface water runoff was directed to Sedimentation Basin No.2 located to the north of the LGRL Phase A Excavation Area.

4 COVER SOIL EXCAVATION

Prior to performing waste excavation activities, the cover soils on top of the waste removed. The cap consisted of the following layers from top to bottom:

- Vegetative layer
- 6-inch topsoil layer
- Rooting zone layer (variable depth, 24 inches min.)
- 24-inch clay layer
- Grading Layer (variable depth, min. 6 inches)

During excavation efforts were made to segregate the different cover soils, however due to the abnormally cold winter and excessive frost depth it was difficult to separate the topsoil and rooting zone. As such, topsoil and rooting zone were excavated simultaneously and stockpiled for use as daily / intermediate cover on the active landfill. Clay was able to be segregated and stockpiled for future use in construction of the Phase 6 Liner North Perimeter Berm. Soils that were within 6 inches of the waste were not segregated and were treated as waste in accordance with the LGRL Waste Removal Plan.

5 LANDFILL GAS SYSTEM ABANDONMENT/FLARE RELOCATION

5.1 LFG Well and Piping Abandonment

LGRL contains an active gas extraction system. Prior to construction, a total of 14 vertical landfill gas (LFG) extraction wells were in place and operational. Each of the wells was connected to a blower flare station located at the northwest corner of LGRL. As part of the Phase A waste relocation a total of eight existing vertical wells were abandoned along with associated lateral and header piping. The eight wells were GWL3, GWL4, GWL5, GWL6, GWL7, GWL8, GWL13, and GWL14 Wells and piping were removed as the waste was excavated. All well and lateral components were disposed of in the active GRL.

5.2 Blower / Flare Relocation

Six of 14 existing vertical LFG extraction wells and associated piping remained in place after the completion of the LGRL Phase A Waste Relocation. Due to the need to keep the system active, the blower/flare system was required to be operated until such time that the remaining gas wells would be removed. The blower/flare system was originally located at the northwest corner of LGRL which was in the excavation area. As part of the Phase A project, the blower/flare system was relocated to south end of LGRL as shown on Drawing No. 4. Due to the reduced gas flows at LGRL the blower/flare only runs intermittently when gas with a high enough Btu content is available to burn.

5.3 LFG Condensate Management

Prior to the LGRL Phase A Waste Relocation project, all condensate drained in the gas header pipes by gravity to the northwest corner of the site where it was stored in a 5,000 gallon underground storage tank. The storage tank was periodically pumped out and the condensate was commingled with leachate for offsite disposal. The existing storage tank was removed and disposed of in the GRL. The existing header and lateral pipes are sloped such that they drain from the south to the north. To accommodate condensate that would be generated after the Phase A project was completed, three temporary condensate sumps were installed. Two of the condensate sumps were placed at the termination points of the header pipe as shown on Drawing No. 4. The sumps are designed to provide a vacuum break and drain the condensate back into the LGRL waste (see Detail 5 on Drawing No. 6) The third condensate. This sump is periodically pumped out using a tanker truck and the condensate is combined with the GRL leachate in the leachate storage tanks.

6 MONITORING WELL ABANDONMENT

6.1 Non-Groundwater Well Abandonments

As part of the Phase A Waste Relocation project, two vertical leachate head wells MW-2 and MW-3, which were located within the LGRL Waste Limits, were abandoned. Abandonment included removal of the casing pipe with the excavation of waste. No borehole abandonment was required because the head wells did not extend past the bottom of waste. The casing pipes were disposed of in the active GRL.

6.2 Groundwater Well Abandonments

Several groundwater monitoring wells required abandonment as part of the Phase A Waste Relocation project to allow for the construction of the Phase 6 Composite Liner. A total of five groundwater monitoring wells were abandoned, one that was in the waste and four that were outside of the waste. The wells abandoned were:

- MW13AR
- MW13R
- P303A
- P5R
- P421B (inside waste limits)

All of the wells were over drilled, the casings and screens were removed, and the boreholes backfilled in accordance with Chapter NR 141 Wis. Adm. Code. Well Abandonment Forms are included in Appendix C.

7 WASTE EXCAVATION

7.1 Introduction

Excavation of LGRL Waste began on March 10, 2014 and was completed by July 18, 2014. This section details the site health and safety, environmental monitoring and protection, waste handling, screening and characterization methods, quantities and types of waste removed, details of waste handling and screening procedures, and details of suspicious waste removal and handling.

7.2 Environmental Monitoring / Protection

The LGRL Waste Removal Plan specified environmental monitoring and protection methods that were required in association with waste excavation and relocation activities. The required environmental monitoring / environmental protection items included:

- Ambient Air Monitoring
- Dust and Odor Control
- Surface Water Management
- Waste Contact Water Management

Each of the above items is discussed in the sections below.

7.2.1 Ambient Air Monitoring

Section 4.5.1 of the LGRL Waste Removal Plan required that ambient air-monitoring be conducted both on and off site at upwind and downwind locations. Ambient air monitoring was to be conducted weekly for the first six weeks and if no contaminants were discovered, biweekly thereafter. The main constituents of concern were volatile organic compounds (VOCs). During the project a total of 44 ambient air samples were collected. Samples were collected using Silco Cans that were put under a vacuum in the lab. Each can was fitted with a regulator that allowed for continuous sample collection over an approximately 8-hour period. A total of four samples were required for each sampling event per the LGRL Waste Removal Plan: one upwind, one in the public drop off area, and two downwind. An additional sample was added at the working face of the LGRL landfill to assess the VOC concentrations within the waste itself. This was done as a safety precaution for workers that were consistently present in or near the waste.

During sampling, weather conditions such as temperature, precipitation, barometric pressure, pressure trend, wind speed, and wind direction were recorded with each

sampling event. Samples were not collected when sustained winds over 15 miles per hour (mph) were present.

Following collection samples were shipped to Air Technologies Laboratories (ATL) in the City of Industry, California. ATL analyzed each of the samples for VOCs in accordance with EPA Method TO 14/15.

Appendix D of the report includes sample locations, summarizes sample detections, and includes the lab reports from the laboratory. Sample detections were compared to OSHA permissible exposure limits (PELs) as is shown in Appendix D. All of the constituents that were detected were well below the OSHA PELs. Due to the low concentrations of VOCs that were detected, it is difficult to state whether the VOCs that were detected were from the waste, vehicle exhaust, or to other activities on or off the site.

Samples were to be collected weekly for the first 6 weeks of the project, however week number 2 was missed. The reason week number 2 was missed was related to a shipping issue with the sampling equipment. If clean results were obtained, sampling could be reduced to biweekly per the LGRL Waste Removal Plan. Sampled dates are summarized below:

Week 1: 3/4/2014 Week 2: Missed Week 3: 3/18/14 Week 4: 3/21/14 Week 5: 3/28/14 Week 6: 4/9/14, 4/10/14, 4/11/14 Week 8: 4/25/14 Week 10: 5/16/14 Week 12: 6/5/14

After June 5, 2014, some waste remained in place, however, large amounts of rain were received at the site that delayed the removal of the last remaining waste volumes for several weeks. No additional air samples were completed after June 5, 2014 due to the small amount of waste that remained and the fact that previous sample results had VOC concentrations well below the OHSA permitted levels.

Based on the results obtained from the air monitoring sample analyses, no apparent threat to the environment or human health due airborne VOCs was noted during the project.

7.2.2 Dust and Odor Control Measures

Throughout the excavation process dust was controlled by watering haul roads, and if necessary, the waste excavation area. Watering of roads was completed on an as needed

basis to control dust. During days when dust control was required, roads were watered several times per day to mitigate dust on site haul roads.

At the beginning of the excavation process, it was unknown how strong odors would be. As a preventative measure, Advanced employed the use of odor control devices that utilize odor neutralizing agents mixed with water. The first system installed was a temporary system that utilized sprayers that were mounted on fence posts. The fence posts were installed at roughly 15 foot intervals and interconnected with hydraulic hose. A small pump transferred water and odor neutralizing agent through the hose to the nozzles. This system was utilized until a portable trailer mounted system could be delivered to the site. The portable trailer mounted system consisted of a trailer mounted 1,000 gallon water tank, spray bars, and pump. Water and odor neutralizing agent were pumped from the tank to the spray bars where a fine mist was produced. The portable system was used for the second half of the project. The trailer mounted system could more easily be moved to areas that had higher odor concentrations. Photos of the odor control systems in use are presented in Appendix B.

Fortunately odors were not excessive during the project and rarely migrated off site. The odor systems were run continuously after installation to prevent odors from migrating offsite.

7.2.3 Surface Water Management

During waste excavation the clean runoff water was prevented from entering the excavation area. The main method used to prevent clean runoff from entering the excavation was grading around the excavation to divert surface water away from the working face. Surface water that did contact waste was managed as leachate as is detailed in Section 7.2.4.

7.2.4 Contact Water / Leachate Management

Water that contacted waste or contaminated soils was treated as leachate. To prevent the migration of contact water off site, the excavation was graded to a low point where contact water could drain. The low point consisted of a collection sump and pump station that was used to transfer the contact water to leachate trucks. All contact water was treated as leachate and taken off site for disposal at a wastewater treatment plants (WWTP). Prior to transporting water to the treatment plant, leachate samples were taken and analyzed at a laboratory. The results of the lab samples were shared with the WWTP's that accepted leachate to verify their permit limits would not be exceeded. The WWTP's had no issues accepting leachate during the project. During the project the total volume of leachate taken off site from the excavation was approximately 900,000 gallons.

7.2.5 Groundwater Dewatering

During the excavation of the waste and the construction of the east perimeter berm, groundwater dewatering did not occur. Small amounts of water were encountered during soft soil excavation, but this water did not warrant pumping or dewatering. As such, no groundwater was treated or sampled during the LGRL Phase A Waste Relocation project.

7.3 Waste Handling, Screening and Characterization

Waste handling, screening and characterization procedures are specified in Section 4 of the LGRL Waste Removal Plan. The LGRL Waste Removal Plan identified four major waste categories as listed below:

- Typical waste (municipal and industrial)
- Salvageable waste
- Suspicious waste
- Hazardous waste

During the excavation process, the Cornerstone Field Technician screened and characterized the waste removed through visual observations, odor observations and performed periodic readings with a Photo Ionization Detector (PID) to identify suspicious and potentially hazardous wastes. The waste screening process and subsequent handling process is described in the sections below.

7.3.1 Typical Waste

Waste was classified as typical waste if it exhibited the following characteristics:

- The waste resembled MSW or waste typically disposed of in GRL
- The waste did not exhibit solvent odor
- The waste did not exhibit positive PID readings

The majority of the waste exhumed from LGRL was classified as typical waste.

Hoffman Construction Company (Hoffman) used two CAT 385 Excavators to load between eight and ten articulated 40 ton haul trucks daily. The excavators loaded the LGRL waste into the haul trucks, and the haul trucks transported the waste to the active GRL. Typical waste was dumped in the active area and was spread utilizing CAT D8 dozers and the landfill's compactors. LGRL was either commingled with incoming waste or was monofilled. At times it was difficult to commingle excavated LGRL waste with incoming MSW due to safety and traffic pattern concerns. Waste within GRL was covered on a daily basis with alternate daily cover (ADC) or soil materials. Waste that was placed on outboard

slopes was covered with one foot of intermediate cover soil after placement. The minimum separation distance between the leachate drainage layer and the LGRL waste was 15 feet.

7.3.2 Salvageable Waste

Salvageable waste was not identified during the waste screening and characterization. As such no waste was salvaged as part of the Phase A Waste Removal.

7.3.3 Suspicious Waste

Suspicious wastes were identified through visual and odor observations, and by screening the waste with a photoionization detector (PID). All workers and equipment operators that were continually in the waste excavation area wore personal gas detection meters that had PID capability. The meters were utilized for worker health and safety primarily, but were also utilized to detect potentially VOC contaminated waste. The LGRL Waste Removal Plan did not specify a VOC concentration determined in the field that would in turn characterize the waste as suspicious. Discussions were conducted with the WDNR regarding the lack of a VOC concentration specifications for treating waste in the field. Through the discussions with the WDNR, if a VOC reading of the 10 ppm was detected with the PID, the waste would be characterized as suspicious and further testing would be required. The basis for the 10 ppm limit is from the LGRL Waste Removal Plan Soil Management Section. Section 6.2.2 of the LGRL Waste Removal Plan specified a VOC concentration of 10 ppm for soil found within the waste to determine the use for the soil. Since this was used for the soil within the waste, it was determined that this standard could also apply to suspicious waste. Equipment operators and the Cornerstone Field Technician also visually observed the excavation for the presence of intact drums, transformers, and other containers that may have housed suspicious waste. No intact drums, containers, or transformers were found during the excavation.

Suspicious waste was identified on three different occasions, March 8, 2014, May 9, 2014 and July 16, 2015. The suspicious waste was identified based on the field PID screenings conducted by the Cornerstone field technician. All suspicious waste identified met the criteria of bulk suspicious waste which was waste that did not meet the criteria for intact drums or transformers. When the bulk suspicious waste was identified, excavation in the area ceased and the Cornerstone field technician identified the area that was classified as suspicious. In each case, the suspicious waste was excavated from the area until passing PID (<10 ppm) results were obtained. The waste removed on July 16, 2015 was near the bottom of the excavation and was removed until soil was visible. The suspicious waste that was found on July 16, 2015 was directly above soil sample 50. Sample 50 is described in Section 8.3.4. The suspicious waste was transported to the GRL lined area and stockpiled away from other waste placement activities. Samples of the waste were collected and sent to PACE Analytical where it was tested for total VOCs. While awaiting the results of the VOC analysis, the bulk suspicious waste was covered with soil or ADC materials. The total

VOC analysis results were compared to the Toxicity Characteristic Leaching Procedure (TCLP) limits utilizing the 20 times rule. If the total VOC concentrations for bulk suspicious wastes were less than 20 times the TCLP limit the TCLP limit was considered met and the waste was disposed of with the other incoming LGRL waste. None of the suspicious wastes encountered exceeded the TCLP limits and were not determined to be hazardous. As such, all suspicious wastes were incorporated into the GRL waste. Results of the special waste tests are presented in Appendix E. The total volume of suspicious waste removed from the Phase A area was 4 loads, or approximately 120 cubic yards.

7.3.4 Hazardous Waste

No hazardous waste was identified through the screening procedures described in the LGRL waste removal plan.

7.4 Waste Types and Quantities

As noted above the majority of waste that was excavated in the Phase A area was disposed of in the GRL as typical waste. Some bulk suspicious waste was identified as during the waste screening and characterization. All bulk suspicious wastes were tested in the laboratory for total VOCs and met the minimum disposal requirements for disposal in GRL. No hazardous wastes were identified. The total volume of waste removed is as follows:

- Typical Waste = 584,394 cubic yards (CY)
- Bulk Suspicious Waste = 120 cubic yards (CY)

8 SOIL EXCAVATION

8.1 Introduction

Soil excavation followed the Soil Management Plan included as in Section 6 of the LGRL Waste Removal Plan. Soils that were excavated generally consisted of cover soils, soils within the waste, berms, and native soil underlying the waste. Soil was classified in accordance with the LGRL Waste Removal Plan and used for beneficial reuse, disposed of or treated. The following sections detail the soil excavation from the site.

8.2 Soil Types

The LGRL Waste Removal Plan identified four different types of soils. Soils removed from LGRL were classified into one of the four types described below based on contamination levels. The LGRL Waste Removal Plan identified how each type of soil was to be managed. The soil types identified in the LGRL Waste Removal Plan are as follows (see the LGRL Waste Removal Plan for more detailed descriptions):

- Type 1 Soil that is not impacted above soil standards. Type 1 soil could be used anywhere on the site. To confirm soil could be classified as Type 1, it was tested in the lab for Lead, Cadmium, and VOCs. PCB Testing was not completed as the soils did not contain potentially PCB laden equipment or materials. If soil was not impacted above the soil residual contaminant level established under NR 720, the soil could be utilized on site without restrictions.
- Type 2 Soil that was impacted and may contain contaminants above the NR 720 RCLs but below the TCLP limits. Type 2 soil could be used within the lined area of the landfill as daily cover. Type 2 soils did not require laboratory testing to be used in the footprint or disposed of as waste unless they were identified as suspicious wastes.
- Type 3 Soil that is impacted and may contain contaminants above the NR 720 RCLs for direct contact but are below the groundwater standards. Type 3 soils were not identified during the project.
- Type 4 Soil that exceeds the TCLP limits and must be treated prior to disposal. Type 4 soils were not identified during the project.

8.3 Soil Sampling, Analysis and Classification

Several different soils were encountered during the excavation of the LGRL waste and included cover soils, soil within the waste, soil between the bottom of waste and Phase 6 Subbase, and additional soils excavated for remediation. Each of the soils excavated are described in detail in the following sections:

8.3.1 LGRL Final Cover Soils

As was discussed in Section 6.2.1 of the LGRL Waste Removal Plan, final cover soils could be classified as Type 1 soils unless they were observed to be in direct contact with waste or exhibited other characteristics such as staining or odor. Soils that were within 6 inches of the waste were treated as waste and disposed of. Detailed cover soil excavation and stockpiling is discussed in Section 4 of this report.

8.3.2 Soil Within the LGRL Waste

Soil within the LGRL waste mass was treated entirely as waste. Based on the observations during the excavation it was not practical to separate soil from waste and as such the soil was not tested for reuse. Soil within the waste was only tested if it was part of a suspicious waste observation as detailed in Section 7 of this report.

8.3.3 Soil Between the Bottom of LGRL Waste and Above Phase 6 Liner Subbase Grades

The bottom of the LGRL waste was above the proposed subbase grades for the Phase 6 composite liner. Soil in this region required excavation to achieve the subbase grades and was required to be tested if used outside of the GRL footprint. Soil depths in this region ranged from 0 to 7 feet with an average depth of approximately 5 feet. During waste excavation, soil that was visually stained by the waste was treated as waste and disposed of in the GRL active area. The depth of soil that was removed and disposed of was generally between 1 and 2 feet below the bottom of the waste.

The soil that remained was tested to determine where the soil could be utilized. Testing consisted of dividing the site into approximately 0.5 acre subareas where test pits were dug to test the underlying soils. Samples were collected at each of the test pit locations and analyzed for VOCs, Cadmium and Lead. Figure 1 in Appendix F shows the location of the test pits.

The soil test results were compared to NR 720 RCLs for groundwater and direct contact, TCLP limts, and NR 668 Universal Treatment Standards (UTS). A summary of the data is presented in Appendix F. There were several exceedances for various contaminants as shown in the summary of the data. Soil that did not meet the limits for use outside of the GRL footprint was disposed of or used as daily cover within the limits of waste. A total of 8,497 cubic yards of contaminated soil was disposed of in the active GRL.

8.3.4 Additional Soil Excavation for Remediation

As part of the LGRL Waste Relocation plan, a soil remediation plan was put into place that required removal of soils from below the Southeast Expansion subbase grades. A total of 3,000 cubic yards of soil could be removed for remediation across the entire LGRL area.

After all of the LGRL waste had been removed from the Phase A area, the subbase was inspected for areas that had high levels of VOC contamination. There was one area that was found within the LGRL waste that contained VOC levels that warranted additional investigation. The area was centered around TVOC Test Number 50 as indicated in Figure 2 in Appendix G. Test 50 was located in the City of Mayville Dump Area. Preliminary test pits were dug to determine the level of contamination. A PID was used to estimate VOC concentrations, PID readings indicated VOC contamination levels above 400 ppm.

The WDNR was informed of the area of VOC contamination. Advanced Disposal and the WDNR collaborated to determine a course of action for removing the soil. The bullet points below describe the methods used to bound the area and remove the contaminated soil.

- First, additional test pits were dug surrounding the center of the VOC contamination. Figure 2 shows a simple diagram as to how the test pit locations were determined. A total of 8 additional test pits were dug and soil samples were obtained to determine the level of contamination at each test pits. The test pits were located between the center of the VOC contamination and previous test points that had VOC contamination below acceptable limits.
- After performing the tests at the additional locations, Advanced Disposal and Cornerstone consulted with the WDNR to determine a plan for removal of the impacted soil. The location of the additional soil tests were used to bound the approximate area of contamination. Results of the additional soil sample laboratory tests are summarized in Appendix G. During excavation of the contaminated soil, a PID was used to assess the level of contamination in the soil that was removed along with determining the stopping points of the excavation.
- Figure 2 shows the area of soil that was removed below the subbase grades. The total volume of soil removed was approximately 570 cubic yards. Additional tests of the relocated soil were taken after it was moved to the GRL where it was segregated. The additional tests indicated levels of contamination within the soil was above the limits for disposal in GRL.
- The impacted soil was relocated to the GRL Biopile. The Biopile utilizes a blower to infuse air into the soil and volatilize the VOCs. At the time of this report the soil continues in remediation. The soil will continue in remediation in accordance with the GRL approved Biopile Plan. Upon completion of the remediation, reports will be sent to the WDNR in accordance with approved Biopile Plan.

9 EAST BERM CONSTRUCTION / UNDERDRAIN TRANSFER CONSTRUCTION

The East Berm and Underdrain Transfer system construction was presented in the Phase 6 Liner Construction Documentation Report Addendum No. 1 dated January 23, 2015.

10 CONCLUSION

The LGRL Phase A Waste Relocation project has been completed in accordance with the approved Plan of Operation, the construction plans and specifications, Chapters NR 500, 600 and 700 Wis. Adm. Code. On behalf of Advanced Disposal, Cornerstone respectfully requests the review and approval of this Construction Documentation Report.

LIMITATIONS

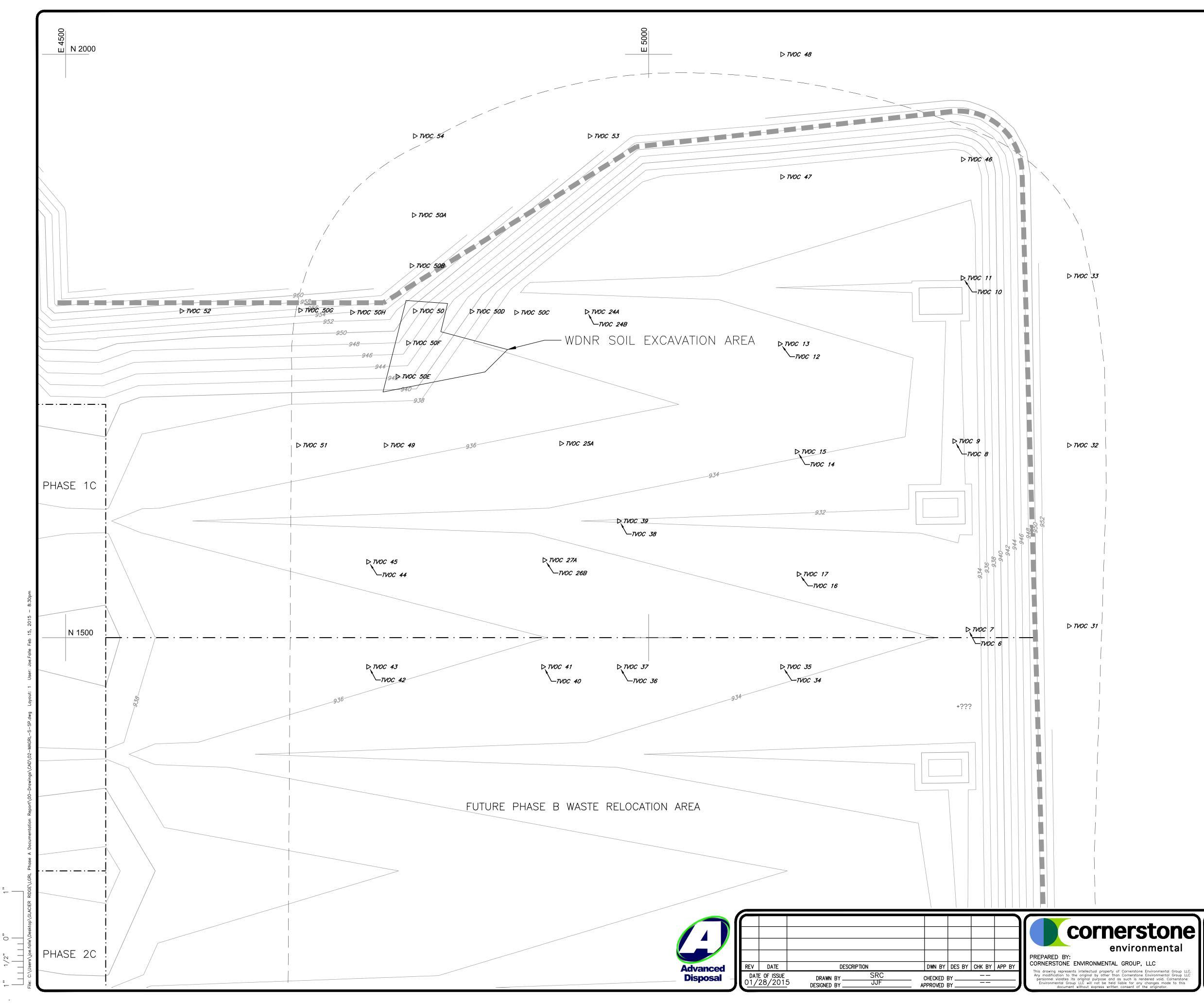
The work product included in the attached was undertaken in full conformity with generally accepted professional consulting principles and practices and to the fullest extent as allowed by law we expressly disclaim all warranties, express or implied, including warranties of merchantability or fitness for a particular purpose. The work product was completed in full conformity with the contract with our client and this document is solely for the use and reliance of our client (unless previously agreed upon that a third party could rely on the work product) and any reliance on this work product by an unapproved outside party is at such party's risk.

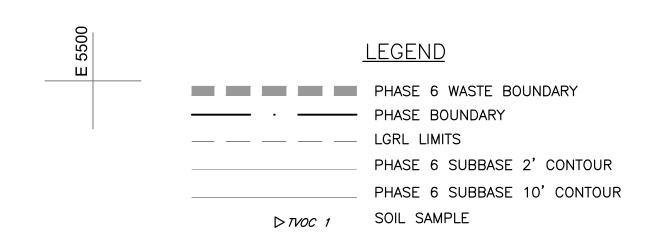
The work product herein (including opinions, conclusions, suggestions, etc.) was prepared based on the situations and circumstances as found at the time, location, scope and goal of our performance and thus should be relied upon and used by our client recognizing these considerations and limitations. Cornerstone shall not be liable for the consequences of any change in environmental standards, practices, or regulations following the completion of our work and there is no warrant to the veracity of information provided by third parties, or the partial utilization of this work product.

Suspicious Waste Sample March 8, 2014 LGRL Phase A Waste Relocation Glacier Ridge Landfill, Horicon WI

	Gla	acter Klug		, Horicon WI			
Sample ID	Constiuents Detected	Lab Results	Units	Compliance Summary TCLP	Comments		
				TGEF			
	1,1,1-Trichloroethane	407	µg/kg	NA			
	1,2,4-Trimethylbenzene	1560	µg/kg	NA			
	1,3,5-Trimethylbenzene	438	µg/kg	NA			
	1,4-Dichlorobenzene	192	µg/kg	NA			
	Benzene	88.1	µg/kg	PASS			
	Ethylbenzene	3200	µg/kg	NA			
	Isopropylbenzene (Cumene)	222	µg/kg	NA			
WASTE SAMPLE 1-A	Naphthalene	302	µg/kg	NA	GRL-LGRLA-		
	Styrene	359	µg/kg	NA	TVOC-1		
	Toluene	4690	µg/kg	NA	3/6/14		
	m&p-Xylene	6360	µg/kg	NA	3/0/14		
	n-Butylbenzene	124	µg/kg	NA			
	n-Propylbenzene	130	µg/kg	NA			
	o-Xylene	1850	µg/kg	NA			
	p-Isopropyltoluene	4440	µg/kg	NA			
	1,2,4-Trimethylbenzene	134	µg/kg	NA			
	1,4-Dichlorobenzene	89.5	µg/kg	PASS			
	Ethylbenzene	303	µg/kg	NA	GRL-LGRLA-		
	Isopropylbenzene (Cumene)	52.5	µg/kg	NA	TVOC-2		
	Naphthalene	61.5	µg/kg	NA	3/6/14		
WASTE SAMPLE 1-B	Styrene	159	µg/kg	NA			
	Toluene	3920	µg/kg	NA			
	m&p-Xylene	281	µg/kg	NA			
	o-Xylene	92.2	µg/kg	NA			
	p-Isopropyltoluene	262	µg/kg	NA			
	1,2,4-Trimethylbenzene	70.7	µg/kg	NA			
	1,4-Dichlorobenzene	36.7	µg/kg	PASS			
	Ethylbenzene	174	µg/kg	NA			
	Isopropylbenzene (Cumene)	35.7	µg/kg	NA	GRL-LGRLA-		
	Naphthalene	44.7	µg/kg	NA	TVOC-3		
WASTE SAMPLE 1-C	Toluene	503	µg/kg	NA	3/6/14		
	Trichlorofluoromethane	73.2	µg/kg	NA			
	m&p-Xylene	221	µg/kg	NA			
	o-Xylene	65.4	µg/kg	NA			
4	p-lsopropyltoluene	250	µg/kg	NA			

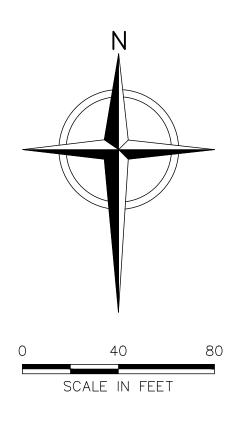
Suspicious Waste Sample May 9, 2014 LGRL Phase A Waste Relocation Glacier Ridge Landfill, Horicon, WI


	C-40-			Horicon, wi	
				Compliance Summary	
Sample ID	Constiuents Detected	Lab Results	Units	TCLP	Comments
	1,2,4-Trimethylbenzene	609	µg/kg	NA	
	1,3,5-Trimethylbenzene	196	µg/kg	NA	
	1,4-Dichlorobenzene	327	µg/kg	PASS	
	2-Butanone (MEK)	866	µg/kg	PASS	GRL-LGRLA-
	Ethylbenzene	326	µg/kg	NA	TCLP/TVOC-21
	Naphthalene	1270	µg/kg	NA	5/9/14
WASTE SAMPLE 2-A	Styrene	183	µg/kg	NA	
	Toluene	387	µg/kg	NA	
	m&p-Xylene	949	µg/kg	NA	
	n-Butylbenzene	118 J	µg/kg	NA	
	n-Propylbenzene	82.9 J	µg/kg	NA	
	o-Xylene	297	µg/kg	NA	
	1,2,4-Trimethylbenzene	437	µg/kg	NA	
	1,3,5-Trimethylbenzene	135	µg/kg	NA	
	1,4-Dichlorobenzene	155	µg/kg	PASS	GRL-LGRLA-
	2-Butanone (MEK)	388	µg/kg	PASS	
	Ethylbenzene	235	µg/kg	NA	TCLP/TVOC-22
WASTE SAMPLE 2-B	Naphthalene	922	µg/kg	NA	5/9/14
WASTE SAWIFLE Z-D	Styrene	353	µg/kg	NA	
	Toluene	403	µg/kg	NA	
	m&p-Xylene	675	µg/kg	NA	
	n-Butylbenzene	80.3	µg/kg	NA	
	n-Propylbenzene	55.4	µg/kg	NA	
	o-Xylene	202	µg/kg	NA	
	1,2,4-Trimethylbenzene	720	µg/kg	NA	
	1,3,5-Trimethylbenzene	204	µg/kg	NA	
	1,4-Dichlorobenzene	479	µg/kg	PASS	
	2-Butanone (MEK)	512	µg/kg	PASS	
	Ethylbenzene	1530	µg/kg	NA	GRL-LGRLA-
	Isopropylbenzene (Cumene)	67.2	µg/kg	NA	TCLP/TVOC-23
WASTE SAMPLE 2-C	Naphthalene	579	µg/kg	NA	5/9/14
	Styrene	558	µg/kg	NA	
	Tetrachloroethene	64.1	µg/kg	PASS	
	Toluene	2810	µg/kg	NA	
	m&p-Xylene	3520	µg/kg	NA	
	n-Butylbenzene	114	µg/kg	NA	
	n-Propylbenzene	175	µg/kg	NA	
	o-Xylene	750	µg/kg	NA	



Suspicious Waste Sample July 16, 2014 LGRL Phase A Waste Relocation Glacier Ridge Landfill, Horicon WI

	Gia	cici Riuge	Lanum	, Horicon WI	
				Compliance Summary	
Sample ID	Constiuents Detected	Lab Results	Units	TCLP	Comments
	1,2,4-Trimethylbenzene	347	µg/kg	NA	
	1,3,5-Trimethylbenzene	137	µg/kg	NA	
	1,4-Dichlorobenzene	29.4	µg/kg	PASS	LGRL-WA-VOC-01
	Ethylbenzene	364	µg/kg	NA	
WASTE SAMPLE 3-A	Toluene	289	µg/kg	NA	7/16/14
	m&p-Xylene	1890	µg/kg	NA	
	n-Propylbenzene	45.4	µg/kg	NA	
	o-Xylene	552	µg/kg	NA	
	p-Isopropyltoluene	48.8	µg/kg	NA	
	1,2,4-Trimethylbenzene	2350	µg/kg	NA	
	1,3,5-Trimethylbenzene	667	µg/kg	NA	
	Ethylbenzene	2690	µg/kg	NA	
	Isopropylbenzene (Cumene)	139	µg/kg	NA	
	Naphthalene	191	µg/kg	NA	
	Toluene	1490	µg/kg	NA	LGRL-WA-VOC-02
WASTE SAMPLE 3-B	cis-1,2-Dichloroethene	69.6	µg/kg	NA	7/16/14
	m&p-Xylene	16300	µg/kg	NA	
	n-Propylbenzene	322	µg/kg	NA	
	o-Xylene	4530	µg/kg	NA	
	p-Isopropyltoluene	110	µg/kg	NA	
	sec-Butylbenzene	107	µg/kg	NA	
	1,2,4-Trimethylbenzene	3320	µg/kg	NA	
	1,3,5-Trimethylbenzene	895	µg/kg	NA	
	Ethylbenzene	4350	µg/kg	NA	
	Isopropylbenzene (Cumene)	171	µg/kg	NA	
	Naphthalene	110	µg/kg	NA	LGRL-WA-VOC-03
WASTE SAMPLE 3-C	Toluene	4780	µg/kg	NA	
WASTE SAIVIPLE 3-C	cis-1,2-Dichloroethene	69.4	µg/kg	NA	7/16/14
	m&p-Xylene	22300	µg/kg	NA	
	n-Propylbenzene	443	µg/kg	NA	
	o-Xylene	6170	µg/kg	NA	
	p-Isopropyltoluene	120	µg/kg	NA	
	sec-Butylbenzene	119	µg/kg	NA	



1. THE GRADES SHOWN REPRESENT THE PHASE 6 SUBBASE GRADES.

ADVANCED DISPOSAL SERVICES GLACIER RIDGE LANDFILL DODGE COUNTY, WISCONSIN

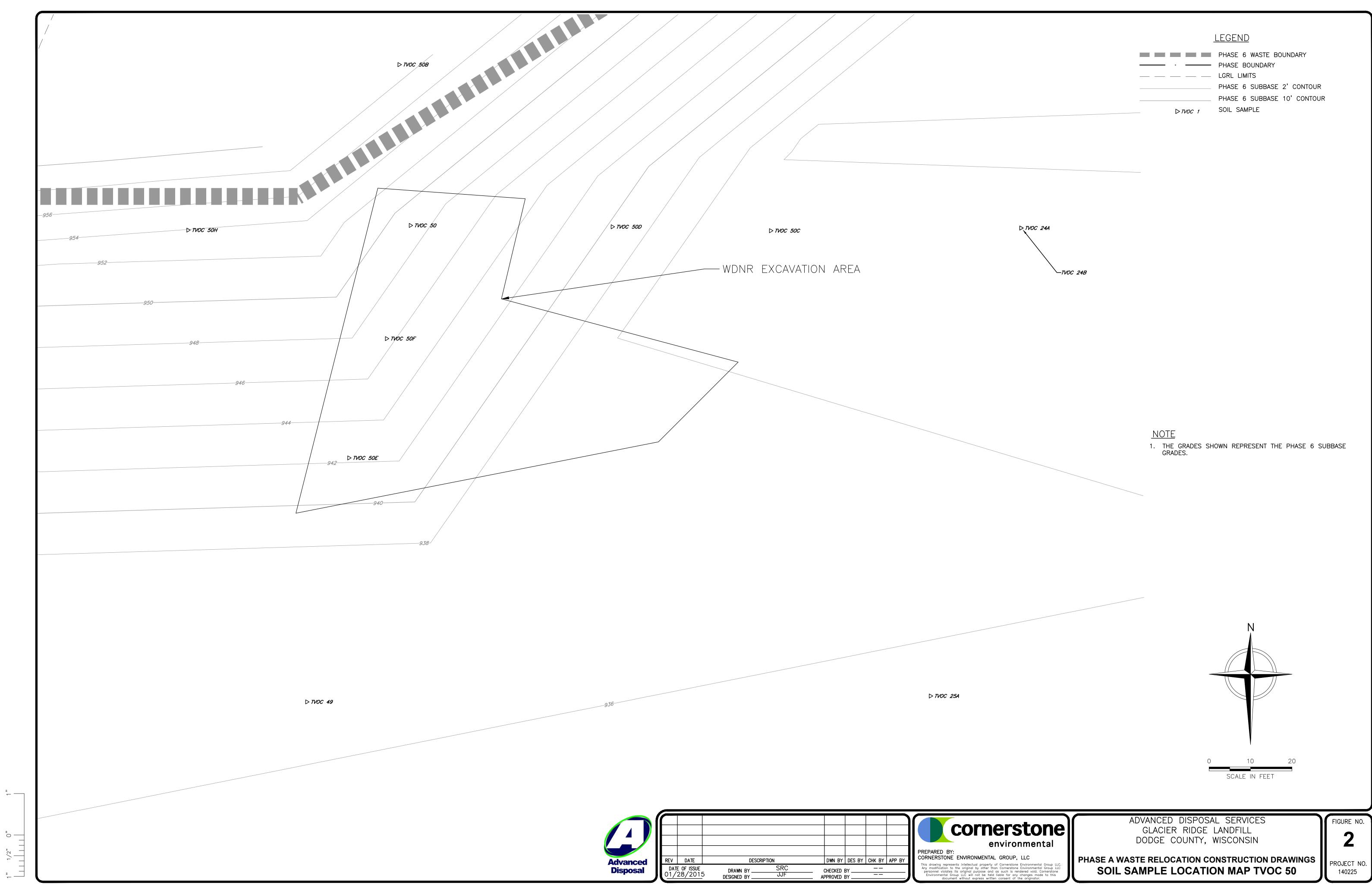
SOIL SAMPLE LOCATION MAP

						Compliance	Summary		
	Sample ID	Constiuents Detected	Lab Results	Units	NR 668 UTS	RCL for Direct Contact	RCL for Protection of Groundwater	TCLP	Comments
		Cadmium	0.28	mg/kg	PASS	PASS	PASS	PASS	
	7	Lead	4.29	mg/kg	PASS	PASS	PASS	PASS	
GRL-LGRLA-		2-Butanone (MEK)	1540	µg/kg	PASS	PASS	PASS	PASS	
TVOC-06	TVOC 6	p-Isopropyltoluene	43.2	µg/kg	N/A	PASS	N/A	N/A	
		Toluene	59.5	µg/kg	PASS	PASS	PASS	N/A	
through -17		m&p-Xylene	81.5	µg/kg	PASS	PASS	PASS	N/A	
4/3/14		o-Xylene	34.0	µg/kg	PASS	PASS	PASS	N/A	Taken Above TVOC 7
+ 0/ 1+		Cadmium	0.20	mg/kg	PASS	PASS	PASS	PASS	
	TVOC 7	Lead	3.7	mg/kg	PASS	PASS	PASS	PASS	Exceedance was for use of soil outside
	10007	2-Butanone (MEK)	15900	µg/kg	PASS	PASS	EXCEEDANCE	N/A	waste limits. Soil was disposed of in the
		Toluene	623	µg/kg	PASS	PASS	PASS	N/A	Glacier Ridge Landfill.
		Cadmium	0.21	mg/kg	PASS	PASS	PASS	PASS	
		Lead	4.5	mg/kg	PASS	PASS	PASS	PASS	Exceedance was for use of soil outside
		2-Butanone (MEK)	2310	µg/kg	PASS	PASS	EXCEEDANCE	PASS	waste limits. Soil was disposed of in the
	TVOC 8	Ethylbenzene	29.0	µg/kg	PASS	PASS	PASS	N/A	Glacier Ridge Landfill.
		Toluene	64.8	µg/kg	PASS	PASS	PASS	N/A	
		m&p-Xylene	98.1	µg/kg	PASS	PASS	PASS	N/A	Taken Above TVOC 9
		o-Xylene	38.8	µg/kg	PASS	PASS	PASS	N/A	
		Cadmium	0.19	mg/kg	PASS	PASS	PASS	PASS	
		Lead	3.8	mg/kg	PASS	PASS	PASS	PASS	
	TVOC 9	Ethylbenzene	31.3	µg/kg	PASS	PASS	PASS	N/A	
		m&p-Xylene	89.3	µg/kg	PASS	PASS	PASS	N/A	
		o-Xylene	37.2	µg/kg	PASS	PASS	PASS	N/A	
		Cadmium	0.14	mg/kg	PASS	PASS	PASS	PASS	
		Lead	3.70	mg/kg	PASS	PASS	PASS	PASS	
	TVOC 10	Ethylbenzene	31.3	µg/kg	PASS	PASS	PASS	N/A	
		1,2,4-Trimethylbenzene	89.3	µg/kg	N/A	PASS	PASS	N/A	
		m&p-Xylene	37.2	µg/kg	PASS	PASS	PASS	N/A	Taken Above TVOC 11
		Cadmium	0.18	mg/kg	PASS	PASS	PASS	PASS	
		Lead	3.7	mg/kg	PASS	PASS	PASS	PASS	
	TVOC 11	Ethylbenzene	33.4	µg/kg	PASS	PASS	PASS	N/A	
		1,2,4-Trimethylbenzene	29.2	µg/kg	N/A	PASS	PASS	N/A	
		m&p-Xylene	100	µg/kg	PASS	PASS	PASS	N/A	
		Cadmium	0.18	mg/kg	PASS	PASS	PASS	PASS	
		Lead	3.8	mg/kg	PASS	PASS	PASS	PASS	Exceedance was for use of soil outside
		2-Butanone (MEK)	5940	µg/kg	PASS	PASS	EXCEEDANCE	PASS	waste limits. Soil was disposed of in the
	TVOC 12	Ethylbenzene	58.1	µg/kg	PASS	PASS	PASS	N/A	Glacier Ridge Landfill.
		Toluene	133.0	µg/kg	PASS	PASS	PASS	N/A	
		m&p-Xylene	148.0	µg/kg	PASS	PASS	PASS	N/A	Taken Above TVOC 13
		o-Xylene	39.4	µg/kg	PASS	PASS	PASS	N/A	

					Compliance				
Sample ID	Constiuents Detected	Lab Results	Units	NR 668 UTS	RCL for Direct Contact	RCL for Protection of Groundwater	TCLP	Comments	
	Cadmium	0.14	mg/kg	PASS	PASS	PASS	PASS	Exceedance was for use of soil outside	
	Lead	3.4	mg/kg	PASS	PASS	PASS	PASS	waste limits. Soil was disposed of in th	
TVOC 13	2-Butanone (MEK)	13500	µg/kg	PASS	PASS	EXCEEDANCE	PASS	Glacier Ridge Landfill.	
110010	Ethylbenzene	83.6	µg/kg	PASS	PASS	PASS	N/A	Cidoler Mage Editami.	
	Toluene	225.0	µg/kg	PASS	PASS	PASS	N/A		
	m&p-Xylene	198.0	µg/kg	PASS	PASS	PASS	PASS		
	Cadmium	0.25	mg/kg	PASS	PASS	PASS	PASS		
_	Lead	4.7	mg/kg	PASS	PASS	PASS	PASS		
	2-Butanone (MEK)	516	µg/kg	PASS	PASS	PASS	PASS		
	1,4-Dichlorobenzene	34.8	µg/kg	PASS	PASS	PASS	PASS		
TVOC 14	Ethylbenzene	144	µg/kg	PASS	PASS	PASS	N/A		
_	Toluene	170	µg/kg	PASS	PASS	PASS	N/A		
_	1,2,4-Trimethylbenzene	49.9	µg/kg	N/A	PASS	PASS	N/A		
_	m&p-Xylene	453	µg/kg	PASS	PASS	PASS	N/A		
	o-Xylene	126	µg/kg	PASS	PASS	PASS	N/A	Taken Above TVOC 15	
_	Cadmium	0.17	mg/kg	PASS	PASS	PASS	PASS		
TVOC 15	Lead	2.7	mg/kg	PASS	PASS	PASS	PASS		
	Ethylbenzene	127	µg/kg	PASS	PASS	PASS	N/A		
_	m&p-Xylene	355	µg/kg	PASS	PASS	PASS	N/A		
	o-Xylene	94.6	µg/kg	PASS	PASS	PASS	N/A		
_	Cadmium	0.18	mg/kg	PASS	PASS	PASS	PASS		
_	Lead	3.9	mg/kg	PASS	PASS	PASS	PASS		
_	2-Butanone (MEK)	513	µg/kg	PASS	PASS	PASS	PASS		
TVOC 16	Ethylbenzene	122	µg/kg	PASS	PASS	PASS	N/A		
	Toluene	263	µg/kg	PASS	PASS	PASS	N/A		
Ļ	1,2,4-Trimethylbenzene	45.5	µg/kg	N/A	PASS	PASS	N/A	4	
Ļ	m&p-Xylene	347	µg/kg	PASS	PASS	PASS	N/A	_	
	o-Xylene	104	µg/kg	PASS	PASS	PASS	N/A	Taken Above TVOC 17	
ŀ	Cadmium	0.13	mg/kg	PASS	PASS	PASS	PASS	4	
TVOC 17	Lead	1.9	mg/kg	PASS	PASS	PASS	PASS	4	
ŀ	Toluene	102	µg/kg	PASS	PASS	PASS	N/A	4	
	m&p-Xylene	56.5	µg/kg	PASS	PASS	PASS	PASS		
TVOC 24A	Cadmium	0.40	mg/kg	PASS	PASS	PASS	PASS	Resample due to lab receipt temperatu	
	Lead	11.2	mg/kg	PASS	PASS	PASS	PASS	above 6°C	
Ļ	Cadmium	0.27	mg/kg	PASS	PASS	PASS	PASS	4	
-	Lead	32.6	mg/kg	EXCEEDANCE	PASS	EXCEEDANCE	PASS	4	
-	Ethylbenzene	190	µg/kg	PASS	PASS	PASS	N/A	4	
TVOC 24B	Toluene	105	µg/kg	PASS	PASS	PASS	N/A	4	
ŀ	1,2,4-Trimethylbenzene	84.7	µg/kg	N/A	PASS	PASS	N/A	4	
-	1,3,5-Trimethylbenzene	29.2	µg/kg	N/A	PASS	PASS	N/A	4	
Ļ	m&p-Xylene	368	µg/kg	PASS	PASS	PASS	N/A	4	
	o-Xylene	71	µg/kg	PASS	PASS	PASS	N/A		

GRL-LGRLA-TVOC-24 through -27 5/27/14

						Compliance	Summary		
	Sample ID	Constiuents Detected	Lab Results	Units	NR 668 UTS	RCL for Direct Contact	RCL for Protection of Groundwater	TCLP	Comments
		Cadmium	0.15	mg/kg	PASS	PASS	PASS	PASS	
	TVOC 25A	Lead	2.1	mg/kg	PASS	PASS	PASS	PASS	Resample due to lab receipt temperature
	TVUC 25A	Ethylbenzene	32.4	µg/kg	PASS	PASS	PASS	N/A	above 6°C
		m&p-Xylene	237	µg/kg	PASS	PASS	PASS	N/A	
		Cadmium	0.41	mg/kg	PASS	PASS	PASS	PASS	
		Lead	12.7	mg/kg	PASS	PASS	PASS	PASS	Resample due to lab receipt temperature
	TVOC 26A/B	Ethylbenzene	35.5	µg/kg	PASS	PASS	PASS	N/A	above 6°C. Also 26A contained a
	TVOC ZOAVB	1,2,4-Trimethylbenzene	35.2	µg/kg	PASS	PASS	PASS	N/A	contaminant (methylene chloride) between
6/12/14		m&p-Xylene	127	µg/kg	PASS	PASS	PASS	N/A	the LOD and RL. 26B tested clean.
		o-Xylene	35.7	µg/kg	PASS	PASS	PASS	N/A	
(B)	TVOC 27A	Cadmium	0.15	mg/kg	PASS	PASS	PASS	PASS	Resample due to lab receipt temperature
	1000 21A	Lead	1.7	mg/kg	PASS	PASS	PASS	PASS	above 6°C
	TVOC 31	Cadmium	0.21	mg/kg	PASS	PASS	PASS	PASS	
GRL-LGRLA-	1000 31	Lead	3.8	mg/kg	PASS	PASS	PASS	PASS	
TVOC-31	TVOC 32	Cadmium	0.31	mg/kg	PASS	PASS	PASS	PASS	
	1000 32	Lead	7.1	mg/kg	PASS	PASS	PASS	PASS	
through -35	TVOC 33	Cadmium	0.41	mg/kg	PASS	PASS	PASS	PASS	
	1000 33	Lead	11.0	mg/kg	PASS	PASS	PASS	PASS	
6/12/14		Cadmium	0.18	mg/kg	PASS	PASS	PASS	PASS	
	TVOC 34	Lead	3.3	mg/kg	PASS	PASS	PASS	PASS	
	1000 34	2-Butanone (MEK)	207	µg/kg	PASS	PASS	PASS	PASS	
		Toluene	124	µg/kg	PASS	PASS	PASS	N/A	Taken Above TVOC 35
		Cadmium	0.20	mg/kg	PASS	PASS	PASS	PASS	
	TVOC 35	Lead	3.0	mg/kg	PASS	PASS	PASS	PASS	
		Toluene	104	µg/kg	PASS	PASS	PASS	N/A	
	TVOC 36	Lead	2.60	mg/kg	PASS	PASS	PASS	PASS	Taken Above TVOC 37
GRL-LGRLA-		Cadmium	0.09	mg/kg	PASS	PASS	PASS	PASS	
TVOC-36	1 1	Lead	2.30	mg/kg	PASS	PASS	PASS	PASS	1
	TVOC 37	Ethylbenzene	80.60	µg/kg	PASS	PASS	PASS	N/A]
through -46	1000 37	1,2,4-Trimethylbenzene	30.70	µg/kg	N/A	PASS	PASS	N/A	1
6/17/14	Ī	m&p-Xylene	326.00	µg/kg	PASS	PASS	PASS	N/A]
	Ī	o-Xylene	83.60	µg/kg	PASS	PASS	PASS	N/A	1
	TVOC 38	Lead	3.50	mg/kg	PASS	PASS	PASS	PASS	Taken Above TVOC 39/39A
		Cadmium	0.12	mg/kg	PASS	PASS	PASS	PASS	Methylene Chloride was detected between
	Į Ē	Lead	2.80	mg/kg	PASS	PASS	PASS	PASS	the LOD and RL. In accordnace with NR
	TVOC 39/39A	Ethylbenzene	52.40	µg/kg	PASS	PASS	PASS	N/A	720 an additional sample was pulled (sample
	1 V U U 39/39A	Methylene Chloride	35.60	µg/kg	PASS	PASS	EXCEEDANCE	N/A	39A) which confirmed that no methylene
	Į Ē	1,2,4-Trimethylbenzene	34.00	µg/kg	N/A	PASS	PASS	N/A	chloride was present in the soil and was
	1	m&p-Xylene	222.00	µg/kg	PASS	PASS	PASS	N/A	likely an anomoly due to lab contamination.
	TVOC 40	Cadmium	0.09	mg/kg	PASS	PASS	PASS	PASS	
	1000 40	Lead	1.90	mg/kg	PASS	PASS	PASS	PASS	Taken Above TVOC 41
	TVOC 41	Lead	1.80	mg/kg	PASS	PASS	PASS	PASS	


					Compliance			
Sample ID	Constiuents Detected	Lab Results	Units	NR 668 UTS	RCL for Direct Contact	RCL for Protection of Groundwater	TCLP	Comments
	Cadmium	0.09	mg/kg	PASS	PASS	PASS	PASS	
	Lead	4.40	mg/kg	PASS	PASS	PASS	PASS	
	Ethylbenzene	98.40	µg/kg	PASS	PASS	PASS	N/A	
TVOC 42	Toluene	36.20	µg/kg	PASS	PASS	PASS	N/A	
1000 42	1,2,4-Trimethylbenzene	107.00	µg/kg	N/A	PASS	PASS	N/A	
	1,3,5-Trimethylbenzene	35.10	µg/kg	N/A	PASS	PASS	N/A	
	m&p-Xylene	433.00	µg/kg	PASS	PASS	PASS	N/A	
	o-Xylene	119.00	µg/kg	PASS	PASS	PASS	N/A	Taken Above TVOC 43
	Cadmium	0.10	mg/kg	PASS	PASS	PASS	PASS	
	Lead	1.90	mg/kg	PASS	PASS	PASS	PASS	
	Ethylbenzene	261.00	µg/kg	PASS	PASS	PASS	N/A	
	n-Propylbenzene	32.70	µg/kg	N/A	PASS	N/A	N/A	
TVOC 43	Toluene	40.10	µg/kg	PASS	PASS	PASS	N/A	
	1,2,4-Trimethylbenzene	128.00	µg/kg	N/A	PASS	PASS	N/A	
	1,3,5-Trimethylbenzene	45.10	µg/kg	N/A	PASS	PASS	N/A	
	m&p-Xylene	812.00	µg/kg	PASS	PASS	PASS	N/A	
	o-Xylene	190.00	µg/kg	PASS	PASS	PASS	N/A	
	Cadmium	0.09	mg/kg	PASS	PASS	PASS	PASS	
TVOC 44	Lead	3.20	mg/kg	PASS	PASS	PASS	PASS	
	2-Butanone (MEK)	1270.00	µg/kg	PASS	PASS	PASS	PASS	
TVOC 45	Lead	1.80	mg/kg	PASS	PASS	PASS	PASS	
1000 45	2-Butanone (MEK)	458.00	µg/kg	PASS	PASS	PASS	PASS	
TVOC 46	Lead	4.70	mg/kg	PASS	PASS	PASS	PASS	
	Cadmium	0.08	mg/kg	PASS	PASS	PASS	PASS	
TVOC 47	Lead	3.80	mg/kg	PASS	PASS	PASS	PASS	
	2-Butanone (MEK)	1350.00	µg/kg	PASS	PASS	EXCEEDANCE	PASS	
	Cadmium	0.11	mg/kg	PASS	PASS	PASS	PASS	
T1/00 40	Lead	4.80	mg/kg	PASS	PASS	PASS	PASS	
TVOC 48	Ethylbenzene	30.90	µg/kg	PASS	PASS	PASS	N/A	
	m&p-Xylene	108.00	µg/kg	PASS	PASS	PASS	N/A	
T) (00 40	Cadmium	0.25	mg/kg	PASS	PASS	PASS	PASS	
TVOC 49	Lead	8.20	mg/kg	PASS	PASS	PASS	PASS	
	Cadmium	0.40	mg/kg	PASS	PASS	PASS	PASS	
	Lead	46.8	mg/kg	EXCEEDANCE	PASS	EXCEEDANCE	PASS	
	n-Butylbenzene	164.0	µg/kg	N/A	PASS	N/A	N/A	
	cis-1,2-Dichloroethene	333.0	µg/kg	N/A	N/A	N/A	N/A	
	Ethylbenzene	18200	µg/kg	EXCEEDANCE	PASS	EXCEEDANCE	N/A	
	Isopropylbenzene (Cumene)	520	µg/kg	N/A	N/A	N/A	N/A	
TVOC 50	Naphthalene	215	µg/kg	PASS	PASS	PASS	N/A	
1000 50	n-Propylbenzene	486	µg/kg	N/A	PASS	N/A	N/A	
	Toluene	29300	µg/kg	EXCEEDANCE	PASS	EXCEEDANCE	N/A	
	Trichloroethene	2560	µg/kg	N/A	N/A	N/A	N/A	
	1,2,4-Trimethylbenzene	1270.0	µg/kg	N/A	PASS	EXCEEDANCE	N/A	
	1,3,5-Trimethylbenzene	403.0	µg/kg	N/A	PASS	EXCEEDANCE	N/A	
	m&p-Xylene	64400	µg/kg	EXCEEDANCE	PASS	EXCEEDANCE	N/A	
	o-Xylene	16300	µg/kg	EXCEEDANCE	PASS	EXCEEDANCE	N/A	

GRL-LGRLA-TVOC-47 through -54 & 24B 7/17/14

					Compliance	Summary		
Sample ID	Constiuents Detected	Lab Results	Units	NR 668 UTS	RCL for Direct Contact	RCL for Protection of Groundwater	TCLP	Comments
TVOC 51	Cadmium	0.11	mg/kg	PASS	PASS	PASS	PASS	
100051	Lead	6.40	mg/kg	PASS	PASS	PASS	PASS	
	Cadmium	0.28	mg/kg	PASS	PASS	PASS	PASS	
TVOC 52	Lead	23.0	mg/kg	EXCEEDANCE	PASS	PASS	PASS	
	m&p-Xylene	61.8	µg/kg	PASS	PASS	PASS	N/A	
TVOC 53	Cadmium	0.08	mg/kg	PASS	PASS	PASS	PASS	
1000 55	Lead	10.70	mg/kg	PASS	PASS	PASS	PASS	
	Cadmium	0.71	mg/kg	PASS	PASS	PASS	PASS	
TVOC 54	Lead	88.9	mg/kg	EXCEEDANCE	PASS	EXCEEDANCE	PASS	
	m&p-Xylene	68.6	µg/kg	PASS	PASS	PASS	N/A	

0 -

	(
									enviror
	н								PREPARED BY:
Advanced	F	REV	DATE	DESCRIPTION	DWN BY	DES BY	СНК ВҮ	APP BY	CORNERSTONE ENVIRONMENTAL GROUP,
Disposal			0F ISSUE 28/2015	DRAWN BY SRC	CHECKED APPROVED				This drawing represents intellectual property of Cornerstone Any modification to the original by other than Cornerstone personnel violates its original purpose and as such is rem Environmental Group LLC will not be held liable for any document without express written consent of th

Below Waste Additional Tests Around TVOC 50 LGRL Phase A Waste Relocation Glacier Ridge Landfill, Horicon WI

					Complia	nce Summary		
Sample ID	Constiuents Detected	Lab Results	Units	NR 668 UTS	RCL for Direct Contact	RCL for Protection of Groundwater	TCLP	Comments
	Cadmium	0.28	mg/kg	PASS	PASS	PASS	PASS	
50A	Lead	9.1	mg/kg	PASS	PASS	PASS	PASS	
50A	cis-1,2-Dicholoroethene	703	µg/kg	NA	PASS	EXCEEDANCE	NA	
	Vinyl Chloride	243	µg/kg	PASS	PASS	EXCEEDANCE	PASS	
	Cadmium	0.11	mg/kg	PASS	PASS	PASS	PASS	
50B	Lead	9.3	mg/kg	PASS	PASS	PASS	PASS	
	Ethylbenzene	207	µg/kg	PASS	PASS	PASS	NA	
500	Cadmium	0.082	mg/kg	PASS	PASS	PASS	PASS	
50C	Lead	10	mg/kg	PASS	PASS	PASS	PASS	
	Cadmium	0.13	mg/kg	PASS	PASS	PASS	PASS	
	Lead	8.1	mg/kg	PASS	PASS	PASS	PASS	
	cis-1,2-Dicholoroethene	539	µg/kg	NA	PASS	EXCEEDANCE	NA	
	Ethylbenzene	410	µg/kg	PASS	PASS	PASS	NA	
50D	Toluene	643	µg/kg	PASS	PASS	PASS	NA	
	1,2,4-Trimethylbenzene	42	µg/kg	NA	PASS	PASS	NA	
	Vinyl Chloride	537	µg/kg	PASS	PASS	EXCEEDANCE	PASS	
	m&p-Xylene	742	µg/kg	PASS	PASS	PASS	NA	
	o-Xylene	126	µg/kg	PASS	PASS	PASS	NA	
	Cadmium	0.25	mg/kg	PASS	PASS	PASS	PASS	
	Lead	15.3	mg/kg	EXCEEDANCE	PASS	PASS	PASS	
	sec-Butylbenzene	69.6	µg/kg	NA	PASS	NA	NA	
	cis-1,2-Dicholoroethene	445	µg/kg	NA	PASS	EXCEEDANCE	NA	
	Ethylbenzene	6560	µg/kg	PASS	PASS	EXCEEDANCE	NA	
	Isopropylbenzene (Cumene)	301	µg/kg	NA	PASS	NA	NA	
50F	Naphthalene	200	µg/kg	PASS	PASS	PASS	NA	
50E	n-Propylbenzene	715	µg/kg	NA	PASS	NA	NA	
	Toluene	9330	µg/kg	PASS	PASS	EXCEEDANCE	NA	
	Trichloroethene	159	µg/kg	PASS	PASS	EXCEEDANCE	PASS	
	1,2,4-Trimethylbenzene	3580	µg/kg	NA	PASS	EXCEEDANCE	NA	
	1,3,5-Trimethylbenzene	1150	µg/kg	NA	PASS	EXCEEDANCE	NA	
	m&p-Xylene	24800	µg/kg	PASS	PASS	EXCEEDANCE	NA	
	o-Xylene	6830	µg/kg	PASS	PASS	EXCEEDANCE	NA	

Below Waste Additional Tests Around TVOC 50 LGRL Phase A Waste Relocation Glacier Ridge Landfill, Horicon WI

						Complia	nce Summary		
	Sample ID	Constiuents Detected	Lab Results	Units	NR 668 UTS	RCL for Direct Contact	RCL for Protection of Groundwater	TCLP	Comments
		Cadmium	0.084	mg/kg	PASS	PASS	PASS	PASS	
		Lead	5.2	mg/kg	PASS	PASS	PASS	PASS	
-		sec-Butylbenzene	1070	µg/kg	NA	PASS	NA	NA	
		cis-1,2-Dicholoroethene	7040	µg/kg	NA	PASS	EXCEEDANCE	NA	
		Ethylbenzene	52300	µg/kg	PASS	EXCEEDANCE	EXCEEDANCE	NA	
		Isopropylbenzene (Cumene)	2650	µg/kg	NA	PASS	NA	NA	
	50F	p-Isoropyltoluene	752	µg/kg	NA	PASS	NA	NA	
-	501	n-Propylbenzene	8520	µg/kg	NA	PASS	NA	NA	
		Toluene	194000	µg/kg	EXCEEDANCE	PASS	EXCEEDANCE	NA	
		Trichloroethene	123000	µg/kg	EXCEEDANCE	EXCEEDANCE	EXCEEDANCE	EXCEEDANCE	
		1,2,4-Trimethylbenzene	45900	µg/kg	NA	PASS	EXCEEDANCE	NA	
		1,3,5-Trimethylbenzene	11700	µg/kg	NA	PASS	EXCEEDANCE	NA	
		m&p-Xylene	209000	µg/kg	EXCEEDANCE	EXCEEDANCE	EXCEEDANCE	NA	
		o-Xylene	57300	µg/kg	EXCEEDANCE	PASS	EXCEEDANCE	NA	
	50G	Cadmium	0.17	mg/kg	PASS	PASS	PASS	PASS	
	500	Lead	9.6	mg/kg	PASS	PASS	PASS	PASS	
	50H	Cadmium	0.09	mg/kg	PASS	PASS	PASS	PASS	
	5011	Lead	20.0	mg/kg	EXCEEDANCE	PASS	PASS	PASS	

