Form 4400-237 (R 12/18)

Page 2 of 7

Section 1. Contact and Rec	ipient Information				
Requester Information					
This is the person requesting te specialized agreement and is id	chnical assistance or a post- entified as the requester in S	closure ection	e modification review, that his or her liability 7. DNR will address its response letter to th	be clarif is perso	ied or a n.
Last Name	First	MI	Organization/ Business Name		
Harvey	Christopher	D	TRC		
Mailing Address			City	State	ZIP Code
230 West Monroe St., Suite	630		Chicago	IL	60606
Phone # (include area code)	Fax # (include area code)		Email		• • • • • • • • •
(312) 578-0870	(312) 578-0877		charvey@trccompanies.com		
The requester listed above: (sel	ect all that apply)				
Is currently the owner			Is considering selling the Property		
Is renting or leasing the P	roperty		Is considering acquiring the Property		
Is a lender with a mortgag	gee interest in the Property				
Other. Explain the status	of the Property with respect t	o the a	applicant:		
Consultant for the respons	ible party				
*	1 4				
Contact Information (to be Contact Last Name	contacted with questions a	about MI	this request) X Sele	ct if sar	ne as requester
Натиан	Christonher		TRC		
Mailing Address			City	State	ZIP Code
230 West Monroe St. Suite	630		Chicago	П	60606
Phone # (include area code)	Fax # (include area code)		Email		
(312) 578-0870	(312) 578-0877		charvev@trccompanies.com		
Environmental Consultan	t (if applicable)				
Contact Last Name	First	MI	Organization/ Business Name		
Harvey	Christopher	D	TRC	-	
Mailing Address			City	State	ZIP Code
230 West Monroe St., Suite	630		Chicago	IL	60606
Phone # (include area code)	Fax # (include area code)		Email		
(312) 578-0870	(312) 578-0877		charvey@trccompanies.com		
Property Owner (if differe	nt from requester)	1.71	Organization / Dusinger Name		
	FIRSt	MI	Organization/ Business Name		
	~				
Langenteld	Casey		City of New Holstein	Ctoto	ZID Code
Langenfeld Mailing Address	Casey		City of New Holstein City	State	ZIP Code
Langenfeld Mailing Address 2110 Washington St.	Casey		City of New Holstein City New Holstein	State WI	ZIP Code 53061
Langenfeld Mailing Address 2110 Washington St. Phone # (include area code)	Casey Fax # (include area code)		City of New Holstein City New Holstein Email	State WI	ZIP Code 53061

Page 3 of 7

Form 4400-237 (R 12/18)

Section 2. Property Information FID No. (if known) Property Name Tecumseh Products Co. (former) - Chromium Line BRRTS No. (if known) Parcel Identification Number 02-08-36333 18919, 18569, 18921, 18646, 18465, 18450, 18568 Street Address City State ZIP Code New Holstein WI 1604 Michigan Avenue 53061 County Property Size Acres Municipality where the Property is located Property is composed of: Single tax
Multiple tax Calumet (•) City () Town () Village of New Holstein \cap 38 parcel parcels 1. is a response needed by a specific date? (e.g., Property closing date) Note: Most requests are completed within 60 days. Please plan accordingly. No 🔘 () Yes Date requested by: Reason: 2. Is the "Requester" enrolled as a Voluntary Party in the Voluntary Party Liability Exemption (VPLE) program? No. Include the fee that is required for your request in Section 3, 4 or 5. Yes. Do not include a separate fee. This request will be billed separately through the VPLE Program. Fill out the information in Section 3, 4 or 5 which corresponds with the type of request: Section 3. Technical Assistance or Post-Closure Modifications; Section 4. Liability Clarification; or Section 5. Specialized Agreement. Section 3. Request for Technical Assistance or Post-Closure Modification Select the type of technical assistance requested: [Numbers in brackets are for WI DNR Use] No Further Action Letter (NFA) (Immediate Actions) - NR 708.09, [183] - Include a fee of \$350. Use for a written response to an immediate action after a discharge of a hazardous substance occurs. Generally, these are for a one-time spill event. Review of Site Investigation Work Plan - NR 716.09, [135] - Include a fee of \$700. Review of Site Investigation Report - NR 716.15, [137] - Include a fee of \$1050. Approval of a Site-Specific Soil Cleanup Standard - NR 720.10 or 12, [67] - Include a fee of \$1050. Review of a Remedial Action Options Report - NR 722.13, [143] - Include a fee of \$1050. Review of a Remedial Action Design Report - NR 724.09, [148] - Include a fee of \$1050. Review of a Remedial Action Documentation Report - NR 724.15. [152] - Include a fee of \$350 Review of a Long-term Monitoring Plan - NR 724.17, [25] - Include a fee of \$425. Review of an Operation and Maintenance Plan - NR 724.13, [192] - Include a fee of \$425. Other Technical Assistance - s. 292.55, Wis. Stats. [97] (For request to build on an abandoned landfill use Form 4400-226) Schedule a Technical Assistance Meeting - Include a fee of \$700. Hazardous Waste Determination - Include a fee of \$700. Other Technical Assistance - Include a fee of \$700. Explain your request in an attachment. Post-Closure Modifications - NR 727, [181] Post-Closure Modifications: Modification to Property boundaries and/or continuing obligations of a closed site or Property: sites may be on the GIS Registry. This also includes removal of a site or Property from the GIS Registry. Include a fee of \$1050, and: Include a fee of \$300 for sites with residual soil contamination; and Include a fee of \$350 for sites with residual groundwater contamination, monitoring wells or for vapor intrusion continuing obligations. Attach a description of the changes you are proposing, and documentation as to why the changes are needed (if the change to a Property, site or continuing obligation will result in revised maps, maintenance plans or photographs, those documents may be submitted later in the approval process, on a case-by-case basis).

Page 4 of 7

Form 4400-237 (R 12/18)

Skip Sections 4 and 5 if the technical assistance you are requesting is listed above and complete Sections 6 and 7 of this form.

Section 4. Request for Liability Clarification

Select the type of liability clarification requested. Use the available space given or attach information, explanations, or specific questions that you need answered in DNR's reply. Complete Sections 6 and 7 of this form. [Numbers in brackets are for DNR Use]

"Lender" liability exemption clarification - s. 292.21, Wis. Stats. [686]

Include a fee of \$700.

Provide the following documentation:

- (1) ownership status of the real Property, and/or the personal Property and fixtures;
- (2) an environmental assessment, in accordance with s. 292.21, Wis. Stats.;
- (3) the date the environmental assessment was conducted by the lender;
- (4) the date of the Property acquisition; for foreclosure actions, include a copy of the signed and dated court order confirming the sheriff's sale.
- (5) documentation showing how the Property was acquired and the steps followed under the appropriate state statutes.
- (6) a copy of the Property deed with the correct legal description; and,
- (7) the Lender Liability Exemption Environmental Assessment Tracking Form (Form 4400-196).
- (8) If no sampling was done, please provide reasoning as to why it was **not** conducted. Include this either in the accompanying environmental assessment or as an attachment to this form, and cite language in s. 292. 21(1)(c)2.,h.-i., Wis. Stats.:
 - h. The collection and analysis of representative samples of soil or other materials in the ground that are suspected of being contaminated based on observations made during a visual inspection of the real Property or based on aerial photographs, or other information available to the lender, including stained or discolored soil or other materials in the ground and including soil or materials in the ground in areas with dead or distressed vegetation. The collection and analysis shall identify contaminants in the soil or other materials in the ground and shall quantify concentrations.
 - i. The collection and analysis of representative samples of unknown wastes or potentially hazardous substances found on the real Property and the determination of concentrations of hazardous waste and hazardous substances found in tanks, drums or other containers or in piles or lagoons on the real Property.
- "Representative" liability exemption clarification (e.g. trustees, receivers, etc.) s. 292.21, Wis. Stats. [686]
 - Include a fee of \$700.

Provide the following documentation:

- (1) ownership status of the Property;
- (2) the date of Property acquisition by the representative;
- (3) the means by which the Property was acquired;
- (4) documentation that the representative has no beneficial interest in any entity that owns, possesses, or controls the Property;
- (5) documentation that the representative has not caused any discharge of a hazardous substance on the Property; and
- (6) a copy of the Property deed with the correct legal description.
- Clarification of local governmental unit (LGU) liability exemption at sites with: (select all that apply)

hazardous substances spills - s. 292.11(9)(e), Wis. Stats. [649];

Perceived environmental contamination - [649];

hazardous waste - s. 292.24 (2), Wis. Stats. [649]; and/or

solid waste - s. 292.23 (2), Wis. Stats. [649].

Include a fee of \$700, a summary of the environmental liability clarification being requested, and the following:

(1) clear supporting documentation showing the acquisition method used, and the steps followed under the appropriate state statute(s).

- (2) current and proposed ownership status of the Property;
- (3) date and means by which the Property was acquired by the LGU, where applicable;
- (4) a map and the 1/4, 1/4 section location of the Property;
- (5) summary of current uses of the Property;
- (6) intended or potential use(s) of the Property;
- (7) descriptions of other investigations that have taken place on the Property; and
- (8) (for solid waste clarifications) a summary of the license history of the facility.

Form 4400-237 (R 12/18)

Section 4. Request for Liability Clarification (cont.)

Lease liability clarification - s. 292.55, Wis. Stats. [646]

- Include a fee of \$700 for a single Property, or \$1400 for multiple Properties and the information listed below:
- (1) a copy of the proposed lease;
- (2) the name of the current owner of the Property and the person who will lease the Property;
- a description of the lease holder's association with any persons who have possession, control, or caused a discharge of a hazardous substance on the Property;
- (4) map(s) showing the Property location and any suspected or known sources of contamination detected on the Property;
- (5) a description of the intended use of the Property by the lease holder, with reference to the maps to indicate which areas will be used. Explain how the use will not interfere with any future investigation or cleanup at the Property; and
- (6) all reports or investigations (e.g. Phase I and Phase II Environmental Assessments and/or Site Investigation Reports conducted under s. NR 716, Wis. Adm. Code) that identify areas of the Property where a discharge has occurred.

General or other environmental liability clarification - s. 292.55, Wis. Stats. [682] - Explain your request below. Include a fee of \$700 and an adequate summary of relevant environmental work to date.

No Action Required (NAR) - NR 716.05, [682]

Include a fee of \$700.

Use where an environmental discharge has or has not occurred, and applicant wants a DNR determination that no further assessment or clean-up work is required. Usually this is requested after a Phase I and Phase II environmental assessment has been conducted; the assessment reports should be submitted with this form. This is not a closure letter.

Clarify the liability associated with a "closed" Property - s. 292.55, Wis. Stats. [682]

✤ include a fee of \$700.

- Include a copy of any closure documents if a state agency other than DNR approved the closure.

Use this space or attach additional sheets to provide necessary information, explanations or specific questions to be answered by the DNR.

Section 5. Request for a Specialized Agreement

Select the type of agreement needed. Include the appropriate draft agreements and supporting materials. Complete Sections 6 and 7 of this form. More information and model draft agreements are available at: <u>dnr.wi.gov/topic/Brownfields/lgu.html#tabx4</u>.

Tax cancellation agreement - s. 75.105(2)(d), Wis. Stats. [654]

Include a fee of \$700, and the information listed below:

(1) Phase I and II Environmental Site Assessment Reports,

(2) a copy of the Property deed with the correct legal description.

Agreement for assignment of tax foreclosure judgement - s.75.106, Wis. Stats. [666]

Include a fee of \$700, and the information listed below:

(1) Phase I and II Environmental Site Assessment Reports,

(2) a copy of the Property deed with the correct legal description.

Negotiated agreement - Enforceable contract for non-emergency remediation - s. 292.11(7)(d) and (e), Wis. Stats. [630]

Include a fee of \$1400, and the information listed below:

(1) a draft schedule for remediation; and,

(2) the name, mailing address, phone and email for each party to the agreement.

