2022 Annual Report

Land & Gas Reclamation Landfill WDNR License No. 01118 Dodge County, Wisconsin

Prepared For:

Glacier Ridge Landfill N7296 Highway V Horicon, WI 53032

Prepared By: Environmental Sampling Corporation P.O. Box 12 Muskego, WI 53150-0012

April 2023

April 13, 2023

Mr. Trevor Bannister Wisconsin Dept. of Natural Resources 3911 Fish Hatchery Road Fitchburg, WI 53711

RE: 2022 Annual Report

Land & Gas Reclamation Landfill, WDNR Lic. #01118

Dodge County, WI

Dear Mr. Bannister:

Pursuant to Condition #3 of the May 19, 2000, Plan of Operation Approval Modification for the facility, Glacier Ridge Landfill is providing one copy of the 2022 Annual Report for the closed Land & Gas Reclamation Landfill. An electronic copy was also provided via e-mail. If you have any questions regarding this report, please contact Frank Perugini of Environmental Sampling Corporation (ESC) at (414) 427-5033 or the undersigned at (920) 210-9311.

Sincerely,

Jacob Margelofsky Operations Manager

Attachment

cc: Ann Bekta, WDNR-SCR Janesville

Sheila Desai, USEPA Region 5 (electronic copy)

WDNR Waste Management (electronic copy)

Glacier Ridge Landfill, File Copy

Lonn Walter, Glacier Ridge Landfill (electronic copy)

Tim Curry, GFL Environmental (electronic copy)

Kari Rabideau, GFL Environmental (electronic copy)

Mark Torresani, Tetra Tech (electronic copy)

Sherren Clark, SCS Engineers (electronic copy)

Frank Perugini, ESC

2022 ANNUAL REPORT LAND & GAS RECLAMATION LANDFILL LICENSE #01118 DODGE COUNTY, WISCONSIN

2022 ANNUAL REPORT LAND & GAS RECLAMATION LANDFILL, LICENSE #01118 DODGE COUNTY, WISCONSIN

TABLE OF CONTENTS

<u>Section</u>			<u>Page</u>
1. Introduct	ion		1
2. Annual Re	eport Requirement	S	2
		APPENDICES	
		741 E14516E5	
Appendix A:	2022 Groundwat	er Data Assessment (SCS Engineers)	
	Attachment A-1:	Groundwater Monitoring Results: April 2022 Water Supply Well Monitoring Results: April 2 Groundwater Monitoring Results: June 2022 Groundwater Monitoring Results: October 202	
	Attachment A-2:	Historic VOC Monitoring Results and Concentr Time Plots	ations vs
	Figure 1:	Groundwater Table Map: October 2022	

2022 ANNUAL REPORT LAND & GAS RECLAMATION LANDFILL, LICENSE #01118 DODGE COUNTY, WISCONSIN

Section 1. Introduction

This annual report addresses the 2022 annual report requirements for the former Land and Gas Reclamation Landfill (LGRL) facility. LGRL was a closed landfill located in the W ½ of Section 35, Township 12-North, Range 16-East, in the Town of Williamstown, Dodge County, Wisconsin. Beginning in 2014, in accordance with the WDNR approved LGRL Waste Relocation Project, the waste from LGRL was removed and relocated to the adjacent Glacier Ridge Landfill (GRL).

The LGRL Waste Relocation Project began during first quarter 2014. Phase A of removal began on March 3, 2014 and was completed on July 21, 2014. A total of 625,784 cubic yards of waste was relocated during Phase A of the project. Phase B of the waste relocation project began on February 3, 2015 and was completed on May 21, 2015; a total of 523,244 cubic yards of waste were relocated. Phase C of the waste relocation project started on January 4, 2016 and was completed on March 23, 2016; an estimated 388,550 cubic yards of waste were relocated.

Since all waste from LGRL has been removed and relocated to the active GRL, the Department determined that several annual report requirements listed in the May 19, 2000 Plan of Operation Approval Modification were no longer necessary. The current reporting requirements were outlined in the May 2, 2017 correspondence regarding Annual Reports for the Glacier Ridge Landfill, (Lic. #3068), Biopile (Lic. #3792) and Land and Gas Reclamation Landfill (Lic. #1118).

The format of this 2022 annual report restates the relevant annual report requirements for LGRL. The approval references are presented below in bold italic font followed by GRL's response in normal font.

Section 2. Annual Report Requirements

Approval Reference

May 19, 2000

Plan of Operation Approval Modification, Superior Glacier Ridge Landfill (Lic. No. 3068), Biopile (Lic. No. 3792), Land and Gas Reclamation Landfill (Lic. No. 1118), and Demolition Landfill (Lic. No. 3568)

3. Superior shall submit an annual report to the Department by April 15th of each year which contains the following information about the Land and Gas Reclamation Landfill:

Response

To meet this requirement, GFL Environmental is providing the WDNR with this annual report for Land and Gas Reclamation Landfill (LGRL), which discusses the results of the 2022 environmental monitoring program for the facility. As indicated in the May 2, 2017 correspondence regarding Annual Reports for the Glacier Ridge Landfill, (Lic. #3068), Biopile (Lic. #3792) and Land and Gas Reclamation Landfill (Lic. #1118), some of the annual report requirements are no longer necessary and have been modified as indicated below.

<u>Approval Reference</u>

May 2, 2017

Annual Reports for the Advanced Disposal Services Glacier Ridge Landfill, (Lic. #3068), Biopile (Lic. #3792) and Land and Gas Reclamation Landfill (Lic. #1118)

...As approved by the October 13, 2013 southeast expansion plan of operation approval, the waste from LGRL was removed and relocated to the adjacent Glacier Ridge Landfill. The waste relocation project began in 2014 and was completed in 2016. All the waste has been removed and relocated; therefore some of the LGRL annual reporting requirements in the May 19, 2000 approval will not be needed in future annual reports. Reporting requirements for the LGRL final cover (conditions 3a and 3d) and gas extraction system (conditions 3c, e, f and g) are no longer necessary. However, the evaluation of the groundwater monitoring data (condition 3b), the list of monitoring points (condition 3h), and the evaluation of the effectiveness of the remedy (condition 3i) will continue to be required in annual reports to the Department.

Annual report requirements provided as Conditions 3.b., 3 h., and 3.i. of the May 19, 2000 Approval Modification are discussed below. As indicated above, the remaining annual report requirements are no longer necessary.

Approval Reference

May 19, 2000

Plan of Operation Approval Modification, Superior Glacier Ridge Landfill (Lic. No. 3068), Biopile (Lic. No. 3792), Land and Gas Reclamation Landfill (Lic. No. 1118), and Demolition Landfill (Lic. No. 3568)

b. An evaluation of the monitoring data generated for the facility, including groundwater gradients and quality, leachate head and quality data, gas quality and extraction rate data, condensate volume data, and settlement data.

Response

An evaluation of the groundwater monitoring data for the facility is summarized below. Due to the completion of the LGRL Waste Relocation Project, there was no leachate head, leachate quality, gas extraction, gas condensate, or settlement monitoring during 2022.

Groundwater Monitoring Program

The groundwater monitoring program is performed in accordance with the WDNR Plan Modification approval for monitoring at Land and Gas Reclamation Landfill dated April 14, 1995 and the WDNR Expedited Plan Modification, Land and Gas Reclamation Landfill, dated February 22, 2002. Additional groundwater monitoring was conducted, beyond the scope of the permit, in accordance with the WDNR approved Off-Site Investigation of Chlorinated VOC Plume in Bedrock, Land and Gas Reclamation Landfill, dated April 11, 2012.

The routine semi-annual monitoring is conducted in April and October. Routine annual monitoring is conducted in October. During 2022, the additional investigation monitoring was conducted in conjunction with the routine monitoring events. The LGRL groundwater monitoring network is outlined below.

- Fifteen monitoring wells are monitored semi-annually for inorganics (hardness, alkalinity, chloride, and arsenic) in addition to water elevations and field parameters (i.e. specific conductance, pH, and temperature).
- VOC analyses are conducted semi-annually at seven of these monitoring wells (MW-1RR, MW-1AR, W-3R, W-3AR, MW-210, MW-210A, and MW-210B) and annually in October at four of these monitoring wells (W-163, W-163A, W-214, and W-214A). No VOC analysis is required at the remaining four wells (MW-6R, MW-7R, MW-8R, and MW-203A).
- Three additional monitoring wells (MW-201, MW-201A, and MW-201B) are monitored semi-annually for water elevation and field parameters only.
- Investigation groundwater monitoring includes semi-annual monitoring at eleven monitoring wells and piezometers (MW-1B, P-401D, P-402E, P-422B, P-423D, P-424D, P424SS, P-426D, P-426SS, P-429SS, and P-430D) for inorganics (hardness, alkalinity, and chloride), VOCs, water elevations, and field parameters.

Investigation private well monitoring includes monthly monitoring for VOCs at one private well (PW-21RR), semi-annual monitoring for VOCs and inorganics (hardness, alkalinity, and chloride) at seven private wells (PW-19, PW-20, PW-21RR, PW-23, PW-28, PW-32, and PW-38), and annual monitoring for VOCs and inorganics at three additional private wells (PW-42, PW-43, and PW-44). Field parameters are also recorded during each sampling event.

During 2022, groundwater monitoring was conducted by Environmental Sampling Corporation (ESC) of Muskego, Wisconsin. Samples were analyzed by Pace Analytical Services of Green Bay, Wisconsin (Wisconsin Laboratory Certification No. 999407970).

SCS Engineers prepared and submitted a summary of the groundwater monitoring results and an electronic data submission for each semi-annual monitoring event. The semi-annual monitoring reports of the groundwater monitoring events and a summary of the April 2022 investigation private well monitoring results are provided as **Appendix A, Attachment A-1**. Individual private well letters including the laboratory analytical results were also provided to the homeowners and the WDNR throughout the reporting period.

Additionally, SCS Engineers prepared the following documents related to the off-site investigation during 2022. These reports provide a summary of the monitoring conducted, sample results, and other information relevant to the off-site investigation.

- Additional Investigation Update: Chlorinated Volatile Organic Compounds in Bedrock Aquifer, Land & Gas Reclamation Landfill, March 23, 2022.
- 2021 Annual Report, Land & Gas Reclamation Landfill/Hechimovich Sanitary Landfill Site, June 1, 2022.

Historic VOC Monitoring Results and Concentrations vs. Time Plots for cis-1,2-DCE, TCE and vinyl chloride for selected routine monitoring wells were prepared by SCS Engineers and are included as **Appendix A, Attachment A-2**. Additional discussion regarding the groundwater quality trends is provided below in response to approval condition 3.i.

In general, the groundwater flow direction trends to the north-northeast across the site with gradients ranging from 0.003 ft/ft to 0.005 ft/ft in the area of the former LGRL facility as shown on the Groundwater Table Map (**Appendix A, Figure 1**).

Approval Reference

May 19, 2000

Plan of Operation Approval Modification, Superior Glacier Ridge Landfill (Lic. No. 3068), Biopile (Lic. No. 3792), Land and Gas Reclamation Landfill (Lic. No. 1118), and Demolition Landfill (Lic. No. 3568)

h. A listing of all monitoring points or monitoring periods where sampling was not conducted as required. The annual report shall propose a schedule to supplement the approved monitoring program to compensate for the missing monitoring points or periods.

Response

In accordance with the WDNR approved Waste Relocation Project, the LGRL gas collection system components, leachate head monitoring points, gas probes, and settlement hubs were abandoned prior to 2022. Groundwater monitoring wells and staff gauges are the only remaining monitoring points referenced in the solid waste permit.

During the April 2022 event, there was flooding in the vicinity of MW-214 and MW214A that prevented access for sampling. Samples were collected from these wells in May 2022 when the high water had subsided and the wells were accessible. Due to an inadvertent oversight, chloride and alkalinity were not included in the analysis for MW-214A. An additional sample was collected from MW-214A in June 2022. All groundwater wells were monitored as required during the October 2022 event; no schedule modifications were required.

Private well monitoring was conducted during 2022 as required by the WDNR approved off-site investigation workplan. All private well monitoring was conducted as required by the workplan; no schedule modifications were required.

Approval Reference

May 19, 2000

Plan of Operation Approval Modification, Superior Glacier Ridge Landfill (Lic. No. 3068), Biopile (Lic. No. 3792), Land and Gas Reclamation Landfill (Lic. No. 1118), and Demolition Landfill (Lic. No. 3568)

i. An overall evaluation of the effectiveness of the remedy in reducing environmental impacts of the site.

Response

As of March 23, 2016, and the completion of the WDNR approved Waste Relocation Project, all of the LGRL waste has been exhumed and disposed of in the active Glacier Ridge Landfill thus removing the source of the environmental impacts.

An assessment of environmental impacts over time is presented in the Historic VOC Monitoring Results and Concentrations vs. Time Plots prepared by SCS Engineers (**Appendix A, Attachment A-2**). Plots for total cis-1,2-DCE, TCE and Vinyl Chloride show concentrations to be stable or trending downward in the samples collected from MW-1AR, MW-1RR, W-3AR, MW-210, MW-210A, and MW-214. Concentrations of 1,2-DCE and TCE in the samples collected from W-3R have been stable or not detected; concentrations of vinyl chloride displayed an increasing trend from 2019-2021 but were decreased during the semi-annual events in 2022. Concentrations of 1,2-DCE and TCE in the samples collected from MW-210B and MW-214A have been stable or not detected, but concentrations of vinyl chloride displayed an increasing trend.

The Groundwater Monitoring Results (April and October 2022) in **Appendix A, Attachment A-1** prepared by SCS Engineers provides further data interpretation related to the April and October 2022 groundwater monitoring events. Additional evaluations were also provided by SCS Engineers during 2022 in the Additional Investigation Update, Chlorinated Volatile Organic Compounds in Bedrock Aquifer, Land & Gas Reclamation Landfill, dated March 23, 2022, and the 2021 Annual Report for the off-site investigation of chlorinated volatile organic compounds in bedrock at LGRL dated June 1, 2022.

APPENDIX A

2022 Groundwater Data Assessment (SCS Engineers)

Attachment A-1

Groundwater Monitoring Results: April 2022
Water Supply Well Monitoring Results: April 2022
Groundwater Monitoring Results: June 2022
Groundwater Monitoring Results: October 2022

SCS ENGINEERS

June 30, 2022 File No. 25222008.00

GEMS Data Submittal Contact – WA/5 Wisconsin Department of Natural Resources P.O. Box 7921 Madison, WI 53707-7921

Subject: Groundwater Monitoring Results – April 2022

Land & Gas Reclamation Landfill - Horicon, Wisconsin

WDNR License #1118 FID #114052290

Dear GEMS Data Submittal Contact:

Enclosed are the electronic data file, NR 140 exceedance summary, and monitoring data certification form for monitoring performed in April 2022 at the former Land & Gas Reclamation Landfill (LGRL) site. Monitoring data in this submittal include laboratory results and associated field data from the following monitoring points in the required LGRL monitoring program:

- Monitoring wells (MW1AR through MW214A)
- Surface water staff gauges (SW2 through SW5)

The groundwater samples were collected by Environmental Sampling Corporation (ESC). Laboratory analysis was performed by Pace Analytical Services.

The data CD also includes monitoring data for some of the wells that were installed for the ongoing investigation of volatile organic compounds (VOCs) in the bedrock aquifer. Investigation wells that have been assigned Wisconsin Department of Natural Resources (WDNR) IDs are included on the data CD, including bedrock monitoring wells P-401D, P-402E, and P-423D, and deep unconsolidated aquifer monitoring wells MW-1B and P-422B. These wells are not part of the routine LGRL monitoring program. Additional investigation wells P-424D, P-424SS, P-426D, P-426SS, P-429SS, and P-430D have not been assigned WDNR IDs and are not included on the data CD. Results for all groundwater monitoring associated with the VOC investigation will be provided to the WDNR in the next investigation update report.

This letter provides a preliminary analysis of the cause and significance of the NR 140 groundwater standard exceedances for monitoring data included in the data CD. An explanation of any deviations from the approved sampling plan is also included in the Monitoring Program Comments section of this letter.

NR 140 EXCEEDANCES

NR 140 standard exceedances for the April 2022 sampling round are listed in the attached NR 140 Exceedance Summary table. The following discussion addresses the NR 140 enforcement standard (ES) and preventive action limit (PAL) exceedances for this event.

Public Health Parameters

Arsenic was reported at concentrations less than the ES, but above the PAL of 1 microgram per liter (μ g/L), in samples from the following wells: MW-1AR, MW-1RR, MW-7R, MW-8R, MW-203A, MW-210, MW-210A, MW-214, MW-214A, W-3AR, W-3R, and W-163A. Arsenic concentrations within this range have been detected in samples collected from many wells around the former LGRL site and the adjacent Glacier Ridge Landfill, and are likely attributable to naturally occurring arsenic.

VOCs including benzene, cis-1,2 dichloroethene (DCE), and vinyl chloride were detected at concentrations exceeding the PAL or ES, and the Limit of Quantitation (LOQ), in samples collected from the following wells: MW-1AR, MW-1B, MW-210A, MW-210B, P-402E, P-423D, W-3R, and W-3AR. The specific VOCs exceeding the PAL or ES at each well are shown in the attached NR 140 Exceedance Summary (**Table 1**). All of these wells are located downgradient from the former LGRL site, and the VOCs are likely due to LGRL.

In addition to the NR 140 standard exceedances described above, there were some VOC results reported at estimated concentrations above the PAL or ES, but below the LOQ ("J" flag). These results are not considered PAL or ES exceedances without additional confirmation in accordance with NR 140.14(3). VOCs reported at concentrations above the PAL, but below the LOQ, included trichloroethylene or vinyl chloride in samples from the following wells: MW-210, MW-210A, and P-423D.

These wells are located adjacent to or downgradient from the former LGRL site, and the VOCs are likely due to LGRL.

The PAL and ES exceedances and reported concentrations for VOCs were generally consistent with previous results.

Public Welfare Parameters

Chloride was reported above the NR 140 ES of 250 μ g/L in the sample from MW-1AR. Chloride was reported above the PAL of 125 μ g/L in the samples from MW-1B and MW-1RR. These wells are located downgradient of LGRL, and the chloride detections may be associated with LGRL.

MONITORING PROGRAM COMMENTS

The approved monitoring program was followed except that samples and/or water levels could not be collected in April due to field conditions at the following monitoring locations:

 Monitoring wells MW-214 and MW-214A could not be accessed in April 2022 due to flooding. These monitoring wells were sampled in May once flooding had subsided. GEMS Data Submittal Contact June 30, 2022 Page 3

If you have any questions regarding this submittal, please call Sherren Clark at 608.216.7323.

Sincerely,

Sherren Clark, PE, PG Project Director

SCS Engineers

Ryan Matzuk Hydrogeologist SCS Engineers

RM/AJR/EO/SCC

cc: Mark Peters, WDNR (without CD)

Lonn Walter, Glacier Ridge Landfill (2 copies of letter, 1 CD)

Kari Rabideau, GFL Environmental (via email) Tim Curry, GFL Environmental (via email)

Frank Perugini, Environmental Sampling Corp. (via email)

Encl. Table 1 - NR 140 Exceedance Summary

Groundwater Monitoring Data Certification Form

GEMS Data CD

I:\25222008.00\Deliverables\2022_GEMS_Apr\220630_LGRL_April 2022 GEMS Letter.docx

Table 1

NR 140 Exceedance Summary

Site ID: 1118

Site Name: Land and Gas Reclamation Landfill

Reporting Period: April 2022

Note: Includes NR 140 exceedances for wells in the LGRL monitoring plan approved by the WDNR Solid Waste program and additional wells in the off-site monitoring plan that have been assigned WDNR IDs

Groundwater Results Exceeding NR 140 Standards

Well	Parameter	Result *	PAL	ES	Exceedance Type
MW-001AR (LGRL)	Arsenic, dissolved (ug/l As)	3.2	1	10	PAL
	Chloride, dissolved (mg/l as Cl)	588	125	250	ES
	cis-1,2-Dichloroethene (ug/l)	495	7	70	ES
	Vinyl chloride (ug/l)	957	0.02	0.2	ES
MW-001B	Chloride, dissolved (mg/l as Cl)	162	125	250	PAL
	Vinyl chloride (ug/l)	5.4	0.02	0.2	ES
MW-001RR (LGRL)	Arsenic, dissolved (ug/l As)	2.6	1	10	PAL
	Chloride, dissolved (mg/l as CI)	150	125	250	PAL
MW-007R	Arsenic, dissolved (ug/l As)	1.6	1	10	PAL
MW-008R (LGRL)	Arsenic, dissolved (ug/l As)	2.1	1	10	PAL
MW-203A	Arsenic, dissolved (ug/l As)	5.9	1	10	PAL
MW-210	Arsenic, dissolved (ug/l As)	1.1/1.1	1	10	PAL
MW-210A	Arsenic, dissolved (ug/l As)	6.1	1	10	PAL
	cis-1,2-Dichloroethene (ug/l)	105	7	70	ES
	Vinyl chloride (ug/l)	63.9	0.02	0.2	ES
MW-210B	Vinyl chloride (ug/l)	7.5	0.02	0.2	ES
MW-214	Arsenic, dissolved (ug/l As)	1.2/1.3	1	10	PAL
MW-214A	Arsenic, dissolved (ug/l As)	2.3	1	10	PAL
P-402E (LGRL)	cis-1,2-Dichloroethene (ug/l)	152	7	70	ES
	Vinyl chloride (ug/l)	28.5	0.02	0.2	ES
P-423D	cis-1,2-Dichloroethene (ug/l)	41.1	7	70	PAL
	Vinyl chloride (ug/l)	1.1	0.02	0.2	ES

Table 1

NR 140 Exceedance Summary

Site ID: 1118

Site Name: Land and Gas Reclamation Landfill

Reporting Period: April 2022

Note: Includes NR 140 exceedances for wells in the LGRL monitoring plan approved by the WDNR Solid Waste program and additional wells in the off-site monitoring plan that have been assigned WDNR IDs

Groundwater Results Exceeding NR 140 Standards

Well	Parameter	Result *	PAL	ES	Exceedance Type
W-003AR (LGRL)	Arsenic, dissolved (ug/l As)	4.4	1	10	PAL
	Benzene (ug/l)	1.1	0.5	5	PAL
	cis-1,2-Dichloroethene (ug/l)	24.1	7	70	PAL
	Vinyl chloride (ug/l)	13	0.02	0.2	ES
W-003R (LGRL)	Arsenic, dissolved (ug/l As)	1	1	10	PAL
	Vinyl chloride (ug/l)	6.8	0.02	0.2	ES
W-163A (LGRL)	Arsenic, dissolved (ug/l As)	2.9	1	10	PAL

Groundwater Results with Estimated Concentration Above an NR 140 PAL or ES and Below the LOQ

Note: If both the result and the PAL or ES are above the limit of detection but below the limit of quantitation, the result is not considered a PAL or ES exceedance under NR 140.14(3)(c). If the PAL or ES is below the limit of detection and the result is below the limit of quantitation, the result is not considered a PAL or ES exceedance without additional confirmation as described in NR 140.14(3)(b).

Well	Parameter	Result*	LOD/LOQ	PAL	ES
MW-210	Vinyl chloride (ug/l)	0.85/0.82 J	0.17/1	0.02	0.2
MW-210A	Trichloroethylene (ug/l)	0.88 J	0.8/2.5	0.5	5
P-423D	Trichloroethylene (ug/l)	0.8 J	0.32/1	0.5	5

Notes:

PAL = Preventive Action Limit ES = Enforcement Standard ug/l = micrograms per liter mg/l = milligrams per liter

LOQ = Limit of Quantitation

J = Result is an estimated value below the laboratory's limit of quantitation.

* = Two results indicate duplicate samples. Only results exceeding the PAL are shown.

Prepared by: AJR, 6/13/2022

Checked by: RM, 6/19/2022

Save... Print... Clear Data

State of Wisconsin Department of Natural Resources dnr.wi.gov

Environmental Monitoring Data Certification

Form 4400-231 (R 5/17)

Notice: Personally identifiable information collected will be used for program administration and enforcement purposes. The Department may also provide this information to requesters as required under Wisconsin's Open Records law, ss. 19.31 to 19.39, Wis. Stats. When submitting monitoring data, the owner or operator of the facility, practice or activity is required to notify the Department in writing that a groundwater standard or an explosive gas level has been attained or exceeded, as specified in ss. NR 140.24(1)(a); NR 140.26(1)(a); NR 507.30NR 635.14(9)(a); NR 635.18(20) and NR 507.30, Wis. Adm. Code. Failure to report may result in fines, forfeitures or other penalties resulting from enforcement under ss. 289.97, 291.97 or 299.95, Wis. Stats

Instructions:

- · Prepare one form for each license or monitoring ID.
- · Please type or print legibly.
- Attach a notification of any values that attain or exceed groundwater standards (that is, preventive action limits, enforcement standards or alternative concentration limits). The notification must include a preliminary analysis of the cause and significance of each value.
- Attach a notification of any gas values that attain or exceed explosive gas levels.
- Send the original signed form, any notification, and Electronic Data Deliverable [EDD] to:

GEMS Data Submittal Contact - WA/5 Wisconsin Department of Natural Resources P.O. Box 7921

Madison, WI 53707-7921

		Madison, Wi	001011021
Monitoring Data Submittal Information			
Name of entity submitting data (laboratory, consult	ant, facility owne	er)	
SCS Engineers			
Contact for questions about data formatting. Include	le data preparer		
Name Ashlay Radungal			Phone No. (include area code) (608) 224-2830
Ashley Radunzel Email			(608) 224-2830
aradunzel@scsengineers.com			
Facility Name			
Land & Gas Reclamation Landfill			
License # / Monitoring ID		Facility ID (FID)	
1118		114052290	
Actual sampling dates (e.g., July 2-6, 2003)	The enclosed re	sults are for sampling required i	n the month(s) of: (e.g., June 2003)
April 1, 4, 6-8, 28, 2022; May 4, 2022	April 2022		
Type of Data Submitted (Check all that apply):			
$\overline{igwedge}$ Groundwater monitoring data from monitoring v	vells	Gas monitoring data	
Groundwater monitoring data from private wate	er supply wells	Air monitoring data	
Leachate monitoring data		Other (specify): Staff C	Gauge
Notification attached?			
No. No groundwater standards or explosive gas	s limits were exc	eeded.	
Yes, a notification of values exceeding a ground values, groundwater standard and preliminary a	dwater standard	is attached. It includes a list of r	
Yes, a notification of values exceeding an exploand explosive gas limits.	osive gas limit is	attached. It includes the monitor	ring points, dates, sample values
Certification			
To the best of my knowledge, the information repo			
correct. Furthermore, I have attached complete not explosive gas levels, and a preliminary analysis of			
Facility Representative Name (Print)	Title	grifficance of concentrations exc	Phone No. (include area code)
Sherren Clark, SCS Engineers	Project Mana	ger	(608) 216-7323
Sherren Clark, Sees Engineers	1 Toject Iviana	561	(000) 210 7323
52/12	6/28	3/2022	
Signature	Date	Signed (mm/dd/yyyy)	
	For DNR	Use Only	
Check action taken, and record date and your initials. De	escribe on back sid	le if necessary.	
Found uploading problems on	Initials	S	
Notified contact of problems on	Uploa	ded data successfully on	
EDD format(s): Diskette CD (initial submitte	al and follow-up)	E-mail (follow-up only)	Other:

SCS ENGINEERS

May 24, 2022 File No. 25222008.02

Mr. Trevor Bannister Wisconsin Department of Natural Resources 3911 Fish Hatchery Road Fitchburg, WI 53711

Mr. Mark Peters Wisconsin Department of Natural Resources 3911 Fish Hatchery Road Fitchburg, WI 53711

Subject: Water Supply Well Monitoring Results – April 2022

Investigation of Chlorinated Volatile Organic Compounds in Groundwater in Bedrock

Land & Gas Reclamation Landfill, Dodge County, Wisconsin

BRRTS #02-14-000906 WDNR License No. 1118

Dear Mr. Bannister and Mr. Peters:

Enclosed are the water supply well results for April 2022 monitoring for the Land & Gas Reclamation Landfill (LGRL) groundwater investigation. The samples were collected by Environmental Sampling Corporation (ESC) on April 7 and 8, 2022. The samples were analyzed for field parameters, volatile organic compounds (VOCs), alkalinity, chloride, and hardness. Laboratory analysis was performed by Pace Analytical Services, Green Bay, Wisconsin.

