SCS ENGINEERS

November 17, 2021 File No. 25221209.00

Ms. Cindy Koepke Wisconsin Department of Natural Resources 3911 Fish Hatchery Road Fitchburg, WI 53711

Subject: Material Management Plan and Post-Closure Modification Request Classic Cleaners, 3918 Monona Drive, Madison BRRTS #02-13-368525

Dear Ms. Koepke:

SCS Engineers (SCS) is submitting the following Materials Management Plan (MMP) and Post Closure Modification Request for the redevelopment of a property (the Property) including the former Classic Cleaners site at 3900-3920 Monona Drive, Madison, Wisconsin. On behalf of Threshold Development, SCS requests the Wisconsin Department of Natural Resources (WDNR) provide written approval of this MMP and the proposed redevelopment of the site as required in the Classic Cleaners case closure letter from WDNR dated May 24, 2021.

The MMP presents proposed strategies for managing contaminated soil, groundwater, and vapor during the redevelopment of the Property. Enclosed with this plan are a technical assistance request form (4400-237) for review of this plan and approval of associated post-closure modifications. Payment for the required fees totaling \$1,700 will be sent under separate cover.

Sincerely,

sio Julia

Eric Oelkers, PG Senior Project Manager SCS Engineers

EO/REO/REL/MRH

Mark R Al. In.

Mark R. Huber, PE Project Director SCS Engineers

cc: Tyler Krupp, Threshold Development

Encl. Technical Assistance Request Form Materials Management Plan and Post Closure Modification Request

 $\label{eq:limbulk} I:\25221209.00\Deliverables\MMP and Post Closure Mod\211117_Koepke_MMP_Final.docx$

Technical Assistance, Environmental Liability Clarification or Post-Closure Modification Request

Form 4400-237 (R 10/21)

Page 1 of 7

Notice: Use this form to request **a written response (on agency letterhead)** from the Department of Natural Resources (DNR) regarding technical assistance, a post-closure change to a site, a specialized agreement or liability clarification for Property with known or suspected environmental contamination. A fee will be required as is authorized by s. 292.55, Wis. Stats., and NR 749, Wis. Adm. Code., unless noted in the instructions below. Personal information collected will be used for administrative purposes and may be provided to requesters to the extent required by Wisconsin's Public Records law [ss. 19.31 - 19.39, Wis. Stats.].

Definitions

"Property" refers to the subject Property that is perceived to have been or has been impacted by the discharge of hazardous substances.

"Liability Clarification" refers to a written determination by the Department provided in response to a request made on this form. The response clarifies whether a person is or may become liable for the environmental contamination of a Property, as provided in s. 292.55, Wis. Stats.

"Technical Assistance" refers to the Department's assistance or comments on the planning and implementation of an environmental investigation or environmental cleanup on a Property in response to a request made on this form as provided in s. 292.55, Wis. Stats.

"Post-closure modification" refers to changes to Property boundaries and/or continuing obligations for Properties or sites that received closure letters for which continuing obligations have been applied or where contamination remains. Many, but not all, of these sites are included on the GIS Registry layer of RR Sites Map to provide public notice of residual contamination and continuing obligations.

Select the Correct Form

This from should be used to request the following from the DNR:

- Technical Assistance
- Liability Clarification
- Post-Closure Modifications
- Specialized Agreements (tax cancellation, negotiated agreements, etc.)

Do not use this form if one of the following applies:

- Request for an off-site liability exemption or clarification for Property that has been or is perceived to be contaminated by one or more hazardous substances that originated on another Property containing the source of the contamination. Use DNR's Off-Site Liability Exemption and Liability Clarification Application Form 4400-201.
- Submittal of an Environmental Assessment for the Lender Liability Exemption, s 292.21, Wis. Stats., if no response or review by DNR is requested. Use the Lender Liability Exemption Environmental Assessment Tracking Form 4400-196.
- Request for an exemption to develop on a historic fill site or licensed landfill. Use DNR's Form 4400-226 or 4400-226A.
- Request for closure for Property where the investigation and cleanup actions are completed. Use DNR's Case Closure GIS Registry Form 4400-202.

All forms, publications and additional information are available on the internet at: <u>dnr.wi.gov/topic/Brownfields/Pubs.html</u>.

Instructions

- 1. Complete sections 1, 2, 6 and 7 for all requests. Be sure to provide adequate and complete information.
- 2. Select the type of assistance requested: Section 3 for technical assistance or post-closure modifications, Section 4 for a written determination or clarification of environmental liabilities; or Section 5 for a specialized agreement.
- 3. Include the fee payment that is listed in Section 3, 4, or 5, unless you are a "Voluntary Party" enrolled in the Voluntary Party Liability Exemption Program **and** the questions in Section 2 direct otherwise. Information on to whom and where to send the fee is found in Section 8 of this form.
- 4. Send the completed request, supporting materials and the fee to the appropriate DNR regional office where the Property is located. See the map on the last page of this form. A paper copy of the signed form and all reports and supporting materials shall be sent with an electronic copy of the form and supporting materials on a compact disk. For electronic document submittal requirements see: <u>http://dnr.wi.gov/files/PDF/pubs/rr/RR690.pdf</u>"

The time required for DNR's determination varies depending on the complexity of the site, and the clarity and completeness of the request and supporting documentation.

Technical Assistance, Environmental Liability Clarification or Post-Closure Modification Request

Form 4400-237 (R 10/21)

Page 2 of 7

Requester Information					
This is the person requesting te specialized agreement and is id	chnical assistance or a post-o entified as the requester in S	closure ection	e modification review, that his or her liability be 7. DNR will address its response letter to this	e clarifi persor	ed or a า.
Last Name	First	MI	Organization/ Business Name		
Krupp	Tyler		Threshold Development Group		
Mailing Address		-	City	State	ZIP Code
1954 Atwood Avenue			Madison	WI	53704
Phone # (include area code)	Fax # (include area code)		Email		
(415) 260-0113			tyler@thresholddevelopmentgroup.com	1	
The requester listed above: (sel	ect all that apply)				
\bigotimes Is currently the owner			Is considering selling the Property		
Is renting or leasing the Property			Is considering acquiring the Property		
Is a lender with a mortgag	gee interest in the Property				
Other. Explain the status	of the Property with respect t	o the a	applicant:		

Section 1. Contact and Recipient Information

Contact Information (to be contacted with guestions about this request) X Select if same as requester Organization/ Business Name Contact Last Name First MI Tyler Threshold Development Group Krupp Mailing Address State ZIP Code City 1954 Atwood Avenue Madison WI 53704 Phone # (include area code) Email Fax # (include area code) (415) 260-0113 tyler@thresholddevelopmentgroup.com Environmental Consultant (if applicable) Contact Last Name Organization/ Business Name First MI SCS Engineers Oelkers Eric Mailing Address City ZIP Code State 2830 Dairy Drive Madison WI 53718 Phone # (include area code) Fax # (include area code) Fmail (608) 216-7341 (605) 224-2839 eoelkers@scsengineers.com **Property Owner (if different from requester)** Contact Last Name First Organization/ Business Name MI Dolphin Ronda Estate of Ralph Stinson Mailing Address City State ZIP Code WI 214 Chateau Drive Cottage Grove 53527 Phone # (include area code) Fax # (include area code) Email ronda@midwestlabor.com (608) 712-8810 Section 2. Property Information Property Name FID No. (if known) 113147980 **Classic Cleaners** BRRTS No. (if known) Parcel Identification Number 071009303026, 071009303018, 071009303133 02-13-368525

Technical Assistance, Environmental Liability Clarification or Post-Closure Modification Request Form 4400-237 (B 10/21)

			Form 4400-237 (R 10/2	21)		Page 3 of 7
Street Address			City		State	ZIP Code
3918 Monona	Drive		Madison		WI	53704
County		Municipality where the Property is	s located	Property is composed of:	Prop	perty Size Acres
Dane		City Town Village of]	Madison	parcel parcels	tax 0.9	
1. Is a response plan according O No O	needed by a ly. ⁄es	specific date? (e.g., Property clos	sing date) Note: Mos	t requests are completed wit	าin 60 d	ays. Please
L	Date requeste	ed by: $11/30/2021$				
	Reason. WE	DC Grant Application				
2. Is the "Reques No. Includ Yes. Do no Fill out the in Section 3.	ter" enrolled e the fee tha ot include a formation in Technical As	as a Voluntary Party in the Volur at is required for your request i separate fee. This request will b Section 3, 4 or 5 which corres ssistance or Post-Closure Mod	ntary Party Liability E in Section 3, 4 or 5. e billed separately th ponds with the type ifications;	xemption (VPLE) program? rough the VPLE Program. e of request:		
Section 4.	Liability Cla	rification; or Section 5. Special	ized Agreement.			
Section 3. Req	uest for Teo	chnical Assistance or Post-Clo	osure Modification			
Select the type o	f technical as	ssistance requested: [Numbers i	n brackets are for V	VI DNR Use]		
L Νο Fι to an	irther Action immediate a	Letter (NFA) (Immediate Actions) ction after a discharge of a hazar) - NR 708.09, [183] dous substance occu] - Include a fee of \$350. Use urs. Generally. these are for a	∍ for a w a one-tin	ritten response ne spill event.
Revie	w of Site Inv	estigation Work Plan - NR 716.09	9. [135] - Include a f	fee of \$700.		
Revie	w of Site Inv	estigation Report - NR 716.15, [1	37] - Include a fee	of \$1050.		
	Approval of a Site-Specific Soil Cleanup Standard - NR 720.10 or 12, [67] - Include a fee of \$1050. Review of a Remedial Action Options Report - NR 722.13, [143] - Include a fee of \$1050.					
Revie	Review of a Remedial Action Design Report - NR 724 09 [148] - Include a fee of \$1050.					
	w of a Reme	dial Action Documentation Repor	rt - NR 724.15. [152]	- Include a fee of \$350		
	\square Review of a Long-term Monitoring Plan - NR 724 17 [25] - Include a fee of \$425					
	Review of an Operation and Maintenance Plan - NR 724.13. [192] - Include a fee of \$425.					
Othor Toohni	Accietance	00 0 202 55 Win State [07] (Ec	er request to build on	an abandanad landfill usa E	orm 110	0 226)
	dule a Techn	ical Assistance Meeting - Includ	o a foo of \$700		JIII 440	0-220)
	doue Waste	Determination - Include a fee of	f \$700			
		sistance Include a fee of \$70	0 Explain your rogu	ost in an attachmont		
	Technical A					
Post-Closure	Modification	s - NR 727, [181]				
Post-0 sites 1 \$1050	Closure Modi may be on th), and:	ifications: Modification to Propert e GIS Registry. This also include	y boundaries and/or s removal of a site o	continuing obligations of a clo r Property from the GIS Regi	osed site stry. Inc	e or Property; Iude a fee of
🔀 Ir	clude a fee o	of \$300 for sites with residual soil	contamination; and			
Ir co	iclude a fee o ontinuing obli	of \$350 for sites with residual grou igations.	undwater contaminat	tion, monitoring wells or for v	apor intr	usion
Attac chan docu	h a descriptio ge to a Prope ments may b	on of the changes you are propos erty, site or continuing obligation v e submitted later in the approval	sing, and documenta will result in revised r process, on a case-b	tion as to why the changes a maps, maintenance plans or py-case basis).	re neede photogra	ed (if the aphs, those

Section 4. Request for Liability Clarification

Select the type of liability clarification requested. Use the available space given or attach information, explanations, or specific questions that you need answered in DNR's reply. Complete Sections 6 and 7 of this form. [Numbers in brackets are for DNR Use]

Technical Assistance, Environmental Liability Clarification or Post-Closure Modification Request

Form 4400-237 (R 10/21)

Lender" liability exemption clarification - s. 292.21, Wis. Stats. [686]

✤ Include a fee of \$700.

Provide the following documentation:

- (1) ownership status of the real Property, and/or the personal Property and fixtures;
- (2) an environmental assessment, in accordance with s. 292.21, Wis. Stats.;
- (3) the date the environmental assessment was conducted by the lender;
- (4) the date of the Property acquisition; for foreclosure actions, include a copy of the signed and dated court order confirming the sheriff's sale.
- (5) documentation showing how the Property was acquired and the steps followed under the appropriate state statutes.
- (6) a copy of the Property deed with the correct legal description; and,
- (7) the Lender Liability Exemption Environmental Assessment Tracking Form (Form 4400-196).
- (8) If no sampling was done, please provide reasoning as to why it was **not** conducted. Include this either in the accompanying environmental assessment or as an attachment to this form, and cite language in s. 292. 21(1)(c)2.,h.-i., Wis. Stats.:
 - h. The collection and analysis of representative samples of soil or other materials in the ground that are suspected of being contaminated based on observations made during a visual inspection of the real Property or based on aerial photographs, or other information available to the lender, including stained or discolored soil or other materials in the ground and including soil or materials in the ground in areas with dead or distressed vegetation. The collection and analysis shall identify contaminants in the soil or other materials in the ground and shall quantify concentrations.
 - i. The collection and analysis of representative samples of unknown wastes or potentially hazardous substances found on the real Property and the determination of concentrations of hazardous waste and hazardous substances found in tanks, drums or other containers or in piles or lagoons on the real Property.

"Representative" liability exemption clarification (e.g. trustees, receivers, etc.) - s. 292.21, Wis. Stats. [686]

Include a fee of \$700.

Provide the following documentation:

- (1) ownership status of the Property;
- (2) the date of Property acquisition by the representative;
- (3) the means by which the Property was acquired;
- (4) documentation that the representative has no beneficial interest in any entity that owns, possesses, or controls the Property;
- (5) documentation that the representative has not caused any discharge of a hazardous substance on the Property; and
- (6) a copy of the Property deed with the correct legal description.

Clarification of local governmental unit (LGU) liability exemption at sites with: (select all that apply)

- hazardous substances spills s. 292.11(9)(e), Wis. Stats. [649];
- Perceived environmental contamination [649];
- hazardous waste s. 292.24 (2), Wis. Stats. [649]; and/or
- solid waste s. 292.23 (2), Wis. Stats. [649].

Include a fee of \$700, a summary of the environmental liability clarification being requested, and the following:

- (1) clear supporting documentation showing the acquisition method used, and the steps followed under the appropriate state statute(s).
- (2) current and proposed ownership status of the Property;
- (3) date and means by which the Property was acquired by the LGU, where applicable;
- (4) a map and the 1/4, 1/4 section location of the Property;
- (5) summary of current uses of the Property;
- (6) intended or potential use(s) of the Property;
- (7) descriptions of other investigations that have taken place on the Property; and
- (8) (for solid waste clarifications) a summary of the license history of the facility.

Page 4 of 7

Form 4400-237 (R 10/21)

Page 5 of 7

F0111 4400-237 (K 10/21)	Fage 5 01 7
Section 4. Request for Liability Clarification (cont.)	
Lease liability clarification - s. 292.55, Wis. Stats. [646]	
Include a fee of \$700 for a single Property, or \$1400 for multiple Properties and the information	listed below:
(1) a copy of the proposed lease;	
(2) the name of the current owner of the Property and the person who will lease the Property;	
 (3) a description of the lease holder's association with any persons who have possession, control, or caus hazardous substance on the Property; 	ed a discharge of a
(4) map(s) showing the Property location and any suspected or known sources of contamination detected	I on the Property;
(5) a description of the intended use of the Property by the lease holder, with reference to the maps to ind be used. Explain how the use will not interfere with any future investigation or cleanup at the Property;	icate which areas will and
(6) all reports or investigations (e.g. Phase I and Phase II Environmental Assessments and/or Site Investig conducted under s. NR 716, Wis. Adm. Code) that identify areas of the Property where a discharge ha	gation Reports s occurred.
General or other environmental liability clarification - s. 292.55, Wis. Stats. [682] - Explain your request below. Include a fee of \$700 and an adequate summary of relevant environmental work to date.	
No Action Required (NAR) - NR 716.05, [682]	
✤ Include a fee of \$700.	
Use where an environmental discharge has or has not occurred, and applicant wants a DNR determination assessment or clean-up work is required. Usually this is requested after a Phase I and Phase II environment been conducted; the assessment reports should be submitted with this form. This is not a closure letter.	that no further ntal assessment has
Clarify the liability associated with a "closed" Property - s. 292.55, Wis. Stats. [682]	
☆ Include a fee of \$700.	
- Include a copy of any closure documents if a state agency other than DNR approved the closure.	
Use this space or attach additional sheets to provide necessary information, explanations or specific questions to be	answered by the DNR.

Section 5. Request for a Specialized Agreement

Select the type of agreement needed. Include the appropriate draft agreements and supporting materials. Complete Sections 6 and 7 of this form. More information and model draft agreements are available at: <u>dnr.wi.gov/topic/Brownfields/lgu.html#tabx4</u>.

- Tax cancellation agreement s. 75.105(2)(d), Wis. Stats. [654]
 - Include a fee of \$700, and the information listed below:
 - (1) Phase I and II Environmental Site Assessment Reports,
 - $\left(2\right)$ a copy of the Property deed with the correct legal description.

Agreement for assignment of tax foreclosure judgement - s.75.106, Wis. Stats. [666]

Include a fee of \$700, and the information listed below:

(1) Phase I and II Environmental Site Assessment Reports,

 $\left(2\right)$ a copy of the Property deed with the correct legal description.

Negotiated agreement - Enforceable contract for non-emergency remediation - s. 292.11(7)(d) and (e), Wis. Stats. [630]

✤ Include a fee of \$1400, and the information listed below:

- (1) a draft schedule for remediation; and,
- (2) the name, mailing address, phone and email for each party to the agreement.

Section 6. Other Information Submitted				
Identify all materials that are included with this request.				
Send both a paper copy of the signed form and all reports and supporting materials, and an electronic copy of the form and all reports, including Environmental Site Assessment Reports, and supporting materials on a compact disk.				
Include one copy of any document from any state agency files that you want the Department to review as part of this request. The person submitting this request is responsible for contacting other state agencies to obtain appropriate reports or information.				
Phase I Environmental Site Assessment Report - Date: 10/06/2021				
\boxtimes Phase II Environmental Site Assessment Report - Date: $06/24/2020$				
Legal Description of Property (required for all liability requests and specialized agreements)				
X Map of the Property (required for all liability requests and specialized agreements)				
Analytical results of the following sampled media: Select all that apply and include date of collection.				
Groundwater Soil Sediment Other medium - Describe:				
Date of Collection:				
A copy of the closure letter and submittal materials				
Draft tax cancellation agreement				
Draft agreement for assignment of tax foreclosure judgment				
Other report(s) or information - Describe:				
 For Property with newly identified discharges of hazardous substances only: Has a notification of a discharge of a hazardous substance been sent to the DNR as required by s. NR 706.05(1)(b), Wis. Adm. Code? Yes - Date (if known): 10/03/2002 No 				
Note: The Notification for Hazardous Substance Discharge Form - Non-Emergency Only (Form 4400-225) is accessible through the RR Program Submittal Portal application. Directions for using the form and the Submittal Portal application are available on the <u>Submittal Portal web page</u> .				
Section 7. Certification by the Person who completed this form				
I am the person submitting this request (requester)				
X I prepared this request for: Tyler Krunn				
Requester Name				
certify that I am familiar with the information submitted on this request, and that the information on and included with this request is rue, accurate and complete to the best of my knowledge. I also certify I have the legal authority and the applicant's permission to make				
nis request. Civic Julian 11/17/21				
Signature Date Signed				
Senior Project Manager (608) 216-7341				
Title Telephone Number (include area code)				

Technical Assistance, Environmental Liability Clarification or Post-Closure Modification Request

Form 4400-237 (R 10/21)

Page 7 of 7

Section 8. DNR Contacts and Addresses for Request Submittals

Send or deliver one paper copy and one electronic copy on a compact disk of the completed request, supporting materials, and fee to the region where the property is located to the address below. Contact a <u>DNR regional brownfields specialist</u> with any questions about this form or a specific situation involving a contaminated property. For electronic document submittal requirements see: <u>http://dnr.wi.gov/files/PDF/pubs/rr/RR690.pdf</u>.

DNR NORTHERN REGION

Attn: RR Program Assistant Department of Natural Resources 223 E Steinfest Rd Antigo, WI 54409

DNR NORTHEAST REGION

Attn: RR Program Assistant Department of Natural Resources 2984 Shawano Avenue Green Bay WI 54313

DNR SOUTH CENTRAL REGION

Attn: RR Program Assistant Department of Natural Resources 3911 Fish Hatchery Road Fitchburg WI 53711

DNR SOUTHEAST REGION

Attn: RR Program Assistant Milwaukee DNR Office 1027 West St. Paul Ave Milwaukee WI 53233

DNR WEST CENTRAL REGION

Attn: RR Program Assistant Department of Natural Resources 1300 Clairemont Ave. Eau Claire WI 54702

Note: These are the Remediation and Redevelopment Program's designated regions. Other DNR program regional boundaries may be different.

DNR Use Only				
Date Received	Date Assigned	BRRTS Activity Code	BRRTS No. (if used)	
DNR Reviewer C		mments		
		-		
Fee Enclosed?	Fee Amount	Date Additional Information Requested	Date Requested for DNR Response Letter	
🔿 Yes 🔿 No	\$			
Date Approved	Final Determination	• •	•	

Materials Management Plan and Post Closure Modification Request

Former Classic Cleaners 3918 Monona Drive Madison, Wisconsin 53716 BRRTS #02-13-368525

Prepared for:

Threshold Development Group 1954 Atwood Avenue Madison, Wisconsin 53704 415-260-0113

SCS ENGINEERS

25221209.00 | November 17, 2021

2830 Dairy Drive Madison, WI 53718-6751 608-224-2830

Table of Contents

Sect	ion			Page	
Execu	utive S	Summa	y	iii	
1.0	Intro	duction		1	
2.0	Back	ground		1	
	2.1	Curren	t and Historical Land Use	1	
	2.2	Summ	ary of Environmental Conditions	2	
3.0	Rede	velopm	ent Plan	2	
4.0	Post	Closure	Modification	3	
	4.1	Contin	uing Obligations	3	
	4.2	Closur	e Modifications	4	
5.0	Site I	Environi	mental Conditions	4	
	5.1	Soil		5	
		5.1.1	Physical Characteristics	5	
		5.1.2	Contamination Extent	5	
		5.1.3	Disposal Considerations	5	
	5.2	Ground	dwater	6	
		5.2.1	Physical Characteristics	6	
		5.2.2	Contamination Extent	7	
	5.3	Vapor.		7	
6.0	Materials Management7				
	6.1	Soil Ma	anagement	7	
		6.1.1	Soil Management Plan	8	
		6.1.2	Confirmation Soil Sampling	10	
		6.1.3	Protective Cap		
	6.2	Ground	dwater Management		
	6.3	Vapor	Management	10	
7.0) Unusual Conditions				
8.0	Roles and Responsibilities During Construction11				
9.0	Reporting				
10.0	.0 References				
11.0	0 Certifications				

Figures

Figure 1.	Site Location Map
Figure 2.	Detailed Site Map
Figure 3.	Residual Soil Contamination
Figure 4.	Groundwater Isoconcentration

Appendices

- Appendix A Development Plans
- Appendix B Classic Cleaners Case Closure Tables and Figures
- Appendix C Ivertech Phase 2 ESA
- Appendix D Excavation Area
- Appendix E Vapor Mitigation Details

I:\25221209.00\Deliverables\MMP and Post Closure Mod\211117_Koepke_MMP_Final.docx

EXECUTIVE SUMMARY

This Materials Management Plan (MMP) and Post Closure Modification Request describes how contaminated materials will be managed and how continuing environmental obligations will be addressed during the redevelopment of property located at the southeast corner of Monona Drive and Cottage Grove Road in Madison, Wisconsin. The proposed redevelopment consists of a five-story mixed use commercial/residential building with an underground parking level that extends across much of the property. Former occupants of the property included a gas station and a dry cleaner. Petroleum contamination from the gas station has been largely if not entirely remediated to non-detectable levels. Concentrations of the dry-cleaning solvent tetrachlorethylene (PCE or "perc") greater than environmental cleanup standards remain in place on the property. The proposed redevelopment will substantially reduce the contaminant mass in the soil and reduce potential vapor hazards for future users of the property.

The dry cleaner case file associated with the Property (Bureau of Remediation and Redevelopment Tracking System [BRRTS] #03-13-000414) was closed in May 2021 with continuing obligations. The continuing obligations for the source property (3916, 3918 and 3920 Monona Drive) include:

- 1. Residual soil contamination,
- 2. Residual groundwater contamination,
- 3. Cover/barrier for direct contact and groundwater pathways,
- 4. Structural impediment,
- 5. Vapor mitigation required,
- 6. Commercial/industrial use assumption,
- 7. Future vapor intrusion risk.

The redevelopment of the property will include removal of the majority of PCE contaminant mass in the soil via excavation for the level of underground parking that will extend across much of the property.

The risk of vapor migration into new residential spaces will be minimized by the proposed redevelopment plan. Removal of the top 10 or more feet of soil from the site will greatly reduce the mass and concentration of PCE available for volatilization and migration into the new building. The presence of a full level of underground parking below grade will provide separation between building residential and commercial spaces and residual soil and groundwater contamination that may remain below the building. The underground parking will include mechanical venting to remove vehicle exhaust from the space. The mechanical venting will also remove potential PCE vapors that migrate through the floor of the underground parking structure. In addition to contaminant mass removal, physical separation, and mechanical venting; sub slab vapor mitigation measures will be incorporated into the new building to minimize the potential for vapor intrusion.

Upon completion of redevelopment activities, SCS Engineers (SCS) will provide to the Wisconsin Department of Natural Resources (WDNR) a written report of site activities, soil contamination remaining, documentation of materials disposal, an updated cap maintenance plan and an updated vapor mitigation plan for the new building.

[This page left blank intentionally]

1.0 INTRODUCTION

This MMP and Post Closure Modification Request describes how contaminated materials will be managed and how continuing environmental obligations will be addressed during the redevelopment of property located at the southeast corner of Monona Drive and Cottage Grove Road in Madison, Wisconsin. The proposed redevelopment consists of a five-story mixed use commercial/residential building with an underground parking level that extends across much of the property. Former occupants of the property included a gas station and a dry cleaner. Petroleum contamination from the gas station has been largely if not entirely remediated to non-detectable levels. Concentrations of the dry-cleaning solvent PCE greater than environmental cleanup standards remain in place on the property. The proposed redevelopment will substantially reduce the contaminant mass in the soil and reduce potential vapor hazards for future users of the property.

2.0 BACKGROUND

The property is located in a residential and commercial area on the east side of Madison, Wisconsin, near the east end of Lake Monona, at the corner of Monona Drive and Cottage Grove Road (see **Figure 1**). The project property includes three parcels of land located at 3900 Monona Drive, 109 Cottage Grove Road, and 3920 Monona Drive in Madison, Wisconsin, hereafter referred to as the Property (**Figure 2**). Krupp-Grove Family Limited Partnership owns and manages the 3900 Monona Drive and 109 Cottage Grove Road parcels. The estate of Ralph Stinson owns the 3916-3920 Monona Drive parcel.

2.1 CURRENT AND HISTORICAL LAND USE

The 3900 Monona Drive parcel was developed by 1949, and land use at the time of this initial development is unknown. The parcel was redeveloped in the mid-1950s. Starting in approximately 1960, the parcel was used for automotive service and maintenance and retail fuel sales through approximately 1992 followed by a muffler shop that operated at the parcel through December 2020. The 3900 Monona Drive parcel has been unoccupied since December 2020.

The 109 Cottage Grove Road parcel was developed by 1935, and land use at the time of this initial development is unknown. The parcel was redeveloped by 1955 with the current building. A bar and barbershop were both operating on the parcel by 1960. The barbershop operated at the parcel from approximately 1960 through 2006, and the bar operated on the parcel from approximately 1960 through the spring of 2020. The 109 Cottage Grove Road Property parcel has been unoccupied since spring 2020.

The 3920 Monona Drive parcel was developed by 1949, and land use at the time of this initial development is unknown. The parcel was redeveloped in approximately 1955 with two buildings. The parcel has three addresses associated with it, 3916, 3918, and 3920 Monona Drive. A dry cleaner operated at the 3918 Monona Drive address from approximately 1960 through approximately 2005. In 2005, Java Cat Coffee House and Café started at 3918 Monona Drive and remains in operation at this address. A candy store, eye doctor, tailor, florist, salon, and art studio operated at the 3916 Monona Drive address at various times from approximately 1960 to 2020. Restaurants, liquor store, insurance company, surveying and mapping company, florist, a Christian Fellowship, salon, and tattoo shop operated at the 3920 Monona Drive address. The 3916 and 3920 Monona Drive buildings are currently unoccupied.

1

2.2 SUMMARY OF ENVIRONMENTAL CONDITIONS

Phase 1 Environmental Site Assessments identified the following recognized environmental conditions (RECs) in connection with the Property:

- 1. The historic use of the 3900 Monona Drive parcel for automobile service and maintenance and retail fuel sales for approximately 60 years.
- 2. The presence of residual petroleum soil and groundwater contamination at the 3900 Monona Drive parcel.
- 3. The historic use of dry-cleaning operations and the presence of residual chlorinated solvent soil and groundwater contamination and vapor intrusion at the 3920 Monona Drive parcel.

Soil and groundwater contamination associated with the operation of the gas station were largely, if not entirely remediated as documented in the file for BRRTS case #03-13-000237. Additional sampling at the service station parcel during a Phase 2 Environmental Site Assessment (ESA) by Ivertech in 2020 did not find evidence of petroleum contamination in soil or groundwater greater than applicable cleanup standards. The hydraulic lifts and floor drain in the service garage remain in place and will be evaluated for potential discharges at the time of their removal; however, based on sampling performed to date it is unlikely that releases from either the lifts or floor drain have resulted in extensive contamination.

