Site Investigation Report Former Mirro Plant #20 Chilton, Wisconsin WDNR BRRTS Nos. 06-08-426946, 02-08-520157, and 07-08-402366 SEH No. A-NERUB0502.00 August 2006 Multidisciplined. Single Source. Trusted solutions for more than 75 years. August 21, 2006 RE: Former Mirro Plant #20 Site Investigation Report Chilton, Wisconsin WDNR BRRTS Nos. 06-08-426946, 02-08-520157, and 07-08-402366 SEH No. A-NERUB0502.00 Mr. Alan Nass, Hydrogeologist Wisconsin Department of Natural Resources 2984 Shawano Avenue P.O. Box 10448 Green Bay, WI 54313 Dear Mr. Nass: On behalf of Newell Rubbermaid Inc. (Newell), Short Elliott Hendrickson Inc. (SEH®) is submitting this Site Investigation Report documenting the findings of site investigation activities conducted at the former Mirro Plant #20 facility located at 44 Walnut Street in Chilton, Wisconsin. Phase 1 and Phase II Environmental Site Assessments (ESAs) were previously completed at the site and were submitted to the Wisconsin Department of Natural Resources (WDNR) by others in 2001 and 2002. In a May 27, 2004 response letter to Newell, you indicated several additional areas of investigation that needed to be addressed at the site. A site visit conducted on July 24, 2004 was used to assess past practices at the site and further refine the scope of additional investigation activities. The purpose of the investigative activities performed was to assess degree and extent of apparent environmental impacts previously identified at the site, and to assess other potential areas of concern at the site. The supplemental investigation activities were performed from February through May 2006 in accordance with SEH's site work plan and your subsequent comments. Please call me at 920.452.6603 or Mr. Louis Meschede, Director of Environmental Affairs for Newell, at 630.481.1665 if you have any questions or comments pertaining to this report or SEH's recommendations for the site. Sincerely, F. Jason Martin, PE Project Manager JEG/ls/FJM/BKO q:\ko\nerub\050200\reports&specs\rep\si report.doc Site Investigation Report Former Mirro Plant #20 Chilton, Wisconsin Prepared for: Newell Rubbermaid Inc. Oak Brook, Illinois Prepared by: Short Elliott Hendrickson Inc. 809 North 8th Street, Suite 205 Sheboygan, WI 53081-4032 920.452.6603 I, John E. Guhl, hereby certify that I am a Hydrogeologist as that term is defined in s. NR 712.03(1) Wis. Adm. Code, and that, to the best of my knowledge, all of the information contained in this document is correct and the document was prepared in compliance with all applicable requirements in chs. NR 700 to 726, Wis. Adm. Code. Hydrogeologist PG Number August 21, 2006 Date I, F. Jason Martin, hereby certify that I am a registered professional engineer in the State of Wisconsin, registered in accordance with the requirements of ch. A-E 4, Wis. Adm. Code; that this document has been prepared in accordance with the Rules of Professional Conduct in ch. A-E 8, Wis. Adm. Code; and that, to the best of my knowledge, all information contained in this document is correct and the document was prepared in compliance with all applicable requirements in chs. NR 700 to 726, Wis. Adm. Code. F. Jason Martin, PE Project Manager Marta 32714 August 23, 2006 # **Distribution List** | No. of Copies | Sent to | |---------------|--| | 2 | Alan Nass, Hydrogeologist
Wisconsin Department of Natural Resources
2984 Shawano Avenue
P.O. Box 10448
Green Bay, WI 54313 | | 2 | Louis Meschede
Newell Rubbermaid Inc.
2707 Butterfield Road
Suite 100
Oak Brook, IL 60523 | | 1 | Arthur Garcia
Newell Rubbermaid Inc.
29 East Stephenson Street
Freeport, IL 61032 | # **Executive Summary** The Mirro Company manufactured aluminum, steel, and stainless steel cookware products from the 1920's until 2001 at their former Plant #20 facility located at 44 Walnut Street in Chilton, Wisconsin. Potential environmental concerns previously identified at the site included the former operation of several underground storage tanks (USTs) and aboveground storage tanks (ASTs), the presence of asbestos containing materials, water discharge points to the Manitowoc River, and various manufacturing process practices. Envirogen, Inc. performed a Phase I Environmental Site Assessment (ESA) of the facility in 2001. TEMCO performed a Phase II ESA of the subject property in 2002. Reports prepared by Envirogen and TEMCO identified areas of concern and areas of contamination at the site. Based on these findings and after the site was entered into Wisconsin Voluntary Party Liability Exemption (VPLE) program, the Wisconsin Department of Natural Resources (WDNR) determined that additional investigation of the subject property was required to identify degree and extent of contamination, and to determine if other areas of contamination exist on the property. A Site Work Plan was submitted to WDNR in August 2005 proposing a scope and methodology for additional investigation of the site. WDNR provided comments and a final agreement on investigation scope was provided by WDNR in January 2006. Field investigation activities began in February 2006. The investigation activities included the installation of six new groundwater monitoring wells/piezometers, collection of soil samples from several locations outside of the site building or below the building floor, installation of six slotted standpipes in the building basement for groundwater monitoring, collection of two rounds of groundwater samples from the site monitoring points, assessment of the floor drain and sump system, and assessment of the site discharges to the Manitowoc River. Soil and groundwater impacts were identified at the site during the site investigation. Soil Residual Contamination Levels (RCLs) were exceeded at several locations for arsenic (industrial site standard). Suggested RCLs for several polynuclear aromatic hydrocarbons (PAH) were also exceeded in soil samples collected at several locations. However, the PAH RCL values have not been codified and are recommendations at this time. The groundwater enforcement standard (ES) for 1,1,2,2-tetrachloroethane was exceeded in water samples collected from B5 and B5A (collected beneath the building floor near the former chrome and tin plating room). The ES for vinyl chloride was exceeded in a groundwater sample collected from standpipe B12 (east side of basement). No other ESs were exceeded in groundwater samples collected during the site investigation. Groundwater preventive action limits (PALs) were exceeded for several analytes at various sampling locations. Also, a floating oily substance (free-phase liquid) was observed in the east sump located near the elevator shaft. The groundwater surface below the plant is within six inches of the finished floor elevation. The floor trench system running to three sumps may have been installed to keep the basement from flooding due to high groundwater. All three basement sumps were operating periodically during the field investigation. Four discharge pipes were observed leading from the plant to the Manitowoc River. The first and third pipes from the north discharge water from sumps located in the basement of the facility. The southernmost pipe appears to be connected to roof drainage pipes running down the side of the building (this pipe is now broken on the side of the building and is no longer functional). The second pipe from the north also appears to be used for roof drainage; however, the pipe connection was not observed. The site investigation analytical results indicate that the extent of arsenic in site soils exceeding ch. NR 720, Wis. Adm. Code RCLs is widespread and generally does not appear to be associated with an on-site source area. The highest concentrations of arsenic in site soils were identified in near-surface soil samples collected near the railroad tracks on the south side of the site. The concentrations of arsenic appear to diminish both # **Executive Summary (Continued)** with depth beneath the surface, and with distance from the south side of the site. It appears likely the source of elevated arsenic at this location is not associated with past on-site activities. The sporadic and widespread RCL exceedances for arsenic on the remainder of the site may be associated with background concentrations of this substance. Groundwater ES exceedances at the site were limited to exceedances for 1,1,2,2-tetrachloroethane in the first round of samples collected from basement standpipes B5 and B5A, and a vinyl chloride exceedance in a groundwater sample collected from standpipe B12 during the second round of sampling. These locations are all beneath the site building. The VOC ES exceedances were only noted during one of two sampling events at a given location. No other groundwater ESs were exceeded during SEH's investigation. The ES exceedances identified at the site to-date are not consistent from sampling round to sampling round, and do not appear to be migrating off-site. Based on the results of SEH's site investigation, it appears that limited soil and groundwater contamination is present at the Former Mirro Plant #20 site. However, the only potential ongoing source of contamination is a layer of floating oil identified in the east sump. The remaining site contaminants appear to be scattered, and not likely to migrate offsite. SEH's recommendations for the site are to address the floating oil layer by removing this substance from the sump, and monitoring its return during subsequent groundwater sampling events. One year of quarterly groundwater sampling (two additional quarterly rounds of sampling) from the existing monitoring points is also recommended to further assess groundwater contaminants and potential for offsite migration. No additional soil investigation at the site appears to be warranted.
Recommendations for further action or site closure will be provided after the additional groundwater sampling is completed. # **Table of Contents** Letter of Transmittal Certification Page Distribution List **Executive Summary** Table of Contents | | Pa | ge | |------|---|----------------------| | 1.0 | Introduction | .1 | | | 1.1.2 Regulator Information | | | 2.0 | Background | .2 | | 3.0 | Physiographical and Geological Setting | .3
.3
.4
.4 | | 4.0 | 3.3.2 Local HydrogeologyPotential Migration Pathways and Receptors | .4 | | 5.0 | Site Investigation 5.1 Soil Borings, Monitoring Wells, and Piezometer Installation 5.2 Soil Sampling and Analysis 5.3 Groundwater Sampling and Analysis 5.4 Site Survey | .6
.8
.8 | | 6.0 | Investigation Results | .9
.9
10 | | 7.0 | Discussion1 | 10 | | 8.0 | Conclusions and Recommendations1 | 11 | | 9.0 | Standard of Care1 | 12 | | 10.0 | References | 13 | # **Table of Contents (Continued)** # **List of Tables** | Table 1 | Soil Analytical Results - DRO, PAHs, VOCs, and Metals | |---------|---| | Table 2 | Soil Analytical Results - Pesticides and PCBs | | Table 3 | Groundwater Analytical Results | # **List of Figures** | Figure 1 | Site Location | |----------|---------------------------------| | Figure 2 | Outfalls to Manitowoc River | | Figure 3 | Sampling Locations | | Figure 4 | Groundwater Flow Map, 5/30/2006 | | Figure 5 | Geologic Cross Sections | # **List of Appendices** | Appendix A | Soil Boring, Monitoring Well, and Piezometer Documentation | |------------|--| | Appendix B | Analytical Data | # **Site Investigation Report** #### Former Mirro Plant #20 Prepared for Newell Rubbermaid Inc. #### 1.0 Introduction On behalf of Newell Rubbermaid Inc. (Newell), Short Elliott Hendrickson Inc. (SEH®) is submitting this Site Investigation Report to the Wisconsin Department of Natural Resources (WDNR) for the former Mirro Plant #20 facility (site) located at 44 Walnut Street, Chilton, Wisconsin (BRRTS #06-08-426946, #02-08-520157, and 07-08-402366). The site is located in the NW ¼ of Section 18, T18N, R20E in Calumet County, Wisconsin as shown on Figure 1, "Site Location." This report documents the findings of site investigation activities conducted at the site from February through May 2006. #### 1.1 List of Contacts #### 1.1.1 Responsible Party Information Louis Meschede, Director of Environmental Affairs Newell Rubbermaid Inc. 2707 Butterfield Road, Suite 100 Oak Brook, IL 60523 630.481.1665 #### 1.1.2 Regulator Information Alan Nass, Hydrogeologist Wisconsin Department of Natural Resources 2984 Shawano Avenue P.O. Box 10448 Green Bay, WI 54313 920.662.5161 #### 1.1.3 Consultant Information F. Jason Martin, PE, Project Manager Short Elliott Hendrickson Inc. 809 North 8th Street, Suite 205 Sheboygan, WI 53081-4032 920.452.6603 # 2.0 Background Manufacturing activities at the former Mirro site consisted of production of aluminum, stainless steel, and steel cookware and bakeware products beginning in the 1920's and ending in 2001. Process operations historically included metal stamping, buffing, tin dipping, parts washing, welding, and application of spray-on coatings. Several different owners operated the facility during this timeframe. The site has since been vacated by Mirro, and is now occupied by a firm utilizing the warehouse space for storage of agriculture products, and by a machine shop located in the southeast portion of the building. The basement of the building is now vacant. During the Mirro plant operations, two 15,000-gallon fuel oil underground storage tanks (USTs) were located in the basement on the northeast side of the plant, and were reportedly abandoned in-place in 1996. Two small USTs (500-gallon and 250-gallon) formerly contained mineral spirits and were reportedly removed from the site in 1990. These USTs were reportedly located outside of the north building wall near the northwest corner of the building. Abandonment documentation was provided to regulatory agencies following removal and abandonment of the UST systems. Three aboveground storage tanks (ASTs) reportedly containing benzene were formerly located outside the southwest corner of the building. Three sumps are located in the basement of the site building and are currently in operation. A large sump is located inside of the north wall of the building. A small sump is located on the east side of the building adjacent to the elevator shaft. Another small sump is located just inside the west wall of the building. For the purposes of this report, the sumps have been named large sump, east sump, and west sump with respect to the above description. A system of shallow floor trenches is present in the basement floor feeding the sumps. Several of the trench covers are stenciled with a fish and note "discharge to stream." Four outfalls from the plant to the Manitowoc River are present at the site. Two outfalls discharge water from the three sumps located in the basement of the facility. The northernmost outfall discharges water from the large sump and east sump. The third outfall from the north discharges water from the west sump. The remaining two outfalls appear to be related to the roof drain system. The southernmost outfall is fed by an exterior roof drain pipe (now broken and no longer functioning). The second outfall from the north also appears to be fed by the roof drain system, although this connection was not directly observed. A wash water holding tank is present in the building basement, but discharge from this tank is to the City sanitary sewer system. The flow pattern of these outfalls is depicted on Figure 2, "Outfalls to Manitowoc River." An asbestos survey of the facility was conducted in 1990. Several potential asbestos containing materials (ACM) were identified, and a program for maintaining the ACM in good condition was implemented. A Phase I Environmental Site Assessment (ESA) was conducted on the site by Envirogen, Inc. in 2001. A Phase II ESA was conducted on the site in 2002 by TEMCO. Four groundwater monitoring wells were installed on the site during the TEMCO Phase II and were utilized to collect groundwater data during the current investigation. Several areas of concern or areas of contamination were identified at the site during the previous investigation. Soil contaminants identified during the previous investigations included widespread arsenic at concentrations exceeding the residual contaminant level (RCL) for industrial sites for this substance. No groundwater contaminants exceeding their respective enforcement standards (ES) were identified during the Phase I/Phase II ESA. However, the preventive action limits (PALs) for several analytes were exceeded at the site. The site was entered into the Voluntary Party Liability Exemption (VPLE) program in 2002 when the property was sold by Newell to Floor Space Development LLC. The WDNR reviewed the site data and toured the site in 2003 and 2004 to assess existing site conditions and make recommendations for additional site investigation. A May 27, 2004 letter submitted by WDNR to Newell outlined the scope of additional investigation activities to be performed at the site to address remaining areas of concern and to assess degree and extent of contamination at the site. SEH prepared a site work plan in accordance with ch. NR 716, Wis. Adm. Code, which was used along with WDNR comments to complete the site investigation. The following sections describe SEH's investigation of the site. ## 3.0 Physiographical and Geological Setting Section 3.0 summarizes the physiographical and geological setting of the site, including topography, drainage, regional and local geology, and regional and local hydrogeology. ## 3.1 Topography/Surface Drainage The topography of the site and vicinity is relatively flat. The area generally slopes to the west and northwest toward the Manitowoc River, which flows along the west and northwest site property line. Surface water at the site is generally expected to drain to the Manitowoc River. Surface elevation at the site is approximately 860 feet above mean sea level (MSL), as presented on Figure 1. ## 3.2 Geology Geological conditions at and near the site are summarized in the following Sections 3.2.1 and 3.2.2. #### 3.2.1 Regional Geology The Chilton area is underlain by glacial ground moraine deposits comprised of unstratified clays, silts, sand, gravel, and boulders (Skinner, 1973). Thickness of unconsolidated deposits in the Chilton area is generally less than 50 feet (Skinner, 1973). Silurian aged dolomite deposits underlie the unconsolidated deposits in the Chilton area (Ostrom, 1981). The Silurian dolomites are typically several hundred feet thick in Calumet County, and are underlain by the Ordovician aged Maquoketa Shale, which separates the Silurian deposits from a thick sequence of Ordovician and Cambrian sandstones and dolomites. #### 3.2.2 Local Geology According to the United States Department of Agriculture (USDA), Natural Resources Conservation Service (NRCS) publication "Soil Survey of Calumet and Manitowoc Counties, Wisconsin (1980)," site soils have been classified as Lamartine (LmA) silt loam and Manawa (MbA) silt loam in the upper 20 inches of the soil profile. Generally, the LmA soils are located on the southern portion of the site, and the MbA soils are located on the northern portion of the site. These gently sloping, somewhat poorly drained soils form 0 to 3 percent slopes generally in drainageways or in till plains. The surficial layer (0 to 8 inches) generally consists of very dark brown to grayish-brown soils underlain by yellowish-brown to reddish-brown soils with depth. Permeability of
these soils is moderate to slow. The drilling program performed by SEH at the site provided subsurface information to a depth of 28 feet below ground surface (maximum depth penetrated during investigation activities). The soils at each boring location were classified in accordance with the Unified Soil Classification System (USCS). Fill materials consisting of sands with some gravels, gravels, and clays were encountered to depths ranging from 4.5 feet to 8 feet below ground surface in the area of investigation. On the northern and western portions of the site, and beneath the site building, the fill soils were underlain by layers of sand and silty sand (likely alluvial deposits). Soils underlying the fill on the southern and eastern portions of the site were underlain by lean clays and silts (likely glacial ground moraine deposits). Bedrock was not encountered during the site investigation. ## 3.3 Hydrogeology Hydrogeological conditions at and near the site are summarized in the following Sections 3.3.1 and 3.3.2. #### 3.3.1 Regional Hydrogeology Zaporozec and Cotter (1985) include the Chilton area in the "Eastern Drift – Paleozoic Hydrogeologic District." The district is typified by a deep high-capacity Cambrian and Ordovician sandstone aquifer and a shallower Silurian dolomite aquifer separated by the Maquoketa shale confining layer. The dolomite aquifer is the primary municipal water supply aquifer in the eastern portion of the district (in the site vicinity). Sand and gravel aquifers in the district are quite discontinuous, and are typically used as the primary source of water where these deposits are present in buried bedrock valleys. #### 3.3.2 Local Hydrogeology A total of nine monitoring wells and one piezometer have been installed at the site to-date in order to assess groundwater conditions. In addition, five temporary screened standpipes and one deep standpipe were installed through the floor of the building basement in order to collect groundwater samples and monitor groundwater elevations at these locations. The water surface of the Manitowoc River was also surveyed at four locations so this data could be added to the subsurface flow patterns for the site. The locations of these monitoring points are provided on Figure 3, "Sampling Locations." The static water table at the site was present at approximately 3 to 12 feet below ground surface. Data from monitoring well MW-5 and associated nested piezometer PZ-5 as well as standpipes B5 and B5A indicates an upward gradient at these two locations indicating a groundwater discharge zone. Direction of shallow groundwater flow at the site appears to be generally to the north and toward the Manitowoc River. However, it appears the pumping and discharge from the three sumps in the basement of the facility over time have created a slight groundwater depression underneath the building. The horizontal hydraulic gradient (disregarding the groundwater depression under the building) at the site is approximately 0.007 ft/ft toward the north. Groundwater elevation isocontours are presented on Figure 4, "Groundwater Flow Map, 5/30/2006." ## 4.0 Potential Migration Pathways and Receptors Potential receptors appear to be limited to the shallow groundwater table and possibly direct contact to arsenic in shallow soils. Arsenic was detected exceeding its RCL at six unpaved locations within the upper four feet of soils. Surface water could be impacted if contaminants in groundwater migrated to the Manitowoc River or if contaminants are present in the sump discharge. Exposure to groundwater is unlikely since contamination exceeding ESs was only identified at two locations beneath the site building and does not appear to be migrating offsite. Exposure to arsenic in soils may be occurring, but the concentrations of arsenic identified in soil samples collected at the site may be background concentrations and not related to past activities at the site. Significant contaminant discharge to the Manitowoc River does not appear to be occurring based on analytical results from perimeter wells MW-1, MW-2, and MW-3, and on the analytical results from the large sump and the west sump that discharge directly to the Manitowoc River. Subsurface utility lines are not expected to be impacted due to the relatively shallow depth to groundwater and the granular site soils in most locations (i.e., utility trenches would not act as a conduit for migration). ## 5.0 Site Investigation SEH's investigation was conducted from February through May 2006. The purpose of the investigation was to provide site data relating to the degree and extent of contamination at the site, and investigate several areas of concern remaining at the site. The field investigation included the following activities: - Completion of ten direct-push soil borings on the outside of the site building to identify site stratigraphy and collect soil samples for analysis. - Overdrilling at six of the boring locations with hollow-stem augers for installation of five shallow monitoring wells and one nested piezometer. - Performance of ten soil borings beneath the building's basement floor using either a Macrocore® sampler or a power hand auger. - Installation of six temporary slotted standpipes to serve as groundwater monitoring points in the basement boreholes. - Collection of 23 soil samples and two rounds of 19 discreet groundwater samples for laboratory analysis of volatile organic compounds (VOCs), polynuclear aromatic hydrocarbons (PAHs), select metals, pesticides, polychlorinated biphenyls (PCBs), diesel range organics (DRO), and/or pH. - Site survey to determine the elevations and coordinates of the borings and piezometers. ## 5.1 Soil Borings, Monitoring Wells, and Piezometer Installation Ten direct-push soil borings were performed on the site under the direction of an SEH geologist on February 13 and February 14, 2006 to assess subsurface soil conditions and collect soil samples. Soil samples were collected using direct-push methods at the five monitoring well and one piezometer location in advance of these borings being drilled with hollowstem augers for well placement. The locations of the soil borings are presented on Figure 3. The direct push borings were performed using a skidsteer-mounted hydraulic probe rig by Soil Essentials, Ltd. of New Glarus, Wisconsin. Soil samples were collected continuously and observed during the drilling process and classified in accordance with the Unified Soil Classification System by a SEH geologist. Stratigraphic observations for each boring were recorded on soil boring logs (WDNR Form 4400-122), which are presented in Appendix A, "Soil Boring, Monitoring Well, and Piezometer Documentation." A borehole abandonment form (WDNR Form 3300-005) was completed for each direct-push boring not subsequently drilled and instrumented as a monitoring well, piezometer, or slotted standpipe (Appendix A). The soil samples were screened in the field using a photoionization detector (PID) for relative concentrations of VOCs. PID measurements were recorded on the soil boring logs. Visual and/or olfactory evidence of soil impacts were also noted on the soil boring logs. Soil samples selected for laboratory analysis during the investigation were homogenized from the selected sample interval and placed in the appropriate laboratory-cleaned sample bottles, preserved as necessary, labeled, and chilled to 4 degrees C. Boring B1 was performed outside a storage shed at the southwest corner of the building to assess soil conditions at this location related to activities in and around the shed. Borings B2 and B3 were performed south of the site building and north of the railroad tracks to assess potential offsite soil contamination migration in this direction. Boring B4 was drilled on the west side of the site building to assess a dark stain on the side of the site building at this location and adjacent to the apparent former elevator location within the building. Five soil borings performed during the supplemental investigation were subsequently instrumented as monitoring wells (MW-5 through MW-9), and one boring was instrumented as a piezometer (PZ-5), and nested with newly installed monitoring well MW-5. Existing monitoring wells MW-1 through MW-4 were installed by a previous consultant (TEMCO). Wells MW-5, MW-6, MW-7 and PZ-5 were installed outside the north side of the site building. Well MW-8 was installed outside the east side of the site building adjacent to the elevator. Well MW-9 was installed outside of the southeast corner of the site building. The monitoring wells and piezometer were installed to assess groundwater and hydrologic conditions in these portions of the site. The new monitoring wells and piezometer were constructed and developed in accordance with ch. NR 141 Wis. Adm. Code requirements. A five-foot screened interval was used on the piezometer. Ten foot screened intervals were used on the monitoring wells. Monitoring well construction forms (WDNR Form 4400-113A) and well development forms (WDNR Form 4400-113B) were completed for each monitoring well and piezometer, and are included in Appendix A. The locations of the monitoring wells and piezometer are provided on Figure 3. A total of nine borings (B5 through B12 and B5A) were performed in the basement of the site building. One additional boring (B13) was performed on the first floor of the building in a location where the basement was not present. These borings were performed by penetrating the concrete floor with a coring machine, and then completing the boring with a hand-driven Macrocore® sampler. One boring (B5) was completed using a power hand auger due to the depth required at this location. Six of the interior borings (B5, B5A, B6, B9, B11, and B12) were subsequently instrumented as temporary slotted standpipes to be used for groundwater monitoring. This was accomplished by inserting a 1-inch diameter slotted PVC pipe into the open
borehole after soil sampling was completed. A 34-inch diameter PVC pipe was installed in B5 so that a 1-foot long screened section could be installed and water samples could be collected with depth. Once the PVC pipe was in place, the temporary groundwater sampling points were backfilled with sand and capped with a PVC cap. No protective casing was utilized on these points. The basement borings were installed at the following areas of concern: - Borings B5 and B5A were installed immediately north of the former chrome and tin plating room adjacent to an area of floor trench drain system where the concrete was missing and the pipes were corroded. Sampling within the chrome/tin plating room was not possible due to confined space conditions and lack of room for sampling equipment. - Boring B6 was installed inside the west wall line adjacent to an area of corroded pipes associated with the floor trench drain. - Borings B7 and B8 were performed inside the former mineral spirits room located in the northwest corner of the basement. - Boring B9 was installed adjacent to the main drainage trench, which runs east to west through the basement floor. - B10 was installed in the transformer room. - Boring B11 was installed adjacent to a corroded portion of the trench drain system. - Boring B12 was installed at the eastern portion of the main trench drain system and somewhat close to the east elevator. - Boring B13 was installed in the pressroom directly beneath the former location of a press. A soil boring planned for the loading dock area could not be performed due to the presence of a crawl space below the loading dock (inaccessible to sampling). The groundwater sampling point installed in boring B5 was screened from 11.5 to 12.5 feet below ground surface. This was the maximum depth penetrable with hand-operated equipment due to wet flowing sands with depth at this location. The remaining basement locations utilized for groundwater sampling points were screened from the top of the basement floor to the bottom of the boring. The boring depths at these locations ranged from 3.0 to 3.5 feet. The temporary screens were left in place for potential future sample collection. # 5.2 Soil Sampling and Analysis During the drilling operation, 23 soil samples were collected for analysis by SEH from February 13 through February 15, 2006. Soil samples were collected continuously from below the pavement and/or base course layer to near the borehole terminus. Soil sample selection for analysis was based on field indications of contamination, depth below ground surface, and/or the proximity to the water table. Where possible, the soil sample intervals selected for analysis were collected from above the shallow water table. This was generally not possible in the building basement due to the shallow groundwater table (generally less than 6 inches below the basement floor elevation at the time of sample collection). The soil samples selected for analysis were homogenized and then placed in laboratory clean sample bottles. The samples were then preserved as necessary, labeled appropriately, and chilled to 4 degrees C. The soil samples were delivered directly to U.S. Filter's laboratory in Rothschild, Wisconsin on February 17, 2006 (Wisconsin Laboratory Certification No. 737053130). Standard chain-ofcustody documentation was maintained during the soil sampling process. ## 5.3 Groundwater Sampling and Analysis SEH collected two rounds of groundwater samples from the existing and newly installed monitoring wells, the newly installed piezometer, the temporary groundwater collection points in the basement, and the sumps in the basement. It should be noted that the existing wells MW-1 and MW-2 were inadvertently switched during sampling and have thus been renamed from the original TEMCO designations (i.e., TEMCO's MW-1 is SEH's MW-2, and TEMCO's MW-2 is SEH's MW-1). The SEH designations are shown on Figure 3. The first round of groundwater samples was collected on February 16, 2006, and the second round was collected on May 30, 2006. The east sump was not sampled during the second sampling round due to the presence of a floating oil layer. The wells, piezometers, and temporary sampling points were purged and subsequently sampled using a peristaltic pump and sample- dedicated tubing (the sumps were not purged prior to sampling). The samples requiring metals analysis were field filtered using sample-dedicated in-line disposable 0.45 micron filters. The samples were placed in appropriate laboratory bottles, labeled appropriately, preserved as necessary, and chilled to 4 degrees C. The first round of samples were delivered directly to U.S. Filter on February 17, 2006. The second round of samples were delivered to U.S. Filter via overnight courier. Standard chain-of-custody documentation was maintained during groundwater sample handling and shipment. #### 5.4 Site Survey SEH's survey crew performed survey activities at the site on May 30, 2006. The site coordinates of the five new monitoring wells and one new piezometer were determined, and the elevations of the PVC well casings were established. In addition, elevations were determined on the tops of the six temporary well casings installed in the building basement. The elevations of the four existing monitoring wells were confirmed. Also, the water elevation of the Manitowoc River was surveyed at four locations to aid in determining the groundwater – surface water flow patterns at the site. These data were added to site drawings and used to determine groundwater flow patterns and gradients at the site. ## 6.0 Investigation Results Results of the supplemental site investigation activities are summarized in Sections 6.1, 6.2, and 6.3. ## 6.1 Site Stratigraphy The soil boring data collected during the site investigation indicates that soils located beneath pavement and/or fill soils on the northern portion of the site generally consist of fine sands and silty sands present to a depth of approximately 27 feet below ground surface, where silt was encountered in piezometer boring PZ-5. The fill soils and pavement on the southern and southeastern portion of the site are underlain by a layer of lean clay. The sand soils to the north were also found at several locations beneath the building, and are likely Holocene alluvial deposits from the Manitowoc River. The clay soils located on the southern and eastern portion of the property are likely Pleistocene glacial ground moraine deposits. Bedrock was not encountered during the site investigation. A vertical depiction of site stratigraphic conditions is presented on Figure 5, "Geologic Cross Sections." #### 6.2 Soil Analytical Results As reflected on Table 1, "Soil Analytical Results - DRO, PAHs, VOCs, and Metals," the analytical laboratory detected concentrations of arsenic exceeding the residual contaminant level (RCL) for industrial sites in soil samples collected at several locations outside the site building and beneath the basement floor. In addition, the suggested RCL for several PAH compounds was exceeded in soil samples collected at several locations. The PAH RCL values have not been codified at this time and remain guideline values. No other analytes were detected at concentrations exceeding their respective RCL during SEH's investigation of site soils. As indicated on Table 2, "Soil Analytical Results - Pesticides and PCBs," no pesticides were detected in the samples analyzed for these parameters. One polychlorinated biphenyl (PCB) compound (Arochlor 1254) was detected in B10 at a concentration of 18 μ g/kg. No other PCBs were detected in the soil sample analyzed for these compounds. The complete analytical package containing the soil analytical results is provided in Appendix B, "Analytical Data." #### 6.3 Groundwater Analytical Results The groundwater samples were analyzed for VOCs using U.S. EPA Method 8021 during the first round, and by EPA method 8260 during the second round. The groundwater analytical data is summarized on Table 3, "Groundwater Analytical Results." The complete analytical package is included in Appendix B. As indicated on Table 3, groundwater ES exceedances were limited to detections for 1,1,2,2 tetrachloroethane in groundwater samples collected from points B5 and B5A during the first sampling round, and for vinyl chloride in a groundwater sample collected from point B12 during the second sampling round. The PALs for several parameters were exceeded in groundwater samples collected from several sampling points during both rounds of sampling. The parameters detected at concentrations exceeding their respective PAL but below their ES at one or more location include benzo-apyrene, chrysene, chloromethane, 1,2-dichloroethane, cis-1,2-dichloroethylene, 1,2-trichloroethane, trichloroethylene, vinyl chloride, arsenic, and cadmium. All remaining groundwater parameters were either not detected above the laboratory detection limit, or were detected at concentrations below their respective PAL. ## 6.4 Sump Analytical Results As reflected on Table 3, elevated DRO concentrations were detected in the east sump due to the floating free-phase liquid observed on the groundwater surface at this location. However, no ES or PAL exceedances were identified in the groundwater sample analyzed from the east sump. No ES exceedances were identified in the samples from the large sump or the west sump. A PAL exceedance for trichloroethylene was identified in both rounds of samples analyzed from the large sump. A PAL exceedance for chrysene was detected in both rounds of samples analyzed from the west sump. No other PAL exceedances were identified in the groundwater samples analyzed from the three sumps. #### 7.0 Discussion Based on the results of SEH's site investigation, it appears soil contamination is limited to concentrations of arsenic exceeding its RCL for industrial sites at several locations. The concentrations of arsenic at the site appear to
be fairly consistent with no identifiable source area, except for the surficial soils collected from borings B2 and B3 where the concentrations are higher. It appears possible the higher concentrations of arsenic at this location are related to offsite activities because the concentration of arsenic quickly decreases in surface soils as you move north toward the building at boring B1 and throughout the rest of the site. The relatively uniform concentrations of arsenic on the remainder of the site do not indicate a concentrated source area, and possibly indicate these concentrations of arsenic are naturally occurring. Groundwater analytical results indicate slight ES exceedances for vinyl chloride or 1,1,2,2-tetrachloroethane in three of the slotted standpipe collection points in the building basement. Each of these exceedances was only identified in one of two sampling rounds. No ES exceedances were identified in groundwater samples collected from the monitoring wells or piezometer located around the perimeter of the site building. Several scattered PAL exceedances were identified in groundwater samples collected from site groundwater monitoring points. Groundwater appears generally to flow to the north at the site toward the Manitowoc River, with the exception of the slight groundwater depression created by the pumping and discharge from the three site sumps. Based on the groundwater analytical results, it appears offsite migration of groundwater contamination exceeding ESs is not occurring at this time. The free phase oily floating substance identified in the east sump appears to be isolated at this location, and is likely related to operation of the nearby elevator. The pumping activity from the east sump does not appear to be mobilizing the floating free phase liquid based on observations and analysis of water in the large sump, into which the east sump discharges. No PAL or ES exceedances were identified in the east sump, and only one PAL exceedance for trichloroethylene was identified in the large sump. #### 8.0 Conclusions and Recommendations Based on the results of SEH's site investigation activities, isolated ES exceedances were identified at the site. The isolated groundwater ES exceedances were identified below the basement floor, and do not appear to be migrating off site at this time. With the exception of elevated arsenic concentrations along the south side of the site (B2 and B3), arsenic detected in soil samples collected may be naturally occurring. No on-site source area of arsenic soils contamination appears to be present. The floating free-phase oil in the east sump was not identified at any other sampling points and does not appear to be moving into the large sump through ongoing groundwater pumping. However, SEH recommends removal of the free-phase liquid to limit potential future migration of this substance. At this time, SEH does not believe further soil investigation at the site is warranted. SEH recommends completing one year of quarterly groundwater sampling at the existing sampling points (two additional quarterly sampling events) to assess groundwater concentrations over time, and to further assess groundwater migration characteristics. SEH also recommends removal of the floating free-phase liquid from the east sump. The oil layer will be removed from the sump and containerized during the August 2006 sampling event. Prior to or during the November 2006 sampling event, SEH will determine whether or not the oil layer has returned. If the oil layer appears to be a recurring condition, a permanent collection device such as an oil skimmer could be installed in the east sump. Once the additional quarterly sampling and assessment of oil layer removal is completed, SEH recommends reviewing the additional site data and making recommendations for additional activities or site closure based on the additional investigation results. ## 9.0 Standard of Care The conclusions and recommendations contained in this report were arrived at in accordance with generally accepted professional practice at this time and location. Other than this, no warranty is implied or intended. JEG/ls/FJM/BKO #### 10.0 References - Ostrom, M. E., 1981, "Bedrock Geology of Wisconsin, Wisconsin Geological and Natural History Survey. - Skinner, E. L., and R. G. Borman, 1973, "Water Resources of Wisconsin, Lake Michigan Basin," USGS. - United States Department of Agriculture, Natural Resources Conservation Service, 1980, "Soil Survey of Calumet and Manitowoc Counties, Wisconsin." - United States Geological Survey (USGS), 1973, "Chilton, Wisconsin 7.5 Minute Topographic Map." - Zaporozec, A. and R. D. Cotter, 1985, Major Groundwater Units of Wisconsin," Wisconsin Geological and Natural History Survey. # **Tables** Table 1 – Soil Analytical Results - DRO, PAHs, VOCs, and Metals Table 2 – Soil Analytical Results - Pesticides and PCBs Table 3 – Groundwater Analytical Results Table 1 Soil Analytical Results - DRO, PAHs, VOCs, and Metals | | T | | · · · · · · · · · · · · · · · · · · · | | | Bor | ing No./Depth (ft)/D | ate | | | | | |-----------------------------|--------------|-------------|---------------------------------------|-----------|----------|----------|----------------------|----------|-----------|----------|--------------|----------------| | Analytical Devementary | Generic RCLs | В | -1 | В | -2 | B. | | B-4 | B-5 | B-6 | B-7 | B-8 | | Analytical Parameters | in Soil | 0-2 | 4-6 | 0-2 | 2-4 | 0-2 | 2-4 | 4-6 | 0.5-0.8 | 1.5-3.0 | 1.0-2.5 | 1.0-2.5 | | | | 2/13/06 | 2/13/06 | 2/13/06 | 2/13/06 | 2/13/06 | 2/13/06 | 2/14/06 | 2/14/06 | 2/14/06 | 2/14/06 | 2/14/06 | | DRO (mg/kg) | 100 | . == | | | | | | <6.77 | | | - | | | pH | NSE | 8.16 | 9.03 | | _ · | | | - | 8.95 | 7.58 | 9.51 | 8.16 | | PAHs ¹ (mg/kg) | | : | | | | | | | | | | | | Acenaphthene | 900 | < 0.0055 | <0.00523 | <0.00522 | <0.00596 | <0.00545 | <0.00597 | <0.00636 | < 0.00576 | <0.00626 | <0.00529 | <0.00585 | | Acenaphthylene | 18 | < 0.00773 | <0.00735 | < 0.00733 | <0.00837 | <0.00766 | <0.00839 | <0.00893 | < 0.00809 | <0.00879 | <0.00743 | <0.00821 | | Anthracene | 5000 | <0.00246 | <0.00234 | < 0.00233 | <0.00266 | <0.00244 | <0.00267 | <0.00284 | < 0.00257 | <0.0028 | <0.00236 | <0.00261 | | Benzo(a)Anthracene | 0.088 | <0.0048 | 0.00571 | 0.0362 | <0.0052 | 0.0646 | <0.00521 | 0.00861 | < 0.00502 | <0.00546 | <0.00462 | <0.0051 | | Benzo(a)Pyrene | 0.008 | < 0.00269 | 0.0106 | 0.0477 | <0.00292 | 0.0821 | <0.00292 | <0.00311 | <0.00282 | <0.00306 | <0.00259 | <0.00286 | | Benzo(b)Fluoranthene | 0.088 | < 0.00246 | 0.0092 | 0.084 | 0.011 | 0.196 | <0.00267 | <0.00284 | < 0.00257 | <0.0028 | <0.00236 | < 0.00261 | | Benzo(k)Fluoranthene | 0.88 | < 0.0034 | 0.00453 | 0.0412 | <0.00368 | 0.0893 | <0.00368 | <0.00392 | < 0.00355 | <0.00386 | <0.00327 | <0.00361 | | Benzo(ghi)Perylene | 18 | <0.00468 | 0.0154 | 0.068 | 0.0214 | 0.198 | <0.00508 | 0.0132 | < 0.0049 | <0.00533 | <0.0045 | <0.00498 | | Chrysene | 8.8 | < 0.00269 | 0.00978 | 0.107 | 0.0137 | 0.19 | <0.00292 | <0.00311 | 0.00452 | <0.00306 | <0.00259 | <0.00286 | | Dibenzo(a,h)Anthracene | 0.0088 | < 0.00316 | <0.00301 | <0.003 | <0.00342 | <0.00313 | <0.00343 | <0.00365 | 0.00875 | <0.0036 | <0.00304 | < 0.00336 | | Fluoranthene | 600 | < 0.00304 | 0.0196 | 0.306 | 0.0224 | 0.535 | <0.0033 | 0.03 | < 0.00319 | <0.00346 | <0.00293 | < 0.00323 | | Fluorene | 600 | <0.00386 | <0.00367 | <0.00367 | <0.00418 | <0.00383 | <0.00419 | <0.00447 | <0.00404 | <0.00439 | <0.00372 | < 0.0041 | | Indeno(1,2,3-cd)Pyrene | 0.088 | 0.021 | 0.00823 | 0.04 | 0.00744 | 0.137 | <0.0028 | 0.00802 | <0.0027 | <0.00293 | <0.00248 | 0.006 | | 1-Methyl Naphthalene | 1100 | 0.0326 | <0.00412 | 0.0938 | 0.00515 | 0.0883 | 0.0428 | <0.00501 | <0.00453 | <0.00493 | <0.00417 | 0.0831 | | 2-Methyl Naphthalene | 600 | 0.0708 | <0.00457 | <0.00456 | 0.00875 | <0.00476 | <0.00521 | <0.00555 | <0.00502 | <0.00546 | <0.00462 | 0.0271 | | Naphthalene | 20 | 0.0177 | <0.00512 | 0.0493 | <0.00583 | 0.059 | <0.00584 | <0.00622 | <0.00564 | <0.00613 | <0.00518 | 0.099 | | Phenanthrene | 18 | <0.0048 | 0.00859 | 0.206 | 0.0128 | 0.238 | <0.00521 | 0.0161 | <0.00502 | <0.00546 | <0.00462 | <0.0051 | | Pyrene | 500 | <0.00246 | 0.00506 | <0.00233 | <0.00266 | 0.0404 | <0.0027 | 0.00537 | <0.00257 | <0.0028 | <0.00236 | <0.00261 | | VOCs ² (mg/kg) | - | 0.002.10 | 1 0.0000 | | 0.00200 | 0.0.0. | 0.00201 | 0.00001 | 0.00201 | 0.0020 | 0.00200 | 0.00201 | | Benzene | 5.5 | <0.025 | <0.025 | <0.025 | <0.025 | 0.0905 | <0.025 | <0.025 | <0.025 | <0.025 | <0.5 | <2.50 | | Bromobenzene | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.5 | <2.50 | | Bromodichloromethane | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.5 | <2.50 | | n-Butylbenzene | NSE | <0.025 | <0.025 | 0.0611 | <0.025 | 0.0568 | <0.025 | 0.153 | <0.025 | <0.025 | 2.73 | 23 | | sec-Butylbenzene | NSE | <0.025 | <0.025 | 0.0889 | <0.025 | 0.0638 | <0.025 | <0.025 | <0.025 | <0.025 | <0.5 | <2.50 | | tert-Butylbenzene | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.5 | <2.50 | | Carbon Tetrachloride | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.5 | <2.50 | | Chlorobenzene | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.5 | <2.50 | | Chlorodibromomethane | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.5 | <2.50 | | Chloroethane | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.5 | <2.50 | | Chloroform | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.5 | <2.50 | | Chloromethane | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.5 | <2.50 | | o-Chlorotoluene | NSE | <0.025 |
<0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.5 | <2.50 | | p-Chlorotoluene | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.5 | <2.50 | | 1,2-Dibromo-3-chloropropane | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.5
<0.5 | <2.50 | | 1,2-Dibromoethane | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.5
<0.5 | <2.50
<2.50 | | 1,2-Dichlorobenzene | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | 1 | | <2.50
<2.50 | | 1,3-Dichlorobenzene | | 1 | • | | | 1 | 1 | | | <0.025 | <0.5 | <2.50
<2.50 | | 1,4-Dichlorobenzene | NSE
NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.5 | <2.50
<2.50 | | 5 | | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.5 | · · | | Dichlorodifluoromethane | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.5 | <2.50 | | 1,1-Dichloroethane | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.5 | <2.50 | | 1,2-Dichloroethane | 4.9 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.5 | <2.50 | | 1,1-Dichloroethylene | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.5 | <2.50 | | cis-1,2-Dichloroethylene | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.5 | <2.50 | | trans-1,2-Dichloroethylene | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.5 | <2.50 | Table 1 (Continued) Soil Analytical Results - DRO, PAHs, VOCs, and Metals | | 1 1 | | | | | Во | ring No./Depth (ft)/D |)ate | | | | | |---------------------------|--------------|---------|---------|---------|---------|---------|-----------------------|----------|---------|---------|---------|----------| | Analytical Parameters | Generic RCLs | В | -1 | В | -2 | В | -3 | B-4 | B-5 | B-6 | B-7 | B-8 | | Analytical Fatameters | in Soil | 0-2 | 4-6 | 0-2 | 2-4 | 0-2 | 2-4 | 4-6 | 0.5-0.8 | 1.5-3.0 | 1.0-2.5 | 1.0-2.5 | | | _1 | 2/13/06 | 2/13/06 | 2/13/06 | 2/13/06 | 2/13/06 | 2/13/06 | 2/14/06 | 2/14/06 | 2/14/06 | 2/14/06 | 2/14/06 | | /OCs ² (mg/kg) | | | | | | | | | | | | | | 1,2-Dichloropropane | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.5 | <2.50 | | 1,3-Dichloropropane | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.5 | <2.50 | | 2,2-Dichloropropane | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.5 | <2.50 | | Ethylbenzene | 2900 | <0.025 | <0.025 | 0.0689 | <0.025 | 0.109 | <0.025 | 0.0419 | <0.025 | <0.025 | <0.5 | <2.50 | | Hexachlorobutadiene | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.5 | <2.50 | | Isopropylbenzene | NSE | <0.025 | <0.025 | 0.0533 | <0.025 | 0.087 | <0.025 | <0.025 | <0.025 | <0.025 | <0.5 | <2.50 | | Isopropyl Ether | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | · <0.025 | <0.025 | <0.025 | <0.5 | <2.50 | | p-isopropyltoluene | NSE | <0.025 | <0.025 | 0.0533 | <0.025 | 0.0719 | <0.025 | <0.025 | <0.025 | <0.025 | <0.5 | <2.50 | | Methyl tert Butyl Ether | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.5 | <2.50 | | Methylene Chloride | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.5 | <2.50 | | Naphthalene | 0.02 | 0.0455 | <0.025 | 0.317 | <0.025 | 0.365 | 0.0445 | 0.0419 | <0.025 | <0.025 | <0.5 | 3.69 | | n-Propylbenzene | NSE | <0.025 | <0.025 | 0.0633 | <0.025 | 0.0858 | <0.025 | <0.025 | <0.025 | <0.025 | <0.5 | <2.50 | | Tetrachloroethylene | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.5 | <2.50 | | Toluene | 1500 | <0.025 | <0.025 | <0.025 | <0.025 | 0.448 | 0.0394 | 0.046 | <0.025 | <0.025 | 0.822 | <2.50 | | 1,2,3-Trichlorobenzene | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.5 | <2.50 | | 1,2,4-Trichlorobenzene | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.5 | <2.50 | | 1,1,1-Trichloroethane | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.5 | <2.50 | | 1,1,2-Trichloroethane | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.5 | <2.50 | | Trichloroethylene | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.5 | <2.50 | | Trichlorofluoromethane | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.5 | <2.50 | | 1,2,4-Trimethylbenzene | NSE | <0.025 | <0.025 | 0.221 | <0.025 | 0.367 | <0.025 | 0.237 | <0.025 | <0.025 | <0.5 | 91.9 | | 1,3,5-Trimethylbenzene | NSE | <0.025 | <0.025 | 0.09 | <0.025 | 0.113 | <0.025 | 0.123 | <0.025 | <0.025 | <0.5 | <2.50 | | Vinyl Chloride | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.5 | <2.50 | | Total Xylenes | 4100 | <0.050 | <0.050 | 0.349 | 0.0393 | 0.768 | 0.1258 | 0.346 | 0.0355 | 0.0399 | 4.29 | 4.74 | | CRA Total Metals (mg/kg) | | | | | | | | | | | | i e | | Mercury | NSE | 0.156 | 0.0245 | 0.0978 | 0.0659 | 0.0812 | 0.382 | 0.0934 | <0.0172 | 0.0426 | <0.0158 | 0.0348 | | Arsenic | 1.6 | 3.48 | 2.34 | 42.6 | 4.93 | 28.1 | 5.34 | 2.98 | 0.875 | 2.41 | <0.383 | <0.42 | | Barium | NSE | 53.4 | 91 | 36.4 | 100 | 57.5 | 62.9 | 78.5 | 5.47 | 16.4 | 10.7 | 17.5 | | Cadmium | 510 | 0.113 | 0.0757 | 0.584 | <0.0722 | 1.08 | 0.266 | 0.253 | <0.0699 | 0.172 | <0.0642 | < 0.0709 | | Chromium | NSE | 15.9 | 16.9 | 8.03 | 30.5 | 19 | 16 | 21.4 | 2.23 | 12.7 | 8.73 | 7.67 | | Lead | 500 | 20.6 | 9.02 | 134 | 9.48 | 184 | 58.4 | 9.45 | 1.06 | 5.83 | 1.82 | 3.87 | | Selenium | NSE | <0.703 | <0.668 | <0.667 | <0.76 | <0.696 | <0.762 | <0.812 | <0.735 | 2.52 | <0.676 | <0.746 | | Silver | NSE | <0.234 | <0.223 | <0.222 | <0.253 | <0.232 | <0.254 | <0.271 | <0.245 | <0.266 | <0.225 | <0.249 | Q:\KO\Nerub\050200\Reports&Specs\misc\Soil Analytical Results.xls Table 1 (Continued) Soil Analytical Results - DRO, PAHs, VOCs, and Metals | | | | | | | | Boring No./D | epth (ft)/Date | | <u> </u> | | | | |------------------------------|--------------|-----------|----------|----------|----------|----------|--------------|----------------|---------|----------|----------|----------|----------| | Analytical Parameters | Generic RCLs | B-9 | B-10 | B-11 | B-12 | B-13 | MW-5/PZ-5 | MW-6 | MW-7 | My | N-8 | MV | V-9 | | | in Soil | 1.0-2.0 | 0.5-1.5 | 1-3 | 1-2 | 0.5-4.5 | 0-4 | 0-4 | 0-4 | 0-4 | 4-6 | 0-4 | 4-6 | | PO (mg/kg) | | 2/14/06 | 2/14/06 | 2/15/06 | 2/15/06 | 2/15/06 | 2/13/06 | 2/13/06 | 2/13/06 | 2/13/06 | 2/13/06 | 2/13/06 | 2/13/06 | | RO (mg/kg)
H | 100 | | - | | - | | | | | - | _ | | | | | | 8.51 | 8.31 | 9.53 | 8.87 | 8.14 | | | | _ | | - | | | AHs ¹ (mg/kg) | 1 | | | | | | | | | | | | | | Acenaphthene | 900 | <0.00535 | <0.00643 | <0.00575 | <0.00517 | <0.00499 | <0.00617 | <0.0081 | <0.121 | <0.00544 | <0.00705 | <0.00554 | <0.00539 | | Acenaphthylene | 18 | <0.00752 | <0.00903 | <0.00807 | <0.00726 | <0.00701 | <0.00866 | <0.0114 | <0.17 | <0.00764 | <0.0099 | <0.00778 | <0.0075 | | Anthracene | 5000 | <0.00239 | <0.00287 | <0.00257 | <0.00231 | <0.00223 | <0.00276 | <0.00362 | 0.275 | <0.00243 | <0.00315 | <0.00248 | <0.0024 | | Benzo(a)Anthracene | 0.088 | 0.0166 | 0.0166 | <0.00501 | <0.00451 | 0.00485 | <0.00538 | 0.0519 | 0.988 | 0.0122 | <0.00615 | 0.0323 | 0.00823 | | Benzo(a)Pyrene | 0.008 | 0.0175 | 0.0261 | <0.00281 | <0.00253 | <0.00244 | <0.00302 | 0.0678 | 0.815 | <0.00266 | <0.00345 | 0.052 | 0.0164 | | Benzo(b)Fluoranthene | 0.088 | 0.0336 | 0.041 | <0.00257 | <0.00231 | 0.0219 | <0.00276 | 0.114 | 1.01 | 0.0355 | <0.00315 | 0.104 | 0.0292 | | Benzo(k)Fluoranthene | 0.88 | 0.0231 | 0.0198 | <0.00355 | <0.00319 | <0.00308 | <0.00381 | 0.0391 | 0.537 | 0.0208 | <0.00435 | 0.0459 | 0.0122 | | Benzo(ghi)Perylene | 18 | < 0.00456 | 0.0328 | <0.00489 | <0.0044 | 0.092 | <0.00525 | 0.106 | 0.471 | <0.00463 | <0.006 | 0.151 | 0.0509 | | Chrysene | 8.8 | 0.033 | 0.0472 | 0.00528 | 0.00949 | <0.00244 | 0.0056 | 0.084 | 1.09 | 0.0543 | <0.00345 | 0.109 | 0.0309 | | Dibenzo(a,h)Anthracene | 0.0088 | <0.00308 | 0.00911 | <0.0033 | <0.00297 | <0.00287 | <0.00354 | <0.00466 | <0.0695 | <0.00313 | <0.00345 | <0.00318 | 6 | | Fluoranthene | 600 | 0.12 | 0.087 | 0.00858 | 0.0163 | <0.00276 | <0.00341 | 0.233 | 3.71 | <0.00313 | <0.0039 | 0.218 | <0.0031 | | Fluorene | 600 | < 0.00376 | <0.00451 | <0.00403 | <0.00363 | <0.00351 | <0.00433 | 0.0155 | 0.136 | <0.00382 | <0.0039 | 1 | 0.00586 | | Indeno(1,2,3-cd)Pyrene | 0.088 | <0.00251 | 0.0222 | 0.00413 | 0.00707 | 0.0242 | <0.00289 | 0.0614 | 0.726 | 0.0251 | | <0.00389 | <0.0037 | | 1-Methyl Naphthalene | 1100 | 0.0116 | 0.0201 | <0.00452 | <0.00407 | <0.00393 | <0.00289 | <0.00638 | <0.0952 |) | <0.0033 | 0.0802 | 0.0239 | | 2-Methyl Naphthalene | 600 | 0.0131 | 0.028 | <0.00501 | <0.00451 | <0.00436 | <0.00538 | <0.0058 | 1 | 0.0566 | <0.00555 | <0.00436 | 0.013 | | Naphthalene | 20 | 0.00638 | 0.013 | <0.00562 | <0.00506 | <0.00430 | <0.00538 | 1 | <0.106 | 0.0635 | <0.00615 | <0.00483 | 0.0179 | | Phenanthrene | 18 | 0.0351 | 0.0491 | <0.00501 | 0.00300 | <0.00489 | | <0.00793 | <0.118 | 0.0316 | <0.0069 | <0.00542 | 0.00857 | | Pyrene | 500 | 0.00528 | 0.00763 | 0.00246 | 0.00737 | | <0.00538 | 0.121 | 1.92 | 0.104 | <0.00615 | 0.142 | 0.0347 | | OCs ² (mg/kg) | | 0.00020 | 0.00703 | 0.00240 | 0.00337 | 0.00325 | <0.00276 | 0.0621 | 1.33 | <0.00243 | <0.00315 | <0.00248 | <0.0024 | | Benzene | 5.5 | <0.025 | <0.025 | <0.025 | 40.005 | 10.005 | |] | | | | | } | | Bromobenzene
 NSE NSE | <0.025 | <0.025 | | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | | Bromodichloromethane | NSE | <0.025 | 1 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | | n-Butylbenzene | NSE | | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | | sec-Butylbenzene | l I | 0.0364 | 0.0739 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | 0.0519 | <0.025 | | tert-Butylbenzene | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | 0.0436 | <0.025 | | | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | | Carbon Tetrachloride | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | | Chlorodihananathan | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | | Chlorodibromomethane | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | | Chloroethane | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | | Chloroform | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | | Chloromethane | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | | o-Chlorotoluene | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | | p-Chlorotoluene | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | | 1,2-Dibromo-3-chloropropane | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | | 1,2-Dibromoethane | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | | 1,2-Dichlorobenzene | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | 1 | | 1,3-Dichlorobenzene | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | | 1,4-Dichlorobenzene | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | | 1 | § | <0.025 | | Dichlorodifluoromethane | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | 1 | <0.025 | <0.025 | <0.025 | <0.025 | | 1,1-Dichloroethane | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | i . | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | | 1,2-Dichloroethane | 4.9 | <0.025 | <0.025 | <0.025 | <0.025 | i | ł | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | | 1,1-Dichloroethylene | NSE | <0.025 | 0.171 | <0.025 | 1 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | | cis-1,2-Dichloroethylene | NSE | <0.025 | i | ľ | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | | trans-1,2-Dichloroethylene | | | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | | adio-1,2-bidilotocatylette | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.02 | Former Mirro Plant #20 Newell Rubbermaid Table 1 (Continued) Soil Analytical Results - DRO, PAHs, VOCs, and Metals | | | | | | | · · · · · · · · · · · · · · · · · · · | Boring No./De | epth (ft)/Date | | | | | | |---------------------------|--------------|---------|---------|---------|---------|---------------------------------------|---------------|----------------|---------|---------|---------|---------|-------------| | Analytical Parameters | Generic RCLs | B-9 | B-10 | B-11 | B-12 | B-13 | MW-5/PZ-5 | MW-6 | MW-7 | MV | V-8 | MV | /- 9 | | Allalytical Parameters | in Soil | 1.0-2.0 | 0.5-1.5 | 1-3 | 1-2 | 0.5-4.5 | 0-4 | 0-4 | 0-4 | 0-4 | 4-6 | 0-4 | 4-6 | | | | 2/14/06 | 2/14/06 | 2/15/06 | 2/15/06 | 2/15/06 | 2/13/06 | 2/13/06 | 2/13/06 | 2/13/06 | 2/13/06 | 2/13/06 | 2/13/06 | | VOCs ² (mg/kg) | | | | | | | ٠ | | | | | | | | 1,2-Dichloropropane | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | | 1,3-Dichloropropane | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | | 2,2-Dichloropropane | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | | Ethylbenzene | 2900 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | 0.154 | <0.025 | | Hexachlorobutadiene | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | | Isopropylbenzene | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | 0.0696 | <0.025 | | Isopropyl Ether | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | | p-Isopropyltoluene | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | 0.0578 | <0.025 | | Methyl tert Butyl Ether | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | | Methylene Chloride | NSE | 0.174 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | | Naphthalene | 0.02 | 0.0353 | 0.0766 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | 0.045 | <0.025 | <0.025 | 0.307 | <0.025 | | n-Propylbenzene | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | 0.0613 | <0.025 | | Tetrachloroethylene | NSE | <0.025 | 0.133 | <0.025 | <0.025 | <0.025 | <0.025 | < 0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | | Toluene | 1500 | 0.0342 | 0.0465 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | | 1,2,3-Trichlorobenzene | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | | 1,2,4-Trichlorobenzene | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | | 1,1,1-Trichloroethane | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | | 1,1,2-Trichloroethane | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | | Trichloroethylene | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | | Trichlorofluoromethane | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | | 1,2,4-Trimethylbenzene | NSE | 0.082 | 0.0547 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | 0.217 | <0.025 | | 1,3,5-Trimethylbenzene | NSE | <0.025 | 0.0438 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | 0.126 | <0.025 | | Vinyl Chloride | NSE | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | | Total Xylenes | 4100 | 0.0501 | 0.2052 | 0.033 | 0.0286 | 0.0276 | <0.050 | <0.050 | <0.050 | <0.050 | <0.050 | 0.1062 | <0.050 | | RCRA Total Metals (mg/kg) | | | | | | | | <u> </u> | | | | | | | Mercury | NSE | 0.0934 | 0.0684 | 0.0318 | <0.0154 | 0.0489 | 0.0669 | 0.119 | 0.0849 | 0.16 | 0.078 | 0.0825 | 0.0264 | | Arsenic | 1.6 | 2.02 | 1.94 | 0.531 | 1.45 | 1.47 | 2.57 | 2.59 | 2.43 | 3.38 | 2.29 | 3.84 | 2.82 | | Barium | NSE | 17 | 39.5 | 18.9 | 15.1 | 21.1 | 98 | 75.3 | 70.4 | 47.1 | 105 | 48.1 | 37.5 | | Cadmium | 510 | 0.0925 | <0.078 | <0.0697 | 0.155 | <0.0606 | 0.189 | <0.0983 | 0.13 | 0.288 | 0.804 | 0.297 | <0.0654 | | Chromium | NSE | 31.7 | 6.63 | 5.93 | 5.98 | 7.46 | 27.7 | 17.6 | 15.1 | 6.32 | 41.8 | 11.6 | 11.3 | | Lead | 500 | 4.11 | 26.3 | 5.21 | 5.47 | 2.71 | 6.56 | 7.29 | 14.5 | 43.8 | 9.54 | 50.8 | 10.4 | | Selenium | NSE | <0.683 | <0.821 | <0.733 | <0.66 | <0.638 | <0.787 | <1.03 | 1.08 | <0.694 | <0.9 | <0.708 | <0.688 | | Silver | NSE | <0.228 | 0.33 | <0.244 | <0.22 | <0.213 | <0.262 | <0.345 | <0.257 | <0.231 | <0.3 | <0.236 | <0.229 | RCL = Residual contaminant levels for soils published in ch. NR 720, Wis. Adm. Code RCLs listed for RCRA metals are for industrial sites NSE = No standard established Bold = Exceeds ch. NR 720 soil cleanup standards Compiled by: <u>JEG</u> Checked by: <u>RJH</u> Q:\KO\Nerub\050200\Reports&Specs\misc\Soil Analytical Results-DRO,PAH.xls ¹ = PAH list is not complete; PAHs not listed are BDL ² = VOC list is not complete; VOCs not listed are BDL Table 2 Soil Analytical Results - Pesticides and PCBs | | Во | ring No./Depth (ft)/Da | ate | |---------------------------------------|----------|------------------------|--------------| | Analytical Parameters | B-1 | B-1 | B-10 | | Analytical Parameters | 0-2 | 4-6 | 0.5-1.5 | | | 2/13/06 | 2/13/06 | 2/14/06 | | Pesticides (µg/kg) | | | | | Alachlor | <2.28 | <2.17 | | | Atrazine | <2.18 | <2.07 | _ | | Butylate | <1.14 | <1.08 | _ | | Chlorpyrifos | <1.76 | <1.67 | <u> </u> | | Cyanazine | <2.25 | <2.14 | - | | Desethyl atrazine | <2.32 | <2.20 | - | | Desisopropyl atrazine | <3.51 | <3.34 | - 1 | | EPTC (Eptam) | <6.44 | <6.12 | | | Metolachlor | <2.42 | <2.31 | - | | Metribuzin | <2.59 | <2.46 | ⁻ | | Pendimethalin | <2.08 | <1.98 | - 1 | | Prometon | <3.27 | <3.11 | | | Propazine | <2.12 | <2.02 | | | Simazine | <2.05 | <1.95 | | | Trifluralin | <2.07 | <1.97 | _ | | Acetochlor | <5.85 | <5.57 | - | | Dimethenamid | <3.86 | <3.67 | | | PCBs (μg/kg) | | | | | Arochlor 1016 | | - | <6.4 | | Arochlor
1221 | - | _ | <5.3 | | Aroclor 1232 | _ | | <5.2 | | Aroclor 1242 | | _ | <5.6 | | Aroclor 1248 | - | - | <4.1 | | Aroclor 1254 | - | - | 18 | | Aroclor 1260 | <u> </u> | | <3.8 | | = Not analyzed for | | | | | Compiled by: <u>JEG</u> Checked by: _ | RJH | | | Q:\KO\Nerub\050200\Reports&Specs\misc\Soil Analytical Results-Pesticides.xls Former Mirro Plant #20 Newell Rubbermaid NERUB0502.00 Table 3 Groundwater Analytical Results | Amaintiant Danamatana | I NH 140 S | tandards | | | | | <u> </u> | | | | V | /eli No./Sa | mpling Da | te | | _ | | | | | | | |-----------------------------|------------|----------|---------|---------|---------|---------|----------|------------|-------------|--------------|--------------|---------------|---------------|---------------------|----------------|----------------|----------------|--------------|--------------|--------------|---------------|--------------| | Analytical Parameters | | | | -5 | | 5A | | -6 | | -9 | | 11 | В | -12 | M۱ | W-1 | M | N-2 | MV | V-3 | MV | W-4 | | -11 | ES | PAL | 2/16/06 | 5/30/06 | 2/16/06 | 5/30/06 | 2/16/06 | 5/30/06 | 2/16/06 | 5/30/06 | 2/16/06 | 5/30/06 | 2/16/06 | 5/30/06 | 2/16/06 | 5/30/06 | 2/16/06 | 5/30/06 | 2/16/06 | 5/30/06 | 2/16/06 | 5/30/06 | | pH (/l) | NSE | NSE | 7.36 | | 7.92 | | 7.93 | | 7.45 | | 8.28 | | 8.67 | | 7.34 | | 7.34 | | 7.37 | | 7.48 | | | DRO (µg/l) | NSE | NSE | PAHs ¹ (µg/l) | J | Acenaphthene | NSE | NSE | <0.06 | <0.06 | <0.06 | <0.06 | <0.06 | <0.06 | <0.06 | <0.06 | <0.06 | <0.06 | <0.06 | <0.061 | <0.06 | <0.06 | <0.06 | <0.06 | <0.06 | <0.06 | <0.06 | <0.06 | | Acenaphthylene | NSE | NSE | <0.06 | <0.06 | <0.06 | <0.06 | <0.06 | <0.06 | <0.06 | <0.06 | <0.06 | <0.06 | <0.06 | <0.061 | <0.06 | <0.06 | <0.06 | <0.06 | <0.06 | <0.06 | <0.06 | <0.06 | | Anthracene | 3,000 | 600 | <0.09 | <0.09 | <0.09 | <0.09 | <0.09 | <0.09 | <0.09 | <0.09 | <0.09 | <0.09 | <0.09 | <0.092 | <0.09 | <0.09 | <0.09 | <0.09 | <0.09 | <0.09 | <0.09 | <0.09 | | Benzo(a)Anthracene | NSE | NSE | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.102 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | | Benzo(a)Pyrene | 0.2 | 0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <u>0.048</u> | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | | Benzo(b)Fluoranthene | NSE | NSE | 0.066 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | 0.097 | <0.02 | <0.02 | <0.02 | 0.155 | <0.02 | 0.052 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | | Benzo(k)Fluoranthene | NSE | NSE | <0.07 | <0.07 | <0.07 | <0.07 | <0.07 | <0.07 | <0.07 | <0.07 | <0.07 | <0.07 | <0.07 | <0.071 | <0.07 | <0.07 | <0.07 | <0.07 | <0.07 | <0.07 | <0.07 | <0.07 | | Benzo(g,h,i)Perylene | NSE | NSE | <0.06 | <0.06 | <0.06 | <0.06 | <0.06 | <0.06 | 0.1 | <0.06 | <0.06 | <0.06 | <0.06 | <0.061 | 0.073 | <0.06 | <0.06 | <0.06 | <0.06 | <0.06 | <0.06 | <0.06 | | Chrysene | 0.2 | 0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <u>0.15</u> | <u>0.090</u> | <u>0.131</u> | <0.02 | <u>0.192</u> | <0.02 | 0.054 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | | Dibenzo(a,h)Anthracene | NSE | NSE | <0.11 | <0.11 | <0.11 | <0.11 | <0.11 | <0.11 | <0.11 | <0.11 | <0.11 | <0.11 | <0.11 | <0.112 | <0.11 | <0.11 | <0.11 | <0.11 | <0.11 | <0.11 | <0.11 | <0.11 | | Fluoranthene | 400 | 80 | <0.12 | <0.12 | <0.12 | <0.12 | <0.12 | <0.12 | <0.12 | 0.157 | <0.12 | <0.12 | 0.383 | <0.112 | <0.12 | <0.12 | <0.12 | <0.12 | <0.12 | <0.12 | <0.12 | <0.12 | | Fluorene | 400 | 80 | <0.12 | <0.12 | <0.12 | <0.12 | <0.12 | <0.12 | <0.12 | <0.12 | <0.12 | <0.12 | <0.12 | <0.112 | <0.12 | <0.12 | <0.12 | <0.12 | <0.12 | <0.12 | <0.12 | <0.12 | | Indeno(1,2,3-cd)Pyrene | NSE | NSE | <0.12 | <0.12 | 0.26 | <0.12 | <0.12 | <0.12 | <0.12 | <0.12 | <0.12 | <0.12 | 0.145 | <0.112 | <0.12 | <0.12 | <0.12 | <0.12 | <0.12 | <0.12 | <0.12 | <0.12 | | 1-Methyl Naphthalene | NSE | NSE | <0.08 | <0.08 | <0.08 | <0.08 | <0.08 | <0.08 | <0.08 | <0.08 | <0.08 | <0.08 | <0.08 | <0.082 | <0.08 | <0.08 | <0.08 | <0.08 | <0.08 | <0.08 | <0.08 | <0.08 | | 2-Methyl Naphthalene | NSE | NSE | <0.11 | <0.11 | 0.352 | <0.11 | <0.11 | <0.11 | <0.11 | <0.11 | <0.11 | <0.11 | <0.11 | <0.112 | <0.11 | <0.11 | <0.11 | <0.11 | <0.11 | <0.11 | <0.11 | <0.11 | | Naphthalene | 40 | 8.0 | <0.11 | <0.11 | 0.194 | <0.11 | <0.11 | <0.11 | <0.11 | <0.11 | <0.11 | <0.11 | <0.11 | <0.112 | <0.11 | <0.11 | <0.11 | <0.11 | <0.11 | <0.11 | <0.11 | <0.11 | | Phenanthrene | NSE | NSE | <0.11 | <0.11 | <0.11 | <0.11 | <0.11 | <0.11 | <0.11 | <0.11 | <0.11 | <0.11 | <0.11 | <0.112 | <0.11 | <0.11 | <0.11 | <0.11 | <0.11 | <0.11 | <0.11 | <0.11 | | Pyrene | 250 | 50 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.102 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | | VOCs² (μg/l) | Benzene | 5 | 0.5 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | 0.157 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | | Bromobenzene | NSE | NSE | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | | Bromochlororomethane | NSE | NSE | | <0.1 | | <0.1 | | <u>0.2</u> | •• | <0.1 | | <0.1 | | <0.1 | | <0.1 | | <0.1 | ••• | <0.1 | | <0.1 | | Bromodichloromethane | 0.6 | 0.06 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | | n-Butylbenzene | NSE | NSE | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | | sec-Butylbenzene | NSE | NSE | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | | tert-Butylbenzene | NSE | NSE | 0.236 | <0.15 | 0.252 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | | Carbon Tetrachloride | 5 | 0.5 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | | Chlorobenzene | NSE | NSE | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | | Chlorodibromomethane | NSE | NSE | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | | Chloroethane | 400 | 80 | <0.6 | <0.6 | <0.6 | <0.6 | <0.6 | <0.6 | <0.6 | <0.6 | <0.6 | <0.6 | <0.6 | <0.6 | <0.6 | <0.6 | <0.6 | <0.6 | <0.6 | <0.6 | <0.6 | <0.6 | | Chloroform | 6 | 0.6 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | | Chloromethane | 3 | 0.3 | <0.2 | 0.24 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <u>0.49</u> | <0.2 | <0.2 | <0.2 | 0.26 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | | o-Chlorotoluene | NSE | NSE | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | | p-Chlorotoluene | NSE | NSE | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | | 1,2-Dibromo-3-chloropropane | 0.2 | 0.02 | <0.3 | <0.35 | <0.3 | <0.35 | <0.3 | <0.35 | <0.3 | <0.35 | <0.3 | <0.35 | <0.3 | <0.35 | <0.3 | <0.35 | <0.3 | <0.35 | <0.3 | <0.35 | <0.3 | <0.35 | | 1,2-Dibromoethane | 0.05 | 0.005 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.0 | <0.5
<0.1 | <0.1 | <0.3 | <0.35 | | 1,2-Dichlorobenzene | 600 | 60 | <0.75 | <0.75 | <0.75 | <0.75 | <0.75 | <0.75 | <0.75 | <0.75 | <0.75 | <0.75 | <0.75 | <0.75 | <0.75 | <0.75 | <0.75 | <0.75 | <0.75 | <0.75 | <0.75 | <0.75 | | 1,3-Dichlorobenzene | 1,250 | 125 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.75
<0.15 | <0.75 | <0.15 | <0.75 | <0.75 | <0.75 | | 1,4-Dichlorobenzene | 75 | 15 | <0.75 | <0.75 | <0.75 | <0.75 | <0.75 | <0.75 | <0.75 | <0.75 | <0.75 | <0.75 | <0.75 | <0.75 | <0.15 | <0.75 | <0.75 | <0.15 | <0.15 | <0.15 | <0.15 | 1 | | Dichlorodifluoromethane | 1,000 | 200 | <0.25 | <0.25 | <0.25 | <0.25 | <0.25 | <0.25 | <0.25 | <0.25 | <0.25 | <0.25 | <0.25 | <0.75 | <0.75
<0.25 | <0.75 | <0.75
<0.25 | <0.75 | | | 1 | <0.75 | | 1,1-Dichloroethane | 850 | 85 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.25 | <0.25
<0.15 | <0.25
<0.15 | : | | <0.25 | <0.25 | <0.25 | <0.25 | | 1,2-Dichloroethane | 5 | 0.5 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | 0.20 | <0.10 | <0.13 | <0.13 | <0.15 | <0.15 | <0.15 | <0.15
<0.1 | 1 1 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | | 1,1-Dichloroethylene | 7 | 0.7 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.1
<0.15 | 0.15 | | <0.1 | <0.1 | <0.1 | <u>2.29</u> | <u>2.57</u> | 0.296 | 0.30 | | cis-1,2-Dichloroethylene | 70 | 7 | <0.10 | <0.2 | <0.13 | <0.13 | <0.13 | 0.34 | <0.15 | <0.15 | 1.57 | <0.15
0.95 | ľ | 1 1 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | | trans-1,2-Dichloroethylene | 100 | 20 | <0.1 | <0.1 | <0.1 | <0.1 | <0.2 | <0.1 | <0.2 | <0.2
<0.1 | <0.1 | 0.95
<0.1 | 2.77
<0.1 | <u>7.64</u>
0.14 | <0.2
<0.1 | <0.2
<0.1 | <0.2
<0.1 | <0.2
<0.1 | 2.22
<0.1 | 2.55
<0.1 | 5.57
0.138 | 4.55
0.30 | Table 3 (Continued) **Groundwater Analytical Results** | Analytical Parameters | NR 140 Standards | | | | | | | | | | V
 Vell No./Sa | mpling Da | te | | | | | | | - | | |-------------------------------|------------------|-------|--------------|---------|---------|---------|---------|---------|---------|----------|---------|-------------|-----------|-------------|---------|---------|---------------|----------|--------------|-------------|-------------|-------------| | | | | B-5 | | B-5A | | B-6 | | 1 | -9 | | 11 | | 12 | MW-1 | | MW-2 | | MW-3 | | MW-4 | | | V00.27 50 | ES | PAL | 2/16/06 | 5/30/06 | 2/16/06 | 5/30/06 | 2/16/06 | 5/30/06 | 2/16/06 | 5/30/06 | 2/16/06 | 5/30/06 | 2/16/06 | 5/30/06 | 2/16/06 | 5/30/06 | 2/16/06 | 5/30/06 | 2/16/06 | 5/30/06 | 2/16/06 | 5/30/06 | | VOCs² (µg/l) | | | | | | | | İ | |] | | | | | | | | | | | | | | 1,2-Dichloropropane | 5 | 0.5 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | | 1,3-Dichloropropane | NSE | NSE | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | | 2,2-Dichloropropane | NSE | NSE | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | | 1,1-Dichloropropene | NSE | NSE | <0.2 | <0.3 | <0.2 | <0.3 | <0.2 | <0.3 | <0.2 | <0.3 | <0.2 | <0.3 | <0.2 | <0.3 | <0.2 | <0.3 | <0.2 | <0.3 | <0.2 | <0.3 | <0.2 | <0.3 | | cis-1,3-Dichloropropene | 0.2 | 0.02 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | | trans-1,3-Dichloropropene | 0.2 | 0.02 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | | Ethylbenzene | 700 | 140 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | 0.269 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | | Hexachlorobutadiene | NSE | NSE | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | | Isopropylbenzene | NSE | NSE | <0.1 | <0.1 | 0.602 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | | Isopropyl Ether | NSE | NSE | | | | | | | | _ | | | | | | | | | | <0.1 | | 1 | | p-Isopropyltoluene | NSE | NSE | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | | - | | Methyl tert Butyl Ether | 60 | 12 | <0.1 | 0.66 | <0.1 | 0.36 | <0.1 | 0.33 | <0.1 | 1.49 | <0.1 | 0.56 | <0.1 | <0.1 | <0.1 | <0.2 | <0.2 | | l . | 1 | <0.2 | <0.2 | | Methylene Chloride | 5 | 0.5 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.1 | <0.1 | <0.1 | <0.1 | 0.14 | <0.1 | <0.1 | 0.112 | 0.22 | | Naphthalene | 40 | 8 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <0.4
<1.00 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | | n-Propylbenzene | NSE | NSE | <0.1 | <0.1 | 0.138 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | | Tetrachloroethylene | 5 | 0.5 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | 0.21 | | | | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | | 1,1,1,2-Tetrachloroethane | 70 | 7 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | l | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | | 1,1,2,2-Tetrachloroethane | 0.2 | 0.02 | 0.286 | <0.1 | 0.51 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | | Toluene | 1,000 | 200 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | | 1,1,2-Trichloroethane | 5 | 0.5 | | 0.58 | | 0.21 | | <0.1 | | <0.4 | | | 0.512 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | | Total Trimethylbenzenes | 480 | 96 | <0.3 | 0.22 | 3.93 | <0.3 | 0.21 | <0.1 | 0.445 | | | <0.1 | | <0.1 | | <0.1 | | <0.1 | | <0.1 | | <0.1 | | 1,2,3-Trichlorobenzene | NSE | NSE | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | | <0.3 | <0.3 | <0.3 | 0.214 | <0.3 | <0.3 | <0.3 | <0.3 | <0.3 | <0.3 | <0.3 | <0.3 | <0.3 | | 1,2,4-Trichlorobenzene | 70 | 14 | <0.5 | 0.58 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | 1,1,1-Trichloroethane | 200 | 40 | <0.3 | <0.2 | | | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | Trichloroethylene | 5 | 0.5 | | L | <0.2 | 0.21 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | | Trichlorofluoromethane | NSE | NSE | <0.2
<0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | 0.415 | <u>0.69</u> | <0.2 | <u>2.11</u> | <0.2 | <0.2 | <0.2 | <0.2 | <u>0.535</u> | <u>0.61</u> | <0.2 | <0.2 | | Vinyl Chloride | 1 | | | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | | Total Xylenes | 0.2 | 0.02 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | 0.26 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | | Metals (µg/l) | 10,000 | 1,000 | <0.5 | <0.5 | 0.112 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 0.984 | <0.5 | <0.5 | <0.5 | <:0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | 1 | 50 | _ | | | | | | | [| i | | | | | - | | | } | | | | | | Arsenic | 50 | 5 | <0.6 | | 1.4 | | 0.8 | | 0.8 | | 1.3 | | 1.8 | | <0.6 | | 1.7 | | 3.4 | | <0.6 | | | Barium | 2000 | 400 | 69.3 | - | 57 | | 29.9 | | 48.6 | - | 60.5 | | 40 | | 62.5 | | 34.5 | | 33.7 | | 48.2 | | | Cadmium | 5 | 0.5 | <0.2 | | <0.2 | | <0.2 | | <0.2 | | <0.2 | | <0.2 | | <0.2 | | <0.2 | | <0.2 | | <u>0.77</u> | | | Chromium | 100 | 10 | <1.60 | - | <1.60 | | <1.60 | | 2.4 | | 2.5 | | 2 | | <1.60 | | <1.60 | - | <1.60 | | 2.8 | | | Lead | 15 | 1.5 | <0.3 | | <0.3 | | <0.3 | | <0.3 | | <0.3 | | <0.3 | | <0.3 | | <0.3 | | <0.3 | | <0.3 | | | Mercury | 2 | 0.2 | <0.07 | | <0.07 | | <0.07 | | <0.07 | | <0.07 | | <0.07 | | <0.07 | | <0.07 | | <0.07 | | <0.07 | | | Selenium | 50 | 10 | 0.6 | i | 0.9 | | 0.8 | | <0.6 | | 0.97 | | 1.3 | | 0.6 | | 0.6 | | <0.6 | | 0.7 | | | Silver | 50 | 10 | <0.2 | | <0.2 | | <0.2 | | <0.2 | - | <0.2 | | <0.2 | | <0.2 | | <0.2 | | <0.2 | <u> </u> | <0.2 |] | | NSE = No standard established | | | | | | | | | | | | | | | | | | <u> </u> | 70.2 | | | | Bold = Exceeds ch. NR 140 Enforcement Standard (ES) <u>Underline</u> = Exceeds ch. NR 140 Preventive Action Limit (PAL) 2/06 Results Compiled by: <u>JEG</u> Checked by: <u>RJH</u> 5/06 Results Compiled by: <u>JEG</u> Checked by: <u>MFR</u> Q:\KO\Werub\050200\Reports&Specs\misc\GW Analytical Results.xls ^{-- =} Not analyzed for ^{1 =} PAH list is not complete; PAHs not listed are BDL ² = VOC list is not complete; VOCs not listed are BDL Table 3 (Continued) Groundwater Analytical Results | Analytical Parameters | NR 140 Standards | | | | | | | | | W | /ell No./Sam | pling Date | | | | | | | | | |----------------------------|------------------|-------|---------------|----------------|------------------------|---------|------------|----------------|--|--------------|----------------|------------|----------------|----------------|----------------|----------------|------------|---------|--------------|----------------| | | | | MW-5 PZ-5 | | | | Z-5 | 5 MW-6 | | | MW-7 MW-8 | | | | N-9 | East Sump | Large Sump | | West Sump | | | | ES | PAL | 2/16/06 | 5/30/06 | 5/30/2006
Duplicate | 2/16/06 | 5/30/06 | 2/16/06 | 5/30/06 | 2/16/06 | 5/30/06 | 2/16/06 | 5/30/06 | 2/16/06 | 5/30/06 | 2/16/06 | 2/16/06 | 5/30/06 | 2/16/06 | 5/30/06 | | рН | NSE | NSE | 7.38 | | | 7.48 | | 7.39 | | 7.49 | | 7.28 |
 | 7.66 | | 7.31 | 7.51 | | 0.00 | - | | DRO (μg/l) | NSE | NSE | | | | | | | | | | | | 7.00 | | 3,864,059 | | | 8.00 | | | PAHs¹ (µg/l) | | | | <u> </u> | | | | | | | | | | | | 3,004,059 | <u></u> | | | - - | | Acenaphthene | NSE | NSE | <0.06 | <0.06 | <0.06 | <0.06 | <0.06 | <0.06 | <0.06 | <0.06 | <0.061 | <0.06 | <0.06 | 0.004 | | | | | | | | Acenaphthylene | NSE | NSE | <0.06 | <0.06 | <0.06 | <0.06 | <0.06 | <0.06 | <0.06 | <0.06 | <0.061 | <0.06 | i . | 0.081 | <0.06 | <6.90 | <0.06 | <0.06 | <0.06 | <0.06 | | Anthracene | 3,000 | 600 | <0.09 | <0.09 | <0.09 | <0.09 | <0.09 | <0.09 | <0.09 | <0.00 | <0.092 | l | <0.06 | <0.06 | <0.06 | <6.90 | <0.06 | <0.06 | <0.06 | <0.06 | | Benzo(a)Anthracene | NSE | NSE | <0.1 | <0.1 | <0.1 | <0.0 | <0.03 | <0.1 | <0.09 | <0.09 | <0.092 | <0.09 | <0.09 | <0.09 | <0.09 | <10.4 | <0.09 | <0.09 | <0.09 | <0.09 | | Benzo(a)Pyrene | 0.2 | 0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | | I | <0.1 | <0.1 | <0.1 | <0.1 | <11.5 | <0.1 | <0.1 | <0.1 | <0.1 | | Benzo(b)Fluoranthene | NSE | NSE | <0.02 | <0.02 | 0.025 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <u>0.167</u> | <0.02 | <2.3 | <0.02 | <0.02 | <0.02 | <0.0 | | Benzo(k)Fluoranthene | NSE | NSE | <0.07 | <0.02 | <0.07 | <0.02 | <0.02 | <0.02
<0.07 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <2.3 | <0.02 | <0.02 | 0.035 | 0.09 | | Benzo(g,h,i)Perylene | NSE | NSE | <0.06 | 0.230 | 0.17 | <0.07 | <0.07 | <0.07 | <0.07 | <0.07 | <0.071 | <0.07 | <0.07 | <0.07 | <0.07 | <8.05 | <0.07 | <0.07 | <0.07 | <0.0 | | Chrysene | 0.2 | 0.02 | <0.02 | <0.02 | <0.02 | <0.00 | <0.08 | 1 | <0.06 | <0.06 | <0.061 | <0.06 | <0.06 | <0.06 | <0.06 | <6.90 | <0.06 | <0.06 | 0.094 | 0.06 | |
Dibenzo(a,h)Anthracene | NSE | NSE | <0.11 | <0.02 | <0.02 | 1 | | <0.02 | | <0.02 | <0.020 | <0.02 | <0.02 | <0.02 | <0.02 | <2.30 | <0.02 | <0.02 | <u>0.045</u> | 0.14 | | Fluoranthene | 400 | 80 | <0.11 | <0.11 | <0.11 | <0.11 | <0.11 | <0.11 | <0.11 | <0.11 | <0.112 | <0.11 | <0.11 | <0.11 | <0.11 | <12.7 | <0.11 | <0.11 | <0.11 | <0.1 | | Fluorene | 400 | 80 | <0.12 | <0.12
<0.12 | <0.12
<0.12 | 0.123 | <0.12 | <0.12 | <0.12 | <0.12 | <0.122 | <0.12 | <0.12 | <0.12 | <0.12 | <13.8 | <0.12 | <0.12 | <0.12 | 0.16 | | Indeno(1,2,3-cd)Pyrene | NSE | NSE | <0.12 | <0.12 | | <0.12 | <0.12 | <0.12 | <0.12 | <0.12 | <0.122 | <0.12 | <0.12 | <0.12 | <0.12 | <13.8 | <0.12 | <0.12 | <0.12 | <0.1 | | 1-Methyl Naphthalene | NSE | NSE | <0.12 | <0.12
<0.08 | <0.12 | <0.12 | <0.12 | <0.12 | <0.12 | <0.12 | <0.122 | <0.12 | <0.12 | <0.12 | <0.12 | <13.8 | <0.12 | <0.12 | <0.12 | 0.12 | | 2-Methyl Naphthalene | NSE | NSE | | | <0.08 | <0.08 | <0.08 | <0.08 | <0.08 | <0.08 | <0.082 | <0.08 | <0.08 | 1.31 | <0.08 | <9.2 | <0.08 | <0.08 | <0.08 | <0.0 | | Naphthalene | | 1 1 | <0.11 | <0.11 | <0.11 | <0.11 | <0.11 | <0.11 | <0.11 | <0.11 | <0.112 | <0.11 | <0.11 | 2.73 | <0.11 | <12.7 | <0.11 | <0.11 | <0.11 | <0.1 | | Phenanthrene | 40 | 8.0 | <0.11 | <0.11 | <0.11 | <0.11 | <0.11 | <0.11 | <0.11 | <0.11 | <0.112 | <0.11 | <0.11 | 1.05 | <0.11 | <12.7 | <0.11 | <0.11 | <0.11 | <0. | | | NSE | NSE | <0.11 | <0.11 | <0.11 | <0.11 | <0.11 | <0.11 | <0.11 | <0.11 | <0.112 | <0.11 | <0.11 | <0.11 | <0.11 | <12.7 | <0.11 | <0.11 | <0.11 | 0.11 | | Pyrene | 250 | 50 | <0.1 | <0.1 | <0.1 | 0.169 | <0.1 | <0.1 | <0.1 | <0.1 | <0.102 | <0.1 | <0.1 | <0.1 | <0.1 | <11.5 | <0.1 | <0.1 | <0.1 | <0. | | DCs ² (µg/l) | _ | | | | | [| | [| i | İ | İ | | i | | | | | | | | | Benzene
Benzene | 5 | 0.5 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.1 | | Bromobenzene | NSE | NSE | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0. | | Bromochlororomethane | NSE | NSE | | <0.1 | <0.1 | ļ | <0.1 | - | <0.1 | - | <0.1 | - | <0.1 | | <0.1 | - | - | <0.1 | | <0. | | Bromodichloromethane | 0.6 | 0.06 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0. | | n-Butylbenzene | NSE | NSE | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0. | | sec-Butylbenzene | NSE | NSE | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0. | | ert-Butylbenzene | NSE | NSE | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0. | | Carbon Tetrachloride | 5 | 0.5 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0. | | Chlorobenzene | NSE | NSE | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0. | | Chlorodibromomethane | NSE | NSE | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0 | | Chloroethane | 400 | 80 | <0.6 | <0.6 | <0.6 | <0.6 | <0.6 | <0.6 | <0.6 | <0.6 | <0.6 | <0.6 | <0.6 | <0.6 | <0.6 | <0.6 | <0.6 | <0.6 | <0.6 | <0 | | Chloroform | 6 | 0.6 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0 | | Chloromethane | 3 | 0.3 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | 0.24 | <0.2 | <0.2 | <0.2 | 0.28 | <0.2 | 0.28 | <0.2 | <0.2 | <0.2 | <0.2 | 0.2 | | o-Chlorotoluene | NSE | NSE | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0. | | -Chlorotoluene | NSE | NSE | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0 | | ,2-Dibromo-3-chloropropane | 0.2 | 0.02 | <0.3 | <0.35 | <0.35 | <0.3 | <0.35 | <0.3 | <0.35 | <0.3 | <0.35 | <0.3 | <0.35 | <0.3 | <0.35 | <0.3 | <0.2 | <0.35 | <0.3 | <0. | | ,2-Dibromoethane | 0.05 | 0.005 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.03 | <0.1 | <0 | | ,2-Dichlorobenzene | 600 | 60 | <0.75 | <0.75 | <0.75 | <0.75 | <0.75 | <0.75 | <0.75 | <0.75 | <0.75 | <0.75 | <0.75 | <0.75 | <0.75 | <0.75 | <0.75 | <0.75 | <0.75 | <0. | | ,3-Dichlorobenzene | 1,250 | 125 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.75 | <0.75 | <0.15 | <0.75
<0.15 | i | 1 | L . | 1 | 1 | | 1,4-Dichlorobenzene | 75 | 15 | <0.75 | <0.75 | <0.75 | <0.75 | <0.75 | <0.75 | <0.75 | <0.75 | <0.75 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15
<0.75 | <0.15 | <0.15 | <0.15 | <0. | | Dichlorodifluoromethane | 1,000 | 200 | <0.25 | <0.25 | <0.25 | <0.25 | <0.25 | <0.25 | <0.25 | <0.75 | <0.75 | <0.75 | <0.75
<0.25 | <0.75
<0.25 | 1 | i | <0.75 | <0.75 | <0.75 | <0. | | ,1-Dichloroethane | 850 | 85 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.25 | <0.25 | <0.25
<0.15 | | | | <0.25 | <0.25 | <0.25 | <0.25 | <0.25 | <0. | | ,2-Dichloroethane | 5 | 0.5 | 0.357 | 0.29 | 0.24 | 0.335 | 0.31 | 1 | | i | 1 | 0.26 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0. | | 1,1-Dichloroethylene | 7 | 0.5 | <0.15 | <0.15 | <0.15 | <0.15 | | 0.678 | 0.67 | 0.786 | 0.53 | <0.1 | 0.11 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0 | | cis-1,2-Dichloroethylene | 70 | 7 | | 5.98 | | 1 1 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0. | | trans-1,2-Dichloroethylene | | 1 00 | 8.26
0.262 | | 5.49 | <0.2 | 0.21 | 0.869 | 0.81 | 1.82 | 1.38 | 5.06 | <u>8.83</u> | <0.2 | <0.2 | 2.06 | 1.46 | 1.67 | <0.2 | <0. | | nano-1,2-Dichioroeuryiene | 100 | 20 | 0.262 | 0.46 | 0.48 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | 0.22 | <0.1 | <0.1 | <0.1 | <0.1 | 0.14 | <0.1 | <0. | # Table 3 (Continued) Groundwater Analytical Results | Analytical Parameters | | | | | | | | | | V | Vell No./Sam | pling Date | | | | | | | | | |---------------------------|------------------|-------|---------|---------|------------------------|-------------|---------|---------|-------------|---------|--------------|------------|-------------|---------|---------|-----------|--------------|---------|---------|---------| | | NR 140 Standards | | MW-5 | | | PZ-5 | | MV | V- 6 | MV | N-7 | MV | V-8 | MW-9 | | East Sump | Large Sump | | West | Sump | | | ES | PAL. | 2/16/06 | 5/30/06 | 5/30/2006
Duplicate | 2/16/06 | 5/30/06 | 2/16/06 | 5/30/06 | 2/16/06 | 5/30/06 | 2/16/06 | 5/30/06 | 2/16/06 | 5/30/06 | 2/16/06 | 2/16/06 | 5/30/06 | 2/16/06 | 5/30/06 | | VOCs² (μg/l) | 1,2-Dichloropropane | 5 | 0.5 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | | 1,3-Dichloropropane | NSE | NSE | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | | 2,2-Dichloropropane | NSE | NSE | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | | 1,1-Dichloropropene | NSE | NSE | <0.2 | <0.3 | <0.3 | <0.2 | <0.3 | <0.2 | <0.3 | <0.2 | <0.3 | <0.2 | <0.3 | <0.2 | <0.3 | <0.2 | <0.2 | <0.3 | <0.2 | <0.3 | | cis-1,3-Dichloropropene | 0.2 | 0.02 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | | trans-1,3-Dichloropropene | 0.2 | 0.02 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | | Ethylbenzene | 700 | 140 | <0.1 | <0.1 | 0.11 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | 0.411 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | | Hexachlorobutadiene | NSE | NSE | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | | Isopropylbenzene | NSE | NSE | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | | Isopropyl Ether | NSE | NSE | | | | | | - | | | | _ | | | | - | - | - | - | | | p-Isopropyltoluene | NSE | NSE | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | | Methyl tert Butyl Ether | 60 | 12 | <0.1 | 0.17 | 0.18 | <0.1 | 0.14 | <0.1 | 0.21 | <0.1 | 0.13 | <0.1 | 0.19 | <0.1 | 0.30 | <0.1 | <0.1 | 1.01 | <0.1 | 0.32 | | Methylene Chloride | 5 | 0.5 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | | Naphthalene | 40 | 8 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | 1.87 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | | n-Propylbenzene | NSE | NSE | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | 0.117 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | | Tetrachloroethylene | 5 | 0.5 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | 0.236 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | | 1,1,1,2-Tetrachloroethane | 70 | 7 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | | 1,1,2,2-Tetrachloroethane | 0.2 | 0.02 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | | Toluene | 1,000 | 200 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | 0.4 | <0.4 |
<0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | | 1,1,2-Trichloroethane | 5 | 0.5 | | <0.1 | <0.1 | | <0.1 | | <0.1 | | <0.1 | | <0.1 | | <0.1 | | | <0.1 | | <0.1 | | Total Trimethylbenzenes | 480 | 96 | <0.3 | <0.1 | <0.1 | <0.3 | <0.1 | <0.3 | <0.1 | <0.3 | <0.1 | <0.3 | <0.1 | 2.049 | <0.1 | <0.3 | <0.3 | <0.1 | <0.3 | <0.3 | | 1,2,3-Trichlorobenzene | NSE | NSE | 1 | | 1 | <0.5 | | 1 | 1 | 1 | <0.5 | <0.5 | <0.5 | <0.5 | | 1 | <0.5 | <0.5 | <0.5 | <0.5 | | 1 ' ' | 1 | 1 | <0.5 | <0.5 | <0.5 | | <0.5 | <0.5 | <0.5 | <0.5 | 1 | | 1 | | <0.5 | <0.5 | | 1 | <0.5 | <0.5 | | 1,2,4-Trichlorobenzene | 70 | 14 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 1 | <0.5 | | 1,1,1-Trichloroethane | 200 | 40 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | 0.241 | <0.2 | 0.206 | 1.22 | <0.2 | <0.2 | <0.2 | <0.2 | 1 | | Trichloroethylene | 5 | 0.5 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | 0.228 | 2.66 | <0.2 | <0.2 | 0.293 | <u>0.645</u> | 0.95 | <0.2 | <0.2 | | Trichlorofluoromethane | NSE | NSE | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | | Vinyl Chloride | 0.2 | 0.02 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <u>0.16</u> | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | | Total Xylenes | 10,000 | 1,000 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 2.335 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | Metals (µg/l) | | 1 | | | | | | | | | 1 | 1 | 1 | İ . | | 1 | | | | | | Arsenic | 50 | 5 | 0.6 | | - | <u>10.3</u> | - | 1.20 | - | 4.70 | - | 0.6 | | 1.20 | - | <0.125 | 2.00 | | 1.00 | - | | Barium | 2000 | 400 | 68.5 | - | - | 71.2 | - | 52.4 | - | 58.5 | - | 81 | | 113 | - | <0.0375 | 56 | - | 33.4 | - | | Cadmium | 5 | 0.5 | <0.2 | - | - | <0.2 | - | 0.28 | - | <0.2 | - | <0.2 | - | 0.34 | - | <0.0212 | <0.2 | - | <0.2 | - | | Chromium | 100 | 10 | 1.90 | - | - | <1.60 | - | 1.90 | - | <1.60 | - | 3.20 | - | 4.90 | - | <0.0351 | <1.60 | - | 2.10 | - | | Lead | 15 | 1.5 | <0.3 | | - | <0.3 | - | <0.3 | - | <0.3 | | <0.3 | - | <0.3 | | <0.2 | <0.5 | | <0.3 | - | | Mercury | 2 | 0.2 | <0.07 | | | <0.07 | | <0.07 | - | <0.07 | | <0.07 | - | <0.07 | - | <0.07 | <0.07 | | <0.07 | - | | Selenium | 50 | 10 | 0.7 | - | - | 0.8 | | 0.8 | - | 0.9 | - | 0.96 | - | 2.01 | - | 0.225 | 0.9 | | 1.50 | - | | Silver | 50 | 10 | <0.2 | •• | | <0.2 | | <0.2 | - | <0.2 | | 0.27 | <u> </u> | <0.2 | | <0.075 | <0.2 | | <0.2 | | NSE = No standard established -- = Not analyzed for Bold = Exceeds ch. NR 140 Enforcement Standard (ES) <u>Underline</u> = Exceeds ch. NR 140 Preventive Action Limit (PAL) 2/06 Results Compiled by: <u>JEG</u> Checked by: <u>RJH</u> 5/06 Results Compiled by: <u>JEG</u> Checked by: <u>MFR</u> Q:\KO\Nerub\050200\Reports&Specs\misc\GW Analytical Results.xls ^{1 =} PAH list is not complete; PAHs not listed are BDL ² = VOC list is not complete; VOCs not listed are BDL # **Figures** Figure 1 – Site Location Figure 2 – Outfalls to Manitowoc River Figure 3 – Sampling Locations Figure 4 – Groundwater Flow Map, 5/30/2006 Figure 5 – Geologic Cross Sections # USGS CHILTON QUADRANGLE WISCONSIN - CALUMET CO. 7.5 MINUTE SERIES 1973 NO. DATE SITE INVESTIGATION REPORT FORMER MIRRO PLANT #20 CHILTON, WISCONSIN SITE INVESTIGATION REPORT ISSUE/REVISIONS FIGURE 1 DRAWN BY NERUB050200 SITE LOCATION 07/17/06 DESIGN FIELD REVIEW PROJ. NO. 5 JEG 814 QC CHECK - SITE LOCATION DRAWING DIRECTORY: Q: \KO\NERUB\050200\FIGURES\SITE INVESTIGATION REPORT\FIGURE 1 # Appendix A Soil Boring, Monitoring Well, and Piezometer Documentation ## SOIL BORING LOG INFORMATION | | | | Ro | ute To: | Watershed/W | | | | _ | gement | | | | | | | | | |--------------------|---------------------------------|-------------|----------------|--|---------------------|--------------|-----------|----------|----------|--------------------|---------------------|----------|-------------------------|---------------------|-----------------|---------------------|--------|--| | | | | | | Remediation | Redevelopr | nent 🛛 | Other | | | ٠ | | | | | | | | | | -/D : | - 5.7 | | | | | | Tr · | /D | | | 7 1. | | D ' | Pa | | of | 1 | | | y/Proje
ro Pla | | | | | | | License. | Permi | /Monit | oring r | Number | r | Boring | Numb | B1 | | | | | | | | of crew o | chief (first, last) | and Firm | | Date Dr | illing S | Started | | Da | te Drill | ing Co | mplete | | Drill | ing Method | | | y Johi
Essei | | ł | | | | | | 2/13 | 3/2006 | | | | 2/13/: | 2006 | | | /draulic
obe | | | ique W | | | DNR V | Well ID No. | Common V | Well Name | Final St | atic W | ater Lev | | Surfac | e Eleva | tion | | Во | rehole | Diameter | | Local | C=id O | iain | N/ (as | timatadı | or Bo | ing Lagatio | | <u> </u> | Feet | MSL | | | Fee
Local 0 | et MS | | | 2.0 | inches | | State | | ıgııı | [X] (c: | stimated: | 0 N, 0 | | | L | at | <u> </u> | <u> </u> | | Local | JIIU L | | | | □ Е | | | 1/4 | of N | W 1 | /4 of Sec | • | T 18 N, | | Lon | | <u> </u> | <u> </u> | *** | | | t 🗆 S | |] | Feet W | | Facilit | y ID | | | | County | | | County C | ode | Civil T
Chilt | | city/ or | Village | : | - | | | | | San | nple | | Т | <u>. </u> | Calumet | | | 8 | Γ— | Cmit | on | | <u> </u> | Soil | Prop | erties | | | | Dan | | | | | Soil/R | ock Descrip | otion | | | | | | | 0011 | Т | | | | | 43 | ۱tt. گ
ed (ii | unts | Fee | | | ologic Orig | | | | | _ | _ | ssive | | | _ | | ıts | | Number
and Type | Length Att. &
Recovered (in) | Blow Counts | Depth In Feet | | Eac | h Major Un | it | | scs | Graphic
Log | Well
Diagram | PID/FID | Compressive
Strength | Moisture
Content | Liquid
Limit | Plasticity
Index | 200 | RQD/
Comments | | ang R | | Bic | ļ a | | n mor | | | | Ď | Grap
Log | Well
Diagr | | St | Σိပိ | 12,12 | Plastic
Index | P 2 | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | 1
CORE | 24
16 | | Ē | Dark | Brown TOI | SOIL | | | OL | | | 0.0 | | | | | | | | | | | -1 | | L: Layers of | | | | | | | | | | | | | | | | | | <u>-</u> 2 | Brick | k Pieces, Cir | ders, and | Lean Cla | ay | | | | | | | | | | | | 2
CORT | 24
16 | | F | | | | | | | | | 0.0 | | | | | | | | | | | - 3 | | | | | | | | | | | | | | | | | Ц | | | <u>-</u> 4 | | | | | | | | | ļ | | İ | | | | | | 3
CORT | 24
15 | | <u> </u> | | | | | | | | | 0.0 | | | | | | | | ı | | | 5 | E_6 | | | | | | | | ¥ | | } | | | | | | | 4
CORE | 24
16 | | E 7 | Brov
Grav | vn Lean CLA | AY, Little | Sand and | d | | | _ | 0.0 | | | | | | | | | | | <u>-</u> 7 | Giav | /C1 | | | | CL | | | | | | | | | | | | | | Ė, | | | | | | | | | | 1 | | | | | | | | | | - 8 | E.O. | B. @ 8.0 ft. | | | | | | | | | | | | | | | | <u>'</u> | ļ | | | | | | | | ļ | | Ì | | } |] | 7 1 | <u> </u> | G. 41 | 441 - 1 - | <u> </u> | 41:- 6 | - American 1 | | hart C | | | | | <u>L.</u> | | <u> </u> | L | | <u> </u> | | Signat | | iy tha | t the ini | cormation | n on this form i | | | | | 121 Fren | ette Dri | ve | | | | | Tale | 715.720.6200 | | _ < | | 6 | an | <u>. </u> | Jus | | Firm SE | HI | nc (| Chippew
www.seh | a Falls,
inc.com | WI 547 | 729 | | | | | 715.720.6200 | | State of Wisconsin | |---------------------------------| | Department of Natural Resources | # SOIL BORING LOG INFORMATION Fax: 715.720.6300 Form 4400-122 Rev. 7-98 Route To: Watershed/Wastewater Waste Management Other \square Remediation/Redevelopment Page Facility/Project Name License/Permit/Monitoring Number Boring Number Mirro Plant #20 B₂ 00 Boring Drilled By: Name of crew chief (first, last) and Firm Date Drilling Started Date Drilling Completed Drilling Method Cory Johnson Hydraulic Soil Essentials 2/13/2006 2/13/2006 Probe WI Unique Well No. DNR Well ID No. Common Well Name Final Static Water Level Surface Elevation Borehole Diameter Feet MSL 2.0 inches Feet MSL Local Grid Origin (estimated:) or Boring Location Local Grid Location Lat 0 N, 0 E State Plane S/C/N \square N \square E Feet S 1/4 of NW 1/4 of Section 18. т 18 N, R 20 E Feet W Long Civil Town/City/ or Village Facility ID County County Code 8 Chilton Calumet Sample Soil Properties Soil/Rock Description Recovered (in) Compressive Strength Depth In Feet Blow Counts Length Att. And Geologic Origin For Comments Plasticity Index PID/FID Moisture Content Well Diagram Graphic Each Major Unit SC Liquid Limit 200 Dark Brown TOPSOIL 24 OL COR 15 -1 FILL: Mixture of Brown Lean Clay, Light Brown Sand, and Occasional Cinders 0.0 24 COR 15 -3 E.O.B. @ 4.0 ft. I hereby certify that the information on this form is true and correct to the best of my knowledge. SEH Inc Chippewa Falls, WI 54729 www.sehinc.com Signature Tel: 715.720.6200 ## SOIL BORING LOG INFORMATION Form 4400-122 Rev. 7- | | | | <u>Ro</u> | ute To: | | /astewater 🔲 | | | gement | | | | | | | | | |--------------------|---------------------------------|-------------|----------------|-----------|---------------------|--------------------------|-------------|-----------|--------------------|----------------------|-------------|-------------------------|---------------------|-----------------|---------------------|----------|------------------| | | | | | | Remediation | Redevelopment 🛚 | Other | Ш | | | | | | | | | | | Facilit | y/Proje | ot Man | | | | | License | /Damai | +/Manit | oring) | ha | | Darina | Pag
Numb | | of | 1 | | | ro Pla | | | | | | 00 | 7 Fermi | U MOIII | oring r | vuilibe | r | Dormg | g
Nume | B3 | | | | | | | | of crew | chief (first, last) | and Firm | Date D | rilling S | Started | | Da | te Drill | ing Co | mplete | | | ling Method | | Cor
Soil | y Johi
Essei | nson | ! | | | | | 2/13 | 3/2006 | í | | | 2/13/2 | 2006 | | | ydraulic
obe | | | ique W | | | DNR | Well ID No. | Common Well Name | Final S | | | | Surfac | e Eleva | | 2000 | Bo | | Diameter | | T 1 | <u> </u> | | 57 (| -4:4 - d | | | | Feet | MSL | | | | et MS | | | 2.0 | inches | | State | | rigin | ⊠ (e: | stimated | 0 N, 0 | ring Location E S/C/N | L | at | <u> </u> | <u>'</u> | | Local | Oria Lo | ocation | | | Ε | | | | of N | W 1 | /4 of Se | | T 18 N, R 20 E | Lo | | <u> </u> | <u> </u> | " | | Fee | t 🗆 S | | | Feet W | | Facilit | y ID | | | | County
Calumet | | County C | Code | Civil Chil | | City/ or | Village | е | | | | | | Sar | nple | | <u> </u> | <u> </u> | Calumet | ! | 0 | 1 | Cini | lon | <u> </u> | <u> </u> | Soil | Prop | erties | | | | | | | <u> </u> | | Soil/R | ock Description | | | | | | | 1 | 1100 | | | | | . 8 | Att. | ounts | n Fee | | | ologic Origin For | | | | | | ssive | u . | | הל | | nts | | Number
and Type | Length Att. &
Recovered (in) | Blow Counts | Depth In Feet | | Eac | h Major Unit | | SCS | Graphic
Log | Well
Diagram | PID/FID | Compressive
Strength | Moisture
Content | Liquid
Limit | Plasticity
Index | 200 | RQD/
Comments | | Z g | 24 | <u> </u> | <u> </u> | Dark | Brown TOI | PSOII | | <u> </u> | 2 7 | <u>≱ ä</u> | 0.0 | 2 2 | ≱ ວັ | 2 2 | E E | <u>a</u> | ¥ 3 | | CORE | 12 | | Ė. | Duri | C DIOWII TOI | BOIL | | OL | | | | | | | | | | | | | | E' | | | Brown Sand, Bla | | | | | | | | | | | | | 2 | 24 | | <u>-</u> 2 | Grav | | wn Lean Clay, So | me | | | | 0.0 | | | | ļ | ĺ | | | CORE | 12 | | Ė. | | | | | | | | 0.0 | | | | | | | | | | | F ³ | | • | | | | | | | | | ļ | | | | | | | | F-4 | FO | B. @ 4.0 ft. | | | ļ | \bowtie | | | | | | | | | | | | | | E.O. | .b. @ 4.0 II. | i | | | | - | | | } | | | | | | | | | | | | | | | | | | | : | | | | | | | 1 | - | • | | | | | | | | | | | | | | | I herel | v certi | fy that | the inf | Cormation | n on this form is | s true and correct to th | e best of r | ny kno | wledge | Ļ | | 1 | <u></u> | <u> </u> | <u> </u> | L | <u> </u> | | Signat | 1100 | | | | | | | - | | | ve | | | | | Tel | : 715.720.6200 | | | \subseteq | <u>k li</u> | in | £. | Lus | Firm SI | PH I | nc (| Chippew
www.sel | a Falls,
iinc.com | WI 547
1 | 729 | | | | | 715.720.630 | Route To: Watershed/Wastewater # SOIL BORING LOG INFORMATION Form 4400-122 Rev. 7-98 | | | | | Remediation | Redevelopment 🛭 | Other | | | | | | | | | | | |--------------------|---------------------------------|-------------|-----------------|---------------------------------------|---------------------------|-----------|-----------|--------------------|-----------------|----------|-------------------------|-------------|-----------------|---------------------|-------|----------------------------------| | | | | | | | | | | | | | | Pas | ge 1 | of | 1 | | Facilit | y/Proje | et Nar | ne | | | License | /Permi | t/Monit | oring N | Numbe | r | Boring | Numb | | | ` | | Mir | ro Pla | nt #2 | 0. | | | 00 | | | | | | | | B4 | | | | Boring | Drille | l By: | Name | of crew chief (first, last) | and Firm | Date Di | rilling S | Started | | Da | te Drill | ing Co | mplete | d | Dril | ling Method | | | y Johr | | | | | | | | | | | | | | | ydraulic | | | Esser | | | | 1 - | | | 3/2006 | | | | 2/13/ | 2006 | | | obe | | WIUn | ique W | ell No |). | DNR Well ID No. | Common Well Name | Final St | | | vel | Surfac | e Eleva | | T | Вс | | Diameter | | Local | Grid O | rigin | N/ (ac | stimated: or Box | ing Location | <u>.l</u> | reet | MSL | | | | et MS | Cation | | 2.0 | inches | | State | | ıgııı | ⊠ (c: | 0 N, 0 | | L | at | ° | <u> </u> | н | Local | OHU L | Cation N | | | □E | | | | of N | W i | /4 of Section 18, | T 18 N, R 20 E | Lor | 10 | 0 | • | 11 | | Fee | t 🗆 S | | | Feet W | | Facilit | | - | ··· - | County | | County C | | Civil 7 | Cown/C | ity/ or | Village | | | | | X 000 ED | | | | | | Calumet | | 8 | | Chil | ton | | | | | | | | | San | nple | | | | | | | | | | | Soil | Prop | erties | | | | - | % (ii) | | . ا | Soil/R | ock Description | | | | | | | | | | | | | | d (i | unts | Fee | And Ge | cologic Origin For | | | | | | sive | | | | | ts | | ber | th A | ပိ | h In | Eac | h Major Unit | | CS | hic | Lam | Æ | pres | ture
ent | . g | icity | _ | men | | Number
and Type | Length Att. &
Recovered (in) | Blow Counts | Depth In Feet | | | | S | Graphic
Log | Well
Diagram | PID/FID | Compressive
Strength | fois
ont | Liquid
Limit | Plasticity
Index | P 200 | RQD/
Comments | | 11 | 48 | <u>ш</u> | 11 | Dark Brown TOI | PSOII | | P | 1011 | N 11 | 0.0 | 8 | 20 | | H I | | <u> </u> | | CORL | 32 | | Ē | Dunk Brown 101 | JOIL | | OL | | 1 | | | | | | | | | | | | -1 | FILL:Mixture of | Brown Sand and | Gravel. | | | | | | | | | | | | | | | E, | Brown Clay, and | | , | | \bowtie | | | | | | | | | | l. | | | | | | | | \bowtie | | } | | | | | | | | | | | | | | | | \bowtie | | | | | | | | | | | | | <u>-3</u> | | | | | \bowtie | | | | | | | | | | | | | E, | Probable FILL: I | Dark Brown Organ | ic | | | | | | | | | | | | 2
CORE | 24
16 | | F" | Clay, Probable P | etroleum Odor | | | | | 72 | | | | | | Petroleum
Odor | | COR | 10 | | E_5 | | | | | \bowtie | | | | | | | | Odoi | | i i | | | Ę | | | | | | | | | | | | | | | , H | | | <u>-</u> 6 | | | | ↓ | \bowtie | Ā | | İ | | | | | | | CORE | 24
16 | | E | Probable FILL: H
 Organic Clay Mi | Black to Dark Brown | vn | | \bowtie | | 72 | - | | | | | Petroleum
Odor | | l l | ĺ | l. | -7 | Organic Cray IVII | xed will Graver | | | \bowtie | | | 1 | | | | | | | | | | E | | | | | \bowtie | \$ | | | | | | | | | IJ | 1 | | ⊢ 8 | E.O.B. @ 8.0 ft. | | | <u> </u> | <u> </u> | 4 | | | | | | | | | | | | | E.O.B. @ 8.0 II. | 1 | | | Ì | | | | | | | | | | | } | | Ì | ļ | { | l | | | | | | | | | | | | | | | | | | 1 | | | | | | | I herel | v cert: | fy the | t the inf | Cormation on this form is | s true and correct to the | heet of | ny kao | wledge | <u> </u> | <u> </u> | Ь | 1 | | <u> </u> | 1 | <u></u> | | Signat | | ıy ula | t me mi | | | | | 121 Fren | ette Dri | ve | | | | | - T 1 | . 715 730 7300 | | | | elle | K 1 | E. Sey | FirmSE | | nc (| Chippew
www.sel | a Falls, | WI 547 | 729 | | | | | : 715.720.6200
: 715.720.6300 | Waste Management \square # SOIL BORING LOG INFORMATION Form 4400-122 Rev. 7-98 | | | | Ko | | Vastewater ∟
n/Redevelopment ⊠ | | ie Mana
r 🔲 | gement | | | | | | | | | |--------------------|---------------------------------|-------------|-----------------|-----------------------------|--|------------|----------------|----------------|-----------------|-----------|-------------------------|---------------------|---------------|----------------------------------|-------|-------------------| | | | | | | | | | | | | | | Pa | ge 1 | of | 1 | | | y/Proje | | | | | | se/Permi | t/Monit | oring l | Vumbe | r | Boring | | er | | | | | ro Pla | | | of crew chief (first, last |) and Firm | Date I | Orilling | Started | | ID: | te Drill | ing Co | mplete | $\frac{\mathrm{B5}}{\mathrm{d}}$ | Dril | ling Method | | Cor | y Johr | ison | | | , | | | | | | | | - | | - 1 | wer Hand | | | Esser | | | DNR Well ID No. | Common Well Nam | e Final 9 | | 4/2006 | | Surfac | e Eleva | 2/14/2 | 2006 | IR. | | uger
Diameter | | WIUI | iique w | en inc |). | DINK WEILID NO. | Common Wen Nam | Fillal | | MSL | VCI | Surra | | et MS | L | B | | inches | | | | igin | ⊠ (es | timated:) or Bo | | , | Lat | 0 | , | " | Local | | | I | | | | State | | of N | W 1 | 0 N, 0
/4 of Section 18, | | | ong | 0 | · | " | | Fee | 1 □
2 □ t | | | ☐ E
Feet ☐ W | | Facilit | | 01 14 | VV 1 | County | 1 10 11, R 20 E | County | | Civil | Town/0 | City/ or | Village | | | | | rect w | | | . 1 | | | Calumet | | 8 | | Chil | ton | | T | | | | | | | _San | nple | | | G-:10 | Rock Description | | | | | | | Soil | Prop | erties | | | | | it. &
I (in) | ınts | Feet | | eologic Origin For | | | | | | i.e | | | | | w | | ber
Type | th Ai | Coc | h In] | | ch Major Unit | | CS | jë. | ram | E | press
gth | ture |
 <u></u> | icity | (| /
ment | | Number
and Type | Length Att. &
Recovered (in) | Blow Counts | Depth In Feet | | | | US(| Graphic
Log | Well
Diagram | PID/FID | Compressive
Strength | Moisture
Content | Liqu | Plasticity
Index | P 200 | RQD/
Comments | | | | | F | CONCRETE | | | | / · · · | Ţ | | | | | | | | | 1 []
CORIG | 4 | | <u>-</u> 1 | | y Sand, Little Gra
y Sand and Grave | | _ | \bowtie | | 3.0
41 | | | | | | No Staining noted | | 2
CORI | 24
24 | | E | Stained) | y Sand and Grave | i (Oii | | | | 71 | | | | | | Oil Stained | | | | | 2
 | | | | | | | | | | | | | | | L | | | <u>-3</u> | Eine CAND (De | 1 D . l | | | XXX | | | | | | | | | | | | | <u>-</u> 3 | Fine SAND (Ba | sed on Auger
Beh | avior) | 1 | | | | | | | | | | | | | | F-4 | | | | | | | | | | | | | | | | | | <u>-</u> 5 | | | | | | | | | | | | | : | | | | | Ė. | | | | | | | | | | | | | | | | | | F-6 | | | | | | | | | | | | | | | | | | E ₇ | | | | | | | | | | | | | | | | | | E' | | | | | | | | | | | | | | | | | | <u>-</u> 8 | | | | SP | | | : | | | | | | | | | | | E ₉ | | | | | | | | | | | | | | | | | | E' | | | | | | | : | | | | | | | | | | | <u>-</u> 10 | | | | | | | | | | | | | | | | | | Ē., | | | | | | | | | | | | | | | | | | F 11 | | | | | | | | | | | | | | | | | | E-12 | | | | | | | | | | 1 | } | | | | | | | E | | | | | | | Į
Ž | | | | | | | | | | • | - 13 | | · . | | | | | | | | | | | | | | | | | E.O.B. @ 13.5 f | t. | | | | | | | | | | | | | I here | by certi | fy that | the inf | ormation on this form | is true and correct to t | he best of | my kno | wledge | | | | | • | | | | Firm SEH Inc Chippewa Falls, WI 54729 Tel: 715.720.6200 Fax: 715.720.6300 This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may Route To: Watershed/Wastewater # SOIL BORING LOG INFORMATION Form 4400-122 Rev. 7-98 | | | | | Remediation | /Redevelopme | ent 🖾 | Other | | | | | | | | | | | |--------------------|---------------------------------|-------------|---------------|------------------------------|----------------|-------------|-----------------|----------|--------------------------------|-----------------|----------|-------------------------|---------------------|-----------------|---------------------|----------|------------------------------| | | | | | | | | | | | | | | | Do | ge 1 | of | 1 | | Facility | v/Proje | ct Nan | ne | | | | License | /Permi | t/Monit | oring N | Jumbe | <u></u> | Boring | Pa
Numl | Ų · | 01 | 1 | | | ro Pla | | | | | | 00 | | | | | , | | , | B5 | Α | | | | | | | of crew chief (first, last |) and Firm | | Date Di | illing S | Started | | Da | te Drill | ling Co | mplete | | | ing Method | | Cor | y Johi | nson | | | | | | | | | | | | - | | | wer Hand | | Soil | Esse | ntials | | | | | | | 1/2006 | | | | 2/14/ | 2006 | | | ıger | | WI Un | ique W | ell No | ١, | DNR Well ID No. | Common Wo | ell Name | Final St | | | vel | Surfac | e Eleva | | | В | | Diameter | | | | | | | | | | Feet | MSL | | | | et MS | | | 3.0 | inches | | Local C | | rıgın | ⊠ (e | stimated: 🗌) or Bo | | | L | at | 0 | • | 11 | Local | Grid Lo | | | | _ | | State | | of N | 337 - | • | T 18 N, R | | | | <u> </u> | , | ., | | îr | 1 🗆 | | | □ E | | Facility | | OI IN | VV | 1/4 of Section 18,
County | 1 16 N, K | | Lor
County C | | Civil 1 |
[own/C | ity/ or | Villag | | t 🗆 S | | | Feet W | | 1 denit | , 115 | | | Calumet | | | 8 | ouc | Chil | | ny, or | v mag | C | | | | | | San | ple | | 1 | Caramet | | | | | Cim | | | i | Soil | Pron | erties | | | | | | | | Soil | Rock Descripti | on | | | | | | | T | I | l | | | | | t. &
1 (in) | nts | eet | | eologic Origin | | | | | | | is. | | | | | ro. | | er
/pe | Length Att. &
Recovered (in) | Blow Counts | Depth In Feet | | ch Major Unit | | | S | . <u>2</u> | Ē | 8 | Compressive
Strength | le te | | iţ | | RQD/
Comments | | Number
and Type | ngt | w o | bth | La | on wajor our | | | sc | Graphic
Log | Well
Diagram | PID/FID | duo
Geng | Moisture
Content | Liquid
Limit | Plasticity
Index | P 200 | D/ | | Z # | 7 % | <u>B</u> | ă | GOLIGNAMA | | | | ΩS | Grap
Log | قيِ≲ | Id. | 2 2 | Σŏ | <u> </u> | 品品 | P ; | <u> </u> | | | | | Ē | CONCRETE
FILL: Light Gra | y Cond Litt | la Grazza | 1 | | ××× | | | | | | | | | | | | | 1 | L | | | | | \bowtie | 目 | | | | | | | | | | | | E | FILL: Black Silt Stained) | y Sand and | Gravei (| (OII | | \bowtie | | | | | | | | | | | | | <u></u> 2 | Stamed) | | | | | \bowtie | | | | | | | | | | | | | -3 | | | | | | \bowtie | | | | | | | | | | | | | -3 | | | | | | **** | : | : | | | | | | | | | | | | | | | | | 1 | | | | | | | | | 1 | 1 | ŀ | | | | | | | | | | | | | | | ŀ | 1 | | | | | | | | | | | | | | | | | | 1 | | ĺ | | | | | | | | | | | | | | | | ŀ | | | | • | | | | | | | | | | | | | | | | | 1 | | | 1 | | | | | | | | | | | | | | | | İ | l | | | | | | | | | | | | | | | | | ļ | | | İ | | | | | | | | | | | | | | | | | | · | ļ | | | | | | | | | | | | | | | | | | 1 | } | | | | | ; | Iherek | W 00# | fy that | the in | I
formation on this form | e true and so- | rect to the | best of - | av kno | uladaa | I | <u>.</u> | .! | 1 | l | <u></u> | <u> </u> | <u> </u> | | Signat | - | iy iliat | aic in | Tornation on this form | | | | - | - | | 76 | | | | | | | | oignat | / | 20 | 2 | 7 9 | | im SE | H I | nc (| 121 Fren
Chippew
www.sel | a Falls, | WI 547 | 29 | | | | | 715.720.6200
715.720.6300 | | | ¬ // | | | - John | N | | | _ \ | www.set | inc.com | 1 | | | | | гах: | 113.120.0300 | Waste Management # SOIL BORING LOG INFORMATION Form 4400-122 Rev. 7-98 | | | | Ro | ute To: | | d/Wastewater
:ion/Redevelop | | Waste
Other | - | gement | | | | | | | | | |--------------------|---------------------------------|-------------|---------------|------------|-----------------------|--------------------------------|---------------------|----------------|--------------|--------------------|-----------------|---------|-------------------------|---------------------|-----------------|---------------------|----------|------------------------------| | | | | | | | | | | | | | | | | | ge 1 | of | 1 | | Facilit | y/Proje
ro Pla | | | | | | | License 00 | /Permi | t/Monit | oring N | lumbe | r | Boring | y Numb | ber
B6 | | | | | | | | of crew c | hief (first, l | ast) and Firm | | Date D | rilling S | Started | | Da | te Drill | ing Co | mplete | | | ing Method | | | y Johi
Essei | | , | | | | | | 2/14 | 4/2006 | | | | 2/14/ | 2006 | | M | acrocore | | WIUr | ique W | ell No |). | DNR V | Vell ID No. | Common | Well Name | Final S | | | vel | Surfac | e Eleva | | | Bo | | Diameter | | Local | Grid O | rigin | | stimated: | | Boring Location | on 🗍 | -1 | Feet | MSL | į | - | Local | et MS | | | 2.0 | inches | | State | | | E3 (*· | | 0 N, | | C/N | L | at | <u> </u> | <u>'</u> | | 20 cur | J.14 D. | и <u>П</u> | | | □Е | | | | of N | W 1 | /4 of Sec | | T 18 N | , r 20 e | Lo | | <u> </u> | | | | | t 🗆 S | | | Feet W | | Facilit | y ID | | | | County | | | County C | Code | Civil 7
Chilt | | ity/ or | Village | 9 | | | | | | Can | nple | | T - | | Calumet | | | 8 | | Chii | on | | 1 | Soil | Prop | erties | | | | San | | | | | So | il/Rock Descri | iption | | | | | | | | П | Cities | | | | | d (ir | unts | Feet | | | Geologic Ori | = | | | | | | sive | | | | | S | | Number
and Type | Length Att. &
Recovered (in) | Blow Counts | Depth In Feet | | | Each Major U | | | CS | hic | Well
Diagram | FID | Compressive
Strength | Moisture
Content | ᇢᆂ | Plasticity
Index | 0 | RQD/
Comments | | Num
and ´ | Leng
Recc | Blov | Dept | | | | | | n S | Graphic
Log | Well
Diagr | PID/FID | Com | Mois | Liquid
Limit | Plast
Inde | P 200 | RQD | | | | | F | | CRETE | : Brown
h Stone) | Rounded G | ravel (Cl | ear | | | | | | | | | | - | | , П | 10 | | Ē, | | • | Cl | C C- | | | | | - | | | | | | | | CORI | 18
12 | | -2 | Grave | : Brown
el. Possib | Lean Clay,
le Slight Pe | Some Sa
etroleum | na ana
Odor | | | | 5 | | | | | | | | | | | E | | , | | | | | | | | | | | | | | | L | | | -3 | E.O.I | 3. @ 3.0 | ft. | | | | | 999019 | | | | | | | | | | | | | | _ | - | - | | | | | | : | | | | | | | | , | 1 | | İ | | | | | | | | | | | | | | | | : | | } | Ì | |] | ŀ | İ | | | | | | |
 | | 1 | | | | | | | l | İ | | | | | | | | | | | | | | | | | İ | I han-1 | | G. 41- | 4 4 h c 3 cc | <u> </u> | an 4h!- £ | | | a hact ar | | la 4 | | | | 1 | 1 | <u></u> | <u> </u> | | | Signat | | iy thai | tne in | IOTINATION | on this for | m is true and o | | | | wledge
421 Fren | | /e. | | | | ,, | | | | J.g.i.d. | | la | ,
4 . | Z - 2 | SI. | | Firm SI | EH I | nc | Chippew
www.sel | a Falls, ' | WI 547 | 729 | | | | | 715.720.6200
715.720.6300 | #### SOIL BORING LOG INFORMATION Form 4400-122 | | | | Ro | ute To: | | d/Wastewater | | | | gement | | | | | | | | | |--------------------|---------------------------------|-------------|---------------|---------------|-----------------|----------------------------------|--------------|----------|----------|--------------------------------|-----------------|----------|-------------------------|---------------------|-----------------|---------------------|----------|--------------------| | | | | | | Remediat | ion/Redevelor | ment 🛛 | Other | Pa | ge 1 | of | 1 | | | y/Proje | | | | | | | License | /Permi | t/Monit | oring N | lumbe | r |
Boring | g Numl | | - | | | | ro Pla | | | of orange | hiof/first 1 | ast) and Firm | | Date Dr | illing | Startad | | IDa | te Drill | ina Co | malata | <u>B7</u> | | ing Method | | | y Johi | | Name | of clew c | 11161 (11181, 1 | asi) and riim | | Date Di | iiiiig . | starteu | | Da | ic Dili | ing Co | mpiete | u | Dill | ing Method | | | i Essei | | | | | | | | 2/14 | 1/2 00 <i>6</i> | 5 | | | 2/14/ | 2006 | | M | acrocore | | WI Ur | nique W | ell No |). | DNR V | Vell ID No. | Common | Well Name | Final St | | | vel | Surfac | e Eleva | | | Bo | | Diameter | | , , | 0:10 | | | <u> </u> | <u></u> | <u> </u> | | | Feet | MSL | | - | | et MS | | | 2.0 | inches | | Locai
State | | rigin | ⊠ (e: | stimated: | □) or
0 N, | Boring Locati | on ∐
C/N | L | at | <u> </u> | ' | 11 | Local (| Jria Lo | cation
1 🔲 | | | □ Е | | Diace | _ | of N | W 1 | /4 of Sec | | T 18 N | | Lon | g | o | <u> </u> | | | Fee | t 🗆 S | | | Feet W | | Facilit | | | | C | County | | | County C | | 1 | | ity/ or | Village | | | | | | | | | | | | Calumet | · | | 8 | | Chil | ton | | | | | | | | | Sar | nple | | | | | | | | | ŀ | | | | Soil | Prop | erties | | | | | (in) | ats | eet | | | il/Rock Descri
l Geologic Ori | - | | | | | | \ e | | | | | | | er
/pe | ι Att
ered | Cour | In F | | | i Geologic On
Each Major U | _ | | S | .c. | ш | Ω | ressi
th | ıre | _ | ity | | ents | | Number
and Type | Length Att. &
Recovered (in) | Blow Counts | Depth In Feet | | | Daen Major O | | | sc | Graphic
Log | Well
Diagram | PID/FID | Compressive
Strength | Moisture
Content | Liquid
Limit | Plasticity
Index | P 200 | RQD/
Comments | | Zā | 그 R | <u> </u> | <u> </u> | CON | CRETE | | | | Þ | 0 7 | > D | <u> </u> | S | 20 | 177 | П | д | - R | | | | | Ė. | FILL | : Brown | Rounded G | ravel (Cle | ar | | | | | | | | | | | | 1
COR | 18
8 | | F 1 | \lambda l-Inc | h Stone) | rown Lean | Clay Mive | d With | | | | 15 | | | | | | Slight
Chemical | | CORL | ° | | F_2 | | el, Little | | Clay Winc | a willi | | | | | | | | | | Odor | | L | ļ | | F | EOI | 3. @ 2.5 | ft | | | | \bowtie | | | | | | | | | | | | | | E.O.1 | $\omega_{2.5}$ | 11. | | | | | | | | | | | | | | | | | | } | Į | l | | | | | | | | | | | | ŀ |] | | | | | | | | | - | 1 | } | | | | | | | | | | | | | | | | | | • | | | | | | | | ŀ | | | | | | | | | | | | | | | | | : | | | | | | | | | | | | | | İ | | | | 1 | | i | | | | | | | | | | | } | ŀ | | | | | | | | | | | | | | | | | | ŀ | ! | | | <u> </u> | | <u> </u> | <u> </u> | <u> </u> | | | | <u> </u> | | | <u> </u> | <u> </u> | | <u> </u> | <u> </u> | <u> </u> | | | | | fy that | the in | formation | on this for | m is true and o | | | | _ | | | | | | | | | | Signa | ure/ | ch | | 5 | Sen | | Firm SE | HI H | nc | 421 Fren
Chippew
www.sel | a Falls, | WI 547 | 729 | | | | | 715.720.6200 | Route To: Watershed/Wastewater #### SOIL BORING LOG INFORMATION Form 4400-122 Rev. 7-98 | | | | | Remediation | Redevelopment 🛭 | Other | | | | | | | | | | | |--------------------|---------------------------------|-------------|----------------|--------------------------------|---------------------------------------|-----------|--|--------------------|-----------------|-------------|-------------------------|---------------------|-----------------|---------------------------------------|----------|----------------------| | | | | | | | | | | | | | | Pa | ge 1 | of | 1 | | | y/Proje | | | | · · · · · · · · · · · · · · · · · · · | License | /Permi | t/Monit | oring N | Jumbe | r | Boring | Numb | | | | | | ro Pla | | | 0.000 | | 00 | **** | · · | | In | . 5 4 1 | | | <u>B8</u> | | - 14.4-1- | | | | | Name | of crew chief (first, last) | and Firm | Date Dr | illing : | Started | | Da | te Drill | ing Co | mplete | d | Drill | ling Method | | | y Johr
Essei | | | | | | 2/14 | 1/2006 | 5 | | | 2/14/ | 2006 | | Тм | acrocore | | | ique W | | | DNR Well ID No. | Common Well Name | Final St | | | | Surfac | e Eleva | | | Вс | | Diameter | | | | | | | | | Feet | MSL | | | | et MS | | | 2.0 | inches | | Local
State | | rigin | (es | stimated: 🔲) or Bor
0 N, 0 | | L | at | 0 | • | н . | Local | Grid Lo | | | | _ | | State. | | of N | X X7 1 | ./4 of Section 18, | | Lon | | | - | *1 | | Fac | 1 □
1 □ S | 1 | | □ E
Feet □ W | | Facilit | | 01 14 | VV 1 | County | | County C | | Civil | Town/C | ity/ or | Village | e Fee | <u> </u> | · · · · · · · · · · · · · · · · · · · | | reet 🗀 w | | , | | | | Calumet | | 8 | | Chil | | • | Ü | | | | | | | San | nple | | | | | | | | | | | Soil | Prop | erties | | | | | &
in) | ω. | # | Soil/R | ock Description | | | | | | | | | | | | | . 0 | Att.