Page 5 of 7

Page 6 of 7

Form 4400-237 (R 12/18)

Section 6. Other Information Submitted Identify all materials that are included with this request. Send both a paper copy of the signed form and all reports and supporting materials, and an electronic copy of the form and all reports, including Environmental Site Assessment Reports, and supporting materials on a compact disk. Include one copy of any document from any state agency files that you want the Department to review as part of this request. The person submitting this request is responsible for contacting other state agencies to obtain appropriate reports or information. Phase I Environmental Site Assessment Report - Date: Phase II Environmental Site Assessment Report - Date: Legal Description of Property (required for all liability requests and specialized agreements) Map of the Property (required for all liability requests and specialized agreements) Analytical results of the following sampled media: Select all that apply and include date of collection. Groundwater Soil Sediment Other medium - Describe: Date of Collection: A copy of the closure letter and submittal materials Draft tax cancellation agreement Draft agreement for assignment of tax foreclosure judgment Other report(s) or information - Describe: Groundwater Monitoring Report For Property with newly identified discharges of hazardous substances only: Has a notification of a discharge of a hazardous substance been sent to the DNR as required by s. NR 706.05(1)(b), Wis. Adm. Code? O Yes - Date (if known): \bigcirc No Note: The Notification for Hazardous Substance Discharge (non-emergency) form is available at: dnr.wi.gov/files/PDF/forms/4400/4400-225.pdf. Section 7. Certification by the Person who completed this form I am the person submitting this request (requester) I prepared this request for: **Requester Name** I certify that I am familiar with the information submitted on this request, and that the information on and included with this request is true, accurate and complete to the best of my knowledge. I also certify I have the legal authority and the applicant's permission to make this request. ______5/13 / 2019 Date Signed 312-578-0870 Fincipal Telephone Number (include area code)

Technical Assistance, Environmental Liability

Clarification or Post-Closure Modification Request Page 7 of 7

Form 4400-237 (R 12/18)

Section 8. DNR Contacts and Addresses for Request Submittals

Send or deliver one paper copy and one electronic copy on a compact disk of the completed request, supporting materials, and fee to the region where the property is located to the address below. Contact a DNR regional brownfields specialist with any questions about this form or a specific situation involving a contaminated property. For electronic document submittal requirements see: http://dnr.wi.gov/files/PDF/pubs/rr/RR690.pdf.

DNR NORTHERN REGION

Attn: RR Program Assistant Department of Natural Resources 223 E Steinfest Rd Antigo, WI 54409

DNR NORTHEAST REGION Attn: RR Program Assistant Department of Natural Resources 2984 Shawano Avenue Green Bay WI 54313

DNR SOUTH CENTRAL REGION

Attn: RR Program Assistant Department of Natural Resources 3911 Fish Hatchery Road Fitchburg WI 53711

DNR SOUTHEAST REGION

Attn: RR Program Assistant Department of Natural Resources 2300 North Martin Luther King Drive Milwaukee WI 53212

DNR WEST CENTRAL REGION

Attn: RR Program Assistant Department of Natural Resources 1300 Clairemont Ave. Eau Claire WI 54702

Note: These are the Remediation and Redevelopment Program's designated regions. Other DNR program regional boundaries may be different.

			DNR Use Only	
Date Received	Date Assigned		BRRTS Activity Code	BRRTS No. (if used)
DNR Reviewer		Comme	ents	
Fee Enclosed?	Fee Amount		Date Additional Information Requested	Date Requested for DNR Response Letter
🔿 Yes 🔵 No	\$			
Date Approved	Final Determination			-

May 13, 2019

Mr. Kevin McKnight Northeast Region Wisconsin Department of Natural Resources 625 East County Road Y, Suite 700 Oshkosh, WI 54901

Subject: 2019 Groundwater Monitoring Report Former Tecumseh Products, Former Plating Line Area New Holstein, Wisconsin BRRTS# 02-08-363333

Dear Mr. McKnight:

TRC is implementing monitored natural attenuation (MNA) and groundwater monitoring specific to the former plating line area at the former Tecumseh Products facility in New Holstein, Wisconsin (BRRTS #: 02-08-363333). On March 21, 2019, TRC completed groundwater sampling at monitoring wells specific to the former plating line area to verify a stable residual chromium plume and confirm that the chromium plume is naturally attenuating. This letter presents the results of the data collected during the groundwater monitoring event, in accordance with the proposed work plan, dated June 21, 2017. A technical review and response from the Wisconsin Department of Natural Resources (WDNR) is requested, and a \$425 check is included for the review, per the State of Wisconsin Chapter NR 749 fee for long-term monitoring plans.

BACKGROUND

Evaluation of the groundwater data through August 2014 indicated that 1) the extent of chromium impacts to groundwater from the former plating line were defined, remains stable, and that natural attenuation is occurring and 2) total dissolved chromium continues to consist of predominantly dissolved hexavalent chromium and future sampling would focus on the total dissolved chromium. Beginning in 2016, only the plume monitoring wells that exceeded the Enforcement Standard (ES) point-of-compliance for total dissolved chromium (>100 μ g/L) were being monitored. These monitoring wells include MW-A, MW-B, MW-E, MW-8, TEC-3, and TEC-4. During the April and September 2016 sampling events, the wells were sampled for total dissolved chromium to track MNA. At the request of WDNR, the April 2017 sampling event included the six plume monitoring wells, three additional monitoring wells (TEC-1, NH-2, NH-26), and three additional groundwater sample analyses (dissolved hexavalent chromium, ferrous iron, and total organic carbon [TOC]). The additional analyses were included to assess the geochemical composition of the subsurface materials with respect to MNA.

Mr. Kevin McKnight May 13, 2019 Page 2 of 5

A Groundwater Monitoring Report, which summarized the above analyses, was submitted to the WDNR on June 21, 2017. The report concluded that 1) the contaminant plume remains stable and has not shown any migration from previous sampling events, 2) the groundwater impacts do not pose a threat to human health or the environment, and 3) that natural attenuation continues to control the migration of chromium impacts and is still a viable remedy for the site. TRC proposed to conduct biennial groundwater sampling beginning in 2019. Samples would be analyzed for only total dissolved chromium. The proposed frequency of sampling is based on the fact that sufficient data has been collected, evaluated and presented to suggest the stable nature of the chromium groundwater impacts.

An additional Groundwater Monitoring Plan was submitted to the WDNR on July 11, 2017. According to the plan, TRC proposed to perform a groundwater sampling event on monitoring wells MW-E, TEC-3, TEC-4, MW-8, NH-26, MW-A, and MW-B.

The WDNR responded with a letter on August 22, 2017 approving the long-term monitoring plan with the following notable stipulations.

- Monitoring well NH-7 had to be added to the monitoring schedule.
- Monitoring wells MW-5, TEC-1, MW-24, and MW-F (at a minimum) should be sampled in the final sampling event prior to submittal of a case closure request.
- If groundwater contaminant trends in source area wells (TEC-3, TEC-4, and NH-26) do not allow for case closure after the 2019 sampling event, evaluation of additional remedial alternatives will need to be conducted to facilitate site closure.

SUMMARY OF GROUNDWATER MONITORING

Groundwater Monitoring Program

On March 21, 2019, TRC completed a groundwater gauging and sampling event at the former Tecumseh chromium line remediation area. Prior to groundwater sampling, water levels were measured at every monitoring well that could be located with an oil-water interface probe.

Groundwater sampling was completed at monitoring wells MW-E, TEC-3, TEC-4, MW-8, NH-7, NH-26, MW-A, and MW-B. In addition, TRC also sampled MW-5, TEC-1 and MW-F in anticipation of being a final groundwater sampling event for submittal of case closure. TRC had intended to sample MW-24 as well, but this monitoring well was destroyed.

Groundwater samples were collected using low-flow sampling techniques with an Alexis peristaltic pump and Horiba U-53 multi-parameter meter and flow cell. During well purging, field parameters (temperature, conductivity, turbidity, dissolved oxygen, pH and oxidation/reduction potential [ORP]) were measured and allowed to stabilize prior to sampling. Low-flow sampling stabilization forms are provided in Attachment A. Groundwater samples were field filtered with a 0.52 micron filter and submitted for laboratory analysis of total dissolved chromium using method EPA 6010. All samples were packaged in a cooler with ice and shipped to Pace Analytical Services, LLC in Green Bay, Wisconsin (Pace) under standard chain of custody procedures.

Mr. Kevin McKnight May 13, 2019 Page 3 of 5

Purge water was drummed and discharged into the nearest sanitary sewer line, with permission from the City of New Holstein wastewater treatment plant.

Groundwater Elevations

Table 1 presents a summary of water level measurements collected during events between 2009 and 2019 and Figure A presents the groundwater elevation contours for the March 2019 sampling event. The groundwater gradient is oriented from the east/southeast portion of the facility, towards the west. Groundwater elevations were similar to previous groundwater monitoring events. Groundwater continues to exhibit an overall westerly flow direction as illustrated on Figure 1.

Groundwater Quality Assurance/Quality Control Results

TRC performed a Quality Assurance/Quality Control (QA/QC) review of the laboratory report, in regards to analyses, procedures, and protocols performed by Pace. Samples were received by Pace within the mandated timeframe and maintained at the proper temperature. Based on the results, there were no major insufficiencies regarding surrogate recoveries, analyte detections or sample duplicate recoveries. Based on an internal review by TRC, all data were considered acceptable. QC data indicate that measurement data are sufficient to meet method quality objectives, data are defensible, and QC mechanisms were effective in ensuring measurement data reliability.

RESULTS AND DISCUSSION

The groundwater analytical results are summarized in Table 2, which contains total dissolved chromium results from the March 2019 groundwater event, as well as previous analytical results. The low-flow stabilization geochemical results indicate that the dissolved oxygen is ranging between 3 and 10 milligrams per liter (mg/L) and an ORP greater than 200 millivolts (mV). The pH of the groundwater is slightly basic, ranging between 7 and 8 S.U. There is no obvious difference between the geochemistry of the source area as compared to down-gradient. The distribution of total dissolved chromium in groundwater is shown on Figure 2. The monitoring wells with total dissolved chromium exceeding the ES are shown on Figure 2. The laboratory analytical results are provided in Attachment B.

Total dissolved chromium concentrations exceeded the ES in 7 of the 11 monitoring wells in March 2019 (MW-A, MW-E, TEC-1, TEC-3, TEC-4, NH-7 and NH-26). Monitoring wells MW-B and MW-5 exceeded the Preventative Action Limit (PAL) in March 2019, but not the ES. The remaining two monitoring wells MW-F and MW-8 were below the ES and PAL.

In order to assess the current subsurface conditions of the Site, an evaluation of the dissolved chromium concentration trends has been completed. The historic distribution of total dissolved chromium in groundwater is shown on Figure 2. The extent of the total dissolved chromium has receded over time. The northern extent of dissolved chromium is likely not related to migration; dissolved chromium was likely there beforehand, which is supported by the more recent data points. The trend analysis charts were completed on monitoring wells which exceeded the ES. The trend analysis charts are provided in Attachment C. Based on these

Mr. Kevin McKnight May 13, 2019 Page 4 of 5

charts, which track dissolved chromium verses time, the following significant points can be made.

Source area monitoring well TEC-4 has remained stable through the last three groundwater sampling events. The overall concentrations of chromium have decreased compared to the 2011 and 2016 results. The high dissolved chromium concentration received during the April 22, 2016 groundwater sampling event appears to be an anomaly.

Dissolved chromium concentrations in source area monitoring well TEC-3 shows a decreasing trend since 2015. Dissolved chromium concentrations in NH-26 show a significant decrease since the last sampling event in 2017.

Dissolved chromium concentrations in down-gradient monitoring wells MW-E and MW-A have had significantly lower concentrations from their maximum concentrations of the last three groundwater sampling events (MW-E maximum concentration 1,290 μ g/L in 2014; MW-A maximum concentration 4,100 μ g/L in 2007). Dissolved chromium concentrations in down-gradient monitoring well TEC-1 have continued to decline since 2010. The dissolved chromium concentrations in these three monitoring wells has dropped significantly over time from the maximum concentrations which were greater than 1,200 μ g/L.

