
www.geotransinc.com

262-792-1282 FAX 262-792-1310

June 29, 2005

Prepared for:

FF/NN Landfill Group

Prepared by:

GeoTrans, Inc. 175 N. Corporate Drive Brookfield, Wisconsin 53045

Project No. 1011.002

Gerald L. DeMers, PE

Senior Engineer, Associate

Gerald L. De Mens

Heidi W Yantz
Project Hydrogeologist

TABLE OF CONTENTS

				Page
1.0	EXECUTIV	VE SUMMA	RY	1-1
2.0	INTRODUC	CTION		2-1
	2.1	Backgrou	md	2-1
	2.2	Pilot Test	t Objectives	2-2
3.0	PILOT TEST	EQUIPME	NT AND PROCEDURES	3-1
	3.1	Equipme	nt Specifications	3-1
	3.2	Pilot Test	t Preparation	3-1
	3.3	Pilot Test	t Operation	3-2
	3.4	Monitoria	ng	3-3
		3.	4.1 Blower System Monitoring	3-3
		3.	4.2 Observation Point Monitoring	3-4
	3.5	Condens	eate Handling	3-5
4.0	PILOT TEST	RESULTS		4-1
	4.1	Day 1 Pi	lot Testing	4-1
		4.	1.1 Extraction System Monitoring	4-1
		4.	1.2 Observation Point Monitoring	4-2
	4.2	Day 2 Pi	lot Testing	4-3
		4.	2.1 Extraction System Monitoring	4-3
		4.	2.2 Observation Point Monitoring	4-4
	4.3	Air Emissi	ons	4-5
5.0	CONCLUSION	NS AND RE	COMMENDATIONS	5-1
	5.1	Conclusion	ns	5-1
	5.2	Recommer	ndations	5-1
	5.3	Active Gas	System Conceptual Design	5-2

P:\Ripon_Landfill\Reports & Corresp\Gas Extraction Test Report 6-05.doc

FIGURES

Figure 1 Landfill Gas Vent Locations

Figure 2 Gas Vent Details

Figure 3 Active Gas Systems Conceptual Plan

TABLES

Table 1 Landfill Gas Analytical Results – Pilot Study

Table 2 Landfill Gas Analytical Results – Prior Sampling

APPENDICES

- A. Approval Letter and Answers to Questions
- B. Photographs
- C. Field Forms
- D. Laboratory Results
- E. Example Blower System

1.0 EXECUTIVE SUMMARY

As part of the Focused Feasibility Study (FFS) for the FF/NN Landfill, modification of the current passive landfill gas control system is being considered as a remedial alternative to prevent off-site migration of methane and vinyl chloride. To evaluate this source control alternative, an active gas extraction pilot test was conducted on May 10-11, 2005 at the landfill. The specific objectives of this pilot test were to determine: 1) whether the existing passive gas vent collection piping could be effectively used as part of an active gas extraction system; and 2) whether the leachate head wells either alone or in combination with the passive gas collection piping can function as part of an active gas extraction system.

The significant conclusions of the pilot test are as follows:

- 1. Active gas extraction from the existing landfill gas venting system is capable of reducing methane concentrations at the gas probes located off-site. Therefore, additional gas extraction wells do not need to be installed.
- 2. Assuming an active gas extraction system operating at 100 cfm, the concentration of vinyl chloride in the landfill gas would result in an estimated annual emission of about 17.5 pounds of vinyl chloride, which is far below the threshold of 300 pounds per year that requires air pollution control. Therefore a flare would not be required.
- 3. The methane concentration observed during the pilot testing was less than 35%, which is the minimum required to sustain a flame in a flare or to operate a microturbine. Therefore, energy recovery with a microturbine is not practical at this site.

It is recommended that an interim gas extraction system be installed to evaluate the longer-term effect of active gas extraction on groundwater quality. Information on water quality impacts can also be used to determine the need for and the possible design of a more permanent system.

2.0 INTRODUCTION

2.1 Background

Methane has been measured at gas probes and monitor wells around the FF/NN Landfill at concentrations that exceed 25% of its lower explosive limit (LEL) at several locations outside of the limits of the landfill. In addition, recent analysis of landfill gas samples has indicated that vinyl chloride is present in several landfill gas samples, which may serve as the source of vinyl chloride detected in groundwater at the site. For these reasons, the FF/NN Landfill PRP Group is considering the feasibility of an active landfill gas extraction at the site.

A composite cap (clay and HDPE plastic membrane) was constructed on the landfill in 1996, and a passive landfill gas system was constructed beneath the cap at that time. The passive gas system consists of slotted piping within one-foot deep stone-filled trenches in a grid pattern across the surface of the landfill. Twelve vertical gas vents emit landfill gas from the trenches to the atmosphere; each of these vents is located at the intersection of collection piping. The layout of the passive gas system, as well as the location of gas probes and monitor wells near the site, is provided on Figure 2. Construction details of the passive vents are provided on Figure 2.

A "Pilot Test Work Plan, Landfill Gas Extraction System, FF/NN Landfill, Ripon, Wisconsin" was prepared by GeoTrans, Inc. on March 23, 2005. The WDNR and US EPA submitted questions to GeoTrans regarding the Work Plan, and these questions were answered in an April 7, 2005 memo. The Work Plan was subsequently approved by the WDNR in a letter dated April 20, 2005. The approval letter and answers to questions about the Work Plan are provided in Appendix A.

2.2 Pilot Test Objectives

The overall objective of the pilot test was to determine the feasibility of active methane extraction. The specific objectives of this pilot test were to determine whether: 1) the existing passive gas collection piping can be effectively used as part of an active gas extraction system; 2) the leachate head wells either alone or in combination with the passive gas collection piping can function as part of an active gas extraction system; and 3) evaluate whether additional vertical gas extraction wells would be needed if a gas extraction system is needed and feasible. The specific tasks included:

- Determining whether each of the extraction system configurations is capable of inducing a partial vacuum throughout the landfill and at gas probes outside of the landfill;
- Determining methane concentrations in exhaust gases to evaluate whether a flare would be self-sustaining, or whether energy recovery using a microturbine is feasible (at least 35% methane is needed for either alternative); and
- Determining VOC and vinyl chloride concentrations in exhaust gases to estimate annual emissions that would be expected from an active gas extraction system.

3.0 PILOT TEST EQUIPMENT AND PROCEDURES

3.1 Equipment Specifications

The pilot test was carried out using a skid mounted rental unit provided by Schrader Environmental Services of Ithica, Michigan. The unit consisted of the following:

- Duroflow 3006 positive displacement blower;
- 3 horsepower, single phase, 230 volt, 60 hertz, explosion-proof motor;
- Inlet particulate filter and exhaust silencer;
- Moisture knockout tank, approximately 20 gallon capacity;
- High level shutdown switch for knockout tank;
- 1-inch diameter manual drain valve for the knock-out tank;
- Control panel with on-off switch, motor starter and overload;
- Vacuum gauge on inlet;
- ERDCO direct reading air flow meter; and
- Dilution air valve (after flow meter).

The skid mounted unit was transported to the site on an open trailer on May 9, 2005. The blower motor was powered by a Caterpillar 30 KW Olympian diesel generator, provided by Fabco Rents of Appleton, Wisconsin.

3.2 Pilot Test Preparation

The following work was performed by GeoTrans on May 9, prior to the start of the pilot test:

The rotating ventilators on each of the passive gas vent pipes were replaced with 4-inch
diameter schedule 40 PVC end caps. End caps on select vents had a universal push type
pneumatic quick coupler inserted into a drilled hole for taking vacuum and methane
concentration measurements;

- The covers on the leachate head wells were replaced with 4-inch diameter PVC end caps with quick couplers; and
- A round of baseline methane measurements were taken at all pilot test monitoring points.

3.3 Pilot Test Operation

Pilot testing began on the morning of May 10, 2005, and continued through May 11, 2005. The system was run for approximately 6.5 hours each day.

During the first day, the vacuum blower was connected to two existing passive gas system vents (GV-1 and GV-3; see Figure 1). These vents were selected because they are located nearest to the off-site migration of gas, and are above the deepest part of the landfill. The test was run with a vacuum of approximately 1-inch of mercury and a flow rate of approximately 175 cubic feet per minute (cfm).

For the second day of the pilot test, the original work plan included connecting the vacuum blower to leachate head wells LC-1 and LC-3. However, the blower was unable to provide sufficient vacuum to draw exclusively from these two leachate head wells. While the blower was rated to provide 5-inches of mercury vacuum at a flow rate of about 200 cfm, the blower system overloaded and shutdown numerous times after operating five minutes at approximately 4-inches of mercury and 100 cfm when connected to the two leachate head wells. Because of the limitations of the equipment, a decision was made to conduct the second day of testing by connecting the vacuum blower to LC-3 and GV-2 and GV-4. These sample points are also located on the west side of the landfill, and are adjacent to and north of GV-1 and GV-3, respectively. Using this configuration, the second day of testing ran at a vacuum of approximately 1-inch of vacuum and 175 cfm.

The work plan indicated that a third day of testing would include drawing from gas probe GP-3, leachate head wells LC-1 and LC-3, and gas vents GV-1 and GV-3. However, because the pilot testing the previous day included gas vents and a leachate head well, and blower shutdown

P:\Ripon_Landfill\Reports & Corresp\Gas Extraction Test Report 6-05.doc

GeoTrans. Inc.

occurred when drawing from the leachate head wells and one gas vent, additional testing was not pursued. Furthermore, testing on the first two days indicated that the system had influenced off-site gas probes sufficiently, making a third day of testing unnecessary.

Due to the limitations of the equipment and equipment shutdown, it was not possible to significantly vary the vacuum or the air flow rate during the pilot test. The oxygen concentrations remained within 3% of their initial concentrations during the test.

3.4 Monitoring

Monitoring was performed at the blower system and at observation points (gas vents, leachate head wells and gas probes that were not being used for extraction). The monitoring is summarized below. Field forms are provided in Appendix C.

3.4.1 Blower System Monitoring

Monitoring of the blower system consisted of the following:

- Measuring the vacuum and air flow at the inlet of the blower throughout the tests, using the vacuum gauge and air flow meter provided with the blower unit;
- Determining the methane, carbon dioxide and oxygen concentrations at the inlet to the blower for each portion of the system (i.e., GV-1 and GV-3 connected to blower) used for extraction. A Landtec Gem 500 Gas Analyzer was used to determine methane concentrations in the exhaust gas. Methane concentrations were measured and recorded at the beginning of each test, and several times throughout the tests. Exhaust gas levels of carbon dioxide and oxygen were measured and recorded at the same time as methane.
- Measuring the induced vacuum and air velocity at the inlet to the blower for each portion
 of the system (gas vent or leachate head well) used for extraction. The induced vacuum,
 identified in this report as the "partial vacuum", measures the reduction of pressure
 within a monitoring point relative to the atmospheric pressure. A Dwyer 36-inch slack

tube manometer was used to measure the induced vacuum, and an Airflow TA35 anenometer/thermometer was used to measure the air velocity and temperature.

The purpose in measuring the velocity of air in the pipe from each of the extraction locations was to determine the relative flow of gas from each portion of the system and to try equalizing the flow from each portion of the system. However, because of the limitations of the blower equipment shutting down, the vacuum and flow rates could not be varied for the specific extraction location. As a result, greater air flow rates were generally observed from the extraction point located closest to the blower.

A Summa canister was used to collect air emission samples at the end of each test. The Summa canister samples were analyzed for VOCs using method TO-14 by Pace Analytical in Minneapolis, Minnesota. The analytical results are provided in Appendix D.

Draeger tubes were used to analyze emission samples for vinyl chloride at the beginning, middle and end of each test. Field forms indicating Draeger tube testing results are provided in Appendix C.

3.4.2 Observation Point Monitoring

Prior to the start of each test, the methane, carbon dioxide and oxygen concentrations were measured at each of the observation point monitoring locations. These observation points included the following gas probes, leachate head wells, gas vents and water table monitor wells, as shown on Figure 1:

GP-1	GP-2	GP-3	GP-6
GP-7	GP-8	LC-1	LC-2
LC-3	GV-1	GV-2	GV-3
GV-4	GV-9	GV-12	MW-101
MW-102	MW-103	MW-104	

P:\Ripon_Landfill\Reports & Corresp\Gas Extraction Test Report 6-05.doc

During each test, the partial vacuum and concentrations of methane, carbon dioxide and oxygen were recorded in the first hour, and at least twice more during the duration of each of the pilot tests. The slack tube manometer and the Landtec GEM 500 were used to measure partial vacuum and methane, carbon dioxide and oxygen. Barometric pressure and ambient temperature were recorded at least twice each day.

3.5 Condensate Handling

The blower unit included a 20 gallon knock-out tank for collecting condensate. The tank was checked for condensate at the end of each day of testing. No condensate was generated during the pilot tests; therefore no sample was available for analysis.

4.0 PILOT TEST RESULTS

Monitoring results are summarized on the following tables:

- Table 1 provides methane concentrations at observation points;
- Table 2 provides carbon dioxide concentrations at observation points;
- Table 3 provides oxygen concentrations at observation points;
- Table 4 provides partial vacuum measurements at observation points;
- Table 5 provides methane, carbon dioxide, oxygen, air flow rates, temperature and partial vacuum at each of the extraction points;
- Table 6 provides Draeger tube measurements of vinyl chloride during the tests; and
- Table 7 provides laboratory analytical results for the samples collected in the Summa canisters.

The results for each day of pilot testing are discussed below.

4.1 Day 1 Pilot Testing

4.1.1 Extraction System Monitoring

During the first day, the blower was connected to gas vents GV-1 and GV-3. The partial vacuum measured in the pipe to GV-1 ranged from 8.9 to 9.4 inches of water column (wc), and the partial vacuum in the GV-3 leg ranged from 10.4 to 10.65 inches wc. The total flow rate of air was about 175 cfm during the test.

Methane concentrations in the gas from GV-1 ranged from 23.5 to 31.7%, and oxygen concentrations ranged from 5.3% to 10.1%. The methane concentrations increased slightly throughout the day, while the oxygen concentrations decreased accordingly. Based on the air velocity measurements, between 70 and 80% of the total flow (i.e., 120 to 140 cfm) was originating from GV-1.

Methane concentrations in GV-3 ranged from 16.7 to 25.2%, and oxygen concentrations ranged from 7.8 to 11.1%. Methane concentrations declined over the course of the day, and oxygen concentrations rose slightly. The gas flow originating from GV-3 was about 35 to 55 cfm.

