

175 N. Corporate Drive Suite 100 Brookfield, WI 53045

www.geotransinc.com

262-792-1282 FAX 262-792-1310

PILOT TEST WORK PLAN LANDFILL GAS EXTRACTION SYSTEM FF/NN LANDFILL RIPON, WISCONSIN

March 23, 2005

Prepared for:

FF/NN Landfill Group

Prepared by:

GeoTrans, Inc. 175 N. Corporate Drive. Brookfield, Wisconsin 53045

Project No. 1011.002

Guald De Mus

Gerald L. DeMers, PE Senior Engineer, Associate

1	$\left(\left(\begin{array}{c} r \\ r \end{array} ight) ight)$		W I	
	MAR	29	2005	
	e Wast	URFAU E MANA	OF GF HICHT	-

TABLE OF CONTENTS

1.0	INTRODUC'	TION	1-1
	1.1	Background	1-1
	1.2	Pilot Test Objectives	1-1
	1.3	Estimated Landfill Gas Generation	1-2
2.0	PILOT TEST	WORK PLAN	2-1
	2.1	Equipment Specifications	2-1
	2.2	Pilot Test Preparation	2-1
	2.3	Pilot Test Operation	2-2
	2.4	Monitoring	2-3
		2.4.1 Extraction System Exhaust Discharge	2-3
		2.4.2 Vacuum Measurements	2-4
	2.5	Permitting and Waste Methane Handling	2-5
		2.5.1 Condensate Discharge	2-5
		2.5.2 Air Emissions	2-5
	2.6	Data Analysis and Report	2-6

3.0 SCHEDULE

3-1

Page

FIGURES

1.	Landfill	Gas	Vent	Locations
1.	TTHEFT AT THE	040		100000000000000000000000000000000000000

2. Gas Vent Details

TABLE OF CONTENTS (Cont'd)

APPENDICES

- A. Leachate Head Well Construction Logs
- B. Methane Generation Calculations
- C. Pilot Test Equipment
- D. Draeger Tube Information

1.0 INTRODUCTION

This work plan describes the methods and procedures for conducting a pilot test to evaluate the feasibility of active landfill gas extraction from the FF/NN Landfill in Ripon, Wisconsin.

1.1 Background

Methane gas concentrations have been measured at gas probes and monitor wells around the FF/NN Landfill, and methane exceeds 25% of its lower explosive limit at several locations outside of the limits of the landfill. In addition, vinyl chloride was detected in groundwater at the site, and recent analysis of landfill gas samples has indicated that vinyl chloride is present in some of the landfill gas samples. For these reasons, the Wisconsin Department of Natural Resources has asked the FF/NN Landfill PRP Group to consider the feasibility of active landfill gas extraction at the site.

A composite cap (clay and HDPE plastic membrane) was constructed on the landfill in 1996. A passive landfill gas system was constructed beneath the cap at that time. The passive gas system consists of piping within stone-filled trenches in a grid pattern across the surface of the landfill. Twelve vertical gas vents emit landfill gas from the trenches to the atmosphere; each of these vents is located at the intersection of collection piping. The layout of the passive gas system, as well as the location of gas probes and monitor wells near the site is provided on Figure 1. Construction details of the passive vents are provided on Figure 2. Construction logs for the leachate head wells are provided in Appendix A.

1.2 Pilot Test Objectives

The overall objective of the pilot test is to determine the feasibility of active methane extraction. The specific objectives of this pilot test are to determine whether: 1) the existing passive gas collection piping can be effectively used as an active gas extraction system; and 2) the leachate head wells either alone or in combination with the passive gas collection piping can function as an active gas extraction system. If active gas extraction from the passive vent system and the

leachate head wells is not sufficient, then extraction from outside of the landfill will also be evaluated. The specific tasks include:

- Determining whether each of the extraction system configurations is capable of inducing a vacuum throughout the landfill and at gas probes outside of the landfill;
- Determining methane concentrations in exhaust gases to evaluate whether a flare would be self-sustaining, or whether energy recovery using a microturbine is feasible (at least 35% methane is needed for either alternative); and
- Determining VOC and vinyl chloride concentrations in exhaust gases to estimate annual emissions that would be expected from an active gas extraction system.

Most active landfill gas collection systems consist of large diameter vertical gas extraction wells within the wastes of a landfill. Construction of such wells at the FF/NN Landfill would require that the composite cap be compromised and penetrated by drilling. This risks damage to the plastic membrane, and also allows for infiltration of precipitation into the landfill during construction, generating leachate and potential groundwater impacts. Because the passive gas vent system was designed for possible conversion to an active system, and because the landfill is relatively small (7.3 acres) and quite old (operational from 1967 until 1983), it is thought that the existing passive vents and possibly leachate head wells may be used for gas extraction, rather than drilling additional wells through the cap.

1.3 Estimated Landfill Gas Generation

The current landfill gas generation rate was estimated using two methods provided in the US EPA report, *Turning a Liability into an Asset: A Landfill Gas-to-Energy Project Development Handbook* (September 1996). Calculations are provided as an attachment to this work plan. The estimates of gas generation range from 15 to 40 standard cubic feet per minute (SCFM). This gas generation rate is estimated to be only about 15% of the generation rate at the time the landfill closed in 1986.

2.0 PILOT TEST WORK PLAN

2.1 Equipment Specifications

The pilot test will be carried out using a skid mounted rental unit provided by Schrader Environmental Services of Ithica, Michigan. The unit consists of the following:

- Duroflow 3006 positive displacement blower;
- 3 horsepower, single phase, 230 volt, 60 hertz, explosion-proof motor;
- Inlet particulate filter and exhaust silencer;
- Moisture knock-out tank, approximately 20 gallon capacity;
- High level shutdown switch for knockout tank;
- 1-inch diameter manual drain valve;
- Control panel with on-off switch, motor starter and overload;
- Vacuum gauge on inlet;
- ERDCO direct reading flow meter; and
- Dilution air valve (after flow meter).

The skid mounted unit will be transported to the site on an open trailer. The blower curve is provided in Appendix C. The blower is capable of providing a vacuum of 68-inches of water column (5-inches of mercury) at an air flow rate of 190 SCFM at 3500 rpm.

A vacuum gauge with a quick coupler will be connected to each of the gas probes, monitor wells, and leachate head wells for periodic pressure drop measurements.

2.2 Pilot Test Preparation

Prior to conducting the pilot test, the following work will be performed by GeoTrans:

• The rotating ventilators on each of the passive gas vent pipes will be replaced with a 4inch diameter schedule 80 PVC end cap. Each end cap will have a universal push type

pneumatic quick coupler inserted into a drilled hole. An air pressure gauge or a methane gas meter will be connected to the coupler for measurements;

- The covers on the leachate head wells will be replaced with 4-inch diameter PVC end caps with quick couplers; and
- The gas probes currently have 2-inch diameter PVC end caps with quick couplers installed.

2.3 Pilot Test Operation

The pilot testing will be conducted over a 3-day period. The system will run for 6 to 8 hours each day, allowing the site to return to pre-testing conditions overnight. During the first day, the vacuum blower will be connected to two of the vents of the existing passive gas system, GV-1 and GV-3. These vents were selected because they are nearest to the off-site migration of gas, and are above the deepest part of the landfill. During the second day, the vacuum blower will be connected to leachate head wells LC-1 and LC-3. During the third day, the vacuum blower will first be connected to the Gas Probe GP-3, and will then be connected to LC-1, LC-3, GV-1 and GV-3, which will be manifolded together. The testing procedures will be the same for each of the tests.

