

January 21, 2021

Mr. Kevin McKnight Northeast Region Wisconsin Department of Natural Resources 625 East County Road Y, Suite 700 Oshkosh, WI 54901

Subject: 2020 Groundwater Monitoring Report

Former Tecumseh Products, Former Plating Line Area

New Holstein, Wisconsin BRRTS# 02-08-363333

Dear Mr. McKnight:

TRC continues groundwater monitoring specific to the former plating line area at the former Tecumseh Products facility in New Holstein, Wisconsin (BRRTS #: 02-08-363333). On November 5, 2020, TRC completed groundwater sampling at monitoring wells specific to the former plating line area to verify a stable residual chromium plume and confirm that the chromium plume is naturally attenuating. This letter presents the results of the data collected during the groundwater monitoring event, in accordance with the 2017 *Long Term Groundwater Monitoring Plan*. A technical review and response from the Wisconsin Department of Natural Resources (WDNR) is not requested, and this report is being submitted to the State's file for long-term monitoring plans.

BACKGROUND

Evaluation of the groundwater data through June 2017 indicated that 1) the contaminant plume remains stable and has not shown any migration from previous sampling events, 2) the groundwater impacts do not pose a threat to human health or the environment, and 3) that natural attenuation continues to control the migration of chromium impacts and is still a viable remedy for the site.

Since the groundwater contaminant trends in source area wells (TEC-3, TEC-4, and NH-26) di not allow for case closure after the 2019 sampling event, TRC submitted the October 2019 Remedial Action Options Report (RAOR) to address residual hexavalent chromium sources in groundwater. The selected remedy is soil mixing and in-situ chemical reduction (ISCR) within the unconsolidated soils once demolition of the facility has taken place. The timing/sequencing of the demolition is incorporated into the selected remedy to make best use of the accessibility and enhanced safety benefits of conducting the remediation after the Site structures are demolished. Monitored natural attenuation (MNA) will be utilized after the initial goals of the active remedial actions are achieved. The Wisconsin Department of Natural Resources (WDNR) conditionally approved the RAOR in a letter dated December 3, 2019, including that

Mr. Kevin McKnight January 21, 2021 Page 2 of 5

annual groundwater sampling as approved in the 2017 *Long Term Groundwater Monitoring Plan* be continued until the RAOR is implemented.

Demolition activities have not taken place, and therefore, the RAOR has not been implemented in 2020. Hence, TRC completed an annual groundwater sampling event in 2020.

SUMMARY OF GROUNDWATER MONITORING

Groundwater Monitoring Program

On November 5, 2020, TRC completed a groundwater gauging and sampling event at the former Tecumseh chromium line remediation area. Prior to groundwater sampling, water levels were measured at each monitoring well with an oil-water interface probe.

Groundwater sampling was completed at monitoring wells MW-E, TEC-3, TEC-4, MW-8, NH-7, NH-26, MW-A, and MW-B. In addition, TRC also sampled MW-5, TEC-1 and MW-F to evaluate for submittal of case closure. As noted in previous reports, monitoring well MW-24 was destroyed.

Groundwater samples were collected using low-flow sampling techniques with an Alexis peristaltic pump and YSI Pro Dss Sonde M4 multi-parameter meter and flow cell. During well purging, field parameters (temperature, conductivity, turbidity, dissolved oxygen, pH and oxidation/reduction potential [ORP]) were measured and allowed to stabilize prior to sampling. Low-flow sampling stabilization forms are provided in **Attachment A**. Groundwater samples were field filtered with a 0.52 micron filter and submitted for laboratory analysis of total dissolved chromium using method EPA 6010. All samples were packaged in a cooler and shipped to Pace Analytical Services, LLC in Green Bay, Wisconsin (Pace) under standard chain of custody procedures.

Purge water was drummed.

Groundwater Elevations

Table 1 presents a summary of water level measurements collected during events between 2009 and 2020 and **Figure 1** presents the groundwater elevation contours for the November 2020 sampling event. The groundwater gradient is oriented from the east/southeast portion of the facility, towards the west. Groundwater elevations were similar to previous groundwater monitoring events. Groundwater continues to exhibit an overall westerly flow direction as illustrated on **Figure 1**.

Groundwater Quality Assurance/Quality Control Results

TRC performed a Quality Assurance/Quality Control (QA/QC) review of the laboratory report, in regards to analyses, procedures, and protocols performed by Pace. Samples were received by Pace within the mandated timeframe and maintained at the proper temperature. Based on the results, there were no major insufficiencies regarding surrogate recoveries, analyte detections or sample duplicate recoveries. Based on an internal review by TRC, all data were considered acceptable. QC data indicate that measurement data are sufficient to meet method

Mr. Kevin McKnight January 21, 2021 Page 3 of 5

quality objectives, data are defensible, and QC mechanisms were effective in ensuring measurement data reliability.

RESULTS AND DISCUSSION

The groundwater analytical results are summarized in **Table 2**, which contains total dissolved chromium results from the November 2020 groundwater event, as well as previous analytical results. The low-flow stabilization geochemical results indicate that the dissolved oxygen is ranging between 1 and 6 milligrams per liter (mg/L) and an ORP is generally greater than 200 millivolts (mV). The pH of the groundwater is basically neutral, ranging between 7 and 8 S.U. There is no obvious difference between the geochemistry of the source area as compared to down-gradient. The distribution of total dissolved chromium in groundwater is shown on **Figure 2**. The monitoring wells with total dissolved chromium exceeding the ES are shown on **Figure 2**. The laboratory analytical results are provided in **Attachment B**.

Total dissolved chromium concentrations exceeded the ES in 8 of the 11 monitoring wells in November 2020 (MW-5, MW-A, MW-E, TEC-1, TEC-3, TEC-4, NH-7 and NH-26). Monitoring well MW-B exceeded the Preventative Action Limit (PAL) in November 2020, but not the ES. The remaining two monitoring wells MW-F and MW-8 were below the ES and PAL.

In order to assess the current subsurface conditions of the Site, an evaluation of the dissolved chromium concentration trends has been completed. The historic distribution of total dissolved chromium in groundwater is shown on **Figure 2**. The extent of the total dissolved chromium has receded over time. The northern extent of dissolved chromium is likely not related to migration; dissolved chromium was likely there beforehand, which is supported by the more recent data points. The trend analysis charts were completed on monitoring wells which exceeded the ES. The trend analysis charts are provided in **Attachment C**. Based on these charts, the below significant points can be made.

Source area monitoring wells NH-26, TEC-3, and TEC-4 increased over concentrations from the previous groundwater sampling event; however, these concentrations appear to fluctuate and have not exceeded the historically highest concentrations at each of these monitoring wells. The high chromium concentration received during the April 22, 2016 groundwater sampling event at TEC-4 appears to be an anomaly.

Total dissolved chromium concentrations in down-gradient monitoring wells MW-E and MW-A increased. While these concentrations have increased, they have not increased beyond historically high concentrations in such a way that would be indicative of an expanding plume. In addition, total dissolved chromium concentrations have continued to decrease at west periphery monitoring well TEC-1 and have remained below detection levels at southwest periphery monitoring well MW-F which provides additional support for a stable chromium plume.

Mr. Kevin McKnight January 21, 2021 Page 4 of 5

The total dissolved chromium concentration in down-gradient monitoring well NH-7 also increased during the 2020 groundwater sampling event; however, these concentrations are still relatively low. Monitoring well NH-7 is near to and upgradient of MW-24 and NH-10, both of which have historical chromium results below the PAL and ES.

CONCLUSIONS AND RECOMMENDATIONS

Based on the evaluation of recent groundwater data, the overall extent of the dissolved contaminant plume remains relatively stable. Additionally, monitoring wells MW-B and MW-8 now lie outside of the impacted area above the ES indicating that the dissolved chromium has receded over time. Monitoring well MW-5 appears to fluctuate between the ES and PAL. These results confirm that MNA continues to be effective in controlling and mitigating the migration of residual chromium impacts to groundwater and remains a viable remedy for the site.

The groundwater impacts do not pose a threat to human health or the environment. Moreover, there is a deed restriction recorded to the property limiting certain activities and uses that further acts to protect human health and the environment.

TRC will continue to conduct annual groundwater monitoring and sampling with the next round scheduled for fall/winter 2021 to further assess contaminant trends and confirm the effectiveness of MNA. Samples will be collected and analyzed for total dissolved chromium from monitoring wells MW-E, TEC-3, TEC-4, MW-8, NH-7, NH-26, MW-A, and MW-B..

If you have any questions, please contact me at (312) 578-0870, extension 11910.

Sincerely,

Chris Harvey, PE Program Manager

TABLES

Table 1. Groundwater Elevations 2009 - 2020

Table 2. Summary of Groundwater Analytical Data

FIGURES

Figure 1. Groundwater Contour Map – November 2020

Figure 2. Total Dissolved Chromium Isoconcentration Map by Year

ATTACHMENTS

Attachment A. Low-Flow Sampling Logs

Attachment B. Laboratory Analytical Report (November 5, 2020)

Attachment C. Trend Analysis Charts

Mr. Kevin McKnight January 21, 2021 Page 5 of 5

Mr. Jason Smith/Tecumseh Products Co. – Paris, TN

Mr. Curtis Toll/Greenberg Traurig, LLP – Philadelphia Mr. Ron Bock/TRC – Irvine, CA

