GIS REGISTRY Cover Sheet

Source Prop	erty Information		CLOSURE DATE:	Aug 30, 2010
BRRTS #:	02-41-257209, 02-41-000260, 02-41-0	00967		
ACTIVITY NAME:	BUTLER RAILROAD YARD/ NW RR BUTLER YARD SITE	1/ YARD SITE 2	FID #:	241012860
PROPERTY ADDRESS:	4823 N 119th St		DATCP #:	
MUNICIPALITY:	Milwaukee		COMM #:	53225369623
PARCEL ID #:	218-9991-118 (2189991124, 2189991211)			
	*WTM COORDINATES:	VTM COORDINATES F	REPRESENT:	

Please check as appropriate: (BRRTS Action Code)

X

Contaminated I	Media:
<u>Groundwater</u> Contamination > ES (236)	Soil Contamination > *RCL or **SSRCL (232)
Contamination in ROW	Contamination in ROW
Off-Source Contamination	Off-Source Contamination
(note: for list of off-source properties see "Impacted Off-Source Property" form)	(note: for list of off-source properties see "Impacted Off-Source Property" form)
Land Use Con	trols:
N/A (Not Applicable)	Cover or Barrier (222)
X Soil: maintain industrial zoning (220)	(note: maintenance plan for groundwater or direct contact)
(note: soil contamination concentrations between non-industrial and industrial levels)	Vapor Mitigation (226)
Structural Impediment (224)	Maintain Liability Exemption (230)
Site Specific Condition (228)	(note: local government unit or economic development corporation was directed to take a response action)
Monitoring W	/ells:
Are all monitoring wells properly aba	ndoned per NR 141? (234)

● Yes ○ No ○ N/A

* Residual Contaminant Level **Site Specific Residual Contaminant Level

State of Wisconsin Department of Natural Resources	GIS Registry Checklist	
http://dnr.wi.gov	Form 4400-245 (R 4/08)	Page 1 of 3

This Adobe Fillable form is intended to provide a list of information that is required for evaluation for case closure. It is to be used in conjunction with Form 4400-202, Case Closure Request. The closure of a case means that the Department has determined that no further response is required at that time based on the information that has been submitted to the Department.

NOTICE: Completion of this form is mandatory for applications for case closure pursuant to ch. 292, Wis. Stats. and ch. NR 726, Wis. Adm. Code, including cases closed under ch. NR 746 and ch. NR 726. The Department will not consider, or act upon your application, unless all applicable sections are completed on this form and the closure fee and any other applicable fees, required under ch. NR 749, Wis. Adm. Code, Table 1 are included. It is not the Department's intention to use any personally identifiable information from this form for any purpose other than reviewing closure requests and determining the need for additional response action. The Department may provide this information to requesters as required by Wisconsin's Open Records law [ss. 19.31 - 19.39, Wis. Stats.].

	BRRTS #: 02-41-257209, 02-41-000967, 02-41-000260
ACTIVITY NAME: UNION PACIFIC BUTLER YARD FACILITY	WTM COORDINATES: X: 677585 Y: 294478
CLOSURE DOCUMENTS (the Department adds these items to	the final GIS packet for posting on the Registry)

X Closure Letter

Maintenance Plan (if activity is closed with a land use limitation or condition (land use control) under s. 292.12, Wis. Stats.)

X Conditional Closure Letter

Certificate of Completion (COC) for VPLE sites

SOURCE LEGAL DOCUMENTS

Deed: The most recent deed as well as legal descriptions, for the **Source Property** (where the contamination originated). Deeds for other, off-source (off-site) properties are located in the **Notification** section.

Note: If a property has been purchased with a land contract and the purchaser has not yet received a deed, a copy of the land contract which includes the legal description shall be submitted instead of the most recent deed. If the property has been inherited, written documentation of the property transfer should be submitted along with the most recent deed.

Certified Survey Map: A copy of the certified survey map or the relevant section of the recorded plat map for those properties where the legal description in the most recent deed refers to a certified survey map or a recorded plat map. (lots on subdivided or platted property (e.g. lot 2 of xyz subdivision)).

Figure #: Title: Donahue Certified Survey Map No. 1957

Signed Statement: A statement signed by the Responsible Party (RP), which states that he or she believes that the attached legal description accurately describes the correct contaminated property.

MAPS (meeting the visual aid requirements of s. NR 716.15(2)(h))

Maps must be no larger than 8.5 x 14 inches unless the map is submitted electronically.

Location Map: A map outlining all properties within the contaminated site boundaries on a U.S.G.S. topographic map or plat map in sufficient detail to permit easy location of all parcels. If groundwater standards are exceeded, include the location of all potable wells within 1200 feet of the site.

Note: Due to security reasons municipal wells are not identified on GIS Packet maps. However, the locations of these municipal wells must be identified on Case Closure Request maps.

Figure #: 1 Title: Property and Site Location Map

Detailed Site Map: A map that shows all relevant features (buildings, roads, individual property boundaries, contaminant sources, utility lines, monitoring wells and potable wells) within the contaminated area. This map is to show the location of all contaminated public streets, and highway and railroad rights-of-way in relation to the source property and in relation to the boundaries of groundwater contamination exceeding a ch. NR 140 Enforcement Standard (ES), and/or in relation to the boundaries of soil contamination exceeding a Residual Contaminant Level (RCL) or a Site Specific Residual Contaminant Levels (SSRCL) as determined under s. NR 720.09, 720.11 and 720.19.

Figure #: 2 Title: Site Layout Map

Soil Contamination Contour Map: For sites closing with residual soil contamination, <u>this map is to show the location of all</u> <u>contaminated soil and a single contour</u> showing the horizontal extent of each area of contiguous residual soil contamination that exceeds a Residual Contaminant Level (RCL) or a Site Specific Residual Contaminant Level (SSRCL) as determined under s. NR 720.09, 720.11 and 720.19.

Figure #: 8 thru 12 Title: Soil Figures

State of Wisconsin Department of Natural Resources http://dnr.wi.gov		GIS Registry Checklist Form 4400-245 (R 4/08)	t Page 2 of 3
BRRTS #: 02-41-257209, 02-41-000967, 02-41-000260	ACTIVITY NAME:	UNION PACIFIC BUTLER YARD FAC	LITY

MAPS (continued)

Section Map: A map showing the source location and vertical extent of residual soil contamination exceeding a Residual Contaminant Level (RCL) or a Site Specific Residual Contaminant Level (SSRCL). If groundwater contamination exceeds a ch. NR 140 Enforcement Standard (ES) when closure is requested, show the source location and vertical extent, water table and piezometric elevations, and locations and elevations of geologic units, bedrock and confining units, if any.

Figure #: 4 Title: Geologic Cross-Section A-A'

Figure #: 5 Title: Geologic Cross-Section B-B'

Signature And the second secon

Figure #: 15 Title: Summary of Groundwater VOC and PAH Analytical Results

Groundwater Flow Direction Map: A map that represents groundwater movement at the site. If the flow direction varies by more then 20° over the history of the site, submit 2 groundwater flow maps showing the maximum variation in flow direction.

Figure #: 6 Title: Estimated Groundwater Elevation Map January 3, 2007

Figure #: Title:

TABLES (meeting the requirements of s. NR 716.15(2)(h)(3))

Tables must be no larger than 8.5 x 14 inches unless the table is submitted electronically. Tables <u>must not</u> contain shading and/or cross-hatching. The use of **BOLD** or *ITALICS* is acceptable.

Soil Analytical Table: A table showing <u>remaining</u> soil contamination with analytical results and collection dates.
 Note: This is one table of results for the contaminants of concern. Contaminants of concern are those that were found during the site investigation, that remain after remediation. It may be necessary to create a new table to meet this requirement.

 Table #:
 1, 2, 3
 Title:
 Summary of Soil Analytical Results

Groundwater Analytical Table: Table(s) that show the most recent analytical results and collection dates, for all monitoring wells and any potable wells for which samples have been collected.

 Table #: 4, 5
 Title: Summary of Groundwater Analytical Results

Water Level Elevations: Table(s) that show the previous four (at minimum) water level elevation measurements/dates from all monitoring wells. If present, free product is to be noted on the table.

 Table #:
 6
 Title:
 Groundwater Elevation Data

IMPROPERLY ABANDONED MONITORING WELLS

For each monitoring well <u>not</u> properly abandoned according to requirements of s. NR 141.25 include the following documents. **Note:** If the site is being listed on the GIS Registry for only an improperly abandoned monitoring well you will only need to submit the documents in this section for the GIS Registry Packet.

X Not Applicable

Site Location Map: A map showing all surveyed monitoring wells with specific identification of the monitoring wells which have not been properly abandoned.

Note: If the applicable monitoring wells are distinctly identified on the Detailed Site Map this Site Location Map is not needed.

Figure #: Title:

Well Construction Report: Form 4440-113A for the applicable monitoring wells.

Deed: The most recent deed as well as legal descriptions for each property where a monitoring well was not properly abandoned.

Notification Letter: Copy of the notification letter to the affected property owner(s).

State of Wisconsin Department of Natural Resources http://dnr.wi.gov	GIS Registry Checklist Form 4400-245 (R 4/08) Page 3 of 3
BRRTS #: 02-41-257209, 02-41-000967, 02-41-000260	ACTIVITY NAME: UNION PACIFIC BUTLER YARD FACILITY
NOTIFICATIONS	the second s

Source Property

Letter To Current Source Property Owner: If the source property is owned by someone other than the person who is applying for case closure, include a copy of the letter notifying the current owner of the source property that case closure has been requested.

Return Receipt/Signature Confirmation: Written proof of date on which confirmation was received for notifying current source property owner.

Off-Source Property

Group the following information per individual property and label each group according to alphabetic listing on the "Impacted Off-Source Property" attachment.

Letter To "Off-Source" Property Owners: Copies of all letters sent by the Responsible Party (RP) to owners of properties with groundwater exceeding an Enforcement Standard (ES), and to owners of properties that will be affected by a land use control under s. 292.12, Wis. Stats.

Note: Letters sent to off-source properties regarding residual contamination must contain standard provisions in Appendix A of ch. NR 726.

Number of "Off-Source" Letters:

Return Receipt/Signature Confirmation: Written proof of date on which confirmation was received for notifying any off-source property owner.

Deed of "Off-Source" Property: The most recent deed(s) as well as legal descriptions, for all affected deeded off-source property(ies). This does not apply to right-of-ways.

Note: If a property has been purchased with a land contract and the purchaser has not yet received a deed, a copy of the land contract which includes the legal description shall be submitted instead of the most recent deed. If the property has been inherited, written documentation of the property transfer should be submitted along with the most recent deed.

Letter To "Governmental Unit/Right-Of-Way" Owners: Copies of all letters sent by the Responsible Party (RP) to a city, village, municipality, state agency or any other entity responsible for maintenance of a public street, highway, or railroad right-of-way, within or partially within the contaminated area, for contamination exceeding a groundwater Enforcement Standard (ES) and/or soil exceeding a Residual Contaminant Level (RCL) or a Site Specific Residual Contaminant Level (SSRCL).

Number of "Governmental Unit/Right-Of-Way Owner" Letters:

State of Wisconsin \ DEPARTMENT OF NATURAL RESOURCES

Jim Doyle, Governor Matthew J. Frank, Secretary Gloria L. McCutcheon, Regional Director Southeast Region Headquarters 2300 N. Dr. Martin Luther King, Jr. Drive PO Box 12436 Milwaukee, Wisconsin 53212-0436 Telephone 414-263-8500 FAX 414-263-8716 TTY 414-263-8713

August 30, 2010

Mr. Geoffrey B. Reeder Manager Environmental Site Remediation Safety 24125 Aldine Westfield Road, Spring, TX 77379

> SUBJECT: Final Case Closure with Continuing Obligations, Union Pacific Rail Road, North half, Butler Yard Fueling Facility, 4823 North 119thStreet, Milwaukee, Wisconsin, BRRTs #s 02-41-257209, 02-41000967, 02-41-000260, FID # 241012860

Dear Mr. Reeder:

On August 30, 2010 the Department of Natural Resources reviewed the above referenced case for closure. The Department reviews environmental remediation cases for compliance with state laws and standards to maintain consistency in the closure of these cases.

On September 28, 2009 you were notified that the Closure Committee had granted conditional closure to this case. On May 13, 2010 the Department received information or documentation indicating that you have complied with the requirements for final closure. The condition of closure was to abandon the monitoring wells on-site and submit the well abandonment forms to the Department.

The Department reviewed the case closure request regarding the VOCs, PVOCs, and PAHs contamination in the soil and groundwater at this site. Based on the correspondence and data provided, it appears that your case meets the closure requirements in ch. NR 726, Wisconsin Administrative Code. The Department considers this case closed and no further investigation or remediation is required at this time. However, you and future property owners must comply with certain continuing obligations as explained in this letter.

GIS Registry

This site will be listed on the Remediation and Redevelopment Program's GIS Registry. The specific reasons are summarized below:

- Residual soil contamination exists that must be properly managed should it be excavated or removed
- Before the land use may be changed from industrial to non-industrial, additional environmental work
 must be completed
- Groundwater contamination is present above Chapter NR 140 enforcement standards

This letter and information that was submitted with your closure request application will be included on the GIS Registry. To review the sites on the GIS Registry web page, visit the RR Sites Map page at http://dnr.wi.gov/org/aw/rr/gis/index.htm. If the property is listed on the GIS Registry because of remaining contamination and you intend to construct or reconstruct a well, you will need prior Department approval in accordance with s. NR 812.09(4)(w), Wis. Adm. Code. To obtain approval, Form 3300-254 needs to be completed and submitted to the DNR Drinking and Groundwater program's regional water supply specialist. This form can be obtained on-line

http://dnr.wi.gov/org/water/dwg/3300254.pdf or at the web address listed above for the GIS Registry.

Closure Conditions

Please be aware that pursuant to s. 292.12 Wisconsin Statutes, compliance with the requirements of this letter is a responsibility to which you the current property owner and any subsequent property owners must adhere. You must pass on the information about these continuing obligations to the next property owner or owners. If these requirements are not followed or if additional information regarding site conditions indicates that contamination on or from the site poses a threat to public health, safety, welfare, or the environment, the Department may take enforcement action under s. 292.11 Wisconsin Statutes to ensure compliance with the specified requirements, limitations or other conditions related to the property or this case may be reopened pursuant to s. NR 726.09, Wis. Adm. Code. The Department intends to conduct inspections in the future to ensure that the conditions included in this letter

Residual Soil Contamination

Residual VOCs and PVOCs soil contamination remains at the following locations: GP-2, 17, 20, 27, 33, 42, 46, 56, 57, 70, 90, 98, 115 and PAHs at GP-89, 90, 96, 97,102,106-108, 109, 121-124, 126-128 132, 135-137, 139, 141-144, 146-149, 151, 154, 156, 157, 161, 164-167, 169-173, 175, 176, 178-183, 185, 200, 202, 204, 207, 208, 210 and GP-212 as indicated on the attached maps Figure 8, 9,10 12, 13, 20 and in the information submitted to the Department of Natural Resources. If soil in the specific locations described above is excavated in the future, then pursuant to ch. NR 718 or, if applicable, ch. 289, Stats., and chs.500 to 536, the property owner at the time of excavation must sample and analyze the excavated soil to determine if residual contamination remains. If sampling confirms that contamination is present the property owner at the time of excavation will need to determine whether the material is considered solid or hazardous waste and ensure that any storage, treatment or disposal is in compliance with applicable standards and rules. In addition, all current and future owners and occupants of the property need to be aware that excavation of the contaminated soil may pose an inhalation or other direct contact hazard and as a result special precautions may need to be taken to prevent a direct contact health threat to humans.

Industrial Residual Soil Standards

Soil Meeting NR 720.11, Table 2 Industrial Standards

Soil samples that are representative of remaining residual soil contamination on this property were collected on 10/18/2005, contained 1-Methylnaphthalene, 2-MethInaphthalene, Acenaphthalene, Anthracene, Benzo(a)anthracene, Chrysene, Fluoranthene, Fluorene, Indeno(1,2,3-cd)pyrene Phenanthrene, in concentrations that exceeded NR 720.11, Table 2, Wis. Adm. Code, non-industrial soil standards and met NR 720.11, Table 2, Wis. Adm. Code, industrial soil standards.

Soil Meeting Site-Specific Industrial Standards for this Site

Soil samples that are representative of remaining soil contamination on this property were collected on 01/10/2007. These samples contained various PAHs in concentrations that meet the site-specific industrial soil standards developed for this site.

Therefore, pursuant to s. NR 726.05(8)(b)1., Wis. Adm. Code, this property may not be used or developed for a residential, commercial, agricultural or other non-industrial use, unless (at the time that the non-industrial use is proposed) the property owner provides notification to the Department of Natural Resources of the change in land use and an investigation is conducted, to determine the degree and extent of various PAHs contamination that remains on the property, and remedial action is taken as necessary to meet all applicable non-industrial soil cleanup standards. If soil in the specific locations shown on the attached map Figure 13 described above is excavated in the future, the property owner at the time of excavation must sample and analyze the excavated soil to determine if residual contamination remains. If sampling confirms that contamination is present the property owner at the time of excavation will need to determine whether the material is considered solid or hazardous waste and ensure that any storage, treatment or disposal is in compliance with applicable statutes and rules. In addition, all current and future owners and occupants of the property need to be aware that excavation of the contaminated soil may pose an inhalation or other direct contact hazard and as a result special precautions may need to be taken during excavation activities to prevent a health threat to humans.

Residual Groundwater Contamination

Groundwater impacted by Methylene Chloride (GP-7), Benzo(a)pyrene, Benzo(b)fluoranthene, Chrysene (GP-27, RT-1, RT-2), contamination greater than enforcement standards set forth in ch. NR140, Wis. Adm. Code, is present on this contaminated property shown in Figure 15. For more detailed information regarding the locations where groundwater samples have been collected (i.e., monitoring well locations) and the associated contaminant concentrations, refer to the Remediation and Redevelopment Program's GIS Registry at the RR Sites Map page at http://dnr.wi.gov/org/aw/rr/gis/index.htm.

Dewatering Permits

The Department's Watershed Management Program regulates point source discharges of contaminated water, including discharges to surface waters, storm sewers, pits or to the ground surface. This includes discharges from construction related dewatering activities, including utility and building construction.

3

Based on the concentrations of contaminants remaining in groundwater at this location, it appears likely that dewatering activities would require a permit from the Watershed Management Program. If you or any other person plan to conduct such activities, you or that person must contact that program, and if necessary, apply for the necessary discharge permit. Additional information regarding discharge permits is available at http://www.dnr.state.wi.us/org/water/wm/ww/

Post-Closure Notification Requirements

In accordance with ss, 292.12 and 292.13, Wis. Stats., you must notify the Department before making changes that affect or relate to the conditions of closure in this letter. For this case, an example of changed conditions requiring prior notification include, but are not limited to:

 Development, construction or other changes, including zoning changes, that change the land use from industrial to non-industrial

Please send written notifications in accordance with the above requirements to the Southeast Region RR Program, Milwaukee Service Center to the attention of the Southeast Region RR Program Associate.

The following DNR fact sheet, RR-819, "Continuing Obligations for Environmental Protection" has been included with this letter, to help explain a property owner's responsibility for continuing obligations on their property. If the fact sheet is lost, you may obtain a copy at <u>http://dnr.wi.gov/org/aw/rr/archives/pubs/RR819.pdf</u>.

The Department appreciates your efforts to restore the environment at this site. If you have any questions regarding this closure decision or anything outlined in this letter, please contact Binyoti Amungwafor at 414-263-8607.

Sincerely,

James a Shmet

James A. Schmidt, Team Supervisor SER Remediation & Redevelopment Program

Attachments: Remaining Soil contamination Maps, Figure 8,9,10, 12, 13, 15 and 20 RR-819

cc: Mr. Ben Verburg/Ms. Toni Schoen, ARCADIS, Infrastructure, Environment, Facilities Case File

State of Wisconsin \ DEPARTMENT OF NATURAL RESOURCES

Jim Doyle, Governor Matthew J. Frank, Secretary Glorla L. McCutcheon, Regional Director Southeast Region Headquarters 2300 N. Dr. Martin Luther King, Jr. Drive PO Box 12436 Milwaukee, Wisconsin 53212-0436 Telephone 414-263-8500 FAX 414-263-8716 TTY 414-263-8713

September 28, 2009

Mr. Geoffrey B. Reeder Manager Environmental Site Remediation Safety 24125 Aldine Westfield Road, Spring, TX 77379

Subject: Conditional Closure and off-site Liability exemption, Union Pacific Railroad, North-half, Butler Yard Fueling Facility, 4823 North 119th Street, Milwaukee, Wisconsin, BRRTs #s 02-41-257209, 02-41-000967, 07-41553682, FID # 241012860

Dear Mr. Reeder:

On September 2, 2009 the Department of Natural Resources reviewed your request for closure of the case described above. The Department of natural Resources reviews environmental remediation cases for compliance with state rules and statutes to maintain consistency in the closure of these cases. After careful review of the closure request, the Department of Natural Resources has determined that the volatile organic compounds and chlorinated solvents contamination on the site appears to have been investigated and remediated to the extent practicable under site conditions. However, there appears to be chlorinated solvent contamination of: trichloroethene (TCE), cis-1, 2 dichloethene (cis-1,2 DCE) and vinyl chloride (VC) that might be migrating from adjacent properties to the Union Pacific Railroad Property. The Union Pacific Railroad property is granted an off-site liability exemption to the chemical constituents listed above. Your case has been remediated to Department standards in accordance with s. NR 726.05, Wis. Adm. Code and will be closed if the following condition is satisfied:

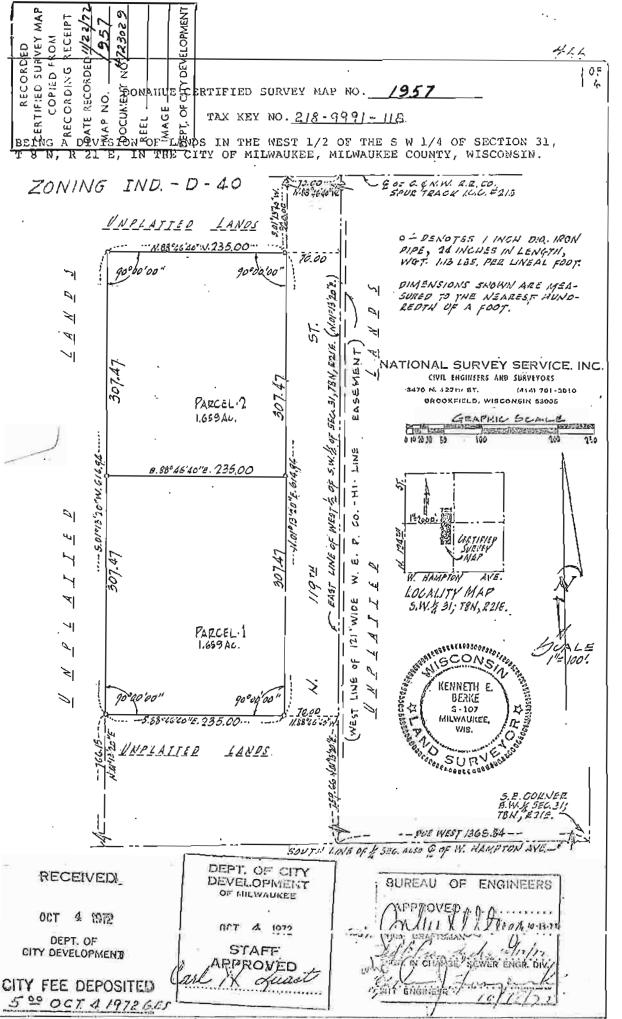
MONITORING WELL ABANDONMENT

The monitoring wells at the site cannot be properly abandoned in compliance with ch. NR 141, Wis. Adm. Code at this time due to any opened case on -site. Documentation of well abandonment in future must be submitted to Binyoti F. Amungwafor on Form 3300-5B found at www.dnr.state.wi.us/org/water/dwg/gw/ or provided by the Department of Natural Resources.

When the above condition has been satisfied, please submit the well abandonment forms to verify that applicable conditions have been met, and your case will be closed. Your site will be listed on the DNR Remediation and Redevelopment GIS Registry of Closed Remediation Sites. Information that was submitted with your closure request application will be included on the GIS Registry. To review the site on the GIS Registry web page, visit http://maps.dnr.state.wi.us/brrts.

Please be aware that the case may be reopened pursuant to s. NR 726.09, Wis. Adm. Code, if additional information regarding site conditions indicates that contamination on or from the site poses a threat to public health, safety, or welfare or to the environment.

We appreciate your efforts to restore the environment at this site. If you have any questions regarding this letter, please contact me at 414-263-8607.


Sincerely,

Binyoti F. Amungwafor Hydrogeologist

cc: Mr. Ben Verburg, ARCADIS G. & M. Case File

Lam 2 dela at work and furpole ier of the right of lowested . Storer in i Lego Ottom a. D. 1909. motivil wel die d ded Cot 19-1908 John M. Blacks at 1030 5 Call a.m. Den -Motory . Problie 66 mari Register .! 648578 mor sine the Chin Pursinger Deputy Seal Ing Ommillion Spice Out 3. 7. 199 J. M. Phone + sof mit Afaits " M. Dr Py lo 1 Or,D. This Ordentine, Wede this Tures day of Ostober - the year of our Lad one thousand mine Annalicational Rine Setter great Beston ou and Setiona Elever his safe of the town of them in the Bounty of Milson her and State of alimonian farties of the quet fast and the Mile - her defastin and those tomate it. pany fasty of the second fand. The torescell glat the san of the first for for and in Ensideration of the server of Tur The hed & ably one cand the Dollars, in hand find by the sa faity of the I fait the securit whereas is hereby a have I the said lasty of the same fait fore conclused a therefron have ranted bargamed sold sconess disclassed, co Rised and ingrand und by these presente de grant barge acrossed, delence, coming sland on firm with the send party of the to to the sources is and assigne forever all the fol-1 alue ind lot fiere or for col of land situate dair the lis of Williamber and State of Discours and hnow and described follows town. Offe Low HOust quarter of the South Great ter of dection adiely one Ollin to marking onember Eigh Northough Ranget normation iterenty one Call Cast on terning horty one and one eight (214) cause more on less Receiving downers the building m, with sight it searce same, the more, before. March 1 st 1910 the all and Sugalow The Seredelansate and aff Legeller, to belonging of. · · · ····· s affeil my and there - anen to There all the selace night talle interest ching time of Hefier fut, it win Burney 5 prover to the

to and apporte to March the said free ed fait, of the sound fert to the 6 marte Sh first fast, for Thereabour their line she twee of the sent barger and assee tou 1 fait det at -High I delivery of these presente they are well suged of a sure ferfent, abarla to an ungere the selate of mple, a I thereful and being the proverty Surger sell and a Ľ d, and that the same we free and alear de form aforea all former a d eller g inte bargand. sales, burne tapes. ere, of what he can in the facet and placeable foreirer of the and from party of the second dart, at exceeders and ashight, sy somet all and my there forton or furties the fally claming or to chain the d Lel any part allows the sand ferlies of the first fart shall an at and to me the fund. And the said farture of the forset for the have a return any and all sight of homestead. ~ ske - - pronesses berearbefore decouted, and any and all benefile from leger. edsoutages and exemption a, ander and by metice of the children of the state of Ationnes in represent to Sense tede and an down goe to the lande of said for live of the first part a fact have been or may be capter to cansed by secon of the constraction man. tenance and of services of " recland on and granted free or by receive of very Lowful and whater woof said year ind for . mace by said fait, of the second fast, it manners or soig in . We Westmass (1) lever f. " It said faities of the feat fait have herewrite set their he he and dealer the day and year fist above written digard dealed and Delivered in Presence of Gacot Martin Gross (end) Q. m. Clacke 41 92 Cureland debina Groce (seal) delale of Oticina anty of Milmudes & yoh M. W. Cache a Dolary Ollice and for said Br County the State spreced De Merchy builify that you & Martin do vine Grove heaving person ally know to me to be the به رود براز admitical fenere normal and dereribed in and whole m subscribed to the foregoing instrument as grantore and and as and before day in ferson a the same, appl tome that they signed sealed as & definered said. that the s - in Their free a - tory a ace there at forth .the release mained sul this first of right of homestical sure danny head and John & Beacher 1078

<u>266 -</u>

22

DONAHUE CERTIFIED SURVEY MAP NO.

TAX KEY NO. 218 - 9991-118

BEING A DIVISION OF LANDS IN THE WEST 1/2 OF THE S W 1/4 OF SECTION 31, T 8 N, R 21 E, IN THE CITY OF MILWAUKEE, MILWAUKEE COUNTY, WISCONSIN.