Water supply well monitoring in April included the following sample locations:

- PW-19
- PW-20
- PW-21RR (untreated groundwater and post-treatment water supply)
- PW-23
- PW-28
- PW-32
- PW-38

This sampling is not required under the routine monitoring plan for LGRL, but has been performed as part of the ongoing groundwater investigation in the bedrock aquifer downgradient from LGRL. The treatment system for water supply well PW-21RR at the Oechsner farm is a CLEARADON aeration system.

The April 2022 VOC detections are summarized in the attached Water Supply Well Sampling Results Summary table. The laboratory report is also attached.

Mr. Trevor Bannister and Mr. Mark Peters, WDNR May 24, 2022 Page 2

The only NR 140 groundwater standard exceedances for April 2022 were in the untreated groundwater sample from PW-21RR (A. Oechsner), where vinyl chloride was detected at a concentration above the NR 140 enforcement standard and cis-1,2-dichloroethene (cis-1,2-DCE) was detected at a concentration above the NR 140 preventive action limit (PAL). In the post-treatment sample from PW-21RR, there were no VOC detections above the PALs. The reported concentrations for untreated and treated water at PW-21RR are consistent with previous results.

The only other VOC detections in the water supply well sampling were for cis-1,2-DCE in wells PW-19 (Antonioni), PW-28 (Muche), and PW-21RR post-treatment (A. Oechsner). The cis-1,2-DCE concentrations detected in samples from these three wells were generally consistent with previous results and remained well below the PAL.

If you have any questions regarding this submittal, please call Sherren Clark at (608) 216-7323.

Sincerely,

Sherren Clark, PE, PG Project Director

SCS Engineers

Ryan Matzuk Hydrogeologist

Myer Whath

SCS Engineers

RM/AJR/SCC

cc: Jake Margelofsky, Glacier Ridge Landfill

cc via email: Environmental Program Associate, at DNRWasteManagement@Wisconsin.gov

Tim Curry, GFL Environmental Kari Rabideau, GFL Environmental Melissa Bachhuber, GFL Environmental Lonn Walter, Glacier Ridge Landfill

Mark Torresani, Tetra Tech

Tracy Ipavec, Environmental Sampling Corporation Melanie Gotto, Deere & Company World Headquarters Monica Rios, Deere & Company World Headquarters George Marek, Quarles & Brady, LLP (for Mercury Marine)

Linda Benfeld, ESG Holdings, LLC c/o Foley & Lardner LLP (for Maysteel Corp.)

Nathan Kempke, City of Mayville

Paul Rosenfeldt, Edgarton, St. Peter, Petak & Rosenfeldt (for Mayville Engineering

Corp.)

Encl. Water Supply Well Sampling Results Summary Laboratory Report for Water Supply Well Samples

I:\25222008.02\Deliverables\2022_Apr PW Letter\220524_LGRL_Apr2022_PW_Ltr.docx

Water Supply Well Sampling Results Summary

Site Name: Land & Gas Reclamation Landfill Offsite Investigation

Reporting Period: April 2022

Groundwater Results with Volatile Organic Compound Detections

Well	Parameter	Result	PAL	ES	Exceedance Type
PW-19	cis-1,2-Dichloroethene (µg/L)	0.44 J	7	70	No exceedance
PW-21RR untreated	cis-1,2-Dichloroethene (µg/L)	22.4	7	70	PAL
	trans-1,2-Dichloroethene, total (µg/L)	0.38 J	20	100	No exceedance
	Vinyl chloride (µg/L)	0.52	0.02	0.2	ES
PW-21RR treated	cis-1,2-Dichloroethene (µg/L)	1.8	7	70	No exceedance
PW-28	cis-1,2-Dichloroethene (µg/L)	3.5	7	70	No exceedance

Notes:

PAL = NR 140 Preventive Action Limit

ES = NR 140 Enforcement Standard

μg/L = micrograms per liter

J = Estimated concentration at or above the Limit of Detection and below the Limit of Quantitation

Prepared by: AJR, 5/23/2022 Checked by: RM, 5/24/2022

May 17, 2022

Lonn Walter GFL Enviromental N7296 Hwy V Horicon, WI 53032

RE: Project: LGRL PW APRIL Pace Project No.: 40243151

Dear Lonn Walter:

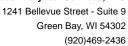
Enclosed are the analytical results for sample(s) received by the laboratory between April 08, 2022 and April 09, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Green Bay
- Pace Analytical Services Indianapolis

If you have any questions concerning this report, please feel free to contact me.

Sincerely,


Condy K Vage

Cindy Varga cindy.varga@pacelabs.com (920)469-2436 Project Manager

Enclosures

cc: Sherren Clark, SCS Engineers
 Environmental Sampling Corporation Staff, Environmental
 Sampling Corporation
 Jake Margelofsky, GFL Environmental
 Frank Perugini, Environmental Sampling Corporation
 Kari Rabideau, GFL Environmental
 Ashley Radunzel, SCS ENGINEERS

CERTIFICATIONS

Project: LGRL PW APRIL
Pace Project No.: 40243151

Pace Analytical Services Green Bay

1241 Bellevue Street, Green Bay, WI 54302

Florida/NELAP Certification #: E87948
Illinois Certification #: 200050
Kentucky UST Certification #: 82
Louisiana Certification #: 04168
Minnesota Certification #: 055-999-334

New York Certification #: 12064 North Dakota Certification #: R-150 Virginia VELAP ID: 460263

South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157

Federal Fish & Wildlife Permit #: LE51774A-0

Pace Analytical Services Indianapolis

7726 Moller Road, Indianapolis, IN 46268

Illinois Accreditation #: 200074

Indiana Drinking Water Laboratory #: C-49-06

Kansas/TNI Certification #: E-10177 Kentucky UST Agency Interest #: 80226 Kentucky WW Laboratory ID #: 98019 Michigan Drinking Water Laboratory #9050 Ohio VAP Certified Laboratory #: CL0065

Oklahoma Laboratory #: 9204 Texas Certification #: T104704355 Wisconsin Laboratory #: 999788130 USDA Soil Permit #: P330-19-00257

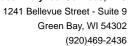
(920)469-2436

SAMPLE SUMMARY

Project: LGRL PW APRIL

Pace Project No.: 40243151

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40243151001	PW-21RR BEFORE	Water	04/07/22 13:45	04/08/22 08:45
40243151002	PW-21RR AFTER	Water	04/07/22 13:50	04/08/22 08:45
40243151003	PW-23	Water	04/07/22 14:30	04/08/22 08:45
40243151004	PW-38	Water	04/07/22 14:10	04/08/22 08:45
40243151005	TRIP BLANK	Water	04/07/22 00:00	04/08/22 08:45
40243238001	PW-19	Water	04/08/22 10:25	04/09/22 08:40
40243238002	PW-20	Water	04/08/22 12:45	04/09/22 08:40
40243238003	PW-28	Water	04/08/22 10:55	04/09/22 08:40
40243238004	PW-32	Water	04/08/22 11:20	04/09/22 08:40
40243238005	TRIP BLANK	Water	04/08/22 00:00	04/09/22 08:40


(920)469-2436

SAMPLE ANALYTE COUNT

Project: LGRL PW APRIL Pace Project No.: 40243151

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
40243151001	PW-21RR BEFORE	EPA 6010D		1	PASI-G
		EPA 524.2	BES	45	PASI-I
			CKV	6	PASI-G
		EPA 300.0	НМВ	1	PASI-G
		EPA 310.2	DAW	1	PASI-G
40243151002	PW-21RR AFTER	EPA 524.2	BES	45	PASI-I
			CKV	6	PASI-G
40243151003	PW-23	EPA 6010D	TXW	1	PASI-G
		EPA 524.2	BES	45	PASI-I
			CKV	6	PASI-G
		EPA 300.0	НМВ	1	PASI-G
		EPA 310.2	DAW	1	PASI-G
40243151004	PW-38	EPA 6010D	TXW	1	PASI-G
		EPA 524.2	BES	45	PASI-I
			CKV	6	PASI-G
		EPA 300.0	HMB	1	PASI-G
		EPA 310.2	DAW	1	PASI-G
40243151005	TRIP BLANK	EPA 524.2	BES	45	PASI-I
40243238001	PW-19	EPA 6010D	TXW	1	PASI-G
		EPA 524.2	BES	45	PASI-I
			CKV	6	PASI-G
		EPA 300.0	HMB	1	PASI-G
		EPA 310.2	DAW	1	PASI-G
40243238002	PW-20	EPA 6010D	TXW	1	PASI-G
		EPA 524.2	BES	45	PASI-I
			CKV	6	PASI-G
		EPA 300.0	HMB	1	PASI-G
		EPA 310.2	DAW	1	PASI-G
40243238003	PW-28	EPA 6010D	TXW	1	PASI-G
		EPA 524.2	BES	45	PASI-I
			CKV	6	PASI-G
		EPA 300.0	НМВ	1	PASI-G
		EPA 310.2	DAW	1	PASI-G
40243238004	PW-32	EPA 6010D	TXW	1	PASI-G
		EPA 524.2	BES	45	PASI-I
			CKV	6	PASI-G
		EPA 300.0	НМВ	1	PASI-G

SAMPLE ANALYTE COUNT

Project: LGRL PW APRIL

Pace Project No.: 40243151

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 310.2	DAW	1	PASI-G
40243238005	TRIP BLANK	EPA 524.2	BES	45	PASI-I

PASI-G = Pace Analytical Services - Green Bay PASI-I = Pace Analytical Services - Indianapolis

ANALYTICAL RESULTS

Project: LGRL PW APRIL
Pace Project No: 40243151

Pace Project No.: 40243151									
Sample: PW-21RR BEFORE	Lab ID:	40243151001	Collected:	04/07/22	13:45	Received: 04/	08/22 08:45 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6010D MET ICP		Method: EPA 6		ration Metl	hod: Ef	PA 3010A			
	Pace Anal	ytical Services	Green Bay						
Total Hardness by 2340B	395000	ug/L	2000	150	1	04/11/22 05:57	04/13/22 00:13		
524.2 MSV	Analytical	Method: EPA 5	24.2						
	Pace Anal	ytical Services	- Indianapoli	S					
Agatona	<0.62		2.1	0.62	1		04/14/22 19:48	67.64.1	N2
Acetone Benzene	<0.099	ug/L	0.33	0.02	1		04/14/22 19:48		N2
Bromodichloromethane	<0.099 <0.17	ug/L	0.58	0.099	1		04/14/22 19:48		N2
Bromoform	<0.17	ug/L ug/L	0.38	0.17	1		04/14/22 19:48		L1,N2
Bromomethane	<0.14	-	0.48	0.14	1		04/14/22 19:48		-
		ug/L			1		04/14/22 19:48		L1,N2
2-Butanone (MEK)	<0.49	ug/L	1.6	0.49					N2
Carbon disulfide	<0.11	ug/L	0.38	0.11	1		04/14/22 19:48		N2
Carbon tetrachloride	<0.14	ug/L	0.48	0.14	1		04/14/22 19:48		N2
Chlorobenzene	<0.083	ug/L	0.28	0.083	1		04/14/22 19:48		N2
Chloroethane	<0.17	ug/L	0.58	0.17	1		04/14/22 19:48		N2
Chloroform	<0.58	ug/L	1.9	0.58	1		04/14/22 19:48		N2
Chloromethane	<0.10	ug/L	0.35	0.10	1		04/14/22 19:48		N2
1,2-Dibromo-3-chloropropane	<0.18	ug/L	0.60	0.18	1		04/14/22 19:48		N2
Dibromochloromethane	<0.12	ug/L	0.38	0.12	1		04/14/22 19:48	_	N2
1,2-Dibromoethane (EDB)	<0.088	ug/L	0.29	0.088	1		04/14/22 19:48		N2
Dibromomethane	<0.24	ug/L	0.79	0.24	1		04/14/22 19:48		N2
1,2-Dichlorobenzene	<0.043	ug/L	0.14	0.043	1		04/14/22 19:48		N2
1,3-Dichlorobenzene	<0.076	ug/L	0.25	0.076	1		04/14/22 19:48		N2
1,4-Dichlorobenzene	<0.059	ug/L	0.20	0.059	1		04/14/22 19:48		N2
Dichlorodifluoromethane	<0.31	ug/L	1.0	0.31	1		04/14/22 19:48		N2
1,1-Dichloroethane	<0.15	ug/L	0.49	0.15	1		04/14/22 19:48		N2
1,2-Dichloroethane	<0.085	ug/L	0.28	0.085	1		04/14/22 19:48	107-06-2	N2
1,1-Dichloroethene	<0.23	ug/L	0.77	0.23	1		04/14/22 19:48		N2
cis-1,2-Dichloroethene	22.4	ug/L	0.83	0.25	1		04/14/22 19:48		N2
trans-1,2-Dichloroethene	0.38J	ug/L	1.1	0.32	1		04/14/22 19:48	156-60-5	N2
1,2-Dichloropropane	<0.20	ug/L	0.66	0.20	1		04/14/22 19:48	78-87-5	N2
cis-1,3-Dichloropropene	<0.088	ug/L	0.29	0.088	1		04/14/22 19:48	10061-01-5	N2
trans-1,3-Dichloropropene	<0.093	ug/L	0.31	0.093	1		04/14/22 19:48	10061-02-6	N2
Ethylbenzene	<0.11	ug/L	0.35	0.11	1		04/14/22 19:48	100-41-4	N2
Methylene Chloride	<2.1	ug/L	6.9	2.1	1		04/14/22 19:48	75-09-2	N2
Methyl-tert-butyl ether	<0.11	ug/L	0.37	0.11	1		04/14/22 19:48	1634-04-4	N2
Naphthalene	<0.073	ug/L	0.24	0.073	1		04/14/22 19:48	91-20-3	N2
Styrene	<0.13	ug/L	0.42	0.13	1		04/14/22 19:48	100-42-5	N2
Tetrachloroethene	<0.094	ug/L	0.31	0.094	1		04/14/22 19:48	127-18-4	N2
Tetrahydrofuran	<0.38	ug/L	1.3	0.38	1		04/14/22 19:48	109-99-9	N2
Toluene	<0.12	ug/L	0.39	0.12	1		04/14/22 19:48	108-88-3	N2
1,1,1-Trichloroethane	<0.22	ug/L	0.72	0.22	1		04/14/22 19:48	71-55-6	N2
1,1,2-Trichloroethane	<0.15	ug/L	0.51	0.15	1		04/14/22 19:48		N2
Trichloroethene	<0.17	ug/L	0.56	0.17	1		04/14/22 19:48		N2
Trichlorofluoromethane	<0.20	ug/L	0.67	0.20	1		04/14/22 19:48		N2
Vinyl chloride	0.52	ug/L	0.29	0.087	1		04/14/22 19:48		N2

ANALYTICAL RESULTS

Project: LGRL PW APRIL
Pace Project No.: 40243151

Sample: PW-21RR BEFORE	Lab ID:	40243151001	Collected	: 04/07/22	13:45	Received: 04	/08/22 08:45 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qua
524.2 MSV	Analytical	Method: EPA 5	24.2						
	Pace Ana	lytical Services	- Indianapoli	S					
Xylene (Total) Surrogates	<0.11	ug/L	0.36	0.11	1		04/14/22 19:48	1330-20-7	N2
4-Bromofluorobenzene (S)	96	%.	70-130		1		04/14/22 19:48	460-00-4	
Dibromofluoromethane (S)	95	%.	70-130		1		04/14/22 19:48	1868-53-7	
Toluene-d8 (S)	106	%.	70-130		1		04/14/22 19:48	2037-26-5	
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Green Bay						
Field pH	7.32	Std. Units			1		04/07/22 13:45		
Field Specific Conductance	563	umhos/cm			1		04/07/22 13:45		
Turbidity	N	NTU			1		04/07/22 13:45		
Apparent Color	N	no units			1		04/07/22 13:45		
Odor	N	no units			1		04/07/22 13:45		
Temperature, Water (C)	10.9	deg C			1		04/07/22 13:45		
300.0 IC Anions	Analytical	Method: EPA 3	0.00						
	Pace Ana	lytical Services	- Green Bay						
Chloride	20.0	mg/L	2.0	0.43	1		04/19/22 18:57	16887-00-6	
310.2 Alkalinity	Analytical	Method: EPA 3	10.2						
•	Pace Ana	lytical Services	- Green Bay						
Alkalinity, Total as CaCO3	362	mg/L	50.0	10.4	2		04/15/22 11:06		

ANALYTICAL RESULTS

Project: LGRL PW APRIL
Pace Project No.: 40243151

Sample: PW-21RR AFTER Lab ID: 40243151002 Collected: 04/07/22 13:50 Received: 04/08/22 08:45 Matrix: Water

	245 15.	102 10 10 1002	· Comocio	u. 0 1/01/22	. 10.00	110001104.	1700/22 00: 10 W	atin. Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
524.2 MSV	Analytical	Method: EPA	524.2						
	Pace Ana	lytical Services	s - Indianapo	olis					
Acetone	<0.62	ug/L	2.1	0.62	1		04/14/22 20:13	67-64-1	N2
Benzene	< 0.099	ug/L	0.33	0.099	1		04/14/22 20:13	71-43-2	N2
Bromodichloromethane	<0.17	ug/L	0.58	0.17	1		04/14/22 20:13	75-27-4	N2
Bromoform	<0.14	ug/L	0.48	0.14	1		04/14/22 20:13	75-25-2	L1,N2
Bromomethane	<0.28	ug/L	0.94	0.28	1		04/14/22 20:13	74-83-9	L1,N2
2-Butanone (MEK)	< 0.49	ug/L	1.6	0.49	1		04/14/22 20:13	78-93-3	N2
Carbon disulfide	<0.11	ug/L	0.38	0.11	1		04/14/22 20:13	75-15-0	N2
Carbon tetrachloride	<0.14	ug/L	0.48	0.14	1		04/14/22 20:13	56-23-5	N2
Chlorobenzene	< 0.083	ug/L	0.28	0.083	1		04/14/22 20:13	108-90-7	N2
Chloroethane	<0.17	ug/L	0.58	0.17	1		04/14/22 20:13		N2
Chloroform	<0.58	ug/L	1.9	0.58	1		04/14/22 20:13		N2
Chloromethane	<0.10	ug/L	0.35	0.10	1		04/14/22 20:13		N2
1,2-Dibromo-3-chloropropane	<0.18	ug/L	0.60	0.18	1		04/14/22 20:13		N2
Dibromochloromethane	<0.12	ug/L	0.38	0.12	1		04/14/22 20:13		N2
1,2-Dibromoethane (EDB)	<0.088	ug/L	0.29	0.088	1		04/14/22 20:13		N2
Dibromomethane	<0.24	ug/L	0.79	0.24	1		04/14/22 20:13		N2
1,2-Dichlorobenzene	< 0.043	ug/L	0.14	0.043	1		04/14/22 20:13		N2
1,3-Dichlorobenzene	<0.076	ug/L	0.14	0.076	1		04/14/22 20:13		N2
1,4-Dichlorobenzene	<0.059	ug/L	0.20	0.059	1		04/14/22 20:13		N2
Dichlorodifluoromethane	<0.31	ug/L	1.0	0.033	1		04/14/22 20:13		N2
1,1-Dichloroethane	<0.15	ug/L	0.49	0.31	1		04/14/22 20:13	-	N2
1,2-Dichloroethane	<0.15	-	0.49	0.15	1		04/14/22 20:13		N2
1,1-Dichloroethene	<0.065	ug/L	0.28	0.065	1		04/14/22 20:13		N2 N2
-		ug/L			1				N2
cis-1,2-Dichloroethene	1.8	ug/L	0.83	0.25	1		04/14/22 20:13		N2 N2
trans-1,2-Dichloroethene	<0.32	ug/L	1.1	0.32			04/14/22 20:13		
1,2-Dichloropropane	<0.20	ug/L	0.66	0.20	1		04/14/22 20:13		N2
cis-1,3-Dichloropropene	<0.088	ug/L	0.29	0.088	1		04/14/22 20:13		N2
trans-1,3-Dichloropropene	<0.093	ug/L	0.31	0.093	1		04/14/22 20:13		N2
Ethylbenzene	<0.11	ug/L	0.35	0.11	1		04/14/22 20:13		N2
Methylene Chloride	<2.1	ug/L	6.9	2.1	1		04/14/22 20:13		N2
Methyl-tert-butyl ether	<0.11	ug/L	0.37	0.11	1		04/14/22 20:13		N2
Naphthalene	<0.073	ug/L	0.24	0.073	1		04/14/22 20:13		N2
Styrene	<0.13	ug/L	0.42	0.13	1		04/14/22 20:13		N2
Tetrachloroethene	<0.094	ug/L	0.31	0.094	1		04/14/22 20:13		N2
Tetrahydrofuran	<0.38	ug/L	1.3	0.38	1		04/14/22 20:13		N2
Toluene	<0.12	ug/L	0.39	0.12	1		04/14/22 20:13		N2
1,1,1-Trichloroethane	<0.22	ug/L	0.72	0.22	1		04/14/22 20:13		N2
1,1,2-Trichloroethane	<0.15	ug/L	0.51	0.15	1		04/14/22 20:13		N2
Trichloroethene	<0.17	ug/L	0.56	0.17	1		04/14/22 20:13		N2
Trichlorofluoromethane	<0.20	ug/L	0.67	0.20	1		04/14/22 20:13	75-69-4	N2
Vinyl chloride	<0.087	ug/L	0.29	0.087	1		04/14/22 20:13		N2
Xylene (Total) Surrogates	<0.11	ug/L	0.36	0.11	1		04/14/22 20:13	1330-20-7	N2
4-Bromofluorobenzene (S)	94	%.	70-130		1		04/14/22 20:13	460-00-4	
Dibromofluoromethane (S)	93	%.	70-130		1		04/14/22 20:13		

(920)469-2436

Date: 05/17/2022 05:32 PM

ANALYTICAL RESULTS

Project: LGRL PW APRIL Pace Project No.: 40243151

Sample: PW-21RR AFTER Lab ID: 40243151002 Collected: 04/07/22 13:50 Received: 04/08/22 08:45 Matrix: Water

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
524.2 MSV	Analytica	Il Method: EPA	A 524.2						
	Pace Ana	alytical Service	es - Indianap	olis					
Surrogates									
Toluene-d8 (S)	106	%.	70-130		1		04/14/22 20:13	2037-26-5	
Field Data	Analytica	Il Method:							
	Pace Ana	alytical Service	es - Green B	ay					
Field pH	7.80	Std. Units			1		04/07/22 13:50		
Field Specific Conductance	555	umhos/cm			1		04/07/22 13:50		
Turbidity	N	NTU			1		04/07/22 13:50		
Apparent Color	N	no units			1		04/07/22 13:50		
Odor	N	no units			1		04/07/22 13:50		
Temperature, Water (C)	12.0	deg C			1		04/07/22 13:50		

