

Site Investigation Report

Former Mirro Plant #20

Chilton, Wisconsin

WDNR BRRTS Nos. 06-08-426946, 02-08-520157, and 07-08-402366

SEH No. A-NERUB0502.00

August 2006

Multidisciplined. Single Source. Trusted solutions for more than 75 years.

August 21, 2006

RE: Former Mirro Plant #20 Site Investigation Report Chilton, Wisconsin WDNR BRRTS Nos. 06-08-426946, 02-08-520157, and 07-08-402366 SEH No. A-NERUB0502.00

Mr. Alan Nass, Hydrogeologist Wisconsin Department of Natural Resources 2984 Shawano Avenue P.O. Box 10448 Green Bay, WI 54313

Dear Mr. Nass:

On behalf of Newell Rubbermaid Inc. (Newell), Short Elliott Hendrickson Inc. (SEH®) is submitting this Site Investigation Report documenting the findings of site investigation activities conducted at the former Mirro Plant #20 facility located at 44 Walnut Street in Chilton, Wisconsin. Phase 1 and Phase II Environmental Site Assessments (ESAs) were previously completed at the site and were submitted to the Wisconsin Department of Natural Resources (WDNR) by others in 2001 and 2002.

In a May 27, 2004 response letter to Newell, you indicated several additional areas of investigation that needed to be addressed at the site. A site visit conducted on July 24, 2004 was used to assess past practices at the site and further refine the scope of additional investigation activities.

The purpose of the investigative activities performed was to assess degree and extent of apparent environmental impacts previously identified at the site, and to assess other potential areas of concern at the site. The supplemental investigation activities were performed from February through May 2006 in accordance with SEH's site work plan and your subsequent comments.

Please call me at 920.452.6603 or Mr. Louis Meschede, Director of Environmental Affairs for Newell, at 630.481.1665 if you have any questions or comments pertaining to this report or SEH's recommendations for the site.

Sincerely,

F. Jason Martin, PE Project Manager

JEG/ls/FJM/BKO

q:\ko\nerub\050200\reports&specs\rep\si report.doc

Site Investigation Report

Former Mirro Plant #20 Chilton, Wisconsin

Prepared for: Newell Rubbermaid Inc. Oak Brook, Illinois

Prepared by: Short Elliott Hendrickson Inc. 809 North 8th Street, Suite 205 Sheboygan, WI 53081-4032 920.452.6603

I, John E. Guhl, hereby certify that I am a Hydrogeologist as that term is defined in s. NR 712.03(1) Wis. Adm. Code, and that, to the best of my knowledge, all of the information contained in this document is correct and the document was prepared in compliance with all applicable requirements in chs. NR 700 to 726, Wis. Adm. Code.

Hydrogeologist

PG Number August 21, 2006
Date

I, F. Jason Martin, hereby certify that I am a registered professional engineer in the State of Wisconsin, registered in accordance with the requirements of ch. A-E 4, Wis. Adm. Code; that this document has been prepared in accordance with the Rules of Professional Conduct in ch. A-E 8, Wis. Adm. Code; and that, to the best of my knowledge, all information contained in this document is correct and the document was prepared in compliance with all applicable requirements in chs. NR 700 to 726, Wis. Adm. Code.

F. Jason Martin, PE

Project Manager

Marta 32714 August 23, 2006

Distribution List

No. of Copies	Sent to
2	Alan Nass, Hydrogeologist Wisconsin Department of Natural Resources 2984 Shawano Avenue P.O. Box 10448 Green Bay, WI 54313
2	Louis Meschede Newell Rubbermaid Inc. 2707 Butterfield Road Suite 100 Oak Brook, IL 60523
1	Arthur Garcia Newell Rubbermaid Inc. 29 East Stephenson Street Freeport, IL 61032

Executive Summary

The Mirro Company manufactured aluminum, steel, and stainless steel cookware products from the 1920's until 2001 at their former Plant #20 facility located at 44 Walnut Street in Chilton, Wisconsin. Potential environmental concerns previously identified at the site included the former operation of several underground storage tanks (USTs) and aboveground storage tanks (ASTs), the presence of asbestos containing materials, water discharge points to the Manitowoc River, and various manufacturing process practices.

Envirogen, Inc. performed a Phase I Environmental Site Assessment (ESA) of the facility in 2001. TEMCO performed a Phase II ESA of the subject property in 2002. Reports prepared by Envirogen and TEMCO identified areas of concern and areas of contamination at the site. Based on these findings and after the site was entered into Wisconsin Voluntary Party Liability Exemption (VPLE) program, the Wisconsin Department of Natural Resources (WDNR) determined that additional investigation of the subject property was required to identify degree and extent of contamination, and to determine if other areas of contamination exist on the property.

A Site Work Plan was submitted to WDNR in August 2005 proposing a scope and methodology for additional investigation of the site. WDNR provided comments and a final agreement on investigation scope was provided by WDNR in January 2006. Field investigation activities began in February 2006. The investigation activities included the installation of six new groundwater monitoring wells/piezometers, collection of soil samples from several locations outside of the site building or below the building floor, installation of six slotted standpipes in the building basement for groundwater monitoring, collection of two rounds of groundwater samples from the site monitoring points, assessment of the floor drain and sump system, and assessment of the site discharges to the Manitowoc River.

Soil and groundwater impacts were identified at the site during the site investigation. Soil Residual Contamination Levels (RCLs) were exceeded at several locations for arsenic (industrial site standard). Suggested RCLs for several polynuclear aromatic hydrocarbons (PAH) were also exceeded in soil samples collected at several locations. However, the PAH RCL values have not been codified and are recommendations at this time. The groundwater enforcement standard (ES) for 1,1,2,2-tetrachloroethane was exceeded in water samples collected from B5 and B5A (collected beneath the building floor near the former chrome and tin plating room). The ES for vinyl chloride was exceeded in a groundwater sample collected from standpipe B12 (east side of basement). No other ESs were exceeded in groundwater samples collected during the site investigation. Groundwater preventive action limits (PALs) were exceeded for several analytes at various sampling locations. Also, a floating oily substance (free-phase liquid) was observed in the east sump located near the elevator shaft.

The groundwater surface below the plant is within six inches of the finished floor elevation. The floor trench system running to three sumps may have been installed to keep the basement from flooding due to high groundwater. All three basement sumps were operating periodically during the field investigation.

Four discharge pipes were observed leading from the plant to the Manitowoc River. The first and third pipes from the north discharge water from sumps located in the basement of the facility. The southernmost pipe appears to be connected to roof drainage pipes running down the side of the building (this pipe is now broken on the side of the building and is no longer functional). The second pipe from the north also appears to be used for roof drainage; however, the pipe connection was not observed.

The site investigation analytical results indicate that the extent of arsenic in site soils exceeding ch. NR 720, Wis. Adm. Code RCLs is widespread and generally does not appear to be associated with an on-site source area. The highest concentrations of arsenic in site soils were identified in near-surface soil samples collected near the railroad tracks on the south side of the site. The concentrations of arsenic appear to diminish both

Executive Summary (Continued)

with depth beneath the surface, and with distance from the south side of the site. It appears likely the source of elevated arsenic at this location is not associated with past on-site activities. The sporadic and widespread RCL exceedances for arsenic on the remainder of the site may be associated with background concentrations of this substance.

Groundwater ES exceedances at the site were limited to exceedances for 1,1,2,2-tetrachloroethane in the first round of samples collected from basement standpipes B5 and B5A, and a vinyl chloride exceedance in a groundwater sample collected from standpipe B12 during the second round of sampling. These locations are all beneath the site building. The VOC ES exceedances were only noted during one of two sampling events at a given location. No other groundwater ESs were exceeded during SEH's investigation. The ES exceedances identified at the site to-date are not consistent from sampling round to sampling round, and do not appear to be migrating off-site.

Based on the results of SEH's site investigation, it appears that limited soil and groundwater contamination is present at the Former Mirro Plant #20 site. However, the only potential ongoing source of contamination is a layer of floating oil identified in the east sump. The remaining site contaminants appear to be scattered, and not likely to migrate offsite. SEH's recommendations for the site are to address the floating oil layer by removing this substance from the sump, and monitoring its return during subsequent groundwater sampling events. One year of quarterly groundwater sampling (two additional quarterly rounds of sampling) from the existing monitoring points is also recommended to further assess groundwater contaminants and potential for offsite migration. No additional soil investigation at the site appears to be warranted. Recommendations for further action or site closure will be provided after the additional groundwater sampling is completed.

Table of Contents

Letter of Transmittal Certification Page Distribution List **Executive Summary** Table of Contents

	Pa	ge
1.0	Introduction	.1
	1.1.2 Regulator Information	
2.0	Background	.2
3.0	Physiographical and Geological Setting	.3 .3 .4 .4
4.0	3.3.2 Local HydrogeologyPotential Migration Pathways and Receptors	.4
5.0	Site Investigation 5.1 Soil Borings, Monitoring Wells, and Piezometer Installation 5.2 Soil Sampling and Analysis 5.3 Groundwater Sampling and Analysis 5.4 Site Survey	.6 .8 .8
6.0	Investigation Results	.9 .9 10
7.0	Discussion1	10
8.0	Conclusions and Recommendations1	11
9.0	Standard of Care1	12
10.0	References	13

Table of Contents (Continued)

List of Tables

Table 1	Soil Analytical Results - DRO, PAHs, VOCs, and Metals
Table 2	Soil Analytical Results - Pesticides and PCBs
Table 3	Groundwater Analytical Results

List of Figures

Figure 1	Site Location
Figure 2	Outfalls to Manitowoc River
Figure 3	Sampling Locations
Figure 4	Groundwater Flow Map, 5/30/2006
Figure 5	Geologic Cross Sections

List of Appendices

Appendix A	Soil Boring, Monitoring Well, and Piezometer Documentation
Appendix B	Analytical Data

Site Investigation Report

Former Mirro Plant #20

Prepared for Newell Rubbermaid Inc.

1.0 Introduction

On behalf of Newell Rubbermaid Inc. (Newell), Short Elliott Hendrickson Inc. (SEH®) is submitting this Site Investigation Report to the Wisconsin Department of Natural Resources (WDNR) for the former Mirro Plant #20 facility (site) located at 44 Walnut Street, Chilton, Wisconsin (BRRTS #06-08-426946, #02-08-520157, and 07-08-402366). The site is located in the NW ¼ of Section 18, T18N, R20E in Calumet County, Wisconsin as shown on Figure 1, "Site Location." This report documents the findings of site investigation activities conducted at the site from February through May 2006.

1.1 List of Contacts

1.1.1 Responsible Party Information

Louis Meschede, Director of Environmental Affairs Newell Rubbermaid Inc. 2707 Butterfield Road, Suite 100 Oak Brook, IL 60523 630.481.1665

1.1.2 Regulator Information

Alan Nass, Hydrogeologist Wisconsin Department of Natural Resources 2984 Shawano Avenue P.O. Box 10448 Green Bay, WI 54313 920.662.5161

1.1.3 Consultant Information

F. Jason Martin, PE, Project Manager Short Elliott Hendrickson Inc. 809 North 8th Street, Suite 205 Sheboygan, WI 53081-4032 920.452.6603

2.0 Background

Manufacturing activities at the former Mirro site consisted of production of aluminum, stainless steel, and steel cookware and bakeware products beginning in the 1920's and ending in 2001. Process operations historically included metal stamping, buffing, tin dipping, parts washing, welding, and application of spray-on coatings. Several different owners operated the facility during this timeframe. The site has since been vacated by Mirro, and is now occupied by a firm utilizing the warehouse space for storage of agriculture products, and by a machine shop located in the southeast portion of the building. The basement of the building is now vacant.

During the Mirro plant operations, two 15,000-gallon fuel oil underground storage tanks (USTs) were located in the basement on the northeast side of the plant, and were reportedly abandoned in-place in 1996. Two small USTs (500-gallon and 250-gallon) formerly contained mineral spirits and were reportedly removed from the site in 1990. These USTs were reportedly located outside of the north building wall near the northwest corner of the building. Abandonment documentation was provided to regulatory agencies following removal and abandonment of the UST systems. Three aboveground storage tanks (ASTs) reportedly containing benzene were formerly located outside the southwest corner of the building.

Three sumps are located in the basement of the site building and are currently in operation. A large sump is located inside of the north wall of the building. A small sump is located on the east side of the building adjacent to the elevator shaft. Another small sump is located just inside the west wall of the building. For the purposes of this report, the sumps have been named large sump, east sump, and west sump with respect to the above description. A system of shallow floor trenches is present in the basement floor feeding the sumps. Several of the trench covers are stenciled with a fish and note "discharge to stream."

Four outfalls from the plant to the Manitowoc River are present at the site. Two outfalls discharge water from the three sumps located in the basement of the facility. The northernmost outfall discharges water from the large sump and east sump. The third outfall from the north discharges water from the west sump. The remaining two outfalls appear to be related to the roof drain system. The southernmost outfall is fed by an exterior roof drain pipe (now broken and no longer functioning). The second outfall from the north also appears to be fed by the roof drain system, although this connection was not directly observed. A wash water holding tank is present in the building basement, but discharge from this tank is to the City sanitary sewer system. The flow pattern of these outfalls is depicted on Figure 2, "Outfalls to Manitowoc River."

An asbestos survey of the facility was conducted in 1990. Several potential asbestos containing materials (ACM) were identified, and a program for maintaining the ACM in good condition was implemented.

A Phase I Environmental Site Assessment (ESA) was conducted on the site by Envirogen, Inc. in 2001. A Phase II ESA was conducted on the site in 2002 by TEMCO. Four groundwater monitoring wells were installed on the

site during the TEMCO Phase II and were utilized to collect groundwater data during the current investigation. Several areas of concern or areas of contamination were identified at the site during the previous investigation. Soil contaminants identified during the previous investigations included widespread arsenic at concentrations exceeding the residual contaminant level (RCL) for industrial sites for this substance. No groundwater contaminants exceeding their respective enforcement standards (ES) were identified during the Phase I/Phase II ESA. However, the preventive action limits (PALs) for several analytes were exceeded at the site.

The site was entered into the Voluntary Party Liability Exemption (VPLE) program in 2002 when the property was sold by Newell to Floor Space Development LLC. The WDNR reviewed the site data and toured the site in 2003 and 2004 to assess existing site conditions and make recommendations for additional site investigation. A May 27, 2004 letter submitted by WDNR to Newell outlined the scope of additional investigation activities to be performed at the site to address remaining areas of concern and to assess degree and extent of contamination at the site. SEH prepared a site work plan in accordance with ch. NR 716, Wis. Adm. Code, which was used along with WDNR comments to complete the site investigation. The following sections describe SEH's investigation of the site.

3.0 Physiographical and Geological Setting

Section 3.0 summarizes the physiographical and geological setting of the site, including topography, drainage, regional and local geology, and regional and local hydrogeology.

3.1 Topography/Surface Drainage

The topography of the site and vicinity is relatively flat. The area generally slopes to the west and northwest toward the Manitowoc River, which flows along the west and northwest site property line. Surface water at the site is generally expected to drain to the Manitowoc River. Surface elevation at the site is approximately 860 feet above mean sea level (MSL), as presented on Figure 1.

3.2 Geology

Geological conditions at and near the site are summarized in the following Sections 3.2.1 and 3.2.2.

3.2.1 Regional Geology

The Chilton area is underlain by glacial ground moraine deposits comprised of unstratified clays, silts, sand, gravel, and boulders (Skinner, 1973). Thickness of unconsolidated deposits in the Chilton area is generally less than 50 feet (Skinner, 1973). Silurian aged dolomite deposits underlie the unconsolidated deposits in the Chilton area (Ostrom, 1981). The Silurian dolomites are typically several hundred feet thick in Calumet County, and are underlain by the Ordovician aged Maquoketa Shale, which separates the Silurian deposits from a thick sequence of Ordovician and Cambrian sandstones and dolomites.

3.2.2 Local Geology

According to the United States Department of Agriculture (USDA), Natural Resources Conservation Service (NRCS) publication "Soil Survey of Calumet and Manitowoc Counties, Wisconsin (1980)," site soils have been classified as Lamartine (LmA) silt loam and Manawa (MbA) silt loam in the upper 20 inches of the soil profile. Generally, the LmA soils are located on the southern portion of the site, and the MbA soils are located on the northern portion of the site. These gently sloping, somewhat poorly drained soils form 0 to 3 percent slopes generally in drainageways or in till plains. The surficial layer (0 to 8 inches) generally consists of very dark brown to grayish-brown soils underlain by yellowish-brown to reddish-brown soils with depth. Permeability of these soils is moderate to slow.

The drilling program performed by SEH at the site provided subsurface information to a depth of 28 feet below ground surface (maximum depth penetrated during investigation activities). The soils at each boring location were classified in accordance with the Unified Soil Classification System (USCS). Fill materials consisting of sands with some gravels, gravels, and clays were encountered to depths ranging from 4.5 feet to 8 feet below ground surface in the area of investigation. On the northern and western portions of the site, and beneath the site building, the fill soils were underlain by layers of sand and silty sand (likely alluvial deposits). Soils underlying the fill on the southern and eastern portions of the site were underlain by lean clays and silts (likely glacial ground moraine deposits). Bedrock was not encountered during the site investigation.

3.3 Hydrogeology

Hydrogeological conditions at and near the site are summarized in the following Sections 3.3.1 and 3.3.2.

3.3.1 Regional Hydrogeology

Zaporozec and Cotter (1985) include the Chilton area in the "Eastern Drift – Paleozoic Hydrogeologic District." The district is typified by a deep high-capacity Cambrian and Ordovician sandstone aquifer and a shallower Silurian dolomite aquifer separated by the Maquoketa shale confining layer. The dolomite aquifer is the primary municipal water supply aquifer in the eastern portion of the district (in the site vicinity). Sand and gravel aquifers in the district are quite discontinuous, and are typically used as the primary source of water where these deposits are present in buried bedrock valleys.

3.3.2 Local Hydrogeology

A total of nine monitoring wells and one piezometer have been installed at the site to-date in order to assess groundwater conditions. In addition, five temporary screened standpipes and one deep standpipe were installed through the floor of the building basement in order to collect groundwater samples and monitor groundwater elevations at these locations. The water surface of the Manitowoc River was also surveyed at four locations so this data could be added to the subsurface flow patterns for the site. The locations of these monitoring points are provided on Figure 3, "Sampling Locations."

The static water table at the site was present at approximately 3 to 12 feet below ground surface. Data from monitoring well MW-5 and associated nested piezometer PZ-5 as well as standpipes B5 and B5A indicates an upward gradient at these two locations indicating a groundwater discharge zone. Direction of shallow groundwater flow at the site appears to be generally to the north and toward the Manitowoc River. However, it appears the pumping and discharge from the three sumps in the basement of the facility over time have created a slight groundwater depression underneath the building. The horizontal hydraulic gradient (disregarding the groundwater depression under the building) at the site is approximately 0.007 ft/ft toward the north. Groundwater elevation isocontours are presented on Figure 4, "Groundwater Flow Map, 5/30/2006."

4.0 Potential Migration Pathways and Receptors

Potential receptors appear to be limited to the shallow groundwater table and possibly direct contact to arsenic in shallow soils. Arsenic was detected exceeding its RCL at six unpaved locations within the upper four feet of soils. Surface water could be impacted if contaminants in groundwater migrated to the Manitowoc River or if contaminants are present in the sump discharge.

Exposure to groundwater is unlikely since contamination exceeding ESs was only identified at two locations beneath the site building and does not appear to be migrating offsite. Exposure to arsenic in soils may be occurring, but the concentrations of arsenic identified in soil samples collected at the site may be background concentrations and not related to past activities at the site. Significant contaminant discharge to the Manitowoc River does not appear to be occurring based on analytical results from perimeter wells MW-1, MW-2, and MW-3, and on the analytical results from the large sump and the west sump that discharge directly to the Manitowoc River.

Subsurface utility lines are not expected to be impacted due to the relatively shallow depth to groundwater and the granular site soils in most locations (i.e., utility trenches would not act as a conduit for migration).

5.0 Site Investigation

SEH's investigation was conducted from February through May 2006. The purpose of the investigation was to provide site data relating to the degree and extent of contamination at the site, and investigate several areas of concern remaining at the site. The field investigation included the following activities:

- Completion of ten direct-push soil borings on the outside of the site building to identify site stratigraphy and collect soil samples for analysis.
- Overdrilling at six of the boring locations with hollow-stem augers for installation of five shallow monitoring wells and one nested piezometer.
- Performance of ten soil borings beneath the building's basement floor using either a Macrocore® sampler or a power hand auger.
- Installation of six temporary slotted standpipes to serve as groundwater monitoring points in the basement boreholes.

- Collection of 23 soil samples and two rounds of 19 discreet groundwater samples for laboratory analysis of volatile organic compounds (VOCs), polynuclear aromatic hydrocarbons (PAHs), select metals, pesticides, polychlorinated biphenyls (PCBs), diesel range organics (DRO), and/or pH.
- Site survey to determine the elevations and coordinates of the borings and piezometers.

5.1 Soil Borings, Monitoring Wells, and Piezometer Installation

Ten direct-push soil borings were performed on the site under the direction of an SEH geologist on February 13 and February 14, 2006 to assess subsurface soil conditions and collect soil samples. Soil samples were collected using direct-push methods at the five monitoring well and one piezometer location in advance of these borings being drilled with hollowstem augers for well placement. The locations of the soil borings are presented on Figure 3. The direct push borings were performed using a skidsteer-mounted hydraulic probe rig by Soil Essentials, Ltd. of New Glarus, Wisconsin. Soil samples were collected continuously and observed during the drilling process and classified in accordance with the Unified Soil Classification System by a SEH geologist. Stratigraphic observations for each boring were recorded on soil boring logs (WDNR Form 4400-122), which are presented in Appendix A, "Soil Boring, Monitoring Well, and Piezometer Documentation." A borehole abandonment form (WDNR Form 3300-005) was completed for each direct-push boring not subsequently drilled and instrumented as a monitoring well, piezometer, or slotted standpipe (Appendix A).

The soil samples were screened in the field using a photoionization detector (PID) for relative concentrations of VOCs. PID measurements were recorded on the soil boring logs. Visual and/or olfactory evidence of soil impacts were also noted on the soil boring logs. Soil samples selected for laboratory analysis during the investigation were homogenized from the selected sample interval and placed in the appropriate laboratory-cleaned sample bottles, preserved as necessary, labeled, and chilled to 4 degrees C.

Boring B1 was performed outside a storage shed at the southwest corner of the building to assess soil conditions at this location related to activities in and around the shed. Borings B2 and B3 were performed south of the site building and north of the railroad tracks to assess potential offsite soil contamination migration in this direction. Boring B4 was drilled on the west side of the site building to assess a dark stain on the side of the site building at this location and adjacent to the apparent former elevator location within the building.

Five soil borings performed during the supplemental investigation were subsequently instrumented as monitoring wells (MW-5 through MW-9), and one boring was instrumented as a piezometer (PZ-5), and nested with newly installed monitoring well MW-5. Existing monitoring wells MW-1 through MW-4 were installed by a previous consultant (TEMCO).

Wells MW-5, MW-6, MW-7 and PZ-5 were installed outside the north side of the site building. Well MW-8 was installed outside the east side of the site building adjacent to the elevator. Well MW-9 was installed outside of the southeast corner of the site building. The monitoring wells and piezometer were installed to assess groundwater and hydrologic conditions in these portions of the site.

The new monitoring wells and piezometer were constructed and developed in accordance with ch. NR 141 Wis. Adm. Code requirements. A five-foot screened interval was used on the piezometer. Ten foot screened intervals were used on the monitoring wells. Monitoring well construction forms (WDNR Form 4400-113A) and well development forms (WDNR Form 4400-113B) were completed for each monitoring well and piezometer, and are included in Appendix A. The locations of the monitoring wells and piezometer are provided on Figure 3.

A total of nine borings (B5 through B12 and B5A) were performed in the basement of the site building. One additional boring (B13) was performed on the first floor of the building in a location where the basement was not present. These borings were performed by penetrating the concrete floor with a coring machine, and then completing the boring with a hand-driven Macrocore® sampler. One boring (B5) was completed using a power hand auger due to the depth required at this location. Six of the interior borings (B5, B5A, B6, B9, B11, and B12) were subsequently instrumented as temporary slotted standpipes to be used for groundwater monitoring. This was accomplished by inserting a 1-inch diameter slotted PVC pipe into the open borehole after soil sampling was completed. A 34-inch diameter PVC pipe was installed in B5 so that a 1-foot long screened section could be installed and water samples could be collected with depth. Once the PVC pipe was in place, the temporary groundwater sampling points were backfilled with sand and capped with a PVC cap. No protective casing was utilized on these points.

The basement borings were installed at the following areas of concern:

- Borings B5 and B5A were installed immediately north of the former chrome and tin plating room adjacent to an area of floor trench drain system where the concrete was missing and the pipes were corroded. Sampling within the chrome/tin plating room was not possible due to confined space conditions and lack of room for sampling equipment.
- Boring B6 was installed inside the west wall line adjacent to an area of corroded pipes associated with the floor trench drain.
- Borings B7 and B8 were performed inside the former mineral spirits room located in the northwest corner of the basement.
- Boring B9 was installed adjacent to the main drainage trench, which runs east to west through the basement floor.
- B10 was installed in the transformer room.
- Boring B11 was installed adjacent to a corroded portion of the trench drain system.

- Boring B12 was installed at the eastern portion of the main trench drain system and somewhat close to the east elevator.
- Boring B13 was installed in the pressroom directly beneath the former location of a press.

A soil boring planned for the loading dock area could not be performed due to the presence of a crawl space below the loading dock (inaccessible to sampling).

The groundwater sampling point installed in boring B5 was screened from 11.5 to 12.5 feet below ground surface. This was the maximum depth penetrable with hand-operated equipment due to wet flowing sands with depth at this location. The remaining basement locations utilized for groundwater sampling points were screened from the top of the basement floor to the bottom of the boring. The boring depths at these locations ranged from 3.0 to 3.5 feet. The temporary screens were left in place for potential future sample collection.

5.2 Soil Sampling and Analysis

During the drilling operation, 23 soil samples were collected for analysis by SEH from February 13 through February 15, 2006. Soil samples were collected continuously from below the pavement and/or base course layer to near the borehole terminus. Soil sample selection for analysis was based on field indications of contamination, depth below ground surface, and/or the proximity to the water table. Where possible, the soil sample intervals selected for analysis were collected from above the shallow water table. This was generally not possible in the building basement due to the shallow groundwater table (generally less than 6 inches below the basement floor elevation at the time of sample collection). The soil samples selected for analysis were homogenized and then placed in laboratory clean sample bottles. The samples were then preserved as necessary, labeled appropriately, and chilled to 4 degrees C. The soil samples were delivered directly to U.S. Filter's laboratory in Rothschild, Wisconsin on February 17, 2006 (Wisconsin Laboratory Certification No. 737053130). Standard chain-ofcustody documentation was maintained during the soil sampling process.

5.3 Groundwater Sampling and Analysis

SEH collected two rounds of groundwater samples from the existing and newly installed monitoring wells, the newly installed piezometer, the temporary groundwater collection points in the basement, and the sumps in the basement. It should be noted that the existing wells MW-1 and MW-2 were inadvertently switched during sampling and have thus been renamed from the original TEMCO designations (i.e., TEMCO's MW-1 is SEH's MW-2, and TEMCO's MW-2 is SEH's MW-1). The SEH designations are shown on Figure 3.

The first round of groundwater samples was collected on February 16, 2006, and the second round was collected on May 30, 2006. The east sump was not sampled during the second sampling round due to the presence of a floating oil layer. The wells, piezometers, and temporary sampling points were purged and subsequently sampled using a peristaltic pump and sample-

dedicated tubing (the sumps were not purged prior to sampling). The samples requiring metals analysis were field filtered using sample-dedicated in-line disposable 0.45 micron filters. The samples were placed in appropriate laboratory bottles, labeled appropriately, preserved as necessary, and chilled to 4 degrees C. The first round of samples were delivered directly to U.S. Filter on February 17, 2006. The second round of samples were delivered to U.S. Filter via overnight courier. Standard chain-of-custody documentation was maintained during groundwater sample handling and shipment.

5.4 Site Survey

SEH's survey crew performed survey activities at the site on May 30, 2006. The site coordinates of the five new monitoring wells and one new piezometer were determined, and the elevations of the PVC well casings were established. In addition, elevations were determined on the tops of the six temporary well casings installed in the building basement. The elevations of the four existing monitoring wells were confirmed. Also, the water elevation of the Manitowoc River was surveyed at four locations to aid in determining the groundwater – surface water flow patterns at the site. These data were added to site drawings and used to determine groundwater flow patterns and gradients at the site.

6.0 Investigation Results

Results of the supplemental site investigation activities are summarized in Sections 6.1, 6.2, and 6.3.

6.1 Site Stratigraphy

The soil boring data collected during the site investigation indicates that soils located beneath pavement and/or fill soils on the northern portion of the site generally consist of fine sands and silty sands present to a depth of approximately 27 feet below ground surface, where silt was encountered in piezometer boring PZ-5. The fill soils and pavement on the southern and southeastern portion of the site are underlain by a layer of lean clay. The sand soils to the north were also found at several locations beneath the building, and are likely Holocene alluvial deposits from the Manitowoc River. The clay soils located on the southern and eastern portion of the property are likely Pleistocene glacial ground moraine deposits. Bedrock was not encountered during the site investigation. A vertical depiction of site stratigraphic conditions is presented on Figure 5, "Geologic Cross Sections."

6.2 Soil Analytical Results

As reflected on Table 1, "Soil Analytical Results - DRO, PAHs, VOCs, and Metals," the analytical laboratory detected concentrations of arsenic exceeding the residual contaminant level (RCL) for industrial sites in soil samples collected at several locations outside the site building and beneath the basement floor. In addition, the suggested RCL for several PAH compounds was exceeded in soil samples collected at several locations. The PAH RCL values have not been codified at this time and remain guideline values. No other analytes were detected at concentrations exceeding their respective RCL during SEH's investigation of site soils. As indicated on Table 2, "Soil Analytical Results - Pesticides and PCBs," no pesticides were detected in the samples analyzed for these parameters. One polychlorinated

biphenyl (PCB) compound (Arochlor 1254) was detected in B10 at a concentration of 18 μ g/kg. No other PCBs were detected in the soil sample analyzed for these compounds. The complete analytical package containing the soil analytical results is provided in Appendix B, "Analytical Data."

6.3 Groundwater Analytical Results

The groundwater samples were analyzed for VOCs using U.S. EPA Method 8021 during the first round, and by EPA method 8260 during the second round. The groundwater analytical data is summarized on Table 3, "Groundwater Analytical Results." The complete analytical package is included in Appendix B.

As indicated on Table 3, groundwater ES exceedances were limited to detections for 1,1,2,2 tetrachloroethane in groundwater samples collected from points B5 and B5A during the first sampling round, and for vinyl chloride in a groundwater sample collected from point B12 during the second sampling round. The PALs for several parameters were exceeded in groundwater samples collected from several sampling points during both rounds of sampling. The parameters detected at concentrations exceeding their respective PAL but below their ES at one or more location include benzo-apyrene, chrysene, chloromethane, 1,2-dichloroethane, cis-1,2-dichloroethylene, 1,2-trichloroethane, trichloroethylene, vinyl chloride, arsenic, and cadmium. All remaining groundwater parameters were either not detected above the laboratory detection limit, or were detected at concentrations below their respective PAL.

6.4 Sump Analytical Results

As reflected on Table 3, elevated DRO concentrations were detected in the east sump due to the floating free-phase liquid observed on the groundwater surface at this location. However, no ES or PAL exceedances were identified in the groundwater sample analyzed from the east sump. No ES exceedances were identified in the samples from the large sump or the west sump. A PAL exceedance for trichloroethylene was identified in both rounds of samples analyzed from the large sump. A PAL exceedance for chrysene was detected in both rounds of samples analyzed from the west sump. No other PAL exceedances were identified in the groundwater samples analyzed from the three sumps.

7.0 Discussion

Based on the results of SEH's site investigation, it appears soil contamination is limited to concentrations of arsenic exceeding its RCL for industrial sites at several locations. The concentrations of arsenic at the site appear to be fairly consistent with no identifiable source area, except for the surficial soils collected from borings B2 and B3 where the concentrations are higher. It appears possible the higher concentrations of arsenic at this location are related to offsite activities because the concentration of arsenic quickly decreases in surface soils as you move north toward the building at boring B1 and throughout the rest of the site. The relatively uniform concentrations of arsenic on the remainder of the site do not indicate a concentrated source area, and possibly indicate these concentrations of arsenic are naturally occurring.

Groundwater analytical results indicate slight ES exceedances for vinyl chloride or 1,1,2,2-tetrachloroethane in three of the slotted standpipe collection points in the building basement. Each of these exceedances was only identified in one of two sampling rounds. No ES exceedances were identified in groundwater samples collected from the monitoring wells or piezometer located around the perimeter of the site building. Several scattered PAL exceedances were identified in groundwater samples collected from site groundwater monitoring points.

Groundwater appears generally to flow to the north at the site toward the Manitowoc River, with the exception of the slight groundwater depression created by the pumping and discharge from the three site sumps. Based on the groundwater analytical results, it appears offsite migration of groundwater contamination exceeding ESs is not occurring at this time.

The free phase oily floating substance identified in the east sump appears to be isolated at this location, and is likely related to operation of the nearby elevator. The pumping activity from the east sump does not appear to be mobilizing the floating free phase liquid based on observations and analysis of water in the large sump, into which the east sump discharges. No PAL or ES exceedances were identified in the east sump, and only one PAL exceedance for trichloroethylene was identified in the large sump.

8.0 Conclusions and Recommendations

Based on the results of SEH's site investigation activities, isolated ES exceedances were identified at the site. The isolated groundwater ES exceedances were identified below the basement floor, and do not appear to be migrating off site at this time. With the exception of elevated arsenic concentrations along the south side of the site (B2 and B3), arsenic detected in soil samples collected may be naturally occurring. No on-site source area of arsenic soils contamination appears to be present. The floating free-phase oil in the east sump was not identified at any other sampling points and does not appear to be moving into the large sump through ongoing groundwater pumping. However, SEH recommends removal of the free-phase liquid to limit potential future migration of this substance.

At this time, SEH does not believe further soil investigation at the site is warranted. SEH recommends completing one year of quarterly groundwater sampling at the existing sampling points (two additional quarterly sampling events) to assess groundwater concentrations over time, and to further assess groundwater migration characteristics. SEH also recommends removal of the floating free-phase liquid from the east sump. The oil layer will be removed from the sump and containerized during the August 2006 sampling event. Prior to or during the November 2006 sampling event, SEH will determine whether or not the oil layer has returned. If the oil layer appears to be a recurring condition, a permanent collection device such as an oil skimmer could be installed in the east sump. Once the additional quarterly sampling and assessment of oil layer removal is completed, SEH recommends reviewing the additional site data and making recommendations for additional activities or site closure based on the additional investigation results.

9.0 Standard of Care

The conclusions and recommendations contained in this report were arrived at in accordance with generally accepted professional practice at this time and location. Other than this, no warranty is implied or intended.

JEG/ls/FJM/BKO

10.0 References

- Ostrom, M. E., 1981, "Bedrock Geology of Wisconsin, Wisconsin Geological and Natural History Survey.
- Skinner, E. L., and R. G. Borman, 1973, "Water Resources of Wisconsin, Lake Michigan Basin," USGS.
- United States Department of Agriculture, Natural Resources Conservation Service, 1980, "Soil Survey of Calumet and Manitowoc Counties, Wisconsin."
- United States Geological Survey (USGS), 1973, "Chilton, Wisconsin 7.5 Minute Topographic Map."
- Zaporozec, A. and R. D. Cotter, 1985, Major Groundwater Units of Wisconsin," Wisconsin Geological and Natural History Survey.

Tables

Table 1 – Soil Analytical Results - DRO, PAHs, VOCs, and Metals

Table 2 – Soil Analytical Results - Pesticides and PCBs

Table 3 – Groundwater Analytical Results

Table 1
Soil Analytical Results - DRO, PAHs, VOCs, and Metals

	T		· · · · · · · · · · · · · · · · · · ·			Bor	ing No./Depth (ft)/D	ate				
Analytical Devementary	Generic RCLs	В	-1	В	-2	B.		B-4	B-5	B-6	B-7	B-8
Analytical Parameters	in Soil	0-2	4-6	0-2	2-4	0-2	2-4	4-6	0.5-0.8	1.5-3.0	1.0-2.5	1.0-2.5
		2/13/06	2/13/06	2/13/06	2/13/06	2/13/06	2/13/06	2/14/06	2/14/06	2/14/06	2/14/06	2/14/06
DRO (mg/kg)	100	. ==						<6.77			-	
pH	NSE	8.16	9.03		_ ·			-	8.95	7.58	9.51	8.16
PAHs ¹ (mg/kg)		:										
Acenaphthene	900	< 0.0055	<0.00523	<0.00522	<0.00596	<0.00545	<0.00597	<0.00636	< 0.00576	<0.00626	<0.00529	<0.00585
Acenaphthylene	18	< 0.00773	<0.00735	< 0.00733	<0.00837	<0.00766	<0.00839	<0.00893	< 0.00809	<0.00879	<0.00743	<0.00821
Anthracene	5000	<0.00246	<0.00234	< 0.00233	<0.00266	<0.00244	<0.00267	<0.00284	< 0.00257	<0.0028	<0.00236	<0.00261
Benzo(a)Anthracene	0.088	<0.0048	0.00571	0.0362	<0.0052	0.0646	<0.00521	0.00861	< 0.00502	<0.00546	<0.00462	<0.0051
Benzo(a)Pyrene	0.008	< 0.00269	0.0106	0.0477	<0.00292	0.0821	<0.00292	<0.00311	<0.00282	<0.00306	<0.00259	<0.00286
Benzo(b)Fluoranthene	0.088	< 0.00246	0.0092	0.084	0.011	0.196	<0.00267	<0.00284	< 0.00257	<0.0028	<0.00236	< 0.00261
Benzo(k)Fluoranthene	0.88	< 0.0034	0.00453	0.0412	<0.00368	0.0893	<0.00368	<0.00392	< 0.00355	<0.00386	<0.00327	<0.00361
Benzo(ghi)Perylene	18	<0.00468	0.0154	0.068	0.0214	0.198	<0.00508	0.0132	< 0.0049	<0.00533	<0.0045	<0.00498
Chrysene	8.8	< 0.00269	0.00978	0.107	0.0137	0.19	<0.00292	<0.00311	0.00452	<0.00306	<0.00259	<0.00286
Dibenzo(a,h)Anthracene	0.0088	< 0.00316	<0.00301	<0.003	<0.00342	<0.00313	<0.00343	<0.00365	0.00875	<0.0036	<0.00304	< 0.00336
Fluoranthene	600	< 0.00304	0.0196	0.306	0.0224	0.535	<0.0033	0.03	< 0.00319	<0.00346	<0.00293	< 0.00323
Fluorene	600	<0.00386	<0.00367	<0.00367	<0.00418	<0.00383	<0.00419	<0.00447	<0.00404	<0.00439	<0.00372	< 0.0041
Indeno(1,2,3-cd)Pyrene	0.088	0.021	0.00823	0.04	0.00744	0.137	<0.0028	0.00802	<0.0027	<0.00293	<0.00248	0.006
1-Methyl Naphthalene	1100	0.0326	<0.00412	0.0938	0.00515	0.0883	0.0428	<0.00501	<0.00453	<0.00493	<0.00417	0.0831
2-Methyl Naphthalene	600	0.0708	<0.00457	<0.00456	0.00875	<0.00476	<0.00521	<0.00555	<0.00502	<0.00546	<0.00462	0.0271
Naphthalene	20	0.0177	<0.00512	0.0493	<0.00583	0.059	<0.00584	<0.00622	<0.00564	<0.00613	<0.00518	0.099
Phenanthrene	18	<0.0048	0.00859	0.206	0.0128	0.238	<0.00521	0.0161	<0.00502	<0.00546	<0.00462	<0.0051
Pyrene	500	<0.00246	0.00506	<0.00233	<0.00266	0.0404	<0.0027	0.00537	<0.00257	<0.0028	<0.00236	<0.00261
VOCs ² (mg/kg)	-	0.002.10	1 0.0000		0.00200	0.0.0.	0.00201	0.00001	0.00201	0.0020	0.00200	0.00201
Benzene	5.5	<0.025	<0.025	<0.025	<0.025	0.0905	<0.025	<0.025	<0.025	<0.025	<0.5	<2.50
Bromobenzene	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.5	<2.50
Bromodichloromethane	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.5	<2.50
n-Butylbenzene	NSE	<0.025	<0.025	0.0611	<0.025	0.0568	<0.025	0.153	<0.025	<0.025	2.73	23
sec-Butylbenzene	NSE	<0.025	<0.025	0.0889	<0.025	0.0638	<0.025	<0.025	<0.025	<0.025	<0.5	<2.50
tert-Butylbenzene	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.5	<2.50
Carbon Tetrachloride	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.5	<2.50
Chlorobenzene	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.5	<2.50
Chlorodibromomethane	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.5	<2.50
Chloroethane	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.5	<2.50
Chloroform	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.5	<2.50
Chloromethane	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.5	<2.50
o-Chlorotoluene	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.5	<2.50
p-Chlorotoluene	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.5	<2.50
1,2-Dibromo-3-chloropropane	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.5 <0.5	<2.50
1,2-Dibromoethane	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.5 <0.5	<2.50 <2.50
1,2-Dichlorobenzene	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	1		<2.50 <2.50
1,3-Dichlorobenzene		1	•			1	1			<0.025	<0.5	<2.50 <2.50
1,4-Dichlorobenzene	NSE NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.5	<2.50 <2.50
5		<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.5	· ·
Dichlorodifluoromethane	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.5	<2.50
1,1-Dichloroethane	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.5	<2.50
1,2-Dichloroethane	4.9	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.5	<2.50
1,1-Dichloroethylene	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.5	<2.50
cis-1,2-Dichloroethylene	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.5	<2.50
trans-1,2-Dichloroethylene	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.5	<2.50

Table 1 (Continued)
Soil Analytical Results - DRO, PAHs, VOCs, and Metals

	1 1					Во	ring No./Depth (ft)/D)ate				
Analytical Parameters	Generic RCLs	В	-1	В	-2	В	-3	B-4	B-5	B-6	B-7	B-8
Analytical Fatameters	in Soil	0-2	4-6	0-2	2-4	0-2	2-4	4-6	0.5-0.8	1.5-3.0	1.0-2.5	1.0-2.5
	_1	2/13/06	2/13/06	2/13/06	2/13/06	2/13/06	2/13/06	2/14/06	2/14/06	2/14/06	2/14/06	2/14/06
/OCs ² (mg/kg)												
1,2-Dichloropropane	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.5	<2.50
1,3-Dichloropropane	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.5	<2.50
2,2-Dichloropropane	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.5	<2.50
Ethylbenzene	2900	<0.025	<0.025	0.0689	<0.025	0.109	<0.025	0.0419	<0.025	<0.025	<0.5	<2.50
Hexachlorobutadiene	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.5	<2.50
Isopropylbenzene	NSE	<0.025	<0.025	0.0533	<0.025	0.087	<0.025	<0.025	<0.025	<0.025	<0.5	<2.50
Isopropyl Ether	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	· <0.025	<0.025	<0.025	<0.5	<2.50
p-isopropyltoluene	NSE	<0.025	<0.025	0.0533	<0.025	0.0719	<0.025	<0.025	<0.025	<0.025	<0.5	<2.50
Methyl tert Butyl Ether	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.5	<2.50
Methylene Chloride	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.5	<2.50
Naphthalene	0.02	0.0455	<0.025	0.317	<0.025	0.365	0.0445	0.0419	<0.025	<0.025	<0.5	3.69
n-Propylbenzene	NSE	<0.025	<0.025	0.0633	<0.025	0.0858	<0.025	<0.025	<0.025	<0.025	<0.5	<2.50
Tetrachloroethylene	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.5	<2.50
Toluene	1500	<0.025	<0.025	<0.025	<0.025	0.448	0.0394	0.046	<0.025	<0.025	0.822	<2.50
1,2,3-Trichlorobenzene	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.5	<2.50
1,2,4-Trichlorobenzene	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.5	<2.50
1,1,1-Trichloroethane	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.5	<2.50
1,1,2-Trichloroethane	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.5	<2.50
Trichloroethylene	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.5	<2.50
Trichlorofluoromethane	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.5	<2.50
1,2,4-Trimethylbenzene	NSE	<0.025	<0.025	0.221	<0.025	0.367	<0.025	0.237	<0.025	<0.025	<0.5	91.9
1,3,5-Trimethylbenzene	NSE	<0.025	<0.025	0.09	<0.025	0.113	<0.025	0.123	<0.025	<0.025	<0.5	<2.50
Vinyl Chloride	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.5	<2.50
Total Xylenes	4100	<0.050	<0.050	0.349	0.0393	0.768	0.1258	0.346	0.0355	0.0399	4.29	4.74
CRA Total Metals (mg/kg)												i e
Mercury	NSE	0.156	0.0245	0.0978	0.0659	0.0812	0.382	0.0934	<0.0172	0.0426	<0.0158	0.0348
Arsenic	1.6	3.48	2.34	42.6	4.93	28.1	5.34	2.98	0.875	2.41	<0.383	<0.42
Barium	NSE	53.4	91	36.4	100	57.5	62.9	78.5	5.47	16.4	10.7	17.5
Cadmium	510	0.113	0.0757	0.584	<0.0722	1.08	0.266	0.253	<0.0699	0.172	<0.0642	< 0.0709
Chromium	NSE	15.9	16.9	8.03	30.5	19	16	21.4	2.23	12.7	8.73	7.67
Lead	500	20.6	9.02	134	9.48	184	58.4	9.45	1.06	5.83	1.82	3.87
Selenium	NSE	<0.703	<0.668	<0.667	<0.76	<0.696	<0.762	<0.812	<0.735	2.52	<0.676	<0.746
Silver	NSE	<0.234	<0.223	<0.222	<0.253	<0.232	<0.254	<0.271	<0.245	<0.266	<0.225	<0.249

Q:\KO\Nerub\050200\Reports&Specs\misc\Soil Analytical Results.xls

Table 1 (Continued)
Soil Analytical Results - DRO, PAHs, VOCs, and Metals

							Boring No./D	epth (ft)/Date		<u> </u>			
Analytical Parameters	Generic RCLs	B-9	B-10	B-11	B-12	B-13	MW-5/PZ-5	MW-6	MW-7	My	N-8	MV	V-9
	in Soil	1.0-2.0	0.5-1.5	1-3	1-2	0.5-4.5	0-4	0-4	0-4	0-4	4-6	0-4	4-6
PO (mg/kg)		2/14/06	2/14/06	2/15/06	2/15/06	2/15/06	2/13/06	2/13/06	2/13/06	2/13/06	2/13/06	2/13/06	2/13/06
RO (mg/kg) H	100		-		-					-	_		
		8.51	8.31	9.53	8.87	8.14				_		-	
AHs ¹ (mg/kg)	1												
Acenaphthene	900	<0.00535	<0.00643	<0.00575	<0.00517	<0.00499	<0.00617	<0.0081	<0.121	<0.00544	<0.00705	<0.00554	<0.00539
Acenaphthylene	18	<0.00752	<0.00903	<0.00807	<0.00726	<0.00701	<0.00866	<0.0114	<0.17	<0.00764	<0.0099	<0.00778	<0.0075
Anthracene	5000	<0.00239	<0.00287	<0.00257	<0.00231	<0.00223	<0.00276	<0.00362	0.275	<0.00243	<0.00315	<0.00248	<0.0024
Benzo(a)Anthracene	0.088	0.0166	0.0166	<0.00501	<0.00451	0.00485	<0.00538	0.0519	0.988	0.0122	<0.00615	0.0323	0.00823
Benzo(a)Pyrene	0.008	0.0175	0.0261	<0.00281	<0.00253	<0.00244	<0.00302	0.0678	0.815	<0.00266	<0.00345	0.052	0.0164
Benzo(b)Fluoranthene	0.088	0.0336	0.041	<0.00257	<0.00231	0.0219	<0.00276	0.114	1.01	0.0355	<0.00315	0.104	0.0292
Benzo(k)Fluoranthene	0.88	0.0231	0.0198	<0.00355	<0.00319	<0.00308	<0.00381	0.0391	0.537	0.0208	<0.00435	0.0459	0.0122
Benzo(ghi)Perylene	18	< 0.00456	0.0328	<0.00489	<0.0044	0.092	<0.00525	0.106	0.471	<0.00463	<0.006	0.151	0.0509
Chrysene	8.8	0.033	0.0472	0.00528	0.00949	<0.00244	0.0056	0.084	1.09	0.0543	<0.00345	0.109	0.0309
Dibenzo(a,h)Anthracene	0.0088	<0.00308	0.00911	<0.0033	<0.00297	<0.00287	<0.00354	<0.00466	<0.0695	<0.00313	<0.00345	<0.00318	6
Fluoranthene	600	0.12	0.087	0.00858	0.0163	<0.00276	<0.00341	0.233	3.71	<0.00313	<0.0039	0.218	<0.0031
Fluorene	600	< 0.00376	<0.00451	<0.00403	<0.00363	<0.00351	<0.00433	0.0155	0.136	<0.00382	<0.0039	1	0.00586
Indeno(1,2,3-cd)Pyrene	0.088	<0.00251	0.0222	0.00413	0.00707	0.0242	<0.00289	0.0614	0.726	0.0251		<0.00389	<0.0037
1-Methyl Naphthalene	1100	0.0116	0.0201	<0.00452	<0.00407	<0.00393	<0.00289	<0.00638	<0.0952)	<0.0033	0.0802	0.0239
2-Methyl Naphthalene	600	0.0131	0.028	<0.00501	<0.00451	<0.00436	<0.00538	<0.0058	1	0.0566	<0.00555	<0.00436	0.013
Naphthalene	20	0.00638	0.013	<0.00562	<0.00506	<0.00430	<0.00538	1	<0.106	0.0635	<0.00615	<0.00483	0.0179
Phenanthrene	18	0.0351	0.0491	<0.00501	0.00300	<0.00489		<0.00793	<0.118	0.0316	<0.0069	<0.00542	0.00857
Pyrene	500	0.00528	0.00763	0.00246	0.00737		<0.00538	0.121	1.92	0.104	<0.00615	0.142	0.0347
OCs ² (mg/kg)		0.00020	0.00703	0.00240	0.00337	0.00325	<0.00276	0.0621	1.33	<0.00243	<0.00315	<0.00248	<0.0024
Benzene	5.5	<0.025	<0.025	<0.025	40.005	10.005]					}
Bromobenzene	NSE NSE	<0.025	<0.025		<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
Bromodichloromethane	NSE	<0.025	1	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
n-Butylbenzene	NSE		<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
sec-Butylbenzene	l I	0.0364	0.0739	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.0519	<0.025
tert-Butylbenzene	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.0436	<0.025
	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
Carbon Tetrachloride	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
Chlorodihananathan	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
Chlorodibromomethane	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
Chloroethane	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
Chloroform	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
Chloromethane	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
o-Chlorotoluene	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
p-Chlorotoluene	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
1,2-Dibromo-3-chloropropane	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
1,2-Dibromoethane	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
1,2-Dichlorobenzene	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	1
1,3-Dichlorobenzene	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
1,4-Dichlorobenzene	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025		1	§	<0.025
Dichlorodifluoromethane	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	1	<0.025	<0.025	<0.025	<0.025
1,1-Dichloroethane	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	i .	<0.025	<0.025	<0.025	<0.025	<0.025
1,2-Dichloroethane	4.9	<0.025	<0.025	<0.025	<0.025	i	ł	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
1,1-Dichloroethylene	NSE	<0.025	0.171	<0.025	1	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
cis-1,2-Dichloroethylene	NSE	<0.025	i	ľ	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
trans-1,2-Dichloroethylene			<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
adio-1,2-bidilotocatylette	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.02

Former Mirro Plant #20 Newell Rubbermaid

Table 1 (Continued)
Soil Analytical Results - DRO, PAHs, VOCs, and Metals

						· · · · · · · · · · · · · · · · · · ·	Boring No./De	epth (ft)/Date					
Analytical Parameters	Generic RCLs	B-9	B-10	B-11	B-12	B-13	MW-5/PZ-5	MW-6	MW-7	MV	V-8	MV	/- 9
Allalytical Parameters	in Soil	1.0-2.0	0.5-1.5	1-3	1-2	0.5-4.5	0-4	0-4	0-4	0-4	4-6	0-4	4-6
		2/14/06	2/14/06	2/15/06	2/15/06	2/15/06	2/13/06	2/13/06	2/13/06	2/13/06	2/13/06	2/13/06	2/13/06
VOCs ² (mg/kg)							٠						
1,2-Dichloropropane	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
1,3-Dichloropropane	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
2,2-Dichloropropane	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
Ethylbenzene	2900	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.154	<0.025
Hexachlorobutadiene	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
Isopropylbenzene	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.0696	<0.025
Isopropyl Ether	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
p-Isopropyltoluene	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.0578	<0.025
Methyl tert Butyl Ether	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
Methylene Chloride	NSE	0.174	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
Naphthalene	0.02	0.0353	0.0766	<0.025	<0.025	<0.025	<0.025	<0.025	0.045	<0.025	<0.025	0.307	<0.025
n-Propylbenzene	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.0613	<0.025
Tetrachloroethylene	NSE	<0.025	0.133	<0.025	<0.025	<0.025	<0.025	< 0.025	<0.025	<0.025	<0.025	<0.025	<0.025
Toluene	1500	0.0342	0.0465	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
1,2,3-Trichlorobenzene	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
1,2,4-Trichlorobenzene	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
1,1,1-Trichloroethane	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
1,1,2-Trichloroethane	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
Trichloroethylene	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
Trichlorofluoromethane	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
1,2,4-Trimethylbenzene	NSE	0.082	0.0547	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.217	<0.025
1,3,5-Trimethylbenzene	NSE	<0.025	0.0438	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.126	<0.025
Vinyl Chloride	NSE	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
Total Xylenes	4100	0.0501	0.2052	0.033	0.0286	0.0276	<0.050	<0.050	<0.050	<0.050	<0.050	0.1062	<0.050
RCRA Total Metals (mg/kg)								<u> </u>					
Mercury	NSE	0.0934	0.0684	0.0318	<0.0154	0.0489	0.0669	0.119	0.0849	0.16	0.078	0.0825	0.0264
Arsenic	1.6	2.02	1.94	0.531	1.45	1.47	2.57	2.59	2.43	3.38	2.29	3.84	2.82
Barium	NSE	17	39.5	18.9	15.1	21.1	98	75.3	70.4	47.1	105	48.1	37.5
Cadmium	510	0.0925	<0.078	<0.0697	0.155	<0.0606	0.189	<0.0983	0.13	0.288	0.804	0.297	<0.0654
Chromium	NSE	31.7	6.63	5.93	5.98	7.46	27.7	17.6	15.1	6.32	41.8	11.6	11.3
Lead	500	4.11	26.3	5.21	5.47	2.71	6.56	7.29	14.5	43.8	9.54	50.8	10.4
Selenium	NSE	<0.683	<0.821	<0.733	<0.66	<0.638	<0.787	<1.03	1.08	<0.694	<0.9	<0.708	<0.688
Silver	NSE	<0.228	0.33	<0.244	<0.22	<0.213	<0.262	<0.345	<0.257	<0.231	<0.3	<0.236	<0.229

RCL = Residual contaminant levels for soils published in ch. NR 720, Wis. Adm. Code

RCLs listed for RCRA metals are for industrial sites

NSE = No standard established

Bold = Exceeds ch. NR 720 soil cleanup standards

Compiled by: <u>JEG</u> Checked by: <u>RJH</u>

Q:\KO\Nerub\050200\Reports&Specs\misc\Soil Analytical Results-DRO,PAH.xls

¹ = PAH list is not complete; PAHs not listed are BDL

² = VOC list is not complete; VOCs not listed are BDL

Table 2
Soil Analytical Results - Pesticides and PCBs

	Во	ring No./Depth (ft)/Da	ate
Analytical Parameters	B-1	B-1	B-10
Analytical Parameters	0-2	4-6	0.5-1.5
	2/13/06	2/13/06	2/14/06
Pesticides (µg/kg)			
Alachlor	<2.28	<2.17	
Atrazine	<2.18	<2.07	_
Butylate	<1.14	<1.08	_
Chlorpyrifos	<1.76	<1.67	<u> </u>
Cyanazine	<2.25	<2.14	-
Desethyl atrazine	<2.32	<2.20	-
Desisopropyl atrazine	<3.51	<3.34	- 1
EPTC (Eptam)	<6.44	<6.12	
Metolachlor	<2.42	<2.31	-
Metribuzin	<2.59	<2.46	⁻
Pendimethalin	<2.08	<1.98	- 1
Prometon	<3.27	<3.11	
Propazine	<2.12	<2.02	
Simazine	<2.05	<1.95	
Trifluralin	<2.07	<1.97	_
Acetochlor	<5.85	<5.57	-
Dimethenamid	<3.86	<3.67	
PCBs (μg/kg)			
Arochlor 1016		-	<6.4
Arochlor 1221	-	_	<5.3
Aroclor 1232	_		<5.2
Aroclor 1242		_	<5.6
Aroclor 1248	-	-	<4.1
Aroclor 1254	-	-	18
Aroclor 1260	<u> </u>		<3.8
= Not analyzed for			
Compiled by: <u>JEG</u> Checked by: _	RJH		

Q:\KO\Nerub\050200\Reports&Specs\misc\Soil Analytical Results-Pesticides.xls

Former Mirro Plant #20 Newell Rubbermaid

NERUB0502.00

Table 3
Groundwater Analytical Results

Amaintiant Danamatana	I NH 140 S	tandards					<u> </u>				V	/eli No./Sa	mpling Da	te		_						
Analytical Parameters				-5		5A		-6		-9		11	В	-12	M۱	W-1	M	N-2	MV	V-3	MV	W-4
-11	ES	PAL	2/16/06	5/30/06	2/16/06	5/30/06	2/16/06	5/30/06	2/16/06	5/30/06	2/16/06	5/30/06	2/16/06	5/30/06	2/16/06	5/30/06	2/16/06	5/30/06	2/16/06	5/30/06	2/16/06	5/30/06
pH (/l)	NSE	NSE	7.36		7.92		7.93		7.45		8.28		8.67		7.34		7.34		7.37		7.48	
DRO (µg/l)	NSE	NSE																				
PAHs ¹ (µg/l)	J																					
Acenaphthene	NSE	NSE	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.061	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06
Acenaphthylene	NSE	NSE	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.061	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06
Anthracene	3,000	600	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.092	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09
Benzo(a)Anthracene	NSE	NSE	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.102	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Pyrene	0.2	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<u>0.048</u>	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo(b)Fluoranthene	NSE	NSE	0.066	<0.02	<0.02	<0.02	<0.02	<0.02	0.097	<0.02	<0.02	<0.02	0.155	<0.02	0.052	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo(k)Fluoranthene	NSE	NSE	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.071	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07
Benzo(g,h,i)Perylene	NSE	NSE	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	0.1	<0.06	<0.06	<0.06	<0.06	<0.061	0.073	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06
Chrysene	0.2	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<u>0.15</u>	<u>0.090</u>	<u>0.131</u>	<0.02	<u>0.192</u>	<0.02	0.054	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Dibenzo(a,h)Anthracene	NSE	NSE	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.112	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11
Fluoranthene	400	80	<0.12	<0.12	<0.12	<0.12	<0.12	<0.12	<0.12	0.157	<0.12	<0.12	0.383	<0.112	<0.12	<0.12	<0.12	<0.12	<0.12	<0.12	<0.12	<0.12
Fluorene	400	80	<0.12	<0.12	<0.12	<0.12	<0.12	<0.12	<0.12	<0.12	<0.12	<0.12	<0.12	<0.112	<0.12	<0.12	<0.12	<0.12	<0.12	<0.12	<0.12	<0.12
Indeno(1,2,3-cd)Pyrene	NSE	NSE	<0.12	<0.12	0.26	<0.12	<0.12	<0.12	<0.12	<0.12	<0.12	<0.12	0.145	<0.112	<0.12	<0.12	<0.12	<0.12	<0.12	<0.12	<0.12	<0.12
1-Methyl Naphthalene	NSE	NSE	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.082	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
2-Methyl Naphthalene	NSE	NSE	<0.11	<0.11	0.352	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.112	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11
Naphthalene	40	8.0	<0.11	<0.11	0.194	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.112	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11
Phenanthrene	NSE	NSE	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.112	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11
Pyrene	250	50	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.102	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
VOCs² (μg/l)																						
Benzene	5	0.5	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	0.157	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15
Bromobenzene	NSE	NSE	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Bromochlororomethane	NSE	NSE		<0.1		<0.1		<u>0.2</u>	••	<0.1		<0.1		<0.1		<0.1		<0.1	•••	<0.1		<0.1
Bromodichloromethane	0.6	0.06	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
n-Butylbenzene	NSE	NSE	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
sec-Butylbenzene	NSE	NSE	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15
tert-Butylbenzene	NSE	NSE	0.236	<0.15	0.252	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15
Carbon Tetrachloride	5	0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorobenzene	NSE	NSE	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorodibromomethane	NSE	NSE	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chloroethane	400	80	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Chloroform	6	0.6	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chloromethane	3	0.3	<0.2	0.24	<0.2	<0.2	<0.2	<0.2	<0.2	<u>0.49</u>	<0.2	<0.2	<0.2	0.26	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-Chlorotoluene	NSE	NSE	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p-Chlorotoluene	NSE	NSE	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
1,2-Dibromo-3-chloropropane	0.2	0.02	<0.3	<0.35	<0.3	<0.35	<0.3	<0.35	<0.3	<0.35	<0.3	<0.35	<0.3	<0.35	<0.3	<0.35	<0.3	<0.35	<0.3	<0.35	<0.3	<0.35
1,2-Dibromoethane	0.05	0.005	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.0	<0.5 <0.1	<0.1	<0.3	<0.35
1,2-Dichlorobenzene	600	60	<0.75	<0.75	<0.75	<0.75	<0.75	<0.75	<0.75	<0.75	<0.75	<0.75	<0.75	<0.75	<0.75	<0.75	<0.75	<0.75	<0.75	<0.75	<0.75	<0.75
1,3-Dichlorobenzene	1,250	125	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.75 <0.15	<0.75	<0.15	<0.75	<0.75	<0.75
1,4-Dichlorobenzene	75	15	<0.75	<0.75	<0.75	<0.75	<0.75	<0.75	<0.75	<0.75	<0.75	<0.75	<0.75	<0.75	<0.15	<0.75	<0.75	<0.15	<0.15	<0.15	<0.15	1
Dichlorodifluoromethane	1,000	200	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.75	<0.75 <0.25	<0.75	<0.75 <0.25	<0.75			1	<0.75
1,1-Dichloroethane	850	85	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.25	<0.25 <0.15	<0.25 <0.15	:		<0.25	<0.25	<0.25	<0.25
1,2-Dichloroethane	5	0.5	<0.1	<0.1	<0.1	<0.1	<0.1	0.20	<0.10	<0.13	<0.13	<0.15	<0.15	<0.15	<0.15 <0.1	1 1	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15
1,1-Dichloroethylene	7	0.7	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.1 <0.15	0.15		<0.1	<0.1	<0.1	<u>2.29</u>	<u>2.57</u>	0.296	0.30
cis-1,2-Dichloroethylene	70	7	<0.10	<0.2	<0.13	<0.13	<0.13	0.34	<0.15	<0.15	1.57	<0.15 0.95	ľ	1 1	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15
trans-1,2-Dichloroethylene	100	20	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.2	<0.2 <0.1	<0.1	0.95 <0.1	2.77 <0.1	<u>7.64</u> 0.14	<0.2 <0.1	<0.2 <0.1	<0.2 <0.1	<0.2 <0.1	2.22 <0.1	2.55 <0.1	5.57 0.138	4.55 0.30