SURVEYOR'S CERTIFICATE STATE OF WISCONSIN) :SS

MILWAUKEE COUNTY [

I, KENNETH E BERKE, registered Wisconsin Land Surveyor, being first duly sworn, on oath do hereby depose and say:

THAT I have surveyed, divided and mapped a part of the West 1/2 of the S W 1/4 of Section 31, T 8 N, R 21 E, in the City of Milwaukee, Milwaukee County, Wisconsin, which is bounded and described as follows:

Commencing at a point on the center line of the Chicago and Northwestern Railway Company Spur Track ICC No. 213, as said spur track is now located distant 70.00 ft. North 88° 46' 40" West, measured at right angles from the East line of said West 1/2 of the S W 1/4 of Section 31; thence South 01° 13' 20" West and parallel with said East line a distance of 320.0 ft. to the point of beginning of the parcel of land herein described; thence North 88° 46' 40" West at right angles to the last described course a distance of 235.00 ft.; thence South 01° 13' 20" West 614.94 ft. and parallel with said East line to a point on a line drawn at right angles to said East line at a point thereon distant 766.15 ft. North 01°13'20" East from its intersection with the South line of said Section; thence South 88° 46' 40" East along said last described right angle a distance of 235.00 ft. to a point distant 70.00 ft. North 88° 46' 40" West, measured at right angles from the East line of the West 1/2 of the S W 1/4 of Section 31; thence North 01° 13' 20" East 614.94 ft. and parallel with said East line to the point of beginning.

THAT I have made such survey, land division and map by the direction of MARY A DONAHUE, owner of said land.

THAT such map is a correct representation of all the exterior boundaries of the land surveyed and the land-division thereof made.

THAT I have fully complied with the provisions of Chapter 236 of the Wisconsin Statutes and Chapter 9 of the Milwaukee Code of Ordinances in surveying, dividing and mapping the same.

Subscribed and sworn to before me this

ay of October, 1972..

Irene M Metzger, Notary/Public My Commission Expires August 18, 1974.

Ranneth & Berke Kenneth E Berke, Surveyor S 107

OWNER'S CERTIFICATE

AS OWNER, I hereby certify that I caused the land described on this map to be surveyed, divided and mapped as represented on this map in accordance with the requirements of Section 9-3.5 of the City of Milwaukee Code of Ordinances.

461

DONAHUE CERTIFIED SURVEY MAP NO.

TAX KEY NO. 218-9991-118.

BEING A DIVISION OF LANDS IN THE WEST 1/2 OF THE 5 W 1/4 OF SECTION 31, T 8 N, R 21 E, IN THE CITY OF MILWAUKEE, MILWAUKEE COUNTY, WISCONSIN.

In consideration of the approval of the map by the Common Council, the undersigned covenants and agrees to and with the City of Milwaukee that no lot or parcel as hereon set forth shall at any time subsequent to the recording of this map be in any manner divided, described, or conveyed so as to result in lots, parcels of building sites having dimensions, area or courses other than as herein set forth, unless said divisions, descriptions or conveyances are first approved by the Common Council of the City of Milwaukee, and that such restrictions are binding on the undersigned, his, her, or their heirs and assigns. Such approval, however, shall not be required for the taking of land for public purposes.

THAT all utility lines to provide electric power and telephone service to all lots in the Certified Survey Map shall be installed underground in easements provided therefore.

WITNESS the hand and seal of said owner this Ind day of October, 1972. In The Presence of: STATE OF WISCONSIN] : SS MILWAUKEE COUNTY ſ PERSONALLY came before me this $\frac{2MR}{day}$ day of October, 1972, the above named MARY DONAHUE, to me known to be the person who executed the foregoing instrument and acknowledged the same. Jourse Neustardter [SEAL] Notary Public, State of Wisconsin My Commission Expires ________ My Commission is Permanent. CERTIFICATE OF CITY TREASURER STATE OF WISCONSIN) :SS MILWAUKEE COUNTY í I, JOSEPH J. KRUEGER, being the duly elected, qualified, and acting City Treasurer of the City of Milwaukee, do hereby certify that in accordance with the records in the office of the City Treasurer of the City of Milwaukee there are no unpaid taxes and that the method of payment on any special assessments relating to the land included in this Certified Survey Map has been agreed upon between the Owner and the City of Milwaukee. Joseph J Krueger, City Treasurer Ratcher 23 1972 Date (SEAL)

<u>766</u> 114

DONAHUE CERTIFIED SURVEY MAP. NO.

TAX KEY NO. 218 - 9991-118.

BEING A DIVISION OF LANDS IN THE WEST 1/2 OF THE S W 1/4 OF SECTION 31, T 8 N, R 21 E, IN THE CITY OF MILWAUKEE, MILWAUKEE COUNTY, WISCONSIN.

COMMON COUNCIL RESOLUTION

Be it noted that this Certified Survey Map, submitted under File No. $\underline{72.473}$, being a division of lands in the West 1/2 of the S W 1/4 of Section 31 T 9 N, R 21 E, in the City of Milwaukee, Milwaukee County, Wisconsin, having been approved by the Department of City Development, has been approved by the Milwaukee Common Council.

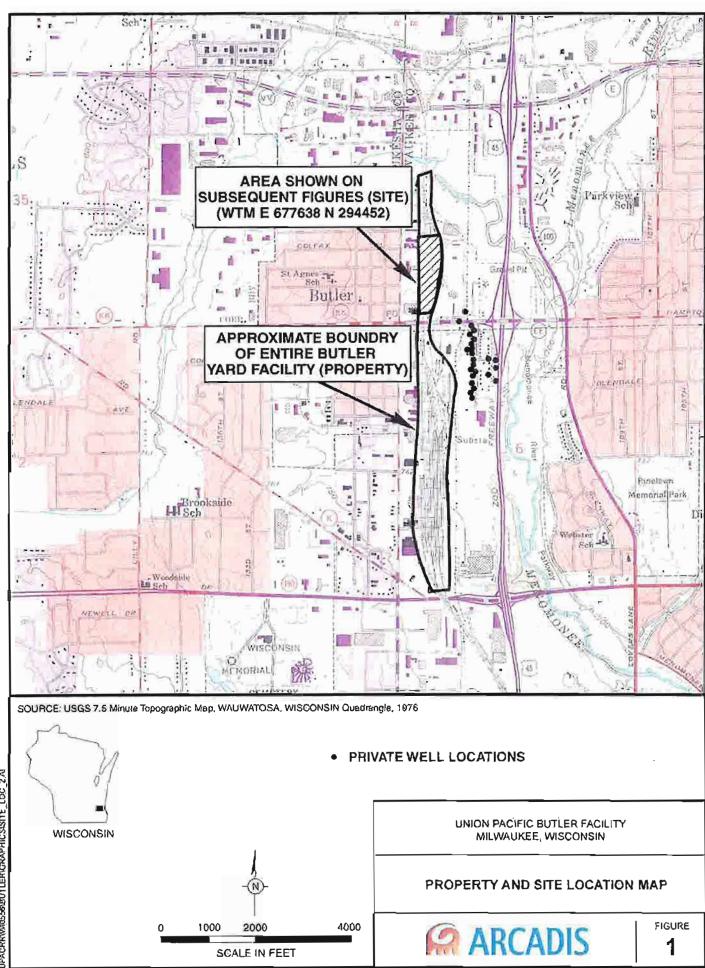
I hereby certify that the foregoing Certified Survey Map was approved by Common Council Resolution on ________ 41972

Milwaukee City Cler of Henry Maier Mavoz

May 14, 2009

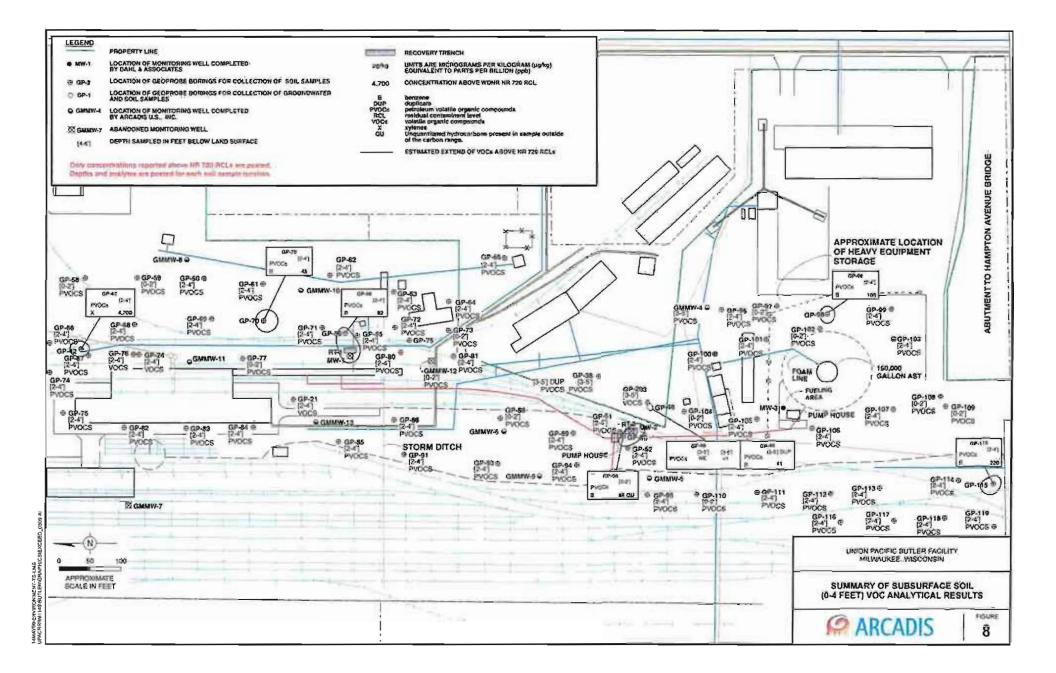
Remediation and Redevelopment Program Wisconsin Department of Natural Resources Southeast Region 2300 North Dr. Martin Luther King, Jr. Drive Milwaukee, Wisconsin 53212

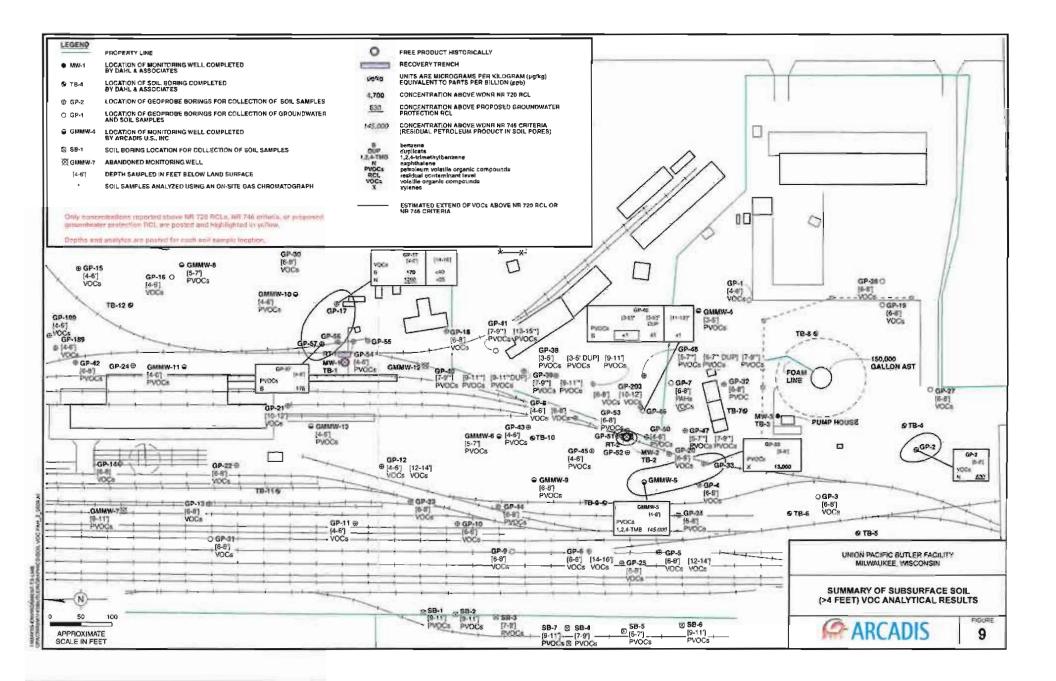
To the Bureau for Remediation and Redevelopment:

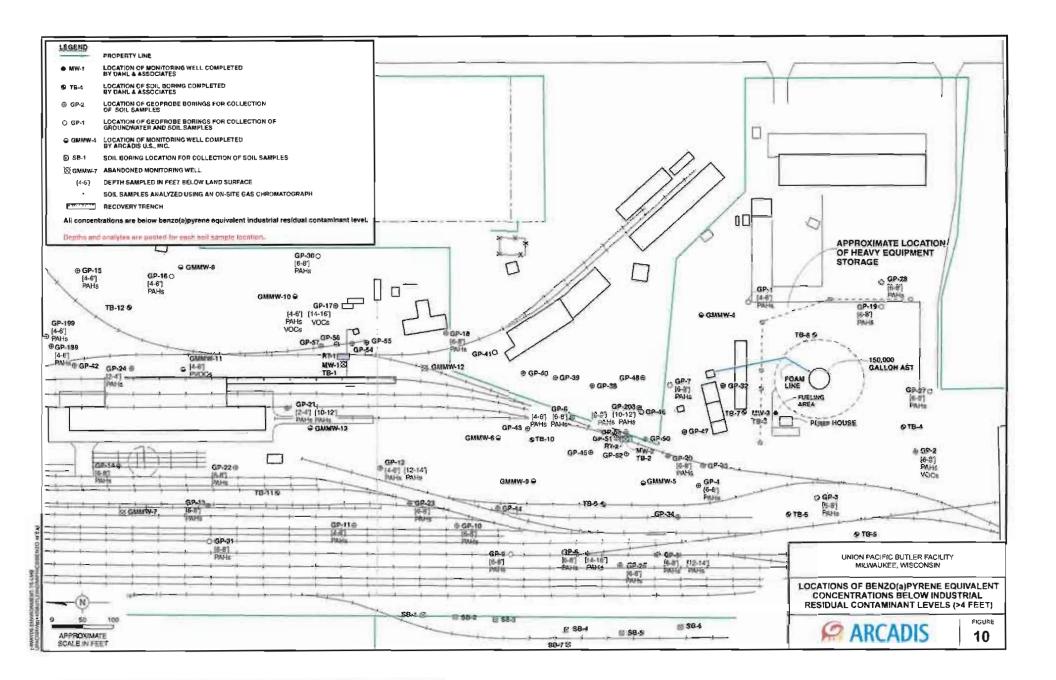

Union Pacific Railroad believes that legal descriptions for all of the properties within or partially within the contaminated site's boundaries that have soll contamination exceeding generic or site-specific residual contaminant levels as determined under ss. NR 720.09, 720.11 and 720.19, at the time that case closure is requested, other than public street or highway rights-of-way or railroad rights-of-way, have been submitted to the agency with administrative authority for the site as an attachment to this letter and part of the soil GIS registry to the case close out report.

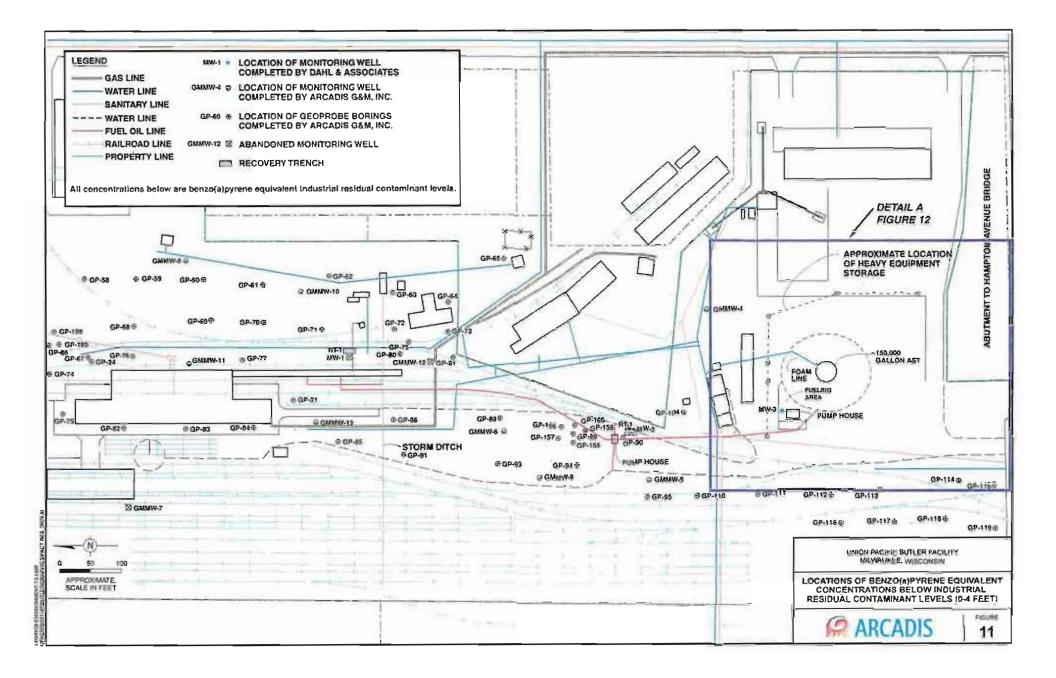
If you have any questions about Union Pacific Railroad's position in this matter, please contact the undersigned at (281) 350-7197, at your earliest convenience.

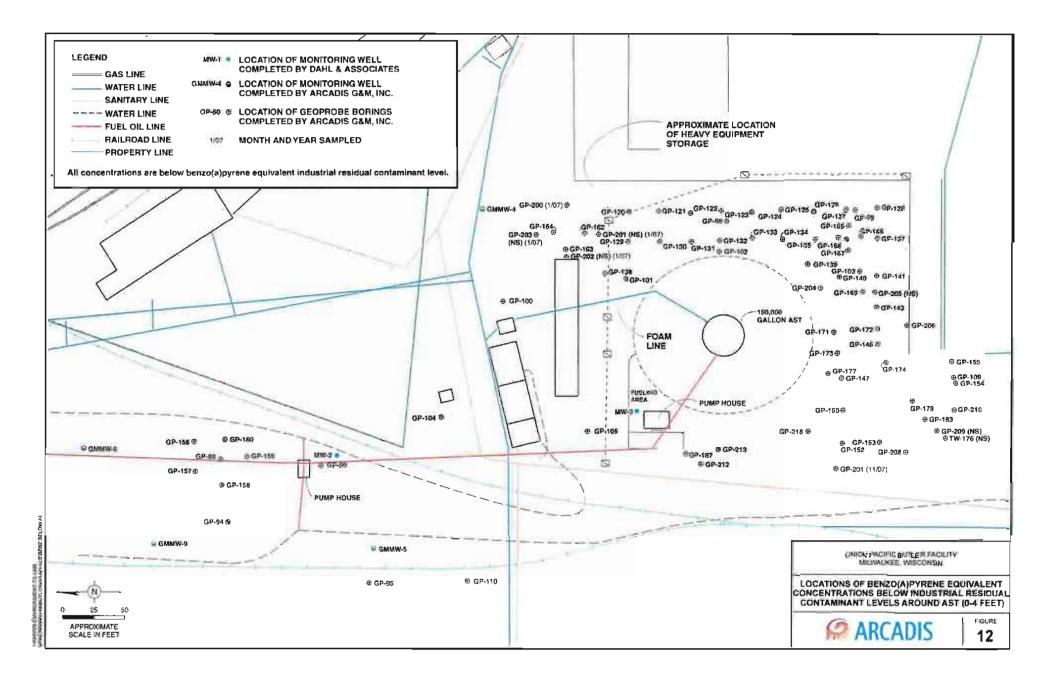
Sincerely,

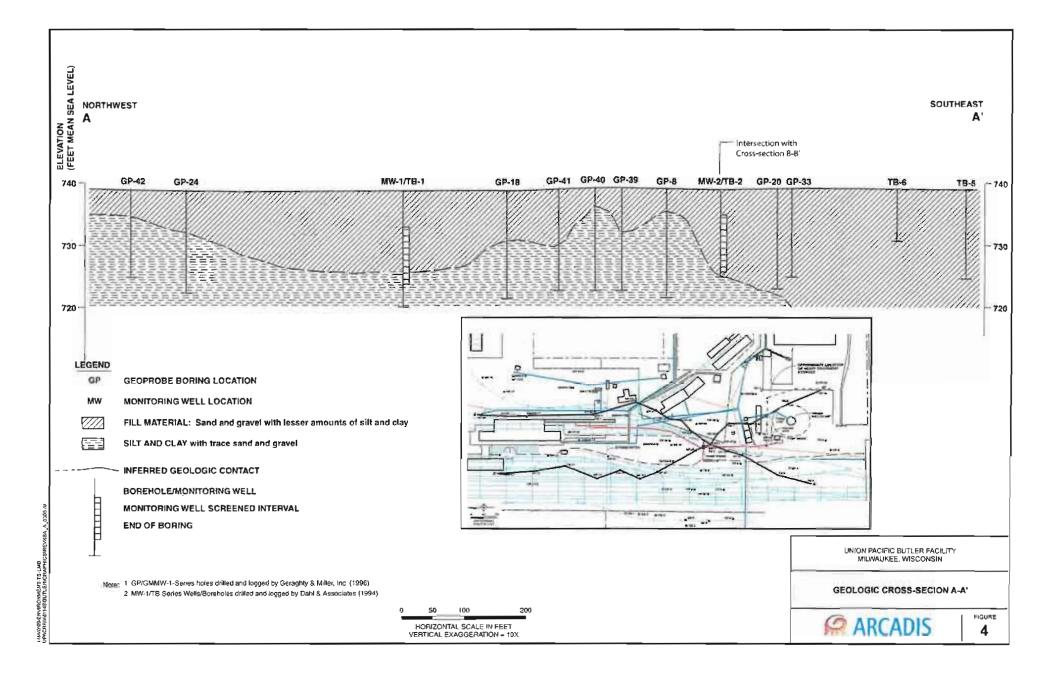

KEEDER Geoffen

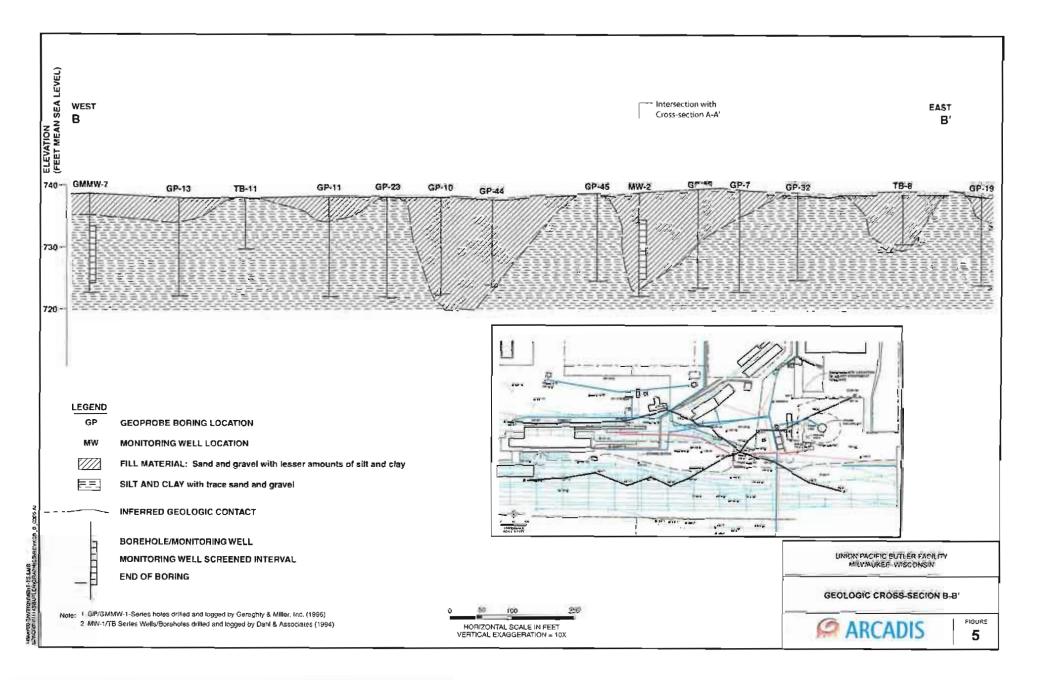

Geoffrey Reeder Union Pacific Railroad

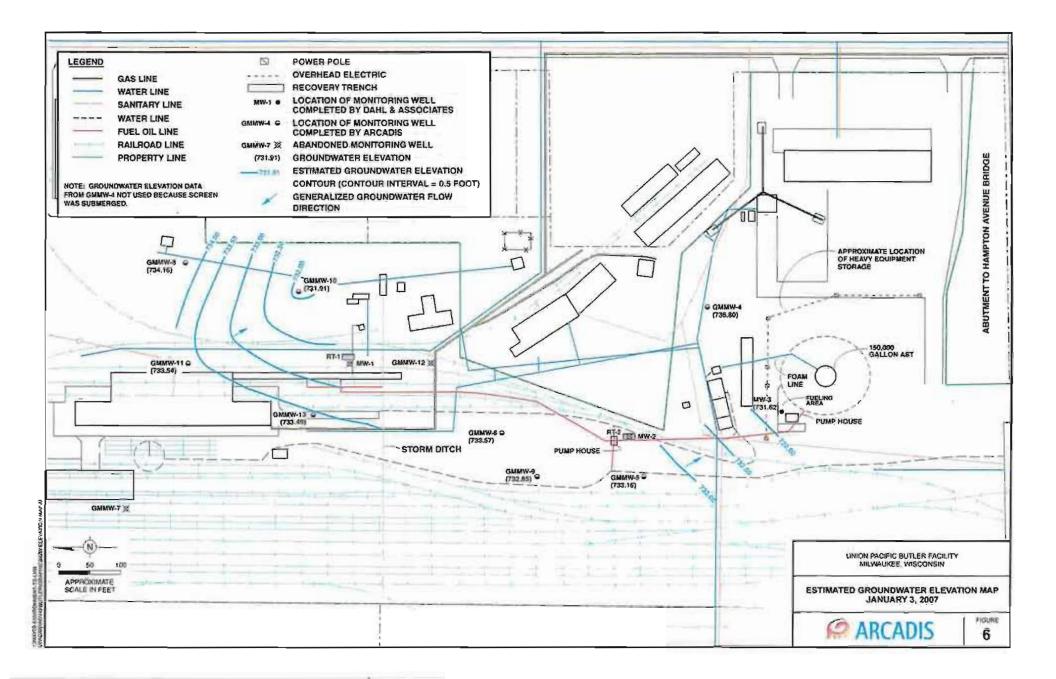



I 3MAY 09-ENVIRONMENT TS-LMB UPACRRWM055000 TLERIGRAPHICSISTE_LOC_2 AI









Sample Name	NR 720	NR 720	NR 746	Proposed	Proposed	Proposed	GMMW-4	GMMW-5	GMMW-6	GMMW-8
Sample Depth (feet)	Table 1	Table 1	Table 1	Industrial	Non-Industrial	Groundwater	3-5'	4-6'	5-7'	5-7'
Sample Date	RCL	Criteria	Criteria	Direct Contact	Direct Contact	Protection	12/9/96	6/1/96	12/11/96	12/9/96
DRO (mg/kg)	100	NE	NE	NE	NE	NE	<6.1	3,030	2,110	<5.4
GRO (mg/kg)	100	NE	NE	NE	NE	NE	<6.1	NA	174 H	<5.4
VOCs (µg/kg)										
Benzene	5.5	1,100	8,500	NE	NÉ	NE	<12	<303	<600	<11
Bromomethane	NE	NE	NE	NE	NE	NE	NA	NA	NA	NA
Chloromethane	NE	NE	NE	NE	NE	NE	NA	NA	NA	NA
cis-1,2-Dichloroethene	NE	NE	NE	NE	NE	NE	NA	NA	NA	NA
Ethylbenzene	2,900	NE	4,600	NE	NE	NE	<30	497	<1,600	<27
Isopropylbenzene	NE	NE	NE	NE	NE	NE	NA	NA	NA	NA
Methyl tert-Butyl Ether	NE	NE	NE	NE	NE	NË	<30	<303	<1,600	<27
Methylene Chloride	NE	NE	NE	NE	NE	NE	NA	NA	NA	NA
Naphthalene	2,700	NE	NE	110,000	20,000	400	NA	NA	NA	NA
n-Butylbenzene	NE	NE	NE	NE	NE	NE	NA	NA	NA	NA
n-Propylbenzene	NE	NE	NE	NE	NE	NE	NA	NA	NA	NA
sec-Butylbenzene	NE	NE	NE	NE	NE	NE	NA	NA	NA	NA
tert-Butylbenzene	NE	NE	NE	NE	NE	NE	NA	NA	NA	NA
Tetrachloroethene	NE	NE	NE	NE	NE	NE	NA	NA	NA	NA
Toluene	1,500	NE	38,000	NE	NE	NE	<30	<303	<1,600	<27
Trichloroethene	NE	NE	NE	NE	NE	NE	NA	NA	NA	NA
1,2,4-Trimethylbenzene	NE	NE	83,000	NE	NE	NE	<30	145,000	3,720	<27
1,3,5-Trimethylbenzene	NE	NE	11,000	NE	NE	NE	<30	885	2,980	<27
Xylenes, total	4,100	NE	42,000	NE	NE	NE	<92	1,330	<4,600	<81

Table 1. Summary of Soil DRO, GRO, and VOC Analytical Results, Union Pacific Bulter Yard Facility, Milwaukee, Wisconsin.

Footnotes on Page 15.

.

