Page 1 of 1

99 8-15-2009

Easterly, Jennifer S - DNR

From: Easterly, Jennifer S - DNR

Sent: Thursday, October 15, 2009 10:41 AM

To: Evanson, Theresa A - DNR

Subject: FW: Ripon FF/NN Landfill Proposed MNA Monitoring Plan

Attachments: 081209 MNA Monitoirng.pdf

Terry,

τ • 1

Can you take a peak at the parameters that they are suggesting. Considering that this is a superfund site and that they are trying to prove that MNA is the answer here....I would think that they would want to pick a few more parameters. Your thoughts?

From: Noel, Mike [mailto:Mike.Noel@geotransinc.com]
Sent: Wednesday, August 12, 2009 3:53 PM
To: Easterly, Jennifer S - DNR
Cc: Olavarria, Nelson; Steve Barg; Schorle, Bernard
Subject: Ripon FF/NN Landfill Proposed MNA Monitoring Plan

Jennie,

As a follow up to our meeting June 24, attached for your review and approval is the proposed MNA monitoring plan for the site. Let me know if you have any questions or need additional information. Mike

Michael R. Noel | Vice President, Principal Hydrogeologist Office: 262-792-1282 x 223 | Fax: 262-792-1310 | Mobile: 262-853-4983 mnoel@geotransinc.com

GeoTrans, Inc. | A Tetra Tech Company

175 N Corporate Drive, Suite 100 | Brookfield, WI 53045 | www.geotransinc.com

PLEASE NOTE: This message, including any attachments, may include confidential and/or inside information. Any distribution or use of this communication by anyone other than the intended recipient is strictly prohibited and may be unlawful. If you are not the intended recipient, please notify the sender by replying to this message and then delete it from your system.

175 N. Corporate Drive Suite 100 Brookfield, WI 53045

www.geotransinc.com

262-792-1282 FAX 262-792-1310

August 12, 2009

Ms. Jennifer Easterly, RPM Wisconsin Department of Natural Resources 625 E. County Road Y, Suite 700 Oshkosh, WI 54901-9731

Re: Ripon FF/NN Landfill Proposed MNA Monitoring Plan

Dear Jennie:

At our meeting on June 24, 2009 you indicated that you were looking to put off the ROD amendment for the Ripon FF/NN Landfill (Site) until additional groundwater monitoring data was collected to support a recommendation that monitored natural attenuation (MNA) was an appropriate alternative for groundwater contaminants at the Site. This document presents a proposed groundwater monitoring plan to provide you with the information you need.

Current Analysis

Multiple lines of evidence are typically required to demonstrate the effectiveness of chlorinated solvent remediation. The goal of an MNA evaluation is to confirm that the plume is stable or receding, and that there are no unacceptable risks posed to human health or the environment.

The primary line of evidence that natural attenuation of an organic contaminant is occurring is indicated by a significant decrease in contaminant concentrations over time, or by a significant decrease in chemical concentrations along a groundwater flow path down-gradient from a source area when the plume is known to be relatively stable. As demonstrated in our April 2009 Progress Report for the Site, there has been a significant decrease in contaminant concentrations in groundwater over time.

The current condition at the Site is that the parent product TCE has totally degraded to non-detectable levels in 6 of 7 wells and in the 1 well where it is still present (MW-103) it is at a concentration below the ES. The TCE daughter product DCE has totally degraded to non-detectable levels in 7 of 11 wells and in the 4 wells where it is still present it is at a concentration below the ES and only exceeds the PAL at 1 well (MW-103). The remaining daughter product VC has totally degraded to non-detectable levels in 9 of 13 wells and in the 4 wells that it is still present (3 wells in Layer 3 and 1 well in Layer 4) the highest concentration is 6.5 ug/L.

Indirect (i.e., secondary) lines of evidence that support MNA typically include trends in geochemical or redox indicators which demonstrate biodegradation is occurring downgradient from a source area, or an increase in daughter product concentrations down-

gradient from a source area. Under anaerobic conditions, chlorinated VOC's can be biodegraded by reductive dechlorination which entails the sequential replacement of chlorine atoms by hydrogen to produce more reduced, less-chlorinated products. Rates of reduction are highest for the more chlorinated compounds like TCE and decrease with the degree of chlorination to a point when oxidation rates become faster. While the reductive dechlorination of TCE and DCE are dominated by anaerobic processes, the reduction of VC is typically an aerobic process, although anaerobic microbial VC oxidation can occur under iron-reducing conditions.

At the Site the parent and first-order daughter product, TCE and DCE, respectively, have been nearly totally degraded and the only daughter product remaining above the ES is VC. The VC is only present in the deepest (Layers 3 and 4) and furthest wells from the Site. Sequential anaerobic/aerobic biodegradation of TCE can take place as reductive dechlorination proceeds under anaerobic conditions and then the dechlorination byproduct (VC) flows out of the anaerobic zone into an aerobic environment. In the Layer 3 and 4 groundwater units the dissolved oxygen has historically been >0.5 mg/L but <2.0mg/L. DO greater than 0.5 mg/L is considered an aerobic state (EPA, 1998), which would not promote reductive dechlorination but could oxidize VC aerobically.