ed (| ount | ı Fe | And Ge | ologic Origin For | | | | | | ssiv | l o | | γ . | | nts | | nber
Typ | Length Att. &
Recovered (in) | Blow Counts | Depth In Feet | Eac | h Major Unit | | CS | Graphic
Log | Well
Diagram |
PID/FID | npre
ngtl | Moisture
Content | pir ti | Plasticity
Index | 0 | nme | | Number
and Type | Len
Rec | Blo | Dep | | | | US | Grap
Log | Well
Diagr | PID | Compressive
Strength | Moisture
Content | Liquid
Limit | Plastic
Index | P 200 | RQD/
Comments | | | | | F | CONCRETE | 1.10. 1/01 | | | XXXX | | | | | | | | | | , п | 10 | | F ₁ | \1-Inch Stone) | unded Gravel (Cle | ar
 | | \bowtie | | 25 | | | | | | 01:-1.4 | | l
CORT | 18
8 | | Ē | FILL: Dark Brow | n Clay Mixed wit | <u></u> | | | | 25 | | | | | | Slight
Chemical | | I I | | | -2 | Gravel, Little San | nd | | | | | l | | | | | | Odor | | L | | | Ī | E.O.B. @ 2.5 ft. | | | | XXXX | i | | | ļ | 1 | | | | | | | | | | | | | | | | | | | Ì | | } | } | İ | | | 1 | 1 | | | | | l | | | | | | | | | | | | - | 1 | 1 | I herel | v certi | fy that | the int | formation on this form is | s true and correct to the | hest of n | ny kno | wledge | 1 | 1 | 1 | 1 | 1 | 1 | <u> </u> | | | Signat | | i j ilial | | | | | | 421 Fren | ette Driv | ve | | | _ | | T 1 | 715 700 (000 | | | | al | 2 | 2 / 1 | FirmSE | HI | nc (| Chippew
www.sel | a Falls, | WI 547 | 729 | | | | | 715.720.6200 | | | -/- | باعد | | | 7 | | | | | | - | | | | | | Waste Management ## SOIL BORING LOG INFORMATION Form 4400-122 Rev. 7-98 | | | | Ro | ute To: | Watershed/W | | | | gement | | | | | | | | • | |--------------------|---------------------------------|---------------|---------------|------------|--------------------------|-------------------------|--|---------|--------------------------------|-----------------------------------|--------------|-------------------------|---------------------|-----------------|---------------------|-------|------------------------------| | | | | | | Remediation/ | Redevelopment 🛛 | Other | Ш | | | | | | | | | | | 1211/2 | ·/D:- | -4 h Y | | | | | | /D | A/N 4 14 | | T 1 | - | D | | ge 1 | of | 1 | | | y/Proje
ro Pla | | | | | | License
00 | /Perm | WMonii | oring N | numbe: | r | Boring | y Numb | ег
В9 | | | | | | | | of crew c | chief (first, last) | and Firm | Date Dr | illing | Started | | Da | te Drill | ing Co | mplete | | Dril | ling Method | | | y Johi
l Essei | | | | | | | 2/1 | 4/200 <i>6</i> | 5 | | | 2/14/: | 2006 | | M | acrocore | | WIUi | nique W | ell No |). | DNR V | Well ID No. | Common Well Nam | e Final St | | | vel | Surfac | e Eleva | | | Во | | Diameter | | Local | Grid O | rigin | ⊠ (e | stimated: | □) or Bor | ing Location | | Feet | MSL | ļ | | Fee
Local (| et MS | | | 2.0 | inches | | State | | igiii | <u></u> | maicu. | 0 N, 0 | | L | at | <u> </u> | <u> </u> | | Local | Jila De | nomboc | | | □ Е | | | | of N | W 1 | ./4 of Sec | | T 18 N, R 20 E | Lor | | ° | <u>'</u> | " | | | t 🗆 S | | | Feet W | | Facilit | y ID | | | | County | | County C | ode | 1 | | ity/ or | Village | 2 | | | | | | Sar | nple | | 1 | rl | Calumet | | 8 | ŀ | Chil | ton | | | Soil | Dron | erties | | | | | 1 | | | | Soil/Re | ock Description | | | | | | | | Пор | Cities | | | | | tt. &
d (in | unts | Feet | | | ologic Origin For | | | | | | sive | | | | | ts s | | Number
and Type | Length Att. &
Recovered (in) | Blow Counts | Depth In Feet | | Eacl | h Major Unit | | CS | hic | Well
Diagram | PID/FID | Compressive
Strength | Moisture
Content | | Plasticity
Index | 0 | RQD/
Comments | | Nun | Leng | Blov | Depi | | | | | N S | Graphic
Log | Wel | PID/ | Com | Moi | Liquid
Limit | Plastic
Index | P 200 | RQI | | | | | F | | CRETE | | | ļ | | | | | | | | | | | , n | 12 | | 2 | | : Brown Rou
ch Stone) | ınded Gravel (Cl | ear | ļ . | \bigotimes | | 0.0 | | | | | | | | 1
CORE | 12
12 | | Ē | FILL
: Brown Lea	n Clay Mixed w	ith				0.0	1							L			<u>-2</u>	Grav	el, Little San	ıd																E ,						\bowtie													3	E.O.	B. @ 3.0 ft.]			1					Ì																													İ				:																									ŀ										l														ļ.																																						Ì																											:																																																																																	<u> </u>	1			······································	<u></u>	1	<u> </u>	L	<u> </u>	<u> </u>	<u></u>	<u> </u>					-	fy that	the in	formation	on this form is	true and correct to the		-									···		Signat	ture)	ln	کر		Sent	FirmSI	EH I	nc	421 Fren Chippew www.sel	ette Driv a Falls, ninc.com	ve WI 547	729					715.720.6200 715.720.6300	#### SOIL BORING LOG INFORMATION Form 4400-122 Rev. 7-98				Ro	ute To:		ned/Wast ation/Re			Wast Other		gement	L									--------------------	---------------------------------	-------------	---------------	----------------	--------------------	----------------------	----------------------	--------------	----------------	---------	---------------------	--------------------	---------	-------------------------	---------------------	-----------------	---------------------	---------	------------------																		Pa		of	1		Facilit Mir	y/Proje ro Pla								Licens 00	e/Perm	it/Monit	oring N	lumbe:	r	Boring	y Numb	er B1	0							of crew c	hief (first	, last) and	d Firm			rilling	Started		Da	te Drill	ing Co	mplete			ling Method			y Johi Essei									2/1	4/2006	5			2/14/:	2006		M	acrocore		WI Ur	ique W	ell No).	DNR V	Vell ID N	o. Co	mmon	Well Name	Final S		ater Le	vel	Surfac	e Eleva		т	Bc		Diameter		Local	Grid O	rigin	(es	stimated:) or	Boring	Location	on 🔲	<u> </u>	reet	MSL			Local	et MS Grid Lo		i	2.0	inches		State	Plane				0 N	, 0 E	S/0	C/N	1	_at	<u> </u>	-					1		□ E		Facilit		of N	<u>W 1</u>	/4 of Sec	tion 1	8, T	18 N	, R 20 E	Lo County (Civil 1	 Fo.vn/C		Village		t 🗆 S	<u> </u>		Feet W		1 401111	, 10				Calume	t			8	2040	Chil		iiji oi	V IIIug(•						San	nple							,	***********						Soil	Prop	erties					. & (in)	ıts	t se			Soil/Rock		_						e,							er /pe	ı Att ered	Coun	In Fe		A	nd Geolo Fach N	gic Orig Iajor Ui			S	.g	<u> </u>	₽	ressiv	ıre ıt	_	ity		ents		Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet			Each iv	тајог От	iit.		USC	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments					E .	CON	CRETE	CD		. 01			*****										CORI	12 12		<u>-</u> 1		: Mixtu n Sand,			Lean Cla	у,			Ţ	0.0								U			Ė,																					-2	E.O.I	3. @ 2.0	Oft.																																																																																																																																																												ļ																																								•																														ļ															ļ		ļ 1.																															•																																						1												1	1																		i			1											,					1	;																														I herel	y certi	fy that	t the inf	l formation	on this f	orm is tr	ie and c	orrect to th	e best of	my kno	wledge		1	<u> </u>	1	_			<u> </u>		Signat			~		P	1 1	1	FirmSI		-	421 Fren Chippew	ette Driv	/e	770	-	····		Tel:	715.720.6200		\leq	101	<u>Im</u>	_ (<u>.</u>	/	uff	/	21		.110	www.sel	a rans, inc.com	141 241	<u> </u>					715.720.6300	Route To: Watershed/Wastewater ## SOIL BORING LOG INFORMATION Form 4400-122 Waste Management Rev. 7-98					I	Remediation/	Redevelopme	nt 🛛	Other												--------------------	---------------------------------	-------------	----------------	---------------	------------------	-------------------------	------------	-------------------	----------	---------------------	----------------------	--------------	-------------------------	---------------------	-----------------	---------------------	----------	------------------																	Pa	ge 1	of	1		Facilit	y/Proje	ct Nan	ne		,			License	/Permi	t/Monit	oring N	lumbe	r	Boring	Numb	er					ro Pla							00								B1				_		-	Name	of crew chie	ef (first, last)	and Firm		Date Di	illing S	Started		Da	te Drill	ing Co	mplete	d	Dril	ing Method			y Johr Essei								2/14	5/2006				2/15/	2006		1	acrocore			ique W			DNR We	II ID No.	Common We	II Name	Final St				Surfac	e Eleva		2000	Вс		Diameter			•								Feet	MSL			Fee	et MS	L			inches				rigin		stimated:		ing Location	_	,	at	0		**	Local	Grid Lo	ocation					State		c NI	XX7 1	44 CC -:	0 N, 0					<u> </u>		**		Б	1 🗆			Е		Facilit		of N	W 1	/4 of Section	unty	T 18 N, R		l Lor County C		Civil	<u> </u>	ity/ or	Village		t 🗆 S	-		Feet W			,				alumet			8		Chil		,,		-						San	nple													Soil	Prop	erties					જ (ii)	S	#		Soil/R	ock Descriptio	n													စ	Att.	ount	Fee		And Ge	ologic Origin	For				_		ssive	0		, l		nts		nber Typ	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		Eac	h Major Unit			scs	Graphic Log	1 gran	PID/FID	npre:	stur	멸효	Plasticity Index	0)/ Ime		Number and Type	Len	Blo	Dep						n s	Grap	Well Diagram	PID	Compressive Strength	Moisture Content	Liquid Limit	Plastic Index	P 200	RQD/ Comments					F	CONC			1.01		ļ	XXXX										, n	24		F ₁	\1-Inch		unded Grav	ei (Ciea	ar /				0.0		1						CORIC	24 14		F	FILL: N	Mixture of	Brown Silt	y Sand	and				0.0				:				- 11			F-2	Clay Pi	ieces, Littl	e Gravel									}								F,																				F-3							\bowtie														E.O.B.	@ 3.5 ft.				ŀ																																																																																																									ļ																																																											į.																												'														Ì																																																																														Ì	İ	}																																								İ																												<u> </u>							_			<u> </u>		<u> </u>			<u> </u>		I herel	y certi	fy that	the inf	formation o	n this form is	true and corre	ect to the	best of r	ny kno	wledge	•									Signat	ure	7.	1	50	St	Fin	mSF	HI	nc (421 Fren Chippew	ette Driv a Falls	ve WI 541	729					715.720.6200			-/	ek	m	<u> </u>	M	V/	ענט		110	Chippew www.sel	inc.com	1					Fax:	715.720.6300		This fo	opin is a	authori	ized by	Chapters 2	81, 283, 289	, 2 91, 292, 293	3, 295, an	d 299, W	/is. Sta	ts. Cor	npletio	n of th	is form	is man	datory	Failur	e to fil	this form ma	#### SOIL BORING LOG INFORMATION Form 4400-122 Rev. 7-98				Ro	ute To:		Vastewater 🗆			gement										--------------------	---------------------------------	-------------	---------------	------------	---------------------	---------------------------	---------------	----------	---------------------------------------	-----------------	-------------	-------------------------	---------------------	-----------------	---------------------	-------	----------------------------------							Remediation	/Redevelopment 🛛	Other										, -																Pa		of	1			y/Proje ro Pla			
License 00	e/Permi	t/Monit	oring 1	Ňumbe	r	Boring	y Numt	er B1	2							of crew	chief (first, last)	and Firm	Date D	rilling	Started		Da	te Drill	ing Co	mplete			ling Method		Cor	y Johi	nson													•		-			Esser			IDNR	Well ID No.	Common Well Nam	e Final S		5/2006		Surfac	e Eleva	2/15/	2006	Ro		acrocore Diameter		W1 O1	iique w	On I ve		Divic	well ID 100.	Common wen ran	T mai o		MSL	VCI	Juliac		et MS	L			inches				rigin	(e:	stimated	: 🗌) or Bo	ring Location		at	0		11	Local (Grid Lo						State		of N	W 1	/4 of Se	· ·	E S/C/N T 18 N, R 20 E	Lo		•		H		Fee	1 🗌 t			□ E Feet □ W		Facilit		0. 11		,,,,,,,,	County	1 10 11,1120 2	County C				City/ or	Village	2										1	Calumet		8	1	Chil	ton	Γ-	1	0 '						San	nple				Soil/R	lock Description								Prop	erties					tt. & d (in	unts	Feet			cologic Origin For						sive					ts .		ıber Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		Eac	h Major Unit		SCS	Graphic Log	Well Diagram	PID/FID	ngth	Moisture Content	 :i: i::	Plasticity Index	0	RQD/ Comments		Number and Type	Len	Blov	Dep					N S	Grap Log	Well Diagr	PID	Compressive Strength	Moi	Liquid Limit	Plastic Index	P 200	RQI					E		VCRETE	unded Gravel (C	loor		, , , , , , , , , , , , , , , , , , ,										1 П	12		-1	1-In	ch Stone)	•	/	1			0.0								CORE	12		2	FILI	L: Brown Sil	ty Sand, Some G	ravel															E																			-3	EO	.B. @ 3.0 ft.			-	***	4008r	1																													1						1																												:																																																														Ì.						ĺ																																						ļ					·										-				1			Ì																	ļ																					1																				1	ļ																																																																						<u> </u>		<u> </u>		1			<u> </u>		<u> </u>		I here		ty that	the in	tormatio	on on this form i	s true and correct to t			wledge 421 Fren		ve								Jigila)	_/~	lu		<u>.</u> .	Mul		EH I	nc	Chippew www.sel	a Falls,	WI 541 n	729					: 715.720.6200 : 715.720.6300	#### SOIL BORING LOG INFORMATION Form 4400-122 Rev. 7-98				Ro	ute To:			stewater [.edevelopn	_	Waste Other		gement										--------------------	--	-------------	----------------	------------	--------------	----------	--------------------------	---------------	----------------	---------	--------------------	-----------------------	---------	-------------------------	---------------------	-----------------	---------------------	--	---------------------------------------																		Pa	ge 1	of	1			у/Ргоје							 -	1	Perm	it/Moni	toring l	Numb	er	Boring	g Numl	er					ro Pla				1		1.0.		00	*111*	G: : 1		In	. D. 11			<u>B1</u>		· · · · · · · · · · · · · · · · · · ·			y Johi		Name	of crew c	hief (first,	iast) a	na Firm		Date D	rilling	Started		יו	ate Dril	ling Co	mpiete	ea.	Drii	ling Method			y Join l Essei									2/1	5/200	6			2/15/	2006		M	acrocore		WI Ur	nique W	ell No		DNR V	Vell ID No). C	Common V	Vell Name	Final S				Surfa	ce Elev		_	В		Diameter		Lassi	C=14 O		57 (00	tim ata di		Donin	ng Location	. —		Feet	MSL		<u></u>	Fe Local	et MS			2.0	inches		State		ngin	⊠ (es	timated:		, 0 E			l	.at	<u> </u>	<u> </u>		Local	Oriu L				□ Е				of N	W 1	/4 of Sec			r 18 N,	к 20 E		ng	<u> </u>	<u> </u>		.		t 🖂 S			Feet W		Facilit	y ID				County				County C	Code			City/ c	r Villag	е .							, 7				Calumet	<u> </u>			8	7	Chil	ton	_		0-1	l D					San	nple				c	a:1/D a/	ck Descrip	tion								Prop	erties	i 	}			t. & 1 (in	ınts	-eet				logic Origi							i se					S		er ype	th At	Con	[E]		7 117		Major Uni			S) <u>i</u> c	la ma	l E	oress gth	in tar	9	city	_	nent		Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet				3			USC	Graphic	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments			пщ			CON	CRETE		····			+-	70 7		"	100	20		H 1	 			1 CORI	48 20		Ē,	FILL	: Brown	Silty	Sand ar	nd Grave	el .			X	0.0								CORG	20		<u>-1</u>									X X			l									-2									\$				ļ					1			Ē																		1			- 3																		1			- -4							1		X									L			F#									×													E.O.1	B. @ 4.5	ft.																										1	1																																								1			ļ																																																					İ	ļ						-	-																																																																																																												:											1						1																																																	ļ	1																			1						<u>. </u>			<u> </u>					1	┸-		1	Т			<u> </u>		Ц	.1		I here Signa		ty that	the inf	ormation	on this fo	rm is t	rue and co				owledge 421 Fre		ive				· - ···				oigiia		Tel	en	5	Sa			Firm SI	CHI	nc	Chippey	wa Falls, hinc.com	, WI 5	4729					: 715.720.6200 : 715.720.6300	Route To: Watershed/Wastewater Remediation/Redevelopment #### SOIL BORING LOG INFORMATION Form 4400-122 Rev. 7-98	T. 111	(T)	. 3.7						······································	<i>m</i> :	. /2 6				(b)	Pa		of	1		--------------------	---------------------------------	-------------	--------------------------	---------------------	---------------------	--------------	--------------	--	------------	--------------------------------	-----------------------------------	--------------	-------------------------	---------------------	-----------------	---------------------	------------	------------------------------		Facility	y/Projec co Pla							Licenso 00	e/Permi	t/Monit	oring N	lumbe	r	Boring	, Numt		W-5							of crew chief (fir	et lact	and Firm		Date D	rilling 9	Started		Da	te Drill	ing Co	mnlete			ling Method		_	id Pau	-		or ciew cilier (ili	isi, iasi	, and i iiii		Date D	iming .	Janea			ic Dill	ing Co.	inpicio	u	1	_			Esser							ļ	2/13	3/2006	`			2/13/2	2006		1	llow stem		WI Un				DNR Well ID	No.	Commo	n Well Name	Final S				Surfac	e Eleva			Во		Diameter				068				l l	MW-5		Feet	MSL			Fe	et MS	L			inches		Local	Grid Or	igin	⊠ (es	timated: 🔲)	or Bo					0			Local	Grid Lo	cation					State I	Plane			0	N, 0		/C/N		at		-					1		□Е				of N	W 1		18,	т 18	n, r 20 e		ng	<u> </u>	<u>' —</u>	"			t 🗆 S	3		Feet 🗌 W		Facility	y ID			County				County C	Code		Γown/C	ity/ or	Village	е										Calun	net			8		Chil	ton									Sam	iple									l				Soil	Prop	erties					જ (દે)	S	t e			Rock Desc	-						ပ							ا ي	ed (unc	ı Fe		And G	eologic O	rigin For				ا ا		ssiv	o o		<u>></u>		nts		Typ	gth.	Č š	th L		Eac	ch Major I	Unit		CS	phic	l gran	/FII	ngt	stur	ri di	ticit X	9)/ nme		Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	ā					n S	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments					E	Dark Brow	n TO	PSOIL			1														F .						OL														E,	FILL: Brov	vn Le	an Clay	, Little Sar	nd and															<u>-</u> 2	Gravel																			F ²							\bowtie													<u>-</u> 3																				F																																																																																																																																																																																																																
		<u> </u>	\bowtie													E_4	Probable F	ILL: (Gray Gr	avel and S	Sand	Ì														-4 - - -5 -5						<u> </u>	\bowtie	1 目:												-5	Gray to Bro	ownis	h-Gray	Silty SAN	D			目												E																				<u>-</u> 6										ļ			ł							þ																				<u>-</u> 7																				E										ŀ										F-8								目												E						SM														- 9								H												E																				F10																				F																				F11						İ							İ							F	}										ł		ł	1						- 12																				F 12								目		}										 13	E.O.B. @	13.0 f	t.																								1										7.1		C. 41 . ·	45- 1 1		· C- · ·	·				l.a.d.: '		<u> </u>	<u> </u>	<u> </u>	L	J	L	<u> </u>				y that	the int	ormation on this	iorm i	s true and			-											Signat	ure /	Sh	en	7	U	M	FirmSI	EHI	nc (421 Fren Chippew www.sel	ette Driv a Falls, ninc.com	ve WI 547	729					715.720.6200 715.720.6300		This fo	rm is a	uthori	ized by	Chapters 281, 2	83. 28 ⁹	291. 29	2, 293, 295.	and 299. V	Vis. Sta	ts. Cor	npletio	n of th	is form	is man	datorv	Failu	re to file	this form may	Waste Management Other \square #### SOIL BORING LOG INFORMATION Form 4400-122 Rev. 7-98				Ro	ute To:	Watershed/W	'astewater □ 'Redevelopment ⊠	Waste Other	Manag	gement										--------------------	---------------------------------	-------------	----------------------	-----------	---------------------	----------------------------------	----------------	-----------	--------------------------------	-----------------------------------	--------------------	-------------------------	---------------	-----------------	---------------------	-------------	----------------------------------							Remediation	redevelopment 23	Oulei							Day	-a 1	of	1		Facilit	y/Projec	ct Nan	ne		<u> </u>		License	/Permi	t/Monit	oring l	Number	-	Boring	Pag Numb		01	<u> </u>			ro Pla						00							_		<i>N</i> -6				•	-		of crew c	chief (first, last)	and Firm	Date D	rilling S	Started		Da	te Drill	ing Co	mplete	d		ling Method			vid Pau Esser							2/1/	1/2006	:			2/14/2	2006			ollow stem			ique W			DNR V	Well ID No.	Common Well Name	e Final S				Surfac	e Eleva		2000	Вс		Diameter			0X	069				MW-6		Feet	MSL				et MS		i	8.2	inches				igin	⊠ (es	timated:		ing Location Control	1 1	at	0	,	11	Local (Grid Lo						State		of N	W 1	/4 of Sec	0 N, 0	E S/C/N T 18 N, R 20 E	Lor		•		.,		Eoo	ר □ t □ S			☐ E Feet ☐ W		Facilit		01 14	<u> </u>		County	1 10 N, K 20 E	County C		Civil 7	Fown/C	City/ or	Village		دان			reet 🗀 w			-				Calumet		8		Chil	ton									San	nple											ļ	Soil	Prop	erties					જ (ii)	t3	et			ock Description						ပ္							r Pe	Att.	uno	n Fe			ologic Origin For		S	a	E		essiv h	t re		īty		ents		Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		Eac	h Major Unit		sc	Graphic Log	Well Diagram	PID/FID	Compressive Strength	oistu nten	Liquid Limit	Plasticity Index	P 200	RQD/ Comments		Zğ		<u></u>	å	1.00				Þ	ទីន	žä		<u>S</u> ₹	<u> </u>	<u> </u>	Pla	P 2	88		CORE	48 32		F	Fill	HALT Gravish-Bro	own Gravel and S	land				0.0											<u>-</u> 1	∖Base	course		/																FILL	: Layers of S	Sand and Gravel			\bowtie													F 2						\bowtie													<u>-</u> 3						\bowtie													E			Oark Brown Orga Wood Chips	nıc			目									2	48		-4	Olay,	, occasionai	wood emps			\bowtie		0.0						Wet @ 5 ft.		2 CORIL	30		-3 -4 -5 -6							1 目	.}											F-5			Brown Gravel and	Sand] 目	.											<u> </u>	Gray	ish-Brown S	Silty SAND					1			ļ								Ę					0.4											1			-7					SM			1		1									E																3 CORI	48		F-8	Gray	ish-Brown S	Sand, Little Grave	el			1目	0.0								JUKL	48		<u>-</u> 9																			Ė	{ }							1											-10					SP											- 1			E					31		目												F 11								:								L			-12							目	1	1							4 CORI	12 12		- 12					<u> </u>			0.0								L			-13		rish-Brown S			SM	111		y M												E.U	B. @ 13.0 ft	•				1000 M	ď									<u></u>		<u> </u>	<u> </u>				<u> </u>	<u> </u>	<u> </u>		<u> </u>		<u> </u>	<u> </u>		<u></u>				fy that	t the inf	ormation	n on this form is	s true and correct to the													Signa	ure	lo le	n	7	Je.	FirmSI	EH I	nc (421 Frer Chippew www.sel	ieπe Dri /a Falls, hine con	ive WI 547 n	729					: 715.720.6200 : 715.720.6300	## SOIL BORING LOG INFORMATION Form 4400-122 Rev. 7-98				<u>Ro</u>	oute To:	Watershed/W	/astewater \square	Waste	Mana	gement										--------------------	---	-------------	---	---------------	---------------------	---------------------------	------------	------------	------------------------------	-----------------	---------------	--------------	--------------	--------------------------	---------------------	-------	------------------							Remediation	/Redevelopment 🛛	Other																										Pag	ne 1	of	1		Facilit	y/Proje	ct Nar	ne	 •			License	/Permi	t/Monit	toring h	Jumbe	r	Boring	y Numb						ro Pla						00					-		5 - · · · · · · ·		W-7			Boring	g Drille	d By:	Name	of crew	chief (first, last)	and Firm	Date Di	illing	Started		Da	te Drill	ing Co	mplete			ling Method		Dav	id Pa	ulson	ì													he	llow stem			Essei								4/2006				2/14/	2006		au	iger		WI Uı	nique W		э.	DNR	Well ID No.	Common Well Nam	e Final St			vel	Surfac	e Eleva			Bo		Diameter		Local		070	N7 (a		D as Day	MW-7		Feet	MSL				et MS	L ocation		8.2	inches			Plane	ugui	Ø (c	siiiiaicu	0 N, 0		L	at	°	<u> </u>	"	Locar	OHU D						Otato		of N	w	1/4 of Se	•	T 18 N, R 20 E	Lor	10	0	•	11		Fee	ıt 🔲 S		,	□ E Feet □ W		Facilit		01 11	• • • • • • • • • • • • • • • • • • • •	17 + 61 56	County	1 10 1,120 2	County C		Civil '	Town/C	ity/ or	Village	2		<u> </u>		1 001 11							Calumet		8		Chil	ton	·								Sar	nple		T	<u> </u>	<u>-</u>								Soil	Prop	erties					& in)	ro	#		Soil/R	ock Description					-								0	₩ 10 10 10 10 10 10 10 10 10 10 10 10 10	unts	Fee		And Ge	ologic Origin For						sive					lts		lber Type	sth /	ပိ	l h		Eac	h Major Unit		CS	hic	ram	FID	pres 1gth	sture ent	멸고	icity		men /		Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet					O S	Jrap og og	Well Diagram	PID/FID	om Street	Aois Ont	Liquid Limit	Plasticity Index	P 200	RQD/ Comments		1	48		+	ASP	HALT				OH		0.0	0 07	20			—			CORE	39		E	FILI	.: Light Brov	vn Sand and Grav			\bowtie							i.						F1	\(Bas	ecourse)	vn Sand and Grav										i.						<u></u>	FILL	.: Light Brov	vn Sand and Grav	vei									 			1			Εź						\bowtie													<u>-3</u>																			E					ļ	\bowtie	₹									, H	40		F ₄	FILL	.: Dark Brov	vn Organic Clay			\bowtie	₹									2 CORI	48 16		E	PILI	. D	avel and Sand			$\times\!\!\times\!\!\times$	引 目:	0.0	1				İ						<u>-</u> 5	FILI	z: Brown Gra	avei and Sand																F						\bowtie	} 目:												F-6	Brox	vn Fine to M	ledium SAND			<u> </u>													E		**** *****	odium Sinto				目:									ľ			F ⁷							1												E.																3 CORE	48		F-8							1目	0.0								JOKE	40		<u>E</u> 9																			F,																																																																																																																																																																																																																																																																																				
			1		目		1										E ₁₀																			E							1 目:						1						F-11																			E											İ					4	18		-12								0.0			}					CORI	18		F								0.0					ĺ				:		-13							恪						ĺ			L				EO	B. @ 13.5 ft			-	-														2.0.		•				<u> </u>		<u> </u>		<u> </u>			<u></u>				fy tha	t the in	formatio	n on this form is	s true and correct to the		-	_								_		Signat	ture	7	1		2 0	Firm CI	EH I	n α	421 Fren	ette Driv	/e WI 5/17	729				Tel:	715.720.6200			<u>_</u>	191	In	7	Te			IIC (www.sel	ninc.com	111 341						715.720.6300	#### SOIL BORING LOG INFORMATION Form 4400-122 R Rev. 7-98	•			Ro	ute To:		/astewater □ /Redevelopment ⊠		ste Manag er 🔲	gement						,				--------------------	---------------------------------	------------------	-----------------	----------	---------------------	---	---------------	-------------------	---------------------------	---------------------	----------	----------	---------------------	-----------------	---------------------	--------	------------------																	ge 1	of	1			ty/Proje ro Pla						Licen 00	ise/Permi	t/Moni	toring N	lumbe	г	Boring	g Numb		W-8							of crew	chief (first, last)	and Firm	. 1	Drilling S	Started		Da	te Drill	ing Co	mplete			ling Method			vid Par I Esser							2/14	4/2000	5			2/14/2	2006			ollow stem		WIU	nique W).	DNR	Well ID No.	Common Well Name	e Final	Static W		vel	Surfac	e Eleva		~	Bo	rehole	Diameter		Local		091		stimated	: 🔲) or Bo	MW-8	 _	Feet	MSL				et MS Grid Lo	_	!_	8.2	inches			Plane	8	E-31 (0 N, 0	E s/c/n		Lat	<u> </u>	<u>'</u>	**				Ī		□ Е		Facili		of N	W 1	/4 of Se		T 18 N, R 20 E	L County	ong	0	rown/C	itar/ on	Village		t 🗆 S			Feet W		Facili	ty ID				County Calumet		8	Code	Chil		ny/ or	village	E						Sar	nple	,					<u></u>						Soil	Prop	erties					& (in)	ts	et			ock Description						စ်							r ed	Att. ered	Coun	In Fe			cologic Origin For		S	. <u></u>	8	Ω	essiv	1 1 t		ity		ents		Number and Type	Length Att. & Recovered (in)	- Blow Counts	Depth In Feet		Eac	h Major Unit		USC	Graphi	Well Diagram	PID/FID	Compr	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments		1 COR	48 28		F		HALT			4	***	3	0.0								CORG	20		<u>E</u> 1	h(Bas	ecourse)	Gravel and Sand		 	\bowtie													E	FILI	L: Layers of	Brown Sand and	Gravel	,											1			<u>-2</u>	Ucca	asional Cinde	ers													ı			3																l			E	FILI	Dark Broy	vn Organic Clay		_	$\overset{\sim}{\otimes}$	計									2	48		<u>-4</u>	1121	o. Bum Bro	in organize out					0.0								COR	16		<u>-</u> 5						\bowtie										I			E																l			F-6	FILI	L: Brown Sil	ty Gravel and Sar	nd												l			E_7						\bowtie													Ę '	Brov	wn Lean CL	AY, Little Sand and an all Silty Sand Lay	nd 'erc												3	48		-8	Gia	vei, Occasioi	iai Siity Sailu Lay	/CIS				0.0								CORT	29		F,														į.		ı	1		F-9							目				1					I			E 10					OT.												İ		E					CL														F 11	•																		E ₁₂									1		1					COR	18 8		F -								0.0											-13																L	1			E.O.	.B. @ 13.5 ft	**			- <i>V/////</i>	ANT OF									I here	by certi	fy tha	t the in	formatio	n on this form i	s true and correct to the	ne best o	f my kno	wledge	-1 ;.	'	1	1,		<u> </u>		1	Signature Signature SEH Inc Chippewa Falls, WI 54729 Www.sehinc.com Fax: 715.720.6300 #### SOIL BORING LOG INFORMATION Form 4400-122 Rev. 7-9				<u>Rc</u>	ute To:	Watershed/W		_			gement										--------------------	---------------------------------	-------------	-----------------	------------	-------------------------------	-----------------	-----------	---------------	--------	------------	---------------------	---------	----------------------------------	---------------------	-----------------	---------------------	--------	------------------							Remediation/	Redevelopmen	t 🖾	Other	Ц																										Pa		of	1			ty/Proje							License	/Permi	t/Monit	oring N	lumbe	r	Boring	g Numl		17.0				ro Pla			of orange	chief (first, last)	and Firm		00 Date Dr	illing	Storted		ID.	ite Drill	ing Co	malata		W-9	ing Method			vid Pa	-		oi ciew c	mier (mst, iast)	and Filli		Date Di	mmg .	otaricu		D'	ne Dilli	ing Co	mpiete	u	1	llow stem			l Esse								2/14	1/2006	ó			2/14/	2006			ger			nique W	ell No		DNR V	Well ID No.	Common Well	Name	Final St				Surfa	e Eleva			Вс	rehole	Diameter				092				MW-9		ļ	Feet	MSL				et MS			8.2	inches			Grid O: Plane	rigin	⊠ (e:	stimated:	□) or Bor 0 N, 0			L	at	0	•	"	Local	Grid Lo						State		of N	W 1	./4 of Sec	•	T 18 N, R 2		Lon	σ	0	,	**		Fee	1 🔲 N t 🗆 S		,	□ E Feet □ W		Facili					County	1 10 11,111		County C		Civil 7	Town/C	ity/ or	Village												Calumet			8		Chil	ton									Sar	nple												ļ	Soil	Prop	erties					% (ii)	ts	et			ock Description							စ္							r e	Att.	Joun	In Fe			ologic Origin F	or		S	b o	8	Ω	essiv h	5 T		 		ents		Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		Eac	h Major Unit			SC	aphi g	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments		zä	12 %	BI	ا مٌ						Ď	ច្ ន	ğä		\ <u>S</u> \frac{\frac{1}{2}}{2}	≱్ర	<u> </u>	P F	P 2	RG Co		1 COR	48 30		Ę	FILI	HALT .: Grayish-Bı	rown Gravel	and S	and		XXX		0.0											-1	\(Base	ecourse)															ı				FILL	.: Light Brov	vn Gravel an	nd San	d		\bowtie										ı			<u>-2</u>]														<u>-</u> 3							\bowtie		i											E	TOTAL T	- N.C. 4	20. 1.0	1 0'	1		\bowtie										,	48		<u>-</u> 4		.: Mixture of Organic Clay		ei, Cin	aders,				0.0								2 CORIC	30		E		organio ciuj							0.0											<u>-5</u>							\bowtie													<u>-</u> 6																				E																		·		F ₋₇	D	vn Lean CLA	X I :41 - C-	. 1	1	-											ı			F	Grav		Y, Little Sa	ina and	1												3	48		F-8	024,					·		1. H	0.0								3 CORT	30		E.								目												F 9																				E ₁₀																				E						CL						ŀ								-11																				E								1 -									4	18		-12								1: 	0.0								CORI	12		F 13								1:1										ļ		-13						ļ		1 目													E.O.]	B. @ 13.5 ft															I here	by certi	fy tha	t the int	formation	on this form is	true and corre	ct to the	best of n	ny kno	wledge.			•		•					Signa	ture	<u> </u>		57	· //	Firm	n CT	TT T.	n C '	121 Fren	ette Driv	re	720				Tel:	715.720.6200		(——/,	Del	/ra		Ker	1/	. DL	H I	uc ;	vww.seh	a rails, inc.com	vv 1 34	127					715.720.6300		State of Wisconsin		---------------------------------		Department of Natural Resources	Signature ## SOIL BORING LOG INFORMATION Tel: 715.720.6200 Fax: 715.720.6300 Form 4400-122 Rev. 7-98				<u>Ro</u>	ute To:	Watershed/V Remediation				te Mana	gement										--------------------	---------------------------------	----------------	-----------------	------------	----------------------------	------------	------------------------	------------	-------------	----------------	-----------------	----------	-------------------------	---------------------	-----------------	---------------------	-------	------------------												•					Pas	ge 1	of	2			y/Proje							L L	se/Permi	t/Monit	oring N	Numbe	r	Boring		er					ro Pla			of crew ch	ief (first, last	and Fire	n	Date	Drilling :	Started																																																																																																																																																																																																																																																																																																																																											
Da	te Drill	ing Co	mplete	$\frac{PZ}{d}$		ing Method			vid Pa				(,	,										-		llow stem			l Essei			: 		12		77: 1		3/2006				2/13/2	2006		au	ger		WI U	nique W	'ell No 067).	DNR W	ell ID No.	Commo	on Well Nam PZ-5	ie Final	Static W	ater Le MSL	vel	Surfac	e Eleva	ition et MS	т	Bo		Diameter inches		Local			(es	timated:	or Bo	ring Loca		<u> </u>		0		11	Local C				0.2	menes		State	Plane	.c.NI	W 1	// -EC	0 N, 0		S/C/N	1	Lat		-	**		Г				□ E		Facili		of N	W 1	/4 of Sect	ion 18,	1 18	N, R 20 E	County	ong Code	Civil	Cown/C	City/ or	Village	Fee	t 🗆 S			Feet W							Calumet		_	8		Chil										Sar	nple													Soil	Prop	erties					r. &	nts	eet			Rock Des	cription Origin For						ive							er ype	h At	Con	Iul			ch Major			S	ıjç	un,	₽	oress gth	ure	70	city		, nents		Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet			.			USC	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments		CORE	48 35		F	Dark I	Brown TO	PSOIL			OL			0.0	0.7										-1	EII I .	Brown Le	on Clar	. I ittle Ce	nd and		[- <u></u> -										ı			Ē	Grave		an Ciay	, Linie Sa	iliu aliu		\bowtie													F ²																				<u>-</u> 3																				E	Proba	ble FILL:	Grav G	ravel and	Sand												CORI	48 24		F-4							\bowtie	Ā	0.0								JUKI	24		<u>-</u> 5	Gray 1	to Brownis	h-Gray	Silty SAN	1D						:									E																				<u>-6</u>																	ļ			E 7																	i			E																	ł	48		F-8									0.0								CORI	48		<u>-</u> 9																	l			E						SM														-10																	İ			È.,																				F-11																	}	48		E-12						Ì			0.0	1							CORI	48		E									0.0								1			- 13																	1			E -14																	I here	by certi	fy that	the inf	ormation	on this form	is true an	d correct to t	he best of	my kno	wledge		·		•	·	Ave	·	.	This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent. Firm SEH Inc Chippewa Falls, WI 54729 www.sehinc.com	Boring Number PZ	-5 Use only as an attachment to Form 44	100-122.			2 of	2		---	---	-----------------	-----------------------------------	---	----------------	--		Sample	Soil/Rock Description			Soil Propertie	s			Number and Type Length Att. & Recovered (in) Blow Counts Depth In Feet	And Geologic Origin For Each Major Unit	USCS Graphic	Log Well Diagram PID/FID	Compressive Strength Moisture Content Liquid Limit Plasticity	Index P 200	RQD/ Comments		CORL 48	Coarse Sand Layer @ 23 ft. Grav Silt, Some Fine Sand	SM SM		Co Str Mc Co Co Co Co Co Co Co C		Blowing Sand In Augers, Sampling Discontinued @ 24 ft.			Watershed/Wastewater Remediation/Redevelopment	Waste Management Other	MONITORING WELL C	ONSTRUCTION Rev. 7-98		--	---	---------------------------------------	-----------------------------------	----------------------------		Facility/Project Name	Local Grid Location of Well -		Well Name			Former Mirro Plant 20		S	W. MW-S			Facility License, Permit or Monitoring No.	Local Grid Origin (estima	ted: [] or Well Location		NR Well ID No.			Lat"	Long	or 0x068	-		Facility ID	St. Planeft. N	ft. E. S	Date Well Installed 2 / / m m d	3,000			Section Location of Waste/Sou		m m d			Type of Well	1/4 of1/4 of Sec_		□ E Well Installed By: Name	(first, last) and Firm		Well Code/	Location of Well Relative to W		- Corra Johns	ia-		Distance from Waste/ Enf. Stds.		Sidegradient	"Utwick Pa	ulsi		Sourceft. Apply [d 🗆 Downgradient n 🗆	Not Known	_ Soil Essenti	uls Ltd.			ft_MSL	1. Cap and lo		X Yes □ No		B. Well casing, top elevation	fi. MSL -2-5	a. Inside di		4		- ·	2 100	b. Length:	ancıcı.	- ∕		C. Land surface elevation	ft. MSL	c. Material	•			D. Surface seal, bottom ft. MS	SLor ft.	- Maria	•	Steel X 04		12. USCS classification of soil near scree		A Addition	al protection?	Other 🗆 🧱		GP GM GC GW C		1170	escribe:	☐ Yes ☐ No		SM SC ML MHO		11 \ 1,55,6				Bedrock 🗆		3. Surface sea	(12	entonite 2 30		13. Sieve analysis performed?	Yes □ No			Concrete 0 01		•	1 250	No.		Other 🗆 🚉			tary 0 50	4. Material D	tween well casing and protective	1		Hollow Stem A	oger 🗆 📲			lentonite 🔼 30		· · · · · · · · · · · · · · · · · · ·		3		Other 🗆 🌉		15. Drilling fluid used: Water □ 02	Air □ 01	5. Annular sp				Drilling Mud 🗆 03			s/gal mud weight Bentonite-sa					GL	s/gal mud weight Bentoni	te slurry 🔲 131		16. Drilling additives used?	Yes □ No	d%	Bentonite Bentonite-cem	ent grout 🗆 50				KXXX	Ft 3 volume added for any of the			Describe		f. How in		Tremie [] 01		17. Source of water (attach analysis, if req	uired):		Tremie	pumped 🛘 02						Gravity [] 08				6. Bentonite		_		E. Bentonite scal, top ft. MS	· 630	ъ. 🗆 1/4 :	in. 33/8 in. 11/2 in. Bentor			E. Bentonite scal, top IL M	ir of - 75 : Sur	C	11749	Other 🛮 🚉		77 7700 2 4 6. 3.60		7. Fine sand	material: Manufacturer, product r	same & mesh size		F. Fine sand, top ft MS	SLorft.					C1 7777	SLor_2.7/ft		3			G. Filter pack, top ft. MS	".a~		addedfi ³			71 6	SLor_30 ft.		material: Manufacturer, product	name & mesh size		H. Screen joint, top ft. MS	,10,,11,		Sidley	_ 🕮		T WINE A MI	SLor_13.0n.	b. Volum		4.1. 40 752 0.2		L Well bottomft. MS	mu-te-the	9. Well casin	_			J. Filter pack, bottom ft M	st _ 13 5 a 1		Flush threaded PVC sche			J. Flierpack, bottom it M.	2011	裂 \	terial: PVC	Other 🗆 🎎		K. Borehole, bottom ft M	sr - 13 Se.	10. Screen ms	···········			K. Bouenoie, pottom	3L 07_L2.21L	a. Screen		ctory cut 🔀 11		L. Borehole, diameter £ 25 in.			Continu	nons slot 🔲 01		L. Borehole, diameter & L. L. in.		\	21	Other 🛘 🧱		275			course Munitley	0 0 0 0		M. O.D, well easing 2272 in.		c. Slot siz		0. <u>g</u> 1 <u>Q</u> in.		0.03		· · · · · · · · · · · · · · · · · · ·	length:	INOU		N. 1.D. well casing 200 in.	•	11. Backfill n	aterial (below filter pack):	None 14						Other 🛘 🧱		I hereby certify that the information on thi		best of my knowledge.				Signamre 9	of Firm		// //			Sohn . Auf	g/ SE	H Inc.	to la for		Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.	_	Watershed/Wastewater	Waste Management [MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 7-98																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																										
--	---	---	---		Facility/Project Name	Remediation/Redevelopment Local Grid Location of Well ft.	Other	KV-11 XV		Former Mirro Plant 20	ft. F	Nr. DE.	nw6		Facility License, Permit or Monitoring No.	Local Grid Origin (estim	eted: or Well Location	Wis. Unique Well No. DNR Well ID No.				Long.	CXABG		Facility ID	1 •	ft. E. S/C/N				Section Location of Waste/Sou		21.1412000		Type of Well	1	. Пъ			Well Code/			Cory Johnson		Distance from Waste/ Enf. Stds.	Location of Well Relative to W	Vaste/Source Gov. Lot Number Sidegradient	David Pavilson		Sourceft. Apply		Not Known -	Soil Essentials Ltd.			ft MSL	1. Cap and lock?	ĭ Yes □ No		• • •	~ 7 ' '	2. Protective cover			B. Well casing, top elevation	ft. MSL	1 1 2 2 2	er Flush mt -9. in		C. Land surface elevation	ft.MSL	b. Length:	71654 MV -71-11		•		c. Material:	Steel [] 04		D. Surface seal, bottom ft. MS	Lor_J. Lit.		Other 🗆		12. USCS classification of soil near screen	n:	d. Additional pr			GP GM GC GW S	SW 🗆 SP 🔲	If yes, descri			SM C SC C MLC MHC C	лосио 🞢	2 50 500 000	Bentonite 🛘 30		Bedrock 🗆		3. Surface scal:	· Concrete 🖾 01		•	Yes 🗆 No		Other 🛘		14. Drilling method used: Ro	tary □ 50	4. Material between	an well casing and protective pipe:		Hollow Stem Ar			Bentonite 🖾 30		0	ther 🗆 🥌		Other 🛚 🧱				5. Annular space s	eal: a. Granular/Chipped Bentonite [3] 33		15. Drilling fluid used: Water [] 02	Air 0 01	bLbs/gal	mud weight Bentonite-sand slurry 35		Drilling Mud 🗆 0 3	None LI 99		mud weight Bentonite slurry 🗖 31		16. Drilling additives used?	Yes 🗆 No		onite Bentonite-cement grout [50		10. Diming addition them.		KXX3 '	t 3 volume added for any of the above		Describe		f. How installe			17. Source of water (attach analysis, if requ	nined):		Tremie pumped 🛘 02		12.12.01.00.02 (1.00.02)			Gravity [] 08				6. Bentonite seal:	• •		E. Bentonite seal, topft. MS	n 1 0a	1864 J 2011. []	□3/8 in. □1/2 in. Bentonite chips □ 32		E. Bentonite seal, top IL MS	, Lor	c2/4/2	Other 🗆 🧱		F. Fine sand, top ft. MS	SL orft.	7. Fine sand mater	rial: Manufacturer, product name & mesh size		r.r.mesand, up	201				G. Filter pack, top ft. MS	SLor_2.6 ft.		· - · · · · · · · · · · · · · · · · · ·		• • • •		b. Volume add	erial: Manufacturer, product name & mesh size		H. Screen joint, top ft. MS	Lor_2.2 ft.	- BW SIO			in outcord out the first first in the		b. Volume add			L. Well bottomft. MS	SLor_12.9n. 1	9. Well casing:	Flush threaded PVC schedule 40 [2: 23]			人 [注		Flush threaded PVC schedule 80 \(\sigma 24 \)		J. Filter pack, bottom ft MS	SL or 13 5 ft.		Other D				10. Screen materia			K. Borchole, bottom ft M	SL or 13_5 ft.	a. Screen type					a bereartype	Continuous slot 01		L. Borehole, diameter £.25 in.			Other 🛘 🎇				b. Mamifacture	* monoflex		M. O.D, well casing 2.375 in.		c. Slot size:	0. <i>Q10</i> in.		we will be the second of the second seco		d. Slotted leng	• •		N. I.D. well casing 2.00 in.	•	•	al (below filter pack): None 7 14					Other 🗆 🧱		I hereby certify that the information on thi	s form is true and correct to the	best of my knowledge.			Signature	Firm		1 [/		Clahre & Aus	el Se	H Inc. T	h Van	Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chr. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent. 1841 . . .		Watershed/Wastewater Remediation/Redevelopment	Waste Management Other Other	MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 7-98		--	---	---	---		Facility/Project Name	Local Grid Location of Well		Well Name		former Mirro Flant CO	[IL []	SIL 🗆 W.	mw-7		Facility License, Permit or Monitoring No.	Local Grid Origin (estimat	ed: 🔲) or Well Location 🔲	Wis. Unique Well No. DNR Well ID No.			LatL	ong.			Facility ID	St. Planeft. N,	ft. E. S/C/N	Date Well Installed 114 12006			Section Location of Waste/Sour	œ	mm 77 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		Type of Well	1/4 of1/4 of Sec	TN, R E	Well Installed By: Name (first, last) and Firm		Well Code/	Location of Well Relative to Wa		Corx Johnson		Distance from Waste/ Enf. Stds.		Sidegradient	Soil Essentials Ltd.		Sourceft Apply [d Downgradient n 🗆				A. Protective pipe, top elevation	ft_MSL	1. Cap and lock?	Flush X Yes No		B. Well casing, top elevation	ft. MSL =0.4	2. Protective cover	pipe ut		-· -·		a. Inside diamete			C. Land surface elevation	ft.MSL	b. Length:	2-O.ft.		D. Surface seal, bottom ft. M.	SLor_L.On.	C. Material	Steel 3 04 Other D		12. USCS classification of soil near scree		d. Additional pr	otection?		GP GM GC GW C	1 1 1	If yes, descrit			SM C SC ML ML MHC	T CHO	M / /	Bentonite □ 30		Bedrock 🗆	I 1₩	3. Surface scal:	Concrete C 01		13. Sieve analysis performed?	Yes □ No 💮		Other 🗆		14. Drilling method used: Ro	tary 🗆 50	4. Material betwee	n well casing and protective pipe:		Hollow Stem A	* 1 1001		Bentonite 🖾 30		O	Other 🗆 🧱		Other 🗆 🌉				5. Annular space s			15. Drilling fluid used: Water [] 02	Air 🗆 01	bLbs/gal	mad weight Bentonite-sand slurry 35		Drilling Mud 🗆 03	None LI 99		mud weight Bentonite slurry 🔲 31		16. Drilling additives used?	Yes 🗆 No		nite Bentonite-cement grout 50		To, Dilling acceptance		KCCC .	volume added for any of the above		Describe		f. How installed			17. Source of water (attach analysis, if req	mired):		Tremie pumped 🛘 02				6. Bentonite seal:	Gravity □ 08 a. Bentonite granules ≥ 33				KCC	3/8 in. 11/2 in. Bentonite chips 1 32		E. Bentonite seal, top fr. M.	Si.or l Off.				E. Delication south the T.			With the second		F. Fine sand, topft. M	SL orft.	7. Fine sand mater	ial: Manufacturer, product name & mesh size		••	/ 鸦	1 RWSId	ley		G. Filter pack, topft. M	slor_2.7ft.	b. Volume adde	edft ³					rial: Manufacturer, product name & mesh size		H. Screen joint, top ft. M	SLor_3.Oft	- Rwsid			•	12.0		ed 5.5 Bags ft3		L. Well boxomft. M	SLor_12.0n_	9. Well casing:	Flush threaded PVC schedule 40 23			- 12 Ca 注		Flush threaded PVC schedule 80 24		J. Filter pack, bottom ft M	SL or _ 12.2 it.	製 \	Other 🗆		12 600	12.60	10. Screen material			K. Borehole, bottom13.5ft M	SL 07_12.21L	a. Screen type:	Factory cut 5 11 Continuous slot 0 01		L. Borehole, diameter & 25 in.			Continuous side Li 01		L. Borehole, diameter & . B in.		h Manusanan	monoflex		M. O.D. well easing 2.275 in.		c. Slot size:	0.01 <i>Q</i> in.		M. O.D. well																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
easing 2213 in.		d. Slotted leng			N. I.D. well casing _2.00 in.		• • • • • • • • • • • • • • • • • • • •	al (below filter pack): None 2 14		14. Try. Metrostrik ' - P. A. H.	•	TI TIMATIII IIIIIVII	Other 🗆		I hereby certify that the information on th	is form is true and correct to the	best of my knowledge.			Signature O	Firm				Toler of Su	Of SE	H Inc.		Please complete to the Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by cls. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.	State of Wisconsia Department of Natural Resources Route to: V	Watershed/Wastewater[Remediation/Redevelop	☐ Wass	te Manag	Source L	MONITORING WELL Form 4400-113A	L CONSTRUCTION Rev. 7-98		---	--	----------------------------------	------------------	---------------------------------------	-----------------------------------	-----------------------------		Facility/Project Name	Local Grid Location of	Well CIM			Well Name			Former Mirro Plant 20		—r- ⊟s: -		fr. 🛮 🛱	nw-8			Facility License, Permit or Monitoring No.	Local Grid Origin 🔲	(estimated: \square) or \	Well Location	Wis. Unique Well No.	DNR Well ID No.			Lat	"Long	•	or	0x091			Facility ID	St. Piane	n N		A G SICIN	Date Well Installed	1// 0 4 4 (Section Location of W			ILE. 0/C/N		11412000		Type of Well		•	_	N, R	Well Installed By: We	me (first last) and Firm		Well Code /	1/4 of1/4				burick Pa	me (first, last) and Firm		Distance from Waste/ Enf. Stds.	Location of Well Relat u Upgradient	ive to Waste/So s 🔲 Sideg	urce	Gov. Lot Number	7013 701	~~63~		Sourceft Apply [Soil Esse	tials Ital.			d Downgradient	N LI MOLK		Cap and lock?				A. Protective pipe, top elevation	ft_MSL			-	· ·!	Yes 🛘 No		B. Well casing, top elevation	fr. MSL — O.	71010	-	Protective cover p	- 11.ch	^		· ·	•	'		a. Inside diameter		_9in		C. Land surface elevation	fi.MSL 🛴 -	حا الم		b. Length:		_1fi.		D. Surface seal, bottom ft. MS	n ~ 10 f 🚟	8:3 1 3	100	c. Material:		Steel D 04			T:-277					Other 🛘 🎆		12. USCS classification of soil near screen		Mary Mary	Lines.	d. Additional pro-		☐ Yes ☐ No		GP GM GC GW S	W I SP II '	/#III#/	. \	If yes, describe				SM C SC MLC MHC C	т п си п	****	\ \ ₁	Conformati		Bentonite [] 30		Bedrock 🗆		XX XX	7 3.	Surface scal:		Concrete To 01		13. Sieve analysis performed?	Yes No		- /			Other 🗆 🚟		14. Drilling method used: Ro	tary 🗆 50		4.	Material between	well casing and protect			Hollow Stem At	•				was managed atto promot	Bentonite 🗵 30			ther 🗆 🔛				• •	,r			ADAM		_			Other 🗆 🎎		15. Drilling fluid used: Water [] 02	Air [] 01			Annular space see				Drilling Mud 🗆 03 1	Vome [] 99				and weight Bentonit	•			TORK >>				und weight Bent			16. Drilling additives used?	Yes 🗆 No		đ,		ite Bentonite-						c.	Ft	volume added for any	of the above		Describe	j		f.	How installed:		Tremie 🛛 01		17. Source of water (attach analysis, if requ					Tre	mic pumped 🛛 02		17. Source of water (adapt stratysis, if requ	ilicu).		•			Gravity 🛛 08					б.	Bentonite seal:	a. Benton	nite granules 🔯 33		·				ь. 🗆 1/4 in. 🔲	3/8 in. □1/2 in. Be	ntonite chips 32		E. Bentonite seal, top ft. MS	Lorfi.			c. 1-5	Bags	Other 🛘 🎆					/·_		,,,	MT-H.		F. Fine sand, top ft. MS	Lorft.\		/ 7.	Fine sand materia	d: Manufacturer, produ	ict name & mesh size					1.	a				G. Filter pack, topft. MS	Lor_2.6A			b. Volume added	. <u>f</u>	3							ial: Manufacturer, prod	•		H. Screen joint, top ft. MS	Lor2.0 ft.			RW Sid								b. Volume added		<u> </u>		L Well borrom ft. MS	Lor_13.01			. Well easing:	Flush threaded PVC s	chedule 40 1⊒ 23		•	_ \		Э.	went casing.	Flush threaded PVC s			J. Filter pack, bottomft MS	13 Ban	イ富ナ		•	Flush inteaded PVC s			J. Filler pack, Dollom It was	"FOI _ F. S. SIL		1	· · · · · · · · · · · · · · · · · · ·	Ditt	Other 🛘 🔛		K. Borchole, bottom ft MS	1350			. Screen material:	PUC			K. Borchole, bottom It MS	Por 15 Tr		1	a. Screen type:		Factory cut Dr 11							. Cor	ntinuous slot 🛛 01		L. Borehole, diameter _2.25 in.	• •			· · · · · · · · · · · · · · · · · · ·		Other 🛘 🎬		^ 227	• •	`			monoflex			M. O.D. well casing 2.275 in.	•		\ \	c. Slot size:	·	0. <i>Q[Q</i> m.					\	d. Slotted length	.	(Q.Qft.		N. I.D. well casing $2 \cdot \underline{\theta} \cdot \underline{\theta}$ in.	•		11	. Backfill material	(below filten pack):	None D 14		, a man and the			~1			Other 🗆 🎬		I hereby certify that the information on this	s form is true and corre	t to the best of	my know	vledge.	7 1 79	<u> garas</u>		Signature 2	Firm		,		/////					SEH	Inc		2/2 Mar-	•		Sahn T. Auk	7	<u>~~11</u>	N. C.	• 4	In your		Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent. Str.	I	Vatershed/Wastewater	Waste Management Other	MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 7-98		---	---------------------------------	---------------------------------------	---		Facility/Project Name Former Mirro Plant 20	Local Grid Location of Well	N DE	Well Name				S DW.	nw-9		Facility License, Permit or Monitoring No.	Local Grid Origin (estimat	ted: 🗆) or Well Location 🗖	Wis. Unique Well No. DNR Well ID No.			[Lat"L	ong.	04092		Facility ID	St. Planeft. N,	ft. E. S/C/N	Date Well Installed 2/14/2006			Section Location of Waste/Sour	ce			Type of Well	1/4 of 1/4 of Sec.	TN, R	Well Installed By: Name (first, last) and Firm		Well Code/_	Location of Well Relative to Wa		- Corx Johnson		Distance from Waste/ Enf. Stds.	u 🗆 Upgradient 💮 s 🗎	Sidegradient	David Partson		Sourceft Apply [d Downgradient n		Soil Essentials Ltd.		A. Protective pipe, top elevation	ft_MSL	1. Cap and lock?	≥ Yes □ No		D Well series top elevation	n. MSL -0-4	2. Protective cover			B. Well casing, top elevation			Flush mt _9in.		C. Land surface elevation	ft.MSL	b. Length:	_1.Qft.		D. Surface seal, bottom ft. MS	T ~ 10 f	c. Material:	Steel 🗷 04			7:5005-147		Other 🛘 🌉		12. USCS classification of soil near screen		d. Additional pr			GP GM GC GW S SM GC ML MH G	☆ 片 架 片 <i>ブ</i> 打	If yes, descri			Bedrock []		3. Surface scal:	Bentonite 🔲 30		- · · · · · · · · · · · · · · · · · · ·	Yes □ No		Concrete C 01		1 · ·	1 1881		Other 🗆 💮			tarry 🗆 50	4. Material between	n well casing and protective pipe:		Hollow Stem At	ther \square		Bentonite 🔁 30			mer u 💥	———	Ofher 🛚 🌉		15. Drilling fluid used: Water [] 02	Air □ 01	5. Annular space s			Drilling Mud [] 03	Vone II 99		mud weight Bentonite-sand slurry 35					mud weight Bentonite slurry [] 31		16. Drilling additives used?	Yes 🗆 No		nite Bentonite-cement grout ☐ 50				K133	volume added for any of the above		Describe		f. How installed	-		17. Source of water (attach analysis, if requ	nired):						6. Bentonite seal:						13/8 in. 11/2 in. Bentonite chips 1 32		E. Bentonite seal, top ft. MS	Lor I Off.	B / " TBa						Military.		F. Fine sand, top ft. MS	Lorfl.	7. Fine sand mater	ial: Manufacturer, product name & mesh size							G. Filter pack, topft. MS	Lor_ 3.0ft	b. Volume adde	d GBacy fi3		•			rial: Manufacturer, product name & mesh size		H. Screen joint, top ft. MS	Lor_3.5n	1 RWSid			• •	12 6	1.76	od 6Br c. c. ft3		L Well bottomft. MS	Lor_13.5 n.	9. Well casing:	Flush threaded PVC schedule 40 (2) 23		· ·			Flush threaded PVC schedule 80 🔲 24		J. Filter pack, bottom ft MS	Lor_12.2 ft.		Other 🛘 🎇			.2 r	10. Screen material	PUC		K. Borchole, bottom ft MS	Lor_12.2 ft.	a. Screen type:	Factory cut 🔲 11																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																			
Continuous slot 🛘 01		L. Borehole, diameter £ 2.5 in.			Other 🛘 💹				b. Manufacture	- Monoffex		M. O.D. well easing _2.275 in.	,	c. Slot size:	0.QLQ in.		^ - \		d. Slotted length			N. I.D. well casing		11. Backfill materia	I (below filter pack): None 14				· · · · · · · · · · · · · · · · · · ·	Other 🗆 🌉		I hereby certify that the information on this		est of my knowledge.			Signature 9	of Firm	1	/ ///		Sahn C. Auf	SE SE	HInc.	Bur HI				-1/	,, - 	Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by cls. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with cls. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.		Watershed/Wastewater Remediation/Redevelopment	Waste Management	MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 7-98		---	---	-------------------------------	---		Facility/Project Name 4	Local Grid Location of Well	·	Well Name		tormer lilled I mus co	lI ^r 🖸	SIL TW	PZ 5		Facility License, Permit or Monitoring No.	Local Grid Origin [1] (estima	ted: []) or Well Location []			P. T. ID	[Cat	ong,o			Facility ID	St. Planeft. N,	ft. E. S/C/N	Date Well Installed 2/13 70.008			Section Location of Waste/Sour	roe	m m d d v v v y		Type of Well	1/4 of1/4 of Sec	TN, R E	Well Installed By: Name (first, last) and Firm		Well Code/	Location of Well Relative to W	aste/Source Gov. Lot Number	- Cory Johnson		Distance from Waste/ Enf. Stds.		Sidegradient	e Payid Paulson		Sourceft Apply [d 🗆 Downgradient n 🗆		Soil Essentials Ltd.		A. Protective pipe, top elevation	ft_MSL	1. Cap and lock?	Yes ☐ No		D Wall and a transfer i	n. MSL 2.5	2. Protective cover			Di. Well casing, wp elevation = = = -		a. Inside diamete	n _4.0m.		C. Land surface elevation	ft.MSL 04	b. Length:	_ <i>5,Q</i> ft.			<u> </u>	c. Material:	Steel 🔲 04		D. Surface seal, bottom ft. MS			Other 🗆 🧱		12. USCS classification of soil near screen	1 (41)	d. Additional pro	olection?		GP GM GC GW S	W L SP L	If yes, describ	x:		SM C SC D MLD MHD	TO CHO!	2 Sunface south	Bentonite 🕱 30		Bedrock 🗆		3. Surface scal:	Concrete 🖸 01		13. Sieve analysis performed?	Yes 🗆 No 💮 💮		Other []		14. Drilling method used: Ro	tary □ 50	4. Material between	n well casing and protective pipe:		Hollow Stem Ar	ıgcr □ 41		Bentonite 30		O	ther 🗆 🧱		Other 🗆				5. Annular space se			15. Drilling fluid used: Water □ 02	Air 🗆 01 📗		mud weight Bentomite-sand slurry 35		Drilling Mud 🗆 03 1	None 🗆 99		mud weight Bentonite slurry [31					nite Bentonite-cement grout [] 50		16. Drilling additives used?	Yes □ No		3 volume added for any of the above				f. How installed	•		Describe	 	1. 1104 1114	Tremie pumped 🛘 02		17. Source of water (attach analysis, if requ	nired):		Gravity EF 08				6. Bentonite seal:					h. □1/4 in. 5	3/8 in. 11/2 in. Bentonite chips 2 32		E. Bentonite seal, topft. MS	Lor 04ft.	1 c. GBags	Other 🗆			. 1		with.		F. Fine sand, top ft. MS	SLor_19.2ft.\	7. Fine sand mater	ial: Manufacturer, product name & mesh size				1 Rw91dl	ey 4000		G. Filter pack, top ft. MS	ilor 21.La	b. Volume adde						rial: Manufacturer, product name & mesh size		H. Screen joint, top ft. MS	Lor_23.0n.	BWSia						ed 13BcLcs ft3		L Well bottom ft. MS	SLor 260 ft.	9. Well casing:	Flush threaded PVC schedule 40 2 23					Flush threaded PVC schedule 80 🛘 24		J. Filter pack, bottom ft MS	SLOT 285 ft.		Other 🗆 🔛				10. Screen material	PVC		K. Borchole, bottom ft MS	SLor 28:5ft	a. Screen type:					a. octourtype.	Continuous slot 01		L. Borehole, diameter _6_25 in.			Other D		a Dordon, diameter III.		b. Manufacture			M. O.D. well easing 2375 in.		c. Slot size:	0.010in.		m. O.D, well easing E.D in.		d. Slotted length	Z- 70.		N. I.D. well casing 2.00 in.	•	•	·		IV. I.D. WEIL CASING C. E Z in.	•	11. Dackini matcha	ll (below filter pack): None 14 Other		I hereby certify that the information on thi	e form is true and answers to she !	heet of my knowledge	Oun ii		Signature 2	Firm	was or ruly known rough.	/-//			el Fim SE	H Inc. De	! <i> //.</i> ·		Sohn (Mil	7	11 VIC.	2N 111	Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent. ## Well / Drillhole / Borehole Abandonment Form 3300-005 (R 10/03) Page 1 of 2	Route to: Drinking Water Watershed/Wastewater Waste Management	Remediation/Redevelopment Other:						---	---	--	--	--	--		1. General Information	2. Facility / Owner Information						WI Unique Well No. DNR Well ID No. County	Facility Name							New 11 Rubbermald former Plant						Common Well Name Gov't Lot # (if applicable)	Facility ID License/Permit/Monitoring NgCity, Village or Town						B)	Chilton													NW 18 18 N Zo TV	44 Walnut Street						Grid Location —	Present Well Owner Original Well Owner						Feet NFeet E Local Grid Origin	Newell Rubbermaid Same						S W (estimated) OR Well Locat	Street Address or Route of Owner						Latitude: DEG MIN SEC Longitude: DEG MIN SEC	2707 Butterfield Rd. Ste 100						N SES WITH SES	City State ZIP Code W Cock Roots TIII COSTS						Reason For Abandonment WI Unique Well No. of Replacement	W Oak Brook ILL 60523						Bosing Completed							3. Well / Drillhole / Borehole Information	Pump and piping removed?						Original Construction Date	Liner(s) removed?						Monitoring Well Z-13-Zoo6	Screen removed?						Water Well	Casing left in place?						Borehole / Drillhole If a Well Construction Report is available, please attach.	Was casing cut off below surface? ☐ Yes ☐ No ☒N/A						Construction Type:	Did sealing material rise to surface? Yes \(\sum \) No \(\sum \) N/A						Drilled Driven (Sandpoint) Dug	Did material settle after 24 hours?						Other (specify): Hydraulic Proba	If yes, was hole retopped?						Other (specify): FryataOtte 1606-	If bentonite chips were used, were they						Formation Type:	hydrated with water from a known safe source? Yes No N/A						Unconsolidated Formation Bedrock	Required Method of																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
Placing Sealing Material Conductor Pipe-Gravity Conductor Pipe-Pumped						Total Well Depth From Groundsurface (ft.) Casing Diameter (in.)	Screened & Poured (Explain):						_ 8 N/A	Sealing Materials						Lower Drillhole Diameter (in.) Casing Depth (ft.)	Neat Cement Grout Clay-Sand Slurry (11 lb./gal. wt.)						_ Z N/A	Sand-Cement (Concrete) Grout Bentonite-Sand Slurry "							Bentonite Chips						Was well annular space grouted? LYes LNo LUnknow	Wn Concrete Entornia Chips For Monitoring Wells and Monitoring Well Boreholes Only:						If yes, to what depth (feet)? Depth to Water (feet)	Bentonite Chips Bentonite - Cement Grout						Deput to What deput (leet):								Granular Bentonite Bentonite - Sand Slurry						5. Material Used To Fill Well / Drillhole	From (ft.) To (ft.) No. Yards, Sacks Sealant Mix Ratio or or Volume (circle one) Mud Weight						Granular Banton: La	Surface 8 5 pounds (approx)																				6. Comments																					7. Supervision of Work	DNR Use Only							Abandonment Date Received Noted By							13-2006							ne Number Comments							720-6225						City State ZIP Code	Signature of Person Doing Work Date Signed 7-13-06						1-11-10-10-10-10-10-10-10-10-10-10-10-10	TOWN TO THE TOTAL					## Well / Drillhole / Borehole Abandonment Form 3300-005 (R 10/03) Page 1 of 2	Route to:		. 🖂					1			---	------------	----------------------------------	-------------------------	--	---------------------------------------	--	---	--------------------------		Drinking Water Watersho	lanagement	Remediation/Redevelopment Other:											2. Facility I	Owner In	formation	· · · · · · · · · · · · · · · · · · ·				WI Unique Well No. DNR Well ID No. County			Facility Name	6	>		0, , 4					Calone		Now		Subberr		mar Plant		Common Well Name		Gov't Lot # (if applic	able)	Facility ID	<u> </u>	cense/Permiv	Monitoring NoCity, '	hilton		%1%	fion	Township Rang	10 (T) 5	Street Addres	s of Well			MI THOR		NW	18	1 /0 -	, 23 -	44		nut ?	Street			Grid Location		16 N C	0 W	Present Well			Original Well Owne	er		Feet NFeet C	TE 🗆	Local Grid Origin		Newell			Same				┪Ѿ	(estimated) OR	Well Location	Street Addres				1 las		Latitude: DEG MIN SEG	,	Longitude: DEG MIN	N SEC	2707	<u> 50 t</u>	terticle		5te 100			N		W W	City	< Br	note.	State Z	CIP Code		Reason For Abandonment	WIU	nique Well No. of Re	placement We	4 Dump II	<u> </u>	on Casina	Sealing Materia	60523		Boring Completed							4 1			3. Well / Drillhole / Borehole	Informa	tion		Pump and		oved?	HY	es No No		Datasias Valait	Original (Construction Date		Liner(s) rea	moved?			es No NA		Monitoring Well Water Well	2	<u>-13 - Z∞(</u>	2	Screen ren			ΗΥ	'es ∐ № ⊠ N/A				Construction Report is av	ailable,	Casing left	in place?		Y	es No NA		Borehole / Drillhole	please at	tach. 		Was casing	g cut off be	elow surface?	· ·	′es ∐No ⊠N/A		Construction Type:				Did sealing material rise to surface?						Drilled Driven ((Sandpoin	it) 🔲 Dug		Did material settle after 24 hours?						Other (specify):	aulic	Proba		If yes, was hole retopped? If bentonite chips were used, were they If bentonite chips were used, were they						Formation Type:			If bentonite hydrated v	e chips wei vith water f	re used, were from a known s	they safe source?	res No No N/A					<u> </u>				acing Sealing I				Unconsolidated Formation Bedrock			Conduc	tor Pipe-Gr	ravityCor	nductor Pipe-Pumpe	ed			Total Well Depth From Groundsurface (ft.) Casing Diameter (in.)			1	ed & Poure	d LOth	er (Explain):	·			4		NA		Sealing Mate	ite Chips)					Lower Drillhole Diameter (in.)		Casing Depth (ft.)		I — ~	ement Grou	ut .	Clay-Sand	Slurry (11 lb./gal. wt.)				N/A				ncrete) Grout	Bentonite-	Sand Slurry * *		Man wall annular areas mouted	. [□ _{Yes} □ _{No}		I 🗖 🗀	-		Bentonite (Chips		Was well annular space grouted:	N/A	resNo	Unknown			nd Monitoring	Well Boreholes On	ly:		If yes, to what depth (feet)?		pth to Water (feet)		Bentonit	e Chips		Bentonite - Cemen	t Grout			ļ	•	- 1	Granular Bentonite Bentonite - Sand Slurry						5. Material Used To Fill Well /	Drillhole			From (ft.)	To (ft.)		, Sacks Sealant	Mix Ratio or						Surface	7	orcyolur	ne (circle one)	Mud Weight		Grandlar Be	~10 h	· +c		Duriace		 	unds lapprox							0.7						6. Comments										o. comments					· · · · · · · · · · · · · · · · · · ·		***************************************											,		7. Supervision of Work							DNR Use Only	7						andonment	Date	e Received	Noted By			Soil Essentials L	td. /	156 H		3-2006						Street or Route			Telephone		ı	nments				421 Frenctto	Du.			20-62						City Chiman Fr	lila	State ZIP C	Code 1779	Signature of	Person Do	oing Work		e Signed 7 13-0C	# Well / Drillhole / Borehole Abandonment Form 3300-005 (R 10/03) Page 1 of 2	Route to: Drinking Water Watershed/Wastewater Waste Management	Remediation/Redevelopment Other:						--	---	--	--	--	--		1. General Information	2. Facility / Owner Information						WI Unique Well No. ONR Well ID No. County	Facility Name						Calumet	Nowall Rubbarmald tormer Plant To						Common Well Name Gov't Lot # (if applicable)	Facility ID License/Permit/Monitoring NoCity, Village or Town						¼1¼ ¼ Section Township Range ☑ E	Street Address of Well						NW 18 18 N ZO 1 W	44 Walnut Street Present Well Owner Original Well Owner						Grid Location Feet	1							Newell Rubbermaid Same Street Address or Route of Owner						S W (estimated) OR Well Location	2707 Butterfield Rd. Ste 100						Latitude: DEG MIN SEC Longitude: DEG MIN SEC	City State ZIP Code						N W	Oak Brook IIU 60573						Reason For Abandonment WI Unique Well No. of Replacement We	4. Pump, Liner, Screen, Casing & Sealing Material						Boring Completed	Pump and piping removed?						3. Well / Drillhole / Borehole Information	Liner(s) removed?						Original Construction Date	Screen removed?													Borehole / Drillhole If a Well Construction Report is available, please attach.							Construction Type:	Was casing cut off below surface?							Did sealing material rise to surface? Yes UNO N/A						Drilled Driven (Sandpoint) Dug	Did material settle after 24 hours?						Other (specify): Hydraulic Proba-	If yes, was hole retopped? Yes No N/A						Formation Type:	If bentonite chips were used, were they hydrated with water from a known safe source? Yes N/A						Unconsolidated Formation Bedrock	Required Method of Placing Sealing Material Conductor Pipe-Gravity Conductor Pipe-Pumped						Total Well Depth From Groundsurface (ft.) Casing Diameter (in.)	Screened & Poured (Bentonite Chips)						4 N/A	Sealing Materials						Lower Drillhole Diameter (in.) Casing Depth (ft.)	Neat Cement Grout Clay-Sand Slurry (11 lb./gal. wt.)						_ Z N/A	Sand-Cement (Concrete) Grout Bentonite-Sand Slurry " "						W	Bentonite Chips						Was well annular space grouted? LYes LNo LUnknown	For Monitoring Wells and Monitoring Well Boreholes Only:						If yes, to what depth (feet)? Depth to Water (feet)	Bentonite Chips Bentonite - Cement Grout							Granular Bentonite Bentonite - Sand Slurry						5. Material Used To Fill Well / Drillhole	From (ft.) To (ft.) No. Yards, Sacks Sealant Mix Ratio or Mud Weight						Granulas Benton: to							CIMACIAI DEPION. FR	Surface 4 3 pounds (approx)													6. Comments							o. Comments														7. Supervision of Work	DNR Use Only							andonment Date Received Noted By							3-7006						Street or Route Telephone								20-6225						City State ZIP Code	Signature of Person Doing Work Date Signed						Nhippens falls W1 54729	John Nerf 7-13-06					## Well / Drillhole / Borehole Abandonment Form 3300-005 (R 10/03) Page 1 of 2	Route to:	ш <u>-</u>																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																						
---	---	--	--	--	--	--		Drinking Water Waste Management Waste Management	Remediation/Redevelopment Other:							· · · · · · · · · · · · · · · · · · ·	2. Facility / Owner Information								Facility Name							(alomet	News 11 Rubbermald tormer Plant							Common Well Name Gov't Lot # (if applicable)	Facility ID License/Permit/Monitoring NdCity, Village or Town								Street Address of Well							NW 18 18 Range DE	44 Walnut Street								Present Well Owner Original Well Owner							Feet NFeet DE Local Grid Origin	Newell Rubbermaid Same							S W (estimated) OR Well Location	Street Address or Route of Owner							Latitude: DEG MIN SEC Longitude: DEG MIN SEC	2707 Butterfield Rd. Ste 100 City State ZIP Code							N W	Mak Road Till CASTS							Reason For Abandonment WI Unique Well No. of Replacement We	4. Pump, Liner, Screen, Casing & Sealing Material							Talled Complete	1 1 1 1 21							3. Well / Drillhole / Borehole Information								Original Construction Date	Liner(s) removed? Screen removed? Yes \ No \ \ N/A Yes \ No \ \ N/A								Casing left in place?							Borehole / Drillhole If a Well Construction Report is available, please attach.								Construction Type:									Did sealing material rise to surface?							Drilled Driven (Sandpoint) Dug	Did material settle after 24 hours? If yes, was hole retopped? Yes No N/A Yes No N/A							Other (specify): Hydraulic Proba	If bentonite chips were used, were they							Formation Type:	hydrated with water from a known safe source? Yes No N/A							Unconsolidated Formation Bedrock	Required Method of Placing Sealing Material							·	Conductor Pipe-Gravity Conductor Pipe-Pumped Screened & Poured Cother (Explain):							Total Well Depth From Groundsurface (ft.) Casing Diameter (in.)	Screened & Poured (Explain): Other (Explain):							Lower Drillhole Diameter (in.) Casing Depth (ft.)	Sealing Materials							Z N/A	Neat Cement Grout Clay-Sand Slurry (11 lb./gal. wt.)								Sand-Cement (Concrete) Grout Bentonite-Sand Slurry " " Bentonite Chips							Was well annular space grouted? / Layer Layer Ves Layer Vers Vers Layer	Concrete							If yes, to what depth (feet)? Depth to Water (feet)	For Monitoring Wells and Monitoring Well Boreholes Only: Bentonite Chips Bentonite - Cement Grout							If yes, to what depth (feet)? Depth to Water (feet)	Granular Bentonite Bentonite - Sand Slurry															5. Material Used To Fill Well / Drillhole	From (ft.) To (ft.) No. Yards, Sacks Sealant Mix Ratio or Mud Weight							Granulas Benton: La	Surface 8 Approx 5 pounds								" '								149							6. Comments																	——————————————————————————————————————							7. Supervision of Work	DNR Use Only							Name of Person or Firm Doing Sealing Work Date of Aba								Soil Essentials Ltd. / SEH Z-13 Street or Route Telephone	3 - 2006 Number Comments								20-6225							City State ZIP Code	Signature of Person Doing Work O Date Signed							Phippeux Falls W1 84729	John & Herlf 7-13-06						## Well / Drillhole / Borehole Abandonment Form 3300-005 (R 10/03) Page 1 of	Route to: Drinking Water Watershed/Wastewater Waste Management	Remediation/Redevelopment Other:						--	---	--	--	--	--		1. General Information							the second secon	Facility / Owner Information Facility Name ,														Nawl Rubbernald torner Plant To Facility ID License/Permit/Monitoring NgCity, Village or Town						Common Well Name Gov't Lot # (if applicable)							B7	Street Address of Well						%//% Section Township Range ⊠ E	1 44 Walnut Street						NW 18 18 N ZO DW	Present Well Owner Original Well Owner						Grid Location Local Grid Origin	.							Newell Rubbermaid Same Street Address or Route of Owner						S W (estimated) OR Well Location	2707 Butterfield Rd. Ste 100						Latitude: DEG MIN SEC Longitude: DEG MIN SEC	City State ZIP Code						N N N	1 7						Reason For Abandonment WI Unique Well No. of Replacement W	4. Pump, Liner, Screen, Casing & Sealing Material						Boring Completed							3. Well / Drillhole / Borehole Information							Original Construction Date	Liner(s) removed?						☐ Monitoring Well 2 - 14 - 2006	Screen removed?						Water Well If a Well Construction Report is available,	Casing left in place? Yes No N/A						Borehole / Drillhole please attach.	Was casing cut off below surface? ☐ Yes ☐ No ☒ N/A						Construction Type:	Did sealing material rise to surface?						Dritled Driven (Sandpoint) Dug	Did material settle after 24 hours?							If yes, was hole retopped?						Other (specify): Hydraulic Proba	If bentonite chips were used, were they						Formation Type:	hydrated with water from a known safe source? Yes No N/A						Unconsolidated Formation Bedrock	Required Method of Placing Sealing Material Conductor Pipe-Gravity Conductor Pipe-Pumped						Total Well Depth From Groundsurface (ft.) Casing Diameter (in.)	Screened & Poured (Bentonite Chips) Other (Explain):						Z.5 N/A	Sealing Materials						Lower Drillhole Diameter (in.) Casing Depth (ft.)	Neat Cement Grout Clay-Sand Slurry (11 lb./gal. wt.)						N/A																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																						
Theat Centent Glodi							Gard-cement (Concrete) Glout						Was well annular space grouted?	Concrete						N/A	For Monitoring Wells and Monitoring Well Boreholes Only:						If yes, to what depth (feet)? Depth to Water (feet)	Bentonite Chips Bentonite - Cement Grout							Granular Bentonite Bentonite - Sand Slurry						5. Material Used To Fill Well / Drillhole	From (ft.) To (ft.) No. Yards, Sacks Sealant Mix Ratio or or Volume (circle one) Mud Weight						Grandlar Benton: La	Surface Z.5 Z pounds (9000x)																				6. Comments																					7. Supervision of Work	DNR Use Only						The state of s	andonment Date Received Noted By							4-2006						Street or Route Telephone								120-6225						City State ZIP Code	Signature of Person Doing Work Date Signed					## Well / Drillhole / Borehole Abandonment Form 3300-005 (R 10/03) Page 1 of 2	Route to: Drinking Water Waters	hed/Wastewater	Waste Man	nagement	Remedia	tion/Rede	velopment	Other:				----------------------------------	--	------------------------	---------------	---	-------------------------	------------------------------------	-------------------	---------------------------------------	------------		1. General Information 2				2. Facility / Owner Information										Facility Name				_				·	C	alumet	_	Non	118	Rubbern	rald to	rmer	Plant 72		Common Well Name	Gov't	Lot # (if applicable		Facility ID		License/Permit/M	Ionitoring NoCity				B 8	<u> </u>							hilto	· _		1 . 1	ection Towns	ship Range	ØΕ	Street Addres							NW	18 1.1	8 N Zo		44		Inut S					Grid Location				Present Well			Original Well Own	ner			Feet NFeet	E Local	Grid Origin		Newell			Same				□sl	☐ w ☐ (estim	ated)OR 🔲 W	Vell Location	Street Addres		_	00	~ 1	100		Latitude: DEG MIN S	EC Longitu	ide: DEG MIN	SEC	2707	<u>150</u>	tterfield		Stc ZIP Code	100			N	""	W	City	- R	rook	State I L L		· ~ ~ ~		Reason For Abandonment		Well No. of Repla							523		Boring Complete	• 1			4. Pump, L	iner, Sci	reen, Casing &	Sealing Mater				3. Well / Drillhole / Borehol				Pump and	piping re	moved?	닐		No XXIVA			Original Constr	uction Date		Liner(s) re	moved?		닐	Yes 🔲 I	No.⊠N/A		Monitoring Well		1-2006		Screen rer	noved?			Yes 🔲	No 🖾 N/A 🕟		Water Well				Casing lef	in place	?		Yes 🔲	No 🛛 N/A		Borehole / Drillhole	please attach.	ction Report is availa	able,					V., []	No N/A		Construction Type:	ــــــــــــــــــــــــــــــــــــــ												·		Did sealing material rise to surface?								(Sandpoint)	Dug		Did material settle after 24 hours? If yes, was hole retopped? Yes No. WA Yes No. WA							Other (specify): 1	raulic Pro	2 bc-		1 .		• •		Yes 🔲	No ⊠N/A		Formation Type:			 	hydrated v	e cnips w vith water	ere used, were the from a known sa	ife source?	Yes	No 🖾 N/A							lacing Sealing M						Unconsolidated Formation Bedrock			Conduc	tor Pipe-(Gravity Cond	luctor Pipe-Pump	oed				Total Well Depth From Grounds	surface (ft.) Cas	ing Diameter (in:	:)		ed & Pour		r (Explain):				7.5	` '	NA	•		ite Chips)					Lower Drillhole Diameter (in.)	Cas	ing Depth (ft.)		Sealing Materials Neat Cement Grout Clay-Sand Slurry (11 lb./gal. wt.)							Z		NA	·					-Sand Slu						_	1 ==	-	concrete) Grout	Bentonite		• • •		Was well annular space groute	d? / L Ye	s ∐No L	Unknown	Concre				•				N/A			J [-	and Monitoring V					If yes, to what depth (feet)?	Depth to	Water (feet)		Bentonit			Bentonite - Ceme						·		Granula	r Bentonit	ie 🔲	Bentonite - Sand	Slurry			5. Material Used To Fill Well	/ Drillhole			From (ft.)	To (ft.		Sacks Sealant		Ratio or						 		Ol Volulli	e (circle one)	· · · · · · · · · · · · · · · · · · ·	Weight		Granviar B	enton: fa			Surface	7.5	2 Duan	ds (approx	·							<u> </u>				ļ							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							6. Comments																																	7. Supervision of Work				DNR Use On	ly						Name of Person or Firm Doing	Sealing Work		Date of Aba	andonment	Da	te Received	Noted By				Soil Essentials 1	td. / 50	< I+	2-10	1-2000				·			Street or Route	_ ,		Telephone			mments					421 Frenctto	Prive	·		20-627							City	. 11 S	tate ZIP Cod		Signature of	Person [Doing Work	nn Da	ate Signed			Nhipocus to	cll5	W1 54-	729	1	lm	C	rff!	7-13	-06	# Well / Drillhole / Borehole Abandonment Form 3300-005 (R 10/03) age 1 of 2	Route to: Drinking Water Watershed/Wastewater Waste Management	Remediation/Redevelopment Other:						---	--	--	--	--	--		1. General Information	2. Facility / Owner Information						WI Unique Well No. DNR Well ID No. County	Facility Name						Calumet	Nowall Rubbermald former Plant 720						Common Well Name Gov't Lot # (if applicable)	Facility ID License/Permit/Monitoring NqCity, Village or Town						<u> 310</u>	Chilton						1/1/4 1/4 Section Township Range	Street Address of Well						NW 18 18 N Zo jiw	44 Walnut Street						Grid Location	Present Well Owner Original Well Owner						Feet NFeet DE Local Grid Origin	Newell Rubbermaid Same Street Address or Route of Owner						S W (estimated) OR Well Location	2707 Butterfield Rd. Ste 100						Latitude: DEG MIN SEC Longitude: DEG MIN SEC	City State ZIP Code						N W							Reason For Abandonment WI Unique Well No. of Replacement We	4. Pump, Liner, Screen, Casing & Sealing Material						Boring Completed							3. Well / Drillhole / Borehole Information							Original Construction Date	Liner(s) removed?						7 2-14-2006	Screen removed?						Water Well If a Well Construction Report is available,	Casing left in place? Yes No N/A						Borehole / Drillhole please attach.	Was casing cut off below surface? ☐ Yes ☐ No ☒ N/A						Construction Type:	Did sealing material rise to surface? Yes No N/A						Dritled Driven (Sandpoint) Dug	Did material settle after 24 hours? ☐ Yes ☒ No ☐ N/A						Other (specify): Hydraulic Proba	If yes, was hole retopped?							If bentonite chips were used, were they hydrated with water from a known safe source? Yes No N/A						Formation Type:							Unconsolidated Formation Bedrock	Required Method of Placing Sealing Material Conductor Pipe-Gravity Conductor Pipe-Pumped						Total Well Depth From Groundsurface (ft.) Casing Diameter (in.)	Screened & Poured Other (Explain):						2 N/A	(Bentonite Chips)						Lower Drillhole Diameter (in.) Casing Depth (ft.)	Sealing Materials Clay-Sand Slurry (11 lb./gal. wt.)							Heat defined didut							Sand-Cernent (Contrate) Grout						Was well annular space grouted? Yes No Unknown	Concrete Bentonite Chips For Monitoring Wells and Monitoring Well Boreholes Only:						N/A If yes, to what depth (feet)? Depth to Water (feet)							If yes, to what depth (feet)? Depth to Water (feet)	Bentonite Chips Bentonite - Cement Grout Granular Bentonite Bentonite - Sand Slurry													5. Material Used To Fill Well / Drillhole	From (ft.) To (ft.) No. Yards, Sacks Sealant Mix Ratio or Or Volume (circle one) Mud Weight						Grandlar Benton: La	Surface 2 2 pounds (approx)																				6. Comments														·							7. Supervision of Work	DNR Use Only							andonment Date Received Noted By							4-2006						Street or Route Telephone	Number Comments							120-6225						City State ZIP Code	Signature of Person Doing Work Date Signed						Whippens talls IN184729	John C. Nerf 7-13-06					#### State of Wisconsin Department of Natural Resources PO Box 7921, Madison WI 53707-7921 ## Well / Drillhole / Borehole Abandonment Form 3300-005 (R 10/03) Page 1 of 2 Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return form to the appropriate DNR office and bureau. See instructions on reverse for more information.	Route to:																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																									