Dissolved chromium concentrations in down-gradient monitoring well NH-7 do not show a definitive trend. The concentration increased during the 2019 groundwater sampling event; however, these concentrations are still relatively low. Monitoring well NH-7 is near to and upgradient of MW-24 and NH-10, both of which have historical chromium results below the PAL and ES.

CONCLUSIONS AND RECOMMENDATIONS

Based on the evaluation of recent groundwater data, the overall extent of the dissolved contaminant plume remains stable compared with previous sampling events. Additionally, monitoring wells MW-B, MW-5, and MW-8 now lie outside of the impacted area above the ES indicating that the dissolved chromium has receded over time near the source area. These results confirm that MNA continues to be effective in controlling and mitigating the migration of residual chromium impacts to groundwater and remains a viable remedy for the site and that no further evaluation of remedial alternatives is necessary.

The groundwater impacts do not pose a threat to human health or the environment. Moreover, there is a deed restriction recorded to the property limiting certain activities and uses that further acts to protect human health and the environment.

TRC proposes to continue biennial groundwater sampling with the next round scheduled for Spring 2021 to further assess contaminant trends and confirm the effectiveness of MNA as a final remedy. Samples will be collected and analyzed for total dissolved chromium from the same monitoring well network. In addition, TRC proposes to sample monitoring well NH-10 to evaluate low level residual chromium impacts around NH-7. The proposed frequency of

Mr. Kevin McKnight May 13, 2019 Page 5 of 5

sampling is based on the fact that sufficient data has been collected, evaluated and presented to confirm the stable nature of the chromium groundwater impacts. If the stable to declining groundwater contaminant trends in source area wells (TEC-3, TEC-4, and NH-26) can be demonstrated after the 2021 sampling event, TRC will evaluate the appropriateness of recommending the site for case closure.

If you have any questions, please contact me at (312) 578-0870, extension 11910.

Sincerely,

Chris Harvey, PE Program Manager

Enclosures: Check for \$425: Report Fee

TABLES

Table 1. Groundwater Elevations 2009 - 2019 Table 2. Summary of Groundwater Analytical Data

FIGURES

Figure 1. Groundwater Isoconcentration Map – March 2019 Figure 2. Total Dissolved Chromium in Groundwater March 2019

ATTACHMENTS

Attachment A. Low-Flow Sampling LogsAttachment B. Laboratory Analytical Report (March 29, 2019)Attachment C. Trend Analysis Charts

cc: Mr. Jason Smith/Tecumseh Products Co. – Paris, TN
 Mr. Curtis Toll/Greenberg Traurig, LLP – Philadelphia
 Mr. Ron Bock/TRC – Irvine, CA
 Ms. Denise Danelski/WDNR – Green Bay, WI

TABLES

		June 8	, 2009	Septembe	r 23, 2009	December 2	8 & 29, 2009	March 29 8	£ 30, 2010	March 18 8	§ 19, 2011	May 15	i, 2012
Location	Top of Casing (TOC) Elevation (ft MSL)	Depth To Water Below TOC	Water Level Elevation										
MW-1	932.60	6.13	926.47	8.80	923.80	3.71	928.89	4.98	927.62	4.92	927.68	2.77	929.83
NH-2	935.34												
MW-4	932.24	4.32	927.92	7.55	924.69	2.56	929.68	3.77	928.47	3.56	928.68	2.67	929.57
MW-5	931.81	4.30	927.51	7.24	924.57	3.10	928.71	3.27	928.54	2.99	928.82	2.39	929.42
MW-6	931.90	5.23	926.67	8.45	923.45	3.17	928.73	3.72	928.18	3.46	928.44	2.85	929.05
NH-7	935.42	Well instal	led in 2012										
MW-8	931.89	4.07	927.82	6.73	925.16	2.99	928.90	3.33	928.56	3.11	928.78	2.63	929.26
MW-9	931.54	7.04	924.50	10.65	920.89	4.71	926.83	4.58	926.96				
NH-10	935.37												
NH-25	934.65	Well instal	led in 2012										
MW-24	931.07												
NH-26	934.76	Well instal	led in 2012										
MW-A	932.83	6.78	926.05	9.38	923.45	4.79	928.04	5.62	927.21	5.57	927.26	4.47	928.36
MW-B	932.58	5.69	926.89	8.60	923.98	3.00	929.58	4.40	928.18	4.22	928.36	3.11	929.47
MW-C	931.89	5.88	926.01	9.24	922.65	3.29	928.60	3.86	928.03	3.64	928.25	2.59	929.30
MW-D	941.90	5.81	936.09	9.96	931.94	5.18	936.72	4.04	937.86				
MW-E	933.31	7.28	926.03	9.81	923.50	6.20	927.11	6.43	926.88	6.33	926.98	5.32	927.99
MW-F	933.83	8.52	925.31	10.93	922.90	7.31	926.52	7.53	926.30	7.52	926.31	6.71	927.12
MW-G	934.37	7.52	926.85	10.66	923.71	7.02	927.35	7.28	927.09	7.21	927.16	5.98	928.39
MW-H	933.63	8.81	924.82	12.40	921.23	9.06	924.57	8.45	925.18				
TEC-1	932.51	4.20	928.31	6.67	925.84	3.69	928.82	3.89	928.62	3.46	929.05	3.14	929.37
TEC-1A	932.02	14.29	917.73	18.37	913.65	14.66	917.36	13.58	918.44	13.42	918.60	13.17	918.85
TEC-2	931.90	4.67	927.23	7.47	924.43	3.55	928.35	3.68	928.22	3.40	928.50	2.90	929.00
TEC-3	934.62	6.94	927.68	9.07	925.55	6.51	928.11	6.20	928.42	5.94	928.68	5.38	929.24
TEC-4	934.50	7.15	927.35	9.64	924.86	6.12	928.38	6.33	928.17	5.98	928.52	5.35	929.15

Table 1. Groundwater Level Elevations 2009-2019

MSL - Mean Sea Level

NA* Well underwater and could not be measured

		June 20 &	21, 2013	August 1	8, 2014	April 22	2, 2016	Septembe	er 7, 2016	April 26	6, 2017	March 2	1, 2019
Location	Top of Casing (TOC) Elevation (ft MSL)	Depth To Water Below TOC	Water Level Elevation										
MW-1	932.60	5.13	927.47	6.80	925.80	4.53	928.07	2.97	929.63			4.12	928.48
NH-2	935.34			3.68	931.66	4.01	931.33	3.65	931.69	3.82	931.52	3.63	931.71
MW-4	932.24	4.08	928.16	5.62	926.62	3.36	928.88	3.03	929.21				
MW-5	931.81	3.70	928.11	4.89	926.92	2.87	928.94	3.35	928.46			2.81	929.00
MW-6	931.90	4.28	927.62	5.91	925.99	3.19	928.71	3.69	928.21				
NH-7	935.42	8.64	926.78	9.14	926.28	7.77	927.65	8.13	927.29			7.22	928.20
MW-8	931.89	3.63	928.26	4.74	927.15	2.91	928.98	2.42	929.47	2.33	929.56	1.54	930.35
MW-9	931.54					3.96	927.58	4.99	926.55				
NH-10	935.37			9.24	926.13	8.23	927.14	8.59	926.78			7.80	927.57
NH-25	934.65	6.34	928.31	6.73	927.92	5.83	928.82	5.49	929.16			4.97	929.68
MW-24	931.07			7.58	923.49	4.94	926.13	6.21	924.86			Dest	royed
NH-26	934.76	6.76	928.00	6.99	927.77	6.24	928.52	NA*	934.76	5.73	929.03	6.04	928.72
MW-A	932.83	5.72	927.11	7.33	925.50	5.23	927.60	4.56	928.27	3.92	928.91	5.34	927.49
MW-B	932.58	4.58	928.00	6.31	926.27	3.95	928.63	3.57	929.01	2.69	929.89	3.88	928.70
MW-C	931.89	4.57	927.32	6.35	925.54	3.26	928.63	3.63	928.26			4.19	927.70
MW-D	941.90					3.86	938.04	6.59	935.31			3.58	938.32
MW-E	933.31	6.44	926.87	7.98	925.33	6.01	927.30	5.60	927.71	4.92	928.39	6.16	927.15
MW-F	933.83	7.76	926.07	9.02	924.81	7.21	926.62	7.41	926.42			7.38	926.45
MW-G	934.37	7.68	926.69	9.29	925.08	7.11	927.26	5.89	928.48			8.25	926.12
MW-H	933.63					7.88	925.75	7.19	926.44			8.61	925.02
TEC-1	932.51	4.08	928.43	4.95	927.56	3.54	928.97	4.29	928.22	3.29	929.22	3.34	929.17
TEC-1A	932.02	14.18	917.84	15.76	916.26	13.60	918.42	15.17	916.85			13.90	918.12
TEC-2	931.90	3.97	927.93	4.86	927.04	3.30	928.60	NA*	931.90			2.98	928.92
TEC-3	934.62	6.23	928.39	6.88	927.74	5.90	928.72	5.78	928.84	5.31	929.31	5.74	928.88
TEC-4	934.50	6.40	928.10	7.43	927.07	5.76	928.74	5.23	929.27	4.88	929.62	5.79	928.71

Table 1. Groundwater Level Elevations 2009-2019

MSL - Mean Sea Level

NA* Well underwater and could

Table 2 Groundwater Analytical Results - Dissolved Chromium and Lead Tecumseh Products Co. (Former)-Chromium Line New Holstein, Wisconsin

			UNDISSOLV	ED METALS			
WELL ID	Date Sampled	Hexavalent Chromium (CrVI)	Total Chromium ¹	Trivalent Chromium ² (CrIII)	Lead	Ferrous Iron	Total Organic Carbon
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
NR 140	PAL		10		1.5	150	
STANDARD	ES		100		15	300	
TW-1	8/13/2002	5.0	3.6	NM			
TW-2	8/13/2002	24	33	8.7			
TW-3	8/13/2002	130	110	NM			
TW-4	8/13/2002	7,900	8,200	NM			
TW-5	8/13/2002	700	640	NM			
TW-6	8/13/2002	5	1 U	NM			
TW-7	8/13/2002	6.3	1 U	NM			
TW-8	8/13/2002	6.3	1.9	NM			
TW-9	8/13/2002	8.9	0.44 U	NM			
TW-10	8/13/2002	3.6 U	1.3 U	NM			
MW-1	8/13/2002	1,900	1,700	NM			
	11/16/2005	4,600	4,900	300			
	5/24/2007	2,800	2,800	NM	0.24		
	6/9/2009	680	738	58 J	1.7 J		
	9/24/2009	1,700	1,660	200 U	3.3 J		
	12/28/2009	3.90 U	9.2	9.2 J	2.2 J		
	3/29/2010	5.3	57.6	52.3	2.2 J		
	5/18/2011	50	54.1	4.1			
	5/15/2012	4.4 J	16.1	11.7 J			
	6/21/2013	33	54.9	NM	2.3 J		
	8/19/2014		4.1 J		3 U		
MW-2	8/13/2002	3.6 U	2.3	3.6 U			
	11/16/2005	5.0 U	2.8	NM			
NH-2	4/24/2012		<2.4		<1.4		
	8/19/2014		2.1 J		3 J		
	4/26/2017	<3.9	3.7 J	NM	NM	<28	3,400
MW-3	8/13/2002	1,900	1,700	NM			
MW-4	8/13/2002	3.7	0.44 U	NM			
	11/15/2005	5.0 U	2.0	NM			
	5/24/2007	3.4 U	0.63	NM	0.26		
	6/9/2009	3.9 U	1.3 J	NM	2.2 J		
	9/24/2009	3.9 U	0.39 U	3.9 U	1.3		
	12/28/2009	3.9 U	1.2 J	3.9 U	1.3		
	3/29/2010	3.9 U	0.82 J	3.9 U	1.4 J		
	5/18/2011	3.9 U	1.6 J	3.9 U			
	5/15/2012	3.9 U	2.4 U	3.9 U			
	6/20/2013	3.4 U	1.2 U	3.9 U	1.2 U		
	8/19/2014		2.1 U	NM	3 U		

Notes:

ES = NR140 Enforcement Standard

 $\frac{PAL = NR140 \text{ Preventative Action Limit}}{TZE} = Detection over NR140 PAL Limit}$ ITALICIZE

BOLD = Detection over NR140 ES Limit

U = Analyte not detected at or above reporting limit

 $J=\ensuremath{\mathsf{Estimated}}$ value. Analyte detected at a level less than the reporting limit and greater than or equal to the detection limit.