Sample Name	GMMW-9	GMMW-10	GMMW-11	GMMW-12	GMMW-13	GP-1	GP-2	GP-3	GI	P-6
Sample Depth (feet)	6-8' 4-6' 4-6'		4-6'	0-2'	4-6'	4-6'	6-8'	6-8'	14-16'	6-8'
Sample Date	6/1/99	6/1/99	6/2/99	6/2/99	6/2/99	5/23/96	5/23/96	5/23/96	5/24/96	5/24/96
DRO (mg/kg)	<5.9	13	<6.4	1,110	<5.5	<5	11	5.4	11	4,200 B
GRO (mg/kg)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
VOCs (µg/kg)										
Benzene	<30	<29	<32	<139	<28	<25	<48	<30	<25	<38 I
Bromomethane	NA	NA	NA	NA	NA	<100	<48	<30	<100	<150 \
Chloromethane	NA	NA	NA	NA	NA	<30	<57	204	<30	<451
cis-1,2-Dichloroethene	NA	NA	NA	NA	NA	<25	<48	<30	<25	<38 i
Ethylbenzene	<30	37	<32	<139	<28	<25	<48	<30	<25	60 I
Isopropylbenzene	NA	NA	NA	NA	NA	<25	<48	<30	<25	100 I
Methyl tert-Butyl Ether	<30	<29	<32	<139	<28	<25	<48	<30	<25	<381
Methylene Chloride	NA	NA	NA	NA	NA	180 L	480 L	280 L	140 L	220 1,L
Naphthalene	NA	NA	NA	NA	NA	<25	<u>630</u>	<25	<25	<25
n-Butylbenzene	NA	NA	NA	NA	NA	<25	<48	<30	<25	910 I
n-Propylbenzene	NA	NA	NA	NA	NA	<25	<48	<30	<25	180 I
sec-Butylbenzene	NA	NA	NA	NA	NA	<25	<48	<30	<25	<38
tert-Butylbenzene	NA	NA	NA	NA	NA	<25	<48	<30	<25	440 l
Tetrachloroethene	NA	NA	NA	NA	NA	<25	<48	<30	<25	<38 !
Toluene	<30	<29	<32	<139	<28	<25	71 B	46 B	<25	<38 [
Trichloroethene	NA	NA	NA	NA	NA	<25	<48	<30	<25	<38 1
1,2,4-Trimethylbenzene	<30	42	<32	1,730	<28	<25	<48	<30	<25	<38 i
1,3,5-Trimethylbenzene	<30	<29	<32	1,040	<28	<25	<48	<30	<25	<38
Xylenes, total	<89	<88	<96	474	<83	<35	<66	<42	<35	<52 I

Table 1. Summary of Soll DRO, GRO, and VOC Analytical Results, Union Pacific Bulter Yard Facility, Milwaukee, Wisconsin

Sample Name	GP-7	Gł	2-8	GP-9	GP-10	GP-11	GP	-12	GP-13	GP-14	GP-15	GP-16
Sample Depth (feet)	6-8'	4-6'	6-8'	6-8'	6-8'	4-6'	4-6'	12-14'	<u>6∸8'</u>	6-8'	4-6'	4-6'
Sample Date	5/23/96	5/28/96	5/28/96	5/24/96	5/24/96	5/24/96	5/28/96	5/28/96	5/24/96	5/24/96	5/23/96	5/23/96
DRO (mg/kg)	<5	<5.0 B	46 B	<5.0 B	<5.0 B	8.3 B	920 B	12	12 B	8.2 B	<5.0	<5.0
GRO (mg/kg)	NA	NA	NA	NA								
VOCs (µg/kg)												
Benzene	<28	<35 I	<42 !	<38	<42	<40	<42	<32 I	<45 í	<32	<32	<25
Bromomethane	98	<140 }	170 I	<150	<170 I	<160 1	<170	<130	<180 l	<130	120	90
Chloromethane	<33	<42	51 I	<45 I	<51 I	<48 I	<51 I	<39	<54	<39	<39	<30
cis-1,2-Dichloroethene	<28	<35	<42 I	<38 I	<42	<40	<42	<32 [<45 I	<32	<32	<25
Ethylbenzene	<28	<35 i	<421	<38	<42	<40 l	<421	<32	<45	<32	<32	<25
Isopropylbenzene	<28	<35	<421	<38	<42	<40 !	<421	<32	<4 5 I	<32	<32	<25
Methyl tert-Butyl Ether	<28	<35 I	<42	<38 1	<42 }	<40 I	<42 I	<32	<45 I	<32	<32	<25
Methylene Chloride	320 L	200 I,L	230 I,L	220 I,L	230 I,L	210 I,L	190 I,L	160 I,L	230 I,L	140 L	540 L	330
Naphthalene	<25	<25	<25	<25	<25	<25	64	<25	<25	<25	<25	<25
n-Butyibenzene	<28	<35 I	<421	<38	<42 l	<40 I	240 I	<32 [<451	<32	<32	<25
n-Propylbenzene	<28	<35 I	<421	<38	<42 l	<40 I	56 I	<32	<45	<32	<32	<25
sec-Butylbenzene	<28	<35	<421	<38	<42 1	<40 I	200 I	<32	<451	<32	<32	<25
tert-Butylbenzene	<28	<351	<42 I	<38	<42 l	<40 I	<42 !	<32	<45	<32	<32	<25
Tetrachloroethene	37	<35 I	<421	<38	<42 (<40 i	<42	<32	<45	<32	<32	<25
Toluene	<28	<35	<42	<38	<42	<40 I	<42	<32	<45	<32	<32	<25
Trichloroethene	<28	<35 I	<42 l	<381	<42	<40	<42	<32 [<45	<32	70	<25
1,2,4-Trimethylbenzene	<28	<35 I	<42	<381	<42	<40	<42	<321	<45 I	<32	<32	<25
1,3,5-Trimethylbenzene	<28	<35 I	<421	<38 I	<421	<40	<42	<32 I	<45 I	<32	<32	<25
Xylenes, total	<38	<49 I	<601	<52 I	<60 I	<56 {	<601	<46 I	<63 \	<46	<46	<35

Table 1. Summary of Soil DRO, GRO, and VOC Analytical Results, Union Pacific Bulter Yard Facility, Milwaukee, Wisconsin.

Sample Name	GP	-17	GP-18	GP-19	GP-20	GF	>-21	GP-22	GP-23	GP-24	GP-25	GP-27
Sample Depth (feet)	14-16'	4-6'	6-8'	6-8'	6-8'	10-12'	2-4'	6-8'	6-8'	2-4'	6-8'	6-8'
Sample Date	5/23/96	5/23/96	5/28/96	5/23/96	5/28/96	5/28/96	5/28/96	5/28/96	5/29/96	5/28/96	5/29/96	5/29/96
DRO (mg/kg)	13	910	<5.0 B	5.6	2,800 B	42	350	19 B	15	37 B	620	9.4
GRO (mg/kg)	NA	NA	NA	NA	NA	NA						
VOCs (µg/kg)												
Benzene	<40	170	<35 I	<30	<160 M	<40 l	<210 I,M	<40 í	<45	<48	<52 1,M	<55 I
Bromomethane	<40	95	<140	<30	<650 M	<160 I	<850 I,M	<160 I	<1801	<190	<210 I,M	<220 I
Chloromethane	<48	<30	<42	<36	<200 M	<48	<260 I,M	<48 {	<54 í	<57	<63 I,M	<66 I
cis-1,2-Dichloroethene	<40	<25	<35	<30	<160 M	<40 I	<210 I,M	<40 I	<4 5	<48	<52 I,M	<55 I
Ethylbenzene	<40	440	<35 I	<30	<160 M	<40 I	<210 I,M	<40 I	<45 I	<48	<52 I,M	<55 i
Isopropylbenzene	<40	210	<35 1	<30	400	<40	<210 I,M	<40	<45 I	<48	<52 I,M	<55 I
Methyl tert-Butyl Ether	<40	<25	<35 I	<30	<160 M	<401	<210 I,M	· <40 I	550 I,L	<48	<52 I,M	<55 l
Methylene Chloride	500	640 L	200 I,L	290 L	610 L	170 I,L	830 I,M	180 I,L	<90 I	200 I,L	930 I,L	830 I,L
Naphthalene	<25	1,200	<25	<25	<500 M	<25	<25	<25	<25	240	<25	160
n-Butylbenzene	<40	<25	<35 I	<30	1600	<401	<210 I,M	<401	<451	<48	422 I	<551
n-Propylbenzene	<40	310	<35 I	<30	810	<40 I	<210 I,M	<40 I	<45 I	<48	<52 I,M	<55 I
sec-Butylbenzene	<40	260	<35 I	43	730	<401	<210 I,M	<40	<45 I	<48	210 I	<551
tert-Butylbenzene	<40	<25	<35 I	<30	<160 M	<40 (<210 I,M	<40 I	<45 I	<48	<52 I,M	<551

<210 l,M

<210 l,M

<210 I,M

390 |

<210 I,M

950 I

<40 I

<40 (

<401

<401

<40 [

<561

<160 M

<160 M

<160 M

<160 M

<160 M

<230 M

.

Footnotes on Page 15.

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

Tetrachloroethene

Trichloroethene

Xylenes, total

Toluene

<40

<40

<40

<40

<40

160

<25

980

63

2,100

830

2,600

<351

<35 |

<351

<351

<351

<491

<30

<30

<30

100

<30

73

<52 i,M

<52 I.M

<52 |,M

<52 ∣,M

<52 I,M

<74 I.M

<481

48 I

<48 |

73 I

<48 I

<661

<551

<551

<55 I

<55 I

<551

<771

<45 I

<45 I

<45 I

<45 l

<45 I

<631

<401

<401

<40 [

<401

<401

<561

Sample Name	GP-28	GP-30	GP-31	GP-32	GP-33	GP-34	GP-38	GP-38	GP-38 D	GP	-39
Sample Depth (feet)	6-8'	6-8'	6-8'	6-8'	6-8'	6-8'	3-5'	9-11'	3-5'	7-9'	9-11'
Sample Date	5/29/96	5/29/96	5/29/96	10/3/96	10/3/96	10/3/96	12/2/96	12/2/96	12/2/96	12/2/96	12/2/96
DRO (mg/kg)	<5.0	<5.0	6.9	<5.0	7,500	1,000	<20	<20	366 H	<20	<20
GRO (mg/kg)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
VOCs (µg/kg)											
Benzene	<50	<80 [<38	<10	<500	<100	<1	<1	<12	<1	<1
Bromomethane	<200	<300 l	<150 l	NA							
Chloromethane	60	390	<45 }	NA							
cis-1,2-Dichloroethene	<50	<80 i	<38)	NA							
Ethylbenzene	<50	<80 I	<38 I	<25	1,400	<250	<1	<1	<30	<1	<1
Isopropylbenzene	<50	<80 I	<381	NA							
Methyl tert-Butyl Ether	<50	<80	<38)	<25	<1,200	<250	<1	<1	<30	<1	<1
Methylene Chloride	750	1,100 I,L	490 I,L	NA							
Naphthalene	<25	<25	<25	NA							
n-Butylbenzene	<50	<80 !	<381	NA							
n-Propylbenzene	<50	<80 I	<38	NA							
sec-Butylbenzene	<50	<80 l	.<38 }	NA							
tert-Butylbenzene	<50	<80 I	<38}	NA							
Tetrachioroethene	<50	<80 I	<381	NA	NA	NA	<1	<1	NA	NA	NA
Toluene	<50	<80 I	<38)	<25	<1200	<250	<1	<1	<30	<1	<1
Trichloroethene	<50	<80 !	<381	NA							
1,2,4-Trimethylbenzene	<50	<80 I	<38	<25	13,000	2,700	<1	<1	97	<1	<1
1,3,5-Trimethylbenzene	<50	<80 I	<38)	<25	7,400	1,200	<1	<1	70	<1	<1
Xylenes, total	<70	<100	<52	<75	13,000	1,200	<1	<1	<88	<1	<1

Table 1. Summary of Soil DRO, GRO, and VOC Analytical Results, Union Pacific Bulter Yard Facility, Milwaukee, Wisconsin.

Sample Name	GP	-40	GP-40 D	GP	-41	GP	-42	GP-43	GP-44	GP-45	GP	-46
Sample Depth (feet)	7-9'	9-11'	9-11'	13-15'	7- 9'	2-4'	6-8'	4-6'	6-8'	4-6'	11-13'	3-5'
Sample Date	12/2/96	12/2/96	12/2/96	12/2/96	12/2/96	10/3/96	10/3/96	10/3/96	10/3/96	10/3/96	12/2/96	12/2/96
DRO (mg/kg)	<20	<20	<6.1	<20	<20	6,900 H	<5.0	3,500	<5	530	23.8	1,234
GRO (mg/kg)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
VOCs (µg/kg)												
Benzene	<1	<1	<12	<1	<1	<500	<10	<100	<10	<100	<1	<1
Bromomethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chloromethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
cis-1,2-Dichloroethene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethylbenzene	<1	<1	<30	<1	<1	<1,200	<25	280	<25	<250	<1	<1
Isopropylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methyl tert-Butyl Ether	<1	<1	<30	<1	<1	<1,200	<25	<250	<25	<250	<1	<1
Methylene Chloride	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
n-Butylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
n-Propylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
sec-Butylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
tert-Butylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Tetrachloroethene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Toluene	<1	<1	<30	<1	1	1,200	<25	<250	<25	<250	<1	<1
Trichloroethene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,4-Trimethylbenzene	<1	<1	<30	<1	<1	2,600	<25	1,700	<25	1,800	<1	55
1,3,5-Trimethylbenzene	<1	<1	<30	<1	<1	2,500	<25	1,200	<25	770	<1	<1
Xylenes, total	<1	<1	<91	<1	<1	4,700	<75	2,100	<75	1,500	<1	<1

Table 1. Summary of Soil DRO, GRO, and VOC Analytical Results, Union Pacific Bulter Yard Facility, Milwaukee, Wisconsin.

Sample Name	GP-46 D	GP-47		GP-48		GP-48 D	GP-50	GP-51	GP-52	GP-53	GP-54	GP-55
Sample Depth (feet)	3-5'	5-7'	7-9'	5-7'	7-9'	5-7'	4-6'	2-4'	2-4'	6-8'	4-6'	2-4
Sample Date	12/2/96	12/2/96	12/2/96	12/2/96	12/2/96	12/2/96	6/2/99	6/2/99	6/2/99	6/2/99	6/2/99	6/2/99
DRO (mg/kg)	600 H	462	<20	<20	<20	NA	562	8,010	9,580	552	1,810	120
GRO (mg/kg)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
VOCs (µg/kg)												
Benzene	41	<1	<1	<1	<1	<1	<31	<635	<631	<31	<30	<31
Bromomethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	· NA	NA	NA
Chloromethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
cis-1,2-Dichloroethene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethylbenzene	54	5.5	<1	<1	<1	<1	89	<635	<631	<31	<30	44
Isopropylbenzene	NA	NA	NA	NA	NA	NA	NA	NA ,	NA	NA	NA	NA
Methyl tert-Butyl Ether	<36	<1	<1	<1	<1	<1	<31	<635	<631	<31	<30	<31
Methylene Chloride	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
n-Butylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
n-Propylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
sec-Butylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
tert-Butylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Tetrachloroethene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Toluene	143	<1	<1	<1	<1	<1	<31	<635	<631	<31	<30	<31
Trichloroethene	. NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,4-Trimethylbenzene	300	35.5	<1	<1	<1	<1	904	3,680	2,650	294	290	391
1,3,5-Trimethylbenzene	60	60.5	<1	<1	<1	<1	183	991	706	86	50	87
Xylenes, total	243	6	<1	<1	<1	<1	159	<1,910	<1,890	94	93	183

Table 1. Summary of Soil DRO, GRO, and VOC Analytical Results, Union Pacific Bulter Yard Facility, Milwaukee, Wisconsin.

Sample Name	GP-56	GP-57	GP-58	GP-59	GP-60	GP-61	GP-62	GP-63	GP-64	GP-65	GP-66
Sample Depth (feet)	2-4'	4-6'	0-2	0-2'	2-4'	2-4'	2-4'	2-4'	2-4'	2-4'	2-4'
Sample Date	6/2/99	6/2/99	10/19/05	10/19/05	10/19/05	10/19/05	10/19/05	10/19/05	10/19/05	10/19/05	10/18/05
DRO (mg/kg)	258	445	NA	NA	NA	NA	NA	. NA	NA	NA	NA
GRO (mg/kg)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
VOCs (µg/kg)				-							
Benzene	82	176	<30	<30	<30	<29	<31 ,QU	<30	<32	<31	<30
Bromomethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chloromethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
cis-1,2-Dichloroethene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethylbenzene	697	<352	<30	280	<30	<29	41 QU	<30	<32	<31	<30
Isopropylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methyl tert-Butyl Ether	27	<29	<30	<30	<30	<29	<31 ,QU	<30	<32	<31	<30
Methylene Chloride	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
n-Butylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NĂ	NA
n-Propylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
sec-Butylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
tert-Butylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Tetrachloroethene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Toluene	64	<50	<30	<30	<30	31	<31 ,QU	<30	<32	<31	<30
Trichloroethene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,4-Trimethylbenzene	2,470	1,760	<30	190	<30	77	1 1 0 QU	53	<32	<31	<30
1,3,5-Trimethylbenzene	805	<621	<30	210	<30	<29	<31 ,QU	<30	<32	<31	<30
Xylenes, total	1,050	<903	<90	<89	<90	140	<92 ,QU	<90	<96	<94	<89

Table 1. Summary of Soil DRO, GRO, and VOC Analytical Results, Union Pacific Bulter Yard Facility, Milwaukee, Wisconsin.

Sample Name	GP-67	GP-68	GP-69	GP-70	GP-71	GP-72	GP-73	GP-74	GP-75	GP-76
Sample Depth (feet)	2-4'	2-4'	2-4'	2-4'	2-4'	2-4'	0-2'	2-4'	2-4'	2-4'
Sample Date	10/18/05	10/18/05	10/19/05	10/19/05	10/19/05	10/19/05	10/19/05	10/18/05	10/18/05	10/18/05
DRO (mg/kg)	NA									
GRO (mg/kg)	NA									
VOCs (µg/kg)										
Benzene	<320 ,QU	<33	<32 ,QU	45	<30	<27	<27	<29 ,QU	<31	<30
Bromomethane	NA									
Chloromethane	NA									
cis-1,2-Dichloroethene	NA									
Ethylbenzene	<320 ,QU	75	<32 ,QU	<30	<400 RL1	<27	<190 RL1	<29 ,QU	<31	<30
sopropylbenzene	NA									
Methyl tert-Butyl Ether	<320 ,QU	<33	<32 ,QU	<30	<30	<27	<27	<29 ,QU	<31	<30
Methylene Chloride	NA									
Naphthaiene	NA									
n-Butylbenzene	NA									
n-Propylbenzene	NA									
sec-Butylbenzene	NA									
tert-Butylbenzene	NA									
Tetrachloroethene	NA									
Toluene	-320 ,QU	84	42 QU	33	<30	49	68	<29 ,QU	<31	<30
Trichloroethene	NA									
1,2,4-Trimethylbenzene	630 QU	56	68 QU	38	160	110	170	<29 ,QU	<31	52
1,3,5-Trimethylbenzene	<320 ,QU	<33	<32 ,QU	<30	85	30	32	<29 ,QU	<31	<30
Xylenes, total	<950 ,QU	160	110 QU	100	180	200	370	<86 ,QU	<93	<89

of Sail DBO, CBO, and VOC Analytical Paculta, Union Pacific Rultar Yard Easility, Milwayka Table 1 St - W/ir . . -

Sample Name	GP-77	GP-80	GP-81	GP-82	GP-83	GP-84	GP-85	GP-86	GP-88	
Sample Depth (feet)	0-2'	2-4'	2-4'	2-4'	2-4'	2-4'	2-4'	2-4'	0-2'	
Sample Date	10/18/05	10/18/05	10/18/05	10/18/05	10/18/05	10/18/05	10/18/05	10/18/05	10/18/05	
DRO (mg/kg)	NA									
GRO (mg/kg)	NA									
VOCs (µg/kg)										
Benzene	<28	<29	<31	<31	<28	<31	<31 ,QU	<32 ,QU	<28 ,QU	
Bromomethane	NA									
Chloromethane	NA									
cis-1,2-Dichloroethene	NA									
Ethylbenzene	<28	<370 RL1	<31	<31	<28	<31	<31 ,QU	<32 ,QU	110 QU	
lsopropylbenzene	NA									
Methyl tert-Butyl Ether	<28	<29	<31	<31	<28	<31	<31 ,QU	<32 ,QU	<28 ,QU	
Methylene Chloride	NA									
Naphthalene	NA									
n-Butylbenzene	NA									
n-Propylbenzene	NA									
sec-Butylbenzene	NA									
tert-Butylbenzene	NA									
Tetrachloroethene	NA									
Toluene	<28	<29	<31	<31	<28	<31	<31 ,QU	<32 ,QU	67 QU	
Trichloroethene	NA									
1,2,4-Trimethylbenzene	98	840	<31	<31	40	<31	69 QU	<32 ,QU	63 QU	
1,3,5-Trimethylbenzene	<28	180	<31	<31	<28	<31	<31 ,QU	<32 ,QU	<28 ,QU	
Xylenes, total	150	.400	<93	<92	<84	<93	150 QU	<96 ,QU	160 QU	

Table 1. Summary of Soil DRO, GRO, and VOC Analytical Results, Union Pacific Bulter Yard Facility, Milwaukee, Wisconsin.

Footnotes on Page 15.

.

Sample Name	GP-89	GP-90	GP-91	GP-93	GP-94	GP-95	GP-98	GP-99	GP-100	GP-101
Sample Depth (feet)	2-4'	0-2'	2-4'	2-4'	2-4'	2-4'	2-4'	2-4'	2-4'	2-4'
Sample Date	10/18/05	10/19/05	10/18/05	10/18/05	10/19/05	10/19/05	10/20/05	10/20/05	10/20/05	10/20/05
DRO (mg/kg)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
GRO (mg/kg)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
VOCs (µg/kg)										
Benzene	<630 ,QU	88 QU	<29	<29	<31	<26 ,QU	100	<31	<31 ,QU	<31
Bromomethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chloromethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
cis-1,2-Dichloroethene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethylbenzene	<630 ,QU	QU,RL1, 2800	<29	<29	<31	<26 ,QU	130	260	<31 ,QU	<31
Isopropylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methyl tert-Butyl Ether	<630 ,QU	<31 ,QU	<29	<29	<31	<26 ,QU	<31	<31	<31 ,QU	<31
Methylene Chloride	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
n-Butylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
n-Propylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
sec-Butylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
tert-Butylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Tetrachloroethene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Toluene	<630 ,QU	<31 ,QU	32	<29	<31	<26 ,QU	330	<31	<31 ,QU	<31
Trichloroethene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,4-Trimethylbenzene	2200 QU	3400 QU	89	<29	<31	710 QU	230	120	<31 ,QU	<31
1,3,5-Trimethylbenzene	<630 ,QU	<31 ,QU	44	<29	<31	<26 ,QU	94	120	<31 ,QU	<31
Xylenes, total	<1900 ,QU	1300 QU	160	<88	<93	<78 QU	370	350	<93 ,QU	<94

Table 1. Summary of Soil DRO, GRO, and VOC Analytical Results, Union Pacific Bulter Yard Facility, Milwaukee, Wisconsin.

Sample Name	GP-102	GP-103	GP-104	GP-105	<u>GP-107</u>	GP-109	GP-110	<u>GP-111</u>	GP-112	GP-113
Sample Depth (feet)	0-2'	2-4'	0-2'	2-4'	2-4'	0-2'	0-2'	2-4'	2-4'	2-4'
Sample Date	10/20/05	10/20/05	10/20/05	10/20/05	10/20/05	10/20/05	10/19/05	10/19/05	10/19/05	10/19/05
DRO (mg/kg)	NA	NA	NA	NA	NA	NA	NA	NA	NĄ	NA
GRO (mg/kg)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
VOCs (µg/kg)										
Benzene	<33	<29	<31 ,QU	<30	A-01, 30	<29	<28	<29	<26	<27
Bromomethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chloromethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
cis-1,2-Dichloroethene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethylbenzene	<33	<29	<700 ,QU,RL1	<30	<30 ,A-01	<29	51	<29	<26	<27
lsopropylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methyl tert-Butyl Ether	<33	<29	<31 ,QU	<30	<30 ,A - 01	<29	<28	<29	<26	<27
Methylene Chloride	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
n-Butylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
n-Propylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
sec-Butylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
tert-Butylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Tetrachloroethene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Toluene	<33	<29	64 QU	<30	<30 ,A-01	29	55	<29	<26	<27
Trichloroethene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,4-Trimethylbenzene	<33	<29	530 QU	<30	130 A-01	<29	75	<29	<26	<27
1,3,5-Trimethylbenzene	<33	<29	<31 ,QU	<30	51 A-01	<29	<28	<29	<26	<27
Xylenes, total	<99	<87	370 QU	<91	<91 ,A-01	<86	170	<87	<79	<80

Table 1. Summary of Soll DRO, GRO, and VOC Analytical Results, Union Pacific Bulter Yard Facility, Milwaukee, Wisconsin

GP-117 Sample Name GP-114 GP-115 GP-116 **GP-118 GP-119** GP-189 GP-199 GP-203 2-4' 2-4 3-5' Sample Depth (feet) 2-4' 2-4' 2-4' 2-4' 4-6' 4-6' 6-8' 10-12' Sample Date 10/19/05 10/19/05 10/19/05 10/19/05 10/19/05 10/19/05 1/10/07 1/10/07 11/08/07 11/09/07 11/08/07 DRO (mg/kg) NA GRO (mg/kg) NA VOCs (µg/kg) Велгеле <31 220 <30 <29 <29 <26 <32 <31 <31 <30 <36 NA <130 Bromomethane NA NA NA NA NA <120 <130 <120 <140 Chloromethane NA NA NA NA NA NA <65 <62 <63 <61 <72 cis-1,2-Dichloroethene NA NA NA NA NA NA <32 <31 <31 <30 <36 Ethylbenzene <31 120 <30 <29 <29 <26 <32 <31 <31 <30 <36 Isopropylbenzene NA NA NA NA NA NA <32 <31 <31 <30 <36 Methyl tert-Butyl Ether <30 <30 <29 <29 <32 <31 <26 <31 <31 <30 <36 Methylene Chloride NA NA NA <65 <62 <63 <72 NA NA NA <61 Naphthalene NA NA NA NA <65 <62 <72 NA NA <63 <61 n-Butylbenzene NA <32 <36 NA NA NA NA NA <31 <31 <30 n-Propylbenzene NA NA NA NA NA NA <32 <31 <31 <30 <36 sec-Butylbenzene NA NA NA NA NA NA <32 <31 <31 <30 <36 tert-Butylbenzene NA NA <32 <31 <31 <36 NA NA NA NA <30 Tetrachloroethene NA NA NA NA NA NA <32 <31 <31 <30 <36 Toluene <31 530 <30 <29 <29 <26 <32 <31 48 <30 <36 Trichloroethene NA NA NA NA NA NA <32 <31 <31 <30 <36 1,2,4-Trimethylbenzene <31 66 <30 <29 <29 <26 <32 <31 47 <30 <36 1,3,5-Trimethylbenzene 39 <29 <32 <31 <30 <29 <26 <31 <31 <30 <36 Xylenes, total <92 480 <91 <86 <87 <79 <110 <110 <110 <100 <120

Table 1. Summary of Soil DRO, GRO, and VOC Analytical Results, Union Pacific Bulter Yard Facility, Milwaukee, Wisconsin.

Table 1. Summary of Soi	SB-1		SB-3					sconsin.
Sample Name		SB-2		SB-4	SB-5	SB-6	SB-7	
Sample Depth (feet)	9-11'	9-11'	7-9'	7-9'	5-7'	9-11'	9-11'	
Sample Date	12/10/96	1 2/10/9 6	12/10/96	12/10/96	12/10/96	12/10/96	<u>12/1</u> 0/96	
DRO (mg/kg)	<5.5	<5.9	14 H	7.0 H	<6.2 H	<5.2	<6.0 H	
GRO (mg/kg)	<5.5	<5.9	<6.1	<7.2	<6.2	<5.2	<6.0	
VOCs (µg/kg)								
Benzene	<11	<12	<12	<14	<12	<10	<12	
Bromomethane	NA	NA	NA	NA	NA	NA	NA	
Chloromethane	NA	NA	NA	NA	NA	NA	NA	
cis-1,2-Dichloroethene	NA	NA	NA	NA	NA	NA	NA	
Ethylbenzene	<28	<30	<30	<36	<31	<26	<30	
Isopropylbenzene	NA	NA	NA	NA	NA	NA	NA	
Methyl tert-Butyl Ether	<28	<30	<30	<36	<31	<26	<30	
Methylene Chloride	NA	NA	NA	NA	NA	NA	NA	
Naphthalene	NA	NA	NA	NA	NA	NA	NA	
n-Butylbenzene	NA	NA	NA	NA	NA	NA	NA	
n-Propylbenzene	NA	NA	NA	NA	NA	NA	NA	
sec-Butylbenzene	NA	NA	NA	NA	NA	NA	NA	
tert-Butylbenzene	NA	NA	NA	NA	NA	NA	NA	
Tetrachloroethene	NA	NA	NA	NA	NA	NA	NA	
Toluene	<28	<30	<30	<36	<31	<26	<30	
Trichloroethene	NA	NA	NA	NA	NA	NA	NA	
1,2,4-Trimethylbenzene	<28	<30	<30	<36	<31	<26	<30	
1,3,5-Trimethylbenzene	<28	<30	<30	<36	<31	<26	<30	
Xylenes, total	<83	<89	<91	<110	<92	<78	<89	

Table 1 S St. Soil DPO, GPO, and VOC Apolitical Populta, Union Papific Pultar Vard Epoility, Milwaukas, Mir

Footnotes on Page 15.