--	--		Drinking Water Watershed/Wastewater Waste Management	Remediation/Redevelopment Other:		1. General Information	2. Facility / Owner Information		WI Unique Well No. DNR Well ID No. County	Facility Name		Calumet	Newall Rubbermald tormer Plant		Common Well Name Gov't Lot # (if applicable)	Facility ID License/Permit/Monitoring NdCity, Village or Town		13 13 W/W Section Township Range DE	Street Address of Well			44 Walnut Street		NW 18 18 N CO W	Present Well Owner Original Well Owner		Feet NFeet Local Grid Origin	Newell Rubbermaid Same		S Well Location	Street Address or Route of Owner		Latitude: DEG MIN SEC Longitude: DEG MIN SEC	2707 Butterfield Rd. Ste 100			City State ZIP Code ILL 60523		Reason For Abandonment Wi Unique Well No. of Replacement We	Oak Brook ILL 60523 4. Pump, Liner, Screen, Casing & Sealing Material		Boring Completed			3. Well / Drillhole / Borehole Information	Pump and piping removed? Yes No N/A		Original Construction Date	Liner(s) removed?		Water Well Z - 15 - 06	Screen removed?		Borehole / Drillhole If a Well Construction Report is available, please attach.	Casing left in place? Yes No N/A			Was casing cut off below surface?		Construction Type:	Did sealing material rise to surface?		Drilled Driven (Sandpoint) Dug	Did material settle after 24 hours?		Other (specify): Hydraulic Proba-	If yes, was hole retopped? Yes No N/A If bentonite chips were used, were they		Formation Type:	hydrated with water from a known safe source? Yes No N/A		Unconsolidated Formation Bedrock	Required Method of Placing Sealing Material		Conconsolidated Pormation	Conductor Pipe-Gravity Conductor Pipe-Pumped		Total Well Depth From Groundsurface (ft.) Casing Diameter (in.)	Screened & Poured Other (Explain):		4.5 N/A	Sealing Materials		Lower Drillhole Diameter (in.) Casing Depth (ft.) N/A	Neat Cement Grout Clay-Sand Slurry (11 lb./gal. wt.)			Sand-Cement (Concrete) Grout Bentonite-Sand Slurry " "		Was well annular space grouted? Yes No Unknown	Concrete Bentonite Chips		N/A	For Monitoring Wells and Monitoring Well Boreholes Only:		If yes, to what depth (feet)? Depth to Water (feet)	Bentonite Chips Bentonite - Cement Grout			Granular Bentonite Bentonite - Sand Slurry		5. Material Used To Fill Well / Drillhole	From (ft.) To (ft.) No. Yards, Sacks Sealant Mix Ratio or Orlume (circle one) Mud Weight		Granular Benton: Le	Surface 4.5 Approx 4 points		CIMIC INT. Ser-TON. TO	The representation of the results					6. Comments	L								7. Supervision of Work	DNR Use Only		Name of Person or Firm Doing Sealing Work Date of Aba				- 2006		Street or Route 421 Frenche Prive (716) 7	i i		City State ZIP Code	Signature of Person Doing Work		Chiporus Falls W1 54729	Signature of Person Doing Work T-13-06		The state of s		# Appendix B Analytical Data TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com March 13, 2006 Short Elliott Henderickson 421 Frenette Drive Chippewa Falls , WI 54729 Attn: John Guhl **REPORT NO.: 195283** RECEIVED MAR 15 2006 SHORT ELLIOTT HENDRICKSON CHIPPEWAFALLS, WI PROJECT NO.: NERUB0502.00 Please find enclosed the analytical report, including the Sample Summary, Sample Narrative and Chain of Custody for your sample set received February 17, 2006. All analyses were performed in accordance with NELAC Standards using approved methods as indicated on this report. If you have any questions about the results, please call. Thank you for using USFilter, Environcan Services for your analytical needs. Sincerely, USFilter, Enviroscan Services James R. Salkowski Laboratory Director I certify that the data contained in this report has been generated and reviewed in accordance with the USFilter, Enviroscan Services Quality Assurance Program. Exceptions, if any, are discussed in the sample narrative. Samples will be retained for 30 days from the date of this report, then disposed in an appropriate manner. USFilter, Enviroscan Services reserves the right to returmsamples identified as hazardous. Release of this Final Report is authorized as verified by the following signature. way kug Certifications: Wisconsin 737053130 Minnesota 055-999-302 Illinois 100317 TELEPHONE WEBSITE 800-338-7226 FACSIMILE 715-355-3221 www.usfilter.com ## Sample_Summary #### 195283.2	<u>Lab Id</u>	<u>Client Sample ID</u>	Date/Time	<u>Matrix</u>		----------------	-------------------------	----------------	---------------		195283	MW-3	02/16/06 10:30	GROUNDWATER		195284	MW-2	02/16/06 11:00	GROUNDWATER		195285	MW-1	02/16/06 11:30	GROUNDWATER		195286	EAST SUMP	02/16/06 11:30	GROUNDWATER		1 95287	B12	02/16/06 13:15	GROUNDWATER		1 95288	B11	02/16/06 13:45	GROUNDWATER		195289	LARGE SUMP	02/16/06 14:15	GROUNDWATER		1 95290	В9	02/16/06 14:45	GROUNDWATER		1 95291	B6	02/16/06 15:15	GROUNDWATER		1 95292	WEST SUMP	02/16/06 15:45	GROUNDWATER		195293	B5	02/16/06 16:15	GROUNDWATER		195294	B5A	02/16/06 16:45	GROUNDWATER		1 95295	MW-5 PZ-5 0-4'	02/13/06 10:30	SOIL		7 95296	MW-6 0-4'	02/13/06 11:45	SOIL		795297	MW-7 0-4'	02/13/06 12:30	SOIL		195298	MW-8 0-4'	02/13/06 14:30	SOIL		195299	MW-8 4-6'	02/13/06 14:45	SOIL		195300	MW-9 0-4'	02/13/06 15:15	SOIL		195301	MW-9 4-6'	02/13/06 15:30	SOIL		195302	B1 0-2'	02/13/06 16:15	SOIL		195303	B1 4-6'	02/13/06 16:30	SOIL		95304	B2 0-2'	02/13/06 16:45	SOIL		95305	B2 2-4'	02/13/06 16:45	SOIL		95306	B3 0-2'	02/13/06 17:00	SOIL		195307	B3 2-4'	02/13/06 17:00	SOIL		■95308	B4 4-6'	02/13/06 17:30																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																														
SOIL		95309	B5 0.5-0.8'	02/14/06 11:00	SOIL		■95310	B6 1.5-3.0'	02/14/06 15:00	SOIL		195311	B7 1.0-2.5'	02/14/06 15:30	SOIL		195312	B8 1.0-2.5'	02/14/06 15:45	SOIL		95313	B9 1.0-2.0'	02/14/06 16:30	SOIL		95314	B10 0.5-1.5'	02/14/06 17:15	SOIL		95315	B11 1-3'	02/15/06 08:30	SOIL		195316	B12 1-2'	02/15/06 09:15	SOIL		195317	B13 0.5-4.5'	02/15/06 11:15	SOIL		95318	MW-8	02/16/06 07:00	GROUNDWATER		95319	MW-9	02/16/06 07:30	GROUNDWATER		195320	MW-4	02/16/06 08:00	GROUNDWATER		195321	MW-6	02/16/06 08:30	GROUNDWATER		95322	MW-7	02/16/06 09:00	GROUNDWATER		95323	MW-5	02/16/06 09:30	GROUNDWATER		195324	PZ-5				1/2364	r4-3	02/16/06 10:00	GROUNDWATER	TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com #### Sample Narrative/Sample Status LOGIN: **SENERAL:** NALYSES: 195286 CANNOT RUN PNA'S AT A LOWER DILUTION DUE TO SAMPLE MATRIX. OIL LAYER NOT RUN, NOT SOLUBLE IN WATER. OIL LAYER APPROX 10% OF TOTAL VOL 195294 decanted liquid off from mud layer kam QA/QC: PEPORTING: #### <u>Definitions</u> _OD = Limit of Detection (Not dilution corrected) LOQ = Limit of Quantitation (Not dilution corrected) = Less Than OMP = Complete UBCON = Subcontracted analysis mv = millivolts pCi/l = picocurie per liter l/l = milliters/Liter -g = milligrams μg/l = Micrograms per liter = parts per billion (ppb) μg/kg = Micrograms per kilogram = parts per billion (ppb) mg/l = Milligrams per liter = parts per million (ppm) mg/kg = Milligrams per kilogram = parts per million (ppm) NOT PRES = Not Present ppth = Parts per thousand (S) = Surrogate Compound mg/m3 = Milligrams/meter cube ng/l = Nanograms per liter ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com PROJECT NO.: NERUBO502.00 REPORT NO.: 195302.42 DATE REC'D: 02/17/06 REPORT DATE: 03/14/06 PREPARED BY: JRS Attn: John Guhl ⇒ample ID: B1 0-2' **≒21** Frenette Drive Short Elliott Henderickson □hippewa Falls , WI 54729 Matrix: SOIL Sample Date/Time: 02/13/06 16:15 Lab No. 195302	•										----------------------------------	---------------	--------------	----------	--------------	---------------------------	-------------	-------------------------	---------			<u>Result</u>	<u>Units</u>	LOD	<u>L00</u>	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	Analyst		L. 4/2 -										EPA 160.3 Total Solids	85.4	%	-	0.33	-		03/13/06	AMR		EPA 3050										Metal Prep	COMP		-	•	-		02/27/06	DJB		EPA 6010	7.40			=	_					Total Arsenic	3.48	mg/kg	0.34	1.13	1		03/07/06	DJB		Fotal Barium	53.4	mg/kg	0.1	0.33	1		03/07/06	DJB		Fotal Cadmium	0.113	mg/kg	0.057	0.19	1	J	03/07/06	DJB		Total Chromium	15.9	mg/kg	0.053	0.18	1		03/07/06	DJB		Jotal Lead	20.6	mg/kg	0.53	1.76	1		03/07/06	DJB		■otal Selenium	<0.703	mg/kg	0.6	2.0	1		03/07/06	DJB		■ otal Silver	<0.234	mg/kg	0.2	0.67	1		03/07/06	DJB		EPA 7471	0.457		0.047	0.047			07.07.04			Total Mercury ■	0.156	mg/kg	0.014	0.047	1		03/03/06	MPM		PA 8021 (Only positively	identified	d analytes	are repo	rted on a dr	y weight ba	sis				Benzene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP		Bromobenzene	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP		≱romodichloro methane	<0.025	mg/kg	0.006	0.02	1		02/21/06	LMP		ከ-Butylbenzene	<0.025	mg/kg	0.012	0.04	1	LCL	02/21/06	LMP		sec-Butylbenzene	<0.025	mg/kg	0.01	0.033	1		02/21/06	LMP		tert-Butylbenzene	<0.025	mg/kg	0.01	0.033	1		02/21/06	LMP		Carbon Tetrachloride	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP		Intorobenzene	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP		<pre>Thlorodibromomethane</pre>	<0.025	mg/kg	0.02	0.067	1		02/21/06	LMP		Chloroethane	<0.025	mg/kg	0.09	0.30	1	LCL	02/21/06	LMP		£hloroform	<0.025	mg/kg	0.01	0.033	1		02/21/06	LMP		Chloromethane	<0.025	mg/kg	0.01	0.033	1	CSH DUP	02/21/06	LMP		₽-Chlorotoluene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP		4-Chlorotoluene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP		1,2-Dibromo-3-chloropropane	<0.025	mg/kg	0.009	0.03	1		02/21/06	LMP		_,2-Dibromoethane	<0.025	mg/kg	0.012	0.04	1		02/21/06	LMP		,2-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP		,3-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP		1,4-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP		Dichlorodifluoromethane	<0.025	mg/kg	0.014	0.047		CSH LCL	02/21/06	LMP		1,1-Dichloroethane	<0.025	mg/kg	0.009	0.03	1		02/21/06	LMP		1,2-Dichloroethane	<0.025	mg/kg	0.005	0.017	1	CSL LCL	02/21/06	LMP		1,1-Dichloroethylene	<0.025	mg/kg	0.016	0.053	i		02/21/06	LMP		cis-1,2-Dichloroethylene	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP		-rans-1,2-Dichloroethylene	<0.025	mg/kg	0.01	0.033	1	LCL	02/21/06	LMP		,2-Dichloropropane	<0.025	mg/kg	0.007	0.023	i	CSH	02/21/06	LMP		,3-Dichloropropane	<0.025	mg/kg	0.008	0.027	i		02/21/06	LMP		2,2-Dichloropropane	<0.025	mg/kg	0.008	0.027	•	CSL LCL DUP	02/21/06	LMP		Ethylbenzene	<0.025	mg/kg	0.007	0.023	i		02/21/06	LMP		exachlorobutadiene	<0.025	mg/kg	0.015	0.05	i		02/21/06	LMP		sopropylbenzene	<0.025	mg/kg	0.009	0.03	i		02/21/06	LMP		sopropyl Ether	<0.025	mg/kg	0.014	0.047	· i		02/21/06	LMP		p-Isopropyltoluene	<0.025	mg/kg	0.011	0.037	i		02/21/06	LMP		methyl t-Butyl Ether(MTBE)	<0.025	mg/kg	0.018	0.06	i		02/21/06	LMP				3/ ~3	0.010	5.00	'		JL, L 1, 00	E111	all results calculated on a dry weight basis. TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com ### A Siemens Business Short Elliott Henderickson -421 Frenette Drive =Chippewa Falls , WI 54729 PROJECT NO.: NERUBO502.00 REPORT NO.: 195302.43 DATE REC'D: 02/17/06 REPORT DATE: 03/14/06 PREPARED BY: JRS Attn: John Guhl ⇒Sample ID: B1 0-2' Matrix: SOIL Sample Date/Time: 02/13/06 16:15 Lab No. 195302		Result	<u>Units</u>	LOD	<u>LOQ</u>	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	<u>Analyst</u>		---	---------	----------------	---------------	----------------	---------------------------	--------------	-------------------------	----------------		EDA 9034 (Only manifely)						- * -				<u>EPA 8021</u> (Only positively Methylene Chloride	<0.025					3515	02/21/04	LMD		Naphthalene	0.0445	mg/kg	0.014 0.01	0.047 0.033	1 1		02/21/06	LMP		n-Propylbenzene	<0.025	mg/kg	0.009	0.03	1		02/21/06	LMP		Tetrachloroethylene	<0.025	mg/kg mg/kg	0.009	0.03	i		02/21/06 02/21/06	LMP		7,1,2,2-Tetrachloroethane	<0.025	mg/kg	0.009	0.03	1		02/21/06	LMP LMP		Toluene	<0.025	mg/kg	0.007	0.023	i		02/21/06	LMP		1,2,3-Trichlorobenzene	<0.025	mg/kg	0.007	0.047	i		02/21/06	LMP		1,2,4-Trichlorobenzene	<0.025	mg/kg	0.014	0.047	i		02/21/06	LMP		1,1,1-Trichloroethane	<0.025	mg/kg	0.008	0.027	i		02/21/06	LMP		1,1,2-Trichloroethane	<0.025	mg/kg	0.006	0.02	i	CSH	02/21/06	LMP		Irichloroethylene	<0.025	mg/kg	0.000	0.037	i	6511	02/21/06	LMP		■richlorofluoromethane	<0.025	mg/kg	0.008	0.027	i	СЅН	02/21/06	LMP		7,2,4-Trimethylbenzene	<0.025	mg/kg	0.012	0.04	i	50	02/21/06	LMP		7,3,5-Trimethylbenzene	<0.025	mg/kg	0.01	0.033	i		02/21/06	LMP		Vinyl Chloride	<0.025	mg/kg	0.018	0.06	i		02/21/06	LMP		m- & p-Xylene	<0.025	mg/kg	0.015	0.05	1		02/21/06	LMP		o-Xylene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP		Bromochloromethane	<0.025	mg/kg	0.006	0.02	1	CSH	02/21/06	LMP		Bromoform	<0.025	mg/kg	0.008	0.027	1	CSH	02/21/06	LMP		Bromomethane	<0.025	mg/kg	0.009	0.03	1	CSH	02/21/06	LMP		⊅ibromomethane	<0.025	mg/kg	0.008	0.027	1	CSH	02/21/06	LMP		1.1-Dichloropropene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP		trans-1,3-dichloroprop(yl)e	<0.025	mg/kg	0.008	0.027	. 1		02/21/06	LMP		Styrene	<0.025	mg/kg	0.007	0.023	1	•	02/21/06	LMP		¶,1,1,2-Tetrachloroethane	<0.025	mg/kg	0.009	0.03	1	CSH	02/21/06	LMP		,2,3-Trichloropropane	<0.025	mg/kg	0.007	0.023	1	CSH	02/21/06	LMP		=is-1,3-Dichloroprop(yl)ene	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP		PID Surrogate Recovery (S)	73.6	%	-	-	1		02/21/06	LMP		HALL Surrogate Recovery (S)	100.	%	-	-	1		02/21/06	LMP		₽ ₽Α 8141										Method 3550 Ultrasonic Ext.	COMP		-	-	-		02/24/06	MJG		Alachlor	<2.28	μg/kg	1.95	6.49	1		03/09/06	LMP		≜ trazine	<2.18	μg/kg	1.86	6.19	1		03/09/06	LMP		utylate	<1.14	μg/kg	0.97	3.23	1		03/09/06	LMP		⊒hlorpyrifos	<1.76	μg/kg	1.5	5.0	1		03/09/06	LMP		Cyanazine	<2.25	μg/kg	1.92	6.39	1	CSH DUP	03/09/06	LMP		Desethyl atrazine	<2.32	μg/kg	1.98	6.59	1	CSH	03/09/06																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																	
LMP		esisopropyl atrazine	<3.51	μg/kg	3.0	10.0	1	CSH S2H	03/09/06	LMP		PTC(Eptam)	<6.44	μg/kg	5.5	18.3	1		03/09/06	LMP		Metolachlor	<2.42	μg/kg	2.07	6.89	1	CSH	03/09/06	LMP		Metribuzin	<2.59	μg/kg	2.21	7.36	1	CSH	03/09/06	LMP		-endimethalin	<2.08	μg/kg	1.78	5.93	1		03/09/06	LMP		-rometon	<3.27	μg/kg	2.79	9.29	1	CSH	03/09/06	LMP		-ropazine	<2.12	μg/kg	1.81	6.03	1		03/09/06	LMP		Simazine	<2.05	μg/kg	1.75	5.83	1	CSH	03/09/06	LMP		Trifluralin	<2.07	μg/kg	1.77	5.89	1		03/09/06	LMP		_cetochlor	<5.85	μg/kg	5.0	16.7	1		03/09/06	LMP		'imethenamid	<3.86	μg/kg	3.3	11.0	1		03/09/06	LMP		EPA 8310										cenaphthene	<0.0055	mg/kg	0.0047	0.016	1		02/28/06	LMP											ll results calculated on a dry weight basis. ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com Short Elliott Henderickson 421 Frenette Drive Chippewa Falls , WI 54729 PROJECT NO.: NERUBO502.00 REPORT NO.: 195302.44 DATE REC'D: 02/17/06 REPORT DATE: 03/14/06 PREPARED BY: JRS Attn: John Guhl Sample ID: B1 0-2' Matrix: SOIL Sample Date/Time: 02/13/06 16:15 Lab No. 195302		<u>Result</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	<u>Analyst</u>		-----------------------------	---------------	--------------	--------	--------	---------------------------	------------	-------------------------	----------------		EPA 8310										Acenaphthylene	<0.00773	mg/kg	0.0066	0.022	1		02/28/06	LMP		Anthracene	<0.00246	mg/kg	0.0021	0.007	1		02/28/06	LMP		Benzo(a)Anthracene	<0.0048	mg/kg	0.0041	0.014	1		02/28/06	LMP		Benzo(a)Pyrene	<0.00269	mg/kg	0.0023	0.0077	1		02/28/06	LMP		Benzo(b)Fluoranthene	<0.00246	mg/kg	0.0021	0.007	1		02/28/06	LMP		Benzo(k)Fluoranthene	<0.0034	mg/kg	0.0029	0.0097	1		02/28/06	LMP		=Benzo(ghi)Perylene	<0.00468	mg/kg	0.004	0.013	1		02/28/06	LMP		■Chrysene	<0.00269	mg/kg	0.0023	0.0077	1		02/28/06	LMP		Dibenzo(a,h)Anthracene	<0.00316	mg/kg	0.0027	0.009	1		02/28/06	LMP		Fluoranthene	<0.00304	mg/kg	0.0026	0.0087	1		02/28/06	LMP		Fluorene	<0.00386	mg/kg	0.0033	0.011	1		02/28/06	LMP		Indeno(1,2,3-cd)Pyrene	0.021	mg/kg	0.0022	0.0073	1		02/28/06	LMP		1-Methyl Naphthalene	0.0326	mg/kg	0.0037	0.012	1		02/28/06	LMP		⊉-Methyl Naphthalene	0.0708	mg/kg	0.0041	0.014	1		02/28/06	LMP		Naphthalene	0.0177	mg/kg	0.0046	0.015	1		02/28/06	LMP		₽ henanthrene	<0.0048	mg/kg	0.0041	0.014	1		02/28/06	LMP		₽yrene	<0.00246	mg/kg	0.0021	0.007	• 1		02/28/06	LMP		9,10-Diphenylanthracene (S)	59.4	%	-	-	1		02/28/06	LMP		Method 3550 Ultrasonic Ext.	COMP		•	-	-		02/22/06	KAM		EPA 9045										pH - Laboratory	8.16		-	-	1		02/20/06	JJP		pH - Laboratory Time	08:00		-	-	-		02/20/06	JJP	[■]All results calculated on a dry weight basis. TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com Short Elliott Henderickson ■21 Frenette Drive □hippewa Falls , WI 54729 PROJECT NO.: NERUBO502.00 REPORT NO.: 195302.45 DATE REC'D: 02/17/06 REPORT DATE: 03/14/06 PREPARED BY: JRS Attn: John Guhl	±amol	e In.	B1 4-6"	Matrix: SOIL	Sample Date/Time:	02/13/06	16.30	Lab No. 195303		-------	--------	---------	--------------	-------------------	----------	-------	----------------			re in:	D1 4-0-	Matrix: Suit	Sample Date/Ilme:	02/13/00	10:30	Lab No. 1933U3		ı	<u>Result</u>	<u>Units</u>	<u>LOD</u>	LOQ	Dilution <u>Factor</u>	Qualifiers	Date Analyzed	<u>Analyst</u>		-----------------------------------	---------------	--------------	------------	--------------	---------------------------	------------	------------------	----------------		EPA 160.3 Total Solids	89.8	%	-	0.33	-		03/13/06	AMR		<u>≡PA 3050</u> ≣etal Prep	COMP		-	•	-		02/27/06	DJB		EPA 6010										Total Arsenic	2.34	mg/kg	0.34	1.13	1		03/07/06	DJB		Total Barium	91.0	mg/kg	0.1	0.33	1		03/07/06	DJB		Total Cadmium	0.0757	mg/kg	0.057	0.19	1	j	03/07/06	DJB		Total Chromium	16.9	mg/kg	0.053	0.18	1		03/07/06	DJB		Total Lead	9.02	mg/kg	0.53	1.76	1		03/07/06	DJB		otal Selenium	<0.668	mg/kg	0.6	2.0	1		03/07/06	DJB		otal Silver	<0.223	mg/kg	0.2	0.67	1		03/07/06	DJB		EPA_7471_										Total Mercury	0.0245	mg/kg	0.014	0.047	1		03/03/06	MPM		EPA 8021 (Only positively	identified	d analytes	are repor	rted on a dr	y weight bas	is				Benzene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP		∦romobenzene	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP		romodichloromethane	<0.025	mg/kg	0.006	0.02	1		02/21/06	LMP		∷-Butylbenzene	<0.025	mg/kg	0.012	0.04	1	LCL	02/21/06	LMP		sec-Butylbenzene	<0.025	mg/kg	0.01	0.033	1		02/21/06	LMP		tert-Butylbenzene	<0.025	mg/kg	0.01	0.033	1		02/21/06	LMP		<pre>=arbon Tetrachloride</pre>	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP		hlorobenzene	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP		thlorodibromomethane	<0.025	mg/kg	0.02	0.067	1		02/21/06	LMP		Chloroethane	<0.025	mg/kg	0.09	0.30	1	LCL	02/21/06	LMP		Chloroform	<0.025	mg/kg	0.01	0.033	1		02/21/06	LMP		hloromethane	<0.025	mg/kg	0.01	0.033	1 0	SH DUP	02/21/06	LMP		-Chlorotoluene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP		4-Chlorotoluene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP		1,2-Dibromo-3-chloropropane	<0.025	mg/kg	0.009	0.03	1		02/21/06	LMP		,2-Dibromoethane	<0.025	mg/kg	0.012	0.04	1		02/21/06	LMP		,2-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP		,3-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP		1,4-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP		<pre>ichlorodifluoromethane</pre>	<0.025	mg/kg	0.014	0.047	1 0	SH LCL	02/21/06	LMP		,1-Dichloroethane	<0.025	mg/kg	0.009	0.03	1		02/21/06	LMP		,2-Dichloroethane	<0.025	mg/kg	0.005	0.017	1 0	SL LCL	02/21/06	LMP		1,1-Dichloroethylene	<0.025	mg/kg	0.016	0.053	1		02/21/06	LMP		çis-1,2-Dichloroethylene	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP		rans-1,2-Dichloroethylene	<0.025	mg/kg	0.01	0.033	1	LCL	02/21/06	LMP		,2-Dichloropropane	<0.025	mg/kg	0.007	0.023	i	CSH	02/21/06	LMP		,3-Dichloropropane	<0.025	mg/kg	0.008	0.027	i		02/21/06	LMP		2,2-Dichloropropane	<0.025	mg/kg	0.008	0.027		SL LCL DUP	02/21/06	LMP		#thylbenzene	<0.025	mg/kg	0.007	0.023	i		02/21/06	LMP		exachlorobutadiene	<0.025	mg/kg	0.015	0.05	i		02/21/06	LMP		=sopropylbenzene	<0.025	mg/kg	0.009	0.03	i		02/21/06	LMP		Isopropyl Ether	<0.025	mg/kg	0.014	0.047	i		02/21/06	LMP		p-Isopropyltoluene	<0.025	mg/kg	0.014	0.047	i		02/21/06	LMP		ethyl t-Butyl Ether(MTBE)	<0.025	mg/kg	0.018	0.06	i		02/21/06	LMP	Ill results calculated on a dry weight basis. Ill results calculated on a dry weight basis. ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com A Siemens Business PROJECT NO.: NERUBO502.00 REPORT NO.: 195302.46 DATE REC'D: 02/17/06 REPORT DATE: 03/14/06 PREPARED BY: JRS Attn: John Guhl ample ID: B1 4-6' Matrix: SOIL Sample Date/Time: 02/13/06 16:30		<u>Result</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	<u>Analyst</u>		---	----------------	----------------	--------	-------	---------------------------	------------	-------------------------	----------------		PA 8021 (Only positively	idontified	analytaa		*						PA 8021 (Only positively Methylene Chloride	<0.025		0.014	0.047		SIS	02/21/04	LUD		Naphthalene	<0.025	mg/kg mg/kg	0.014	0.047	1 1		02/21/06	LMP		n-Propylbenzene	<0.025	mg/kg	0.009	0.033	1		02/21/06	LMP		etrachloroethylene	<0.025	mg/kg	0.009	0.03	1		02/21/06	LMP		1,1,2,2-Tetrachloroethane	<0.025	mg/kg	0.006	0.03	1		02/21/06	LMP		Toluene	<0.025	mg/kg	0.007	0.023	i		02/21/06 02/21/06	LMP LMP		■,2,3-Trichlorobenzene	<0.025	mg/kg	0.014	0.047	1		02/21/06	LMP		■,2,4-Trichlorobenzene	<0.025	mg/kg	0.014	0.047	i		02/21/06	LMP		≡ ,1,1-Trichloroethane	<0.025	mg/kg	0.008	0.027	i		02/21/06	LMP		1,1,2-Trichloroethane	<0.025	mg/kg	0.006	0.02	i	CSH	02/21/06	LMP		Trichloroethylene	<0.025	mg/kg	0.011	0.037	i	0011	02/21/06	LMP		Trichlorofluoromethane	<0.025	mg/kg	0.008	0.027	i	CSH	02/21/06	LMP		,2,4-Trimethylbenzene	<0.025	mg/kg	0.012	0.04	i	0011	02/21/06	LMP		1,3,5-Trimethylbenzene	<0.025	mg/kg	0.01	0.033	i		02/21/06	LMP		Vinyl Chloride	<0.025	mg/kg	0.018	0.06	i		02/21/06	LMP		¬- & p-Xylene	<0.025	mg/kg	0.015	0.05	i																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																	
02/21/06	LMP		⇒-Xylene	<0.025	mg/kg	0.008	0.027	i		02/21/06	LMP		Bromochloromethane	<0.025	mg/kg	0.006	0.02	i	CSH	02/21/06	LMP		Bromoform	<0.025	mg/kg	0.008	0.027	i	CSH	02/21/06	LMP		₽ romomethane	<0.025	mg/kg	0.009	0.03	i	CSH	02/21/06	LMP		ibromomethane	<0.025	mg/kg	0.008	0.027	i	CSH	02/21/06	LMP		,1-Dichloropropene	<0.025	mg/kg	0.008	0.027	i	00	02/21/06	LMP		trans-1,3-dichloroprop(yl)e	<0.025	mg/kg	0.008	0.027	i		02/21/06	LMP		Styrene	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP		,1,1,2-Tetrachloroethane	<0.025	mg/kg	0.009	0.03	i	CSH	02/21/06	LMP		,2,3-Trichloropropane	<0.025	mg/kg	0.007	0.023	i	CSH	02/21/06	LMP		is-1,3-Dichloroprop(yl)ene	<0.025	mg/kg	0.007	0.023	i		02/21/06	LMP		PID Surrogate Recovery (S)	82.8	%	•	-	i		02/21/06	LMP		WALL Surrogate Recovery (S)	100.	%	-	-	1		02/21/06	LMP									,,			PA 8141_										Method 3550 Ultrasonic Ext.	COMP		-	. •	-		02/24/06	MJG		Alachlor	<2.17	μg/kg	1.95	6.49	1		03/09/06	LMP		∎trazine	<2.07	μg/kg	1.86	6.19	1		03/09/06	LMP		utylate	<1.08	μg/kg	0.97	3.23	1		03/09/06	LMP		thlorpyrifos	<1.67	μg/kg	1.5	5.0	1		03/09/06	LMP		Cyanazine	<2.14	μg/kg	1.92	6.39	1	CSH	03/09/06	LMP		Resethyl atrazine	<2.20	μg/kg	1.98	6.59	1	CSH	03/09/06	LMP		esisopropyl atrazine	<3.34	μg/kg	3.0	10.0	1	CSH	03/09/06	LMP		PTC(Eptam)	<6.12	μg/kg	5.5	18.3	1		03/09/06	LMP		Metolachlor	<2.31	μg/kg	2.07	6.89	1	CSH	03/09/06	LMP		Metribuzin	<2.46	μg/kg	2.21	7.36	1	CSH	03/09/06	LMP		-endimethalin	<1.98	μg/kg	1.78	5.93	1		03/09/06	LMP		Frometon	<3.11	μg/kg	2.79	9.29	1		03/09/06	LMP		Fropazine	<2.02	μg/kg	1.81	6.03	1		03/09/06	LMP		Simazine	<1.95	μg/kg	1.75	5.83	1	CSH	03/09/06	LMP		Trifluralin	<1.97	μg/kg	1.77	5.89	1		03/09/06	LMP		Acetochlor	<5.57	μg/kg	5.0	16.7	1		03/09/06	LMP		mimethenamid	<3. <i>6</i> 7	μg/kg	3.3	11.0	1		03/09/06	LMP		EPA 8310										cenaphthene	<0.00523	mg/kg	0.0047	0.016	1		03/01/06	1 MD		- Stapheneric	-0.00723	11197 KY	0.0047	0.010	ı		03/01/00	LMP	ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com Short Elliott Henderickson 421 Frenette Drive Chippewa Falls , WI 54729 Attn: John Guhl Sample ID: B1 4-6' Matrix: SOIL REPORT NO.: 195302.47 DATE REC'D: 02/17/06 REPORT DATE: 03/14/06 PREPARED BY: JRS PROJECT NO.: NERUBO502.00 Sample Date/Time: 02/13/06 16:30 Lab No. 195303 Dilution Date		<u>Result</u>	<u>Units</u>	<u>LOD</u>	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	Analyst		-----------------------------	---------------	--------------	------------	--------	---------------------------	------------	-------------------------	---------		EPA 8310										Acenaphthylene	<0.00735	mg/kg	0.0066	0.022	1		03/01/06	LMP		_Anthracene	<0.00234	mg/kg	0.0021	0.007	1		03/01/06	LMP		Benzo(a)Anthracene	0.00571	mg/kg	0.0041	0.014	1	J	03/01/06	LMP		Benzo(a)Pyrene	0.0106	mg/kg	0.0023	0.0077	1		03/01/06	LMP		Benzo(b)Fluoranthene	0.0092	mg/kg	0.0021	0.007	1		03/01/06	LMP		Benzo(k)Fluoranthene	0.00453	mg/kg	0.0029	0.0097	1	J	03/01/06	LMP		■Benzo(ghi)Perylene	0.0154	mg/kg	0.004	0.013	1		03/01/06	LMP		≎hrysene	0.00978	mg/kg	0.0023	0.0077	1		03/01/06	LMP		Dibenzo(a,h)Anthracene	<0.00301	mg/kg	0.0027	0.009	1		03/01/06	LMP		Fluoranthene	0.0196	mg/kg	0.0026	0.0087	1		03/01/06	LMP		_Fluorene	<0.00367	mg/kg	0.0033	0.011	1		03/01/06	LMP		■ndeno(1,2,3-cd)Pyrene	0.00823	mg/kg	0.0022	0.0073	1		03/01/06	LMP		1-Methyl Naphthalene	<0.00412	mg/kg	0.0037	0.012	1		03/01/06	LMP		⊉-Methyl Naphthalene	<0.00457	mg/kg	0.0041	0.014	1		03/01/06	LMP		Naphthalene	<0.00512	mg/kg	0.0046	0.015	1		03/01/06	LMP		Phenanthrene	0.00859	mg/kg	0.0041	0.014	1	J	03/01/06	LMP		Pyrene	0.00506	mg/kg	0.0021	0.007	1	J	03/01/06	LMP		9,10-Diphenylanthracene (S)	52.3	%	-	-	1		03/01/06	LMP		Method 3550 Ultrasonic Ext.	COMP		-	-	-		02/22/06	KAM		≣PA_9045										pH - Laboratory	9.03		•	-	1		02/20/06	JJP		pH - Laboratory Time	08:00		-	-	·-		02/20/06	JJP	all results calculated on a dry weight basis. TELEPHONE FACSIMILE WEBSITE PROJECT NO.: NERUB0502.00 REPORT NO. : 195283.48 DATE REC'D : 02/17/06 800-338-7226 715-355-3221 www.usfilter.com Attn: John Guhl REPORT DATE: 03/13/06 PREPARED BY: JRS	PA 160.3 Total Solids	Sample ID: B2 0-2'	Matri	x: SOIL	San	nple Date/T	ime: 02/13/06 16:45	Lab No. 1	95304		--	--------------------------	---------------	--------------	-----------	-------------	---------------------------------------	------------	---------		PA 160.3 Total Solids		<u>Result</u>	<u>Units</u>	LOD	LOQ			Analyst		PA 3050	440 F									Per		90.0	%	-	0.33	-	02/20/06	AMR		Per	=PA 3050									PA 6010		COMP		-	_	•	02/27/06	DJB		Cotal Barium							02, 2., 00	000		Octal Barium										Total Chromitum							_* . *			Total Lead						-				Total Lead							- •			Data Selenium										PA 7471			• • •							PA 8021 Conly positively identified analytes are reported on a dry weight basis										PA 8021 Conly positively identified analytes are reported on a dry weight basis	-otat Sitvei	10.222	mg/kg	0.2	0.07	1	03/07/06	กาห		PA 8021 Conly positively identified analytes are reported on a dry weight basis	EPA 7471									Benzene		0.0978	mg/kg	0.014	0.047	1	03/03/06	MPM		Benzene	PA 8021 (Only positively	idontific	d analytes	ana nanar	tod on a di	ny unight bosis				Remobenzene							02/21/04	LMD		Commodichloromethane	- ·									Butylbenzene										Dec-Butylbenzene						· · · · · · · · · · · · · · · · · · ·				tert-Butylbenzene						1				arbon Tetrachloride						i				hlorobenzene						i				hlorodibromomethane			• • •			i				Chloroethane						i				Chloroform						•				CSH DUP 02/21/06 LMP CSH DUP 02/21/06 LMP CT CSH DUP 02/21/06 LMP CT CT CSH DUP 02/21/06 LMP CT CT CSH DUP 02/21/06 LMP CT CT CSH DUP 02/21/06 LMP	Chloroform	<0.025		0.01		1				-Chlorotoluene	hloromethane	<0.025	mg/kg	0.01	0.033	1 CSH DUP				1,2-Dibromo-3-chloropropane	-Chlorotoluene	<0.025	mg/kg	0.008	0.027	1	02/21/06	LMP		,2-Dibromoethane		<0.025	mg/kg	0.008	0.027	1	02/21/06	LMP		,2-Dichlorobenzene <0.025		<0.025	mg/kg			1	02/21/06	LMP		,3-Dichlorobenzene <0.025				0.012	0.04		02/21/06	LMP		1,4-Dichlorobenzene						•	02/21/06	LMP		CSH LCL O2/21/06 LMP O.047 O								LMP		,1-Dichloroethane <0.025						•										1 CSH LCL				1.1-Dichloroethylene	,1-Dichloroethane					1				cis-1,2-Dichloroethylene <0.025 mg/kg 0.007 0.023 1 02/21/06 LMP #rans-1,2-Dichloroethylene <0.025 mg/kg 0.01 0.033 1 LCL 02/21/06 LMP																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																		
_2-Dichloropropane <0.025 mg/kg 0.008 0.027 1 CSH 02/21/06 LMP 2,2-Dichloropropane <0.025 mg/kg 0.008 0.027 1 CSL LCL DUP 02/21/06 LMP 2,2-Dichloropropane <0.025 mg/kg 0.008 0.027 1 CSL LCL DUP 02/21/06 LMP 2,2-Dichloropropane <0.0689 mg/kg 0.007 0.023 1 CSL LCL DUP 02/21/06 LMP ‡hylbenzene 0.0689 mg/kg 0.007 0.023 1 02/21/06 LMP ‡popropylbenzene 0.0533 mg/kg 0.009 0.03 1 02/21/06 LMP isopropyl Ether <0.025 mg/kg	1,2-Dichloroethane									Frans-1,2-Dichloroethylene <0.025 mg/kg 0.01 0.033 1 LCL 02/21/06 LMP _2-Dichloropropane <0.025	i, i-Dichloroethylene																						• •							2,2-Dichloropropane <0.025 mg/kg 0.008 0.027 1 CSL LCL DUP 02/21/06 LMP F±hylbenzene 0.0689 mg/kg 0.007 0.023 1 02/21/06 LMP ⇒xachlorobutadiene <0.025 mg/kg 0.015 0.05 1 02/21/06 LMP ⇒opropylbenzene 0.0533 mg/kg 0.009 0.03 1 02/21/06 LMP ⇒sopropyl Ether <0.025 mg/kg 0.014 0.047 1 02/21/06 LMP										Fithylbenzene 0.0689 mg/kg 0.007 0.023 1 02/21/06 LMP Parachlorobutadiene <0.025 mg/kg										**xachlorobutadiene										popropylbenzene 0.0533 mg/kg 0.009 0.03 1 02/21/06 LMP sopropyl Ether <0.025 mg/kg 0.014 0.047 1 02/21/06 LMP										lsopropyl Ether <0.025 mg/kg 0.014 0.047 1 02/21/06 LMP						·										•														thyl t-Butyl Ether(MTBE) <0.025 mg/kg 0.018 0.06 1 02/21/06 LMP									__l results calculated on a dry weight basis. ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.49 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS 'Attn: John Guhl ±ample ID: B2 0-2" Short Elliott Henderickson ▲21 Frenette Drive Thippewa Falls , WI 54729 Matrix: SOIL Sample Date/Time: 02/13/06 16:45		<u>Result</u>	<u>Units</u>	LOD	<u>LOQ</u>	Dilution Factor Qualifiers	Date <u>Analyzed</u>	<u>Analyst</u>		---	--------------------	----------------	------------------	----------------	----------------------------	-------------------------	----------------		EPA 8021 (Only positively	idontifica			.+	. usisht bosis				<u>=PA 8021</u> (Only positively Methylene Chloride	<0.025	mg/kg	0.014	0.047	weight basis	02/21/06	LMP		Naphthalene	0.317	mg/kg	0.014	0.033	1	02/21/06	LMP		n-Propylbenzene	0.0633	mg/kg	0.009	0.03	1	02/21/06	LMP		Tetrachloroethylene	<0.025	mg/kg	0.009	0.03	1	02/21/06	LMP		1,1,2,2-Tetrachloroethane	<0.025	mg/kg	0.009	0.03	1	02/21/06	LMP		Toluene	<0.025	mg/kg	0.007	0.023	1	02/21/06	LMP		■,2,3-Trichlorobenzene	<0.025	mg/kg	0.007	0.023	1	02/21/06	LMP		,2,4-Trichlorobenzene	<0.025	mg/kg	0.014	0.047	1	02/21/06	LMP		,1,1-Trichloroethane	<0.025	mg/kg	0.008	0.027	1	02/21/06	LMP		1,1,2-Trichloroethane	<0.025	mg/kg	0.006	0.02	i csh	02/21/06	LMP		Trichloroethylene	<0.025	mg/kg	0.011	0.037	1	02/21/06	LMP		Trichlorofluoromethane	<0.025	mg/kg	0.008	0.027	i csh	02/21/06	LMP		1,2,4-Trimethylbenzene	0.221	mg/kg	0.012	0.04	1	02/21/06	LMP		1,3,5-Trimethylbenzene	0.09	mg/kg	0.01	0.033	1	02/21/06	LMP		Vinyl Chloride	<0.025	mg/kg	0.018	0.06	1	02/21/06	LMP		m- & p-Xylene	- 0.13	mg/kg	0.015	0.05	1	02/21/06	LMP		-Xylene	· 0.219	mg/kg	0.008	0.027	1	02/21/06	LMP		Bromochloromethane	<0.025	mg/kg	0.006	0.02	1 CSH	02/21/06	LMP		Bromoform	<0.025	mg/kg	0.008	0.027	1 CSH	02/21/06	LMP		Rromomethane	<0.025	. mg/kg	0.009	0.03	1 CSH	02/21/06	LMP		ibromomethane	<0.025	mg/kg	0.008	0.027	1 CSH	02/21/06	LMP		,1-Dichloropropene	<0.025	mg/kg	0.008	0.027	1	02/21/06	LMP		<pre>lrans-1,3-dichloroprop(yl)e</pre>	<0.025	mg/kg	0.008	0.027	1	02/21/06	LMP		Styrene	<0.025	mg/kg	0.007	0.023	1	02/21/06	LMP		,1,1,2-Tetrachloroethane	<0.025	mg/kg	0.009	0.03	1 CSH	02/21/06	LMP		,2,3-Trichloropropane	<0.025	mg/kg	0.007	0.023	1 CSH	02/21/06	LMP		is-1,3-Dichloroprop(yl)ene	<0.025	mg/kg	0.007	0.023	1	02/21/06	LMP		PID Surrogate Recovery (S)	70.6	%	-	-	1	02/21/06	LMP		#ALL Surrogate Recovery (S)	91.4	%	-	-	1	02/21/06	LMP		DA 9710									PA 8310	40 00E22		0.00/7	0.014	4	07/01/04	LND		Acenaphthene	<0.00522	mg/kg	0.0047	0.016	1	03/01/06	LMP		Acenaphthylene mnthracene	<0.00733	mg/kg	0.0066	0.022	1 1	03/01/06	LMP		■nzo(a)Anthracene	<0.00233 0.0362	mg/kg	0.0021	0.007 0.014	1	03/01/06	LMP LMP		=enzo(a)Antinacene ≡enzo(a)Pyrene	0.0362	mg/kg	0.0041 0.0023	0.0077	1	03/01/06 03/01/06	LMP		3enzo(b)Fluoranthene	0.0477	mg/kg mg/kg	0.0023	0.007	1	03/01/06	LMP		Renzo(k) Fluoranthene	0.0412	mg/kg	0.0029	0.007	1	03/01/06	LMP		enzo(ghi)Perylene	0.068	mg/kg	0.0029	0.013	1	03/01/06	LMP		hrysene	0.107	mg/kg	0.0023	0.0077	1	03/01/06	LMP		Jibenzo(a,h)Anthracene	<0.003	mg/kg	0.0027	0.009	i	03/01/06	LMP		Fluoranthene	0.306	mg/kg	0.0026	0.0087	i	03/01/06	LMP		luorene	<0.00367	mg/kg	0.0033	0.011	i	03/01/06	LMP		mdeno(1,2,3-cd)Pyrene	0.04	mg/kg	0.0022	0.0073	i	03/01/06	LMP		-Methyl Naphthalene	0.0938	mg/kg	0.0037	0.012	i	03/01/06	LMP		2-Methyl Naphthalene	<0.00456	mg/kg	0.0041	0.014	i	03/01/06	LMP		Naphthalene	0.0493	mg/kg	0.0046	0.015	1	03/01/06	LMP		henanthrene	0.206	mg/kg	0.0041	0.014	1	03/01/06	LMP		yrene	<0.00233	mg/kg	0.0021	0.007	1	03/01/06	LMP		yrene ,10-Diphenylanthracene (S)	43.2	%	-	-	1	03/01/06	LMP		Method 3550 Ultrasonic Ext.	COMP		-	-	-	02/22/06	KAM	^{■1} results calculated on a dry weight basis. ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com Short Elliott Henderickson ‡21 Frenette Drive ‡hippewa Falls , WI 54729 PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.50 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS Attn: John Guhl Eample ID: B2 2-4' Matrix: SOIL Sample Date/Time: 02/13/06 16:45 Lab No. 195305		Result	<u>Units</u>	LOD	LOQ	Dilution Factor Qualifiers	Date Analyzed	Analyst		--	------------------	----------------	----------------	----------------	-------------------------------	----------------------	------------											<u>≡PA 160.3</u>									Total Solids	78.9	%	-	0.33	-	02/20/06	AMR											<u>=PA_3050</u>									■etal Prep	COMP		-	-	-	02/27/06	DJB		•									EPA 6010									otal Arsenic	4.93	mg/kg	0.34	1.13	1	03/07/06	DJB		otal Barium	100.	mg/kg	0.1	0.33	1	03/07/06	DJB		_otal Cadmium	<0.0722	mg/kg	0.057	0.19	1	03/07/06	DJB		Total Chromium	30.5	mg/kg	0.053	0.18	1	03/07/06	DJB		Total Lead	9.48	mg/kg	0.53	1.76	1	03/07/06	DJB		otal Selenium	<0.76	mg/kg	0.6	2.0	1	03/07/06	DJB		'otal Silver	<0.253	mg/kg	0.2	0.67	1	03/07/06	DJB											EPA 7471									_otal Mercury	0.0659	mg/kg	0.014	0.047	1	03/03/06	MPM		D4 0004 40 4 111									PA 8021 (Only positively									Benzene	<0.025	mg/kg	0.008	0.027	1 CSL	03/02/06	LMP		Bromobenzene	<0.025	mg/kg	0.007	0.023	1	03/02/06	LMP		romodichloromethane -Butylbenzene	<0.025	mg/kg	0.006	0.02	1	03/02/06	LMP		a-Butylbenzene	<0.025	mg/kg	0.012	0.04	1	03/02/06	LMP		Sec-Butylbenzene	<0.025	mg/kg	0.01	0.033	1	03/02/06	LMP		tert-Butylbenzene	<0.025	mg/kg	0.01	0.033	1	03/02/06	LMP		Tarbon Tetrachloride	<0.025	mg/kg	0.008	0.027	1	03/02/06	LMP		=hlorobenzene	<0.025	mg/kg	0.007	0.023	1	03/02/06	LMP		=hlorodibromomethane	<0.025	mg/kg	0.02	0.067	1	03/02/06	LMP		Chloroethane Chloroform	<0.025	mg/kg	0.09	0.30	1 CSL LCL	03/02/06	LMP		-hloromethane	<0.025	mg/kg	0.01	0.033	1	03/02/06	LMP		E-Chlorotoluene	<0.025	mg/kg	0.01	0.033	1 CSL DUP LCL	03/02/06	LMP		4-Chlorotoluene	<0.025	mg/kg	0.008	0.027	1 1	03/02/06	LMP			<0.025	mg/kg	0.008	0.027		03/02/06	LMP		1,2-Dibromo-3-chloropropane	<0.025	mg/kg	0.009	0.03	1	03/02/06	LMP		,2-Dibromoethane ,2-Dichlorobenzene	<0.025 <0.025	mg/kg	0.012	0.04	1	03/02/06	LMP		,3-Dichlorobenzene	<0.025	mg/kg	0.008 0.008	0.027 0.027	1 1	03/02/06	LMP		1,4-Dichlorobenzene	<0.025	mg/kg mg/kg	0.008	0.027	1	03/02/06 03/02/06	LMP		Nichlorodifluoromethane	<0.025		0.008	0.027	1 LCL		LMP		,1-Dichloroethane	<0.025	mg/kg mg/kg	0.009	0.03	1	03/02/06	LMP		,2-Dichloroethane	<0.025	mg/kg	0.005	0.017	1	03/02/06 03/02/06	LMP LMP		,1-Dichloroethylene	<0.025	mg/kg	0.005	0.053	1	03/02/06	LMP		cis-1,2-Dichloroethylene	<0.025	mg/kg	0.007	0.023	1	03/02/06	LMP		rans-1,2-Dichloroethylene	<0.025	mg/kg	0.007	0.033	i	03/02/06	LMP		,2-Dichloropropane	<0.025	mg/kg	0.007	0.023	i	03/02/06	LMP		,3-Dichloropropane	<0.025	mg/kg	0.008	0.027	i	03/02/06	LMP		2,2-Dichloropropane	<0.025																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																	
mg/kg	0.008	0.027	1 CSL DUP LCL	03/02/06	LMP		Ethylbenzene	<0.025	mg/kg	0.007	0.023	1	03/02/06	LMP		exachlorobutadiene	<0.025	mg/kg	0.015	0.05	i	03/02/06	LMP		sopropylbenzene	<0.025	mg/kg	0.009	0.03	i	03/02/06	LMP		sopropyl Ether	<0.025	mg/kg	0.014	0.047	i	03/02/06	LMP		p-Isopropyltoluene	<0.025	mg/kg	0.011	0.037	i	03/02/06	LMP		■ethyl t-Butyl Ether(MTBE)	<0.025	mg/kg	0.018	0.06	1 CSL DUP	03/02/06	LMP	ll results calculated on a dry weight basis. TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com A Siemens Business Short Elliott Henderickson 421 Frenette Drive Chippewa Falls , WI 54729 PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.51 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS Attn: John Guhl Sample ID: B2 2-4' Matrix: SOIL Sample Date/Time: 02/13/06 16:45	;					5.1 1					---	----------------	------------	------------	---------------	--------------------	------------	----------------------	------------		•	Result	Units	LOD	LOQ	Dilution Factor	Qualifiers	Date Analyzed	Analyst			<u>Kesut t</u>	OTTES	<u>LOD</u>	LOW	ractor	wuattiteis	Allatyzed	Anatyst		EPA 8021 (Only positively	identified	d analytes	аге герог	rted on a dry	weight ba	asis				Methylene Chloride	<0.025	mg/kg	0.014	0.047	1		03/02/06	LMP		Naphthalene	<0.025	mg/kg	0.01	0.033	1		03/02/06	LMP		■n-Propylbenzene	<0.025	mg/kg	0.009	0.03	1		03/02/06	LMP		Tetrachloroethylene	<0.025	mg/kg	0.009	0.03	1		03/02/06	LMP		1,1,2,2-Tetrachloroethane	<0.025	mg/kg	0.006	0.02	1		03/02/06	LMP		Toluene	<0.025	mg/kg	0.007	0.023	1		03/02/06	LMP		1,2,3-Trichlorobenzene	<0.025	mg/kg	0.014	0.047	1		03/02/06	LMP		1,2,4-Trichlorobenzene	<0.025	mg/kg	0.014	0.047	1		03/02/06	LMP		1,1,1-Trichloroethane	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP		1,1,2-Trichloroethane	<0.025	mg/kg	0.006	0.02	1		03/02/06	LMP		Trichloroethylene	<0.025	mg/kg	0.011	0.037	1		03/02/06	LMP		Trichlorofluoromethane	<0.025	mg/kg	0.008	0.027	1	LCL	03/02/06	LMP		1,2,4-Trimethylbenzene	<0.025	mg/kg	0.012	0.04	1		03/02/06	LMP		1,3,5-Trimethylbenzene	<0.025	mg/kg	0.01	0.033	1		03/02/06	LMP		Vinyl Chloride	<0.025	mg/kg	0.018	0.06	1		03/02/06	LMP		n- & p-Xylene	0.0393	mg/kg	0.015	0.05	1	MB J	03/02/06	LMP		-Xylene romochloromethane	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP			<0.025	mg/kg	0.006	0.02	1		03/02/06	LMP		Bromoform	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP		Bromomethane	<0.025	mg/kg	0.009	0.03	1		03/02/06	LMP		⊃ibromomethane	<0.025	mg/kg	0.008	0.027	1	CSH	03/02/06	LMP		1,1-Dichloropropene	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP		trans-1,3-dichloroprop(yl)e	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP		Styrene	<0.025	mg/kg	0.007	0.023	1		03/02/06	LMP		1,1,2-Tetrachloroethane	<0.025	mg/kg	0.009	0.03	1		03/02/06	LMP		,2,3-Trichloropropane	<0.025	mg/kg	0.007	0.023	1		03/02/06	LMP		is-1,3-Dichloroprop(yl)ene PID Surrogate Recovery (S)	<0.025 82.3	mg/kg %	0.007	0.023	1 1		03/02/06	LMP		HALL Surrogate Recovery (S)	148.	%	-	-	1		03/02/06 03/02/06	LMP LMP		mer dari ogate Recovery (3)	140.	70			•		03/02/00	LMP		<u>₽A</u> 8310										cenaphthene	<0.00596	mg/kg	0.0047	0.016	1		03/01/06	LMP		Acenaphthylene	<0.00837	mg/kg	0.0066	0.022	1		03/01/06	LMP		1nthracene	<0.00266	mg/kg	0.0021	0.007	1		03/01/06	LMP		enzo(a)Anthracene	<0.0052	mg/kg	0.0041	0.014	1		03/01/06	LMP		enzo(a)Pyrene	<0.00292	mg/kg	0.0023	0.0077	1		03/01/06	LMP		Benzo(b)Fluoranthene	0.011	mg/kg	0.0021	0.007	1 .		03/01/06	LMP		Benzo(k)Fluoranthene	<0.00368	mg/kg	0.0029	0.0097	1		03/01/06	LMP		enzo(ghi)Perylene	0.0214	mg/kg	0.004	0.013	1		03/01/06	LMP		hrysene	0.0137	mg/kg	0.0023	0.0077	1		03/01/06	LMP		libenzo(a,h)Anthracene	<0.00342	mg/kg	0.0027	0.009	1		03/01/06	LMP		Fluoranthene	0.0224	mg/kg	0.0026	0.0087	1		03/01/06	LMP		Fluorene	<0.00418	mg/kg	0.0033	0.011	1		03/01/06	LMP		'ndeno(1,2,3-cd)Pyrene	0.00744	mg/kg	0.0022	0.0073	1	J	03/01/06	LMP		-Methyl Naphthalene	0.00515	mg/kg	0.0037	0.012	1	J	03/01/06	LMP		2-Methyl Naphthalene	0.00875	mg/kg	0.0041	0.014	1	J	03/01/06	LMP		Yaphthal ene	<0.00583	mg/kg	0.0046	0.015	1		03/01/06	LMP		henanthrene	0.0128	mg/kg	0.0041	0.014	1	J	03/01/06	LMP		yrene	<0.00266	mg/kg	0.0021	0.007	1		03/01/06	LMP),10-Diphenylanthracene (S)	75.5	%	-	-	1		03/01/06	LMP		Method 3550 Ultrasonic Ext.	COMP		-	-	-		02/22/06	KAM	Il results calculated on a dry weight basis. ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.52 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS Attn: John Guhl Sample ID: B3 0-2' Short Elliott Henderickson →21 Frenette Drive ‡hippewa Falls , WI 54729 Matrix: SOIL Sample Date/Time: 02/13/06 17:00 Lab No. 195306					•						-----------------------------	---------------	--------------	----------	--------------	---------------------------	-------------	-------------------------	---------			<u>Result</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	Analyst		PA 160.3 Total Solids	86.2	%	-	0.33	-		02/20/06	AMR		EPA 3050 Metal Prep	COMP		-	-	-		02/27/06	DJB												EPA 6010 Total Arsenic	28.1	mg/kg	0.34	1.13	1		03/07/06	DJB		Total Barium	57.5	mg/kg	0.1	0.33	i		03/07/06	DJB		Total Cadmium	1.08	mg/kg	0.057	0.19	i		03/07/06	DJB		Total Chromium	19.0	mg/kg	0.053	0.18	i		03/07/06	DJB		Total Lead	184.	mg/kg	0.53	1.76	i		03/07/06	DJB		otal Selenium	<0.696	mg/kg	0.6	2.0	i		03/07/06	DJB		otal Silver	<0.232	mg/kg	0.2	0.67	i		03/07/06	DJB				37 113	V.L	0.01	•		03,01,00	000		EPA 7471										otal Mercury	0.0812	mg/kg	0.014	0.047	1		03/03/06	MPM		PA 8021 (Only positively	identified	l analytes	are repo	rted on a dr	v weight ba	sis				Benzene	0.0905	mg/kg	0.008	0.027	1	CSL	03/02/06	LMP		Bromobenzene	<0.025	mg/kg	0.007	0.023	1		03/02/06	LMP		romodichloromethane	<0.025	mg/kg	0.006	0.02	1		03/02/06	LMP		a-Butylbenzene	0.0568	mg/kg	0.012	0.04	1		03/02/06	LMP		sec-Butylbenzene	0.0638	mg/kg	0.01	0.033	1		03/02/06	LMP		tert-Butylbenzene	<0.025	mg/kg	0.01	0.033	1		03/02/06	LMP		arbon Tetrachloride	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP		∃hlorobenzene	<0.025	mg/kg	0.007	0.023	1		03/02/06	LMP		⇒hlorodibromomethane	<0.025	mg/kg	0.02	0.067	1		03/02/06	LMP		Chloroethane	<0.025	mg/kg	0.09	0.30	1	CSL LCL	03/02/06	LMP		≥ Chloroform	<0.025	mg/kg	0.01	0.033	1		03/02/06	LMP		hloromethane	<0.025	mg/kg	0.01	0.033	1	CSL DUP LCL	03/02/06	LMP		(-Chlorotoluene	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP		74-Chlorotoluene	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP		1,2-Dibromo-3-chloropropane	<0.025	mg/kg	0.009	0.03	1		03/02/06	LMP		,2-Dibromoethane	<0.025	mg/kg	0.012	0.04	1		03/02/06	LMP		,2-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP		_,3-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP		1,4-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP		າichlorodifluoromethane	<0.025	mg/kg	0.014	0.047	1	LCL	03/02/06	LMP		,1-Dichloroethane	<0.025	mg/kg	0.009	0.03	1		03/02/06	LMP		,2-Dichloroethane	<0.025	mg/kg	0.005	0.017	1		03/02/06	LMP		1,1-Dichloroethylene	<0.025	mg/kg	0.016	0.053	1		03/02/06	LMP		cis-1,2-Dichloroethylene	<0.025	mg/kg	0.007	0.023	1		03/02/06	LMP		rans-1,2-Dichloroethylene	<0.025	mg/kg	0.01	0.033	1		03/02/06	LMP		↓2-Dichloropropane	<0.025	mg/kg	0.007	0.023	1		03/02/06	LMP			<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP		z, a brantor opi opane	<0.025	mg/kg	0.008	0.027	1	CSL DUP LCL	03/02/06	LMP		Ethylbenzene	0.109	mg/kg	0.007	0.023	1		03/02/06	LMP		exachlorobutadiene	<0.025	mg/kg	0.015	0.05	1		03/02/06	LMP		sopropylbenzene	0.087	mg/kg	0.009	0.03	1		03/02/06	LMP		Isopropyl Ether	<0.025	mg/kg	0.014	0.047	1		03/02/06	LMP		p-Isopropyltoluene	0.0719	mg/kg	0.011	0.037	1		03/02/06	LMP		ethyl t-Butyl Ether(MTBE)	<0.025	mg/kg	0.018	0.06	1	CSL DUP	03/02/06	LMP	$oldsymbol{I}$ ll results calculated on a dry weight basis. ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com Short Elliott Henderickson 421 Frenette Drive ■Chippewa Falls , WI 54729																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																							
PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.53 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS Attn: John Guhl Sample ID: B3 0-2' Matrix: SOIL Sample Date/Time: 02/13/06 17:00	,	Result	Units	LOD	LOQ	Dilution Factor	Qualifiers	Date Analyzed	Analyst		--	-------------------	---------------------	------------------	-----------------	--------------------	------------------------	----------------------	------------		1	Kesatt	Offics	LOD	LOW	Tactor	<u>udat i i i er s</u>	Allatyzeu	Milatyst		EPA 8021 (Only positively	identified	i analytes	are repor	rted on a dry	weight ba	sis				Methylene Chloride	<0.025	mg/kg	0.014	0.047	1		03/02/06	LMP		Naphthalene	0.365	mg/kg	0.01	0.033	1		03/02/06	LMP		n-Propylbenzene	0.0858	mg/kg	0.009	0.03	1		03/02/06	LMP		Tetrachloroethylene	<0.025	mg/kg	0.009	0.03	1		03/02/06	LMP		1,1,2,2-Tetrachloroethane	<0.025	mg/kg	0.006	0.02	1		03/02/06	LMP		Toluene	0.448	mg/kg	0.007	0.023	1		03/02/06	LMP		1,2,3-Trichlorobenzene	<0.025	mg/kg	0.014	0.047	1		03/02/06	LMP		1,2,4-Trichlorobenzene	<0.025	mg/kg	0.014	0.047	1		03/02/06	LMP		1,1,1-Trichloroethane	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP		1,1,2-Trichloroethane	<0.025	mg/kg	0.006	0.02	1		03/02/06	LMP		richloroethylene	<0.025	mg/kg	0.011	0.037	1		03/02/06	LMP		Trichlorofluoromethane	<0.025	mg/kg	0.008	0.027	1	LCL	03/02/06	LMP		1,2,4-Trimethylbenzene	0.367	mg/kg	0.012	0.04	1		03/02/06	LMP		1,3,5-Trimethylbenzene	0.113	mg/kg	0.01	0.033	1		03/02/06	LMP		Vinyl Chloride	<0.025	mg/kg	0.018	0.06	1		03/02/06	LMP		n- & p-Xylene	0.43	mg/kg	0.015	0.05	1	MB	03/02/06	LMP		b-Xylene	0.338	mg/kg	0.008	0.027	1		03/02/06	LMP		Bromochloromethane Bromoform	<0.025	mg/kg	0.006	0.02	1		03/02/06	LMP		₽romomethane	<0.025 <0.025	mg/kg	0.008	0.027 0.03	1 1		03/02/06	LMP		• ibromomethane	<0.025	mg/kg	0.009 0.008	0.03	1	CSH	03/02/06	LMP		,1-Dichloropropene	<0.025	mg/kg	0.008	0.027	1	CSH	03/02/06	LMP		trans-1,3-dichloroprop(yl)e	<0.025	mg/kg mg/kg	0.008	0.027	1		03/02/06	LMP LMP		Styrene	<0.025	mg/kg	0.007	0.027	1		03/02/06 03/02/06	LMP		1,1,1,2-Tetrachloroethane	<0.025	mg/kg	0.007	0.03	i		03/02/06	LMP		,2,3-Trichloropropane	<0.025	mg/kg	0.007	0.023	i		03/02/06	LMP		is-1,3-Dichloroprop(yl)ene	<0.025	mg/kg	0.007	0.023	i		03/02/06	LMP		PID Surrogate Recovery (S)	90.0	5 , 5	-	-	1		03/02/06	LMP		ALL Surrogate Recovery (S)	145.	%	-	-	i		03/02/06	LMP									,,			PA 8310										Acenaphthene	<0.00545	mg/kg	0.0047	0.016	1		03/01/06	LMP		Acenaphthylene	<0.00766	mg/kg	0.0066	0.022	1		03/01/06	LMP		Inthracene	<0.00244	mg/kg	0.0021	0.007	1		03/01/06	LMP		enzo(a)Anthracene	0.0646	mg/kg	0.0041	0.014	1		03/01/06	LMP		menzo(a)Pyrene	0.0821	mg/kg	0.0023	0.0077	1		03/01/06	LMP		Benzo(b)Fluoranthene	0.196	mg/kg	0.0021	0.007	1		03/01/06	LMP		Renzo(k)Fluoranthene	0.0893	mg/kg	0.0029	0.0097	1		03/01/06	LMP		enzo(ghi)Perylene	0.198	mg/kg	0.004	0.013	1		03/01/06	LMP		hrysene	0.19	mg/kg	0.0023	0.0077	1		03/01/06	LMP		Vibenzo(a,h)Anthracene Fluoranthene	<0.00313	mg/kg	0.0027	0.009	1		03/01/06	LMP		luorene	0.535	mg/kg	0.0026	0.0087	1		03/01/06	LMP		=ndeno(1,2,3-cd)Pyrene	<0.00383 0.137	mg/kg	0.0033 0.0022	0.011 0.0073	1 1		03/01/06	LMP		-Methyl Naphthalene	0.137	mg/kg	0.0022	0.0073	1		03/01/06	LMP		2-Methyl Naphthalene	<0.00476	mg/kg mg/kg	0.0037	0.012	1		03/01/06 03/01/06	LMP LMP		-Naphthalene	0.059	mg/kg	0.0041	0.014	1		03/01/06	LMP		henanthrene	0.238	mg/kg	0.0048	0.013	1		03/01/06	LMP		yrene	0.0404	mg/kg	0.0021	0.007	i		03/01/06	LMP		7,10-Diphenylanthracene (S)	32.8	""97 K9 %	-	-	i		03/01/06	LMP		Method 3550 Ultrasonic Ext.	COMP		-	-	•		02/22/06	KAM	^{■1} results calculated on a dry weight basis. ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE WEBSITE 800-338-7226 FACSIMILE 715-355-3221 www.usfilter.com PROJECT NO.: NERUBO502.00 REPORT NO. : 195283.55 DATE REC'D : 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS Attn: John Guhl =Sample ID: B3 2-4' 421 Frenette Drive Short Elliott Henderickson Chippewa Falls , WI 54729 Matrix: SOIL Sample Date/Time: 02/13/06 17:00 Lab No. 195307		Result	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	Analyst		-----------------------------	------------	--------------------	-----------	--------------	---------------------------	------------	-------------------------	---------		EPA 8021 (Only positively	identified	analytes	are renor	ted on a dry	weight ha	eie				Methylene Chloride	<0.025	mg/kg	0.014	0.047	1	313	03/02/06	LMP		Naphthalene	0.0445	mg/kg	0.01	0.033	i		03/02/06	LMP		n-Propylbenzene	<0.025	mg/kg	0.009	0.03	i		03/02/06	LMP		Tetrachloroethylene	<0.025	mg/kg	0.009	0.03	i		03/02/06	LMP		1,1,2,2-Tetrachloroethane	<0.025	mg/kg	0.006	0.02	i		03/02/06	LMP		Toluene	0.0394	mg/kg	0.007	0.023	i		03/02/06	LMP		1,2,3-Trichlorobenzene	<0.025	mg/kg	0.014	0.047	i		03/02/06	LMP		1,2,4-Trichlorobenzene	<0.025	mg/kg	0.014	0.047	i		03/02/06	LMP		1,1,1-Trichloroethane	<0.025	mg/kg	0.008	0.027	i		03/02/06	LMP		1,1,2-Trichloroethane	<0.025	mg/kg	0.006	0.02	i		03/02/06	LMP		Trichloroethylene	<0.025	mg/kg	0.011	0.037	i		03/02/06	LMP		Trichlorofluoromethane	<0.025	mg/kg	0.008	0.027	i	LCL	03/02/06	LMP		1,2,4-Trimethylbenzene	<0.025	mg/kg	0.012	0.04	1		03/02/06	LMP		1,3,5-Trimethylbenzene	<0.025	mg/kg	0.01	0.033	ì		03/02/06	LMP		Vinyl Chloride	<0.025	mg/kg	0.018	0.06	i		03/02/06	LMP		[⊫n- & p-Xylene	0.0902	mg/kg	0.015	0.05	i	MB	03/02/06	LMP		⊃-Xylene	0.0356	mg/kg	0.008	0.027	i	110	03/02/06	LMP		Bromochloromethane	<0.025	mg/kg	0.006	0.02	i		03/02/06	LMP		Bromoform	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP		Bromomethane	<0.025	mg/kg	0.009	0.03	i		03/02/06	LMP		Dibromomethane	<0.025	mg/kg	0.008	0.027	i	CSH	03/02/06	LMP		1,1-Dichloropropene	<0.025	mg/kg	0.008	0.027	i	30	03/02/06	LMP		trans-1,3-dichloroprop(yl)e	<0.025	mg/kg	0.008	0.027	i		03/02/06	LMP		Styrene	<0.025	mg/kg	0.007	0.023	i		03/02/06	LMP		1,1,1,2-Tetrachloroethane	<0.025	mg/kg	0.009	0.03	i		03/02/06	LMP		1,2,3-Trichloropropane	<0.025	mg/kg	0.007	0.023	1		03/02/06	LMP		:is-1,3-Dichloroprop(yl)ene	<0.025	mg/kg	0.007	0.023	1		03/02/06	LMP		PID Surrogate Recovery (S)	98.7	₉ , κ.9	-	-	i		03/02/06	LMP		HALL Surrogate Recovery (S)	148.	.%	-	-	i		03/02/06	LMP				.,,			•		00, 02, 00			<u> ₽A 8310</u>										Acenaphthene	<0.00597	mg/kg	0.0047	0.016	1		03/01/06	LMP		Acenaphthylene	<0.00839	mg/kg	0.0066	0.022	1		03/01/06	LMP		Anthracene	<0.00267	mg/kg	0.0021	0.007	1		03/01/06	LMP		Benzo(a)Anthracene	<0.00521	mg/kg	0.0041	0.014	1		03/01/06	LMP		Benzo(a)Pyrene	<0.00292	mg/kg	0.0023	0.0077	1	CSL	03/01/06	LMP		Benzo(b)Fluoranthene	<0.00267	mg/kg	0.0021	0.007	1		03/01/06	LMP		Benzo(k)Fluoranthene	<0.00368	mg/kg	0.0029	0.0097	1		03/01/06	LMP		enzo(ghi)Perylene	<0.00508	mg/kg	0.004	0.013	1		03/01/06	LMP		hrysene	<0.00292	mg/kg	0.0023	0.0077	1		03/01/06	LMP		bibenzo(a,h)Anthracene	<0.00343	mg/kg	0.0027	0.009	1		03/01/06	LMP		Fluoranthene	<0.0033	mg/kg	0.0026	0.0087	1		03/01/06	LMP		-luorene	<0.00419	mg/kg	0.0033	0.011	1		03/01/06	LMP		ndeno(1,2,3-cd)Pyrene	<0.0028	mg/kg	0.0022	0.0073	1		03/01/06	LMP		-Methyl Naphthalene	0.0428	mg/kg	0.0037	0.012	1		03/01/06	LMP		2-Methyl Naphthalene	<0.00521	mg/kg	0.0041	0.014	1		03/01/06	LMP		Naphthalene	<0.00584	mg/kg	0.0046	0.015	1		03/01/06	LMP		henanthrene	<0.00521	mg/kg	0.0041	0.014	1		03/01/06	LMP		yrene	<0.00267	mg/kg	0.0021	0.007	1		03/01/06	LMP		9,10-Diphenylanthracene (S)	30.7	%	-	-	1		03/01/06	LMP		Method 3550 Ultrasonic Ext.	COMP		•	-	-		02/22/06	KAM											ll results calculated on a dry weight basis.				¶		results calculated on a dry weight basis. A Siemens Business ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.54 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS Attn: John Guhl Sample ID: B3 2-4" 421 Frenette Drive Short Elliott Henderickson Chippewa Falls , WI 54729 Matrix: SOIL Sample Date/Time: 02/13/06 17:00		<u>Result</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																		
Date <u>Analyzed</u>	<u>Analyst</u>		---	------------------	----------------	----------------	---------------	---------------------------	-------------	-------------------------	----------------		<u>EPA 160.3</u> Total Solids	78.7	%	-	0.33	-		02/20/06	AMR		EPA 3050 Metal Prep	COMP		-	-	-		02/27/06	DJB		EPA 6010										Total Arsenic	5.34	mg/kg	0.34	1.13	1		03/07/06	DJB		Total Barium	62.9	mg/kg	0.1	0.33	1		03/07/06	DJB		Total Cadmium	0.266	mg/kg	0.057	0.19	1		03/07/06	DJB		Total Chromium	16.0	mg/kg	0.053	0.18	1		03/07/06	DJB		Jotal Lead	58.4	mg/kg	0.53	1.76	1		03/07/06	DJB		≅otal Selenium	<0.762	mg/kg	0.6	2.0	1		03/07/06	DJB		T otal Silver	<0.254	mg/kg	0.2	0.67	1	•	03/07/06	DJB		EPA 7471										Total Mercury	0.382	mg/kg	0.014	0.047	1		03/03/06	MPM		PA 8021 (Only positively	identified	analytes	are repo	rted on a dr	y weight ba	sis				Benzene	<0.025	mg/kg	0.008	0.027	1	CSL	03/02/06	LMP		Bromobenzene	<0.025	mg/kg	0.007	0.023	1		03/02/06	LMP		3romodichloromethane	<0.025	mg/kg	0.006	0.02	1		03/02/06	LMP		n-Butylbenzene	<0.025	mg/kg	0.012	0.04	1		03/02/06	LMP		sec-Butylbenzene	<0.025	mg/kg	0.01	0.033	1		03/02/06	LMP		tert-Butylbenzene	<0.025	mg/kg	0.01	0.033	1		03/02/06	LMP		Carbon Tetrachloride	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP		Chlorobenzene	<0.025	mg/kg	0.007	0.023	1		03/02/06	LMP		Thlorodibromomethane	<0.025	mg/kg	0.02	0.067	1		03/02/06	LMP		Chloroethane	<0.025	mg/kg	0.09	0.30		CSL LCL	03/02/06	LMP		Chloroform	<0.025	mg/kg	0.01	0.033	1		03/02/06	LMP		Thloromethane	<0.025	mg/kg	0.01	0.033	1	CSL DUP LCL	03/02/06	LMP		-Chlorotoluene	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP		4-Chlorotoluene	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP		1,2-Dibromo-3-chloropropane	<0.025	mg/kg	0.009	0.03	1		03/02/06	LMP		,2-Dibromoethane	<0.025	mg/kg	0.012	0.04	1		03/02/06	LMP		,2-Dichlorobenzene	<0.025	mg/kg	800.0	0.027	1		03/02/06	LMP		,3-Dichlorobenzene 1,4-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP		Nichlorodifluoromethane	<0.025 <0.025	mg/kg	0.008 0.014	0.027	1 1	1 01	03/02/06	LMP		,1-Dichloroethane	<0.025	mg/kg	0.009	0.047 0.03	1	LCL ·	03/02/06	LMP		,2-Dichloroethane	<0.025	mg/kg	0.009	0.03	1		03/02/06 03/02/06	LMP LMP		,1-Dichloroethylene	<0.025	mg/kg	0.005	0.017	1			LMP		cis-1,2-Dichloroethylene	<0.025	mg/kg mg/kg	0.007	0.033	. 1		03/02/06 03/02/06	LMP		rans-1,2-Dichloroethylene	<0.025	mg/kg	0.007	0.023	1		03/02/06	LMP		,2-Dichloropropane	<0.025	mg/kg	0.007	0.033	1		03/02/06	LMP		3-Dichloropropane	<0.025	mg/kg	0.007	0.023	i		03/02/06	LMP		2,2-Dichloropropane	<0.025	mg/kg	0.008	0.027	i	CSL DUP LCL	03/02/06	LMP		-thylbenzene	<0.025	mg/kg	0.007	0.023	i	00E DOI	03/02/06	LMP		mexachlorobutadiene	<0.025	mg/kg	0.015	0.05	i		03/02/06	LMP			<0.025	mg/kg	0.009	0.03	i		03/02/06	LMP		sopropylbenzene rsopropyl Ether	<0.025	mg/kg	0.014	0.047	i		03/02/06	LMP		p-Isopropyltoluene	<0.025	mg/kg	0.011	0.037	i		03/02/06	LMP		ethyl t-Butyl Ether(MTBE)	<0.025	mg/kg	0.018	0.06	i	CSL DUP	03/02/06	LMP											ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com PROJECT NO.: NERUB0502.00 REPORT NO. : 195283.57 DATE REC'D : 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS Attn: John Guhl ample ID: B4 4-6' Matrix: SOIL ■21 Frenette Drive Short Elliott Henderickson Chippewa Falls , WI 54729 Sample Date/Time: 02/13/06 17:30 Lab No. 195308						Dilution		Date			--	--------------------	----------------	------------------	----------------	---------------	-------------------	----------------------	----------------			<u>Result</u>	<u>Units</u>	LOD	<u>LOQ</u>	<u>Factor</u>	<u>Qualifiers</u>	<u>Analyzed</u>	<u>Analyst</u>		EPA 8021 (Only positively	identified	analytes	are repor	ted on a dr	v voight ba	cic				Methylene Chloride	<0.025	mg/kg	0.014	0.047	y weight ba	1515	03/02/06	LMP		Naphthalene	0.0419	mg/kg	0.01	0.033	i		03/02/06	LMP		n-Propylbenzene	<0.025	mg/kg	0.009	0.03	1		03/02/06	LMP		etrachloroethylene	<0.025	mg/kg	0.009	0.03	1		03/02/06	LMP		1,1,2,2-Tetrachloroethane	<0.025	mg/kg	0.006	0.02	1		03/02/06	LMP		Toluene	0.046	mg/kg	0.007	0.023	1		03/02/06	LMP		,2,3-Trichlorobenzene	<0.025	mg/kg	0.014	0.047	1		03/02/06	LMP		1,2,4-Trichlorobenzene	<0.025	mg/kg	0.014	0.047	1		03/02/06	LMP		,1,1-Trichloroethane	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP		1,1,2-Trichloroethane	<0.025	mg/kg	0.006	0.02	1		03/02/06	LMP		Trichloroethylene Trichlorofluoromethane	<0.025	mg/kg	0.011	0.037	1		03/02/06	LMP		1,2,4-Trimethylbenzene	<0.025	mg/kg	0.008	0.027	1	LCL	03/02/06	LMP		1,3,5-Trimethylbenzene	0.237 0.123	mg/kg mg/kg	0.012 0.01	0.04 0.033	1 1		03/02/06	LMP		Vinyl Chloride	<0.025	mg/kg	0.018	0.055	1		03/02/06 03/02/06	LMP		m- & p-Xylene	0.254	mg/kg	0.015	0.05	i	мв	03/02/06	LMP LMP		p-Xylene	0.092	mg/kg	0.008	0.027	i	rib	03/02/06	LMP		Bromochloromethane	<0.025	mg/kg	0.006	0.02	i		03/02/06	LMP		Bromoform	<0.025	mg/kg	0.008	0.027	i		03/02/06	LMP		Bromomethane	<0.025	mg/kg	0.009	0.03	i		03/02/06	LMP		ibromomethane	<0.025	mg/kg	0.008	0.027	i	CSH	03/02/06	LMP		,1-Dichloropropene	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP		trans-1,3-dichloroprop(yl)e	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP		Styrene	<0.025	mg/kg	0.007	0.023	1		03/02/06	LMP		,1,1,2-Tetrachloroethane	<0.025	mg/kg	0.009	0.03	1		03/02/06	LMP		,2,3-Trichloropropane	<0.025	mg/kg	0.007	0.023	1		03/02/06	LMP		lis-1,3-Dichloroprop(yl)ene	<0.025	mg/kg	0.007	0.023	1		03/02/06	LMP		PID Surrogate Recovery (S)	78.2	%	-	-	1		03/02/06	LMP		ALL Surrogate Recovery (S)	133.	%	-	-	1		03/02/06	LMP		IPA 8310										Acenaphthene	<0.00636	mg/kg	0.0047	0.016	1	ISL	03/01/06	LMP		Acenaphthylene	<0.00893	mg/kg	0.0066	0.022	i	ISL	03/01/06	LMP		Anthracene	<0.00284	mg/kg	0.0021	0.007	i	ISL	03/01/06	LMP		enzo(a)Anthracene	0.00861	mg/kg	0.0041	0.014		ISL J	03/01/06	LMP		enzo(a)Pyrene	<0.00311	mg/kg	0.0023	0.0077		ISL CSL	03/01/06	LMP		Benzo(b)Fluoranthene	<0.00284	mg/kg	0.0021	0.007	1	ISL	03/01/06	LMP		Renzo(k)Fluoranthene	<0.00392	mg/kg	0.0029	0.0097	1	ISL	03/01/06	LMP		enzo(ghi)Perylene	0.0132	mg/kg	0.004	0.013	1	ISL J	03/01/06	LMP		hrysene	<0.00311	mg/kg	0.0023	0.0077	1	ISL	03/01/06	LMP		vibenzo(a,h)Anthracene	<0.00365	mg/kg	0.0027	0.009	1	ISL	03/01/06	LMP		Fluoranthene	0.03	mg/kg	0.0026	0.0087	1	ISL	03/01/06	LMP		luorene	<0.00447	mg/kg	0.0033	0.011	1	ISL	03/01/06	LMP		ndeno(1,2,3-cd)Pyrene	0.00802	mg/kg	0.0022	0.0073		ISL J	03/01/06	LMP		-Methyl Naphthalene	<0.00501	mg/kg	0.0037	0.012	1	ISL	03/01/06	LMP		2-Methyl Naphthalene Waphthalene	<0.00555	mg/kg	0.0041	0.014]	ISL	03/01/06	LMP		henanthrene	<0.00622 0.0161	mg/kg	0.0046 0.0041	0.015	1	ISL	03/01/06	LMP		Fyrene	0.00537	mg/kg mg/kg	0.0041	0.014 0.007		ISL J ISL J	03/01/06 03/01/06	LMP		yrene y,10-Diphenylanthracene (S)	12.7	11197 Kg %	0.0021	-	1	ISL	03/01/06	LMP LMP		Method 3550 Ultrasonic Ext.	COMP	70	-	-	'-	131	02/22/06	KAM			_ · · ·						32, 22, 00	AATT		I DNR										woil Diesel Range Organics	<6.77	mg/kg	-	5.0	1	SPL DUP	02/24/06	LMP		Soil Org Ext - DRO	COMP		-	-	•		02/21/06	KAM											Matrix: SOIL **ENVIROSCAN SERVICES** 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 > PROJECT NO.: NERUB0502.00 REPORT NO. : 195283.56 DATE REC'D : 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com Short Elliott Henderickson 421 Frenette Drive Chippewa Falls , WI 54729 Attn: John Guhl ample ID: B4 4-6' Sample Date/Time: 02/13/06 17:30		11461 17		Ou.	mpre bate, i	OL, 13, C		Lub noi 1	73300		---	------------------	----------------	----------------	----------------	---------------------------	-------------------	-------------------------	------------			<u>Result</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	<u>Qualifiers</u>	Date <u>Analyzed</u>	Analyst		<u>≡PA 160.3</u>										Total Solids	73.9	%	_	0.33	_		02/20/06	AMR		Total Solius	13.9	/a	_	0.55	_		02/20/00	APIK		EPA 3050										Tetal Prep	COMP		_	-	-																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																															
02/27/06	DJB		=0 сас ттер	00111						02,21,00	505		EPA 6010										otal Arsenic	2.98	mg/kg	0.34	1.13	1		03/07/06	DJB		otal Barium	78.5	mg/kg	0.1	0.33	1		03/07/06	DJB		otal Cadmium	0.253	mg/kg	0.057	0.19	1	J	03/07/06	DJB		Total Chromium	21.4	mg/kg	0.053	0.18	1		03/07/06	DJB		Ţotal Lead	9.45	mg/kg	0.53	1.76	1		03/07/06	DJB		otal Selenium	<0.812	mg/kg	0.6	2.0	1		03/07/06	DJB		'otal Silver	<0.271	mg/kg	0.2	0.67	1		03/07/06	DJB												EPA 7471										total Mercury	0.0934	mg/kg	0.014	0.047	1		03/03/06	MPM								_				EPA 8021 (Only positively										Benzene	<0.025	mg/kg	0.008	0.027	1	CSL	03/02/06	LMP		Bromobenzene Bromodichloromethane	<0.025	mg/kg	0.007	0.023	1		03/02/06	LMP			<0.025	mg/kg	0.006	0.02	1		03/02/06	LMP		-Butylbenzene	0.153	mg/kg	0.012	0.04	1		03/02/06	LMP		sec-Butylbenzene tert-Butylbenzene	<0.025 <0.025	mg/kg mg/kg	0.01 0.01	0.033 0.033	1		03/02/06 03/02/06	LMP LMP		≡arbon Tetrachloride	<0.025	mg/kg	0.008	0.033	1		03/02/06	LMP		Intorobenzene	<0.025	mg/kg	0.007	0.027	4		03/02/06	LMP		Intorodibromomethane	<0.025	mg/kg	0.02	0.023	1		03/02/06	LMP		Chloroethane	<0.025	mg/kg	0.02	0.30	i	CSL LCL	03/02/06	LMP		₽hloroform	<0.025	mg/kg	0.01	0.033	i	002 202	03/02/06	LMP		hloromethane	<0.025	mg/kg	0.01	0.033	i	CSL DUP LCL	03/02/06	LMP		-Chlorotoluene	<0.025	mg/kg	0.008	0.027	i		03/02/06	LMP		4-Chlorotoluene	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP		1,2-Dibromo-3-chloropropane	<0.025	mg/kg	0.009	0.03	1		03/02/06	LMP		,2-Dibromoethane	<0.025	mg/kg	0.012	0.04	1		03/02/06	LMP		,2-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP		,3-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP		1,4-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP		nichlorodifluoromethane	<0.025	mg/kg	0.014	0.047	1	LCL	03/02/06	LMP		,1-Dichloroethane	<0.025	mg/kg	0.009	0.03	1		03/02/06	LMP			<0.025	mg/kg	0.005	0.017	1		03/02/06	LMP		1,1-Dichloroethylene	<0.025	mg/kg	0.016	0.053	1		03/02/06	LMP		cis-1,2-Dichloroethylene	<0.025	mg/kg	0.007	0.023	1		03/02/06	LMP		rans-1,2-Dichloroethylene	<0.025	mg/kg	0.01	0.033	1		03/02/06	LMP		_2-Dichloropropane	<0.025	mg/kg	0.007	0.023	1		03/02/06	LMP		L,3-Dichloropropane 2,2-Dichloropropane	<0.025	mg/kg	0.008	0.027	1	CCI DUD 10:	03/02/06	LMP		Ethylbenzene	<0.025	mg/kg	0.008	0.027	1	CSL DUP LCL	03/02/06 03/02/06	LMP		exachlorobutadiene	0.0419 <0.025	mg/kg mg/kg	0.007 0.015	0.023 0.05	1 1		03/02/06	LMP LMP		sopropylbenzene	<0.025	mg/kg	0.009	0.03	1		03/02/06	LMP		Isopropyl Ether	<0.025	mg/kg	0.014	0.03	1		03/02/06	LMP		p-Isopropyltoluene	<0.025	mg/kg	0.014	0.047	i		03/02/06	LMP		⇒thyl t-Butyl Ether(MTBE)	<0.025	mg/kg	0.018	0.06	i	CSL DUP	03/02/06	LMP		,					•		,,		ILI results calculated on a dry weight basis. TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com Short Elliott Henderickson -21 Frenette Drive =hippewa Falls , WI 54729 PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.59 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS ∡Attn: John Guhl Dample ID: B5 0.5-0.8' Matrix: SOIL Sample Date/Time: 02/14/06 11:00 Lab No. 195309	•	Result	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	Analyst		--	---------------------	--	------------------	-----------------	---------------------------	------------	-------------------------	------------		PA 8021 (Only positively										PA 8021 (Only positively Methylene Chloride						515	07 (07 (0)			-Naphthalene	<0.025	mg/kg	0.014	0.047	1		03/02/06	LMP		h-Propylbenzene	<0.025	mg/kg	0.01	0.033	1		03/02/06	LMP		etrachloroethylene	<0.025 <0.025	mg/kg	0.009	0.03	1		03/02/06	LMP		1,1,2,2-Tetrachloroethane	<0.025	mg/kg	0.009	0.03	1 1		03/02/06	LMP		Toluene	<0.025	mg/kg	0.006 0.007	0.02 0.023	1		03/02/06	LMP		,2,3-Trichlorobenzene	<0.025	mg/kg mg/kg	0.007	0.023	1		03/02/06	LMP		,2,4-Trichlorobenzene	<0.025	mg/kg	0.014	0.047	1		03/02/06 03/02/06	LMP LMP		,1,1-Trichloroethane	<0.025	mg/kg	0.008	0.047	i		03/02/06	LMP		1,1,2-Trichloroethane	<0.025	mg/kg	0.006	0.02	i		03/02/06	LMP		Trichloroethylene	<0.025	mg/kg	0.011	0.037	i		03/02/06	LMP		richlorofluoromethane	<0.025	mg/kg	0.008	0.027	i	LCL	03/02/06	LMP		,2,4-Trimethylbenzene	<0.025	mg/kg	0.012	0.04	i		03/02/06	LMP		,3,5-Trimethylbenzene	<0.025	mg/kg	0.01	0.033	i		03/02/06	LMP		Vinyl Chloride	<0.025	mg/kg	0.018	0.06	i		03/02/06	LMP		- & p-Xylene	0.0355	mg/kg	0.015	0.05	i	MB J	03/02/06	LMP		-Xylene	<0.025	mg/kg	0.008	0.027	i		03/02/06	LMP		romochloromethane	<0.025	mg/kg	0.006	0.02	i		03/02/06	LMP		Bromoform	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP		∏romomethane	<0.025	mg/kg	0.009	0.03	1		03/02/06	LMP		ibromomethane	<0.025	mg/kg	0.008	0.027	1	CSH	03/02/06	LMP		",1-Dichloropropene	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP		trans-1,3-dichloroprop(yl)e	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP		Styrene	<0.025	mg/kg	0.007	0.023	1		03/02/06	LMP		1,1,2-Tetrachloroethane	<0.025	mg/kg	0.009	0.03	1		03/02/06	LMP		,,2,3-Trichloropropane	<0.025	mg/kg	0.007	0.023	1		03/02/06	LMP		tis-1,3-Dichloroprop(yl)ene	<0.025	mg/kg	0.007	0.023	1		03/02/06	LMP		PID Surrogate Recovery (S)	94.7	%	-	-	1		03/02/06	LMP		■ ALL Surrogate Recovery (S)	129.	%	-	•	1		03/02/06	LMP												PA 8310										Acenaphthene	<0.00576	mg/kg	0.0047	0.016	1		03/01/06	LMP		Acenaphthylene	<0.00809	mg/kg	0.0066	0.022	1		03/01/06	LMP		thracene	<0.00257	mg/kg	0.0021	0.007	1		03/01/06	LMP		enzo(a)Anthracene	<0.00502	mg/kg	0.0041	0.014	1		03/01/06	LMP		Denzo(a)Pyrene	<0.00282	mg/kg	0.0023	0.0077	1	CSL	03/01/06	LMP		Benzo(b)Fluoranthene	<0.00257	mg/kg	0.0021	0.007	1		03/01/06	LMP		enzo(k)Fluoranthene	<0.00355	mg/kg	0.0029	0.0097	1		03/01/06	LMP		enzo(ghi)Perylene	<0.0049	mg/kg	0.004	0.013	1		03/01/06	LMP		Trysene	0.00452	mg/kg	0.0023	0.0077	1	j	03/01/06	LMP		Dibenzo(a,h)Anthracene Fluoranthene	0.00875	mg/kg	0.0027	0.009	1	J	03/01/06	LMP		Luorene	<0.00319	mg/kg	0.0026	0.0087	1		03/01/06	LMP		ndeno(1,2,3-cd)Pyrene	<0.00404 <0.0027	mg/kg	0.0033 0.0022	0.011 0.0073	i		03/01/06	LMP		-Methyl Naphthalene	<0.00453	mg/kg	0.0022		1		03/01/06	LMP		2-Methyl Naphthalene	<0.00502	mg/kg mg/kg	0.0037	0.012 0.014	1		03/01/06 03/01/06	LMP		#phthalene	<0.00564	mg/kg	0.0041	0.014	i			LMP		nenanthrene	<0.00502	mg/kg	0.0048	0.013	i																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																															
03/01/06 03/01/06	LMP LMP		-/rene	<0.00257	mg/kg	0.0021	0.007	i		03/01/06	LMP		7,10-Diphenylanthracene (S)	92.4	**************************************	-	-	i		03/01/06	LMP		Method 3550 Ultrasonic Ext.	COMP	70	-	-	'-		02/22/06	KAM		* Control of the Cont	-0.11						JE/ EE/ 00	RAUT		<u> </u>										- Laboratory	8.95		-	•	1		02/20/06	JJP		⊃H - Laboratory Time	08:00		-	-	-		02/20/06	JJP											ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com Short Elliott Henderickson 421 Frenette Drive Chippewa Falls , WI 54729 Attn: John Guhl PROJECT NO.: NERUB0502.00 REPORT NO. : 195283.58 DATE REC'D : 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS	Sample ID: B5 0.5-0.8'	Matrix	: SOIL	Sa	mple Date/Ti	ime: 02/14/ 0	6 11:00	Lab No. 19	95309		--	------------------	----------------	---------------	----------------	---------------------------	-------------	-------------------------	------------			Result	<u>Units</u>	<u>LOD</u>	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	Analyst		EPA 160.3										Total Solids	81.6	%	•	0.33	•		02/20/06	AMR		EPA 3050										Metal Prep	COMP		-	-	-		02/27/06	DJB		EPA 6010										■otal Arsenic	0.875	mg/kg	0.34	1.13	1	J	03/07/06	DJB		∎otal Barium	5.47	mg/kg	0.1	0.33	1	_	03/07/06	DJB		■ otal Cadmium	<0.0699	mg/kg	0.057	0.19	1		03/07/06	DJB		Total Chromium	2.23	mg/kg	0.053	0.18	1		03/07/06	DJB		- Jotal Lead	1.06	mg/kg	0.53	1.76	1	J	03/07/06	DJB		†otal Selenium	<0.735	mg/kg	0.6	2.0	1		03/07/06	DJB		⁺ otal Silver	<0.245	mg/kg	0.2	0.67	1		03/07/06	DJB		EPA 7471										Total Mercury	<0.0172	mg/kg	0.014	0.047	1		03/03/06	МРМ		EPA 8021 (Only positively	identified	l analytes	are reno	rted on a di	ry weight ha	cic				Benzene (Ont) positivety	<0.025	mg/kg	0.008	0.027	y weight ba	CSL	03/02/06	LMP		Bromobenzene	<0.025	mg/kg	0.007	0.023	i	CSL	03/02/06	LMP		Fromodichloromethane	<0.025	mg/kg	0.006	0.02	i		03/02/06	LMP		n-Butylbenzene	<0.025	mg/kg	0.012	0.04	i		03/02/06	LMP		sec-Butylbenzene	<0.025	mg/kg	0.01	0.033	1		03/02/06	LMP		tert-Butylbenzene	<0.025	mg/kg	0.01	0.033	1		03/02/06	LMP		Carbon Tetrachloride	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP		hlorobenzene	<0.025	mg/kg	0.007	0.023	1		03/02/06	LMP		hlorodibromomethane	<0.025	mg/kg	0.02	0.067	1		03/02/06	LMP		Chloroethane	<0.025	mg/kg	0.09	0.30	1	CSL LCL	03/02/06	LMP		Chloroform	<0.025	mg/kg	0.01	0.033	1		03/02/06	LMP		Chloromethane	<0.025	mg/kg	0.01	0.033	1	CSL DUP LCL	03/02/06	LMP		2-Chlorotoluene	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP		4-Chlorotoluene	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP		1,2-Dibromo-3-chloropropane	<0.025	mg/kg	0.009	0.03	1		03/02/06	LMP		,2-Dibromoethane	<0.025	mg/kg	0.012	0.04	1		03/02/06	LMP		,2-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP		,3-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP		1,4-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP		jichlorodifluoromethane	<0.025	mg/kg	0.014	0.047	1	LCL	03/02/06	LMP		,1-Dichloroethane	<0.025	mg/kg	0.009	0.03]		03/02/06	LMP		,2-Dichloroethane	<0.025	mg/kg	0.005	0.017	1		03/02/06	LMP		1,1-Dichloroethylene	<0.025	mg/kg	0.016	0.053	1		03/02/06	LMP		cis-1,2-Dichloroethylene rans-1,2-Dichloroethylene	<0.025 <0.025	mg/kg	0.007	0.023 0.033	1		03/02/06	LMP		,2-Dichloropropane	<0.025	mg/kg	0.01 0.007	0.033	1.		03/02/06	LMP		3-Dichloropropane	<0.025	mg/kg mg/kg	0.007	0.023	1 1		03/02/06	LMP		2,2-Dichloropropane	<0.025	mg/kg mg/kg	0.008	0.027		CSL DUP LCL	03/02/06 03/02/06	LMP LMP		Ethylbenzene	<0.025	mg/kg	0.007	0.027	1	OUL DUP LUL	03/02/06	LMP		exachlorobutadiene	<0.025	mg/kg	0.015	0.05	i		03/02/06	LMP		sopropylbenzene	<0.025	mg/kg	0.009	0.03	1		03/02/06	LMP		Isopropyl Ether	<0.025	mg/kg	0.014	0.047	i		03/02/06	LMP		p-Isopropyltoluene	<0.025	mg/kg	0.011	0.037	i		03/02/06	LMP		methyl t-Butyl Ether(MTBE)	<0.025	mg/kg	0.018	0.06		CSL DUP	03/02/06	LMP		• • • • • • • • • • • • • • • • • • • •					•		,,		[∃]l results calculated on a dry weight basis.	■ l results calculated on a dry weight basis. A Siemens Business **ENVIROSCAN SERVICES** 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com PROJECT NO.: NERUB0502.00 REPORT NO. : 195283.61 DATE REC'D : 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS Attn: John Guhl ■21 Frenette Drive Sample ID: B6 1.5-3.0' Short Elliott Henderickson □hippewa Falls , WI 54729 Matrix: SOIL Sample Date/Time: 02/14/06 15:00 Lab No. 195310		Result	Units	LOD	LOQ	Dilution Factor	Qualifiers	Date Analyzed	Analyst		--	---------------------	----------------	------------------	----------------	--------------------	------------	----------------------	------------												EPA 8021 (Only positively						sis				Methylene Chloride	<0.025	mg/kg	0.014	0.047	1		03/02/06	LMP		Naphthalene	<0.025	mg/kg	0.01	0.033	1		03/02/06	LMP		n-Propylbenzene Tetrachloroethylene	<0.025	mg/kg	0.009	0.03	1		03/02/06	LMP		1,1,2,2-Tetrachloroethane	<0.025 <0.025	mg/kg mg/kg	0.009 0.006	0.03 0.02	1		03/02/06	LMP		Toluene	<0.025	mg/kg	0.007	0.02	1		03/02/06 03/02/06	LMP LMP		■,2,3-Trichlorobenzene	<0.025	mg/kg	0.014	0.023	i		03/02/06	LMP		■,2,4-Trichlorobenzene	<0.025	mg/kg	0.014	0.047	i		03/02/06	LMP		_,1,1-Trichloroethane	<0.025	mg/kg	0.008	0.027	i		03/02/06	LMP		1,1,2-Trichloroethane	<0.025	mg/kg	0.006	0.02	i		03/02/06	LMP		Trichloroethylene	<0.025	mg/kg	0.011	0.037	1		03/02/06	LMP		Trichlorofluoromethane	<0.025	mg/kg	0.008	0.027	1	LCL	03/02/06	LMP		,2,4-Trimethylbenzene	<0.025	mg/kg	0.012	0.04	1		03/02/06	LMP		1,3,5-Trimethylbenzene	<0.025	mg/kg	0.01	0.033	1		03/02/06	LMP		Vinyl Chloride	<0.025	mg/kg	0.018	0.06	1		03/02/06	LMP		■- & p-Xylene	0.0399	mg/kg	0.015	0.05	1	MB J	03/02/06	LMP		=-Xylene	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP		romochloromethane	<0.025	mg/kg	0.006	0.02	1		03/02/06	LMP		Bromoform Bromomethane	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP		Dibromomethane	<0.025 <0.025	mg/kg mg/kg	0.009 0.008	0.03 0.027	1 1	СЅН	03/02/06	LMP		,1-Dichloropropene	<0.025	mg/kg	0.008	0.027	1	CSH	03/02/06 03/02/06	LMP LMP		trans-1,3-dichloroprop(yl)e	<0.025	mg/kg	0.008	0.027	i		03/02/06	LMP		Styrene	<0.025	mg/kg	0.007	0.023	i		03/02/06	LMP		,1,1,2-Tetrachloroethane	<0.025	mg/kg	0.009	0.03	1		03/02/06	LMP		,2,3-Trichloropropane	<0.025	mg/kg	0.007	0.023	i		03/02/06	LMP		is-1,3-Dichloroprop(yl)ene	<0.025	mg/kg	0.007	0.023	1		03/02/06	LMP		PID Surrogate Recovery (S)	89.1	%	-	-	1		03/02/06	LMP		HALL Surrogate Recovery (S)	129.	%	-	-	1		03/02/06	LMP		7740										PA 8310	-0.00626	/!···	0.00/7	0.017	4		07 (04 (0)	LND			<0.00626	mg/kg	0.0047	0.016	1		03/01/06	LMP		Acenaphthylene ■nthracene	<0.00879 <0.0028	mg/kg mg/kg	0.0066 0.0021	0.022 0.007	1		03/01/06	LMP			<0.00546	mg/kg	0.0021	0.007	1		03/01/06 03/01/06	LMP LMP			<0.00306	mg/kg	0.0023	0.0077	i	CSL	03/01/06	LMP		Benzo(b)Fluoranthene	<0.0028	mg/kg	0.0021	0.007	i	002	03/01/06	LMP			<0.00386	mg/kg	0.0029	0.0097	1		03/01/06	LMP			<0.00533	mg/kg	0.004	0.013	1		03/01/06	LMP		hrysene	<0.00306	mg/kg	0.0023	0.0077	1		03/01/06	LMP		Dibenzo(a,h)Anthracene	<0.0036	mg/kg	0.0027	0.009	1		03/01/06	LMP			<0.00346	mg/kg	0.0026	0.0087	1		03/01/06	LMP			<0.00439	mg/kg	0.0033	0.011	1		03/01/06	LMP			<0.00293	mg/kg	0.0022	0.0073	1		03/01/06	LMP			<0.00493	mg/kg	0.0037	0.012	1		03/01/06	LMP		2-Methyl Naphthalene	<0.00546	mg/kg	0.0041	0.014	1		03/01/06	LMP			<0.00613	mg/kg	0.0046	0.015	1		03/01/06	LMP		yrene	<0.00546 <0.0028	mg/kg mg/kg	0.0041 0.0021	0.014 0.007	1		03/01/06	LMP		y,10-Diphenylanthracene (S)	57.3	11197 Kg %	-	-	1		03/01/06 03/01/06	LMP LMP		Method 3550 Ultrasonic Ext.	COMP	70	•	•	١		02/22/06	KAM									,, - - -			PA 9045					_					iii - Laboratory	7.58		-	-	1		02/20/06	JJP		pH - Laboratory Time	08:00		•	-	-		02/20/06	JJP	ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																						
WEBSITE 800-338-7226 715-355-3221 www.usfilter.com PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.60 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS Attn: John Guhl 421 Frenette Drive Short Elliott Henderickson Chippewa Falls , WI 54729 Sample ID: **B6 1.5-3.0'** Matrix: **SOIL** Sample Date/Time: **02/14/06 15:00** Lab No. **195310**	 ,									-----------------------------	------------------	----------------	---------------	----------------	---------------------------------	----------------------	----------------		1					Dilution	Date				<u>Result</u>	<u>Units</u>	LOD	<u>LOQ</u>	<u>Factor</u> <u>Qualifiers</u>	<u>Analyzed</u>	<u>Analyst</u>		■EPA 160.3									Total Solids	75.1	%	_	0.33	_	02/20/04	AUD		iotat sotius	13.1	/0	=	0.33	-	02/20/06	AMR		EPA 3050									■Metal Prep	COMP		_	-	-	02/27/06	DJB								02,2,,00			EPA 6010									Total Arsenic	2.41	mg/l	0.34	1.13	1	03/07/06	DJB		Total Barium	16.4	mg/l	0.1	0.33	1	03/07/06	DJB		Total Cadmium	0.172	mg/kg	0.057	0.19	1 J	03/07/06	DJB		Total Chromium	12.7	mg/kg	0.053	0.18	1	03/07/06	DJB		Total Lead	5.83	mg/kg ·		1.76	1	03/07/06	DJB		Total Selenium	2.52	mg/l	0.6	2.0	1	03/07/06	DJB		Total Silver	<0.266	mg/kg	0.2	0.67	1	03/07/06	DJB		EDA : 77.74									EPA 7471 Total Mercury	0.0426	mg/kg	0.014	0.047	1 J	07/07/06	MPM		Total Mercury	0.0420	ilig/ kg	0.014	0.047	1 3	03/03/06	MPM		EPA 8021 (Only positively	identified	l analytes	are repo	rted on a dr	v weight hasis				Benzene	<0.025	mg/kg	0.008	0.027	1 CSL	03/02/06	LMP		Bromobenzene	<0.025	mg/kg	0.007	0.023	1	03/02/06	LMP		Bromodichloromethane	<0.025	mg/kg	0.006	0.02	1	03/02/06	LMP		n-Butylbenzene	<0.025	mg/kg	0.012	0.04	i	03/02/06	LMP		sec-Butylbenzene	<0.025	mg/kg	0.01	0.033	1	03/02/06	LMP		tert-Butylbenzene	<0.025	mg/kg	0.01	0.033	1	03/02/06	LMP		Carbon Tetrachloride	<0.025	mg/kg	0.008	0.027	1	03/02/06	LMP		Chlorobenzene	<0.025	mg/kg	0.007	0.023	1	03/02/06	LMP		Chlorodibromomethane	<0.025	mg/kg	0.02	0.067	1	03/02/06	LMP		Chloroethane	<0.025	mg/kg	0.09	0.30	1 CSL LCL	03/02/06	LMP		Chloroform	<0.025	mg/kg	0.01	0.033	1	03/02/06	LMP		Chloromethane	<0.025	mg/kg	0.01	0.033	1 CSL DUP LCL	03/02/06	LMP		2-Chlorotoluene	<0.025	mg/kg	0.008	0.027	1	03/02/06	LMP			<0.025	mg/kg	0.008	0.027	1	03/02/06	LMP		1,2-Dibromo-3-chloropropane	<0.025	mg/kg	0.009	0.03	1	03/02/06	LMP		,2-Dibromoethane	<0.025	mg/kg	0.012	0.04	1	03/02/06	LMP		1,2-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1	03/02/06	LMP		≣,3-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1	03/02/06	LMP		1,4-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1	03/02/06	LMP		Pichlorodifluoromethane	<0.025	mg/kg	0.014	0.047	1 LCL	03/02/06	LMP		,1-Dichloroethane	<0.025	mg/kg	0.009	0.03	1	03/02/06	LMP		,2-Dichloroethane	<0.025	mg/kg	0.005	0.017	1	03/02/06	LMP		1,1-Dichloroethylene	<0.025	mg/kg	0.016	0.053	1	03/02/06	LMP		cis-1,2-Dichloroethylene	<0.025	mg/kg	0.007	0.023	•	03/02/06	LMP		rans-1,2-Dichloroethylene	<0.025 <0.025	mg/kg	0.01 0.007	0.033 0.023	1 1	03/02/06	LMP		,3-Dichloropropane	<0.025	mg/kg	0.007	0.023	1	03/02/06	LMP		2,2-Dichloropropane	<0.025	mg/kg mg/kg	0.008	0.027	1 CSL DUP LCL	03/02/06 03/02/06	LMP LMP		ithylbenzene	<0.025	mg/kg	0.008	0.027	1 (3) DUP LUL	03/02/06	LMP LMP		exachlorobutadiene	<0.025	mg/kg	0.007	0.023	1	03/02/06	LMP		sopropylbenzene	<0.025	mg/kg	0.009	0.03	1	03/02/06	LMP		sopropyl Ether	<0.025	mg/kg	0.007	0.047	1	03/02/06	LMP		p-Isopropyltoluene	<0.025	mg/kg	0.011	0.037	i	03/02/06	LMP		methyl t-Butyl Ether(MTBE)	<0.025	mg/kg	0.018	0.06	1 CSL DUP	03/02/06	LMP		=						,,		all results calculated on a dry weight basis. TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com Short Elliott Henderickson 421 Frenette Drive ■Chippewa Falls , WI 54729 PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.62 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS Attn: John Guhl Sample ID: B7 1.0-2.5' Matrix: SOIL Sample Date/Time: 02/14/06 15:30 Lab No. 195311		Result	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	Analyst		---	------------	--------------	----------	--------------	---------------------------	-------------	-------------------------	---------		EPA 160.3 Total Solids	88.8	%	-	0.33			02/20/06	AMR		EPA 3050										Metal Prep	COMP		-	•	-		02/27/06	DJB		EPA 6010										■ otal Arsenic	<0.383	mg∕l	0.34	1.13	1		03/07/06	DJB		■ otal Barium	10.7	mg/l	0.1	0.33	1		03/07/06	DJB		■ otal Cadmium	<0.0642	mg/kg	0.057	0.19	1		03/07/06	DJB		Total Chromium	8.73	mg/kg	0.053	0.18	1		03/07/06	DJB		∡ otal Lead	1.82	mg/kg	0.53	1.76	1		03/07/06	DJB		■ otal Selenium	<0.676	mg/l	0.6	2.0	1		03/07/06	DJB		▼ otal Silver	<0.225	mg/kg	0.2	0.67	1		03/07/06	DJB		EPA 7471										Total Mercury	<0.0158	mg/kg	0.014	0.047	1		03/03/06	MPM		EPA 8021 (Only positively	identified	danalytes	are repo	rted on a dr	y weight ba	sis				Benzene	<0.5	mg/kg	0.008	0.027	20		03/06/06	LMP		A romobenzene	<0.5	mg/kg	0.007	0.023	20		03/06/06	LMP		promodichloromethane	<0.5	mg/kg	0.006	0.02	20		03/06/06	LMP		ከ-Butylbenzene	2.73	mg/kg	0.012	0.04	20		03/06/06	LMP		sec-Butylbenzene	<0.5	mg/kg	0.01	0.033	20		03/06/06	LMP		tert-Butylbenzene	<0.5	mg/kg	0.01	0.033	20		03/06/06	LMP		Sarbon Tetrachloride	<0.5	mg/kg	0.008	0.027	20		03/06/06	LMP		Dhlorobenzene	<0.5	mg/kg	0.007	0.023	20		03/06/06	LMP		Intorodibromomethane	<0.5	mg/kg	0.02	0.067	20		03/06/06	LMP		Chloroethane	<0.5	mg/kg	0.09	0.30		CSL LCL	03/06/06	LMP		£hloroform	<0.5	mg/kg	0.01	0.033	20		03/06/06	LMP		thloromethane 2-Chlorotoluene 4-Chlorotoluene	<0.5	mg/kg	0.01	0.033	20	CSL DUP LCL	03/06/06	LMP		₹-Chlorotoluene	<0.5	mg/kg	0.008	0.027	20		03/06/06	LMP			<0.5	mg/kg	0.008	0.027	20		03/06/06	LMP		1,2-Dibromo-3-chloropropane	<0.5	mg/kg	0.009	0.03	20	CSH	03/06/06	LMP		,2-Dibromoethane	<0.5	mg/kg	0.012	0.04	20		03/06/06	LMP		1,2-Dichlorobenzene	<0.5	mg/kg	0.008	0.027	20		03/06/06	LMP		3-Dichlorobenzene	<0.5	mg/kg	0.008	0.027	20		03/06/06	LMP		1,4-Dichlorobenzene	<0.5	mg/kg	0.008	0.027	20		03/06/06	LMP		Dichlorodifluoromethane	<0.5	mg/kg	0.014	0.047	20	LCL	03/06/06	LMP		,1-Dichloroethane	<0.5	mg/kg	0.009	0.03	20		03/06/06	LMP		,2-Dichloroethane	<0.5	mg/kg	0.005	0.017	20		03/06/06	LMP		1,1-Dichloroethylene	<0.5	mg/kg	0.016	0.053	20		03/06/06	LMP		cis-1,2-Dichloroethylene	<0.5	mg/kg	0.007	0.023	20		03/06/06	LMP		rans-1,2-Dichloroethylene	<0.5	mg/kg	0.01	0.033	20		03/06/06	LMP		,2-Dichloropropane	<0.5·	mg/kg	0.007	0.023	20		03/06/06	LMP		1,3-Dichloropropane	<0.5	mg/kg	0.008	0.027	20	CSL	03/06/06	LMP		2,2-Dichloropropane	<0.5	mg/kg	0.008	0.027	20	DUP	03/06/06	LMP		thylbenzene	<0.5	mg/kg	0.007	0.023	20		03/06/06	LMP		exachlorobutadiene	<0.5	mg/kg	0.015	0.05	20		03/06/06	LMP		sopropylbenzene	<0.5	mg/kg	0.009	0.03	20		03/06/06	LMP		Isopropyl Ether	<0.5	mg/kg	0.014	0.047	20	:	03/06/06	LMP		5-Isopropyltoluene	<0.5	mg/kg	0.011	0.037	20	·	03/06/06	LMP		tethyl t-Butyl Ether(MTBE)	<0.5	mg/kg	0.018	0.06	20	•	03/06/06	LMP	all results calculated on a dry weight basis. ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.63 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS Attn: John Guhl 421 Frenette Drive Sample ID: **B7 1.0-2.5** Short Elliott Henderickson =Chippewa Falls , WI 54729 Matrix: SOIL Sample Date/Time: 02/14/06 15:30	-										---	----------------------	----------------	------------------	-----------------	---------------	-------------------	----------------------	----------------		•					Dilution		Date				<u>Result</u>	<u>Units</u>	<u>LOD</u>	<u>LOQ</u>	<u>Factor</u>	<u>Qualifiers</u>	<u>Analyzed</u>	<u>Analyst</u>		L						_				EPA 8021 (Only positively						is				Methylene Chloride	<0.5	mg/kg	0.014	0.047	20		03/06/06	LMP		-Naphthalene	<0.5	mg/kg	0.01	0.033	20		03/06/06	LMP		n-Propylbenzene	<0.5	mg/kg	0.009	0.03	20		03/06/06	LMP		Tetrachloroethylene	<0.5	mg/kg	0.009	0.03	20		03/06/06	LMP																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																								