"--" = Analyte was not sampled during sampling round

NM Not measured/calculated, due to $\mbox{Cr}(\mbox{VI})$ result greater than total \mbox{Cr} result.

l = PAL and ES values are for total chromium.

As such, these values are not applicable for hexavalent chromium.

2 = Trivalent chromium is the difference between total chromium and hexavalent chromium concentrations.

			UNDISSOLV	ED METALS			
WELL ID	DATE SAMPLED	HEXAVALENT CHROMIUM (CrVI)	TOTAL CHROMIUM ¹	TRIVALENT CHROMIUM ² (CrIII)	Lead	Ferrous Iron	Total Organic Carbon
	UNITS	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
NR 140	PAL		10		1.5		-
STANDARD	ES		100		15		-
MW-5	8/13/2002	380	390	180 U	NM		
	11/16/2005	330	270	NM	NM		
	5/24/2007	1,100	910	NM	0.19		
	6/9/2009	950	938	9.8 U	3.2 Ј		
	9/24/2009	3400	3,510	110	2.6 J		
	12/29/2009	240	240	3.9 U	1.5 J		
	3/30/2010	210	202	3.9 U	2 J		
	5/19/2011	140	134	NM	NM		
	5/15/2012	350	339	NM	NM		
	6/20/2013	290	313	NM	1.2 U		
	8/18/2014	NM	318		3 U		
	3/21/2019		81.6				
MW-6	8/13/2002	8.9	0.56 U	NM	NM		
	11/15/2005	45	65	20	NM		
	5/24/2007	3.4 U	2.6	NM	0.07		
	6/9/2009	3.9 U	0.39 U	3.9	2.6 J		
	9/24/2009	3.9 U	5.0	5.0	2 J		
	12/28/2009	3.9 U	0.48 J	3.9	1.3 U		
	5/19/2010	3.9 U	0.39 U	3.9	2.3 J		
	5/18/2011	3.9 U	1.2 J	3.9	INIM		
	6/20/2013	3.9 U 3.4 U	1.2 U	3.9 NM	1.2 U		
	8/19/2014	NM	2.1 U	NM	1.2 U		
NH-7	4/24/2012	NM	261	NM	1.7 I		
	6/20/2013	110	111	NM	1.2 U		
	8/19/2014	NM	114	NM	3 U		
	3/21/2019		279				
MW-8	8/13/2002	3 100	3.200	720 U	NM		
	11/16/2005	3,000	2,900	NM	NM		
	5/24/2007	1 900	1,600	NM	0.09		
	6/0/2000	7 300	8 730	1400	291		
	0/3/2009	8 200	8,730	270	2.5 J		
	9/24/2009	5100	5,150	270 50 I	2.0 J		
	12/29/2009	1,000	1,720	190	1.9 J		
	3/29/2010	1,900	1,720	180	2.3 J		
	5/19/2011	320	330	10	NM		
	5/15/2012	3,100	2,940	NM	NM		
	6/20/2013	860	844	NM	<i>1.8</i> J		
	8/18/2014	NM	1,320	NM	3 U		
	4/22/2016	NM	46.7	NM	NM		
	9/7/2016	NM	725	NM	NM		
	4/26/2017	<3.9	<2.5	NM	NM	<28	4,500
	3/21/2019		5.2 J				

Notes:

ES = NR140 Enforcement Standard

PAL = NR140 Preventative Action Limit

ITALICIZE = Detection over NR140 PAL Limit

BOLD = Detection over NR140 ES Limit

U = Analyte not detected at or above reporting limit

 $J=Estimated \ value. \ Analyte \ detected \ at \ a \ level \ less \ than \ the \ reporting \ limit \ and \ greater \ than \ or \ equal \ to \ the \ detection \ limit.$

"--" = Analyte was not sampled during sampling round

NM Not measured/calculated, due to Cr(VI) result greater than total Cr result.

l = PAL and ES values are for total chromium.

As such, these values are not applicable for hexavalent chromium.

2 = Trivalent chromium is the difference between total chromium

and hexavalent chromium concentrations.

Table 2 Groundwater Analytical Results - Dissolved Chromium and Lead Tecumseh Products Co. (Former)-Chromium Line New Holstein, Wisconsin

			UNDISSOLV	ED METALS			
WELL ID	DATE SAMPLED	HEXAVALENT CHROMIUM (CrVI)	TOTAL CHROMIUM ¹	TRIVALENT CHROMIUM ² (CrIII)	Lead	Ferrous Iron	Total Organic Carbon
	UNITS	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
NR 140	PAL		10		1.5		-
STANDARD	ES		100		15		-
MW-9	8/13/2002	3.6 U	0.44 U	3.6	NM		
	11/15/2005	5.0 U	1.7	NM	1.8		
	5/24/2007	5.4	0.44	NM	0.06		
	6/9/2009	3.9 U	0.39 U	3.9 U	2.2 J		
	9/24/2009	3.9 U	0.39 U	3.9 U	2.1 J		
	12/28/2009	3.9 U	0.39 U	3.9 U	1./ J		
NUL 10	5/29/2010	3.9 U	4.9 J	4.9 J	2.4 J		
NH-10	4/23/2012	INM	4.1 J	NM	1.9 J		
MW 24	8/19/2014	NM	2.1 U	NM	3 U		
MW-24	6/19/2014	INM	5.7 J	NM	3 U		
NH-25	4/23/2012	2 100	1,220	NM	1.0 J		
	6/20/2013	5,100	3,330	INIM	2.8 J		
NUL OC	8/19/2014	INIVI	895		30		
NH-20	4/23/2012		4/0		<1.4		
	6/20/2013	480	510	NM	1.2 U		
	8/19/2014		284		3 U		
	4/26/2017	1,500	1,400	NM	NM	<28	7,400
	3/21/2019		763				
MW-A	5/24/2007	4,000	4,100	100	27.0		
	6/8/2009	1,500	1,510	20 U	2.1 ј		
	9/24/2009	3,600	3,710	110	1.5 ј		
	12/28/2009	1,900	1,870	20 U	2.1 J		
	3/29/2010	1,500	1,390	110	2.3 ј		
	5/18/2011	590	594	4			
	5/15/2012	440	417	NM			
	6/21/2013	520	484	NM	2.3 J		
	8/19/2014		18.1		3		
	4/22/2016		307				
	9/7/2016	NM	60.1	NM	NM		
	4/26/2017	220	205	NM	NM	-29	5 800
	4/20/2017	350	459	INIVI	INN	<28	3,800
MWD	5/21/2019		430				
MW-B	5/24/2007	910	780	NM 20 V	0.044 U		
	6/9/2009	570	533	20 U	2.2 J		
	9/24/2009	1,300	1,200	100 U	1.6 J		
	12/28/2009	740	649	20 U	2.4 J		
	3/29/2010	270	263	20 U	2.2 J		
	5/18/2011	68	64	NM			
	5/15/2012	5.5 J	10.2	4.7 ј			
	6/20/2013	74	73.8	NM	1.2 U		
	8/19/2014		47.1		3 U		
	4/22/2016	NM	20.1	NM	NM		
	9/7/2016	NM	585	NM	NM		
	4/26/2017	<3.9	4.7 I	NM	NM	<28	910
	3/21/2019		79.6				

Notes:

ES = NR140 Enforcement Standard

PAL = NR140 Preventative Action Limit

ITALICIZE= Detection over NR140 PAL LimitBOLD= Detection over NR140 ES Limit

U = Analyte not detected at or above reporting limit

J = Estimated value. Analyte detected at a level less than the reporting limit and greater than or equal to the detection limit.

"--" = Analyte was not sampled during sampling round

NM Not measured/calculated, due to Cr(VI) result greater than total Cr result.

1 = PAL and ES values are for total chromium.

As such, these values are not applicable for hexavalent chromium.

2 = Trivalent chromium is the difference between total chromium and hexavalent chromium concentrations.

			DISSOLVED	METALS		UNDISSOLV	ED METALS
WELL ID	DATE SAMPLED	HEXAVALENT CHROMIUM (CrVI)	TOTAL CHROMIUM ¹	TRIVALENT CHROMIUM ² (CrIII)	Lead	Ferrous Iron	Total Organic Carbon
	UNITS	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
NR 140	PAL		10		1.5		
STANDARD	ES		100		15		
MW-C	5/24/2007	3.4 U	1.3	NM	0.07		
	6/9/2009	3.9 U	1.1 J	3.9 U	2.4 J		
	9/24/2009	3.9 U	0.39 U	3.9 U	4.1 J		
	12/28/2009	3.9 U	4.5 J	4.5 J	<i>1.9</i> J		
	3/29/2010	3.9 U	4.2 J	4.2 J	1.4 J		
	5/18/2011	3.9 U	2.3 J	3.9 U			
	5/15/2012	3.9 U	2.4 U	3.9 U			
	6/20/2013	3.4 U	1.2 U	NM	1.2 U		
	8/19/2014		2.1 U		3 U		
MW-D	5/25/2007	3.4 U	1.9	NM	0.1		
	6/9/2009	3.9 U	2.4 J	3.9 U	1./ J		
	9/24/2009	3.9 U	0.42 J	3.9 U	3 J		
	12/29/2009	3.9 U	1.9 J	3.9 U	2.3 J		
MW E	5/29/2010	3.9 U	1.0 J	3.9 U	1.4 J		
WIW-E	6/9/2009	290	208	3.9 U	2 J		
	9/24/2009	340	353	20 U	2 J		
	12/29/2009	870	814	39 U	3.9 J		
	3/30/2010	890	808	39 U	<i>1</i> .9 J		
	5/19/2011	1,000	963	NM			
	5/15/2012	1,000	920	NM			
	6/20/2013	1,200	1,150	NM	2.9 ј		
	8/19/2014		1,290		3 U		
	4/22/2016	NM	594	NM	NM		
	9/7/2016	NM	507	NM	NM		
	4/26/2017	550	533	NM	NM	<28	6.200
	3/21/2019		628				
MW-F	6/8/2009	3.9 U	0.46 J	3.9 U	2.2 J		
	9/23/2009	3.9 U	0.39 U	3.9 U	2.4 J		
	12/28/2009	3.9 U	1.8 I	3.9 U	1.6 I		
	3/29/2010	3.9 U	1.4 J	3.9 U	2.2 I		
	5/18/2011	39 U	17 I	39 U			
	5/15/2012	3.9 U	2.4 II	3.9 U			
	6/21/2012	3911	1.2 U	NM	1211		
	8/10/2014	3.9 U	2.1 U	14141	3.11		
	8/19/2014	5.9 0	2.1 U		50		
MW C	5/21/2019	 20 U	2.3 U	 20 U			
WIW-O	0/22/2009	3.9 U	0.7 J	3.9 U 2 0 U	1.5 4.0 I		
	12/28/2009	3.9 U 3 9 U	0.39 U	3.9 U	4.9 J 10 I		
	3/29/2010	3.9 U	0.39 J	3911	1.7 J 3 I		
	5/18/2011	3.9 U	11 I	3.9 U			
	5/15/2012	3.9 U	2.4 U	3.9 U			
	6/21/2013	3.4 U	1.2 U	NM	<i>3.1</i> J		
	8/19/2014		2.1 U		3 U		

Notes:

ES = NR140 Enforcement Standard

PAL = NR140 Preventative Action Limit

ITALICIZE = Detection over NR140 PAL Limit

BOLD = Detection over NR140 ES Limit

U = Analyte not detected at or above reporting limit

 $J=\ensuremath{\mathsf{Estimated}}$ value. Analyte detected at a level less than the reporting limit

and greater than or equal to the detection limit.