Table 1. Groundwater Level Elevations 2009-2020

	June 8, 2009		Septembe	r 23, 2009	December 2	8 & 29, 2009	March 29	& 30, 2010	March 18	& 19, 2011	May 1	5, 2012	
Location	Top of Casing (TOC) Elevation (ft MSL)	Depth To Water Below TOC	Water Level Elevation										
MW-1	932.60	6.13	926.47	8.80	923.80	3.71	928.89	4.98	927.62	4.92	927.68	2.77	929.83
NH-2	935.34												
MW-4	932.24	4.32	927.92	7.55	924.69	2.56	929.68	3.77	928.47	3.56	928.68	2.67	929.57
MW-5	931.81	4.30	927.51	7.24	924.57	3.10	928.71	3.27	928.54	2.99	928.82	2.39	929.42
MW-6	931.90	5.23	926.67	8.45	923.45	3.17	928.73	3.72	928.18	3.46	928.44	2.85	929.05
NH-7	935.42	Well install	led in 2012	Well instal	ed in 2012	Well instal	led in 2012	Well instal	led in 2012	Well install	led in 2012	Well instal	led in 2012
MW-8	931.89	4.07	927.82	6.73	925.16	2.99	928.90	3.33	928.56	3.11	928.78	2.63	929.26
MW-9	931.54	7.04	924.50	10.65	920.89	4.71	926.83	4.58	926.96			-	
NH-10	935.37		-	-	ı								
NH-25	934.65	Well install	led in 2012	Well instal	led in 2012	Well instal	led in 2012	Well instal	led in 2012	Well install	led in 2012	Well instal	led in 2012
MW-24	931.07												
NH-26	934.76	Well install	led in 2012	Well instal	led in 2012	Well instal	led in 2012	Well instal	led in 2012	Well install	led in 2012	Well instal	led in 2012
MW-A	932.83	6.78	926.05	9.38	923.45	4.79	928.04	5.62	927.21	5.57	927.26	4.47	928.36
MW-B	932.58	5.69	926.89	8.60	923.98	3.00	929.58	4.40	928.18	4.22	928.36	3.11	929.47
MW-C	931.89	5.88	926.01	9.24	922.65	3.29	928.60	3.86	928.03	3.64	928.25	2.59	929.30
MW-D	941.90	5.81	936.09	9.96	931.94	5.18	936.72	4.04	937.86				
MW-E	933.31	7.28	926.03	9.81	923.50	6.20	927.11	6.43	926.88	6.33	926.98	5.32	927.99
MW-F	933.83	8.52	925.31	10.93	922.90	7.31	926.52	7.53	926.30	7.52	926.31	6.71	927.12
MW-G	934.37	7.52	926.85	10.66	923.71	7.02	927.35	7.28	927.09	7.21	927.16	5.98	928.39
MW-H	933.63	8.81	924.82	12.40	921.23	9.06	924.57	8.45	925.18				
TEC-1	932.51	4.20	928.31	6.67	925.84	3.69	928.82	3.89	928.62	3.46	929.05	3.14	929.37
TEC-1A	932.02	14.29	917.73	18.37	913.65	14.66	917.36	13.58	918.44	13.42	918.60	13.17	918.85
TEC-2	931.90	4.67	927.23	7.47	924.43	3.55	928.35	3.68	928.22	3.40	928.50	2.90	929.00
TEC-3	934.62	6.94	927.68	9.07	925.55	6.51	928.11	6.20	928.42	5.94	928.68	5.38	929.24
TEC-4	934.50	7.15	927.35	9.64	924.86	6.12	928.38	6.33	928.17	5.98	928.52	5.35	929.15

MSL - Mean Sea Level

NA* Well underwater and could not be measured

Table 1. Groundwater Level Elevations 2009-2020

		June 20 8	k 21, 2013	August	18, 2014	April 2	2, 2016	Septemb	er 7, 2016	April 2	6, 2017	March 2	21, 2019	Novembe	er 5, 2020
Location	Top of Casing (TOC) Elevation (ft MSL)	Depth To Water Below TOC	Water Level Elevation	Depth To Water Below TOC	Water Level Elevation										
MW-1	932.60	5.13	927.47	6.80	925.80	4.53	928.07	2.97	929.63			4.12	928.48		
NH-2	935.34		-	3.68	931.66	4.01	931.33	3.65	931.69	3.82	931.52	3.63	931.71	1	
MW-4	932.24	4.08	928.16	5.62	926.62	3.36	928.88	3.03	929.21					-	
MW-5	931.81	3.70	928.11	4.89	926.92	2.87	928.94	3.35	928.46			2.81	929.00	3.08	928.73
MW-6	931.90	4.28	927.62	5.91	925.99	3.19	928.71	3.69	928.21				-	ı	
NH-7	935.42	8.64	926.78	9.14	926.28	7.77	927.65	8.13	927.29			7.22	928.20	7.83	927.59
MW-8	931.89	3.63	928.26	4.74	927.15	2.91	928.98	2.42	929.47	2.33	929.56	1.54	930.35	3.03	928.86
MW-9	931.54	-		-		3.96	927.58	4.99	926.55						
NH-10	935.37			9.24	926.13	8.23	927.14	8.59	926.78			7.80	927.57	-	
NH-25	934.65	6.34	928.31	6.73	927.92	5.83	928.82	5.49	929.16			4.97	929.68	-	
MW-24	931.07	-		7.58	923.49	4.94	926.13	6.21	924.86			Dest	royed	Dest	royed
NH-26	934.76	6.76	928.00	6.99	927.77	6.24	928.52	NA*	934.76	5.73	929.03	6.04	928.72	6.28	928.48
MW-A	932.83	5.72	927.11	7.33	925.50	5.23	927.60	4.56	928.27	3.92	928.91	5.34	927.49	5.33	927.50
MW-B	932.58	4.58	928.00	6.31	926.27	3.95	928.63	3.57	929.01	2.69	929.89	3.88	928.70	4.32	928.26
MW-C	931.89	4.57	927.32	6.35	925.54	3.26	928.63	3.63	928.26			4.19	927.70	-	
MW-D	941.90	-		-		3.86	938.04	6.59	935.31			3.58	938.32		
MW-E	933.31	6.44	926.87	7.98	925.33	6.01	927.30	5.60	927.71	4.92	928.39	6.16	927.15	6.09	927.22
MW-F	933.83	7.76	926.07	9.02	924.81	7.21	926.62	7.41	926.42			7.38	926.45	7.27	926.56
MW-G	934.37	7.68	926.69	9.29	925.08	7.11	927.26	5.89	928.48			8.25	926.12	-	
MW-H	933.63		-		-	7.88	925.75	7.19	926.44			8.61	925.02	-	
TEC-1	932.51	4.08	928.43	4.95	927.56	3.54	928.97	4.29	928.22	3.29	929.22	3.34	929.17	3.78	928.73
TEC-1A	932.02	14.18	917.84	15.76	916.26	13.60	918.42	15.17	916.85			13.90	918.12	-	
TEC-2	931.90	3.97	927.93	4.86	927.04	3.30	928.60	NA*	931.90			2.98	928.92		
TEC-3	934.62	6.23	928.39	6.88	927.74	5.90	928.72	5.78	928.84	5.31	929.31	5.74	928.88	5.95	928.67
TEC-4	934.50	6.40	928.10	7.43	927.07	5.76	928.74	5.23	929.27	4.88	929.62	5.79	928.71	5.94	928.56

MSL - Mean Sea Level

NA* Well underwater and could

Groundwater Analytical Results - Dissolved Chromium and Lead Tecumseh Products Co. (Former)-Chromium Line New Holstein, Wisconsin

			DISSOLVED	METALS		UNDISSOLV	ED METALS
WELL ID	Date Sampled	Hexavalent Chromium (CrVI)	Total Chromium ¹	Trivalent Chromium ² (CrIII)	Lead	Ferrous Iron	Total Organic Carbon
		(µg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
NR 140	PAL		10		1.5	150	
STANDARD	ES		100		15	300	
TW-1	8/13/2002	5.0	3.6	NM			
TW-2	8/13/2002	24	33	8.7			
TW-3	8/13/2002	130	110	NM			
TW-4	8/13/2002	7,900	8,200	NM			
TW-5	8/13/2002	700	640	NM			
TW-6	8/13/2002	5	1 U	NM			
TW-7	8/13/2002	6.3	1 U	NM	-		
TW-8	8/13/2002	6.3	1.9	NM	-		
TW-9	8/13/2002	8.9	0.44 U	NM	-		
TW-10	8/13/2002	3.6 U	1.3 U	NM	1		
MW-1	8/13/2002	1,900	1,700	NM	-		
	11/16/2005	4,600	4,900	300			
	5/24/2007	2,800	2,800	NM	0.24		
	6/9/2009	680	738	58 J	1.7 J		
	9/24/2009	1,700	1,660	200 U	3.3 J		
	12/28/2009	3.90 U	9.2	9.2 J	2.2 J		
	3/29/2010	5.3	57.6	52.3	2.2 J		
	5/18/2011	50	54.1	4.1			
	5/15/2012	4.4 J	16.1	11.7 J			
	6/21/2013	33	54.9	NM	2.3 J		
	8/19/2014		4.1 J		<i>3</i> U		
MW-2	8/13/2002	3.6 U	2.3	3.6 U			
	11/16/2005	5.0 U	2.8	NM			
NH-2	4/24/2012		<2.4		<1.4		
	8/19/2014		2.1 J		<i>3</i> J		
	4/26/2017	<3.9	3.7 J	NM	NM	<28	3,400
MW-3	8/13/2002	1,900	1,700	NM			
MW-4	8/13/2002	3.7	0.44 U	NM			
	11/15/2005	5.0 U	2.0	NM	-		
	5/24/2007	3.4 U	0.63	NM	0.26		
	6/9/2009	3.9 U	1.3 J	NM	2.2 J		
	9/24/2009	3.9 U	0.39 U	3.9 U	1.3		
	12/28/2009	3.9 U	1.2 J	3.9 U	1.3		
	3/29/2010	3.9 U	0.82 J	3.9 U	1.4 J		
	5/18/2011	3.9 U	1.6 J	3.9 U			
	5/15/2012	3.9 U	2.4 U	3.9 U			
	6/20/2013	3.4 U	1.2 U	3.9 U	1.2 U		
	8/19/2014		2.1 U	NM	3 U		

ES = NR140 Enforcement Standard

PAL = NR140 Preventative Action Limit

= Detection over NR140 PAL Limit = Detection over NR140 ES Limit

U = Analyte not detected at or above reporting limit

- J = Estimated value. Analyte detected at a level less than the reporting limit and greater than or equal to the detection limit.
- "--" = Analyte was not sampled during sampling round

NM Not measured/calculated, due to Cr(VI) result greater than total Cr result.

- I = PAL and ES values are for total chromium.
- As such, these values are not applicable for hexavalent chromium. 2 = Trivalent chromium is the difference between total chromium and hexavalent chromium concentrations.