The WDNR case file for the Classic Cleaners site at 3918 Monona Drive, BRRTS #02-13-368525 was closed in May 2021 with residual dry-cleaning solvent (tetrachloroethylene) contamination remaining in place. PCE contamination in soil exceeds residual contaminant levels (RCLs) for direct contact on the source parcel and exceeds RCLs for groundwater protection on the source parcel and portions of the adjoining parcels to the north and south, as well as the Davidson Street right-of-way. Groundwater contamination by PCE exceeds NR 140 enforcement standards (and preventive action limits) on the source parcel and properties to the east and south as far as Lake Monona. Vapor mitigation systems were installed at 3916/3918 Monona Drive, 4001, and 4002 Monona Drive to address potential public health threats posed by vapor intrusion into occupied structures. Ongoing operation of the vapor mitigation systems by the respective property owners is required by the WDNR to prevent the human health risks posed by migration of PCE vapors.

The extents of residual soil and groundwater contamination at the time of the dry cleaner case closure are shown on **Figures 3** and **4**.

3.0 REDEVELOPMENT PLAN

The proposed development by Threshold Development Group is a five-story mixed use building prominently located at the corner of Monona Drive and Cottage Grove Road. The first floor will include 6500 square feet of commercial space to be occupied by an established credit union and a neighborhood coffee shop. Floors two through five will include seventy-six apartment units, including a mix of studio, one bedroom, and two bedroom unit types.

The proposed redevelopment of the property also includes construction of underground parking over a substantial portion of the property. The underground parking extends beyond the above-ground footprint of the building. Excavation for the building foundation and below-grade parking will displace PCE contaminated soil. A plan sheet showing the proposed building and other proposed site features is included in **Appendix A**.

4.0 POST CLOSURE MODIFICATION

4.1 CONTINUING OBLIGATIONS

As noted above, the dry cleaner case file associated with this Property (BRRTS #03-13-000414) was closed in May 2021 with continuing obligations. The continuing obligations for the source property (3916, 3918 and 3920 Monona Drive) include:

- 1. Residual soil contamination,
- 2. Residual groundwater contamination,
- 3. Cover/barrier for direct contact and groundwater pathways,
- 4. Structural impediment,
- 5. Vapor mitigation required,
- 6. Commercial/industrial use assumption,
- 7. Future vapor intrusion risk.

The continuing obligations for the 3900 Monona Drive property include items 6 and 7 from the list above.

The continuing obligations require that:

- Contaminated soil confirmed to be contaminated at the time of excavation be properly managed in accordance with applicable standards and rules.
- A cap be maintained over the entire source property to prevent direct contact with residual soil contamination and to minimize surface water infiltration through the contaminated soil.
- The effectiveness of the cover requirements be re-evaluated if the future use of the property includes residential occupancy.
- Residual soil contamination in the area of the structural impediments created by the existing building, outdoor heating, ventilation, and air conditioning (HVAC) unit, and buried and overhead utilities be further investigated and, if necessary, remediated, at the time these structural impediments are removed.
- WDNR approval be granted to construct a water supply well within the area of identified groundwater contamination greater than NR 140 enforcement standards.
- Appropriate permits be obtained prior to discharging contaminated groundwater from construction dewatering activities.
- Vapor systems must be maintained.
- Vapor mitigation systems on the source property must be reevaluated if changes in land use are planned.
- Vapor intrusion risks be evaluated for new construction and addressed with appropriate mitigation systems as required by WDNR.

In addition to the specific requirements listed above, the case closure letter indicates that WDNR must be notified before changing the land use, mitigation systems, and/or cover system, or constructing or modifying buildings on the affected properties.

4.2 CLOSURE MODIFICATIONS

The proposed redevelopment of the site is described in **Section 3**, above. Management of contaminated materials that may be encountered during redevelopment of the property is described in **Section 6**, below.

The redevelopment of the property will include removal of the majority of PCE contaminant mass in the soil on the source parcel via excavation for the level of underground parking that will extend across much of the property. Soil samples collected at the limits of the excavation will document residual contamination remaining at the completion of redevelopment project. It is anticipated that excavation for construction will remove soil exceeding RCLs for non-industrial direct contact.

The proposed redevelopment site layout (**Appendix A**), which includes a new building and pavement covering most of the area of the existing cap described in the case closure documents, will provide a level of protection against direct contact or surface water infiltration comparable to or better than the existing cap.

The risk of vapor migration into new residential and commercial spaces will be minimized by the proposed redevelopment plan. Soil sampling during the site investigation showed that PCE concentrations declined dramatically at depths of 10 to 12 feet compared to shallow soil. Removal of the top 10 or more feet of soil from the site will greatly reduce the mass and concentration of PCE available for volatilization and migration into the new building. The presence of a full level of underground parking below grade will provide separation between the residential and commercial units and residual soil and groundwater contamination that may remain below the building. Mechanically ventilation installed in the underground parking structure will also provide protection from vapor migration into the residential units. In addition to contaminant mass removal, mechanical venting, and physical separation; vapor mitigation measures will be incorporated into the new building to minimize the potential for vapor intrusion.

Following completion of the redevelopment the owner will provide WDNR with documentation showing the proper disposal of contaminated material removed from the site and the residual soil contamination remaining at the limits of construction excavations; an updated cap maintenance plan describing the new cap; and an updated vapor mitigation operation and maintenance plan documenting the vapor mitigation features incorporated into the new building.

5.0 SITE ENVIRONMENTAL CONDITIONS

The SCS October 6, 2021 Phase 1 ESA report for the three properties comprising the proposed redevelopment project summarizes the environmental information and investigations that have been completed to date.

Environmental conditions at the time of case closure for the Classic Cleaners dry cleaning solvent contamination site are documented in continuing obligations package dated May 24, 2021 available on the WDNR BRRTS website under file number 02-13-368525. Selected figures and tables from the case closure request are included in **Appendix B**. As noted above in **Section 3**, the dry-cleaning solvent contamination case was closed with a number of continuing obligations. The degree and extent of PCE contamination within the project limits are described in greater detail below.

The petroleum leaking underground storage tank case file for the former Mike's Lake Edge Mobil (BRRTS #03-13-000237) was closed on November 21, 2000. This case was closed without continuing obligations and a NR 140 preventive action limit (PAL) exemption for benzene. Lab analysis of additional samples collected during a Phase 2 ESA by Ivertech in 2020 did not detect petroleum volatile organic compounds (PVOCs) in soil and found only trace concentrations of toluene in groundwater. A complete copy of the Ivertech ESA is included in **Appendix C**.

5.1 SOIL

5.1.1 Physical Characteristics

Site soils generally consists of 1 to 2 feet of gravel fill overlying silty clay. The silty clay unit extends to depths of 3 to 6 feet below ground surface (bgs), and overlies a unit of sand and silty sand. The sand unit continues to a depth of at least 45 feet bgs. Bedrock was not encountered during the investigation. The depth to sandstone bedrock in the vicinity of the site is anticipated to be approximately 40 to 60 feet bgs based on historic well construction logs available on the Wisconsin Geologic and Natural History Survey website.

5.1.2 Contamination Extent

Soil contamination appears mostly limited to the dry cleaner source parcel. The estimated horizontal extent of soil exceeding NR 720 RCLs is shown on **Figure 3**. The estimated vertical extent of soil exceeding NR 720 RCLs is shown cross sections on included in **Appendix B**. Chlorinated volatile organic compounds (CVOCs) are present in soil at concentrations in excess of NR 720 groundwater pathway and direct contact RCLs. The degree and extent of soil contamination is consistent with a release of dry-cleaning solvent from former dry-cleaning operations at the northern dry-cleaning source parcel building.

Soil exceeding direct contact RCLs appears to be limited to shallow soil within approximately 4 feet of ground surface in a small area near the southeast corner of the of the 3916/3918 Monona Drive building, where dry cleaning filters and solvent containers may have been stored in the past. PCE, trichloroethylene (TCE), and cis-1,2-dichloroethylene (cis-1,2-DCE) were detected in the upper 4 feet of the soil column at concentrations in excess of NR 720 RCLs for the groundwater pathway. Only PCE was detected in excess of an NR 720 direct contact RCL.

The paved area to the east of the 3916/3918 Monona Drive building was considered a structural impediment to remediation of more heavily contaminated soil. This area was not considered reasonably accessible as it serves as a shipping receiving area for the Java Cat Café, it is occupied by a large building HVAC unit, and it has multiple overhead and buried utilities.

5.1.3 Disposal Considerations

Because the greatest concentrations of PCE are located near what was the back door of the dry former cleaner operations located at 3918 Monona Drive, the source of PCE contamination appears to be the former dry cleaner that operated at the property. Spent dry cleaning solvents containing PCE are listed as a hazardous waste (F002) under the Resource Conservation and Recovery Act (RCRA). Soil contaminated with spent PCE directly attributed to a release from a dry-cleaning operation is therefore also considered a "listed" hazardous waste because it "contains" a listed waste. Additionally, soil contaminated with concentrations of PCE that exceed the RCRA toxicity characteristic of 0.7 milligrams per liter (mg/L) as measured using the toxicity characteristic leaching procedure (TCLP) is also considered as "characteristic" hazardous waste (D039) under RCRA.

These hazardous waste definitions do not apply to in-place soil, but come into effect only after the soil is removed from the ground (i.e. the hazardous waste is generated during the process of excavation). Finally, soil with PCE concentrations that exceed the 60 milligrams per kilogram (mg/kg) land disposal restriction (LDR) threshold is banned from land disposal and must be either pre-treated or incinerated prior to landfilling.

Typically, it is possible to obtain a "contained out" determination from WDNR for soil contaminated with a "listed" waste if the as-found concentrations do not exceed the corresponding industrial direct contact RCLs for the contaminants of concern. Soil that receives a "contained out" determination is not considered a listed hazardous waste and can be managed based on "as found" concentrations. Excavated soil that is characteristically hazardous (i.e. fails the TCLP test) still needs to managed as "hazardous waste" regardless of whether it is a "listed" waste.

Based on the soil sampling data collected from 2002 to 2007 during the investigation of the dry-cleaning solvent at this site, the contaminated soil to be excavated during redevelopment of this property falls into three categories as follows:

- 1. The PCE concentration in the shallow soil (0 to 2 feet below grade) at boring GB3 exceeds the both the LDR and hazardous waste thresholds and must be pre-treated prior to disposal at a facility licensed to accept hazardous waste. (PID screening from boring GB3 showed headspace readings declined from 400 parts per million (ppm) in the 0 to 2 foot interval to 12 ppm in the 2 to 4 foot interval).
- 2. The total PCE concentrations in shallow samples GB6-S2 and GB15-S1 exceed 20 times the TCLP limit and therefore are assumed by RCRA to exceed the threshold for characteristic hazardous waste.
- 3. The balance of the PCE-contaminated soil within the project area does not exceed the industrial direct contact RCL and therefore should be eligible for a "contained-out" determination which would allow the soil to be disposed in a regular licensed solid waste landfill.

If the owner chooses to perform additional testing of the more contaminated soil via total or TCLP analysis for PCE prior to the start of excavation work, it may be possible to re-classify the soil with the higher PCE concentrations. If re-testing of shows that contaminant concentrations are now less than hazardous waste characteristic and/or LDR thresholds, presumably as a result of volatilization over the last 14 to 19 years, then this soil could be included in the "contained out" determination and managed as non-hazardous.

5.2 GROUNDWATER

5.2.1 Physical Characteristics

The water table at the site lies within the sand unit at a depth of approximately 18 feet bgs. Piezometric elevations are similar to water table elevations. Seasonal groundwater elevation fluctuations or free product were not observed. Groundwater flow is to the west-southwest at a gradient of approximately 0.002 feet per foot (ft/ft). Groundwater showed little to no vertical flow component at the MW1/MW1P nest and a slight downward flow component at the MW4/MW4P well nest. There do not appear to be significant flow variations.

5.2.2 Contamination Extent

A CVOC groundwater plume extends from the source property to the west-southwest underneath Monona Drive. The estimated horizontal extent of groundwater exceeding NR 140 standards is shown **Figure 4**. The estimated vertical extent of groundwater exceeding NR 140 standards is shown on the cross sections included in **Appendix B**. The degree and extent of groundwater contamination is consistent with a release of dry cleaning from former dry-cleaning operations at the northern property building. There do not appear to be any receptors for the groundwater contamination. Drinking water in the vicinity of the site is supplied by City of Madison Well No. 9, which is located approximately 1 mile to the southeast of the site. Due to the depth of groundwater (18 feet) it does not appear that contaminated groundwater would intercept the building foundation or typical underground utility backfill. Groundwater PCE concentrations appear to be degrading over time by dispersion, and as of August 2020 the highest PCE concentration in groundwater had fallen from 2,300 micrograms per liter (μ g/L) to 22 μ g/L.

5.3 VAPOR

CVOCs were detected in building sub-slab vapor samples at concentrations in excess of sub-slab vapor risk screening levels (VRSLs) at the source property and two off-site properties. Sub-slab sampling was performed for buildings at 104 Davidson Street, and 3900, 3916/3918, 3920, 3939, 4001, 4002, and 4010 Monona Drive. Indoor air sampling was also performed at 4001 and 4010 Monona Drive. Access requests for sub-slab sampling at buildings at 105 Davidson Street, 3905, 3909, and 4007 Monona Drive were denied. The 3909 Monona Drive building was subsequently determined not at risk for vapor intrusion due to presence of parking garage under entire first level. Vapor mitigation systems (VMSs) were installed in all buildings where sub-slab vapor concentrations exceeded VRSLs.

6.0 MATERIALS MANAGEMENT

Material management activities related to contaminated soil, groundwater, and vapor are summarized below.

6.1 SOIL MANAGEMENT

The development plan requires soil excavation across most of the site related to:

- Site demolition, including removing foundation walls and floors.
- Construction of foundations and below-grade parking across most of the property.
- Installation of underground utilities.
- Grading and paving around the margins of the property.

The plans for the building construction are being developed as this plan is written. The site plan (**Appendix A**) shows surface parking and the bank drive through lanes located above the below grade parking level so a minimum excavation depth of 10 feet is anticipated.

The currently proposed footprint of the lower-level parking extends nearly to the west and east property lines approximately 11 feet south of the north property line, and 20 to 44 feet north of the south property line. A markup of the proposed site plan (**Appendix D**) shows the approximate extent of soil contamination from **Figure 3** with respect to extent the lower parking level with 5-foot margins

to allow for work around the structure as it is constructed. Based on this overlay, approximately one-third of the excavation footprint falls within the zone of soil contamination. Preliminary excavation volume estimates, based on a 10-foot excavation depth, are as follows:

- The entire excavation volume to accommodate the lower parking level, parking access ramp, and working room around the building is 11,850 cubic yards (yd³);
- The portion of the excavation within the zone of PCE contamination is 4,300 yd³;
- 322 yd³ of the of PCE contaminated soil (7.5 percent) are assumed to be hazardous waste;
- 44 yd³ of hazardous waste soil (14 percent) is assumed to exceed the LDR threshold.

These volumes are subject to change based on further development of the building plans and/or additional testing to re-classify soil based on current "as-found" PCE concentrations.

SCS will submit a separate "contained out" determination request to the WDNR to reclassify the soil contaminated with "listed waste" as non-hazardous. Following receipt of the "contained out" determination, SCS will develop waste characterization profiles for each category of soil.

During construction, SCS will assist the excavation contractor in segregating contaminated soil from non-contaminated soil. Contaminated soil will be identified based on:

- Analytical data from previous investigations
- Visual observations
- Screening of soil in the field with a photo-ionization detector (PID)

Soil producing field headspace readings greater than 5 parts per million (ppm) on the PID, or with visual signs of contamination will be considered contaminated.

6.1.1 Soil Management Plan

A site plan showing the proposed site layout with the approximate extent of residual PCE-contaminated soil and limits of the anticipated excavation are shown in **Appendix D**. The extent of contamination will be reevaluated in the field based on field observations and field screening, and additional analytical testing as needed. The following outlines the proposed soil management plan:

PCE Contamination Exceeding LDR

Soil in this area:

- Exceeds the industrial direct contact RCL for PCE.
- Exceeds the LDR threshold for PCE of 60 mg/kg.
- Will be excavated to an approximate depth 4 feet bgs (PID screening from boring GB3 showed headspace readings declined from 400 ppm in the 0 to 2 foot interval to 12 ppm in the 2 to 4 foot interval).

- Will be transported to a licensed hazardous waste treatment facility for pre-treatment to reduce PCE concentrations below the LDR.
- Will be disposed in a licensed hazardous waste landfill following pre-treatment.

PCE Contamination Exceeding RCRA Hazardous Waste Toxicity Characteristic

Soil in this area:

- Exceeds the TCLP toxicity characteristic for PCE of 0.7 mg/L.
- May exceed the non-industrial direct contact RCL for PCE.
- Will be excavated to an approximate depth 6 feet bgs (PID screening from borings GB6 and GB15 showed headspace readings declined significantly at depths greater than the shallow intervals where total PCE concentrations greater than 20 times the TCLP limit were detected).
- Will be transported to a licensed hazardous waste landfill for disposal.

"Contained-Out" PCE Contamination

Soil in this area:

- Exceeds only the groundwater pathway RCLs for PCE.
- May be excavated to a depth 10 feet bgs or more.
- May be located below shallow soil with potentially hazardous concentrations of PCE.
- Will be landfill disposed in a licensed solid waste landfill.

Petroleum Contamination Associated with Former Underground Storage Tanks or Hydraulic Lift Systems

Based on sampling available to date, little or no detectable petroleum contamination remains in the area of the former gas station on the 3900 Monona Drive parcel. If visible staining, noticeable petroleum odors, or elevated PID field screening readings are observed during excavation, this soil will be disposed under a separate profile at a licensed solid waste landfill

Balance of excavation

Generally, soils in this area:

- Are located outside the identified limits of PCE contamination.
- Have no detectable concentrations of PVOCs or VOCs.
- Will be excavated to a depth 10 feet bgs or greater.
- May be replaced or reused on site beneath buildings or pavement if geotechnically suitable.
- May be transported off site with no restrictions.

9

Paving Materials and Concrete Demolition Debris

- Asphalt and concrete pavement and other concrete from existing building foundations and footings may be crushed and recycled on site if determined to be clean per applicable WDNR regulations and guidance.
- Recycled asphalt and concrete materials may be used as base course below the new building and pavement areas.

6.1.2 Confirmation Soil Sampling

Post-excavation soil samples will be collected at the limits of excavation in the identified are of PCE contamination. Samples will be spaced approximately 30 feet around the excavation perimeter and on a grid spacing of approximately 30 feet across the floor of the excavation.

If previously undiscovered contamination is encountered elsewhere in the excavation footprint, postexcavation samples will be collected at the apparent limits of contamination.

6.1.3 Protective Cap

The excavation for the lower parking level is expected to remove the majority of the contaminant mass identified at the site. The redeveloped site will be largely capped by the new building or pavement, which will prevent direct contact with residual soil contamination and infiltration of surface water. Small areas of landscaping may be located around the perimeter of the property, and these areas will include at least one foot of clean soil at the ground surface. A cap maintenance plan, with a map showing the cap area, photos of the cap, and required maintenance activities will be submitted to the WDNR for approval following completion of the site development.

6.2 GROUNDWATER MANAGEMENT

As shown in Table A.6 in **Appendix B**, the depth to the water table observed on on-site monitoring wells MW-1, MW-2 and MW-3 has ranged from approximately 17 to more than 19 feet bgs. Based on the observed water table elevations from 2004 to 2020 and the likely depth of excavation for foundation construction, we do not anticipate that dewatering will be required for construction.

In the event that limited dewatering is required SCS will assist the excavation contractor with obtaining approval from the City of Madison and Madison Metropolitan Sewerage District to discharge contaminated groundwater from construction dewatering to the sanitary sewer. The most recent samples from on-site water table monitoring wells (see Table A.1 in **Appendix B**) did not show CVOC concentrations greater than NR 140 enforcement standards, so shallow groundwater should be sufficiently clean to discharge to the sanitary sewer without pre-treatment.

6.3 VAPOR MANAGEMENT

Less than one percent of the contaminated soil identified during the site investigation exceeds the industrial direct contact standard for PCE; therefore, significant vapor exposures are not anticipated during construction. If necessary, vapor issues identified during construction will be managed by limiting the amount of contaminated soil exposed at one time and by using temporary covers (plastic sheeting, tarps, etc.) to limit the amount of volatilization.

Although the proposed redevelopment will greatly reduce the potential for vapor intrusion compared to current conditions, based on the conditions contained in Classic Cleaners case closure letter and preliminary conversations with WDNR, provisions for vapor mitigation will be incorporated in to the construction of the new building. The risk of vapor migration into the new building will be minimized by the proposed redevelopment plan. Soil sampling during the site investigation showed that PCE concentrations declined dramatically at depths of 10 to 12 feet compared to shallow soil. Removal of the top 10 or more feet of soil from the site will greatly reduce the mass and concentration of PCE available for volatilization and migration into the new building. The presence of a full level of underground parking with mechanical venting below the first floor of the building will provide separation between residential and commercial spaces and residual contamination that may remain below the building.

In addition to contaminant mass removal and physical separation, additional measures will be incorporated into the new building to minimize the potential for vapor intrusion. The floor of the parking level will be underlain by a continuous vapor barrier. A network of horizontal drain/vent pipes spaced on 20-foot centers will be installed below the vapor barrier in the area of identified PCE contamination. The horizontal pipes will be connected to one or more vertical riser pipes terminated above the roof of the building. Typical vapor mitigation design features are illustrated in the drawing included in **Appendix E**.

7.0 UNUSUAL CONDITIONS

If any underground tanks, unusual odors, staining, fluids, or piping are found, work will stop in that area and the contractor will notify the owner and SCS of the conditions. SCS will inspect the site to assess the situation.

If potentially contaminated or hazardous material is encountered that is significantly different than what has been previously identified, it will be evaluated by SCS, or other environmental professional, as appropriate for the material encountered.

8.0 ROLES AND RESPONSIBILITIES DURING CONSTRUCTION

The following roles and responsibilities have been identified for the project:

Owner (Threshold Development) or General Contractor (Krupp Construction)

- Performs overall project scheduling and retains civil engineer/architect, environmental consultants, and contractor.
- Develops plans and specifications for project earthwork, incorporating the requirements of the soil and groundwater management plan.

Civil Engineer (TBD)

- Develops site and building plans, incorporating cap in to the site redevelopment.
- Develops utility and storm water management plans compatible with site conditions.

Environmental Consultant (SCS Engineers)

- Provides on-site observation and documentation of soil and groundwater management.
- Obtains soil profile approvals for treatment/disposal at an appropriate licensed facility.
- Advises on management of special or unanticipated environmental conditions encountered during construction.
- Obtains the appropriate discharge permits for construction dewatering discharge to the sanitary sewer, if needed.

Earthwork Contractor

- Performs earthwork in accordance with the project construction plans and specifications.
- Informs environmental engineer of schedule and any unusual conditions encountered during development.

9.0 **REPORTING**

Upon completion of subsurface activities, SCS will provide to the WDNR a written report of site activities, documentation of material disposal, an updated cap maintenance plan, an updated vapor mitigation plan for the new building and vapor mitigation operations and maintenance plan.

10.0 REFERENCES

Ivertech, 2020, Limited Phase II Environmental Site Assessment, 3900 Monona Drive, City of Madison, Dane County, WI; June 24, 2020

SCS Engineers, 2021, Phase 1 Environmental Site Assessment, 3900 Monona Drive, Madison, Wisconsin 53704; October 6, 2021

11.0 CERTIFICATIONS

"I, Eric Oelkers, hereby certify that I am a hydrogeologist as that term is defined in s. NR 712.03 (1), Wis. Adm. Code, am registered in accordance with the requirements of ch. GHSS 2, Wis. Adm. Code, or licensed in accordance with the requirements of ch. GHSS 3, Wis. Adm. Code, and that, to the best of my knowledge, all of the information contained in this document is correct and the document was prepared in compliance with all applicable requirements in chs. NR 700 to 726, Wis. Adm. Code."

Signature

Senior Project Manager Title

November 17, 2021 Date

"I, Mark R, Huber, hereby certify that I am a registered professional engineer in the State of Wisconsin, registered in accordance with the requirements of ch. A-E 4, Wis. Adm. Code; that this document has been prepared in accordance with the Rules of Professional Conduct in ch. A-E 8, Wis. Adm. Code; and that, to the best of my knowledge, all information contained in this document is correct and the document was prepared in compliance with all applicable requirements in chs. NR 700 to 726, Wis. Adm. Code."

ick R Huber

Signature

Project Director Title

November 17, 2021 Date [This page left blank intentionally]

Figures

- 1 Site Location Map
- 2 Detailed Site Map
- 3 Residual Soil Contamination
- 4 Groundwater Isoconcentration

^{\\}Mad-fs01\data\Projects\25221209.00\Drawings\Site Loc.dwg, 11/17/2021 1:17:47 PM

\\Mad-fs01\data\Projects\25221209.00\Drawings\Site.dwg, 11/17/2021 1:19:02 PM

\\Mad-fs01\data\Projects\25221209.00\Drawings\Results.dwg, 11/17/2021 1:21:06 PM

\\Mad-fs01\data\Projects\25221209.00\Drawings\Results.dwg, 11/17/2021 1:20:18 PM

Appendix A

Development Plans

GRAPHIC SCALE I INCH = 20 FT (24X36 SHEET)

SHEET NUMBER

sheet title Floor Plans

C-1.2

PROJECT NO. © Knothe & Bruce Architects, LLC

ISSUED Issued for Review - October 22, 2021

PROJECT TITLE

ISSUED Issued for Review - October 22, 2021

PROJECT TITLE

sheet title Floor Plans

SHEET NUMBER

C-1.3

PROJECT NO. © Knothe & Bruce Architects, LLC

GRAPHIC SCALE I INCH = 20 FT (24X36 SHEET)
Appendix B

Classic Cleaners Case Closure Tables and Figures

A.1. Groundwater Analytical Table 3918 Monona Drive, Madison, WI / SCS Engineers Project #25211232.51 (Results are in µg/L)

Sample	Date	Lab Notes	Benzene	Ethylbenzene	Toluene	Xylenes	TMBs	MTBE	PCE	TCE	cis-1,2-DCE	Other VOCs
GB2	9/17/2002	(1)	0.391	0.623 ^J	1.55	1.122 ^J	<0.71	<0.3	<u>58.2</u>	<0.36	<0.23	ND
GB4	4/7/2004	(2)	<0.31	<0.5	0.421 ^J	<0.92	<0.71	<0.3	<u>3.08</u>	<0.5	<0.4	ND
GB5	4/7/2004	(2)	<0.31	<0.5	0.34 ^J	<0.92	<0.71	<0.3	<u>23.0</u>	<0.5	<0.4	ND
GB6	4/7/2004		<0.31	0.594 ^J	0.683 ^J	1.06 ^J	<0.71	<0.3	<u>38.8</u>	<u>0.714</u> [」]	4.59	ND
GB7	4/7/2004		<0.31	<0.5	0.407 ^J	<0.92	<0.71	<0.3	<u>49.1</u>	<0.5	<0.4	ND
GB8	4/7/2004		<0.31	0.692 ^J	1.05	0.734 ^J	<0.71	<0.3	<u>278</u>	<0.5	<0.4	ND
GB9	4/7/2004		<0.31	0.521 ^J	0.484 ^J	<0.92	<0.71	<0.3	<u>103</u>	<0.5	<0.4	ND
GB10	4/7/2004		<0.31	<0.5	0.478 ^J	<0.92	<0.71	<0.3	<u>27.9</u>	<0.5	<0.4	ND
GB11	4/7/2004		<0.31	<0.5	<0.3	<0.92	<0.71	<0.3	<u>1.32</u> J	<0.5	<0.4	ND
MW1	8/18/2004	(3)	<2.50	<25.0	<25.0	<25.0	<50.0	<1.45	<u>260</u>	<2.50	<25.0	ND
	4/19/2005	(4)	<0.50	<5.0	<5.0	<5.0	<10.0	<0.290	<u>678</u>	2.77	<5.0	ND
	6/26/2007		<0.82	<1.1	<1.3	<5.3	<3.6	<1.2	<u>190</u>	<u>1.1</u> Q	<1.7	ND
	12/2/2008		<6.70	<6.70	<13.0	<19.70	<13.40	<17.0	<u>320</u>	<u>21.7</u>	3.53 ^J	Chloroform <u>19.3</u>
	5/30/2018		<0.15	<0.18	<0.15	<0.22	<0.61	<0.39	<0.37	<0.16	<0.41	ND
	8/28/2020		<0.15	<0.18	<0.15	<0.22	<0.61	<0.39	<u>2.1</u>	<0.16	<0.41	ND
MW1P	4/19/2005	(4)	<0.50	<5.0	<5.0	<5.0	<10.0	<0.290	<0.50	<0.50	<5.0	ND
	6/26/2007		<0.41	<0.54	<0.67	<2.63	<1.8	<0.61	<0.45	<0.48	<0.83	ND
	12/2/2008	(9)	<0.67	<0.67	<1.30	<1.97	<0.87	<1.70	<u>1.06</u>	<1.30	<1.00	ND
	5/30/2018		<0.15	<0.18	<0.15	<0.22	<0.61	<0.39	<u>9.9</u>	<0.16	<0.41	ND
	8/28/2020		<0.15	<0.18	<0.15	<0.22	<0.61	<0.39	<0.37	<0.16	<0.41	ND
MW2	8/18/2004	(3)	<0.50	<5.0	<5.0	<5.0	<10.0	<0.290	<u>60.5</u>	<0.50	<5.0	ND
	4/19/2005	(6)	<0.50	<5.0	<5.0	<5.0	<10.0	<0.290	<u>19.4</u>	<u>0.710</u>	<5.0	ND
	6/26/2007		<0.41	<0.54	<0.67	<2.63	<1.8	<0.61	<u>16</u>	<0.48	<0.83	ND
	12/2/2008	(9)	<0.67	<0.67	<1.30	<1.97	<1.34	<1.70	<u>54.8</u>	<1.30	<1.00	Chloroform <u>3.13</u>
	5/30/2018		<0.15	<0.18	<0.15	<0.22	<0.61	<0.39	<u>1.3</u>	<0.16	<0.41	ND
	8/28/2020		<0.15	<0.18	<0.15	<0.22	<0.61	<0.39	<0.37	<0.16	<0.41	ND

A.1. Groundwater Analytical Table 3918 Monona Drive, Madison, WI / SCS Engineers Project #25211232.51 (Results are in µg/L)