.

•

Bold	Concentration exceeds the NR 720 RCL (NR 720 Table 1 RCL is based on protection of groundwater pathway).
talic	Concentration exceeds the NR 746 Soil Criteria (NR 746 criteria is the regulatory indicator of residual petroleum product in soil pores)
<u> Inderline</u>	Concentration exceeds the WDNR Proposed Groundwater Protection RCL for Polycyclic Aromatic Hydrocarbons.
1)	Soil samples analyzed using an onsite gas chromatograph.
<	Analyte detected below laboratory detection limits.
\-01	High concentrations of a non-target analyte present.
3	Method blank is contaminated.
DRO	Diesel Range Organics.
OUP	Duplicate sample.
GRO	Gasoline Range Organics.
1	Late eluting hydrocarbons present within sample.
	Additional laboratory sample preparations were necessary before analysis.
-	Common laboratory solvent and contaminant.
.2	Laboratory control sample recovery was below acceptance limits.
A	Matrix interference.
ıg/kg	Micrograms per kilogram.
ng/kg	Milligrams per kilogram.
IA	Not analyzed.
١E	Not established.
ΩU	Unquantitated hydrocarbons were present in the sample outside of the reported carbon range.
RCL	WDNR established Residual Contaminant Level (RCL) from Table 1 of the Wisconsin Administrative Code Chapter NR 720.09.
RL1	Reporting limit raised due to sample matrix effects.
/OC	Volatile Organic Compound.
VDNR	Wisconsin Department of Natural Resources.

.

Sample Name	NR 720	Proposed	Proposed	Proposed	GP-1	GP-2	GP-3	GP-4	GI	P-5
Sample Depth (feet)	Table 1	Groundwater	Non-Industrial	Industrial	4-6'	6-8'	6-8'	6-8'	6-8'	12-14'
Sample Date	RCL	Protection	Direct Contact	Direct Contact	05/23/96	05/23/96	05/23/96	05/23/96	05/24/96	05/24/96
PAHs (µg/kg)										
1-Methylnaphthalene	NE	23,000	1,100,000	70,000,000	<25	<25	<25	<25	<25	<25
2-Methylnaphthalene	NE	20,000	600,000	40,000,000	<25	<25	<25	<25	<25	<25
Acenaphthene	NE	38,000	900,000	60,000,000	NA	NA	NA	NA	NA	NA
Anthracene	NE	3,000,000	5,000,000	300,000,000	<8.0	33	<8.0	<8.0	<8.0	<8.0
Benzo (a) anthracene	NE	17,000	88	3,900	<2.0	120	<2.0	<2.0	<2.0	<2.0
Benzo (a) pyrene	NE	48,000	8.8	390	<4.0	110	<4.0	<4.0	<4.0	<4.0
Benzo (b) fluoranthene	NE	360,000	88	3,900	<2.0	41	<2.0	<2.0	<2.0	<2.0
Benzo (g,h,i) perylene	NE	6,800,000	1,800	39,000	<4.0	110	<4.0	<4.0	<4.0	<4.0
Benzo (k) fluoranthene	NE	870,000	880	39,000	<2.0	65	<2.0	<2.0	<2.0	<2.0
Chrysene	NE	37,000	8,800	390,000	<4.0	98	<4.0	<4.0	<4.0	<4.0
Dibenzo (a,h) anthracene	NE	38,000	8.8	390	NA	NA	NA	NA	NA	NA
Fluoranthene	NE	500,000	600,000	40,000,000	<8.0	230	<8.0	<8.0	<8.0	<8.0
Fluorene	NE	100,000	600,000	40,000,000	<16	<16	<16	<16	<16	<16
Indeno (1,2,3-cd) pyrene	NË	680,000	88	3,900	<4.0	60	<4.0	<4.0	<4.0	<4.0
Naphthalene	2,700	400	20,000	110,000	NA	NA	NA	NA	NA	NA
Phenanthrene	NE	1,800	18,000	390,000	<16	230	<16	<16	<16	<16
Pyrene	NE	8,700,000	500,000	30,000,000	<8.0	190	<8.0	<8.0	<8.0	<8.0
the second se	ceeds the N	R 720 RCL (NR	720 Table 1 RCL	is based on prote	ction of grou	indwater pat	hway).			
		•		Contact RCL for Pi	-					
Italic Concentration ex	ceeds the V	VDNR Proposed	Non-Industrial Di	rect Contact RCL	for Polycyclic	c Aromatic H	vdrocarbons			

Table 2. Summary of Soil PAH Analytical Results, Union Pacific Bulter Yard Facility, Milwaukee, Wisconsin.

Italic Concentration exceeds the WDNR Proposed Non-Industrial Direct Contact RCL for Polycyclic Aromatic Hydrocarbons.

Underline Concentration exceeds the WDNR Proposed Groundwater Protection RCL for Polycyclic Aromatic Hydrocarbons.

Analyte detected below laboratory detection limits.

E Concentration exceeds the calibration range and therefore result is semi-quantitative.

L2 Laboratory control sample recovery was below acceptance limits.

M Matrix interference.

NA Not analyzed.

NE Not established.

PAH Polycyclic aromatic hydrocarbons.

RCL Residual contaminant level.

µg/kg Micrograms per kilogram.

Sample Name	G	P-6	GP-7	GF	∍-8	GP-9	GP-10	GP-11	GP	-12	GP-13
Sample Depth (feet)	6-8'	14-16	6-8'	4-6'	6-8'	6-8'	6-8'	4-6'	4-6'	12-14'	6-8'
Sample Date	05/24/96	05/24/96	05/23/96	05/28/96	05/28/96	05/24/96	05/24/96	05/24/96	05/28/96	05/28/96	05/24/96
PAHs (µg/kg)											
1-Methylnaphthalene	<25	<25	NA	<25	<25	<25	<25	<25	490	<25	<25
2-Methylnaphthalene	1,200	<25	<25	<25	<25	<25	<25	<25	300	<25	<25
Acenaphthene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Anthracene	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0
Benzo (a) anthracene	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Benzo (a) pyrene	<4.0	<4.0	NA	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Benzo (b) fluoranthene	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Benzo (g,h,i) perylene	<4.0	<4.0	NA	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Benzo (k) fluoranthene	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Chrysene	<4.0	<4.0	NA	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Dibenzo (a,h) anthracene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluoranthene	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0
Fluorene	270	<16	<16	<16	<16	<16	<16	<16	38	<16	<16
Indeno (1,2,3-cd) pyrene	<4.0	<4.0	NA	<4.0	<4.0	<4.0	<4.0	<4.0	4.0	<4.0	<4.0
Naphthalene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Phenanthrene	1,600	<16	<16	<16	<16	<16	<16	<16	100	<16	<16
Pyrene	<8.0	<8.0	NA	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0
Concentration e	xceeds the N	R 720 RCL	(NR 720 Tab	le 1 RCL is	based on p	rotection of g	groundwater	pathway).			
Bold Concentration e	exceeds the V	VDNR Propa	sed Industria	al Direct Cor	ntact RCL fo	or Polycyclic	Aromatic Hy	drocarbons.			
Italic Concentration e	xceeds the V	VDNR Propo	sed Non-Ind	ustrial Direc	t Contact R	CL for Polyc	yclic Aromat	ic Hydrocarl	oons.		

Underline Concentration exceeds the WDNR Proposed Groundwater Protection RCL for Polycyclic Aromatic Hydrocarbons.

Analyte detected below laboratory detection limits. <

Е Concentration exceeds the calibration range and therefore result is semi-quantitative.

L2 Laboratory control sample recovery was below acceptance limits.

Μ Matrix interference.

Not analyzed. NA

NE Not established.

PAH Polycyclic aromatic hydrocarbons.

RCL Residual contaminant level.

Micrograms per kilogram. µg/kg

Sample Name	GP-14	GP-15	GP-16	GP	-17	GP-18	GP-19	GP-20	GP	-21
Sample Depth (feet)	6-8'	4-6'	4-6'	4-6'	14-16'	6-8'	6-8'	6-8'	2-4'	10-12'
Sample Date	05/24/96	05/23/96	05/23/96	05/23/96	05/23/96	05/28/96	05/23/96	05/28/96	05/28/96	05/28/96
PAHs (µg/kg)										
1-Methylnaphthalene	<25	<25	<25	3,700	<25	<25	<25	<500 M	<25	<25
2-Methylnaphthalene	<25	<25	<25	3,500	<25	<25	<25	<500 M	<25	<25
Acenaphthene	NA									
Anthracene	<8.0	<8.0	<8.0	<160 M	<8.0	<8.0	<8.0	<160 M	<8.0	<8.0
Bé n zo (a) anthracene	, <2.0	<2.0	<2.0	<40 M	<2.0	<2.0	<2.0	<40 M	130	<2.0
Benzo (a) pyrene	<4.0	<4.0	<4.0	<80 M	<4.0	<4.0	<4.0	<80 M	<4.0	<4.0
Benzo (b) fluoranthene	<2.0	<2.0	<2.0	<40 M	<2.0	<2.0	<2.0	<40 M	<2.0	<2.0
Benzo (g,h,i) perylene	<4.0	<4.0	<4.0	<80 M	<4.0	<4.0	<4.0	<80 M	<4.0	<4.0
Benzo (k) fluoranthene	<2.0	<2.0	<2.0	<40 M	<2.0	<2.0	<2.0	<40 M	<2.0	<2.0
Chrysene	<4.0	<4.0	<4.0	<80 M	<4.0	<4.0	<4.0	84	<4.0	<4.0
Dibenzo (a,h) anthracene	NA									
Fluoranthene	<8.0	<8.0	<8.0	<160 M	<8.0	<8.0	<8.0	2,400	120	<8.0
Fluorene	<16	<16	<16	<320 M	<16	<16	<16	530	<16	<16
Indeno (1,2,3-cd) pyrene	<4.0	<4.0	<4.0	<80 M	<4.0	<4.0	<4.0	<80 M	<4.0	<4.0
Naphthalene	NA									
Phenanthrene	<16	<16	<16	1,300	<16	<16	<16	2.900	230	<16
Pyrene	<8.0	<8.0	<8.0	<160 M	<8.0	<8.0	<8.0	1300	82	<8.0

Table 2 Summary of Soil PAH Analytical Results Union Pacific Buller Yard Facility Milwaukee Wisconsin

Bold Concentration exceeds the WDNR Proposed Industrial Direct Contact RCL for Polycyclic Aromatic Hydrocarbons.

Concentration exceeds the WDNR Proposed Non-Industrial Direct Contact RCL for Polycyclic Aromatic Hydrocarbons. Italic

Underline Concentration exceeds the WDNR Proposed Groundwater Protection RCL for Polycyclic Aromatic Hydrocarbons.

Analyte detected below laboratory detection limits. <

Е Concentration exceeds the calibration range and therefore result is semi-quantitative.

Laboratory control sample recovery was below acceptance limits. Ł2

M Matrix interference.

NA Not analyzed.

NE Not established.

PAH Polycyclic aromatic hydrocarbons.

RCL Residual contaminant level.

µg/kg Micrograms per kilogram.

Sample Name	GP-22	GP-23	GP-24	GP-25	GP-27	GP-28	GP-30	GP-31	GP-58	GP-59
Sample Depth (feet)	6-8'	6-8'	2-4'	6-8'	6-8'	6-8'	6-8'	6-8'	0-2'	0-2'
Sample Date	05/28/96	05/29/96	05/28/96	05/29/96	05/29/96	05/29/96	05/29/96	05/29/96	10/19/05	10/19/05
PAHs (µg/kg)										
1-Methylnaphthalene	<25	<25	520	<25	68	<25	<25	<25	<36	270
2-Methylnaphthalene	<25	<25	480	<25	94	<25	<25	<25	<30	160
Acenaphthene	NA	NA	NA	NA	NA	NA	NA	NA	<60	<59
Anthracene	<8.0	<8.0	20	<u> </u>	68	<8.0	9.6	<8.0	<6.0	<5.9
Benzo (a) anth r acene	<2.0	<2.0	800	180	200	<2.0	89	<2.0	11	<5.9
Benzo (a) pyrene	<4.0	<4.0	170	<4.0	250	<4.0	6.9	<4.0	11	<5.9
Benzo (b) fluoranthene	<2.0	<2.0	36	- <2.0	100	<2.0	26	<2.0	9.1 L2	<5.9 L.2
Be nzo (g ,h,i) perylene	<4.0	<4.0	130	<4.0	230	<4.0	64	<4.0	11	<5.9
Benzo (k) fluoranthene	<2.0	<2.0	64	<2.0	130	<2.0	14	<2.0	<6.0 L2	<5.9 L2
Chrysene	<4.0	<4.0	1 10	24 ·	200	<4.0	86	<4.0	<6.0 L2	<5.9 L2
Dibenzo (a,h) anthracene	NA	NA	NA	NA	NA	NA	NA	NA	<9.0 L2	<8.9 L2
Iuoranthene	<8.0	<8.0	270	130	440	<8.0	100	<8.0	33	12
Fluorene	<16	<16	<16	150	19	<16	31	<16	<12	<12
ndeno (1,2,3-cd) pyrene	<4.0	<4.0	79	<4.0	160	<4.0	46	<4.0	9.5 L2	<5.9 L2
Naphthalene	NA	NA	NA	NA	NA	NA	NA	NA	<36	120
Phenanthrene	<16	<16	1 1 0	67	250	<16	330	<16	18	11
Pyrene	<8.0	<8.0	210	1,100	370	<8.0	95	<8.0	62	59
Concentration ex	xceeds the NR	720 RCL (NR	720 Table 1	RCL is base	d on protectio	on of ground	water pathwa	ау).		
Concentration ex	xceeds the WD	NR Proposed	Industrial Di	rect Contact	RCL for Polye	cyclic Aroma	tic Hydrocarl	bons.		
talle Concentration ex	xceeds the WD	NR Proposed	Non-Industri	al Direct Cor	tact RCL for	Polycyclic A	omatic Hydr	ocarbons.		
Underline Concentration ex	xceeds the WD	NR Proposed	Groundwate	r Protection I	RCL for Polyc	yclic Aromat	ic Hydrocart	ons.		
< Analyte detected	d below laborate	ory detection I	imits.							
E Concentration ex	xceeds the cali	bration range	and therefore	e result is ser	ni-quantitativ	е.				
_2 Laboratory contr	ol sample reco	very was belo	w acceptanc	e limits.						
M Matrix interferen	ce.									
NA Not analyzed.										
NE Not established.										
PAH Polycyclic aroma	atic hydrocarbo	ns.								
RCL Residual contam	ninant level.									
ug/kg Micrograms per	kilogram.									

Because we care 100% recycled paper produced by wind power energy

Wisconsin Department of Natural Resources.

WDNR

Sample Name	GP-60	GP-61	GP-62	GP-63	GP-64	GP-65	GP-66	GP-67	GP-68	GP-69	GP-70
Sample Depth (feet)	2-4'	2-4'	2-4'	2-4'	2-4'	2-4'	2-4'	2-4*	2-4'	2-4'	2-4'
Sample Date	10/19/05	10/19/05	10/19/05	<u>1</u> 0/19/05	10/19/05	10/19/05	10/18/05	<u>10/18/05</u>	<u>10/18/05</u>	10/19/05	10/19/05
PAHs (µg/kg)											
1-Methylnaphthalene	<36	<35	290	<36	<38	<38	<36	820	<410	180	<36
2-Methylnaphthalene	<30	110	200	50	48	<31	<30	1,200	430	720	120
Acenaphthene	<60	<59	<61	<60	<64	<63	<59	<79	<680	<64	<60
Anthracene	<6.0	7.8	42	<6.0	20	<6.3	<5.9	11	<68	74	16
Benzo (a) anthracene	13	33	220	16	45	<6.3	<5.9	64	400	640	110
Benzo (a) pyrene	9.5	17	14	9.3	37	<6.3	<5.9	33	200	370	140
Benzo (b) fluoranthene	12 L2	20 L2	24 L2	8.7 L2	30 L2	<6.3 L2	<5.9 L2	33	270 L2	360 L2	97 L2
Benzo (g,h,i) perylene	14	16	19	9.2	33	<6.3	<5.9	28	110	530	140
Benzo (k) fluoranthene	6.5 L2	12 L2	8.7 L2	<6.0 L2	17 L2	<6.3 L2	<5.9	15	140	160 L2	45 L2
Chrysene	<6.0 L2	19 L2	140 L2	8.8 L2	7.9 L2	<6.3 L2	<5.9	14	250	91 L2	12
Dibenzo (a,h) anthracene	<9.0 L2	<8.8 L2	<9.2 L2	<9.0 L2	<9.6 L.2	<9.4 L2	<8.9 L2	<12	<100 L2	72 L2	21 L2
Fluoranthene	30	110	590	62	110	<13	<12	270	650	950	240
Fluorene	<12	<12	120	<12	<13	<13	<12	68	<140	70	12
Indeno (1,2,3-cd) pyrene	7.9 L2	12 L2	12 L2	7.2 L2	35 L2	<6.3 L2	<5.9 L2	25	99 L 2	310 L2	100 L2
Naphthalene	<36	<35	<37	<36	<38	<38	<36	<47	<410	49	<36
Phenanthrene	11	72	210	37	83	<6.3	<5.9	150	430	490	100
Pyrene	27	330	830	61	100	<6.3	<5.9	210	960	770	230
Concentration ex	xceeds the N	R 720 RCL (I	NR 720 Table	e 1 RCL is ba	ased on prote	ection of grou	undwater pati	nway).			
Bold Concentration e	xceeds the W	DNR Propos	ed Industrial	Direct Conta	act RCL for P	olycyclic Aro	matic Hydro	carbons.			
Italic Concentration e	xceeds the W	DNR Propos	ed Non-Indu	strial Direct (Contact RCL	for Polycycli	c Aromatic H	ydrocarbons	5.		
Underline Concentration ex	xceeds the W	DNR Propos	ed Groundwa	ater Protectio	on RCL for P	olycyclic Aro	matic Hydrod	arbons.			
< Analyte detected											
E Concentration ex	xceeds the ca	alibration rang	ge and there	fore result is	semi-quantit	atíve.					
_2 Laboratory contr	ol sample rec	covery was b	elow accepta	nce limits.							
M Matrix interferen	ce.										
NA Not analyzed.											
NE Not established.											
RAH Polycyclic arom:	atio bydrocart	0000									

Table 2. Summary of Soil PAH Analytical Results, Union Pacific Bulter Yard Facility, Milwaukee, Wisconsin.

PAH Polycyclic aromatic hydrocarbons.

RCL Residual contaminant level.

µg/kg Micrograms per kilogram.

Sample Name	GP-71	GP-72	GP-73	GP-74	GP-75	GP-76	GP-77	GP-80	GP-81	GP-82
Sample Depth (feet)	2-4'	2-4'	0-2'	2-4'	2-4'	2-4'	0-2	2-4'	2-4'	2-4'
Sample Date	10/19/05	10/19/05	10/19/05	10/18/05	10/18/05	10/18/05	10/18/05	10/18/05	10/18/05	10/18/05
PAHs (µg/kg)										
1-Methylnaphthalene	<36	53	120	<35	<37	47	<170	1,300	<37	<280
2-Methylnaphthalene	<30	120	380	<29	<31	130	320	2,500	<31	420
Acenaphthene	<61	<54	<54	<58	<62	<60	<280	800	<62	<460
Anthracene	<6.1	10	33	<5.8	<6.2	13	<28	310	<6.2	<46
Benzo (a) anthracene	6.6	56	200	<5.8	<6.2	91	120	870	<6.2	270
Benzo (a) pyrene	<6.1	42	200	<5.8	<6.2	64	84	7-1	<6.2	210
Benzo (b) fluoranthene	<6.1 L2	42 L2	150 L2	<5.8 L2	<6.2 L2	54	86 L.2	85 L2	<6.2 L2	190 L.2
Benzo (g,h,i) perylene	<6.1	47	140	<5.8	<6.2	44	63	<58	<6.2	200
Benzo (k) fluoranthene	<6.1 L2	13 L2	82 L2	<5.8	<6.2	36	33	<58	<6.2	120
Chrysene	<6.1	11	. 25	<5.8	<6.2	15	73	250	<6.2	53
Dibenzo (a,h) anthracene	<9.1 L2	<8.1 ∟2	26 L.2	<8.6 L2	<9.3 L2	<8.9	<41 L2	<86 L2	<9.3 L2	<69 L2
Fluoranthene	14	190	520	<12	<12	200	430	3,900	<12	540
Fluorene	<12	12	<11	<12	<12	13	<55	1,000	<12	<92
Indeno (1,2,3-cd) pyrene	<6.1 L2	33 L2	130 L2	<5.8 L2	<6.2 L2	40	56 L 2	<58 L2	<6.2 L2	160 L2
Naphthalene	<36	<32	84	<35	<37	<36	<170	<350	<37	<280
Phenanthrene	7.3	88	240	<5.8	<6.2	94	270	2,400	<6.2	330
Pyrené	33	100	430	<5.8	<6.2	280	260	3,200	<6.2	570
Concentration ex	ceeds the NR	720 RCL (NR	720 Table 1 F	RCL is based o	on protection of	of groundwa	ter pathway)			_
Bold Concentration ex	ceeds the WD	ONR Proposed	Industrial Dire	ect Contact RO	CL for Polycyc	lic Aromatic	Hydrocarbo	ns.		
Italic Concentration ex	ceeds the WE	NR Proposed	Non-Industria	I Direct Conta	ct RCL for Po	lycyclic Aron	natic Hydrod	arbons.		
Underline Concentration ex	ceeds the WD	NR Proposed	Groundwater	Protection RC	L for Polycycl	lic Aromatic	Hydrocarbor	ıs .		
< Analyte detected	l below laborat	tory detection	limits.							
E Concentration ex	kceeds the cali	ibration range	and therefore	result is semi-	quantitative.					
L2 Laboratory contr	ol sample reco	overy was belo	w acceptance	limits.						

.

Table 2. Summary of Soil PAH Analytical Results, Union Pacific Bulter Yard Facility, Milwaukee, Wisconsin.

M Matrix interference.

NA Not analyzed.

.

NE Not established.

PAH Polycyclic aromatic hydrocarbons.

RCL Residual contaminant level.

µg/kg Micrograms per kilogram.

Sample Name	GP-83	GP-84	GP-85	GP-86	GP-88	GP-89	GP-90	 GP-91	GP-93	GP-94	GP-95
Sample Depth (feet)	2-4'	2-4'	2-4'	2-4'	0-2'	2-4'	0-2'	2-4'	2-4'	2-4'	2-4'
Sample Date	10/18/05	10/18/05	10/18/05	10/18/05	10/18/05	10/18/05	10/19/05	10/18/05	10/18/05	10/19/05	10/19/05
PAHs (µg/kg)											
1-Methylnaphthalene	<170	<47	37	100	280	70,000	6,000	<180	<35	<37	54
2-Methylnaphthalene	<140	<39	88	120	710	<u>82,000</u>	3,200	<150	<29	<31	49
Acenaphthene	<280	<78	<61	<64	<280	7,300	400	<290	<59	<62	<52
Anthracene	<28	<7.8	6.6	<6.4	93	7,900	260	<29	<5.9	<6.2	20
Benzo (a) anthracene	100	2 2 [·]	37	31	460	13,000	650	74	<5.9	<6.2	190
Benzo (a) pyrene	37	14	31	22	350	<120	82	57	<5.9	<6.2	28
Benzo (b) fluoranthene	56 L2	13	32	23	330 L2	<120 L2	63 L2	60 L2	<5.9 L2	<6.2 L2	37 L2
Benzo (g,h,i) perylene	<28	18	33	22	250	<120	40	63	<5.9	<6.2	32
Benzo (k) fluoranthene	69	<7.8	13	12	170	<120	30 L2	<29	<5.9	<6.2 L2	13 L2
Chrysene	63	9.1	<6.1	7.2	79	4,400	190	<29	<5.9	<6.2	250
Dibenzo (a,h) anthracer	ne <42 L2	<12	<9.2	<9.6	<42 L2	<180 L2	10 L2	<44 L2	<8.8 L2	<9.3 L2	<7.8 L2
Fluoranthene	240	61	140	31	1,300	110,000	3,900	170	<12	<12	330
Fluorene	<56	<16	<12	<13	160	21,000	1,200	<59	<12	<12	46
Indeno (1,2,3-cd) pyrene	e <28 L2	9.7	34	21	220 L2	<120 L2	33 L2	44 12	<5,9 L2	<6.2 L2	28 L2
Naphthalene	<170	<47	<37	<38	<170	2.900	370	<180	<35	<37	66
Phenanthrene	130	31	77	24	540	<u>50,000</u>	<u>2,100</u>	80	<5.9	<6.2	110
Pyrene	410	76	91	<u> </u>	1,200	96,000	3,200	120	<5.9	<6.2	350
Concentratio	on exceeds the NF	720 RCL (N	IR 720 Table	e 1 RCL is b	ased on pro	tection of gr	oundwater p	athway).			
Bold Concentration	on exceeds the WI	ONR Propose	ed Industrial	Direct Cont	act RCL for	Polycyclic A	romatic Hyd	rocarbons.			
Italic Concentration	on exceeds the WI	ONR Propose	ed Non-Indu	strial Direct	Contact RC	L for Polycya	clic Aromatic	: Hydrocarbo	ons.		
Underline Concentration	on exceeds the WI	ONR Propose	ed Groundw	ater Protecti	on RCL for	Polycyclic A	romatic Hydi	rocarbons.			
< Analyte dete	ected below labora	tory detection	n limits.								
E Concentratio	on exceeds the cal	ibration rang	e and there	fore result is	semi-quant	itative.					
L2 Laboratory of	control sample rec	overy was be	low accepta	ance limíts.							
M Matrix interfe	erence.										
NA Not analyze	d.										
NE Not establis	hed.										
PAH Polycyclic at	romatic hydrocarbo	ons.									
RCL Residual con	ntaminant level.										

z

Table 2. Summary of Soil PAH Analytical Results, Union Pacific Bulter Yard Facility, Milwaukee, Wisconsin,

Because we care

Micrograms per kilogram.

Wisconsin Department of Natural Resources.

µg/kg WDNR

Table 2. Summary of Soil										
Sample Name	GP-98	GP-99	GP-100	GP-101	GP-102	GP-103	<u>GP-104</u>	GP-105	GP-109	GP-110
Sample Depth (feet)	2-4'	2-4'	2-4'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	0-2'
Sample Date	10/20/05	10/20/05	10/20/05	10/20/05	10/20/05	10/20/05	10/20/05	10/20/05	10/20/05	10/19/05
PAHs (µg/kg)										
1-Methylnaphthalene	<37	150	<190	<38	<990	<260	430	<180	<170	150
2-Methylnaphthalene	91	310	170	<31	2,200	<220	370	<150	280	420
Acenaphthene	<62	<62	<310	<63	< 1 ,700	<440	<310	<300	<290	<56
Anthracene	19	22	31	<6.3	720	<44	57	41	82	36
Benzo (a) anthracene	94	36	620	<6.3	2,200	70	390	130	320	99
Вепzo (a) pyrene	89	14	<31	<6.3	1,500	<44	100	96	230	320
Benzo (b) fluoranthene	66	8.9	<31	<6.3	1,300	49	80	70	230	320 L2
Benzo (g,h,i) perylene	70	<6.2	<31	<6.3	1,100	<44	80	72	160	270
Benzo (k) fluoranthene	38	<6.2	<31	<6.3	860	<44	33	43	140	180 L2
Chrysene	200	36	670	<6.3	4,600	120	84	110	290	52
Dibenzo (a,h) anthracene	12	<9.3	<46	<9.4	<250	<65	<46	<45	44	51 L2
Fluoranthene	190	210	530	<13	5,100	180	1,200	320	680	610
Fluorene	<12	28	<62	<13	430	<87	200	<61	<57	31
Indeno (1,2,3-cd) pyrene	64	<6.2	<31	<6.3	920	44	67	62	150	270 L2
Naphthalene	<37	73	<190	<38	<990	<260	<180	<180	<170	82
Phenanthrene	97	150	130	<6.3	2,800	97	420	200	360	230
Pyrene	190	95	390	<6.3	5,000	200	1,200	330	610	580
Concentration et	xceeds the N	R 720 RCL (NR 720 Table	a 1 RCL is ba	sed on protec	tion of groun	dwater pathv	way).		
Bold Concentration e	xceeds the W	DNR Propos	sed Industrial	Direct Conta	ct RCL for Po	lycyclic Arom	atic Hydroca	arbons.		
Italic Concentration e	xceeds the W	DNR Propos	sed Non-Indu	strial Direct C	Contact RCL fo	or Polycyclic /	Aromatic Hy	drocarbons.		
Underline Concentration et	xceeds the W	/DNR Propos	sed Groundwa	ater Protectio	n RCL for Po	lycyclic Arom	atic Hydroca	irbons.		
< Analyte detected	d below labor	atory detection	on limits.							
E Concentration e	xceeds the ca	alibration ran	ge and theref	ore result is a	semi-quantitat	tive.				
L2 Laboratory contr	ol sample re	covery was b	elow accepta	nce limits.						
M Martin Later	-	-								

.