Electricity to run the motor for the blower will be provided by a portable generator.

Before turning on the power to the blower motor, the air bleed valve on the inlet to the air/water knock-out tank will be opened and the extracted air inlet valve will be closed. The power will then be turned on to the system. The blower motor will then be started and the air bleed valve will be gradually closed to achieve a vacuum of about 5-inches of mercury, as measured by a vacuum gauge. Once the vacuum has stabilized, the inlet valve will be gradually opened to start the pilot test. The air bleed valve will be adjusted to provide an initial vacuum of about 5-inches of mercury. The vacuum may be varied depending on observations of pressure drop at various locations in the system or oxygen concentrations in extracted gases during the test. Oxygen concentrations in gases extracted from the landfill will be maintained within 3 % of their initial

level to prevent drawing oxygen into the landfill. Drawing excessive oxygen into the landfill could potentially cause a landfill fire if not managed properly.

2.4 Monitoring

2.4.1 Extraction System Exhaust Discharge

The pilot testing phase of the methane extraction system includes monitoring and analysis of air emissions exhausted by the system. Monitoring of exhaust discharge is necessary to satisfy several data needs. Collection of samples allows identification and quantification of hazardous and/or regulated compounds in the exhaust stream. The WDNR has established maximum discharge limits for total VOCs as well as specific compounds (See Section 2.5.3 Air Emissions Permitting). Analysis of the exhaust stream will be used to determine if a flare can be self sustaining, and whether microturbines would be feasible for electrical power generation (i.e., a sustained methane concentration of at least 35%).

A Landtec GA90 Gas Analyzer will be used to determine methane concentrations in the exhaust gas. Methane concentrations will be measured and recorded at the beginning of each test, and approximately every hour throughout the tests. Exhaust gas levels of carbon dioxide and oxygen will be measured and recorded at the same time as methane. The intent of methane concentration testing over time is to determine whether methane concentrations are constant or declining; constant concentrations indicate that the gas extraction rate of the blower could possibly be increased, while declining concentrations indicate that the extraction rate should be decreased.

A Summa canister will be used to collect air emission samples near the end of each day of the test. The Summa canister sample will be analyzed for VOCs using method TO-14. A sample collected near the end of the day is the most representative sample for the long-term operation of a gas extraction system. The purpose of collecting Summa canister samples is to estimate annual air emissions of VOCs from a proposed extraction system.

Draeger tubes will be used to analyze emission samples for vinyl chloride at the beginning, middle and end of each test. Draeger tubes for vinyl chloride can detect it at a concentration of 0.5 ppm (see information provided in Appendix D), and some of the concentrations measured in the gas probes at the site in September 2004 and January 2005 are greater than 0.5 ppm. It was originally envisioned that Draeger tubes could be used to sample concentrations of Total Hydrocarbons, Halogenated Hydrocarbons or Petroleum Hydrocarbons at intervals during the pilot tests. However, based on the analytical results from samples collected in September 2004 and January 2005 at the site, the concentrations of these materials are expected to be too low as compared to the detection limits for their specific Draeger tubes (100 ppm for Halogenated Hydrocarbons, 10 ppm for Petroleum Hydrocarbons and 1,000 ppm for Total Hydrocarbons; see Appendix D). Because Draeger tubes cannot be used, a Photoionization Detector will be used to provide relative concentrations of total VOCs at the beginning, middle and end of each test.

2.4.2 Vacuum and Methane Measurements

The applied vacuum at the extraction location and the induced vacuum at the observation locations will be used to determine the radius of influence of the applied vacuum. During each pilot test, the vacuum at the extraction well, as measured by a vacuum gauge, will be visually monitored on a continuous basis to ensure proper operation.

At the observation locations, the induced pressure drop will be recorded in the first hour, and at least twice more during the duration of the pilot test. The following are the locations where the vacuum will be measured on a regular basis throughout the testing:

GP-1	GP-2	GP-3	GP-7
GP-8	GP-6	LC-1	LC-2
LC-3	GV-1	GV-2	GV-3
GV-9	GV-12	MW-103	MW-104

Vacuum will not be measured in the other gas vents because they are all interconnected with piping. The induced vacuum will be measured at the more distant gas probes at least once during each test.

Methane concentrations, as well as oxygen and carbon dioxide, will be measured at the same times and locations as the pressure drop testing (above). The frequency of methane sampling at a location will be reduced or discontinued if methane is not present at any particular sampling location.

The vacuum induced at the observation locations will be measured using a Dwyer Slack-Tube manometer with a quick-connect hose. The Slack-Tube manometer is able to detect a pressure drop of less than 1-inch of water column (0.074 inches of mercury).

Barometric pressure and temperature will be recorded at the beginning, middle and end of each day.

2.5 Permitting and Waste Handling

2.5.1 Condensate Discharge

During each pilot test, recovered condensate will be accumulated in the 20 gallon knock-out tank connected to the blower unit. Approximately 10 gallons per day of condensate is expected to be generated. A 55-gallon barrel will be available for transport of condensate as needed to the Ripon wastewater treatment plant for disposal.

2.5.2 Air Emissions

Pilot tests are exempt from WDNR Air Management permitting and notification requirements and hourly emissions limits provided the test volume is limited to a maximum of 150,000 SCF. For three days of testing, we expect a total air flow of less than 110,000 SCF. Given the levels

of contaminants in the landfill gas, we do not anticipate exceeding any of the discharge levels in NR406.04 for the pilot test.

The WDNR has established several air emission limits that may apply to sources of VOCs. NR406.04(2)(c) of the Wisconsin Administrative Code limits the maximum amount of volatile organic compounds that can be emitted to the ambient air without an air pollution control permit to 5.7 pounds per hour. NR419.07(4)(b) limits maximum emissions with a permit to 9 pounds per hour. These limits apply to extended pilot testing (significantly greater than three days) or operation of systems for remediation, and these do not apply to this pilot test.

Section NR 419.07 (WAC) requires air emission controls for a landfill gas extraction system if VOC emissions exceed 216 pounds per day (see ch. NR 445, Table 3). The Lowest Achievable Emission Rate is required if a source emits more than 300 pounds per year of vinyl chloride. Assuming an extraction rate of about 100 cubic feet per minute and an average vinyl chloride concentration of 7 ppmv (average for the four samples collected in September; equivalent to 18 mg/kg), the estimated average emission rate for vinyl chloride would be 0.007 lb/hr or 0.05 lb for a 7-hour day. This is approximately 61 lb/year for a system that is operating continuously. Based on these calculations, air emissions controls for VOCs or vinyl chloride are not expected to be needed for the pilot test, nor for long-term operation of a proposed extraction system. Controls may be needed for the emissions of methane if an active landfill gas extraction system is installed.

2.6 Data Analysis and Report

A final report will be prepared at the conclusion of the pilot test. The report will include field data of methane, VOC and vinyl chloride concentrations and vacuum readings. Calculations will be made to determine contaminant mass emissions. The report will also include a conclusion as to whether the existing collection system can effectively and economically be used to remove landfill gas from the landfill.

Based on the pilot test results, a conceptual design for an active gas extraction system may be presented, including emission control requirements. The conceptual design will be assessed for cost- effectiveness as well as feasibility as part of the Focused Feasibility Study, which is being prepared for the site.