Proposed MNA Monitoring Plan

The proposed MNA monitoring plan for the Site is summarized on Table 1. The plan includes semiannual water level measurements for all wells, semiannual groundwater MNA parameter monitoring for all Layer 2, 3 and 4 wells with dedicated QED sampling equipment, and semiannual or annual groundwater VOC sampling of all wells. Other elements of the monitoring plan include semiannual groundwater VOC sampling of 3 residential wells (Baneck, Gaastra and Rohde), semiannual gas VOC sampling of 4 gasextraction wells/vents and 1 gas probe, and annual leachate VOC sampling (if leachate is -or

Stayerlaly

DoNitrate to Sulfate

Stary at 1/4/4

MNA Parameters

present).

RO-OBIORE WER HED

Because VC is the sole remaining contaminant of concern and because VC reduction is most commonly an aerobic process via direct oxidation. MNA parameters that can demonstrate oxidative conditions will be monitored. MNA parameter monitoring will be conducted on wells vertically and horizontally up-gradient, within and down-gradient of the VC plume. Based on EPA (1998) guidance the following parameters will be monitored:

	Analysis	Concentrations for VC Oxidation
	Dissolved Oxygen	> 0.5 mg/L
	Oxidation Reduction Potential	> 50 mV
	Iron II Ferrous	ND (< 0.2 mg/L)
Nitrate > Solfate >>	Nitrite	ND (< 0.08 mg/L)
Sulfate ->	Sulfide	ND (< 0.2 mg/L)
	Methane	< 0.5 mg/L
	1037	ron 11, Sulfide, methome = reductive
Do, Ni	thate, Mangani	Lal, 1200, 50) Fate, methand GeoTrans. Inc.

-2014HY

Ferniz+3

The DO and ORP along with temperature, pH and conductivity will be measured using a QED MP20 MicroPurge Flow Cell Meter. Because of problems in the past with ORP calibration, a second standard will be used to confirm operation and a second meter will be used for back up confirmation that the meter is accurate.

The iron II, nitrite and sulfide will be measured in the field using CHEMetrics analyte-specific Vacu-vials[®] for photometric analysis using a CHEMetrics Model V-2000 LED photometer.

For dissolved methane, groundwater samples will be collected and submitted to Pace Analytical Laboratories for analysis using Method 8000.

VOC Sampling

Groundwater sampling for VOCs will follow the current frequency of semiannual and annual sampling of wells as shown on Table 1. Groundwater samples will be collected using low-flow sampling techniques for Layer 2, 3 and 4 wells which have been outfitted with dedicated QED equipment. The remaining wells (all Layer 1 and 3 Layer 2 wells) will be sampled by purging 3 casing volumes and collecting a sample with a bailer.

Reporting

Semiannual progress reports will be prepared and submitted to the WDNR within 30 days of receipt of analytical results.

GeoTrans. Inc.

If you have any questions please feel free to contact me.

Sincerely,

GeoTrans, Inc.

Michael R. Noel, P.G. Vice President, Principal Hydrogeologist

Enclosures

cc: Bernard Schorle, USEPA w/ Both Enclosures Nelson Olavarria, Cooper Industries, w/o Enclosures Steve Barg, City of Ripon, w/o Enclosures

Groundwater Monitoring Schedule FF/NN Landfill, Ripon, WI

	36		2.3	4 5	30th Shi	ould prove any to prove any work	ing
Groundwater I FF/NN Landfil	Monitoring Schedu I, Ripon, WI	e	ANTA	V	Aur	P N	
Stratigraphic Layer	Sampling Point:	Location Relative to Landfill	Water Level	MNA Parameters	VOCs	Vinyl Chloride Concentration Apr 09	Equipment Type
	MW-101	Up-gradient	SA	SA	А	ND	Bailer
	MW-102	Side-gradient	SA		А	ND	Bailer
s (MW-103	Down-gradient	SA	SA	SA	ND	Bailer
Vell	MW-104	Within Landfill	SA		SA	ND	Bailer
Layer 1 Wells (25-65 ft bgs)	MW-106	Side-gradient	SA		Α.	ND	Bailer
ayeı 15-6	MW-107	Down-gradient	SA	SA	SA	ND	Bailer
1 C	MW-108	Side-gradient	SA		SA	ND	Bailer
	MW-111	Down-gradient	SA	SA	A ,	ND	Bailer
	MW-112	Down-gradient	SA		SA ,	ND	Bailer
	P-101	Up-gradient	SA	SA	Α.	ND	Bailer
	P-102	Side-gradient	SA		SA -	ND	Bailer
ells gs)	P-103	Down-gradient	SA	SA	SA	ND	QED
ft b	P-104	Beneath Landfill	SA		А	ND	QED
er 2 -95	P-106	Side-gradient	SA		SA	ND	QED
Layer 2 Wells (62-95 ft bgs)	P-107	Down-gradient	SA	SA	SA	ND	QED
2000 B	P-108	Side-gradient	SA		А	ND	Bailer
	P-111	Down-gradient	SA	SA	А	ND	QED
	MW-3B	Down-gradient	SAQ	SA	SA	ND	QED
s)	P-103D	Down-gradient	SA	SA	SA	ND	QED
Vell t bg	P-111D	Down-gradient	SA	SA	SA	5.5 ug/L	QED
- 3 V 9 9 f	P-113B	Down-gradient	SA	SA	SA	ND	QED
Layer 3 Wells (152-199 ft bgs)	P-114	Down-gradient	SA	SA	SA	6.5 ug/L	QED
Li (15	P-115	Down-gradient	SA	SA	SA	1.3 ug/L	QED
	P-116	Down-gradient	SA	SA	SA	ND	QED
● 58 × 4	MW-3A 🏈	Down-gradient	SAG	SA	SA	ND	QED
Layer 4 Wells (281-328 ft bgs)	P-107D	Down-gradient	SA	SA	SA	2.5 ug/L	QED
L ² V ft	P-113A	Down-gradient	SA	SA	А	ND	QED
s	Baneck	Down-gradient			SKQ	ND	Spigot
Private Wells	Gaastra	Down-gradient			SX Q	ND	Spigot
P	Rohde	Down-gradient			SAQ	ND	Spigot
	Leachate LH-1	Within Landfill	Α		А	ND	Disposable bailers
	Leachate LH-2	Within Landfill	А		А	ND	Disposable bailers
	Leachate LH-3	Within Landfill	A		А	ND	Disposable bailers
Ħ	Gas VOCs LH-1	Within Landfill			SA	ND	Summa Canister
Landfill	Gas VOCs LH-2	Within Landfill			SA	ND	Summa Canister
La	Gas VOCs LH-3	Within Landfill			SA	ND	Summa Canister
	Gas VOCs GV-6	Within Landfill			SA	ND	Summa Canister
	Gas VOCs GP-3	Down-gradient			SA	ND	Summa Canister
	Cap Inspection	On Landfill		A	SA		