"--" = Analyte was not sampled during sampling round

NM Not measured/calculated, due to Cr(VI) result greater than total Cr result.

1 = PAL and ES values are for total chromium.

As such, these values are not applicable for hexavalent chromium.

2 = Trivalent chormium is the difference between total chromium

and hexavalent chromium concentrations.

			DISSOLVED	METALS		UNDISSOLV	ED METALS
WELL ID	DATE SAMPLED	HEXAVALENT CHROMIUM (CrVI)	TOTAL CHROMIUM ¹	TRIVALENT CHROMIUM ² (CrIII)	Lead	Ferrous Iron	Total Organic Carbon
	UNITS	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
NR 140	PAL		10		1.5		-
STANDARD	ES		100		15		-
MW-H	6/8/2009	3.9 U	0.89 J	3.9 U	1.3		
	9/23/2009	3.9 U	3.9 U	3.9 U	2.1 J		
	12/28/2009	3.9 U	3.9 U	3.9 U	2.7 J		
	3/29/2010	3.9 U	3.9 U	3.9 U	1.6 J		
TEC-1	8/13/2002	500	490	NM			
	11/16/2005	4,300	3,800	NM	1.9		
	5/23/2007	790	670	NM	20		
	6/10/2009	11,400	12,000	600 J	3.5 ј		
	9/24/2009	3,000	3,120	120	3.8 Ј		
	12/29/2009	7,900	7,430	200 U	3.3 Ј		
	3/30/2010	6,700	6,710	200 U	3.3 ј		
	5/19/2011	2,400	2.620	220			
	5/15/2012	2,300	2.190	NM			
	6/20/2012	2,300	2,250	NM	43 I		
	8/18/2014		1,250		3 U		
	4/26/2017	650	598	NM	NM	<28	2.100
	3/21/2019		315				
TEC-1A	8/13/2002	14	0.52 U	NM			
	3/6/2006	5.0 U	2.8	NM			
	5/23/2007	3.4 U	0.43 U	NM	0.07		
	6/9/2009	14 J	22.6	9 J	2.2 J		
	9/24/2009	3.9 U	1.1 J	3.9 U	2.1 J		
	12/29/2009	3.9 U	4.3 J	4.3 J	2 J		
	3/29/2010	3.9 U	5.1	5.1	<i>1.5</i> J		
	5/19/2011	32	38.7	6.7			
	5/15/2012	3.9 U	8.2	8.2			
	6/20/2013	3.4 U	1.2 U	NM	1.2 U		
	8/18/2014		2.1 U		3 U		
TEC-2	8/13/2002	16	0.44 U	NM			
	11/16/2005	5.0 U	0.78	NM			
	5/24/2007	3.4 U	0.94		0.13		
	6/9/2009	3.9 U	1.2 J	3.9 U	2.5 J		
	9/24/2009	3.9 U	0.68 J	3.9 U	3.1 J		
	12/29/2009	3.9 U	1.1 J	3.9 U	3.2 J		
	5/30/2010	3.9 U	2.7 J	3.9 U	2.3 J		
	5/19/2011	3.9 U	1.3 J	3.9 U			
	5/15/2012 6/20/2013	3.9 U 3.4 U	2.4 U	3.9 U NM	 28 I		
	8/18/2014		2.1 U		2.0 J 30 U		

Notes:

ES = NR140 Enforcement Standard

PAL = NR140 Preventative Action Limit

ITALICIZE = Detection over NR140 PAL Limit

BOLD = Detection over NR140 ES Limit

U = Analyte not detected at or above reporting limit

 $J=Estimated \ value. \ Analyte \ detected \ at \ a \ level \ less \ than \ the \ reporting \ limit \ and \ greater \ than \ or \ equal \ to \ the \ detection \ limit.$

"--" = Analyte was not sampled during sampling round

NM Not measured/calculated, due to Cr(VI) result greater than total Cr result.

1 = PAL and ES values are for total chromium.

As such, these values are not applicable for hexavalent chromium.

2 = Trivalent chromium is the difference between total chromium and hexavalent chromium concentrations.

	DATE		DISSOLVED	METALS		UNDISSOLVED METALS		
WELL ID	SAMPLED	HEXAVALENT	TOTAL	TRIVALENT	Lead	Ferrous Iron	Total Organic	
	UNITS	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	
NR 140	PAL		10		1.5		-	
STANDARD	ES		100		15		-	
TEC-3	9/23/2003	270	310	40				
	11/16/2005	540	490	NM				
	5/24/2007	1,000	910	NM	0.17			
	6/10/2009	400	789	390	3.5 ј			
	9/24/2009	99	<i>99</i>	20 U	1.8 ј			
	12/29/2009	190	201	11 J	2.2 Ј			
	3/30/2010	470	445	20 U	1.3 J			
	5/19/2011	580	585	5				
	5/15/2012	250	227	NM				
	6/20/2013	1,200	1,260	NM	1.2 U			
	8/19/2014		2,100		3 U			
	4/22/2016	NM	5,650	NM	NM			
	9/7/2016	NM	2,820	NM	NM			
	4/26/2017	5,300	5,040	NM	NM	<28	5,800	
	3/21/2019		1,080					
TEC-4	9/23/2003	1,200	1,300	100				
	11/16/2005	2,800	2,700	NM	0.40 U			
	5/24/2007	4,800	4,000	NM	0.06			
	6/10/2009	13,300	12,500	200 U	2.3 ј			
	9/24/2009	5,500	5,220	500 U	2.3 ј			
	12/29/2009	5,200	5,360	160 ј	3 ј			
	3/30/2010	14,300	12,900	390 U	2.5 ј			
	5/19/2011	29,000	29,200	200				
	5/15/2012	21,300	20,300	NM				
	6/20/2013	33,600	32,200	NM	14 U			
	8/19/2014		6,880		3 U			
	4/22/2016	NM	65,100	NM	NM			
	9/7/2016	NM	33,100	NM	NM			
	4/26/2017	16,200	15,400	NM	NM	<28	13,400	
	3/21/2019		16,900					

Notes:

ES = NR140 Enforcement Standard

PAL = NR140 Preventative Action Limit

ITALICIZE = Detection over NR140 PAL Limit

BOLD = Detection over NR140 ES Limit

U = Analyte not detected at or above reporting limit

J = Estimated value. Analyte detected at a level less than the reporting limit and greater than or equal to the detection limit.

"--" = Analyte was not sampled during sampling round

NM Not measured/calculated, due to Cr(VI) result greater than total Cr result.

1 = PAL and ES values are for total chromium.

As such, these values are not applicable for hexavalent chromium.

2 = Trivalent chromium is the difference between total chromium

and hexavalent chromium concentrations.

FIGURES

The			++++	×			1	AL CONTRACT AND	
1.			+++++++++++++++++++++++++++++++++++++++	t t		MIC	CHIGAN	AVE.	T
- 8 8							and the		
LEGEND:	MONITORING WELL LOCATION		ENFORCEMENT STANDARD TOTAL DISSOLVED CHROM DASHED WHERE INFERRED	POINT-OF-COMF IUM (100 ug/L) BY	PLIANCE FOR YEAR	N	TECUMSEI	⊢BRRTS #02-08 H PRODUCTS CO. (FOF NEW HOLSTEIN, W	363333 RMER) - CHROMIUM LINE 'ISCONSIN
₽ ++++++++++++++++++++++++++++++++++++	MONITORING WELL INSTALLED BY ROBERT E. LEE & ASSOCIATES IN 20 RAILROAD TRACKS)12	2019 2017 2014			+	GROUND	WATER ISOCONCENT	RATION MAP BY YEAR
(65) (NS) (ND)	TOTAL DISSOLVED CHROMIUM (ug/L) NOT SAMPLED CHROMIUM NOT DETECTED		2009 2005 2003/	2002		ļ	DRAWN BY: S CHECKED BY: C APPROVED BY: C DATE: A	ALBERTS SCALE: T.GOMOLL AS SHOWN C.HARVEY APRIL 2019	PROJ. NO. 107927 FILE NO. 107927-16(CR LINE).dwg FIGURE 2
	TOTAL CHROMIUM BELOW ENFORCEMENT STANDARD	NOTES: 1. SAMPLES COLLECTED 2. TEC-1A IS A DEEP WEL	MARCH 2019. L.	0	60 SCALE IN FEE	120 T	•>	TRC	230 West Monroe St. Suite 630 Chicago, IL 60606 Phone: 312.578.0870

ATTACHMENT A

	Wel	TEC-	3
	Date	3/21/	2019
	Locati	on New Holstein, WI	
_	Site	e Tecumseh / HARP	
Static Depth to Water (ft)	44 3	Sample Collection Time	0915
Total Purge Volume (gal)		Purge Method	Peristaltic Pump
Total Depth (ft)		Sample Method	Low-Flow Through Flow Cell
Screen Depth Interval (ft)		Water Description	Claring ider
LNAPL (in)	-	Sampling Personnel	AJ / TG

Time (min)	Volume Purged (L)	Flow Rate (L/min)	Depth to Water (ft)	Drawdown (ft)	pH (SU) (±0.1 units)	Temp (°C) (± 3%)	Conductivity (mS/cm) (±3%)		ORP (mV) (±10 mV)	Dissolved Oxygen (mg/L) (±10%)	Turbidity (NTUs) (±10% for >1)
6554		100	5.23	0.09	7.18	6.02	0.855		190	3.61	8.1
0853		·	5.86	0.12	7.22	6.00	0.640		195	3.93	7./
0902			5.86	0,12	7.21	5.89	0.848		204	3.78	6.1
0906			5.86	0,12	7.29	5.67	0.958		208	3.90	5.0
0910			5.86	0,12	7.29	5.49	0.261		212	3.96	4.5
5+954											
	_										
_											
										-	
			· ·								
								B ¹ - Alexandra Alexandra Maria - Alexandra Maria - Alexandra			
	1			1							
	1										

Page _____ of _____

		Well		TEL-4	
		D	ate	3/21/2019	
	Loc	ation	New Holstein, WI		
	Γ	Site		Tecumseh / HARP	
Static Depth to Water (ft)	5.7	5	Sample	Collection Time	1120
Total Purge Volume (gal)			Pur	ge Method	Peristaltic Pump
Total Depth (ft)	Total Depth (ft)		Sam	ple Method	Low-Flow Through Flow Cell
Screen Depth Interval (ft)		Wa		r Description	Clear, no oten
LNAPL (in)	-		Sampli	ing Personnel	AJ / TG

Time (min)	Volume Purged (L)	Flow Rate (L/min)	Depth to Water (ft)	Drawdown (ft)	pH (SU) (±0.1 units)	Temp (°C) (± 3%)	Conductivity (mS/cm) (±3%)	ORP (mV) (±10 mV)	Dissolved Oxygen (mg/L) (±10%)	Turbidity (NTUs) (±10% for >1)
1057	0,5	0.100	5.96	6.11	7.43	3.11	1.10	278	9.15	2.6
1101		0.100	5.86	0.11	7.36	3,30	<u>l.</u> [0	281	9,73	2.6
1105		6.100	5.87	0.12	7.30	3.57	1.09	283	9.89	2.9
1109		0.100	5.87	0.12	7.26	3.70	1.09	289	9.69	2.7
1113.		0,100	5.87	0, R	7,27	3.18	1.09	285	9.91	2.3
Stuble	·									
						_				
									·	
								<u> </u>		
								····		
									ļ	