Groundwater Analytical Results - Dissolved Chromium and Lead Tecumseh Products Co. (Former)-Chromium Line New Holstein, Wisconsin

			DISSOLVED	METALS		UNDISSOLVED METALS		
WELL ID	DATE SAMPLED	HEXAVALENT CHROMIUM (CrVI)	TOTAL CHROMIUM ¹	TRIVALENT CHROMIUM ² (CrIII)	Lead	Ferrous Iron	Total Organic Carbon	
	UNITS	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)	
NR 140	PAL		10		1.5		-	
STANDARD	ES		100		15		-	
MW-5	8/13/2002	380	390	180 U	NM			
	11/16/2005	330	270	NM	NM			
	5/24/2007	1,100	910	NM	0.19			
	6/9/2009	950	938	9.8 U	3.2 J			
	9/24/2009	3400	3,510	110	2.6 ј			
	12/29/2009	240	240	3.9 U	1.5 J			
	3/30/2010	210	202	3.9 U	2 ј			
	5/19/2011	140	134	NM	NM			
	5/15/2012	350	339	NM	NM			
	6/20/2013	290	313	NM	1.2 U			
	8/18/2014	NM	318		<i>3</i> U			
	3/21/2019		81.6					
	11/5/2020		102					
MW-6	8/13/2002	8.9	0.56 U	NM	NM			
	11/15/2005	45	65	20	NM			
	5/24/2007 6/9/2009	3.4 U 3.9 U	2.6 0.39 U	NM 3.9	0.07			
	9/24/2009	3.9 U	5.0	5.0	2.6 J 2 J			
	12/28/2009	3.9 U	0.48 J	3.9	1.3 U			
	3/29/2010	3.9 U	0.39 U	3.9	2.3 J			
	5/18/2011	3.9 U	1.2 J	3.9	NM			
	5/15/2012	3.9 U	2.4 U	3.9	NM			
	6/20/2013	3.4 U	1.2 U	NM	1.2 U			
) W. 7	8/19/2014	NM	2.1 U	NM	3 U			
NH-7	4/24/2012	NM 110	261	NM NM	1.7 J			
	6/20/2013	NM	111		1.2 U			
	8/19/2014	INMI	114	NM 	3 U 			
	3/21/2019		279					
MW 0	11/5/2020	2.100	311		 >D/			
MW-8	8/13/2002	3,100 3,000	3,200 2,900	720 U NM	NM NM			
	11/16/2005		, , , , , , , , , , , , , , , , , , ,					
	5/24/2007	1,900 7,300	1,600 8,730	NM 1400	0.09 2.9 J			
	6/9/2009		, , , , , , , , , , , , , , , , , , ,					
]	9/24/2009	8,200	8,470	270	2.6 J			
]	12/29/2009	5100	5,150	50 J	1.9 ј			
	3/29/2010	1,900	1,720	180	2.3 ј			
	5/19/2011	320	330	10	NM			
	5/15/2012	3,100	2,940	NM	NM			
	6/20/2013	860	844	NM	1.8 ј			
	8/18/2014	NM	1,320	NM	<i>3</i> U			
]	4/22/2016	NM	46.7	NM	NM			
]	9/7/2016	NM	725	NM	NM			
	4/26/2017	<3.9	<2.5	NM	NM	<28	4,500	
]	3/21/2019		5.2 J					

Notes:

ES = NR140 Enforcement Standard

PAL = NR140 Preventative Action Limit

= Detection over NR140 PAL Limit = Detection over NR140 ES Limit ITALICIZE BOLD

U = Analyte not detected at or above reporting limit

- J = Estimated value. Analyte detected at a level less than the reporting limit and greater than or equal to the detection limit.
- "--" = Analyte was not sampled during sampling round

NM Not measured/calculated, due to Cr(VI) result greater than total Cr result. I = PAL and ES values are for total chromium.

- - As such, these values are not applicable for hexavalent chromium.
- 2 = Trivalent chromium is the difference between total chromium and hexavalent chromium concentrations.

Groundwater Analytical Results - Dissolved Chromium and Lead Tecumseh Products Co. (Former)-Chromium Line New Holstein, Wisconsin

			DISSOLVED	METALS		IINDISSOI V	ED METALS
WELL ID	DATE SAMPLED	HEXAVALENT CHROMIUM (CrVI)	TOTAL CHROMIUM ¹	TRIVALENT CHROMIUM ² (CrIII)	Lead	Ferrous Iron	Total Organic Carbon
	UNITS	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
NR 140	PAL		10		1.5		-
STANDARD	ES		100		15		-
MW-9	8/13/2002	3.6 U	0.44 U	3.6	NM		
	11/15/2005 5/24/2007	5.0 U 5.4	1.7 0.44	NM NM	1.8 0.06		
	6/9/2009	3.9 U	0.39 U	3.9 U	2.2 J		
	9/24/2009	3.9 U	0.39 U	3.9 U	2.1 J		
	12/28/2009	3.9 U	0.39 U	3.9 U	1.7 J		
	3/29/2010	3.9 U	4.9 J	4.9 J	2.4 J		
NH-10	4/23/2012	NM	4.1 Ј	NM	1.9 ј		
	8/19/2014	NM	2.1 U	NM	<i>3</i> U		
MW-24	8/19/2014	NM	3.7 J	NM	<i>3</i> U		
NH-25	4/23/2012	NM	1,220	NM	1.6 J		
	6/20/2013	3,100	3,330	NM	2.8 J		
	8/19/2014	NM	895		3 U		
NH-26	4/23/2012		470		<1.4		
	6/20/2013	480	510	NM	1.2 U		
	8/19/2014		284		3 U		
	4/26/2017	1,500	1,400	NM	NM	<28	7,400
	3/21/2019		763				
	11/5/2020		1,080				
MW-A	5/24/2007	4,000	4,100	100	27.0		
	6/8/2009	1,500	1,510	20 U	2.1 ј		
	9/24/2009	3,600	3,710	110	1.5 J		
	12/28/2009	1,900	1,870	20 U	2.1 ј		
	3/29/2010	1,500	1,390	110	2.3 ј		
	5/18/2011	590	594	4	1		
	5/15/2012	440	417	NM			
	6/21/2013	520	484	NM	2.3 ј		
	8/19/2014		18.1		3		
	4/22/2016		307				
	9/7/2016	NM	60.1	NM	NM		
	4/26/2017	330	295	NM	NM	<28	5,800
ĺ	3/21/2019		458				
ĺ	11/5/2020		779				
MW-B	5/24/2007	910	780	NM	0.044 U		
ĺ	6/9/2009	570	533	20 U	2.2 ј		
ĺ	9/24/2009	1,300	1,200	100 U	1.6 ј		
ĺ	12/28/2009	740	649	20 U	2.4 Ј		
	3/29/2010	270	263	20 U	2.2 ј		
ĺ	5/18/2011	68	64	NM			
	5/15/2012	5.5 J	10.2	4.7 ј			
ĺ	6/20/2013	74	73.8	NM	1.2 U		
ĺ	8/19/2014		47.1		3 U		
ĺ	4/22/2016		20.1				
		NM NM	585	NM NM	NM NM		
	9/7/2016	NM 2.0		NM	NM		
	4/26/2017	<3.9	4.7 J	NM	NM	<28	910
	3/21/2019		79.6				
Notes	11/5/2020		73.3				

Notes:

ES = NR140 Enforcement Standard

PAL = NR140 Preventative Action Limit

= Detection over NR140 PAL Limit = Detection over NR140 ES Limit U = Analyte not detected at or above reporting limit BOLD

- J = Estimated value. Analyte detected at a level less than the reporting limit
- and greater than or equal to the detection limit.
- "--" = Analyte was not sampled during sampling round
- NM Not measured/calculated, due to Cr(VI) result greater than total Cr result.
- I = PAL and ES values are for total chromium.
- As such, these values are not applicable for hexavalent chromium.
- 2 = Trivalent chromium is the difference between total chromium and hexavalent chromium concentrations.

Groundwater Analytical Results - Dissolved Chromium and Lead Tecumseh Products Co. (Former)-Chromium Line New Holstein, Wisconsin

			DISSOLVED	METAL C		UNDISSOLV	ED METAL C
WELL ID	DATE SAMPLED	HEXAVALENT CHROMIUM (CrVI)	TOTAL CHROMIUM ¹	TRIVALENT CHROMIUM ² (CrIII)	Lead	Ferrous Iron	Total Organic Carbon
	UNITS	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
NR 140	PAL		10		1.5		
STANDARD	ES		100		15		
MW-C	5/24/2007	3.4 U	1.3	NM	0.07		
	6/9/2009	3.9 U	1.1 J	3.9 U	2.4 J		
	9/24/2009	3.9 U	0.39 U	3.9 U	4.1 J		
	12/28/2009 3/29/2010	3.9 U 3.9 U	4.5 J 4.2 J	4.5 J 4.2 J	<i>1.9</i> Ј 1.4 Ј		<u></u>
	5/18/2011	3.9 U	2.3 J	3.9 U	1.4 J		
	5/15/2012	3.9 U	2.3 J 2.4 U	3.9 U			
	6/20/2013	3.4 U	1.2 U	NM	1.2 U		
	8/19/2014		2.1 U		3 U		
MW-D	5/25/2007	3.4 U	1.9	NM	0.1		
	6/9/2009	3.9 U	2.4 J	3.9 U	1.7 J		
	9/24/2009	3.9 U	0.42 J	3.9 U	<i>3</i> J		
	12/29/2009	3.9 U	1.9 J	3.9 U	2.5 J		
	3/29/2010	3.9 U	1.0 J	3.9 U	1.4 J		
MW-E	6/9/2009	290	268	3.9 U	2 J		
	9/24/2009	340	353	20 U	2 ј		
	12/29/2009	870	814	39 U	3.9 ј		
	3/30/2010	890	808	39 U	1.9 J		
	5/19/2011	1,000	963	NM			
	5/15/2012	1,000	920	NM			
	6/20/2013	1,200	1,150	NM	2.9 ј		
	8/19/2014		1,290		3 U		
	4/22/2016	NM	594	NM	NM		
	9/7/2016	NM	507	NM	NM		
	4/26/2017	550	533	NM	NM	<28	6,200
	3/21/2019		628				
	11/5/2020		1,420				
MW-F	6/8/2009	3.9 U	0.46 J	3.9 U	2.2 Ј		
11111	9/23/2009	3.9 U	0.39 U	3.9 U	2.4 I		
ĺ	12/28/2009	3.9 U	1.8 J	3.9 U	1.6 J		
ĺ	3/29/2010	3.9 U	1.4 J	3.9 U	2.2 ј		
ĺ	5/18/2011	3.9 U	1.7 ј	3.9 U			
	5/15/2012	3.9 U	2.4 U	3.9 U			
ĺ	6/21/2013	3.9 U	1.2 U	NM	1.2 U		
	8/19/2014	3.9 U	2.1 U		3 U		
	3/21/2019		2.5 U				
	11/5/2020		2.5 U				
MW-G	6/8/2009	3.9 U	0.7 J	3.9 U	1.3		
111.11	9/23/2009	3.9 U	0.39 U	3.9 U	4.9 J		
	12/28/2009	3.9 U	0.39 J	3.9 U	1.9 J		
	3/29/2010	3.9 U	0.39 U	3.9 U	<i>3</i> J		
	5/18/2011	3.9 U	1.1 J	3.9 U			
	5/15/2012	3.9 U	2.4 U	3.9 U			
	6/21/2013	3.4 U	1.2 U	NM	3.1 J		
Notas	8/19/2014		2.1 U		3 U		

Notes:

ES = NR140 Enforcement Standard

PAL = NR140 Preventative Action Limit

U = Analyte not detected at or above reporting limit

J = Estimated value. Analyte detected at a level less than the reporting limit and greater than or equal to the detection limit.