1,1,2,2-Tetrachloroethane	<0.5	mg/kg	0.006	0.02	20		03/06/06	LMP		Toluene	0.822	mg/kg	0.007	0.023	20		03/06/06	LMP		7,2,3-Trichlorobenzene	<0.5	mg/kg	0.014	0.047	20		03/06/06	LMP		7,2,4-Trichlorobenzene	<0.5 <0.5	mg/kg	0.014	0.047	20 20		03/06/06	LMP		7,1,1-Trichloroethane 1,1,2-Trichloroethane	<0.5	mg/kg mg/kg	0.008 0.006	0.027 0.02	20		03/06/06 03/06/06	LMP		Trichloroethylene	<0.5	mg/kg	0.003	0.02	20		03/06/06	LMP		Trichlorofluoromethane	<0.5	mg/kg	0.008	0.027	20		03/06/06	LMP LMP		7,2,4-Trimethylbenzene	<0.5	mg/kg	0.012	0.04	20		03/06/06	LMP		7,3,5-Trimethylbenzene	<0.5	mg/kg	0.01	0.033	20		03/06/06	LMP		Vinyl Chloride	<0.5	mg/kg	0.018	0.06	20	LCL	03/06/06	LMP		■- & p-Xylene	4.29	mg/kg	0.015	0.05	20	MB	03/06/06	LMP		⊃-Xylene	<0.5	mg/kg	0.008	0.027	20	*5	03/06/06	LMP		Bromochloromethane	<0.5	mg/kg	0.006	0.02	20		03/06/06	LMP		Bromoform	<0.5	mg/kg	0.008	0.027	20	CSH	03/06/06	LMP		Bromomethane	<0.5	mg/kg	0.009	0.03	20	LCL	03/06/06	LMP		Dibromomethane	<0.5	mg/kg	0.008	0.027	20	CSH	03/06/06	LMP		1,1-Dichloropropene	<0.5	mg/kg	0.008	0.027	20		03/06/06	LMP		trans-1,3-dichloroprop(yl)e	<0.5	mg/kg	0.008	0.027	20		03/06/06	LMP		Styrene	<0.5	mg/kg	0.007	0.023	20		03/06/06	LMP		■,1,1,2-Tetrachloroethane	<0.5	mg/kg	0.009	0.03	20		03/06/06	LMP		■,2,3-Trichloropropane	<0.5	mg/kg	0.007	0.023	20		03/06/06	LMP		=is-1,3-Dichloroprop(yl)ene	<0.5	mg/kg	0.007	0.023	20		03/06/06	LMP		PID Surrogate Recovery (S)	88.1	%	-	-	20		03/06/06	LMP		HALL Surrogate Recovery (S)	119.	%	-	-	20		03/06/06	LMP												EPA 8310					_					Acenaphthene	<0.00529	mg/kg	0.0047	0.016	1		03/01/06	LMP		Acenaphthylene	<0.00743	mg/kg	0.0066	0.022	1		03/01/06	LMP		mnthracene	<0.00236	mg/kg	0.0021	0.007	1		03/01/06	LMP		Eenzo(a)Anthracene	<0.00462	mg/kg	0.0041	0.014	1	001	03/01/06	LMP		≡enzo(a)Pyrene Benzo(b)Fluoranthene	<0.00259	mg/kg	0.0023	0.0077	1	CSL	03/01/06	LMP		Benzo(k)Fluoranthene	<0.00236 <0.00327	mg/kg	0.0021 0.0029	0.007 0.0097	1 1		03/01/06	LMP		Benzo(ghi)Perylene	<0.00327	mg/kg mg/kg	0.0029	0.0037	1		03/01/06	LMP		Chrysene	<0.00259	mg/kg	0.0023	0.0077	i		03/01/06 03/01/06	LMP LMP		Dibenzo(a,h)Anthracene	<0.00304	mg/kg	0.0027	0.009	i		03/01/06	LMP		Fluoranthene	<0.00293	mg/kg	0.0026	0.0087	i		03/01/06	LMP		-luorene	<0.00372	mg/kg	0.0033	0.011	i		03/01/06	LMP		ndeno(1,2,3-cd)Pyrene	<0.00248	mg/kg	0.0022	0.0073	i		03/01/06	LMP		-Methyl Naphthalene	<0.00417	mg/kg	0.0037	0.012	i		03/01/06	LMP		2-Methyl Naphthalene	<0.00462	mg/kg	0.0041	0.014	1		03/01/06	LMP		Naphthalene	<0.00518	mg/kg	0.0046	0.015	1		03/01/06	LMP		Phenanthrene	<0.00462	mg/kg	0.0041	0.014	. 1		03/01/06	LMP		Pyrene	<0.00236	mg/kg	0.0021	0.007	1		03/01/06	LMP		9,10-Diphenylanthracene (S)	56.7	* %	-	-	1		03/01/06	LMP		Method 3550 Ultrasonic Ext.	COMP		-	-	-		02/22/06	KAM		1										PA 9045					_					H - Laboratory	9.51		-	-	1		02/20/06	JJP		pH - Laboratory Time	08:00		-	-	•		02/20/06	JJP	Il results calculated on a dry weight basis. ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.64 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS Attn: John Guhl Short Elliott Henderickson 21 Frenette Drive hippewa Falls , WI 54729	ample ID: B8 1.0-2.5' Matrix: SOIL Sample Date/Time: 02/14/06 15:45 Lab No. 195312		Result	Units	LOD	LOQ	Dilution Factor	Qualifiers	Date Analyzed	Analyst		----------------------------------	------------	----------------	----------------	----------------	--------------------	-------------	----------------------	------------												PA 160.3 Total Solids	80.4	%	-	0.33	-		02/20/06	AMR		PA 3050										etal Prep	COMP		-	-	-		02/27/06	DJB		.							02,21,00	000		EPA_6010_										otal Arsenic	<0.42	mg/l	0.34	1.13	1		03/07/06	DJB		otal Barium	17.5	mg/l	0.1	0.33	1		03/07/06	DJB		otal Cadmium	<0.0709	mg/kg	0.057	0.19	1		03/07/06	DJB		Total Chromium	7.67	mg/kg	0.053	0.18	1		03/07/06	DJB		Total Lead	3.87	mg/kg	0.53	1.76	1		03/07/06	DJB		otal Selenium	<0.746	mg/kg	0.6	2.0	1		03/07/06	DJB		'otal Silver	<0.249	mg/kg	0.2	0.67	1		03/07/06	DJB		,										EPA 7471					_					_otal Mercury	0.0348	mg/kg	0.014	0.047	1	J	03/03/06	MPM		PA 8021 (Only positively	idombiliod									PA 8021 (Only positively Benzene	<2.50				y weight ba		07 (07 (0)	1.40		Bromobenzene	<2.50	mg/kg	0.008 0.007	0.027 0.023	100	CSL	03/03/06	LMP		Bromodichloromethane	<2.50	mg/kg	0.007	0.023	100		03/03/06	LMP		-Butylbenzene	23.0	mg/kg					03/03/06	LMP		sec-Butylbenzene	<2.50	mg/kg	0.012	0.04	100		03/03/06	LMP		tert-Butylbenzene	<2.50	mg/kg	0.01 0.01	0.033 0.033	100 100		03/03/06	LMP		-arbon Tetrachloride	<2.50	mg/kg mg/kg	0.008	0.033	100		03/03/06	LMP		hlorobenzene	<2.50	mg/kg	0.007	0.027	100		03/03/06 03/03/06	LMP LMP		hlorodibromomethane	<2.50	mg/kg	0.007	0.023	100					Chloroethane	<2.50	mg/kg	0.02	0.30	100	CSL LCL DUP	03/03/06 03/03/06	LMP LMP		Chloroform	<2.50	mg/kg	0.01	0.033	100	CSL LCL DUF	03/03/06	LMP		nloromethane	<2.50	mg/kg	0.01	0.033	100	CSL	03/03/06	LMP		-Chlorotoluene	<2.50	mg/kg	0.008	0.027	100	002	03/03/06	LMP		4-Chlorotoluene	<2.50	mg/kg	0.008	0.027	100		03/03/06	LMP		1,2-Dibromo-3-chloropropane	<2.50	mg/kg	0.009	0.03	100	CSH LCH	03/03/06	LMP		2-Dibromoethane	<2.50	mg/kg	0.012	0.04	100		03/03/06	LMP		,2-Dichlorobenzene	<2.50	mg/kg	0.008	0.027	100		03/03/06	LMP		3-Dichlorobenzene	<2.50	mg/kg	0.008	0.027	100		03/03/06	LMP		1,4-Dichlorobenzene	<2.50	mg/kg	0.008	0.027	100		03/03/06	LMP		Nichlorodifluoromethane	<2.50	mg/kg	0.014	0.047	100	LCL DUP	03/03/06	LMP		,1-Dichloroethane	<2.50	mg/kg	0.009	0.03	100		03/03/06	LMP		,2-Dichloroethane	<2.50	mg/kg	0.005	0.017	100		03/03/06	LMP		1,1-Dichloroethylene	<2.50	mg/kg	0.016	0.053	100	LCL	03/03/06	LMP		cis-1,2-Dichloroethylene	<2.50	mg/kg	0.007	0.023	100		03/03/06	LMP		⊐rans-1,2-Dichloroethylene	<2.50	mg/kg	0.01	0.033	100		03/03/06	LMP		,2-Dichloropropane	<2.50	mg/kg	0.007	0.023	100		03/03/06	LMP		,3-Dichloropropane	<2.50	mg/kg	0.008	0.027	100		03/03/06	LMP		2,2-Dichloropropane	<2.50	mg/kg	0.008	0.027	100	CSL LCL DUP	03/03/06	LMP		Fthylbenzene	<2.50	mg/kg	0.007	0.023	100		03/03/06	LMP		exachlorobutadiene	<2.50	mg/kg	0.015	0.05	100		03/03/06	LMP		sopropyl benzene	<2.50	mg/kg	0.009	0.03	100		03/03/06	LMP		isopropyl Ether	<2.50	mg/kg	0.014	0.047	100		03/03/06	LMP		p-Isopropyltoluene	<2.50	mg/kg	0.011	0.037	100		03/03/06	LMP		■ethyl t-Butyl Ether(MTBE)	<2.50	mg/kg	0.018	0.06	100		03/03/06	LMP	ll results calculated on a dry weight basis. ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.65 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS **≜ttn:** John Guhl =ample ID: B8 1.0-2.5' Short Elliott Henderickson 21 Frenette Drive =hippewa Falls , WI 54729 Matrix: SOIL Sample Date/Time: 02/14/06 15:45		Result	Units	LOD	LOQ	Dilution Factor	Qualifiers	Date Analyzed	Analyst		---	---------------------	----------------	------------------	-----------------	--------------------	------------	----------------------	------------					_				<u> </u>	maryse		EPA 8021 (Only positively						sis				Methylene Chloride	<2.50	mg/kg	0.014	0.047	100		03/03/06	LMP		laphthalene	3.69	mg/kg	0.01	0.033	100		03/03/06	LMP		h-Propylbenzene	<2.50	mg/kg	0.009	0.03	100		03/03/06	LMP		etrachloroethylene 1,1,2,2-Tetrachloroethane	<2.50 <2.50	mg/kg	0.009	0.03 0.02	100 100	0011	03/03/06	LMP		Toluene	<2.50	mg/kg mg/kg	0.006 0.007	0.02	100	CSH	03/03/06 03/03/06	LMP LMP		,2,3-Trichlorobenzene	<2.50	mg/kg	0.014	0.023	100		03/03/06	LMP		,2,4-Trichlorobenzene	<2.50	mg/kg	0.014	0.047	100		03/03/06	LMP		,1,1-Trichloroethane	<2.50	mg/kg	0.008	0.027	100		03/03/06	LMP		1,1,2-Trichloroethane	<2.50	mg/kg	0.006	0.02	100		03/03/06	LMP		■ richloroethylene	<2.50	mg/kg	0.011	0.037	100		03/03/06	LMP		Trichlorofluoromethane	<2.50																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																													
mg/kg	0.008	0.027		CL DUP	03/03/06	LMP		,2,4-Trimethylbenzene	91.9	mg/kg	0.012	0.04	100		03/03/06	LMP		1,3,5-Trimethylbenzene	<2.50	mg/kg	0.01	0.033	100		03/03/06	LMP		Yinyl Chloride	<2.50	mg/kg	0.018	0.06		_CL_DUP	03/03/06	LMP		- & p-Xylene	4.74	mg/kg	0.015	0.05	100		03/03/06	LMP		-Xylene	<2.50	mg/kg	0.008	0.027	100		03/03/06	LMP		Uromochloromethane	<2.50	mg/kg	0.006	0.02	100		03/03/06	LMP		Bromoform	<2.50	mg/kg	0.008	0.027		CSH LCH	03/03/06	LMP		Bromomethane	<2.50 <2.50	mg/kg	0.009	0.03		.CL DUP	03/03/06	LMP		1.1-Dichloropropene	<2.50	mg/kg mg/kg	0.008 0.008	0.027 0.027	100 100	CSH	03/03/06	LMP LMP		trans-1,3-dichloroprop(yl)e	<2.50	mg/kg	0.008	0.027	100		03/03/06 03/03/06	LMP		Styrene	<2.50	mg/kg	0.007	0.023	100		03/03/06	LMP		,1,1,2-Tetrachloroethane	<2.50	mg/kg	0.009	0.03	100		03/03/06	LMP		,2,3-Trichloropropane	<2.50	mg/kg	0.007	0.023	100		03/03/06	LMP		Lis-1,3-Dichloroprop(yl)ene	<2.50	mg/kg	0.007	0.023	100		03/03/06	LMP		PID Surrogate Recovery (S)	91.1	%	-	-	100		03/03/06	LMP		[ALL Surrogate Recovery (S)	123.	%	-	-	100		03/03/06	LMP		<u> </u>										<u>=PA 8310</u>					_					Acenaphthene	<0.00585	mg/kg	0.0047	0.016	1		03/01/06	LMP		Acenaphthylene	<0.00821	mg/kg	0.0066	0.022	1		03/01/06	LMP		Anthracene Senzo(a)Anthracene	<0.00261	mg/kg	0.0021	0.007	1		03/01/06	LMP		Benzo(a)Pyrene	<0.0051 <0.00286	mg/kg mg/kg	0.0041 0.0023	0.014 0.0077	1	CSL	03/01/06 03/01/06	LMP LMP		Benzo(b)Fluoranthene	<0.00261	mg/kg	0.0023	0.0077	i	CSL	03/01/06	LMP		enzo(k)Fluoranthene	<0.00361	mg/kg	0.0029	0.007	i		03/01/06	LMP		enzo(ghi)Perylene	<0.00498	mg/kg	0.004	0.013	i		03/01/06	LMP		hrysene	<0.00286	mg/kg	0.0023	0.0077	i		03/01/06	LMP		Dibenzo(a,h)Anthracene	<0.00336	mg/kg	0.0027	0.009	1		03/01/06	LMP		Fluoranthene	<0.00323	mg/kg	0.0026	0.0087	1		03/01/06	LMP		luorene	<0.0041	mg/kg	0.0033	0.011	1		03/01/06	LMP		ndeno(1,2,3-cd)Pyrene	0.006	mg/kg	0.0022	0.0073	1	J	03/01/06	LMP		l-Methyl Naphthalene	0.0831	mg/kg	0.0037	0.012	1		03/01/06	LMP		2-Methyl Naphthalene	0.0271	mg/kg	0.0041	0.014	1		03/01/06	LMP		■aphthalene	0.099	mg/kg	0.0046	0.015	1		03/01/06	LMP		-henanthrene	<0.0051	mg/kg	0.0041	0.014	1		03/01/06	LMP		Tyrene	<0.00261	mg/kg °∕	0.0021	0.007	1		03/01/06	LMP		9,10-Diphenylanthracene (S) Method 3550 Ultrasonic Ext.	36.5	%	-	-	1_		03/01/06	LMP		gethod 3550 offiasonic ext.	COMP		-	-	•		02/22/06	KAM		≟PA 9045										∍H - Laboratory	8.16		-	-	1		02/20/06	JJP		pH - Laboratory Time	08:00		-	-	-		02/20/06	JJP									*		ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com Short Elliott Henderickson ■21 Frenette Drive □hippewa Falls , WI 54729 PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.66 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS Attn: John Guhl				_			1 - L 11 - 407747				-------------------------------------	------------------------------------	----------------	----------------	----------------------	---------------	-------------------	----------------------	----------------		⇒ample ID: B9 1.0-2.0'	Matrix: SOIL Sample Date/Time: 02/			ime: 02/14/ 0	6 16:30	Lab No. 195313						•.			Dilution		Date			1	<u>Resul t</u>	<u>Units</u>	LOD	LOQ	<u>Factor</u>	<u>Qualifiers</u>	<u>Analyzed</u>	<u>Analyst</u>		PA 160.3										Total Solids	87.8	%	_	0.33	_		02/20/06	AMR		-	07.0	/•	-	0.55	-		02/20/08	AMK		EPA 3050										1etal Prep	COMP		-	-	-		02/27/06	DJB		•							,,			EPA 6010										otal Arsenic	2.02	mg/l	0.34	1.13	1		03/07/06	DJB		■otal Barium	17.0	mg/l	0.1	0.33	1		03/07/06	DJB		otal Cadmium	0.0925	mg/kg	0.057	0.19	1	J	03/07/06	DJB		Total Chromium	31.7	mg/kg	0.053	0.18	1		03/07/06	DJB		Total Lead otal Selenium	4.11	mg/kg	0.53	1.76	1		03/07/06	DJB		otal Silver	<0.683 <0.228	mg/kg	0.6 0.2	2.0 0.67	1 1		03/07/06	DJB		otat Sitvei	10.220	mg/kg	0.2	0.07	1		03/07/06	DJB		EPA_7471										otal Mercury	0.0934	mg/kg	0.014	0.047	1		03/03/06	MPM		,			****		·		00,00,00			PA 8021 (Only positively	identified	danalytes	are repor	ted on a di	ry weight ba	sis				Benzene	<0.025	mg/kg	0.008	0.027	1	CSL	03/03/06	LMP		romobenzene	<0.025	mg/kg	0.007	0.023	1		03/03/06	LMP		romodichloromethane	<0.025	mg/kg	0.006	0.02	1		03/03/06	LMP		-Butylbenzene	0.0364	mg/kg	0.012	0.04	1	J	03/03/06	LMP		sec-Butylbenzene	<0.025	mg/kg	0.01	0.033	1		03/03/06	LMP		tert-Butylbenzene	<0.025	mg/kg	0.01	0.033	1		03/03/06	LMP		_arbon Tetrachloride	<0.025	mg/kg	0.008	0.027	1		03/03/06	LMP		hlorobenzene hlorodibromomethane	<0.025	mg/kg	0.007	0.023	1		03/03/06	LMP		Chloroethane	<0.025 <0.025	mg/kg	0.02 0.09	0.067 0.30	1 1	CCI CI	03/03/06	LMP			<0.025	mg/kg mg/kg	0.09	0.033	i	CSL LCL	03/03/06 03/03/06	LMP LMP		hloromethane	<0.025	mg/kg	0.01	0.033		CSL DUP LCL	03/03/06	LMP		-Chlorotoluene	<0.025	mg/kg	0.008	0.027	i	002 00. 202	03/03/06	LMP		4-Chlorotoluene	<0.025	mg/kg	0.008	0.027	i		03/03/06	LMP		1,2-Dibromo-3-chloropropane	<0.025	mg/kg	0.009	0.03	1		03/03/06	LMP		,2-Dibromoethane	<0.025	mg/kg	0.012	0.04	1		03/03/06	LMP		,2-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		03/03/06	LMP		-,3-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		03/03/06	LMP		1,4-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		03/03/06	LMP		ichlorodifluoromethane	<0.025	mg/kg	0.014	0.047	1	LCL	03/03/06	LMP		,1-Dichloroethane	<0.025	mg/kg	0.009	0.03	1		03/03/06	LMP		1,2-Dichloroethane	<0.025	mg/kg	0.005	0.017	1		03/03/06	LMP		cis-1,2-Dichloroethylene	<0.025 <0.025	mg/kg mg/kg	0.016 0.007	0.053 0.023	1		03/03/06 03/03/06	LMP LMP		rans-1,2-Dichloroethylene	<0.025		0.01	0.023	1		03/03/06			,2-Dichloropropane	<0.025	mg/kg mg/kg	0.007	0.023	i		03/03/06	LMP LMP		,3-Dichloropropane	<0.025	mg/kg	0.008	0.027	i		03/03/06	LMP		2,2-Dichloropropane	<0.025	mg/kg	0.008	0.027	i	CSL DUP LCL	03/03/06	LMP		thylbenzene	<0.025	mg/kg	0.007	0.023	i	- -	03/03/06	LMP		exachlorobutadiene	<0.025	mg/kg	0.015	0.05	1		03/03/06	LMP		sopropylbenzene	<0.025	mg/kg	0.009	0.03	1		03/03/06	LMP		Isopropyl Ether	<0.025	mg/kg	0.014	0.047	1		03/03/06	LMP		p-Isopropyltoluene	<0.025	mg/kg	0.011	0.037	1		03/03/06	LMP		≅thyl t-Butyl Ether(MTBE)	<0.025	mg/kg	0.018	0.06	1	CSL DUP	03/03/06	LMP			IR	results calculated on a dry weight basis. ill results calculated on a dry weight basis. A Siemens Business ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.67 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS _Attn: John Guhl →421 Frenette Drive ⇒Sample ID: B9 1.0-2.0' Short Elliott Henderickson ■Chippewa Falls , WI 54729 Matrix: SOIL Sample Date/Time: 02/14/06 16:30		<u>Result</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u> <u>Qualifiers</u>	Date <u>Analyzed</u>	<u>Analyst</u>		--	------------------	----------------	----------------	--------------	--	-------------------------	----------------		FDA 9034 (Only mariated)									EPA 8021 (Only positively						07.07.04			Methylene Chloride Naphthalene	0.174 0.0353	mg/kg	0.014	0.047	1	03/03/06	LMP				mg/kg	0.01	0.033	1	03/03/06	LMP		n-Propylbenzene Tetrachloroethylene	<0.025 <0.025	mg/kg	0.009	0.03	1 1	03/03/06	LMP		1,1,2,2-Tetrachloroethane	<0.025	mg/kg	0.009 0.006	0.03 0.02	1	03/03/06	LMP		Toluene	0.0342	mg/kg mg/kg	0.007	0.023	1	03/03/06 03/03/06	LMP		1,2,3-Trichlorobenzene	<0.025	mg/kg	0.014	0.023	1	03/03/06	LMP LMP		1,2,4-Trichlorobenzene	<0.025	mg/kg	0.014	0.047	1	03/03/06	LMP		1,1,1-Trichloroethane	<0.025	mg/kg	0.008	0.027	1	03/03/06	LMP		1,1,2-Trichloroethane	<0.025	mg/kg	0.006	0.02	i	03/03/06	LMP		Trichloroethylene	<0.025	mg/kg	0.011	0.037	i	03/03/06	LMP		Trichlorofluoromethane	<0.025	mg/kg	0.008	0.027	i LCL	03/03/06	LMP		1,2,4-Trimethylbenzene	0.082	mg/kg	0.012	0.04	1	03/03/06	LMP		71,3,5-Trimethylbenzene	<0.025	mg/kg	0.01	0.033	1	03/03/06	LMP		Vinyl Chloride	<0.025	mg/kg	0.018	0.06	1	03/03/06	LMP		¬n- & p-Xylene	0.0504	mg/kg	0.015	0.05																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																						
1 MB	03/03/06	LMP		≕-Xylene	<0.025	mg/kg	0.008	0.027	1	03/03/06	LMP		Bromochloromethane	<0.025	mg/kg	0.006	0.02	1	03/03/06	LMP		Bromoform	<0.025	mg/kg	0.008	0.027	1	03/03/06	LMP		_Bromomethane	<0.025	mg/kg	0.009	0.03	1	03/03/06	LMP		⊉ibromomethane	<0.025	mg/kg	0.008	0.027	1 CSH	03/03/06	LMP		1,1-Dichloropropene	<0.025	mg/kg	0.008	0.027	1	03/03/06	LMP		Trans-1,3-dichloroprop(yl)e	<0.025	mg/kg	0.008	0.027	1	03/03/06	LMP		Styrene	<0.025	mg/kg	0.007	0.023	1	03/03/06	LMP		7,1,1,2-Tetrachloroethane	<0.025	mg/kg	0.009	0.03	1 .	03/03/06	LMP		7,2,3-Trichloropropane	<0.025	mg/kg	0.007	0.023	1	03/03/06	LMP		=is-1,3-Dichloroprop(yl)ene	<0.025	mg/kg	0.007	0.023	1	03/03/06	LMP		PID Surrogate Recovery (S)	91.1	%	-	-	1	03/03/06	LMP		HALL Surrogate Recovery (S)	146.	%	-	-	1	03/03/06	LMP		EPA 8310									Acenaphthene	<0.00535	mg/kg	0.0047	0.016	1	03/01/06	LMP		Acenaphthylene	<0.00752	mg/kg	0.0066	0.022	1	03/01/06	LMP		Anthracene	<0.00239	mg/kg	0.0021	0.007	i S1L	03/01/06	LMP		Benzo(a)Anthracene	0.0116	mg/kg	0.0041	0.014	1 J S1L	03/01/06	LMP		∃enzo(a)Pyrene	0.0175	mg/kg	0.0023	0.0077	1 CSL S1L S2L		LMP		3enzo(b)Fluoranthene	0.0336	mg/kg	0.0021	0.007	1 S1L S2L	03/01/06	LMP		⊋enzo(k)Fluoranthene	0.0231	mg/kg	0.0029	0.0097	1 S1L S2L	03/01/06	LMP		penzo(ghi)Perylene	<0.00456	mg/kg	0.004	0.013	1	03/01/06	LMP		‡hrysene	0.033	mg/kg	0.0023	0.0077	1 S2L	03/01/06	LMP		bibenzo(a,h)Anthracene	<0.00308	mg/kg	0.0027	0.009	1 S1L	03/01/06	LMP		Fluoranthene	0.12	mg/kg	0.0026	0.0087	1 S2L DUP	03/01/06	LMP		Fluorene	<0.00376	mg/kg	0.0033	0.011	1	03/01/06	LMP		Indeno(1,2,3-cd)Pyrene	<0.00251	mg/kg	0.0022	0.0073	1 S1L	03/01/06	LMP		1-Methyl Naphthalene	0.0116	mg/kg	0.0037	0.012	1 J	03/01/06	LMP		2-Methyl Naphthalene	0.0131	mg/kg	0.0041	0.014	1 J	03/01/06	LMP		₩aphthalene	0.00638	mg/kg	0.0046	0.015	1 J	03/01/06	LMP		henanthrene	0.0351	mg/kg	0.0041	0.014	1 \$2L	03/01/06	LMP		Pyrene P. 10-Pinhamulanthasaus (C)	0.00528	mg/kg	0.0021	0.007	1 J DUP	03/01/06	LMP		ウ,10-Diphenylanthracene (S)	58.4	%	-	-	1	03/01/06	LMP		Method 3550 Ultrasonic Ext.	COMP		•	-	•	02/24/06	MJG		<u> </u>									⊅H - Laboratory	8.51		-	-	1	02/20/06	JJP		pH - Laboratory Time	08:00		-	-	-	02/20/06	JJP								,, +0		ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE 800-338-7226 FACSIMILE 715-355-3221 WEBSITE www.usfilter.com Short Elliott Henderickson **421** Frenette Drive ■Chippewa Falls , WI 54729 PROJECT NO.: NERUB0502.00 REPORT NO.: 195283.68 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS _Attn: John Guhl ⇒Sample ID: B10 0.5-1.5' Matrix: SOIL Sample Date/Time: 02/14/06 17:15 Lab No. 195314		<u>Result</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date Analyzed	Analyst		--	---------------	----------------	-------	----------------	---------------------------	-------------	----------------------	------------		EPA 160.3 Total Solids	73.1	%	-	0.33	-		02/20/06	AMR		EPA 3050 Metal Prep	COMP		_	_	_		02/27/06	DJB		_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	00/11						02/21/00	000		EPA 6010										Total Arsenic	1.94	mg/l	0.34	1.13	1		03/07/06	DJB		Total Barium	39.5	mg/l	0.1	0.33	1		03/07/06	DJB		Total Cadmium	<0.078	mg/kg	0.057	0.19	1		03/07/06	DJB		Total Chromium	6.63	mg/kg	0.053	0.18	1		03/07/06	DJB		Total Lead	26.3	mg/kg	0.53	1.76	1		03/07/06	DJB		Total Selenium Total Silver	<0.821	mg/kg	0.6	2.0	1		03/07/06	DJB		Total Silver	0.33	mg/kg	0.2	0.67	1	J	03/07/06	DJB		EPA 7471										■otal Mercury	0.0684	mg/kg	0.014	0.047	1		03/03/06	MPM		≘PA 8021 (Only positively	idontif:			ال سامعة						<u>≡PA 8021</u> (Only positively Benzene	<0.025	mg/kg	o.008		• -	S1S CSL	07/07/0/	LMD		Bromobenzene	<0.025		0.007	0.027 0.023	1	CSL	03/03/06	LMP		Bromodichloromethane	<0.025	mg/kg	0.007	0.023	1		03/03/06	LMP		n-Butylbenzene	0.0739	mg/kg mg/kg	0.012	0.02	i		03/03/06	LMP		sec-Butylbenzene	<0.025	mg/kg	0.012	0.04	1		03/03/06 03/03/06	LMP		tert-Butylbenzene	<0.025	mg/kg	0.01	0.033	i		03/03/06	LMP LMP		Darbon Tetrachloride	<0.025	mg/kg	0.008	0.033	i		03/03/06			Ehlorobenzene	<0.025	mg/kg	0.007	0.027	1		03/03/06	LMP LMP		Shlorodibromomethane	<0.025	mg/kg	0.02	0.067	i		03/03/06	LMP		Chloroethane	<0.025	mg/kg	0.09	0.30		CSL LCL	03/03/06	LMP		£hloroform	<0.025	mg/kg	0.01	0.033	i	002 202	03/03/06	LMP		hloromethane	<0.025	mg/kg	0.01	0.033	-	CSL DUP LCL	03/03/06	LMP		⊉-Chlorotoluene	<0.025	mg/kg	0.008	0.027	i	002 001 202	03/03/06	LMP		#-Chlorotoluene	<0.025	mg/kg	0.008	0.027	i		03/03/06	LMP		1,2-Dibromo-3-chloropropane	<0.025	mg/kg	0.009	0.03	1		03/03/06	LMP		,2-Dibromoethane	<0.025	mg/kg	0.012	0.04	1		03/03/06	LMP		■,2-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		03/03/06	LMP		■,3-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		03/03/06	LMP		1,4-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		03/03/06	LMP		Pichlorodifluoromethane	<0.025	mg/kg	0.014	0.047	1	LCL	03/03/06	LMP		,1-Dichloroethane	<0.025	mg/kg	0.009	0.03	1		03/03/06	LMP		',2-Dichloroethane	<0.025	mg/kg	0.005	0.017	1		03/03/06	LMP		,1-Dichloroethylene	<0.025	mg/kg	0.016	0.053	1		03/03/06	LMP		cis-1,2-Dichloroethylene	0.171	mg/kg	0.007	0.023	1		03/03/06	LMP		-rans-1,2-Dichloroethylene	<0.025	mg/kg	0.01	0.033	1		03/03/06	LMP		,2-Dichloropropane	<0.025	mg/kg	0.007	0.023	1		03/03/06	LMP		,3-Dichloropropane	<0.025	mg/kg	0.008	0.027	1		03/03/06	LMP		2,2-Dichloropropane	<0.025	mg/kg	0.008	0.027		CSL DUP LCL	03/03/06	LMP		Ethylbenzene	<0.025	mg/kg	0.007	0.023	1		03/03/06	LMP		lexachlorobutadiene	<0.025	mg/kg	0.015	0.05	1		03/03/06	LMP		sopropylbenzene	<0.025	mg/kg	0.009	0.03	1		03/03/06	LMP		Isopropyl Ether	<0.025	mg/kg	0.014	0.047	1		03/03/06	LMP		p-Isopropyltoluene	<0.025	mg/kg	0.011	0.037	1	001 0115	03/03/06	LMP		Methyl t-Butyl Ether(MTBE)	<0.025	mg/kg	0.018	0.06	1	CSL DUP	03/03/06	LMP	all results calculated on a dry weight basis. **ENVIROSCAN SERVICES** 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE 800-338-7226 715-355-3221 WEBSITE www.usfilter.com PROJECT NO.: NERUB0502.00 REPORT NO. : 195283.69 DATE REC'D : 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS Attn: John Guhl 式21 Frenette Drive Sample ID: **B10 0.5-1.5'** Short Elliott Henderickson ⊇hippewa Falls , WI 54729 Matrix: SOIL Sample Date/Time: 02/14/06 17:15	; 	Result	<u>Units</u>	LOD	LOQ	Dilution Factor	Qualifiers	Date <u>Analyzed</u>	Analyst		---	------------------	----------------	---------------------	-----------------	--------------------	------------	-------------------------	--------------									Midtyzed	Milatyst		Methylene Chloride			are report 0.014			sis	07 (07 (0)	1.140		_ Naphthalene	<0.025 0.0766	mg/kg mg/kg	0.014	0.047 0.033	1		03/03/06 03/03/06	LMP LMP		n-Propylbenzene	<0.025	mg/kg	0.009	0.03	1		03/03/06	LMP		Tetrachloroethylene	0.133	mg/kg	0.009	0.03	i		03/03/06	LMP		1,1,2,2-Tetrachloroethane	<0.025	mg/kg	0.006	0.02	1		03/03/06	LMP		Toluene	0.0465	mg/kg	0.007	0.023	1		03/03/06	LMP		,2,3-Trichlorobenzene	<0.025	mg/kg	0.014	0.047	1		03/03/06	LMP		,2,4-Trichlorobenzene	<0.025	mg/kg	0.014	0.047	1		03/03/06	LMP		1,1,1-Trichloroethane	<0.025	mg/kg	0.008	0.027	1		03/03/06	LMP		1,1,2-Trichloroethane Trichloroethylene	<0.025 <0.025	mg/kg mg/kg	0.006 0.011	0.02 0.037	1		03/03/06	LMP		Trichlorofluoromethane	<0.025	mg/kg	0.008	0.027	1	LCL	03/03/06 03/03/06	LMP LMP		,2,4-Trimethylbenzene	0.0547	mg/kg	0.012	0.04	i	202	03/03/06	LMP		1,3,5-Trimethylbenzene	0.0438	mg/kg	0.01	0.033	1		03/03/06	LMP		Vinyl Chloride	<0.025	mg/kg	0.018	0.06	1		03/03/06	LMP		¬- & p-Xylene	0.156	mg/kg	0.015	0.05	1	MB	03/03/06	LMP		⊒-Xylene	0.0492	mg/kg	0.008	0.027	1		03/03/06	LMP		■romochloromethane Bromoform	<0.025	mg/kg	0.006	0.02	1		03/03/06	LMP		Bromomethane	<0.025 <0.025	mg/kg	0.008 0.009	0.027 0.03	1		03/03/06	LMP		ibromomethane	<0.025	mg/kg mg/kg	0.009	0.03	1	CSH	03/03/06 03/03/06	LMP LMP		.1-Dichloropropene	<0.025	mg/kg	0.008	0.027	i	6311	03/03/06	LMP		trans-1,3-dichloroprop(yl)e	<0.025	mg/kg	0.008	0.027	1		03/03/06	LMP		Styrene	<0.025	mg/kg	0.007	0.023	1		03/03/06	LMP																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																	
,1,1,2-Tetrachloroethane	<0.025	mg/kg	0.009	0.03	1		03/03/06	LMP		,2,3-Trichloropropane	<0.025	mg/kg	0.007	0.023	1		03/03/06	LMP		is-1,3-Dichloroprop(yl)ene	<0.025	mg/kg	0.007	0.023	1		03/03/06	LMP		PID Surrogate Recovery (S)	89.2	%	-		1		03/03/06	LMP		HALL Surrogate Recovery (S)	136.	%	-	-	1		03/03/06	LMP		EPA_8310_										Acenaphthene	<0.00643	mg/kg	0.0047	0.016	1		03/01/06	LMP		Acenaphthylene	<0.00903	mg/kg	0.0066	0.022	1		03/01/06	LMP		Inthracene	<0.00287	mg/kg	0.0021	0.007	1		03/01/06	LMP		enzo(a)Anthracene	0.0166	mg/kg	0.0041	0.014	1	J	03/01/06	LMP		Benzo(a)Pyrene Benzo(b)Fluoranthene	0.0261 0.041	mg/kg	0.0023 0.0021	0.0077 0.007	1	CSL	03/01/06	LMP		_Benzo(k)Fluoranthene	0.0198	mg/kg mg/kg	0.0021	0.007	1		03/01/06 03/01/06	LMP LMP		enzo(ghi)Perylene	0.0328	mg/kg	0.004	0.013	i		03/01/06	LMP		hrysene	0.0472	mg/kg	0.0023	0.0077	i		03/01/06	LMP		Dibenzo(a,h)Anthracene	0.00911	mg/kg	0.0027	0.009	1	J	03/01/06	LMP		Fluoranthene	0.087	mg/kg	0.0026	0.0087	1		03/01/06	LMP		luorene	<0.00451	mg/kg	0.0033	0.011	1		03/01/06	LMP		■ndeno(1,2,3-cd)Pyrene	0.0222	mg/kg	0.0022	0.0073	1		03/01/06	LMP		-Methyl Naphthalene 2-Methyl Naphthalene	0.0201	mg/kg	0.0037	0.012	1		03/01/06	LMP		Naphthalene	0.028 0.013	mg/kg mg/kg	0.0041 0.0046	0.014 0.015	1 1	1	03/01/06	LMP		henanthrene	0.0491	mg/kg	0.0040	0.013	1	J	03/01/06 03/01/06	LMP LMP			0.00763	mg/kg	0.0021	0.007	i	J	03/01/06	LMP		yrene ,10-Diphenylanthracene (S)	48.7	%	-	-	i	•	03/01/06	LMP		Method 3550 Ultrasonic Ext.	COMP		•	•	-		02/24/06	MJG		IPA 9045										■ - Laboratory	8.31		-	-	1		02/20/06	JJP		pH - Laboratory Time	08:00		-	-	•		02/20/06	JJP		E JBCON										CBs - Sub	COMP		_	•			02/28/06	EAL.			50111						32, 23, 00	⊷ /1.	ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.70 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS Attn: John Guhl Sample ID: 811 1-3' 421 Frenette Drive Short Elliott Henderickson Chippewa Falls , WI 54729 Matrix: SOIL Sample Date/Time: 02/15/06 08:30		Result	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u> <u>Qualifiers</u>	Date <u>Analyzed</u>	<u>Analyst</u>		---	------------	--------------	----------	--------------	---	-------------------------	----------------		EPA 160.3									Total Solids	81.8	%	-	0.33	•	02/20/06	AMR		EPA 3050									Metal Prep	COMP		•	-	-	02/27/06	DJB		EPA 6010									Total Arsenic	0.531	mg/kg	0.34	1.13	1 J	03/03/06	DJB		Total Barium	18.9	mg/kg	0.1	0.33	1	03/03/06	DJB		Total Cadmium	<0.0697	mg/kg	0.057	0.19	1	03/03/06	DJB		Total Chromium	5.93	mg/kg	0.053	0.18	1 S1L S2L	03/03/06	DJB		Total Lead	5.21	mg/kg	0.53	1.76	1 S1L S2L	03/03/06	DJB		Total Selenium	<0.733	mg/kg	0.6	2.0	1	03/03/06	DJB		Total Silver	<0.244	mg/kg	0.2	0.67	1	03/03/06	DJB		EPA 7471									Total Mercury	0.0318	mg/kg	0.014	0.047	1 J	03/03/06	MPM		 <u>≡PA 8021</u> (Only positively	identified	l analytes	are reno	rted on a dr	y waight basis				Benzene (Ont) positivety	<0.025	mg/kg	0.008	0.027	1 CSL	03/03/06	LMP		Bromobenzene	<0.025	mg/kg	0.007	0.023	1	03/03/06	LMP		3romodichloromethane	<0.025	mg/kg	0.006	0.02	1	03/03/06	LMP		n-Butylbenzene	<0.025	mg/kg	0.003	0.02	1	03/03/06	LMP		sec-Butylbenzene	<0.025	mg/kg	0.01	0.033	1	03/03/06	LMP		tert-Butylbenzene	<0.025	mg/kg	0.01	0.033	i	03/03/06	LMP		Darbon Tetrachloride	<0.025	mg/kg	0.008	0.027	i	03/03/06	LMP		Thlorobenzene	<0.025	mg/kg	0.007	0.023	i	03/03/06	LMP		=hlorodibromomethane	<0.025	mg/kg	0.02	0.067	i	03/03/06	LMP		Chloroethane	<0.025	mg/kg	0.09	0.30	i CSL LCL	03/03/06	LMP		£hloroform	<0.025	mg/kg	0.01	0.033	1	03/03/06	LMP		hloromethane	<0.025	mg/kg	0.01	0.033	1 CSL DUP LCL	03/03/06	LMP		r-Chlorotoluene	<0.025	mg/kg	0.008	0.027	1	03/03/06	LMP		4-Chlorotoluene	<0.025	mg/kg	0.008	0.027	i	03/03/06	LMP		1,2-Dibromo-3-chloropropane	<0.025	mg/kg	0.009	0.03	i	03/03/06	LMP		,2-Dibromoethane	<0.025	mg/kg	0.012	0.04	i	03/03/06	LMP		,2-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	i	03/03/06	LMP		,3-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	i	03/03/06	LMP		1,4-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	i	03/03/06	LMP		Nichlorodifluoromethane	<0.025	mg/kg	0.014	0.047	i LCL	03/03/06	LMP		,1-Dichloroethane	<0.025	mg/kg	0.009	0.03	1	03/03/06	LMP		,2-Dichloroethane	<0.025	mg/kg	0.005	0.017	Ì	03/03/06	LMP		,1-Dichloroethylene	<0.025	mg/kg	0.016	0.053	i	03/03/06	LMP		cis-1,2-Dichloroethylene	<0.025	mg/kg	0.007	0.023	1	03/03/06	LMP		rans-1,2-Dichloroethylene	<0.025	mg/kg	0.01	0.033	1	03/03/06	LMP		,2-Dichloropropane	<0.025	mg/kg	0.007	0.023	1	03/03/06	LMP		,3-Dichloropropane	<0.025	mg/kg	0.008	0.027	1	03/03/06	LMP		2,2-Dichloropropane	<0.025	mg/kg	0.008	0.027	1 CSL DUP LCL	03/03/06	LMP		Ethylbenzene	<0.025	mg/kg	0.007	0.023	1	03/03/06	LMP		lexachlorobutadiene	<0.025	mg/kg	0.015	0.05	1	03/03/06	LMP		sopropylbenzene	<0.025	mg/kg	0.009	0.03	1	03/03/06	LMP		Isopropyl Ether	<0.025	mg/kg	0.014	0.047	1	03/03/06	LMP		p-Isopropyltoluene	<0.025	mg/kg	0.011	0.037	1	03/03/06	LMP		ethyl t-Butyl Ether(MTBE)	<0.025	mg/kg	0.018	0.06	1 CSL DUP	03/03/06	LMP	ll results calculated on a dry weight basis. ENVIROSCAN SERVICES 301 WEST MILITARY ROAD FACSIMILE WEBSITE TELEPHONE 800-338-7226 715-355-3221 WEBSITE www.usfilter.com Short Elliott Henderickson ■21 Frenette Drive Chippewa Falls , WI 54729 PROJECT NO.: NERUB0502.00 REPORT NO. : 195283.71 DATE REC'D : 02/17/06 **REPORT DATE: 03/13/06** PREPARED BY: JRS Attn: John Guhl ∃ample ID: B11 1-3' Matrix: SOIL Sample Date/Time: 02/15/06 08:30 Lab No. 195315		Result	Units	LOD	1.00	Dilution Factor	Qualifiers	Date	Analyst		---	------------------	----------------	----------------	---------------	--------------------	------------	----------------------	------------						<u>rod</u>			Analyzed	MINITYST		EPA 8021 (Only positively					y weight ba	sis				Methylene Chloride	<0.025	mg/kg	0.014	0.047	1		03/03/06	LMP		Naphthalene	<0.025	mg/kg	0.01	0.033	1		03/03/06	LMP		n-Propylbenzene	<0.025	mg/kg	0.009	0.03	1		03/03/06	LMP		Tetrachloroethylene 1,1,2,2-Tetrachloroethane	<0.025	mg/kg	0.009	0.03	1		03/03/06	LMP		Toluene	<0.025 <0.025	mg/kg	0.006 0.007	0.02 0.023	i 1		03/03/06 03/03/06	LMP		,2,3-Trichlorobenzene	<0.025	mg/kg mg/kg	0.007	0.023	1		03/03/06	LMP LMP		,2,4-Trichtorobenzene	<0.025	mg/kg	0.014	0.047	1		03/03/06	LMP		,1,1-Trichloroethane	<0.025	mg/kg	0.008	0.027	i		03/03/06	LMP		1,1,2-Trichloroethane	<0.025	mg/kg	0.006	0.02	1		03/03/06	LMP		Trichloroethylene	<0.025	mg/kg	0.011	0.037	i		03/03/06	LMP		Trichlorofluoromethane	<0.025	mg/kg	0.008	0.027	i	LCL	03/03/06	LMP		1,2,4-Trimethylbenzene	<0.025	mg/kg	0.012	0.04	i		03/03/06	LMP		1,3,5-Trimethylbenzene	<0.025	mg/kg	0.01	0.033	i		03/03/06	LMP		Vinyl Chloride	<0.025	mg/kg	0.018	0.06	1		03/03/06	LMP		m- & p-Xylene	0.033	mg/kg	0.015	0.05	1	MB J	03/03/06	LMP		p-Xylene	<0.025	mg/kg	0.008	0.027	1		03/03/06	LMP		3romochloromethane	<0.025	mg/kg	0.006	0.02	1		03/03/06	LMP		Bromoform	<0.025	mg/kg	0.008	0.027	1		03/03/06	LMP		Promomethane	<0.025	mg/kg	0.009	0.03	1		03/03/06	LMP		ibromomethane	<0.025	mg/kg	0.008	0.027	1	CSH	03/03/06	LMP		,1-Dichloropropene	<0.025	mg/kg	0.008	0.027	1		03/03/06	LMP		trans-1,3-dichloroprop(yl)e	<0.025	mg/kg	0.008	0.027	1		03/03/06	LMP		Styrene	<0.025	mg/kg	0.007	0.023	1		03/03/06	LMP		,1,1,2-Tetrachloroethane	<0.025	mg/kg	0.009	0.03	1		03/03/06	LMP		,2,3-Trichloropropane	<0.025	mg/kg	0.007	0.023	1		03/03/06	LMP		is-1,3-Dichloroprop(yl)ene	<0.025	mg/kg	0.007	0.023	1		03/03/06	LMP		PID Surrogate Recovery (S)	93.4	%	-	-	1		03/03/06	LMP		ALL Surrogate Recovery (S)	136.	. %	-	-	1		03/03/06	LMP		PA 8310										Acenaphthene	<0.00575	mg/kg	0.0047	0.016	1		03/01/06	LMP		Acenaphthylene	<0.00807	mg/kg	0.0066	0.022	i		03/01/06	LMP		Anthracene	<0.00257	mg/kg	0.0021	0.007	i		03/01/06	LMP		Benzo(a)Anthracene	<0.00501	mg/kg	0.0041	0.014	i		03/01/06	LMP																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
Benzo(a)Pyrene	<0.00281	mg/kg	0.0023	0.0077	i	CSL	03/01/06	LMP		Benzo(b)Fluoranthene	<0.00257	mg/kg	0.0021	0.007	· i	552	03/01/06	LMP		enzo(k)Fluoranthene	<0.00355	mg/kg	0.0029	0.0097	i		03/01/06	LMP		enzo(ghi)Perylene	<0.00489	mg/kg	0.004	0.013	1		03/01/06	LMP		hrysene	0.00528	mg/kg	0.0023	0.0077	1	J	03/01/06	LMP		Dibenzo(a,h)Anthracene	<0.0033	mg/kg	0.0027	0.009	1		03/01/06	LMP		Fluoranthene	0.00858	mg/kg	0.0026	0.0087	1	J	03/01/06	LMP		luorene	<0.00403	mg/kg	0.0033	0.011	1		03/01/06	LMP		ndeno(1,2,3-cd)Pyrene	0.00413	mg/kg	0.0022	0.0073	1	J	03/01/06	LMP		I-Methyl Naphthalene	<0.00452	mg/kg	0.0037	0.012	1		03/01/06	LMP		2-Methyl Naphthalene	<0.00501	mg/kg	0.0041	0.014	1		03/01/06	LMP		■ Naphthalene	<0.00562	mg/kg	0.0046	0.015	1		03/01/06	LMP		henanthrene	<0.00501	mg/kg	0.0041	0.014	1		03/01/06	LMP		yrene	0.00246	mg/kg	0.0021	0.007	1	J	03/01/06	LMP		9,10-Diphenylanthracene (S)	80.8	%	-	-	1		03/01/06	LMP		Method 3550 Ultrasonic Ext.	COMP		-	-	-		02/24/06	MJG		PA 9045										H - Laboratory	9.53		•	•	1		02/20/06	JJP		pH - Laboratory Time	08:00		-	-	-		02/20/06	JJP											ll results calculated on a dry weight basis. TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com Short Elliott Henderickson 21 Frenette Drive hippewa Falls , WI 54729 PROJECT NO.: NERUB0502.00 REPORT NO. : 195283.72 DATE REC'D : 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS Attn: John Guhl	ample ID: B12 1-2'	Matri	: SOIL	Sar	mple Date/Ti	ime: 02/15/0 6	09:15	Lab No. 195316			---	------------------	----------------	----------------	----------------	---------------------------	-------------------	-------------------------	----------------			<u>Result</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	<u>Qualifiers</u>	Date <u>Analyzed</u>	<u>Analyst</u>		L										<u>PA 160.3</u>										Total Solids	90.9	%	•	0.33	-		02/20/06	AMR		<u> PA 3050</u>										etal Prep	COMP		-	-	-		02/27/06	DJB												EPA 6010	4 /5	(1	0.7/	4 47	4		07 (07 (0)	0.10		otal Arsenic otal Barium	1.45 15.1	mg/kg	0.34	1.13 0.33	1 1		03/03/06	DJB		otal Cadmium	0.155	mg/kg mg/kg	0.1 0.057	0.33	1	J	03/03/06 03/03/06	DJB DJB		Total Chromium	5.98	mg/kg	0.053	0.18	i	J	03/03/06	DJB		Total Lead	5.47	mg/kg	0.53	1.76	i		03/03/06	DJB		otal Selenium	<0.66	mg/kg	0.6	2.0	i		03/03/06	DJB		otal Silver	<0.22	mg/kg	0.2	0.67	1		03/03/06	DJB				.								EPA 7471	0.0454									otal Mercury	<0.0154	mg/kg	0.014	0.047	1		03/03/06	MPM		PA 8021 (Only positively	identified	d analytes	are repor	rted on a dr	ry weight bas	is				Benzene	<0.025	mg/kg	0.008	0.027	1	CSL	03/03/06	LMP		Bromobenzene	<0.025	mg/kg	0.007	0.023	1		03/03/06	LMP		romodichloromethane	<0.025	mg/kg	0.006	0.02	1		03/03/06	LMP		n-Butylbenzene	<0.025	mg/kg	0.012	0.04	1		03/03/06	LMP		sec-Butylbenzene	<0.025	mg/kg	0.01	0.033	1		03/03/06	LMP		tert-Butylbenzene	<0.025	mg/kg	0.01	0.033	1		03/03/06	LMP		arbon Tetrachloride	<0.025	mg/kg	0.008	0.027	1		03/03/06	LMP		hlorobenzene hlorodibromomethane	<0.025	mg/kg	0.007	0.023	1		03/03/06	LMP		Chloroethane	<0.025 <0.025	mg/kg	0.02 0.09	0.067 0.30	1 1 C	SL LCL	03/03/06	LMP LMP		Chloroform	<0.025	mg/kg mg/kg	0.07	0.033	1	SL ECL	03/03/06 03/03/06	LMP		hloromethane	<0.025	mg/kg	0.01	0.033		SL DUP LCL	03/03/06	LMP		-Chlorotoluene	<0.025	mg/kg	0.008	0.027	i	02 001 202	03/03/06	LMP		4-Chlorotoluene	<0.025	mg/kg	0.008	0.027	1		03/03/06	LMP		1,2-Dibromo-3-chloropropane	<0.025	mg/kg	0.009	0.03	1		03/03/06	LMP		,2-Dibromoethane	<0.025	mg/kg	0.012	0.04	1		03/03/06	LMP		,2-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		03/03/06	LMP		,3-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		03/03/06	LMP		1,4-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		03/03/06	LMP		ichlorodifluoromethane	<0.025	mg/kg	0.014	0.047	1	LCL	03/03/06	LMP		,1-Dichloroethane	<0.025	mg/kg	0.009	0.03	1		03/03/06	LMP		<pre>,2-Dichloroethane 1,1-Dichloroethylene</pre>	<0.025 <0.025	mg/kg	0.005 0.016	0.017 0.053	1 1		03/03/06	LMP		cis-1,2-Dichloroethylene	<0.025	mg/kg mg/kg	0.018	0.023	i		03/03/06 03/03/06	LMP LMP		rans-1,2-Dichloroethylene	<0.025	mg/kg	0.007	0.023	1		03/03/06	LMP		,2-Dichloropropane	<0.025	mg/kg	0.007	0.023	i		03/03/06	LMP		,3-Dichloropropane	<0.025	mg/kg	0.008	0.027	i		03/03/06	LMP		2,2-Dichloropropane	<0.025	mg/kg	0.008	0.027		SL DUP LCL	03/03/06	LMP		Thylbenzene	<0.025	mg/kg	0.007	0.023	1		03/03/06	LMP		exachlorobutadiene	<0.025	mg/kg	0.015	0.05	1		03/03/06	LMP		sopropylbenzene	<0.025	mg/kg	0.009	0.03	1		03/03/06	LMP		Isopropyl Ether	<0.025	mg/kg	0.014	0.047	1		03/03/06	LMP		p-Isopropyltoluene	<0.025	mg/kg	0.011	0.037	1	on bur	03/03/06	LMP		ethyl t-Butyl Ether(MTBE)	<0.025	mg/kg	0.018	0.06	1 0	SL DUP	03/03/06	LMP											ll results calculated on a dry weight basis. ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.73 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS Attn: John Guhl ∃ample ID: B12 1-2' Matrix: SOIL Sample Date/Time: 02/15/06 09:15	•	<u>Result</u>	<u>Units</u>	<u>LOD</u>	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	<u>Analyst</u>		--	------------------	----------------	----------------	----------------	---------------------------	------------	-------------------------	----------------		CDA 8024 April 10 maria in la comba						•				Methylene Chloride						SIS	07.07.07			Waphthalene	<0.025 <0.025	mg/kg	0.014	0.047 0.033	1		03/03/06	LMP		• •	<0.025	mg/kg	0.01		1 1		03/03/06	LMP		n-Propylbenzene Tetrachloroethylene	<0.025	mg/kg	0.009 0.009	0.03 0.03	1		03/03/06	LMP		1,1,2,2-Tetrachloroethane	<0.025	mg/kg mg/kg	0.009	0.03	1		03/03/06	LMP		Toluene	<0.025	mg/kg	0.007	0.023	1		03/03/06 03/03/06	LMP LMP		1,2,3-Trichlorobenzene	<0.025	mg/kg	0.007	0.023	i		03/03/06	LMP		1,2,4-Trichlorobenzene	<0.025	mg/kg	0.014	0.047	1		03/03/06	LMP		1,1-Trichloroethane	<0.025	mg/kg	0.008	0.027	i		03/03/06	LMP		1,1,2-Trichloroethane	<0.025	mg/kg	0.006	0.02	i		03/03/06	LMP		∦richloroethylene	<0.025	mg/kg	0.011	0.037	i		03/03/06	LMP		richlorofluoromethane	<0.025	mg/kg	0.008	0.027	i	LCL	03/03/06	LMP		,2,4-Trimethylbenzene	<0.025	mg/kg	0.012	0.04	1		03/03/06	LMP		1,3,5-Trimethylbenzene	<0.025	mg/kg	0.01	0.033	1		03/03/06	LMP		Vinyl Chloride	<0.025	mg/kg	0.018	0.06	1		03/03/06	LMP		=ı- & p-Xylene	0.0286	mg/kg	0.015	0.05	1	MB J	03/03/06	LMP		b -Xylene	<0.025	mg/kg	0.008	0.027	1		03/03/06	LMP		B romochloromethane	<0.025	mg/kg	0.006	0.02	1		03/03/06	LMP		Bromoform	<0.025	mg/kg	0.008	0.027	1		03/03/06	LMP		₿romomethane	<0.025	mg/kg	0.009	0.03	1		03/03/06	LMP		p ibromomethane	<0.025	mg/kg	0.008	0.027	1	CSH	03/03/06	LMP		,1-Dichloropropene	<0.025	mg/kg	0.008	0.027	1		03/03/06	LMP		trans-1,3-dichloroprop(yl)e	<0.025	mg/kg	0.008	0.027	1		03/03/06	LMP		Styrene	<0.025	mg/kg	0.007	0.023	1		03/03/06	LMP		1,1,2-Tetrachloroethane	<0.025	mg/kg	0.009	0.03	1		03/03/06	LMP		,2,3-Trichloropropane	<0.025	mg/kg	0.007	0.023	1		03/03/06	LMP		tis-1,3-Dichloroprop(yl)ene	<0.025	mg/kg	0.007	0.023	1		03/03/06	LMP		PID Surrogate Recovery (S)	90.5	%	-	-	1		03/03/06	LMP		#ALL Surrogate Recovery (S)	138.	%	-	-	1		03/03/06	LMP		₹PA 8310										Acenaphthene	<0.00517	ma/ka	0.0047	0.016	1		07/01/06	LMD		Acenaphthylene	<0.00726	mg/kg	0.0047	0.018	1 1		03/01/06	LMP		mnthracene	<0.00728	mg/kg mg/kg	0.0021	0.022	1		03/01/06	LMP		enzo(a)Anthracene	<0.00251	mg/kg	0.0021	0.007	i		03/01/06 03/01/06	LMP LMP		enzo(a)Pyrene	<0.00253	mg/kg	0.0023	0.0077	1	CSL	03/01/06	LMP		Benzo(b)Fluoranthene	<0.00233	mg/kg	0.0023	0.007	i	CSL	03/01/06	LMP		Renzo(k)Fluoranthene	<0.00319	mg/kg	0.0029	0.0097	i		03/01/06	LMP		enzo(ghi)Perylene	<0.0044	mg/kg	0.004	0.013	i		03/01/06	LMP		hrysene	0.00949	mg/kg	0.0023	0.0077	i		03/01/06	LMP		Dibenzo(a,h)Anthracene	<0.00297	mg/kg	0.0027	0.009	1		03/01/06	LMP		Fluoranthene	0.0163	mg/kg	0.0026																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																												
0.0087	1		03/01/06	LMP		luorene	<0.00363	mg/kg	0.0033	0.011	1		03/01/06	LMP		ndeno(1,2,3-cd)Pyrene	0.00707	mg/kg	0.0022	0.0073	1	J	03/01/06	LMP		l-Methyl Naphthalene	<0.00407	mg/kg	0.0037	0.012	1		03/01/06	LMP		2-Methyl Naphthalene	<0.00451	mg/kg	0.0041	0.014	1		03/01/06	LMP		∦aphthalene	<0.00506	mg/kg	0.0046	0.015	1		03/01/06	LMP		henanthrene	0.00737	mg/kg	0.0041	0.014	1	J	03/01/06	LMP		yrene	0.00337	mg/kg	0.0021	0.007	1	J	03/01/06	LMP		9,10-Diphenylanthracene (S)	58.8	%	-	-	1		03/01/06	LMP		Method 3550 Ultrasonic Ext.	COMP		-	•	-		02/24/06	MJG		PA 9045_										OH - Laboratory	8.87		-	-	1		02/20/06	JJP		pH - Laboratory Time	08:00		_	-	'-		02/20/06	JJP			00.00						JE, 20, 00	301	ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.74 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS _Attn: John Guhl 421 Frenette Drive Sample ID: B13 0.5-4.5' Short Elliott Henderickson Chippewa Falls , WI 54729 Matrix: SOIL Sample Date/Time: 02/15/06 11:15						Dilution		Date			---	---------------	--------------	-----------	--------------	---------------	-------------	-----------------	----------------			<u>Result</u>	<u>Units</u>	LOD	LOQ	<u>Factor</u>	Qualifiers	<u>Analyzed</u>	<u>Analyst</u>		≡PA 160.3										Total Solids	94.1	%	•	0.33	-		02/20/06	AMR		EPA 3050 Metal Prep	COMP		_	-	-		02/27/06	DJB		2.0020 1.0p	00111						02,21,00	505		EPA 6010										Total Arsenic	1.47	mg/kg	0.34	1.13	1		03/03/06	DJB		Total Barium	21.1	mg/kg	0.1	0.33	1		03/03/06	DJB		Total Cadmium	<0.0606	mg/kg	0.057	0.19	1		03/03/06	DJB		Total Chromium	7.46	mg/kg	0.053	0.18	1		03/03/06	DJB		Total Lead	2.71	mg/kg	0.53	1.76	1		03/03/06	DJB		Total Selenium	<0.638	mg/kg	0.6	2.0	1		03/03/06	DJB		Total Silver	<0.213	mg/kg	0.2	0.67	1		03/03/06	DJB		EPA 7471										■otal Mercury	0.0489	mg/kg	0.014	0.047	1		03/03/06	MPM		<u>≡PA 8021</u> (Only positively	identified	l analytes	are renor	rted on a dr	rv weight be	cie				Benzene	<0.025	mg/kg	0.008	0.027	1	313	03/06/06	LMP		Bromobenzene	<0.025	mg/kg	0.007	0.023	i		03/06/06	LMP		Bromodichloromethane	<0.025	mg/kg	0.006	0.02	1		03/06/06	LMP		n-Butylbenzene	<0.025	mg/kg	0.012	0.04	1		03/06/06	LMP		sec-Butylbenzene	<0.025	mg/kg	0.01	0.033	1		03/06/06	LMP		tert-Butylbenzene	<0.025	mg/kg	0.01	0.033	1		03/06/06	LMP		Darbon Tetrachloride	<0.025	mg/kg	0.008	0.027	1		03/06/06	LMP		⊇hlorobenzene	<0.025	mg/kg	0.007	0.023	1		03/06/06	LMP		Inlorodibromomethane	<0.025	mg/kg	0.02	0.067	1		03/06/06	LMP		Chloroethane	<0.025	mg/kg	0.09	0.30	1	CSL LCL	03/06/06	LMP		Chloroform	<0.025	mg/kg	0.01	0.033	1		03/06/06	LMP		thloromethane	<0.025	mg/kg	0.01	0.033	1	CSL DUP LCL	03/06/06	LMP		r-Chlorotoluene	<0.025	mg/kg	0.008	0.027	1		03/06/06	LMP		4-Chlorotoluene	<0.025	mg/kg	0.008	0.027	1		03/06/06	LMP		1,2-Dibromo-3-chloropropane	<0.025	mg/kg	0.009	0.03	1	CSH	03/06/06	LMP		1,2-Dibromoethane	<0.025	mg/kg	0.012	0.04	1		03/06/06	LMP		,2-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		03/06/06	LMP		,3-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		03/06/06	LMP		1,4-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		03/06/06	LMP		nichlorodifluoromethane	<0.025	mg/kg	0.014	0.047	1	LCL	03/06/06	LMP		,1-Dichloroethane	<0.025	mg/kg	0.009	0.03	1		03/06/06	LMP		,2-Dichloroethane	<0.025	mg/kg	0.005	0.017	1		03/06/06	LMP		I,1-Dichloroethylene	<0.025	mg/kg	0.016	0.053	1		03/06/06	LMP		cis-1,2-Dichloroethylene	<0.025	mg/kg	0.007	0.023	1		03/06/06	LMP		rans-1,2-Dichloroethylene	<0.025	mg/kg	0.01	0.033	1		03/06/06	LMP		,2-Dichloropropane	<0.025	mg/kg	0.007	0.023	1		03/06/06	LMP		,3-Dichloropropane	<0.025	mg/kg	0.008	0.027	1	CSL	03/06/06	LMP		2,2-Dichloropropane	<0.025	mg/kg	0.008	0.027	1	DUP	03/06/06	LMP		Fthylbenzene	<0.025	mg/kg	0.007	0.023	1		03/06/06	LMP		exachlorobutadiene	<0.025	mg/kg	0.015	0.05	1		03/06/06	LMP		sopropylbenzene	<0.025	mg/kg	0.009	0.03	1		03/06/06	LMP		Isopropyl Ether	<0.025	mg/kg	0.014	0.047	1		03/06/06	LMP		5-Isopropyltoluene	<0.025	mg/kg	0.011	0.037	1		03/06/06	LMP		ethyl t-Butyl Ether(MTBE)	<0.025	mg/kg	0.018	0.06	1		03/06/06	LMP	lll results calculated on a dry weight basis. ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.75 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS Attn: John Guhl ⇒ample ID: 813 0.5-4.5' Short Elliott Henderickson Matrix: SOIL Sample Date/Time: 02/15/06 11:15 Lab No. 195317	(•		Dilukian		8-4-			---	----------------------	----------------	------------------	----------------	---------------------------	-------------	-------------------------	------------			Result	<u>Units</u>	<u>LOD</u>	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	Analyst		EPA 8021 (Only positively	identified	analytes	are report	ed on a dry	weight ba	sis				Methylene Chloride	<0.025	mg/kg	0.014	0.047	1		03/06/06	LMP		-Naphthalene	<0.025	mg/kg	0.01	0.033	1		03/06/06	LMP		†-Propylbenzene	<0.025	mg/kg	0.009	0.03	1		03/06/06	LMP		#etrachloroethylene	<0.025	mg/kg	0.009	0.03	1		03/06/06	LMP		1,1,2,2-Tetrachloroethane	<0.025	mg/kg	0.006	0.02	1		03/06/06	LMP		Toluene	<0.025	mg/kg	0.007	0.023	1		03/06/06	LMP		1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	<0.025 <0.025	mg/kg	0.014 0.014	0.047 0.047	1 1		03/06/06	LMP		1,1,1-Trichloroethane	<0.025	mg/kg mg/kg	0.014	0.047	1		03/06/06	LMP		1,1,2-Trichloroethane	<0.025	mg/kg	0.006	0.02	i		03/06/06 03/06/06	LMP LMP		Trichloroethylene	<0.025	mg/kg	0.011	0.037	i		03/06/06	LMP		⊒richlorofluoromethane	<0.025	mg/kg	0.008	0.027	i		03/06/06	LMP		1,2,4-Trimethylbenzene	<0.025	mg/kg	0.012	0.04	i		03/06/06	LMP		1,3,5-Trimethylbenzene	<0.025	mg/kg	0.01	0.033	ì		03/06/06	LMP		Vinyl Chloride	<0.025	mg/kg	0.018	0.06	1	LCL	03/06/06	LMP		ლ- & p-Xylene	0.0276	mg/kg	0.015	0.05	1	MB	03/06/06	LMP		p-Xylene	<0.025	mg/kg	0.008	0.027	1		03/06/06	LMP		∄ romochloromethane	<0.025	mg/kg	0.006	0.02	1		03/06/06	LMP		Bromoform	<0.025	mg/kg	0.008	0.027	1	CSH	03/06/06	LMP		Bromomethane	<0.025	mg/kg	0.009	0.03	1	LCL	03/06/06	LMP		Dibromomethane 1,1-Dichloropropene	<0.025 <0.025	mg/kg	0.008	0.027	1	CSH	03/06/06	LMP		trans-1,3-dichloroprop(yl)e	<0.025	mg/kg mg/kg	0.008 0.008	0.027 0.027	1 1		03/06/06	LMP		Styrene	<0.025	mg/kg	0.003	0.023	i		03/06/06 03/06/06	LMP LMP		7,1,1,2-Tetrachloroethane	<0.025	mg/kg	0.009	0.03	i		03/06/06	LMP		1,2,3-Trichloropropane	<0.025	mg/kg	0.007	0.023	i		03/06/06	LMP		±is-1,3-Dichloroprop(yl)ene	<0.025	mg/kg	0.007	0.023	i		03/06/06	LMP		PID Surrogate Recovery (S)	92.3	%	-	-	1		03/06/06	LMP		HALL Surrogate Recovery (S)	117.	%	-	-	1		03/06/06	LMP		TD 0740										EPA 8310	.0.00400				_					Acenaphthene	<0.00499	mg/kg	0.0047	0.016	1		03/01/06	LMP		Acenaphthylene ■nthracene	<0.00701 <0.00223	mg/kg mg/kg	0.0066 0.0021	0.022 0.007	1 1		03/01/06	LMP		enzo(a)Anthracene	0.00485	mg/kg	0.0021	0.007	1	J	03/01/06 03/01/06	LMP LMP		enzo(a)Pyrene	<0.00244	mg/kg	0.0023	0.0077	i	CSL	03/01/06	LMP		Benzo(b)Fluoranthene	0.0219	mg/kg	0.0021	0.007	i	50 2	03/01/06	LMP		₽enzo(k)Fluoranthene	<0.00308	mg/kg	0.0029	0.0097	ì		03/01/06	LMP		senzo(ghi)Perylene	0.092	mg/kg	0.004	0.013	1		03/01/06	LMP		thrysene	<0.00244	mg/kg	0.0023	0.0077	1		03/01/06	LMP		jibenzo(a,h)Anthracene	<0.00287	mg/kg	0.0027	0.009	1		03/01/06	LMP		Fluoranthene	<0.00276	mg/kg	0.0026	0.0087	1		03/01/06	LMP		=luorene	<0.00351	mg/kg	0.0033	0.011	1		03/01/06	LMP		ndeno(1,2,3-cd)Pyrene	0.0242	mg/kg	0.0022	0.0073	1		03/01/06	LMP		¶-Methyl Naphthalene 2-Methyl Naphthalene	<0.00393	mg/kg	0.0037	0.012	1		03/01/06	LMP		#aphthalene	<0.00436 <0.00489	mg/kg	0.0041	0.014 0.015	1		03/01/06	LMP		Thenanthrene	<0.00436	mg/kg mg/kg	0.0046 0.0041	0.015	1 1		03/01/06 03/01/06	LMP		yrene	0.00325	mg/kg	0.0021	0.007	i	J	03/01/06	LMP LMP																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																															
9,10-Diphenylanthracene (S)	64.2	""97 N9 %	-	-	i	•	03/01/06	LMP		Method 3550 Ultrasonic Ext.	COMP	,,	-	-	· -		02/24/06	MJG		_										PA 9045	0.44				_					DH - Laboratory	8.14		-	-	1		02/20/06	JJP		pH - Laboratory Time	08:15		-	-	•		02/20/06	JJP		JI DNR										Soil Diesel Range Organics	<5.31	mg/kg	-	5.0	1	SPL DUP	02/24/06	LMP		Soil Org Ext - DRO	COMP		-	-	•		02/21/06	KAM											mil results calculated on a dry weight basis. ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com Short Elliott Henderickson ■21 Frenette Drive Thippewa Falls , WI 54729 PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.29 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS Attn: John Guhl Sample ID: MW-5 PZ-5 0-4' Matrix: SOIL Sample Date/Time: 02/13/06 10:30 Lab No. 195295	_	<u>Result</u>	<u>Units</u>	<u>LOD</u>	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	Analyst		---	----------------------	--------------	------------------	----------------	---------------------------	------------	-------------------------	---------		PA 0004 40 1										#PA 8021 (Only positively						ISIS	02/24/07			Methylene Chloride ₩aphthalene	<0.025	mg/kg	0.014	0.047	1		02/21/06	LMP		•	<0.025	mg/kg	0.01	0.033	1		02/21/06	LMP		n-Propylbenzene	<0.025	mg/kg	0.009	0.03	1		02/21/06	LMP		Tetrachloroethylene	<0.025	mg/kg	0.009	0.03	1		02/21/06	LMP		1,1,2,2-Tetrachloroethane	<0.025	mg/kg	0.006	0.02	1		02/21/06	LMP		Toluene	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP		,2,3-Trichlorobenzene	<0.025	mg/kg	0.014	0.047	1		02/21/06	LMP		,2,4-Trichlorobenzene	<0.025	mg/kg	0.014	0.047	1		02/21/06	LMP		4,1,1-Trichloroethane	<0.025	mg/kg	0.008	0.027	1	0011	02/21/06	LMP		1,1,2-Trichloroethane	<0.025	mg/kg	0.006	0.02	1	CSH	02/21/06	LMP		Trichloroethylene	<0.025	mg/kg	0.011	0.037	1	0011	02/21/06	LMP		Trichlorofluoromethane	<0.025	mg/kg	0.008	0.027	1	CSH	02/21/06	LMP		1,2,4-Trimethylbenzene	<0.025	mg/kg	0.012	0.04	1		02/21/06	LMP		1,3,5-Trimethylbenzene	<0.025	mg/kg	0.01	0.033	1		02/21/06	LMP		Yinyl Chloride	<0.025	mg/kg	0.018	0.06	1		02/21/06	LMP		n- & p-Xylene p-Xylene	<0.025	mg/kg	0.015	0.05	1		02/21/06	LMP			<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP		Bromochloromethane	<0.025	mg/kg	0.006	0.02	1	CSH	02/21/06	LMP		Bromoform	<0.025	mg/kg	0.008	0.027	1	CSH	02/21/06	LMP		Bromomethane	<0.025	mg/kg	0.009	0.03	1	CSH	02/21/06	LMP		Pibromomethane	<0.025	mg/kg	0.008	0.027	1	CSH	02/21/06	LMP		1,1-Dichloropropene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP		trans-1,3-dichloroprop(yl)e	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP		Styrene	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP		,1,1,2-Tetrachloroethane	<0.025	mg/kg	0.009	0.03	1	CSH	02/21/06	LMP		,2,3-Trichloropropane	<0.025	mg/kg	0.007	0.023	1	CSH	02/21/06	LMP		tis-1,3-Dichloroprop(yl)ene	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP		PID Surrogate Recovery (S)	81.1	%	-	-	1		02/21/06	LMP		WALL Surrogate Recovery (S)	103.	%	-	•	1		02/21/06	LMP		EPA 8310										Acenaphthene	<0.00617	ma (lea	0.0047	0.016	1		02/28/06	LMP		Acenaphthylene	<0.00866	mg/kg	0.0047	0.018	i					nthracene		mg/kg			1	C11 C21	02/28/06	LMP		enzo(a)Anthracene	<0.00276 <0.00538	mg/kg	0.0021 0.0041	0.007 0.014	1	S1L S2L	02/28/06	LMP		senzo(a)Pyrene	<0.00302	mg/kg	0.0023		1		02/28/06	LMP				mg/kg		0.0077	1		02/28/06	LMP		Benzo(b)Fluoranthene Benzo(k)Fluoranthene	<0.00276	mg/kg	0.0021	0.007			02/28/06	LMP		, ,	<0.00381	mg/kg	0.0029	0.0097	1 1		02/28/06	LMP		Penzo(ghi)Perylene	<0.00525	mg/kg	0.004	0.013			02/28/06	LMP		Thrysene	0.0056	mg/kg	0.0023	0.0077	1	J	02/28/06	LMP		Dibenzo(a,h)Anthracene Fluoranthene	<0.00354	mg/kg	0.0027	0.009	1		02/28/06	LMP			<0.00341	mg/kg	0.0026	0.0087	1		02/28/06	LMP		luorene	<0.00433	mg/kg	0.0033	0.011	1	641	02/28/06	LMP		Indeno(1,2,3-cd)Pyrene	<0.00289	mg/kg	0.0022	0.0073	1	S1L	02/28/06	LMP		I-Methyl Naphthalene	<0.00486	mg/kg	0.0037	0.012	1		02/28/06	LMP		2-Methyl Naphthalene	<0.00538	mg/kg	0.0041	0.014	1		02/28/06	LMP		Maphthalene	<0.00604	mg/kg	0.0046	0.015	1		02/28/06	LMP		henanthrene	<0.00538	mg/kg	0.0041	0.014	1		02/28/06	LMP		Tyrene 9 10-Diphonylanthagene (S)	<0.00276	mg/kg °∕	0.0021	0.007	1		02/28/06	LMP		9,10-Diphenylanthracene (S)	53.6	%	-	-	1		02/28/06	LMP		Method 3550 Ultrasonic Ext.	COMP		-	-	-		02/22/06	KAM	ll results calculated on a dry weight basis. ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.28 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS Attn: John Guhl 421 Frenette Drive Chippewa Falls , WI 54729 Short Elliott Henderickson Sample ID: MW-5 PZ-5 0-4' Matrix: SOIL Sample Date/Time: 02/13/06 10:30 Lab No. 195295	1	<u>Resul t</u>	<u>Units</u>	<u>LOD</u>	LOQ	Dilution <u>Factor</u> Q	<u>ualifiers</u>	Date <u>Analyzed</u>	<u>Analyst</u>		--	------------------	----------------	----------------	---------------	-----------------------------	------------------	-------------------------	----------------		<u>PA 160.3</u> Total Solids	76.2	%	-	0.33	-		02/20/06	AMR		<u>≡PA 3050</u> ■etal Prep	COMP		-	-	-		02/27/06	DJB		EPA 6010 Fotal Arsenic	2.57	mg/kg	0.34	1.13	1		03/07/06	DJB		Total Barium	98.0	mg/kg	0.1	0.33	1	DUP	03/07/06	DJB		Total Cadmium	0.189	mg/kg	0.057	0.19	1	J	03/07/06	DJB		Total Chromium	27.7	mg/kg	0.053	0.18	1		03/07/06	DJB		Jotal Lead	6.56	mg/kg	0.53	1.76	1		03/07/06	DJB		Total Selenium	<0.787	mg/kg	0.6	2.0	1		03/07/06	DJB		Total Silver	<0.262	mg/kg	0.2	0.67	1		03/07/06	DJB		EPA 7471										otal Mercury	0.0669	mg/kg	0.014	0.047	1		03/03/06	MPM		PA 8021 (Only positively	identified	i analytes	are repo	rted on a dr	y weight basi	s				Benzene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP		Rromobenzene	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP		<pre>romodichloromethane</pre>	<0.025	mg/kg	0.006	0.02	1		02/21/06	LMP		-Butylbenzene	<0.025	mg/kg	0.012	0.04	1	LCL	02/21/06	LMP		sec-Butylbenzene	<0.025	mg/kg	0.01	0.033	1		02/21/06	LMP		tert-Butylbenzene	<0.025	mg/kg	0.01	0.033	1		02/21/06	LMP		Tarbon Tetrachloride	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP		Thlorobenzene	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP		-thlorodibromomethane	<0.025	mg/kg	0.02	0.067	1		02/21/06	LMP		Chloroethane	<0.025	mg/kg	0.09	0.30	1	LCL	02/21/06	LMP		Chloroform	<0.025	mg/kg	0.01	0.033	1		02/21/06	LMP		hloromethane	<0.025	mg/kg	0.01	0.033		H DUP	02/21/06	LMP		-Chlorotoluene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP		74-Chlorotoluene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP		1,2-Dibromo-3-chloropropane	<0.025	mg/kg	0.009	0.03	1		02/21/06	LMP		,2-Dibromoethane	<0.025	mg/kg	0.012	0.04	1		02/21/06	LMP		,2-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP		3-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP		1,4-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1 1 CS		02/21/06	LMP		ichlorodifluoromethane 1.1-Dichloroethane	<0.025	mg/kg	0.014	0.047	1 6	H LCL	02/21/06	LMP		, 2-Dichloroethane	<0.025 <0.025	mg/kg	0.009	0.03 0.017	•	L LCL	02/21/06	LMP		1,1-Dichloroethylene	<0.025	mg/kg	0.005 0.016	0.017	1 65	L LUL	02/21/06 02/21/06	LMP		cis-1,2-Dichloroethylene	<0.025	mg/kg	0.018	0.023	1		02/21/06	LMP LMP		rans-1,2-Dichloroethylene	<0.025	mg/kg mg/kg	0.007	0.023	i	LCL	02/21/06	LMP		,2-Dichloropropane	<0.025	mg/kg	0.007	0.033	i	CSH	02/21/06	LMP		,3-Dichloropropane	<0.025	mg/kg	0.007	0.023	1	CON	02/21/06	LMP		2,2-Dichtoropropane	<0.025	mg/kg	0.008	0.027	•	L LCL DUP	02/21/06	LMP		[thylbenzene	<0.025	mg/kg	0.007	0.027	1 63	L CCL DOP	02/21/06	LMP		mexachlorobutadiene	<0.025	mg/kg	0.007	0.05	i		02/21/06	LMP		:sopropylbenzene	<0.025	mg/kg	0.013	0.03	1		02/21/06	LMP		Isopropyl Ether	<0.025	mg/kg	0.014	0.047	i		02/21/06	LMP		p-Isopropyltoluene	<0.025	mg/kg	0.014	0.037	i		02/21/06	LMP		⇒thyl t-Butyl Ether(MTBE)	<0.025	mg/kg	0.018	0.06	i		02/21/06	LMP	Il results calculated on a dry weight basis. ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																								
WEBSITE PREPARED BY: JRS 800-338-7226 715-355-3221 www.usfilter.com PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.30 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 Attn: John Guhl Short Elliott Henderickson	⊒21 Frenette Drive	⊋hippewa Falls , WI 54729 Sample ID: MW-6 0-4' Matrix: SOIL Sample Date/Time: 02/13/06 11:45 Lab No. 195296						Dilution	Date			--	---------------	--------------	-------	--------------	---------------------------------	-----------------	---------		_	<u>Result</u>	<u>Units</u>	LOD	LOQ	<u>Factor</u> <u>Qualifiers</u>	<u>Analyzed</u>	Analyst											<u>PA 160.3</u>									Total Solids	58.0	%	-	0.33	•	02/20/06	AMR								02, 20, 00			EPA 3050									Metal Prep	COMP		_	-	_	02/27/06	DJB		The same of sa	00111					02/21/00	000		EPA 6010									Total Arsenic	2.59	mg/kg	0.34	1.13	1	07/07/06	D ID		Total Barium	75.3		0.34	0.33	1	03/07/06	DJB		Fotal Cadmium	<0.0983	mg/kg				03/07/06	DJB		Total Chromium		mg/kg	0.057	0.19	1	03/07/06	DJB			17.6	mg/kg	0.053	0.18	1	03/07/06	DJB		Jotal Lead	7.29	mg/kg	0.53	1.76	1	03/07/06	DJB		Total Selenium	<1.03	mg/kg	0.6	2.0	1	03/07/06	DJB		ľ otal Silver	<0.345	mg/kg	0.2	0.67	1	03/07/06	DJB		7/74									EPA 7471									_otal Mercury	0.119	mg/kg	0.014	0.047	1	03/03/06	MPM		L									PA 8021 (Only positively		i analytes		rted on a dr	y weight basis				Benzene	<0.025	mg/kg	0.008	0.027	1	02/21/06	LMP		₽ romobenzene	<0.025	mg/kg	0.007	0.023	1	02/21/06	LMP		<pre>Fromodichloromethane</pre>	<0.025	mg/kg	0.006	0.02	1	02/21/06	LMP		n-Butylbenzene	<0.025	mg/kg	0.012	0.04	1 LCL	02/21/06	LMP		sec-Butylbenzene	<0.025	mg/kg	0.01	0.033	1	02/21/06	LMP		tert-Butylbenzene	<0.025	mg/kg	0.01	0.033	i	02/21/06	LMP		Carbon Tetrachloride	<0.025	mg/kg	0.008	0.027	i	02/21/06	LMP		Inlorobenzene	<0.025	mg/kg	0.007	0.023	i	02/21/06	LMP		=hlorodibromomethane	<0.025	mg/kg	0.02	0.067	i	02/21/06	LMP		Chloroethane	<0.025	mg/kg	0.09	0.30	i LCL	02/21/06	LMP		Chloroform	<0.025	mg/kg	0.01	0.033	1	02/21/06	LMP		hloromethane	<0.025	mg/kg	0.01	0.033	1 CSH DUP				-Chlorotoluene	<0.025	mg/kg	0.008	0.033	1 CSR DUP	02/21/06	LMP		4-Chlorotoluene					•	02/21/06	LMP			<0.025	mg/kg	0.008	0.027	1	02/21/06	LMP		1,2-Dibromo-3-chloropropane	<0.025	mg/kg	0.009	0.03	1	02/21/06	LMP		2-Dibromoethane	<0.025	mg/kg	0.012	0.04	1	02/21/06	LMP		,2-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1	02/21/06	LMP		3-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1	02/21/06	LMP		1,4-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1	02/21/06	LMP		Dichlorodifluoromethane	<0.025	mg/kg	0.014	0.047	1 CSH LCL	02/21/06	LMP		,1-Dichloroethane	<0.025	mg/kg	0.009	0.03	1	02/21/06	LMP		2-Dichloroethane	<0.025	mg/kg	0.005	0.017	1 CSL LCL	02/21/06	LMP		1,1-Dichloroethylene	<0.025	mg/kg	0.016	0.053	1	02/21/06	LMP		cis-1,2-Dichloroethylene	<0.025	mg/kg	0.007	0.023	1	02/21/06	LMP		rans-1,2-Dichloroethylene	<0.025	mg/kg	0.01	0.033	1 LCL	02/21/06	LMP		,2-Dichloropropane	<0.025	mg/kg	0.007	0.023	1 CSH	02/21/06	LMP		,3-Dichloropropane	<0.025	mg/kg	0.008	0.027	1	02/21/06	LMP		2,2-Dichloropropane	<0.025	mg/kg	0.008	0.027	1 CSL LCL DUP	02/21/06	LMP		thylbenzene	<0.025	mg/kg	0.007	0.023	1	02/21/06	LMP		exachlorobutadiene	<0.025	mg/kg	0.015	0.05	1	02/21/06	LMP		sopropylbenzene	<0.025	mg/kg	0.009	0.03	1	02/21/06	LMP		sopropyl Ether	<0.025	mg/kg	0.014	0.047	i	02/21/06	LMP		p-Isopropyltoluene	<0.025	mg/kg	0.011	0.037	i	02/21/06	LMP		ethyl t-Butyl Ether(MTBE)	<0.025	mg/kg	0.018	0.06	1	02/21/06	LMP		• • • • • • • • • • • • • • • • • • • •					•	, - 1, 00		Ill results calculated on a dry weight basis. ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE 800-338-7226 715-355-3221 WEBSITE www.usfilter.com PROJECT NO.: NERUB0502.00 REPORT NO. : 195283.31 DATE REC'D : 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS Attn: John Guhl =ample ID: MW-6 0-4' Short Elliott Henderickson ↓21 Frenette Drive ‡hippewa Falls , WI 54729 Matrix: SOIL Sample Date/Time: 02/13/06 11:45	er •	<u>Result</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	<u>Qualifiers</u>	Date <u>Analyzed</u>	Analyst		------------------------------------	----------------	--------------	-----------	--------------	---------------------------	-------------------	-------------------------	------------		PA 8021 (Only positively	identified	analytes	are repor	ted on a dry	, waight bac	ic				Methylene Chloride	<0.025	mg/kg	0.014	0.047	weight bas	313	02/21/06	LMP .		_Naphthalene	<0.025	mg/kg	0.014	0.033	i		02/21/06	LMP		n-Propylbenzene	<0.025	mg/kg	0.009	0.03	i		02/21/06	LMP		etrachloroethylene	<0.025	mg/kg	0.009	0.03	i		02/21/06	LMP		1,2,2-Tetrachloroethane	<0.025	mg/kg	0.006	0.02	i		02/21/06	LMP		Toluene	<0.025	mg/kg	0.007	0.023	i		02/21/06	LMP		,2,3-Trichlorobenzene	<0.025	mg/kg	0.007	0.047	i		02/21/06	LMP		,2,4-Trichlorobenzene	<0.025	mg/kg	0.014	0.047	i		02/21/06	LMP		,1,1-Trichloroethane	<0.025	mg/kg	0.008	0.027	i		02/21/06	LMP		1,1,2-Trichloroethane	<0.025	mg/kg	0.006	0.02	i	CSH	02/21/06	LMP		Trichloroethylene	<0.025	mg/kg	0.011	0.037	<u>i</u>		02/21/06	LMP		richlorofluoromethane	<0.025	mg/kg	0.008	0.027	i	CSH	02/21/06	LMP		,2,4-Trimethylbenzene	<0.025	mg/kg	0.012	0.04	1		02/21/06	LMP		,3,5-Trimethylbenzene	<0.025	mg/kg	0.01	0.033	1		02/21/06	LMP		Vinyl Chloride	<0.025	mg/kg	0.018	0.06	1		02/21/06	LMP		■- & p-Xylene	<0.025	mg/kg	0.015	0.05	1		02/21/06	LMP		=-Xylene	<0.025	mg/kg	0.008	0.027	1	•	02/21/06	LMP		romochloromethane	<0.025	mg/kg	0.006	0.02	1	CSH	02/21/06	LMP		Bromoform	<0.025	mg/kg	0.008	0.027	1	CSH	02/21/06	LMP		_Bromomethane	<0.025	mg/kg	0.009	0.03	1	CSH	02/21/06	LMP		ibromomethane	<0.025	mg/kg	0.008	0.027	1	CSH	02/21/06	LMP		1-Dichloropropene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP		trans-1,3-dichloroprop(yl)e	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP		Styrene	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP		1,1,2- Tetrachloroethane	<0.025	mg/kg	0.009	0.03	1	CSH	02/21/06	LMP		,2,3-Trichloropropane	<0.025	mg/kg	0.007	0.023	1	CSH	02/21/06	LMP		sis-1,3-Dichloroprop(yl)ene	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP		PID Surrogate Recovery (S)	78.9	%	-	-	1		02/21/06	LMP		ALL Surrogate Recovery (S)	107.	%	-	-	1		02/21/06	LMP		PA 8310										Acenaphthene	<0.0081	mg/kg	0.0047	0.016	1		02/28/06	LMP		Acenaphthylene	<0.0114	mg/kg	0.0066	0.022	1		02/28/06	LMP		nthracene	<0.00362	mg/kg	0.0021	0.007	1		02/28/06	LMP		enzo(a)Anthracene	0.0519	mg/kg	0.0041	0.014	1		02/28/06	LMP		menzo(a)Pyrene	0.0678	mg/kg	0.0023	0.0077																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																		
1		02/28/06	LMP		Benzo(b)Fluoranthene	0.114	mg/kg	0.0021	0.007	1		02/28/06	LMP		Renzo(k)Fluoranthene	0.0391	mg/kg	0.0029	0.0097	1		02/28/06	LMP		enzo(ghi)Perylene hrysene	0.106	mg/kg	0.004	0.013	1		02/28/06	LMP		nrysene	0.084	mg/kg	0.0023	0.0077	1		02/28/06	LMP		Uibenzo(a,h)Anthracene	<0.00466	mg/kg	0.0027	0.009	1		02/28/06	LMP		Fluoranthene	0.233	mg/kg	0.0026	0.0087	1	_	02/28/06	LMP		∃uorene	0.0115	mg/kg	0.0033	0.011	1	J	02/28/06	LMP		■ndeno(1,2,3-cd)Pyrene	0.0614	mg/kg	0.0022	0.0073	1		02/28/06	LMP		-Methyl Naphthalene	<0.00638	mg/kg	0.0037	0.012	1		02/28/06	LMP		2-Methyl Naphthalene	<0.00707	mg/kg	0.0041	0.014	1		02/28/06	LMP		Naphthalene	<0.00793	mg/kg	0.0046	0.015	1		02/28/06	LMP		nenanthrene	0.121	mg/kg	0.0041	0.014	1		02/28/06	LMP		rene ,10-Diphenylanthracene (S)	0.0621 28.7	mg/kg %	0.0021	0.007	1 1		02/28/06	LMP		Method 3550 Ultrasonic Ext.	COMP	/0	-	-	'_		02/28/06 02/22/06	LMP KAM		neshod 3550 offiasomic Ext.	COMP		-	-	•		02/22/00	KAIT .	_l results calculated on a dry weight basis. ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com PROJECT NO.: NERUB0502.00 REPORT NO.: 195283.32 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS Attn: John Guhl 421 Frenette Drive Chippewa Falls , WI 54729 Short Elliott Henderickson Sample ID: MW-7 0-4' Matrix: SOIL Sample Date/Time: 02/13/06 12:30 Lab No. 195297	<u> </u>										----------------------------------	---------------	----------------	----------	--------------	---------------------------	-------------	-------------------------	----------------			<u>Result</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	<u>Analyst</u>		EPA 160.3										Total Solids	77.7	%	-	0.33	-		02/20/06	AMR		■EPA 3050										Metal Prep	COMP		-	-	-		02/27/06	DJB		EPA 6010	2 /7			4 49						Total Arsenic	2.43	mg/kg	0.34	1.13	1		03/07/06	DJB		Total Barium	70.4	mg/kg	0.1	0.33	1		03/07/06	DJB		□otal Cadmium	0.13	mg/kg	0.057	0.19	1	J	03/07/06	DJB		Total Chromium	15.1	mg/kg	0.053	0.18	1		03/07/06	DJB		Total Lead	14.5	mg/kg	0.53	1.76	1		03/07/06	DJB		Total Selenium	1.08	mg/kg	0.6	2.0	1	J	03/07/06	DJB		Total Silver	<0.257	mg/kg	0.2	0.67	1		03/07/06	DJB		<u>EPA 7471</u> ≢otal Mercury	0.0849	(1	0.01/	0.047	4		07 (07 (0)			l cat wercury	0.0049	mg/kg	0.014	0.047	1		03/03/06	MPM		EPA 8021 (Only positively	identified	d analytes	are repo	rted on a dr	y weight ba	sis				Benzene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP		Bromobenzene	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP		∄ romodichloromethane	<0.025	mg/kg	0.006	0.02	1		02/21/06	LMP		n-Butylbenzene	<0.025	mg/kg	0.012	0.04	1	LCL	02/21/06	LMP		= ec-Butylbenzene	<0.025	mg/kg	0.01	0.033	1		02/21/06	LMP		tert-Butylbenzene	<0.025	mg/kg	0.01	0.033	i		02/21/06	LMP		Tarbon Tetrachloride	<0.025	mg/kg	0.008	0.027	i		02/21/06	LMP		thlorobenzene	<0.025	mg/kg	0.007	0.023	i		02/21/06	LMP		Shlorodibromomethane	<0.025	mg/kg	0.02	0.067	i		02/21/06	LMP		Chloroethane	<0.025	mg/kg	0.09	0.30	i	LCL	02/21/06	LMP		Chloroform	<0.025	mg/kg	0.01	0.033	i	LUL	02/21/06	LMP		Chloromethane	<0.025	mg/kg	0.01	0.033	1	CSH DUP	02/21/06	LMP		?-Chlorotoluene	<0.025	mg/kg	0.008	0.027	1	0011 001	02/21/06	LMP		-Chlorotoluene	<0.025	mg/kg	0.008	0.027	i		02/21/06	LMP		1,2-Dibromo-3-chloropropane	<0.025	mg/kg	0.009	0.03	i		02/21/06	LMP		1,2-Dibromoethane	<0.025		0.012	0.04	i					,2-Dichlorobenzene	<0.025	mg/kg mg/kg	0.008	0.027	i		02/21/06	LMP LMP		,3-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		02/21/06 02/21/06	LMP		1,4-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1			LMP		Dichlorodifluoromethane	<0.025		0.008	0.027	1	CSH LCL	02/21/06			1.1-Dichloroethane		mg/kg			1	CSH LCL	02/21/06	LMP		, 2-Dichloroethane	<0.025	mg/kg	0.009	0.03	1	001 101	02/21/06	LMP		1-Dichlerecthylere	<0.025	mg/kg	0.005	0.017	-	CSL LCL	02/21/06	LMP		7,1-Dichloroethylene	<0.025	mg/kg	0.016	0.053	1		02/21/06	LMP		cis-1,2-Dichloroethylene	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP		rans-1,2-Dichloroethylene	<0.025	mg/kg	0.01	0.033	1	LCL	02/21/06	LMP		,2-Dichloropropane	<0.025	mg/kg	0.007	0.023	1	CSH	02/21/06	LMP		,3-Dichloropropane	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP		2,2-Dichloropropane	<0.025	mg/kg	0.008	0.027	1	CSL LCL DUP	02/21/06	LMP		Ethylbenzene	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP		exachlorobutadiene	<0.025	mg/kg	0.015	0.05	1		02/21/06	LMP		sopropylbenzene	<0.025	mg/kg	0.009	0.03	1		02/21/06	LMP		¹ Isopropyl Ether	<0.025	mg/kg	0.014	0.047	1		02/21/06	LMP		p-Isopropyltoluene	<0.025	mg/kg	0.011	0.037	1		02/21/06	LMP		ethyl t-Butyl Ether(MTBE)	<0.025	mg/kg	0.018	0.06	1		02/21/06	LMP											Il results calculated on a dry weight basis. ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE 800-338-7226 715-355-3221 WEBSITE www.usfilter.com PROJECT NO.: NERUB0502.00 REPORT NO. : 195283.33 DATE REC'D : 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS ∰ttn: John Guhl ample ID: MW-7 0-4' Short Elliott Henderickson ■21 Frenette Drive □hippewa Falls , WI 54729 Matrix: SOIL Sample Date/Time: 02/13/06 12:30	i T	<u>Result</u>	<u>Units</u>	LOD	LOQ	Dilution Factor	Qualifiers	Date <u>Analyzed</u>	Analyst		-----------------------------	---------------	----------------	--------	--------	--------------------	------------	-------------------------	---------		EPA 8021 (Only positively	idomtified				iaht ba	-:-				Methylene Chloride	<0.025		0.014	0.047	weight ba	SIS	02/21/04	LMP		↑ ¥aphthalene	0.045	mg/kg mg/kg	0.014	0.047	1		02/21/06 02/21/06	LMP				• •			i					h-Propyl benzene	<0.025	mg/kg	0.009	0.03	1		02/21/06	LMP		tetrachloroethylene	<0.025	mg/kg	0.009	0.03	1		02/21/06	LMP		1,1,2,2-Tetrachloroethane	<0.025	mg/kg	0.006	0.02	•		02/21/06	LMP		Toluene	<0.025	mg/kg	0.007	0.023	1 1		02/21/06	LMP		1,2,3-Trichlorobenzene	<0.025	mg/kg	0.014	0.047	1		02/21/06	LMP		,2,4-Trichlorobenzene	<0.025	mg/kg	0.014	0.047	1		02/21/06	LMP		1,1-Trichloroethane	<0.025	mg/kg	0.008	0.027	1	COU	02/21/06	LMP		1,1,2-Trichloroethane	<0.025	mg/kg	0.006	0.02	•	CSH	02/21/06	LMP		Trichloroethylene	<0.025	mg/kg	0.011	0.037	1	COU	02/21/06	LMP		richlorofluoromethane	<0.025	mg/kg	0.008	0.027	1	CSH	02/21/06	LMP		,2,4-Trimethylbenzene	<0.025	mg/kg	0.012	0.04	1		02/21/06	LMP		1,3,5-Trimethylbenzene	<0.025	mg/kg	0.01	0.033	1		02/21/06	LMP		Vinyl Chloride	<0.025	mg/kg	0.018	0.06	1		02/21/06	LMP		m- & p-Xylene	<0.025	mg/kg	0.015	0.05	1		02/21/06	LMP		b-Xylene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP		Bromochloromethane	<0.025	mg/kg	0.006	0.02	1	CSH	02/21/06	LMP		Bromoform	<0.025	mg/kg	0.008	0.027	1	CSH	02/21/06	LMP		Bromomethane	<0.025	mg/kg	0.009	0.03	1	CSH	02/21/06	LMP		Dibromomethane	<0.025	mg/kg	0.008	0.027	1	CSH	02/21/06	LMP		1,1-Dichloropropene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP		trans-1,3-dichloroprop(yl)e	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP		Styrene	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP		1,1,1,2-Tetrachloroethane	<0.025	mg/kg	0.009	0.03	1	CSH	02/21/06	LMP		,2,3-Trichloropropane	<0.025	mg/kg	0.007	0.023	1	CSH	02/21/06	LMP		tis-1,3-Dichloroprop(yl)ene	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP		PID Surrogate Recovery (S)	79.5	%	-	-	1		02/21/06	LMP		■ALL Surrogate Recovery (S)	89.8	%	-	-	1		02/21/06	LMP		2740										EPA 8310	0.404						07.04.04			Acenaphthene	<0.121	mg/kg	0.0047	0.016	20		03/01/06	LMP		Acenaphthylene	<0.17	mg/kg	0.0066	0.022	20		03/01/06	LMP		mnthracene	0.275	mg/kg	0.0021	0.007	20		03/01/06	LMP		enzo(a)Anthracene	0.988	mg/kg	0.0041	0.014	20		03/01/06	LMP		Benzo(a)Pyrene	0.815	mg/kg	0.0023	0.0077	20		03/01/06	LMP		Benzo(b)Fluoranthene	1.01	mg/kg	0.0021	0.007	20		03/01/06	LMP		Benzo(k)Fluoranthene	0.537	mg/kg	0.0029	0.0097	20		03/01/06	LMP		enzo(ghi)Perylene	0.471	mg/kg	0.004	0.013	20		03/01/06	LMP		hrysene	1.09	mg/kg	0.0023	0.0077	20		03/01/06	LMP		Dibenzo(a,h)Anthracene	<0.0695	mg/kg	0.0027	0.009	20		03/01/06	LMP		Fluoranthene	3.71	mg/kg	0.0026	0.0087	20		03/01/06	LMP		luorene	0.136	mg/kg	0.0033	0.011	20		03/01/06	LMP																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																												
ndeno(1,2,3-cd)Pyrene	0.726	mg/kg	0.0022	0.0073	20		03/01/06	LMP		1-Methyl Naphthalene	<0.0952	mg/kg	0.0037	0.012	20		03/01/06	LMP		2-Methyl Naphthalene	<0.106	mg/kg	0.0041	0.014	20		03/01/06	LMP		Naphthalene	<0.118	mg/kg	0.0046	0.015	20		03/01/06	LMP		Phenanthrene	1.92	mg/kg	0.0041	0.014	20		03/01/06	LMP		Pyrene	1.33	mg/kg	0.0021	0.007	20		03/01/06	LMP		Method 3550 Ultrasonic Ext.	COMP		-		-		02/22/06	KAM	ll results calculated on a dry weight basis. ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.35 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS _Attn: John Guhl 421 Frenette Drive Sample ID: MW-8 0-4' Short Elliott Henderickson Chippewa Falls , WI 54729 Matrix: SOIL Sample Date/Time: 02/13/06 14:30		<u>Result</u>	<u>Units</u>	<u>LOD</u>	LOQ	Dilution <u>Factor</u>	Qualifiers	Date Analyzed	<u>Analyst</u>		--------------------------------------	---------------	--------------	------------	--------------	---------------------------	------------	------------------	----------------		EPA 8021 (Only positively	identified	lanalytes	are repor	ted on a dry	weight ha	eie				Methylene Chloride	<0.025	mg/kg	0.014	0.047	1	1010	02/21/06	LMP		Naphthalene	<0.025	mg/kg	0.01	0.033	i		02/21/06	LMP		n-Propylbenzene	<0.025	mg/kg	0.009	0.03	i		02/21/06	LMP		Tetrachloroethylene	<0.025	mg/kg	0.009	0.03	i		02/21/06	LMP		1,1,2,2-Tetrachloroethane	<0.025	mg/kg	0.006	0.02	i		02/21/06	LMP		Toluene	<0.025	mg/kg	0.007	0.023	i		02/21/06	LMP		1,2,3-Trichlorobenzene	<0.025	mg/kg	0.014	0.047	1		02/21/06	LMP		1,2,4-Trichlorobenzene	<0.025	mg/kg	0.014	0.047	i		02/21/06	LMP		1,1,1-Trichloroethane	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP		1,1,2-Trichloroethane	<0.025	mg/kg	0.006	0.02	1	CSH	02/21/06	LMP		Trichloroethylene	<0.025	mg/kg	0.011	0.037	1		02/21/06	LMP		Trichlorofluoromethane	<0.025	mg/kg	0.008	0.027	1	CSH	02/21/06	LMP		1,2,4-Trimethylbenzene	<0.025	mg/kg	0.012	0.04	1		02/21/06	LMP		1,3,5-Trimethylbenzene	<0.025	mg/kg	0.01	0.033	1		02/21/06	LMP		Vinyl Chloride	<0.025	mg/kg	0.018	0.06	1		02/21/06	LMP		m- & p-Xylene	<0.025	mg/kg	0.015	0.05	1		02/21/06	LMP		■o-Xylene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP		Bromochloromethane	<0.025	mg/kg	0.006	0.02	1	CSH	02/21/06	LMP		Bromoform	<0.025	mg/kg	0.008	0.027	1	CSH	02/21/06	LMP		■Bromomethane	<0.025	mg/kg	0.009	0.03	1	CSH	02/21/06	LMP		⇒ibromomethane	<0.025	mg/kg	0.008	0.027	1	CSH	02/21/06	LMP			<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP		trans-1,3-dichloroprop(yl)e	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP		Styrene	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP		<pre>1,1,1,2-Tetrachloroethane</pre>	<0.025	mg/kg	0.009	0.03	1	CSH	02/21/06	LMP		1,2,3-Trichloropropane	<0.025	mg/kg	0.007	0.023	1	CSH	02/21/06	LMP		■cis-1,3-Dichloroprop(yl)ene	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP		PID Surrogate Recovery (S)	77.4	%	-	-	1		02/21/06	LMP		HALL Surrogate Recovery (S)	100.	%	-	-	1		02/21/06	LMP		≡PA 8310										Acenaphthene	<0.00544	mg/kg	0.0047	0.016	1	•	02/28/06	LMP		Acenaphthylene	<0.00764	mg/kg	0.0066	0.022	1		02/28/06	LMP		■nthracene	<0.00243	mg/kg	0.0021	0.007	1		02/28/06	LMP		Benzo(a)Anthracene	0.0122	mg/kg	0.0041	0.014	1	J	02/28/06	LMP		Benzo(a)Pyrene	<0.00266	mg/kg	0.0023	0.0077	1		02/28/06	LMP		Benzo(b)Fluoranthene	0.0355	mg/kg	0.0021	0.007	1		02/28/06	LMP		Benzo(k)Fluoranthene	0.0208	mg/kg	0.0029	0.0097	1		02/28/06	LMP		Benzo(ghi)Perylene	<0.00463	mg/kg	0.004	0.013	1		02/28/06	LMP		Chrysene	0.0543	mg/kg	0.0023	0.0077	1		02/28/06	LMP		Dibenzo(a,h)Anthracene	<0.00313	mg/kg	0.0027	0.009	1		02/28/06	LMP		Fluoranthene	<0.00301	mg/kg	0.0026	0.0087	1		02/28/06	LMP		Fluorene	<0.00382	mg/kg	0.0033	0.011	1		02/28/06	LMP		Indeno(1,2,3-cd)Pyrene	0.0251	mg/kg	0.0022	0.0073	1		02/28/06	LMP		1-Methyl Naphthalene	0.0566	mg/kg	0.0037	0.012	1		02/28/06	LMP		2-Methyl Naphthalene	0.0635	mg/kg	0.0041	0.014	1		02/28/06	LMP		Naphthalene	0.0316	mg/kg	0.0046	0.015	1		02/28/06	LMP		Phenanthrene	0.104	mg/kg	0.0041	0.014	1		02/28/06	LMP		Pyrene 9 10-Diphonylanthagene (S)	<0.00243	mg/kg	0.0021	0.007	1		02/28/06	LMP		9,10-Diphenylanthracene (S)	45.0	%	-	-	1		02/28/06	LMP		Method 3550 Ultrasonic Ext.	COMP		-	-	-		02/22/06	KAM	_ll results calculated on a dry weight basis. ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com Short Elliott Henderickson -421 Frenette Drive -Chippewa Falls , WI 54729 Attn: John Guhl ⇒Sample ID: MW-8 0-4* Matrix: SOIL DATE REC'D : 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS PROJECT NO.: NERUBO502.00 REPORT NO. : 195283.34 Sample Date/Time: 02/13/06 14:30 Lab No. 195298	•				•	• •				--	------------------	--------------	----------------	----------------	---	-----------------------------	----------------			<u>Result</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u> <u>Qualifie</u>	Date ers <u>Analyzed</u>	<u>Analyst</u>											EPA 160.3 Total Solids	86.4	%	_	0.33	-	02/20/06	AMR		70007 001.00	00.4	,,		0.55		02,20,00	7.11.13		EPA 3050					•				™etal Prep	COMP		•	-	•	02/27/06	DJB		EPA 6010									Total Arsenic	3.38	mg/kg	0.34	1.13	1	03/07/06	DJB		Total Barium	47.1	mg/kg	0.1	0.33	i	03/07/06	DJB		Total Cadmium	0.288	mg/kg	0.057	0.19	1	03/07/06	DJB		Total Chromium	6.32	mg/kg	0.053	0.18	1	03/07/06	DJB		Total Lead	43.8	mg/kg	0.53	1.76	i	03/07/06	DJB		Total Selenium	<0.694	mg/kg	0.6	2.0	i	03/07/06	DJB		Total Silver	<0.231	mg/kg	0.2	0.67	i	03/07/06	DJB		The state of s	101231	11197 149	0.2	0.07	•	03/01/00	505		EPA 7471									Total Mercury	0.16	mg/kg	0.014	0.047	1	03/03/06	MPM											EPA 8021 (Only positively					•	00:04:07			Benzene	<0.025	mg/kg	800.0	0.027	1	02/21/06	LMP		Bromobenzene	<0.025	mg/kg	0.007	0.023	1	02/21/06	LMP		8romodichloromethane	<0.025	mg/kg	0.006	0.02	1	02/21/06	LMP		n-Butylbenzene	<0.025	mg/kg	0.012	0.04	1 LCL	02/21/06	LMP		sec-Butylbenzene	<0.025	mg/kg	0.01	0.033	1	02/21/06	LMP		tert-Butylbenzene	<0.025	mg/kg	0.01	0.033	1	02/21/06	LMP		Sarbon Tetrachloride	<0.025	mg/kg	800.0	0.027	1	02/21/06	LMP		Chlorobenzene	<0.025	mg/kg	0.007	0.023	1	02/21/06	LMP		Chlorodibromomethane	<0.025	mg/kg	0.02	0.067	1	02/21/06	LMP		Chloroethane	<0.025	mg/kg	0.09	0.30	1 LCL	02/21/06	LMP		Chloroform	<0.025	mg/kg	0.01	0.033	1	02/21/06	LMP		Chloromethane	<0.025	mg/kg	0.01	0.033	1 CSH DUP																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																										