		Lab											
Sample	Date	Notes	Benzene	Ethylbenzene	Toluene	Xylenes	TMBs	MTBE	PCE	TCE	cis-1,2-DCE	Other VOC	S
MW3	8/18/2004	(3)	<0.50	<5.0	<5.0	<5.0	<10.0	<0.290	<u>39.4</u>	<0.50	<5.0	ND	
	4/19/2005	(4)	<0.50	<5.0	<5.0	<5.0	<10.0	<0.290	<u>9.04</u>	<0.50	<5.0	ND	
	6/26/2007		<0.41	<0.54	<0.67	<2.63	<1.8	<0.61	<u>51</u>	<0.48	<0.83	Chloroform	<u>2.4</u>
	12/2/2008	(9)	<0.67	<0.67	<1.30	<1.97	<1.34	<1.70	<u>52.5</u>	0.44 ^J	<1.00	ND	
	5/30/2018		<0.15	<0.18	<0.15	<0.22	<0.61	<0.39	<u>1.7</u>	<0.16	<0.41	ND	
	8/28/2020		<0.15	<0.18	<0.15	<0.22	<0.61	<0.39	<u>5.9</u>	0.19 ^{J1}	<0.41	ND	
MW4	4/19/2005	(4)	<0.50	<5.0	<5.0	<5.0	<10.0	<0.290	<u>2,280</u>	<u>5.03</u>	<5.0	ND	
	6/26/2007		<4.1	<5.4	<6.7	<26.3	<18.0	<6.1	<u>1,500</u>	<4.8	<8.3	ND	
	12/2/2008		<6.70	<6.70	<13.0	<19.70	<13.40	<17.0	<u>342</u>	<13.0	<10.0	Chloroform	<u>43.6</u>
	5/30/2018		<0.15	<0.18	<0.15	<0.22	<0.61	<0.39	<u>47</u>	<0.16	<0.41	ND	
	8/28/2020		<0.15	<0.18	<0.15	<0.22	<0.61	<0.39	<u>14</u>	<0.16	<0.41	ND	
MW4P	6/26/2007	(7)	<4.1	<5.4	<6.7	<26.3	<18.0	<6.1	<u>1,200</u> N	<u>81</u>	<8.3	ND	
	12/2/2008		<6.70	<6.70	<13.0	<19.70	<13.40	<17.0	<u>286</u>	<u>68.7</u>	6.23 ^J	ND	
	5/30/2018		<0.15	<0.18	<0.15	<0.22	<0.61	<0.39	<0.37	1.1	<0.41	ND	
	8/28/2020		<0.15	<0.18	<0.15	<0.22	<0.61	<0.39	<0.37	<u>0.52</u>	1.2	ND	
MW5	6/26/2007		<1.0	<1.4	<1.7	<6.6	<4.5	<1.5	<u>170</u>	<1.2	<2.1	ND	
	12/2/2008		<0.67	<0.67	<1.30	<1.97	<1.34	<1.70	56	<1.30	<1.00	Isopropylbenzene	0.12 ^J
												Trichlorofluoromethane	0.28 ^{CSH,J}
	5/30/2018		<0.15	<0.18	<0.15	<0.22	<0.61	<0.39	<u>17</u>	<0.16	<0.41	ND	
	8/28/2020		<0.15	<0.18	<0.15	<0.22	<0.61	<0.39	8.2	<0.16	<0.41	ND	
MW6	6/26/2007	(8)	<10	<14	<17	<66	<45	<15	2,300	<12	<21	ND	
	12/2/2008		<6.70	<6.70	<13.0	<19.70	<13.40	<17.0	1,620 CAL	<13.0	<10.0	ND	
	5/30/2018		<0.15	<0.18	<0.15	<0.22	<0.61	<0.39	<u>85</u>	<0.16	<0.41	ND	
	8/28/2020		<0.15	<0.18	<0.15	<0.22	<0.61	<0.39	<u>22</u>	<0.16	<0.41	ND	
	8/28/2020 (DUP)		<0.15	<0.18	<0.15	<0.22	<0.61	<0.39	<u>23</u>	<0.16	<0.41	ND	

A.1. Groundwater Analytical Table 3918 Monona Drive, Madison, WI / SCS Engineers Project #25211232.51 (Results are in µg/L)

		Lab											
Sample	Date	Notes	Benzene	Ethylbenzene	Toluene	Xylenes	TMBs	MTBE	PCE	TCE	cis-1,2-DCE	Other VOC	s
Trip Blank	9/17/2002	(1)	<0.31	<0.5	0.532 ^J	<0.92	<0.71	<0.3	<0.32	<0.36	<0.23	ND	
	4/7/2004		<0.31	<0.5	<0.3	<0.92	<0.71	<0.3	<0.45	<0.5	<0.4	ND	
	8/18/2004	(5)	<0.50	<5.0	<5.0	<5.0	<10.0	<0.290	<u>2.29</u>	<0.50	<5.0	Bromodichloromethane	<u>0.50</u>
	4/19/2005	(4)	<0.50	<5.0	<5.0	<5.0	<10.0	<0.290	<0.50	<0.50	<5.0	ND	
	6/26/2007		<0.41	<0.54	<0.67	<2.63	<1.8	<0.61	<0.45	<0.48	<0.83	ND	
	12/2/2008	(9)	<0.67	<0.67	<1.30	<1.97	<1.34	<1.70	<1.00	<1.30	<1.00	ND	
	5/30/2018		<0.15	<0.18	<0.15	<0.22	<0.61	<0.39	<0.37	<0.16	<0.41	ND	
	8/28/2020		<0.15	<0.18	<0.15	<0.22	<0.61	<0.39	<0.37	<0.16	<0.41	ND	
NR 140 Enforcement Standards (ES)		lards (ES)	5	700	800	2,000	480	60	5	5	70	Bromodichloromethane	0.6
												Chloroform	6
NR 140 Preve	entive Action L	imits	0.5	140	160	400	96	12	0.5	0.5	7	Bromodichloromethane	0.06
(PAL)												Chloroform	0.6

Abbreviations:

 $\mu g/L = micrograms$ per liter or parts per billion (ppb)

PCE = Tetrachloroethene VOCs = Volatile Organic Compounds cis-1,2-DCE = cis-1,2-Dichloroethene TCE = Trichloroethene ND = Not Detected MTBE = Methyl-tert-butyl ether TMBs = 1,2,4- and 1,3,5-trimethylbenzenes DUP = Duplicate Sample

Notes:

All samples analyzed for full VOC list.

Bold+underlined values meet or exceed NR 140 enforcement standards.

<u>Italic+underlined</u> values meet or exceed NR 140 preventive action limits.

NR 140 ES - Wisconsin Administrative Code (WAC), Chapter NR 140.10 Table 1 - Public Health Groundwater Quality Standards

NR 140 PAL - WAC, Chapter NR 140.10 Table 1 - Public Health Groundwater Quality Standards

A.1. Groundwater Analytical Table 3918 Monona Drive, Madison, WI / SCS Engineers Project #25211232.51

Laboratory Notes:

CAL = Estimated concentration above the calibration range, but within the range of the detector

CSH = Check standard for this analyte exhibited a high bias. Sample results may also be biased high.

- J = Estimated concentration below laboratory quantitation level.
- J1 = Result is less than the Reporting Limit (RL) but greater than or equal to the Method Detection Limit (MDL) and the concentration is an approximate value

N = Spiked sample recovery not within control limits.

Q = The analyte has been detected between the limit of detection (LOD) and the limit of quantitation (LOQ). The results are qualified due to the uncertainty of analyte concentrations within this range

- (1) Chloromethane, dichlorodifluoromethane, and naphthalene analyses Check standard for this analyte exhibited a high bias. Sample results may also be biased high. 2,2-Dichloropropane analysis Check standard for this analyte exhibited a low bias. Sample results may also be biased low.
- (2) Chloromethane analysis Check standard for this analyte exhibited a low bias. Sample results may also be biased low.
- (3) VOCs analysis The result for one or more quality control measurements associated with this sample did not meet the laboratory and/or source method acceptance criteria. Vinyl chloride analysis - The recovery of this analyte in the check standard is above the method specified acceptance criteria. Surrogate: Toluene-d8 analysis - This quality control measurement is above the laboratory established limit. Surrogate: 4-Bromofluorobenzene analysis - This quality control measurement is below the laboratory established limit.
- (4) VOCs analysis The result for one or more quality control measurements associated with this sample did not meet the laboratory and/or source method acceptance criteria.
- (5) VOCs analysis Blank was analyzed twice to confirm contamination. The result for one or more quality control measurements associated with this sample did not meet the laboratory and/or source method acceptance criteria. 1,1-Dichloroethene analysis - The recovery of this analyte in the check standard is above the method specified acceptance criteria. Surrogate: Dibromofluoromethane and Surrogate: 4-Bromofluorobenzene analysis - This quality control measurement is below the laboratory established limit. Surrogate: Toluene-d8 analysis - This quality control measurement is above the laboratory established limit.
- (6) VOCs analysis The result for one or more quality control measurements associated with this sample did not meet the laboratory and/or source method acceptance criteria. Surrogate: 4-Bromofluorobenzene analysis - This quality control measurement is below the laboratory established limit.
- (7) Styrene analysis Spiked sample recovery not within control limits.
- (8) VOCs analysis Sample pH was greater than 2.
- (9) Trichlorofluoromethane Check standard for this analyte exhibited a high bias. Sample results may also be biased high.

Created by: LMH	Date: 5/10/2004
Last revision by: LMH	Date: 9/8/2020
Checked by: AJR	Date: 9/10/2020
Proj Mgr QA/QC: REL	Date: 1/13/2021

I:\2325\Reports\Case Closure\Revised Case Closure\[A.1. Groundwater Analytical Table.xls]Lab Notes

(Results are in µg/kg, exce	pt where noted otherwise)
-----------------------------	---------------------------

		Depth		Lab					1,2,4-	1,3,5-			
Sample	Date	(feet)	FID/PID	Notes	Benzene	Ethylbenzene	Toluene	Xylenes	TMB	TMB	MTBE	PCE	Other VOCs**
GB1 S1	9/17/2002	0-2	1	(1)	<200	<200	<200	<400	<200	<200	<200 CSL	<u>5,910</u>	ND
GB1 S3	9/17/2002	4-6	1	(1)	<25	<25	<25	<50	<25	<25	<25 CSL	<u>50.9</u>	ND
GB2 \$5	9/17/2002	8-10	3	(2)	<25	<25	<25	<50	<25	<25	<25 CSL	<u>166</u>	ND
GB3 \$1	9/17/2002	0-2	400	(3)	<20,000	<20,000	<20,000	<40,000	<20,000	<20,000	<20,000 CSL	<u>605,000</u>	ND
GB4 S2	4/7/2004	4	2	(4)	<25	<25	<25	<50	<25	<25	<25	<25	ND
GB4 S6	4/7/2004	12	0	(4)	<25	<25	<25	<50	<25	<25	<25	<25	ND
GB5 S2	4/7/2004	4	2	(4)	<25	<25	<25	<50	<25	<25	<25	<u>40.2</u>	ND
GB5	4/7/2004	16	0	(4)	<25	<25	<25	<50	<25	<25	<25	<25	ND
GB6 S2	4/7/2004	4	70	(4)	<25	<25	<25	<50	<25	<25	<25	<u>15,800</u>	ND
GB6 S6	4/7/2004	12	8	(4)	<25	<25	<25	<50	<25	<25	<25	<u>187</u>	ND
GB7 S2	4/7/2004	4	1	(4)	<25	<25	<25	<50	<25	<25	<25	<u>69.5</u>	ND
GB7 S4	4/7/2004	6	2	(4)	<25	<25	<25	<50	<25	<25	<25	<u>186</u>	ND
GB8 S2	4/7/2004	4	1	(5)	<25	<25	<25	<50	<25	<25	<25	<u>43.5</u>	ND
GB8 S6	4/7/2004	12	2	(5)	<25	<25	<25	<50	<25	<25	<25	<u>66</u>	ND
GB9 S2	4/7/2004	4	2	(5)	<25	<25	<25	<50	<25	<25	<25	<25	ND
GB9 S6	4/7/2004	12	3	(5)	<25	<25	<25	<50	<25	<25	<25	<25	ND
GB10 S2	4/7/2004	4	3	(5)	<25	<25	<25	<50	<25	<25	<25	<u>202</u>	ND
GB10 S6	4/7/2004	12	2	(5)	<25	<25	<25	<50	<25	<25	<25	<25	ND
GB11 S2	4/7/2004	4	2	(5)	<25	<25	<25	<50	<25	<25	<25	<25	ND
GB11 S6	4/7/2004	12	3	(5)	<25	<25	<25	<50	<25	<25	<25	<25	ND
GB12 \$1	7/27/2004	0-2	4.4*	(6)	<25	<25	98.1	28.5	<25	<25	<25	<u>62.5</u>	ND
GB12 \$5	7/27/2004	10-12	11.2*	(6)	<25	<25	130	<25	<25	<25	<25	<25	ND
GB13 S2	7/27/2004	3-5	14.8*	(6)	<25	<25	109	<25	<25	<25	<25	<u>69.8</u>	ND
GB13 S6	7/27/2004	13-15	15.1*	(6)	<25	<25	129	<25	<25	<25	<25	<u>94.1</u>	ND
GB14 S1	3/8/2007	0-2	0*		<27	<27	<27	<91	<27	<27	<27	<27	ND
GB14 S3	3/8/2007	4-6	0*		<30	<30	<30	<100	<30	<30	<30	<30	ND

Sample	Date	Depth (feet)	FID/PID	Lab Notes	Benzene	Ethylbenzene	Toluene	Xylenes	1,2,4- TMB	1,3,5- TMB	MTBE	PCE	Other VOCs**	
GB15 \$1	3/8/2007	0-2	288*		<26	<26	<26	<90	<26	<26	<26	<u>54,000</u>	cis-1,2-Dichloroethene	2,000
													Trichloroethene	<u>620</u>
GB15 \$5	3/8/2007	8-10	26*		<27	<27	<27	<91	<27	<27	<27	<u>2,700</u>	Chloroform	<u>30</u>
GB16 S1	3/8/2007	0-2	3.2*		<26	<26	<26	<89	<26	<26	<26	<26	ND	
GB16 S3	3/8/2007	4-6	0*		<30	<30	<30	<100	<30	<30	<30	<u>40</u>	ND	
GB17 S1	3/8/2007	0-2	0*		<35	<35	<35	<120	<35	<35	<35	<35	ND	
GB17 S5	3/8/2007	8-10	1.1*		<29	<29	<29	<98	<29	<29	<29	<29	ND	
GB18 \$1	3/8/2007	0-2	4*	(8)	<28	<28	<28	<96	<28	<28	<28	<u>2,500</u>	Trichloroethene	<u>110</u>
GB18 \$5	3/8/2007	8-10	5.9*	(8)	<28	<28	<28	<95	<28	<28	<28	<u>210</u>	ND	
GB19 S1	3/8/2007	0-2	10.7*	(8)	<28	<28	<28	<95	<28	<28	<28	<u>11,000</u>	Trichloroethene	<u>200</u>
GB19 S5	3/8/2007	8-10	2.6*	(8)	<26	<26	<26	<87	<26	<26	<26	<u>180</u>	ND	
GB20 S1	3/8/2007	0-2	1.1*	(8)	<32	<32	<32	<110	<32	<32	<32	<u>1,400</u>	ND	
GB20 S3	3/8/2007	4-6	0.7*	(8)	<31	<31	<31	<100	<31	<31	<31	<u>42</u>	ND	
GB21 S1	3/8/2007	0-2	0*	(8)	<33	<33	<33	<110	<33	<33	<33	<u>88</u>	ND	
GB21 S4	3/8/2007	6-8	0*	(8)	<28	<28	<28	<94	<28	<28	<28	<28	ND	
GB22 S2	3/8/2007	2-4	0	(9)	<31	<31	<31	<100	<31	<31	<31	<31	ND	
GB22 \$5	3/8/2007	8-10	0.7*	(10)	<26	<26	<26	<88	<26	<26	<26	<u>34</u>	ND	
MW1 S2	7/27/2004	3-5	1.4*	(6)	<25	<25	92.5	28.8	<25	<25	<25	<u>52</u>	ND	
MW1 \$5	7/27/2004	10-12	1.6*	(6)	<25	<25	92.2	<25	<25	<25	<25	<25	ND	
	-													

(Results are in μ g/kg, except where noted otherwise)

Sample	Date	Depth (feet)	FID/PID	Lab Notes	Benzene	Ethylbenzene	Toluene	Xylenes	1,2,4- TMB	1,3,5- TMB	MTBE	PCE	Other VOCs**	ŕ
MeOH Blank	9/17/2002			(3)	<25	<25	<25	<50	<25	<25	<25 CSL	<25	ND	
	4/7/2004			(5)	<25	<25	<25	<50	<25	<25	<25	<25	ND	
	7/27/2004			(6) (7)	<25	<25	<25	<25	<25	<25	<25	<25	ND	
	3/8/2007			(11)	<25	<25	<25	<85	<25	<25	<25	<25	ND	
NR 720 Groundwater Pathway RCLs with a Wisconsin-Default Dilution Factor of 2		с. С	5.1	1,570	1,107.20	3,960	(4	a)	27	4.5	cis-1,2-Dichloroethene Chloroform Trichloroethene	41.2 3.3 3.6		
NR 720 Non-Industrial Direct Contact RCLs			1,600	8,020	818,000	260,000	219,000	182,000	63,800	33,000	cis-1,2-Dichloroethene Chloroform Trichloroethene	156,000 454 1,300		
NR 720 Industrial Direct Contact RCLs		7,070	35,400	818,000	260,000	219,000	182,000	282,000	145,000	cis-1,2-Dichloroethene Chloroform Trichloroethene	2,340,000 1,980 8,410			

(Results are in µg/kg, except where noted otherwise)

Abbreviations:

μg/kg = micrograms per kilogram or parts per billion (ppb) MTBE = Methyl-tert-butyl ether ND = Not Detected VOCs = Volatile Organic Compounds TMB = Trimethylbenzene RCLs = Residual Contaminant Levels FID = Flameionization Detector PID = Photoionization Detector PCE = Tetrachloroethene

Notes:

*=Measured with a photoionization detector.

**=Samples analyzed for full VOCs list.

Bold+underlined values exceed an NR 720 RCL, as of December 2018.

(a) NR 720 Groundwater Pathway RCLs for 1,2,4 and 1,3,5 Trimethylbenzene Combined = 1,378.7

Laboratory Notes:

CSL = Check standard for this analyte exhibited a low bias. Sample results may also be biased low.

- Chloroethane, chloromethane, dichlorodifluoromethane, 1,1-dichloroethane, 1,2-dichloroethane, naphthalene, and trichlorofluoromethane analyses Check standard for this analyte exhibited a high bias. Sample results may also be biased high. Dichlorodifluoromethane analysis - The laboratory control sample for this analyte exhibited a low bias. Sample results may also be biased low.
 Dichlorodifluoromethane, 1,2,3-trichlorobenzene, and trichlorofluoromethane analyses - Results of duplicate analysis in this quality assurance batch exceeds the limits for precision.
 1,2-Dichloroethane analysis - The laboratory control sample for this analyte exhibited a high bias. Sample results may also be biased high.
 2,2-Dichloropropane analysis - Check standard for this analyte exhibited a low bias. Sample results may also be biased high.
- (2) Chloroethane, chloromethane, dichloromethane, 1,1-dichloroethane, 1,2-dichloroethane, methylene chloride, naphthalene, and trichlorofluoromethane analyses Check standard for this analyte exhibited a high bias. Sample results may also be biased high. Chloromethane, dichlorofluoromethane, 2,2-dichloropropane, and trichlorofluoromethane analyses Results of duplicate analysis in this quality assurance batch exceeds the limits for precision. Dichlorodifluoromethane analyses The laboratory control sample for this analyte exhibited a low bias. Sample results may also be biased low. 1,2-Dichloroethane and naphthalene analyses The laboratory control sample for this analyte exhibited a high bias. Sample results may also be biased high. 2,2-Dichloropropane analysis Check standard for this analyte exhibited a low bias.
- (3) Chloroethane, chloromethane, 1,2-dichloroethane, 1,1-dichloroethylene, 1,3-dichloropropane, naphthalene, trichlorofluoromethane, and vinyl chloride analyses Check standard for this analyte exhibited a high bias. Sample results may also be biased high. Chloromethane, 2,2-dichloropropane, isopropyl ether, trichlorofluoromethane, and vinyl chloride analyses - The laboratory control sample for this analyte exhibited a low bias. Sample results may also be biased low. Chloromethane analysis - Results of duplicate analysis in this quality assurance batch exceeds the limits for precision. Isopropyl ether analysis - Check standard for this analyte exhibited a low bias. Sample results may also be biased low.
- (4) Chloroethane, chloromethane, and 2,2-dichloropropane analyses Check standard for this analyte exhibited a low bias. Sample results may also be biased low. Chloroethane, chloromethane, and vinyl chloride analyses The laboratory control sample for this analyte exhibited a low bias. Sample results may also be biased low. Chloroethane and chloromethane analyses Results of duplicate analysis in this quality assurance batch exceeds the limits for precision.
 1,2-Dibromo-3-chloropropane analysis Check standard for this analyte exhibited a high bias. Sample results may also be biased high.
- (5) Bromodichloromethane, 1,2-dibromo-3-chloropropane analyses Check standard for this analyte exhibited a high bias. Sample results may also be biased high. The laboratory control sample for this analyte exhibited a high bias. Sample results may also be biased high. Chloroethane, chloromethane, and 2,2-dichloropropane analyses Check standard for this analyte exhibited a low bias. Sample results may also be biased low. Chloroethane, dichlorofluoromethane, trichlorofluoromethane, and vinyl chloride analyses The laboratory control sample for this analyte exhibited a low bias. Sample results may also be biased low. Chloroethane, dichlorofluoromethane, trichlorofluoromethane, and vinyl chloride analyses The laboratory control sample for this analyte exhibited a low bias. Sample results may also be biased low. Chloroethane analysis Results of duplicate analysis in this quality assurance batch exceeds the limits for precision.
- (6) VOCs analysis The result for one or more quality control measurements associated with this sample did not meet the laboratory and/or source method acceptance criteria. Vinvl chloride analysis - The recovery of this analyte in the check standard is below the method specified acceptance criteria.
- (7) Surrogate: Dibromofluoromethane analysis This quality control measurement is below the laboratory established limit.
- (8) Bromoform, Bromomethane, Chlorethane, Dichlorodifluoromethane Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was above acceptance limits. Bromoform, 1,2-Dichloroethane - The RPD exceeded the acceptance limit. Chloroethane - Calibration Verification recovery was above the method control limit for this analyte. Analyte not detected, data not impacted.
- (9) Carbon Tetrachloride The RPD exceeded the acceptance limit. Chloroethane, Chloromethane, Dichlorodifluoromethane Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was above acceptance limits. Surrogate: Toluene Surrogate recovery was below acceptance limits.
- (10) Carbon Tetrachloride The RPD exceeded the acceptance limit. Chloroethane, Chloromethane, Dichlorodifluoromethane Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was above acceptance limits.
- (11) 1,2,4-Trichlorobenzene Calibration Verification recovery was outside the method control limits for this analyte. The LCS for this analyte met CCV acceptance criteria, and was used to validate the batch.

Created by:	LMH	Date: 5/10/2004
Last revision by:	JSN	Date: 5/8/2017
Checked by:	LMH	Date: 5/9/2017
Proj Mgr QA/QC:	REL	Date: 9/23/2019

I:\2325\Reports\Case Closure\Attachment A Data Tables\[A.2 Soil Analytical Results Table.xls]Soil VOCs

Sample	Date	PCE	TCE		cis-1,2 DCE	2-	trans-1 DCE	,2-	Vinyl Chloric	le
3916 Monona Drive*	7/11/2013	<u>2,010</u>	<800	*D	<800	*D	<800	*D	<800	*D
3918 Monona Drive*	11/18/2008	253 A3	9.7		2.2		NA		<1.0	
	7/11/2013	<u>2,180</u>	<800	*D	<800	*D	<800	*D	<800	*D
3920 Monona Drive*	11/18/2008	<u>7,660</u> A3, R1	37.9		9.4		NA		3.0	
104 Davidson Street No. 1	7/9/2009	137	<0.80		<0.80		NA		<0.79	
	7/11/2013	67	<33	*D	<33	*D	<33	*D	<33	*D
104 Davidson Street No. 2	7/11/2013	33	<20		<20		<20		<20	
3900 Monona Drive	7/9/2009	43.5	<0.80		<0.80		NA		<0.79	
3939 Monona Drive	7/11/2013	33	<20		<20		<20		<20	
4001 Monona Drive* No. 1	7/9/2009	276	<0.74		<0.74		NA		<0.73	
	7/11/2013	641	<200	*D	<200	*D	<200	*D	<200	*D
4001 Monona Drive* No. 2	7/11/2013	324	<200	*D	<200	*D	<200	*D	<200	*D
4002 Monona Drive SS-01	11/19/2018	28	<0.24		<0.47		<0.47		<0.24	
4002 Monona Drive SS-02	11/19/2018	37	<0.18		<0.35		<0.35		<0.18	
4002 Monona Drive SS-03	11/19/2018	100	<0.18		<0.35		<0.35		<0.18	
4002 Monona Drive SS-04	11/19/2018	<u>1,396</u>	7.38		<0.37		<0.37		<0.18	
4002 Monona Drive SS-05	11/19/2018	778	1.55		<0.35		<0.38		<0.18	
Indoor Air Vapor Action Level (Re	6.2	0.39		NE		NE		0.65		
Vapor Risk Screening Level (Resid	210	13		NE		NE		22		
Vapor Risk Screening Level (Non-Residential)		900	53		NE		NE		370	

A.4.a Vapor Analytical Table - Sub-Slab Sample Results 3918 Monona Drive / SCS Engineers Project #25211232.51 (Results are in ppbv)

Abbreviations:

ppbv = parts per billion by volume

cis-1,2-DCE = cis-1,2-dichloroethene

trans-1,2-DCE = trans-1,2-dichloroethene NE = not established PCE = tetrachloroethene TCE = trichloroethene

Notes:

*Vapor mitigation systems were installed subsequent to sampling.

1. Samples were collected in 6L summa canisters over a 30-minute period and analyzed using the USEPA TO-15 analytical method.

2. Vapor Action Levels or Vapor Risk Screening Levels are from Wisconsin Department of Natural Resources Quick Look-Up Table, which is based on November 2017 USEPA Regional Screening Level Tables.

3. Vapor Risk Screening Levels assume a residential/small commercial attenuation factor of 0.03 for sub-slab vapor.

4. Bold values meet or exceed Vapor Risk Screening Levels for residential settings. Bold and underlined values meet or exceed Vapor Risk Screening Levels for non-residential settings.

5. November 11, 2018 results from True North Consultants' Table 1 Summary of Air Sample Analytical Results, Sub-Slab Vapor Short List.

Laboratory Notes/Qualifiers:

A3 = The sample was analyzed by serial dilution.

*D = Limit of detection not achievable due to dilution.

R1 = Duplicate result for this parameter was 1,070 ppbv, relative percent difference value was outside control limits.

Created by:	SMS	Date: 12/9/2008
Last revision by:	LMH	Date: 9/16/2019
Checked by:	REL	Date: 9/19/2019
Proj Mgr QA/QC:	REL	Date: 9/23/2019

I:\2325\Reports\Case Closure\Attachment A Data Tables\[A.4.a Vapor Analytical Table -Sub-Slab Sample Results.xls]VOCs

A.4.b Vapor Analytical Table - Indoor Air Sample Results 3918 Monona Drive, Madison, WI / SCS Engineers Project #25211232.51

(Results are in ppbv)

Sample	Location	Date	PCE	TCE	cis-1,2-DCE	trans-1,2-DCE	Vinyl Chloride
IA-101	4001 Monona Drive	7/15/2015	0.29	<0.085	<0.085	0.19 ^F	<0.085
IA-102	4001 Monona Drive	7/15/2015	0.74	<0.085	<0.085	<0.085	<0.085
IA-103	4001 Monona Drive	7/15/2015	0.23 F	<0.17	<0.17	<0.17	<0.17
IA-104	4001 Monona Drive	7/15/2015	0.24 ^F	<0.085	<0.085	1.0	<0.085
Indoor Air Vapo	r Action Level (Residentia)	6.2	0.39	NE	NE	0.65

Abbreviations:

ppbv = parts per billion by volume cis-1,2-DCE = cis-1,2-dichloroethylene PCE = tetrachloroethylene trans-1,2-DCE = trans-1,2-dichloroethylene TCE = trichloroethylene NE = not established

Notes:

1. Samples were collected in 6-liter summa canisters over a 24-hour period and analyzed using the USEPA TO-15 analytical method.

2. Vapor Action Levels are from Wisconsin Department of Natural Resources Quick Look-Up Table, which is based on November 2017 USEPA Regional Screening Level Tables.