Below Waste Soil Additional Tests WDNR Excavation LGRL Phase A Waste Relocation Glacier Ridge Landfill, Horicon WI

						Complia			
Sample ID	Constiuents Detected	Lab Results	Results (mg/kg)	Units	NR 668 UTS	RCL for Direct Contact	RCL for Protection of Groundwater	TCLP	Comments
	1,2,4-Trimethylbenzene	43.9	0.04	µg/kg	NA	PASS	PASS	NA	
	Ethylbenzene	114	0.11	µg/kg	PASS	PASS	PASS	NA	
	Toluene	563	0.56	µg/kg	PASS	PASS	PASS	NA	
CON-1	Trichloroethene	438	0.44	µg/kg	PASS	PASS	EXCEEDANCE	PASS	
CON-1	Vinyl chloride	29.8	0.03	µg/kg	PASS	PASS	EXCEEDANCE	PASS	
	cis-1,2-Dichloroethene	289	0.29	µg/kg	NA	PASS	EXCEEDANCE	NA	
	m&p-Xylene	406	0.41	µg/kg	PASS	PASS	PASS	NA	
	o-Xylene	93.5	0.09	µg/kg	PASS	PASS	PASS	NA	
	1,2,4-Trimethylbenzene	22800	22.80	µg/kg	NA	PASS	PASS	NA	
	1,3,5-Trimethylbenzene	6970	6.97	µg/kg	NA	PASS	PASS	NA	
	Ethylbenzene	49300	49.30	µg/kg	EXCEEDANCE	EXCEEDANCE	EXCEEDANCE	NA	
	Isopropylbenzene (Cumene)	1970	1.97	µg/kg	NA	PASS	NA	NA	
	Toluene	183000	183.00	µg/kg	EXCEEDANCE	PASS	EXCEEDANCE	NA	
CON-2	Trichloroethene	14700	14.70	µg/kg	EXCEEDANCE	EXCEEDANCE	EXCEEDANCE	EXCEEDANCE	
00112	Vinyl chloride	1960	1.96	µg/kg	PASS	PASS	EXCEEDANCE	PASS	
	cis-1,2-Dichloroethene	67900	67.90	µg/kg	NA	PASS	EXCEEDANCE	NA	
	m&p-Xylene	151000	151.00	µg/kg	EXCEEDANCE	PASS	EXCEEDANCE	NA	
	n-Butylbenzene	932	0.93	µg/kg	NA	PASS	NA	NA	
	n-Propylbenzene	5970	5.97	µg/kg	NA	PASS	NA	NA	
	o-Xylene	39300	39.30	µg/kg	EXCEEDANCE	PASS	PASS	NA	
	1,2,4-Trimethylbenzene	114	0.11	µg/kg	NA	PASS	PASS	NA	
	1,3,5-Trimethylbenzene	32.7	0.03	µg/kg	NA	PASS	PASS	NA	
	Ethylbenzene	1250	1.25	µg/kg	PASS	PASS	PASS	NA	
CON-3	Toluene	678	0.68	µg/kg	PASS	PASS	PASS	NA	
00110	cis-1,2-Dichloroethene	55.9	0.06	µg/kg	NA	PASS	EXCEEDANCE	NA	
	m&p-Xylene	6590	6.59	µg/kg	PASS	PASS	EXCEEDANCE	NA	
	n-Propylbenzene	33.9	0.03	µg/kg	NA	PASS	NA	NA	
	o-Xylene	1000	1.00	µg/kg	PASS	PASS	EXCEEDANCE	NA	
	1,2,4-Trimethylbenzene	13900	13.90	µg/kg	NA	PASS	PASS	NA	
	1,3,5-Trimethylbenzene	4330	4.33	µg/kg	NA	PASS	PASS	NA	
	Ethylbenzene	12800	12.80	µg/kg	EXCEEDANCE	PASS	EXCEEDANCE	NA	
	Isopropylbenzene (Cumene)	1110	1.11	µg/kg	NA	PASS	NA	NA	
	Naphthalene	286	0.29	µg/kg	PASS	PASS	PASS	NA	
	Toluene	14300	14.30	µg/kg	EXCEEDANCE	PASS	EXCEEDANCE	NA	
CON-4	cis-1,2-Dichloroethene	567	0.57	µg/kg	NA	PASS	EXCEEDANCE	NA	
	m&p-Xylene	39900	39.90	µg/kg	EXCEEDANCE	PASS	EXCEEDANCE	NA	
	n-Butylbenzene	933	0.93	µg/kg	NA	PASS	NA	NA	
	n-Propylbenzene	4110	4.11	µg/kg	NA	PASS	NA	NA	
	o-Xylene	10500	10.50	µg/kg	PASS	PASS	EXCEEDANCE	NA	
	p-Isopropyltoluene	206	0.21	µg/kg	NA	PASS	NA	NA	1
	sec-Butylbenzene	398	0.40	µg/kg	NA	PASS	NA	NA	

Below Waste Soil Tests WDNR Soil Excavation Relocated Soil Summary LGRL Phase A Waste Relocation Glacier Ridge Landfill, Horicon WI

			Results (mg/kg)	Units	Compliance Summary				
Sample ID	Constiuents Detected	Lab Results			NR 668 UTS	RCL for Direct Contact	RCL for Protection of Groundwater	TCLP	Comments
	1,2,4-Trimethylbenzene	87.0	0.09	µg/kg	NA	PASS	PASS	NA	
	Ethylbenzene	154	0.15	µg/kg	PASS	PASS	PASS	NA	
	Toluene	309	0.31	µg/kg	PASS	PASS	PASS	NA	
PILE-1	Trichloroethene	345	0.35	µg/kg	PASS	PASS	EXCEEDANCE	PASS	
	cis-1,2-Dichloroethene	313	0.31	µg/kg	NA	PASS	EXCEEDANCE	NA	
	m&p-Xylene	522	0.52	µg/kg	PASS	PASS	PASS	NA	
	o-Xylene	178	0.18	µg/kg	PASS	PASS	PASS	NA	
	1,2,4-Trimethylbenzene	3490	3.49	µg/kg	NA	PASS	EXCEEDANCE	NA	
	1,3,5-Trimethylbenzene	940	0.94	µg/kg	NA	PASS	EXCEEDANCE	NA	
	2-Butanone (MEK)	293	0.29	µg/kg	PASS	PASS	PASS	PASS	
	Ethylbenzene	1710	1.71	µg/kg	PASS	PASS	EXCEEDANCE	NA	
	Isopropylbenzene (Cumene)	159	0.16	µg/kg	NA	PASS	NA	NA	
	Naphthalene	193	0.19	µg/kg	PASS	PASS	PASS	NA	
	Styrene	87.3	0.09	µg/kg	NA	PASS	PASS	NA	
PILE-2	Toluene	975	0.98	µg/kg	PASS	PASS	EXCEEDANCE	NA	
	Trichloroethene	96.0	0.10	µg/kg	PASS	PASS	EXCEEDANCE	PASS	
	cis-1,2-Dichloroethene	44.9	0.04	µg/kg	NA	PASS	EXCEEDANCE	NA	
	m&p-Xylene	7370	7.37	µg/kg	PASS	PASS	EXCEEDANCE	NA	
	n-Propylbenzene	549	0.55	µg/kg	NA	PASS	NA	NA	
	o-Xylene	2820	2.82	µg/kg	PASS	PASS	EXCEEDANCE	NA	
	p-lsopropyltoluene	43.6	0.04	µg/kg	NA	PASS	PASS	NA	
	sec-Butylbenzene	56.5	0.06	µg/kg	NA	PASS	NA	NA	
	1,2,4-Trimethylbenzene	504	0.50	µg/kg	NA	PASS	PASS	NA	
	1,3,5-Trimethylbenzene	111	0.11	µg/kg	NA	PASS	PASS	NA	
	Ethylbenzene	1530	1.53	µg/kg	PASS	PASS	PASS	NA	
	Isopropylbenzene (Cumene)	34.1	0.03	µg/kg	NA	PASS	NA	NA	
PILE-3	Toluene	2070	2.07	µg/kg	PASS	PASS	EXCEEDANCE	NA	
FILC-3	Trichloroethene	326	0.33	µg/kg	PASS	PASS	EXCEEDANCE	PASS	
	cis-1,2-Dichloroethene	566	0.57	µg/kg	NA	PASS	EXCEEDANCE	NA	
	m&p-Xylene	5550	5.55	µg/kg	PASS	PASS	EXCEEDANCE	NA	
	n-Propylbenzene	75.9	0.08	µg/kg	NA	PASS	NA	NA	
	o-Xylene	955	0.96	µg/kg	PASS	PASS	EXCEEDANCE	NA	

Below Waste Soil Tests WDNR Soil Excavation Relocated Soil Summary LGRL Phase A Waste Relocation Glacier Ridge Landfill, Horicon WI

	Compliance Summary								
Sample ID	Constiuents Detected	Lab Results	Results (mg/kg)	Units	NR 668 UTS	RCL for Direct Contact	RCL for Protection of Groundwater	TCLP	Comments
	1,2,4-Trimethylbenzene	59400	59.40	µg/kg	NA	PASS	EXCEEDANCE	NA	
	1,3,5-Trimethylbenzene	19300	19.30	µg/kg	NA	PASS	EXCEEDANCE	NA	
	Ethylbenzene	192000	192.00	µg/kg	EXCEEDANCE	EXCEEDANCE	EXCEEDANCE	NA	
	Toluene	501000	501.00	µg/kg	EXCEEDANCE	PASS	EXCEEDANCE	NA	
PILE-4	Trichloroethene	1090000	1090.00	µg/kg	EXCEEDANCE	EXCEEDANCE	EXCEEDANCE	EXCEEDANCE	
	cis-1,2-Dichloroethene	95200	95.20	µg/kg	NA	PASS	EXCEEDANCE	NA	
	m&p-Xylene	615000	615.00	µg/kg	EXCEEDANCE	EXCEEDANCE	EXCEEDANCE	NA	
	n-Propylbenzene	13200	13.20	µg/kg	NA	PASS	NA	NA	
	o-Xylene	158000	158.00	µg/kg	EXCEEDANCE	EXCEEDANCE	EXCEEDANCE	NA	
	1,2,4-Trimethylbenzene	1500	1.50	µg/kg	NA	PASS	EXCEEDANCE	NA	
	1,3,5-Trimethylbenzene	455	0.46	µg/kg	NA	PASS	EXCEEDANCE	NA	
	Ethylbenzene	2180	2.18	µg/kg	PASS	PASS	EXCEEDANCE	NA	
	Isopropylbenzene (Cumene)	94.2	0.09	µg/kg	NA	PASS	NA	NA	
	Methylene Chloride	62.8	0.06	µg/kg	PASS	PASS	EXCEEDANCE	NA	
	Naphthalene	64.8	0.06	µg/kg	PASS	PASS	PASS	NA	
PILE-5	Styrene	97.2	0.10	µg/kg	NA	PASS	PASS	NA	
	Toluene	2920	2.92	µg/kg	PASS	PASS	EXCEEDANCE	NA	
	Trichloroethene	360	0.36	µg/kg	PASS	PASS	EXCEEDANCE	PASS	
	cis-1,2-Dichloroethene	767	0.77	µg/kg	NA	PASS	EXCEEDANCE	NA	
	m&p-Xylene	7030	7.03	µg/kg	PASS	PASS	EXCEEDANCE	NA	
	n-Propylbenzene	287	0.29	µg/kg	NA	PASS	NA	NA	
	o-Xylene	1890	1.89	µg/kg	PASS	PASS	EXCEEDANCE	NA	

Attachment C

Construction Documentation Report, Glacier Ridge Landfill – LGRL Phase B Waste Relocation (Text and Selected Tables and Drawings only)

Building lifetime relationships with our clients and employees.

Construction Documentation Report

Glacier Ridge Landfill – LGRL Phase B Waste Relocation

October 2015

Prepared for: Advanced Disposal Glacier Ridge Landfill, LLC N7296 County Hwy V Horicon, WI 53032

8413 Excelsior Drive Madison, WI 53717 (845) 695-0200

REPORT CERTIFICATION

Construction Documentation Report Glacier Ridge Landfill – LGRL Phase B Waste Relocation Horicon, Dodge County, Wisconsin

I, Mark J. Torresani, P.E., hereby certify that I am a Registered Professional Engineer in the State of Wisconsin, registered in accordance with the requirements of ch. A-E4, Wisconsin Administrative Code (Wis. Adm. Code); that this document has been prepared in accordance with the Rules of Professional Conduct in ch. A-E8, Wis. Adm. Code; and that, to the best of knowledge, all information contained in this document is correct, and the document was prepared in compliance with all applicable requirements of chs. NR 500 to NR 538, Wis. Adm. Code.

Mark J. Torresani, P.E. Wisconsin P.E. No. 29355

TABLE OF CONTENTS

REPO	ORT C	CERTIF	ICATIONII					
LIST	LIST OF FIGURES AND DRAWINGSVI							
1	INTRODUCTION							
	1.1 1.2 1.3	Site H	RAL INFORMATION					
2	CON	STRUG	CTION DOCUMENTS AND PARTIES					
	2.1 2.2							
3	EROSION CONTROL AND WETLAND PROTECTION							
4	cov	COVER SOIL EXCAVATION						
5	LAN	DFILL	GAS SYSTEM ABANDONMENT 8					
	5.1 5.2 5.3	BLOW	Vell and Piping Abandonment					
6	MONITORING WELL ABANDONMENT							
	6.1 Non-Groundwater Well Abandonments6.2 Groundwater Well Abandonments							
7	WASTE EXCAVATION							
	7.1 7.2							
	7.3		ONMENTAL MONITORING / PROTECTION 11 AMBIENT AIR MONITORING 11 Dust and Odor Control Measures 13 Surface Water Management 13 Contact Water / Leachate Management 13 Groundwater Dewatering 13					

	7.4	WAST	e Handling, Screening and Characterization	14
		7.4.1	Typical Waste	14
		7.4.2	Salvageable Waste	15
		7.4.3	Suspicious Waste	15
		7.4.4	Hazardous Waste	15
	7.5	WAST	e Types and Quantities	16
8	SOI	L EXCA	VATION	17
	8.1	Intro	DUCTION	17
	8.2	Soil 7	TYPES	17
	8.3	SOIL S	SAMPLING, ANALYSIS AND CLASSIFICATION	17
		8.3.1	LGRL Final Cover Soils	18
		8.3.2	Soil Within the LGRL Waste	18
		8.3.3	Soil Between the Bottom of LGRL Waste and Above Phase 7 Liner	
			Subbase Grades	18
		8.3.4	Additional Soil Excavation for Remediation	19
9	CO	ICLUSI	ON	20
LIN	IITAT	IONS		21
DR	AWIN	GS		22

Rev. 0, 10/29/15 Project 150334

APPENDICES

- APPENDIX A DAILY FIELD REPORTS / WETLAND INSEPCTION FORMS
- APPENDIX B PHOTOGRAPHIC LOG
- APPENDIX C MONITORING WELL ABANDONMENT FORMS
- APPENDIX D AIR MONITORING RESULTS
- APPENDIX E SUSPICIOUS WASTE TEST SUMMARY REPORTS
- APPENDIX F SOIL TEST SUMMARY REPORTS
- APPENDIX G WDNR SOIL ADDITIONAL SOIL REMOVAL TESTS

List of Figures and Drawings

Figures

Figure 1 Soil Sample Locations

Drawings

01	Title Sheet
02	Abbreviations, Legends and Notes
03	Preconstruction Conditions (Overall)
04	Preconstruction Conditions (Project Area)
05	LFG Collection System Abandonment Plan
06	Waste Excavation Grades
07	Bottom of Contaminated Soil Grades
08	Details

1 INTRODUCTION

1.1 General Information

This Construction Documentation Report documents the Land and Gas Reclamation Landfill (LGRL) Phase B Waste Relocation Project. LGRL is a Superfund site, Wisconsin Department of Natural Resources (WDNR) License No. 1118, Environmental Protection Agency (EPA) ID No. WID0529060888 that is located within the approved Advanced Disposal Services (Advanced) Glacier Ridge Landfill (GRL) Southeast Expansion footprint. LGRL is located in the SW ¼ of Section 35 T12N, R16E, Town of Williamstown, Dodge County, Wisconsin.

LGRL is part of the larger Advanced GRL facility which is comprised of LGRL, the Closed North Landfill, the South Expansion and the Southeast Expansion. With the exception of LGRL all of the other landfill areas accept or accepted only municipal solid waste in accordance with Chapter NR 500 Wisconsin Administrative Code. The facility is owned and operated by Advanced Disposal Services Glacier Ridge Landfill, LLC.

1.2 Site History

LGRL is a Superfund site that began accepting waste in the 1950s and was closed in the mid-1980s. A combination of municipal solid waste, construction debris, and solvent waste were accepted at LGRL over its life. LGRL is located in the footprint of the proposed GRL Southeast Expansion. As part of the Plan of Operation for the GRL Southeast Expansion, prepared by SCS Engineers, Madison, WI (date of WDNR approval October 2013), LGRL would be removed in three phases to remediate the site and to allow for the construction of the Southeast Expansion. Phase A of the waste relocation was completed in 2014, while Phase B was completed in May 2015.

A plan for relocating the LGRL waste (LGRL Waste Removal Plan, Dec. 2013) was prepared as part of the Plan of Operation for the Southeast Expansion. The LGRL Waste Removal Plan was used as the basis for the relocation of the LGRL waste.

1.3 Purpose and Scope

CQM, Inc. was retained by Advanced to provide construction quality assurance (CQA) and oversight during Phase B of the LGRL Waste Relocation Project to ensure completion of the project in accordance with the GRL Southeast Expansion Plan of Operation, the LGRL Waste Removal Plan, and the GRL Southeast Expansion Plan of Operation WDNR Conditions of Approval. Cornerstone provided construction management and overall project oversight during the project.

Rev. 0, 10/29/15 Project 150334

The services provided by Cornerstone and CQM, Inc. on behalf of Advanced included observation of the LGRL cover soils excavation, LGRL waste excavation, and LGRL contaminated soil excavation. Portions of the east berm construction were also observed as part of the project, the documentation for the east berm construction has been submitted to the WDNR with the Phase 7 Liner Construction Documentation Report. Throughout the course of the project CQM monitored the waste excavation for signs of suspect wastes as defined in the LGRL Waste Removal Plan, conducted air monitoring, collected waste, soil and water samples, and recorded daily activities during waste excavation.

This report has been prepared in accordance with Chapter NR 500 Wis. Adm. Code, Condition No. 6 of the Plan of Operation Approval Dated October 13, 2014, and includes the information required as part of the LGRL Waste Removal Plan.

2 CONSTRUCTION DOCUMENTS AND PARTIES

2.1 Reference Documents

The following reference documents were utilized during the execution of the LGRL Phase B Waste Relocation:

- Chapter NR 500 Wisconsin Administrative Code
- Chapter NR 600 Wisconsin Administrative Code
- Chapter NR 140 Wisconsin Administrative Code
- USEPA SW-846, "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods"
- Southeast Expansion Conditional Plan of Operation Approval and Hazardous Waste Remediation Variance dated October 13, 2014
- Document Titled: "Land & Gas Reclamation Landfill Waste Removal Plan for Glacier Ridge Landfill Southeast Expansion" (Revision 1) prepared by SCS Engineers, Madison, WI dated December 2013.
- Document Titled: "Plan of Operation Advanced Disposal Services Glacier Ridge Landfill Southeast Expansion" prepared by SCS Engineers, Madison, WI dated April 23, 2013.
- Document Titled: "Plan of Operation Addendum No. 1 Advanced Disposal Services Glacier Ridge Landfill Southeast Expansion" prepared by SCS Engineers, Madison, WI dated June 28, 2013.
- Document Titled: "Plan of Operation Addendum No. 2 Advanced Disposal Services Glacier Ridge Landfill Southeast Expansion" prepared by SCS Engineers, Madison, WI dated October 3, 2013.

2.2 Parties

The following parties were involved in the LGRL Phase B Waste Relocation:

Wisconsin Department of Natural Resources (WDNR)

Ann Bekta, P.E. - Waste Management Engineer

Adam Hogan, P.G. - Hydrogeologist

Will (Woody) Myers - Hydrogeologist

Advanced Disposal Glacier Ridge Landfill, LLC

Jay Warzinski - Corporate Director of Landfill Operations

Doug Coenen – Regional Landfill Operations Manager

Lonn Walter - General Manager

Jake Margelofsky - Operations Manager

Cornerstone Environmental Group, LLC (Project Management)

Joe Falle, P.E. - Project Manager

Mark Torresani, P.E. - Certifying Engineer

CQM, Incorporated (Survey, Physical Soil Analysis)

Nick Sturzl, P.E. – Project Manager

Rick Wiemann – Project Technician

Austin Field - Project Technician

Tom Bishop – Project Technician

SCS Engineers, Inc. (Design Engineer)

Sherren Clark, P.E., P.G. - Design Engineer Project Manager

Mashuda Contractors, Inc (General Contractor)

Stacey Krueger - Project Manager

George Reynolds - Project Superintendent

Mike Burt - Project Superintendent

PACE Analytical (Soil/Waste/Liquid Analytical Laboratory)

Dan Milewsky - Project Manager

Air Technology Laboratories, Inc. (Air Sample Analytical Laboratory)

Joann De La Ossa - Project Manager

Malter Associates, Inc. (Industrial Hygienist)

Dave Malter - President

Veolia Environmental Services – Industrial Services (Field Testing of Air and Soil Samples)

Jon Borkenhagen – Response Manager

3 EROSION CONTROL AND WETLAND PROTECTION

Prior to construction startup, erosion control measures were installed to protect the wetland areas to the east of the LGRL Phase B Excavation Area. The wetland protection included the protection provisions specified in the Wetland Protection and Erosion Control Plan. The Wetland Protection and Erosion Control Plan was included in Appendix E of the Southeast Expansion Plan of Operation. At the beginning of the project wire backed silt fence with a warning ribbon was installed prior to any construction commencing. The silt fence was installed along the approved line as specified in the Plan of Operation, directed by the WDNR and as shown on Drawing No. 5 of the attached plan set. On a weekly basis, the project technician inspected the silt fence and recorded the results on wetland inspection forms. The wetland inspection forms are included in Appendix A.

No work occurred in the wetland outside of the predetermined boundaries specified in the Wetland Protection and Erosion Control Plan. During construction all non-contact surface water runoff was directed to Sedimentation Basin No.2 located to the north of the LGRL Phase B Excavation Area. All precipitation and stormwater runoff that came into contact with waste or contaminated soils was contained in the area of the excavation, collected and routed or hauled to the leachate collection system for subsequent treatment. No contact water was allowed to enter the wetlands.

4 COVER SOIL EXCAVATION

Prior to performing waste excavation activities, the cover soils on top of the waste were removed. The cap consisted of the following layers from top to bottom:

- Vegetative layer
- 6-inch topsoil layer
- Rooting zone layer (variable depth, 24 inches min.)
- 24-inch clay layer
- Grading Layer (variable depth, min. 6 inches)

A large portion of the topsoil and rooting zone layers were excavated during 2014. These soils were utilized to construct portions of the perimeter berm for the Phase 6 Liner Project. Clay soils were kept intact until just prior to the excavation of the Phase B Waste.

Efforts were made to segregate soils during the remainder of the excavation. Topsoil was stockpiled for future projects, rooting zone was stockpiled or used for daily cover and clay was segregated and stockpiled for future use to the north of the LGRL facility. Soils that were within 6 inches of the waste or that were too frozen to separate from the underlying waste were not segregated and were treated as waste in accordance with the LGRL Waste Removal Plan.

5 LANDFILL GAS SYSTEM ABANDONMENT

5.1 LFG Well and Piping Abandonment

LGRL contains an active gas extraction system. During the Phase A Waste Excavation project, eight wells were abandoned and the blower/flare station was relocated (see Drawing No. 5). Prior to the Phase B construction, a total of six (6) vertical landfill gas (LFG) extraction wells were still in place and operational. Each of the wells was connected to the blower flare station located at the south end of LGRL. As part of the Phase B waste relocation a total of four (4) existing vertical wells were abandoned along with associated lateral and header piping. The four (4) wells were GWL, GWL9, GWL11, and GWL12. Wells and piping were removed as the waste was excavated. All well and lateral components were disposed of in the active GRL.

5.2 Blower / Flare System

Two vertical LFG extraction wells and associated piping remained in place after the completion of the LGRL Phase B Waste Relocation. Due to the need to keep the system active, the blower/flare system was required to be operated until such time that the remaining gas wells would be removed or the WDNR approved decommissioning of the blower/flare system. Due to the reduced gas flows at LGRL the blower/flare only runs intermittently when gas with a high enough Btu content is available to burn. Advanced has received approval to abandon the remaining LGRL gas extraction and blower/flare system once Phase C waste relocation activities begin.

5.3 LFG Condensate Management

Two temporary condensate management sumps CS-2 and CS-3 were abandoned as part of the Phase B Waste Excavation. The only remaining condensate management structure on site is the CS-1 sump which is located in line with the blower flare station. This condensate sump will remain until such time that the wells are abandoned or the system is decommissioned as part of the Phase C LGRL waste relocation.

6 MONITORING WELL ABANDONMENT

6.1 Non-Groundwater Well Abandonments

As part of the Phase B Waste Relocation project, one vertical leachate headwell MW-4, which was located within the LGRL Waste Limits, was abandoned. In addition to the leachate headwell, four gas probes (GMP-1 through GMP-4) were abandoned. Each of the probes were located within the LGRL waste limits. Abandonment included removal of the casing pipes with the excavation of waste. No borehole abandonment was required because neither the headwell nor the gas probes extend past the bottom of waste. The casing pipes were disposed of in the active GRL. Drawing No. 5 shows the location of the abandoned monitoring devices.

6.2 Groundwater Well Abandonments

Two groundwater monitoring wells required abandonment as part of the Phase B Waste Relocation project to allow for the construction of the Phase 7 Composite Liner. The wells abandoned were:

- MW311R
- P311A

All of the wells were over drilled, the casings and screens were removed, and the boreholes backfilled in accordance with Chapter NR 141 Wis. Adm. Code. Well Abandonment Forms are included in Appendix C.

7 WASTE EXCAVATION

7.1 Introduction

Excavation of LGRL Waste began on February 3, 2015 and was completed by May 5, 2015. This section details the site health and safety, environmental monitoring and protection, waste handling, screening and characterization methods, quantities and types of waste removed, details of waste handling and screening procedures, and details of suspicious waste removal and handling.

7.2 Site Health and Safety

There were two instances in which site health and safety issues were encountered during the waste excavation.

7.2.1 Health and Safety Issue February 2015

The first health and safety issue occurred on February 12, 2015. Several of the workers complained of symptoms that included but were not necessarily limited to; bloody noses, tiredness, sore throat, coughing, eye irritation, and chest pain/congestion. When Advanced and Cornerstone were informed of this, work was immediately stopped on site until further investigation could be conducted. As a starting point, interviews were conducted with the personnel that experienced symptoms. In addition, data from the workers' personal gas meters was collected and analyzed. Finally, as an added protection Veolia Special Services (Veolia) was contacted to complete additional VOC, chlorine and ammonia monitoring. The results of the Veolia monitoring did not indicate anything outside of what was to be expected or concern for workers health and safety.

Results of the interviews and personal detection meters were sent to an outside industry hygiene company, Malter Associates, Inc. (Dallas, TX). Malter Associates reviewed the data collected by Advanced and Cornerstone and interviewed some of the workers as well. The opinion of Malter Associates was that a chemical reaction occurred and released a short burst of ammonia or something similar that caused the workers' symptoms.

In addition to rendering an opinion, Malter developed additional safety procedures and recommended that the workers wear sampling badges that could detect VOCs, ammonia, chlorine and sulfur compounds. The workers wore the sampling badges over the entire work day to get a representative sample. Results of the sample analysis indicated that none of the compounds detected were above OSHA limits.

During the remainder of the waste relocation portion of the project, no other instances occurred that required additional sampling or additional PPE.

7.2.2 Health and Safety Issue May 2015

On May 6, 2015 another health and safety issue occurred. This occurrence was related to the excavation of the contaminated soil after all waste had been removed. Workers were complaining of strong solvent odor and handheld PID readings were between 10 and 100 ppm. In some areas the PID read in excess of 100 ppm. Malter Associates was contacted for an outside opinion on the situation. Malter recommended respirator use until personal badge testing indicated there was no issue and that all VOC levels were below OSHA limits.

Workers were fitted with badges during their work day and the badges were sent to the lab for analysis. While the badges were worn and until results were received, workers and CQA staff wore respirators fitted with organic vapor/ammonia/particulate cartridges. Analysis of the badge testing indicated that no OSHA limits were exceeded. As a precaution, when VOC levels in the cabs increased above 10 ppm workers wore respirators. In addition, all ground personnel wore respirators at all times during contaminated soil excavation.

7.3 Environmental Monitoring / Protection

The LGRL Waste Removal Plan specified environmental monitoring and protection methods that were required in association with waste excavation and relocation activities. The required environmental monitoring / environmental protection items included:

- Ambient Air Monitoring
- Dust and Odor Control
- Surface Water Management
- Waste Contact Water Management

Each of the above items is discussed in the sections below.

7.3.1 Ambient Air Monitoring

Section 4.5.1 of the LGRL Waste Removal Plan required that ambient air-monitoring be conducted both on and off site at upwind and downwind locations. Ambient air monitoring was to be conducted weekly for the first six weeks and if no contaminants were discovered, biweekly thereafter. The main constituents of concern were volatile organic compounds (VOCs). During the project a total of 50 ambient air samples were collected. Samples were collected using SilcoCans that were put under a vacuum in the lab. Each can was fitted with a regulator that allowed for continuous sample collection over an approximately 8-hour period. A total of four samples were required for each sampling event per the LGRL Waste Removal Plan: one upwind, one in the public drop off area, and

two downwind. An additional sample was added at the working face of the LGRL landfill to assess the VOC concentrations within the waste itself. This was done as a safety precaution for workers that were consistently present in or near the waste. There were instances where sampling containers were placed in the waste excavation equipment. Sample numbers GRL-PHBAIR-6, 8, 10, 11, 12, 13, 14, 15, were installed in excavation equipment. This was done to further check the contaminant levels in the equipment when PID readings indicated elevated VOC levels.

During sampling, weather conditions such as temperature, precipitation, barometric pressure, pressure trend, wind speed, and wind direction were recorded with each sampling event. Samples were not collected when sustained winds over 15 miles per hour (mph) were present.

Following collection, samples were shipped to Air Technologies Laboratories (ATL) in the City of Industry, California. ATL analyzed each of the samples for VOCs in accordance with EPA Method TO 15.

Appendix D of the report includes sample locations, summarizes sample detections, and includes the lab reports from the laboratory. Sample detections were compared to OSHA permissible exposure limits (PELs) as is shown in Appendix D. All of the constituents that were detected were well below the OSHA PELs. Due to the low concentrations of VOCs that were detected, it is difficult to state whether the VOCs that were detected were from the waste, vehicle exhaust, or to other activities on or off the site.

Samples were to be collected weekly for the first 6 weeks of the project. If clean results were obtained, sampling could be reduced to biweekly per the LGRL Waste Removal Plan. Sampled dates are summarized below:

Week 1: 2/6/15 Week 2: Missed Week 3: 2/17/15, 2/19/15 Week 4: 2/26/15 Week 5: 3/5/15 Week 6: 3/11/15 Week 6: 3/26/15 Week 11: 4/14/15 Week 13: 4/29/15 Week 15: 5/14/15

Based on the results obtained from the air monitoring sample analyses, no apparent threat to the environment or human health due airborne VOCs was noted during the project.

7.3.2 Dust and Odor Control Measures

Throughout the excavation process dust was controlled by watering haul roads and, when necessary, the waste excavation area. Watering of roads was completed on an as needed basis to control dust. During days when dust control was required, roads were watered several times per day to mitigate dust on site haul roads.

At the beginning of the excavation process, it was unknown how strong odors would be. As a preventative measure, Advanced employed the use of odor control devices that utilize odor neutralizing agents mixed with water. A portable trailer mounted system consisting of a trailer mounted 1,000 gallon water tank, spray bars, and pump was utilized. Water and odor neutralizing agent were pumped from the tank to the spray bars where a fine mist was produced. The trailer mounted system could easily be moved to areas that had higher odor concentrations.

Odors were not considered excessive during the project and rarely migrated off site. The odor system was run continuously during non-freezing weather while waste was being relocated.

7.3.3 Surface Water Management

During waste excavation the clean runoff water was prevented from entering the excavation area. The main method used to prevent clean runoff from entering the excavation was grading around the excavation to divert surface water away from the working face. Surface water that did contact waste was managed as leachate as is detailed in Section 7.3.4.

7.3.4 Contact Water / Leachate Management

Water that contacted waste or contaminated soils was treated as leachate. To prevent the migration of contact water off site, the excavation was graded to a low point where contact water could drain. The low point consisted of a collection sump and pump station that was used to transfer the contact water to leachate trucks. All contact water was treated as leachate and taken off site for disposal at a wastewater treatment plants (WWTP). During the project the total volume of leachate taken off site from the excavation was approximately 78,000 gallons.

7.3.5 Groundwater Dewatering

During the excavation of the waste and the construction of the east perimeter berm, groundwater dewatering was required. Groundwater that did not contact waste was pumped to the underdrain system and treated with the air stripper. Sampling of the

groundwater was conducted in accordance with the site's WPDES permit. ESC, Inc. reported the results on a monthly basis as required by the WPDES permit.

7.4 Waste Handling, Screening and Characterization

Waste handling, screening and characterization procedures are specified in Section 4 of the LGRL Waste Removal Plan. The LGRL Waste Removal Plan identified four major waste categories as listed below:

- Typical waste (municipal and industrial)
- Salvageable waste
- Suspicious waste
- Hazardous waste

During the excavation process, the CQM Field Technician screened and characterized the waste removed through visual observations, odor observations and performed periodic readings with a Photo Ionization Detector (PID) to identify suspicious and potentially hazardous wastes. The waste screening process and subsequent handling process is described in the sections below.

7.4.1 Typical Waste

Waste was classified as typical waste if it exhibited the following characteristics:

- The waste resembled MSW or waste typically disposed of in GRL
- The waste did not exhibit solvent odor
- The waste did not exhibit positive PID readings

The majority of the waste exhumed from LGRL was classified as typical waste.

Mashuda Contractors, Inc. used two CAT 374 Excavators to load between eight and ten articulated 40 ton haul trucks daily. The excavators loaded the LGRL waste into the haul trucks, and the haul trucks transported the waste to the active GRL. Typical waste was dumped in the active area and was spread utilizing CAT D8 dozers and the landfill's compactors. LGRL waste was either commingled with incoming waste or was mono-filled. At times it was difficult to commingle excavated LGRL waste with incoming MSW due to safety and traffic pattern concerns. Waste within GRL was covered on a daily basis with alternate daily cover (ADC) or soil materials. Waste that was placed on outboard slopes was covered with one foot of intermediate cover soil after placement. The minimum separation distance between the leachate drainage layer and the LGRL waste was 15 feet.

7.4.2 Salvageable Waste

Salvageable waste was not identified during the waste screening and characterization. As such no waste was salvaged as part of the Phase B Waste Removal.

7.4.3 Suspicious Waste

Suspicious wastes were identified through visual and odor observations, and by screening the waste with a photoionization detector (PID). All workers and equipment operators that were continually in the waste excavation area wore personal gas detection meters that had PID capability. The meters were utilized for worker health and safety primarily, but were also utilized to detect potentially VOC contaminated waste. The LGRL Waste Removal Plan did not specify a VOC concentration determined in the field that would in turn characterize the waste as suspicious. Discussions were conducted with the WDNR during the Phase A project regarding the lack of a VOC concentration specifications for treating waste in the field. Through the discussions with the WDNR, if a VOC reading of the 10 ppm was detected with the PID, the waste would be characterized as suspicious and further testing would be required. The basis for the 10 ppm limit is from the LGRL Waste Removal Plan Soil Management Section. Section 6.2.2 of the LGRL Waste Removal Plan specified a VOC concentration of 10 ppm for soil found within the waste to determine the use for the soil. Since this was used for the soil within the waste, it was determined that this standard could also apply to suspicious waste. Equipment operators and the CQM Field Technician also visually observed the excavation for the presence of intact drums, transformers, and other containers that may have housed suspicious waste. No intact drums, containers, or transformers were found during the excavation.

Suspicious waste was identified on a relatively routine basis. CQM monitored the waste on a 30 minute basis to aid in identifying bulk suspicious waste. In general levels read by the PID were below 50 ppm. Prior to initiating lab testing, the waste was transported and placed in the active GRL site. The waste was allowed to "air out" over the course of the work day and PID readings were taken at the end of the day. If the PID readings fell below 10 ppm, the waste was considered typical and incorporated into the active GRL. All bulk suspicious loads of waste dropped below 10 ppm after relocation and as such no laboratory testing was conducted. The total volume of suspicious waste removed from the Phase B was approximately 20,472 cubic yards.

7.4.4 Hazardous Waste

No hazardous waste was identified through the screening procedures described in the LGRL waste removal plan.

Rev. 0, 10/29/15 Project 150334

7.5 Waste Types and Quantities

As noted above the majority of waste that was excavated in the Phase B area was disposed of in the GRL as typical waste. Some bulk suspicious waste was identified during the waste screening and characterization. All bulk suspicious wastes were tested in the field for total VOCs and met the minimum disposal requirements for disposal in GRL after relocation. No hazardous wastes were identified. The total volume of waste removed is as follows:

- Typical Waste = 413,758 cubic yards (CY)
- Bulk Suspicious Waste = 20,472 cubic yards (CY)

8 SOIL EXCAVATION

8.1 Introduction

Soil excavation followed the Soil Management Plan included in Section 6 of the LGRL Waste Removal Plan. Soils that were excavated generally consisted of cover soils, soils within the waste, berms, and native soil underlying the waste. Soil was classified in accordance with the LGRL Waste Removal Plan and used for beneficial reuse, disposed of or treated. The following sections detail the soil excavation from the site.

8.2 Soil Types

The LGRL Waste Removal Plan identified four different types of soils. Soils removed from LGRL were classified into one of the four types described below based on contamination levels. The LGRL Waste Removal Plan identified how each type of soil was to be managed. The soil types identified in the LGRL Waste Removal Plan are as follows (see the LGRL Waste Removal Plan for more detailed descriptions):

- Type 1 Soil that is not impacted above soil standards. Type 1 soil could be used anywhere on the site. To confirm soil could be classified as Type 1, it was tested in the lab for Lead, Cadmium, and VOCs. PCB Testing was not completed as the soils did not contain potentially PCB laden equipment or materials. If soil was not impacted above the soil residual contaminant level established under NR 720, the soil could be utilized on site without restrictions.
- Type 2 Soil that was impacted and may contain contaminants above the NR 720 RCLs but below the TCLP limits. Type 2 soil could be used within the lined area of the landfill as daily cover. Type 2 soils did not require laboratory testing to be used in the footprint or disposed of as waste unless they were identified as suspicious wastes.
- Type 3 Soil that is impacted and may contain contaminants above the NR 720 RCLs for direct contact but are below the groundwater standards. Type 3 soils were not identified during the project.
- Type 4 Soil that exceeds the TCLP limits and must be treated prior to disposal. Type 4 soils were not identified during the project.

8.3 Soil Sampling, Analysis and Classification

Several different soils were encountered during the excavation of the LGRL waste and included cover soils, soil within the waste, soil between the bottom of waste and Phase 7 Subbase, and additional soils excavated for remediation. Each of the soils excavated are described in detail in the following sections:

8.3.1 LGRL Final Cover Soils

As was discussed in Section 6.2.1 of the LGRL Waste Removal Plan, final cover soils could be classified as Type 1 soils unless they were observed to be in direct contact with waste or exhibited other characteristics such as staining or odor. Soils that were within 6 inches of the waste were treated as waste and disposed of. Detailed cover soil excavation and stockpiling is discussed in Section 4 of this report.

8.3.2 Soil Within the LGRL Waste

Soil within the LGRL waste mass was treated entirely as waste. Based on the observations during the excavation it was not practical to separate soil from waste and as such the soil was not tested for reuse. Soil within the waste was only tested if it was part of a suspicious waste observation as detailed in Section 7 of this report.

8.3.3 Soil Between the Bottom of LGRL Waste and Above Phase 7 Liner Subbase Grades

The bottom of the LGRL waste was above the subbase grades for the Phase 7 composite liner. Soil in this region zone excavation to achieve the subbase grades and was required to be tested if used outside of the GRL footprint. During waste excavation, soil that was visually stained by the waste was treated as waste and disposed of in the GRL active area. The depth of soil that was removed and disposed of was generally between 1 and 2 feet below the bottom of the waste.

The soil that remained was tested to determine where the soil could be utilized. Testing consisted of dividing the site into approximately 0.5 acre subareas where test pits were dug to test the underlying soils. Samples were collected at each of the test pit locations on minimum 5 foot intervals and analyzed for VOCs, Cadmium and Lead. Figure 1 in Appendix E shows the location of the test pits.

The soil test results were compared to NR 720 RCLs for groundwater and direct contact, TCLP limits. A summary of the data is presented in Appendix E. There were several exceedances for various contaminants as shown in the summary of the data. Soil that did not meet the limits for use outside of the GRL footprint was disposed of or used as daily cover within the limits of waste. A total of 89,014 cubic yards of contaminated soil was disposed of in the active GRL. Figures 1-10 in Appendix F show the location within the active GRL where contaminated soil was disposed.

8.3.4 Additional Soil Excavation for Remediation

As part of the LGRL Waste Relocation plan, a soil remediation plan was put into place that required removal of soils from below the Southeast Expansion subbase grades. A total of 3,000 cubic yards of soil could be removed for remediation across the entire LGRL area.

After all of the LGRL waste had been removed from the Phase B area, the subbase was inspected for areas that had high levels of VOC contamination. There were three areas that were found within the LGRL waste that contained VOC levels that warranted additional investigation. The areas were centered around Soil Sample locations SS-2, SS-5, and SS-7 as indicated in Figure 2 in Appendix G. Preliminary test pits were dug to determine the level of contamination. A PID was used to estimate VOC concentrations, PID readings indicated VOC contamination levels above 100 ppm.

The WDNR was informed of the areas of VOC contamination. Advanced Disposal and the WDNR collaborated to determine a course of action for removing the soil. The bullet points below describe the methods used to bound the area and remove the contaminated soil.

- First, additional test pits were dug surrounding the center of the VOC contamination under the direction of the WDNR. Figure 2 shows a simple diagram as to how the test pit locations were determined. Several additional test pits were dug and soils were analyzed with the PID. The center of the VOC contamination areas were used as the starting point and test pits were dug moving out from the center. The boundary of the VOC contaminated soil was determined based on field PID readings. When field PID readings dipped below 10 ppm, the bounds of the contaminated soil were assumed to be detected.
- Figure 2 shows the area of soil that was removed below the subbase grades. The total volume of soil removed was approximately 800 cubic yards. Additional soil samples were taken after soil was removed to assess the level of contamination remaining. The combined additional soil excavation for remediation between Phase A and B is 1370 cubic yards.
- The impacted soil was relocated to the active GRL. Lab results indicated that none of the soil removed was above the maximum disposal limits.

9 CONCLUSION

The LGRL Phase B Waste Relocation project has been completed in accordance with the approved Plan of Operation, the construction plans and specifications, Chapters NR 500, 660 and 700 Wis. Adm. Code. On behalf of Advanced Disposal, Cornerstone respectfully requests the review and approval of this Construction Documentation Report.

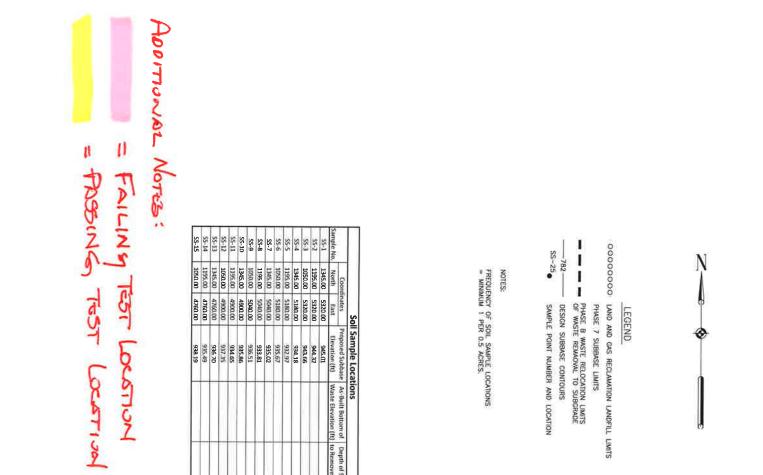
LIMITATIONS

The work product included in the attached was undertaken in full conformity with generally accepted professional consulting principles and practices and to the fullest extent as allowed by law we expressly disclaim all warranties, expressed or implied, including warranties of merchantability or fitness for a particular purpose. The work product was completed in full conformity with the contract with our client and this document is solely for the use and reliance of our client (unless previously agreed upon that a third party could rely on the work product) and any reliance on this work product by an unapproved outside party is at such party's risk.

The work product herein (including opinions, conclusions, suggestions, etc.) was prepared based on the situations and circumstances as found at the time, location, scope and goal of our performance and thus should be relied upon and used by our client recognizing these considerations and limitations. Cornerstone shall not be liable for the consequences of any change in environmental standards, practices, or regulations following the completion of our work and there is no warrant to the veracity of information provided by third parties, or the partial utilization of this work product.

					STANDARDS		
Sample ID	Constiuents Detected	Lab Results	Units	RCL for Direct Contact	RCL for Protection of Groundwater	TCLP	Comments
	Lead	1.5	mg/kg	PASS	PASS	PASS	
	cis-1,2-Dicholoroethene	34.6	µg/kg	PASS	PASS	NA	
SS-1-1	Ethylbenzene	109	µg/kg	PASS	PASS	NA	SS-1 through SS-
	Toluene	173	µg/kg	PASS	PASS	NA	4/8/15
	m&p-Xylene	298	µg/kg	PASS	PASS	NA	4/0/10
	o-Xylene	102	µg/kg	PASS	PASS	NA	
	Lead 2-Butanone (MEK)	1.9 1370	mg/kg	PASS PASS	PASS EXCEEDANCE	PASS PASS	-
	cis-1,2-Dicholoroethene	76.0	µg/kg µg/kg	PASS	EXCEEDANCE	NA	-
	Ethylbenzene	161	µg/kg	PASS	PASS	NA	-
SS-1-5	Toluene	361	μg/kg	PASS	PASS	NA	1
	1,2,4-Trimethylbenzene	34.3	µg/kg	PASS	PASS	NA	
	m&p-Xylene	428	µg/kg	PASS	PASS	NA	
	o-Xylene	157	µg/kg	PASS	PASS	NA	
	Cadmium	0.065	mg/kg	PASS	PASS	PASS	
	Lead	2.4	mg/kg	PASS	PASS	PASS	4
	Ethylbenzene	94.2	µg/kg	PASS	PASS	NA	4
SS-1-10	Toluene	157	µg/kg	PASS	PASS	NA	
	1,2,4-Trimethylbenzene	27.0	µg/kg	PASS	PASS	NA	_
	m&p-Xylene o-Xylene	273 95.0	µg/kg	PASS PASS	PASS PASS	NA NA	-
SS-1-14	Lead	2.5	µg/kg mg/kg	PASS	PASS	PASS	
33-1-14	Lead	2.3	mg/kg	PASS	PASS	PASS	
	Ethylbenzene	2.0	µg/kg	PASS	PASS	NA	-
SS-2-1	m&p-Xylene	376	μ <u>g/kg</u>	PASS	PASS	NA	1
	o-Xylene	196	µg/kg	PASS	PASS	NA	
	Cadmium	0.11	mg/kg	PASS	PASS	PASS	
	Lead	2.7	mg/kg	PASS	PASS	PASS	
	2-Butanone (MEK)	263	µg/kg	PASS	PASS	NA	
	cis-1,2-Dicholoroethene	422	µg/kg	PASS	EXCEEDANCE	NA	
	Ethylbenzene	1010	µg/kg	PASS	EXCEEDANCE	NA	
00.05	Isopropylbenzene (Cumene)	38.8	µg/kg	PASS	NA	NA	_
SS-2-5	n-Propylbenzene	56.3	µg/kg	PASS PASS	NA EXCEEDANCE	NA PASS	-
	Tetrachloroethylene Toluene	30.3 545	µg/kg µg/kg	PASS	PASS	NA	-
	1,2,4-Trimethylbenzene	210	µg/kg	PASS	PASS	NA	
	1,3,5-Trimethylbenzene	62.0	μg/kg	PASS	PASS	NA	7
	m&p-Xylene	2850	µg/kg	PASS	EXCEEDANCE	NA	-
	o-Xylene	1260	µg/kg	PASS	EXCEEDANCE	NA	
	Lead	1.8	mg/kg	PASS	PASS	PASS	
	cis-1,2-Dicholoroethene	31.6	µg/kg	PASS	EXCEEDANCE	NA]
SS-2-10	Ethylbenzene	151	µg/kg	PASS	PASS	NA	1
00-2-10	Toluene	110	µg/kg	PASS	PASS	NA	4
	m&p-Xylene	309	µg/kg	PASS	PASS	NA	4
	o-Xylene	103	µg/kg	PASS	PASS	NA	
	Lead	2.8	mg/kg	PASS	PASS	PASS	4
	cis-1,2-Dicholoroethene Ethylbenzene	71.8 921	µg/kg	PASS	EXCEEDANCE	NA	4
	p-lsoropyltoluene	46.0	μg/kg μg/kg	PASS PASS	EXCEEDANCE NA	NA NA	4
H	n-Propylbenzene	39.3	µg/kg µg/kg	PASS	NA	NA	1
SS-2-15	Toluene	625	μg/kg	PASS	EXCEEDANCE	NA	1
	1,2,4-Trimethylbenzene	211	μg/kg	PASS	PASS	NA	1
	1,3,5-Trimethylbenzene	60.3	µg/kg	PASS	PASS	NA	1
	m&p-Xylene	2700	µg/kg	PASS	EXCEEDANCE	NA]
	o-Xylene	1010	µg/kg	PASS	EXCEEDANCE	NA	<u>]</u>
	Cadmium	0.077	mg/kg	PASS	PASS	PASS	
	Lead	3.1	mg/kg	PASS	PASS	PASS	1
SS-2-16	Ethylbenzene	235	µg/kg	PASS	PASS	NA	4
	p-Isoropyltoluene m&p-Xylene	31.9 267	μg/kg μg/kg	PASS PASS	NA PASS	NA NA	4

					STANDARDS		
Sample ID	Constiuents Detected	Lab Results	Units	RCL for Direct Contact	RCL for Protection of Groundwater	TCLP	Comments
	Lead	4.0	mg/kg	PASS	PASS	PASS	
	2-Butanone (MEK)	3390	µg/kg	PASS	EXCEEDANCE	PASS	
SS-3-1	cis-1,2-Dicholoroethene	481	µg/kg	PASS	EXCEEDANCE	NA	
33-3-1	Ethylbenzene Toluene	243 1190	µg/kg µg/kg	PASS PASS	PASS EXCEEDANCE	NA NA	
	m&p-Xylene	545	µg/kg	PASS	PASS	NA	
	o-Xylene	105	µg/kg	PASS	PASS	NA	
	Lead	3.7	mg/kg	PASS	PASS	PASS	
	cis-1,2-Dicholoroethene Ethylbenzene	676 205	µg/kg µg/kg	PASS PASS	EXCEEDANCE PASS	NA NA	
SS-3-5	Toluene	320	µg/kg µg/kg	PASS	PASS	NA	
	Vinyl Chloride	35.1	µg/kg	PASS	EXCEEDANCE	PASS	
	m&p-Xylene	286	µg/kg	PASS	PASS	NA	
	o-Xylene	43.9	µg/kg	PASS	PASS	NA	
\vdash	Lead	3.3	mg/kg	PASS	PASS	PASS	
F	cis-1,2-Dicholoroethene Ethylbenzene	13500 8220	μg/kg μg/kg	PASS PASS	EXCEEDANCE EXCEEDANCE	NA NA	
\vdash	Isopropylbenzene (Cumene)	286	µg/kg µg/kg	PASS	NA	NA	
	Napthalene	124	µg/kg	PASS	PASS	NA	
SS-3-10	n-Propylbenzene	566	µg/kg	PASS	NA	NA	
	Toluene	19700	µg/kg	PASS	EXCEEDANCE	NA	
	1,2,4-Trimethylbenzene	2720 755	µg/kg	PASS PASS	PASS PASS	NA NA	
	1,3,5-Trimethylbenzene Vinyl Chloride	229	μg/kg μg/kg	PASS	EXCEEDANCE	PASS	
	m&p-Xylene	28100	µg/kg	PASS	EXCEEDANCE	NA	
	o-Xylene	10200	µg/kg	PASS	EXCEEDANCE	NA	
	Cadmium	0.072	mg/kg	PASS	PASS	PASS	
	Lead	2.7	mg/kg	PASS	PASS	PASS	
SS-3-14.7	Ethylbenzene	820 51.3	µg/kg	PASS PASS	EXCEEDANCE	NA NA	
33-3-14.7	Toluene 1,2,4-Trimethylbenzene	73.3	μg/kg μg/kg	PASS	PASS PASS	NA	
	m&p-Xylene	2470	µg/kg	PASS	EXCEEDANCE	NA	
	o-Xylene	800	µg/kg	PASS	EXCEEDANCE	NA	
	Lead	4.0	mg/kg	PASS	PASS	PASS	
	2-Butanone (MEK)	11800	µg/kg	PASS	EXCEEDANCE	PASS	
-	cis-1,2-Dicholoroethene Ethylbenzene	382 829	µg/kg µg/kg	PASS PASS	EXCEEDANCE EXCEEDANCE	NA NA	
	n-Propylbenzene	115	µg/kg	PASS	NA	NA	
SS-4-1	Tetrachloroethylene	56.5	µg/kg	PASS	EXCEEDANCE	PASS	
33-4-1	Toluene	1460	µg/kg	PASS	EXCEEDANCE	NA	
	Trichloroethene	508	µg/kg	PASS	EXCEEDANCE	PASS	
-	1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	679 194	µg/kg µg/kg	PASS PASS	EXCEEDANCE EXCEEDANCE	NA NA	
\vdash	m&p-Xylene	2990	µg/kg µg/kg	PASS	EXCEEDANCE	NA	
	o-Xylene	1100	µg/kg	PASS	EXCEEDANCE	NA	
	Lead	2.6	mg/kg	PASS	PASS	PASS	
	2-Butanone (MEK)	29500	µg/kg	PASS	EXCEEDANCE	PASS	
SS-4-5.5	cis-1,2-Dicholoroethene	1300 152	µg/kg	PASS PASS	EXCEEDANCE	NA NA	
00-4-0.0	Ethylbenzene Toluene	2810	μg/kg μg/kg	PASS	PASS EXCEEDANCE	NA	
	m&p-Xylene	396	µg/kg	PASS	PASS	NA	
	o-Xylene	172	µg/kg	PASS	PASS	NA	
	Lead	2.3	mg/kg	PASS	PASS	PASS	
	2-Butanone (MEK)	17600	µg/kg	PASS	EXCEEDANCE	PASS	
F	Ethylbenzene Toluene	368 651	μg/kg μg/kg	PASS PASS	PASS EXCEEDANCE	NA NA	
SS-5-1	1,2,4-Trimethylbenzene	296	µg/kg µg/kg	PASS	PASS	NA	
F	1,3,5-Trimethylbenzene	91.5	µg/kg	PASS	PASS	NA	
	m&p-Xylene	1210	µg/kg	PASS	PASS	NA	
	o-Xylene	400	µg/kg	PASS	PASS	NA	
	Lead	2.0	mg/kg	PASS	PASS	PASS	
SS-5-5	2-Butanone (MEK)	34100	µg/kg	PASS	EXCEEDANCE	PASS NA	
33-9-9	Toluene m&p-Xylene	398 711	μg/kg μg/kg	PASS PASS	PASS PASS	NA NA	
	o-Xylene	226	µg/kg µg/kg	PASS	PASS	NA	

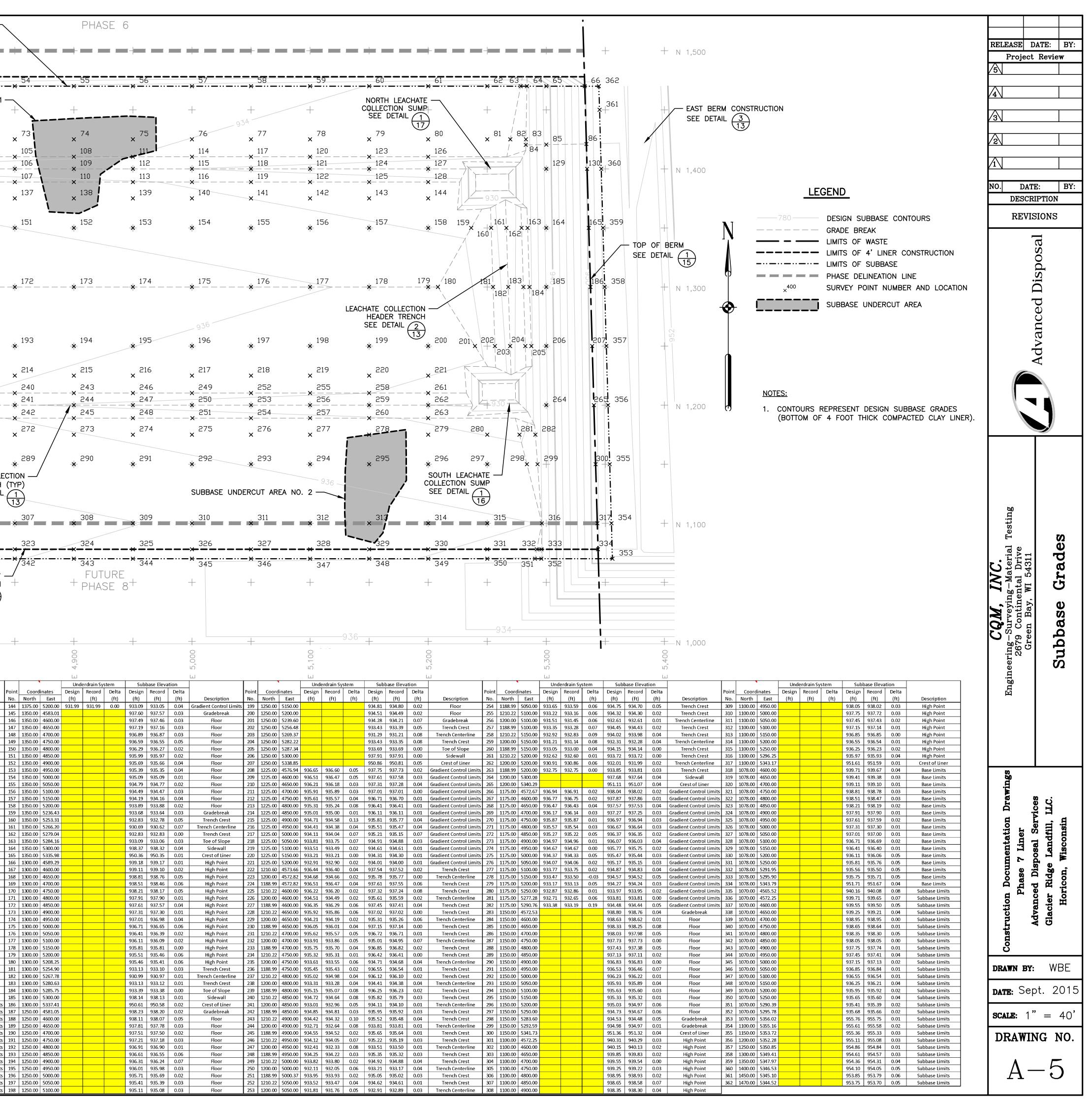

					STANDARDS		
Sample ID	Constiuents Detected	Lab Results	Units	RCL for Direct Contact	RCL for Protection of Groundwater	TCLP	Comments
	Lead	2.2	mg/kg	PASS	PASS	PASS	
	2-Butanone (MEK)	5350	µg/kg	PASS	EXCEEDANCE	PASS	
	Ethylbenzene	59.9	µg/kg	PASS	PASS	NA	
SS-5-11	Toluene	104	µg/kg	PASS	PASS	NA	
	1,2,4-Trimethylbenzene	40.5	µg/kg	PASS	PASS	NA	
	m&p-Xylene	192	µg/kg	PASS	PASS	NA	
	o-Xylene	60.0	µg/kg	PASS	PASS	NA	
	Cadmium	0.11	mg/kg	PASS	PASS	PASS	
	Lead 2-Butanone (MEK)	2.3 2880	mg/kg	PASS	PASS EXCEEDANCE	PASS	
	Ethylbenzene	140	μg/kg μg/kg	PASS PASS	PASS	PASS NA	
SS-6-1	p-Isoropyltoluene	32.3	µg/kg	PASS	NA	NA	
	Toluene	205	µg/kg	PASS	PASS	NA	
	1,2,4-Trimethylbenzene	82.5	µg/kg	PASS	PASS	NA	
	m&p-Xylene	523	µg/kg	PASS	PASS	NA	
	o-Xylene	208	µg/kg	PASS	PASS	NA	
	Lead	2.1	mg/kg	PASS	PASS	PASS	
	Ethylbenzene	135	µg/kg	PASS	PASS	NA	
SS-6-5	Toluene	109	µg/kg	PASS	PASS	NA	
	m&p-Xylene	435	µg/kg	PASS	PASS	NA	
	o-Xylene	170	µg/kg	PASS	PASS	NA	
SS-6-8	Lead	3.4	mg/kg	PASS	PASS	PASS	
	Lead	2.8	mg/kg	PASS	PASS	PASS	
	Ethylbenzene	102	mg/kg	PASS	PASS	NA	
SS-7-1	1,2,4-Trimethylbenzene	33.4	µg/kg	PASS	PASS	NA	ss-7 and SS-8
	m&p-Xylene	331	µg/kg	PASS	PASS	NA	4/20/15
	o-Xylene	91.7	µg/kg	PASS	PASS	NA	4/20/13
	Lead	2.1	mg/kg	PASS	PASS EXCEEDANCE	PASS PASS	
	2-Butanone (MEK) cis-1,2-Dicholoroethene	1160 2680	µg/kg µg/kg	PASS PASS	EXCEEDANCE	NA	
	Ethylbenzene	203	µg/kg	PASS	PASS	NA	
SS-7-5	Toluene	355	µg/kg	PASS	PASS	NA	
	1,2,4-Trimethylbenzene	52.6	µg/kg	PASS	PASS	NA	
	Vinyl Chloride	96.5	µg/kg	PASS	EXCEEDANCE	PASS	
	m&p-Xylene	575	µg/kg	PASS	PASS	NA	
	o-Xylene	174	µg/kg	PASS	PASS	NA	
	Lead	3.2	mg/kg	PASS	PASS	PASS	
	2-Butanone (MEK)	1670	µg/kg	PASS	EXCEEDANCE	PASS	
	cis-1,2-Dicholoroethene	1560	µg/kg	PASS	EXCEEDANCE	NA	
	Ethylbenzene	448	µg/kg	PASS	PASS	NA	
SS-7-11	Toluene	895	µg/kg	PASS	EXCEEDANCE	NA	
L	1,2,4-Trimethylbenzene	34.5	µg/kg	PASS	PASS	NA	
	Vinyl Chloride	136	µg/kg	PASS	EXCEEDANCE	PASS	
\vdash	m&p-Xylene	1070	µg/kg	PASS	PASS	NA	
	o-Xylene	252	µg/kg	PASS	PASS	NA	
SS-8-1	Lead 2 Putanono (MEK)	2.4	mg/kg	PASS	PASS	PASS	
	2-Butanone (MEK)	344 2.6	µg/kg	PASS	PASS	PASS	
SS-8-5	Lead 2-Butanone (MEK)	2.6	mg/kg µg/kg	PASS PASS	PASS PASS	PASS PASS	
	Lead	1.7	mg/kg	PASS	PASS	PASS	
	Ethylbenzene	1.7	µg/kg	PASS	PASS	NA	
⊢	p-Isoropyltoluene	84.3	µg/kg µg/kg	PASS	NA	NA	
⊢	n-Propylbenzene	30.3	µg/kg	PASS	NA	NA	SS-9 through
SS-9-1	Toluene	70.5	µg/kg	PASS	PASS	NA	SS-10
	1,2,4-Trimethylbenzene	228.0	µg/kg	PASS	PASS	NA	
	1,3,5-Trimethylbenzene	68.7	µg/kg	PASS	PASS	NA	4/28/15
	m&p-Xylene	470	µg/kg	PASS	PASS	NA	
	o-Xylene	200	µg/kg	PASS	PASS	NA	