"--" = Analyte was not sampled during sampling round

NM Not measured/calculated, due to Cr(VI) result greater than total Cr result.

I = PAL and ES values are for total chromium.

As such, these values are not applicable for hexavalent chromium.

2 = Trivalent chormium is the difference between total chromium and hexavalent chromium concentrations.

Groundwater Analytical Results - Dissolved Chromium and Lead Tecumseh Products Co. (Former)-Chromium Line New Holstein, Wisconsin

			DISSOLVED	METALS		UNDISSOLV	ED METALS
WELL ID	DATE SAMPLED	HEXAVALENT CHROMIUM (CrVI)	TOTAL CHROMIUM ¹	TRIVALENT CHROMIUM ² (CrIII)	Lead	Ferrous Iron	Total Organic Carbon
	UNITS	(µg/L)	(μg/L)	(μg/L)	(µg/L)	(μg/L)	(µg/L)
NR 140	PAL	-	10		1.5		-
STANDARD	ES		100		15		-
MW-H	6/8/2009	3.9 U	0.89 J	3.9 U	1.3		
	9/23/2009	3.9 U	3.9 U	3.9 U	2.1 J		
	12/28/2009	3.9 U	3.9 U	3.9 U	2.7 J		
	3/29/2010	3.9 U	3.9 U	3.9 U	1.6 J		
TEC-1	8/13/2002	500	490	NM			
	11/16/2005	4,300	3,800	NM	1.9		
	5/23/2007	790	670	NM	20		
	6/10/2009	11,400	12,000	600 Ј	3.5 ј		
	9/24/2009	3,000	3,120	120	3.8 J		
	12/29/2009	7,900	7,430	200 U	3.3 J		
	3/30/2010	6,700	6,710	200 U	3.3 J		
	5/19/2011	2,400	2,620	220	5.5 3		
		2,300	2,190	NM			
	5/15/2012	7	,				
	6/20/2013	2,300	2,250	NM	4.3 J		
	8/18/2014		1,250		<i>3</i> U		
	4/26/2017	650	598	NM	NM	<28	2,100
	3/21/2019		315				
	11/5/2020		318				
TEC-1A	8/13/2002	14	0.52 U	NM			
	3/6/2006	5.0 U	2.8	NM			
	5/23/2007	3.4 U	0.43 U	NM	0.07		
	6/9/2009	14 J	22.6	9 J	2.2 J		
	9/24/2009	3.9 U	1.1 J	3.9 U	2.1 J		
	12/29/2009	3.9 U	4.3 J	4.3 J	2 J		
	3/29/2010	3.9 U	5.1	5.1	1.5 J		
	5/19/2011	32	38.7	6.7			
	5/15/2012	3.9 U	8.2 1.2 U	8.2 NM	 1.2 II		
	6/20/2013 8/18/2014	3.4 U	2.1 U	NM 	1.2 U 3 U		
TEC-2	8/13/2002	16	0.44 U	NM			
1120-2	11/16/2005	5.0 U	0.44 0	NM			
	5/24/2007	3.4 U	0.78		0.13		
	6/9/2009	3.9 U	1.2 J	3.9 U	2.5 J		
	9/24/2009	3.9 U	0.68 J	3.9 U	3.1 J		
	12/29/2009	3.9 U	1.1 J	3.9 U	3.2 J		
	3/30/2010	3.9 U	2.7 J	3.9 U	2.3 J		
	5/19/2011	3.9 U	1.3 J	3.9 U			
	5/15/2012	3.9 U	2.4 U	3.9 U			
	6/20/2013	3.4 U	1.2 U	NM	2.8 J		
	8/18/2014		2.1 U		3.0 U		

Notes:

ES = NR140 Enforcement Standard

PAL = NR140 Preventative Action Limit

U = Analyte not detected at or above reporting limit

 $\label{eq:J} J = Estimated value. \ Analyte detected at a level less than the reporting limit and greater than or equal to the detection limit.$

"--" = Analyte was not sampled during sampling round

NM Not measured/calculated, due to Cr(VI) result greater than total Cr result.

I = PAL and ES values are for total chromium.

As such, these values are not applicable for hexavalent chromium.

2 = Trivalent chromium is the difference between total chromium and hexavalent chromium concentrations.

Groundwater Analytical Results - Dissolved Chromium and Lead Tecumseh Products Co. (Former)-Chromium Line New Holstein, Wisconsin

	DATE		DISSOLVED	METALS		UNDISSOLV	ED METALS
WELL ID	SAMPLED	HEXAVALENT	TOTAL	TRIVALENT	Lead	Ferrous Iron	Total Organic
	UNITS	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(μg/L)	(μg/L)
NR 140	PAL		10		1.5		-
STANDARD	ES		100		15		-
TEC-3	9/23/2003	270	310	40			
	11/16/2005	540	490	NM			
	5/24/2007	1,000	910	NM	0.17		
	6/10/2009	400	789	390	3.5 J		
	9/24/2009	99	99	20 U	1.8 ј		
	12/29/2009	190	201	11 Ј	2.2 ј		
	3/30/2010	470	445	20 U	1.3 Ј		
	5/19/2011	580	585	5			
	5/15/2012	250	227	NM			
	6/20/2013	1,200	1,260	NM	1.2 U		
	8/19/2014		2,100		<i>3</i> U		
	4/22/2016	NM	5,650	NM	NM		
	9/7/2016	NM	2,820	NM	NM		
	4/26/2017	5,300	5,040	NM	NM	<28	5,800
	3/21/2019		1,080				
	11/5/2020		4,560				
TEC-4	9/23/2003	1,200	1,300	100			
	11/16/2005	2,800	2,700	NM	0.40 U		
	5/24/2007	4,800	4,000	NM	0.06		
	6/10/2009	13,300	12,500	200 U	2.3 ј		
	9/24/2009	5,500	5,220	500 U	2.3 ј		
	12/29/2009	5,200	5,360	160 Ј	3 ј		
	3/30/2010	14,300	12,900	390 U	2.5 ј		
	5/19/2011	29,000	29,200	200			
	5/15/2012	21,300	20,300	NM			
	6/20/2013	33,600	32,200	NM	<i>14</i> U		
	8/19/2014		6,880		3 U		
	4/22/2016	NM	65,100	NM	NM		
	9/7/2016	NM	33,100	NM	NM		
	4/26/2017	16,200	15,400	NM	NM	<28	13,400
	3/21/2019		16,900				
	11/5/2020		26,100				

Notes:

ES = NR140 Enforcement Standard

PAL = NR140 Preventative Action Limit

<i>ITALICIZE</i>	= Detection over ?	NR140	PAL Limit
BOLD	= Detection over	NR 140	ES Limit

U = Analyte not detected at or above reporting limit

- J = Estimated value. Analyte detected at a level less than the reporting limit and greater than or equal to the detection limit.

and greater than or equal to the detection mint.

"--" = Analyte was not sampled during sampling roun.

NM Not measured/calculated, due to Cr(VI) result greater than total Cr result.

I = PAL and ES values are for total chromium.

As such, these values are not applicable for hexavalent chromium.

- 2 = Trivalent chromium is the difference between total chromium and hexavalent chromium concentrations.

♦ .	TRC
-----	-----

Static Depth to Water (ft) Total Purge Volume (gal) Total Depth (ft)

	Sample Location		TEC	2-3
	Da	te	11/5/	12020
	Client			
	Si	te	Tecumseh - HARP	
(15	Sample	Collection Time	1015
		Pur	ge Method	Low Flow using Peristaltic Pump and Poly Tubing
		Sam	nle Method	Low Flow using Peristaltic Pump and Poly Tubing

			CONTRACTOR OF THE PROPERTY OF THE PARTY OF T		
Screen Depth Interval (ft)				Water Description	HC Odor: Y (N) HC Sheen: Y / (Description: Cle are
Pump Intake Depth (ft)				Sampling Personnel	AJ/TG
Condition of Manhole or Protective Cover	™ Good	☐ Fair	☐ Poor/Require	es Replacement	Comment
Condition of Compression Plug	☑ Good	☐ Fair	☐ Poor/Require	es Replacement	Comment:
Condition of Padlock	☐ Good	☐ Fair	☐ Poor/Require	es Replacement	Comment
Condition of Well Label	□ Good	□ Fair	□ Poor/Require	as Renlacement	Comment

Time (min)	Volume Purged (L)	Flow Rate (L/min)	Depth to Water (ft)	Drawdown (ft) < 0.3 ft	pH (SU) ± 0.1	Temp (F) ± 3%	Conductivity (u-mhos/cm) ± 3%	TDS (mg/L) ± 3%	ORP (mV) ± 10 mV	Dissolved Oxygen (mg/L) ± 10%	Turbidity (NTUs) ± 10%
0953		0.012	6.00		7.39	54.9	730	621	173	1.03	2.92
0957			6.04	7	A GOOTE	54.8	730	621	172	0.87	2.42
1001			6.07		7.28	54.7	728	619	172	0.65	1.36
1005			6.11		7,24	54.7	726	618	172	0.61	1.42
1009			6.13		7.23	54.7	726	618	172	0.69	1,36

Record measurements in units listed on form microSiemens/cm = micromhos/cm All depth measurements are feet below top of casing