Table 3 (Continued) **Groundwater Analytical Results**

Analytical Parameters	NR 140 Standards										V	Vell No./Sa	mpling Da	te							-	
			B-5		B-5A		B-6		1	-9		11		12	MW-1		MW-2		MW-3		MW-4	
V00.27 50	ES	PAL	2/16/06	5/30/06	2/16/06	5/30/06	2/16/06	5/30/06	2/16/06	5/30/06	2/16/06	5/30/06	2/16/06	5/30/06	2/16/06	5/30/06	2/16/06	5/30/06	2/16/06	5/30/06	2/16/06	5/30/06
VOCs² (µg/l)								İ]												
1,2-Dichloropropane	5	0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,3-Dichloropropane	NSE	NSE	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2,2-Dichloropropane	NSE	NSE	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,1-Dichloropropene	NSE	NSE	<0.2	<0.3	<0.2	<0.3	<0.2	<0.3	<0.2	<0.3	<0.2	<0.3	<0.2	<0.3	<0.2	<0.3	<0.2	<0.3	<0.2	<0.3	<0.2	<0.3
cis-1,3-Dichloropropene	0.2	0.02	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-1,3-Dichloropropene	0.2	0.02	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	700	140	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.269	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Hexachlorobutadiene	NSE	NSE	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
Isopropylbenzene	NSE	NSE	<0.1	<0.1	0.602	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isopropyl Ether	NSE	NSE								_										<0.1		1
p-Isopropyltoluene	NSE	NSE	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		-
Methyl tert Butyl Ether	60	12	<0.1	0.66	<0.1	0.36	<0.1	0.33	<0.1	1.49	<0.1	0.56	<0.1	<0.1	<0.1	<0.2	<0.2		l .	1	<0.2	<0.2
Methylene Chloride	5	0.5	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.1	<0.1	<0.1	<0.1	0.14	<0.1	<0.1	0.112	0.22
Naphthalene	40	8	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<0.4 <1.00	<0.4	<0.4	<0.4	<0.4	<0.4
n-Propylbenzene	NSE	NSE	<0.1	<0.1	0.138	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1.00	<1.00	<1.00	<1.00	<1.00
Tetrachloroethylene	5	0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.21				<0.1	<0.1	<0.1	<0.1	<0.1
1,1,1,2-Tetrachloroethane	70	7	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	l	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,1,2,2-Tetrachloroethane	0.2	0.02	0.286	<0.1	0.51	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	1,000	200	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,1,2-Trichloroethane	5	0.5		0.58		0.21		<0.1		<0.4			0.512	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Total Trimethylbenzenes	480	96	<0.3	0.22	3.93	<0.3	0.21	<0.1	0.445			<0.1		<0.1		<0.1		<0.1		<0.1		<0.1
1,2,3-Trichlorobenzene	NSE	NSE	<0.5	<0.5	<0.5	<0.5	<0.5			<0.3	<0.3	<0.3	0.214	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
1,2,4-Trichlorobenzene	70	14	<0.5	0.58	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,1,1-Trichloroethane	200	40	<0.3	<0.2				<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Trichloroethylene	5	0.5		L	<0.2	0.21	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Trichlorofluoromethane	NSE	NSE	<0.2 <0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.415	<u>0.69</u>	<0.2	<u>2.11</u>	<0.2	<0.2	<0.2	<0.2	<u>0.535</u>	<u>0.61</u>	<0.2	<0.2
Vinyl Chloride	1			<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total Xylenes	0.2	0.02	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	0.26	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15
Metals (µg/l)	10,000	1,000	<0.5	<0.5	0.112	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.984	<0.5	<0.5	<0.5	<:0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1	50	_							[i					-			}				
Arsenic	50	5	<0.6		1.4		0.8		0.8		1.3		1.8		<0.6		1.7		3.4		<0.6	
Barium	2000	400	69.3	-	57		29.9		48.6	-	60.5		40		62.5		34.5		33.7		48.2	
Cadmium	5	0.5	<0.2		<0.2		<0.2		<0.2		<0.2		<0.2		<0.2		<0.2		<0.2		<u>0.77</u>	
Chromium	100	10	<1.60	-	<1.60		<1.60		2.4		2.5		2		<1.60		<1.60	-	<1.60		2.8	
Lead	15	1.5	<0.3		<0.3		<0.3		<0.3		<0.3		<0.3		<0.3		<0.3		<0.3		<0.3	
Mercury	2	0.2	<0.07		<0.07		<0.07		<0.07		<0.07		<0.07		<0.07		<0.07		<0.07		<0.07	
Selenium	50	10	0.6	i	0.9		0.8		<0.6		0.97		1.3		0.6		0.6		<0.6		0.7	
Silver	50	10	<0.2		<0.2		<0.2		<0.2	-	<0.2		<0.2		<0.2		<0.2		<0.2	<u> </u>	<0.2]
NSE = No standard established																		<u> </u>	70.2			

Bold = Exceeds ch. NR 140 Enforcement Standard (ES)

<u>Underline</u> = Exceeds ch. NR 140 Preventive Action Limit (PAL)

2/06 Results Compiled by: <u>JEG</u> Checked by: <u>RJH</u>

5/06 Results Compiled by: <u>JEG</u> Checked by: <u>MFR</u>

Q:\KO\Werub\050200\Reports&Specs\misc\GW Analytical Results.xls

^{-- =} Not analyzed for

^{1 =} PAH list is not complete; PAHs not listed are BDL

² = VOC list is not complete; VOCs not listed are BDL

Table 3 (Continued)
Groundwater Analytical Results

Analytical Parameters	NR 140 Standards									W	/ell No./Sam	pling Date								
			MW-5 PZ-5				Z-5	5 MW-6			MW-7 MW-8				N-9	East Sump	Large Sump		West Sump	
	ES	PAL	2/16/06	5/30/06	5/30/2006 Duplicate	2/16/06	5/30/06	2/16/06	5/30/06	2/16/06	5/30/06	2/16/06	5/30/06	2/16/06	5/30/06	2/16/06	2/16/06	5/30/06	2/16/06	5/30/06
рН	NSE	NSE	7.38			7.48		7.39		7.49		7.28	 	7.66		7.31	7.51		0.00	-
DRO (μg/l)	NSE	NSE									 			7.00		3,864,059			8.00	
PAHs¹ (µg/l)				<u> </u>					 	 						3,004,059	<u></u>			- -
Acenaphthene	NSE	NSE	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.061	<0.06	<0.06	0.004						
Acenaphthylene	NSE	NSE	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.061	<0.06	i .	0.081	<0.06	<6.90	<0.06	<0.06	<0.06	<0.06
Anthracene	3,000	600	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.00	<0.092	l	<0.06	<0.06	<0.06	<6.90	<0.06	<0.06	<0.06	<0.06
Benzo(a)Anthracene	NSE	NSE	<0.1	<0.1	<0.1	<0.0	<0.03	<0.1	<0.09	<0.09	<0.092	<0.09	<0.09	<0.09	<0.09	<10.4	<0.09	<0.09	<0.09	<0.09
Benzo(a)Pyrene	0.2	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02		I	<0.1	<0.1	<0.1	<0.1	<11.5	<0.1	<0.1	<0.1	<0.1
Benzo(b)Fluoranthene	NSE	NSE	<0.02	<0.02	0.025	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<u>0.167</u>	<0.02	<2.3	<0.02	<0.02	<0.02	<0.0
Benzo(k)Fluoranthene	NSE	NSE	<0.07	<0.02	<0.07	<0.02	<0.02	<0.02 <0.07	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<2.3	<0.02	<0.02	0.035	0.09
Benzo(g,h,i)Perylene	NSE	NSE	<0.06	0.230	0.17	<0.07	<0.07	<0.07	<0.07	<0.07	<0.071	<0.07	<0.07	<0.07	<0.07	<8.05	<0.07	<0.07	<0.07	<0.0
Chrysene	0.2	0.02	<0.02	<0.02	<0.02	<0.00	<0.08	1	<0.06	<0.06	<0.061	<0.06	<0.06	<0.06	<0.06	<6.90	<0.06	<0.06	0.094	0.06
Dibenzo(a,h)Anthracene	NSE	NSE	<0.11	<0.02	<0.02	1		<0.02		<0.02	<0.020	<0.02	<0.02	<0.02	<0.02	<2.30	<0.02	<0.02	<u>0.045</u>	0.14
Fluoranthene	400	80	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.112	<0.11	<0.11	<0.11	<0.11	<12.7	<0.11	<0.11	<0.11	<0.1
Fluorene	400	80	<0.12	<0.12 <0.12	<0.12 <0.12	0.123	<0.12	<0.12	<0.12	<0.12	<0.122	<0.12	<0.12	<0.12	<0.12	<13.8	<0.12	<0.12	<0.12	0.16
Indeno(1,2,3-cd)Pyrene	NSE	NSE	<0.12	<0.12		<0.12	<0.12	<0.12	<0.12	<0.12	<0.122	<0.12	<0.12	<0.12	<0.12	<13.8	<0.12	<0.12	<0.12	<0.1
1-Methyl Naphthalene	NSE	NSE	<0.12	<0.12 <0.08	<0.12	<0.12	<0.12	<0.12	<0.12	<0.12	<0.122	<0.12	<0.12	<0.12	<0.12	<13.8	<0.12	<0.12	<0.12	0.12
2-Methyl Naphthalene	NSE	NSE			<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.082	<0.08	<0.08	1.31	<0.08	<9.2	<0.08	<0.08	<0.08	<0.0
Naphthalene		1 1	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.112	<0.11	<0.11	2.73	<0.11	<12.7	<0.11	<0.11	<0.11	<0.1
Phenanthrene	40	8.0	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.112	<0.11	<0.11	1.05	<0.11	<12.7	<0.11	<0.11	<0.11	<0.
	NSE	NSE	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.112	<0.11	<0.11	<0.11	<0.11	<12.7	<0.11	<0.11	<0.11	0.11
Pyrene	250	50	<0.1	<0.1	<0.1	0.169	<0.1	<0.1	<0.1	<0.1	<0.102	<0.1	<0.1	<0.1	<0.1	<11.5	<0.1	<0.1	<0.1	<0.
DCs ² (µg/l)	_					[[i	İ	İ		i							
Benzene Benzene	5	0.5	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.1
Bromobenzene	NSE	NSE	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.
Bromochlororomethane	NSE	NSE		<0.1	<0.1	ļ	<0.1	-	<0.1	-	<0.1	-	<0.1		<0.1	-	-	<0.1		<0.
Bromodichloromethane	0.6	0.06	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.
n-Butylbenzene	NSE	NSE	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.
sec-Butylbenzene	NSE	NSE	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.
ert-Butylbenzene	NSE	NSE	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.
Carbon Tetrachloride	5	0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.
Chlorobenzene	NSE	NSE	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.
Chlorodibromomethane	NSE	NSE	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0
Chloroethane	400	80	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0
Chloroform	6	0.6	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0
Chloromethane	3	0.3	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.24	<0.2	<0.2	<0.2	0.28	<0.2	0.28	<0.2	<0.2	<0.2	<0.2	0.2
o-Chlorotoluene	NSE	NSE	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.
-Chlorotoluene	NSE	NSE	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0
,2-Dibromo-3-chloropropane	0.2	0.02	<0.3	<0.35	<0.35	<0.3	<0.35	<0.3	<0.35	<0.3	<0.35	<0.3	<0.35	<0.3	<0.35	<0.3	<0.2	<0.35	<0.3	<0.
,2-Dibromoethane	0.05	0.005	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.03	<0.1	<0
,2-Dichlorobenzene	600	60	<0.75	<0.75	<0.75	<0.75	<0.75	<0.75	<0.75	<0.75	<0.75	<0.75	<0.75	<0.75	<0.75	<0.75	<0.75	<0.75	<0.75	<0.
,3-Dichlorobenzene	1,250	125	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.75	<0.75	<0.15	<0.75 <0.15	i	1	L .	1	1
1,4-Dichlorobenzene	75	15	<0.75	<0.75	<0.75	<0.75	<0.75	<0.75	<0.75	<0.75	<0.75	<0.15	<0.15	<0.15	<0.15	<0.15 <0.75	<0.15	<0.15	<0.15	<0.
Dichlorodifluoromethane	1,000	200	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.75	<0.75	<0.75	<0.75 <0.25	<0.75 <0.25	1	i	<0.75	<0.75	<0.75	<0.
,1-Dichloroethane	850	85	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.25	<0.25	<0.25 <0.15				<0.25	<0.25	<0.25	<0.25	<0.25	<0.
,2-Dichloroethane	5	0.5	0.357	0.29	0.24	0.335	0.31	1		i	1	0.26	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.
1,1-Dichloroethylene	7	0.5	<0.15	<0.15	<0.15	<0.15		0.678	0.67	0.786	0.53	<0.1	0.11	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0
cis-1,2-Dichloroethylene	70	7		5.98		1 1	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.
trans-1,2-Dichloroethylene		1 00	8.26 0.262		5.49	<0.2	0.21	0.869	0.81	1.82	1.38	5.06	<u>8.83</u>	<0.2	<0.2	2.06	1.46	1.67	<0.2	<0.
nano-1,2-Dichioroeuryiene	100	20	0.262	0.46	0.48	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.22	<0.1	<0.1	<0.1	<0.1	0.14	<0.1	<0.

Table 3 (Continued) Groundwater Analytical Results

Analytical Parameters										V	Vell No./Sam	pling Date								
	NR 140 Standards		MW-5			PZ-5		MV	V- 6	MV	N-7	MV	V-8	MW-9		East Sump	Large Sump		West	Sump
	ES	PAL.	2/16/06	5/30/06	5/30/2006 Duplicate	2/16/06	5/30/06	2/16/06	5/30/06	2/16/06	5/30/06	2/16/06	5/30/06	2/16/06	5/30/06	2/16/06	2/16/06	5/30/06	2/16/06	5/30/06
VOCs² (μg/l)																				
1,2-Dichloropropane	5	0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,3-Dichloropropane	NSE	NSE	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2,2-Dichloropropane	NSE	NSE	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,1-Dichloropropene	NSE	NSE	<0.2	<0.3	<0.3	<0.2	<0.3	<0.2	<0.3	<0.2	<0.3	<0.2	<0.3	<0.2	<0.3	<0.2	<0.2	<0.3	<0.2	<0.3
cis-1,3-Dichloropropene	0.2	0.02	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-1,3-Dichloropropene	0.2	0.02	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	700	140	<0.1	<0.1	0.11	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.411	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Hexachlorobutadiene	NSE	NSE	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
Isopropylbenzene	NSE	NSE	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isopropyl Ether	NSE	NSE						-				_				-	-	-	-	
p-Isopropyltoluene	NSE	NSE	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methyl tert Butyl Ether	60	12	<0.1	0.17	0.18	<0.1	0.14	<0.1	0.21	<0.1	0.13	<0.1	0.19	<0.1	0.30	<0.1	<0.1	1.01	<0.1	0.32
Methylene Chloride	5	0.5	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Naphthalene	40	8	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	1.87	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
n-Propylbenzene	NSE	NSE	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.117	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Tetrachloroethylene	5	0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.236	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,1,1,2-Tetrachloroethane	70	7	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,1,2,2-Tetrachloroethane	0.2	0.02	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	1,000	200	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
1,1,2-Trichloroethane	5	0.5		<0.1	<0.1		<0.1		<0.1		<0.1		<0.1		<0.1			<0.1		<0.1
Total Trimethylbenzenes	480	96	<0.3	<0.1	<0.1	<0.3	<0.1	<0.3	<0.1	<0.3	<0.1	<0.3	<0.1	2.049	<0.1	<0.3	<0.3	<0.1	<0.3	<0.3
1,2,3-Trichlorobenzene	NSE	NSE	1		1	<0.5		1	1	1	<0.5	<0.5	<0.5	<0.5		1	<0.5	<0.5	<0.5	<0.5
1 ' '	1	1	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	1		1		<0.5	<0.5		1	<0.5	<0.5
1,2,4-Trichlorobenzene	70	14	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1	<0.5
1,1,1-Trichloroethane	200	40	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.241	<0.2	0.206	1.22	<0.2	<0.2	<0.2	<0.2	1
Trichloroethylene	5	0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.228	2.66	<0.2	<0.2	0.293	<u>0.645</u>	0.95	<0.2	<0.2
Trichlorofluoromethane	NSE	NSE	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Vinyl Chloride	0.2	0.02	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<u>0.16</u>	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15
Total Xylenes	10,000	1,000	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	2.335	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Metals (µg/l)		1									1	1	1	İ .		1				
Arsenic	50	5	0.6		-	<u>10.3</u>	-	1.20	-	4.70	-	0.6		1.20	-	<0.125	2.00		1.00	-
Barium	2000	400	68.5	-	-	71.2	-	52.4	-	58.5	-	81		113	-	<0.0375	56	-	33.4	-
Cadmium	5	0.5	<0.2	-	-	<0.2	-	0.28	-	<0.2	-	<0.2	-	0.34	-	<0.0212	<0.2	-	<0.2	-
Chromium	100	10	1.90	-	-	<1.60	-	1.90	-	<1.60	-	3.20	-	4.90	-	<0.0351	<1.60	-	2.10	-
Lead	15	1.5	<0.3		-	<0.3	-	<0.3	-	<0.3		<0.3	-	<0.3		<0.2	<0.5		<0.3	-
Mercury	2	0.2	<0.07			<0.07		<0.07	-	<0.07		<0.07	-	<0.07	-	<0.07	<0.07		<0.07	-
Selenium	50	10	0.7	-	-	0.8		0.8	-	0.9	-	0.96	-	2.01	-	0.225	0.9		1.50	-
Silver	50	10	<0.2	••		<0.2		<0.2	-	<0.2		0.27	<u> </u>	<0.2		<0.075	<0.2		<0.2	

NSE = No standard established

-- = Not analyzed for

Bold = Exceeds ch. NR 140 Enforcement Standard (ES)

<u>Underline</u> = Exceeds ch. NR 140 Preventive Action Limit (PAL)

2/06 Results Compiled by: <u>JEG</u> Checked by: <u>RJH</u>

5/06 Results Compiled by: <u>JEG</u> Checked by: <u>MFR</u>

Q:\KO\Nerub\050200\Reports&Specs\misc\GW Analytical Results.xls

^{1 =} PAH list is not complete; PAHs not listed are BDL

² = VOC list is not complete; VOCs not listed are BDL

Figures

Figure 1 – Site Location
Figure 2 – Outfalls to Manitowoc River
Figure 3 – Sampling Locations
Figure 4 – Groundwater Flow Map, 5/30/2006
Figure 5 – Geologic Cross Sections

USGS CHILTON QUADRANGLE

WISCONSIN - CALUMET CO. 7.5 MINUTE SERIES 1973

NO.

DATE

SITE INVESTIGATION REPORT FORMER MIRRO PLANT #20 CHILTON, WISCONSIN

SITE INVESTIGATION REPORT

ISSUE/REVISIONS

FIGURE 1

DRAWN BY

NERUB050200 SITE LOCATION 07/17/06

DESIGN

FIELD REVIEW

PROJ. NO.

5

JEG 814

QC CHECK

- SITE LOCATION DRAWING DIRECTORY: Q: \KO\NERUB\050200\FIGURES\SITE INVESTIGATION REPORT\FIGURE 1

Appendix A

Soil Boring, Monitoring Well, and Piezometer Documentation

SOIL BORING LOG INFORMATION

			Ro	ute To:	Watershed/W				_	gement								
					Remediation	Redevelopr	nent 🛛	Other			٠							
	-/D :	- 5.7						Tr ·	/D			7 1.		D '	Pa		of	1
	y/Proje ro Pla							License.	Permi	/Monit	oring r	Number	r	Boring	Numb	B1		
				of crew o	chief (first, last)	and Firm		Date Dr	illing S	Started		Da	te Drill	ing Co	mplete		Drill	ing Method
	y Johi Essei		ł						2/13	3/2006				2/13/:	2006			/draulic obe
	ique W			DNR V	Well ID No.	Common V	Well Name	Final St	atic W	ater Lev		Surfac	e Eleva	tion		Во	rehole	Diameter
Local	C=id O	iain	N/ (as	timatadı	or Bo	ing Lagatio		<u> </u>	Feet	MSL			Fee Local 0	et MS			2.0	inches
State		ıgııı	[X] (c:	stimated:	0 N, 0			L	at	<u> </u>	<u> </u>		Local	JIIU L				□ Е
	1/4	of N	W 1	/4 of Sec	•	T 18 N,		Lon		<u> </u>	<u> </u>	***			t 🗆 S]	Feet W
Facilit	y ID				County			County C	ode	Civil T Chilt		city/ or	Village	:	-			
San	nple		Т	<u>. </u>	Calumet			8	Γ—	Cmit	on		<u> </u>	Soil	Prop	erties		
Dan					Soil/R	ock Descrip	otion							0011	Т			
43	۱tt. گ ed (ii	unts	Fee			ologic Orig					_	_	ssive			_		ıts
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		Eac	h Major Un	it		scs	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	200	RQD/ Comments
ang R		Bic	ļ a		n mor				Ď	Grap Log	Well Diagr		St	Σိပိ	12,12	Plastic Index	P 2	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
1 CORE	24 16		Ē	Dark	Brown TOI	SOIL			OL			0.0						
			-1		L: Layers of													
			<u>-</u> 2	Brick	k Pieces, Cir	ders, and	Lean Cla	ay										
2 CORT	24 16		F									0.0						
			- 3															
Ц			<u>-</u> 4									ļ		İ				
3 CORT	24 15		<u> </u>									0.0						
ı			5															
			E_6								¥		}					
4 CORE	24 16		E 7	Brov Grav	vn Lean CLA	AY, Little	Sand and	d			_	0.0						
			<u>-</u> 7	Giav	/C1				CL									
			Ė,										1					
			- 8	E.O.	B. @ 8.0 ft.													
	<u>'</u>																	
			ļ								ļ		Ì		}			
]																	
7 1	<u> </u>	G. 41	441 - 1 -	<u> </u>	41:- 6	- American 1		hart C					<u>L.</u>		<u> </u>	L		<u> </u>
Signat		iy tha	t the ini	cormation	n on this form i					121 Fren	ette Dri	ve					Tale	715.720.6200
_ <		6	an	<u>. </u>	Jus		Firm SE	HI	nc (Chippew www.seh	a Falls, inc.com	WI 547	729					715.720.6200

State of Wisconsin
Department of Natural Resources

SOIL BORING LOG INFORMATION

Fax: 715.720.6300

Form 4400-122 Rev. 7-98

Route To: Watershed/Wastewater Waste Management Other \square Remediation/Redevelopment Page Facility/Project Name License/Permit/Monitoring Number Boring Number Mirro Plant #20 B₂ 00 Boring Drilled By: Name of crew chief (first, last) and Firm Date Drilling Started Date Drilling Completed Drilling Method Cory Johnson Hydraulic Soil Essentials 2/13/2006 2/13/2006 Probe WI Unique Well No. DNR Well ID No. Common Well Name Final Static Water Level Surface Elevation Borehole Diameter Feet MSL 2.0 inches Feet MSL Local Grid Origin (estimated:) or Boring Location Local Grid Location Lat 0 N, 0 E State Plane S/C/N \square N \square E Feet S 1/4 of NW 1/4 of Section 18. т 18 N, R 20 E Feet W Long Civil Town/City/ or Village Facility ID County County Code 8 Chilton Calumet Sample Soil Properties Soil/Rock Description Recovered (in) Compressive Strength Depth In Feet Blow Counts Length Att. And Geologic Origin For Comments Plasticity Index PID/FID Moisture Content Well Diagram Graphic Each Major Unit SC Liquid Limit 200 Dark Brown TOPSOIL 24 OL COR 15 -1 FILL: Mixture of Brown Lean Clay, Light Brown Sand, and Occasional Cinders 0.0 24 COR 15 -3 E.O.B. @ 4.0 ft. I hereby certify that the information on this form is true and correct to the best of my knowledge. SEH Inc Chippewa Falls, WI 54729 www.sehinc.com Signature Tel: 715.720.6200

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-

			<u>Ro</u>	ute To:		/astewater 🔲			gement								
					Remediation	Redevelopment 🛚	Other	Ш									
Facilit	y/Proje	ot Man					License	/Damai	+/Manit	oring)	ha		Darina	Pag Numb		of	1
	ro Pla						00	7 Fermi	U MOIII	oring r	vuilibe	r	Dormg	g Nume	B3		
				of crew	chief (first, last)	and Firm	Date D	rilling S	Started		Da	te Drill	ing Co	mplete			ling Method
Cor Soil	y Johi Essei	nson	!					2/13	3/2006	í			2/13/2	2006			ydraulic obe
	ique W			DNR	Well ID No.	Common Well Name	Final S				Surfac	e Eleva		2000	Bo		Diameter
T 1	<u> </u>		57 (-4:4 - d				Feet	MSL				et MS			2.0	inches
State		rigin	⊠ (e:	stimated	0 N, 0	ring Location E S/C/N	L	at	<u> </u>	<u>'</u>		Local	Oria Lo	ocation			Ε
		of N	W 1	/4 of Se		T 18 N, R 20 E	Lo		<u> </u>	<u> </u>	"		Fee	t 🗆 S			Feet W
Facilit	y ID				County Calumet		County C	Code	Civil Chil		City/ or	Village	е				
Sar	nple		<u> </u>	<u> </u>	Calumet	!	0	1	Cini	lon	<u> </u>	<u> </u>	Soil	Prop	erties		
			<u> </u>		Soil/R	ock Description							1	1100			
. 8	Att.	ounts	n Fee			ologic Origin For						ssive	u .		הל		nts
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		Eac	h Major Unit		SCS	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	200	RQD/ Comments
Z g	24	<u> </u>	<u> </u>	Dark	Brown TOI	PSOII		<u> </u>	2 7	<u>≱ ä</u>	0.0	2 2	≱ ວັ	2 2	E E	<u>a</u>	¥ 3
CORE	12		Ė.	Duri	C DIOWII TOI	BOIL		OL									
			E'			Brown Sand, Bla											
2	24		<u>-</u> 2	Grav		wn Lean Clay, So	me				0.0				ļ	ĺ	
CORE	12		Ė.								0.0						
			F ³		•									ļ			
			F-4	FO	B. @ 4.0 ft.			ļ	\bowtie								
				E.O.	.b. @ 4.0 II.												
								i				-			}		
															:		
			1														
								-									
				•													
I herel	v certi	fy that	the inf	Cormation	n on this form is	s true and correct to th	e best of r	ny kno	wledge	Ļ		1	<u></u>	<u> </u>	<u> </u>	L	<u> </u>
Signat	1100							-			ve					Tel	: 715.720.6200
	\subseteq	<u>k li</u>	in	£.	Lus	Firm SI	PH I	nc (Chippew www.sel	a Falls, iinc.com	WI 547 1	729					715.720.630

Route To:

Watershed/Wastewater

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

				Remediation	Redevelopment 🛭	Other										
													Pas	ge 1	of	1
Facilit	y/Proje	et Nar	ne			License	/Permi	t/Monit	oring N	Numbe	r	Boring	Numb			`
Mir	ro Pla	nt #2	0.			00								B4		
Boring	Drille	l By:	Name	of crew chief (first, last)	and Firm	Date Di	rilling S	Started		Da	te Drill	ing Co	mplete	d	Dril	ling Method
	y Johr															ydraulic
	Esser				1 -			3/2006				2/13/	2006			obe
WIUn	ique W	ell No).	DNR Well ID No.	Common Well Name	Final St			vel	Surfac	e Eleva		T	Вс		Diameter
Local	Grid O	rigin	N/ (ac	stimated: or Box	ing Location	<u>.l</u>	reet	MSL				et MS	Cation		2.0	inches
State		ıgııı	⊠ (c:	0 N, 0		L	at	°	<u> </u>	н	Local	OHU L	Cation N			□E
		of N	W i	/4 of Section 18,	T 18 N, R 20 E	Lor	10	0	•	11		Fee	t 🗆 S			Feet W
Facilit		-	··· -	County		County C		Civil 7	Cown/C	ity/ or	Village					X 000 ED
				Calumet		8		Chil	ton							
San	nple											Soil	Prop	erties		
-	% (ii)		. ا	Soil/R	ock Description											
	d (i	unts	Fee	And Ge	cologic Origin For						sive					ts
ber	th A	ပိ	h In	Eac	h Major Unit		CS	hic	Lam	Æ	pres	ture ent	. g	icity	_	men
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet				S	Graphic Log	Well Diagram	PID/FID	Compressive Strength	fois ont	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
11	48	<u>ш</u>	 11	Dark Brown TOI	PSOII		P	1011	N 11	0.0	8	20		H I		<u> </u>
CORL	32		Ē	Dunk Brown 101	JOIL		OL		1							
			-1	FILL:Mixture of	Brown Sand and	Gravel.										
			E,	Brown Clay, and		,		\bowtie								
l.								\bowtie		}						
								\bowtie								
			<u>-3</u>					\bowtie								
			E,	Probable FILL: I	Dark Brown Organ	ic										
2 CORE	24 16		F"	Clay, Probable P	etroleum Odor					72						Petroleum Odor
COR	10		E_5					\bowtie								Odoi
i i			Ę													
, H			<u>-</u> 6				↓	\bowtie	Ā		İ					
CORE	24 16		E	Probable FILL: H Organic Clay Mi	Black to Dark Brown	vn		\bowtie		72	-					Petroleum Odor
l l	ĺ	l.	-7	Organic Cray IVII	xed will Graver			\bowtie			1					
			E					\bowtie	\$							
IJ	1		⊢ 8	E.O.B. @ 8.0 ft.			<u> </u>	<u> </u>	4							
				E.O.B. @ 8.0 II.												
											1			Ì		
							}		Ì							
												ļ	{			
											l					
											1					
I herel	v cert:	fy the	t the inf	Cormation on this form is	s true and correct to the	heet of	ny kao	wledge	<u> </u>	<u> </u>	Ь	1		<u> </u>	1	<u></u>
Signat		ıy ula	t me mi					121 Fren	ette Dri	ve					- T 1	. 715 730 7300
		elle	K 1	E. Sey	FirmSE		nc (Chippew www.sel	a Falls,	WI 547	729					: 715.720.6200 : 715.720.6300

Waste Management \square

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			Ko		Vastewater ∟ n/Redevelopment ⊠		ie Mana r 🔲	gement								
													Pa	ge 1	of	1
	y/Proje						se/Permi	t/Monit	oring l	Vumbe	r	Boring		er		
	ro Pla			of crew chief (first, last) and Firm	Date I	Orilling	Started		ID:	te Drill	ing Co	mplete	$\frac{\mathrm{B5}}{\mathrm{d}}$	Dril	ling Method
Cor	y Johr	ison			,								-		- 1	wer Hand
	Esser			DNR Well ID No.	Common Well Nam	e Final 9		4/2006		Surfac	e Eleva	2/14/2	2006	IR.		uger Diameter
WIUI	iique w	en inc).	DINK WEILID NO.	Common Wen Nam	Fillal		MSL	VCI	Surra		et MS	L	B		inches
		igin	⊠ (es	timated:) or Bo		,	Lat	0	,	"	Local			I		
State		of N	W 1	0 N, 0 /4 of Section 18,			ong	0	·	"		Fee	1 □ 2 □ t			☐ E Feet ☐ W
Facilit		01 14	VV 1	County	1 10 11, R 20 E	County		Civil	Town/0	City/ or	Village					rect w
	. 1			Calumet		8		Chil	ton		T					
_San	nple			G-:10	Rock Description							Soil	Prop	erties		
	it. & I (in)	ınts	Feet		eologic Origin For						i.e					w
ber Type	th Ai	Coc	h In]		ch Major Unit		CS	jë.	ram	E	press gth	ture	 <u></u>	icity	(/ ment
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet				US(Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liqu	Plasticity Index	P 200	RQD/ Comments
			F	CONCRETE				/ · · ·	Ţ							
1 [] CORIG	4		<u>-</u> 1		y Sand, Little Gra y Sand and Grave		_	\bowtie		3.0 41						No Staining noted
2 CORI	24 24		E	Stained)	y Sand and Grave	i (Oii				71						Oil Stained
			2 													
L			<u>-3</u>	Eine CAND (De	1 D . l			XXX								
			<u>-</u> 3	Fine SAND (Ba	sed on Auger Beh	avior)	1									
			F-4													
			<u>-</u> 5													:
			Ė.													
			F-6													
			E ₇													
			E'													
			<u>-</u> 8				SP			:						
			E ₉													
			E'							:						
			<u>-</u> 10													
			Ē.,													
			F 11													
			E-12										1	}		
			E							Į Ž						
		•	- 13		· .											
				E.O.B. @ 13.5 f	t.											
I here	by certi	fy that	the inf	ormation on this form	is true and correct to t	he best of	my kno	wledge					•			

Firm SEH Inc Chippewa Falls, WI 54729 Tel: 715.720.6200 Fax: 715.720.6300

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may

Route To:

Watershed/Wastewater

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

				Remediation	/Redevelopme	ent 🖾	Other										
														Do	ge 1	of	1
Facility	v/Proje	ct Nan	ne				License	/Permi	t/Monit	oring N	Jumbe	<u></u>	Boring	Pa Numl	Ų ·	01	1
	ro Pla						00					,		,	B5	Α	
				of crew chief (first, last) and Firm		Date Di	illing S	Started		Da	te Drill	ling Co	mplete			ing Method
Cor	y Johi	nson												-			wer Hand
Soil	Esse	ntials							1/2006				2/14/	2006			ıger
WI Un	ique W	ell No	١,	DNR Well ID No.	Common Wo	ell Name	Final St			vel	Surfac	e Eleva			В		Diameter
								Feet	MSL				et MS			3.0	inches
Local C		rıgın	⊠ (e	stimated: 🗌) or Bo			L	at	0	•	11	Local	Grid Lo				_
State		of N	337 -	•	T 18 N, R				<u> </u>	,	.,		îr	1 🗆			□ E
Facility		OI IN	VV	1/4 of Section 18, County	1 16 N, K		Lor County C		Civil 1	 [own/C	ity/ or	Villag		t 🗆 S			Feet W
1 denit	, 115			Calumet			8	ouc	Chil		ny, or	v mag	C				
San	ple		1	Caramet					Cim			i	Soil	Pron	erties		
				Soil	Rock Descripti	on							T	I	l		
	t. & 1 (in)	nts	eet		eologic Origin							is.					ro.
er /pe	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		ch Major Unit			S	. <u>2</u>	Ē	8	Compressive Strength	le te		iţ		RQD/ Comments
Number and Type	ngt	w o	bth	La	on wajor our			sc	Graphic Log	Well Diagram	PID/FID	duo Geng	Moisture Content	Liquid Limit	Plasticity Index	P 200	D/
Z #	7 %	<u>B</u>	ă	GOLIGNAMA				ΩS	Grap Log	قيِ≲	Id.	2 2	Σŏ	<u> </u>	品品	P ;	<u> </u>
			Ē	CONCRETE FILL: Light Gra	y Cond Litt	la Grazza	1		×××								
			1	L					\bowtie	目							
			E	FILL: Black Silt Stained)	y Sand and	Gravei ((OII		\bowtie								
			<u></u> 2	Stamed)					\bowtie								
			-3						\bowtie								
			-3						****								
														:			
															:		
													1				
			1														
												1					
												ŀ					
								ŀ									
													1				
												1		ĺ			
											ŀ				•		
													1			1	
													İ	l			
												ļ			İ		
														·			
															ļ		
														1	}		
	;																
Iherek	W 00#	fy that	the in	I formation on this form	e true and so-	rect to the	best of -	av kno	uladaa	I	<u>.</u>	.!	1	l	<u></u>	<u> </u>	<u> </u>
Signat	-	iy iliat	aic in	Tornation on this form				-	-		76						
oignat	/	20	2	7 9		im SE	H I	nc (121 Fren Chippew www.sel	a Falls,	WI 547	29					715.720.6200 715.720.6300
	¬ //			- John	N			_ \	www.set	inc.com	1					гах:	113.120.0300

Waste Management

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			Ro	ute To:		d/Wastewater :ion/Redevelop		Waste Other	-	gement								
																ge 1	of	1
Facilit	y/Proje ro Pla							License 00	/Permi	t/Monit	oring N	lumbe	r	Boring	y Numb	ber B6		
				of crew c	hief (first, l	ast) and Firm		Date D	rilling S	Started		Da	te Drill	ing Co	mplete			ing Method
	y Johi Essei		,						2/14	4/2006				2/14/	2006		M	acrocore
WIUr	ique W	ell No).	DNR V	Vell ID No.	Common	Well Name	Final S			vel	Surfac	e Eleva			Bo		Diameter
Local	Grid O	rigin		stimated:		Boring Location	on 🗍	-1	Feet	MSL	į	-	Local	et MS			2.0	inches
State			E3 (*·		0 N,		C/N	L	at	<u> </u>	<u>'</u>		20 cur	J.14 D.	и <u>П</u>			□Е
		of N	W 1	/4 of Sec		T 18 N	, r 20 e	Lo		<u> </u>					t 🗆 S			Feet W
Facilit	y ID				County			County C	Code	Civil 7 Chilt		ity/ or	Village	9				
Can	nple		T -		Calumet			8		Chii	on		1	Soil	Prop	erties		
San					So	il/Rock Descri	iption								П	Cities		
	d (ir	unts	Feet			Geologic Ori	=						sive					S
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet			Each Major U			CS	hic	Well Diagram	FID	Compressive Strength	Moisture Content	ᇢᆂ	Plasticity Index	0	RQD/ Comments
Num and ´	Leng Recc	Blov	Dept						n S	Graphic Log	Well Diagr	PID/FID	Com	Mois	Liquid Limit	Plast Inde	P 200	RQD
			F		CRETE													
					: Brown h Stone)	Rounded G	ravel (Cl	ear										-
, П	10		Ē,		•	Cl	C C-					-						
CORI	18 12		-2	Grave	: Brown el. Possib	Lean Clay, le Slight Pe	Some Sa etroleum	na ana Odor				5						
			E		,													
L			-3	E.O.I	3. @ 3.0	ft.			 		999019							
					_													
									-									
									-						:			
			,															
													1		İ			
											:		}					
													Ì]			
																ŀ		
														İ				
	 		1							l								
																	İ	
														İ				
I han-1		G. 41-	4 4 h c 3 cc	<u> </u>	an 4h!- £			a hact ar		la 4				1	1	<u></u>	<u> </u>	
Signat		iy thai	tne in	IOTINATION	on this for	m is true and o				wledge 421 Fren		/e.				,,		
J.g.i.d.		la	, 4 .	Z - 2	SI.		Firm SI	EH I	nc	Chippew www.sel	a Falls, '	WI 547	729					715.720.6200 715.720.6300

SOIL BORING LOG INFORMATION

Form 4400-122

			Ro	ute To:		d/Wastewater				gement								
					Remediat	ion/Redevelor	ment 🛛	Other										
															Pa	ge 1	of	1
	y/Proje							License	/Permi	t/Monit	oring N	lumbe	r	Boring	g Numl		-	
	ro Pla			of orange	hiof/first 1	ast) and Firm		Date Dr	illing	Startad		IDa	te Drill	ina Co	malata	<u>B7</u>		ing Method
	y Johi		Name	of clew c	11161 (11181, 1	asi) and riim		Date Di	iiiiig .	starteu		Da	ic Dili	ing Co	mpiete	u	Dill	ing Method
	i Essei								2/14	1/2 00 <i>6</i>	5			2/14/	2006		M	acrocore
WI Ur	nique W	ell No).	DNR V	Vell ID No.	Common	Well Name	Final St			vel	Surfac	e Eleva			Bo		Diameter
, ,	0:10			<u> </u>	<u></u>	<u> </u>			Feet	MSL		-		et MS			2.0	inches
Locai State		rigin	⊠ (e:	stimated:	□) or 0 N,	Boring Locati	on ∐ C/N	L	at	<u> </u>	'	11	Local (Jria Lo	cation 1 🔲			□ Е
Diace	_	of N	W 1	/4 of Sec		T 18 N		Lon	g	o	<u> </u>			Fee	t 🗆 S			Feet W
Facilit				C	County			County C		1		ity/ or	Village					
					Calumet	·		8		Chil	ton							
Sar	nple									ŀ				Soil	Prop	erties		
	(in)	ats	eet			il/Rock Descri l Geologic Ori	-						\ e					
er /pe	ι Att ered	Cour	In F			i Geologic On Each Major U	_		S	.c.	ш	Ω	ressi th	ıre	_	ity		ents
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet			Daen Major O			sc	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
Zā	그 R	<u> </u>	<u> </u>	CON	CRETE		 		Þ	0 7	> D	<u> </u>	S	20	177	П	д	- R
			Ė.	FILL	: Brown	Rounded G	ravel (Cle	ar										
1 COR	18 8		F 1	\lambda l-Inc	h Stone)	rown Lean	Clay Mive	d With				15						Slight Chemical
CORL	°		F_2		el, Little		Clay Winc	a willi										Odor
L	ļ		F	EOI	3. @ 2.5	ft	 			\bowtie								
				E.O.1	$\omega_{2.5}$	11.												
				}														
											Į							
			l												ŀ			
]						
	-																	
															1			
															}			
													•					
	ŀ																	:
												İ				1		i
									}									
																	ŀ	
															ŀ			
																		!
	<u> </u>		<u> </u>	<u> </u>	<u> </u>				<u> </u>			<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	
		fy that	the in	formation	on this for	m is true and o				_								
Signa	ure/	ch		5	Sen		Firm SE	HI H	nc	421 Fren Chippew www.sel	a Falls,	WI 547	729					715.720.6200

Route To:

Watershed/Wastewater

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

				Remediation	Redevelopment 🛭	Other										
													Pa	ge 1	of	1
	y/Proje				· · · · · · · · · · · · · · · · · · ·	License	/Permi	t/Monit	oring N	Jumbe	r	Boring	Numb			
	ro Pla			0.000		00	****	· ·		In	. 5 4 1			<u>B8</u>		- 14.4-1-
			Name	of crew chief (first, last)	and Firm	Date Dr	illing :	Started		Da	te Drill	ing Co	mplete	d	Drill	ling Method
	y Johr Essei						2/14	1/2006	5			2/14/	2006		Тм	acrocore
	ique W			DNR Well ID No.	Common Well Name	Final St				Surfac	e Eleva			Вс		Diameter
							Feet	MSL				et MS			2.0	inches
Local State		rigin	(es	stimated: 🔲) or Bor 0 N, 0		L	at	0	•	н .	Local	Grid Lo				_
State.		of N	X X7 1	./4 of Section 18,		Lon			-	*1		Fac	1 □ 1 □ S	1		□ E Feet □ W
Facilit		01 14	VV 1	County		County C		Civil	Town/C	ity/ or	Village	e Fee	<u> </u>	· · · · · · · · · · · · · · · · · · ·		reet 🗀 w
,				Calumet		8		Chil		•	Ü					
San	nple											Soil	Prop	erties		
	& in)	ω.	#	Soil/R	ock Description											
. 0	Att. ed (ount	ı Fe	And Ge	ologic Origin For						ssiv	l o		γ .		nts
nber Typ	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Eac	h Major Unit		CS	Graphic Log	Well Diagram	 PID/FID	npre ngtl	Moisture Content	pir ti	Plasticity Index	0	nme
Number and Type	Len Rec	Blo	Dep				US	Grap Log	Well Diagr	PID	Compressive Strength	Moisture Content	Liquid Limit	Plastic Index	P 200	RQD/ Comments
			F	CONCRETE	1.10. 1/01			XXXX								
, п	10		F ₁	\1-Inch Stone)	unded Gravel (Cle	ar 		\bowtie		25						01:-1.4
l CORT	18 8		Ē	FILL: Dark Brow	n Clay Mixed wit	<u></u>				25						Slight Chemical
I I			-2	Gravel, Little San	nd					l						Odor
L			Ī	E.O.B. @ 2.5 ft.			 	XXXX								
											i			ļ		
							1									
								Ì		}	}					
								İ			1					
								1					l			
							-									
												1				
													1			
I herel	v certi	fy that	the int	formation on this form is	s true and correct to the	hest of n	ny kno	wledge	1	1	1	1	1	1	<u> </u>	
Signat		i j ilial						421 Fren	ette Driv	ve			_		T 1	715 700 (000
		al	2	2 / 1	FirmSE	HI	nc (Chippew www.sel	a Falls,	WI 547	729					715.720.6200
	-/-	باعد			7						-					

Waste Management

SOIL BORING LOG INFORMATION

Form 4400-122

Rev. 7-98

			Ro	ute To:	Watershed/W				gement								•
					Remediation/	Redevelopment 🛛	Other	Ш									
1211/2	·/D:-	-4 h Y						/D	A/N 4 14		T 1	-	D		ge 1	of	1
	y/Proje ro Pla						License 00	/Perm	WMonii	oring N	numbe:	r	Boring	y Numb	ег В9		
				of crew c	chief (first, last)	and Firm	Date Dr	illing	Started		Da	te Drill	ing Co	mplete		Dril	ling Method
	y Johi l Essei							2/1	4/200 <i>6</i>	5			2/14/:	2006		M	acrocore
WIUi	nique W	ell No).	DNR V	Well ID No.	Common Well Nam	e Final St			vel	Surfac	e Eleva			Во		Diameter
Local	Grid O	rigin	⊠ (e	stimated:	□) or Bor	ing Location		Feet	MSL	ļ		Fee Local (et MS			2.0	inches
State		igiii	<u></u>	maicu.	0 N, 0		L	at	<u> </u>	<u> </u>		Local	Jila De	nomboc			□ Е
		of N	W 1	./4 of Sec		T 18 N, R 20 E	Lor		°	<u>'</u>	"			t 🗆 S			Feet W
Facilit	y ID				County		County C	ode	1		ity/ or	Village	2				
Sar	nple		1	rl	Calumet		8	ŀ	Chil	ton			Soil	Dron	erties		
	1				Soil/Re	ock Description								Пор	Cities		
	tt. & d (in	unts	Feet			ologic Origin For						sive					ts s
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		Eacl	h Major Unit		CS	hic	Well Diagram	PID/FID	Compressive Strength	Moisture Content		Plasticity Index	0	RQD/ Comments
Nun	Leng	Blov	Depi					N S	Graphic Log	Wel	PID/	Com	Moi	Liquid Limit	Plastic Index	P 200	RQI
			F		CRETE			ļ									
, n	12		2		: Brown Rou ch Stone)	ınded Gravel (Cl	ear	ļ .	\bigotimes		0.0						
1 CORE	12 12		Ē	FILL	: Brown Lea	n Clay Mixed w	ith				0.0	1					
L			<u>-2</u>	Grav	el, Little San	ıd											
			E ,						\bowtie								
			3	E.O.	B. @ 3.0 ft.												
]			1
			Ì														
													İ				:
				ŀ										l			
									ļ.								
									Ì								
																	:
			<u> </u>	1			······································	<u></u>	1	<u> </u>	L	<u> </u>	<u> </u>	<u></u>	<u> </u>		
	-	fy that	the in	formation	on this form is	true and correct to the		-									···
Signat	ture)	ln	کر		Sent	FirmSI	EH I	nc	421 Fren Chippew www.sel	ette Driv a Falls, ninc.com	ve WI 547	729					715.720.6200 715.720.6300

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			Ro	ute To:		ned/Wast ation/Re			Wast Other		gement	L							
																Pa		of	1
Facilit Mir	y/Proje ro Pla								Licens 00	e/Perm	it/Monit	oring N	lumbe:	r	Boring	y Numb	er B1	0	
				of crew c	hief (first	, last) and	d Firm			rilling	Started		Da	te Drill	ing Co	mplete			ling Method
	y Johi Essei									2/1	4/2006	5			2/14/:	2006		M	acrocore
WI Ur	ique W	ell No).	DNR V	Vell ID N	o. Co	mmon	Well Name	Final S		ater Le	vel	Surfac	e Eleva		т	Bc		Diameter
Local	Grid O	rigin	(es	stimated:) or	Boring	Location	on 🔲	<u> </u>	reet	MSL			Local	et MS Grid Lo		i	2.0	inches
State	Plane				0 N	, 0 E	S/0	C/N	1	_at	<u> </u>	-					1		□ E
Facilit		of N	<u>W 1</u>	/4 of Sec	tion 1	8, T	18 N	, R 20 E	Lo County (Civil 1	 Fo.vn/C		Village		t 🗆 S	<u> </u>		Feet W
1 401111	, 10				Calume	t			8	2040	Chil		iiji oi	V IIIug(•				
San	nple							,	***********						Soil	Prop	erties		
	. & (in)	ıts	t se			Soil/Rock		_						e,					
er /pe	ı Att ered	Coun	In Fe		A	nd Geolo Fach N	gic Orig Iajor Ui			S	.g	<u> </u>	₽	ressiv	ıre ıt	_	ity		ents
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet			Each iv	тајог От	iit.		USC	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
			E .	CON	CRETE	CD		. 01			*****								
CORI	12 12		<u>-</u> 1		: Mixtu n Sand,			Lean Cla	у,			Ţ	0.0						
U			Ė,																
			-2	E.O.I	3. @ 2.0	Oft.													
															ļ				
													•						
	ļ															ļ		ļ 1.	
							•												
			1												1	1			
													i			1			
						,					1	;							
I herel	y certi	fy that	t the inf	l formation	on this f	orm is tr	ie and c	orrect to th	e best of	my kno	wledge		1	<u> </u>	1	_			<u> </u>
Signat			~		P	1 1	1	FirmSI		-	421 Fren Chippew	ette Driv	/e	770	-	····		Tel:	715.720.6200
\leq	101	<u>Im</u>	_ (<u>.</u>	/	uff	/	21		.110	www.sel	a rans, inc.com	141 241	<u> </u>					715.720.6300

Route To:

Watershed/Wastewater

SOIL BORING LOG INFORMATION

Form 4400-122

Waste Management

Rev. 7-98

				I	Remediation/	Redevelopme	nt 🛛	Other										
															Pa	ge 1	of	1
Facilit	y/Proje	ct Nan	ne		,			License	/Permi	t/Monit	oring N	lumbe	r	Boring	Numb	er		
	ro Pla							00								B1		
_		-	Name	of crew chie	ef (first, last)	and Firm		Date Di	illing S	Started		Da	te Drill	ing Co	mplete	d	Dril	ing Method
	y Johr Essei								2/14	5/2006				2/15/	2006		1	acrocore
	ique W			DNR We	II ID No.	Common We	II Name	Final St				Surfac	e Eleva		2000	Вс		Diameter
	•								Feet	MSL			Fee	et MS	L			inches
		rigin		stimated:		ing Location	_	,	at	0		**	Local	Grid Lo	ocation			
State		c NI	XX7 1	44 CC -:	0 N, 0					<u> </u>		**		Б	1 🗆			Е
Facilit		of N	W 1	/4 of Section	unty	T 18 N, R		l Lor County C		Civil	<u> </u>	ity/ or	Village		t 🗆 S	-		Feet W
	,				alumet			8		Chil		,,		-				
San	nple													Soil	Prop	erties		
	જ (ii)	S	#		Soil/R	ock Descriptio	n											
စ	Att.	ount	Fee		And Ge	ologic Origin	For				_		ssive	0		, l		nts
nber Typ	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		Eac	h Major Unit			scs	Graphic Log	1 gran	PID/FID	npre:	stur	멸효	Plasticity Index	0)/ Ime
Number and Type	Len	Blo	Dep						n s	Grap	Well Diagram	PID	Compressive Strength	Moisture Content	Liquid Limit	Plastic Index	P 200	RQD/ Comments
			F	CONC			1.01		ļ	XXXX								
, n	24		F ₁	\1-Inch		unded Grav	ei (Ciea	ar /				0.0		1				
CORIC	24 14		F	FILL: N	Mixture of	Brown Silt	y Sand	and				0.0				:		
- 11			F-2	Clay Pi	ieces, Littl	e Gravel									}			
			F,															
			F-3							\bowtie								
				E.O.B.	@ 3.5 ft.				ŀ									
														ļ				
													į.					
	'														Ì			
													Ì	İ	}			
															İ			
			<u> </u>							_			<u> </u>		<u> </u>			<u> </u>
I herel	y certi	fy that	the inf	formation o	n this form is	true and corre	ect to the	best of r	ny kno	wledge	•							
Signat	ure	7.	1	50	St	Fin	mSF	HI	nc (421 Fren Chippew	ette Driv a Falls	ve WI 541	729					715.720.6200
	-/	ek	m	<u> </u>	M	V/	ענט		110	Chippew www.sel	inc.com	1					Fax:	715.720.6300
This fo	opin is a	authori	ized by	Chapters 2	81, 283, 289	, 2 91, 292, 293	3, 295, an	d 299, W	/is. Sta	ts. Cor	npletio	n of th	is form	is man	datory	Failur	e to fil	this form ma

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			Ro	ute To:		Vastewater 🗆			gement								
					Remediation	/Redevelopment 🛛	Other										, -
														Pa		of	1
	y/Proje ro Pla						License 00	e/Permi	t/Monit	oring 1	Ňumbe	r	Boring	y Numt	er B1	2	
				of crew	chief (first, last)	and Firm	Date D	rilling	Started		Da	te Drill	ing Co	mplete			ling Method
Cor	y Johi	nson													•		-
	Esser			IDNR	Well ID No.	Common Well Nam	e Final S		5/2006		Surfac	e Eleva	2/15/	2006	Ro		acrocore Diameter
W1 O1	iique w	On I ve		Divic	well ID 100.	Common wen ran	T mai o		MSL	VCI	Juliac		et MS	L			inches
		rigin	(e:	stimated	: 🗌) or Bo	ring Location		at	0		11	Local (Grid Lo				
State		of N	W 1	/4 of Se	· ·	E S/C/N T 18 N, R 20 E	Lo		•		H		Fee	1 🗌 t			□ E Feet □ W
Facilit		0. 11		,,,,,,,,	County	1 10 11,1120 2	County C				City/ or	Village	2				
				1	Calumet		8	1	Chil	ton	Γ-	1	0 '				
San	nple				Soil/R	lock Description								Prop	erties		
	tt. & d (in	unts	Feet			cologic Origin For						sive					ts .
ıber Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		Eac	h Major Unit		SCS	Graphic Log	Well Diagram	PID/FID	ngth	Moisture Content	 :i: i::	Plasticity Index	0	RQD/ Comments
Number and Type	Len	Blov	Dep					N S	Grap Log	Well Diagr	PID	Compressive Strength	Moi	Liquid Limit	Plastic Index	P 200	RQI
			E		VCRETE	unded Gravel (C	loor		, , , , , , , , , , , , , , , , , , ,								
1 П	12		-1	1-In	ch Stone)	•	/	1			0.0						
CORE	12		2	FILI	L: Brown Sil	ty Sand, Some G	ravel										
			E														
			-3	EO	.B. @ 3.0 ft.			-	***	4008r	1						
		1						1									
																	:
			Ì.						ĺ								
									ļ					·			
					-				1			Ì					
										ļ							
												1					
													1	ļ			
								<u> </u>		<u> </u>		1			<u> </u>		<u> </u>
I here		ty that	the in	tormatio	on on this form i	s true and correct to t			wledge 421 Fren		ve						
Jigila)	_/~	lu		<u>.</u> .	Mul		EH I	nc	Chippew www.sel	a Falls,	WI 541 n	729					: 715.720.6200 : 715.720.6300

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			Ro	ute To:			stewater [.edevelopn	_	Waste Other		gement								
																Pa	ge 1	of	1
	у/Ргоје							 -	1	Perm	it/Moni	toring l	Numb	er	Boring	g Numl	er		
	ro Pla				1		1.0.		00	*111*	G: : 1		In	. D. 11			<u>B1</u>		· · · · · · · · · · · · · · · · · · ·
	y Johi		Name	of crew c	hief (first,	iast) a	na Firm		Date D	rilling	Started		יו	ate Dril	ling Co	mpiete	ea.	Drii	ling Method
	y Join l Essei									2/1	5/200	6			2/15/	2006		M	acrocore
WI Ur	nique W	ell No		DNR V	Vell ID No). C	Common V	Vell Name	Final S				Surfa	ce Elev		_	В		Diameter
Lassi	C=14 O		57 (00	tim ata di		Donin	ng Location	. —		Feet	MSL		<u></u>	Fe Local	et MS			2.0	inches
State		ngin	⊠ (es	timated:		, 0 E			l	.at	<u> </u>	<u> </u>		Local	Oriu L				□ Е
		of N	W 1	/4 of Sec			r 18 N,	к 20 E		ng	<u> </u>	<u> </u>		.		t 🖂 S			Feet W
Facilit	y ID				County				County C	Code			City/ c	r Villag	е .				
	, 7				Calumet	<u> </u>			8	7	Chil	ton	_		0-1	l D			
San	nple				c	a:1/D a/	ck Descrip	tion								Prop	erties	i 	}
	t. & 1 (in	ınts	-eet				logic Origi							i se					S
er ype	th At	Con	[E]		7 117		Major Uni			S) <u>i</u> c	la ma	l E	oress gth	in tar	9	city	_	nent
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet				3			USC	Graphic	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
	пщ			CON	CRETE		····			+-	70 7		"	100	20		H 1	 	
1 CORI	48 20		Ē,	FILL	: Brown	Silty	Sand ar	nd Grave	el .			X	0.0						
CORG	20		<u>-1</u>									X X			l				
			-2									\$				ļ			
1			Ē																
1			- 3																
1			- -4							1		X							
L			F#									×							
				E.O.1	B. @ 4.5	ft.													
											1	1							
										1			ļ						
			İ	ļ						-	-								
														:					
				1						1									
																	ļ	1	
																1			
	<u>. </u>			<u> </u>					1	┸-		1	Т			<u> </u>		Ц	.1
I here Signa		ty that	the inf	ormation	on this fo	rm is t	rue and co				owledge 421 Fre		ive				· - ···		
oigiia		Tel	en	5	Sa			Firm SI	CHI	nc	Chippey	wa Falls, hinc.com	, WI 5	4729					: 715.720.6200 : 715.720.6300

Route To:

Watershed/Wastewater

Remediation/Redevelopment

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

T. 111	(T)	. 3.7						······································	<i>m</i> :	. /2 6				(b)	Pa		of	1
Facility	y/Projec co Pla							Licenso 00	e/Permi	t/Monit	oring N	lumbe	r	Boring	, Numt		W-5	
				of crew chief (fir	et lact	and Firm		Date D	rilling 9	Started		Da	te Drill	ing Co	mnlete			ling Method
_	id Pau	-		or ciew cilier (ili	isi, iasi	, and i iiii		Date D	iming .	Janea			ic Dill	ing Co.	inpicio	u	1	_
	Esser							ļ	2/13	3/2006	`			2/13/2	2006		1	llow stem
WI Un				DNR Well ID	No.	Commo	n Well Name	Final S				Surfac	e Eleva			Во		Diameter
		068				l l	MW-5		Feet	MSL			Fe	et MS	L			inches
Local	Grid Or	igin	⊠ (es	timated: 🔲)	or Bo					0			Local	Grid Lo	cation			
State I	Plane			0	N, 0		/C/N		at		-					1		□Е
		of N	W 1		18,	т 18	n, r 20 e		ng	<u> </u>	<u>' —</u>	"			t 🗆 S	3		Feet 🗌 W
Facility	y ID			County				County C	Code		Γown/C	ity/ or	Village	е				
				Calun	net			8		Chil	ton							
Sam	iple									l				Soil	Prop	erties		
	જ (દે)	S	t e			Rock Desc	-						ပ					
ا ي	ed (unc	ı Fe		And G	eologic O	rigin For				ا ا		ssiv	o o		<u>></u>		nts
Typ	gth.	Č š	th L		Eac	ch Major I	Unit		CS	phic	l gran	/FII	ngt	stur	ri di	ticit X	9)/ nme
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	ā					n S	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
			E	Dark Brow	n TO	PSOIL			1									
			F .						OL									
			E,	FILL: Brov	vn Le	an Clay	, Little Sar	nd and										
			<u>-</u> 2	Gravel														
			F ²							\bowtie								
			<u>-</u> 3															
			F						<u> </u>	\bowtie								
			E_4	Probable F	ILL: (Gray Gr	avel and S	Sand	Ì									
			-4 - - -5 -5						<u> </u>	\bowtie	1 目:							
			-5	Gray to Bro	ownis	h-Gray	Silty SAN	D			目							
			E															
			<u>-</u> 6										ļ			ł		
			þ															
			<u>-</u> 7															
			E										ŀ					
			F-8								目							
			E						SM									
			- 9								H							
			E															
			F10															
			F															
			F11						İ							İ		
			F	}										ł		ł	1	
			- 12															
			F 12								目		}					
			 13	E.O.B. @	13.0 f	t.												
										1								
7.1		C. 41 . ·	45- 1 1		· C- · ·	·				l.a.d.: '		<u> </u>	<u> </u>	<u> </u>	L	J	L	<u> </u>
		y that	the int	ormation on this	iorm i	s true and			-									
Signat	ure /	Sh	en	7	U	M	FirmSI	EHI	nc (421 Fren Chippew www.sel	ette Driv a Falls, ninc.com	ve WI 547	729					715.720.6200 715.720.6300
This fo	rm is a	uthori	ized by	Chapters 281, 2	83. 28 ⁹	291. 29	2, 293, 295.	and 299. V	Vis. Sta	ts. Cor	npletio	n of th	is form	is man	datorv	Failu	re to file	this form may

Waste Management

Other \square

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			Ro	ute To:	Watershed/W	'astewater □ 'Redevelopment ⊠	Waste Other	Manag	gement								
					Remediation	redevelopment 23	Oulei							Day	-a 1	of	1
Facilit	y/Projec	ct Nan	ne		<u> </u>		License	/Permi	t/Monit	oring l	Number	-	Boring	Pag Numb		01	<u> </u>
	ro Pla						00							_		<i>N</i> -6	
	•	-		of crew c	chief (first, last)	and Firm	Date D	rilling S	Started		Da	te Drill	ing Co	mplete	d		ling Method
	vid Pau Esser							2/1/	1/2006	:			2/14/2	2006			ollow stem
	ique W			DNR V	Well ID No.	Common Well Name	e Final S				Surfac	e Eleva		2000	Вс		Diameter
	0X	069				MW-6		Feet	MSL				et MS		i	8.2	inches
		igin	⊠ (es	timated:		ing Location Control	1 1	at	0	,	11	Local (Grid Lo				
State		of N	W 1	/4 of Sec	0 N, 0	E S/C/N T 18 N, R 20 E	Lor		•		.,		Eoo	ר □ t □ S			☐ E Feet ☐ W
Facilit		01 14	<u> </u>		County	1 10 N, K 20 E	County C		Civil 7	Fown/C	City/ or	Village		دان			reet 🗀 w
	-				Calumet		8		Chil	ton							
San	nple											ļ	Soil	Prop	erties		
	જ (ii)	t3	et			ock Description						ပ္					
r Pe	Att.	uno	n Fe			ologic Origin For		S	a	E		essiv h	t re		īty		ents
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		Eac	h Major Unit		sc	Graphic Log	Well Diagram	PID/FID	Compressive Strength	oistu nten	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
Zğ		<u></u>	å	1.00				Þ	ទីន	žä		<u>S</u> ₹	<u> </u>	<u> </u>	Pla	P 2	88
CORE	48 32		F	Fill	HALT Gravish-Bro	own Gravel and S	land				0.0						
			<u>-</u> 1	∖Base	course		/										
				FILL	: Layers of S	Sand and Gravel			\bowtie								
			F 2						\bowtie								
			<u>-</u> 3						\bowtie								
			E			Oark Brown Orga Wood Chips	nıc			目							
2	48		-4	Olay,	, occasionai	wood emps			\bowtie		0.0						Wet @ 5 ft.
2 CORIL	30		-3 -4 -5 -6							1 目	.}						
			F-5			Brown Gravel and	Sand] 目	.						
			<u> </u>	Gray	ish-Brown S	Silty SAND					1			ļ			
			Ę					0.4									
1			-7					SM			1		1				
			E														
3 CORI	48		F-8	Gray	ish-Brown S	Sand, Little Grave	el			1目	0.0						
JUKL	48		<u>-</u> 9														
			Ė	{ }							1						
			-10					SP									
- 1			E					31		目							
			F 11								:						
L			-12							目	1	1					
4 CORI	12 12		- 12					<u> </u>			0.0						
L			-13		rish-Brown S			SM	111		y M						
				E.U	B. @ 13.0 ft	•				1000 M	ď						
	<u></u>		<u> </u>	<u> </u>				<u> </u>	<u> </u>	<u> </u>		<u> </u>		<u> </u>	<u> </u>		<u></u>
		fy that	t the inf	ormation	n on this form is	s true and correct to the											
Signa	ure	lo le	n	7	Je.	FirmSI	EH I	nc (421 Frer Chippew www.sel	ieπe Dri /a Falls, hine con	ive WI 547 n	729					: 715.720.6200 : 715.720.6300

SOIL BORING LOG INFORMATION

Form 4400-122

Rev. 7-98

			<u>Ro</u>	oute To:	Watershed/W	/astewater \square	Waste	Mana	gement								
					Remediation	/Redevelopment 🛛	Other										
														Pag	ne 1	of	1
Facilit	y/Proje	ct Nar	ne	 •			License	/Permi	t/Monit	toring h	Jumbe	r	Boring	y Numb			
	ro Pla						00					-		5 - · · · · · · ·		W-7	
Boring	g Drille	d By:	Name	of crew	chief (first, last)	and Firm	Date Di	illing	Started		Da	te Drill	ing Co	mplete			ling Method
Dav	id Pa	ulson	ì													he	llow stem
	Essei								4/2006				2/14/	2006		au	iger
WI Uı	nique W		э.	DNR	Well ID No.	Common Well Nam	e Final St			vel	Surfac	e Eleva			Bo		Diameter
Local		070	N7 (a		D as Day	MW-7		Feet	MSL				et MS	L ocation		8.2	inches
	Plane	ugui	Ø (c	siiiiaicu	0 N, 0		L	at	°	<u> </u>	"	Locar	OHU D				
Otato		of N	w	1/4 of Se	•	T 18 N, R 20 E	Lor	10	0	•	11		Fee	ıt 🔲 S		,	□ E Feet □ W
Facilit		01 11	• • • • • • • • • • • • • • • • • • • •	17 + 61 56	County	1 10 1,120 2	County C		Civil '	Town/C	ity/ or	Village	2		<u> </u>		1 001 11
					Calumet		8		Chil	ton	·						
Sar	nple		T	<u> </u>	<u>-</u>								Soil	Prop	erties		
	& in)	ro	#		Soil/R	ock Description					-						
0	₩ 10 10 10 10 10 10 10 10 10 10 10 10 10	unts	Fee		And Ge	ologic Origin For						sive					lts
lber Type	sth /	ပိ	l h		Eac	h Major Unit		CS	hic	ram	FID	pres 1gth	sture ent	멸고	icity		men /
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet					O S	Jrap og og	Well Diagram	PID/FID	om Street	Aois Ont	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
1	48		+	ASP	HALT				OH		0.0	0 07	20			—	
CORE	39		E	FILI	.: Light Brov	vn Sand and Grav			\bowtie							i.	
			F1	\(Bas	ecourse)	vn Sand and Grav										i.	
			<u></u>	FILL	.: Light Brov	vn Sand and Grav	vei									 	
1			Εź						\bowtie								
			<u>-3</u>														
			E					ļ	\bowtie	₹							
, H	40		F ₄	FILL	.: Dark Brov	vn Organic Clay			\bowtie	₹							
2 CORI	48 16		E	PILI	. D	avel and Sand			$\times\!\!\times\!\!\times$	引 目:	0.0	1				İ	
			<u>-</u> 5	FILI	z: Brown Gra	avei and Sand											
			F						\bowtie	} 目:							
			F-6	Brox	vn Fine to M	ledium SAND			<u> </u>								
			E		**** *****	odium Sinto				目:							
ľ			F ⁷							1							
			E.														
3 CORE	48		F-8							1目	0.0						
JOKE	40		<u>E</u> 9														
			F,					1		目		1					
			E ₁₀														
			E							1 目:						1	
			F-11														
			E											İ			
4	18		-12								0.0			}			
CORI	18		F								0.0					ĺ	
	:		-13							恪						ĺ	
L				EO	B. @ 13.5 ft			-	-								
				2.0.		•				<u> </u>		<u> </u>		<u> </u>			<u></u>
		fy tha	t the in	formatio	n on this form is	s true and correct to the		-	_								_
Signat	ture	7	1		2 0	Firm CI	EH I	n α	421 Fren	ette Driv	/e WI 5/17	729				Tel:	715.720.6200
	<u>_</u>	191	In	7	Te			IIC (www.sel	ninc.com	111 341						715.720.6300

SOIL BORING LOG INFORMATION

Form 4400-122 R

Rev. 7-98

•			Ro	ute To:		/astewater □ /Redevelopment ⊠		ste Manag er 🔲	gement						,		
															ge 1	of	1
	ty/Proje ro Pla						Licen 00	ise/Permi	t/Moni	toring N	lumbe	г	Boring	g Numb		W-8	
				of crew	chief (first, last)	and Firm	. 1	Drilling S	Started		Da	te Drill	ing Co	mplete			ling Method
	vid Par I Esser							2/14	4/2000	5			2/14/2	2006			ollow stem
WIU	nique W).	DNR	Well ID No.	Common Well Name	e Final	Static W		vel	Surfac	e Eleva		~	Bo	rehole	Diameter
Local		091		stimated	: 🔲) or Bo	MW-8	 _	Feet	MSL				et MS Grid Lo	_	!_	8.2	inches
	Plane	8	E-31 (0 N, 0	E s/c/n		Lat	<u> </u>	<u>'</u>	**				Ī		□ Е
Facili		of N	W 1	/4 of Se		T 18 N, R 20 E	L County	ong	0	rown/C	itar/ on	Village		t 🗆 S			Feet W
Facili	ty ID				County Calumet		8	Code	Chil		ny/ or	village	E				
Sar	nple	,					<u></u>						Soil	Prop	erties		
	& (in)	ts	et			ock Description						စ်					
r ed	Att. ered	Coun	In Fe			cologic Origin For		S	. <u></u>	8	Ω	essiv	1 1 t		ity		ents
Number and Type	Length Att. & Recovered (in)	- Blow Counts	Depth In Feet		Eac	h Major Unit		USC	Graphi	Well Diagram	PID/FID	Compr	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
1 COR	48 28		F		HALT			4	***	3	0.0						
CORG	20		<u>E</u> 1	h(Bas	ecourse)	Gravel and Sand		 	\bowtie								
			E	FILI	L: Layers of	Brown Sand and	Gravel	,									
1			<u>-2</u>	Ucca	asional Cinde	ers											
ı			3														
l			E	FILI	Dark Broy	vn Organic Clay		_	$\overset{\sim}{\otimes}$	計							
2	48		<u>-4</u>	1121	o. Bum Bro	in organize out					0.0						
COR	16		<u>-</u> 5						\bowtie								
I			E														
l			F-6	FILI	L: Brown Sil	ty Gravel and Sar	nd										
l			E_7						\bowtie								
			Ę '	Brov	wn Lean CL	AY, Little Sand and an all Silty Sand Lay	nd 'erc										
3	48		-8	Gia	vei, Occasioi	iai Siity Sailu Lay	/CIS				0.0						
CORT	29		F,														į.
ı	1		F-9							目				1			
I			E 10					OT.									
	İ		E					CL									
			F 11	•													
			E ₁₂									1		1			
COR	18 8		F -								0.0						
			-13														
L	1			E.O.	.B. @ 13.5 ft	**			- <i>V/////</i>	ANT OF							
I here	by certi	fy tha	t the in	formatio	n on this form i	s true and correct to the	ne best o	f my kno	wledge	-1 ;.	'	1	1,		<u> </u>		1

Signature Signature SEH Inc Chippewa Falls, WI 54729 Www.sehinc.com Fax: 715.720.6300

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-9

			<u>Rc</u>	ute To:	Watershed/W		_			gement								
					Remediation/	Redevelopmen	t 🖾	Other	Ц									
															Pa		of	1
	ty/Proje							License	/Permi	t/Monit	oring N	lumbe	r	Boring	g Numl		17.0	
	ro Pla			of orange	chief (first, last)	and Firm		00 Date Dr	illing	Storted		ID.	ite Drill	ing Co	malata		W-9	ing Method
	vid Pa	-		oi ciew c	mier (mst, iast)	and Filli		Date Di	mmg .	otaricu		D'	ne Dilli	ing Co	mpiete	u	1	llow stem
	l Esse								2/14	1/2006	ó			2/14/	2006			ger
	nique W	ell No		DNR V	Well ID No.	Common Well	Name	Final St				Surfa	e Eleva			Вс	rehole	Diameter
		092				MW-9		ļ	Feet	MSL				et MS			8.2	inches
	Grid O: Plane	rigin	⊠ (e:	stimated:	□) or Bor 0 N, 0			L	at	0	•	"	Local	Grid Lo				
State		of N	W 1	./4 of Sec	•	T 18 N, R 2		Lon	σ	0	,	**		Fee	1 🔲 N t 🗆 S		,	□ E Feet □ W
Facili					County	1 10 11,111		County C		Civil 7	Town/C	ity/ or	Village					
					Calumet			8		Chil	ton							
Sar	nple												ļ	Soil	Prop	erties		
	% (ii)	ts	et			ock Description							စ္					
r e	Att.	Joun	In Fe			ologic Origin F	or		S	b o	8	Ω	essiv h	5 T		 		ents
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		Eac	h Major Unit			SC	aphi g	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
zä	12 %	BI	ا مٌ						Ď	ច្ ន	ğä		\ <u>S</u> \frac{\frac{1}{2}}{2}	≱్ర	<u> </u>	P F	P 2	RG Co
1 COR	48 30		Ę	FILI	HALT .: Grayish-Bı	rown Gravel	and S	and		XXX		0.0						
			-1	\(Base	ecourse)													
ı				FILL	.: Light Brov	vn Gravel an	nd San	d		\bowtie								
ı			<u>-2</u>]									
			<u>-</u> 3							\bowtie		i						
			E	TOTAL T	- N.C. 4	20. 1.0	1 0'	1		\bowtie								
,	48		<u>-</u> 4		.: Mixture of Organic Clay		ei, Cin	aders,				0.0						
2 CORIC	30		E		organio ciuj							0.0						
			<u>-5</u>							\bowtie								
			<u>-</u> 6															
			E															
	·		F ₋₇	D	vn Lean CLA	X I :41 - C-	. 1	1	-									
ı			F	Grav		Y, Little Sa	ina and	1										
3	48		F-8	024,					·		1. H	0.0						
3 CORT	30		E.								目							
			F 9															
			E ₁₀															
			E						CL						ŀ			
			-11															
			E								1 -							
4	18		-12								1: 	0.0						
CORI	12		F 13								1:1							
	ļ		-13						ļ		1 目							
				E.O.]	B. @ 13.5 ft													
I here	by certi	fy tha	t the int	formation	on this form is	true and corre	ct to the	best of n	ny kno	wledge.			•		•			
Signa	ture	<u> </u>		57	· //	Firm	n CT	TT T.	n C '	121 Fren	ette Driv	re	720				Tel:	715.720.6200
(——/,	Del	/ra		Ker	1/	. DL	H I	uc ;	vww.seh	a rails, inc.com	vv 1 34	127					715.720.6300

State of Wisconsin
Department of Natural Resources

Signature

SOIL BORING LOG INFORMATION

Tel: 715.720.6200 Fax: 715.720.6300

Form 4400-122 Rev. 7-98

			<u>Ro</u>	ute To:	Watershed/V Remediation				te Mana	gement								
										•					Pas	ge 1	of	2
	y/Proje							L L	se/Permi	t/Monit	oring N	Numbe	r	Boring		er		
	ro Pla			of crew ch	ief (first, last	and Fire	n	Date	Drilling :	Started		Da	te Drill	ing Co	mplete	$\frac{PZ}{d}$		ing Method
	vid Pa				(,	,										-		llow stem
	l Essei			: 		12		77: 1		3/2006				2/13/2	2006		au	ger
WI U	nique W	'ell No 067).	DNR W	ell ID No.	Commo	on Well Nam PZ-5	ie Final	Static W	ater Le MSL	vel	Surfac	e Eleva	ition et MS	т	Bo		Diameter inches
Local			(es	timated:	or Bo	ring Loca		<u> </u>		0		11	Local C				0.2	menes
State	Plane	.c.NI	W 1	// -EC	0 N, 0		S/C/N	1	Lat		-	**		Г				□ E
Facili		of N	W 1	/4 of Sect	ion 18,	1 18	N, R 20 E	County	ong Code	Civil	Cown/C	City/ or	Village	Fee	t 🗆 S			Feet W
					Calumet		_	8		Chil								
Sar	nple													Soil	Prop	erties		
	r. &	nts	eet			Rock Des	cription Origin For						ive					
er ype	h At	Con	Iul			ch Major			S	ıjç	un,	₽	oress gth	ure	70	city		, nents
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet			.			USC	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
CORE	48 35		F	Dark I	Brown TO	PSOIL			OL			0.0	0.7					
			-1	EII I .	Brown Le	on Clar	. I ittle Ce	nd and		[- <u></u> -								
ı			Ē	Grave		an Ciay	, Linie Sa	iliu aliu		\bowtie								
			F ²															
			<u>-</u> 3															
			E	Proba	ble FILL:	Grav G	ravel and	Sand										
CORI	48 24		F-4							\bowtie	Ā	0.0						
JUKI	24		<u>-</u> 5	Gray 1	to Brownis	h-Gray	Silty SAN	1D						:				
			E															
			<u>-6</u>															
ļ			E 7															
i			E															
ł	48		F-8									0.0						
CORI	48		<u>-</u> 9															
l			E						SM									
			-10															
İ			È.,															
			F-11															
}	48		E-12						Ì			0.0	1					
CORI	48		E									0.0						
1			- 13															
1			E -14															
I here	by certi	fy that	the inf	ormation	on this form	is true an	d correct to t	he best of	my kno	wledge		·		•	·	Ave	·	.

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

Firm SEH Inc Chippewa Falls, WI 54729 www.sehinc.com

Boring Number PZ	-5 Use only as an attachment to Form 44	100-122.			2 of	2
Sample	Soil/Rock Description			Soil Propertie	s	
Number and Type Length Att. & Recovered (in) Blow Counts Depth In Feet	And Geologic Origin For Each Major Unit	USCS Graphic	Log Well Diagram PID/FID	Compressive Strength Moisture Content Liquid Limit Plasticity	Index P 200	RQD/ Comments
CORL 48	Coarse Sand Layer @ 23 ft. Grav Silt, Some Fine Sand	SM SM		Co Str Mc Co Co Co Co Co Co Co C		Blowing Sand In Augers, Sampling Discontinued @ 24 ft.

	Watershed/Wastewater Remediation/Redevelopment	Waste Management Other	MONITORING WELL C	ONSTRUCTION Rev. 7-98
Facility/Project Name	Local Grid Location of Well -		Well Name	
Former Mirro Plant 20		S	W. MW-S	
Facility License, Permit or Monitoring No.	Local Grid Origin (estima	ted: [] or Well Location		NR Well ID No.
	Lat"	Long	or 0x068	-
Facility ID	St. Planeft. N	ft. E. S	Date Well Installed 2 / / m m d	3,000
	Section Location of Waste/Sou		m m d	
Type of Well	1/4 of1/4 of Sec_		□ E Well Installed By: Name	(first, last) and Firm
Well Code/	Location of Well Relative to W		- Corra Johns	ia-
Distance from Waste/ Enf. Stds.		Sidegradient	"Utwick Pa	ulsi
Sourceft. Apply [d 🗆 Downgradient n 🗆	Not Known	_ Soil Essenti	uls Ltd.
	ft_MSL	1. Cap and lo		X Yes □ No
B. Well casing, top elevation	fi. MSL -2-5	a. Inside di		4
- ·	2 100	b. Length:	ancıcı.	- ∕
C. Land surface elevation	ft. MSL	c. Material	•	
D. Surface seal, bottom ft. MS	SLor ft.	- Maria	•	Steel X 04
12. USCS classification of soil near scree		A Addition	al protection?	Other 🗆 🧱
GP GM GC GW C		1170	escribe:	☐ Yes ☐ No
SM SC ML MHO		11 \ 1,55,6		
Bedrock 🗆		3. Surface sea	(12	entonite 2 30
13. Sieve analysis performed?	Yes □ No			Concrete 0 01
•	1 250	No.		Other 🗆 🚉
	tary 0 50	4. Material D	tween well casing and protective	1
Hollow Stem A	oger 🗆 📲			lentonite 🔼 30
· · · · · · · · · · · · · · · · · · ·		3		Other 🗆 🌉
15. Drilling fluid used: Water □ 02	Air □ 01	5. Annular sp		
Drilling Mud 🗆 03			s/gal mud weight Bentonite-sa	
		GL	s/gal mud weight Bentoni	te slurry 🔲 131
16. Drilling additives used?	Yes □ No	d%	Bentonite Bentonite-cem	ent grout 🗆 50
		KXXX	Ft 3 volume added for any of the	
Describe		f. How in		Tremie [] 01
17. Source of water (attach analysis, if req	uired):		Tremie	pumped 🛘 02
				Gravity [] 08
		6. Bentonite		_
E. Bentonite scal, top ft. MS	· 630	ъ. 🗆 1/4 :	in. 33/8 in. 11/2 in. Bentor	
E. Bentonite scal, top IL M	ir of - 75 : Sur	C	11749	Other 🛮 🚉
77 7700 2 4 6. 3.60		7. Fine sand	material: Manufacturer, product r	same & mesh size
F. Fine sand, top ft MS	SLorft.			
C1 7777	SLor_2.7/ft		3	
G. Filter pack, top ft. MS	".a~		addedfi ³	
71 6	SLor_30 ft.		material: Manufacturer, product	name & mesh size
H. Screen joint, top ft. MS	,10,,11,		Sidley	_ 🕮
T WINE A MI	SLor_13.0n.	b. Volum		4.1. 40 752 0.2
L Well bottomft. MS	mu-te-the	9. Well casin	_	
J. Filter pack, bottom ft M	st _ 13 5 a 1		Flush threaded PVC sche	
J. Flierpack, bottom it M.	2011	裂 \	terial: PVC	Other 🗆 🎎
K. Borehole, bottom ft M	sr - 13 Se.	10. Screen ms	···········	
K. Bouenoie, pottom	3L 07_L2.21L	a. Screen		ctory cut 🔀 11
L. Borehole, diameter £ 25 in.			Continu	nons slot 🔲 01
L. Borehole, diameter & L. L. in.		\	21	Other 🛘 🧱
275			course Munitley	0 0 0 0
M. O.D, well easing 2272 in.		c. Slot siz		0. <u>g</u> 1 <u>Q</u> in.
0.03		· · · · · · · · · · · · · · · · · · ·	length:	INOU
N. 1.D. well casing 200 in.	•	11. Backfill n	aterial (below filter pack):	None 14
				Other 🛘 🧱
I hereby certify that the information on thi		best of my knowledge.		
Signamre 9	of Firm		// //	
Sohn . Auf	g/ SE	H Inc.	to la for	

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

_	Watershed/Wastewater	Waste Management [MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 7-98
Facility/Project Name	Remediation/Redevelopment Local Grid Location of Well ft.	Other	KV-11 XV
Former Mirro Plant 20	ft. F	Nr. DE.	nw6
Facility License, Permit or Monitoring No.	Local Grid Origin (estim	eted: or Well Location	Wis. Unique Well No. DNR Well ID No.
		Long.	CXABG
Facility ID	1 •	ft. E. S/C/N	
	Section Location of Waste/Sou		21.1412000
Type of Well	1	. Пъ	
Well Code/			Cory Johnson
Distance from Waste/ Enf. Stds.	Location of Well Relative to W	Vaste/Source Gov. Lot Number Sidegradient	David Pavilson
Sourceft. Apply		Not Known -	Soil Essentials Ltd.
	ft MSL	1. Cap and lock?	ĭ Yes □ No
• • •	~ 7 ' '	2. Protective cover	
B. Well casing, top elevation	ft. MSL	1 1 2 2 2	er Flush mt -9. in
C. Land surface elevation	ft.MSL	b. Length:	71654 MV -71-11
•		c. Material:	Steel [] 04
D. Surface seal, bottom ft. MS	Lor_J. Lit.		Other 🗆
12. USCS classification of soil near screen	n:	d. Additional pr	
GP GM GC GW S	SW 🗆 SP 🔲	If yes, descri	
SM C SC C MLC MHC C	лосио 🞢	2 50 500 000	Bentonite 🛘 30
Bedrock 🗆		3. Surface scal:	· Concrete 🖾 01
•	Yes 🗆 No		Other 🛘
14. Drilling method used: Ro	tary □ 50	4. Material between	an well casing and protective pipe:
Hollow Stem Ar			Bentonite 🖾 30
0	ther 🗆 🥌		Other 🛚 🧱
		5. Annular space s	eal: a. Granular/Chipped Bentonite [3] 33
15. Drilling fluid used: Water [] 02	Air 0 01	bLbs/gal	mud weight Bentonite-sand slurry 35
Drilling Mud 🗆 0 3	None LI 99		mud weight Bentonite slurry 🗖 31
16. Drilling additives used?	Yes 🗆 No		onite Bentonite-cement grout [50
10. Diming addition them.		KXX3 '	t 3 volume added for any of the above
Describe		f. How installe	
17. Source of water (attach analysis, if requ	nined):		Tremie pumped 🛘 02
12.12.01.00.02 (1.00.02)			Gravity [] 08
		6. Bentonite seal:	• •
E. Bentonite seal, topft. MS	n 1 0a	1864 J 2011. []	□3/8 in. □1/2 in. Bentonite chips □ 32
E. Bentonite seal, top IL MS	, Lor	c2/4/2	Other 🗆 🧱
F. Fine sand, top ft. MS	SL orft.	7. Fine sand mater	rial: Manufacturer, product name & mesh size
r.r.mesand, up	201		
G. Filter pack, top ft. MS	SLor_2.6 ft.		· - · · · · · · · · · · · · · · · · · ·
• • • •		b. Volume add	erial: Manufacturer, product name & mesh size
H. Screen joint, top ft. MS	Lor_2.2 ft.	- BW SIO	
in outcord out the first first in the		b. Volume add	
L. Well bottomft. MS	SLor_12.9n. 1	9. Well casing:	Flush threaded PVC schedule 40 [2: 23]
	人 [注		Flush threaded PVC schedule 80 \(\sigma 24 \)
J. Filter pack, bottom ft MS	SL or 13 5 ft.		Other D
		10. Screen materia	
K. Borchole, bottom ft M	SL or 13_5 ft.	a. Screen type	
		a bereartype	Continuous slot 01
L. Borehole, diameter £.25 in.			Other 🛘 🎇
		b. Mamifacture	* monoflex
M. O.D, well casing 2.375 in.		c. Slot size:	0. <i>Q10</i> in.
we will be the second of the second the seco		d. Slotted leng	• •
N. I.D. well casing 2.00 in.	•	•	al (below filter pack): None 7 14
			Other 🗆 🧱
I hereby certify that the information on thi	s form is true and correct to the	best of my knowledge.	
Signature	Firm		1 [/
Clahre & Aus	el Se	H Inc. T	h Van

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chr. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

1841 . . .

	Watershed/Wastewater Remediation/Redevelopment	Waste Management Other Other	MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 7-98
Facility/Project Name	Local Grid Location of Well		Well Name
former Mirro Flant CO	[IL []	SIL 🗆 W.	mw-7
Facility License, Permit or Monitoring No.	Local Grid Origin (estimat	ed: 🔲) or Well Location 🔲	Wis. Unique Well No. DNR Well ID No.
	LatL	ong.	
Facility ID	St. Planeft. N,	ft. E. S/C/N	Date Well Installed 114 12006
	Section Location of Waste/Sour	œ	mm 77 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Type of Well	1/4 of1/4 of Sec	TN, R E	Well Installed By: Name (first, last) and Firm
Well Code/	Location of Well Relative to Wa		Corx Johnson
Distance from Waste/ Enf. Stds.		Sidegradient	Soil Essentials Ltd.
Sourceft Apply [d Downgradient n 🗆		
A. Protective pipe, top elevation	ft_MSL	1. Cap and lock?	Flush X Yes No
B. Well casing, top elevation	ft. MSL =0.4	2. Protective cover	pipe ut
-· -·		a. Inside diamete	
C. Land surface elevation	ft.MSL	b. Length:	2-O.ft.
D. Surface seal, bottom ft. M.	SLor_L.On.	C. Material	Steel 3 04 Other D
12. USCS classification of soil near scree		d. Additional pr	otection?
GP GM GC GW C	1 1 1	If yes, descrit	
SM C SC ML ML MHC	T CHO	M / /	Bentonite □ 30
Bedrock 🗆	I 1₩	3. Surface scal:	Concrete C 01
13. Sieve analysis performed?	Yes □ No 💮		Other 🗆
14. Drilling method used: Ro	tary 🗆 50	4. Material betwee	n well casing and protective pipe:
Hollow Stem A	* 1 1001		Bentonite 🖾 30
O	Other 🗆 🧱		Other 🗆 🌉
		5. Annular space s	
15. Drilling fluid used: Water [] 02	Air 🗆 01	bLbs/gal	mad weight Bentonite-sand slurry 35
Drilling Mud 🗆 03	None LI 99		mud weight Bentonite slurry 🔲 31
16. Drilling additives used?	Yes 🗆 No		nite Bentonite-cement grout 50
To, Dilling acceptance		KCCC .	volume added for any of the above
Describe		f. How installed	
17. Source of water (attach analysis, if req	mired):		Tremie pumped 🛘 02
		6. Bentonite seal:	Gravity □ 08 a. Bentonite granules ≥ 33
		KCC	3/8 in. 11/2 in. Bentonite chips 1 32
E. Bentonite seal, top fr. M.	Si.or l Off.		
E. Delication south the T. T. T. T. T. T. T. T. T. T. T. T. T.			With the second
F. Fine sand, topft. M	SL orft.	7. Fine sand mater	ial: Manufacturer, product name & mesh size
••	/ 鸦	1 RWSId	ley
G. Filter pack, topft. M	slor_2.7ft.	b. Volume adde	edft ³
			rial: Manufacturer, product name & mesh size
H. Screen joint, top ft. M	SLor_3.Oft	- Rwsid	
•	12.0		ed 5.5 Bags ft3
L. Well boxomft. M	SLor_12.0n_	9. Well casing:	Flush threaded PVC schedule 40 23
	- 12 Ca 注		Flush threaded PVC schedule 80 24
J. Filter pack, bottom ft M	SL or _ 12.2 it.	製 \	Other 🗆
12 600	12.60	10. Screen material	
K. Borehole, bottom13.5ft M	SL 07_12.21L	a. Screen type:	Factory cut 5 11 Continuous slot 0 01
L. Borehole, diameter & 25 in.			Continuous side Li 01
L. Borehole, diameter & . B in.		h Manusanan	monoflex
M. O.D. well easing 2.275 in.		c. Slot size:	0.01 <i>Q</i> in.
M. O.D. well easing 2213 in.		d. Slotted leng	
N. I.D. well casing _2.00 in.		• • • • • • • • • • • • • • • • • • • •	al (below filter pack): None 2 14
14. Try. Metrostrik ' - P. A. H.	•	TI TIMATIII IIIIIVII	Other 🗆
I hereby certify that the information on th	is form is true and correct to the	best of my knowledge.	
Signature O	Firm		
Toler of Su	Of SE	H Inc.	

Please complete to the Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by cls. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

State of Wisconsia Department of Natural Resources Route to: V	Watershed/Wastewater[Remediation/Redevelop	☐ Wass	te Manag	Source L	MONITORING WELL Form 4400-113A	L CONSTRUCTION Rev. 7-98
Facility/Project Name	Local Grid Location of	Well CIM			Well Name	
Former Mirro Plant 20		—r- ⊟s: -		fr. 🛮 🛱	nw-8	
Facility License, Permit or Monitoring No.	Local Grid Origin 🔲	(estimated: \square) or \	Well Location	Wis. Unique Well No.	DNR Well ID No.
	Lat	"Long	•	or	0x091	
Facility ID	St. Piane	n N		A G SICIN	Date Well Installed	1// 0 4 4 (
	Section Location of W			ILE. 0/C/N		11412000
Type of Well		•	_	N, R	Well Installed By: We	me (first last) and Firm
Well Code /	1/4 of1/4				burick Pa	me (first, last) and Firm
Distance from Waste/ Enf. Stds.	Location of Well Relat u Upgradient	ive to Waste/So s 🔲 Sideg	urce	Gov. Lot Number	7013 701	~~63~
Sourceft Apply [Soil Esse	tials Ital.
	d Downgradient	N LI MOLK		Cap and lock?		
A. Protective pipe, top elevation	ft_MSL			-	· ·!	Yes 🛘 No
B. Well casing, top elevation	fr. MSL — O.	71010	-	Protective cover p	- 11.ch	^
· ·	•	'		a. Inside diameter		_9in
C. Land surface elevation	fi.MSL 🛴 -	حا الم		b. Length:		_1fi.
D. Surface seal, bottom ft. MS	n ~ 10 f 🚟	8:3 1 3	100	c. Material:		Steel D 04
	T:-277					Other 🛘 🎆
12. USCS classification of soil near screen		Mary Mary	Lines.	d. Additional pro-		☐ Yes ☐ No
GP GM GC GW S	W I SP II '	/#III#/	. \	If yes, describe		
SM C SC MLC MHC C	т п си п	****	\ \ ₁	Conformati		Bentonite [] 30
Bedrock 🗆		XX XX	7 3.	Surface scal:		Concrete To 01
13. Sieve analysis performed?	Yes No		- /			Other 🗆 🚟
14. Drilling method used: Ro	tary 🗆 50		4.	Material between	well casing and protect	
Hollow Stem At	•				was managed atto promot	Bentonite 🗵 30
	ther 🗆 🔛				• •	,r
	ADAM		_			Other 🗆 🎎
15. Drilling fluid used: Water [] 02	Air [] 01			Annular space see		
Drilling Mud 🗆 03 1	Vome [] 99				and weight Bentonit	•
	TORK >>				und weight Bent	
16. Drilling additives used?	Yes 🗆 No		đ,		ite Bentonite-	
			c.	Ft	volume added for any	of the above
Describe	j		f.	How installed:		Tremie 🛛 01
17. Source of water (attach analysis, if requ					Tre	mic pumped 🛛 02
17. Source of water (adapt stratysis, if requ	ilicu).		•			Gravity 🛛 08
			б.	Bentonite seal:	a. Benton	nite granules 🔯 33
·				ь. 🗆 1/4 in. 🔲	3/8 in. □1/2 in. Be	ntonite chips 32
E. Bentonite seal, top ft. MS	Lorfi.			c. 1-5	Bags	Other 🛘 🎆
			/·_		,,,	MT-H.
F. Fine sand, top ft. MS	Lorft.\		/ 7.	Fine sand materia	d: Manufacturer, produ	ict name & mesh size
			1.	a		
G. Filter pack, topft. MS	Lor_2.6A			b. Volume added	. <u>f</u>	3
					ial: Manufacturer, prod	•
H. Screen joint, top ft. MS	Lor2.0 ft.			RW Sid		
				b. Volume added		<u> </u>
L Well borrom ft. MS	Lor_13.01			. Well easing:	Flush threaded PVC s	chedule 40 1⊒ 23
•	_ \		Э.	went casing.	Flush threaded PVC s	
J. Filter pack, bottomft MS	13 Ban	イ富ナ		•	Flush inteaded PVC s	
J. Filler pack, Dollom It was	"FOI _ F. S. SIL		1	· · · · · · · · · · · · · · · · · · ·	Ditt	Other 🛘 🔛
K. Borchole, bottom ft MS	1350			. Screen material:	PUC	
K. Borchole, bottom It MS	Por 15 Tr		1	a. Screen type:		Factory cut Dr 11
					. Cor	ntinuous slot 🛛 01
L. Borehole, diameter _2.25 in.	• •			· · · · · · · · · · · · · · · · · · ·		Other 🛘 🎬
^ 227	• •	`			monoflex	
M. O.D. well casing 2.275 in.	•		\ \	c. Slot size:	·	0. <i>Q[Q</i> m.
			\	d. Slotted length	.	(Q.Qft.
N. I.D. well casing $2 \cdot \underline{\theta} \cdot \underline{\theta}$ in.	•		11	. Backfill material	(below filten pack):	None D 14
, a man and the			~1			Other 🗆 🎬
I hereby certify that the information on this	s form is true and corre	t to the best of	my know	vledge.	7 1 79	<u> garas</u>
Signature 2	Firm		,		/////	
		SEH	Inc		2/2 Mar-	•
Sahn T. Auk	7	<u>~~11</u>	N. C.	• 4	In your	

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

Str.

I	Vatershed/Wastewater	Waste Management Other	MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 7-98
Facility/Project Name Former Mirro Plant 20	Local Grid Location of Well	N DE	Well Name
		S DW.	nw-9
Facility License, Permit or Monitoring No.	Local Grid Origin (estimat	ted: 🗆) or Well Location 🗖	Wis. Unique Well No. DNR Well ID No.
	[Lat"L	ong.	04092
Facility ID	St. Planeft. N,	ft. E. S/C/N	Date Well Installed 2/14/2006
	Section Location of Waste/Sour	ce	
Type of Well	1/4 of 1/4 of Sec.	TN, R	Well Installed By: Name (first, last) and Firm
Well Code/_	Location of Well Relative to Wa		- Corx Johnson
Distance from Waste/ Enf. Stds.	u 🗆 Upgradient 💮 s 🗎	Sidegradient	David Partson
Sourceft Apply [d Downgradient n		Soil Essentials Ltd.
A. Protective pipe, top elevation	ft_MSL	1. Cap and lock?	≥ Yes □ No
D Well series top elevation	n. MSL -0-4	2. Protective cover	
B. Well casing, top elevation			Flush mt _9in.
C. Land surface elevation	ft.MSL	b. Length:	_1.Qft.
D. Surface seal, bottom ft. MS	T ~ 10 f	c. Material:	Steel 🗷 04
	7:5005-147		Other 🛘 🌉
12. USCS classification of soil near screen		d. Additional pr	
GP GM GC GW S SM GC ML MH G	☆ 片 架 片 <i>ブ</i> 打	If yes, descri	
Bedrock []		3. Surface scal:	Bentonite 🔲 30
- · · · · · · · · · · · · · · · · · · ·	Yes □ No		Concrete C 01
1 · ·	1 1881		Other 🗆 💮
	tarry 🗆 50	4. Material between	n well casing and protective pipe:
Hollow Stem At	ther \square		Bentonite 🔁 30
	mer u 💥	———	Ofher 🛚 🌉
15. Drilling fluid used: Water [] 02	Air □ 01	5. Annular space s	
Drilling Mud [] 03	Vone II 99		mud weight Bentonite-sand slurry 35
			mud weight Bentonite slurry [] 31
16. Drilling additives used?	Yes 🗆 No		nite Bentonite-cement grout ☐ 50
		K133	volume added for any of the above
Describe		f. How installed	-
17. Source of water (attach analysis, if requ	nired):		
		6. Bentonite seal:	
			13/8 in. 11/2 in. Bentonite chips 1 32
E. Bentonite seal, top ft. MS	Lor I Off.	B / " TBa	
			Military.
F. Fine sand, top ft. MS	Lorfl.	7. Fine sand mater	ial: Manufacturer, product name & mesh size
G. Filter pack, topft. MS	Lor_ 3.0ft	b. Volume adde	d GBacy fi3
•			rial: Manufacturer, product name & mesh size
H. Screen joint, top ft. MS	Lor_3.5n	1 RWSid	
• •	12 6	1.76	od 6Br c. c. ft3
L Well bottomft. MS	Lor_13.5 n.	9. Well casing:	Flush threaded PVC schedule 40 (2) 23
· ·			Flush threaded PVC schedule 80 🔲 24
J. Filter pack, bottom ft MS	Lor_12.2 ft.		Other 🛘 🎇
	.2 r	10. Screen material	PUC
K. Borchole, bottom ft MS	Lor_12.2 ft.	a. Screen type:	Factory cut 🔲 11
			Continuous slot 🛘 01
L. Borehole, diameter £ 2.5 in.			Other 🛘 💹
		b. Manufacture	- Monoffex
M. O.D. well easing _2.275 in.	,	c. Slot size:	0.QLQ in.
^ - \		d. Slotted length	
N. I.D. well casing		11. Backfill materia	I (below filter pack): None 14
		· · · · · · · · · · · · · · · · · · ·	Other 🗆 🌉
I hereby certify that the information on this		est of my knowledge.	
Signature 9	of Firm	1	/ ///
Sahn C. Auf	SE SE	HInc.	Bur HI
		-1/	,, -

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by cls. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with cls. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

	Watershed/Wastewater Remediation/Redevelopment	Waste Management	MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 7-98
Facility/Project Name 4	Local Grid Location of Well	·	Well Name
tormer lilled I mus co	lI ^r 🖸	SIL TW	PZ 5
Facility License, Permit or Monitoring No.	Local Grid Origin [1] (estima	ted: []) or Well Location []	
P. T. ID	[Cat	ong,o	
Facility ID	St. Planeft. N,	ft. E. S/C/N	Date Well Installed 2/13 70.008
	Section Location of Waste/Sour	roe	m m d d v v v y
Type of Well	1/4 of1/4 of Sec	TN, R E	Well Installed By: Name (first, last) and Firm
Well Code/	Location of Well Relative to W	aste/Source Gov. Lot Number	- Cory Johnson
Distance from Waste/ Enf. Stds.		Sidegradient	e Payid Paulson
Sourceft Apply [d 🗆 Downgradient n 🗆		Soil Essentials Ltd.
A. Protective pipe, top elevation	ft_MSL	1. Cap and lock?	Yes ☐ No
D Wall and a transfer i	n. MSL 2.5	2. Protective cover	
Di. Well casing, wp elevation = = = -		a. Inside diamete	n _4.0m.
C. Land surface elevation	ft.MSL 04	b. Length:	_ <i>5,Q</i> ft.
	<u> </u>	c. Material:	Steel 🔲 04
D. Surface seal, bottom ft. MS			Other 🗆 🧱
12. USCS classification of soil near screen	1 (41)	d. Additional pro	olection?
GP GM GC GW S	W L SP L	If yes, describ	x:
SM C SC D MLD MHD	TO CHO!	2 Sunface south	Bentonite 🕱 30
Bedrock 🗆		3. Surface scal:	Concrete 🖸 01
13. Sieve analysis performed?	Yes 🗆 No 💮 💮		Other []
14. Drilling method used: Ro	tary □ 50	4. Material between	n well casing and protective pipe:
Hollow Stem Ar	ıgcr □ 41		Bentonite 30
O	ther 🗆 🧱		Other 🗆
		5. Annular space se	
15. Drilling fluid used: Water □ 02	Air 🗆 01 📗		mud weight Bentomite-sand slurry 35
Drilling Mud 🗆 03 1	None 🗆 99		mud weight Bentonite slurry [31
			nite Bentonite-cement grout [] 50
16. Drilling additives used?	Yes □ No		3 volume added for any of the above
		f. How installed	•
Describe	 	1. 1104 1114	Tremie pumped 🛘 02
17. Source of water (attach analysis, if requ	nired):		Gravity EF 08
		6. Bentonite seal:	
		h. □1/4 in. 5	3/8 in. 11/2 in. Bentonite chips 2 32
E. Bentonite seal, topft. MS	Lor 04ft.	1 c. GBags	Other 🗆
	. 1		with.
F. Fine sand, top ft. MS	SLor_19.2ft.\	7. Fine sand mater	ial: Manufacturer, product name & mesh size
		1 Rw91dl	ey 4000
G. Filter pack, top ft. MS	ilor 21.La	b. Volume adde	
			rial: Manufacturer, product name & mesh size
H. Screen joint, top ft. MS	Lor_23.0n.	BWSia	
			ed 13BcLcs ft3
L Well bottom ft. MS	SLor 260 ft.	9. Well casing:	Flush threaded PVC schedule 40 2 23
			Flush threaded PVC schedule 80 🛘 24
J. Filter pack, bottom ft MS	SLOT 285 ft.		Other 🗆 🔛
		10. Screen material	PVC
K. Borchole, bottom ft MS	SLor 28:5ft	a. Screen type:	
		a. octourtype.	Continuous slot 01
L. Borehole, diameter _6_25 in.			Other D
a Dordon, diameter III.		b. Manufacture	
M. O.D. well easing 2375 in.		c. Slot size:	0.010in.
m. O.D, well easing E.D in.		d. Slotted length	Z- 70.
N. I.D. well casing 2.00 in.	•	•	·
IV. I.D. WEIL CASING C. E Z in.	•	11. Dackini matcha	ll (below filter pack): None 14 Other
I hereby certify that the information on thi	e form is true and answers to she !	heet of my knowledge	Oun ii
Signature 2	Firm	was or ruly known rough.	/-//
	el Fim SE	H Inc. De	! <i> //.</i> ·
Sohn (Mil	7	11 VIC.	2N 111

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

Well / Drillhole / Borehole Abandonment

Form 3300-005 (R 10/03)

Page 1 of 2

Route to: Drinking Water Watershed/Wastewater Waste Management	Remediation/Redevelopment Other:				
1. General Information	2. Facility / Owner Information				
WI Unique Well No. DNR Well ID No. County	Facility Name				
	New 11 Rubbermald former Plant				
Common Well Name Gov't Lot # (if applicable)	Facility ID License/Permit/Monitoring NgCity, Village or Town				
B)	Chilton				
NW 18 18 N Zo TV	44 Walnut Street				
Grid Location —	Present Well Owner Original Well Owner				
Feet NFeet E Local Grid Origin	Newell Rubbermaid Same				
S W (estimated) OR Well Locat	Street Address or Route of Owner				
Latitude: DEG MIN SEC Longitude: DEG MIN SEC	2707 Butterfield Rd. Ste 100				
N SES WITH SES	City State ZIP Code W Cock Roots TIII COSTS				
Reason For Abandonment WI Unique Well No. of Replacement	W Oak Brook ILL 60523				
Bosing Completed					
3. Well / Drillhole / Borehole Information	Pump and piping removed?				
Original Construction Date	Liner(s) removed?				
Monitoring Well Z-13-Zoo6	Screen removed?				
Water Well	Casing left in place?				
Borehole / Drillhole If a Well Construction Report is available, please attach.	Was casing cut off below surface? ☐ Yes ☐ No ☒N/A				
Construction Type:	Did sealing material rise to surface? Yes \(\sum \) No \(\sum \) N/A				
Drilled Driven (Sandpoint) Dug	Did material settle after 24 hours?				
Other (specify): Hydraulic Proba	If yes, was hole retopped?				
Other (specify): FryataOtte 1606-	If bentonite chips were used, were they				
Formation Type:	hydrated with water from a known safe source? Yes No N/A				
Unconsolidated Formation Bedrock	Required Method of Placing Sealing Material Conductor Pipe-Gravity Conductor Pipe-Pumped				
Total Well Depth From Groundsurface (ft.) Casing Diameter (in.)	Screened & Poured (Explain):				
_ 8 N/A	Sealing Materials				
Lower Drillhole Diameter (in.) Casing Depth (ft.)	Neat Cement Grout Clay-Sand Slurry (11 lb./gal. wt.)				
_ Z N/A	Sand-Cement (Concrete) Grout Bentonite-Sand Slurry "				
	Bentonite Chips				
Was well annular space grouted? LYes LNo LUnknow	Wn Concrete Entornia Chips For Monitoring Wells and Monitoring Well Boreholes Only:				
If yes, to what depth (feet)? Depth to Water (feet)	Bentonite Chips Bentonite - Cement Grout				
Deput to What deput (leet):					
	Granular Bentonite Bentonite - Sand Slurry				
5. Material Used To Fill Well / Drillhole	From (ft.) To (ft.) No. Yards, Sacks Sealant Mix Ratio or or Volume (circle one) Mud Weight				
Granular Banton: La	Surface 8 5 pounds (approx)				
6. Comments					
7. Supervision of Work	DNR Use Only				
	Abandonment Date Received Noted By				
	13-2006				
	ne Number Comments				
	720-6225				
City State ZIP Code	Signature of Person Doing Work Date Signed 7-13-06				
1-11-10-10-10-10-10-10-10-10-10-10-10-10	TOWN TO THE TOTAL				

Well / Drillhole / Borehole Abandonment

Form 3300-005 (R 10/03)

Page 1 of 2

Route to:		. 🖂					1	
Drinking Water Watersho	lanagement	Remediation/Redevelopment Other:						
			2. Facility I	Owner In	formation	· · · · · · · · · · · · · · · · · · ·		
WI Unique Well No. DNR Well ID No. County			Facility Name	6	>		0, , 4	
		Calone		Now		Subberr		mar Plant
Common Well Name		Gov't Lot # (if applic	able)	Facility ID	<u> </u>	cense/Permiv	Monitoring NoCity, '	hilton
%1%	fion	Township Rang	10 (T) 5	Street Addres	s of Well			MI THOR
NW	18	1 /0 -	, 23 -	44		nut ?	Street	
Grid Location		16 N C	0 W	Present Well			Original Well Owne	er
Feet NFeet C	TE 🗆	Local Grid Origin		Newell			Same	
	┪Ѿ	(estimated) OR	Well Location	Street Addres				1 las
Latitude: DEG MIN SEG	,	Longitude: DEG MIN	N SEC	2707	<u> 50 t</u>	terticle		5te 100
	N		W W	City	< Br	note.	State Z	CIP Code
Reason For Abandonment	WIU	nique Well No. of Re	placement We	4 Dump II	<u> </u>	on Casina	Sealing Materia	60523
Boring Completed							4 1	
3. Well / Drillhole / Borehole	Informa	tion		Pump and		oved?	HY	es No No
Datasias Valait	Original (Construction Date		Liner(s) rea	moved?			es No NA
Monitoring Well Water Well	2	<u>-13 - Z∞(</u>	2	Screen ren			ΗΥ	'es ∐ № ⊠ N/A
		Construction Report is av	ailable,	Casing left	in place?		Y	es No NA
Borehole / Drillhole	please at	tach. 		Was casing	g cut off be	elow surface?	· ·	′es ∐No ⊠N/A
Construction Type:				Did sealing material rise to surface?				
Drilled Driven ((Sandpoin	it) 🔲 Dug		Did material settle after 24 hours?				
Other (specify):	aulic	Proba		If yes, was hole retopped? If bentonite chips were used, were they If bentonite chips were used, were they				
Formation Type:			If bentonite hydrated v	e chips wei vith water f	re used, were from a known s	they safe source?	res No No N/A	
		<u> </u>				acing Sealing I		
Unconsolidated Formation Bedrock			Conduc	tor Pipe-Gr	ravityCor	nductor Pipe-Pumpe	ed	
Total Well Depth From Groundsurface (ft.) Casing Diameter (in.)			1	ed & Poure	d LOth	er (Explain):	·	
4		NA		Sealing Mate	ite Chips)			
Lower Drillhole Diameter (in.)		Casing Depth (ft.)		I — ~	ement Grou	ut .	Clay-Sand	Slurry (11 lb./gal. wt.)
		N/A				ncrete) Grout	Bentonite-	Sand Slurry * *
Man wall annular areas mouted	. [□ _{Yes} □ _{No}		I 🗖 🗀	-		Bentonite (Chips
Was well annular space grouted:	N/A	resNo	Unknown			nd Monitoring	Well Boreholes On	ly:
If yes, to what depth (feet)?		pth to Water (feet)		Bentonit	e Chips		Bentonite - Cemen	t Grout
	ļ	•	- 1	Granular Bentonite Bentonite - Sand Slurry				
5. Material Used To Fill Well /	Drillhole			From (ft.)	To (ft.)		, Sacks Sealant	Mix Ratio or
				Surface	7	orcyolur	ne (circle one)	Mud Weight
Grandlar Be	~10 h	· +c		Duriace		 	unds lapprox	
				0.7				
6. Comments								
o. comments					· · · · · · · · · · · · · · · · · · ·		***************************************	
								,
7. Supervision of Work							DNR Use Only	7
				andonment	Date	e Received	Noted By	
Soil Essentials L	td. /	156 H		3-2006				
Street or Route			Telephone		ı	nments		
421 Frenctto	Du.			20-62				
City Chiman Fr	lila	State ZIP C	Code 1779	Signature of	Person Do	oing Work		e Signed 7 13-0C

Well / Drillhole / Borehole Abandonment

Form 3300-005 (R 10/03)

Page 1 of 2

Route to: Drinking Water Watershed/Wastewater Waste Management	Remediation/Redevelopment Other:				
1. General Information	2. Facility / Owner Information				
WI Unique Well No. ONR Well ID No. County	Facility Name				
Calumet	Nowall Rubbarmald tormer Plant To				
Common Well Name Gov't Lot # (if applicable)	Facility ID License/Permit/Monitoring NoCity, Village or Town				
¼1¼ ¼ Section Township Range ☑ E	Street Address of Well				
NW 18 18 N ZO 1 W	44 Walnut Street Present Well Owner Original Well Owner				
Grid Location Feet	1				
	Newell Rubbermaid Same Street Address or Route of Owner				
S W (estimated) OR Well Location	2707 Butterfield Rd. Ste 100				
Latitude: DEG MIN SEC Longitude: DEG MIN SEC	City State ZIP Code				
N W	Oak Brook IIU 60573				
Reason For Abandonment WI Unique Well No. of Replacement We	4. Pump, Liner, Screen, Casing & Sealing Material				
Boring Completed	Pump and piping removed?				
3. Well / Drillhole / Borehole Information	Liner(s) removed?				
Original Construction Date	Screen removed?				
Borehole / Drillhole If a Well Construction Report is available, please attach.					
Construction Type:	Was casing cut off below surface?				
	Did sealing material rise to surface? Yes UNO N/A				
Drilled Driven (Sandpoint) Dug	Did material settle after 24 hours?				
Other (specify): Hydraulic Proba-	If yes, was hole retopped? Yes No N/A				
Formation Type:	If bentonite chips were used, were they hydrated with water from a known safe source? Yes N/A				
Unconsolidated Formation Bedrock	Required Method of Placing Sealing Material Conductor Pipe-Gravity Conductor Pipe-Pumped				
Total Well Depth From Groundsurface (ft.) Casing Diameter (in.)	Screened & Poured (Bentonite Chips)				
4 N/A	Sealing Materials				
Lower Drillhole Diameter (in.) Casing Depth (ft.)	Neat Cement Grout Clay-Sand Slurry (11 lb./gal. wt.)				
_ Z N/A	Sand-Cement (Concrete) Grout Bentonite-Sand Slurry " "				
W	Bentonite Chips				
Was well annular space grouted? LYes LNo LUnknown	For Monitoring Wells and Monitoring Well Boreholes Only:				
If yes, to what depth (feet)? Depth to Water (feet)	Bentonite Chips Bentonite - Cement Grout				
	Granular Bentonite Bentonite - Sand Slurry				
5. Material Used To Fill Well / Drillhole	From (ft.) To (ft.) No. Yards, Sacks Sealant Mix Ratio or Mud Weight				
Granulas Benton: to					
CIMACIAI DEPION. FR	Surface 4 3 pounds (approx)				
6. Comments					
o. Comments					
7. Supervision of Work	DNR Use Only				
	andonment Date Received Noted By				
	3-7006				
Street or Route Telephone					
	20-6225				
City State ZIP Code	Signature of Person Doing Work Date Signed				
Nhippens falls W1 54729	John Nerf 7-13-06				

Well / Drillhole / Borehole Abandonment

Form 3300-005 (R 10/03)

Page 1 of 2

Route to:	ш <u>-</u>					
Drinking Water Waste Management Waste Management	Remediation/Redevelopment Other:					
· · · · · · · · · · · · · · · · · · ·	2. Facility / Owner Information					
	Facility Name					
(alomet	News 11 Rubbermald tormer Plant					
Common Well Name Gov't Lot # (if applicable)	Facility ID License/Permit/Monitoring NdCity, Village or Town					
	Street Address of Well					
NW 18 18 Range DE	44 Walnut Street					
	Present Well Owner Original Well Owner					
Feet NFeet DE Local Grid Origin	Newell Rubbermaid Same					
S W (estimated) OR Well Location	Street Address or Route of Owner					
Latitude: DEG MIN SEC Longitude: DEG MIN SEC	2707 Butterfield Rd. Ste 100 City State ZIP Code					
N W	Mak Road Till CASTS					
Reason For Abandonment WI Unique Well No. of Replacement We	4. Pump, Liner, Screen, Casing & Sealing Material					
Talled Complete	1 1 1 1 21					
3. Well / Drillhole / Borehole Information						
Original Construction Date	Liner(s) removed? Screen removed? Yes \ No \ \ N/A Yes \ No \ \ N/A					
	Casing left in place?					
Borehole / Drillhole If a Well Construction Report is available, please attach.						
Construction Type:						
	Did sealing material rise to surface?					
Drilled Driven (Sandpoint) Dug	Did material settle after 24 hours? If yes, was hole retopped? Yes No N/A Yes No N/A					
Other (specify): Hydraulic Proba	If bentonite chips were used, were they					
Formation Type:	hydrated with water from a known safe source? Yes No N/A					
Unconsolidated Formation Bedrock	Required Method of Placing Sealing Material					
·	Conductor Pipe-Gravity Conductor Pipe-Pumped Screened & Poured Cother (Explain):					
Total Well Depth From Groundsurface (ft.) Casing Diameter (in.)	Screened & Poured (Explain): Other (Explain):					
Lower Drillhole Diameter (in.) Casing Depth (ft.)	Sealing Materials					
Z N/A	Neat Cement Grout Clay-Sand Slurry (11 lb./gal. wt.)					
	Sand-Cement (Concrete) Grout Bentonite-Sand Slurry " " Bentonite Chips					
Was well annular space grouted? / Layer Layer Ves Layer Vers Vers Layer Vers	Concrete					
If yes, to what depth (feet)? Depth to Water (feet)	For Monitoring Wells and Monitoring Well Boreholes Only: Bentonite Chips Bentonite - Cement Grout					
If yes, to what depth (feet)? Depth to Water (feet)	Granular Bentonite Bentonite - Sand Slurry					
5. Material Used To Fill Well / Drillhole	From (ft.) To (ft.) No. Yards, Sacks Sealant Mix Ratio or Mud Weight					
Granulas Benton: La	Surface 8 Approx 5 pounds					
	" '					
	149					
6. Comments						
	——————————————————————————————————————					
7. Supervision of Work	DNR Use Only					
Name of Person or Firm Doing Sealing Work Date of Aba						
Soil Essentials Ltd. / SEH Z-13 Street or Route Telephone	3 - 2006 Number Comments					
	20-6225					
City State ZIP Code	Signature of Person Doing Work O Date Signed					
Phippeux Falls W1 84729	John & Herlf 7-13-06					

Well / Drillhole / Borehole Abandonment

Form 3300-005 (R 10/03)

Page 1 of

Route to: Drinking Water Watershed/Wastewater Waste Management	Remediation/Redevelopment Other:				
1. General Information					
the second secon	Facility / Owner Information Facility Name ,				
	Nawl Rubbernald torner Plant To Facility ID License/Permit/Monitoring NgCity, Village or Town				
Common Well Name Gov't Lot # (if applicable)					
B7	Street Address of Well				
%//% Section Township Range ⊠ E	1 44 Walnut Street				
NW 18 18 N ZO DW	Present Well Owner Original Well Owner				
Grid Location Local Grid Origin	.				
	Newell Rubbermaid Same Street Address or Route of Owner				
S W (estimated) OR Well Location	2707 Butterfield Rd. Ste 100				
Latitude: DEG MIN SEC Longitude: DEG MIN SEC	City State ZIP Code				
N N N	1 7				
Reason For Abandonment WI Unique Well No. of Replacement W	4. Pump, Liner, Screen, Casing & Sealing Material				
Boring Completed					
3. Well / Drillhole / Borehole Information					
Original Construction Date	Liner(s) removed?				
☐ Monitoring Well 2 - 14 - 2006	Screen removed?				
Water Well If a Well Construction Report is available,	Casing left in place? Yes No N/A				
Borehole / Drillhole please attach.	Was casing cut off below surface? ☐ Yes ☐ No ☒ N/A				
Construction Type:	Did sealing material rise to surface?				
Dritled Driven (Sandpoint) Dug	Did material settle after 24 hours?				
	If yes, was hole retopped?				
Other (specify): Hydraulic Proba	If bentonite chips were used, were they				
Formation Type:	hydrated with water from a known safe source? Yes No N/A				
Unconsolidated Formation Bedrock	Required Method of Placing Sealing Material Conductor Pipe-Gravity Conductor Pipe-Pumped				
Total Well Depth From Groundsurface (ft.) Casing Diameter (in.)	Screened & Poured (Bentonite Chips) Other (Explain):				
Z.5 N/A	Sealing Materials				
Lower Drillhole Diameter (in.) Casing Depth (ft.)	Neat Cement Grout Clay-Sand Slurry (11 lb./gal. wt.)				
N/A	Theat Centent Glodi				
	Gard-cement (Concrete) Glout				
Was well annular space grouted?	Concrete				
N/A	For Monitoring Wells and Monitoring Well Boreholes Only:				
If yes, to what depth (feet)? Depth to Water (feet)	Bentonite Chips Bentonite - Cement Grout				
	Granular Bentonite Bentonite - Sand Slurry				
5. Material Used To Fill Well / Drillhole	From (ft.) To (ft.) No. Yards, Sacks Sealant Mix Ratio or or Volume (circle one) Mud Weight				
Grandlar Benton: La	Surface Z.5 Z pounds (9000x)				
6. Comments					
7. Supervision of Work	DNR Use Only				
The state of the s	andonment Date Received Noted By				
	4-2006				
Street or Route Telephone					
	120-6225				
City State ZIP Code	Signature of Person Doing Work Date Signed				

Well / Drillhole / Borehole Abandonment

Form 3300-005 (R 10/03)

Page 1 of 2

Route to: Drinking Water Waters	hed/Wastewater	Waste Man	nagement	Remedia	tion/Rede	velopment	Other:		
1. General Information 2				2. Facility / Owner Information					
			Facility Name				_		
·	C	alumet	_	Non	118	Rubbern	rald to	rmer	Plant 72
Common Well Name	Gov't	Lot # (if applicable		Facility ID		License/Permit/M	Ionitoring NoCity		
B 8	<u> </u>							hilto	· _
1 . 1	ection Towns	ship Range	ØΕ	Street Addres					
NW	18 1.1	8 N Zo		44		Inut S			
Grid Location				Present Well			Original Well Own	ner	
Feet NFeet	E Local	Grid Origin		Newell			Same		
□sl	☐ w ☐ (estim	ated)OR 🔲 W	Vell Location	Street Addres		_	00	~ 1	100
Latitude: DEG MIN S	EC Longitu	ide: DEG MIN	SEC	2707	<u>150</u>	tterfield		Stc ZIP Code	100
	N	""	W	City	- R	rook	State I L L		· ~ ~ ~
Reason For Abandonment		Well No. of Repla							523
Boring Complete	• 1			4. Pump, L	iner, Sci	reen, Casing &	Sealing Mater		
3. Well / Drillhole / Borehol				Pump and	piping re	moved?	닐		No XXIVA
	Original Constr	uction Date		Liner(s) re	moved?		닐	Yes 🔲 I	No.⊠N/A
Monitoring Well		1-2006		Screen rer	noved?			Yes 🔲	No 🖾 N/A 🕟
Water Well				Casing lef	in place	?		Yes 🔲	No 🛛 N/A
Borehole / Drillhole	please attach.	ction Report is availa	able,					V., []	No N/A
Construction Type:	ــــــــــــــــــــــــــــــــــــــ								
		·		Did sealing material rise to surface?					
	(Sandpoint)	Dug		Did material settle after 24 hours? If yes, was hole retopped? Yes No. WA Yes No. WA					
Other (specify): 1	raulic Pro	2 bc-		1 .		• •		Yes 🔲	No ⊠N/A
Formation Type:			 	hydrated v	e cnips w vith water	ere used, were the from a known sa	ife source?	Yes	No 🖾 N/A
					lacing Sealing M				
Unconsolidated Formation Bedrock			Conduc	tor Pipe-(Gravity Cond	luctor Pipe-Pump	oed		
Total Well Depth From Grounds	surface (ft.) Cas	ing Diameter (in:	:)		ed & Pour		r (Explain):		
7.5	` '	NA	•		ite Chips)			
Lower Drillhole Diameter (in.)	Cas	ing Depth (ft.)		Sealing Materials Neat Cement Grout Clay-Sand Slurry (11 lb./gal. wt.)					
Z		NA	·					-Sand Slu	
			_	1 ==	-	concrete) Grout	Bentonite		• • •
Was well annular space groute	d? / L Ye	s ∐No L	Unknown	Concre				•	
	N/A			J [-	and Monitoring V			
If yes, to what depth (feet)?	Depth to	Water (feet)		Bentonit			Bentonite - Ceme		
		·		Granula	r Bentonit	ie 🔲	Bentonite - Sand	Slurry	
5. Material Used To Fill Well	/ Drillhole			From (ft.)	To (ft.		Sacks Sealant		Ratio or
				 		Ol Volulli	e (circle one)	· · · · · · · · · · · · · · · · · · ·	Weight
Granviar B	enton: fa			Surface	7.5	2 Duan	ds (approx	·	
				<u> </u>				ļ	
				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
6. Comments									
7. Supervision of Work				DNR Use On	ly				
Name of Person or Firm Doing	Sealing Work		Date of Aba	andonment	Da	te Received	Noted By		
Soil Essentials 1	td. / 50	< I+	2-10	1-2000				·	
Street or Route	_ ,		Telephone			mments			
421 Frenctto	Prive	·		20-627					
City	. 11 S	tate ZIP Cod		Signature of	Person [Doing Work	nn Da	ate Signed	
Nhipocus to	cll5	W1 54-	729	1	lm	C	rff!	7-13	-06

Well / Drillhole / Borehole Abandonment

Form 3300-005 (R 10/03)

age 1 of 2

Route to: Drinking Water Watershed/Wastewater Waste Management	Remediation/Redevelopment Other:				
1. General Information	2. Facility / Owner Information				
WI Unique Well No. DNR Well ID No. County	Facility Name				
Calumet	Nowall Rubbermald former Plant 720				
Common Well Name Gov't Lot # (if applicable)	Facility ID License/Permit/Monitoring NqCity, Village or Town				
<u> 310</u>	Chilton				
1/1/4 1/4 Section Township Range	Street Address of Well				
NW 18 18 N Zo jiw	44 Walnut Street				
Grid Location	Present Well Owner Original Well Owner				
Feet NFeet DE Local Grid Origin	Newell Rubbermaid Same Street Address or Route of Owner				
S W (estimated) OR Well Location	2707 Butterfield Rd. Ste 100				
Latitude: DEG MIN SEC Longitude: DEG MIN SEC	City State ZIP Code				
N W					
Reason For Abandonment WI Unique Well No. of Replacement We	4. Pump, Liner, Screen, Casing & Sealing Material				
Boring Completed					
3. Well / Drillhole / Borehole Information					
Original Construction Date	Liner(s) removed?				
7 2-14-2006	Screen removed?				
Water Well If a Well Construction Report is available,	Casing left in place? Yes No N/A				
Borehole / Drillhole please attach.	Was casing cut off below surface? ☐ Yes ☐ No ☒ N/A				
Construction Type:	Did sealing material rise to surface? Yes No N/A				
Dritled Driven (Sandpoint) Dug	Did material settle after 24 hours? ☐ Yes ☒ No ☐ N/A				
Other (specify): Hydraulic Proba	If yes, was hole retopped?				
	If bentonite chips were used, were they hydrated with water from a known safe source? Yes No N/A				
Formation Type:					
Unconsolidated Formation Bedrock	Required Method of Placing Sealing Material Conductor Pipe-Gravity Conductor Pipe-Pumped				
Total Well Depth From Groundsurface (ft.) Casing Diameter (in.)	Screened & Poured Other (Explain):				
2 N/A	(Bentonite Chips)				
Lower Drillhole Diameter (in.) Casing Depth (ft.)	Sealing Materials Clay-Sand Slurry (11 lb./gal. wt.)				
	Heat defined didut				
	Sand-Cernent (Contrate) Grout				
Was well annular space grouted? Yes No Unknown	Concrete Bentonite Chips For Monitoring Wells and Monitoring Well Boreholes Only:				
N/A If yes, to what depth (feet)? Depth to Water (feet)					
If yes, to what depth (feet)? Depth to Water (feet)	Bentonite Chips Bentonite - Cement Grout Granular Bentonite Bentonite - Sand Slurry				
5. Material Used To Fill Well / Drillhole	From (ft.) To (ft.) No. Yards, Sacks Sealant Mix Ratio or Or Volume (circle one) Mud Weight				
Grandlar Benton: La	Surface 2 2 pounds (approx)				
6. Comments					
·					
7. Supervision of Work	DNR Use Only				
	andonment Date Received Noted By				
	4-2006				
Street or Route Telephone	Number Comments				
	120-6225				
City State ZIP Code	Signature of Person Doing Work Date Signed				
Whippens talls IN184729	John C. Nerf 7-13-06				

State of Wisconsin Department of Natural Resources PO Box 7921, Madison WI 53707-7921

Well / Drillhole / Borehole Abandonment

Form 3300-005 (R 10/03)

Page 1 of 2

Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return form to the appropriate DNR office and bureau. See instructions on reverse for more information.