OK

MNA = Monitored Natural Attenuation field parameters (Ph, Cond, Temp, DO, ORP, Fe(II), Nitrite and Sulfide)

SA = Semianual (Apr and Oct); A = Annual (Apr)

From Jon 27,2003 Report on Dec 02' Sampling event,

Table 4 - Natural Attenuation Sampling Results - Field MeasurementsFF/NN Landfill, Ripon, WI

Sampling Point	Collection Date	Temp	Conductivity	DO		Hq	ORP	Iron II
5		С	uS/cm	%	ug/L		mV	mg/L
MW-3A	12/05/2002	9.79	589	0.30	0.03	7.30	-312	0.6
MW-3B	12/05/2002	9.84	1248	-0.90	-0.11	6.57	-87	1.3
P-101	12/04/2002	9.26	843	0.70	0.08	7.12	-53.5	1.5
P-102	12/04/2002	9.33	1127	0.10	0.01	6.82	-47.80	4.4
P-103	12/04/2002	9.49	956	10.40	1.17	7.00	-60.50	3.0
P-104	12/04/2002	9.64	1247	4.50	0.51	6.82	-11.70	0
P-106	12/04/2002	9.38	1125	12.90	1.48	6.92	-21.60	0.9
P-107	12/04/2002	9.40	791	7.60	0.86	7.22	-28.00	0.6
P-107D	12/04/2002	7.90	594	NT	NT	7.64	, NT	0
P-108	12/05/2002	10.01	807	0.90	0.10	7.31	10.90	0
MW-111	12/05/2002	7.84	866	1.20	0.15	7.15	27.20	0
P-111	12/05/2002	9.76	639	-0.20	-0.03	7.43	-88.30	1.1
P-111D	12/05/2002	9.75	910	-0.20	-0.02	7.32	-75.60	1.0
P-113A	12/03/2002	10.39	579	179.50	20.00	7.26	111.80	0
P-113B	12/03/2002	10.18	960	3.40	0.39	6.80	27.20	1.2
Ehster	12/03/2002	11.10	695	NT	NT	7.71	NT	3.2
Hadel	12/03/2002	6.60	539	NT	NT	7.72	NT	2.3
Weiss	12/03/2002	7.90	525	NT	NT	7.20	NT	2.4

NT: Not taken as probe could not be sent downhole at this well

FF/NN Landfill, Ripon, WI

Sampling Point:	Collection Date:	Manganese	Sulfate	Sulfide	Methane	Ethane	Ethene	1 otal Organic Carhon
	units	ug/L	mg/L	ug/L	ug/L	ug/L	ug/L	mg/L
MW-3A	12/05/2002	430	20					NA
MW-3B	12/05/2002	93	36					NA
MW-111	12/05/2002	460	44					NA
P-101	12/04/2002	97	50					2.0
P-102	12/04/2002	130	53		59	-		NA
P-103	12/04/2002	88	54		37			2.9
P-104	12/04/2002	64	52					NA
P-106	12/04/2002	110	<u>210</u>	-				NA
P-107	12/04/2002	200	66		110			3.4
P-107D	12/04/2002	190	19	-			4	NA
P-108	12/05/2002	4.1	55					NA
P-111	12/05/2002	93	44					[1.6]
F-111	12/05/2002 Dup	90	43					1.9
P-111D	12/05/2002	2.1	62		130			2.5
P-113A	12/03/2002	68	12					NA
P-113B	12/03/2002	79	47			4		[1.7]
Ehster	12/03/2002	66	44		84			2.0
Hadel	12/03/2002	100	17					NA
Hadel	12/03/2002 Dup	110	16					NA
Weiss	12/03/2002	130	17					NA
WDNR	PAL	25	125	NE	NE	NE	NE	NE
NR140	ES	50	250	NE	NE	NE	NE	NE