TC- Date 11/5/2020

		Sample I	_ocation	TEC-	4		
TRC		Dat		11/5/6	2020		
		Si	te	Tecumseh - HARP			
Static Depth to Water (ft)	5.94		Sample (Collection Time	1645		
Total Purge Volume (gal)			Purç	ge Method	Low Flow using Peristaltic Pump and Poly Tubing		
Total Depth (ft)		Sa		ple Method	Low Flow using Peristaltic Pump and Poly Tubing		
Screen Depth Interval (ft)			Water	Description	HC Odor: Y / HC Sheen: Y / Description: yellowish, slight		
Pump Intake Depth (ft)			Sampli	ng Personnel	AJ/TG		

Condition of Manhole or Protective Cover	Good	☐ Fair	☐ Poor/Requires Replacement	Comment:
Condition of Compression Plug	Good	☐ Fair	☐ Poor/Requires Replacement	Comment:
Condition of Padlock	☐ Good	☐ Fair	☐ Poor/Requires Replacement	Comment:
Condition of Well Label	☐ Good	☐ Fair	☐ Poor/Requires Replacement	Comment:

Time (min)	Volume Purged (L)	Flow Rate (L/min)	Depth to Water (ft)	Drawdown (ft) < 0.3 ft	pH (SU) ± 0.1	Temp (F) ± 3%	Conductivity (u-mhos/cm) ± 3%	TDS (mg/L) ± 3%	ORP (mV) ± 10 mV	Dissolved Oxygen (mg/L) ± 10%	Turbidity (NTUs) ± 10%
1024		0.12	5.99		7.16	54.4	723	618	184	+85 Th	4.02
1028			6,03		7.02	54.5	723	617	190	190 76	3.47
1032			6.03		6.97	54.6	723	616	195	5.76	2.20
1036			6,04		6.95	54.7	723	616	199	5.72	2.62
1040			6.05		6.94	54.7	723	616	203	5.66	2.53
					The state of the s						
					per late - respect Topolitic Windows Miles						
					Parameter and Constitution of the Constitution						
					AND THE RESERVE OF THE PARTY OF						
							The Today				

Record measurements in units listed on form microSiemens/cm = micromhos/cm
All depth measurements are feet below top of casing

Form Date: 04/01/09 Initial Date	Initial Date
----------------------------------	--------------

Page of	
---------	--

Sample Location	NH-26
Date	11/5/2620
Client	
Site	Tecumseh - HARP

Static Depth to Water (ft)	6.28	Sample Collection Time	
Total Purge Volume (gal)		Purge Method	Low Flow using Peristaltic Pump and Poly Tubing
Total Depth (ft)		Sample Method	Low Flow using Peristaltic Pump and Poly Tubing
Screen Depth Interval (ft)		Water Description	HC Odor: Y / N HC Sheen: Y / N Description:
Pump Intake Depth (ft)		Sampling Personnel	

Condition of Manhole or Protective Cover	☐ Good	☐ Fair	☐ Poor/Requires Replacement	Comment:
Condition of Compression Plug	☐ Good	☐ Fair	☐ Poor/Requires Replacement	Comment:
Condition of Padlock	☐ Good	☐ Fair	☐ Poor/Requires Replacement	Comment:
Condition of Well Label	☐ Good	☐ Fair	☐ Poor/Requires Replacement	Comment:

Time (min)	Volume Purged (L)	Flow Rate (L/min)	Depth to Water (ft)	Drawdown (ft) < 0.3 ft	pH (SU) ± 0.1	Temp (F) ± 3%	Conductivity (u-mhos/cm) ± 3%	TDS (mg/L) ± 3%	ORP (mV) ± 10 mV	Dissolved Oxygen (mg/L) ± 10%	Turbidity (NTUs) ± 10%
1104		0.12	6.37		7.07	52.5	626	550	209	3.07	7,50
1108			6.39		7.05	52.5	624	548	210	2.48	3,08
1112			6.39		7.04	52.5	622	547	211	2.43	3.01
1116			6.39		7.04	52.4	621	546	211	2.33	3.38
1120			6.39		7.04	52.4	620	546	211	2,26	2,71
				Š							

Record measurements in units listed on form microSiemens/cm = micromhos/cm
All depth measurements are feet below top of casing

Form	Data	04/01/09	
PUILIT	Date.	04/01/09	

nitial	Date	

ane	of	

Sample I	_ocation	NH-7	
Da	te	11/5/2	o 2-6
Clie	ent	1 7/0	
Site		Tecumseh - HARP	
3	Sample	Collection Time	1205

7.83	Sample Collection Time	1205
	Purge Method	Low Flow using Peristaltic Pump and Poly Tubing
	Sample Method	Low Flow using Peristaltic Pump and Poly Tubing
	Water Description	HC Odor: Y N HC Sheen: Y N Description: Clear
	Sampling Personnel	ATITG
	7.83	Purge Method Sample Method Water Description

Condition of Manhole or Protective Cover	™ Good	☐ Fair	☐ Poor/Requires Replacement	Comment:
Condition of Compression Plug	☑ Good	☐ Fair	☐ Poor/Requires Replacement	Comment:
Condition of Padlock	☐ Good	☐ Fair	☐ Poor/Requires Replacement	Comment:
Condition of Well Label	☐ Good	☐ Fair	☐ Poor/Requires Replacement	Comment:

Time (min)	Volume Purged (L)	Flow Rate (L/min)	Depth to Water (ft)	Drawdown (ft) < 0.3 ft	pH (SU) ± 0.1	Temp (F) ± 3%	Conductivity (u-mhos/cm) ± 3%	TDS (mg/L) ± 3%	ORP (mV) ± 10 mV	Dissolved Oxygen (mg/L) ± 10%	Turbidity (NTUs) ± 10%
1142		0.12	7.88		6,96	53.8	642	563	214	3.32	11.52
1146			7,90		6.90	53.9	643	553	216	3,08	8.14
1150			7.92		6.88	53.9	643	553	217	2.97	5.64
1154			7,92		6.87	54,0	643	553	218	2.96	6.77
1158			4.97		6.87	54,0	643	553	219	2.93	2.01
				J						A	

Record measurements in units listed on form microSiemens/cm = micromhos/cm All depth measurements are feet below top of casing

Page ____ of ____

<>	TRC

Static Depth to Water (ft)

Total Purge Volume (gal)

Total Depth (ft)

Screen Depth Interval (ft)

Pump Intake Depth (ft)

	Sample Location	Mw-	E MS/MSD
	Date	11/5	1000
	Client		
	Site	Tecumseh - HARP	
6.09	Sar	mple Collection Time	\330
•		Purge Method	Low Flow using Peristaltic Pump and Poly Tubing
		Sample Method	Low Flow using Peristaltic Pump and Poly Tubing

HC Odor: Y / N HC Sheen: Y / N Description:

Condition of Manhole or Protective Cover	☐ Good	☐ Fair	☐ Poor/Requires Replacement	Comment:
Condition of Compression Plug	☐ Good	☐ Fair	☐ Poor/Requires Replacement	Comment:
Condition of Padlock	☐ Good	☐ Fair	☐ Poor/Requires Replacement	Comment:
Condition of Well Label	☐ Good	☐ Fair	☐ Poor/Requires Replacement	Comment:

Water Description

Sampling Personnel

Time (min)	Volume Purged (L)	Flow Rate (L/min)	Depth to Water (ft)	Drawdown (ft) < 0.3 ft	pH (SU) ± 0.1	Temp (F) ± 3%	Conductivity (u-mhos/cm) ± 3%	TDS (mg/L) ± 3%	ORP (mV) ± 10 mV	Dissolved Oxygen (mg/L) ± 10%	Turbidity (NTUs) ± 10%
1308		0.12	6.15		6.94	59.9	663	527	219	2.90	4.45
1312			6.18		6.88	60.0	664	527	220	1,74	6.15
1316			6.19		6.86	60.1	665	527	219	1.66	3.14
1320			6.20		6.86	60.2	666	527	218	1.49	2.97
1324			6.21		6.85	60.1	666	528	217	1.35	2.52
,					w he //						
			Marie Control of the								
			The second secon		V. Major, State of Principles (State of State of						
				770 M. Tan America . Jan St. Andrews . March 14 (1984)							

Record measurements in units listed on form microSiemens/cm = micromhos/cm
All depth measurements are feet below top of casing

Form Date: 04/01/09

nitial	Date	

age	 of

<>	TRC

Static Depth to Water (ft) Total Purge Volume (gal) Total Depth (ft)

Screen Depth Interval (ft)

	Sample L	Location	TEC-	0-0-1
	Da	ite	11/5/	9-63-0
	Clie	ent		
1	Sit	te	Tecumseh - HARP	
		Sample (Collection Time	1710
		Purç	ge Method	Low Flow using Peristaltic Pump and Poly Tubing
		Sam	ple Method	Low Flow using Peristaltic Pump and Poly Tubing

HC Odor: Y / N HC Sheen: Y / N Description:

Pump Intake Depth (ft)			Sampling Personnel	At 1 TG
Condition of Manhole or Protective Cover	☐ Good	S Fair	☐ Poor/Requires Replacement	Comment: Casing heaved up
Condition of Compression Plug	Good	☐ Fair	☐ Poor/Requires Replacement	Comment:
Condition of Padlock	☐ Good	☐ Fair	☐ Poor/Requires Replacement	Comment:
Condition of Well Label	□ Good	☐ Fair	☐ Poor/Requires Replacement	Comment:

Water Description

Time (min)	Volume Purged (L)	Flow Rate (L/min)	Depth to Water (ft)	Drawdown (ft) < 0.3 ft	pH (SU) ± 0.1	Temp (F) ± 3%	Conductivity (u-mhos/cm) ± 3%	TDS (mg/L) ± 3%	ORP (mV) ± 10 mV	Dissolved Oxygen (mg/L) ± 10%	Turbidity (NTUs) ± 10%
1351		0.12	3.97		7.52	57.2	412	340	214	4.78	3.70
1355			3.98		7.40	56.2	402	335	214	4.52	1.86
1359			3,98		7.38	56.1	400	334	214	4.46	3.40
1403			400		7,36	56.4	400	333	213	4.46	4.36
1907								·			

Record measurements in units listed on form microSiemens/cm = micromhos/cm All depth measurements are feet below top of casing