Route to:	
Drinking Water Watershed/Wastewater Waste Management	Remediation/Redevelopment Other:
1. General Information	2. Facility / Owner Information
WI Unique Well No. DNR Well ID No. County	Facility Name
Calumet	Newall Rubbermald tormer Plant
Common Well Name Gov't Lot # (if applicable)	Facility ID License/Permit/Monitoring NdCity, Village or Town
13 13 W/W Section Township Range DE	Street Address of Well
	44 Walnut Street
NW 18 18 N CO W	Present Well Owner Original Well Owner
Feet NFeet Local Grid Origin	Newell Rubbermaid Same
S Well Location	Street Address or Route of Owner
Latitude: DEG MIN SEC Longitude: DEG MIN SEC	2707 Butterfield Rd. Ste 100
	City State ZIP Code ILL 60523
Reason For Abandonment Wi Unique Well No. of Replacement We	Oak Brook ILL 60523 4. Pump, Liner, Screen, Casing & Sealing Material
Boring Completed	
3. Well / Drillhole / Borehole Information	Pump and piping removed? Yes No N/A
Original Construction Date	Liner(s) removed?
Water Well Z - 15 - 06	Screen removed?
Borehole / Drillhole If a Well Construction Report is available, please attach.	Casing left in place? Yes No N/A
	Was casing cut off below surface?
Construction Type:	Did sealing material rise to surface?
Drilled Driven (Sandpoint) Dug	Did material settle after 24 hours?
Other (specify): Hydraulic Proba-	If yes, was hole retopped? Yes No N/A If bentonite chips were used, were they
Formation Type:	hydrated with water from a known safe source? Yes No N/A
Unconsolidated Formation Bedrock	Required Method of Placing Sealing Material
Conconsolidated Pormation	Conductor Pipe-Gravity Conductor Pipe-Pumped
Total Well Depth From Groundsurface (ft.) Casing Diameter (in.)	Screened & Poured Other (Explain):
4.5 N/A	Sealing Materials
Lower Drillhole Diameter (in.) Casing Depth (ft.) N/A	Neat Cement Grout Clay-Sand Slurry (11 lb./gal. wt.)
	Sand-Cement (Concrete) Grout Bentonite-Sand Slurry " "
Was well annular space grouted? Yes No Unknown	Concrete Bentonite Chips
N/A	For Monitoring Wells and Monitoring Well Boreholes Only:
If yes, to what depth (feet)? Depth to Water (feet)	Bentonite Chips Bentonite - Cement Grout
	Granular Bentonite Bentonite - Sand Slurry
5. Material Used To Fill Well / Drillhole	From (ft.) To (ft.) No. Yards, Sacks Sealant Mix Ratio or Orlume (circle one) Mud Weight
Granular Benton: Le	Surface 4.5 Approx 4 points
CIMIC INT. Ser-TON. TO	The representation of the results of
6. Comments	L
7. Supervision of Work	DNR Use Only
Name of Person or Firm Doing Sealing Work Date of Aba	
	- 2006
Street or Route 421 Frenche Prive (716) 7	i i
City State ZIP Code	Signature of Person Doing Work
Chiporus Falls W1 54729	Signature of Person Doing Work T-13-06
The state of the s	

Appendix B

Analytical Data

TELEPHONE FACSIMILE WEBSITE

800-338-7226 715-355-3221 www.usfilter.com

March 13, 2006

Short Elliott Henderickson 421 Frenette Drive Chippewa Falls , WI 54729

Attn: John Guhl

REPORT NO.: 195283

RECEIVED

MAR 15 2006

SHORT ELLIOTT HENDRICKSON CHIPPEWAFALLS, WI

PROJECT NO.: NERUB0502.00

Please find enclosed the analytical report, including the Sample Summary, Sample Narrative and Chain of Custody for your sample set received February 17, 2006.

All analyses were performed in accordance with NELAC Standards using approved methods as indicated on this report.

If you have any questions about the results, please call. Thank you for using USFilter, Environcan Services for your analytical needs.

Sincerely,

USFilter, Enviroscan Services

James R. Salkowski

Laboratory Director

I certify that the data contained in this report has been generated and reviewed in accordance with the USFilter, Enviroscan Services Quality Assurance Program. Exceptions, if any, are discussed in the sample narrative. Samples will be retained for 30 days from the date of this report, then disposed in an appropriate manner. USFilter,

Enviroscan Services reserves the right to returmsamples identified as hazardous. Release of this Final Report is authorized as verified by the following signature.

way kug

Certifications:

Wisconsin 737053130 Minnesota 055-999-302 Illinois 100317

TELEPHONE WEBSITE

800-338-7226 FACSIMILE 715-355-3221 www.usfilter.com

Sample_Summary

195283.2

<u>Lab Id</u>	<u>Client Sample ID</u>	Date/Time	<u>Matrix</u>
195283	MW-3	02/16/06 10:30	GROUNDWATER
195284	MW-2	02/16/06 11:00	GROUNDWATER
195285	MW-1	02/16/06 11:30	GROUNDWATER
195286	EAST SUMP	02/16/06 11:30	GROUNDWATER
1 95287	B12	02/16/06 13:15	GROUNDWATER
1 95288	B11	02/16/06 13:45	GROUNDWATER
195289	LARGE SUMP	02/16/06 14:15	GROUNDWATER
1 95290	В9	02/16/06 14:45	GROUNDWATER
1 95291	B6	02/16/06 15:15	GROUNDWATER
1 95292	WEST SUMP	02/16/06 15:45	GROUNDWATER
195293	B5	02/16/06 16:15	GROUNDWATER
195294	B5A	02/16/06 16:45	GROUNDWATER
1 95295	MW-5 PZ-5 0-4'	02/13/06 10:30	SOIL
7 95296	MW-6 0-4'	02/13/06 11:45	SOIL
795297	MW-7 0-4'	02/13/06 12:30	SOIL
195298	MW-8 0-4'	02/13/06 14:30	SOIL
195299	MW-8 4-6'	02/13/06 14:45	SOIL
195300	MW-9 0-4'	02/13/06 15:15	SOIL
195301	MW-9 4-6'	02/13/06 15:30	SOIL
195302	B1 0-2'	02/13/06 16:15	SOIL
195303	B1 4-6'	02/13/06 16:30	SOIL
95304	B2 0-2'	02/13/06 16:45	SOIL
95305	B2 2-4'	02/13/06 16:45	SOIL
95306	B3 0-2'	02/13/06 17:00	SOIL
195307	B3 2-4'	02/13/06 17:00	SOIL
■95308	B4 4-6'	02/13/06 17:30	SOIL
95309	B5 0.5-0.8'	02/14/06 11:00	SOIL
■95310	B6 1.5-3.0'	02/14/06 15:00	SOIL
195311	B7 1.0-2.5'	02/14/06 15:30	SOIL
195312	B8 1.0-2.5'	02/14/06 15:45	SOIL
95313	B9 1.0-2.0'	02/14/06 16:30	SOIL
95314	B10 0.5-1.5'	02/14/06 17:15	SOIL
95315	B11 1-3'	02/15/06 08:30	SOIL
195316	B12 1-2'	02/15/06 09:15	SOIL
195317	B13 0.5-4.5'	02/15/06 11:15	SOIL
95318	MW-8	02/16/06 07:00	GROUNDWATER
95319	MW-9	02/16/06 07:30	GROUNDWATER
195320	MW-4	02/16/06 08:00	GROUNDWATER
195321	MW-6	02/16/06 08:30	GROUNDWATER
95322	MW-7	02/16/06 09:00	GROUNDWATER
95323	MW-5	02/16/06 09:30	GROUNDWATER
195324	PZ-5		
1/2364	r4-3	02/16/06 10:00	GROUNDWATER

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com

Sample Narrative/Sample Status

LOGIN:

SENERAL:

NALYSES:

195286 CANNOT RUN PNA'S AT A LOWER DILUTION DUE TO SAMPLE MATRIX.

OIL LAYER NOT RUN, NOT SOLUBLE IN WATER. OIL LAYER APPROX 10% OF TOTAL VOL

195294 decanted liquid off from mud layer kam

QA/QC:

PEPORTING:

<u>Definitions</u>

_OD = Limit of Detection (Not dilution corrected)
LOQ = Limit of Quantitation (Not dilution corrected)
= Less Than
OMP = Complete
UBCON = Subcontracted analysis
mv = millivolts
pCi/l = picocurie per liter
l/l = milliters/Liter
-g = milligrams

μg/l = Micrograms per liter = parts per billion (ppb)
μg/kg = Micrograms per kilogram = parts per billion (ppb)
mg/l = Milligrams per liter = parts per million (ppm)
mg/kg = Milligrams per kilogram = parts per million (ppm)
NOT PRES = Not Present
ppth = Parts per thousand
(S) = Surrogate Compound
mg/m3 = Milligrams/meter cube
ng/l = Nanograms per liter

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com

PROJECT NO.: NERUBO502.00 REPORT NO.: 195302.42 DATE REC'D: 02/17/06 REPORT DATE: 03/14/06 PREPARED BY: JRS

Attn: John Guhl

⇒ample ID: B1 0-2'

≒21 Frenette Drive

Short Elliott Henderickson

□hippewa Falls , WI 54729

Matrix: SOIL

Sample Date/Time: 02/13/06 16:15

Lab No. 195302

•								
	<u>Result</u>	<u>Units</u>	LOD	<u>L00</u>	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	Analyst
L. 4/2 -								
EPA 160.3 Total Solids	85.4	%	-	0.33	-		03/13/06	AMR
EPA 3050								
Metal Prep	COMP		-	•	-		02/27/06	DJB
EPA 6010	7.40			=	_			
Total Arsenic	3.48	mg/kg	0.34	1.13	1		03/07/06	DJB
Fotal Barium	53.4	mg/kg	0.1	0.33	1		03/07/06	DJB
Fotal Cadmium	0.113	mg/kg	0.057	0.19	1	J	03/07/06	DJB
Total Chromium	15.9	mg/kg	0.053	0.18	1		03/07/06	DJB
Jotal Lead	20.6	mg/kg	0.53	1.76	1		03/07/06	DJB
■otal Selenium	<0.703	mg/kg	0.6	2.0	1		03/07/06	DJB
■ otal Silver	<0.234	mg/kg	0.2	0.67	1		03/07/06	DJB
EPA 7471	0.457		0.047	0.047			07.07.04	
Total Mercury ■	0.156	mg/kg	0.014	0.047	1		03/03/06	MPM
PA 8021 (Only positively	identified	d analytes	are repo	rted on a dr	y weight ba	sis		
Benzene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP
Bromobenzene	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP
≱romodichloro methane	<0.025	mg/kg	0.006	0.02	1		02/21/06	LMP
ከ-Butylbenzene	<0.025	mg/kg	0.012	0.04	1	LCL	02/21/06	LMP
sec-Butylbenzene	<0.025	mg/kg	0.01	0.033	1		02/21/06	LMP
tert-Butylbenzene	<0.025	mg/kg	0.01	0.033	1		02/21/06	LMP
Carbon Tetrachloride	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP
Intorobenzene	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP
<pre>Thlorodibromomethane</pre>	<0.025	mg/kg	0.02	0.067	1		02/21/06	LMP
Chloroethane	<0.025	mg/kg	0.09	0.30	1	LCL	02/21/06	LMP
£hloroform	<0.025	mg/kg	0.01	0.033	1		02/21/06	LMP
Chloromethane	<0.025	mg/kg	0.01	0.033	1	CSH DUP	02/21/06	LMP
₽-Chlorotoluene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP
4-Chlorotoluene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP
1,2-Dibromo-3-chloropropane	<0.025	mg/kg	0.009	0.03	1		02/21/06	LMP
_,2-Dibromoethane	<0.025	mg/kg	0.012	0.04	1		02/21/06	LMP
,2-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP
,3-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP
1,4-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP
Dichlorodifluoromethane	<0.025	mg/kg	0.014	0.047		CSH LCL	02/21/06	LMP
1,1-Dichloroethane	<0.025	mg/kg	0.009	0.03	1		02/21/06	LMP
1,2-Dichloroethane	<0.025	mg/kg	0.005	0.017	1	CSL LCL	02/21/06	LMP
1,1-Dichloroethylene	<0.025	mg/kg	0.016	0.053	i		02/21/06	LMP
cis-1,2-Dichloroethylene	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP
-rans-1,2-Dichloroethylene	<0.025	mg/kg	0.01	0.033	1	LCL	02/21/06	LMP
,2-Dichloropropane	<0.025	mg/kg	0.007	0.023	i	CSH	02/21/06	LMP
,3-Dichloropropane	<0.025	mg/kg	0.008	0.027	i		02/21/06	LMP
2,2-Dichloropropane	<0.025	mg/kg	0.008	0.027	•	CSL LCL DUP	02/21/06	LMP
Ethylbenzene	<0.025	mg/kg	0.007	0.023	i		02/21/06	LMP
exachlorobutadiene	<0.025	mg/kg	0.015	0.05	i		02/21/06	LMP
sopropylbenzene	<0.025	mg/kg	0.009	0.03	i		02/21/06	LMP
sopropyl Ether	<0.025	mg/kg	0.014	0.047	· i		02/21/06	LMP
p-Isopropyltoluene	<0.025	mg/kg	0.011	0.037	i		02/21/06	LMP
methyl t-Butyl Ether(MTBE)	<0.025	mg/kg	0.018	0.06	i		02/21/06	LMP
		3/ ~3	0.010	5.00	'		JL, L 1, 00	E111

all results calculated on a dry weight basis.

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com

A Siemens Business

Short Elliott Henderickson -421 Frenette Drive =Chippewa Falls , WI 54729 PROJECT NO.: NERUBO502.00 REPORT NO.: 195302.43 DATE REC'D: 02/17/06 REPORT DATE: 03/14/06 PREPARED BY: JRS

Attn: John Guhl

⇒Sample ID: B1 0-2'

Matrix: SOIL

Sample Date/Time: 02/13/06 16:15

Lab No. 195302

	Result	<u>Units</u>	LOD	<u>LOQ</u>	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	<u>Analyst</u>
EDA 9034 (Only manifely)						- * -		
<u>EPA 8021</u> (Only positively Methylene Chloride	<0.025					3515	02/21/04	LMD
Naphthalene	0.0445	mg/kg	0.014 0.01	0.047 0.033	1 1		02/21/06	LMP
n-Propylbenzene	<0.025	mg/kg	0.009	0.03	1		02/21/06	LMP
Tetrachloroethylene	<0.025	mg/kg mg/kg	0.009	0.03	i		02/21/06 02/21/06	LMP
7,1,2,2-Tetrachloroethane	<0.025	mg/kg	0.009	0.03	1		02/21/06	LMP LMP
Toluene	<0.025	mg/kg	0.007	0.023	i		02/21/06	LMP
1,2,3-Trichlorobenzene	<0.025	mg/kg	0.007	0.047	i		02/21/06	LMP
1,2,4-Trichlorobenzene	<0.025	mg/kg	0.014	0.047	i		02/21/06	LMP
1,1,1-Trichloroethane	<0.025	mg/kg	0.008	0.027	i		02/21/06	LMP
1,1,2-Trichloroethane	<0.025	mg/kg	0.006	0.02	i	CSH	02/21/06	LMP
Irichloroethylene	<0.025	mg/kg	0.000	0.037	i	6511	02/21/06	LMP
■richlorofluoromethane	<0.025	mg/kg	0.008	0.027	i	СЅН	02/21/06	LMP
7,2,4-Trimethylbenzene	<0.025	mg/kg	0.012	0.04	i	50	02/21/06	LMP
7,3,5-Trimethylbenzene	<0.025	mg/kg	0.01	0.033	i		02/21/06	LMP
Vinyl Chloride	<0.025	mg/kg	0.018	0.06	i		02/21/06	LMP
m- & p-Xylene	<0.025	mg/kg	0.015	0.05	1		02/21/06	LMP
o-Xylene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP
Bromochloromethane	<0.025	mg/kg	0.006	0.02	1	CSH	02/21/06	LMP
Bromoform	<0.025	mg/kg	0.008	0.027	1	CSH	02/21/06	LMP
Bromomethane	<0.025	mg/kg	0.009	0.03	1	CSH	02/21/06	LMP
⊅ibromomethane	<0.025	mg/kg	0.008	0.027	1	CSH	02/21/06	LMP
1.1-Dichloropropene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP
trans-1,3-dichloroprop(yl)e	<0.025	mg/kg	0.008	0.027	. 1		02/21/06	LMP
Styrene	<0.025	mg/kg	0.007	0.023	1	•	02/21/06	LMP
¶,1,1,2-Tetrachloroethane	<0.025	mg/kg	0.009	0.03	1	CSH	02/21/06	LMP
,2,3-Trichloropropane	<0.025	mg/kg	0.007	0.023	1	CSH	02/21/06	LMP
=is-1,3-Dichloroprop(yl)ene	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP
PID Surrogate Recovery (S)	73.6	%	-	-	1		02/21/06	LMP
HALL Surrogate Recovery (S)	100.	%	-	-	1		02/21/06	LMP
₽ ₽Α 8141								
Method 3550 Ultrasonic Ext.	COMP		-	-	-		02/24/06	MJG
Alachlor	<2.28	μg/kg	1.95	6.49	1		03/09/06	LMP
≜ trazine	<2.18	μg/kg	1.86	6.19	1		03/09/06	LMP
utylate	<1.14	μg/kg	0.97	3.23	1		03/09/06	LMP
⊒hlorpyrifos	<1.76	μg/kg	1.5	5.0	1		03/09/06	LMP
Cyanazine	<2.25	μg/kg	1.92	6.39	1	CSH DUP	03/09/06	LMP
Desethyl atrazine	<2.32	μg/kg	1.98	6.59	1	CSH	03/09/06	LMP
esisopropyl atrazine	<3.51	μg/kg	3.0	10.0	1	CSH S2H	03/09/06	LMP
PTC(Eptam)	<6.44	μg/kg	5.5	18.3	1		03/09/06	LMP
Metolachlor	<2.42	μg/kg	2.07	6.89	1	CSH	03/09/06	LMP
Metribuzin	<2.59	μg/kg	2.21	7.36	1	CSH	03/09/06	LMP
-endimethalin	<2.08	μg/kg	1.78	5.93	1		03/09/06	LMP
-rometon	<3.27	μg/kg	2.79	9.29	1	CSH	03/09/06	LMP
-ropazine	<2.12	μg/kg	1.81	6.03	1		03/09/06	LMP
Simazine	<2.05	μg/kg	1.75	5.83	1	CSH	03/09/06	LMP
Trifluralin	<2.07	μg/kg	1.77	5.89	1		03/09/06	LMP
_cetochlor	<5.85	μg/kg	5.0	16.7	1		03/09/06	LMP
'imethenamid	<3.86	μg/kg	3.3	11.0	1		03/09/06	LMP
EPA 8310								
cenaphthene	<0.0055	mg/kg	0.0047	0.016	1		02/28/06	LMP

ll results calculated on a dry weight basis.

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com

Short Elliott Henderickson 421 Frenette Drive Chippewa Falls , WI 54729 PROJECT NO.: NERUBO502.00 REPORT NO.: 195302.44 DATE REC'D: 02/17/06 REPORT DATE: 03/14/06 PREPARED BY: JRS

Attn: John Guhl

Sample ID: B1 0-2' Matrix: SOIL Sample Date/Time: 02/13/06 16:15 Lab No. 195302

	<u>Result</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	<u>Analyst</u>
EPA 8310								
Acenaphthylene	<0.00773	mg/kg	0.0066	0.022	1		02/28/06	LMP
Anthracene	<0.00246	mg/kg	0.0021	0.007	1		02/28/06	LMP
Benzo(a)Anthracene	<0.0048	mg/kg	0.0041	0.014	1		02/28/06	LMP
Benzo(a)Pyrene	<0.00269	mg/kg	0.0023	0.0077	1		02/28/06	LMP
Benzo(b)Fluoranthene	<0.00246	mg/kg	0.0021	0.007	1		02/28/06	LMP
Benzo(k)Fluoranthene	<0.0034	mg/kg	0.0029	0.0097	1		02/28/06	LMP
=Benzo(ghi)Perylene	<0.00468	mg/kg	0.004	0.013	1		02/28/06	LMP
■Chrysene	<0.00269	mg/kg	0.0023	0.0077	1		02/28/06	LMP
Dibenzo(a,h)Anthracene	<0.00316	mg/kg	0.0027	0.009	1		02/28/06	LMP
Fluoranthene	<0.00304	mg/kg	0.0026	0.0087	1		02/28/06	LMP
Fluorene	<0.00386	mg/kg	0.0033	0.011	1		02/28/06	LMP
Indeno(1,2,3-cd)Pyrene	0.021	mg/kg	0.0022	0.0073	1		02/28/06	LMP
1-Methyl Naphthalene	0.0326	mg/kg	0.0037	0.012	1		02/28/06	LMP
⊉-Methyl Naphthalene	0.0708	mg/kg	0.0041	0.014	1		02/28/06	LMP
Naphthalene	0.0177	mg/kg	0.0046	0.015	1		02/28/06	LMP
₽ henanthrene	<0.0048	mg/kg	0.0041	0.014	1		02/28/06	LMP
₽yrene	<0.00246	mg/kg	0.0021	0.007	• 1		02/28/06	LMP
9,10-Diphenylanthracene (S)	59.4	%	-	-	1		02/28/06	LMP
Method 3550 Ultrasonic Ext.	COMP		•	-	-		02/22/06	KAM
EPA 9045								
pH - Laboratory	8.16		-	-	1		02/20/06	JJP
pH - Laboratory Time	08:00		-	-	-		02/20/06	JJP

[■]All results calculated on a dry weight basis.

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com

Short Elliott Henderickson ■21 Frenette Drive □hippewa Falls , WI 54729 PROJECT NO.: NERUBO502.00 REPORT NO.: 195302.45 DATE REC'D: 02/17/06 REPORT DATE: 03/14/06 PREPARED BY: JRS

Attn: John Guhl

±amol	e In.	B1 4-6"	Matrix: SOIL	Sample Date/Time:	02/13/06	16.30	Lab No. 195303
	re in:	D1 4-0-	Matrix: Suit	Sample Date/Ilme:	02/13/00	10:30	Lab No. 1933U3

ı	<u>Result</u>	<u>Units</u>	<u>LOD</u>	LOQ	Dilution <u>Factor</u>	Qualifiers	Date Analyzed	<u>Analyst</u>
EPA 160.3 Total Solids	89.8	%	-	0.33	-		03/13/06	AMR
<u>≡PA 3050</u> ≣etal Prep	COMP		-	•	-		02/27/06	DJB
EPA 6010								
Total Arsenic	2.34	mg/kg	0.34	1.13	1		03/07/06	DJB
Total Barium	91.0	mg/kg	0.1	0.33	1		03/07/06	DJB
Total Cadmium	0.0757	mg/kg	0.057	0.19	1	j	03/07/06	DJB
Total Chromium	16.9	mg/kg	0.053	0.18	1		03/07/06	DJB
Total Lead	9.02	mg/kg	0.53	1.76	1		03/07/06	DJB
otal Selenium	<0.668	mg/kg	0.6	2.0	1		03/07/06	DJB
otal Silver	<0.223	mg/kg	0.2	0.67	1		03/07/06	DJB
EPA_7471_								
Total Mercury	0.0245	mg/kg	0.014	0.047	1		03/03/06	MPM
EPA 8021 (Only positively	identified	d analytes	are repor	rted on a dr	y weight bas	is		
Benzene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP
∦romobenzene	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP
romodichloromethane	<0.025	mg/kg	0.006	0.02	1		02/21/06	LMP
∷-Butylbenzene	<0.025	mg/kg	0.012	0.04	1	LCL	02/21/06	LMP
sec-Butylbenzene	<0.025	mg/kg	0.01	0.033	1		02/21/06	LMP
tert-Butylbenzene	<0.025	mg/kg	0.01	0.033	1		02/21/06	LMP
<pre>=arbon Tetrachloride</pre>	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP
hlorobenzene	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP
thlorodibromomethane	<0.025	mg/kg	0.02	0.067	1		02/21/06	LMP
Chloroethane	<0.025	mg/kg	0.09	0.30	1	LCL	02/21/06	LMP
Chloroform	<0.025	mg/kg	0.01	0.033	1		02/21/06	LMP
hloromethane	<0.025	mg/kg	0.01	0.033	1 0	SH DUP	02/21/06	LMP
-Chlorotoluene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP
4-Chlorotoluene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP
1,2-Dibromo-3-chloropropane	<0.025	mg/kg	0.009	0.03	1		02/21/06	LMP
,2-Dibromoethane	<0.025	mg/kg	0.012	0.04	1		02/21/06	LMP
,2-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP
,3-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP
1,4-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP
<pre>ichlorodifluoromethane</pre>	<0.025	mg/kg	0.014	0.047	1 0	SH LCL	02/21/06	LMP
,1-Dichloroethane	<0.025	mg/kg	0.009	0.03	1		02/21/06	LMP
,2-Dichloroethane	<0.025	mg/kg	0.005	0.017	1 0	SL LCL	02/21/06	LMP
1,1-Dichloroethylene	<0.025	mg/kg	0.016	0.053	1		02/21/06	LMP
çis-1,2-Dichloroethylene	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP
rans-1,2-Dichloroethylene	<0.025	mg/kg	0.01	0.033	1	LCL	02/21/06	LMP
,2-Dichloropropane	<0.025	mg/kg	0.007	0.023	i	CSH	02/21/06	LMP
,3-Dichloropropane	<0.025	mg/kg	0.008	0.027	i		02/21/06	LMP
2,2-Dichloropropane	<0.025	mg/kg	0.008	0.027		SL LCL DUP	02/21/06	LMP
#thylbenzene	<0.025	mg/kg	0.007	0.023	i		02/21/06	LMP
exachlorobutadiene	<0.025	mg/kg	0.015	0.05	i		02/21/06	LMP
=sopropylbenzene	<0.025	mg/kg	0.009	0.03	i		02/21/06	LMP
Isopropyl Ether	<0.025	mg/kg	0.014	0.047	i		02/21/06	LMP
p-Isopropyltoluene	<0.025	mg/kg	0.014	0.047	i		02/21/06	LMP
ethyl t-Butyl Ether(MTBE)	<0.025	mg/kg	0.018	0.06	i		02/21/06	LMP

Ill results calculated on a dry weight basis.

Ill results calculated on a dry weight basis.

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com

A Siemens Business

PROJECT NO.: NERUBO502.00 REPORT NO.: 195302.46 DATE REC'D: 02/17/06 REPORT DATE: 03/14/06 PREPARED BY: JRS

Attn: John Guhl

ample ID: B1 4-6'

Matrix: SOIL

Sample Date/Time: 02/13/06 16:30

	<u>Result</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	<u>Analyst</u>
PA 8021 (Only positively	idontified	analytaa		*				
PA 8021 (Only positively Methylene Chloride	<0.025		0.014	0.047		SIS	02/21/04	LUD
Naphthalene	<0.025	mg/kg mg/kg	0.014	0.047	1 1		02/21/06	LMP
n-Propylbenzene	<0.025	mg/kg	0.009	0.033	1		02/21/06	LMP
etrachloroethylene	<0.025	mg/kg	0.009	0.03	1		02/21/06	LMP
1,1,2,2-Tetrachloroethane	<0.025	mg/kg	0.006	0.03	1		02/21/06	LMP
Toluene	<0.025	mg/kg	0.007	0.023	i		02/21/06 02/21/06	LMP LMP
■,2,3-Trichlorobenzene	<0.025	mg/kg	0.014	0.047	1		02/21/06	LMP
■,2,4-Trichlorobenzene	<0.025	mg/kg	0.014	0.047	i		02/21/06	LMP
≡ ,1,1-Trichloroethane	<0.025	mg/kg	0.008	0.027	i		02/21/06	LMP
1,1,2-Trichloroethane	<0.025	mg/kg	0.006	0.02	i	CSH	02/21/06	LMP
Trichloroethylene	<0.025	mg/kg	0.011	0.037	i	0011	02/21/06	LMP
Trichlorofluoromethane	<0.025	mg/kg	0.008	0.027	i	CSH	02/21/06	LMP
,2,4-Trimethylbenzene	<0.025	mg/kg	0.012	0.04	i	0011	02/21/06	LMP
1,3,5-Trimethylbenzene	<0.025	mg/kg	0.01	0.033	i		02/21/06	LMP
Vinyl Chloride	<0.025	mg/kg	0.018	0.06	i		02/21/06	LMP
¬- & p-Xylene	<0.025	mg/kg	0.015	0.05	i		02/21/06	LMP
⇒-Xylene	<0.025	mg/kg	0.008	0.027	i		02/21/06	LMP
Bromochloromethane	<0.025	mg/kg	0.006	0.02	i	CSH	02/21/06	LMP
Bromoform	<0.025	mg/kg	0.008	0.027	i	CSH	02/21/06	LMP
₽ romomethane	<0.025	mg/kg	0.009	0.03	i	CSH	02/21/06	LMP
ibromomethane	<0.025	mg/kg	0.008	0.027	i	CSH	02/21/06	LMP
,1-Dichloropropene	<0.025	mg/kg	0.008	0.027	i	00	02/21/06	LMP
trans-1,3-dichloroprop(yl)e	<0.025	mg/kg	0.008	0.027	i		02/21/06	LMP
Styrene	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP
,1,1,2-Tetrachloroethane	<0.025	mg/kg	0.009	0.03	i	CSH	02/21/06	LMP
,2,3-Trichloropropane	<0.025	mg/kg	0.007	0.023	i	CSH	02/21/06	LMP
is-1,3-Dichloroprop(yl)ene	<0.025	mg/kg	0.007	0.023	i		02/21/06	LMP
PID Surrogate Recovery (S)	82.8	%	•	-	i		02/21/06	LMP
WALL Surrogate Recovery (S)	100.	%	-	-	1		02/21/06	LMP
							,,	
PA 8141_								
Method 3550 Ultrasonic Ext.	COMP		-	. •	-		02/24/06	MJG
Alachlor	<2.17	μg/kg	1.95	6.49	1		03/09/06	LMP
∎trazine	<2.07	μg/kg	1.86	6.19	1		03/09/06	LMP
utylate	<1.08	μg/kg	0.97	3.23	1		03/09/06	LMP
thlorpyrifos	<1.67	μg/kg	1.5	5.0	1		03/09/06	LMP
Cyanazine	<2.14	μg/kg	1.92	6.39	1	CSH	03/09/06	LMP
Resethyl atrazine	<2.20	μg/kg	1.98	6.59	1	CSH	03/09/06	LMP
esisopropyl atrazine	<3.34	μg/kg	3.0	10.0	1	CSH	03/09/06	LMP
PTC(Eptam)	<6.12	μg/kg	5.5	18.3	1		03/09/06	LMP
Metolachlor	<2.31	μg/kg	2.07	6.89	1	CSH	03/09/06	LMP
Metribuzin	<2.46	μg/kg	2.21	7.36	1	CSH	03/09/06	LMP
-endimethalin	<1.98	μg/kg	1.78	5.93	1		03/09/06	LMP
Frometon	<3.11	μg/kg	2.79	9.29	1		03/09/06	LMP
Fropazine	<2.02	μg/kg	1.81	6.03	1		03/09/06	LMP
Simazine	<1.95	μg/kg	1.75	5.83	1	CSH	03/09/06	LMP
Trifluralin	<1.97	μg/kg	1.77	5.89	1		03/09/06	LMP
Acetochlor	<5.57	μg/kg	5.0	16.7	1		03/09/06	LMP
mimethenamid	<3. <i>6</i> 7	μg/kg	3.3	11.0	1		03/09/06	LMP
EPA 8310								
cenaphthene	<0.00523	mg/kg	0.0047	0.016	1		03/01/06	1 MD
- Stapheneric	-0.00723	11197 KY	0.0047	0.010	ı		03/01/00	LMP

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com

Short Elliott Henderickson 421 Frenette Drive Chippewa Falls , WI 54729

Attn: John Guhl

Sample ID: B1 4-6'

Matrix: SOIL

REPORT NO.: 195302.47 DATE REC'D: 02/17/06 REPORT DATE: 03/14/06 PREPARED BY: JRS

PROJECT NO.: NERUBO502.00

Sample Date/Time: 02/13/06 16:30 Lab No. 195303

Dilution Date

	<u>Result</u>	<u>Units</u>	<u>LOD</u>	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	Analyst
EPA 8310								
Acenaphthylene	<0.00735	mg/kg	0.0066	0.022	1		03/01/06	LMP
_Anthracene	<0.00234	mg/kg	0.0021	0.007	1		03/01/06	LMP
Benzo(a)Anthracene	0.00571	mg/kg	0.0041	0.014	1	J	03/01/06	LMP
Benzo(a)Pyrene	0.0106	mg/kg	0.0023	0.0077	1		03/01/06	LMP
Benzo(b)Fluoranthene	0.0092	mg/kg	0.0021	0.007	1		03/01/06	LMP
Benzo(k)Fluoranthene	0.00453	mg/kg	0.0029	0.0097	1	J	03/01/06	LMP
■Benzo(ghi)Perylene	0.0154	mg/kg	0.004	0.013	1		03/01/06	LMP
≎hrysene	0.00978	mg/kg	0.0023	0.0077	1		03/01/06	LMP
Dibenzo(a,h)Anthracene	<0.00301	mg/kg	0.0027	0.009	1		03/01/06	LMP
Fluoranthene	0.0196	mg/kg	0.0026	0.0087	1		03/01/06	LMP
_Fluorene	<0.00367	mg/kg	0.0033	0.011	1		03/01/06	LMP
■ndeno(1,2,3-cd)Pyrene	0.00823	mg/kg	0.0022	0.0073	1		03/01/06	LMP
1-Methyl Naphthalene	<0.00412	mg/kg	0.0037	0.012	1		03/01/06	LMP
⊉-Methyl Naphthalene	<0.00457	mg/kg	0.0041	0.014	1		03/01/06	LMP
Naphthalene	<0.00512	mg/kg	0.0046	0.015	1		03/01/06	LMP
Phenanthrene	0.00859	mg/kg	0.0041	0.014	1	J	03/01/06	LMP
Pyrene	0.00506	mg/kg	0.0021	0.007	1	J	03/01/06	LMP
9,10-Diphenylanthracene (S)	52.3	%	-	-	1		03/01/06	LMP
Method 3550 Ultrasonic Ext.	COMP		-	-	-		02/22/06	KAM
≣PA_9045								
pH - Laboratory	9.03		•	-	1		02/20/06	JJP
pH - Laboratory Time	08:00		-	-	·-		02/20/06	JJP

all results calculated on a dry weight basis.

TELEPHONE FACSIMILE WEBSITE

PROJECT NO.: NERUB0502.00

REPORT NO. : 195283.48 DATE REC'D : 02/17/06 800-338-7226 715-355-3221 www.usfilter.com

Attn: John Guhl

REPORT DATE: 03/13/06
PREPARED BY: JRS

PA 160.3 Total Solids	Sample ID: B2 0-2'	Matri	x: SOIL	San	nple Date/T	ime: 02/13/06 16:45	Lab No. 1	95304
PA 160.3 Total Solids		<u>Result</u>	<u>Units</u>	LOD	LOQ			Analyst
PA 3050	440 F							
Per		90.0	%	-	0.33	-	02/20/06	AMR
Per	=PA 3050							
PA 6010		COMP		-	_	•	02/27/06	DJB
Cotal Barium							02, 2., 00	000
Octal Barium								
Total Chromitum							_* . *	
Total Lead						-		
Total Lead							- •	
Data Selenium								
PA 7471			• • •					
PA 8021 Conly positively identified analytes are reported on a dry weight basis								
PA 8021 Conly positively identified analytes are reported on a dry weight basis	-otat Sitvei	10.222	mg/kg	0.2	0.07	1	03/07/06	กาห
PA 8021 Conly positively identified analytes are reported on a dry weight basis	EPA 7471							
Benzene		0.0978	mg/kg	0.014	0.047	1	03/03/06	MPM
Benzene	PA 8021 (Only positively	idontific	d analytes	ana nanar	tod on a di	ny unight bosis		
Remobenzene							02/21/04	LMD
Commodichloromethane	- ·							
Butylbenzene								
Dec-Butylbenzene						· · · · · · · · · · · · · · · · · · ·		
tert-Butylbenzene						1		
arbon Tetrachloride						i		
hlorobenzene						i		
hlorodibromomethane			• • •			i		
Chloroethane						i		
Chloroform						•		
CSH DUP 02/21/06 LMP CSH DUP 02/21/06 LMP CT CSH DUP 02/21/06 LMP CT CT CSH DUP 02/21/06 LMP CT CT CSH DUP 02/21/06 LMP CT CT CSH DUP 02/21/06 LMP 02/21/06	Chloroform	<0.025		0.01		1		
-Chlorotoluene	hloromethane	<0.025	mg/kg	0.01	0.033	1 CSH DUP		
1,2-Dibromo-3-chloropropane	-Chlorotoluene	<0.025	mg/kg	0.008	0.027	1	02/21/06	LMP
,2-Dibromoethane		<0.025	mg/kg	0.008	0.027	1	02/21/06	LMP
,2-Dichlorobenzene <0.025		<0.025	mg/kg			1	02/21/06	LMP
,3-Dichlorobenzene <0.025				0.012	0.04		02/21/06	LMP
1,4-Dichlorobenzene						•	02/21/06	LMP
CSH LCL O2/21/06 LMP O.047 O								LMP
,1-Dichloroethane <0.025						•		
						1 CSH LCL		
1.1-Dichloroethylene	,1-Dichloroethane					1		
cis-1,2-Dichloroethylene <0.025 mg/kg 0.007 0.023 1 02/21/06 LMP #rans-1,2-Dichloroethylene <0.025 mg/kg 0.01 0.033 1 LCL 02/21/06 LMP _2-Dichloropropane <0.025 mg/kg 0.008 0.027 1 CSH 02/21/06 LMP 2,2-Dichloropropane <0.025 mg/kg 0.008 0.027 1 CSL LCL DUP 02/21/06 LMP 2,2-Dichloropropane <0.025 mg/kg 0.008 0.027 1 CSL LCL DUP 02/21/06 LMP 2,2-Dichloropropane <0.0689 mg/kg 0.007 0.023 1 CSL LCL DUP 02/21/06 LMP ‡hylbenzene 0.0689 mg/kg 0.007 0.023 1 02/21/06 LMP ‡popropylbenzene 0.0533 mg/kg 0.009 0.03 1 02/21/06 LMP isopropyl Ether <0.025 mg/kg	1,2-Dichloroethane							
Frans-1,2-Dichloroethylene <0.025 mg/kg 0.01 0.033 1 LCL 02/21/06 LMP _2-Dichloropropane <0.025	i, i-Dichloroethylene							
			• •					
2,2-Dichloropropane <0.025 mg/kg 0.008 0.027 1 CSL LCL DUP 02/21/06 LMP F±hylbenzene 0.0689 mg/kg 0.007 0.023 1 02/21/06 LMP ⇒xachlorobutadiene <0.025 mg/kg 0.015 0.05 1 02/21/06 LMP ⇒opropylbenzene 0.0533 mg/kg 0.009 0.03 1 02/21/06 LMP ⇒sopropyl Ether <0.025 mg/kg 0.014 0.047 1 02/21/06 LMP								
Fithylbenzene 0.0689 mg/kg 0.007 0.023 1 02/21/06 LMP Parachlorobutadiene <0.025 mg/kg								
**xachlorobutadiene								
popropylbenzene 0.0533 mg/kg 0.009 0.03 1 02/21/06 LMP sopropyl Ether <0.025 mg/kg 0.014 0.047 1 02/21/06 LMP								
lsopropyl Ether <0.025 mg/kg 0.014 0.047 1 02/21/06 LMP						·		
						•		
thyl t-Butyl Ether(MTBE) <0.025 mg/kg 0.018 0.06 1 02/21/06 LMP								

__l results calculated on a dry weight basis.

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com

PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.49 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

'Attn: John Guhl

±ample ID: B2 0-2"

Short Elliott Henderickson

▲21 Frenette Drive Thippewa Falls , WI 54729

Matrix: SOIL

Sample Date/Time: 02/13/06 16:45

	<u>Result</u>	<u>Units</u>	LOD	<u>LOQ</u>	Dilution Factor Qualifiers	Date <u>Analyzed</u>	<u>Analyst</u>
EPA 8021 (Only positively	idontifica			.+	. usisht bosis		
<u>=PA 8021</u> (Only positively Methylene Chloride	<0.025	mg/kg	0.014	0.047	weight basis	02/21/06	LMP
Naphthalene	0.317	mg/kg	0.014	0.033	1	02/21/06	LMP
n-Propylbenzene	0.0633	mg/kg	0.009	0.03	1	02/21/06	LMP
Tetrachloroethylene	<0.025	mg/kg	0.009	0.03	1	02/21/06	LMP
1,1,2,2-Tetrachloroethane	<0.025	mg/kg	0.009	0.03	1	02/21/06	LMP
Toluene	<0.025	mg/kg	0.007	0.023	1	02/21/06	LMP
■,2,3-Trichlorobenzene	<0.025	mg/kg	0.007	0.023	1	02/21/06	LMP
,2,4-Trichlorobenzene	<0.025	mg/kg	0.014	0.047	1	02/21/06	LMP
,1,1-Trichloroethane	<0.025	mg/kg	0.008	0.027	1	02/21/06	LMP
1,1,2-Trichloroethane	<0.025	mg/kg	0.006	0.02	i csh	02/21/06	LMP
Trichloroethylene	<0.025	mg/kg	0.011	0.037	1	02/21/06	LMP
Trichlorofluoromethane	<0.025	mg/kg	0.008	0.027	i csh	02/21/06	LMP
1,2,4-Trimethylbenzene	0.221	mg/kg	0.012	0.04	1	02/21/06	LMP
1,3,5-Trimethylbenzene	0.09	mg/kg	0.01	0.033	1	02/21/06	LMP
Vinyl Chloride	<0.025	mg/kg	0.018	0.06	1	02/21/06	LMP
m- & p-Xylene	- 0.13	mg/kg	0.015	0.05	1	02/21/06	LMP
-Xylene	· 0.219	mg/kg	0.008	0.027	1	02/21/06	LMP
Bromochloromethane	<0.025	mg/kg	0.006	0.02	1 CSH	02/21/06	LMP
Bromoform	<0.025	mg/kg	0.008	0.027	1 CSH	02/21/06	LMP
Rromomethane	<0.025	. mg/kg	0.009	0.03	1 CSH	02/21/06	LMP
ibromomethane	<0.025	mg/kg	0.008	0.027	1 CSH	02/21/06	LMP
,1-Dichloropropene	<0.025	mg/kg	0.008	0.027	1	02/21/06	LMP
<pre>lrans-1,3-dichloroprop(yl)e</pre>	<0.025	mg/kg	0.008	0.027	1	02/21/06	LMP
Styrene	<0.025	mg/kg	0.007	0.023	1	02/21/06	LMP
,1,1,2-Tetrachloroethane	<0.025	mg/kg	0.009	0.03	1 CSH	02/21/06	LMP
,2,3-Trichloropropane	<0.025	mg/kg	0.007	0.023	1 CSH	02/21/06	LMP
is-1,3-Dichloroprop(yl)ene	<0.025	mg/kg	0.007	0.023	1	02/21/06	LMP
PID Surrogate Recovery (S)	70.6	%	-	-	1	02/21/06	LMP
#ALL Surrogate Recovery (S)	91.4	%	-	-	1	02/21/06	LMP
DA 9710							
PA 8310	40 00E22		0.00/7	0.014	4	07/01/04	LND
Acenaphthene	<0.00522	mg/kg	0.0047	0.016	1	03/01/06	LMP
Acenaphthylene mnthracene	<0.00733	mg/kg	0.0066	0.022	1 1	03/01/06	LMP
■nzo(a)Anthracene	<0.00233 0.0362	mg/kg	0.0021	0.007 0.014	1	03/01/06	LMP LMP
=enzo(a)Antinacene ≡enzo(a)Pyrene	0.0362	mg/kg	0.0041 0.0023	0.0077	1	03/01/06 03/01/06	LMP
3enzo(b)Fluoranthene	0.0477	mg/kg mg/kg	0.0023	0.007	1	03/01/06	LMP
Renzo(k) Fluoranthene	0.0412	mg/kg	0.0029	0.007	1	03/01/06	LMP
enzo(ghi)Perylene	0.068	mg/kg	0.0029	0.013	1	03/01/06	LMP
hrysene	0.107	mg/kg	0.0023	0.0077	1	03/01/06	LMP
Jibenzo(a,h)Anthracene	<0.003	mg/kg	0.0027	0.009	i	03/01/06	LMP
Fluoranthene	0.306	mg/kg	0.0026	0.0087	i	03/01/06	LMP
luorene	<0.00367	mg/kg	0.0033	0.011	i	03/01/06	LMP
mdeno(1,2,3-cd)Pyrene	0.04	mg/kg	0.0022	0.0073	i	03/01/06	LMP
-Methyl Naphthalene	0.0938	mg/kg	0.0037	0.012	i	03/01/06	LMP
2-Methyl Naphthalene	<0.00456	mg/kg	0.0041	0.014	i	03/01/06	LMP
Naphthalene	0.0493	mg/kg	0.0046	0.015	1	03/01/06	LMP
henanthrene	0.206	mg/kg	0.0041	0.014	1	03/01/06	LMP
yrene	<0.00233	mg/kg	0.0021	0.007	1	03/01/06	LMP
yrene ,10-Diphenylanthracene (S)	43.2	%	-	-	1	03/01/06	LMP
Method 3550 Ultrasonic Ext.	COMP		-	-	-	02/22/06	KAM

^{■1} results calculated on a dry weight basis.

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE

800-338-7226 715-355-3221 www.usfilter.com

Short Elliott Henderickson ‡21 Frenette Drive ‡hippewa Falls , WI 54729

PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.50 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

Attn: John Guhl

Eample ID: B2 2-4' Matrix: SOIL Sample Date/Time: 02/13/06 16:45 Lab No. 195305

	Result	<u>Units</u>	LOD	LOQ	Dilution Factor Qualifiers	Date Analyzed	Analyst
<u>≡PA 160.3</u>							
Total Solids	78.9	%	-	0.33	-	02/20/06	AMR
<u>=PA_3050</u>							
■etal Prep	COMP		-	-	-	02/27/06	DJB
•							
EPA 6010							
otal Arsenic	4.93	mg/kg	0.34	1.13	1	03/07/06	DJB
otal Barium	100.	mg/kg	0.1	0.33	1	03/07/06	DJB
_otal Cadmium	<0.0722	mg/kg	0.057	0.19	1	03/07/06	DJB
Total Chromium	30.5	mg/kg	0.053	0.18	1	03/07/06	DJB
Total Lead	9.48	mg/kg	0.53	1.76	1	03/07/06	DJB
otal Selenium	<0.76	mg/kg	0.6	2.0	1	03/07/06	DJB
'otal Silver	<0.253	mg/kg	0.2	0.67	1	03/07/06	DJB
EPA 7471							
_otal Mercury	0.0659	mg/kg	0.014	0.047	1	03/03/06	MPM
D4 0004 40 4 111							
PA 8021 (Only positively							
Benzene	<0.025	mg/kg	0.008	0.027	1 CSL	03/02/06	LMP
Bromobenzene	<0.025	mg/kg	0.007	0.023	1	03/02/06	LMP
romodichloromethane -Butylbenzene	<0.025	mg/kg	0.006	0.02	1	03/02/06	LMP
a-Butylbenzene	<0.025	mg/kg	0.012	0.04	1	03/02/06	LMP
Sec-Butylbenzene	<0.025	mg/kg	0.01	0.033	1	03/02/06	LMP
tert-Butylbenzene	<0.025	mg/kg	0.01	0.033	1	03/02/06	LMP
Tarbon Tetrachloride	<0.025	mg/kg	0.008	0.027	1	03/02/06	LMP
=hlorobenzene	<0.025	mg/kg	0.007	0.023	1	03/02/06	LMP
=hlorodibromomethane	<0.025	mg/kg	0.02	0.067	1	03/02/06	LMP
Chloroethane Chloroform	<0.025	mg/kg	0.09	0.30	1 CSL LCL	03/02/06	LMP
-hloromethane	<0.025	mg/kg	0.01	0.033	1	03/02/06	LMP
E-Chlorotoluene	<0.025	mg/kg	0.01	0.033	1 CSL DUP LCL	03/02/06	LMP
4-Chlorotoluene	<0.025	mg/kg	0.008	0.027	1 1	03/02/06	LMP
	<0.025	mg/kg	0.008	0.027		03/02/06	LMP
1,2-Dibromo-3-chloropropane	<0.025	mg/kg	0.009	0.03	1	03/02/06	LMP
,2-Dibromoethane ,2-Dichlorobenzene	<0.025 <0.025	mg/kg	0.012	0.04	1	03/02/06	LMP
,3-Dichlorobenzene	<0.025	mg/kg	0.008 0.008	0.027 0.027	1 1	03/02/06	LMP
1,4-Dichlorobenzene	<0.025	mg/kg mg/kg	0.008	0.027	1	03/02/06 03/02/06	LMP
Nichlorodifluoromethane	<0.025		0.008	0.027	1 LCL		LMP
,1-Dichloroethane	<0.025	mg/kg mg/kg	0.009	0.03	1	03/02/06	LMP
,2-Dichloroethane	<0.025	mg/kg	0.005	0.017	1	03/02/06 03/02/06	LMP LMP
,1-Dichloroethylene	<0.025	mg/kg	0.005	0.053	1	03/02/06	LMP
cis-1,2-Dichloroethylene	<0.025	mg/kg	0.007	0.023	1	03/02/06	LMP
rans-1,2-Dichloroethylene	<0.025	mg/kg	0.007	0.033	i	03/02/06	LMP
,2-Dichloropropane	<0.025	mg/kg	0.007	0.023	i	03/02/06	LMP
,3-Dichloropropane	<0.025	mg/kg	0.008	0.027	i	03/02/06	LMP
2,2-Dichloropropane	<0.025	mg/kg	0.008	0.027	1 CSL DUP LCL	03/02/06	LMP
Ethylbenzene	<0.025	mg/kg	0.007	0.023	1	03/02/06	LMP
exachlorobutadiene	<0.025	mg/kg	0.015	0.05	i	03/02/06	LMP
sopropylbenzene	<0.025	mg/kg	0.009	0.03	i	03/02/06	LMP
sopropyl Ether	<0.025	mg/kg	0.014	0.047	i	03/02/06	LMP
p-Isopropyltoluene	<0.025	mg/kg	0.011	0.037	i	03/02/06	LMP
■ethyl t-Butyl Ether(MTBE)	<0.025	mg/kg	0.018	0.06	1 CSL DUP	03/02/06	LMP

ll results calculated on a dry weight basis.