					STANDARDS		
Sample ID	Constiuents Detected	Lab Results	Units	RCL for Direct Contact	RCL for Protection of Groundwater	TCLP	Comments
	Cadmium	0.069	mg/kg	PASS	PASS	PASS	
	Lead	3.7	µg/kg	PASS	PASS	PASS	
	2-Butanone (MEK)	869	µg/kg	PASS	EXCEEDANCE	PASS	
	cis-1,2-Dicholoroethene	262	µg/kg	PASS	EXCEEDANCE	NA	
SS-9-5	Ethylbenzene	101	µg/kg	PASS	PASS	NA	
	Toluene	334.0	µg/kg	PASS	PASS	NA	
	Trichloroethene	41.1	µg/kg	PASS	EXCEEDANCE	PASS	
	m&p-Xylene	233	µg/kg	PASS	PASS	NA	
	o-Xylene	84.7	µg/kg	PASS	PASS	NA	
	Cadmium	0.08	mg/kg	PASS	PASS	PASS	
SS-9-10	Lead	3.2	μg/kg	PASS	PASS	PASS	_
	2-Butanone (MEK)	982	μg/kg	PASS	PASS	PASS	_
	cis-1,2-Dicholoroethene	63.8	µg/kg	PASS	EXCEEDANCE	NA	
SS-9-14	Lead	3.8	mg/kg	PASS	PASS	PASS	
00011	2-Butanone (MEK)	410	µg/kg	PASS	PASS	PASS	
	Lead	3.5	mg/kg	PASS	PASS	PASS	
	Ethylbenzene	55.1	µg/kg	PASS	PASS	NA	
SS-10-1	Toluene	69.4	µg/kg	PASS	PASS	NA	
	m&p-Xylene	113	µg/kg	PASS	PASS	NA	
	o-Xylene	61.1	µg/kg	PASS	PASS	NA	
SS-10-5	Cadmium	0.072	mg/kg	PASS	PASS	PASS	
	Lead	2.7	µg/kg	PASS	PASS	PASS	
SS-10-10	Lead	3.1	mg/kg	PASS	PASS	PASS	
SS-10-14	Lead	3.9	mg/kg	PASS	PASS	PASS	
SS-11-1	Lead	2.2	mg/kg	PASS	PASS	PASS	
SS-12-1	Lead	6.2	mg/kg	PASS	PASS	PASS	SS-11 through
SS-13-1	Lead	3.5	mg/kg	PASS	PASS	PASS	- SS15
	Napthalene	361	µg/kg	PASS	PASS	NA	
SS-14-1	Lead	3.0	mg/kg	PASS	PASS	PASS	4/23/15
	2-Butanone (MEK)	444	µg/kg	PASS	PASS	PASS	
SS-14-5	Lead	2.6	mg/kg	PASS	PASS	PASS	
SS-14-10	Lead	2.8	mg/kg	PASS	PASS	PASS	_
	Trichloroethene	105	µg/kg	PASS	EXCEEDANCE	PASS	
SS-14-12.4	Lead	2.4	mg/kg	PASS	PASS	PASS	_
	Trichloroethene	166	µg/kg	PASS	EXCEEDANCE	PASS	
SS-15-1	Lead	2.6	mg/kg	PASS	PASS	PASS	_
	2-Butanone (MEK)	1550	µg/kg	PASS	PASS	PASS	
SS-15-5	Lead	3.0	mg/kg	PASS	PASS	PASS	
	Lead	2.4	mg/kg	PASS	PASS	PASS	_
SS-15-10	cis-1,2-Dicholoroethene	73.7	µg/kg	PASS	EXCEEDANCE	PASS	_
	Trichloroethene	60.8	µg/kg	PASS	EXCEEDANCE	PASS	
	Lead	2.5	mg/kg	PASS	PASS	PASS	_
SS-15-11.4	cis-1,2-Dicholoroethene	143	µg/kg	PASS	EXCEEDANCE	PASS	4
	Trichloroethene	52.9	µg/kg	PASS	EXCEEDANCE	PASS	

<i>*</i>	÷	+	<u>+</u>	00000	+	÷	*	ž	+	<u>.</u> *	< <u>+</u>	*	÷	÷	×.	+	+	÷+ .⊭∶	+
N 1,500 +	+	+	+	000000	+	÷	+	÷	+	+	+	+	+	+	+	+	+ 000	+ +	đ
ŧ	ŧ	+	÷	+ 000000000000000000000000000000000000	+	÷	ж	+	+	+	+	+	÷	+	+	+	+ + + +		+
N 1,400+	÷	+	÷	000000	7	7*	+ -	+	÷	+	+	+		÷	+	t	•••••••	+ +	+
+	+	+	+		8-SS +	•	+	SS-7	+	+	•-3°	+	1	+ *	1+	+ .	1-2000000		+
N 1,300 +	+	+	+	+	+	+	:+:	+	+	+	+	+		+	+	e,	+ +	+ + +	-
+	+	+	÷	000000	*	+	+	+	+	+	*	+	+	+	+	+		SUBBASE LIMITS	+
N 1,200 +	+	+	+	000000	+ • • • • • • • •	+	+	6-SS	+	+	-2°	+	+	+ 5 5-52	+	+ .		+ +	+
+	.*	+	÷	**************************************	+	÷	+	+	+	+	+	÷	+	+	+	+	7.	+++	.+
N 1,100 +	t	+	÷	000000	+	+	*2	1	+	÷	+	÷	+	*	+	*	7/	0000000 +	+
+	÷	+	÷	000000	+ •SS-15	+	+	01-55	17	+	•SS+	+	+	e_6 +	+	+ •	22-13 -13	+	ंगे
N 1,000+	+	Ŧ	÷	000000	+	Ŧ	-	÷	+	+	+	¥	Ŧ	+	+	4	1		÷
+	·+	+	+	+	at 2	• • • •	*		*	+		+	+	+	• • • •	7	+	+	+
N 900 +	+	Ŧ	÷	+	÷	.+	+	+	+	÷	÷	÷	+	+	TO SUBGRAC +	±.	÷.	+ + +	+
+		÷	+	000000	+ :	*	æ	+	+	t.	+	+	ŧ	+	LIMITS OF WASTE RELOCATION LIMITS OF WASTE REMADVAL TO SUBGRADE + + +	÷	ŧ	+ 000 +	+
N 800 + m 4,500	+	+ E 4,600	+	+ + + E 4,700	÷	+ E 4.800	+	+ E 4,900	+	+ E 5,000	÷	+ E 5,100	+	+ E 5.200	4 +	+ E 5,300	÷	+ + + + + + + + ± 5,400	+ E 5,500

4760.00	4760.00	4760.00	4900.00	4900.00	4900.00	5040.00	5040.00	5040.00	5180.00	5180.00	5180.00	5320.00	5320 00	5320.00	East	nates	S
938 19	935,49	936.70	937.35	934 65	935.86	936.51	933.81	935.02	935,67	932.97	934,18	943.66	944.32	945.01	Elevation (ft)	Proposed Subbase	Soll Sample Locations
															~	As-Built Bottom of	tions
														_	-	Depth of Soil	

DRAWIN	SCALE: 1"	DATE: Mar	DRAWN BY:	Soil Sample Locations Phase B Waste Relocation Advanced Disposal Services —	CQM, INC. Construction Quality Management 2679 Continental Drive Green Bay, WI 54311		REVIS	NO. DATE	W	2	A N	4	Project Revie
G NO.	=50'	. 2015	WBE	Glacier Ridge Landfill, LLC. Horicon, Wisconsin	Soil Sample Locations Phase B Waste Relocation	Advanced Disposal	SIONS	S BY:	_	-		_	Review


					STANDARDS		
Sample ID	Constiuents Detected	Lab Results	Units	RCL for Direct Contact	RCL for Protection of Groundwater	TCLP	Comments
	2-Butanone (MEK)	2100.0	µg/kg	PASS	EXCEEDANCE	PASS	
	cis-1,2-Dichloroethene	5080.0	µg/kg	PASS	EXCEEDANCE	NA]
	Ethylbenzene	1610.0	µg/kg	PASS	EXCEEDANCE	NA]
	Isopropylbenzene (Cumene)	44.7	µg/kg	PASS	NA	NA	SS-16
	n-Propylbenzene	90.3	µg/kg	PASS	NA	NA	
SS-16-1	Toluene	7210.0	µg/kg	PASS	EXCEEDANCE	NA	5/8/15
	1,2,4-Trimethylbenzene	350.0	µg/kg	PASS	PASS	NA	
	1,3,5-Trimethylbenzene	123.0	µg/kg	PASS	PASS	NA	
	Vinyl Chloride	59.5	µg/kg	PASS	EXCEEDANCE	PASS	_
	m&p-Xylene	5170.0	µg/kg	PASS	EXCEEDANCE	NA	_
	o-Xylene	1500.0	µg/kg	PASS	EXCEEDANCE	NA	
	2-Butanone (MEK)	996.0	µg/kg	PASS	EXCEEDANCE	PASS	4
	cis-1,2-Dichloroethene	6460.0	µg/kg	PASS	EXCEEDANCE	NA	-
	Ethylbenzene Isopropylbenzene (Cumene)	1300.0 38.5	µg/kg	PASS PASS	EXCEEDANCE NA	NA NA	-1
	Methylene Chloride	38.5 30.7	µg/kg µg/kg	PASS	EXCEEDANCE	NA	-1
	n-Propylbenzene	81.7	µg/kg	PASS	NA	NA	-1
SS-16-5	Toluene	4990.0	µg/kg	PASS	EXCEEDANCE	NA	4
⊢	1,2,4-Trimethylbenzene	333.0	µg/kg	PASS	PASS	NA	4
⊢	1,3,5-Trimethylbenzene	107.0	µg/kg	PASS	PASS	NA	1
	Vinyl Chloride	47.9	µg/kg	PASS	EXCEEDANCE	PASS	-
	m&p-Xylene	4480.0	µg/kg	PASS	EXCEEDANCE	NA	-
	o-Xylene	1420.0	µg/kg	PASS	EXCEEDANCE	NA	1
	cis-1,2-Dichloroethene	35.8	µg/kg	PASS	EXCEEDANCE	NA	1
	Ethylbenzene	2880.0	µg/kg	PASS	EXCEEDANCE	NA	7
SS-16-13	Toluene	114.0	µg/kg	PASS	PASS	NA	7
33-10-13	1,2,4-Trimethylbenzene	95.2	µg/kg	PASS	PASS	NA	
	m&p-Xylene	8940.0	µg/kg	PASS	EXCEEDANCE	NA	
	o-Xylene	2890.0	µg/kg	PASS	EXCEEDANCE	NA	
	2-Butanone (MEK)	2880.00	µg/kg	PASS	EXCEEDANCE	PASS	
	n-Butylbenzene	51.60	µg/kg	PASS	NA	NA	
	cis-1,2-Dichloroethene	1730.00	µg/kg	PASS	EXCEEDANCE	NA	_
	Ethylbenzene	2450.00	µg/kg	PASS	EXCEEDANCE	NA	
	Isopropylbenzene (Cumene)	81.70	µg/kg	PASS	NA	NA	SS-17 through
00.47.0	n-Propylbenzene	186.00	µg/kg	PASS	NA	NA	
SS-17-2	Toluene	6450.00	µg/kg	PASS	EXCEEDANCE	NA	- ISS-19
	Trichloroethene	39.50	µg/kg	PASS	EXCEEDANCE	PASS	
	1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	915.00 266.00	µg/kg	PASS PASS	PASS PASS	NA NA	5/15/15
	Vinyl Chloride	45.80	µg/kg µg/kg	PASS	EXCEEDANCE	PASS	
	m&p-Xylene	45.60 8160.00	µg/kg µg/kg	PASS	EXCEEDANCE	NA	4
⊢	o-Xylene	2840.00	µg/kg µg/kg	PASS	EXCEEDANCE	NA	1
	2-Butanone (MEK)	2930.00	µg/kg	PASS	EXCEEDANCE	PASS	+
F	n-Butylbenzene	47.00	µg/kg	PASS	NA	NA	1
	cis-1,2-Dichloroethene	524.00	µg/kg	PASS	EXCEEDANCE	NA	1
	Ethylbenzene	1470.00	µg/kg	PASS	PASS	NA	1
	Isopropylbenzene (Cumene)	56.60	µg/kg	PASS	NA	NA	7
SS-17-4	n-Propylbenzene	128.00	µg/kg	PASS	NA	NA]
	Toluene	3070.00	µg/kg	PASS	EXCEEDANCE	NA	
	1,2,4-Trimethylbenzene	619.00	µg/kg	PASS	PASS	NA]
	1,3,5-Trimethylbenzene	186.00	µg/kg	PASS	PASS	NA	_
	m&p-Xylene	4890.00	µg/kg	PASS	EXCEEDANCE	NA	4
	o-Xylene	1670.00	µg/kg	PASS	EXCEEDANCE	NA	
	Ethylbenzene	425.00	µg/kg	PASS	PASS	NA	
L	Toluene	114.00	µg/kg	PASS	PASS	NA	4
	1,2,4-Trimethylbenzene	101.00	µg/kg	PASS	PASS	NA	4
SS-17-7				PASS	PASS	NA	1
SS-17-7	1,3,5-Trimethylbenzene m&p-Xylene	30.50 1320.00	μg/kg μg/kg	PASS	PASS	NA	-

					STANDARDS		
Sample ID	Constiuents Detected	Lab Results	Units	RCL for Direct Contact	RCL for Protection of Groundwater	TCLP	Comments
	n-Butylbenzene	3550.00	µg/kg	PASS	NA	NA	
	sec-Butylbenzene	1500.00	µg/kg	PASS	NA	NA	
	cis-1,2-Dichloroethene	7710.00	µg/kg	PASS	EXCEEDANCE	NA	Cumulative HI>1, CR>1e-5
	Ethylbenzene	182000.00	µg/kg	EXCEEDANCE	EXCEEDANCE	NA	
	Isopropylbenzene (Cumene)	7840.00	µg/kg	PASS	NA	NA	
	n-Propylbenzene	13500.00	µg/kg	PASS	NA	NA	
SS-18	Tetrachloroethylene	3310.00	µg/kg	PASS	EXCEEDANCE	PASS	-
_	Toluene	323000.00	µg/kg	PASS	EXCEEDANCE	NA	-
	Trichloroethylene	133000.00	µg/kg	EXCEEDANCE	EXCEEDANCE	EXCEEDANCE	-
	1,2,4-Trimethylbenzene	61400.00	µg/kg	PASS	EXCEEDANCE	NA	-
_	1,3,5-Trimethylbenzene	18500.00	µg/kg	PASS	EXCEEDANCE	NA NA	-
-	m&p-Xylene o-Xylene	614000.00 227000.00	μg/kg μg/kg	EXCEEDANCE PASS	EXCEEDANCE EXCEEDANCE	NA	4
	2-Butanone (MEK)	1200.00	µg/kg µg/kg	PASS	PASS	PASS	
	n-Butylbenzene	649.00	µg/kg µg/kg	PASS	NA	NA	-
-	sec-Butylbenzene	256.00	µg/kg µg/kg	PASS	NA	NA	-
-	cis-1,2-Dichloroethene	1540.00	µg/kg	PASS	EXCEEDANCE	NA	-
	Ethylbenzene	21700.00	µg/kg	PASS	EXCEEDANCE	NA	-
	Isopropylbenzene (Cumene)	953.00	µg/kg	PASS	NA	NA	-
	p-IsoropyItoluene	208.00	µg/kg	PASS	NA	NA	
	Napthalene	341.00	µg/kg	PASS	PASS	NA	
SS-19	n-Propylbenzene	1760.00	µg/kg	PASS	NA	NA	
	Tetrachloroethylene	401.00	µg/kg	PASS	EXCEEDANCE	PASS	
	Toluene	39100.00	µg/kg	PASS	EXCEEDANCE	NA	
	Trichloroethylene	13500.00	µg/kg	EXCEEDANCE	EXCEEDANCE	EXCEEDANCE	
	1,2,4-Trimethylbenzene	9750.00	µg/kg	PASS	EXCEEDANCE	NA	
	1,3,5-Trimethylbenzene	2760.00	µg/kg	PASS	EXCEEDANCE	NA	
	m&p-Xylene	74500.00	µg/kg	PASS	EXCEEDANCE	NA	
	o-Xylene	29600.00	µg/kg	PASS	EXCEEDANCE	NA	
_	2-Butanone (MEK)	438.00	µg/kg	PASS	PASS	PASS	
SS-20	cis-1,2-Dichloroethene	33.50	µg/kg	PASS	PASS	NA	SS-20 through
	Toluene	79.30	µg/kg	PASS	PASS	NA	
	Vinyl Chloride	28.20	µg/kg	PASS	EXCEEDANCE	PASS	USS-23
	2-Butanone (MEK)	1220.00	µg/kg	PASS	PASS	PASS	
CC 24	cis-1,2-Dichloroethene	113.00	µg/kg	PASS	EXCEEDANCE	NA	5/20/15
SS-21	Toluene	72.10	µg/kg	PASS	PASS	NA PASS	
-	Trichloroethylene m&p-Xylene	169.00 60.50	µg/kg	PASS PASS	EXCEEDANCE PASS	NA PASS	4
	cis-1,2-Dichloroethene	229.00	µg/kg	PASS	EXCEEDANCE	NA	
_	Ethylbenzene	229.00 74.60	µg/kg µg/kg	PASS	PASS	NA	4
-	Toluene	82.90	µg/kg µg/kg	PASS	PASS	NA	4
SS-22	Trichloroethylene	495.00	µg/kg µg/kg	PASS	EXCEEDANCE	PASS	1
	1,2,4-Trimethylbenzene	26.80	µg/kg µg/kg	PASS	PASS	NA	1
_	m&p-Xylene	195.00	µg/kg	PASS	PASS	NA	1
	o-Xylene	49.60	µg/kg	PASS	PASS	NA	1
	cis-1,2-Dichloroethene	278.00	µg/kg	PASS	EXCEEDANCE	NA	
	Ethylbenzene	148.00	µg/kg	PASS	PASS	NA	1
00.00	Toluene	50.90	µg/kg	PASS	PASS	NA	1
SS-23	Trichloroethylene	56.30	µg/kg	PASS	EXCEEDANCE	PASS	1
	m&p-Xylene	284.00	µg/kg	PASS	PASS	NA	1
	o-Xylene	71.60	µg/kg	PASS	PASS	NA	1

	ļ						NORT		TO PHASE 6 $-$
+ + EXISTING		47 48							
PHASE 1C	40		-*-	-··->	< <u> </u>	×- +	×-		UT AREA NO. 1 · +
PHASES 1C AND 2C (TYP) SEE DETAIL 1 14		• 67	× ⁶⁸	>	69	936 × ⁷⁰	× ⁷¹	L	× ⁷²
+ +	45 44	87 	- - X	- — — >	, 93 94		99 		- * ¹⁰² 103
1 1		¥ ×−		>	95 	× -98 134	× ¹⁰ 13		- x ¹⁰⁴ - x ¹³⁶
WEST TIE-IN TO PHASES						×	×		
COLLECTION TRENCH (TYP) + SEE DETAIL 2 14	+	¥ 42 1 ¥ ×	.45 146 *	->	147 ←	* 148	* 14	.9	150 *
	+	¥ 41 - *	166167 - *		← <u>168</u>	1 69	*	<u>′0</u>	
					- 0				
+ +		40 / 18 * *	87 188 *	+	, 189 , 189	* ¹⁹⁰	* 19	91	192 *
EXISTING		20	8 209	>	210	× ²¹¹	× 21		× ²¹³
PHASE 2C	39		2 225	, >	228 	× 231 232	x _2	34 35	× 237 × 238
+ $+$	+ 3	* * * *		——- >	230 	*	*_`` *_``		* 239 *
		266 •	× ²⁶⁷	>	, 268 ,	× ²⁶⁹	× 2		× ²⁷¹
+ $+$		i 36283 × ×	* 284	->	285	286 *	* 28		+ 288 LEACHATE COLLE
								938 -	TRENCH SEE DETAIL
+ +	3;	5 301 × ×	302 *		303	304	30)5	306 *
		34		>	<u>319</u>	x 320	x -32	21	- <u>* 322</u>
_L _L		** 35 336	-* <u>3</u> 37	—…— >	3 38	* <u>3</u> 39	-··×- <u>3</u> 4		
		940				-1-		LINER SE	CONSTRUCTION
	42								
+ +			600 +	-	_	+ 002	+		,800 +
Underdrain System	Subbas	e Elevation	П 4, 6,			イ Underdrain S	ystem Subb	ase Elevation	Е 4,8
PointCoordinatesDesignRecordDeltNo.NorthEast(ft)(ft)(ft)341078.004572.25251100.004577.25) (ft) 939.87 9	ecord Delta (ft) (ft) 39.82 0.06	Description Existing Subbase Li		Coordinates North Eas 1388.49 4577 1410.22 4600	t (ft) (ft) .43 935.33 935.26	I Delta Design (ft) (ft) 0.07 936.43	Record Delta (ft) (ft) 936.42 0.01	Description Trench Crest
35 1100.00 4565.38 36 1150.00 4565.38 37 1189.02 4565.38 38 1200.00 4565.38	939.28 9 938.10 9	40.68 0.09 39.21 0.06 38.05 0.05 36.19 0.09	Existing Subbase Li Existing Subbase Li Existing Subbase Li Existing Subbase Li	imits 91 imits 92	1410.22 4600. 1400.00 4600. 1388.83 4600. 1410.22 4650.	.00 933.28 933.26 .00 935.14 935.02	0.02 934.38 0.12 936.24	936.07 0.01 934.33 0.05 936.22 0.02 935.73 0.05	Trench Crest Trench Centerline Trench Crest Trench Crest
39 1210.98 4565.38 40 1250.00 4565.38 41 1300.00 4565.38 42 1350.00 4565.38	939.27 9 940.77 9	38.06 0.05 39.26 0.02 40.67 0.10 38.69 0.08	Existing Subbase Li Existing Subbase Li Existing Subbase Li Existing Subbase Li	imits 95 imits 96	1400.00 4650. 1388.83 4650. 1410.22 4700. 1400.00 4700.	.00 934.84 934.81 .00 934.38 934.34	0.03 935.94 0.04 935.48	934.060.02935.910.03935.420.06933.770.00	Trench Centerline Trench Crest Trench Crest Trench Centerline
43 1388.16 4565.38 44 1400.00 4565.38 45 1410.23 4565.38	937.25 9 935.27 9 936.98 9	37.15 0.10 35.22 0.06 36.89 0.09	Existing Subbase Li Existing Subbase Li Existing Subbase Li Existing Subbase Li	imits 98 imits 99 imits 100	1388.8347001410.2247501400.004750	.00 934.54 934.48 .00 934.08 934.06 .00 932.38 932.38	0.06 935.64 0.02 935.18 0.00 933.48	935.590.05935.170.01933.450.02	Trench Crest Trench Crest Trench Centerline
46 1450.00 4565.38 47 1470.00 4565.52 48 1470.00 4576.72 49 1470.00 4600.00	938.16 9 937.42 9	37.74 0.03 38.09 0.08 37.40 0.02 37.25 0.03	Existing Subbase Li Existing Subbase Li Existing Subbase Li Existing Subbase Li	imits 102 imits 103	1388.83 4750. 1410.22 4800. 1400.00 4800. 1388.83 4800.	.00 933.78 933.74 .00 932.08 932.03	0.04 934.88 0.04 933.18	935.31 0.02 934.83 0.06 933.17 0.00 935.02 0.02	Trench Crest Trench Crest Trench Centerline Trench Crest
50 1470.00 4650.00 51 1470.00 4700.00 52 1470.00 4750.00 53 1470.00 4800.00	936.68 9 936.38 9	36.88 0.10 36.62 0.06 36.28 0.10 36.02 0.06	Existing Subbase Li Existing Subbase Li Existing Subbase Li Existing Subbase Li	imits 106 imits 107	1410.2248501400.0048501388.8348501410.224900	.00 931.78 931.71 .00 933.64 933.59	0.07 932.88 0.05 934.74	934.530.05932.840.03934.700.03934.230.05	Trench Crest Trench Centerline Trench Crest Trench Crest
54 1470.00 4850.00 55 1470.00 4900.00 <	935.78 9 935.48 9	35.74 0.04 35.40 0.08 35.18 0.00	Existing Subbase Li Existing Subbase Li Existing Subbase Li Existing Subbase Li	imits 109 imits 110	1410.22 4900. 1400.00 4900. 1388.83 4900. 1410.22 4950.	.00 931.48 931.45 .00 933.34 933.31 .00 932.88 932.81	0.03 932.58 0.02 934.44	932.54 0.04 934.40 0.04 933.96 0.02	Trench Centerline Trench Crest Trench Crest
57 1470.00 5000.00 58 1470.00 5050.00 59 1470.00 5100.00 60 1470.00 5150.00	934.58 9 934.28 9	34.87 0.01 34.57 0.01 34.24 0.04 33.92 0.06	Existing Subbase Li Existing Subbase Li Existing Subbase Li Existing Subbase Li	imits 113 imits 114	1400.00 4950. 1388.83 4950. 1410.22 5000. 1400.00 5000.	.00 933.04 932.96 .00 932.58 932.56	0.08 934.14 0.02 933.68	932.270.01934.110.03933.670.01931.980.00	Trench Centerline Trench Crest Trench Crest Trench Centerline
61 1470.00 5200.00 62 1470.00 5250.00 63 1470.00 5278.29	933.68 9 933.38 9 933.21 9	33.640.0433.330.0533.120.08	Existing Subbase Li Existing Subbase Li Existing Subbase Li	imits 116 imits 117 imits 118	1388.8350001410.2250501400.005050	.00932.74932.65.00932.28932.24.00930.58930.52	0.09 933.84 0.04 933.38 0.05 931.68	933.810.03933.360.02931.670.01	Trench Crest Trench Crest Trench Centerline
64 1470.00 5283.58 65 1470.00 5300.00 66 1470.00 5332.53 67 1425.00 4576.72 935.42 935.39	938.92 9 949.76 9 3 936.52 9	33.35 0.09 38.85 0.07 49.68 0.08 36.50 0.01	Existing Subbase Li Existing Subbase Li Existing Subbase Li Gradient Control Li	imits 120 imits 121 imits 122	1388.83 5050. 1410.22 5100. 1400.00 5100. 1388.83 5100.	.00 931.98 931.90 .00 930.28 930.23 .00 932.14 932.12	0.08 933.08 0.04 931.38 0.02 933.24	933.53 0.01 933.06 0.02 931.36 0.02 933.20 0.04	Trench Crest Trench Crest Trench Centerline Trench Crest
68 1425.00 4600.00 935.28 935.26 0.02 69 1425.00 4650.00 934.98 934.94 0.04 70 1425.00 4700.00 934.68 934.64 0.04 71 1425.00 4750.00 934.38 934.36 0.04	4 936.08 9 4 935.78 9	36.36 0.02 36.07 0.01 35.76 0.02 35.43 0.05	Gradient Control Li Gradient Control Li Gradient Control Li Gradient Control Li	imits 124 imits 125	1410.2251501400.0051501388.8351501410.225200	.00 929.98 929.93 .00 931.84 931.79	0.04 931.08 0.05 932.94	932.770.01931.060.02932.910.03	Trench Crest Trench Centerline Trench Crest Trench Crest
72 1425.00 4800.00 934.08 934.04 0.04 73 1425.00 4850.00 933.78 933.77 0.01 74 1425.00 4900.00 933.48 933.42 0.05	4 935.18 9 1 934.88 9 5 934.58 9	35.140.0334.870.0134.550.03	Gradient Control Li Gradient Control Li Gradient Control Li	imits 127 imits 128 imits 129	1400.00 5200 1388.83 5200 1400.00 5300	.00 929.68 929.65 .00 931.54 931.51 .00	0.02 930.78 0.03 932.64 938.59	930.750.02932.600.04938.440.16	Trench Centerline Trench Crest Sidewall
75 1425.00 4950.00 933.18 933.17 0.02 76 1425.00 5000.00 932.88 932.87 0.02 77 1425.00 5050.00 932.58 932.57 0.02 78 1425.00 5100.00 932.28 932.26 0.02	1 933.98 9 1 933.68 9 1 933.38 9	34.26 0.01 33.96 0.02 33.67 0.01 33.37 0.00	Gradient Control Li Gradient Control Li Gradient Control Li Gradient Control Li	imits 131 imits 132 imits 133	1400.00 5334. 1375.00 4579. 1375.00 4600. 1375.00 4650.	.88935.71935.63.00935.59935.54.00935.29935.25	0.05 936.69 0.03 936.39	950.09 0.02 936.80 0.00 936.68 0.01 936.36 0.03	Crest of Liner Gradient Control Limits Gradient Control Limits Gradient Control Limits
79 1425.00 5150.00 931.98 931.96 0.02 80 1425.00 5200.00 931.68 931.67 0.02 81 1425.00 5250.00 931.38 931.31 0.02 82 1425.00 5269.49 931.26 931.22 0.02	1 932.78 9 7 932.48 9	33.05 0.02 32.72 0.05 32.30 0.18 32.30 0.06	Gradient Control Li Gradient Control Li Gradient Control Li Gradient Control Li	imits 135 imits 136	1375.00 4700. 1375.00 4750. 1375.00 4800. 1375.00 4850.	.00 934.69 934.66 .00 934.39 934.39	0.03 935.79 0.00 935.49	936.040.04935.770.01935.450.03935.170.01	Gradient Control LimitsGradient Control LimitsGradient Control LimitsGradient Control Limits
83 1425.00 5282.72 931.85 931.83 0.02 84 1420.31 5282.63 931.80 931.77 0.03 85 1420.55 5300.00 Image: Constraint of the second	2 932.95 9 3 932.90 9 9 938.69 9	32.780.1732.840.0638.550.14	Gradient Control Li Toe of Slope Gradebreak	imits 138 139 140	1375.0049001375.0049501375.005000	.00933.79933.74.00933.49933.44.00933.19933.15	0.04 934.89 0.04 934.59 0.04 934.29	934.850.03934.560.03934.280.01	Gradient Control Limits Gradient Control Limits Gradient Control Limits
86 1421.02 5333.92 C 6 87 1410.22 4576.73 935.12 935.08 0.04 88 1400.00 4576.73 933.42 933.37 0.04	4 936.22 9	49.95 0.04 36.18 0.04 34.48 0.03	Crest of Liner Trench Crest Trench Centerlin	141 142 ne 143	1375.00 5050. 1375.00 5100. 1375.00 5150.	.00 932.59 932.54	0.04 933.69	933.95 0.03 933.66 0.03 933.39 0.00	Gradient Control Limits Gradient Control Limits Gradient Control Limits

Attachment D

Construction Documentation Report, Glacier Ridge Landfill – LGRL Phase C Waste Relocation (Text and Selected Tables and Drawings only)

Building lifetime relationships with our clients and employees.

Construction Documentation Report

Glacier Ridge Landfill – LGRL Phase C Waste Relocation

8413 Excelsior Drive, Suite 160 Madison, WI 53717 (877) 633-5520

REPORT CERTIFICATION

Construction Documentation Report Glacier Ridge Landfill – LGRL Phase C Waste Relocation Horicon, Dodge County, Wisconsin

I, Mark J. Torresani, P.E., hereby certify that I am a Registered Professional Engineer in the State of Wisconsin, registered in accordance with the requirements of ch. A-E4, Wisconsin Administrative Code (Wis. Adm. Code); that this document has been prepared in accordance with the Rules of Professional Conduct in ch. A-E8, Wis. Adm. Code; and that, to the best of knowledge, all information contained in this document is correct, and the document was prepared in compliance with all applicable requirements of chs. NR 140, NR 500, NR 600, NR 700, Wis. Adm. Code, and the LGRL Waste Relocation Plan dated December 2013.

Mark J. Torresani, P.E. Wisconsin P.E. No. 29355

TABLE OF CONTENTS

REPO	ORT C	ERTIFICATION II
LIST	OF F	SURES AND DRAWINGS
1	INTF	DDUCTION1
	1.1 1.2 1.3	General Information
2	CON	TRUCTION DOCUMENTS AND PARTIES 2
	2.1 2.2	Reference Documents
3	ERO	ION CONTROL AND WETLAND PROTECTION
4	cov	R SOIL EXCAVATION
5	LAN	FILL GAS SYSTEM ABANDONMENT
	5.1 5.2 5.3	LFG Well and Piping Abandonment
6	MON	ITORING WELL ABANDONMENT
	6.1 6.2	Non-Groundwater Well Abandonments
7	WAS	TE EXCAVATION
	7.1 7.2	INTRODUCTION8ENVIRONMENTAL MONITORING / PROTECTION87.2.1 AMBIENT AIR MONITORING87.2.2 Dust and Odor Control Measures97.2.3 Surface Water Management10
		7.2.4 CONTACT WATER/LEACHATE MANAGEMENT
	7.3	7.2.5 GROUNDWATER DEWATERING 10 WASTE HANDLING, SCREENING AND CHARACTERIZATION 10 7.3.1 TYPICAL WASTE 11 7.3.2 SALVAGEABLE WASTE 11

		7.3.3	Suspicious Waste	11
		7.3.4	HAZARDOUS WASTE	12
	7.4	WASTE	E TYPES AND QUANTITIES	12
8	SOIL		VATION	14
	8.1	Introi	DUCTION	14
	8.2	SOIL T	YPES	14
	8.3	SOIL SA	AMPLING, ANALYSIS AND CLASSIFICATION	14
		8.3.1	LGRL FINAL COVER SOILS	15
		8.3.2	Soil Within the LGRL Waste	15
		8.3.3	Soil Between the Bottom of LGRL Waste and Above Phase 8 Liner	
			Subbase Grades	15
		8.3.4	Additional Soil Excavation for Remediation	15
9	CON	CLUSI	ON	17
LIMI	ΤΑΤΙ	ONS		18
	14/TR 14	~~		10
DKA	VVIN	65		19

Rev. 0, 11/30/16 Project 160150

APPENDICES

- APPENDIX A DAILY FIELD REPORTS / WETLAND INSEPCTION FORMS
- APPENDIX B PHOTOGRAPHIC LOG
- APPENDIX C MONITORING WELL ABANDONMENT FORM
- APPENDIX D AIR MONITORING RESULTS
- APPENDIX E WDNR SOIL ADDITIONAL SOIL REMOVAL TESTS
- APPENDIX F GROUNDWATER TEST SUMMARY REPORTS

List of Figures and Drawings

Figures

Figure 1	Soil Excavation Plan
Figure 2	Type 2 Soil Subgrade Locations

Drawings

01	Title Sheet
02	Abbreviations, Legends and Notes
03	Preconstruction Conditions (Overall)
04	Preconstruction Conditions (Project Area)
05	Abandonment and Removal Plan
06	Waste Excavation Grades
07	Bottom of Contaminated Soil Excavation Grades
08	Details

1 INTRODUCTION

1.1 General Information

This Construction Documentation Report documents the Land and Gas Reclamation Landfill (LGRL) Phase C Waste Relocation Project. LGRL is a Superfund site, Wisconsin Department of Natural Resources (WDNR) License No. 1118, Environmental Protection Agency (EPA) ID No. WID0529060888 that is located within the approved Advanced Disposal Services (Advanced) Glacier Ridge Landfill (GRL) Southeast Expansion footprint. LGRL is located in the SW ¼ of Section 35 T12N, R16E, Town of Williamstown, Dodge County, Wisconsin.

LGRL is part of the larger Advanced GRL facility which is comprised of LGRL, the Closed North Landfill, the South Expansion and the Southeast Expansion. With the exception of LGRL all of the other landfill areas accept or accepted only non-hazardous waste in accordance with Chapter NR 500 Wisconsin Administrative Code. The facility is owned and operated by Advanced Disposal Services Glacier Ridge Landfill, LLC.

1.2 Site History

LGRL is a Superfund site that began accepting waste in the 1950s and was closed in the mid-1980s. A combination of municipal solid waste, construction debris, and solvent waste were accepted at LGRL over its life. LGRL is located in the footprint of the proposed GRL Southeast Expansion. As part of the Plan of Operation for the GRL Southeast Expansion, prepared by SCS Engineers, Madison, WI (date of WDNR approval October 2013), LGRL would be removed in three phases to remediate the site and to allow for the construction of the Southeast Expansion. Phase C, the final phase of the waste relocation, was completed in March 2016.

A plan for relocating the LGRL waste (LGRL Waste Removal Plan, Dec. 2013) was prepared as part of the Plan of Operation for the Southeast Expansion and approved by the WDNR. The LGRL Waste Removal Plan was used as the basis for the relocation of the LGRL waste.

1.3 Purpose and Scope

Cornerstone was retained by Advanced to provide oversight during Phase C of the LGRL Waste Relocation Project to ensure completion of the project in accordance with the GRL Southeast Expansion Plan of Operation, the LGRL Waste Removal Plan, and the GRL Southeast Expansion Plan of Operation WDNR Conditions of Approval.

2 CONSTRUCTION DOCUMENTS AND PARTIES

2.1 Reference Documents

The following reference documents were utilized during the execution of the LGRL Phase C Waste Relocation:

- Chapter NR 500 Wisconsin Administrative Code
- Chapter NR 600 Wisconsin Administrative Code
- Chapter NR 140 Wisconsin Administrative Code
- USEPA SW-846, "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods"
- Southeast Expansion Conditional Plan of Operation Approval and Hazardous Waste Remediation Variance dated October 13, 2014
- Document Titled: "Land & Gas Reclamation Landfill Waste Removal Plan for Glacier Ridge Landfill Southeast Expansion" (Revision 1) prepared by SCS Engineers, Madison, WI dated December 2013.
- Document Titled: "Plan of Operation Advanced Disposal Services Glacier Ridge Landfill Southeast Expansion" prepared by SCS Engineers, Madison, WI dated April 23, 2013.
- Document Titled: "Plan of Operation Addendum No. 1 Advanced Disposal Services Glacier Ridge Landfill Southeast Expansion" prepared by SCS Engineers, Madison, WI dated June 28, 2013.
- Document Titled: "Plan of Operation Addendum No. 2 Advanced Disposal Services Glacier Ridge Landfill Southeast Expansion" prepared by SCS Engineers, Madison, WI dated October 3, 2013.

2.2 Parties

The following parties were involved in the LGRL Phase C Waste Relocation:

Wisconsin Department of Natural Resources (WDNR)

Ann Bekta, P.E. - Waste Management Engineer

Adam Hogan, P.G. - Hydrogeologist

Will (Woody) Myers - Hydrogeologist

Advanced Disposal Glacier Ridge Landfill, LLC

Jay Warzinski - Corporate Director of Landfill Operations

Tim Curry - Regional Landfill Operations Manager

Lonn Walter - General Manager

Jake Margelofsky - Operations Manager

Cornerstone Environmental Group, LLC (Project Management)

Tyler Field - Project Manager

Mark Torresani, P.E. - Certifying Engineer

CQM, Incorporated (Survey, CQA, Physical Soil Analysis)

Nick Sturzl, P.E. - Project Manager

Rick Wiemann - Project Technician

Austin Field - Projecct Technician

Tom Bishop - Project Technician

SCS Engineers, Inc. (Design Engineer)

Sherren Clark, P.E., P.G. - Hydrogeology

Hoffman Construction Company (General Contractor)

Chad Sell -Project Manager

Jay Kahl - Project Superintendent

PACE Analytical (Soil/Waste/Liquid Analytical Laboratory)

Dan Milewsky - Project Manager

Air Technology Laboratories, Inc. (Air Sample Analytical Laboratory)

Joann De La Ossa - Project Manager

3 EROSION CONTROL AND WETLAND PROTECTION

Prior to construction startup, erosion control measures were installed to protect the wetland areas to the north and east of the LGRL Phase C Excavation Area. The wetland protection included the protection provisions specified in the Wetland Protection and Erosion Control Plan. The Wetland Protection and Erosion Control Plan was included in Appendix E of the Southeast Expansion Plan of Operation. At the beginning of the project steel backed silt fence with a warning ribbon was installed prior to any construction commencing. The silt fence was installed along the approved line as specified in the Plan of Operation and as shown in the attached plan set. After storm events occurred and on a minimum weekly basis, the project technician inspected the silt fence and recorded the results on wetland inspection forms. The wetland inspection forms are included in Appendix A.

No work occurred in the wetland outside of the predetermined boundaries specified in the Wetland Protection and Erosion Control Plan. In addition, during construction all noncontact surface water runoff was directed to Sedimentation Basin No.2 located to the north of the LGRL Phase C Excavation Area. All precipitation and storm water runoff that came into contact with waste or contaminated soils was contained in the area of excavation, collected and routed or hauled to the leachate collection system for subsequent treatment. No contact water was allowed to run off of the excavation area, and enter the wetlands or landfill storm water management systems.

4 COVER SOIL EXCAVATION

Prior to performing waste excavation activities, the cover soils on top of the waste removed. The cap consisted of the following layers from top to bottom:

- Vegetative layer
- 6-inch minimum topsoil layer
- Rooting zone layer (variable depth, 24 inches min.)
- 24-inch thick clay cap layer
- Grading Layer (variable depth, min. 6 inches)

A large portion of the topsoil and rooting zone layers in Phase C were excavated during 2015. These soils were utilized to construct portions of the perimeter berm for the Phase 7 Liner Project. Clay cap soils were kept intact until just prior to the excavation of the Phase C Waste.

Efforts were made to segregate soils during the remainder of the excavation. Topsoil was stockpiled in south stockpile area for future projects, rooting zone was stockpiled or used for daily cover. Clay was segregated, then used as intermediate cover on the south slope of Phase 3 and stockpiled for future use to the north of the LGRL facility. Soils that were within 6 inches of the waste or that were too frozen to separate from the underlying waste were not segregated and were treated as waste in accordance with the LGRL Waste Removal Plan, and were tested and hauled to active area of landfill for disposal.

5 LANDFILL GAS SYSTEM ABANDONMENT

5.1 LFG Well and Piping Abandonment

LGRL contained an active gas extraction system. During the Phase A waste relocation project, eight (8) vertical landfill gas (LFG) extraction wells were abandoned and the blower/flare station was relocated. During the Phase B waste relocation project, four (4) vertical wells and all associated lateral and header piping was abandoned. Following the Phase B construction, a total of two (2) vertical LFG extraction wells were still in place and operational. Each well was connected to the blower flare station located near the center of the Phase C LGRL area. Prior to the Phase C waste relocation the two (2) remaining vertical wells were abandoned by the site, along with all associated lateral and header piping. The two (2) wells were GWL1 and GWL10. Wells and piping were removed as the waste was excavated. All well and lateral components were disposed of in the active GRL.

5.2 Blower / Flare System Removal

The blower/flare system was originally located at the northwest corner of LGRL which was in the excavation area. As part of Phase A, the blower/flare system was relocated to south end of LGRL in Phase C as shown on Drawing No. 5. The blower/flare system was then abandoned and removed from this location just prior to Phase C waste relocation.

5.3 LFG Condensate Management

One temporary condensate management sump CS-1 was abandoned and removed prior to Phase C waste relocation. This was the last condensate management feature in the LGRL area.

All remaining components of the previously existing LGRL active gas extraction system were removed prior to, or during Phase C construction. Material was disposed of in the active GRL.

6 MONITORING WELL ABANDONMENT

6.1 Non-Groundwater Well Abandonments

No non-groundwater wells were abandoned as part of the Phase C Waste Relocation project.

6.2 Groundwater Well Abandonments

One groundwater monitoring well required abandonment as part of the Phase C Waste Relocation project to allow for the construction of the subsequent Phase 8 Composite Liner. The groundwater monitoring well abandoned was outside of the LGRL waste limits:

MW407 (WI Unique Well # VW503)

This well was over drilled, the casing and screen was removed, and the borehole backfilled in accordance with Chapter NR 141 Wis. Adm. Code. The Well Abandonment Form is included in Appendix C.

7 WASTE EXCAVATION

7.1 Introduction

Excavation of LGRL Waste began on January 4, 2016 and was completed by March 21, 2016. This section details the site health and safety, environmental monitoring and protection, waste handling, screening and characterization methods, quantities and types of waste removed, details of waste handling and screening procedures, and details of suspicious waste removal and handling. Photos of the waste excavation and associated activities are presented in Appendix B.

7.2 Environmental Monitoring / Protection

The LGRL Waste Removal Plan specified environmental monitoring and protection methods that were required in association with waste excavation and relocation activities. The required environmental monitoring / environmental protection items included:

- Ambient Air Monitoring
- Dust and Odor Control
- Surface Water Management
- Waste Contact Water Management

Each of the above items is discussed in the sections below.

7.2.1 Ambient Air Monitoring

Section 4.5.1 of the LGRL Waste Removal Plan required that ambient air-monitoring be conducted both on and off site at upwind and downwind locations. Ambient air monitoring was to be conducted weekly for the first six weeks and if no contaminants were discovered, biweekly thereafter. The main constituents of concern were volatile organic compounds (VOCs). During the project a total of 40 ambient air samples were collected. Samples were collected using SilcoCans that were put under a vacuum in the lab. Each can was fitted with a regulator that allowed for continuous sample collection over an approximately 8-hour period. A total of four samples were required for each sampling event per the LGRL Waste Removal Plan: one upwind, one in the public drop off area, and two downwind. An additional sample was added at the working face of the LGRL landfill to assess the VOC concentrations within the waste itself. This was done as a safety precaution for workers that were consistently present in or near the waste. There were no instances where sampling containers were placed in the waste excavation equipment, because PID readings inside the equipment never indicated elevated VOC levels during excavation operations.

Rev. 0, 11/30/16 Project 160150

During sampling, weather conditions such as temperature, precipitation, barometric pressure, pressure trend, wind speed, and wind direction were recorded with each sampling event. Samples were not collected when sustained winds over 15 miles per hour (mph) were present.

Following collection, samples were shipped to Air Technologies Laboratories (ATL) in the City of Industry, California. ATL analyzed each of the samples for VOCs in accordance with EPA Method TO 15.

Appendix D of the report summarizes sample detections from air monitoring taking place during the project. Sample detections were compared to OSHA permissible exposure limits (PELs) as is shown in Appendix D. All of the constituents that were detected were well below the OSHA PELs. Due to the low concentrations of VOCs that were detected, it is difficult to state whether the VOCs that were detected were from the waste, vehicle exhaust, or to other activities on or off the site.

Samples were to be collected weekly for the first 6 weeks of the project. If clean results were obtained, sampling could be reduced to biweekly per the LGRL Waste Removal Plan. Sampled dates are summarized below:

Week 1: 01/07/2016 Week 2: 01/14/2016 Week 3: 01/20/2016 Week 4: 01/27/2016 Week 5: 02/04/2016 Week 6: 02/11/2016 Week 8: 02/23/2016 Week 10: 03/10/2016

No additional air samples were completed after March 10, 2016 due to the small amount of waste that remained and the fact that previous sample results had VOC concentrations well below the OHSA permitted levels.

Based on the results obtained from the air monitoring sample analyses, no apparent threat to the environment or human health due to airborne VOCs was noted during the project.

7.2.2 Dust and Odor Control Measures

Throughout the excavation process dust was controlled by watering haul roads, and if necessary, the waste excavation area. Watering of roads was completed on an as needed basis to control dust. During days when dust control was required, roads were watered several times per day to mitigate dust on site haul roads.

As a preventative measure, Advanced employed the use of odor control devices that utilize odor neutralizing agents mixed with water. A portable trailer mounted system consisting of a trailer mounted 1,000 gallon water tank, spray bars, and pump was utilized. Water and odor neutralizing agent were pumped from the tank to the spray bars where a fine mist was produced. The trailer mounted system could more easily be moved to areas that had higher odor concentrations.

Odors were not excessive during the project and did not migrate off site. The odor systems were run continuously during non-freezing weather while waste was being relocated.

7.2.3 Surface Water Management

During waste excavation any clean storm water runoff was prevented from entering the excavation area. The main method used to prevent clean runoff from entering the excavation was grading around the excavation to divert surface water away from the working excavation. Surface water that did contact waste was managed as leachate.

7.2.4 Contact Water / Leachate Management

Water that contacted waste or contaminated soils was treated as leachate. To prevent the migration of contact water off site, the working face excavation was continually kept graded to a low point where contact water could be contained. The low point consisted of a collection sump and pump station that was used to transfer the contact water to leachate trucks. All contact water was treated as leachate and taken off site for disposal at a wastewater treatment plants (WWTP).

7.2.5 Groundwater Dewatering

During the excavation of the waste and the construction of the Phase 8 east perimeter berm breaker run, groundwater dewatering was required. Groundwater that did not contact waste was pumped to the underdrain system and treated with the existing air stripper. Sampling of the groundwater was conducted in accordance with the site's WPDES permit. ESC, Inc. reported the results on a monthly basis as required by the WPDES permit. Groundwater testing results are included in Appendix F.

7.3 Waste Handling, Screening and Characterization

Waste handling, screening and characterization procedures are specified in Section 4 of the LGRL Waste Removal Plan. The LGRL Waste Removal Plan identified four major waste categories as listed below:

- Typical waste (municipal and industrial)
- Salvageable waste

- Suspicious waste
- Hazardous waste

During the excavation process, CQM's Technician screened and characterized the waste removed from Phase C through visual observations, odor observations and performed periodic readings with a Photo Ionization Detector (PID) to identify suspicious and potentially hazardous wastes. The waste screening process and subsequent handling process is described in the sections below.

7.3.1 Typical Waste

Waste was classified as typical waste if it exhibited the following characteristics:

- The waste resembled MSW or waste typically disposed of in GRL
- The waste did not exhibit solvent odor
- The waste did not exhibit PID readings above 10 ppm

The majority of the waste exhumed from LGRL was classified as typical waste.

Typical waste was handled by Hoffman Construction Company (Hoffman) using two CAT 385 Excavators to load between six and eight articulated 40 ton haul trucks daily. The excavators loaded the typical LGRL waste into the haul trucks, and the haul trucks transported the waste to the active GRL. Typical waste was dumped in the active area and spread utilizing CAT D8 dozers and the landfill's compactors. LGRL typical waste was either commingled with incoming waste or was mono-filled. At times it was difficult to commingle excavated LGRL waste with incoming MSW due to safety and traffic pattern concerns. Waste within GRL was covered on a daily basis with alternate daily cover (ADC) or clean soil materials. Waste that was placed on outboard slopes was covered with one foot of intermediate cover soil after placement. The minimum separation distance between the leachate drainage layer and the LGRL waste was 15 feet.

7.3.2 Salvageable Waste

Salvageable waste was not identified during the waste screening and characterization. As such no waste was salvaged as part of the Phase C Waste Removal.

7.3.3 Suspicious Waste

Suspicious wastes were identified through visual and odor observations, and by screening the waste with a PID. All workers and equipment operators that were continually in the waste excavation area wore personal gas detection meters that had PID capability. The meters were utilized for worker health and safety primarily, but were also utilized to detect potentially VOC contaminated waste. The LGRL Waste Removal Plan did not specify a VOC concentration determined in the field that would in turn characterize the waste as

suspicious. Discussions were conducted with the WDNR regarding the lack of a VOC concentration specifications for treating waste in the field. Through the discussions with the WDNR, if a VOC reading of 10 ppm or greater was detected with the PID, the waste would be characterized as suspicious and further testing would be required. The basis for the 10 ppm limit is from the LGRL Waste Removal Plan Soil Management Section. Section 6.2.2 of the LGRL Waste Removal Plan specified a VOC concentration of 10 ppm for soil found within the waste to determine the use for the soil. Since this was used for the soil within the waste, it was determined that this standard could also apply to suspicious waste. Equipment operators and the CQM Field Technician also visually observed the excavation for the presence of intact drums, transformers, and other containers that may have housed waste meeting the definition of non-bulk suspicious.

Suspicious waste was identified on a relatively routine basis. CQM monitored the waste on a 30 minute basis to aid in identifying bulk suspicious waste. In general, levels read by the PID were below 50 ppm. Prior to initiating lab testing, the waste was transported and staged in the active GRL site. The waste was allowed to "air out" over the course of the work day and PID readings were taken at the end of the day. If the PID readings fell below 10 ppm, the waste was considered typical and incorporated into the active GRL. All bulk suspicious loads of waste dropped below 10 ppm after relocation and as such no laboratory testing was conducted. The total volume of suspicious waste removed from the Phase C was approximately 8,410 cubic yards.

7.3.4 Hazardous Waste

No hazardous waste was identified through the screening procedures described in the LGRL waste removal plan.

7.4 Waste Types and Quantities

As noted above the majority of waste that was excavated in the Phase C area was disposed of in the GRL as typical waste. Bulk and non-bulk suspicious waste was identified during the waste screening and characterization. All bulk and non-bulk suspicious wastes were tested in the laboratory for total VOCs and met the minimum disposal requirements for disposal in GRL. No hazardous wastes were identified. The total volume of waste removed is as follows:

Phase C

- Typical Waste = 301,252 cubic yards (CY)
- Bulk Suspicious Waste = 8,410 cubic yards (CY)
- Non-Bulk Suspicious Waste = 3 intact cylinder tanks

Total LGRL (Phases A, B, C)

- Typical Waste = 1,299,404 CY
- Bulk Suspicious Waste = 29,002 CY

8 SOIL EXCAVATION

8.1 Introduction

Soil excavation followed the Soil Management Plan included as in Section 6 of the LGRL Waste Removal Plan. Soils that were excavated generally consisted of cover soils, soils within the waste, berms, and native soil underlying the waste. Soil was classified in accordance with the LGRL Waste Removal Plan and used for beneficial reuse, disposed of or treated. The following sections detail the soil excavation from the site.

8.2 Soil Types

The LGRL Waste Removal Plan identified four different types of soils. Soils removed from LGRL were classified into one of the four types described below based on contamination levels. The LGRL Waste Removal Plan identified how each type of soil was to be managed. The soil types identified in the LGRL Waste Removal Plan are as follows (see the LGRL Waste Removal Plan for more detailed descriptions):

- Type 1 Soil that is not impacted above soil standards. Type 1 soil could be used anywhere on the site. To confirm soil could be classified as Type 1, it was tested in the lab for Lead, Cadmium, and VOCs. PCB Testing was not completed as the soils did not contain potentially PCB laden equipment or materials. If soil was not impacted above the soil residual contaminant level established under NR 720, the soil could be utilized on site without restrictions.
- Type 2 Soil that was impacted and may contain contaminants above the NR 720 RCLs but below the allowable TCLP limits. Type 2 soil could be used within the lined area of the landfill as daily cover. Type 2 soils did not require laboratory testing to be used in the footprint or disposed of as waste unless they were identified as suspicious wastes.
- Type 3 Soil that is impacted and may contain contaminants above the NR 720 RCLs for direct contact but are below the groundwater standards.
- Type 4 Soil that was identified as suspicious, was tested, exceeded the TCLP limits, and must be treated prior to disposal.

8.3 Soil Sampling, Analysis and Classification

Several different soils were encountered during the excavation of the LGRL waste and included cover soils, soil within the waste, soil between the bottom of waste and Phase 8 Subbase, and additional soils excavated for remediation. Each of the soils excavated are described in detail in the following sections:

8.3.1 LGRL Final Cover Soils

As was discussed in Section 6.2.1 of the LGRL Waste Removal Plan, final cover soils could be classified as Type 1 soils unless they were observed to be in direct contact with waste or exhibited other characteristics such as staining or odor. Soils that were within 6 inches of the waste were treated as waste and disposed of. Detailed cover soil excavation and stockpiling is discussed in Section 4 of this report.

8.3.2 Soil Within the LGRL Waste Mass

Soil within the LGRL waste mass was treated entirely as waste. Based on the observations during the excavation it was not practical to separate any soil from waste and as such the soil was not tested for reuse. Soil within the waste was only tested if it was part of a suspicious waste observation as detailed in Section 7 of this report.

8.3.3 Soil Between the Bottom of LGRL Waste and Above Phase 8 Liner Subbase Grades

The base of the LGRL waste mass was above the subbase grades for the Phase 8 composite liner. Soil in this zone required excavation to achieve the subbase grades and was required to be tested if used outside of the GRL footprint. Soil removal depths in this region ranged from 0 to 18 feet with an average depth of approximately 10 feet. During waste excavation, soil that was visually stained was treated as waste and disposed of in the GRL active area.

Testing of the remaining soil above the Phase 8 subbase grades consisted of dividing the site into approximately 0.5 acre subareas where test pits were dug to test the underlying soils. Samples were collected at each of the test pit locations on maximum 5 foot intervals and analyzed for VOCs, Cadmium and Lead. Figure 1 shows the location of the test pits.

The soil test results were compared to NR 720 RCLs for groundwater and direct contact, TCLP limits. A summary of the data is presented in Appendix E. There were several exceedances for various contaminants as shown in the summary of the data. Soil that did not meet the limits for use outside of the GRL footprint was disposed of or used as daily cover within the limits of waste. Contaminated soil was disposed of in Phases 6 and 7 of the active GRL.

8.3.4 Additional Soil Excavation for Remediation

As part of the LGRL Waste Relocation plan, a soil remediation plan was put into place that required removal of some of the soils from below the Southeast Expansion subbase grades. As part of the Waste Relocation Plan, up to a total of 3,000 cubic yards of soil could be removed for remediation at the request of the WDNR across the entire LGRL area.

Rev. 0, 11/30/16 Project 160150

After all of the LGRL waste had been removed from the Phase C area, the subbase was inspected with a WDNR representative (Woody Myers) for areas that had high levels of VOC contamination.

The WDNR was informed of the area of VOC contamination. Advanced Disposal and the WDNR collaborated to determine a course of action for removing the soil. The bullet points below describe the methods used to bound the area and remove the contaminated soil.

- First, additional test pits were dug surrounding the center of the VOC contamination under the direction of the WDNR. Figure 1 indicates the test pit locations. Several additional test pits were dug and soils were analyzed with the PID. The center of the VOC contamination areas were used as the starting point and test pits were dug moving out form the center. The boundary of the VOC contaminated soil was determined based on field PID readings. When field PID readings fell below 10ppm, the bounds of the contaminated soil were assumed to be detected.
- Figure 2 shows the area of soil that was removed below the subbase grades. The total volume of soil removed from area C below Phase 8 subbase grades was approximately 2,856 cubic yards. Additional soil samples were taken after soil was removed to assess the level of contamination remaining. The combined additional soil excavation for remediation between Phases A, B, and C is 4,226 cubic yards.
- The impacted soil was relocated to the active GRL. Lab results indicated that none of the soil removed was above the maximum disposal limits.

9 CONCLUSION

The LGRL Phase C Waste Relocation project has been completed in accordance with the approved LGRL Waste Relocation Plan, the construction plans and specifications, Chapters NR 140, 500, 600 and 700 Wis. Adm. Code. On behalf of Advanced Disposal, Cornerstone respectfully requests the review and approval of this Construction Documentation Report.

LIMITATIONS

The work product included in the attached was undertaken in full conformity with generally accepted professional consulting principles and practices and to the fullest extent as allowed by law we expressly disclaim all warranties, express or implied, including warranties of merchantability or fitness for a particular purpose. The work product was completed in full conformity with the contract with our client and this document is solely for the use and reliance of our client (unless previously agreed upon that a third party could rely on the work product) and any reliance on this work product by an unapproved outside party is at such party's risk.

The work product herein (including opinions, conclusions, suggestions, etc.) was prepared based on the situations and circumstances as found at the time, location, scope and goal of our performance and thus should be relied upon and used by our client recognizing these considerations and limitations. Cornerstone shall not be liable for the consequences of any change in environmental standards, practices, or regulations following the completion of our work and there is no warrant to the veracity of information provided by third parties, or the partial utilization of this work product.