Blank = not detected

NA = not analyzed

NE = Standard not established

PAL = NR 140 Preventive Action Limit

ES = NR 140 Enforcement Standard

Underline values indicate PAL exceedance

Bold values indicate ES exceedance

[] = detected at less than quantitation limit

Table 4 - Natural Attenuation Sampling Results FF/NN Landfill, Ripon, WI

		Lab	Field Measurements									
Sampling Point	Collection Date	Nitrate	Sulfate	Total Organic Carbon	Temp	Conductivity	Hq	DQ		ORP	Iron II	Sulfide #
	10/5/0000		mg/L	mg/L	C	uS/cm		%	mg/L		mg/L	mg/L
	12/5/2002	NA	20	NA	9.79	589	7.30	0.30	0.03	-312	0.6	0.0
MW-3A	4/22/2003	NA	26	0.64	10.22	464	7.52	5.90	0.66	3	0.4	0.0
	10/22/2003	<0.058	14	<1.0	10.06	552	7.29	7.70	0.87	-98	1.9	0.1
MW 2D	12/5/2002	NA	36	<u>NA</u>	9.84	1248	6.57	-0.90	-0.11	-87	1.3	0.0
MW-3B	4/22/2003	NA	46	0.73	9.86	815 662	7.18	3.30	0.37	-92 -161	1.5	0.0
	10/22/2003	<0.058 NA	43 26	<1.0	9.79	1200	7.45	16.60	0.55	-23	0.1	0.0
MW-104	4/22/2003	<0.058	4	<u>5.10</u> 14	11.01	891	7.69	NT	NT	NT	3.5	0.0
	4/21/2003	NA	NA NA	NA	9.84	1021	7.09	180.20	21.27	185.70	0.1	0.1
MW-107	4/22/2003	NA	30	2.20	10.32	1021	7.06	51.20	5.70	74.10	NT	NT
10110 107	10/21/2003	3.3	32	4.80	9.64	1211	6.92	51.10	5.80	79.30	0.0	0.0
MW-111	12/5/2002	NA	44	NA	7.84	866	7.15	1.20	0.15	27.20	0.0	0.0
10111 111	12/4/2002	NA	50	2.00	9.26	843	7.12	0.70	0.08	-53.5	1.5	0.0
P-101	4/22/2003	NA	51	1.30	10.12	646	7.46	7.40	0.81	-36.9	1.2	0.0
	10/23/2003	< 0.058	49	<1.0	10.20	754	7.04	5.90	0.66	-65.5	1.1	0.0
P-102	12/4/2002	NA	53	NA	9.33	1127	6.82	0.01	0.001	-47.8	4.4	0.0
1 102	12/4/2002	NA	54	2.90	9.49	956	7.00	10.40	1.17	-60.50	3.0	0.0
P-103	4/21/2003	NA	58	1.30	10.50	388	7.28	6.30	0.71	-29.90	3.2	0.0
1 100	10/22/2003	0.41	54	<1.0	10.06	874	7.17	7.30	0.82	-147.10	3.0	0.0
	12/4/2002	NA	66	3.40	9.40	791	7.22	7.60	0.86	-28.00	0.6	0.0
P-107	4/21/2003	NA	74	1.70	9.62	646	7.43	6.70	0.76	37.30	1.2	0.0
	10/21/2003	< 0.058	74	4.30	9.73	716	7.18	8.20	0.92	-70.40	1.3	0.0
	12/4/2002	NA	19	NA	7.90	594	7.64	NT	NT	NT	0	0.0
P-107D*	4/21/2003	NA	27	0.55	10.50	388	7.28	NT	NT	NT	NT	NT
	10/21/2003	< 0.058	19	1.10	10.05	528	7.34	11.20	1.25	51.40	0.00	0.0
	12/5/2002	NA	44	[1.6]	9.76	639	7.43	-0.20	-0.03	-88.30	1.1	0.0
P-111	4/22/2003	NA	39	1.80	12.06	486	7.71	6.50	0.67	-74.20	1.0	0.0
	10/22/2003	< 0.058	31	<1.0	9.87	566	7.53	6.60	0.75	-94.00	1.0	0.0
	12/5/2002	NA	62	2.50	9.75	910	7.32	-0.20	-0.02	-75.60	1.0	0.0
P-111D	4/23/2003	NA	64	1.40	9.98	706	7.63	8.10	0.94	-20.50	0.7	0.0
	10/23/2003	<0.058	65	2	9.78	838	7.17	9.20	0.70	-68.30	0.4	0.0
•	12/3/2002	NA	12	NA	10.39		7.26		20.00	111.80	0	0.0
P-113A	4/23/2003	NA	15	0.87	10.37		7.50		2.98	42.00	1	0.0
	10/22/2003	0.3	10	<1.0	10.17		7.30		2.23	-62.60	0	0.1
	12/3/2002	NA	47	[1.7]	10.18		6.80		0.39	27.20	1.2	0.0
P-113B	4/23/2003	NA	56	0.58	10.13		7.22		1.05	-54.30	1.1	0.0
	10/22/2003	<0.058	49	4.10	10.13		7.42		0.46	-125.40		1.5
P-114	12/3/2002	NA	44	2.00	11.10		7.71		NT	NT	3.2	0.0
(Ehster)	4/23/2003	NA	63	1.20	10.00		7.71		0.85	-117.00		0.0
	10/23/2003	< 0.058	49	<1.0	9.87	1379	7.31	4.80	0.54	-125.10	0.9	0.0

from 1-7-04 Report Oct 03 Status Rpt

NT: Meausrement not taken

NA: Parameter not analyzed

Probe cannot be sent downhole at this well due to dedicated pump

[#] December 2002 sulfide test was done using laboratory analysis Subsequent analyses were conducted using a Hach field kit