Draeger tube samples were taken from the overall flow to the blower during the middle and at the end of the pilot test. Both samples indicated vinyl chloride concentrations of about 0.5 parts per million by volume (ppmv); this is equivalent to 1.3 mg/m³ by mass.

Analytical results for gas samples collected by Summa canister at the end of the extraction test are summarized on Table 7. The first test (GV-1 and GV-3) had 1.1 ppmv of vinyl chloride. Previous gas sampling results in 2004 ranged from 0.13 to 25.4 ppmv and are provided on Table 8.

4.1.2 Observation Point Monitoring

Concentrations of methane, carbon dioxide, oxygen, and partial vacuum at observation points are provided on Tables 1 through 4. The following are observations that can be obtained from the data:

- Methane concentrations, as well as carbon dioxide concentrations, declined at various locations that were monitored. These included all of the leachate head wells, all gas vents, groundwater monitor wells MW-101, MW-103 and MW-104 and gas probes GP-1, GP-3, GP-7 and GP-8. As would be expected, oxygen concentrations generally rose in those locations where the methane and carbon dioxide declined.
- Partial vacuums were measurable in all of the leachate head wells, all of the gas vents, and in three of the six gas probes (GP-3, GP-6 and GP-7).
- The only observation location that originally contained methane and was not significantly affected during the first day of testing was gas probe GP-2. No reduction in methane concentration was observed, and no partial vacuum was detected at the end of the testing.

The partial vacuums observed throughout the monitoring locations indicate that the extraction system was able to influence all of the gas vents, leachate head wells, and the gas probes located nearest to the landfill.

4.2 Day 2 Pilot Testing

4.2.1 Extraction System Monitoring

During the second day, the blower was connected to gas vents GV-2 and GV-4 and leachate head well LC-3. The partial vacuum measured in the pipe to GV-2 ranged from 15.5 to 16.0 inches wc, and the partial vacuum in the GV-4 leg ranged from 14.1 to 14.6 inches wc. The partial vacuum in LC-3 ranged from 18.8 to 19.9 inches wc. The total flow rate of air ranged from 170 to 190 cfm during the test.

Methane concentrations in the gas from GV-2 ranged from 8.3 to 14.6%, and oxygen concentrations ranged from 10.4 to 13.9%. The methane concentrations increased slightly throughout the day.

Methane concentrations in GV-4 ranged from 14.5 to 31.1%, and oxygen concentrations ranged from 6.1 to 10.6%. Methane concentrations increased over the course of the day.

Methane concentrations in LC-3 ranged from 0 to 30.5%, and oxygen concentrations ranged from 10.5 to 21%. Methane concentrations were steady over most of the day, but declined to zero at the end of the day.

Draeger tube samples were taken from the overall flow to the blower during the middle and at the end of the test. Samples indicated vinyl chloride concentrations of approximately 0.3 to 0.5 parts per million (ppm) by volume; this is equivalent to 0.8 to 1.3 mg/m³ by mass.

Analytical results for gas samples collected by Summa canister at the end of the extraction test are summarized on Table 1. The second test (GV-2, GV-4 and LC-3) had 2.9 ppmv of vinyl chloride.

4.2.2 Observation Point Monitoring

The following are observations that can be obtained from the data on Tables 1 through 4 for the second day of the test:

- Methane concentrations, as well as carbon dioxide concentrations, declined at all
 locations except the two remaining leachate head wells and gas probe GP-2. Several
 locations outside of the landfill (MW-101, MW-103, MW-104, GP-3) that had methane
 prior to the first day of testing did not contain methane on the second day.
- The methane concentrations actually increased in GV-1 and GV-3, rising from zero to over 30% in each vent. Carbon dioxide concentrations also rose and oxygen concentrations declined in these vents.
- Partial vacuums were measurable in all leachate head wells and gas vents, and in three of the six gas probes (GP-3, GP-6 and GP-7).
- As compared to the first day of testing, methane concentrations in GP-2 declined from approximately 27% to 0.5% or less. Carbon dioxide also declined and oxygen increased accordingly.

The increase in methane concentrations in GV-1 and GV-3 indicates steady state conditions had not been reached during the short duration test. If gas extraction were to occur over a longer period of time, or if it were performed with a higher vacuum, it is expected that the methane concentrations in these vents would also decline.

The partial vacuums that were observed throughout the monitoring locations indicate that the extraction system was able to influence all of the gas vents and leachate head wells, and the gas probes nearest to the landfill.

4.3 Air Emissions

The WDNR has established several air emission limits that may apply to sources of VOCs. Section NR406.04(2)(c) of the Wisconsin Administrative Code (WAC) limits the maximum amount of volatile organic compounds that can be emitted to the ambient air without any air

pollution control permit to 5.7 pounds per hour. Section NR419.07(4)(b) WAC limits maximum emissions with a permit to 9 pounds per hour. These limits apply to full time operation of gas vent systems for remediation.

Section NR 419.07 WAC requires air emission controls for a landfill gas extraction system if VOC emissions exceed 216 pounds per day (see ch. NR 445, Table 3). The Lowest Achievable Emission Rate is required if a source emits more than 300 pounds per year of vinyl chloride. Assuming an extraction rate of about 100 cubic feet per minute and an average vinyl chloride concentration of 2.0 ppmv based on the Summa Canister test results during the pilot study, the estimated average emission rate for vinyl chloride would be 0.002 lb/hr or 0.048 lb for a 24-hour day. This is approximately 17.5 lb/year for a system that is operating continuously. Based on these calculations, air emissions controls for VOCs or vinyl chloride are not expected to be required for long-term operation of an active gas extraction system.

5.0 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

- 1. When connected to a vacuum blower, the existing passive landfill gas venting system was capable of reducing methane concentrations at the gas probes located off-site.
- 2. Vinyl chloride is present in the landfill gas at concentrations between 0.5 and 2.9 ppm by volume. For an active gas extraction system operating at 100 cfm, this would provide an annual emission of about 17.5 pounds of vinyl chloride, which is far below the threshold of 300 pounds per year that requires air pollution control.
- 3. The methane concentration observed during the pilot testing was less than 35%, which is the minimum required to sustain a flame in a flare or to operate a microturbine. Therefore, energy recovery with a microturbine is not practical at this site.
- 4. As indicated in the pilot test approval letter from the WDNR, a flare is not necessary for an active gas extraction system for the FF/NN landfill because the landfill contains fewer than 500,000 cubic yards of wastes, and does not exceed air pollution limits in chapter NR 400 WAC.
- 5. Because of the short-term nature of the pilot test, it was not determined whether the active removal of landfill gas containing vinyl chloride from the gas vent system will improve groundwater quality over the long-term.
- 6. A greater vacuum (4 to 5-inches of mercury) is necessary to withdraw landfill gas from the leachate head wells as compared to the passive gas extraction system (1-inch of mercury). This is due to the small diameter of the leachate head wells, and the large volume of pipe and pore space that is associated with the passive gas system.

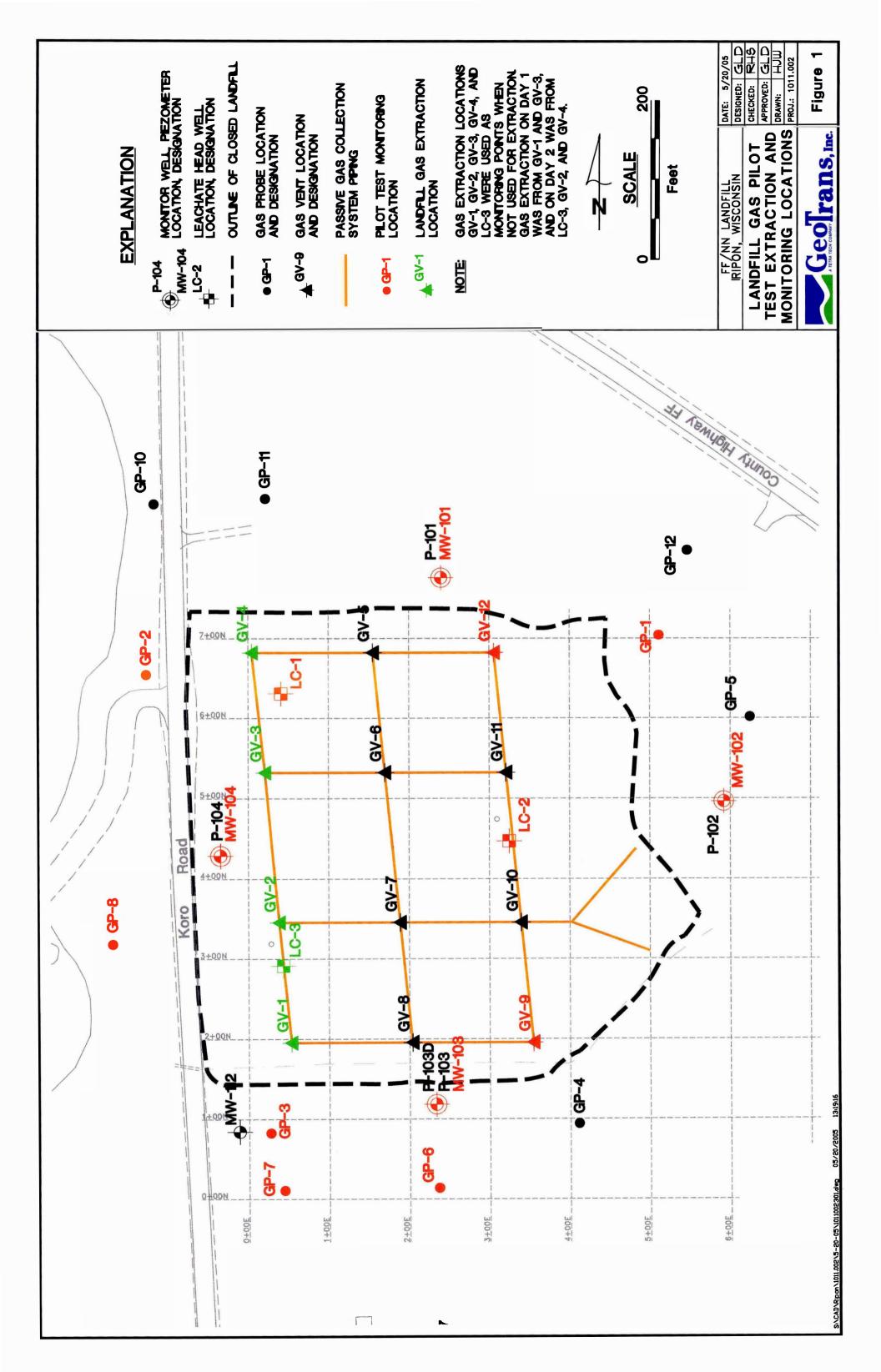
5.2 Recommendations

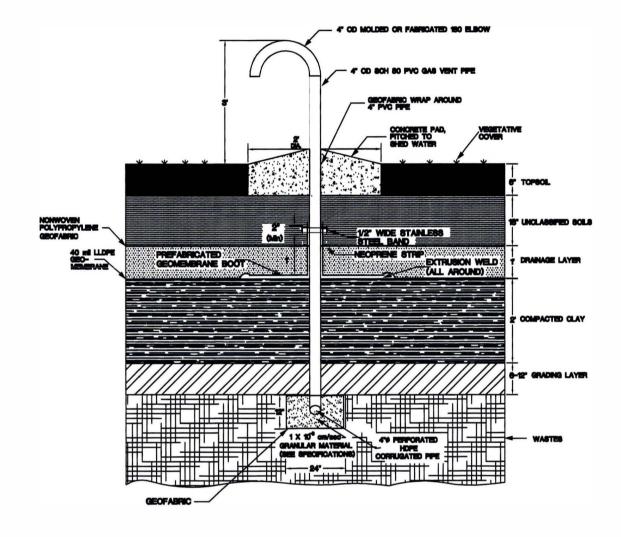
1. An interim active gas extraction system should be constructed to evaluate the off-site migration of methane on groundwater quality. The active gas extraction system should utilize the passive gas vents for collecting methane.

- 2. The Focused Feasibility Study (FFS) for Groundwater should be completed for the FF/NN Landfill and include the evaluation of active gas extraction from the landfill as a means to remove vinyl chloride as a source of impacts to groundwater.
- 3. As an interim measure, a temporary blower unit with above-ground piping should be connected to the existing passive gas venting system. The same blower unit and associated equipment may be used for both the interim and final systems. The advantages of such an interim system are that 1) it can be implemented in a short period of time (during 2005) to reduce the methane and possibly vinyl chloride, 2) the effect on groundwater quality can be better evaluated with the longer-term operation and monitoring of the system, 3) the need to connect additional vents and/or leachate wells can be determined for final system design, if changes are needed, and 4) air emission monitoring of the system could provide compliance data regarding removal rates and the effectiveness of the system.