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com

A Siemens Business

Short Elliott Henderickson 421 Frenette Drive Chippewa Falls , WI 54729 PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.51 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

Attn: John Guhl

Sample ID: B2 2-4'

Matrix: SOIL

Sample Date/Time: 02/13/06 16:45

;					5.1 1			
•	Result	Units	LOD	LOQ	Dilution Factor	Qualifiers	Date Analyzed	Analyst
	<u>Kesut t</u>	OTTES	<u>LOD</u>	LOW	ractor	wuattiteis	Allatyzed	Anatyst
EPA 8021 (Only positively	identified	d analytes	аге герог	rted on a dry	weight ba	asis		
Methylene Chloride	<0.025	mg/kg	0.014	0.047	1		03/02/06	LMP
Naphthalene	<0.025	mg/kg	0.01	0.033	1		03/02/06	LMP
■n-Propylbenzene	<0.025	mg/kg	0.009	0.03	1		03/02/06	LMP
Tetrachloroethylene	<0.025	mg/kg	0.009	0.03	1		03/02/06	LMP
1,1,2,2-Tetrachloroethane	<0.025	mg/kg	0.006	0.02	1		03/02/06	LMP
Toluene	<0.025	mg/kg	0.007	0.023	1		03/02/06	LMP
1,2,3-Trichlorobenzene	<0.025	mg/kg	0.014	0.047	1		03/02/06	LMP
1,2,4-Trichlorobenzene	<0.025	mg/kg	0.014	0.047	1		03/02/06	LMP
1,1,1-Trichloroethane	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP
1,1,2-Trichloroethane	<0.025	mg/kg	0.006	0.02	1		03/02/06	LMP
Trichloroethylene	<0.025	mg/kg	0.011	0.037	1		03/02/06	LMP
Trichlorofluoromethane	<0.025	mg/kg	0.008	0.027	1	LCL	03/02/06	LMP
1,2,4-Trimethylbenzene	<0.025	mg/kg	0.012	0.04	1		03/02/06	LMP
1,3,5-Trimethylbenzene	<0.025	mg/kg	0.01	0.033	1		03/02/06	LMP
Vinyl Chloride	<0.025	mg/kg	0.018	0.06	1		03/02/06	LMP
n- & p-Xylene	0.0393	mg/kg	0.015	0.05	1	MB J	03/02/06	LMP
-Xylene romochloromethane	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP
	<0.025	mg/kg	0.006	0.02	1		03/02/06	LMP
Bromoform	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP
Bromomethane	<0.025	mg/kg	0.009	0.03	1		03/02/06	LMP
⊃ibromomethane	<0.025	mg/kg	0.008	0.027	1	CSH	03/02/06	LMP
1,1-Dichloropropene	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP
trans-1,3-dichloroprop(yl)e	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP
Styrene	<0.025	mg/kg	0.007	0.023	1		03/02/06	LMP
1,1,2-Tetrachloroethane	<0.025	mg/kg	0.009	0.03	1		03/02/06	LMP
,2,3-Trichloropropane	<0.025	mg/kg	0.007	0.023	1		03/02/06	LMP
is-1,3-Dichloroprop(yl)ene PID Surrogate Recovery (S)	<0.025 82.3	mg/kg %	0.007	0.023	1 1		03/02/06	LMP
HALL Surrogate Recovery (S)	148.	%	-	-	1		03/02/06 03/02/06	LMP LMP
mer dari ogate Recovery (3)	140.	70			•		03/02/00	LMP
<u>₽A</u> 8310								
cenaphthene	<0.00596	mg/kg	0.0047	0.016	1		03/01/06	LMP
Acenaphthylene	<0.00837	mg/kg	0.0066	0.022	1		03/01/06	LMP
1nthracene	<0.00266	mg/kg	0.0021	0.007	1		03/01/06	LMP
enzo(a)Anthracene	<0.0052	mg/kg	0.0041	0.014	1		03/01/06	LMP
enzo(a)Pyrene	<0.00292	mg/kg	0.0023	0.0077	1		03/01/06	LMP
Benzo(b)Fluoranthene	0.011	mg/kg	0.0021	0.007	1 .		03/01/06	LMP
Benzo(k)Fluoranthene	<0.00368	mg/kg	0.0029	0.0097	1		03/01/06	LMP
enzo(ghi)Perylene	0.0214	mg/kg	0.004	0.013	1		03/01/06	LMP
hrysene	0.0137	mg/kg	0.0023	0.0077	1		03/01/06	LMP
libenzo(a,h)Anthracene	<0.00342	mg/kg	0.0027	0.009	1		03/01/06	LMP
Fluoranthene	0.0224	mg/kg	0.0026	0.0087	1		03/01/06	LMP
Fluorene	<0.00418	mg/kg	0.0033	0.011	1		03/01/06	LMP
'ndeno(1,2,3-cd)Pyrene	0.00744	mg/kg	0.0022	0.0073	1	J	03/01/06	LMP
-Methyl Naphthalene	0.00515	mg/kg	0.0037	0.012	1	J	03/01/06	LMP
2-Methyl Naphthalene	0.00875	mg/kg	0.0041	0.014	1	J	03/01/06	LMP
Yaphthal ene	<0.00583	mg/kg	0.0046	0.015	1		03/01/06	LMP
henanthrene	0.0128	mg/kg	0.0041	0.014	1	J	03/01/06	LMP
yrene	<0.00266	mg/kg	0.0021	0.007	1		03/01/06	LMP
),10-Diphenylanthracene (S)	75.5	%	-	-	1		03/01/06	LMP
Method 3550 Ultrasonic Ext.	COMP		-	-	-		02/22/06	KAM

Il results calculated on a dry weight basis.

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com

PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.52 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

Attn: John Guhl

Sample ID: B3 0-2'

Short Elliott Henderickson

→21 Frenette Drive ‡hippewa Falls , WI 54729

Matrix: SOIL

Sample Date/Time: 02/13/06 17:00

Lab No. 195306

				•				
	<u>Result</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	Analyst
PA 160.3 Total Solids	86.2	%	-	0.33	-		02/20/06	AMR
EPA 3050 Metal Prep	COMP		-	-	-		02/27/06	DJB
EPA 6010 Total Arsenic	28.1	mg/kg	0.34	1.13	1		03/07/06	DJB
Total Barium	57.5	mg/kg	0.1	0.33	i		03/07/06	DJB
Total Cadmium	1.08	mg/kg	0.057	0.19	i		03/07/06	DJB
Total Chromium	19.0	mg/kg	0.053	0.18	i		03/07/06	DJB
Total Lead	184.	mg/kg	0.53	1.76	i		03/07/06	DJB
otal Selenium	<0.696	mg/kg	0.6	2.0	i		03/07/06	DJB
otal Silver	<0.232	mg/kg	0.2	0.67	i		03/07/06	DJB
		37 113	V.L	0.01	•		03,01,00	000
EPA 7471								
otal Mercury	0.0812	mg/kg	0.014	0.047	1		03/03/06	MPM
PA 8021 (Only positively	identified	l analytes	are repo	rted on a dr	v weight ba	sis		
Benzene	0.0905	mg/kg	0.008	0.027	1	CSL	03/02/06	LMP
Bromobenzene	<0.025	mg/kg	0.007	0.023	1		03/02/06	LMP
romodichloromethane	<0.025	mg/kg	0.006	0.02	1		03/02/06	LMP
a-Butylbenzene	0.0568	mg/kg	0.012	0.04	1		03/02/06	LMP
sec-Butylbenzene	0.0638	mg/kg	0.01	0.033	1		03/02/06	LMP
tert-Butylbenzene	<0.025	mg/kg	0.01	0.033	1		03/02/06	LMP
arbon Tetrachloride	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP
∃hlorobenzene	<0.025	mg/kg	0.007	0.023	1		03/02/06	LMP
⇒hlorodibromomethane	<0.025	mg/kg	0.02	0.067	1		03/02/06	LMP
Chloroethane	<0.025	mg/kg	0.09	0.30	1	CSL LCL	03/02/06	LMP
≥ Chloroform	<0.025	mg/kg	0.01	0.033	1		03/02/06	LMP
hloromethane	<0.025	mg/kg	0.01	0.033	1	CSL DUP LCL	03/02/06	LMP
(-Chlorotoluene	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP
74-Chlorotoluene	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP
1,2-Dibromo-3-chloropropane	<0.025	mg/kg	0.009	0.03	1		03/02/06	LMP
,2-Dibromoethane	<0.025	mg/kg	0.012	0.04	1		03/02/06	LMP
,2-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP
_,3-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP
1,4-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP
າichlorodifluoromethane	<0.025	mg/kg	0.014	0.047	1	LCL	03/02/06	LMP
,1-Dichloroethane	<0.025	mg/kg	0.009	0.03	1		03/02/06	LMP
,2-Dichloroethane	<0.025	mg/kg	0.005	0.017	1		03/02/06	LMP
1,1-Dichloroethylene	<0.025	mg/kg	0.016	0.053	1		03/02/06	LMP
cis-1,2-Dichloroethylene	<0.025	mg/kg	0.007	0.023	1		03/02/06	LMP
rans-1,2-Dichloroethylene	<0.025	mg/kg	0.01	0.033	1		03/02/06	LMP
↓2-Dichloropropane	<0.025	mg/kg	0.007	0.023	1		03/02/06	LMP
	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP
z, a brantor opi opane	<0.025	mg/kg	0.008	0.027	1	CSL DUP LCL	03/02/06	LMP
Ethylbenzene	0.109	mg/kg	0.007	0.023	1		03/02/06	LMP
exachlorobutadiene	<0.025	mg/kg	0.015	0.05	1		03/02/06	LMP
sopropylbenzene	0.087	mg/kg	0.009	0.03	1		03/02/06	LMP
Isopropyl Ether	<0.025	mg/kg	0.014	0.047	1		03/02/06	LMP
p-Isopropyltoluene	0.0719	mg/kg	0.011	0.037	1		03/02/06	LMP
ethyl t-Butyl Ether(MTBE)	<0.025	mg/kg	0.018	0.06	1	CSL DUP	03/02/06	LMP

 $oldsymbol{I}$ ll results calculated on a dry weight basis.

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE

800-338-7226 715-355-3221 www.usfilter.com

Short Elliott Henderickson 421 Frenette Drive ■Chippewa Falls , WI 54729 PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.53 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

Attn: John Guhl

Sample ID: B3 0-2'

Matrix: SOIL

Sample Date/Time: 02/13/06 17:00

,	Result	Units	LOD	LOQ	Dilution Factor	Qualifiers	Date Analyzed	Analyst
1	Kesatt	Offics	LOD	LOW	Tactor	<u>udat i i i er s</u>	Allatyzeu	Milatyst
EPA 8021 (Only positively	identified	i analytes	are repor	rted on a dry	weight ba	sis		
Methylene Chloride	<0.025	mg/kg	0.014	0.047	1		03/02/06	LMP
Naphthalene	0.365	mg/kg	0.01	0.033	1		03/02/06	LMP
n-Propylbenzene	0.0858	mg/kg	0.009	0.03	1		03/02/06	LMP
Tetrachloroethylene	<0.025	mg/kg	0.009	0.03	1		03/02/06	LMP
1,1,2,2-Tetrachloroethane	<0.025	mg/kg	0.006	0.02	1		03/02/06	LMP
Toluene	0.448	mg/kg	0.007	0.023	1		03/02/06	LMP
1,2,3-Trichlorobenzene	<0.025	mg/kg	0.014	0.047	1		03/02/06	LMP
1,2,4-Trichlorobenzene	<0.025	mg/kg	0.014	0.047	1		03/02/06	LMP
1,1,1-Trichloroethane	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP
1,1,2-Trichloroethane	<0.025	mg/kg	0.006	0.02	1		03/02/06	LMP
richloroethylene	<0.025	mg/kg	0.011	0.037	1		03/02/06	LMP
Trichlorofluoromethane	<0.025	mg/kg	0.008	0.027	1	LCL	03/02/06	LMP
1,2,4-Trimethylbenzene	0.367	mg/kg	0.012	0.04	1		03/02/06	LMP
1,3,5-Trimethylbenzene	0.113	mg/kg	0.01	0.033	1		03/02/06	LMP
Vinyl Chloride	<0.025	mg/kg	0.018	0.06	1		03/02/06	LMP
n- & p-Xylene	0.43	mg/kg	0.015	0.05	1	MB	03/02/06	LMP
b-Xylene	0.338	mg/kg	0.008	0.027	1		03/02/06	LMP
Bromochloromethane Bromoform	<0.025	mg/kg	0.006	0.02	1		03/02/06	LMP
₽romomethane	<0.025 <0.025	mg/kg	0.008	0.027 0.03	1 1		03/02/06	LMP
• ibromomethane	<0.025	mg/kg	0.009 0.008	0.03	1	CSH	03/02/06	LMP
,1-Dichloropropene	<0.025	mg/kg	0.008	0.027	1	CSH	03/02/06	LMP
trans-1,3-dichloroprop(yl)e	<0.025	mg/kg mg/kg	0.008	0.027	1		03/02/06	LMP LMP
Styrene	<0.025	mg/kg	0.007	0.027	1		03/02/06 03/02/06	LMP
1,1,1,2-Tetrachloroethane	<0.025	mg/kg	0.007	0.03	i		03/02/06	LMP
,2,3-Trichloropropane	<0.025	mg/kg	0.007	0.023	i		03/02/06	LMP
is-1,3-Dichloroprop(yl)ene	<0.025	mg/kg	0.007	0.023	i		03/02/06	LMP
PID Surrogate Recovery (S)	90.0	5 , 5	-	-	1		03/02/06	LMP
ALL Surrogate Recovery (S)	145.	%	-	-	i		03/02/06	LMP
							,,	
PA 8310								
Acenaphthene	<0.00545	mg/kg	0.0047	0.016	1		03/01/06	LMP
Acenaphthylene	<0.00766	mg/kg	0.0066	0.022	1		03/01/06	LMP
Inthracene	<0.00244	mg/kg	0.0021	0.007	1		03/01/06	LMP
enzo(a)Anthracene	0.0646	mg/kg	0.0041	0.014	1		03/01/06	LMP
menzo(a)Pyrene	0.0821	mg/kg	0.0023	0.0077	1		03/01/06	LMP
Benzo(b)Fluoranthene	0.196	mg/kg	0.0021	0.007	1		03/01/06	LMP
Renzo(k)Fluoranthene	0.0893	mg/kg	0.0029	0.0097	1		03/01/06	LMP
enzo(ghi)Perylene	0.198	mg/kg	0.004	0.013	1		03/01/06	LMP
hrysene	0.19	mg/kg	0.0023	0.0077	1		03/01/06	LMP
Vibenzo(a,h)Anthracene Fluoranthene	<0.00313	mg/kg	0.0027	0.009	1		03/01/06	LMP
luorene	0.535	mg/kg	0.0026	0.0087	1		03/01/06	LMP
=ndeno(1,2,3-cd)Pyrene	<0.00383 0.137	mg/kg	0.0033 0.0022	0.011 0.0073	1 1		03/01/06	LMP
-Methyl Naphthalene	0.137	mg/kg	0.0022	0.0073	1		03/01/06	LMP
2-Methyl Naphthalene	<0.00476	mg/kg mg/kg	0.0037	0.012	1		03/01/06 03/01/06	LMP LMP
-Naphthalene	0.059	mg/kg	0.0041	0.014	1		03/01/06	LMP
henanthrene	0.238	mg/kg	0.0048	0.013	1		03/01/06	LMP
yrene	0.0404	mg/kg	0.0021	0.007	i		03/01/06	LMP
7,10-Diphenylanthracene (S)	32.8	""97 K9 %	-	-	i		03/01/06	LMP
Method 3550 Ultrasonic Ext.	COMP		-	-	•		02/22/06	KAM

^{■1} results calculated on a dry weight basis.

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474

TELEPHONE WEBSITE

800-338-7226 FACSIMILE 715-355-3221 www.usfilter.com

PROJECT NO.: NERUBO502.00 REPORT NO. : 195283.55 DATE REC'D : 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

Attn: John Guhl

=Sample ID: B3 2-4'

421 Frenette Drive

Short Elliott Henderickson

Chippewa Falls , WI 54729

Matrix: SOIL

Sample Date/Time: 02/13/06 17:00 Lab No. 195307

	Result	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	Analyst
EPA 8021 (Only positively	identified	analytes	are renor	ted on a dry	weight ha	eie		
Methylene Chloride	<0.025	mg/kg	0.014	0.047	1	313	03/02/06	LMP
Naphthalene	0.0445	mg/kg	0.01	0.033	i		03/02/06	LMP
n-Propylbenzene	<0.025	mg/kg	0.009	0.03	i		03/02/06	LMP
Tetrachloroethylene	<0.025	mg/kg	0.009	0.03	i		03/02/06	LMP
1,1,2,2-Tetrachloroethane	<0.025	mg/kg	0.006	0.02	i		03/02/06	LMP
Toluene	0.0394	mg/kg	0.007	0.023	i		03/02/06	LMP
1,2,3-Trichlorobenzene	<0.025	mg/kg	0.014	0.047	i		03/02/06	LMP
1,2,4-Trichlorobenzene	<0.025	mg/kg	0.014	0.047	i		03/02/06	LMP
1,1,1-Trichloroethane	<0.025	mg/kg	0.008	0.027	i		03/02/06	LMP
1,1,2-Trichloroethane	<0.025	mg/kg	0.006	0.02	i		03/02/06	LMP
Trichloroethylene	<0.025	mg/kg	0.011	0.037	i		03/02/06	LMP
Trichlorofluoromethane	<0.025	mg/kg	0.008	0.027	i	LCL	03/02/06	LMP
1,2,4-Trimethylbenzene	<0.025	mg/kg	0.012	0.04	1		03/02/06	LMP
1,3,5-Trimethylbenzene	<0.025	mg/kg	0.01	0.033	ì		03/02/06	LMP
Vinyl Chloride	<0.025	mg/kg	0.018	0.06	i		03/02/06	LMP
[⊫n- & p-Xylene	0.0902	mg/kg	0.015	0.05	i	MB	03/02/06	LMP
⊃-Xylene	0.0356	mg/kg	0.008	0.027	i	110	03/02/06	LMP
Bromochloromethane	<0.025	mg/kg	0.006	0.02	i		03/02/06	LMP
Bromoform	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP
Bromomethane	<0.025	mg/kg	0.009	0.03	i		03/02/06	LMP
Dibromomethane	<0.025	mg/kg	0.008	0.027	i	CSH	03/02/06	LMP
1,1-Dichloropropene	<0.025	mg/kg	0.008	0.027	i	30	03/02/06	LMP
trans-1,3-dichloroprop(yl)e	<0.025	mg/kg	0.008	0.027	i		03/02/06	LMP
Styrene	<0.025	mg/kg	0.007	0.023	i		03/02/06	LMP
1,1,1,2-Tetrachloroethane	<0.025	mg/kg	0.009	0.03	i		03/02/06	LMP
1,2,3-Trichloropropane	<0.025	mg/kg	0.007	0.023	1		03/02/06	LMP
:is-1,3-Dichloroprop(yl)ene	<0.025	mg/kg	0.007	0.023	1		03/02/06	LMP
PID Surrogate Recovery (S)	98.7	₉ , κ.9	-	-	i		03/02/06	LMP
HALL Surrogate Recovery (S)	148.	.%	-	-	i		03/02/06	LMP
		.,,			•		00, 02, 00	
<u> ₽A 8310</u>								
Acenaphthene	<0.00597	mg/kg	0.0047	0.016	1		03/01/06	LMP
Acenaphthylene	<0.00839	mg/kg	0.0066	0.022	1		03/01/06	LMP
Anthracene	<0.00267	mg/kg	0.0021	0.007	1		03/01/06	LMP
Benzo(a)Anthracene	<0.00521	mg/kg	0.0041	0.014	1		03/01/06	LMP
Benzo(a)Pyrene	<0.00292	mg/kg	0.0023	0.0077	1	CSL	03/01/06	LMP
Benzo(b)Fluoranthene	<0.00267	mg/kg	0.0021	0.007	1		03/01/06	LMP
Benzo(k)Fluoranthene	<0.00368	mg/kg	0.0029	0.0097	1		03/01/06	LMP
enzo(ghi)Perylene	<0.00508	mg/kg	0.004	0.013	1		03/01/06	LMP
hrysene	<0.00292	mg/kg	0.0023	0.0077	1		03/01/06	LMP
bibenzo(a,h)Anthracene	<0.00343	mg/kg	0.0027	0.009	1		03/01/06	LMP
Fluoranthene	<0.0033	mg/kg	0.0026	0.0087	1		03/01/06	LMP
-luorene	<0.00419	mg/kg	0.0033	0.011	1		03/01/06	LMP
ndeno(1,2,3-cd)Pyrene	<0.0028	mg/kg	0.0022	0.0073	1		03/01/06	LMP
-Methyl Naphthalene	0.0428	mg/kg	0.0037	0.012	1		03/01/06	LMP
2-Methyl Naphthalene	<0.00521	mg/kg	0.0041	0.014	1		03/01/06	LMP
Naphthalene	<0.00584	mg/kg	0.0046	0.015	1		03/01/06	LMP
henanthrene	<0.00521	mg/kg	0.0041	0.014	1		03/01/06	LMP
yrene	<0.00267	mg/kg	0.0021	0.007	1		03/01/06	LMP
9,10-Diphenylanthracene (S)	30.7	%	-	-	1		03/01/06	LMP
Method 3550 Ultrasonic Ext.	COMP		•	-	-		02/22/06	KAM

ll results calculated on a dry weight basis.

|| ||¶| | results calculated on a dry weight basis.

A Siemens Business

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com

PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.54 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

Attn: John Guhl

Sample ID: B3 2-4"

421 Frenette Drive

Short Elliott Henderickson

Chippewa Falls , WI 54729

Matrix: SOIL

Sample Date/Time: 02/13/06 17:00

	<u>Result</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	<u>Analyst</u>
<u>EPA 160.3</u> Total Solids	78.7	%	-	0.33	-		02/20/06	AMR
EPA 3050 Metal Prep	COMP		-	-	-		02/27/06	DJB
EPA 6010								
Total Arsenic	5.34	mg/kg	0.34	1.13	1		03/07/06	DJB
Total Barium	62.9	mg/kg	0.1	0.33	1		03/07/06	DJB
Total Cadmium	0.266	mg/kg	0.057	0.19	1		03/07/06	DJB
Total Chromium	16.0	mg/kg	0.053	0.18	1		03/07/06	DJB
Jotal Lead	58.4	mg/kg	0.53	1.76	1		03/07/06	DJB
≅otal Selenium	<0.762	mg/kg	0.6	2.0	1		03/07/06	DJB
T otal Silver	<0.254	mg/kg	0.2	0.67	1	•	03/07/06	DJB
EPA 7471								
Total Mercury	0.382	mg/kg	0.014	0.047	1		03/03/06	MPM
PA 8021 (Only positively	identified	analytes	are repo	rted on a dr	y weight ba	sis		
Benzene	<0.025	mg/kg	0.008	0.027	1	CSL	03/02/06	LMP
Bromobenzene	<0.025	mg/kg	0.007	0.023	1		03/02/06	LMP
3romodichloromethane	<0.025	mg/kg	0.006	0.02	1		03/02/06	LMP
n-Butylbenzene	<0.025	mg/kg	0.012	0.04	1		03/02/06	LMP
sec-Butylbenzene	<0.025	mg/kg	0.01	0.033	1		03/02/06	LMP
tert-Butylbenzene	<0.025	mg/kg	0.01	0.033	1		03/02/06	LMP
Carbon Tetrachloride	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP
Chlorobenzene	<0.025	mg/kg	0.007	0.023	1		03/02/06	LMP
Thlorodibromomethane	<0.025	mg/kg	0.02	0.067	1		03/02/06	LMP
Chloroethane	<0.025	mg/kg	0.09	0.30		CSL LCL	03/02/06	LMP
Chloroform	<0.025	mg/kg	0.01	0.033	1		03/02/06	LMP
Thloromethane	<0.025	mg/kg	0.01	0.033	1	CSL DUP LCL	03/02/06	LMP
-Chlorotoluene	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP
4-Chlorotoluene	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP
1,2-Dibromo-3-chloropropane	<0.025	mg/kg	0.009	0.03	1		03/02/06	LMP
,2-Dibromoethane	<0.025	mg/kg	0.012	0.04	1		03/02/06	LMP
,2-Dichlorobenzene	<0.025	mg/kg	800.0	0.027	1		03/02/06	LMP
,3-Dichlorobenzene 1,4-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP
Nichlorodifluoromethane	<0.025 <0.025	mg/kg	0.008 0.014	0.027	1 1	1 01	03/02/06	LMP
,1-Dichloroethane	<0.025	mg/kg	0.009	0.047 0.03	1	LCL ·	03/02/06	LMP
,2-Dichloroethane	<0.025	mg/kg	0.009	0.03	1		03/02/06 03/02/06	LMP LMP
,1-Dichloroethylene	<0.025	mg/kg	0.005	0.017	1			LMP
cis-1,2-Dichloroethylene	<0.025	mg/kg mg/kg	0.007	0.033	. 1		03/02/06 03/02/06	LMP
rans-1,2-Dichloroethylene	<0.025	mg/kg	0.007	0.023	1		03/02/06	LMP
,2-Dichloropropane	<0.025	mg/kg	0.007	0.033	1		03/02/06	LMP
3-Dichloropropane	<0.025	mg/kg	0.007	0.023	i		03/02/06	LMP
2,2-Dichloropropane	<0.025	mg/kg	0.008	0.027	i	CSL DUP LCL	03/02/06	LMP
-thylbenzene	<0.025	mg/kg	0.007	0.023	i	00E DOI	03/02/06	LMP
mexachlorobutadiene	<0.025	mg/kg	0.015	0.05	i		03/02/06	LMP
	<0.025	mg/kg	0.009	0.03	i		03/02/06	LMP
sopropylbenzene rsopropyl Ether	<0.025	mg/kg	0.014	0.047	i		03/02/06	LMP
p-Isopropyltoluene	<0.025	mg/kg	0.011	0.037	i		03/02/06	LMP
ethyl t-Butyl Ether(MTBE)	<0.025	mg/kg	0.018	0.06	i	CSL DUP	03/02/06	LMP

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474

TELEPHONE FACSIMILE WEBSITE

800-338-7226 715-355-3221 www.usfilter.com

PROJECT NO.: NERUB0502.00 REPORT NO. : 195283.57 DATE REC'D : 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

Attn: John Guhl

ample ID: B4 4-6' Matrix: SOIL

■21 Frenette Drive

Short Elliott Henderickson

Chippewa Falls , WI 54729

Sample Date/Time: 02/13/06 17:30 Lab No. 195308

					Dilution		Date	
	<u>Result</u>	<u>Units</u>	LOD	<u>LOQ</u>	<u>Factor</u>	<u>Qualifiers</u>	<u>Analyzed</u>	<u>Analyst</u>
EPA 8021 (Only positively	identified	analytes	are repor	ted on a dr	v voight ba	cic		
Methylene Chloride	<0.025	mg/kg	0.014	0.047	y weight ba	1515	03/02/06	LMP
Naphthalene	0.0419	mg/kg	0.01	0.033	i		03/02/06	LMP
n-Propylbenzene	<0.025	mg/kg	0.009	0.03	1		03/02/06	LMP
etrachloroethylene	<0.025	mg/kg	0.009	0.03	1		03/02/06	LMP
1,1,2,2-Tetrachloroethane	<0.025	mg/kg	0.006	0.02	1		03/02/06	LMP
Toluene	0.046	mg/kg	0.007	0.023	1		03/02/06	LMP
,2,3-Trichlorobenzene	<0.025	mg/kg	0.014	0.047	1		03/02/06	LMP
1,2,4-Trichlorobenzene	<0.025	mg/kg	0.014	0.047	1		03/02/06	LMP
,1,1-Trichloroethane	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP
1,1,2-Trichloroethane	<0.025	mg/kg	0.006	0.02	1		03/02/06	LMP
Trichloroethylene Trichlorofluoromethane	<0.025	mg/kg	0.011	0.037	1		03/02/06	LMP
1,2,4-Trimethylbenzene	<0.025	mg/kg	0.008	0.027	1	LCL	03/02/06	LMP
1,3,5-Trimethylbenzene	0.237 0.123	mg/kg mg/kg	0.012 0.01	0.04 0.033	1 1		03/02/06	LMP
Vinyl Chloride	<0.025	mg/kg	0.018	0.055	1		03/02/06 03/02/06	LMP
m- & p-Xylene	0.254	mg/kg	0.015	0.05	i	мв	03/02/06	LMP LMP
p-Xylene	0.092	mg/kg	0.008	0.027	i	rib	03/02/06	LMP
Bromochloromethane	<0.025	mg/kg	0.006	0.02	i		03/02/06	LMP
Bromoform	<0.025	mg/kg	0.008	0.027	i		03/02/06	LMP
Bromomethane	<0.025	mg/kg	0.009	0.03	i		03/02/06	LMP
ibromomethane	<0.025	mg/kg	0.008	0.027	i	CSH	03/02/06	LMP
,1-Dichloropropene	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP
trans-1,3-dichloroprop(yl)e	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP
Styrene	<0.025	mg/kg	0.007	0.023	1		03/02/06	LMP
,1,1,2-Tetrachloroethane	<0.025	mg/kg	0.009	0.03	1		03/02/06	LMP
,2,3-Trichloropropane	<0.025	mg/kg	0.007	0.023	1		03/02/06	LMP
lis-1,3-Dichloroprop(yl)ene	<0.025	mg/kg	0.007	0.023	1		03/02/06	LMP
PID Surrogate Recovery (S)	78.2	%	-	-	1		03/02/06	LMP
ALL Surrogate Recovery (S)	133.	%	-	-	1		03/02/06	LMP
IPA 8310								
Acenaphthene	<0.00636	mg/kg	0.0047	0.016	1	ISL	03/01/06	LMP
Acenaphthylene	<0.00893	mg/kg	0.0066	0.022	i	ISL	03/01/06	LMP
Anthracene	<0.00284	mg/kg	0.0021	0.007	i	ISL	03/01/06	LMP
enzo(a)Anthracene	0.00861	mg/kg	0.0041	0.014		ISL J	03/01/06	LMP
enzo(a)Pyrene	<0.00311	mg/kg	0.0023	0.0077		ISL CSL	03/01/06	LMP
Benzo(b)Fluoranthene	<0.00284	mg/kg	0.0021	0.007	1	ISL	03/01/06	LMP
Renzo(k)Fluoranthene	<0.00392	mg/kg	0.0029	0.0097	1	ISL	03/01/06	LMP
enzo(ghi)Perylene	0.0132	mg/kg	0.004	0.013	1	ISL J	03/01/06	LMP
hrysene	<0.00311	mg/kg	0.0023	0.0077	1	ISL	03/01/06	LMP
vibenzo(a,h)Anthracene	<0.00365	mg/kg	0.0027	0.009	1	ISL	03/01/06	LMP
Fluoranthene	0.03	mg/kg	0.0026	0.0087	1	ISL	03/01/06	LMP
luorene	<0.00447	mg/kg	0.0033	0.011	1	ISL	03/01/06	LMP
ndeno(1,2,3-cd)Pyrene	0.00802	mg/kg	0.0022	0.0073		ISL J	03/01/06	LMP
-Methyl Naphthalene	<0.00501	mg/kg	0.0037	0.012	1	ISL	03/01/06	LMP
2-Methyl Naphthalene Waphthalene	<0.00555	mg/kg	0.0041	0.014]	ISL	03/01/06	LMP
henanthrene	<0.00622 0.0161	mg/kg	0.0046 0.0041	0.015	1	ISL	03/01/06	LMP
Fyrene	0.00537	mg/kg mg/kg	0.0041	0.014 0.007		ISL J ISL J	03/01/06 03/01/06	LMP
yrene y,10-Diphenylanthracene (S)	12.7	11197 Kg %	0.0021	-	1	ISL	03/01/06	LMP LMP
Method 3550 Ultrasonic Ext.	COMP	70	-	-	'-	131	02/22/06	KAM
	_ · · ·						32, 22, 00	AATT
I DNR								
woil Diesel Range Organics	<6.77	mg/kg	-	5.0	1	SPL DUP	02/24/06	LMP
Soil Org Ext - DRO	COMP		-	-	•		02/21/06	KAM

Matrix: SOIL

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474

> PROJECT NO.: NERUB0502.00 REPORT NO. : 195283.56 DATE REC'D : 02/17/06

REPORT DATE: 03/13/06 PREPARED BY: JRS

TELEPHONE FACSIMILE WEBSITE

800-338-7226 715-355-3221 www.usfilter.com

Short Elliott Henderickson 421 Frenette Drive Chippewa Falls , WI 54729

Attn: John Guhl

ample ID: B4 4-6'

Sample Date/Time: 02/13/06 17:30

	11461 17		Ou.	mpre bate, i	OL, 13, C		Lub noi 1	73300
	<u>Result</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	<u>Qualifiers</u>	Date <u>Analyzed</u>	Analyst
<u>≡PA 160.3</u>								
Total Solids	73.9	%	_	0.33	_		02/20/06	AMR
Total Solius	13.9	/a	_	0.55	_		02/20/00	APIK
EPA 3050								
Tetal Prep	COMP		_	-	-		02/27/06	DJB
=0 сас ттер	00111						02,21,00	505
EPA 6010								
otal Arsenic	2.98	mg/kg	0.34	1.13	1		03/07/06	DJB
otal Barium	78.5	mg/kg	0.1	0.33	1		03/07/06	DJB
otal Cadmium	0.253	mg/kg	0.057	0.19	1	J	03/07/06	DJB
Total Chromium	21.4	mg/kg	0.053	0.18	1		03/07/06	DJB
Ţotal Lead	9.45	mg/kg	0.53	1.76	1		03/07/06	DJB
otal Selenium	<0.812	mg/kg	0.6	2.0	1		03/07/06	DJB
'otal Silver	<0.271	mg/kg	0.2	0.67	1		03/07/06	DJB
EPA 7471								
total Mercury	0.0934	mg/kg	0.014	0.047	1		03/03/06	MPM
						_		
EPA 8021 (Only positively								
Benzene	<0.025	mg/kg	0.008	0.027	1	CSL	03/02/06	LMP
Bromobenzene Bromodichloromethane	<0.025	mg/kg	0.007	0.023	1		03/02/06	LMP
	<0.025	mg/kg	0.006	0.02	1		03/02/06	LMP
-Butylbenzene	0.153	mg/kg	0.012	0.04	1		03/02/06	LMP
sec-Butylbenzene tert-Butylbenzene	<0.025 <0.025	mg/kg mg/kg	0.01 0.01	0.033 0.033	1		03/02/06 03/02/06	LMP LMP
≡arbon Tetrachloride	<0.025	mg/kg	0.008	0.033	1		03/02/06	LMP
Intorobenzene	<0.025	mg/kg	0.007	0.027	4		03/02/06	LMP
Intorodibromomethane	<0.025	mg/kg	0.02	0.023	1		03/02/06	LMP
Chloroethane	<0.025	mg/kg	0.02	0.30	i	CSL LCL	03/02/06	LMP
₽hloroform	<0.025	mg/kg	0.01	0.033	i	002 202	03/02/06	LMP
hloromethane	<0.025	mg/kg	0.01	0.033	i	CSL DUP LCL	03/02/06	LMP
-Chlorotoluene	<0.025	mg/kg	0.008	0.027	i		03/02/06	LMP
4-Chlorotoluene	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP
1,2-Dibromo-3-chloropropane	<0.025	mg/kg	0.009	0.03	1		03/02/06	LMP
,2-Dibromoethane	<0.025	mg/kg	0.012	0.04	1		03/02/06	LMP
,2-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP
,3-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP
1,4-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP
nichlorodifluoromethane	<0.025	mg/kg	0.014	0.047	1	LCL	03/02/06	LMP
,1-Dichloroethane	<0.025	mg/kg	0.009	0.03	1		03/02/06	LMP
	<0.025	mg/kg	0.005	0.017	1		03/02/06	LMP
1,1-Dichloroethylene	<0.025	mg/kg	0.016	0.053	1		03/02/06	LMP
cis-1,2-Dichloroethylene	<0.025	mg/kg	0.007	0.023	1		03/02/06	LMP
rans-1,2-Dichloroethylene	<0.025	mg/kg	0.01	0.033	1		03/02/06	LMP
_2-Dichloropropane	<0.025	mg/kg	0.007	0.023	1		03/02/06	LMP
L,3-Dichloropropane 2,2-Dichloropropane	<0.025	mg/kg	0.008	0.027	1	CCI DUD 10:	03/02/06	LMP
Ethylbenzene	<0.025	mg/kg	0.008	0.027	1	CSL DUP LCL	03/02/06 03/02/06	LMP
exachlorobutadiene	0.0419 <0.025	mg/kg mg/kg	0.007 0.015	0.023 0.05	1 1		03/02/06	LMP LMP
sopropylbenzene	<0.025	mg/kg	0.009	0.03	1		03/02/06	LMP
Isopropyl Ether	<0.025	mg/kg	0.014	0.03	1		03/02/06	LMP
p-Isopropyltoluene	<0.025	mg/kg	0.014	0.047	i		03/02/06	LMP
⇒thyl t-Butyl Ether(MTBE)	<0.025	mg/kg	0.018	0.06	i	CSL DUP	03/02/06	LMP
,					•		,,	

ILI results calculated on a dry weight basis.

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com

Short Elliott Henderickson -21 Frenette Drive =hippewa Falls , WI 54729

PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.59 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

∡Attn: John Guhl

Dample ID: B5 0.5-0.8' Matrix: SOIL Sample Date/Time: 02/14/06 11:00 Lab No. 195309

•	Result	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	Analyst
PA 8021 (Only positively								
PA 8021 (Only positively Methylene Chloride						515	07 (07 (0)	
-Naphthalene	<0.025	mg/kg	0.014	0.047	1		03/02/06	LMP
h-Propylbenzene	<0.025	mg/kg	0.01	0.033	1		03/02/06	LMP
etrachloroethylene	<0.025 <0.025	mg/kg	0.009	0.03	1		03/02/06	LMP
1,1,2,2-Tetrachloroethane	<0.025	mg/kg	0.009	0.03	1 1		03/02/06	LMP
Toluene	<0.025	mg/kg	0.006 0.007	0.02 0.023	1		03/02/06	LMP
,2,3-Trichlorobenzene	<0.025	mg/kg mg/kg	0.007	0.023	1		03/02/06	LMP
,2,4-Trichlorobenzene	<0.025	mg/kg	0.014	0.047	1		03/02/06 03/02/06	LMP LMP
,1,1-Trichloroethane	<0.025	mg/kg	0.008	0.047	i		03/02/06	LMP
1,1,2-Trichloroethane	<0.025	mg/kg	0.006	0.02	i		03/02/06	LMP
Trichloroethylene	<0.025	mg/kg	0.011	0.037	i		03/02/06	LMP
richlorofluoromethane	<0.025	mg/kg	0.008	0.027	i	LCL	03/02/06	LMP
,2,4-Trimethylbenzene	<0.025	mg/kg	0.012	0.04	i		03/02/06	LMP
,3,5-Trimethylbenzene	<0.025	mg/kg	0.01	0.033	i		03/02/06	LMP
Vinyl Chloride	<0.025	mg/kg	0.018	0.06	i		03/02/06	LMP
- & p-Xylene	0.0355	mg/kg	0.015	0.05	i	MB J	03/02/06	LMP
-Xylene	<0.025	mg/kg	0.008	0.027	i		03/02/06	LMP
romochloromethane	<0.025	mg/kg	0.006	0.02	i		03/02/06	LMP
Bromoform	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP
∏romomethane	<0.025	mg/kg	0.009	0.03	1		03/02/06	LMP
ibromomethane	<0.025	mg/kg	0.008	0.027	1	CSH	03/02/06	LMP
",1-Dichloropropene	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP
trans-1,3-dichloroprop(yl)e	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP
Styrene	<0.025	mg/kg	0.007	0.023	1		03/02/06	LMP
1,1,2-Tetrachloroethane	<0.025	mg/kg	0.009	0.03	1		03/02/06	LMP
,,2,3-Trichloropropane	<0.025	mg/kg	0.007	0.023	1		03/02/06	LMP
tis-1,3-Dichloroprop(yl)ene	<0.025	mg/kg	0.007	0.023	1		03/02/06	LMP
PID Surrogate Recovery (S)	94.7	%	-	-	1		03/02/06	LMP
■ ALL Surrogate Recovery (S)	129.	%	-	•	1		03/02/06	LMP
PA 8310								
Acenaphthene	<0.00576	mg/kg	0.0047	0.016	1		03/01/06	LMP
Acenaphthylene	<0.00809	mg/kg	0.0066	0.022	1		03/01/06	LMP
thracene	<0.00257	mg/kg	0.0021	0.007	1		03/01/06	LMP
enzo(a)Anthracene	<0.00502	mg/kg	0.0041	0.014	1		03/01/06	LMP
Denzo(a)Pyrene	<0.00282	mg/kg	0.0023	0.0077	1	CSL	03/01/06	LMP
Benzo(b)Fluoranthene	<0.00257	mg/kg	0.0021	0.007	1		03/01/06	LMP
enzo(k)Fluoranthene	<0.00355	mg/kg	0.0029	0.0097	1		03/01/06	LMP
enzo(ghi)Perylene	<0.0049	mg/kg	0.004	0.013	1		03/01/06	LMP
Trysene	0.00452	mg/kg	0.0023	0.0077	1	j	03/01/06	LMP
Dibenzo(a,h)Anthracene Fluoranthene	0.00875	mg/kg	0.0027	0.009	1	J	03/01/06	LMP
Luorene	<0.00319	mg/kg	0.0026	0.0087	1		03/01/06	LMP
ndeno(1,2,3-cd)Pyrene	<0.00404 <0.0027	mg/kg	0.0033 0.0022	0.011 0.0073	i		03/01/06	LMP
-Methyl Naphthalene	<0.00453	mg/kg	0.0022		1		03/01/06	LMP
2-Methyl Naphthalene	<0.00502	mg/kg mg/kg	0.0037	0.012 0.014	1		03/01/06 03/01/06	LMP
#phthalene	<0.00564	mg/kg	0.0041	0.014	i			LMP
nenanthrene	<0.00502	mg/kg	0.0048	0.013	i		03/01/06 03/01/06	LMP LMP
-/rene	<0.00257	mg/kg	0.0021	0.007	i		03/01/06	LMP
7,10-Diphenylanthracene (S)	92.4	**************************************	-	-	i		03/01/06	LMP
Method 3550 Ultrasonic Ext.	COMP	70	-	-	'-		02/22/06	KAM
* Control of the Cont	-0.11						JE/ EE/ 00	RAUT
<u> </u>								
- Laboratory	8.95		-	•	1		02/20/06	JJP
⊃H - Laboratory Time	08:00		-	-	-		02/20/06	JJP

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474

TELEPHONE FACSIMILE WEBSITE

800-338-7226 715-355-3221 www.usfilter.com

Short Elliott Henderickson 421 Frenette Drive Chippewa Falls , WI 54729

Attn: John Guhl

PROJECT NO.: NERUB0502.00 REPORT NO. : 195283.58 DATE REC'D : 02/17/06 REPORT DATE: 03/13/06

PREPARED BY: JRS

Sample ID: B5 0.5-0.8'	Matrix	: SOIL	Sa	mple Date/Ti	ime: 02/14/ 0	6 11:00	Lab No. 19	95309
	Result	<u>Units</u>	<u>LOD</u>	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	Analyst
EPA 160.3								
Total Solids	81.6	%	•	0.33	•		02/20/06	AMR
EPA 3050								
Metal Prep	COMP		-	-	-		02/27/06	DJB
EPA 6010								
■otal Arsenic	0.875	mg/kg	0.34	1.13	1	J	03/07/06	DJB
∎otal Barium	5.47	mg/kg	0.1	0.33	1	_	03/07/06	DJB
■ otal Cadmium	<0.0699	mg/kg	0.057	0.19	1		03/07/06	DJB
Total Chromium	2.23	mg/kg	0.053	0.18	1		03/07/06	DJB
- Jotal Lead	1.06	mg/kg	0.53	1.76	1	J	03/07/06	DJB
†otal Selenium	<0.735	mg/kg	0.6	2.0	1		03/07/06	DJB
⁺ otal Silver	<0.245	mg/kg	0.2	0.67	1		03/07/06	DJB
EPA 7471								
Total Mercury	<0.0172	mg/kg	0.014	0.047	1		03/03/06	МРМ
EPA 8021 (Only positively	identified	l analytes	are reno	rted on a di	ry weight ha	cic		
Benzene (Ont) positivety	<0.025	mg/kg	0.008	0.027	y weight ba	CSL	03/02/06	LMP
Bromobenzene	<0.025	mg/kg	0.007	0.023	i	CSL	03/02/06	LMP
Fromodichloromethane	<0.025	mg/kg	0.006	0.02	i		03/02/06	LMP
n-Butylbenzene	<0.025	mg/kg	0.012	0.04	i		03/02/06	LMP
sec-Butylbenzene	<0.025	mg/kg	0.01	0.033	1		03/02/06	LMP
tert-Butylbenzene	<0.025	mg/kg	0.01	0.033	1		03/02/06	LMP
Carbon Tetrachloride	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP
hlorobenzene	<0.025	mg/kg	0.007	0.023	1		03/02/06	LMP
hlorodibromomethane	<0.025	mg/kg	0.02	0.067	1		03/02/06	LMP
Chloroethane	<0.025	mg/kg	0.09	0.30	1	CSL LCL	03/02/06	LMP
Chloroform	<0.025	mg/kg	0.01	0.033	1		03/02/06	LMP
Chloromethane	<0.025	mg/kg	0.01	0.033	1	CSL DUP LCL	03/02/06	LMP
2-Chlorotoluene	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP
4-Chlorotoluene	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP
1,2-Dibromo-3-chloropropane	<0.025	mg/kg	0.009	0.03	1		03/02/06	LMP
,2-Dibromoethane	<0.025	mg/kg	0.012	0.04	1		03/02/06	LMP
,2-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP
,3-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP
1,4-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP
jichlorodifluoromethane	<0.025	mg/kg	0.014	0.047	1	LCL	03/02/06	LMP
,1-Dichloroethane	<0.025	mg/kg	0.009	0.03]		03/02/06	LMP
,2-Dichloroethane	<0.025	mg/kg	0.005	0.017	1		03/02/06	LMP
1,1-Dichloroethylene	<0.025	mg/kg	0.016	0.053	1		03/02/06	LMP
cis-1,2-Dichloroethylene rans-1,2-Dichloroethylene	<0.025 <0.025	mg/kg	0.007	0.023 0.033	1		03/02/06	LMP
,2-Dichloropropane	<0.025	mg/kg	0.01 0.007	0.033	1.		03/02/06	LMP
3-Dichloropropane	<0.025	mg/kg mg/kg	0.007	0.023	1 1		03/02/06	LMP
2,2-Dichloropropane	<0.025	mg/kg mg/kg	0.008	0.027		CSL DUP LCL	03/02/06 03/02/06	LMP LMP
Ethylbenzene	<0.025	mg/kg	0.007	0.027	1	OUL DUP LUL	03/02/06	LMP
exachlorobutadiene	<0.025	mg/kg	0.015	0.05	i		03/02/06	LMP
sopropylbenzene	<0.025	mg/kg	0.009	0.03	1		03/02/06	LMP
Isopropyl Ether	<0.025	mg/kg	0.014	0.047	i		03/02/06	LMP
p-Isopropyltoluene	<0.025	mg/kg	0.011	0.037	i		03/02/06	LMP
methyl t-Butyl Ether(MTBE)	<0.025	mg/kg	0.018	0.06		CSL DUP	03/02/06	LMP
• • • • • • • • • • • • • • • • • • • •					•		,,	

[∃]l results calculated on a dry weight basis.

|■ l results calculated on a dry weight basis.

A Siemens Business

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474

TELEPHONE FACSIMILE WEBSITE

800-338-7226 715-355-3221 www.usfilter.com

PROJECT NO.: NERUB0502.00 REPORT NO. : 195283.61 DATE REC'D : 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

Attn: John Guhl

■21 Frenette Drive

Sample ID: B6 1.5-3.0'

Short Elliott Henderickson

□hippewa Falls , WI 54729

Matrix: SOIL

Sample Date/Time: 02/14/06 15:00 Lab No. 195310

	Result	Units	LOD	LOQ	Dilution Factor	Qualifiers	Date Analyzed	Analyst
EPA 8021 (Only positively						sis		
Methylene Chloride	<0.025	mg/kg	0.014	0.047	1		03/02/06	LMP
Naphthalene	<0.025	mg/kg	0.01	0.033	1		03/02/06	LMP
n-Propylbenzene Tetrachloroethylene	<0.025	mg/kg	0.009	0.03	1		03/02/06	LMP
1,1,2,2-Tetrachloroethane	<0.025 <0.025	mg/kg mg/kg	0.009 0.006	0.03 0.02	1		03/02/06	LMP
Toluene	<0.025	mg/kg	0.007	0.02	1		03/02/06 03/02/06	LMP LMP
■,2,3-Trichlorobenzene	<0.025	mg/kg	0.014	0.023	i		03/02/06	LMP
■,2,4-Trichlorobenzene	<0.025	mg/kg	0.014	0.047	i		03/02/06	LMP
_,1,1-Trichloroethane	<0.025	mg/kg	0.008	0.027	i		03/02/06	LMP
1,1,2-Trichloroethane	<0.025	mg/kg	0.006	0.02	i		03/02/06	LMP
Trichloroethylene	<0.025	mg/kg	0.011	0.037	1		03/02/06	LMP
Trichlorofluoromethane	<0.025	mg/kg	0.008	0.027	1	LCL	03/02/06	LMP
,2,4-Trimethylbenzene	<0.025	mg/kg	0.012	0.04	1		03/02/06	LMP
1,3,5-Trimethylbenzene	<0.025	mg/kg	0.01	0.033	1		03/02/06	LMP
Vinyl Chloride	<0.025	mg/kg	0.018	0.06	1		03/02/06	LMP
■- & p-Xylene	0.0399	mg/kg	0.015	0.05	1	MB J	03/02/06	LMP
=-Xylene	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP
romochloromethane	<0.025	mg/kg	0.006	0.02	1		03/02/06	LMP
Bromoform Bromomethane	<0.025	mg/kg	0.008	0.027	1		03/02/06	LMP
Dibromomethane	<0.025 <0.025	mg/kg mg/kg	0.009 0.008	0.03 0.027	1 1	СЅН	03/02/06	LMP
,1-Dichloropropene	<0.025	mg/kg	0.008	0.027	1	CSH	03/02/06 03/02/06	LMP LMP
trans-1,3-dichloroprop(yl)e	<0.025	mg/kg	0.008	0.027	i		03/02/06	LMP
Styrene	<0.025	mg/kg	0.007	0.023	i		03/02/06	LMP
,1,1,2-Tetrachloroethane	<0.025	mg/kg	0.009	0.03	1		03/02/06	LMP
,2,3-Trichloropropane	<0.025	mg/kg	0.007	0.023	i		03/02/06	LMP
is-1,3-Dichloroprop(yl)ene	<0.025	mg/kg	0.007	0.023	1		03/02/06	LMP
PID Surrogate Recovery (S)	89.1	%	-	-	1		03/02/06	LMP
HALL Surrogate Recovery (S)	129.	%	-	-	1		03/02/06	LMP
7740								
PA 8310	-0.00626	/!···	0.00/7	0.017	4		07 (04 (0)	LND
	<0.00626	mg/kg	0.0047	0.016	1		03/01/06	LMP
Acenaphthylene ■nthracene	<0.00879 <0.0028	mg/kg mg/kg	0.0066 0.0021	0.022 0.007	1		03/01/06	LMP
	<0.00546	mg/kg	0.0021	0.007	1		03/01/06 03/01/06	LMP LMP
	<0.00306	mg/kg	0.0023	0.0077	i	CSL	03/01/06	LMP
Benzo(b)Fluoranthene	<0.0028	mg/kg	0.0021	0.007	i	002	03/01/06	LMP
	<0.00386	mg/kg	0.0029	0.0097	1		03/01/06	LMP
	<0.00533	mg/kg	0.004	0.013	1		03/01/06	LMP
hrysene	<0.00306	mg/kg	0.0023	0.0077	1		03/01/06	LMP
Dibenzo(a,h)Anthracene	<0.0036	mg/kg	0.0027	0.009	1		03/01/06	LMP
	<0.00346	mg/kg	0.0026	0.0087	1		03/01/06	LMP
	<0.00439	mg/kg	0.0033	0.011	1		03/01/06	LMP
	<0.00293	mg/kg	0.0022	0.0073	1		03/01/06	LMP
	<0.00493	mg/kg	0.0037	0.012	1		03/01/06	LMP
2-Methyl Naphthalene	<0.00546	mg/kg	0.0041	0.014	1		03/01/06	LMP
	<0.00613	mg/kg	0.0046	0.015	1		03/01/06	LMP
yrene	<0.00546 <0.0028	mg/kg mg/kg	0.0041 0.0021	0.014 0.007	1		03/01/06	LMP
y,10-Diphenylanthracene (S)	57.3	11197 Kg %	-	-	1		03/01/06 03/01/06	LMP LMP
Method 3550 Ultrasonic Ext.	COMP	70	•	•	١		02/22/06	KAM
							,, - - -	
PA 9045					_			
iii - Laboratory	7.58		-	-	1		02/20/06	JJP
pH - Laboratory Time	08:00		•	-	-		02/20/06	JJP

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com

PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.60 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

Attn: John Guhl

421 Frenette Drive

Short Elliott Henderickson

Chippewa Falls , WI 54729

Sample ID: **B6 1.5-3.0'** Matrix: **SOIL** Sample Date/Time: **02/14/06 15:00** Lab No. **195310**

 ,							
1					Dilution	Date	
	<u>Result</u>	<u>Units</u>	LOD	<u>LOQ</u>	<u>Factor</u> <u>Qualifiers</u>	<u>Analyzed</u>	<u>Analyst</u>
■EPA 160.3							
Total Solids	75.1	%	_	0.33	_	02/20/04	AUD
iotat sotius	13.1	/0	=	0.33	-	02/20/06	AMR
EPA 3050							
■Metal Prep	COMP		_	-	-	02/27/06	DJB
						02,2,,00	
EPA 6010							
Total Arsenic	2.41	mg/l	0.34	1.13	1	03/07/06	DJB
Total Barium	16.4	mg/l	0.1	0.33	1	03/07/06	DJB
Total Cadmium	0.172	mg/kg	0.057	0.19	1 J	03/07/06	DJB
Total Chromium	12.7	mg/kg	0.053	0.18	1	03/07/06	DJB
Total Lead	5.83	mg/kg ·		1.76	1	03/07/06	DJB
Total Selenium	2.52	mg/l	0.6	2.0	1	03/07/06	DJB
Total Silver	<0.266	mg/kg	0.2	0.67	1	03/07/06	DJB
EDA : 77.74							
EPA 7471 Total Mercury	0.0426	mg/kg	0.014	0.047	1 J	07/07/06	MPM
Total Mercury	0.0420	ilig/ kg	0.014	0.047	1 3	03/03/06	MPM
EPA 8021 (Only positively	identified	l analytes	are repo	rted on a dr	v weight hasis		
Benzene	<0.025	mg/kg	0.008	0.027	1 CSL	03/02/06	LMP
Bromobenzene	<0.025	mg/kg	0.007	0.023	1	03/02/06	LMP
Bromodichloromethane	<0.025	mg/kg	0.006	0.02	1	03/02/06	LMP
n-Butylbenzene	<0.025	mg/kg	0.012	0.04	i	03/02/06	LMP
sec-Butylbenzene	<0.025	mg/kg	0.01	0.033	1	03/02/06	LMP
tert-Butylbenzene	<0.025	mg/kg	0.01	0.033	1	03/02/06	LMP
Carbon Tetrachloride	<0.025	mg/kg	0.008	0.027	1	03/02/06	LMP
Chlorobenzene	<0.025	mg/kg	0.007	0.023	1	03/02/06	LMP
Chlorodibromomethane	<0.025	mg/kg	0.02	0.067	1	03/02/06	LMP
Chloroethane	<0.025	mg/kg	0.09	0.30	1 CSL LCL	03/02/06	LMP
Chloroform	<0.025	mg/kg	0.01	0.033	1	03/02/06	LMP
Chloromethane	<0.025	mg/kg	0.01	0.033	1 CSL DUP LCL	03/02/06	LMP
2-Chlorotoluene	<0.025	mg/kg	0.008	0.027	1	03/02/06	LMP
	<0.025	mg/kg	0.008	0.027	1	03/02/06	LMP
1,2-Dibromo-3-chloropropane	<0.025	mg/kg	0.009	0.03	1	03/02/06	LMP
,2-Dibromoethane	<0.025	mg/kg	0.012	0.04	1	03/02/06	LMP
1,2-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1	03/02/06	LMP
≣,3-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1	03/02/06	LMP
1,4-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1	03/02/06	LMP
Pichlorodifluoromethane	<0.025	mg/kg	0.014	0.047	1 LCL	03/02/06	LMP
,1-Dichloroethane	<0.025	mg/kg	0.009	0.03	1	03/02/06	LMP
,2-Dichloroethane	<0.025	mg/kg	0.005	0.017	1	03/02/06	LMP
1,1-Dichloroethylene	<0.025	mg/kg	0.016	0.053	1	03/02/06	LMP
cis-1,2-Dichloroethylene	<0.025	mg/kg	0.007	0.023	•	03/02/06	LMP
rans-1,2-Dichloroethylene	<0.025 <0.025	mg/kg	0.01 0.007	0.033 0.023	1 1	03/02/06	LMP
,3-Dichloropropane	<0.025	mg/kg	0.007	0.023	1	03/02/06	LMP
2,2-Dichloropropane	<0.025	mg/kg mg/kg	0.008	0.027	1 CSL DUP LCL	03/02/06 03/02/06	LMP LMP
ithylbenzene	<0.025	mg/kg	0.008	0.027	1 (3) DUP LUL	03/02/06	LMP LMP
exachlorobutadiene	<0.025	mg/kg	0.007	0.023	1	03/02/06	LMP
sopropylbenzene	<0.025	mg/kg	0.009	0.03	1	03/02/06	LMP
sopropyl Ether	<0.025	mg/kg	0.007	0.047	1	03/02/06	LMP
p-Isopropyltoluene	<0.025	mg/kg	0.011	0.037	i	03/02/06	LMP
methyl t-Butyl Ether(MTBE)	<0.025	mg/kg	0.018	0.06	1 CSL DUP	03/02/06	LMP
=						,,	

all results calculated on a dry weight basis.

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com

Short Elliott Henderickson 421 Frenette Drive ■Chippewa Falls , WI 54729 PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.62 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

Attn: John Guhl

Sample ID: B7 1.0-2.5' Matrix: SOIL Sample Date/Time: 02/14/06 15:30 Lab No. 195311

	Result	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	Analyst
EPA 160.3 Total Solids	88.8	%	-	0.33			02/20/06	AMR
EPA 3050								
Metal Prep	COMP		-	•	-		02/27/06	DJB
EPA 6010								
■ otal Arsenic	<0.383	mg∕l	0.34	1.13	1		03/07/06	DJB
■ otal Barium	10.7	mg/l	0.1	0.33	1		03/07/06	DJB
■ otal Cadmium	<0.0642	mg/kg	0.057	0.19	1		03/07/06	DJB
Total Chromium	8.73	mg/kg	0.053	0.18	1		03/07/06	DJB
∡ otal Lead	1.82	mg/kg	0.53	1.76	1		03/07/06	DJB
■ otal Selenium	<0.676	mg/l	0.6	2.0	1		03/07/06	DJB
▼ otal Silver	<0.225	mg/kg	0.2	0.67	1		03/07/06	DJB
EPA 7471								
Total Mercury	<0.0158	mg/kg	0.014	0.047	1		03/03/06	MPM
EPA 8021 (Only positively	identified	danalytes	are repo	rted on a dr	y weight ba	sis		
Benzene	<0.5	mg/kg	0.008	0.027	20		03/06/06	LMP
A romobenzene	<0.5	mg/kg	0.007	0.023	20		03/06/06	LMP
promodichloromethane	<0.5	mg/kg	0.006	0.02	20		03/06/06	LMP
ከ-Butylbenzene	2.73	mg/kg	0.012	0.04	20		03/06/06	LMP
sec-Butylbenzene	<0.5	mg/kg	0.01	0.033	20		03/06/06	LMP
tert-Butylbenzene	<0.5	mg/kg	0.01	0.033	20		03/06/06	LMP
Sarbon Tetrachloride	<0.5	mg/kg	0.008	0.027	20		03/06/06	LMP
Dhlorobenzene	<0.5	mg/kg	0.007	0.023	20		03/06/06	LMP
Intorodibromomethane	<0.5	mg/kg	0.02	0.067	20		03/06/06	LMP
Chloroethane	<0.5	mg/kg	0.09	0.30		CSL LCL	03/06/06	LMP
£hloroform	<0.5	mg/kg	0.01	0.033	20		03/06/06	LMP
thloromethane 2-Chlorotoluene 4-Chlorotoluene	<0.5	mg/kg	0.01	0.033	20	CSL DUP LCL	03/06/06	LMP
₹-Chlorotoluene	<0.5	mg/kg	0.008	0.027	20		03/06/06	LMP
	<0.5	mg/kg	0.008	0.027	20		03/06/06	LMP
1,2-Dibromo-3-chloropropane	<0.5	mg/kg	0.009	0.03	20	CSH	03/06/06	LMP
,2-Dibromoethane	<0.5	mg/kg	0.012	0.04	20		03/06/06	LMP
1,2-Dichlorobenzene	<0.5	mg/kg	0.008	0.027	20		03/06/06	LMP
3-Dichlorobenzene	<0.5	mg/kg	0.008	0.027	20		03/06/06	LMP
1,4-Dichlorobenzene	<0.5	mg/kg	0.008	0.027	20		03/06/06	LMP
Dichlorodifluoromethane	<0.5	mg/kg	0.014	0.047	20	LCL	03/06/06	LMP
,1-Dichloroethane	<0.5	mg/kg	0.009	0.03	20		03/06/06	LMP
,2-Dichloroethane	<0.5	mg/kg	0.005	0.017	20		03/06/06	LMP
1,1-Dichloroethylene	<0.5	mg/kg	0.016	0.053	20		03/06/06	LMP
cis-1,2-Dichloroethylene	<0.5	mg/kg	0.007	0.023	20		03/06/06	LMP
rans-1,2-Dichloroethylene	<0.5	mg/kg	0.01	0.033	20		03/06/06	LMP
,2-Dichloropropane	<0.5·	mg/kg	0.007	0.023	20		03/06/06	LMP
1,3-Dichloropropane	<0.5	mg/kg	0.008	0.027	20	CSL	03/06/06	LMP
2,2-Dichloropropane	<0.5	mg/kg	0.008	0.027	20	DUP	03/06/06	LMP
thylbenzene	<0.5	mg/kg	0.007	0.023	20		03/06/06	LMP
exachlorobutadiene	<0.5	mg/kg	0.015	0.05	20		03/06/06	LMP
sopropylbenzene	<0.5	mg/kg	0.009	0.03	20		03/06/06	LMP
Isopropyl Ether	<0.5	mg/kg	0.014	0.047	20	:	03/06/06	LMP
5-Isopropyltoluene	<0.5	mg/kg	0.011	0.037	20	·	03/06/06	LMP
tethyl t-Butyl Ether(MTBE)	<0.5	mg/kg	0.018	0.06	20	•	03/06/06	LMP

all results calculated on a dry weight basis.