3. Bold & underlined values exceed Indoor Air Vapor Action Levels.

Lab Notes:

F next to result = Result is in between LOD and LOQ

Created by:	LMH	Date: 7/27/2015
Last revision by:	JSN	Date: 5/8/2017
Checked by:	LMH	Date: 5/9/2017
Proj Mgr QA/QC:	REL	Date: 9/23/2019

I:\2325\Reports\Case Closure\Attachment A Data Tables\[A.4.b Vapor Analytical Table-Indoor Air Sample Results.xls]Results

A.6. Water Level Elevations 3918 Monona Drive, Madison, WI / SCS Engineers Project #25211232.51

			Depth to W	h to Water in feet below top of well casing									
Well Number	MW1	MW2	MW3	MW4	MW5	MW6	MW1P	MW4P					
Measurement Date													
July 27, 2004	17.74	17.11	17.41	NM	NM	NM	NM	NM					
August 18, 2004	18.04	17.43	17.70	NM	NM	NM	NM	NM					
April 19, 2005	19.28	18.66	19.02	19.53	NM	NM	19.23	NM					
June 26, 2007	19.34	18.72	19.11	19.56	20.39	17.88	19.29	19.45					
December 2, 2008	19.07	18.48	18.79	19.35	20.05	17.70	19.02	19.22					
May 30, 2018	17.77	17.18	17.41	18.10	18.90	16.58	17.71	17.99					
August 28, 2020	17.11	16.61	16.68	17.63	18.37	16.23	17.06	17.51					

	Ground Water Elevation in feet above mean sea level (amsl)											
Well Number	MW1	MW2	MW3	MW4	MW5	MW6	MW1P	MW4P				
Top of Casing Elevation (feet amsl)	863.73	863.11	863.58	863.84	864.53	862.02	863.68	863.57				
Measurement Date												
July 27, 2004	845.99	846.00	846.17									
August 18, 2004	845.69	845.68	845.88									
April 19, 2005	844.45	844.45	844.56	844.31			844.45					
June 26, 2007	844.39	844.39	844.47	844.28	844.14	844.14	844.39	844.12				
December 2, 2008	844.66	844.63	844.79	844.49	844.48	844.32	844.66	844.35				
May 30, 2018	845.96	845.93	846.17	845.74	845.63	845.44	845.97	845.58				
August 28, 2020	846.62	846.50	846.90	846.21	846.16	845.79	846.62	846.06				

Abbreviations:

NM = not measured

Last revision by:	JSN	Date: <u>10/1/2020</u>
Checked by:	LMH	Date: 10/1/2020
Proj Mgr QA/QC:	REL	Date: 10/1/2020

I:\2325\Reports\Case Closure\Revised Case Closure\[A.6 Water Level Elevations.xls]levels

I:\2325\Drawings-general\Closure\Site.dwg, 2/25/2020 10:29:47 AM

I:\2325\Drawings-general\Closure\Sections.dwg, 2/25/2020 10:31:20 Al

LEGEND

	SAND, POORLY GRADED, LITTLE OR NO FINES (SP)
	SILTY SAND (SM)
	CLAYEY SAND (SC)
	SILTY GRAVEL (GM)
+ + + + + + + + + + + + + + + + + + +	SAND, POORLY GRADED WITH SILT (SP-SM)
	SILTY CLAY (CL-ML)
25	PHOTOIONIZATION DETECTOR READING
	APPROXIMATE WATER

TABLE ELEVATION

WELL DETAIL

HORIZONTAL SCALE: 1" = 50' VERTICAL SCALE: 1" = 5' VERTICAL EXAGGERATION = 10X

	FIGURE
GEOLOGIC CROSS SECTION A-A	B.3.a.2

1:\2325\Drawings-general\Closu re\Sections.dwg, 2/25/2020 10:32:15 Al

LEGEND

	SAND, POORLY GRADED, LITTLE OR NO FINES (SP)
	SILTY SAND (SM)
	CLAYEY SAND (SC)
	SILTY GRAVEL (GM)
*	SAND, POORLY GRADED WITH SILT (SP-SM)
	SILTY CLAY (CL-ML)
25	PHOTOIONIZATION DETECTOR READING

____ APPROXIMATE WATER TABLE ELEVATION

WELL DETAIL

CEALACIC CROSS SECTION R. R'	FIGURE
GEOLOGIC CROSS SECTION B-B	B.3.a.3

I:\2325\Drawings-general\Closure\Wtbl.dwg, 2/25/2020 10:34:08 AM

I:\2325\Drawings-general\Closure\Results.dwg, 2/25/2020 10:35:52 AM

Appendix C

Ivertech Phase 2 ESA

Limited Phase II Environmental Site Assessment 3900 Monona Drive City of Madison Dane County, WI

June 24, 2020

Prepared for: Krupp-Grove Family Limited Partnership

> Prepared by: IverTech LLC 2880 Jonathan Circle Madison, Wisconsin (608) 273-3751

IverTech Project Number C 8108A

IVERTECH LLC

June 24, 2020

Mr. Joe Krupp Krupp-Grove Family Limited Partnership

Re: Limited Phase II Environmental Site Assessment 3900 Monona Drive City of Madison Dane County, WI

Dear Mr. Krupp:

IverTech LLC has completed Limited Phase II Environmental Site Assessment Activity (ESA) for the referenced Property. The work was completed as part of environmental due diligence under your direction.

The report finds there were no contaminants exceeding regulatory standards identified at the Property at the locations sampled. As such, there is insufficient reason to recommend further investigation at this time.

Thank you for the opportunity to be of service.

Sincerely, IverTech LLC

Jennis Deerson

Dennis L. Iverson Environmental Professional

IverTech LLC 2880 Jonathan Circle Madison, WI 53711

TABLE OF CONTENTS

Limited Phase II Environmental Site Assessment 3900 Monona Drive City of Madison Dane County, WI

SECTION

PAGE

1.0 INTRODUCTION	1
1.1 Background and Purpose	1
1.2 Scope of Services	1
2.0 LIMITED PHASE II ACTVITY	2
2.1 TASK 1-WORK PLAN	2
2.2 TASK 3 AND 4 PROBE CONTRACTOR BIDS	
AND UTILITY CLEARANCE	3
2.3 TASK 4 SITE INVESTIGATION AND	
OVERSIGHT	3
3.0 TASK 5-DATA ANALYSIS AND REPORT OF FINDINGS	4
4.0 RECOMMENDATIONS	5

LIST OF APPENDICES

APPENDIX A	SITE LOCATION MAPS
APPENDIX B	IVERTECH FIGURE 1
APPENDIX C	SOIL BORING LOGS
APPENDIX D	ANALYTICAL DATA

Limited Phase II Environmental Site Assessment 3900 Monona Drive City of Madison Dane County, WI

SECTION 1.0 INTRODUCTION

1.1 Background and Purpose

IverTech LLC (IverTech) has completed limited Phase II Environmental Site Assessment (ESA) activity for a parcel of land located at 3900 Monona Drive, City of Madison, Dane County, Wisconsin. See Appendix A for site location maps. For the purpose of this document the parcel will be referred to as the Property. The Property is currently owned by James E. Malcheski. Krupp-Grove Family Limited Partnership is considering purchase of the Property for redevelopment.

IverTech completed a Phase I ESA report for the Property May 26, 2020. The report was completed for the Krupp-Grove Family Limited Partnership. The report concluded three *recognized environmental condition (REC)* were identified with the Property. The identified RECs included:

- REC 1-Lack of defining the nature and extent of soil impact associated with historic LUST (Leaking Underground Storage Tanks) system releases to soils on the Property.
- REC 2-Historic Phase II ESA soil sampling activity (2006) along the northern Property boundary associated with highway upgrading activity revealed an apparent exceedance of gasoline related contaminants to soils near the Property line that were not investigated as recommended in the report.
- REC 3-The former dry cleaning site located on the parcel to the south has documented dry cleaning solvent (PCE) soil and groundwater contamination that, according to investigation reports appear to have extended a short distance on the Property, the extent of which was not defined.

The report concluded that additional environmental investigation activity to address the identified RECs was appropriate.

1.2 Scope of Services

The following workscope for IverTech was agreed upon:

3900 Monona Drive Limited Phase II ESA June 24, 2020 Page 2 of 5

- Task 1-Work Plan-IverTech would develop a work plan to identify the specific locations and depth of soil probes in the areas of interest.
- Task 2-Utility Clearance
- Task 3-Obtain Bids for subsurface investigation work
- Task 4-Provide oversight of soil and groundwater sampling activity
- Task 5-Data Analysis and Report of Findings

SECTION 2.0 LIMITED PHASE II ACTIVITY

2.1 Task 1-Work Plan

The work plan consisted of identifying sampling locations and sampling depths. There were four areas of investigation identified.

- Area 1 includes the location of a former underground fuel oil tank and a waste oil tank located off the southeast corner of the building on the Property. Historic sampling activity included limited soil sampling in the tank cavities at the time of tank removal in 1992. Fuel oil impact (440 mg/kg DRO) was identified the fuel oil tank area but there was no sampling activity to determine the depth of impact or if groundwater had been impacted. Soil sampling in the native underlying soils (about 6-10 feet) (GP-1) and sampling of groundwater for petroleum products was proposed in the Plan. While there did not appear to be gasoline or fuel oil impact identified with the removal of the waste oil tank (other than a 18.7 mg/kg Total Recoverable Petroleum Hydrocarbon on the east end of the tank cavity) there was no sampling for possible chlorinated organics in soils or groundwater that may have been associated with potential parts washing operations at the time the Property was used as an automotive repair and maintenance business. Soil sampling of underlying native soils and groundwater in the tank area was proposed (GP-2) to include a full range of volatile organics.
- Area 2 includes a southern portion of the Property where dry cleaning solvent (PCE) investigation activity conducted on the parcel to the south identified a possible extent of impact reaching onto the Property near the midpoint of the southern boundary. There was no soil or groundwater sampling activity on the Property to verify this possibility. A soil probe (GP-3) was proposed to sample both shallow soil (4-8 feet) and groundwater and analyze for a full range of volatile organics (VOC) to include PCE.
- Area 3 includes the former LUST area where elevated concentrations of gasoline parameters (GRO) were identified in shallow soils in the area of the east fueling island (63,000 mg/kg) and the west fueling island (8,300 mg/kg). The release was reportedly caused by above grade spillage. However there was limited information in past investigation work and closure reports about the extent of impact and if remediation activity was successful as closure related soil sampling

was apparently not taken in this area as part of closure activity. Soil probes were proposed in the two areas of impact (GP-4 and GP-5) and a groundwater sample was collected beneath the area of highest impact at the east fueling island (GP-4).

• Area 4 is the area along the northern boundary where limited Phase II ESA soil investigation activity was conducted in 2006 as part of upgrading of Monona Drive and Cottage Grove Road. The activity revealed an exceedance of standards for a soil sample collected at the 6-8 foot interval located near the midpoint of the north boundary of the Property in the Cottage Grove Road right of way. The Phase II ESA report recommended further investigation which apparently was not conducted. A soil probe (GP-6) was proposed to extend to 10 feet with sampling for petroleum parameters at the 6-9 foot interval.

2.2 Task 3 and 4 Soil Contractor Bids and Utility Clearance

IverTech obtained three bids from local direct push contractors. Soil Essentials was found to the best choice to do the work. Soil Essentials provided notification for Digger's Hotline and IverTech subcontracted the services of GLC to conduct private locate activity.

2.3 Task 4-Site Investigation Oversight and Sampling

Dennis Iverson of IverTech LLC provided oversight of soil and groundwater sampling activity on June 15, 2020. The locations of the sampling points are presented on IverTech Figure 1 in Appendix B. The following summarized activity completed.

In general, the soil profile consisted of 4-5 feet of native clay over fine silty sand extending to 20 feet. Groundwater was generally identified at about 15 feet. Soil boring logs are presented in Appendix C.

- GP-1 was advanced to 20 feet. There was no obvious indication of impacted soil (no odor, no discoloration) noted. A soil sample was collected in the 5-10 foot interval and a groundwater sample was obtained. The samples were to be analyzed for fuel oil parameters (PVOC plus naphthalene).
- GP-2 was advanced to 20 feet. There was no obvious sign of impacted soil (no odor, no discoloration) noted. A soil sample was collected from the 5-10 foot interval and a groundwater sample was obtained. The samples were to be analyzed for volatile organic compounds (VOC).
- GP-3 was advanced to 20 feet. There was no obvious sign of impacted soil (no odor, no discoloration) noted. A soil sample was collected from the 4-8 foot interval and a groundwater sample was obtained. The samples were to be analyzed for volatile organic compounds (VOC).
- GP-4 was advanced to 20 feet. There was no obvious indication of impacted soil (no odor, no discoloration) noted. Soil samples were collected in the 2-4 foot

interval and the 6-8 foot interval, and a groundwater sample was obtained. The samples were to be analyzed for gasoline parameters (PVOC plus naphthalene).

- GP-5 was advanced to 10 feet. Soil samples were collected in the 2-4 foot interval, the 6-8 foot interval. The samples were to be analyzed for gasoline related parameters (PVOC plus naphthalene).
- GP-6 was advanced to the 10 foot depth. There was no obvious indication of impact (no odor or discoloration). A soil sample was collected in the 6-8 foot interval. The sample was to be analyzed for gasoline related parameters (PVOC plus naphthalene).

The samples were shipped under chain of custody standards to PACE Analytical in Green Bay for analysis.

SECTION 3.0 TASK 5-DATA ANALYSIS AND REPORT OF FINDINGS

The laboratory results for the samples analyzed for the selected parameters are presented in Appendix D. The results of investigation activity are summarized as follows:

Area 1 Former Underground Fuel Oil and Waste Oil Tanks

The sampling at the former fuel oil tank area was conducted because soil impacted with fuel oil was identified at low level in the tank cavity when the tank was removed but there was no sampling deeper to determine the extent of soil impact and determine if groundwater had been impacted. Based on the sampling results for petroleum parameters (PVOC plus Naphthalene) at GP-1), there was no soil or groundwater impact identified. The location of the fuel oil tank was obtained from historic investigation activity reports.

The soil sampling from the tank bed when the waste oil tank was removed only included petroleum parameters. It did not include sampling for chlorinated organics which may have been present since parts washing solvents may have been used as part of the historic automobile repair business on the Property. The sampling of soil (GP-2) at the likely depth of the underground tank bed and the groundwater beneath the tank did not identify VOC contaminants. The location of the tank was obtained from earlier investigation reports.

Area 2 Potential Impact of Dry Cleaning Solvent From Dry Cleaner Site to South

A review of investigation activity for the former dry cleaner site to the south revealed that dry cleaning solvent (PCE) impact may have extended onto the Property near the midpoint of the southern boundary of the Property. To address this issue, shallow soil and groundwater sampling for VOCs at the GP-3 location was conducted. There was no

VOC impact identified. The location of the sample was based on file information obtained from DNR records.

Area 3 Site investigation in the Former LUST Area

Site investigation conducted in the former LUST area of the Property identified elevated gasoline related soil impact the southern fueling island. There was limited soil sampling activity conducted in the fueling island area to define extent of impact and there was limited soil sampling activity following remediation at the site to determine if the impact had been addressed at time of closure. As such, soil probes GP-4 and GP-5 were advanced in the area of highest impact (locations obtained from historic investigation activity) at shallow and intermediate depth and groundwater was sampled for PVOC plus naphthalene at the location of the highest contaminant reading.

The results of the soil and groundwater sampling did not identify contaminants in the areas sampled.

Area 4 Sampling Along the Northern Boundary of Property

Soil sampling conducted as part of a Phase II ESA for the Cottage Grove Road and Monona Drive upgrading project in 2006 identified gasoline related impact along the northern Property line but off the Property. The Phase II ESA report recommended further investigation which apparently was not conducted. As such, Area 4 sampling included advancing a soil probe (GP-6) in the area of the previous sample but on the Property. The soil sampling did not identify gasoline related impact (PVOC plus Naphthalene) in the sample analyzed.

SECTION 4.0 RECOMMENDATIONS

Based on the samples analyzed from the locations sampled for the parameters selected we find that contaminants were not identified at the Property. Based on this finding, there is insufficient reason to recommend further investigation activity at the Property at this time.

APPENDIX A

LOCATION INFORMATION

ERS ENVIRONMENTAL RECORD SEARCH

800-377-2430

ERS ENVIRONMENTAL RECORD SEARCH

APPENDIX B

IVERTECH FIGURE 1

APPENDIX C

SOIL BORING LOGS

State of Wieconsin Department of Natural Resources

SOIL BORING LOG INFORMATION Form 4400-122 Rev. 7-98

.

Watershed/Wastewater Route To:

oring Drill	od By:	Nam	s of trew chief (first, last) and Firm	Date	Drillin	s Start	bel	Date	Drillin	Com	pleted	Drilli	ng Me	thod
I lalana V	Valle	_		5	145	1-4	11	0	14	124	20		D	P
i Unique i	Well N	o. 	DNR Well ID No. Well Name	Final	Static	Water Feet	Level	Surfa	ce Elev	Pation Beet	Mer	Boreh	ole D	amete
att Plane _	rigin		timated: () or Boring Location ()	i i		0	î n	Local	Grid I	ocatio		<u> </u>	1	inches
1/4 of		1/4 of	Section, TN, R	Lo	ng	0		_	F	icci C	IN IS		Fee	
iculty ID			County AND 5	sunty C	ode	Civil	Town	City/6	Villa	ge /				
Sample							T.	8		Soil	Prope	rties		1
and Type Length An. Recovered (j	Blow Counts	Depth in Foc Otion prend	Soll/Rock Description And Geologic Origin For Each Major Unit		uscs	Graphic Log	Well Diagram	10 canvent	Compressive Surfigth	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
-	-		PRUEMENT & GRAVE	L				N		M	•			
			GRAVELLY FILL					Ν		M				
5-			SILTY CLAY FILL		-5	-		22		M M			-	
10	S		BROWN SILTY					ž		m				
			SAND		-10									
		-	Z II		÷15			N		w				
			5 11	Ì										
		-			-20	_		N		w				
			GND OF PROBE BACKFILLOD WITH											

State of Wisconsin Department of Natural Resources

SOIL BORING LOG INFORMATION Form 4400-122 Rev. 7-98

State of Wisconsin Department of Natural Resources

SOIL BORING LOG INFORMATION Form 4400-122 Rev. 7-98

State of Wisconsin Department of Natural Resources

SOIL BORING LOG INFORMATION Form 4400-122 Rev. 7-98

Route To: Watershed/Wastewater Wasto Management Remediation/Revelopment Other

State of Wisconsin Department of Natural Resources

SOIL BORING LOG INFORMATION Form 4400-122 Rev. 7-98

.

Watershed/Wastewater Route To:

Facili	ty/Pro	ject N	87756		ILice	nas/De					-	Pag	•	of	
Borin	e Deil	30	100	MOMONA DRIVE		and Lo	and M	on ton	ng reu	moer	Boris	ng Nun	tber	SP	-5
Pint2 Pint2	-	Wall	- Trace	Los Nese:	Date Drilling Started Date Drill Date Drilling Started Date Drill Date Drilling Started Date Drill					Ing Completed D				thod	
Local	Cond	weitr	10.	DNR Well ID No. Well Name	Final Static Water Level Surfa				Surfa	Surface Elevation			Borel	Borehole Diameter	
State F	1/4 of		_ 1/4 o	N,E	Lat_0 + + Local Gri				Grid	rid Location			O E		
Facilit	ty ID			County DAVE C	County (Code	Civil	Town	City/	e Villa	1 A	915	DA	/	
	jie ji		1	Soil/Rock Description					Soil Properties				rties		
Number and Type	Length An Recovered	Blow Coun	Depth in Fe Outer president	And Geologic Origin For Each Major Unit		USCS	Graphic Los	Well Diagram	Plane Plane	Compressive Strength	Moisture Content	Liquid	Plasticity Index	P 200	RQD/ Comments
		3	25 60	BLACKTOPE GRAUGE LIGHT BROWN SATO FILL? PEODISH CLAY PEODISH SILTY SAN LIGHT BROWN SILTYS BA BIND OF PROBE RACKFILLOD WITH BENTONITE	0	-10 -15 -16 -16			2 2 2 2		N N N N N N N N N N N N N N N N N N N				
hereby	certif	iy that	the in	formation on this form is true and correct	t to the	a best	of my	know	edge.						

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. NOTE: See instructions for more information, including where the completed form about be sent.

State of Wisconsin Department of Natural Resources

SOIL BORING LOG INFORMATION Form 4400-122 Rev. 7-98

Route To: Watershed/Wastewater
Waste Management
Remediation/Revelopment
Other

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

APPENDIX D

ANALYTICAL DATA

June 23, 2020

Dennis Iverson IVERTECH, LLC. 2880 Jonathan Circle Madison, WI 53711

RE: Project: C8108 MONONA Pace Project No.: 40209655

Dear Dennis Iverson:

Enclosed are the analytical results for sample(s) received by the laboratory on June 17, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Green Bay

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Dan Milent

Dan Milewsky dan.milewsky@pacelabs.com (920)469-2436 Project Manager

Enclosures

CERTIFICATIONS

Project: C8108 MONONA Pace Project No.: 40209655

Pace Analytical Services Green Bay

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 North Dakota Certification #: R-150 Virginia VELAP ID: 460263 South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157 Federal Fish & Wildlife Permit #: LE51774A-0

SAMPLE SUMMARY

Project: C8108 MONONA

Pace Project No.: 40209655

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40209655001	GP-6 6-9	Solid	06/15/20 11:45	06/17/20 09:10
40209655002	GP-1	Water	06/15/20 09:00	06/17/20 09:10
40209655003	GP-1	Solid	06/15/20 09:00	06/17/20 09:10
40209655004	GP-2	Water	06/15/20 09:30	06/17/20 09:10
40209655005	GP-2	Solid	06/15/20 09:30	06/17/20 09:10
40209655006	GP-3	Water	06/15/20 10:00	06/17/20 09:10
40209655007	GP-3	Solid	06/15/20 10:00	06/17/20 09:10
40209655008	GP-4	Water	06/15/20 11:00	06/17/20 09:10
40209655009	GP-4 6-8	Solid	06/15/20 11:00	06/17/20 09:10
40209655010	GP-4 2-4	Solid	06/15/20 11:00	06/17/20 09:10
40209655011	GP-5 2-5	Solid	06/15/20 11:30	06/17/20 09:10
40209655012	GP-5 6-8	Solid	06/15/20 11:30	06/17/20 09:10
40209655013	GP-6 2-5	Solid	06/15/20 11:45	06/17/20 09:10
40209655014	TRIP BLANK	Water	06/15/20 00:00	06/17/20 09:10

SAMPLE ANALYTE COUNT

Project: C8108 MONONA Pace Project No.: 40209655

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
40209655001	GP-6 6-9	EPA 8260	MDS	12	PASI-G
		ASTM D2974-87	VGC	1	PASI-G
40209655002	GP-1	EPA 8260	SMT	12	PASI-G
40209655003	GP-1	EPA 8260	MDS	12	PASI-G
		ASTM D2974-87	VGC	1	PASI-G
40209655004	GP-2	EPA 8260	HNW	64	PASI-G
40209655005	GP-2	EPA 8260	MDS	64	PASI-G
		ASTM D2974-87	VGC	1	PASI-G
40209655006	GP-3	EPA 8260	HNW	64	PASI-G
40209655007	GP-3	EPA 8260	MDS	64	PASI-G
		ASTM D2974-87	VGC	1	PASI-G
40209655008	GP-4	EPA 8260	SMT	12	PASI-G
40209655009	GP-4 6-8	EPA 8260	MDS	12	PASI-G
		ASTM D2974-87	VGC	1	PASI-G
40209655010	GP-4 2-4	EPA 8260	MDS	12	PASI-G
		ASTM D2974-87	VGC	1	PASI-G
40209655011	GP-5 2-5	EPA 8260	MDS	12	PASI-G
		ASTM D2974-87	VGC	1	PASI-G
40209655012	GP-5 6-8	EPA 8260	MDS	12	PASI-G
		ASTM D2974-87	VGC	1	PASI-G
40209655013	GP-6 2-5	EPA 8260	MDS	12	PASI-G
		ASTM D2974-87	VGC	1	PASI-G
40209655014	TRIP BLANK	EPA 8260	HNW	64	PASI-G

PASI-G = Pace Analytical Services - Green Bay

SUMMARY OF DETECTION

Project: C8108 MONONA

Pace Project No.: 40209655

Lab Sample ID	Client Sample ID	D "				0 11
Method		Result	Units	Report Limit	Analyzed	Qualifiers
40209655001	GP-6 6-9					
ASTM D2974-87	Percent Moisture	19.3	%	0.10	06/22/20 11:30	
40209655002	GP-1					
EPA 8260	Toluene	0.35J	ug/L	0.90	06/19/20 22:04	
40209655003	GP-1					
ASTM D2974-87	Percent Moisture	20.6	%	0.10	06/22/20 11:30	
40209655005	GP-2					
ASTM D2974-87	Percent Moisture	13.9	%	0.10	06/22/20 11:30	
40209655007	GP-3					
ASTM D2974-87	Percent Moisture	8.8	%	0.10	06/22/20 11:30	
40209655008	GP-4					
EPA 8260	Toluene	0.30J	ug/L	0.90	06/19/20 22:52	
40209655009	GP-4 6-8					
ASTM D2974-87	Percent Moisture	21.0	%	0.10	06/22/20 11:30	
40209655010	GP-4 2-4					
ASTM D2974-87	Percent Moisture	16.0	%	0.10	06/22/20 11:30	
40209655011	GP-5 2-5					
ASTM D2974-87	Percent Moisture	9.4	%	0.10	06/22/20 11:30	
40209655012	GP-5 6-8					
ASTM D2974-87	Percent Moisture	21.1	%	0.10	06/22/20 11:30	
40209655013	GP-6 2-5					
ASTM D2974-87	Percent Moisture	6.3	%	0.10	06/22/20 11:30	

Project: C8108 MONONA

Pace Project No.: 40209655

 Sample:
 GP-6
 6-9
 Lab ID:
 40209655001
 Collected:
 06/15/20
 11:45
 Received:
 06/17/20
 09:10
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Matrix:
 Solid

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Short List	Analytical	Method: EP/	A 8260 Prepara	ation Metho	od: EP	A 5035/5030B			
	Pace Anal	ytical Servic	es - Green Bay						
Benzene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:00	06/19/20 16:06	71-43-2	W
Ethylbenzene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:00	06/19/20 16:06	100-41-4	W
Methyl-tert-butyl ether	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:00	06/19/20 16:06	1634-04-4	W
Naphthalene	<27.3	ug/kg	91.0	27.3	1	06/19/20 09:00	06/19/20 16:06	91-20-3	W
Toluene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:00	06/19/20 16:06	108-88-3	W
1,2,4-Trimethylbenzene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:00	06/19/20 16:06	95-63-6	W
1,3,5-Trimethylbenzene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:00	06/19/20 16:06	108-67-8	W
m&p-Xylene	<50.0	ug/kg	120	50.0	1	06/19/20 09:00	06/19/20 16:06	179601-23-1	W
o-Xylene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:00	06/19/20 16:06	95-47-6	W
Surrogates									
Dibromofluoromethane (S)	104	%	58-145		1	06/19/20 09:00	06/19/20 16:06	1868-53-7	
4-Bromofluorobenzene (S)	95	%	52-137		1	06/19/20 09:00	06/19/20 16:06	460-00-4	
Toluene-d8 (S)	98	%	56-140		1	06/19/20 09:00	06/19/20 16:06	2037-26-5	
Percent Moisture	Analytical	Method: AS	TM D2974-87						
	Pace Anal	ytical Servic	es - Green Bay						
Percent Moisture	19.3	%	0.10	0.10	1		06/22/20 11:30		

Project: C8108 MONONA

Pace Project No.: 40209655

Sample: GP-1	Lab ID:	40209655002	Collected	d: 06/15/20	0 09:00	Received: 06	6/17/20 09:10 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV UST	Analytical	Method: EPA 8	260						
	Pace Anal	ytical Services	- Green Bay	y					
Benzene	<0.25	ug/L	1.0	0.25	1		06/19/20 22:04	71-43-2	
Ethylbenzene	<0.32	ug/L	1.1	0.32	1		06/19/20 22:04	100-41-4	
Methyl-tert-butyl ether	<1.2	ug/L	4.2	1.2	1		06/19/20 22:04	1634-04-4	
Naphthalene	<1.2	ug/L	5.0	1.2	1		06/19/20 22:04	91-20-3	
Toluene	0.35J	ug/L	0.90	0.27	1		06/19/20 22:04	108-88-3	
1,2,4-Trimethylbenzene	<0.84	ug/L	2.8	0.84	1		06/19/20 22:04	95-63-6	
1,3,5-Trimethylbenzene	<0.87	ug/L	2.9	0.87	1		06/19/20 22:04	108-67-8	
m&p-Xylene	<0.47	ug/L	2.0	0.47	1		06/19/20 22:04	179601-23-1	
o-Xylene	<0.26	ug/L	1.0	0.26	1		06/19/20 22:04	95-47-6	
Surrogates		-							
Dibromofluoromethane (S)	111	%	70-130		1		06/19/20 22:04	1868-53-7	
Toluene-d8 (S)	93	%	70-130		1		06/19/20 22:04	2037-26-5	
4-Bromofluorobenzene (S)	83	%	70-130		1		06/19/20 22:04	460-00-4	

Project: C8108 MONONA

Pace Project No.: 40209655

 Sample:
 GP-1
 Lab ID:
 40209655003
 Collected:
 06/15/20
 09:00
 Received:
 06/17/20
 09:10
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Matrix:
 Solid

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Short List	Analytical	Method: EP	A 8260 Prepar	ation Meth	od: EP	A 5035/5030B			
	Pace Anal	ytical Servic	es - Green Bay	1					
Benzene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:00	06/19/20 16:23	71-43-2	W
Ethylbenzene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:00	06/19/20 16:23	100-41-4	W
Methyl-tert-butyl ether	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:00	06/19/20 16:23	1634-04-4	W
Naphthalene	<27.3	ug/kg	91.0	27.3	1	06/19/20 09:00	06/19/20 16:23	91-20-3	W
Toluene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:00	06/19/20 16:23	108-88-3	W
1,2,4-Trimethylbenzene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:00	06/19/20 16:23	95-63-6	W
1,3,5-Trimethylbenzene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:00	06/19/20 16:23	108-67-8	W
m&p-Xylene	<50.0	ug/kg	120	50.0	1	06/19/20 09:00	06/19/20 16:23	179601-23-1	W
o-Xylene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:00	06/19/20 16:23	95-47-6	W
Surrogates									
Dibromofluoromethane (S)	117	%	58-145		1	06/19/20 09:00	06/19/20 16:23	1868-53-7	
4-Bromofluorobenzene (S)	106	%	52-137		1	06/19/20 09:00	06/19/20 16:23	460-00-4	
Toluene-d8 (S)	109	%	56-140		1	06/19/20 09:00	06/19/20 16:23	2037-26-5	
Percent Moisture	Analytical	Method: AS	TM D2974-87						
	Pace Anal	ytical Servic	es - Green Bay	,					
Percent Moisture	20.6	%	0.10	0.10	1		06/22/20 11:30		