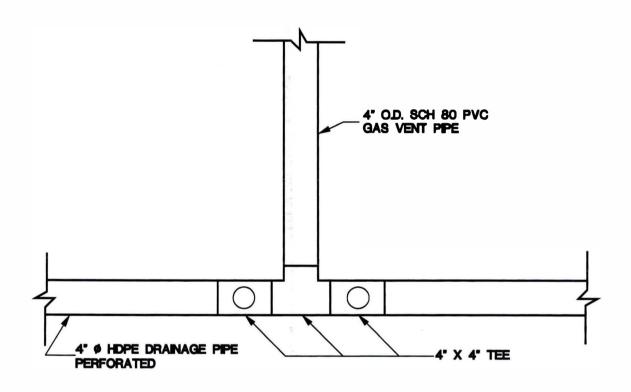
5.3 Active Gas System Conceptual Design

The conceptual design of an active gas system would include the following components:

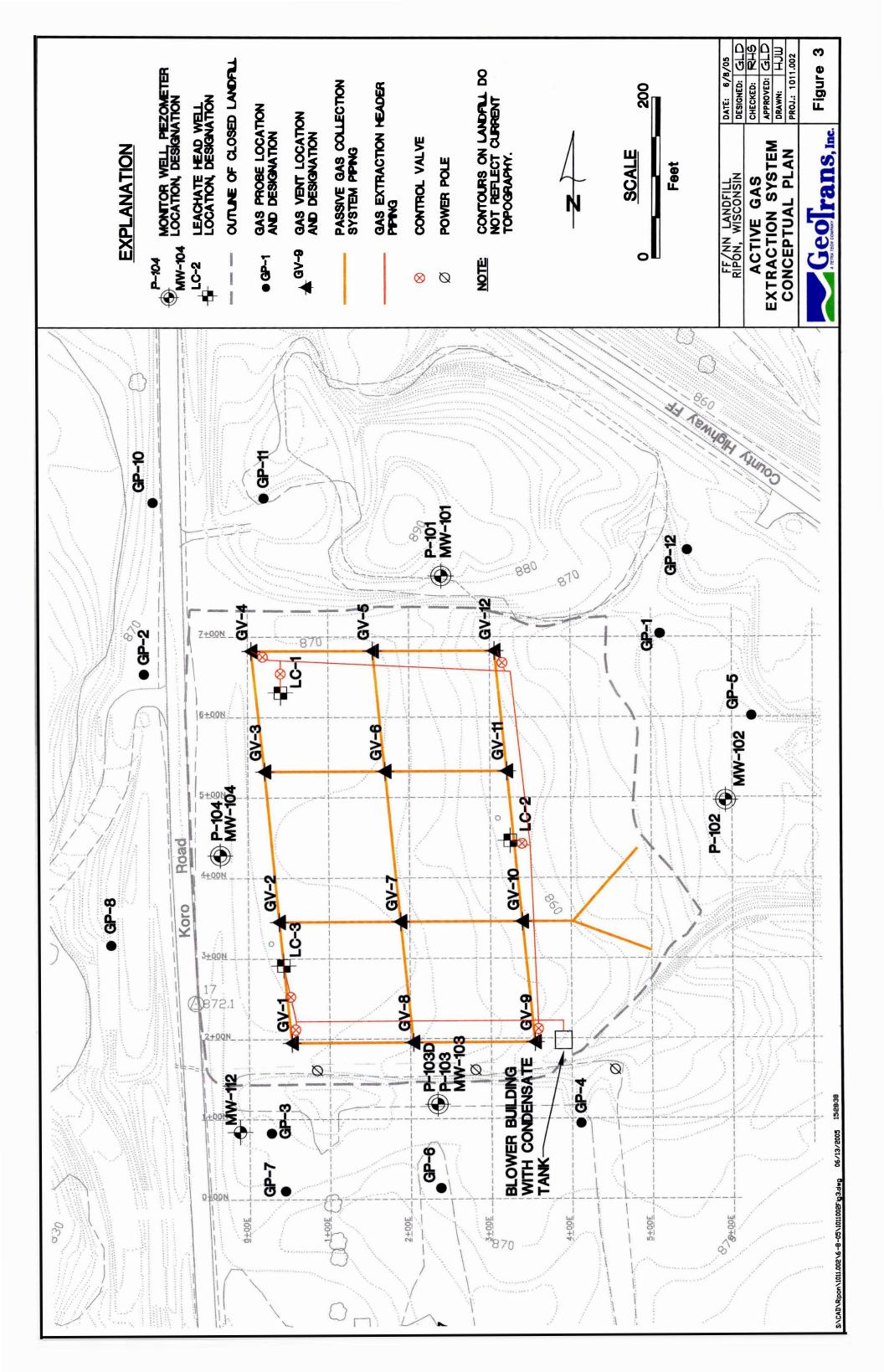

- Variable speed blower and motor, capable of producing a vacuum of 1 to 5-inches of mercury, with a flow rate of 100 to 200 cfm;
- Inlet particulate filter and exhaust silencer;
- Condensate collection tank:
- High level shutdown switch for condensate collection tank;
- Control panel with on-off switch, motor starter and overload; and
- A stack to exhaust gases.


As indicated in the pilot test approval letter from the WDNR, a flare is not necessary for an active gas extraction system for the FF/NN landfill since it contains fewer than 500,000 cubic yards of wastes, and does not otherwise exceed air pollution limits in chapter NR 400 WAC based on the pilot test results.

The layout of the conceptual system is shown on Figure 3. The components of an example system are described in Appendix E. The blower unit and associated equipment would be located at the southeast corner of the landfill to access the available power lines across the southern portion of the site, and to facilitate gravity drainage of condensate in the header lines. The header piping would be extended to the gas vents at the four corners of the landfill in order to equalize withdrawal of gas throughout the area of the landfill.


Single phase electricity is available from the power line that runs across the southern portion of the landfill. According to a representative of Alliant Energy, the cost to extend three-phase power to the site is about \$25,000. The additional cost to extend three-phase power to the site will be compared to the lower power usage and costs for a three-phase motor as a part of the design of the interim gas extraction system.

FIGURES


Passive Vent Detail NTS

Gas Vent Piping Detail

FF/NN LANDFILL RIPON, WISCONSIN	DATE: 2/16/05			
RIPON, WISCONSIN	DESIGNED:	GLD		
	CHECKED:	RHS		
GAS VENT DETAILS	APPROVED:	GLD		
GAS VENT DETAILS	DRAWN:	MCH		
	PROJ.: 1011	1.002		
Geol Trans, Inc.	Figur	e 2		

Si\CAD\Ripon\1011.002\2-16-05\1011002202.dwg 02/18/2005 16:46:06

TABLES

Table 1 - CH₄ Monitoring Landfill Gas Extraction Pilot Study FF/NN Landfill, Ripon, WI

		;	Baseline	Runnin	g GV-1 &	: GV-3	Running	GV-2, GV	'-4, LC-3
		Date	5/9/2005		5/10/2005			5/11/2005	
		Time Start	12:14	10:06	15:49	17:54	7:31	12:08	14:23
	Location	Time End	14:04	10:53	16:52	18:51	8:31	13:08	15:33
\Box	NW	LC-1	55.8	5.34	35	27.1	NM	18.5	0.9
	Е	LC-2	0.6	29.5	0	0	0.1	0	0
-	SW	LC-3	36.1	41.5	31.5	28.5	43.5	extracti	on point
waste	SW	GV-1	18.8	ext	raction po	int	0	32	32.6
	W	GV-2	25	1.9	0	0	11.4	extracti	on point
hii	W	GV-3	10.6	ext	raction po	int	0	29.7	41
Within	NW	GV-4	NM	NM	NM	0	7.9	extracti	on point
	SE	GV-9	30.7	30.4	21.2	17.3	18.1	28.1	21.5
}	NE	GV-12	0	4.2	0	0	0.7	0.8	0.3
-}	W	MW-104	18.1	0	0	0	0	0	0
	N	MW-101	1.6	0	NM	0	0	NM	NM
	Е	MW-102	0	0	0	0	0	0	0
j e	S	MW-103	6	0	0	0	0	0	0
waste	Е	GP-1	29.5	27.7	21.2	18.7	26.3	23.1	22.9
è	W	GP-2	28	27.6	27.6	26.1	26.8	0	0.5
Outside	S	GP-3	18.3	0	0	0	0	0	0
Įõ	S	GP-6	0.2	0.3	0.2	0.1	0	0	0
	S	GP-7	1.7	1.8	0.9	0.7	0.3	0.1	0.1
	W	GP-8	0.3	0	0	0	0	0	0

Table 2 - CO₂ Monitoring Landfill Gas Extraction Pilot Study FF/NN Landfill, Ripon, WI

		:	Baseline	Runnin	g GV-1 &	& GV-3	Running GV-2, GV-4, LC-3			
		Date	5/9/2005	5	710/2005	5		5/11/2005		
		Time Start	12:14	10:06	15:49	17:54	7:31	12:08	14:23	
	Location	Time End	14:04	10:53	16:52	18:51	8:31	13:08	15:33	
	NW	LC-1	37.8	35.6	23.4	17.7	NM	11.9	0.8	
	Е	LC-2	0.4	18.6	0	0	0.1	0	0	
	SW	LC-3	21.9	24.8	19.1	17.8	25.7	extraction	on point	
ste	SW	GV-1	12.2	exti	action p	oint	9	22.2	22.1	
Within waste	W	GV-2	15.3	1.5	0	0	7.4	extraction	on point	
Fi.	W	GV-3	6.5	6.5 extraction point				20.7	26.7	
ĭ.ĭ	NW	GV-4	NM	NM	NM	0	4	extraction	on point	
	SE	GV-9	17.6	17.3	13.6	12	12.7	28.1	14.4	
	NE	GV-12	0	3	0	0	0.8	0.8	0.3	
	W	MW-104	17.9	0	0	0	0	0	0	
	N	MW-101	16.4	0	NM	0	9.4	NM	NM	
	E	MW-102	2.3	0	0	0	0.1	0	0	
15	S	MW-103	15.9	0	0	0	0	0	0	
waste	Е	GP-1	11.8	11_	8.9	8.1	11.3	10	9.7	
	W	GP-2	26.1	25.6	25.8	25.1	24.1	0.7	1	
Outside	S	GP-3	19	0	0	0	0	0	0	
۱ŏ	S	GP-6	6.8	7.7	5.8	5.1	3.3	2.7	2.3	
	S	GP-7	7.8	7.7	5.4	5.3	3.7	2.5	2.7	
	W	GP-8	8.9	15	0.4	0.2	0.4	0.4	0.3	

Table 3 - O₂ Monitoring Landfill Gas Extraction Pilot Study FF/NN Landfill, Ripon, WI

			Baseline	Runnin	ıg GV-1 &	: GV-3	Running	GV-2, GV	-4, LC-3
		Date	5/9/2005	,	5/10/2005			5/11/2005	İ
		Time Start	12:14	10:06	15:49	17:54	7:31	12:08	14:23
	Location	Time End	14:04	10:53	16:52	18:51	8:31	13:08	15:33
	NW	LC-1	1	1.9	8	10.9	NM	14.7	20.2
	E	LC-2	19.9	10.3	20.5	20.5	20.9	20.8	20.3
	SW	LC-3	7.5	5.6	9.1	10.5	6.4	extraction	on point
ste	SW	GV-1	11.1	ext	raction po	int	20.8	4.9	3.7
≱	W	GV-2	10.5	19.5	20.5	21.1	15.4	extraction	on point
Within waste	W	GV-3	16.2	ext	raction po	int	20.7	6.2	2
Nit.	NW	GV-4	NM	NM	NM	20.8	17.6	extraction	on point
	SE	GV-9	7.6	7.6	10.7	11.9	12.3	8.7	11.3
}	NE	GV-12	20.3	17.8	20.6	20.8	20	19.9	20.3
1	W	MW-104	0.2	20.5	20.7	21.1	20.7	20.7	20.7
	N	MW-101	1.6	20.6	NM	20.7	9.4	NM	NM
	Е	MW-102	14.6	20.4	20.8	20.7	20.7	21	20.1
1	S	MW-103	0.4	20.6	20.7	20.7	21	21	20.8
waste	Е	GP-1	1.7	3.5	6.4	8.1	4.2	6.7	5.1
	W	GP-2	1.7	2.1	1.7	2.2	4	20.5	20
Outside	S	GP-3	0.2	20.6	20.6	20.7	21	20.9	20.7
o	S	GP-6	10.5	8.9	12.6	14.3	18.2	18.5	18.8
	S	GP-7	10	10.4	13.1	13.9	17.2	18.5	18.1
	W	GP-8	9.3	18.8	19.8	20.4	20.8	20.8	20.8

Table 4 - Vacuum Monitoring Landfill Gas Extraction Pilot Study FF/NN Landfill, Ripon, WI

		Ī	Baseline	Runnin	g GV-1 &	GV-3	Running	GV-2, GV	7-4, LC-3		
		Date	5/9/2005		5/10/2005	•		5/11/2005			
		Time Start		11:48	15:49	17:53	7:28	12:08	14:25		
	Location	Time End	l	12:40	16:51	18:42	8:35	12:59	15:35		
	NW	LC-1				1	0.9	0.7	NM	0.9	0.9
1	Е	LC-2		0.2	1.4	1.85	NM	1.6	1.4		
	SW	LC-3		0.8	0.5	0.85	NM	extraction	on point		
aste	SW	GV-1		ext	raction po	int	0	2.15	2.2		
Within waste	W	GV-2	ဥ	2.65	2.3	2.8	NM	extraction	on point		
li i	W	GV-3	2.65 2.3 2.8				0	2.1	2.1		
Mil	NW	GV-4	nec	NM	NM	2.6	NM	extraction	on point		
	SE	GV-9	sur	0.35	2.5	2.6	NM	2.05	2		
ł	NE	GV-12	pre	0.005	2.3	2.5	NM	2.1	2.5		
ł	W	MW-104	Ė	no cap	no cap	no cap	NM	no cap	no cap		
	N	MW-101	ake	no cap	no cap	no cap	NM	no cap	no cap		
	E	MW-102	of t	no cap	no cap	0	NM	0	0		
ig	S	MW-103	Ž	no cap	no cap	no cap	NM	no cap	no cap		
Was	Е	GP-1]	0.1	0	0	NM	0	0		
ge	W	GP-2]	0.1	0	0	NM	0	0		
Outside waste	S	GP-3	}	0	0.15	0.15	0	0.1	2.2		
Įõ	S	GP-6	}	0	0.1	0.1	NM	0.1	0		
	S	GP-7	}	0	0.1	0.1	NM	0.1	0		
	W	GP-8	}	0	0	0	NM	0	0		

Table 5 - System Monitoring Landfill Gas Extraction Pilot Study FF/NN Landfill, Ripon, WI

			5/10	/2005
	Blower Exhaust	Blower Inlet	GV-1 Leg	GV-3 Leg
Temp			NT	NT
Vacuum (water level)			9"	10.4"
Flow Rate (fpm)			NT_	NT
CH4			28.5	24.3
CO ₂			16.4	15.9
O_2			8.2	9.1
Time			10:00	10:00
Temp			NT	NT
Vacuum (water level)			NT	NT
Flow Rate (fpm)			NT	NT
CH₄			25.3	25.2
CO ₂			15.2	18.4
O_2			9.5	7.8
Time	J		11:32	11:29
Temp		L	NT	at ely
Vacuum (water level)			14.5"	GV-3 Leg turned off at valve for approximately minutes
Flow Rate (fpm)	1	1	NT	g tumed approxi minutes
CH₄			23.5	g to app
CO ₂			14.5	1 g [
O ₂			10.1	V-3
Time			11:37	ρ s
Temp			NT	NT
Vacuum (water level)			8.9"	10.4"
Flow Rate (fpm)	1	1	3750	827
CH₄	ł		28.5	24.5
CO ₂	ł	1	17.9	18.6
O ₂	1		7.5	7.9
Time	J	1	12:35	12:35
Temp			68	86
Vacuum(water level)			9"	10.65"
Flow Rate (fpm)			3950	1525
CH₄			31.9	19.3
CO ₂			20.9	15
O ₂	1	1	5.1	9.8
Time			16:50	16:55
Temp			54	65
Vacuum (water level)			9.4"	11"
Flow Rate (fpm)			NT	NT
CH ₄			30.7	16.7
CO ₂	1	1	21	13.6
O ₂	1	1	5.3	11.1
Time	1		19:00	19:00