02/21/06	LMP		2-Chlorotoluene	<0.025	mg/kg	0.008	0.027	1	02/21/06	LMP		74-Chlorotoluene	<0.025	mg/kg	0.008	0.027	1	02/21/06	LMP		1,2-Dibromo-3-chloropropane	<0.025	mg/kg	0.009	0.03	1	02/21/06	LMP		,2-Dibromoethane	<0.025	mg/kg	0.012	0.04	1	02/21/06	LMP		,2-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1	02/21/06	LMP		3-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1	02/21/06	LMP		1,4-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1	02/21/06	LMP		Dichlorodifluoromethane	<0.025	mg/kg	0.014	0.047	1 CSH LCL	02/21/06	LMP		,1-Dichloroethane	<0.025	mg/kg	0.009	0.03	1 001 101	02/21/06	LMP		,2-Dichloroethane	<0.025	mg/kg	0.005	0.017	1 CSL LCL	02/21/06	LMP		1,1-Dichloroethylene	<0.025	mg/kg	0.016	0.053	1	02/21/06	LMP		cis-1,2-Dichloroethylene	<0.025	mg/kg	0.007	0.023	1	02/21/06	LMP		rans-1,2-Dichloroethylene	<0.025	mg/kg	0.01	0.033	1 LCL 1 CSH	02/21/06	LMP		,2-Dichloropropane	<0.025	mg/kg	0.007	0.023		02/21/06	LMP		,3-Dichloropropane 2,2-Dichloropropane	<0.025	mg/kg	0.008	0.027	1 CSL LCL D	02/21/06	LMP		Fthylbenzene	<0.025 <0.025	mg/kg	0.008 0.007	0.027 0.023	1 CSL LCL I	• •	LMP		exachlorobutadiene		mg/kg		0.023	1	02/21/06	LMP			<0.025	mg/kg	0.015		1	02/21/06	LMP		sopropylbenzene Isopropyl Ether	<0.025 <0.025	mg/kg	0.009 0.014	0.03 0.047	1	02/21/06	LMP		p-Isopropyl Ether		mg/kg			1	02/21/06	LMP		emethyl t-Butyl Ether(MTBE)	<0.025 <0.025	mg/kg	0.011	0.037 0.06	1	02/21/06	LMP LMP		Eculy C bucyt Ether (MIDE)	NO.023	mg/kg	0.018	0.00	•	02/21/06	LITE	all results calculated on a dry weight basis. TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com ## A Siemens Business PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.36 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS Attn: John Guhl ≒ample ID: MW-8 4-6' Matrix: SOIL Sample Date/Time: 02/13/06 14:45 Lab No. 195299	1	<u>Result</u>	<u>Units</u>	LOD	<u>LOQ</u>	Dilution <u>Factor</u> <u>Qualifiers</u>	Date <u>Analyzed</u>	Analyst		------------------------------------	------------------	----------------	----------------	----------------	--	-------------------------	------------		EPA 160.3 Total Solids	66.7	%	-	0.33	. -	02/20/06	AMR		EPA 3050									Metal Prep	COMP		-	-	•	02/27/06	DJB		EPA 6010									■otal Arsenic	2.29	mg/kg	0.34	1.13	1	03/07/06	DJB		■otal Barium	105.	mg/kg	0.1	0.33	1	03/07/06	DJB		■otal Cadmium	0.804	mg/kg	0.057	0.19	1	03/07/06	DJB		Total Chromium	41.8	mg/kg	0.053	0.18	1	03/07/06	DJB		Jotal Lead	9.54	mg/kg	0.53	1.76	1	03/07/06	DJB		Total Selenium	<0.9	mg/kg	0.6	2.0	1	03/07/06	DJB		■ otal Silver	<0.3	mg/kg	0.2	0.67	1	03/07/06	DJB		EPA 7471									■otal Mercury	0.078	mg/kg	0.014	0.047	1	03/03/06	MPM		EPA 8021 (Only positively	identified	l analytes	are repoi	rted on a dr	y weight basis				Benzene	<0.025	mg/kg	0.008	0.027	1	02/21/06	LMP		βromobenzene	<0.025	mg/kg	0.007	0.023	1	02/21/06	LMP		≱romodichloromethane	<0.025	mg/kg	0.006	0.02	1	02/21/06	LMP		n-Butylbenzene	<0.025	mg/kg	0.012	0.04	1 LCL	02/21/06	LMP		sec-Butylbenzene	<0.025	mg/kg	0.01	0.033	1	02/21/06	LMP		tert-Butylbenzene	<0.025	mg/kg	0.01	0.033	· 1	02/21/06	LMP		Darbon Tetrachloride	<0.025	mg/kg	0.008	0.027	1	02/21/06	LMP		Shlorobenzene	<0.025	mg/kg	0.007	0.023	1	02/21/06	LMP		Chlorodibromomethane	<0.025	mg/kg	0.02	0.067	1	02/21/06	LMP		Chloroethane	<0.025	mg/kg	0.09	0.30	1 LCL	02/21/06	LMP		fhloroform	<0.025	mg/kg	0.01	0.033	1	02/21/06	LMP		thloromethane	<0.025	mg/kg	0.01	0.033	1 CSH DUP	02/21/06	LMP		2- Chlorotoluene	<0.025	mg/kg	0.008	0.027	1	02/21/06	LMP		4-Chlorotoluene	<0.025	mg/kg	0.008	0.027	1	02/21/06	LMP		1,2-Dibromo-3-chloropropane	<0.025	mg/kg	0.009	0.03	1	02/21/06	LMP		_,2-Dibromoethane	<0.025	mg/kg	0.012	0.04	1	02/21/06	LMP		=,2-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1	02/21/06	LMP		=,3-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1	02/21/06	LMP		1,4-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1	02/21/06	LMP		Pichlorodifluoromethane	<0.025	mg/kg	0.014	0.047	1 CSH LCL	02/21/06	LMP		,1-Dichloroethane	<0.025	mg/kg	0.009	0.03	1	02/21/06	LMP		,2-Dichloroethane	<0.025	mg/kg	0.005	0.017	1 CSL LCL	02/21/06	LMP		1,1-Dichloroethylene	<0.025	mg/kg	0.016	0.053	1	02/21/06	LMP		cis-1,2-Dichloroethylene	<0.025	mg/kg	0.007	0.023	1	02/21/06	LMP		trans-1,2-Dichloroethylene	<0.025	mg/kg	0.01	0.033	1 LCL	02/21/06	LMP		1,2-Dichloropropane	<0.025	mg/kg	0.007	0.023	1 CSH	02/21/06	LMP		3.3-Dichloropropane	<0.025	mg/kg	0.008	0.027	1	02/21/06	LMP		2,2-Dichloropropane	<0.025	mg/kg	0.008	0.027	1 CSL LCL DUP	02/21/06	LMP		thylbenzene exachlorobutadiene	<0.025	mg/kg	0.007	0.023	1	02/21/06	LMP			<0.025	mg/kg	0.015	0.05	1	02/21/06	LMP		sopropyl benzene	<0.025	mg/kg	0.009	0.03	1	02/21/06	LMP		Isopropyl Ether p-Isopropyltoluene	<0.025 <0.025	mg/kg	0.014	0.047 0.037	1	02/21/06	LMP		■ethyl t-Butyl Ether(MTBE)	<0.025	mg/kg mg/kg	0.011 0.018	0.037	1	02/21/06 02/21/06	LMP LMP			10.023	mg/ Kg	0.010	0.00	1	02/21/00	LPIF	_ll results calculated on a dry weight basis. ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.37 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS Attn: John Guhl **≼21** Frenette Drive ⇒ample ID: MW-8 4-6' Short Elliott Henderickson Chippewa Falls , WI 54729 Matrix: SOIL Sample Date/Time: 02/13/06 14:45	Result Units LOO LOO Factor Qualifiers Analyzed Analyzet						Dilusi		D - 4 -			---	--	------------	-----------------------	-----------	--------------	-----------------	-------------------	------------------	---------		Methylene Chloride		Result	Units	1.00	LOO	Dilution	Qualifiers	Date Analyzed	Analyst		Methylene Chloride		Resure	<u>Unit t s</u>	<u> </u>	LOW	<u>i ac coi</u>	<u>waattitets</u>	Allatyzeu	Anatyst		Methylene Chloride	EPA 8021 (Only positively	identified	analytes	are repor	ted on a dry	weight ba	sis										1		02/21/06	LMP		Tetrachloroethylene	Naphthalene	<0.025	mg/kg	0.01	0.033	1		02/21/06	LMP		1,1,2,2-Tetrachloroethane		<0.025	mg/kg	0.009	0.03			02/21/06	LMP		Toluene			mg/kg	0.009	0.03			02/21/06	LMP		7.2,3-Trichlorobenzene			mg/kg	0.006	0.02			02/21/06	LMP		1,2,4-Trichloroehazene			mg/kg					02/21/06	LMP		1,1-Trichloroethane											1,1,2-Trichloroethane	_ * . * .										Trichloroethylene	_ * . * .										Trichlorofluoromethane	* . * .				–																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																													
CSH				7.2,4-Trimethylbenzene	• • • • • • • • • • • • • • • • • • • •					•					1,3,5-Trimethylbenzene	_					•	CSH				Vinyl Chloride											P-Xylene											c-xylene <0.025 mg/kg 0.008 0.027 1 02/21/06 LMP LMP Bromochloromethane <0.025 mg/kg								• •	***		Bromochtoromethane											Bromorem											Promomethane											Diptomomethane						-					1-Dichloropropene	I										Trans-1,3-dichloroprop(yl)e			• •				CSH				Styrene	1,1-vichloropropene										1,1,1,2-Tetrachloroethane	trans-1,3-dichtoroprop(yt)e										1,2,3-Trichloropropane											Cis-1,3-Dichloroprop(yl)ene											PID Surrogate Recovery (S) 77.7 % - 1 02/21/06 LMP #ALL Surrogate Recovery (S) 105. % 1 02/21/06 LMP #ACCHAPHTHER							CSH				#ALL Surrogate Recovery (S) 105. % 1 02/21/06 LMP Part											### Repair											Acenaphthene <0.00705	TALL Surrogate Recovery (5)	105.	<i>/</i> ₆	-	-	1		02/21/06	LMP		Acenaphthene <0.00705	FPA 8310										Acenaphthylene		<0.00705	ma/ka	0 0047	0.016	1		02/28/06	1 MD		Anthracene	•										Benzo(a)Anthracene <0.00615											Benzo(a)Pyrene <0.00345 mg/kg 0.0023 0.0077 1 02/28/06 LMP Benzo(b)Fluoranthene <0.00315	4										Benzo(b)Fluoranthene <0.00315											Benzo(k)Fluoranthene <0.00435 mg/kg 0.0029 0.0097 1 02/28/06 LMP Henzo(ghi)Perylene <0.006			• •								Renzo(ghi)Perylene											#hrysene	III To a first the second of t										Bibenzo(a,h)Anthracene <0.00405											Fluoranthene <0.0039 mg/kg 0.0026 0.0087 1 02/28/06 LMP luorene <0.00495	Dibenzo(a,h)Anthracene										luorene <0.00495 mg/kg 0.0033 0.011 1 02/28/06 LMP ndeno(1,2,3-cd)Pyrene <0.0033											ndeno(1,2,3-cd)Pyrene <0.0033 mg/kg 0.0022 0.0073 1 02/28/06 LMP -Methyl Naphthalene <0.00555	⁻ luorene	<0.00495			0.011	1					-Methyl Naphthalene	ndeno(1,2,3-cd)Pyrene	<0.0033									2-Methyl Naphthalene											Naphthalene <0.0069 mg/kg 0.0046 0.015 1 02/28/06 LMP Phenanthrene <0.00615	2-Methyl Naphthalene	<0.00615			0.014	1					Phenanthrene <0.00615 mg/kg 0.0041 0.014 1 02/28/06 LMP Pyrene <0.00315 mg/kg 0.0021 0.007 1 02/28/06 LMP 9,10-Diphenylanthracene (S) 31.4 % 1 02/28/06 LMP		<0.0069			0.015	1					9,10-Diphenylanthracene (S) 31.4 % 1 02/28/06 LMP	1		mg/kg	0.0041	0.014				LMP		to at a member and		<0.00315	mg/kg	0.0021	0.007	1		02/28/06	LMP		Method 3550 Ultrasonic Ext. COMP 02/22/06 KAM			%	•	-	1		02/28/06	LMP			Method 3550 Ultrasonic Ext.	COMP		•	-	-		02/22/06	KAM	ll results calculated on a dry weight basis. ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.39 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS _Attn: John Guhl 421 Frenette Drive Sample ID: MW-9 0-4" Short Elliott Henderickson Chippewa Falls , WI 54729 Matrix: SOIL Sample Date/Time: 02/13/06 15:15	ţ	<u>Result</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	Analyst		--	------------------	----------------	----------------	---------------	---------------------------	------------	-------------------------	------------		EPA 8021 (Only positively	. idontific		one Bono	.+	iaba b.	a i a				EPA 8021 (Only positively Methylene Chloride	<0.025			•	•	ISIS	02/21/04	LMD		Naphthalene	0.307	mg/kg	0.014	0.047	1		02/21/06	LMP		n-Propylbenzene	0.0613	mg/kg	0.01	0.033	1 1		02/21/06	LMP		Tetrachloroethylene		mg/kg	0.009	0.03	1		02/21/06	LMP		1,1,2,2-Tetrachloroethane	<0.025 <0.025	mg/kg	0.009	0.03	1		02/21/06	LMP		Toluene	<0.025	mg/kg	0.006 0.007	0.02 0.023	1		02/21/06	LMP		1,2,3-Trichlorobenzene	<0.025	mg/kg		0.023	1		02/21/06	LMP		1,2,4-Trichlorobenzene	<0.025	mg/kg mg/kg	0.014 0.014	0.047	1		02/21/06	LMP		1,1,1-Trichloroethane	<0.025		0.008	0.047	1		02/21/06	LMP		1,1,2-Trichloroethane	<0.025	mg/kg mg/kg	0.006	0.027	1	CSH	02/21/06 02/21/06	LMP		Trichloroethylene	<0.025	mg/kg	0.000	0.037	1	Con	02/21/06	LMP LMP		Trichlorofluoromethane	<0.025	mg/kg	0.008	0.037	i	CSH	02/21/06	LMP		1,2,4-Trimethylbenzene	0.217	mg/kg	0.012	0.04	i	Con	02/21/06	LMP		1,3,5-Trimethylbenzene	0.126	mg/kg	0.012	0.033	i		02/21/06	LMP		Vinyl Chloride	<0.025	mg/kg	0.018	0.05	1		02/21/06	LMP		n- & p-Xylene	0.0472	mg/kg	0.015	0.05	1	J	02/21/06	LMP		⇒-Xylene	0.059	mg/kg	0.008	0.027	i	J	02/21/06	LMP		∃romochloromethane	<0.025	mg/kg	0.006	0.02	i	CSH	02/21/06	LMP		Bromoform	<0.025	mg/kg	0.008	0.027	i	CSH	02/21/06	LMP		Bromomethane	<0.025	mg/kg	0.009	0.03	1	CSH	02/21/06	LMP		ibromomethane	<0.025	mg/kg	0.009	0.027	1	CSH	02/21/06	LMP		,1-Dichloropropene	<0.025	mg/kg	0.008	0.027	1	Con	02/21/06	LMP		trans-1,3-dichloroprop(yl)e	<0.025	mg/kg	0.008	0.027	i		02/21/06	LMP		Styrene	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP		■,1,1,2-Tetrachloroethane	<0.025	mg/kg	0.007	0.03	1	CSH	02/21/06	LMP		■,2,3-Trichloropropane	<0.025	mg/kg	0.007	0.023	i	CSH	02/21/06	LMP		= is-1,3-Dichloroprop(yl)ene	<0.025	mg/kg	0.007	0.023	i	CSII	02/21/06	LMP		PID Surrogate Recovery (S)	74.6	""97 K9 %	0.007	0.023	i		02/21/06	LMP		#ALL Surrogate Recovery (S)	88.9	%	-	_	i		02/21/06	LMP		The surrogate Recovery (s)	00.7	70					02/21/00	LIVE		#PA 8310										Acenaphthene	<0.00554	mg/kg	0.0047	0.016	1		02/28/06	LMP		Acenaphthylene	<0.00778	mg/kg	0.0066	0.022	i		02/28/06	LMP		■nthracene	<0.00248	mg/kg	0.0021	0.007	i		02/28/06	LMP		≡enzo(a)Anthracene	0.0323	mg/kg	0.0041	0.014	i		02/28/06	LMP		≡enzo(a)Pyrene	0.052	mg/kg	0.0023	0.0077	i		02/28/06	LMP		Benzo(b)Fluoranthene	0.104	mg/kg	0.0021	0.007	1		02/28/06	LMP		Benzo(k)Fluoranthene	0.0459	mg/kg	0.0029	0.0097	1		02/28/06	LMP		enzo(ghi)Perylene	0.151	mg/kg	0.004	0.013	1		02/28/06	LMP		hrysene	0.109	mg/kg	0.0023	0.0077	1		02/28/06	LMP		Vibenzo(a,h)Anthracene	<0.00318	mg/kg	0.0027	0.009	1		02/28/06	LMP		Fluoranthene	0.218	mg/kg	0.0026	0.0087	1		02/28/06	LMP		! Luorene	<0.00389	mg/kg	0.0033	0.011	1		02/28/06	LMP		ndeno(1,2,3-cd)Pyrene	0.0802	mg/kg	0.0022	0.0073	1		02/28/06	LMP		-Methyl Naphthalene	<0.00436	mg/kg	0.0037	0.012	1		02/28/06	LMP		2-Methyl Naphthalene	<0.00483	mg/kg	0.0041	0.014	1		02/28/06	LMP		Naphthalene	<0.00542	mg/kg	0.0046	0.015	1		02/28/06	LMP		henanthrene	0.142	mg/kg	0.0041	0.014	1		02/28/06	LMP		yrene	<0.00248	mg/kg	0.0021	0.007	1		02/28/06	LMP		7,10-Diphenylanthracene (S)	41.5	%	-	-	1		02/28/06	LMP		Method 3550 Ultrasonic Ext.	COMP		-	-	-		02/22/06	KAM	ll results calculated on a dry weight basis. ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com Short Elliott Henderickson 421 Frenette Drive Chippewa Falls , WI 54729 PROJECT NO.: NERUB0502.00 REPORT NO. : 195283.38 DATE REC'D : 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS Attn: John Guhl Sample ID: MW-9 0-4' Matrix: SOIL Sample Date/Time: 02/13/06 15:15		Result	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	Analyst		---	------------	--------------	----------	--------------	---------------------------	-------------	-------------------------	---------		EPA_160.3										Total Solids	84.8	%	•.	0.33	•		02/20/06	AMR		EPA 3050										Metal Prep	COMP		-	-	-		02/27/06	DJB												EPA 6010										Total Arsenic	3.84	mg/kg	0.34	1.13	1		03/07/06	DIB		Total Barium	48.1	mg/kg	0.1	0.33	1		03/07/06	DJB		Total Cadmium	0.297	mg/kg	0.057	0.19	1		03/07/06	DJB		Total Chromium	11.6	mg/kg	0.053	0.18	1		03/07/06	DJB		Total Lead	50.8	mg/kg	0.53	1.76	1		03/07/06	DJB		Total Selenium	<0.708	mg/kg	0.6	2.0	1		03/07/06	DJB		Total Silver	<0.236	mg/kg	0.2	0.67	1		03/07/06	DJB		EPA 7471										iotal Mercury	0.0825	mg/kg	0.014	0.047	1		03/03/06	MPM		7 550 1101 501 7	0.0025	פיי לכייי	01014	0.047	•		03, 03, 00			<u>EPA 8021</u> (Only positively	identified	l analytes	are repo	rted on a dr	y weight ba	sis				Benzene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP		Bromobenzene	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP		Bromodichloromethane	<0.025	mg/kg	0.006	0.02	1		02/21/06	LMP		n-Butylbenzene	0.0519	mg/kg	0.012	0.04	1	LCL	02/21/06	LMP		sec-Butylbenzene	0.0436	mg/kg	0.01	0.033	1		02/21/06																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																		
LMP		tert-Butylbenzene	<0.025	mg/kg	0.01	0.033	1		02/21/06	LMP		‡arbon Tetrachloride	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP +		hlorobenzene hlorodibromomethane	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP			<0.025	mg/kg	0.02	0.067	1		02/21/06	LMP		Chloroethane	<0.025	mg/kg	0.09	0.30	1	LCL	02/21/06	LMP		Chloroform	<0.025	mg/kg	0.01	0.033	1		02/21/06	LMP		⊃hloromethane	<0.025	mg/kg	0.01	0.033	1	CSH DUP	02/21/06	LMP		‡- Chlorotoluene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP		↓-Chlorotoluene	<0.025	mg/kg	0.008	0.027	- 1		02/21/06	LMP		1,2-Dibromo-3-chloropropane	<0.025	mg/kg	0.009	0.03	1		02/21/06	LMP			<0.025	mg/kg	0.012	0.04	1		02/21/06	LMP		1,2-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP		3-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP		1,4-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP		Pichlorodifluoromethane	<0.025	mg/kg	0.014	0.047	1	CSH	02/21/06	LMP		,1-Dichloroethane	<0.025	mg/kg	0.009	0.03	1		02/21/06	LMP		,2-Dichloroethane	<0.025	mg/kg	0.005	0.017		CSL LCL	02/21/06	LMP		1,1-Dichloroethylene	<0.025	mg/kg	0.016	0.053	1		02/21/06	LMP		cis-1,2-Dichloroethylene	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP		rans-1,2-Dichloroethylene	<0.025	mg/kg	0.01	0.033	1	LCL	02/21/06	LMP		,2-Dichloropropane	<0.025	mg/kg	0.007	0.023	1	CSH	02/21/06	LMP		,3-Dichloropropane	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP		2,2-Dichloropropane	<0.025	mg/kg	0.008	0.027	1	CSL LCL DUP	02/21/06	LMP		Ethylbenzene	0.154	mg/kg	0.007	0.023	1		02/21/06	LMP		exachlorobutadiene	<0.025	mg/kg	0.015	0.05	1		02/21/06	LMP		sopropylbenzene	0.0696	mg/kg	0.009	0.03	1		02/21/06	LMP		Hopropyl Ether	<0.025	mg/kg	0.014	0.047	1		02/21/06	LMP		p-Isopropyltoluene	0.0578	mg/kg	0.011	0.037	1		02/21/06	LMP		ethyl t-Butyl Ether(MTBE)	<0.025	mg/kg	0.018	0.06	1		02/21/06	LMP	ll results calculated on a dry weight basis. ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.40 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS Attn: John Guhl Short Elliott Henderickson Chippewa Falls , WI 54729 421 Frenette Drive = ample ID: MW-9 4-6' Matrix: SOIL Sample Date/Time: 02/13/06 15:30 Lab No. 195301					•						--	------------------	----------------	--------------	---------------	------------------------------	-----------	-------------------------	----------------			<u>Result</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u> Qu	ualifiers	Date <u>Analyzed</u>	<u>Analyst</u>		ns 4/0 7										<u>PA 160.3</u> Total Solids	97.3	•/		0.77			02/20/04			Total Solius	87.2	%	-	0.33	-		02/20/06	AMR		EPA 3050										Metal Prep	COMP		_	-	_		02/27/06	DJB		- Install Frep	COM						02/21/00	036		EPA 6010										otal Arsenic	2.82	mg/kg	0.34	1.13	1		03/07/06	DJB		Total Barium	37.5	mg/kg	0.1	0.33	1		03/07/06	DJB		■otal Cadmium	<0.0654	mg/kg	0.057	0.19	1		03/07/06	DJB		Total Chromium	11.3	mg/kg	0.053	0.18	1		03/07/06	DJB		Total Lead	10.4	mg/kg	0.53	1.76	1		03/07/06	DJB		Total Selenium	<0.688	mg/kg	0.6	2.0	1		03/07/06	DJB		Total Silver	<0.229	mg/kg	0.2	0.67	1		03/07/06	DJB		-										EPA 7471										Total Mercury	0.0264	mg/kg	0.014	0.047	1	J	03/03/06	MPM		TDA 0004										EPA 8021 (Only positively						i				Benzene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP		Bromobenzene	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP		Fromodichloromethane	<0.025	mg/kg	0.006	0.02	1		02/21/06	LMP		t-Butylbenzene	<0.025	mg/kg	0.012	0.04	1	LCL	02/21/06	LMP		sec-Butylbenzene	<0.025	mg/kg	0.01	0.033	1		02/21/06	LMP		tert-Butylbenzene arbon Tetrachloride	<0.025	mg/kg	0.01	0.033	1		02/21/06	LMP		hlorobenzene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP		hlorodibromomethane	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP		Chloroethane	<0.025 <0.025	mg/kg	0.02 0.09	0.067 0.30	1 1	LCL	02/21/06	LMP		Chloroform	<0.025	mg/kg	0.01	0.033	1	LUL	02/21/06	LMP LMP		hloromethane	<0.025	mg/kg mg/kg	0.01	0.033		DUP	02/21/06	LMP		-Chlorotoluene	<0.025	mg/kg	0.008	0.033	1 (31	DOP	02/21/06 02/21/06			4-Chlorotoluene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP LMP		1,2-Dibromo-3-chloropropane	<0.025	mg/kg	0.009	0.03	i		02/21/06	LMP		,2-Dibromoethane	<0.025	mg/kg	0.012	0.04	1		02/21/06	LMP		,2-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	i		02/21/06	LMP		,3-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	i		02/21/06	LMP		1,4-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	i		02/21/06	LMP		Nichlorodifluoromethane	<0.025	mg/kg	0.014	0.047	i	CSH	02/21/06	LMP		,1-Dichloroethane	<0.025	mg/kg	0.009	0.03	i	00	02/21/06	LMP		,2-Dichloroethane	<0.025	mg/kg	0.005	0.017	*	. LCL	02/21/06	LMP		,1-Dichloroethylene	<0.025	mg/kg	0.016	0.053	1	. 202	02/21/06	LMP		cis-1,2-Dichloroethylene	<0.025	mg/kg	0.007	0.023	i		02/21/06	LMP		rans-1,2-Dichloroethylene	<0.025	mg/kg	0.01	0.033	i	LCL	02/21/06	LMP		,2-Dichloropropane	<0.025	mg/kg	0.007	0.023	i	CSH	02/21/06	LMP		,3-Dichloropropane	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP		2.2-Dichloropropane	<0.025	mg/kg	0.008	0.027		LCL DUP	02/21/06	LMP		Ethylbenzene	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP		Ethylbenzene exachlorobutadiene	<0.025	mg/kg	0.015	0.05	i		02/21/06	LMP		= sopropylbenzene	<0.025	mg/kg	0.009	0.03	1		02/21/06	LMP		sopropyl Ether	<0.025	mg/kg	0.014	0.047	i		02/21/06	LMP		p-Isopropyltoluene	<0.025	mg/kg	0.011	0.037	1		02/21/06	LMP		■ethyl t-Butyl Ether(MTBE)	<0.025	mg/kg	0.018	0.06	1		02/21/06	LMP											ll results calculated on a dry weight basis. ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com Short Elliott Henderickson 21 Frenette Drive Chippewa Falls , WI 54729 PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.41 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS ∯ttn: John Guhl ample ID: MW-9 4-6' Matrix: SOIL Sample Date/Time: 02/13/06 15:30 Lab No. 195301	Result Units LOD LOQ Factor Qualifiers	<u>Analyzed</u>	<u>Analyst</u>		--	----------------------	----------------		PA 8021 (Only positively identified analytes are reported on a dry weight basis					02/21/06	LMP			02/21/06	LMP		• • • • • • • • • • • • • • • • • • • •	02/21/06	LMP			02/21/06	LMP		· · · · · · · · · · · · · · · · · · ·	02/21/06	LMP			02/21/06	LMP		The state of s	02/21/06	LMP			02/21/06	LMP			02/21/06	LMP			02/21/06	LMP			02/21/06	LMP			02/21/06	LMP		,2,4-Trimethylbenzene <0.025																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																							
mg/kg 0.012 0.04 1	02/21/06	LMP			02/21/06	LM P		Vinyl Chloride <0.025 mg/kg 0.018 0.06 1	02/21/06	LMP		m - & p-Xylene <0.025 mg/kg 0.015 0.05 1	02/21/06	LMP		-Xylene <0.025 mg/kg 0.008 0.027 1	02/21/06	LMP		The second secon	02/21/06	LMP			02/21/06	LMP			02/21/06	LMP			02/21/06	LMP			02/21/06	LMP		WALL Surrogate Recovery (S) 102. % 1	02/21/06	LMP		EPA 8310					02/29/04	LMP			02/28/06	LMP		11	02/28/06 02/28/06	LMP		11	02/28/06	LMP			02/28/06	LMP		Benzo(b)Fluoranthene 0.0292 mg/kg 0.0021 0.007 1	02/28/06	LMP		2-Methyl Naphthalene 0.0179 mg/kg 0.0041 0.014 1	02/28/06	LMP			02/28/06	LMP		menanthrene 0.0347 mg/kg 0.0041 0.014 1	02/28/06	LMP		···	02/28/06	LMP		- -	02/28/06	LMP		Method 3550 Ultrasonic Ext. COMP	02/22/06	KAM	ll results calculated on a dry weight basis. TELEPHONE FACSIMILE WEBSITE 02/21/06 MRD 800-338-7226 715-355-3221 www.usfilter.com Short Elliott Henderickson ■21 Frenette Drive ⊃hippewa Falls , WI 54729 PROJECT NO.: NERUB0502.00 REPORT NO. : 195283.24 DATE REC'D : 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS ∯ttn: John Guhl thylbenzene <0.1 μg/l	■ample ID: 85	Matrix	: GRDWTR	Sa	mple Date/T	Lab No. 195293					--	---------------	--------------	------	-------------	---------------------------	------------	-------------------------	------------			<u>Result</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	Analyst		EPA 150.1 pH - Laboratory pH - Laboratory Time	7.36 08:15		-	-	1		02/20/06 02/20/06	JJP JJP		<u>PA 245.1</u> Diss. Mercury	<0.07	μg/l	0.07	0.23	1		02/21/06	MPM		PA 245.1 Diss. Mercury	<0.07	μg/l	0.07	0.23	1		02/21/06	MPM		---------------------------	-------	------	------	------	---	---	----------	-----		∃PA 6020										iss. Arsenic	<0.6	μg/l	0.6	2.0	1		02/28/06	JCH		iss. Cadmium	<0.2	μg/l	0.2	0.67	1		02/28/06	JCH		Diss. Chromium	<1.60	μg/l	1.6	5.33	1		02/28/06	JCH		∰iss. Lead	<0.3	μg/l	0.3	1.0	1		02/28/06	JCH		iss. Selenium	0.6	μg/l	0.6	2.0	1	j	02/28/06	JCH		iss. Barium	69.3	μg/l	2.0	6.66	1		02/28/06	JCH		Diss. Silver	<0.2	μg/l	0.2	0.67	1		02/28/06	JCH		EPA 8260										enzene	<0.15	μg/l	0.15	0.50	1		02/21/06	MRD		romobenzene	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD		Bromochloromethane	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD		Promodichloromethane	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD		Hnomoform	40.0		0.0	0 17	4		07/24/06	***		iss. Arsenic	<0.6	μg/l	0.6	2.0	1		02/28/06	JCH			----------------------------	-------	--------------	------	------	---	---	----------	-----	--		Fiss. Cadmium	<0.2	μg/l	0.2	0.67	1		02/28/06	JCH			Diss. Chromium	<1.60	μg/l	1.6	5.33	1		02/28/06	JCH			₱iss. Lead	<0.3	μg/l	0.3	1.0	1		02/28/06	JCH			iss. Selenium	0.6	μg/l	0.6	2.0	1	J	02/28/06	JCH			iss. Barium	69.3	μg/l	2.0	6.66	1		02/28/06	JCH			Diss. Silver	<0.2	μg/l	0.2	0.67	1		02/28/06	JCH														EPA 8260											enzene	<0.15	μg/ί	0.15	0.50	1		02/21/06	MRD			romobenzene	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD			Bromochloromethane	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD			Promodichloromethane	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD			romoform	<0.2	μg/l	0.2	0.67	1		02/21/06	MRD			≝romomethane	<0.15	μg/l	0.15	0.50	1		02/21/06	MRD			n-Butylbenzene	<0.2	μg/l	0.2	0.67	1		02/21/06	MRD			sec-Butylbenzene	<0.15	μg/l	0.15	0.50	1		02/21/06	MRD			_ert-Butylbenzene	0.236	μg/l	0.15	0.50	1	J	02/21/06	MRD			arbon Tetrachloride	<0.2	μg/l	0.2	0.67	1		02/21/06	MRD			hlorobenzene	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD			Chloroethane	<0.6	μg/l	0.6	2.0	1		02/21/06	MRD			Nhloroform	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD			hloromethane	<0.2	μg/l	0.2	0.67	1		02/21/06	MRD			-Chlorotoluene	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD			4-Chlorotoluene	<0.2	μg/l	0.2	0.67	1		02/21/06	MRD			Dibromochloromethane	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD			ibromochloropropane(DBCP)	<0.3	μg/l	0.3	1.0	i		02/21/06	MRD			,2-Dibromoethane(EDB)	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD			ibromomethane	<0.1	μg/l	0.1	0.33	i		02/21/06	MRD			1,2-Dichlorobenzene	<0.75	μg/l	0.75	2.5	i		02/21/06	MRD				<0.15	μg/l	0.15	0.50	i		02/21/06	MRD			,4-Dichlorobenzene	<0.75	μg/l	0.75	2.5	i		02/21/06	MRD			ichlorodifluoromethane	<0.25	μg/l	0.25	0.83	i		02/21/06	MRD			-1,1-Dichloroethane	<0.15	μg/l	0.15	0.50	i		02/21/06	MRD			1,2-Dichloroethane	<0.1	μg/l	0.1	0.33	i		02/21/06	MRD			,1-Dichloroeth(yl)ene	<0.15	μg/l	0.15	0.50	i		02/21/06	MRD			is-1,2-Dichloroeth(yl)ene	<0.2	μg/l	0.2	0.67	i		02/21/06	MRD			rans-1,2-Dichloroeth(yl)en	<0.1	μg/l μg/l	0.1	0.33	i		02/21/06	MRD			1,2-Dichloropropane	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD			1,3-Dichloropropane	<0.1	μg/l μg/l	0.1	0.33	1		02/21/06	MRD			,2-Dichloropropane	<0.1	μg/l μg/l	0.1	0.33	1		02/21/06	MRD			,1-Dichloropropene	<0.2	μg/l	0.2	0.67	1		02/21/06	MRD			cis-1,3-Dichloropropene	<0.1	μg/l μg/l	0.2	0.33	1		02/21/06	MRD			trans-1,3-Dichloropropene	<0.1	μg/l μg/l	0.1	0.33	1			MRD			thyl henzene	<0.1	μg/ t	0.1	0.33	1		02/21/06	MKU		ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com Short Elliott Henderickson 421 Frenette Drive Chippewa Falls , WI 54729 PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.25 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS Attn: John Guhl	Sample ID: B5	Matrix: GRDWTR			Sample Date/Ti	Lab No. 195293					--	----------------	--------------	------------	----------------	--------------------	------------	----------------------	------------			Result	Units	LOD	LOQ	Dilution Factor	Qualifiers	Date Analyzed	Analyst					_							EPA 8260	4 00				ā					Hexachlorobutadiene	<1.00	μg/l	1.0	3.33	1		02/21/06	MRD		Isopropylbenzene	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD		4-Isopropyltoluene	<0.2	μg/l	0.2	0.67	1		02/21/06	MRD		Methylene Chloride	<0.4 <0.1	μg/l	0.4	1.33	1 1		02/21/06	MRD		Methyl t-Butyl Ether(MTBE) Naphthalene	<1.00	μg/l μg/l	0.1 1.0	0.33 3.33	1	CSH	02/21/06 02/21/06	MRD MRD		n-Propylbenzene	<0.1	μg/l μg/l	0.1	0.33	1	CSH				Styrene	<0.1		0.1	0.33	1		02/21/06 02/21/06	MRD MRD		1,1,1,2-Tetrachloroethane	<0.1	μg/l μg/l	0.1	0.33	i		02/21/06	MRD		1,1,2,2-Tetrachloroethane	0.286	μg/l μg/l	0.1	0.33	i	J	02/21/06	MRD		Tetrachloroeth(yl)ene	<0.1	μg/l μg/l	0.1	0.33	1	J	02/21/06	MRD		Toluene	<0.4	μg/l μg/l	0.4	1.33	i		02/21/06	MRD		1,2,3-Trichlorobenzene	<0.5	μg/l μg/l	0.5	1.67	i		02/21/06	MRD		1,2,4-Trichlorobenzene	<0.5	μg/l	0.5	1.67	i		02/21/06	MRD		1,1,1-Trichloroethane	<0.2	μg/l	0.2	0.67	i		02/21/06	MRD		1,1,2-Trichloroethane	<0.1	μg/l	0.1	0.33	i		02/21/06	MRD		Trichloroeth(yl)ene	<0.2	μg/l	0.2	0.67	i		02/21/06	MRD		Trichlorofluoromethane	<0.2	μg/l	0.2	0.67	i		02/21/06	MRD		1,2,3-Trichloropropane	<0.55	μg/l	0.55	1.83	i		02/21/06	MRD		1,2,4-Trimethylbenzene	<0.15	μg/t	0.15	0.50	1		02/21/06	MRD		1,3,5-Trimethylbenzene	<0.15	μg/l	0.15	0.50	1		02/21/06	MRD		Vinyl Chloride	<0.15	μg/l	0.15	0.50	1		02/21/06	MRD		-o-Xylene	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD		m-& p-Xylene	<0.4	μg/l	0.4	1.33	1		02/21/06	MRD		EPA 8310										■Acenaphthene	<0.06	μg/l	0.06	0.20	1		02/27/06	LMP		Acenaphthylene	<0.06	μg/l	0.06	0.20	1		02/27/06	LMP		Anthracene	<0.09	μg/l	0.09	0.30	1		02/27/06	LMP		∌enzo(a)Anthracene	<0.1	μg/l	0.1	0.33	1		02/27/06	LMP		₿enzo(a)Pyrene	<0.02	μg/l	0.02	0.067	1		02/27/06	LMP		Benzo(b)Fluoranthene	0.066	μg/l	0.02	0.067	1	J CSH	02/27/06	LMP		Benzo(k)Fluoranthene	<0.07	μg/l	0.07	0.23	1		02/27/06	LMP		∃enzo(ghi)Perylene	<0.06	μg/l	0.06	0.20	1		02/27/06	LMP		⊐hrysene	<0.02	μg/l	0.02	0.067	1		02/27/06	LMP		⊃ibenzo(a,h)Anthracene	<0.11	μg/l	0.11	0.37	1		02/27/06	LMP		Fluoranthene	<0.12	μg/l	0.12	0.40	1		02/27/06	LMP		Fluorene	<0.12	μg/l	0.12	0.40	1		02/27/06	LMP		ndeno(1,2,3-cd)Pyrene	<0.12	μg/l	0.12	0.40	1	CSH	02/27/06	LMP		■-Methyl Naphthalene	<0.08	μg/l	0.08	0.27	1		02/27/06	LMP		2-Methyl Naphthalene	<0.11	μg/l	0.11	0.37	1		02/27/06	LMP		Naphthalene	<0.11	μg/l	0.11	0.37	1		02/27/06																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																												
LMP		⊃henanthrene	<0.11	μg/l	0.11	0.37	1		02/27/06	LMP		⊃yrene	<0.1	μg/l	0.1	0.33	1		02/27/06	LMP		⊃,10-Diphenylanthracene (S)	52.4	%	-	•	1		02/27/06	LMP		Method 3510 Liquid Ext.	COMP		-	-	-		02/22/06	KAM	ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.26 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS Attn: John Guhl Short Elliott Henderickson 421 Frenette Drive Chippewa Falls , WI 54729	PA 150.1 Part Par	Sample ID: B5A	Matrix: GRDWTR			Sample Date/Ti	me: 02/16/ 0	06 16:45	Lab No. 195294				--	----------------------------	----------------	--------------	------	----------------	---------------------	------------	----------------	----------------	--		PH - Laboratory 7.92		<u>Result</u>	<u>Units</u>	LOD	LOQ		Qualifiers		<u>Analyst</u>			PH - Laboratory 7.92	EPA 150.1											PA 265.1		7.92		-	•	1		02/20/06	JJP			Diss. Mercury	pH - Laboratory Time	08:15		-	-	-		02/20/06	JJP			Diss. Arsenic 1.40 μg/l 0.6 2.0 1 J 02/28/06 JCH Diss. Chamium <0.2 μg/l 1.6 5.33 1 02/28/06 JCH Diss. Lead <0.3 μg/l 0.3 1.0 1 02/28/06 JCH Diss. Selenium 0.9 μg/l 0.6 2.0 1 JC2/28/06 JCH Diss. Sarium 57.0 μg/l 0.2 6.66 1 02/21/06 JCH Diss. Silver <0.2 μg/l 0.15 0.50 1 02/21/06 MRD Brazene <0.15 μg/l 0.1 0.33 1 02/21/06 MRD Bromodichloromethane <0.1 μg/l 0.1 0.33 1 02/21/06 MRD Bromodichloromethane <0.1 μg/l 0.1 0.33 1 02/21/06 MRD Bromodichloromethane <0.15 μg/l 0.1 0.33 1 02/21/06 M		<0.07	μg/l	0.07	0.23	1	DUP	02/21/06	МРМ			Diss. Arsenic 1.40 μg/l 0.6 2.0 1 J 02/28/06 JCH Diss. Chamium <0.2 μg/l 1.6 5.33 1 02/28/06 JCH Diss. Lead <0.3 μg/l 0.3 1.0 1 02/28/06 JCH Diss. Selenium 0.9 μg/l 0.6 2.0 1 JC2/28/06 JCH Diss. Sarium 57.0 μg/l 0.2 6.66 1 02/21/06 JCH Diss. Silver <0.2 μg/l 0.15 0.50 1 02/21/06 MRD Brazene <0.15 μg/l 0.1 0.33 1 02/21/06 MRD Bromodichloromethane <0.1 μg/l 0.1 0.33 1 02/21/06 MRD Bromodichloromethane <0.1 μg/l 0.1 0.33 1 02/21/06 MRD Bromodichloromethane <0.15 μg/l 0.1 0.33 1 02/21/06 M	■EPA 6020											Diss. Cadmium		1.40	μα/l	0.6	2.0	1	J	02/28/06	JCH			Diss. Lead	I .						•					Diss. Selenium Dis												p iss. Selenium 0.9 μg/l 0.6 2.0 1 J 02/28/06 JCH D iss. Sailver 57.0 μg/l 0.2 0.67 1 02/28/06 JCH Benzene <0.2 μg/l 0.15 0.50 1 02/21/06 MRD Bromochloromethane <0.1 μg/l 0.1 0.33 1 02/21/06 MRD Bromofichloromethane <0.1 μg/l 0.1 0.33 1 02/21/06 MRD Bromoform <0.2 μg/l 0.1 0.33 1 02/21/06 MRD Bromoform <0.2 μg/l 0.1 0.33 1 02/21/06 MRD Bromoform <0.2 μg/l 0.15 0.50 1 02/21/06 MRD Bromoform <0.2 μg/l 0.1 0.50 1 02/21/06 MRD Bromoform <0.2 μg/l 0.1 0.50 1 02/21/06 MRD	Diss. Lead	<0.3		0.3		1						Diss. Sarium S7.0	piss. Selenium			0.6		1	J					#PA 8260 #enzene	⊅iss. Barium	57.0	μg/l	2.0		1		02/28/06	JCH			#Enzene	Ðiss. Silver	<0.2				1						#Enzene	■EPA 8260											Bromochloromethane		<0.15	ua/l	0.15	0.50	1		02/21/06	MRD			Bromochloromethane												Bromodichloromethane												3 cmomorm												#romomethane	∄romoform											h-Butylbenzene												sec-Butylbenzene <0.15 µg/l 0.15 0.50 1 02/21/06 MRD Iarbon Tetrachloride <0.2												=ert-Butylbenzene						i						Carbon Tetrachloride							J					Thiorobenzene						1	•					Chloroethane						i						Chloroform						i						#hloromethane	Chloroform					1						-Chlorotoluene	thioromethane					1						Chlorotoluene						1						Dibromochloromethane						1						ibromochloropropane(DBCP)	Dibromochloromethane	<0.1		0.1	0.33	1						,2-Dibromoethane(EDB)	₱ibromochloropropane(DBCP)	<0.3		0.3	1.0	1		02/21/06	MRD			1,2-Dichlorobenzene		<0.1		0.1	0.33	1			MRD			1,3-Dichlorobenzene	■ibromomethane	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD			A-Dichlorobenzene <0.75	1,2-Dichlorobenzene	<0.75	μg/l	0.75	2.5	1		02/21/06	MRD			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,3-Dichlorobenzene	<0.15	μg/l	0.15	0.50	1		02/21/06	MRD			1.1-Dichloroethane	1,4-Dichlorobenzene	<0.75	μg/l	0.75	2.5	1		02/21/06	MRD			1,2-Dichloroethane <0.1 $\mu g/l$ 0.1 0.33 1 $02/21/06$ MRD 1,1-Dichloroeth(yl)ene <0.15 $\mu g/l$ 0.15 0.50 1 $02/21/06$ MRD is-1,2-Dichloroeth(yl)ene <0.2 $\mu g/l$ 0.1 0.33 1 $02/21/06$ MRD rans-1,2-Dichloropropane <0.1 $\mu g/l$ 0.1 0.33 1 $02/21/06$ MRD 1,2-Dichloropropane <0.1 $\mu g/l$ 0.1 0.33 1 $02/21/06$ MRD 1,2-Dichloropropane <0.1 $\mu g/l$ 0.1 0.33 1 $02/21/06$ MRD 1,2-Dichloropropane <0.1 $\mu g/l$ 0.1 0.33 1 $02/21/06$ MRD 1,-Dichloropropane <0.1 $\mu g/l$ 0.1 0.33 1 $02/21/06$ MRD 1,-Dichloropropane <0.1 $\mu g/l$ 0.2 0.67 1 $0.2/21/06$ MRD 1,-Dichloropropane <0.1 $\mu g/l$ 0.2 0.67 1 $0.2/21/06$ <t< td=""><td>pichlorodifluoromethane</td><td><0.25</td><td>μg/l</td><td>0.25</td><td>0.83</td><td>1</td><td></td><td>02/21/06</td><td>MRD</td></t<>	pichlorodifluoromethane	<0.25	μg/l	0.25	0.83	1		02/21/06	MRD			1-Dichloroeth(yl)ene		<0.15	μg/l	0.15	0.50	1		02/21/06	MRD			is-1,2-Dichloroeth(yl)ene			μg/l			1						is-1,2-Dichloroeth(yl)ene	,1-Dichloroeth(yl)ene	<0.15	μg/l	0.15	0.50	1						rans-1,2-Dichloroeth(yl)en <0.1 μg/l 0.1 0.33 1 02/21/06 MRD 1,2-Dichloropropane <0.1 μg/l 0.1 0.33 1 02/21/06 MRD 1,3-Dichloropropane <0.1 μg/l 0.1 0.33 1 02/21/06 MRD 1,2-Dichloropropane <0.1 μg/l 0.1 0.33 1 02/21/06 MRD 1,1-Dichloropropene <0.2 μg/l 0.2 0.67 1 02/21/06 MRD 1,1-Dichloropropene <0.1 μg/l 0.1 0.33 1 02/21/06 MRD 1,1-Dichloropropene <0.1 μg/l 0.1 0.33 1 02/21/06 MRD 1,1-Dichloropropene <0.1 μg/l 0.1 0.33 1 02/21/06 MRD 1,1-Dichloropropene <0.1 μg/l 0.1 0.33 1 02/21/06 MRD		<0.2	μg/l	0.2	0.67	1						$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						1			MRD			,2-Dichloropropane <0.1				0.1		1			MRD				1,3-Dichloropropane					1						Lis-1,3-Dichloropropene <0.1 μ g/l 0.1 0.33 1 02/21/06 MRD trans-1,3-Dichloropropene <0.1 μ g/l 0.1 0.33 1 02/21/06 MRD	,2-Dichloropropane					1						trans-1,3-Dichloropropene <0.1 μg/l 0.1 0.33 1 02/21/06 MRD			μg/l			1																		thylbenzene $<0.1 \mu g/l 0.1 0.33$ 1 02/21/06 MRD													tnylbenzene	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD		ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com Short Elliott Henderickson 421 Frenette Drive Chippewa Falls , WI 54729 PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.27 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS Attn: John Guhl Sample ID: B5A Matrix: GRDWTR Sample Date/Time: 02/16/06 16:45 Lab No. 195294		<u>Result</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date Analyzed	<u>Analyst</u>		-----------------------------	---------------	--------------	------	-------	---------------------------	------------	----------------------	----------------		EPA 8260										Hexachlorobutadiene	<1.00	μg/l	1.0	3.33	1		02/21/06	MRD		-I sopropylbenzene	0.602	μg/l μg/l	0.1	0.33	i		02/21/06	MRD		4-Isopropyltoluene	<0.2	μg/l	0.2	0.67	i		02/21/06	MRD																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																			
	Methylene Chloride	<0.4	μg/l μg/l	0.4	1.33	i		02/21/06	MRD		Methyl t-Butyl Ether(MTBE)	<0.1	μg/l μg/l	0.1	0.33	1		02/21/06	MRD		• Naphthalene	<1.00	μg/l μg/l	1.0	3.33	i	CSH	02/21/06	MRD		n-Propylbenzene	0.138	μg/l	0.1	0.33	i	J	02/21/06	MRD		Styrene	<0.138	μg/l μg/l	0.1	0.33	i	J	02/21/06	MRD		1,1,1,2-Tetrachloroethane	<0.1	μg/l μg/l	0.1	0.33	1		02/21/06	MRD		1,1,2,2-Tetrachloroethane	0.51	μg/l μg/l	0.1	0.33	i		02/21/06	MRD		Tetrachloroeth(yl)ene	<0.1	μg/l μg/l	0.1	0.33	i		02/21/06	MRD		Toluene	<0.4	μg/l μg/l	0.4	1.33	1		02/21/06	MRD		1,2,3-Trichlorobenzene	<0.5	μg/l μg/l	0.5	1.67	1					1,2,4-Trichlorobenzene	<0.5	μg/l μg/l	0.5	1.67	1		02/21/06 02/21/06	MRD		1,1,1-Trichloroethane	<0.2	μg/l μg/l	0.2	0.67	1			MRD		1,1,2-Trichloroethane	<0.1	μg/l μg/l	0.1	0.33	1		02/21/06 02/21/06	MRD MRD		Trichloroeth(yl)ene	<0.2	μg/l μg/l	0.1	0.67	1					Trichlorofluoromethane	<0.2	μg/t μg/l	0.2	0.67	1		02/21/06	MRD		1,2,3-Trichloropropane	<0.55		0.55	1.83	1		02/21/06	MRD		1,2,4-Trimethylbenzene	3.93	μg/l	0.35	0.50	1		02/21/06	MRD		1,3,5-Trimethylbenzene	<0.15	μg/l μg/l	0.15	0.50	1		02/21/06	MRD MRD		Vinyl Chloride	<0.15	μg/l μg/l	0.15	0.50	1		02/21/06 02/21/06	MRD		-o-Xylene	0.112	,	0.15	0.33	1					m-& p-Xylene	<0.4	μg/l μg/l	0.4	1.33	1	J	02/21/06 02/21/06	MRD MRD		iii a p xyterie	٠٠.4	μ9/ (0.4	1.55	'		02/21/00	FIKU		EPA_8310										Acenaphthene	<0.06	μg/i	0.06	0.20	1		02/27/06	LMP		Acenaphthylene	<0.06	μg/l	0.06	0.20	1		02/27/06	LMP		Anthracene	<0.09	μg/l	0.09	0.30	1		02/27/06	LMP		∃enzo(a)Anthracene	<0.1	μg/l	0.1	0.33	1		02/27/06	LMP		₿enzo(a)Pyrene	<0.02	μg/l	0.02	0.067	1		02/27/06	LMP		∄enzo(b)Fluoranthene	<0.02	μg/l	0.02	0.067	1	CSH	02/27/06	LMP		Benzo(k)Fluoranthene	<0.07	μg/l	0.07	0.23	1		02/27/06	LMP		∄enzo(ghi)Perylene	<0.06	μg/l	0.06	0.20	1		02/27/06	LMP		‡hrysene	<0.02	μg/l	0.02	0.067	1		02/27/06	LMP		⊅ibenzo(a,h)Anthracene	<0.11	μg/l	0.11	0.37	1		02/27/06	LMP		Fluoranthene	<0.12	μg/l	0.12	0.40	1		02/27/06	LMP		Fluorene	<0.12	μg/l	0.12	0.40	1		02/27/06	LMP		Indeno(1,2,3-cd)Pyrene	0.26	μg/l	0.12	0.40	1	J CSH	02/27/06	LMP		#-Methyl Naphthalene	<0.08	μg/l	0.08	0.27	1		02/27/06	LMP		⊉-Methyl Naphthalene	0.352	μg/l	0.11	0.37	1	J	02/27/06	LMP		Naphthalene	0.194	μg/l	0.11	0.37	1	Ĵ	02/27/06	LMP		Phenanthrene	<0.14	μg/l	0.11	0.37	1	-	02/27/06	LMP		†yrene	<0.4	μg/l	0.1	0.33	1		02/27/06	LMP		⊃,10-Diphenylanthracene (S)	41.6	%	•	-	1		02/27/06	LMP		Method 3510 Liquid Ext.	COMP		-	-	-		02/22/06	KAM											**ENVIROSCAN SERVICES** 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 FACSIMILE WEBSITE TELEPHONE 800-338-7226 715-355-3221 www.usfilter.com Short Elliott Henderickson ■21 Frenette Drive Chippewa Falls , WI 54729 PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.20 DATE REC'D : 02/17/06 **REPORT DATE: 03/13/06** PREPARED BY: JRS Attn: John Guhl ample ID: B6 Matrix: GRDWTR Sample Date/Time: 02/16/06 15:15 Lab No. 195291 Dilution Date Result Units LOD Qualifiers LOQ <u>Factor</u> <u>Analyzed</u> <u>Analyst</u> <u>≡PA 150.1</u> pH - Laboratory pH - Laboratory Time 7.93 02/20/06 JJP 08:15 02/20/06 JJP PA 245.1	#PA 245.1											----------------------------------	-------	--------------	------------	------	---	---	----------------------	-----	--		Diss. Mercury	<0.07	μg/l	0.07	0.23	1		02/21/06	MPM			∃PA 6020											<u>=FA 6020</u> ■iss. Arsenic	0.8	μg/l	0.6	2.0	1	J	02/20/04	JCH			■iss. Cadmium	<0.2	μg/l μg/l	0.2	0.67	1	J	02/28/06				Diss. Chromium	<1.60	μg/l μg/l	1.6	5.33	1		02/28/06 02/28/06	JCH			Piss. Lead	<0.3		0.3	1.0	1			JCH			viss. Selenium	0.8	μg/l	0.6	2.0	1		02/28/06	JCH			riss. Barium	29.9	μg/l		6.66	•	J	02/28/06	JCH			Diss. Silver	<0.2	μg/l	2.0 0.2	0.67	1		02/28/06	JCH			Diss. Silver	10.2	μg/l	U.2	0.07	ı		02/28/06	JCH			<u>=PA_8260</u>											≡ enzene	<0.15	μg/l	0.15	0.50	1		02/21/06	MRD			≣romobenzene	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD			Bromochloromethane	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD			Fromodichloromethane	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD			romoform	<0.2	μg/l	0.2	0.67	1		02/21/06	MRD			≝romomethane	<0.15	μg/l	0.15	0.50	1		02/21/06	MRD			n-Butylbenzene	<0.2	μg/l	0.2	0.67	1		02/21/06	MRD			sec-Butylbenzene	<0.15	μg/l	0.15	0.50	1		02/21/06	MRD			ert-Butylbenzene	<0.15	μg/l	0.15	0.50	1		02/21/06	MRD			arbon Tetrachloride	<0.2	μg/l	0.2	0.67	1		02/21/06	MRD			➡hlorobenzene	<0.1	μg/l	0.1	0.35	i		02/21/06	MRD			Chloroethane	<0.6	μg/l	0.6	2.0	1		02/21/06	MRD			Chloroform	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD			hloromethane	<0.2	μg/l	0.2	0.67	1		02/21/06	MRD			t-Chlorotoluene	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD			4-Chlorotoluene	<0.2	μg/l	0.2	0.67	1		02/21/06	MRD			Dibromochloromethane	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD			_ibromochloropropane(DBCP)	<0.3	μg/l	0.3	1.0	1		02/21/06	MRD			,2-Dibromoethane(EDB)	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD			ibromomethane	<0.4	μg/l	0.1	0.33	1		02/21/06	MRD			1,2-Dichlorobenzene	<0.75	μg/l	0.75	2.5	1		02/21/06	MRD			1,3-Dichlorobenzene	<0.15	μg/l	0.15	0.50	1		02/21/06	MRD			,4-Dichlorobenzene	<0.75	μg/l	0.75	2.5	1		02/21/06	MRD			ichlorodifluoromethane	<0.25	μg/l	0.25	0.83	1		02/21/06	MRD			1,1-Dichloroethane	<0.15	μg/l	0.15	0.50	1		02/21/06	MRD			1,2-Dichloroethane	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD			,1-Dichloroeth(yl)ene	<0.15	μg/l	0.15	0.50	1		02/21/06	MRD			is-1,2-Dichloroeth(yl)ene	<0.2	μg/l	0.2	0.67	1		02/21/06	MRD			Ilrans-1,2-Dichloroeth(yl)en	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD			1,2-Dichloropropane	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD			1,3-Dichloropropane	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD			,2-Dichloropropane	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD														Diss. Chromium	<1.60	μg/l	1.6	5.33	1		02/28/06	JCH		-----------------------------	-------	--------------	------	------	---	---	----------	------		Piss. Lead	<0.3	μg/l	0.3	1.0	1		02/28/06	JCH		iss. Selenium	0.8	μg/l	0.6	2.0	1	J	02/28/06	JCH		iss. Barium	29.9	μg/l	2.0	6.66	1		02/28/06	JCH		Diss. Silver	<0.2	μg/l	0.2	0.67	1		02/28/06	JCH				, 0,					,,	*		<u>=PA 8260</u>										= enzene	<0.15	μg/l	0.15	0.50	1		02/21/06	MRD		≣ romobenzene	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD		Bromochloromethane	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD		Promodichloromethane	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD		#romoform	<0.2	μg/l	0.2	0.67	1		02/21/06	MRD		≝romomethane	<0.15	μg/l	0.15	0.50	1		02/21/06	MRD		n-Butylbenzene	<0.2	μg/l	0.2	0.67	1		02/21/06	MRD		sec-Butylbenzene	<0.15	μg/l	0.15	0.50	1		02/21/06	MRD		ert-Butylbenzene	<0.15	μg/l	0.15	0.50	1		02/21/06	MRD		arbon Tetrachloride	<0.2	μg/l	0.2	0.67	1		02/21/06	MRD		➡hlorobenzene	<0.1	μg/l	0.1	0.35	i		02/21/06	MRD		Chloroethane	<0.6	μg/l	0.6	2.0	1		02/21/06	MRD		<u>fhloroform</u>	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD		hloromethane	<0.2	μg/l	0.2	0.67	1		02/21/06	MRD		-Chlorotoluene	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD		4-Chlorotoluene	<0.2	μg/l	0.2	0.67	1		02/21/06	MRD		Dibromochloromethane	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD		ibromochloropropane(DBCP)	<0.3	μg/l	0.3	1.0	1		02/21/06	MRD		,2-Dibromoethane(EDB)	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD		ibromomethane	<0.4	μg/l	0.1	0.33	1		02/21/06	MRD		1,2-Dichlorobenzene	<0.75	μg/l	0.75	2.5	1		02/21/06	MRD			<0.15	μg/l	0.15	0.50	1		02/21/06	MRD		,4-Dichlorobenzene	<0.75	μg/l	0.75	2.5	1		02/21/06	MRD		ichlorodifluoromethane	<0.25	μg/l	0.25	0.83	1		02/21/06	MRD		1,1-Dichloroethane	<0.15	μg/l	0.15	0.50	1		02/21/06	MRD		1,2-Dichloroethane	<0.1	μg/l	0.1	0.33	i		02/21/06	MRD		,1-Dichloroeth(yl)ene	<0.15	μg/l	0.15	0.50	1		02/21/06	MRD		is-1,2-Dichloroeth(yl)ene	<0.2	μg/l	0.2	0.67	i		02/21/06	MRD		lrans-1,2-Dichloroeth(yl)en	<0.1	μg/l	0.1	0.33	i		02/21/06	MRD		1,2-Dichloropropane	<0.1	μg/l	0.1	0.33	i		02/21/06	MRD		1,3-Dichloropropane	<0.1	μg/l	0.1	0.33	i		02/21/06	MRD		,2-Dichloropropane	<0.1	μg/l	0.1	0.33	i																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																									
02/21/06	MRD		,1-Dichloropropene	<0.2	μg/l	0.2	0.67	i		02/21/06	MRD		cis-1,3-Dichloropropene	<0.1	μg/l μg/l	0.1	0.33	i		02/21/06	MRD		trans-1,3-Dichloropropene	<0.1	μg/l	0.1	0.33	i		02/21/06	MRD		thylbenzene	<0.1	μg/l	0.1	0.33	i		02/21/06	MRD			-011	, rew	0	0.33	·		02/21/00	HIND																					TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com PROJECT NO.: NERUB0502.00 REPORT NO.: 195283.21 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS Attn: John Guhl ample ID: B6 Matrix: GRDWTR Sample Date/Time: 02/16/06 15:15 Lab No. 195291	:	Result	Units	LOD	LOQ	Dilution Factor	Qualifiers	Date Analyzed	<u>Analyst</u>		-----------------------------	--------	--------------	------	-------	--------------------	------------	------------------	----------------						_						PA 8260										Hexachlorobutadiene	<1.00	μg/l	1.0	3.33	1		02/21/06	MRD		1sopropylbenzene	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD		-Isopropyltoluene	<0.2	μg/l	0.2	0.67	1		02/21/06	MRD		lethylene Chloride	<0.4	μg/l	0.4	1.33	1		02/21/06	MRD		Methyl t-Butyl Ether(MTBE)	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD		Naphthalene	<1.00	μg/l	1.0	3.33	7	CSH	02/21/06	MRD		n-Propylbenzene	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD		≣tyrene	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD		_,1,1,2-Tetrachloroethane	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD		1,1,2,2-Tetrachloroethane	<0.1	μg/l	0.1	0.33	ì		02/21/06	MRD		Tetrachloroeth(yl)ene	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD		foluene	<0.4	μg/l	0.4	1.33	i		02/21/06	MRD		1,2,3-Trichlorobenzene	<0.5	μg/l	0.5	1.67	1		02/21/06	MRD		1,2,4-Trichlorobenzene	<0.5	μg/l	0.5	1.67	1		02/21/06	MRD		1,1,1-Trichloroethane	<0.2	μg/l	0.2	0.67	i		02/21/06	MRD		,1,2-Trichloroethane	<0.1	μg/l	0.1	0.33	i		02/21/06	MRD		richloroeth(yl)ene	<0.2	μg/l	0.2	0.67	i		02/21/06	MRD		richlorofluoromethane	<0.2	μg/l	0.2	0.67	i		02/21/06	MRD		1,2,3-Trichloropropane	<0.55	μg/l	0.55	1.83	i		02/21/06	MRD		1,2,4-Trimethylbenzene	0.21	μg/l	0.15	0.50	i	J	02/21/06	MRD		.3,5-Trimethylbenzene	<0.15	μg/l	0.15	0.50	i	· ·	02/21/06	MRD		Vinyl Chloride	<0.15	μg/l	0.15	0.50	1		02/21/06	MRD		o-Xylene	<0.13	μg/l μg/l	0.1	0.33	i		02/21/06	MRD		m-& p-Xylene	<0.4	μg/l μg/l	0.4	1.33	i		02/21/06	MRD				F3/ \	•••	,,,,,	•		V-, - · , V-			PA 8310										Acenaphthene	<0.06	μg/l	Ú.Û6	0.20	1		02/23/06	LMP		Acenaphthylene	<0.06	μg/l	0.06	0.20	1		02/23/06	LMP		Anthracene	<0.09	μg/l	0.09	0.30	1		02/23/06	LMP		enzo(a)Anthracene	<0.1	μg/l	0.1	0.33	1		02/23/06	LMP		enzo(a)Pyrene	<0.02	μg/l	0.02	0.067	1	CSL	02/23/06	LMP		Benzo(b)Fluoranthene	<0.02	μg/l	0.02	0.067	1		02/23/06	LMP		Benzo(k)Fluoranthene	<0.07	μg/l	0.07	0.23	1		02/23/06	LMP		enzo(ghi)Perylene	<0.06	μg/l	0.06	0.20	i		02/23/06	LMP		hrysene	<0.02	μg/l	0.02	0.067	1	MB	02/23/06	LMP		ibenzo(a,h)Anthracene	<0.11	μg/l	0.11	0.37	i		02/23/06	LMP		Fluoranthene	<0.12	μg/l	0.12	0.40	1		02/23/06	LMP		Eluorene	<0.12	μg/l	0.12	0.40	i		02/23/06	LMP		ndeno(1,2,3-cd)Pyrene	<0.12	μg/l	0.12	0.40	i		02/23/06	LMP		-Methyl Naphthalene	<0.08	μg/l	0.08	0.27	i		02/23/06	LMP		2-Methyl Naphthalene	<0.11	μg/l	0.11	0.37	i		02/23/06	LMP		Naphthalene	<0.11	μg/l μg/l	0.11	0.37	i		02/23/06	LMP		henanthrene	<0.11	μg/l	0.11	0.37	i		02/23/06	LMP		yrene	<0.1	μg/l	0.1	0.33	i		02/23/06	LMP		r,10-Diphenylanthracene (S)	42.4	μ9/ t %	-	-	i		02/23/06	LMP		Method 3510 Liquid Ext.	COMP	/0	-	-	'-		02/20/06	KAM		as a squia ance	30111						52, 20, 00	10111	TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com Short Elliott Henderickson ■21 Frenette Drive □hippewa Falls , WI 54729 PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.18 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS Attn: John Guhl	PA 150.1	 ∋ample ID: B9	Matri	x: GRDWTR	9	Sample Date/Ti	me: 02/16/ 0	06 14:45	Lab No. 195290				--	-----------------------------------	--------	--------------	------	----------------	---------------------	------------	----------------	----------------	--		pH - Laboratory Time 08:15 - - 1 02/20/06 JJP PA 265.1 Diss. Mercury <0.07		Result	<u>Units</u>	LOD	LOQ		Qualifiers		<u>Analyst</u>			pH - Laboratory Time 08:15 - - 1 02/20/06 JJP PA 265.1 Diss. Mercury <0.07	TD4 450 4											PA 265.1		7 /5				4		02/20/0/				PA 265.1				-	-	1						Diss. Mercury	on - Laboratory Time	00:15		•	•	•		02/20/06	315			Diss. Mercury	EPA 245.1											PA 6020		<0.07	na/l	0.07	0.23	1		02/21/06	MPM			Second S			F3/ \	0.01	0.25	•		02,21,00				Siss. Cadmium												Diss. Chromium 2.40			μg/l			1	J	02/27/06	JCH			Piss. Setenium			μg/l			1		02/27/06	JCH			Section Sect			μg/l				J	02/28/06	JCH			Siss. Barium	II .		μg/l						JCH			Page			μg/l						JCH			PA 8260	■ .											Paragraphic	Diss. Silver	<0.2	μg/l	0.2	0.67	1	MB	02/27/06	JCH			Penzene	=DA 9240				ž							Promochloromethane		-0.15		0.15	0.50	4		02/20/0/	MDD			Bromodichoromethane												Bromofich 40.1 49/1 0.1 0.33 1 02/20/06 MRD												Promoferm						•						Promomethane												n-Butylbenzene	1 111											Sec-Butylbenzene												rert-Butylbenzene												Carbon Tetrachloride												Chlorobenzene												Chloroethane						4						Chloroform						i						hloromethane												Chlorotoluene												4-Chlorotoluene												Dibromochloromethane												ibromochloropropane(DBCP)			·									$\begin{array}{cccccccccccccccccccccccccccccccccccc$	■ibromochloropropane(DBCP)											bibromomethane <0.1 $\mu g/l$ 0.1 0.33 1 $02/20/06$ MRD $1,2$ -Dichlorobenzene <0.75 $\mu g/l$ 0.75 2.5 1 $02/20/06$ MRD $1,3$ -Dichlorobenzene <0.15 $\mu g/l$ 0.15 0.50 1 $02/20/06$ MRD $1,4$ -Dichlorobenzene <0.75 $\mu g/l$ 0.75 2.5 1 $02/20/06$ MRD $1,4$ -Dichlorobenzene <0.25 $\mu g/l$ 0.25 0.83 1 $02/20/06$ MRD $1,1$ -Dichloroethane <0.15 $\mu g/l$ 0.15 0.50 1 $02/20/06$ MRD $1,2$ -Dichloroethane <0.15 $\mu g/l$ 0.1 0.33 1 $02/20/06$ MRD $1,1$ -Dichloroeth(yl)ene <0.15 $\mu g/l$ 0.1 0.33 1 $02/20/06$ MRD $1,1$ -Dichloroeth(yl)ene <0.15 $\mu g/l$ 0.15 0.50 1 $0.2/20/06$ MRD $1,1$ -Dichloroeth(yl)ene <0.15 $\mu g/l$ 0.1 0.33 1 $02/20/06$ MRD $1,2$ -Dichloroeth(yl)en <0.1 $\mu g/l$ 0.1 0.33 1 $02/20/06$ MRD $1,2$ -Dichloropropane <0.1 $\mu g/l$ 0.1 0.33 1 $02/20/06$ MRD $1,2$ -Dichloropropane <0.1 $\mu g/l$ 0.1 0.33 1 $02/20/06$ MRD $1,2$ -Dichloropropane <0.1 $\mu g/l$ 0.1 0.33 1 $02/20/06$ MRD $1,2$ -Dichloropropane <0.1 $\mu g/l$ 0.1 0.33 1 $02/20/06$																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																				
MRD $1,2$ -Dichloropropane <0.1 $\mu g/l$ 0.1 0.33 1 $02/20/06$ MRD $1,2$ -Dichloropropane <0.1 $\mu g/l$ 0.1 0.33 1 $02/20/06$ MRD $1,2$ -Dichloropropane <0.1 1 1 1 1 1 1 1 1 1	2-Dibromoethane(EDB)					1						$\begin{array}{cccccccccccccccccccccccccccccccccccc$						1						$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,2-Dichlorobenzene					1						,4-Dichlorobenzene		•				1						ichlorodifluoromethane <0.25 $\mu g/l$ 0.25 0.83 1 02/20/06 MRD 1,1-Dichloroethane <0.15	,4-Dichlorobenzene	<0.75			2.5	1						$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre>ichlorodifluoromethane</pre>	<0.25				1						,1-Dichloroeth(yl)ene	1,1-Dichloroethane	<0.15		0.15	0.50	1			MRD			#is-1,2-Dichloroeth(yl)ene		<0.1	μg/l	0.1	0.33	1		02/20/06	MRD			#is-1,2-Dichloroeth(yl)ene	,1-Dichloroeth(yl)ene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD			#trans-1,2-Dichloroeth(yl)en <0.1 μg/l 0.1 0.33 1 02/20/06 MRD 1,2-Dichloropropane <0.1	#is-1,2-Dichloroeth(yl)ene	<0.2			0.67							1,2-Dichloropropane <0.1 µg/l 0.1 0.33 1 02/20/06 MRD 1,3-Dichloropropane <0.1 µg/l 0.1 0.33 1 02/20/06 MRD 2,2-Dichloropropane <0.1 µg/l 0.1 0.33 - CSH 02/20/06 MRD	Hrans-1,2-Dichloroeth(yl)en		μg/l			1		02/20/06	MRD			‡, 2-Dichloropropane <0.1 μg/l 0.1 0.33 - CSH 02/20/06 MRD	1,2-Dichloropropane		μg/l			1		02/20/06										1		02/20/06				1-Dichloropropene <0.2 ##/L 0.2 0.67 - CCU 02/20/04 Mph						-							■,1-Dichloropropene	<0.2	μg/l	0.2	0.67	-	CSH	02/20/06	MRD			cis-1,3-Dichloropropene <0.1 μg/l 0.1 0.33 1 02/20/06 MRD												trans-1,3-Dichloropropene <0.1 $\mu g/l$ 0.1 0.33 1 02/20/06 MRD												Ethylbenzene $<0.1 \mu g/l 0.1 0.33 1 02/20/06 MRD$	=thylbenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		<0.11 <0.1 32.0 COMP μg/l μg/l % 0.11 0.1 0.37 0.33 Matrix: GRDWTR **ENVIROSCAN SERVICES** 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 Sample Date/Time: 02/16/06 14:45 TELEPHONE FACSIMILE WEBSITE Lab No. 195290 02/23/06 02/23/06 02/23/06 02/20/06 LMP LMP LMP KAM 800-338-7226 715-355-3221 www.usfilter.com Short Elliott Henderickson ≰21 Frenette Drive Ehippewa Falls , WI 54729 PROJECT NO.: NERUB0502.00 REPORT NO. : 195283.19 DATE REC'D : 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS Attn: John Guhl ⇒ample ID: B9 ⊃henanthrene Pyrene →,10-Diphenylanthracene (S) Method 3510 Liquid Ext.	•				•	- •					--------------------------------	---------------	--------------	------	------------	---------------	------------	-----------------	----------------							Dilution		Date				<u>Result</u>	<u>Units</u>	LOD	<u>LOQ</u>	<u>Factor</u>	Qualifiers	<u>Analyzed</u>	<u>Analyst</u>		EPA 8260										Hexachlorobutadiene	<1.00	μg/l	1.0	3.33	1		02/20/06	MRD		_Isopropylbenzene	<0.1	μg/l μg/l	0.1	0.33	i		02/20/06	MRD		¼-Isopropyltoluene	<0.2	μg/l	0.2	0.67	i		02/20/06	MRD		Methylene Chloride	<0.4	μg/l μg/l	0.4	1.33	i		02/20/06	MRD		Methyl t-Butyl Ether(MTBE)	<0.1	μg/l μg/l	0.4	0.33	i		02/20/06	MRD		Naphthalene	<1.00	μg/l	1.0	3.33	i	S2H	02/20/06	MRD		n-Propylbenzene	<0.1	μg/l μg/l	0.1	0.33	i	JEII	02/20/06	MRD		Styrene	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD		7,1,1,2-Tetrachloroethane	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD		1,1,2,2-Tetrachloroethane	<0.1	μg/l μg/l	0.1	0.33	i		02/20/06	MRD		Jetrachloroeth(yl)ene	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD		Toluene	<0.4	μg/l μg/l	0.4	1.33	i		02/20/06	MRD		1,2,3-Trichlorobenzene	<0.5	μg/t μg/l	0.5	1.67	1		02/20/06	MRD		1,2,4-Trichlorobenzene	<0.5	μg/l μg/l	0.5	1.67	i		02/20/06	MRD		1,1,1-Trichloroethane	<0.2	μg/l	0.2	0.67	i		02/20/06	MRD		7,1,2-Trichloroethane	<0.1	μg/t μg/t	0.1	0.33	1		02/20/06	MRD		Frichloroeth(yl)ene	<0.2	μg/l μg/l	0.1	0.67	1		02/20/06	MRD		■richlorofluoromethane	<0.2	μg/l μg/l	0.2	0.67	i		02/20/06	MRD		1,2,3-Trichloropropane	<0.55	μg/l μg/l	0.55	1.83	1		02/20/06	MRD		_1,2,4-Trimethylbenzene	0.445	μg/l μg/l	0.15	0.50	i	J S2H	02/20/06	MRD		1,3,5-Trimethylbenzene	<0.15	μg/l	0.15	0.50	i	0 3211	02/20/06	MRD		Vinyl Chloride	<0.15	μg/l μg/l	0.15	0.50	i		02/20/06	MRD		o-Xylene	<0.1	μg/t μg/l	0.15	0.33	i		02/20/06	MRD		m-& p-Xylene	<0.4	μg/l μg/l	0.4	1.33	i		02/20/06	MRD		_ ` `		F3/ \	•••	.,	•		02, 20, 00	71110		EPA 8310										Acenaphthene	<0.06	μg/ί	Ū.Ū6	0.20	1		02/23/06	LMP		Acenaphthylene	<0.06	μg/l	0.06	0.20	1		02/23/06	LMP		≜ nthracene	<0.09	μg/l	0.09	0.30	1		02/23/06	LMP		#enzo(a)Anthracene	<0.1	μg/l	0.1	0.33	1		02/23/06	LMP		enzo(a)Pyrene	<0.02	μg/l	0.02	0.067	1	CSL	02/23/06	LMP		Benzo(b)Fluoranthene	0.097	μg/l	0.02	0.067	1		02/23/06	LMP		Benzo(k)Fluoranthene	<0.07	μg/l	0.07	0.23	1		02/23/06	LMP		≣enzo(ghi)Perylene	0.1	μg/l	0.06	0.20	1	J	02/23/06	LMP		Phrysene	0.15	μg/l	0.02	0.067	1	MB	02/23/06	LMP		D ibenzo(a,h)Anthracene	<0.11	μg/l	0.11	0.37	1		02/23/06	LMP		Fluoranthene	<0.12	μg/l	0.12	0.40	1		02/23/06	LMP		fluorene	<0.12	μg/l	0.12	0.40	1		02/23/06	LMP		ndeno(1,2,3-cd)Pyrene	<0.12	μg/l	0.12	0.40	1		02/23/06	LMP		-Methyl Naphthalene	<0.08	μg/l	0.08	0.27	1		02/23/06	LMP		Z-Methyl Naphthalene	<0.11	μg/l	0.11	0.37	1		02/23/06	LMP		Naphthalene	<0.11	μg/l	0.11	0.37	1		02/23/06	LMP		⊇hananthrona	JO 11	n m / l	0.11	0.77	4		03/37/04	LMD	ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com Short Elliott Henderickson 421 Frenette Drive Chippewa Falls , WI 54729 PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.14 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS Attn: John Guhl	Sample ID: B11	Matri	x: GRDWTR	S	Sample Date/Time: 02/16/06 13:45				Lab No. 195288				--	---------------	--------------	-------------	----------------------------------	---------------------------	------------	-------------------------	----------------	--	--			<u>Result</u>	<u>Units</u>	LOD	<u>LOQ</u>	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	Analyst				<u>EPA 150.1</u>												pH - Laboratory	8.28		-	-	1		02/20/06	JJP				_pH - Laboratory Time	08:15		•	-	-		02/20/06	JJP				EPA 245.1 Diss. Mercury	<0.07	μg/l	0.07	0.23	1		02/21/06	MPM				≝PA 6020												Diss. Arsenic	1.30	μg/l	0.6	2.0	1	J	02/20/06	JCH				Diss. Cadmium	<0.2	μg/l	0.2	0.67	1		02/20/06	JCH				Diss. Chromium	2.50	μg/l	1.6	5.33	1	J	02/20/06	JCH				₽iss. Lead	<0.3	μg/l	0.3	1.0	1		02/20/06	JCH				piss. Selenium	0.97	μg/l	0.6	2.0	1	J	02/20/06	JCH				Diss. Barium	60.5	μg/l	2.0	6.66	1		02/20/06	JCH				Diss. Silver	<0.2	μg/l	0.2	0.67	1	MB	02/20/06	JCH				EPA 8260												Benzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD				Bromobenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD				Bromochloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD				Bromodichloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD				Bromomethane	<0.2 <0.15	μg/l	0.2 0.15	0.67 0.50	1 1		02/20/06	MRD				n-Butylbenzene	<0.2	μg/l	0.13	0.67	1		02/20/06	MRD				sec-Butylbenzene	<0.15	μg/l μg/l	0.15	0.50	1		02/20/06	MRD MRD				tert-Butylbenzene	<0.15	μg/l μg/l	0.15	0.50	i		02/20/06 02/20/06	MRD				Carbon Tetrachloride	<0.2	μg/l μg/l	0.2	0.67	1		02/20/06	MRD				Chlorobenzene	<0.1	μg/ί	0.1	0.33	i		02/20/06	MRD				Chloroethane	<0.6	μg/l	0.6	2.0	i		02/20/06	MRD				£hloroform	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD				#hloromethane	<0.2	μg/l	0.2	0.67	i		02/20/06	MRD				⊉-Chlorotoluene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD				4-Chlorotoluene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD				Dibromochloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD				⊃ibromochloropropane(DBCP)	<0.3	μg/l	0.3	1.0	1		02/20/06	MRD				■,2-Dibromoethane(EDB)	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD				∍ibromomethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD				1,2-Dichlorobenzene	<0.79	μg/l	0.75	2.5	1		02/20/06	MRD				1,3-Dichlorobenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD				4-Dichlorobenzene	<0.75	μg/l	0.75	2.5	1		02/20/06	MRD				ichlorodifluoromethane	<0.25	μg/l	0.25	0.83	1		02/20/06	MRD				1,1-Dichloroethane	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD				1,2-Dichloroethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD				<pre>↓■,1-Dichloroeth(yl)ene ■=is-1,2-Dichloroeth(yl)ene</pre>	<0.15	μg/l	0.15	0.50	1		02/20/06																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																												
MRD				=rans-1,2-Dichloroeth(yl)en	1.57 <0.1	μg/l	0.2 0.1	0.67 0.33	1		02/20/06	MRD				1,2-Dichloropropane	<0.1	μg/l μg/l	0.1	0.33	1 1		02/20/06	MRD MDD				1,3-Dichloropropane	<0.1	μg/l μg/l	0.1	0.33	1		02/20/06 02/20/06	MRD MRD				⊋,2-Dichloropropane	<0.1	μg/l μg/l	0.1	0.33	'-	CSH	02/20/06	MRD				,1-Dichloropropene	<0.2	μg/l μg/l	0.2	0.67	-	CSH	02/20/06	MRD				cis-1,3-Dichloropropene	<0.1	μg/l	0.1	0.33	1	0311	02/20/06	MRD				trans-1,3-Dichloropropene	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD				Ethylbenzene	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD				•		,			•		,, 50				TELEPHONE FACSIMILE WEBSITE W 800-338-7226 715-355-3221 www.usfilter.com Short Elliott Henderickson 21 Frenette Drive hippewa Falls , WI 54729 PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.15 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS Attn: John Guhl ample ID: B11 Matrix: GRDWTR Sample Date/Time: 02/16/06 13:45 Lab No. 195288		<u>Result</u>	<u>Units</u>	<u>LOD</u>	<u>LOQ</u>	Dilution <u>Factor</u>	<u>Qualifiers</u>	Date <u>Analyzed</u>	<u>Analyst</u>		---	---------------	--------------	------------	--------------	---------------------------	-------------------	-------------------------	----------------		PA 8260										Hexachlorobutadiene	-1 00		1.0	7 77	4		02/20/04	MDD			<1.00 <0.1	μg/l	1.0	3.33 0.33	1 1		02/20/06	MRD			<0.2	μg/l	0.1		1		02/20/06	MRD		-Isopropyltoluene Tethylene Chloride	<0.4	μg/l	0.2	0.67 1.33	1		02/20/06	MRD				μg/l	0.4		1		02/20/06	MRD		Methyl t-Butyl Ether(MTBE)	<0.1 <1.00	μg/l	0.1	0.33 3.33	1		02/20/06	MRD		Naphthalene		μg/l	1.0		1		02/20/06	MRD		m-Propylbenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		tyrene	<0.1	μg/l	0.1	0.33			02/20/06	MRD		1,1,1,2-Tetrachloroethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		1,1,2,2-Tetrachloroethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		Tetrachloroeth(yl)ene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		Toluene	<0.4	μg/l	0.4	1.33	1		02/20/06	MRD		,2,3-Trichlorobenzene	<0.5	μg/l	0.5	1.67	1		02/20/06	MRD		1,2,4-Trichlorobenzene	<0.5	μg/l	0.5	1.67	1		02/20/06	MRD		1,1,1-Trichloroethane	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		,1,2-Trichloroethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		richloroeth(yl)ene	0.415	μg/l	0.2	0.67	1	J	02/20/06	MRD		Irichlorofluoromethane	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		1,2,3-Trichloropropane	<0.55	μg/l	0.55	1.83	1		02/20/06	MRD		1,2,4-Trimethylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		,3,5-Trimethylbenzene inyl Chloride	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		™inyl Chloride	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		o-Xylene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		m-& p-Xylene	<0.4	μg/l	0.4	1.33	1		02/20/06	MRD)	•									EPA 8310_										Acenaphthene	<0.06	μg/l	0.06	0.20	1		02/23/06	LMP		Acenaphthylene	<0.06	μg/l	0.06	0.20	1		02/23/06	LMP		∎nthracene	<0.09	μg/l	0.09	0.30	1		02/23/06	LMP		enzo(a)Anthracene	<0.1	μg/l	0.1	0.33	1		02/23/06	LMP		enzo(a)Pyrene	<0.02	μg/l	0.02	0.067	1 -	CSL	02/23/06	LMP		Benzo(b)Fluoranthene	<0.02	μg/l	0.02	0.067	1		02/23/06	LMP		Benzo(k)Fluoranthene	<0.07	μg/l	0.07	0.23	1		02/23/06	LMP		∃enzo(ghi)Perylene	<0.06	μg/l	0.06	0.20	1		02/23/06	LMP		thrysene	0.131	μg/l	0.02	0.067	1	MB	02/23/06	LMP		bibenzo(a,h)Anthracene	<0.11	μg/l	0.11	0.37	1		02/23/06	LMP		Fluoranthene	<0.12	μg/l	0.12	0.40	1		02/23/06	LMP		fluorene	<0.12	μg/l	0.12	0.40	1		02/23/06	LMP		Indeno(1,2,3-cd)Pyrene	<0.12	μg/l	0.12	0.40	1		02/23/06	LMP		!- Methyl Naphthalene	<0.08	μg/l	0.08	0.27	1		02/23/06	LMP		2-Methyl Naphthalene	<0.11	μg/l	0.11	0.37	1		02/23/06	LMP		Naphthalene	<0.11	μg/l	0.11	0.37	1		02/23/06	LMP		⊃henanthrene	<0.11	μg/l	0.11	0.37	1		02/23/06	LMP		⇒yrene	<0.1	μg/l	0.1	0.33	i		02/23/06	LMP		→,10-Diphenylanthracene (S)	54.2	%	•	•	1		02/23/06	LMP		Method 3510 Liquid Ext.	COMP		-	-	•		02/20/06	KAM	TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com Short Elliott Henderickson ≒21 Frenette Drive ⊃hippewa Falls , WI 54729 PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.12 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS Attn: John Guhl	Sample ID:	B12	Matrix: GRDWTR	Sample Date/Time:	02/16/06	13:15	Lab No.	195287		------------	-----	-----------------	--------------------	----------	-------	---------	--------		pumped 10.	DIE	Maci IV. arrair	sample bate/illie.	02/10/00	13.13	Lab Mo.	173201							Dilution		Date			---	----------------	--------------	-------------	--------------	---------------	------------	----------------------	------------			Result	Units	LOD	LOQ	<u>Factor</u>	Qualifiers	Analyzed	Analyst												EPA 150.1										pH - Laboratory	8.67		-	-	1		02/20/06	JJP		PH - Laboratory Time	08:15		-	•	-		02/20/06	JJP		L										PA 245.1										Diss. Mercury	<0.07	μg/l	0.07	0.23	1		02/21/06	MPM		-n. /000										<u>≡PA 6020</u> ■iss. Arsenic	4 00		0.4	2.0	4		02 (20 (0)	1011		■iss. Arsentc ■iss. Cadmium	1.80	μg/l	0.6	2.0	1	J	02/20/06	JCH		Diss. Chromium	<0.2 2.00	μg/l	0.2 1.6	0.67 5.33	1 1		02/20/06	JCH		Piss. Lead	<0.3	μg/l	0.3	1.0	i	J	02/20/06	JCH		miss. Selenium	1.30	μg/l	0.5	2.0	1	J	02/20/06 02/20/06	JCH JCH		mice Barium	40.0	μg/l μg/l	2.0	6.66	1	J	02/20/06	JCH		miss. Barium Diss. Silver	<0.2	μg/l μg/l	0.2	0.67	i	MB	02/20/06	JCH		5133. 51(VC)	٧٠.٤	μ9/ (0.2	0.07	•	MD	02/20/00	JCH		≡PA 8260										B enzene	0.157	μg/l	0.15	0.50	1	J	02/20/06	MRD		■ romobenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		Bromochloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		#romodichloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		romoform	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		romomethane	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		n-Butylbenzene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		sec-Butylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		ert-Butylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		arbon Tetrachloride	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		= hlorobenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		Chloroethane	<0.6	μg/l	0.6	2.0	1		02/20/06	MRD		Chloroform	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		hloromethane	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		t-Chlorotoluene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		4-Chlorotoluene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		Dibromochloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		ibromochloropropane(DBCP)	<0.3	μg/l	0.3	1.0	1		02/20/06	MRD		,2-Dibromoethane(EDB)	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		ibromomethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		1,2-Dichlorobenzene	<0.75	μg/l	0.75	2.5	1		02/20/06	MRD		3-Dichlorobenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		,4-Dichlorobenzene	<0.75	μg/l	0.75	2.5	1		02/20/06	MRD		ichlorodifluoromethane 1.1-Dichloroethane	<0.25 <0.15	μg/l	0.25	0.83	1		02/20/06	MRD		1,2-Dichloroethane	<0.15	μg/l	0.15 0.1	0.50 0.33	1		02/20/06	MRD		,1-Dichloroeth(yl)ene	<0.15	μg/l	0.15	0.50	1		02/20/06 02/20/06	MRD		is-1,2-Dichloroeth(yl)ene	2.77	μg/l	0.13	0.67	1		02/20/06	MRD MRD		_rans-1,2-Dichloroeth(yl)en	<0.7	μg/l	0.2	0.33	1			MRD		1,2-Dichloropropane	<0.1	μg/l μg/l	0.1	0.33	<u> </u>		02/20/06 02/20/06	MRD		3-Dichloropropane	<0.1	μg/l μg/l	0.1	0.33	i		02/20/06	MRD		2.2-Dichloropropane	<0.1	μg/l μg/l	0.1	0.33	'-	CSH	02/20/06	MRD		,1-Dichloropropene	<0.2	μg/l μg/l	0.2	0.67	-	CSH	02/20/06	MRD		cis-1,3-Dichloropropene	<0.1	μg/l μg/l	0.1	0.33	1	0011	02/20/06	MRD		trans-1,3-Dichloropropene	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD		thylbenzene	0.269	μg/l	0.1	0.33	i	J	02/20/06	MRD		•		,- g, -			•	-	,,		TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com Short Elliott Henderickson ≒21 Frenette Drive □hippewa Falls , WI 54729 PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.13 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS Attn: John Guhl \$ample ID: B12 Matrix: GRDWTR Sample Date/Time: 02/16/06 13:15 Lab No. 195287		Result	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	Analyst		--	---------------																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																													
-------------------------	------------	--------------	---------------------------	------------	-------------------------	------------		L., 0040								_		EPA 8260	-4 00	41	4.0	7 77			02 (20 (0)			Hexachlorobutadiene	<1.00	μg/l	1.0	3.33	1 1		02/20/06	MRD		Isopropylbenzene	<0.1 <0.2	μg/l	0.1	0.33	1		02/20/06	MRD		4-Isopropyltoluene		μg/l	0.2	0.67	1		02/20/06	MRD		Methylene Chloride "Methyl t-Butyl Ether(MTBE)	<0.4	μg/l	0.4	1.33	1		02/20/06	MRD		Naphthalene	<0.1 <1.00	μg/l	0.1 1.0	0.33 3.33	1		02/20/06	MRD		mn-Propylbenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		Styrene	<0.1	μg/l μg/l	0.1	0.33	1		02/20/06 02/20/06	MRD MRD		1,1,1,2-Tetrachloroethane	<0.1	μg/ t		0.33	1					1,1,2,2-Tetrachloroethane	<0.1	μg/l μg/l	0.1 0.1	0.33	1		02/20/06	MRD MRD		I etrachloroeth(yl)ene	<0.1		0.1	0.33	1		02/20/06	MRD		Foluene	0.512	μg/l	0.4	1.33	1	J	02/20/06 02/20/06	MRD		1,2,3-Trichlorobenzene	<0.5	μg/l μg/l	0.5	1.67	1	J	02/20/06	MRD		-1,2,4-Trichlorobenzene	<0.5		0.5	1.67	1			MRD MRD		1,1,1-Trichloroethane	<0.2	μg/l	0.3	0.67	1		02/20/06			1,1,2-Trichtoroethane	<0.1	μg/l	0.2	0.87	1		02/20/06	MRD		Frichloroeth(yl)ene	<0.2	μg/l	0.2	0.33	1		02/20/06	MRD		Frichlorofluoromethane	<0.2 <0.2	μg/l μg/l	0.2	0.67	1		02/20/06 02/20/06	MRD		1,2,3-Trichloropropane	<0.55		0.55	1.83	1			MRD		_1,2,4-Trimethylbenzene	0.214	μg/l μg/l	0.15	0.50	1	J	02/20/06 02/20/06	MRD MRD		1,3,5-Trimethylbenzene	<0.15		0.15	0.50	1	J				Vinyl Chloride	<0.15	μg/l	0.15	0.50	1		02/20/06 02/20/06	MRD		o-Xylene	0.188	μg/l	0.15	0.33	1		02/20/08	MRD MRD		m-& p-Xylene	0.796	μg/l μg/l	0.4	1.33	1	J J	02/20/06	MRD		iii d p-xytene	0.790	μ9/ (0.4	1.33	,	J	02/20/00	MKD		EPA 8310										Acenaphthene	<0.06	μg/l	0.06	0.20	1		02/23/06	LMP		Acenaphthylene	<0.06	μg/l μg/l	0.06	0.20	i		02/23/06	LMP		_Anthracene	<0.09	μg/l	0.09	0.30	i		02/23/06	LMP		Benzo(a)Anthracene	<0.1	μg/l	0.1	0.33	i		02/23/06	LMP		Benzo(a)Pyrene	<0.02	μg/l	0.02	0.067	i	CSL	02/23/06	LMP		Benzo(b) Fluoranthene	0.155	μg/l	0.02	0.067	i	002	02/23/06	LMP		Benzo(k)Fluoranthene	<0.07	μg/l	0.07	0.23	i		02/23/06	LMP		Benzo(ghi)Perylene	<0.06	μg/l	0.06	0.20	i		02/23/06	LMP		Dhrysene	0.192	μg/l	0.02	0.067	i	MB	02/23/06	LMP		□ibenzo(a,h)Anthracene	<0.11	μg/l	0.11	0.37	i	MU	02/23/06	LMP		Fluoranthene	0.383	μg/l	0.12	0.40	i	J	02/23/06	LMP		▲Fluorene	<0.12	μg/l	0.12	0.40	i	·	02/23/06	LMP		Indeno(1,2,3-cd)Pyrene	0.145	μg/l	0.12	0.40	i	J	02/23/06	LMP		1-Methyl Naphthalene	<0.08	μg/l	0.08	0.27	i	•	02/23/06	LMP		2-Methyl Naphthalene	<0.11	μg/l	0.11	0.37	i		02/23/06	LMP		Naphthalene	<0.11	μg/l	0.11	0.37	i		02/23/06	LMP		=henanthrene	<0.11	μg/l	0.11	0.37	i		02/23/06	LMP		=yrene	<0.1	μg/l	0.1	0.33	i		02/23/06	LMP		,10-Diphenylanthracene (S)	43.8	μ ₃ , τ %	-	-	i		02/23/06	LMP		Method 3510 Liquid Ext.	COMP	,,	-	-	· <u>-</u>		02/20/06	KAM	TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com Short Elliott Henderickson 21 Frenette Drive hippewa Falls , WI 54729 ttn: John Guhl PROJECT NO.: NERUB0502.00 REPORT NO.: 195283.8 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS	<pre>=ample ID: MW-1</pre>	11:30	Lab No. 195285		----------------------------	-------	----------------		----------------------------	-------	----------------		II	<u>Result</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date Analyzed	Analyst		--	---------------	--------------	-------------	--------------	---------------------------	------------	----------------------	------------		LPA 150.1										pH - Laboratory	7.34		•	-	1		02/20/06	JJP		pH - Laboratory Time	08:15		-	-	-		02/20/06	JJP		PA 245.1										Diss. Mercury	<0.07	μg/l	0.07	0.23	1		02/21/06	MPM												PA 6020	-0.0		0.4	2.0			00.00.01			Diss. Arsenic Diss. Cadmium	<0.6 <0.2	μg/l	0.6	2.0	1		02/20/06	JCH		Diss. Chromium	<1.60	μg/l	0.2 1.6	0.67 5.33	1 1		02/20/06	JCH		Diss. Lead	<0.3	μg/l μg/l	0.3	1.0	i		02/20/06 02/20/06	JCH JCH		Diss. Selenium	0.6	μg/l	0.6	2.0	i	j	02/20/06	JCH		iss. Barium	62.5	μg/l	2.0	6.66	i	Ū	02/20/06	JCH		Diss. Silver	<0.2	μg/l	0.2	0.67	1	MB	02/20/06	JCH												<u> </u>										tenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		Bromochloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		Bromodichloromethane	<0.1 <0.1	μg/l	0.1 0.1	0.33	1 1		02/20/06	MRD		Bromoform	<0.2	μg/l μg/l	0.1	0.33 0.67	1		02/20/06	MRD MRD		Bromomethane	<0.15	μg/l μg/l	0.15	0.50	1		02/20/06 02/20/06	MRD		n-Butylbenzene	<0.2	μg/l μg/l	0.13	0.67	i		02/20/06	MRD		_sec-Butylbenzene	<0.15	μg/l	0.15	0.50	i		02/20/06	MRD		tert-Butylbenzene	<0.15	μg/l	0.15	0.50	i		02/20/06	MRD		Carbon Tetrachloride	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		Chloropenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		Circor occinanc	<0.6	μg/l	0.6	2.0	1		02/20/06	MRD		=hloroform	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		<pre>=hloromethane =-Chlorotoluene</pre>	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		4-Chlorotoluene	<0.1 <0.2	μg/l	0.1 0.2	0.33 0.67	1 1		02/20/06	MRD		Pibromochloromethane	<0.1	μg/l μg/l	0.2	0.33	1		02/20/06 02/20/06	MRD MRD		pibromochloropropane(DBCP)	<0.3	μg/l μg/l	0.3	1.0	1		02/20/06	MRD		2-Dibromoothono(EDB)	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD		Dibromomethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		1,2-Dichlorobenzene	<0.75	μg/l	0.75	2.5	1		02/20/06	MRD		1,3-Dichlorobenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		1,4-Dichlorobenzene	<0.75	μg/l	0.75	2.5	1		02/20/06	MRD		ichlorodifluoromethane	<0.25	μg/l	0.25	0.83	1		02/20/06	MRD		1,1-Dichloroethane1,2-Dichloroethane	<0.15 <0.1	μg/l	0.15 0.1	0.50	1		02/20/06	MRD		1,1-Dichloroeth(yl)ene	<0.15	μg/l μg/l	0.15	0.33 0.50	i		02/20/06 02/20/06	MRD MRD		cis-1,2-Dichloroeth(yl)ene	<0.2	μg/l μg/l	0.13	0.67	i		02/20/06	MRD		trans-1,2-Dichloroeth(yl)en	<0.1	μg/t μg/t	0.1	0.33	i		02/20/06	MRD		1,2-Dichloropropane	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD		1,3-Dichloropropane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		2,2-Dichloropropane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		1,1-Dichloropropene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		cis-1,3-Dichloropropene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		trans-1,3-Dichloropropene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		Ethylbenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD	TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com Short Elliott Henderickson 21 Frenette Drive hippewa Falls , WI 54729 PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.9 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS ittn: John Guhl mample ID: MW-1 Matrix: GRDWTR Sample Date/Time: 02/16/06 11:30 Lab No. 195285						Dilution		Date			----------------------------------	--------	-------	------	-------	----------	------------	----------	---------		•	Result	Units	LOD	LOQ	Factor	Qualifiers	Analyzed	Analyst		i i					<u> </u>					EPA 8260										Hexachlorobutadiene	<1.00	μg/l	1.0	3.33	1		02/20/06	MRD			<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		-Isopropyltoluene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		Pethylene Chloride	<0.4	μg/l	0.4	1.33	1		02/20/06	MRD		Methyl t-Butyl Ether(MTBE)	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		<u>Naphthalene</u>	<1.00	μg/l	1.0	3.33	1		02/20/06	MRD		-Propylbenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		tyrene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		₹,1,1,2-Tetrachloroethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		1,1,2,2-Tetrachloroethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		<pre>■etrachloroeth(yl)ene</pre>	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		oluene	<0.4	μg/l	0.4	1.33	1		02/20/06	MRD		_,2,3-Trichlorobenzene	<0.5	μg/l	0.5	1.67	1		02/20/06	MRD		1,2,4-Trichlorobenzene	<0.5	μg/l	0.5	1.67	1		02/20/06	MRD		1,1,1-Trichloroethane	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		,1,2-Trichloroethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		richloroeth(yl)ene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		richlorofluoromethane	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		1,2,3-Trichloropropane	<0.55	μg/l	0.55	1.83	1		02/20/06	MRD		2,4-Trimethylbenzene	<0.15	μg/l	0.15																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																						
0.50	1		02/20/06	MRD		,3,5-Trimethylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		inyl Chloride	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		o-Xylene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		ղ-& p-Xylene	4۔ 0>	μg/l	0.4	1.33	1		02/20/06	MRD		1 2 0740										PA 8310					_					Ucenaphthene	<0.06	μg/l	0.06	0.20	1		02/23/06	LMP		Acenaphthylene	<0.06	μg/l	0.06	0.20	1		02/23/06	LMP		nthracene	<0.09	μg/l	0.09	0.30	1		02/23/06	LMP		enzo(a)Anthracene	<0.1	μg/l	0.1	0.33	1		02/23/06	LMP		enzo(a)Pyrene	<0.02	μg/l	0.02	0.067	1	CSL	02/23/06	LMP		Benzo(b)Fluoranthene	0.052	μg/l	0.02	0.067	1	J	02/23/06	LMP		Renzo(k)Fluoranthene	<0.07	μg/l	0.07	0.23	1		02/23/06	LMP		enzo(ghi)Perylene	0.073	μg/l	0.06	0.20	1	J	02/23/06	LMP		hrysene	0.054	μg/l	0.02	0.067	1	J MB	02/23/06	LMP		Uibenzo(a,h)Anthracene	<0.11	μg/l	0.11	0.37	1		02/23/06	LMP		Fluoranthene	<0.12	μg/l	0.12	0.40	1		02/23/06	LMP		luorene	<0.12	μg/l	0.12	0.40	1		02/23/06	LMP		ndeno(1,2,3-cd)Pyrene	<0.12	μg/l	0.12	0.40	1		02/23/06	LMP		-Methyl Naphthalene	<0.08	μg/l	0.08	0.27	1		02/23/06	LMP		2-Methyl Naphthalene	<0.11	μg/l	0.11	0.37	1		02/23/06	LMP		Naphthalene	<0.11	μg/l	0.11	0.37	1		02/23/06	LMP		Phenanthrene Pyrene	<0.11	μg/l	0.11	0.37	1		02/23/06	LMP			<0.1	μg/l	0.1	0.33	1		02/23/06	LMP		9,10-Diphenylanthracene (S)	46.4	%	-	-	1		02/23/06	LMP		Method 3510 Liquid Ext.	COMP		-	-	-		02/20/06	KAM											TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com Short Elliott Henderickson 21 Frenette Drive hippewa Falls , WI 54729 PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.6 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS Attn: John Guhl	ample ID: MW-2	Matri	x: GRDWTR	s	Sample Date/Ti	Lab No. 195284					--	-----------------	--------------	--------------	----------------	-----------------------	-------------------	----------------------	------------			Resul t	Units	LOD	. LOQ	Dilution Factor	Qualifiers	Date Analyzed	Analyst			<u>itcout t</u>	<u> </u>	<u> </u>	LOG	<u>ractor</u>	<u>add(111c13</u>	Allatyzeu	Milatyst		EPA 150.1										pH - Laboratory	7.34		-	-	1		02/20/06	JJP		■ H - Laboratory Time	08:15		-	-	-		02/20/06	JJP		PA 245.1										Diss. Mercury	<0.07	μg/l	0.07	0.23	1		02/21/06	MPM		Diss. Nereally	10.01	μ9/ (0.07	0.23	•		02/21/00	FIFFI		≣PA_6020										iss. Arsenic	1.70	μg/l	0.6	2.0	1	J	02/20/06	JCH		Biss. Cadmium	<0.2	μg/l	0.2	0.67	1		02/20/06	JCH		Diss. Chromium	<1.60	μg/l	1.6	5.33	1		02/20/06	JCH		■iss. Lead	<0.3	μg/l	0.3	1.0	1		02/20/06	JCH		∍iss. Selenium ∍iss. Barium	0.6 7/ E	μg/l	0.6	2.0	1	J	02/20/06	JCH		Diss. Silver	34.5 <0.2	μg/l μg/l	2.0 0.2	6.66 0.67	1 1	MB	02/20/06	JCH JCH		Diss. Sitvei	٧٠.٤	μ9/ (0.2	0.07	J	ND	02/20/06	JUN		≣PA 8260										enzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		romobenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		Bromochloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		#Bromodichloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		Bromoform	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		romomethane	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		n-Butylbenzene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		sec-Butylbenzene ert-Butylbenzene	<0.15 <0.15	μg/l	0.15	0.50	1		02/20/06	MRD		Farbon Tetrachloride	<0.15	μg/l μg/l	0.15 0.2	0.50 0.67	1 1		02/20/06	MRD MRD		thlorobenzene	<0.1	μg/l μg/l	0.1	0.33	1		02/20/06 02/20/06	MRD		Chloroethane	<0.6	μg/l	0.6	2.0	i		02/20/06	MRD		hloroform	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD		Chloromethane	<0.2	μg/l	0.2	0.67	i		02/20/06	MRD		-Chiorotoluene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		4-Chlorotoluene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		Pibromochloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		ibromochloropropane(DBCP)	<0.3	μg/l	0.3	1.0	1		02/20/06	MRD		,2-Dibromoethane(EDB)	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		#ibromomethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		1,2-Dichlorobenzene 1,3-Dichlorobenzene	<0.75 <0.15	μg/l	0.75 0.15	2.5 0.50	1 1		02/20/06	MRD		,4-Dichlorobenzene	<0.75	μg/l μg/l	0.75	2.5	1		02/20/06 02/20/06	MRD MRD		• ichlorodifluoromethane	<0.25	μg/l	0.75	0.83	i		02/20/06	MRD		1,1-Dichloroethane	<0.15	μg/l	0.15	0.50	i		02/20/06	MRD		_1,2-Dichloroethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		1,1-Dichloroeth(yl)ene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		is-1,2-Dichloroeth(yl)ene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		rans-1,2-Dichloroeth(yl)en	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		1,2-Dichloropropane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		1,3-Dichloropropane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		‡,2-Dichloropropane	<0.1	μg/l	0.1	0.33	-	CSH	02/20/06	MRD		=,1-Dichloropropene	<0.2	μg/l	0.2	0.67	-	CSH	02/20/06	MRD		cis-1,3-Dichloropropene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		trans-1,3-Dichloropropene thylbenzene	<0.1 <0.1	μg/l μg/l	0.1 0.1	0.33 0.33	1 1		02/20/06 02/20/06	MRD MRD		1/	-0.1	#8/ (0.1	0.00	1		02/20/00	טאויו											ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com Short Elliott Henderickson ■21 Frenette Drive Chippewa Falls , WI 54729 PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.7 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS ↑ttn: John Guhl ample ID: MW-2 Matrix: GRDWTR Sample Date/Time: 02/16/06 11:00 Lab No. 195284	1	<u>Result</u>	<u>Units</u>	<u>LOD</u>	LOQ	Dilution <u>Factor</u>	<u>Qualifiers</u>	Date <u>Analyzed</u>	Analyst		-------------------------------------	---------------	--------------	------------	-------	---------------------------	-------------------	-------------------------	---------		EPA 8260										Hexachlorobutadiene	<1.00	μg/l	1.0	3.33	1		02/20/06	MRD		Isopropylbenzene	<0.1	μg/l μg/l	0.1	0.33	i		02/20/06	MRD		#-Isopropyltoluene	<0.2	μg/l μg/l	0.2	0.67	1		02/20/06	MRD		Methylene Chloride	<0.4	μg/l μg/l	0.4	1.33	1		02/20/08	MRD		Methyl t-Butyl Ether(MTBE)	<0.1	μg/l μg/l	0.1	0.33	i		02/20/06	MRD		Naphthalene	<1.00	μg/l μg/l	1.0	3.33	1		02/20/06	MRD		n-Propylbenzene	<0.1	μg/t μg/l	0.1	0.33	1			MRD		Styrene	<0.1	. •	0.1	0.33	1		02/20/06			1,1,1,2-Tetrachloroethane	<0.1	μg/l		0.33	i		02/20/06	MRD		1,1,2,2-Tetrachloroethane	<0.1	μg/l	0.1 0.1	0.33	1		02/20/06	MRD			<0.1	μg/l					02/20/06	MRD		etrachloroeth(yl)ene oluene		μg/l	0.1	0.33	1 1		02/20/06	MRD		,2,3-Trichlorobenzene	<0.4	μg/l	0.4	1.33	•		02/20/06	MRD			<0.5	μg/l	0.5	1.67	1		02/20/06	MRD		1,2,4-Trichlorobenzene	<0.5	μg/l	0.5	1.67	•		02/20/06	MRD		1,1,1-Trichloroethane	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		1,1,2-Trichloroethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		Frichloroeth(yl)ene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		Trichlorofluoromethane	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		1,2,3-Trichloropropane	<0.55	μg/l	0.55	1.83	1		02/20/06	MRD		1,2,4-Trimethylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		1,3,5-Trimethylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		Winyl Chloride	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		o-Xylene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		m-& p-Xylene	<0:4	μg/l	0.4	1.33	1		02/20/06	MRD		⊭ PA 8310											-0.04		0.00	0.00			00 (07 (0)			Ucenaphthene	<0.06	μg/l	0.06	0.20	1		02/23/06	LMP		Acenaphthylene Anthracene	<0.06	μg/l	0.06	0.20	1		02/23/06	LMP			<0.09	μg/l	0.09	0.30	1		02/23/06	LMP		Benzo(a)Anthracene	<0.1	μg/l	0.1	0.33	1		02/23/06	LMP		Benzo(a)Pyrene Benzo(b)Fluoranthene	0.048	μg/l	0.02	0.067	1	J CSL	02/23/06	LMP			<0.02	μg/l	0.02	0.067	1		02/23/06	LMP		Benzo(k)Fluoranthene	<0.07	μg/l	0.07	0.23	1		02/23/06	LMP		Benzo(ghi)Perylene	<0.06	μg/l	0.06	0.20	1		02/23/06	LMP		hrysene	<0.02	μg/l	0.02	0.067	1	MB	02/23/06	LMP		Dibenzo(a,h)Anthracene	<0.11	μg/l	0.11	0.37	1		02/23/06	LMP		Fluoranthene	<0.12	μg/l	0.12	0.40	1		02/23/06	LMP		[luorene	<0.12	μg/l	0.12	0.40	1		02/23/06	LMP		ndeno(1,2,3-cd)Pyrene	<0.12	μg/l	0.12	0.40	1		02/23/06	LMP		-Methyl Naphthalene	<0.08	μg/l	0.08	0.27	1		02/23/06	LMP		2-Methyl Naphthalene	<0.11																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																														