Project: C8108 MONONA

Pace Project No.: 40209655

Sample: GP-2	Lab ID:	40209655004	Collecte	d: 06/15/20	0 09:30	:30 Received: 06/17/20 09:10 Matrix: Water						
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual			
8260 MSV	Analytical	I Method: EPA 8	8260									
	Pace Ana	alytical Services	- Green Ba	iy								
1,1,1,2-Tetrachloroethane	<0.27	ug/L	1.0	0.27	1		06/19/20 13:16	630-20-6				
1,1,1-Trichloroethane	<0.24	ug/L	1.0	0.24	1		06/19/20 13:16	71-55-6				
1,1,2,2-Tetrachloroethane	<0.28	ug/L	1.0	0.28	1		06/19/20 13:16	79-34-5				
1,1,2-Trichloroethane	<0.55	ug/L	5.0	0.55	1		06/19/20 13:16	79-00-5				
1,1-Dichloroethane	<0.27	ug/L	1.0	0.27	1		06/19/20 13:16	75-34-3				
1,1-Dichloroethene	<0.24	ug/L	1.0	0.24	1		06/19/20 13:16	75-35-4				
1,1-Dichloropropene	<0.54	ug/L	1.8	0.54	1		06/19/20 13:16	563-58-6				
1,2,3-Trichlorobenzene	<2.2	ug/L	7.4	2.2	1		06/19/20 13:16	87-61-6				
1,2,3-Trichloropropane	<0.59	ug/L	5.0	0.59	1		06/19/20 13:16	96-18-4				
1,2,4-Trichlorobenzene	<0.95	ug/L	5.0	0.95	1		06/19/20 13:16	120-82-1				
1,2,4-Trimethylbenzene	<0.84	ug/L	2.8	0.84	1		06/19/20 13:16	95-63-6				
1,2-Dibromo-3-chloropropane	<1.8	ug/L	5.9	1.8	1		06/19/20 13:16	96-12-8				
1,2-Dibromoethane (EDB)	<0.83	ug/L	2.8	0.83	1		06/19/20 13:16	106-93-4				
1,2-Dichlorobenzene	<0.71	ug/L	2.4	0.71	1		06/19/20 13:16	95-50-1				
1,2-Dichloroethane	<0.28	ug/L	1.0	0.28	1		06/19/20 13:16	107-06-2				
1,2-Dichloropropane	<0.28	ug/L	1.0	0.28	1		06/19/20 13:16	78-87-5				
1,3,5-Trimethylbenzene	<0.87	ug/L	2.9	0.87	1		06/19/20 13:16	108-67-8				
1,3-Dichlorobenzene	<0.63	ug/L	2.1	0.63	1		06/19/20 13:16	541-73-1				
1,3-Dichloropropane	<0.83	ug/L	2.8	0.83	1		06/19/20 13:16	142-28-9				
1,4-Dichlorobenzene	<0.94	ug/L	3.1	0.94	1		06/19/20 13:16	106-46-7				
2,2-Dichloropropane	<2.3	ug/L	7.6	2.3	1		06/19/20 13:16	594-20-7				
2-Chlorotoluene	<0.93	ug/L	5.0	0.93	1		06/19/20 13:16	95-49-8				
4-Chlorotoluene	<0.76	ug/L	2.5	0.76	1		06/19/20 13:16	106-43-4				
Benzene	<0.25	ug/L	1.0	0.25	1		06/19/20 13:16	71-43-2				
Bromobenzene	<0.24	ug/L	1.0	0.24	1		06/19/20 13:16	108-86-1				
Bromochloromethane	<0.36	ug/L	5.0	0.36	1		06/19/20 13:16	74-97-5				
Bromodichloromethane	<0.36	ug/L	1.2	0.36	1		06/19/20 13:16	75-27-4				
Bromoform	<4.0	ug/L	13.2	4.0	1		06/19/20 13:16	75-25-2				
Bromomethane	<0.97	ug/L	5.0	0.97	1		06/19/20 13:16	74-83-9				
Carbon tetrachloride	<1.1	ug/L	3.6	1.1	1		06/19/20 13:16	56-23-5				
Chlorobenzene	<0.71	ug/L	2.4	0.71	1		06/19/20 13:16	108-90-7				
Chloroethane	<1.3	ug/L	5.0	1.3	1		06/19/20 13:16	75-00-3				
Chloroform	<1.3	ug/L	5.0	1.3	1		06/19/20 13:16	67-66-3				
Chloromethane	<2.2	ug/L	7.3	2.2	1		06/19/20 13:16	74-87-3				
Dibromochloromethane	<2.6	ug/L	8.7	2.6	1		06/19/20 13:16	124-48-1				
Dibromomethane	<0.94	ug/L	3.1	0.94	1		06/19/20 13:16	74-95-3				
Dichlorodifluoromethane	<0.50	ug/L	5.0	0.50	1		06/19/20 13:16	75-71-8				
Disopropyl ether	<1.9	ug/L	6.3	1.9	1		06/19/20 13:16	108-20-3				
Ethylbenzene	<0.32	ug/L	1.1	0.32	1		06/19/20 13:16	100-41-4				
Hexachloro-1,3-butadiene	<1.5	ug/L	4.9	1.5	1		06/19/20 13:16	87-68-3				
Isopropylbenzene (Cumene)	<1.7	ug/L	5.6	1.7	1		06/19/20 13:16	98-82-8				
Methyl-tert-butyl ether	<1.2	ug/L	4.2	1.2	1		06/19/20 13:16	1634-04-4				
Methylene Chloride	<0.58	ug/L	5.0	0.58	1		06/19/20 13:16	/5-09-2				
Naphthalene	<1.2	ug/L	5.0	1.2	1		06/19/20 13:16	91-20-3				
Styrene	<3.0	ug/L	10.0	3.0	1		06/19/20 13:16	100-42-5				

Project: C8108 MONONA

Pace Project No.: 40209655

Sample: GP-2	Lab ID: 40209655004 Collected: 06/15/20 09:30 Received: 06/17/20 09:10 Matrix: Wate									
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual	
8260 MSV	Analytical	Method: EPA 8	260							
	Pace Ana	lytical Services	- Green Ba	У						
Tetrachloroethene	<0.33	ug/L	1.1	0.33	1		06/19/20 13:16	127-18-4		
Toluene	<0.27	ug/L	0.90	0.27	1		06/19/20 13:16	108-88-3		
Trichloroethene	<0.26	ug/L	1.0	0.26	1		06/19/20 13:16	79-01-6		
Trichlorofluoromethane	<0.21	ug/L	1.0	0.21	1		06/19/20 13:16	75-69-4		
Vinyl chloride	<0.17	ug/L	1.0	0.17	1		06/19/20 13:16	75-01-4		
cis-1,2-Dichloroethene	<0.27	ug/L	1.0	0.27	1		06/19/20 13:16	156-59-2		
cis-1,3-Dichloropropene	<3.6	ug/L	12.1	3.6	1		06/19/20 13:16	10061-01-5		
m&p-Xylene	<0.47	ug/L	2.0	0.47	1		06/19/20 13:16	179601-23-1		
n-Butylbenzene	<0.71	ug/L	2.4	0.71	1		06/19/20 13:16	104-51-8		
n-Propylbenzene	<0.81	ug/L	5.0	0.81	1		06/19/20 13:16	103-65-1		
o-Xylene	<0.26	ug/L	1.0	0.26	1		06/19/20 13:16	95-47-6		
p-Isopropyltoluene	<0.80	ug/L	2.7	0.80	1		06/19/20 13:16	99-87-6		
sec-Butylbenzene	<0.85	ug/L	5.0	0.85	1		06/19/20 13:16	135-98-8		
tert-Butylbenzene	<0.30	ug/L	1.0	0.30	1		06/19/20 13:16	98-06-6		
trans-1,2-Dichloroethene	<0.46	ug/L	1.5	0.46	1		06/19/20 13:16	156-60-5		
trans-1,3-Dichloropropene	<4.4	ug/L	14.6	4.4	1		06/19/20 13:16	10061-02-6		
Surrogates		-								
4-Bromofluorobenzene (S)	86	%	70-130		1		06/19/20 13:16	460-00-4		
Dibromofluoromethane (S)	81	%	70-130		1		06/19/20 13:16	1868-53-7		
Toluene-d8 (S)	95	%	70-130		1		06/19/20 13:16	2037-26-5		

Project: C8108 MONONA

Pace Project No.: 40209655

Sample: GP-2	Lab ID: 40209655005	Collected: 06/15/20 09:30	Received: 06/17/20 09:10	Matrix: Solid
Results reported on a "dry weight" bas	is and are adjusted for p	ercent moisture, sample size	e and any dilutions.	

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical Pace Anal	Method: EP/ ytical Servic	A 8260 Prepa es - Green Ba	ration Metho y	od: EP/	A 5035/5030B			_
Benzene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:30	06/19/20 13:55	71-43-2	W
Bromobenzene	<25.0	ug/kg	62.0	25.0	1	06/19/20 09:30	06/19/20 13:55	108-86-1	W
Bromochloromethane	<25.0	ug/kg	70.0	25.0	1	06/19/20 09:30	06/19/20 13:55	74-97-5	W
Bromodichloromethane	<25.0	ua/ka	60.0	25.0	1	06/19/20 09:30	06/19/20 13:55	75-27-4	W
Bromoform	<25.0	ua/ka	72.0	25.0	1	06/19/20 09:30	06/19/20 13:55	75-25-2	W
Bromomethane	<63.8	ua/ka	250	63.8	1	06/19/20 09:30	06/19/20 13:55	74-83-9	W
n-Butvlbenzene	<30.0	ua/ka	100	30.0	1	06/19/20 09:30	06/19/20 13:55	104-51-8	W
sec-Butvlbenzene	<25.0	ua/ka	72.0	25.0	1	06/19/20 09:30	06/19/20 13:55	135-98-8	W
tert-Butvlbenzene	<25.0	ua/ka	62.0	25.0	1	06/19/20 09:30	06/19/20 13:55	98-06-6	W
Carbon tetrachloride	<25.0	ua/ka	60.0	25.0	1	06/19/20 09:30	06/19/20 13:55	56-23-5	W
Chlorobenzene	<25.0	ua/ka	60.0	25.0	1	06/19/20 09:30	06/19/20 13:55	108-90-7	W
Chloroethane	<46.4	ua/ka	250	46.4	1	06/19/20 09:30	06/19/20 13:55	75-00-3	W
Chloroform	<47.5	ua/ka	250	47.5	1	06/19/20 09:30	06/19/20 13:55	67-66-3	W
Chloromethane	<25.0	ua/ka	80.0	25.0	1	06/19/20 09:30	06/19/20 13:55	74-87-3	W
2-Chlorotoluene	<25.0	ua/ka	64.0	25.0	1	06/19/20 09:30	06/19/20 13:55	95-49-8	W
4-Chlorotoluene	<25.0	ua/ka	64.0	25.0	1	06/19/20 09:30	06/19/20 13:55	106-43-4	Ŵ
1 2-Dibromo-3-chloropropane	<237	ua/ka	789	237	1	06/19/20 09:30	06/19/20 13:55	96-12-8	W
Dibromochloromethane	<229	ug/kg	763	229	1	06/19/20 09:30	06/19/20 13:55	124-48-1	Ŵ
1 2-Dibromoethane (EDB)	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:30	06/19/20 13:55	106-93-4	W
Dibromomethane	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:30	06/19/20 13:55	74-95-3	Ŵ
1 2-Dichlorobenzene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:30	06/19/20 13:55	95-50-1	Ŵ
1.3-Dichlorobenzene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:30	06/19/20 13:55	541-73-1	Ŵ
1 4-Dichlorobenzene	<25.0	ug/kg	60.0	25.0	1	06/10/20 00:00	06/10/20 13:55	106-46-7	Ŵ
Dichlorodifluoromethane	<25.0	ug/kg	72.0	25.0	1	06/19/20 09:30	06/19/20 13:55	75-71-8	Ŵ
1 1-Dichloroethane	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:30	06/19/20 13:55	75-34-3	Ŵ
1,1-Dichloroethane	<25.0	ug/kg	60.0	25.0	1	06/10/20 09:30	06/19/20 13:55	107_06_2	VV \\/
1,2-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	06/10/20 09:30	06/19/20 13:55	75-35-4	VV \\/
ris 1.2 Dichloroothono	<25.0	ug/kg	60.0	25.0	1	06/10/20 00:30	06/10/20 13:55	156 50 2	VV \\/
trans 1.2 Dichloroothono	<25.0	ug/kg	67.0	25.0	1	06/10/20 09:30	06/10/20 13:55	156 60 5	VV \\/
1 2 Dichloropropapo	<25.0	ug/kg	60.0	25.0	1	06/10/20 00:30	06/10/20 13:55	79 97 5	VV \\/
1,2-Dichloropropane	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:30	06/19/20 13:55	142-28-0	VV \\/
2.2 Dichloropropane	<25.0	ug/kg	60.0	25.0	1	06/10/20 00:30	06/10/20 13:55	504 20 7	VV \\/
1 1 Dichloropropopo	<25.0	ug/kg	60.0	25.0	1	06/10/20 09:30	06/10/20 13:55	563 58 6	VV \\/
r, 1-Dichloropropene	<23.0	ug/kg	1/1	40.0	1	06/10/20 09:30	06/10/20 13:55	10061 01 5	VV \\/
trans 1.2 Disblerenrenene	<42.3	ug/kg	74.0	42.3	1	06/10/20 09:30	06/19/20 13:55	10061-01-3	VV \\/
Lians-1,3-Dichloropropene	<25.0	ug/kg	74.0	25.0	1	06/19/20 09.30	06/19/20 13.55	10001-02-0	VV \\\/
	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:30	00/19/20 13:55	100-20-3	VV \\\/
Ethyldenzene	<23.0	ug/kg	00.0	25.0	1	06/19/20 09.30	06/19/20 13.55	100-41-4	VV \\\
Hexachioro-1,3-butadiene	< 68.7	ug/kg	229	08.7	1	06/19/20 09:30	06/19/20 13:55	87-68-3	VV VV
Isopropyibenzene (Cumene)	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:30	06/19/20 13:55	98-82-8	VV
p-isopropyitoluene	<25.0	ug/Kg	72.0	25.0	1	06/19/20 09:30	00/19/20 13:55	99-87-6	VV
Method text leated at	<26.3	ug/kg	88.0	26.3	1	06/19/20 09:30	00/19/20 13:55	15-09-2	VV
ivietnyl-tert-butyl ether	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:30	06/19/20 13:55	1634-04-4	VV
ivapnthalene	<27.3	ug/kg	91.0	27.3	1	06/19/20 09:30	06/19/20 13:55	91-20-3	VV
n-Propylbenzene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:30	06/19/20 13:55	103-65-1	W

Project: C8108 MONONA

Pace Project No.: 40209655

 Sample:
 GP-2
 Lab ID:
 40209655005
 Collected:
 06/15/20
 09:30
 Received:
 06/17/20
 09:10
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Matrix:
 Solid

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	A 8260 Prepar	ation Metho	od: EP	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Bay	,					
Styrene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:30	06/19/20 13:55	100-42-5	W
1,1,1,2-Tetrachloroethane	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:30	06/19/20 13:55	630-20-6	W
1,1,2,2-Tetrachloroethane	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:30	06/19/20 13:55	79-34-5	W
Tetrachloroethene	<38.7	ug/kg	129	38.7	1	06/19/20 09:30	06/19/20 13:55	127-18-4	W
Toluene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:30	06/19/20 13:55	108-88-3	W
1,2,3-Trichlorobenzene	<47.3	ug/kg	158	47.3	1	06/19/20 09:30	06/19/20 13:55	87-61-6	W
1,2,4-Trichlorobenzene	<41.7	ug/kg	250	41.7	1	06/19/20 09:30	06/19/20 13:55	120-82-1	W
1,1,1-Trichloroethane	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:30	06/19/20 13:55	71-55-6	W
1,1,2-Trichloroethane	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:30	06/19/20 13:55	79-00-5	W
Trichloroethene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:30	06/19/20 13:55	79-01-6	W
Trichlorofluoromethane	<25.0	ug/kg	65.0	25.0	1	06/19/20 09:30	06/19/20 13:55	75-69-4	W
1,2,3-Trichloropropane	<37.4	ug/kg	125	37.4	1	06/19/20 09:30	06/19/20 13:55	96-18-4	W
1,2,4-Trimethylbenzene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:30	06/19/20 13:55	95-63-6	W
1,3,5-Trimethylbenzene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:30	06/19/20 13:55	108-67-8	W
Vinyl chloride	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:30	06/19/20 13:55	75-01-4	W
m&p-Xylene	<50.0	ug/kg	120	50.0	1	06/19/20 09:30	06/19/20 13:55	179601-23-1	W
o-Xylene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:30	06/19/20 13:55	95-47-6	W
Surrogates									
Dibromofluoromethane (S)	106	%	58-145		1	06/19/20 09:30	06/19/20 13:55	1868-53-7	
Toluene-d8 (S)	108	%	56-140		1	06/19/20 09:30	06/19/20 13:55	2037-26-5	
4-Bromofluorobenzene (S)	102	%	52-137		1	06/19/20 09:30	06/19/20 13:55	460-00-4	
Percent Moisture	Analytical	Method: AST	TM D2974-87						
	Pace Anal	ytical Service	es - Green Bay	1					
Percent Moisture	13.9	%	0.10	0.10	1		06/22/20 11:30		

Project: C8108 MONONA

Pace Project No.: 40209655

Sample: GP-3	Lab ID: 40209655006 Collected: 06/15/20 10:00 Received: 06/17/20 09:10							Matrix: Water		
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual	
8260 MSV	Analytical Pace Ana	Method: EPA 8	260 - Green Ba	iy						
1,1,1,2-Tetrachloroethane	<0.27	ug/L	1.0	0.27	1		06/19/20 13:38	630-20-6		
1,1,1-Trichloroethane	<0.24	ug/L	1.0	0.24	1		06/19/20 13:38	71-55-6		
1,1,2,2-Tetrachloroethane	<0.28	ug/L	1.0	0.28	1		06/19/20 13:38	79-34-5		
1,1,2-Trichloroethane	<0.55	ug/L	5.0	0.55	1		06/19/20 13:38	79-00-5		
1,1-Dichloroethane	<0.27	ug/L	1.0	0.27	1		06/19/20 13:38	75-34-3		
1,1-Dichloroethene	<0.24	ug/L	1.0	0.24	1		06/19/20 13:38	75-35-4		
1,1-Dichloropropene	<0.54	ug/L	1.8	0.54	1		06/19/20 13:38	563-58-6		
1,2,3-Trichlorobenzene	<2.2	ug/L	7.4	2.2	1		06/19/20 13:38	87-61-6		
1,2,3-Trichloropropane	<0.59	ug/L	5.0	0.59	1		06/19/20 13:38	96-18-4		
1,2,4-Trichlorobenzene	<0.95	ug/L	5.0	0.95	1		06/19/20 13:38	120-82-1		
1,2,4-Trimethylbenzene	<0.84	ug/L	2.8	0.84	1		06/19/20 13:38	95-63-6		
1,2-Dibromo-3-chloropropane	<1.8	ug/L	5.9	1.8	1		06/19/20 13:38	96-12-8		
1,2-Dibromoethane (EDB)	<0.83	ug/L	2.8	0.83	1		06/19/20 13:38	106-93-4		
1,2-Dichlorobenzene	<0.71	ug/L	2.4	0.71	1		06/19/20 13:38	95-50-1		
1,2-Dichloroethane	<0.28	ug/L	1.0	0.28	1		06/19/20 13:38	107-06-2		
1,2-Dichloropropane	<0.28	ug/L	1.0	0.28	1		06/19/20 13:38	78-87-5		
1,3,5-Trimethylbenzene	<0.87	ug/L	2.9	0.87	1		06/19/20 13:38	108-67-8		
1,3-Dichlorobenzene	<0.63	ug/L	2.1	0.63	1		06/19/20 13:38	541-73-1		
1,3-Dichloropropane	<0.83	ug/L	2.8	0.83	1		06/19/20 13:38	142-28-9		
1,4-Dichlorobenzene	<0.94	ug/L	3.1	0.94	1		06/19/20 13:38	106-46-7		
2,2-Dichloropropane	<2.3	ug/L	7.6	2.3	1		06/19/20 13:38	594-20-7		
2-Chlorotoluene	<0.93	ug/L	5.0	0.93	1		06/19/20 13:38	95-49-8		
4-Chlorotoluene	<0.76	ug/L	2.5	0.76	1		06/19/20 13:38	106-43-4		
Benzene	<0.25	ug/L	1.0	0.25	1		06/19/20 13:38	71-43-2		
Bromobenzene	<0.24	ug/L	1.0	0.24	1		06/19/20 13:38	108-86-1		
Bromochloromethane	<0.36	ug/L	5.0	0.36	1		06/19/20 13:38	74-97-5		
Bromodichloromethane	<0.36	ug/L	1.2	0.36	1		06/19/20 13:38	75-27-4		
Bromoform	<4.0	ug/L	13.2	4.0	1		06/19/20 13:38	75-25-2		
Bromomethane	<0.97	ug/L	5.0	0.97	1		06/19/20 13:38	74-83-9		
Carbon tetrachloride	<1.1	ug/L	3.6	1.1	1		06/19/20 13:38	56-23-5		
Chlorobenzene	<0.71	ug/L	2.4	0.71	1		06/19/20 13:38	108-90-7		
Chloroethane	<1.3	ug/L	5.0	1.3	1		06/19/20 13:38	75-00-3		
Chloroform	<1.3	ug/L	5.0	1.3	1		06/19/20 13:38	67-66-3		
Chloromethane	<2.2	ug/L	7.3	2.2	1		06/19/20 13:38	74-87-3		
Dibromochloromethane	<2.6	ug/L	8.7	2.6	1		06/19/20 13:38	124-48-1		
Dibromomethane	<0.94	ug/L	3.1	0.94	1		06/19/20 13:38	74-95-3		
Dichlorodifluoromethane	<0.50	ug/L	5.0	0.50	1		06/19/20 13:38	75-71-8		
Diisopropyl ether	<1.9	ug/L	6.3	1.9	1		06/19/20 13:38	108-20-3		
Ethylbenzene	<0.32	ug/L	1.1	0.32	1		06/19/20 13:38	100-41-4		
Hexachloro-1,3-butadiene	<1.5	ug/L	4.9	1.5	1		06/19/20 13:38	87-68-3		
Isopropylbenzene (Cumene)	<1.7	ug/L	5.6	1.7	1		06/19/20 13:38	98-82-8		
Methyl-tert-butyl ether	<1.2	ug/L	4.2	1.2	1		06/19/20 13:38	1634-04-4		
Methylene Chloride	<0.58	ug/L	5.0	0.58	1		06/19/20 13:38	75-09-2		
Naphthalene	<1.2	ug/L	5.0	1.2	1		06/19/20 13:38	91-20-3		
Styrene	<3.0	ug/L	10.0	3.0	1		06/19/20 13:38	100-42-5		

Project: C8108 MONONA

Pace Project No.: 40209655

Sample: GP-3	Lab ID:	40209655006	Collected: 06/15/20 10:00			Received: 06	Received: 06/17/20 09:10 Matrix: Wate				
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual		
8260 MSV	Analytical	Method: EPA 8	260								
	Pace Ana	lytical Services	- Green Ba	У							
Tetrachloroethene	<0.33	ug/L	1.1	0.33	1		06/19/20 13:38	127-18-4			
Toluene	<0.27	ug/L	0.90	0.27	1		06/19/20 13:38	108-88-3			
Trichloroethene	<0.26	ug/L	1.0	0.26	1		06/19/20 13:38	79-01-6			
Trichlorofluoromethane	<0.21	ug/L	1.0	0.21	1		06/19/20 13:38	75-69-4			
Vinyl chloride	<0.17	ug/L	1.0	0.17	1		06/19/20 13:38	75-01-4			
cis-1,2-Dichloroethene	<0.27	ug/L	1.0	0.27	1		06/19/20 13:38	156-59-2			
cis-1,3-Dichloropropene	<3.6	ug/L	12.1	3.6	1		06/19/20 13:38	10061-01-5			
m&p-Xylene	<0.47	ug/L	2.0	0.47	1		06/19/20 13:38	179601-23-1			
n-Butylbenzene	<0.71	ug/L	2.4	0.71	1		06/19/20 13:38	104-51-8			
n-Propylbenzene	<0.81	ug/L	5.0	0.81	1		06/19/20 13:38	103-65-1			
o-Xylene	<0.26	ug/L	1.0	0.26	1		06/19/20 13:38	95-47-6			
p-lsopropyltoluene	<0.80	ug/L	2.7	0.80	1		06/19/20 13:38	99-87-6			
sec-Butylbenzene	<0.85	ug/L	5.0	0.85	1		06/19/20 13:38	135-98-8			
tert-Butylbenzene	<0.30	ug/L	1.0	0.30	1		06/19/20 13:38	98-06-6			
trans-1,2-Dichloroethene	<0.46	ug/L	1.5	0.46	1		06/19/20 13:38	156-60-5			
trans-1,3-Dichloropropene	<4.4	ug/L	14.6	4.4	1		06/19/20 13:38	10061-02-6			
Surrogates											
4-Bromofluorobenzene (S)	84	%	70-130		1		06/19/20 13:38	460-00-4	HS		
Dibromofluoromethane (S)	70	%	70-130		1		06/19/20 13:38	1868-53-7			
Toluene-d8 (S)	94	%	70-130		1		06/19/20 13:38	2037-26-5			

Project: C8108 MONONA

Pace Project No.: 40209655

Sample: GP-3	Lab ID: 40209655007	Collected: 06/15/20 10:00	Received: 06/17/20 09:10	Matrix: Solid
Results reported on a "dry weight" bas	is and are adjusted for p	ercent moisture, sample size	e and any dilutions.	

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical Pace Ana	Method: EP/ lytical Servic	A 8260 Prepa es - Green Ba	ration Metho y	od: EP	A 5035/5030B			
Benzene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:30	06/19/20 14:28	71-43-2	W
Bromobenzene	<25.0	ug/kg	62.0	25.0	1	06/19/20 09:30	06/19/20 14:28	108-86-1	W
Bromochloromethane	<25.0	ug/kg	70.0	25.0	1	06/19/20 09:30	06/19/20 14:28	74-97-5	W
Bromodichloromethane	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:30	06/19/20 14:28	75-27-4	W
Bromoform	<25.0	ug/kg	72.0	25.0	1	06/19/20 09:30	06/19/20 14:28	75-25-2	W
Bromomethane	<63.8	ug/kg	250	63.8	1	06/19/20 09:30	06/19/20 14:28	74-83-9	W
n-Butylbenzene	<30.0	ug/kg	100	30.0	1	06/19/20 09:30	06/19/20 14:28	104-51-8	W
sec-Butylbenzene	<25.0	ug/kg	72.0	25.0	1	06/19/20 09:30	06/19/20 14:28	135-98-8	W
tert-Butylbenzene	<25.0	ug/kg	62.0	25.0	1	06/19/20 09:30	06/19/20 14:28	98-06-6	W
Carbon tetrachloride	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:30	06/19/20 14:28	56-23-5	W
Chlorobenzene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:30	06/19/20 14:28	108-90-7	W
Chloroethane	<46.4	ug/kg	250	46.4	1	06/19/20 09:30	06/19/20 14:28	75-00-3	W
Chloroform	<47.5	ug/kg	250	47.5	1	06/19/20 09:30	06/19/20 14:28	67-66-3	W
Chloromethane	<25.0	ua/ka	80.0	25.0	1	06/19/20 09:30	06/19/20 14:28	74-87-3	W
2-Chlorotoluene	<25.0	ua/ka	64.0	25.0	1	06/19/20 09:30	06/19/20 14:28	95-49-8	W
4-Chlorotoluene	<25.0	ua/ka	64.0	25.0	1	06/19/20 09:30	06/19/20 14:28	106-43-4	W
1.2-Dibromo-3-chloropropane	<237	ua/ka	789	237	1	06/19/20 09:30	06/19/20 14:28	96-12-8	W
Dibromochloromethane	<229	ua/ka	763	229	1	06/19/20 09:30	06/19/20 14:28	124-48-1	W
1.2-Dibromoethane (EDB)	<25.0	ua/ka	60.0	25.0	1	06/19/20 09:30	06/19/20 14:28	106-93-4	W
Dibromomethane	<25.0	ua/ka	60.0	25.0	1	06/19/20 09:30	06/19/20 14:28	74-95-3	W
1.2-Dichlorobenzene	<25.0	ua/ka	60.0	25.0	1	06/19/20 09:30	06/19/20 14:28	95-50-1	W
1.3-Dichlorobenzene	<25.0	ua/ka	60.0	25.0	1	06/19/20 09:30	06/19/20 14:28	541-73-1	W
1.4-Dichlorobenzene	<25.0	ua/ka	60.0	25.0	1	06/19/20 09:30	06/19/20 14:28	106-46-7	W
Dichlorodifluoromethane	<25.0	ua/ka	72.0	25.0	1	06/19/20 09:30	06/19/20 14:28	75-71-8	W
1.1-Dichloroethane	<25.0	ua/ka	60.0	25.0	1	06/19/20 09:30	06/19/20 14:28	75-34-3	W
1.2-Dichloroethane	<25.0	ua/ka	60.0	25.0	1	06/19/20 09:30	06/19/20 14:28	107-06-2	W
1.1-Dichloroethene	<25.0	ua/ka	60.0	25.0	1	06/19/20 09:30	06/19/20 14:28	75-35-4	W
cis-1.2-Dichloroethene	<25.0	ua/ka	60.0	25.0	1	06/19/20 09:30	06/19/20 14:28	156-59-2	W
trans-1 2-Dichloroethene	<25.0	ua/ka	67.0	25.0	1	06/19/20 09:30	06/19/20 14 28	156-60-5	W
1.2-Dichloropropane	<25.0	ua/ka	60.0	25.0	1	06/19/20 09:30	06/19/20 14:28	78-87-5	W
1.3-Dichloropropane	<25.0	ua/ka	60.0	25.0	1	06/19/20 09:30	06/19/20 14:28	142-28-9	W
2.2-Dichloropropane	<25.0	ua/ka	60.0	25.0	1	06/19/20 09:30	06/19/20 14:28	594-20-7	W
1.1-Dichloropropene	<25.0	ua/ka	60.0	25.0	1	06/19/20 09:30	06/19/20 14:28	563-58-6	W
cis-1.3-Dichloropropene	<42.3	ua/ka	141	42.3	1	06/19/20 09:30	06/19/20 14:28	10061-01-5	W
trans-1 3-Dichloropropene	<25.0	ua/ka	74 0	25.0	1	06/19/20 09:30	06/19/20 14 28	10061-02-6	W
Diisopropyl ether	<25.0	ua/ka	60.0	25.0	1	06/19/20 09:30	06/19/20 14:28	108-20-3	W
Ethylbenzene	<25.0	ua/ka	60.0	25.0	1	06/19/20 09:30	06/19/20 14:28	100-41-4	W
Hexachloro-1 3-butadiene	<68.7	ua/ka	229	68.7	1	06/19/20 09:30	06/19/20 14:28	87-68-3	W
Isopropylbenzene (Cumene)	<25.0	ua/ka	60.0	25.0	1	06/19/20 09:30	06/19/20 14:28	98-82-8	W
p-Isopropyltoluene	<25.0	ug/ka	72 0	25.0	1	06/19/20 09:30	06/19/20 14:28	99-87-6	Ŵ
Methylene Chloride	<26.3	ua/ka	88.0	26.3	1	06/19/20 09:30	06/19/20 14:28	75-09-2	W
Methyl-tert-butyl ether	<25.0	ug/ka	60.0	25.0	1	06/19/20 09:30	06/19/20 14:28	1634-04-4	W
Naphthalene	<27.3	ug/ka	91 0	27.3	1	06/19/20 09:30	06/19/20 14:28	91-20-3	W
n-Propylbenzene	<25.0	ug/ka	60.0	25.0	1	06/19/20 09:30	06/19/20 14:28	103-65-1	W
	-20.0	~9, ~9	00.0	20.0	•	30, 10, 20 00.00	33, 13, 20 14.20		••

Project: C8108 MONONA

Pace Project No.: 40209655

Sample: GP-3	Lab ID: 40209655007	Collected: 06/15/20 10:00	Received: 06/17/20 09:10	Matrix: Solid
Results reported on a "dry weight" bas	sis and are adjusted for p	ercent moisture, sample size	e and any dilutions.	