Form Date: 04/01/09

147 - 4		Dana	
itial	Date	Page c	of

Sample Location	MW-8
Date	11/5/2020
Client	
Site	Tecumseh - HARP

Static Depth to Water (ft)	3.03	Sample Collection Time	1440
Total Purge Volume (gal)		Purge Method	Low Flow using Peristaltic Pump and Poly Tubing
Total Depth (ft)		Sample Method	Low Flow using Peristaltic Pump and Poly Tubing
Screen Depth Interval (ft)		Water Description	HC Odor: Y / N HC Sheen: Y / N Description:
Pump Intake Depth (ft)		Sampling Personnel	AI / TG

Condition of Manhole or Protective Cover	☐ Good	Fair	☐ Poor/Requires Replacement	Comment: Partially buscled
Condition of Compression Plug	□ Good	☐ Fair	☐ Poor/Requires Replacement	Comment:
Condition of Padlock	☐ Good	☐ Fair	☐ Poor/Requires Replacement	Comment:
Condition of Well Label	☐ Good	☐ Fair	☐ Poor/Requires Replacement	Comment:

Time (min)	Volume Purged (L)	Flow Rate (L/min)	Depth to Water (ft)	Drawdown (ft) < 0.3 ft	pH (SU) ± 0.1	Temp (F) ± 3%	Conductivity (u-mhos/cm) ± 3%	TDS (mg/L) ± 3%	ORP (mV) ± 10 mV	Dissolved Oxygen (mg/L) ± 10%	Turbidity (NTUs) ± 10%
1421		0.12	3.24		7.08	57.6	468	381	- 50	1.96	2.79
1425			3.27		6.94	57.1	375	309	9	1.69	2,78
1429			3.30		6.89	57.0	362	299	17	1.65	2.96
1433			3.33		6.87	56.9	352	292	52	1.65	2,71
1438			3.34		6.85	56.7	349	289	76	1.62	3.80

Record measurements in units listed on form microSiemens/cm = micromhos/cm All depth measurements are feet below top of casing

Initial TG Date 11/5/20

Page ____ of ____

		Sample L	ocation	MW-E	5
ATOC	Da	te	11/5/	2020	
*> TRC	Clie	Client			
		Sir	е	Tecumseh - HARP	
Static Depth to Water (ft)	3.08		Sample (Collection Time	1515
Total Purge Volume (gal)			Purg	ge Method	Low Flow using Peristaltic Pump and Poly Tubing
Total Depth (ft)			Sam	ple Method	Low Flow using Peristaltic Pump and Poly Tubing
Screen Depth Interval (ft) Pump Intake Depth (ft)			Water	Description	HC Odor: Y / N HC Sheen: Y / N Description:
			Sampli	ng Personnel	AS/TG
ndition of Manhola or Protective Cover					Commant

Condition of Manhole or Protective Cover	☐ Good	☐ Fair	☐ Poor/Requires Replacement	Comment:
Condition of Compression Plug	☐ Good	☐ Fair	☐ Poor/Requires Replacement	Comment:
Condition of Padlock	☐ Good	☐ Fair	☐ Poor/Requires Replacement	Comment:
Condition of Well Label	☐ Good	☐ Fair	☐ Poor/Requires Replacement	Comment:

Time (min)	Volume Purged (L)	Flow Rate (L/min)	Depth to Water (ft)	Drawdown (ft) < 0.3 ft	pH (SU) ± 0.1	Temp (F) ± 3%	Conductivity (u-mhos/cm) ± 3%	TDS (mg/L) ± 3%	ORP (mV) ± 10 mV	Dissolved Oxygen (mg/L) ± 10%	Turbidity (NTUs) ± 10%
1454		0.12	3.28		6.97	57.1	512	422	167	3.21	4.74
1458			3.30		6.79	56.7	510	422	171	3.09	3.12
1502			3.32		676	56.4	508	422	174	3.03	3.34
1506				The second secon	6.75	56.1	506	423	178	2.97	2.84
									•		•
				2) 4 (24.00) / 1 (4.00) 40 (4.00)							
				-							

Record measurements in units listed on form microSiemens/cm = micromhos/cm
All depth measurements are feet below top of casing

Initial TG Date 11/5/20

Form Date: 04/01/09

Static Depth to Water (ft)

Total Purge Volume (gal)

Total Depth (ft)

Screen Depth Interval (ft)

Pump Intake Depth (ft)

	Sample Location Date Client Site Sample C		New-	A	
			11/5/2020		
			Tecumseh - HARP		
5.33			Collection Time	1605	
		Purge Method		Low Flow using Peristaltic Pump and Poly Tubing	
		Sam	ple Method	Low Flow using Peristaltic Pump and Poly Tubing	

AJ/TG

HC Odor: Y / N HC Sheen: Y / N Description:

Condition of Manhole or Protective Cover	⊠ Good	☐ Fair	☐ Poor/Requires Replacement	Comment:
Condition of Compression Plug	Good	☐ Fair	☐ Poor/Requires Replacement	Comment:
Condition of Padlock	☐ Good	☐ Fair	☐ Poor/Requires Replacement	Comment:
Condition of Well Label	☐ Good	☐ Fair	☐ Poor/Requires Replacement	Comment:

Water Description

Sampling Personnel

Time (min)	Volume Purged (L)	Flow Rate (L/min)	Depth to Water (ft)	Drawdown (ft) < 0.3 ft	pH (SU) ± 0.1	Temp (F) ± 3%	Conductivity (u-mhos/cm) ± 3%	TDS (mg/L) ± 3%	ORP (mV) ± 10 mV	Dissolved Oxygen (mg/L) ± 10%	Turbidity (NTUs) ± 10%
1542		0.12	15.41	V 2113.3	6.99	58.4	524	425	200	5.13	3.30
1546			5.44		6.95	57.8	517	421	200	4.69	3.86
1550			5.47		6.93	57.7	515	#421	200	4.57	1.59
1554			5.48		6.92	57.3	513	422	201	4.50	3.06
1558			5,49		6.92	57.0	514	425	202	4.38	1.92
							,				
		1									

Record measurements in units listed on form microSiemens/cm = micromhos/cm
All depth measurements are feet below top of casing

Form Dat	e: 04	1/01/	09
----------	-------	-------	----

nitial	Date

age	of	

•	TRC
---	-----

Sample Location	MW-B
Date	11/5/2020
Client	
Site	Tecumseh - HARP

Static Depth to Water (ft)	4.32	Sample Collection Time	1636
Total Purge Volume (gal)		Purge Method	Low Flow using Peristaltic Pump and Poly Tubing
Total Depth (ft)		Sample Method	Low Flow using Peristaltic Pump and Poly Tubing
Screen Depth Interval (ft)		Water Description	HC Odor: Y / N HC Sheen: Y / N Description:
Pump Intake Depth (ft)		Sampling Personnel	AT/TG

Condition of Manhole or Protective Cover	☐ Good	☐ Fair	☐ Poor/Requires Replacement	Comment:
Condition of Compression Plug	☐ Good	☐ Fair	☐ Poor/Requires Replacement	Comment:
Condition of Padlock	☐ Good	☐ Fair	☐ Poor/Requires Replacement	Comment:
Condition of Well Label	□ Good	☐ Fair	☐ Poor/Requires Replacement	Comment:

Time (min)	Volume Purged (L)	Flow Rate (L/min)	Depth to Water (ft)	Drawdown (ft) < 0.3 ft	pH (SU) ± 0.1	Temp (F) ± 3%	Conductivity (u-mhos/cm) ± 3%	TDS (mg/L) ± 3%	ORP (mV) ± 10 mV	Dissolved Oxygen (mg/L) ± 10%	Turbidity (NTUs) ± 10%
1615		0.12	4,42		7.15	55.0	492	418	206	6.14	15.06
1619			4,42		7.03	55,0	491	417	207	4.74	17.95
1623			4.48		7.02	54.7	489	417	308	4.66	17,90
1623			4.51		7.01	54.4	487	417	210	4.62	17.18

Record measurements in units listed on form microSiemens/cm = micromhos/cm All depth measurements are feet below top of casing

Initial TC+ Date 11/5/20

Page ____ of ____

	Sample Location	NW-F
Date		115/2020
	Client	
	Site	Tecumseh - HARP
	7 Sample 0	Collection Time 1710

Static Depth to Water (ft)	7,27	Sample Collection Time	1710
Total Purge Volume (gal)		Purge Method	Low Flow using Peristaltic Pump and Poly Tubing
Total Depth (ft)		Sample Method	Low Flow using Peristaltic Pump and Poly Tubing
Screen Depth Interval (ft)		Water Description	HC Odor: Y / N HC Sheen: Y / N Description:
Pump Intake Depth (ft)		Sampling Personnel	AT 1 TG

Condition of Manhole or Protective Cover	Good	☐ Fair	☐ Poor/Requires Replacement	Comment:
Condition of Compression Plug	Good	☐ Fair	☐ Poor/Requires Replacement	Comment:
Condition of Padlock	☐ Good	☐ Fair	☐ Poor/Requires Replacement	Comment:
Condition of Well Label	☐ Good	☐ Fair	☐ Poor/Requires Replacement	Comment:

Time (min)	Volume Purged (L)	Flow Rate (L/min)	Depth to Water (ft)	Drawdown (ft) < 0.3 ft	pH (SU) ± 0.1	Temp (F) ± 3%	Conductivity (u-mhos/cm) ± 3%	TDS (mg/L) ± 3%	ORP (mV) ± 10 mV	Dissolved Oxygen (mg/L) ± 10%	Turbidity (NTUs) ± 10%
1647		0.12	7.58		6.84	54.9	676	579	202	3.87	17.30
1651			7.43		6.78	54.2	676	580	210	3.60	11.36
1655			7,45		6.76	54.1	674	579	213	3.49	5,87
16,59			7.48		6.76	54.6	672	578	216	3.52	5.65
					,						

Record measurements in units listed on form microSiemens/cm = micromhos/cm
All depth measurements are feet below top of casing

Form Date: 04/01/09	Initial	Date	Page of

(920)469-2436

December 07, 2020

Chris Harvey TRC Environmental 230 W. Monroe St Suite 630 Chicago, IL 60606

RE: Project: TECUMSEH-HARP

Pace Project No.: 40217966

Dear Chris Harvey:

Enclosed are the analytical results for sample(s) received by the laboratory on November 07, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Green Bay

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Laurie Woelfel

Laurie Woelfel laurie.woelfel@pacelabs.com (920)469-2436 Project Manager

Enclosures

cc: Tyler Gomoll, TRC Solutions Tanner Hess, TRC

CERTIFICATIONS

Project: TECUMSEH-HARP

Pace Project No.: 40217966

Pace Analytical Services Green Bay

North Dakota Certification #: R-150

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 Virginia VELAP ID: 460263

South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157 Federal Fish & Wildlife Permit #: LE51774A-0