ANALYTICAL RESULTS

Project: LGRL PW APRIL

Date: 05/17/2022 05:32 PM

Sample: PW-23	Lab ID:	40243151003	Collected:	04/07/22	2 14:30	Received: 04/	08/22 08:45 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6010D MET ICP	•	Method: EPA 6	•	ration Met	hod: EF	PA 3010A			
Total Hardness by 2340B	437000	ug/L	2000	150	1	04/11/22 05:57	04/13/22 00:15		
524.2 MSV	Analytical	Method: EPA 5	24.2						
324.2 M3 V	•	ytical Services		3					
Acatono		•	·		4		04/44/22 20:28	67.64.4	NO
Acetone	<0.62	ug/L	2.1	0.62	1		04/14/22 20:38		N2
Benzene	<0.099	ug/L	0.33	0.099	1		04/14/22 20:38		N2
Bromodichloromethane	<0.17	ug/L	0.58	0.17	1		04/14/22 20:38		N2
Bromoform	<0.14	ug/L	0.48	0.14	1		04/14/22 20:38		L1,N2
Bromomethane	<0.28	ug/L	0.94	0.28	1		04/14/22 20:38		L1,N2
2-Butanone (MEK)	<0.49	ug/L	1.6	0.49	1		04/14/22 20:38		N2
Carbon disulfide	<0.11	ug/L	0.38	0.11	1		04/14/22 20:38		N2
Carbon tetrachloride	<0.14	ug/L	0.48	0.14	1		04/14/22 20:38		N2
Chlorobenzene	<0.083	ug/L	0.28	0.083	1		04/14/22 20:38		N2
Chloroethane	<0.17	ug/L	0.58	0.17	1		04/14/22 20:38		N2
Chloroform	<0.58	ug/L	1.9	0.58	1		04/14/22 20:38	67-66-3	N2
Chloromethane	<0.10	ug/L	0.35	0.10	1		04/14/22 20:38	74-87-3	N2
1,2-Dibromo-3-chloropropane	<0.18	ug/L	0.60	0.18	1		04/14/22 20:38	96-12-8	N2
Dibromochloromethane	<0.12	ug/L	0.38	0.12	1		04/14/22 20:38	124-48-1	N2
1,2-Dibromoethane (EDB)	<0.088	ug/L	0.29	0.088	1		04/14/22 20:38	106-93-4	N2
Dibromomethane	<0.24	ug/L	0.79	0.24	1		04/14/22 20:38	74-95-3	N2
1,2-Dichlorobenzene	< 0.043	ug/L	0.14	0.043	1		04/14/22 20:38	95-50-1	N2
1,3-Dichlorobenzene	< 0.076	ug/L	0.25	0.076	1		04/14/22 20:38	541-73-1	N2
1,4-Dichlorobenzene	< 0.059	ug/L	0.20	0.059	1		04/14/22 20:38	106-46-7	N2
Dichlorodifluoromethane	<0.31	ug/L	1.0	0.31	1		04/14/22 20:38	75-71-8	N2
1,1-Dichloroethane	<0.15	ug/L	0.49	0.15	1		04/14/22 20:38	75-34-3	N2
1,2-Dichloroethane	<0.085	ug/L	0.28	0.085	1		04/14/22 20:38	107-06-2	N2
1,1-Dichloroethene	<0.23	ug/L	0.77	0.23	1		04/14/22 20:38	75-35-4	N2
cis-1,2-Dichloroethene	<0.25	ug/L	0.83	0.25	1		04/14/22 20:38	156-59-2	N2
trans-1,2-Dichloroethene	< 0.32	ug/L	1.1	0.32	1		04/14/22 20:38	156-60-5	N2
1,2-Dichloropropane	<0.20	ug/L	0.66	0.20	1		04/14/22 20:38	78-87-5	N2
cis-1,3-Dichloropropene	<0.088	ug/L	0.29	0.088	1		04/14/22 20:38	10061-01-5	N2
trans-1,3-Dichloropropene	< 0.093	ug/L	0.31	0.093	1		04/14/22 20:38	10061-02-6	N2
Ethylbenzene	<0.11	ug/L	0.35	0.11	1		04/14/22 20:38		N2
Methylene Chloride	<2.1	ug/L	6.9	2.1	1		04/14/22 20:38		N2
Methyl-tert-butyl ether	<0.11	ug/L	0.37	0.11	1		04/14/22 20:38		N2
Naphthalene	<0.073	ug/L	0.24	0.073	1		04/14/22 20:38		N2
Styrene	<0.13	ug/L	0.42	0.13	1		04/14/22 20:38		N2
Tetrachloroethene	<0.094	ug/L	0.42	0.094	1		04/14/22 20:38		N2
Tetrahydrofuran	<0.38	ug/L	1.3	0.38	1		04/14/22 20:38		N2
Toluene	<0.12	ug/L	0.39	0.12	1		04/14/22 20:38		N2
1,1,1-Trichloroethane	<0.12	ug/L ug/L	0.72	0.12	1		04/14/22 20:38		N2
1,1,2-Trichloroethane	<0.22 <0.15	ug/L ug/L	0.72	0.22	1		04/14/22 20:38		N2
Trichloroethene	<0.15 <0.17	-	0.51	0.15	1		04/14/22 20:38		N2
Trichloroethene Trichlorofluoromethane	<0.17 <0.20	ug/L	0.56	0.17			04/14/22 20:38		
THE TOTOLOGUE HEALT	<u.zu< td=""><td>ug/L</td><td>0.07</td><td>U.ZU</td><td>1</td><td></td><td>04/14/22 20:38</td><td>70-09-4</td><td>N2</td></u.zu<>	ug/L	0.07	U.ZU	1		04/14/22 20:38	70-09-4	N2

(920)469-2436

Date: 05/17/2022 05:32 PM

ANALYTICAL RESULTS

Project: LGRL PW APRIL
Pace Project No.: 40243151

Sample: PW-23 Lab ID: 40243151003 Collected: 04/07/22 14:30 Received: 04/08/22 08:45 Matrix: Water

Sample: PW-23	Lab ID: 40243151003 Collected: 04/07/22 14:30 Received: 04/08/22 08:45 Matrix: Water								
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
524.2 MSV	Analytical	Method: EPA 5	24.2						
	Pace Ana	lytical Services	- Indianapo	lis					
Xylene (Total) Surrogates	<0.11	ug/L	0.36	0.11	1		04/14/22 20:38	1330-20-7	N2
4-Bromofluorobenzene (S)	95	%.	70-130		1		04/14/22 20:38	460-00-4	
Dibromofluoromethane (S)	93	%.	70-130		1		04/14/22 20:38	1868-53-7	
Toluene-d8 (S)	107	%.	70-130		1		04/14/22 20:38	2037-26-5	
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Green Ba	у					
Field pH	7.35	Std. Units			1		04/07/22 14:30		
Field Specific Conductance	846	umhos/cm			1		04/07/22 14:30		
Turbidity	N	NTU			1		04/07/22 14:30		
Apparent Color	N	no units			1		04/07/22 14:30		
Odor	N	no units			1		04/07/22 14:30		
Temperature, Water (C)	7.9	deg C			1		04/07/22 14:30		
300.0 IC Anions	Analytical	Method: EPA 3	0.00						
	Pace Ana	lytical Services	- Green Ba	у					
Chloride	107	mg/L	10.0	2.2	5		04/19/22 20:12	16887-00-6	
310.2 Alkalinity	Analytical	Method: EPA 3	10.2						
	Pace Ana	lytical Services	- Green Ba	у					
Alkalinity, Total as CaCO3	407	mg/L	50.0	10.4	2		04/15/22 11:07		

ANALYTICAL RESULTS

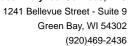
Project: I GRI PW APRII

Sample: PW-38	Lab ID:	40243151004	Collected:	04/07/22	2 14:10	Received: 04/	/08/22 08:45 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6010D MET ICP	-	Method: EPA 6		ration Met	hod: EF	PA 3010A			
Total Hardness by 2340B	385000	ug/L	2000	150	1	04/11/22 05:57	04/13/22 00:18		
524.2 MSV	,	Method: EPA 52 ytical Services		5					
Acetone	<0.62	ug/L	2.1	0.62	1		04/14/22 21:02	67-64-1	N2
Benzene	< 0.099	ug/L	0.33	0.099	1		04/14/22 21:02	71-43-2	N2
Bromodichloromethane	<0.17	ug/L	0.58	0.17	1		04/14/22 21:02	75-27-4	N2
Bromoform	<0.14	ug/L	0.48	0.14	1		04/14/22 21:02	75-25-2	L1,N2
Bromomethane	<0.28	ug/L	0.94	0.28	1		04/14/22 21:02	74-83-9	L1,N2
2-Butanone (MEK)	< 0.49	ug/L	1.6	0.49	1		04/14/22 21:02	78-93-3	N2
Carbon disulfide	<0.11	ug/L	0.38	0.11	1		04/14/22 21:02	75-15-0	N2
Carbon tetrachloride	<0.14	ug/L	0.48	0.14	1		04/14/22 21:02	56-23-5	N2
Chlorobenzene	< 0.083	ug/L	0.28	0.083	1		04/14/22 21:02	108-90-7	N2
Chloroethane	<0.17	ug/L	0.58	0.17	1		04/14/22 21:02	75-00-3	N2
Chloroform	<0.58	ug/L	1.9	0.58	1		04/14/22 21:02	67-66-3	N2
Chloromethane	<0.10	ug/L	0.35	0.10	1		04/14/22 21:02	74-87-3	N2
1,2-Dibromo-3-chloropropane	<0.18	ug/L	0.60	0.18	1		04/14/22 21:02	96-12-8	N2
Dibromochloromethane	<0.12	ug/L	0.38	0.12	1		04/14/22 21:02	124-48-1	N2
1,2-Dibromoethane (EDB)	<0.088	ug/L	0.29	0.088	1		04/14/22 21:02	106-93-4	N2
Dibromomethane	<0.24	ug/L	0.79	0.24	1		04/14/22 21:02	74-95-3	N2
1,2-Dichlorobenzene	< 0.043	ug/L	0.14	0.043	1		04/14/22 21:02	95-50-1	N2
1,3-Dichlorobenzene	< 0.076	ug/L	0.25	0.076	1		04/14/22 21:02	541-73-1	N2
1,4-Dichlorobenzene	< 0.059	ug/L	0.20	0.059	1		04/14/22 21:02	106-46-7	N2
Dichlorodifluoromethane	<0.31	ug/L	1.0	0.31	1		04/14/22 21:02	75-71-8	N2
1,1-Dichloroethane	<0.15	ug/L	0.49	0.15	1		04/14/22 21:02	75-34-3	N2
1,2-Dichloroethane	<0.085	ug/L	0.28	0.085	1		04/14/22 21:02	107-06-2	N2
1,1-Dichloroethene	<0.23	ug/L	0.77	0.23	1		04/14/22 21:02	75-35-4	N2
cis-1,2-Dichloroethene	<0.25	ug/L	0.83	0.25	1		04/14/22 21:02	156-59-2	N2
trans-1,2-Dichloroethene	< 0.32	ug/L	1.1	0.32	1		04/14/22 21:02	156-60-5	N2
1,2-Dichloropropane	<0.20	ug/L	0.66	0.20	1		04/14/22 21:02	78-87-5	N2
cis-1,3-Dichloropropene	<0.088	ug/L	0.29	0.088	1		04/14/22 21:02	10061-01-5	N2
trans-1,3-Dichloropropene	< 0.093	ug/L	0.31	0.093	1		04/14/22 21:02	10061-02-6	N2
Ethylbenzene	<0.11	ug/L	0.35	0.11	1		04/14/22 21:02	100-41-4	N2
Methylene Chloride	<2.1	ug/L	6.9	2.1	1		04/14/22 21:02	75-09-2	N2
Methyl-tert-butyl ether	<0.11	ug/L	0.37	0.11	1		04/14/22 21:02	1634-04-4	N2
Naphthalene	< 0.073	ug/L	0.24	0.073	1		04/14/22 21:02	91-20-3	N2
Styrene	<0.13	ug/L	0.42	0.13	1		04/14/22 21:02	100-42-5	N2
Tetrachloroethene	<0.094	ug/L	0.31	0.094	1		04/14/22 21:02	127-18-4	N2
Tetrahydrofuran	<0.38	ug/L	1.3	0.38	1		04/14/22 21:02	109-99-9	N2
Toluene	<0.12	ug/L	0.39	0.12	1		04/14/22 21:02	108-88-3	N2
1,1,1-Trichloroethane	<0.22	ug/L	0.72	0.22	1		04/14/22 21:02	71-55-6	N2
1,1,2-Trichloroethane	<0.15	ug/L	0.51	0.15	1		04/14/22 21:02	79-00-5	N2
Trichloroethene	<0.17	ug/L	0.56	0.17	1		04/14/22 21:02	79-01-6	N2
Trichlorofluoromethane	<0.20	ug/L	0.67	0.20	1		04/14/22 21:02	75-69-4	N2
Vinyl chloride	<0.087	ug/L	0.29	0.087	1		04/14/22 21:02	75-01-4	N2

ANALYTICAL RESULTS

Project: LGRL PW APRIL

Analytical Method: EPA 524.2 Pace Analytical Services - Indianapolis	Sample: PW-38	Lab ID:	40243151004	Collecte	d: 04/07/2	2 14:10	Received: 04	1/08/22 08:45 M	atrix: Water		
Pace Analytical Services - Indianapolis	Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual	
Aylene (Total) Surrogates	524.2 MSV	Analytica	I Method: EPA 5	524.2							
Surrogates 4-Bromofluorobenzene (S) 95 %. 70-130 1 04/14/22 21:02 460-00-4 Dibromofluoromethane (S) 93 %. 70-130 1 04/14/22 21:02 1868-53-7 Toluene-d8 (S) 106 %. 70-130 1 04/14/22 21:02 2037-26-5 Field Data Analytical Method: Pace Analytical Services - Green Bay Field pH 7.51 Std. Units 1 04/07/22 14:10 Field Specific Conductance 609 umhos/cm 1 04/07/22 14:10 Turbidity N NTU 1 04/07/22 14:10 Apparent Color N no units 1 04/07/22 14:10 Odor N no units 1 04/07/22 14:10 Temperature, Water (C) 10.1 deg C 1 04/07/22 14:10 300.0 IC Anions Analytical Method: EPA 300.0 Pace Analytical Services - Green Bay Chloride 1.6J mg/L 2.0 0.43 1 04/19/22 20:27 16887-00-6 310.2 Alkalinity Analytical Method: EPA 310.2 Pace Analytical Services - Green Bay		Pace Ana	llytical Services	- Indianapo	lis						
Dibromofluoromethane (S) 93 %. 70-130 1 04/14/22 21:02 1868-53-7 Toluene-d8 (S) 106 %. 70-130 1 04/14/22 21:02 2037-26-5 Field Data Analytical Method: Pace Analytical Services - Green Bay Field pH 7.51 Std. Units 1 04/07/22 14:10 Field Specific Conductance 609 umhos/cm 1 04/07/22 14:10 Turbidity N NTU 1 04/07/22 14:10 Apparent Color N no units 1 04/07/22 14:10 Odor N no units 1 04/07/22 14:10 Temperature, Water (C) 10.1 deg C 1 04/07/22 14:10 300.0 IC Anions Analytical Method: EPA 300.0 Pace Analytical Services - Green Bay Chloride 1.6J mg/L 2.0 0.43 1 04/19/22 20:27 16887-00-6 310.2 Alkalinity Analytical Method: EPA 310.2 Pace Analytical Services - Green Bay	Xylene (Total) Surrogates	<0.11	ug/L	0.36	0.11	1		04/14/22 21:02	1330-20-7	N2	
Toluene-d8 (S) 106 %. 70-130 1 04/14/22 21:02 2037-26-5 Field Data Analytical Method: Pace Analytical Services - Green Bay Field pH 7.51 Std. Units 1 04/07/22 14:10 Field Specific Conductance 609 umhos/cm 1 04/07/22 14:10 Turbidity N NTU 1 04/07/22 14:10 Apparent Color N no units 1 04/07/22 14:10 Odor N no units 1 04/07/22 14:10 Temperature, Water (C) 10.1 deg C 1 04/07/22 14:10 300.0 IC Anions Analytical Method: EPA 300.0 Pace Analytical Services - Green Bay Chloride 1.6J mg/L 2.0 0.43 1 04/19/22 20:27 16887-00-6 310.2 Alkalinity Analytical Services - Green Bay	4-Bromofluorobenzene (S)	95	%.	70-130		1		04/14/22 21:02	460-00-4		
Field Data Analytical Method: Pace Analytical Services - Green Bay Field pH 7.51 Std. Units 1 04/07/22 14:10 609 umhos/cm 1 04/07/22 14:10 Turbidity N NTU 1 04/07/22 14:10 Apparent Color N no units 1 04/07/22 14:10 Odor N no units 1 04/07/22 14:10 Temperature, Water (C) 10.1 deg C 1 04/07/22 14:10 300.0 IC Anions Analytical Method: EPA 300.0 Pace Analytical Services - Green Bay Chloride 1.6J mg/L 2.0 0.43 1 04/19/22 20:27 16887-00-6 310.2 Alkalinity Analytical Method: EPA 310.2 Pace Analytical Services - Green Bay	Dibromofluoromethane (S)	93	%.	70-130		1		04/14/22 21:02	1868-53-7		
Pace Analytical Services - Green Bay Field pH	Toluene-d8 (S)	106	%.	70-130		1		04/14/22 21:02	2037-26-5		
Field pH 7.51 Std. Units 1 04/07/22 14:10 Field Specific Conductance 609 umhos/cm 1 04/07/22 14:10 Turbidity N NTU 1 04/07/22 14:10 Apparent Color N no units 1 04/07/22 14:10 Odor N no units 1 04/07/22 14:10 Temperature, Water (C) 10.1 deg C 1 04/07/22 14:10 300.0 IC Anions Analytical Method: EPA 300.0 Pace Analytical Services - Green Bay Chloride 1.6J mg/L 2.0 0.43 1 04/19/22 20:27 16887-00-6 310.2 Alkalinity Analytical Method: EPA 310.2 Pace Analytical Services - Green Bay	Field Data	Analytica	Method:								
Field Specific Conductance 609		Pace Ana	llytical Services	- Green Ba	y						
Turbidity	Field pH	7.51	Std. Units			1		04/07/22 14:10			
Apparent Color Odor N no units 1 04/07/22 14:10 Odor N no units 1 04/07/22 14:10 Od/07/22 14:10	Field Specific Conductance	609	umhos/cm			1		04/07/22 14:10			
Odor N no units 1 04/07/22 14:10 Temperature, Water (C) 10.1 deg C 1 04/07/22 14:10 300.0 IC Anions Analytical Method: EPA 300.0 Pace Analytical Services - Green Bay Chloride 1.6J mg/L 2.0 0.43 1 04/19/22 20:27 16887-00-6 310.2 Alkalinity Analytical Method: EPA 310.2 Pace Analytical Services - Green Bay	Turbidity	N	NTU			1		04/07/22 14:10			
Temperature, Water (C) 10.1 deg C 1 04/07/22 14:10 300.0 IC Anions Analytical Method: EPA 300.0 Pace Analytical Services - Green Bay Chloride 1.6J mg/L 2.0 0.43 1 04/19/22 20:27 16887-00-6 310.2 Alkalinity Analytical Method: EPA 310.2 Pace Analytical Services - Green Bay	Apparent Color	N	no units			1		04/07/22 14:10			
Analytical Method: EPA 300.0 Pace Analytical Services - Green Bay Chloride 1.6J mg/L 2.0 0.43 1 04/19/22 20:27 16887-00-6 Analytical Method: EPA 310.2 Pace Analytical Services - Green Bay	Odor	N	no units			1		04/07/22 14:10			
Pace Analytical Services - Green Bay Chloride 1.6J mg/L 2.0 0.43 1 04/19/22 20:27 16887-00-6 Analytical Method: EPA 310.2 Pace Analytical Services - Green Bay	Temperature, Water (C)	10.1	deg C			1		04/07/22 14:10			
Chloride 1.6J mg/L 2.0 0.43 1 04/19/22 20:27 16887-00-6 310.2 Alkalinity Analytical Method: EPA 310.2 Pace Analytical Services - Green Bay	300.0 IC Anions	Analytica	Method: EPA 3	300.0							
310.2 Alkalinity Analytical Method: EPA 310.2 Pace Analytical Services - Green Bay		Pace Ana	lytical Services	- Green Ba	y						
Pace Analytical Services - Green Bay	Chloride	1.6J	mg/L	2.0	0.43	1		04/19/22 20:27	16887-00-6		
Pace Analytical Services - Green Bay	310.2 Alkalinity	Analytical Method: EPA 310.2									
Alkalinity, Total as CaCO3 360 mg/L 50.0 10.4 2 04/15/22 11:11	•	Pace Analytical Services - Green Bay									
	Alkalinity, Total as CaCO3	360	mg/L	50.0	10.4	2		04/15/22 11:11			



ANALYTICAL RESULTS

Project: LGRL PW APRIL
Pace Project No.: 40243151

Sample: TRIP BLANK Lab ID: 40243151005 Collected: 04/07/22 00:00 Received: 04/08/22 08:45 Matrix: Water

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qua
524.2 MSV	Analytical	Method: EPA	524.2						
	Pace Anal	ytical Service	s - Indianapo	is					
Acetone	<0.62	ug/L	2.1	0.62	1		04/14/22 21:27	67-64-1	N2
Benzene	<0.099	ug/L	0.33	0.099	1		04/14/22 21:27		N2
Bromodichloromethane	<0.17	ug/L	0.58	0.033	1		04/14/22 21:27		N2
Bromoform	<0.14	ug/L	0.48	0.14	1		04/14/22 21:27		L1,N2
Bromomethane	<0.28	ug/L	0.40	0.14	1		04/14/22 21:27		L1,N2
2-Butanone (MEK)	<0.49	ug/L	1.6	0.49	1		04/14/22 21:27		N2
Carbon disulfide	<0.11	ug/L	0.38	0.43	1		04/14/22 21:27		N2
Carbon distillide Carbon tetrachloride	<0.14	ug/L	0.48	0.11	1		04/14/22 21:27		N2
Chlorobenzene	<0.083	ug/L	0.48	0.083	1		04/14/22 21:27		N2
Chloroethane	<0.03	ug/L ug/L	0.28	0.063	1		04/14/22 21:27		N2
Chloroform	<0.17	_	1.9	0.17	1		04/14/22 21:27		N2
		ug/L							
Chloromethane	<0.10	ug/L	0.35	0.10	1		04/14/22 21:27		N2
1,2-Dibromo-3-chloropropane	<0.18	ug/L	0.60	0.18	1		04/14/22 21:27		N2
Dibromochloromethane	<0.12	ug/L	0.38	0.12	1		04/14/22 21:27		N2
1,2-Dibromoethane (EDB)	<0.088	ug/L	0.29	0.088	1		04/14/22 21:27		N2
Dibromomethane	<0.24	ug/L	0.79	0.24	1		04/14/22 21:27		N2
1,2-Dichlorobenzene	<0.043	ug/L	0.14	0.043	1		04/14/22 21:27		N2
1,3-Dichlorobenzene	<0.076	ug/L	0.25	0.076	1		04/14/22 21:27		N2
1,4-Dichlorobenzene	<0.059	ug/L	0.20	0.059	1		04/14/22 21:27		N2
Dichlorodifluoromethane	<0.31	ug/L	1.0	0.31	1		04/14/22 21:27		N2
1,1-Dichloroethane	<0.15	ug/L	0.49	0.15	1		04/14/22 21:27	75-34-3	N2
1,2-Dichloroethane	<0.085	ug/L	0.28	0.085	1		04/14/22 21:27	107-06-2	N2
1,1-Dichloroethene	<0.23	ug/L	0.77	0.23	1		04/14/22 21:27	75-35-4	N2
cis-1,2-Dichloroethene	<0.25	ug/L	0.83	0.25	1		04/14/22 21:27	156-59-2	N2
trans-1,2-Dichloroethene	<0.32	ug/L	1.1	0.32	1		04/14/22 21:27	156-60-5	N2
1,2-Dichloropropane	<0.20	ug/L	0.66	0.20	1		04/14/22 21:27	78-87-5	N2
cis-1,3-Dichloropropene	<0.088	ug/L	0.29	0.088	1		04/14/22 21:27	10061-01-5	N2
rans-1,3-Dichloropropene	< 0.093	ug/L	0.31	0.093	1		04/14/22 21:27	10061-02-6	N2
Ethylbenzene	<0.11	ug/L	0.35	0.11	1		04/14/22 21:27	100-41-4	N2
Methylene Chloride	<2.1	ug/L	6.9	2.1	1		04/14/22 21:27	75-09-2	N2
Methyl-tert-butyl ether	<0.11	ug/L	0.37	0.11	1		04/14/22 21:27	1634-04-4	N2
Naphthalene	< 0.073	ug/L	0.24	0.073	1		04/14/22 21:27	91-20-3	N2
Styrene	<0.13	ug/L	0.42	0.13	1		04/14/22 21:27		N2
Tetrachloroethene	< 0.094	ug/L	0.31	0.094	1		04/14/22 21:27		N2
Tetrahydrofuran	<0.38	ug/L	1.3	0.38	1		04/14/22 21:27		N2
Toluene	<0.12	ug/L	0.39	0.12	1		04/14/22 21:27		N2
1,1,1-Trichloroethane	<0.12	ug/L	0.72	0.12	1		04/14/22 21:27		N2
1,1,2-Trichloroethane	<0.15	ug/L	0.72	0.15	1		04/14/22 21:27		N2
Trichloroethene	<0.17	ug/L	0.56	0.13	1		04/14/22 21:27		N2
Trichlorofluoromethane	<0.17	ug/L ug/L	0.67	0.17	1		04/14/22 21:27		N2
Vinyl chloride	<0.20 <0.087	_	0.67	0.20			04/14/22 21:27		N2
•		ug/L			1				
Xylene (Total)	<0.11	ug/L	0.36	0.11	1		04/14/22 21:27	1330-20-7	N2
Surrogates 4-Bromofluorobenzene (S)	95	%.	70-130		1		04/14/22 21:27	460-00 4	
Dibromofluoromethane (S)	95 94	%. %.	70-130 70-130		1		04/14/22 21:27		

ANALYTICAL RESULTS

Project: LGRL PW APRIL

40243151

Pace Project No.:

Sample: TRIP BLANK Lab ID: 40243151005 Collected: 04/07/22 00:00 Received: 04/08/22 08:45 Matrix: Water LOQ **Parameters** Results Units LOD DF Prepared CAS No. Analyzed Qual Analytical Method: EPA 524.2 524.2 MSV Pace Analytical Services - Indianapolis Surrogates Toluene-d8 (S) 106 70-130 04/14/22 21:27 2037-26-5 %. 1