								STANDARDS	
Sample ID	Constiuents Detected	Lab Results	Units	Results (mg/kg)	Results / 20	TCLP Results mg/L	RCL for Direct Contact	RCL for Protection of Groundwater	TCLP
	Lead	1.8	mg/kg	1.8000	0.0900	5.0000	PASS	PASS	PASS
SS-1-1'	2-Butanone (MEK)	707.0	µg/kg	0.7070	0.0354	200.0000	PASS	PASS	PASS
55-1-1	Trichloroethene	64.9	µg/kg	0.0649	0.0032	0.5000	PASS	EXCEEDANCE	PASS
	cis-1,2-Dichloroethene	49.3	µg/kg	0.0493	0.0025	0.5000	PASS	EXCEEDANCE	PASS
SS-1-5'	Lead	3.3	mg/kg	3.3000	0.1650	5.0000	PASS	PASS	PASS
SS-1-10'	Lead	3.2	mg/kg	3.2000	0.1600	5.0000	PASS	PASS	PASS
55 1 10	m&p-Xylene	79.9	µg/kg	0.0799	0.0040		PASS	PASS	N/A
SS-1-15'	Lead	2.9	mg/kg	2.9000	0.1450	5.0000	PASS	PASS	PASS
00110	Toluene	97.8	µg/kg	0.0978	0.0049		PASS	PASS	N/A
SS-1-19'	Lead	2.4	mg/kg	2.4000	0.1200	5.0000	PASS	PASS	PASS
00117	Toluene	51.7	µg/kg	0.0517	0.0026		PASS	PASS	N/A
	Lead	3.9	mg/kg	3.9000	0.1950	5.0000	PASS	PASS	PASS
	1,2,4-Trimethylbenzene	701.0	µg/kg	0.7010	0.0351		PASS	PASS	N/A
	1,3,5-Trimethylbenzene	289.0	µg/kg	0.2890	0.0145	000.000	PASS	PASS	N/A
	2-Butanone (MEK)	1230.0	µg/kg	1.2300	0.0615	200.0000	PASS	PASS	PASS
	Ethylbenzene	427.0	µg/kg	0.4270	0.0214		PASS	PASS	N/A
	Isopropylbenzene (Cumene)	30.1	µg/kg	0.0301	0.0015		PASS	N/A	N/A
	Naphthalene	102.0	µg/kg	0.1020	0.0051	0 7000	PASS	PASS	N/A
CC 0 11	Tetrachloroethene	28.8	µg/kg	0.0288	0.0014	0.7000	PASS	EXCEEDANCE	PASS
SS-2-1'	Toluene	415.0	µg/kg	0.4150	0.0208	0 5 0 0 0	PASS	PASS	N/A
	Trichloroethene cis-1,2-Dichloroethene	242.0 278.0	µg/kg	0.2420	0.0121	0.5000	PASS PASS	EXCEEDANCE EXCEEDANCE	PASS PASS
		1450.0	µg/kg	0.2780	0.0139	0.5000	PASS	PASS	N/A
	m&p-Xylene n-Butylbenzene	1450.0	µg/kg	0.1360	0.0725		PASS	N/A	N/A N/A
	n-Propylbenzene	136.0	µg/kg	0.1360	0.0053		PASS	N/A	N/A N/A
		327.0	µg/kg	0.3270	0.0053		PASS	PASS	N/A N/A
	o-Xylene p-Isopropyltoluene	51.3	µg/kg µg/kg	0.0513	0.0026		PASS	N/A	N/A N/A
	sec-Butylbenzene	46.8	µg/kg µg/kg	0.0468	0.0020		PASS	N/A	N/A
	Lead	2.5	mg/kg	2.5000	0.1250	5.0000	PASS	PASS	PASS
	1,2,4-Trimethylbenzene	50100.0	µg/kg	50.1000	2.5050	0.0000	PASS	EXCEEDANCE	N/A
	1,3,5-Trimethylbenzene	21200.0	µg/kg	21.2000	1.0600		PASS	EXCEEDANCE	N/A
	Ethylbenzene	67900.0	µg/kg	67.9000	3.3950		EXCEEDANCE	EXCEEDANCE	N/A
	Tetrachloroethene	12800.0	µg/kg	12.8000	0.6400	0.7000	PASS	EXCEEDANCE	PASS
SS-2-5'	Toluene	123000.0	µg/kg	123.0000	6.1500		PASS	EXCEEDANCE	N/A
	Trichloroethene	2470000.0	µg/kg	2470.0000	123.5000	0.5000	EXCEEDANCE	EXCEEDANCE	EXCEEDAN
	cis-1,2-Dichloroethene	70200.0	µg/kg	70.2000	3.5100	0.5000	PASS	EXCEEDANCE	EXCEEDAN
	m&p-Xylene	204000.0	µg/kg	204.0000	10.2000		PASS	EXCEEDANCE	N/A
	o-Xylene	40400.0	µg/kg	40.4000	2.0200		PASS	EXCEEDANCE	N/A
	Lead	2.7	mg/kg	2.7000	0.1350	5.0000	PASS	PASS	PASS
	1,1,1-Trichloroethane	2120.0	µg/kg	2.1200	0.1060		PASS	EXCEEDANCE	N/A
	1,2,4-Trimethylbenzene	36400.0	µg/kg	36.4000	1.8200		PASS	EXCEEDANCE	N/A
	1,3,5-Trimethylbenzene	15800.0	µg/kg	15.8000	0.7900		PASS	EXCEEDANCE	N/A
	2-Butanone (MEK)	4610.0	µg/kg	4.6100	0.2305	200.0000		EXCEEDANCE	PASS
	Ethylbenzene	37500.0	µg/kg	37.5000	1.8750		EXCEEDANCE	EXCEEDANCE	N/A
	Isopropylbenzene (Cumene)	2100.0	µg/kg	2.1000	0.1050		PASS	N/A	N/A
	Naphthalene	2750.0	µg/kg	2.7500	0.1375		PASS	EXCEEDANCE	N/A
SS-2-10'	Tetrachloroethene	2760.0	µg/kg	2.7600	0.1380	0.7000	PASS	EXCEEDANCE	PASS
	Toluene	41200.0	µg/kg	41.2000	2.0600	0.5000	PASS	EXCEEDANCE	
	Trichloroethene	137000.0	µg/kg	137.0000	6.8500	0.5000	EXCEEDANCE	EXCEEDANCE	EXCEEDAN
	cis-1,2-Dichloroethene	144000.0	µg/kg	144.0000	7.2000	0.5000	PASS	EXCEEDANCE	EXCEEDAN
	m&p-Xylene	131000.0	µg/kg	131.0000	6.5500		PASS	EXCEEDANCE	N/A
	n-Butylbenzene	4140.0	µg/kg	4.1400	0.2070		PASS	N/A	N/A
	n-Propylbenzene	6310.0	µg/kg	6.3100	0.3155		PASS		N/A
	o-Xylene	25700.0	µg/kg	25.7000	1.2850		PASS	EXCEEDANCE	N/A
	p-Isopropyltoluene	2230.0	µg/kg	2.2300	0.1115		PASS PASS	N/A	N/A
	sec-Butylbenzene	1990.0	µg/kg	1.9900	0.0995		4422	N/A	N/A

Sample ID Constluents Detected Lab Results Units Results (mg/kg) Rcsults (RcL for Direct (mg/kg) RCL for Direct (ng/kg) RCL for Direct (ng/kg) RCL for Direct (ng/kg) 12.4 Trimethyleerzene 39400 1.990 3.400 1.970 PASS EXCEEDANCE 2.5.5 Trimethyleerzene 1.400.0 1.990 3.400 0.1730 PASS EXCEEDANCE 2.5.2 Trimethyleerzene 2.400.0 1.930 3.200 0.1640 2.0000 PASS EXCEEDANCE 2.5.2 Triftorteneme 2.200.0 1.930 4.200 0.0203 0.7000 PASS EXCEEDANCE S.5.2 115 Toberne 3.2100 0.1640 2.0000 PASS EXCEEDANCE S.5.2 115 Toberne 3.2100 0.1640 0.0203 0.7000 PASS EXCEEDANCE S.5.2 115 Toberne 3.2100 0.1640 0.0203 0.7000 PASS EXCEEDANCE S.5.2 10 Toberne 3.2100 0.1640 0.2000 D.780 EXCEEDANCE Lightyle									STANDARDS	
12.4.Timethybenzene 14600 µg/kg 34000 0.1700 PASS EXCEEDANCE 2-Bulanne (MEK) 32800 µg/kg 32800 0.140 20.0000 PASS EXCEEDANCE Eltrybenzene 2900.0 µg/kg 32800 0.140 20.000 PASS EXCEEDANCE Eltrybenzene 2900.0 µg/kg 29000 0.1450 PASS EXCEEDANCE Eltrybenzene 3210.0 µg/kg 32100 1.605 PASS EXCEEDANCE ich1/20rochhene 1210.0 µg/kg 1.0000 0.5000 EXCEEDANCE EXCEEDANCE ich2-12Dichlorochene 13800.0 µg/kg 1.03000 0.5150 PASS EXCEEDANCE ich2-12Dichlorochene 531.0 µg/kg 0.5510 0.0276 PASS NA n*Proybenzene 521.0 µg/kg 0.6320 0.0316 PASS PASS 1.2.4-Timethybenzene 632.0 µg/kg 0.6400 0.0130 PASS PASS 1.2.4-Timethybenzene<	-	Constiuents Detected		Units			Results		RCL for Protection of	TCLP
13.5 Trimethybervene 1460.0 µg/kg 1.4600 0.0730 PASS EXCEEDANCE 2.8 utanone (MEK) 3280.0 µg/kg 3.280.0 0.1640 200.000 PASS EXCEEDANCE SS-215 Toluene 405.0 µg/kg 2.000 0.1640 PASS EXCEEDANCE Tichtoroethene 405.0 µg/kg 2.000 0.1650 PASS EXCEEDANCE Tichtoroethene 1480.0 µg/kg 10.300 0.5000 PASS EXCEEDANCE mkp Xylene 10300.0 µg/kg 10.3000 0.510 PASS EXCEEDANCE n.Poylgbenzene 551.0 µg/kg 0.580 0.0254 PASS N/A o.Xylene 2140.0 µg/kg 0.6300 0.1070 PASS PASS 12.4.Trimethybenzene 632.0 µg/kg 0.6320 0.0316 PASS PASS 13.5.Timethybenzene 640.4 µg/kg 0.6320 0.0309 PASS PASS 12.4.Trimethybenzene 643.	L	_ead	2.7	mg/kg	2.7000	0.1350	5.0000	PASS	PASS	PASS
2.Butanone (MEK) 2280.0 µg/kg 2380.0 0.1640 200.00 PASS EXCEEDANCE Ethybenzene 2000.0 µg/kg 0.4660 0.0203 0.7000 PASS EXCEEDANCE S5-216 Toluene 3210.0 µg/kg 32100 2.600 0.5000 EXCEEDANCE Construction 14800.0 µg/kg 32100 0.5000 EXCEEDANCE Construction 14800.0 µg/kg 10000 0.5000 EXCEEDANCE PAbybrene 10300.0 µg/kg 0.5000 EXCEEDANCE EXCEEDANCE PAbybrene 2140.0 µg/kg 0.5010 0.0276 PASS N/A PAropibenzene 240.0 µg/kg 0.5300 0.0316 PASS PASS 1.3.5-Timelrybenzene 262.0 µg/kg 0.230 0.0316 PASS PASS 2.4-Interrybenzene 263.0 µg/kg 0.0390 PASS PASS 1.3.5-Timelrybenzene 263.0 µg/kg 0.039 PASS	1	,2,4-Trimethylbenzene	3940.0	µg/kg	3.9400	0.1970		PASS	EXCEEDANCE	N/A
Ethylbezrene 2900.0 µgkg 2000.0 0.1450 PASS EXCEEDANCE Tetrachirorethene 405.0 µgkg 0.4050 0.0203 0.7000 PASS EXCEEDANCE Tichloroethene 5210.0. µgkg 52100 0.605 0.7835 EXCEEDANCE richloroethene 14800.0 µgkg 10.3000 µgkg 0.500 PASS EXCEEDANCE nBp-Xylone 10300.0 µgkg 0.5010 0.726 PASS EXCEEDANCE nBp-Xylone 2140.0 µgkg 0.5510 0.0254 PASS EXCEEDANCE nBp-Xylone 2140.0 µgkg 0.5510 0.0276 PASS PASS Lad 2.7 mgkg 0.6510 0.0300 PASS PASS Lada 2.7 mgkg 0.6300 0.0316 PASS PASS Lada 2.7 mgkg 0.6300 0.0316 PASS PASS Lada 2.4 methylbenzene 632.0 µgkg	1	,3,5-Trimethylbenzene	1460.0	µg/kg	1.4600	0.0730		PASS	EXCEEDANCE	N/A
SS-2:15 Tetrachloroeithene 405.0 µgkg 32100 µgkg 32100 µgkg 32100 µgkg 32100 µgkg 32100 µgkg SS-2100 2.065 0.500 PASS EXCEEDANCE cis-12-Dichloroethene 14800.0 µgkg 14.8000 0.7400 0.5000 PASS EXCEEDANCE n-Butylbenzene 551.0 µgkg 0.5000 0.0276 PASS EXCEEDANCE n-Propylbenzene 551.0 µgkg 0.5000 0.0276 PASS EXCEEDANCE eXylene 21400 µgkg 0.5200 0.0276 PASS EXCEEDANCE Laad 2.7 mgkg 0.6200 0.0316 PASS PASS 1.3.5-Trimethylbenzene 613.0 µgkg 0.6200 0.0316 PASS PASS Ispropylbenzene 618.0 µgkg 0.6300 0.035 PASS PASS Ispropylbenzene 618.0 µgkg 0.6300 0.0019 PASS PASS <td< td=""><td>2</td><td>2-Butanone (MEK)</td><td>3280.0</td><td>µg/kg</td><td>3.2800</td><td>0.1640</td><td>200.0000</td><td>PASS</td><td>EXCEEDANCE</td><td>PASS</td></td<>	2	2-Butanone (MEK)	3280.0	µg/kg	3.2800	0.1640	200.0000	PASS	EXCEEDANCE	PASS
SS-2:15 Toluene 3210.0 µg/kg 3210.0 2.655.0 0.5000 EXCEEDANCE Trichbroethene 1400.0 µg/kg 1400.0 0.500 EXCEEDANCE EXCEEDANCE Cis-1.2-Dichbroethene 1400.0 µg/kg 10.300.0 µg/kg 10.300.0 PASS EXCEEDANCE n-Propybenzene 551.0 µg/kg 0.5080 0.0276 PASS N/A n-Propybenzene 551.0 µg/kg 0.510 0.0276 PASS N/A o-Xylene 2140.0 µg/kg 0.7000 0.130 PASS PASS 1.2.4 Trimethybenzene 632.0 µg/kg 0.4300 0.0301 PASS PASS 2-Butanone (MEK) 1140.0 µg/kg 0.4380 0.0000 PASS PASS 2-Butanone (MEK) 1140.0 µg/kg 0.6389 0.0014 0.7000 PASS PASS 2-Butanone (MEK) 1140.0 µg/kg 0.6280 0.0014 0.7000 PASS PASS <	E	Ethylbenzene	2900.0	µg/kg	2.9000	0.1450		PASS	EXCEEDANCE	N/A
SS-2:15 Toluene 3210.0 µgkq 32100 0.1605 PASS EXCEEDANCE Trichiorosthene 52100.0 µgkq 121000 2.605.0 0.5000 PASS EXCEEDANCE 0s-1.2-Dichiorosthene 14800.0 µgkq 10.0000 0.515.0 PASS EXCEEDANCE nBuylbenzene 550.0 µgkq 0.5080 0.0254 PASS NA n-Propylbenzene 551.0 µgkq 0.5100 0.0276 PASS NA n-Vyene 2140.0 µgkq 0.5100 0.0276 PASS PASS 1.2.4-Timethylbenzene 632.0 µgkq 0.3200 0.030 PASS PASS 2-Butanone (MEK) 1140.0 µgkq 0.0389 0.0035 PASS PASS Ethylbenzene 618.0 µgkq 0.0389 0.0035 PASS PASS Ethylbenzene 704.0 µgkq 0.0289 0.0014 0.7000 PASS PASS Ethylbenzene 704.0 <	Т	Tetrachloroethene	405.0		0.4050	0.0203	0.7000	PASS	EXCEEDANCE	PASS
Trichtoroethene 5210.0 µg/kg 52.1000 2.6050 0.5000 EXCEEDANCE EXCEEDANCE m&p-Xylene 11400.0 µg/kg 14.800.0 0.7400 0.5100 PASS EXCEEDANCE n-Butylbenzene 508.0 µg/kg 0.5100 0.0256 PASS N/A o-Xylene 2140.0 µg/kg 0.5101 0.0276 PASS N/A o-Xylene 2140.0 µg/kg 0.5101 0.0276 PASS N/A 0-Xylene 2140.0 µg/kg 0.6320 0.0276 PASS PASS 1.3-5-Timethylbenzene 632.0 µg/kg 0.6320 0.0130 PASS PASS 2-Butanone (MEK) 1140.0 µg/kg 0.6320 0.000 PASS PASS S52-2:00 Tolkene 69.2 µg/kg 0.0301 PASS PASS NA Ng/kg 0.0280 0.0011 PASS PASS N/A Ng/kg/kg 0.0280 0.0012 0.0305	S-2-15' T	Toluene	3210.0		3.2100	0.1605		PASS	EXCEEDANCE	N/A
Esh-12-Dichloroethene 1480.0 µg/kg 148000 0.7400 0.5000 PASS EXCEEDANCE mButylbenzene 10300.0 µg/kg 0.5000 0.5150 PASS N/A n-Ptropylbenzene 5510.0 µg/kg 0.5100 0.0274 PASS N/A o-Vylene 2140.0 µg/kg 0.5100 0.0276 PASS N/A i-Ptropylbenzene 2140.0 µg/kg 0.5100 0.0276 PASS PASS 12.4-Timethylbenzene 632.0 µg/kg 0.6320 0.0310 PASS PASS 2.Butanone (MEK) 1140.0 µg/kg 0.6480 0.0309 PASS PASS 2.Butanone (MEK) 1140.0 µg/kg 0.6480 0.0309 PASS PASS Ethylbenzene 632.0 µg/kg 0.0303 0.013 PASS PASS Iburtorehne 785.0 µg/kg 0.0391 0.0303 PASS PASS Teacharoethene 786.0 µg/kg 0.0301	Т	[richloroethene	52100.0		52.1000	2.6050	0.5000	EXCEEDANCE	EXCEEDANCE	EXCEEDANCE
m&p-Xylene 10300.0 µg/kg 10.3000 0.5150 PASS EXCEEDANCE n-Butylbenzene 501.0 µg/kg 0.5080 0.0254 PASS N/A o Xylene 2140.0 µg/kg 0.5101 0.0276 PASS N/A to Xylene 2140.0 µg/kg 0.5101 0.0276 PASS PASS 1.2.4-1rimethylbenzene 632.0 µg/kg 0.0300 0.0350 PASS PASS 1.3.5-Timethylbenzene 632.0 µg/kg 0.0301 PASS PASS 2.Butanone (MEK) 1140.0 µg/kg 0.0309 PASS PASS 2.Butanone (MEK) 1140.0 µg/kg 0.0301 PASS N/A Naphthalene 69.3 µg/kg 0.0302 PASS PASS Ircichoroethene 82.0 µg/kg 0.0280 0.0014 0.7000 PASS PASS S5-2.00 Tolkene 82.0 µg/kg 0.2800 0.0014 PASS PASS	C	cis-1,2-Dichloroethene	14800.0		14.8000	0.7400	0.5000	PASS	EXCEEDANCE	EXCEEDANCE
n-Butybenzene 508.0 µgkg 0.5308 0.0254 PASS N/A n-Propybenzene 551.0 µgkg 0.5510 0.0276 PASS N/A o-Xylene 2140.0 µgkg 0.5510 0.0276 PASS EXCEEDANCE 12.4-Trimethybenzene 632.0 µgkg 0.6320 0.0316 PASS PASS 2-Butanone (MEK) 1140.0 µgkg 0.6320 0.0310 PASS PASS 2-Butanone (MEK) 1140.0 µgkg 0.6180 0.0309 PASS PASS 2-Butanone (MEK) 1140.0 µgkg 0.0380 0.0019 PASS PASS Ethylbenzene 618.0 µgkg 0.0380 0.0019 PASS PASS Ethylbenzene 28.2 µgkg 0.0630 0.0309 PASS PASS Tichcrorethene 28.2 µgkg 0.0301 0.0305 PASS PASS Trichcrorethene 28.2 µgkg 0.0301 0.0200 PASS	n	n&p-Xylene	10300.0		10.3000	0.5150		PASS	EXCEEDANCE	N/A
n-Propylbenzene 551.0 µg/kg 0.551.0 0.0276 PASS N/A o-Xylene 2140.0 µg/kg 2.1400 0.1070 PASS EXCEEDANCE Lead 2.7 mg/kg 2.700 0.1350 5.0000 PASS PASS 1.2.4-Timethylbenzene 632.0 µg/kg 0.6320 0.0316 PASS PASS 2-Butanone (McK) 1140.0 µg/kg 0.1400 0.0570 200.0000 PASS PASS Ethylbenzene 618.0 µg/kg 0.6180 0.0399 PASS PASS Isopropylbenzene (Cumene) 38.9 µg/kg 0.0389 0.0019 PASS PASS Tetrachorothene 69.3 µg/kg 0.8250 0.0014 0.7000 PASS PASS Toluene 82.0 µg/kg 0.8250 0.0014 0.7000 PASS EXCEEDANCE Vinyi choride 596.0 µg/kg 0.5000 PASS EXCEEDANCE richarothene 111000			508.0			0.0254		PASS	N/A	N/A
o-Xylene 2140.0 µg/kg 2.1400 0.1070 PASS EXCEEDANCE Lead 2.7 mg/kg 0.2700 0.1330 5.0000 PASS PASS 1.2.4-Trimethybenzene 623.0 µg/kg 0.6320 0.0316 PASS PASS 2.5utanone (MEK) 1140.0 µg/kg 0.6100 0.0030 PASS PASS 2.6utanone (MEK) 1140.0 µg/kg 0.6180 0.0039 PASS PASS Isopropybenzene (Cumene) 38.9 µg/kg 0.0389 0.0019 PASS PASS Isopropybenzene (Cumene) 38.9 µg/kg 0.0389 0.0019 PASS PASS Isopropybenzene (Cumene) 28.2 µg/kg 0.0280 0.0019 PASS PASS Trichtoroethene 28.5.0 µg/kg 0.8250 0.0413 PASS PASS Trichtoroethene 11100.0 µg/kg 0.1075 PASS PASS PASS n-Brytyne 2150.0 µg/kg 0.0		5	551.0		0.5510	0.0276		PASS	N/A	N/A
Lead 2.7 mg/kg 2.700 0.1350 5.0000 PASS PASS 1.2.4-Trimethylbenzene 632.0 µg/kg 0.2300 0.0316 PASS PASS 1.3.5-Trimethylbenzene 260.0 µg/kg 0.2600 0.0130 PASS PASS 2-Butanone (MEK) 1140.0 µg/kg 0.6180 0.039 PASS PASS Ehylbenzene 618.0 µg/kg 0.6180 0.039 PASS PASS Sopropylbenzene (Cumene) 38.9 µg/kg 0.0289 0.0019 PASS PASS Teirachrorethene 28.2 µg/kg 0.0282 0.0014 0.7000 PASS PASS Teirachrorethene 436.0 µg/kg 0.4260 0.0218 0.5000 PASS EXCEEDANCE Viny choirde 596.0 µg/kg 0.5960 0.2000 PASS N/A n-Bulybenzene 710.0 µg/kg 0.0370 0.0037 PASS N/A n-Social contrethene 119/kg <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>N/A</td>										N/A
1.2.4-Trimethylbenzene 632.0 µg/kg 0.6320 0.0316 PASS PASS 1.3.5-Timethylbenzene 2600 µg/kg 0.2600 0.0130 PASS PASS 2-Butanone (MEK) 1140.0 µg/kg 0.1600 0.0570 200.000 PASS PASS Sispropylbenzene (Cumene) 38.9 µg/kg 0.0693 0.0039 PASS PASS NAphthalene 69.3 µg/kg 0.0693 0.0031 PASS PASS Tetrachtoroethene 28.2 µg/kg 0.0282 0.0014 0.7000 PASS PASS Toluene 82.50 µg/kg 0.8250 0.0014 0.7000 PASS PASS Toluene 82.50 µg/kg 0.8250 0.0208 PASS PASS Viryl chloride 596.0 µg/kg 0.130 0.0037 PASS PASS Viryl chloride 1100.0 µg/kg 0.0330 0.0037 PASS N/A n-Bulybenzene 73.0 <							5.0000			PASS
1.3.5-Trimethylbenzene 260.0 µg/kg 0.2600 0.0130 PASS PASS 2-Butanone (MEK) 1140.0 µg/kg 1.1400 0.0570 20.0000 PASS PASS Ethylbenzene 618.0 µg/kg 0.0389 0.0019 PASS PASS Isopropylbenzene (Cumene) 38.9 µg/kg 0.0389 0.0010 PASS PASS Tetrachloroethene 28.2 µg/kg 0.0693 0.0035 PASS PASS Toluene 295.0 µg/kg 0.2820 0.0414 0.7000 PASS PASS Trichioroethene 285.0 µg/kg 0.4360 0.0218 0.5000 PASS EXCEEDANCE Ving/ chloride 596.0 µg/kg 1.1000 0.5550 0.5000 PASS PASS n-Boylbenzene 73.0 µg/kg 0.0730 0.0037 PASS N/A n-Propylbenzene 94.4 µg/kg 0.0335 0.0017 PASS N/A sctaplubenzene				0 0						N/A
2-Butanone (MEK) 1140.0 µg/kg 1.1400 0.0570 200.0000 PASS PASS Ethylbenzene 618.0 µg/kg 0.6180 0.0399 PASS PASS Isopropylbenzene (Cumene) 38.9 µg/kg 0.0619 PASS N/A Naphthalene 69.3 µg/kg 0.0282 0.0014 0.7000 PASS PASS Tetrachloroethene 28.5.0 µg/kg 0.0282 0.0014 0.7000 PASS EXCEEDANCE Trichloroethene 436.0 µg/kg 0.4360 0.2028 0.2000 PASS EXCEEDANCE migb-Xylene 2150.0 µg/kg 1.1000 0.5550 5000 PASS EXCEEDANCE migb-Xylene 2150.0 µg/kg 0.1705 PASS N/A n-Propylbenzene 73.0 µg/kg 0.037 PASS N/A n-Propylbenzene 94.4 µg/kg 0.0385 0.0017 PASS N/A sc-Julybenzene 76.0 µg/kg		· · · · · · · · · · · · · · · · · · ·								N/A
Ethybenzene 618.0 µg/kg 0.6180 0.0309 PASS PASS Sopropylbenzene (cumene) 38.9 µg/kg 0.0389 0.0019 PASS NA Naphthalene 69.3 µg/kg 0.0389 0.0019 PASS PASS Tetrachforoeithene 28.2 µg/kg 0.0282 0.0114 0.7000 PASS EXCEEDANCE Toluene 825.0 µg/kg 0.4360 0.0218 0.5000 PASS EXCEEDANCE Vinyl chloride 596.0 µg/kg 0.4360 0.0218 0.5000 PASS EXCEEDANCE m&brylene 11100.0 µg/kg 0.5550 0.5000 PASS EXCEEDANCE n-Butylbenzene 73.0 µg/kg 0.037 PASS N/A n-Propylbenzene 73.0 µg/kg 0.037 PASS N/A o-Xylene 476.0 µg/kg 0.038 0.0017 PASS N/A eca: Butylbenzene 28.1 µg/kg 0.0381 0		5					200.0000			PASS
Isopropylbenzene (Cumene) 38.9 µg/kg 0.0389 0.0019 PASS N/A Naphthalene 69.3 µg/kg 0.0035 PASS PASS PASS Tetrachloroethene 28.2 µg/kg 0.0282 0.0014 0.7000 PASS PASS Tichloroethene 28.2.0 µg/kg 0.8250 0.0413 PASS PASS PASS Tichloroethene 436.0 µg/kg 0.5960 0.0298 0.2000 PASS EXCEEDANCE misp-Xylene 21500 µg/kg 0.5550 0.5000 PASS EXCEEDANCE misp-Xylene 21500 µg/kg 0.0730 0.0037 PASS N/A n-Propylbenzene 94.4 µg/kg 0.0730 0.0037 PASS N/A p-Isopropyloluene 33.5 µg/kg 0.0281 0.0014 PASS N/A sc-Bulylbenzene 28.1 µg/kg 0.0235 0.0017 PASS N/A 1.Sortimethylbenzene 80.1		· ·								N/A
Naphthalene 69.3 µg/kg 0.0035 PASS PASS SS-2.20' Tetrachloroethene 28.2 µg/kg 0.0282 0.0014 0.7000 PASS EXCEEDANCE Toluene 825.0 µg/kg 0.8250 0.0413 PASS PASS Trichloroethene 436.0 µg/kg 0.4850 0.0298 0.2000 PASS EXCEEDANCE Vinyl chloride 596.0 µg/kg 0.5500 0.5000 PASS EXCEEDANCE m&p.Xylene 2150.0 µg/kg 0.1075 PASS N/A n-Propylbenzene 94.4 µg/kg 0.0031 PASS N/A o-Xylene 476.0 µg/kg 0.0171 PASS N/A sce-Burylouene 33.5 µg/kg 0.0281 0.0014 PASS N/A sce-Burylouene 28.1 µg/kg 0.0281 0.0014 PASS N/A sce-Burylouene 80.1 µg/kg 0.0305 0.0000 PASS PASS		5								N/A
SS-2-20' Tetrachloroethene 28.2 µg/kg 0.0282 0.0014 0.7000 PASS EXCEEDANCE Tolluene 825.0 µg/kg 0.8250 0.0413 PASS PASS Trichloroethene 436.0 µg/kg 0.4360 0.0218 0.5000 PASS EXCEEDANCE Vinyl chloride 596.0 µg/kg 0.1700 0.5550 0.5000 PASS EXCEEDANCE m&yr.Xylene 2150.0 µg/kg 0.1075 PASS PASS N/A n-Propylbenzene 73.0 µg/kg 0.0337 0.0037 PASS N/A o-Xylene 476.0 µg/kg 0.0335 0.0017 PASS N/A o-Sylene 28.1 µg/kg 0.0281 0.0014 PASS N/A see-Bulylbenzene 28.1 µg/kg 0.0281 0.0014 PASS N/A 12.4-Trimethylbenzene 80.1 µg/kg 0.0351 0.0014 PASS PASS 13.5-Trimethylbenzene										N/A
SS-2-20' Toluene 825.0 µg/kg 0.8250 0.0413 PASS PASS Vinyl chloride 596.0 µg/kg 0.4360 0.2018 0.5000 PASS EXCEEDANCE cis-1.2-Dichloroethene 11100.0 µg/kg 0.5900 0.2028 0.2000 PASS EXCEEDANCE m&p-Xylene 2150.0 µg/kg 0.1075 PASS PASS N/A n-Propylbenzene 73.0 µg/kg 0.0037 PASS N/A o-Xylene 94.4 µg/kg 0.0175 PASS N/A o-Xylene 476.0 µg/kg 0.0218 0.0037 PASS N/A o-Sylene 28.1 µg/kg 0.0238 PASS N/A sec-Butylbenzene 28.1 µg/kg 0.0014 PASS PASS 1.2.4-Trimethylbenzene 80.1 µg/kg 0.0014 PASS PASS 1.3.5-Trimethylbenzene 80.1 µg/kg 0.0040 PASS PASS 1.4.Dichlorobe							0 7000			PASS
SS-2-20 Trichloroethene 436.0 µg/kg 0.4360 0.0218 0.5000 PASS EXCEEDANCE Vinyl chloride 596.0 µg/kg 11100.0 µg/kg 11100.0 0.5550 0.5000 PASS EXCEEDANCE m&p-Xylene 2150.0 µg/kg 1.1100 0.5550 0.5000 PASS EXCEEDANCE n-Butylbenzene 73.0 µg/kg 0.0730 0.0037 PASS N/A n-Propylbenzene 73.0 µg/kg 0.0730 0.0037 PASS N/A o-Xylene 476.0 µg/kg 0.0730 0.0037 PASS N/A sec-Butylbenzene 28.1 µg/kg 0.0335 0.0017 PASS N/A sec-Butylbenzene 28.1 µg/kg 0.0331 0.0014 PASS N/A Lead 4.6 mg/kg 4.6000 0.2300 5.0000 PASS PASS 1,4-Dichloroethene 80.1 µg/kg 0.0361 0.0040 PASS PASS <td>т</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>011000</td> <td></td> <td></td> <td>N/A</td>	т						011000			N/A
Vinyl chloride 596.0 µg/kg 0.5960 0.0298 0.2000 PASS EXCEEDANCE cis-1,2-Dichloroethene 11100.0 µg/kg 11.1000 0.5550 0.5000 PASS EXCEEDANCE m&p-Xylene 2150.0 µg/kg 2.1500 0.0037 PASS PASS n-Butylbenzene 73.0 µg/kg 0.0730 0.0037 PASS N/A n-Propylbenzene 94.4 µg/kg 0.0730 0.0037 PASS N/A o-Xylene 476.0 µg/kg 0.0335 0.0017 PASS N/A o-Xylene 476.0 µg/kg 0.0281 0.014 PASS N/A sc-Butylbenzene 28.1 µg/kg 0.0281 0.0014 PASS N/A 1,2,4-Trimethylbenzene 30.1 µg/kg 0.0361 0.0000 PASS PASS 1,4-Dichloroebenzene 80.4 µg/kg 0.0361 0.0000 PASS PASS 2-Butanone (MEK) 902.0 µg/kg	~ 1.0						0.5000			PASS
sis-1,2-Dichloroethene 11100.0 µg/kg 11.1000 0.5550 0.5000 PASS EXCEEDANCE m&p-Xylene 2150.0 µg/kg 2.1500 0.1075 PASS PASS n-Butylbenzene 73.0 µg/kg 0.0730 0.0037 PASS N/A n-Propylbenzene 94.4 µg/kg 0.0740 0.0047 PASS N/A o-Xylene 476.0 µg/kg 0.0335 0.0017 PASS N/A p-Isopropyltoluene 33.5 µg/kg 0.0335 0.0017 PASS N/A sec-Butylbenzene 28.1 µg/kg 0.0281 0.0014 PASS PASS 1,4.2-Lichlorobenzene 80.1 µg/kg 0.0801 0.0040 PASS PASS 1,4.3-STrimethylbenzene 36.1 µg/kg 0.0804 0.0040 PASS PASS 2-Butanone (MEK) 902.0 µg/kg 0.1090 0.0055 PASS PASS Trichoroethene 109.0 µg/kg 0.1070 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>PASS</td>										PASS
m&p-Xylene 2150.0 µg/kg 2.1500 0.1075 PASS PASS n-Butylbenzene 73.0 µg/kg 0.0730 0.0037 PASS N/A n-Propylbenzene 94.4 µg/kg 0.0730 0.0047 PASS N/A o-Xylene 476.0 µg/kg 0.4760 0.0238 PASS PASS p-Isopropyltoluene 33.5 µg/kg 0.0335 0.0017 PASS N/A sec-Butylbenzene 28.1 µg/kg 0.0381 0.0014 PASS N/A sec-Butylbenzene 28.1 µg/kg 0.0801 0.0040 PASS PASS 1,2,4-Trimethylbenzene 80.1 µg/kg 0.0801 0.0040 PASS PASS 1,3,5-Trimethylbenzene 36.1 µg/kg 0.0804 0.0040 PASS PASS 1,4-Dichlorobenzene 80.4 µg/kg 0.1040 PASS PASS 2-Butanone (MEK) 902.0 µg/kg 0.1090 0.0055 PASS <t< td=""><td></td><td>5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>PASS</td></t<>		5								PASS
n-Butylbenzene 73.0 µg/kg 0.0730 0.0037 PASS N/A n-Propylbenzene 94.4 µg/kg 0.0944 0.0047 PASS N/A o-Xylene 476.0 µg/kg 0.4760 0.0238 PASS PASS PASS p-Isopropyltoluene 33.5 µg/kg 0.0335 0.0017 PASS N/A sec-Butylbenzene 28.1 µg/kg 0.0211 0.0014 PASS N/A Lead 4.6 mg/kg 0.0281 0.0014 PASS PASS 1,2,4-Trimethylbenzene 80.1 µg/kg 0.0211 0.0040 PASS PASS 1,3,5-Trimethylbenzene 36.1 µg/kg 0.0804 0.0040 PASS PASS 2-Butanone (MEK) 902.0 µg/kg 0.0804 0.0040 PASS PASS Trichloroehene 109.0 µg/kg 0.1070 0.0055 PASS PASS Ibulybenzene 109.0 µg/kg 0.1070 0.0054		-					0.0000			N/A
n-Propylbenzene 94.4 µg/kg 0.0944 0.0047 PASS N/A o-Xylene 476.0 µg/kg 0.4760 0.0238 PASS PASS PASS p-Isopropylloluene 33.5 µg/kg 0.0335 0.0017 PASS N/A sec-Butylbenzene 28.1 µg/kg 0.0281 0.0014 PASS N/A Lead 4.6 mg/kg 4.600 0.2300 5.0000 PASS PASS 1,2,4-Trimethylbenzene 80.1 µg/kg 0.0361 0.0040 PASS PASS 1,3,5-Trimethylbenzene 36.1 µg/kg 0.0361 0.0040 PASS PASS 2-Butanone (MEK) 902.0 µg/kg 0.0902 0.0451 200.0000 PASS PASS 2-Butanone (MEK) 902.0 µg/kg 0.1090 0.0055 PASS PASS 1/4-Dichlorobenzene 109.0 µg/kg 0.1070 0.0054 0.5 PASS PASS 2-Butanone (MEK) 2										N/A
o-Xylene 476.0 µg/kg 0.4760 0.0238 PASS PASS p-Isopropyltoluene 33.5 µg/kg 0.0335 0.0017 PASS N/A sec-Butylbenzene 28.1 µg/kg 0.0238 0.0014 PASS N/A sec-Butylbenzene 28.1 µg/kg 0.0281 0.0014 PASS N/A Lead 4.6 mg/kg 4.6000 0.2300 5.0000 PASS PASS 1,2,4-Trimethylbenzene 80.1 µg/kg 0.0361 0.0040 PASS PASS 1,4-Dichlorobenzene 80.4 µg/kg 0.0804 0.0040 PASS PASS 2-Butanone (MEK) 902.0 µg/kg 0.9020 0.0451 200.000 PASS PASS 2-Butanone (MEK) 902.0 µg/kg 0.1900 0.0055 PASS PASS 1,4-Dichlorobenzene 109.0 µg/kg 0.1700 0.0054 0.5 PASS PASS 2-Butanone (MEK) 70.2 µg/		5								N/A
p-Isopropyltoluene 33.5 µg/kg 0.0335 0.0017 PASS N/A sec-Butylbenzene 28.1 µg/kg 0.0281 0.0014 PASS N/A Lead 4.6 mg/kg 4.600 0.2300 5.0000 PASS PASS 1,2,4-Trimethylbenzene 80.1 µg/kg 0.0801 0.0040 PASS PASS 1,3,5-Trimethylbenzene 36.1 µg/kg 0.0804 0.0040 PASS PASS 2-Butanone (MEK) 902.0 µg/kg 0.9020 0.0451 200.0000 PASS PASS 2-Butanone (MEK) 902.0 µg/kg 0.1090 0.0055 PASS PASS 2-Butanone (MEK) 902.0 µg/kg 0.1090 0.0055 PASS PASS 2-Butanone (MEK) 902.0 µg/kg 0.1090 0.0055 PASS PASS Toluene 194.0 µg/kg 0.1090 0.0055 PASS PASS Tickloroethene 107.0 µg/kg 0		15								N/A
sec-Butylbenzene 28.1 µg/kg 0.0281 0.0014 PASS N/A Lead 4.6 mg/kg 4.600 0.2300 5.0000 PASS PASS 1,2,4-Trimethylbenzene 80.1 µg/kg 0.0811 0.0040 PASS PASS 1,3,5-Trimethylbenzene 36.1 µg/kg 0.0361 0.0018 PASS PASS 1,4-Dichlorobenzene 80.4 µg/kg 0.0804 0.0040 PASS PASS 2-Butanone (MEK) 902.0 µg/kg 0.9020 0.0451 200.0000 PASS PASS 2-Butanone (MEK) 902.0 µg/kg 0.1090 0.0055 PASS PASS Toluene 109.0 µg/kg 0.1090 0.0054 0.5 PASS PASS Trichloroethene 107.0 µg/kg 0.1070 0.0054 0.5 PASS EXCEEDANCE Vinyl chloride 70.2 µg/kg 0.2200 0.1110 0.5000 PASS EXCEEDANCE m&p		, ,								N/A
Lead 4.6 mg/kg 4.6000 0.2300 5.0000 PASS PASS 1,2,4-Trimethylbenzene 80.1 µg/kg 0.0801 0.0040 PASS PASS 1,3,5-Trimethylbenzene 36.1 µg/kg 0.0361 0.0018 PASS PASS 1,4-Dichlorobenzene 80.4 µg/kg 0.0804 0.0040 PASS PASS 2-Butanone (MEK) 902.0 µg/kg 0.9020 0.0451 200.0000 PASS PASS 2-Butanone (MEK) 902.0 µg/kg 0.1900 0.0055 PASS PASS Toluene 194.0 µg/kg 0.1900 0.0055 PASS PASS Trichloroethene 107.0 µg/kg 0.1070 0.0054 0.5 PASS EXCEEDANCE Vinyl chloride 70.2 µg/kg 0.0702 0.0035 0.2 PASS EXCEEDANCE m&p-Xylene 422.0 µg/kg 0.4220 0.0211 PASS PASS o-Xylene 95.7										N/A
SS-3-1' 1.2.4-Trimethylbenzene 80.1 µg/kg 0.0801 0.0040 PASS PASS 1.3.5-Trimethylbenzene 36.1 µg/kg 0.0361 0.0018 PASS PASS 1.4-Dichlorobenzene 80.4 µg/kg 0.0804 0.0040 PASS PASS 2-Butanone (MEK) 902.0 µg/kg 0.9020 0.0451 200.0000 PASS PASS Ethylbenzene 109.0 µg/kg 0.1090 0.0055 PASS PASS Toluene 194.0 µg/kg 0.1090 0.0055 PASS PASS Trichloroethene 107.0 µg/kg 0.1070 0.0054 0.5 PASS EXCEEDANCE Vinyl chloride 70.2 µg/kg 0.0702 0.0035 0.2 PASS EXCEEDANCE winyl chloride 70.2 µg/kg 0.0702 0.0035 0.2 PASS EXCEEDANCE winyl chloride 70.2 µg/kg 0.0702 0.0035 0.2 PASS EXCEEDANCE </td <td></td> <td>5</td> <td></td> <td></td> <td></td> <td></td> <td>5 0000</td> <td></td> <td></td> <td>PASS</td>		5					5 0000			PASS
SS-3-1' 1,3,5-Trimethylbenzene 36.1 µg/kg 0.0361 0.0018 PASS PASS SS-3-1' 1,4-Dichlorobenzene 80.4 µg/kg 0.0804 0.0040 PASS PASS 2-Butanone (MEK) 902.0 µg/kg 0.9020 0.0451 200.0000 PASS PASS Ethylbenzene 109.0 µg/kg 0.1090 0.0055 PASS PASS Toluene 194.0 µg/kg 0.1940 0.0097 PASS PASS Trichloroethene 107.0 µg/kg 0.1070 0.0055 PASS EXCEEDANCE Vinyl chloride 70.2 µg/kg 0.0702 0.0035 0.2 PASS EXCEEDANCE cis-1,2-Dichloroethene 2220.0 µg/kg 0.0211 PASS PASS o-Xylene 95.7 µg/kg 0.0957 0.0048 PASS PASS Lead 1.8 mg/kg 1.8000 0.0907 PASS PASS 1,2,4-Trimethylbenzene 54.4							0.0000			N/A
SS-3-1' 1,4-Dichlorobenzene 80.4 µg/kg 0.0804 0.0040 PASS PASS 2-Butanone (MEK) 902.0 µg/kg 0.9020 0.0451 200.0000 PASS PASS Ethylbenzene 109.0 µg/kg 0.1090 0.0055 PASS PASS Toluene 194.0 µg/kg 0.1940 0.0097 PASS PASS Trichloroethene 107.0 µg/kg 0.1070 0.0054 0.5 PASS EXCEEDANCE Vinyl chloride 70.2 µg/kg 0.0702 0.0035 0.2 PASS EXCEEDANCE winyl chloride 70.2 µg/kg 0.0702 0.0035 0.2 PASS EXCEEDANCE Vinyl chloride 70.2 µg/kg 0.0702 0.0035 0.2 PASS EXCEEDANCE winyl chloride 70.2 µg/kg 0.0702 0.0211 PASS PASS o-Xylene 2220.0 µg/kg 0.4220 0.0211 PASS PASS <t< td=""><td></td><td>2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>N/A</td></t<>		2								N/A
SS-3-1' 2-Butanone (MEK) 902.0 µg/kg 0.9020 0.0451 200.0000 PASS PASS SS-3-1' Ethylbenzene 109.0 µg/kg 0.1090 0.0055 PASS PASS Toluene 194.0 µg/kg 0.1940 0.0097 PASS PASS Trichloroethene 107.0 µg/kg 0.1070 0.0054 0.5 PASS EXCEEDANCE Vinyl chloride 70.2 µg/kg 0.0702 0.0035 0.2 PASS EXCEEDANCE cis-1,2-Dichloroethene 2220.0 µg/kg 0.4200 0.1110 0.5000 PASS EXCEEDANCE m&p-Xylene 422.0 µg/kg 0.4220 0.0211 PASS PASS o-Xylene 95.7 µg/kg 0.0957 0.0048 PASS PASS Lead 1.8 mg/kg 1.8000 0.0900 5.0000 PASS PASS 1,2,4-Trimethylbenzene 133.0 µg/kg 0.1330 0.0067 PASS PAS										PASS
SS-3-1' Ethylbenzene 109.0 µg/kg 0.1090 0.0055 PASS PASS Toluene 194.0 µg/kg 0.1940 0.0097 PASS PASS Trichloroethene 107.0 µg/kg 0.1070 0.0054 0.5 PASS EXCEEDANCE Vinyl chloride 70.2 µg/kg 0.0702 0.0035 0.2 PASS EXCEEDANCE cis-1,2-Dichloroethene 2220.0 µg/kg 0.4220 0.0211 PASS EXCEEDANCE m&p-Xylene 422.0 µg/kg 0.4220 0.0211 PASS PASS o-Xylene 95.7 µg/kg 0.0957 0.0048 PASS PASS Lead 1.8 mg/kg 1.8000 0.0900 5.0000 PASS PASS 1,2,4-Trimethylbenzene 54.4 µg/kg 0.1330 0.0067 PASS PASS 2-Butanone (MEK) 2890.0 µg/kg 2.8900 0.1445 200.0000 PASS EXCEEDANCE							200.0000			PASS
SS-3-1* Toluene 194.0 µg/kg 0.1940 0.0097 PASS PASS Trichloroethene 107.0 µg/kg 0.1070 0.0054 0.5 PASS EXCEEDANCE Vinyl chloride 70.2 µg/kg 0.0702 0.0035 0.2 PASS EXCEEDANCE cis-1,2-Dichloroethene 2220.0 µg/kg 2.2200 0.1110 0.5000 PASS EXCEEDANCE m&p-Xylene 422.0 µg/kg 0.4220 0.0211 PASS PASS o-Xylene 95.7 µg/kg 0.0957 0.0048 PASS PASS Lead 1.8 mg/kg 1.8000 0.0900 5.0000 PASS PASS 1,2,4-Trimethylbenzene 133.0 µg/kg 0.1330 0.0067 PASS PASS 1,3,5-Trimethylbenzene 54.4 µg/kg 0.0544 0.0027 PASS PASS 2-Butanone (MEK) 2890.0 µg/kg 2.8900 0.1445 200.0000 PASS EXCEEDANCE	F						20010000			N/A
Trichloroethene 107.0 μg/kg 0.1070 0.0054 0.5 PASS EXCEEDANCE Vinyl chloride 70.2 μg/kg 0.0702 0.0035 0.2 PASS EXCEEDANCE cis-1,2-Dichloroethene 2220.0 μg/kg 2.2200 0.1110 0.5000 PASS EXCEEDANCE m&p-Xylene 422.0 μg/kg 0.4220 0.0211 PASS PASS PASS o-Xylene 95.7 μg/kg 0.4220 0.0211 PASS PASS PASS Lead 1.8 mg/kg 0.0957 0.0048 PASS PASS 1,2,4-Trimethylbenzene 133.0 μg/kg 0.1330 0.0067 PASS PASS 1,3,5-Trimethylbenzene 54.4 μg/kg 0.0544 0.0027 PASS PASS 2-Butanone (MEK) 2890.0 μg/kg 2.8900 0.1445 200.0000 PASS EXCEEDANCE		5								N/A
Vinyl chloride 70.2 µg/kg 0.0702 0.0035 0.2 PASS EXCEEDANCE cis-1,2-Dichloroethene 2220.0 µg/kg 2.2200 0.1110 0.5000 PASS EXCEEDANCE m&p-Xylene 422.0 µg/kg 0.4220 0.0211 PASS PASS PASS o-Xylene 95.7 µg/kg 0.0957 0.0048 PASS PASS Lead 1.8 mg/kg 1.8000 0.0900 5.0000 PASS PASS 1,2,4-Trimethylbenzene 133.0 µg/kg 0.1330 0.0067 PASS PASS 1,3,5-Trimethylbenzene 54.4 µg/kg 0.0544 0.0027 PASS PASS 2-Butanone (MEK) 2890.0 µg/kg 2.8900 0.1445 200.0000 PASS EXCEEDANCE							0.5			PASS
cis-1,2-Dichloroethene 2220.0 µg/kg 2.2200 0.1110 0.5000 PASS EXCEEDANCE m&p-Xylene 422.0 µg/kg 0.4220 0.0211 PASS PASS o-Xylene 95.7 µg/kg 0.0957 0.0048 PASS PASS Lead 1.8 mg/kg 1.8000 0.0900 5.0000 PASS PASS 1,2,4-Trimethylbenzene 133.0 µg/kg 0.1330 0.0067 PASS PASS 1,3,5-Trimethylbenzene 54.4 µg/kg 0.0544 0.0027 PASS PASS 2-Butanone (MEK) 2890.0 µg/kg 2.8900 0.1445 200.0000 PASS EXCEEDANCE										PASS
m&p-Xylene 422.0 µg/kg 0.4220 0.0211 PASS PASS o-Xylene 95.7 µg/kg 0.0957 0.0048 PASS PASS Lead 1.8 mg/kg 1.8000 0.0900 5.0000 PASS PASS 1,2,4-Trimethylbenzene 133.0 µg/kg 0.1330 0.0067 PASS PASS 1,3,5-Trimethylbenzene 54.4 µg/kg 0.0544 0.0027 PASS PASS 2-Butanone (MEK) 2890.0 µg/kg 2.8900 0.1445 200.0000 PASS EXCEEDANCE		5								PASS
o-Xylene 95.7 μg/kg 0.0957 0.0048 PASS PASS Lead 1.8 mg/kg 1.8000 0.0900 5.0000 PASS PASS 1,2,4-Trimethylbenzene 133.0 μg/kg 0.1330 0.0067 PASS PASS 1,3,5-Trimethylbenzene 54.4 μg/kg 0.0544 0.0027 PASS PASS 2-Butanone (MEK) 2890.0 μg/kg 2.8900 0.1445 200.0000 PASS EXCEEDANCE										N/A
Lead 1.8 mg/kg 1.8000 0.0900 5.0000 PASS PASS 1,2,4-Trimethylbenzene 133.0 µg/kg 0.1330 0.0067 PASS PASS 1,3,5-Trimethylbenzene 54.4 µg/kg 0.0544 0.0027 PASS PASS 2-Butanone (MEK) 2890.0 µg/kg 2.8900 0.1445 200.0000 PASS EXCEEDANCE										N/A
1,2,4-Trimethylbenzene133.0μg/kg0.13300.0067PASSPASS1,3,5-Trimethylbenzene54.4μg/kg0.05440.0027PASSPASS2-Butanone (MEK)2890.0μg/kg2.89000.1445200.0000PASSEXCEEDANCE		7					5.0000			PASS
1,3,5-Trimethylbenzene 54.4 μg/kg 0.0544 0.0027 PASS PASS 2-Butanone (MEK) 2890.0 μg/kg 2.8900 0.1445 200.0000 PASS EXCEEDANCE										N/A
2-Butanone (MEK) 2890.0 µg/kg 2.8900 0.1445 200.0000 PASS EXCEEDANCE		2								N/A
							200.0000			PASS
	E	Ethylbenzene	122.0	µg/kg µg/kg	0.1220	0.0061		PASS	PASS	N/A
SS-3-6' Toluene 161.0 µg/kg 0.1220 0.0001 PASS PASS	N-3-6	2								N/A
Vinyl chloride 52.7 µg/kg 0.0527 0.0026 0.2000 PASS EXCEEDANCE							0 2000			PASS
cis-1,2-Dichloroethene 1830.0 µg/kg 1.8300 0.0915 0.5000 PASS EXCEEDANCE		,								PASS
m&p-Xylene 452.0 μg/kg 0.4520 0.0226 PASS PASS							0.0000			N/A
o-Xylene 101.0 μg/kg 0.1010 0.0051 PASS PASS										N/A