Page _____ of ____

		W	ell	NH-26	
		Da	ite	3/21/2019	
	Loca	ation	New Holstein, WI		
	Site		Tecumseh / HARP		
Static Depth to Water (ft)	6.04		Sample (Collection Time	1200
Total Purge Volume (gal)			Pur	ge Method	Peristaltic Pump
Total Depth (ft)	Total Depth (ft)		Sam	ple Method	Low-Flow Through Flow Cell
Screen Depth Interval (ft)	Screen Depth Interval (ft)		Water	Description	Oler, no oter
LNAPL (in)	-		Sampli	ng Personnel	AJ / TG

Time (min)	Volume Purged (L)	Flow Rate (L/min)	Depth to Water (ft)	Drawdown (ft)	pH (SU) (±0.1 units)	Temp (°C) (± 3%)	Conductivity (mS/cm) (±3%)	ORP (mV) (±10 mV)	Dissolved Oxygen (mg/L) (±10%)	Turbidity (NTUs) (±10% for >1)
1132	6.50	0.100	6.11	0.07	7.42	3.34	1.01	283	3.52	2.4
1136		0.100	6.11	0.07	7.39	3.61	1.00	280	5.35	1.9
1140		0.100	6.11	10-07	7:36	3.69	1.00	279	5,36	<u>Г.Ч</u>
1144		0.100	6.11	0.07	732	3,78	0.998	279	J:36	1.5
1148,			611	0107	7.3	1.83	0.999	278	5.37	1.8
5466										
								·······		
									·	
							·			

	W	Vell	MV-E		
	D	ate	3/21/2019		
	Loc	ation	New Holstein, WI		
	S	Site	Tecumseh / HARP		
Static Depth to Water (ft)	6.16	Sample (Collection Time	134 1351	
Total Purge Volume (gal)		Purg	je Method	Peristaltic Pump	
Total Depth (ft)		Sam	ole Method	Low-Flow Through Flow Cell	
Screen Depth Interval (ft)		Water	Description	Clearing ofor	
LNAPL (in)	~	Sampli	ng Personnel	AJ / TG	

Time (min)	Volume Purged (L)	Flow Rate (L/min)	Depth to Water (ft)	Drawdown (ft)	pH (SU) (±0.1 units)	Temp (°C) (± 3%)	Conductivity (mS/cm) (±3%)	ORP (mV) (±10 mV)	Dissolved Oxygen (mg/L) (±10%)	Turbidity (NTUs) (±10% for >1)
1323	0.50	0.10	6.24	0.08	7.42	3.22	0.897	29]	4.19	31.8
1327		0.10	6.27	6.11	7.32	4.07	0.870	296	3.86	- 13.9
1331		0.10	6.28	0.12	730	4,33	0.963	279	9.17	15.3
1335		0,10	6.28	0,12	7.28	4.15	6.860	271	4.15	10.2
1339		0.10	6.28	0.12	7,26	4,92	6.812	262	4.12	6.9
1343		6. ID	6.28		7.26	5.26	0.855	249	4.12	4.8
1347			6.28		7.26	5.20	0.858	243	4.20	4.3
1351			Ŭ		7.26	5.24	0.851	259	4.19	3.5
·				<u> </u>						
·				· ·						
	· ·			<u> </u>						
									<u> </u>	
l									<i>4</i> ¹	

· . .

Page _____ of _

		Well		TEC-1 1	(pur-1)
		Da	ate	3/20	19
	Loca	ation	New Holstein, WI		
	Site		Tecumseh / HARP		
Static Depth to Water (ft)	3.22		Sample	Collection Time	1435
Total Purge Volume (gal)			Pur	ge Method	Peristaltic Pump
Total Depth (ft)	Total Depth (ft)		Sam	ple Method	Low-Flow Through Flow Cell
Screen Depth Interval (ft)			Wate	r Description	Clear, no oter
LNAPL (in)			Sampl	ing Personnel	AJ / TG

Time (min)	Volume Purged (L)	Flow Rate (L/min)	Depth to Water (ft)	Drawdown (ft)	pH (SU) (±0.1 units)	Temp (°C) (± 3%)	Conductivity (mS/cm) (±3%)	ORP (mV) (±10 mV)	Dissolved Oxygen (mg/L) (±10%)	Turbidity (NTUs) (±10% for >1)
1405	0.50	0.10	3,58	0.36	7.98	5.96	0.394	246	7.09	8.9
1409		0.10	3,12	0.4D	7.99	5.78	0.395	235	7.03	10.1
1413		0.10	3,68	0.46	7.96	5.68	0.392	236	7.04	7.8'
1414		0, 10	3.69	0.47	7.93	5.61	0.390	238	7.03	6.9
1421		0.0	371	6.49	7.95	3.66	6,389	239	7.02	7.5
Styley										
										·.
	· .		-			<u> </u>				
L		ļ							L	
	'							·		
						· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·		ļ							
			. <u>.</u>		-					
			· · · · ·							
ļ				ļ			ļ			
· · · · · · · · · · · · · · · · · · ·			·	ļ						
			ļ	ļ			ļ			
		<u> </u>				<u> </u>			<u> </u>	

Form Date:

Sec.

. .

		We	ell	MW-8	
					-014
				New Holstein, WI	
Static Depth to Water (ft)	1.54	Samp		Collection Time	1456
Total Purge Volume (gal)			Purç	ge Method	Peristaltic Pump
Total Depth (ft)	Total Depth (ft)		Sampl		Low-Flow Through Flow Cell
Screen Depth Interval (ft)			Water	r Description	cler
LNAPL (in)		Sam		ng Personnel	AJ / TG

Time (min)	Volume Purged (L)	Flow Rate (L/min)	Depth to Water (ft)	Drawdown (ft)	pH (SU) (±0.1 units)	Temp (°C) (± 3%)	Conductivity (mS/cm) (±3%)		ORP (mV) (±10 mV)	Dissolved Oxygen (mg/L) (±10%)	Turbidity (NTUs) (±10% for ·≶1)
1440			1.88		7.65	6.36	.0.351		252	4.49	7,6
10144			1.85		7.52	6.51	0.345		250	4,23	9.1
1448			1.85		7.45	6.49	0.340		246	4.15	7.8
1452			1.85		7.57	6.67	0.336		242	4.10	9.2
1456			1.85		7.15	6.70	0.328		237	4.06	9,0
		2									
	-			3							<u> </u>
							· · · · · · · · · · · · · · · · · · ·				
				· · · · · · · · · · · · · · · · · · ·							
					-						
							<u>الم</u>				·
		*									
·											n n n n n n n n n n n n n n n n n n n
							Children Barry	4 	: <u>1</u>		
						1 1				5	

Page

		Well		MW-5	
		Dat	te	3/21/2	2019
		Loca	tion	New Holstein, WI	
		Site		Tecumseh / HARP	
Static Depth to Water (ft)	2.81		Sample	Collection Time	1527
Total Purge Volume (gal)				rge Method	Peristaltic Pump
Total Depth (ft)	Total Depth (ft)		Sample		Low-Flow Through Flow Cell
Screen Depth Interval (ft)			Wate	er Description	
LNAPL (in)	/	Sampli		ling Personnel	AJ / TG

Time (min)	Volume Purged (L)	Flow Rate (L/min)	Depth to Water (ft)	Drawdown (ft)	pH (SU) (±0.1 units)	Temp (°C) (± 3%)	Conductivity (mS/cm) (±3%)	ORP (mV) (±10 mV)	Dissolved Oxygen (mg/L) (±10%)	Turbidity (NTUs) (±10% for >1)
1506			2.66		7.23	5.70	0.553	255	4.14	2.4
1510			2.63		7.18	6.17	0.543	247	1.76	1,4
1514			2.62		7.11	6.31	6.533	219	3.65	1.9
1518			2.61		7.14	6.22	0.511	228	3.61	1.6
1522			2.61		7.12	6.10	0.499	218	3.95	3.0
					L <u></u>					
	-									
					·					
								<u>_</u>	1. 14 12 - 14	
							a			
								· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
		·								
							4			

Page

2

Form Date:

		W	ell	NH-7	
		Da	ate	3/21/1	G
		Loca	ation	New Holstein, WI	
		Si	ite	Tecumseh / HARP	
Static Depth to Water (ft)	7.20	λ	Sample	Collection Time	1605
Total Purge Volume (gal)			Purg	ge Method	Peristaltic Pump
Total Depth (ft)			Sam	ple Method	Low-Flow Through Flow Cell
Screen Depth Interval (ft)			Water	Description	
LNAPL (in)	ĺ ĺ		Sampli	ng Personnel	AJ / TG

Time (min)	Volume Purged (L)	Flow Rate (L/min)	Depth to Water (ft)	Drawdown (ft)	pH (SU) (±0.1 units)	Temp (°C) (± 3%)	Conductivity (mS/cm) (±3%)	ORP (mV) (±10 mV)	Dissolved Oxygen (mg/L) (±10%)	Turbidity (NTUs) (±10% for >1)
1540	0.50	0.16	7.36	0.19	7.15	7.25	0.844	272	8.50	15.4
1544		0.16	7.39	0.17	7.27	7.31	6.810	265	8.25	
1518		0.10	7.39	0.17		7.36	0.821	265	7.90	13.'4
1552		0.10	7.39	OUT	7.26	7.92	0.837	266	7.76	17.9
1556		0.18	7.39	0.17	7.26	6.96	0.834	267	8.07	16,6
Stable								, 		
			·							
<u> </u>		·								
	<u> </u>		<u> </u>							
				`						
						<u> </u>				
· · · ·									·	
						·		-		
										_

		. w	/ell	NW-	F (MS/MSN)	
		Da	ate	3/21/	2019	
		Loc	ation	New Holstein, WI		
		s	ité	Tecumseh / HARP		
Static Depth to Water (ft)	7.3	8	Sample	Collection Time	1705	
Total Purge Volume (gal)			Pur	ge Method	Peristaltic Pump	
Total Depth (ft)			Sam	ple Method	Low-Flow Through Flow Cell	
Screen Depth Interval (ft)			Wate	r Description		
LNAPL (in)	_	_	Sampl	ing Personnel	AJ / TG	

Time (min)	Volume Purged (L)	Flow Rate (L/min)	Depth to Water (ft)	Drawdown (ft)	pH (SU) (±0.1 units)	Temp (°C) (± 3%)	Conductivity (mS/cm) (±3%)	ORP (mV) (±10 mV)	Dissolved Oxygen (mg/L) (±10%)	Turbidity (NTUs) (±10% for >1)
1634	0.50	0.15	7.57	0.19	7.35	6.93	0.935	269	5.33	123
1636		0.15	7.66	0,28	7.31	6-67	6.937	262	3-05	12.9
1642		0.15	7.74	0.36	7.22	6.56	0.901	259	5.23	13.2
1646		0.15	7.92	6.44	7.19	6.52	6.838	257	5.56	9.2
1650		0.15	7.99	0,5	7.15	6.45	6,783	257	5,84	5.6
stubb			, 			_		·/		
					<u> </u>					
					1.					
					· .					