		5	/11/200	5
Blower	Blower	LC-3	GV-2	GV-4
Exhaust	Inlet	LC-3		UV-4
		NT	NT	NM
	4" hg	19.2	15.8"	14.5"
		NT	NT	NM
		26	8.3	14.5
		15.4	9	12.8
		11.9	13.9	10.8
	8:35	11:27	11:25	11:20
	0.55	NT	NT	NM
				- 1212
		19.3"	16.0"	14.6"
		NT	NT	NM
		20.8	9.5	21.2
<u> </u>		12.2	9.3	14.7
]		13.9	13.8	10
		11:52	11:58	11:59
		51	50	
	50 cfm	500	1750	
	Jo cini	. 500	1750	
		1		
		, 		
		NT	NT	NM
		18.9"	15.8"	14.4"
1	<u>. </u>	NT	NT	NM
<u> </u>	<u>, </u>	30.5	14.6	30.1
		17.3	13.9	19.9
	<u> </u>	10.5	10.4	6.1
i 	<u>, </u>	13:10	13:12	13:10
	1	67	64	NM
1		18.8"	15.5	14.1
 	 	750	1624	NM
<u> </u>	 	0	10.1	21.4
i	i	0	9.8	14.6
	i	21	13.4	10.6
i	i	15:46		
				1
 	 	-	 	
 		 	 	
 		 		
	 	 	 	
	 	1	 	
	<u> </u>			

Table 6 - Drager Tube Measurements Landfill Gas Extraction Pilot Study FF/NN Landfill, Ripon, WI

Extraction Points	Date	Time	Vinyl Chloride Measurement
GV1, GV-3	5/10/2005	16:15	0.5 ppm
GV1, GV-3	5/10/2005	19:20	0.5 ppm
LC-1, LC-3	5/11/2005	9:15	0.0 ppm
LC-3, GV-2,			·
GV-4	5/11/2005	12:10	0.5 ppm
LC-3, GV-2,			
GV-4	5/11/2005	15:45	0.5 ppm

Notes:

Used Drager tube for vinyl chloride with detection limit 0.5 ppmv. Tubes sampled for equivalent of five strokes (hand pumps)

Table 7: Landfill Gas Analytical Results Landfill Gas Extraction Pilot Study FF/NN Landfill, Ripon, WI

Sampling Point	Date	cis-1,2-dichloroethene	Ethylbenze	Total Hydrocarbons as gas	Toluene	Vinyl Chloride	Total Xylenes
GV-1 & GV-3	5/10/2005	630		11700	2200	1100	400
GV-2 & GV-4 & LC-3	5/11/2005	2200	320	11400	2500	2900	890


Values in ppbv (parts per billion by volume) Analyzed using EPA Method TO-14A

Table 8: Landfill Gas Analytical Results FF/NN Landfill, Ripon, WI

Sampling Point ID	Date	Вепzепе	Chlorobenzene	Chloroethane	Chloromethane	Dichlorodifluorom ethane	1,1-Dichloroethene	cis-1,2- dichloroethene	trans-1,2- Dichloroethene	1,2-dichloro- 1,1,2,2- tetrafluoroethane	Total Hydrocarbons as gas	Tetrachloroethene	Toluene	Trichloroethene	Vinyl Chloride
GP-1	9/29/04	31.2		208		2,980									
GF-1	1/28/05				0.6								1.8	.8	
GP-2	9/29/04	61.1	58.1	70.6	73	347		343	22.5	220		23.1		72.8	410
GP-2	1/28/05					270		470		190	4,600				
GP-3	9/29/04	102		689		909	110	6,660	229	131				205	25,400
Gr-3	1/28/05			450		590		4,500			4,800				12,600
LC-1	9/29/04			9.1		70.8				9.5					
LC-I	1/28/05					553		1,080		178	10,400	<u> </u>			130

Values in ppbv (parts per billion by volume) Analyzed using EPA Method TO-14A

APPENDIX A APPROVAL LETTER AND ANSWERS TO QUESTIONS

State of Wisconsin \ DEPARTMENT OF NATURAL RESOURCES

Jim Doyle, Governor Scott Hassett, Secretary Ron Kazmierczak, Regional Director Oshkosh Service Center 625 E. County Road Y, Suite 700 Oshkosh, WI 54901-9731 Telephone 920-424-3050 FAX 920-424-4404

April 20, 2005

Ray Roder (Representative for the Ripon FF/NN landfill Potentially Responsible Party (PRP) Group) Reinhart, Boerner, Van Deuren S.C. P.O. Box 2018

Madison, WI 53701-2018

SUBJECT: Conditional Approval of the Pilot Test Workplan Landfill Gas Extraction System report for the Ripon HWY FF/NN Landfill, WDNR License # 467,

BRRTS # 02-20-000915

Dear Mr. Roder:

The Department has received the March 23, 2005 GeoTrans report titled "Pilot Test Work Plan Landfill Gas Extraction System" on behalf of the PRP Group via an email dated March 23, 2005. You have requested our approval of this workplan prior to implementation. The Department and EPA had some initial questions in regards to the workplan which were then answered in a email memorandum dated April 7, 2005 from Jerry DeMers at GeoTrans. This memorandum will be considered an amendment to the workplan. The Department of Natural Resources ("Department"), hereby conditionally approves the landfill gas workplan for the closed Ripon FF/NN Landfill (License number 467) subject to the following conditions:

- 1. Please add MW-101 and MW-102 as part of the vacuum measurement locations.
- 2. The condensate from the testing that will be disposed of at the local WWTP the analytical should be submitted in the gas pilot testing report.
- 3. After the first test is completed, overnight recovery of the methane in the landfill may not be adequate. If methane levels/pressure levels have not returned to pre-testing conditions, more time should be allowed for recovery. This should be done to make sure the next test is representative.
- 4. Please include photo-documentation of the differing testing setups in the gas pilot testing report.
- 5. It has been previously discussed in an email from Jerry DeMers dated March 29th, 2005 that the PID meter would not be used for VOC measurements because of the interference's due to the high methane concentrations. The Department is in concurrence with this. Summa canisters will still be utilized to obtain a representative VOC analysis of the extracted gases and a Landtec GA90 instrument will measure methane, oxygen and carbon dioxide concentrations.
- 6. The Department will allow, in the pilot test, to utilize a vacuum on GP-3 for the third test, but would also like to state that utilization of gas extraction for a full scale implementation (if requested) is discouraged and potentially would not be approved. Gas extraction should be taking place from within the waste mass, which will tend to

keep the gas more confined and deter landfill gas from escaping out the sides of the waste mass.

The installation of large diameter vertical gas extraction wells should not be discarded as a possibility for remediation. If the pilot test shows that the current gas system is not adequate for gas extraction, then large diameter gas extraction wells should be considered as part of the Feasibility Study.

It should be noted that a flare type gas extraction unit may not be necessary. Currently, under NR506.08(6) (WAC) landfills which exceed a mass of 500,000 cubic yards are required to have a gas extraction system that collects and combusts the gases. However, due to the size of the landfill (less than 500,000 cubic yards), combustion is not necessary if the emissions do not exceed any standards in NR400 (WAC). However, a 25 foot stack would be necessary to vent the landfill gases without prior gas combustion.

If you have any questions concerning this letter, please contact me at (920) 303-5447 or Lee at 608-267-0542.

Sincerely,

Jennie Easterly Hydrogeologist Remediation and Redevelopment Program

Lee Archiquette Solid Waste Engineer Solid and Hazardous Waste Program

cc: Oshkosh Case File

Jerry DeMers – GeoTrans Inc. via email

Bernard Schorle – EPA via email

Memorandum

To: Jennie Easterly, WDNR

Cc: Ray Roder, Nelson Olavarria, Steve Barg, Lee Archiquette, Bernard Schorle

From: Jerry DeMers, GeoTrans

Date: April 7, 2005

Re: Response to WDNR and US EPA Comments on Gas Extraction Pilot Test Work

Plan

Response to Lee Archiquette's Comments from the WDNR

Page 2-2, Sec. 2.3: Why is a vacuum being applied on GP-3 during the test?

A vacuum is to be applied to GP-3 on the third day of the test. It is hoped that when the vacuum is applied to the passive gas vent system (day 1) and to the leachate head wells (day 2) that we will be able to induce a vacuum at off-site gas probes. If we are not able to do this when drawing from the passive vents and the leachate head wells, then day 3 will include drawing from both together, plus from GP-3, to see if this combination can induce a vacuum at other off-site gas probes.

It is possible that the existing infrastructure of passive gas vents and leachate head wells may not be adequate as part of an active gas collection system for the landfill. The construction of new gas extraction wells through the existing composite cap is both costly and it compromises the integrity of the cap. If drawing on the passive gas system and leachate head wells cannot induce a vacuum in the off-site areas where landfill gas is now present, then also drawing from a new extraction well(s) outside of the landfill (simulated by drawing from GP-3) may provide a collection system adequate to prevent landfill gas from traveling off-site.

Page 2-4, Sec. 2.4.2: Are all locations going to be monitored during each phase of the test?

All of the locations will be monitored during each phase of the test.

Page 2-5, Sec. 2.4.2: Add barometric trend. (last sentence)

By measuring the barometric pressure at the beginning, middle and end of the day for each of the three days we will be able to determine the barometric trend.

Page 2-5, Sec. 2.5.1: Do they have an acceptance agreement with the POTW for the condensate?

Phil Hoopman, the operator of the Ripon POTW, has indicated that the condensate from the pilot study can be disposed of at the POTW. Although not indicated in the work plan,

P:\Ripon_Landfill\Reports & Corresp\Response to Gas Pilot test comments from WDNR 4-6-05.doc

we will collect a sample of the condensate and analyze it for VOCs. VOC concentrations will thus be known if larger quantities of condensate from an active gas extraction system require disposal at the POTW.

Page 2-6, Sec. 2.6: Include oxygen concentrations in report.

Oxygen concentrations will be included in the report.

Page 2-7: Assess the use of non-continuous flare.

The report will include an assessment of the use of a non-continuous flare.

Response to Bernard Schorle's Comments from US EPA

Section 1.3. Using the equation in their Method B in the appendix, I would get 17.3 cubic feet of landfill gas (methane and carbon dioxide) per minute using their estimate of the amount of wastes and some different default values. This compares to their 15.6 cubic feet per minute, a nonsignificant difference considering the assumptions that are needed. (I did not find something that said this should be standard cubic feet.)

No response is necessary. The purpose of the calculation was to determine the relative size of the blower to be used for the pilot test. The estimated generation rate is in cubic feet per minute, not standard cubic feet per minute.

Section 2.3. I assume that when it says on the first day, for example, that the vacuum blower will be connected to two of the vents, GV-1 and GV-3, that the blower will be connected to these two vents at the same time, that these two vents will be connected together above the surface of the cap. Is this the case? How will the connections be made to the blower and to each other? There is nothing said in section 2.2 concerning the changes to the ends of the vent pipes that takes into account connecting a vent pipe to the blower. Note that these two vents, as is the case for all of the vents, are already connected to each other through the buried, perforated piping. I am assuming that when a vent pipe or leachate well is connected to the blower it will be possible to measure the vacuum and concentrations at the pipe or well. For the third day, when the blower is connected to the four points manifolded together, I assume it will be disconnected from the gas probe. Is this correct? Will the primary control consideration regarding vacuums in the system be that the oxygen concentrations remain within the stated range? Or will you initially determine what type of vacuum you can use and meet the oxygen criteria and then use that vacuum through the rest of the testing as long as the oxygen criteria is not violated? You say, "Oxygen concentrations in gases extracted from the landfill will be maintained within 3 % of their initial level. . . " Is this the level measured in the combined exhaust gases? If the initial oxygen level is 4.0 volume percent, does this mean that the oxygen content will not be allowed to go above 4.12 volume percent or above 7.0 volume percent? Will anything be done if the oxygen content drops significantly below the initial

P:\Ripon_Landfill\Reports & Corresp\Response to Gas Pilot test comments from WDNR 4-6-05.doc

These two vents will be connected to the blower with above-ground piping. The vacuum inlet piping from the blower will be extended from the blower and divided with a wye or tee, and then piped to each of the vents separately with isolation valves. The vent pipes are 4-inch diameter PVC pipe, and an elbow will be placed on each of the two vents to be connected to the blower inlet pipe. The details of the piping were not included in the work plan; additional parts required to complete the connection will be obtained as needed from the local hardware store.

It may not be necessary to connect to two different vent pipes since they are all interconnected beneath the cap. We are connecting to two vent pipes to try to equalize the extraction over the western area of the site.

You are correct in assuming that we will be able to measure the vacuum and gas concentrations at the vent or well that is connected to the blower.

For part of the third day, the blower will be connected to the two leachate head wells, two gas vents and the gas probe at the same time. While not stated in the work plan, we will also run the blower while connected to the two vents and two leachate head wells while not connected to the gas probe.

We will initially determine what type of vacuum to use that meets the oxygen criterion, and then use that vacuum during the rest of that day's test as long as the oxygen criterion is not violated. Because of the different characteristics of the passive vent system and the leachate head wells, a different vacuum and blower rate will likely be used on different days of the test.

If, as in your example, oxygen is initially 4 percent, we will not let the oxygen concentration rise above 7 percent. If the oxygen concentration falls or stays the same at the beginning of the test, we will increase the flow rate; a falling oxygen concentration would indicate that we are not withdrawing as much landfill gas as is being generated.

Section 2.4.1. Is the Landtec GA90 Gas Analyzer also being used to measure the carbon dioxide and oxygen concentrations? I assume in Table 6 that "Total Hydrocarbons as gas" does not include methane, and maybe ethane and propane. Is this the case? Does it include chlorinated hydrocarbons? Does it represent the nonmethane organic compounds (NMOCs) content?

A Landtec GA90 instrument will be used to measure methane, oxygen and carbon dioxide concentrations.