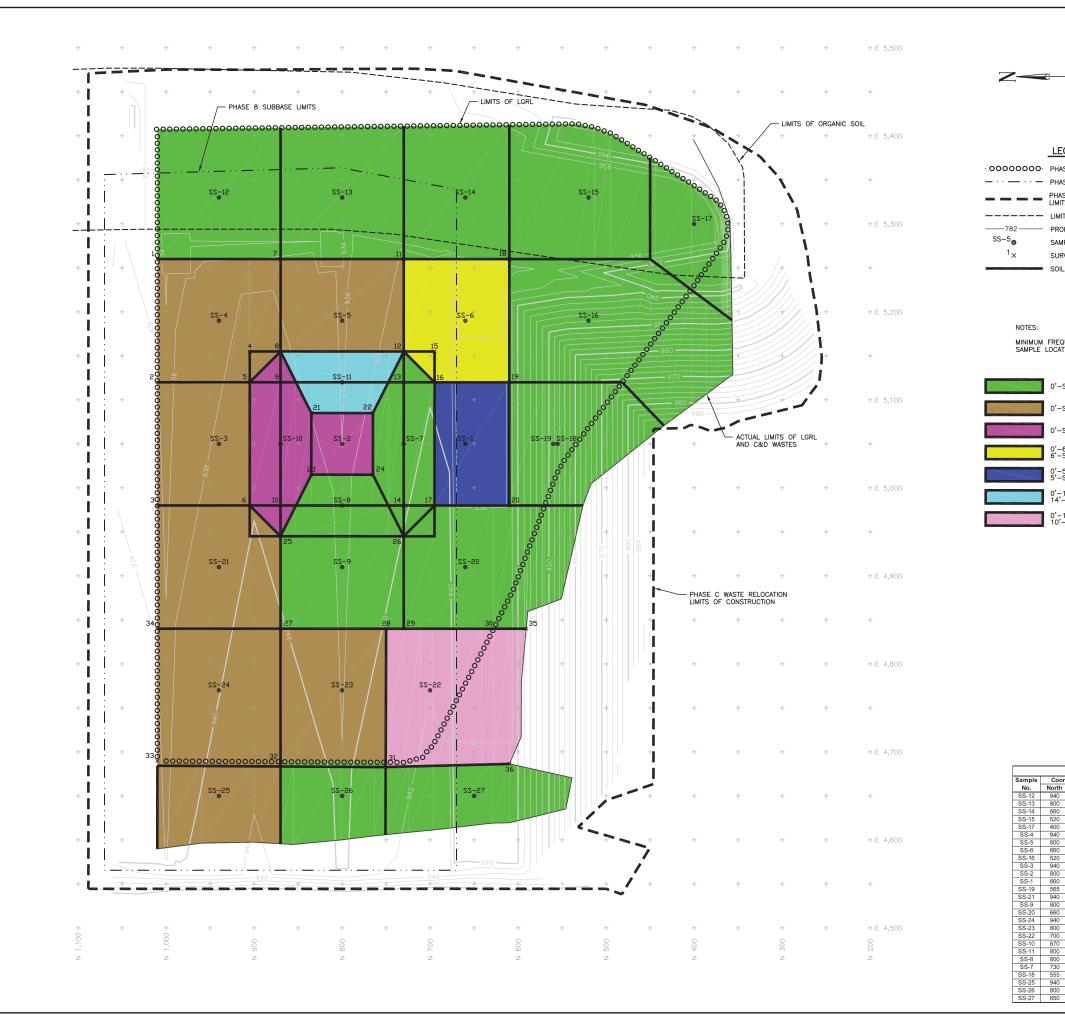
								STANDARDS	
Sample ID	Constiuents Detected	Lab Results	Units	Results (mg/kg)	Results / 20	TCLP Results mg/L	RCL for Direct Contact	RCL for Protection of Groundwater	TCLP
	Lead	2.2	mg/kg	2.2000	0.1100	5.0000	PASS	PASS	PASS
	1,2,4-Trimethylbenzene	117.0	µg/kg	0.1170	0.0059		PASS	PASS	N/A
	1,3,5-Trimethylbenzene	53.6	µg/kg	0.0536	0.0027		PASS	PASS	N/A
	2-Butanone (MEK)	447.0	µg/kg	0.4470	0.0224	200.0000	PASS	PASS	PASS
SS-3-11'	Ethylbenzene	113.0	µg/kg	0.1130	0.0057		PASS	PASS	N/A
55 5 11	Toluene	128.0	µg/kg	0.1280	0.0064		PASS	PASS	N/A
	Vinyl chloride	171.0	µg/kg	0.1710	0.0086	0.2000	PASS	EXCEEDANCE	PASS
	cis-1,2-Dichloroethene	1030.0	µg/kg	1.0300	0.0515	0.5000	PASS	EXCEEDANCE	PASS
	m&p-Xylene	377.0	µg/kg	0.3770	0.0189		PASS	PASS	N/A
	o-Xylene	87.0	µg/kg	0.0870	0.0044		PASS	PASS	N/A
	Lead	2.8	mg/kg	2.8000	0.1400	5.0000	PASS	PASS	PASS
	1,2,4-Trimethylbenzene	93.0	µg/kg	0.0930	0.0047		PASS	PASS	N/A
SS-3-16'	1,3,5-Trimethylbenzene	40.0	µg/kg	0.0400	0.0020		PASS	PASS	N/A
	Ethylbenzene	172.0	µg/kg	0.1720	0.0086		PASS	PASS	N/A
	m&p-Xylene	552.0 128.0	µg/kg	0.5520	0.0276		PASS PASS	PASS PASS	N/A N/A
	o-Xylene		µg/kg	0.1280		E 0000			
	Lead	3.1	mg/kg	3.1000	0.1550	5.0000	PASS	PASS EXCEEDANCE	PASS
	2-Butanone (MEK)	21200.0 159.0	µg/kg	21.2000 0.1590	1.0600 0.0080	200.0000	PASS PASS	PASS	PASS N/A
SS-4-1'	Ethylbenzene Toluene	352.0	µg/kg	0.1590	0.0080		PASS	PASS	N/A N/A
	m&p-Xylene	548.0	µg/kg	0.5480	0.0178		PASS	PASS	N/A
	o-Xylene	211.0	µg/kg µg/kg	0.3480	0.0274		PASS	PASS	N/A
	Lead	3.7	mg/kg	3.7000	0.1850	5.0000	PASS	PASS	PASS
	2-Butanone (MEK)	31700.0	µg/kg	31.7000	1.5850	200.0000	PASS	EXCEEDANCE	PASS
	Ethylbenzene	188.0	µg/kg µg/kg	0.1880	0.0094	200.0000	PASS	PASS	N/A
SS-4-5'	Toluene	441.0	µg/kg µg/kg	0.4410	0.0074		PASS	PASS	N/A
	m&p-Xylene	692.0	µg/kg	0.6920	0.0346		PASS	PASS	N/A
	o-Xylene	256.0	µg/kg µg/kg	0.2560	0.0128		PASS	PASS	N/A
	Lead	2.3	mg/kg	2.3000	0.1150	5.0000	PASS	PASS	PASS
	2-Butanone (MEK)	10300.0	µg/kg	10.3000	0.5150	200.0000	PASS	PASS	PASS
00 4 4 0	Ethylbenzene	73.8	µg/kg	0.0738	0.0037		PASS	PASS	N/A
SS-4-10'	Toluene	196.0	µg/kg	0.1960	0.0098		PASS	PASS	N/A
	m&p-Xylene	206.0	µg/kg	0.2060	0.0103		PASS	PASS	N/A
	o-Xylene	46.5	µg/kg	0.0465	0.0023		PASS	PASS	N/A
	Lead	3.7	mg/kg	3.7000	0.1850	5.0000	PASS	PASS	PASS
			0 0			200.0000			
	2-Butanone (MEK)	43900.0	µg/kg	43.9000	2.1950	200.0000	PASS	EXCEEDANCE	PASS
SS-5-1'	2-Butanone (MEK) Toluene	43900.0 372.0	µg/kg µg/kg	43.9000 0.3720	2.1950 0.0186	200.0000	PASS PASS	EXCEEDANCE PASS	PASS N/A
SS-5-1'						200.0000			
SS-5-1'	Toluene	372.0	µg/kg	0.3720	0.0186	5.0000	PASS	PASS	N/A
SS-5-1' SS-5-6'	Toluene m&p-Xylene	372.0 303.0 3.3 42600.0	μg/kg μg/kg	0.3720 0.3030 3.3000 42.6000	0.0186 0.0152 0.1650 2.1300		PASS PASS PASS PASS	PASS PASS PASS EXCEEDANCE	N/A N/A PASS PASS
	Toluene m&p-Xylene Lead	372.0 303.0 3.3	μg/kg μg/kg mg/kg	0.3720 0.3030 3.3000	0.0186 0.0152 0.1650	5.0000	PASS PASS PASS	PASS PASS PASS	N/A N/A PASS
SS-5-6'	Toluene m&p-Xylene Lead 2-Butanone (MEK) Toluene Lead	372.0 303.0 3.3 42600.0 216.0 3.6	μg/kg μg/kg mg/kg μg/kg	0.3720 0.3030 3.3000 42.6000 0.2160 3.6000	0.0186 0.0152 0.1650 2.1300 0.0108 0.1800	5.0000 200.0000 5.0000	PASS PASS PASS PASS PASS PASS	PASS PASS PASS EXCEEDANCE PASS PASS	N/A N/A PASS PASS N/A PASS
	Toluene m&p-Xylene Lead 2-Butanone (MEK) Toluene Lead 2-Butanone (MEK)	372.0 303.0 3.3 42600.0 216.0 3.6 63900.0	μg/kg μg/kg mg/kg μg/kg μg/kg mg/kg μg/kg	0.3720 0.3030 3.3000 42.6000 0.2160 3.6000 63.9000	0.0186 0.0152 0.1650 2.1300 0.0108 0.1800 3.1950	5.0000 200.0000	PASS PASS PASS PASS PASS PASS PASS	PASS PASS PASS EXCEEDANCE PASS PASS EXCEEDANCE	N/A N/A PASS PASS N/A PASS PASS
SS-5-6'	Toluene m&p-Xylene Lead 2-Butanone (MEK) Toluene Lead 2-Butanone (MEK) Toluene	372.0 303.0 3.3 42600.0 216.0 3.6 63900.0 439.0	μg/kg μg/kg mg/kg μg/kg μg/kg mg/kg μg/kg μg/kg	0.3720 0.3030 3.3000 42.6000 0.2160 3.6000 63.9000 0.4390	0.0186 0.0152 0.1650 2.1300 0.0108 0.1800 3.1950 0.0220	5.0000 200.0000 5.0000 200.0000	PASS PASS PASS PASS PASS PASS PASS PASS	PASS PASS PASS EXCEEDANCE PASS PASS EXCEEDANCE PASS	N/A N/A PASS PASS N/A PASS PASS N/A
SS-5-6' SS-5-11'	Toluene m&p-Xylene Lead 2-Butanone (MEK) Toluene Lead 2-Butanone (MEK) Toluene Lead	372.0 303.0 3.3 42600.0 216.0 3.6 63900.0 439.0 3.8	μg/kg μg/kg mg/kg μg/kg μg/kg μg/kg μg/kg mg/kg	0.3720 0.3030 3.3000 42.6000 0.2160 3.6000 63.9000 0.4390 3.8000	0.0186 0.0152 0.1650 2.1300 0.0108 0.1800 3.1950 0.0220 0.1900	5.0000 200.0000 5.0000 200.0000 5.0000	PASS PASS PASS PASS PASS PASS PASS PASS	PASS PASS PASS EXCEEDANCE PASS PASS EXCEEDANCE PASS PASS	N/A N/A PASS PASS N/A PASS N/A PASS
SS-5-6'	Toluene m&p-Xylene Lead 2-Butanone (MEK) Toluene Lead 2-Butanone (MEK) Toluene Lead 2-Butanone (MEK)	372.0 303.0 3.3 42600.0 216.0 3.6 63900.0 439.0 3.8 60300.0	μg/kg μg/kg mg/kg μg/kg μg/kg μg/kg μg/kg mg/kg μg/kg	0.3720 0.3030 3.3000 42.6000 0.2160 3.6000 63.9000 0.4390 3.8000 60.3000	0.0186 0.0152 0.1650 2.1300 0.0108 0.1800 3.1950 0.0220 0.1900 3.0150	5.0000 200.0000 5.0000 200.0000	PASS PASS PASS PASS PASS PASS PASS PASS	PASS PASS PASS EXCEEDANCE PASS PASS EXCEEDANCE PASS PASS EXCEEDANCE	N/A N/A PASS PASS N/A PASS N/A PASS PASS
SS-5-6' SS-5-11'	Toluenem&p-XyleneLead2-Butanone (MEK)TolueneLead2-Butanone (MEK)TolueneLead2-Butanone (MEK)TolueneLead2-Butanone (MEK)Toluene	372.0 303.0 3.3 42600.0 216.0 3.6 63900.0 439.0 3.8 60300.0 459.0	μg/kg μg/kg mg/kg μg/kg mg/kg μg/kg μg/kg μg/kg μg/kg μg/kg	0.3720 0.3030 3.3000 42.6000 0.2160 3.6000 63.9000 0.4390 3.8000 60.3000 0.4590	0.0186 0.0152 0.1650 2.1300 0.0108 0.1800 3.1950 0.0220 0.1900 3.0150 0.0230	5.0000 200.0000 5.0000 200.0000 5.0000 200.0000	PASS PASS PASS PASS PASS PASS PASS PASS	PASS PASS PASS EXCEEDANCE PASS PASS EXCEEDANCE PASS EXCEEDANCE PASS	N/A N/A PASS PASS N/A PASS N/A PASS PASS N/A
SS-5-6' SS-5-11'	Toluene m&p-Xylene Lead 2-Butanone (MEK) Toluene Lead	372.0 303.0 3.3 42600.0 216.0 3.6 63900.0 439.0 3.8 60300.0 459.0 3.3	μg/kg μg/kg mg/kg μg/kg mg/kg μg/kg μg/kg μg/kg μg/kg μg/kg	0.3720 0.3030 3.3000 42.6000 0.2160 3.6000 63.9000 0.4390 3.8000 60.3000 0.4590 3.3000	0.0186 0.0152 0.1650 2.1300 0.0108 0.1800 3.1950 0.0220 0.1900 3.0150 0.0230 0.1650	5.0000 200.0000 5.0000 200.0000 5.0000 200.0000 5.0000	PASS PASS PASS PASS PASS PASS PASS PASS	PASS PASS PASS EXCEEDANCE PASS PASS EXCEEDANCE PASS EXCEEDANCE PASS PASS PASS	N/A N/A PASS PASS N/A PASS N/A PASS N/A PASS
SS-5-6' SS-5-11' SS-5-16'	Toluene m&p-Xylene Lead 2-Butanone (MEK) Toluene Lead 2-Butanone (MEK) Toluene Lead 2-Butanone (MEK) Toluene Lead 2-Butanone (MEK)	372.0 303.0 3.3 42600.0 216.0 3.6 63900.0 439.0 3.8 60300.0 459.0 3.3 18400.0	μg/kg μg/kg mg/kg μg/kg μg/kg μg/kg μg/kg μg/kg μg/kg μg/kg μg/kg	0.3720 0.3030 3.3000 42.6000 0.2160 3.6000 63.9000 0.4390 3.8000 60.3000 0.4590 3.3000 18.4000	0.0186 0.0152 0.1650 2.1300 0.0108 0.1800 3.1950 0.0220 0.1900 3.0150 0.0230 0.1650 0.9200	5.0000 200.0000 5.0000 200.0000 5.0000 200.0000 5.0000 200.0000	PASS PASS PASS PASS PASS PASS PASS PASS	PASS PASS PASS EXCEEDANCE PASS PASS EXCEEDANCE PASS EXCEEDANCE PASS PASS PASS EXCEEDANCE	N/A N/A PASS PASS N/A PASS N/A PASS N/A PASS N/A PASS N/A
SS-5-6' SS-5-11' SS-5-16'	Toluene m&p-Xylene Lead 2-Butanone (MEK) Toluene Lead 2-Butanone (MEK) Toluene Lead 2-Butanone (MEK) Toluene Lead 2-Butanone (MEK) Lead 2-Butanone (MEK)	372.0 303.0 3.3 42600.0 216.0 3.6 63900.0 439.0 3.8 60300.0 459.0 3.3 18400.0 3.0	μg/kg μg/kg mg/kg μg/kg mg/kg μg/kg μg/kg μg/kg μg/kg μg/kg μg/kg μg/kg	0.3720 0.3030 3.3000 42.6000 0.2160 3.6000 63.9000 0.4390 3.8000 60.3000 0.4590 3.3000 18.4000 3.0000	0.0186 0.0152 0.1650 2.1300 0.0108 0.1800 3.1950 0.0220 0.1900 3.0150 0.0230 0.1650 0.9200 0.1500	5.0000 200.0000 5.0000 200.0000 5.0000 200.0000 5.0000 5.0000	PASS PASS PASS PASS PASS PASS PASS PASS	PASS PASS PASS EXCEEDANCE PASS PASS EXCEEDANCE PASS EXCEEDANCE PASS PASS EXCEEDANCE PASS	N/A N/A PASS PASS N/A PASS N/A PASS N/A PASS N/A PASS PASS PASS
SS-5-6' SS-5-11' SS-5-16' SS-6-1'	Toluenem&p-XyleneLead2-Butanone (MEK)TolueneLead2-Butanone (MEK)TolueneLead2-Butanone (MEK)TolueneLead2-Butanone (MEK)TolueneLead2-Butanone (MEK)Lead2-Butanone (MEK)Lead2-Butanone (MEK)Lead2-Butanone (MEK)Lead2-Butanone (MEK)	372.0 303.0 3.3 42600.0 216.0 3.6 63900.0 439.0 3.8 60300.0 459.0 3.3 18400.0 3.0 808.0	μg/kg μg/kg mg/kg μg/kg μg/kg μg/kg μg/kg μg/kg μg/kg μg/kg μg/kg μg/kg μg/kg	0.3720 0.3030 3.3000 42.6000 0.2160 3.6000 63.9000 0.4390 3.8000 60.3000 0.4590 3.3000 18.4000 3.0000 0.8080	0.0186 0.0152 0.1650 2.1300 0.0108 0.1800 3.1950 0.0220 0.1900 3.0150 0.0230 0.1650 0.9200 0.1500 0.0404	5.0000 200.0000 5.0000 200.0000 5.0000 200.0000 5.0000 5.0000 200.0000	PASS PASS PASS PASS PASS PASS PASS PASS	PASS PASS PASS EXCEEDANCE PASS PASS EXCEEDANCE PASS EXCEEDANCE PASS EXCEEDANCE PASS EXCEEDANCE PASS PASS	N/A N/A PASS PASS N/A PASS N/A PASS N/A PASS PASS PASS PASS
SS-5-6' SS-5-11' SS-5-16' SS-6-1'	Toluenem&p-XyleneLead2-Butanone (MEK)TolueneLead2-Butanone (MEK)TolueneLead2-Butanone (MEK)TolueneLead2-Butanone (MEK)TolueneLead2-Butanone (MEK)Lead2-Butanone (MEK)Lead2-Butanone (MEK)Lead2-Butanone (MEK)Lead2-Butanone (MEK)Lead2-Butanone (MEK)Lead	372.0 303.0 3.3 42600.0 216.0 3.6 63900.0 439.0 3.8 60300.0 459.0 3.3 18400.0 3.0 808.0 5.2	μg/kg μg/kg mg/kg μg/kg μg/kg μg/kg μg/kg μg/kg μg/kg μg/kg mg/kg μg/kg μg/kg	0.3720 0.3030 3.3000 42.6000 0.2160 3.6000 63.9000 0.4390 3.8000 60.3000 0.4590 3.3000 18.4000 3.0000 0.8080 5.2000	0.0186 0.0152 0.1650 2.1300 0.0108 0.1800 3.1950 0.0220 0.1900 3.0150 0.0230 0.1650 0.9200 0.1500 0.0404 0.2600	5.0000 200.0000 5.0000 200.0000 5.0000 200.0000 5.0000 5.0000	PASS PASS PASS PASS PASS PASS PASS PASS	PASS PASS PASS EXCEEDANCE PASS PASS EXCEEDANCE PASS EXCEEDANCE PASS PASS EXCEEDANCE PASS PASS PASS PASS PASS	N/A N/A PASS PASS N/A PASS N/A PASS N/A PASS PASS PASS PASS PASS
SS-5-6' SS-5-11' SS-5-16' SS-6-1' SS-6-6'	Toluenem&p-XyleneLead2-Butanone (MEK)TolueneLead2-Butanone (MEK)TolueneLead2-Butanone (MEK)TolueneLead2-Butanone (MEK)TolueneLead2-Butanone (MEK)Lead2-Butanone (MEK)Lead2-Butanone (MEK)Lead2-Butanone (MEK)Lead1,2,4-Trimethylbenzene	372.0 303.0 3.3 42600.0 216.0 3.6 63900.0 439.0 3.8 60300.0 459.0 3.3 18400.0 3.0 808.0 5.2 29.0	<u>µg/kg</u> <u>µg/kg</u> <u>µg/kg</u> <u>µg/kg</u> <u>µg/kg</u> <u>µg/kg</u> <u>µg/kg</u> <u>µg/kg</u> <u>µg/kg</u> <u>µg/kg</u> <u>µg/kg</u> <u>µg/kg</u> <u>µg/kg</u> <u>µg/kg</u> <u>µg/kg</u>	0.3720 0.3030 3.3000 42.6000 0.2160 3.6000 63.9000 0.4390 3.8000 60.3000 0.4590 3.3000 18.4000 3.0000 0.8080 5.2000 0.0290	0.0186 0.0152 0.1650 2.1300 0.0108 0.1800 3.1950 0.0220 0.1900 3.0150 0.0230 0.1650 0.9200 0.1500 0.0404 0.2600 0.0015	5.0000 200.0000 5.0000 200.0000 5.0000 200.0000 5.0000 5.0000 200.0000	PASS PASS PASS PASS PASS PASS PASS PASS	PASS PASS PASS EXCEEDANCE PASS PASS EXCEEDANCE PASS EXCEEDANCE PASS PASS EXCEEDANCE PASS PASS PASS PASS PASS PASS	N/A N/A PASS PASS N/A PASS N/A PASS PASS PASS PASS PASS PASS PASS PA
SS-5-6' SS-5-11' SS-5-16' SS-6-1'	Toluenem&p-XyleneLead2-Butanone (MEK)TolueneLead2-Butanone (MEK)TolueneLead2-Butanone (MEK)TolueneLead2-Butanone (MEK)Lead2-Butanone (MEK)Lead2-Butanone (MEK)Lead2-Butanone (MEK)Lead1,2,4-TrimethylbenzeneEthylbenzene	372.0 303.0 3.3 42600.0 216.0 3.6 63900.0 439.0 3.8 60300.0 459.0 3.3 18400.0 3.0 808.0 5.2 29.0 51.9	μg/kg μg/kg mg/kg μg/kg mg/kg μg/kg μg/kg μg/kg μg/kg μg/kg mg/kg μg/kg μg/kg μg/kg μg/kg μg/kg	0.3720 0.3030 3.3000 42.6000 0.2160 3.6000 63.9000 0.4390 3.8000 60.3000 0.4590 3.3000 18.4000 3.0000 0.8080 5.2000 0.0290 0.0519	0.0186 0.0152 0.1650 2.1300 0.0108 0.1800 3.1950 0.0220 0.1900 3.0150 0.0230 0.1650 0.9200 0.1500 0.1500 0.0404 0.2600 0.0015 0.0026	5.0000 200.0000 5.0000 200.0000 5.0000 200.0000 5.0000 5.0000 200.0000	PASS PASS PASS PASS PASS PASS PASS PASS	PASS PASS PASS EXCEEDANCE PASS PASS EXCEEDANCE PASS EXCEEDANCE PASS EXCEEDANCE PASS EXCEEDANCE PASS PASS PASS PASS PASS PASS PASS	N/A N/A PASS PASS N/A PASS N/A PASS PASS PASS PASS PASS PASS N/A N/A
SS-5-6' SS-5-11' SS-5-16' SS-6-1' SS-6-6'	Toluenem&p-XyleneLead2-Butanone (MEK)TolueneLead2-Butanone (MEK)TolueneLead2-Butanone (MEK)TolueneLead2-Butanone (MEK)TolueneLead2-Butanone (MEK)Lead2-Butanone (MEK)Lead2-Butanone (MEK)Lead2-Butanone (MEK)Lead2-Butanone (MEK)Lead1,2,4-TrimethylbenzeneEthylbenzenem&p-Xylene	372.0 303.0 3.3 42600.0 216.0 3.6 63900.0 439.0 3.8 60300.0 459.0 3.3 18400.0 3.0 808.0 5.2 29.0 51.9 133.0	μg/kg μg/kg mg/kg μg/kg mg/kg μg/kg μg/kg μg/kg μg/kg mg/kg μg/kg μg/kg μg/kg μg/kg μg/kg μg/kg μg/kg μg/kg μg/kg μg/kg	0.3720 0.3030 3.3000 42.6000 0.2160 3.6000 63.9000 0.4390 3.8000 60.3000 0.4590 3.3000 18.4000 3.0000 0.8080 5.2000 0.0290 0.0519 0.1330	0.0186 0.0152 0.1650 2.1300 0.0108 0.1800 3.1950 0.0220 0.1900 3.0150 0.0230 0.1650 0.9200 0.1650 0.9200 0.1500 0.0404 0.2600 0.0015 0.0026 0.0067	5.0000 200.0000 5.0000 200.0000 5.0000 200.0000 5.0000 5.0000 200.0000	PASS PASS PASS PASS PASS PASS PASS PASS	PASS PASS PASS EXCEEDANCE PASS PASS EXCEEDANCE PASS PASS EXCEEDANCE PASS PASS PASS PASS PASS PASS PASS PAS	N/A N/A PASS PASS N/A PASS N/A PASS N/A PASS PASS PASS PASS PASS N/A N/A N/A
SS-5-6' SS-5-11' SS-5-16' SS-6-1' SS-6-6'	Toluenem&p-XyleneLead2-Butanone (MEK)TolueneLead2-Butanone (MEK)TolueneLead2-Butanone (MEK)TolueneLead2-Butanone (MEK)TolueneLead2-Butanone (MEK)Lead2-Butanone (MEK)Lead1-2-Butanone (MEK)Lead2-Butanone (MEK)Lead2-Butanone (MEK)Lead1-2,4-TrimethylbenzeneEthylbenzenem&p-Xyleneo-Xylene	372.0 303.0 3.3 42600.0 216.0 3.6 63900.0 439.0 3.8 60300.0 459.0 3.3 18400.0 3.0 808.0 5.2 29.0 51.9 133.0 43.0	µg/kg	0.3720 0.3030 3.3000 42.6000 0.2160 3.6000 63.9000 0.4390 3.8000 60.3000 0.4590 3.3000 18.4000 3.0000 0.8080 5.2000 0.8080 5.2000 0.0290 0.0519 0.1330 0.0430	0.0186 0.0152 0.1650 2.1300 0.0108 0.1800 3.1950 0.0220 0.1900 3.0150 0.0230 0.1650 0.9200 0.1500 0.0404 0.2600 0.0015 0.0026 0.0067 0.0022	5.0000 200.0000 200.0000 200.0000 5.0000 200.0000 5.0000 5.0000 5.0000	PASS PASS PASS PASS PASS PASS PASS PASS	PASS PASS PASS EXCEEDANCE PASS PASS EXCEEDANCE PASS PASS EXCEEDANCE PASS PASS PASS PASS PASS PASS PASS PAS	N/A N/A PASS PASS N/A PASS PASS PASS PASS PASS PASS PASS PA
SS-5-6' SS-5-11' SS-5-16' SS-6-1' SS-6-6'	Toluenem&p-XyleneLead2-Butanone (MEK)TolueneLead2-Butanone (MEK)TolueneLead2-Butanone (MEK)TolueneLead2-Butanone (MEK)Lead2-Butanone (MEK)Lead2-Butanone (MEK)Lead2-Butanone (MEK)Lead2-Butanone (MEK)Lead2-Butanone (MEK)Lead1,2,4-TrimethylbenzeneEthylbenzenem&p-Xyleneo-XyleneLead	372.0 303.0 3.3 42600.0 216.0 3.6 63900.0 439.0 3.8 60300.0 459.0 3.3 18400.0 3.0 808.0 5.2 29.0 51.9 133.0 43.0 5.0	µg/kg µg/kg	0.3720 0.3030 3.3000 42.6000 0.2160 3.6000 63.9000 0.4390 3.8000 60.3000 0.4590 3.3000 0.4590 3.3000 18.4000 3.0000 0.8080 5.2000 0.0290 0.0290 0.0519 0.1330 0.0430 5.0000	0.0186 0.0152 0.1650 2.1300 0.0108 0.1800 3.1950 0.0220 0.1900 3.0150 0.0230 0.1650 0.9200 0.1500 0.1500 0.0404 0.2600 0.0015 0.0026 0.0067 0.0022 0.2500	5.0000 200.0000 5.0000 200.0000 5.0000 200.0000 5.0000 5.0000 200.0000	PASS PASS PASS PASS PASS PASS PASS PASS	PASS PASS PASS EXCEEDANCE PASS PASS EXCEEDANCE PASS PASS EXCEEDANCE PASS PASS PASS PASS PASS PASS PASS PAS	N/A N/A PASS PASS N/A PASS N/A PASS PASS PASS PASS PASS PASS PASS N/A N/A N/A N/A N/A
SS-5-6' SS-5-11' SS-5-16' SS-6-1' SS-6-6'	Toluenem&p-XyleneLead2-Butanone (MEK)TolueneLead2-Butanone (MEK)TolueneLead2-Butanone (MEK)TolueneLead2-Butanone (MEK)TolueneLead2-Butanone (MEK)Lead2-Butanone (MEK)Lead1-2-Butanone (MEK)Lead2-Butanone (MEK)Lead2-Butanone (MEK)Lead1,2,4-TrimethylbenzeneEthylbenzenem&p-Xyleneo-Xylene	372.0 303.0 3.3 42600.0 216.0 3.6 63900.0 439.0 3.8 60300.0 459.0 3.3 18400.0 3.0 808.0 5.2 29.0 51.9 133.0 43.0	µg/kg	0.3720 0.3030 3.3000 42.6000 0.2160 3.6000 63.9000 0.4390 3.8000 60.3000 0.4590 3.3000 18.4000 3.0000 0.8080 5.2000 0.8080 5.2000 0.0290 0.0519 0.1330 0.0430	0.0186 0.0152 0.1650 2.1300 0.0108 0.1800 3.1950 0.0220 0.1900 3.0150 0.0230 0.1650 0.9200 0.1500 0.0404 0.2600 0.0015 0.0026 0.0067 0.0022	5.0000 200.0000 200.0000 200.0000 5.0000 200.0000 5.0000 5.0000 5.0000	PASS PASS PASS PASS PASS PASS PASS PASS	PASS PASS PASS EXCEEDANCE PASS PASS EXCEEDANCE PASS PASS EXCEEDANCE PASS PASS PASS PASS PASS PASS PASS PAS	N/A N/A PASS PASS N/A PASS PASS PASS PASS PASS PASS PASS PA

								STANDARDS	
Sample ID	Constiuents Detected	Lab Results	Units	Results (mg/kg)	Results / 20	TCLP Results mg/L	RCL for Direct Contact	RCL for Protection of Groundwater	TCLP
	Lead	3.0	mg/kg	3.0000	0.1500	5.0000	PASS	PASS	PASS
	Ethylbenzene	38.7	µg/kg	0.0387	0.0019		PASS	PASS	N/A
	p-Isopropyltoluene	47.4	µg/kg	0.0474	0.0024		PASS	N/A	N/A
SS-7-1'	Toluene	38.7	µg/kg	0.0387	0.0019		PASS	PASS	N/A
	1,2,4-Trimethylbenzene	29.1	µg/kg	0.0291	0.0015		PASS	PASS	N/A
	m&p-Xylene	114.0	µg/kg	0.1140	0.0057		PASS	PASS	N/A
	o-Xylene	38.2	µg/kg	0.0382	0.0019		PASS	PASS	N/A
	Lead	3.9	mg/kg	3.9000	0.1950	5.0000	PASS	PASS	PASS
	2-Butanone (MEK)	963.0	µg/kg	0.9630	0.0482	200.0000	PASS	PASS	PASS
SS-7-5'	Ethylbenzene	57.5	µg/kg	0.0575	0.0029		PASS	PASS	N/A
33-7-3	Toluene	471.0	µg/kg	0.4710	0.0236		PASS	PASS	N/A
	m&p-Xylene	170.0	µg/kg	0.1700	0.0085		PASS	PASS	N/A
	o-Xylene	49.8	µg/kg	0.0498	0.0025		PASS	PASS	N/A
	Lead	2.9	mg/kg	2.9000	0.1450	5.0000	PASS	PASS	PASS
	Ethylbenzene	53.5	µg/kg	0.0535	0.0027		PASS	PASS	N/A
SS-7-10'	Toluene	128.0	µg/kg	0.1280	0.0064		PASS	PASS	N/A
	m&p-Xylene	144.0	µg/kg	0.1440	0.0072		PASS	PASS	N/A
	o-Xylene	55.7	µg/kg	0.0557	0.0028		PASS	PASS	N/A
	Lead	2.1	mg/kg	2.1000	0.1050	5.0000	PASS	PASS	PASS
	2-Butanone (MEK)	275.0	µg/kg	0.2750	0.0138	200.0000	PASS	PASS	PASS
SS-7-14'	Ethylbenzene	32.4	µg/kg	0.0324	0.0016		PASS	PASS	N/A
00711	Toluene	472.0	µg/kg	0.4720	0.0236		PASS	PASS	N/A
	m&p-Xylene	79.8	µg/kg	0.0798	0.0040		PASS	PASS	N/A
	o-Xylene	29.2	µg/kg	0.0292	0.0015		PASS	PASS	N/A
	Lead	1.9	mg/kg	1.9000	0.0950		PASS	PASS	PASS
	2-Butanone (MEK)	392.0	µg/kg	0.3920		200.0000	PASS	PASS	PASS
SS-7-17'	Ethylbenzene	35.2	µg/kg	0.0352	0.0018		PASS	PASS	N/A
	Toluene	402.0	μg/kg	0.4020	0.0201		PASS	PASS	N/A
	m&p-Xylene	79.5	µg/kg	0.0795	0.0040	F 0000	PASS	PASS	N/A
	Lead	3.9	mg/kg	3.9000	0.1950	5.0000	PASS	PASS	PASS
SS-8-1'	Ethylbenzene	27.0	µg/kg	0.0270	0.0014		PASS	PASS	N/A
	m&p-Xylene	82.5	µg/kg	0.0825	0.0041		PASS	PASS	N/A
	o-Xylene	50.9	µg/kg	0.0509	0.0025	F 0000	PASS	PASS	N/A
	Lead	3.9	mg/kg	3.9000	0.1950	5.0000	PASS	PASS	PASS
	2-Butanone (MEK)	652.0 108.0	μg/kg	0.6520	0.0326	200.0000	PASS PASS	PASS PASS	PASS N/A
SS-8-5'	Ethylbenzene m&p-Xylene	297.0	μg/kg	0.1080	0.0054		PASS	PASS	N/A N/A
	o-Xylene	31.5	μg/kg μg/kg	0.2970	0.0149		PASS	PASS	N/A N/A
	Lead	31.5		3.0000	0.0010	5.0000	PASS	PASS	PASS
SS-8-10'	Ethylbenzene	53.9	mg/kg	0.0539	0.1500	5.0000	PASS	PASS	N/A
33-0-10	m&p-Xylene	168.0	μg/kg μg/kg	0.1680	0.0027		PASS	PASS	N/A
SS-8-15'	Lead	1.5	mg/kg	1.5000	0.0750	5.0000	PASS	PASS	PASS
SS-8-15 SS-8-19'	Lead	1.5	mg/kg	1.8000	0.0900	5.0000	PASS	PASS	PASS
53-0-17	Lead	3.7	mg/kg	3.7000	0.0900	5.0000	PASS	PASS	PASS
SS-9-1'	2-Butanone (MEK)	312.0	μg/kg	0.3120	0.0156	200.0000	PASS	PASS	PASS
55-7-1	Toluene	87.6	μg/kg	0.0876	0.0044	200.0000	PASS	PASS	N/A
SS-9-6'	Lead	3.6	mg/kg	3.6000	0.1800	5.0000	PASS	PASS	PASS
SS-9-16'	Lead	3.1	mg/kg	3.1000	0.1550	5.0000	PASS	PASS	PASS
55-7-10	Lead	3.9	mg/kg	3.9000	0.1950	5.0000	PASS	PASS	PASS
	2-Butanone (MEK)	4040.0	μg/kg	4.0400	0.1930	200.0000	PASS	EXCEEDANCE	PASS
	cis-1,2-Dichloroethene	664.0	μg/kg	0.6640	0.0332	0.5000	PASS	EXCEEDANCE	PASS
SS-10-1'	Ethylbenzene	32.9	μg/kg	0.0329	0.0016	0.0000	PASS	PASS	N/A
55 10-1	Toluene	75.7	μg/kg	0.0757	0.0038		PASS	PASS	N/A
	Vinyl chloride	68.8	μg/kg	0.0688	0.0034	0.2000	PASS	EXCEEDANCE	PASS
	m&p-Xylene	94.3	μg/kg	0.0943	0.0047		PASS	PASS	N/A

								STANDARDS	
Sample ID	Constiuents Detected	Lab Results	Units	Results (mg/kg)	Results / 20	TCLP Results mg/L	RCL for Direct Contact	RCL for Protection of Groundwater	TCLP
	Lead	2.1	mg/kg	2.1000	0.1050	5.0000	PASS	PASS	PASS
	2-Butanone (MEK)	13400.0	µg/kg	13.4000	0.6700	200.0000	PASS	EXCEEDANCE	PASS
	cis-1,2-Dichloroethene	20700.0	µg/kg	20.7000	1.0350	0.5000	PASS	EXCEEDANCE	EXCEEDANCE
	Ethylbenzene	445.0	µg/kg	0.4450	0.0223		PASS	PASS	N/A
	Toluene	514.0	µg/kg	0.5140	0.0257		PASS	PASS	N/A
SS-10-5'	Trichloroethene	571.0	µg/kg	0.5710	0.0286	0.5000	PASS	EXCEEDANCE	PASS
	1,2,4-Trimethylbenzene	435.0	µg/kg	0.4350	0.0218		PASS	PASS	N/A
	1,3,5-Trimethylbenzene	195.0	µg/kg	0.1950	0.0098		PASS	PASS	N/A
	Vinyl chloride	817.0	µg/kg	0.8170	0.0409	0.2000	PASS	EXCEEDANCE	PASS
	m&p-Xylene	1490.0	µg/kg	1.4900	0.0745		PASS	PASS	N/A
	o-Xylene	302.0	µg/kg	0.3020	0.0151		PASS	PASS	N/A
	Lead	2.0	mg/kg	2.0000	0.1000	5.0000	PASS	PASS	PASS
	2-Butanone (MEK)	6530.0	µg/kg	6.5300	0.3265	200.0000	PASS	EXCEEDANCE	PASS
	n-Butylbenzene	7770.0	µg/kg	7.7700	0.3885		PASS	N/A	N/A
	sec-Butylbenzene	3660.0	µg/kg	3.6600	0.1830		PASS	N/A	N/A
	cis-1,2-Dichloroethene	181000.0	µg/kg	181.0000	9.0500	0.5000	PASS	EXCEEDANCE	EXCEEDANCE
	Ethylbenzene	67600.0	µg/kg	67.6000	3.3800		EXCEEDANCE	EXCEEDANCE	N/A
	Isopropylbenzene (Cumene)	3690.0	µg/kg	3.6900	0.1845		PASS	N/A	N/A
	p-Isopropyltoluene	3450.0	µg/kg	3.4500	0.1725		PASS	N/A	N/A
	Naphthalene	4600.0	µg/kg	4.6000	0.2300		PASS	EXCEEDANCE	N/A
SS-10-10'	n-Propylbenzene	10500.0	µg/kg	10.5000	0.5250		PASS	N/A	N/A
	Tetrachloroethene	5460.0	µg/kg	5.4600	0.2730	0.7000	PASS	EXCEEDANCE	PASS
	Toluene	33100.0	µg/kg	33.1000	1.6550		PASS	EXCEEDANCE	N/A
	1,1,1-Trichloroethane	986.0	µg/kg	0.9860	0.0493		PASS	EXCEEDANCE	N/A
	Trichloroethene	43700.0	µg/kg	43.7000	2.1850	0.5000	EXCEEDANCE		EXCEEDANCE
	1,2,4-Trimethylbenzene	66800.0	µg/kg	66.8000	3.3400		PASS	EXCEEDANCE	N/A
	1,3,5-Trimethylbenzene	27500.0	µg/kg	27.5000	1.3750		PASS	EXCEEDANCE	N/A
	Vinyl chloride	3150.0	µg/kg	3.1500	0.1575	0.2000	EXCEEDANCE	EXCEEDANCE	PASS
	m&p-Xylene	238000.0	µg/kg	238.0000	11.9000		PASS	EXCEEDANCE	N/A
	o-Xylene	40900.0	µg/kg	40.9000	2.0450		PASS	EXCEEDANCE	N/A
	Lead	2.4	mg/kg	2.4000	0.1200	5.0000	PASS	PASS	PASS
	cis-1,2-Dichloroethene	12400.0	µg/kg	12.4000	0.6200	0.5000	PASS	EXCEEDANCE	EXCEEDANCE
	trans-1,2-Dichloroethene	101.0	µg/kg	0.1010	0.0051	0.5000	PASS	EXCEEDANCE	PASS
	Ethylbenzene	473.0	µg/kg	0.4730	0.0237		PASS	PASS	N/A
SS-10-14'	Toluene	434.0	µg/kg	0.4340	0.0217		PASS	PASS	N/A
33-10-14	1,2,4-Trimethylbenzene	221.0	µg/kg	0.2210	0.0111		PASS	PASS	N/A
	1,3,5-Trimethylbenzene	104.0	µg/kg	0.1040	0.0052		PASS	PASS	N/A
	Vinyl chloride	2290.0	µg/kg	2.2900	0.1145	0.2000	EXCEEDANCE	EXCEEDANCE	PASS
	m&p-Xylene	1350.0	µg/kg	1.3500	0.0675		PASS	PASS	N/A
	o-Xylene	232.0	µg/kg	0.2320	0.0116		PASS	PASS	N/A
	Lead	2.3	mg/kg	2.3000	0.1150	5.0000	PASS	PASS	PASS
	2-Butanone (MEK)	783.0	µg/kg	0.7830	0.0392	200.0000	PASS	PASS	PASS
	1,1-Dichloroethane	38.0	µg/kg	0.0380	0.0019	0.7000	PASS	PASS	PASS
SS-10-17'	cis-1,2-Dichloroethene	651.0	µg/kg	0.6510	0.0326	0.5000	PASS	EXCEEDANCE	PASS
	Ethylbenzene	30.2	µg/kg	0.0302	0.0015		PASS	PASS	N/A
	Toluene	29.8	µg/kg	0.0298	0.0015		PASS	PASS	N/A
	Vinyl chloride	101.0	µg/kg	0.1010	0.0051	0.2000	PASS	EXCEEDANCE	PASS
	m&p-Xylene	94.2	µg/kg	0.0942	0.0047		PASS	PASS	N/A

								STANDARDS	
Sample ID	Constiuents Detected	Lab Results	Units	Results (mg/kg)	Results / 20	TCLP Results mg/L	RCL for Direct Contact	RCL for Protection of Groundwater	TCLP
	Lead	2.1	mg/kg	2.1000	0.1050	5.0000	PASS	PASS	PASS
	2-Butanone (MEK)	2860.0	µg/kg	2.8600	0.1430	200.0000	PASS	EXCEEDANCE	PASS
	n-Butylbenzene	131.0	µg/kg	0.1310	0.0066		PASS	N/A	N/A
	cis-1,2-Dichloroethene	28.2	µg/kg	0.0282	0.0014	0.5000	PASS	PASS	PASS
	Ethylbenzene	368.0	µg/kg	0.3680	0.0184		PASS	PASS	N/A
SS-11-1'	Naphthalene	200.0	µg/kg	0.2000	0.0100		PASS	PASS	N/A
33-11-1	n-Propylbenzene	48.3	µg/kg	0.0483	0.0024		PASS	N/A	N/A
	Toluene	698.0	µg/kg	0.6980	0.0349		PASS	PASS	N/A
	1,2,4-Trimethylbenzene	357.0	µg/kg	0.3570	0.0179		PASS	PASS	N/A
	1,3,5-Trimethylbenzene	116.0	µg/kg	0.1160	0.0058		PASS	PASS	N/A
	m&p-Xylene	1250.0	μg/kg	1.2500	0.0625		PASS	PASS	N/A
	o-Xylene	400.0	µg/kg	0.4000	0.0200		PASS	PASS	N/A
	Lead	1.9	mg/kg	1.9000	0.0950	5.0000	PASS	PASS	PASS
	2-Butanone (MEK)	6700.0	µg/kg	6.7000	0.3350	200.0000	PASS	EXCEEDANCE	PASS
	cis-1,2-Dichloroethene	121.0	µg/kg	0.1210	0.0061	0.5000	PASS	EXCEEDANCE	PASS
	Ethylbenzene	441.0	μg/kg	0.4410	0.0221		PASS	PASS	N/A
SS-11-5'	n-Propylbenzene Toluene	36.5 1230.0	μg/kg	0.0365	0.0018		PASS PASS	N/A EXCEEDANCE	N/A N/A
		1230.0	μg/kg	0.1770	0.0615		PASS	PASS	N/A
	1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	79.6	μg/kg	0.1770	0.0089		PASS	PASS	N/A
	m&p-Xylene	1380.0	μg/kg	1.3800	0.0040		PASS	PASS	N/A
	o-Xylene	347.0	μg/kg μg/kg	0.3470	0.0090		PASS	PASS	N/A N/A
	Lead	2.5		2.5000	0.0174	5.0000	PASS	PASS	PASS
	Ethylbenzene	358.0	mg/kg µg/kg	0.3580	0.1250	5.0000	PASS	PASS	N/A
	Toluene	1130.0	μg/kg	1.1300	0.0565		PASS	EXCEEDANCE	N/A
SS-11-10'	1,2,4-Trimethylbenzene	1130.0	μg/kg	0.1180	0.0059		PASS	PASS	N/A
55-11-10	1,3,5-Trimethylbenzene	50.4	μg/kg	0.0504	0.0025		PASS	PASS	N/A
	m&p-Xylene	1070.0	μg/kg	1.0700	0.0535		PASS	PASS	N/A
	o-Xylene	204.0	μg/kg	0.2040	0.0102		PASS	PASS	N/A
	Lead	2.4	mg/kg	2.5000	0.1250	5.0000	PASS	PASS	PASS
	Ethylbenzene	180.0	μg/kg	0.1800	0.0090	0.0000	PASS	PASS	N/A
SS-11-14'	1,2,4-Trimethylbenzene	49.8	µg/kg	0.0498	0.0025		PASS	PASS	N/A
	m&p-Xylene	561.0	μg/kg	0.5610	0.0281		PASS	PASS	N/A
	o-Xylene	99.1	μg/kg	0.0991	0.0050		PASS	PASS	N/A
	Lead	2.3	mg/kg	2.3000	0.1150	5.0000	PASS	PASS	PASS
	2-Butanone (MEK)	209.0	μg/kg	0.2090	0.0105	200.0000		PASS	PASS
SS-11-18'	Ethylbenzene	32.7	μg/kg	0.0327	0.0016		PASS	PASS	N/A
	Toluene	107.0	µg/kg	0.1070	0.0054		PASS	PASS	N/A
	m&p-Xylene	75.3	µg/kg	0.0753	0.0038		PASS	PASS	N/A
SS-12-1'	Lead	8.6	mg/kg	8.6000	0.4300	5.0000	PASS	PASS	PASS
SS-12-2.5'	Lead	8.7	mg/kg	8.7000	0.4350	5.0000	PASS	PASS	PASS
SS-12-4.6'	Lead	9.3	mg/kg	9.3000	0.4650	5.0000	PASS	PASS	PASS
SS-13-1'	Lead	7.3	mg/kg	7.3000	0.3650	5.0000	PASS	PASS	PASS
SS-13-5'	Lead	8.2	mg/kg	8.2000	0.4100	5.0000	PASS	PASS	PASS
SS-14-1'	Lead	5.8	mg/kg	5.8000	0.2900	5.0000	PASS	PASS	PASS
SS-14-3.5'	Lead	9.1	mg/kg	9.1000	0.4550	5.0000	PASS	PASS	PASS
SS-15-1'	Lead	5.8	mg/kg	5.8000	0.2900	5.0000	PASS	PASS	PASS
SS-15-3.5'	Lead	9.2	mg/kg	9.2000	0.4600	5.0000	PASS	PASS	PASS
SS-16-1'	Lead	3.1	mg/kg	3.1000	0.1550	5.0000	PASS	PASS	PASS
SS-16-5'	Lead	3.4	mg/kg	3.4000	0.1700	5.0000	PASS	PASS	PASS
SS-16-10'	Lead	3.3	mg/kg	3.3000	0.1650	5.0000	PASS	PASS	PASS
SS-16-14'	Lead	2.9	mg/kg	2.9000	0.1450	5.0000	PASS	PASS	PASS
SS-17-1'	Lead	3.4	mg/kg	3.4000	0.1700	5.0000	PASS	PASS	PASS
SS-17-5'	Lead	8.2	mg/kg	8.2000	0.4100	5.0000	PASS	PASS	PASS
SS-17-9'	Cadmium	0.610	mg/kg	0.6100	0.0305	1.0000 E.0000	PASS	PASS	PASS
SS-18-1'	Lead Lead	9.2 2.7	mg/kg mg/kg	9.2000 2.7000	0.4600	5.0000 5.0000	PASS PASS	PASS PASS	PASS PASS
	11 LI 201		· · · · · · / / / / / / / / / / / / / /	. / // 11 11 11	1 11 1 450				

								STANDARDS	
Sample ID	Constiuents Detected	Lab Results	Units	Results (mg/kg)	Results / 20	TCLP Results mg/L	RCL for Direct Contact	RCL for Protection of Groundwater	TCLP
SS-18-10'	Lead	2.1	mg/kg	2.1000	0.1050	5.0000	PASS	PASS	PASS
SS-18-15'	Lead	2.4	mg/kg	2.4000	0.1200	5.0000	PASS	PASS	PASS
SS-18-19'	Lead	3.4	mg/kg	3.4000	0.1700	5.0000	PASS	PASS	PASS
SS-19-1'	Lead	3.7	mg/kg	3.7000	0.1850	5.0000	PASS	PASS	PASS
SS-19-5'	Lead	1.8	mg/kg	1.8000	0.0900	5.0000	PASS	PASS	PASS
SS-19-10'	Lead	2.1	mg/kg	2.1000	0.1050	5.0000	PASS	PASS	PASS
SS-19-15'	Lead	3.1	mg/kg	3.1000	0.1550	5.0000	PASS	PASS	PASS
SS-19-20'	Lead	1.5	mg/kg	1.5000	0.0750	5.0000	PASS	PASS	PASS
SS-20-1'	Lead	3.5	mg/kg	3.5000	0.1750	5.0000	PASS	PASS	PASS
SS-20-6'	Lead	3.2	mg/kg	3.2000	0.1600	5.0000	PASS	PASS	PASS
SS-20-11'	Lead	2.9	mg/kg	2.9000	0.1450	5.0000	PASS	PASS	PASS
SS-20-16'	Lead	3.5	mg/kg	3.5000	0.1750	5.0000	PASS	PASS	PASS
SS-20-21'	Lead	3.3	mg/kg	3.3000	0.1650	5.0000	PASS	PASS	PASS
	Lead	4.8	mg/kg	4.8000	0.2400	5.0000	PASS	PASS	PASS
	2-Butanone (MEK)	2680.0	μg/kg	2.6800	0.1340	200.0000	PASS	EXCEEDANCE	PASS
SS-21-1'	cis-1,2-Dichloroethene	444.0	μg/kg	0.4440	0.0222	0.5000	PASS	EXCEEDANCE	PASS
	Methylene Chloride	197.0	μg/kg	0.1970	0.0099		PASS	EXCEEDANCE	N/A
	Toluene	299.0	μg/kg	0.2990	0.0150	0 5 0 0 0	PASS	PASS	N/A
	Trichloroethene	34.7	µg/kg	0.0347	0.0017	0.5000	PASS	EXCEEDANCE	PASS
	Lead	3.6	mg/kg	3.6000	0.1800	5.0000	PASS	PASS	PASS
	2-Butanone (MEK)	4580.0	μg/kg	4.5800	0.2290	200.0000	PASS	EXCEEDANCE	PASS
SS-21-5'	cis-1,2-Dichloroethene	629.0	μg/kg	0.6290	0.0315	0.5000	PASS PASS	EXCEEDANCE EXCEEDANCE	PASS N/A
	Methylene Chloride Toluene	137.0	μg/kg	0.1370 0.1390	0.0069		PASS	PASS	N/A N/A
		139.0	µg/kg			F 0000			
CC 01 10	Lead 2-Butanone (MEK)	<u> </u>	mg/kg	3.4000 3.1600	0.1700	5.0000 200.0000	PASS PASS	PASS EXCEEDANCE	PASS PASS
SS-21-10'	cis-1,2-Dichloroethene	348.0	μg/kg μg/kg	0.3480	0.1580	0.5000	PASS	EXCEEDANCE	PASS
	Lead	340.0		3.4000	0.0174	5.0000	PASS	PASS	PASS
SS-21-13'	2-Butanone (MEK)	358.0	mg/kg µg/kg	0.3580	0.1700	200.0000	PASS	PASS	PASS
	Lead	3.4	mg/kg	3.4000	0.1700	5.0000	PASS	PASS	PASS
SS-22-1'	Ethylbenzene	31.1	μg/kg	0.0311	0.0016	5.0000	PASS	PASS	N/A
55 22 1	Toluene	32.5	μg/kg	0.0325	0.0016		PASS	PASS	N/A
	Lead	3.2	mg/kg	3.2000	0.1600	5.0000	PASS	PASS	PASS
SS-22-5'	2-Butanone (MEK)	3900.0	μg/kg	3.9000	0.1950	200.0000	PASS	EXCEEDANCE	PASS
00 22 0	Toluene	40.1	μg/kg	0.0401	0.0020		PASS	PASS	N/A
	Lead	2.7	mg/kg	2.7000	0.1350	5.0000	PASS	PASS	PASS
	2-Butanone (MEK)	204.0	μg/kg	0.2040	0.0102	200.0000		PASS	PASS
SS-22-10'	Ethylbenzene	28.1	µg/kg	0.0281	0.0014		PASS	PASS	N/A
	p-Isopropyltoluene	40.0	µg/kg	0.0400	0.0020		PASS	N/A	N/A
	Toluene	216.0	µg/kg	0.2160	0.0108		PASS	PASS	N/A
SS-22-12.5'	Lead	3.9	mg/kg	3.9000	0.1950	5.0000	PASS	PASS	PASS
	Lead	2.9	mg/kg	2.9000	0.1450	5.0000	PASS	PASS	PASS
SS-23-1'	2-Butanone (MEK)	5420.0	μg/kg	5.4200	0.2710	200.0000	PASS	EXCEEDANCE	PASS
SS-23-5'	Lead	2.8	mg/kg	2.8000	0.1400	5.0000	PASS	PASS	PASS
JJ-23-D	2-Butanone (MEK)	47200.0	µg/kg	47.2000	2.3600	200.0000	PASS	EXCEEDANCE	PASS
SS-23-10'	Lead	2.6	mg/kg	2.6000	0.1300	5.0000	PASS	PASS	PASS
	2-Butanone (MEK)	1770.0	µg/kg	1.7700	0.0885	200.0000	PASS	EXCEEDANCE	PASS
SS-23-14.5'	Lead	3.0	mg/kg	3.0000	0.1500	5.0000	PASS	PASS	PASS
	Lead	3.1	mg/kg	3.1000	0.1550	5.0000	PASS	PASS	PASS
	2-Butanone (MEK)	365.0	µg/kg	0.3650	0.0183	200.0000	PASS	PASS	PASS
	cis-1,2-Dichloroethene	236.0	µg/kg	0.2360	0.0118	0.5000	PASS	EXCEEDANCE	PASS
SS-24-1'	Ethylbenzene	86.7	µg/kg	0.0867	0.0043		PASS	PASS	N/A
	Toluene	93.3	µg/kg	0.0933	0.0047		PASS	PASS	N/A
	m&p-Xylene	220.0	µg/kg	0.2200	0.0110		PASS	PASS	N/A
	o-Xylene	52.4	µg/kg	0.0524	0.0026		PASS	PASS	N/A



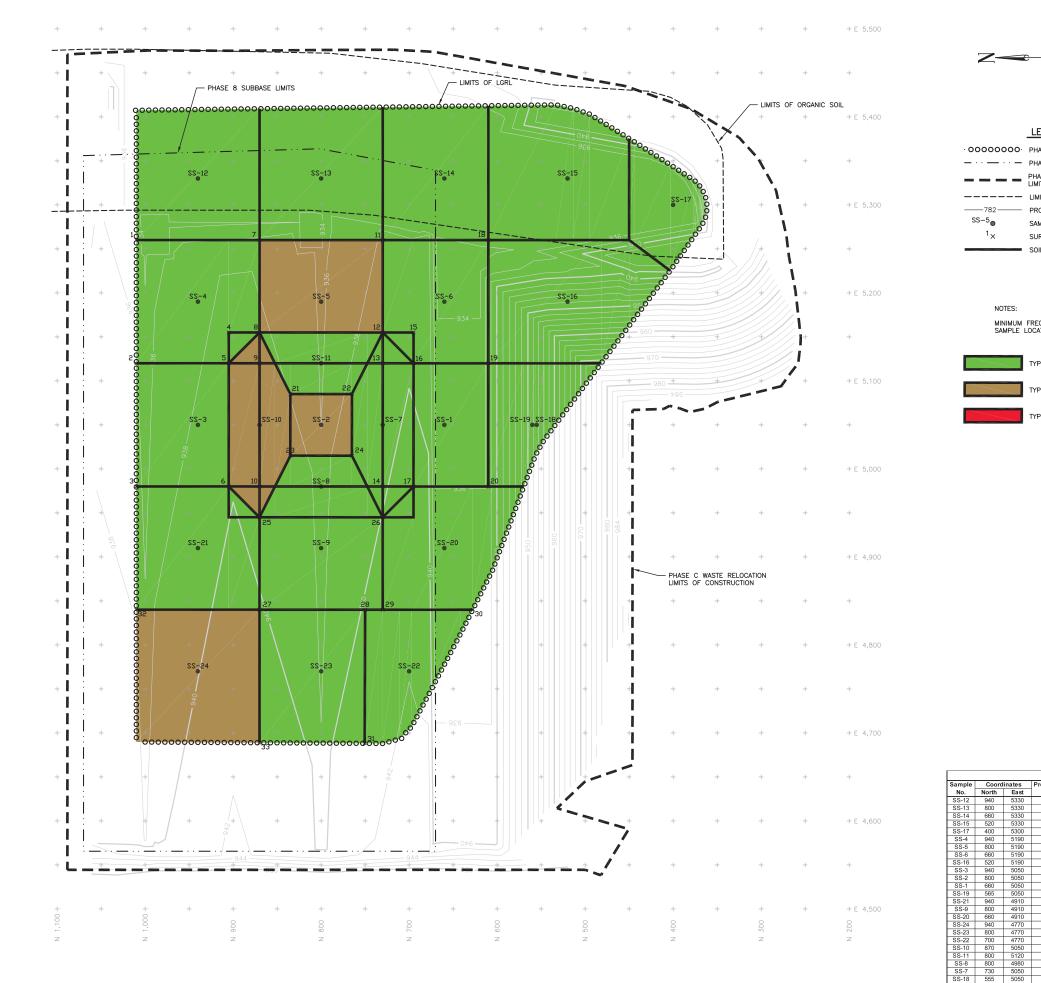
SS-24-6' SS-24-6' SS-24-6' SS-24-6' Naph n-Pro Tetra Tolue 1,2,4 1,3,5 Vinyl m&p- o-Xyl Lead 2-But n-But sec-E cis-1, trans Ethyl Isopro 0-Xyl SS-24-11' SS-24-11' Naph n-Pro Tetra Tolue 1,2,4 1,3,5 Vinyl m&p- scrite Cis-1, Naph n-Pro Tetra Tolue 1,2,4 1,3,5 Vinyl m&p- scrite Cis-1, Naph n-Pro Tetra Tolue 1,2,4 1,3,5 Vinyl M&p- Naph N-But SS-24-11' Naph n-Pro Tetra Tolue 1,2,4 1,3,5 Ninyl Naph n-Pro Tetra Tolue 1,2,4 1,3,5 Ninyl Naph n-Pro Tetra Tolue 1,2,4 1,3,5 Ninyl Naph n-Pro Tetra Tolue 1,2,4 1,3,5 Ninyl Naph n-Pro Tetra Tolue Cis-1, trans Ethyl Isopro P-Isoo Naph n-Pro Tetra Tolue Cis-1, trans Ethyl Isopro P-Isoo Naph n-Pro Tetra Tolue Tetra Tolue	utanone (MEK) utylbenzene -Butylbenzene 1,2-Dichloroethene ylbenzene propylbenzene (Cumene) opropyltoluene hylene Chloride phthalene ropylbenzene	Lab Results 3.4 5490.0 176.0 59.9 3530.0 4580.0 117.0 50.0	Units mg/kg µg/kg µg/kg µg/kg µg/kg	Results (mg/kg) 3.4000 5.4900 0.1760 0.0599	Results / 20 0.1700 0.2745	TCLP Results mg/L 5.0000	RCL for Direct Contact	RCL for Protection of Groundwater	TCLP
SS-24-6' SS-24-6' SS-24-6' SS-24-6' SS-24-1' SS-24-1' SS-24-11'	utanone (MEK) utylbenzene -Butylbenzene 1,2-Dichloroethene ylbenzene propylbenzene (Cumene) opropyltoluene hylene Chloride phthalene ropylbenzene	5490.0 176.0 59.9 3530.0 4580.0 117.0	μg/kg μg/kg μg/kg μg/kg	5.4900 0.1760	0.2745	5 0000			
SS-24-6' SS-24-6' SS-24-6' SS-24-6' Naph n-Pro Tetra Tolue 1,2,4 1,3,5 Vinyl m&p- o-Xyl Naph n-But Sec-E cis-1, trans Ethyl Isopro p-Iso Naph n-Pro Tetra Tolue 1,2,4 1,3,5 Vinyl m&p- o-Xyl SS-24-11' SS-24-11' Naph n-Pro Tetra Tolue 1,2,4 1,3,5 Vinyl m&p- sec-E cis-1, trans Ethyl Isopro p-Iso Naph n-Pro Tetra Tolue 1,2,4 1,3,5 Vinyl m&p- sec-E cis-1, trans Ethyl Isopro p-Iso Naph n-Pro Tetra Tolue 1,2,4 1,3,5 Vinyl m&p- sec-E cis-1, trans Ethyl Isopro P-Iso Naph n-Pro Tetra Tolue Cis-1, trans Ethyl Isopro P-Iso	utylbenzene -Butylbenzene 1,2-Dichloroethene ylbenzene propylbenzene (Cumene) popropyltoluene hylene Chloride phthalene ropylbenzene	176.0 59.9 3530.0 4580.0 117.0	μg/kg μg/kg μg/kg	0.1760		0.0000	PASS	PASS	PASS
SS-24-6' SS-24-6' SS-24-6' SS-24-6' SS-24-6' SS-24-1' SSS-24-11' Sec-E Cis-1, trans Ethyl Isopr P-Iso Naph P-I	-Butylbenzene 1,2-Dichloroethene ylbenzene propylbenzene (Cumene) opropyltoluene hylene Chloride phthalene ropylbenzene	59.9 3530.0 4580.0 117.0	μg/kg μg/kg			200.0000	PASS	EXCEEDANCE	PASS
SS-24-6' SS-24-6' SS-24-6' Naph n-Pro Tetra Tolue 1,2,4 1,3,5 Vinyl m&p- o-Xyl 1,2,4 1,3,5 Vinyl m&p- o-Xyl SS-24-11' SS-24-11' SS-24-11' Naph n-Pro Tetra Tolue 1,2,4 1,3,5 Vinyl m&p- SS-24-11' SS-24-11' Naph n-Pro Tetra Tolue 1,2,4 1,3,5 Vinyl m&p- SS-24-11' Naph n-Pro Tetra Tolue 1,2,4 1,3,5 Vinyl m&p- SS-24-11' Naph n-Pro Tetra Tolue 1,2,4 1,3,5 Vinyl SS-24-11' Naph n-Pro Tetra Tolue 1,2,4 1,3,5 Vinyl SS-24-11' Naph Naph N-Pro Tetra Tolue Cis-1, trans Ethyl Isopri Naph n-Pro Tetra Tolue	1,2-Dichloroethene ylbenzene oropylbenzene (Cumene) opropyltoluene hylene Chloride ohthalene ropylbenzene	3530.0 4580.0 117.0	µg/kg	0.0599	0.0088		PASS	N/A	N/A
SS-24-6' Ethyl Isopri p-Iso Meth Naph n-Pro Tetra Tolue 1,2,4 1,3,5 Vinyl m&p- o-Xyl Lead 2-But n-But sec-E cis-1, trans Ethyl Isopri SS-24-11' Ropri P-Iso Naph n-Pro Tetra Tolue 1,2,4 1,3,5	ylbenzene propylbenzene (Cumene) opropyltoluene hylene Chloride ohthalene ropylbenzene	4580.0 117.0			0.0030		PASS	N/A	N/A
SS-24-6' Isopro p-Iso Methy Naph n-Pro Tetra Tolue 1,2,4 1,3,5 Vinyl m&p- o-Xyl Lead 2-But n-But sec-E cis-1, trans Ethyl Isopro P-Iso Naph n-Pro Tetra Tolue 1,2,4 1,3,5 Vinyl m&p- o-Xyl SS-24-11'	oropylbenzene (Cumene) opropyltoluene hylene Chloride ohthalene ropylbenzene	117.0	µg/kg	3.5300	0.1765	0.5000	PASS	EXCEEDANCE	PASS
SS-24-6' P-Iso Methy Naph n-Pro Tetra Tolue 1,2,4 1,3,5 Vinyl m&p- o-Xyl 0-Xyl Ethyl Isopri SS-24-11' SS-24-11' Naph n-Pro Tetra Tolue 1,2,4 1,3,5 Vinyl m&p- o-Xyl SS-24-11' Naph n-Pro Tetra Tolue 1,2,4 1,3,5 Vinyl m&p- sec-E cis-1, trans Ethyl Isopri Naph n-Pro Tetra Tolue 1,2,4 1,3,5 Vinyl m&p- sec-E cis-1, trans Ethyl Isopri Naph n-Pro Tetra Tolue 1,2,4 1,3,5 Vinyl m&p- sec-E Cis-1, trans Ethyl Isopri Naph n-Pro Tetra Tolue 1,2,4 1,3,5 Vinyl m-But Sec-E Cis-1, trans Ethyl Isopri Tetra Tolue	opropyltoluene hylene Chloride ohthalene ropylbenzene		, .,	4.5800	0.2290		PASS	EXCEEDANCE	N/A
SS-24-6' Methy Naph n-Pro Tetra Tolue 1,2,4 1,3,5 Vinyl m&p- o-Xyl Lead 2-But n-But sec-E cis-1, trans Ethyl Isopro P-Iso Naph n-Pro Tetra Tolue	hylene Chloride hthalene ropylbenzene	50.0	µg/kg	0.1170	0.0059		PASS	N/A	N/A
SS-24-6 Naph n-Pro Tetra Tolue 1,2,4 1,3,5 Vinyl m&p- o-Xyl Lead 2-But n-But sec-E cis-1, trans Ethyl Isopri SS-24-11' SS-24-11'	ohthalene ropylbenzene		µg/kg	0.0500	0.0025		PASS	N/A	N/A
Naph n-Pro Tetra Tolue 1,2,4 1,3,5 Vinyl m&p- o-Xyl Lead 2-But n-But sec-E cis-1, trans Ethyl Isopro P-Iso Naph n-Pro Tetra Tolue	ropylbenzene	87.1	µg/kg	0.0871	0.0044		PASS	EXCEEDANCE	N/A
Tetra Tolue 1,2,4 1,3,5 Vinyl m&p- o-Xyl Lead 2-But n-But sec-E cis-1, trans Ethyl Isopri SS-24-11' SS-24-11' Naph n-Pro Tetra Tolue		269.0	µg/kg	0.2690	0.0135		PASS	PASS	N/A
SS-24-11' Tolue 1,2,4 1,3,5 Vinyl m&p- o-Xyl Lead 2-But n-But sec-E cis-1, trans Ethyll Isopri P-Iso Naph n-Pro Tetra Tolue		259.0	µg/kg	0.2590	0.0130	0.7000	PASS	N/A	N/A
1,2,4 1,3,5 Vinyl m&p- o-Xyl Lead 2-But n-But sec-E cis-1, trans Ethyl Isopro p-Iso Naph n-Pro Tetra Tolue	rachloroethene	106.0	μg/kg	0.1060	0.0053	0.7000	PASS	EXCEEDANCE	PASS
1,3,5 Vinyl m&p- o-Xyl Lead 2-But n-But sec-E cis-1, trans Ethyl Isopri SS-24-11' SS-24-11' Naph n-Pro Tetra Tolue		2390.0	μg/kg	2.3900	0.1195		PASS	EXCEEDANCE	N/A
Vinyl m&p- o-Xyl Lead 2-But n-But sec-E cis-1, trans Ethyl Isopro SS-24-11' SS-24-11' Naph n-Pro Tetra Tolue	4-Trimethylbenzene	1480.0	μg/kg	1.4800	0.0740		PASS	EXCEEDANCE	N/A
M&p- o-Xyl 2-But n-But sec-E cis-1, trans Ethyl Isopro P-Iso Naph n-Pro Tetra Tolue	5-Trimethylbenzene	480.0	μg/kg	0.4800	0.0240	0 2000	PASS	EXCEEDANCE	N/A
o-Xyl Lead 2-But n-But sec-E cis-1, trans Ethyl Isopri SS-24-11' SS-24-11' Naph n-Pro Tetra Tolue	yl chloride	50.2 11900.0	μg/kg	0.0502	0.0025	0.2000	PASS PASS	EXCEEDANCE EXCEEDANCE	PASS N/A
Lead 2-But n-But sec-E cis-1, trans Ethyl Isopro SS-24-11' SS-24-11' Naph n-Pro Tetra Tolue		3130.0	μg/kg	3.1300	0.5950		PASS PASS	EXCEEDANCE	N/A N/A
2-But n-But sec-E cis-1, trans Ethyl Isopr SS-24-11' Naph n-Pro Tetra Tolue	,	3130.0 2.4	μg/kg	3.1300	0.1565	5.0000	PASS	PASS	PASS
n-But sec-E cis-1, trans Ethyl Isopro SS-24-11' Naph n-Pro Tetra Tolue	utanone (MEK)	2.4 8190.0	mg/kg	2.4000 8.1900	0.1200	200.0000	PASS	EXCEEDANCE	PASS
SS-24-11' SS-24-11' SS-24-11' SS-24-11' Naph n-Pro Tetra Tolue	utylbenzene	246.0	μg/kg μg/kg	0.2460	0.4093	200.0000	PASS	N/A	N/A
cis-1, trans Ethyl Isopr SS-24-11' Naph n-Pro Tetra Tolue	Butylbenzene	91.1	μg/kg μg/kg	0.2400	0.0046		PASS	N/A	N/A N/A
SS-24-11' Tetra Tolue	1,2-Dichloroethene	5090.0	μg/kg	5.0900	0.2545	0.5000	PASS	EXCEEDANCE	PASS
SS-24-11' Ethyl Isopro P-Iso Naph n-Pro Tetra Tolue	is-1,2-Dichloroethene	29.9	μg/kg	0.0299	0.2045	0.5000	PASS	PASS	PASS
SS-24-11' Isoprov SS-24-11' Naph n-Pro Tetra Tolue	ylbenzene	8350.0	μg/kg	8.3500	0.4175	0.0000	PASS	EXCEEDANCE	N/A
SS-24-11' P-Iso Naph n-Pro Tetra Tolue	propylbenzene (Cumene)	186.0	μg/kg	0.1860	0.0093		PASS	N/A	N/A
SS-24-11' Naph n-Pro Tetra Tolue	opropyltoluene	80.7	μg/kg	0.0807	0.0040		PASS	N/A	N/A
n-Pro Tetra Tolue	phthalene	330.0	μg/kg	0.3300	0.0165		PASS	PASS	N/A
Tetra Tolue	ropylbenzene	418.0	μg/kg	0.4180	0.0209		PASS	N/A	N/A
	rachloroethene	57.6	μg/kg	0.0576	0.0029	0.7000	PASS	EXCEEDANCE	PASS
		4620.0	μg/kg	4.6200	0.2310		PASS	EXCEEDANCE	N/A
1,2,4	4-Trimethylbenzene	2090.0	μg/kg	2.0900	0.1045		PASS	EXCEEDANCE	N/A
1,3,5	5-Trimethylbenzene	704.0	μg/kg	0.7040	0.0352		PASS	EXCEEDANCE	N/A
Vinyl	yl chloride	190.0	μg/kg	0.1900	0.0095	0.2000	PASS	EXCEEDANCE	PASS
m&p-	p-Xylene	21000.0	µg/kg	21.0000	1.0500		PASS	EXCEEDANCE	N/A
o-Xyl	ylene	5250.0	µg/kg	5.2500	0.2625		PASS	EXCEEDANCE	N/A
Cadn	dmium	0.080	mg/kg	0.0800	0.0040	1.0000	PASS	PASS	PASS
SS-25-1' Lead		4.9	mg/kg	4.9000	0.2450	5.0000	PASS	PASS	PASS
Trich	hloroethene	37.0	µg/kg	0.0370	0.0019		PASS	EXCEEDANCE	N/A
<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	dmium	0.072	mg/kg	0.0720	0.0036	1.0000	PASS	PASS	PASS
Lead		2.2	mg/kg	2.2000	0.1100	5.0000	PASS	PASS	PASS
<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	dmium	0.063	mg/kg	0.0630	0.0032	1.0000	PASS	PASS	PASS
Lead		4.9	mg/kg	4.9000	0.2450	5.0000	PASS	PASS	PASS
	dmium	0.072	mg/kg	0.0720	0.0036	1.0000 E.0000	PASS	PASS	PASS
SS-25-15' Lead		1.8	mg/kg	1.8000	0.0900	5.0000	PASS	PASS	PASS
	hylene Chloride	26.0	µg/kg	0.0260	0.0013	1 0000	PASS	EXCEEDANCE	N/A
SS-25-18'	dmium	0.120	mg/kg	0.1200	0.0060	1.0000	PASS	PASS	PASS
Lead		1.9 0.055	mg/kg	1.9000	0.0950	5.0000	PASS	PASS	PASS
<u>SS-26-1</u>	dmium	0.055	mg/kg	0.0550	0.0028	1.0000	PASS	PASS	PASS
Lead		2.1	mg/kg	2.1000	0.1050	5.0000	PASS	PASS	PASS
SS-26-5'	dmium d	0.051	mg/kg	0.0510	0.0026	1.0000	PASS	PASS	PASS
Lead		1.0	mg/kg	1.0000	0.0500	5.0000	PASS	PASS	PASS
SS-26-10'	dmium	0.058	mg/kg	0.0580	0.0029	1.0000	PASS	PASS	PASS
Lead		1.8	mg/kg	1.8000	0.0900	5.0000	PASS	PASS	PASS
<u>SS-26-15'</u>	dmium	0.067	mg/kg	0.0670	0.0034	1.0000	PASS	PASS	PASS
Lead		1.8 0.072	mg/kg mg/kg	1.8000	0.0900	5.0000 1.0000	PASS PASS	PASS PASS	PASS PASS
SS-26-18.6' Cadn		(11) (1)		0.0720	0.0036			PANN	LHOO

								STANDARDS	
Sample ID	Constiuents Detected	Lab Results	Units	Results (mg/kg)	Results / 20	TCLP Results mg/L	RCL for Direct Contact	RCL for Protection of Groundwater	TCLP
00.07.41	Cadmium	0.093	mg/kg	0.0930	0.0047	1.0000	PASS	PASS	PASS
SS-27-1'	Lead	2.3	mg/kg	2.3000	0.1150	5.0000	PASS	PASS	PASS
	Cadmium	0.081	mg/kg	0.0810	0.0041	1.0000	PASS	PASS	PASS
SS-27-6'	Lead	1.4	mg/kg	1.4000	0.0700	5.0000	PASS	PASS	PASS
CC 07 11	Cadmium	0.067	mg/kg	0.0670	0.0034	1.0000	PASS	PASS	PASS
SS-27-11'	Lead	1.8	mg/kg	1.8000	0.0900	5.0000	PASS	PASS	PASS
CC 07 1/1	Cadmium	0.110	mg/kg	0.1100	0.0055	1.0000	PASS	PASS	PASS
SS-27-16'	Lead	1.8	mg/kg	1.8000	0.0900	5.0000	PASS	PASS	PASS

• — — ·

LEGEND

OOOOOOOO
 PHASE C WASTE RELOCATION LIMITS
 PHASE 8 SUBBASE LIMITS
 PHASE 8 SUBBASE LIMITS
 PHASE C WASTE RELOCATION
 LIMITS OF CONSTRUCTION
 LIMITS OF ORGANIC SOIL
 782
 PROPOSED EXCAVATION CONTOURS
 SS=5
 SAMPLE POINT NUMBER AND LOCATION
 1 × SURVEY POINT LOCATION AND NUMBER
 SOIL EXCAVATION LIMITS FOR COMPLETED SAMPLE LOCATIONS


MINIMUM FREQUENCY OF PROPOSED SOIL SAMPLE LOCATIONS = 1 PER 0.5 ACRES.