		Well	MW-A	
		Date	3/21/201	9
		Location	New Holstein, WI	
		Site	Tecumseh / HARP	
Static Depth to Water (ft)	5.34	Sample	Collection Time	1725
Total Purge Volume (gal)		Pi	Irge Method	Peristaltic Pump
Total Depth (ft)		Sai	mple Method	Low-Flow Through Flow Cell
Screen Depth Interval (ft)		Wat	er Description	Clew, no other
LNAPL (in)	_	Sam	oling Personnel	AJ / TĠ

Time (min)	Volume Purged (L)	Flow Rate (L/min)	Depth to Water (ft)	Drawdown (ft)	pH (SU) (±0.1 units)	Temp (°C) (± 3%)	Conductivity (mS/cm) (±3%)	ORP (mV) (±10 mV)	Dissolved Oxygen (mg/L) (±10%)	Turbidity (NTUs) (±10% for >1)
1702	0,50	0,15	5.53	1.19	7.07	254	0.909	285	3.63	115
1706		0.15	5.55	1.21	7.15	7.25	0.828	277	3.84	49.4
1710		0.15	5.12	1.28	7.21	7.11	0.617	172	6-01	20.0
1719		0.15	5.64	130	7.24	6.98	0,346	270	7.17	14.7
1718		0.15	5.64	1,30	7.23	7.22	0,531	271	6.82	13.0
1722		0,15	5.64	1,30	7.21	7,28	0.532	273	6-69	10.9
					, 					
_										
					·····					
	T									
						· ·				
	1									

;

			We	ell	MW-1	3
			Da	te	3/20/	2019
			Loca	ition	New Holstein, WI	
		Γ	Si	te	Tecumseh / HARP	
Static Depth to Water (ft)	3.	88		Sample (Collection Time	1800
Total Purge Volume (gal)				Purç	ge Method	Peristaltic Pump
Total Depth (ft)				Sam	ple Method	Low-Flow Through Flow Cell
Screen Depth Interval (ft)			· · · · · · · · · · · · · · · · · · ·	Water	Description	
LNAPL (in)		~		Sampli	ng Personnel	AJ / TG

Time (min)	Volume Purged (L)	Flow Rate (L/min)	Depth to Water (ft)	Drawdown (ft)	pH (SU) (±0.1 units)	Temp (°C) (± 3%)	Conductivity (mS/cm) (±3%)	ORP (mV) (±10 mV)	Dissolved Oxygen (mg/L) (±10%)	Turbidity (NTUs) (±10% for >1)
1732			4.11		7.17	6.77	0.508	283	7.50	115
1736			4.16		7.40	6.50	0.509	282	7.15	53.9
1740			4.18		7.39	6.23	0.508	283	7.37	35.8
1744			4.19		741	6.28	0.507	284	7.16	13.4
1748			4.21		7.40	6.29	0.509	285	7.02	10.3
1752			4.22		7.19	G.26	0.510	286	6.93	<u> </u>
1756			4.23		7.39	6.26	0.512	287	6.83	3.7
										·
					ġ.					
	·									
				<u> </u>			·			
							,			
				<u> </u>			ļ			
 	 	 				<u> </u>	ļ	· · ·		
	L		<u> </u>	<u> </u>						ļ
	ļ			<u> </u>		·				

ATTACHMENT B

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

March 29, 2019

Chris Harvey TRC Environmental 230 W. Monroe St Suite 630 Chicago, IL 60606

RE: Project: TECUMSEH CR LINE Pace Project No.: 40184671

Dear Chris Harvey:

Enclosed are the analytical results for sample(s) received by the laboratory on March 23, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Laurie Woelfel

Laurie Woelfel laurie.woelfel@pacelabs.com (920)469-2436 Project Manager

Enclosures

cc: Tyler Gomoll, TRC Solutions Tanner Hess, TRC

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

CERTIFICATIONS

Project: TECUMSEH CR LINE

Pace Project No.: 40184671

Green Bay Certification IDs

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 North Dakota Certification #: R-150 Virginia VELAP ID: 460263 South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157 Federal Fish & Wildlife Permit #: LE51774A-0

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

SAMPLE SUMMARY

Project: TECUMSEH CR LINE

Pace Project No.: 40184671

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40184671001	TEC-3	Water	03/21/19 09:15	03/23/19 08:15
40184671002	TEC-4	Water	03/21/19 11:20	03/23/19 08:15
40184671003	NH-26	Water	03/21/19 12:00	03/23/19 08:15
40184671004	MW-E	Water	03/21/19 13:51	03/23/19 08:15
40184671005	TEC-1	Water	03/21/19 14:35	03/23/19 08:15
40184671006	DUP-1	Water	03/21/19 00:00	03/23/19 08:15
40184671007	MW-8	Water	03/21/19 14:56	03/23/19 08:15
40184671008	MW-5	Water	03/21/19 15:22	03/23/19 08:15
40184671009	NH-7	Water	03/21/19 16:05	03/23/19 08:15
40184671010	MW-F	Water	03/21/19 17:00	03/23/19 08:15
40184671011	MW-A	Water	03/21/19 17:25	03/23/19 08:15
40184671012	MW-B	Water	03/21/19 18:00	03/23/19 08:15

SAMPLE ANALYTE COUNT

Project: TECUMSEH CR LINE Pace Project No.: 40184671

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
40184671001	TEC-3	EPA 6010	TXW	1	PASI-G
40184671002	TEC-4	EPA 6010	TXW	1	PASI-G
40184671003	NH-26	EPA 6010	TXW	1	PASI-G
40184671004	MW-E	EPA 6010	TXW	1	PASI-G
40184671005	TEC-1	EPA 6010	TXW	1	PASI-G
40184671006	DUP-1	EPA 6010	TXW	1	PASI-G
40184671007	MW-8	EPA 6010	TXW	1	PASI-G
40184671008	MW-5	EPA 6010	TXW	1	PASI-G
40184671009	NH-7	EPA 6010	TXW	1	PASI-G
40184671010	MW-F	EPA 6010	TXW	1	PASI-G
40184671011	MW-A	EPA 6010	TXW	1	PASI-G
40184671012	MW-B	EPA 6010	TXW	1	PASI-G

CAS No.

Qual

Analyzed

03/25/19 23:22 7440-47-3

ANALYTICAL RESULTS

Collected: 03/21/19 09:15 Received: 03/23/19 08:15 Matrix: Water

Project:

Pace Project No.: 40184671

Sample: TEC-3

Т	ECUMSEH	CR	LINE	

Parameters	Results	Units	LOQ	LOD	DF	Prepared
6010 MET ICP, Dissolved	Analytica	al Method: EPA	6010			
Chromium, Dissolved	1080	ug/L	10.0	2.5	1	

Lab ID: 40184671001

Project:

Pace Project No .: 40184671

I	ECUMS	EH CR I	_INE

Sample:	TEC-4	Lab ID: 4	0184671002	Collected: 03/21/19 11:20			Received: 03/23/19 08:15 Matrix: Water			
	Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET	ICP, Dissolved	Analytical Method: EPA 6010								
Chromium	, Dissolved	16900	ug/L	10.0	2.5	1		03/25/19 23:25	7440-47-3	

Project: TECUMSEH CR LINE

Pace Project No.: 40184671

Sample: NH-26	Lab ID:	40184671003	Collected: 03/21/19 12:00			Received: 03/2	23/19 08:15 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical	Method: EPA 6	010						
Chromium, Dissolved	763	ug/L	10.0	2.5	1		03/25/19 23:27	7440-47-3	

Project: TECUMSEH CR LINE

Pace Project No.: 40184671

Sample: MW-E	Lab ID:	40184671004	Collected	d: 03/21/19	9 13:51	Received: 03/2	23/19 08:15 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical	Method: EPA 6	010						
Chromium, Dissolved	628	ug/L	10.0	2.5	1		03/25/19 23:30	7440-47-3	

Project: TECUMSEH CR LINE

Pace Project No.: 40184671

Sample: TEC-1	Lab ID:	40184671005	Collected	: 03/21/19	14:35	Received: 03	/23/19 08:15 N	Aatrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical	Method: EPA 6	010						
Chromium, Dissolved	315	ug/L	10.0	2.5	1		03/25/19 23:32	2 7440-47-3	

Project: TECUMSEH CR LINE

Pace Project No.: 40184671

Sample: DUP-1	Lab ID:	Lab ID: 40184671006		Collected: 03/21/19 00:00		Received: 03/23/19 08:15		atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical	Method: EPA 6	010						
Chromium, Dissolved	319	ug/L	10.0	2.5	1		03/25/19 23:35	7440-47-3	

Project: TECUMSEH CR LINE

Pace Project No.: 40184671

Sample: MW-8	Lab ID: 40184671007		Collected: 03/21/19 14:56			Received: 03/2	23/19 08:15 Ma	Matrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical	Method: EPA 60	010						
Chromium, Dissolved	5.2J	ug/L	10.0	2.5	1		03/25/19 23:37	7440-47-3	

Project: TECUMSEH CR LINE

Pace Project No.: 40184671

Sample: MW-5	Lab ID: 40184671008		Collected: 03/21/19 15:22 F		Received: 03/23/19 08:15		atrix: Water		
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical	Method: EPA 60	010						
Chromium, Dissolved	81.6	ug/L	10.0	2.5	1		03/25/19 23:40	7440-47-3	

Project: TECUMSEH CR LINE

Pace Project No.: 40184671

Sample: NH-7	Lab ID: 40184671009		Collected: 03/21/19 16:05			Received: 03/2	23/19 08:15 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical	Method: EPA 60	010						
Chromium, Dissolved	279	ug/L	10.0	2.5	1		03/25/19 23:42	7440-47-3	

Project: TECUMSEH CR LINE

Pace Project No.: 40184671

Sample: MW-F	Lab ID:	Lab ID: 40184671010		Collected: 03/21/19 17:00		Received: 03/23/19 08:15		Matrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical	Method: EPA 6	010						
Chromium, Dissolved	<2.5	ug/L	10.0	2.5	1		03/25/19 23:10	0 7440-47-3	

Project: TECUMSEH CR LINE

Pace Project No.: 40184671

Sample: MW-A	Lab ID:	40184671011	Collected	d: 03/21/19	9 17:25	Received: 03/2	23/19 08:15 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical	Method: EPA 6	010						
Chromium, Dissolved	458	ug/L	10.0	2.5	1		03/25/19 23:45	7440-47-3	

Project: TECUMSEH CR LINE

Pace Project No.: 40184671

Sample: MW-B	Lab ID:	40184671012	Collected	: 03/21/19	18:00	Received: 03/	/23/19 08:15 N	latrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical	Method: EPA 6	010						
Chromium, Dissolved	79.6	ug/L	10.0	2.5	1		03/25/19 23:52	2 7440-47-3	

QUALITY CONTROL DATA

Project:	TECUN	ISEH CR LIN	E																
Pace Project No.:	401846	671																	
QC Batch:	31640)2		Analys	is Method:	E	EPA 6010												
QC Batch Method:	EPA 6	6010		Analys	is Descript	tion: I	CP Metals, T	race, Disso	olved										
Associated Lab Sar	nples:	4018467100 4018467100	1, 40184671002 8, 40184671009	, 40184671 , 40184671	003, 40184 010, 40184	4671004, 4 4671011, 4	40184671005 40184671012	5, 4018467 2	1006, 4018	4671007,									
METHOD BLANK:	184026	67		Ν	Aatrix: Wa	ter													
Associated Lab Sar	nples:	4018467100 4018467100	1, 40184671002 8, 40184671009	, 40184671 , 40184671	003, 40184 010, 40184	4671004, 4 4671011, 4	40184671005 40184671012	5, 4018467 <u>2</u>	1006, 4018	4671007,									
				Blank	K R	eporting													
Paran	neter		Units	Resul	t	Limit	Analyz	ed	Qualifiers										
Chromium, Dissolve	ed		ug/L		<2.5	10.0	03/25/19	23:05		_									
LABORATORY COI	NTROLS	SAMPLE: 1	840268																
				Spike	LCS	5	LCS	% Red	>										
Paran	neter		Units	Conc.	Resu	ılt	% Rec	Limits	a Qu	ualifiers									
Chromium, Dissolve	ed		ug/L	500		502	100	80	-120		-								
MATRIX SPIKE & M	/ATRIX \$	SPIKE DUPLI	CATE: 18402	69		1840270													
				MS	MSD														
			40184671010	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max							
Paramete	er	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual						
Chromium, Dissolve	ed	ug/L	<2.5	500	500	504	504	101	101	75-125	0	20							

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: TECUMSEH CR LINE

Pace Project No.: 40184671

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor, percent moisture, initial weight and final volume.