ANALYTICAL RESULTS

Project: LGRL PW APRIL
Pace Project No.: 40243151

Date: 05/17/2022 05:32 PM

Sample: PW-19	Lab ID:	40243238001	Collected	d: 04/08/22	2 10:25	Received: 04/	09/22 08:40 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6010D MET ICP		Method: EPA 6			thod: E	PA 3010A			
Total Hardness by 2340B	469000	ug/L	2000	150	1	04/12/22 06:28	04/13/22 12:41		
524.2 MSV	Analytical	Method: EPA 5	24.2						
	Pace Ana	ytical Services	- Indianapo	lis					
Acatono		•	•		4		04/44/00 04:50	67.64.4	NO
Acetone	<0.62	ug/L	2.1	0.62	1		04/14/22 21:52		N2
Benzene	<0.099	ug/L	0.33	0.099	1		04/14/22 21:52		N2
Bromodichloromethane	<0.17	ug/L	0.58	0.17	1		04/14/22 21:52		N2
Bromoform	<0.14	ug/L	0.48	0.14	1		04/14/22 21:52		L1,N2
Bromomethane	<0.28	ug/L	0.94	0.28	1		04/14/22 21:52		L1,N2
2-Butanone (MEK)	<0.49	ug/L	1.6	0.49	1		04/14/22 21:52		N2
Carbon disulfide	<0.11	ug/L	0.38	0.11	1		04/14/22 21:52		N2
Carbon tetrachloride	<0.14	ug/L	0.48	0.14	1		04/14/22 21:52		N2
Chlorobenzene	<0.083	ug/L	0.28	0.083	1		04/14/22 21:52		N2
Chloroethane	<0.17	ug/L	0.58	0.17	1		04/14/22 21:52		N2
Chloroform	<0.58	ug/L	1.9	0.58	1		04/14/22 21:52	67-66-3	N2
Chloromethane	<0.10	ug/L	0.35	0.10	1		04/14/22 21:52	74-87-3	N2
1,2-Dibromo-3-chloropropane	<0.18	ug/L	0.60	0.18	1		04/14/22 21:52	96-12-8	N2
Dibromochloromethane	<0.12	ug/L	0.38	0.12	1		04/14/22 21:52	124-48-1	N2
1,2-Dibromoethane (EDB)	<0.088	ug/L	0.29	0.088	1		04/14/22 21:52	106-93-4	N2
Dibromomethane	<0.24	ug/L	0.79	0.24	1		04/14/22 21:52	74-95-3	N2
1,2-Dichlorobenzene	< 0.043	ug/L	0.14	0.043	1		04/14/22 21:52	95-50-1	N2
1,3-Dichlorobenzene	< 0.076	ug/L	0.25	0.076	1		04/14/22 21:52	541-73-1	N2
1,4-Dichlorobenzene	< 0.059	ug/L	0.20	0.059	1		04/14/22 21:52	106-46-7	N2
Dichlorodifluoromethane	<0.31	ug/L	1.0	0.31	1		04/14/22 21:52	75-71-8	N2
1,1-Dichloroethane	<0.15	ug/L	0.49	0.15	1		04/14/22 21:52	75-34-3	N2
1,2-Dichloroethane	< 0.085	ug/L	0.28	0.085	1		04/14/22 21:52	107-06-2	N2
1,1-Dichloroethene	<0.23	ug/L	0.77	0.23	1		04/14/22 21:52		N2
cis-1,2-Dichloroethene	0.44J	ug/L	0.83	0.25	1		04/14/22 21:52		N2
trans-1,2-Dichloroethene	<0.32	ug/L	1.1	0.32	1		04/14/22 21:52		N2
1,2-Dichloropropane	<0.20	ug/L	0.66	0.20	1		04/14/22 21:52		N2
cis-1,3-Dichloropropene	<0.088	ug/L	0.29	0.088	1		04/14/22 21:52		N2
trans-1,3-Dichloropropene	< 0.093	ug/L	0.31	0.093	1		04/14/22 21:52		N2
Ethylbenzene	<0.11	ug/L	0.35	0.11	1		04/14/22 21:52		N2
Methylene Chloride	<2.1	ug/L	6.9	2.1	1		04/14/22 21:52		N2
Methyl-tert-butyl ether	<0.11	ug/L	0.37	0.11	1		04/14/22 21:52		N2
Naphthalene	<0.073	ug/L	0.24	0.073	1		04/14/22 21:52		N2
•	<0.073	-	0.42	0.073	1		04/14/22 21:52		N2
Styrene Tetrachloroethene	<0.13 <0.094	ug/L ug/L	0.42	0.13	1		04/14/22 21:52		N2 N2
	<0.094 <0.38	-	1.3	0.094	1		04/14/22 21:52		N2
Tetrahydrofuran Toluene		ug/L		0.36					
	<0.12	ug/L	0.39		1		04/14/22 21:52		N2
1,1,1-Trichloroethane	<0.22	ug/L	0.72	0.22	1		04/14/22 21:52		N2
1,1,2-Trichloroethane	<0.15	ug/L	0.51	0.15	1		04/14/22 21:52		N2
Trichloroethene	<0.17	ug/L	0.56	0.17	1		04/14/22 21:52	79-01-6	N2
Trichlorofluoromethane	<0.20	ug/L	0.67	0.20	1		04/14/22 21:52	75 00 4	N2

ANALYTICAL RESULTS

Project: LGRL PW APRIL Pace Project No.:

40243151

Sample: PW-19 Lab ID: 40243238001 Collected: 04/08/22 10:25 Received: 04/09/22 08:40 Matrix: Water

Sample. PW-19	Lab ID.	4024323600	Collected	u. 04/06/22	2 10.25	Received. 04	+/U9/22 UO.4U IVI	allix. vvalei	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
524.2 MSV	Analytica	l Method: EPA	524.2						
	Pace Ana	alytical Services	s - Indianapo	lis					
Xylene (Total)	<0.11	ug/L	0.36	0.11	1		04/14/22 21:52	1330-20-7	N2
Surrogates									
4-Bromofluorobenzene (S)	94	%.	70-130		1		04/14/22 21:52	460-00-4	
Dibromofluoromethane (S)	94	%.	70-130		1		04/14/22 21:52	1868-53-7	
Toluene-d8 (S)	108	%.	70-130		1		04/14/22 21:52	2037-26-5	
Field Data	Analytica	l Method:							
	Pace Ana	alytical Services	s - Green Ba	y					
Field pH	7.50	Std. Units			1		04/08/22 10:25		
Field Specific Conductance	697	umhos/cm			1		04/08/22 10:25		
Turbidity	N	NTU			1		04/08/22 10:25		
Apparent Color	N	no units			1		04/08/22 10:25		
Odor	N	no units			1		04/08/22 10:25		
Temperature, Water (C)	10.4	deg C			1		04/08/22 10:25		
300.0 IC Anions	Analytica	l Method: EPA	300.0						
	Pace Ana	alytical Services	s - Green Ba	y					
Chloride	39.8	mg/L	2.0	0.43	1		04/18/22 21:03	16887-00-6	
310.2 Alkalinity	Analytica	l Method: EPA	310.2						
•	Pace Ana	alytical Services	s - Green Ba	y					
Alkalinity, Total as CaCO3	382	mg/L	50.0	10.4	2		04/15/22 11:13		
310.2 Alkalinity	Analytica Pace Ana	I Method: EPA alytical Services	310.2 s - Green Ba	у	·			16887-00-6	

ANALYTICAL RESULTS

Project: LGRL PW APRIL
Pace Project No.: 40243151

Date: 05/17/2022 05:32 PM

Sample: PW-20	Lab ID:	40243238002	Collected	d: 04/08/2	2 12:45	Received: 04/	09/22 08:40 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6010D MET ICP		Method: EPA 6 ytical Services			thod: E	PA 3010A			
Total Hardness by 2340B	418000	ug/L	2000	150	1	04/12/22 06:28	04/13/22 12:43		
524.2 MSV	Analytical	Method: EPA 5	24 2						
024.2 mov	,	ytical Services		ie					
		•	•						
Acetone	<0.62	ug/L	2.1	0.62	1		04/14/22 22:17		N2
Benzene	<0.099	ug/L	0.33	0.099	1		04/14/22 22:17		N2
Bromodichloromethane	<0.17	ug/L	0.58	0.17	1		04/14/22 22:17		N2
Bromoform	<0.14	ug/L	0.48	0.14	1		04/14/22 22:17		L1,N2
Bromomethane	<0.28	ug/L	0.94	0.28	1		04/14/22 22:17		L1,N2
2-Butanone (MEK)	<0.49	ug/L	1.6	0.49	1		04/14/22 22:17	78-93-3	N2
Carbon disulfide	<0.11	ug/L	0.38	0.11	1		04/14/22 22:17	75-15-0	N2
Carbon tetrachloride	<0.14	ug/L	0.48	0.14	1		04/14/22 22:17	56-23-5	N2
Chlorobenzene	<0.083	ug/L	0.28	0.083	1		04/14/22 22:17	108-90-7	N2
Chloroethane	<0.17	ug/L	0.58	0.17	1		04/14/22 22:17	75-00-3	N2
Chloroform	<0.58	ug/L	1.9	0.58	1		04/14/22 22:17	67-66-3	N2
Chloromethane	<0.10	ug/L	0.35	0.10	1		04/14/22 22:17	74-87-3	N2
1,2-Dibromo-3-chloropropane	<0.18	ug/L	0.60	0.18	1		04/14/22 22:17	96-12-8	N2
Dibromochloromethane	<0.12	ug/L	0.38	0.12	1		04/14/22 22:17	124-48-1	N2
1,2-Dibromoethane (EDB)	<0.088	ug/L	0.29	0.088	1		04/14/22 22:17	106-93-4	N2
Dibromomethane	<0.24	ug/L	0.79	0.24	1		04/14/22 22:17	74-95-3	N2
1,2-Dichlorobenzene	< 0.043	ug/L	0.14	0.043	1		04/14/22 22:17	95-50-1	N2
1,3-Dichlorobenzene	< 0.076	ug/L	0.25	0.076	1		04/14/22 22:17	541-73-1	N2
1,4-Dichlorobenzene	< 0.059	ug/L	0.20	0.059	1		04/14/22 22:17	106-46-7	N2
Dichlorodifluoromethane	<0.31	ug/L	1.0	0.31	1		04/14/22 22:17	75-71-8	N2
1,1-Dichloroethane	<0.15	ug/L	0.49	0.15	1		04/14/22 22:17	75-34-3	N2
1,2-Dichloroethane	< 0.085	ug/L	0.28	0.085	1		04/14/22 22:17		N2
1,1-Dichloroethene	<0.23	ug/L	0.77	0.23	1		04/14/22 22:17		N2
cis-1,2-Dichloroethene	<0.25	ug/L	0.83	0.25	1		04/14/22 22:17		N2
trans-1,2-Dichloroethene	<0.32	ug/L	1.1	0.32	1		04/14/22 22:17		N2
1,2-Dichloropropane	<0.20	ug/L	0.66	0.20	1		04/14/22 22:17		N2
cis-1,3-Dichloropropene	<0.088	ug/L	0.29	0.088	1		04/14/22 22:17		N2
trans-1,3-Dichloropropene	< 0.093	ug/L	0.31	0.093	1		04/14/22 22:17		N2
Ethylbenzene	<0.11	ug/L	0.35	0.11	1		04/14/22 22:17		N2
Methylene Chloride	<2.1	ug/L	6.9	2.1	1		04/14/22 22:17		N2
Methyl-tert-butyl ether	<0.11	ug/L	0.37	0.11	1		04/14/22 22:17		N2
Naphthalene	<0.073	ug/L ug/L	0.24	0.073	1		04/14/22 22:17		N2
Styrene	<0.13	ug/L	0.42	0.13	1		04/14/22 22:17		N2
Tetrachloroethene	<0.094	ug/L ug/L	0.42	0.13	1		04/14/22 22:17		N2
Tetrahydrofuran	<0.38	ug/L ug/L	1.3	0.38	1		04/14/22 22:17		N2
Toluene	<0.12	ug/L ug/L	0.39	0.30	1		04/14/22 22:17		N2
1,1,1-Trichloroethane	<0.12	ug/L ug/L	0.39	0.12	1		04/14/22 22:17		N2
1,1,2-Trichloroethane	<0.22 <0.15	ug/L ug/L	0.72	0.22	1		04/14/22 22:17		N2 N2
Trichloroethene	<0.15 <0.17	ug/L ug/L	0.51	0.15	1		04/14/22 22:17		N2 N2
Trichlorofluoromethane	<0.17 <0.20	-		0.17	1		04/14/22 22:17		N2 N2
momorometrarie	<0.20	ug/L	0.67	0.20			04/14/22 22.17	13-03-4	INZ

Alkalinity, Total as CaCO3

Date: 05/17/2022 05:32 PM

360

mg/L

ANALYTICAL RESULTS

Project: LGRL PW APRIL

Sample: PW-20	Lab ID:	40243238002	Collected	d: 04/08/2	2 12:45	Received: 04	1/09/22 08:40 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qua
524.2 MSV	Analytical	Method: EPA 5	24.2						
	Pace Anal	ytical Services	- Indianapo	lis					
Xylene (Total) Surrogate s	<0.11	ug/L	0.36	0.11	1		04/14/22 22:17	1330-20-7	N2
4-Bromofluorobenzene (S)	94	%.	70-130		1		04/14/22 22:17	460-00-4	
Dibromofluoromethane (S)	94	%.	70-130		1		04/14/22 22:17	1868-53-7	
Toluene-d8 (S)	107	%.	70-130		1		04/14/22 22:17	2037-26-5	
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Green Bay	/					
Field pH	7.50	Std. Units			1		04/08/22 12:45		
Field Specific Conductance	538	umhos/cm			1		04/08/22 12:45		
Turbidity	N	NTU			1		04/08/22 12:45		
Apparent Color	N	no units			1		04/08/22 12:45		
Odor	N	no units			1		04/08/22 12:45		
Temperature, Water (C)	10.8	deg C			1		04/08/22 12:45		
300.0 IC Anions	Analytical	Method: EPA 3	0.00						
	Pace Anal	ytical Services	- Green Bay	/					
Chloride	15.0	mg/L	2.0	0.43	1		04/18/22 21:17	16887-00-6	
310.2 Alkalinity	Analytical	Method: EPA 3	10.2						
	•	vtical Services		,					

50.0

10.4 2

04/15/22 11:14

ANALYTICAL RESULTS

Project: I GRI PW APRII

Date: 05/17/2022 05:32 PM

Sample: PW-28	Lab ID:	40243238003	Collected:	04/08/22	2 10:55	Received: 04/	09/22 08:40 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6010D MET ICP		Method: EPA 6		ration Met	hod: EF	PA 3010A			
		ytical Services	•						
Total Hardness by 2340B	481000	ug/L	2000	150	1	04/12/22 06:28	04/13/22 12:50		
524.2 MSV	Analytical	Method: EPA 5	24.2						
	Pace Anal	ytical Services	- Indianapolis	3					
Acetone	<0.62	ug/L	2.1	0.62	1		04/14/22 22:42	67-64-1	N2
Benzene	< 0.099	ug/L	0.33	0.099	1		04/14/22 22:42	71-43-2	N2
Bromodichloromethane	<0.17	ug/L	0.58	0.17	1		04/14/22 22:42	75-27-4	N2
Bromoform	<0.14	ug/L	0.48	0.14	1		04/14/22 22:42	75-25-2	L1,N2
Bromomethane	<0.28	ug/L	0.94	0.28	1		04/14/22 22:42	74-83-9	L1,N2
2-Butanone (MEK)	< 0.49	ug/L	1.6	0.49	1		04/14/22 22:42	78-93-3	N2
Carbon disulfide	<0.11	ug/L	0.38	0.11	1		04/14/22 22:42	75-15-0	N2
Carbon tetrachloride	<0.14	ug/L	0.48	0.14	1		04/14/22 22:42	56-23-5	N2
Chlorobenzene	< 0.083	ug/L	0.28	0.083	1		04/14/22 22:42	108-90-7	N2
Chloroethane	<0.17	ug/L	0.58	0.17	1		04/14/22 22:42	75-00-3	N2
Chloroform	<0.58	ug/L	1.9	0.58	1		04/14/22 22:42	67-66-3	N2
Chloromethane	<0.10	ug/L	0.35	0.10	1		04/14/22 22:42	74-87-3	N2
1,2-Dibromo-3-chloropropane	<0.18	ug/L	0.60	0.18	1		04/14/22 22:42	96-12-8	N2
Dibromochloromethane	<0.12	ug/L	0.38	0.12	1		04/14/22 22:42	124-48-1	N2
1,2-Dibromoethane (EDB)	<0.088	ug/L	0.29	0.088	1		04/14/22 22:42	106-93-4	N2
Dibromomethane	<0.24	ug/L	0.79	0.24	1		04/14/22 22:42	74-95-3	N2
1,2-Dichlorobenzene	< 0.043	ug/L	0.14	0.043	1		04/14/22 22:42	95-50-1	N2
1,3-Dichlorobenzene	< 0.076	ug/L	0.25	0.076	1		04/14/22 22:42	541-73-1	N2
1,4-Dichlorobenzene	< 0.059	ug/L	0.20	0.059	1		04/14/22 22:42	106-46-7	N2
Dichlorodifluoromethane	<0.31	ug/L	1.0	0.31	1		04/14/22 22:42	75-71-8	N2
1,1-Dichloroethane	<0.15	ug/L	0.49	0.15	1		04/14/22 22:42	75-34-3	N2
1,2-Dichloroethane	<0.085	ug/L	0.28	0.085	1		04/14/22 22:42	107-06-2	N2
1,1-Dichloroethene	<0.23	ug/L	0.77	0.23	1		04/14/22 22:42	75-35-4	N2
cis-1,2-Dichloroethene	3.5	ug/L	0.83	0.25	1		04/14/22 22:42	156-59-2	N2
trans-1,2-Dichloroethene	<0.32	ug/L	1.1	0.32	1		04/14/22 22:42	156-60-5	N2
1,2-Dichloropropane	<0.20	ug/L	0.66	0.20	1		04/14/22 22:42	78-87-5	N2
cis-1,3-Dichloropropene	<0.088	ug/L	0.29	0.088	1		04/14/22 22:42	10061-01-5	N2
trans-1,3-Dichloropropene	< 0.093	ug/L	0.31	0.093	1		04/14/22 22:42	10061-02-6	N2
Ethylbenzene	<0.11	ug/L	0.35	0.11	1		04/14/22 22:42	100-41-4	N2
Methylene Chloride	<2.1	ug/L	6.9	2.1	1		04/14/22 22:42		N2
Methyl-tert-butyl ether	<0.11	ug/L	0.37	0.11	1		04/14/22 22:42		N2
Naphthalene	<0.073	ug/L	0.24	0.073	1		04/14/22 22:42		N2
Styrene	<0.13	ug/L	0.42	0.13	1		04/14/22 22:42		N2
Tetrachloroethene	<0.094	ug/L	0.31	0.094	1		04/14/22 22:42		N2
Tetrahydrofuran	<0.38	ug/L	1.3	0.38	1		04/14/22 22:42		N2
Toluene	<0.12	ug/L	0.39	0.12	1		04/14/22 22:42		N2
1,1,1-Trichloroethane	<0.22	ug/L	0.72	0.22	1		04/14/22 22:42		N2
1,1,2-Trichloroethane	<0.15	ug/L	0.51	0.15	1		04/14/22 22:42		N2
Trichloroethene	<0.17	ug/L	0.56	0.17	1		04/14/22 22:42		N2
Trichlorofluoromethane	<0.20	ug/L	0.67	0.20	1		04/14/22 22:42		N2
Vinyl chloride	< 0.087	ug/L	0.29	0.087	1		04/14/22 22:42		N2

04/18/22 22:17 16887-00-6

04/15/22 11:15

(920)469-2436

Chloride

310.2 Alkalinity

Alkalinity, Total as CaCO3

Date: 05/17/2022 05:32 PM

ANALYTICAL RESULTS

Project: LGRL PW APRIL
Pace Project No.: 40243151

Sample: PW-28 Lab ID: 40243238003 Collected: 04/08/22 10:55 Received: 04/09/22 08:40 Matrix: Water Results Units LOQ LOD DF **Parameters** Prepared Analyzed CAS No. Qual Analytical Method: EPA 524.2 524.2 MSV Pace Analytical Services - Indianapolis Xylene (Total) <0.11 ug/L 0.36 0.11 04/14/22 22:42 1330-20-7 N2 Surrogates 4-Bromofluorobenzene (S) 93 %. 70-130 1 04/14/22 22:42 460-00-4 95 Dibromofluoromethane (S) %. 70-130 1 04/14/22 22:42 1868-53-7 105 Toluene-d8 (S) %. 70-130 1 04/14/22 22:42 2037-26-5 **Field Data** Analytical Method: Pace Analytical Services - Green Bay 04/08/22 10:55 Field pH 7.53 Std. Units 1 Field Specific Conductance 651 umhos/cm 1 04/08/22 10:55 **Turbidity** Ν NTU 1 04/08/22 10:55 **Apparent Color** Ν no units 1 04/08/22 10:55 Odor Ν no units 04/08/22 10:55 Temperature, Water (C) 9.8 deg C 04/08/22 10:55 300.0 IC Anions Analytical Method: EPA 300.0

2.0

50.0

0.43

10.4

2

Pace Analytical Services - Green Bay

Pace Analytical Services - Green Bay

mg/L

mg/L

Analytical Method: EPA 310.2

36.0

395

ANALYTICAL RESULTS

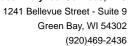
Project: LGRL PW APRIL

Sample: PW-32	Lab ID:	40243238004	Collected:	04/08/22	2 11:20	Received: 04/	09/22 08:40 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6010D MET ICP	•	Method: EPA 6		ration Met	hod: EF	PA 3010A			
Total Hardness by 2340B	Pace Ana 467000	ytical Services ug/L	- Green Bay 2000	150	1	04/12/22 06:28	04/13/22 12:53		
,		•		100	•	0-1, 12,22 00.20	0-1/10/22 12:00		
524.2 MSV	•	Method: EPA 5							
	Pace Ana	ytical Services	- Indianapolis	5					
Acetone	<0.62	ug/L	2.1	0.62	1		04/14/22 23:07	67-64-1	N2
Benzene	< 0.099	ug/L	0.33	0.099	1		04/14/22 23:07	71-43-2	N2
Bromodichloromethane	<0.17	ug/L	0.58	0.17	1		04/14/22 23:07	75-27-4	N2
Bromoform	<0.14	ug/L	0.48	0.14	1		04/14/22 23:07	75-25-2	L1,N2
Bromomethane	<0.28	ug/L	0.94	0.28	1		04/14/22 23:07	74-83-9	L1,N2
2-Butanone (MEK)	<0.49	ug/L	1.6	0.49	1		04/14/22 23:07	78-93-3	N2
Carbon disulfide	<0.11	ug/L	0.38	0.11	1		04/14/22 23:07	75-15-0	N2
Carbon tetrachloride	<0.14	ug/L	0.48	0.14	1		04/14/22 23:07	56-23-5	N2
Chlorobenzene	< 0.083	ug/L	0.28	0.083	1		04/14/22 23:07	108-90-7	N2
Chloroethane	<0.17	ug/L	0.58	0.17	1		04/14/22 23:07	75-00-3	N2
Chloroform	<0.58	ug/L	1.9	0.58	1		04/14/22 23:07	67-66-3	N2
Chloromethane	<0.10	ug/L	0.35	0.10	1		04/14/22 23:07	74-87-3	N2
1,2-Dibromo-3-chloropropane	<0.18	ug/L	0.60	0.18	1		04/14/22 23:07		N2
Dibromochloromethane	<0.12	ug/L	0.38	0.12	1		04/14/22 23:07	124-48-1	N2
1,2-Dibromoethane (EDB)	<0.088	ug/L	0.29	0.088	1		04/14/22 23:07	106-93-4	N2
Dibromomethane	<0.24	ug/L	0.79	0.24	1		04/14/22 23:07	74-95-3	N2
1,2-Dichlorobenzene	< 0.043	ug/L	0.14	0.043	1		04/14/22 23:07	95-50-1	N2
1,3-Dichlorobenzene	< 0.076	ug/L	0.25	0.076	1		04/14/22 23:07	541-73-1	N2
1,4-Dichlorobenzene	< 0.059	ug/L	0.20	0.059	1		04/14/22 23:07		N2
Dichlorodifluoromethane	<0.31	ug/L	1.0	0.31	1		04/14/22 23:07		N2
1,1-Dichloroethane	<0.15	ug/L	0.49	0.15	1		04/14/22 23:07		N2
1,2-Dichloroethane	<0.085	ug/L	0.28	0.085	1		04/14/22 23:07		N2
1,1-Dichloroethene	<0.23	ug/L	0.77	0.23	1		04/14/22 23:07		N2
cis-1,2-Dichloroethene	<0.25	ug/L	0.83	0.25	1		04/14/22 23:07		N2
trans-1,2-Dichloroethene	<0.32	ug/L	1.1	0.32	1		04/14/22 23:07		N2
1,2-Dichloropropane	<0.20	ug/L	0.66	0.20	1		04/14/22 23:07		N2
cis-1,3-Dichloropropene	<0.088	ug/L	0.29	0.088	1		04/14/22 23:07		N2
trans-1,3-Dichloropropene	< 0.093	ug/L	0.31	0.093	1		04/14/22 23:07		N2
Ethylbenzene	<0.11	ug/L	0.35	0.11	1		04/14/22 23:07		N2
Methylene Chloride	<2.1	ug/L	6.9	2.1	1		04/14/22 23:07		N2
Methyl-tert-butyl ether	<0.11	ug/L	0.37	0.11	1		04/14/22 23:07		N2
Naphthalene	<0.073	ug/L	0.24	0.073	1		04/14/22 23:07		N2
Styrene	<0.13	ug/L	0.42	0.13	1		04/14/22 23:07		N2
Tetrachloroethene	<0.094	ug/L	0.31	0.094	1		04/14/22 23:07		N2
Tetrahydrofuran	<0.38	ug/L	1.3	0.38	1		04/14/22 23:07		N2
Toluene	<0.12	ug/L	0.39	0.12	1		04/14/22 23:07		N2
1.1.1-Trichloroethane	<0.22	ug/L	0.72	0.22	1		04/14/22 23:07		N2
1,1,2-Trichloroethane	<0.15	ug/L	0.72	0.15	1		04/14/22 23:07		N2
Trichloroethene	<0.17	ug/L ug/L	0.56	0.13	1		04/14/22 23:07		N2
Trichlorofluoromethane	<0.20	ug/L	0.67	0.20	1		04/14/22 23:07		N2
Vinyl chloride	<0.087	ug/L	0.29	0.087	1		04/14/22 23:07		N2

ANALYTICAL RESULTS

Project: LGRL PW APRIL

	atrix: Water	/09/22 06.40 IVIA	Received: 04	2 11.20	: 04/08/22	Collected	40243238004	Lab ID.	Sample: PW-32
Qual	CAS No.	Analyzed	Prepared	DF	LOD	LOQ	Units	Results	Parameters
						24.2	Method: EPA 5	Analytical	524.2 MSV
					is	- Indianapol	lytical Services	Pace Ana	
N2	1330-20-7	04/14/22 23:07		1	0.11	0.36	ug/L	<0.11	Xylene (Total)
							_		Surrogates
	460-00-4	04/14/22 23:07		1		70-130	%.	93	4-Bromofluorobenzene (S)
	1868-53-7	04/14/22 23:07		1		70-130	%.	93	Dibromofluoromethane (S)
	2037-26-5	04/14/22 23:07		1		70-130	%.	106	Toluene-d8 (S)
							Method:	Analytical	Field Data
					,	Green Bay	lytical Services	Pace Ana	
		04/08/22 11:20		1			Std. Units	7.46	Field pH
		04/08/22 11:20		1			umhos/cm	658	Field Specific Conductance
		04/08/22 11:20		1			NTU	N	Turbidity
		04/08/22 11:20		1			no units	N	Apparent Color
		04/08/22 11:20		1			no units	N	Odor
		04/08/22 11:20		1			deg C	10.9	Temperature, Water (C)
						0.00	Method: EPA 30	Analytical	300.0 IC Anions
					•	Green Bay	lytical Services	Pace Ana	
	16887-00-6	04/18/22 22:32		1	0.43	2.0	mg/L	41.1	Chloride
						10.2	Method: EPA 3	Analytical	310.2 Alkalinity
					,	Green Bay	lytical Services	Pace Ana	•
;	16887-00-6	04/08/22 11:20 04/08/22 11:20 04/08/22 11:20 04/08/22 11:20 04/08/22 11:20		1 1 1 1 1 1	0.43	00.0 - Green Bay 2.0 10.2	Std. Units umhos/cm NTU no units no units deg C Method: EPA 3d lytical Services mg/L Method: EPA 3	Pace Ana 7.46 658 N N N 10.9 Analytical Pace Ana 41.1 Analytical	Field pH Field Specific Conductance Turbidity Apparent Color Odor Temperature, Water (C) 300.0 IC Anions Chloride