p:\ripon landfill\tables\gwresults.xis,Nat Att

Table 4 - Natural Attenuation Sampling ResultsFF/NN Landfill, Ripon, WI

.7-10-03 April 2003 Statos Report

		Lab Me	easurements	Field Measurements							
Sampling Point	Collection Date	Sulfate	Total Organic Carbon	Temp	Conductivity	рН	DO		ORP	Iron II	Sulfide #
		mg/L	mg/L	С	uS/cm		%	mg/L	mV	mg/	mg/
MW-3A	12/05/2002	20	NA	9.79	589	7.30	0.30	0.03	-312	0.6	0.0
10110 571	04/22/2003	26	0.64	10.22	464	7.52	5.90	0.66	3	0.4	0.0
MW-3B	12/05/2002	36	NA	9.84	1248	6.57	-0.90	-0.11	-87	1.3	0.0
	04/22/2003	46	0.73	9.86	815	7.18	3.30	0.37	-92	1.5	0.0
MW-104	04/22/2003	26	5.10	11.61	1200	6.83	16.60	1.81	-23	3.9	0.0
MW-107	04/21/2003	NA	NA	9.84	1021	7.00	180.20	21.27	185.70	0.1	0.0
101 00 - 107	04/22/2003	30	2.20	10.32	1024	7.06	51.20	5.70	74.10	NT	NT
MW-111	12/05/2002	44	NA	7.84	866	7.15	1.20	0.15	27.20	0.0	0.0
P-101	12/04/2002	50	2.00	9.26	843	7.12	0.70	0.08	-53.5	1.5	0.0
P-101	04/22/2003	51	1.30	10.12	646	7.46	7.40	0.81	-36.9	1.2	0.0
P-102	12/04/2002	53	NA	9.33	1127	6.82	0.01	0.001	-47.8	4.4	0.0
D 102	12/04/2002	54	2.90	9.49	956	7.00	10.40	1.17	-60.50	3.0	0.0
P-103	04/21/2003	58	1.30	10.50	388	7.28	6.30	0.71	-29.90	3.2	0.0
D 107	12/04/2002	66	3.40	9.40	791	7.22	7.60	0.86	-28.00	0.6	0.0
P-107	04/21/2003	74	1.70	9.62	646	7.43	6.70	0.76	37.30	1.2	0.0
	12/04/2002	19	NA	7.90	594	7.64	NT	NT	NT	0	0.0
P-107D*	04/21/2003	27	0.55	10.50	388	7.28	NT	NT	NT	NT	NT
D 111	12/05/2002	44	[1.6]	9.76	639	7.43	-0.20	-0.03	-88.30	1.1	0.0
P-111	04/22/2003	39	1.80	12.06	486	7.71	6.50	0.67	-74.20	1.0	0.0
D 111D	12/05/2002	62	2.50	9.75	910	7.32	-0.20	-0.02	-75.60	1.0	0.0
P-111D	04/23/2003	64	1.40	9.98	706	7.63	8.10	0.94	-20.50	0.7	0.0
D 1124	12/03/2002	12	NA	10.39	579	7.26	179.50	20.00	111.80	0	0.0
P-113A	04/23/2003	15	0.87	10.37	465	7.50	27.00	2.98	42.00	1	0.0
D 112D	12/03/2002	47	[1.7]	10.18	960	6.80	3.40	0.39	27.20	1.2	0.0
P-113B	04/23/2003	56	0.58	10.13	715	7.22	9.20	1.05	-54.30	1.1	0.0
P-114	12/03/2002	44	2.00	11.10	695	7.71	NT	NT	NT	3.2	0.0
(Ehster)	04/23/2003	63	1.20	10.00	669	7.71	7.50	0.85	-117.00	0.4	0.0

NT: Not taken

* Probe cannot be sent downhole at this well due to dedicated pump

[#] December 2002 sulfide test was done using laboratory analysis The April 2003 analysis was conducted using a Hach field kit

Chapter 3 - Tools to Assess Natural Attenuation

Analyte	Concentration in Source Zone or	Explanation
+3	Change from Background	
Arsenic (As ⁺³)	Increase over background	Mobilized under anaerobic conditions if As present. May exceed ES standards.
Chloride (Cl ⁻)	> 2x background	From dechlorination. Environmental factors may interfere (e.g., road salt). Initial contaminant concentrations may be too low to detect a significant increase in Cl ⁻ .
Dissolved Oxygen (D.O.)	< 0.5 mg/l	Oxygen suppresses reductive dechlorination. Cis- DCE, 1,1-DCE, 1,1-DCA, VC, methylene chloride, and chloromethane may degrade aerobically.
Ethane	Present	Daughter product of reductive dechlorination of 1,1,1-TCA. Also produced from ethene.
Ethene	Present	Daughter product of reductive dechlorination of VC.
Ferrous Iron (Fe ⁺²)	Increase over background	Reductive dechlorination may take place under iron reducing conditions. VC may be oxidized under these conditions.
Hydrogen (H ₂)	> 1 nM	Reductive dechlorination possible. VC may accumulate.
Hydrogen (H ₂)	< 1 nM	VC oxidized. Reductive dechlorination may not occur.
Manganese (Mn ⁺²)	Increase over background	If present on soil surfaces, Mn serves as an electron donor. Reductive dechlorination may not take place under Mn reducing conditions.
Methane	Increase over background	Indicates the most reduced groundwater conditions. VC accumulates at methane >0.5 mg/l.
Nickel	Increase over background	Mobilized under anaerobic conditions if Ni present. May exceed ES standards.
Nitrate (NO ₃ ⁻)	< 1 mg/l	Presence of NO ³ suppresses reductive dechlorination. Methylene chloride, VC, other low chlorinated compounds may degrade in the presence of NO ³ .
Oxidation Reduction	<-100 mV	Reductive dechlorination likely.
Potential (ORP) with Ag/AgCl electrode	<50 mV	Reductive dechlorination possible.
pH	5 < pH > 9	Optimal range for microbial activity.
Specific Conductance	Increase over background	General water quality parameter; helps determine that sample is collected from the same groundwater system.
Sulfate (SO4 ⁻²)	Decrease compared to background	Reductive dechlorination may occur under SO ₄ ⁻² reducing conditions. However, high levels of SO ₄ ⁻² can inhibit reductive dechlorination.
Sulfide (S ⁻²)	Increase over background	Reductive dechlorination may occur. S ⁻² may not be detected because of precipitation with Fe ⁺² .
Temperature		Affects microbial energetics. At cooler temps, dechlorination can proceed at lower H_2 levels.
Total Inorganic Carbon (TIC)	Increase over background	Measures CO ₂ species produced by microbial metabolism. (See Appendix D)
Total Organic Carbon (TOC)	> 20 mg/l	Source of organic carbon necessary as driver for reductive dechlorination to proceed. Anthropogenic sources of carbon include BETX.