3.0 SCHEDULE

This work plan will be implemented within four weeks of receipt of WDNR approval. The pilot testing will take approximately one week to complete. The pilot test report will be completed five weeks following completion of the field work.

FIGURES

•

GAS EXTRACTION PILOT T	EST SCH	EDL	JLE																			PR	OJE	ECT	:			FF/	'NN	LA	ND	FILI	_, R	ipo	n, V	٧I	
																						PR	EP/	ARE	ED I	BY:		Ge	oTi	rans	s, In	C.					
																						PR	EP/	٩RE	ED I	FOI	R:	FF	-/NI	NL	and	fill C	Grou	JD			
TASK DESCRIPTION	Week	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
Submit Work Plan to WDNR													,																								
WDNR Review of Work Plan																																			\square		
Order and Ship Pilot Test Eq	uipment																					111	11.	1111	2		:::::		111				11.1				<u></u>
Conduct Pilot Test										1997) 1		200									0	1			· · · ·	1	2	24									
Laboratory Analysis																							111	21 A.	11	1000	1			1997) 1		1					
Report Preparation											11.11						5	609) 1		14														12		<u> </u>	
													1.11	9	2.57	202		1997												2	1			<u>)</u>	1.1	1	
									5		2,24				22	· · · · .	20		i en											2	£12.	d e l					· •
									11.00	· · ·	1	1.000	a 1				1.11	an an An an																			
													1 .	С. С			1.1	1.1.1			1. A.							200									
									2	1			1									1		2.15					1								
											1		1	÷.,				100	1.11	1					11	1			1.1								
										11 A.					1							1	1947. 1		1.1	1.1			14		1					Ê.	
											ľ		1							1.		ŝ	1990) 1				11		11 C			1					• • *
												100	11 A.			20	¹⁴	2. 2				N N		2.11					12			ar yr	С? 				2
													14.2	1.5.5		1				· · · · ·			2 ¹	1				10									
																		1						11		200 1			1941) 1								
											1	1													1.11												
															2.1											1.1											2
			Γ	1	Γ		T				1					1	1		1	1.1						les s	1										
Comments:				· · · ·																																	

P:wrgrace/landfill closure project/Estimated Construction Schedule Fig 6-1

-

Table 5A: Methane FF/NN Landfill Gas Screening Ripon, Wisconsin

						% Metha	nne (CH4)					
Well/Vent #	05/15/97	10/28/97	04/28/98	10/13/98	10/28/99	05/03/00	10/30/00	05/09/01	10/23/01	05/21/02 #	12/03/02	04/21/03 #
LC-1	0.5	14.6	17	10.6	23	1.8	2.1	3	9.7	0	8	NT
LC-2	1	35.2	13.3	14.3	32	17.9	21	29	42.2	0	29.2	NT
LC-3	0	28.5	22.9	25.2	30	2.4	40.1	59.5	59	0	40.8	NT
MW-101	0.8	0.9	0.4	0	0	0	0	0	0	0	1.9	NT
MW-102	0	0	2.2	0	0	0.1	0	0	0	0	0.1	0
MW-103	0	4.6	10.6	11.6	4.3	0	11.4	0	0	0	1.5	0.1
MW-104	0	51.4	23.1	49.5	1.7	0	29.7	16.7	0	0	4.2	NT
MW-112	NT	NT	NT	NT	NT	NT	NT	NT	NT	0	1.2	0
GV-1	0	51.1	24	10.4	0	0	0	6.8	28.6	0.1	5.5	NT
GV-2	0.5	46.5	0.1	29.3	0.1	0.7	27.1	10.2	22.6	0	13	NT
GV-3	0	41.3	0	32.6	0.3	0.6	32	22.2	0	0	7.1	NT
GV-4	0	20.4	0	21.8	0.8	0	0	0.1	0	0	9.4	NT
GV-5	0.5	0	10.1	17.5	8.8	0	0	0	0	0	3.8	NT
GV-6	0	46	0	19.4	0.2	2.4	5.5	4.3	0	0	0	NT
GV-7	0	53.7	0	1.8	0.1	2.8	5.3	28.2	23.8	0	4.7	NT
GV-8	0	57	17	0	0.1	6.1	21.2	38.5	20.5	0	0.1	NT
GV-9	0	51.8	43.3	0	0	23.7	19.4	38.9	0	0	22.8	NT
GV-10	0	0	0	0	0	9.6	0	7.1	0	0	0.1	NT
GV-11	2.8	7.7	2.6	0	0	8.9	0	0	0	0	0	NT
GV-12	0	0	19.7	0	1.5	0	0	0	0	0	0.2	NT
GP-1						and the second				ins	talled April 2	2004
GP-2								The second		ins	stalled May 2	004
GP-3					S. Same					ins	talled April 2	2004
GP-4		and the second								ins	stalled May 2	004
GP-5												
GP-6												
GP-7												
GP-8												
GP-10												
GP-11								Store a		ins	stalled May 2	004
GP-12								Sec. Sold		in	stalled May 2	005
Background	NR	NR	NR	NR	NR	NR	NR	NR	NR	0	0	0

Notes:

: Measurements taken using a Landtec GA-90 methane - O2-CO2 analyzer unless otherwise noted

NT = Not Tested

NR = Not Recorded

[#] Meter experiencing mechanical difficulties

GP = Gas probe outside of perimeter of waste

GV = Gas vent inside waste boundaries

MW = monitoring well

Results for original vents #1 through #5 and all data prior to 1996 are found on historical data tables published prior to October 2004

Table 5A: Methane FF/NN Landfill Gas Screening Ripon, Wisconsin

			% Metha	ne (CH4)		
Well/Vent #	07/30/03	10/21/03	04/28/04	06/16/04	10/12/04	01/28/05
LC-1	2.4	0	0.6		1.6	6.9
LC-2	6.6	2.3	3.4		0	5.5
LC-3	17.2	0	31.2		0	3.8
MW-101	0	0	0		2.9	2.2
MW-102	2.8	0	0		0	0
MW-103	3.9	0	3.3		6.2	1.8
MW-104	11.1	0	11.5		22.4	10.1
MW-112	0.8	0	2.6		4.6	1.1
GV-1	0	0	0	g	0	0
GV-2	1	0	0	nitor	0	0
GV-3	0	6.1	0	t mo	2.5	7.6
GV-4	0	0	0	ы	17.5	1.9
GV-5	0	0	0		16.1	0
GV-6	0	2.1	0]	22.1	6.3
GV-7	1.6	0	0		0	9.0
GV-8	0.6	0	0]	0	0
GV-9	19.9	0	0		0	15.5
GV-10	0	0	21.3		0	0
GV-11	1	0	0		0	0
GV-12	0	2.1	6		0	0
GP-1			43.6	28.7	29.7	17
GP-2				24.7	23.6	22.5
GP-3			13.6	13	18.6	9.1
GP-4				0	0	0
GP-5		ir	stalled fall 20	04	0	0
GP-6		ir	stalled fall 20	104	0	0
GP-7		ir	stalled fall 20	004	5.9	1.7
GP-8		ir	nstalled fall 20	004	4.2	0
GP-10		ir	nstalled fall 20	004	0	NT
GP-11		ir	nstalled fall 20	004	0	0
GP-12		ir	nstalled fall 20	004	0	0
Background	0	0	0	NR	0	0