ANALYTICAL RESULTS

Project: LGRL PW APRIL Pace Project No.: 40243151

Sample: TRIP BLANK Lab ID: 40243238005 Collected: 04/08/22 00:00 Received: 04/09/22 08:40 Matrix: Water

Sample: TRIP BLANK	Lab ID:	40243238005	Collecte	d: 04/08/22	2 00:00	Received: 04	4/09/22 08:40 M	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
524.2 MSV	Analytical	Method: EPA 5	24.2						
	Pace Anal	ytical Services	- Indianapo	lis					
Acetone	<0.62	ug/L	2.1	0.62	1		04/14/22 23:32	67-64-1	N2
Benzene	< 0.099	ug/L	0.33	0.099	1		04/14/22 23:32	71-43-2	N2
Bromodichloromethane	<0.17	ug/L	0.58	0.17	1		04/14/22 23:32	75-27-4	N2
Bromoform	<0.14	ug/L	0.48	0.14	1		04/14/22 23:32	75-25-2	L1,N2
Bromomethane	<0.28	ug/L	0.94	0.28	1		04/14/22 23:32	74-83-9	L1,N2
2-Butanone (MEK)	<0.49	ug/L	1.6	0.49	1		04/14/22 23:32	78-93-3	N2
Carbon disulfide	<0.11	ug/L	0.38	0.11	1		04/14/22 23:32	75-15-0	N2
Carbon tetrachloride	<0.14	ug/L	0.48	0.14	1		04/14/22 23:32	56-23-5	N2
Chlorobenzene	< 0.083	ug/L	0.28	0.083	1		04/14/22 23:32		N2
Chloroethane	<0.17	ug/L	0.58	0.17	1		04/14/22 23:32	75-00-3	N2
Chloroform	<0.58	ug/L	1.9	0.58	1		04/14/22 23:32		N2
Chloromethane	<0.10	ug/L	0.35	0.10	1		04/14/22 23:32		N2
1,2-Dibromo-3-chloropropane	<0.18	ug/L	0.60	0.18	1		04/14/22 23:32		N2
Dibromochloromethane	<0.12	ug/L	0.38	0.12	1		04/14/22 23:32		N2
1,2-Dibromoethane (EDB)	<0.088	ug/L	0.29	0.088	1		04/14/22 23:32	_	N2
Dibromomethane	<0.24	ug/L	0.79	0.24	1		04/14/22 23:32		N2
1,2-Dichlorobenzene	<0.043	ug/L	0.14	0.043	1		04/14/22 23:32		N2
1,3-Dichlorobenzene	< 0.076	ug/L	0.25	0.076	1		04/14/22 23:32		N2
1.4-Dichlorobenzene	<0.059	ug/L	0.20	0.059	1		04/14/22 23:32		N2
Dichlorodifluoromethane	<0.31	ug/L	1.0	0.31	1		04/14/22 23:32		N2
1,1-Dichloroethane	<0.15	ug/L	0.49	0.15	1		04/14/22 23:32		N2
1,2-Dichloroethane	<0.085	ug/L	0.43	0.085	1		04/14/22 23:32		N2
1,1-Dichloroethene	<0.23	ug/L	0.20	0.003	1		04/14/22 23:32		N2
cis-1,2-Dichloroethene	<0.25	ug/L	0.83	0.25	1		04/14/22 23:32		N2
trans-1,2-Dichloroethene	<0.32	ug/L	1.1	0.23	1		04/14/22 23:32		N2
·	<0.32	-	0.66	0.32	1		04/14/22 23:32		N2
1,2-Dichloropropane	<0.20 <0.088	ug/L	0.88	0.20	1		04/14/22 23:32		N2 N2
cis-1,3-Dichloropropene	<0.088	ug/L		0.008	1		04/14/22 23:32		N2 N2
trans-1,3-Dichloropropene		ug/L	0.31		1				N2 N2
Ethylbenzene Mathylana Chlavida	<0.11	ug/L	0.35	0.11			04/14/22 23:32		
Methylene Chloride	<2.1	ug/L	6.9	2.1	1		04/14/22 23:32		N2
Methyl-tert-butyl ether	<0.11	ug/L	0.37	0.11	1		04/14/22 23:32		N2
Naphthalene	<0.073	ug/L	0.24	0.073	1		04/14/22 23:32		N2
Styrene	<0.13	ug/L	0.42	0.13	1		04/14/22 23:32		N2
Tetrachloroethene	<0.094	ug/L	0.31	0.094	1		04/14/22 23:32		N2
Tetrahydrofuran 	<0.38	ug/L	1.3	0.38	1		04/14/22 23:32		N2
Toluene	<0.12	ug/L	0.39	0.12	1		04/14/22 23:32		N2
1,1,1-Trichloroethane	<0.22	ug/L	0.72	0.22	1		04/14/22 23:32		N2
1,1,2-Trichloroethane	<0.15	ug/L	0.51	0.15	1		04/14/22 23:32		N2
Trichloroethene	<0.17	ug/L	0.56	0.17	1		04/14/22 23:32		N2
Trichlorofluoromethane	<0.20	ug/L	0.67	0.20	1		04/14/22 23:32		N2
Vinyl chloride	<0.087	ug/L	0.29	0.087	1		04/14/22 23:32		N2
Xylene (Total)	<0.11	ug/L	0.36	0.11	1		04/14/22 23:32	1330-20-7	N2
Surrogates	25	0/	70 100				04/44/00 00 00	100.00.1	
4-Bromofluorobenzene (S)	93	%.	70-130		1		04/14/22 23:32		
Dibromofluoromethane (S)	94	%.	70-130		1		04/14/22 23:32	1868-53-7	

Pace Project No.:

Date: 05/17/2022 05:32 PM

ANALYTICAL RESULTS

Project: LGRL PW APRIL

40243151

Sample: TRIP BLANK Lab ID: 40243238005 Collected: 04/08/22 00:00 Received: 04/09/22 08:40 Matrix: Water

LOQ **Parameters** Results Units LOD DF Prepared CAS No. Analyzed Qual Analytical Method: EPA 524.2 524.2 MSV Pace Analytical Services - Indianapolis Surrogates Toluene-d8 (S) 107 %. 70-130 04/14/22 23:32 2037-26-5 1

(920)469-2436

QUALITY CONTROL DATA

Project:

LGRL PW APRIL

Pace Project No.:

40243151

QC Batch: QC Batch Method: 412681

EPA 3010A

Analysis Method:

EPA 6010D

Analysis Description:

6010D MET

Laboratory:

Pace Analytical Services - Green Bay

Associated Lab Samples:

40243151001, 40243151003, 40243151004

METHOD BLANK: 2376893

Matrix: Water

Associated Lab Samples:

40243151001, 40243151003, 40243151004

Blank Result

Reporting

Units

Limit

Analyzed

Qualifiers

Total Hardness by 2340B

ug/L

<150

2000 04/13/22 18:44

LABORATORY CONTROL SAMPLE:

Parameter

Parameter

2376894

Spike Conc.

LCS Result

LCS % Rec

MSD

% Rec Limits

Qualifiers

Total Hardness by 2340B

Units ug/L

67800

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

2376895

MSD

40243149001 Parameter Units Result

MS Spike

Spike Conc.

MS Result

2376896

MS % Rec MSD

% Rec

Max RPD

Total Hardness by 2340B

Date: 05/17/2022 05:32 PM

894000 ug/L

Conc.

Result 998000 988000

% Rec

Limits **RPD**

Qual

20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(920)469-2436

QUALITY CONTROL DATA

Project: LGRL PW APRIL

Pace Project No.: 40243151

Date: 05/17/2022 05:32 PM

QC Batch: 412836 Analysis Method: EPA 6010D
QC Batch Method: EPA 3010A Analysis Description: 6010D MET

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40243238001, 40243238002, 40243238003, 40243238004

METHOD BLANK: 2377302 Matrix: Water
Associated Lab Samples: 40243238001, 40243238002, 40243238003, 40243238004

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Hardness by 2340B ug/L <150 2000 04/13/22 12:21

LABORATORY CONTROL SAMPLE: 2377303

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Total Hardness by 2340B ug/L 66000

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2377304 2377305

MS MSD

40243209001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Result Total Hardness by 2340B 197000 ug/L 130 mg/L 196000 20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: LGRL PW APRIL

Pace Project No.: 40243151

Date: 05/17/2022 05:32 PM

QC Batch: 671276 Analysis Method: EPA 524.2

QC Batch Method: EPA 524.2 Analysis Description: 524.2 MSV

Laboratory: Pace Analytical Services - Indianapolis

Associated Lab Samples: 40243151001, 40243151002, 40243151003, 40243151004, 40243151005, 40243238001, 40243238002,

40243238003, 40243238004, 40243238005

METHOD BLANK: 3091257 Matrix: Water

Associated Lab Samples: 40243151001, 40243151002, 40243151003, 40243151004, 40243151005, 40243238001, 40243238002,

40243238003, 40243238004, 40243238005

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/L	<0.22	0.72	04/14/22 17:43	N2
1,1,2-Trichloroethane	ug/L	<0.15	0.51	04/14/22 17:43	N2
1,1-Dichloroethane	ug/L	<0.15	0.49	04/14/22 17:43	N2
1,1-Dichloroethene	ug/L	< 0.23	0.77	04/14/22 17:43	N2
1,2-Dibromo-3-chloropropane	ug/L	<0.18	0.60	04/14/22 17:43	N2
1,2-Dibromoethane (EDB)	ug/L	<0.088	0.29	04/14/22 17:43	N2
1,2-Dichlorobenzene	ug/L	< 0.043	0.14	04/14/22 17:43	N2
1,2-Dichloroethane	ug/L	< 0.085	0.28	04/14/22 17:43	N2
1,2-Dichloropropane	ug/L	< 0.20	0.66	04/14/22 17:43	N2
1,3-Dichlorobenzene	ug/L	< 0.076	0.25	04/14/22 17:43	N2
1,4-Dichlorobenzene	ug/L	< 0.059	0.20	04/14/22 17:43	N2
2-Butanone (MEK)	ug/L	< 0.49	1.6	04/14/22 17:43	N2
Acetone	ug/L	< 0.62	2.1	04/14/22 17:43	N2
Benzene	ug/L	< 0.099	0.33	04/14/22 17:43	N2
Bromodichloromethane	ug/L	<0.17	0.58	04/14/22 17:43	N2
Bromoform	ug/L	< 0.14	0.48	04/14/22 17:43	N2
Bromomethane	ug/L	<0.28	0.94	04/14/22 17:43	N2
Carbon disulfide	ug/L	<0.11	0.38	04/14/22 17:43	N2
Carbon tetrachloride	ug/L	<0.14	0.48	04/14/22 17:43	N2
Chlorobenzene	ug/L	<0.083	0.28	04/14/22 17:43	N2
Chloroethane	ug/L	<0.17	0.58	04/14/22 17:43	N2
Chloroform	ug/L	0.63J	1.9	04/14/22 17:43	N2
Chloromethane	ug/L	<0.10	0.35	04/14/22 17:43	N2
cis-1,2-Dichloroethene	ug/L	<0.25	0.83	04/14/22 17:43	N2
cis-1,3-Dichloropropene	ug/L	<0.088	0.29	04/14/22 17:43	N2
Dibromochloromethane	ug/L	<0.12	0.38	04/14/22 17:43	N2
Dibromomethane	ug/L	<0.24	0.79	04/14/22 17:43	N2
Dichlorodifluoromethane	ug/L	<0.31	1.0	04/14/22 17:43	N2
Ethylbenzene	ug/L	<0.11	0.35	04/14/22 17:43	N2
Methyl-tert-butyl ether	ug/L	<0.11	0.37	04/14/22 17:43	N2
Methylene Chloride	ug/L	<2.1	6.9	04/14/22 17:43	N2
Naphthalene	ug/L	< 0.073	0.24	04/14/22 17:43	N2
Styrene	ug/L	<0.13	0.42	04/14/22 17:43	N2
Tetrachloroethene	ug/L	< 0.094	0.31	04/14/22 17:43	N2
Tetrahydrofuran	ug/L	<0.38	1.3	04/14/22 17:43	N2
Toluene	ug/L	<0.12	0.39	04/14/22 17:43	N2
trans-1,2-Dichloroethene	ug/L	<0.32	1.1	04/14/22 17:43	N2
trans-1,3-Dichloropropene	ug/L	<0.093	0.31	04/14/22 17:43	N2
Trichloroethene	ug/L	<0.17	0.56	04/14/22 17:43	N2

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: LGRL PW APRIL

Pace Project No.: 40243151

Date: 05/17/2022 05:32 PM

METHOD BLANK: 3091257 Matrix: Water

Associated Lab Samples: 40243151001, 40243151002, 40243151003, 40243151004, 40243151005, 40243238001, 40243238002,

40243238003, 40243238004, 40243238005

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
- Tarameter				711019200	
Trichlorofluoromethane	ug/L	<0.20	0.67	04/14/22 17:43	N2
Vinyl chloride	ug/L	<0.087	0.29	04/14/22 17:43	N2
Xylene (Total)	ug/L	<0.11	0.36	04/14/22 17:43	N2
4-Bromofluorobenzene (S)	%.	96	70-130	04/14/22 17:43	
Dibromofluoromethane (S)	%.	95	70-130	04/14/22 17:43	
Toluene-d8 (S)	%.	107	70-130	04/14/22 17:43	

LABORATORY CONTROL SAMPLE:	3091258				
		Spike	LCS	LCS	% Rec
Parameter	Units	Conc.	Result	% Rec	Limits Qualifiers
1,1,1-Trichloroethane	ug/L		21.6	108	70-130 N2
1,1,2-Trichloroethane	ug/L	20	22.8	114	70-130 N2
1,1-Dichloroethane	ug/L	20	19.8	99	70-130 N2
1,1-Dichloroethene	ug/L	20	20.0	100	70-130 N2
1,2-Dibromo-3-chloropropane	ug/L	20	25.1	126	70-130 N2
1,2-Dibromoethane (EDB)	ug/L	20	22.7	113	70-130 N2
1,2-Dichlorobenzene	ug/L	20	24.0	120	70-130 N2
1,2-Dichloroethane	ug/L	20	19.7	99	70-130 N2
1,2-Dichloropropane	ug/L	20	20.4	102	70-130 N2
1,3-Dichlorobenzene	ug/L	20	23.8	119	70-130 N2
1,4-Dichlorobenzene	ug/L	20	22.9	115	70-130 N2
2-Butanone (MEK)	ug/L	100	99.9	100	70-130 N2
Acetone	ug/L	100	98.2	98	70-130 N2
Benzene	ug/L	20	19.4	97	70-130 N2
Bromodichloromethane	ug/L	20	20.6	103	70-130 N2
Bromoform	ug/L	20	26.2	131	70-130 L1,N2
Bromomethane	ug/L	20	29.0	145	70-130 L1,N2
Carbon disulfide	ug/L	20	19.1	95	70-130 N2
Carbon tetrachloride	ug/L	20	21.8	109	70-130 N2
Chlorobenzene	ug/L	20	22.6	113	70-130 N2
Chloroethane	ug/L	20	23.3	117	70-130 N2
Chloroform	ug/L	20	18.6	93	70-130 N2
Chloromethane	ug/L	20	15.8	79	70-130 N2
cis-1,2-Dichloroethene	ug/L	20	20.8	104	70-130 N2
cis-1,3-Dichloropropene	ug/L	20	22.8	114	70-130 N2
Dibromochloromethane	ug/L	20	23.8	119	70-130 N2
Dibromomethane	ug/L	20	19.2	96	70-130 N2
Dichlorodifluoromethane	ug/L	20	24.7	123	70-130 N2
Ethylbenzene	ug/L	20	22.8	114	70-130 N2
Methyl-tert-butyl ether	ug/L	20	19.9	100	70-130 N2
Methylene Chloride	ug/L	20	18.7	93	70-130 N2
Naphthalene	ug/L	20	24.5	123	70-130 N2
Styrene	ug/L	20	23.2	116	70-130 N2

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: LGRL PW APRIL Pace Project No.: 40243151

LABORATORY CONTROL SAMPLE:	3091258					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Tetrachloroethene	ug/L	20	23.6	118	70-130	N2
Tetrahydrofuran	ug/L	100	102	102	70-130	N2
Toluene	ug/L	20	22.3	112	70-130	N2
trans-1,2-Dichloroethene	ug/L	20	21.4	107	70-130	N2
trans-1,3-Dichloropropene	ug/L	20	23.2	116	70-130	N2
Trichloroethene	ug/L	20	21.5	108	70-130	N2
Trichlorofluoromethane	ug/L	20	21.6	108	70-130	N2
Vinyl chloride	ug/L	20	22.4	112	70-130	N2
Xylene (Total)	ug/L	40	45.7	114	70-130	N2
4-Bromofluorobenzene (S)	%.			97	70-130	
Dibromofluoromethane (S)	%.			95	70-130	
Toluene-d8 (S)	%.			103	70-130	

MATRIX SPIKE & MATRIX SI	PIKE DUPLIC	CATE: 3091	259 MS	MSD	3091260							
Parameter	5 Units	0313426001 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
1,1,1-Trichloroethane	ug/L	ND	20	20	25.7	23.2	128	116	70-130	10	20	N2
1,1,2-Trichloroethane	ug/L	ND	20	20	28.8	25.3	144	126	70-130	13	20	M1,N2
1,1-Dichloroethane	ug/L	ND	20	20	23.9	21.2	119	106	70-130	12	20	N2
1,1-Dichloroethene	ug/L	ND	20	20	24.8	22.3	124	111	70-130	11	20	N2
1,2-Dibromo-3- chloropropane	ug/L	ND	20	20	31.9	28.2	159	141	70-130	12	20	M1,N2
1,2-Dibromoethane (EDB)	ug/L	ND	20	20	28.1	24.1	141	121	70-130	15	20	M1,N2
1,2-Dichlorobenzene	ug/L	ND	20	20	29.4	25.8	147	129	70-130	13	20	M1,N2
1,2-Dichloroethane	ug/L	ND	20	20	23.5	20.7	118	104	70-130	13	20	N2
1,2-Dichloropropane	ug/L	ND	20	20	25.6	21.8	128	109	70-130	16	20	N2
1,3-Dichlorobenzene	ug/L	ND	20	20	29.1	25.8	145	129	70-130	12	20	M1,N2
1,4-Dichlorobenzene	ug/L	ND	20	20	28.7	25.2	144	126	70-130	13	20	M1,N2
2-Butanone (MEK)	ug/L	ND	100	100	125	110	125	110	70-130	12	20	N2
Acetone	ug/L	ND	100	100	119	103	119	103	70-130	14	20	N2
Benzene	ug/L	ND	20	20	24.4	21.4	122	107	70-130	13	20	N2
Bromodichloromethane	ug/L	ND	20	20	25.5	21.6	128	108	70-130	17	20	N2
Bromoform	ug/L	ND	20	20	30.1	26.3	150	131	70-130	13	20	M0, N2
Bromomethane	ug/L	ND	20	20	28.2	23.2	141	116	70-130	20	20	M0, N2
Carbon disulfide	ug/L	ND	20	20	22.2	20.0	111	100	70-130	10	20	N2
Carbon tetrachloride	ug/L	ND	20	20	27.7	24.5	138	122	70-130	12	20	M1,N2
Chlorobenzene	ug/L	ND	20	20	28.3	24.7	141	123	70-130	14	20	M1,N2
Chloroethane	ug/L	ND	20	20	27.4	23.3	137	116	70-130	16	20	M1,N2
Chloroform	ug/L	ND	20	20	22.1	18.9	111	95	70-130	16	20	N2
Chloromethane	ug/L	ND	20	20	16.1	14.8	81	74	70-130	9	20	N2
cis-1,2-Dichloroethene	ug/L	ND	20	20	25.4	22.0	127	110	70-130	14	20	N2
cis-1,3-Dichloropropene	ug/L	ND	20	20	28.5	24.1	142	121	70-130	17	20	M1,N2
Dibromochloromethane	ug/L	ND	20	20	29.4	25.5	147	128	70-130	14	20	M1,N2
Dibromomethane	ug/L	ND	20	20	23.8	20.3	119	102	70-130	16	20	N2

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALITY CONTROL DATA

Project: LGRL PW APRIL

Pace Project No.: 40243151

Date: 05/17/2022 05:32 PM

MATRIX SPIKE & MATRIX SF	PIKE DUPI	LICATE: 3091	259 MS	MSD	3091260							
		50313426001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Dichlorodifluoromethane	ug/L	ND	20	20	13.1	12.4	65	62	70-130	6	20	M1,N2
Ethylbenzene	ug/L	ND	20	20	28.2	25.0	141	125	70-130	12	20	M1,N2
Methyl-tert-butyl ether	ug/L	ND	20	20	24.1	21.5	120	108	70-130	11	20	N2
Methylene Chloride	ug/L	ND	20	20	20.7	18.6	104	93	70-130	11	20	N2
Naphthalene	ug/L	ND	20	20	30.6	27.3	153	136	70-130	11	20	M1,N2
Styrene	ug/L	ND	20	20	28.8	24.7	144	124	70-130	15	20	M1,N2
Tetrachloroethene	ug/L	ND	20	20	29.1	25.8	146	129	70-130	12	20	M1,N2
Tetrahydrofuran	ug/L	ND	100	100	123	111	123	111	70-130	11	20	N2
Toluene	ug/L	ND	20	20	27.9	24.5	140	123	70-130	13	20	M1,N2
trans-1,2-Dichloroethene	ug/L	ND	20	20	25.7	22.9	128	115	70-130	11	20	N2
trans-1,3-Dichloropropene	ug/L	ND	20	20	27.6	24.5	138	123	70-130	12	20	M1, N2
Trichloroethene	ug/L	ND	20	20	26.1	23.2	130	116	70-130	12	20	N2
Trichlorofluoromethane	ug/L	ND	20	20	21.2	18.3	106	91	70-130	15	20	N2
Vinyl chloride	ug/L	ND	20	20	21.0	18.7	105	94	70-130	12	20	N2
Xylene (Total)	ug/L	ND	40	40	87.2	75.7	218	189	70-130	14	20	MS,N2
4-Bromofluorobenzene (S)	%.						95	96	70-130			
Dibromofluoromethane (S)	%.						92	93	70-130			
Toluene-d8 (S)	%.						103	104	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(920)469-2436

QUALITY CONTROL DATA

Project: LGRL PW APRIL

Pace Project No.: 40243151

Date: 05/17/2022 05:32 PM

QC Batch: 413337 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40243151001, 40243151003, 40243151004

METHOD BLANK: 2380136 Matrix: Water

Associated Lab Samples: 40243151001, 40243151003, 40243151004

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Chloride mg/L <0.43 2.0 04/19/22 17:28

LABORATORY CONTROL SAMPLE: 2380137

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Chloride 20 21.0 105 90-110 mg/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2380138 2380139

MSD MS 40243150011 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Result Result **RPD** RPD Result Conc. % Rec % Rec Limits Qual Chloride mg/L 243 400 400 644 653 100 103 90-110 15

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2380140 2380141

MS MSD 40243175004 MS MSD MS MSD % Rec Spike Spike Max RPD RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits Qual Chloride 400 565 400 926 935 90 92 15 mg/L 90-110

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: LGRL PW APRIL

Pace Project No.: 40243151

Date: 05/17/2022 05:32 PM

QC Batch: 413338 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Green Bay

Qualifiers

Associated Lab Samples: 40243238001, 40243238002, 40243238003, 40243238004

METHOD BLANK: 2380160 Matrix: Water

Associated Lab Samples: 40243238001 40243238002 40243238003 40243238003

Associated Lab Samples: 40243238001, 40243238002, 40243238003, 40243238004

Blank Reporting
Parameter Units Result Limit Analyzed

Chloride mg/L <0.43 2.0 04/18/22 12:34

LABORATORY CONTROL SAMPLE: 2380161

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Chloride 20 19.8 99 90-110 mg/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2380162 2380163

MS MSD 40243175005 Spike Spike

40243175005 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Result **RPD** RPD Result Conc. Conc. % Rec % Rec Limits Qual Chloride mg/L 514 400 400 940 936 107 105 90-110 0 15

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2380164 2380165

MS MSD 40243510005 MS MSD MS MSD % Rec Spike Spike Max **RPD** RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits Qual Chloride 2 912 1000 1000 1980 2020 107 111 15 mg/L 90-110

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: LGRL PW APRIL

Pace Project No.: 40243151

Date: 05/17/2022 05:32 PM

QC Batch: 413179 Analysis Method: EPA 310.2

QC Batch Method: EPA 310.2 Analysis Description: 310.2 Alkalinity

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40243151001, 40243151003, 40243151004, 40243238001, 40243238002, 40243238003, 40243238004

METHOD BLANK: 2378920 Matrix: Water

Associated Lab Samples: 40243151001, 40243151003, 40243151004, 40243238001, 40243238002, 40243238003, 40243238004

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Alkalinity, Total as CaCO3 mg/L <5.2 25.0 04/15/22 10:47

LABORATORY CONTROL SAMPLE: 2378921

Spike LCS LCS % Rec Conc. % Rec Limits Qualifiers Parameter Units Result Alkalinity, Total as CaCO3 100 102 102 90-110 mg/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2378922 2378923

MS MSD

40243149004 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result **RPD** RPD Result Conc. Conc. Result % Rec % Rec Limits Qual 20 Alkalinity, Total as CaCO3 mg/L 290 500 500 837 832 109 109 90-110 0

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2378924 2378925

MS MSD

40243238004 MS MSD MS MSD % Rec Spike Spike Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual 374 Alkalinity, Total as CaCO3 200 200 605 601 115 20 M0 mg/L 113 90-110

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: LGRL PW APRIL
Pace Project No.: 40243151

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor, percent moisture, initial weight and final volume.

LOQ - Limit of Quantitation adjusted for dilution factor, percent moisture, initial weight and final volume.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 05/17/2022 05:32 PM

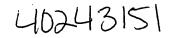
L1	Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated
	samples may be biased high.