μg/l	0.11	0.37	1		02/23/06	LMP		Naphthalene	<0.11	μg/l	0.11	0.37	1		02/23/06	LMP		Phenanthrene	<0.11	μg/l	0.11	0.37	1		02/23/06	LMP		yrene	<0.1	μg/l	0.1	0.33	1		02/23/06	LMP		7,10-Diphenylanthracene (S)	47.9	%	-	-	1		02/23/06	LMP		Method 3510 Liquid Ext.	COMP		-	-	-		02/20/06	KAM	TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com Short Elliott Henderickson :=21 Frenette Drive	=hippewa Falls , WI 54729 PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.4 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS Attn: John Guhl ∃ample ID: MW-3 Matrix: GRDWTR Sample Date/Time: 02/16/06 10:30 Lab No. 195283		Result	<u>Units</u>	LOD	<u>L00</u>	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	Analyst		---	--------------	--------------	------------	--------------	---------------------------	------------	-------------------------	---------		EPA 150.1										pH - Laboratory	7.37		•	-	1		02/20/06	JJP		pH - Laboratory Time	08:15		-	-	· -		02/20/06	JJP		· ·							,,			EPA 245.1										Diss. Mercury	<0.07	μg/l	0.07	0.23	1		02/21/06	MPM		**************************************										EPA 6020 Diss. Arsenic	7 /0	u= (1	0.4	2.0	4		02/20/0/			Diss. Cadmium	3.40 <0.2	μg/l	0.6 0.2	2.0	1		02/20/06	JCH		Diss. Chromium	<1.60	μg/l	1.6	0.67 5.33	1 1		02/20/06	JCH			<0.3	μg/l			•		02/20/06	JCH		⊅iss. Lead ⊅iss. Selenium	<0.6	μg/l	0.3 0.6	1.0 2.0	1 1		02/20/06	JCH		Diss. Barium	33.7	μg/l	2.0	6.66	i		02/20/06	JCH		Diss. Silver	۶۶.، خ0.2	μg/l	0.2	0.67	1	MB	02/20/06	JCH		Diss. Sitvei	٧٠.٢	μg/l	0.2	0.67	1	מויז	02/20/06	JCH		EPA 8260										Benzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		Bromobenzene	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD		Bromochloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		Bromodichloromethane	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD		Bromoform	<0.2	μg/l	0.2	0.67	i		02/20/06	MRD		Bromomethane	<0.15	μg/l	0.15	0.50	i		02/20/06	MRD		n-Butylbenzene	<0.2	μg/l	0.2	0.67	i		02/20/06	MRD		sec-Butylbenzene	<0.15	μg/l	0.15	0.50	i		02/20/06	MRD		tert-Butylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		Carbon Tetrachloride	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		Chlorobenzene	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD		Chloroethane	<0.6	μg/l	0.6	2.0	1		02/20/06	MRD		Chloroform	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		Chloromethane	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		2-Chlorotoluene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		4-Chlorotoluene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		Dibromochloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		⊇ibromochloropropane(DBCP)	<0.3	μg/l	0.3	1.0	1		02/20/06	MRD		,2-Dibromoethane(EDB) Dibromomethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		Dibromomethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		1,2-Dichlorobenzene	<0.75	μg/l	0.75	2.5	1		02/20/06	MRD		1,3-Dichlorobenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		1,4-Dichlorobenzene	<0.75	μg/l	0.75	2.5	1		02/20/06	MRD		Dichlorodifluoromethane	<0.25	μg/l	0.25	0.83	1		02/20/06	MRD		1,1-Dichloroethane	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		1,2-Dichloroethane	2.29	μg/l	0.1	0.33	1		02/20/06	MRD		1,1-Dichloroeth(yl)ene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		pis-1,2-Dichloroeth(yl)ene	2.22	μg/l	0.2	0.67	1		02/20/06	MRD		rans-1,2-Dichloroeth(yl)en	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		1,2-Dichloropropane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		1,3-Dichloropropane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		⊉,2-Dichloropropane	<0.1	μg/l	0.1	0.33	-	CSH	02/20/06	MRD		∃,1-Dichloropropene	<0.2	μg/l	0.2	0.67	-	CSH	02/20/06	MRD		cis-1,3-Dichloropropene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		trans-1,3-Dichloropropene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		Ethylbenzene	<0.1	μg/l	0.1	0.33	1	÷	02/20/06	MRD	ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com Short Elliott Henderickson ■21 Frenette Drive Chippewa Falls , WI 54729 PROJECT NO.: NERUB0502.00 REPORT NO.: 195283.5 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS Attn: John Guhl	imample ID: MW-3	Matri	x: GRDWTR		Sample Date/Ti	Lab No. 195283					----------------------------	---------------	--------------	------------	----------------	---------------------------	------------	-------------------------	---------			<u>Result</u>	<u>Units</u>	<u>LOD</u>	<u>L00</u>	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	Analyst		≡PA 8260										Hexachlorobutadiene	<1.00	μg/l	1.0	3.33	1		02/20/06	MRD		Isopropylbenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		Isopropyltoluene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		ethylene Chloride	<0.4	μg/l	0.4	1.33	i		02/20/06	MRD		Methyl t-Butyl Ether(MTBE)	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		Naphthalene	<1.00	μg/l	1.0	3.33	1		02/20/06	MRD		n-Propylbenzene	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD		Styrene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		1,1,1,2-Tetrachloroethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		1 1 2 2-Totachlopoothopo	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		Tetrachloroeth(yl)ene	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD		Foluene	<0.4	μg/l	0.4	1.33	1		02/20/06	MRD		1,2,3-Trichlorobenzene	<0.5	μg/l	0.5	1.67	i		02/20/06	MRD		1,2,4-Trichlorobenzene	<0.5	μg/l	0.5	1.67	i		02/20/06	MRD		1.1.1-Trichloroethane	<0.2	μg/l	0.2	0.67	i		02/20/06	MRD		1,1,2-Trichloroethane	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD		Trichloroeth(yl)ene	0.535	μg/l	0.2	0.67	i	J	02/20/06	MRD		Trichlorofluoromethane	<0.2	μg/l	0.2	0.67	i	•	02/20/06	MRD		1,2,3-Trichloropropane	<0.55	μg/l	0.55	1.83	i		02/20/06	MRD		1,2,4-Trimethylbenzene	<0.15	μg/l	0.15	0.50	i		02/20/06	MRD		,3,5-Trimethylbenzene	<0.15	μg/l	0.15	0.50	i		02/20/06	MRD		inyl Chloride	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		o-Xylene	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD		m-& p-Xylene	<0.4	μg/l	0.4	1.33	i		02/20/06	MRD		<u> </u>										cenaphthene	<0.06	μg/l	0.06	0.20	1		02/23/06	LMP		Acenaphthylene	<0.06	μg/l	0.06	0.20	1		02/23/06	LMP		Anthracene	<0.09	μg/l	0.09	0.30	1		02/23/06	LMP		Benzo(a)Anthracene	<0.1	μg/l	0.1	0.33	1		02/23/06	LMP		βenzo(a)Pyrene	<0.02	μg/l	0.02	0.067	1	CSL	02/23/06	LMP		Benzo(b)Fluoranthene	<0.02	μg/l	0.02	0.067	1		02/23/06	LMP		Benzo(k)Fluoranthene	<0.07	μg/l	0.07		1		02/23/06	LMP		≣enzo(ghi)Perylene	<0.06	μg/l	0.06	0.20	1		02/23/06	LMP		hrysene	<0.02	μg/l	0.02	0.067	1	MB	02/23/06	LMP		ibenzo(a,h)Anthracene	<0.11	μg/l	0.11	0.37	1		02/23/06	LMP		Fluoranthene	<0.12	μg/l	0.12	0.40	1		02/23/06	LMP		Fluorene	<0.12	μg/l	0.12	0.40	1		02/23/06	LMP		ndeno(1,2,3-cd)Pyrene	<0.12	μg/l	0.12	0.40	1		02/23/06	LMP		-Methyl Naphthalene	<0.08	μg/l	0.08	0.27	1		02/23/06	LMP		2-Methyl Naphthalene	<0.11	μg/l	0.11	0.37	1		02/23/06	LMP		Naphthalene	<0.11	μg/l	0.11	0.37	1.		02/23/06	LMP		henanthrene	<0.11	μg/l	0.11	0.37	1		02/23/06	LMP		yrene	<01	μg/l	0.1	0.33	1		02/23/06	LMP		,10-Diphenylanthracene (S)	56.6	%	-	•	1		02/23/06	LMP		Method 3510 Liquid Ext.	COMP		-	-	-		02/20/06	KAM	TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com Short Elliott Henderickson 21 Frenette Drive Chippewa Falls , WI 54729 PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.80 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS Attn: John Guhl	ample ID: MW-4	Matri	x: GRDWTR	Sa	mple Date/T	Lab No. 195320					---------------------------------------	---------------	--------------	------	-------------	---------------------------	------------	------------------	----------------			<u>Result</u>	<u>Units</u>	LOD	<u>LOQ</u>	Dilution <u>Factor</u>	Qualifiers	Date Analyzed	<u>Analyst</u>		≣PA 150.1										pH - Laboratory	7.48		-	-	1		02/20/06	JJP		pH - Laboratory Time	08:30		-	-	•		02/20/06	JJP									02,20,00			PA 245.1										Diss. Mercury	<0.07	μg/l	0.07	0.23	1		02/21/06	MPM		, , , , , , , , , , , , , , , , , , ,	10.01	#9/ t	0.0.	0.23	•		02/21/00	rir ri		EPA 6020										iss. Arsenic	<0.6	μg/l	0.6	2.0	1		02/28/06	JCH		iss. Cadmium	0.77	μg/l	0.2	0.67	1		02/28/06	JCH		Diss. Chromium	2.80	μg/l	1.6	5.33	i	J	02/28/06	JCH		⇒Diss. Lead	<0.3	μg/l	0.3	1.0	1	-	02/28/06	JCH																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																		
iss. Selenium	0.7	μg/l	0.6	2.0	ì	J	02/28/06	JCH		iss. Barium	48.2	μg/l	2.0	6.66	1	-	02/28/06	JCH		Diss. Silver	<0.2	μg/l	0.2	0.67	i		02/28/06	JCH				F3/ 1		••••	•		02, 20, 00			<u> PA 8260</u>										enzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		romobenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		Bromochloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		romodichloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		romoform	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		romomethane	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		n-Butylbenzene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		sec-Butylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		_ert-Butylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		arbon Tetrachloride	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		I hlorobenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		Chloroethane	<0.6	μg/l	0.6	2.0	1		02/20/06	MRD		Phloroform	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		hloromethane	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		-Chlorotoluene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		4-Chlorotoluene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		Dibromochloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		ibromochloropropane(DBCP)	<0.3	μg/l	0.3	1.0	1		02/20/06	MRD		,2-Dibromoethane(EDB)	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		ibromomethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		1,2-Dichlorobenzene	<0.75	μg/l	0.75	2.5	1		02/20/06	MRD		1,3-Dichlorobenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		,4-Dichlorobenzene	<0.75	μg/l	0.75	2.5	1		02/20/06	MRD		ichlorodifluoromethane	<0.25	μg/l	0.25	0.83	. 1		02/20/06	MRD		1,1-Dichloroethane	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		_1,2-Dichloroethane	0.296	μg/l	0.1	0.33	1	J	02/20/06	MRD		1-Dichloroeth(yl)ene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		is-1,2-Dichloroeth(yl)ene	5.57	μg/l	0.2	0.67	1		02/20/06	MRD		rans-1,2-Dichloroeth(yl)en	0.138	μg/l	0.1	0.33	1	J	02/20/06	MRD		1,2-Dichloropropane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		,3-Dichloropropane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		,2-Dichloropropane	<0.1	μg/l	0.1	0.33	-	CSH	02/20/06	MRD		,1-Dichloropropene	<0.2	μg/l	0.2	0.67	-	CSH	02/20/06	MRD		cis-1,3-Dichloropropene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		trans-1,3-Dichloropropene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		thylbenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD											ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.81 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS Attn: John Guhl Short Elliott Henderickson hippewa Falls , WI 54729 21 Frenette Drive Sample ID: MW-4 Matrix: GRDWTR Sample Date/Time: 02/16/06 08:00 Lab Lab No. 195320					•						-----------------------------	--------	--------------	------	--------------	----------	------------	----------	------------		ì					Dilution		Date			Ī	Result	Units	LOD	LOQ	Factor	Qualifiers	Analyzed	Analyst												<u>EPA 8260</u>										Hexachlorobutadiene	<1.00	μg/l	1.0	3.33	1		02/20/06	MRD		sopropylbenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		4-Isopropyltoluene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		lethylene Chloride	<0.4	μg/l	0.4	1.33	1		02/20/06	MRD		Methyl t-Butyl Ether(MTBE)	0.112	μg/l	0.1	0.33	1	J	02/20/06	MRD		Naphthalene	<1.00	μg/l	1.0	3.33	1	-	02/20/06	MRD		n-Propylbenzene	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD		\$tyrene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		1,1,1,2-Tetrachloroethane	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD		1,1,2,2-Tetrachloroethane	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD		▼etrachloroeth(yl)ene	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD		oluene	<0.4	μg/l	0.4	1.33	i		02/20/06	MRD		■,2,3-Trichlorobenzene	<0.5	μg/l	0.5	1.67	i		02/20/06	MRD		1,2,4-Trichlorobenzene	<0.5	μg/l	0.5	1.67	i		02/20/06	MRD		1,1,1-Trichloroethane	<0.2	μg/l	0.2	0.67	i		02/20/06	MRD		1,1,2-Trichloroethane	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD		Frichloroeth(yl)ene	<0.2	μg/l	0.2	0.67	i		02/20/06	MRD		Trichlorofluoromethane	<0.2	μg/l μg/l	0.2	0.67	i		02/20/06	MRD		1,2,3-Trichloropropane	<0.55	μg/l	0.55	1.83	i		02/20/06	MRD		1,2,4-Trimethylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		1,3,5-Trimethylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		/inyl Chloride	<0.15	μg/l μg/l	0.15	0.50	i			MRD		o-Xylene	<0.1	μg/l μg/l	0.13	0.33	1		02/20/06			m-& p-Xylene	<0.4	μg/l μg/l	0.4	1,33	1		02/20/06	MRD MRD		F u p xyteric	٠٠.۶	μg/t	0.4	1,33	1		02/20/06	טאוין		 ₽A 8310										Acenaphthene	<0.06		0.06	0.20	4		02/27/0/	LMD		Acenaphthylene	<0.06	μg/l	0.06	0.20	1 1		02/27/06	LMP		=Anthracene	<0.00	μg/l	0.09		1		02/27/06	LMP		Benzo(a)Anthracene	<0.1	μg/l	0.09	0.30 0.33	1		02/27/06	LMP		Benzo(a)Pyrene	<0.02	μg/l			1		02/27/06	LMP		Benzo(b)Fluoranthene	<0.02	μg/l	0.02	0.067	•	0011	02/27/06	LMP		Benzo(k)Fluoranthene		μg/l	0.02	0.067	1	CSH	02/27/06	LMP			<0.07	μg/l	0.07	0.23	1		02/27/06	LMP		Benzo(ghi)Perylene	<0.06	μg/l	0.06	0.20	1		02/27/06	LMP		Chrysene	<0.02	μg/l	0.02	0.067	1		02/27/06	LMP		Dibenzo(a,h)Anthracene	<0.11	μg/l	0.11	0.37	1		02/27/06	LMP		Fluoranthene	<0.12	μg/l	0.12	0.40	1		02/27/06	LMP		Fluorene	<0.12	μg/l	0.12	0.40	1		02/27/06	LMP		Indeno(1,2,3-cd)Pyrene	<0.12	μg/l	0.12	0.40	1	CSH	02/27/06	LMP		1-Methyl Naphthalene	<0.08	μg/l	0.08	0.27	1		02/27/06	LMP		2-Methyl Naphthalene	<0.11	μg/l	0.11	0.37	1		02/27/06	LMP		Naphthalene	<0.11	μg/l	0.11	0.37	1		02/27/06	LMP		Phenanthrene	<0.11	μg/l	0.11	0.37	1		02/27/06	LMP		₽yrene	<0.1	μg/l	0.1	0.33	1		02/27/06	LMP		7,10-Diphenylanthracene (S)	63.8	%	•	-	1		02/27/06	LMP		Method 3510 Liquid Ext.	COMP		-	-	-		02/22/06	KAM	ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com Short Elliott Henderickson -21 Frenette Drive -hippewa Falls , WI 54729 PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.86 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS Attn: John Guhl	Sample ID: MW-5	Matrix: GRDWTR			ample Date/Ti	Lab No. 195323					--	----------------	--------------	-------------	---------------	-----------------------	------------	----------------------	----------------							Dilution		Date			_	<u>Result</u>	<u>Units</u>	LOD	LOQ	<u>Factor</u>	Qualifiers	<u>Analyzed</u>	<u>Analyst</u>		L. 450 4										<u> PA 150.1</u>	7 70						02/20/04			pH - Laboratory #H - Laboratory Time	7.38 08:30		•	-	1_		02/20/06 02/20/06	JJP JJP		In a caboratory rime	00:30		-	•	-		02/20/08	JJP		PA 245.1										iss. Mercury	<0.07	μg/l	0.07	0.23	1		02/21/06	MPM									,,			<u>≡PA 6020</u>										iss. Arsenic	0.6	μg/l	0.6	2.0	1	J	02/28/06	JCH		iss. Cadmium Diss. Chromium	<0.2	μg/l	0.2	0.67	1		02/28/06	JCH		Riss. Lead	1.90 <0.3	μg/l	1.6 0.3	5.33 1.0	1	J	02/28/06	JCH		wiss. Selenium	0.7	μg/l μg/l	0.6	2.0	i	J	02/28/06 02/28/06	JCH JCH		riss. Barium	68.5	μg/l	2.0	6.66	i	·	02/28/06	JCH		Diss. Silver	<0.2	μg/l	0.2	0.67	i		02/28/06	JCH				,								<u>=PA 8260</u>										enzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		romobenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		Bromochloromethane _Bromodichloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		romoform	<0.1 <0.2	μg/l μg/l	0.1 0.2	0.33 0.67	1 1		02/20/06 02/20/06	MRD MRD		romomethane	<0.15	μg/l μg/l	0.15	0.50	i		02/20/06	MRD		n-Butylbenzene	<0.2	μg/l	0.2	0.67	i		02/20/06	MRD		sec-Butylbenzene	<0.15	μg/l	0.15	0.50	i		02/20/06	MRD		ert-Butylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		arbon Tetrachloride	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		hlorobenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		Chloroethane	<0.6	μg/l	0.6	2.0	1		02/20/06	MRD		Chloroform	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		hloromethane ·	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		-Chlorotoluene 4-Chlorotoluene	<0.1 <0.2	μg/l μg/l	0.1 0.2	0.33 0.67	1 1		02/20/06 02/20/06	MRD MRD		Dibromochloromethane	<0.1	μg/l μg/l	0.2	0.33	1		02/20/06	MRD		ibromochloropropane(DBCP)	<0.3																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																		
μg/l	0.3	1.0	i		02/20/06	MRD		,2-Dibromoethane(EDB)	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD		ibromomethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		1,2-Dichlorobenzene	<0.75	μg/l	0.75	2.5	1		02/20/06	MRD		.3-Dichlorobenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		,4-Dichlorobenzene	<0.75	μg/l	0.75	2.5	1		02/20/06	MRD		ichlorodifluoromethane	<0.25	μg/l	0.25	0.83	1		02/20/06	MRD		1,1-Dichloroethane	<0.15 0.357	μg/l	0.15 0.1	0.50 0.33	1 1		02/20/06	MRD MRD		,1-Dichloroeth(yl)ene	<0.15	μg/l μg/l	0.15	0.50	i		02/20/06 02/20/06	MRD		is-1,2-Dichloroeth(yl)ene	8.26	μg/l	0.2	0.67	i		02/20/06	MRD		rans-1,2-Dichloroeth(yl)en	0.262	μg/l	0.1	0.33	i	j	02/20/06	MRD		1,2-Dichloropropane	<0.1	μg/l	0.1	0.33	i	-	02/20/06	MRD		1,3-Dichloropropane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		,2-Dichloropropane	<0.1	μg/l	0.1	0.33	-	CSH	02/20/06	MRD		",1-Dichloropropene	<0.2	μg/l	0.2	0.67	•	CSH	02/20/06	MRD		cis-1,3-Dichloropropene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		trans-1,3-Dichloropropene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		thylbenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD	ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.87 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS Attn: John Guhl +21 Frenette Drive Chippewa Falls , WI 54729 Short Elliott Henderickson Sample ID: MW-5 Matrix: GRDWTR Sample Date/Time: 02/16/06 09:30 Lab No. 195323	Isopropylbenzene <0.1 $\mu g/l$ 0.1 0.33 1 $02/20/06$ MR 4 -Isopropyltoluene <0.2 $\mu g/l$ 0.2 0.67 1 $02/20/06$ MR 4 -Interpolation <0.4 $\mu g/l$ 0.4 1.33 1 $02/20/06$ MR 4 -Interpolation <0.4	IRD IRD IRD IRD IRD IRD IRD IRD IRD		---	---		Hexachlorobutadiene <1.00 μ g/l 1.0 3.33 1 02/20/06 MR sopropylbenzene <0.1 μ g/l 0.1 0.33 1 02/20/06 MR -1sopropyltoluene <0.2 μ g/l 0.2 0.67 1 02/20/06 MR -1sopropyltoluene <0.4 μ g/l 0.4 1.33 1 02/20/06 MR	IRD IRD IRD IRD IRD IRD IRD IRD		Isopropylbenzene <0.1 $\mu g/l$ 0.1 0.33 1 $02/20/06$ MR 4 -Isopropyltoluene <0.2 $\mu g/l$ 0.2 0.67 1 $02/20/06$ MR Methylene Chloride <0.4 $\mu g/l$ 0.4 1.33 1 $02/20/06$ MR	IRD IRD IRD IRD IRD IRD IRD IRD		#-Isopropyltoluene <0.2 μg/l 0.2 0.67 1 02/20/06 MR Methylene Chloride <0.4 μg/l 0.4 1.33 1 02/20/06 MR	IRD IRD IRD IRD IRD IRD IRD		Methylene Chloride <0.4 µg/l 0.4 1.33 1 02/20/06 MR	IRD IRD IRD IRD IRD IRD			IRD IRD IRD IRD IRD			IRD IRD IRD IRD			IRD IRD IRD			IRD IRD			IRD						מאו					etrachloroeth(yl)ene <0.1 μg/l 0.1 0.33 1 02/20/06 MR			oluene			,2,3-Trichlorobenzene <0.5 μg/l 0.5 1.67 1 02/20/06 MR			1,2,4-Trichlorobenzene <0.5 $\mu g/l$ 0.5 1.67 1 02/20/06 MR			1,1,1-Trichloroethane			$1,1,2$ -Trichloroethane <0.1 μ g/l 0.1 0.33 1 02/20/06 MR			Fichloroeth(yl)ene <0.2 µg/l 0.2 0.67 1 02/20/06 MR			Firithfore the control of contr			1,2,3-Trichloropropane <0.55 μg/l 0.55 1.83 1 02/20/06 MR						1,3,5-Trimethylbenzene <0.15 µg/l 0.15 0.50 1 02/20/06 MR	IRD		III /inyl Chloride <0.15 $\mu g/l$ 0.15 0.50 1 02/20/06 MR	IRD		o-Xylene <0.1 μg/l 0.1 0.33 1 02/20/06 MR			m-& p-Xylene <0.4 μg/l 0.4 1.33 1 02/20/06 MR	IRD		No. and			PA 8310_				.MP			.MP			.MP		· ·	.MP		. <u> </u>	.MP			.MP			.MP			.MP			MP			.MP			.MP			.MP			.MP		-Methyl Naphthalene <0.08 μg/l 0.08 0.27 1 02/28/06 LM	.MP		2-Methyl Naphthalene <0.11 μg/l 0.11 0.37 1 02/28/06 LM	MP		II. '	.MP			.MP			.MP			.MP		Method 3510 Liquid Ext. COMP 02/22/06 KA	CAM	ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com Short Elliott Henderickson 421 Frenette Drive Chippewa Falls , WI 54729 PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.88 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS Attn: John Guhl	Sample ID: PZ-5	Matri	x: GRDWTR	s	ample Date/T	Lab No. 195324					---	---------------	--------------	-------------	--------------	---------------------------	------------	-------------------------	------------		•	<u>Result</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	Analyst		EPA_150.1										pH - Laboratory	7.48		-	-	1		02/20/06	JJP		→pH - Laboratory Time	08:30		-	-	· <u>-</u>		02/20/06	JJP									,,			EPA 245.1										Diss. Mercury	<0.07	μg/l	0.07	0.23	1		02/21/06	MPM		EPA 6020_										Diss. Arsenic	10.3	μg/l	0.6	2.0	1		02/28/06	JCH		Diss. Cadmium	<0.2	μg/l	0.2	0.67	1		02/28/06	JCH		Diss. Chromium	<1.60	μg/l	1.6	5.33	1		02/28/06	JCH		∯iss. Lead	<0.3	μg/l	0.3	1.0	1		02/28/06	JCH		🏲iss. Selenium	8.0	μg/l	0.6	2.0	1	j	02/28/06	JCH		₱iss. Barium	71.2	μg/l	2.0	6.66	1		02/28/06	JCH		Diss. Silver	<0.2	μg/l	0.2	0.67	1		02/28/06	JCH		<u>≡PA 8260</u>										≢ enzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		₿romobenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		Bromochloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		₽romodichloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		#romoform	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		≡ romomethane	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		n-Butylbenzene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		sec-Butylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		tert-Butylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		Carbon Tetrachloride	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		Chlorobenzene	<0.3	μg/l	0.1	0.33	1		02/20/06	MRD		Chloroethane	<0.6	μg/l	0.6	2.0	1		02/20/06	MRD		hloroform	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		hloromethane	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		-Chlorotoluene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		4-Chlorotoluene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		Dibromochloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		(ibromochloropropane(DBCP)	<0.3	μg/l	0.3	1.0	1		02/20/06	MRD		,2-Dibromoethane(EDB)	<0.1	μg/l	0.1	0.33	1 1		02/20/06	MRD		1,2-Dichlorobenzene	<0.1 <0.75	μg/l	0.1 0.75	0.33 2.5	1		02/20/06 02/20/06	MRD		1,3-Dichtorobenzene	<0.15	μg/l μg/l	0.75	0.50	1		02/20/06	MRD MRD		,4-Dichlorobenzene	<0.75	μg/l μg/l	0.15	2.5	i		02/20/06	MRD		ichlorodifluoromethane	<0.25	μg/l μg/l	0.25	0.83	i		02/20/06	MRD		1,1-Dichloroethane	<0.15	μg/l μg/l	0.15	0.50	i		02/20/06	MRD		1,2-Dichloroethane	0.335	μg/l μg/l	0.1	0.33	i		02/20/06	MRD		,1-Dichloroeth(yl)ene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		is-1,2-Dichloroeth(yl)ene	<0.2	μg/l μg/l	0.13	0.67	i		02/20/06	MRD		lrans-1,2-Dichloroeth(yl)en	<0.1																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																												
μg/l μg/l	0.1	0.33	i		02/20/06	MRD		1,2-Dichloropropane	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD		1,3-Dichloropropane	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD		2,2-Dichloropropane	<0.1	μg/l μg/l	0.1	0.33	'-	CSH	02/20/06	MRD		1.1-Dichloropropene	<0.2	μg/l	0.2	0.67	-	CSH	02/20/06	MRD		cis-1,3-Dichloropropene	<0.1	μg/l	0.1	0.33	1	JJ.,	02/20/06	MRD		trans-1,3-Dichloropropene	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD		thylbenzene	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD		• • • • • • • • • • • • • • • • • • • •		F3/ ·	~• ·	7.00	•		12, 20, 00		ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE W 800-338-7226 715-355-3221 www.usfilter.com PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.89 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS ≜ttn: John Guhl **≘**1 Frenette Drive Short Elliott Henderickson ■ippewa Falls , WI 54729 ample ID: PZ-5 Matrix: GRDWTR Sample Date/Time: 02/16/06 10:00 Lab No. 195324	-				•						-------------------------------------	--------	--------	------	-------	----------	------------	----------	---------							Dilution		Date				Result	Units	LOD	LOQ	Factor	Qualifiers	Analyzed	Analyst					_							<u> </u>										Hexachlorobutadiene	<1.Ò0	μg/l	1.0	3.33	1		02/20/06	MRD		ĭ≢opropylbenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		Isopropyltoluene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		:∋thylene Chloride	<0.4	μg/l	0.4	1.33	1		02/20/06	MRD		Methyl t-Butyl Ether(MTBE)	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		Naphthalene	<1.00	μg/l	1.0	3.33	1		02/20/06	MRD		Propylbenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		±yrene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		tyrene 1,1,1,2-Tetrachloroethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		1,1,2,2-Tetrachloroethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		Ţ≢trachloroeth(yl)ene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		⇒luene	<0.4	μg/l	0.4	1.33	1		02/20/06	MRD		_2,3-Trichlorobenzene	<0.5	μg/l	0.5	1.67	1		02/20/06	MRD		1,2,4-Trichlorobenzene	<0.5	μg/l	0.5	1.67	1		02/20/06	MRD		1,1,1-Trichloroethane	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		1,2-Trichloroethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		richloroeth(yl)ene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		Trichlorofluoromethane	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		1,2,3-Trichloropropane	<0.55	μg/l	0.55	1.83	1		02/20/06	MRD		1_2,4-Trimethylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		_3,5-Trimethylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		i≣ny l Chloride	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		o-Xylene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		m-& p-Xylene	<0.4	μg/l	0.4	1.33	1		02/20/06	MRD .												PA 8310										Acenaphthene	<0.06	μg/l	0.06	0.20	1		02/28/06	LMP		Acenaphthylene	<0.06	μg/l	0.06	0.20	1		02/28/06	LMP		nthracene	<0.09	μg/l	0.09	0.30	1		02/28/06	LMP		enzo(a)Anthracene	<0.1	μg/l	0.1	0.33	1		02/28/06	LMP		enzo(a)Pyrene	<0.02	μg/l	0.02	0.067	1		02/28/06	LMP		Benzo(b)Fluoranthene	<0.02	μg/l	0.02	0.067	1		02/28/06	LMP		Benzo(k)Fluoranthene	<0.07	→ μg/l	0.07	0.23	1		02/28/06	LMP		enzo(ghi)Perylene	<0.06	μg/l	0.06	0.20	1		02/28/06	LMP		hrysene	<0.02	μg/l	0.02	0.067	1		02/28/06	LMP		Tibenzo(a,h)Anthracene	<0.11	μg/l	0.11	0.37	1		02/28/06	LMP		Fluoranthene	0.123	μg/l	0.12	0.40	1 .	J	02/28/06	LMP		Luorene	<0.12	μg/l	0.12	0.40	1		02/28/06	LMP		ndeno(1,2,3-cd)Pyrene	<0.12	μg/l	0.12	0.40	1		02/28/06	LMP		-Methyl Naphthalene	<0.08	μg/l	0.08	0.27	1		02/28/06	LMP		2-Methyl Naphthalene	<0.11	μg/l	0.11	0.37	1		02/28/06	LMP		Naphthalene	<0.11	μg/l	0.11	0.37	1		02/28/06	LMP		Hhenanthrene	<0.11	μg/l	0.11	0.37	1		02/28/06	LMP		rene	0.169	μg/l	0.1	0.33	1	J	02/28/06	LMP		,10-Diphenylanthracene (S)	68.4	%	-	-	1		02/28/06	LMP		Method 3510 Liquid Ext.	COMP		-	-	-		02/22/06	KAM	ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com PROJECT NO.: NERUB0502.00 REPORT NO.: 195283.82 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS Attn: John Guhl Short Elliott Henderickson -21 Frenette Drive =hippewa Falls , WI 54729	Sample ID: MW-6	Matrix: GRDWTR		S	ample Date/Ti	Lab No. 195321					-------------------------------------	----------------	--------------	------	---------------	----------------	------------	-----------------	----------------							Dilution		Date				<u>Result</u>	<u>Units</u>	LOD	<u>LO0</u>	<u>Factor</u>	Qualifiers	<u>Analyzed</u>	<u>Analyst</u>		PA 150.1										pH - Laboratory	7.39		_	_	1		02/20/06	JJP		pH - Laboratory Time	08:30		-	-	' <u>-</u>		02/20/06	JJP		Laboratory 77mic	00.50						02,20,00	001		<u> </u>										Diss. Mercury	<0.07	μg/l	0.07	0.23	1		02/21/06	MPM		≣PA 6020										iss. Arsenic	1.20	μg/l	0.6	2.0	1	J	02/28/06	JCH		Diss. Cadmium	0.28	μg/l	0.2	0.67	1	J	02/28/06	JCH		Diss. Chromium	1.90	μg/l	1.6	5.33	1	J	02/28/06	JCH		piss. Lead	<0.3	μg/l	0.3	1.0	1		02/28/06	JCH		iss. Selenium	0.8	μg/l	0.6	2.0	1	J	02/28/06	JCH		⊞iss. Barium	52:4	μg/l	2.0	6.66	1		02/28/06	JCH		Diss. Silver	<0.2	μg/l	0.2	0.67	1		02/28/06	JCH		EPA 8260										Benzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		Bromobenzene	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD		Bromochloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		Bromodichloromethane	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD		#romoform	<0.2	μg/l	0.2	0.67	i		02/20/06	MRD		Bromomethane	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		n-Butylbenzene	<0.2	μg/l	0.2	0.67	i		02/20/06	MRD		sec-Butylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		tert-Butylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		Earbon Tetrachloride	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		thlorobenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		Chloroethane	<0.6	μg/l	0.6	2.0	1		02/20/06	MRD		Chloroform	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		Chloromethane	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		-Chlorotoluene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		4-Chlorotoluene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		pibromochloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		♦ ibromochloropropane(DBCP)	<0.3	μg/l	0.3	1.0	1		02/20/06	MRD		.2-Dibromoethane(EDB)	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		∍ibromomethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		1,2-Dichlorobenzene	<0.75	μg/l	0.75	2.5	1		02/20/06	MRD		₫,3- Dichlorobenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		4-Dichlorobenzene	<0.75	μg/l	0.75	2.5	1		02/20/06	MRD		<pre> ichlorodifluoromethane </pre>	<0.25	μg/l	0.25	0.83	1		02/20/06	MRD		1,1-Dichloroethane	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		1,2-Dichloroethane	0.678	μg/l	0.1	0.33	1		02/20/06	MRD		day,1-Dichloroeth(yl)ene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		‡is-1,2-Dichloroeth(yl)ene	0.869	μg/l	0.2	0.67	1		02/20/06	MRD		trans-1,2-Dichloroeth(yl)en	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		1,2-Dichloropropane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		■,3-Dichloropropane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		⊉,2-Dichloropropane	<0.1	μg/l	0.1	0.33	-	CSH	02/20/06	MRD		1.1-Dichloropropene	<0.2	μg/l	0.2	0.67	-	CSH	02/20/06	MRD		cis-1,3-Dichloropropene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		trans-1,3-Dichloropropene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		≢thylbenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		ı									ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.83 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS **≜**ttn: John Guhl Short Elliott Henderickson ■21 Frenette Drive □hippewa Falls , WI 54729 =ample ID: MW-6 Matrix: GRDWTR Sample Date/Time: 02/16/06 08:30 Lab No. 195321	•										-----------------------------	------------------	-------	------	-------	----------	------------	----------	---------							Dilution		Date				Result	Units	LOD	LOQ	Factor	Qualifiers	Analyzed	Analyst					_	_						<u>EPA 8260</u>										Hexachlorobutadiene	<1.00	μg/l	1.0	3.33	1		02/20/06	MRD		■ Isopropylbenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		4-Isopropyltoluene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		Methylene Chloride	<0.4	μg/l	0.4	1.33	1		02/20/06	MRD		Methyl t-Butyl Ether(MTBE)	<0.1																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																		
μg/l	0.1	0.33	1		02/20/06	MRD		Naphthalene	<1.00	μg/l	1.0	3.33	1		02/20/06	MRD		ף-Propylbenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		\$tyrene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		■,1,1,2-Tetrachloroethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		1,1,2,2-Tetrachloroethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		¶etrachloroeth(yl)ene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		oluene	<0.4	μg/l	0.4	1.33	1		02/20/06	MRD		1,2,3-Trichlorobenzene	<0.5	μg/l	0.5	1.67	1		02/20/06	MRD		1,2,4-Trichlorobenzene	<0.5	μg/l	0.5	1.67	1		02/20/06	MRD		1,1,1-Trichloroethane	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		,1,2-Trichloroethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		≢richloroeth(yl)ene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		すrichlorofluoromethane	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		1,2,3-Trichloropropane	<0.55	μg/l	0.55	1.83	1		02/20/06	MRD		1,2,4-Trimethylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		1,3,5-Trimethylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		Vinyl Chloride	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		o-Xylene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		m-& p-Xylene	<0. ⁴	μg/l	0.4	1.33	1		02/20/06	MRD												EPA 8310										Acenaphthene	<0.06	μg/l	0.06	0.20	1		02/28/06	LMP		Acenaphthylene	<0.06	μg/l	0.06	0.20	1		02/28/06	LMP		nthracene	<0.09	μg/l	0.09	0.30	1		02/28/06	LMP		enzo(a)Anthracene	<0.1	μg/l	0.1	0.33	1		02/28/06	LMP		enzo(a)Pyrene	<0.02	μg/l	0.02	0.067	1		02/28/06	LMP		Benzo(b)Fluoranthene	<0.02	μg/l	0.02	0.067	1		02/28/06	LMP		Benzo(k)Fluoranthene	<0.07	μg/l	0.07	0.23	1		02/28/06	LMP		Benzo(ghi)Perylene	<0.06	μg/l	0.06	0.20	1		02/28/06	LMP		Ehrysene	<0.02	μg/l	0.02	0.067	1		02/28/06	LMP		∌ibenzo(a,h)Anthracene	<0.11	μg/l	0.11	0.37	1		02/28/06	LMP		Fluoranthene	<0.12	μg/l	0.12	0.40	1		02/28/06	LMP		 ¶luorene	<0.12	μg/l	0.12	0.40	1		02/28/06	LMP		ndeno(1,2,3-cd)Pyrene	<0.12	μg/l	0.12	0.40	1		02/28/06	LMP		-Methyl Naphthalene	<0.08	μg/l	0.08	0.27	1		02/28/06	LMP		2-Methyl Naphthalene	<0.11	μg/l	0.11	0.37	1		02/28/06	LMP		Naphthalene	<0.11	μg/l	0.11	0.37	1		02/28/06	LMP		Phenanthrene	<0.11	μg/l	0.11	0.37	1		02/28/06	LMP		Pyrene	<0.1	μg/l	0.1	0.33	1		02/28/06	LMP		9,10-Diphenylanthracene (S)	66.4	%	-	-	1		02/28/06	LMP		Method 3510 Liquid Ext.	COMP		-	-	-		02/22/06	KAM											ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com Short Elliott Henderickson -421 Frenette Drive -Chippewa Falls , WI 54729 PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.84 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS Attn: John Guhl	⇒ample ID: MW-7	Matri	x: GRDWTR	Si	ample Date/Ti	Lab No. 195322					------------------------------------	---------------	--------------	------------	---------------	----------------	------------	----------------------	----------------							Dilution		Date			1	<u>Result</u>	<u>Units</u>	LOD	LOQ	<u>Factor</u>	Qualifiers	Analyzed	<u>Analyst</u>		EPA 150.1										pH - Laboratory	7.49		-	-	1		02/20/06	JJP		pH - Laboratory Time	08:30		-	_	' <u>-</u>		02/20/06	JJP		1							04, 20, 00	•••		EPA 245.1										Diss. Mercury	<0.07	μg/l	0.07	0.23	1		02/21/06	MPM												EPA 6020	/ 70			• •			00.00.00			Diss. Arsenic	4.70	μg/l	0.6	2.0	1		02/28/06	JCH		Diss. Cadmium Diss. Chromium	<0.2	μg/l	0.2	0.67	1		02/28/06	JCH		Diss. Lead	<1.60	μg/l	1.6	5.33	1		02/28/06	JCH		Diss. Selenium	<0.3 0.9	μg/l	0.3 0.6	1.0 2.0	1 1		02/28/06	JCH		Diss. Barium	58.5	μg/l "α/l	2.0	6.66	1	J	02/28/06	JCH		Diss. Silver	<0.2	μg/l μg/l	0.2	0.67	1		02/28/06 02/28/06	JCH JCH		priss. Sitte	٧٠.٤	μ9/ (0.2	0.07	'		02/20/00	JCH		■EPA 8260										Benzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		Bromobenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		Bromochloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		■Bromodichloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		₿romoform	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		Bromomethane	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		n-Butylbenzene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		sec-Butylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		tert-Butylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		Carbon Tetrachloride	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		Chlorobenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		Chloroethane	<0.6	μg/l	0.6	2.0	1		02/20/06	MRD		Chloroform	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		Chloromethane	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		2-Chlorotoluene 4-Chlorotoluene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		Dibromochloromethane	<0.2 <0.1	μg/l	0.2 0.1	0.67	1		02/20/06	MRD		Dibromochloropropane(DBCP)	<0.3	μg/l	0.3	0.33 1.0	1		02/20/06	MRD		1,2-Dibromoethane(EDB)	<0.1	μg/l μg/l	0.3	0.33	i		02/20/06 02/20/06	MRD MRD		Dibromomethane	<0.1	μg/l μg/l	0.1	0.33	i		02/20/06	MRD		1,2-Dichlorobenzene	<0.75	μg/l μg/l	0.75	2.5	i		02/20/06	MRD		1,3-Dichlorobenzene	<0.15	μg/l	0.15	0.50	i		02/20/06	MRD		7,4-Dichlorobenzene	<0.75	μg/l	0.75	2.5	i		02/20/06	MRD		⊅ichlorodifluoromethane	<0.25	μg/l	0.25	0.83	i		02/20/06	MRD		1,1-Dichloroethane	<0.15	μg/l	0.15	0.50	i		02/20/06	MRD		1,2-Dichloroethane	0.786	μg/l	0.1	0.33	i		02/20/06	MRD		1,1-Dichloroeth(yl)ene	<0.15	μg/l	0.15	0.50	i		02/20/06	MRD		cis-1,2-Dichloroeth(yl)ene	1.82	μg/l	0.2	0.67	i		02/20/06	MRD		trans-1,2-Dichloroeth(yl)en	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD		1,2-Dichloropropane	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD		1,3-Dichloropropane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		⊉,2-Dichloropropane	<0.1	μg/l	0.1	0.33	-	CSH	02/20/06	MRD		1,1-Dichloropropene	<0.2	μg/l	0.2	0.67	-	CSH	02/20/06	MRD		cis-1,3-Dichloropropene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		trans-1,3-Dichloropropene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		Ethylbenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD											**ENVIROSCAN SERVICES** 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com Short Elliott Henderickson 421 Frenette Drive Chippewa Falls , WI 54729 ■Attn: John Guhl Sample ID: MW-7 Matrix: GRDWTR REPORT NO.: 195283.85 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS PROJECT NO.: NERUB0502.00 Sample Date/Time: 02/16/06 09:00 Lab No. 195322	Sample ID. Hw	Matri	A. GRUNIK		sample pate/in	me: UZ/10/C	00 09:00	Lab No. 13	73366			---	----------------	--------------	------------	----------------	-------------	------------	----------------------	------------	---							Dilution		Date					Result	<u>Units</u>	LOD	LOQ	Factor	Qualifiers	Analyzed	Analyst														EPA 8260											Hexachlorobutadiene	<1.00	μg/l	1.0	3.33	1		02/20/06	MRD			Isopropylbenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD				<0.2	μg/l	0.2	0.67	1		02/20/06	MRD			Methylene Chloride	<0.4	μg/l	0.4	1.33	1		02/20/06	MRD			Methyl t-Butyl Ether(MTBE)	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD			Naphthalene	<1.00	μg/l	1.0	3.33	1		02/20/06	MRD			n-Propylbenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD			≒Styrene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD			1,1,1,2-Tetrachloroethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD			1,1,2,2-Tetrachloroethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD			Tetrachloroeth(yl)ene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD			Toluene	<0.4	μg/l	0.4	1.33	1		02/20/06	MRD	•		1,2,3-Trichlorobenzene	<0.5	μg/l	0.5	1.67	1		02/20/06	MRD			1,2,4-Trichlorobenzene	<0.5	μg/l	0.5	1.67	1		02/20/06	MRD			1,1,1-Trichloroethane	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD			1,1,2-Trichloroethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD			Trichloroeth(yl)ene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD			Trichlorofluoromethane	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD			1,2,3-Trichloropropane	<0.55	μg/l	0.55	1.83	1		02/20/06	MRD			1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	<0.15 <0.15	μg/l	0.15	0.50	1		02/20/06	MRD			Vinyl Chloride	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD			o-Xylene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD			m-& p-Xylene	<0.4	μg/l μg/l	0.1 0.4	0.33 1.33	1		02/20/06 02/20/06	MRD MRD			u p xytene	10.4	μg/ t	0.4	1.55																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																								
•		02/20/00	MKD			EPA 8310											Acenaphthene	<0.06	μg/l	0.06	0.20	1		02/28/06	LMP			Acenaphthylene	<0.06	μg/l	0.06	0.20	1		02/28/06	LMP			-Anthracene	<0.09	μg/l	0.09	0.30	1		02/28/06	LMP			∄enzo(a)Anthracene	<0.1	μg/l	0.1	0.33	1		02/28/06	LMP			₿enzo(a)Pyrene	<0.02	μg/l	0.02	0.067	1		02/28/06	LMP			Benzo(b)Fluoranthene	<0.02	μg/l	0.02	0.067	1		02/28/06	LMP			Benzo(k)Fluoranthene	<0.07	μg/l	0.07	0.23	1		02/28/06	LMP			Benzo(ghi)Perylene	<0.06	μg/l	0.06	0.20	1		02/28/06	LMP			Chrysene	<0.02	μg/l	0.02	0.067	1		02/28/06	LMP			Dibenzo(a,h)Anthracene	<0.11	μg/l	0.11	0.37	1		02/28/06	LMP			Fluoranthene	<0.12	μg/l	0.12	0.40	1		02/28/06	LMP			Fluorene	<0.12	μg/l	0.12	0.40	1		02/28/06	LMP			Indeno(1,2,3-cd)Pyrene	<0.12	μg/l	0.12	0.40	1		02/28/06	LMP			1-Methyl Naphthalene	<0.08	μg/l	0.08	0.27	1		02/28/06	LMP			2-Methyl Naphthalene	<0.11	μg/l	0.11	0.37	1		02/28/06	LMP			Naphthalene	<0.11	μg/l	0.11	0.37	1		02/28/06	LMP			Phenanthrene	<0.11	μg/l	0.11	0.37	1		02/28/06	LMP			Pyrene	<0.1	μg/l	0.1	0.33	1		02/28/06	LMP			9,10-Diphenylanthracene (S)	55.9	%	-	-	1		02/28/06	LMP			Method 3510 Liquid Ext.	COMP		-	-	-		02/22/06	KAM		ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com Short Elliott Henderickson 421 Frenette Drive Chippewa Falls , WI 54729 PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.76 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS Attn: John Guhl	⇒ample ID:	MW-8	Matrix: GRDWTR	Sample Date/Time: 02/16/06	07:00	Lab No.	195318		------------	------	----------------	----------------------------	-------	---------	--------					Dilution		Date								Ditution		vale			---	--------------	--------------	------	------	---------------	------------	------------	---------			Result	<u>Units</u>	LOD	LOQ	<u>Factor</u>	Qualifiers	Analyzed	Analyst		1										≢PA 150.1																				pH - Laboratory	7.28		-	-	1		02/20/06	JJP		∟pH - Laboratory Time	08:15		-	•	-		02/20/06	JJP		, , , , , , , , , , , , , , , , , , , ,							0-, -0, 00	•••		+na 2/5 4										EPA 245.1										Diss. Mercury	<0.07	μg/l	0.07	0.23	1 .		02/21/06	MPM												■EPA 6020										Diss. Arsenic	0.6	u a /1	0.6	2.0	1	J	02/20/04	JCH				μg/l				J	02/28/06			Diss. Cadmium	<0.2	μg/l	0.2	0.67	1		02/28/06	JCH		Diss. Chromium	3.20	μg/l	1.6	5.33	1	J	02/28/06	JCH		Diss. Lead	<0.3	μg/l	0.3	1.0	1		02/28/06	JCH		Diss. Selenium	0.96	μg/l	0.6	2.0	1	j	02/28/06	JCH								U				Diss. Barium	81.0	μg/l	2.0	6.66	1		02/28/06	JCH		Diss. Silver	0.27	μg/l	0.2	0.67	1	J	02/28/06	JCH												EPA 8260										Benzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		Bromobenzene											<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		Bromochloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		₽romodichloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		∌ romoform	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		B romomethane	<0.15	μg/l	0.15	0.50	i		02/20/06	MRD		n-Butylbenzene	<0.2	,	0.2	0.67	i							μg/l					02/20/06	MRD		sec-Butylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		≡ert-Butylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		<pre>= arbon Tetrachloride</pre>	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		⊒hlorobenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		Chloroethane	<0.6	μg/l	0.6	2.0	1		02/20/06	MRD		£hloroform	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD							•					Ehloromethane	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		‡-Chlorotoluene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		4-Chlorotoluene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		Dibromochloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		■ibromochloropropane(DBCP)	<0.3	μg/l	0.3	1.0	1		02/20/06	MRD		,2-Dibromoethane(EDB)	<0.1											μg/l	0.1	0.33	1		02/20/06	MRD		■ ibromomethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		1,2-Dichlorobenzene	<0.75	μg/l	0.75	2.5	1		02/20/06	MRD		1,3-Dichlorobenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		,4-Dichlorobenzene	<0.75	μg/l	0.75	2.5	1		02/20/06	MRD		ichlorodifluoromethane	<0.25	μg/l	0.25	0.83	i		02/20/06	MRD							•					1,1-Dichloroethane	0.26	μg/l	0.15	0.50	1	J	02/20/06	MRD		1,2-Dichloroethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		,1-Dichloroeth(yl)ene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		<pre>#is-1,2-Dichloroeth(yl)ene</pre>	5.06	μg/l	0.2	0.67	1		02/20/06	MRD		rans-1,2-Dichloroeth(yl)en	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		1,2-Dichloropropane					i					4.7 Disking and	<0.1	μg/l	0.1	0.33			02/20/06	MRD		1,3-Dichloropropane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		2,2-Dichloropropane	<0.1	μg/l	0.1	0.33	-	CSH	02/20/06	MRD		,1-Dichloropropene	<0.2	μg/l	0.2	0.67	•	CSH	02/20/06	MRD		cis-1,3-Dichloropropene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		trans-1,3-Dichloropropene	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD		thylbenzene	<0.1		0.1		i					city (Delizene	\0. 1	μg/l	0.1	0.33	t		02/20/06	MRD											ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.77 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS Attn: John Guhl ■21 Frenette Drive Chippewa Falls , WI 54729 Short Elliott Henderickson ∏ = ample ID: MW-8 Matrix: GRDWTR Sample Date/Time: 02/16/06 07:00 Lab No. 195318		<u>Result</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	<u>Analyst</u>		----------------------------------	---------------	--------------	------	-------	---------------------------	------------	-------------------------	----------------		≡PA 8260										Hexachlorobutadiene	<1.00	μg/l	1.0	3.33	1		02/20/06	MRD		Isopropylbenzene	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD		-Isopropyltoluene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		ethylene Chloride	<0.4	μg/l	0.4	1.33	i		02/20/06	MRD		Methyl t-Butyl Ether(MTBE)	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		Naphthalene	<1.00	μg/l	1.0	3.33	1		02/20/06	MRD		n-Propylbenzene	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD		≣tyrene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		≡,1,1,2-Tetrachloroethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		1,1,2,2-Tetrachloroethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		_Tetrachloroeth(yl)ene	0.236	μg/l	0.1	0.33	1	J	02/20/06	MRD		Toluene	<0.4	μg/l	0.4	1.33	1		02/20/06	MRD		1,2,3-Trichlorobenzene	<0.5	μg/l	0.5	1.67	1		02/20/06	MRD		1,2,4-Trichlorobenzene	<0.5	μg/l	0.5	1.67	1		02/20/06	MRD		1,1,1-Trichloroethane	0.241	μg/l	0.2	0.67	1	J	02/20/06	MRD		1,1,2-Trichloroethane	<0.1	μg/l	0.1	0.33	1	_	02/20/06	MRD		Trichloroeth(yl)ene	0.228	μg/l	0.2	0.67	1	J	02/20/06	MRD		Trichlorofluoromethane	<0.2	μg/l	0.2	0.67	1	-	02/20/06	MRD		1,2,3-Trichloropropane	<0.55	μg/l	0.55	1.83	1		02/20/06	MRD		1,2,4-Trimethylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		,3,5-Trimethylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		≠inyl Chloride	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		o-Xylene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		m-& p-Xylene	<0.4	μg/l	0.4	1.33	1		02/20/06	MRD		#PA 8310 _										cenaphthene	<0.06	μg/l	0.06	0.20	1		02/27/06	LMP		Acenaphthylene	<0.06	μg/l	0.06	0.20	1		02/27/06	LMP		≜ nthracene	<0.09	μg/l	0.09	0.30	1		02/27/06	LMP		enzo(a)Anthracene	<0.1	μg/l	0.1	0.33	1		02/27/06	LMP		enzo(a)Pyrene	<0.02	μg/l	0.02	0.067	1		02/27/06	LMP		Benzo(b)Fluoranthene	<0.02	μg/l	0.02	0.067	1	CSH	02/27/06	LMP		Benzo(k)Fluoranthene	<0.07	μg/l	0.07	0.23	1		02/27/06	LMP		≣enzo(ghi)Perylene	<0.06	μg/l	0.06	0.20	1		02/27/06	LMP		thrysene	<0.02	μg/l	0.02	0.067	1		02/27/06	LMP		ibenzo(a,h)Anthracene	<0.11	μg/l	0.11	0.37	1		02/27/06	LMP		Fluoranthene	<0.12	μg/l	0.12	0.40	1		02/27/06	LMP		Eluorene	<0.12	μg/l	0.12	0.40	1		02/27/06	LMP		ndeno(1,2,3-cd)Pyrene	<0.12	μg/l	0.12	0.40	1	CSH	02/27/06	LMP		-Methyl Naphthalene	<0.08	μg/l	0.08	0.27	1	••	02/27/06	LMP		Z-Methyl Naphthalene	<0.11	μg/l	0.11	0.37	1		02/27/06	LMP		Naphthalene	<0.11	μg/l	0.11	0.37	1																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																													
02/27/06	LMP		-henanthrene	<0.11	μg/l	0.11	0.37	1		02/27/06	LMP		tyrene tyrene	<0.1	μg/l	0.1	0.33	1		02/27/06	LMP		10-Diphenylanthracene (S)	45.8	%	-	-	1		02/27/06	LMP		Method 3510 Liquid Ext.	COMP		-	-	-		02/22/06	KAM	ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.79 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS **4**ttn: John Guhl Short Elliott Henderickson -21 Frenette Drive =hippewa Falls , WI 54729 =ample ID: MW-9 Matrix: GRDWTR Sample Date/Time: 02/16/06 07:30 Lab No. 195319		11411	A. Gabain	0.	impre bute, i	111101 027 107	00 01150	Lub No. 1	,,,,,,		----------------------------	---------------	--------------	------	---------------	----------------	-------------------	------------	----------------							Dilution		Date			•	<u>Result</u>	<u>Units</u>	LOD	LOQ	<u>Factor</u>	<u>Qualifiers</u>	Analyzed	<u>Analyst</u>		EPA 8260											-1.00		4.0	7 77			00 (00 (0)	MDD		Hexachlorobutadiene	<1.00	μg/l	1.0	3.33	1		02/20/06	MRD		sopropylbenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		4-Isopropyltoluene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		Methylene Chloride	<0.4	μg/l	0.4	1.33	1		02/20/06	MRD		Methyl t-Butyl Ether(MTBE)	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		Naphthalene	1.87	μg/l	1.0	3.33	1		02/20/06	MRD		-Propylbenzene	0.117	μg/l	0.1	0.33	1	J	02/20/06	MRD		tyrené	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		1,1,1,2-Tetrachloroethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		1,1,2,2-Tetrachloroethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		etrachloroeth(yl)ene	<0.1	μg/l	0.1	0.33	1	•	02/20/06	MRD		oluene	0.4	μg/l	0.4	1.33	1	J	02/20/06	MRD		,2,3-Trichlorobenzene	<0.5	μg/l	0.5	1.67	1		02/20/06	MRD		1,2,4-Trichlorobenzene	<0.5	μg/l	0.5	1.67	1		02/20/06	MRD		1,1,1-Trichloroethane	0.206	μg/l	0.2	0.67	1	J	02/20/06	MRD		,1,2-Trichloroethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		richloroeth(yl)ene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		richlorofluoromethane	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		1,2,3-Trichloropropane	<0.55	μg/l	0.55	1.83	1		02/20/06	MRD		1,2,4-Trimethylbenzene	1.64	μg/l	0.15	0.50	1		02/20/06	MRD		1,3,5-Trimethylbenzene	0.409	μg/l	0.15	0.50	1	J	02/20/06	MRD		/inyl Chloride	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		o-Xylene	0.685	μg/l	0.1	0.33	1		02/20/06	MRD		m-& p-Xylene	1.65	μg/l	0.4	1.33	1		02/20/06	MRD		PA 8310										Acenaphthene	0.081	μg/l	0.06	0.20	1	J	02/27/06	LMP		Acenaphthylene	<0.06	μg/l	0.06	0.20	1		02/27/06	LMP		1nthracene	<0.09	μg/l	0.09	0.30	1		02/27/06	LMP		enzo(a)Anthracene	<0.1	μg/l	0.1	0.33	1		02/27/06	LMP		enzo(a)Pyrene	0.167	μg/l	0.02	0.067	1		02/27/06	LMP		Benzo(b)Fluoranthene	<0.02	μg/l	0.02	0.067	1	CSH	02/27/06	LMP		Benzo(k)Fluoranthene	<0.07	μg/l	0.07	0.23	1		02/27/06	LMP		enzo(ghi)Perylene	<0.06	μg/l	0.06	0.20	1		02/27/06	LMP		hrysene	<0.02	μg/l	0.02	0.067	1		02/27/06	LMP		ibenzo(a,h)Anthracene	<0.11	μg/l	0.11	0.37	1		02/27/06	LMP		Fluoranthene	<0.12	μg/l	0.12	0.40	1		02/27/06	LMP		■ luorene	<0.12	μg/l	0.12	0.40	1		02/27/06	LMP		ndeno(1,2,3-cd)Pyrene	<0.12	μg/l	0.12	0.40	1	CSH	02/27/06	LMP		-Methyl Naphthalene	1.31	μg/l	0.08	0.27	1		02/27/06	LMP		2-Methyl Naphthalene	2.73	μg/l	0.11	0.37	1		02/27/06	LMP		Naphthalene	1.05	μg/l	0.11	0.37	1		02/27/06	LMP		henanthrene	<0.11	μg/l	0.11	0.37	1		02/27/06	LMP		yrene	<0.1	μg/l	0.1	0.33	1		02/27/06	LMP		,10-Diphenylanthracene (S)	76.6	%	-	-	1		02/27/06	LMP		Method 3510 Liquid Ext.	COMP		-	-	-		02/22/06	KAM	ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com Short Elliott Henderickson 421 Frenette Drive Chippewa Falls , WI 54729 PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.78 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS Attn: John Guhl	Sample ID: MW-9	Matri	x: GRDWTR	s	ample Date/Ti	ime: 02/16/ 0	6 07:30	Lab No. 1	95319		--	---------------	--------------	-------------	---------------	---------------------------	------------	-------------------------	------------		•	Result	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	Analyst		EPA 150.1										pH - Laboratory	7.66		_	-	1		02/20/06	JJP		pH - Laboratory Time	08:30		_	_	'-		02/20/06	JJP		I'' Laboracory rime	00.50						02/20/00	JUF		PA 245.1										Diss. Mercury	<0.07	ua (1	0.07	0.23	4		02/21/04	MDM		Diss. Heredry	\0.0 <i>i</i>	μg/l	0.07	0.23	1		02/21/06	MPM		EPA_6020										Diss. Arsenic	1.20	μg/l	0.6	2.0	1	J	02/28/06	JCH		Diss. Cadmium	0.34	μg/l μg/l	0.2	0.67	i	ľ	02/28/06			Diss. Chromium	4.90		1.6	5.33	1	J		JCH		Piss. Lead	<0.3	μg/l	0.3	1.0	i		02/28/06	JCH		Diss. Selenium	2.01	μg/l	0.6	2.0	1		02/28/06	JCH		Piss. Barium	113.	μg/l					02/28/06	JCH		Diss. Silver	<0.2	μg/l	2.0	6.66	1 1		02/28/06	JCH		Diss. Sitve	10.2	μg/l	0.2	0.67	ı		02/28/06	JCH		EPA 8260										3enzene	<0.15	ua/l	0.15	0.50	1		02/20/04	MDD		Bromobenzene	<0.13	μg/l μg/l	0.15	0.33	i		02/20/06	MRD		Bromochloromethane	<0.1	μg/l μg/l	0.1	0.33	1		02/20/06	MRD		## ## ## ## ## ## ## ## ## ## ## ## ##	<0.1		0.1	0.33	i		02/20/06	MRD		Bromoform	<0.2	μg/l			1		02/20/06	MRD		Bromomethane	<0.15	μg/l	0.2	0.67 0.50	1		02/20/06	MRD		n-Butylbenzene	<0.2	μg/l	0.15		1		02/20/06	MRD		sec-Butylbenzene	<0.15	μg/l	0.2 0.15	0.67 0.50	1		02/20/06	MRD		_ert-Butylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		#arbon Tetrachloride	<0.13	μg/l	0.13	0.67	1		02/20/06	MRD		thlorobenzene	<0.1	μg/l			1		02/20/06	MRD		Chloroethane	<0.6	μg/l	0.1	0.33	1		02/20/06	MRD		#hloroform	<0.1	μg/l	0.6 0.1	2.0 0.33	1		02/20/06	MRD		#hloromethane	<0.2	μg/l μg/l	0.1	0.67	1		02/20/06	MRD		T-Chlorotoluene	<0.1			0.33	, 1		02/20/06	MRD		4-Chlorotoluene	<0.2	μg/l	0.1 0.2	0.67	1		02/20/06	MRD		Dibromochloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		ibromochloropropane(DBCP)	<0.3	μg/l	0.1	1.0	1		02/20/06	MRD		1,2-Dibromoethane(EDB)	<0.1	μg/l μg/l	0.1	0.33	i		02/20/06 02/20/06	MRD MRD		ibromomethane	<0.1	μg/l μg/l	0.1	0.33	i		02/20/06	MRD		1,2-Dichlorobenzene	<0.75	μg/l	0.75	2.5	i		02/20/06	MRD		3-Dichlorobenzene	<0.15	μg/l	0.15	0.50	i		02/20/06	MRD		4-Dichlorobenzene	<0.75	μg/l	0.75	2.5	1		02/20/06	MRD		ichlorodifluoromethane	<0.25	μg/l μg/l	0.25	0.83	i		02/20/06	MRD		1,1-Dichloroethane	<0.15	μg/l μg/l	0.15	0.50	i		02/20/06	MRD		1,2-Dichloroethane	<0.1	μg/l μg/l	0.1	0.33	i		02/20/06	MRD		,1-Dichloroeth(yl)ene	<0.15	μg/l	0.15	0.50	i		02/20/06	MRD		is-1,2-Dichloroeth(yl)ene	<0.2	μg/l	0.13	0.67	i		02/20/06	MRD		rans-1,2-Dichloroeth(yl)en	<0.1	μg/l μg/l	0.1	0.33	1		02/20/06	MRD		1,2-Dichloropropane	<0.1	μg/l μg/l	0.1	0.33	i		02/20/06	MRD		,3-Dichloropropane	<0.1	μg/l μg/l	0.1	0.33	i		02/20/06	MRD		,2-Dichloropropane	<0.1	μg/l μg/l	0.1	0.33	' <u>-</u>	СЅН	02/20/06	MRD		,1-Dichloropropene	<0.2	μg/l μg/l	0.2	0.67	•	CSH	02/20/06	MRD		cis-1,3-Dichloropropene	<0.1	μg/l μg/l	0.1	0.33	1	CON	02/20/06	MRD		trans-1,3-Dichloropropene	<0.1	μg/l μg/l	0.1	0.33	i		02/20/06	MRD		thylbenzene	0.411	μg/l	0.1	0.33	i		02/20/06	MRD		1 ' "		r3/ ·		-100	•		JE, 20, 00		**ENVIROSCAN SERVICES** 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com Short Elliott Henderickson 421 Frenette Drive Chippewa Falls , WI 54729 PROJECT NO.: NERUB0502.00 REPORT NO. : 195283.10 DATE REC'D : 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS Attn: John Guhl	Sample ID: EAST SUMP	Matri	k: GRDWTR	Sam	ple Date/Ti	me: 02/16/0 6	3 11:30	Lab No. 19	95286		---------------------------------------	--------------	--------------	------------	--------------	---------------------------	------------	-------------------------	----------------			Result	<u>Units</u>	<u>LOD</u>	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	<u>Analyst</u>		EPA 150.1										pH - Laboratory	7.31		_	_	1		02/20/06	LID		pH - Laboratory Time	08:15		_	_				JJP		pii Laboratory Tille	00:15		-	_	_		02/20/06	JJP		EPA 245.1																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																														
					Diss. Mercury	<0.7	μg/l	0.07	0.23	10		03/02/06	MPM		Diss. Nereury	·0.7	μ9/ τ	0.07	0.23	10		03/02/08	MPM		EPA 6010										Diss. Arsenic	<0.125	mg/l	0.01	0.033	12.5	DUP	03/09/06	DJB		Diss. Barium	<0.0375	mg/l	0.003	0.01	12.5		03/09/06	DJB		∖Diss. Cadmium	<0.0212	mg/l	0.0017	0.0057	12.5	DUP	03/09/06	DJB		piss. Chromium	0.0354	mg/l	0.0016	0.0053	12.5	J	03/09/06	DJB		piss. Lead	<0.2	mg/l	0.016	0.053	12.5		03/09/06	DJB		Diss. Selenium	<0.225	mg/l	0.018	0.06	12.5		03/09/06	DJB		Diss. Silver	<0.075	mg/l	0.006	0.02	12.5		03/09/06	DJB												EPA 8260										Benzene	<0.15	μg/l	0.15	0.50	1		03/02/06	MRD		Bromobenzene	<0.1	μg/l	0.1	0.33	1		03/02/06	MRD		Bromochloromethane	<0.1	μg/l	0.1	0.33	1		03/02/06	MRD		∄romodichloromethane	<0.1	μg/l	0.1	0.33	1		03/02/06	MRD		∌ romoform	<0.2	μg/l	0.2	0.67	1		03/02/06	MRD		Bromomethane	<0.15	μg/l	0.15	0.50	1		03/02/06	MRD		n-Butylbenzene	<0.2	μg/l	0.2	0.67	1		03/02/06	MRD		sec-Butylbenzene	<0.15	μg/l	0.15	0.50	1		03/02/06	MRD		tert-Butylbenzene	<0.15	μg/l	0.15	0.50	1		03/02/06	MRD		Carbon Tetrachloride	<0.2	μg/l	0.2	0.67	1		03/02/06	MRD		Chlorobenzene Chloroethane	<0.1	μg/l	0.1	0.33	1		03/02/06	MRD		£hloroform	<0.6 <0.1	μg/l	0.6	2.0	1		03/02/06	MRD		Thloromethane	<0.1 <0.2	μg/l	0.1	0.33	i		03/02/06	MRD		₹-Chlorotoluene	<0.1	μg/l μg/l	0.2 0.1	0.67 0.33	1		03/02/06 03/02/06	MRD		4-Chlorotoluene	<0.2	μg/l μg/l	0.1	0.67	1		03/02/06	MRD MRD		Dibromochloromethane	<0.1	μg/l μg/l	0.1	0.33	1		03/02/06	MRD		pibromochloropropane(DBCP)	<0.3	μg/l μg/l	0.3	1.0	1		03/02/06	MRD		,2-Dibromoethane(EDB)	<0.1	μg/l	0.1	0.33	i		03/02/06	MRD		Dibromomethane	<0.1	μg/l	0.1	0.33	i		03/02/06	MRD		1,2-Dichlorobenzene	<0.75	μg/l	0.75	2.5	i		03/02/06	MRD		₡,3-Dichlorobenzene	<0.15	μg/l	0.15	0.50	i		03/02/06	MRD		4-Dichlorobenzene	<0.75	μg/l	0.75	2.5	i		03/02/06	MRD		⇒ichlorodifluoromethane	<0.25	μg/l	0.25	0.83	i		03/02/06	MRD		1,1-Dichloroethane	<0.15	μg/l	0.15	0.50	1		03/02/06	MRD		1,2-Dichloroethane	<0.1	μg/l	0.1	0.33	1		03/02/06	MRD		⊒,1-Dichloroeth(yl)ene	<0.15	μg/l	0.15	0.50	1		03/02/06	MRD		<pre>‡is-1,2-Dichloroeth(yl)ene</pre>	2.06	μg/l	0.2	0.67	1		03/02/06	MRD		trans-1,2-Dichloroeth(yl)en	<0.1	μg/l	0.1	0.33	1		03/02/06	MRD		1,2-Dichloropropane	<0.1	μg/l	0.1	0.33	1		03/02/06	MRD		1,3-Dichloropropane	<0.1	μg/l	0.1	0.33	1		03/02/06	MRD		⊉,2-Dichloropropane	<0.1	μg/l	0.1	0.33	1		03/02/06	MRD		∃,1-Dichloropropene	<0.2	μg/l	0.2	0.67	1		03/02/06	MRD		cis-1,3-Dichloropropene	<0.1	μg/l	0.1	0.33	1		03/02/06	MRD		trans-1,3-Dichloropropene	<0.1.	μg/l	0.1	0.33	1		03/02/06	MRD		≡thylbenzene	<0.1	μg/l	0.1	0.33	1		03/02/06	MRD	**ENVIROSCAN SERVICES 301 WEST MILITARY ROAD** ROTHSCHILD, WI 54474 **TELEPHONE** FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com PROJECT NO.: NERUB0502.00 REPORT NO.: 195283.11 DATE REC'D : 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS -Attn: John Guhl **≰**21 Frenette Drive ater Org Ext - DRO Short Elliott Henderickson ■Chippewa Falls , WI 54729 Sample ID: EAST SUMP Sample Date/Time: 02/16/06 11:30 Matrix: GRDWTR Lab No. 195286 Dilution Date <u>Result</u> <u>Units</u> LOD Qualifiers LOQ <u>Factor</u> <u>Analyzed</u> Analyst **EPA** 8260 Hexachlorobutadiene <1.00 1.0 3.33 03/02/06 MRD μg/l **i**sopropylbenzene < 0.1 μg/l 0.1 0.33 1 03/02/06 MRD *-Isopropyltoluene Methylene Chloride <0.2 03/02/06 μg/l 0.2 0.67 MRD 1.33 <0.4 03/02/06 μg/l 0.4 MRD Methyl t-Butyl Ether(MTBE) <0.1 μg/l 0.1 0.33 03/02/06 MRD Naphthalene <1.00 1.0 3.33 03/02/06 MRD μg/l n-Propylbenzene <0.1 μg/l 0.1 0.33 03/02/06 MRD μg/l **≢tyrene** < 0.1 0.1 0.33 03/02/06 MRD ■,1,1,2-Tetrachloroethane <0.1 μg/l 0.1 0.33 03/02/06 MRD 1,1,2,2-Tetrachloroethane <0.1 μg/l 0.1 0.33 03/02/06 MRD **▼**etrachloroeth(yl)ene <0.1 0.33 μg/l 0.1 03/02/06 MRD <0.4 1.33 03/02/06 μg/l 0.4 MRD 1,2,3-Trichlorobenzene <0.5 μg/l 0.5 1.67 03/02/06 MRD 1,2,4-Trichlorobenzene < 0.5 0.5 1.67 03/02/06 μg/l MRD 1,1,1-Trichloroethane <0.2 0.67 μg/l 0.2 03/02/06 MRD ■,1,2-Trichloroethane <0.1 μg/l 0.1 0.33 03/02/06 MRD **■**richloroeth(yl)ene 0.2 0.293 μg/l 0.67 03/02/06 J MRD richlorofluoromethane <0.2 μg/l 0.2 0.67 03/02/06 MRD μg/l 1,2,3-Trichloropropane <0.55 0.55 1.83 03/02/06 MRD ₫,2,4-Trimethylbenzene <0.15 03/02/06 0.15 0.50 MRD μg/l ■,3,5-Trimethylbenzene <0.15 0.15 0.50 03/02/06 μg/l MRD dinyl Chloride < 0.15 0.15 0.50 03/02/06 μg/l 1 MRD o-Xylene <0.1 μg/l 0.1 0.33 03/02/06 MRD m-& p-Xylene <0.4 μg/l 0.4 1.33 1 03/02/06 MRD EPA 8310 cenaphthene <6.90 μg/l 0.06 0.20 115 02/23/06 LMP Acenaphthylene <6.90 0.06 0.20 115 02/23/06 μg/l LMP **≜**nthracene <10.4 μg/l 0.30 0.09 115 02/23/06 LMP enzo(a)Anthracene <11.5 μg/l 0.1 0.33 115 02/23/06 LMP enzo(a)Pyrene Benzo(b)Fluoranthene <2.30 0.02 0.067 CSL 02/23/06 μg/l 115 LMP <2.30 μg/l 0.02 0.067 115 02/23/06 LMP μg/l Benzo(k)Fluoranthene <8.05 0.07 0.23 115 02/23/06 LMP Benzo(ghi)Perylene <6.90 02/23/06 μg/l 0.06 0.20 115 LMP thrysene ibenzo(a,h)Anthracene <2.30 0.02 0.067 02/23/06 μg/l 115 MB LMP <12.7 0.11 0.37 02/23/06 μg/l 115 LMP Fluoranthene <13.8 μg/l 0.12 0.40 115 02/23/06 LMP 02/23/06 Luorene <13.8 μg/l 0.12 0.40 115 LMP indeno(1,2,3-cd)Pyrene <13.8 μg/l 0.12 0.40 115 02/23/06 LMP -Methyl Naphthalene 2-Methyl Naphthalene μg/l 02/23/06 <9.20 0.08 0.27 115 LMP 02/23/06 <12.7 μg/l 0.11 0.37 115 LMP Naphthalene <12.7 0.37 02/23/06 μg/l· 0.11 115 LMP -henanthrene <12.7 0.37 02/23/06 μg/l 0.11 115 LMP Hyrene <11.5 μg/l 0.1 0.33 115 02/23/06 LMP Hethod 3510 Liquid Ext. COMP 02/20/06 KAM iesel Range Organics 3,864,059 100. 50 D2B D5 02/24/06 02/21/06 LMP KAM μg/l COMP ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.16 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS ∔ttn: John Guhl Short Elliott Henderickson 21 Frenette Drive hippewa Falls , WI 54729	=ample ID: LARGE SUMP	Matri	x: GRDWTR	S	Sample Date/Ti	me: 02/16/0 6	14:15	Lab No. 19	95289		---	--------------------------	--------------------	------------	----------------	----------------------	------------	----------------------	------------							Dilution		Data				Result	Units	LOD	LOQ		Qualifiers	Date Analyzed	Analyst			KCOGEC	011110	200	Lou	<u>ractor</u>	4441111613	MICHTECO	Allacyse		EPA_150.1										pH - Laboratory	7.51		-	-	1		02/20/06	JJP		∍H - Laboratory Time	08:15		-	-	-		02/20/06	JJP												<u>EPA 245.1</u>					_					Diss. Mercury	<0.07	μg/l	0.07	0.23	1		02/21/06	MPM		≣PA 6020										iss. Arsenic	2.00	μg/l	0.6	2.0	1		02/28/06	JCH		iss. Cadmium	<0.2	μg/l	0.2	0.67	i		02/28/06	JCH		Diss. Chromium	<1.60	μg/l	1.6	5.33	1		02/28/06	JCH		■iss. Lead	0.5	μg/l	0.3	1.0	1	J	02/28/06	JCH		■iss. Selenium	0.9	μg/l	0.6	2.0	1	J	02/28/06	JCH		∍iss. Barium	56.0	μg/l	2.0	6.66	1		02/28/06	JCH		Diss. Silver	<0.2	μg/l	0.2	0.67	1		02/28/06	JCH												PA 8260 enzene	<0.15	" ~ / l	0.15	0.50	1		02/20/06	MDD		promobenzene	<0.15	μg/l μg/l	0.15	0.33	1		02/20/06	MRD MRD		Bromochloromethane	<0.1		0.1	0.33	i		02/20/06	MRD		Bromodichloromethane	<0.1	μg/l μg/l	0.1	0.33	i		02/20/06	MRD		=romoform	<0.2	μg/l μg/l	0.2	0.67	1		02/20/06	MRD		=romomethane	<0.15	μg/l	0.15	0.50	i		02/20/06	MRD		n-Butylbenzene	<0.2	μg/l	0.2	0.67	i		02/20/06	MRD		sec-Butylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD			<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		ert-Butylbenzene arbon Tetrachloride	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		thlorobenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		Chloroethane	<0.6	μg/l	0.6	2.0	1		02/20/06	MRD		=hloroform	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		=hloromethane	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		=-Chlorotoluene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		4-Chlorotoluene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		ibromochloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		ibromochloropropane(DBCP) ,2-Dibromoethane(EDB)	<0. 3 <0.1	μg/l	0.3	1.0 0.33	1 1		02/20/06	MRD		Vibromomethane	<0.1	μg/l μg/l	0.1 0.1	0.33	1		02/20/06 02/20/06	MRD MRD		1,2-Dichlorobenzene	<0.75	μg/l μg/l	0.75	2.5	i		02/20/06	MRD		,3-Dichlorobenzene	<0.15	μg/l	0.15	0.50	i		02/20/06	MRD		,4-Dichlorobenzene	<0.75	μg/l	0.75	2.5	i		02/20/06	MRD		ichlorodifluoromethane	<0.25	μg/l	0.25	0.83	i		02/20/06	MRD		1,1-Dichloroethane	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		1.2-Dichloroethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		,1-Dichloroeth(yl)ene																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																										
<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		<pre>is-1,2-Dichloroeth(yl)ene</pre>	1.46	μg/l	0.2	0.67	1		02/20/06	MRD		trans-1,2-Dichloroeth(yl)en	<0.1	$\mu g/l$ 0.1 0.33		1		02/20/06	MRD			1,2-Dichloropropane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		,3-Dichloropropane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		,2-Dichloropropane	<0.1	μg/l	0.1	0.33	-	CSH	02/20/06	MRD		,1-Dichloropropene	<0.2	μg/l	0.2	0.67	-	CSH	02/20/06	MRD		cis-1,3-Dichloropropene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		rans-1,3-Dichloropropene thylbenzene	<0.1 <0.1	μg/\ "a/\	0.1	0.33 0.33	1 1		02/20/06 02/20/06	MRD MRD		thy the lizelie	١٠.١	μg/l	0.1	0.55	•		02/20/00	PIKU											ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com Short Elliott Henderickson 式21 Frenette Drive □hippewa Falls , WI 54729 PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.17 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS ∄ttn: John Guhl ⇒ample ID: LARGE SUMP Matrix: GRDWTR Sample Date/Time: 02/16/06 14:15 Lab No. 195289					•						---	--------	--------------	------	-------	----------	------------	------------	---------							Dilution		Date			_	Result	Units	LOD	LOQ	Factor	Qualifiers	Analyzed	Analyst					_							<u>≢PA_8260</u>										Hexachlorobutadiene	<1.00	μg/l	1.0	3.33	1		02/20/06	MRD		Isopropylbenzene	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD		4-Isopropyltoluene	<0.2	μg/l	0.2	0.67	ĺ		02/20/06	MRD		Methylene Chloride	<0.4	μg/l	0.4	1.33	1		02/20/06	MRD		Methyl t-Butyl Ether(MTBE)	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		Naphthalene	<1.00	μg/l	1.0	3.33	i		02/20/06	MRD		n-Propylbenzene	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD		≢ tyrene	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD		■,1,1,2-Tetrachloroethane	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD		1,1,2,2-Tetrachloroethane	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD		■etrachloroeth(yl)ene	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD		Foluene	<0.4	μg/l	0.4	1.33	i		02/20/06	MRD		,2,3-Trichlorobenzene	<0.5	μg/l	0.5	1.67	i		02/20/06	MRD		1,2,4-Trichlorobenzene	<0.5	μg/l	0.5	1.67	i		02/20/06	MRD		1,1,1-Trichloroethane	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		1,1,2-Trichloroethane	<0.1	μg/l μg/l	0.1	0.33	1		02/20/06	MRD		Frichloroeth(yl)ene	0.645	μg/l μg/l	0.2	0.67	i	J				▼richlorofluoromethane	<0.2	μg/l μg/l	0.2	0.67	1	J	02/20/06	MRD		1,2,3-Trichloropropane	<0.55		0.55		1		02/20/06	MRD		1,2,4-Trimethylbenzene	<0.15	μg/l		1.83	1		02/20/06	MRD		1,3,5-Trimethylbenzene		μg/l	0.15	0.50			02/20/06	MRD		Vinyl Chloride	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		• • • • • • • • • • • • • • • • • • • •	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		o-Xylene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		m-& p-Xylene	<0.4	μg/l	0.4	1.33	1		02/20/06	MRD		‡PA 8310											-0.04	41	0.04	0.00			00 (07 (0)			Acenaphthene	<0.06	μg/l	0.06	0.20	1		02/23/06	LMP		Acenaphthylene	<0.06	μg/l	0.06	0.20	1		02/23/06	LMP		Inthracene	<0.09	μg/l	0.09	0.30	1		02/23/06	LMP		enzo(a)Anthracene	<0.1	μg/l	0.1	0.33	1		02/23/06	LMP		#enzo(a)Pyrene	<0.02	μg/l	0.02	0.067	1	CSL	02/23/06	LMP		Benzo(b)Fluoranthene	<0.02	μg/l	0.02	0.067	1		02/23/06	LMP		Benzo(k)Fluoranthene	<0.07	μg/l	0.07	0.23	1		02/23/06	LMP		Eenzo(ghi)Perylene	<0.06	μg/l	0.06	0.20	1		02/23/06	LMP		hrysene	<0.02	μg/l	0.02	0.067	1	MB	02/23/06	LMP		ibenzo(a,h)Anthracene	<0.11	μg/l	0.11	0.37	1		02/23/06	LMP		Fluoranthene	<0.12	μg/l	0.12	0.40	1		02/23/06	LMP		[luorene	<0.12	μg/l	0.12	0.40	1		02/23/06	LMP		ndeno(1,2,3-cd)Pyrene	<0.12	μg/l	0.12	0.40	1		02/23/06	LMP		-Methyl Naphthalene	<0.08	μg/l	0.08	0.27	1		02/23/06	LMP		2-Methyl Naphthalene	<0.11	μg/l	0.11	0.37	1		02/23/06	LMP		Naphthalene	<0.11	μg/l	0.11	0.37	1		02/23/06	LMP		-henanthrene	<0.11	μg/l	0.11	0.37	1		02/23/06	LMP		tyrene	<0.1	μg/l	0.1	0.33	1		02/23/06	LMP		•,10-Diphenylanthracene (S)	75.1	%	-	-	1		02/23/06	LMP		Method 3510 Liquid Ext.	COMP		-	-	-		02/20/06	KAM											ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.22 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS Attn: John Guhl Short Elliott Henderickson 21 Frenette Drive Chippewa Falls , WI 54729 Sample ID: WEST SUMP Matrix: GRDWTR Sample Date/Time: 02/16/06 15:45 Lab No. 195292	•	Result	<u>Units</u>	LOD	<u>L00</u>	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	<u>Analyst</u>		--	--------	--------------	-------	------------	---------------------------	------------	-------------------------	----------------		EPA 150.1										pH - Laboratory	8.00		-	-	1		02/20/06	JJP		pH - Laboratory Time	08:15		-	-	•		02/20/06	JJP		PA 245.1										Diss. Mercury	<0.07	μg/l	0.07	0.23	1		02/21/06	MPM		EPA 6020										Diss. Arsenic	1.00	μg/l	0.6	2.0	1	J	02/28/06	JCH		Diss. Cadmium	<0.2	μg/l	0.2	0.67	1		02/28/06	JCH		Diss. Chromium	2.10	μg/l	1.6	5.33	1	J	02/28/06	JCH		Piss. Lead	<0.3	μg/l	0.3	1.0	1		02/28/06	JCH		⊅iss. Selenium	1.50	μg/l	0.6	2.0	1	J	02/28/06	JCH		Þiss. Barium	33.4	μg/l	2.0	6.66	1		02/28/06	JCH		Diss. Silver	<0.2	μg/l	0.2	0.67	1		02/28/06	JCH		<u>≡PA 8260</u>										senzene	<0.15	μg/l	0.15	0.50	1		02/21/06	MRD		B romobenzene	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD		Bromochloromethane	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD		#romodichloromethane	<0.1	μg/l	. 0.1	0.33	1		02/21/06	MRD		₿romoform	<0.2	μg/l	0.2	0.67	1		02/21/06	MRD		∃romomethane	<0.15	μg/l	0.15	0.50	1		02/21/06	MRD		n-Butylbenzene	<0.2	μg/l	0.2	0.67	1		02/21/06	MRD		sec-Butylbenzene	<0.15	μg/l	0.15	0.50	1		02/21/06	MRD		⊒ert-Butylbenzene	<0.15	μg/l	0.15	0.50	1		02/21/06	MRD		‡arbon Tetrachloride	<0.2	μg/l	0.2	0.67	1		02/21/06	MRD		thlorobenzene	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD		Chloroethane	<0.6	μg/l	0.6	2.0	1		02/21/06	MRD		£ hloroform	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD		‡ hloromethane	<0.2	μg/l	0.2	0.67	1		02/21/06	MRD		‡-Chlorotoluene	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD		4-Chlorotoluene	<0.2	μg/l	0.2	0.67	1		02/21/06	MRD		Dibromochloromethane	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD		⊋ibromochloropropane(DBCP)	<0.3	μg/l	0.3	1.0	1		02/21/06	MRD		,2-Dibromoethane(EDB)	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD		,2-Dibromoethane(EDB) Dibromomethane	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD		1,2-Dichlorobenzene	<0.75	μg/l	0.75	2.5	1		02/21/06	MRD		1,3-Dichlorobenzene	<0.15	μg/l	0.15	0.50	1		02/21/06	MRD		4-Dichlorobenzene	<0.75	μg/l	0.75	2.5	1		02/21/06	MRD		ichlorodifluoromethane	<0.25	μg/l	0.25	0.83	1		02/21/06	MRD		1,1-Dichloroethane	<0.15	μg/l	0.15	0.50	1		02/21/06	MRD		1,2-Dichloroethane	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD		1.1-Dichloroeth(yl)ene	<0.15	μg/l	0.15	0.50	1		02/21/06	MRD		is-1,2-Dichloroeth(yl)ene	<0.2.	μg/l	0.2	0.67	1		02/21/06	MRD		trans-1,2-Dichloroeth(yl)en	<0.1	μg/l	0.1	0.33	i		02/21/06	MRD		1,2-Dichloropropane	<0.1	μg/l	0.1	0.33	i		02/21/06	MRD		■,3-Dichloropropane	<0.1	μg/l	0.1	0.33	i		02/21/06	MRD		1,3-Dichloropropane 2,2-Dichloropropane	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD		1,1-Dichloropropene	<0.2	μg/l	0.2	0.67	i		02/21/06	MRD		cis-1,3-Dichloropropene	<0.1	μg/l	0.1	0.33	i		02/21/06	MRD		trans-1,3-Dichloropropene	<0.1	μg/l	0.1	0.33	i		02/21/06	MRD		‡thylbenzene	<0.1	μg/l	0.1	0.33	i		02/21/06	MRD		1 '		-5, 1		****	•		,, 50		ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.23 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS fttn: John Guhl Short Elliott Henderickson ippewa Falls , WI 54729 ≡ample ID: WEST SUMP Matrix: GRDWTR Sample Date/Time: 02/16/06 15:45 Lab No. 195292 Dilution Date <u>Result</u> LOD LOQ Qualifiers <u>Units</u> Factor <u>Analyzed</u> <u>Analyst</u> PA 8260 **Hexachlorobutadiene** <1.00 1.0 3.33 1 02/21/06 MRD μg/l sopropylbenzene <0.1 μg/l 0.1 0.33 1 02/21/06 MRD -Isopropyltoluene <0.2 μg/l 0.2 0.67 1 02/21/06 MRD ethylene Chloride <0.4 μg/l 0.4 1.33 1 02/21/06 MRD Methyl t-Butyl Ether(MTBE) <0.1 μg/l																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																													