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EP/	A 8260 Prepar	ation Metho	od: EP	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Bay	/					
Styrene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:30	06/19/20 14:28	100-42-5	W
1,1,1,2-Tetrachloroethane	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:30	06/19/20 14:28	630-20-6	W
1,1,2,2-Tetrachloroethane	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:30	06/19/20 14:28	79-34-5	W
Tetrachloroethene	<38.7	ug/kg	129	38.7	1	06/19/20 09:30	06/19/20 14:28	127-18-4	W
Toluene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:30	06/19/20 14:28	108-88-3	W
1,2,3-Trichlorobenzene	<47.3	ug/kg	158	47.3	1	06/19/20 09:30	06/19/20 14:28	87-61-6	W
1,2,4-Trichlorobenzene	<41.7	ug/kg	250	41.7	1	06/19/20 09:30	06/19/20 14:28	120-82-1	W
1,1,1-Trichloroethane	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:30	06/19/20 14:28	71-55-6	W
1,1,2-Trichloroethane	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:30	06/19/20 14:28	79-00-5	W
Trichloroethene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:30	06/19/20 14:28	79-01-6	W
Trichlorofluoromethane	<25.0	ug/kg	65.0	25.0	1	06/19/20 09:30	06/19/20 14:28	75-69-4	W
1,2,3-Trichloropropane	<37.4	ug/kg	125	37.4	1	06/19/20 09:30	06/19/20 14:28	96-18-4	W
1,2,4-Trimethylbenzene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:30	06/19/20 14:28	95-63-6	W
1,3,5-Trimethylbenzene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:30	06/19/20 14:28	108-67-8	W
Vinyl chloride	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:30	06/19/20 14:28	75-01-4	W
m&p-Xylene	<50.0	ug/kg	120	50.0	1	06/19/20 09:30	06/19/20 14:28	179601-23-1	W
o-Xylene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:30	06/19/20 14:28	95-47-6	W
Surrogates									
Dibromofluoromethane (S)	113	%	58-145		1	06/19/20 09:30	06/19/20 14:28	1868-53-7	
Toluene-d8 (S)	112	%	56-140		1	06/19/20 09:30	06/19/20 14:28	2037-26-5	
4-Bromofluorobenzene (S)	106	%	52-137		1	06/19/20 09:30	06/19/20 14:28	460-00-4	
Percent Moisture	Analytical	Method: AS	FM D2974-87						
	Pace Anal	ytical Servic	es - Green Bay	/					
Percent Moisture	8.8	%	0.10	0.10	1		06/22/20 11:30		

Project: C8108 MONONA

Pace Project No.: 40209655

Sample: GP-4	Lab ID:	40209655008	Collected: 06/15/20 11:00			Received: 06	atrix: Water				
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual		
8260 MSV UST	MSV UST Analytical Method: EPA 8260										
	Pace Analytical Services - Green Bay										
Benzene	<0.25	ug/L	1.0	0.25	1		06/19/20 22:52	71-43-2			
Ethylbenzene	<0.32	ug/L	1.1	0.32	1		06/19/20 22:52	100-41-4			
Methyl-tert-butyl ether	<1.2	ug/L	4.2	1.2	1		06/19/20 22:52	1634-04-4			
Naphthalene	<1.2	ug/L	5.0	1.2	1		06/19/20 22:52	91-20-3			
Toluene	0.30J	ug/L	0.90	0.27	1		06/19/20 22:52	108-88-3			
1,2,4-Trimethylbenzene	<0.84	ug/L	2.8	0.84	1		06/19/20 22:52	95-63-6			
1,3,5-Trimethylbenzene	<0.87	ug/L	2.9	0.87	1		06/19/20 22:52	108-67-8			
m&p-Xylene	<0.47	ug/L	2.0	0.47	1		06/19/20 22:52	179601-23-1			
o-Xylene	<0.26	ug/L	1.0	0.26	1		06/19/20 22:52	95-47-6			
Surrogates		-									
Dibromofluoromethane (S)	110	%	70-130		1		06/19/20 22:52	1868-53-7			
Toluene-d8 (S)	93	%	70-130		1		06/19/20 22:52	2037-26-5			
4-Bromofluorobenzene (S)	86	%	70-130		1		06/19/20 22:52	460-00-4			

Project: C8108 MONONA

Pace Project No.: 40209655

 Sample:
 GP-4
 6-8
 Lab ID:
 40209655009
 Collected:
 06/15/20
 11:00
 Received:
 06/17/20
 09:10
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Matrix:
 Solid

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Short List	Analytical	Method: EP/	A 8260 Prepara	ation Metho	od: EP	A 5035/5030B			
	Pace Anal	ytical Servic	es - Green Bay						
Benzene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:00	06/19/20 16:40	71-43-2	W
Ethylbenzene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:00	06/19/20 16:40	100-41-4	W
Methyl-tert-butyl ether	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:00	06/19/20 16:40	1634-04-4	W
Naphthalene	<27.3	ug/kg	91.0	27.3	1	06/19/20 09:00	06/19/20 16:40	91-20-3	W
Toluene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:00	06/19/20 16:40	108-88-3	W
1,2,4-Trimethylbenzene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:00	06/19/20 16:40	95-63-6	W
1,3,5-Trimethylbenzene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:00	06/19/20 16:40	108-67-8	W
m&p-Xylene	<50.0	ug/kg	120	50.0	1	06/19/20 09:00	06/19/20 16:40	179601-23-1	W
o-Xylene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:00	06/19/20 16:40	95-47-6	W
Surrogates									
Dibromofluoromethane (S)	116	%	58-145		1	06/19/20 09:00	06/19/20 16:40	1868-53-7	
4-Bromofluorobenzene (S)	102	%	52-137		1	06/19/20 09:00	06/19/20 16:40	460-00-4	
Toluene-d8 (S)	108	%	56-140		1	06/19/20 09:00	06/19/20 16:40	2037-26-5	
Percent Moisture	Analytical	Method: AS	TM D2974-87						
	Pace Anal	ytical Servic	es - Green Bay						
Percent Moisture	21.0	%	0.10	0.10	1		06/22/20 11:30		

Project: C8108 MONONA

Pace Project No.: 40209655

 Sample:
 GP-4
 2-4
 Lab ID:
 40209655010
 Collected:
 06/15/20
 11:00
 Received:
 06/17/20
 09:10
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Short List	Analytical	Method: EP/	A 8260 Prepara	ation Metho	od: EP	A 5035/5030B			
	Pace Anal	ytical Servic	es - Green Bay						
Benzene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:00	06/19/20 16:57	71-43-2	W
Ethylbenzene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:00	06/19/20 16:57	100-41-4	W
Methyl-tert-butyl ether	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:00	06/19/20 16:57	1634-04-4	W
Naphthalene	<27.3	ug/kg	91.0	27.3	1	06/19/20 09:00	06/19/20 16:57	91-20-3	W
Toluene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:00	06/19/20 16:57	108-88-3	W
1,2,4-Trimethylbenzene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:00	06/19/20 16:57	95-63-6	W
1,3,5-Trimethylbenzene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:00	06/19/20 16:57	108-67-8	W
m&p-Xylene	<50.0	ug/kg	120	50.0	1	06/19/20 09:00	06/19/20 16:57	179601-23-1	W
o-Xylene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:00	06/19/20 16:57	95-47-6	W
Surrogates									
Dibromofluoromethane (S)	115	%	58-145		1	06/19/20 09:00	06/19/20 16:57	1868-53-7	
4-Bromofluorobenzene (S)	101	%	52-137		1	06/19/20 09:00	06/19/20 16:57	460-00-4	
Toluene-d8 (S)	106	%	56-140		1	06/19/20 09:00	06/19/20 16:57	2037-26-5	
Percent Moisture	Analytical	Method: AS	TM D2974-87						
	Pace Anal	ytical Servic	es - Green Bay						
Percent Moisture	16.0	%	0.10	0.10	1		06/22/20 11:30		

Project: C8108 MONONA

Pace Project No.: 40209655

 Sample:
 GP-5
 2-5
 Lab ID:
 40209655011
 Collected:
 06/15/20
 11:30
 Received:
 06/17/20
 09:10
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units		LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Short List	Analytical	Method: EP	A 8260 Prepara	ation Metho	od: EP	A 5035/5030B			
	Pace Anal	ytical Servic	es - Green Bay						
Benzene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:00	06/19/20 17:14	71-43-2	W
Ethylbenzene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:00	06/19/20 17:14	100-41-4	W
Methyl-tert-butyl ether	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:00	06/19/20 17:14	1634-04-4	W
Naphthalene	<27.3	ug/kg	91.0	27.3	1	06/19/20 09:00	06/19/20 17:14	91-20-3	W
Toluene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:00	06/19/20 17:14	108-88-3	W
1,2,4-Trimethylbenzene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:00	06/19/20 17:14	95-63-6	W
1,3,5-Trimethylbenzene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:00	06/19/20 17:14	108-67-8	W
m&p-Xylene	<50.0	ug/kg	120	50.0	1	06/19/20 09:00	06/19/20 17:14	179601-23-1	W
o-Xylene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:00	06/19/20 17:14	95-47-6	W
Surrogates									
Dibromofluoromethane (S)	122	%	58-145		1	06/19/20 09:00	06/19/20 17:14	1868-53-7	
4-Bromofluorobenzene (S)	110	%	52-137		1	06/19/20 09:00	06/19/20 17:14	460-00-4	
Toluene-d8 (S)	112	%	56-140		1	06/19/20 09:00	06/19/20 17:14	2037-26-5	
Percent Moisture	Analytical	Method: AS	TM D2974-87						
	Pace Anal	ytical Servic	es - Green Bay						
Percent Moisture	9.4	%	0.10	0.10	1		06/22/20 11:30		

Project: C8108 MONONA

Pace Project No.: 40209655

 Sample:
 GP-5
 6-8
 Lab ID:
 40209655012
 Collected:
 06/15/20
 11:30
 Received:
 06/17/20
 09:10
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Matrix:
 Solid

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Short List	Analytical	Method: EP	A 8260 Prepara	ation Meth	od: EP	A 5035/5030B			
	Pace Anal	ytical Servic	es - Green Bay						
Benzene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:00	06/19/20 17:31	71-43-2	W
Ethylbenzene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:00	06/19/20 17:31	100-41-4	W
Methyl-tert-butyl ether	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:00	06/19/20 17:31	1634-04-4	W
Naphthalene	<27.3	ug/kg	91.0	27.3	1	06/19/20 09:00	06/19/20 17:31	91-20-3	W
Toluene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:00	06/19/20 17:31	108-88-3	W
1,2,4-Trimethylbenzene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:00	06/19/20 17:31	95-63-6	W
1,3,5-Trimethylbenzene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:00	06/19/20 17:31	108-67-8	W
m&p-Xylene	<50.0	ug/kg	120	50.0	1	06/19/20 09:00	06/19/20 17:31	179601-23-1	W
o-Xylene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:00	06/19/20 17:31	95-47-6	W
Surrogates									
Dibromofluoromethane (S)	110	%	58-145		1	06/19/20 09:00	06/19/20 17:31	1868-53-7	
4-Bromofluorobenzene (S)	99	%	52-137		1	06/19/20 09:00	06/19/20 17:31	460-00-4	
Toluene-d8 (S)	106	%	56-140		1	06/19/20 09:00	06/19/20 17:31	2037-26-5	
Percent Moisture	Analytical	Method: AS	TM D2974-87						
	Pace Anal	ytical Servic	es - Green Bay						
Percent Moisture	21.1	%	0.10	0.10	1		06/22/20 11:30		

Project: C8108 MONONA

Pace Project No.: 40209655

 Sample: GP-6 2-5
 Lab ID: 40209655013
 Collected: 06/15/20 11:45
 Received: 06/17/20 09:10
 Matrix: Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Matrix: Solid

Parameters	Results	Units		LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Short List	Analytical	Method: EP/	A 8260 Prepara	ation Metho	od: EP/	A 5035/5030B			
	Pace Anal	ytical Servic	es - Green Bay						
Benzene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:00	06/19/20 17:48	71-43-2	W
Ethylbenzene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:00	06/19/20 17:48	100-41-4	W
Methyl-tert-butyl ether	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:00	06/19/20 17:48	1634-04-4	W
Naphthalene	<27.3	ug/kg	91.0	27.3	1	06/19/20 09:00	06/19/20 17:48	91-20-3	W
Toluene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:00	06/19/20 17:48	108-88-3	W
1,2,4-Trimethylbenzene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:00	06/19/20 17:48	95-63-6	W
1,3,5-Trimethylbenzene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:00	06/19/20 17:48	108-67-8	W
m&p-Xylene	<50.0	ug/kg	120	50.0	1	06/19/20 09:00	06/19/20 17:48	179601-23-1	W
o-Xylene	<25.0	ug/kg	60.0	25.0	1	06/19/20 09:00	06/19/20 17:48	95-47-6	W
Surrogates									
Dibromofluoromethane (S)	113	%	58-145		1	06/19/20 09:00	06/19/20 17:48	1868-53-7	
4-Bromofluorobenzene (S)	100	%	52-137		1	06/19/20 09:00	06/19/20 17:48	460-00-4	
Toluene-d8 (S)	106	%	56-140		1	06/19/20 09:00	06/19/20 17:48	2037-26-5	
Percent Moisture	Analytical	Method: AS	TM D2974-87						
	Pace Anal	ytical Servic	es - Green Bay						
Percent Moisture	6.3	%	0.10	0.10	1		06/22/20 11:30		

Project: C8108 MONONA

Pace Project No.: 40209655

Sample: TRIP BLANKLab ID: 40209655014Collected: 06/15/20					15/20 00:00 Received: 06/17/20 09:10 Matrix: Water					
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual	
8260 MSV	Analytical	Method: EPA 8	260							
	Pace Ana	lytical Services	- Green Ba	iy						
1,1,1,2-Tetrachloroethane	<0.27	ug/L	1.0	0.27	1		06/19/20 17:33	630-20-6		
1,1,1-Trichloroethane	<0.24	ug/L	1.0	0.24	1		06/19/20 17:33	71-55-6		
1,1,2,2-Tetrachloroethane	<0.28	ug/L	1.0	0.28	1		06/19/20 17:33	79-34-5		
1,1,2-Trichloroethane	<0.55	ug/L	5.0	0.55	1		06/19/20 17:33	79-00-5		
1,1-Dichloroethane	<0.27	ug/L	1.0	0.27	1		06/19/20 17:33	75-34-3		
1,1-Dichloroethene	<0.24	ug/L	1.0	0.24	1		06/19/20 17:33	75-35-4		
1,1-Dichloropropene	<0.54	ug/L	1.8	0.54	1		06/19/20 17:33	563-58-6		
1,2,3-Trichlorobenzene	<2.2	ug/L	7.4	2.2	1		06/19/20 17:33	87-61-6		
1,2,3-Trichloropropane	<0.59	ug/L	5.0	0.59	1		06/19/20 17:33	96-18-4		
1,2,4-Trichlorobenzene	<0.95	ug/L	5.0	0.95	1		06/19/20 17:33	120-82-1		
1,2,4-Trimethylbenzene	<0.84	ug/L	2.8	0.84	1		06/19/20 17:33	95-63-6		
1,2-Dibromo-3-chloropropane	<1.8	ug/L	5.9	1.8	1		06/19/20 17:33	96-12-8		
1,2-Dibromoethane (EDB)	<0.83	ug/L	2.8	0.83	1		06/19/20 17:33	106-93-4		
1,2-Dichlorobenzene	<0.71	ug/L	2.4	0.71	1		06/19/20 17:33	95-50-1		
1,2-Dichloroethane	<0.28	ug/L	1.0	0.28	1		06/19/20 17:33	107-06-2		
1,2-Dichloropropane	<0.28	ug/L	1.0	0.28	1		06/19/20 17:33	/8-87-5		
1,3,5-Irimethylbenzene	<0.87	ug/L	2.9	0.87	1		06/19/20 17:33	108-67-8		
1,3-Dichlerensenen	<0.63	ug/L	2.1	0.03	1		06/19/20 17:33	541-73-1		
1,3-Dichloropropane	<0.83	ug/L	2.8	0.83	1		06/19/20 17:33	142-28-9		
1,4-Dichlorobenzene	<0.94	ug/L	3.1	0.94	1		06/19/20 17:33	106-46-7		
2,2-Dichloropropane	<2.3	ug/L	7.6	2.3	1		06/19/20 17:33	594-20-7		
2-Chlorotoluene	<0.93	ug/L	5.0	0.93	1		06/19/20 17:33	95-49-8		
4-Chioroloidene	<0.76	ug/L	2.5	0.76	1		06/19/20 17.33	100-43-4		
Bremehenzene	<0.25	ug/L	1.0	0.25	1		06/19/20 17.33	11-43-2		
Bromoshloremethane	<0.24	ug/L	1.0 5.0	0.24	1		06/10/20 17:33	74 07 5		
Bromodiobloromothono	<0.30	ug/L	1.0	0.30	1		06/10/20 17:33	74-97-5		
Bromoform	<0.30	ug/L	12.2	0.30	1		06/19/20 17:33	75 25 2		
Bromomothano	<4.0	ug/L	5.0	4.0	1		06/19/20 17:33	73-23-2		
	<0.57	ug/L	3.0	1 1	1		06/19/20 17:33	74-03-9 56-23-5		
Chlorobenzene	<0.71	ug/L	2.0	0.71	1		06/19/20 17:33	108-90-7		
Chloroethane	<0.71	ug/L	2. 4 5.0	13	1		06/19/20 17:33	75-00-3		
Chloroform	<1.3	ug/L	5.0	1.3	1		06/19/20 17:33	67-66-3		
Chloromethane	<1.5	ug/L	7.3	22	1		06/19/20 17:33	74-87-3		
Dibromochloromethane	<2.2	ug/L	87	2.2	1		06/19/20 17:33	124_48_1		
Dibromomethane	~0.94	ug/L	3.1	0.94	1		06/19/20 17:33	74-95-3		
Dichlorodifluoromethane	<0.54	ug/L	5.0	0.54	1		06/19/20 17:33	74-33-3		
Diisopropyl ether	<1.9	ug/L	6.3	1.9	1		06/19/20 17:33	108-20-3		
Ethylbenzene	<0.32	ug/L	11	0.32	1		06/19/20 17:33	100-41-4		
Hexachloro-1 3-butadiene	<1.5	ug/l	49	1.5	1		06/19/20 17:33	87-68-3		
Isopropylbenzene (Cumene)	<1.7	ug/l	5.6	1.5	1		06/19/20 17:33	98-82-8		
Methyl-tert-butyl ether	<1.2	ug/l	4 2	12	1		06/19/20 17:33	1634-04-4		
Methylene Chloride	<0.58	ug/l	5.0	0.58	1		06/19/20 17:33	75-09-2		
Naphthalene	<1.2	ug/l	5.0	12	1		06/19/20 17:33	91-20-3		
Styrene	<3.0	ua/L	10.0	3.0	1		06/19/20 17:33	100-42-5		

Project: C8108 MONONA

Pace Project No.: 40209655

Sample: TRIP BLANK	Lab ID:	40209655014	Collecte	d: 06/15/20	00:00	Received: 06	6/17/20 09:10 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA 8	260						
	Pace Anal	ytical Services	- Green Ba	У					
Tetrachloroethene	<0.33	ug/L	1.1	0.33	1		06/19/20 17:33	127-18-4	
Toluene	<0.27	ug/L	0.90	0.27	1		06/19/20 17:33	108-88-3	
Trichloroethene	<0.26	ug/L	1.0	0.26	1		06/19/20 17:33	79-01-6	
Trichlorofluoromethane	<0.21	ug/L	1.0	0.21	1		06/19/20 17:33	75-69-4	
Vinyl chloride	<0.17	ug/L	1.0	0.17	1		06/19/20 17:33	75-01-4	
cis-1,2-Dichloroethene	<0.27	ug/L	1.0	0.27	1		06/19/20 17:33	156-59-2	
cis-1,3-Dichloropropene	<3.6	ug/L	12.1	3.6	1		06/19/20 17:33	10061-01-5	
m&p-Xylene	<0.47	ug/L	2.0	0.47	1		06/19/20 17:33	179601-23-1	
n-Butylbenzene	<0.71	ug/L	2.4	0.71	1		06/19/20 17:33	104-51-8	
n-Propylbenzene	<0.81	ug/L	5.0	0.81	1		06/19/20 17:33	103-65-1	
o-Xylene	<0.26	ug/L	1.0	0.26	1		06/19/20 17:33	95-47-6	
p-Isopropyltoluene	<0.80	ug/L	2.7	0.80	1		06/19/20 17:33	99-87-6	
sec-Butylbenzene	<0.85	ug/L	5.0	0.85	1		06/19/20 17:33	135-98-8	
tert-Butylbenzene	<0.30	ug/L	1.0	0.30	1		06/19/20 17:33	98-06-6	
trans-1,2-Dichloroethene	<0.46	ug/L	1.5	0.46	1		06/19/20 17:33	156-60-5	
trans-1,3-Dichloropropene	<4.4	ug/L	14.6	4.4	1		06/19/20 17:33	10061-02-6	
Surrogates									
4-Bromofluorobenzene (S)	83	%	70-130		1		06/19/20 17:33	460-00-4	HS
Dibromofluoromethane (S)	85	%	70-130		1		06/19/20 17:33	1868-53-7	
Toluene-d8 (S)	93	%	70-130		1		06/19/20 17:33	2037-26-5	

Project: C8108	3 MONONA					
Pace Project No.: 40209	655					
	F7	Analysia Math	ad. C	DA 8260		
QC Datch. 3001	57					
QC Batch Method: EPA	5035/5030B	Analysis Des	cription: 8	260 MSV Med Level		
		Laboratory:	P	ace Analytical Servio	ces - Green Bay	
Associated Lab Samples:	40209655005, 40209655007					
METHOD BLANK: 20717	72	Matrix:	Solid			
Associated Lab Samples:	40209655005, 40209655007					
	·	Blank	Reporting			
Parameter	Units	Result	Limit	Analyzed	Qualifiers	
1,1,1,2-Tetrachloroethane	ug/kg	<7.8	50.0	06/19/20 09:55		
1,1,1-Trichloroethane	ug/kg	<13.5	50.0	06/19/20 09:55		
1,1,2,2-Tetrachloroethane	ug/kg	<15.7	52.0	06/19/20 09:55		
1,1,2-Trichloroethane	ug/kg	<15.7	52.0	06/19/20 09:55		
1,1-Dichloroethane	ug/kg	<13.5	50.0	06/19/20 09:55		
1.1-Dichloroethene	ug/kg	<11.8	50.0	06/19/20 09:55		
1.1-Dichloropropene	ug/ka	<10.7	50.0	06/19/20 09:55		
1.2.3-Trichlorobenzene	ug/ka	<47.3	158	06/19/20 09:55		
1.2.3-Trichloropropane	ug/ka	<37.4	125	06/19/20 09:55		
1,2,4-Trichlorobenzene	ug/kg	<41.7	250	06/19/20 09:55		
1,2,4-Trimethylbenzene	ug/kg	<18.1	60.0	06/19/20 09:55		
1,2-Dibromo-3-chloropropa	ne ug/kg	<237	789	06/19/20 09:55		
1,2-Dibromoethane (EDB)	ug/kg	<17.0	57.0	06/19/20 09:55		
1,2-Dichlorobenzene	ug/kg	<13.1	50.0	06/19/20 09:55		
1,2-Dichloroethane	ug/kg	<13.8	50.0	06/19/20 09:55		
1,2-Dichloropropane	ug/kg	<13.5	50.0	06/19/20 09:55		
1,3,5-Trimethylbenzene	ug/kg	<16.0	53.0	06/19/20 09:55		
1,3-Dichlorobenzene	ug/kg	<13.0	50.0	06/19/20 09:55		
1,3-Dichloropropane	ug/kg	<11.0	50.0	06/19/20 09:55		
1,4-Dichlorobenzene	ug/kg	<12.0	50.0	06/19/20 09:55		
2,2-Dichloropropane	ug/kg	<15.7	52.0	06/19/20 09:55		
2-Chlorotoluene	ug/kg	<19.3	64.0	06/19/20 09:55		
4-Chlorotoluene	ug/kg	<19.3	64.0	06/19/20 09:55		
Benzene	ug/kg	<12.5	42.0	06/19/20 09:55		
Bromobenzene	ug/kg	<18.5	62.0	06/19/20 09:55		
Bromochloromethane	ug/kg	<20.9	70.0	06/19/20 09:55		
Bromodichloromethane	ug/kg	<10.0	50.0	06/19/20 09:55		
Bromoform	ug/kg	<21.6	72.0	06/19/20 09:55		
Bromomethane	ug/kg	<63.8	250	06/19/20 09:55		
Carbon tetrachloride	ug/kg	<7.5	50.0	06/19/20 09:55		
Chlorobenzene	ug/kg	<16.8	56.0	06/19/20 09:55		
Chloroethane	ug/kg	<46.4	250	06/19/20 09:55		
Chloroform	ug/kg	<47.5	250	06/19/20 09:55		
Chloromethane	ug/kg	<24.0	80.0	06/19/20 09:55		
cis-1,2-Dichloroethene	ug/kg	<14.8	50.0	06/19/20 09:55		
cis-1,3-Dichloropropene	ug/kg	<42.3	141	06/19/20 09:55		
Dibromochloromethane	ug/kg	<229	763	06/19/20 09:55		
Dibromomethane	ug/kg	<17.7	59.0	06/19/20 09:55		
Dichlorodifluoromethane	ug/kg	<21.7	72.0	06/19/20 09:55		
Diisopropyl ether	ug/kg	<14.0	50.0	06/19/20 09:55		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: C8108 MONONA Pace Project No.: 40209655

Associated Lab Samples: 40209655005, 40209655007
Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers
Ethylbenzene ug/kg <14.5 50.0 06/19/20 09:55
Hexachloro-1,3-butadiene ug/kg <68.7 229 06/19/20 09:55
Isopropylbenzene (Cumene) ug/kg <17.7 59.0 06/19/20 09:55
m&p-Xylene ug/kg <32.4 108 06/19/20 09:55
Methyl-tert-butyl ether ug/kg <16.2 54.0 06/19/20 09:55
Methylene Chloride ug/kg <26.3 88.0 06/19/20 09:55
n-Butylbenzene ug/kg <30.0 100 06/19/20 09:55
n-Propylbenzene ug/kg <17.8 59.0 06/19/20 09:55
Naphthalene ug/kg <27.3 91.0 06/19/20 09:55
o-Xylene ug/kg <18.1 60.0 06/19/20 09:55
p-Isopropyltoluene ug/kg <21.7 72.0 06/19/20 09:55
sec-Butylbenzene ug/kg <21.5 72.0 06/19/20 09:55
Styrene ug/kg <12.3 50.0 06/19/20 09:55
tert-Butylbenzene ug/kg <18.7 62.0 06/19/20 09:55
Tetrachloroethene ug/kg <38.7 129 06/19/20 09:55
Toluene ug/kg <13.1 50.0 06/19/20 09:55
trans-1,2-Dichloroethene ug/kg <20.2 67.0 06/19/20 09:55
trans-1,3-Dichloropropene ug/kg <22.2 74.0 06/19/20 09:55
Trichloroethene ug/kg <12.8 50.0 06/19/20 09:55
Trichlorofluoromethane ug/kg <19.6 65.0 06/19/20 09:55
Vinyl chloride ug/kg <14.5 50.0 06/19/20 09:55
4-Bromofluorobenzene (S) % 97 52-137 06/19/20 09:55
Dibromofluoromethane (S) % 97 58-145 06/19/20 09:55
Toluene-d8 (S) % 100 56-140 06/19/20 09:55