LOQ - Limit of Quantitation adjusted for dilution factor, percent moisture, initial weight and final volume.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-G Pace Analytical Services - Green Bay

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: TECUMSEH CR LINE Pace Project No.: 40184671

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40184671001	TEC-3	EPA 6010	316402		
40184671002	TEC-4	EPA 6010	316402		
40184671003	NH-26	EPA 6010	316402		
40184671004	MW-E	EPA 6010	316402		
40184671005	TEC-1	EPA 6010	316402		
40184671006	DUP-1	EPA 6010	316402		
40184671007	MW-8	EPA 6010	316402		
40184671008	MW-5	EPA 6010	316402		
40184671009	NH-7	EPA 6010	316402		
40184671010	MW-F	EPA 6010	316402		
40184671011	MW-A	EPA 6010	316402		
40184671012	MW-B	EPA 6010	316402		

(Please Print Clearly)							JPPER MIDWI	EST REGION	Page 1 of N
Company Name: TAC			A	1 1			NN: 612-607-1	700 WI: 920-469-2436	i la alla alla alla alla alla alla alla
Branch/Location: Chicago		Pace	Ana	iyticai		,	$\boldsymbol{\mathcal{I}}$		401846-11 E
Project Contact: Gy/er Gomoll			www.pe	Keleps.com		Λ		Quote #:	La caracteria de la car
Phone: 119 - 800 - 590	7	CHA	AIN	OF C	US	rói	7C	Mail To Contact:	
Project Number:	A=None F	a≃HCL C:	=H2SO4	Preservation Cod	es Nater F=	=Methanol	GENaOH	Mail To Company:	
Project Name: TPULLARAL CEL	H=Sodium Bi	sulfate Solu	tion	I=Sodium Thiosulfa	ate J=	Øther		Mail To Address:	
Project State: 107 T	FILTERED?	Y/N	∇		∇	T			
Sampled By (Print): 5-12-5 (-DAAD)	PRESERVATION	Pick	6					Invoice To Contact:	
Sampled By (Sign):		Lattor						Invoice To Company:	TRC
PO#:	egulatory	sted.	$ \mathcal{Y} $					Invoice To Address:	
Data Package Options MS/MSD	Matrix Codes	= ä	2						
(billable) D ERA Level III	Air W = Water Biota DW = Drinking Water	8	vec						
EPA Level IV NOT needed on 0=	Charcoal GW = Ground Water Oil SW = Surface Water	lyse	10					Invoice To Phone:	
your sample S	Soli WW = Waste Water Sludge WP = Wipe COLLECTION	Ane)iss]		CLIENT	LAB COMMENTS Profile #
PACE LAB # CLIENT FIELD ID	DATE TIME MATRI	×	4					COMMENTS	(Lab Use Only)
od $7EC-3$	1/21/19 0915 (=m	<u>}</u>	X						
DOD TEC-4	1120		X						
003 NH-26	1200		X						
OOY MW-E	1351		X						
005 TEC-1	1435		X					1999 1997 1997 1997 1997 1997 1997 1997	
206 P-P-1			X						
007 MW-8	1456		Х						
008 MW-5	1522		\mathbf{X}						
MA NH-7	1605		X						
DID MW-F	1700		Х						
ott ms/msp	1760		X						
OB NW-A	1725		X					2481.2292.2499.2499.2499.2499.2499.2499.249	
03 NW-B	1806		X					~	
Rush Turnaround Time Requested - Prelims	Relinquished By:	anderssamerson	<u>نہ ک</u>	Date/Time:	an a	R	erewed By:	Datarime:	PACE Project No.
CRUE AND A CONTRACT SUBJECT TO APPROVAL/SURCHARGE)	Relinquished BY:	<u> </u>	- 7/	2 / Date/Time:	540	R	RATEV BY: 7	1 DeteTime	1908340184671
Transmit Prelim Rush Results by (complete what you want	" Kott	Nom	M	-h2/19	MA		C54	2015tres 3/12/1	9 Receipt Temp = RAL °C
Email #1:	Relingerished By:	elie	'z	Date/Time:	1911	к В	Contract B	Date/Time:	6815 Sampla Receipt pH
Telephone:	Relinquished By:	21.0)	<u> </u>	Date/Time:	001	R	aceived By:	Date/Time:	Ok / Adjusted
Fax:		in the construction of the line of the					2000.00.00.00.00.00.00.00.00.00.00.00.00	Ni Haran Saliman Ni Ni Saliman Saliman Ni Ni Saliman Saliman Saliman Saliman Saliman Saliman Saliman Saliman Sa	Cobier Custody Seal
Samples on HOLD are subject to	Relinquished By:			Date/Time:		R	eceived By:	Date/Time:	Intact Not Intact

ORIGINAL

Cli	Client Name: TR (Project # United Streen Bay, Client Name: TR (Project # United Streen Bay,										alytical Services, LL ellevue Street, Suite Green Bay, WI 5430																						
	All containers needing preservation have been checked and noted below: vers ⊡No ⊡N/A Lab Lot# of pH paper: Du536\$) Lab Std #ID of preservation (if pH adjusted): Completed: Completed: Time:										Page																						
		and the second s		Glas	5						Plast	ic					Vi	als				Jars		G	enera	31	* (>6mm) *	≤2	Act pH ≥9	≥12	Я	ljusted	Volume
Pace Lab #	AG1U	AG1H	AG4S	AG4U	AG5U	AG2S	BG3U	BP1U	BP2N	BP2Z	BP3U	врзс	BP3N	BP3S	DG9A	DG9T	VG9U	NG9H	VG9M	VG9D	JGFU	WGFU	WPFU	SP5T	ZPLC	GN	voA Vials	H2SO4 pF	NaOH+Zn	NaOH pH	HNO3 pH	pH after ac	(mL)
001										Τ			l																		\mathbf{v}		2.5 / 5 / 10
002													1																		X.		2.5/5/10
003													1																		¥.		2.5 / 5 / 10
004													1																		Ì.		2.5 / 5 / 10
005		a harrista da	-	a newsard choice			200 0000000 PM		ALL STORE		and the state of the		l					Distance and the													r		2.5 / 5 / 10
006																															Ŷ.		2.5/5/10
007							a descentação									100-00-000	Lookano come?	States of the	No. Contraction	a alter same and	a distribution in	Maritanzi da			10.000 00000000			255-53258-8342			r		2.5/5/10
008				<u> </u>									1																		X		2.5/5/10
009									Saleto en casora				1		and the second	An Parkan Store									2020ක කරෙන්නේ		and the second second				X		2.5/5/10
010						<u> </u>							3						<u> </u>	<u> </u>			ļ								×		2.5 / 5 / 10
011						6 4/64/2020								1		September 2003									5.40 A.M.S.		40000580				<u>Х</u>		2.5 / 5 / 10
012											<u> </u>											<u> </u>									´ <i>X</i>		2.5/5/10
013			100.000			1																											2.5/5/10
014				<u> </u>			<u> </u>			 		<u> </u>		<u> </u>							·			<u> </u>					-				2.5/5/10
015							162260																								-		2.5/5/10
016																																	2.5 / 5 / 10
010																																	2.5/5/10
010														<u> </u>																			2.5/5/10
020																																	2.5/5/10
010							<u> </u>													<u> </u>						<u> </u>		7					2.57 57 10
Exce	otions	to pro	eserva	ation c	heck:	: VOA	, Coli	form,	TOC,	TOX,	TOH,	0&G	, WI C	DRO, F	heno	lics, O	ther:			Head	Ispace	e in V(DA Via	als (>6	mm) :	□Yes	□No	¶N/A	*lf yes	s look	in head	space	column
AG1U	1 lite	er am	ber gl	ass				BP	10	1 lite	er plas	tic un	pres			DO	59A	40 m	Lam	oer as	corbio	2		JG	iFU	4 oz	ambe	r(jar u	npres				
AG1H	1 lite 125	er am ml ar	ber gl mher	ass Hi alace I	CL H2SO	Δ		BP	2N	500	mL pla mL pla	astic H		7nact			59T	40 m 40 m	L aml	ber Na	a Thio			W	GFU	4 oz	clear nlacti	jar un cliar u	pres				
AG4U	120	mL ar	nber	glass i glass i	unpre	94 15		BP	30	250	mL pla	asuc N astic u	nores	LIIdCU			i9U	40 m 40 m	il clea	n vial ar vial	HCL	:5		—	rrU	4 OZ	piasti	u jar u	npres				
AG5U	100	mL ar	nber	glass (unpre	s		BF	93C	250	mL pla	astic N	laOH	•		VG	9M	40 m	L clea	n vial	MeOl	4		SI	25T	120	nL pla	astic N	la Thio	sulfat	e		1
AG2S	500	mL ar	nber	glass I	H2SO	4		BP	3N	250	mL pla	astic H	INO3			VG	9D	40 m	L clea	r vial	DI			Z	PLC	ziplo	c bag						
BG3U	250	mL cl	ear gl	ass ur	pres			BF	°3S	250	mL pla	astic H	2804				_	L							GN:	<u> </u>							<u>^</u>

⁻⁻GB-C-046-Rev.02 (29Mar2018) Sample Preservation Receipt Form

in the present data to be a set of the set of

Page 1 of V

an de ressi

Pace Analytical"	DOU Sample Condi	cument Name: tion Upon Receipt (SCUR	JR) Document Revised: 25Apr2018								
	D	ocument No.:	Issuing Authority:								
1241 Bellevue Street, Green Bay, WI 54302	F-G	B-C-031-Rev.07	Pace Green Bay Quality Office								
Sample C	Condition Up	oon Receipt Form ((SCUR)								
TPC		Project #:									
Client Name: <u>INC</u>			JO#:4	0184671							
Courier: CS Logistics Fed Ex Speede	e TUPS T	Waltco									
Client Pace Other											
Tracking #:		4	0184671								
Custody Seal on Cooler/Box Present: 🗹 yes	no Seals inta	act: 🔽 yes 🦳 no									
Custody Seal on Samples Present: ves	no Seals inta	act: Tyes Tno									
Packing Material:	le Bags 🗖 No	one TOther									
Thermometer Used SR - N/Pr	Type of Ice: (W	et Blue Dry None	 Samples or 	n ice, cooling process has begun							
	Biologia	al Tiecue is Freezen T		Demon or interest ()							
Tomp should be above freezing to 800	Biologica	a 13305 13 1104011. 1	year nu	Date: 3.23.41 (
Biota Samples may be received at $\leq 0^{\circ}C$.				Initials:							
Chain of Custody Present:	∏/res □No □N	N/A 1.									
Chain of Custody Filled Out:	□Yes ØNO □N	VA 2. No mail 3	.23.19 P	6							
Chain of Custody Relinquished:		N/A 3.									
Sampler Name & Signature on COC:		V/A 4.									
Samples Arrived within Hold Time:	Yes INO	5.									
- VOA Samples frozen upon receipt	I □Yes □No	Date/Time:									
Short Hold Time Analysis (<72hr):	□Yes ØNo	6.									
Rush Turn Around Time Requested:	□Yes ØNo	7.									
Sufficient Volume:	1	8.									
For Analysis: Øyes □No MS/MSD:	Yes DNO DN	N/A									
Correct Containers Used:	ØYes □No	9.									
-Pace Containers Used:	Dyres INO IN	I/A									
-Pace IR Containers Used:	□Yes □No □	N/A									
Containers Intact:	ZYes DNo	10.									
Filtered volume received for Dissolved tests	∏∕res □No □N	V/A 11.									
Sample Labels match COC:	ØYes □No □N	1/A 12. 009 / NH-7	time ui	legiste - 3.23.19 PG							
-Includes date/time/ID/Analysis Matrix:	ω										
Trip Blank Present:		N/A 13.									
Trip Blank Custody Seals Present		N/A									
Pace Trip Blank Lot # (if purchased):	_										
Client Notification/ Resolution:		If chec	cked, see attach	ned form for additional comments							
Person Contacted: Comments/ Resolution: <u>(Lend perturn</u>	vel (1) Da	H3N bottle v	nused	3-23-19-26							
	· · · · · · · · · · · · · · · · · · ·										
	_	<u></u>									
		÷	n -	21.2.							
Project Manager Review:	and a second		Date:	2126/10							
				Rage 22 of 22							
				Page for							

ATTACHMENT C

Attachment C – Trend Analysis Charts

Attachment C – Trend Analysis Charts

Attachment C – Trend Analysis Charts

Down-gradient-West

Down-gradient - Northwest