Notes:

Measurements taken using a Landtec GA-90 methane - O2-CO2 analyzer unless otherwise noted

NT = Not Tested

NR = Not Recorded

[#]Meter experiencing mechanical difficulties

GP = Gas probe outside of perimeter of waste

GV = Gas vent inside waste boundaries

MW = monitoring well

Results for original vents #1 through #5 and all data prior to 1996 are found on historical data tables published prior to October 2004

Table 6: Landfill Gas Analytical ResultsFF/NN Landfill, Ripon, WI

Sampling Point ID	Date	Benzene	Chlorobenzene	Chloroethane	Chloromethane	Dichlorodifluoromethane	1,1-Dichloroethene	cis-1,2-dichloroethene	trans-1,2-Dichloroethene	1,2-dichloro-1,1,2,2- tetrafluoroethane	Total Hydrocarbons as gas	Tetrachloroethene	Toluene	Trichloroethene	Vinyl Chloride
CP 1	9/29/04	31.2		208		2,980									
Gr-1	1/28/05				0.6								1.8		
GP 2	9/29/04	61.1	58.1	70.6	73	347		343	22.5	220		23.1		72.8	410
01-2	1/28/05					270		470		190	4,600				
CD 2	9/29/04	102		689		909	110	6,660	229	131				205	25,400
01-5	1/28/05			450		590		4,500			4,800				12,600
IC 1	9/29/04			9.1		70.8				9.5					
	1/28/05					553		1,080		178	10,400				130

Values in ppbv (parts per billion by volume) Analyzed using EPA Method TO-14A

P:\Ripon_Landfill\Tables\gas_labresults.xls

APPENDIX A LEACHATE HEAD WELL CONSTRUCTION LOGS

.

{

tate of Wisconsin epartment of Natural Resources		M Fo	ONITORING WELL C rm 4400-113A	ONSTRUCTION 8-89	
acility/Project Name	Grid Location		Well Name	111-1	1
CILICOLS THING LANDF 1	229 755 924	62 ft. (22 N. ⊡ S. 162 ft. (22°E. ⊡ W.	Wis, Unique Well Nu	<u>, CC</u> mber DNR W	/eu Nu
re of Well Water Table Observation Well □ 11 41 GHC 11 EPiczometer □ 12	Section Location \underline{SE} 1/4 of \underline{SE}	1/4 of Section,	Date Well Installed		<u>Z</u> Z Z Z Z
istance Well is From Waste/Source Boundary	<u>T / (/ N, R / 7</u>	XE U W	Well Installed By: (I	erson's Name and	Firm)
Well A Point of Enforcement Std. Application?	Location of Well Relativ Upgradient Downgradient	Ve to Waste/Source Sidegradient Not Known	<u> </u>	405 ~ 1 4	r
Protective pipe, top elevation ft.	. MSL	1. Cap and lo	ck?	X Y	с П
Well casing, top elevation _ 873.50tt.	MSL	2. Protective	cover pipe:		6
Land surface elevation	MSL	b. Length;			
Surface seal, bottom ft. MSL or	ft., 300-1-1	c. Materia	:	Stee	
2. USCS classification of soil near screen:		d. Addition If yes, d	al protection? escribe: S. Duryper-	Other pasts	
Bedrock refuse		3. Surface sea	l: ,	Bentonit	Ă
. Sieve analysis attached? 🗖 Yes 🙀 No	· \ 📓			Concrete	
Drilling method used: Rotary 5 (4. Material be	tween well casing and j	protective pipe:	2
Hollow Stem Auger 2014 2 Other 🗖 💥				Bentonit	× ∕ (
				Other	
Drilling fluid used; Water 0 0 2 Air 0 0 Drilling Mud 0 0 2 North 10 0 9		5. Arnular sp	ice seal: Marie	Granular Bentoniu	c 🔲
A HUE HUE		Lb:	gal mud weight E	entonite-sand shurry	у 🖸 . П
Filling additives used? I Yes		~%	Bentonite Ben	ionite-cement grou	
Describe	👹		$_{\rm t}$ Ft ³ volume added f	or any of the above	
. Source of water (attach analysis):				Tremie pumped Gravity	
Bentonite seal, top $\underline{\mathscr{C}}$ $\underline{\mathscr{C}}$ $\underline{\mathscr{C}}$ ft. MSL or $\underline{\mathscr{C}}$	Q ft.	6. Bentonite so 1/4 ij Roy 4	tal: 1. $\square 3/8$ in. $\square 1/2$ in $\square 1/2$ in	Bentonite granules Bentonite pellets	
ine sand, top <u><u>g</u> <u>g</u> <u>f</u> ft. MSL or <u>5</u></u>		7. Fine sand m	aterial: Manufacturer	product name and	mesh
Filter pack, top 365 ft. MSL or 4),O ft.	Volume add	t bag	CA.	
Vell screen, top _ <u>GGY1</u> ft. MSL orZ	Q ft	8. Filter pack r	naterial: Manufacturer	, product name and	l mesh
cll screen, bottom _ 8 9 9 ft. MSL or _ 27	:0 ft.	9. Well casing	Flush threaded Flush threaded	PVC schedule 40 PVC schedule 80	
ilter pack, bottom -671 if ft. MSL or -30	Qn	♪\		Other	\mathbf{D}
orchole, bottomft. MSL orY	ft	10. Screen mate Screen type:	rial: <u>Sqhe 95</u> (Factory cut Continuous slot	Ķ
orehole, diameter 103 in.		Manufacturer	Timed		
D.D. well casing -4.50 in.		Slot size:		0.	Ole
), well casing $3'.79'$ in.		11. Backfill mate	rial (below filter pack):	None	
reby certify that the information on this fo	orm is true and cor	rect to the best of my	knowledge.	vuni	<u>r S</u> ,
ature 1. Mc	Firm Citati	1 Mudue	Santa		
A A	-11/01	py a w	oeant 1		