M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

MS Analyte recovery in the matrix spike was outside QC limits for one or more of the constituent analytes used in the

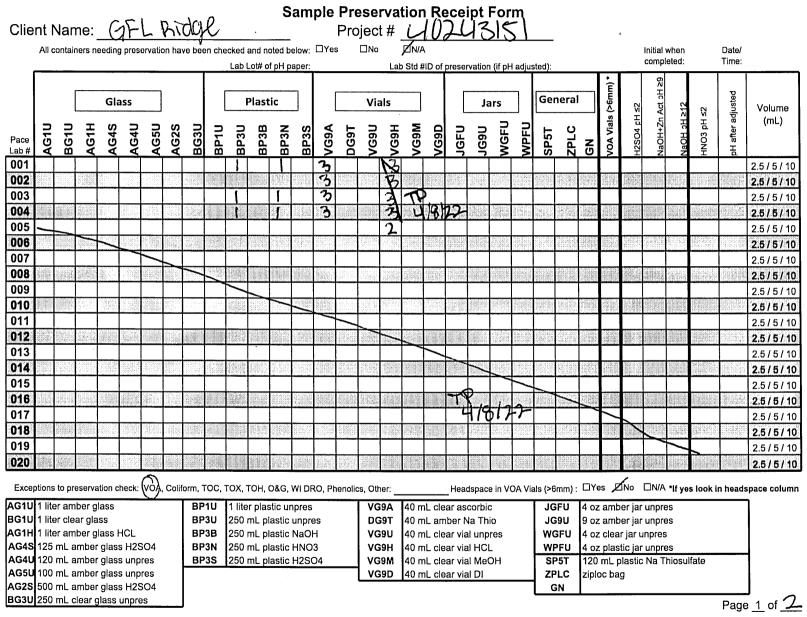
calculated result.


N2 The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: LGRL PW APRIL Pace Project No.: 40243151

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40243151001	PW-21RR BEFORE	EPA 3010A	412681	EPA 6010D	412891
40243151003	PW-23	EPA 3010A	412681	EPA 6010D	412891
40243151004	PW-38	EPA 3010A	412681	EPA 6010D	412891
40243238001	PW-19	EPA 3010A	412836	EPA 6010D	412945
40243238002	PW-20	EPA 3010A	412836	EPA 6010D	412945
40243238003	PW-28	EPA 3010A	412836	EPA 6010D	412945
40243238004	PW-32	EPA 3010A	412836	EPA 6010D	412945
10243151001	PW-21RR BEFORE	EPA 524.2	671276		
10243151002	PW-21RR AFTER	EPA 524.2	671276		
0243151003	PW-23	EPA 524.2	671276		
0243151004	PW-38	EPA 524.2	671276		
10243151005	TRIP BLANK	EPA 524.2	671276		
10243238001	PW-19	EPA 524.2	671276		
10243238002	PW-20	EPA 524.2	671276		
0243238003	PW-28	EPA 524.2	671276		
0243238004	PW-32	EPA 524.2	671276		
0243238005	TRIP BLANK	EPA 524.2	671276		
10243151001	PW-21RR BEFORE				
0243151002	PW-21RR AFTER				
0243151003	PW-23				
0243151004	PW-38				
0243238001	PW-19				
0243238002	PW-20				
10243238003	PW-28				
10243238004	PW-32				
0243151001	PW-21RR BEFORE	EPA 300.0	413337		
10243151003	PW-23	EPA 300.0	413337		
10243151004	PW-38	EPA 300.0	413337		
0243238001	PW-19	EPA 300.0	413338		
10243238002	PW-20	EPA 300.0	413338		
0243238003	PW-28	EPA 300.0	413338		
10243238004	PW-32	EPA 300.0	413338		
0243151001	PW-21RR BEFORE	EPA 310.2	413179		
0243151003	PW-23	EPA 310.2	413179		
0243151004	PW-38	EPA 310.2	413179		
0243238001	PW-19	EPA 310.2	413179		
0243238002	PW-20	EPA 310.2	413179		
0243238003	PW-28	EPA 310.2	413179		
10243238004	PW-32	EPA 310.2	413179		

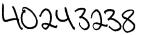


CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section		Section B			Section																			Page:	of	1
	red Client Information: lacier Ridge	Required Project Information: Report To: Kari Rabideau				nformation: Kari Ra										i I										
	Hwy V	Copy To: Frank Perugini - ESC, ESC	Stoff					cier Ridge												R	EGU	LATO	RY A	GENC	(
	•	Sherren Clark - SCS	olali,														_^	IPDE:	s _	GRO	JND V	VATER	<u>X</u>	DRINKIN	G WATER	R
Horico	n, WI 53032				Address	Address: N7296 Hwy V, Horicon, WI 53032USTRCRA OTH								THER_												
Email 1	To: Kari Rabideau - ADS	Purchase Order No.: na			Pace Qu	ote Refe	rence: na											SITE			GA		L .	_IN	_MI _	_NC
Phone	: na Fax: na	Project Name: LGRL PW			Pace Pr	oject Mar	ager: Cin	dy Varga									LO	CAT	ION		он	· _	sc	_ <u>x_</u> wı	OTHER	R
Reque	sted Due Date/TAT:	Project Number: na			Pace Pr	ofile #: 4	172 line	19								F	ilter	ed (Y/	N)		W,	<u>//</u>	77	77	<u>77</u>	
ITEM#	Section D Required Client Information SAMPLE ID One Character per box. (A-Z, 0-9 / ,-) Samples IDs MUST BE UNIQUE	Valid Matrix Codes MATRIX CODE DRINKING WATER DW WATER WATE	MATRIX CODE	SAMPLE TYPE G+GRAB C=COMP	COMPOSI DATE		DATE	TIME	SAMPLE TEMP AT COLLECTION	#OF CONTAINERS	-		Unpreserved	rvative	S	_	Ana					77 []		The survey of the second secon		e Project Number Lab I.D.
1	PW-27RR Before		DW	G			47	1345	10.9	5	-	١	1	-				* *	╁		_	 	ļ		<u> 100</u>	
2	PW-31 RR After		W	6		<u> </u>	4/7	1320	15.0	3 3	3		_	1		$oxed{oxed}$		Ŷ,	X		4	 	1		2002	
3	6M-93		0	6		<u> </u>	4/7	1430	7.9	5	3	١	1					×	1			4			003	
4	6N-38		Dh	6		[47	1410	10.1	5	3	1	1				_	×							<u> 204</u>	
5	Trip Blank of	4/8/22					4/7														ot	Ш		(<u> 200</u>	5
6																							1			
7																										
8																	Т	T								
9	·		ļ											\Box			\top	\top	\Box			П				
10								1						$\dagger \dagger$	_		\top	1	$\dagger \dagger$		\top	П				
11				 			 	 			\top			+		H	\dashv	_	++	_	_	\vdash	·			
12			 	 			 				+	\vdash	\dashv	++	\dashv	╁	+	+	++	\dashv	+-	$\vdash \vdash$	1			
	onal Comments:		REL	INQUI	SHED B	Y / AFFIL	IATION	DATE	TIME	ACCE	P1151	BY /	AFFII	IATIO	N				DATE		TIME	s	LLI AMPI	F COI	IDITIO	NS
DW.	MDD Affer only woods VOCs			1		Esc.		4/1	170														7 11711	<u>z</u>	¥ ×	¥
PVV-2	21RR After only needs VOCs	•		4	U- /-	C			_	- 5-7	WZ	1 15	2 /\	Œ.	94			: 1	19/2	,	3-2.1		[]		(A)	
			<u> </u>	WU	uti	<u>U</u>		41712	10845	Vι	vig	CIFE	<u>w</u>	Pa				7	1817	1/1	<i>אמו</i>	> .		<u>Z</u>		YNGN
								<u> </u>										+-		_		+		N/A	N/A	
																				╧				ΥW	¥	Υ X
							ER NAM		IGNATUR														remp in °C	Received on Ice	Custody Sealed Cooler	Samples Intact
						SIGNIATIO	E of SAME		olThon	nus				DATE	Signed (MM7 Pr	n/wi					_	emp i	aceiv Ice	Custonaled (Tiples
SIGNATURE of SAMPLER: DATE Signed (MM/DD/YY) OU/U7/1)											F	ž	Se	Sar												

DC# Title: ENV-FRM-GBAY-0035 v01 Sample Preservation Receipt Form

Revision: 3 | Effective Date: | Issued by: Green Bay


DC#_Title: ENV-FRM-GBAY-0014 v02_SCUR Revision: 3 | Effective Date: | Issued by: Green Bay

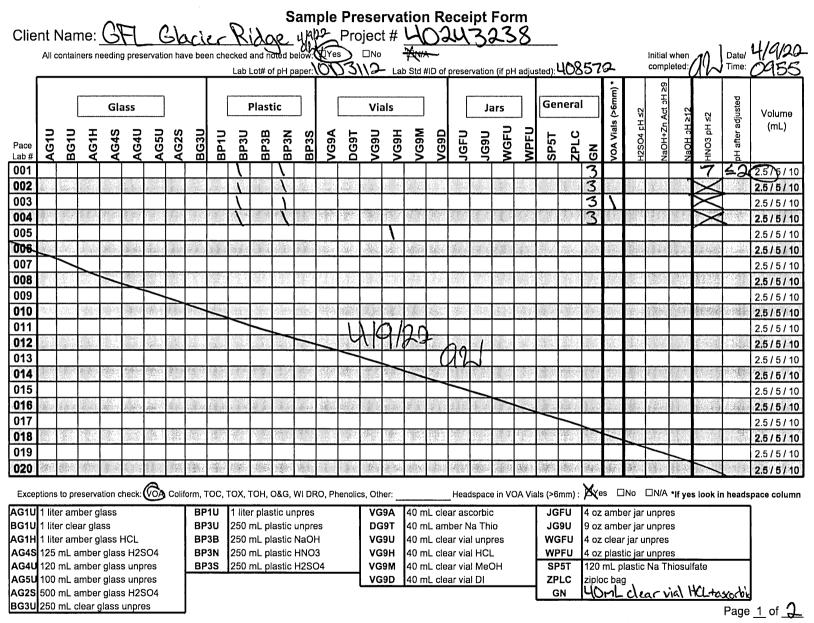
Sample Condition Upon Receipt Form (SCUR)

Client Name: GFL Glaver Bidge	WO#:40243151
Courier: CS Logistics Fed Ex Speedee UPS	
☐ Client ☐ Pace Other:	
Tracking #: 3/84945-4	40243151
	ct: yes no
	ct: yes no
Packing Material: Bubble Wrap Bubble Bags DNo	-
	Blue Dry None Samples on ice, cooling process has begun Person examining contents:
Cooler Temperature Uncorr: / /Corr: \	
Temp Blank Present:	Tissue is Frozen: ☐ yes ☐ no Date: 1/8/22 /Initials: 1
Temp should be above freezing to 6°C. Biota Samples may be received at ≤ 0°C if shipped on Dry Ice.	Labeled By Initials.
Chain of Custody Present: ✓ Yes □No □N	/A 1.
Chain of Custody Filled Out: ✓Yes □No □N	/A 2.
Chain of Custody Relinquished:	/A 3.
Sampler Name & Signature on COC:	/A 4.
Samples Arrived within Hold Time: ✓ Yes □No	5.
- VOA Samples frozen upon receipt □Yes □No	Date/Time:
Short Hold Time Analysis (<72hr): □Yes ☑No	6.
Rush Turn Around Time Requested: □Yes ∠No	7.
Sufficient Volume:	8.
For Analysis: ØYes □No MS/MSD: □Yes ØNo □N	/A
Correct Containers Used: ✓ Yes □No	9.
-Pace Containers Used: ✓Yes □No □N	/A
-Pace IR Containers Used: □Yes □No ✓N	/A
Containers Intact: ✓ Yes □No	10.
Filtered volume received for Dissolved tests	VA 11.
Sample Labels match COC:	/A 12.
-Includes date/time/ID/Analysis Matrix: W	
Trip Blank Present:	13. 001 time on BP3N and 1350
Trip Blank Custody Seals Present	14 001 than on 1201 1220
Pace Trip Blank Lot # (if purchased):	त्र पाधाक
Client Notification/ Resolution:	If checked, see attached form for additional comments
Person Contacted: Da Comments/ Resolution:	te/Time:
Ver LACOS (+3c) -time on Cocco Correct	- cu ffb-
PM Review is documented electronically in LIMs. By releasing the	ne project, the PM acknowledges they have reviewed the sample login
	Page 2 of 2

Qualtrax Document ID: 41292

Pace Analytical Services, LLC

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.


www.pacelahs.com Section A Section B Section C Page: of Required Client Information: Required Project Information: Invoice Information: GFL Glacier Ridge Report To: Kari Rabideau Attention: Kari Rabideau REGULATORY AGENCY Copy To: Frank Perugini - ESC, ESC Staff, N7296 Hwy V Company Name: GFL Glacier Ridge NPDES _GROUND WATER X DRINKING WATER Sherren Clark - SCS Horicon, WI 53032 Address: N7296 Hwy V. Horicon, WI 53032 UST __RCRA OTHER Email To: Kari Rabideau - ADS Purchase Order No.: na Pace Quote Reference: na SITE GΑ IN MI __NC Phone: na Project Name: LGRL PW Fax: na Pace Project Manager: Cindy Varga LOCATION ОН _sc X WI OTHER_ Requested Due Date/TAT: Project Number: na Pace Profile #: 4172 line 19 Filtered (Y/N) Section D Required Client Information COLLECTED Requested Preservatives MATRIX CODE SAMPLE TYPE +GRAB C=COMP AMPLE TEMP AT COLLECTION #OF CONTAINERS DRINKING WATER WATER WASTE WATER PRODUCT SOLLSOLID MATRIX CODE SAMPLE ID One Character per box. (A-Z, 0-9 / ,-) Pace Project Samples IDs MUST BE UNIQUE COMPOSITE START COMPOSITE END/GRAB ITEM 3 DATE TIME DATE TIME Lab I.D. 3 PW-19 X 10.4 DW XX 6M-50 1245 10.8 D٧ PW-28 1022 9.8 0W 3 3 PV-32 4/8 1199 10.9 5 XXX 3 OV 4/8 TripBlank 6 12 SAMPLE CONDITIONS Additional Comments: RELINQUISHED BY / AFFILIATION DATE TIME ACCEPTED BY / AFFILIATION DATE Ķ 48 1700 PW-21RR After only needs VOCs 49/22 0840 **P** E Š Ķ Σ× ξ Ķ ₹ Custody Sealed Cooler Samples Intact SAMPLER NAME AND SIGNATURE 5 Temp in °C Received Ice Jacot Thamas

SIGNATURE of SAMPLER:

DATE Signed (MM/DD/YY

DC# Title: ENV-FRM-GBAY-0035 v01 Sample Preservation Receipt Form

Revision: 3 | Effective Date: | Issued by: Green Bay

DC#_Title: ENV-FRM-GBAY-0014 v02_SCUR Revision: 3 | Effective Date: | Issued by: Green Bay

Sample Condition Upon Receipt Form (SCUR) Project #: WO#: 40243238 Client Name: (Courier: ☐ CS Logistics ☐ Fed Ex ☐ Speedee ☐ UPS ☐ Client Pace Other: Custody Seal on Cooler/Box Present: ☐ yes ☐ no Seals intact: ☐ yes ☐ no Custody Seal on Samples Present: 🗋 yes 💆 no Seals intact: yes no Packing Material: I Bubble Wrap I Bubble Bags ☐ None ☐ Other Type of Ice: (Wet) Blue Dry None Samples on ice, cooling process has begun Thermometer Used Person examining contents: **Cooler Temperature** Biological Tissue is Frozen: yes no Temp Blank Present: Temp should be above freezing to 6°C Biota Samples may be received at ≤ 0°C if shipped on Dry Ice XiYes □No □N/A Chain of Custody Present: XYes □No □N/A Chain of Custody Filled Out: XYes □No □N/A Chain of Custody Relinquished: Yes □No □n/a Sampler Name & Signature on COC: **X**1Yes □No Samples Arrived within Hold Time: □Yes □No Date/Time: - VOA Samples frozen upon receipt □Yes XNo Short Hold Time Analysis (<72hr): □Yes XNo Rush Turn Around Time Requested: 8. Sufficient Volume: For Analysis: XYes □No MS/MSD: □Yes No □N/A YYes □No Correct Containers Used: YQÎYes □No □N/A -Pace Containers Used: □Yes □No XN/A -Pace IR Containers Used: XIYes □No 10. Containers Intact: □Yes □No XN/A 11. Filtered volume received for Dissolved tests X Yes □No □N/A 12. Sample Labels match COC: -Includes date/time/ID/Analysis Matrix: Y Yes □No 13. □n/a Trip Blank Present: Yes □No Trip Blank Custody Seals Present □N/A Pace Trip Blank Lot # (if purchased): If checked, see attached form for additional comments Client Notification/ Resolution: Date/Time: Person Contacted: Comments/ Resolution:

PM Review is documented electronically in LIMs. By releasing the project, the PM acknowledges they have reviewed the sample login

Page Q of Q

SCS ENGINEERS

August 15, 2022 File No. 25222008.00

GEMS Data Submittal Contact – WA/5 Wisconsin Department of Natural Resources P.O. Box 7921 Madison, WI 53707-7921

Subject: Groundwater Monitoring Results – June 2022

Land & Gas Reclamation Landfill - Horicon, Wisconsin

WDNR License #1118 FID #114052290

Dear GEMS Data Submittal Contact:

Enclosed are the electronic data file, NR 140 exceedance summary, and monitoring data certification form for a resampling event performed in as part of the April 2022 sampling event at the former Land & Gas Reclamation Landfill (LGRL) site. Monitoring data in this submittal include laboratory results and associated field data from the following monitoring point in the required LGRL monitoring program:

Monitoring well MW-214A

Monitoring well MW-214A could not be accessed in April 2022 due to flooding. This monitoring well was sampled in May once flooding had subsided; however, chloride and alkalinity were inadvertently not included in the analysis. MW-214A was subsequently sampled again in June 2022 for these parameters. Results for the initial May sample were included in the April 2022 GEMS data submittal dated June 30, 2022. This submittal is for the follow-up chloride and alkalinity sample and the associated field parameters.

The groundwater sample was collected by Environmental Sampling Corporation (ESC). Laboratory analysis was performed by Pace Analytical Services.

This letter provides a preliminary analysis of the cause and significance of the NR 140 groundwater standard exceedances for monitoring data included in the data CD. An explanation of any deviations from the approved sampling plan is also included in the Monitoring Program Comments section of this letter.

NR 140 EXCEEDANCES

NR 140 standard exceedances for the MW-214 resample are listed in the attached NR 140 Exceedance Summary table. The following discussion addresses the NR 140 enforcement standard (ES) and preventive action limit (PAL) exceedances for this event.

GEMS Data Submittal Contact August 15, 2022 Page 2

Public Welfare Parameters

Chloride was reported above the NR 140 PAL of 125 μ g/L in the sample from MW-214A. This well is located downgradient of LGRL, and the chloride detections may be associated with LGRL. The chloride concentration in the June 2022 sample was similar to previous results.

If you have any questions regarding this submittal, please call Sherren Clark at 608.216.7323.

Sincerely,

Sherren Clark, PE, PG Project Director

SCS Engineers

Ryan Matzuk Hydrogeologist

SCS Engineers

RM/AJR/SCC

cc: Mark Peters, WDNR (via email)

Lonn Walter, Glacier Ridge Landfill (2 copies of letter, 1 CD)

Kari Rabideau, GFL Environmental (via email) Tim Curry, GFL Environmental (via email)

Frank Perugini, Environmental Sampling Corp. (via email)

Encl. Table 1 - NR 140 Exceedance Summary

Groundwater Monitoring Data Certification Form

GEMS Data CD

I:\25222008.00\Deliverables\2022_GEMS_April Resample\220815_LGRL_April 2022 Resample GEMS Letter.docx

Table 1

NR 140 Exceedance Summary

Site ID: 1118

Site Name: Land and Gas Reclamation Landfill Reporting Period: April 2022 (MW-214 resample)

Groundwater Results Exceeding NR 140 Standards

Well	Parameter	Result *	PAL	ES	Exceedance Type
MW-214A	Chloride, dissolved (mg/l as Cl)	203	125	250	PAL

Notes:

PAL = Preventive Action Limit ug/I = micrograms per liter

ES = Enforcement Standard mg/I = milligrams per liter

Prepared by: AJR, 8/1/2022

Checked by: RM, 8/8/2022

Save... Print... Clear Data

State of Wisconsin Department of Natural Resources dnr.wi.qov

Environmental Monitoring Data Certification

Form 4400-231 (R 5/17)

Notice: Personally identifiable information collected will be used for program administration and enforcement purposes. The Department may also provide this information to requesters as required under Wisconsin's Open Records law, ss. 19.31 to 19.39, Wis. Stats. When submitting monitoring data, the owner or operator of the facility, practice or activity is required to notify the Department in writing that a groundwater standard or an explosive gas level has been attained or exceeded, as specified in ss. NR 140.24(1)(a); NR 140.26(1)(a); NR 507.30NR 635.14(9)(a); NR 635.18(20) and NR 507.30, Wis. Adm. Code. Failure to report may result in fines, forfeitures or other penalties resulting from enforcement under ss. 289.97, 291.97 or 299.95. Wis. Stats

Instructions:

- Prepare one form for each license or monitoring ID.
- Please type or print legibly.
- Attach a notification of any values that attain or exceed groundwater standards (that is, preventive action limits, enforcement standards or alternative concentration limits). The notification must include a preliminary analysis of the cause and significance of each value.
- Attach a notification of any gas values that attain or exceed explosive gas levels.
- Send the original signed form, any notification, and Electronic Data Deliverable [EDD] to:

GEMS Data Submittal Contact - WA/5 Wisconsin Department of Natural Resources P.O. Box 7921

		Madison, WI 5	3707-7921	
Monitoring Data Submittal Information				
Name of entity submitting data (laboratory, consult	tant, facility owne	<u>r)</u>		
SCS Engineers			_	
Contact for questions about data formatting. Include	de data preparer's			
Name		F	Phone No. (include are	,
Ashley Radunzel			(608) 224-	2830
Email aradunzel@scsengineers.com				
Facility Name				
Land & Gas Reclamation Landfill				
License # / Monitoring ID		Facility ID (FID)		
1118		114052290		
Actual sampling dates (e.g., July 2-6, 2003) June 3, 2022	The enclosed res	sults are for sampling required ir	the month(s) of: (e.ç	g., June 2003)
Type of Data Submitted (Check all that apply):				
$\boxed{ imes}$ Groundwater monitoring data from monitoring v	wells	Gas monitoring data		
Groundwater monitoring data from private water	er supply wells	Air monitoring data		
Leachate monitoring data	1. 2	Other (specify):		
Notification attached?				
No. No groundwater standards or explosive ga	as limits were exce	eeded.		
Yes, a notification of values exceeding a groun values, groundwater standard and preliminary	ndwater standard i	s attached. It includes a list of m	nonitoring points, date centration.	es, sample
Yes, a notification of values exceeding an exploand explosive gas limits.	osive gas limit is a	attached. It includes the monitori	ng points, dates, san	nple values
Certification		1 01 0 0 december 1		
To the best of my knowledge, the information repo correct. Furthermore, I have attached complete no explosive gas levels, and a preliminary analysis of	otification of any sa	ampling values meeting or excee	eding groundwater sta eeding groundwater s	andards or standards.
Facility Representative Name (Print)	Title		,	clude area code)
Sherren Clark, SCS Engineers	Project Manag	ger	(608) 2	16-7323
526	8/1	0/2022		
Signature		Signed (mm/dd/yyyy)		
J.g. 1212. c		Use Only		
Check action taken, and record date and your initials. Do		-		
Found uploading problems on	Initials	Jii Hooosaa j.		
Notified contact of problems on		ded data successfully on		
FDD format(s): Diskette CD (initial submitt	•	• -	Other:	

SCS ENGINEERS

December 30, 2022 File No. 25222008.00

GEMS Data Submittal Contact – WA/5 Wisconsin Department of Natural Resources P.O. Box 7921 Madison, WI 53707-7921

Subject: Groundwater Monitoring Results – October 2022

Land & Gas Reclamation Landfill - Horicon, Wisconsin

WDNR License #1118 FID #114052290

Dear GEMS Data Submittal Contact:

Enclosed are the electronic data file, NR 140 exceedance summary, and monitoring data certification form for monitoring performed in October 2022 at the former Land & Gas Reclamation Landfill (LGRL) site. Monitoring data in this submittal include laboratory results and associated field data from the following monitoring points in the required LGRL monitoring program:

- Monitoring wells (MW1AR through MW214A)
- Surface water staff gauges (SW2 through SW5)

The groundwater samples were collected by Environmental Sampling Corporation (ESC). Laboratory analysis was performed by Pace Analytical Services.

The data CD also includes monitoring data for some of the wells that were installed for the ongoing investigation of volatile organic compounds (VOCs) in the bedrock aquifer. Investigation wells that have been assigned Wisconsin Department of Natural Resources (WDNR) IDs are included on the data CD, including bedrock monitoring wells P-401D, P-402E, and P-423D, and deep unconsolidated aquifer monitoring wells MW-1B and P-422B. These wells are not part of the routine LGRL monitoring program. Additional investigation wells P-424D, P-424SS, P-426D, and P-429SS have not been assigned WDNR IDs and are not included on the data CD. Results for all groundwater monitoring associated with the VOC investigation will be provided to the WDNR in the annual report for the investigation.

This letter provides a preliminary analysis of the cause and significance of the NR 140 groundwater standard exceedances for monitoring data included in the data CD. An explanation of any deviations from the approved sampling plan is also included in the Monitoring Program Comments section of this letter.

NR 140 EXCEEDANCES

NR 140 standard exceedances for the October 2022 sampling round are listed in the attached NR 140 Exceedance Summary table. The following discussion addresses the NR 140 enforcement standard (ES) and preventive action limit (PAL) exceedances for this event.

Public Health Parameters

Arsenic was reported at concentrations less than the ES, but at or above the PAL of 1 microgram per liter (μ g/L), in samples from the following wells: MW-1AR, MW-1RR, MW-7R, MW-8R, MW-203A, MW-210, MW-210A, MW-214A, W-3AR, W-3R, W-163, and W-163A. Arsenic concentrations within this range have been detected in samples collected from many wells around the former LGRL site and the adjacent Glacier Ridge Landfill, and are likely attributable to naturally occurring arsenic.

VOCs including benzene, cis-1,2 dichloroethene (DCE) and vinyl chloride were detected at concentrations exceeding the PAL or ES, and the Limit of Quantitation (LOQ), in samples collected from the following wells: MW-1AR, MW-1B, MW-210A, MW-210B, MW-214A, P-402E, P-423D, W-3AR, and W-3R. The specific VOCs exceeding the PAL or ES at each well are shown in the attached NR 140 Exceedance Summary (**Table 1**). All of these wells are located downgradient from the former LGRL site, and the VOCs are likely due to LGRL.

In addition to the NR 140 standard exceedances described above, there were some arsenic and VOC results reported at estimated concentrations above the PAL or ES, but below the LOQ ("J" flag). These results are not considered PAL or ES exceedances without additional confirmation in accordance with NR 140.14(3). VOCs reported at concentrations above the PAL, but below the LOQ, included tetrahydrofuran, trichloroethylene, and/or vinyl chloride in samples from the following wells: MW-1RR, MW-210, P-423D, and W-3AR. These wells are located adjacent to or downgradient from the former LGRL site, and the VOCs are likely due to LGRL. Arsenic was detected in the sample from MW-214 at an estimated concentration equal to the PAL but below the LOQ. This arsenic concentration is likely due to natural background.