Table 2. Summary of Soil PAH Analytical Results, Union Pacific Bulter Yard Facility, Milwaukee, Wiscon
--

M Matrix interference.

NA Not analyzed.

NE Not established.

PAH Polycyclic aromatic hydrocarbons.

RCL Residual contaminant level.

µg/kg Micrograms per kilogram.

WDNR Wisconsin Department of Natural Resources.

.

Sample Name	GP-111	GP-112	GP-113	GP-114	GP-115	GP-116	GP-117	GP-118	GP-119	GP-120	GP-121
Sample Depth (feet)	2-4'	2-4'	2-4'	2-4'	2-4'	2-4'	2-4'	2-4'	2-4'	0-2'	0-2'
Sample Date	10/19/05	10/19/05	10/19/05	10/19/05	10/19/05	10/19/05	10/19/05	10/19/05	10/19/05	11/10/06	11/10/06
PAHs (µg/kg)											
1-Methylnaphthalene	<35	<31	<32	<37	<37	<36	<35	<35	<32	360	<150
2-Methylnaphthalene	<29	<26	<27	<31	50	<30	<29	<29	<26	870	250
Acenaphthene	<58	<52	<53	<61	<61	<61	<58	<58	<53	<380	<240
Anthracene	<5.8	<5.2	<5.3	<6.1	10	<6.1	<5.8	<5.8	<5.3	150	67
Benzo (a) anthracene	<5.8	<5.2	<5.3	<6.1	36	<6.1	<5.8	<5.8	14	1,000	330
Benzo (a) pyrene	<5.8	<5.2	<5.3	<6.1	26	<6.1	<5.8	<5.8	13	760	360
Benzo (b) fluoranthene	<5.8 L2	<5.2 L2	<5.3 L2	<6.1 L2	20 L2	<6.1 L2	<5.8 L2	<5.8 L2	14 L.2	460	260
Benzo (g,h,i) perylene	<5.8	<5.2	<5.3	<6.1	20	<6.1	<5.8	<5.8	13	450	250
Benzo (k) fluoranthene	<5.8 L2	<5.2 L2	<5,3 L2	<6.1 L2	12 L2	<6.1 L2	<5.8 L2	<5.8 L2	11 L2	350	180
Chrysene	<5.8	<5.2	<5.3	<6.1	43	<6.1	<5.8	<5.8	<5.3	<u>53</u> 0	280
Dibenzo (a,h) anthracene	<8.7 L2	<7.9 L2	<8.0 L2	<9.2 L2	<9.1 L2	<9.1 L2	<8.6 L2	<8.7 L2	<7.9 L2	83	43
Fluoranthene	<12	<10	<11	<12	89	<12	<12	<12	32	1,300	690
Fluorene	<12	<10	<11	<12	<12	<12	<12	<12	<11	160	<49
Indeno (1,2,3-cd) pyrene	<5.8 L2	<5.2 L2	<5.3 L2	<6.1 L2	17 L2	<6.1 L2	<5.8 L2	<5.8 L2	9.5 L2	490	250
Naphthalerie	<35	<31	<32	<37	<37	<36	<35	<35	<32	<230	<150
Phenanthrene	<5.8	<5.2	<5.3	<6.1	47	<6.1	<5.8	<5.8	14	850	370
Pyrene	<5.8	<5.2	<5.3	<6.1	76	<6.1	<5.8	<5.8	28	620	500

Italic Concentration exceeds the WDNR Proposed Non-Industrial Direct Contact RCL for Polycyclic Aromatic Hydrocarbons.

Underline Concentration exceeds the WDNR Proposed Groundwater Protection RCL for Polycyclic Aromatic Hydrocarbons.

Analyte detected below laboratory detection limits. <

Е Concentration exceeds the calibration range and therefore result is semi-quantitative.

L2 Laboratory control sample recovery was below acceptance limits.

Μ Matrix interference.

Not analyzed. NA

NE Not established.

PAH Polycyclic aromatic hydrocarbons.

RCL Residual contaminant level.

Micrograms per kilogram. µg/kg

Sample Name	GP-122	GP-123	GP-124	GP-125	GP-126	GP-127	GP-128	GP-129	GP-130	GP-131	GP-132
Sample Depth (feet)	0-2'	0-2'	2-4'	0-2'	0-2'	0-2'	0-2'	2-4'	0-2'	0-2'	2-4'
Sample Date	11/10/06	11/10/06	11/10/06	11/10/06	11/10/06	11/10/06	11/10/06	11/10/06	11/10/06	11/10/06	11/10/06
<u>PAHs (µg/kg)</u>											
1-Methylnaphthalene	<610	<1,900	<210	<950	<140	<280	<210	<37	<93	<210	<320
2-Methylnaphthalene	570	<1,600	<170	<790	<110	<240	<170	<31	<78	<180	<270
Acenaphthene	<1,000	<3,200	<350	<1,600	<230	<470	<340	<62	<160	<350	<540
Anthracene	220	320	320	<160	92	240	290	<6.2	<16	<35	140
Benzo (a) anthracene	630	900	550	<160	280	820	1,100	11	45	<35	500
Benzo (a) pyrene	620	800	380	<160	280	1,000	1,200	9.4	42	47	.400
Benzo (b) fluoranthene	500	590 ⁻	250	<160	200	730	950	6.4	53	67	340
Benzo (g,h,i) perylene	470	540	280	290	180	670	770	<6.2	49	<35	350
Benzo (k) fluoranthene	370	450	210	220	160	440	600	<6.2	27	60	290
Chrysene	560	820	370	<160	230	700	870	8.7	43	44	390
Dibenzo (a,h) anthracene	<150	<480	57	<240	39	110	130	<9.2	<23	<53	110
Fluoranthene	1,300	2,100	1,000	<320	470	1800	1800	34	120	<70	750
Fluorene	<200	<640	<69	<320	<46	<95	<68	<12	<31	<70	<110
Indeno (1,2,3-cd) pyrene	410	480	210	<160	160	690	710	<6.2	29	<35	330
Naphthalene	<610	<1,900	<210	<950	<140	<280	<210	<37	<93	<210	<320
Phenanthrene	700	900	670	160	290	830	1,400	30	68	38	530
Pyrene	860	1,500	940	<160	510	1,800	2,000	15	71	<35	850
Concentration e			•		•	-	,	• •			
Bold Concentration e		-				• •					•
Italic Concentration e									ons.		
Underline Concentration e				water Prote	ction RCL fo	r Polycyclic A	romatic Hyd	lrocarbons.			
< Analyte detected											
E Concentration e			-			ntitative.					
L2 Laboratory cont	-	covery was	below accep	otance limits							
M Matrix interferen	nce.										
NA Not analyzed.											
NE Not established.											
PAH Polycyclic arom	atic hydrocar	bons.									

-

1

.

Table 2. Summary of Soil PAH Analytical Results, Union Pacific Bulter Yard Facility, Milwaukee, Wisconsin.

µg/kgMicrograms per kilogram.WDNRWisconsin Department of Natural Resources.

Residual contaminant level.

RCL

,

Sample Name	GP-133	GP-134	GP-135	GP-137	GP-138	GP-139	GP-140	GP-141	GP-143	GP-145	GP-152
Sample Depth (feet)	2-4'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	2-4'	2-4'
Sample Date	11/10/06	11/10/06	11/10/06	11/10/06	11/13/06	11/10/06	11/10/06	11/10/06	11/13/06	11/13/06	11/13/06
PAHs (µg/kg)											
1-Methylnaphthalene	<480	<460	<610	<280	<38	2,000	<320	<400	<980	<180	<36
2-Methylnaphthalene	<400	<380	<510	540	<32	7,200	<270	<330	1,200	420	<30
Acenaphthene	<790	<760	<1,000	<470	<63	1,300	<530	<660	<1,600	<300	<61
Anthracene	<79	<76	250	320	<6.3	640	87	690	380	250	<6.1
Benzo (a) anthracene	<79	400	950	1,100	<6.3	430	270	1,900	1,500	900	8.6
Benzo (a) pyrene	<79	240	540	1,400	<6.3	200	240	1,900	790	650	<6.1
Benzo (b) fluoranthene	<79	250	850	750	<6.3	210	210	1,200	590	410	<6.1
Benzo (g,h,i) perylene	<79	210	<100	860	7.0	<57	210	1,200	530	470	<6.1
Benzo (k) fluoranthene	<79	97	320	660	<6.3	210	<53	1,100	440	360	<6.1
Chrysene	<79	220	500	820	<6.3	230	210	1,500	880	650	6.2
Dibenzo (a,h) anthracene	<120	<110	<150	180	<9.5	< 86	<80	220	<240	90	<9.1
Fluoranthene	<160	380	1,400	2,000	19	1,100	540	3,600	2,300	1,900	17
Fluorene	<160	<150	<200	120	<13	970	<110	<130	<330	170	<12
Indeno (1,2,3-cd) pyrene	<79	<76	340	1,000	<6.3	180	190	1,300	510	480	<6.1
Naphthalene	<480	<460	<610	<280	<38	<u>90(0); (2</u>	<320	<400	<980	<180	<36
Phenanthrene	<79	250	300	1,100	11	<u>2,200</u>	340	3,000	1,700	1,400	15
Pyrene	<79	93	780	1,700	9.3	900	380	3,600	1,800	1,600	13
Concentration ex	ceeds the N	R 720 RCL (NR 720 Tab	le 1 RCL is	based on pr	otection of g	roundwater	pathway).			
Bold Concentration ex	ceeds the W	DNR Propos	ed Industria	al Direct Cor	itact RCL for	Polycyclic /	Aromatic Hy	drocarbons.			
Italic Concentration ex	ceeds the W	DNR Propos	sed Non-Ind	ustrial Direc	t Contact RC	CL for Polycy	vclic Aromat	ic Hydrocarb	ions.		
Linderline Concentration ex	coode the M	DNP Propos	ad Groundu	votor Protoc	tion RCL for	Polycyclic /	Aromatic Hw	Irocarbone			

Table 2. Summary of Soil PAH Analytical Results, Union Pacific Bulter Yard Facility, Milwaukee, Wisconsin.

Underline Concentration exceeds the WDNR Proposed Groundwater Protection RCL for Polycyclic Aromatic Hydrocarbons.

Analyte detected below laboratory detection limits.

E Concentration exceeds the calibration range and therefore result is semi-quantitative.

L2 Laboratory control sample recovery was below acceptance limits.

M Matrix interference.

NA Not analyzed.

NE Not established.

PAH Polycyclic aromatic hydrocarbons.

RCL Residual contaminant level.

µg/kg Micrograms per kilogram.

Sample Name	GP-153	GP-154	GP-155	GP-156	GP-157	GP-158	GP-159	GP-160	GP-162	GP-163	GP-164
Sample Depth (feet)	2-4'	0-2'	2-4'	2-4'	0-2'	0-2'	0-2'	2-4'	2-4'	0-2'	2-4'
Sample Date	11/13/06	11/13/06	11/13/06	11/13/06	11/13/06	11/13/06	11/13/06	11/13/06	01/10/07	01/10/07	01/10/07
PAHs_(µg/kg)											
1-Methylnaphthalene	<91	<37	<37	8,500	6,800	310	110	300	<48	<790	<290
2-Methylnaphthalene	490	<31	<31	5,900	7,900	520	130	450	<40	<660	260
Acenaphthene	<150	<61	<62	580	530	<110	<140	<320	<79	<1,300	<490
Anthracene	180	130	<6.2	870	900	57	<14	<32	<7.9	<130	55
Benzo (a) anthracene	440	310	9.9	1,000	1,300	120	<14	63	<7.9	<130	280
Benzo (a) pyrene	340	290	8.1	<13	<2 7	29	<14	<32	<7.9	<130	350
3enzo (b) fluora⊓thene	250	190	7.0	<13	77	19	<14	<32	<7.9	<130	240
Benzo (g,h,i) perylene	190	160	<6.2	<13	<27	13	<14	<32	<7.9	<130	380
Benzo (k) fluoranthene	190	140	6.8	<13	<27	<11	<14	<32	<7.9	<130	170
Chrysene	380	280	8.1	130	270	46	<14	<32	<7.9	<130	250
Dibenzo (a,h) anthracene	39	33	<9.2	<20	<40	<16	<21	<48	<12	<200	<73
Fluoranthene	1,200	440	19	5,400	4,000	430	51	250	<16	<260	440
Fluorene	130	<12	<12	2,100	1,700	110	<29	70	<16	<260	<98
ndeno (1,2,3-cd) pyrene	210	180	6.2	<13	<27	28	<14	<32	<7.9	<130	280
Vaphthalene	130	<37	<37	<u>660</u>	<u>670</u>	75	<86	<190	<48	<790	<290
Phenanthrene	920	46	11	4,300	3.300	330	37	140	<7.9	<130	260
Pyrene	810	590	15	4,500	4,200	770	25	220	<7.9	<130	330
Concentration ex	xceeds the N	IR 720 RCL	(NR 720 Tal	ble 1 RCL is	based on pr	otection of g	groundwater	pathway).			
Bold Concentration ex	xceeds the V	VDNR Propo	osed Industri	al Direct Co	ntact RCL fo	r Polycyclic	Aromatic Hy	drocarbons.			
talic Concentration ex	xceeds the V	DNR Propo	osed Non-Inc	dustrial Direc	ct Contact R	CL for Polyc	yclic Aromat	ic Hydrocart	oons.		
Inderline Concentration ex	xceeds the V	VDNR Propo	osed Ground	water Protect	ction RCL for	Polycyclic	Aromatic Hyd	drocarbons.			
Analyte detected	d below labor	atory detect	tion limits.								
Concentration ex	xceeds the c	alibration ra	nge and thei	refore result	is semi-quar	ntitative.					
2 Laboratory contr	rol sample re	covery was	below accep	tance limits.							
M Matrix interferen	ce.										
NA Not analyzed.											
Not established											

NE Not established.

PAH Polycyclic aromatic hydrocarbons.

RCL Residual contaminant level.

µg/kg Micrograms per kilogram.

•

Sample Name	GP-165	GP-166	GP-167	GP-168	GP-169	GP-170	GP-171	GP-172	GP-173	GP-177
Sample Depth (feet)	0-2'	2-4'	0-2"	2-4'	2-4'	0-2'	2-4'	0-2'	0-2'	0-2'
ample Date	01/10/07	01/09/07	01/10/07	01/10/07	01/09/07	01/09/07	01/09/07	01/09/07	01/09/07	01/09/07
AHs (µg/kg)										
-Methylnaphthalene	<240	<340	<290	<60	<120	960	200	<420	<1,000	<130
2-Methylnaphthalene	430	340	640	76	330	4,600	860	1,100	1,800	<110
Acenaphthene	<390	<570	<490	<100	<200	1,100	220	<700	<1,700	<220
Anthracene	100	120	230	12	54	1,900	290	430	450	52
Benzo (a) anthracene	390	410	790	39	190	5,500	890	1,800	1,300	160
Benzo (a) pyrene	310	340	720	28	110	3,400	590	1,200	1,000	120
enzo (b) fluoranthene	240	250	580	20	83	2,600	380	980	760	89
ienzo (g,h,i) perylene	260	270	430	27	110	2,300	440	790	830	100
enzo (k) fluoranthene	160	180	360	13	48	1,600	310	640	550	65
Chrysene	410	330	640	29	120	3,600	570	1,300	930	130
ibenzo (a,h) anthracene	<59	<86	75	<15	<30	450	86	140	<250	<32
luoranthene .	740	930	1,700	66	380	11,000	1,500	5,200	2,700	330
luorene	<79	<110	<98	<20	39	860	110	<140	390	<43
ndeno (1,2,3-cd) pyrene	220	230	430	<10	110	1,900	360	640	690	78
laphthalene	<240	<340	<290	<60	<120	<270	320	<420	<1,000	<130
henanthrene	470	490	820	66	280	<u>7,700</u>	1 ,1 00	90 0	1,800	210
yrene	550	630	1,400	40	230	6,400	1,400	3,800	1,900	250
Concentration ex										
old Concentration ex										
alic Concentration ex	ceeds the WI	DNR Propos	ed Non-Indu	strial Direct	Contact RCI	L for Polycyc	lic Aromatic I	Hydrocarbon	s.	
nderline Concentration ex		•		ater Protect	ion RCL for I	Polycyciic Ar	omatic Hydro	carbons.		
Analyte detected		-								
Concentration ex	ceeds the cal	libration rang	ge and there	fore result is	semi-quanti	itative,				
2 Laboratory control	ol sample rec	overy was be	elow accepta	ince limits.						
Matrix interference	ce.									
A Not analyzed.										
E Not established.										
AH Polycyclic aroma	atic hydrocarbo	ons.								
CL Residual contam	iinant level.									

Table 2. Summary of Soil PAH Analytical Results, Union Pacific Bulter Yard Facility, Milwaukee, W	Visconsin.
---	------------

µg/kg Micrograms per kilogram.

Sample Na	ame	Sample Na	me	GP-183	GP-187	GP-189	GP-199	GP	200	GP-201	GP-202
Sample De	epth (feet)	Sample De	pth (feet)	2-4'	2-4'	4-6'	4-6'	0-2'	0-2'	0-2'	2-4'
Sample Da	ate	Sample Da	te	01/09/07	01/10/07	01/10/07	01/10/07	01/10/07	11/08/07	11/08/07	11/08/07
PAHs (µg/	'kg)	PAHs (µg/ł	(g)								
1-Methylna	aphthalene	1-Methylna	phthalene	<290	<35	<290	<280	<1,200	<2,100	<390	27.000
2-Methylna	aphthalene	2-Methylna	phthalene	<240	<29	<240	<230	2,200	<1,800	<330	170,000
Acenaphth	ene	Acenaphthe	ene	<480	<58	<480	<460	<2,000	<3,500	<650	43,000
Anthracen	e	Anthracene	•	58	<5.8	<48	<46	650	2,000	75	61,000
Benzo (a) :	anthracene	Benzo (a) a	inthracene	230	6.1	120	61	2,600	6,100	280	240,000
Benzo (a)	pyrene	Benzo (a) p	yrene	-150	<5,8	88	55	2,100	5,200	260	<u>190,000</u>
Benzo (b) i	fluoranthene	Benzo (b) f	uoranthene	110	<5.8	74	49	1,700	3,800	150	110,000
Benzo (g,h	n,i) perylene	Benzo (g,h,	i) perylene	120	<5.8	92	47	1,600	3,100	170	95,000
Benzo (k) f	fluoranthene	Benzo (k) fl	uoranthene	77 ·	<5.8	<48	<46	320	2,200	1 10	73,000
Chrysene		Chrysene		130	<5.8	83	50	2,000	4,900	210	160,000
Dibenzo (a	a,h) anthracene	Dibenzo (a	h) anthracene	<71	<8.7	<73	<70	340	<530	<98	17,000
Fluoranthe	ene	Fluoranther	ne	410	12	270	130	6,900	15,000	630	370,000
Fluorene		Fluorene		<95	<12	<97	<93	<400	1,000	<130	21,000
Indeno (1,2	2,3-cd) pyrene	Indeno (1,2	,3-cd) pyrene	99	<5.8	81	<46	1,400	3,200	140	100,000
Naphthale	ne	Naphthaler	e	<290	<35	<290	<280	<1,200	<2,100	<390	13,000
Phenanthr	ene	Phenanthre	ene	220	9.3	140	57	2,100	<u>9,500</u> _	300	210,000
Pyrene		Pyrene		270	<5.8	170	86	3,600	9,500	650	380,000
	Concentration ex	ceeds the NF				•			+		• •
Bold	Concentration ex	Bold	Concentration ex							•	
Italic	Concentration ex	c Italic	Concentration ex	xceeds the V	/DNR Propo	sed Non-Inc	lustrial Direct	Contact RC	L for Polycyc	lic Aromatic H	ydrocarbor
Underline	Concentration ex	d <u>Underline</u>	Concentration ex	xceeds the W	/DNR Propo	sed Ground	water Protec	tion RCL for	Polycyclic Ar	omatic Hydrod	arbons.
<	Analyte detected	b <	Analyte detected	l below labor	atory detecti	on limits.					
E	Concentration ex	сrЕ	Concentration ex	xceeds the ca	alibration rar	ige and ther	efore result i	s semi-quant	titative.		
12	Laboratory contro	ol (L2	Laboratory contr	ol sample re	covery was t	pelow accep	tance limits.				
M	Matrix interference	e M	Matrix interferen	ce.							
NA	Not analyzed.	NA	Not analyzed.								
NE	Not established.	NE	Not established.								
PAH	Polycyclic aroma	tic PAH	Polycyclic aroma	atic hydrocarl	bons.						
RCL	Residual contami	n RCL	Residual contarr	ninant level.							
"	Micrograms per k	il ua/ka	Micrograms per	kilogram.							
µg/kg	morograms per n										

Table 2. Summary of Soil P. Table 2. Summary of Soil PAH Analytical Results, Union Pacific Bulter Yard Facility, Milwaukee, Wisconsin

Sample Name		GP-203		GP-204	GP-206	GP-208	GP-210	GP-212	GP-213	
Sample Depth (feet)	3-5'	6-8'	10-12'	2-4'	2-4'	2-4'	0-2'	0-2'	2-4'	
Sample Date	11/08/07	11/09/07	11/08/07	01/10/07	01/09/07	01/09/07	<u>01/0</u> 9/07	01/10/07	01/10/07	
PAHs (µg/kg)										
1-Methylnaphthalene	<86	<36	<36	<2,500	<37	<57	<960	<470	<36	
2-Methylnaphthalene	<72	<30	<30	2,200	<31	220	1,900	<390	<30	
Acenaphthene	<140	<61	<60	<4,200	<62	<95	<1,600	<780	<60	
Anthracene	<14	<6.1	<6	1,500	<6.2	210	740	99	<6.0	
Benzo (a) anthracene	33	<6.1	<6	2,000	<6.2	560	2,700	3,80	<6.0	
Benzo (a) pyrene	26	<6.1	<6	1,500	<6.2	400	2,300	360	<6.0	
Benzo (b) fluoranthen	e 18	<6.1	<6	1,200	<6.2	270	1,600	270	<6.0	
Benzo (g,h,i) perylene	23	<6.1	<6	1,300	<6.2	300	1,700	290	<6.0	
Benzo (k) fluoranthen	ə <14	<6.1	<6	870	<6.2	210	1,100	82	<6.0	
Chrysene	18	<6.1	<6	1,800	<6.2	370	1,700	280	<6.0	
Dibenzo (a,h) anthrac	ene <21	<9.1	<9	<620	<9.2	56	290	<120	<9.0	
luoranthene	92	<12	<12	5,300	<12	1,100	4,600	660	<12	
Fluorene	<29	<12	<12	<830	<12	42	<320	<160	<12	
ndeno (1,2,3-cd) pyre	ne 20	<6.1	<6	970	<6.2	250	1,800	270	<6.0	
Naphthalene	<86	<36	<36	<2,500	<37	<57	<960	<470	<36	
Phenanthrene	69	<6.1	7.4	<u>4,400</u>	<6.2	720	<u>2,600</u>	450	<6.0	
Pyrene	34	<6.1	11	3,500	<6.2	1,000	4,400	820	<6.0	
the second s	tion exceeds the NR	•				-	,			
	tion exceeds the WI	•					•			
	tion exceeds the WI	•								
	tion exceeds the Wt			ater Protectio	n RCL for Po	olycyclic Aror	natic Hydroca	arbons.		
	tected below labora	•								
	tion exceeds the cal	ibration rang	e and therefo	ore result is s	emi-quantita	ative.				
	control sample reco	overy was be	low acceptar	nce limits.						
M Matrix inte										
NA Not analyz	ed.									
NE Not establ	ished.									
PAH Polycyclic	aromatic hydrocarbo	ons.								

•

Table 2. Summary o	f Soil PAH Analytical Result	s. Union Pacific Bulter Ya	rd Facility, Milwaukee, Wisconsin.

RCL Residual contaminant level.

µg/kg Micrograms per kilogram.

Sample Name	NR 720	Proposed	Proposed	Proposed	GP-1	GP-2	GP-3	GP-4	G	P-5
Sample Depth (feet)	Table 1	Groundwater	Non-Industria	Industrial	4-6'	6-8'	6-8'	6-8'	6-8'	12-14'
Sample Date	RCL	Protection	Direct Contact	Direct Contact	05/23/96	05/23/96	05/23/96	05/23/96	05/24/96	05/24/96
PAHs (µg/kg)										
1-Methylnaphthalene	NE	23,000	1,100,000	70,000,000	<25	<25	<25	<25	<25	<25
2-Methylnaphthalene	NE	20,000	600,000	40,000,000	<25	<25	<25	<25	<25	<25
Acenaphthene	NE	38,000	900,000	60,000,000	NA	NA	NA	NA	NA	NA
Anthracene	NE	3,000,000	5,000,000	300,000,000	<8.0	33	<8.0	<8.0	<8.0	<8.0
Benzo (a) anthracene	NE	17,000	88	3,900	<2.0	120	<2.0	<2.0	<2.0	<2.0
Benzo (a) pyrene	NE	48,000	8.8	390	<4.0	110	<4.0	<4.0	<4.0	<4.0
Benzo (b) fluoranthene	NE	360,000	88	3,900	<2.0	41	<2.0	<2.0	<2.0	<2.0
Benzo (g,h,i) perylene	NE	6,800,000	1,800	39,000	<4.0	110	<4.0	<4.0	<4.0	<4.0
Benzo (k) fluoranthene	NE	870,000	880	39,000	<2.0	65	<2.0	<2.0	<2.0	<2.0
Chrysene	NE	37,000	8,800	390,000	<4.0	98	<4.0	<4.0	<4.0	<4.0
Dibenzo (a,h) anthracene	NE	38,000	8.8	390	NA	NA	NA	NA	NA	NA
Fluoranthene	NE	500,000	600,000	40,000,000	<8.0	230	<8.0	<8.0	<8.0	<8.0
Fluorene	NE	100,000	600,000	40,000,000	<16	<16	<16	<16	<16	<16
Indeno (1,2,3-cd) pyrene	NE	680,000	88	3,900	<4.0	60	<4.0	<4.0	<4.0	<4.0
Naphthalene	2,700	400	20,000	110,000	NA	NA	NA	NA	NA	NA
Phenanthrene	NE	1,800	18,000	390,000	<16	230	<16	<16	<16	<16
Pyrene	NE	8,700,000	500,000	30,000,000	<8.0	190	<8.0	<8.0	<8.0	<8.0

Table 3. Summary of Soil PAH Analytical Results, Union Pacific Bulter Yard Facility, Milwaukee, Wisconsin.

Concentration exceeds the NR 720 RCL (NR 720 Table 1 RCL is based on protection of groundwater pathway).

Bold Concentration exceeds the WDNR Proposed Industrial Direct Contact RCL for Polycyclic Aromatic Hydrocarbons.

Italic Concentration exceeds the WDNR Proposed Non-Industrial Direct Contact RCL for Polycyclic Aromatic Hydrocarbons.

Underline Concentration exceeds the WDNR Proposed Groundwater Protection RCL for Polycyclic Aromatic Hydrocarbons.

< Analyte detected below laboratory detection limits.

Е Concentration exceeds the calibration range and therefore result is semi-quantitative.

L2 Laboratory control sample recovery was below acceptance limits.

М Matrix interference.

NA Not analyzed.

NE Not established.

PAH Polycyclic aromatic hydrocarbons.

RCL Residual contaminant level.

µg/kg Micrograms per kilogram.

Sample Name	G	P-6	GP-7	GI	2-8	GP-9	GP-10	GP-11	GP	-12	GP-13
Sample Depth (feet)	6-8'	14-16'	6-8'	4-6'	6-8'	6-8'	6-8'	4-6'	4-6'	12-14'	6-8'
Sample Date	05/24/96	05/24/96	05/23/96	05/28/96	05/28/96	05/24/96	05/24/96	05/24/96	05/28/96	05/28/96	05/24/96
PAHs (µg/kg)											
1-Methylnaphthalene	<25	<25	NA	<25	<25	<25	<25	<25	490	<25	<25
2-Methylnaphthalene	1,200	<25	<25	<25	<25	<25	<25	<25	300	<25	<25
Acenaphthene	NA										
Anthracene	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0
Benzo (a) anthracene	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Benzo (a) pyrene	<4.0	<4.0	NA	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Benzo (b) fluoranthene	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Benzo (g,h,i) perylene	<4.0	<4.0	NA	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Benzo (k) fluoranthene	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Chrysene	<4.0	<4.0	NA	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Dibenzo (a,h) anthracene	NA										
Fluoranthene	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0
Fluorene	270	<16	<16	<16	<16	<16	<16	<16	38	<16	<16
Indeno (1,2,3-cd) pyrene	<4.0	<4.0	NA	<4.0	<4.0	<4.0	<4.0	<4.0	4.0	<4.0	<4.0
Naphthalene	NA										
Phenanthrene	1,600	<16	<16	<16	<16	<16	<16	<16	100	<16	<16
Pyrene	<8.0	<8.0	NA	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0

Table 3. Summary of Soil PAH Analytical Results, Union Pacific Bulter Yard Facility, Milwaukee, Wisconsin.