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com

PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.63 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

Attn: John Guhl

421 Frenette Drive

Sample ID: **B7 1.0-2.5**

Short Elliott Henderickson

=Chippewa Falls , WI 54729

Matrix: SOIL

Sample Date/Time: 02/14/06 15:30

-								
•					Dilution		Date	
	<u>Result</u>	<u>Units</u>	<u>LOD</u>	<u>LOQ</u>	<u>Factor</u>	<u>Qualifiers</u>	<u>Analyzed</u>	<u>Analyst</u>
L						_		
EPA 8021 (Only positively						is		
Methylene Chloride	<0.5	mg/kg	0.014	0.047	20		03/06/06	LMP
-Naphthalene	<0.5	mg/kg	0.01	0.033	20		03/06/06	LMP
n-Propylbenzene	<0.5	mg/kg	0.009	0.03	20		03/06/06	LMP
Tetrachloroethylene	<0.5	mg/kg	0.009	0.03	20		03/06/06	LMP
1,1,2,2-Tetrachloroethane	<0.5	mg/kg	0.006	0.02	20		03/06/06	LMP
Toluene	0.822	mg/kg	0.007	0.023	20		03/06/06	LMP
7,2,3-Trichlorobenzene	<0.5	mg/kg	0.014	0.047	20		03/06/06	LMP
7,2,4-Trichlorobenzene	<0.5 <0.5	mg/kg	0.014	0.047	20 20		03/06/06	LMP
7,1,1-Trichloroethane 1,1,2-Trichloroethane	<0.5	mg/kg mg/kg	0.008 0.006	0.027 0.02	20		03/06/06 03/06/06	LMP
Trichloroethylene	<0.5	mg/kg	0.003	0.02	20		03/06/06	LMP
Trichlorofluoromethane	<0.5	mg/kg	0.008	0.027	20		03/06/06	LMP LMP
7,2,4-Trimethylbenzene	<0.5	mg/kg	0.012	0.04	20		03/06/06	LMP
7,3,5-Trimethylbenzene	<0.5	mg/kg	0.01	0.033	20		03/06/06	LMP
Vinyl Chloride	<0.5	mg/kg	0.018	0.06	20	LCL	03/06/06	LMP
■- & p-Xylene	4.29	mg/kg	0.015	0.05	20	MB	03/06/06	LMP
⊃-Xylene	<0.5	mg/kg	0.008	0.027	20	*5	03/06/06	LMP
Bromochloromethane	<0.5	mg/kg	0.006	0.02	20		03/06/06	LMP
Bromoform	<0.5	mg/kg	0.008	0.027	20	CSH	03/06/06	LMP
Bromomethane	<0.5	mg/kg	0.009	0.03	20	LCL	03/06/06	LMP
Dibromomethane	<0.5	mg/kg	0.008	0.027	20	CSH	03/06/06	LMP
1,1-Dichloropropene	<0.5	mg/kg	0.008	0.027	20		03/06/06	LMP
trans-1,3-dichloroprop(yl)e	<0.5	mg/kg	0.008	0.027	20		03/06/06	LMP
Styrene	<0.5	mg/kg	0.007	0.023	20		03/06/06	LMP
■,1,1,2-Tetrachloroethane	<0.5	mg/kg	0.009	0.03	20		03/06/06	LMP
■,2,3-Trichloropropane	<0.5	mg/kg	0.007	0.023	20		03/06/06	LMP
=is-1,3-Dichloroprop(yl)ene	<0.5	mg/kg	0.007	0.023	20		03/06/06	LMP
PID Surrogate Recovery (S)	88.1	%	-	-	20		03/06/06	LMP
HALL Surrogate Recovery (S)	119.	%	-	-	20		03/06/06	LMP
EPA 8310					_			
Acenaphthene	<0.00529	mg/kg	0.0047	0.016	1		03/01/06	LMP
Acenaphthylene	<0.00743	mg/kg	0.0066	0.022	1		03/01/06	LMP
mnthracene	<0.00236	mg/kg	0.0021	0.007	1		03/01/06	LMP
Eenzo(a)Anthracene	<0.00462	mg/kg	0.0041	0.014	1	001	03/01/06	LMP
≡enzo(a)Pyrene Benzo(b)Fluoranthene	<0.00259	mg/kg	0.0023	0.0077	1	CSL	03/01/06	LMP
Benzo(k)Fluoranthene	<0.00236 <0.00327	mg/kg	0.0021 0.0029	0.007 0.0097	1 1		03/01/06	LMP
Benzo(ghi)Perylene	<0.00327	mg/kg mg/kg	0.0029	0.0037	1		03/01/06	LMP
Chrysene	<0.00259	mg/kg	0.0023	0.0077	i		03/01/06 03/01/06	LMP LMP
Dibenzo(a,h)Anthracene	<0.00304	mg/kg	0.0027	0.009	i		03/01/06	LMP
Fluoranthene	<0.00293	mg/kg	0.0026	0.0087	i		03/01/06	LMP
-luorene	<0.00372	mg/kg	0.0033	0.011	i		03/01/06	LMP
ndeno(1,2,3-cd)Pyrene	<0.00248	mg/kg	0.0022	0.0073	i		03/01/06	LMP
-Methyl Naphthalene	<0.00417	mg/kg	0.0037	0.012	i		03/01/06	LMP
2-Methyl Naphthalene	<0.00462	mg/kg	0.0041	0.014	1		03/01/06	LMP
Naphthalene	<0.00518	mg/kg	0.0046	0.015	1		03/01/06	LMP
Phenanthrene	<0.00462	mg/kg	0.0041	0.014	. 1		03/01/06	LMP
Pyrene	<0.00236	mg/kg	0.0021	0.007	1		03/01/06	LMP
9,10-Diphenylanthracene (S)	56.7	* %	-	-	1		03/01/06	LMP
Method 3550 Ultrasonic Ext.	COMP		-	-	-		02/22/06	KAM
1								
PA 9045					_			
H - Laboratory	9.51		-	-	1		02/20/06	JJP
pH - Laboratory Time	08:00		-	-	•		02/20/06	JJP

Il results calculated on a dry weight basis.

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE

800-338-7226 715-355-3221 www.usfilter.com

PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.64 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

Attn: John Guhl

Short Elliott Henderickson

21 Frenette Drive hippewa Falls , WI 54729

| ample ID: B8 1.0-2.5' Matrix: SOIL Sample Date/Time: 02/14/06 15:45 Lab No. 195312

	Result	Units	LOD	LOQ	Dilution Factor	Qualifiers	Date Analyzed	Analyst
PA 160.3 Total Solids	80.4	%	-	0.33	-		02/20/06	AMR
PA 3050								
etal Prep	COMP		-	-	-		02/27/06	DJB
.							02,21,00	000
EPA_6010_								
otal Arsenic	<0.42	mg/l	0.34	1.13	1		03/07/06	DJB
otal Barium	17.5	mg/l	0.1	0.33	1		03/07/06	DJB
otal Cadmium	<0.0709	mg/kg	0.057	0.19	1		03/07/06	DJB
Total Chromium	7.67	mg/kg	0.053	0.18	1		03/07/06	DJB
Total Lead	3.87	mg/kg	0.53	1.76	1		03/07/06	DJB
otal Selenium	<0.746	mg/kg	0.6	2.0	1		03/07/06	DJB
'otal Silver	<0.249	mg/kg	0.2	0.67	1		03/07/06	DJB
,								
EPA 7471					_			
_otal Mercury	0.0348	mg/kg	0.014	0.047	1	J	03/03/06	MPM
PA 8021 (Only positively	idombiliod							
PA 8021 (Only positively Benzene	<2.50				y weight ba		07 (07 (0)	1.40
Bromobenzene	<2.50	mg/kg	0.008 0.007	0.027 0.023	100	CSL	03/03/06	LMP
Bromodichloromethane	<2.50	mg/kg	0.007	0.023	100		03/03/06	LMP
-Butylbenzene	23.0	mg/kg					03/03/06	LMP
sec-Butylbenzene	<2.50	mg/kg	0.012	0.04	100		03/03/06	LMP
tert-Butylbenzene	<2.50	mg/kg	0.01 0.01	0.033 0.033	100 100		03/03/06	LMP
-arbon Tetrachloride	<2.50	mg/kg mg/kg	0.008	0.033	100		03/03/06	LMP
hlorobenzene	<2.50	mg/kg	0.007	0.027	100		03/03/06 03/03/06	LMP LMP
hlorodibromomethane	<2.50	mg/kg	0.007	0.023	100			
Chloroethane	<2.50	mg/kg	0.02	0.30	100	CSL LCL DUP	03/03/06 03/03/06	LMP LMP
Chloroform	<2.50	mg/kg	0.01	0.033	100	CSL LCL DUF	03/03/06	LMP
nloromethane	<2.50	mg/kg	0.01	0.033	100	CSL	03/03/06	LMP
-Chlorotoluene	<2.50	mg/kg	0.008	0.027	100	002	03/03/06	LMP
4-Chlorotoluene	<2.50	mg/kg	0.008	0.027	100		03/03/06	LMP
1,2-Dibromo-3-chloropropane	<2.50	mg/kg	0.009	0.03	100	CSH LCH	03/03/06	LMP
2-Dibromoethane	<2.50	mg/kg	0.012	0.04	100		03/03/06	LMP
,2-Dichlorobenzene	<2.50	mg/kg	0.008	0.027	100		03/03/06	LMP
3-Dichlorobenzene	<2.50	mg/kg	0.008	0.027	100		03/03/06	LMP
1,4-Dichlorobenzene	<2.50	mg/kg	0.008	0.027	100		03/03/06	LMP
Nichlorodifluoromethane	<2.50	mg/kg	0.014	0.047	100	LCL DUP	03/03/06	LMP
,1-Dichloroethane	<2.50	mg/kg	0.009	0.03	100		03/03/06	LMP
,2-Dichloroethane	<2.50	mg/kg	0.005	0.017	100		03/03/06	LMP
1,1-Dichloroethylene	<2.50	mg/kg	0.016	0.053	100	LCL	03/03/06	LMP
cis-1,2-Dichloroethylene	<2.50	mg/kg	0.007	0.023	100		03/03/06	LMP
⊐rans-1,2-Dichloroethylene	<2.50	mg/kg	0.01	0.033	100		03/03/06	LMP
,2-Dichloropropane	<2.50	mg/kg	0.007	0.023	100		03/03/06	LMP
,3-Dichloropropane	<2.50	mg/kg	0.008	0.027	100		03/03/06	LMP
2,2-Dichloropropane	<2.50	mg/kg	0.008	0.027	100	CSL LCL DUP	03/03/06	LMP
Fthylbenzene	<2.50	mg/kg	0.007	0.023	100		03/03/06	LMP
exachlorobutadiene	<2.50	mg/kg	0.015	0.05	100		03/03/06	LMP
sopropyl benzene	<2.50	mg/kg	0.009	0.03	100		03/03/06	LMP
isopropyl Ether	<2.50	mg/kg	0.014	0.047	100		03/03/06	LMP
p-Isopropyltoluene	<2.50	mg/kg	0.011	0.037	100		03/03/06	LMP
■ethyl t-Butyl Ether(MTBE)	<2.50	mg/kg	0.018	0.06	100		03/03/06	LMP

ll results calculated on a dry weight basis.

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE

800-338-7226 715-355-3221 www.usfilter.com

PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.65 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

≜ttn: John Guhl

=ample ID: B8 1.0-2.5'

Short Elliott Henderickson

21 Frenette Drive =hippewa Falls , WI 54729

Matrix: SOIL

Sample Date/Time: 02/14/06 15:45

	Result	Units	LOD	LOQ	Dilution Factor	Qualifiers	Date Analyzed	Analyst
			_				<u> </u>	maryse
EPA 8021 (Only positively						sis		
Methylene Chloride	<2.50	mg/kg	0.014	0.047	100		03/03/06	LMP
laphthalene	3.69	mg/kg	0.01	0.033	100		03/03/06	LMP
h-Propylbenzene	<2.50	mg/kg	0.009	0.03	100		03/03/06	LMP
etrachloroethylene 1,1,2,2-Tetrachloroethane	<2.50 <2.50	mg/kg	0.009	0.03 0.02	100 100	0011	03/03/06	LMP
Toluene	<2.50	mg/kg mg/kg	0.006 0.007	0.02	100	CSH	03/03/06 03/03/06	LMP LMP
,2,3-Trichlorobenzene	<2.50	mg/kg	0.014	0.023	100		03/03/06	LMP
,2,4-Trichlorobenzene	<2.50	mg/kg	0.014	0.047	100		03/03/06	LMP
,1,1-Trichloroethane	<2.50	mg/kg	0.008	0.027	100		03/03/06	LMP
1,1,2-Trichloroethane	<2.50	mg/kg	0.006	0.02	100		03/03/06	LMP
■ richloroethylene	<2.50	mg/kg	0.011	0.037	100		03/03/06	LMP
Trichlorofluoromethane	<2.50	mg/kg	0.008	0.027		CL DUP	03/03/06	LMP
,2,4-Trimethylbenzene	91.9	mg/kg	0.012	0.04	100		03/03/06	LMP
1,3,5-Trimethylbenzene	<2.50	mg/kg	0.01	0.033	100		03/03/06	LMP
Yinyl Chloride	<2.50	mg/kg	0.018	0.06		_CL_DUP	03/03/06	LMP
- & p-Xylene	4.74	mg/kg	0.015	0.05	100		03/03/06	LMP
-Xylene	<2.50	mg/kg	0.008	0.027	100		03/03/06	LMP
Uromochloromethane	<2.50	mg/kg	0.006	0.02	100		03/03/06	LMP
Bromoform	<2.50	mg/kg	0.008	0.027		CSH LCH	03/03/06	LMP
Bromomethane	<2.50 <2.50	mg/kg	0.009	0.03		.CL DUP	03/03/06	LMP
1.1-Dichloropropene	<2.50	mg/kg mg/kg	0.008 0.008	0.027 0.027	100 100	CSH	03/03/06	LMP LMP
trans-1,3-dichloroprop(yl)e	<2.50	mg/kg	0.008	0.027	100		03/03/06 03/03/06	LMP
Styrene	<2.50	mg/kg	0.007	0.023	100		03/03/06	LMP
,1,1,2-Tetrachloroethane	<2.50	mg/kg	0.009	0.03	100		03/03/06	LMP
,2,3-Trichloropropane	<2.50	mg/kg	0.007	0.023	100		03/03/06	LMP
Lis-1,3-Dichloroprop(yl)ene	<2.50	mg/kg	0.007	0.023	100		03/03/06	LMP
PID Surrogate Recovery (S)	91.1	%	-	-	100		03/03/06	LMP
[ALL Surrogate Recovery (S)	123.	%	-	-	100		03/03/06	LMP
<u> </u>								
<u>=PA 8310</u>					_			
Acenaphthene	<0.00585	mg/kg	0.0047	0.016	1		03/01/06	LMP
Acenaphthylene	<0.00821	mg/kg	0.0066	0.022	1		03/01/06	LMP
Anthracene Senzo(a)Anthracene	<0.00261	mg/kg	0.0021	0.007	1		03/01/06	LMP
Benzo(a)Pyrene	<0.0051 <0.00286	mg/kg mg/kg	0.0041 0.0023	0.014 0.0077	1	CSL	03/01/06 03/01/06	LMP LMP
Benzo(b)Fluoranthene	<0.00261	mg/kg	0.0023	0.0077	i	CSL	03/01/06	LMP
enzo(k)Fluoranthene	<0.00361	mg/kg	0.0029	0.007	i		03/01/06	LMP
enzo(ghi)Perylene	<0.00498	mg/kg	0.004	0.013	i		03/01/06	LMP
hrysene	<0.00286	mg/kg	0.0023	0.0077	i		03/01/06	LMP
Dibenzo(a,h)Anthracene	<0.00336	mg/kg	0.0027	0.009	1		03/01/06	LMP
Fluoranthene	<0.00323	mg/kg	0.0026	0.0087	1		03/01/06	LMP
luorene	<0.0041	mg/kg	0.0033	0.011	1		03/01/06	LMP
ndeno(1,2,3-cd)Pyrene	0.006	mg/kg	0.0022	0.0073	1	J	03/01/06	LMP
l-Methyl Naphthalene	0.0831	mg/kg	0.0037	0.012	1		03/01/06	LMP
2-Methyl Naphthalene	0.0271	mg/kg	0.0041	0.014	1		03/01/06	LMP
■aphthalene	0.099	mg/kg	0.0046	0.015	1		03/01/06	LMP
-henanthrene	<0.0051	mg/kg	0.0041	0.014	1		03/01/06	LMP
Tyrene	<0.00261	mg/kg °∕	0.0021	0.007	1		03/01/06	LMP
9,10-Diphenylanthracene (S) Method 3550 Ultrasonic Ext.	36.5	%	-	-	1_		03/01/06	LMP
gethod 3550 offiasonic ext.	COMP		-	-	•		02/22/06	KAM
≟PA 9045								
∍H - Laboratory	8.16		-	-	1		02/20/06	JJP
pH - Laboratory Time	08:00		-	-	-		02/20/06	JJP
							*	

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com

Short Elliott Henderickson ■21 Frenette Drive □hippewa Falls , WI 54729 PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.66 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

Attn: John Guhl

			_			1 - L 11 - 407747		
⇒ample ID: B9 1.0-2.0'	Matrix: SOIL Sample Date/Time: 02/			ime: 02/14/ 0	6 16:30	Lab No. 195313		
		•.			Dilution		Date	
1	<u>Resul t</u>	<u>Units</u>	LOD	LOQ	<u>Factor</u>	<u>Qualifiers</u>	<u>Analyzed</u>	<u>Analyst</u>
PA 160.3								
Total Solids	87.8	%	_	0.33	_		02/20/06	AMR
-	07.0	/•	-	0.55	-		02/20/08	AMK
EPA 3050								
1etal Prep	COMP		-	-	-		02/27/06	DJB
•							,,	
EPA 6010								
otal Arsenic	2.02	mg/l	0.34	1.13	1		03/07/06	DJB
■otal Barium	17.0	mg/l	0.1	0.33	1		03/07/06	DJB
otal Cadmium	0.0925	mg/kg	0.057	0.19	1	J	03/07/06	DJB
Total Chromium	31.7	mg/kg	0.053	0.18	1		03/07/06	DJB
Total Lead otal Selenium	4.11	mg/kg	0.53	1.76	1		03/07/06	DJB
otal Silver	<0.683 <0.228	mg/kg	0.6 0.2	2.0 0.67	1 1		03/07/06	DJB
otat Sitvei	10.220	mg/kg	0.2	0.07	1		03/07/06	DJB
EPA_7471								
otal Mercury	0.0934	mg/kg	0.014	0.047	1		03/03/06	MPM
,			****		·		00,00,00	
PA 8021 (Only positively	identified	danalytes	are repor	ted on a di	ry weight ba	sis		
Benzene	<0.025	mg/kg	0.008	0.027	1	CSL	03/03/06	LMP
romobenzene	<0.025	mg/kg	0.007	0.023	1		03/03/06	LMP
romodichloromethane	<0.025	mg/kg	0.006	0.02	1		03/03/06	LMP
-Butylbenzene	0.0364	mg/kg	0.012	0.04	1	J	03/03/06	LMP
sec-Butylbenzene	<0.025	mg/kg	0.01	0.033	1		03/03/06	LMP
tert-Butylbenzene	<0.025	mg/kg	0.01	0.033	1		03/03/06	LMP
_arbon Tetrachloride	<0.025	mg/kg	0.008	0.027	1		03/03/06	LMP
hlorobenzene hlorodibromomethane	<0.025	mg/kg	0.007	0.023	1		03/03/06	LMP
Chloroethane	<0.025 <0.025	mg/kg	0.02 0.09	0.067 0.30	1 1	CCI CI	03/03/06	LMP
	<0.025	mg/kg mg/kg	0.09	0.033	i	CSL LCL	03/03/06 03/03/06	LMP LMP
hloromethane	<0.025	mg/kg	0.01	0.033		CSL DUP LCL	03/03/06	LMP
-Chlorotoluene	<0.025	mg/kg	0.008	0.027	i	002 00. 202	03/03/06	LMP
4-Chlorotoluene	<0.025	mg/kg	0.008	0.027	i		03/03/06	LMP
1,2-Dibromo-3-chloropropane	<0.025	mg/kg	0.009	0.03	1		03/03/06	LMP
,2-Dibromoethane	<0.025	mg/kg	0.012	0.04	1		03/03/06	LMP
,2-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		03/03/06	LMP
-,3-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		03/03/06	LMP
1,4-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		03/03/06	LMP
ichlorodifluoromethane	<0.025	mg/kg	0.014	0.047	1	LCL	03/03/06	LMP
,1-Dichloroethane	<0.025	mg/kg	0.009	0.03	1		03/03/06	LMP
1,2-Dichloroethane	<0.025	mg/kg	0.005	0.017	1		03/03/06	LMP
cis-1,2-Dichloroethylene	<0.025 <0.025	mg/kg mg/kg	0.016 0.007	0.053 0.023	1		03/03/06 03/03/06	LMP LMP
rans-1,2-Dichloroethylene	<0.025		0.01	0.023	1		03/03/06	
,2-Dichloropropane	<0.025	mg/kg mg/kg	0.007	0.023	i		03/03/06	LMP LMP
,3-Dichloropropane	<0.025	mg/kg	0.008	0.027	i		03/03/06	LMP
2,2-Dichloropropane	<0.025	mg/kg	0.008	0.027	i	CSL DUP LCL	03/03/06	LMP
thylbenzene	<0.025	mg/kg	0.007	0.023	i	- -	03/03/06	LMP
exachlorobutadiene	<0.025	mg/kg	0.015	0.05	1		03/03/06	LMP
sopropylbenzene	<0.025	mg/kg	0.009	0.03	1		03/03/06	LMP
Isopropyl Ether	<0.025	mg/kg	0.014	0.047	1		03/03/06	LMP
p-Isopropyltoluene	<0.025	mg/kg	0.011	0.037	1		03/03/06	LMP
≅thyl t-Butyl Ether(MTBE)	<0.025	mg/kg	0.018	0.06	1	CSL DUP	03/03/06	LMP

| | IR | results calculated on a dry weight basis.

ill results calculated on a dry weight basis.

A Siemens Business

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE

800-338-7226 715-355-3221 www.usfilter.com

PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.67 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

_Attn: John Guhl

→421 Frenette Drive

⇒Sample ID: B9 1.0-2.0'

Short Elliott Henderickson

■Chippewa Falls , WI 54729

Matrix: SOIL

Sample Date/Time: 02/14/06 16:30

	<u>Result</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u> <u>Qualifiers</u>	Date <u>Analyzed</u>	<u>Analyst</u>
FDA 9034 (Only mariated)							
EPA 8021 (Only positively						07.07.04	
Methylene Chloride Naphthalene	0.174 0.0353	mg/kg	0.014	0.047	1	03/03/06	LMP
		mg/kg	0.01	0.033	1	03/03/06	LMP
n-Propylbenzene Tetrachloroethylene	<0.025 <0.025	mg/kg	0.009	0.03	1 1	03/03/06	LMP
1,1,2,2-Tetrachloroethane	<0.025	mg/kg	0.009 0.006	0.03 0.02	1	03/03/06	LMP
Toluene	0.0342	mg/kg mg/kg	0.007	0.023	1	03/03/06 03/03/06	LMP
1,2,3-Trichlorobenzene	<0.025	mg/kg	0.014	0.023	1	03/03/06	LMP LMP
1,2,4-Trichlorobenzene	<0.025	mg/kg	0.014	0.047	1	03/03/06	LMP
1,1,1-Trichloroethane	<0.025	mg/kg	0.008	0.027	1	03/03/06	LMP
1,1,2-Trichloroethane	<0.025	mg/kg	0.006	0.02	i	03/03/06	LMP
Trichloroethylene	<0.025	mg/kg	0.011	0.037	i	03/03/06	LMP
Trichlorofluoromethane	<0.025	mg/kg	0.008	0.027	i LCL	03/03/06	LMP
1,2,4-Trimethylbenzene	0.082	mg/kg	0.012	0.04	1	03/03/06	LMP
71,3,5-Trimethylbenzene	<0.025	mg/kg	0.01	0.033	1	03/03/06	LMP
Vinyl Chloride	<0.025	mg/kg	0.018	0.06	1	03/03/06	LMP
¬n- & p-Xylene	0.0504	mg/kg	0.015	0.05	1 MB	03/03/06	LMP
≕-Xylene	<0.025	mg/kg	0.008	0.027	1	03/03/06	LMP
Bromochloromethane	<0.025	mg/kg	0.006	0.02	1	03/03/06	LMP
Bromoform	<0.025	mg/kg	0.008	0.027	1	03/03/06	LMP
_Bromomethane	<0.025	mg/kg	0.009	0.03	1	03/03/06	LMP
⊉ibromomethane	<0.025	mg/kg	0.008	0.027	1 CSH	03/03/06	LMP
1,1-Dichloropropene	<0.025	mg/kg	0.008	0.027	1	03/03/06	LMP
Trans-1,3-dichloroprop(yl)e	<0.025	mg/kg	0.008	0.027	1	03/03/06	LMP
Styrene	<0.025	mg/kg	0.007	0.023	1	03/03/06	LMP
7,1,1,2-Tetrachloroethane	<0.025	mg/kg	0.009	0.03	1 .	03/03/06	LMP
7,2,3-Trichloropropane	<0.025	mg/kg	0.007	0.023	1	03/03/06	LMP
=is-1,3-Dichloroprop(yl)ene	<0.025	mg/kg	0.007	0.023	1	03/03/06	LMP
PID Surrogate Recovery (S)	91.1	%	-	-	1	03/03/06	LMP
HALL Surrogate Recovery (S)	146.	%	-	-	1	03/03/06	LMP
EPA 8310							
Acenaphthene	<0.00535	mg/kg	0.0047	0.016	1	03/01/06	LMP
Acenaphthylene	<0.00752	mg/kg	0.0066	0.022	1	03/01/06	LMP
Anthracene	<0.00239	mg/kg	0.0021	0.007	i S1L	03/01/06	LMP
Benzo(a)Anthracene	0.0116	mg/kg	0.0041	0.014	1 J S1L	03/01/06	LMP
∃enzo(a)Pyrene	0.0175	mg/kg	0.0023	0.0077	1 CSL S1L S2L		LMP
3enzo(b)Fluoranthene	0.0336	mg/kg	0.0021	0.007	1 S1L S2L	03/01/06	LMP
⊋enzo(k)Fluoranthene	0.0231	mg/kg	0.0029	0.0097	1 S1L S2L	03/01/06	LMP
penzo(ghi)Perylene	<0.00456	mg/kg	0.004	0.013	1	03/01/06	LMP
‡hrysene	0.033	mg/kg	0.0023	0.0077	1 S2L	03/01/06	LMP
bibenzo(a,h)Anthracene	<0.00308	mg/kg	0.0027	0.009	1 S1L	03/01/06	LMP
Fluoranthene	0.12	mg/kg	0.0026	0.0087	1 S2L DUP	03/01/06	LMP
Fluorene	<0.00376	mg/kg	0.0033	0.011	1	03/01/06	LMP
Indeno(1,2,3-cd)Pyrene	<0.00251	mg/kg	0.0022	0.0073	1 S1L	03/01/06	LMP
1-Methyl Naphthalene	0.0116	mg/kg	0.0037	0.012	1 J	03/01/06	LMP
2-Methyl Naphthalene	0.0131	mg/kg	0.0041	0.014	1 J	03/01/06	LMP
₩aphthalene	0.00638	mg/kg	0.0046	0.015	1 J	03/01/06	LMP
henanthrene	0.0351	mg/kg	0.0041	0.014	1 \$2L	03/01/06	LMP
Pyrene P. 10-Pinhamulanthasaus (C)	0.00528	mg/kg	0.0021	0.007	1 J DUP	03/01/06	LMP
ウ,10-Diphenylanthracene (S)	58.4	%	-	-	1	03/01/06	LMP
Method 3550 Ultrasonic Ext.	COMP		•	-	•	02/24/06	MJG
<u> </u>							
⊅H - Laboratory	8.51		-	-	1	02/20/06	JJP
pH - Laboratory Time	08:00		-	-	-	02/20/06	JJP
						,, +0	

ENVIROSCAN SERVICES
301 WEST MILITARY ROAD ROTHSCHILD, WI 54474

TELEPHONE

800-338-7226 FACSIMILE 715-355-3221 WEBSITE www.usfilter.com

Short Elliott Henderickson **421** Frenette Drive ■Chippewa Falls , WI 54729

PROJECT NO.: NERUB0502.00 REPORT NO.: 195283.68
DATE REC'D: 02/17/06
REPORT DATE: 03/13/06
PREPARED BY: JRS

_Attn: John Guhl

⇒Sample ID: B10 0.5-1.5' Matrix: SOIL Sample Date/Time: 02/14/06 17:15 Lab No. 195314

	<u>Result</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date Analyzed	Analyst
EPA 160.3 Total Solids	73.1	%	-	0.33	-		02/20/06	AMR
EPA 3050 Metal Prep	COMP		_	_	_		02/27/06	DJB
_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	00/11						02/21/00	000
EPA 6010								
Total Arsenic	1.94	mg/l	0.34	1.13	1		03/07/06	DJB
Total Barium	39.5	mg/l	0.1	0.33	1		03/07/06	DJB
Total Cadmium	<0.078	mg/kg	0.057	0.19	1		03/07/06	DJB
Total Chromium	6.63	mg/kg	0.053	0.18	1		03/07/06	DJB
Total Lead	26.3	mg/kg	0.53	1.76	1		03/07/06	DJB
Total Selenium Total Silver	<0.821	mg/kg	0.6	2.0	1		03/07/06	DJB
Total Silver	0.33	mg/kg	0.2	0.67	1	J	03/07/06	DJB
EPA 7471								
■otal Mercury	0.0684	mg/kg	0.014	0.047	1		03/03/06	MPM
≘PA 8021 (Only positively	idontif:			ال سامعة				
<u>≡PA 8021</u> (Only positively Benzene	<0.025	mg/kg	o.008		• -	S1S CSL	07/07/0/	LMD
Bromobenzene	<0.025		0.007	0.027 0.023	1	CSL	03/03/06	LMP
Bromodichloromethane	<0.025	mg/kg	0.007	0.023	1		03/03/06	LMP
n-Butylbenzene	0.0739	mg/kg mg/kg	0.012	0.02	i		03/03/06	LMP
sec-Butylbenzene	<0.025	mg/kg	0.012	0.04	1		03/03/06 03/03/06	LMP
tert-Butylbenzene	<0.025	mg/kg	0.01	0.033	i		03/03/06	LMP LMP
Darbon Tetrachloride	<0.025	mg/kg	0.008	0.033	i		03/03/06	
Ehlorobenzene	<0.025	mg/kg	0.007	0.027	1		03/03/06	LMP LMP
Shlorodibromomethane	<0.025	mg/kg	0.02	0.067	i		03/03/06	LMP
Chloroethane	<0.025	mg/kg	0.09	0.30		CSL LCL	03/03/06	LMP
£hloroform	<0.025	mg/kg	0.01	0.033	i	002 202	03/03/06	LMP
hloromethane	<0.025	mg/kg	0.01	0.033	-	CSL DUP LCL	03/03/06	LMP
⊉-Chlorotoluene	<0.025	mg/kg	0.008	0.027	i	002 001 202	03/03/06	LMP
#-Chlorotoluene	<0.025	mg/kg	0.008	0.027	i		03/03/06	LMP
1,2-Dibromo-3-chloropropane	<0.025	mg/kg	0.009	0.03	1		03/03/06	LMP
,2-Dibromoethane	<0.025	mg/kg	0.012	0.04	1		03/03/06	LMP
■,2-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		03/03/06	LMP
■,3-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		03/03/06	LMP
1,4-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		03/03/06	LMP
Pichlorodifluoromethane	<0.025	mg/kg	0.014	0.047	1	LCL	03/03/06	LMP
,1-Dichloroethane	<0.025	mg/kg	0.009	0.03	1		03/03/06	LMP
',2-Dichloroethane	<0.025	mg/kg	0.005	0.017	1		03/03/06	LMP
,1-Dichloroethylene	<0.025	mg/kg	0.016	0.053	1		03/03/06	LMP
cis-1,2-Dichloroethylene	0.171	mg/kg	0.007	0.023	1		03/03/06	LMP
-rans-1,2-Dichloroethylene	<0.025	mg/kg	0.01	0.033	1		03/03/06	LMP
,2-Dichloropropane	<0.025	mg/kg	0.007	0.023	1		03/03/06	LMP
,3-Dichloropropane	<0.025	mg/kg	0.008	0.027	1		03/03/06	LMP
2,2-Dichloropropane	<0.025	mg/kg	0.008	0.027		CSL DUP LCL	03/03/06	LMP
Ethylbenzene	<0.025	mg/kg	0.007	0.023	1		03/03/06	LMP
lexachlorobutadiene	<0.025	mg/kg	0.015	0.05	1		03/03/06	LMP
sopropylbenzene	<0.025	mg/kg	0.009	0.03	1		03/03/06	LMP
Isopropyl Ether	<0.025	mg/kg	0.014	0.047	1		03/03/06	LMP
p-Isopropyltoluene	<0.025	mg/kg	0.011	0.037	1	001 0115	03/03/06	LMP
Methyl t-Butyl Ether(MTBE)	<0.025	mg/kg	0.018	0.06	1	CSL DUP	03/03/06	LMP

all results calculated on a dry weight basis.

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474

TELEPHONE FACSIMILE

800-338-7226 715-355-3221 WEBSITE www.usfilter.com

PROJECT NO.: NERUB0502.00 REPORT NO. : 195283.69 DATE REC'D : 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

Attn: John Guhl

式21 Frenette Drive

Sample ID: **B10 0.5-1.5'**

Short Elliott Henderickson

⊇hippewa Falls , WI 54729

Matrix: SOIL

Sample Date/Time: 02/14/06 17:15

; 	Result	<u>Units</u>	LOD	LOQ	Dilution Factor	Qualifiers	Date <u>Analyzed</u>	Analyst
							Midtyzed	Milatyst
Methylene Chloride			are report 0.014			sis	07 (07 (0)	1.140
_ Naphthalene	<0.025 0.0766	mg/kg mg/kg	0.014	0.047 0.033	1		03/03/06 03/03/06	LMP LMP
n-Propylbenzene	<0.025	mg/kg	0.009	0.03	1		03/03/06	LMP
Tetrachloroethylene	0.133	mg/kg	0.009	0.03	i		03/03/06	LMP
1,1,2,2-Tetrachloroethane	<0.025	mg/kg	0.006	0.02	1		03/03/06	LMP
Toluene	0.0465	mg/kg	0.007	0.023	1		03/03/06	LMP
,2,3-Trichlorobenzene	<0.025	mg/kg	0.014	0.047	1		03/03/06	LMP
,2,4-Trichlorobenzene	<0.025	mg/kg	0.014	0.047	1		03/03/06	LMP
1,1,1-Trichloroethane	<0.025	mg/kg	0.008	0.027	1		03/03/06	LMP
1,1,2-Trichloroethane Trichloroethylene	<0.025 <0.025	mg/kg mg/kg	0.006 0.011	0.02 0.037	1		03/03/06	LMP
Trichlorofluoromethane	<0.025	mg/kg	0.008	0.027	1	LCL	03/03/06 03/03/06	LMP LMP
,2,4-Trimethylbenzene	0.0547	mg/kg	0.012	0.04	i	202	03/03/06	LMP
1,3,5-Trimethylbenzene	0.0438	mg/kg	0.01	0.033	1		03/03/06	LMP
Vinyl Chloride	<0.025	mg/kg	0.018	0.06	1		03/03/06	LMP
¬- & p-Xylene	0.156	mg/kg	0.015	0.05	1	MB	03/03/06	LMP
⊒-Xylene	0.0492	mg/kg	0.008	0.027	1		03/03/06	LMP
■romochloromethane Bromoform	<0.025	mg/kg	0.006	0.02	1		03/03/06	LMP
Bromomethane	<0.025 <0.025	mg/kg	0.008 0.009	0.027 0.03	1		03/03/06	LMP
ibromomethane	<0.025	mg/kg mg/kg	0.009	0.03	1	CSH	03/03/06 03/03/06	LMP LMP
.1-Dichloropropene	<0.025	mg/kg	0.008	0.027	i	6311	03/03/06	LMP
trans-1,3-dichloroprop(yl)e	<0.025	mg/kg	0.008	0.027	1		03/03/06	LMP
Styrene	<0.025	mg/kg	0.007	0.023	1		03/03/06	LMP
,1,1,2-Tetrachloroethane	<0.025	mg/kg	0.009	0.03	1		03/03/06	LMP
,2,3-Trichloropropane	<0.025	mg/kg	0.007	0.023	1		03/03/06	LMP
is-1,3-Dichloroprop(yl)ene	<0.025	mg/kg	0.007	0.023	1		03/03/06	LMP
PID Surrogate Recovery (S)	89.2	%	-		1		03/03/06	LMP
HALL Surrogate Recovery (S)	136.	%	-	-	1		03/03/06	LMP
EPA_8310_								
Acenaphthene	<0.00643	mg/kg	0.0047	0.016	1		03/01/06	LMP
Acenaphthylene	<0.00903	mg/kg	0.0066	0.022	1		03/01/06	LMP
Inthracene	<0.00287	mg/kg	0.0021	0.007	1		03/01/06	LMP
enzo(a)Anthracene	0.0166	mg/kg	0.0041	0.014	1	J	03/01/06	LMP
Benzo(a)Pyrene Benzo(b)Fluoranthene	0.0261 0.041	mg/kg	0.0023 0.0021	0.0077 0.007	1	CSL	03/01/06	LMP
_Benzo(k)Fluoranthene	0.0198	mg/kg mg/kg	0.0021	0.007	1		03/01/06 03/01/06	LMP LMP
enzo(ghi)Perylene	0.0328	mg/kg	0.004	0.013	i		03/01/06	LMP
hrysene	0.0472	mg/kg	0.0023	0.0077	i		03/01/06	LMP
Dibenzo(a,h)Anthracene	0.00911	mg/kg	0.0027	0.009	1	J	03/01/06	LMP
Fluoranthene	0.087	mg/kg	0.0026	0.0087	1		03/01/06	LMP
luorene	<0.00451	mg/kg	0.0033	0.011	1		03/01/06	LMP
■ndeno(1,2,3-cd)Pyrene	0.0222	mg/kg	0.0022	0.0073	1		03/01/06	LMP
-Methyl Naphthalene 2-Methyl Naphthalene	0.0201	mg/kg	0.0037	0.012	1		03/01/06	LMP
Naphthalene	0.028 0.013	mg/kg mg/kg	0.0041 0.0046	0.014 0.015	1 1	1	03/01/06	LMP
henanthrene	0.0491	mg/kg	0.0040	0.013	1	J	03/01/06 03/01/06	LMP LMP
	0.00763	mg/kg	0.0021	0.007	i	J	03/01/06	LMP
yrene ,10-Diphenylanthracene (S)	48.7	%	-	-	i	•	03/01/06	LMP
Method 3550 Ultrasonic Ext.	COMP		•	•	-		02/24/06	MJG
IPA 9045								
■ - Laboratory	8.31		-	-	1		02/20/06	JJP
pH - Laboratory Time	08:00		-	-	•		02/20/06	JJP
E JBCON								
CBs - Sub	COMP		_	•			02/28/06	EAL.
	50111						32, 23, 00	⊷ /1.

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com

PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.70 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

Attn: John Guhl

Sample ID: 811 1-3'

421 Frenette Drive

Short Elliott Henderickson

Chippewa Falls , WI 54729

Matrix: SOIL

Sample Date/Time: 02/15/06 08:30

	Result	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u> <u>Qualifiers</u>	Date <u>Analyzed</u>	<u>Analyst</u>
EPA 160.3							
Total Solids	81.8	%	-	0.33	•	02/20/06	AMR
EPA 3050							
Metal Prep	COMP		•	-	-	02/27/06	DJB
EPA 6010							
Total Arsenic	0.531	mg/kg	0.34	1.13	1 J	03/03/06	DJB
Total Barium	18.9	mg/kg	0.1	0.33	1	03/03/06	DJB
Total Cadmium	<0.0697	mg/kg	0.057	0.19	1	03/03/06	DJB
Total Chromium	5.93	mg/kg	0.053	0.18	1 S1L S2L	03/03/06	DJB
Total Lead	5.21	mg/kg	0.53	1.76	1 S1L S2L	03/03/06	DJB
Total Selenium	<0.733	mg/kg	0.6	2.0	1	03/03/06	DJB
Total Silver	<0.244	mg/kg	0.2	0.67	1	03/03/06	DJB
EPA 7471							
Total Mercury	0.0318	mg/kg	0.014	0.047	1 J	03/03/06	MPM
 <u>≡PA 8021</u> (Only positively	identified	l analytes	are reno	rted on a dr	y waight basis		
Benzene (Ont) positivety	<0.025	mg/kg	0.008	0.027	1 CSL	03/03/06	LMP
Bromobenzene	<0.025	mg/kg	0.007	0.023	1	03/03/06	LMP
3romodichloromethane	<0.025	mg/kg	0.006	0.02	1	03/03/06	LMP
n-Butylbenzene	<0.025	mg/kg	0.003	0.02	1	03/03/06	LMP
sec-Butylbenzene	<0.025	mg/kg	0.01	0.033	1	03/03/06	LMP
tert-Butylbenzene	<0.025	mg/kg	0.01	0.033	i	03/03/06	LMP
Darbon Tetrachloride	<0.025	mg/kg	0.008	0.027	i	03/03/06	LMP
Thlorobenzene	<0.025	mg/kg	0.007	0.023	i	03/03/06	LMP
=hlorodibromomethane	<0.025	mg/kg	0.02	0.067	i	03/03/06	LMP
Chloroethane	<0.025	mg/kg	0.09	0.30	i CSL LCL	03/03/06	LMP
£hloroform	<0.025	mg/kg	0.01	0.033	1	03/03/06	LMP
hloromethane	<0.025	mg/kg	0.01	0.033	1 CSL DUP LCL	03/03/06	LMP
r-Chlorotoluene	<0.025	mg/kg	0.008	0.027	1	03/03/06	LMP
4-Chlorotoluene	<0.025	mg/kg	0.008	0.027	i	03/03/06	LMP
1,2-Dibromo-3-chloropropane	<0.025	mg/kg	0.009	0.03	i	03/03/06	LMP
,2-Dibromoethane	<0.025	mg/kg	0.012	0.04	i	03/03/06	LMP
,2-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	i	03/03/06	LMP
,3-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	i	03/03/06	LMP
1,4-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	i	03/03/06	LMP
Nichlorodifluoromethane	<0.025	mg/kg	0.014	0.047	i LCL	03/03/06	LMP
,1-Dichloroethane	<0.025	mg/kg	0.009	0.03	1	03/03/06	LMP
,2-Dichloroethane	<0.025	mg/kg	0.005	0.017	Ì	03/03/06	LMP
,1-Dichloroethylene	<0.025	mg/kg	0.016	0.053	i	03/03/06	LMP
cis-1,2-Dichloroethylene	<0.025	mg/kg	0.007	0.023	1	03/03/06	LMP
rans-1,2-Dichloroethylene	<0.025	mg/kg	0.01	0.033	1	03/03/06	LMP
,2-Dichloropropane	<0.025	mg/kg	0.007	0.023	1	03/03/06	LMP
,3-Dichloropropane	<0.025	mg/kg	0.008	0.027	1	03/03/06	LMP
2,2-Dichloropropane	<0.025	mg/kg	0.008	0.027	1 CSL DUP LCL	03/03/06	LMP
Ethylbenzene	<0.025	mg/kg	0.007	0.023	1	03/03/06	LMP
lexachlorobutadiene	<0.025	mg/kg	0.015	0.05	1	03/03/06	LMP
sopropylbenzene	<0.025	mg/kg	0.009	0.03	1	03/03/06	LMP
Isopropyl Ether	<0.025	mg/kg	0.014	0.047	1	03/03/06	LMP
p-Isopropyltoluene	<0.025	mg/kg	0.011	0.037	1	03/03/06	LMP
ethyl t-Butyl Ether(MTBE)	<0.025	mg/kg	0.018	0.06	1 CSL DUP	03/03/06	LMP

ll results calculated on a dry weight basis.

ENVIROSCAN SERVICES

301 WEST MILITARY ROAD

FACSIMILE

WEBSITE

TELEPHONE 800-338-7226

715-355-3221 WEBSITE www.usfilter.com

Short Elliott Henderickson ■21 Frenette Drive Chippewa Falls , WI 54729

PROJECT NO.: NERUB0502.00 REPORT NO. : 195283.71 DATE REC'D : 02/17/06 **REPORT DATE: 03/13/06** PREPARED BY: JRS

Attn: John Guhl

∃ample ID: B11 1-3' Matrix: SOIL Sample Date/Time: 02/15/06 08:30 Lab No. 195315

	Result	Units	LOD	1.00	Dilution Factor	Qualifiers	Date	Analyst
				<u>rod</u>			Analyzed	MINITYST
EPA 8021 (Only positively					y weight ba	sis		
Methylene Chloride	<0.025	mg/kg	0.014	0.047	1		03/03/06	LMP
Naphthalene	<0.025	mg/kg	0.01	0.033	1		03/03/06	LMP
n-Propylbenzene	<0.025	mg/kg	0.009	0.03	1		03/03/06	LMP
Tetrachloroethylene 1,1,2,2-Tetrachloroethane	<0.025	mg/kg	0.009	0.03	1		03/03/06	LMP
Toluene	<0.025 <0.025	mg/kg	0.006 0.007	0.02 0.023	i 1		03/03/06 03/03/06	LMP
,2,3-Trichlorobenzene	<0.025	mg/kg mg/kg	0.007	0.023	1		03/03/06	LMP LMP
,2,4-Trichtorobenzene	<0.025	mg/kg	0.014	0.047	1		03/03/06	LMP
,1,1-Trichloroethane	<0.025	mg/kg	0.008	0.027	i		03/03/06	LMP
1,1,2-Trichloroethane	<0.025	mg/kg	0.006	0.02	1		03/03/06	LMP
Trichloroethylene	<0.025	mg/kg	0.011	0.037	i		03/03/06	LMP
Trichlorofluoromethane	<0.025	mg/kg	0.008	0.027	i	LCL	03/03/06	LMP
1,2,4-Trimethylbenzene	<0.025	mg/kg	0.012	0.04	i		03/03/06	LMP
1,3,5-Trimethylbenzene	<0.025	mg/kg	0.01	0.033	i		03/03/06	LMP
Vinyl Chloride	<0.025	mg/kg	0.018	0.06	1		03/03/06	LMP
m- & p-Xylene	0.033	mg/kg	0.015	0.05	1	MB J	03/03/06	LMP
p-Xylene	<0.025	mg/kg	0.008	0.027	1		03/03/06	LMP
3romochloromethane	<0.025	mg/kg	0.006	0.02	1		03/03/06	LMP
Bromoform	<0.025	mg/kg	0.008	0.027	1		03/03/06	LMP
Promomethane	<0.025	mg/kg	0.009	0.03	1		03/03/06	LMP
ibromomethane	<0.025	mg/kg	0.008	0.027	1	CSH	03/03/06	LMP
,1-Dichloropropene	<0.025	mg/kg	0.008	0.027	1		03/03/06	LMP
trans-1,3-dichloroprop(yl)e	<0.025	mg/kg	0.008	0.027	1		03/03/06	LMP
Styrene	<0.025	mg/kg	0.007	0.023	1		03/03/06	LMP
,1,1,2-Tetrachloroethane	<0.025	mg/kg	0.009	0.03	1		03/03/06	LMP
,2,3-Trichloropropane	<0.025	mg/kg	0.007	0.023	1		03/03/06	LMP
is-1,3-Dichloroprop(yl)ene	<0.025	mg/kg	0.007	0.023	1		03/03/06	LMP
PID Surrogate Recovery (S)	93.4	%	-	-	1		03/03/06	LMP
ALL Surrogate Recovery (S)	136.	. %	-	-	1		03/03/06	LMP
PA 8310								
Acenaphthene	<0.00575	mg/kg	0.0047	0.016	1		03/01/06	LMP
Acenaphthylene	<0.00807	mg/kg	0.0066	0.022	i		03/01/06	LMP
Anthracene	<0.00257	mg/kg	0.0021	0.007	i		03/01/06	LMP
Benzo(a)Anthracene	<0.00501	mg/kg	0.0041	0.014	i		03/01/06	LMP
Benzo(a)Pyrene	<0.00281	mg/kg	0.0023	0.0077	i	CSL	03/01/06	LMP
Benzo(b)Fluoranthene	<0.00257	mg/kg	0.0021	0.007	· i	552	03/01/06	LMP
enzo(k)Fluoranthene	<0.00355	mg/kg	0.0029	0.0097	i		03/01/06	LMP
enzo(ghi)Perylene	<0.00489	mg/kg	0.004	0.013	1		03/01/06	LMP
hrysene	0.00528	mg/kg	0.0023	0.0077	1	J	03/01/06	LMP
Dibenzo(a,h)Anthracene	<0.0033	mg/kg	0.0027	0.009	1		03/01/06	LMP
Fluoranthene	0.00858	mg/kg	0.0026	0.0087	1	J	03/01/06	LMP
luorene	<0.00403	mg/kg	0.0033	0.011	1		03/01/06	LMP
ndeno(1,2,3-cd)Pyrene	0.00413	mg/kg	0.0022	0.0073	1	J	03/01/06	LMP
I-Methyl Naphthalene	<0.00452	mg/kg	0.0037	0.012	1		03/01/06	LMP
2-Methyl Naphthalene	<0.00501	mg/kg	0.0041	0.014	1		03/01/06	LMP
■ Naphthalene	<0.00562	mg/kg	0.0046	0.015	1		03/01/06	LMP
henanthrene	<0.00501	mg/kg	0.0041	0.014	1		03/01/06	LMP
yrene	0.00246	mg/kg	0.0021	0.007	1	J	03/01/06	LMP
9,10-Diphenylanthracene (S)	80.8	%	-	-	1		03/01/06	LMP
Method 3550 Ultrasonic Ext.	COMP		-	-	-		02/24/06	MJG
PA 9045								
H - Laboratory	9.53		•	•	1		02/20/06	JJP
pH - Laboratory Time	08:00		-	-	-		02/20/06	JJP

ll results calculated on a dry weight basis.

TELEPHONE FACSIMILE WEBSITE

800-338-7226 715-355-3221 www.usfilter.com

Short Elliott Henderickson 21 Frenette Drive hippewa Falls , WI 54729

PROJECT NO.: NERUB0502.00 REPORT NO. : 195283.72 DATE REC'D : 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

Attn: John Guhl

ample ID: B12 1-2'	Matri	: SOIL	Sar	mple Date/Ti	ime: 02/15/0 6	09:15	Lab No. 195316	
	<u>Result</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	<u>Qualifiers</u>	Date <u>Analyzed</u>	<u>Analyst</u>
L								
<u>PA 160.3</u>								
Total Solids	90.9	%	•	0.33	-		02/20/06	AMR
<u> PA 3050</u>								
etal Prep	COMP		-	-	-		02/27/06	DJB
EPA 6010	4 /5	(1	0.7/	4 47	4		07 (07 (0)	0.10
otal Arsenic otal Barium	1.45 15.1	mg/kg	0.34	1.13 0.33	1 1		03/03/06	DJB
otal Cadmium	0.155	mg/kg mg/kg	0.1 0.057	0.33	1	J	03/03/06 03/03/06	DJB DJB
Total Chromium	5.98	mg/kg	0.053	0.18	i	J	03/03/06	DJB
Total Lead	5.47	mg/kg	0.53	1.76	i		03/03/06	DJB
otal Selenium	<0.66	mg/kg	0.6	2.0	i		03/03/06	DJB
otal Silver	<0.22	mg/kg	0.2	0.67	1		03/03/06	DJB
		.						
EPA 7471	0.0454							
otal Mercury	<0.0154	mg/kg	0.014	0.047	1		03/03/06	MPM
PA 8021 (Only positively	identified	d analytes	are repor	rted on a dr	ry weight bas	is		
Benzene	<0.025	mg/kg	0.008	0.027	1	CSL	03/03/06	LMP
Bromobenzene	<0.025	mg/kg	0.007	0.023	1		03/03/06	LMP
romodichloromethane	<0.025	mg/kg	0.006	0.02	1		03/03/06	LMP
n-Butylbenzene	<0.025	mg/kg	0.012	0.04	1		03/03/06	LMP
sec-Butylbenzene	<0.025	mg/kg	0.01	0.033	1		03/03/06	LMP
tert-Butylbenzene	<0.025	mg/kg	0.01	0.033	1		03/03/06	LMP
arbon Tetrachloride	<0.025	mg/kg	0.008	0.027	1		03/03/06	LMP
hlorobenzene hlorodibromomethane	<0.025	mg/kg	0.007	0.023	1		03/03/06	LMP
Chloroethane	<0.025 <0.025	mg/kg	0.02 0.09	0.067 0.30	1 1 C	SL LCL	03/03/06	LMP LMP
Chloroform	<0.025	mg/kg mg/kg	0.07	0.033	1	SL ECL	03/03/06 03/03/06	LMP
hloromethane	<0.025	mg/kg	0.01	0.033		SL DUP LCL	03/03/06	LMP
-Chlorotoluene	<0.025	mg/kg	0.008	0.027	i	02 001 202	03/03/06	LMP
4-Chlorotoluene	<0.025	mg/kg	0.008	0.027	1		03/03/06	LMP
1,2-Dibromo-3-chloropropane	<0.025	mg/kg	0.009	0.03	1		03/03/06	LMP
,2-Dibromoethane	<0.025	mg/kg	0.012	0.04	1		03/03/06	LMP
,2-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		03/03/06	LMP
,3-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		03/03/06	LMP
1,4-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		03/03/06	LMP
ichlorodifluoromethane	<0.025	mg/kg	0.014	0.047	1	LCL	03/03/06	LMP
,1-Dichloroethane	<0.025	mg/kg	0.009	0.03	1		03/03/06	LMP
<pre>,2-Dichloroethane 1,1-Dichloroethylene</pre>	<0.025 <0.025	mg/kg	0.005 0.016	0.017 0.053	1 1		03/03/06	LMP
cis-1,2-Dichloroethylene	<0.025	mg/kg mg/kg	0.018	0.023	i		03/03/06 03/03/06	LMP LMP
rans-1,2-Dichloroethylene	<0.025	mg/kg	0.007	0.023	1		03/03/06	LMP
,2-Dichloropropane	<0.025	mg/kg	0.007	0.023	i		03/03/06	LMP
,3-Dichloropropane	<0.025	mg/kg	0.008	0.027	i		03/03/06	LMP
2,2-Dichloropropane	<0.025	mg/kg	0.008	0.027		SL DUP LCL	03/03/06	LMP
Thylbenzene	<0.025	mg/kg	0.007	0.023	1		03/03/06	LMP
exachlorobutadiene	<0.025	mg/kg	0.015	0.05	1		03/03/06	LMP
sopropylbenzene	<0.025	mg/kg	0.009	0.03	1		03/03/06	LMP
Isopropyl Ether	<0.025	mg/kg	0.014	0.047	1		03/03/06	LMP
p-Isopropyltoluene	<0.025	mg/kg	0.011	0.037	1	on bur	03/03/06	LMP
ethyl t-Butyl Ether(MTBE)	<0.025	mg/kg	0.018	0.06	1 0	SL DUP	03/03/06	LMP

ll results calculated on a dry weight basis.

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE

800-338-7226 715-355-3221 www.usfilter.com

PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.73 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

Attn: John Guhl

∃ample ID: B12 1-2'

Matrix: SOIL

Sample Date/Time: 02/15/06 09:15

•	<u>Result</u>	<u>Units</u>	<u>LOD</u>	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	<u>Analyst</u>
CDA 8024 April 10 maria in la comba						•		
Methylene Chloride						SIS	07.07.07	
Waphthalene	<0.025 <0.025	mg/kg	0.014	0.047 0.033	1		03/03/06	LMP
• •	<0.025	mg/kg	0.01		1 1		03/03/06	LMP
n-Propylbenzene Tetrachloroethylene	<0.025	mg/kg	0.009 0.009	0.03 0.03	1		03/03/06	LMP
1,1,2,2-Tetrachloroethane	<0.025	mg/kg mg/kg	0.009	0.03	1		03/03/06	LMP
Toluene	<0.025	mg/kg	0.007	0.023	1		03/03/06 03/03/06	LMP LMP
1,2,3-Trichlorobenzene	<0.025	mg/kg	0.007	0.023	i		03/03/06	LMP
1,2,4-Trichlorobenzene	<0.025	mg/kg	0.014	0.047	1		03/03/06	LMP
1,1-Trichloroethane	<0.025	mg/kg	0.008	0.027	i		03/03/06	LMP
1,1,2-Trichloroethane	<0.025	mg/kg	0.006	0.02	i		03/03/06	LMP
∦richloroethylene	<0.025	mg/kg	0.011	0.037	i		03/03/06	LMP
richlorofluoromethane	<0.025	mg/kg	0.008	0.027	i	LCL	03/03/06	LMP
,2,4-Trimethylbenzene	<0.025	mg/kg	0.012	0.04	1		03/03/06	LMP
1,3,5-Trimethylbenzene	<0.025	mg/kg	0.01	0.033	1		03/03/06	LMP
Vinyl Chloride	<0.025	mg/kg	0.018	0.06	1		03/03/06	LMP
=ı- & p-Xylene	0.0286	mg/kg	0.015	0.05	1	MB J	03/03/06	LMP
b -Xylene	<0.025	mg/kg	0.008	0.027	1		03/03/06	LMP
B romochloromethane	<0.025	mg/kg	0.006	0.02	1		03/03/06	LMP
Bromoform	<0.025	mg/kg	0.008	0.027	1		03/03/06	LMP
₿romomethane	<0.025	mg/kg	0.009	0.03	1		03/03/06	LMP
p ibromomethane	<0.025	mg/kg	0.008	0.027	1	CSH	03/03/06	LMP
,1-Dichloropropene	<0.025	mg/kg	0.008	0.027	1		03/03/06	LMP
trans-1,3-dichloroprop(yl)e	<0.025	mg/kg	0.008	0.027	1		03/03/06	LMP
Styrene	<0.025	mg/kg	0.007	0.023	1		03/03/06	LMP
1,1,2-Tetrachloroethane	<0.025	mg/kg	0.009	0.03	1		03/03/06	LMP
,2,3-Trichloropropane	<0.025	mg/kg	0.007	0.023	1		03/03/06	LMP
tis-1,3-Dichloroprop(yl)ene	<0.025	mg/kg	0.007	0.023	1		03/03/06	LMP
PID Surrogate Recovery (S)	90.5	%	-	-	1		03/03/06	LMP
#ALL Surrogate Recovery (S)	138.	%	-	-	1		03/03/06	LMP
₹PA 8310								
Acenaphthene	<0.00517	ma/ka	0.0047	0.016	1		07/01/06	LMD
Acenaphthylene	<0.00726	mg/kg	0.0047	0.018	1 1		03/01/06	LMP
mnthracene	<0.00728	mg/kg mg/kg	0.0021	0.022	1		03/01/06	LMP
enzo(a)Anthracene	<0.00251	mg/kg	0.0021	0.007	i		03/01/06 03/01/06	LMP LMP
enzo(a)Pyrene	<0.00253	mg/kg	0.0023	0.0077	1	CSL	03/01/06	LMP
Benzo(b)Fluoranthene	<0.00233	mg/kg	0.0023	0.007	i	CSL	03/01/06	LMP
Renzo(k)Fluoranthene	<0.00319	mg/kg	0.0029	0.0097	i		03/01/06	LMP
enzo(ghi)Perylene	<0.0044	mg/kg	0.004	0.013	i		03/01/06	LMP
hrysene	0.00949	mg/kg	0.0023	0.0077	i		03/01/06	LMP
Dibenzo(a,h)Anthracene	<0.00297	mg/kg	0.0027	0.009	1		03/01/06	LMP
Fluoranthene	0.0163	mg/kg	0.0026	0.0087	1		03/01/06	LMP
luorene	<0.00363	mg/kg	0.0033	0.011	1		03/01/06	LMP
ndeno(1,2,3-cd)Pyrene	0.00707	mg/kg	0.0022	0.0073	1	J	03/01/06	LMP
l-Methyl Naphthalene	<0.00407	mg/kg	0.0037	0.012	1		03/01/06	LMP
2-Methyl Naphthalene	<0.00451	mg/kg	0.0041	0.014	1		03/01/06	LMP
∦aphthalene	<0.00506	mg/kg	0.0046	0.015	1		03/01/06	LMP
henanthrene	0.00737	mg/kg	0.0041	0.014	1	J	03/01/06	LMP
yrene	0.00337	mg/kg	0.0021	0.007	1	J	03/01/06	LMP
9,10-Diphenylanthracene (S)	58.8	%	-	-	1		03/01/06	LMP
Method 3550 Ultrasonic Ext.	COMP		-	•	-		02/24/06	MJG
PA 9045_								
OH - Laboratory	8.87		-	-	1		02/20/06	JJP
pH - Laboratory Time	08:00		_	-	'-		02/20/06	JJP
	00.00						JE, 20, 00	301

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE

800-338-7226 715-355-3221 www.usfilter.com

PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.74 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

_Attn: John Guhl

421 Frenette Drive

Sample ID: B13 0.5-4.5'

Short Elliott Henderickson

Chippewa Falls , WI 54729

Matrix: SOIL

Sample Date/Time: 02/15/06 11:15

					Dilution		Date	
	<u>Result</u>	<u>Units</u>	LOD	LOQ	<u>Factor</u>	Qualifiers	<u>Analyzed</u>	<u>Analyst</u>
≡PA 160.3								
Total Solids	94.1	%	•	0.33	-		02/20/06	AMR
EPA 3050 Metal Prep	COMP		_	-	-		02/27/06	DJB
2.0020 1.0p	00111						02,21,00	505
EPA 6010								
Total Arsenic	1.47	mg/kg	0.34	1.13	1		03/03/06	DJB
Total Barium	21.1	mg/kg	0.1	0.33	1		03/03/06	DJB
Total Cadmium	<0.0606	mg/kg	0.057	0.19	1		03/03/06	DJB
Total Chromium	7.46	mg/kg	0.053	0.18	1		03/03/06	DJB
Total Lead	2.71	mg/kg	0.53	1.76	1		03/03/06	DJB
Total Selenium	<0.638	mg/kg	0.6	2.0	1		03/03/06	DJB
Total Silver	<0.213	mg/kg	0.2	0.67	1		03/03/06	DJB
EPA 7471								
■otal Mercury	0.0489	mg/kg	0.014	0.047	1		03/03/06	MPM
<u>≡PA 8021</u> (Only positively	identified	l analytes	are renor	rted on a dr	rv weight be	cie		
Benzene	<0.025	mg/kg	0.008	0.027	1	313	03/06/06	LMP
Bromobenzene	<0.025	mg/kg	0.007	0.023	i		03/06/06	LMP
Bromodichloromethane	<0.025	mg/kg	0.006	0.02	1		03/06/06	LMP
n-Butylbenzene	<0.025	mg/kg	0.012	0.04	1		03/06/06	LMP
sec-Butylbenzene	<0.025	mg/kg	0.01	0.033	1		03/06/06	LMP
tert-Butylbenzene	<0.025	mg/kg	0.01	0.033	1		03/06/06	LMP
Darbon Tetrachloride	<0.025	mg/kg	0.008	0.027	1		03/06/06	LMP
⊇hlorobenzene	<0.025	mg/kg	0.007	0.023	1		03/06/06	LMP
Inlorodibromomethane	<0.025	mg/kg	0.02	0.067	1		03/06/06	LMP
Chloroethane	<0.025	mg/kg	0.09	0.30	1	CSL LCL	03/06/06	LMP
Chloroform	<0.025	mg/kg	0.01	0.033	1		03/06/06	LMP
thloromethane	<0.025	mg/kg	0.01	0.033	1	CSL DUP LCL	03/06/06	LMP
r-Chlorotoluene	<0.025	mg/kg	0.008	0.027	1		03/06/06	LMP
4-Chlorotoluene	<0.025	mg/kg	0.008	0.027	1		03/06/06	LMP
1,2-Dibromo-3-chloropropane	<0.025	mg/kg	0.009	0.03	1	CSH	03/06/06	LMP
1,2-Dibromoethane	<0.025	mg/kg	0.012	0.04	1		03/06/06	LMP
,2-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		03/06/06	LMP
,3-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		03/06/06	LMP
1,4-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		03/06/06	LMP
nichlorodifluoromethane	<0.025	mg/kg	0.014	0.047	1	LCL	03/06/06	LMP
,1-Dichloroethane	<0.025	mg/kg	0.009	0.03	1		03/06/06	LMP
,2-Dichloroethane	<0.025	mg/kg	0.005	0.017	1		03/06/06	LMP
I,1-Dichloroethylene	<0.025	mg/kg	0.016	0.053	1		03/06/06	LMP
cis-1,2-Dichloroethylene	<0.025	mg/kg	0.007	0.023	1		03/06/06	LMP
rans-1,2-Dichloroethylene	<0.025	mg/kg	0.01	0.033	1		03/06/06	LMP
,2-Dichloropropane	<0.025	mg/kg	0.007	0.023	1		03/06/06	LMP
,3-Dichloropropane	<0.025	mg/kg	0.008	0.027	1	CSL	03/06/06	LMP
2,2-Dichloropropane	<0.025	mg/kg	0.008	0.027	1	DUP	03/06/06	LMP
Fthylbenzene	<0.025	mg/kg	0.007	0.023	1		03/06/06	LMP
exachlorobutadiene	<0.025	mg/kg	0.015	0.05	1		03/06/06	LMP
sopropylbenzene	<0.025	mg/kg	0.009	0.03	1		03/06/06	LMP
Isopropyl Ether	<0.025	mg/kg	0.014	0.047	1		03/06/06	LMP
5-Isopropyltoluene	<0.025	mg/kg	0.011	0.037	1		03/06/06	LMP
ethyl t-Butyl Ether(MTBE)	<0.025	mg/kg	0.018	0.06	1		03/06/06	LMP

lll results calculated on a dry weight basis.