The Total Hydrocarbons as gas is a measure of compounds with 5 to 12 carbon atoms and does not include methane, ethane, propane, or chlorinated hydrocarbons. According to Pace Analytical Labs, it includes gasoline range hydrocarbons. It includes a subset of

P:\Ripon_Landfill\Reports & Corresp\Response to Gas Pilot test comments from WDNR 4-6-05.doc

non-methane organic compounds (NMOCs), but total NMOCs would be a different analytical procedure. Because this is a small, old landfill, air emissions of NMOCs are not an issue of concern for this site. We will be collecting Summa canisters and analyze for VOCs using method TO-14.

Section 2.4.2. What will be used to measure the methane, oxygen, and carbon dioxide levels at the points where the pressures are being measured, the Landtec GA90 Gas Analyzer or some other instrument?

The Landtec GA90 instrument will be used to measure the concentrations of methane, oxygen and carbon dioxide.

Will any attempt be made to measure the temperature of the gas being withdrawn from the landfill at or near the vent pipes or leachate wells?

We will measure the temperature as well as the velocity at those locations where gas is being withdrawn.

Jerry DeMers - Venting of Landfill Gases at Ripon Site

From: "Hostak, Matthew L." <Matthew.Hostak@dnr.state.wi.us>

To: <gdemers@geotransinc.com>

Date: 6/22/2005 1:53 PM

Subject: Venting of Landfill Gases at Ripon Site

CC: "Easterly, Jennifer S." < Jennifer. Easterly@dnr.state.wi.us>

Hi Jerry,

Re: Venting of Landfill Gases (including Vinyl Chloride) from Abandoned Landfill in Ripon

This is a follow-up to our earlier conversation. I've taken a look at the Air Mgt. rules and I've spoken with a couple other DNR Air staff. Based upon the information provided by you and Jennifer Easterly, there does not appear to be any special requirements or limitations in the DNR Air Mgt. rules (NR 400's).

Your estimate of annual vinyl chloride emissions is well below the NR 445 thresholds, so no minimum stack height is required. Also, it appears that NR 419.03 does not apply because your project is not specifically intended to remediate contaminated soil or water. Finally, it appears that NR 420 does not apply because the contaminants of concern are not from gasoline or petroleum.

If you have any additional Q's, please let me know.

- Matt

Matt Hostak
Air Pollution Engineer (Compliance)
NER - Oshkosh
(920) 424-7893
matthew.hostak@dnr.state.wi.us

APPENDIX B PHOTOGRAPHS

Blower system with system piping/control valves and diesel generator (on right)
- facing south

Blower system (looking northwest)

Blower system with control panel (grey box) – looking north-northeast

Extracting from leachate well LC-3 and gas vent GV-2 (also extracting from $\,$ GV-4 to the north)

Extracting from gas vent GV-4 – looking northwest

 $Gas\ and\ manometer\ sampling-looking\ north-northeast$

Reading the manometer

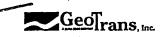
Taking gas measurements at leachate well LC-2

APPENDIX C FIELD FORMS

Gas Monitoring for Landfill Gas Pilot Study FF/NN Landfill, Ripon, WI

Personnel: 4antz demers

Bar. Pres. 29.25	Temp	Time 13: A	1


	CH₄	CO ₂	O ₂	Time	CH ₄	CO ₂	O ₂	Time	CH₄	CO ₂	O ₂	Time
GP-1	199.5	11.5	11.71	1355								
GP-2	29,D	76.1	1.7	1340								
GP-3	18.3	19.0	0.0	1316								
GP-6	0	0	3303	1338								
GP-7	0	0	30.3	1326								
GP-8	0.3	8.9	9.3	1336								
LC-1	55.8	37.9	I.D	1225		·	-		•			
LC-2	0.6	0,4	19.9	1741		-			· ·			
LC-3		21.9	7.5	1218								
GV-1	18.8º	17.7	11.1	1214							-	
GV-2	19 D	15.3	10.5	DEEL	7							V
GV-3	10.6	6.5	16.0	1029					4.			
GV-9	30.7#	17.6	7.6	1745								
GV-12	0#	0	20.3	1232								
MW-101	1.6	16.4	110	1345								
MW-102	8	2.3	14.6	1350								
MW-103	6.0	15.9	0.4	1318								
MW-104	118.1	117,9	0.0	1254								

not capped GP-6 1407 GP-3 17.8 10 PP-6 1404 GP-4 * GP-8 * GP-2 * GP-10 -- S. Koro Road -GV-1 GV-2 GV-3 GV-4 * GP-11 GV-8 **GV-7** GV-6 N GV-5 GV-9 GV-10 GV-11 GV-12 * GP-1 * GP-5 * GP-12

Daily Log for Landfill Gas Pilot Study FF/NN Landfill, Ripon, WI

Date: 5/10/05	Personnel: &D, HWY, NO
Started blown system at 9:35 am	, connected to Gas Vents
GV-1 and GV-3. 175 CFM	at Blowe
After contacting Schraderregan	
extraction system (9 to 10 incl	hes water Column), chedied
system by trying to increase	vacuum. Opened bleed for
inlet an and closed leg / (GI	U-1); vacuum on leg 2
inlet air and closed leg 1 (GI (GU-3) went to 15" W.C. W.	th both legs closed, vacuum
on blower unit read 4" Hq.	Blower unit is producing
appropriate vacuum; extraction	
enough friction to cause gi	reater vacuum in system.
System shuts itself off at 12	:55 pm, system flow rate
of 85 cfm and vacuum on	blower of 4" Hg. Brought
in electrician again; motor is	
(> 18 amps, vs 15 rating), and it	is Fripping the starter
With overload. Suspect that mo	for is barning out and drawing
too much current. Restart syste	
again at 2:15. For Tom Walger	rbach of Ripord Electric comes
and checks out power panel; ti	ghtens connections in starter
and motor leads, and motor	runs at ~ 13.5 amps,
Restart system at 3:25 pm,	running just leg (6U-1)
Thatthe back flow to 100 C	EM Sustem trios aff
at 3:40 pm. Apparently, there	is too much friction
with just one leg of system	connected,
Restart system of 3:45' wit	is too much friction Connected, h both legs (GV-1 and GV-3) n it off at 7 and
System operates until we tur	in it off at 7 pm.
• 1	. []

System Monitoring for Landfill Gas Pilot Study FF/NN Landfill, Ripon, WI

Extraction Points: GU-1 and GU-3

Date: 5/10/05
Personnel: HWY, GLD, NO

	Monitoring Points							
	Blower Exhaust	Blower Inlet	GV-1 Les	GV-3		6V-1	6V-3 Leg	
Temp)					
Vacuum			9,0"	10,4"				·
Flow Rate				·				
CH₄			28,5	24,3		25.3	25.2	·
CO ₂	*		16.4	159		15.2	1814	
O ₂			8.2	9.1		9,5	7.8	
Time	10100		10:00	10:00		11:32	11:29	
Temp				B				
Vacuum			14.5"	Ler Turned at value		8.9"	10.4"	
Flow Rate				1 7. Va		3750	827	
CH ₄			23.5	g, le		28.5	24.5	
CO ₂			14,5	GV-3		17.9	24.5	
O ₂			10,1	٦-			7.9	
Time			11:37			12:35	12.35	
Temp	1		68° 9.0"	86°				·
Vacuum			9.0"	10,65"				
Flow Rate			3950	1525		3950	152	
CH₄			319	19.3				
CO₂			20.9	15.0				•
02			5,1	9.8			,	
Time	-	1	4:50	4:55				
Temp			54°	65°			:	
Vacuum		,	9,411	11.0"				
Flow Rate							A	
CH₄			30.7	16.7			·	
CO ₂			21,6	13.6				·
O ₂	1		5.3	11/1			·	:
Time			19:00	19:00				

Dragen Tibe Measurements for Landfill Gas Pilot Study FF/NN Landfill, Ripon, WI

Leg#	Date	Time	Measurement	Notes	
#1	5-10	10:48	8,5" W.C.	at source.	6V-1
#2		10.48	9.8" W.C. Vacu	4	GU-3
		10:50	rotal Haw= -1750	M at Blower.	
年1		11:10	9.7	at Blaven	
1.0					
1	urun	o Sy	stem Start at	3:25 pm - tust leg	GV-1
		J - /			
			•		
	-11		11.1 02		- }
			14.8" W.C.		
			Flow = 165 cfm		
	Throth	e Ba	de flow to	100 cfm	
			6.6" W.C.		
:			29.8 CH4		
			6.0 O2	System tripped	at 3:4
46U-3	Both	Leas		on at 3-45	
		- J	GV-1 8,9"		6.6
		1.	i •	W.C 22-2 16.8	8.7
				CH4 CO2	02
			Vacuum gauge 0.5"		4
	#1 #2 #2 A	#1 5-10 #2 Running	#1 5-10 10:48 #2 10:50 =1 11:10 Running Sy. Thirthe Ba	#1 5-10 10.48 8.6" W.C. Vacuus #2 10.48 9.8" W.C. Vacuus 10.50 Total Flaw= ~175cx #12 11-10 9.7 175 Running System Start at 19.9 CHy 12.7 CO2 11.1 O2 14.8" W.C. Flaw= 165 cfm Throttle Backe flow to 6.8" W.C. 29.8 CHy 19.8 CO2 6.0 O2 460-3 Both Legs on-line GV-1 8.9" GV-3 10.1"	#1 5-10 10.48 8.6" W.C. at source. #2 10.48 9.8" W.C. Vacum 10.50 rotal Flav= 175ctM at Blower #1 11:10 9.7 175 at Blower Running System Start at 3:25 pm - turling 19.9 CHy 12.7 CO2 11.1 O2 14.8" W.C. Flow = 165 cfm Throttle Back flow to 100 cfm 6.6" W.C. 29.8 CHy 19.8 CO2 6.0 O2 595tem tripped 460-3 Both Legs on-line 6V-3 10.1" W.C. 23.1 18.8 6V-3 10.1" W.C. 22.2 16.8

P:\Ripon_Landfill\Site Info\Gas Pilot Study Forms.xls

System Shuts itself down at 12:55 pm

Restart at 2:10

System flow retig 85 Cfm

Vacuum on system of 2:15

Shut journ at 2:15

Vacuum

Gas Monitoring for Landfill Gas Pilot Study FF/NN Landfill, Ripon, WI

Date: 5-10-05 Time Personnel: 60 NO yantz

constant system on 12 60-3

Jacus Timburgan began 1540 lacrink<u>y</u> Time Time CH CO2 0, Time 1909 GP-1 GP-2 GP-3 GP-6 GP-7 GP-8 LC-1 15.0 1202 LC-2 0.8.1 11:47 LC-3 MUDY in use GV-1 11:48 GV-2 in use MUS GV-3 0.35 1615 1204 GV-9 1806 W 1153 GV-12 no cap no coup X MW-101 apo Cappea 1813 no clap no clap MW-102 no cop nocap MW-103 no corp ino cap no cap MW-104 NOCOD 1803 NM* GP-8 * GP-2 * GP-10 ----- S. Koro Road -----GV-1 GV-2 GV-3 GV-4 * GP-11 * GP-3 * GP-7 GV-6 GV-5 N GV-8 GV-7 GV-9 GV-10 GV-11 * GP-6 GV-12 * GP-4 * GP-1

* GP-5

* GP-12

Gas Monitoring for Landfill Gas Pilot Study FF/NN Landfill, Ripon, WI

Date: 5-10-05 02 CHU Bar. Pres. Temp Time GN-1 d GN-3 Started system @ Personnel: yantz demens davama 1940 1540 CO₂ MTime O₂ 02 CH CO₂ 02 CH Time CH CO₂ Time GP-1 a.d GP-2 A) GP-3 J GP-6 GP-7 GP-8 ЮM 1000 LC-1 10.カ LC-2 9 10.5 1006 1754 LC-3 54 STEM Connected GV-1 20.5 756 100b 1550 GV-2 sustem GV-3 12.6 136 21.2 10.7 11616 GV-9 20.6 GV-12 not D.6 measured MW-101 MW-102 163C MW-103 Q0. a1 MW-104 NM NM1.9 64.7 1.5 19.5 1008 * GP-8 * GP-2 * GP-10 --- S. Koro Road ---GV-2 * GP-3 * GP-11 * GP-7 GV-1 GV-3 GV-4 **GV-8** GV-7 **GV-6 GV-5** N **GV-11** GV-9 **GV-10** * GP-6 **GV-12** * GP-4 * GP-1 * GP-5 * GP-12

Daily Log for Landfill Gas Pilot Study FF/NN Landfill, Ripon, WI

Date: 5/11/05 Personnel: 62D, Hwy, NO
Start system at 8:35 am Shuts down (from overload) about 8:45; it's connect just to and le
Restart at 9:55, connected to LC-1 and LC-3. Q=50cfs
4" Hg on inlet; 3" Hg on the line going to
both LCs. system shits down at 9:00; overload
Called Schvader Fenu Likely cause is motor, and solution
Dis to replace. We will continue testing w/o changing, motor.
Restart system at 11:05, drawing from just 60-4 at
Restart system at 11:05, drawing from just EV-4 at NW corner. Q = 145 cfm; P= 3.5" Hg on blower
Pressure draps to 2,5" Ity after 2 minutes. Purpose of
Test is to see if can influence GP-2 - system
ran for 3 minutes before overloading and shutting down.
No methone in pipe; calculated that volume of pipe = 120 CF,
and at 145 cfm, vapors from well would have been present
Restent system connected to GV-4, LC-3 and GV=2
at 11:15 am. P= 0.5" Hg. Q= 185 CFh
at 11:40 cm P=1,0" Hg Q=190 CFM
at 13:00 P=1:0" Ha Q=170 CFM
$\underline{\hspace{1cm}}$

System Monitoring for Landfill Gas Pilot Study FF/NN Landfill, Ripon, WI

Date: 5/11/05

Extraction Points: & LC-1 and LC-3

Personnel: GLD, HWY, NO

Baronetic 29.53

Personnel:	- 	<u> </u>	9:20066 Baronelvic 27.55						
<u> </u>	Blower			Monitori	ing Points	1 system connected to			
2.4	Exhaust	Blower Inlet	9:15	12	GV-1	LC-3	GV-2	GU-4	
Temp		,	•						
Vacuum		4"49	3-4/tg	3.4 Az		19,2"w.	15,8" WC	14,5" W	
Flow Rate				0.1					
CH₄			D	<i>'O</i> .		26.0	8,3	14-5	
CO ₂			0	1)		15.4	9,0	12.8	
O ₂			20.1	20.7		11.9	13.7	10.8	
Time		8:35	9:20	7:20		11:27	11:25	11:20	
Temp									
Vacuum					2.1 "wc	19,3"w=	16,0 wic.	14,666	
Flow Rate									
CH₄				٠.	26.0	20.8	9.5	21-2	
CO ₂			·		18.0	12.2	9.3	14.7	
O ₂	1				6.5	13,9	13.8	10.0	
Time			·		11:54	11:52	11:58	11:59	
Temp				,		510	50°F		
Vacuum									
Flow Rate		90gn				500fpm	1750 fpm		
CH ₄									
CO ₂									
O ₂									
Time			-						
Temp					ĺ				
Vacuum				ĺ	Ì	18.9 "wc	15.8	14-4	
Flow Rate				İ	i				
CH ₄		·				30:5	14.6	3011	
CO2		·				17.3	13.9	19.9	
O ₂						10.5	10,4	601	
Time						3:10	圖:	3.40	