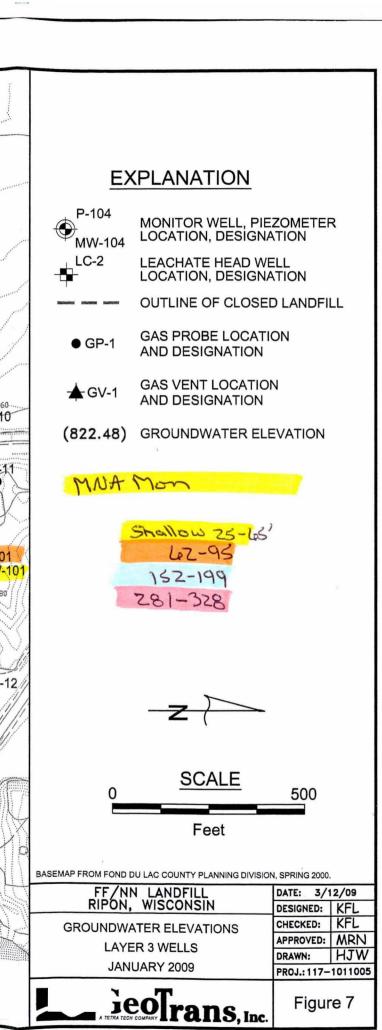
 Table 1*

 Geochemical Patterns Expected with Reductive Dechlorination

* Adapted from Wiedemeier, 1998.

Understanding Chlorinated Hydrocarbons

Table 3-1Natural Attenuation (Geochemical) ParametersFF/NN LandfillRipon, WI


from 2-20-03 Report Revised Mon Play

	Reason for taking	How taken *	Concerns in Sample Collection	Recommend?
Chloride	To verify water is coming from same	In plastic bottle (lab	Additional concentrations (in ppb) not	No - we know where water is coming
9	aquifer; final breakdown product	procedure)	discernable above background levels	from
Dissolved Oxygen	To determine if environment is aerobic	Downhole with meter	Grundfos pumps, where used, may be	Yes
(DO)			aerating water during purge process	
Ethane	Is a breakdown product of chlorinated	In 40mL vials (lab	Sample may get aerated during	No (no chlorinated ethanes at site)
	ethanes	procedure)	sampling process, off-gassing ethene	
Ethene	Is a breakdown product of chlorinated	In 40mL vials (lab	Sample may get aerated during	No - Dec 02 samples all non-detect
	ethenes	procedure)	sampling process, off-gassing ethene	
Hydrogen	Useful for when other methods for	Closed system sampling	Sampling equipment expensive and	No - Expensive and time-consuming.
	determining redox environment are	(bubble strip sampling -	difficult to use, and process is time-	Not necessary unless other methods of
	ineffective	lab analysis)	consuming	determining redox are ineffective
Iron II	Defines the redox environment Vinyl	Field test kit	Sampling method may oxidize iron to	Yes
	chloride may be oxidized in iron-		iron III	
	reducing environment			. ×
Manganese II	Can serve as an electron donor for	Field test kit	Sampling method may change valence	No - High background levels may be too
	reductive dechlorination		state of manganese	high for field test kit
Methane	Indicates the most reduced	In 40mL vials (lab	Sample may get aerated during	No - Dec 02 samples were mostly non-
	groundwater conditions.	procedure)	sampling process, off-gassing methene	detect; detects were very low levels
Nitrate	Nitrate suppresses reductive	In plastic bottle (lab	None	Yes
	dechlorination	procedure)		
Oxidation Reduction	A measure of redox environment	Downhole with meter	Grundfos pumps, where used, may be	Yes
Potential (ORP)			aerating water during purge process	
рН	Always taken when groundwater	Downhole with meter	None	Yes
	sampling			
Specific Conductance	Always taken when groundwater	Downhole with meter	None	Yes
	sampling			
Sulfate	Concentrations indicates redox		None	Yes
	environment is not sulfur-reducing	procedure)		
Sulfide	Indicates significantly reduced		Sulfide may get oxidized or precipitated	No - Dec 02 samples all non-detect
	environment		during sampling	
Femperature	Always taken when groundwater	Downhole with meter	None	Yes
	sampling			
10C	Measures organic carbon available	In plastic bottle (lab	None	Yes
	which may serve as cometabolic food	procedure)		
	source or as competition for			
	chlorinated solvents			×