Concentration exceeds the NR 720 RCL (NR 720 Table 1 RCL is based on protection of groundwater pathway).

Bold Concentration exceeds the WDNR Proposed Industrial Direct Contact RCL for Polycyclic Aromatic Hydrocarbons.

Italic Concentration exceeds the WDNR Proposed Non-Industrial Direct Contact RCL for Polycyclic Aromatic Hydrocarbons.

Underline Concentration exceeds the WDNR Proposed Groundwater Protection RCL for Polycyclic Aromatic Hydrocarbons.

Analyte detected below laboratory detection limits.

E Concentration exceeds the calibration range and therefore result is semi-quantitative.

L2 Laboratory control sample recovery was below acceptance limits.

M Matrix interference.

NA Not analyzed.

NE Not established.

PAH Polycyclic aromatic hydrocarbons.

RCL Residual contaminant level.

µg/kg Micrograms per kilogram.

Sample Name	GP-14	GP-15	GP-16	GP	-17	GP-18	GP-19	GP-20	GP	-21
Sample Depth (feet)	6-8'	4-6'	4-6'	4-6'	14-16'	6-8'	6-8'	6-8'	2-4'	10-12'
Sample Date	05/24/96	05/23/96	05/23/96	05/23/96	05/23/96	05/28/96	05/23/96	05/28/96	05/28/96	05/28/96
PAHs (µg/kg)					-					
1-Methylnaphthalene	<25	<25	<25	3,700	<25	<25	<25	<500 M	<25	<25
2-Methylnaphthalene	<25	<25	<25	3,500	<25	<25	<25	<500 M	<25	<25
Acenaphthene	NA									
Anthracene	<8.0	<8.0	<8.0	<160 M	<8.0	<8.0	<8.0	<160 M	<8.0	<8.0
Benzo (a) anthracene	<2.0	<2.0	<2.0	<40 M	<2.0	<2.0	<2.0	<40 M	130	<2.0
Benzo (a) pyrene	<4.0	<4.0	<4.0	<80 M	<4.0	<4.0	<4.0	<80 M	<4.0	<4.0
Benzo (b) fluoranthene	<2.0	<2.0	<2.0	<40 M	<2.0	<2.0	<2.0	<40 M	<2.0	<2.0
Benzo (g,h,i) perylene	<4.0	<4.0	<4.0	<80 M	<4.0	<4.0	<4.0	<80 M	<4.0	<4.0
Benzo (k) fluoranthene	<2.0	<2.0	<2.0	<40 M	<2.0	<2.0	<2.0	<40 M	<2.0	<2.0
Chrysene	<4.0	<4.0	<4.0	<80 M	<4.0	<4.0	<4.0	84	<4.0	<4.0
Dibenzo (a,h) anthracene	NA									
Fluoranthene	<8.0	<8.0	<8.0	<160 M	<8.0	<8.0	<8.0	2,400	120	<8.0
Fluorene	<16	<16	<16	<320 M	<16	<16	<16	530	<16	<16
Indeno (1,2,3-cd) pyrene	<4.0	<4.0	<4.0	<80 M	<4.0	<4.0	<4.0	<80 M	<4.0	<4.0
Naphthalene	NA									
Phenanthrene	<16	<16	<16	1,300	<16	<16	<16	2,900	230	<16
Pyrene	<8.0	<8.0	<8.0	<160 M	<8.0	<8.0	<8.0	1300	82	<8.0

Table 3. Summary of Soil PAH Analytical Results, Union Pacific Bulter Yard Facility, Milwaukee, Wisconsin.

Concentration exceeds the NR 720 RCL (NR 720 Table 1 RCL is based on protection of groundwater pathway).

Bold Concentration exceeds the WDNR Proposed Industrial Direct Contact RCL for Polycyclic Aromatic Hydrocarbons.

Italic Concentration exceeds the WDNR Proposed Non-Industrial Direct Contact RCL for Polycyclic Aromatic Hydrocarbons.

Underline Concentration exceeds the WDNR Proposed Groundwater Protection RCL for Polycyclic Aromatic Hydrocarbons.

Analyte detected below laboratory detection limits. <

Ε Concentration exceeds the calibration range and therefore result is semi-quantitative.

L2 Laboratory control sample recovery was below acceptance limits.

Matrix interference. M

Not analyzed. NA

NE Not established.

PAH Polycyclic aromatic hydrocarbons.

RCL Residual contaminant level.

Micrograms per kilogram. µg/kg

Sample Name	GP-22	GP-23	GP-24	GP-25	GP-27	GP-28	GP-30	GP-31	GP-58	GP-59
Sample Depth (feet)	6-8'	6-8'	2-4'	6-8'	6-8'	6-8'	6-8'	6-8'	0-2'	0-2'
Sample Date	05/28/96	05/29/96	05/28/96	05/29/96	05/29/96	05/29/96	05/29/96	05/29/96	10/19/05	10/19/05
PAHs (µg/kg)										
1-Methylnaphthalene	<25	<25	520	<25	68	<25	<25	<25	<36	270
2-Methylnaphthalene	<25	<25	480	<25	94	<25	<25	<25	<30	160
Acenaphthene	NA	NA	NA	NA	NA	NA	NA	NA	<60	<59
Anthracene	<8.0	<8.0	20	<8	68	<8.0	9.6	<8.0	<6.0	<5.9
Benzo (a) anthracene	<2.0	<2.0	800	180	200	<2.0	89	<2.0	11	<5.9
Benzo (a) pyrene	<4.0	<4.0	170	<4.0	250	<4.0	6.9	<4.0	11	<5.9
Benzo (b) fluoranthene	<2.0	<2.0	36	<2.0	100	<2.0	26	<2.0	9.1 L2	<5.9 L2
Benzo (g,h,i) perylene	<4.0	<4.0	130	<4.0	230	<4.0	64	<4.0	11	<5.9
Benzo (k) fluoranthene	<2.0	<2.0	64	<2.0	130	<2.0	14	<2.0	<6.0 L2	<5.9 L2
Chrysene	<4.0	<4.0	110	24	200	<4.0	86	<4.0	<6.0 L2	<5.9 L2
Dibenzo (a,h) anthracene	NA	NA	NA	NA	NA	NA	NA	NA	<9.0 L2	<8.9 L2
Fluoranthene	<8.0	<8.0	270	130	440	<8.0	100	<8.0	33	12
Fluorene	<16	<16	<16	150	19	<16	31	<16	<12	<12
Indeno (1,2,3-cd) pyrene	<4.0	<4.0	79	<4.0	160	<4.0	46	<4.0	9.5 L2	<5.9 L2
Naphthalene	NA	NA	NA	NA	NA	NA	NA	NA	<36	120
Phenanthrene	<16	<16	110	67	250	<16	330	<16	18	11
Pyrene	<8.0	<8.0	210	1,100	370	<8.0	95	<8.0	62	59
Concentration ex	ceeds the NR	720 RCL (NR	720 Table 1	RCL is based	d on protectio	on of ground	water pathwa	ay).		
Bold Concentration ex	ceeds the WD	NR Proposed	Industrial Di	rect Contact I	RCL for Polyc	cyclic Aroma	tic Hydrocart	oons.		
Italic Concentration ex	ceeds the WD	NR Proposed	Non-Industri	al Direct Con	tact RCL for	Polycyclic A	omatic Hydr	ocarbons.		

Table 3. Summary of Soil PAH Analytical Results, Union Pacific Bulter Yard Facility, Milwaukee, Wisconsin.

Underline Concentration exceeds the WDNR Proposed Groundwater Protection RCL for Polycyclic Aromatic Hydrocarbons.

Analyte detected below laboratory detection limits.

E Concentration exceeds the calibration range and therefore result is semi-quantitative.

L2 Laboratory control sample recovery was below acceptance limits.

M Matrix interference.

NA Not analyzed.

NE Not established.

PAH Polycyclic aromatic hydrocarbons.

RCL Residual contaminant level.

µg/kg Micrograms per kilogram.

Sample Name	GP-60	GP-61	GP-62	GP-63	GP-64	GP-65	GP-66	GP-67	GP-68	GP-69	GP-70
Sample Depth (feet)	2-4	2-4'	2-4'	2-4'	2-4'	2-4'	2-4'	2-4'	2-4'	2-4'	2-4'
Sample Date	10/19/05	10/19/05	10/19/05	10/19/05	10/19/05	10/19/05	10/18/05	10/18/05	10/18/05	10/19/05	10/19/05
PAHs (µg/kg)											
1-Methylnaphthalene	<36	<35	290	<36	<38	<38	<36	820	<410	180	<36
2-Methylnaphthalene	<30	110	200	50	48	<31	<30	1,200	430	720	120
Acenaphthene	<60	<59	<61	<60	<64	<63	<59	<79	<680	<64	<60
Anthracene	<6.0	7.8	42	<6.0	20	<6.3	<5.9	1 1	<68	74	16
Benzo (a) anthracene	13	33	220	16	45	<6.3	<5.9	64	400	640	110
Benzo (a) pyrene	9.5	17	14	9.3	37	<6.3	<5.9	33	200	370	140
Benzo (b) fluoranthene	12 L2	20 L2	24 L2	8.7 L2	30 L2	<6.3 ∟2	<5.9 L2	33	270 L2	_ 360 L2	97 L2
Benzo (g,h,i) perylene	14	16	19	9.2	33	<6.3	<5.9	28	110	530	140
Benzo (k) fluoranthene	6.5 L2	12 L2	8.7 L2	<6.0 L2	17 L2	<6.3 L2	<5.9	15	140	160 L2	45 L2
Chrysene	<6.0 L2	19 L2	140 L2	8.8 L2	7.9 L2	<6.3 L2	<5.9	14	250	91 L2	12
Dibenzo (a,h) anthracene	<9.0 L2	<8.8 L2	<9.2 L2	<9.0 L2	<9.6 L2	<9.4 L2	<8.9 L2	<12	<100 L2	72 L 2	21 L2
Fluoranthene	30	110	590	62	110	<13	<12	270	650	950	240
Fluorene	<12	<12	120	<12	<13	<13	<12	68	<140	70	12
Indeno (1,2,3-cd) pyrene	7.9 L2	12 L2	12 L2	7.2 L2	35 L2	<6.3 L2	<5.9 L2	25	99 L2	310 L2	100 L2
Naphthalene	<36	<35	<37	<36	<38	<38	<36	<47	<410	49	<36
Phenanthrene	11	72	210	37	83	<6.3	<5.9	150	430	490	100
Pyrene	27	330	830	61	100	<6.3	<5.9	210	960	770	230
Concentration e		•			•	•	,				
Bold Concentration e							-				
Italic Concentration e								*	5.		
Underline Concentration e		•		ater Protectio	In RCL for P	olycyclic Aroi	matic Hydroc	arbons.			
< Analyte detecte											
E Concentration e			-		semi-quantita	ative.					
L2 Laboratory cont	•	overy was b	elow accepta	ince limits.							
M Matrix interferen	nce.										
NA Not analyzed.											
NE Not established											
PAH Polycyclic arom	atic hydrocarb	ons.									

Table 3. Summary of Soil PAH Analytical Results, Union Pacific Bulter Yard Facility, Milwaukee, Wisconsin,

RCL Residual contaminant level.

µg/kg Micrograms per kilogram.

Sample Name	GP-71	GP-72	GP-73	GP-74	GP-75	GP-76	GP-77	GP-80	GP-81	GP-82
Sample Depth (feet)	2-4'	2-4'	0-2'	2-4'	2-4'	2-4'	0-2'	2-4'	2-4'	2-4'
Sample Date	10/19/05	10/19/05	10/19/05	10/18/05	10/18/05	10/18/05	10/18/05	10/18/05	10/18/05	10/18/05
PAHs (µg/kg)										
1-Methylnaphthalene	<36	53	120	<35	<37	47	<170	1,300	<37	<280
2-Methylnaphthalene	<30	120	380	<29	<31	130	320	2,500	<31	420
Acenaphthene	<61	<54	<54	<58	<62	<60	<280	800	<62	<460
Anthracene	<6.1	10	33	<5.8	<6.2	13	<28	310	<6.2	<46
Benzo (a) anthracene	6.6	56	200	<5.8	<6.2	91	120	870	<6.2	270
Benzo (a) pyrene	<6.1	42	200	<5.8	<6.2	64	84	71	<6.2	210
Benzo (b) fluoranthene	<6.1 L2	42 L2	150 L2	<5.8 L2	<6.2 L2	54	86 L2	85 L2	<6.2 L2	190 L.2
Benzo (g,h,i) perylene	<6.1	47	140	<5.8	<6.2	44	63	<58	<6.2	200
Benzo (k) fluoranthene	<6.1 L2	13 L2	82 L2	<5.8	<6.2	36	33	<58	<6.2	120
Chrysene	<6.1	11	25	<5.8	<6.2	15	73	250	<6.2	53
Dibenzo (a,h) anthracene	<9.1 L2	<8.1 L2	26 L2	<8.6 L2	<9.3 L2	<8.9	<41 L2	<86 L2	<9.3 L2	<69 L2
Fluoranthene	14	190	520	<12	<12	200	430	3,900	<12	540
Fluorene	<12	12	<11	<12	<12	13	<55	1,000	<12	<92
Indeno (1,2,3-cd) pyrene	<6.1 L2	33 L2	130 L2	<5.8 L2	<6.2 L2	40	56 L2	<58 L2	<6.2 L2	160 L2
Naphthalene	<36	<32	84	<35	<37	<36	<170	<350	<37	<280
Phenanthrene	7.3	88	240	<5.8	<6.2	94	270	2.400	<6.2	330
Pyrene	33	100	430	<5.8	<6.2	280	260	3,200	<6.2	570
Concentration ex	ceeds the NR	720 RCL (NR	720 Table 1 F	RCL is based o	on protection of	of groundwat	er pathway)	•		
Bold Concentration ex	ceeds the WD	ONR Proposed	Industrial Dire	ect Contact RC	CL for Polycyc	lic Aromatic	Hydrocarboi	ns.		
Italic Concentration ex	ceeds the WD	NR Proposed	Non-Industria	l Direct Conta	ct RCL for Po	lycyclic Aron	natic Hydroc	arbons.		

Table 3. Summary of Soil PAH Analytical Results, Union Pacific Buiter Yard Facility, Milwaukee, Wisconsin.

Underline Concentration exceeds the WDNR Proposed Groundwater Protection RCL for Polycyclic Aromatic Hydrocarbons.

< Analyte detected below laboratory detection limits.

E Concentration exceeds the calibration range and therefore result is semi-quantitative.

L2 Laboratory control sample recovery was below acceptance limits.

M Matrix interference.

NA Not analyzed.

NE Not established.

PAH Polycyclic aromatic hydrocarbons.

RCL Residual contaminant level.

µg/kg Micrograms per kilogram.

Sample Name	GP-83	GP-84	GP-85	GP-86	GP-88	GP-89	GP-90	GP-91	GP-93	GP-94	GP-95
Sample Depth (feet)	2-4'	2-4'	2-4'	2-4'	0-2'	2-4'	0-2'	2-4'	2-4'	2-4'	2-4'
Sample Date	10/18/05	10/18/05	10/18/05	10/18/05	10/18/05	10/18/05	10/19/05	10/18/05	10/18/05	10/19/05	10/19/05
PAHs (µg/kg)											
1-Methylnaphthalene	<170	<47	37	100	280	<u>70,000</u>	6,000	<180	<35	<37	54
2-Methylnaphthalene	<140	<39	88	120	710	82,000	3,200	<150	<29	<31	49
Acenaphthene	<280	<78	<61	<64	<280	7,300	400	<290	<59	<62	<52
Anthracene	<28	<7.8	6.6	<6.4	93	7,900	260	<29	<5.9	<6.2	20
Benzo (a) anthracene	100	22	37	31	460	13,000	650	74	<5.9	<6.2	190
Benzo (a) pyrene	37	14	31	22	350	<120	82	57	<5.9	<6.2	28
Benzo (b) fluoranthene	56 L2	13	32	23	330 L2	<120 L2	63 L2	60 L2	<5.9 L2	<6.2 L2	37 L2
Benzo (g,h,i) perylene	<28	18	33	22	250	<120	40	63	<5.9	<6.2	32
Benzo (k) fluoranthene	69	<7.8	13	12	170	<120	30 L2	<29	<5.9	<6.2 L2	13 L2
Chrysene	63	9.1	<6.1	7.2	79	4,400	190	<29	<5.9	<6.2	250
Dibenzo (a,h) anthracene	<42 L2	<12	<9.2	<9.6	<42 L2	<180 L2	10 L2	<44 L2	<8.8 L2	<9.3 L2	<7.8 L2
Fluoranthene	240	61	140	31	1,300	110,000	3,900	170	<12	<12	330
Fluorene	<56	<16	<12	<13	160	21,000	1,200	<59	<12	<12	46
Indeno (1,2,3-cd) pyrene	<28 L2	9.7	34	21	220 L2	<120 L2	33 L2	44 L2	<5.9 L2	<6.2 L2	28 L2
Naphthalene	<170	<47	<37	<38	<170	2,900*	370	<180	<35	<37	66
Phenanthrene	130	31	77	24	540	50,000	2,100	80	<5.9	<6.2	110
Pyrene	410	76	91	60	1,200	96,000	3,200	120	<5.9	<6.2	350
Concentration ex	ceeds the NR	720 RCL (N	R 720 Table	e 1 RCL is b	ased on pro	tection of gro	oundwater p	athway).			
Bold Concentration e>	ceeds the WI	DNR Propose	ed Industrial	Direct Conta	act RCL for	Polycyclic A	romatic Hydr	rocarbons.			
Italic Concentration ex	ceeds the WI	DNR Propose	ed Non-Indu	strial Direct	Contact RCI	L for Polycyc	lic Aromatic	Hydrocarbo	ns.		
Underline Concentration ex	ceeds the WI	DNR Propose	d Groundwa	ater Protecti	on RCL for I	Polycyclic Ar	omatic Hydr	ocarbons.			
		tom data ation	limito								

Table 3. Summary of Soil PAH Analytical Results, Union Pacific Bulter Yard Facility, Milwaukee, Wisconsin.

Analyte detected below laboratory detection limits.

E Concentration exceeds the calibration range and therefore result is semi-quantitative.

L2 Laboratory control sample recovery was below acceptance limits.

M Matrix interference.

NA Not analyzed.

NE Not established.

PAH Polycyclic aromatic hydrocarbons.

RCL Residual contaminant level.

µg/kg Micrograms per kilogram.

Sample Name	GP-96	GP-97	GP-98	GP-99	GP-100	GP-101	GP-102	GP-103	GP-104	GP-105		
Sample Depth (feet)	2-4'	0-2'	2-4'	2-4'	2-4'	2-4'	0-2'	2-4'	0-2'	2-4'		
Sample Date	10/20/05	10/20/05	10/20/05	10/20/05	10/20/05	10/20/05	10/20/05	10/20/05	10/20/05	10/20/05		
PAHs (µg/kg)												
1-Methylnaphthalene	<u>59.000</u>	710	<37	150	<190	<38	<990	<260	430	<180		
2-Methylnaphthalene	480,000	3,500	91	310	170	<31	2,200	<220	370	<150		
Acenaphthene	99,000	1,000	<62	<62	<310	<63	<1,700	<440	<310	<300		
Anthracene	280,000	360	19	22	31	<6.3	720	<44	57	41		
Benzo (a) anthracene	280,000	4,200	94	36	620	<6.3	2,200	70	390	130		
Benzo (a) pyrene	250,000	7,100	89	14	<31	<6.3	1,500	<44	100	96		
Benzo (b) fluoranthene	130,000	6,100	66	8.9	<31	<6.3	1,300	49	80	70		
Benzo (g,h,i) perylene	110,000	5,600	70	<6.2	<31	<6.3	1,100	<44	80	72		
Benzo (k) fluoranthene	92,000	3,100	38.	<6.2	<31	<6.3	860	<44	33	43		
Chrysene	260.000	3,500	200	36	670	<6.3	4,600	120	84	110		
Dibenzo (a,h) anthracene	21,000	940	12	<9.3	<46	<9.4	<250	<65	<46	<45		
Fluoranthene	1,000,000	3,700	190	210	530	<13	5,100	180	1,200	320		
Fluorene	140,000	210	<12	28	<62	<13	430	<87	200	<61		
Indeno (1,2,3-cd) pyrene	110,000	5,000	64	<6.2	<31	<6.3	920	44	67	62		
Naphthalene	130.000*	<290	<37	73	<190	<38	<990	<260	<180	<180		
Phenanthrene	1,000,000	1,400	97	150	130	<6.3	2.800	97	420	200		
Pyrene	910,000	4,000	190	95	390	<6.3	5,000	200	1,200	330		
 Concentration 	exceeds the NF	720 RCL (N	IR 720 Table	1 RCL is ba	sed on protec	tion of groun	dwater pathwa	ay).				
Bold Concentration	exceeds the WI	DNR Propose	ed Industrial	Direct Conta	ct RCL for Po	lycyclic Arom	atic Hydrocar	bons.				
Italic Concentration	exceeds the WI	DNR Propose	ed Non-Indus	strial Direct C	ontact RCL fo	or Polycyclic	Aromatic Hyd	rocarbons.				
Underline Concentration	exceeds the WI	DNR Propose	ed Groundwa	ater Protectio	n RCL for Pol	lycyclic Arom	atic Hydrocarl	bons.				
< Analyte detected	ed below labora	tory detection	n limits.									
E Concentration	exceeds the cal	ibration rang	e and therefo	ore result is s	emi-quantitat	tive.						
L2 Laboratory con	Laboratory control sample recovery was below acceptance limits.											
M Matrix interfere	nce.											
NA Not analyzed.												
NE Not establisher	4											

Table 3. Summary of Soil PAH Analytical Results, Union Pacific Bulter Yard Facility, Milwaukee, Wisconsin.

NE Not established.

PAH Polycyclic aromatic hydrocarbons.

RCL Residual contaminant level.

µg/kg Micrograms per kilogram.

Sample Name	GP-106	GP-107	GP-108	GP-109	GP-110	GP-111	GP-112	GP-113	GP-114	GP-115	GP-116
Sample Depth (feet)	2-4'	2-4'	0-2'	0-2'	0-2'	2-4'	2-4'	2-4'	2-4'	2-4'	2-4'
Sample Date	10/20/05	10/20/05	10/20/05	10/20/05	10/19/05	10/19/05	10/19/05	10/19/05	10/19/05	10/19/05	10/19/05
PAHs (µg/kg)											
1-MethyInaphthalene	<330	2,600	2,600	<170	150	<35	<31	<32	<37	<37	<36
2-Methylnaphthalene 2,		16,000	16,000	280	420	<29	<26	<27	<31	50	<30
Acenaphthene	<560	2,100	1,600	<290	<56	<58	<52	<53	<61	<61	<61
Anthracene	890	7,000	6,500	82	36	<5.8	<5.2	<5.3	<6.1	10	<6.1
Benzo (a) anthracene	4,300	16,000	17,000	320	99	<5.8	<5.2	<5.3	<6.1	36	<6.1
Benzo (a) pyrene 3,100		11,000	11,000	230	320	<5.8	<5.2	<5.3	<6.1	26	<6.1
Benzo (b) fluoranthene 2,300		7,300	8,100	230	320 L2	<5.8 L2	<5.2 L2	<5.3 L2	<6.1 L2	20 L2	<6.1 L2
Benzo (g,h,i) perylene	2,000	6,100	6,300	160	270	<5.8	<5.2	<5.3	<6.1	20	<6.1
Benzo (k) fluoranthene	1,500	5,300	5,500	140	180 L2	<5.8 L2	<5.2 L2	<5.3 L2	<6.1 L2	12 L2	<6.1 L2
Chrysene	3,000	12,000	12,000	290	52	<5.8	<5.2	<5.3	<6.1	43	<6.1
Dibenzo (a,h) anthracene	460	1,300	1,400	44	51 L2	<8.7 L2	<7.9 L2	<8.0 L2	<9.2 L2	<9.1 L2	<9.1 L2
Fluoranthene	8,300	38,000	40,000	680	610	<12	<10	<11	<12	89	<12
Fluorene	550	3,600	3,400	<57	31	<12	<10	<11	<12	<12	<12
Indeno (1,2,3-cd) pyrene	1,800	5,900	5,800	150	270 L2	<5.8 L.2	<5.2 L2	<5.3 L2	<6.1 L2	17 L2	<6.1 L2
Naphthalene	<330	<u>1,900</u>	<u>1,700</u>	<170	82	<35	<31	<32	<37	<37	<36
Phenanthrene	<u>3,500</u>	<u>24,000</u>	<u>25,000</u>	360	230	<5.8	<5.2	<5.3	<6.1	47	<6.1
Pyrene	8,100	35,000	35,000	610	580	<5.8	<5.2	<5.3	<6.1	76	<6.1
* Concentration ex	ceeds the Nf	R 720 RCL (I	NR 720 Tabl	le 1 RCL is t	based on pro	otection of gi	roundwater	oathway).			
Bold Concentration ex	ceeds the W	DNR Propos	ed Industria	l Direct Con	tact RCL for	Polycyclic A	Aromatic Hyd	drocarbons.			
Italic Concentration ex	ceeds the W	DNR Propos	ed Non-Indu	ustrial Direct	Contact RC	L for Polycy	clic Aromati	c Hydrocarb	ons.		
Underline Concentration ex											

Table 3. Summary of Soil PAH Analytical Results, Union Pacific Bulter Yard Facility, Milwaukee, Wisconsin.

< Analyte detected below (aboratory detection limits.

E Concentration exceeds the calibration range and therefore result is semi-quantitative.

L2 Laboratory control sample recovery was below acceptance limits.

M Matrix interference.

NA Not analyzed.

NE Not established.

PAH Polycyclic aromatic hydrocarbons.

RCL Residual contaminant level.

µg/kg Micrograms per kilogram.

Sample Name	GP-117	GP-118	GP-119	GP-120	GP-121	GP-122	GP-123	GP-124	GP-125	GP-126	GP-127
Sample Depth (feet)	2-4'	2-4'	2-4'	0-2'	0-2'	0-2'	0-2'	2-4'	0-2'	0-2'	0-2'
Sample Date	10/19/05	10/19/05	10/19/05	11/10/06	11/10/06	11/10/06	11/10/06	11/10/06	11/10/06	11/10/06	11/10/06
PAHs (µg/kg)											
1-Methylnaphthalene	<35	<35	<32	360	<150	<610	<1,900	<210	<950	<140	<280
2-Methylnaphthalene	<29	<29	<26	870	250	570	<1,600	<170	<790	<110	<240
Acenaphthene	<58	<58	<53	<380	<240	<1,000	<3,200	<350	<1,600	<230	<470
Anthracene	<5.8	<5.8	<5.3	150	67	220	320	320	<160	92	240
Benzo (a) anthracene	<5.8	<5.8	14	1,000	330	630	900	550	<160	280	820
Benzo (a) pyrene	<5.8	<5.8	13	760	360	620	800	380	<160	280	1,000
Benzo (b) fluoranthene	<5.8 L2	<5.8 L2	14 L2	460	260	500	590	250	<160	200	730
Benzo (g,h,i) perylene	<5.8	<5.8	13	450	250	470	540	280	290	180	670
Benzo (k) fluoranthene	<5.8 L2	<5.8 L2	11 L2	350	180	370	450	210	220	160	440
Chrysene	<5.8	<5.8	<5.3	530	280	560	820	370	<160	230	700
Dibenzo (a,h) anthracene	<8.6 ∟2	<8.7 L2	<7.9 L2	83	43	<150	<480	57	<240	39	110
Fluoranthene	<12	<12	32	1,300	690	1,300	2,100	1,000	<320	470	1800
Fluorene	<12	<12	<11	160	<49	<200	<640	<69	<320	<46	<95
Indeno (1,2,3-cd) pyrene	<5.8 L2	<5.8 L2	9.5 L2	490	250	410	480	210	<160	160	690.
Naphthalene	<35	<35	<32	<230	<150	<610	<1,900	<210	<950	<140	<280
Phenanthrene	<5.8	<5.8	14	850	370	700	900	670	160	290	830
Pyrene	<5.8	<5.8	28	620	500	860	1,500	940	<160	510	1,800
Concentration e	xceeds the NR	720 RCL (N	R 720 Table	1 RCL is bas	sed on prote	ction of grou	indwater pat	hway).			
Bold Concentration e	xceeds the WI	ONR Propose	d Industrial D	Direct Contac	ct RCL for P	olycyclic Aro	matic Hydro	carbons.			

Table 3. Summary of Soil PAH Analytical Results, Union Pacific Bulter Yard Facility, Milwaukee, Wisconsin.

Concentration exceeds the WDNR Proposed Non-Industrial Direct Contact RCL for Polycyclic Aromatic Hydrocarbons. Italic

Underline Concentration exceeds the WDNR Proposed Groundwater Protection RCL for Polycyclic Aromatic Hydrocarbons.