LABORATORY CONTROL SAMPLE: 2071773

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,1,1-Trichloroethane	ug/kg		2530	101	70-130	
1,1,2,2-Tetrachloroethane	ug/kg	2500	2450	98	70-130	
1,1,2-Trichloroethane	ug/kg	2500	2370	95	70-130	
1,1-Dichloroethane	ug/kg	2500	2510	100	69-143	
1,1-Dichloroethene	ug/kg	2500	2450	98	73-118	
1,2,4-Trichlorobenzene	ug/kg	2500	2440	98	60-130	
1,2-Dibromo-3-chloropropane	ug/kg	2500	2100	84	66-130	
1,2-Dibromoethane (EDB)	ug/kg	2500	2430	97	70-130	
1,2-Dichlorobenzene	ug/kg	2500	2470	99	70-130	
1,2-Dichloroethane	ug/kg	2500	2340	94	70-130	
1,2-Dichloropropane	ug/kg	2500	2440	98	78-126	
1,3-Dichlorobenzene	ug/kg	2500	2460	98	70-130	
1,4-Dichlorobenzene	ug/kg	2500	2500	100	70-130	
Benzene	ug/kg	2500	2610	104	70-130	
Bromodichloromethane	ug/kg	2500	2390	96	70-130	
Bromoform	ug/kg	2500	2120	85	67-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: C8108 MONONA

Pace Project No.: 40209655

LABORATORY CONTROL SAMPLE: 2071773

Parameter Units Conc. Result % Rec Limits Qualifiers Bromomethane ug/kg 2500 2110 84 45-134 Carbon tetrachloride ug/kg 2500 2410 96 70-130 Chlorobenzene ug/kg 2500 2300 92 58-143 Chloroothane ug/kg 2500 2400 100 76-122 Chloroothane ug/kg 2500 2400 90 69-130 cis-1,2-Dichloroothene ug/kg 2500 2260 90 70-130 Dichloroothene ug/kg 2500 250 90 70-130 Dichloroothene ug/kg 2500 2530 101 80-120 Isopropylbenzene ug/kg 2500 2530 101 80-120 Isopropylbenzene (Curnene) ug/kg 2500 2570 103 70-130 Methyl-tert-butyl ether ug/kg 2500 2540 102 70-130 Methyl-tere			Spike	LCS	LCS	% Rec	
Bromomethane ug/kg 2500 2110 84 45-134 Carbon tetrachloride ug/kg 2500 2340 93 70-130 Chlorobenzene ug/kg 2500 2340 93 70-130 Chlorobernene ug/kg 2500 2300 92 58-143 Chloroform ug/kg 2500 2490 100 76-122 Chloromethane ug/kg 2500 2490 100 76-122 Chloromethane ug/kg 2500 2460 99 69-130 cis-1,3-Dichloropropene ug/kg 2500 2190 87 70-130 Dibromochloromethane ug/kg 2500 2530 101 80-120 Isopropylbenzene (Cumene) ug/kg 2500 2530 101 80-120 Isopropylbenzene (Cumene) ug/kg 2500 2570 103 70-130 Methyl-tert-butyl ether ug/kg 2500 2410 96 70-130 Methylene Ug/kg	Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Carbon tetrachloride ug/kg 2500 2340 93 70-130 Chlorobenzene ug/kg 2500 2410 96 70-130 Chlorobentane ug/kg 2500 2400 100 76-122 Chloroform ug/kg 2500 2490 100 76-122 Chloromethane ug/kg 2500 2460 99 69-130 cis-1,2-Dichloroptopene ug/kg 2500 2190 87 70-130 Dibromochloromethane ug/kg 2500 2190 87 70-130 Dichlorodifluoromethane ug/kg 2500 2530 101 80-120 Isopropylbenzene (Cumene) ug/kg 2500 2570 103 70-130 Methyl-tert-butyl ether ug/kg 2500 2410 96 70-130 Methylene Chloride ug/kg 2500 2410 96 70-130 Methylene Chloride ug/kg 2500 2410 96 70-130 Styrene <td< td=""><td>Bromomethane</td><td>ug/kg</td><td>2500</td><td>2110</td><td>84</td><td>45-134</td><td></td></td<>	Bromomethane	ug/kg	2500	2110	84	45-134	
Chlorobenzene ug/kg 2500 2410 96 70-130 Chloroethane ug/kg 2500 2300 92 58-143 Chloroofm ug/kg 2500 2490 100 76-122 Chloromethane ug/kg 2500 2490 99 69-130 cis-1,2-Dichloroethene ug/kg 2500 2250 90 70-130 Dibromochloromethane ug/kg 2500 2190 87 70-130 Dichloroethene ug/kg 2500 2530 101 80-120 Isopropylbenzene (Cumene) ug/kg 2500 2570 103 70-130 m&p-Xylene ug/kg 2500 2570 103 70-130 Methyl-tert-butyl ether ug/kg 2500 2570 103 70-130 Styrene ug/kg 2500 2570 103 70-130 Styrene ug/kg 2500 2570 103 70-130 Tetrachloroethene ug/kg 2500 <td>Carbon tetrachloride</td> <td>ug/kg</td> <td>2500</td> <td>2340</td> <td>93</td> <td>70-130</td> <td></td>	Carbon tetrachloride	ug/kg	2500	2340	93	70-130	
Chloroethane ug/kg 2500 2300 92 58-143 Chloroform ug/kg 2500 2490 100 76-122 Chloromethane ug/kg 2500 2460 99 69-130 cis-1,2-Dichloropthene ug/kg 2500 2250 90 70-130 Dibromochloromethane ug/kg 2500 2190 87 70-130 Dichlorodffluoromethane ug/kg 2500 2530 101 80-120 Isopropylbenzene (Cumene) ug/kg 2500 2570 103 70-130 Methyl-tert-butyl ether ug/kg 2500 2570 103 70-130 Methyl-tert-butyl ether ug/kg 2500 2410 96 70-130 Methyl-tert-butyl ether ug/kg 2500 2380 95 70-130 Methyl-tert-butyl ether ug/kg 2500 2570 103 70-130 Totace ug/kg 2500 2570 103 70-130 Totace	Chlorobenzene	ug/kg	2500	2410	96	70-130	
Chloroform ug/kg 2500 2490 100 76-122 Chloromethane ug/kg 2500 2000 80 45-120 cis-1,2-Dichloroethene ug/kg 2500 2460 99 69-130 cis-1,3-Dichloropropene ug/kg 2500 2250 90 70-130 Dibromochloromethane ug/kg 2500 2190 87 70-130 Dichlorodifluoromethane ug/kg 2500 2530 101 80-120 Isopropylbenzene (Cumene) ug/kg 2500 2570 103 70-130 Methyl-tert-butyl ether ug/kg 2500 2410 96 70-130 Methyl-tert-butyl ether ug/kg 2500 2540 102 70-130 o-Xylene ug/kg 2500 2540 102 70-130 o-Xylene ug/kg 2500 2540 102 70-130 Tetrachloroethene ug/kg 2500 2560 103 70-130 Toluene	Chloroethane	ug/kg	2500	2300	92	58-143	
Chloromethane ug/kg 2500 2000 80 45-120 cis-1,2-Dichloroethene ug/kg 2500 2460 99 69-130 cis-1,3-Dichloropropene ug/kg 2500 2250 90 70-130 Dibromochloromethane ug/kg 2500 1530 61 26-99 Ethylbenzene ug/kg 2500 2530 101 80-120 Isopropylbenzene (Cumene) ug/kg 2500 2570 103 70-130 m&p-Xylene ug/kg 2500 2570 103 70-130 Methyl-tert-butyl ether ug/kg 2500 2410 96 70-130 Methylene Chloride ug/kg 2500 2410 96 70-130 Styrene ug/kg 2500 2540 102 70-130 Styrene ug/kg 2500 2570 103 70-130 Tetrachloroethene ug/kg 2500 2560 102 80-120 trans-1,2-Dichloroethene ug/	Chloroform	ug/kg	2500	2490	100	76-122	
cis-1,2-Dichloroethene ug/kg 2500 2460 99 69-130 cis-1,3-Dichloropropene ug/kg 2500 2250 90 70-130 Dibromochloromethane ug/kg 2500 2190 87 70-130 Dichlorodifluoromethane ug/kg 2500 1530 61 26-99 Ethylbenzene ug/kg 2500 2530 101 80-120 Isopropylbenzene (Cumene) ug/kg 2500 2570 103 70-130 Methyl-tert-butyl ether ug/kg 2500 2410 96 70-130 Methylene Chloride ug/kg 2500 2380 95 70-130 O-Xylene ug/kg 2500 2540 102 70-130 Styrene ug/kg 2500 2570 103 70-130 Tetrachloroethene ug/kg 2500 2560 102 80-120 trans-1,2-Dichloroethene ug/kg 2500 2560 102 80-120 trans-1,2-Dichloroet	Chloromethane	ug/kg	2500	2000	80	45-120	
cis-1,3-Dichloropropene ug/kg 2500 2250 90 70-130 Dibromochloromethane ug/kg 2500 2190 87 70-130 Dichlorodifluoromethane ug/kg 2500 1530 61 26-99 Ethylbenzene ug/kg 2500 2530 101 80-120 Isopropylbenzene (Cumene) ug/kg 2500 2570 103 70-130 m&p-Xylene ug/kg 2500 2570 103 70-130 Methyl-tert-butyl ether ug/kg 2500 2410 96 70-130 Methylene Chloride ug/kg 2500 2380 95 70-130 o-Xylene ug/kg 2500 2540 102 70-130 Styrene ug/kg 2500 2570 103 70-130 Tetrachloroethene ug/kg 2500 2560 102 80-120 trans-1,2-Dichloroethene ug/kg 2500 2520 101 70-130 trans-1,3-Dichloropropene	cis-1,2-Dichloroethene	ug/kg	2500	2460	99	69-130	
Dibromochloromethane ug/kg 2500 2190 87 70-130 Dichlorodifluoromethane ug/kg 2500 1530 61 26-99 Ethylbenzene ug/kg 2500 2530 101 80-120 Isopropylbenzene (Cumene) ug/kg 2500 2570 103 70-130 m&p-Xylene ug/kg 5000 5110 102 70-130 Methyl-tert-butyl ether ug/kg 2500 2380 95 70-130 Methylene Chloride ug/kg 2500 2540 102 70-130 o-Xylene ug/kg 2500 2540 102 70-130 o-Xylene ug/kg 2500 2570 103 70-130 Styrene ug/kg 2500 2620 105 70-130 Toluene ug/kg 2500 2620 101 70-130 trans-1,2-Dichloroethene ug/kg 2500 2520 101 70-130 trans-1,3-Dichloropropene ug/kg	cis-1,3-Dichloropropene	ug/kg	2500	2250	90	70-130	
Dichlorodifluoromethane ug/kg 2500 1530 61 26-99 Ethylbenzene ug/kg 2500 2530 101 80-120 Isopropylbenzene (Cumene) ug/kg 2500 2570 103 70-130 m&p-Xylene ug/kg 5000 5110 102 70-130 Methyl-tert-butyl ether ug/kg 2500 2410 96 70-130 Methylene Chloride ug/kg 2500 2380 95 70-130 o-Xylene ug/kg 2500 2540 102 70-130 o-Xylene ug/kg 2500 2570 103 70-130 Styrene ug/kg 2500 2570 103 70-130 Tetrachloroethene ug/kg 2500 2620 105 70-130 Toluene ug/kg 2500 2520 101 70-130 trans-1,2-Dichloroethene ug/kg 2500 2520 101 70-130 trans-1,3-Dichloropropene ug/kg	Dibromochloromethane	ug/kg	2500	2190	87	70-130	
Ethylbenzene ug/kg 2500 2530 101 80-120 Isopropylbenzene (Cumene) ug/kg 2500 2570 103 70-130 m&p-Xylene ug/kg 5000 5110 102 70-130 Methyl-tert-butyl ether ug/kg 2500 2410 96 70-130 Methylene Chloride ug/kg 2500 2380 95 70-130 o-Xylene ug/kg 2500 2540 102 70-130 o-Xylene ug/kg 2500 2570 103 70-130 Styrene ug/kg 2500 2570 103 70-130 Tetrachloroethene ug/kg 2500 2620 105 70-130 Toluene ug/kg 2500 2520 101 70-130 trans-1,2-Dichloroethene ug/kg 2500 2520 101 70-130 trans-1,3-Dichloropropene ug/kg 2500 2400 89 70-130 Trichloroethene ug/kg <t< td=""><td>Dichlorodifluoromethane</td><td>ug/kg</td><td>2500</td><td>1530</td><td>61</td><td>26-99</td><td></td></t<>	Dichlorodifluoromethane	ug/kg	2500	1530	61	26-99	
Isopropylbenzene (Cumene) ug/kg 2500 2570 103 70-130 m&p-Xylene ug/kg 5000 5110 102 70-130 Methyl-tert-butyl ether ug/kg 2500 2410 96 70-130 Methylene Chloride ug/kg 2500 2380 95 70-130 o-Xylene ug/kg 2500 2540 102 70-130 Styrene ug/kg 2500 2570 103 70-130 Tetrachloroethene ug/kg 2500 2620 105 70-130 Toluene ug/kg 2500 2560 102 80-120 trans-1,2-Dichloroethene ug/kg 2500 2520 101 70-130 trans-1,3-Dichloropropene ug/kg 2500 2240 89 70-130 Trichlorofluoromethane ug/kg 2500 2350 94 70-128 Vinyl chloride ug/kg 2500 2350 94 70-128 Vinyl chloride ug/kg <td>Ethylbenzene</td> <td>ug/kg</td> <td>2500</td> <td>2530</td> <td>101</td> <td>80-120</td> <td></td>	Ethylbenzene	ug/kg	2500	2530	101	80-120	
m&p-Xylene ug/kg 5000 5110 102 70-130 Methyl-tert-butyl ether ug/kg 2500 2410 96 70-130 Methylene Chloride ug/kg 2500 2380 95 70-130 o-Xylene ug/kg 2500 2540 102 70-130 Styrene ug/kg 2500 2570 103 70-130 Tetrachloroethene ug/kg 2500 2620 105 70-130 Toluene ug/kg 2500 2560 102 80-120 trans-1,2-Dichloroethene ug/kg 2500 2520 101 70-130 trans-1,3-Dichloroptopene ug/kg 2500 2240 89 70-130 Trichlorofluoromethane ug/kg 2500 2350 94 70-128 Vinyl chloride ug/kg 2500 2350 94 70-128 Vinyl chloride ug/kg 2500 2350 94 70-128 Vinyl chloride ug/kg <	Isopropylbenzene (Cumene)	ug/kg	2500	2570	103	70-130	
Methyl-tert-butyl ether ug/kg 2500 2410 96 70-130 Methylene Chloride ug/kg 2500 2380 95 70-130 o-Xylene ug/kg 2500 2540 102 70-130 Styrene ug/kg 2500 2570 103 70-130 Tetrachloroethene ug/kg 2500 2620 105 70-130 Toluene ug/kg 2500 2560 102 80-120 trans-1,2-Dichloroethene ug/kg 2500 2520 101 70-130 trans-1,3-Dichloropropene ug/kg 2500 2240 89 70-130 Trichlorofluoromethane ug/kg 2500 2350 94 70-130 Trichlorofluoromethane ug/kg 2500 2350 94 70-128 Vinyl chloride ug/kg 2500 2230 89 53-110 4-Bromofluorobenzene (S) % 89 52-137 56.140 Dibromofluoromethane (S) %	m&p-Xylene	ug/kg	5000	5110	102	70-130	
Methylene Chloride ug/kg 2500 2380 95 70-130 o-Xylene ug/kg 2500 2540 102 70-130 Styrene ug/kg 2500 2570 103 70-130 Tetrachloroethene ug/kg 2500 2620 105 70-130 Toluene ug/kg 2500 2560 102 80-120 trans-1,2-Dichloroethene ug/kg 2500 2520 101 70-130 trans-1,3-Dichloroptopene ug/kg 2500 2240 89 70-130 Trichloroethene ug/kg 2500 2490 100 70-130 Trichlorofluoromethane ug/kg 2500 2350 94 70-128 Vinyl chloride ug/kg 2500 2350 89 53-110 4-Bromofluorobenzene (S) % 89 52-137 Dibromofluoromethane (S) % 90 58-145 Dibromofluoromethane (S) % 92 56.140	Methyl-tert-butyl ether	ug/kg	2500	2410	96	70-130	
o-Xylene ug/kg 2500 2540 102 70-130 Styrene ug/kg 2500 2570 103 70-130 Tetrachloroethene ug/kg 2500 2620 105 70-130 Toluene ug/kg 2500 2560 102 80-120 trans-1,2-Dichloroethene ug/kg 2500 2520 101 70-130 trans-1,3-Dichloropropene ug/kg 2500 2240 89 70-130 Trichloroethene ug/kg 2500 2490 100 70-130 Trichlorofluoromethane ug/kg 2500 2350 94 70-128 Vinyl chloride ug/kg 2500 2350 89 53-110 4-Bromofluorobenzene (S) % 89 52-137 89 52-137 Dibromofluoromethane (S) % 90 58-145 90 58-145	Methylene Chloride	ug/kg	2500	2380	95	70-130	
Styrene ug/kg 2500 2570 103 70-130 Tetrachloroethene ug/kg 2500 2620 105 70-130 Toluene ug/kg 2500 2560 102 80-120 trans-1,2-Dichloroethene ug/kg 2500 2520 101 70-130 trans-1,3-Dichloropropene ug/kg 2500 2240 89 70-130 Trichloroethene ug/kg 2500 2490 100 70-130 Trichlorofluoromethane ug/kg 2500 2350 94 70-128 Vinyl chloride ug/kg 2500 2350 89 53-110 4-Bromofluorobenzene (S) % 89 52-137 Dibromofluoromethane (S) % 90 58-145	o-Xylene	ug/kg	2500	2540	102	70-130	
Tetrachloroethene ug/kg 2500 2620 105 70-130 Toluene ug/kg 2500 2560 102 80-120 trans-1,2-Dichloroethene ug/kg 2500 2520 101 70-130 trans-1,3-Dichloropropene ug/kg 2500 2240 89 70-130 Trichloroethene ug/kg 2500 2490 100 70-130 Trichlorofluoromethane ug/kg 2500 2350 94 70-128 Vinyl chloride ug/kg 2500 2230 89 53-110 4-Bromofluorobenzene (S) % 89 52-137 Dibromofluoromethane (S) % 90 58-145	Styrene	ug/kg	2500	2570	103	70-130	
Toluene ug/kg 2500 2560 102 80-120 trans-1,2-Dichloroethene ug/kg 2500 2520 101 70-130 trans-1,3-Dichloropropene ug/kg 2500 2240 89 70-130 Trichloroethene ug/kg 2500 2490 100 70-130 Trichlorofluoromethane ug/kg 2500 2350 94 70-128 Vinyl chloride ug/kg 2500 2230 89 53-110 4-Bromofluorobenzene (S) % 89 52-137 Dibromofluoromethane (S) % 90 58-145	Tetrachloroethene	ug/kg	2500	2620	105	70-130	
trans-1,2-Dichloroethene ug/kg 2500 2520 101 70-130 trans-1,3-Dichloropropene ug/kg 2500 2240 89 70-130 Trichloroethene ug/kg 2500 2490 100 70-130 Trichlorofluoromethane ug/kg 2500 2350 94 70-128 Vinyl chloride ug/kg 2500 2230 89 53-110 4-Bromofluoromethane (S) % 90 58-145 Dibromofluoromethane (S) % 92 56-140	Toluene	ug/kg	2500	2560	102	80-120	
trans-1,3-Dichloropropene ug/kg 2500 2240 89 70-130 Trichloroethene ug/kg 2500 2490 100 70-130 Trichlorofluoromethane ug/kg 2500 2350 94 70-128 Vinyl chloride ug/kg 2500 2230 89 53-110 4-Bromofluoromethane (S) % 90 58-145 Dibromofluoromethane (S) % 92 56-140	trans-1,2-Dichloroethene	ug/kg	2500	2520	101	70-130	
Trichloroethene ug/kg 2500 2490 100 70-130 Trichlorofluoromethane ug/kg 2500 2350 94 70-128 Vinyl chloride ug/kg 2500 2230 89 53-110 4-Bromofluorobenzene (S) % 89 52-137 Dibromofluoromethane (S) % 90 58-145 Toluene-d8 (S) % 92 56-140	trans-1,3-Dichloropropene	ug/kg	2500	2240	89	70-130	
Trichlorofluoromethane ug/kg 2500 2350 94 70-128 Vinyl chloride ug/kg 2500 2230 89 53-110 4-Bromofluorobenzene (S) % 89 52-137 Dibromofluoromethane (S) % 90 58-145 Toluene-d8 (S) % 92 56-140	Trichloroethene	ug/kg	2500	2490	100	70-130	
Vinyl chloride ug/kg 2500 2230 89 53-110 4-Bromofluorobenzene (S) % 89 52-137 Dibromofluoromethane (S) % 90 58-145 Toluene-d8 (S) % 92 56-140	Trichlorofluoromethane	ug/kg	2500	2350	94	70-128	
4-Bromofluorobenzene (S) % 89 52-137 Dibromofluoromethane (S) % 90 58-145 Toluene-d8 (S) % 92 56-140	Vinyl chloride	ug/kg	2500	2230	89	53-110	
Dibromofluoromethane (S) % 90 58-145 Toluene-d8 (S) % 92 56-140	4-Bromofluorobenzene (S)	%			89	52-137	
Toluene-d8 (S) % 92 56-140	Dibromofluoromethane (S)	%			90	58-145	
	Toluene-d8 (S)	%			92	56-140	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2071774

MATRIX SPIKE & MATRIX SP	PIKE DUPLI	CATE: 2071	774		2071775							
			MS	MSD								
	4	40209733005	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1,1-Trichloroethane	ug/kg	<25.0	1420	1420	1450	1390	102	98	66-130	4	20	
1,1,2,2-Tetrachloroethane	ug/kg	<25.0	1420	1420	1570	1500	111	106	70-133	4	20	
1,1,2-Trichloroethane	ug/kg	<25.0	1420	1420	1420	1420	100	100	70-130	0	20	
1,1-Dichloroethane	ug/kg	<25.0	1420	1420	1420	1380	100	97	69-143	3	20	
1,1-Dichloroethene	ug/kg	<25.0	1420	1420	1230	1200	85	83	58-120	2	20	
1,2,4-Trichlorobenzene	ug/kg	<41.7	1420	1420	1710	1590	119	111	60-130	7	20	
1,2-Dibromo-3- chloropropane	ug/kg	<237	1420	1420	1380	1400	97	99	59-136	1	20	
1,2-Dibromoethane (EDB)	ug/kg	<25.0	1420	1420	1470	1420	103	100	70-130	3	20	
1,2-Dichlorobenzene	ug/kg	<25.0	1420	1420	1610	1560	113	110	70-130	3	20	
1,2-Dichloroethane	ug/kg	<25.0	1420	1420	1400	1300	98	92	70-136	7	20	
1,2-Dichloropropane	ug/kg	<25.0	1420	1420	1420	1440	100	101	78-128	1	20	
1,3-Dichlorobenzene	ug/kg	<25.0	1420	1420	1540	1520	109	107	70-130	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: C8108 MONONA

Pace Project No.: 40209655

MATRIX SPIKE & MATRIX S	PIKE DUPL	ICATE: 2071	774		2071775							
			MS	MSD								
		40209733005	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,4-Dichlorobenzene	ug/kg	<25.0	1420	1420	1580	1560	111	110	70-130	1	20	
Benzene	ug/kg	<25.0	1420	1420	1500	1490	106	105	70-130	1	20	
Bromodichloromethane	ug/kg	<25.0	1420	1420	1340	1390	95	98	70-130	3	20	
Bromoform	ug/kg	<25.0	1420	1420	1360	1330	96	93	63-130	3	20	
Bromomethane	ug/kg	<63.8	1420	1420	1040	932	73	66	33-146	11	20	
Carbon tetrachloride	ug/kg	<25.0	1420	1420	1340	1340	94	94	65-130	0	20	
Chlorobenzene	ug/kg	<25.0	1420	1420	1460	1440	103	101	70-130	2	20	
Chloroethane	ug/kg	<46.4	1420	1420	1130	1100	79	77	46-156	3	20	
Chloroform	ug/kg	<47.5	1420	1420	1540	1470	108	104	75-130	4	20	
Chloromethane	ug/kg	<25.0	1420	1420	848	827	60	58	20-139	3	20	
cis-1,3-Dichloropropene	ug/kg	<42.3	1420	1420	1340	1350	94	95	70-130	1	20	
Dibromochloromethane	ug/kg	<229	1420	1420	1350	1330	95	94	70-130	1	20	
Dichlorodifluoromethane	ug/kg	<25.0	1420	1420	635	612	45	43	10-99	4	22	
Ethylbenzene	ug/kg	<25.0	1420	1420	1480	1460	104	102	80-120	2	20	
Isopropylbenzene (Cumene)	ug/kg	<25.0	1420	1420	1510	1480	106	104	70-130	2	20	
m&p-Xylene	ug/kg	<50.0	2840	2840	3070	3000	108	105	70-130	2	20	
Methyl-tert-butyl ether	ug/kg	<25.0	1420	1420	1390	1290	98	91	70-130	7	20	
Methylene Chloride	ug/kg	<26.3	1420	1420	1320	1280	93	90	70-136	3	20	
o-Xylene	ug/kg	<25.0	1420	1420	1490	1490	105	105	70-130	0	20	
Styrene	ug/kg	<25.0	1420	1420	1500	1520	105	107	70-130	1	20	
Tetrachloroethene	ug/kg	<38.7	1420	1420	1530	1540	108	108	68-130	0	20	
Toluene	ug/kg	<25.0	1420	1420	1510	1500	107	105	80-120	1	20	
trans-1,2-Dichloroethene	ug/kg	300	1420	1420	1690	1600	98	92	70-130	5	20	
trans-1,3-Dichloropropene	ug/kg	<25.0	1420	1420	1360	1330	96	93	70-130	3	20	
Trichlorofluoromethane	ug/kg	<25.0	1420	1420	1270	1220	89	86	53-128	4	20	
Vinyl chloride	ug/kg	297	1420	1420	1350	1260	74	67	32-118	7	20	
4-Bromofluorobenzene (S)	%						107	107	52-137			
Dibromofluoromethane (S)	%						110	107	58-145			
Toluene-d8 (S)	%						109	109	56-140			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:	C8108 MONONA											
Pace Project No.:	40209655											
QC Batch:	358151		Analy	sis Metho	d: E	PA 8260						
QC Batch Method	EPA 5035/5030B	5	Analy	sis Descri	otion [.] 8	260 MSV N	Aed Level S	Short List				
	2.7.0000,00002		Labo	ratory.	pusin c		ical Service	es - Green	Bay			
Associated Lab San	nples: 40209655	001, 4020965500	3, 4020965	5009, 402	09655010, 4	02096550	11, 402096	55012, 402	209655013	}		
METHOD BLANK:	2071704			Matrix: So	olid							
Associated Lab San	nples: 40209655	001 4020965500	3 4020965	5009 402	09655010 4	02096550	11 402096	55012 402	209655013	1		
	4020000	001, 402000000	Blan	k	Reporting	02000000	11, 402000	00012, 402	200000010	•		
Paran	neter	l Inite	Resi	ilt I	Limit	Δnal	/zed	Qualifier	e			
							–	Qualifier				
1,2,4-Trimethylbenz	ene	ug/kg		<18.1	60.0	06/19/2	0 11:15					
1,3,5-Trimethylbenz	ene	ug/kg		<16.0	53.0	06/19/2	0 11:15					
Benzene		ug/kg		<12.5	42.0	06/19/2	0 11:15					
Ethylbenzene		ug/kg		<14.5	50.0	06/19/2	0 11:15					
m&p-Xylene		ug/kg		<32.4	108	06/19/2	0 11:15					
Methyl-tert-butyl eth	er	ug/kg		<16.2	54.0	06/19/2	0 11:15					
Naphthalene		ug/kg		<27.3	91.0	06/19/2	0 11:15					
o-Xylene		ug/kg		<18.1	60.0	06/19/2	0 11:15					
Toluene		ug/kg		<13.1	50.0	06/19/2	0 11:15					
4-Bromofluorobenze	ene (S)	%		88	52-137	06/19/2	J 11:15					
Dibromofluorometha	ane (S)	%		109	58-145	06/19/2	J 11:15					
		70		101	50-140	00/19/20	5 11.15					
		2071705										
LABORATORY COI	VIRUL SAMPLE.	20/1/05	Sniko		S	109	% P4	20				
Paran	neter	Units	Conc.	Res	sult	% Rec	Limi	ts (Qualifiers			
Benzene		ug/kg	250	0	2330	9:	3 7	70-130		_		
Ethylbenzene		ug/kg	250	0	2500	100	3 (30-120				
m&p-Xylene		ug/kg	500	0	5240	10	5 7	70-130				
Methyl-tert-butyl eth	er	ug/kg	250	0	3020	12	1 7	70-130				
o-Xylene		ug/kg	250	0	2560	103	3 7	70-130				
Toluene		ug/kg	250	0	2460	98	3 8	30-120				
4-Bromofluorobenze	ene (S)	%				103	3 5	52-137				
Dibromofluorometha	ane (S)	%				114	4 5	58-145				
Toluene-d8 (S)		%				100) 5	56-140				
MATRIX SPIKE & M		PLICATE: 2071	706		2071707							
		2071	MS	MSD	2011101							
		40209786006	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	r Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Benzene	ua/ka	<25.0	1370	1370	1170	1330	85	97	70-130	13	20	
Ethvlbenzene	ua/ka	<25.0	1370	1370	1270	1430	93	104	80-120	12	20	
	~ 3/ 13									•		
m&p-Xylene	ua/ka	<50.0	2750	2750	2750	2920	100	106	70-130	6	20	
m&p-Xylene Methyl-tert-butyl eth	ug/kg er ua/ka	<pre><50.0 <25.0</pre>	2750 1370	2750 1370	2750 1510	2920 1480	100 110	106 108	70-130 70-130	6 3	20 20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

1270

1420

93

104

103

97

80-120

52-137

11 20

1370

REPORT OF LABORATORY ANALYSIS

4-Bromofluorobenzene (S)

ug/kg

%

<25.0

1370

Toluene

Project: C8108 MONONA Pace Project No.: 40209655

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 2071	706		2071707	7						
			MS	MSD								
		40209786006	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Dibromofluoromethane (S)	%						113	106	58-145			
Toluene-d8 (S)	%						104	95	56-140			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Proiect:	C8108 MONONA