* Sample methods noted in text of groundwater monitoring plan

p:\ripon landfill\gwmonitoring plan\gwmonitorplan.xls

LAYER 3 BANECK GAASTRA OF FLOW 000 P-116(818.38 (HADEL) П °O BICYCLE PATH 040 .0 **MW-108** P-108 O. P-113A 0 P-113B 0 (819.50) (819.84) P-114 (EHSTER) 00 RE 0 0 P-115 (819 66) (WIESE) 0 • GP-8 \square 820 MILLER (abandoned) GP-10 ...840 • GP-2 ALTNAK (abandoned) 879 Harry 104 Baic MW-112 · p MW-104 GV-4 GP-11 P-111 P-111D MW-111 GP-**- - - -**0 GV-3 00 (820.65) GV-2 GV-1-LC-1 D C P-107D P-107 MW-107 0 GV-5 O -GV-7 GV-6 BICYCLE PA 6.0 GV-8 P-103D (822.48) P-101 GP-6 • > D MW-101 LC-2 880 GV-9 GV-GV-11 GV-10 ROHDE G FX GP-• GP-12 . P-102 MW-102 • GP-5 .870 MW-3A °℃, MW-3B S 0 (821.51) P-106 🛈 CTHINTE MW-106 00000 860 870 $\langle \rangle$

www.geotransinc.com

175 N. Corporate Drive Suite 100 Brookfield, WI 53045

262-792-1282 FAX 262-792-1310

August 12, 2009

Ms. Jennifer Easterly, RPM Wisconsin Department of Natural Resources 625 E. County Road Y, Suite 700 Oshkosh, WI 54901-9731

Re: Ripon FF/NN Landfill Proposed MNA Monitoring Plan

Dear Jennie:

At our meeting on June 24, 2009 you indicated that you were looking to put off the ROD amendment for the Ripon FF/NN Landfill (Site) until additional groundwater monitoring data was collected to support a recommendation that monitored natural attenuation (MNA) was an appropriate alternative for groundwater contaminants at the Site. This document presents a proposed groundwater monitoring plan to provide you with the information you need.

Current Analysis

Multiple lines of evidence are typically required to demonstrate the effectiveness of chlorinated solvent remediation. The goal of an MNA evaluation is to confirm that the plume is stable or receding, and that there are no unacceptable risks posed to human health or the environment.

The primary line of evidence that natural attenuation of an organic contaminant is occurring is indicated by a significant decrease in contaminant concentrations over time, or by a significant decrease in chemical concentrations along a groundwater flow path down-gradient from a source area when the plume is known to be relatively stable. As demonstrated in our April 2009 Progress Report for the Site, there has been a significant decrease in contaminant concentrations in groundwater over time.

The current condition at the Site is that the parent product TCE has totally degraded to non-detectable levels in 6 of 7 wells and in the 1 well where it is still present (MW-103) it is at a concentration below the ES. The TCE daughter product DCE has totally degraded to non-detectable levels in 7 of 11 wells and in the 4 wells where it is still present it is at a concentration below the ES and only exceeds the PAL at 1 well (MW-103). The remaining daughter product VC has totally degraded to non-detectable levels in 9 of 13 wells and in the 4 wells that it is still present (3 wells in Layer 3 and 1 well in Layer 4) the highest concentration is 6.5 ug/L.

Indirect (i.e., secondary) lines of evidence that support MNA typically include trends in geochemical or redox indicators which demonstrate biodegradation is occurring downgradient from a source area, or an increase in daughter product concentrations down-

gradient from a source area. Under anaerobic conditions, chlorinated VOC's can be biodegraded by reductive dechlorination which entails the sequential replacement of chlorine atoms by hydrogen to produce more reduced, less-chlorinated products. Rates of reduction are highest for the more chlorinated compounds like TCE and decrease with the degree of chlorination to a point when oxidation rates become faster. While the reductive dechlorination of TCE and DCE are dominated by anaerobic processes, the reduction of VC is typically an aerobic process, although anaerobic microbial VC oxidation can occur under iron-reducing conditions.

At the Site the parent and first-order daughter product, TCE and DCE, respectively, have been nearly totally degraded and the only daughter product remaining above the ES is VC. The VC is only present in the deepest (Layers 3 and 4) and furthest wells from the Site. Sequential anaerobic/aerobic biodegradation of TCE can take place as reductive dechlorination proceeds under anaerobic conditions and then the dechlorination by-product (VC) flows out of the anaerobic zone into an aerobic environment. In the Layer 3 and 4 groundwater units the dissolved oxygen has historically been >0.5 mg/L but <2.0 mg/L. DO greater than 0.5 mg/L is considered an aerobic state (EPA, 1998), which would not promote reductive dechlorination but could oxidize VC aerobically.

Proposed MNA Monitoring Plan

The proposed MNA monitoring plan for the Site is summarized on Table 1. The plan includes semiannual water level measurements for all wells, semiannual groundwater MNA parameter monitoring for all Layer 2, 3 and 4 wells with dedicated QED sampling equipment, and semiannual or annual groundwater VOC sampling of all wells. Other elements of the monitoring plan include semiannual groundwater VOC sampling of 3 residential wells (Baneck, Gaastra and Rohde), semiannual gas VOC sampling of 4 gas extraction wells/vents and 1 gas probe, and annual leachate VOC sampling (if leachate is present).