The PAL and ES exceedances and reported concentrations for VOCs were generally consistent with previous results. The vinyl chloride concentration for MW-1B, screened near the bottom of the unconsolidated aquifer, continued a gradual increasing trend, but the current vinyl chloride concentration for MW-1B (9.4 μ g/L) is still much lower than the current and historical vinyl chloride concentrations in the adjacent mid-depth piezometer MW-1AR.

Public Welfare Parameters

Chloride was reported above the NR 140 ES of 250 μ g/L in the sample from MW-1AR. Chloride was reported above the PAL of 125 mg/L in the samples from MW-1B, MW-1RR, MW-210A, MW-214A, and W-3AR. These wells are located downgradient of LGRL, and the chloride detections may be associated with LGRL.

MONITORING PROGRAM COMMENTS

The October 2022 monitoring event was completed in accordance with the approved monitoring program.

GEMS Data Submittal Contact December 30, 2022 Page 3

If you have any questions regarding this submittal, please call Sherren Clark at 608.216.7323.

Sincerely,

Sherren Clark, PE, PG Project Director

SCS Engineers

Eric Oelkers, PG

Senior Project Manager

SCS Engineers

SCC/AJR/EO

cc: Lonn Walter, Glacier Ridge Landfill (2 copies of letter, 1 CD)

cc via email: Mark Peters, WDNR

Jacob Margelofsky, Glacier Ridge Landfill

Kari Rabideau, GFL Tim Curry, GFL

Frank Perugini, Environmental Sampling Corp.

Encl. Table 1 - NR 140 Exceedance Summary

Groundwater Monitoring Data Certification Form

GEMS Data CD

I:\25222008.00\Deliverables\2022_GEMS_Oct\221230_LGRL_October 2022 GEMS Letter.docx

Table 1

NR 140 Exceedance Summary

Site ID: 1118

Site Name: Land and Gas Reclamation Landfill

Reporting Period: October 2022

Note: Includes NR 140 exceedances for wells in the LGRL monitoring plan approved by the WDNR Solid Waste program and additional wells in the off-site monitoring plan that have been assigned WDNR IDs.

Groundwater Results Exceeding NR 140 Standards

Well	Parameter	Result *	PAL	ES	Exceedance Type
MW-001AR	Arsenic, dissolved (ug/l As)	3.4/3.6	1	10	PAL
	Chloride, dissolved (mg/l as Cl)	570/562	125	250	ES
	cis-1,2-Dichloroethene (ug/l)	778/852	7	70	ES
	Vinyl chloride (ug/l)	1750/1770	0.02	0.2	ES
MW-001B	Chloride, dissolved (mg/l as Cl)	150	125	250	PAL
	Vinyl chloride (ug/l)	9.4	0.02	0.2	ES
MW-001RR	Arsenic, dissolved (ug/l As)	6.2	1	10	PAL
	Chloride, dissolved (mg/l as Cl)	131	125	250	PAL
MW-007R	Arsenic, dissolved (ug/l As)	1.3/1.3	1	10	PAL
MW-008R	Arsenic, dissolved (ug/l As)	2.8	1	10	PAL
MW-203A	Arsenic, dissolved (ug/l As)	7.2	1	10	PAL
MW-210	Arsenic, dissolved (ug/l As)	2.4	1	10	PAL
MW-210A	Arsenic, dissolved (ug/l As)	5.9	1	10	PAL
	Chloride, dissolved (mg/l as Cl)	126	125	250	PAL
	cis-1,2-Dichloroethene (ug/l)	119	7	70	ES
	Vinyl chloride (ug/l)	74	0.02	0.2	ES
MW-210B	Vinyl chloride (ug/l)	5.5	0.02	0.2	ES

Table 1

NR 140 Exceedance Summary

Site ID: 1118

Site Name: Land and Gas Reclamation Landfill

Reporting Period: October 2022

Note: Includes NR 140 exceedances for wells in the LGRL monitoring plan approved by the WDNR Solid Waste program and additional wells in the off-site monitoring plan that have been assigned WDNR IDs.

Groundwater Results Exceeding NR 140 Standards

Well	Parameter	Result *	PAL	ES	Exceedance Type
MW-214A	Arsenic, dissolved (ug/l As)	1.2	1	10	PAL
	Chloride, dissolved (mg/l as Cl)	197	125	250	PAL
	Vinyl chloride (ug/l)	36.6	0.02	0.2	ES
P-402E	cis-1,2-Dichloroethene (ug/l)	186	7	70	ES
	Vinyl chloride (ug/l)	30.3	0.02	0.2	ES
P-423D	cis-1,2-Dichloroethene (ug/l)	52.6	7	70	PAL
	Vinyl chloride (ug/l)	2.6	0.02	0.2	ES
W-003AR	Arsenic, dissolved (ug/l As)	5.4	1	10	PAL
	Benzene (ug/l)	1.4	0.5	5	PAL
	Chloride, dissolved (mg/l as Cl)	213	125	250	PAL
	cis-1,2-Dichloroethene (ug/l)	22.8	7	70	PAL
	Vinyl chloride (ug/l)	11.7	0.02	0.2	ES
W-003R	Arsenic, dissolved (ug/l As)	1.2/1.3	1	10	PAL
	Vinyl chloride (ug/l)	8.2/8.0	0.02	0.2	ES

Table 1

NR 140 Exceedance Summary

Site ID: 1118

Site Name: Land and Gas Reclamation Landfill

Reporting Period: October 2022

Note: Includes NR 140 exceedances for wells in the LGRL monitoring plan approved by the WDNR Solid Waste program and additional wells in the off-site monitoring plan that have been assigned WDNR IDs.

Groundwater Results Exceeding NR 140 Standards

Well	Parameter	Result *	PAL	ES	Exceedance Type
W-163	Arsenic, dissolved (ug/l As)	2.5	1	10	PAL
W-163A	Arsenic, dissolved (ug/l As)	2.7	1	10	PAL

Groundwater Results with Estimated Concentration Above an NR 140 PAL or ES and Below the LOQ

Note: If both the result and the PAL or ES are above the limit of detection but below the limit of quantitation, the result is not considered a PAL or ES exceedance under NR 140.14(3)(c). If the PAL or ES is below the limit of detection and the result is below the limit of quantitation, the result is not considered a PAL or ES exceedance without additional confirmation as described in NR 140.14(3)(b).

Well	Parameter	Result	LOD/LOQ	PAL	ES
MW-001RR	Vinyl chloride (ug/l)	0.29 J	0.17/1	0.02	0.2
MW-210	Vinyl chloride (ug/l)	0.26 J	0.17/1	0.02	0.2
MW-214	Arsenic, dissolved (ug/l As)	1 J	0.28/1	1	10
P-423D	Trichloroethylene (ug/l)	0.77 J	0.32/1	0.5	5
W-003AR	Tetrahydrofuran (ug/l)	12.2 J	2.4/25	10	50

Notes:

Prepared by: AJR, 12/22/2022

PAL = Preventive Action Limit

Checked by: SCC, 12/27/2022

ES = Enforcement Standard

LOQ = Limit of Quantitation

J = Result is an estimated value below the laboratory's limit of quantitation.

* = Two results indicate duplicate samples. Only results exceeding the PAL are shown.

ug/l = micrograms per liter

mg/l = milligrams per liter

Save... Print... Clear Data

State of Wisconsin Department of Natural Resources dnr.wi.gov

Environmental Monitoring Data Certification

Form 4400-231 (R 5/17)

Notice: Personally identifiable information collected will be used for program administration and enforcement purposes. The Department may also provide this information to requesters as required under Wisconsin's Open Records law, ss. 19.31 to 19.39, Wis. Stats. When submitting monitoring data, the owner or operator of the facility, practice or activity is required to notify the Department in writing that a groundwater standard or an explosive gas level has been attained or exceeded, as specified in ss. NR 140.24(1)(a); NR 140.26(1)(a); NR 507.30NR 635.14(9)(a); NR 635.18(20) and NR 507.30, Wis. Adm. Code. Failure to report may result in fines, forfeitures or other penalties resulting from enforcement under ss. 289.97, 291.97 or 299.95, Wis. Stats

Instructions:

- Prepare one form for each license or monitoring ID.
- Please type or print legibly.
- Attach a notification of any values that attain or exceed groundwater standards (that is, preventive action limits, enforcement standards or alternative
 concentration limits). The notification must include a preliminary analysis of the cause and significance of each value.
- Attach a notification of any gas values that attain or exceed explosive gas levels.
- Send the original signed form, any notification, and Electronic Data Deliverable [EDD] to:

GEMS Data Submittal Contact - WA/5 Wisconsin Department of Natural Resources P.O. Box 7921

	Madison, WI 5	53707-7921
Monitoring Data Submittal Information	<u></u>	
Name of entity submitting data (laboratory, consul	tant, facility owner)	
SCS Engineers		
Contact for questions about data formatting. Include		
Name		Phone No. (include area code)
Ashley Radunzel		(608) 224-2830
Email		
aradunzel@scsengineers.com		
Facility Name		
Land & Gas Reclamation Landfill		
License # / Monitoring ID 1118	Facility ID (FID) 114052290	
Actual sampling dates (e.g., July 2-6, 2003)	The enclosed results are for sampling required in	n the menth(s) of: (e.g., lune 2003)
October 3, 5-7, 28, & 31, 2022	October 2022	The monunts) on the monunity of the monunity
Type of Data Submitted (Check all that apply):	October 2022	
Groundwater monitoring data from monitoring	wells Gas monitoring data	
Groundwater monitoring data from private water		**** ,
Leachate monitoring data	∑ Other (specify): Surface	e Water
Notification attached?		
☐ No. No groundwater standards or explosive ga	s limits were exceeded.	
Yes, a notification of values exceeding a groun values, groundwater standard and preliminary	ndwater standard is attached. It includes a list of manalysis of the cause and significance of any con-	nonitoring points, dates, sample centration.
Yes, a notification of values exceeding an expland explosive gas limits.	osive gas limit is attached. It includes the monitor	ing points, dates, sample values
Certification		
To the best of my knowledge, the information repo correct. Furthermore, I have attached complete no explosive gas levels, and a preliminary analysis of	otification of any sampling values meeting or exceed	eding groundwater standards or eeding groundwater standards.
Facility Representative Name (Print)	Title	Phone No. (include area code)
Sherren Clark, SCS Engineers	Project Manager	(608) 216-7323
52/12	12/27/2022	
Signature	Date Signed (mm/dd/yyyy)	
	For DNR Use Only	
Check action taken, and record date and your initials. D	escribe on back side if necessary.	
Found uploading problems on	Initials	
Notified contact of problems on	Uploaded data successfully on	
EDD format(s): Diskette CD (initial submitt	tal and follow-up)	Other:

Attachment A-2

Historic VOC Monitoring Results and Concentrations vs. Time Plots

(concentrations in ug/L)

	MW-1F	RR		MW-1 AR					
Date	cis-1,2-DCE	TCE	vc	Date	cis-1,2-DCE	TCE	vc		
NR 140 ES	70	5	0.2	NR 140 ES	70	5	0.2		
11/21/1991		1,900	2,900	11/19/1991		130	3,000		
5/29/1992		2,800	4,300	5/29/1992		100	2,800		
6/17/1993		580	1,800	6/17/1993		30	2,200		
6/21/1994		10.7	198	6/21/1994		24.9	1,160		
4/14/1995	1,500	2,000	3,800	4/14/1995	<i>7</i> ,100	200	2,900		
10/4/1995	6,400	620	3,400	10/4/1995	6,100	180	2,800		
4/4/1996	1,900	130	1,300	4/4/1996	6,600	150	2,600		
10/12/1996	16,000	1,600	3,600	10/12/1996	8,500	200	2,300		
4/10/1997	3,800	80	3,100	4/10/1997	6,000	86	2,400		
10/3/1997	2,500	190	1,600	10/3/1997	6,300	0	2,700		
4/10/1998	2,800	120	2,300	4/10/1998	7,200	150	2,500		
10/14/1998	11,000	820	3,100	10/15/1998	6,500	95	1,900		
4/6/1999	2,100	0	2,300	4/6/1999	5,500	0	2,300		
10/7/1999	13,000	6,800	3,400	10/8/1999	6,100	0	2,000		
4/3/2000	2,400	77	1,500	4/3/2000	5,700	54	2,200		
10/4/2000	4,600	0	1,210	10/5/2000	4,920	0	1,190		
4/4/2001	2,260	0	1,240	4/4/2001	5,040	0	1,300		
10/3/2001	6,090	411	2,300	10/3/2001	4,910	0	2,000		
4/3/2002	4,890	274	535	4/3/2002	5,320	0	795		
10/1/2002	4,800	525	1,180	10/1/2002	5,660	0	1,220		
4/2/2003	1,260	29.2	593	4/2/2003	4,860	17	1,100		
10/9/2003	2,020	0	700	10/9/2003	4,470	0	1,200		
4/5/2004	1,220	26.7	1,220	4/5/2004	4,130	16.8	1,550		
10/4/2004	4,590	440	2,060	10/4/2004	3,950	0	1,800		
4/1/2005	2,510	0	736	4/1/2005	3,990	0	882		
10/1/2005	5,130	351	1,150	10/1/2005	4,420	0	951		
4/6/2006	2,680	0	785	4/6/2006	3,820	0	659		
10/5/2006	4,340	295	1,160	10/5/2006	3,590	0	1,020		
4/5/2007	708	0	360	4/5/2007	2,020	0	887		
10/22/2007	605	8.46	351	10/22/2007	2,280	<20	1,060		
4/10/2008	265	1.92	207	4/10/2008	590	0.51	196		
10/9/2008	199	<4	221	10/9/2008	2,020	<40	1,070		
4/8/2009	145	<4.0	245	4/8/2009	2,260	<4.0	1,780		
10/6/2009	90.2	<4	232	10/6/2009	1,610	<40	1,520		
4/6/10	77.5	<4	152	4/6/10 (1)	24,000	<4.0	17,500		
10/26/10	94.4	1.41	190	10/26/10	2,370	1.49	1,630		
4/7/11	63.6	<4	137	4/7/11	1,700	<40	1,170		
10/5/11	90.3	<4	168	10/5/11	1,400	<40	1,110		
4/12/12	62.7	<4	136	4/12/12	2,090	<4	1,620		

4/10/2023 Page 1 of 8

(concentrations in ug/L)

	MW-11	RR			MW-1	AR	
Date	cis-1,2-DCE	TCE	vc	Date	cis-1,2-DCE	TCE	VC
NR 140 ES	70	5	0.2	NR 140 ES	70	5	0.2
10/2/12	49.9	0.68	107	10/2/12	2,090	<4.8	1,390
4/1/13	23.1	0.58	<i>75</i> .1	4/1/13	1,940	<12	1,310
10/3/13	29.5	0.65	85.7	10/1/13	1,620	<3.6	1,580
4/2/14	13.1	0.37	63.7	4/2/14	1,610	<3.3	1,630
10/6/14	8.4	< 0.33	35.9	10/6/14	1,720	<6.6	1,400
4/16/15	14.4	0.53	56.6	4/16/15	1,450	<3.3	1,190
10/7/15	3.9	< 0.33	18.3	10/8/15	808	<3.3	1,050
4/6/16	2.4	< 0.33	11.6	4/6/16	1,240	<3.3	1,960
10/5/16	4.8	< 0.33	24	10/5/16	1,050	<3.3	1,980
4/6/17	1.3	< 0.33	5.2	4/6/17	1,140	<3.3	1,540
10/5/17	<0.26	< 0.33	2.5	10/5/17	1,030	<3.3	1,480
4/5/18	1.4	< 0.50	6.9	4/5/18	1,060	<3.3	1,600
10/3/18	1.4	<0.26	5.2	10/3/18	1,050	<2.6	1,670
4/3/19	0.94	<5.1	5.8	4/3/19	808	< 0.33	1,500
10/10/19	0.93	< 0.26	4.5	10/10/19	524	<1.3	1,280
4/23/20	<0.27	<0.26	0.68	4/23/20	673	0.32	1,630
10/7/20	18.5	<0.26	75.9	10/7/20	701	<5.1	1,000
4/8/21	<0.47	<0.47	0.99	4/8/21	926	<4.1	1,780
10/7/21	<0.47	<0.41	1.7	10/7/21	690	<8.2	1,250
4/6/22	< 0.47	<0.32	<0.17	4/6/22	495	<6.4	957
10/6/22	<0.47	<0.32	0.29	10/5/22	<i>7</i> 78	<6.4	1750

4/10/2023 Page 2 of 8

(concentrations in ug/L)

	W-3R				W-3A	R	
Date	cis-1,2-DCE	TCE	vc	Date	cis-1,2-DCE	TCE	vc
NR 140 ES	70	5	0.2	NR 140 ES	70	5	0.2
11/13/1991		0	0	11/14/1991		5	770
5/29/1992		0	0	5/29/1992		78	1,000
6/17/1993		0	0.5	6/17/1993		57	1,300
6/21/1994		0	0	6/21/1994		12	720
4/14/1995	0	0	2.2	4/14/1995	1,200	6.6	110
10/4/1995	0	0	1.2	10/4/1995	1,200	12	1,400
4/4/1996	0	0	0	4/4/1996	1,000	0	550
10/12/1996	0	0	4	10/12/1996	1,800	13	1,100
4/10/1997	0	0	0.56	4/10/1997	1,100	0	740
10/3/1997	0	0	1.5	10/3/1997	1,200	0	780
4/7/1998	0.44	0	0.89	4/7/1998	1,000	0	720
10/14/1998	0	0	6.4	10/14/1998	1,200	0	660
4/6/1999	0.3	0	0.65	4/6/1999	900	0	710
10/6/1999	0.27	0	2.9	10/7/1999	1,200	0	650
4/3/2000	0.29	0	0.17	4/3/2000	1,000	0	890
10/3/2000	0	0	0.133	10/3/2000	1,100	0	404
4/3/2001	0	0	0	4/3/2001	1,050	0	554
10/2/2001	0	0	2.74	10/2/2001	1,130	0	901
4/4/2002	0	0	0	4/4/2002	1,150	0	375
10/1/2002	0	0	14.1	10/1/2002	1,230	0	446
4/1/2003	0	0	0.703	4/1/2003	674	0	601
10/8/2003	0	0	1.98	10/8/2003	712	0	407
4/7/2004	0	0	0	4/7/2004	753	0	519
10/4/2004	0	0	0	10/4/2004	685	0	626
4/1/2005	0	0	0	4/1/2005	567	0	265
10/1/2005	0	0	0	10/1/2005	628	0	258
4/6/2006	0	0	0	4/6/2006	700	1.15	352
10/5/2006	0	0	0	10/4/2006	450	0	279
4/4/2007	0	0	0	4/4/2007	418	0	402
10/22/2007	<0.2	<0.2	3.20	10/22/2007	421	<2	410
4/11/2008	<0.3	<0.4	14.30	4/11/2008	476	<4	382
10/9/2008	<0.3	<0.4	5.32	10/9/2008	322	<4	281
4/7/2009	<0.3	<0.4	2.48	4/7/2009	351	0.8	357
10/7/2009	<0.4	<0.4	<0.2	10/7/2009	339	<4.0	358
4/7/10	<0.4	<0.4	0.95	4/7/10	339	<4	334
10/27/10	<0.4	<0.4	2.46	10/27/10	257	<4	194
4/6/11	<0.4	<0.4	3.14	4/6/11	201	0.51	256
10/5/11	<0.4	<0.4	1.45	10/5/11	170	<4	181
4/11/12	<0.4	<0.4	3.18	4/11/12	190	0.51	205

4/10/2023 Page 3 of 8

(concentrations in ug/L)

	W-3R	2			W-3A	R	
Date	cis-1,2-DCE	TCE	VC	Date	cis-1,2-DCE	TCE	vc
NR 140 ES	70	5	0.2	NR 140 ES	70	5	0.2
10/2/12	<0.83	<0.48	18.50	10/2/12	183	0.55	190
4/1/13	<0.83	<0.48	2.90	4/4/13	164	<0.48	146
10/3/13	<0.42	< 0.36	3.40	10/3/13	87.8	< 0.33	99.3
1/9/14	<0.42	< 0.36	3.70	1/9/14	146	< 0.36	211
4/2/14	0.26	< 0.33	2.00	4/2/14	145	0.39	1 <i>75</i>
10/7/14	0.35	< 0.33	4.00	10/7/14	145	< 0.33	196
4/17/15	<0.26	< 0.33	1.50	4/17/15	111	< 0.33	112
10/7/15	0.27	< 0.33	1.70	10/7/15	110	< 0.33	118
4/6/16	<0.26	< 0.33	<0.18	4/6/16	121	< 0.33	129
10/6/16	0.39	< 0.33	2.5	10/6/16	125	0.5	178
4/5/17	<0.26	< 0.33	5.10	4/5/17	92.6	< 0.33	78.4
10/3/17	<0.26	< 0.33	12.90	10/3/17	53.5	< 0.33	47.7
4/5/18	<0.26	< 0.33	5.60	4/5/18	88.9	<0.66	63.3
10/4/18	<0.27	<0.26	6.40	10/4/18	74.5	0.36	60.7
4/5/19	<0.27	<0.26	20.3	4/5/19	42.1	0.27	23.1
10/10/19	<0.27	<0.26	30.7	10/10/19	55.6	0.31	34.6
4/20/20	<0.27	<0.26	42.40	4/20/20	37.6	0.35	18.4
10/2/20	<0.27	<0.26	27.10	10/2/20	38.2	<0.26	18.8
4/6/21	<0.47	<0.41	28.40	4/6/21	32.4	<0.41	15.3
10/7/21	<0.47	<0.41	19.30	10/7/21	28.4	<0.41	15.3
4/4/22	< 0.47	<0.32	6.8	4/4/22	24.1	< 0.32	13
10/28/22	<0.47	<0.32	8.2	10/28/22	22.8	<0.32	11. <i>7</i>

4/10/2023 Page 4 of 8

(concentrations in ug/L)

	MW-21	0			MW-210	A			MW-210	OB	
Date	cis-1,2- DCE	TCE	vc	Date	cis-1,2- DCE	TCE	vc	Date	cis-1,2- DCE	TCE	vc
NR 140 ES	70	5	0.2	NR 140 ES	70	5	0.2	NR 140 ES	70	5	0.2
12/6/1991		0	0	12/6/1991		0	180	12/6/1991		0	0
5/28/1992		0	0	5/28/1992		0	200	5/27/1992		0	0
				6/17/1993		7	370				
7/6/1994		0	28.3	7/6/1994		8.6	220	7/6/1994		0	0
4/14/1995	41	0	27	4/14/1995	1,400	13	350	4/14/1995	0	0	0
10/4/1995	26	0	22	10/4/1995	1,600	20	600	10/4/1995	0	0	0
4/4/1996	32	0	27	4/4/1996	1,900	35	450	4/4/1996	0	0	0
10/12/1996	12	0	7.9	10/12/1996	2,300	47	670	10/12/1996	0	0	0
4/10/1997	13	0	20	4/10/1997	1,900	38	420	4/10/1997	0	0	0
10/3/1997	10	0	23	10/3/1997	1,700	66	480	10/3/1997	0	0	0
4/7/1998	6.5	0	14	4/7/1998	1,600	57	540	4/7/1998	0	0	0
10/15/1998	46	0	44	10/15/1998	1,600	47	510	10/15/1998	0	0	no data
4/6/1999	7.3	0	10	4/6/1999	1,200	40	500	4/6/1999	0	0	0
10/11/1999	98	0	240	10/11/1999	800	40	440	10/11/1999	0	0	0
4/4/2000	2.9	0	6.3	4/4/2000	820	32	440	4/4/2000	0	0	0
10/5/2000	1.61	0	5.3	10/5/2000	372	0	1 <i>57</i>	10/5/2000	0	0	0
4/5/2001	1.12	0	2.47	4/5/2001	421	0	214	4/5/2001	0	0	0
10/3/2001	1.21	0	13.2	10/3/2001	520	55.9	425	10/3/2001	0	0	0
4/4/2002	0.384	0	3.22	4/4/2002	730	0	206	4/4/2002	0	0	0
10/3/2002	1.59	0	12.8	10/3/2002	940	0	327	10/3/2002	0	0	0
4/2/2003	0	0	0.386	4/2/2003	401	0	233	4/2/2003	0	0	0.591
10/8/2003	0	0	1.02	10/8/2003	293	10	29.2	10/8/2003	0	0	0.274
4/7/2004	0	0	0.383	4/7/2004	272	0	76.3	4/7/2004	0	0	0.891
10/5/2004	0	0	1.46	10/5/2004	230	7.38	45.6	10/5/2004	0	0	1.15
4/1/2005	0	0	0	4/1/2005	220	0	52.7	4/1/2005	0	0	0.549
10/1/2005	0	0	0	10/1/2005	220	0	29.5	10/1/2005	0	0	0.706
5/6/2006	0.82	0	0	5/6/2006	252	7.32	109	5/6/2006	0	0	1.13
10/4/2006	0.49	0	0.45	10/4/2006	184	5.62	45.2	10/4/2006	0	0	1.65
5/30/2007	0.28	0	0.23	5/30/2007	198	5.66	33.7	5/30/2007	0	0	1.42
10/25/2007	0.23	<0.2	< 0.2	10/25/2007	251	5.71	73.2	10/25/2007	<2	<2	<2
5/27/2008	<0.3	<0.4	<0.2	5/27/2008	237	8.1	74.1	5/27/2008	0.51	<0.4	<0.2
10/9/2008	0.41	<0.4	<0.2	10/9/2008	325	7.72	124	10/9/2008	<0.3	<0.4	2.26
10/7/2009	0.63	<0.4	0.65	10/7/2009	284	5.3	125	10/7/2009	<0.4	<0.4	2.72
4/7/10	0.56	<0.4	0.43	4/7/10	222	4.66	111	4/7/10	<0.4	<0.4	2.64
11/29/10	0.64	<0.4	<0.2	11/29/10	192	<4	87.6	11/29/10	<0.4	<0.4	2.5
4/8/11	0.66	<0.4	0.46	4/8/11	163	<4	94.7	4/8/11	<0.4	<0.4	2.76
10/6/11	0.64	<0.4	0.48	10/6/11	177	<4	120	10/6/11	<0.4	<0.4	2.52
4/11/12	0.66	<0.4	0.54	4/11/12	164	3.54	74.3	4/11/12	<0.4	<0.4	2.5

(concentrations in ug/L)

	MW-21	0			MW-210	A			MW-210	OB .	
Date	cis-1,2- DCE	TCE	vc	Date	cis-1,2- DCE	TCE	vc	Date	cis-1,2- DCE	TCE	vc
NR 140 ES	70	5	0.2	NR 140 ES	70	5	0.2	NR 140 ES	70	5	0.2
10/1/12	< 0.83	<0.48	1.1	10/1/12	182	3.8	28.3	10/1/12	< 0.83	<0.48	2.2
4/2/13	<0.83	<0.48	0.21	4/2/13	169	2.6	102	4/2/13	<0.2	<0.48	3.5
10/2/13	<0.42	< 0.36	0.19	10/2/13	221	2.2	97.4	10/2/13	<0.29	< 0.36	3.4
5/20/14	0.32	< 0.33	<0.18	5/20/14	215	2.1	95.3	5/20/14	<0.26	< 0.33	3.6
10/8/14	0.43	< 0.33	<0.18	10/8/14	235	2.3	103	10/8/14	<0.26	< 0.33	3.2
4/16/15	<0.50	< 0.33	<0.18	4/16/15	296	1.7	149	4/16/15	<0.26	< 0.33	4.1
10/9/15	<0.26	< 0.33	<0.18	10/9/15	332	1.5	124	10/9/15	< 0.26	< 0.33	3.3
4/7/16	0.36	< 0.33	0.19	4/7/16	360	1.9	104	4/7/16	<0.26	< 0.33	3.6
10/6/16	0.44	< 0.33	0.23	10/6/16	542	2.4	85.5	10/6/16	< 0.26	< 0.33	4.4
4/5/17	<0.26	< 0.33	<0.18	4/5/17	461	2	71.7	4/5/17	<0.26	< 0.33	3.7
10/6/17	0.32	< 0.33	0.2	10/6/17	440	2.3	64.7	10/6/17	<0.26	< 0.33	3.4
4/5/18	0.39	< 0.33	<0.18	4/5/18	330	1.9	86	4/5/18	<0.26	< 0.33	4.3
7/26/19	0.45	<0.26	<0.17	7/26/19	239	1.5	42.2	7/26/19	<0.27	<0.26	3.9
7/31/20	0.3	<0.26	0.34	7/31/20	137	1.1	44.9	7/31/20	< 0.27	<0.26	4.5
10/2/20	0.39	<0.26	0.43	10/2/20	90.3	<0.64	110	10/2/20	<0.27	<0.26	4
4/7/21	<0.27	< 0.33	0.18	4/7/21	109	<0.82	37.4	4/7/21	<0.27	< 0.33	4.3
10/8/21	<0.47	<0.41	0.52	10/8/21	102	<0.41	51.6	10/8/21	< 0.47	<0.41	4.8
4/7/22	<0.47	< 0.32	0.85	4/7/22	105	0.88	63.9	4/7/22	<0.47	< 0.32	7.5
10/28/22	<0.47	< 0.32	0.26	10/28/22	119	<0.8	74	10/28/22	<0.47	< 0.32	5.5

Note: Monitoring wells MW-210, MW-210A, and MW-210B could not be sampled in 10/18, 4/19, 10/19, or 4/20 due to standing water around the wells, but samples were collected during 7/19 and 7/20.