0.1 0.33 02/21/06 1 MRD Naphthalene <1.00 02/21/06 1.0 **CSH** μg/l 3.33 1 MRD -Propylbenzene <0.1 0.1 0.33 02/21/06 μg/l MRD tyrene μg/l <0.1 0.1 0.33 1 02/21/06 MRD 1,1,1,2-Tetrachloroethane <0.1 μg/l 0.1 0.33 02/21/06 MRD 1,1,2,2-Tetrachloroethane <0.1 μg/l 0.1 0.33 1 02/21/06 MRD etrachloroeth(yl)ene <0.1 μg/l 0.1 0.33 02/21/06 MRD oluene <0.4 μg/l 0.4 1.33 02/21/06 MRD ,2,3-Trichlorobenzene <0.§ 0.5 μg/l 1.67 02/21/06 MRD 1,2,4-Trichlorobenzene <0.5 0.5 1.67 02/21/06 μg/l MRD 1,1,1-Trichloroethane <0.2 μg/l 0.2 0.67 02/21/06 MRD ,1,2-Trichloroethane <0.4 μg/l 0.1 0.33 02/21/06 MRD richloroeth(yl)ene <0.2 μg/l 0.2 0.67 1 02/21/06 MRD Irichlorofluoromethane <0.2 μg/l 0.2 0.67 02/21/06 MRD 1,2,3-Trichloropropane <0.55 μg/l 0.55 1.83 02/21/06 MRD 1,2,4-Trimethylbenzene <0.15 0.15 0.50 02/21/06 μg/l MRD ,3,5-Trimethylbenzene <0.15 0.15 0.50 02/21/06 μg/l MRD /inyl Chloride μg/l <0.15 0.15 0.50 02/21/06 1 MRD o-Xylene <0.1 μg/l 0.1 0.33 1 02/21/06 MRD m-& p-Xylene <0.4 μg/l 0.4 1.33 1 02/21/06 MRD EPA 8310 Acenaphthene <0.06 μg/l 0.06 0.20 1 02/27/06 LMP Acenaphthylene <0.06 0.06 0.20 02/27/06 μg/l 1 LMP Inthracene <0.09 0.30 μg/l 0.09 1 02/27/06 LMP Benzo(a)Anthracene <0.1 μg/l 0.1 0.33 1 02/27/06 LMP Benzo(a)Pyrene <0.02 0.02 0.067 μg/l 1 02/27/06 LMP Benzo(b)Fluoranthene 0.035 μg/l 0.02 0.067 1 **CSH** 02/27/06 LMP Renzo(k)Fluoranthene <0.07 μg/l 0.07 0.23 02/27/06 1 1 MP enzo(ghi)Perylene 0.094 thrysene bibenzo(a,h)Anthracene ----hene μg/l 0.06 0.20 1 J 02/27/06 LMP 0.045 0.02 0.067 1 μg/l J 02/27/06 LMP <0.11 0.11 0.37 μg/l 1 02/27/06 LMP <0.12 μg/l 0.12 0.40 1 02/27/06 LMP Luorene <0.12 μg/l 0.40 02/27/06 0.12 1 I MP ndeno(1,2,3-cd)Pyrene <0.12 μg/l 0.12 0.40 1 **CSH** 02/27/06 LMP -Methyl Naphthalene μg/l 02/27/06 <0.08 0.08 0.27 LMP 1 2-Methyl Naphthalene <0.11 μg/l 0.11 0.37 02/27/06 LMP Naphthalene Thenanthrene <0.11 μg/l 0.11 0.37 02/27/06 LMP <0.11 μg/l 0.11 0.37 LMP 1 02/27/06 yrene <0.1 μg/l 0.1 0.33 1 02/27/06 LMP ,10-Diphenylanthracene (S) 75.0 02/27/06 1 LMP Method 3510 Liquid Ext. COMP 02/22/06 KAM ENVIROSCAN SERVICES **301 WEST MILITARY ROAD** ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com hort Elliott Henderickson 421 Frenette Drive Chippewa Falls , WI 54729 Attn: John Guhl PROJECT NO.: NERUB0502.00 REPORT NO.: 195283.90 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS ### **■**alifier Descriptions	МВ	Analyte observed in method blank. Sample results may be biased high.		-----	--		CSH	Check standard for this analyte exhibited a high bias. Sample results may also be biased high.		J	Estimated concentration below laboratory quantitation level.		CSL	Check standard for this analyte exhibited a low bias. Sample results may also be biased low.		DUP	Result of duplicate analysis in this quality assurance batch exceeds the limits for precision.		D2B	The chromatogram is characteristic for a heavier petroleum product other than diesel. (i.e. motor oil, hydraulic oil, etc.)		D5	The chromatogram contained significant peaks and a raised baseline outside the DRO window.		S2H	Sample matrix spike duplicate recovery was high. Sample result may be biased high.		LCL	The laboratory control sample for this analyte exibited a low bias. Sample results may also be biased low.		S1L	Sample matrix spike recovery was low. Sample result may be biased low.		S2L	Sample matrix spike duplicate recovery was low. Sample result may be biased low.		ISL	Internal standard recovery below normal limits. Sample results may be biased high.		SPL	Matrix spike recovery within analytical batch was low. Sample matrix appears similar to your sample; result may be biased low.		LCH	The laboratory control sample for this analyte exibited a high bias. Sample results may also be biased high.	STL Chicago 2417 Bond Street University Park, IL 60466 Tel: 708 534 5200 Fax: 708 534 5211 www.stl-inc.com # SEVERN TRENT LABORATORTES ANALYTICAL REPORT JOB NUMBER: 244419 Prepared For USFilter, Enviroscan Services 301 W. Military Road Rothschild, WI 54474 Project: Subcontract Lab Services Attention: Eric Lorge Date: 02/28/2006 Signature Name: Nancy S. McDonald Title: Project Manager E-Mail: nmcdonald@stl-inc.com Date STL Chicago 2417 Bond Street University Park, IL 60466 · 2/28/06 PHONE: (708) 534-5200 FAX..: (708) 534-5211 This Report Contains (12) Pages ### STL Chicago PCB Case Narrative USFilter, Enviroscan Services Subcontract Lab Services SEHCHI Job #: 244419-1 **PCBs** 1. STL Chicago used the following Gas Chromatographic systems for the analysis of PCBs:	<u>ID#</u> .	<u>INSTRUMENT</u>	COLUMN TYPE	DETECTOR		--------------	-------------------	----------------------	------------------		32	HP 6890	Rtx-Clp2 (Primary)	Electron Capture		31	HP 6890	Rtx-5 (confirmation)	Electron Capture	- 2. This soil sample was extracted based on SW846 method 3541. The extracts were analyzed for PCBs based on SW846 method 8082. All extracts received a sulfuric acid cleanup and a GPC cleanup in order to reduce matrix interference. - 3. All required holding times were met for the extraction and for the analysis. - 4. The method blank was below the reporting limits for all Aroclors. - 5. The surrogate compounds used for this analysis were Decachlorobiphenyl (DCB) and Tetrachloro-m-xylene (TCX). All surrogate recoveries were within statistical control limits except DCB in method blank and blank spike, which had recoveries of 69% and 66%, respectively. No further action was taken since sample surrogate recoveries were in control. - 6. A solution containing Aroclor 1016 and Aroclor 1260 was used for spiking. - 7. All blank spike recoveries were within statistical control limits. - 8. A matrix spike and a matrix spike duplicate were not performed on this sample. - 9. All initial and continuing standard calibrations associated with this sample were in control on both columns. All SSV recoveries were within limits of 85%-115%. - 10. Target compounds were confirmed using a second column. All results were reported from the primary column, Patti Gibson Organics Section Manager 2-28-66 Date S.A.M.P.L.E. IN F.D.R.M.A.T.T.O.N. Date: 02/28/2006 Job Number.: 244419 Customer...: USFilter, Enviroscan Services Attn.....: Eric Lorge Project Number.....: 20004567 Customer Project ID...: SEHCHI Project Description...: Subcontract Lab Services	Laboratory Semple 10	Custămer Sample ID	Sample Matrix	Date Sampled	fime Salgnaz	Date Received	Time Received		-------------------------	-----------------------	------------------	-----------------	-----------------	------------------	------------------		244419-1	21195314	Soil	02/14/2006	05:15	02/18/2006	09:30																																				<u> </u>																}																																										-																													·																														Job Number: 244419 LABORATORY TEST RESULTS Date:02/28/2006 CUSTOMER: USFilter, Enviroscan Services PROJECT: SEHCHI ATTN: Eric Lorge Customer Sample ID: 21195314 Date Sampled....: 02/14/2006 Time Sampled....: 05:15 Sample Matrix...: Soil Laboratory Sample ID: 244419-1 Date Received.....: 02/18/2006 Time Received.....: 09:30	TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	D FLAGS	NOL	RL	DILUTION	UNITE	BATCH	ÓΤ	DATE/TIME	TECH		-------------	--	--	---------	---	----------------------------------	--	---	--	----	---	--------------------------			PCB Analysis Aroclor 1016, 3541 Solid* Aroclor 1221, 3541 Solid* Aroclor 1232, 3541 Solid* Aroclor 1242, 3541 Solid* Aroclor 1248, 3541 Solid* Aroclor 1254, 3541 Solid* Aroclor 1260, 3541 Solid*	ND ND ND ND ND ND 18	מיהפרחה	6.4 5.3 5.2 5.6 4.1 4.2 3.8	19 19 19 19 19 19	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	174382 174382 174382 174382 174382 174382 174382		02/27/06 1812 02/27/06 1812 02/27/06 1812 02/27/06 1812 02/27/06 1812 02/27/06 1812 02/27/06 1812	bjt bjt bjt bjt		Method	% Solids Determination % Solids, Solid % Moisture, Solid	84.9 15.1		0.10 0.10	0.10 0.10	1111	X	173702 173702		02/20/06 2159 02/20/06 2159									<u> </u> 						^{*} In Description = Dry Wgt.	Jop	Number: 244419	LABORATORY	CH	RONI	CLE	Date:	02/28/2006				---	--	------------	---------	---	--	----------------	--	------------------------	-------------		USTOMER: USFflee	, Enviroscan Services	PROJECT	SEHDHI				ATTN: Eric Lorg	B -1. (11).	1.474 A.TTT		ab ID: 244419-1 METHOD Method 3541 8082	Client 1D: 21195314 DESCRIPTION % Solids																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																		
Determination Extraction Soxhlet (PCBs PCB Analysis		Date Ro	ecvd: 02/ BATCH# 173702 173707	18/2006 PREP BT 173702 173707	Sample #(S)	Pate: 02/14/20 DATE/TIME AN 02/20/2006 02/21/2006 02/27/2006	ALYZED 2159 0814	DILUTIO																																																																																																																																																														Job	Numbe	r.: 244419	S	UR	R O	G	A T I	E	RE	C	0 Y	E	RI	E	S	R	Ef	0	R T		Repo	ort D	ate.	.: 0	2/2	8/2	006					----------------------	-------	--------	-------	------------------------------	-----	----------	-----	---	-------	------	----------------	-------	----------------------	-----	----	----	----------------	---	-----	----------------	-----	------------	------	-------	------	------	-----	-----	------	----	-----	-----		CUSTOME	R : U	Filte	f, Er	viroscan Ser	VÌC	5			PRO	JEC1	(). SI	EHIC)	θŧ	:									ATT!	No Er	ie L	org	je:									d Code		PCB Analysis 8082													trix						#				Pre	рΒ	atcl	1:	173	707		Lab ID		DT	San	ple ID									Da	te		DC	CB		TC)	•														LCS MB 244419-	1		211	95314									/27, /27, /27,	/20	06		66 69 81	*		57 52 82	-	• -												Test	Te	est Do	ecrip	tion						Lin	its																							DCB TCX				phenyl (surr m-xylene (su							- 12! - 13!																							•	Job Number.: 244419	QUALITY	TROD	ROLR	ESUL	T S	Report Da	te.: 02/1	28/2006			---------------	---------------------	---------	-----------	------	------	-----	-----------	-----------	---------	------		CUSTOMER: USF		PROJEC	T. SEHCH1				ATTN: Eri	Lorge				QC Type	Descriptio		Reag.	Code	Lab		Dilution		Date	Time	Test Method.....: 8082 Equipment Code...: INST3132 Analyst...: bit Method Description: PCB Analysis Batch.....: 174382	Laboratory Control Sam	ole:	.06AI	ÆPCBA	173707-002	.02	727/2006: 1747		--	----------------	-------------------	-----------	--------------------	--------------------------	----------------------		Parameter/Test Description	Units	QC Result	QC Result	True Value	Orig. Value QC Calc.	* Limits F		Aroclor 1016, 3541 Solid Aroclor 1260, 3541 Solid	ug/Kg ug/Kg	93.007 114.317		166.700 167.000	5,600 U 56 3,300 U 68	% 52-105 % 63-122			Job Number.: 244419	CONTROL R	-	Report Date.: 02/2				-------------	---------------------	------------	--------	--------------------	------	------		CUSTOMER: U		T: SEHCHI		ATTN:				QC Type	Description	Reag. Code	Lab ID	Dilution, Factor	Date	Time	Test Method.....: 8082 Equipment Code...: INST3132 Analyst...: bjt Method Description: PCB Analysis Batch.....: 174382	MB Method Blank			<u>,:: </u>	. 173707-001			/27/2006: 172	2		----------------------------	-------	-----------	---	--------------	-------------	----------	---------------	---		Parameter/Test Description	Units	QC Result	QC Result	True Value	Orig. Value	QC Calc.	* Limits	F		Aroctor 1016, 3541 Solid	ug/Kg	5.600	Tu Tu							Aroctor 1221, 3541 Solid	ug/Kg	4.600	U							Aroclor 1232, 3541 Solid	ug/Kg	4.500	U							Aroctor 1242, 3541 Solid	ug/Kg	4.900	U							Araclar 1248, 3541 Solid	⊔g/Kg	3.600	U							Aroctor 1254, 3541 Solid	ug/Kg	3.700	U							Aroctor 1260, 3541 Solid	ug/Kg	3.300	U							Job Mumber_: 244419	QUALIT	Y CONTRO) L RESUI		:: 02/28/2006		---	--------	--------------	-----------	--------------------	--------------------------------------		CUSTOMER: USEILTER, Enviroscan Services	-PRO	JECT: SEHCHI		ATTH: Eric	Lorge		Test Method: Method Method Description: % Solids Determine Parameter % Solids	ation.	Equip:	ment Code	1737.02	Analyst.;;\clb Test.Code:= %SOLID		QC Lab ID Reagent Units QC				Value QC Calc. F *	Limits Date Time	× 0.1000 U MB 173702-001 02/20/2006 2100 #### QUAL ITY ASSURANCE METHODS #### REFERENCES AND NOTES ### Report Date: 02/28/2006. #### REPORT COMMENTS - 1) All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety. - 2) Soil, sediment and sludge sample results are reported on a "dry weight" basis except when analyzed for landfill disposal or incineration parameters. All other solid matrix samples are reported on an "as received" basis unless noted differently. - 3) Reporting limits are adjusted for sample size used, dilutions and moisture content if applicable. 4) The test results for the noted analytical method(s) meet the requirements of NELAC. Lab Cert. 1D# 100201 5) According to 40CFR Part 136.3, pH, Chlorine Residual and Dissolved Oxygen analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH Field) they were not analyzed immediately, but as soon as possible on laboratory receipt. Glossary of flags, qualifiers and abbreviations (ony number of which may appear in the report) Inorganic Qualifiers (Q-Column) - Analyte was not detected at or above the stated limit. - Not detected at or above the reporting limit. - Result is less than the RL, but greater than or equal to the method detection limit. - Result is less than the CRDL/RL, but greater than or equal to the IDL/MDL. - Result was determined by the Method of Standard Additions. - AFCEE: Result is less than the RL, but greater than or equal to the method detection limit. Inorganic Flags (Flag Column) - ICV, CCV, ICB, CCB, ISA, ISB, CRI, URA, MRL: Instrument related QC exceed the upper or tower control limits. - LCS, LCD, MD: Batch QC exceeds the upper or lower control limits. - MSA correlation coefficient is less than 0.995. - MS, MSD: The analyte present in the original sample is 4 times greater - than the matrix spike concentration; therefore, control limits are not applicable. - E SD: Serial dilution exceeds the control limits. - MB, EB1, EB2, EB3: Batch QC is greater than reporting limit or had a - negative instrument reading lower than the absolute value of the reporting limit. - MS, MSD: Spike recovery exceeds the upper or lower control limits. - AS(GFAA) Post-digestion spike was outside 85-115% control limits. - Organic Qualifiers (Q Column) - Analyte was not detected at or above the stated limit. - Compound not detected. - L Result is an estimated value below the reporting limit or a tentatively identified compound (TIC). - Result was qualitatively confirmed, but not quantified. - C Pesticide identification was confirmed by GC/MS. - The chromatographic response resembles a typical fuel pattern. - Z The chromatographic response does not resemble a typical fuel pattern. - Result exceeded calibration range, secondary dilution required. E - AFCEE:Result is an estimated value below the reporting limit or a tentatively identified compound (TIC) Organic Flags (Flags Column) - MB: Batch QC is greater than reporting limit. - LCS, LCD, ELC, ELD, CV, MS, MSD, Surrogate: Batch QC exceeds the upper or lower control limits. EB1, EB2, EB3, MLE: Batch QC is greater than reporting Limit - A Concentration exceeds the instrument calibration range - Concentration is below the method Reporting Limit (RL) - B Compound was found in the blank and sample. - n Surrogate or matrix spike recoveries were not obtained because the extract was diluted for - analysis; also compounds analyzed at a dilution will be flagged with a D. - Н Alternate peak selection upon analytical review - Indicates the presence of an interfence, recovery is not calculated. - М Manually integrated compound. - The lower of the two values is reported when the % difference between the results of two GC columns is ### ODALITY ASSURANCE METHODS BEFERENCES AND NOTES Report Date: 02/28/2006 RTW Retention Time Window Sample 10 A 9 digit number unique for each sample, the first six digits are referred as the job number SCB Seeded Control Blank SD Serial Dilution (Calculated when sample concentration exceeds 50 times the HDL) UCB Unseeded Control Blank SSV Second Source Verification Standard Solid Laboratory Control Standard(LCS) SLCS pH Calibration Check LCSP pH Laboratory Control Sample PHC pH Laboratory Control Sample Duplicate LCDP pH Sample Duplicate MOPH MDFP Flashpoint Sample Duplicate Flashpoint LCS LCFP G1 Gelex Check Standard Range 0-1 Gelex Check Standard Range 1-10 GΖ G3 Gelex Check Standard Range 10-100 Gelex Check Standard Range 100-1000 Note 1: The Post Spike Designation on Batch QC for GFAA is designated with an "S" added to the current abbreviation used. Ex. LCS S=LCS Post Spike (GFAA); MSS=MS Post Spike (GFAA) Note 2: The MD calculates an absolute difference (A) when the sample concentration is less than 5 times the reporting limit. The control limit is represented as +/- the RL. ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.ustifter.com 244419 # A Siemens Business Subcontract Laboratory Services Request	•		~~	 	-			₩.		~.		 • •	•			 •											---	---	----	------	---	---	---	----	---	----	---	---------	---	--	--	-------	---	---	---	-----	---	--																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																													
---	---	---		-	•	-		_	_	-	_	_	-	_	2	-				-	-	-	فلا	-		-	-																										帰	В		TO:	· 'YE	LMI Client (4°C)	Jwo Week Tom	Report Format		---	---------------------------------------	---------------------------------------	--	-----------------		STL Chicago	••-		Three Week Turn	-E-L2QFND		2417 Bond Street		•		☐ 130END		University Park, IL 6	0466		RUSH-1-2 DAY (2X)	14QFND		Ph. 708-534-5200			RUSH-3 DAY TAT (1.7X)				Alt Fax.708-534-5270		RUSH-# DAT TAT (1.3X)	•		PM: Nancy McDona	Ю		•	Quotation No.		Please analyze the C Special Instruction	enclosed samples for the a xis:	nalytes specified:		20004484 7/9/20								Sample ID	Sample Date & Time	· · · · · · · · · · · · · · · · · · ·	Analyzis Réquest			195314	7/14/16 5:15	Soil [] Organ	ochlorine Pesticides by EPA 8081A*			·	711/16 2115	1 "	ochlorine Pesticides by EPA 608*	}				1	by EPA 8082	·				₹ <i>}</i>	by EPA 608					1	by 3541WI extraction and clean-up					1 * -	ides by EPA 8151A*					1 ' '	Suplicate Analysis					1 · · ·	kıad Analysis					٦	Auplicate Analysis on Soil					1 []	Carbon-Duplicate Analysis on Soil	Ì			· · · · · · · · · · · · · · · · · · ·	1 "	s as checked on all samples.			"See attached list for	required compounds	1 desditt bereit de l'est des	The state of s	·····		REPORT TO:		•	BILL TO:	•		USFiller, Environcer	Services		USFiller, Enviroscan Service	bes .		301 W. Military Rd. Rothschild, WI 5447	14		301 W. Millery Rd. Rothschild, Wi 54474			Altn: Eric Lorge			Attn: Accounts Payable			E-mail: eric.lorge@s	lemens.com					Au	ming the above request c		-1 - 4 -3			or Jim Salkowski, G	eneral Manager, Phone &			•		Refinquished by:	Sugaret	Ville Da	te: 21706 Time: 1430			Received by Subcon	· \ \ \		He: 2/18/06 Time: 0930								## Sample Receipt Report	Client:	SEH Date Received: 2/17/06			----------------	---	-----------		Analyti	cal No.: 21195283 Through 21195324			Check	all deviations from EPA or WDNR sample protocol.			[]	Sample(s) received at°C which is above the EPA and WDNR limit of 4°C.			[]	VOC vial(s) received with headspace. Explain:				Sample(s) received in bottles not furnished by Enviroscan. Preservation method, if used, is unknown.				Sample(s) not properly preserved per EPA/WDNR protocol for the following:			[]	Sample(s) received beyond EPA holding time for:			[]	Sample date/time not supplied by client. Actual holding time unknown.			[]	GRO/PVOC/VOC/DRO (circle appropriate) sample(s) are <19.5 gms and this report is the flag for that information. Sample(s) under-weight:			H ^o	GRO/PVOC/VOC (circle appropriate) sample(s) were between 26.4-35.4 gms so methanol was added in a 1.1 ratio. Sample(s) included: 21195297 + 4ml, 195298+3ml, 195309+4ml, 195309+4ml, 195309+4ml, 195309+4ml,	299:44ml.		[]	195305 + 4ml, 195301 + 4ml, 195302+4ml, 195303+4ml, 195305+4ml, 195305+4ml, 195305+2ml, 195306+2 GRO/PVOC/VOC/DRO (circle appropriate) sample(s) were >35.4 gms and are required to 19 be rejected. Sample(s) included:	5307 + 4m		[]	Other:	*		Client	contact concerning the above deviations:			Client at	(contact name) notified of the above deviation(s) on/_/_/95 am/pm by and the client ordered:	314+3M			[] Do NOT proceed with analyses.		# REQUEST FOR SERVICES ### A Siemens Business	ENVIROSCAN S	ERVICES	30	01 W. MILIT	ARY RD.	ROTHSC	CHILE), WI	5447	4	1-800	-338-SC	AN		---	--------------------------	-----------------------	---	-----------------------------------	-------------------	----------------	--	------------------	------------------	------------	---------------------------	--------------		REPORT TO:	ohn	E 0	/. \		_L TO: (if			m Re	port T	o info)						<u>с, ср</u>			me: mpany:			-3/1/2 -3/1/2				_		Address:		rene th		<u>'∈</u> Ad	dress:			W.						Dhama: / 71/	in pper	<u>Jil F</u> 6 Z00	EL 1 15,		/		- 1957 Villa	4				_		Phone: (<u>715</u>) P.O.# _ <i>W</i>		70	.*	-	one: (`)/#: ////				-{#	_		Project # NER	1BO502.	<i>ರು</i> Quote	#	7492	ን	<i>!!</i>				~				Location CHI	LTON			- 144 m			33.30			L RE	QUESTS	3		Sample Ty (Check all that Groundway Wasteway Soil/Solid	at apply) ater ter	Nor Rus	und Time mal sh (Pre-approveded eded d By	, , 				/ ,	arate :	sheet if n	REMARK	- 20 m		☐ Oil☐ Vapor☐ Other.	· j*				4-	ل /			^ که که	λ Ο (,		,×,		LAB USE ONLY	DATE	TIME	No. of Containers COMP GRAB	SAMPLE I	D /	3	THE STATE OF S	(F) (7)	7/1-	\\	REMARK	(S		21195283	2-16-8	10:30	6	Mw-	3 /		//							21195284	7-16-06	11:00	6	mw-2	2									21195285	Z-16-06	11:30	6	WW-1				/						21195286	2-16-06	17:45	7	EAST	المادا وم	7		/			Phase Th	Oil teran		21195287	2-16-06	1:15	6	BIZ				1				H		2119528	8-16.0	1:45	6,	BII		//				_				21195289	2-16-06																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																								
2:15	6	LARGE	2	//	/							21195290	2-16.41	2:45	6	B9				/						21195290 2119529	2-1606	3:15	6	B6				/						21195292	-2-16-06		6	WESTSUM	17					J				CHAIN OI	F CUST	ľODY	RECOL	RD			Del'v: Ship. Samp Seals	Cont. les le	OK aking	(Y)	N N/A N N/A N N/A 2						,		· 1		Rec'd			⑦	N N/A	. . C		SAMPLERS: (Signa	khr-	- Z. o	Gulf	1			Comi	ments			Mr. Gul	스		RELINQUISHED BY:	Signature)	1		RECEIVED BY: (Si	gnature)	 7-)K-to	s (es	teast	sark ?	71		BELINQUISHED BY:	(Signature)		-06 10:15 E/TIME	RECEIVED BY: (Si	gnature)							_ _ 		RELINQUISHED BY: ((Signature)	DAT	E/TIME	RECEIVED FOR L BY: (Signature)	1 1	1.0	DATE/	经付出帐 "抓"	0/1				# REQUEST FOR SERVICES ### A Siemens Business	ENVIROSCAN SERVICES 301 W. MILITARY RI						ROTH	ISCH	ILD,	WI !	5447	4	1-800	-338-SCAI	1		--	------------------	---	--------------------------------	-------------	------------	----------------	--------	--	--	-------------------------------	-------------	--	---------------------------	--		REPORT TO: Name: Company: Address: HTI Ch Phone: Phone: HIECO Project # NECO Location Sample To	<u>5477</u> 9	BILL TO Name: _ Compan Address): (if di ny:	ifferei	AN/	m Re	port Τ	L RE	QUESTS necessary)	_\\						(Check all that Groundw Groundw Soil/Solid Drinking Oil Vapor Other	ater ter I	Date Ne Approve	sh (Pre-a eded _ ed By _		ed by Lab)			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Supple of the su	Ca n)		REMARKS	, Selection of the sele		LAB USE ONLY	DATE	TIME	No. (Contain	ners	SAMP	LE ID		\Q\	c a	<i>\\</i>	<u> </u>		REMARKS	3		21195293				6	BS											21195294	2-16-€	4:45		6	85A				/																																					_							·									_																								<u>,,,-</u> ,,																								_																		1000 1000 1000 1000 1000 1000 1000 100										<u> </u>				_		CHAIN O	F CUS	ODY	REC	ZOI:	RD			3	Ship:√ Samp	Har Cont- les le OK?	ÓK aking	omm, Y	N N/A N N/A			SAMPLERS: (Signa		hni	9.0	Gr	aff				Rec'd	on ic	e?	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	N N/A N N/A <u>ナ</u> (ِ ا		RELINQUISHED BY:	(Signature)		E/TIME		RECEIVED B	Y: (Signature	e)					······································				BELINQUISHED BY:	(Signature)		06/09 E/TIME		RECEIVED B	Y: (Signature	e)									RELINQUISHED BY:	(Signature)	DAT	E/TIME	ं	RECEIVED F	OR LABORA	ATORY	1 1 1 1 1 1 1	DATE/			-			# REQUEST FOR SERVICES ### A Siemens Business	ENVIROSCAN S	SERVICES	3	01 W. MILIT	TARY RD.	ROTH	1SCH	IILD,	WI 5	5447	4	1-800	-338-SC	CAN		----------------------------	-------------	---------	----------------------	------------------------	--	---------	---------------	--	------------	----------------	---------------	----------------------------	---------------		REPORT TO:					BILL TO	: (if d	ifferer	nt froi	n Re	port T	o info)				Name:					Name: _			<u>-</u>							Company: _SEI					•	-	-								Address: <u>421</u>					Address	:									Chi	ppema +	115, C	ال		Di	, –									Phone: (715) P.O.# MIRA	120 · 6	0 COO			Pnone:	()				:		_		Project # NERC															Location CHI	LTON, U		, п									QUEST			Sample T	\vne	Turnaro	und Time					(us	e sep	arate	sheet if r	ecessary)			(Check all tha	at apply)	☐ Nor	mal					/		/ œ	/ A	í /	λ		☐ Groundw☐ Wastewa		☐ Rus	sh (Pre-appro	ved by Lab)			/	/		کریہ ا	京文	Jan 25	\$.		Soil/Solid		Date Ne	eded						10	1. 7		12 /	~		☐ Drinking ☐ Oil	Water	Approve	d By						/F	Ų′;	<u>:</u>	- ♂	7 1		☐ Vapor) /	/ /	/. /	20	7 3/	/ /	<i>102.</i> 1√2 ∧	3,64		☐ Other						/	.9/	Jn/_	~ N+	\times /	\sum_{a}	$\mathcal{N}(\mathcal{X})$	~ <i>\$</i> _			D4==		No. of			1/3	ر اس ال	7/3 7/3/3	2	×			, ·		LAB USE ONLY	DATE	TIME	Containers COMP GRAB	SAMP		/		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7		/-	REMAR	KS		21195295			3	MW-5/P=	<u>, † ' </u>			/				•			2119 5296	2-13-06	11:45	3	mw-6	0-78										211 95 29 7	2-13-0%		3	MW-7	0-492										21195298	2-1306	2:30	3	MW-8	0-4A										2119 5299	2-13-06		3	MW1-8		/	/	/							21195300	2-13.0k	3:15	3	N 4 9	0-44										21195301			3	3/4 N 34	464										21195302	2.13-34	11.84	舅	神四月	2-34	7	200	Y	X	*		11-4	oryo		2 119 5303	1 7 74	ì	ist	BI	4-641	1	/	1	./			د	/		21195304	2-13-0		1	BZ	0 -22	/													다. 사 가 보 보			S	Ship. (Cont.		omm. ?	N																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																														
N/A N N/A			CHAIN O	F CUST	CODY	RECO	RD			S	Seals Rec'd	OK?			N N/A			SAMPLERS: (Signa	iture)	2 Sh	ull				10.00	Comr	laka dilak	· municipality		N N/A <u>.</u>			RELINQUISHED BY:	(Signature)	DATI	E/TIME	RECEIVED B	Y: (Signature	e)	ր -								Chan?	9/ 1	ما	4/0:5	_		-	-								RELINQUISHED BY:	(Signature)		E/TIME	RECEIVED B	Y: (Signatur	e)	-								RELINQUISHED BY:	(Signature)	DATI	E/TIME	RECEIVED FO	OR LABOR	ATORY		DATE/	TIME					# REQUEST FOR SERVICES ### A Siemens Business	ENVIROSCAN S REPORT TO: Name: Company: Address: Phone: Phone: Project # Net2	1/20-1 1/20-1 1/20-1 1/20-1	14. D. 115. 200	1115 . Her-	<u></u> <u>412</u> 4'	BILL TO Name: _ Company	: (if dif y:	fferent	NALY	eport To	o info	EQUESTS if necessary)		---	--------------------------------------	-----------------------	-------------------------------	--------------------------	-------------------------------	-----------------	-------------	---	-----------------------	--------	--------------------------------		Sample Ty (Check all that Groundw Wastewa Soil/Solid Drinking V Oil Vapor Other	at apply) ater ter	☐ Norr☐ Rusl	h (Pre-approv eded d By	·			CALL MERMON						LAB USE ONLY	DATE	TIME	No. of Containers COMP GRAB	SAM	PLE ID		*/ (K	¥ / S	3/ 2	72/	REMARKS		21195305	2-13-06	-1.45	. 30	BZ	2.7								2119 5306			3.	BB	0-261		4						21195307	2-13-06	5,00	13v	133	2-4 ft						+1-202min		21195308	2-1,3-06	5:30	<u> </u>	134	4-61						F1 70 18		119 5309	i		3,	135 c), 5-0, 86.								2119 5810			3°	P6	- ft 1,5-3,0 ts		//						21195311 21195312			3,	1 /	1.0-2.5									- 11,46			-	1.0-25								21195314				/ 	1.0-2.0ft),5-1.5(t						71-45216				3, 10		pio c	7 3 17311		De	 l'v: Ha	Md C	omm.			CHAIN O	F CUST	ODY	RECOI	RD			Sa Se	ip. Con mples I als OK' c'd on i	eaking ?		ON N/A N N/A N N/A N N/A C		SAMPLERS: (Signal	ture) Jan	<i>C.</i>	In	U			TATALAN T	and the state of	ere Market Brack •	16 5.	in strchecojo		RELINQUISHED	Signature)	بر الح		RÉCEIVED	BY: (Signature	∌)	_						RELINQUISHED BY:	Signature)		-03 /0:15 E/TIME	RECEIVED	BY: (Signature	e)							RELINQUISHED BY: ((Signature)	DATE		RECEIVED BY: (Signat	FOR LABORA	ATORY	第四月的 电点	TE/TIME		-		# REQUEST FOR SERVICES ## A Siemens Business	ENVIROSCAN S	SERVICES	30	o1 W. MILIT	ARY RD.	ROTH	ISCH	ILD,	WI :	5447	4	1-800-338-SCAN		--	---------------------------------	---------------------------	---	-----------------------------	--------------------	----------------	-------	--------------------------	-------------	----------------	---		REPORT TO: Name:	ilin 6	: Gu	hl		BILL TO Name: _	-			-		o info)		Company:			•		Compan	ıy:							Address:	1 Fan		W1 57	7770	Address	:							Phone: (715) P.O.# FORM Project # NCR Location) 7720 LEG MI 130502.	<u>. (, کن:</u> دیم	PLANT	キマコ	Phone:	()				L REQUESTS		Samula T		Turnana	d Time							arate s	sheet if necessary)		Sample T (Check all that Groundw Soil/Solic Drinking Oil Vapor Other	at apply) vater iter i	☐ Nor ☐ Rus Date Ne	und Time mal th (Pre-approveded d By					3/	12/2	1	REMARKS		LAB USE ONLY	DATE	TIME	No. of Containers	SAME	LE ID	1/:	1/12			2/2	REMARKS					COMP GRAB			1		/ 😴		- 1	/ nciviants		21195315	2-15-06			BII	1-314	1	/	1					211 953 1 6	2-15-06	9:15	3	B12 1	1-2 fi	/							21195317	2-15-06	11:16	H	3130).S-4.5ft						+1-202		21195318			6	MW:			/	/	/		Suspher, 198		21195319	1		6	MW			/	1	/		1-125 Physical		1195320			6	MW.				/			1-1142/2011		2 11 95321			· · · - · · ·	MW			1		7		1-11-200 HOC: NR 1-125 Photos 1-11-4-4-4-11					6	mw		/	1	/	/				21195322 2119532	23 1	() - 7				/			/				I Take the Common of the Indian				MW	-5		/	/	/				21195324	2-16-6	10100	6	29	- 5		/						CHAIN O		ODY	RECOI	RD	·		3 3 3	Ship. (Samp Seals	Cont.	OK aking	omm. Y N N/A ? Y N N/A ? N N/A O N N/A _ C		SAMPLERS: (Signa	Zlu	- E. c	Sel					Comr	nents	s:			RELINQUISHED BY:	(Signature)	2		RECEIVED E	3Y: (Signatur	e)							DELINOUS CO	July		-a. 10:15	חבסביייבי	2V. (Ci								BELINQUISHED BY:	(Signatu rp)	DATE	E/TIME	RECEIVED E	οτ: (Signatur	e)							RELINQUISHED BY:	(Signature)	DATE		RECEIVED F BY: (Signatur		ATORY		DATE/		/0/	(TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com #### A Siemens Business June 14, 2006 Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl **REPORT NO.: 0606003** PROJECT NO.: ANERUB0502.00 Chilton Please find enclosed the analytical report, including the Sample Summary, Sample Narrative and Chain of Custody for your sample set received June 1, 2006. All analyses were performed in accordance with NELAC Standards using approved methods as indicated on this report. If you have any questions about the results, please call. Thank you for using USFilter, Enviroscan Services for your analytical needs. Sincerely, **USFilter, Enviroscan Services** James Salkowski Lab Director I certify that the data contained in this report has been generated and reviewed in accordance with the USFilter, Enviroscan Services Quality Assurance Program. Exceptions, if any, are discussed in the sample narrative. Samples will be retained for 30 days from the date of this report, then disposed in an appropriate manner. USFilter, Enviroscan Services reserves the right to return samples identified as hazardous. Release of this Final Report is authorized as verified by the following signature. Approved by: Certifications: Wisconsin 737053130 Minnesota 055-999-302 Illinois 100317 RECEIVED TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com #### A Siemens Business #### SAMPLE SUMMARY	0606003-01 MW-1 05/30/06 14:45 Ground W 0606003-02 MW-2 05/30/06 15:15 Ground W 0606003-03 MW-3 05/30/06 15:45 Ground W 0606003-04 MW-4 05/30/06 17:15 Ground W 0606003-05 MW-5 05/30/06 17:45 Ground W	ater ater ater ater		---	------------------------------		0606003-03 MW-3 05/30/06 15:45 Ground W 0606003-04 MW-4 05/30/06 17:15 Ground W 0606003-05 MW-5 05/30/06 17:45 Ground W	ater ater ater		0606003-04 MW-4 05/30/06 17:15 Ground W 0606003-05 MW-5 05/30/06 17:45 Ground W	ater ater		0606003-05 MW-5 05/30/06 17:45 Ground W	ater						ater		0606003-06 PZ-5 05/30/06 18:15 Ground W			0606003-07 MW-6 05/30/06 16:45 Ground W	ater		0606003-08 MW-7 05/30/06 16:15 Ground W	ater		0606003-09 MW-8 05/30/06 18:45 Ground W	ater		0606003-10 MW-9 05/30/06 14:20 Ground W	ater		0606003-11 B-5 05/30/06 12:50 Ground W	ater		0606003-12 B-5A 05/30/06 13:10 Ground W	ater		0606003-13 B-6 05/30/06 12:05 Ground W	ater		0606003-14 B-9 05/30/06 11:45 Ground W	ater		0606003-15 B-11 05/30/06 11:05 Ground W	ater		0606003-16 B-12 05/30/06 10:35 Ground W	ater		0606003-17 Large Sump 05/30/06 11:20 Ground W	ater		0606003-18 West Sump 05/30/06 12:30 Ground W	ater		0606003-19 MW-5 Dup 05/30/06 17:45 Ground W	ater		0606003-20 Trip Blank 05/30/06 00:00 Water		TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55	Sample ID: MW-1	Matrix: Ground Water	Sample Date/Time: 05/30/06 14:45	Lab No. 0606003-01		-----------------	----------------------	----------------------------------	--------------------		-----------------	----------------------	----------------------------------	--------------------							Dilution	1	Date			-----------------------------	----------------	--------------	------------	------------	---------------	-------------------	-----------------	----------------			<u>Results</u>	<u>Units</u>	LOD	LOQ	<u>Factor</u>	Qualifiers	Analyzed	<u>Analyst</u>		EPA 8260B										1,1,1,2-Tetrachloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		1,1,1-Trichloroethane	ND	ug/L	0.20	0.67	1		06/06/06	MPM		1,1,2,2-Tetrachloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		1,1,2-Trichloroethane	ND	ug/L	0.10	0.50	1																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																								
06/06/06	MPM		1,1-Dichloroethane	ND	ug/L	0.15	0.50	1		06/06/06	MPM		1,1-Dichloroethylene	ND	ug/L	0.15	0.50	1		06/06/06	MPM		1,1-Dichloropropylene	ND	ug/L	0.30	1.00	1		06/06/06	MPM		1,2,3-Trichlorobenzene	ND	ug/L	0.50	1.70	1		06/06/06	MPM		1,2,3-Trichloropropane	ND	ug/L	0.55	1.80	1		06/06/06	MPM		1,2,4-Trichlorobenzene	ND	ug/L	0.50	1.70	1		06/06/06	MPM		1,2,4-Trimethylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM		1,2-Dibromo-3-chloropropane	ND	ug/L	0.35	1.17	1		06/06/06	MPM		1,2-Dibromoethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		1,2-Dichlorobenzene	ND	ug/L	0.75	2.50	1	S2H, S1H	06/06/06	MPM		1,2-Dichloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		1,2-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		1,3,5-Trimethylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM		1,3-Dichlorobenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM		1,3-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		1,4-Dichlorobenzene	ND	ug/L	0.75	2.50	1		06/06/06	MPM		2,2-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		2-Chlorotoluene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		4-Chlorotoluene	ND	ug/L	0.20	0.67	1		06/06/06	MPM		4-Isopropyltoluene	. ND	ug/L	0.20	0.67	1		06/06/06	MPM		Benzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM		Bromobenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Bromochloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Bromodichloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Bromoform	ND	ug/L	0.20	0.67	1		06/06/06	MPM		Bromomethane	ND	ug/L	0.15	0.50	1	CSL, S1L, S2L	06/06/06	MPM		Butylbenzene	ND	ug/L	0.20	0.67	1	, -1-,	06/06/06	MPM		Carbon Tetrachloride	ND	ug/L	0.20	0.67	1		06/06/06	MPM		Chlorobenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Chloroethane	ND	ug/L	0.60	2.00	1		06/06/06			Chloroform	ND	ug/L ug/L	0.10	0.50	i		06/06/06	MPM MPM		Chloromethane	ND	ug/L ug/L	0.20	0.67	1		06/06/06	MPM		cis-1,2-Dichloroethylene	ND	ug/L ·	0.20	0.67	1		06/06/06			cis-1,3-Dichloropropylene	ND	ug/L ug/L	0.10	0.50				MPM		1.5 Diemoropropytene	MD	ug/L	0.10	0.50	1		06/06/06	MPM	TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com #### A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55 PREPARED BY: JRS	Sample ID: MW-1	Matrix: Gr	ound Water	Sar	nple Date/	Time: 05	/30/06 14:45	Lab No.	0606003-01		---	------------	--------------	------------	------------	-----------------	-------------------	-----------------	----------------		•					Dilution	1	Date				Results	<u>Units</u>	<u>LOD</u>	<u>LOO</u>	Factor	Qualifiers	<u>Analyzed</u>	<u>Analyst</u>		EPA 8260B Continued										Dibromochloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Dibromomethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Dichlorodifluoromethane	ND	ug/L	0.25	0.83	1	CSL	06/06/06	MPM		Ethylbenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Hexachlorobutadiene	ND	ug/L	1.00	3.30	1		06/06/06	MPM		Isopropylbenzene (Cumene)	ND	ug/L	0.10	0.50	1		06/06/06	MPM		m,p-Xylenes	ND	ug/L	0.40	1.30	1		06/06/06	MPM		Methylene Chloride	ND	ug/L	0.40	1.30	1		06/06/06	MPM		Methyl-tert-Butyl Ether	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Naphthalene	ND	ug/L	1.00	3.30	1		06/06/06	MPM		o-Xylene	ND	ug/L	0.10	0.50	I		06/06/06	MPM		Propylbenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		sec-Butylbenzene	ND	ug/L ·	0.15	0.50	1		06/06/06	MPM		Styrene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		tert-Butylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM		Tetrachloroethene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Toluene	ND	ug/L	0.40	1.30	1		06/06/06	MPM		trans-1,2-Dichloroethylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		trans-1,3-Dichloropropylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Trichloroethene	ND	ug/L	0.20	0.67	1		06/06/06	MPM		Trichlorofluoromethane	ND	ug/L	0.20	0.67	1		06/06/06	MPM		Vinyl chloride	ND	ug/L	0.15	0.50	1		06/06/06	MPM		EPA 8310										Prep Method: Method 3510C Liquid Extraction	By: KAM					Date Prepared:	06/02/06			1-Methylnaphthalene	ND	ug/L	0.080	0.260	1	•	06/06/06	LMP		2-Methylnaphthalene	ND	ug/L	0.110	0.370	1		06/06/06	LMP		Acenaphthene	ND	ug/L	0.060	0.200	1		06/06/06	LMP		Acenaphthylene	ND	ug/L	0.060	0.200	1		06/06/06	LMP		Anthracene	ND	ug/L	0.090	0.300	1		06/06/06	LMP		Benzo(a)anthracene	ND	ug/L	0.100	0.330	1		06/06/06	LMP		Benzo(a)pyrene	ND	ug/L	0.020	0.067	1	LCH	06/06/06	LMP		Benzo(b)fluoranthene	ND	ug/L	0.020	0.067	1	LCII	06/06/06	LMP		Benzo(g,h,i)perylene	ND	ug/L	0.020	0.200	1		06/06/06			Benzo(k)fluoranthene	ND	ug/L ug/L	0.000	0.233	1		06/06/06	LMP		Chrysene	ND	ug/L ug/L	0.070	0.233	1		06/06/06	LMP		Dibana (a to a diamana	110	ug/L	0.020	0.007	1		00/00/00	LMP	0.110 ug/L 0.370 1 06/06/06 LMP ND Dibenzo(a,h)anthracene TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55	Sample ID: MW-1 Matrix: Ground Water	Sample Date/Time: 05/30/06 14:45	Lab No. 0606003-01		--------------------------------------	----------------------------------	--------------------		--------------------------------------	----------------------------------	--------------------							Dilution		Date			---	---------	--------------	------------	------------	---------------	-------------------	-----------------	----------------			Results	<u>Units</u>	LOD	LOO	Factor	Qualifiers	Analyzed	Analyst		EPA 8310 Continued										Prep Method: Method 3510C Liquid Extraction	By: KAM				1	Date Prepared:	06/02/06			Fluoranthene	ND	ug/L	0.120	0.400	1		06/06/06	LMP		Fluorene	ND	ug/L	0.120	0.400	1		06/06/06	LMP		Indeno(1,2,3-cd)pyrene	ND	ug/L	0.120	0.400	1		06/06/06	LMP		Naphthalene	ND	ug/L	0.110	0.370	i		06/06/06	LMP		Phenanthrene	ND	ug/L	0.110	0.370	1		06/06/06	LMP		Pyrene	ND	ug/L	0.100	0.330	1		06/06/06	LMP	TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com #### A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55 PREPARED BY: JRS Sample ID: MW-2 Matrix: Ground Water Sample Date/Time: 05/30/06 15:15 Lab No. 0606003-02	_						Dilution		Date			---	-----------------------------	---------	--------------	------------	------------	---------------	-------------------	-----------------	----------------		1		Results	<u>Units</u>	LOD	<u>LOQ</u>	Factor	Qualifiers	Analyzed	<u>Analyst</u>		ļ	EPA 8260B											1,1,1,2-Tetrachloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM			1,1,1-Trichloroethane	ND	ug/L	0.20	0.67	1		06/06/06	MPM		1	1,1,2,2-Tetrachloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM			1,1,2-Trichloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		7	1,1-Dichloroethane	ND	ug/L	0.15	0.50	1		06/06/06	MPM		l	1,1-Dichloroethylene	ND	ug/L	0.15	0.50	1		06/06/06	MPM			1,1-Dichloropropylene	ND	ug/L	0.30	1.00	1		06/06/06	MPM			1,2,3-Trichlorobenzene	ND	ug/L	0.50	1.70	1		06/06/06	MPM			1,2,3-Trichloropropane	ND	ug/L ·	0.55 ·	1.80	1		06/06/06	MPM			1,2,4-Trichlorobenzene	ND	ug/L	0.50	1.70	1		06/06/06	MPM			1,2,4-Trimethylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM			1,2-Dibromo-3-chloropropane	ND	ug/L	0.35	1.17	1		06/06/06	MPM			1,2-Dibromoethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM			1,2-Dichlorobenzene	ND	ug/L	0.75	2.50	1	S2H, S1H	06/06/06	MPM			1,2-Dichloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM			1,2-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM			1,3,5-Trimethylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM			1,3-Dichlorobenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM			1,3-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM			1,4-Dichlorobenzene	ND	ug/L	0.75	2.50	1		06/06/06	MPM			2,2-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM			2-Chlorotoluene	ND	ug/L	0.10	0.50	1																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																									
06/06/06	MPM			4-Chlorotoluene	ND	ug/L	0.20	0.67	1		06/06/06	MPM			4-Isopropyltoluene	ND	ug/L	0.20	0.67	1		06/06/06	MPM			Benzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM			Bromobenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM			Bromochloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM			Bromodichloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM			Bromoform	ND	ug/L	0.20	0.67	1		06/06/06	MPM			Bromomethane	ND	ug/L .	0.15 .	0.50	1	CSL, S1L, S2L	06/06/06	MPM			Butylbenzene	ND	ug/L	0.20	0.67	1		06/06/06	MPM			Carbon Tetrachloride	ND	ug/L	0.20	0.67	1		06/06/06	MPM			Chlorobenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM			Chloroethane	ND	ug/L	0.60	2.00	1		06/06/06	MPM			Chloroform	ND	ug/L	0.10	0.50	1		06/06/06	MPM			Chloromethane	ND	ug/L	0.20	0.67	1		06/06/06	MPM			cis-1,2-Dichloroethylene	ND	ug/L	0.20	0.67	1		06/06/06	MPM			cis-1,3-Dichloropropylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM												TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com #### A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55	Sample ID: MW-2	Matrix: Gr	ound Water	Sar	nple Date/	Time: 05	/30/06 15:15	Lab No.	0606003-02		---	------------	--------------	------------	------------	-----------------	-------------------	-----------------	----------------							Dilutior	1	Date			T	Results	<u>Units</u>	<u>LOD</u>	LOQ	<u>Factor</u>	Qualifiers	<u>Analyzed</u>	<u>Analyst</u>		EPA 8260B Continued										Dibromochloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Dibromomethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Dichlorodifluoromethane	ND	ug/L	0.25	0.83	1	CSL	06/06/06	MPM		Ethylbenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Hexachlorobutadiene	ND	ug/L	1.00	3.30	1		06/06/06	MPM		Isopropylbenzene (Cumene)	ND	ug/L	0.10	0.50	1		06/06/06	MPM		m,p-Xylenes	ND	ug/L	0.40	1.30	1		06/06/06	MPM		Methylene Chloride	ND	ug/L	0.40	1.30	1		06/06/06	MPM		Methyl-tert-Butyl Ether	0.14	ug/L	0.10	0.50	1	J	06/06/06	MPM		Naphthalene	ND	ug/L	1.00	3.30	1		06/06/06	MPM		o-Xylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Propylbenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		sec-Butylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM		Styrene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		tert-Butylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM		Tetrachloroethene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Toluene	ND	ug/L	0.40	1.30	1		06/06/06	MPM		trans-1,2-Dichloroethylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		trans-1,3-Dichloropropylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Trichloroethene	ND	ug/L	0.20	0.67	1		06/06/06	MPM		Trichlorofluoromethane	ND	ug/L	0.20	0.67	ì		06/06/06	MPM		Vinyl chloride	ND	ug/L	0.15	0.50	1		06/06/06	MPM		EPA 8310										Prep Method: Method 3510C Liquid Extraction	By: KAM					Date Prepared:	06/02/06			1-Methylnaphthalene	ND	ug/L	0.080	0.260	1		06/06/06	LMP		2-Methylnaphthalene	ND	ug/L	0.110	0.370	1		06/06/06	LMP		Acenaphthene	ND	ug/L	0.060	0.200	1		06/06/06	LMP		Acenaphthylene	ND	ug/L	0.060	0.200	1		06/06/06	LMP		Anthracene	ND	ug/L	0.090	0.300	1		06/06/06	LMP		Benzo(a)anthracene	ND	ug/L	0.100	0.330	1		06/06/06	LMP		Benzo(a)pyrene	ND	ug/L	0.020	0.067	1	LCH	06/06/06	LMP		Benzo(b)fluoranthene	ND	ug/L	0.020	0.067	1		06/06/06	LMP		Benzo(g,h,i)perylene	ND	ug/L	0.060	0.200	1		06/06/06	LMP		Benzo(k)fluoranthene	ND	ug/L	0.070	0.233	1		06/06/06	LMP		Chrysene	ND	ug/L	0.020	0.067	1		06/06/06	LMP		Dibenzo(a,h)anthracene	ND	ug/L	0.110	0.370	1		06/06/06	LMP	TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com #### A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55 PREPARED BY: JRS Sample ID: MW-2 Matrix: Ground Water Sample Date/Time: 05/30/06 15:15 Lab No. 0606003-02		Results	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Oualifiers	Date Analyzed	Analyst		---	---------	--------------	------------	-------	---------------------------	----------------	------------------	----------		EPA 8310 Continued	Kesuns	Omts	<u>LOD</u>	LOO	<u>ractor</u>	Quantiers	Analyzeu	Allaiyst		Prep Method: Method 3510C Liquid Extraction	By: KAM					Date Prepared:	06/02/06			Fluoranthene	ND	ug/L	0.120	0.400	1		06/06/06	LMP		Fluorene	ND	ug/L	0.120	0.400	1		06/06/06	LMP		Indeno(1,2,3-cd)pyrene	ND	ug/L	0.120	0.400	1		06/06/06	LMP		Naphthalene	ND	ug/L	0.110	0.370	1		06/06/06	LMP		Phenanthrene	ND	ug/L	0.110	0.370	1		06/06/06	LMP		Pyrene	ND	ug/L	0.100	0.330	1		06/06/06	LMP	TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com #### A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55	Sample ID: MW-3	Matrix: Ground Water	Sample Date/Time: 05/30/06 15:45	Lab No. 0606003-03		-----------------	----------------------	----------------------------------	--------------------		-----------------	----------------------	----------------------------------	--------------------							Dilution	n	Date			---	---------	--------------	------------	------------	---------------	-------------------	-----------------	----------------			Results	<u>Units</u>	<u>LOD</u>	LOO	Factor	Qualifiers	Analyzed	<u>Analyst</u>		EPA 8260B Continued										Dibromochloromethane	ND	ug/L *	0.10	0.50	1		06/06/06	MPM		Dibromomethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Dichlorodifluoromethane	ND	ug/L	0.25	0.83	1	CSL	06/06/06	MPM		Ethylbenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Hexachlorobutadiene	ND	ug/L	1.00	3.30	1		06/06/06	MPM		Isopropylbenzene (Cumene)	ND	ug/L	0.10	0.50	1		06/06/06	MPM		m,p-Xylenes	ND	ug/L	0.40	1.30	1		06/06/06	MPM		Methylene Chloride	ND	ug/L	0.40	1.30	1		06/06/06	MPM		Methyl-tert-Butyl Ether	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Naphthalene	ND	ug/L	1.00	3.30	1		06/06/06	MPM		o-Xylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Propylbenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		sec-Butylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM		Styrene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		tert-Butylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM		Tetrachloroethene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Toluene	ND	ug/L	0.40	1.30	ı		06/06/06	MPM		trans-1,2-Dichloroethylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		trans-1,3-Dichloropropylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Trichloroethene	0.61	ug/L	0.20	0.67	1	J	06/06/06	MPM		Trichlorofluoromethane	ND	ug/L	0.20	0.67	1		06/06/06	MPM		Vinyl chloride	ND	ug/L •	0.15 ·	0.50	1		06/06/06	MPM		EPA 8310										Prep Method: Method 3510C Liquid Extraction	By: KAM					Date Prepared:	06/02/06			1-Methylnaphthalene	ND	ug/L	0.080	0.260	1	•	06/06/06	LMP		2-Methylnaphthalene	ND	ug/L	0.110	0.370	1		06/06/06	LMP		Acenaphthene	ND	ug/L	0.060	0.200	1		06/06/06	LMP		Acenaphthylene	ND	ug/L	0.060	0.200	1		06/06/06	LMP		Anthracene	ND	ug/L	0.090	0.300	1		06/06/06	LMP		Benzo(a)anthracene	ND	ug/L	0.100	0.330	1		06/06/06	LMP		Benzo(a)pyrene	ND	ug/L	0.020	0.067	1	LCH	06/06/06	LMP		Benzo(b)fluoranthene	ND	ug/L	0.020	0.067	1		06/06/06	LMP		Benzo(g,h,i)perylene	ND	ug/L	0.060	0.200	1		06/06/06	LMP		Benzo(k)fluoranthene	ND	ug/L	0.070	0.233	1		06/06/06	LMP		Chrysene	ND	ug/L	0.020	0.067	1		06/06/06	LMP		Dibenzo(a,h)anthracene	ND	ug/L	0.110	0.370	1		06/06/06	LMP											TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com #### A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55 PREPARED BY: JRS	Sample ID: MW-3	Matrix: Ground Water	Sample Date/Time: 05/30/06 15:45	Lab No.	0606003-03		-----------------	----------------------	----------------------------------	---------	------------																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																								
Dilution		Date			---	---------	----------------	-------	------------	---------------	-------------------	-----------------	----------------			Results	<u>Units</u> .	LOD .	<u>LOQ</u>	Factor	Qualifiers	Analyzed	Analyst		EPA 8310 Continued										Prep Method: Method 3510C Liquid Extraction	By: KAM				1	Date Prepared:	06/02/06			Fluoranthene	ND	ug/L	0.120	0.400	1		06/06/06	LMP		Fluorene	ND	ug/L	0.120	0.400	1		06/06/06	LMP		Indeno(1,2,3-cd)pyrene	ND	ug/L	0.120	0.400	1		06/06/06	LMP		Naphthalene	ND	ug/L	0.110	0.370	1		06/06/06	LMP		Phenanthrene	ND	ug/L	0.110	0.370	1		06/06/06	LMP		Pyrene	ND	ug/L	0.100	0.330	1		06/06/06	LMP	Page 11 of 62 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com #### A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55	Sample ID: MW-3 Matrix: Ground Water	Sample Date/Time: 05/30/06 15:45	Lab No. 0606003-03		--------------------------------------	----------------------------------	--------------------		--------------------------------------	----------------------------------	--------------------		_						Dilution		Date			----	-----------------------------	---------	--------------	------------	------------	---------------	-------------------------	-----------------	----------------				Results	<u>Units</u>	<u>LOD</u>	<u>LOQ</u>	<u>Factor</u>	Qualifiers	Analyzed	<u>Analyst</u>			EPA 8260B) ID				_						1,1,1,2-Tetrachloroethane	ND	ug/L	0.10	0.50	I		06/06/06	MPM			1,1,1-Trichloroethane	ND	ug/L	0.20	0.67	1		06/06/06	MPM			1,1,2,2-Tetrachloroethane	ND	ug/L ·	0.10	0.50	1		06/06/06	MPM			1,1,2-Trichloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM			1,1-Dichloroethane	ND	ug/L	0.15	0.50	1		06/06/06	MPM		ľ	1,1-Dichloroethylene	ND	ug/L	0.15	0.50	1		06/06/06	MPM			1,1-Dichloropropylene	ND	ug/L	0.30	1.00	1		06/06/06	MPM			1,2,3-Trichlorobenzene	ND	ug/L	0.50	1.70	1		06/06/06	MPM			1,2,3-Trichloropropane	ND	ug/L	0.55	1.80	1		06/06/06	MPM			1,2,4-Trichlorobenzene	ND	ug/L	0.50	1.70	1		06/06/06	MPM		1	1,2,4-Trimethylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM			1,2-Dibromo-3-chloropropane	ND	ug/L	0.35	1.17	1		06/06/06	MPM		•	1,2-Dibromoethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		_	1,2-Dichlorobenzene	ND	ug/L	0.75	2.50	1	S2H, S1H	06/06/06	MPM		Ĭ.	1,2-Dichloroethane	2.57	ug/L	0.10	0.50	1		06/06/06	MPM		ı	1,2-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM			1,3,5-Trimethylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM			1,3-Dichlorobenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM			1,3-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM			1,4-Dichlorobenzene	ND	ug/L	0.75	2.50	1		06/06/06	MPM		1	2,2-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM			2-Chlorotoluene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		•	4-Chlorotoluene	ND	ug/L	0.20	0.67	1		06/06/06	MPM			4-Isopropyltoluene	ND	ug/L •	0.20 ·	0.67	1		06/06/06	MPM			Benzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM			Bromobenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM			Bromochloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM			Bromodichloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM			Bromoform	ND	ug/L	0.20	0.67	1	•	06/06/06	MPM			Bromomethane	ND	ug/L	0.15	0.50		CSL, S1L, S2L	06/06/06	MPM			Butylbenzene	ND	ug/L	0.20	0.67	1	, , , , , , , , , , , ,	06/06/06	MPM			Carbon Tetrachloride	ND	ug/L	0.20	0.67	1		06/06/06	MPM			Chlorobenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM			Chloroethane	ND	ug/L	0.60	2.00	1		06/06/06	MPM			Chloroform	ND	ug/L	0.10	0.50	1		06/06/06	MPM			Chloromethane	ND	ug/L	0.20	0.67	1		06/06/06	MPM		Ì	cis-1,2-Dichloroethylene	2.55	ug/L	0.20	0.67	1		06/06/06	MPM			cis-1,3-Dichloropropylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		_	• • •				- 100	•		00,00,00	1411 141	TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com #### A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55	Sample ID: MW-4	e ID: MW-4 Matrix: Ground Water		Lab No. 0606003-04		-----------------	---------------------------------	----------	--------------------				Dilution	Date							Dilution		Date			---------------------------------------	---------	--------------	------------	------	---------------	-------------------	----------	----------------			Results	<u>Units</u>	<u>LOD</u>	LOQ	<u>Factor</u>	Qualifiers	Analyzed	Analyst		EPA 8260B										1,1,1,2-Tetrachloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		1,1,1-Trichloroethane	ND	ug/L	0.20	0.67	1		06/06/06	MPM		1,1,2,2-Tetrachloroethane	ND	ug/L	0.10	0.50	I		06/06/06	MPM		1,1,2-Trichloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		1,1-Dichloroethane	ND	ug/L	0.15	0.50	1		06/06/06	MPM		1,1-Dichloroethylene	ND	ug/L	0.15	0.50	1		06/06/06	MPM		1,1-Dichloropropylene	ND	ug/L	0.30	1.00	1		06/06/06	MPM		1,2,3-Trichlorobenzene	ND	ug/L	0.50	1.70	1		06/06/06	MPM		1,2,3-Trichloropropane	ND	ug/L	0.55	1.80	1		06/06/06	MPM		1,2,4-Trichlorobenzene	ND	ug/L	0.50	1.70	1		06/06/06	MPM		1,2,4-Trimethylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM		1,2-Dibromo-3-chloropropane	ND	ug/L	0.35	1.17	1		06/06/06	MPM		1,2-Dibromoethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		1,2-Dichlorobenzene	ND	ug/L	0.75	2.50	1	S2H, S1H	06/06/06	MPM		1,2-Dichloroethane	0.30	ug/L	0.10	0.50	1	J	06/06/06	MPM		1,2-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		1,3,5-Trimethylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM		1,3-Dichlorobenzene	ND	ug/L ·	0.15	0.50	1		06/06/06	MPM		1,3-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		1,4-Dichlorobenzene	ND	ug/L	0.75	2.50	1		06/06/06	MPM		2,2-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		2-Chlorotoluene	ND	ug/L	0.10	0.50	i		06/06/06	MPM		4-Chlorotoluene	ND	ug/L	0.20	0.67	I		06/06/06	MPM		4-Isopropyltoluene	ND	ug/L	0.20	0.67	I		06/06/06	MPM		Benzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM		Bromobenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Bromochloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Bromodichloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Bromoform	ND	ug/L	0.20	0.67	1		06/06/06	MPM		Bromomethane	ND	ug/L	0.15	0.50	1	CSL, S1L, S2L	06/06/06	MPM		Butylbenzene	ND	ug/L	0.20	0.67	1	, ,	06/06/06	MPM		Carbon Tetrachloride	ND	ug/L	0.20	0.67	1		06/06/06	MPM		Chlorobenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Chloroethane	ND	ug/L	0.60	2.00	1		06/06/06	MPM		Chloroform	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Chloromethane	ND	ug/L	0.20	0.67	1		06/06/06	MPM		cis-1,2-Dichloroethylene	4.55	ug/L	0.20	0.67	1		06/06/06	MPM		cis-1,3-Dichloropropylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		· · · · · · · · · · · · · · · · · · ·		~					*		TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com #### A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55 PREPARED BY: JRS	Sample ID: MW-4		Matrix: Ground Water		Sar	Sample Date/Time: 05/30/06 17:15				0606003-04		-----------------	---	----------------------	--------------	-------	----------------------------------	--------------------	------------------------	-------------------------	-------------------				Results	Units	LOD	LOQ	Dilution Factor	ı <u>Qualifiers</u>	Date <u>Analyzed</u>	Analyst			EPA 8260B Continued		011140	202	<u> </u>	23,0101	Quantitors	<u> </u>	<u> 211141431</u>			Dibromochloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM			Dibromomethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM			Dichlorodifluoromethane	ND	ug/L	0.25	0.83	1	CSL	06/06/06	MPM			Ethylbenzene	ND	ug/L	0.10	0.50	1	CCL	06/06/06	MPM		Ì	Hexachlorobutadiene	ND	ug/L	1.00	3.30	1		06/06/06	MPM			Isopropylbenzene (Cumene)	ND	ug/L	0.10	0.50	1		06/06/06	MPM			m,p-Xylenes	ND	ug/L	0.40	1.30	1		06/06/06	MPM			Methylene Chloride	ND	ug/L	0.40	1.30	1																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																													
06/06/06	MPM			Methyl-tert-Butyl Ether	0.22	ug/L	0.10	0.50	1	J	06/06/06	MPM			Naphthalene	ND	ug/L	1.00	3.30	1		06/06/06	MPM			o-Xylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM			Propylbenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM			sec-Butylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM			Styrene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		2	tert-Butylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM		į	Tetrachloroethene	ND	ug/L	0.10	0.50	1		06/06/06	MPM			Toluene	ND	ug/L	0.40	1.30	1		06/06/06	MPM			trans-1,2-Dichloroethylene	0.30	ug/L	0.10	0.50	1	J	06/06/06	MPM			trans-1,3-Dichloropropylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM			Trichloroethene	ND	ug/L	0.20	0.67	i		06/06/06	MPM			Trichlorofluoromethane	ND	ug/L	0.20	0.67	1		06/06/06	MPM			Vinyl chloride	ND	ug/L	0.15	0.50	1		06/06/06	MPM		ŀ	EPA 8310										ļ	Prep Method: Method 3510C Liquid Extraction	By: KAM					Date Prepared:	06/02/06				1-Methylnaphthalene	ND	ug/L	0.080	0.260	1.01		06/06/06	LMP			2-Methylnaphthalene	ND	ug/L	0.110	0.370	1.01		06/06/06	LMP			Acenaphthene	ND	ug/L	0.060	0.200	1.01		06/06/06	LMP			Acenaphthylene	ND	ug/L	0.060	0.200	1.01		06/06/06	LMP			Anthracene	ND	ug/L	0.090	0.300	1.01		06/06/06	LMP			Benzo(a)anthracene	ND	ug/L	0.100	0.330	1.01		06/06/06	LMP			Benzo(a)pyrene	ND	ug/L ug/L	0.020	0.067	1.01	LCH	06/06/06	LMP		,	Benzo(b)fluoranthene	ND	ug/L	0.020	0.067	1.01	2011	06/06/06	LMP			Benzo(g,h,i)perylene	ND	ug/L ug/L	0.020	0.200	1.01		06/06/06	LMP		Ļ	Benzo(k)fluoranthene	ND	ug/L	0.070	0.233	1.01		06/06/06	LMP			. ,,		~B.D	0.070	0.200	1.01		00/00/00	LIVIE	ND ND ug/L . ug/L 0.020 0.110 0.067 0.370 1.01 1.01 06/06/06 06/06/06 LMP LMP Dibenzo(a,h)anthracene Chrysene TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55	Sample ID: MW-4	Matrix: Ground Water	Sample Date/Time: 05/30/06 17:15	Lab No. 0606003-04		-----------------	----------------------	----------------------------------	--------------------		-----------------	----------------------	----------------------------------	--------------------							Dilution		Date			---	---------	--------------	------------	-------	---------------	-------------------	-----------------	----------------			Results	<u>Units</u>	LOD	LOQ	Factor	Qualifiers	Analyzed	<u>Analyst</u>		EPA 8310 Continued										Prep Method: Method 3510C Liquid Extraction	By: KAM				· L	Date Prepared:	06/02/06			Fluoranthene	ND	ug/L	0.120	0.400	1.01		06/06/06	LMP		Fluorene	ND	ug/L	0.120	0.400	1.01		06/06/06	LMP		Indeno(1,2,3-cd)pyrene	ND	ug/L	0.120	0.400	1.01		06/06/06	LMP		Naphthalene	ND	ug/L	0.110	0.370	1.01		06/06/06	LMP		Phenanthrene	ND	ug/L	0.110	0.370	1.01		06/06/06	LMP		Pyrene	ND	ug/L	0.100	0.330	1.01		06/06/06	LMP	TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com #### A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55	Sample ID: MW-5	Matrix: Ground Water	Sample Date/Time: 05/30/06	17:45	Lab No.	0606003-05		-----------------	----------------------	----------------------------	-------	---------	------------														Dilution	ı	Date			---	---------	--------------	------------	------------	---------------	-------------------	-----------------	----------------			Results	<u>Units</u>	<u>LOD</u>	LOQ	<u>Factor</u>	Qualifiers	Analyzed	<u>Analyst</u>		EPA 8260B Continued										Dibromochloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Dibromomethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Dichlorodifluoromethane	ND	ug/L	0.25	0.83	1	CSL	06/06/06	MPM		Ethylbenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Hexachlorobutadiene	ND	ug/L	1.00	3.30	1		06/06/06	MPM		Isopropylbenzene (Cumene)	ND	ug/L	0.10	0.50	1		06/06/06	MPM		m,p-Xylenes	ND	ug/L	0.40	1.30	i		06/06/06	MPM		Methylene Chloride	ND	ug/L	0.40	1.30	1		06/06/06	MPM		Methyl-tert-Butyl Ether	0.17	ug/L	0.10	0.50	1	J	06/06/06	MPM		Naphthalene	ND.	ug/L ·	1.00 .	3.30	1		06/06/06	MPM		o-Xylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Propylbenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		sec-Butylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM		Styrene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		tert-Butylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM		Tetrachloroethene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Toluene	ND	ug/L	0.40	1.30	1		06/06/06	MPM		trans-1,2-Dichloroethylene	0.46	ug/L	0.10	0.50	1	J	06/06/06	MPM		trans-1,3-Dichloropropylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Trichloroethene	ND	ug/L	0.20	0.67	1		06/06/06	MPM		Trichlorofluoromethane	ND	ug/L	0.20	0.67	1		06/06/06	MPM		Vinyl chloride	ND	ug/L	0.15	0.50	1		06/06/06	MPM		EPA 8310										Prep Method: Method 3510C Liquid Extraction	By: JEG					Date Prepared:	06/05/06			1-Methylnaphthalene	ND	ug/L	0.080	0.260	1		06/06/06	LMP		2-Methylnaphthalene	ND	ug/L	0.110	0.370	1		06/06/06	LMP		Acenaphthene	ND	ug/L	0.060	0.200	1		06/06/06	LMP		Acenaphthylene	ND	ug/L	0.060	0.200	1		06/06/06	LMP		Anthracene	ND	ug/L	0.090	0.300	1		06/06/06	LMP		Benzo(a)anthracene	ND	ug/L ·	0.100	0.330	1		06/06/06	LMP		Benzo(a)pyrene	ND	ug/L	0.020	0.067	1	LCH	06/06/06	LMP		Benzo(b)fluoranthene	ND	ug/L	0.020	0.067	1		06/06/06	LMP		Benzo(g,h,i)perylene	0.230	ug/L	0.060	0.200	1		06/06/06	LMP		Benzo(k)fluoranthene	ND	ug/L	0.070	0.233	1		06/06/06	LMP		Chrysene	ND	ug/L	0.020	0.067	1		06/06/06	LMP		Dibenzo(a,h)anthracene	ND	ug/L	0.110	0.370	1		06/06/06	LMP	TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55 PREPARED BY: JRS Sample ID: MW-5 Matrix: Ground Water Sample Date/Time: 05/30/06 17:45 Lab No. 0606003-05		Results	Units	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date Analyzed	Analyst		---	-----------------	-------	------------	-------	---------------------------	----------------	------------------	----------		EPA 8310 Continued	<u>ixesuits</u>	Onts	<u>LOD</u>	LOO	ractor	Qualifiers	Anaryzeu	Allalyst		Prep Method: Method 3510C Liquid Extraction	By: JEG				, i	Date Prepared:	06/05/06			Fluoranthene	ND	ug/L	0.120	0.400	i		06/06/06	LMP		Fluorene	ND	ug/L	0.120	0.400	1		06/06/06	LMP		Indeno(1,2,3-cd)pyrene	ND	ug/L	0.120	0.400	1		06/06/06	LMP		Naphthalene	ND	ug/L	0.110	0.370	1		06/06/06	LMP		Phenanthrene	ND	ug/L	0.110	0.370	1		06/06/06	LMP		Pyrene	ND	ug/L	0.100	0.330	1		06/06/06	LMP	TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com #### A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55	Sample ID: MW-5	Matrix: Ground Water	Sample Date/Time: 05/30/06 17:45	Lab No. 0606003-05		-----------------	----------------------	----------------------------------	--------------------				D'' (1	Data							Dilution	ı	Date			-----------------------------	---------	--------------	------------	------	---------------	-------------------	-----------------	----------------			Results	<u>Units</u>	LOD	LOQ	Factor	Qualifiers	Analyzed	<u>Analyst</u>		EPA 8260B										1,1,1,2-Tetrachloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		1,1,1-Trichloroethane	ND	ug/L	0.20	0.67	1		06/06/06	MPM		1,1,2,2-Tetrachloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		1,1,2-Trichloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		1,1-Dichloroethane	ND	ug/L	0.15	0.50	I		06/06/06	MPM		1,1-Dichloroethylene	ND	ug/L	0.15	0.50	1		06/06/06	MPM		1,1-Dichloropropylene	ND	ug/L	0.30	1.00	1		06/06/06	MPM		1,2,3-Trichlorobenzene	ND	ug/L	0.50	1.70	1		06/06/06	MPM		1,2,3-Trichloropropane	ND	ug/L	0.55	1.80	1		06/06/06	MPM																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																						
1,2,4-Trichlorobenzene	ND	ug/L	0.50	1.70	I		06/06/06	MPM		1,2,4-Trimethylbenzene	ND	ug/L	0.15	0.50	ī		06/06/06	MPM		1,2-Dibromo-3-chloropropane	ND	ug/L ·	0.35 ·	1.17	1		06/06/06	MPM		1,2-Dibromoethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		1,2-Dichlorobenzene	ND	ug/L	0.75	2.50	I	S2H, S1H	06/06/06	MPM		1,2-Dichloroethane	0.29	ug/L	0.10	0.50	i	J	06/06/06	MPM		1,2-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		1,3,5-Trimethylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM		1,3-Dichlorobenzene	ND	ug/L	0.15	0.50	i		06/06/06	MPM		1,3-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		1,4-Dichlorobenzene	ND	ug/L	0.75	2.50	1		06/06/06	MPM		2,2-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		2-Chlorotoluene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		4-Chlorotoluene	ND	ug/L	0.20	0.67	1		06/06/06	MPM		4-Isopropyltoluene	ND	ug/L	0.20	0.67	1		06/06/06	MPM		Benzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM		Bromobenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Bromochloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Bromodichloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Bromoform	ND	ug/L	0.20	0.67	1		06/06/06	MPM		Bromomethane	ND	ug/L	0.15	0.50	1	CSL, S1L, S2L	06/06/06	MPM		Butylbenzene	ND	ug/L	0.20	0.67	1	, , ,	06/06/06	MPM		Carbon Tetrachloride	ND	ug/L	0.20	0.67	1		06/06/06	MPM		Chlorobenzene	ND	ug/L .	0.10	0.50	1		06/06/06	MPM		Chloroethane	ND	ug/L	0.60	2.00	1		06/06/06	MPM		Chloroform	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Chloromethane	ND	ug/L	0.20	0.67	1		06/06/06	MPM		cis-1,2-Dichloroethylene	5.98	ug/L	0.20	0.67	1		06/06/06	MPM		cis-1,3-Dichloropropylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		-		5			-				TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com #### A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55	Sample ID: PZ-5	Matrix: Gr	Ground Water Sample Date		nple Date/	Time: 05 /	30/06 18:15	Lab No.	0606003-06		-----------------------------	----------------	--------------------------	------------	------------	---------------------------	-------------------	-------------------------	----------------			<u>Results</u>	<u>Units</u>	<u>LOD</u>	LOQ	Dilution <u>Factor</u>	<u>Qualifiers</u>	Date <u>Analyzed</u>	<u>Analyst</u>		EPA 8260B										1,1,1,2-Tetrachloroethane	ND	ug/L	0.10	0.50	I		06/06/06	MPM		1,1,1-Trichloroethane	ND	ug/L	0.20	0.67	1		06/06/06	MPM		1,1,2,2-Tetrachloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		1,1,2-Trichloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		1,1-Dichloroethane	ND	ug/L	0.15	0.50	1		06/06/06	MPM		1,1-Dichloroethylene	ND	ug/L .	0.15 .	0.50	1		06/06/06	MPM		1,1-Dichloropropylene	ND	ug/L	0.30	1.00	1		06/06/06	MPM		1,2,3-Trichlorobenzene	ND	ug/L	0.50	1.70	I		06/06/06	MPM		1,2,3-Trichloropropane	ND	ug/L	0.55	1.80	1		06/06/06	MPM		1,2,4-Trichlorobenzene	ND	ug/L	0.50	1.70	1		06/06/06	MPM		1,2,4-Trimethylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM		1,2-Dibromo-3-chloropropane	ND	ug/L	0.35	1.17	1		06/06/06	MPM		1,2-Dibromoethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		1,2-Dichlorobenzene	ND	ug/L	0.75	2.50	1	S2H, S1H	06/06/06	MPM		1,2-Dichloroethane	0.31	ug/L	0.10	0.50	1	J	06/06/06	MPM		1,2-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		1,3,5-Trimethylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM		1,3-Dichlorobenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM		1,3-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		1,4-Dichlorobenzene	ND	ug/L	0.75	2.50	1		06/06/06	MPM		2,2-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		2-Chlorotoluene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		4-Chlorotoluene	ND	ug/L	0.20	0.67	1		06/06/06	MPM		4-Isopropyltoluene	ND	ug/L	0.20	0.67	1		06/06/06	MPM		Benzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM		Bromobenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Bromochloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Bromodichloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Bromoform	ND	ug/L	0.20	0.67	1		06/06/06	MPM		Bromomethane	ND	ug/L	0.15	0.50	1	CSL, S1L, S2L	06/06/06	MPM		Butylbenzene	ND	ug/L	0.20	0.67	1		06/06/06	MPM		Carbon Tetrachloride	ND	ug/L	0.20	0.67	ī		06/06/06	MPM		Chlorobenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Chloroethane	ND	ug/L	0.60	2.00	1		06/06/06	MPM		Chloroform	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Chloromethane	ND	ug/L	0.20	0.67	1		06/06/06	MPM		cis-1,2-Dichloroethylene	0.21	ug/L	0.20	0.67	1	J	06/06/06	MPM		cis-1,3-Dichloropropylene	ND	ug/L	0.10	0.50	1	-	06/06/06	MPM				-							TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com #### A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55 PREPARED BY: JRS Sample ID: PZ-5 Matrix: Ground Water Sample Date/Time: 05/30/06 18:15 Lab No. 0606003-06		<u>Results</u>	<u>Units</u>	<u>LOD</u>	LOQ	Dilution <u>Factor</u>	ı <u>Qualifiers</u>	Date Analyzed	<u>Analyst</u>		---	----------------	--------------	------------	-------	---------------------------	------------------------	------------------	----------------		EPA 8260B Continued										Dibromochloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Dibromomethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Dichlorodifluoromethane	ND	ug/L	0.25	0.83	1	CSL	06/06/06	MPM		Ethylbenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Hexachlorobutadiene	ND	ug/L	1.00	3.30	1		06/06/06	MPM		Isopropylbenzene (Cumene)	ND	ug/L	0.10	0.50	1		06/06/06	MPM		m,p-Xylenes	ND	ug/L	0.40	1.30	1		06/06/06	MPM		Methylene Chloride	ND	ug/L	0.40	1.30	1		06/06/06	MPM		Methyl-tert-Butyl Ether	0.14	ug/L	0.10	0.50	I	J	06/06/06	MPM		Naphthalene	ND	ug/L	1.00	3.30	1		06/06/06	MPM		o-Xylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Propylbenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		sec-Butylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM		Styrene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		tert-Butylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM		Tetrachloroethene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Toluene	ND	ug/L	0.40	1.30	1		06/06/06	MPM		trans-1,2-Dichloroethylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		trans-1,3-Dichloropropylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Trichloroethene	ND	ug/L	0.20	0.67	1		06/06/06	MPM		Trichlorofluoromethane	ND	ug/L	0.20	0.67	1		06/06/06	MPM		Vinyl chloride	ND	ug/L	0.15	0.50	1		06/06/06	MPM		EPA 8310										Prep Method: Method 3510C Liquid Extraction	By: JEG	•	•			Date Prepared:	06/05/06			I-Methylnaphthalene	ND	ug/L	0.080	0.260	1		06/06/06	LMP		2-Methylnaphthalene	ND	ug/L	0.110	0.370	1		06/06/06	LMP		Acenaphthene	ND	ug/L	0.060	0.200	I		06/06/06	LMP		Acenaphthylene	ND	ug/L	0.060	0.200	1		06/06/06	LMP		Anthracene	ND	ug/L	0.090	0.300	1		06/06/06	LMP		Benzo(a)anthracene	ND	ug/L	0.100	0.330	1		06/06/06	LMP		Benzo(a)pyrene	ND	ug/L	0.020	0.067	1	LCH	06/06/06	LMP		Benzo(b)fluoranthene	ND	ug/L	0.020	0.067	1		06/06/06	LMP		Benzo(g,h,i)perylene	ND	ug/L	0.060	0.200	1		06/06/06	LMP		Benzo(k)fluoranthene	ND	ug/L	0.070	0.233	1		06/06/06	LMP		Chrysene	ND	ug/L	0.020	0.067	1		06/06/06	LMP		Dibenzo(a,h)anthracene	ND	ug/L	0.110	0.370	1		06/06/06	LMP	TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55 PREPARED BY: JRS Sample ID: PZ-5 Matrix: Ground Water Sample Date/Time: 05/30/06 18:15 Lab No. 0606003-06						Dilution		Date			---	---------	--------------	------------	------------	---------------	-------------------	-----------------	----------------			Results	<u>Units</u>	LOD	<u>LOO</u>	<u>Factor</u>	Qualifiers	Analyzed	<u>Analyst</u>		EPA 8310 Continued										Prep Method: Method 3510C Liquid Extraction	By: JEG				i	Date Prepared:	06/05/06																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																								
	Fluoranthene	ND	ug/L	0.120	0.400	1		06/06/06	LMP		Fluorene	ND	ug/L	0.120	0.400	1		06/06/06	LMP		Indeno(1,2,3-cd)pyrene	ND	ug/L	0.120	0.400	1		06/06/06	LMP		Naphthalene	ND	ug/L	0.110	0.370	1		06/06/06	LMP		Phenanthrene	ND	ug/L	0.110	0.370	1		06/06/06	LMP		Pyrene	ND	ug/L	0.100	0.330	1		06/06/06	LMP	TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com #### A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55 PREPARED BY: JRS Sample ID: MW-6 Matrix: Ground Water Sample Date/Time: 05/30/06 16:45 Lab No. 0606003-07						Dilution		Date			-----------------------------	---------	--------------	------------	------------	---------------	-------------------	-----------------	----------------			Results	<u>Units</u>	<u>LOD</u>	<u>LOO</u>	<u>Factor</u>	Qualifiers	<u>Analyzed</u>	<u>Analyst</u>		EPA 8260B	MD		0.10	0.50			06/04/04			1,1,1,2-Tetrachloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		1,1,1-Trichloroethane	ND	ug/L	0.20	0.67	1		06/06/06	MPM		1,1,2,2-Tetrachloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		1,1,2-Trichloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		1,1-Dichloroethane	ND	ug/L	0.15	0.50	1		06/06/06	MPM		1,1-Dichloroethylene	ND	ug/L	0.15	0.50	1		06/06/06	MPM		1,1-Dichloropropylene	ND	ug/L	0.30	1.00	1		06/06/06	MPM		1,2,3-Trichlorobenzene	ND	ug/L	0.50	1.70	1		06/06/06	MPM		1,2,3-Trichloropropane	ND	ug/L	0.55	1.80	1		06/06/06	MPM		1,2,4-Trichlorobenzene	ND	ug/L	0.50	1.70	1		06/06/06	MPM		1,2,4-Trimethylbenzene	ND	ug/L	0.15	0.50	I		06/06/06	MPM		1,2-Dibromo-3-chloropropane	ND	ug/L	0.35	1.17	1		06/06/06	MPM		1,2-Dibromoethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		1,2-Dichlorobenzene	ND	ug/L	0.75	2.50	1	S2H, S1H	06/06/06	MPM		1,2-Dichloroethane	0.67	ug/L	0.10	0.50	1		06/06/06	MPM		1,2-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		1,3,5-Trimethylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM		1,3-Dichlorobenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM		1,3-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		1,4-Dichlorobenzene	ND	ug/L	0.75	2.50	1		06/06/06	MPM		2,2-Dichloropropane	ND	ug/L •	0.10 ·	0.50	1		06/06/06	MPM		2-Chlorotoluene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		4-Chlorotoluene	ND	ug/L	0.20	0.67	1		06/06/06	MPM		4-Isopropyltoluene	ND	ug/L	0.20	0.67	1		06/06/06	MPM		Benzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM		Bromobenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Bromochloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Bromodichloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Bromoform	ND	ug/L	0.20	0.67	t		06/06/06	MPM		Bromomethane	ND	ug/L	0.15	0.50	1	CSL, S1L, S2L	06/06/06	MPM		Butylbenzene	ND	ug/L	0.20	0.67	1		06/06/06	MPM		Carbon Tetrachloride	ND	ug/L	0.20	0.67	1		06/06/06	MPM		Chlorobenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Chloroethane	ND	ug/L	0.60	2.00	1		06/06/06	MPM		Chloroform	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Chloromethane	0.24	ug/L	0.20	0.67	1	J	06/06/06	MPM		cis-1,2-Dichloroethylene	0.81	ug/L	0.20	0.67	1		06/06/06	MPM		cis-1,3-Dichloropropylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM	TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com #### A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55	Sample ID: MW-6	Matrix: Gr	ound Water	San	nple Date/	Time: 05	/30/06 16:45	Lab No.	0606003-07		---	----------------	--------------	------------	------------	---------------------------	----------------	-------------------------	----------------			<u>Results</u>	<u>Units</u>	<u>LOD</u>	LOQ	Dilutior <u>Factor</u>		Date <u>Analyzed</u>	<u>Analyst</u>		EPA 8260B Continued										Dibromochloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Dibromomethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Dichlorodifluoromethane	ND	ug/L	0.25	0.83	1	CSL	06/06/06	MPM		Ethylbenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Hexachlorobutadiene	ND	ug/L	1.00	3.30	I		06/06/06	MPM		Isopropylbenzene (Cumene)	ND	ug/L	0.10	0.50	1		06/06/06	MPM		m,p-Xylenes	ND	ug/L	0.40	1.30	1		06/06/06	MPM		Methylene Chloride	ND	ug/L	0.40	1.30	1		06/06/06	MPM		Methyl-tert-Butyl Ether	0.21	ug/L	0.10	0.50	1	J	06/06/06	MPM		Naplithalene	ND	ug/L	1.00	3.30	1		06/06/06	MPM		o-Xylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Propylbenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		sec-Butylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM		Styrene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		tert-Butylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM		Tetrachloroethene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		Toluene	ND	ug/L	0.40	1.30	1		06/06/06	MPM		trans-1,2-Dichloroethylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM		trans-1,3-Dichloropropylene	ND	ug/L •	0.10	0.50	1		06/06/06	MPM		Trichloroethene	ND	ug/L	0.20	0.67	1		06/06/06	MPM		Trichlorofluoromethane	ND	ug/L	0.20	0.67	1		06/06/06	MPM		Vinyl chloride	ND	ug/L	0.15	0.50	1		06/06/06	MPM		EPA 8310										Prep Method: Method 3510C Liquid Extraction	By: JEG					Date Prepared:	06/05/06			1-Methylnaphthalene	ND	ug/L	0.080	0.260	1		06/06/06	LMP		2-Methylnaphthalene	ND	ug/L	0.110	0.370	1		06/06/06	LMP		Acenaphthene	ND .	ug/L	0.060	0.200	1		06/06/06	LMP		Acenaphthylene	ND	ug/L	0.060	0.200	1		06/06/06	LMP		Anthracene	ND	ug/L	0.090	0.300	1		06/06/06	LMP		Benzo(a)anthracene	ND	ug/L	0.100	0.330	1		06/06/06	LMP		Benzo(a)pyrene	ND	ug/L	0.020	0.067	1	LCH	06/06/06	LMP		Benzo(b)fluoranthene	ND	ug/L	0.020	0.067	1		06/06/06	LMP		Benzo(g,h,i)perylene	ND	ug/L	0.060	0.200	1		06/06/06	LMP		Benzo(k)fluoranthene	ND	ug/L	0.070	0.233	1		06/06/06	LMP		Chrysene	ND	ug/L	0.020	0.067	1		06/06/06	LMP		Dibenzo(a,h)anthracene	ND	ug/L	0.110	0.370	1		06/06/06	LMP	TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com #### A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55 PREPARED BY: JRS Sample ID: MW-6 Matrix: Ground Water Sample Date/Time: 05/30/06 16:45 Lab No. 0606003-07	EPA 8310 Continued	<u>Results</u>	<u>Units</u>	<u>LOD</u>	LOO	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	<u>Analyst</u>		---	----------------	--------------	------------	-------	---------------------------	----------------	-------------------------	----------------		Prep Method: Method 3510C Liquid Extraction	By: JEG				I	Date Prepared:	06/05/06			Fluoranthene	ND	ug/L	0.120	0.400	1		06/06/06	LMP		Fluorene	ND	ug/L	0.120	0.400	1		06/06/06	LMP		Indeno(1,2,3-cd)pyrene	ND	ug/L	0.120	0.400	1		06/06/06	LMP		Naphthalene	ND	ug/L	0.110	0.370	1		06/06/06	LMP		Phenanthrene	ND	ug/L	0.110	0.370	1		06/06/06	LMP		Pyrene	ND	ug/L	0.100	0.330	1		06/06/06	LMP	TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com #### A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55 PREPARED BY: JRS Sample ID: MW-7 Matrix: Ground Water Sample Date/Time: 05/30/06 16:15 Lab No. 0606003-08						Dilution		Date			-----------------------------	---------	----------------	------------	------------	---------------	---	-----------------	----------------			Results	<u>Units</u>	<u>LOD</u>	<u>LOO</u>	<u>Factor</u>	Qualifiers	<u>Analyzed</u>	<u>Analyst</u>		EPA 8260B	1.50									1,1,1,2-Tetrachloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		1,1,1-Trichloroethane	ND	ug/L	0.20	0.67	1		06/06/06	MPM		1,1,2,2-Tetrachloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		1,1,2-Trichloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM		1,1-Dichloroethane	ND	ug/L	0.15	0.50	1		06/06/06	MPM		1,1-Dichloroethylene	ND	ug/L	0.15	0.50	1		06/06/06	MPM		1,1-Dichloropropylene	ND	ug/L	0.30	1.00	1		06/06/06	MPM		1,2,3-Trichlorobenzene	ND	ug/L	0.50	1.70	1		06/06/06																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																							
MPM | | 1,2,3-Trichloropropane | ND | ug/L | 0.55 | 1.80 | 1 | | 06/06/06 | MPM | | 1,2,4-Trichlorobenzene | ND | ug/L | 0.50 | 1.70 | 1 | | 06/06/06 | MPM | | 1,2,4-Trimethylbenzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | 1,2-Dibromo-3-chloropropane | ND | ug/L | 0.35 | 1.17 | 1 | | 06/06/06 | MPM | | 1,2-Dibromoethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | 1,2-Dichlorobenzene | ND | ug/L | 0.75 | 2.50 | 1 | S2H, S1H | 06/06/06 | MPM | | 1,2-Dichloroethane | 0.53 | ug/L · | 0.10 • | 0.50 | 1 | | 06/06/06 | MPM | | 1,2-Dichloropropane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | 1,3,5-Trimethylbenzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | 1,3-Dichlorobenzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | 1,3-Dichloropropane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | 1,4-Dichlorobenzene | ND | ug/L | 0.75 | 2.50 | 1 | | 06/06/06 | MPM | | 2,2-Dichloropropane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | 2-Chlorotoluene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | 4-Chlorotoluene | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | 4-Isopropyltoluene | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | Benzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | Bromobenzene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | Bromochloromethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | Bromodichloromethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | Bromoform | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | Bromomethane | ND | ug/L | 0.15 | 0.50 | 1 | CSL, S1L, S2L | 06/06/06 | MPM | | Butylbenzene | ND | ug/L | 0.20 | 0.67 | 1 | , | 06/06/06 | MPM | | Carbon Tetrachloride | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | Chlorobenzene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | Chloroethane | ND | ug/L | 0.60 | 2.00 | 1 | | 06/06/06 | MPM | | Chloroform | ND | ug/L | 0.10 | 0.50 | ı | | 06/06/06 | MPM | | Chloromethane | ND | ug/L . | 0.20 . | 0.67 | 1 | | 06/06/06 | MPM | | cis-1,2-Dichloroethylene | 1.38 | ug/L .
ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | cis-1,3-Dichloropropylene | ND | ug/L
ug/L | 0.20 | 0.50 | 1 | | 06/06/06 | | | 2.0 1,5 Dismoropropyrene | MD | ug/L | 0.10 | 0.50 | 1 | | 00/00/00 | MPM | TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com #### A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55 | Sample ID: MW-7 | Matrix: Ground Water | Sample Date/Time: 05/30/06 16:15 | Lab No. 0606003-08 | |-----------------|----------------------|----------------------------------|--------------------| |-----------------|----------------------|----------------------------------|--------------------| | Results Units LOD LOQ Factor Qualifiers Analyzed Analyzed EPA 8260B Continued Dibromochloromethane ND ug/L 0.10 0.50 1 06/06/06 MPM Dibromomethane ND ug/L 0.10 0.50 1 06/06/06 MPM Dichlorodifluoromethane ND ug/L 0.25 0.83 1 CSL 06/06/06 MPM Ethylbenzene ND ug/L 0.10 0.50 1 06/06/06 MPM Hexachlorobutadiene ND ug/L 1.00 3.30 1 06/06/06 MPM | |---| | Dibromochloromethane ND ug/L 0.10 0.50 1 06/06/06 MPM Dibromomethane ND ug/L 0.10 0.50 1 06/06/06 MPM Dichlorodifluoromethane ND ug/L 0.25 0.83 1 CSL 06/06/06 MPM Ethylbenzene ND ug/L 0.10 0.50 1 06/06/06 MPM | | Dibromomethane ND ug/L 0.10 0.50 1 06/06/06 MPM Dichlorodifluoromethane ND ug/L 0.25 0.83 1 CSL 06/06/06 MPM Ethylbenzene ND ug/L 0.10 0.50 1 06/06/06 MPM | | Dichlorodifluoromethane ND ug/L 0.25 0.83 1 CSL 06/06/06 MPM Ethylbenzene ND ug/L 0.10 0.50 1 06/06/06 MPM | | Ethylbenzene ND ug/L 0.10 0.50 1 06/06/06 MPM | | • | | Hexachlorobutadiene ND ug/L 1.00 3.30 1 06/06/06 MPM | | | | Isopropylbenzene (Cumene) ND ug/L 0.10 0.50 1 06/06/06 MPM | | m,p-Xylenes ND ug/L 0.40 1.30 1 06/06/06 MPM | | Methylene Chloride ND ug/L 0.40 1.30 1 06/06/06 MPM | | Methyl-tert-Butyl Ether 0.13 ug/L 0.10 0.50 1 J 06/06/06 MPM | | Naphthalene ND ug/L 1.00 3.30 1 06/06/06 MPM | | o-Xylene ND ug/L 0.10 0.50 1 06/06/06 MPM | | Propylbenzene ND ug/L 0.10 0.50 1 06/06/06 MPM | | sec-Butylbenzene ND ug/L 0.15 0.50 1 06/06/06 MPM | | Styrene ND ug/L 0.10 0.50 1 06/06/06 MPM | | tert-Butylbenzene ND ug/L 0.15 0.50 1 06/06/06 MPM | | Tetrachloroethene ND ug/L 0.10 0.50 1 06/06/06 MPM | | Toluene ND ug/L 0.40 1.30 1 06/06/06 MPM | | trans-1,2-Dichloroethylene ND ug/L 0.10 0.50 1 06/06/06 MPM | | trans-1,3-Dichloropropylene ND ug/L 0.10 0.50 1 06/06/06 MPM | | Trichloroethene ND ug/L 0.20 0.67 1 06/06/06 MPM | | Trichlorofluoromethane ND ug/L 0.20 0.67 1 06/06/06 MPM | | Vinyl chloride ND ug/L 0.15 0.50 1 06/06/06 MPM | | EPA 8310 | | Prep Method: Method 3510C Liquid Extraction By: JEG Date Prepared: 06/05/06 | | 1-Methylnaphthalene ND ug/L 0.082 0.265 1.02 06/06/06 LMP | | 2-Methylnaphthalene ND ug/L 0.112 0.378 1.02 06/06/06 LMP | | Acenaphthene ND ug/L 0.061 0.204 1.02 06/06/06 LMP | | Acenaphthylene ND ug/L 0.061 0.204 1.02 06/06/06 LMP | | Anthracene ND ug/L 0.092 0.306 1.02 06/06/06 LMP | | Benzo(a)anthracene ND ug/L 0.102 0.337 1.02 06/06/06 LMP | | Benzo(a)pyrene ND ug/L 0.020 0.068 1.02 LCH 06/06/06 LMP | | Benzo(b)fluoranthene ND ug/L 0.020 0.068 1.02 06/06/06 LMP | | Benzo(g,h,i)perylene ND ug/L 0.061 0.204 1.02 06/06/06 LMP | | Benzo(k)fluoranthene ND ug/L 0.071 0.238 1.02 06/06/06 LMP | | Chrysene ND ug/L 0.020 0.068 1.02 06/06/06 LMP | | Dibenzo(a,h)anthracene ND ug/L 0.112 0.378 1.02 06/06/06 LMP | TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55 PREPARED BY: JRS Sample ID: MW-7 Matrix: Ground Water Sample Date/Time: 05/30/06 16:15 Lab No. 0606003-08 | EPA 8310 Continued | Results | <u>Units</u> | LOD | LOQ | Dilution
<u>Factor</u> | <u>Qualifiers</u> | Date
<u>Analyzed</u> | <u>Analyst</u> | |---|---------|--------------|-------|-------|---------------------------|-------------------|-------------------------|----------------| | Prep Method: Method 3510C Liquid Extraction | By: JEG | | | | L | ate Prepared: | 06/05/06 | | | Fluoranthene | ND | ug/L | 0.122 | 0.408 | 1.02 | | 06/06/06 | LMP | | Fluorene | ND | ug/L | 0.122 | 0.408 | 1.02 | | 06/06/06 | LMP | | Indeno(1,2,3-cd)pyrene | ND | ug/L | 0.122 | 0.408 | 1.02 | | 06/06/06 | LMP | | Naphthalene | ND | ug/L | 0.112 | 0.378 | 1.02 | | 06/06/06 | LMP | | Phenanthrene | ND | ug/L | 0.112 | 0.378 | 1.02 | | 06/06/06 | LMP | | Pyrene | ND | ug/L | 0.102 | 0.337 | 1.02 | | 06/06/06 | LMP | TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com #### A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55 PREPARED BY: JRS Sample ID: MW-8 Matrix: Ground Water Sample Date/Time: 05/30/06 18:45 Lab No. 0606003-09 | | | | | | Dilution | | Date | | |-----------------------------|---------|--------------|------|------|----------|-------------------|-----------------|---------------------------------------| | | Results | <u>Units</u> | LOD | LOO | Factor | <u>Qualifiers</u> | Analyzed | <u>Analyst</u> | | EPA 8260B | | | | | | | | · · · · · · · · · · · · · · · · · · · | | 1,1,1,2-Tetrachloroethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | 1,1,1-Trichloroethane | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | 1,1,2,2-Tetrachloroethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | 1,1,2-Trichloroethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | 1,1-Dichloroethane | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | 1,1-Dichloroethylene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | 1,1-Dichloropropylene | ND | ug/L | 0.30 | 1.00 | 1 | | 06/06/06 | MPM | | 1,2,3-Trichlorobenzene | ND | ug/L | 0.50 | 1.70 | 1 | | 06/06/06 | MPM | | 1,2,3-Trichloropropane | ND | ug/L · | 0.55 | 1.80 | 1 | | 06/06/06 | MPM | | 1,2,4-Trichlorobenzene | ND | ug/L | 0.50 | 1.70 | 1 | | 06/06/06 | MPM | | 1,2,4-Trimethylbenzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | 1,2-Dibromo-3-chloropropane | ND | ug/L | 0.35 | 1.17 | 1 | | 06/06/06 | MPM | | 1,2-Dibromoethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | 1,2-Dichlorobenzene | ND | ug/L | 0.75 | 2.50 | 1 | S2H, S1H | 06/06/06 | MPM | | 1,2-Dichloroethane | 0.11 | ug/L | 0.10 | 0.50 | 1 | J | 06/06/06 | MPM | | 1,2-Dichloropropane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | 1,3,5-Trimethylbenzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | 1,3-Dichlorobenzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | 1,3-Dichloropropane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | 1,4-Dichlorobenzene | ND | ug/L | 0.75 | 2.50 | 1 | | 06/06/06 | MPM | | 2,2-Dichloropropane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | |
2-Chlorotoluene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | 4-Chlorotoluene | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | 4-Isopropyltoluene | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | Benzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | Bromobenzene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | Bromochloromethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | Bromodichloromethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | Bromoform | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | Bromomethane | ND | ug/L · | 0.15 | 0.50 | 1 | CSL, S1L, S2L | 06/06/06 | MPM | | Butylbenzene | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | Carbon Tetrachloride | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | Chlorobenzene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | Chloroethane | ND | ug/L | 0.60 | 2.00 | 1 | | 06/06/06 | MPM | | Chloroform | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | Chloromethane | 0.28 | ug/L | 0.20 | 0.67 | 1 | J | 06/06/06 | MPM | | cis-1,2-Dichloroethylene | 8.83 | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | cis-1,3-Dichloropropylene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com #### A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55 | Sample ID: MW-8 | e ID: MW-8 Matrix: Ground Water Sample Date/Time: 05/30/06 18:45 | | | | /30/06 18:45 | Lab No. | 0606003-09 | | |---|--|--------------|------------|------------|---------------|-------------------|-----------------|----------------| | | | | | | Dilution | 1 | Date | | | Th. 0000 0 | Results | <u>Units</u> | <u>LOD</u> | <u>LOO</u> | <u>Factor</u> | Qualifiers | Analyzed | <u>Analyst</u> | | EPA 8260B Continued | | | | | | | | | | Dibromochloromethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | Dibromomethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | Dichlorodifluoromethane | ND | ug/L | 0.25 | 0.83 | I | CSL | 06/06/06 | MPM | | Ethylbenzene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | Hexachlorobutadiene | ND | ug/L | 1.00 | 3.30 | 1 | | 06/06/06 | MPM | | Isopropylbenzene (Cumene) | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | m,p-Xylenes | ND | ug/L | 0.40 | 1.30 | 1 | | 06/06/06 | MPM | | Methylene Chloride | ND | ug/L | 0.40 | 1.30 | 1 | | 06/06/06 | MPM | | Methyl-tert-Butyl Ether | 0.19 | ug/L | 0.10 | 0.50 | 1 | J | 06/06/06 | MPM | | Naphthalene | ND | ug/L | 1.00 | 3.30 | I | | 06/06/06 | MPM | | o-Xylene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | Propylbenzene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | sec-Butylbenzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | Styrene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | tert-Butylbenzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | Tetrachloroethene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | Toluene | ND | ug/L | 0.40 | 1.30 | 1 | | 06/06/06 | MPM | | trans-1,2-Dichloroethylene | 0.22 | ug/L | 0.10 | 0.50 | 1 | J | 06/06/06 | MPM | | trans-1,3-Dichloropropylene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | Trichloroethene | 2.66 | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | Trichlorofluoromethane | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | Vinyl chloride | 0.16 | ug/L | 0.15 | 0.50 | 1 | J | 06/06/06 | MPM | | EPA 8310 | | | | | | | | | | Prep Method: Method 3510C Liquid Extraction | By: JEG | | | | | Date Prepared: | 06/05/06 | | | 1-Methylnaphthalene | ND | ug/L | 0.080 | 0.260 | 1 | | 06/06/06 | LMP | | 2-Methylnaphthalene | ND | ug/L | 0.110 | 0.370 | 1 | | 06/06/06 | LMP | | Acenaphthene | ND | ug/L | 0.060 | 0.200 | 1 | | 06/06/06 | LMP | | Acenaphthylene | ND | ug/L | 0.060 | 0.200 | 1 | | 06/06/06 | LMP | | Anthracene | ND | ug/L | 0.090 | 0.300 | 1 | | 06/06/06 | LMP | | Benzo(a)anthracene | ND | ug/L | 0.100 | 0.330 | 1 | | 06/06/06 | LMP | | Benzo(a)pyrene | ND | ug/L | 0.020 | 0.067 | 1 | LCH | 06/06/06 | LMP | | Benzo(b)fluoranthene | ND | ug/L | 0.020 | 0.067 | 1 | | 06/06/06 | LMP | | Benzo(g,h,i)perylene | ND | ug/L | 0.060 | 0.200 | 1 | | 06/06/06 | LMP | | Benzo(k)fluoranthene | ND | ug/L | 0.070 | 0.233 | 1 | | 06/06/06 | LMP | | Chrysene | ND | ug/L | 0.020 | 0.067 | i | | 06/06/06 | LMP | | Dibenzo(a,h)anthracene | ND | ug/L | 0.110 | 0.370 | 1 | | 06/06/06 | LMP | TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55 PREPARED BY: JRS Sample ID: MW-8 Matrix: Ground Water Sample Date/Time: 05/30/06 18:45 Lab No. 0606003-09 | | Results | <u>Units</u> | <u>LOD</u> | <u>LOQ</u> | Dilution
<u>Factor</u> | Qualifiers | Date
<u>Analyzed</u> | <u>Analyst</u> | |---|---------|--------------|------------|------------|---------------------------|----------------|-------------------------|----------------| | EPA 8310 Continued | | | | | | | | | | Prep Method: Method 3510C Liquid Extraction | By: JEG | | | | | Date Prepared: | 06/05/06 | | | Fluoranthene | ND | ug/L | 0.120 | 0.400 | 1 | | 06/06/06 | LMP | | Fluorene | ND | ug/L | 0.120 | 0.400 | 1 | | 06/06/06 | LMP | | Indeno(1,2,3-cd)pyrene | ND | ug/L | 0.120 | 0.400 | 1 | | 06/06/06 | LMP | | Naphthalene | ND | ug/L | 0.110 | 0.370 | 1 | | 06/06/06 | LMP | | Phenanthrene | ND | ug/L | 0.110 | 0.370 | 1 | | 06/06/06 | LMP | | Pyrene | ND | ug/L | 0.100 | 0.330 | 1 | | 06/06/06 | LMP | TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com #### A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55 | Sample ID: MW-9 | Matrix: Ground Water | Sample Date/Time: 05/30/06 14:20 | Lab No. 0606003-10 | |-----------------|----------------------|----------------------------------|--------------------| |-----------------|----------------------|----------------------------------|--------------------| | Results Units Un | |--| | 1,1,1,2-Tetrachloroethane | | 1,1-Trichloroethane | | 1,1,2,2-Tetrachloroethane | | 1,1,2-Trichloroethane | | 1,1-Dichloroethane | | 1.1-Dichloroethylene | | 1,1-Dichloropropylene | | 1,2,3-Trichlorobenzene | | 1,2,3-Trichloropropane | | 1,2,4-Trichlorobenzene ND ug/L 0.50 1.70 1 06/06/06 MPM 1,2,4-Trimethylbenzene ND ug/L 0.15 0.50 1 06/06/06 MPM 1,2-Dibromo-3-chloropropane ND ug/L 0.35 1.17 1 06/06/06 MPM 1,2-Dibromo-denane ND ug/L 0.75 2.50 1 S1H, S2H 06/06/06 MPM 1,2-Dichlorobenzene ND ug/L 0.10 0.50 1 06/06/06 MPM 1,2-Dichlorobenzene ND ug/L 0.10 0.50 1 06/06/06 MPM 1,2-Dichloropenane ND ug/L 0.10 0.50 1 06/06/06 MPM 1,3-Frimethylbenzene ND ug/L 0.10 0.50 1 06/06/06 MPM 1,3-Frimethylbenzene ND ug/L 0.15 0.50 1 06/06/06 MPM 1,3-Dichloropenane ND ug/L 0.15 0.50 1 06/06/06 MPM 1,3-Dichloropenane ND ug/L 0.15 0.50 1 06/06/06 MPM 1,3-Dichloropenane ND ug/L 0.15 0.50 1 06/06/06 MPM 1,3-Dichloropenane ND ug/L 0.10 0.50 1 06/06/06 MPM 1,4-Dichlorobenzene ND ug/L 0.10 0.50 1 06/06/06 MPM 1,4-Dichloropenane | | 1,2,4-Trimethylbenzene ND ug/L 0.15 0.50 1 06/06/06 MPM 1,2-Dibromo-3-chloropropane ND ug/L 0.35 1.17 1 06/06/06 MPM 1,2-Dibromoethane ND ug/L 0.10 0.50 1 SIH, S2H 06/06/06 MPM 1,2-Dichlorobenzene ND ug/L 0.10 0.50 1 SIH, S2H 06/06/06 MPM 1,2-Dichlorobenzene ND ug/L 0.10 0.50 1 06/06/06 MPM 1,2-Dichloropopane ND ug/L 0.10 0.50 1 06/06/06 MPM
1,3-Dichlorobenzene ND ug/L 0.15 0.50 1 06/06/06 MPM 1,3-Dichloropopane ND ug/L 0.10 0.50 1 06/06/06 MPM 1,4-Dichlorobenzene ND ug/L 0.10 0.50 1 06/06/06 MPM 2,2-Dichloropropane ND ug/L 0.10 | | 1,2-Dibromo-3-chloropropane ND | | 1,2-Dibromoethane | | 1,2-Dichlorobenzene ND | | ND | | 1,2-Dichloropropane ND | | 1,3,5-Trimethylbenzene ND | | 1,3-Dichlorobenzene ND ug/L 0.15 0.50 1 06/06/06 MPM 1,3-Dichloropropane ND ug/L 0.10 0.50 1 06/06/06 MPM 1,4-Dichlorobenzene ND ug/L 0.75 2.50 1 06/06/06 MPM 2,2-Dichloropropane ND ug/L 0.10 0.50 1 06/06/06 MPM 2-Chlorotoluene ND ug/L 0.10 0.50 1 06/06/06 MPM 4-Chlorotoluene ND ug/L 0.20 0.67 1 06/06/06 MPM 4-Isopropyltoluene ND ug/L 0.20 0.67 1 06/06/06 MPM Benzene ND ug/L 0.15 0.50 1 06/06/06 MPM Bromochloromethane ND ug/L 0.10 0.50 1 06/06/06 MPM Bromoform ND ug/L 0.10 0.50 1 06/06/06 MPM </td | | 1,3-Dichloropropane ND ug/L 0.10 0.50 1 06/06/06 MPM 1,4-Dichlorobenzene ND ug/L 0.75 2.50 1 06/06/06 MPM 2,2-Dichloropropane ND ug/L 0.10 0.50 1 06/06/06 MPM 2-Chlorotoluene ND ug/L 0.10 0.50 1 06/06/06 MPM 4-Chlorotoluene ND ug/L 0.20 0.67 1 06/06/06 MPM 4-Isopropyltoluene ND ug/L 0.20 0.67 1 06/06/06 MPM Benzene ND ug/L 0.15 0.50 1 06/06/06 MPM Bromobenzene ND ug/L 0.10 0.50 1 06/06/06 MPM Bromodichloromethane ND ug/L 0.10 0.50 1 06/06/06 MPM Bromoform ND ug/L 0.10 0.50 1 06/06/06 MPM | | 1,4-Dichlorobenzene ND ug/L 0.75 2.50 1 06/06/06 MPM 2,2-Dichloropropane ND ug/L 0.10 0.50 1 06/06/06 MPM 2-Chlorotoluene ND ug/L 0.10 0.50 1 06/06/06 MPM 4-Chlorotoluene ND ug/L 0.20 0.67 1 06/06/06 MPM 4-Isopropyltoluene ND ug/L 0.20 0.67 1 06/06/06 MPM Benzene ND ug/L 0.15 0.50 1 06/06/06 MPM Bromobenzene ND ug/L 0.10 0.50 1 06/06/06 MPM Bromochloromethane ND ug/L 0.10 0.50 1 06/06/06 MPM Bromoform ND ug/L 0.10 0.50 1 06/06/06 MPM Bromomethane ND ug/L 0.20 0.67 1 06/06/06 MPM | | 2,2-Dichloropropane ND ug/L 0.10 0.50 1 06/06/06 MPM 2-Chlorotoluene ND ug/L 0.10 0.50 1 06/06/06 MPM 4-Chlorotoluene ND ug/L 0.20 0.67 1 06/06/06 MPM 4-Isopropyltoluene ND ug/L 0.20 0.67 1 06/06/06 MPM Benzene ND ug/L 0.15 0.50 1 06/06/06 MPM Bromobenzene ND ug/L 0.10 0.50 1 06/06/06 MPM Bromochloromethane ND ug/L 0.10 0.50 1 06/06/06 MPM Bromoform ND ug/L 0.10 0.50 1 06/06/06 MPM Bromomethane ND ug/L 0.10 0.50 1 06/06/06 MPM Bromomethane ND ug/L 0.20 0.67 1 CSL, SIL, S2L 06/06/06 MPM </td | | 2-Chlorotoluene ND ug/L 0.10 0.50 1 06/06/06 MPM 4-Chlorotoluene ND ug/L 0.20 0.67 1 06/06/06 MPM 4-Isopropyltoluene ND ug/L 0.20 0.67 1 06/06/06 MPM Benzene ND ug/L 0.15 0.50 1 06/06/06 MPM Bromobenzene ND ug/L 0.10 0.50 1 06/06/06 MPM Bromochloromethane ND ug/L 0.10 0.50 1 06/06/06 MPM Bromoform ND ug/L 0.10 0.50 1 06/06/06 MPM Bromomethane ND ug/L 0.20 0.67 1 06/06/06 MPM Bromomethane ND ug/L 0.20 0.67 1 CSL, S1L, S2L 06/06/06 MPM | | 4-Chlorotoluene ND ug/L 0.20 0.67 1 06/06/06 MPM 4-Isopropyltoluene ND ug/L 0.20 0.67 1 06/06/06 MPM Benzene ND ug/L 0.15 0.50 1 06/06/06 MPM Bromobenzene ND ug/L 0.10 0.50 1 06/06/06 MPM Bromochloromethane ND ug/L 0.10 0.50 1 06/06/06 MPM Bromoform ND ug/L 0.10 0.50 1 06/06/06 MPM Bromomethane ND ug/L 0.10 0.50 1 06/06/06 MPM Bromomethane ND ug/L 0.20 0.67 1 CSL, S1L, S2L 06/06/06 MPM | | 4-Isopropyltoluene ND ug/L 0.20 0.67 1 06/06/06 MPM Benzene ND ug/L 0.15 0.50 1 06/06/06 MPM Bromobenzene ND ug/L 0.10 0.50 1 06/06/06 MPM Bromochloromethane ND ug/L 0.10 0.50 1 06/06/06 MPM Bromoform ND ug/L 0.10 0.50 1 06/06/06 MPM Bromomethane ND ug/L 0.20 0.67 1 06/06/06 MPM Bromomethane ND ug/L 0.15 0.50 1 CSL, S1L, S2L 06/06/06 MPM | | Benzene ND ug/L 0.15 0.50 1 06/06/06 MPM Bromobenzene ND ug/L 0.10 0.50 1 06/06/06 MPM Bromochloromethane ND ug/L 0.10 0.50 1 06/06/06 MPM Bromoform ND ug/L 0.10 0.50 1 06/06/06 MPM Bromomethane ND ug/L 0.20 0.67 1 CSL, S1L, S2L 06/06/06 MPM | | Bromobenzene ND ug/L 0.10 0.50 1 06/06/06 MPM Bromochloromethane ND ug/L 0.10 0.50 1 06/06/06 MPM Bromodichloromethane ND ug/L 0.10 0.50 1 06/06/06 MPM Bromoform ND ug/L 0.20 0.67 1 06/06/06 MPM Bromomethane ND ug/L 0.15 0.50 1 CSL, S1L, S2L 06/06/06 MPM | | Bromochloromethane ND ug/L 0.10 0.50 1 06/06/06 MPM Bromodichloromethane ND ug/L 0.10 0.50 1 06/06/06 MPM Bromoform ND ug/L 0.20 0.67 1 06/06/06 MPM Bromomethane ND ug/L 0.15 0.50 1 CSL, S1L, S2L 06/06/06 MPM | | Bromodichloromethane ND ug/L 0.10 0.50 1 06/06/06 MPM Bromoform ND ug/L 0.20 0.67 1 06/06/06 MPM Bromomethane ND ug/L 0.15 0.50 1 CSL, S1L, S2L 06/06/06 MPM | | Bromoform ND ug/L 0.20 0.67 1 06/06/06 MPM Bromomethane ND ug/L 0.15 0.50 1 CSL, S1L, S2L 06/06/06 MPM | | Bromomethane ND ug/L 0.15 0.50 1 CSL, S1L, S2L 06/06/06 MPM | | | | Butylbenzene ND ug/L 0.20 0.67 1 06/06/06 MPM | | | | Carbon Tetrachloride ND ug/L 0.20 0.67 1 06/06/06 MPM | | Chlorobenzene ND ug/L 0.10 0.50 1 06/06/06 MPM | | Chloroethane ND ug/L 0.60 2.00 1 06/06/06 MPM | | Chloroform ND ug/L 0.10 0.50 1 06/06/06 MPM | | Chloromethane 0.28 ug/L 0.20 0.67 1 J 06/06/06 MPM | | cis-1,2-Dichloroethylene ND ug/L 0.20 0.67 1 06/06/06 MPM | | cis-1,3-Dichloropropylene ND ug/L 0.10 0.50 1 06/06/06 MPM | TELEPHONE **FACSIMILE** WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55 PREPARED BY: JRS | | Sample ID: MW-9 | Matrix: Ground Water | | Sar | nple Date/ | Time: 05 | Lab No. 0606003-10 | | | |---|---|----------------------|--------------|------------|------------|-----------------|---------------------------|-----------------|----------------| | | | | | | | Dilution | 1 | Date | | | | | Results | <u>Units</u> | <u>LOD</u> | <u>LOO</u> | Factor | Qualifiers | Analyzed | <u>Analyst</u> | | | EPA 8260B Continued | | | | | | | | | | | Dibromochloromethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | | Dibromomethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | | Dichlorodifluoromethane | ND | ug/L | 0.25 | 0.83 | 1 | CSL | 06/06/06 | MPM | | | Ethylbenzene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | | Hexachlorobutadiene | ND | ug/L | 1.00 | 3.30 | 1 | | 06/06/06 | MPM | | | Isopropylbenzene (Cumene) | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | | m,p-Xylenes | ND | ug/L | 0.40 | 1.30 | I | | 06/06/06 | MPM | | ı | Methylene Chloride | ND | ug/L | 0.40 | 1.30 | 1 | | 06/06/06 | MPM | | ĺ | Methyl-tert-Butyl Ether | 0.30 | ug/L | 0.10 | 0.50 | 1 | J | 06/06/06 | MPM | | • | Naphthalene | ND | ug/L | 1.00 | 3.30 | 1 | | 06/06/06 | MPM | | | o-Xylene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | | Propylbenzene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | | sec-Butylbenzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | | Styrene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | | tert-Butylbenzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | | Tetrachloroethene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | | Toluene | ND | ug/L | 0.40 | 1.30 | 1 | | 06/06/06 | MPM | | | trans-1,2-Dichloroethylene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | | trans-1,3-Dichloropropylene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | | Trichloroethene | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | | Trichlorofluoromethane | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | | Vinyl chloride | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | | EPA 8310 | | | | | | | | | | ĺ | Prep Method: Method 3510C Liquid Extraction | By: JEG | | | | | Date Prepared: | 06/05/06 | | | | 1-Methylnaphthalene | ND | ug/L | 0.080 | 0.260 | 1 | - | 06/06/06 | LMP | | | 2-Methylnaphthalene | ND | ug/L | 0.110 | 0.370 | 1 | | 06/06/06 | LMP | | | Acenaphthene | ND | ug/L | 0.060 | 0.200 | 1 | | 06/06/06 | LMP | | | Acenaphthylene | ND | ug/L | 0.060 | 0.200 | 1 | | 06/06/06 | LMP | | | Anthracene | ND | ug/L | 0.090 | 0.300 | 1 | | 06/06/06 | LMP | | | Benzo(a)anthracene | ND | ug/L | 0.100 | 0.330 | 1 | | 06/06/06 | LMP | | | Benzo(a)pyrene | ND | ug/L | 0.020 | 0.067 | ī | LCH | 06/06/06 | LMP | | | Benzo(b)fluoranthene | ND | ug/L | 0.020 | 0.067 | 1 | | 06/06/06 | LMP | | | Benzo(g,h,i)perylene | ND | ug/L | 0.060 | 0.200 | 1 | | 06/06/06 | LMP | | | Benzo(k)fluoranthene | ND | ug/L | 0.070 | 0.233 | 1 | | 06/06/06 | LMP | | | Chrysene | ND | ug/L | 0.020 | 0.067 | 1 | | 06/06/06 | LMP | | | Dibenzo(a,h)anthracene | ND | ug/L | 0.110 | 0.370 | 1 | | 06/06/06 | LMP | | 1 | | | | | 0.5.0 | - | | 00,00,00 | Livii | TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com #### A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55 | Sample ID: MW-9 | Matrix: Gr | ound Water | Sam | ple Date/ | Time: 05/3 (| Lab No. 0606003-10 | | | |---|----------------|----------------|--------------|-----------|---------------------------|--------------------|------------------|---------| | | <u>Results</u> | <u>Units</u> . | <u>LOD</u> . | LOQ | Dilution
<u>Factor</u> | Qualifiers | Date
Analyzed | Analyst | | EPA 8310 Continued | | | | | | | | | | Prep Method: Method 3510C Liquid Extraction | By: JEG | | | | D | ate Prepared: | 06/05/06 | | | Fluoranthene | ND | ug/L | 0.120 | 0.400 | 1 | | 06/06/06 | LMP | | Fluorene | ND | ug/L | 0.120 | 0.400 | 1 | | 06/06/06 | LMP | | Indeno(1,2,3-cd)pyrene | ND | ug/L | 0.120 | 0.400 | 1 | | 06/06/06 | LMP | | Naphthalene | ND | ug/L | 0.110 | 0.370 | 1 | | 06/06/06 | LMP | | Phenanthrene | ND | ug/L | 0.110 | 0.370 | 1 | | 06/06/06 | LMP | | Pyrene | ND | ug/L | 0.100 | 0.330 | 1 | | 06/06/06 | LMP | TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com #### A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr
Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55 PREPARED BY: JRS Sample ID: B-5 Matrix: Ground Water Sample Date/Time: 05/30/06 12:50 Lab No. 0606003-11 | _ | | | | | | Dilution | | Date | | |-----|-----------------------------|---------|--------------|------------|------|---------------|-------------------|-----------------|----------------| | | | Results | <u>Units</u> | <u>LOD</u> | LOQ | Factor | Qualifiers | Analyzed | <u>Analyst</u> | | | EPA 8260B | | | | | | | | | | | 1,1,1,2-Tetrachloroethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | | 1,1,1-Trichloroethane | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | | 1,1,2,2-Tetrachloroethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | | 1,1,2-Trichloroethane | 0.58 | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | | 1,1-Dichloroethane | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | | 1,1-Dichloroethylene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | | 1,1-Dichloropropylene | ND | ug/L | 0.30 | 1.00 | 1 | | 06/06/06 | MPM | | | 1,2,3-Trichlorobenzene | ND | ug/L | 0.50 | 1.70 | 1 | | 06/06/06 | MPM | | ļ | 1,2,3-Trichloropropane | ND | ug/L | 0.55 | 1.80 | 1 | | 06/06/06 | MPM | | 7 | 1,2,4-Trichlorobenzene | ND | ug/L | 0.50 | 1.70 | 1 | | 06/06/06 | MPM | | _ | 1,2,4-Trimethylbenzene | 0.22 | ug/L | 0.15 | 0.50 | I | J | 06/06/06 | MPM | | | 1,2-Dibromo-3-chloropropane | ND | ug/L | 0.35 | 1.17 | 1 | | 06/06/06 | MPM | | , i | 1,2-Dibromoethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | | 1,2-Dichlorobenzene | ND | ug/L | 0.75 | 2.50 | 1 | S1H, S2H | 06/06/06 | MPM | | | 1,2-Dichloroethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | | 1,2-Dichloropropane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | | 1,3,5-Trimethylbenzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | | 1,3-Dichlorobenzene | ND | ug/L . | 0.15 . | 0.50 | i | | 06/06/06 | MPM | | | 1,3-Dichloropropane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | | 1,4-Dichlorobenzene | ND | ug/L | 0.75 | 2.50 | 1 | | 06/06/06 | MPM | | | 2,2-Dichloropropane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | | 2-Chlorotoluene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | 57 | 4-Chlorotoluene | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | | 4-Isopropyltoluene | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | | Benzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | | Bromobenzene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | 4 | Bromochloromethane | ND | ug/L | 0.10 | 0.50 | I | | 06/06/06 | MPM | | N | Bromodichloromethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | , | Bromoform | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | خــ | Bromomethane | ND | ug/L | 0.15 | 0.50 | 1 | CSL, S1L, S2L | 06/06/06 | MPM | | | Butylbenzene | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | • | Carbon Tetrachloride | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | | Chlorobenzene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | | Chloroethane | ND | ug/L | 0.60 | 2.00 | I | | 06/06/06 | MPM | | | Chloroform | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | | Chloromethane | 0.24 | ug/L | 0.20 | 0.67 | t | J | 06/06/06 | MPM | | | cis-1,2-Dichloroethylene | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | | cis-1,3-Dichloropropylene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | | | | | | | | | | | TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com #### A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55 | | Sample ID: B-5 | Matrix: Gr | ound Water | Sample Date/Time: 05/30/06 12:50 | | Lab No. | 0606003-11 | | | |---|---|------------|--------------|----------------------------------|-------|--------------------|-----------------|-------------------------|-----------------| | Ĥ | | Results | <u>Units</u> | LOD | LOQ | Dilution
Factor | ı
Qualifiers | Date
<u>Analyzed</u> | <u>A</u> nalyst | | | EPA 8260B Continued | | | | | | | | | | • | Dibromochloromethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | | Dibromomethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | | Dichlorodifluoromethane | ND | ug/L | 0.25 | 0.83 | 1 | CSL, CSH | 06/06/06 | MPM | | • | Ethylbenzene | ND | ug/L | 0.10 | 0.50 | 1 | , | 06/06/06 | MPM | | | Hexachlorobutadiene | ND | ug/L | 1.00 | 3.30 | 1 | | 06/06/06 | MPM | | | Isopropylbenzene (Cumene) | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | | m,p-Xylenes | ND | ug/L | 0.40 | 1.30 | 1 | | 06/06/06 | MPM | | | Methylene Chloride | ND | ug/L | 0.40 | 1.30 | 1 | | 06/06/06 | MPM | | V | Methyl-tert-Butyl Ether | 0.66 | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | フ | Naphthalene | ND | ug/L | 1.00 | 3.30 | 1 | | 06/06/06 | MPM | | | o-Xylene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | - | Propylbenzene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | l | sec-Butylbenzene | ND | ug/L | 0.15 | 0.50 | ī | | 06/06/06 | MPM | | | Styrene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | U | tert-Butylbenzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | | Tetrachloroethene | ND | ug/L . | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | | Toluene | ND | ug/L | 0.40 | 1.30 | İ | | 06/06/06 | MPM | | | trans-1,2-Dichloroethylene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | | trans-1,3-Dichloropropylene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | | Trichloroethene | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | | Trichlorofluoromethane | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | • | Vinyl chloride | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | Î | EPA 8310 | | | | | | | | | | | Prep Method: Method 3510C Liquid Extraction | By: JEG | | | | | Date Prepared: | 06/05/06 | | | | 1-Methylnaphthalene | ND | ug/L | 0.080 | 0.260 | 1 | | 06/07/06 | LMP | | | 2-Methylnaphthalene | ND | ug/L | 0.110 | 0.370 | 1 | | 06/07/06 | LMP | | | Acenaphthene | ND | ug/L | 0.060 | 0.200 | 1 | | 06/07/06 | LMP | | | Acenaphthylene | ND | ug/L | 0.060 | 0.200 | 1 | | 06/07/06 | LMP | | | Anthracene | ND | ug/L | 0.090 | 0.300 | 1 | | 06/07/06 | LMP | | | Benzo(a)anthracene | ND | ug/L | 0.100 | 0.330 | 1 | | 06/07/06 | LMP | | | Benzo(a)pyrene | ND | ug/L | 0.020 | 0.067 | 1 | LCH | 06/07/06 | LMP | | 1 | Benzo(b)fluoranthene | ND | ug/L | 0.020 | 0.067 | 1 | | 06/07/06 | LMP | | ı | Benzo(g,h,i)perylene | ND | ug/L | 0.060 | 0.200 | 1 | | 06/07/06 | LMP | | | Benzo(k)fluoranthene | ND | ug/L | 0.070 | 0.233 | 1 | | 06/07/06 | LMP | | | Chrysene | ND | ug/L | 0.020 | 0.067 | 1 | | 06/07/06 | LMP | | | Dibenzo(a,h)anthracene | ND | ug/L · | 0.110 • | 0.370 | 1 | | 06/07/06 | LMP | TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com #### A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55 PREPARED BY: JRS Sample ID: B-5 Matrix: Ground Water Sample Date/Time: 05/30/06 12:50 Lab No. 0606003-11 | EPA 8310 Continued | Results | <u>Units</u> | <u>LOD</u> | LOO | Dilution
<u>Factor</u> | <u>Qualifiers</u> | Date
<u>Analyzed</u> | <u>Analyst</u> | |---|---------|--------------|------------|-------|---------------------------|-------------------|-------------------------|----------------| | Prep Method: Method 3510C Liquid Extraction | By: JEG | | | | | Date Prepared: | 06/05/06 | | | Fluoranthene | ND | ug/L | 0.120 | 0.400 | 1 | | 06/07/06 | LMP | | Fluorene | ND | ug/L | 0.120 | 0.400 | 1 | | 06/07/06 | LMP | | Indeno(1,2,3-cd)pyrene | ND | ug/L | 0.120 | 0.400 | 1 | | 06/07/06 | LMP | | Naphthalene | ND | ug/L | 0.110 | 0.370 | 1 | | 06/07/06 | LMP | | Phenanthrene | ND | ug/L | 0.110 | 0.370 | 1 | | 06/07/06 | LMP | | Pyrene | ND | ug/L | 0.100 | 0.330 | 1 | | 06/07/06 | LMP | TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com #### A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55 | Sample ID: B-5A | Matrix: Ground Water | Sample Date/Time: 05/30/06 13:10 | Lab No. 0606003-12 | |-----------------|----------------------|----------------------------------|--------------------| | | | | | | | | | | | Dilution | | Date | | |-----------------------------|----------------|--------------|------------|------------|---------------|-------------------|-----------------|---------| | ` | Results | <u>Units</u> | LOD | LOO | Factor | Qualifiers | Analyzed | Analyst | | EPA 8260B | | | | | | | | | | 1,1,1,2-Tetrachloroethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | 1,1,1-Trichloroethane | ND | ug/L | 0.20 | 0.67 | i | | 06/06/06 | MPM | | 1,1,2,2-Tetrachloroethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | 1,1,2-Trichloroethane | 0.21 | ug/L | 0.10 | 0.50 | 1 1 | Ī | 06/06/06 | MPM | | 1,1-Dichloroethane | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | 1,1-Dichloroethylene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | 1,1-Dichloropropylene | ND | ug/L | 0.30 | 1.00 | 1 | | 06/06/06 | MPM | | 1,2,3-Trichlorobenzene | ND | ug/L | 0.50 | 1.70 | 1 | | 06/06/06 | MPM | | 1,2,3-Trichloropropane | ND | ug/L | 0.55 | 1.80 | 1 | | 06/06/06 | MPM | | 1,2,4-Trichlorobenzene | ND | ug/L | 0.50 | 1.70 | 1 | | 06/06/06 | MPM | | 1,2,4-Trimethylbenzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | |
1,2-Dibromo-3-chloropropane | ND | ug/L | 0.35 | 1.17 | 1 | | 06/06/06 | MPM | | 1,2-Dibromoethane | ND | ug/L · | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | 1,2-Dichlorobenzene | ND | ug/L | 0.75 | 2.50 | 1 5 | S1H, S2H | 06/06/06 | MPM | | 1,2-Dichloroethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | 1,2-Dichloropropane | ND | ug/L | 0.10 | 0.50 | i | | 06/06/06 | MPM | | 1,3,5-Trimethylbenzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | 1,3-Dichlorobenzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | 1,3-Dichloropropane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | 1,4-Dichlorobenzene | ND | ug/L | 0.75 | 2.50 | 1 | | 06/06/06 | MPM | | 2,2-Dichloropropane | ND | ug/L | 0.10 | 0.50 | I | | 06/06/06 | MPM | | 2-Chlorotoluene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | 4-Chlorotoluene | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | 4-Isopropyltoluene | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | Benzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | Bromobenzene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | Bromochloromethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | Bromodichloromethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | Bromoform | ND | ug/L | 0.20 | 0.67 | i | | 06/06/06 | MPM | | Bromomethane | ND | ug/L | 0.15 | 0.50 | 1 (| CSL, S1L, S2L | 06/06/06 | MPM | | Butylbenzene | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | Carbon Tetrachloride | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | Chlorobenzene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | Chloroethane | ND | ug/L * | 0.60 | 2.00 | 1 | | 06/06/06 | MPM | | Chloroform | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | Chloromethane | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | cis-1,2-Dichloroethylene | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | cis-1,3-Dichloropropylene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | | | | | | | | | | Matrix: Ground Water TELEPHONE FACSIMILE WEBSITE Sample Date/Time: 05/30/06 13:10 800-338-7226 715-355-3221 www.enviroscan.usfilter.com Lab No. 0606003-12 #### A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl Sample ID: B-5A PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55 PREPARED BY: JRS | • | | | | | | | | | |---|---------|--------------|------------|-------|---------------------------|-------------------|-------------------------|----------------| | EDA 92COD Continued | Results | <u>Units</u> | <u>LOD</u> | LOQ | Dilution
<u>Factor</u> | <u>Qualifiers</u> | Date
<u>Analyzed</u> | <u>Analyst</u> | | EPA 8260B Continued | 3.00 | | 0.40 | | | | | | | Dibromochloromethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | Dibromomethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | Dichlorodifluoromethane | ND | ug/L | 0.25 | 0.83 | 1 | CSL, CSH | 06/06/06 | MPM | | Ethylbenzene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | Hexachlorobutadiene | ND | ug/L | 1.00 | 3.30 | 1 | | 06/06/06 | MPM | | Isopropylbenzene (Cumene) | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | m,p-Xylenes | ND | ug/L | 0.40 | 1.30 | 1 | | 06/06/06 | MPM | | Methylene Chloride | ND | ug/L | 0.40 | 1.30 | 1 | | 06/06/06 | MPM | | Methyl-tert-Butyl Ether | 0.36 | ug/L | 0.10 | 0.50 | 1 | J | 06/06/06 | MPM | | Naphthalene | ND | ug/L . | 1.00 . | 3.30 | 1 | | 06/06/06 | MPM | | o-Xylene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | Propylbenzene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | sec-Butylbenzene | ND. | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | Styrene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | tert-Butylbenzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | Tetrachloroethene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | Toluene | ND | ug/L | 0.40 | 1.30 | 1 | | 06/06/06 | MPM | | trans-1,2-Dichloroethylene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | trans-1,3-Dichloropropylene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | Trichloroethene | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | Trichlorofluoromethane | ND | ug/L | 0.20 | 0.67 | i | | 06/06/06 | MPM | | Vinyl chloride | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | EPA 8310 | | | | | | | | | | Prep Method: Method 3510C Liquid Extraction | By: JEG | | | | | Date Prepared: | 06/05/06 | | | 1-Methylnaphthalene | ND | ug/L | 0.080 | 0.260 | 1 | | 06/07/06 | LMP | | 2-Methylnaphthalene | ND | ug/L | 0.110 | 0.370 | 1 | | 06/07/06 | LMP | | Acenaphthene | ND | ug/L | 0.060 | 0.200 | 1 | | 06/07/06 | LMP | | Acenaphthylene | ND | ug/L | 0.060 | 0.200 | 1 | | 06/07/06 | LMP | | Anthracene | ND | ug/L | 0.090 | 0.300 | 1 | | 06/07/06 | LMP | | Benzo(a)anthracene | ND | ug/L • | 0.100 . | 0.330 | 1 | | 06/07/06 | LMP | | Benzo(a)pyrene | ND | ug/L | 0.020 | 0.067 | 1 | LCH | 06/07/06 | LMP | | Benzo(b)fluoranthene | ND | ug/L | 0.020 | 0.067 | 1 | | 06/07/06 | LMP | | | | | | | | | | | 0.060 0.070 0.020 0.110 ug/L ug/L ug/L ug/L 0.200 0.233 0.067 0.370 1 1 1 06/07/06 06/07/06 06/07/06 06/07/06 LMP LMP LMP LMP ND ND ND ND Chrysene Benzo(g,h,i)perylene Benzo(k)fluoranthene Dibenzo(a,h)anthracene TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55 | Sample ID: B-5A | Matrix: Ground Water | Sample Date/Time: 05/30/06 13:10 | Lab No. 0606003-12 | |------------------------|----------------------|----------------------------------|--------------------| |------------------------|----------------------|----------------------------------|--------------------| | • | | Results | <u>Units</u> | LOD | LOQ | Dilution
<u>Factor</u> | Qualifiers | Date
<u>Analyzed</u> | <u>Analyst</u> | |---|---|---------|--------------|-------|-------|---------------------------|----------------|-------------------------|----------------| | 1 | EPA 8310 Continued | | | | | | | | | | | Prep Method: Method 3510C Liquid Extraction | By: JEG | | | | L | Date Prepared: | 06/05/06 | | | | Fluoranthene | ND | ug/L | 0.120 | 0.400 | 1 | | 06/07/06 | LMP | | | Fluorene | ND | ug/L | 0.120 | 0.400 | 1 | | 06/07/06 | LMP | | | Indeno(1,2,3-cd)pyrene | ND | ug/L | 0.120 | 0.400 | i | | 06/07/06 | LMP | | · | Naphthalene | ND | ug/L | 0.110 | 0.370 | i | | 06/07/06 | LMP | | k | Phenanthrene | ND | ug/L | 0.110 | 0.370 | I | | 06/07/06 | LMP | | | Pyrene | ND | ug/L | 0.100 | 0.330 | I | | 06/07/06 | LMP | TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com #### A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55 PREPARED BY: JRS Sample ID: B-6 Matrix: Ground Water Sample Date/Time: 05/30/06 12:05 Lab No. 0606003-13 | | | | | | | Dilution | | Date | | |-----|-----------------------------|---------|--------------|------------|------|----------|---------------|----------|----------------| | E | | Results | <u>Units</u> | <u>LOD</u> | LOQ | Factor | Qualifiers | Analyzed | <u>Analyst</u> | | | EPA 8260B | | | | | | | | | | | 1,1,1,2-Tetrachloroethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | | 1,1,1-Trichloroethane | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | | 1,1,2,2-Tetrachloroethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | | 1,1,2-Trichloroethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | | 1,1-Dichloroethane | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | 1 | 1,1-Dichloroethylene | ND | ug/L • | 0.15 . | 0.50 | 1 | | 06/06/06 | MPM | | , | 1,1-Dichloropropylene | ND | ug/L | 0.30 | 1.00 | 1 | | 06/06/06 | MPM | | د | 1,2,3-Trichlorobenzene | ND | ug/L | 0.50 | 1.70 | 1 | | 06/06/06 | MPM | | 3 | 1,2,3-Trichloropropane | ND | ug/L | 0.55 | 1.80 | i | | 06/06/06 | MPM | | | 1,2,4-Trichlorobenzene | ND | ug/L | 0.50 | 1.70 | I | | 06/06/06 | MPM | | د. | 1,2,4-Trimethylbenzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | | 1,2-Dibromo-3-chloropropane | ND | ug/L | 0.35 | 1.17 | 1 | | 06/06/06 | MPM | | Ţ | 1,2-Dibromoethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | | 1,2-Dichlorobenzene | ND | ug/L | 0.75 | 2.50 | 1 | S1H, S2H | 06/06/06 | MPM | | | 1,2-Dichloroethane | 0.20 | ug/L | 0.10 | 0.50 | 1 | J | 06/06/06 | MPM | | | 1,2-Dichloropropane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | • | 1,3,5-Trimethylbenzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | | 1,3-Dichlorobenzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | | 1,3-Dichloropropane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | | 1,4-Dichlorobenzene | ND | ug/L | 0.75 | 2.50 | 1 | | 06/06/06 | MPM | | | 2,2-Dichloropropane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | | 2-Chlorotoluene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | , | 4-Chlorotoluene | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | | 4-Isopropyltoluene | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | | Benzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | - | Bromobenzene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | ے | Bromochloromethane | 0.20 | ug/L . | 0.10 . | 0.50 | 1 | J | 06/06/06 | MPM | | | Bromodichloromethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | Ç | Bromoform | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | , | Bromomethane | ND | ug/L | 0.15 | 0.50 | 1 | CSL, S1L, S2L | 06/06/06 | MPM | | | Butylbenzene | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | • | Carbon Tetrachloride | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | ~ |
Chlorobenzene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | | Chloroethane | ND | ug/L | 0.60 | 2.00 | 1 | | 06/06/06 | MPM | | J, | Chloroform | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | - | Chloromethane | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | î | cis-1,2-Dichloroethylene | 0.34 | ug/L | 0.20 | 0.67 | 1 | J | 06/06/06 | MPM | | | cis-1,3-Dichloropropylene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | - 7 | | | | | | | | | | TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com ### A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55 | Sample ID: B-6 | Matrix: Ground Water | Sample Date/Time: 05/30/06 12:05 | Lab No. 0606003-13 | |----------------|----------------------|----------------------------------|--------------------| |----------------|----------------------|----------------------------------|--------------------| | _ | | | | | | Dilution | | Date | | |------------------|---|---------|--------------|------------|------------|---------------|-------------------|-----------------|----------------| | K | | Results | <u>Units</u> | <u>LOD</u> | <u>LOQ</u> | <u>Factor</u> | Qualifiers | Analyzed | <u>Analyst</u> | | - | EPA 8260B Continued | | | | | | | | | | | Dibromochloromethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | | Dibromomethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | - | Dichlorodifluoromethane | ND | ug/L | 0.25 | 0.83 | 1 | CSL, CSH | 06/06/06 | MPM | | | Ethylbenzene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | | Hexachlorobutadiene | ND | ug/L | 1.00 | 3.30 | 1 | | 06/06/06 | MPM | | | Isopropylbenzene (Cumene) | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | | m,p-Xylenes | ND | ug/L | 0.40 | 1.30 | 1 | | 06/06/06 | MPM | | 1 | Methylene Chloride | ND | ug/L | 0.40 | 1.30 | 1 | | 06/06/06 | MPM | | | Methyl-tert-Butyl Ether | 0.33 | ug/L | 0.10 | 0.50 | 1 | J | 06/06/06 | MPM | | | Naphthalene | ND | ug/L | 1.00 | 3.30 | 1 | | 06/06/06 | MPM | | | o-Xylene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | | Propylbenzene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | | sec-Butylbenzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | | Styrene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | | tert-Butylbenzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | J | Tetrachloroethene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | ت | Toluene | ND | ug/L | 0.40 | 1.30 | 1 | | 06/06/06 | MPM | | \blacksquare_i | trans-1,2-Dichloroethylene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | | trans-1,3-Dichloropropylene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | ` | Trichloroethene | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | | Trichlorofluoromethane | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | | Vinyl chloride | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | | EPA 8310 | | | | | | | | | | | Prep Method: Method 3510C Liquid Extraction | By: JEG | · | • | | | Date Prepared: | 06/05/06 | | | | 1-Methylnaphthalene | ND | ug/L | 0.080 | 0.260 | 1 | | 06/07/06 | LMP | | | 2-Methylnaphthalene | ND | ug/L | 0.110 | 0.370 | 1 | | 06/07/06 | LMP | | | Acenaphthene | ND | ug/L | 0.060 | 0.200 | 1 | | 06/07/06 | LMP | | | Acenaphthylene | ND | ug/L | 0.060 | 0.200 | 1 | | 06/07/06 | LMP | | | Anthracene | ND | ug/L | 0.090 | 0.300 | 1 | | 06/07/06 | LMP | | | Benzo(a)anthracene | ND | ug/L | 0.100 | 0.330 | 1 | | 06/07/06 | LMP | | | Benzo(a)pyrene | ND | ug/L | 0.020 | 0.067 | 1 | LCH | 06/07/06 | LMP | | | Benzo(b)fluoranthene | ND | ug/L | 0.020 | 0.067 | 1 | | 06/07/06 | LMP | | | Benzo(g,h,i)perylene | ND | ug/L | 0.060 | 0.200 | 1 | | 06/07/06 | LMP | | - | Benzo(k)fluoranthene | ND | ug/L | 0.070 | 0.233 | 1 | | 06/07/06 | LMP | | | Chrysene | ND | ug/L | 0.020 | 0.067 | 1 | | 06/07/06 | LMP | | | Dibenzo(a,h)anthracene | ND | ug/L | 0.110 | 0.370 | 1 | | 06/07/06 | LMP | TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55 PREPARED BY: JRS Sample ID: B-6 Matrix: Ground Water Sample Date/Time: 05/30/06 12:05 Lab No. 0606003-13 | Ì | EPA 8310 Continued | Results | <u>Units</u> | <u>LOD</u> | LOQ | Dilution
<u>Factor</u> | <u>Qualifiers</u> | Date
<u>Analyzed</u> | <u>Analyst</u> | |---|---|---------|--------------|------------|-------|---------------------------|-------------------|-------------------------|----------------| | | Prep Method: Method 3510C Liquid Extraction | By: JEG | | | | 1 | Date Prepared: | 06/05/06 | | | | Fluoranthene | ND | ug/L | 0.120 | 0.400 | 1 | - | 06/07/06 | LMP | | | Fluorene | ND | ug/L | 0.120 | 0.400 | 1 | | 06/07/06 | LMP | | | Indeno(1,2,3-cd)pyrene | ND | ug/L | 0.120 | 0.400 | 1 | | 06/07/06 | LMP | | | Naphthalene | ND | ug/L | 0.110 | 0.370 | 1 | | 06/07/06 | LMP | |) | Phenanthrene | ND | ug/L | 0.110 | 0.370 | 1 | | 06/07/06 | LMP | | | Pyrene | ND | ug/L | 0.100 | 0.330 | 1 | | 06/07/06 | LMP | TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com #### A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55 | Sample ID: B-9 | Matrix: Ground Water | Sample Date/Time: 05/30/06 11:45 | Lab No. 0606003-14 | |-----------------------|----------------------|----------------------------------|--------------------| |-----------------------|----------------------|----------------------------------|--------------------| | - | | | | | Dilution | | Date | | |-----------------------------|---------|--------------|------------|------------|---------------|-------------------|-----------------|----------------| | | Results | <u>Units</u> | LOD | LOQ | <u>Factor</u> | Qualifiers | Analyzed | <u>Analyst</u> | | <u>EPA 8260B</u> | | • | • | | | | | | | 1,1,1,2-Tetrachloroethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | 1,1,1-Trichloroethane | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | 1,1,2,2-Tetrachloroethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | 1,1,2-Trichloroethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | 1,1-Dichloroethane | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | 1,1-Dichloroethylene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | 1,1-Dichloropropylene | ND | ug/L | 0.30 | 1.00 | 1 | | 06/06/06 | MPM | | 1,2,3-Trichlorobenzene | ND | ug/L | 0.50 | 1.70 | 1 | | 06/06/06 | MPM | | 1,2,3-Trichloropropane | ND | ug/L | 0.55 | 1.80 | 1 | | 06/06/06 | MPM | | 1,2,4-Trichlorobenzene | ND | ug/L | 0.50 | 1.70 | 1 | | 06/06/06 | MPM | | 1,2,4-Trimethylbenzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | 1,2-Dibromo-3-chloropropane | ND | ug/L | 0.35 | 1.17 | 1 | | 06/06/06 | MPM | | 1,2-Dibromoethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | 1,2-Dichlorobenzene | ND | ug/L | 0.75 | 2.50 | 1 | S1H, S2H | 06/06/06 | MPM | | 1,2-Dichloroethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | 1,2-Dichloropropane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | 1,3,5-Trimethylbenzene | ND | ug/L | 0.15 | 0.50 | I | | 06/06/06 | MPM | | 1,3-Dichlorobenzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | - 1,3-Dichloropropane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | 1,4-Dichlorobenzene | ND | ug/L | 0.75 | 2.50 | 1 | | 06/06/06 | MPM | | 2,2-Dichloropropane | ND | ug/L • | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | 2-Chlorotoluene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | 4-Chlorotoluene | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | 4-Isopropyltoluene | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | _ Benzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | Bromobenzene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | Bromochloromethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | Bromodichloromethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | Bromoform | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | Bromomethane | ND | ug/L | 0.15 | 0.50 | 1 | CSL, S1L, S2L | 06/06/06 | MPM | | Butylbenzene | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | Carbon Tetrachloride | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | Chlorobenzene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | Chloroethane | ND | ug/L | 0.60 | 2.00 | 1 | | 06/06/06 | MPM | | Chloroform | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | Chloromethane | 0.49 | ug/L | 0.20 | 0.67 | 1 | J | 06/06/06 | MPM | | cis-1,2-Dichloroethylene | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | cis-1,3-Dichloropropylene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com #### A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55 | - | Sample ID: B-9 | Matrix: Gr | ound Water | Sar | nple Date/ | Time: 05 | /30/06 11:45 | Lab No. 0606003-14 | | |----|---|----------------|--------------|------------|------------|---------------------------|----------------|-------------------------|----------------| | | | <u>Results</u> | <u>Units</u> | <u>LOD</u> | <u>LOQ</u> | Dilution
<u>Factor</u> | | Date
<u>Analyzed</u> |
<u>Analyst</u> | | 2 | EPA 8260B Continued | | | | | | | | | | _ | Dibromochloromethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | | Dibromomethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | l | Dichlorodifluoromethane | ND | ug/L | 0.25 | 0.83 | 1 | CSL, CSH | 06/06/06 | MPM | | | Ethylbenzene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | l | Hexachlorobutadiene | ND | ug/L | 1.00 | 3.30 | 1 | | 06/06/06 | MPM | | | Isopropylbenzene (Cumene) | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | | m,p-Xylenes | ND | ug/L | 0.40 | 1.30 | 1 | | 06/06/06 | MPM | | | Methylene Chloride | ND | ug/L | 0.40 | 1.30 | 1 | | 06/06/06 | MPM | | | Methyl-tert-Butyl Ether | 1.49 | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | | Naphthalene | ND | ug/L | 1.00 | 3.30 | 1 | | 06/06/06 | MPM | | | o-Xylene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | | Propylbenzene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | | sec-Butylbenzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | | Styrene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | | tert-Butylbenzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | 7 | Tetrachloroethene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | Ľ | Toluene | ND | ug/L | 0.40 | 1.30 | 1 | | 06/06/06 | MPM | | ľ | trans-1,2-Dichloroethylene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | Į, | trans-1,3-Dichloropropylene | ND | ug/L · | 0.10 · | 0.50 | 1 | | 06/06/06 | MPM | | _ | Trichloroethene | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | ı | Trichlorofluoromethane | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | | Vinyl chloride | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | | EPA 8310 | | | | | | | | | | | Prep Method: Method 3510C Liquid Extraction | By: JEG | | | | | Date Prepared: | 06/05/06 | | | | 1-Methylnaphthalene | ND | ug/L | 0.080 | 0.260 | 1 | | 06/07/06 | LMP | | | 2-Methylnaphthalene | ND | ug/L | 0.110 | 0.370 | 1 | | 06/07/06 | LMP | | | Acenaphthene | ND | ug/L | 0.060 | 0.200 | 1 | | 06/07/06 | LMP | | | Acenaphthylene | ND | ug/L | 0.060 | 0.200 | 1 | | 06/07/06 | LMP | | | Anthracene | ND | ug/L | 0.090 | 0.300 | 1 | | 06/07/06 | LMP | | ŀ | Benzo(a)anthracene | ND | ug/L | 0.100 | 0.330 | 1 | | 06/07/06 | LMP | | | Benzo(a)pyrene | ND | ug/L | 0.020 | 0.067 | 1 | LCH | 06/07/06 | LMP | | Í | Benzo(b)fluoranthene | ND | ug/L | 0.020 | 0.067 | 1 | | 06/07/06 | LMP | | | Benzo(g,h,i)perylene | ND | ug/L | 0.060 | 0.200 | 1 | | 06/07/06 | LMP | | • | Benzo(k)fluoranthene | ND | ug/L | 0.070 | 0.233 | 1 | | 06/07/06 | LMP | | P | Chrysene | 0.090 | ug/L | 0.020 | 0.067 | 1 | | 06/07/06 | LMP | | | Dibenzo(a,h)anthracene | ND | ug/L | 0.110 | 0.370 | 1 | | 06/07/06 | LMP | | | | | | | | | | | | TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55 PREPARED BY: JRS Sample ID: B-9 Matrix: Ground Water Sample Date/Time: 05/30/06 11:45 Lab No. 0606003-14 | | | | | | | Dilution | | Date | | |----|---|----------------|--------------|------------|-------|---------------|-------------------|-----------------|----------------| | | | Results | <u>Units</u> | <u>LOD</u> | LOO | Factor | Qualifiers | Analyzed | <u>Analyst</u> | |)) | EPA 8310 Continued | | | | | | | | | | | Prep Method: Method 3510C Liquid Extraction | By: JEG | | | | L | Date Prepared: | 06/05/06 | | | | Fluoranthene | 0.157 | ug/L | 0.120 | 0.400 | - 1 J | f | 06/07/06 | LMP | | l | Fluorene | ND | ug/L | 0.120 | 0.400 | 1 | | 06/07/06 | LMP | | | Indeno(1,2,3-cd)pyrene | ND | ug/L | 0.120 | 0.400 | 1 | | 06/07/06 | LMP | | | Naphthalene | ND | ug/L | 0.110 | 0.370 | 1 | | 06/07/06 | LMP | | | Phenanthrene | ND | ug/L | 0.110 | 0.370 | 1 | | 06/07/06 | LMP | | | Pyrene | ND | ug/L | 0.100 | 0.330 | 1 | | 06/07/06 | LMP | TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com #### A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55 PREPARED BY: JRS Sample ID: B-11 Matrix: Ground Water Sample Date/Time: 05/30/06 11:05 Lab No. 0606003-15 | _ | | | | | Dilution | | Date | | |-----------------------------|---------|--------------|------------|------------|---------------|-------------------|-----------------|----------------| | | Results | <u>Units</u> | LOD | <u>LOO</u> | <u>Factor</u> | Qualifiers | Analyzed | <u>Analyst</u> | | EPA 8260B | | | | | | | | | | 1,1,1,2-Tetrachloroethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | 1,1,1-Trichloroethane | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | 1,1,2,2-Tetrachloroethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | 1,1,2-Trichloroethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | 1,1-Dichloroethane | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | 1,1-Dichloroethylene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | 1,1-Dichloropropylene | ND | ug/L | 0.30 | 1.00 | 1 | | 06/06/06 | MPM | | 1,2,3-Trichlorobenzene | ND | ug/L | 0.50 | 1.70 | 1 | | 06/06/06 | MPM | | 1,2,3-Trichloropropane | ND | ug/L | 0.55 | 1.80 | 1 | | 06/06/06 | MPM | | 1,2,4-Trichlorobenzene | ND | ug/L | 0.50 | 1.70 | 1 | | 06/06/06 | MPM | | 1,2,4-Trimethylbenzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | 1,2-Dibromo-3-chloropropane | ND | ug/L | 0.35 | 1.17 | i | | 06/06/06 | MPM | | 1,2-Dibromoethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | 1,2-Dichlorobenzene | ND | ug/L | 0.75 | 2.50 | 1 | S1H, S2H | 06/06/06 | MPM | | 1,2-Dichloroethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | 1,2-Dichloropropane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | 1,3,5-Trimethylbenzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | 1,3-Dichlorobenzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | 1,3-Dichloropropane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | 1,4-Dichlorobenzene | ND | ug/L | 0.75 | 2.50 | 1 | | 06/06/06 | MPM | | 2,2-Dichloropropane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | 2-Chlorotoluene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | 4-Chlorotoluene | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | 4-Isopropyltoluene | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | Benzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | Bromobenzene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | Bromochloromethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | Bromodichloromethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | Bromoform | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | Bromomethane | ND | ug/L | 0.15 | 0.50 | 1 | CSL, S1L, S2L | 06/06/06 | MPM | | Butylbenzene | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | Carbon Tetrachloride | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | Chlorobenzene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | Chloroethane | ND | ug/L | 0.60 | 2.00 | 1 | | 06/06/06 | MPM | | Chloroform | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | Chloromethane | ND | ug/L | 0.20 | 0.67 | i | | 06/06/06 | MPM | | cis-1,2-Dichloroethylene | 0.95 | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | cis-1,3-Dichloropropylene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | | | | | | | | | | TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55 | Sample ID: B-11 Matrix: Ground Water Sample Date/Time: 05/30/06 11:05 Lab No | 0606003-15 | |--|------------| |--|------------| | | | | | | Dilution | l | Date | | |---|---------|--------------|------------|------------|---------------|-------------------|-----------------|----------------| | | Results | <u>Units</u> | <u>LOD</u> | <u>LOO</u> | <u>Factor</u> | Qualifiers | Analyzed | <u>Analyst</u> | | EPA 8260B Continued | | | | | | | | | | Dibromochloromethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | Dibromomethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | Dichlorodifluoromethane | ND | ug/L | 0.25 | 0.83 | 1 | CSL, CSH | 06/06/06 | MPM | | Ethylbenzene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | Hexachlorobutadiene | ND | ug/L | 1.00 | 3.30 | 1 | | 06/06/06 | MPM | | Isopropylbenzene (Cumene) | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | m,p-Xylenes | ND | ug/L | 0.40 | 1.30 | 1 | | 06/06/06 | MPM | | Methylene Chloride | ND | ug/L | 0.40 | 1.30 | 1 | | 06/06/06 | MPM | | Methyl-tert-Butyl Ether | 0.56 | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | Naphthalene | ND | ug/L | 1.00 | 3.30 | I | | 06/06/06 | MPM | | o-Xylene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | Propylbenzene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | sec-Butylbenzene | ND | ug/L ' | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | Styrene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | tert-Butylbenzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | Tetrachloroethene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | Toluene | ND | ug/L | 0.40 | 1.30 | 1 | | 06/06/06 | MPM | | trans-1,2-Dichloroethylene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | trans-1,3-Dichloropropylene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | Trichloroethene | 0.69 |
ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | Trichlorofluoromethane | ND | ug/L | 0.20 | 0.67 | I | | 06/06/06 | MPM | | Vinyl chloride | ND | ug/L | 0.15 | 0.50 | i | | 06/06/06 | MPM | | EPA 8310 | | | | | | | | | | Prep Method: Method 3510C Liquid Extraction | By: JEG | | | | | Date Prepared: | 06/05/06 | | | I-Methylnaphthalene | ND | ug/L | 0.080 | 0.260 | 1 | | 06/07/06 | LMP | | 2-Methylnaphthalene | ND | ug/L | 0.110 | 0.370 | 1 | | 06/07/06 | LMP | | Acenaphthene | ND | ug/L | 0.060 | 0.200 | 1 | | 06/07/06 | LMP | | Acenaphthylene | ND | ug/L | 0.060 | 0.200 | 1 | | 06/07/06 | LMP | | Anthracene | ND | ug/L | 0.090 | 0.300 | 1 | | 06/07/06 | LMP | | Benzo(a)anthracene | ND | ug/L | 0.100 | 0.330 | 1 | | 06/07/06 | LMP | | Benzo(a)pyrene | ND | ug/L | 0.020 | 0.067 | 1 | LCH | 06/07/06 | LMP | | Benzo(b)fluoranthene | ND | ug/L | 0.020 | 0.067 | 1 | | 06/07/06 | LMP | | Benzo(g,h,i)perylene | ND | ug/L | 0.060 | 0.200 | 1 | | 06/07/06 | LMP | | Benzo(k)fluoranthene | ND | ug/L | 0.070 | 0.233 | 1 | | 06/07/06 | LMP | | Chrysene | ND | ug/L | 0.020 | 0.067 | 1 | | 06/07/06 | LMP | | Dibenzo(a,h)anthracene | ND | ug/L | 0.110 | 0.370 | 1 | | 06/07/06 | LMP | | | . 120 | -5/ 2 | 0.410 | 5.510 | • | | 00/01/00 | D1111 | TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com #### A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55 PREPARED BY: JRS Sample ID: B-11 Matrix: Ground Water Sample Date/Time: 05/30/06 11:05 Lab No. 0606003-15 | | | | | | | Dilution | | Date | | |---|---|---------|--------------|------------|------------|---------------|-------------------|-----------------|----------------| | | | Results | <u>Units</u> | <u>LOD</u> | <u>LOQ</u> | Factor | Qualifiers | Analyzed | <u>Analyst</u> | |) | EPA 8310 Continued | | | | | | | | | | | Prep Method: Method 3510C Liquid Extraction | By: JEG | | | | I | Date Prepared: | 06/05/06 | | | ľ | Fluoranthene | ND | ug/L | 0.120 | 0.400 | 1 | | 06/07/06 | LMP | | į | Fluorene | ND | ug/L | 0.120 | 0.400 | 1 | | 06/07/06 | LMP | | | Indeno(1,2,3-cd)pyrene | ND | ug/L | 0.120 | 0.400 | 1 | | 06/07/06 | LMP | | | Naphthalene | ND | ug/L | 0.110 | 0.370 | 1 | | 06/07/06 | LMP | | 1 | Phenanthrene | ND | ug/L | 0.110 | 0.370 | 1 | | 06/07/06 | LMP | | | Pyrene | ND | ug/L | 0.100 | 0.330 | 1 | | 06/07/06 | LMP | TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55 PREPARED BY: JRS Sample ID: B-12 Matrix: Ground Water Sample Date/Time: 05/30/06 10:35 Lab No. 0606003-16 | | | | | | | Dilution | | Date | | |------|--------------------------|---------|--------------|------------|------|---------------|-------------------|-----------------|----------------| | l | | Results | <u>Units</u> | <u>LOD</u> | LOO | <u>Factor</u> | Qualifiers | Analyzed | <u>Analyst</u> | | , | A 8260B | | | | | | | | | | | 1,2-Tetrachloroethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | 1,1, | ,1-Trichloroethane | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | 1,1, | 2,2-Tetrachloroethane | ND- | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | | 2-Trichloroethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | 1,1- | -Dichloroethane | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | 1,1- | -Dichloroethylene | 0.15 | ug/L | 0.15 | 0.50 | 1 | J | 06/06/06 | MPM | | 1,1- | -Dichloropropylene | ND | ug/L | 0.30 | 1.00 | 1 | | 06/06/06 | MPM | | 1,2, | 3-Trichlorobenzene | ND | ug/L | 0.50 | 1.70 | 1 | | 06/06/06 | MPM | | 1,2, | 3-Trichloropropane | ND | ug/L | 0.55 | 1.80 | 1 | | 06/06/06 | MPM | | 1,2, | 4-Trichlorobenzene | ND | ug/L | 0.50 | 1.70 | 1 | | 06/06/06 | MPM | | 1,2, | 4-Trimethylbenzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | 1,2- | -Dibromo-3-chloropropane | ND | ug/L | 0.35 | 1.17 | 1 | | 06/06/06 | MPM | | 1,2- | -Dibromoethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | 1,2- | -Dichlorobenzene | ND | ug/L | 0.75 | 2.50 | 1 | S1H, S2H | 06/06/06 | MPM | | 1,2- | -Dichloroethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | 1,2- | -Dichloropropane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | 1,3, | 5-Trimethylbenzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | 1,3- | -Dichlorobenzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | 1,3- | -Dichloropropane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | 1,4- | -Dichlorobenzene | ND | ug/L | 0.75 | 2.50 | 1 | | 06/06/06 | MPM | | 2,2- | -Dichloropropane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | 2-C | hlorotoluene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | 4-C | hlorotoluene | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | 4-Is | opropyltoluene | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | Ben | izene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | Bro | mobenzene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | Bro | mochloromethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | Bro | modichloromethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | Bro | moform | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | Bro | momethane | ND | ug/L | 0.15 | 0.50 | 1 | CSL, S1L, S2L | 06/06/06 | MPM | | But | ylbenzene | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | Carl | bon Tetrachloride | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | Chl | orobenzene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | Chl | oroethane | ND | ug/L | 0.60 | 2.00 | 1 | | 06/06/06 | MPM | | Chl | oroform | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | Chl | oromethane | 0.26 | ug/L | 0.20 | 0.67 | 1 | J | 06/06/06 | MPM | | cis- | 1,2-Dichloroethylene | 7.64 | ug/L | 0.20 | 0.67 | i | | 06/06/06 | MPM | | cis- | 1,3-Dichloropropylene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | | | | - | | | | | | | Matrix: Ground Water TELEPHONE FACSIMILE WEBSITE Sample Date/Time: 05/30/06 10:35 800-338-7226 715-355-3221 www.enviroscan.usfilter.com Lab No. 0606003-16 #### A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl Sample ID: B-12 PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55 PREPARED BY: JRS | R | | <u>Results</u> | <u>Units</u> | LOD | LOQ | Dilution | | Date | Amatas 4 | |---|---|----------------|--------------|-------|------------|---------------|-------------------|-----------------|----------------| | | EPA 8260B Continued | Kesuits | Oms | LOD | <u>100</u> | <u>Factor</u> | <u>Qualifiers</u> | <u>Analyzed</u> | <u>Analyst</u> | | | Dibromochloromethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | Į | Dibromomethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | | Dichlorodifluoromethane | ND | ug/L | 0.25 | 0.83 | 1 | CSL, CSH | 06/06/06 | MPM | | | Ethylbenzene | ND | ug/L | 0.10 | 0.50 | 1 | , | 06/06/06 | MPM | | } | Hexachlorobutadiene | ND | ug/L | 1.00 | 3.30 | 1 | | 06/06/06 | MPM | | 1 | Isopropylbenzene (Cumene) | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | , | m,p-Xylenes | ND | ug/L | 0.40 | 1.30 | 1 | | 06/06/06 | MPM | | ſ | Methylene Chloride | ND | ug/L | 0.40 | 1.30 | 1 | | 06/06/06 | MPM | | | Methyl-tert-Butyl Ether | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | ŀ | Naphthalene | ND | ug/L | 1.00 | 3.30 | 1 | | 06/06/06 | MPM | | | o-Xylene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | | Propylbenzene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | |) | sec-Butylbenzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | | Styrene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | | tert-Butylbenzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/06/06 | MPM | | | Tetrachloroethene | 0.21 | ug/L | 0.10 | 0.50 | 1 | J | 06/06/06 | MPM | | | Toluene | ND | ug/L | 0.40 | 1.30 | 1 | | 06/06/06 | MPM | | | trans-1,2-Dichloroethylene | 0.14 | ug/L | 0.10 | 0.50 | 1 | J | 06/06/06 | MPM | | l | trans-1,3-Dichloropropylene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/06/06 | MPM | | | Trichloroethene | 2.11 | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | | Trichlorofluoromethane | ND | ug/L | 0.20 | 0.67 | 1 | | 06/06/06 | MPM | | 3 | Vinyl chloride | 0.26 | ug/L | 0.15 | 0.50 | 1 | J | 06/06/06 | MPM | | | EPA 8310 | | | | | | | | | | l | Prep Method: Method 3510C Liquid Extraction | By: JEG | | | | | Date Prepared: | 06/06/06 | | | | 1-Methylnaphthalene | ND | ug/L | 0.082 | 0.265 | 1.02 | | 06/10/06 | LMP | | | 2-Methylnaphthalene | ND | ug/L | 0.112 | 0.378 | 1.02 | | 06/10/06 | LMP | | | Acenaphthene | ND | ug/L . | 0.061 | 0.204 | 1.02 | | 06/10/06 | LMP | | | Acenaphthylene | ND | ug/L | 0.061 | 0.204 | 1.02 | | 06/10/06 | LMP | | | Anthracene | ND | ug/L | 0.092 | 0.306 | 1.02 | | 06/10/06 | LMP | | | Benzo(a)anthracene | ND | ug/L | 0.102 | 0.337 | 1.02 | | 06/10/06 | LMP | | | Benzo(a)pyrene | ND | ug/L | 0.020 | 0.068 | 1.02 | CSL, LCL | 06/10/06 | LMP | | | Benzo(b)fluoranthene | ND | ug/L | 0.020 | 0.068 | 1.02 | | 06/10/06 | LMP | | | | | | | | | | | | ND ND ND ND ug/L ug/L ug/L ug/L 0.061 0.071 0.020 0.112 0.204 0.238 0.068 0.378 1.02 1.02 1.02 1.02 06/10/06 06/10/06 06/10/06 06/10/06 LMP LMP LMP LMP Chrysene Benzo(g,h,i)perylene Benzo(k)fluoranthene Dibenzo(a,h)anthracene TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 REPORT NO.: 0606003 DATE REC'D:
06/01/06 08:21 REPORT DATE: 06/14/06 13:55 PREPARED BY: JRS Sample ID: B-12 Matrix: Ground Water Sample Date/Time: 05/30/06 10:35 Lab No. 0606003-16 | | Results | <u>Units</u> | LOD | LOQ | Dilution
<u>Factor</u> | <u>Qualifiers</u> | Date
<u>Analyzed</u> | <u>Analyst</u> | |---|---------|--------------|---------|-------|---------------------------|-------------------|-------------------------|----------------| | EPA 8310 Continued | | | | | | | | | | Prep Method: Method 3510C Liquid Extraction | By: JEG | | | | I | Date Prepared: | 06/06/06 | | | Fluoranthene | ND | ug/L | 0.122 | 0.408 | 1.02 | | 06/10/06 | LMP | | Fluorene | ND | ug/L | 0.122 | 0.408 | 1.02 | | 06/10/06 | LMP | | Indeno(1,2,3-cd)pyrene | ND | ug/L | 0.122 | 0.408 | 1.02 | | 06/10/06 | LMP | | Naphthalene | ND | ug/L . | 0.112 . | 0.378 | 1.02 | | 06/10/06 | LMP | | Phenanthrene | ND | ug/L | 0.112 | 0.378 | 1.02 | | 06/10/06 | LMP | | Pyrene | ND | ug/L | 0.102 | 0.337 | 1.02 | | 06/10/06 | LMP | TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com #### A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55 | Sample ID: Large Sump | Matrix: Gr | ound Water | Sample Date/Time: 05/30/06 11:20 | | 30/06 11:20 | Lab No. 0606003-17 | | | |--|------------|--------------|----------------------------------|------|---------------------------|--------------------|-------------------------|----------------| | | Results | <u>Units</u> | <u>LOD</u> | LOQ | Dilution
<u>Factor</u> | Qualifiers | Date
<u>Analyzed</u> | <u>Analyst</u> | | EPA 8260B
1,1,1,2-Tetrachloroethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | 1,1,1-Trichloroethane | ND | ug/L
ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM
MPM | | 1,1,2,2-Tetrachloroethane | ND | | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | 1,1,2-Trichloroethane | ND | ug/L
ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | 1,1-Dichloroethane | ND | ug/L
ug/L | 0.15 | 0.50 | 1 | | 06/07/06 | MPM | | 1,1-Dichloroethylene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/07/06 | MPM | | 1,1-Dichloropropylene | ND | ug/L | 0.30 | 1.00 | 1 | | 06/07/06 | MPM | | 1,2,3-Trichlorobenzene | ND | ug/L | 0.50 | 1.70 | 1 | CSH | 06/07/06 | MPM | | 1,2,3-Trichloropropane | ND | ug/L | 0.55 | 1.80 | i | 0011 | 06/07/06 | MPM | | 1,2,4-Trichlorobenzene | ND | ug/L | 0.50 | 1.70 | 1 | | 06/07/06 | MPM | | 1,2,4-Trimethylbenzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/07/06 | MPM | | 1,2-Dibromo-3-chloropropane | ND | ug/L | 0.35 | 1.17 | 1 | | 06/07/06 | MPM | | 1,2-Dibromoethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | 1,2-Dichlorobenzene | ND | ug/L | 0.75 | 2.50 | 1 | | 06/07/06 | MPM | | 1,2-Dichloroethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | 1,2-Dichloropropane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | 1,3,5-Trimethylbenzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/07/06 | MPM | | 1,3-Dichlorobenzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/07/06 | MPM | | 1,3-Dichloropropane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | 1,4-Dichlorobenzene | ND | ug/L | 0.75 | 2.50 | 1 | | 06/07/06 | MPM | | 2,2-Dichloropropane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | 2-Chlorotoluene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | 4-Chlorotoluene | ND | ug/L | 0.20 | 0.67 | 1 | | 06/07/06 | MPM | | 4-Isopropyltoluene | ND | ug/L | 0.20 | 0.67 | 1 | | 06/07/06 | MPM | | Benzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/07/06 | MPM | | Bromobenzene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | Bromochloromethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | Bromodichloromethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | Bromoform | ND | ug/L | 0.20 | 0.67 | 1 | | 06/07/06 | MPM | | Bromomethane | ND | ug/L | 0.15 | 0.50 | 1 | CSL | 06/07/06 | MPM | | Butylbenzene | ND | ug/L | 0.20 | 0.67 | 1 | | 06/07/06 | MPM | | Carbon Tetrachloride | ND | ug/L | 0.20 | 0.67 | 1 | | 06/07/06 | MPM | | Chlorobenzene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | Chloroethane | ND | ug/L | 0.60 | 2.00 | 1 | | 06/07/06 | MPM | | Chloroform | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | Chloromethane | ND | ug/L | 0.20 | 0.67 | 1 | | 06/07/06 | MPM | | cis-1,2-Dichloroethylene | 1.67 | ug/L | 0.20 | 0.67 | 1 | | 06/07/06 | MPM | | cis-1,3-Dichloropropylene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com #### A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55 | Sample ID: Large Sump Matrix: Ground Water Sample Date/Time: 05/ | | | /30/06 11:20 | Lab No. | 0606003-17 | | | | | |--|---|---------|--------------|------------|------------|---------------------------|----------------|-------------------------|----------------| | | | Results | <u>Units</u> | <u>LOD</u> | <u>LOQ</u> | Dilutior
<u>Factor</u> | | Date
<u>Analyzed</u> | <u>Analyst</u> | | | EPA 8260B Continued | | | | | | | | | | | Dibromochloromethane | ND | ug/L * | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | į | Dibromomethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | | Dichlorodifluoromethane | ND | ug/L | 0.25 | 0.83 | 1 | CSH | 06/07/06 | MPM | | | Ethylbenzene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | ì | Hexachlorobutadiene | ND | ug/L | 1.00 | 3.30 | 1 | | 06/07/06 | MPM | | | Isopropylbenzene (Cumene) | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | • | m,p-Xylenes | ND | ug/L | 0.40 | 1.30 | 1 | | 06/07/06 | MPM | | | Methylene Chloride | ND | ug/L | 0.40 | 1.30 | 1 | | 06/07/06 | MPM | | | Methyl-tert-Butyl Ether | 1.01 | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | | Naphthalene | ND | ug/L | 1.00 | 3.30 | 1 | CSH | 06/07/06 | MPM | | | o-Xylene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | l | Propylbenzene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | } | sec-Butylbenzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/07/06 | MPM | | | Styrene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | Ì | tert-Butylbenzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/07/06 | MPM | | II | Tetrachloroethene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | | Toluene | ND | ug/L | 0.40 | 1.30 | 1 | | 06/07/06 | MPM | | ı | trans-1,2-Dichloroethylene | 0.14 | ug/L | 0.10 | 0.50 | 1 | J | 06/07/06 | MPM | | | trans-1,3-Dichloropropylene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | | Trichloroethene | 0.95 | ug/L | 0.20 | 0.67 | 1 | | 06/07/06 | MPM | | ı | Trichlorofluoromethane | ND | ug/L | 0.20 | 0.67 | 1 | CSH | 06/07/06 | MPM | | | Vinyl chloride | ND | ug/L • | 0.15 | 0.50 | 1 | | 06/07/06 | MPM | | | EPA 8310 | | | | | | | | | | | Prep Method: Method 3510C Liquid Extraction | By: JEG | | | | | Date Prepared: | 06/06/06 | | | | I-Methylnaphthalene | ND | ug/L | 0.080 | 0.260 | 1 | | 06/10/06 | LMP | | | 2-Methylnaphthalene | ND | ug/L | 0.110 | 0.370 | 1 | | 06/10/06 | LMP | | | Acenaphthene | ND | ug/L | 0.060 | 0.200 | 1 | | 06/10/06 | LMP | | | Acenaphthylene | ND | ug/L | 0.060 | 0.200 | 1 | | 06/10/06 | LMP | | | Anthracene | ND | ug/L | 0.090 | 0.300 | i | | 06/10/06 | LMP | | | Benzo(a)anthracene | ND | ug/L | 0.100 | 0.330 | 1 | | 06/10/06 | LMP | | | Benzo(a)pyrene | ND | ug/L | 0.020 | 0.067 | 1 | CSL, LCL | 06/10/06 | LMP | | | Benzo(b)fluoranthene | ND | ug/L | 0.020 | 0.067 | 1 | | 06/10/06 | LMP | | | Benzo(g,h,i)perylene | ND | ug/L | 0.060 | 0.200 | 1 | | 06/10/06 | LMP | | | Benzo(k)fluoranthene | ND | ug/L | 0.070 | 0.233 | 1 | | 06/10/06 | LMP | | | Chrysene | ND | ug/L | 0.020 | 0.067 | 1 | | 06/10/06 | LMP | | | Dibenzo(a,h)anthracene | ND | ug/L | 0.110 | 0.370 | 1 | | 06/10/06 | LMP | | | | | | | | | | | | TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55 | Sample ID: Large Sump | Matrix: Gr | ound Water | Sam | ple Date/ | Lab No. 0606003-17 | | | | |---|------------|----------------|--------------|------------|---------------------------|----------------|-------------------------|----------------| | EPA 8310 Continued | Results | <u>Units</u> - | <u>LOD</u> · | <u>LOQ</u> | Dilution
<u>Factor</u> | Qualifiers | Date
<u>Analyzed</u> | <u>Analyst</u> | | Prep Method: Method 3510C Liquid Extraction | By: JEG | | | | L | Date Prepared: | 06/06/06 | | | Fluoranthene | ND | ug/L | 0.120 | 0.400 | 1 | | 06/10/06 | LMP | | Fluorene | ND | ug/L | 0.120 | 0.400 | 1 | | 06/10/06 | LMP | | Indeno(1,2,3-cd)pyrene | ND | ug/L | 0.120 | 0.400 | 1 | | 06/10/06 | LMP | | Naphthalene | ND | ug/L | 0.110 | 0.370 | 1 | | 06/10/06 | LMP | | Phenanthrene | ND | ug/L | 0.110 | 0.370 | 1 | | 06/10/06 | LMP | | Pyrene | ND | ug/L | 0.100 | 0.330 | 1 | | 06/10/06 | LMP | TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com #### A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55 | Sample ID: West Sump | Matrix: Ground Water | | Sar | nple Date/ | Time: 05 | Lab No. 0606003-18 | | | |---|----------------------|--------------|------------|------------|---------------
--------------------|-----------------|----------------| | | | | | | Dilution | | Date | | | FDA 92COD Continued | <u>Results</u> | <u>Units</u> | <u>LOD</u> | <u>LOO</u> | <u>Factor</u> | Qualifiers | <u>Analyzed</u> | Analyst | | EPA 8260B Continued | | | | | | | | | | Dibromochloromethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | Dibromomethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | Dichlorodifluoromethane | ND | ug/L | 0.25 | 0.83 | 1 | CSH | 06/07/06 | MPM | | Ethylbenzene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | Hexachlorobutadiene | ND | ug/L | 1.00 | 3.30 | 1 | | 06/07/06 | MPM | | Isopropylbenzene (Cumene) | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | m,p-Xylenes | ND | ug/L | 0.40 | 1.30 | 1 | | 06/07/06 | MPM | | Methylene Chloride | ND | ug/L | 0.40 | 1.30 | 1 | | 06/07/06 | MPM | | Methyl-tert-Butyl Ether | 0.32 | ug/L | 0.10 | 0.50 | 1 | J | 06/07/06 | MPM | | Naphthalene | ND | ug/L | 1.00 | 3.30 | 1 | CSH | 06/07/06 | MPM | | o-Xylene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | Propylbenzene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | sec-Butylbenzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/07/06 | MPM | | Styrene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | tert-Butylbenzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/07/06 | MPM | | Tetrachloroethene | ND | ug/L . | 0.10 . | 0.50 | 1 | | 06/07/06 | MPM | | Toluene | ND | ug/L | 0.40 | 1.30 | 1 | | 06/07/06 | MPM | | trans-1,2-Dichloroethylene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | trans-1,3-Dichloropropylene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | Trichloroethene | ND | ug/L | 0.20 | 0.67 | 1 | | 06/07/06 | MPM | | Trichlorofluoromethane | ND | ug/L | 0.20 | 0.67 | 1 | CSH | 06/07/06 | MPM | | Vinyl chloride | ND | ug/L | 0.15 | 0.50 | 1 | | 06/07/06 | MPM | | EPA 8310 | | | | | | | | | | Prep Method: Method 3510C Liquid Extraction | By: JEG | | | | | Date Prepared: | 06/06/06 | | | 1-Methylnaphthalene | ND | ug/L | 0.080 | 0.260 | 1 | | 06/10/06 | LMP | | 2-Methylnaphthalene | ND | ug/L | 0.110 | 0.370 | 1 | | 06/10/06 | LMP | | Acenaphthene | ND | ug/L | 0.060 | 0.200 | 1 | | 06/10/06 | LMP | | Acenaphthylene | ND | ug/L | 0.060 | 0.200 | 1 | | 06/10/06 | LMP | | Anthracene | ND | ug/L | 0.090 | 0.300 | 1 | | 06/10/06 | LMP | | Benzo(a)anthracene | ND | ug/L | 0.100 | 0.330 | 1 | | 06/10/06 | LMP | | Benzo(a)pyrene | ND | ug/L | 0.020 | 0.067 | 1 | CSL, LCL | 06/10/06 | LMP | | Benzo(b)fluoranthene | 0.095 | ug/L | 0.020 | 0.067 | 1 | | 06/10/06 | LMP | | Benzo(g,h,i)perylene | 0.065 | ug/L | 0.060 | 0.200 | 1 | J | 06/10/06 | LMP | | Benzo(k)fluoranthene | ND | ug/L | 0.070 | 0.233 | 1 | | 06/10/06 | LMP | | Chrysene | 0.143 | ug/L | 0.020 | 0.067 | 1 | | 06/10/06 | LMP | | Dibenzo(a,h)anthracene | ND | ug/L · | 0.110 | 0.370 | 1 | | 06/10/06 | LMP | Matrix: Ground Water TELEPHONE FACSIMILE WEBSITE Sample Date/Time: 05/30/06 12:30 800-338-7226 715-355-3221 www.enviroscan.usfilter.com Lab No. 0606003-18 #### A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl Sample ID: West Sump PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55 PREPARED BY: JRS | | | | | | Dilution | | Date | | |--|----------|------------------|------------|------------|---------------|-------------------|-----------------|----------------| | ED A GOCOD | Results | <u>Units</u> | <u>LOD</u> | <u>LOO</u> | <u>Factor</u> | Qualifiers | Analyzed | <u>Analyst</u> | | EPA 8260B
1,1,1,2-Tetrachloroethane | ND | /7 | 0.10 | 0.50 | , | | 06107106 | 1.451.4 | | 1,1,1-Trichloroethane | ND
ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | 1,1,2,2-Tetrachloroethane | ND
ND | ug/L | 0.20 | 0.67 | 1 | | 06/07/06 | MPM | | 1,1,2-Trichloroethane | | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | 1,1-Dichloroethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | • | ND | ug/L | 0.15 | 0.50 | 1 | | 06/07/06 | MPM | | 1,1-Dichlorography | ND | ug/L | 0.15 | 0.50 | 1 | | 06/07/06 | MPM | | 1,1-Dichloropropylene | ND | ug/L | 0.30 | 1.00 | 1 | G011 | 06/07/06 | MPM | | 1,2,3-Trichlorobenzene | ND | ug/L | 0.50 | 1.70 | 1 | CSH | 06/07/06 | MPM | | 1,2,3-Trichloropropane | ND | ug/L | 0.55 | 1.80 | 1 | | 06/07/06 | MPM | | 1,2,4-Trichlorobenzene | ND | ug/L | 0.50 | 1.70 | 1 | | 06/07/06 | MPM | | 1,2,4-Trimethylbenzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/07/06 | MPM | | 1,2-Dibromo-3-chloropropane | ND | ug/L | 0.35 | 1.17 | 1 | | 06/07/06 | MPM | | 1,2-Dibromoethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | 1,2-Dichlorobenzene | ND | ug/L | 0.75 | 2.50 | 1 | | 06/07/06 | MPM | | 1,2-Dichloroethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | 1,2-Dichloropropane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | 1,3,5-Trimethylbenzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/07/06 | MPM | | 1,3-Dichlorobenzene | ND | ug/L . | 0.15 . | 0.50 | 1 | | 06/07/06 | MPM | | 1,3-Dichloropropane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | 1,4-Dichlorobenzene | ND | ug/L | 0.75 | 2.50 | 1 | | 06/07/06 | MPM | | 2,2-Dichloropropane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | 2-Chlorotoluene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | 4-Chlorotoluene | ND | ug/L | 0.20 | 0.67 | 1 | | 06/07/06 | MPM | | 4-Isopropyltoluene | ND | ug/L | 0.20 | 0.67 | 1 | | 06/07/06 | MPM | | Benzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/07/06 | MPM | | Bromobenzene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | Bromochloromethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | Bromodichloromethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | Bromoform | ND | ug/L | 0.20 | 0.67 | 1 | | 06/07/06 | MPM | | Bromomethane | ND | ug/L | 0.15 | 0.50 | 1 | CSL | 06/07/06 | MPM | | Butylbenzene | ND | ug/L | 0.20 | 0.67 | 1 | _ | 06/07/06 | MPM | | Carbon Tetrachloride | ND | ug/L | 0.20 | 0.67 | 1 | | 06/07/06 | MPM | | Chlorobenzene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | . = | | ~ ~ ~ | | 0.00 | • | | 30/0//00 | 1411 141 | 0.60 0.10 0.20 0.20 0.10 ug/L ug/L ug/L ug/L ug/L 2.00 0.50 0.67 0.67 0.50 1 1 1 J 1 1 06/07/06 06/07/06 06/07/06 06/07/06 06/07/06 MPM MPM MPM MPM MPM ND ND 0.22 ND ND Chloroethane Chloroform Chloromethane cis-1,2-Dichloroethylene cis-1,3-Dichloropropylene TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com #### A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55 | Sample ID: West Sump | Matrix: Ground Water | Sample Date/Time: 0: | 5/30/06 12:30 | Lab No. | 0606003-18 | |----------------------|----------------------|----------------------|---------------|---------|------------| | | | | | | | | | | | | | | Dilution | 1 | Date | | |---|---|---------|--------------|------------|-------|---------------|-------------------|-----------------|----------------| | 1 | | Results | Units | <u>LOD</u> | LOO | Factor | Qualifiers | Analyzed | <u>Analyst</u> | | i | EPA 8310 Continued | | | | | | | | | | | Prep Method: Method 3510C Liquid Extraction | By: JEG | | | | | Date Prepared: | 06/06/06 | | | | Fluoranthene | 0.162 | ug/L | 0.120 | 0.400 | 1 | J | 06/10/06 | LMP | | | Fluorene | ND | ug/L | 0.120 | 0.400 | 1 | | 06/10/06 | LMP | | | Indeno(1,2,3-cd)pyrene | 0.120 | ug/L | 0.120 | 0.400 | 1 | J | 06/10/06 | LMP | | | Naphthalene | ND | ug/L | 0.110 | 0.370 | 1 | | 06/10/06 | LMP | | | Phenanthrene | 0.116 | ug/L | 0.110 | 0.370 | 1 | J | 06/10/06 | LMP | | | Pyrene | ND | ug/L | 0.100 | 0.330 | 1 | | 06/10/06 | LMP | TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com #### A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55 PREPARED BY: JRS Sample ID: MW-5 Dup Matrix: Ground Water Sample Date/Time: 05/30/06 17:45 Lab No. 0606003-19 | | | | | | | Dilution | | Date | | |---|-----------------------------|---------|--------------|------------|------------|---------------|-------------------|-----------------|----------------| | ŀ | | Results | <u>Units</u> | <u>LOD</u> | <u>LOQ</u> | <u>Factor</u> | Qualifiers | Analyzed | <u>Analyst</u> | | ŀ | EPA 8260B | | | | | | | | | | | 1,1,1,2-Tetrachloroethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | } | 1,1,1-Trichloroethane | ND | ug/L | 0.20 | 0.67 | 1 | | 06/07/06 | MPM | | | 1,1,2,2-Tetrachloroethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | | 1,1,2-Trichloroethane | ND | ug/L | 0.10 | 0.50 | i | | 06/07/06 | MPM | | | 1,1-Dichloroethane | ND | ug/L | 0.15 | 0.50 | 1 | | 06/07/06 | MPM | | | 1,1-Dichloroethylene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/07/06 | MPM | | | 1,1-Dichloropropylene | ND | ug/L | 0.30 | 1.00 | 1 | | 06/07/06 | MPM | | | 1,2,3-Trichlorobenzene | ND | ug/L | 0.50 | 1.70 | 1 | CSH | 06/07/06 | MPM | | | 1,2,3-Trichloropropane | ND | ug/L | 0.55 | 1.80 | 1 | | 06/07/06 | MPM | | | 1,2,4-Trichlorobenzene | ND | ug/L | 0.50 | 1.70 | 1 | | 06/07/06 | MPM | | | 1,2,4-Trimethylbenzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/07/06 | MPM | | | 1,2-Dibromo-3-chloropropane | ND | ug/L | 0.35 . | 1.17 | 1 | | 06/07/06 | MPM | | | 1,2-Dibromoethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | | 1,2-Dichlorobenzene | ND | ug/L | 0.75 | 2.50 | 1 | | 06/07/06 | MPM | | | 1,2-Dichloroethane | 0.24 | ug/L | 0.10 | 0.50 | 1 | J | 06/07/06 | MPM | | • | 1,2-Dichloropropane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | | 1,3,5-Trimethylbenzene | ND | ug/L | 0.15 | 0.50 | 1 | |
06/07/06 | MPM | | | 1,3-Dichlorobenzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/07/06 | MPM | | | 1,3-Dichloropropane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | | 1,4-Dichlorobenzene | ND | ug/L | 0.75 | 2.50 | 1 | | 06/07/06 | MPM | | | 2,2-Dichloropropane | ND | ug/L | 0.10 | 0.50 | I | | 06/07/06 | MPM | | | 2-Chlorotoluene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | | 4-Chlorotoluene | ND | ug/L | 0.20 | 0.67 | 1 | | 06/07/06 | MPM | | | 4-Isopropyltoluene | ND | ug/L | 0.20 | 0.67 | 1 | | 06/07/06 | MPM | | | Benzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/07/06 | MPM | | | Bromobenzene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | | Bromochloromethane | ND · | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | | Bromodichloromethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | | Bromoform | ND | ug/L | 0.20 | 0.67 | 1 | | 06/07/06 | MPM | | | Bromomethane | ND | ug/L | 0.15 | 0.50 | 1 | CSL | 06/07/06 | MPM | | | Butylbenzene | ND | ug/L | 0.20 | 0.67 | 1 | | 06/07/06 | MPM | | | Carbon Tetrachloride | ND | ug/L | 0.20 | 0.67 | 1 | | 06/07/06 | MPM | | | Chlorobenzene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | | Chloroethane | ND | ug/L | 0.60 | 2.00 | 1 | | 06/07/06 | MPM | | | Chloroform | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | | Chloromethane | ND | ug/L | 0.20 | 0.67 | 1 | | 06/07/06 | MPM | | | cis-1,2-Dichloroethylene | 5.49 | ug/L | 0.20 | 0.67 | 1 | | 06/07/06 | MPM | | | cis-1,3-Dichloropropylene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | | | | | | | | | | | TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com ### A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55 | Sample ID: MW-5 Dup | Matrix: G | round Water | Sar | nple Date/ | Time: 05 . | /30/06 17:45 | Lab No. | 0606003-19 | |---|-----------|--------------|------------|------------|-------------------|-------------------|-----------------|----------------| | | | | | | Dilutior | 1 | Date | | | | Results | <u>Units</u> | <u>LOD</u> | <u>LOO</u> | <u>Factor</u> | Qualifiers | Analyzed | <u>Analyst</u> | | EPA 8260B Continued | | | | | | | | | | Dibromochloromethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | Dibromomethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | Dichlorodifluoromethane | ND | ug/L | 0.25 | 0.83 | 1 | CSH | 06/07/06 | MPM | | Ethylbenzene | 0.11 | ug/L | 0.10 | 0.50 | 1 | J | 06/07/06 | MPM | | Hexachlorobutadiene | ND | ug/L | 1.00 | 3.30 | 1 | | 06/07/06 | MPM | | Isopropylbenzene (Cumene) | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | m,p-Xylenes | ND | ug/L | 0.40 | 1.30 | 1 | | 06/07/06 | MPM | | Methylene Chloride | ND | ug/L | 0.40 | 1.30 | 1 | | 06/07/06 | MPM | | Methyl-tert-Butyl Ether | 0.18 | ug/L | 0.10 | 0.50 | I | J | 06/07/06 | MPM | | Naphthalene | ND | ug/L , | 1.00 | 3.30 | 1 | CSH | 06/07/06 | MPM | | o-Xylene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | Propylbenzene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | sec-Butylbenzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/07/06 | MPM | | Styrene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | tert-Butylbenzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/07/06 | MPM | | Tetrachloroethene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | Toluene | ND | ug/L | 0.40 | 1.30 | 1 | | 06/07/06 | MPM | | trans-1,2-Dichloroethylene | 0.48 | ug/L | 0.10 | 0.50 | 1 | J | 06/07/06 | MPM | | trans-1,3-Dichloropropylene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | Trichloroethene | ND | ug/L | 0.20 | 0.67 | 1 | | 06/07/06 | MPM | | Trichlorofluoromethane | ND | ug/L | 0.20 | 0.67 | 1 | CSH | 06/07/06 | MPM | | Vinyl chloride | ND | ug/L | 0.15 | 0.50 | I | | 06/07/06 | MPM | | | | | | | | | | | | EPA 8310 | | | | | | | | | | Prep Method: Method 3510C Liquid Extraction | By: JEG | | | | | Date Prepared: | 06/06/06 | | | I-Methylnaphthalene | ND | ug/L | 0.080 | 0.260 | 1 | | 06/10/06 | LMP | | 2-Methylnaphthalene | ND | ug/L | 0.110 | 0.370 | 1 | | 06/10/06 | LMP | | Acenaphthene | ND | ug/L | 0.060 | 0.200 | 1 | | 06/10/06 | LMP | | Acenaphthylene | ND | ug/L | 0.060 | 0.200 | 1 | | 06/10/06 | LMP | | Anthracene | ND | ug/L | 0.090 | 0.300 | 1 | | 06/10/06 | LMP | | Benzo(a)anthracene | ND | ug/L . | 0.100 . | 0.330 | 1 | | 06/10/06 | LMP | | Benzo(a)pyrene | ND | ug/L | 0.020 | 0.067 | 1 | CSL, LCL | 06/10/06 | LMP | | Benzo(b)fluoranthene | 0.025 | ug/L | 0.020 | 0.067 | 1 | J | 06/10/06 | LMP | | Benzo(g,h,i)perylene | 0.170 | ug/L | 0.060 | 0.200 | 1 | J | 06/10/06 | LMP | | Benzo(k)fluoranthene | ND | ug/L | 0.070 | 0.233 | 1 | | 06/10/06 | LMP | | Chrysene | ND | ug/L | 0.020 | 0.067 | 1 | | 06/10/06 | LMP | | Dibenzo(a,h)anthracene | ND | ug/L | 0.110 | 0.370 | 1 | | 06/10/06 | LMP | TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55 | Sample ID: MW-5 Dup | Matrix: Ground Water | Sample Date/Time: 05/30/06 17:45 | Lab No. 0606003-19 | |---------------------|----------------------|---|--------------------| | | | | | | | | | | | Dilution | | Date | | |---|---------|--------------|------------|------------|---------------|-------------------|-----------------|----------------| | | Results | <u>Units</u> | LOD | LOQ | <u>Factor</u> | Qualifiers | <u>Analyzed</u> | <u>Analyst</u> | | EPA 8310 Continued | | | | | | | | | | Prep Method: Method 3510C Liquid Extraction | By: JEG | | | | L | Date Prepared: | 06/06/06 | | | Fluoranthene | ND | ug/L | 0.120 | 0.400 | 1 | | 06/10/06 | LMP | | Fluorene | ND | ug/L | 0.120 | 0.400 | 1 | | 06/10/06 | LMP | | Indeno(1,2,3-cd)pyrene | ND | ug/L | 0.120 | 0.400 | 1 | | 06/10/06 | LMP | | Naphthalene | ND | ug/L | 0.110 | 0.370 | 1 | | 06/10/06 | LMP | | Phenanthrene | ND | ug/L | 0.110 | 0.370 | 1 | | 06/10/06 | LMP | | Pyrene | ND | ug/L | 0.100 | 0.330 | 1 | | 06/10/06 | LMP | TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com #### A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55 | Sample ID: Trip Blank Matrix: Water Sample Date/Time: 05/30/06 0:00 | Lab No. 0606003-20 | |---|--------------------| |---|--------------------| | | | | | | Dilution | | Date | | |--|----------------|--------------|------------|--------------|---------------|-------------------|-----------------|----------------| | ED 4 04<0D | <u>Results</u> | <u>Units</u> | <u>LOD</u> | <u>LOO</u> | <u>Factor</u> | Qualifiers | <u>Analyzed</u> | <u>Analyst</u> | | EPA 8260B
1,1,1,2-Tetrachloroethane | ND | | 0.10 | 0.50 | | | 06107106 | 3.453.4 | | 1,1,1-Trichloroethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | 1,1,2,2-Tetrachloroethane | ND
ND | ug/L | 0.20 | 0.67 | 1 | | 06/07/06 | MPM | | 1,1,2-Trichloroethane | ND
ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | 1,1-Dichloroethane | ND
ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | 1,1-Dichloroethylene | ND
ND | ug/L | 0.15 | 0.50 | 1 | | 06/07/06 | MPM | | 1,1-Dichloropropylene | ND
ND | ug/L | 0.15 . | 0.50
1.00 | 1 | | 06/07/06 | MPM | | 1,2,3-Trichlorobenzene | | ug/L | | | 1 | CGII | 06/07/06 | MPM | | 1,2,3-Trichloropropane | ND | ug/L | 0.50 | 1.70 | 1 | CSH | 06/07/06 | MPM | | 1,2,4-Trichlorobenzene | ND | ug/L | 0.55 | 1.80 | 1 | | 06/07/06 | MPM | | | ND | ug/L | 0.50 | 1.70 | 1 | | 06/07/06 | MPM | | 1,2,4-Trimethylbenzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/07/06 | MPM | | 1,2-Dibromo-3-chloropropane | ND | ug/L | 0.35 | 1.17 | 1 | | 06/07/06 | MPM | | 1,2-Dibromoethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | 1,2-Dichlorobenzene | ND | ug/L | 0.75 | 2.50 | 1 | | 06/07/06 | MPM | | 1,2-Dichloroethane | ND | ug/L | 0.10 | 0.50 | I | | 06/07/06 | MPM | | 1,2-Dichloropropane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | 1,3,5-Trimethylbenzene | ND | ug/L | 0.15 | 0.50 | I | | 06/07/06 | MPM | | 1,3-Dichlorobenzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/07/06 | MPM | | 1,3-Dichloropropane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | 1,4-Dichlorobenzene | ND | ug/L | 0.75 | 2.50 | 1 | | 06/07/06 | MPM | | 2,2-Dichloropropane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | 2-Chlorotoluene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | 4-Chlorotoluene | ND | ug/L | 0.20 | 0.67 | 1 | | 06/07/06 | MPM | | 4-Isopropyltoluene | ND | ug/L | 0.20 | 0.67 | 1 | | 06/07/06 | MPM | | Benzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/07/06 | MPM | | Bromobenzene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | Bromochloromethane | ND | ug/L . | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | Bromodichloromethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | Bromoform | ND | ug/L | 0.20 | 0.67 | 1 | | 06/07/06 | MPM | | Bromomethane | ND | ug/L | 0.15 | 0.50 | 1 | CSL | 06/07/06 | MPM | | Butylbenzene | ND | ug/L | 0.20 | 0.67 | 1 | | 06/07/06 | MPM | | Carbon Tetrachloride | ND | ug/L | 0.20 | 0.67 | 1 | | 06/07/06 | MPM | | Chlorobenzene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | Chloroethane | ND | ug/L | 0.60 | 2.00 | 1 | | 06/07/06 | MPM | | Chloroform | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | |
Chloromethane | ND | ug/L | 0.20 | 0.67 | 1 | | 06/07/06 | MPM | | cis-1,2-Dichloroethylene | ND | ug/L | 0.20 | 0.67 | 1 | | 06/07/06 | MPM | | cis-1,3-Dichloropropylene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | | | | | | | | | | TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com A Siemens Business Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729 Attn: John Guhl PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003 REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55 PREPARED BY: JRS Sample ID: Trip Blank Matrix: Water Sample Date/Time: 05/30/06 0:00 Lab No. 0606003-20 | | | | | | Dilution | | Date | | |-----------------------------|---------|--------------|------------|------------|---------------|-------------------|-----------------|----------------| | | Results | <u>Units</u> | LOD | LOO | Factor | Qualifiers | Analyzed | <u>Analyst</u> | | EPA 8260B Continued | | | | | | | | | | Dibromochloromethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | Dibromomethane | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | Dichlorodifluoromethane | ND | ug/L | 0.25 | 0.83 | 1 | CSH | 06/07/06 | MPM | | Ethylbenzene | ND | ug/L · | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | Hexachlorobutadiene | ND | ug/L | 1.00 | 3.30 | 1 | | 06/07/06 | MPM | | Isopropylbenzene (Cumene) | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | m,p-Xylenes | ND | ug/L | 0.40 | 1.30 | 1 | | 06/07/06 | MPM | | Methylene Chloride | ND | ug/L | 0.40 | 1.30 | 1 | | 06/07/06 | MPM | | Methyl-tert-Butyl Ether | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | Naphthalene | ND | ug/L | 1.00 | 3.30 | 1 | CSH | 06/07/06 | MPM | | o-Xylene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | Propylbenzene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | sec-Butylbenzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/07/06 | MPM | | Styrene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | tert-Butylbenzene | ND | ug/L | 0.15 | 0.50 | 1 | | 06/07/06 | MPM | | Tetrachloroethene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | Toluene | ND | ug/L | 0.40 | 1.30 | 1 | | 06/07/06 | MPM | | trans-1,2-Dichloroethylene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | trans-1,3-Dichloropropylene | ND | ug/L | 0.10 | 0.50 | 1 | | 06/07/06 | MPM | | Trichloroethene | ND | ug/L | 0.20 | 0.67 | 1 | | 06/07/06 | MPM | | Trichlorofluoromethane | ND | ug/L | 0.20 | 0.67 | 1 | CSH | 06/07/06 | MPM | | Vinyl chloride | ND | ug/L | 0.15 | 0.50 | 1 | | 06/07/06 | MPM | TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com #### A Siemens Business #### **Qualifer Descriptions** | S2L | Second sample matrix spike recovery was low. | |-----|--| | S2H | Second sample matrix spike recovery was high. | | SIL | First sample matrix spike recovery was low. | | S1H | First sample matrix spike recovery was high. | | LCL | Laboratory control sample exhibited a low bias. Sample results may also be biased low. | | LCH | Laboratory control sample exhibited a high bias. Sample results may also be biased high. | | J | Estimated concentration below laboratory quantitation level. | | CSL | Check standard for this analyte exhibited a low bias. Sample results may also be biased low. | | CSH | Check standard for this analyte exhibited a high bias. Sample results may also be biased high. | #### **Definitions** LOD = Limit of Detection (Dilution Corrected) LOQ = Limit of Quanitation (Dilution Corrected) ND = Not Detected COMP = Complete SUBCON = Subcontracted analysis mv = millivolts pci/L = picocurie per Liter mL/L = milliliters/Liter mg = milligram When the word "dry" follows the units on the result page the sample results are dry weight corrected. LODs and LOQs are dry weight corrected for all soils except methanol and methylene chloride preserved soils. ug/l = Microgram per Liter = parts per billion (ppb) ug/kg = Microgram per kilogram = parts per billion (ppb) mg/l = Millgram per liter parts per million (ppm) mg/kg = Millgram per kilogram parts per million (ppm) NOT PRES = Not Present ppth = Parts per thousand * = Result outside established limits. mg/m3 = Milligrams/ meter cubed ng/L = Nanograms per Liter = Parts per trillion(ppt) > = Greater Than # REQUEST FOR SERVICES ## A Siemens Business | ENVIROSCAN S | ERVICES | 30 | on W. MILIT | TARY RD. | ROTH | ISCHIL | D, WI 5 | 54474 | 4 | 1-800-338-SCAN | |--|-------------------------|--|---------------------------------------|------------------------------|------------------------------------|----------|------------------------|-----------|-------------|-------------------------------------| | REPORT TO:
Name: John | Culi | i | | ! | BILL TO | if diffe | erent from | n Rej | oort T | o info) | | Company: <u>5E</u> | 1 6071 | ·········· | | | | | | | | | | Addross: 1171 | France | tk 1
Falls | WI 54 | | Address | iy | | | | | | Phone: (7/5) | | | | | Phone: | (| _) | | | | | Project # ANERU
Location Chilo | B <u>osoz.oo</u>
ton | Quote | # | | | | A N I / | A I \ / 7 | -10 A | L DECLIECTO | | • | | | | | | | | | | L REQUESTS sheet if necessary) | | Sample Type (Check all that apply) Groundwater Wastewater Soil/Solid Drinking Water Turnaround Time Normal Rush (Pre-approved by La | | | | | | | | | | | | ☐ Drinking \☐ Oil ☐ Vapor | Water | | | • | | 47/ | ' / , | / , | / , | 3. REMARKS | | □ Other | | 16060C
No. of | | - ID | 0 | 3 1/4 W | | | | | | LAB USE ONLY | | TIME | Containers COMP GRAB | | | 17 | 7 | _ | | / N REMARKS | | | 5-30-06 | 2:45 | 4 | MW-1 | | | | | | | | シ | | 3:15 | | MW-Z | . | | | | | | | 3 | | 3:45 | | MW-3 | | | _ | | | | | | | 5:15 | | MW-4 | | | | | | | | 45 | | 5:45 | ्र
व | MW:5 | | | | - | | | | - (o | | 6:15 | 4 | PZ-5 | | | | | | | | -7 | | 4:45 | 1 | MW-6 | | | - | | | | | <u>-8</u>
-9 | | 4:15 | | MW-7 | | - | | | | | | Maria (Service Comment of the fights with records for | 1 | 6:45 | | MW-3 |) | | | | | | | -10 | Y | Z:20 | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | mw-9 | | | | | 1 | | | | | in the second se | | | | | Del'v:
Ship. | Cont. | ok` | CY N N/A | | CHAIN O | F CUST | TODY | RECO | RD | | | Samp
Seals
Rec'd | OK? | | ? Y N/N/A
Y N N/A
Y N N/A22°C | | SAMPLERS: Signal | ture | | | | | | 21012818 Ause | nents | 3: <u>_</u> | verified method | | RELINOUSHED BY: (Signature) | | | DATE/TIME
5-31-06 12:00 | | RECEIVED BY: (Signature) | | | رس | / C/ | cent. | | RELINQUISHED BY: (Signature) | | | E/TIME | RECEIVED BY: (Signature) | | | | | | | | RELINQUISHED BY: | (Signature) | DATI | E/TIME | RECEIVED FOR BY: (Signature) | EIVED FOR LABORATORY
Signature) | | | TIME | 2/ | | # A Siemens Business | ENVIROSCAN S | ERVICES | 30 | 01 W. MILIT | TARY RD. RC | THSCHIL | D, WI ! | 54474 | 1-800-338 | 3-SCAN | |---|---|----------------------|-----------------------------|-------------------------|----------------------
--|----------------------------|---|---------------------------------| | REPORT TO: Name: John | 1 6uh | / | | Name | TO: (if diffe | <u>E</u> | | | | | Company: 5E | <u>1+</u> | 1/0 70 | | Comp | | | | | | | Address: 421 | <u>Frenci</u>
Delain F | 7115 1 | UT 543 | Addre | | | | | | | <u>Chiyi</u>
Phone: (<u>7-15</u>)
P.O.# | | | | | e: (| _) | | | | | P.O.#
Project # <u>ANERU</u> | UB050Z. | <i>00</i> Quote | # | | | | | | | | Location <u>Chil</u> t | 01 | | | | | | | CAL REQUE | | | Sample Ty
(Check all tha
Groundw
Wastewa
Soil/Solid | at <i>apply)</i>
ater
ter | Turnaro Nor Rus | | // | | 7/// | | | | | Drinking \ | | Approve | eded
d By | | | | | / | A | | □ Oil
□ Vapor
□ Other | | | | 0606003 | |)/±/ | / / | 160 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | LAB USE ONLY | DATE | TIME | No. of Containers COMP GRAB | SAMPLE ID | | THE STATE OF S | | REI | MARKS | | | 5-30-06 | 17:50 | 4 | B-5 | | | | | | | _[2_ | | 1:10 | | B-5A | | | | | | | -13 | | 17:05 | | B-6 | | | | | | | <u>-</u> [4 | | 11:45 | | B-9 | | | | | | | \ [5 | | 11:05 | | B-11 | | | | | | | -19 | | 10:35 | | B-12 | | | | | | | 11. | | 11:20 | | | | | | | | | 41 8 | | 17:30 | | Large Sump
West Sump | | | | | | | - 19 | \downarrow | 5:45 | 6 | MW-5 DUP | | | | QA/Q | .C | | -20 | | | 2 | Trip Blank | . | | | | | | | (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) | | | | -7-06 | Ship. | Cont. C | Comm | | | CHAIN O | F CUST | CODY | RECO | RD | | Seals | les leal
OK?
on ice' | N/S | N/A
N/A
N/A <i>2:2</i> 2C | | SAMPLERS: (Signal | | | Page 18 and | nents: | | | | | | | RELINOVISHED BY | DATI | E/TIME
06 12:00 | RECEIVED BY: (Signa | ature) | | | | | | | RELINCUISHED BY: (Signature) | | | E/TIME | RECEIVED BY: (Signa | ature) | | | | | | RELINQUISHED BY: (| DATI | E/TIME | RECEIVED FOR LAB | | DATE/ | Arren ir 21 | | | |