SUBGRADE	TYPE 1 SOIL
SUBGRADE	TYPE 2 SOIL
SUBGRADE	TYPE 4 SOIL
-6' SUBGRADE	TYPE 2 SOIL TYPE 1 SOIL
-5' SUBGRADE	TYPE 2 SOIL TYPE 1 SOIL
-14' —SUBGRADE	TYPE 2 SOIL TYPE 1 SOIL
-10' -SUBGRADE	TYPE 2 SOIL TYPE 1 SOIL

Su	rvey Poi	nts
Point	Coord	linates
Number	North	East
1	1010	5260
2	1010	5120
3	1010	4980
4	905	5155
5	905	5120
6	905	4980
7	870	5260
8	870	5155
9	870	5120
10	870	4980
11	730	5260
12	730	5155
13	730	5120
14	730	4980
15	695	5155
16	695	5120
17	695	4980
18	610	5260
19	610	5120
20	610	4980
21	835	5085
22	765	5085
23	835	5015
24	765	5015
25	870	4945
26	730	4945
27	870	4840
28	750	4840
29	730	4840
30	628	4840
31	750	4688
32	870	4689
33	1010	4690
34	1010	4840
35	591	4840
36	610	4686

ord	inates	Proposed Excavation	oil Sample Locat	Depth of Soil	
bra h	East	Elevation (ft)	Waste Elevation (ft)	to Remove (ft)	Comments
))	5330	934.7	waste Lievation (it)	to Keniove (it)	931.5 at Bottom of Rock
<u></u>	5330	934.7			931.5 at Bottom of Rock
, ,	5330	934.5			931.5 at Bottom of Rock
<u></u>	5330	934.0			931.5 at Bottom of Rock
<u> </u>	5300	934.0			931.5 at Bottom of Rock
,		934.0 936.4			931.5 at Bottom of Rock
<u> </u>	5190				
)	5190	934.1			
)	5190	933.7			
)	5190	947.7			
)	5050	937.3			
)	5050	935.0			
)	5050	935.5			
5	5050	951.7			
)	4910	938.1			
)	4910	935.8			
)	4910	936.5			
)	4770	938.9			
)	4770	936.7			
)	4770	940.9			
)	5050	937.9			
)	5120	934.6			
)	4980	935.4			
)	5050	938.4			
5	5050	953.3			
)	4650	939.7			
)	4650	937.4			
)	4650	940.7			

RELEASE D	ATE: BY:
Project	Review
/5\ 	
/2\	
/1	
NO. DATI DESCRI	
REVIS	SIONS
	Advanced Disposal
CQM, INC. Construction Quality Management 2679 Continential Drive Green Bay, WI 54311	Soil Excavation Plan - 3/8/16
Phase C Waste Relocation Advanced Disposel Services	Glacier Ridge Landfill, LLC. Horicon, Wisconsin
DRAWN BY:	WBE
DATE: Mai	r. 2016
SCALE: 1	r. 2016 ' = 50'
DRAWIN	IG NO.
6	S
	~

LEGEND

OOOOOOOO
 PHASE C WASTE RELOCATION LIMITS
 PHASE 8 SUBBASE LIMITS
 PHASE 8 SUBBASE LIMITS
 PHASE C WASTE RELOCATION
 LIMITS OF CONSTRUCTION
 LIMITS OF ORGANIC SOIL
 782
 PROPOSED EXCAVATION CONTOURS
 SS=5
 SAMPLE POINT NUMBER AND LOCATION
 1 × SURVEY POINT LOCATION AND NUMBER
 SOIL EXCAVATION LIMITS FOR COMPLETED SAMPLE LOCATIONS

MINIMUM FREQUENCY OF PROPOSED SOIL SAMPLE LOCATIONS = 1 PER 0.5 ACRES.

- TYPE 1 SOIL AT SUBGRADE
- TYPE 2 SOIL AT SUBGRADE
- TYPE 4 SOIL AT SUBGRADE

Survey Points						
Point		linates				
Number	North	East				
1	1010	5260				
2	1010	5120				
3	1010	4980				
4	905	5155				
5	905	5120				
6	905	4980				
7	870	5260				
8	870	5155				
9	870	5120				
10	870	4980				
11	730	5260				
12	730	5155				
13	730	5120				
14	730	4980				
15	695	5155				
16	695	5120				
17	695	4980				
18	610	5260				
19	610	5120				
20	610	4980				
21	835	5085				
22	765	5085				
23	835	5015				
24	765	5015				
25	870	4945				
26	730	4945				
27	870	4840				
28	750	4840				
29	730	4840				
30	628	4840				
31	750	4688				
32	870	4689				
33	1010	4690				

	tions	
As-Built Bottom of	Depth of Soil	
Waste Elevation (ft)	to Remove (ft)	Comments
		931.5 at Bottom of Rock
		931.5 at Bottom of Rock
		931.5 at Bottom of Rock
		931.5 at Bottom of Rock
		931.5 at Bottom of Rock
	As-Built Bottom of	

	ATE: BY:
Project	Review
4	
3	
2	
NO. DAT	E: BY:
DESCR	
REVIS	SIONS
	Advanced Disposa
CQM, INC. Construction Quality Management 2679 Continental Drive Green Bay, WI 54311	Type 2 Soil Subgrade Locations
Phase C Waste Relocation Advanced Disposal Services	Glacier Ridge Landfill, LLC. Horicon, Wisconsin
DRAWN BY:	WBE
DRAWN BY: DATE: Ma	WBE r. 2016
drawn by : date: Mg	WBE r. 2016 "=50'

March 15, 2016

Tyler Field CORNERSTONE ENV. GROUP, LLC. 8413 Excelsior Drive, Ste 160 Madison, WI 53717

RE: Project: GLACIER RIDGE Pace Project No.: 40129145

Dear Tyler Field:

Enclosed are the analytical results for sample(s) received by the laboratory on March 09, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Day Milent

Dan Milewsky dan.milewsky@pacelabs.com Project Manager

Enclosures

cc: Nick Sturzl, CQM Inc.

CERTIFICATIONS

Project: GLACIER RIDGE

Pace Project No .: 40129145

Minnesota Certification IDs

1700 Elm Street SE Suite 200, Minneapolis, MN 55414 525 N 8th Street, Salina, KS 67401 A2LA Certification #: 2926.01 Alaska Certification #: UST-078 Alaska Certification #MN00064 Alabama Certification #40770 Arizona Certification #: AZ-0014 Arkansas Certification #: 88-0680 California Certification #: 01155CA Colorado Certification #Pace Connecticut Certification #: PH-0256 EPA Region 8 Certification #: 8TMS-L Florida/NELAP Certification #: E87605 Guam Certification #:14-008r Georgia Certification #: 959 Georgia EPD #: Pace Idaho Certification #: MN00064 Hawaii Certification #MN00064 Illinois Certification #: 200011 Indiana Certification#C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167 Kentucky Dept of Envi. Protection - DW #90062 Kentucky Dept of Envi. Protection - WW #:90062 Louisiana DEQ Certification #: 3086 Louisiana DHH #: LA140001 Maine Certification #: 2013011 Maryland Certification #: 322 Michigan DEPH Certification #: 9909

Green Bay Certification IDs 1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 Virginia VELAP ID: 460263 North Dakota Certification #: R-150

Minnesota Certification #: 027-053-137 Mississippi Certification #: Pace Montana Certification #: MT0092 Nevada Certification #: MN_00064 Nebraska Certification #: Pace New Jersey Certification #: MN-002 New York Certification #: 11647 North Carolina Certification #: 530 North Carolina State Public Health #: 27700 North Dakota Certification #: R-036 Ohio EPA #: 4150 Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Oregon Certification #: MN300001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification Saipan (CNMI) #:MP0003 South Carolina #:74003001 Texas Certification #: T104704192 Tennessee Certification #: 02818 Utah Certification #: MN000642013-4 Virginia DGS Certification #: 251 Virginia/VELAP Certification #: Pace Washington Certification #: C486 West Virginia Certification #: 382 West Virginia DHHR #:9952C Wisconsin Certification #: 999407970

South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 US Dept of Agriculture #: S-76505 Virginia VELAP Certification ID: 460263 Virginia VELAP ID: 460263 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444

SAMPLE SUMMARY

Project: GLACIER RIDGE Pace Project No.: 40129145

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40129145001	GRL-SS-28	Solid	03/09/16 10:05	03/09/16 17:30
40129145002	GRL-SS-29	Solid	03/09/16 14:45	03/09/16 17:30
40129145003	GRL-SS-30	Solid	03/09/16 14:50	03/09/16 17:30
40129145004	GRL-SS-31	Solid	03/09/16 14:55	03/09/16 17:30
40129145005	GRL-SS-32	Solid	03/09/16 15:00	03/09/16 17:30
40129145006	GRL-SS-33	Solid	03/09/16 15:05	03/09/16 17:30
40129145007	GRL-SS-34	Solid	03/09/16 15:10	03/09/16 17:30
40129145008	GRL-SS-35	Solid	03/09/16 15:15	03/09/16 17:30
40129145009	GRL-SS-36	Solid	03/09/16 15:20	03/09/16 17:30

SAMPLE ANALYTE COUNT

Project: GLACIER RIDGE Pace Project No.: 40129145

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
40129145001	GRL-SS-28	EPA 6010C	IP	2	PASI-M
		ASTM D2974	JDL	1	PASI-M
		EPA 8260	SMT	65	PASI-G
40129145002	GRL-SS-29	EPA 6010C	IP	2	PASI-M
		ASTM D2974	JDL	1	PASI-M
		EPA 8260	SMT	65	PASI-G
40129145003	GRL-SS-30	EPA 6010C	IP	2	PASI-M
		ASTM D2974	JDL	1	PASI-M
		EPA 8260	SMT	65	PASI-G
40129145004	GRL-SS-31	EPA 6010C	IP	2	PASI-M
		ASTM D2974	JDL	1	PASI-M
		EPA 8260	SMT	65	PASI-G
40129145005	GRL-SS-32	EPA 6010C	IP	2	PASI-M
		ASTM D2974	JDL	1	PASI-M
		EPA 8260	SMT	65	PASI-G
40129145006	GRL-SS-33	EPA 6010C	IP	2	PASI-M
		ASTM D2974	JDL	1	PASI-M
		EPA 8260	SMT	65	PASI-G
40129145007	GRL-SS-34	EPA 6010C	IP	2	PASI-M
		ASTM D2974	JDL	1	PASI-M
		EPA 8260	SMT	65	PASI-G
40129145008	GRL-SS-35	EPA 6010C	IP	2	PASI-M
		ASTM D2974	JDL	1	PASI-M
		EPA 8260	SMT	65	PASI-G
40129145009	GRL-SS-36	EPA 6010C	IP	2	PASI-M
		ASTM D2974	JDL	1	PASI-M
		EPA 8260	SMT	65	PASI-G

SUMMARY OF DETECTION

Project: GLACIER RIDGE

Pace Project No.: 40129145

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
40129145001	GRL-SS-28					
EPA 6010C	Lead	2.0	mg/kg	1.6	03/14/16 08:08	
ASTM D2974	Percent Moisture	12.7	%	0.10	03/14/16 15:52	
EPA 8260	1,1-Dichloroethane	26.1J	ug/kg	60.0	03/11/16 11:47	
40129145002	GRL-SS-29					
EPA 6010C	Lead	2.1	mg/kg	1.8	03/14/16 08:31	D3
ASTM D2974	Percent Moisture	10	%	0.10	03/14/16 15:53	20
EPA 8260	Ethylbenzene	125	ug/kg	60.0	03/11/16 12:09	
EPA 8260	Toluene	243	ug/kg	60.0	03/11/16 12:09	
EPA 8260	Vinyl chloride	67.3	ug/kg	60.0	03/11/16 12:09	
EPA 8260	m&p-Xylene	331	ug/kg	120	03/11/16 12:09	
EPA 8260	o-Xylene	65.9	ug/kg	60.0	03/11/16 12:09	
40129145003	GRL-SS-30	0010	<i></i>	0010	00, 11, 10 12100	
EPA 6010C	Lead	2.3	mg/kg	1.8	03/14/16 08:34	
ASTM D2974	Percent Moisture	2.3 11.7	тту/ку %	0.10	03/14/16 15:53	
EPA 8260	2-Butanone (MEK)	3620	ug/kg	250	03/11/16 12:32	
EPA 8260	cis-1,2-Dichloroethene	92.4		60.0	03/11/16 12:32	
EPA 8260	Ethylbenzene	92.4 27.1J	ug/kg	60.0	03/11/16 12:32	
EPA 8260	Toluene	27.1J 29.1J	ug/kg	60.0	03/11/16 12:32	
EPA 8260		711	ug/kg	60.0	03/11/16 12:32	
EPA 8260	Vinyl chloride	82.1J	ug/kg	120	03/11/16 12:32	
	m&p-Xylene	62.1J	ug/kg	120	03/11/10 12:32	
40129145004	GRL-SS-31		_			_
EPA 6010C	Cadmium	0.18J	mg/kg	0.57	03/14/16 08:37	D3
EPA 6010C	Lead	2.6	mg/kg	1.8	03/14/16 08:37	
ASTM D2974	Percent Moisture	11.8	%	0.10	03/14/16 15:53	
EPA 8260	2-Butanone (MEK)	5520	ug/kg	250	03/11/16 12:56	
EPA 8260	cis-1,2-Dichloroethene	267	ug/kg	60.0	03/11/16 12:56	
EPA 8260	Ethylbenzene	86.9	ug/kg	60.0	03/11/16 12:56	
EPA 8260	Isopropylbenzene (Cumene)	54.9J	ug/kg	60.0	03/11/16 12:56	
EPA 8260	Toluene	101	ug/kg	60.0	03/11/16 12:56	
EPA 8260	Trichloroethene	58.8J	ug/kg	60.0	03/11/16 12:56	
EPA 8260	1,2,4-Trimethylbenzene	93.3	ug/kg	60.0	03/11/16 12:56	
EPA 8260	1,3,5-Trimethylbenzene	39.2J	ug/kg	60.0	03/11/16 12:56	
EPA 8260	Vinyl chloride	551	ug/kg	60.0	03/11/16 12:56	
EPA 8260	m&p-Xylene	293	ug/kg	120	03/11/16 12:56	
EPA 8260	o-Xylene	70.9	ug/kg	60.0	03/11/16 12:56	
40129145005	GRL-SS-32					
EPA 6010C	Lead	2.7	mg/kg	1.6	03/14/16 08:40	
ASTM D2974	Percent Moisture	11.0	%	0.10	03/14/16 15:53	
EPA 8260	2-Butanone (MEK)	2960	ug/kg	250	03/11/16 13:19	
EPA 8260	n-Butylbenzene	27.5J	ug/kg	60.0	03/11/16 13:19	
EPA 8260	cis-1,2-Dichloroethene	119	ug/kg	60.0	03/11/16 13:19	
EPA 8260	Ethylbenzene	93.7	ug/kg	60.0		
EPA 8260	Isopropylbenzene (Cumene)	55.7J	ug/kg	60.0	03/11/16 13:19	
EPA 8260	Toluene	80.2	ug/kg	60.0	03/11/16 13:19	
EPA 8260	Trichloroethene	41.0J	ug/kg	60.0	03/11/16 13:19	

SUMMARY OF DETECTION

Project: GLACIER RIDGE

Pace Project No.: 40129145

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
40129145005	GRL-SS-32					
EPA 8260	1,2,4-Trimethylbenzene	145	ug/kg	60.0	03/11/16 13:19	
EPA 8260	1,3,5-Trimethylbenzene	55.7J	ug/kg	60.0	03/11/16 13:19	
EPA 8260	Vinyl chloride	35.9J	ug/kg	60.0	03/11/16 13:19	
EPA 8260	m&p-Xylene	352	ug/kg	120	03/11/16 13:19	
EPA 8260	o-Xylene	68.3	ug/kg	60.0	03/11/16 13:19	
40129145006	GRL-SS-33					
EPA 6010C	Cadmium	0.18J	mg/kg	0.52	03/14/16 08:44	D3
EPA 6010C	Lead	2.4	mg/kg	1.6	03/14/16 08:44	
ASTM D2974	Percent Moisture	10.1	%	0.10	03/14/16 15:54	
EPA 8260	cis-1,2-Dichloroethene	62.6	ug/kg	60.0	03/11/16 13:42	
40129145007	GRL-SS-34					
EPA 6010C	Lead	2.4	mg/kg	1.6	03/14/16 08:47	
ASTM D2974	Percent Moisture	9.7	%	0.10	03/14/16 15:54	
40129145008	GRL-SS-35					
EPA 6010C	Lead	1.7J	mg/kg	1.9	03/14/16 08:50	D3
ASTM D2974	Percent Moisture	10.1	%	0.10	03/14/16 15:54	
EPA 8260	cis-1,2-Dichloroethene	84.4	ug/kg	60.0	03/11/16 14:27	
EPA 8260	Ethylbenzene	80.1	ug/kg	60.0	03/11/16 14:27	
EPA 8260	Isopropylbenzene (Cumene)	54.2J	ug/kg	60.0	03/11/16 14:27	
EPA 8260	Toluene	56.4J	ug/kg	60.0	03/11/16 14:27	
EPA 8260	Trichloroethene	52.9J	ug/kg	60.0	03/11/16 14:27	
EPA 8260	1,2,4-Trimethylbenzene	102	ug/kg	60.0	03/11/16 14:27	
EPA 8260	1,3,5-Trimethylbenzene	47.4J	ug/kg	60.0	03/11/16 14:27	
EPA 8260	m&p-Xylene	278	ug/kg	120	03/11/16 14:27	
EPA 8260	o-Xylene	64.6	ug/kg	60.0	03/11/16 14:27	
40129145009	GRL-SS-36					
EPA 6010C	Lead	1.9J	mg/kg	2.0	03/14/16 08:53	D3
ASTM D2974	Percent Moisture	12.6	%	0.10	03/14/16 15:54	
EPA 8260	2-Butanone (MEK)	12300	ug/kg	625	03/14/16 11:37	
EPA 8260	cis-1,2-Dichloroethene	453	ug/kg	60.0	03/11/16 11:11	
EPA 8260	1,2,4-Trimethylbenzene	27.5J	ug/kg	60.0	03/11/16 11:11	
EPA 8260	Vinyl chloride	3030	ug/kg	60.0	03/11/16 11:11	

ANALYTICAL RESULTS

Project: GLACIER RIDGE

Pace Project No.: 40129145

-

Sample: GRL-SS-28	Lab ID:	40129145001	Collected	d: 03/09/16	6 10:05	Received: 03/	09/16 17:30 Ma	atrix: Solid	
Results reported on a "wet-weight	" basis								
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prep	aration Met	thod: El	PA 3050			
Cadmium	<0.15	mg/kg	0.51	0.15	5	03/13/16 20:23	03/14/16 08:08	7440-43-9	D3
Lead	2.0	mg/kg	1.6	0.48	5	03/13/16 20:23	03/14/16 08:08	7439-92-1	
Dry Weight	Analytical	Method: ASTM	D2974						
Percent Moisture	12.7	%	0.10	0.10	1		03/14/16 15:52		
8260 MSV Med Level Normal List	Analytical	Method: EPA 8	260 Prepa	ration Meth	od: EP/	A 5035/5030B			
Benzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 11:47	71-43-2	W
Bromobenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 11:47	108-86-1	W
Bromochloromethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 11:47	74-97-5	W
Bromodichloromethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 11:47	75-27-4	W
Bromoform	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 11:47	75-25-2	W
Bromomethane	<69.9	ug/kg	250	69.9	1	03/11/16 07:00	03/11/16 11:47	74-83-9	W
2-Butanone (MEK)	<107	ug/kg	250	107	1	03/11/16 07:00	03/11/16 11:47	78-93-3	W
n-Butylbenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 11:47	104-51-8	W
sec-Butylbenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 11:47	135-98-8	W
tert-Butylbenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 11:47	98-06-6	W
Carbon tetrachloride	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 11:47	56-23-5	W
Chlorobenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 11:47	108-90-7	W
Chloroethane	<67.0	ug/kg	250	67.0	1	03/11/16 07:00	03/11/16 11:47	75-00-3	W
Chloroform	<46.4	ug/kg	250	46.4	1	03/11/16 07:00	03/11/16 11:47	67-66-3	W
Chloromethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 11:47	74-87-3	W
2-Chlorotoluene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 11:47	95-49-8	W
4-Chlorotoluene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 11:47	106-43-4	W
1,2-Dibromo-3-chloropropane	<91.2	ug/kg	250	91.2	1	03/11/16 07:00	03/11/16 11:47	96-12-8	W
Dibromochloromethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 11:47	124-48-1	W
1,2-Dibromoethane (EDB)	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 11:47	106-93-4	W
Dibromomethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 11:47	74-95-3	W
1,2-Dichlorobenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 11:47	95-50-1	W
1,3-Dichlorobenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 11:47	541-73-1	W
1,4-Dichlorobenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 11:47	106-46-7	W
Dichlorodifluoromethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 11:47	75-71-8	W
1,1-Dichloroethane	26.1J	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 11:47	75-34-3	
1,2-Dichloroethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 11:47	107-06-2	W
1,1-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 11:47	75-35-4	W
cis-1,2-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 11:47	156-59-2	W
trans-1,2-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 11:47	156-60-5	W
1,2-Dichloropropane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 11:47	78-87-5	W
1,3-Dichloropropane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 11:47	142-28-9	W
2,2-Dichloropropane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 11:47	594-20-7	W
1,1-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 11:47	563-58-6	W
cis-1,3-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 11:47	10061-01-5	W
trans-1,3-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 11:47	10061-02-6	W
Diisopropyl ether	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 11:47	108-20-3	W
Ethylbenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 11:47	100-41-4	W

ANALYTICAL RESULTS

Project: GLACIER RIDGE

Pace Project No.: 40129145

Sample: GRL-SS-28	Lab ID:	40129145001	Collected	d: 03/09/16	6 10:05	Received: 03/	09/16 17:30 M	atrix: Solid	
Results reported on a "wet-weight	" basis								
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA 8	260 Prepa	ration Methe	od: EPA	A 5035/5030B			
Hexachloro-1,3-butadiene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 11:47	87-68-3	W
Isopropylbenzene (Cumene)	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 11:47	98-82-8	W
p-Isopropyltoluene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 11:47	99-87-6	W
Methylene Chloride	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 11:47	75-09-2	W
Methyl-tert-butyl ether	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 11:47	1634-04-4	W
Naphthalene	<40.0	ug/kg	250	40.0	1	03/11/16 07:00	03/11/16 11:47	91-20-3	W
n-Propylbenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 11:47	103-65-1	W
Styrene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 11:47	100-42-5	W
1,1,1,2-Tetrachloroethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 11:47	630-20-6	W
1,1,2,2-Tetrachloroethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 11:47	79-34-5	W
Tetrachloroethene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 11:47	127-18-4	W
Toluene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 11:47	108-88-3	W
1,2,3-Trichlorobenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 11:47	87-61-6	W
1,2,4-Trichlorobenzene	<47.6	ug/kg	250	47.6	1	03/11/16 07:00	03/11/16 11:47	120-82-1	W
1,1,1-Trichloroethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 11:47	71-55-6	W
1,1,2-Trichloroethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 11:47	79-00-5	W
Trichloroethene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 11:47	79-01-6	W
Trichlorofluoromethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 11:47	75-69-4	W
1,2,3-Trichloropropane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 11:47	96-18-4	W
1,2,4-Trimethylbenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 11:47	95-63-6	W
1,3,5-Trimethylbenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 11:47	108-67-8	W
Vinyl chloride	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 11:47	75-01-4	W
m&p-Xylene	<50.0	ug/kg	120	50.0	1	03/11/16 07:00	03/11/16 11:47	179601-23-1	W
o-Xylene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 11:47	95-47-6	W
Surrogates									
Dibromofluoromethane (S)	118	%	49-157		1	03/11/16 07:00	03/11/16 11:47	1868-53-7	
Toluene-d8 (S)	104	%	61-148		1	03/11/16 07:00	03/11/16 11:47	2037-26-5	
4-Bromofluorobenzene (S)	89	%	53-134		1	03/11/16 07:00	03/11/16 11:47	460-00-4	

ANALYTICAL RESULTS

Project: GLACIER RIDGE

Pace Project No.: 40129145

Sample: GRL-SS-29	Lab ID:	40129145002	Collected	: 03/09/16	6 14:45	Received: 03/	/09/16 17:30 Ma	atrix: Solid	
Results reported on a "wet-weight	" basis								
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prepa	aration Met	hod: El	PA 3050			
Cadmium	<0.17	mg/kg	0.57	0.17	5	03/13/16 20:23	03/14/16 08:31	7440-43-9	D3
Lead	2.1	mg/kg	1.8	0.54	5	03/13/16 20:23	03/14/16 08:31	7439-92-1	D3
Dry Weight	Analytical	Method: ASTM	D2974						
Percent Moisture	10	%	0.10	0.10	1		03/14/16 15:53		
8260 MSV Med Level Normal List	Analytical	Method: EPA 82	260 Prepar	ation Metho	od: EP/	A 5035/5030B			
Benzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:09	71-43-2	W
Bromobenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:09	108-86-1	W
Bromochloromethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:09	74-97-5	W
Bromodichloromethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:09	75-27-4	W
Bromoform	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:09	75-25-2	W
Bromomethane	<69.9	ug/kg	250	69.9	1	03/11/16 07:00	03/11/16 12:09	74-83-9	W
2-Butanone (MEK)	<107	ug/kg	250	107	1	03/11/16 07:00	03/11/16 12:09	78-93-3	W
n-Butylbenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:09		W
sec-Butylbenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:09		W
tert-Butylbenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:09		W
Carbon tetrachloride	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:09		Ŵ
Chlorobenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:09		Ŵ
Chloroethane	<67.0	ug/kg	250	67.0	1	03/11/16 07:00	03/11/16 12:09		Ŵ
Chloroform	<46.4	ug/kg	250	46.4	1	03/11/16 07:00	03/11/16 12:09		Ŵ
Chloromethane	<25.0	ug/kg ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:09		Ŵ
2-Chlorotoluene	<25.0	ug/kg ug/kg	60.0	25.0 25.0	1	03/11/16 07:00	03/11/16 12:09		W
4-Chlorotoluene	<25.0		60.0	25.0 25.0	1	03/11/16 07:00	03/11/16 12:09		Ŵ
	<23.0 <91.2	ug/kg	250	23.0 91.2	1	03/11/16 07:00	03/11/16 12:09		W
1,2-Dibromo-3-chloropropane		ug/kg			1				W
Dibromochloromethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:09		W
1,2-Dibromoethane (EDB)	<25.0	ug/kg	60.0	25.0		03/11/16 07:00	03/11/16 12:09		W
Dibromomethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:09		
1,2-Dichlorobenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:09		W
1,3-Dichlorobenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:09		W
1,4-Dichlorobenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:09		W
Dichlorodifluoromethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:09		W
1,1-Dichloroethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:09		W
1,2-Dichloroethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00			W
1,1-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:09		W
cis-1,2-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:09		W
trans-1,2-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:09		W
1,2-Dichloropropane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:09		W
1,3-Dichloropropane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:09		W
2,2-Dichloropropane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:09		W
1,1-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:09		W
cis-1,3-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:09		W
trans-1,3-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:09	10061-02-6	W
Diisopropyl ether	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:09		W
Ethylbenzene	125	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:09	100-41-4	

ANALYTICAL RESULTS

Project: GLACIER RIDGE

Pace Project No.: 40129145

Sample: GRL-SS-29	Lab ID:	40129145002	Collected	d: 03/09/16	6 14:45	Received: 03/	09/16 17:30 Ma	atrix: Solid	
Results reported on a "wet-weight	" basis								
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA 8	260 Prepai	ration Meth	od: EPA	A 5035/5030B			
Hexachloro-1,3-butadiene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:09	87-68-3	W
Isopropylbenzene (Cumene)	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:09	98-82-8	W
p-Isopropyltoluene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:09	99-87-6	W
Methylene Chloride	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:09	75-09-2	W
Methyl-tert-butyl ether	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:09	1634-04-4	W
Naphthalene	<40.0	ug/kg	250	40.0	1	03/11/16 07:00	03/11/16 12:09	91-20-3	W
n-Propylbenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:09	103-65-1	W
Styrene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:09	100-42-5	W
1,1,1,2-Tetrachloroethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:09	630-20-6	W
1,1,2,2-Tetrachloroethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:09	79-34-5	W
Tetrachloroethene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:09	127-18-4	W
Toluene	243	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:09	108-88-3	
1,2,3-Trichlorobenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:09	87-61-6	W
1,2,4-Trichlorobenzene	<47.6	ug/kg	250	47.6	1	03/11/16 07:00	03/11/16 12:09	120-82-1	W
1,1,1-Trichloroethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:09	71-55-6	W
1,1,2-Trichloroethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:09	79-00-5	W
Trichloroethene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:09	79-01-6	W
Trichlorofluoromethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:09	75-69-4	W
1,2,3-Trichloropropane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:09	96-18-4	W
1,2,4-Trimethylbenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:09	95-63-6	W
1,3,5-Trimethylbenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:09	108-67-8	W
Vinyl chloride	67.3	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:09	75-01-4	
m&p-Xylene	331	ug/kg	120	50.0	1	03/11/16 07:00	03/11/16 12:09	179601-23-1	
o-Xylene	65.9	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:09	95-47-6	
Surrogates									
Dibromofluoromethane (S)	113	%	49-157		1	03/11/16 07:00	03/11/16 12:09	1868-53-7	
Toluene-d8 (S)	111	%	61-148		1	03/11/16 07:00	03/11/16 12:09	2037-26-5	
4-Bromofluorobenzene (S)	89	%	53-134		1	03/11/16 07:00	03/11/16 12:09	460-00-4	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project: GLACIER RIDGE

Pace Project No.: 40129145

Prevent Moisture 11.7 % 0.10 0.10 1 03/14/16 15:53 8260 MSV Med Level Normal List Analytical Method: EPA 8260 Preparation Method: EPA 503/50308 Benzene <25.0	Sample: GRL-SS-30	Lab ID:	40129145003	Collecte	d: 03/09/16	6 14:50	Received: 03/	09/16 17:30 Ma	atrix: Solid	
Goto MET ICP Analytical Method: EPA 6010C Preparation Method: EPA 3050 Cadmium -0.17 mg/kg 0.56 0.17 5 03/13/16 20:23 03/14/16 08:34 7440-43-9 D3 Lead 2.3 mg/kg 1.8 0.54 5 03/13/16 20:23 03/14/16 08:34 7440-43-9 D3 Dry Weight Analytical Method: ASTIM D2574 03/14/16 15:53 28260 MSV Med Level Normal List Analytical Method: EPA 8260 Preparation Method: EPA 5035/5030B Benzane 25.0 ug/kg 60.0 25.0 1 03/11/16 07:00 03/11/16 12:32 71.43-2 W Bromochicromethane 25.0 ug/kg 60.0 25.0 1 03/11/16 07:00 03/11/16 12:32 71.43-2 W Bromochicromethane 0.0 25.0 1 03/11/16 07:00 03/11/16 12:32 74.3-2 W Bromochicromethane 0.0 25.0 1 03/11/16 07:00 03/11/16 12:32	Results reported on a "wet-weight	" basis								
Cadmium Lad 0.17 mg/kg 0.56 0.17 5 03/13/16 20:23 03/14/16 08:34 743+9:2-1 Dry Weight Analytical Method: ASTM D2974 Bercent Moisture 11.7 % 0.0 0.10 1 03/14/16 08:34 743+9:2-1 Barcene 25.0 ug/kg 60.0 25.0 1 03/14/16 15:32 71-43-2 W Bromechioromethane -25.0 ug/kg 60.0 25.0 1 03/11/16 07:00 03/11/16 12:32 71-43-2 W Bromechioromethane -25.0 ug/kg 60.0 25.0 1 03/11/16 07:00 03/11/16 12:32 72-74 W Bromochioromethane -25.0 ug/kg 60.0 25.0 1 03/11/16 07:00 03/11/16 12:32 72-74 W Bromochioromethane -25.0 ug/kg 60.0 25.0 1 03/11/16 07:00 03/11/16 12:32 72-74 W Bromochioromethane -25.0 ug/kg 60.0 25.0 1 03/11/16 07:	Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
Cadmium Lad 0.17 mg/kg 0.56 0.17 5 03/13/16 20:23 03/14/16 08:34 743+9:2-1 Dry Weight Analytical Method: ASTM D2974 Bercent Moisture 11.7 % 0.0 0.10 1 03/14/16 08:34 743+9:2-1 Barcene 25.0 ug/kg 60.0 25.0 1 03/14/16 15:32 71-43-2 W Bromechioromethane -25.0 ug/kg 60.0 25.0 1 03/11/16 07:00 03/11/16 12:32 71-43-2 W Bromechioromethane -25.0 ug/kg 60.0 25.0 1 03/11/16 07:00 03/11/16 12:32 72-74 W Bromochioromethane -25.0 ug/kg 60.0 25.0 1 03/11/16 07:00 03/11/16 12:32 72-74 W Bromochioromethane -25.0 ug/kg 60.0 25.0 1 03/11/16 07:00 03/11/16 12:32 72-74 W Bromochioromethane -25.0 ug/kg 60.0 25.0 1 03/11/16 07:	6010C MET ICP	Analytical	Method: EPA 6	 010C Prep	aration Met	hod: El	PA 3050			
Lead2.3mg/kg1.80.5450.3/14/16 0.200.3/14/16 0.8347.439-02-1Dy WeightAnalytical X-STM D297-1VVV0.3/14/16 1.53VV2620 MSV Med Level Normal Lia1.7.9.%0.100.1010.3/11/16 07.000.3/11/16 1.2327.1-3.2V8200 MSV Med Level Normal LiaAnalytical X-W80002.5.010.3/11/16 07.000.3/11/16 1.2327.1-3.2VV8000 mochoromethane-2.5.0ug/kg60.02.5.010.3/11/16 07.000.3/11/16 1.2327.1-3.2VVBromochoromethane-2.5.0ug/kg60.02.5.010.3/11/16 07.000.3/11/16 1.2327.1-3.2VVBromochoromethane-2.5.0ug/kg2.501.0710.3/11/16 07.000.3/11/16 1.2327.1-3.2VP-Buylbenzene-2.5.0ug/kg60.02.5.010.3/11/16 07.000.3/11/16 1.2327.8-3.3V-2.5.0ug/kg60.02.5.010.3/11/16 07.000.3/11/16 1.2327.8-3.3V-2.5.0ug/kg60.02.5.010.3/11/16 07.000.3/11/16 1.2327.8-3.3V-2.5.0ug/kg60.02.5.010.3/11/16 07.000.3/11/16 1.2327.8-3.3V-2.5.0ug/kg60.02.5.010.3/11/16 07.000.3/11/16 1.2327.8-3.3V-2.6.10ug/kg60.02.5.01	Cadmium	<0.17	ma/ka	0.56	0 17	5	03/13/16 20:23	03/14/16 08:34	7440-43-9	D3
Prevent Moisture 11.7 % 0.10 0.10 1 03/14/16 15:53 8260 MSV Med Level Normal List Analytical Method: EPA 8260 Preparation Method: EPA 503/50308 Benzene <25.0 ug/kg 60.0 25.0 1 03/11/16 07:00 03/11/16 12:32 71:43-2 W Bromochloromethane <25.0 ug/kg 60.0 25.0 1 03/11/16 12:32 71:43-2 W Bromochloromethane <25.0 ug/kg 60.0 25.0 1 03/11/16 17:32 72:47-57 W Bromochloromethane <25.0 ug/kg 60.0 25.0 1 03/11/16 17:30 03/11/16 12:32 72:47-47 W Bromochloromethane <25.0 ug/kg 60.0 25.0 1 03/11/16 17:00 03/11/16 12:32 72:47-87-3 W 2-Butnone (MEK) 3620 ug/kg 60.0 25.0 1 03/11/16 17:00 03/11/16 12:32 16:33 94 E-Butylbenzene <25.0 ug/kg 60.0 25.0			00							20
Seb MSV Med Level Normal List Analytical Method: EPA 8260 Preparation Method: EPA 5035/5030E Benzene -25.0 ug/kg 60.0 25.0 1 03/11/16 07:00 03/11/16 12:32 71-43-2 W Bromochoromethane -25.0 ug/kg 60.0 25.0 1 03/11/16 07:00 03/11/16 12:32 74-75-V W Bromochoromethane -25.0 ug/kg 60.0 25.0 1 03/11/16 07:00 03/11/16 12:32 74-37-V W Bromochorom -25.0 ug/kg 60.0 25.0 1 03/11/16 07:00 03/11/16 12:32 74-83-3 W Bromochorom -25.0 ug/kg 60.0 25.0 1 03/11/16 07:00 03/11/16 12:32 74-83-8 W Bromochorom -25.0 ug/kg 60.0 25.0 1 03/11/16 07:00 03/11/16 12:32 10-45-18 W Calcon tetrachoride -25.0 ug/kg 60.0 25.0 1 03/11/16 07:00 03/11/16 12:32 10-45-8	Dry Weight	Analytical	Method: ASTM	D2974						
425.0 ug/kg 6.0 25.0 1 03/11/16 07:00 03/11/16 17:32 71-43-2 W Bromobenzene 425.0 ug/kg 60.0 25.0 1 03/11/16 07:00 03/11/16 12:32 71-43-2 W Bromodichloromethane 425.0 ug/kg 60.0 25.0 1 03/11/16 07:00 03/11/16 12:32 74-97-5 W Bromodichloromethane 425.0 ug/kg 60.0 25.0 1 03/11/16 07:00 03/11/16 12:32 74-97-5 W Bromodichloromethane 425.0 ug/kg 250 69.9 1 03/11/16 07:00 03/11/16 12:32 74-93-3 W 2-Butonore (MEK) 3620 ug/kg 60.0 25.0 1 03/11/16 07:00 03/11/16 12:32 104-51-8 W sec-Butylbenzene 425.0 ug/kg 60.0 25.0 1 03/11/16 07:00 03/11/16 12:32 104-51-8 W sec-Butylbenzene 425.0 ug/kg 60.0 25.0 1 03/11/16 07:00 <td>Percent Moisture</td> <td>11.7</td> <td>%</td> <td>0.10</td> <td>0.10</td> <td>1</td> <td></td> <td>03/14/16 15:53</td> <td></td> <td></td>	Percent Moisture	11.7	%	0.10	0.10	1		03/14/16 15:53		
Bromobenzene -25.0 ug/kg 60.0 25.0 1 03/11/16 07:00 03/11/16 12:32 108-86-11 W Bromochiloromethane -25.0 ug/kg 60.0 25.0 1 03/11/16 07:00 03/11/16 12:32 75-27-4 W Bromodichiloromethane -25.0 ug/kg 60.0 25.0 1 03/11/16 07:00 03/11/16 12:32 78-25-2 W Bromodichiloromethane -25.0 ug/kg 250 10 1 03/11/16 07:00 03/11/16 12:32 78-93-3 W Sec-Burylbenzene -25.0 ug/kg 60.0 25.0 1 03/11/16 07:00 03/11/16 12:32 104-51-8 W sec-Burylbenzene -25.0 ug/kg 60.0 25.0 1 03/11/16 07:00 03/11/16 12:32 104-51-8 W Chlorobenzene -25.0 ug/kg 60.0 25.0 1 03/11/16 07:00 03/11/16 12:32 104-51-8 W Chlorobenzene -25.0 ug/kg 60.0 25.0 1 <td>8260 MSV Med Level Normal List</td> <td>Analytical</td> <td>Method: EPA 8</td> <td>260 Prepa</td> <td>ration Meth</td> <td>od: EP/</td> <td>A 5035/5030B</td> <td></td> <td></td> <td></td>	8260 MSV Med Level Normal List	Analytical	Method: EPA 8	260 Prepa	ration Meth	od: EP/	A 5035/5030B			
Bromochloromethane <25.0 ug/kg 60.0 25.0 1 03/11/16 07:00 03/11/16 12:32 74-97-5 W Bromodichloromethane <25.0	Benzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:32	71-43-2	W
Bromodichloromethane <25.0 ug/kg 60.0 25.0 1 03/11/16 12:32 75-27-4 W Bromodirom <25.0	Bromobenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:32	108-86-1	W
Biomotorm <25.0 ug/kg 60.0 25.0 1 03/11/6 07:00 03/11/16 12:32 75-25-2 W Bromomethane <69.9 ug/kg 250 69.9 1 03/11/16 07:00 03/11/16 12:32 75-25-2 W Bromomethane <69.9 ug/kg 60.0 25.0 10 03/11/16 07:00 03/11/16 12:32 78-93-3 n-Butybenzene <25.0 ug/kg 60.0 25.0 1 03/11/16 07:00 03/11/16 12:32 98-98-8 W Carbon tetrachloride <25.0 ug/kg 60.0 25.0 1 03/11/16 07:00 03/11/16 12:32 98-96-8 W Chlorobenzene <25.0 ug/kg 60.0 25.0 1 03/11/16 07:00 03/11/16 12:32 95-0-3 W Chlorobethane <25.0 ug/kg 250 dg/kg 60.0 25.0 1 03/11/16 07:00 03/11/16 12:32 95-0-3 W Chlorobethane <25.0 ug/kg 60.0 25.0 1	Bromochloromethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:32	74-97-5	W
Bromomethane <69.9 ug/kg 250 69.9 1 03/11/16 07:00 03/11/16 12:32 74.83-9 W 2-Butanone (MEK) 3620 ug/kg 60.0 25.0 10 03/11/16 07:00 03/11/16 12:32 74.83-3 W nebutylbenzene 425.0 ug/kg 60.0 25.0 1 03/11/16 07:00 03/11/16 12:32 104.51-8 W sec-Butylbenzene 425.0 ug/kg 60.0 25.0 1 03/11/16 07:00 03/11/16 12:32 75-00-3 W Chlorobenzene 425.0 ug/kg 60.0 25.0 1 03/11/16 07:00 03/11/16 12:32 75-00-3 W Chlorobenzene 425.0 ug/kg 60.0 25.0 1 03/11/16 07:00 03/11/16 12:32 75-03-3 W Chlorobenzene 425.0 ug/kg 60.0 25.0 1 03/11/16 07:00 03/11/16 12:32 75-03-3 W Chlorobenzene 425.0 ug/kg 60.0 25.0 1 03/11/16	Bromodichloromethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:32	75-27-4	W
2-Butanone (MEK) 3620 ug/kg 250 107 1 03/11/16 07:00 03/11/16 12:32 78-93-3 n-Butylbenzene -25.0 ug/kg 60.0 25.0 1 03/11/16 07:00 03/11/16 12:32 104-51-8 W sec-Butylbenzene -25.0 ug/kg 60.0 25.0 1 03/11/16 07:00 03/11/16 12:32 135-98-8 W Carbon tetrachloride -25.0 ug/kg 60.0 25.0 1 03/11/16 07:00 03/11/16 12:32 76-0-3 W Chlorobenzene -25.0 ug/kg 60.0 25.0 1 03/11/16 07:00 03/11/16 12:32 76-0-3 W Chloroothane -25.0 ug/kg 250 46.4 1 03/11/16 07:00 03/11/16 12:32 74-87-3 W 2-Chloroothane -25.0 ug/kg 60.0 25.0 1 03/11/16 07:00 03/11/16 12:32 74-87-3 W 2-Chloroothane -25.0 ug/kg 60.0 25.0 1 03/11/16 07:00	Bromoform	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:32	75-25-2	W
n-Butylbenzene <25.0 ug/kg 60.0 25.0 1 03/11/16 07:00 03/11/16 12:32 14-51-8 W sec-Butylbenzene <25.0	Bromomethane	<69.9	ug/kg	250	69.9	1	03/11/16 07:00	03/11/16 12:32	74-83-9	W
n-Butybenzene <25.0 ug/kg 60.0 25.0 1 03/11/16 107:00 03/11/16 12:32 104-51.8 W sec-Butybenzene <25.0	2-Butanone (MEK)	3620	ug/kg	250	107	1	03/11/16 07:00	03/11/16 12:32	78-93-3	
sec-Butylbenzene <25.0 ug/kg 60.0 25.0 1 03/11/16 07:00 03/11/16 12:32 135-98-8 W tert-Butylbenzene <25.0	n-Butylbenzene	<25.0		60.0	25.0	1	03/11/16 07:00	03/11/16 12:32	104-51-8	W
tert-Burylbenzene <25.0	-	<25.0		60.0		1	03/11/16 07:00	03/11/16 12:32	135-98-8	W
Carbon tetrachloride <25.0 ug/kg 60.0 25.0 1 03/11/16 07:00 03/11/16 12:32 56-23-5 W Chlorobenzene <25.0	-					1				W
Chlorobenzene <25.0 ug/kg 60.0 25.0 1 03/11/16 03/11/16 12:32 108-90-7 W Chloroethane <67.0	•									
Chloroethane <67.0 ug/kg 250 67.0 1 03/11/16 07:00 03/11/16 12:32 75-00-3 W Chloroform <46.4										
Chloroform <46.4 ug/kg 250 46.4 1 03/11/16 03/11/16 12:32 67-66-3 W Chloromethane <25.0										
Chloromethane <25.0 ug/kg 60.0 25.0 1 03/11/16 07:00 03/11/16 12:32 74-87-3 W 2-Chlorotoluene <25.0										
2-Chlorotoluene <25.0										
4-Chlorotoluene <25.0										
1,2-Dibromo-3-chloropropane <91.2										
Dibromochloromethane <25.0 ug/kg 60.0 25.0 1 03/11/16 07:00 03/11/16 12:32 124-48-1 W 1,2-Dibromoethane (EDB) <25.0										
1,2-Dibromoethane (EDB) <25.0										
Dibromomethane<25.0ug/kg60.025.0103/11/16 07:0003/11/16 12:3274-95-3W1,2-Dichlorobenzene<25.0										
1,2-Dichlorobenzene<25.0ug/kg60.025.0103/11/16 07:0003/11/16 12:3295-50-1W1,3-Dichlorobenzene<25.0										
1.3-Dichlorobenzene<25.0ug/kg60.025.0103/11/16 07:0003/11/16 12:32541-73-1W1.4-Dichlorobenzene<25.0										
1.4-Dichlorobenzene<25.0ug/kg60.025.0103/11/16 07:0003/11/16 12:32106-46-7WDichlorodifluoromethane<25.0										
Dichlorodifluoromethane<25.0ug/kg60.025.0103/11/16 07:0003/11/16 12:3275-71-8W1,1-Dichloroethane<25.0	-									
1,1-Dichloroethane<25.0ug/kg60.025.0103/11/16 07:0003/11/16 12:3275-34-3W1,2-Dichloroethane<25.0										
1,2-Dichloroethane<25.0ug/kg60.025.0103/11/16 07:0003/11/16 12:32107-06-2W1,1-Dichloroethene<25.0										
1,1-Dichloroethene <25.0	,									
cis-1,2-Dichloroethene92.4ug/kg60.025.0103/11/16 07:0003/11/16 12:32156-59-2trans-1,2-Dichloroethene<25.0										
trans-1,2-Dichloroethene<25.0ug/kg60.025.0103/11/16 07:0003/11/16 12:32156-60-5W1,2-Dichloropropane<25.0										W
1,2-Dichloropropane<25.0ug/kg60.025.0103/11/16 07:0003/11/16 12:3278-87-5W1,3-Dichloropropane<25.0										
1,3-Dichloropropane <25.0										
2,2-Dichloropropane <25.0										
1,1-Dichloropropene <25.0										
cis-1,3-Dichloropropene<25.0ug/kg60.025.0103/11/16 07:0003/11/16 12:3210061-01-5Wtrans-1,3-Dichloropropene<25.0	2,2-Dichloropropane									
trans-1,3-Dichloropropene <25.0 ug/kg 60.0 25.0 1 03/11/16 07:00 03/11/16 12:32 10061-02-6 W Diisopropyl ether <25.0	1,1-Dichloropropene					1				
Diisopropyl ether <a>25.0 ug/kg 60.0 25.0 1 03/11/16 07:00 03/11/16 12:32 108-20-3 W	cis-1,3-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:32	10061-01-5	W
	trans-1,3-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:32	10061-02-6	W
Ethylbenzene 27.1J ug/kg 60.0 25.0 1 03/11/16 07:00 03/11/16 12:32 100-41-4	Diisopropyl ether	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:32	108-20-3	W
	Ethylbenzene	27.1J	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:32	100-41-4	

Project: GLACIER RIDGE

Pace Project No.: 40129145

Sample: GRL-SS-30	Lab ID:	40129145003	Collected	d: 03/09/16	6 14:50	Received: 03/	09/16 17:30 Ma	atrix: Solid	
Results reported on a "wet-weight	" basis								
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA 8	260 Prepa	ration Meth	od: EPA	A 5035/5030B			
Hexachloro-1,3-butadiene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:32	87-68-3	W
Isopropylbenzene (Cumene)	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:32	98-82-8	W
p-Isopropyltoluene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:32	99-87-6	W
Methylene Chloride	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:32	75-09-2	W
Methyl-tert-butyl ether	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:32	1634-04-4	W
Naphthalene	<40.0	ug/kg	250	40.0	1	03/11/16 07:00	03/11/16 12:32	91-20-3	W
n-Propylbenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:32	103-65-1	W
Styrene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:32	100-42-5	W
1,1,1,2-Tetrachloroethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:32	630-20-6	W
1,1,2,2-Tetrachloroethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:32	79-34-5	W
Tetrachloroethene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:32	127-18-4	W
Toluene	29.1J	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:32	108-88-3	
1,2,3-Trichlorobenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:32	87-61-6	W
1,2,4-Trichlorobenzene	<47.6	ug/kg	250	47.6	1	03/11/16 07:00	03/11/16 12:32	120-82-1	W
1,1,1-Trichloroethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:32	71-55-6	W
1,1,2-Trichloroethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:32	79-00-5	W
Trichloroethene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:32	79-01-6	W
Trichlorofluoromethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:32	75-69-4	W
1,2,3-Trichloropropane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:32	96-18-4	W
1,2,4-Trimethylbenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:32	95-63-6	W
1,3,5-Trimethylbenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:32	108-67-8	W
Vinyl chloride	711	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:32	75-01-4	
m&p-Xylene	82.1J	ug/kg	120	50.0	1	03/11/16 07:00	03/11/16 12:32	179601-23-1	
o-Xylene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:32	95-47-6	W
Surrogates									
Dibromofluoromethane (S)	121	%	49-157		1	03/11/16 07:00	03/11/16 12:32	1868-53-7	
Toluene-d8 (S)	113	%	61-148		1	03/11/16 07:00	03/11/16 12:32	2037-26-5	
4-Bromofluorobenzene (S)	97	%	53-134		1	03/11/16 07:00	03/11/16 12:32	460-00-4	

REPORT OF LABORATORY ANALYSIS

Project: GLACIER RIDGE

Pace Project No.: 40129145

Sample: GRL-SS-31	Lab ID:	40129145004	Collecte	d: 03/09/16	6 14:55	Received: 03/	09/16 17:30 Ma	atrix: Solid	
Results reported on a "wet-weight	" basis								
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prep	aration Met	hod: E	PA 3050			
Cadmium	0.18J	mg/kg	0.57	0.17	5	03/13/16 20:23	03/14/16 08:37	7440-43-9	D3
Lead	2.6	mg/kg	1.8	0.54	5	03/13/16 20:23	03/14/16 08:37	7439-92-1	
Dry Weight	Analytical	Method: ASTM	D2974						
Percent Moisture	11.8	%	0.10	0.10	1		03/14/16 15:53		
8260 MSV Med Level Normal List	Analytical	Method: EPA 8	260 Prepa	ration Meth	od: EP/	A 5035/5030B			
Benzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:56	71-43-2	W
Bromobenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:56	108-86-1	W
Bromochloromethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:56	74-97-5	W
Bromodichloromethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:56	75-27-4	W
Bromoform	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:56	75-25-2	W
Bromomethane	<69.9	ug/kg	250	69.9	1	03/11/16 07:00	03/11/16 12:56	74-83-9	W
2-Butanone (MEK)	5520	ug/kg	250	107	1	03/11/16 07:00	03/11/16 12:56	78-93-3	
n-Butylbenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:56	104-51-8	W
sec-Butylbenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:56	135-98-8	W
tert-Butylbenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:56	98-06-6	W
Carbon tetrachloride	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:56	56-23-5	W
Chlorobenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:56	108-90-7	W
Chloroethane	<67.0	ug/kg	250	67.0	1	03/11/16 07:00	03/11/16 12:56	75-00-3	W
Chloroform	<46.4	ug/kg	250	46.4	1	03/11/16 07:00	03/11/16 12:56	67-66-3	W
Chloromethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:56	74-87-3	W
2-Chlorotoluene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:56	95-49-8	W
4-Chlorotoluene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:56	106-43-4	W
1,2-Dibromo-3-chloropropane	<91.2	ug/kg	250	91.2	1	03/11/16 07:00	03/11/16 12:56	96-12-8	W
Dibromochloromethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:56	124-48-1	W
1,2-Dibromoethane (EDB)	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:56	106-93-4	W
Dibromomethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:56	74-95-3	W
1,2-Dichlorobenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:56	95-50-1	W
1,3-Dichlorobenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:56	541-73-1	W
1,4-Dichlorobenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:56	106-46-7	W
Dichlorodifluoromethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:56	75-71-8	W
1,1-Dichloroethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:56	75-34-3	W
1,2-Dichloroethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:56	107-06-2	W
1,1-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:56	75-35-4	W
cis-1,2-Dichloroethene	267	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:56	156-59-2	
trans-1,2-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:56	156-60-5	W
1,2-Dichloropropane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:56		W
1,3-Dichloropropane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:56		W
2,2-Dichloropropane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:56		W
1,1-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:56		W
cis-1,3-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:56	10061-01-5	W
trans-1,3-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:56		W
Diisopropyl ether	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:56		W
Ethylbenzene	86.9	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:56	100-41-4	

Project: GLACIER RIDGE

Pace Project No.: 40129145

Sample: GRL-SS-31	Lab ID:	40129145004	Collected	d: 03/09/16	6 14:55	Received: 03/	09/16 17:30 Ma	atrix: Solid	
Results reported on a "wet-weight	" basis								
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA 8	260 Prepa	ration Methe	od: EPA	A 5035/5030B			
Hexachloro-1,3-butadiene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:56	87-68-3	W
Isopropylbenzene (Cumene)	54.9J	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:56	98-82-8	
p-Isopropyltoluene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:56	99-87-6	W
Methylene Chloride	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:56	75-09-2	W
Methyl-tert-butyl ether	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:56	1634-04-4	W
Naphthalene	<40.0	ug/kg	250	40.0	1	03/11/16 07:00	03/11/16 12:56	91-20-3	W
n-Propylbenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:56	103-65-1	W
Styrene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:56	100-42-5	W
1,1,1,2-Tetrachloroethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:56	630-20-6	W
1,1,2,2-Tetrachloroethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:56	79-34-5	W
Tetrachloroethene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:56	127-18-4	W
Toluene	101	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:56	108-88-3	
1,2,3-Trichlorobenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:56	87-61-6	W
1,2,4-Trichlorobenzene	<47.6	ug/kg	250	47.6	1	03/11/16 07:00	03/11/16 12:56	120-82-1	W
1,1,1-Trichloroethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:56	71-55-6	W
1,1,2-Trichloroethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:56	79-00-5	W
Trichloroethene	58.8J	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:56	79-01-6	
Trichlorofluoromethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:56	75-69-4	W
1,2,3-Trichloropropane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:56	96-18-4	W
1,2,4-Trimethylbenzene	93.3	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:56	95-63-6	
1,3,5-Trimethylbenzene	39.2J	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:56	108-67-8	
Vinyl chloride	551	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:56	75-01-4	
m&p-Xylene	293	ug/kg	120	50.0	1	03/11/16 07:00	03/11/16 12:56	179601-23-1	
o-Xylene	70.9	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 12:56	95-47-6	
Surrogates									
Dibromofluoromethane (S)	114	%	49-157		1	03/11/16 07:00	03/11/16 12:56	1868-53-7	
Toluene-d8 (S)	107	%	61-148		1	03/11/16 07:00	03/11/16 12:56	2037-26-5	
4-Bromofluorobenzene (S)	93	%	53-134		1	03/11/16 07:00	03/11/16 12:56	460-00-4	

Project: GLACIER RIDGE

Pace Project No.: 40129145

Sample: GRL-SS-32	Lab ID:	40129145005	Collecte	d: 03/09/16	6 15:00	Received: 03/	09/16 17:30 Ma	atrix: Solid	
Results reported on a "wet-weight	" basis								
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prep	aration Met	thod: El	PA 3050			
Cadmium	<0.15	mg/kg	0.51	0.15	5	03/13/16 20:23	03/14/16 08:40	7440-43-9	D3
Lead	2.7	mg/kg	1.6	0.49	5	03/13/16 20:23	03/14/16 08:40	7439-92-1	
Dry Weight	Analytical	Method: ASTM	D2974						
Percent Moisture	11.0	%	0.10	0.10	1		03/14/16 15:53		
8260 MSV Med Level Normal List	Analytical	Method: EPA 8	260 Prepa	ration Meth	od: EP/	A 5035/5030B			
Benzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:19	71-43-2	W
Bromobenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:19	108-86-1	W
Bromochloromethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:19	74-97-5	W
Bromodichloromethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:19	75-27-4	W
Bromoform	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:19	75-25-2	W
Bromomethane	<69.9	ug/kg	250	69.9	1	03/11/16 07:00	03/11/16 13:19	74-83-9	W
2-Butanone (MEK)	2960	ug/kg	250	107	1	03/11/16 07:00	03/11/16 13:19	78-93-3	
n-Butylbenzene	27.5J	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:19	104-51-8	
sec-Butylbenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:19	135-98-8	W
tert-Butylbenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:19	98-06-6	W
Carbon tetrachloride	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:19	56-23-5	W
Chlorobenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:19	108-90-7	W
Chloroethane	<67.0	ug/kg	250	67.0	1	03/11/16 07:00	03/11/16 13:19	75-00-3	W
Chloroform	<46.4	ug/kg	250	46.4	1	03/11/16 07:00	03/11/16 13:19	67-66-3	W
Chloromethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:19	74-87-3	W
2-Chlorotoluene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:19	95-49-8	W
4-Chlorotoluene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:19	106-43-4	W
1,2-Dibromo-3-chloropropane	<91.2	ug/kg	250	91.2	1	03/11/16 07:00	03/11/16 13:19	96-12-8	W
Dibromochloromethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:19	124-48-1	W
1,2-Dibromoethane (EDB)	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:19	106-93-4	W
Dibromomethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:19	74-95-3	W
1,2-Dichlorobenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:19	95-50-1	W
1,3-Dichlorobenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:19	541-73-1	W
1,4-Dichlorobenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:19	106-46-7	W
Dichlorodifluoromethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:19	75-71-8	W
1,1-Dichloroethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:19	75-34-3	W
1,2-Dichloroethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:19	107-06-2	W
1,1-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:19	75-35-4	W
cis-1,2-Dichloroethene	119	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:19	156-59-2	
trans-1,2-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:19	156-60-5	W
1,2-Dichloropropane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:19	78-87-5	W
1,3-Dichloropropane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:19	142-28-9	W
2,2-Dichloropropane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:19	594-20-7	W
1,1-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:19	563-58-6	W
cis-1,3-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:19	10061-01-5	W
trans-1,3-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:19	10061-02-6	W
Diisopropyl ether	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:19	108-20-3	W
Ethylbenzene	93.7	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:19	100-41-4	

Project: GLACIER RIDGE

Pace Project No.: 40129145

Sample: GRL-SS-32	Lab ID:	40129145005	Collected	d: 03/09/16	6 15:00	Received: 03/	09/16 17:30 Ma	atrix: Solid	
Results reported on a "wet-weight	" basis								
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA 8	260 Prepa	ration Meth	od: EPA	A 5035/5030B			
Hexachloro-1,3-butadiene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:19	87-68-3	W
Isopropylbenzene (Cumene)	55.7J	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:19	98-82-8	
p-Isopropyltoluene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:19	99-87-6	W
Methylene Chloride	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:19	75-09-2	W
Methyl-tert-butyl ether	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:19	1634-04-4	W
Naphthalene	<40.0	ug/kg	250	40.0	1	03/11/16 07:00	03/11/16 13:19	91-20-3	W
n-Propylbenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:19	103-65-1	W
Styrene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:19	100-42-5	W
1,1,1,2-Tetrachloroethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:19	630-20-6	W
1,1,2,2-Tetrachloroethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:19	79-34-5	W
Tetrachloroethene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:19	127-18-4	W
Toluene	80.2	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:19	108-88-3	
1,2,3-Trichlorobenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:19	87-61-6	W
1,2,4-Trichlorobenzene	<47.6	ug/kg	250	47.6	1	03/11/16 07:00	03/11/16 13:19	120-82-1	W
1,1,1-Trichloroethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:19	71-55-6	W
1,1,2-Trichloroethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:19	79-00-5	W
Trichloroethene	41.0J	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:19	79-01-6	
Trichlorofluoromethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:19	75-69-4	W
1,2,3-Trichloropropane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:19	96-18-4	W
1,2,4-Trimethylbenzene	145	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:19	95-63-6	
1,3,5-Trimethylbenzene	55.7J	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:19	108-67-8	
Vinyl chloride	35.9J	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:19	75-01-4	
m&p-Xylene	352	ug/kg	120	50.0	1	03/11/16 07:00	03/11/16 13:19	179601-23-1	
o-Xylene	68.3	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:19	95-47-6	
Surrogates									
Dibromofluoromethane (S)	124	%	49-157		1	03/11/16 07:00	03/11/16 13:19	1868-53-7	
Toluene-d8 (S)	114	%	61-148		1	03/11/16 07:00	03/11/16 13:19	2037-26-5	
4-Bromofluorobenzene (S)	101	%	53-134		1	03/11/16 07:00	03/11/16 13:19	460-00-4	