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com

PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.75 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

Attn: John Guhl

⇒ample ID: 813 0.5-4.5'

Short Elliott Henderickson

Matrix: SOIL

Sample Date/Time: 02/15/06 11:15 Lab No. 195317

(•		Dilukian		8-4-	
	Result	<u>Units</u>	<u>LOD</u>	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	Analyst
EPA 8021 (Only positively	identified	analytes	are report	ed on a dry	weight ba	sis		
Methylene Chloride	<0.025	mg/kg	0.014	0.047	1		03/06/06	LMP
-Naphthalene	<0.025	mg/kg	0.01	0.033	1		03/06/06	LMP
†-Propylbenzene	<0.025	mg/kg	0.009	0.03	1		03/06/06	LMP
#etrachloroethylene	<0.025	mg/kg	0.009	0.03	1		03/06/06	LMP
1,1,2,2-Tetrachloroethane	<0.025	mg/kg	0.006	0.02	1		03/06/06	LMP
Toluene	<0.025	mg/kg	0.007	0.023	1		03/06/06	LMP
1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	<0.025 <0.025	mg/kg	0.014 0.014	0.047 0.047	1 1		03/06/06	LMP
1,1,1-Trichloroethane	<0.025	mg/kg mg/kg	0.014	0.047	1		03/06/06	LMP
1,1,2-Trichloroethane	<0.025	mg/kg	0.006	0.02	i		03/06/06 03/06/06	LMP LMP
Trichloroethylene	<0.025	mg/kg	0.011	0.037	i		03/06/06	LMP
⊒richlorofluoromethane	<0.025	mg/kg	0.008	0.027	i		03/06/06	LMP
1,2,4-Trimethylbenzene	<0.025	mg/kg	0.012	0.04	i		03/06/06	LMP
1,3,5-Trimethylbenzene	<0.025	mg/kg	0.01	0.033	ì		03/06/06	LMP
Vinyl Chloride	<0.025	mg/kg	0.018	0.06	1	LCL	03/06/06	LMP
ლ- & p-Xylene	0.0276	mg/kg	0.015	0.05	1	MB	03/06/06	LMP
p-Xylene	<0.025	mg/kg	0.008	0.027	1		03/06/06	LMP
∄ romochloromethane	<0.025	mg/kg	0.006	0.02	1		03/06/06	LMP
Bromoform	<0.025	mg/kg	0.008	0.027	1	CSH	03/06/06	LMP
Bromomethane	<0.025	mg/kg	0.009	0.03	1	LCL	03/06/06	LMP
Dibromomethane 1,1-Dichloropropene	<0.025 <0.025	mg/kg	0.008	0.027	1	CSH	03/06/06	LMP
trans-1,3-dichloroprop(yl)e	<0.025	mg/kg mg/kg	0.008 0.008	0.027 0.027	1 1		03/06/06	LMP
Styrene	<0.025	mg/kg	0.003	0.023	i		03/06/06 03/06/06	LMP LMP
7,1,1,2-Tetrachloroethane	<0.025	mg/kg	0.009	0.03	i		03/06/06	LMP
1,2,3-Trichloropropane	<0.025	mg/kg	0.007	0.023	i		03/06/06	LMP
±is-1,3-Dichloroprop(yl)ene	<0.025	mg/kg	0.007	0.023	i		03/06/06	LMP
PID Surrogate Recovery (S)	92.3	%	-	-	1		03/06/06	LMP
HALL Surrogate Recovery (S)	117.	%	-	-	1		03/06/06	LMP
TD 0740								
EPA 8310	.0.00400				_			
Acenaphthene	<0.00499	mg/kg	0.0047	0.016	1		03/01/06	LMP
Acenaphthylene ■nthracene	<0.00701 <0.00223	mg/kg mg/kg	0.0066 0.0021	0.022 0.007	1 1		03/01/06	LMP
enzo(a)Anthracene	0.00485	mg/kg	0.0021	0.007	1	J	03/01/06 03/01/06	LMP LMP
enzo(a)Pyrene	<0.00244	mg/kg	0.0023	0.0077	i	CSL	03/01/06	LMP
Benzo(b)Fluoranthene	0.0219	mg/kg	0.0021	0.007	i	50 2	03/01/06	LMP
₽enzo(k)Fluoranthene	<0.00308	mg/kg	0.0029	0.0097	ì		03/01/06	LMP
senzo(ghi)Perylene	0.092	mg/kg	0.004	0.013	1		03/01/06	LMP
thrysene	<0.00244	mg/kg	0.0023	0.0077	1		03/01/06	LMP
jibenzo(a,h)Anthracene	<0.00287	mg/kg	0.0027	0.009	1		03/01/06	LMP
Fluoranthene	<0.00276	mg/kg	0.0026	0.0087	1		03/01/06	LMP
=luorene	<0.00351	mg/kg	0.0033	0.011	1		03/01/06	LMP
ndeno(1,2,3-cd)Pyrene	0.0242	mg/kg	0.0022	0.0073	1		03/01/06	LMP
¶-Methyl Naphthalene 2-Methyl Naphthalene	<0.00393	mg/kg	0.0037	0.012	1		03/01/06	LMP
#aphthalene	<0.00436 <0.00489	mg/kg	0.0041	0.014 0.015	1		03/01/06	LMP
Thenanthrene	<0.00436	mg/kg mg/kg	0.0046 0.0041	0.015	1 1		03/01/06 03/01/06	LMP
yrene	0.00325	mg/kg	0.0021	0.007	i	J	03/01/06	LMP LMP
9,10-Diphenylanthracene (S)	64.2	""97 N9 %	-	-	i	•	03/01/06	LMP
Method 3550 Ultrasonic Ext.	COMP	,,	-	-	· -		02/24/06	MJG
_								
PA 9045	0.44				_			
DH - Laboratory	8.14		-	-	1		02/20/06	JJP
pH - Laboratory Time	08:15		-	-	•		02/20/06	JJP
JI DNR								
Soil Diesel Range Organics	<5.31	mg/kg	-	5.0	1	SPL DUP	02/24/06	LMP
Soil Org Ext - DRO	COMP		-	-	•		02/21/06	KAM

mil results calculated on a dry weight basis.

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com

Short Elliott Henderickson ■21 Frenette Drive Thippewa Falls , WI 54729 PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.29 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

Attn: John Guhl

Sample ID: MW-5 PZ-5 0-4' Matrix: SOIL Sample Date/Time: 02/13/06 10:30 Lab No. 195295

_	<u>Result</u>	<u>Units</u>	<u>LOD</u>	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	Analyst
PA 0004 40 1								
#PA 8021 (Only positively						ISIS	02/24/07	
Methylene Chloride ₩aphthalene	<0.025	mg/kg	0.014	0.047	1		02/21/06	LMP
•	<0.025	mg/kg	0.01	0.033	1		02/21/06	LMP
n-Propylbenzene	<0.025	mg/kg	0.009	0.03	1		02/21/06	LMP
Tetrachloroethylene	<0.025	mg/kg	0.009	0.03	1		02/21/06	LMP
1,1,2,2-Tetrachloroethane	<0.025	mg/kg	0.006	0.02	1		02/21/06	LMP
Toluene	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP
,2,3-Trichlorobenzene	<0.025	mg/kg	0.014	0.047	1		02/21/06	LMP
,2,4-Trichlorobenzene	<0.025	mg/kg	0.014	0.047	1		02/21/06	LMP
4,1,1-Trichloroethane	<0.025	mg/kg	0.008	0.027	1	0011	02/21/06	LMP
1,1,2-Trichloroethane	<0.025	mg/kg	0.006	0.02	1	CSH	02/21/06	LMP
Trichloroethylene	<0.025	mg/kg	0.011	0.037	1	0011	02/21/06	LMP
Trichlorofluoromethane	<0.025	mg/kg	0.008	0.027	1	CSH	02/21/06	LMP
1,2,4-Trimethylbenzene	<0.025	mg/kg	0.012	0.04	1		02/21/06	LMP
1,3,5-Trimethylbenzene	<0.025	mg/kg	0.01	0.033	1		02/21/06	LMP
Yinyl Chloride	<0.025	mg/kg	0.018	0.06	1		02/21/06	LMP
n- & p-Xylene p-Xylene	<0.025	mg/kg	0.015	0.05	1		02/21/06	LMP
	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP
Bromochloromethane	<0.025	mg/kg	0.006	0.02	1	CSH	02/21/06	LMP
Bromoform	<0.025	mg/kg	0.008	0.027	1	CSH	02/21/06	LMP
Bromomethane	<0.025	mg/kg	0.009	0.03	1	CSH	02/21/06	LMP
Pibromomethane	<0.025	mg/kg	0.008	0.027	1	CSH	02/21/06	LMP
1,1-Dichloropropene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP
trans-1,3-dichloroprop(yl)e	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP
Styrene	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP
,1,1,2-Tetrachloroethane	<0.025	mg/kg	0.009	0.03	1	CSH	02/21/06	LMP
,2,3-Trichloropropane	<0.025	mg/kg	0.007	0.023	1	CSH	02/21/06	LMP
tis-1,3-Dichloroprop(yl)ene	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP
PID Surrogate Recovery (S)	81.1	%	-	-	1		02/21/06	LMP
WALL Surrogate Recovery (S)	103.	%	-	•	1		02/21/06	LMP
EPA 8310								
Acenaphthene	<0.00617	ma (lea	0.0047	0.016	1		02/28/06	LMP
Acenaphthylene	<0.00866	mg/kg	0.0047	0.018	i			
nthracene		mg/kg			1	C11 C21	02/28/06	LMP
enzo(a)Anthracene	<0.00276 <0.00538	mg/kg	0.0021 0.0041	0.007 0.014	1	S1L S2L	02/28/06	LMP
senzo(a)Pyrene	<0.00302	mg/kg	0.0023		1		02/28/06	LMP
		mg/kg		0.0077	1		02/28/06	LMP
Benzo(b)Fluoranthene Benzo(k)Fluoranthene	<0.00276	mg/kg	0.0021	0.007			02/28/06	LMP
, ,	<0.00381	mg/kg	0.0029	0.0097	1 1		02/28/06	LMP
Penzo(ghi)Perylene	<0.00525	mg/kg	0.004	0.013			02/28/06	LMP
Thrysene	0.0056	mg/kg	0.0023	0.0077	1	J	02/28/06	LMP
Dibenzo(a,h)Anthracene Fluoranthene	<0.00354	mg/kg	0.0027	0.009	1		02/28/06	LMP
	<0.00341	mg/kg	0.0026	0.0087	1		02/28/06	LMP
luorene	<0.00433	mg/kg	0.0033	0.011	1	641	02/28/06	LMP
Indeno(1,2,3-cd)Pyrene	<0.00289	mg/kg	0.0022	0.0073	1	S1L	02/28/06	LMP
I-Methyl Naphthalene	<0.00486	mg/kg	0.0037	0.012	1		02/28/06	LMP
2-Methyl Naphthalene	<0.00538	mg/kg	0.0041	0.014	1		02/28/06	LMP
Maphthalene	<0.00604	mg/kg	0.0046	0.015	1		02/28/06	LMP
henanthrene	<0.00538	mg/kg	0.0041	0.014	1		02/28/06	LMP
Tyrene 9 10-Diphonylanthagene (S)	<0.00276	mg/kg °∕	0.0021	0.007	1		02/28/06	LMP
9,10-Diphenylanthracene (S)	53.6	%	-	-	1		02/28/06	LMP
Method 3550 Ultrasonic Ext.	COMP		-	-	-		02/22/06	KAM

ll results calculated on a dry weight basis.

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com

PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.28 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

Attn: John Guhl

421 Frenette Drive Chippewa Falls , WI 54729

Short Elliott Henderickson

Sample ID: MW-5 PZ-5 0-4' Matrix: SOIL Sample Date/Time: 02/13/06 10:30 Lab No. 195295

1	<u>Resul t</u>	<u>Units</u>	<u>LOD</u>	LOQ	Dilution <u>Factor</u> Q	<u>ualifiers</u>	Date <u>Analyzed</u>	<u>Analyst</u>
<u>PA 160.3</u> Total Solids	76.2	%	-	0.33	-		02/20/06	AMR
<u>≡PA 3050</u> ■etal Prep	COMP		-	-	-		02/27/06	DJB
EPA 6010 Fotal Arsenic	2.57	mg/kg	0.34	1.13	1		03/07/06	DJB
Total Barium	98.0	mg/kg	0.1	0.33	1	DUP	03/07/06	DJB
Total Cadmium	0.189	mg/kg	0.057	0.19	1	J	03/07/06	DJB
Total Chromium	27.7	mg/kg	0.053	0.18	1		03/07/06	DJB
Jotal Lead	6.56	mg/kg	0.53	1.76	1		03/07/06	DJB
Total Selenium	<0.787	mg/kg	0.6	2.0	1		03/07/06	DJB
Total Silver	<0.262	mg/kg	0.2	0.67	1		03/07/06	DJB
EPA 7471								
otal Mercury	0.0669	mg/kg	0.014	0.047	1		03/03/06	MPM
PA 8021 (Only positively	identified	i analytes	are repo	rted on a dr	y weight basi	s		
Benzene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP
Rromobenzene	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP
<pre>romodichloromethane</pre>	<0.025	mg/kg	0.006	0.02	1		02/21/06	LMP
-Butylbenzene	<0.025	mg/kg	0.012	0.04	1	LCL	02/21/06	LMP
sec-Butylbenzene	<0.025	mg/kg	0.01	0.033	1		02/21/06	LMP
tert-Butylbenzene	<0.025	mg/kg	0.01	0.033	1		02/21/06	LMP
Tarbon Tetrachloride	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP
Thlorobenzene	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP
-thlorodibromomethane	<0.025	mg/kg	0.02	0.067	1		02/21/06	LMP
Chloroethane	<0.025	mg/kg	0.09	0.30	1	LCL	02/21/06	LMP
Chloroform	<0.025	mg/kg	0.01	0.033	1		02/21/06	LMP
hloromethane	<0.025	mg/kg	0.01	0.033		H DUP	02/21/06	LMP
-Chlorotoluene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP
74-Chlorotoluene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP
1,2-Dibromo-3-chloropropane	<0.025	mg/kg	0.009	0.03	1		02/21/06	LMP
,2-Dibromoethane	<0.025	mg/kg	0.012	0.04	1		02/21/06	LMP
,2-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP
3-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP
1,4-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1 1 CS		02/21/06	LMP
ichlorodifluoromethane 1.1-Dichloroethane	<0.025	mg/kg	0.014	0.047	1 6	H LCL	02/21/06	LMP
, 2-Dichloroethane	<0.025 <0.025	mg/kg	0.009	0.03 0.017	•	L LCL	02/21/06	LMP
1,1-Dichloroethylene	<0.025	mg/kg	0.005 0.016	0.017	1 65	L LUL	02/21/06 02/21/06	LMP
cis-1,2-Dichloroethylene	<0.025	mg/kg	0.018	0.023	1		02/21/06	LMP LMP
rans-1,2-Dichloroethylene	<0.025	mg/kg mg/kg	0.007	0.023	i	LCL	02/21/06	LMP
,2-Dichloropropane	<0.025	mg/kg	0.007	0.033	i	CSH	02/21/06	LMP
,3-Dichloropropane	<0.025	mg/kg	0.007	0.023	1	CON	02/21/06	LMP
2,2-Dichtoropropane	<0.025	mg/kg	0.008	0.027	•	L LCL DUP	02/21/06	LMP
[thylbenzene	<0.025	mg/kg	0.007	0.027	1 63	L CCL DOP	02/21/06	LMP
mexachlorobutadiene	<0.025	mg/kg	0.007	0.05	i		02/21/06	LMP
:sopropylbenzene	<0.025	mg/kg	0.013	0.03	1		02/21/06	LMP
Isopropyl Ether	<0.025	mg/kg	0.014	0.047	i		02/21/06	LMP
p-Isopropyltoluene	<0.025	mg/kg	0.014	0.037	i		02/21/06	LMP
⇒thyl t-Butyl Ether(MTBE)	<0.025	mg/kg	0.018	0.06	i		02/21/06	LMP

Il results calculated on a dry weight basis.

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE

PREPARED BY: JRS

800-338-7226 715-355-3221 www.usfilter.com

PROJECT NO.: NERUBO502.00
REPORT NO.: 195283.30
DATE REC'D: 02/17/06
REPORT DATE: 03/13/06

Attn: John Guhl

Short Elliott Henderickson

| ⊒21 Frenette Drive | ⊋hippewa Falls , WI 54729

Sample ID: MW-6 0-4' Matrix: SOIL Sample Date/Time: 02/13/06 11:45 Lab No. 195296

					Dilution	Date	
_	<u>Result</u>	<u>Units</u>	LOD	LOQ	<u>Factor</u> <u>Qualifiers</u>	<u>Analyzed</u>	Analyst
<u>PA 160.3</u>							
Total Solids	58.0	%	-	0.33	•	02/20/06	AMR
						02, 20, 00	
EPA 3050							
Metal Prep	COMP		_	-	_	02/27/06	DJB
The same of the sa	00111					02/21/00	000
EPA 6010							
Total Arsenic	2.59	mg/kg	0.34	1.13	1	07/07/06	D ID
Total Barium	75.3		0.34	0.33	1	03/07/06	DJB
Fotal Cadmium	<0.0983	mg/kg				03/07/06	DJB
Total Chromium		mg/kg	0.057	0.19	1	03/07/06	DJB
	17.6	mg/kg	0.053	0.18	1	03/07/06	DJB
Jotal Lead	7.29	mg/kg	0.53	1.76	1	03/07/06	DJB
Total Selenium	<1.03	mg/kg	0.6	2.0	1	03/07/06	DJB
ľ otal Silver	<0.345	mg/kg	0.2	0.67	1	03/07/06	DJB
7/74							
EPA 7471							
_otal Mercury	0.119	mg/kg	0.014	0.047	1	03/03/06	MPM
L							
PA 8021 (Only positively		i analytes		rted on a dr	y weight basis		
Benzene	<0.025	mg/kg	0.008	0.027	1	02/21/06	LMP
₽ romobenzene	<0.025	mg/kg	0.007	0.023	1	02/21/06	LMP
<pre>Fromodichloromethane</pre>	<0.025	mg/kg	0.006	0.02	1	02/21/06	LMP
n-Butylbenzene	<0.025	mg/kg	0.012	0.04	1 LCL	02/21/06	LMP
sec-Butylbenzene	<0.025	mg/kg	0.01	0.033	1	02/21/06	LMP
tert-Butylbenzene	<0.025	mg/kg	0.01	0.033	i	02/21/06	LMP
Carbon Tetrachloride	<0.025	mg/kg	0.008	0.027	i	02/21/06	LMP
Inlorobenzene	<0.025	mg/kg	0.007	0.023	i	02/21/06	LMP
=hlorodibromomethane	<0.025	mg/kg	0.02	0.067	i	02/21/06	LMP
Chloroethane	<0.025	mg/kg	0.09	0.30	i LCL	02/21/06	LMP
Chloroform	<0.025	mg/kg	0.01	0.033	1	02/21/06	LMP
hloromethane	<0.025	mg/kg	0.01	0.033	1 CSH DUP		
-Chlorotoluene	<0.025	mg/kg	0.008	0.033	1 CSR DUP	02/21/06	LMP
4-Chlorotoluene					•	02/21/06	LMP
	<0.025	mg/kg	0.008	0.027	1	02/21/06	LMP
1,2-Dibromo-3-chloropropane	<0.025	mg/kg	0.009	0.03	1	02/21/06	LMP
2-Dibromoethane	<0.025	mg/kg	0.012	0.04	1	02/21/06	LMP
,2-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1	02/21/06	LMP
3-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1	02/21/06	LMP
1,4-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1	02/21/06	LMP
Dichlorodifluoromethane	<0.025	mg/kg	0.014	0.047	1 CSH LCL	02/21/06	LMP
,1-Dichloroethane	<0.025	mg/kg	0.009	0.03	1	02/21/06	LMP
2-Dichloroethane	<0.025	mg/kg	0.005	0.017	1 CSL LCL	02/21/06	LMP
1,1-Dichloroethylene	<0.025	mg/kg	0.016	0.053	1	02/21/06	LMP
cis-1,2-Dichloroethylene	<0.025	mg/kg	0.007	0.023	1	02/21/06	LMP
rans-1,2-Dichloroethylene	<0.025	mg/kg	0.01	0.033	1 LCL	02/21/06	LMP
,2-Dichloropropane	<0.025	mg/kg	0.007	0.023	1 CSH	02/21/06	LMP
,3-Dichloropropane	<0.025	mg/kg	0.008	0.027	1	02/21/06	LMP
2,2-Dichloropropane	<0.025	mg/kg	0.008	0.027	1 CSL LCL DUP	02/21/06	LMP
thylbenzene	<0.025	mg/kg	0.007	0.023	1	02/21/06	LMP
exachlorobutadiene	<0.025	mg/kg	0.015	0.05	1	02/21/06	LMP
sopropylbenzene	<0.025	mg/kg	0.009	0.03	1	02/21/06	LMP
sopropyl Ether	<0.025	mg/kg	0.014	0.047	i	02/21/06	LMP
p-Isopropyltoluene	<0.025	mg/kg	0.011	0.037	i	02/21/06	LMP
ethyl t-Butyl Ether(MTBE)	<0.025	mg/kg	0.018	0.06	1	02/21/06	LMP
• • • • • • • • • • • • • • • • • • • •					•	, - 1, 00	

Ill results calculated on a dry weight basis.

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474

TELEPHONE FACSIMILE

800-338-7226 715-355-3221 WEBSITE www.usfilter.com

PROJECT NO.: NERUB0502.00 REPORT NO. : 195283.31 DATE REC'D : 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

Attn: John Guhl

=ample ID: MW-6 0-4'

Short Elliott Henderickson

↓21 Frenette Drive ‡hippewa Falls , WI 54729

Matrix: SOIL

Sample Date/Time: 02/13/06 11:45

er •	<u>Result</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	<u>Qualifiers</u>	Date <u>Analyzed</u>	Analyst
PA 8021 (Only positively	identified	analytes	are repor	ted on a dry	, waight bac	ic		
Methylene Chloride	<0.025	mg/kg	0.014	0.047	weight bas	313	02/21/06	LMP .
_Naphthalene	<0.025	mg/kg	0.014	0.033	i		02/21/06	LMP
n-Propylbenzene	<0.025	mg/kg	0.009	0.03	i		02/21/06	LMP
etrachloroethylene	<0.025	mg/kg	0.009	0.03	i		02/21/06	LMP
1,2,2-Tetrachloroethane	<0.025	mg/kg	0.006	0.02	i		02/21/06	LMP
Toluene	<0.025	mg/kg	0.007	0.023	i		02/21/06	LMP
,2,3-Trichlorobenzene	<0.025	mg/kg	0.007	0.047	i		02/21/06	LMP
,2,4-Trichlorobenzene	<0.025	mg/kg	0.014	0.047	i		02/21/06	LMP
,1,1-Trichloroethane	<0.025	mg/kg	0.008	0.027	i		02/21/06	LMP
1,1,2-Trichloroethane	<0.025	mg/kg	0.006	0.02	i	CSH	02/21/06	LMP
Trichloroethylene	<0.025	mg/kg	0.011	0.037	<u>i</u>		02/21/06	LMP
richlorofluoromethane	<0.025	mg/kg	0.008	0.027	i	CSH	02/21/06	LMP
,2,4-Trimethylbenzene	<0.025	mg/kg	0.012	0.04	1		02/21/06	LMP
,3,5-Trimethylbenzene	<0.025	mg/kg	0.01	0.033	1		02/21/06	LMP
Vinyl Chloride	<0.025	mg/kg	0.018	0.06	1		02/21/06	LMP
■- & p-Xylene	<0.025	mg/kg	0.015	0.05	1		02/21/06	LMP
=-Xylene	<0.025	mg/kg	0.008	0.027	1	•	02/21/06	LMP
romochloromethane	<0.025	mg/kg	0.006	0.02	1	CSH	02/21/06	LMP
Bromoform	<0.025	mg/kg	0.008	0.027	1	CSH	02/21/06	LMP
_Bromomethane	<0.025	mg/kg	0.009	0.03	1	CSH	02/21/06	LMP
ibromomethane	<0.025	mg/kg	0.008	0.027	1	CSH	02/21/06	LMP
1-Dichloropropene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP
trans-1,3-dichloroprop(yl)e	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP
Styrene	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP
1,1,2- Tetrachloroethane	<0.025	mg/kg	0.009	0.03	1	CSH	02/21/06	LMP
,2,3-Trichloropropane	<0.025	mg/kg	0.007	0.023	1	CSH	02/21/06	LMP
sis-1,3-Dichloroprop(yl)ene	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP
PID Surrogate Recovery (S)	78.9	%	-	-	1		02/21/06	LMP
ALL Surrogate Recovery (S)	107.	%	-	-	1		02/21/06	LMP
PA 8310								
Acenaphthene	<0.0081	mg/kg	0.0047	0.016	1		02/28/06	LMP
Acenaphthylene	<0.0114	mg/kg	0.0066	0.022	1		02/28/06	LMP
nthracene	<0.00362	mg/kg	0.0021	0.007	1		02/28/06	LMP
enzo(a)Anthracene	0.0519	mg/kg	0.0041	0.014	1		02/28/06	LMP
menzo(a)Pyrene	0.0678	mg/kg	0.0023	0.0077	1		02/28/06	LMP
Benzo(b)Fluoranthene	0.114	mg/kg	0.0021	0.007	1		02/28/06	LMP
Renzo(k)Fluoranthene	0.0391	mg/kg	0.0029	0.0097	1		02/28/06	LMP
enzo(ghi)Perylene hrysene	0.106	mg/kg	0.004	0.013	1		02/28/06	LMP
nrysene	0.084	mg/kg	0.0023	0.0077	1		02/28/06	LMP
Uibenzo(a,h)Anthracene	<0.00466	mg/kg	0.0027	0.009	1		02/28/06	LMP
Fluoranthene	0.233	mg/kg	0.0026	0.0087	1	_	02/28/06	LMP
∃uorene	0.0115	mg/kg	0.0033	0.011	1	J	02/28/06	LMP
■ndeno(1,2,3-cd)Pyrene	0.0614	mg/kg	0.0022	0.0073	1		02/28/06	LMP
-Methyl Naphthalene	<0.00638	mg/kg	0.0037	0.012	1		02/28/06	LMP
2-Methyl Naphthalene	<0.00707	mg/kg	0.0041	0.014	1		02/28/06	LMP
Naphthalene	<0.00793	mg/kg	0.0046	0.015	1		02/28/06	LMP
nenanthrene	0.121	mg/kg	0.0041	0.014	1		02/28/06	LMP
rene ,10-Diphenylanthracene (S)	0.0621 28.7	mg/kg %	0.0021	0.007	1 1		02/28/06	LMP
Method 3550 Ultrasonic Ext.	COMP	/0	-	-	'_		02/28/06 02/22/06	LMP KAM
neshod 3550 offiasomic Ext.	COMP		-	-	•		02/22/00	KAIT .

_l results calculated on a dry weight basis.

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE

800-338-7226 715-355-3221 www.usfilter.com

PROJECT NO.: NERUB0502.00 REPORT NO.: 195283.32 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

Attn: John Guhl

421 Frenette Drive Chippewa Falls , WI 54729

Short Elliott Henderickson

Sample ID: MW-7 0-4' Matrix: SOIL Sample Date/Time: 02/13/06 12:30 Lab No. 195297

<u> </u>								
	<u>Result</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	<u>Analyst</u>
EPA 160.3								
Total Solids	77.7	%	-	0.33	-		02/20/06	AMR
■EPA 3050								
Metal Prep	COMP		-	-	-		02/27/06	DJB
EPA 6010	2 /7			4 49				
Total Arsenic	2.43	mg/kg	0.34	1.13	1		03/07/06	DJB
Total Barium	70.4	mg/kg	0.1	0.33	1		03/07/06	DJB
□otal Cadmium	0.13	mg/kg	0.057	0.19	1	J	03/07/06	DJB
Total Chromium	15.1	mg/kg	0.053	0.18	1		03/07/06	DJB
Total Lead	14.5	mg/kg	0.53	1.76	1		03/07/06	DJB
Total Selenium	1.08	mg/kg	0.6	2.0	1	J	03/07/06	DJB
Total Silver	<0.257	mg/kg	0.2	0.67	1		03/07/06	DJB
<u>EPA 7471</u> ≢otal Mercury	0.0849	(1	0.01/	0.047	4		07 (07 (0)	
l cat wercury	0.0049	mg/kg	0.014	0.047	1		03/03/06	MPM
EPA 8021 (Only positively	identified	d analytes	are repo	rted on a dr	y weight ba	sis		
Benzene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP
Bromobenzene	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP
∄ romodichloromethane	<0.025	mg/kg	0.006	0.02	1		02/21/06	LMP
n-Butylbenzene	<0.025	mg/kg	0.012	0.04	1	LCL	02/21/06	LMP
= ec-Butylbenzene	<0.025	mg/kg	0.01	0.033	1		02/21/06	LMP
tert-Butylbenzene	<0.025	mg/kg	0.01	0.033	i		02/21/06	LMP
Tarbon Tetrachloride	<0.025	mg/kg	0.008	0.027	i		02/21/06	LMP
thlorobenzene	<0.025	mg/kg	0.007	0.023	i		02/21/06	LMP
Shlorodibromomethane	<0.025	mg/kg	0.02	0.067	i		02/21/06	LMP
Chloroethane	<0.025	mg/kg	0.09	0.30	i	LCL	02/21/06	LMP
Chloroform	<0.025	mg/kg	0.01	0.033	i	LUL	02/21/06	LMP
Chloromethane	<0.025	mg/kg	0.01	0.033	1	CSH DUP	02/21/06	LMP
?-Chlorotoluene	<0.025	mg/kg	0.008	0.027	1	0011 001	02/21/06	LMP
-Chlorotoluene	<0.025	mg/kg	0.008	0.027	i		02/21/06	LMP
1,2-Dibromo-3-chloropropane	<0.025	mg/kg	0.009	0.03	i		02/21/06	LMP
1,2-Dibromoethane	<0.025		0.012	0.04	i			
,2-Dichlorobenzene	<0.025	mg/kg mg/kg	0.008	0.027	i		02/21/06	LMP LMP
,3-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		02/21/06 02/21/06	LMP
1,4-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1			LMP
Dichlorodifluoromethane	<0.025		0.008	0.027	1	CSH LCL	02/21/06	
1.1-Dichloroethane		mg/kg			1	CSH LCL	02/21/06	LMP
, 2-Dichloroethane	<0.025	mg/kg	0.009	0.03	1	001 101	02/21/06	LMP
1-Dichlerecthylere	<0.025	mg/kg	0.005	0.017	-	CSL LCL	02/21/06	LMP
7,1-Dichloroethylene	<0.025	mg/kg	0.016	0.053	1		02/21/06	LMP
cis-1,2-Dichloroethylene	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP
rans-1,2-Dichloroethylene	<0.025	mg/kg	0.01	0.033	1	LCL	02/21/06	LMP
,2-Dichloropropane	<0.025	mg/kg	0.007	0.023	1	CSH	02/21/06	LMP
,3-Dichloropropane	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP
2,2-Dichloropropane	<0.025	mg/kg	0.008	0.027	1	CSL LCL DUP	02/21/06	LMP
Ethylbenzene	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP
exachlorobutadiene	<0.025	mg/kg	0.015	0.05	1		02/21/06	LMP
sopropylbenzene	<0.025	mg/kg	0.009	0.03	1		02/21/06	LMP
¹ Isopropyl Ether	<0.025	mg/kg	0.014	0.047	1		02/21/06	LMP
p-Isopropyltoluene	<0.025	mg/kg	0.011	0.037	1		02/21/06	LMP
ethyl t-Butyl Ether(MTBE)	<0.025	mg/kg	0.018	0.06	1		02/21/06	LMP

Il results calculated on a dry weight basis.

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474

TELEPHONE FACSIMILE

800-338-7226 715-355-3221 WEBSITE www.usfilter.com

PROJECT NO.: NERUB0502.00 REPORT NO. : 195283.33 DATE REC'D : 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

∰ttn: John Guhl

ample ID: MW-7 0-4'

Short Elliott Henderickson

■21 Frenette Drive □hippewa Falls , WI 54729

Matrix: SOIL

Sample Date/Time: 02/13/06 12:30

i T	<u>Result</u>	<u>Units</u>	LOD	LOQ	Dilution Factor	Qualifiers	Date <u>Analyzed</u>	Analyst
EPA 8021 (Only positively	idomtified				iaht ba	-:-		
Methylene Chloride	<0.025		0.014	0.047	weight ba	SIS	02/21/04	LMP
↑ ¥aphthalene	0.045	mg/kg mg/kg	0.014	0.047	1		02/21/06 02/21/06	LMP
		• •			i			
h-Propyl benzene	<0.025	mg/kg	0.009	0.03	1		02/21/06	LMP
tetrachloroethylene	<0.025	mg/kg	0.009	0.03	1		02/21/06	LMP
1,1,2,2-Tetrachloroethane	<0.025	mg/kg	0.006	0.02	•		02/21/06	LMP
Toluene	<0.025	mg/kg	0.007	0.023	1 1		02/21/06	LMP
1,2,3-Trichlorobenzene	<0.025	mg/kg	0.014	0.047	1		02/21/06	LMP
,2,4-Trichlorobenzene	<0.025	mg/kg	0.014	0.047	1		02/21/06	LMP
1,1-Trichloroethane	<0.025	mg/kg	0.008	0.027	1	COU	02/21/06	LMP
1,1,2-Trichloroethane	<0.025	mg/kg	0.006	0.02	•	CSH	02/21/06	LMP
Trichloroethylene	<0.025	mg/kg	0.011	0.037	1	COU	02/21/06	LMP
richlorofluoromethane	<0.025	mg/kg	0.008	0.027	1	CSH	02/21/06	LMP
,2,4-Trimethylbenzene	<0.025	mg/kg	0.012	0.04	1		02/21/06	LMP
1,3,5-Trimethylbenzene	<0.025	mg/kg	0.01	0.033	1		02/21/06	LMP
Vinyl Chloride	<0.025	mg/kg	0.018	0.06	1		02/21/06	LMP
m- & p-Xylene	<0.025	mg/kg	0.015	0.05	1		02/21/06	LMP
b-Xylene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP
Bromochloromethane	<0.025	mg/kg	0.006	0.02	1	CSH	02/21/06	LMP
Bromoform	<0.025	mg/kg	0.008	0.027	1	CSH	02/21/06	LMP
Bromomethane	<0.025	mg/kg	0.009	0.03	1	CSH	02/21/06	LMP
Dibromomethane	<0.025	mg/kg	0.008	0.027	1	CSH	02/21/06	LMP
1,1-Dichloropropene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP
trans-1,3-dichloroprop(yl)e	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP
Styrene	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP
1,1,1,2-Tetrachloroethane	<0.025	mg/kg	0.009	0.03	1	CSH	02/21/06	LMP
,2,3-Trichloropropane	<0.025	mg/kg	0.007	0.023	1	CSH	02/21/06	LMP
tis-1,3-Dichloroprop(yl)ene	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP
PID Surrogate Recovery (S)	79.5	%	-	-	1		02/21/06	LMP
■ALL Surrogate Recovery (S)	89.8	%	-	-	1		02/21/06	LMP
2740								
EPA 8310	0.404						07.04.04	
Acenaphthene	<0.121	mg/kg	0.0047	0.016	20		03/01/06	LMP
Acenaphthylene	<0.17	mg/kg	0.0066	0.022	20		03/01/06	LMP
mnthracene	0.275	mg/kg	0.0021	0.007	20		03/01/06	LMP
enzo(a)Anthracene	0.988	mg/kg	0.0041	0.014	20		03/01/06	LMP
Benzo(a)Pyrene	0.815	mg/kg	0.0023	0.0077	20		03/01/06	LMP
Benzo(b)Fluoranthene	1.01	mg/kg	0.0021	0.007	20		03/01/06	LMP
Benzo(k)Fluoranthene	0.537	mg/kg	0.0029	0.0097	20		03/01/06	LMP
enzo(ghi)Perylene	0.471	mg/kg	0.004	0.013	20		03/01/06	LMP
hrysene	1.09	mg/kg	0.0023	0.0077	20		03/01/06	LMP
Dibenzo(a,h)Anthracene	<0.0695	mg/kg	0.0027	0.009	20		03/01/06	LMP
Fluoranthene	3.71	mg/kg	0.0026	0.0087	20		03/01/06	LMP
luorene	0.136	mg/kg	0.0033	0.011	20		03/01/06	LMP
ndeno(1,2,3-cd)Pyrene	0.726	mg/kg	0.0022	0.0073	20		03/01/06	LMP
1-Methyl Naphthalene	<0.0952	mg/kg	0.0037	0.012	20		03/01/06	LMP
2-Methyl Naphthalene	<0.106	mg/kg	0.0041	0.014	20		03/01/06	LMP
Naphthalene	<0.118	mg/kg	0.0046	0.015	20		03/01/06	LMP
Phenanthrene	1.92	mg/kg	0.0041	0.014	20		03/01/06	LMP
Pyrene	1.33	mg/kg	0.0021	0.007	20		03/01/06	LMP
Method 3550 Ultrasonic Ext.	COMP		-		-		02/22/06	KAM

ll results calculated on a dry weight basis.

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE

800-338-7226 715-355-3221 www.usfilter.com

PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.35 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

_Attn: John Guhl

421 Frenette Drive

Sample ID: MW-8 0-4'

Short Elliott Henderickson

Chippewa Falls , WI 54729

Matrix: SOIL

Sample Date/Time: 02/13/06 14:30

	<u>Result</u>	<u>Units</u>	<u>LOD</u>	LOQ	Dilution <u>Factor</u>	Qualifiers	Date Analyzed	<u>Analyst</u>
EPA 8021 (Only positively	identified	lanalytes	are repor	ted on a dry	weight ha	eie		
Methylene Chloride	<0.025	mg/kg	0.014	0.047	1	1010	02/21/06	LMP
Naphthalene	<0.025	mg/kg	0.01	0.033	i		02/21/06	LMP
n-Propylbenzene	<0.025	mg/kg	0.009	0.03	i		02/21/06	LMP
Tetrachloroethylene	<0.025	mg/kg	0.009	0.03	i		02/21/06	LMP
1,1,2,2-Tetrachloroethane	<0.025	mg/kg	0.006	0.02	i		02/21/06	LMP
Toluene	<0.025	mg/kg	0.007	0.023	i		02/21/06	LMP
1,2,3-Trichlorobenzene	<0.025	mg/kg	0.014	0.047	1		02/21/06	LMP
1,2,4-Trichlorobenzene	<0.025	mg/kg	0.014	0.047	i		02/21/06	LMP
1,1,1-Trichloroethane	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP
1,1,2-Trichloroethane	<0.025	mg/kg	0.006	0.02	1	CSH	02/21/06	LMP
Trichloroethylene	<0.025	mg/kg	0.011	0.037	1		02/21/06	LMP
Trichlorofluoromethane	<0.025	mg/kg	0.008	0.027	1	CSH	02/21/06	LMP
1,2,4-Trimethylbenzene	<0.025	mg/kg	0.012	0.04	1		02/21/06	LMP
1,3,5-Trimethylbenzene	<0.025	mg/kg	0.01	0.033	1		02/21/06	LMP
Vinyl Chloride	<0.025	mg/kg	0.018	0.06	1		02/21/06	LMP
m- & p-Xylene	<0.025	mg/kg	0.015	0.05	1		02/21/06	LMP
■o-Xylene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP
Bromochloromethane	<0.025	mg/kg	0.006	0.02	1	CSH	02/21/06	LMP
Bromoform	<0.025	mg/kg	0.008	0.027	1	CSH	02/21/06	LMP
■Bromomethane	<0.025	mg/kg	0.009	0.03	1	CSH	02/21/06	LMP
⇒ibromomethane	<0.025	mg/kg	0.008	0.027	1	CSH	02/21/06	LMP
	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP
trans-1,3-dichloroprop(yl)e	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP
Styrene	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP
<pre>1,1,1,2-Tetrachloroethane</pre>	<0.025	mg/kg	0.009	0.03	1	CSH	02/21/06	LMP
1,2,3-Trichloropropane	<0.025	mg/kg	0.007	0.023	1	CSH	02/21/06	LMP
■cis-1,3-Dichloroprop(yl)ene	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP
PID Surrogate Recovery (S)	77.4	%	-	-	1		02/21/06	LMP
HALL Surrogate Recovery (S)	100.	%	-	-	1		02/21/06	LMP
≡PA 8310								
Acenaphthene	<0.00544	mg/kg	0.0047	0.016	1	•	02/28/06	LMP
Acenaphthylene	<0.00764	mg/kg	0.0066	0.022	1		02/28/06	LMP
■nthracene	<0.00243	mg/kg	0.0021	0.007	1		02/28/06	LMP
Benzo(a)Anthracene	0.0122	mg/kg	0.0041	0.014	1	J	02/28/06	LMP
Benzo(a)Pyrene	<0.00266	mg/kg	0.0023	0.0077	1		02/28/06	LMP
Benzo(b)Fluoranthene	0.0355	mg/kg	0.0021	0.007	1		02/28/06	LMP
Benzo(k)Fluoranthene	0.0208	mg/kg	0.0029	0.0097	1		02/28/06	LMP
Benzo(ghi)Perylene	<0.00463	mg/kg	0.004	0.013	1		02/28/06	LMP
Chrysene	0.0543	mg/kg	0.0023	0.0077	1		02/28/06	LMP
Dibenzo(a,h)Anthracene	<0.00313	mg/kg	0.0027	0.009	1		02/28/06	LMP
Fluoranthene	<0.00301	mg/kg	0.0026	0.0087	1		02/28/06	LMP
Fluorene	<0.00382	mg/kg	0.0033	0.011	1		02/28/06	LMP
Indeno(1,2,3-cd)Pyrene	0.0251	mg/kg	0.0022	0.0073	1		02/28/06	LMP
1-Methyl Naphthalene	0.0566	mg/kg	0.0037	0.012	1		02/28/06	LMP
2-Methyl Naphthalene	0.0635	mg/kg	0.0041	0.014	1		02/28/06	LMP
Naphthalene	0.0316	mg/kg	0.0046	0.015	1		02/28/06	LMP
Phenanthrene	0.104	mg/kg	0.0041	0.014	1		02/28/06	LMP
Pyrene 9 10-Diphonylanthagene (S)	<0.00243	mg/kg	0.0021	0.007	1		02/28/06	LMP
9,10-Diphenylanthracene (S)	45.0	%	-	-	1		02/28/06	LMP
Method 3550 Ultrasonic Ext.	COMP		-	-	-		02/22/06	KAM

_ll results calculated on a dry weight basis.

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com

Short Elliott Henderickson -421 Frenette Drive -Chippewa Falls , WI 54729

Attn: John Guhl

⇒Sample ID: MW-8 0-4*

Matrix: SOIL

DATE REC'D : 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

PROJECT NO.: NERUBO502.00

REPORT NO. : 195283.34

Sample Date/Time: 02/13/06 14:30 Lab No. 195298

•				•	• •		
	<u>Result</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u> <u>Qualifie</u>	Date ers <u>Analyzed</u>	<u>Analyst</u>
EPA 160.3 Total Solids	86.4	%	_	0.33	-	02/20/06	AMR
70007 001.00	00.4	,,		0.55		02,20,00	7.11.13
EPA 3050					•		
™etal Prep	COMP		•	-	•	02/27/06	DJB
EPA 6010							
Total Arsenic	3.38	mg/kg	0.34	1.13	1	03/07/06	DJB
Total Barium	47.1	mg/kg	0.1	0.33	i	03/07/06	DJB
Total Cadmium	0.288	mg/kg	0.057	0.19	1	03/07/06	DJB
Total Chromium	6.32	mg/kg	0.053	0.18	1	03/07/06	DJB
Total Lead	43.8	mg/kg	0.53	1.76	i	03/07/06	DJB
Total Selenium	<0.694	mg/kg	0.6	2.0	i	03/07/06	DJB
Total Silver	<0.231	mg/kg	0.2	0.67	i	03/07/06	DJB
The state of the s	101231	11197 149	0.2	0.07	•	03/01/00	505
EPA 7471							
Total Mercury	0.16	mg/kg	0.014	0.047	1	03/03/06	MPM
EPA 8021 (Only positively					•	00:04:07	
Benzene	<0.025	mg/kg	800.0	0.027	1	02/21/06	LMP
Bromobenzene	<0.025	mg/kg	0.007	0.023	1	02/21/06	LMP
8romodichloromethane	<0.025	mg/kg	0.006	0.02	1	02/21/06	LMP
n-Butylbenzene	<0.025	mg/kg	0.012	0.04	1 LCL	02/21/06	LMP
sec-Butylbenzene	<0.025	mg/kg	0.01	0.033	1	02/21/06	LMP
tert-Butylbenzene	<0.025	mg/kg	0.01	0.033	1	02/21/06	LMP
Sarbon Tetrachloride	<0.025	mg/kg	800.0	0.027	1	02/21/06	LMP
Chlorobenzene	<0.025	mg/kg	0.007	0.023	1	02/21/06	LMP
Chlorodibromomethane	<0.025	mg/kg	0.02	0.067	1	02/21/06	LMP
Chloroethane	<0.025	mg/kg	0.09	0.30	1 LCL	02/21/06	LMP
Chloroform	<0.025	mg/kg	0.01	0.033	1	02/21/06	LMP
Chloromethane	<0.025	mg/kg	0.01	0.033	1 CSH DUP	02/21/06	LMP
2-Chlorotoluene	<0.025	mg/kg	0.008	0.027	1	02/21/06	LMP
74-Chlorotoluene	<0.025	mg/kg	0.008	0.027	1	02/21/06	LMP
1,2-Dibromo-3-chloropropane	<0.025	mg/kg	0.009	0.03	1	02/21/06	LMP
,2-Dibromoethane	<0.025	mg/kg	0.012	0.04	1	02/21/06	LMP
,2-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1	02/21/06	LMP
3-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1	02/21/06	LMP
1,4-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1	02/21/06	LMP
Dichlorodifluoromethane	<0.025	mg/kg	0.014	0.047	1 CSH LCL	02/21/06	LMP
,1-Dichloroethane	<0.025	mg/kg	0.009	0.03	1 001 101	02/21/06	LMP
,2-Dichloroethane	<0.025	mg/kg	0.005	0.017	1 CSL LCL	02/21/06	LMP
1,1-Dichloroethylene	<0.025	mg/kg	0.016	0.053	1	02/21/06	LMP
cis-1,2-Dichloroethylene	<0.025	mg/kg	0.007	0.023	1	02/21/06	LMP
rans-1,2-Dichloroethylene	<0.025	mg/kg	0.01	0.033	1 LCL 1 CSH	02/21/06	LMP
,2-Dichloropropane	<0.025	mg/kg	0.007	0.023		02/21/06	LMP
,3-Dichloropropane 2,2-Dichloropropane	<0.025	mg/kg	0.008	0.027	1 CSL LCL D	02/21/06	LMP
Fthylbenzene	<0.025 <0.025	mg/kg	0.008 0.007	0.027 0.023	1 CSL LCL I	• •	LMP
exachlorobutadiene		mg/kg		0.023	1	02/21/06	LMP
	<0.025	mg/kg	0.015		1	02/21/06	LMP
sopropylbenzene Isopropyl Ether	<0.025 <0.025	mg/kg	0.009 0.014	0.03 0.047	1	02/21/06	LMP
p-Isopropyl Ether		mg/kg			1	02/21/06	LMP
emethyl t-Butyl Ether(MTBE)	<0.025 <0.025	mg/kg	0.011	0.037 0.06	1	02/21/06	LMP LMP
Eculy C bucyt Ether (MIDE)	NO.023	mg/kg	0.018	0.00	•	02/21/06	LITE

all results calculated on a dry weight basis.

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com

A Siemens Business

PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.36 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

Attn: John Guhl

≒ample ID: MW-8 4-6' Matrix: SOIL Sample Date/Time: 02/13/06 14:45 Lab No. 195299

1	<u>Result</u>	<u>Units</u>	LOD	<u>LOQ</u>	Dilution <u>Factor</u> <u>Qualifiers</u>	Date <u>Analyzed</u>	Analyst
EPA 160.3 Total Solids	66.7	%	-	0.33	. -	02/20/06	AMR
EPA 3050							
Metal Prep	COMP		-	-	•	02/27/06	DJB
EPA 6010							
■otal Arsenic	2.29	mg/kg	0.34	1.13	1	03/07/06	DJB
■otal Barium	105.	mg/kg	0.1	0.33	1	03/07/06	DJB
■otal Cadmium	0.804	mg/kg	0.057	0.19	1	03/07/06	DJB
Total Chromium	41.8	mg/kg	0.053	0.18	1	03/07/06	DJB
Jotal Lead	9.54	mg/kg	0.53	1.76	1	03/07/06	DJB
Total Selenium	<0.9	mg/kg	0.6	2.0	1	03/07/06	DJB
■ otal Silver	<0.3	mg/kg	0.2	0.67	1	03/07/06	DJB
EPA 7471							
■otal Mercury	0.078	mg/kg	0.014	0.047	1	03/03/06	MPM
EPA 8021 (Only positively	identified	l analytes	are repoi	rted on a dr	y weight basis		
Benzene	<0.025	mg/kg	0.008	0.027	1	02/21/06	LMP
βromobenzene	<0.025	mg/kg	0.007	0.023	1	02/21/06	LMP
≱romodichloromethane	<0.025	mg/kg	0.006	0.02	1	02/21/06	LMP
n-Butylbenzene	<0.025	mg/kg	0.012	0.04	1 LCL	02/21/06	LMP
sec-Butylbenzene	<0.025	mg/kg	0.01	0.033	1	02/21/06	LMP
tert-Butylbenzene	<0.025	mg/kg	0.01	0.033	· 1	02/21/06	LMP
Darbon Tetrachloride	<0.025	mg/kg	0.008	0.027	1	02/21/06	LMP
Shlorobenzene	<0.025	mg/kg	0.007	0.023	1	02/21/06	LMP
Chlorodibromomethane	<0.025	mg/kg	0.02	0.067	1	02/21/06	LMP
Chloroethane	<0.025	mg/kg	0.09	0.30	1 LCL	02/21/06	LMP
fhloroform	<0.025	mg/kg	0.01	0.033	1	02/21/06	LMP
thloromethane	<0.025	mg/kg	0.01	0.033	1 CSH DUP	02/21/06	LMP
2- Chlorotoluene	<0.025	mg/kg	0.008	0.027	1	02/21/06	LMP
4-Chlorotoluene	<0.025	mg/kg	0.008	0.027	1	02/21/06	LMP
1,2-Dibromo-3-chloropropane	<0.025	mg/kg	0.009	0.03	1	02/21/06	LMP
_,2-Dibromoethane	<0.025	mg/kg	0.012	0.04	1	02/21/06	LMP
=,2-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1	02/21/06	LMP
=,3-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1	02/21/06	LMP
1,4-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1	02/21/06	LMP
Pichlorodifluoromethane	<0.025	mg/kg	0.014	0.047	1 CSH LCL	02/21/06	LMP
,1-Dichloroethane	<0.025	mg/kg	0.009	0.03	1	02/21/06	LMP
,2-Dichloroethane	<0.025	mg/kg	0.005	0.017	1 CSL LCL	02/21/06	LMP
1,1-Dichloroethylene	<0.025	mg/kg	0.016	0.053	1	02/21/06	LMP
cis-1,2-Dichloroethylene	<0.025	mg/kg	0.007	0.023	1	02/21/06	LMP
trans-1,2-Dichloroethylene	<0.025	mg/kg	0.01	0.033	1 LCL	02/21/06	LMP
1,2-Dichloropropane	<0.025	mg/kg	0.007	0.023	1 CSH	02/21/06	LMP
3.3-Dichloropropane	<0.025	mg/kg	0.008	0.027	1	02/21/06	LMP
2,2-Dichloropropane	<0.025	mg/kg	0.008	0.027	1 CSL LCL DUP	02/21/06	LMP
thylbenzene exachlorobutadiene	<0.025	mg/kg	0.007	0.023	1	02/21/06	LMP
	<0.025	mg/kg	0.015	0.05	1	02/21/06	LMP
sopropyl benzene	<0.025	mg/kg	0.009	0.03	1	02/21/06	LMP
Isopropyl Ether p-Isopropyltoluene	<0.025 <0.025	mg/kg	0.014	0.047 0.037	1	02/21/06	LMP
■ethyl t-Butyl Ether(MTBE)	<0.025	mg/kg mg/kg	0.011 0.018	0.037	1	02/21/06 02/21/06	LMP LMP
	10.023	mg/ Kg	0.010	0.00	1	02/21/00	LPIF

_ll results calculated on a dry weight basis.

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE

800-338-7226 715-355-3221 www.usfilter.com

PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.37 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

Attn: John Guhl

≼21 Frenette Drive

⇒ample ID: MW-8 4-6'

Short Elliott Henderickson

Chippewa Falls , WI 54729

Matrix: SOIL

Sample Date/Time: 02/13/06 14:45

Result Units LOO LOO Factor Qualifiers Analyzed Analyzet						Dilusi		D - 4 -	
Methylene Chloride		Result	Units	1.00	LOO	Dilution	Qualifiers	Date Analyzed	Analyst
Methylene Chloride		Resure	<u>Unit t s</u>	<u> </u>	LOW	<u>i ac coi</u>	<u>waattitets</u>	Allatyzeu	Anatyst
Methylene Chloride	EPA 8021 (Only positively	identified	analytes	are repor	ted on a dry	weight ba	sis		
						1		02/21/06	LMP
Tetrachloroethylene	Naphthalene	<0.025	mg/kg	0.01	0.033	1		02/21/06	LMP
1,1,2,2-Tetrachloroethane		<0.025	mg/kg	0.009	0.03			02/21/06	LMP
Toluene			mg/kg	0.009	0.03			02/21/06	LMP
7.2,3-Trichlorobenzene			mg/kg	0.006	0.02			02/21/06	LMP
1,2,4-Trichloroehazene			mg/kg					02/21/06	LMP
1,1-Trichloroethane									
1,1,2-Trichloroethane	_ * . * .								
Trichloroethylene	_ * . * .								
Trichlorofluoromethane	* . * .				–		CSH		
7.2,4-Trimethylbenzene	• • • • • • • • • • • • • • • • • • • •					•			
1,3,5-Trimethylbenzene	_					•	CSH		
Vinyl Chloride									
P-Xylene									
c-xylene <0.025 mg/kg 0.008 0.027 1 02/21/06 LMP LMP Bromochloromethane <0.025 mg/kg								• •	***
Bromochtoromethane									
Bromorem									
Promomethane									
Diptomomethane						-			
1-Dichloropropene	I								
Trans-1,3-dichloroprop(yl)e			• •				CSH		
Styrene	1,1-vichloropropene								
1,1,1,2-Tetrachloroethane	trans-1,3-dichtoroprop(yt)e								
1,2,3-Trichloropropane									
Cis-1,3-Dichloroprop(yl)ene									
PID Surrogate Recovery (S) 77.7 % - 1 02/21/06 LMP #ALL Surrogate Recovery (S) 105. % 1 02/21/06 LMP #ACCHAPHTHER							CSH		
#ALL Surrogate Recovery (S) 105. % 1 02/21/06 LMP Part									
### Repair									
Acenaphthene <0.00705	TALL Surrogate Recovery (5)	105.	<i>/</i> ₆	-	-	1		02/21/06	LMP
Acenaphthene <0.00705	FPA 8310								
Acenaphthylene		<0.00705	ma/ka	0 0047	0.016	1		02/28/06	1 MD
Anthracene	•								
Benzo(a)Anthracene <0.00615									
Benzo(a)Pyrene <0.00345 mg/kg 0.0023 0.0077 1 02/28/06 LMP Benzo(b)Fluoranthene <0.00315	4								
Benzo(b)Fluoranthene <0.00315									
Benzo(k)Fluoranthene <0.00435 mg/kg 0.0029 0.0097 1 02/28/06 LMP Henzo(ghi)Perylene <0.006			• •						
Renzo(ghi)Perylene									
#hrysene	III To a first the second of t								
Bibenzo(a,h)Anthracene <0.00405									
Fluoranthene <0.0039 mg/kg 0.0026 0.0087 1 02/28/06 LMP luorene <0.00495	Dibenzo(a,h)Anthracene								
luorene <0.00495 mg/kg 0.0033 0.011 1 02/28/06 LMP ndeno(1,2,3-cd)Pyrene <0.0033									
ndeno(1,2,3-cd)Pyrene <0.0033 mg/kg 0.0022 0.0073 1 02/28/06 LMP -Methyl Naphthalene <0.00555	⁻ luorene	<0.00495			0.011	1			
-Methyl Naphthalene	ndeno(1,2,3-cd)Pyrene	<0.0033							
2-Methyl Naphthalene									
Naphthalene <0.0069 mg/kg 0.0046 0.015 1 02/28/06 LMP Phenanthrene <0.00615	2-Methyl Naphthalene	<0.00615			0.014	1			
Phenanthrene <0.00615 mg/kg 0.0041 0.014 1 02/28/06 LMP Pyrene <0.00315 mg/kg 0.0021 0.007 1 02/28/06 LMP 9,10-Diphenylanthracene (S) 31.4 % 1 02/28/06 LMP		<0.0069			0.015	1			
9,10-Diphenylanthracene (S) 31.4 % 1 02/28/06 LMP	1		mg/kg	0.0041	0.014				LMP
to at a member and		<0.00315	mg/kg	0.0021	0.007	1		02/28/06	LMP
Method 3550 Ultrasonic Ext. COMP 02/22/06 KAM			%	•	-	1		02/28/06	LMP
	Method 3550 Ultrasonic Ext.	COMP		•	-	-		02/22/06	KAM

ll results calculated on a dry weight basis.