Analyte detected below laboratory detection limits. <

Е Concentration exceeds the calibration range and therefore result is semi-quantitative.

L2 Laboratory control sample recovery was below acceptance limits.

М Matrix interference.

Not analyzed. NA

Not established. NE

Polycyclic aromatic hydrocarbons. PAH

RCL Residual contaminant level.

µg/kg Micrograms per kilogram.

Sample Name	GP-128	GP-129	GP-130	GP-131	GP-132	_GP-133_	GP-134	GP-135	GP-136	GP-137	GP-138
Sample Depth (feet)	0-2'	2-4'	0-2'	0-2'	2-4'	2-4'	0-2'	0-2'	0-2'	0-2'	0-2'
Sample Date	11/10/06	11/10/06	11/10/06	11/10/06	11/10/06	11/10/06	11/10/06	11/10/06	11/10/06	11/10/06	11/13/06
PAHs (µg/kg)											
1-Methylnaphthalene	<210	<37	<93	<210	<320	<480	<460	<610	<1,000	<280	<38
2-Methylnaphthalene	<170	<31	<78	<180	<270	<400	<380	<510	8,800	540	<32
Acenaphthene	<340	<62	<160	<350	<540	<790	<760	<1,000	4,800	<470	<63
Anthracene	290	<6.2	<16	<35	140	<79	<76	250	11,000	320	<6.3
Benzo (a) anthracene	1,100	11	45	<35	500	<79	400	950	9,300	1,100	<6.3
Benzo (a) pyrene	1,200	9.4	42	47	400	<79	240	540	3,300	1,400	<6.3
Benzo (b) fluoranthene	950	6.4	53	67	340	<79	250	850	2,900	750	<6.3
Benzo (g,h,i) perylene	770	<6.2	49	<35	350	<79	210	<100	1,500	860	7.0
Benzo (k) fluoranthene	600	<6.2	27	60	290	<79	97	320	2,400	660	<6.3
Chrysene	870	8.7	43	44	390	<79	220	500	7,100	820	<6.3
Dibenzo (a,h) anthracene	130	<9.2	<23	<53	110	<120	<110	<150	270	180	<9.5
Fluoranthene	1800	34	120	<70	750	<160	380	1,400	30,000	2,000	19
Fluorene	<68	<12	<31	<70	<110	<160	<150	<200	4,100	120	<13
Indeno (1,2,3-cd) pyrene	710	<6.2	29	<35	330	<79	<76	340	1,500	1,000	<6.3
Naphthalene	<210	<37	<93	<210	<320	<480	<460	<610	<1000	<280	<38
Phenanthrene	1,400	30	68	38	530	<79	250	300	<u>19,000</u>	1,100	11
Pyrene	2,000	15	71	<35	850	<79	93	780	12,000	1,700	9.3
Concentration e	xceeds the N	IR 720 RCL	(NR 720 Ta	ble 1 RCL is	based on p	rotection of	groundwater	pathway).			
Bold Concentration e	xceeds the V	VDNR Propo	sed industri	al Direct Co	ntact RCL fo	or Polycyclic	Aromatic H	ydrocarbons	5.		
Italic Concentration e	xceeds the V	VDNR Propo	sed Non-Ind	dustrial Dire	ct Contact R	CL for Polyc	velic Aroma	tic Hvdrocar	bons.		

Table 3. Summary of Soil PAH Analytical Results, Union Pacific Bulter Yard Facility, Milwaukee, Wisconsin.

Concentration exceeds the WDNR Proposed Non-Industrial Direct Contact RCL for Polycyclic Aromatic Hydrocarbons. Italic

Underline Concentration exceeds the WDNR Proposed Groundwater Protection RCL for Polycyclic Aromatic Hydrocarbons.

< Analyte detected below laboratory detection limits.

Е Concentration exceeds the calibration range and therefore result is semi-quantitative.

Laboratory control sample recovery was below acceptance limits. L2

М Matrix interference.

NA Not analyzed.

ΝE Not established.

Polycyclic aromatic hydrocarbons. PAH

RCL Residual contaminant level.

Micrograms per kilogram. µg/kg

Sample Name	GP-139	GP-140	GP-141	GP-142	GP-143	GP-144	GP-145	GP-146	GP-147	GP-148	GP-149
Sample Depth (feet)	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	2-4'	0-2'	2-4'	0-2'	0-2'
Sample Date	11/10/06	11/10/06	11/10/06	11/13/06	11/13/06	11/13/06	11/13/06	11/13/06	11/13/06	11/13/06	11/13/06
PAHs (µg/kg)											
1-Methylnaphthalene	2,000	<320	<400	2,600	<980	1,400	<180	<15,000	<1,300	5,000	110,000
2-Methylnaphthalene	7,200	<270	<330	<u>25,000</u>	1,200	7,200	420	. <u>28,000</u>	<1, 1 00	22,000	<u>540,000</u>
Acenaphthene	1,300	<530	<660	7,700	<1,600	1,900	<300	<25,000	<2,200	<4,000	<u>110,000</u>
Anthracene	640	87	690	7,500	380	1,600	250	16,000	450	10,000	240,000
Benzo (a) anthracen	e 430-	270	1,900	7,600	1,500	7,400	990	<u>30,000</u>	3,000	<u>26,000</u>	<u>310,000</u>
Benzo (a) pyrene	200	240	1,900	4,500	7 9 0	4,300	650	16,000	2,300	16,000	<u>230,000</u>
Benzo (b) fluoranthe	ne 210	210	1,200	4,300	590	3,600	410	11,000	1,600	10,000	160,000
Benzo (g,h,i) perylen	e <57	210	1,200	3,300	530	2,600	470	9,600	1,400	7,600	110,000
Benzo (k) fluoranther	ne 210	<53	1,100	2,700	440	2,400	360	8,400	1,200	7,400	110,000
Chrysene	230	210	1,500	6,100	880	5,100	650	20,000	2,200	16,000	<7,500
Dibenzo (a,h) anthra	cene <86	<80	220	510	<240	500	90	<3,700	<330	1,400	22,000
Fluoranthene	1,100	540	3,600	27,000	2,300	16,000	1,900	91,000	4,900	53,000	<u>870,000</u>
Fluorene	970	<110	<130	6,600	<330	1,900	170	7,800	<440	5,400	<u>170,000</u>
Indeno (1,2,3-cd) pyr	ene 180	190	1,300	2,900	510	2,900	480	9,600	1,300	8,900	130,000
Naphthalene	<u>9500*</u>	<320	<400	<u>15000*</u>	<980	<u>2900*</u>	<180	<15,000	<1,300	<u>4200*</u>	220000*
Phenanthrene	<u>2,200</u>	340	<u>3,000</u>	<u>27,000</u>	1,700	<u>13,000</u>	1,400	<u>56.000</u>	770	40,000	860,000
Pyrene	900	380	3,600	17,000	1,800	9,900	1,600	42,000	6,000	36,000	560,000
	ation exceeds the N		•				-				
	ation exceeds the V					• •		-			
	ation exceeds the V	•						•			
	ation exceeds the V			iwater Prote	ction RCL fo	r Polycyclic	Aromatic Hy	ydrocarbons			
< Analyte c	letected below labo	ratory detect	ion limits.								
	ation exceeds the c	alibration ra	nge and the	refore result	is semi-qua	ntitative.					
	ry control sample re	covery was	below accep	ptance limits							
	erference.										
NA Not analy	/zed.										
NE Not estat	olished.										
PAH Polycycli	c aromatic hydrocai	bons.									
DOI Destrictual											

Table 3. Summary of Soll PAH Analytical Results, Union Pacific Bulter Yard Facility, Milwaukee, Wisconsin.

RCL Residual contaminant level.

µg/kg Micrograms per kilogram.

Sample Name	GP-150	GP-151	GP-152	GP-153	GP-154	GP-155	GP-156	GP-157	GP-158	GP-159	GP-160
Sample Depth (feet)	0-2'	0-2'	2-4'	2-4'	0-2'	2-4'	2-4'	0-2'	0-2'	0-2'	2-4'
Sample Date	11/13/06	11/13/06	11/13/06	11/13/06	11/13/06	11/13/06	11/13/06	11/13/06	11/13/06	<u>1/13/06</u>	11/13/06
PAHs (µg/kg)											
1-Methylnaphthalene	140	4,800	<36	<91	<37	<37	8,500	6,800	310	110	300
2-Methylnaphthalene	590	<u>25,000</u>	<30	490	<31	<31	5,900	7, 9 00	520	130	450
Acenaphthene	93	<5,600	<61	<150	<61	<62	580	530	<110	<140	<320
Anthracene	220	13,000	<6.1	180	130	<6.2	870	900	57	<14	<32
Benzo (a) anthracene	590	<u>45,000</u>	8.6	440	310	9.9	1,000	1,300	120	<14	63
Benzo (a) pyrene	320	29,000	<6.1	340	290	8.1	<13	<27	29	<14	<32
Benzo (b) fluoranthene	230	17,000	<6.1	250	190	7.0	<13	77	19	<14	<32
Benzo (g,h,i) perylene	200	15,000	<6.1	190	160	<6.2	<13	<27	13	<14	<32
Benzo (k) fluoranthene 160		13,000	<6.1	190	140	6.8	<13	<27	<11	<14	<32
Chrysene	370	28,000	6.2	380	280	8.1	130	270	46	<14	<32
Dibenzo (a,h) anthracene	37	2,600	<9.1	39	33	<9.2	<20	<40	<16	<21	<48
Fluoranthene	1,200	74,000	17	1,200	440	19	5,400	4,000	430	51	250
Fluorene	130	3,700	<12	130	<12	<12	2,100	1,700	1 1 0	<29	70
Indeno (1,2,3-cd) pyrene	210	16,000	<6.1	210	180	6.2	<13	<27	28	<14	<32
Naphthalene	180	<3,400	<36	130	<37	<37	<u>660</u>	<u>670</u>	75	<86	<190
Phenanthrene	1,000	<u>41.000</u>	15	920	46	11	<u>4,300</u>	<u>3,300</u>	330	37	140
Pyrene	800	57,000	13	810	590	15	4,500	4,200	770	25	220
* Concentration ex	ceeds the N	IR 720 RCL	(NR 720 Tal	ble 1 RCL is	based on p	rotection of g	groundwater	pathway).			
Bold Concentration ex	kceeds the V	VDNR Propo	sed Industri	al Direct Co	ntact RCL fo	or Polycyclic	Aromatic Hy	drocarbons.			
Italic Concentration ex	kceeds the V	VDNR Propo	sed Non-Ind	dustrial Direc	ct Contact R	CL for Polyc	yclic Aromat	ic Hydrocarl	bons.		
Underline Concentration ex	kceeds the V	VDNR Propo	sed Ground	water Prote	ction RCL fo	r Polycyclic	Aromatic Hy	drocarbons.			
< Analyte detected	l below labor	atory detect	ion limits.								
E Concentration ex	ceeds the c	alibration rar	nge and ther	refore result	is semi-qua	ntitative.					
L2 Laboratory contr	ol sample re	covery was l	pelow accep	tance limits							

Table 3. Summary of Soil PAH Analytical Results, Union Pacific Bulter Yard Facility, Milwaukee, Wisconsin.

M Matrix interference.

NA Not analyzed.

NE Not established.

PAH Polycyclic aromatic hydrocarbons.

RCL Residual contaminant level.

µg/kg Micrograms per kilogram.

Sample Na	ame	GP-161	GP-162	GP-163	GP-164	GP-165	GP-166	GP-167	<u>GP-168</u>	GP-169	GP-170	GP-171
Sample De	epth (feet)	2-4'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	2-4'	0-2'	2-4'
Sample Da	ate	01/10/07	01/10/07	01/10/07	01/10/07	01/10/07	01/09/07	01/10/07	01/10/07	01/09/07	01/09/07	01/09/07
PAHs (µg/	kg)											
1-Methylna	aphthalene	<4,900	<48	<790	<290	<240	<340	<290	<60	<120	960	200
2-Methylnaphthalene		<u>29,000</u>	<40	<660	260	430	340	640	76	330	4,600	860
Acenaphth	iène	<8,200	<79	<1,300	<490	<390	<570	<490	<100	<200	1,100	220
Anthracene	e	15,000	<7.9	<130	55	100	120	230	12	54	1,900	290
Benzo (a) a	anthracene	<u>38,000</u>	<7.9	<130	280	390	410	790	39	190	5,500	890
Benzo (a) p	pyrene	25,000	<7.9	<130	350	310	340	720	28	110	3,400	590
Benzo (b) f	fluoranthene	20,000	<7.9	<130	240	240	250	580	20	83	2,600	380
Benzo (g,h	1,i) perylene	24,000	<7.9	<130	380	260	270	430	27	110	2,300	440
Benzo (k) f	fluoranthene	13,000	<7.9	<130	170 -	160	180	360	13	48	1,600	310
Chrysene		26,000	<7.9	<130	250	410	330	640	29	120	3,600	570
Dibenzo (a	a,h) anthracene	3,600	<12	<200	<73	<59	<86	75	<15	<30	450	86
Fluoranthe	ene	80,000	<16	<260	4 40	740	930	1,700	66	380	11,000	1,500
Fluorene		7,400	<16	<260	<98	<79	<110	<98	<20	39	860	110
Indeno (1,2	2,3-cd) pyrene	19,000	<7.9	<130	280	220	230	430	<10	110	1,900	360
Naphthaler	ne	<u>9000*</u>	<48	<790	<290	<240	<340	<290	<60	<120	<270	320
Phenanthre	ene	56,000	<7.9	<1 30	260	470	490	820	66	280	<u>7,700</u>	1,100
Pyrene		51,000	<7.9	<130	330	550	630	1,400	40	230	6,400	<u>1,</u> 400
•	Concentration ex	ceeds the N	IR 720 RCL	(NR 720 Tat	ble 1 RCL is b	based on prot	tection of gro	oundwater pa	athway).			
Boid	Concentration ex	ceeds the V	VDNR Propo	osed Industri	al Direct Cont	tact RCL for	Polycyclic Ar	omatic Hydr	ocarbons.			
ltalic	Concentration ex	ceeds the V	VDNR Propo	sed Non-Ind	Justrial Direct	Contact RCI	for Polycyc	lic Aromatic	Hydrocarbo	ns.		
Underline	Concentration ex	ceeds the V	VDNR Propo	osed Ground	water Protect	ion RCL for I	Polycyclic Ar	omatic Hydro	ocarbons.			
<	Analyte detected	below labor	atory detect	ion límits.								
ε	Concentration ex	ceeds the c	alibration ra	nge and ther	efore result is	s semi-quanti	tative.					
L2	Laboratory contre	ol sample re	covery was	below accep	tance limits.							
M	Matrix interference	ce.										
NA	Not analyzed.											
NE	Not established.											
PAH	Polycyclic aroma	itic hydrocar	bons.									
RCL	Residual contam	inant level.										
ualka	Micrograms per l	ciloaram										

Table 3. Summary of Soil PAH Analytical Results, Union Pacific Bulter Yard Facility, Milwaukee, Wisconsin.

µg/kg Micrograms per kilogram.

Sample Name	GP-172	GP-173	GP-174	GP-175	GP-176	GP-177	GP-178	GP-179	GP-180	GP-181	
Sample Depth (feet)	0-2'	0-2'	0-2'	0-2'	2-4"	0-2'	2-4'	0-2'	0-2'	0-2'	
Sample Date	01/09/07	01/09/07	01/09/07	01/09/07	01/09/07	01/09/07	01/10/07	01/09/07	01/09/07	01/09/07	
PAHs (µg/kg)											
1-Methylnaphthalene	<420	<1,000	<1,400	<10,000	45,000	<130	3,500	<950	<1,200	<4,900	
2-Methylnaphthalene	1,100	1,800	<1,200	9,100	290.000	<110	19,000	3,000	5,800	7,500	
Acenaphthene	<700	<1,700	<2,400	<17,000	90,000	<220	2,700	<1600	<2,000	<8,100	
Anthracene	430	450	<240	2,000	140,000	52	8,900	1,400	2,400	3,400	
Benzo (a) anthracene	1,800	1,300	730	13,000	290,000 E	160	22,000	3,300	6,000	12,000	
Benzo (a) pyrene	1,200	1,000	630	10,000	200,000	120	13,000	2,300	4,500	7,000	
Benzo (b) fluoranthene	980	760	700	7,000	130,000	89	8,300	1,600	3,400	5,900	
Benzo (g,h,i) perylene	790	830	920	9,300	120,000	100	8,900	1,600	3,700	5,800	
Benzo (k) fluoranthene	640	550	420	5,000	94,000	65	5,800	1,100	2,400	3,600	
Chrysene	1,300	930	530	8,800	190.000 E	130	14,000	2,300	4,200	7,300	
Dibenzo (a,h) anthracene	140	<250	<360	<2600	25,000	<32	1,800	320	610	<1,200	
Fluoranthene	5,200	2,700	1,300	16,000	590,000 E	330	43,000	7,000	14,000	20,000	
Fluorene	<140	390	<470	<3400	79,000	<43	4,300	770	810	<1,600	
Indeno (1,2,3-cd) pyrene	640	690	720	6,900	100,000	78	7,400	1,300	2,800	4,400	
Naphthalene	<420	<1,000	<1,400	<10,000	<u>32000*</u>	<130	<u>3700*</u>	<950	<1,200	<4,900	
Phenanthrene	900	1,800	570	3.400	<u>410,000 E</u>	210	<u>32,000</u>	<u>5,000</u>	<u>9,300</u>	<u>13,000</u>	
Pyrene	3,800	1,900	960	14,000	390,000	250	31,000	4,600	8,800	14,000	
Concentration ex	ceeds the N	R 720 RCL (N	NR 720 Table	1 RCL is ba	sed on protectio	n of groundw	ater pathwag	y).			
Bold Concentration ex	ceeds the W	DNR Propos	ed Industrial	Direct Contac	ct RCL for Polyc	yclic Aromati	ic Hydrocarb	ons.			
Italic Concentration ex	ceeds the W	DNR Propos	ed Non-Indu	strial Direct C	ontact RCL for I	Polycyclic Are	omatic Hydro	carbons.			
Underline Concentration ex	ceeds the W	DNR Propos	ed Groundwa	ater Protectio	n RCL for Polyc	yclic Aromati	c Hydrocarbo	ons.			
< Analyte detected	l below labora	atory detectio	n limits.								
E Concentration ex	Concentration exceeds the calibration range and therefore result is semi-quantitative.										
L2 Laboratory contr	Laboratory control sample recovery was below acceptance limits.										
M Matrix interference	ce.										
NA Not analyzed.											

.

Table 3. Summary of Soil PAH Analytical Results, Union Pacific Bulter Yard Facility, Milwaukee, Wisconsin.

NE Not established.

PAH Polycyclic aromatic hydrocarbons.

RCL Residual contaminant level.

µg/kg Micrograms per kilogram.

Sample Name	GP-182	GP-183	GP-184	GP-185	GP-186	GP-187	GP-189	GP-199	GP	200
Sample Depth (feet)	0-2'	2-4'	0-2'	0-2'	0-2'	2-4'	4-6'	4-6'	0-2'	0-2'
Sample Date	01/09/07	01/09/07	01/09/07	01/10/07	01/10/07	01/10/07	01/10/07	01/10/07	01/10/07	11/08/07
PAHs (µg/kg)										
1-Methylnaphthalene	12,000	<290	<3,300	48,000	<5,400	<35	<290	<280	<1,200	<2,100
2-Methylnaphthalene	<u>65,000</u>	<240	3,600	<u>79.000</u>	<u>23,000</u>	<29	<240	<230	2,200	<1,800
Acenaphthene	<7,300	<480	<5,500	6,700	<8,900	<58	<480	<460	<2,000	<3,500
Anthracene	29,000	58	1,300	8,800	10,000	<5.8	<48	<46	650	2,000
Benzo (a) anthracene	<u>93,000</u>	230	5,500	<u>41,000 E</u>	<u>38,000</u>	6.1	120	61	2,600	6,100
Benzo (a) pyrene	<u>59,000</u>	150	3,300	8,300	21,000	<5.8	88	55	2,100	5,200
Benzo (b) fluoranthene	42,0_00	110	2,600	5,200	17,000	<5.8	74	49	1,700	3,800
Benzo (g,h,i) perylene	40,000	120	3,200	6,200	11,000	<5.8	92	47	1,600	3,100
Benzo (k) fluoranthene	27,000	77	2,000	2,900	10,000	<5.8	<48	<46	320	2,200
Chrysene	<u>55.000</u>	130	3,200	14,000	20,000	<5.8	83	50	2,000	4,900
Dibenzo (a,h) anthracene	8,300	<71	<830	1,000	2,300	<8.7	<73	<70	340	<530
Fluoranthene	160,000	410	8,100	120,000 E	62,000	12	270	130	6,900	15,000
Fluorene	15,000	<95	<1,100	25,000	6,700	<12	<97	<93	<400	1,000
ndeno (1,2,3-cd) pyrene	33,000	99	2,600	4,800	13,000	<5.8	81	<46	1,400	3,200
Naphthalene	<u>12000*</u>	<290	<3,300	<u>14000*</u>	<u>8400*</u>	<35	<290	<280	<1,200	<2,100
Phenanthrene	<u>98,000</u>	220	<u>4,200</u>	<u>68,000 E</u>	<u>39,000</u>	9.3	140	57	<u>2,100</u>	<u>9,500</u>
Pyrene	120,000	270	5,900	9,100	38,000	<5.8	170	86	3,600	9,500
Concentration ex	ceeds the N	R 720 RCL (I	NR 720 Table	e 1 RCL is bas	ed on prote	ction of grou	indwater pat	hway).		
Bold Concentration ex	ceeds the W	DNR Propos	ed Industrial	Direct Contac	t RCL for Po	olycyclic Aro	matic Hydro	carbons.		
talic Concentration ex	ceeds the W	DNR Propos	sed Non-Indu	strial Direct Co	ontact RCL f	for Polycyclic	c Aromatic F	lydrocarbons	S.	
Inderline Concentration ex	ceeds the W	DNR Propos	sed Groundw	ater Protectior	1 RCL for Po	lycyclic Aror	matic Hydro	carbons.		
Analyte detected	l below labora	atory detection	on limits.							
E Concentration ex	kceeds the ca	libration ran	ge and there	fore result is s	emi-quantita	ntive.				
_2 Laboratory contr	ol sample rec	overy was b	elow accepta	ance limits.						
M Matrix interferen	ce.									
NA Not analyzed										

NA Not analyzed.

NE Not established.

PAH Polycyclic aromatic hydrocarbons.

RCL Residual contaminant level.

µg/kg Micrograms per kilogram.

Sample Name	GP-201	GP-202		GP-203		GP-204	GP-206	GP-207	GP-208	GP-210
Sample Depth (feet)	0-2'	2-4'	3-5'	6-8'	10-12'	2-4'	2-4'	0-2'	2-4'	0-2'
Sample Date	11/08/07	11/08/07	11/08/07	11/09/07	11/08/07	01/10/07	01/09/07	01/09/07	01/09/07	01/09/07
PAHs (µg/kg)	_									
1-Methylnaphthalene	<390	27,000	<86	<36	<36	<2,500	<37	<2,000	<57	<960
2-Methylnaphthalene	<330	170,000	<72	<30	<30	2,200	<31	6,700	220	1,900
Acenaphthene	<650	43.000	<140	<61	<60	<4,200	<62	<3,300	<95	<1,600
Anthracene	75	61,000	<14	<6.1	<6	1,500	<6.2	3,400	210	740
Benzo (a) anthracene	280	240,000	33	<6.1	<6	2,000	<6.2	12,000	560	2,700
Benzo (a) pyrene	260	<u>190.000</u>	26	<6.1	<6	1,500	<6.2	8,700	400	2,300
Benzo (b) fluoranthene	150	110,000	18	<6.1	<6	1,200	<6.2	6,000	270	1,600
Benzo (g,h,i) perylene	170	95,000	23	<6.1	<6	1,300	<6.2	6,500	300	1,700
Benzo (k) fluoranthene	110	73,000	<14	<6.1	<6	870	<6.2	4,100	210	1,100
Chrysene	210	<u>160.000</u>	18	<6.1	<6	1,800	<6.2	8,100	370	1,700
Dibenzo (a,h) anthracene	<98	17,000	<21	<9.1	<9	<620	<9.2	1,100	56	290
Fluoranthene	630	370,000	92	<12	<12	5,300	<12	21,000	1,100	4,600
Fluorene	<130	21,000	<29	<12	<12	<830	<12	940	42	<320
Indeno (1,2,3-cd) pyrene	140	100,000	20	<6.1	<6	970	<6.2	5,600	250	1,800
Naphthalene	<390	<u>13000*</u>	<86	<36	<36	<2,500	<37	<2,000	<57	<960
Phenanthrene	300	<u>210,000</u>	69	<6.1	7.4	<u>4,400</u>	<6.2	<u>11,000</u>	720	2,600
Pyrene	650	380,000	34	<6.1	11	3,500	<6.2	15,000	1,000	4,400
* Concentration exceeds the NR 720 RCL (NR 720 Table 1 RCL is based on protection of groundwater pathway).										
Bold Concentration exceeds the WDNR Proposed Industrial Direct Contact RCL for Polycyclic Aromatic Hydrocarbons.										
Italic Concentration exceeds the WDNR Proposed Non-Industrial Direct Contact RCL for Polycyclic Aromatic Hydrocarbons.										
Underline Concentration exceeds the WDNR Proposed Groundwater Protection RCL for Polycyclic Aromatic Hydrocarbons.										
< Analyte detected	below laborat	tory detection	limíts.							

E Concentration exceeds the calibration range and therefore result is semi-quantitative.

L2 Laboratory control sample recovery was below acceptance limits.

M Matrix interference.

NA Not analyzed.

NE Not established.

PAH Polycyclic aromatic hydrocarbons.

RCL Residual contaminant level.

µg/kg Micrograms per kilogram.

Sample Name	GP-212	GP-213	GP-214	GP-215	GP-216	GP-217	GP-218	GP-219			
Sample Depth (feet)	0-2'	2-4'	2-4'	2-4'	0-2'	0-2'	2-4'	0-2'			
Sample Date	01/10/07	01/10/07	01/10/07	01/10/07	01/10/07	01/10/07	01/09/07	01/10/07			
PAHs (µg/kg)											
1-Methylnaphthalene	<470	<36	19,000	8,100	3,600	1,400	<2,100	<1,600			
2-Methylnaphthalene	<390	<30	<u>91,000</u>	47,000	<u>23,000</u>	8,800	<1,700	4,000			
Acenaphthene	<780	<60	17,000	13,000	6,400	<2,200	<3,500	<2,700			
Anthracene	99	<6.0	48,000	22,000	13,000	3,600	630	1,400			
Benzo (a) anthracene	380	<6.0	<u>79.000</u>	<u>54,000</u>	<u>34,000</u>	13,000	2,800	4,400			
Benzo (a) pyrene	360	<6.0	50,000	34,000	20,000	8,400	1,600	3,500			
Benzo (b) fluoranthene	270	<6.0	28,000	21,000	13,000	6,300	1,300	2,500			
Benzo (g,h,i) perylene	290	<6.0	33,000	23,000	14,000	6,300	1,400	3,000			
Benzo (k) fluoranthene	82	<6.0	22,000	16,000	9,600	3,900	840	1,800			
Chrysene	280	<6.0	<u>53,000</u>	35,000	22,000	8,300	1,700	3,100			
Dibenzo (a,h) anthracen	e <120	<9.0	5,800	4,800	2,600	1,300	<520	490			
Fluoranthene	660	<12	180,000	100,000	64,000	22,000	4,400	12,000			
Fluorene	<160	<12	25,000	12,000	4,700	1,800	<690	920			
Indeno (1,2,3-cd) pyrene	270	<6.0	28,000	20,000	11,000	5,200	1,000	2,300			
Naphthalene	<470	<36	28000*	<5,400	8100*	1,500	<2,100	<1,600			
Phenanthrene	450	<6.0	170,000	86,000	42,000	13,000	2,200	4,900			
Pyrene	820	<6.0	110,000	70,000	45,000	16,000	3,300	6,100			
 Concentration 	on exceeds the NR	720 RCL (NR	720 Table 1 R	CL is based or	n protection o	f groundwater	pathway).				
Bold Concentratio	on exceeds the WD	NR Proposed	Industrial Dire	ct Contact RCI	L for Polycycli	ic Aromatic Hy	drocarbons.				
Italic Concentratio	on exceeds the WD	NR Proposed	Non-Industrial	Direct Contac	t RCL for Poly	ycyclic Aromat	ic Hydrocarbo	ns.			
Underline Concentratio	on exceeds the WD	NR Proposed	Groundwater I	Protection RCL	for Polycycli	c Aromatic Hy	drocarbons,				
< Analyte dete	cted below laborate	ory detection li	mits.								
E Concentratio	on exceeds the calil	bration range a	and therefore r	esult is semi-q	uantitative.						
L2 Laboratory c	control sample reco	very was below	w acceptance	limits.							
M Matrix interfe	erence.										
NA Not analyzed	Not analyzed.										
NE Not establish	ned.										
PAH Polycyclic ar	omatic hydrocarbo	ns.									
RCL Residual cor	ntaminant level.										
µg/kg Micrograms	per kilogram.										
WDNR Wisconsin D	epartment of Natur	al Resources.			-						

Table 3. Summary of Soil PAH Analytical Results, Union Pacific Bulter Yard Facility, Milwaukee, Wisconsin.