MNA Parameters

Because VC is the sole remaining contaminant of concern and because VC reduction is most commonly an aerobic process via direct oxidation, MNA parameters that can demonstrate oxidative conditions will be monitored. MNA parameter monitoring will be conducted on wells vertically and horizontally up-gradient, within and down-gradient of the VC plume. Based on EPA (1998) guidance the following parameters will be monitored:

Analysis	Concentrations for VC Oxidation
Dissolved Oxygen	> 0.5 mg/L
Oxidation Reduction Potential	> 50 mV
Iron II	ND (< 0.2 mg/L)
Nitrite	ND (< 0.08 mg/L)
Sulfide	ND (< 0.2 mg/L)
Methane	< 0.5 mg/L

The DO and ORP along with temperature, pH and conductivity will be measured using a QED MP20 MicroPurge Flow Cell Meter. Because of problems in the past with ORP calibration, a second standard will be used to confirm operation and a second meter will be used for back up confirmation that the meter is accurate.

The iron II, nitrite and sulfide will be measured in the field using CHEMetrics analytespecific Vacu-vials[®] for photometric analysis using a CHEMetrics Model V-2000 LED photometer.

For dissolved methane, groundwater samples will be collected and submitted to Pace Analytical Laboratories for analysis using Method 8000.

VOC Sampling

Groundwater sampling for VOCs will follow the current frequency of semiannual and annual sampling of wells as shown on Table 1. Groundwater samples will be collected using low-flow sampling techniques for Layer 2, 3 and 4 wells which have been outfitted with dedicated QED equipment. The remaining wells (all Layer 1 and 3 Layer 2 wells) will be sampled by purging 3 casing volumes and collecting a sample with a bailer.

Reporting

Semiannual progress reports will be prepared and submitted to the WDNR within 30 days of receipt of analytical results.

If you have any questions please feel free to contact me.

Sincerely,

GeoTrans, Inc.

Michael R. Noel, P.G. Vice President, Principal Hydrogeologist

Enclosures

cc:

Bernard Schorle, USEPA w/ Both Enclosures Nelson Olavarria, Cooper Industries, w/o Enclosures Steve Barg, City of Ripon, w/o Enclosures

Groundwater Monitoring Schedule

FF/NN Landfill, Ripon, WI

Stratigraphic Layer	Sampling Point:	Location Relative to Landfill	Water Level	MNA Parameters	VOCs	Vinyl Chloride Concentration Apr 09	Equipment Type
	MW-101	Up-gradient	SA	SA	А	ND	Bailer
	MW-102	Side-gradient	SA		A	ND	Bailer
s (MW-103	Down-gradient	SA	SA	SA	ND	Bailer
Vell bgs	MW-104	Within Landfill	SA		SA	ND	Bailer
Layer 1 Wells (25-65 ft bgs)	MW-106	Side-gradient	SA		А	ND	Bailer
ayeı 25-6	MW-107	Down-gradient	SA	SA	SA	ND	Bailer
1 Q	MW-108	Side-gradient	SA		SA	ND	Bailer
	MW-111	Down-gradient	SA	SA	A	ND	Bailer
	MW-112	Down-gradient	SA		SA	ND	Bailer
	P-101	Up-gradient	SA	SA	А	ND	Bailer
	P-102	Side-gradient	SA		SA	ND	Bailer
ells gs)	P-103	Down-gradient	SA	SA	SA	ND	QED
Layer 2 Wells (62-95 ft bgs)	P-104	Beneath Landfill	SA		А	ND	QED
er 2 95	P-106	Side-gradient	SA		SA	ND	QED
Lay (62	P-107	Down-gradient	SA	SA	SA	ND	QED
	P-108	Side-gradient	SA		А	ND	Bailer
	P-111	Down-gradient	SA	SA	А	ND	QED
	MW-3B	Down-gradient	SA	SA	SA	ND	QED
s)	P-103D	Down-gradient	SA	SA	SA	ND	QED
Layer 3 Wells (152-199 ft bgs)	P-111D	Down-gradient	SA	SA	SA	5.5 ug/L	QED
r 3 V 99 f	P-113B	Down-gradient	SA	SA	SA	ND	QED
ayeı 2-1	P-114	Down-gradient	SA	SA	SA	6.5 ug/L	QED
La (15	P-115	Down-gradient	SA	SA	SA	1.3 ug/L	QED
	P-116	Down-gradient	SA	SA	SA	ND	QED
) 28	MW-3A	Down-gradient	SA	SA	SA	ND	QED
Layer 4 Wells (281-328 ft bgs)	P-107D	Down-gradient	SA	SA	SA	2.5 ug/L	QED
La V ft	P-113A	Down-gradient	SA	SA	А	ND	QED
e e	Baneck	Down-gradient			SA	ND	Spigot
Private Wells	Gaastra	Down-gradient			SA	ND	Spigot
Pr	Rohde	Down-gradient			SA	ND	Spigot
	Leachate LH-1	Within Landfill	А		А	ND	Disposable bailers
	Leachate LH-2	Within Landfill	А		А	ND	Disposable bailers
	Leachate LH-3	Within Landfill	А		А	ND	Disposable bailers
Ξ	Gas VOCs LH-1	Within Landfill			SA	ND	Summa Canister
Landfill	Gas VOCs LH-2.	Within Landfill			SA	ND	Summa Canister
La	Gas VOCs LH-3	Within Landfill			SA	ND	Summa Canister
	Gas VOCs GV-6	Within Landfill			SA	ND	Summa Canister
	Gas VOCs GP-3	Down-gradient			SA	ND	Summa Canister
с. Н	Cap Inspection	On Landfill			SA		

° · .

MNA = Monitored Natural Attenuation field parameters (Ph, Cond, Temp, DO, ORP, Fe(II), Nitrite and Sulfide)

SA = Semianual (Apr and Oct); A = Annual (Apr)