Vin O

13:12

Geo	Trans, inc.
-----	-------------

System Monitoring for Landfill Gas Pilot Study FF/NN Landfill, Ripon, WI

Date: 5/11/05 Personnel: Yantz demers

Extraction Points: LC3 GV-2, GV-4

•	Monitoring Points									
	Blower Exhaust	Blower Inlet	LC-3	64-2	GV-4					
Temp			67	AHATO	456	+ AUN N	mon			
Vacuum	1 1" Ha	1" 140	18.8	15.5	14.1		1 GV-4	had		
Flow Rate	170 cfm		750	1624	NM		10.00	molina		
CH4	-		0	10.1	21.4		100	ort		
COz		·	0	9.8	14.6		1 1°C	V 11		
02			21.D	13.4	10.6	·	1	ocity 14		
Time			1546	1545	1544					
Temp										
Vacuum										
Flow Rate										
CH ₄										
CO ₂										
O ₂					•					
Time	<u>.</u>									
Temp										
Vacuum										
Flow Rate						·				
CH.										
CO ₂										
O ₂										
Time		· ·				:				
Temp										
Vacuum										
Flow Rate										
CH ₄										
CO ₂							1. 1			
O ₂										
Time										

Total run time of system 13.8 hours
short down system at 16:00 = 13.3 hours

くれていい Velocity Monitoring for Landfill Gas Pilot Study FF/NN Landfill, Ripon, WI

Extraction Points:

Date: 5-11-05
Personnel: yantz, d'emers, Olavarria

	base	ling	Vacuu		10000					
Vircum	Volocity	Time	Velocity	Time	Velocity	Time	Velocity	Time	Velocity	Time
GP-1					0	1215	0	14:33		
GP-2					0	1750	0	1535		
GP-3	.0	0335			0.1	1335	7.7	1472		
GP-6					0,1	1349	0	1505	1519	
GP-7					0.1	1245	0	150to	1524 1	i)
GP-8					0	1756	0	1529		
LC-1					09	1210	0.9	1475		
LC-2					1.6	1233	1.4	1458		
LC-3					muge					
GV-1	0	0728	1.75"	11:25	315	1307	2.7	1504		
GV-2	·				musie					
GV-3	0	07346	0,20	11:30	2.1	1304	7.1	1506		
GV-4					mugë					
GV-9					205	1337	2.0	1500		
GV-12					2.1	1212	a.5	1428		1.0
MW-101				•	nod	ap	no d	an		
MW-102					0	1330)	-0-	1454		2.5
MW-103				. 1	noc	αρ	no	cap		
MW-104					nuc	ap	no	Layo	·	
6			Syttem	usbay						
				GU-2						
			end (31-4						
								_		

* GP-8 * GP-2 * GP-10 - S. Koro Road -* GP-3 * GP-7 GV-1 GV-2 GV-3 GV-4 * GP-11 GV-8 GV-7 GV-6 GV-5 * GP-6 GV-9 GV-10 **GV-11** GV-12 * GP-4 * GP-1 * GP-5 * GP-12

Gas Monitoring for Landfill Gas Pilot Study FF/NN Landfill, Ripon, WI

Date: <u>5-11-05</u> Personnel: <u>Mantz, demerg, davarria</u> running,

Daily Mareliner

CV-2, tet d.

SV-4, LC-3

Bar. Pres.	Temp 49	Time 0130	CHU	20.5
74.55	460	1345	0	207
		<u> </u>	-	

	Daily		line		G							
	CH₄ ✓	CO ₂	O ₂	Time	CH ₄	CO ₂	100 ²	Time	CH₄	CO ₂	O ₂	Time
GP-1	26.3	11.3	4.0	0749	a	0	20.9	1217	22,9	9:7	5,1	432
GP-2	26.8	24.1	40	0573	MIL	99.7	70.5	1300	0.5	1.0	70.0	1533
GP-3	0	0	21.0	303	-0	0	209	1737	0	0	<i>70.</i> 7	1500
GP-6	6	3.3	15.7	0917	0	3.7	135	1249	0	3.3	18.4	1519
GP-7	0.3	3.7	17.2	10815	0.1	35	195	1246	0.1	2.7	15.1	1574
GP-8	0	0,4	20,8	0830	0	OH	20,93	1757	0	0.3	20.9	1530
LC-l	0.1	O. Co	nnec	ted	195		14.7	1210	0,9	0.8	20,2	\$ 27
LC-2	0.1	0.1	30.9	0754	0	0	20.S	1325	Ð	Ф	70.3	1457
LC-3	43.5	35.7	6.4	0739	inus	<u>ت</u>						
GV-1	Ġ	હ	30%	0731	ろみ	みるよ	4.9	1308	326	321	3.7	1503
GV-2	11.4	174	194	0136	nue	re -	6.7					
GV-3	0	0	20.7	0740	29.7	20.7	1708	30%	41,0	धःी	2,60	74:23
GV-4	7.9	149	17.6	0147	mus	e -						
GV-9	16.1	17.7	17.3	0757	1957	1. 14	3.7	1733	215	14.4	11.77	
GV-12	07	0.8	20	0746	0.3	0.9	19.9	1213	0.3	0.3	20,3	14:30
MW-101	1.6	94	9.4	0531	NN	<u> </u>	<u> </u>		2.+1	Im -		
MW-102	Ð	0.1	20,7	0751	0	0	21.0	1321	φ	-03	30.1	1453
MW-103	0	0	21	0307	0	0	31	1240	Θ	0	208	15:12
MW-104	8	0	20.7	0733	0	0	20.7	1305	4	Ø	20.7	14:20
										•		
										•		
-						- 73 -		0 = 17				

GP-6
CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENPERSON

CHYELPENP

GP-1 .273.1 * GP-10 S. Koro Road GV-3 GV-4 * GP-11 * GP-3 GV-1 GV-2 GV-8 GV-7 GV-6 GV-5 **GV-11** GV-12 GV-9 **GV-10** * GP-1 * GP-4

> * GP-5 * GP-12

Drager Tube Measurements for Landfill Gas Pilot Study FF/NN Landfill, Ripon, WI

	Leg#	Date	Time	Measurement	Notes
	GV-14643	5-10-05	4:15pm	0.5 ppm	slight purple aday in tube
	11	5-10-05	Ø 1920	0.5 ppm	- 11 tj
				• .	
	20146	C-3 5-11	05 9:15	0.0 ppm	
LC-3 +	gast Car	5-11-0	12:10	0:5 pm	Also did 10 streks
LC 3+	GV2+Gi	14 5-11-6	15:45	0.3 ppm	
				,	
· .					
				·	
	·				
Į.		<u>·</u>			

Meter Calibrations for Landfill Gas Pilot Study FF/NN Landfill, Ripon, WI

Landfill Gas Meter: Landtec GEM 500

	- :	Zero CH4	Span CH₄	Span CO ₂	Zero O ₂	Span O ₂	Verify CH ₄
	05/09/05	11:39	1130	1132	1134		
		ŀ					
	05/10/05	0951					ranoutofaces
į	03/10/03						
	05/11/05	0730			_	-	
	03/11/03	-1230			_		· · · <u>- · - · - · </u>
	05/12/05						
	USPAZIUS	/	+			1	/

APPENDIX D LABORATORY RESULTS

Pace Analytical Services, Inc.
5203 Triangle Lane

x-Jorn De Mero

Export, PA 15632 Phone: 724.733.1161 Fax: 724.327.7793

June 2, 2005

Mr. Nelson Olavarria Cooper Industries 600 Travis Suite 5800 Houston, TX 77002

Dear Mr. Olavarria:

Enclosed are analytical results for samples submitted to Pace Analytical by Cooper Industries. The samples were received on May 12, 2005. The results reported in this project meet the requirements as specified in Chapter 5 of the NELAC Standards. Any deviations or discrepancies from the NELAC standards are documented in the case narrative(s) of this report. Please reference Pace project number 05-2695 when inquiring about this report.

Client Site: FF/NN Landfill Client Ref.: Cooper

Pace Sample Identification	Client Sample Identification
0505-1574	GV-1 and GV-3
0505-1575	GV-2 and GV-4

General Comments: The samples were subcontracted to Pace Analytical Services, Inc., 1700 Elm Street, Suite 200, Minneapolis, MN 55414 for TO-14 analysis. Results of the analysis are reported on the Pace Analytical, Minnesota data tables.

Please call me if you have any questions regarding the information contained within this report.

Sincerely,

Raelyn E. Sylvester Project Manager

REC: jld

ENVIRONMENTAL AFFAIRS

JUN 0 6 2005

RECEIVED

Enclosures

Page 1 of ____

REPORT OF LABORATORY ANALYSIS

Mr. Nelson Olavarria Cooper Industries

600 Travis Suite 5800

Houston, TX 77002

Client Site: FF/NN Landfill Client Ref.: Cooper

Pace Analytical Services, Inc.

5203 Triangle Lane Export, PA 15632

Phone: 724.733.1161 Fax: 724.327.7793

Lab Project ID: Lab Sample ID: 05-2695 0505-1574

Client Sample ID:

GV-1 and GV-3

Sample Matrix:

Air

Date Sampled:

05/10/2005

Date Received:

05/12/2005

Subcontracted Work

Test	Method	Result	Reporting Limit	Units	Analyst	Analysis Date	Method Blank ID	Blank Result
BTEX/TPH	TO-14	Completed	N/A :	n/a			N/A	N/A

Sample Comments: Results reported on an as received basis.

REPORT OF LABORATORY ANALYSIS

www.pacelabs.com

Mr. Nelson Olavarria Cooper Industries 600 Travis Suite 5800

Houston, TX 77002

Client Site: FF/NN Landfill Client Ref .: Cooper

Pace Analytical Services, Inc. 5203 Triangle Lane

Export, PA 15632

Phone: 724.733.1161 Fax: 724.327.7793

Lab Project ID: Lab Sample ID: 05-2695

Client Sample ID:

0505-1575 GV-2 and GV-4

Sample Matrix:

Air

Date Sampled:

05/11/2005

Date Received:

05/12/2005

Subcontracted Work

Test	Method	Result	Reporting Limit	Units	Analyst	Analysis Date	Method Blank ID	Blank Result
BTEX/TPH	TO-14	Completed	N/A	n/a			N/A	N/A

Sample Comments: Results reported on an as received basis.

REPORT OF LABORATORY ANALYSIS

> Phone: (612)607-1700 Fax: (612)607-6444

May 31, 2005

Client Services Pace Analytical Pittsburgh 5203 Triangle Lane Export, PA 15632

RE: Project:

1013277

Project ID: 05-2695

COOPER

Dear Client Services:

Enclosed are the analytical results for sample(s) received by the laboratory on May 17, 2005. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Daryl Peterson

Daryl.Peterson@pacelabs.com

Illinois Certification #: 200011 Iowa Certification #: 368

Minnesota Certification #: 027-053-137 Wisconsin Certification #: 999407970

Enclosures

Page 1 of 13

> Phone: (612)607-1700 Fax: (612)607-6444

SAMPLE SUMMARY

Project:

1013277

Project ID: 05-2695 COOPER

Lab ID	Sample ID	Matrix	Date Collected	Date Received
1013277001	GV-1 AND GV-3	Air	05/10/05 19:10	05/17/05 08:55
1013277002	GV-2 + GV-4 + LC-3	Air	05/11/05 15:36	05/17/05 08:55

Page 2 of 13

REPORT OF LABORATORY ANALYSIS

> Phone: (612)607-1700 Fax: (612)607-6444

SAMPLE ANALYTE COUNT

Project:

1013277

Project ID: 05-2695 COOPER

					Analyte	S
Lab ID	Sample ID	,	· · · · · · · · · · · · · · · · · · ·	Method	Reporte	:d
1013277001	GV-1 AND GV-3			TO-14 Source	4	0
1013277002	GV-2 + GV-4 + LC-3			TO-14 Source	4	0

Page 3 of 13

ANALYTICAL RESULTS

Phone: (612)607-1700 Fax: (612)607-6444

1013277 Project ID: 05-2695 COOPER

The results are reported as received by the laboratory.

ace Analytica

Lab ID:

Project:

1013277001

Date Collected:

05/10/05 19:10

Matrix:

Air

Sample ID:

GV-1 AND GV-3

Date Received:

05/17/05 08:55

Parameters	Results Units	Report Limit	DF Prepared	By	Analyzed	Ву	CAS No.	Qual	RegLmt
Air									
TO14 MSV AIR - Source Can	Anal	ytical Method: TC)-14 Source						
Benzene	ND ppmv	0.14	1.38		05/23/05 19:37	PMW	71-43-2		
Bromomethane	ND ppmv	0.14	1.38		05/23/05 19:37	PMW	74-83-9		+
Carbon tetrachloride	ND ppmv	0.14	1.38		05/23/05 19:37	PMW	56-23-5		
Chlorobenzene	ND ppmv	0.14	1.38		05/23/05 19:37	PMW	108-90-7		
Chloroethane .	ND ppmv	0.14	1.38		05/23/05 19:37	PMW	75-00-3		
Chloroform	ND ppmv	0.14	1.38		05/23/05 19:37	PMW	67-66-3		
Chloromethane	ND ppmv	0.14	1.38		05/23/05 19:37	PMW	74-87-3		
1,2-Dibromoethane (EDB)	ND ppmv	0.14	1.38		05/23/05 19:37	PMW	106-93-4		
1,2-Dichlorobenzene	ND ppmv	0.18	1.38		05/23/05 19:37	PMW	95-50-1		
1,3-Dichlorobenzene	ND ppmv	0.14	1.38		05/23/05 19:37	PMW	541-73-1	1	
1,4-Dichlorobenzene	ND ppmv	0.14	1.38		05/23/05 19:37	PMW	106-46-7		
Dichlorodifluoromethane	ND ppmv	0.14	1.38		05/23/05 19:37	PMW	75-71-8		
1,1-Dichloroethane	ND ppmv	0.14	1.38		05/23/05 19:37	PMW	75-34-3		
1,2-Dichloroethane	ND ppmv	0.14	1.38		05/23/05 19:37	PMW	107-06-2		
1,1-Dichloroethene	ND ppmv	0.14	1.38		05/23/05 19:37	PMW	75-35-4		
cis-1,2-Dichloroethene	0.63 ppmv ,	0.14	1.38		05/23/05 19:37	PMW	156-59-2		
trans-1,2-Dichloroethene	ND ppmv	0.14	1.38		05/23/05 19:37	PMW	156-60-5		
1,2-Dichloropropane	ND ppmv	0.14	1.38		05/23/05 19:37	PMW	78-87-5		
cis-1,3-Dichloropropene	ND ppmv	0.14	1.38		05/23/05 19:37	PMW	10061-01-5		
trans-1,3-Dichloropropene	ND ppmv	0.14	1.38		05/23/05 19:37	PMW	10061-02-6	2	
Dichlorotetrafluoroethane	ND ppmv	0.14	1.38		05/23/05 19:37	PMW	76-14-2		
Ethylbenzene	ND ppmv	0.14	1.38		05/23/05 19:37	PMW	100-41-4		
Hexachloro-1,3-butadiene	ND ppmv	0.50	1.38		05/23/05 19:37	PMW	87-68-3	1	
Methylene chloride	ND ppmv	0.14	1.38		05/23/05 19:37	PMW	75-09-2		
Styrene	ND ppmv	0.14	1.38		05/23/05 19:37	PMW	100-42-5		
1,1,2,2-Tetrachloroethane	ND ppmv	0.28	1.38		05/23/05 19:37	PMW	79-34-5	1	
Tetrachloroethene	ND ppmv	0.14	1.38		05/23/05 19:37	PMW	127-18-4		
THC as Gas	11.7 ppmv 🗸	1.4	1.38		05/23/05 19:37	PMW			
Toluene	2.2 ppmv 🗸	0.28	2.76		05/23/05 21:13	PMW	108-88-3		
1,2,4-Trichlorobenzene	ND ppmv	0.44	1.38		05/23/05 19:37	PMW	120-82-1	1 -	
1,1,1-Trichloroethane	ND ppmv	0.14	1.38		05/23/05 19:37	PMW	71-55-6		
1,1,2-Trichloroethane	ND ppmv	0.14	1.38		05/23/05 19:37	PMW	79-00-5		
Trichloroethene	ND ppmv	0.14	1.38		05/23/05 19:37	PMW	79-01-6		
Trichlorofluoromethane	ND ppmv	0.14	1.38		05/23/05 19:37				
1,1,2-	ND ppmv	0.14	1.38		05/23/05 19:37				
Trichlorotrifluoroethane	· FF								
1,2,4-Trimethylbenzene	ND ppmv	0.14	1.38		05/23/05 19:37			1	
1,3,5-Trimethylbenzene	ND ppmv	0.14	1.38		05/23/05 19:37	PMW	108-67-8	1	

Date: 05/31/2005

Page 4 of 13

REPORT OF LABORATORY ANALYSIS

> Phone: (612)607-1700 Fax: (612)607-6444

ANALYTICAL RESULTS

Project:

1013277

Project ID: 05-2695 COOPER

The results are reported as received by the laboratory.

Lab ID:

1013277001

Date Collected:

05/10/05 19:10

Matrix:

Air

Sample ID: GV-1 AND GV-3 Date Received: 05/17/05 08:55									
Parameters	Results Units	Report Limit	DF Prepared	Ву	Analyzed	Ву	CAS No.	Qual	RegLmt
Vinyl chloride m&p-Xylene o-Xylene	1.1 ppmv V 0.40 ppmv V ND ppmv	0.14 0.28 0.14	1.38 1.38 1.38		05/23/05 19:37 05/23/05 19:37 05/23/05 19:37	PMW	75-01-4 1330-20-7 95-47-6		,

Date: 05/31/2005

Page 5 of 13

REPORT OF LABORATORY ANALYSIS

ANALYTICAL RESULTS

Project:

1013277

Project ID: 05-2695 COOPER

The results are reported as received by the laboratory.

Lab ID:

1013277002

Date Collected:

05/11/05 15:36

Matrix:

05/23/05 20:43 PMW 108-67-8

Sample ID:

1,3,5-Trimethylbenzene

ND ppmv

GV-2 + GV-4 + LC-3

Date Received:

05/17/05 08:55

Parameters	Results Units	Report Limit	DF Prepared	Ву	Analyzed	Ву	CAS No.	Qual	RegLmt
Air	· · ·								
TO14 MSVAIR - Source Can	An	alvtical Method: TO	-14 Source						

Air							
TO14 MSVAIR - Source Can	Analytica	Method: TO	-14 Source				
Benzene	ND ppmv	0.14	1.38	05/23/05 20:43	PMW	71-43-2	
Bromomethane	ND ppmv	0.14	1.38	05/23/05 20:43	PMW	74-83-9	
Carbon tetrachloride	ND ppmv	0.14	1.38	05/23/05 20:43	PMW	56-23-5	
Chlorobenzene	ND ppmv	0.14	1.38	05/23/05 20:43	PMW	108-90-7	
Chloroethane	ND ppmv	0.14	1.38	05/23/05 20:43	PMW	75-00-3	
Chloroform	ND ppmv	0.14	1.38	05/23/05 20:43	PMW	67-66-3	
Chloromethane	ND ppmv	0.14	1.38	05/23/05 20:43	PMW	74-87-3	
1,2-Dibromoethane (EDB)	ND ppmv	0.14	1.38	05/23/05 20:43			
1.2-Dichlorobenzene	ND ppmv	0.18	1.38	05/23/05 20:43			
1,3-Dichlorobenzene	ND ppmv	0.14	1.38	05/23/05 20:43	PMW	541-73-1	1
1.4-Dichlorobenzene	ND ppmv	0.14	1.38	05/23/05 20:43	PMW	106-46-7	
Dichlorodifluoromethane	ND ppmv	0.14	1.38	05/23/05 20:43	PMW	75-71-8	
1,1-Dichloroethane	ND ppmv	0.14	1.38	05/23/05 20:43			
1,2-Dichloroethane	ND ppmv	0.14	1.38	05/23/05 20:43	PMW	107-06-2	
1,1-Dichloroethene	ND ppmv-	0.14	1.38	05/23/05 20:43	PMW	75-35-4	
cis-1,2-Dichloroethene	2.2 ppmv	0.69	6.9	05/23/05 23:28	PMW	156-59-2	
trans-1,2-Dichloroethene	ND-ppmv	0.14	1.38	05/23/05 20:43	PMW	156-60-5	
1,2-Dichloropropane	ND ppmv	0.14	1.38	05/23/05 20:43			
cis-1,3-Dichloropropene	ND ppmv	0.14	1.38	05/23/05 20:43	PMW	10061-01-5	
trans-1,3-Dichloropropene	ND ppmv	0.14	1.38	05/23/05 20:43	PMW	10061-02-6	2
Dichlorotetrafluoroethane	ND ppmv	0.14	1.38	05/23/05 20:43	PMW	76-14-2	
Ethylbenzene	(0.32 ppmv)	0.14	1.38	05/23/05 20:43	PMW	100-41-4	
Hexachloro-1,3-butadiene	ND ppmv	0.50	1.38	05/23/05 20:43	PMW	87-68-3	1
Methylene chloride	ND ppmv	0.14	1.38	05/23/05 20:43	PMW	75-09-2	
Styrene	ND ppmv	0.14	1.38	05/23/05 20:43	PMW	100-42-5	
1.1.2.2-Tetrachloroethane	ND ppmv	0.28	1.38	05/23/05 20:43	PMW	79-34-5	1
Tetrachloroethene	ND ppmv_	0.14	1.38	05/23/05 20:43	PMW	127-18-4	
THC as Gas	(11.4 ppmv)	1.4	1.38	05/23/05 20:43	PMW		
Toluene	2.5 ppmv	0.69	6.9	05/23/05 23:28		108-88-3	
1,2,4-Trichlorobenzene	ND ppmv	0.44	1.38	05/23/05 20:43	PMW	120-82-1	1
1,1,1-Trichloroethane	ND ppmv	0.14	1.38	05/23/05 20:43	PMW	71-55-6	
1,1,2-Trichloroethane	ND ppmv	0.14	1.38	05/23/05 20:43			
Trichloroethene	ND ppmv	0.14	1.38	05/23/05 20:43			
Trichlorofluoromethane	ND ppmv	0.14	1.38	05/23/05 20:43			
1.1.2-	ND ppmv	0.14	1.38	05/23/05 20:43			
Trichlorotrifluoroethane		0.17	1.50	33.23.33 20.10	•		
1,2.4-Trimethylbenzene	ND ppmv	0.14	1.38	05/23/05 20:43	PMW	95-63-6	1

Date: 05/31/2005 Page 6 of 13

1.38

0.14

REPORT OF LABORATORY ANALYSIS

> Phone: (612)607-1700 Fax: (612)607-6444

ANALYTICAL RESULTS

Project:

1013277

Project ID: 05-2695 COOPER

The results are reported as received by the laboratory.

Lab ID:

Date Collected:

05/11/05 15:36

Matrix:

Sample ID: GV-2 + GV-4 + LC-3

1013277002

Date Received:

05/17/05 08:55

Parameters	Results Units	Report Limit	DF Prepared	Ву	Analyzed	Ву	CAS No.	Qual	RegLmt
Vinyl chloride m&p-Xylene o-Xylene	2.9 ppmv 0.74 ppmv 0.15 ppmv	0.69 0.28 0.14	6.9 1.38 1.38		05/23/05 23:28 05/23/05 20:43 05/23/05 20:43	PMW	75-01-4 1330-20-7 95-47-6		

Date: 05/31/2005

Page 7 of 13

REPORT OF LABORATORY ANALYSIS

> Phone: (612)607-1700 Fax: (612)607-6444

ANALYTICAL RESULTS QUALIFIERS

Project:

1013277

Project ID: 05-2695 COOPER

PARAMETER QUALIFIERS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

ANALYTE QUALIFIERS

[1] The continuing calibration for this compound is outside of method control limits. The result for this compound should be considered an estimation.

[2] The initial calibration for this compound is outside of method control limits. The result for this compound is an estimation.

Date: 05/31/2005

Page 8 of 13

REPORT OF LABORATORY ANALYSIS

Phone: (612)607-1700 Fax: (612)607-6444

QUALITY CONTROL DATA

Project:

1013277

Project ID:

05-2695 COOPER

QC Batch:

AIR/2089

Analysis Method:

TO-14 Source

QC Batch Method:

TO-14 Source

Analysis Description:

TO14 MSV AIR - SOURCE CAN

Associated Lab Samples:

1013277001

1013277002

METHOD BLANK: 90290

Associated Lab Samples:

1013277001

1013277002

Parameter

Units

Blank Result

Reporting

Limit Qualifiers

THC as Gas

ppmv

ND

1.0

METHOD BLANK: 90290

Associated Lab Samples:

1013277001

1013277002

Parameter	Units	Blank Result	Reporting Limit Qualifiers
Benzene	ppmv	ND	0.10
Bromomethane	ppmv	ND	0.10
Carbon tetrachloride	ppmv	ND	0.10
Chlorobenzene	ppmv	ND	0.10
Chloroethane	ppmv	ND	0.10
Chloroform	ppmv	ND	0.10
Chloromethane	ppmv	ND	0.10
1,2-Dibromoethane (EDB)	ppmv	ND	0.10
1,2-Dichlorobenzene	ppmv	ND	0.13
1,3-Dichlorobenzene	ppmv	ND	0.10 1
1,4-Dichlorobenzene	ppmv	ND	0.10
Dichlorodifluoromethane	ppmv	ND	0.10
1,1-Dichloroethane	ppmv	ND	0.10
1,2-Dichloroethane	ppmv	ND	0.10
1,1-Dichloroethene	ppmv	ND	0.10
cis-1,2-Dichloroethene	ppmv	ND	0.10
trans-1,2-Dichloroethene	ppmv	ND	0.10
1,2-Dichloropropane	ppmv	ND	0.10
cis-1,3-Dichloropropene	ppmv	ND	0.10
trans-1,3-Dichloropropene	ppmv	ND	0.10 2
Dichlorotetrafluoroethane	ppmv	ND	0.10
Ethylbenzene	ppmv	ND	0.10
Hexachloro-1,3-butadiene	ppmv	ND	0.36 1
Methylene chloride	ppmv	ND	0.10
Styrene	ppmv	ND	0.10
1,1,2,2-Tetrachloroethane	ppmv	ND	0.20 1
Tetrachloroethene	ppmv	ND	0.10
Toluene	ppmv	ND	0.10
1,2,4-Trichlorobenzene	ppmv	ND	0.32 1
1,1,1-Trichloroethane	ppmv	ND	0.10
1,1,2-Trichloroethane	ppmv	ND	0.10

Date: 05/31/2005

Page 9 of 13

REPORT OF LABORATORY ANALYSIS

> Phone: (612)607-1700 Fax: (612)607-6444

QUALITY CONTROL DATA

Project:

1013277

Project ID: 05-2695 COOPER

Parameter	Units	Blank Result	Reporting Limit Qualifiers
Trichloroethene	ppmv	ND	0.10
Trichlorofluoromethane	ppmv	ND	0.10
1,1,2-Trichlorotrifluoroethane	ppmv	ND	0.10
1,2,4-Trimethylbenzene	ppmv	ND	0.10 1
1,3,5-Trimethylbenzene	ppmv	ND	0.10 1
Vinyl chloride	ppmv	ND	0.10
m&p-Xylene	ppmv	ND	0.20
o-Xylene	ppmv	ND	0.10

LABORATORY CONTROL SAMPLE:

Deservator	Units	Spike Conc.	LCS	LCS	% Rec
Parameter	Units	Conc.	Result	% Rec	Limits Qualifiers
Benzene	ppmv	0.52	0.44	84	65-141
Bromomethane	ppmv	0.52	0.45	87	68-145
Carbon tetrachloride	ppmv	0.53	0.41	78	61-140
Chlorobenzene	ppmv	0.52	0.44	84	61-136
Chloroethane	ppmv	0.52	0.42	81	50-150
Chloroform	ppmv	0.54	0.42	77	64-141
Chloromethane	ppmv	0.51	0.58	113	62-143
1,2-Dibromoethane (EDB)	ppmv	0.53	0.46	86	56-137
1,2-Dichlorobenzene	ppmv	0.5	0.39	78	50-150
1,3-Dichlorobenzene	ppmv	0.52	0.29	56	50-150 1
1,4-Dichlorobenzene	ppmv	0.5	0.41	81	50-150
Dichlorodifluoromethane	ppmv	0.53	0.39	74	58-147
1,1-Dichloroethane	ppmv	0.52	0.42	81	68-139
1,2-Dichloroethane	ppmv	0.53	0.47	90	68-137
1,1-Dichloroethene	ppmv	0.54	0.47	89	68-142
cis-1,2-Dichloroethene	ppmv	0.54	0.47	88	73-139
trans-1,2-Dichloroethene	ppmv	0.52	0.42	82	50-150
1,2-Dichloropropane	ppmv	0.52	0.41	79	63-137
cis-1,3-Dichloropropene	ppmv	0.53	0.54	102	53-138
trans-1,3-Dichloropropene	ppmv	0.53	0.60	113	50-142 2
Dichlorotetrafluoroethane	ppmv	0.5	0.39	78	59-144
Ethylbenzene	ppmv	0.52	0.48	91	62-142
Hexachloro-1,3-butadiene	ppmv	0.55	ND	19	50-150 1
Methylene chloride	ppmv	0.53	0.38	72	70-139
Styrene	ppmv	0.52	0.46	88	50-150
1,1,2,2-Tetrachloroethane	ppmv	0.52	0.30	57	50-150 1
Tetrachloroethene	ppmv	0.52	0.43	84	67-139
Toluene	ppmv	0.52	0.49	94	62-142
1,2,4-Trichlorobenzene	ppmv	0.54	ND	13	50-150 1
1,1,1-Trichloroethane	ppmv	0.52	0.43	82	64-141

Date: 05/31/2005

Page 10 of 13

REPORT OF LABORATORY ANALYSIS

> Phone: (612)607-1700 Fax: (612)607-6444

QUALITY CONTROL DATA

Project:

1013277

Project ID: 05-2695 COOPER

LABORATORY CONTROL SAMPLE:

90291

		_ 1			
		Spike	LCS	LCS	% Rec
Parameter	Units	Conc.	Result	% Rec	Limits Qualifiers
1,1,2-Trichloroethane	ppmv	0.52	0.40	77	60-139
Trichloroethene	ppmv	0.52	0.43	83	66-141
Trichlorofluoromethane .	ppmv	0.5	0.43	85	58-145
1,1,2-Trichlorotrifluoroethane	ppmv	0.52	0.44	85	60-145
,2,4-Trimethylbenzene	ppmv	0.52	0.31	59	50-150 1
,3,5-Trimethylbenzene	ppmv	0.54	0.26	48	50-150 1
/inyl chloride	ppmv	0.52	0.49	94	75-142
n&p-Xylene	ppmv	1	0.93	88	60-140
o-Xylene	ppmv	0.54	0.43	81	57-140

Date: 05/31/2005

Page 11 of 13

> Phone: (612)607-1700 Fax: (612)607-6444

QUALITY CONTROL DATA QUALIFIERS

Project:

1013277

Project ID: 0

05-2695 COOPER

QUALITY CONTROL PARAMETER QUALIFIERS

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

QUALITY CONTROL ANALYTE QUALIFIERS

[1] The continuing calibration for this compound is outside of method control limits. The result for this compound should be considered an estimation.

[2] The initial calibration for this compound is outside of method control limits. The result for this compound is an estimation.

Date: 05/31/2005

Page 12 of 13

REPORT OF LABORATORY ANALYSIS

> Phone: (612)607-1700 Fax: (612)607-6444

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:

1013277

Project ID: 05-2695

05-2695 COOPER

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
1013277001	GV-1 AND GV-3	TO-14 Source	AIR/2089		
1013277002	GV-2 + GV-4 + LC-3	TO-14 Source	AIR/2089		

Date: 05/31/2005

Page 13 of 13

Pace Analytical*

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately. 879967

					-	· w.e.		~	442					ſ	Hepo Hepo	eport to: Gerald DeMars Pa													Da		n: 1 ot 1												010001									
	uire										n A	<u> </u>			Conv	Copy to Page; 1 of 1												To Be Completed by Pace Analytical and Chem Section Ouble Reference:																								
	npany	G	Ec	111	<u>ea</u>	MS	5 ر	11	N	ζ,																						ole/c	contract)								Guore meratarity.											
Add	iess	75	/	V.	(301	P	or	نه	te		D		į,	Invoice To: Requested Due Date: 'TAT:													Project Manager:																								
							1	111	T	E	3	04	15	- 1	P.O.	Turn around time less than 14 days subject to laboratory and contractual obligations and may result in a														Project #: a 05-0005																						
	<u>U.</u>	Brookfield, WI 53045												Project Name: Rush Tumamund Surcharne															Profile #:																							
Pho	ne						Far	x						-	FF/NN Landfill, Ripen Tumar Project Number: 1011-002														um Around Time (TAT) in calendar days.											Re	queste	d	-7:	- 13		7-7	,	-, , ,				
2	42					2_	7	262	2-7	79	2-	131	0			0	~										1														An	alysis:	,	3	1 /	/ /	′ /		//	/		
Section D Required Client Information									lion	:		154	KTDI	ine n		S CC	ODE	1.		<u>a</u>										z		Pres	erva	tives	;	1			7		/ .	/ /	/ /	' / /								
SAMPLEID													St	IOUI	ING V	ATER	R GI R SI W	N V		SAMPLE TYPE										TEM	AT COLLECTION	Unpreserved H2504 HN03 HCI NACH NAES203 MAPPARO] /3/							//	N. W.							
*	į																PF	ASTE RODE DIL	JCT	EH			ž	PLE	¥				cou	ECT	ED			P.E.	OLLE	Brye			8	9		/,€	%	Ι.	Ι.	/ /	//		13			
One character per box. (A-Z, 0-9 /) Sample IDs MUST BE UNIQUE													W	L IPE A			SI OI W	P	1.4	¥ (§ (STA			\perp	END			3	ATO	S S	S	_ E	252	Methan		/^/			/		/,	Ι,	/ 5	G.						
	i				Se	amp!		97	F.:	A. (1)	7	17.70	-		(1884)		0	THEF	1	350	0	r ear			,	DAT			ME	-	DATE	-	THE			5 £	至	되	ž	ΣĈ	1	/	\leftarrow		4	//	-	\mathcal{A}		OTHER PS		
	6	N	1		1			7	7	a	_	16	ì	V		3		1			_			36		•		19		+-	10/05	-1-	9:10	 -)°#	1		\perp			X		15	(Σ)	-	15	271		027	8		
2	É	V	1	-	2		4	4		e	V	-		4		+			L	C	-	3	A	6	1 5	Ju J	ê5	15:	34	5	lı la	5/1	5.36	50	S'F			Ì			X					15	575	5	0165	5		
-3 4		-	7				Ţ	.]				K	7			ļ				I		2			T									7		T			П	T		17						7				
	3	Ť	+				-	1	Ť		1-	Ť	1			-	1	+	1			7		1	†		,	 		+		+		+	7	1	++	+	$\dagger \dagger$	+	+		-		-	-	-	+				
	3 9	+					ļ			\	-	+	+			-	+	+		+		-		4-	+-			 		+		+		-		+	+-	- -	1-1	+	+-	 	-		$\vdash \vdash$	-	+	+		******************		
.5 6							_	1			 	<u> </u>	+			} 	ŀ	4		-		4	- 1	1	+			ļ		₋		-			-	+		-	1	_	╀-	1					_					
6			-						-	<u>ાં</u>	1		1					1		. 1				1	_					1				_						İ	-											
7		2	4.146.300				-		1		-			ţ				-			4				1							i								Ţ		3:					1.	T				
8			1	1			-	1	1		Ì	Ť	1	1				7		1	1	Ţ	7	1	1					1		Ť		7	7	†	\Box	+		†	T	1				_	-	+	Contract of the Contract of th			
	三	÷					-	+	+		+	+	-				1	+	-	7	+	1	+	+	+					+-		+		+	+	+	+	-	1	+	┼-	-					+	+-				
	Į		-‡.				-		}		i	+	4-		 -	-	+			-			+	4-	ļ			ļ		+-		- -			-	+	++	+	\sqcup	1	 -	100					-					
110	<u>.</u>		_ļ				_	1	1	· 	ļ	Ļ	.ļ			ļ		1	-			1	_	1	<u>.</u>			ļ		1		_					$\perp \downarrow$	_	1	1	L											
				1					4				1										1							į		1		İ		- }				-							Ì					
F	Ę	1	1	}					į.													J			1			1		1	,	1		7	T	1		7		- -	T	1				1		-				
		311	1	0C/	u	ON.									Į.	30	UI.	AT	ORV	ΑC	EN	37.				10.5	45		EI IN		ISHE	-1 1 2	YIAF	ial V		NA.			į į	ાં VI≣		ACC	-07	2 3 A	BV	A S	ILIAT					
	NC DSC DGA DNPDES DG													GR	Oι	NC				T	l Di	RINI	(IN	3 W	Silv	н.			- 2			17				17/7	7								SEP.	1-160	KOW		E TIA			
	MPI		****	*****	******		******											7											701	a	EC1 1	بري	Me	ye	XV.	//4	15 5	/14	05	1 '4	fm	\mathcal{A}_{ℓ}	m	1	Ll		Series Series	۲	<u> 140</u>	500		
***	wb						. ;	_			7	٠		}	_	_	*		O	۲۲۶	سا :			' - '		- X ;	•	-	· · ·							-	. /				-											
2	cei				- 1					1	//	H	d	•	5	u	W	1 12	つに		C		ท/	5/	زمن ا) ~		-												-	-											
j						YÍN	-				W	25		*	10	†	ě	1	sa		,							L.		·		_	A RAIDI	EDV	i A R	5 4	AUD	310	100	lele							خفون					
	ale:			• ***	-4,4	-	[SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLERI											A CARLES OF THE STATE OF THE ST												
·	annp TTT					y,⁄iN					(, se .	'n	درة	ب فر	.e			7	ح ال	_								SAMPLER NAME AND SIGNATURE PRINT Name at SAMPLERI GENALD DEMONS SIGNATURE OF SAMPLERI SHALL DEMONS SEE REVERSE SIDE FOR IN										12													
Add	ditio	nai	CO	mm	ent	5.								t	ر اد	, la	1.	١.	م ردي.	~ (2	in i	-I	v	/	(- ^					J	A P	AMP.	LER	(L	ً ہر)	n	ران	2			D				M/DD/YY)		
14.6			÷.											`		VÌ	۲.	. }~	(٠,		7	-		\	نضر	,	<u></u>	-			<u></u>	WA.	<u> </u>	•.1		<u> </u>	<u> </u>			ms 5/12/05											
																						₹	Ĵ	_	,			•				S	EE F	REVE	ERS	SE	SID	EF	OF	IN	ST	RUC	CTIC	3NC	S				Form CO	2001 Rev		

APPENDIX E EXAMPLE BLOWER SYSTEM

Fliteway Technologies, Inc.

6901 Industrial Loop • P.O. Box 108 • Greendale, WI 53128 (414) 429-5600 • 1-800-236-3580 • FAX (414) 423-9007

June 3, 2005

GeoTrans, Inc. 175 N. Corporate Drive, Suite 100 Brookfield, WI 53045 FROJECT# 1011,002

Q13185

Attention: Gerald L. Lewis

Reference: SVE System for Ripon Landfill Site

Dear Gerald.

Following is our quotation for an SVE Unit you requested, I have quoted two systems one rated for a maximum vacuum of 3" HG and the other rated for 5" HG.

- Fliteway Model FV1582X3 American Fan # SN-04-26.5N rated for 200 SCFM at 3" HG with the following equipment:
 - 10 HP Explosion Proof 230 VAC Three Phase 1750 RPM motor
 - American Fan turbo pressure blower / exhauster (Spark Resistant Fan Construction
 - Fliteway "Cyclonic Action" 82 Gallon Vertical knookout/demister tank, carbon steel with site gauge, 6" cleanout, and drain.
 - 4" inlet, liquid filled vacuum gauge, and sample port.
 - 10 micron in-line filter between tank and vacuum pump.
 - Valved sample port on outlet side.
 - Two(2) 2 1/2" liquid filled vacuum gauges before and after the filter to monitor differential pressure across filter element.
 - Premium chamber/absorption carbon steel discharge silencer.
 - Vacuum relief valve on inlet side of pump, field adjustable from 0 to 15"
 - Easily replaceable sheaves and bushings for CFM adjustability.
 - Adjustable motor slide base.
 - OSHA Belt guard.
 - Metal Skid Base
 - Explosion Proof High Liquid Level Switch mounted on tank
 - Inlet Manifold with Four (4) 4" Legs
 - Four (4) 4" Brass Ball Valves
 - Four (4) Yacuum Gauges
 - Four (4) Valved Sample Ports
 - Steel Base Skid with forklift pockets and stand for control panel
 - Base skid constructed for possible later addition of steel weather enclosure

Note: Add for 15 HP American Fan Model BC-7-10-31.5 A Spark Resistan not reconstruction rated for 480 SCFM at 5" HC

- NEMA 4 Control Panel (230 VAC Single Phase) mounted and tested on SVE Skid
 - NEMA 4 Box with inner panel
 - Disconnect
 - Variable Frequency Drive to operate the Blower Motor on 230 VAC Single Phase Power.
 - 10 HP SVE Motor
 - HOA switch
 - -SVE
 - Alarm Lights
 - SVE HHL
 - Hour Meter
 - Control Transformer
 - Transient Protection
 - One (1) Dual Intrinsically Safe Switch Repeater
 - Lightning Protection
 - Surge Protection
 - UL Certification

Note: Add \$ 571 for 15 HP Variable Frequency Drive in place of 10 HP above

Total for 10 HP System \$

Optional Steel Weather Enclosure with vent fan and access panels (can be added at later date)

For 10 HP System Sales

For 15 HP System Se

Quotation Valid for 30 Days

Pricing: FOB Greendale, WI (Applicable sales taxes if any not included)

Terms: Net 30 from shipment. (1.5% per month finance charge on invoices over 30 Days)

Delivery: 7-8 weeks from date written order received at our plant.

Estimated Freight: \$ 500

Sincerely.

William E. Diehl

President