(920)469-2436

SAMPLE SUMMARY

Project: TECUMSEH-HARP

Pace Project No.: 40217966

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40217966001	TEC-3	Water	11/05/20 10:15	11/07/20 10:45
40217966002	TEC-4	Water	11/05/20 10:45	11/07/20 10:45
40217966003	NH-26	Water	11/05/20 11:20	11/07/20 10:45
40217966004	NH-7	Water	11/05/20 12:05	11/07/20 10:45
40217966005	MW-E	Water	11/05/20 13:30	11/07/20 10:45
40217966006	TEC-1	Water	11/05/20 14:10	11/07/20 10:45
40217966007	DUP-1	Water	11/05/20 00:00	11/07/20 10:45
40217966008	MW-8	Water	11/05/20 14:40	11/07/20 10:45
40217966009	MW-5	Water	11/05/20 15:15	11/07/20 10:45
40217966010	MW-A	Water	11/05/20 16:05	11/07/20 10:45
40217966011	MW-B	Water	11/05/20 16:30	11/07/20 10:45
40217966012	MW-F	Water	11/05/20 17:10	11/07/20 10:45

REPORT OF LABORATORY ANALYSIS

(920)469-2436

SAMPLE ANALYTE COUNT

Project: TECUMSEH-HARP

Pace Project No.: 40217966

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
40217966001	TEC-3	EPA 6010	TXW	1	PASI-G
40217966002	TEC-4	EPA 6010	TXW	1	PASI-G
40217966003	NH-26	EPA 6010	TXW	1	PASI-G
40217966004	NH-7	EPA 6010	TXW	1	PASI-G
40217966005	MW-E	EPA 6010	TXW	1	PASI-G
40217966006	TEC-1	EPA 6010	TXW	1	PASI-G
40217966007	DUP-1	EPA 6010	TXW	1	PASI-G
40217966008	MW-8	EPA 6010	TXW	1	PASI-G
40217966009	MW-5	EPA 6010	TXW	1	PASI-G
40217966010	MW-A	EPA 6010	TXW	1	PASI-G
40217966011	MW-B	EPA 6010	TXW	1	PASI-G
40217966012	MW-F	EPA 6010	TXW	1	PASI-G

PASI-G = Pace Analytical Services - Green Bay

REPORT OF LABORATORY ANALYSIS

11/09/20 20:27 7440-47-3

Chromium, Dissolved

Date: 12/07/2020 10:19 AM

ANALYTICAL RESULTS

Project: TECUMSEH-HARP

Pace Project No.: 40217966

Sample: TEC-3 Lab ID: 40217966001 Collected: 11/05/20 10:15 Received: 11/07/20 10:45 Matrix: Water

4560

ug/L

Parameters Results Units LOQ LOD DF Prepared Analyzed CAS No. Qual

6010 MET ICP, Dissolved Analytical Method: EPA 6010
Pace Analytical Services - Green Bay

2.5

10.0

REPORT OF LABORATORY ANALYSIS

11/09/20 20:37 7440-47-3

ANALYTICAL RESULTS

Project: TECUMSEH-HARP

26100

ug/L

Pace Project No.: 40217966

Chromium, Dissolved

Date: 12/07/2020 10:19 AM

Sample: TEC-4 Lab ID: 40217966002 Collected: 11/05/20 10:45 Received: 11/07/20 10:45 Matrix: Water **Parameters** Results Units LOQ LOD DF Prepared CAS No. Analyzed Qual 6010 MET ICP, Dissolved Analytical Method: EPA 6010 Pace Analytical Services - Green Bay

2.5

10.0

Project: TECUMSEH-HARP

Pace Project No.: 40217966

Date: 12/07/2020 10:19 AM

Sample: NH-26 Lab ID: 40217966003 Collected: 11/05/20 11:20 Received: 11/07/20 10:45 Matrix: Water **Parameters** Results Units LOQ LOD DF Prepared CAS No. Analyzed Qual 6010 MET ICP, Dissolved Analytical Method: EPA 6010 Pace Analytical Services - Green Bay Chromium, Dissolved 1080 ug/L 10.0 2.5 11/09/20 20:39 7440-47-3

Project: TECUMSEH-HARP

Pace Project No.: 40217966

Date: 12/07/2020 10:19 AM

Sample: NH-7 Lab ID: 40217966004 Collected: 11/05/20 12:05 Received: 11/07/20 10:45 Matrix: Water **Parameters** Results Units LOQ LOD DF Prepared CAS No. Analyzed Qual 6010 MET ICP, Dissolved Analytical Method: EPA 6010 Pace Analytical Services - Green Bay Chromium, Dissolved 311 ug/L 10.0 2.5 11/09/20 20:42 7440-47-3

Project: TECUMSEH-HARP

Pace Project No.: 40217966

Date: 12/07/2020 10:19 AM

Sample: MW-E Lab ID: 40217966005 Collected: 11/05/20 13:30 Received: 11/07/20 10:45 Matrix: Water Parameters Results Units LOQ LOD DF Prepared CAS No. Analyzed Qual 6010 MET ICP, Dissolved Analytical Method: EPA 6010 Pace Analytical Services - Green Bay Chromium, Dissolved 1420 ug/L 10.0 2.5 11/09/20 20:17 7440-47-3

Project: TECUMSEH-HARP

Pace Project No.: 40217966

Date: 12/07/2020 10:19 AM

Sample: TEC-1 Lab ID: 40217966006 Collected: 11/05/20 14:10 Received: 11/07/20 10:45 Matrix: Water Parameters Results Units LOQ LOD DF Prepared CAS No. Analyzed Qual 6010 MET ICP, Dissolved Analytical Method: EPA 6010 Pace Analytical Services - Green Bay Chromium, Dissolved 318 ug/L 10.0 2.5 11/09/20 20:44 7440-47-3

Project: TECUMSEH-HARP

Pace Project No.: 40217966

Date: 12/07/2020 10:19 AM

Sample: DUP-1 Lab ID: 40217966007 Collected: 11/05/20 00:00 Received: 11/07/20 10:45 Matrix: Water Results Units LOQ LOD DF Prepared CAS No. **Parameters** Analyzed Qual 6010 MET ICP, Dissolved Analytical Method: EPA 6010 Pace Analytical Services - Green Bay Chromium, Dissolved 319 ug/L 10.0 2.5 11/09/20 20:47 7440-47-3

Project: TECUMSEH-HARP

Pace Project No.: 40217966

Date: 12/07/2020 10:19 AM

Sample: MW-8 Lab ID: 40217966008 Collected: 11/05/20 14:40 Received: 11/07/20 10:45 Matrix: Water Parameters Results Units LOQ LOD DF Prepared CAS No. Analyzed Qual 6010 MET ICP, Dissolved Analytical Method: EPA 6010 Pace Analytical Services - Green Bay Chromium, Dissolved 5.0J ug/L 10.0 2.5 11/09/20 20:49 7440-47-3

Project: TECUMSEH-HARP

Pace Project No.: 40217966

Date: 12/07/2020 10:19 AM

Sample: MW-5 Lab ID: 40217966009 Collected: 11/05/20 15:15 Received: 11/07/20 10:45 Matrix: Water

Parameters Results Units LOQ LOD DF Prepared CAS No. Analyzed Qual 6010 MET ICP, Dissolved Analytical Method: EPA 6010 Pace Analytical Services - Green Bay Chromium, Dissolved 102 ug/L 10.0 2.5 11/09/20 20:51 7440-47-3

Project: TECUMSEH-HARP

Pace Project No.: 40217966

Date: 12/07/2020 10:19 AM

Sample: MW-A Lab ID: 40217966010 Collected: 11/05/20 16:05 Received: 11/07/20 10:45 Matrix: Water Parameters Results Units LOQ LOD DF Prepared CAS No. Analyzed Qual 6010 MET ICP, Dissolved Analytical Method: EPA 6010 Pace Analytical Services - Green Bay Chromium, Dissolved 779 ug/L 10.0 2.5 11/09/20 20:54 7440-47-3

REPORT OF LABORATORY ANALYSIS

Project: TECUMSEH-HARP

Pace Project No.: 40217966

Date: 12/07/2020 10:19 AM

Sample: MW-B Lab ID: 40217966011 Collected: 11/05/20 16:30 Received: 11/07/20 10:45 Matrix: Water Parameters Results Units LOQ LOD DF Prepared CAS No. Analyzed Qual 6010 MET ICP, Dissolved Analytical Method: EPA 6010 Pace Analytical Services - Green Bay Chromium, Dissolved 73.3 ug/L 10.0 2.5 11/09/20 20:56 7440-47-3

REPORT OF LABORATORY ANALYSIS

11/09/20 21:04 7440-47-3

ANALYTICAL RESULTS

Project: TECUMSEH-HARP

<2.5

ug/L

Pace Project No.: 40217966

Chromium, Dissolved

Date: 12/07/2020 10:19 AM

Sample: MW-F Lab ID: 40217966012 Collected: 11/05/20 17:10 Received: 11/07/20 10:45 Matrix: Water Parameters Results Units LOQ LOD DF Prepared CAS No. Analyzed Qual 6010 MET ICP, Dissolved Analytical Method: EPA 6010 Pace Analytical Services - Green Bay

2.5

10.0

(920)469-2436

QUALITY CONTROL DATA

Project: TECUMSEH-HARP

Pace Project No.: 40217966

Date: 12/07/2020 10:19 AM

QC Batch: 370698 Analysis Method: EPA 6010

QC Batch Method: EPA 6010 Analysis Description: ICP Metals, Trace, Dissolved

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40217966001, 40217966002, 40217966003, 40217966004, 40217966005, 40217966006, 40217966007,

40217966008, 40217966009, 40217966010, 40217966011, 40217966012

METHOD BLANK: 2143712 Matrix: Water

Associated Lab Samples: 40217966001, 40217966002, 40217966003, 40217966004, 40217966005, 40217966006, 40217966007,

40217966008, 40217966009, 40217966010, 40217966011, 40217966012

Blank Reporting

ParameterUnitsResultLimitAnalyzedQualifiersChromium, Dissolvedug/L<2.5</td>10.011/09/20 20:13

LABORATORY CONTROL SAMPLE: 2143713

LCS LCS Spike % Rec Units Result % Rec Limits Qualifiers Parameter Conc. Chromium, Dissolved ug/L 500 496 99 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2143715 2143716

MS MSD

40217966005 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual 20 Chromium, Dissolved 1420 500 500 1910 1900 98 95 75-125 ug/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: TECUMSEH-HARP

Pace Project No.: 40217966

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor, percent moisture, initial weight and final volume.