MONITORING WELL CONSTRUCTION tate of Wisconsin Form 4400-113A 8-89 epartment of Natural Resources Well Name Grid Location acility/Project Name 1__> 682,431,6113 fr. 25 N. 0 S. KiDAN. -qnd Wis Unique Wall Number DNR Wall Numb acility License, Permit or Monitoring Number 784,3224 ft. D. E. D. W. Date Well Installed Section Location ype of Well Water Table Observation Well [] 11 $\frac{a5}{mm} \frac{a6}{d} \frac{9}{y}$ charte Ut Fiezometer $5 \leq 1/4$ of $5 \leq 1/4$ of Section 12 Well Installed By: (Person's Name and Firm) istance Well Is From Waste/Source Boundary $\mathcal{H}_{E} \square W$ 0 N. R Schornbus - WTD Ere ft ocation of Well Relative Waste/Source Well A Point of Enforcement Std. Application' Upgradient 🗖 Not Known 🛛 Yes Downgradient Yes 🗖 .1. Cap and lock? ft. MSL . Protective pipe, top elevation 2. Protective cover pipe: BC39/ FL MSL Well casing, top elevation a. Inside diameter: b. Length: 86/6/ + MSL . Land surface elevation c. Material: Steel] X ft. MSL or _____ . Surface seal, bottom____ Other' Έ d. Additional protection? 2. USCS classification of soil near screen: If yes, describe: 3 Jæ GP GM GC GW SW SP SM SC ML MH CL CH Bentonite 🕰 3 3. Surface seal: Refu se Bedrock Concrete 0 3. Sieve analysis attached? D.Yes **M**No Other 🛛 88 4. Material between well casing and protective pipe: Rotary 🗖 50 Drilling method used: Bentonite 31 Hollow Stem Auger 24 1 Annular space seal Other 🛛 💥 Other 31 Air 🗖 01 5. Drilling fluid used: Water 🔲 02 5. Annular space seal: Marle Granular Bentonite 🖸 None 10099 35 Drilling Mud 🗖 03 Lbs/gal mud weight . . . Bentonite-sand slurry 🛛 3 : Lbs/gal mud weight Bentonite slurry 🗖 5. Drilling additives used? 🛛 Yes % Bentonite Bentonite-cement grout [(Ft^3 volume added for any of the above N/A Tremie Describe Tremie 🗖 How installed: 0' 7. Source of water (attach analysis): Tremie pumped 🔲 02 Gravity 80 Bentonite granules 6. Bentonite seal: 33 Bentonite seal, top _______ ft. MSL or ______ ft. 🖸 1/4 in. 🖾 3/8 in. 🖾 1/2 in. Bentonite pellets 🗖 32 Bentonite Chips Other K. 844 (of. MSL or _ 12.0 ft. 7. Fine sand material: Manufacturer, product name and mesh size Fine sand, top KEAGER FILE SGNU _9476 ft. MSL or _ 14.0 ft. Volume added Filter pack, top 8. Filter pack material: Manufacturer, product name and mesh siz Rod $F/IAT = T^2 S C$ _645/pft. MSL or _ 16.0 ft_ Well screen, top ft³ Volume added Da Vell screen, bottom _ 835 (At. MSL or _ 26 O ft., Flush threaded PVC schedule 40 9. Well casing: 23 Flush threaded PVC schedule 80 24 Filter pack, bottom _ 834 (ft. MSL or _ 2.7.0 ft. Other Same 92 951014 10. Screen material: Factory cut 11 Borehole, bottom Screen type: Continuous slot 01 **1** Other 🛛 103 Borehole, diameter in. ins co Manufacturer 45 Slot size: O.D. well casing in. !B Slotted length: / () 11. Backfill material (below filter pack): None/ 379 I.D. well casing in. Other D ereby certify that the information on this form is true and correct to the best of my knowledge Firm .nature MON ω complete and return both sides of this form as required by chs. 144, 147 and 160, Wis. Stats, and ch. NR 141, Wis. Adm. Code. In accordance with

isy complete and return both sides of this form as required by chs. 144, 147 and 160, Wis. Stats, and ch. NR 141, Wis. Adm. Code. In accordance with 144, Wis Stats, failure to file this form may result in a forfeiture of not less than \$10, nor more than \$5,000 for each day of violation. In accordance ich. 147, Wis. Stats, failure to file this form may result in a forfeiture of not more than \$10,000 for each day of violation.

MONITORING WELL CONSTRUCTION State of Wisconsin Department of Natural Resources Form 4400-113A 8-89 Well Name Grid Location Facility/Project,Name ion FFINALandfil 276, SHT R. BN. DS. DNR Well Numbe Wiss Unique Well Number Facility License, Permit or Monitoring Number 7058 ft. 🔁 E. 🗆 W. Date Well Installed 1 ype of Well Water Table Observation Well 11 Piezonater he council 12 Section Location -1/4 of Sa 1/4 of Section Well Installed By: (Person's Name and Distance Well Is From Waste/Source Boundary N. R ΕUW Scholophy as Eric Location of Well Relative to Waste/Source ft is Well A Point of Enforcement Std. Application? Upgradient 🛛 Yes D No Downgradient 📋 Not Known Yes [] No 1. Cap and lock? ft. MSL A. Protective pipe, top elevation 2. Protective cover pipe: _ B74.44 fl. MSL 睑 3. Well casing, top elevation a. Inside diameter: 872 0 % MSL b. Length: C. Land surface elevation c. Material: Steel . D. Surface seal, bottom _____ ft. MSL or ___. Other D Yes D No 12. USCS classification of soil near screen: d. Additional protection? GP GM GC GW SW SP SM SC GML MH CL CH Refuse Bentonite 3. Surface seal: Bedrock Concrete 0 01 13. Sieve analysis attached? No No Other 🛛 Rotary D 50 4. Material between well casing and protective pipe: 14. Drilling method used: Bentonite 30 Hollow Stem Auger Other 🗖 📖 Annular space seal Other 🛛 Air 🔲 01 5. Annular space seal: NONC Granular Bentonite 15. Drilling fluid used: Water 🔲 02 33 None 20 99 Drilling Mud 🛛 03 ____ Lbs/gal mud weight . . . Bentonite-sand shurry 🗖 35 ____ Lbs/gal mud weight Bentonite slurry 🖸 31 **Trilling additives used?** I Yes _ % Bentonite Bentonite-cement grout 🗖 50 Ft³ volume added for any of the above Describe ____ How installed: Tremie 📋 NIA 01 17. Source of water (attach analysis): Tremie pumped 02 Gravity 08 Bentonite granules 6. Bentonite seal: 33 $\frac{1}{2}$. Bentonite seal, top $\underline{\mathscr{G}} = \underline{\mathscr{G}} = \underline{\mathscr{G}} = \underline{\mathscr{G}} + \underline{\mathscr{G}} + \underline{\mathscr{G}} = \underline{\mathscr{G}} + \underline{\mathscr{G} + \underline{\mathscr{G}} + \underline{\mathscr{G}} + \underline{\mathscr{G}} + \underline{\mathscr{G} + - \mathcal{G} + - \mathcal{G}$ 1/4 in. 3/8 in. 1/2 in. Bentonite pellets 32 BERTINITE E. K. Other AR 471 ft. MSL or 105 tt. 7. Fine sand material: Manufacturer, product name and mesh size Fine sand, top We sand Badcor _67 [ft. MSL or _ / O ft., _ft³ Volume added har . Filter pack, top 8. Filter pack material: Manufacturer, product name and mesh size _ 865 / ft. MSL or _ 6.0 ft_ Ped Flint #30 I. Well screen, top back fills Volume added Well screen, bottom _ 945.1 ft. MSL or _ 260 ft. Flush threaded PVC schedule 40 🔲 23 9. Well casing: Flush threaded PVC schedule 80 **A** 24 Filter pack, bottom ______ ft. MSL or _____ ft. 20 Other 🔲 82 10. Screen material: Same as Cas Borehole, bottom _232 _ ft. MSL or _400 ft. Factory cut L ' 11 Screen type: Continuous slot 01 103 in Other 🛛 Borehole, diameter Manufacturer man 450 Slot size: 1. O.D. well casing Slotted length: PS Nome D 11. Backfill material (below filter pack): 379), well casing Other P BRATOONIL hereby certify that the information on this form is true and correct to the best of my knowledge enatur Firm teste complete ord return Both sides of this form as required by chs. 144, 147 and 160, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with 1/144, Wis Stas, failure to file this form may result in a forfeiture of not less than \$10, nor more than \$5,000 for each day of violation. In accordance

APPENDIX B METHANE GAS GENERATION CALCULATIONS

P:\Ripon_Landfill\Reports & Corresp\Gas Extraction Test WOrk Plan.doc

GeoTrans, Inc.