REPORT OF LABORATORY ANALYSIS

Project: GLACIER RIDGE

Pace Project No.: 40129145

-

Sample: GRL-SS-33	Lab ID:	40129145006	Collected	d: 03/09/16	6 15:05	Received: 03/	09/16 17:30 Ma	atrix: Solid	
Results reported on a "wet-weight	" basis								
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prep	aration Met	hod: El	PA 3050			
Cadmium	0.18J	mg/kg	0.52	0.16	5	03/13/16 20:23	03/14/16 08:44	7440-43-9	D3
Lead	2.4	mg/kg	1.6	0.49	5	03/13/16 20:23	03/14/16 08:44	7439-92-1	
Dry Weight	Analytical	Method: ASTM	D2974						
Percent Moisture	10.1	%	0.10	0.10	1		03/14/16 15:54		
8260 MSV Med Level Normal List	Analytical	Method: EPA 8	260 Prepai	ration Methe	od: EPA	A 5035/5030B			
Benzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:42	71-43-2	W
Bromobenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:42	108-86-1	W
Bromochloromethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:42	74-97-5	W
Bromodichloromethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:42	75-27-4	W
Bromoform	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:42	75-25-2	W
Bromomethane	<69.9	ug/kg	250	69.9	1	03/11/16 07:00	03/11/16 13:42	74-83-9	W
2-Butanone (MEK)	<107	ug/kg	250	107	1	03/11/16 07:00	03/11/16 13:42	78-93-3	W
n-Butylbenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:42	104-51-8	W
sec-Butylbenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:42	135-98-8	W
tert-Butylbenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:42	98-06-6	W
Carbon tetrachloride	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:42	56-23-5	W
Chlorobenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:42	108-90-7	W
Chloroethane	<67.0	ug/kg	250	67.0	1	03/11/16 07:00	03/11/16 13:42	75-00-3	W
Chloroform	<46.4	ug/kg	250	46.4	1	03/11/16 07:00	03/11/16 13:42	67-66-3	W
Chloromethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:42	74-87-3	W
2-Chlorotoluene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:42	95-49-8	W
4-Chlorotoluene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:42	106-43-4	W
1,2-Dibromo-3-chloropropane	<91.2	ug/kg	250	91.2	1	03/11/16 07:00	03/11/16 13:42	96-12-8	W
Dibromochloromethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:42	124-48-1	W
1,2-Dibromoethane (EDB)	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:42	106-93-4	W
Dibromomethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:42	74-95-3	W
1,2-Dichlorobenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:42	95-50-1	W
1,3-Dichlorobenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:42	541-73-1	W
1,4-Dichlorobenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:42	106-46-7	W
Dichlorodifluoromethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:42	75-71-8	W
1,1-Dichloroethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:42	75-34-3	W
1,2-Dichloroethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:42	107-06-2	W
1,1-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:42	75-35-4	W
cis-1,2-Dichloroethene	62.6	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:42	156-59-2	
trans-1,2-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:42	156-60-5	W
1,2-Dichloropropane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:42	78-87-5	W
1,3-Dichloropropane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:42	142-28-9	W
2,2-Dichloropropane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:42	594-20-7	W
1,1-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:42	563-58-6	W
cis-1,3-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:42	10061-01-5	W
trans-1,3-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:42	10061-02-6	W
Diisopropyl ether	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:42	108-20-3	W
Ethylbenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:42	100-41-4	W

Project: GLACIER RIDGE

Pace Project No.: 40129145

Sample: GRL-SS-33	Lab ID:	40129145006	Collected	: 03/09/16	6 15:05	Received: 03/	/09/16 17:30 Ma	atrix: Solid	
Results reported on a "wet-weight	" basis								
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA 8	260 Prepara	ation Meth	od: EPA	5035/5030B			
Hexachloro-1,3-butadiene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:42	87-68-3	W
Isopropylbenzene (Cumene)	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:42	98-82-8	W
p-Isopropyltoluene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:42	99-87-6	W
Methylene Chloride	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:42	75-09-2	W
Methyl-tert-butyl ether	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:42	1634-04-4	W
Naphthalene	<40.0	ug/kg	250	40.0	1	03/11/16 07:00	03/11/16 13:42	91-20-3	W
n-Propylbenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:42	103-65-1	W
Styrene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:42	100-42-5	W
1,1,1,2-Tetrachloroethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:42	630-20-6	W
1,1,2,2-Tetrachloroethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:42	79-34-5	W
Tetrachloroethene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:42	127-18-4	W
Toluene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:42	108-88-3	W
1,2,3-Trichlorobenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:42	87-61-6	W
1,2,4-Trichlorobenzene	<47.6	ug/kg	250	47.6	1	03/11/16 07:00	03/11/16 13:42	120-82-1	W
1,1,1-Trichloroethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:42	71-55-6	W
1,1,2-Trichloroethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:42	79-00-5	W
Trichloroethene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:42	79-01-6	W
Trichlorofluoromethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:42	75-69-4	W
1,2,3-Trichloropropane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:42	96-18-4	W
1,2,4-Trimethylbenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:42	95-63-6	W
1,3,5-Trimethylbenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:42	108-67-8	W
Vinyl chloride	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:42	75-01-4	W
m&p-Xylene	<50.0	ug/kg	120	50.0	1	03/11/16 07:00	03/11/16 13:42	179601-23-1	W
o-Xylene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 13:42	95-47-6	W
Surrogates									
Dibromofluoromethane (S)	128	%	49-157		1	03/11/16 07:00	03/11/16 13:42	1868-53-7	
Toluene-d8 (S)	115	%	61-148		1	03/11/16 07:00	03/11/16 13:42	2037-26-5	
4-Bromofluorobenzene (S)	96	%	53-134		1	03/11/16 07:00	03/11/16 13:42	460-00-4	

ANALYTICAL RESULTS

Project: GLACIER RIDGE

Pace Project No.: 40129145

-

Sample: GRL-SS-34	Lab ID:	40129145007	Collected	d: 03/09/16	6 15:10	Received: 03/	09/16 17:30 Ma	atrix: Solid	
Results reported on a "wet-weight	" basis								
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prep	aration Met	thod: E	PA 3050			
Cadmium	<0.15	mg/kg	0.50	0.15	5	03/13/16 20:23	03/14/16 08:47	7440-43-9	D3
Lead	2.4	mg/kg	1.6	0.48	5	03/13/16 20:23	03/14/16 08:47	7439-92-1	
Dry Weight	Analytical	Method: ASTM	D2974						
Percent Moisture	9.7	%	0.10	0.10	1		03/14/16 15:54		
8260 MSV Med Level Normal List	Analytical	Method: EPA 8	260 Prepa	ration Meth	od: EP/	A 5035/5030B			
Benzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:04	71-43-2	W
Bromobenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:04	108-86-1	W
Bromochloromethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:04	74-97-5	W
Bromodichloromethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:04	75-27-4	W
Bromoform	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:04	75-25-2	W
Bromomethane	<69.9	ug/kg	250	69.9	1	03/11/16 07:00	03/11/16 14:04	74-83-9	W
2-Butanone (MEK)	<107	ug/kg	250	107	1	03/11/16 07:00	03/11/16 14:04	78-93-3	W
n-Butylbenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:04	104-51-8	W
sec-Butylbenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:04	135-98-8	W
tert-Butylbenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:04	98-06-6	W
Carbon tetrachloride	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:04	56-23-5	W
Chlorobenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:04	108-90-7	W
Chloroethane	<67.0	ug/kg	250	67.0	1	03/11/16 07:00	03/11/16 14:04	75-00-3	W
Chloroform	<46.4	ug/kg	250	46.4	1	03/11/16 07:00	03/11/16 14:04	67-66-3	W
Chloromethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:04	74-87-3	W
2-Chlorotoluene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:04	95-49-8	W
4-Chlorotoluene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:04	106-43-4	W
1,2-Dibromo-3-chloropropane	<91.2	ug/kg	250	91.2	1	03/11/16 07:00	03/11/16 14:04	96-12-8	W
Dibromochloromethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:04	124-48-1	W
1,2-Dibromoethane (EDB)	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:04	106-93-4	W
Dibromomethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:04	74-95-3	W
1,2-Dichlorobenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:04	95-50-1	W
1,3-Dichlorobenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:04	541-73-1	W
1,4-Dichlorobenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:04	106-46-7	W
Dichlorodifluoromethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:04	75-71-8	W
1,1-Dichloroethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:04	75-34-3	W
1,2-Dichloroethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:04	107-06-2	W
1,1-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:04	75-35-4	W
cis-1,2-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:04	156-59-2	W
trans-1,2-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:04	156-60-5	W
1,2-Dichloropropane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:04	78-87-5	W
1,3-Dichloropropane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:04	142-28-9	W
2,2-Dichloropropane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:04	594-20-7	W
1,1-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:04	563-58-6	W
cis-1,3-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:04	10061-01-5	W
trans-1,3-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:04	10061-02-6	W
Diisopropyl ether	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:04	108-20-3	W
Ethylbenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:04	100-41-4	W

Project: GLACIER RIDGE

Pace Project No.: 40129145

Sample: GRL-SS-34	Lab ID:	40129145007	Collected	d: 03/09/16	6 15:10	Received: 03/	09/16 17:30 Ma	atrix: Solid	
Results reported on a "wet-weight"	" basis								
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA 8	260 Prepai	ration Meth	od: EPA	5035/5030B			
Hexachloro-1,3-butadiene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:04	87-68-3	W
Isopropylbenzene (Cumene)	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:04	98-82-8	W
p-Isopropyltoluene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:04	99-87-6	W
Methylene Chloride	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:04	75-09-2	W
Methyl-tert-butyl ether	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:04	1634-04-4	W
Naphthalene	<40.0	ug/kg	250	40.0	1	03/11/16 07:00	03/11/16 14:04	91-20-3	W
n-Propylbenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:04	103-65-1	W
Styrene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:04	100-42-5	W
1,1,1,2-Tetrachloroethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:04	630-20-6	W
1,1,2,2-Tetrachloroethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:04	79-34-5	W
Tetrachloroethene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:04	127-18-4	W
Toluene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:04	108-88-3	W
1,2,3-Trichlorobenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:04	87-61-6	W
1,2,4-Trichlorobenzene	<47.6	ug/kg	250	47.6	1	03/11/16 07:00	03/11/16 14:04	120-82-1	W
1,1,1-Trichloroethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:04	71-55-6	W
1,1,2-Trichloroethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:04	79-00-5	W
Trichloroethene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:04	79-01-6	W
Trichlorofluoromethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:04	75-69-4	W
1,2,3-Trichloropropane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:04	96-18-4	W
1,2,4-Trimethylbenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:04	95-63-6	W
1,3,5-Trimethylbenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:04	108-67-8	W
Vinyl chloride	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:04	75-01-4	W
m&p-Xylene	<50.0	ug/kg	120	50.0	1	03/11/16 07:00	03/11/16 14:04	179601-23-1	W
o-Xylene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:04	95-47-6	W
Surrogates									
Dibromofluoromethane (S)	118	%	49-157		1	03/11/16 07:00	03/11/16 14:04	1868-53-7	
Toluene-d8 (S)	112	%	61-148		1	03/11/16 07:00	03/11/16 14:04	2037-26-5	
4-Bromofluorobenzene (S)	93	%	53-134		1	03/11/16 07:00	03/11/16 14:04	460-00-4	

Project: GLACIER RIDGE

Pace Project No.: 40129145

Lab ID:	40129145008	Collected	d: 03/09/16	6 15:15	Received: 03/	09/16 17:30 Ma	atrix: Solid	
' basis								
Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
Analytical	Method: EPA 6	010C Prep	aration Met	hod: El	PA 3050			
<0.18	mg/kg	0.59	0.18	5	03/13/16 20:23	03/14/16 08:50	7440-43-9	D3
1.7J	mg/kg	1.9	0.56	5	03/13/16 20:23	03/14/16 08:50	7439-92-1	D3
Analytical	Method: ASTM	D2974						
10.1	%	0.10	0.10	1		03/14/16 15:54		
Analytical	Method: EPA 82	260 Prepai	ration Metho	od: EP/	A 5035/5030B			
<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:27	71-43-2	W
<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:27	108-86-1	W
<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:27	74-97-5	W
<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:27	75-27-4	W
<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:27	75-25-2	W
<69.9	ug/kg	250	69.9	1	03/11/16 07:00	03/11/16 14:27	74-83-9	W
<107	ug/kg	250	107	1	03/11/16 07:00	03/11/16 14:27	78-93-3	W
<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:27	104-51-8	W
<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:27	135-98-8	W
<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:27	98-06-6	W
<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:27	56-23-5	W
<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:27	108-90-7	W
<67.0	ug/kg	250	67.0	1	03/11/16 07:00	03/11/16 14:27	75-00-3	W
<46.4	ug/kg	250	46.4	1	03/11/16 07:00	03/11/16 14:27	67-66-3	W
<25.0		60.0	25.0	1	03/11/16 07:00	03/11/16 14:27	74-87-3	W
<25.0		60.0		1	03/11/16 07:00	03/11/16 14:27	95-49-8	W
<25.0		60.0		1	03/11/16 07:00	03/11/16 14:27	106-43-4	W
<91.2		250		1	03/11/16 07:00	03/11/16 14:27	96-12-8	W
		60.0		1				W
<25.0		60.0		1	03/11/16 07:00	03/11/16 14:27	106-93-4	W
				1				W
								W
		60.0		1	03/11/16 07:00	03/11/16 14:27	541-73-1	W
				1		03/11/16 14:27	106-46-7	W
								W
								W
				1				W
				1				W
								W
								W
								Ŵ
								W
								Ŵ
								Ŵ
<25.0	ug/kg ug/kg	60.0	25.0 25.0	1	03/11/16 07:00	03/11/16 14:27		Ŵ
		00.0	20.0			00/11/10 14.27	10001-02-0	v v
<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:27	108-20-3	W
	Passis Results Analytical <0.18	Results Units Analytical mg/kg 1.7J mg/kg 1.7J mg/kg 1.7J mg/kg Analytical k -bod: Analytical k -bod: 10.1 % Analytical k -bod: 25.0 ug/kg <25.0	'basis Results Units LOQ Analytical Wethod: EPA 6010C Prepare <0.18	* basis Results Units LOQ LOD Analytical Method: EPA 6010C Preparation Method: Astronomic and the context a	Presults Units LOQ LOD DF Analytical Method: EPA 6010C Preparation Method: EIA 60.18 mg/kg 0.59 0.18 5 1.7J mg/kg 1.9 0.56 5 Analytical Method: ASTM D2974 10.1 % 0.10 0.10 1 Analytical Method: EPA 8260 Preparation Method: EPA 25.0 1 25.0 1 <25.0	Pasis Results Units LOQ LOD DF Prepared Analytical Method: EPA 6010C Preparation Method: EPA 3050 <0.18	Pasis Results Units LOQ LOD DF Prepared Analyzed Analytical Method: EPA 6010C Preparation Method: EPA 3050 0.18 5 0.3/13/16 20:23 0.3/14/16 0.8:50 -0.18 mg/kg 0.59 0.18 5 0.3/13/16 20:23 0.3/14/16 0.8:50 Analytical Method: ASTM D2974 0.10 1 0.3/14/16 15:54 Analytical Method: EPA 8260 Preparation Method: EPA 5035/50308 0.3/11/16 14:27 -25.0 ug/kg 60.0 25.0 1 0.3/11/16 07:00 0.3/11/16 14:27 -25.0 ug/kg 60.0 25.0 1 0.3/11/16 07:00 0.3/11/16 14:27 -25.0 ug/kg 60.0 25.0 1 0.3/11/16 07:00 0.3/11/16 14:27 -25.0 ug/kg 60.0 25.0 1 0.3/11/16 07:00 0.3/11/16 14:27 -25.0 ug/kg 60.0 25.0 1 0.3/11/16 07:00 0.3/11/16 14:27 -25.0 ug/kg 60.0 25.0<	Passis Results Units LOQ LOD DF Prepared Analyzed CAS No. Analytical Method: EPA 6010C Preparation Method: EPA 3050 03/14/16 08:50 7440-43-9 4.0.18 mg/kg 0.59 0.18 5 03/13/16 20:23 03/14/16 08:50 7430-92-1 Analytical Method: ASTM D2974 0.10 0.10 0.10 0.3/14/16 07:00 03/14/16 15:54 Analytical Method: EPA 8260 Preparation Method: EPA 5035/5030B 0.3/11/16 14:27 71-43-2 225.0 ug/kg 60.0 25.0 1 03/11/16 07:00 03/11/16 14:27 74-97-5 225.0 ug/kg 60.0 25.0 1 03/11/16 07:00 03/11/16 14:27 74-97-5 225.0 ug/kg 60.0 25.0 1 0.3/11/16 07:00 0.3/11/16 14:27 74-97-5 225.0 ug/kg 60.0 25.0 1 0.3/11/16 07:00 0.3/11/16 14:27 74-97-5 225.0 ug/kg 60.0 25.0 0.3/11/16 07:00

Project: GLACIER RIDGE

Pace Project No.: 40129145

Sample: GRL-SS-35	Lab ID:	40129145008	Collected	d: 03/09/16	6 15:15	Received: 03/	09/16 17:30 M	atrix: Solid	
Results reported on a "wet-weight	" basis								
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA 8	260 Prepai	ration Meth	od: EPA	5035/5030B			
Hexachloro-1,3-butadiene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:27	87-68-3	W
Isopropylbenzene (Cumene)	54.2J	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:27	98-82-8	
p-Isopropyltoluene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:27	99-87-6	W
Methylene Chloride	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:27	75-09-2	W
Methyl-tert-butyl ether	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:27	1634-04-4	W
Naphthalene	<40.0	ug/kg	250	40.0	1	03/11/16 07:00	03/11/16 14:27	91-20-3	W
n-Propylbenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:27	103-65-1	W
Styrene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:27	100-42-5	W
1,1,1,2-Tetrachloroethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:27	630-20-6	W
1,1,2,2-Tetrachloroethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:27	79-34-5	W
Tetrachloroethene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:27	127-18-4	W
Toluene	56.4J	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:27	108-88-3	
1,2,3-Trichlorobenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:27	87-61-6	W
1,2,4-Trichlorobenzene	<47.6	ug/kg	250	47.6	1	03/11/16 07:00	03/11/16 14:27	120-82-1	W
1,1,1-Trichloroethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:27	71-55-6	W
1,1,2-Trichloroethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:27	79-00-5	W
Trichloroethene	52.9J	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:27	79-01-6	
Trichlorofluoromethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:27	75-69-4	W
1,2,3-Trichloropropane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:27	96-18-4	W
1,2,4-Trimethylbenzene	102	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:27	95-63-6	
1,3,5-Trimethylbenzene	47.4J	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:27	108-67-8	
Vinyl chloride	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:27	75-01-4	W
m&p-Xylene	278	ug/kg	120	50.0	1	03/11/16 07:00	03/11/16 14:27	179601-23-1	
o-Xylene	64.6	ug/kg	60.0	25.0	1	03/11/16 07:00	03/11/16 14:27	95-47-6	
Surrogates		0 0							
Dibromofluoromethane (S)	122	%	49-157		1	03/11/16 07:00	03/11/16 14:27	1868-53-7	
Toluene-d8 (S)	115	%	61-148		1	03/11/16 07:00	03/11/16 14:27	2037-26-5	
4-Bromofluorobenzene (S)	104	%	53-134		1	03/11/16 07:00	03/11/16 14:27	460-00-4	

REPORT OF LABORATORY ANALYSIS

ANALYTICAL RESULTS

Project: GLACIER RIDGE

Pace Project No.: 40129145

-

Sample: GRL-SS-36	Lab ID:	40129145009	Collected	d: 03/09/16	6 15:20	Received: 03/	09/16 17:30 Ma	atrix: Solid	
Results reported on a "wet-weight"	' basis								
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prep	aration Met	hod: EF	PA 3050			
Cadmium	<0.19	mg/kg	0.64	0.19	5	03/13/16 20:23	03/14/16 08:53		D3
Lead	1.9J	mg/kg	2.0	0.61	5	03/13/10 20:23	03/14/16 08:53	7439-92-1	D3
Dry Weight	Analytical	Method: ASTM	D2974						
Percent Moisture	12.6	%	0.10	0.10	1		03/14/16 15:54		
8260 MSV Med Level Normal List	Analytical	Method: EPA 82	260 Prepar	ation Meth	od: EPA	A 5035/5030B			
Benzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:30	03/11/16 11:11	71-43-2	W
Bromobenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:30	03/11/16 11:11	108-86-1	W
Bromochloromethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:30	03/11/16 11:11	74-97-5	W
Bromodichloromethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:30	03/11/16 11:11	75-27-4	W
Bromoform	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:30	03/11/16 11:11	75-25-2	W
Bromomethane	<69.9	ug/kg	250	69.9	1	03/11/16 07:30	03/11/16 11:11	74-83-9	W
2-Butanone (MEK)	12300	ug/kg	625	267	2.5	03/11/16 07:30	03/14/16 11:37	78-93-3	
n-Butylbenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:30	03/11/16 11:11	104-51-8	W
sec-Butylbenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:30	03/11/16 11:11	135-98-8	W
tert-Butylbenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:30	03/11/16 11:11	98-06-6	W
Carbon tetrachloride	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:30	03/11/16 11:11	56-23-5	W
Chlorobenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:30	03/11/16 11:11	108-90-7	W
Chloroethane	<67.0	ug/kg	250	67.0	1	03/11/16 07:30	03/11/16 11:11	75-00-3	W
Chloroform	<46.4	ug/kg	250	46.4	1	03/11/16 07:30	03/11/16 11:11	67-66-3	W
Chloromethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:30	03/11/16 11:11	74-87-3	W
2-Chlorotoluene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:30	03/11/16 11:11	95-49-8	W
4-Chlorotoluene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:30	03/11/16 11:11	106-43-4	W
1,2-Dibromo-3-chloropropane	<91.2	ug/kg	250	91.2	1	03/11/16 07:30	03/11/16 11:11	96-12-8	W
Dibromochloromethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:30	03/11/16 11:11	124-48-1	W
1,2-Dibromoethane (EDB)	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:30	03/11/16 11:11	106-93-4	W
Dibromomethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:30	03/11/16 11:11	74-95-3	W
1,2-Dichlorobenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:30	03/11/16 11:11	95-50-1	W
1,3-Dichlorobenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:30	03/11/16 11:11	541-73-1	W
1,4-Dichlorobenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:30	03/11/16 11:11	106-46-7	W
Dichlorodifluoromethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:30	03/11/16 11:11	75-71-8	W
1,1-Dichloroethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:30	03/11/16 11:11	75-34-3	W
1,2-Dichloroethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:30		107-06-2	W
1,1-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:30	03/11/16 11:11	75-35-4	R1,W
cis-1,2-Dichloroethene	453	ug/kg	60.0	25.0	1	03/11/16 07:30	03/11/16 11:11	156-59-2	,
trans-1,2-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:30	03/11/16 11:11	156-60-5	R1,W
1,2-Dichloropropane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:30	03/11/16 11:11	78-87-5	W
1,3-Dichloropropane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:30	03/11/16 11:11	142-28-9	Ŵ
2,2-Dichloropropane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:30	03/11/16 11:11	594-20-7	W
1,1-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:30	03/11/16 11:11	563-58-6	W
cis-1,3-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:30	03/11/16 11:11	10061-01-5	Ŵ
		ug/kg	60.0	25.0	1	03/11/16 07:30	03/11/16 11:11	10061-02-6	W
trans-1.3-Dichloropropene	20</td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
trans-1,3-Dichloropropene Diisopropyl ether	<25.0 <25.0	ug/kg	60.0	25.0	1	03/11/16 07:30	03/11/16 11:11	108-20-3	W

Project: GLACIER RIDGE

Pace Project No.: 40129145

Sample: GRL-SS-36	Lab ID:	40129145009	Collected	d: 03/09/16	6 15:20	Received: 03/	09/16 17:30 M	atrix: Solid	
Results reported on a "wet-weight	" basis								
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA 8	260 Prepa	ration Methe	od: EPA	A 5035/5030B			
Hexachloro-1,3-butadiene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:30	03/11/16 11:11	87-68-3	W
Isopropylbenzene (Cumene)	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:30	03/11/16 11:11	98-82-8	W
p-Isopropyltoluene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:30	03/11/16 11:11	99-87-6	W
Methylene Chloride	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:30	03/11/16 11:11	75-09-2	R1,W
Methyl-tert-butyl ether	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:30	03/11/16 11:11	1634-04-4	R1,W
Naphthalene	<40.0	ug/kg	250	40.0	1	03/11/16 07:30	03/11/16 11:11	91-20-3	W
n-Propylbenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:30	03/11/16 11:11	103-65-1	W
Styrene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:30	03/11/16 11:11	100-42-5	W
1,1,1,2-Tetrachloroethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:30	03/11/16 11:11	630-20-6	W
1,1,2,2-Tetrachloroethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:30	03/11/16 11:11	79-34-5	W
Tetrachloroethene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:30	03/11/16 11:11	127-18-4	W
Toluene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:30	03/11/16 11:11	108-88-3	R1,W
1,2,3-Trichlorobenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:30	03/11/16 11:11	87-61-6	W
1,2,4-Trichlorobenzene	<47.6	ug/kg	250	47.6	1	03/11/16 07:30	03/11/16 11:11	120-82-1	W
1,1,1-Trichloroethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:30	03/11/16 11:11	71-55-6	W
1,1,2-Trichloroethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:30	03/11/16 11:11	79-00-5	W
Trichloroethene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:30	03/11/16 11:11	79-01-6	W
Trichlorofluoromethane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:30	03/11/16 11:11	75-69-4	W
1,2,3-Trichloropropane	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:30	03/11/16 11:11	96-18-4	W
1,2,4-Trimethylbenzene	27.5J	ug/kg	60.0	25.0	1	03/11/16 07:30	03/11/16 11:11	95-63-6	
1,3,5-Trimethylbenzene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:30	03/11/16 11:11	108-67-8	W
Vinyl chloride	3030	ug/kg	60.0	25.0	1	03/11/16 07:30	03/11/16 11:11	75-01-4	
m&p-Xylene	<50.0	ug/kg	120	50.0	1	03/11/16 07:30	03/11/16 11:11	179601-23-1	W
o-Xylene	<25.0	ug/kg	60.0	25.0	1	03/11/16 07:30	03/11/16 11:11	95-47-6	W
Surrogates									
Dibromofluoromethane (S)	107	%	49-157		1	03/11/16 07:30	03/11/16 11:11	1868-53-7	
Toluene-d8 (S)	118	%	61-148		1	03/11/16 07:30	03/11/16 11:11	2037-26-5	
4-Bromofluorobenzene (S)	102	%	53-134		1	03/11/16 07:30	03/11/16 11:11	460-00-4	

Project:	GLACI	ER RIDGE											
Pace Project No.:	40129	145											
QC Batch:	MPR	P/61937		Analys	is Method	: E	PA 6010C						
QC Batch Method:	EPA	3050		Analys	is Descrip	tion: 6	010C Solids						
Associated Lab Sar	nples:		1, 40129145002 8, 40129145009		003, 4012	9145004, 4	012914500	5, 4012914	5006, 4012	29145007,			
METHOD BLANK:	22079	06		N	latrix: Sol	id							
Associated Lab Sar	nples:		1, 40129145002 8, 40129145009		003, 4012	9145004, 4	012914500	5, 4012914	5006, 4012	29145007,			
Parar	neter		Units	Blank Result		eporting Limit	Analyz	ed	Qualifiers				
Cadmium			mg/kg	<0	.033	0.11	03/14/16	06:55					
Lead			mg/kg	<	:0.11	0.35	03/14/16	06:55					
LABORATORY CO	NTROL	SAMPLE: 2	207907										
	-	-		Spike	LCS	6	LCS	% Rec	;				
Parar	neter		Units	Conc.	Resu	ult	% Rec	Limits	Q	ualifiers			
Cadmium			mg/kg	45.5		45.7	101	80	-120		•		
Lead			mg/kg	45.5		46.6	102	80	-120				
MATRIX SPIKE & N	ΛΛΤΡΙΥ		CATE: 22079	08		2207909							
			OATE. 22019	MS	MSD	2201303							
			40129145001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	er	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Cadmium		mg/kg	<0.15	48.6	50.3	50.7	51.5	104	102	75-125	2	20	
Lead		mg/kg	2.0	48.6	50.3	50.2	49.8	99	95	75-125	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	GLACIER RIDGE							
Pace Project No.:	40129145							
QC Batch:	MPRP/61992		Analysis Meth	iod:	ASTM D2974			
QC Batch Method:	ASTM D2974		Analysis Desc	cription:	Dry Weight/Perce	nt Moisture		
Associated Lab Sa		001, 401291450 008, 401291450	02, 40129145003, 40 09)129145004,	40129145005, 40)129145006,	, 40129145007,	
SAMPLE DUPLICA	TE: 2209536							
			40129145001	Dup		Max		
Para	meter	Units	Result	Result	RPD	RPD	Qualifiers	
Percent Moisture		%	12.7	13.	0 2	2	30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	GLACI	ER RIDGE					
Pace Project No.:	40129	145					
QC Batch:	MSV	/32526		Analysis Meth	od: EF	PA 8260	
QC Batch Method:	EPA	5035/5030B		Analysis Desc	ription: 82	60 MSV Med Leve	l Normal List
Associated Lab San	nples:	40129145001	I, 40129145002,	40129145003, 40	129145004, 40	0129145005, 40129	9145006, 40129145007,
	•	40129145008	3				
METHOD BLANK:	130502	28		Matrix:	Solid		
Associated Lab San	nples:	40129145001	I, 40129145002,	40129145003, 40)129145004, 40	0129145005, 40129	9145006, 40129145007,
		40129145008	3				
_				Blank	Reporting		0
Paran	neter		Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroe	thane		ug/kg	<13.7	50.0	03/11/16 08:42	
1,1,1-Trichloroethan	e		ug/kg	<14.4	50.0	03/11/16 08:42	
1,1,2,2-Tetrachloroe	thane		ug/kg	<17.5	50.0	03/11/16 08:42	
1,1,2-Trichloroethan	ie		ug/kg	<20.2	50.0	03/11/16 08:42	
1,1-Dichloroethane			ug/kg	<17.6	50.0	03/11/16 08:42	
1,1-Dichloroethene			ug/kg	<17.6	50.0	03/11/16 08:42	
1,1-Dichloropropene	e		ug/kg	<14.0	50.0	03/11/16 08:42	
1,2,3-Trichlorobenze	ene		ug/kg	<17.0	50.0	03/11/16 08:42	
1,2,3-Trichloropropa	ane		ug/kg	<22.3	50.0	03/11/16 08:42	
1,2,4-Trichlorobenze	ene		ug/kg	<47.6	250	03/11/16 08:42	
1,2,4-Trimethylbenz			ug/kg	<12.2	50.0	03/11/16 08:42	
1,2-Dibromo-3-chlor	opropa	ne	ug/kg	<91.2	250	03/11/16 08:42	
1,2-Dibromoethane	` '		ug/kg	<14.7	50.0	03/11/16 08:42	
1,2-Dichlorobenzen	е		ug/kg	<16.2	50.0	03/11/16 08:42	
1,2-Dichloroethane			ug/kg	<15.0	50.0	03/11/16 08:42	
1,2-Dichloropropane			ug/kg	<16.8	50.0	03/11/16 08:42	
1,3,5-Trimethylbenz	ene		ug/kg	<14.5	50.0	03/11/16 08:42	
1,3-Dichlorobenzen			ug/kg	<13.2	50.0	03/11/16 08:42	
1,3-Dichloropropane			ug/kg	<12.0	50.0	03/11/16 08:42	
1,4-Dichlorobenzen			ug/kg	<15.9	50.0	03/11/16 08:42	
2,2-Dichloropropane	e		ug/kg	<12.6	50.0	03/11/16 08:42	
2-Butanone (MEK)			ug/kg	<124	250	03/11/16 08:42	
2-Chlorotoluene			ug/kg	<15.8	50.0	03/11/16 08:42	
4-Chlorotoluene			ug/kg	<13.0	50.0	03/11/16 08:42	
Benzene			ug/kg	<9.2	20.0	03/11/16 08:42	
Bromobenzene			ug/kg	<20.6	50.0	03/11/16 08:42	
Bromochloromethar			ug/kg	<21.4	50.0	03/11/16 08:42	
Bromodichlorometh	ane		ug/kg	<9.8	50.0	03/11/16 08:42	
Bromoform			ug/kg	<19.8	50.0	03/11/16 08:42	
Bromomethane			ug/kg	<69.9	250	03/11/16 08:42	
Carbon tetrachloride	•		ug/kg	<12.1	50.0	03/11/16 08:42	
Chlorobenzene			ug/kg	<14.8	50.0	03/11/16 08:42	
Chloroethane			ug/kg	<67.0	250	03/11/16 08:42	
Chloroform			ug/kg	<46.4	250	03/11/16 08:42	
Chloromethane			ug/kg	<20.4	50.0	03/11/16 08:42	
cis-1,2-Dichloroethe			ug/kg	<16.6	50.0	03/11/16 08:42	
cis-1,3-Dichloroprop			ug/kg	<16.6	50.0	03/11/16 08:42	
Dibromochlorometh	ane		ug/kg	<17.9	50.0	03/11/16 08:42	
Dibromomethane	hanc		ug/kg	<19.3	50.0	03/11/16 08:42	
Dichlorodifluoromet	ane		ug/kg	<12.3	50.0	03/11/16 08:42	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: GLACIER RIDGE

Pace Project No.: 40129145

sec-Butylbenzene

tert-Butylbenzene

Tetrachloroethene

Trichloroethene

Vinyl chloride

Toluene-d8 (S)

trans-1,2-Dichloroethene

Trichlorofluoromethane

trans-1,3-Dichloropropene

4-Bromofluorobenzene (S)

Dibromofluoromethane (S)

Styrene

Toluene

IETHOD BLANK: 1305028		Matrix:	Solid		
ssociated Lab Samples: 4012914 4012914	45001, 40129145002 45008	2, 40129145003, 40	0129145004, 40	129145005, 40129	145006, 401
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Diisopropyl ether	ug/kg	<17.7	50.0	03/11/16 08:42	
thylbenzene	ug/kg	<12.4	50.0	03/11/16 08:42	
lexachloro-1,3-butadiene	ug/kg	<24.5	50.0	03/11/16 08:42	
sopropylbenzene (Cumene)	ug/kg	<12.6	50.0	03/11/16 08:42	
n&p-Xylene	ug/kg	<34.4	100	03/11/16 08:42	
1ethyl-tert-butyl ether	ug/kg	<12.7	50.0	03/11/16 08:42	
1ethylene Chloride	ug/kg	<16.2	50.0	03/11/16 08:42	
-Butylbenzene	ug/kg	<10.5	50.0	03/11/16 08:42	
-Propylbenzene	ug/kg	<11.6	50.0	03/11/16 08:42	
laphthalene	ug/kg	<40.0	250	03/11/16 08:42	
-Xylene	ug/kg	<14.0	50.0	03/11/16 08:42	
-Isopropyltoluene	ug/kg	<12.0	50.0	03/11/16 08:42	

<11.9

<9.0

<9.5

<12.9

<11.2

<16.5

<14.4

<23.6

<24.7

<21.1

85

112

101

50.0 03/11/16 08:42

50.0 03/11/16 08:42

50.0 03/11/16 08:42

50.0 03/11/16 08:42

50.0 03/11/16 08:42

50.0 03/11/16 08:42

50.0 03/11/16 08:42

50.0 03/11/16 08:42

50.0 03/11/16 08:42

50.0 03/11/16 08:42

53-134 03/11/16 08:42

49-157 03/11/16 08:42

61-148 03/11/16 08:42

ug/kg

%

%

%

LABORATORY CONTROL SAMPLE: 1305029

LABORATORY CONTROL SAMPLE:	1305029					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/kg	2500	2330	93	70-130	
1,1,2,2-Tetrachloroethane	ug/kg	2500	2420	97	70-130	
1,1,2-Trichloroethane	ug/kg	2500	2440	98	70-130	
1,1-Dichloroethane	ug/kg	2500	2380	95	70-130	
1,1-Dichloroethene	ug/kg	2500	2400	96	70-132	
1,2,4-Trichlorobenzene	ug/kg	2500	2230	89	70-130	
1,2-Dibromo-3-chloropropane	ug/kg	2500	2540	102	45-150	
1,2-Dibromoethane (EDB)	ug/kg	2500	2360	95	70-130	
1,2-Dichlorobenzene	ug/kg	2500	2300	92	70-130	
1,2-Dichloroethane	ug/kg	2500	2440	98	70-134	
1,2-Dichloropropane	ug/kg	2500	2670	107	70-130	
1,3-Dichlorobenzene	ug/kg	2500	2340	93	70-130	
1,4-Dichlorobenzene	ug/kg	2500	2330	93	70-130	
Benzene	ug/kg	2500	2310	92	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: GLACIER RIDGE

Pace Project No.: 40129145

LABORATORY CONTROL SAMPLE: 1305029

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
romodichloromethane	ug/kg	2500	2740	109	70-130	
romoform	ug/kg	2500	2260	90	48-130	
romomethane	ug/kg	2500	2260	90	70-169	
arbon tetrachloride	ug/kg	2500	2440	98	67-130	
hlorobenzene	ug/kg	2500	2490	100	70-130	
hloroethane	ug/kg	2500	2180	87	70-191	
loroform	ug/kg	2500	2400	96	70-130	
loromethane	ug/kg	2500	1910	76	52-132	
-1,2-Dichloroethene	ug/kg	2500	2240	90	70-130	
-1,3-Dichloropropene	ug/kg	2500	2620	105	70-130	
promochloromethane	ug/kg	2500	2500	100	65-130	
hlorodifluoromethane	ug/kg	2500	1620	65	12-150	
ylbenzene	ug/kg	2500	2490	100	70-130	
propylbenzene (Cumene)	ug/kg	2500	2340	94	70-130	
p-Xylene	ug/kg	5000	5140	103	70-130	
thyl-tert-butyl ether	ug/kg	2500	2350	94	70-130	
hylene Chloride	ug/kg	2500	2220	89	70-131	
ylene	ug/kg	2500	2510	100	70-130	
rene	ug/kg	2500	2370	95	70-130	
achloroethene	ug/kg	2500	2520	101	70-130	
uene	ug/kg	2500	2570	103	70-130	
ns-1,2-Dichloroethene	ug/kg	2500	2220	89	69-130	
ns-1,3-Dichloropropene	ug/kg	2500	2550	102	65-130	
chloroethene	ug/kg	2500	2590	104	70-130	
hlorofluoromethane	ug/kg	2500	2080	83	50-150	
yl chloride	ug/kg	2500	1960	79	67-134	
romofluorobenzene (S)	%			93	53-134	
romofluoromethane (S)	%			97	49-157	
luene-d8 (S)	%			99	61-148	

MATRIX SPIKE & MATRIX SP	IKE DUPLICA	ATE: 13050	30		1305031							
Parameter	4 Units	0129114001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
1,1,1-Trichloroethane	ug/kg	<0.025 mg/kg	1250	1250	1080	1060	87	85	63-130	3	20	
1,1,2,2-Tetrachloroethane	ug/kg	<0.025 mg/kg	1250	1250	1180	1180	94	94	57-136	0	20	
1,1,2-Trichloroethane	ug/kg	<0.025 mg/kg	1250	1250	1180	1190	95	95	70-130	0	20	
1,1-Dichloroethane	ug/kg	<0.025 mg/kg	1250	1250	1160	1150	93	92	62-131	1	23	
1,1-Dichloroethene	ug/kg	<0.025 mg/kg	1250	1250	978	971	78	78	42-137	1	20	
1,2,4-Trichlorobenzene	ug/kg	<0.048 mg/kg	1250	1250	1200	1230	96	98	59-137	2	21	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, Inc. 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

QUALITY CONTROL DATA

Project: GLACIER RIDGE

Pace Project No.: 40129145

MATRIX SPIKE & MATRIX SPI		CATE: 13050	MS	MSD	1305031							
		40129114001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
1,2-Dibromo-3- chloropropane	ug/kg	<pre><0.091</pre>	1250	1250	1250	1400	100	112	33-150	12	25	
1,2-Dibromoethane (EDB)	ug/kg	<0.025	1250	1250	1180	1180	95	94	70-130	0	20	
1,2-Dichlorobenzene	ug/kg	mg/kg <0.025	1250	1250	1220	1210	98	97	70-130	1	20	
1,2-Dichloroethane	ug/kg	mg/kg <0.025	1250	1250	1210	1310	97	105	68-134	8	20	
1,2-Dichloropropane	ug/kg	mg/kg <0.025	1250	1250	1270	1300	102	104	70-130	2	20	
1,3-Dichlorobenzene	ug/kg	mg/kg <0.025	1250	1250	1170	1160	94	93	70-130	1	20	
1,4-Dichlorobenzene	ug/kg	mg/kg <0.025	1250	1250	1170	1250	94	100	69-130	6	20	
Benzene	ug/kg	mg/kg <0.025	1250	1250	1160	1200	93	96	56-131	3	20	
Bromodichloromethane	ug/kg	mg/kg <0.025	1250	1250	1290	1300	103	104	64-130	1	20	
Bromoform	ug/kg	mg/kg <0.025	1250	1250	1150	1120	92	90	48-130	2	20	
Bromomethane	ug/kg	mg/kg <0.070	1250	1250	1030	1200	83	96	18-169	15	23	
Carbon tetrachloride	ug/kg	mg/kg <0.025	1250	1250	1070	1080	85	87	59-130	1	20	
Chlorobenzene	ug/kg	mg/kg <0.025	1250	1250	1190	1200	95	96	70-130	1	20	
Chloroethane	ug/kg	mg/kg <0.067	1250	1250	1040	1020	83	82	10-191	1	20	
Chloroform	ug/kg	mg/kg <0.046	1250	1250	1220	1260	97	101	65-130	4	20	
Chloromethane	ug/kg	mg/kg <0.025	1250	1250	784	871	63	70	36-132	10	20	
cis-1,2-Dichloroethene	ug/kg	mg/kg <0.025	1250	1250	1120	1180	90	94	59-136	5	24	
cis-1,3-Dichloropropene	ug/kg	mg/kg <0.025	1250	1250	1190	1260	95	101	60-130	6	20	
Dibromochloromethane	ug/kg	mg/kg <0.025	1250	1250	1200	1200	96	96	59-130	0	20	
Dichlorodifluoromethane	ug/kg	mg/kg <0.025	1250	1250	665	588	53	47	10-150	12	27	
Ethylbenzene	ug/kg	mg/kg <0.025	1250	1250	1110	1110	88	88	64-130	0	20	
sopropylbenzene (Cumene)	ug/kg	mg/kg <0.025	1250	1250	1030	1000	82	80	69-138	2	20	
n&p-Xylene	ug/kg	mg/kg <0.050	2500	2500	2370	2310	94	91	61-130	3	20	
Methyl-tert-butyl ether	ug/kg	mg/kg <0.025	1250	1250	1190	1220	95	97	52-134	2		
Methylene Chloride	ug/kg	mg/kg <0.025	1250	1250	1260	1210	100	96	61-131	4	20	
p-Xylene	ug/kg	mg/kg <0.025	1250	1250	1140	1180	90	93	63-130	3		
Styrene	ug/kg	mg/kg <0.025 mg/kg	1250	1250	1140	1150	91	92	70-130		20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: GLACIER RIDGE Pace Project No.: 40129145

MATRIX SPIKE & MATRIX SP	IKE DUPLICA	TE: 13050	30		1305031							
			MS	MSD								
	4	0129114001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Tetrachloroethene	ug/kg	<0.025 mg/kg	1250	1250	1070	1070	85	85	65-130	0	20	
Toluene	ug/kg	<0.025 mg/kg	1250	1250	1210	1190	96	94	65-130	2	20	
trans-1,2-Dichloroethene	ug/kg	<0.025 mg/kg	1250	1250	1140	1120	91	90	55-130	1	20	
trans-1,3-Dichloropropene	ug/kg	<0.025 mg/kg	1250	1250	1220	1270	98	102	54-130	4	20	
Trichloroethene	ug/kg	<0.025 mg/kg	1250	1250	1190	1140	96	91	70-130	4	20	
Trichlorofluoromethane	ug/kg	<0.025 mg/kg	1250	1250	860	820	67	64	42-150	5	24	
Vinyl chloride	ug/kg	<0.025 mg/kg	1250	1250	847	792	68	63	35-134	7	20	
4-Bromofluorobenzene (S)	%						95	95	53-134			
Dibromofluoromethane (S)	%						104	109	49-157			
Toluene-d8 (S)	%						101	100	61-148			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

EPA 8260

8260 MSV Med Level Normal List

Analysis Method:

Analysis Description:

Project: GLACIER RIDGE

Pace Project No.: 40129145

QC Batch: MSV/32528 QC Batch Method: EPA 5035/5030B

Associated Lab Samples: 40129145009

METHOD BLANK: 1305068 Matrix: Solid Associated Lab Samples: 40129145009 Blank Reporting Parameter Result Limit Qualifiers Units Analyzed 1,1,1,2-Tetrachloroethane <13.7 50.0 03/11/16 08:43 ug/kg 1,1,1-Trichloroethane <14.4 50.0 03/11/16 08:43 ug/kg 1,1,2,2-Tetrachloroethane ug/kg <17.5 50.0 03/11/16 08:43 1,1,2-Trichloroethane ug/kg <20.2 50.0 03/11/16 08:43 1,1-Dichloroethane ug/kg <17.6 50.0 03/11/16 08:43 1,1-Dichloroethene ug/kg <17.6 50.0 03/11/16 08:43 1,1-Dichloropropene ug/kg <14.0 50.0 03/11/16 08:43 23.3J 50.0 03/11/16 08:43 1,2,3-Trichlorobenzene ug/kg 1,2,3-Trichloropropane ug/kg <22.3 50.0 03/11/16 08:43 1.2.4-Trichlorobenzene ug/kg <47.6 250 03/11/16 08:43 1,2,4-Trimethylbenzene <12.2 50.0 03/11/16 08:43 ug/kg <91.2 250 1,2-Dibromo-3-chloropropane ug/kg 03/11/16 08:43 1.2-Dibromoethane (EDB) <14.7 50.0 03/11/16 08:43 ug/kg 50.0 1,2-Dichlorobenzene <16.2 03/11/16 08:43 ug/kg 50.0 1,2-Dichloroethane ug/kg <15.0 03/11/16 08:43 1,2-Dichloropropane ug/kg <16.8 50.0 03/11/16 08:43 1,3,5-Trimethylbenzene ug/kg <14.5 50.0 03/11/16 08:43 1,3-Dichlorobenzene ug/kg <13.2 50.0 03/11/16 08:43 <12.0 50.0 03/11/16 08:43 1,3-Dichloropropane ug/kg 50.0 03/11/16 08:43 1,4-Dichlorobenzene ug/kg <15.9 2,2-Dichloropropane ug/kg <12.6 50.0 03/11/16 08:43 2-Butanone (MEK) <124 250 03/11/16 08:43 ug/kg 2-Chlorotoluene ug/kg <15.8 50.0 03/11/16 08:43 4-Chlorotoluene <13.0 50.0 03/11/16 08:43 ug/kg Benzene <9.2 20.0 03/11/16 08:43 ug/kg Bromobenzene ug/kg <20.6 50.0 03/11/16 08:43 Bromochloromethane ug/kg <21.4 50.0 03/11/16 08:43 Bromodichloromethane ug/kg <9.8 50.0 03/11/16 08:43 Bromoform <19.8 50.0 03/11/16 08:43 ug/kg Bromomethane <69.9 250 03/11/16 08:43 ug/kg Carbon tetrachloride ug/kg <12.1 50.0 03/11/16 08:43 ug/kg Chlorobenzene <14.8 50.0 03/11/16 08:43 Chloroethane ug/kg <67.0 250 03/11/16 08:43 Chloroform ug/kg <46.4 250 03/11/16 08:43 Chloromethane ug/kg <20.4 50.0 03/11/16 08:43 cis-1,2-Dichloroethene ug/kg <16.6 50.0 03/11/16 08:43 50.0 03/11/16 08:43 cis-1,3-Dichloropropene ug/kg <16.6 Dibromochloromethane ug/kg <17.9 50.0 03/11/16 08:43 Dibromomethane ug/kg <19.3 50.0 03/11/16 08:43 Dichlorodifluoromethane <12.3 50.0 03/11/16 08:43 ug/kg Diisopropyl ether ug/kg <17.7 50.0 03/11/16 08:43

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: GLACIER RIDGE Pace Project No.: 40129145

METHOD BLANK: 1305068		Matrix:	Solid		
Associated Lab Samples: 40129145	5009				
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Ethylbenzene	ug/kg	<12.4	50.0	03/11/16 08:43	
Hexachloro-1,3-butadiene	ug/kg	<24.5	50.0	03/11/16 08:43	
Isopropylbenzene (Cumene)	ug/kg	<12.6	50.0	03/11/16 08:43	
m&p-Xylene	ug/kg	<34.4	100	03/11/16 08:43	
Methyl-tert-butyl ether	ug/kg	<12.7	50.0	03/11/16 08:43	
Methylene Chloride	ug/kg	<16.2	50.0	03/11/16 08:43	
n-Butylbenzene	ug/kg	<10.5	50.0	03/11/16 08:43	
n-Propylbenzene	ug/kg	<11.6	50.0	03/11/16 08:43	
Naphthalene	ug/kg	<40.0	250	03/11/16 08:43	
o-Xylene	ug/kg	<14.0	50.0	03/11/16 08:43	
p-Isopropyltoluene	ug/kg	<12.0	50.0	03/11/16 08:43	
sec-Butylbenzene	ug/kg	<11.9	50.0	03/11/16 08:43	
Styrene	ug/kg	<9.0	50.0	03/11/16 08:43	
tert-Butylbenzene	ug/kg	<9.5	50.0	03/11/16 08:43	
Tetrachloroethene	ug/kg	<12.9	50.0	03/11/16 08:43	
Toluene	ug/kg	<11.2	50.0	03/11/16 08:43	
trans-1,2-Dichloroethene	ug/kg	<16.5	50.0	03/11/16 08:43	
trans-1,3-Dichloropropene	ug/kg	<14.4	50.0	03/11/16 08:43	
Trichloroethene	ug/kg	<23.6	50.0	03/11/16 08:43	
Trichlorofluoromethane	ug/kg	<24.7	50.0	03/11/16 08:43	
Vinyl chloride	ug/kg	<21.1	50.0	03/11/16 08:43	
4-Bromofluorobenzene (S)	%	99	53-134	03/11/16 08:43	
Dibromofluoromethane (S)	%	105	49-157	03/11/16 08:43	
Toluene-d8 (S)	%	93	61-148	03/11/16 08:43	

LABORATORY CONTROL SAMPLE: 1305069

LADORATORT CONTROL SAMI EL.	1303003					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/kg	2500	2580	103	70-130	
1,1,2,2-Tetrachloroethane	ug/kg	2500	2690	108	70-130	
1,1,2-Trichloroethane	ug/kg	2500	2730	109	70-130	
1,1-Dichloroethane	ug/kg	2500	1970	79	70-130	
1,1-Dichloroethene	ug/kg	2500	1940	78	70-132	
1,2,4-Trichlorobenzene	ug/kg	2500	2430	97	70-130	
1,2-Dibromo-3-chloropropane	ug/kg	2500	2190	88	45-150	
I,2-Dibromoethane (EDB)	ug/kg	2500	2720	109	70-130	
1,2-Dichlorobenzene	ug/kg	2500	2580	103	70-130	
,2-Dichloroethane	ug/kg	2500	2570	103	70-134	
1,2-Dichloropropane	ug/kg	2500	2800	112	70-130	
,3-Dichlorobenzene	ug/kg	2500	2550	102	70-130	
1,4-Dichlorobenzene	ug/kg	2500	2560	102	70-130	
Benzene	ug/kg	2500	2780	111	70-130	
Bromodichloromethane	ug/kg	2500	2410	97	70-130	
Bromoform	ug/kg	2500	2190	88	48-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: GLACIER RIDGE

Pace Project No.: 40129145

LABORATORY CONTROL SAMPLE: 1305069

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Bromomethane	ug/kg	2500	2380	95	70-169	
Carbon tetrachloride	ug/kg	2500	2460	98	67-130	
Chlorobenzene	ug/kg	2500	2740	109	70-130	
Chloroethane	ug/kg	2500	2280	91	70-191	
Chloroform	ug/kg	2500	2590	104	70-130	
Chloromethane	ug/kg	2500	2300	92	52-132	
is-1,2-Dichloroethene	ug/kg	2500	2650	106	70-130	
is-1,3-Dichloropropene	ug/kg	2500	2450	98	70-130	
Dibromochloromethane	ug/kg	2500	2390	95	65-130	
Vichlorodifluoromethane	ug/kg	2500	1440	58	12-150	
thylbenzene	ug/kg	2500	2820	113	70-130	
opropylbenzene (Cumene)	ug/kg	2500	2840	114	70-130	
&p-Xylene	ug/kg	5000	5770	115	70-130	
ethyl-tert-butyl ether	ug/kg	2500	1940	78	70-130	
ethylene Chloride	ug/kg	2500	2110	84	70-131	
Xylene	ug/kg	2500	2800	112	70-130	
yrene	ug/kg	2500	2980	119	70-130	
etrachloroethene	ug/kg	2500	2460	98	70-130	
oluene	ug/kg	2500	2920	117	70-130	
ans-1,2-Dichloroethene	ug/kg	2500	2110	84	69-130	
ans-1,3-Dichloropropene	ug/kg	2500	2520	101	65-130	
richloroethene	ug/kg	2500	2610	104	70-130	
richlorofluoromethane	ug/kg	2500	2260	91	50-150	
inyl chloride	ug/kg	2500	2490	99	67-134	
-Bromofluorobenzene (S)	%			104	53-134	
ibromofluoromethane (S)	%			104	49-157	
oluene-d8 (S)	%			113	61-148	

MATRIX SPIKE & MATRIX SP	IKE DUPLICA	TE: 13050	70		1305071							
			MS	MSD								
	40	0129145009	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1,1-Trichloroethane	ug/kg	<25.0	1250	1250	1160	1170	93	94	63-130	1	20	
1,1,2,2-Tetrachloroethane	ug/kg	<25.0	1250	1250	1360	1320	109	106	57-136	3	20	
1,1,2-Trichloroethane	ug/kg	<25.0	1250	1250	1330	1320	106	105	70-130	1	20	
1,1-Dichloroethane	ug/kg	<25.0	1250	1250	1080	1360	86	108	62-131	23	23	
1,1-Dichloroethene	ug/kg	<25.0	1250	1250	1220	838	97	67	42-137	37	20	R1
1,2,4-Trichlorobenzene	ug/kg	<47.6	1250	1250	1320	1330	104	105	59-137	1	21	
1,2-Dibromo-3- chloropropane	ug/kg	<91.2	1250	1250	1230	1240	98	99	33-150	1	25	
1,2-Dibromoethane (EDB)	ug/kg	<25.0	1250	1250	1240	1250	99	100	70-130	0	20	
1,2-Dichlorobenzene	ug/kg	<25.0	1250	1250	1320	1310	105	105	70-130	1	20	
1,2-Dichloroethane	ug/kg	<25.0	1250	1250	1160	1280	93	103	68-134	10	20	
1,2-Dichloropropane	ug/kg	<25.0	1250	1250	1150	1390	92	111	70-130	19	20	
1,3-Dichlorobenzene	ug/kg	<25.0	1250	1250	1270	1260	101	101	70-130	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, Inc. 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

QUALITY CONTROL DATA

Project: GLACIER RIDGE

Pace Project No.: 40129145

MATRIX SPIKE & MATRIX SPI	ATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1305070				1305071							
			MS	MSD								
	40	0129145009	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,4-Dichlorobenzene	ug/kg	<25.0	1250	1250	1310	1300	105	104	69-130	1	20	
Benzene	ug/kg	<25.0	1250	1250	1130	1380	90	110	56-131	20	20	
Bromodichloromethane	ug/kg	<25.0	1250	1250	1230	1230	98	98	64-130	0	20	
Bromoform	ug/kg	<25.0	1250	1250	1130	1140	90	91	48-130	1	20	
Bromomethane	ug/kg	<69.9	1250	1250	1080	1120	87	90	18-169	4	23	
Carbon tetrachloride	ug/kg	<25.0	1250	1250	1190	1090	96	88	59-130	9	20	
Chlorobenzene	ug/kg	<25.0	1250	1250	1300	1290	104	103	70-130	1	20	
Chloroethane	ug/kg	<67.0	1250	1250	1070	984	85	79	10-191	8	20	
Chloroform	ug/kg	<46.4	1250	1250	1190	1300	95	104	65-130	8	20	
Chloromethane	ug/kg	<25.0	1250	1250	1040	1030	83	82	36-132	1	20	
cis-1,2-Dichloroethene	ug/kg	453	1250	1250	1590	1740	91	103	59-136	9	24	
cis-1,3-Dichloropropene	ug/kg	<25.0	1250	1250	1170	1250	93	100	60-130	7	20	
Dibromochloromethane	ug/kg	<25.0	1250	1250	1180	1220	94	98	59-130	4	20	
Dichlorodifluoromethane	ug/kg	<25.0	1250	1250	626	593	50	47	10-150	5	27	
Ethylbenzene	ug/kg	<25.0	1250	1250	1300	1280	104	103	64-130	1	20	
Isopropylbenzene (Cumene)	ug/kg	<25.0	1250	1250	1280	1240	102	99	69-138	3	20	
m&p-Xylene	ug/kg	<50.0	2500	2500	2640	2580	104	102	61-130	2	20	
Methyl-tert-butyl ether	ug/kg	<25.0	1250	1250	1410	1030	113	82	52-134	31	20	R1
Methylene Chloride	ug/kg	<25.0	1250	1250	1430	1080	115	86	61-131	28	20	R1
o-Xylene	ug/kg	<25.0	1250	1250	1290	1290	102	102	63-130	0	20	
Styrene	ug/kg	<25.0	1250	1250	1380	1360	110	109	70-130	1	20	
Tetrachloroethene	ug/kg	<25.0	1250	1250	1110	1090	88	87	65-130	1	20	
Toluene	ug/kg	<25.0	1250	1250	1070	1350	84	106	65-130	23	20	R1
trans-1,2-Dichloroethene	ug/kg	<25.0	1250	1250	1410	1040	112	82	55-130	31	20	R1
trans-1,3-Dichloropropene	ug/kg	<25.0	1250	1250	1090	1250	87	100	54-130	14	20	
Trichloroethene	ug/kg	<25.0	1250	1250	1200	1240	96	99	70-130	3	20	
Trichlorofluoromethane	ug/kg	<25.0	1250	1250	966	978	77	78	42-150	1	24	
Vinyl chloride	ug/kg	3030	1250	1250	4300	3930	102	72	35-134	9	20	
4-Bromofluorobenzene (S)	%						106	102	53-134			
Dibromofluoromethane (S)	%						108	107	49-157			
Toluene-d8 (S)	%						94	110	61-148			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

QUALIFIERS

Project: GLACIER RIDGE

Pace Project No.: 40129145

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor and percent moisture.

LOQ - Limit of Quantitation adjusted for dilution factor and percent moisture.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-G Pace Analytical Services - Green Bay

PASI-M Pace Analytical Services - Minneapolis

ANALYTE QUALIFIERS

- D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.
- R1 RPD value was outside control limits.
- W Non-detect results are reported on a wet weight basis.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:	GLACIER RIDGE
Pace Project No.:	40129145

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40129145001	GRL-SS-28	EPA 3050	MPRP/61937	EPA 6010C	ICP/27078
40129145002	GRL-SS-29	EPA 3050	MPRP/61937	EPA 6010C	ICP/27078
40129145003	GRL-SS-30	EPA 3050	MPRP/61937	EPA 6010C	ICP/27078
40129145004	GRL-SS-31	EPA 3050	MPRP/61937	EPA 6010C	ICP/27078
40129145005	GRL-SS-32	EPA 3050	MPRP/61937	EPA 6010C	ICP/27078
40129145006	GRL-SS-33	EPA 3050	MPRP/61937	EPA 6010C	ICP/27078
40129145007	GRL-SS-34	EPA 3050	MPRP/61937	EPA 6010C	ICP/27078
40129145008	GRL-SS-35	EPA 3050	MPRP/61937	EPA 6010C	ICP/27078
40129145009	GRL-SS-36	EPA 3050	MPRP/61937	EPA 6010C	ICP/27078
40129145001	GRL-SS-28	ASTM D2974	MPRP/61992		
40129145002	GRL-SS-29	ASTM D2974	MPRP/61992		
40129145003	GRL-SS-30	ASTM D2974	MPRP/61992		
40129145004	GRL-SS-31	ASTM D2974	MPRP/61992		
40129145005	GRL-SS-32	ASTM D2974	MPRP/61992		
40129145006	GRL-SS-33	ASTM D2974	MPRP/61992		
40129145007	GRL-SS-34	ASTM D2974	MPRP/61992		
40129145008	GRL-SS-35	ASTM D2974	MPRP/61992		
40129145009	GRL-SS-36	ASTM D2974	MPRP/61992		
40129145001	GRL-SS-28	EPA 5035/5030B	MSV/32526	EPA 8260	MSV/32527
40129145002	GRL-SS-29	EPA 5035/5030B	MSV/32526	EPA 8260	MSV/32527
40129145003	GRL-SS-30	EPA 5035/5030B	MSV/32526	EPA 8260	MSV/32527
40129145004	GRL-SS-31	EPA 5035/5030B	MSV/32526	EPA 8260	MSV/32527
40129145005	GRL-SS-32	EPA 5035/5030B	MSV/32526	EPA 8260	MSV/32527
40129145006	GRL-SS-33	EPA 5035/5030B	MSV/32526	EPA 8260	MSV/32527
40129145007	GRL-SS-34	EPA 5035/5030B	MSV/32526	EPA 8260	MSV/32527
40129145008	GRL-SS-35	EPA 5035/5030B	MSV/32526	EPA 8260	MSV/32527
40129145009	GRL-SS-36	EPA 5035/5030B	MSV/32528	EPA 8260	MSV/32530

Version 6.0 06/14/06

C019a(27Jun2006)

Intact / Not Intact	Date/Time:	Received By:	Uate/ I HTTE:			iven idrastica py		special pricing and release of liability	special prici
Cooler Custody Seal						isbod Dur	Dalina	1 Samples on HOI D are subject to	
OK / Adjusted	Date/Time:	Received By:	Date/Time:			Kelinquisned By:	Keiing	367 - 2870	Fax:
Sample Receipt pH			n - 19 Natur a Managana managana man				D	67 - 3/2 - 303 - Cor	
Keceip) 	6	Relinquished By:		MIEZ. FTELOD CORNESTONES/- (or	
1730 - 70-1	sam Rea 319/10	Xot of al	3-9/16 5:30	7	22	Max S		Transmit Prelim Rush Results by (complete what you want):	nit Pre
CHU7NL Fin	Date/Time:							Date Needed:	Date
3 30	Date/Time:	Received By: & S	Date/Time: 3-5-11 / 3:30		FF S	Relinquished By:		Rush Turnaround Time Requested - Prelims (Rush TAT subject to approval/surcharge)	(Rush TAT su
				-					
*				X		3:20	<	-55-36	009 672-
			×	X		3:15	,	-55-35	125 300
			×	X		0 نړ		5×2L-55-34	na Can
				X		3.92		682-55-33	723-900
				XX		3.00		->>-32	122 (20)
			X	X.X		2:55		627-22-31	004 67
			X	XX		2:50		05 -55- 72r	12 COO
-			X	XX		5:45		-55-29	002 682-
1-402 to A 1-40 40 015			7	アメ		10:65	3-5-16	82 - 55-	001 6721
(Lab Use Only)	COMMENTS		Me	V	1	COLLECTION MATRIX DATE TIME MATRIX	DATE	CLIENT FIELD ID	PACE LAB #
AB COMMENTS Brokin #			2013	100	\nah	WW = Waste Water WP = Wipe	i = Soil I = Sludge	your sample	
	Invoice To Phone:		>/ (,TUR	<u>د'ر</u> ا	y 808	GW = Ground Water GW = Ground Water SW = Surface Water) = Oil	(billable)	
Horzan UE, 53032			LAD E		Requ	W = Water	Nat	On your samp	Data Package Options (billable)
21	Invoice To Address:		nIn Corr		iesto		Regulatory Program:		PO #:
X'	Invoice To Company:						4	L \ .	Sampled By (Sign):
Trise Fish, WENER STANE	Invoice To Contact:		P	F A	Pick Latter	PRESERVATION (CODE)*	FILE	A.G.F. A.STEN	Sampled By (Print):
ч. Жалана қа			2	ح بح	NIA	FILTERED? (YES/NO)	UT		Project State:
	Mail To Address:		ľ		ulfate Solutio	H=Sodium Bisulfate Solution	265	GLACIEZ REI	Project Name:
	Mail To Company:	hanol G=NaOH	Preservation Codes D=HNO3 E≃DI Water F=Methanol	"Prese C=H2SO4 D=HN	B=HCL C=F	A=None B			Project Number:
	Mail To Contact:	ODY	CUST	AIN OF	CHA	-		720-362-3870	Phone:
Pag	Quote #:			to the production			•	NILUX STURZL	Project Contact:
5 416010h			ace Analytical	Analyt	face.			GITEN BAR UI	Branch/Location:
- df 39	MN: 612-607-1700 WI: 920-469-2436	MN: 612-607-1700		•				Cam I've	Company Name:
Page 1 of	REGION	UPPER MIDWEST REGION						(Please Print Clearly)	(P

	Sample Con	dition Upon Rec	eipt	Pace Analytical Services 1241 Bellevue Street, S Green Bay, WI
Pace Analytical Client Name:	en en ogeneral af frægere I	Project #	WO# : 4	40129145
Courier: Fed Ex F UPS K Client F I	Pace Other:			
Custody Seal on Cooler/Box Present: Ty	es K no Seals in		40129145	
Custody Seal on Samples Present: T ves	no Seals in	tact: E vos E no	Liniairen	
Packing Material: T Bubble Wrap	ubble Bags 「	None Cother		
Thermometer Used _///A	(Ve) Blue Dry None		n ice, cooling process has begun
Cooler Temperature Uncorr: ROT /Cor	r:B	iological Tissue is Fr	-	
Temp Blank Present: yes no Temp should be above freezing to 6°C for all sample	numeral Dista		Γno	Person examining contents: Date: 370-16
Frozen Biota Samples should be received < 0°C.	ехсерт вюта.	Comments:		Initials:
Chain of Custody Present:	∏fre s ⊡No ⊡]N/A 1.		
Chain of Custody Filled Out:	∭ YYes ⊡No □]N/A 2.		
Chain of Custody Relinquished:	ØYes □No □			
Sampler Name & Signature on COC:	Øryes □No □			
Samples Arrived within Hold Time:	ØYes □No □			
- VOA Samples frozen upon receipt				
Short Hold Time Analysis (<72hr):		Date/Time:		
Rush Turn Around Time Requested:			4	
Sufficient Volume:		N/A 7.		
Correct Containers Used:	¥QYes ⊡No ⊡	1		
		N/A 9.		
-Pace Containers Used:	₩yes □No □	N/A		
-Pace IR Containers Used:		Ň7A		
Containers Intact:	ØYes □No □	N/A 10.		······
Filtered volume received for Dissolved tests	□Yes □No 🏹	NA 11.		
Sample Labels match COC:	Yes No DI	N/A 12.		
-Includes date/time/ID/Analysis Matrix:	<u> </u>			
All containers needing preservation have been checke (Non-Compliance noted in 13.)	ed. □Yes □No 🚺		F H2SO4 r	NaOH T NaOH +ZnAct
All containers needing preservation are found to be in				
compliance with EPA recommendation. HNO3, H2SO4 ≤2; NaOH+ZnAct ≥9, NaOH ≥12)	□Yes □No Ø	TA		
exceptions: VOA, coliform, TOC, TOX, TOH,		1 1	Lab Std #ID of	Date/
			preservative	Time:
leadspace in VOA Vials (>6mm):				
Frip Blank Present:	v	VA 15.		
Frip Blank Custody Seals Present	🗆 Yes 🗆 No 🗖	1/A		
Pace Trip Blank Lot # (if purchased):			L	
Person Contacted:	Dat	lf c e/Time:	necked, see attach	ed form for additional comments
Comments/ Resolution:	24			
		<u> </u>	<u></u>	11
Project Manager Review:	KINIT	MUV MW	Date:	210/10

Attachment E

VOC Mass Removal Calculations

Land and Gas Reclamation Landfill Volatile Organic Compound (VOC) Mass Removal Calculations

Waste Removal - Typical Waste

				Estimated	
	Typical Waste	Waste		Average VOC	
	Volume	Density	Waste Mass	Concentration	VOC Mass
Phase	(cubic yards)	(lb/cy)	(tons)	(mg/kg)	(lb)
A	584,394	1,200	350,636	38	26,648
В	413,758	1,200	248,255	38	18,867
С	301,252	1,200	180,751	38	13,737
Total	1,299,404		779,642		59,253

Notes:

1. Waste volumes from waste removal documentation reports.

2. Estimated average VOC concentration is t he median total VOC concentration

from the waste characterization boring samples collected in 2006.