LOQ - Limit of Quantitation adjusted for dilution factor, percent moisture, initial weight and final volume.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Date: 12/07/2020 10:19 AM

REPORT OF LABORATORY ANALYSIS

(920)469-2436

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: TECUMSEH-HARP

Pace Project No.: 40217966

Date: 12/07/2020 10:19 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40217966001	TEC-3	EPA 6010	370698		
40217966002	TEC-4	EPA 6010	370698		
40217966003	NH-26	EPA 6010	370698		
40217966004	NH-7	EPA 6010	370698		
40217966005	MW-E	EPA 6010	370698		
40217966006	TEC-1	EPA 6010	370698		
40217966007	DUP-1	EPA 6010	370698		
40217966008	MW-8	EPA 6010	370698		
40217966009	MW-5	EPA 6010	370698		
40217966010	MW-A	EPA 6010	370698		
40217966011	MW-B	EPA 6010	370698		
40217966012	MW-F	EPA 6010	370698		

	(Please Print Clearly)		3		<u> </u>		UPPER MIDWEST REGION	nge 1 of
Company Nar	me: TRC			75	1		MN: 612-607-1700 WI: 920-469-2436 (1)	W
Branch/Locat	lion: Chicago		Ι.	/_/	Paci	e An		
Project Conta		1	1 /			www.	Quote #:	
Phone:	847-871-300	Ó		(CH/	AIN	USTODY Mail To Contact:	
Project Numb			A=N	lone B	HCL C	=H2SO4	les Water F=Methanol G=NaOH Mail To Company:	
Project Name	: Teconsel - HA	+20		Sodium Bisi			fate J=Other Mail To Address:	
Project State:		V - 1		ERED? S/NO)	Y/N	I_V		
Sampled By (4	PRESE	RVATION DDE)*	Pick Letter	0	Invoice To Contact:	
Sampled By (1 "	<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Invoice To Company:	
PO#:		Regulatory			d ag	しい	Invoice To Address:	
Data Packa		Program: Mat	trix Code	s				
(billa	ble) On your sample B	= Air = Biota	W = Water DW = Drink	ing Water	Pag. se	100		
☐ EPA	U NOT needed on O	= Charcoal = Oil = Soil	GW = Grou SW = Surfa WW = Was	ce Water	Analyses	Disselve	Invoice To Phone:	
	your sample SI	= Sludge	WP = Wipe	т	A COURT OF THE PARTY OF	2.	CLIENT LAB COMM	
PACE LAB#	CLIENT FIELD ID	DATE	TIME	MATRIX			COMMENTS (Lab Use C	ן (צוחי
00[TEC-3	11/5/20		GW		X		
002	TEC-4	44-	1045	44	ļ	 X		
003	NH-26		1120	44		X		
004	NH-7		1205			ĮУ,		
	MW-E		1330	1		ļΧ		
opt	MS/MSD	111	1330			X		
00%	TEC-1		1410			X		
007	Dup-1					X		
008	MW-8		1440			X		
009	MW-5	Ш	1515	Ш		X		
010	nw-A		1605		ngil men	X		
011	mw-B		1630			X		
012	MW-F	<u> </u>	1710	1		X		
	naround Time Requested - Prelims AT subject to approval/surcharge)	Relin	quished By: 1'/er (-	Toma	a)	11	Received By: Date/Time:	PACE Project No
(1/40)1-17	Date Needed:	Relino	quished By:		•		Received By: Date/Time:	D1711
Transmit Prelir	m Rush Results by (complete what you wan		guished By:	(0845 Sunlypp Pace U17/20 0845 Receipt	Temp= WA °C
Email #2:								Sample Receipt pH
Telephone: Fax:		Relino	quished By:				Received By: Date/Time:	OK)/ Adjusted
Sai	mples on HOLD are subject to	Relino	quished By:				Received By: Date/Time:	Not Present

Sample Preservation Receipt Form

Project # 2001

All containers needing preservation have been checked and noted below: ★Yes □No □N/A

Client Name: TRC

Lab Lot# of pH paper: 100 H 194 Lab Std #ID of preservation (if pH adjusted):

Initial when completed: SQ Time:

											Lour C								710 01			e America Santing	16,6110,61				*	34 155	_		600 (100 (100		
				Gla	ISS						Plast	ic	000000			Via	als			Summanumid	Ja	ars		Ge	enera	ı	(>6mm)	3	Act pH ≥9	≥12	7 5	djusted	Volume
Pace Lab#	AG10	BG1U	AG1H	AG4S	AG4U	AG5U	AG2S	BG3U	BP1U	ВРЗО	BP3B	BP3N	BP3S	VG9A	DG9T	Nesn	H69A	VG9M	VG9D	JGFU	UGSL	WGFU	WPFU	SP5T	ZPLC	GN	VOA Vials (>6mm) *	H2SO4 pH ≤2	NaOH+Zn.	NaOH pH ≥12	S≥ Hd EONH	pH after adjusted	(mL)
001																															\times		2.5 / 5 / 10
002												T																			\times		2.5 / 5 / 10
003																															\times		2.5 / 5 / 10
004																															\times		2.5 / 5 / 10
005												3																			\times		2.5 / 5 / 10
006												Ī																			X		2.5/5/10
007																															> <		2.5 / 5 / 10
008																															X		2.5/5/10
009																															\bowtie		2.5 / 5 / 10
010																															\times		2.5 / 5 / 10
011												1																			\supset		2.5 / 5 / 10
012																															\times		2.5 / 5 / 10
013																																	2.5 / 5 / 10
014						\neg											121																2.5 / 5 / 10
015									\mathbb{R}																								2.5 / 5 / 10
016											7																						2.5 / 5 / 10
017																																	2.5 / 5 / 10
018																		=															2.5 / 5 / 10
019																									11/7	20							2.5 / 5 / 10
020																								\dashv	<u> </u>	थंट							2.5 / 5 / 10

Exceptions to preservation check: VOA, Coliform, TOC, TOX, TOH, O&G, WI DRO, Phenolics, Other:______Headspace in VOA Vials (>6mm): \(\text{ = YOA} \) \(\text{ = If yes look in headspace column} \)

Headspace in VOA Viais (>6mm): □Yes □No >200/A "IT yes look in neadspace column

AG1U 1 liter amber glass	BP1U	1 liter plastic unpres	VG9A	40 mL clear ascorbic	JGFU	4 oz amber jar unpres
BG1U 1 liter clear glass	BP3U	250 mL plastic unpres	DG9T	40 mL amber Na Thio	JG9U	9 oz amber jar unpres
AG1H 1 liter amber glass HCL	BP3B	250 mL plastic NaOH	VG9U	40 mL clear vial unpres	WGFU	4 oz clear jar unpres
AG4S 125 mL amber glass H2SO4	BP3N	250 mL plastic HNO3	VG9H	40 mL clear vial HCL	WPFU	4 oz plastic jar unpres
AG4U 120 mL amber glass unpres	BP3S	250 mL plastic H2SO4	VG9M	40 mL clear vial MeOH	SP5T	120 mL plastic Na Thiosulfate
AG5U 100 mL amber glass unpres			VG9D	40 mL clear vial DI	ZPLC	ziploc bag
AG2S 500 mL amber glass H2SO4					GN	
BG3U 250 ml_clear glass unpres						

Pace Analytical *
1241 Bellevue Street, Green Bay, WI 54302

Document Name:
Sample Condition Upon Receipt (SCUR)

Document No.:

ENV-FRM-GBAY-0014-Rev.00

Document Revised: 26Mar2020

Author:

Pace Green Bay Quality Office

Sample Condition Upon Receipt Form (SCUR)

Client Name: TRC Courier: CS Logistics Fed Ex Special	40217966	40217966 	
Custody Seal on Samples Present:	No Seals intact: Seals intact:	□ yes □ no □ □ Other	s on ice, cooling process has begun Person examining contents: Date: 117/20 /Initials: Sek Labeled By Initials:
Chain of Custody Present:	¥Yes □No □N/A	1.	
Chain of Custody Filled Out:	□Yes Þ ano □n/A	2. Proj. # mail/invoic	e into. 117/2
Chain of Custody Relinquished:)⊠ √es □No □N/A	drawe. Ustrate Inc	
Sampler Name & Signature on COC:	⊠ Yes □no □n/A	4.	
Samples Arrived within Hold Time:	MaYes ⊡No	5.	
- VOA Samples frozen upon receipt	□Yes □No	Date/Time:	
Short Hold Time Analysis (<72hr):	⊡Yes ⊠ No	6.	
Rush Turn Around Time Requested:	□Yes ⊠ No	7.	
Sufficient Volume: For Analysis: ⊠ves □no MS/M:	SD: X Yes □no □n/A	8.	
Correct Containers Used:	⊠ Yes □No	9.	
-Pace Containers Used:	□Yes M⊠No □N/A		
-Pace IR Containers Used:	□Yes □No ⊠ N/A		
Containers Intact:	" p⊠ Yes ⊡No	10.	
Filtered volume received for Dissolved tests	⊠Yes □No □N/A	11.	
Sample Labels match COC: -Includes date/time/ID/Analysis Matrix:	XYes □No □N/A	12.	
Trip Blank Present:	□Yes □No ⊠ N/A	13.	
Trip Blank Custody Seals Present Pace Trip Blank Lot # (if purchased):	□Yes □No ⊠ N/A		
Client Notification/ Resolution: Person Contacted: Comments/ Resolution:	_ Date/		tached form for additional comments

Attachment C – Trend Analysis Charts

Source Area Monitoring Wells

Trends depict sample date verses chromium concentration in micrograms per liter (ug/L)

$Attachment \ C-Trend \ Analysis \ Charts$

Down-gradient - Southwest

Trends depict sample date verses chromium concentration in micrograms per liter (ug/L)

Attachment C – Trend Analysis Charts

Down-gradient - West

Trends depict sample date verses chromium concentration in micrograms per liter (ug/L)

Attachment C – Trend Analysis Charts

Down-gradient - Northwest