~ WJOS 9'SI = HSI GEOTRANS (8, 5 × 100 CE/41) 300 × 1 × 0 × 1 × 00 × 1 × 00 × 1 × 00 × 1 × 00 × 1 × 00 × 1 × 00 × > vooh 10, CE / AGON 1 rihe' 1051.0 $\left((2E)^{(10)} - 3^{-1}(10)^{-1}\right)^{-1} = 3^{-1} \left(\frac{1}{5} + 10^{-1} + 10^{-1} + 10^{-1}\right)^{-1} = 3^{-1} + 10^{-1}$ sh/#,01×51 = smooth E1/#,002 H= Huende maste acceptanice rape, #/year C = time since landfill closed = 2005 - 1986 = sah bl sth 28 = 2146 - 5002 = power of 111 obsured = 302 + 1233 = 35 + 12 sh/ 10 = 4 sous of the at we star (== 5 7° & (=-Ke- E-KE) Method B. First Order Decay Maded 1 WIDS BE = KO/10 LZ Sateput # 301 × 005 = 42/ # (101 × 70 × 10° # Waster 1.2 acres × H3,560 fts 32' thick = 5×10° CF waster Estimate of in-place waste volume is Hunded LFG generation (cf) = 0.10 cf/# ×2000 cb/four × tons Method A. Simple Approximation A Landfill Gas- to- Energy Project Development Handbode Harst mo of in the or Liability into an Hazet: Reference: Estimate of cardfill gos servicetion Rate CHKD. BY JLM DATE 3 8 65 200-1101 ON TOH BY CED DULE 2/51/02 PROJECT FF/NN LONDFILL, RIPON

An Original gas generation value day is is is is used at the original of the day $P_{n} O$ riginal day generation value is and its day is a contraction value is and its day is a contraction of the day of the day is a contraction of the day is a contract

.

PAGE 02

02/25/2	2005 16:28 9898758880	SCHRADE	R ENVIRONMEN	Γ.	PAGE 02
	· · · · ·	•	· .	F	FAXED
			· · · · · · · · · · · · · · · · · · ·		and the second s
· · · · · · · · · · · · · · · · · · ·	SCHRADER ENVIRO	NMENTAL	SERVICES	5, INC.	978 6800
	212 S. PINE RIVER	• • · ·	· · ·	OFFICE (989) FAX (989)	875-8880
	FAX PROPOSAL		1	:	· · · · · ·
	PROPOSAL NUMBER CI122904-5			$\frac{1}{2}$	the second s
ATTN:	GERALD DeMERS		DATE:	December 29, 20	04
TO:	GeoTrans 175 N. Corporate Dr. Brookfield, WI 53045		PHONE: FAX:	(262) 792-1282 (262) 792-1310	、 " ・ ・ ・ ・
RE: SITE:	Rental/Purchase of SVE System Unknown		: Ouantity:	Item cost:	Total:
Item:	Description:	- lakid mount		\$1 145.00	
1	Includes: pureriew 3006 - Subobilt 31.P positive displacement blow - Approx 200 SCFM @ 3" He vacuum	er	30)	up to 1 month	Walistea
	- 3 hp 115/230/1/60 motor - Inlet particulate filter and exhaust silend	xer	- Mo - <u>V</u> A	TOK IS FXP	w inlet
	 Approx. 20 gallon vertical®mount moistu High level shutdown switch 	ne knock-out tar		Lownetee	CAO CFM
	 Control Panel On/off switch w/motor starter & overlog 	d	- 2	ILUIIN AIAI	Flowmete
	- Relay for high level shutdown switch			54	bor MAX
2	Mobilization of equipment to	ı	1	-tober	letermined
3	Demobilization from	1 1	+ 1	To be a	tetermined
	Note: forklift required for loading/unloadi	ng equipment by	rothers	· \ 776	
	Note: 50% of all rent paid may be applied towa Purchase price of the above system: \$5,0	rds the purchase 895.00	e price of the al	pove equipment.	
DELIVI RENTA MODIF electric 1½% (The ab ACCEP Accept	ERY: Estimated at 2-3 weeks from placeme L TERMS: Due with order plus mobilization TCATION OF RENTAL EQUIPMENT: Any ma cal for site specific applications that require per month finance charge will apply to any love pricing does not include any applicable TANCE: ed by:	nt of order, pen and a signed re colfication (remo SES re-work bef involces over 30 sales tax. Compa	ding availability ental contract. val or replacem ore or after the days.	nent) either mecha rental period will	nical or be billed.
Printed	Name & Title:		3		
Purcha	se Order #:	Date:	· · · ·	- 	• •
Thank Sincere Schrad	you for the opportunity to quote your envir er Environmental Services, Inc.	onmental equip	ment/service no	eds.	· · ·
Graig J	fish . Sal	. * .	, , , , , , , , , , , , , , , , , , ,	· . · .	1
	www.rem	diationequinn	nerif.com	× (• · · ·

APPENDIX D DRAEGER TUBE INFORMATION

Security and a second

Fast

One stroke tubes are not always

faster! Though many Draeger-Tubes*

often provide measurement results

in less time. Not only do you get the

benefit of a quicker analysis; the larger sample volume provides better

Draeger-Tubes® simply deliver more!

More gases and more measuring

ranges than any other manufacturer.

accurately measuring over 500 differ-ent gases. You can measure ambient

air for health and safety levels, optional

components, pressurized gas line samples, compressed air contaminants,

and solvents in water samples. Other

specialized tubes measure over a

period of hours or a complete work

shift to indicate daily exposure levels.

Draeger offers over 200 tubes for

equipment allows you to measure stack gases, motor vehicle exhaust

statistical accuracy.

Flexible

require more than one stroke, they

Accurate Not all detector tubes are created equal! Draeger-Tubes® with the accuro pump deliver the most accurate results. Many Draeger tubes offer a +/- 10% standard deviation on the results. This is a result of our 60+ years of manufacturing colorimetric tubes and the con-sistent volume delivered by the bellows pump design. Quality assurance is accomplished by individually calibrating each batch of Draeger-Tubes*. Then every batch is tested at regular intervals, throughout the two year shelf life, to guarantee accuracy over the entire life of the tubes.

Easy to Read See the difference for yourself! The wider diameter of the Draeger-Tubes* makes it easier to read. Well-spaced graduation marks enable distinct and decisive measurement results. Color changes to the reagents are well defined over the entire length of the stain. Many Tubes offer a dual calibrated scale so that you can interpret the results without using multiplication factors.

Draeger-Tubes*

Reagents used in Draeger-Tubes[®] are chosen to provide not only the most

accurate, but also most specific results

possible. Our use of prelayers on many tubes (like benzene) remove other

potential interfering gases (e.g. aromatic hydrocarbons) so you measure

only the targeted chemical, getting only the results you want. This design

enables you to measure specific gases

in a complex ambient background

found in the measurement area.

Draeger-Tubes on Time

We can deliver to most locations in continental North America within

Leading detection

Specific

24 hours.

accuro 2000

Accessories

accuro 2000 Kit

Soft-Side K

HazMat Simultest Kit

Trusted Technology

Maintenance Free

Draeger has made gas detection easy. Unlike a piston pump, the accuro pump requires no lubrication. The accuro[®] is constructed of non-metallic, corrosion resistant materials. It can't be bent by rough treatment and it withstands harsh chemical environments, Draeger-Tubes* are pre-calibrated for two years. The only requisite on Draeger-Tubes^{*} is that they are stored out of direct sunlight and at a temperature of less than $25 \degree C (77 \degree F)$. Any temperature-controlled office meets these conditions.