3. Dry density of waste is 1,200 pounds per cubic yard

Waste Removal - Suspicious Waste

				Estimated	
	Suspicious Waste	Waste		Average VOC	
	Volume (cubic	Density	Waste Mass	Concentration	VOC Mass
Phase	yards)	(lb/cy)	(tons)	(mg/kg)	(lb)
A	120	1,200	72	14	2
В	20,472	1,200	12,283	38	934
С	8,410	1,200	5,046	38	383
Total	29,002		17,401		1,319

Notes:

1. Waste volumes from waste removal documentation reports.

2. For Phase A, estimated average VOC concentration is the average of samples collected from the Phase A suspicious waste.

3.Suspicious waste from Phases B and C was not separately sampled (field screened only); therefore, estimated average VOC concentration is the median total VOC concentration from the waste characterization boring samples collected in 2006.

4. Dry density of waste is 1,200 pounds per cubic yard

Land and Gas Reclamation Landfill Volatile Organic Compound (VOC) Mass Removal Calculations

Soil Removal

Soil Excavation to Subbase

	Contaminated Soil			Estimated	
	Excavation to	Assumed Soil		Average VOC	
	Subbase	Density	Soil Mass	Concentration	VOC Mass
Phase	(cubic yards)	(lb/cy)	(tons)	(mg/kg)	(lb)
A	8,497	3,100	13,170	18	474
В	89,014	3,100	137,972	10	2,759
С	44,000	3,100	68,200	141	19,232
Total	141,511		219,342		22,466

Notes:

- 1. Contaminated soil volumes for Phases A and B from waste removal documentation reports.
- 2. Contaminated soil volume for Phase C was not in the waste removal documentation report, so it was estimated from the total expected soil excavation volume from the 2013 Plan of Operation, Plan Sheet 10 (133,600 cubic yards), and the percent of Phase C samples that exceeded NR 702 standards (32%).
- 3. Estimated average VOC concentration for each phase is based on post-waste-removal samples collected from test pits excavated from the soil surface below the waste to the approximate subbase grades for the GRL liner.
- 4. Dry density of soil is 3,100 pounds per cubic yard (based on test results for till in GRL 2010 Feasibility Report)

				Estimated	
	DNR Over	Assumed Soil		Average VOC	
	Excavation	Density	Soil Mass	Concentration	VOC Mass
Phase	(cubic yards)	(lb/cy)	(tons)	(mg/kg)	(lb)
A	570	3,100	884	207	366
В	800	3,100	1,240	158	392
С	2,856	3,100	4,427	4	35
Total	4,226		6,550		793

Targeted DNR Over Excavation Below Subbase

Notes:

- 1. Contaminated soil volumes from waste removal documentation reports.
- 2. Estimated average VOC concentration for Phases A and B are based on samples collected from test pits and confirmation samples collected in the additional excavation area.
- 3. Estimated average VOC concentration for Phase C are based on confirmation samples collected in the additional excavation area.
- 4. Dry density of soil is 3,100 pounds per cubic yard (based on test results for till in GRL 2010 Feasibility Report)

Total Waste VOCs (lb), rounded	61,000
Total Soil VOCs (lb), rounded	23,000
Total Waste and Soil VOCs (lb)	84,000

I:\25221008.02\Deliverables\Changed Conditions Memo\E - VOC Calcs\[Mass removal calculation_v0.6.xlsx]Totals

Pre-Removal Waste and Soil Analytical Results Summary - VOCs

Land and Gas Reclamation Landfill

(Results are in mg/kg, except where noted otherwise)

Sample	WC1	WC1	WC2	WC2	WC2	WC2	WC2	WC3	WC3	WC3	WC4	WC4	WC4	WC5	WC5	WC5	WC6	WC6	WC6	WC7	WC7	WC7	WC8	WC8	WC8
Date	8/31/06	8/31/06	8/31/06	8/31/06	8/31/06	1/10/07	1/10/07	8/31/06	8/31/06	8/31/06	8/31/06	8/31/06	8/31/06	8/31/06	8/31/06	8/31/06	8/31/06	8/31/06	8/31/06	8/30/06	8/30/06	8/30/06	8/29/06	8/29/06	1/9/07
Surface Elevation	947.5	947.5	957.4	957.4	957.4	957.4	957.4	993.9	993.9	993.9	985.5	985.5	985.5	977.9	977.9	977.9	1007.4	1007.4	1007.4	991.9	991.9	991.9	997.2	997.2	997.2
Depth (feet)		21	8-10	25-30	32	35-36.5	40-41.5	30-35	45-50	53	20-25	35-40	48	15-20	50-55	62	30-35	40-45	60-63	10-15	35-40	48	15-20	50	52.5-54
Sample Elevation		927	948	930	925	922	917	961	946	941	963	948	938	960	925	916	975	965	946	979	954	944	980	947	944
Approx High Water Table El.	928	928	928	928	928	928	928	929	929	929	931	931	931	931	931	931	934	934	934	935	935	935	941	941	941
Matrix	Paint Waste	Soil	Waste	Waste	Soil	Soil	Soil	Waste	Waste	Soil	Waste	Waste	Soil	Waste	Waste	Soil	Waste	Waste	Soil	Waste	Waste	Soil	Waste	Soil	Soil
Below WT Photoionization Detector (ppm)		Sat 	 281	20	Sat 2	Sat 4	Sat 9	 525	25		 226	 293	 25	239	Sat 1,280	Sat 62	229	 175	250	 230	 215	 60	 450	 3,700	217
Diesel Range Organics	32.100	<4.25	1.660	247	18.2	- - <3.75	, 34.1	1.140	60	8.12	2.780	2,670	15.9	3.250	1,590	31.5	2.980	2,300	370	3,910	1,480	62.5	3,010	146	<3.82
Gasoline Range Organics	5,360	<5.00	209	11.3	<5.00	<100	<u> </u>	370	9.39	6.56	134	332	< 5.00	202	1,130	7.03	313	107	31.2	160	106	<5.00	157	60.5	1,100
VOCs	0,000		207	11.0				0/0	/.0/	0.00						,	•••		• • • =						
Benzene	<8.00	<0.016	<0.160	0.168	<0.016	<0.016	<0.016	<1.60	<0.080	<0.016	<2.24	<0.320	<0.016	<0.160	<3.20	0.088	<0.160	<0.080	<0.016	<0.080	<0.080	<0.016	<0.320	<0.800	<3.20
n-Butylbenzene	65.3	< 0.024	< 0.240	< 0.041	< 0.024	< 0.024	< 0.024	<2.40	<0.120	0.058	<3.36	<0.480	< 0.024	<0.240	<4.80	0.167	<0.240	<0.120	< 0.024	1.24	<0.120	< 0.024	<0.480	<1.20	<4.80
sec-Butylbenzene	<10.5	<0.021	1.77	0.124	<0.021	<0.021	<0.021	<2.10	<0.105	<0.021	31.8	6.29	0.075	3.940	<4.20	<0.021	2.55	2.86	<0.021	<0.105	<0.105	<0.021	<0.420	<1.05	<4.20
Chloroethane	<10.0	<0.020	<0.200	<0.020	<0.020	<0.020	<0.020	<2.00	<0.100	<0.020	<2.80	<0.400	<0.020	<0.200	<4.00	<0.020	<0.200	<0.100	<0.020	<0.100	<0.100	<0.020	<0.400	<1.00	<4.00
1,2-Dichlorobenzene	<7.50	<0.015	1.01	<0.015	<0.015	<0.015	<0.015	<1.50	<0.075	<0.015	<2.10	<0.300	<0.015	<0.150	<3.00	<0.015	<0.150	<0.075	<0.015	<0.075	<0.075	<0.015	<0.300	<0.750	<3.00
1,4-Dichlorobenzene	<9.50	<0.019	<0.190	0.108	<0.019	<0.019	<0.019	<1.90	<0.095	<0.019	22.1	1.46	<0.019	1.47	<3.80	<0.019	2.13	<0.095	<0.019	1.33	0.928	<0.019	<0.380	<0.950	<3.80
1,1-Dichloroethane	<12.5	<0.025	<0.250	0.053	<0.025	<0.025	<0.025	<2.50	<0.125	<0.025	<3.50	<0.500	<0.025	<0.250	<5.00	<0.025	<0.250	<0.125	<0.025	<0.125	<0.125	<0.022	<0.500	<1.25	<5.00
cis-1,2-Dichloroethylene	<11.0	<0.022	<0.220	0.091	0.064	0.092	0.041	<2.20	<0.110	<0.022	<3.08	<0.440	<0.022	<0.220	<4.40	0.600	<0.220	<0.110	<0.022	<0.110	<0.110	<0.022	<0.440	1.80	5.92
Ethylbenzene	422	0.217	5.29	0.419	<0.018	0.087	0.113	20.5	0.581	0.313	26.7	2.97	<0.018	3.34	25.2	0.790	4.09	1.62	0.283	1.57	0.75	0.029	2.9	1.94	5.13
Isopropylbenzene	24.2	<0.017	<0.170	<0.017	<0.017	<0.017	<0.017	<1.70	<0.085	<0.017	<2.38	<0.340	<0.017	<0.170	<3.40	0.038	<0.170	<0.085	0.090	<0.085	<0.085	<0.017	<0.340	<0.850	<3.40
p-lsopropyltoluene	<12.0	<0.024	<0.240	<0.024	<0.024	<0.024	<0.024	4.77	<0.120	<0.024	<3.36	47.4	0.163	<0.240	<4.80	<0.024	<0.240	<0.120	0.189	<0.120	<0.120	0.122	<0.480	<1.20	<4.80
Methylene Chloride	<9.50	<0.019	<0.190	<0.019	<0.019	<0.019	<0.019	<1.90	<0.095	<0.019	<2.66	<0.380	<0.019	<0.190	<3.80	<0.019	<0.190	<0.095	<0.019	<0.095	<0.095	<0.019	<0.380	<0.950	<3.80
Naphthalene	178	<0.018	0.283	0.091	<0.018	<0.018	<0.018	3.13	<0.090	0.039	71.7	2.3	<0.018	7.48	6.23	<0.018	2.03	5.90	0.134	2.37	1.03	<0.018	<0.360	<0.900	<3.60
n-Propylbenzene	30.4	<0.021	0.977	0.056	<0.021	<0.021	0.036	6.00	<0.105	0.096	16.9	3.40	<0.021	1.51	13.4	0.104	1.17	1.42	0.091	1.25	0.745	<0.021	<0.420	<1.05	<4.20
Styrene	<7.50	<0.015	<0.150	<0.015	<0.015	<0.015	<0.015	<1.50	<0.075	<0.015	10.2	2.05	<0.015	2.00	<3.00	<0.015	4.86	0.242	<0.015	0.497	0.410	<0.015	1.53	<0.750	<3.00
Tetrachloroethylene	<11.5	<0.023	<0.230	0.039	<0.023	<0.023	<0.023	<2.30	<0.115	<0.023	<u>26.8</u>	4.11	<0.023	2.70	<4.60	<0.023	3.74	0.312	0.029	0.233	0.433	<0.023	0.96	<1.15	<4.60
Toluene	39.6	<0.017	13.7	0.617	<0.017	0.105	0.234	8.91	0.210	0.174	103	20.1	0.061	10.5	111	0.381	7.02	1.23	0.933	4.62	1.75	0.036	8.54	2.29	<3.40
Trichloroethylene	<11.5	<0.023	<0.230	0.292	0.042	0.115	0.035	<2.30	<0.115	<0.023	8.95	1.75	<0.023	0.338	<4.60	<0.023	0.548	<0.115	<0.023	<0.115	<0.115	<0.023	<0.460	<u>71.6</u>	<u>59.6</u>
Trichlorofluoro-methane	<12.5	<0.025	<0.250	< 0.025	<0.025	< 0.025	< 0.025	<2.50	<0.125	< 0.025	<3.50	0.799	<0.025	<0.250	<5.00	<0.025	<0.250	<0.125	< 0.025	<0.125	<0.125	<0.025	<0.500	<1.25	<5.00
1,2,4-Trimethylbenzene	156	<0.013	5.47	0.161	<0.013	0.059	0.057	35.8	1.12	0.694	32.3	4.23	<0.013	3.68	136	0.435	3.62	3.98	0.226	4.01	2.4	0.062	2.44	<0.650	<2.60
1,3,5-Trimethylbenzene	53.5	<0.018	1.96	0.113	<0.018	0.035	0.034	10.7	0.357	0.186	11.4	3.27	<0.018	3.09	33.8	0.140	6.29	1.51	0.163	1.74	1.07	0.051	1.62	<0.900	<3.60
Vinyl Chloride	<12.0	< 0.024	< 0.240	< 0.024	<0.024	< 0.024	< 0.024	<2.40	< 0.120	< 0.024	<3.36	<0.480	<0.024	< 0.240	<4.80	< 0.024	< 0.240	< 0.120	< 0.024	< 0.120	< 0.120	< 0.024	<0.480	<1.20	<4.80
Xylenes	2,254	0.061	24.97	1.887	< 0.037	0.396	0.459	94.2	2.699	1.584	80.9	10.76	< 0.037	10.3	166.1	0.803	13.43	5.52	0.943	6.28	2.368	0.121	10.9	6.31	10.4
Total VOCs	3,223	0.278	55.43	4.219	0.106	0.889	1.009	184	4.967	3.144	442.8	110.9	0.299	50.35	491.7	3.546	51.48	24.59	3.081	25.14	11.88	0.421	28.89	83.94	81.05

Total VOC Results by Material/Location Category

Boring/Test Pit	WC1	WC1	WC2	WC2	WC2	WC2	WC2	WC3	WC3	WC3	WC4	WC4	WC4	WC5	WC5	WC5	WC6	WC6	WC6	WC7	WC7	WC7	WC8	WC8	WC8
Sample Elevation		926.5	948.4	929.9	925.4	921.65	916.65	961.4	946.4	940.9	963	948	937.5	960.4	925.4	915.9	974.9	964.9	945.9	979.4	954.4	943.9	979.7	947.2	943.95
Paint	3,223																								
Waste			55.43	4.219				184.01	4.967		442.75	110.889		50.348	491.73		51.478	24.594		25.14	11.884		28.89		í – – – – – – – – – – – – – – – – – – –
Soil		0.278			0.106	0.889	1.009			3.144			0.299			3.546			3.081			0.421		83.94	81.05
Soil Phase A		0.278			0.106	0.889	1.009			3.144			0.299			3.546									í – – – – – – – – – – – – – – – – – – –
Soil Phase B																			3.081			0.421			í – – – – – – – – – – – – – – – – – – –
Soil Phase C																								83.94	81.05

Pre-Removal Waste and Soil Analytical Results Summary - VOCs

Land and Gas Reclamation Landfill

(Results are in mg/kg, except where noted otherwise)

WC8	WC8	WC9	WC9	WC10	WC10	WC10	WC10	WC10	WC10	WC10	WC10	WC11	WC11	WC11	WC12	WC12	WC12	WC13	WC13	WC13	WC14	WC14	WC14	WC15
1/9/07	1/9/07	8/29/06	8/29/06	8/29/06	8/29/06	1/2/07	1/2/07	1/2/07	1/3/07	1/3/07	1/4/07	8/29/06	8/29/06	8/29/06	8/30/06	8/30/06	8/30/06	8/31/06	8/31/06	8/31/06	8/29/06	8/29/06	8/29/06	1/11/07
997.2	997.2	1001.3	1001.3	1009.4	1009.4	1009.4	1009.4	1009.4	1009.4	1009.4	1009.4	1009.7	1009.7	1009.7	1000	1000	1000	987.2	987.2	987.2	991.4	991.4	991.4	942.91
		40-45	51	40-45	61	65	70	74	79	84	89	25-30	55-60	60	10-15	25-30	56	25-30	45-50	53	5-10	30-35	43	5-6.5
																								937
																								927
					2011							vv aste		2011								vv aste		Soil
2	1	540	240	490	1,830	610	244	83	2	5	1	425	535	110	230	210	475	297	745	172	350	3,000	500	123
<3.68	<3.73	1,980	279	4,660	6,130	3,570	19.4	14	<4.18	<4.26	<4.44	2,320	7,460	42.7	1,020	1,920	582	1,280	1,340	4.08	3,960	1,600	55	73.6
<100	<100	146	34.7	159	3,720	4,890	116	<5.00	11.2	<100	<100	209	167	<5.00	75.7	199	277	129	108	NA	266	922	6.47	101
<0.016	<0.016	<0.320	<0.080	<0.320	<1.60	<3.20	<0.080	<0.016	0.048	<0.016	<0.016	<0.320	<0.320	<0.016	<0.080	<0.080	<0.080	<0.320	<0.320	<0.080	<0.320	<1.60	<0.016	<0.016
<0.024	<0.024	<0.480	<0.120	<0.480	11.3	<4.80	<0.120	<0.024	<0.024	<0.024	<0.024	<0.480	<0.480	< 0.024	<0.120	<0.120	1.17	<0.480	<0.480	< 0.120	<0.480	<2.40	<0.024	<0.024
<0.021	<0.021	<0.420	<0.105	<0.420	<2.10	60.7	<0.105	0.066	<0.021	<0.021	<0.021	<0.420	<0.420	< 0.021	<0.105	<0.105	1.56	<0.420	<0.420	<0.105	<0.420	<2.10	<0.021	0.169
<0.020	<0.020	<0.400	<0.100	<0.400	<2.00	<4.00	<0.100	<0.020	<0.020	<0.020	<0.020	<0.400	<0.400	< 0.020	<0.100	<0.100	<0.105	<0.400	<0.400	<0.100	<0.400	<2.00	<0.020	<0.020
<0.015	<0.015	<0.300	<0.075	<0.300	<1.50	<3.00	<0.075	<0.015	<0.015	<0.015	<0.015	<0.300	<0.300	< 0.015	<0.075	<0.075	<0.075	<0.300	1.55	<0.075	<0.300	<1.50	<0.015	<0.015
<0.019	<0.019	2.35	<0.095	1.94	<1.90	<3.80	<0.095	<0.019	<0.019	<0.019	<0.019	2.83	1.74	< 0.01	0.483	1.95	<0.095	<0.380	<0.380	<0.095	<0.380	<1.90	<0.019	<0.019
<0.025	<0.025	<0.500	<0.125	<0.500	<2.50	<5.00	<0.125	0.050	0.062	<0.025	<0.025	<0.500	<0.500	< 0.025	<0.125	<0.125	<0.125	<0.500	<0.500	<0.125	<0.500	<2.50	<0.025	<0.025
<0.022	<0.022	<0.440	2.63	<0.440	10.5	17.7	5.08	0.074	0.183	<0.022	<0.022	<0.440	<0.440	0.148	0.502	<0.110	0.584	<0.440	<0.440	<0.110	<0.440	<2.20	<0.022	<0.022
<0.018	<0.018	2.73	0.476	2.62	19.7	42.5	0.671	<0.018	0.157	<0.018	<0.018	2.71	6.14	0.131	0.558	1.99	10.9	2.23	6.32	0.393	1.69	70.7	0.099	0.162
<0.017	<0.017	<0.340	<0.085	<0.340	<1.70	<3.40	<0.085	<0.017	<0.017	<0.017	<0.017	<0.340	<0.340	< 0.017	<0.085	<0.085	<0.085	<0.340	<0.340	<0.085	<0.340	5.21	<0.017	<0.017
<0.024	<0.024	<0.480	<0.120	<0.480	46.1	<4.80	<0.120	<0.024	<0.024	<0.024	<0.024	<0.480	<0.480	< 0.024	<0.120	<0.120	2.21	<0.480	2.07	<0.120	<0.480	10.7	<0.024	<0.024
<0.019	<0.019	<0.380	<0.095	<0.380	<1.90	<3.80	<0.095	<0.019	<0.019	<0.019	<0.019	<0.380	<0.380	< 0.019	<0.095	0.179	<0.095	0.860	<0.380	<0.095	<0.380	<1.90	<0.019	<0.019
<0.018	<0.018	<0.360	<0.090	3.92	<1.80	<3.60	<0.090	<0.018	<0.018	<0.018	<0.018	2.53	<0.360	<0.018	1.19	0.927	0.864	1.09	<0.360	<0.090	<0.360	<1.80	<0.018	0.072
<0.021	<0.021	<0.420	<0.105	<0.420	<2.10	<4.20	<0.105	<0.021	0.049	<0.021	<0.021	1.32	<0.420	< 0.021	<0.105	0.889	1.54	<0.420	<0.420	<0.105	<0.420	14.9	<0.021	<0.021
<0.015	<0.015	<0.300	<0.075	<0.300	<1.50	<3.00	<0.075	<0.015	<0.015	<0.015	<0.015	2.77	0.978	< 0.015	0.309	1.04	<0.075	1.10	<0.300	<0.075	<0.300	<1.50	<0.015	<0.015
<0.023	<0.023	<0.460	<0.115	<0.460	11.3	13.6	<0.115	<0.023	0.075	<0.023	<0.023	<0.460	<0.460	0.023	6.53	0.888	1.49	<0.460	<0.460	<0.115	<0.460	10.2	<0.023	<0.023
<0.017	<0.017	2.84	0.784	11.2	17.9	35	0.215	0.678	0.479	<0.017	<0.017	8.79	16.8	0.367	2.18	7.93	4.75	28.3	13.2	1.81	1.65	49.5	0.265	0.840
0.146	<0.023	<0.460	<0.115	<0.460	<2.30	<4.60	<0.115	<0.023	<0.023	<0.023	<0.023	<0.460	<0.460	< 0.023	0.462	0.322	2.60	<0.460	<0.460	<0.115	<0.460	<2.30	<0.023	<0.023
<0.025	<0.025	<0.500	<0.125	<0.500	<2.50	<5.00	<0.125	<0.025	<0.025	<0.025	<0.025	<0.500	<0.500	< 0.025	0.932	<0.125	<0.125	<0.500	<0.500	<0.125	<0.500	<2.50	<0.025	<0.025
<0.013	<0.013	2.06	0.517	5.65	20.8	<2.60	<0.065	<0.013	0.089	<0.013	<0.013	4.99	2.07	0.032	1.17	2.0	4.81	2.72	1.48	<0.065	3.71	56.7	0.056	0.086
<0.018	<0.018	0.835	0.511	1.97	<1.80	44	<0.090	<0.018	0.052	<0.018	<0.018	5.45	1.67	<0.018	0.748	1.95	2.65	<0.360	0.692	0.210	<0.360	19.4	<0.018	0.046
<0.024	<0.024	<0.480	<0.120	<0.480	<2.40	<4.80	<0.120	<0.024	<0.024	<0.024	<0.024	<0.480	<0.480	< 0.024	<0.120	<0.120	<0.120	<0.480	<0.480	<0.120	<0.480	<2.40	<0.024	<0.024
0.039		9.89		9.32	82	174.8	2.275	0.082	0.54	<0.037	<0.037	6.91	19.63	0.423	1.716	7.05	34.93	6.67	20.65	1.120	6.43		0.353	0.811
0.185	0.038	20.71	6.34	36.62	219.6	388.3	8.241	0.95	1.734	ND	ND	38.3	49.03	1.124	16.78	27.13	70.06	42.97	45.96	3.533	13.48	529.2	0.773	2.186
	1/9/07 997.2 57.5-59 939 941 Soil Sot 2 3.68 <100 <0.016 <0.024 <0.020 <0.015 <0.020 <0.015 <0.022 <0.018 <0.022 <0.018 <0.024 <0.017 <0.024 <0.015 <0.023 <0.015 <0.023 <0.015 <0.023 <0.015 <0.023 <0.015	1/9/07 1/9/07 997.2 997.2 57.5-59 62.5-64 939 934 941 941 Soil Soil <0.016	1/9/07 1/9/07 8/29/06 997.2 1001.3 57.5-59 62.5-64 40-45 939 934 959 941 941 942 Soil Soil Waste Satt Satt 2 1 540 <3.68	1/9/071/9/078/29/068/29/06997.21001.31001.357.5-5962.5-6440-4551939934959950941941942942SoilSoilWasteSoilSatSat21540240<3.68	1/9/071/9/078/29/068/29/068/29/06997.2997.21001.31001.31009.457.5-5962.5-6440-455140-45939934959950967941941942942936SoilSoilWasteSoilWasteSatSat21540240490<3.68	1/9/071/9/078/29/068/29/068/29/068/29/06997.2997.21001.31001.31009.41009.457.5.5962.5-6440-455140-4561939934959950967948941941942942936936SoilSoilWasteSoilWasteSoilSoilSoilWasteSoilWasteSoil215402404901,830<3.68	1/9/071/9/078/29/068/29/068/29/068/29/068/29/061/2/07997.21001.31001.31009.41009.41009.41009.457.5.5962.5.6440.455140.456165939934959950967948943941941942942936936936SoilSoilWasteSoilWasteSoilSoilSat5at215402404901,830610<3.68	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1/9/07 1/9/07 8/29/06 8/29/06 8/29/06 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/07 1/2/	1/9/07 1/9/07 8/29/06 8/29/06 8/29/06 1/2/07 1/2/07 1/2/07 1/3/07 1/3/07 997.2 997.2 1001.3 1001.3 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1009.4 1001 120.4	$\begin{array}{c c c c c c c c c c c c c c c c c c c $					19/907 1/9/906 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06 8/29/06	$ 19007 \ $	$ 19/907 \ $	19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 <th< td=""><td>19/07 19/07 9/2/08 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06<td>19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 <th< td=""><td>19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 <th< td=""><td>19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 <th< td=""></th<></td></th<></td></th<></td></td></th<>	19/07 19/07 9/2/08 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 8/2/06 <td>19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 <th< td=""><td>19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 <th< td=""><td>19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 <th< td=""></th<></td></th<></td></th<></td>	19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 <th< td=""><td>19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 <th< td=""><td>19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 <th< td=""></th<></td></th<></td></th<>	19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 19/07 <th< td=""><td>19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 <th< td=""></th<></td></th<>	19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 <th< td=""></th<>

Total VOC Results by Material/L

Boring/Test Pit	WC8	WC8	WC9	WC9	WC10	WC11	WC11	WC11	WC12	WC12	WC12	WC13	WC13	WC13	WC14	WC14	WC14	WC15							
Sample Elevation	938.95	933.95	958.8	950.3	966.9	948.4	944.4	939.4	935.4	930.4	925.4	920.4	982.2	952.2	949.7	987.5	972.5	944	959.7	939.7	934.2	983.9	958.9	948.4	937.16
Paint																									
Waste			20.705		36.62								38.3	49.028		16.78	27.125		42.97	45.962		13.48	529.21		
Soil	0.185	0.038		6.34		219.6	388.3	8.241	0.95	1.734	ND	ND			1.124			70.058			3.533			0.773	2.186
Soil Phase A																					3.533				2.186
Soil Phase B						219.6	388.3	8.241							1.124			70.058							
Soil Phase C				6.34																				0.773	

Pre-Removal Waste and Soil Analytical Results Summary - VOCs

Land and Gas Reclamation Landfill

(Results are in mg/kg, except where noted otherwise)

Sample	WC15	WC15	WC15	TP101	TP101	TP101	TP102	TP102	TP102	TP103	TP103	TP103	TF
Date	1/11/07	1/11/07	1/11/07	5/3/07	5/3/07	5/3/07	5/3/07	5/3/07	5/3/07	5/3/07	5/3/07	5/3/07	5/
Surface Elevation	942.91	942.91	942.91	935.4	935.4	935.4	937.7	937.7	937.7	939.4	939.4	939.4	93
Depth (feet)	10-11.5	12.5-14	17.5-19	5	10	15	5	10-11	16.5	5	11	15.5	
Sample Elevation	932	930	925	930	925	920 928	933	928	921 928	934	928	924	9
Approx High Water Table El. Matrix	927 Soil	927 Soil	927 Soil	928 Soil									
Below WT			Sat		Sat	Sat		Sat	Sat			Sat	Ň
Photoionization Detector (ppm)	1	1	1	0	0	16	2	0	35	0	3	14	
Diesel Range Organics	8.85	<3.86	<3.88										
Gasoline Range Organics	<100	<100	<100										
VOCs								· · · · ·					
Benzene	<0.016	<0.016	<0.016	<0.110	<0.162	<0.118	<0.116	<0.159	<0.123	<0.109	<0.138	<0.121	
n-Butylbenzene	<0.024	<0.024	<0.024										
sec-Butylbenzene	<0.021	<0.021	<0.021	<0.110	<0.162	<0.118	<0.116	<0.159	<0.123	<0.109	<0.138	<0.121	
Chloroethane	<0.020	<0.020	<0.020	<0.110	<0.162	<0.118	<0.116	<0.159	<0.123	<0.109	0.196	<0.121	
1,2-Dichlorobenzene	< 0.015	< 0.015	<0.015	<0.110	<0.162	<0.118	<0.116	<0.159	<0.123	<0.109	<0.138	<0.121	
1,4-Dichlorobenzene	<0.019	<0.019	<0.019	<0.110	<0.162	<0.118	<0.116	<0.159	<0.123	<0.109	<0.138	<0.121	
1,1-Dichloroethane	<0.025	<0.025	<0.025	<0.110	<0.162	<0.118	<0.116	<0.159	<0.123	<0.109	0.210	<0.121	
cis-1,2-Dichloroethylene	<0.022	<0.022	<0.022	<0.110	<0.162	0.91	<0.116	<0.159	4.53	<0.109	0.149	0.709	
Ethylbenzene	<0.018	<0.018	<0.018	<0.110	<0.162	<0.118	<0.116	<0.159	<0.123	<0.109	<0.138	<0.121	
lsopropylbenzene	<0.017	<0.017	<0.017	<0.110	<0.162	<0.118	<0.116	<0.159	<0.123	<0.109	<0.138	<0.121	
p-lsopropyltoluene	<0.024	<0.024	<0.024										
Methylene Chloride	<0.019	<0.019	<0.019	<0.110	<0.162	<0.118	<0.116	<0.159	<0.123	<0.109	<0.138	<0.121	
Naphthalene	<0.018	<0.018	<0.018	<0.110	<0.162	<0.118	<0.116	<0.159	<0.123	<0.109	<0.138	<0.121	
n-Propylbenzene	<0.021	<0.021	<0.021										
Styrene	< 0.015	< 0.015	<0.015	<0.110	<0.162	<0.118	<0.116	<0.159	<0.123	<0.109	<0.138	<0.121	
Tetrachloroethylene	<0.023	<0.023	<0.023	<0.110	<0.162	<0.118	<0.116	<0.159	<0.123	<0.109	<0.138	<0.121	
Toluene	<0.017	<0.017	<0.017	<0.110	<0.162	<0.118	<0.116	<0.159	<0.123	<0.109	<0.138	<0.121	
Trichloroethylene	< 0.023	<0.023	<0.023	<0.110	<0.162	<0.118	<0.116	<0.159	<0.123	<0.109	<0.138	0.142	
Trichlorofluoro-methane	<0.025	<0.025	<0.025	<0.110	<0.162	<0.118	<0.116	<0.159	<0.123	<0.109	<0.138	<0.121	
1,2,4-Trimethylbenzene	< 0.013	<0.013	<0.013	<0.110	<0.162	<0.118	<0.116	<0.159	<0.123	<0.109	<0.138	<0.121	
1,3,5-Trimethylbenzene	<0.018	<0.018	<0.018	<0.110	<0.162	<0.118	<0.116	<0.159	<0.123	<0.109	<0.138	<0.121	
Vinyl Chloride	<0.024	<0.024	<0.024	<0.110	<0.162	0.279	<0.116	<0.159	0.330	<0.109	<0.138	<0.121	
Xylenes	<0.037	<0.037	<0.037	<0.110	<0.162	<0.118	<0.116	<0.159	<0.123	<0.109	0.184	<0.121	
Total VOCs	ND	ND	ND	ND	ND	1.189	ND	ND	4.86	ND	0.739	0.851	l

Total VOC Results by Material/L

Boring/Test Pit	WC15	WC15	WC15	TP101	TP101	TP101	TP102	TP102	TP102	TP103	TP103	TP103	TP103	Maximum	Average	Median	Count
Sample Elevation	932.16	929.66	924.66	930.4	925.4	920.4	932.7	927.7	921.2	934.4	928.4	923.9	921.4				
Paint														3,223	3,223	3,223	1
Waste														529	100	38	23
Soil	ND	ND	ND	ND	ND	1.189	ND	ND	4.86	ND	0.739	0.851	2.376	388	31	2	29
Soil Phase A	0			0	0 0	1.189	0	0	4.86		0.739	0.851	2.376	5	1	1	19
Soil Phase B														388	99	8	7
Soil Phase C														84	43	44	4

TP103
5/3/07
939.4
18
921
928
Soil
Sat
8
<0.119
<0.119
<0.119

<0.1	19
<0.1	19
<0.1	19
<0.1	19
<0.1	
0.94	
<0.1	19
<0.1	19
<0.1	19
<0.1	19
<0.1	
<0.1	
<0.1	19
1.29	
<0.1	
<0.1	
<0.1	
0.14	
<0.1	
2.37	′ 6

Date		3/8/2014			5/9/2014			7/16/2014	
Sample	1-A	1-B	1-C	2-A	2-B	2-C	3-A	3-B	3-C
Detected VOC	407	134	70.7	609	437	720	347	2350	3320
Concentrations	1560	89.5	36.7	196	135	204	137	667	895
(ug/kg)	438	303	174	327	155	479	29.4	2690	4350
	192	52.5	35.7	866	388	512	364	139	171
	88.1	61.5	44.7	326	235	1530	289	191	110
	3200	159	503	1270	922	67.2	1890	1490	4780
	222	3920	73.2	183	353	579	45.4	69.6	69.4
	302	281	221	387	403	558	552	16300	22300
	359	92.2	65.4	949	675	64.1	48.8	322	443
	4690	262	250	118	80.3	2810		4530	6170
	6360			82.9	55.4	3520		110	120
	124			297	202	114		107	119
	130					175			
	1850					750			
	4440								
Total (ug/kg)	24,362	5,355	1,474	5,611	4,041	12,082	3,703	28,966	42,847
Total (mg/kg)	24	5.4	1.5	5.6	4.0	12	3.7	29	43

Average Total VOC Concentration Calculation - Phase A Suspicious Waste

Average (mg/kg) 14

Note: Individual VOC concentration data from Construction Documentation Report, Glacier Ridge Landfill – LGRL Phase A Waste Relocation, Appendix F.

Date						4/3/	/2014								5/27/201	4
Sample	TVOC 6	TVOC 7	TVOC 8	TVOC 9	TVOC 10	TVOC 11	TVOC 12	TVOC 13	TVOC 14	TVOC 15	TVOC 16	TVOC 17	TVOC 24A	TVOC 24B	TVOC 25A	TVOC 26A/B
Detected VOC	1540	15900	2310	31.3	31.3	33.4	5940	13500	516	127	513	102	0	190	32.4	32.4
Concentrations	43.2	623	29	89.3	89.3	29.2	58.1	83.6	34.8	355	122	56.5		105	237	237
(ug/kg)	59.5		64.8	37.2	37.2	100	133	225	144	94.6	263			84.7		
	81.5		98.1				148	198	170		45.5			29.2		
	34		38.8				39.4		49.9		347			368		
									453		104			71		
									126							
Total (ug/kg)	1,758	16,523	2,541	158	158	163	6,319	14,007	1,494	577	1,395	159	0	848	269	269
NR 720 Exceedance?	N	N	Y	Ν	N	N	Y	Y	N	N	N	N	N	Y	Y	Y
Total (mg/kg)			2.5				6.3	14.0						0.8	0.3	0.3

Average (mg/kg)

Average calculated for samples with at least one VOC result above an NR 720 standard, to represent excavated contaminated soil. Percent NR 720 Exceedance 22%

18

Note: Individual VOC concentration data and NR 720 Exceedance Y/N from Construction Documentation Report, Glacier Ridge Landfill – LGRL Phase A Waste Relocation, Appendix F.

l:\25221008.02\Deliverables\Changed Conditions Memo\E - VOC Calcs\[Mass removal calculation_v0.5.xlsx]Phase A Subbase Excavation

Average Total VOC Concentı Calculation - Phase A Subba

Date				6/12/2014							6	/17/2014					
Sample	TVOC 27A	TVOC 31	TVOC 32	TVOC 33	TVOC 34	TVOC 35	TVOC 36	TVOC 37	TVOC 38	TVOC 39/39A	TVOC 40	TVOC 41	TVOC 42	TVOC 43	TVOC 44	TVOC 45	TVOC 46
Detected VOC	0	0	0	0	207	104	0	80.6	0	52.4	0	0	98.4	261	1270	458	0
Concentrations					124			30.7		35.6			36.2	32.7			
(ug/kg)								326		34			107	40.1			
								83.6		222			35.1	128			
													433	45.1			
													119	812			
														190			
Total (ug/kg)	0	0	0	0	331	104	0	521	0	344	0	0	829	1,509	1,270	458	0
NR 720 Exceedance?	N	N	N	N	N	N	Ν	N	N	Y	N	N	N	N	N	N	Ν
Total (mg/kg)										0.3							

Average Total VOC Concentı Calculation - Phase A Subba

Date				7/17/	/2014			
Sample	TVOC 47	TVOC 48	TVOC 49	TVOC 50	TVOC 51	TVOC 52	TVOC 53	TVOC 54
Detected VOC	1350	30.9	0	164	0	61.8	0	68.6
Concentrations		108		333				
(ug/kg)				18200				
				520				
				215				
				486				
				29300				
				2560				
				1270				
				403				
				64400				
				16300				
Total (ug/kg)	1,350	139	0	134,151	0	62	0	69
NR 720 Exceedance?	Y	N	N	Y	N	N	N	N
Total (mg/kg)	1.4			134.2				

Date	7/17/2014	7/25/	/2014		8/1/	2014	
Sample	50	50-E	50-F	CON-1	CON-2	CON-3	CON-4
Detected VOC	164	69.6	1070	43.9	22800	114	13900
Concentrations	333	445	7040	114	6970	32.7	4330
(ug/kg)	18200	6560	52300	563	49300	1250	12800
	520	301	2650	438	1970	678	1110
	215	200	752	29.8	183000	55.9	286
	486	715	8520	289	14700	6590	14300
	29300	9330	194000	406	1960	33.9	567
	2560	159	12300	93.5	67900	1000	39900
	1270	3580	45900		151000		933
	403	1150	11700		932		4110
	64400	24800	209000		5970		10500
	16300	6830	57300		39300		206
							398
Total (ug/kg)	134,151	54,140	602,532	1,977	545,802	9,755	103,340
Total (mg/kg)	134	54.1	602.5	2.0	545.8	9.8	103.3

Average Total VOC Concentration Calculation - Phase A DNR Excavation

Average (mg/kg) 207

Note: Individual VOC concentration data from Construction Documentation Report, Glacier Ridge Landfill – LGRL Phase A Waste Relocation, Appendix F.

I:\25221008.02\Deliverables\Changed Conditions Memo\E - VOC Calcs\[Mass removal calculation_v0.5.xlsx]Phase A DNR Excavation

Date											4/8/2015	i									
													SS-3-								
Sample	SS-1-1	SS-1-5	SS-1-10	SS-1-14	SS-2-1	SS-2-5	SS-2-10	SS-2-15	SS-2-16	SS-3-1	SS-3-5	SS-3-10	14.7	SS-4-1	SS-4-5.5	SS-5-1	SS-5-5	SS-5-11	SS-6-1	SS-6-5	SS-6-8
Detected VOC	34.6	1370	94.2	0	200	263	31.6	71.8	235	3390	676	13500	820	11800	29500	17600	34100	5350	2880	135	0
Concentrations	109	76	157		376	422	151	921	31.9	481	205	8220	51.3	382	1300	368	398	59.9	140	109	
(ug/kg)	173	161	27		196	1010	110	46	267	243	320	286	73.3	829	152	651	711	104	32.3	435	
	298	361	273			38.8	309	39.3	234	1190	35.1	124	2470	115	2810	296	226	40.5	205	170	
	102	34.3	95			56.3	103	625		545	286	566	800	56.5	396	91.5		192	82.5		
		428				30.3		211		105	43.9	19700		1460	172	1210		60	523		
		157				545		60.3				2720		508		400			208		
						210		2700				755		679							
						62		1010				229		194							
						2850						28100		2990							
						1260						10200		1100							
Total (ug/kg)	717	2,587	646	0	772	6,747	705	5,684	768	5,954	1,566	84,400	4,215	20,114	34,330	20,617	35,435	5,806	4,071	849	0
NR 720 Exceedance?	Ν	Y	N	N	N	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Ν	N
Total for Avg (mg/kg)		2.6				6.7	0.7	5.7	0.8	6.0	1.6	84.4	4.2	20.1	34.3	20.6	35.4	5.8	4.1		

Average (mg/kg) 10

Average calculated for samples with at least one VOC result above an NR 720 standard, to represent excavated contaminated soil. Percent NR 720 Exceedance 53%

Note: Individual VOC concentration data and NR 720 exceedance Y/N from Construction Documentation Report, Glacier Ridge Landfill – LGRL Phase B Waste Relocation, Appendix F.

l:\25221008.02\Deliverables\Changed Conditions Memo\E - VOC Calcs\[Mass removal calculation_v0.5.xlsx]Phase B Subbase Excavation

Date		4	/20/201	5					4/28	/2015								4	/23/201	5				
												SS-10-	SS-10-						SS-14-	SS-14-			SS-15-	SS-15-
Sample	SS-7-1	SS-7-5	SS-7-11	SS-8-1	SS-8-5	SS-9-1	SS-9-5	SS-9-10	SS-9-14	SS-10-1	SS-10-5	10	14	SS-11-1	SS-12-1	SS-13-1	SS-14-1	SS-14-5	10	12.4	SS-15-1	SS-15-5	10	11.4
Detected VOC	102	1160	1670	344	300	169	869	982	410	55.1	0	0	0	0	0	361	444	0	105	166	1550	0	73.7	143
Concentrations	33.4	2680	1560			84.3	262	63.8		69.4													60.8	52.9
(ug/kg)	331	203	448			30.3	101			113														
	91.7	355	895			70.5	334			61.1														
		52.6	34.5			228	41.1																	
		96.5	136			68.7	233																	
		575	1070			470	84.7																	
		174	252			200																		
Total (ug/kg)	558	5,296	6,066	344	300	1,321	1,925	1,046	410	299	0	0	0	0	0	361	444	0	105	166	1,550	0	135	196
NR 720 Exceedance?	Y	Y	Y	N	N	N	Y	Y	N	N	N	N	N	N	N	N	N	N	Y	Y	N	N	Y	Y
Total for Avg (mg/kg)	0.6	5.3	6.1				1.9	1.0											0.1	0.2			0.1	0.2

Average Total VOC Concentration	Calculation - Phas	e B DNR Excavation
---------------------------------	---------------------------	--------------------

Date												
Sample	SS-16-1	SS-16-5	SS-16-13	SS-17-2	SS-17-4	SS-17-7	SS-18	SS-19	SS-20	SS-21	SS-22	SS-23
Detected VOC	2100	996	35.8	2880	2930	425	3550	1200	438	1220	229	278
Concentrations	5080	6460	2880	51.6	47	114	1500	649	33.5	113	74.6	148
(ug/kg)	1610	1300	114	1730	524	101	7710	256	79.3	72.1	82.9	50.9
	44.7	38.5	95.2	2450	1470	30.5	182000	1540	28.2	169	495	56.3
	90.3	30.7	8940	81.7	56.6	1320	7840	21700		60.5	26.8	284
	7210	81.7	2890	186	128	528	13500	953			195	71.6
	350	4990		6450	3070		3310	208			49.6	
	123	333		39.5	619		323000	341				
	59.5	107		915	186		133000	1760				
	5170	47.9		266	4890		61400	401				
	1500	4480		45.8	1670		18500	39100				
		1420		8160			614000	13500				
				2840			227000	9750				
								2760				
								74500				
								29600				
Total (ug/kg)	23,338	20,285	14,955	23,256	15,591	2,519	1,596,310	198,218	579	1,635	1,153	889
Total (mg/kg)	23	20.3	15.0	23.3	15.6	2.5	1596.3	198.2	0.6	1.6	1.2	0.9

Average (mg/kg)

158

Note: Individual VOC concentration data from Construction Documentation Report, Glacier Ridge Landfill – LGRL Phase A Waste Relocation, Appendix F.

I:\25221008.02\Deliverables\Changed Conditions Memo\E - VOC Calcs\[Mass removal calculation_v0.6.xlsx]Phase B DNR Excavation

Date									2/1	1/2016								
Sample	SS-1-1'	SS-1-5'	SS-1-10'	SS-1-15'	SS-1-19'	SS-2-1'	SS-2-5'	SS-2-10'	SS-2-15	SS-2-20'	SS-3-1'	SS-3-6'	SS-3-11'	SS-3-16'	SS-4-1'	SS-4-5'	SS-4-10'	SS-5-1'
Detected VOC	707	0	79.9	97.8	51.7	701	50100	2120	3940	632	80.1	133	117	93	21200	31700	10300	43900
Concentrations	64.9					289	21200	36400	1460	260	36.1	54.4	53.6	40	159	188	73.8	372
(ug/kg)	49.3					1230	67900	15800	3280	1140	80.4	2890	447	172	352	441	196	303
						427	12800	4610	2900	618	902	122	113	552	548	692	206	
						30.1	123000		405	38.9	109	161	128	128	211	256	46.5	
						102	2470000		3210	69.3	194	52.7	171					
						28.8	70200		52100	28.2	107	1830	1030					
						415	204000		14800	825	70.2	452	377					
						242	40400		10300	436	2220	101	87					
						278		137000	508	596	422							
						1450		144000	551	11100	95.7							
						136		131000	2140	2150								
						106		4140		73								
						327		6310		94.4								
						51.3		25700		476								
						46.8		2230		33.5								
						= 0 / 0		1990	05 50 /	28.1		= = o /	0.50.4		00.070	00.077	10.000	
Total (ug/kg)	821	0	80	98		5,860	3,059,600	597,610	95,594	18,598	4,317	5,796	2,524	985	22,470	33,277	10,822	44,575
NR 720 Exceedance?	Ŷ	N	N	N	N	Ŷ	Y	Y	Ŷ	Y	Ŷ	Ŷ	Ŷ	N	Y	Y	N	Y
Total for Avg (mg/kg)	0.8					5.9	3059.6	597.6	95.6	18.6	4.3	5.8	2.5		22.5	33.3		44.6

Average (mg/kg) 141

Average calculated for samples with at least one VOC result above an NR 720 standard, to represent excavated contaminated soil. 33%

Percent NR 720 Exceedance

Note: Individual VOC concentration data and NR 720 Exceedance Y/N from Construction Documentation Report, Glacier Ridge Landfill – LGRL Phase B Waste Relocation, Appendix F.

I:\25221008.02\Deliverables\Changed Conditions Memo\E - VOC Calcs\[Mass removal calculation_v0.5.xlsx]Phase C Subbase Excavation

Date				2/11/2016								2	2/22/2016				
Sample	SS-5-6'	SS-5-11'	SS-5-16'	SS-6-1'	SS-6-6'	SS-6-11'	SS-6-15'	SS-7-1'	SS-7-5'	SS-7-10'	SS-7-14'	SS-7-17'	SS-8-1'	SS-8-5'	SS-8-10'	SS-8-15'	SS-8-19'
Detected VOC	42600	63900	60300	18400	808	29	48.3	38.7	963	53.5	275	392	27	652	53.9	0	0
Concentrations	216	439	459			51.9	128	47.4	57.5	128	32.4	35.2	82.5	108	168		
(ug/kg)						133	40.7	38.7	471	144	472	402	50.9	297			
						43		29.1	170	55.7	79.8	79.5		31.5			
								114	49.8		29.2						
								38.2									
Total (ug/kg)	42,816	64,339	60,759	18,400	808	257	217	306	1,711	381	888	909	160	1,089	222	0	0
NR 720 Exceedance?	Y	Y	Y	Y	Ν	N	N	N	Ν	N	Ν	N	N	Ν	N	Ν	N
Total for Avg (mg/kg)	42.8	64.3	60.8	18.4													

Date									2/22/	2016									
Sample	SS-9-1'	SS-9-6'	SS-9-16'	SS-10-1'	SS-10-5'	SS-10-10'	SS-10-14'	SS-10-17'	SS-11-1'	SS-11-5'	SS-11-10'	SS-11-14'	SS-11-18'	SS-12-1'	SS-12-2.	5' SS-12-4.	6'SS-13-1'	SS-13	-5'
Detected VOC	312	0	0	4040	13400	6530	12400	783	2860	6700	358	180	209	()	0	0	0	0
Concentrations	87.6			664	20700	7770	101	38	131	121	1130	49.8	32.7						
(ug/kg)				32.9	445	3660	473	651	28.2	441	118	561	107						
				75.7	514	181000	434	30.2	368	36.5	50.4	99.1	75.3						
				68.8	571	67600	221	29.8	200	1230	1070								
				94.3	435	3690	104	101	48.3	177	204								
					195	3450	2290	94.2	698	79.6									
					817	4600	1350		357	1380									
					1490	10500	232		116	347									
					302	5460			1250										
						33100			400										
						986													
						43700													
						66800													
						27500													
						3150													
						238000													
						40900													
Total (ug/kg)	400	0	0	4,976	38,869	748,396	17,605	1,727	6,457	10,512	2,930	890	424	()	0	0	0	0
NR 720 Exceedance?	N	N	N	Y	Y	Y	Y	Y	Y	Y	Y	N	N	٢	1	N	N	N	Ν
Total for Avg (mg/kg)				5.0	38.9	748.4	17.6	1.7	6.5	10.5	2.9								

Date								2/22	/2016							
Sample	SS-14-1'	SS-14-3.5'	SS-15-1'	SS-15-3.5	SS-16-1'	SS-16-5'	SS-16-10'	SS-16-14'	SS-17-1'	SS-17-5'	SS-17-9'	SS-18-1'	SS-18-5'	SS-18-10'	SS-18-15'	SS-18-19'
Detected VOC	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0
Concentrations																
(ug/kg)																
	-				-											
Total (ug/kg)	0	0						-	-	0		0	-	0		-
NR 720 Exceedance?	N	N	N	N	N	N	N	N	N	N	N	N	I N	N	N	N
Total for Avg (mg/kg)																

Date					2/22/2	2016						2/25/2016		
Sample	SS-19-1'	SS-19-5'	SS-19-10'	SS-19-15'	SS-19-20'	SS-20-1'	SS-20-6'	SS-20-11'	SS-20-16'	SS-20-21'	SS-21-1'	SS-21-5'	SS-21-10'	SS-21-13'
Detected VOC	0	0 0	0	0	0	0	0	0	0	0	2680	4580	3160	358
Concentrations											444	629	348	
(ug/kg)											197			
											299	139		
											34.7			
Total (ug/kg)	0	0 0	0	0	0	0	0	0	0	0	3,655	5,485	3,508	358
NR 720 Exceedance?	N	I N	N	N	N	N	N	N	N	N		Y	Y	N
Total for Avg (mg/kg)											3.7	5.5	3.5	

Date					2	/25/2016								3/4/2016		
Sample	SS-22-1'	SS-22-5'	SS-22-10'	SS-22-12.5'	SS-23-1'	SS-23-5'	SS-23-10'	SS-23-14.	SS-24-1'	SS-24-6'	SS-24-11'	SS-25-1'	SS-25-5'	SS-25-10'	SS-25-15'	SS-25-18'
Detected VOC	31.1	3900	204	0	5420	47200	1770	0	365	5490	8190	37	0	0	26	0
Concentrations	32.5	40.1	28.1						236	176	246					
(ug/kg)			40						86.7		91.1					
			216						93.3	3530	5090					
									220	4580	29.9					
									52.4	117	8350					
										50						
										87.1						
										269	330					
										259	418					
										106	57.6					
										2390	4620					
										1480	2090					
										480	704					
										50.2	190					
										11900	21000					
										3130	5250					
Total (ug/kg)	64	3,940	488	0	5,420	47,200	1,770	0	1,053	34,154	56,923	37	0	0	26	0
NR 720 Exceedance?	N	Y	N	N	Y	Y	Y	N	Y	Ý	Y	Y	N	N	I Y	N
Total for Avg (mg/kg)		3.9			5.4	47.2	1.8		1.1	34.2	56.9	0.0			0.0	

Date	3/4/2016										
Sample	SS-26-1'	SS-26-5'	SS-26-10'	SS-26-15'			SS-27-6'	SS-27-11'	SS-27-16'		
Detected VOC	0	0	0	0	0	0	0	0	0		
Concentrations											
(ug/kg)											
Total (ug/kg)	0	0	0	0	0	0	0	0	0		
NR 720 Exceedance?	N	N	N	N	N	N	N	N	N		
Total for Avg (mg/kg)											

Date				3/9,	/2016				
Sample	SS-28	SS-29	SS-30	SS-31	SS-32	SS-33	SS-34	SS-35	SS-36
Detected VOC	26.1	125	3620	5520	2960	62.6	0	84.4	12300
Concentrations		243	92.4	267	27.5			80.1	453
(ug/kg)		67.3	27.1	86.9	119			54.2	27.5
		331	29.1	54.9	93.7			56.4	3030
		65.9	711	101	55.7			52.9	
			82.1	58.8	80.2			102	
				93.3	41			47.4	
				39.2	145			278	
				551	55.7			64.6	
				293	35.9				
				70.9	352				
					68.3				
Total (ug/kg)	26	832	4,562	7,136	4,034	63	0	820	15,811
Total (mg/kg)	0	0.8	4.6	7.1	4.0	0.1	0.0	0.8	15.8

4

Average (mg/kg)

Note: Individual VOC concentration data from laboratory report for SS-28 through SS-36, included in Attachment D. Samples from the original test pits at subbase elevations were not included in the average because it was not clear from the documentation report which subbase samples were in the additional targeted excavation area. Therefore, the actual average concentration for the targeted area is likely somewhat higher than the calculated average using only these samples from the base of the targeted excavation.

I:\25221008.02\Deliverables\Changed Conditions Memo\E - VOC Calcs\[Mass removal calculation_v0.6.xlsx]Phase C DNR Excavation

	Data from GEMS	Calculated				
Douosting Douisd	Total VOCs	Groundwater Volume	Manshin Tatal	Monthly		
Reporting Period Date	(ppb)	Pumped (1000 gal)	Monthly Total VOCs (ppb)	Monthly VOC Mass (lb)		
10/1/2015	670.17	(1000 gui)	670.2			
1/1/2016		707.561	384.8	2.27		
2/1/2016		813.000	384.8	2.61		
3/1/2016		982.520	384.8	3.15		
4/1/2016	99.49	1,249.279	99.5	1.04		
5/1/2016		1,123.353	82.3	0.77		
6/1/2016		1,249.893	82.3	0.86		
7/1/2016		1,020.240	82.3	0.70		
8/1/2016		1,920.741	82.3	1.32		
9/1/2016		1,872.947	82.3	1.29		
10/1/2016	65.16	1,294.102	65.2	0.70		
11/1/2016		1,057.770	38.5	0.34		
12/1/2016		995.740	38.5	0.32		
1/1/2017		1,670.673	38.5	0.54		
2/1/2017		1,409.092	38.5	0.45		
3/1/2017		1,426.489	38.5	0.46		
4/1/2017	11.85	1,451.517	11.9	0.14		
5/1/2017		1,474.873	15.6	0.19		
6/1/2017		1,501.628	15.6	0.20		
7/1/2017		1,202.514	15.6	0.16		
8/1/2017		1,035.853	15.6	0.13		
9/1/2017		578.647	15.6	0.08		
10/1/2017	19.32	873.925	19.3	0.14		
11/1/2017		771.206	20.1	0.13		
12/1/2017		637.397	20.1	0.11		
1/1/2018		826.785	20.1	0.14		
2/1/2018		927.689	20.1	0.16		
3/1/2018		958.554	20.1	0.16		
4/1/2018	20.93	1,681.260	20.9	0.29		
5/1/2018		3,868.636	15.7	0.51		
6/1/2018		1,772.932	15.7	0.23		
7/1/2018		1,553.153	15.7	0.20		
8/1/2018		1,535.954	15.7	0.20		
9/1/2018	1	1,749.433	15.7	0.23		
10/1/2018	10.42	1,484.957	10.4	0.13		
11/1/2018		1,354.917	11.0	0.12		
12/1/2018		1,632.578	11.0	0.15		
1/1/2019		1,380.288	11.0	0.13		
2/1/2019		1,109.224	11.0	0.10		
3/1/2019		1,220.215	11.0	0.11		
4/1/2019	11.63	1,622.270	11.6	0.16		
5/1/2019		1,736.708	19.3	0.28		
6/1/2019		1,430.137	19.3	0.23		
7/1/2019		1,651.669	19.3	0.27		
8/1/2019		1,124.013	19.3	0.18		
9/1/2019		1,194.654	19.3	0.19		
10/1/2019	26.94	1,795.629	26.9	0.40		

Underdrain Operation VOC Mass Removal: 2016 - 2020 Former Land and Gas Reclamation Landfill Site

Underdrain Operation VOC Mass Removal: 2016 - 2020 Former Land and Gas Reclamation Landfill Site

	Data from GEMS	Calculated			
Reporting Period Date	Total VOCs (ppb)	Groundwater Volume Pumped (1000 gal)	Monthly Total VOCs (ppb)	Monthly VOC Mass (lb)	
11/1/2019		1,794.176	17.8	0.27	
12/1/2019		1,083.322	17.8	0.16	
1/1/2020		1,259.388	17.8	0.19	
2/1/2020		1,252.635	17.8	0.19	
3/1/2020		1,779.218	17.8	0.26	
4/1/2020	8.57	1,691.642	8.6	0.12	
5/1/2020		1,513.344	9.1	0.11	
6/1/2020		1,642.865	9.1	0.12	
7/1/2020		1,536.416	9.1	0.12	
8/1/2020		1,023.242	9.1	0.08	
9/1/2020		1,239.846	9.1	0.09	
10/1/2020	9.61	1,350.482	9.6	0.11	
11/1/2020		1,625.276	9.6	0.13	
12/1/2020		1,916.460	9.6	0.15	

Totals	2016-2020
Totals	Gallons 2016-2020

82,640.927 82,640,927 24.8

Notes:

- 1. Total VOCs is the sum of detected VOC concentrations for underdrain sampling results obtained from the WDNR's Groundwater Environmental Monitoring Systems (GEMS) online database.
- 2. Monthly flows obtained from GEMS online database.
- 3. For calculations, the monthly VOC concentrations was assumed equal to the sample result for for sampling months and equal to the average of the preceding and following samples for months between sampling events.
- 4. Mass VOCs (lbs) = Flow (gallons) x 8.34 lb/gal x Concentration (ppb) / 1,000,000,000

I:\25221008.02\Deliverables\Changed Conditions Memo\E - VOC Calcs\[Underdrain VOC Calc_UDL1.xls]Underdrain Flow VOCs