4/10/2023 Page 6 of 8

(concentrations in ug/L)

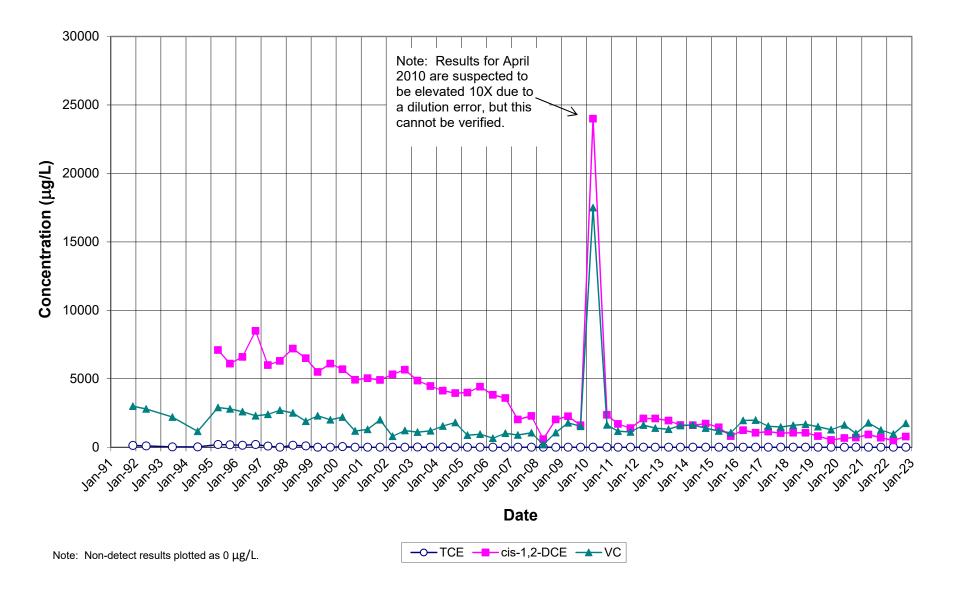
	MW-214				MW-214A					
Date	cis-1,2-DCE	TCE	vc	Date	cis-1,2-DCE	TCE	vc			
NR 140 ES	70	5	0.2	NR 140 ES	70	5	0.2			
6/9/1992		0	0	6/9/1992		0	0			
7///2004				7///2004			_			
7/6/1994 10/4/1995	0	0	0	7/6/1994 10/4/1995	0	0	0			
10/4/1995	0	<u> </u>	U	10/4/1993	U	U	U			
4/4/1996	0	0	0	4/4/1996	0	0	0			
10/12/1996	0	0	0	10/12/1996	0	0	0			
4/10/1997	0	0	0	4/10/1997	0	0	0			
4/7/1998	0	0	0	4/7/1998	0	0	0			
			•	. / / /		•				
4/6/1999	0	0	0	4/6/1999	0	0	0			
4/6/2000	0	0	0	4/6/2000	0	0	0			
4/0/2000	Ů	<u> </u>	J	4/0/2000	Ů	J	Ů			
10/4/2001	0	0	0	10/4/2001	0	0	0			
10/3/2002	0	0	0	10/3/2002	0	0	0			
/ - /	-			/ - /	-					
10/8/2003	0	0	0	10/8/2003	0	0	0.225			
10/6/2004	0	0	0	10/6/2004	0	0	0.912			
10/0/2004	J	<u> </u>	U	10/0/2004	U	0	0.712			
10/1/2005	0	0	0	10/1/2005	0	0	0.488			
				, ,						
10/5/2006	0	0	0	10/4/2006	0	0	1.67			
10/24/07 (2)	<0.2	<0.2	2.93	10/24/07 (2)	<0.2	<0.2	<0.2			
3/14/2008	<0.3	<0.4	<0.2	3/14/2008	<0.3	<0.4	4.74			
10/9/2008	<0.3	<0.3	<0.4	10/9/2008	<0.3	<0.4	6.54			
10/7/2009	<0.4	<0.4	<0.2	10/7/2009	<0.4	<0.4	15.1			
10/7/2009	~0.4	~U.4	<u> </u>	10/7/2009	<u>~0.4</u>	<u>~0.4</u>	13.1			
10/27/10	<0.4	<0.4	<0.2	10/27/10	<0.4	<0.4	16.9			
10/2//10	.0.4	-0.7	-0.2	10/2//10	-3.4	-0	10.7			
10/6/11	<0.4	<0.4	<0.2	10/3/11	<0.4	<0.4	23.4			
				, ,						

(concentrations in ug/L)

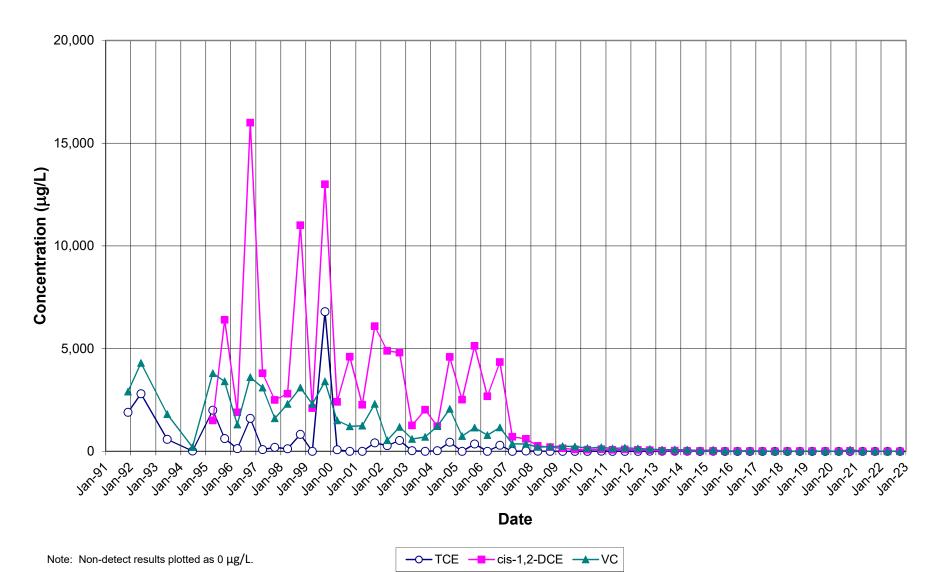
	MW-214				MW-2	214A	
Date	cis-1,2-DCE	TCE	vc	Date	cis-1,2-DCE	TCE	vc
NR 140 ES	70	5	0.2	NR 140 ES	70	5	0.2
10/1/12	<0.83	<0.48	<0.18	10/1/12	<0.83	<0.48	29.6
10/3/13	<0.42	<0.36	<0.18	10/1/13	<0.42	<0.36	19.3
10/7/14	<0.26	<0.33	<0.18	10/7/14	<0.26	<0.33	45.6
10/7/15	<0.26	<0.33	<0.18	10/7/15	<0.26	<0.33	37
10/6/16	<0.26	<0.33	<0.18	10/6/16	<0.26	<0.33	34.5
10/3/17	<0.26	<0.33	<0.18	10/3/17	<0.26	<0.33	41
10/4/18	<0.27	<0.26	<0.17	10/4/18	<0.27	<0.26	44.5
10/11/19	<0.27	<0.26	<0.17	10/11/19	<0.27	<0.26	39
10/7/20	<0.27	<0.26	<0.17	10/7/20	0.93	<0.26	40.6
10/7/21	<0.47	<0.41	<0.17	10/7/21	0.67	<0.41	46.9
10/28/22	<0.47	<0.32	<0.17	10/28/22	0.78	<0.32	36.6

Notes: (1) Results for MW-1AR for April 2010 are suspected to be elevated 10 times due to a dilution error, but this cannot be	verified
--	----------

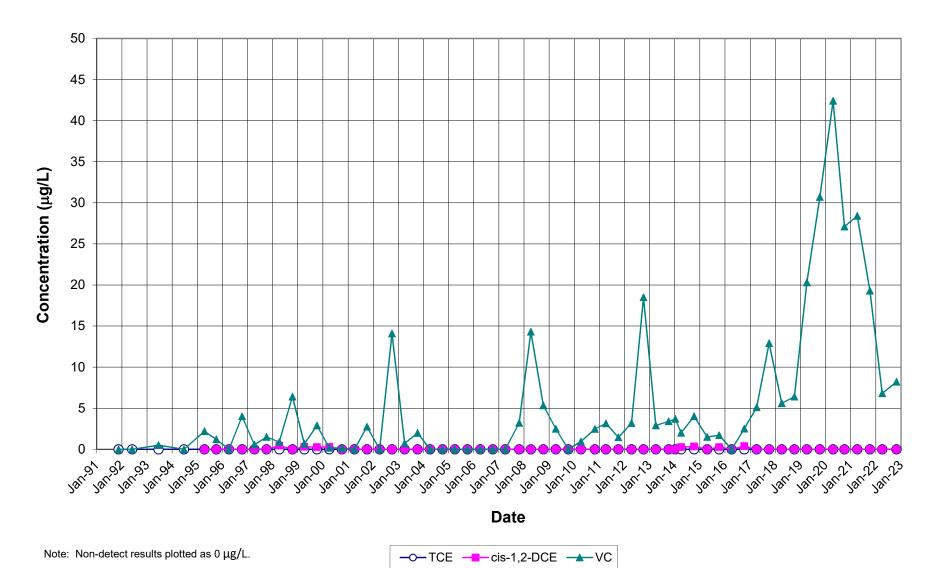
J = Estimated value below limit of quantitation	Shaded cell indicates well was not sampled on a date
·	when one or more other wells in the table was sampled

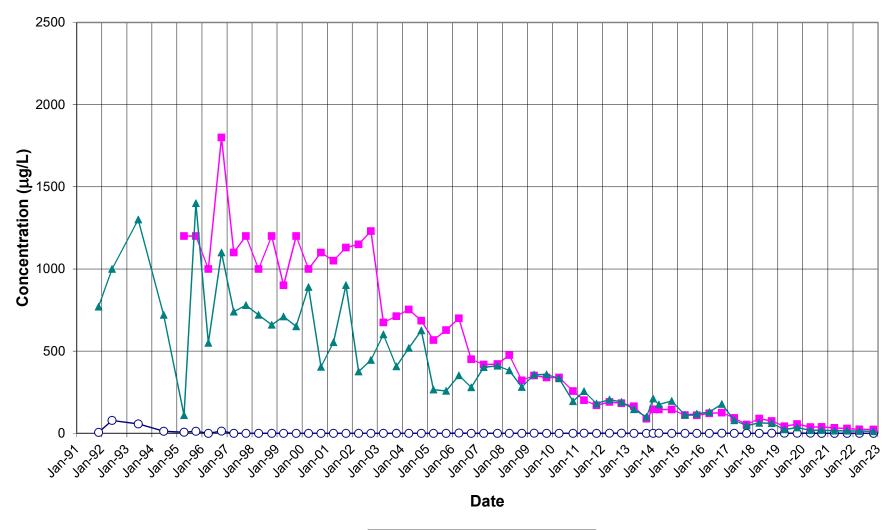

Updated for 2022 by: RM, 4/7/2023 Checked for 2022 by: EO,4/10/2023 Reviewed for 2022 by: SCC, 4/10/2023

4/10/2023 Page 8 of 8

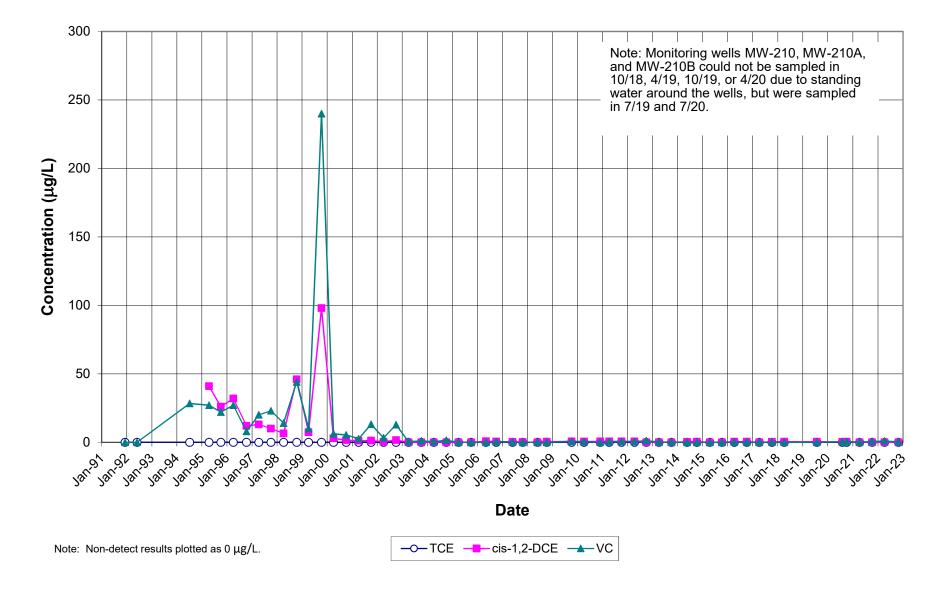

⁽²⁾ Based on sample results for MW-214 and MW-214A for October 2007, it appears that the sample vials were switched, but this cannot be confirmed.

l:\25223008.00\Deliverables\2022 Annual Graphs and WT Map\[LGRL VOC graphs 2022.xls]Data Table for Report

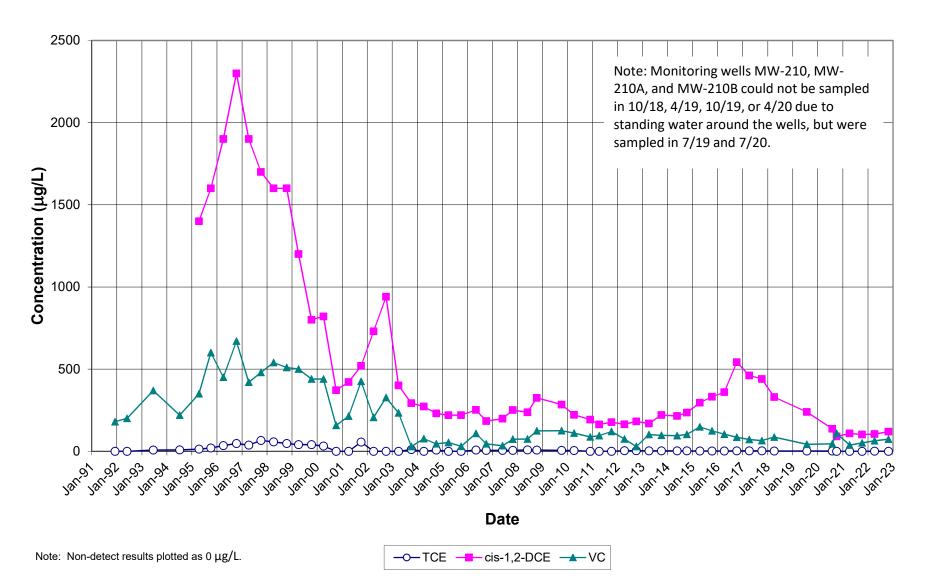

MW-1AR


MW-1RR

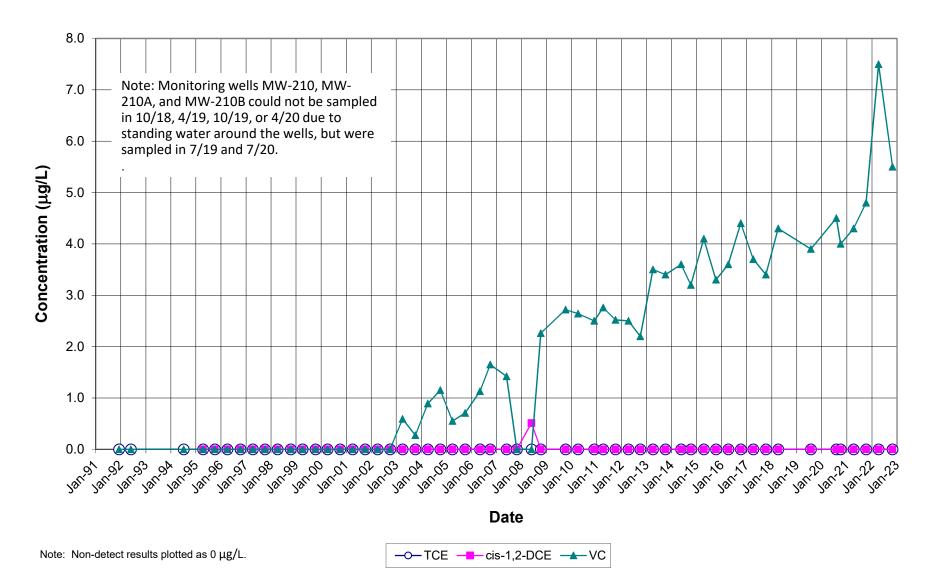
W-3R

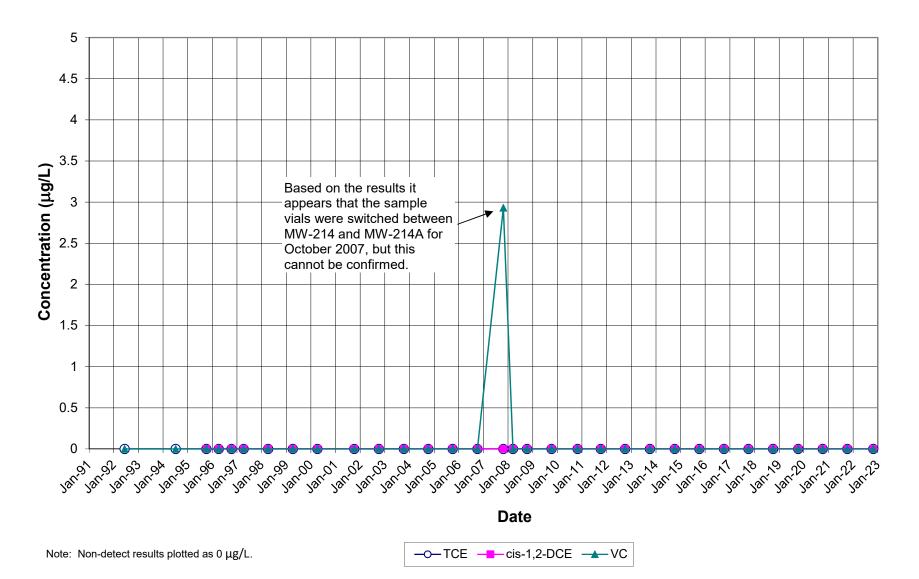


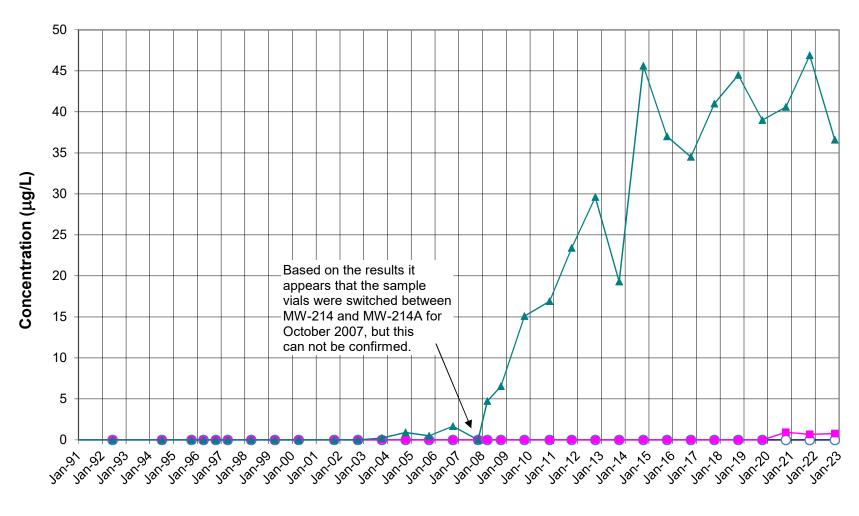
W-3AR



Note: Non-detect results plotted as 0 μg/L.


MW-210

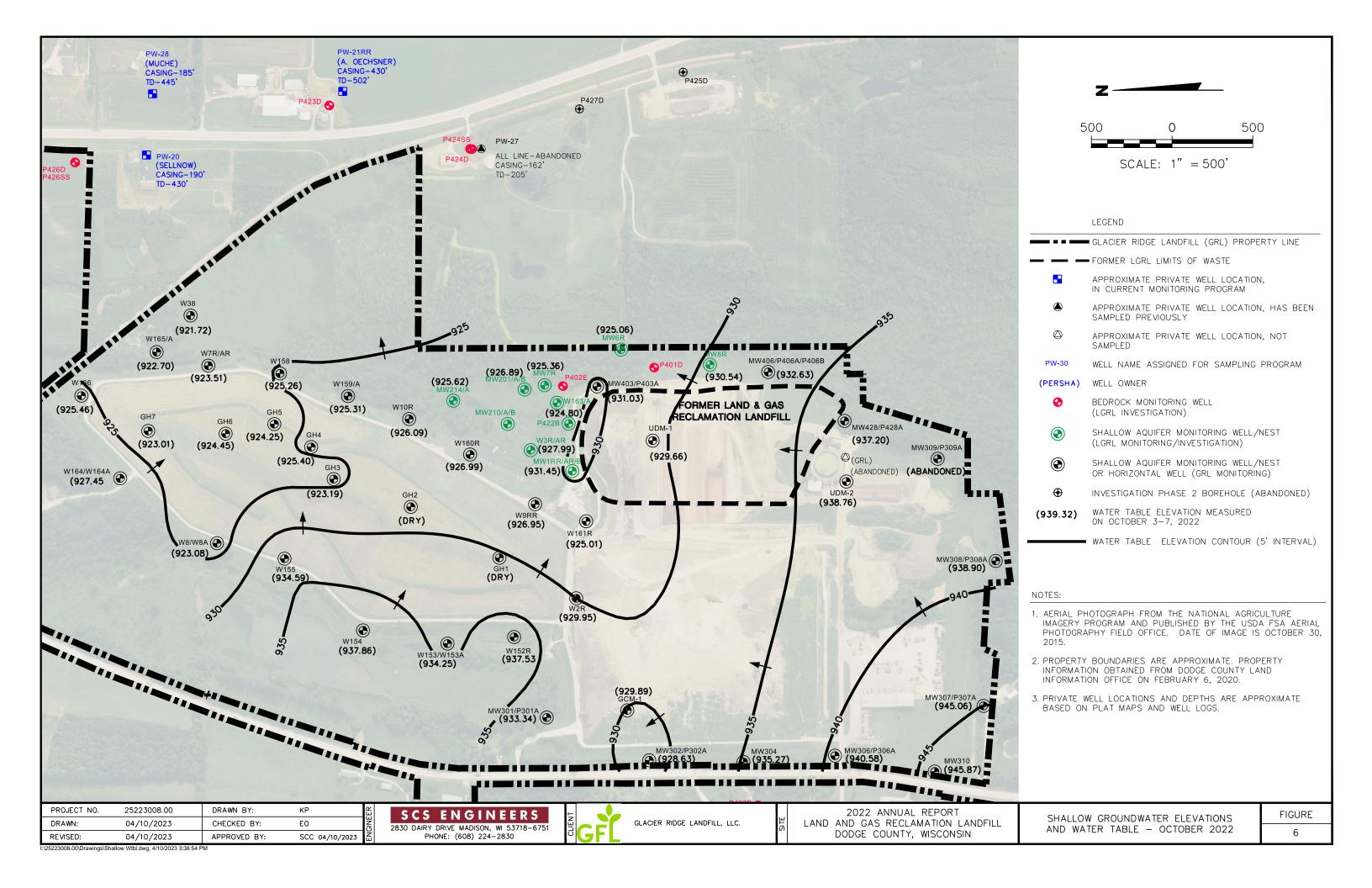

MW-210A


MW-210B

MW-214

MW-214A

Date


—O—TCE ——cis-1,2-DCE ——VC

Note: Non-detect results plotted as 0 µg/L.

APPENDIX A

Figure

Figure 1: Groundwater Table Map: October 2022