1-412-787-8383 Fax: 1-412-787-2207 Customer Service: 1-800-858-1737 Fax: 1-800-922-5519 Technical Support: 1-888-794-3806

Draeger Canada Ltd.

7555 Danbro Crescent Mississauga, ON L5N 6P9 1-905-821-8988 Fax: 1-905-821-2565 Customer Service: 1-877-372-4371 1 Fax 1-800-Fax-Tube

Trusted Technology that's ahead of its time

Accurate Easy to read Flexible Fast Specific

Maintenance free

Multi-Gas Detector

Easy to use

Draeger Safety

Dräger

Draeger Safety, Inc 101 Technology Drive Pittsburgh, PA 15275-1057

accuro pump

One handed operation

What is the Draeger-Tube® System? Draeger-Tubes® are glass vials filled with a chemical reagent that reacts to a specific chemical or family of chemicals. A calibrated 100 ml sample of air is drawn through the tube with the Draeger accuro® bellows pump. If Drager accure" bellows pump. If the targeted chemical(s) is present the reagent in the tube changes color and the length of the color change typically indicates the measured concentration. The Drageer-Tube" System is the world's meat popular form of gas detection.

Draeger: Leading Detection Ever since 1937 when we introduced See and vapors. our first detector tube, Draeger has been the world leader in the analysis of gases and vapors in the industrial workplace. Over the years we have developed more tubes and detection devices for more applications than anyone elsel Our leading edge technology has kept us on the forefront of colorimetric detector tubes thus providing the most accurate and specific results available.

Most Trusted Draeger-Tubes* have been leading the way in gas detection for over 60 years.

Widest Range Over 200 different Draeger-Tubes* are available for measuring over 500

No calibration, no lubrication, no special maintenance. Always ready to go.