Pace Project No.: 40209655

QC Batch:	358021	Analysis Method:	EPA 8260
QC Batch Method:	EPA 8260	Analysis Description:	8260 MSV
		Laboratory:	Pace Analytical Services - Green Bay
Associated Lab Sam	ples: 40209655004, 40209655006, 4	0209655014	

METHOD BLANK: 2070902	2	Matrix:	Water		
Associated Lab Samples:	40209655004, 40209655006, 4	10209655014			
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1.1.1.2-Tetrachloroethane	ua/L	<0.27	1.0	06/19/20 05:58	
1.1.1-Trichloroethane	ug/L	<0.24	1.0	06/19/20 05:58	
1.1.2.2-Tetrachloroethane	ua/L	<0.28	1.0	06/19/20 05:58	
1.1.2-Trichloroethane	ug/L	<0.55	5.0	06/19/20 05:58	
1,1-Dichloroethane	ug/L	<0.27	1.0	06/19/20 05:58	
1,1-Dichloroethene	ug/L	<0.24	1.0	06/19/20 05:58	
1.1-Dichloropropene	ua/L	<0.54	1.8	06/19/20 05:58	
1.2.3-Trichlorobenzene	ua/L	<2.2	7.4	06/19/20 05:58	
1.2.3-Trichloropropane	ua/L	<0.59	5.0	06/19/20 05:58	
1,2,4-Trichlorobenzene	ug/L	< 0.95	5.0	06/19/20 05:58	
1,2,4-Trimethylbenzene	ua/L	<0.84	2.8	06/19/20 05:58	
1,2-Dibromo-3-chloropropane	ug/L	<1.8	5.9	06/19/20 05:58	
1.2-Dibromoethane (EDB)	ua/L	<0.83	2.8	06/19/20 05:58	
1.2-Dichlorobenzene	ua/L	<0.71	2.4	06/19/20 05:58	
1,2-Dichloroethane	ug/L	<0.28	1.0	06/19/20 05:58	
1,2-Dichloropropane	ug/L	<0.28	1.0	06/19/20 05:58	
1,3,5-Trimethylbenzene	ug/L	<0.87	2.9	06/19/20 05:58	
1,3-Dichlorobenzene	ug/L	<0.63	2.1	06/19/20 05:58	
1,3-Dichloropropane	ug/L	<0.83	2.8	06/19/20 05:58	
1,4-Dichlorobenzene	ug/L	<0.94	3.1	06/19/20 05:58	
2,2-Dichloropropane	ug/L	<2.3	7.6	06/19/20 05:58	
2-Chlorotoluene	ug/L	<0.93	5.0	06/19/20 05:58	
4-Chlorotoluene	ug/L	<0.76	2.5	06/19/20 05:58	
Benzene	ug/L	<0.25	1.0	06/19/20 05:58	
Bromobenzene	ug/L	<0.24	1.0	06/19/20 05:58	
Bromochloromethane	ug/L	<0.36	5.0	06/19/20 05:58	
Bromodichloromethane	ug/L	<0.36	1.2	06/19/20 05:58	
Bromoform	ug/L	<4.0	13.2	06/19/20 05:58	
Bromomethane	ug/L	<0.97	5.0	06/19/20 05:58	
Carbon tetrachloride	ug/L	<1.1	3.6	06/19/20 05:58	
Chlorobenzene	ug/L	<0.71	2.4	06/19/20 05:58	
Chloroethane	ug/L	<1.3	5.0	06/19/20 05:58	
Chloroform	ug/L	<1.3	5.0	06/19/20 05:58	
Chloromethane	ug/L	<2.2	7.3	06/19/20 05:58	
cis-1,2-Dichloroethene	ug/L	<0.27	1.0	06/19/20 05:58	
cis-1,3-Dichloropropene	ug/L	<3.6	12.1	06/19/20 05:58	
Dibromochloromethane	ug/L	<2.6	8.7	06/19/20 05:58	
Dibromomethane	ug/L	<0.94	3.1	06/19/20 05:58	
Dichlorodifluoromethane	ug/L	<0.50	5.0	06/19/20 05:58	
Diisopropyl ether	ug/L	<1.9	6.3	06/19/20 05:58	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: C8108 MONONA Pace Project No.: 40209655

METTOD DEAM. 2010302 Matrix. Watch	
Associated Lab Samples: 40209655004, 40209655006, 40209655014	
Blank Reporting	
Parameter Units Result Limit Analyzed Qualifi	iers
Ethylbenzene ug/L <0.32 1.1 06/19/20 05:58	
Hexachloro-1,3-butadiene ug/L <1.5 4.9 06/19/20 05:58	
Isopropylbenzene (Cumene) ug/L <1.7 5.6 06/19/20 05:58	
m&p-Xylene ug/L <0.47 2.0 06/19/20 05:58	
Methyl-tert-butyl ether ug/L <1.2 4.2 06/19/20 05:58	
Methylene Chloride ug/L <0.58 5.0 06/19/20 05:58	
n-Butylbenzene ug/L <0.71 2.4 06/19/20 05:58	
n-Propylbenzene ug/L <0.81 5.0 06/19/20 05:58	
Naphthalene ug/L <1.2 5.0 06/19/20 05:58	
o-Xylene ug/L <0.26 1.0 06/19/20 05:58	
p-Isopropyltoluene ug/L <0.80 2.7 06/19/20 05:58	
sec-Butylbenzene ug/L <0.85 5.0 06/19/20 05:58	
Styrene ug/L <3.0 10.0 06/19/20 05:58	
tert-Butylbenzene ug/L <0.30 1.0 06/19/20 05:58	
Tetrachloroethene ug/L <0.33 1.1 06/19/20 05:58	
Toluene ug/L <0.27 0.90 06/19/20 05:58	
trans-1,2-Dichloroethene ug/L <0.46 1.5 06/19/20 05:58	
trans-1,3-Dichloropropene ug/L <4.4 14.6 06/19/20 05:58	
Trichloroethene ug/L <0.26 1.0 06/19/20 05:58	
Trichlorofluoromethane ug/L <0.21 1.0 06/19/20 05:58	
Vinyl chloride ug/L <0.17 1.0 06/19/20 05:58	
4-Bromofluorobenzene (S) % 83 70-130 06/19/20 05:58	
Dibromofluoromethane (S) % 73 70-130 06/19/20 05:58	
Toluene-d8 (S) % 96 70-130 06/19/20 05:58	

LABORATORY CONTROL SAMPLE: 2070903

		Spike	LCS	LCS	% Rec		
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers	
1,1,1-Trichloroethane	ug/L		42.4	85	70-130		
1,1,2,2-Tetrachloroethane	ug/L	50	41.0	82	64-131		
1,1,2-Trichloroethane	ug/L	50	52.2	104	70-130		
1,1-Dichloroethane	ug/L	50	41.3	83	69-163		
1,1-Dichloroethene	ug/L	50	43.7	87	77-123		
1,2,4-Trichlorobenzene	ug/L	50	44.3	89	68-130		
1,2-Dibromo-3-chloropropane	ug/L	50	42.2	84	63-130		
1,2-Dibromoethane (EDB)	ug/L	50	48.8	98	70-130		
1,2-Dichlorobenzene	ug/L	50	50.5	101	70-130		
1,2-Dichloroethane	ug/L	50	44.0	88	78-142		
1,2-Dichloropropane	ug/L	50	50.8	102	86-134		
1,3-Dichlorobenzene	ug/L	50	49.8	100	70-130		
1,4-Dichlorobenzene	ug/L	50	52.2	104	70-130		
Benzene	ug/L	50	46.0	92	70-130		
Bromodichloromethane	ug/L	50	51.7	103	70-130		
Bromoform	ug/L	50	55.0	110	70-130		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: C8108 MONONA

Pace Project No.: 40209655

LABORATORY CONTROL SAMPLE: 2070903

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Bromomethane	ug/L		37.9	76	39-129	
Carbon tetrachloride	ug/L	50	49.8	100	70-132	
Chlorobenzene	ug/L	50	53.4	107	70-130	
Chloroethane	ug/L	50	39.1	78	66-140	
Chloroform	ug/L	50	42.7	85	75-132	
Chloromethane	ug/L	50	41.5	83	32-143	
cis-1,2-Dichloroethene	ug/L	50	40.7	81	70-130	
cis-1,3-Dichloropropene	ug/L	50	47.1	94	70-130	
Dibromochloromethane	ug/L	50	52.6	105	70-130	
Dichlorodifluoromethane	ug/L	50	37.5	75	10-141	
Ethylbenzene	ug/L	50	53.0	106	80-120	
Isopropylbenzene (Cumene)	ug/L	50	53.6	107	70-130	
m&p-Xylene	ug/L	100	111	111	70-130	
Methyl-tert-butyl ether	ug/L	50	35.7	71	61-129	
Methylene Chloride	ug/L	50	40.6	81	70-130	
o-Xylene	ug/L	50	53.5	107	70-130	
Styrene	ug/L	50	53.3	107	70-130	
Tetrachloroethene	ug/L	50	57.1	114	70-130	
Toluene	ug/L	50	52.8	106	80-120	
trans-1,2-Dichloroethene	ug/L	50	41.9	84	70-130	
trans-1,3-Dichloropropene	ug/L	50	44.0	88	69-130	
Trichloroethene	ug/L	50	56.6	113	70-130	
Trichlorofluoromethane	ug/L	50	47.2	94	75-145	
Vinyl chloride	ug/L	50	44.1	88	51-140	
4-Bromofluorobenzene (S)	%			99	70-130	
Dibromofluoromethane (S)	%			86	70-130	
Toluene-d8 (S)	%			96	70-130	

MATRIX SPIKE & MATRIX SP	PIKE DUPL	LICATE: 2070	908 MS	MSD	2070909	1						
		40209670003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1,1-Trichloroethane	ug/L	<1.0	50	50	42.4	39.7	85	79	70-130	7	20	
1,1,2,2-Tetrachloroethane	ug/L	<1.0	50	50	41.1	40.3	82	81	64-137	2	20	
1,1,2-Trichloroethane	ug/L	<5.0	50	50	52.3	50.9	105	102	70-137	3	20	
1,1-Dichloroethane	ug/L	<1.0	50	50	40.9	39.4	82	79	69-163	4	20	
1,1-Dichloroethene	ug/L	<1.0	50	50	42.7	40.4	85	81	77-129	5	20	
1,2,4-Trichlorobenzene	ug/L	<5.0	50	50	37.6	36.2	74	72	68-130	4	20	
1,2-Dibromo-3- chloropropane	ug/L	<5.9	50	50	43.4	42.9	87	86	60-130	1	20	
1,2-Dibromoethane (EDB)	ug/L	<2.8	50	50	49.3	48.3	99	97	70-130	2	20	
1,2-Dichlorobenzene	ug/L	<2.4	50	50	49.3	46.7	98	93	70-130	5	20	
1,2-Dichloroethane	ug/L	<1.0	50	50	45.5	42.7	91	85	78-145	6	20	
1,2-Dichloropropane	ug/L	<1.0	50	50	50.7	48.1	101	96	86-135	5	20	
1,3-Dichlorobenzene	ug/L	<2.1	50	50	47.1	44.7	94	89	70-130	5	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: C8108 MONONA

Pace Project No.: 40209655

MATRIX SPIKE & MATRIX SP	PIKE DUP	LICATE: 2070	908		2070909)						
			MS	MSD								
		40209670003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,4-Dichlorobenzene	ug/L	<3.1	50	50	49.6	46.9	98	93	70-130	5	20	
Benzene	ug/L	<1.0	50	50	47.4	44.1	94	88	70-136	7	20	
Bromodichloromethane	ug/L	<1.2	50	50	50.4	48.1	101	96	70-130	5	20	
Bromoform	ug/L	<13.2	50	50	53.5	52.6	107	105	69-130	2	20	
Bromomethane	ug/L	<5.0	50	50	38.6	34.6	77	69	39-138	11	20	
Carbon tetrachloride	ug/L	<3.6	50	50	47.8	43.6	96	87	70-142	9	20	
Chlorobenzene	ug/L	<2.4	50	50	53.9	50.3	107	100	70-130	7	20	
Chloroethane	ug/L	<5.0	50	50	38.5	36.7	77	73	61-149	5	20	
Chloroform	ug/L	<5.0	50	50	42.4	40.6	85	81	75-133	4	20	
Chloromethane	ug/L	<7.3	50	50	41.1	38.8	81	77	32-143	6	20	
cis-1,2-Dichloroethene	ug/L	<1.0	50	50	41.7	39.9	82	78	70-130	5	20	
cis-1,3-Dichloropropene	ug/L	<12.1	50	50	46.7	44.9	93	90	70-130	4	20	
Dibromochloromethane	ug/L	<8.7	50	50	52.5	49.3	105	99	70-130	6	20	
Dichlorodifluoromethane	ug/L	<5.0	50	50	28.7	26.8	57	54	10-141	7	20	
Ethylbenzene	ug/L	<1.1	50	50	52.2	48.5	104	97	80-120	7	20	
Isopropylbenzene (Cumene)	ug/L	<5.6	50	50	51.8	47.7	104	95	70-130	8	20	
m&p-Xylene	ug/L	<2.0	100	100	110	99.9	110	100	70-130	10	20	
Methyl-tert-butyl ether	ug/L	<4.2	50	50	36.7	35.9	73	72	61-136	2	20	
Methylene Chloride	ug/L	<5.0	50	50	41.4	39.1	83	78	68-137	6	20	
o-Xylene	ug/L	<1.0	50	50	51.5	48.8	103	98	70-130	5	20	
Styrene	ug/L	<10.0	50	50	51.3	48.1	103	96	70-130	7	20	
Tetrachloroethene	ug/L	<1.1	50	50	54.0	50.2	108	100	70-130	7	20	
Toluene	ug/L	<0.90	50	50	51.6	49.2	103	98	80-120	5	20	
trans-1,2-Dichloroethene	ug/L	<1.5	50	50	42.1	40.1	84	80	70-130	5	20	
trans-1,3-Dichloropropene	ug/L	<14.6	50	50	44.6	43.3	89	87	69-130	3	20	
Trichloroethene	ug/L	<1.0	50	50	55.3	52.5	111	105	70-130	5	20	
Trichlorofluoromethane	ug/L	<1.0	50	50	42.3	38.8	85	78	74-157	9	20	
Vinyl chloride	ug/L	<1.0	50	50	42.1	39.8	84	79	51-140	6	20	
4-Bromofluorobenzene (S)	%						98	98	70-130			
Dibromofluoromethane (S)	%						71	80	70-130			
Toluene-d8 (S)	%						96	96	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:	C8108 MONONA
Pace Project No.:	40209655

1 ace 1 10ject 110 402090	55				
QC Batch: 35789	8	Analysis Meth	nod: El	PA 8260	
QC Batch Method: EPA 8	260	Analysis Des	cription: 82	260 MSV UST-WAT	ER
		Laboratory:	Pa	ace Analytical Servi	ces - Green Bay
Associated Lab Samples:	40209655002, 40209655008	,		,	,
METHOD BLANK: 207024	5	Matrix:	Water		
Associated Lab Samples:	40209655002, 40209655008				
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,2,4-Trimethylbenzene	ug/L	<0.84	2.8	06/19/20 16:08	
1,3,5-Trimethylbenzene	ug/L	<0.87	2.9	06/19/20 16:08	
Benzene	ug/L	<0.25	1.0	06/19/20 16:08	
Ethylbenzene	ug/L	<0.32	1.1	06/19/20 16:08	
m&p-Xylene	ug/L	<0.47	2.0	06/19/20 16:08	
Methyl-tert-butyl ether	ug/L	<1.2	4.2	06/19/20 16:08	
Naphthalene	ug/L	<1.2	5.0	06/19/20 16:08	
o-Xylene	ug/L	<0.26	1.0	06/19/20 16:08	
Toluene	ug/L	<0.27	0.90	06/19/20 16:08	
4-Bromofluorobenzene (S)	%	92	70-130	06/19/20 16:08	
Dibromofluoromethane (S)	%	104	70-130	06/19/20 16:08	

LABORATORY CONTROL SAMPLE: 2070246

%

Toluene-d8 (S)

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Benzene	ug/L	50	48.4	97	70-130	
Ethylbenzene	ug/L	50	54.3	109	80-120	
m&p-Xylene	ug/L	100	114	114	70-130	
Methyl-tert-butyl ether	ug/L	50	44.8	90	61-129	
o-Xylene	ug/L	50	53.7	107	70-130	
Toluene	ug/L	50	56.1	112	80-120	
4-Bromofluorobenzene (S)	%			97	70-130	
Dibromofluoromethane (S)	%			114	70-130	
Toluene-d8 (S)	%			100	70-130	

96

70-130 06/19/20 16:08

MATRIX SPIKE & MATRIX SP	IKE DUPI	LICATE: 2070	247		2070248	1						
			MS	MSD								
		40209447006	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Benzene	ug/L	<1.0	50	50	49.7	49.1	99	98	70-136	1	20	
Ethylbenzene	ug/L	<1.0	50	50	51.5	49.2	103	98	80-120	5	20	
m&p-Xylene	ug/L	<0.47	100	100	106	99.9	106	100	70-130	6	20	
Methyl-tert-butyl ether	ug/L	<5.0	50	50	53.7	53.1	100	99	61-136	1	20	
o-Xylene	ug/L	<0.26	50	50	52.1	50.0	104	100	70-130	4	20	
Toluene	ug/L	<1.0	50	50	56.8	54.3	114	109	80-120	4	20	
4-Bromofluorobenzene (S)	%						97	98	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: C8108 MONONA Pace Project No.: 40209655

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 2070	247		2070248	3						
			MS	MSD								
		40209447006	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Dibromofluoromethane (S)	%						111	114	70-130			
Toluene-d8 (S)	%						100	100	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	C8108	MONONA								
Pace Project No.:	402096	55								
QC Batch:	35828	34		Analysis Meth	iod:	ASTM D2974-8	7			
QC Batch Method:	ASTM	1 D2974-87		Analysis Desc	cription:	Dry Weight/Pero	cent Moistur	е		
				Laboratory:		Pace Analytical	Services - G	reen Ba	ау	
Associated Lab San	nples:	40209655001, 40209655012,	40209655003, 40209655013	40209655005, 40	209655007,	40209655009, 4	4020965501	0, 4020	9655011,	
SAMPLE DUPLICA	TE: 20	72628								
				40209542001	Dup		Ma	K		
Paran	neter		Units	Result	Result	RPD	RPI)	Qualifiers	
Percent Moisture			%	15.2	15	.4	1	10		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: C8108 MONONA

Pace Project No.: 40209655

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor, percent moisture, initial weight and final volume.

LOQ - Limit of Quantitation adjusted for dilution factor, percent moisture, initial weight and final volume.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

- HS Results are from sample aliquot taken from VOA vial with headspace (air bubble greater than 6 mm diameter).
- W Non-detect results are reported on a wet weight basis.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:	C8108 MONONA
Pace Project No.:	40209655

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40209655005	GP-2	EPA 5035/5030B	358157	EPA 8260	358161
40209655007	GP-3	EPA 5035/5030B	358157	EPA 8260	358161
40209655001	GP-6 6-9	EPA 5035/5030B	358151	EPA 8260	358152
40209655003	GP-1	EPA 5035/5030B	358151	EPA 8260	358152
40209655009	GP-4 6-8	EPA 5035/5030B	358151	EPA 8260	358152
40209655010	GP-4 2-4	EPA 5035/5030B	358151	EPA 8260	358152
40209655011	GP-5 2-5	EPA 5035/5030B	358151	EPA 8260	358152
40209655012	GP-5 6-8	EPA 5035/5030B	358151	EPA 8260	358152
40209655013	GP-6 2-5	EPA 5035/5030B	358151	EPA 8260	358152
40209655004	GP-2	EPA 8260	358021		
40209655006	GP-3	EPA 8260	358021		
40209655014	TRIP BLANK	EPA 8260	358021		
40209655002	GP-1	EPA 8260	357898		
40209655008	GP-4	EPA 8260	357898		
40209655001	GP-6 6-9	ASTM D2974-87	358284		
40209655003	GP-1	ASTM D2974-87	358284		
40209655005	GP-2	ASTM D2974-87	358284		
40209655007	GP-3	ASTM D2974-87	358284		
40209655009	GP-4 6-8	ASTM D2974-87	358284		
40209655010	GP-4 2-4	ASTM D2974-87	358284		
40209655011	GP-5 2-5	ASTM D2974-87	358284		
40209655012	GP-5 6-8	ASTM D2974-87	358284		
40209655013	GP-6 2-5	ASTM D2974-87	358284		

D F S	4							8	3	20	3	80	bà I	5	2	Å	<u>8</u>	100	\mathcal{B}	400	Ř	5	5				- 10 - 1									
Solution Spec	7-7 Sa	Fax:	Email #2:	Email #1:	Transmit Preli	v	(Rush T/	Duch Tur	3	000	840	0071	00e	38GR 4	dor M	ę	83	8	2 2	89 9	8	PACE LAB #	Č □ EPA		Data Packag	PO #	Sampled By (S	Sampled By (P	Project State:	Project Name:	Project Numbe	Phone:	Project Contac	Branch/Locatic	Company Nam	
In pricing and release of liability	mples on HOLD are subject to				m Rush Results by (complete what you wa	Date Needed: 6/24/202	AT subject to approval/surcharge)	naround Time Remuested - Prelim		80' 1' - 6- B	りょう シダン	GP-4 2-4	6 p-1 8-8		GA-79 GP-3	GP-3	GP-2	GP-2	GP-1	SP-1	GP-6-6-9	CLIENT FIELD ID	Level IV I NOT needed on S your sample si	Level III (billable)	e Options MS/MSD		Ign): U.S.	rint): 12 ENNIS 14	w1	throwould.	" C 8108	608-273-275	* DEWNUJ LUE	ŝ	•: 10 ALPERTUC	(Please Print Clearly)
Z	Relinquished By:		Relinauished By:	Relinquished By:	MA TTCO	Pelinquished By;	" Law o		A lline C	11/ 11:2, 5		S WORLD		HA W	10A 5	10A W	Gis S	9:31 W	9A 5	1 P GAW	< 5111 × 1/2	DATE TIME MATRIX	= Soil WW = Waste Water = Sludge WP = Wipe	= Biota DW = Drinking Water = Charcoal GW = Ground Water	Matrix Codes	Regulatory Program:)	PRESERVATION	FILTERED7 (YESINO)	H=Sodium Bisult	A=None B=H		Low /			
×	Date/Time:		Date/Time:	Date/Time:	0-17-00 UM10	Date/Time:	the child of the	Date/Time:		× ×	××		XX	×	XX	R	XX	×	× ×	×	X Y.	Pv	Analy <u>V</u> <u>V</u> 50	/ses 1	Req1 <u>C</u> <u>A</u> <u>S</u>	ieste 식기	d MC	Latter ST (YIN I	fate Solution I≕Sodium Thiosuitate J≍Oth	*Preservation Codes ICL C=H2SO4 D=HNO3 E=DI Water F=Me	HAIN OF CUST		ace Analytical)
-	Received By:		Received By:	Received By:	ANIMIAN &	Received By:		Received By:																							sthanol G=NaOH				MN: 612-607-1700	UPPER MIDWEST
	Date/Time:		Date/Time:	Date/Time:	- White Tare 6-17	Date/Time:		Date/Time:						GP-4 WATER								COMMENTS	CLIENT	Invoice To Phone:		Invoice To Address:	Invoice To Company:	Invoice To Contact:		Mail To Address:	Mail To Company:	Mail To Contact:	Quote #:) WI: 920-469-2436	REGION
Version 60 08/14/08 ORIGINAL	Present / Not Present)	Cooler Custody Sea	OK / Adjusted	Sample Receipt pH	も0410 Receipt Temp = ROH °c		- HONMISC	PACE Project No.		Shipment MUR 6-17	blank necerved in	in the page of the			A BLOTT	0, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	Con San Con	INC WE		SEVEN JUNE	NOR AK	(Lab Use Only)	LAB COMMENTS Profile #				Elma		MADISON, EN 1 5774	ZBBO JON ATTHON CIR	IU SAC TESCH LIG	USWNU I USPEGN		CSALORAD	-))) 10 of	Page 1 of 1

AG5U 100 mL ar AG2S 500 mL ar	AG4U 120 mL ar	BG1U 1 liter clea AG1H 1 liter amt AG4S 125 mL ar	AG1U 1 liter amt	n -	020	019	018	017	016	015	014	013	012	011	010	600	800	007	900	005	004	003	002	001	ag1U BG1U	All contail
nber glass unpre nber glass H2SO	nber glass unpre	ar glass per glass HCL mber glass H2SC	servation check: -V)																	-				AG1H AG4S <u>െ</u> AG4U	ners needing prese
¥ ^s	BP3S	04 BP3E BP3E	Coliform, TO																						AG5U AG2S BG3U	Ivation have been
	250 mL plast	J 250 mL plast 250 mL plast 250 mL plast	C, TOX, TOH, O&				NIC 7																		BP1U BP3U BP3B	Lab Lot# of p
	ic H2SO4	ic unpres ic NaOH ic HNO3	G, WI DRO, Phen			Me+1-1-																			BP3N BP3S VG9A	ed below: ⊡Yes ⊡ ìH paper:
VG9D 40	VG9M 40	DG9T 40 VG9U 40	olics, Other:														G		2		8		3		DG91 VG9U <u>≤</u> VG9H	vo vr i/A Lab S
) mL clear vial) mL clear vial) mL amber Na) mL clear vial) mL clear vial) mL clear asco]																		VG9M	Std #ID of preser
D	MeOH	a Thio unpres HCL	space in VOA Via orbic																						JG9U WGFU WPFU	rvation (if pH adji
ZPLC zi	SP5T 12	JG9U WGFU WPFU	als (>6mm) 🔆																						SP5T General	usted):
bloc bag	0 mL plastic	oz amber jar oz clear jar u oz clear jar u	hes ano ani/A								-								S						GN VOA Vials (>6mm) * H2SO4 pH ≤2	
	Na Thiosulfat	unpres npres unpres	*If yes look in]																				NaOH+Zn Act pH ≥9 NaOH pH ≥12	completed:
	ē		headspace co																						HNO3 pH ≤2 pH after adjusted	Time:
			olumn	/	2.5/5/10	2.5/5/10	2.5/5/10	2.5/5/10	2.5/5/10	2.5/5/10	2.5/5/10	2.5 / 5 / 10	2.5/5/10	2.5 / 5 / 10	2.5/5/10	2.5 / 5 / 10	2.5/5/10	2.5/5/10	2.5/5/10	2.5/5/10	2.5/5/10	2.5/5/10	2.5/5/10	2.5/5/10	Volume (mL)	

C cuzuzu) Sample rieservation Receipt Form

Page 41 of 42

Pace Analytical®	Sample Conditio	n Upon Receipt (SCUR ument No.:) Document Revise	d: 26Mar2020 pr:
1241 Bellevue Street, Green Bay, WI 54302	ENV-FRM-G	BAY-0014-Rev.00	Pace Green Bay	Quality Office
Sample Co	ondition Upo	n Receipt Form (SCUR)	
		Project #:	antina area transmissiona Alexanti Artina di Antonio di Antonio di Antonio Antonio di Antonio di Antonio di Antonio	indinan atata ang atata
lient Name: Typetech 1-1-(
ourier: □ CS Logistics □ Fed Ex □ Speedee		Valtco	WO#:402	209655
Client Pace Other:	· • • • • • • • • • • • • • • • • • • •			
acking #: 2468756-1				
ustody Seal on Cooler/Box Present: 🗖 yes 🔀	no Seals intact	: 🗖 yes 🦵 no	0209655	
ustody Seal on Samples Present: 🔳 yes 🎾 no	Seals intact	: 🗋 yes 🗖 no 👘	•	
acking Material: Webble Wrap Webble	Bags Non	e 🥅 Other		
nermometer Used <u>SR - n /4</u> T	ype of Ice: Ver	Blue Dry None	Samples on ice, cooli Perso	ng process has begun
Black Present	Biological	Tissua is Frazan: 🥅 🗤		
$mp \text{ biank resent: } yes \times n0$	Divioyical	1330E 13 1 102CII. 1 91		ri-m)/Initials: MUK
ota Samples may be received at $\leq 0^{\circ}$ C if shipped on Dry I	ce.		Labeled	By Initials:
nain of Custody Present:	Kes □No □N/A	1.		
nain of Custody Filled Out:	∃Yes 🎾 ON/A	2. invoice to one	ne, meservat	rn Milbi
nain of Custody Relinquished:	🎢 es □No □N/A	3.	· · ·	
ampler Name & Signature on COC:	ØYes □No □N/A	4.		
amples Arrived within Hold Time:	X Yes □No	5.		
- VOA Samples frozen upon receipt]Yes □No	Date/Time:		
hort Hold Time Analysis (<72hr):	Yes 🗆 No	6.		
ush Turn Around Time Requested:	□Yes X	7.		
ufficient Volume:		8.		
For Analysis: ₩ves □No MS/MSD: [∃Yes XNo □N/A			
orrect Containers Used:	XYes 🗆 No	9.		
-Pace Containers Used:	¥res □No □N/A			
-Pace IR Containers Used:	∃Yes □No Ďk A/A	an an an an Array ann an Array an Array an Array an Array a Array an Array an Arr		
ontainers Intact	Ryes DNo	10		
iltered volume received for Dissolved tests		11	Call	MLR 6-17-27
ample Labels match COC		12 003 WPFU (11ar 1300 ac	1 V69M - NO
-Includes date/time/ID/Analysis Matrix S	+ IN	have ADAVAGAN	17.20 - 11 A"	MI 1 1
rip Blank Present:		13.1 AN A Jalad	the blank	NUINA in
rip Blank Custody Seals Present		Los vadea	Ment	munun II ·
ace Trip Blank Lot # (if purchased): 447		1 COC TU Shin	pricevi	MCL 6-17-2
lient Notification/ Resolution:		If check	ed, see attached form for	r additional comments
Person Contacted:	Date/	/Time:		
				en e

Appendix D

Excavation Area

© Knothe & Bruce Architects, LLC

Appendix E

Vapor Mitigation Details

I:\25213084\Drawings-General\Vapor Barrier Details.dwg, 12/12/2013 2:23:45 PM