.

Sample Name	Enforcement	Preventive	G	- -1	GP-3	G	P-7	GP-9	GP-19	GP-27
Sample Date	Standard	Action Limit	06/06/96	06/07/96	06/06/96	06/06/96	06/07/96	06/07/96	06/06/96	06/06/96
Diesel Range Organics (mg/L)	NE	NE	NA	0.12 B	<0.10 B	NA	0.31 B	<0.10 B	<0.10 B	0.10 BH
VOCs (µg/L)										
Acetone	1,000	200	5.1 L	NA	5.3 L	<5.0	NA	<5.0	6.6 L	<5.0
Benzene	5	0.5	< 0.50	NA	<0.50	< 0.50	NA	<0.50	<0.50	<0.50
cis-1,2-Dichloroethene	70	7	NA	NA	NA	NA	NA	NA	NA	NA
Ethylbenzene	700	140	<1.0	NA	<1.0	<1.0	NA	<1.0	<1.0	<1.0
Isopropylbenzene	NE	NE	NA	NA	NA	NA	NA	NA	NA	NA
Methyl tert-Butyl Ether	60	12	<1.0	NA	<1.0	<1.0	NA	<1.0	<1.0	1.4
Methylene Chloride	5	0.5	<10	NA	<10	38	NA	<10	<10	<10
4-Methyl-2-Pentanone	500	50	<1.0	NA	<1.0	2.3	NA	<1.0	<1.0	<1.0
Naphthalene	100	10	NA	NA	NA	NA	NA	NA	NA	NA
n-Butylbenzene	NE	NE	NA	NA	NA	NA	NA	NA	NA	NA
n-Propylbenzene	NE	NE	NA	NA	NA	NA	NA	NA	NA	NA
p-Isopropyltoluene	NE	NE	NA	NA	NA	NA	NA	NA	NA	NA
sec-Butylbenzene	NE	NE	NA	NA	NA	NA	NA	NA	NA	NA
tert-Butylbenzene	NE	NE	NA	NA	NA	NA	NA	NA	NA	NA
Toluene	1,000	200	<1.0	NA	<1.0	<1.0	NA	<1.0	<1.0	1.5
1,2,4-Trimethylbenzene	480 (a)	96 (a)	<1.0	NA	<1.0	<1.0	NA	<1.0	<1.0	<1.0
1,3,5-Trimethylbenzene	480 (a)	96 (a)	<1.0	NA	<1.0	<1.0	NA	<1.0	<1.0	<1.0
Xylenes, Total	10,000	1,000	<3.0	NA	<3.0	<3.0	NA	<3.0	<3.0	<3.0

Table 4. Summary of Groundwater DRO and VOC Analytical Results, Union Pacific Butler Yard Facility, Milwaukee, Wisconsin.

Bold Concentration exceeds the WDNR NR 140 Enforcement Standard.

Italic Concentration exceeds the WDNR NR 140 Preventive Action Limit.

(a) Add isomers together before comparing to criteria.

Analyte detected below laboratory detection limits.

B Method blank is contaminated.

H Late eluting hydrocarbons present.

J Results reported between the Method Detection Limit (MDL) and Limit of Quantitation (LOQ) are less certain than results at or above the LOQ.

L Common laboratory solvent and contaminant.

mg/L Milligrams per liter, equivalent to parts per million (ppm).

NA Not analyzed.

NE Not established.

µg/kg Micrograms per liter, equivalent to parts per billion (ppb).

VOC Volatile Organic Compounds.

WDNR Wisconsin Department of Natural Resources.

Because we care

Sample Name	GP-28	GP-30	GP-31	GP-41	GP-46		M	N-3		GMN	/W-4
Sample Date	06/06/96	06/06/96	06/07/96	12/02/96	12/02/96	12/24/96	06/09/99	10/25/04	01/04/07	12/24/96	06/09/99
Diesel Range Organics (mg/L)	<0.10 B	1.1	0.22 B	<20	12.8	650	2.4	NA	NA	<0.10	<0.10
VOCs (µg/L)											
Acetone	11 L	30 L	32	NA							
Benzene	<0.50	<2.5	<0.50	<1	<1	<1.0	<0.13	<0.25	<0.2	<1.0	<0.13
cis-1,2-Dichloroethene	NA	<0.5	NA	NA							
Ethylbenzene	<1.0	<5.0	<1.0	<1	<1	<1.0	<0.22	<0.22	<0.5	<1.0	<0.22
lsopropylbenzene	NA	0.66 J	NA	NA							
Methyl tert-Butyl Ether	<1.0	<5.0	<1.0	<1.0	<1.0	<1.0	<0.16	<0.23	<0.5	<1.0	<0.16
Methylene Chloride	<10	<50	<10	NA	NA	NA	NA	NA	<1	NA	NA
4-Methyl-2-Pentanone	1.3	<5.0	4.6	NA							
Naphthalene	NA	0.29 J	NA	NA							
n-Butylbenzene	NA	0.52 J	NA	NA							
n-Propy/benzene	NA	0.82 J	NA	NA							
p-Isopropyltoluene	NA	<0.2	NA	NA							
sec-Butylbenzene	NA	1.2	NA	NA							
tert-Butylbenzene	NA	<0.2	NA	NA							
Toluene	43	36	43	1.7	1.2	<1.0	<0.20	<0.11	<0.2	<1.0	<0.20
1,2,4-Trimethylbenzene	<1.0	<5.0	<1.0	<1.0	<1.0	<1.0	<0.22	<0.25	<0.2	<1.0	<0.22
1,3,5-Trimethylbenzene	<1.0	<5.0	<1.0	<1.0	<1.0	<1.0	<0.29	<0.19	<0.2	<1.0	<0.29
Xylenes, Total	<3.0	<15	<3.0	<1.0	<1.0	<1.0	<0.23	<0.39	<0.5	<1.0	<0.23

Table 4. Summary of Groundwater DRO and VOC Analytical Results, Union Pacific Butler Yard Facility, Milwaukee, Wisconsin.

Boid Concentration exceeds the WDNR NR 140 Enforcement Standard.

Italic Concentration exceeds the WDNR NR 140 Preventive Action Limit.

(a) Add isomers together before comparing to criteria.

Analyte detected below laboratory detection limits.

B Method blank is contaminated.

H Late eluting hydrocarbons present.

J Results reported between the Method Detection Limit (MDL) and Limit of Quantitation (LOQ) are less certain than results at or above the LOQ.

L Common laboratory solvent and contaminant.

mg/L Milligrams per liter, equivalent to parts per million (ppm).

NA Not analyzed.

NE Not established.

µg/kg Micrograms per liter, equivalent to parts per billion (ppb).

VOC Volatile Organic Compounds.

WDNR Wisconsin Department of Natural Resources.

Because we care

Sample Name	GMMW-4 (continued)		GMMW-5			GMN	IW-6		GMN	/W-7
Sample Date	10/25/04	01/04/07	06/09/99	10/26/04	01/04/07	12/24/96	09/24/97	10/26/04	01/04/07	12/24/96	11/03/97
Diesel Range Organics (mg/L)	NA	NA	2.8	NA	NA	2.8	2.8	NA	NA	<0.10	<0.10
VOCs (µg/L)											
Acetone	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzene	<0.25	<0.2	2.2	0.41	0.32 J	NA	<1.0	<0.25	<0.2	NA	<1.0
cis-1,2-Dichloroethene	NA	<0.5	NA	NA	<0.5	NA	NA	NA	<0.5	NA	NA
Ethylbenzene	<0.22	<0.5	6.6	<0.22	<0.5	NA	<1.0	<0.22	<0.5	NA	<1.0
Isopropylbenzene	NA	<0,2	NA	NA	5.9	NA	NA	NA	0.25 J	NA	NA
Methyl tert-Butyl Ether	<0.23	<0.5	<1.6	<0.23	<0.5	NA	<1.0	<0.23	<0.5	NA	<1.0
Methylene Chloride	NA	<1	NA	NA	<1	NA	NA	NA	<1	NA	NA
4-Methyl-2-Pentanone	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	NA	<0.25	NA	NA	0.53 J	NA	NA	NA	<0.25	NA	NA
n-Butylbenzene	NA	<0.2	NA	NA	1.3	NA	NA	NA	<0.2	NA	NA
n-Propylbenzene	NA	<0.5	NA	NA	3.8	NA	NA	NA	<0.5	NA	NA
p-Isopropyltoluene	NA	<0.2	NA	NA	<0.2	NA	NA	NA	<0.2	NA	NA
sec-Butylbenzene	NA	<0.25	NA	NA	2.7	NA	NA	NA	<0.25	NA	NA
tert-Butylbenzene	NA	<0.2	NA	NA	0.36 J	NA	NA	NA	<0.2	NA	NA
Toluene	<0.11	<0.2	<2.0	0.12	<0.2	NA	<1.0	<0.11	<0.2	NA	<1.0
1,2,4-Trimethylbenzene	<0.25	<0.2	11	<0.25	1.2	NA	<1.0	<0.25	<0.2	NA	<1.0
1,3,5-Trimethylbenzene	<0.19	<0.2	<2.9	<0.19	<0.2	NA	<1.0	<0.19	<0.2	NA	<1.0
Xylenes, Total	<0.39	<0.5	7.8	0.83	0.61 J	NA	<1.0	<0.39	<0.5	NA	<1.0

Table 4. Summary of Groundwater DRO and VOC Analytical Results, Union Pacific Butler Yard Facility, Milwaukee, Wisconsin.

Bold Concentration exceeds the WDNR NR 140 Enforcement Standard.

Italic Concentration exceeds the WDNR NR 140 Preventive Action Limit.

(a) Add isomers together before comparing to criteria.

< Analyte detected below laboratory detection limits.

B Method blank is contaminated.

H Late eluting hydrocarbons present.

J Results reported between the Method Detection Limit (MDL) and Limit of Quantitation (LOQ) are less certain than results at or above the LOQ.

L Common laboratory solvent and contaminant.

mg/L Milligrams per liter, equivalent to parts per million (ppm).

NA Not analyzed.

NE Not established.

µg/kg Micrograms per liter, equivalent to parts per billion (ppb).

VOC Volatile Organic Compounds.

WDNR Wisconsin Department of Natural Resources.

Because we care

Sample Name			GMMW-8				GMMW-9			GMMW-10	
Sample Date	12/24/96	11/03/97	06/08/99	10/25/04	01/05/07	06/09/99	10/26/04	01/04/07	06/08/99	10/25/04	01/05/07
Diesel Range Organics (mg/L)	<0.10	<0.10	0.22	NA	ŃA	0.82	NA	NA	1.3	NA	NA
VOCs (µg/L)											
Acetone	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzene	NA	<1.0	<0.13	< 0.25	<0.2	<0.13	<0.25	<0.2	<0.13	<0.25	<0.2
cis-1,2-Dichloroethene	NA	NA	NA	NA	<0.5	NA	NA	<0.5	NA	NA	<0.5
Ethylbenzene	NA	<1.0	<0.22	<0.22	<0.5	<0.22	< 0.22	<0.5	0.24	<0.22	<0.5
Isopropylbenzene	NA	NA	NA	NA	<0.2	NA	NA	<0.2	NA	NA	<0.2
Methyl tert-Butyl Ether	NA	<1.0	<0.16	<0.23	<0.5	<0.16	<0.23	<0.5	<0.16	<0.23	<0.5
Methylene Chloride	NA	NA	NA	NA	<1	NA	NA	<1	NA	NA	<1
4-Methyl-2-Pentanone	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	NA	NA	NA	NA	<0.25	NA	NA	0.95	NA	NA	<0.25
n-Butylbenzene	NA	NA	NA	NA	<0.2	NA	NA	<0.2	NA	NA	<0.2
n-Propylbenzene	NA	NA	NA	NA	<0.5	NA	NA	<0.5	NA	NA	<0.5
p-lsopropyltoluene	NA	NA	NA	NA	<0.2	NA	NA	<0.2	NA	NA	<0.2
sec-Butylbenzene	NA	NA	NA	NA	<0.25	NA	NA	<0.25	NA	NA	<0.25
tert-Butylbenzene	NA	NA	NA	NA	<0.2	NA	NA	<0.2	NA	NA	<0.2
Toluene	NA	<1.0	<0.20	<0.11	<0.2	<0.20	<0.11	<0.2	<0.20	<0.11	<0.2
1,2,4-Trimethylbenzene	NA	<1.0	<0.22	< 0.25	<0.2	0.24	<0.25	<0.2	3.4	<0.25	<0.2
1,3,5-Trimethylbenzene	NA	<1.0	<0.29	<0.19	<0.2	<0.29	<0.19	<0.2	<0.29	<0.19	<0.2
Xylenes, ⊺otal	NA	<1.0	< 0.23	< 0.39	< 0.5	8.0	< 0.39	<0.5	0.58	< 0.39	< 0.5
Bold Concentration exceeds	the WDNR	NR 140 En	forcement S	Standard.							
Italic Concentration exceeds	the WDNR	NR 140 Pre	eventive Act	ion Limit.							
(a) Add isomers together b	efore compa	aring to crite	eria.								
< Analyte detected below	laboratory	detection lin	nits.								

.

Table 4. Summary of Groundwater DRO and VOC Analytical Results, Union Pacific Butler Yard Facility, Milwaukee, Wisconsin,

B Method blank is contaminated.

H Late eluting hydrocarbons present.

J Results reported between the Method Detection Limit (MDL) and Limit of Quantitation (LOQ) are less certain than results at or above the LOQ.

L Common laboratory solvent and contaminant.

mg/L Milligrams per liter, equivalent to parts per million (ppm).

NA Not analyzed.

NE Not established.

µg/kg Micrograms per liter, equivalent to parts per billion (ppb).

VOC Volatile Organic Compounds.

WDNR Wisconsin Department of Natural Resources.

Because we care

Sample Name		GMMW-11		GMMW-12		GMMW-13		R	Г-1	R ⁻	T-2
Sample Date	06/08/99	10/25/04	01/03/07	06/08/99	06/08/99	10/26/04	01/03/07	10/26/04	01/05/07	10/26/04	01/04/07
Diesel Range Organics (mg/L)	0.6	NA	NA	1.6	1.4	NA	NA	NA	NA	NA	NA
VOCs (µg/L)											
Acetone	NA	NA	NA	NA	NA						
Benzene	<0.13	<0.25	<0.2	<0.13	<0.13	<0.25	<0.2	0.64	0.30 J	<0.25	0.50 J
cis-1,2-Dichloroethene	NA	NA	<0.5	NA	NA	NA	1 <i>.</i> 3 J	NA	<0.5	NA	<0.5
Ethylbenzene	<0.22	<0.22	<0.5	<0.22	0.32	<0.22	<0.5	12	1.4 J	<0.22	<0.5
Isopropylbenzene	NA	NA	<0.2	NA	NA	NA	1.5	NA	1.1	NA	0.95
Methyl tert-Butyl Ether	<0.16	<0.23	<0.5	<0.16	<0.16	<0.23	<0.5	0.6	<0.5	<0.23	<0.5
Methylene Chloride	NA	NA	<1	NA	NA	NA	<1	NA	<1	NA	<1
4-Methyl-2-Pentanone	NA	NA	NA	NA	NA						
Naphthalene	NA	NA	<0.25	NA	NA	NA	<0.25	NA	1.5	NA	0.69 J
n-Butylbenzene	NA	NA	<0.2	NA	NA	NA	0.35 J	NA	<0.2	NA	0.30 J
n-Propylbenzene	NA	NA	<0.5	NA	NA	NA	<0.5	NA	1.3 J	NA	1.0 J
p-isopropyitoluene	NA	NA	<0.2	NA	NA	NA	<0.2	NA	1.4	NA	<0.2
sec-Butylbenzene	NA	NA	<0.25	NA	NA	NA	1.4	NA	1.7	NA	0.82 J
tert-Butylbenzene	NA	NA	<0.2	NA	NA	NA	<0.2	NA	<0.2	NA	<0,2
Toluene	<0.20	<0.11	<0.2	<0.20	<0.20	<0.11	<0.2	1.5	<0.2	0.29	<0.2
1,2,4-Trimethylbenzene	<0.22	<0.25	<0.2	<0.22	2.7	<0.25	<0.2	46	13	<0.25	<0.2
1,3,5-Trimethylbenzene	<0.29	<0.19	<0.2	<0.29	<0.29	<0.19	<0.2	<0.19	<0.2	<0.19	<0.2
Xylenes, Total	<0.23	< 0.39	<0.5	<0.23	0.27	<0,39	<0.5	4.6	1.1 J	0.59	<0.5

Table 4. Summary of Groundwater DRO and VOC Analytical Results, Ur	Jnion Pacific Butler Yard Facility, Milwaukee, Wisconsin.
--	---

Bold Concentration exceeds the WDNR NR 140 Enforcement Standard.

Italic Concentration exceeds the WDNR NR 140 Preventive Action Limit.

(a) Add isomers together before comparing to criteria.

< Analyte detected below laboratory detection limits.

B Method blank is contaminated.

H Late eluting hydrocarbons present.

J Results reported between the Method Detection Limit (MDL) and Limit of Quantitation (LOQ) are less certain than results at or above the LOQ.

L Common laboratory solvent and contaminant.

mg/L Milligrams per liter, equivalent to parts per million (ppm).

NA Not analyzed.

NE Not established.

µg/kg Micrograms per liter, equivalent to parts per billion (ppb).

VOC Volatile Organic Compounds.

WDNR Wisconsin Department of Natural Resources.

Because we care

Sample Name	Enforcement	Preventive	GP-3	GP-9	GP-19	GP-27	GP-28	GP-30	GP-31	MW-3
Sample Date	Standard	Action Limit	06/06/96	06/07/96	06/06/96	06/06/96	06/06/96	06/06/96	06/07/96	01/04/07
PAHs										
1-Methylnaphthalene	NE	NE	NA	1.5						
2-Methylnaphthalene	NE	NE	NA	2.0						
Acenaphthene	NE	NE	NA	0.44 J						
Anthracene	3,000	600	<0.20	<0.20	<0.20	<0.20	< 0.20	0.4	<0.20	0.15
Benzo(a)anthracene	NE	NE	<0.050	<0.050	<0.050	0.49	<0.050	<0.050	< 0.050	0.28
Benzo(a)pyrene	0.2	0.02	<0.024	< 0.024	<0.024	0.54	<0.024	<0.024	< 0.024	0.032 J
Benzo(b)fluoranthene	0.2	0.02	<0.050	<0.050	<0.050	0.56	<0.050	<0.050	<0.050	<0.099
Benzo(g,h,i)perylene	NE	NE	<0.20	<0.20	<0.20	0.55	<0.20	<0.20	<0.20	<0.12
Benzo(k)fluoranthene	NE	NE	<0.050	<0.050	<0.050	0.23	<0.050	< 0.050	< 0.050	<0.049
Chrysene	0.2	0.02	<0.10	<0.10	<0.10	0.3	<0.10	<0.10	<0.10	0.088 J
Fluoranthene	400	80	<0.20	<0.20	<0.20	0.81	<0.20	<0.20	<0.20	0.5
Fluorene	400	80	<0.4	<0.4	<0.4	<0.4	<0.4	0.83	<0.4	0.69
Naphthalene	100	10	NA	<0.4						
Phenanthrene	NE	NE	<0.40	<0.40	<0.40	<0.40	<0.40	1.3	< 0.40	0.1
Pyrene	250	50	<0.20	<0.20	<0.20	0.59	<0.20	<0.20	<0.20	0.62

Table 5. Summary of Groundwater PAH Analytical Results, Ur	Inion Pacific Butler Yard Facility.	Milwaukee, Wisconsin.
--	-------------------------------------	-----------------------

Bold Concentration exceeds the WDNR NR 140 Enforcement Standard.

Italic Concentration exceeds the WDNR NR 140 Preventive Action Limit.

Analyte detected below laboratory detection limits.

J Results reported between the Method Detection Limit (MDL) and Limit of Quantitation (LOQ) are less certain than results at or above the LOQ.

NE Not established.

PAH Polycyclic Aromatic Hydrocarbons.

µg/L Micrograms per liter, equivalent to parts per billion (ppb).

Sample Name	GMMW-4	GMMW-5	GMMW-6	GMMW-8	GMMW-9	GMMW-10	GMMW-11	GMMW-13	RT-1	RT-2	TW-176
Sample Date	01/04/07	01/04/07	01/04/07	01/05/07	01/04/07	01/05/07	01/03/07	01/03/07	01/05/07	01/04/07	01/12/07
PAHs											
1-Methylnaphthalene	<0.33	35	0.75 J	<0.32	3.0	1.1	<0.32	1.1	9.5	1.0 J	<0.32
2-Methylnaphthalene	<0.32	8.0	<0.32	<0.31	<0.32	<0.32	<0.31	2.2	8.0	2.7	<0.31
Acenaphthene	<0.34	2.7	<0.34	<0.33	<0.34	0.89 J	<0.33	2.3	2.6	0.80 J	<0.33
Anthracene	<0.039	0.64	<0.039	<0.038	<0.039	<0.04	<0.038	<0.038	1.7	0.92	0.15
Benzo(a)anthracene	<0.045	0.060 J	<0.045	<0.044	<0.045	<0.046	<0.044	<0.044	1.0	0.93	0.045 J
Benzo(a)pyrene	<0.033	<0.033	<0.033	<0.032	<0.033	<0.033	< 0.032	<0.032	<0.033	< 0.04	<0.032
Benzo(b)fluoranthene	<0.1	<0.1	<0.1	<0.099	<0.1	<0.1	<0.098	<0.099	<0.1	<0.12	<0.098
Benzo(g,h,i)perylene	<0.12	<0.12	<0.12	<0.12	<0.12	<0.12	<0.12	<0.12	< 0.12	<0.15	< 0.12
Benzo(k)fluoranthene	<0.05	<0.05	< 0.05	<0.049	< 0.05	<0.051	< 0.049	< 0.049	<0.05	< 0.062	< 0.049
Chrysene	<0.042	<0.042	< 0.042	< 0.041	<0.042	<0.043	<0.041	<0.041	1.5	1.3	< 0.041
Fluoranthene	<0.083	1.1	<0.083	<0.082	<0.083	<0.084	<0.081	<0.082	8.4	4.1	0.13 J
Fluorene	<0.063	5,2	0.20 J	<0.063	<0.063	0.58	<0.062	2.7	4.3	1.8	0.17 J
Naphthalene	<0.41	6.5	<0.41	<0.4	0.42 J	0.60 J	<0.4	0.92 J	5.7	2.2	<0.4
Phenanthrene	<0.031	1.6	<0.031	<0.03	<0.031	0.076 J	<0.03	0.15	1.7	0.59	0.17
Pyrene	<0.045	1.0	<0.045	<0.044	<0.045	<0.046	< 0.044	<0.044	7.0	4.0	0.080 J

- 1014 0.011 16.25

Bold Concentration exceeds the WDNR NR 140 Enforcement Standard.

Italic Concentration exceeds the WDNR NR 140 Preventive Action Limit.

Analyte detected below laboratory detection limits. <

Results reported between the Method Detection Limit (MDL) and Limit of Quantitation (LOQ) are less certain than results at or above the LOQ. J

NE Not established.

PAH Polycyclic Aromatic Hydrocarbons.

Micrograms per liter, equivalent to parts per billion (ppb). µg/L

	Land	Measuring			Depth to	Depth to	Water	Depth to	Depth to	Water	
	Surface	Point	Screened	Screen	Product	Water	Elevation	Product	Water	Elevation	n
Monitoring	Elevation	Elevation	Interval	Length	(ft)	(ft)	(ft msl)	(ft)	(ft)	(ft msl)	
Well	(ft)	(ft)	(ft bls)	(ft)	12/24/96	12/24/96	12/24/96	01/21/97	01/21/97	01/21/97	
MW-1	738.8	739.7	5.0 - 15.0	10.0	9.05	14.86	729.49(a) ^(a)	9.08	14.65	729.5	(a
MW-2	738.6	740.3	3.0-13.0	10.0	8.86	10.43	731.1 ^(a)	9.05	10.61	730.9	(a
MW-3	738.2	739.3	5.0 - 13.0	8.0	ND	8.18	731.1	ND	8.32	731.0	
GMMW-4	739.1	742.5	5.0 - 15.0	10.0	ND	6.08	736.4	ND	6.77	735.7	
GMMW-5	738.95	741.96	4.0 - 14 .0	10.0	NI	NI	NI	NJ	NI	NI	
GMMW-6	738.6	742.2	5.0 - 15.0	10.0	ND	7.79	734.4	ND	8.31	733.9	
GMMW-7	739.5	742.9	5.0 - 15.0	10.0	ND	6.92	736.0	ND	7.42	735.5	
GMMW-8	738.7	742.3	5.0 - 15.0	10.0	ND	9.36	732.9	ND	9.57	732.7	
GMMW-9	738.10	741.11	5.0 - 15.0	10.0	NI	NI	NI	NI	NI	NI	
GMMW-10	736.85	739.95	4.0 - 14.0	10.0	NI	NI	NI	NI	N	NI	
GMMW-11	738,91	738.72	4.0 - 14.0	10.0	NJ	NI	NI	Ní	N	NI	
GMMW-12	738.55	738.33	4.0 - 14.0	10.0	NI	NI	NI	NI	Nİ	NI	
GMMW-13	738.82	738.74	4.0 - 14.0	10.0	NI	NI	NI	NI	NI	NI	

Table 6. Groundwater Elevation Data, Union Pacific Butler Yard Facility, Milwaukee, Wisconsin.

Measuring point elevation is from the north side of the top of PVC well casing (TOC).

Elevations are measured relative to a United States Geological Survey (USGS) datum.

(a) Groundwater elevation was corrected for the presence of product; product specific gravity assumed = 0.8 g/cm³.

amsl Above mean sea level.

- (b) GMMW-7 abandoned prior to 6/8/99.
- bis Below Land Surface.
- (c) GMMW-12 abandoned prior to 10/25/04

(d) MW-1 and MW-2 were removed during installation of recovery trenches

ft Feet

ND None Detected.

- NI Not installed.
- NM Not measured.
- TR Trace (<0.01 foot).

	Depth to)	Depth to)	Water		Depth to	2	Depth to		Water		Depth to	>	Depth to		Water	
	Product	t	Water		Elevation	ı	Product	t	Water		Elevation	ı	Product	t	Water		Elevation	h
Monitoring Well	(ft) 06/08/99)	(ft) 06/08/99)	(ft msl) 06/08/99		(ft) 10/25/04	t	(ft) 10/25/04		(ft msl) 10/25/04		(ft) 01/03/07	7	(ft) 01/03/07		(ft msl) 01/03/07	
MW-1	9.01		11.45		730.2		NM	(d)	NM	(ď)	NM	(d)	NM	(d)	NM	(d)	NM	(d)
MW-2	8.01		8.45		732.2		NM	(d)	NM	(d)	NM	(d)	NM	(d)	NM	(đ)	NM	(d)
MW-3	TR		7.17		732.1		ND		8.68		730.6		ND		7.68		731.62	
GMMW-4	ND		5.13		737.4		ND		6.93		735.6		ND		5.7		736.80	
GMMW-5	ND		8.26		733,70		ND		9.78		732.18		ND		8.8		733.16	
GMMW-6	ND		NM		NM		ND		9.00		733.2		ND		8.63		733.57	
GMMW-7	NM	(b)	NM	(b)	NM	(b)	NM	(b)	NM	(ð)	NM	(b)	NM	(c)	NM	(b)	NM	(b)
GMMW-8	ND		7.28		735.0		ND		9.98		732.3		ND		8.14		734.16	
GMMW-9	ND		7.75		733.36		ND		9.12		731.99		ND		8.26		732.85	
GMMW-10	ND		7.85		732.10		ND		9.08		730.87		ND		8.04		731.91	
GMMW-11	ND		5.02		733.70		ND		6.90		731.82		ND		5.18		733.54	
GMMW-12	ND		4.00		734.33		NM	(c)	NM	(¢)	NM	(c)	NM	(c)	NM	(¢)	NM	(¢)
GMMW-13	ND		5.10		733.64		ND		6.11		732.63		ND		5.25		733.49	

1

Table 6.	Groundwater	Elevation Dat	a. Union	Pacific Butl	er Yard	Facility.	Milwaukee	Wisconsin.

Measuring point elevation is from the north side of the top of PVC well casing (TOC).

Elevations are measured relative to a United States Geological Survey (USGS)

(a) Groundwater elevation was corrected for the presence of product; product specific gravity assumed = 0.8 g/cm³.

amsl Above mean sea level.

(b) GMMW-7 abandoned prior to 6/8/99.

bls Below Land Surface.

(c) GMMW-12 abandoned prior to 10/25/04

(d) MW-1 and MW-2 were removed during installation of recovery trenches

ft Feet

. _

ND None Detected.

NI Not yet installed.

NM Not measured.

TR Trace (<0.01 foot).

5/15/2009 2.16 PM

 $G: Vaproject \ VPACRR \ W11145 \ Butler \ TABLES \ gs_gw_elevations \ xisx$