Description M	easuring Range	Order Code	Description N	Measuring Range	Order Code	Description 1	Measuring Range	Order Code	Description M	easuring Range	Order Code
cetaldehyde 100/a	100-1,000 ppm	67 26 665	Chlorine 0.3/b	0.3-10 ppm	67 28 411	Hydrogen Sulfide 0.2/a	0.2-5 ppm	81 01 461	Perchloroethylene 10/b	10-500 ppm	CH 30701
cetic Acid 5/a	5-80 ppm	67 22 101	Chlorine 50/a	50-500 ppm	CH 20701	Hydrogen Sullide 0.2/b	0.2-6 ppm	81 01 991	Perchloroethylene 50/A	50-10,000 ppm	81 01 851
cetone 100/b	100-12,000 ppm	CH 22901	Chlorobenzene 5/a (5)	5-200 ppm	67 28 761	Hydrogen Sulfide 0.5/a	0.5-15 ppm	67 28 041	Petroleum Hydrocarbons 10/a	10-300 ppm (0-0Clane)	8101091
cid Test	Qualitative	81 01 121	Chloroform 2/a (5)	2-10 ppm	67 28 861	Hydrogen Sulfide 1/d	1-200 ppm	81 01 831	Petroleum Hydrocarbons 100/a 10	0-2,500 ppm (n-Octane)	67 30 201
Acrylonitrile 0.5/a (5)	0.5-20 ppm	67 28 591	Chloroformates 0.2/b	0.2-10 ppm	67 18 601	Hydrogen Sulfide 2/a	2-200 ppm	67 28 821	Phenol 1/b	1-20 ppm	81 01 64
ir Current Tube Kit		4054388S	Chloroprene 5/a	5-60 ppm	67 18 901	Hydrogen Sulfide 2/b	1-60 ppm	81 01 961	Phosgene 0.02/a	0.02-1 ppm	81 01 52
ir Current Tubes		CH 25301	Chromic Acid 0.1/a (9)	0.1-0.5 mg/m3	67 28 681	Hydrogen Sulfide 5/b	5-600 ppm	CH 29801	Phosgene 0.25/c	0.25-15 ppm	CH 2830
Icobol 25/a 50-4.00	0 oom isoorooanol	81 01 631	Cyanide 2/a	2-15 mg/m3	67 28 791	Hydrogen Sulfide 100/a	100-2,000 ppm	CH 29101	Phosphine 0.01/a	0.01-1 ppm	8101 61
25-5,0	00 ppm Methanol		Cyanogen Chloride 0.25/a	0.25-5 ppm	CH 19801	Hydrogen Sulfide 0.2%/A	0.2-7 Vol.%	CH 28101	Phosphine 0.1/a	0.1-4 ppm	CH 3110
Vcohol 100/a	100-3,000 ppm	CH 29701	Cyclohexane 100/a	100-1,500 ppm	67 25 201	Hydrogen Sulfide 2%/a	2-40 Vol.%	81 01 211	Phosphine 1/a	1-100 ppm	81 01 80
mine Test	Qualitative	81 01 061	Cyclohexylamine 2/a	2-30 ppm	67 28 931	Hydrogen Sulfide +			Phosphine 25/a	25-10.000 ppm	81 01 62
Ammonia 0.25/a	0.25-3 ppm	81 01 711	Diethyl Ether 100/a	100-4,000 ppm	67 30 501	Sulfur Dioxide 0.2%/A	0.02-7 Vol.%	CH 28201	Phosphine 50/a	15-1,000 ppm	CH 2120
Ammonia 2/a	2-30 ppm	67 33 231	Dimethyl Formamide 10/b	10-40 ppm	67 18 501	Mercaptan 0.1/a	0.1-2.5 ppm	81 03 281	Phosphoric Acid Esters 0.	05/a 0.05 ppm	67 28 46
Ammonia 5/b	2.5-100 ppm	81 01 941	Dimethyl Sulfate 0.005/c (9) 0.005-0.05 ppm	67 18 701	Mercaptan 0.5/a	0.5-5 ppm	67 28 981	(Dimethyldichlorovinylphot	phate)	
mmonia 5/a	5-700 ppm	CH 20501	Dimethyl Sulfide 1/a (5)	1-15 ppm	67 28 451	Mercaptan 20/a	20-100 ppm	81 01 871	Polytest	Qualitative	CH 2840
mmonia 0.5%/a	0.05-10 Vol.%	CH 31901	Epichlorohydrin 5/b	5-50 ppm	67 28 111	Mercury Vapor 0.1/b	0.05-2 mg/m3	CH 23101	Pyridine 5/A	5 ppm	67 28 6
niline 0.5/a	0.5-10 ppm	67 33 171	Ethyl Acetate 200/a	200-3,000 ppm	CH 20201	Methyl Acrylate 5/a	5-200 ppm	67 28 161	Styrene 10/a	10-200 ppm	67 23 34
miline 5/a	1-20 ppm	CH 20401	Ethyl Benzene 30/a	30-600 ppm	67 28 381	Methyl Bromide 0.5/a	0.5-30 ppm	81 01 671	Styrene 10/b	10-250 ppm	67 33 14
visenic Tripxide 0.2/a	0.2 mg/m3	67 28 951	Ethylene 0.1/a (5)	0.2-5 ppm	81 01 331	Methyl Bromide 5/b	5-50 ppm	CH 27301	Styrene 50/a	50-400 ppm	CH 276
visine 0.05/a	0.05-60 ppm	CH 25001	Ethylene 50/a	50-2,500 ppm	67 28 051	Methylene Chloride 100/a	100-2,000 ppm	67 24 601	Sulfur Dioxide 0.1/a	0.1-3 ppm	67 27 10
Senzene 0.5/a	0.5-10 ppm	67 28 561	Ethylene Glycol 10 (5)	10-180 mg/m3	81 01 351	Natural Gas Test (Methane)(5) Qualitative	CH 20001	Sulfur Dioxide 0.5/a	0.5-25 ppm	67 28 4
Benzene 0.5/c (5) specifi	ic 0.5-10 ppm	81 01 841	Ethylene Oxide 1/a (5)	1-15 ppm	67 28 961	Nickel 0.25/A	0.25-1.0 mg/m3	67 28 871	Sulfur Dioxide 1/a	1-25 ppm	CH 317
Benzene 2/a (5)	2-60 ppm	81 01 231	Ethylene Oxide 25/a	25-500 ppm	67 28 241	Nickel Tetracarbonyl 0.1/a (S	e) 0.1-1 ppm	CH 19501	Sulfur Dioxide 20/a	20-2,000 ppm	CH 242
Benzene 5/b	5-50 ppm	67 28 071	Ethyl Glycol Acetate 50/a	50-700 ppm	67 26 801	Nitric Acid 1/a	1-50 ppm	67 28 311	Sulfur Dioxide 50/b	50-8,000 ppm	81 01 5
Benzene 15/a	15-420 ppm	81 01 741	Fluorine 0.1/a	0.1-2 ppm	81 01 491	Nitrogen Dioxide 0.5/c	0.5-25 ppm	CH 30001	Sulfuric Acid 1/a (9)	1-5 mg/m3	67 28 7
Carbon Dioxide 100/a	100-3.000 ppm	81 01 811	Formaldehyde 0.2/a	0.2-5 ppm	67 33 081	Nitrogen Diaxide 2/c	2-100 ppm	67 19 101	Tetrahydrothiophene 1/b	(5) 1-10 ppm	8101 3
Carbon Dioxide 01%/a	0.1-6 Vol.%	CH 23501	Formaldehyde Activation	extend to 0.04 ppm	81 01 141	Nitroglycol 0.25/a	0.25 ppm	67 18 201	Thioether	1 mg/m3	CH 258
Carbon Digride 0.5%/a	0.5-10 Vol.%	CH 31401	tube (for use only in conjunction with 0.2 /a tub	-)		Nitrous Fumes 0.5/a	0.5-10 ppm	CH 29401	Toluene 5/b	5-300 ppm	81 01 6
Carbon Dioxide 1%/a	1-20 Vol %	CH 25101	Esemaldabuda 2/a	2.40 nom	81 01 751	Nitrous Fumes 2/a	2-100 ppm	CH 31001	Toluene 50a	50-400 ppm	81 01 7
Carbon Digvide 5%/A	5-60 Vol.%	CH 20301	Formic Acid 1/a	1-15 nom	67 22 701	Nitrous Fumes 20/a	20-500 ppm	67 24 001	Toluene 100/a	100-1,800 ppm	81 01 7
Carbon Disulfide 3/a	3-95 nom	81 01 891	Histocensteri Hydrocarbons 10	0/a 100-2 800 ppm	81 01 601	Nitrous Fumes 50/a	50-2,000 ppm	81 01 921	Toluene Diisocyanale 0.02/	4 (9) 0.02-0.2 ppm	67 24 5
Carbon Disulfide 30/a	32.3 200 ppm	CH 23201	Havana 100/a	50-3 000 ppm	67 28 391	Nitrous Fumes 100/c	100-5.000 ppm	CH 27701	o-Toluidine 1/a	1-30 ppm	67 28 9
Carbon Monoride 30/a	2-300 ppm	67 33 051	Hexane 100/a	0.2-10 ppm	67 33 121	Oil Mist 1/a	1-10 mg/m3	67 33 031	Trichloroethane 50/d (5)	50-600 ppm	CH 21
Carbon Monoxide 2/ a	5-700 ppm	CH 25601	Hydrazine 0.27 a	0.1-10 ppm	CH 31801	Olefies 0.05%/a 0.0	6.3.2 Vol % Proovlene	CH 31201	Trichloroethylene 2/a	2-250 ppm	67 28 5
arbon Monoxide 3/c	5-700 ppm	CH 19701	Hydrazine 0.20/ a	01-13 Vol %	CH 26101	0.0	04-2.4 Vol.% Butylene		Trichloroethylene 10/a	50-2,000 ppm	CH 244
arbon Monoxide 3/ 4 by	10-3 000 ppm	CH 20601	Hydrocarbons 0.1 xy b	3.03 mo/l	CH 25401	Organic Arsenic Compounds			Triethylamine 5/a	5-60 ppm	67 18 4
arbon Monoxide TO/D	0.3.7.141%	CH 20001	Hydrocarbons 2	3-23 mg/1	CH 20501	and Arsine	3 mg org. arsenic/m3	CH 26303	Vinyl Chloride 0.5/b	0.5-30 ppm	81 01
arbon Monoxide 0.3%/	+ 200.2 500 com CO	67 18 301	Hydrochionic Acid 1/a	50.5 000 com	67 28 181	Organic Basic Nitrogen Com	pounds 1 mg/m3	CH 25903	Vinyl Chloride 100/a	100-3,000 ppm	CH 19
Carbon Dioxide 2%/a	2-12 Vol. % CO2	07 10 001	Hydrochionic Acid SU/a	1/2 1 10 com (HCL)	81 01 681	Oxygen 5%/C	5-23 Vol.%	81 03 261	Water Vapor 0.1/a	0.05-1 mg/L	81 01 3
arbon Pretubes		CH 24101	Hydrochionic Acid/ Nitric Acid	1-15 ppm (HNO3)	0101001	Ozone 0.05/b	0.05-1.4 ppm	67 33 181	Water Vapor 1/a	0.5-18 mg/L	81 01
arbon Tetrachlorida 0.0	/h 0.2.70 pom	81 01 791	Hydrocyanic Acid 2/a	2-150 ppm	CH 25701	Ozone 10/a	10-300 ppm	CH 21001	Water Vapor 1/b	1-40 mg/L	81 01
Carbon Tetrachloride U.2,	(5) 1-15 com	81 01 021	Hydrogen 0.2%/a	0.2-2 Vol. %	81 01 511	Pentane 100/a	100-1,500 ppm	67 24 701	Water Vapor 3/a	3-60 lbs/mmcf	81 03
Carbon Tetrachloride 1/1	5.50 com	CH 27401	Hydrogen Fluoride 0.5/a	0.5-90 ppm	81 03 251	Perchloroethylene 0.1/a	0.1-4 ppm	81 01 551	Water Vapor 50/a	50-1,000 lbs/mmcf	81 03
Jaroon Tetrachionde 5/0	0.000 ppm	CH 04301	Hudrogen Provide 0.0/a	01.3	81 01 041	Perchloroethylene 2/a	2-300 ppm	81 01 501	Xylene 10/a	10-400 ppm	67 33

Number in parenthesis indicates tests per box. Consult the VOICE* software or local Draeger representative for Extension of Range for tubes. Bolg/table fort indicates SEI Centrication

Bold/Italic font indicates SEI Certification