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com

PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.39 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

_Attn: John Guhl

421 Frenette Drive

Sample ID: MW-9 0-4"

Short Elliott Henderickson

Chippewa Falls , WI 54729

Matrix: SOIL

Sample Date/Time: 02/13/06 15:15

ţ	<u>Result</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	Analyst
EPA 8021 (Only positively	. idontific		one Bono	.+	iaba b.	a i a		
EPA 8021 (Only positively Methylene Chloride	<0.025			•	•	ISIS	02/21/04	LMD
Naphthalene	0.307	mg/kg	0.014	0.047	1		02/21/06	LMP
n-Propylbenzene	0.0613	mg/kg	0.01	0.033	1 1		02/21/06	LMP
Tetrachloroethylene		mg/kg	0.009	0.03	1		02/21/06	LMP
1,1,2,2-Tetrachloroethane	<0.025 <0.025	mg/kg	0.009	0.03	1		02/21/06	LMP
Toluene	<0.025	mg/kg	0.006 0.007	0.02 0.023	1		02/21/06	LMP
1,2,3-Trichlorobenzene	<0.025	mg/kg		0.023	1		02/21/06	LMP
1,2,4-Trichlorobenzene	<0.025	mg/kg mg/kg	0.014 0.014	0.047	1		02/21/06	LMP
1,1,1-Trichloroethane	<0.025		0.008	0.047	1		02/21/06	LMP
1,1,2-Trichloroethane	<0.025	mg/kg mg/kg	0.006	0.027	1	CSH	02/21/06 02/21/06	LMP
Trichloroethylene	<0.025	mg/kg	0.000	0.037	1	Con	02/21/06	LMP LMP
Trichlorofluoromethane	<0.025	mg/kg	0.008	0.037	i	CSH	02/21/06	LMP
1,2,4-Trimethylbenzene	0.217	mg/kg	0.012	0.04	i	Con	02/21/06	LMP
1,3,5-Trimethylbenzene	0.126	mg/kg	0.012	0.033	i		02/21/06	LMP
Vinyl Chloride	<0.025	mg/kg	0.018	0.05	1		02/21/06	LMP
n- & p-Xylene	0.0472	mg/kg	0.015	0.05	1	J	02/21/06	LMP
⇒-Xylene	0.059	mg/kg	0.008	0.027	i	J	02/21/06	LMP
∃romochloromethane	<0.025	mg/kg	0.006	0.02	i	CSH	02/21/06	LMP
Bromoform	<0.025	mg/kg	0.008	0.027	i	CSH	02/21/06	LMP
Bromomethane	<0.025	mg/kg	0.009	0.03	1	CSH	02/21/06	LMP
ibromomethane	<0.025	mg/kg	0.009	0.027	1	CSH	02/21/06	LMP
,1-Dichloropropene	<0.025	mg/kg	0.008	0.027	1	Con	02/21/06	LMP
trans-1,3-dichloroprop(yl)e	<0.025	mg/kg	0.008	0.027	i		02/21/06	LMP
Styrene	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP
■,1,1,2-Tetrachloroethane	<0.025	mg/kg	0.007	0.03	1	CSH	02/21/06	LMP
■,2,3-Trichloropropane	<0.025	mg/kg	0.007	0.023	i	CSH	02/21/06	LMP
= is-1,3-Dichloroprop(yl)ene	<0.025	mg/kg	0.007	0.023	i	CSII	02/21/06	LMP
PID Surrogate Recovery (S)	74.6	""97 K9 %	0.007	0.023	i		02/21/06	LMP
#ALL Surrogate Recovery (S)	88.9	%	-	_	i		02/21/06	LMP
The surrogate Recovery (s)	00.7	70					02/21/00	LIVE
#PA 8310								
Acenaphthene	<0.00554	mg/kg	0.0047	0.016	1		02/28/06	LMP
Acenaphthylene	<0.00778	mg/kg	0.0066	0.022	i		02/28/06	LMP
■nthracene	<0.00248	mg/kg	0.0021	0.007	i		02/28/06	LMP
≡enzo(a)Anthracene	0.0323	mg/kg	0.0041	0.014	i		02/28/06	LMP
≡enzo(a)Pyrene	0.052	mg/kg	0.0023	0.0077	i		02/28/06	LMP
Benzo(b)Fluoranthene	0.104	mg/kg	0.0021	0.007	1		02/28/06	LMP
Benzo(k)Fluoranthene	0.0459	mg/kg	0.0029	0.0097	1		02/28/06	LMP
enzo(ghi)Perylene	0.151	mg/kg	0.004	0.013	1		02/28/06	LMP
hrysene	0.109	mg/kg	0.0023	0.0077	1		02/28/06	LMP
Vibenzo(a,h)Anthracene	<0.00318	mg/kg	0.0027	0.009	1		02/28/06	LMP
Fluoranthene	0.218	mg/kg	0.0026	0.0087	1		02/28/06	LMP
! Luorene	<0.00389	mg/kg	0.0033	0.011	1		02/28/06	LMP
ndeno(1,2,3-cd)Pyrene	0.0802	mg/kg	0.0022	0.0073	1		02/28/06	LMP
-Methyl Naphthalene	<0.00436	mg/kg	0.0037	0.012	1		02/28/06	LMP
2-Methyl Naphthalene	<0.00483	mg/kg	0.0041	0.014	1		02/28/06	LMP
Naphthalene	<0.00542	mg/kg	0.0046	0.015	1		02/28/06	LMP
henanthrene	0.142	mg/kg	0.0041	0.014	1		02/28/06	LMP
yrene	<0.00248	mg/kg	0.0021	0.007	1		02/28/06	LMP
7,10-Diphenylanthracene (S)	41.5	%	-	-	1		02/28/06	LMP
Method 3550 Ultrasonic Ext.	COMP		-	-	-		02/22/06	KAM

ll results calculated on a dry weight basis.

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474

TELEPHONE FACSIMILE WEBSITE

800-338-7226 715-355-3221 www.usfilter.com

Short Elliott Henderickson 421 Frenette Drive Chippewa Falls , WI 54729

PROJECT NO.: NERUB0502.00 REPORT NO. : 195283.38 DATE REC'D : 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

Attn: John Guhl

Sample ID: MW-9 0-4' Matrix: SOIL Sample Date/Time: 02/13/06 15:15

	Result	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	Analyst
EPA_160.3								
Total Solids	84.8	%	•.	0.33	•		02/20/06	AMR
EPA 3050								
Metal Prep	COMP		-	-	-		02/27/06	DJB
EPA 6010								
Total Arsenic	3.84	mg/kg	0.34	1.13	1		03/07/06	DIB
Total Barium	48.1	mg/kg	0.1	0.33	1		03/07/06	DJB
Total Cadmium	0.297	mg/kg	0.057	0.19	1		03/07/06	DJB
Total Chromium	11.6	mg/kg	0.053	0.18	1		03/07/06	DJB
Total Lead	50.8	mg/kg	0.53	1.76	1		03/07/06	DJB
Total Selenium	<0.708	mg/kg	0.6	2.0	1		03/07/06	DJB
Total Silver	<0.236	mg/kg	0.2	0.67	1		03/07/06	DJB
EPA 7471								
iotal Mercury	0.0825	mg/kg	0.014	0.047	1		03/03/06	MPM
7 550 1101 501 7	0.0025	פיי לכייי	01014	0.047	•		03, 03, 00	
<u>EPA 8021</u> (Only positively	identified	l analytes	are repo	rted on a dr	y weight ba	sis		
Benzene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP
Bromobenzene	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP
Bromodichloromethane	<0.025	mg/kg	0.006	0.02	1		02/21/06	LMP
n-Butylbenzene	0.0519	mg/kg	0.012	0.04	1	LCL	02/21/06	LMP
sec-Butylbenzene	0.0436	mg/kg	0.01	0.033	1		02/21/06	LMP
tert-Butylbenzene	<0.025	mg/kg	0.01	0.033	1		02/21/06	LMP
‡arbon Tetrachloride	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP +
hlorobenzene hlorodibromomethane	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP
	<0.025	mg/kg	0.02	0.067	1		02/21/06	LMP
Chloroethane	<0.025	mg/kg	0.09	0.30	1	LCL	02/21/06	LMP
Chloroform	<0.025	mg/kg	0.01	0.033	1		02/21/06	LMP
⊃hloromethane	<0.025	mg/kg	0.01	0.033	1	CSH DUP	02/21/06	LMP
‡- Chlorotoluene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP
↓-Chlorotoluene	<0.025	mg/kg	0.008	0.027	- 1		02/21/06	LMP
1,2-Dibromo-3-chloropropane	<0.025	mg/kg	0.009	0.03	1		02/21/06	LMP
	<0.025	mg/kg	0.012	0.04	1		02/21/06	LMP
1,2-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP
3-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP
1,4-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP
Pichlorodifluoromethane	<0.025	mg/kg	0.014	0.047	1	CSH	02/21/06	LMP
,1-Dichloroethane	<0.025	mg/kg	0.009	0.03	1		02/21/06	LMP
,2-Dichloroethane	<0.025	mg/kg	0.005	0.017		CSL LCL	02/21/06	LMP
1,1-Dichloroethylene	<0.025	mg/kg	0.016	0.053	1		02/21/06	LMP
cis-1,2-Dichloroethylene	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP
rans-1,2-Dichloroethylene	<0.025	mg/kg	0.01	0.033	1	LCL	02/21/06	LMP
,2-Dichloropropane	<0.025	mg/kg	0.007	0.023	1	CSH	02/21/06	LMP
,3-Dichloropropane	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP
2,2-Dichloropropane	<0.025	mg/kg	0.008	0.027	1	CSL LCL DUP	02/21/06	LMP
Ethylbenzene	0.154	mg/kg	0.007	0.023	1		02/21/06	LMP
exachlorobutadiene	<0.025	mg/kg	0.015	0.05	1		02/21/06	LMP
sopropylbenzene	0.0696	mg/kg	0.009	0.03	1		02/21/06	LMP
Hopropyl Ether	<0.025	mg/kg	0.014	0.047	1		02/21/06	LMP
p-Isopropyltoluene	0.0578	mg/kg	0.011	0.037	1		02/21/06	LMP
ethyl t-Butyl Ether(MTBE)	<0.025	mg/kg	0.018	0.06	1		02/21/06	LMP

ll results calculated on a dry weight basis.

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474

TELEPHONE FACSIMILE WEBSITE

800-338-7226 715-355-3221 www.usfilter.com

PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.40 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

Attn: John Guhl

Short Elliott Henderickson

Chippewa Falls , WI 54729

421 Frenette Drive

= ample ID: MW-9 4-6' Matrix: SOIL Sample Date/Time: 02/13/06 15:30 Lab No. 195301

				•				
	<u>Result</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u> Qu	ualifiers	Date <u>Analyzed</u>	<u>Analyst</u>
ns 4/0 7								
<u>PA 160.3</u> Total Solids	97.3	•/		0.77			02/20/04	
Total Solius	87.2	%	-	0.33	-		02/20/06	AMR
EPA 3050								
Metal Prep	COMP		_	-	_		02/27/06	DJB
- Install Frep	COM						02/21/00	036
EPA 6010								
otal Arsenic	2.82	mg/kg	0.34	1.13	1		03/07/06	DJB
Total Barium	37.5	mg/kg	0.1	0.33	1		03/07/06	DJB
■otal Cadmium	<0.0654	mg/kg	0.057	0.19	1		03/07/06	DJB
Total Chromium	11.3	mg/kg	0.053	0.18	1		03/07/06	DJB
Total Lead	10.4	mg/kg	0.53	1.76	1		03/07/06	DJB
Total Selenium	<0.688	mg/kg	0.6	2.0	1		03/07/06	DJB
Total Silver	<0.229	mg/kg	0.2	0.67	1		03/07/06	DJB
-								
EPA 7471								
Total Mercury	0.0264	mg/kg	0.014	0.047	1	J	03/03/06	MPM
TDA 0004								
EPA 8021 (Only positively						i		
Benzene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP
Bromobenzene	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP
Fromodichloromethane	<0.025	mg/kg	0.006	0.02	1		02/21/06	LMP
t-Butylbenzene	<0.025	mg/kg	0.012	0.04	1	LCL	02/21/06	LMP
sec-Butylbenzene	<0.025	mg/kg	0.01	0.033	1		02/21/06	LMP
tert-Butylbenzene arbon Tetrachloride	<0.025	mg/kg	0.01	0.033	1		02/21/06	LMP
hlorobenzene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP
hlorodibromomethane	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP
Chloroethane	<0.025 <0.025	mg/kg	0.02 0.09	0.067 0.30	1 1	LCL	02/21/06	LMP
Chloroform	<0.025	mg/kg	0.01	0.033	1	LUL	02/21/06	LMP LMP
hloromethane	<0.025	mg/kg mg/kg	0.01	0.033		DUP	02/21/06	LMP
-Chlorotoluene	<0.025	mg/kg	0.008	0.033	1 (31	DOP	02/21/06 02/21/06	
4-Chlorotoluene	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP LMP
1,2-Dibromo-3-chloropropane	<0.025	mg/kg	0.009	0.03	i		02/21/06	LMP
,2-Dibromoethane	<0.025	mg/kg	0.012	0.04	1		02/21/06	LMP
,2-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	i		02/21/06	LMP
,3-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	i		02/21/06	LMP
1,4-Dichlorobenzene	<0.025	mg/kg	0.008	0.027	i		02/21/06	LMP
Nichlorodifluoromethane	<0.025	mg/kg	0.014	0.047	i	CSH	02/21/06	LMP
,1-Dichloroethane	<0.025	mg/kg	0.009	0.03	i	00	02/21/06	LMP
,2-Dichloroethane	<0.025	mg/kg	0.005	0.017	*	. LCL	02/21/06	LMP
,1-Dichloroethylene	<0.025	mg/kg	0.016	0.053	1	. 202	02/21/06	LMP
cis-1,2-Dichloroethylene	<0.025	mg/kg	0.007	0.023	i		02/21/06	LMP
rans-1,2-Dichloroethylene	<0.025	mg/kg	0.01	0.033	i	LCL	02/21/06	LMP
,2-Dichloropropane	<0.025	mg/kg	0.007	0.023	i	CSH	02/21/06	LMP
,3-Dichloropropane	<0.025	mg/kg	0.008	0.027	1		02/21/06	LMP
2.2-Dichloropropane	<0.025	mg/kg	0.008	0.027		LCL DUP	02/21/06	LMP
Ethylbenzene	<0.025	mg/kg	0.007	0.023	1		02/21/06	LMP
Ethylbenzene exachlorobutadiene	<0.025	mg/kg	0.015	0.05	i		02/21/06	LMP
= sopropylbenzene	<0.025	mg/kg	0.009	0.03	1		02/21/06	LMP
sopropyl Ether	<0.025	mg/kg	0.014	0.047	i		02/21/06	LMP
p-Isopropyltoluene	<0.025	mg/kg	0.011	0.037	1		02/21/06	LMP
■ethyl t-Butyl Ether(MTBE)	<0.025	mg/kg	0.018	0.06	1		02/21/06	LMP

ll results calculated on a dry weight basis.

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE

800-338-7226 715-355-3221 www.usfilter.com

Short Elliott Henderickson 21 Frenette Drive Chippewa Falls , WI 54729 PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.41 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

∯ttn: John Guhl

ample ID: MW-9 4-6' Matrix: SOIL Sample Date/Time: 02/13/06 15:30 Lab No. 195301

Result Units LOD LOQ Factor Qualifiers	<u>Analyzed</u>	<u>Analyst</u>
PA 8021 (Only positively identified analytes are reported on a dry weight basis		
	02/21/06	LMP
	02/21/06	LMP
• • • • • • • • • • • • • • • • • • • •	02/21/06	LMP
	02/21/06	LMP
· · · · · · · · · · · · · · · · · · ·	02/21/06	LMP
	02/21/06	LMP
The state of the s	02/21/06	LMP
	02/21/06	LMP
	02/21/06	LMP
	02/21/06	LMP
	02/21/06	LMP
	02/21/06	LMP
,2,4-Trimethylbenzene <0.025 mg/kg 0.012 0.04 1	02/21/06	LMP
	02/21/06	LM P
Vinyl Chloride <0.025 mg/kg 0.018 0.06 1	02/21/06	LMP
m - & p-Xylene <0.025 mg/kg 0.015 0.05 1	02/21/06	LMP
-Xylene <0.025 mg/kg 0.008 0.027 1	02/21/06	LMP
	02/21/06	LMP
The second secon	02/21/06	LMP
	02/21/06	LMP
	02/21/06	LMP
	02/21/06	LMP
	02/21/06	LMP
WALL Surrogate Recovery (S) 102. % 1	02/21/06	LMP
EPA 8310		
	02/29/04	LMP
	02/28/06	LMP
11	02/28/06 02/28/06	LMP
11	02/28/06	LMP
	02/28/06	LMP
Benzo(b)Fluoranthene 0.0292 mg/kg 0.0021 0.007 1	02/28/06	LMP
	02/28/06	LMP
2-Methyl Naphthalene 0.0179 mg/kg 0.0041 0.014 1	02/28/06	LMP
	02/28/06	LMP
menanthrene 0.0347 mg/kg 0.0041 0.014 1	02/28/06	LMP
···	02/28/06	LMP
- -	02/28/06	LMP
Method 3550 Ultrasonic Ext. COMP	02/22/06	KAM

ll results calculated on a dry weight basis.

TELEPHONE FACSIMILE WEBSITE

02/21/06 MRD

800-338-7226 715-355-3221 www.usfilter.com

Short Elliott Henderickson ■21 Frenette Drive ⊃hippewa Falls , WI 54729

PROJECT NO.: NERUB0502.00 REPORT NO. : 195283.24 DATE REC'D : 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

∯ttn: John Guhl

thylbenzene

<0.1

μg/l

■ample ID: 85	Matrix	: GRDWTR	Sa	mple Date/T	Lab No. 195293			
	<u>Result</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	Analyst
EPA 150.1 pH - Laboratory pH - Laboratory Time	7.36 08:15		-	-	1		02/20/06 02/20/06	JJP JJP
<u>PA 245.1</u> Diss. Mercury	<0.07	μg/l	0.07	0.23	1		02/21/06	MPM

PA 245.1 Diss. Mercury	<0.07	μg/l	0.07	0.23	1		02/21/06	MPM
∃PA 6020								
iss. Arsenic	<0.6	μg/l	0.6	2.0	1		02/28/06	JCH
iss. Cadmium	<0.2	μg/l	0.2	0.67	1		02/28/06	JCH
Diss. Chromium	<1.60	μg/l	1.6	5.33	1		02/28/06	JCH
∰iss. Lead	<0.3	μg/l	0.3	1.0	1		02/28/06	JCH
iss. Selenium	0.6	μg/l	0.6	2.0	1	j	02/28/06	JCH
iss. Barium	69.3	μg/l	2.0	6.66	1		02/28/06	JCH
Diss. Silver	<0.2	μg/l	0.2	0.67	1		02/28/06	JCH
EPA 8260								
enzene	<0.15	μg/l	0.15	0.50	1		02/21/06	MRD
romobenzene	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD
Bromochloromethane	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD
Promodichloromethane	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD
Hnomoform	40.0		0.0	0 17	4		07/24/06	***

iss. Arsenic	<0.6	μg/l	0.6	2.0	1		02/28/06	JCH	
Fiss. Cadmium	<0.2	μg/l	0.2	0.67	1		02/28/06	JCH	
Diss. Chromium	<1.60	μg/l	1.6	5.33	1		02/28/06	JCH	
₱iss. Lead	<0.3	μg/l	0.3	1.0	1		02/28/06	JCH	
iss. Selenium	0.6	μg/l	0.6	2.0	1	J	02/28/06	JCH	
iss. Barium	69.3	μg/l	2.0	6.66	1		02/28/06	JCH	
Diss. Silver	<0.2	μg/l	0.2	0.67	1		02/28/06	JCH	
EPA 8260									
enzene	<0.15	μg/ί	0.15	0.50	1		02/21/06	MRD	
romobenzene	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD	
Bromochloromethane	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD	
Promodichloromethane	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD	
romoform	<0.2	μg/l	0.2	0.67	1		02/21/06	MRD	
≝romomethane	<0.15	μg/l	0.15	0.50	1		02/21/06	MRD	
n-Butylbenzene	<0.2	μg/l	0.2	0.67	1		02/21/06	MRD	
sec-Butylbenzene	<0.15	μg/l	0.15	0.50	1		02/21/06	MRD	
_ert-Butylbenzene	0.236	μg/l	0.15	0.50	1	J	02/21/06	MRD	
arbon Tetrachloride	<0.2	μg/l	0.2	0.67	1		02/21/06	MRD	
hlorobenzene	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD	
Chloroethane	<0.6	μg/l	0.6	2.0	1		02/21/06	MRD	
Nhloroform	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD	
hloromethane	<0.2	μg/l	0.2	0.67	1		02/21/06	MRD	
-Chlorotoluene	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD	
4-Chlorotoluene	<0.2	μg/l	0.2	0.67	1		02/21/06	MRD	
Dibromochloromethane	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD	
ibromochloropropane(DBCP)	<0.3	μg/l	0.3	1.0	i		02/21/06	MRD	
,2-Dibromoethane(EDB)	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD	
ibromomethane	<0.1	μg/l	0.1	0.33	i		02/21/06	MRD	
1,2-Dichlorobenzene	<0.75	μg/l	0.75	2.5	i		02/21/06	MRD	
	<0.15	μg/l	0.15	0.50	i		02/21/06	MRD	
,4-Dichlorobenzene	<0.75	μg/l	0.75	2.5	i		02/21/06	MRD	
ichlorodifluoromethane	<0.25	μg/l	0.25	0.83	i		02/21/06	MRD	
-1,1-Dichloroethane	<0.15	μg/l	0.15	0.50	i		02/21/06	MRD	
1,2-Dichloroethane	<0.1	μg/l	0.1	0.33	i		02/21/06	MRD	
,1-Dichloroeth(yl)ene	<0.15	μg/l	0.15	0.50	i		02/21/06	MRD	
is-1,2-Dichloroeth(yl)ene	<0.2	μg/l	0.2	0.67	i		02/21/06	MRD	
rans-1,2-Dichloroeth(yl)en	<0.1	μg/l μg/l	0.1	0.33	i		02/21/06	MRD	
1,2-Dichloropropane	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD	
1,3-Dichloropropane	<0.1	μg/l μg/l	0.1	0.33	1		02/21/06	MRD	
,2-Dichloropropane	<0.1	μg/l μg/l	0.1	0.33	1		02/21/06	MRD	
,1-Dichloropropene	<0.2	μg/l	0.2	0.67	1		02/21/06	MRD	
cis-1,3-Dichloropropene	<0.1	μg/l μg/l	0.2	0.33	1		02/21/06	MRD	
trans-1,3-Dichloropropene	<0.1	μg/l μg/l	0.1	0.33	1			MRD	
thyl henzene	<0.1	μg/ t	0.1	0.33	1		02/21/06	MKU	

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE

800-338-7226 715-355-3221 www.usfilter.com

Short Elliott Henderickson 421 Frenette Drive Chippewa Falls , WI 54729 PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.25 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

Attn: John Guhl

Sample ID: B5	Matrix: GRDWTR			Sample Date/Ti	Lab No. 195293			
	Result	Units	LOD	LOQ	Dilution Factor	Qualifiers	Date Analyzed	Analyst
			_					
EPA 8260	4 00				ā			
Hexachlorobutadiene	<1.00	μg/l	1.0	3.33	1		02/21/06	MRD
Isopropylbenzene	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD
4-Isopropyltoluene	<0.2	μg/l	0.2	0.67	1		02/21/06	MRD
Methylene Chloride	<0.4 <0.1	μg/l	0.4	1.33	1 1		02/21/06	MRD
Methyl t-Butyl Ether(MTBE) Naphthalene	<1.00	μg/l μg/l	0.1 1.0	0.33 3.33	1	CSH	02/21/06 02/21/06	MRD MRD
n-Propylbenzene	<0.1	μg/l μg/l	0.1	0.33	1	CSH		
Styrene	<0.1		0.1	0.33	1		02/21/06 02/21/06	MRD MRD
1,1,1,2-Tetrachloroethane	<0.1	μg/l μg/l	0.1	0.33	i		02/21/06	MRD
1,1,2,2-Tetrachloroethane	0.286	μg/l μg/l	0.1	0.33	i	J	02/21/06	MRD
Tetrachloroeth(yl)ene	<0.1	μg/l μg/l	0.1	0.33	1	J	02/21/06	MRD
Toluene	<0.4	μg/l μg/l	0.4	1.33	i		02/21/06	MRD
1,2,3-Trichlorobenzene	<0.5	μg/l μg/l	0.5	1.67	i		02/21/06	MRD
1,2,4-Trichlorobenzene	<0.5	μg/l	0.5	1.67	i		02/21/06	MRD
1,1,1-Trichloroethane	<0.2	μg/l	0.2	0.67	i		02/21/06	MRD
1,1,2-Trichloroethane	<0.1	μg/l	0.1	0.33	i		02/21/06	MRD
Trichloroeth(yl)ene	<0.2	μg/l	0.2	0.67	i		02/21/06	MRD
Trichlorofluoromethane	<0.2	μg/l	0.2	0.67	i		02/21/06	MRD
1,2,3-Trichloropropane	<0.55	μg/l	0.55	1.83	i		02/21/06	MRD
1,2,4-Trimethylbenzene	<0.15	μg/t	0.15	0.50	1		02/21/06	MRD
1,3,5-Trimethylbenzene	<0.15	μg/l	0.15	0.50	1		02/21/06	MRD
Vinyl Chloride	<0.15	μg/l	0.15	0.50	1		02/21/06	MRD
-o-Xylene	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD
m-& p-Xylene	<0.4	μg/l	0.4	1.33	1		02/21/06	MRD
EPA 8310								
■Acenaphthene	<0.06	μg/l	0.06	0.20	1		02/27/06	LMP
Acenaphthylene	<0.06	μg/l	0.06	0.20	1		02/27/06	LMP
Anthracene	<0.09	μg/l	0.09	0.30	1		02/27/06	LMP
∌enzo(a)Anthracene	<0.1	μg/l	0.1	0.33	1		02/27/06	LMP
₿enzo(a)Pyrene	<0.02	μg/l	0.02	0.067	1		02/27/06	LMP
Benzo(b)Fluoranthene	0.066	μg/l	0.02	0.067	1	J CSH	02/27/06	LMP
Benzo(k)Fluoranthene	<0.07	μg/l	0.07	0.23	1		02/27/06	LMP
∃enzo(ghi)Perylene	<0.06	μg/l	0.06	0.20	1		02/27/06	LMP
⊐hrysene	<0.02	μg/l	0.02	0.067	1		02/27/06	LMP
⊃ibenzo(a,h)Anthracene	<0.11	μg/l	0.11	0.37	1		02/27/06	LMP
Fluoranthene	<0.12	μg/l	0.12	0.40	1		02/27/06	LMP
Fluorene	<0.12	μg/l	0.12	0.40	1		02/27/06	LMP
ndeno(1,2,3-cd)Pyrene	<0.12	μg/l	0.12	0.40	1	CSH	02/27/06	LMP
■-Methyl Naphthalene	<0.08	μg/l	0.08	0.27	1		02/27/06	LMP
2-Methyl Naphthalene	<0.11	μg/l	0.11	0.37	1		02/27/06	LMP
Naphthalene	<0.11	μg/l	0.11	0.37	1		02/27/06	LMP
⊃henanthrene	<0.11	μg/l	0.11	0.37	1		02/27/06	LMP
⊃yrene	<0.1	μg/l	0.1	0.33	1		02/27/06	LMP
⊃,10-Diphenylanthracene (S)	52.4	%	-	•	1		02/27/06	LMP
Method 3510 Liquid Ext.	COMP		-	-	-		02/22/06	KAM

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com

PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.26 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

Attn: John Guhl

Short Elliott Henderickson

421 Frenette Drive Chippewa Falls , WI 54729

PA 150.1 Part Par	Sample ID: B5A	Matrix: GRDWTR			Sample Date/Ti	me: 02/16/ 0	06 16:45	Lab No. 195294		
PH - Laboratory 7.92		<u>Result</u>	<u>Units</u>	LOD	LOQ		Qualifiers		<u>Analyst</u>	
PH - Laboratory 7.92	EPA 150.1									
PA 265.1		7.92		-	•	1		02/20/06	JJP	
Diss. Mercury	pH - Laboratory Time	08:15		-	-	-		02/20/06	JJP	
Diss. Arsenic 1.40 μg/l 0.6 2.0 1 J 02/28/06 JCH Diss. Chamium <0.2 μg/l 1.6 5.33 1 02/28/06 JCH Diss. Lead <0.3 μg/l 0.3 1.0 1 02/28/06 JCH Diss. Selenium 0.9 μg/l 0.6 2.0 1 JC2/28/06 JCH Diss. Sarium 57.0 μg/l 0.2 6.66 1 02/21/06 JCH Diss. Silver <0.2 μg/l 0.15 0.50 1 02/21/06 MRD Brazene <0.15 μg/l 0.1 0.33 1 02/21/06 MRD Bromodichloromethane <0.1 μg/l 0.1 0.33 1 02/21/06 MRD Bromodichloromethane <0.1 μg/l 0.1 0.33 1 02/21/06 MRD Bromodichloromethane <0.15 μg/l 0.1 0.33 1 02/21/06 M		<0.07	μg/l	0.07	0.23	1	DUP	02/21/06	МРМ	
Diss. Arsenic 1.40 μg/l 0.6 2.0 1 J 02/28/06 JCH Diss. Chamium <0.2 μg/l 1.6 5.33 1 02/28/06 JCH Diss. Lead <0.3 μg/l 0.3 1.0 1 02/28/06 JCH Diss. Selenium 0.9 μg/l 0.6 2.0 1 JC2/28/06 JCH Diss. Sarium 57.0 μg/l 0.2 6.66 1 02/21/06 JCH Diss. Silver <0.2 μg/l 0.15 0.50 1 02/21/06 MRD Brazene <0.15 μg/l 0.1 0.33 1 02/21/06 MRD Bromodichloromethane <0.1 μg/l 0.1 0.33 1 02/21/06 MRD Bromodichloromethane <0.1 μg/l 0.1 0.33 1 02/21/06 MRD Bromodichloromethane <0.15 μg/l 0.1 0.33 1 02/21/06 M	■EPA 6020									
Diss. Cadmium		1.40	μα/l	0.6	2.0	1	J	02/28/06	JCH	
Diss. Lead	I .						•			
Diss. Selenium Dis										
p iss. Selenium 0.9 μg/l 0.6 2.0 1 J 02/28/06 JCH D iss. Sailver 57.0 μg/l 0.2 0.67 1 02/28/06 JCH Benzene <0.2 μg/l 0.15 0.50 1 02/21/06 MRD Bromochloromethane <0.1 μg/l 0.1 0.33 1 02/21/06 MRD Bromofichloromethane <0.1 μg/l 0.1 0.33 1 02/21/06 MRD Bromoform <0.2 μg/l 0.1 0.33 1 02/21/06 MRD Bromoform <0.2 μg/l 0.1 0.33 1 02/21/06 MRD Bromoform <0.2 μg/l 0.15 0.50 1 02/21/06 MRD Bromoform <0.2 μg/l 0.1 0.50 1 02/21/06 MRD Bromoform <0.2 μg/l 0.1 0.50 1 02/21/06 MRD	Diss. Lead	<0.3		0.3		1				
Diss. Sarium S7.0	piss. Selenium			0.6		1	J			
#PA 8260 #enzene	⊅iss. Barium	57.0	μg/l	2.0		1		02/28/06	JCH	
#Enzene	Ðiss. Silver	<0.2				1				
#Enzene	■EPA 8260									
Bromochloromethane		<0.15	ua/l	0.15	0.50	1		02/21/06	MRD	
Bromochloromethane										
Bromodichloromethane										
3 cmomorm										
#romomethane	∄romoform									
h-Butylbenzene										
sec-Butylbenzene <0.15 µg/l 0.15 0.50 1 02/21/06 MRD Iarbon Tetrachloride <0.2										
=ert-Butylbenzene						i				
Carbon Tetrachloride							J			
Thiorobenzene						1	•			
Chloroethane						i				
Chloroform						i				
#hloromethane	Chloroform					1				
-Chlorotoluene	thioromethane					1				
Chlorotoluene						1				
Dibromochloromethane						1				
ibromochloropropane(DBCP)	Dibromochloromethane	<0.1		0.1	0.33	1				
,2-Dibromoethane(EDB)	₱ibromochloropropane(DBCP)	<0.3		0.3	1.0	1		02/21/06	MRD	
1,2-Dichlorobenzene		<0.1		0.1	0.33	1			MRD	
1,3-Dichlorobenzene	■ibromomethane	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD	
A-Dichlorobenzene <0.75	1,2-Dichlorobenzene	<0.75	μg/l	0.75	2.5	1		02/21/06	MRD	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,3-Dichlorobenzene	<0.15	μg/l	0.15	0.50	1		02/21/06	MRD	
1.1-Dichloroethane	1,4-Dichlorobenzene	<0.75	μg/l	0.75	2.5	1		02/21/06	MRD	
1,2-Dichloroethane <0.1 $\mu g/l$ 0.1 0.33 1 $02/21/06$ MRD 1,1-Dichloroeth(yl)ene <0.15 $\mu g/l$ 0.15 0.50 1 $02/21/06$ MRD is-1,2-Dichloroeth(yl)ene <0.2 $\mu g/l$ 0.1 0.33 1 $02/21/06$ MRD rans-1,2-Dichloropropane <0.1 $\mu g/l$ 0.1 0.33 1 $02/21/06$ MRD 1,2-Dichloropropane <0.1 $\mu g/l$ 0.1 0.33 1 $02/21/06$ MRD 1,2-Dichloropropane <0.1 $\mu g/l$ 0.1 0.33 1 $02/21/06$ MRD 1,2-Dichloropropane <0.1 $\mu g/l$ 0.1 0.33 1 $02/21/06$ MRD 1,-Dichloropropane <0.1 $\mu g/l$ 0.1 0.33 1 $02/21/06$ MRD 1,-Dichloropropane <0.1 $\mu g/l$ 0.2 0.67 1 $0.2/21/06$ MRD 1,-Dichloropropane <0.1 $\mu g/l$ 0.2 0.67 1 $0.2/21/06$ <t< td=""><td>pichlorodifluoromethane</td><td><0.25</td><td>μg/l</td><td>0.25</td><td>0.83</td><td>1</td><td></td><td>02/21/06</td><td>MRD</td></t<>	pichlorodifluoromethane	<0.25	μg/l	0.25	0.83	1		02/21/06	MRD	
1-Dichloroeth(yl)ene		<0.15	μg/l	0.15	0.50	1		02/21/06	MRD	
is-1,2-Dichloroeth(yl)ene			μg/l			1				
is-1,2-Dichloroeth(yl)ene	,1-Dichloroeth(yl)ene	<0.15	μg/l	0.15	0.50	1				
rans-1,2-Dichloroeth(yl)en <0.1 μg/l 0.1 0.33 1 02/21/06 MRD 1,2-Dichloropropane <0.1 μg/l 0.1 0.33 1 02/21/06 MRD 1,3-Dichloropropane <0.1 μg/l 0.1 0.33 1 02/21/06 MRD 1,2-Dichloropropane <0.1 μg/l 0.1 0.33 1 02/21/06 MRD 1,1-Dichloropropene <0.2 μg/l 0.2 0.67 1 02/21/06 MRD 1,1-Dichloropropene <0.1 μg/l 0.1 0.33 1 02/21/06 MRD 1,1-Dichloropropene <0.1 μg/l 0.1 0.33 1 02/21/06 MRD 1,1-Dichloropropene <0.1 μg/l 0.1 0.33 1 02/21/06 MRD 1,1-Dichloropropene <0.1 μg/l 0.1 0.33 1 02/21/06 MRD		<0.2	μg/l	0.2	0.67	1				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						1			MRD	
,2-Dichloropropane <0.1				0.1		1			MRD	
	1,3-Dichloropropane					1				
Lis-1,3-Dichloropropene <0.1 μ g/l 0.1 0.33 1 02/21/06 MRD trans-1,3-Dichloropropene <0.1 μ g/l 0.1 0.33 1 02/21/06 MRD	,2-Dichloropropane					1				
trans-1,3-Dichloropropene <0.1 μg/l 0.1 0.33 1 02/21/06 MRD			μg/l			1				
thylbenzene $<0.1 \mu g/l 0.1 0.33$ 1 02/21/06 MRD										
	tnylbenzene	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD	

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE

800-338-7226 715-355-3221 www.usfilter.com

Short Elliott Henderickson 421 Frenette Drive Chippewa Falls , WI 54729 PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.27 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

Attn: John Guhl

Sample ID: B5A Matrix: GRDWTR Sample Date/Time: 02/16/06 16:45 Lab No. 195294

	<u>Result</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date Analyzed	<u>Analyst</u>
EPA 8260								
Hexachlorobutadiene	<1.00	μg/l	1.0	3.33	1		02/21/06	MRD
-I sopropylbenzene	0.602	μg/l μg/l	0.1	0.33	i		02/21/06	MRD
4-Isopropyltoluene	<0.2	μg/l	0.2	0.67	i		02/21/06	MRD
Methylene Chloride	<0.4	μg/l μg/l	0.4	1.33	i		02/21/06	MRD
Methyl t-Butyl Ether(MTBE)	<0.1	μg/l μg/l	0.1	0.33	1		02/21/06	MRD
• Naphthalene	<1.00	μg/l μg/l	1.0	3.33	i	CSH	02/21/06	MRD
n-Propylbenzene	0.138	μg/l	0.1	0.33	i	J	02/21/06	MRD
Styrene	<0.138	μg/l μg/l	0.1	0.33	i	J	02/21/06	MRD
1,1,1,2-Tetrachloroethane	<0.1	μg/l μg/l	0.1	0.33	1		02/21/06	MRD
1,1,2,2-Tetrachloroethane	0.51	μg/l μg/l	0.1	0.33	i		02/21/06	MRD
Tetrachloroeth(yl)ene	<0.1	μg/l μg/l	0.1	0.33	i		02/21/06	MRD
Toluene	<0.4	μg/l μg/l	0.4	1.33	1		02/21/06	MRD
1,2,3-Trichlorobenzene	<0.5	μg/l μg/l	0.5	1.67	1			
1,2,4-Trichlorobenzene	<0.5	μg/l μg/l	0.5	1.67	1		02/21/06 02/21/06	MRD
1,1,1-Trichloroethane	<0.2	μg/l μg/l	0.2	0.67	1			MRD
1,1,2-Trichloroethane	<0.1	μg/l μg/l	0.1	0.33	1		02/21/06 02/21/06	MRD MRD
Trichloroeth(yl)ene	<0.2	μg/l μg/l	0.1	0.67	1			
Trichlorofluoromethane	<0.2	μg/t μg/l	0.2	0.67	1		02/21/06	MRD
1,2,3-Trichloropropane	<0.55		0.55	1.83	1		02/21/06	MRD
1,2,4-Trimethylbenzene	3.93	μg/l	0.35	0.50	1		02/21/06	MRD
1,3,5-Trimethylbenzene	<0.15	μg/l μg/l	0.15	0.50	1		02/21/06	MRD MRD
Vinyl Chloride	<0.15	μg/l μg/l	0.15	0.50	1		02/21/06 02/21/06	MRD
-o-Xylene	0.112	,	0.15	0.33	1			
m-& p-Xylene	<0.4	μg/l μg/l	0.4	1.33	1	J	02/21/06 02/21/06	MRD MRD
iii a p xyterie	٠٠.4	μ9/ (0.4	1.55	'		02/21/00	FIKU
EPA_8310								
Acenaphthene	<0.06	μg/i	0.06	0.20	1		02/27/06	LMP
Acenaphthylene	<0.06	μg/l	0.06	0.20	1		02/27/06	LMP
Anthracene	<0.09	μg/l	0.09	0.30	1		02/27/06	LMP
∃enzo(a)Anthracene	<0.1	μg/l	0.1	0.33	1		02/27/06	LMP
₿enzo(a)Pyrene	<0.02	μg/l	0.02	0.067	1		02/27/06	LMP
∄enzo(b)Fluoranthene	<0.02	μg/l	0.02	0.067	1	CSH	02/27/06	LMP
Benzo(k)Fluoranthene	<0.07	μg/l	0.07	0.23	1		02/27/06	LMP
∄enzo(ghi)Perylene	<0.06	μg/l	0.06	0.20	1		02/27/06	LMP
‡hrysene	<0.02	μg/l	0.02	0.067	1		02/27/06	LMP
⊅ibenzo(a,h)Anthracene	<0.11	μg/l	0.11	0.37	1		02/27/06	LMP
Fluoranthene	<0.12	μg/l	0.12	0.40	1		02/27/06	LMP
Fluorene	<0.12	μg/l	0.12	0.40	1		02/27/06	LMP
Indeno(1,2,3-cd)Pyrene	0.26	μg/l	0.12	0.40	1	J CSH	02/27/06	LMP
#-Methyl Naphthalene	<0.08	μg/l	0.08	0.27	1		02/27/06	LMP
⊉-Methyl Naphthalene	0.352	μg/l	0.11	0.37	1	J	02/27/06	LMP
Naphthalene	0.194	μg/l	0.11	0.37	1	Ĵ	02/27/06	LMP
Phenanthrene	<0.14	μg/l	0.11	0.37	1	-	02/27/06	LMP
†yrene	<0.4	μg/l	0.1	0.33	1		02/27/06	LMP
⊃,10-Diphenylanthracene (S)	41.6	%	•	-	1		02/27/06	LMP
Method 3510 Liquid Ext.	COMP		-	-	-		02/22/06	KAM

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474

FACSIMILE WEBSITE

TELEPHONE 800-338-7226 715-355-3221 www.usfilter.com

Short Elliott Henderickson ■21 Frenette Drive Chippewa Falls , WI 54729

PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.20 DATE REC'D : 02/17/06 **REPORT DATE: 03/13/06** PREPARED BY: JRS

Attn: John Guhl

ample ID: B6 Matrix: GRDWTR Sample Date/Time: 02/16/06 15:15 Lab No. 195291 Dilution Date Result Units LOD Qualifiers LOQ <u>Factor</u> <u>Analyzed</u> <u>Analyst</u> <u>≡PA 150.1</u> pH - Laboratory pH - Laboratory Time 7.93 02/20/06 JJP 08:15 02/20/06 JJP PA 245.1

#PA 245.1									
Diss. Mercury	<0.07	μg/l	0.07	0.23	1		02/21/06	MPM	
∃PA 6020									
<u>=FA 6020</u> ■iss. Arsenic	0.8	μg/l	0.6	2.0	1	J	02/20/04	JCH	
■iss. Cadmium	<0.2	μg/l μg/l	0.2	0.67	1	J	02/28/06		
Diss. Chromium	<1.60	μg/l μg/l	1.6	5.33	1		02/28/06 02/28/06	JCH	
Piss. Lead	<0.3		0.3	1.0	1			JCH	
viss. Selenium	0.8	μg/l	0.6	2.0	1		02/28/06	JCH	
riss. Barium	29.9	μg/l		6.66	•	J	02/28/06	JCH	
Diss. Silver	<0.2	μg/l	2.0 0.2	0.67	1		02/28/06	JCH	
Diss. Silver	10.2	μg/l	U.2	0.07	ı		02/28/06	JCH	
<u>=PA_8260</u>									
≡ enzene	<0.15	μg/l	0.15	0.50	1		02/21/06	MRD	
≣romobenzene	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD	
Bromochloromethane	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD	
Fromodichloromethane	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD	
romoform	<0.2	μg/l	0.2	0.67	1		02/21/06	MRD	
≝romomethane	<0.15	μg/l	0.15	0.50	1		02/21/06	MRD	
n-Butylbenzene	<0.2	μg/l	0.2	0.67	1		02/21/06	MRD	
sec-Butylbenzene	<0.15	μg/l	0.15	0.50	1		02/21/06	MRD	
ert-Butylbenzene	<0.15	μg/l	0.15	0.50	1		02/21/06	MRD	
arbon Tetrachloride	<0.2	μg/l	0.2	0.67	1		02/21/06	MRD	
➡hlorobenzene	<0.1	μg/l	0.1	0.35	i		02/21/06	MRD	
Chloroethane	<0.6	μg/l	0.6	2.0	1		02/21/06	MRD	
Chloroform	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD	
hloromethane	<0.2	μg/l	0.2	0.67	1		02/21/06	MRD	
t-Chlorotoluene	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD	
4-Chlorotoluene	<0.2	μg/l	0.2	0.67	1		02/21/06	MRD	
Dibromochloromethane	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD	
_ibromochloropropane(DBCP)	<0.3	μg/l	0.3	1.0	1		02/21/06	MRD	
,2-Dibromoethane(EDB)	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD	
ibromomethane	<0.4	μg/l	0.1	0.33	1		02/21/06	MRD	
1,2-Dichlorobenzene	<0.75	μg/l	0.75	2.5	1		02/21/06	MRD	
1,3-Dichlorobenzene	<0.15	μg/l	0.15	0.50	1		02/21/06	MRD	
,4-Dichlorobenzene	<0.75	μg/l	0.75	2.5	1		02/21/06	MRD	
ichlorodifluoromethane	<0.25	μg/l	0.25	0.83	1		02/21/06	MRD	
1,1-Dichloroethane	<0.15	μg/l	0.15	0.50	1		02/21/06	MRD	
1,2-Dichloroethane	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD	
,1-Dichloroeth(yl)ene	<0.15	μg/l	0.15	0.50	1		02/21/06	MRD	
is-1,2-Dichloroeth(yl)ene	<0.2	μg/l	0.2	0.67	1		02/21/06	MRD	
Ilrans-1,2-Dichloroeth(yl)en	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD	
1,2-Dichloropropane	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD	
1,3-Dichloropropane	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD	
,2-Dichloropropane	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD	

Diss. Chromium	<1.60	μg/l	1.6	5.33	1		02/28/06	JCH
Piss. Lead	<0.3	μg/l	0.3	1.0	1		02/28/06	JCH
iss. Selenium	0.8	μg/l	0.6	2.0	1	J	02/28/06	JCH
iss. Barium	29.9	μg/l	2.0	6.66	1		02/28/06	JCH
Diss. Silver	<0.2	μg/l	0.2	0.67	1		02/28/06	JCH
		, 0,					,,	*
<u>=PA 8260</u>								
= enzene	<0.15	μg/l	0.15	0.50	1		02/21/06	MRD
≣ romobenzene	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD
Bromochloromethane	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD
Promodichloromethane	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD
#romoform	<0.2	μg/l	0.2	0.67	1		02/21/06	MRD
≝romomethane	<0.15	μg/l	0.15	0.50	1		02/21/06	MRD
n-Butylbenzene	<0.2	μg/l	0.2	0.67	1		02/21/06	MRD
sec-Butylbenzene	<0.15	μg/l	0.15	0.50	1		02/21/06	MRD
ert-Butylbenzene	<0.15	μg/l	0.15	0.50	1		02/21/06	MRD
arbon Tetrachloride	<0.2	μg/l	0.2	0.67	1		02/21/06	MRD
➡hlorobenzene	<0.1	μg/l	0.1	0.35	i		02/21/06	MRD
Chloroethane	<0.6	μg/l	0.6	2.0	1		02/21/06	MRD
<u>fhloroform</u>	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD
hloromethane	<0.2	μg/l	0.2	0.67	1		02/21/06	MRD
-Chlorotoluene	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD
4-Chlorotoluene	<0.2	μg/l	0.2	0.67	1		02/21/06	MRD
Dibromochloromethane	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD
ibromochloropropane(DBCP)	<0.3	μg/l	0.3	1.0	1		02/21/06	MRD
,2-Dibromoethane(EDB)	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD
ibromomethane	<0.4	μg/l	0.1	0.33	1		02/21/06	MRD
1,2-Dichlorobenzene	<0.75	μg/l	0.75	2.5	1		02/21/06	MRD
	<0.15	μg/l	0.15	0.50	1		02/21/06	MRD
,4-Dichlorobenzene	<0.75	μg/l	0.75	2.5	1		02/21/06	MRD
ichlorodifluoromethane	<0.25	μg/l	0.25	0.83	1		02/21/06	MRD
1,1-Dichloroethane	<0.15	μg/l	0.15	0.50	1		02/21/06	MRD
1,2-Dichloroethane	<0.1	μg/l	0.1	0.33	i		02/21/06	MRD
,1-Dichloroeth(yl)ene	<0.15	μg/l	0.15	0.50	1		02/21/06	MRD
is-1,2-Dichloroeth(yl)ene	<0.2	μg/l	0.2	0.67	i		02/21/06	MRD
lrans-1,2-Dichloroeth(yl)en	<0.1	μg/l	0.1	0.33	i		02/21/06	MRD
1,2-Dichloropropane	<0.1	μg/l	0.1	0.33	i		02/21/06	MRD
1,3-Dichloropropane	<0.1	μg/l	0.1	0.33	i		02/21/06	MRD
,2-Dichloropropane	<0.1	μg/l	0.1	0.33	i		02/21/06	MRD
,1-Dichloropropene	<0.2	μg/l	0.2	0.67	i		02/21/06	MRD
cis-1,3-Dichloropropene	<0.1	μg/l μg/l	0.1	0.33	i		02/21/06	MRD
trans-1,3-Dichloropropene	<0.1	μg/l	0.1	0.33	i		02/21/06	MRD
thylbenzene	<0.1	μg/l	0.1	0.33	i		02/21/06	MRD
	-011	, rew	0	0.33	·		02/21/00	HIND

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com

PROJECT NO.: NERUB0502.00 REPORT NO.: 195283.21 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

Attn: John Guhl

ample ID: B6 Matrix: GRDWTR Sample Date/Time: 02/16/06 15:15 Lab No. 195291

:	Result	Units	LOD	LOQ	Dilution Factor	Qualifiers	Date Analyzed	<u>Analyst</u>
				_				
PA 8260								
Hexachlorobutadiene	<1.00	μg/l	1.0	3.33	1		02/21/06	MRD
1sopropylbenzene	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD
-Isopropyltoluene	<0.2	μg/l	0.2	0.67	1		02/21/06	MRD
lethylene Chloride	<0.4	μg/l	0.4	1.33	1		02/21/06	MRD
Methyl t-Butyl Ether(MTBE)	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD
Naphthalene	<1.00	μg/l	1.0	3.33	7	CSH	02/21/06	MRD
n-Propylbenzene	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD
≣tyrene	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD
_,1,1,2-Tetrachloroethane	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD
1,1,2,2-Tetrachloroethane	<0.1	μg/l	0.1	0.33	ì		02/21/06	MRD
Tetrachloroeth(yl)ene	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD
foluene	<0.4	μg/l	0.4	1.33	i		02/21/06	MRD
1,2,3-Trichlorobenzene	<0.5	μg/l	0.5	1.67	1		02/21/06	MRD
1,2,4-Trichlorobenzene	<0.5	μg/l	0.5	1.67	1		02/21/06	MRD
1,1,1-Trichloroethane	<0.2	μg/l	0.2	0.67	i		02/21/06	MRD
,1,2-Trichloroethane	<0.1	μg/l	0.1	0.33	i		02/21/06	MRD
richloroeth(yl)ene	<0.2	μg/l	0.2	0.67	i		02/21/06	MRD
richlorofluoromethane	<0.2	μg/l	0.2	0.67	i		02/21/06	MRD
1,2,3-Trichloropropane	<0.55	μg/l	0.55	1.83	i		02/21/06	MRD
1,2,4-Trimethylbenzene	0.21	μg/l	0.15	0.50	i	J	02/21/06	MRD
.3,5-Trimethylbenzene	<0.15	μg/l	0.15	0.50	i	· ·	02/21/06	MRD
Vinyl Chloride	<0.15	μg/l	0.15	0.50	1		02/21/06	MRD
o-Xylene	<0.13	μg/l μg/l	0.1	0.33	i		02/21/06	MRD
m-& p-Xylene	<0.4	μg/l μg/l	0.4	1.33	i		02/21/06	MRD
		F3/ \	•••	,,,,,	•		V-, - · , V-	
PA 8310								
Acenaphthene	<0.06	μg/l	Ú.Û6	0.20	1		02/23/06	LMP
Acenaphthylene	<0.06	μg/l	0.06	0.20	1		02/23/06	LMP
Anthracene	<0.09	μg/l	0.09	0.30	1		02/23/06	LMP
enzo(a)Anthracene	<0.1	μg/l	0.1	0.33	1		02/23/06	LMP
enzo(a)Pyrene	<0.02	μg/l	0.02	0.067	1	CSL	02/23/06	LMP
Benzo(b)Fluoranthene	<0.02	μg/l	0.02	0.067	1		02/23/06	LMP
Benzo(k)Fluoranthene	<0.07	μg/l	0.07	0.23	1		02/23/06	LMP
enzo(ghi)Perylene	<0.06	μg/l	0.06	0.20	i		02/23/06	LMP
hrysene	<0.02	μg/l	0.02	0.067	1	MB	02/23/06	LMP
ibenzo(a,h)Anthracene	<0.11	μg/l	0.11	0.37	i		02/23/06	LMP
Fluoranthene	<0.12	μg/l	0.12	0.40	1		02/23/06	LMP
Eluorene	<0.12	μg/l	0.12	0.40	i		02/23/06	LMP
ndeno(1,2,3-cd)Pyrene	<0.12	μg/l	0.12	0.40	i		02/23/06	LMP
-Methyl Naphthalene	<0.08	μg/l	0.08	0.27	i		02/23/06	LMP
2-Methyl Naphthalene	<0.11	μg/l	0.11	0.37	i		02/23/06	LMP
Naphthalene	<0.11	μg/l μg/l	0.11	0.37	i		02/23/06	LMP
henanthrene	<0.11	μg/l	0.11	0.37	i		02/23/06	LMP
yrene	<0.1	μg/l	0.1	0.33	i		02/23/06	LMP
r,10-Diphenylanthracene (S)	42.4	μ9/ t %	-	-	i		02/23/06	LMP
Method 3510 Liquid Ext.	COMP	/0	-	-	'-		02/20/06	KAM
as a squia ance	30111						52, 20, 00	10111

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com

Short Elliott Henderickson ■21 Frenette Drive □hippewa Falls , WI 54729 PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.18 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

Attn: John Guhl

PA 150.1 PA 150.1	 ∋ample ID: B9	Matri	x: GRDWTR	9	Sample Date/Ti	me: 02/16/ 0	06 14:45	Lab No. 195290		
pH - Laboratory Time 08:15 - - 1 02/20/06 JJP PA 265.1 Diss. Mercury <0.07		Result	<u>Units</u>	LOD	LOQ		Qualifiers		<u>Analyst</u>	
pH - Laboratory Time 08:15 - - 1 02/20/06 JJP PA 265.1 Diss. Mercury <0.07	TD4 450 4									
PA 265.1		7 /5				4		02/20/0/		
PA 265.1				-	-	1				
Diss. Mercury	on - Laboratory Time	00:15		•	•	•		02/20/06	315	
Diss. Mercury	EPA 245.1									
PA 6020		<0.07	na/l	0.07	0.23	1		02/21/06	MPM	
Second S			F3/ \	0.01	0.25	•		02,21,00		
Siss. Cadmium										
Diss. Chromium 2.40			μg/l			1	J	02/27/06	JCH	
Piss. Setenium			μg/l			1		02/27/06	JCH	
Section Sect			μg/l				J	02/28/06	JCH	
Siss. Barium	II .		μg/l						JCH	
Page Page			μg/l						JCH	
PA 8260	■ .									
Paragraphic Paragraphic	Diss. Silver	<0.2	μg/l	0.2	0.67	1	MB	02/27/06	JCH	
Penzene	=DA 9240				ž					
Promochloromethane		-0.15		0.15	0.50	4		02/20/0/	MDD	
Bromodichoromethane										
Bromofich 40.1 49/1 0.1 0.33 1 02/20/06 MRD										
Promoferm						•				
Promomethane										
n-Butylbenzene	1 111									
Sec-Butylbenzene										
rert-Butylbenzene										
Carbon Tetrachloride										
Chlorobenzene										
Chloroethane						4				
Chloroform						i				
hloromethane										
Chlorotoluene										
4-Chlorotoluene										
Dibromochloromethane										
ibromochloropropane(DBCP)			·							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	■ibromochloropropane(DBCP)									
bibromomethane <0.1 $\mu g/l$ 0.1 0.33 1 $02/20/06$ MRD $1,2$ -Dichlorobenzene <0.75 $\mu g/l$ 0.75 2.5 1 $02/20/06$ MRD $1,3$ -Dichlorobenzene <0.15 $\mu g/l$ 0.15 0.50 1 $02/20/06$ MRD $1,4$ -Dichlorobenzene <0.75 $\mu g/l$ 0.75 2.5 1 $02/20/06$ MRD $1,4$ -Dichlorobenzene <0.25 $\mu g/l$ 0.25 0.83 1 $02/20/06$ MRD $1,1$ -Dichloroethane <0.15 $\mu g/l$ 0.15 0.50 1 $02/20/06$ MRD $1,2$ -Dichloroethane <0.15 $\mu g/l$ 0.1 0.33 1 $02/20/06$ MRD $1,1$ -Dichloroeth(yl)ene <0.15 $\mu g/l$ 0.1 0.33 1 $02/20/06$ MRD $1,1$ -Dichloroeth(yl)ene <0.15 $\mu g/l$ 0.15 0.50 1 $0.2/20/06$ MRD $1,1$ -Dichloroeth(yl)ene <0.15 $\mu g/l$ 0.1 0.33 1 $02/20/06$ MRD $1,2$ -Dichloroeth(yl)en <0.1 $\mu g/l$ 0.1 0.33 1 $02/20/06$ MRD $1,2$ -Dichloropropane <0.1 $\mu g/l$ 0.1 0.33 1 $02/20/06$ MRD $1,2$ -Dichloropropane <0.1 $\mu g/l$ 0.1 0.33 1 $02/20/06$ MRD $1,2$ -Dichloropropane <0.1 $\mu g/l$ 0.1 0.33 1 $02/20/06$ MRD $1,2$ -Dichloropropane <0.1 $\mu g/l$ 0.1 0.33 1 $02/20/06$ MRD $1,2$ -Dichloropropane <0.1 $\mu g/l$ 0.1 0.33 1 $02/20/06$ MRD $1,2$ -Dichloropropane <0.1 $\mu g/l$ 0.1 0.33 1 $02/20/06$ MRD $1,2$ -Dichloropropane <0.1 1 1 1 1 1 1 1 1 1	2-Dibromoethane(EDB)					1				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						1				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,2-Dichlorobenzene					1				
,4-Dichlorobenzene		•				1				
ichlorodifluoromethane <0.25 $\mu g/l$ 0.25 0.83 1 02/20/06 MRD 1,1-Dichloroethane <0.15	,4-Dichlorobenzene	<0.75			2.5	1				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre>ichlorodifluoromethane</pre>	<0.25				1				
,1-Dichloroeth(yl)ene	1,1-Dichloroethane	<0.15		0.15	0.50	1			MRD	
#is-1,2-Dichloroeth(yl)ene		<0.1	μg/l	0.1	0.33	1		02/20/06	MRD	
#is-1,2-Dichloroeth(yl)ene	,1-Dichloroeth(yl)ene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD	
#trans-1,2-Dichloroeth(yl)en <0.1 μg/l 0.1 0.33 1 02/20/06 MRD 1,2-Dichloropropane <0.1	#is-1,2-Dichloroeth(yl)ene	<0.2			0.67					
1,2-Dichloropropane <0.1 µg/l 0.1 0.33 1 02/20/06 MRD 1,3-Dichloropropane <0.1 µg/l 0.1 0.33 1 02/20/06 MRD 2,2-Dichloropropane <0.1 µg/l 0.1 0.33 - CSH 02/20/06 MRD	Hrans-1,2-Dichloroeth(yl)en		μg/l			1		02/20/06	MRD	
‡, 2-Dichloropropane <0.1 μg/l 0.1 0.33 - CSH 02/20/06 MRD	1,2-Dichloropropane		μg/l			1		02/20/06		
						1		02/20/06		
1-Dichloropropene <0.2 ##/L 0.2 0.67 - CCU 02/20/04 Mph						-				
	■,1-Dichloropropene	<0.2	μg/l	0.2	0.67	-	CSH	02/20/06	MRD	
cis-1,3-Dichloropropene <0.1 μg/l 0.1 0.33 1 02/20/06 MRD										
trans-1,3-Dichloropropene <0.1 $\mu g/l$ 0.1 0.33 1 02/20/06 MRD										
Ethylbenzene $<0.1 \mu g/l 0.1 0.33 1 02/20/06 MRD$	=thylbenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD	

<0.11

<0.1

32.0

COMP

μg/l

μg/l

%

0.11

0.1

0.37

0.33

Matrix: GRDWTR

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474

Sample Date/Time: 02/16/06 14:45

TELEPHONE FACSIMILE WEBSITE

Lab No. 195290

02/23/06

02/23/06

02/23/06

02/20/06

LMP

LMP

LMP

KAM

800-338-7226 715-355-3221 www.usfilter.com

Short Elliott Henderickson ≰21 Frenette Drive Ehippewa Falls , WI 54729

PROJECT NO.: NERUB0502.00 REPORT NO. : 195283.19 DATE REC'D : 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

Attn: John Guhl ⇒ample ID: B9

⊃henanthrene

Pyrene
→,10-Diphenylanthracene (S)

Method 3510 Liquid Ext.

•				•	- •			
					Dilution		Date	
	<u>Result</u>	<u>Units</u>	LOD	<u>LOQ</u>	<u>Factor</u>	Qualifiers	<u>Analyzed</u>	<u>Analyst</u>
EPA 8260								
Hexachlorobutadiene	<1.00	μg/l	1.0	3.33	1		02/20/06	MRD
_Isopropylbenzene	<0.1	μg/l μg/l	0.1	0.33	i		02/20/06	MRD
¼-Isopropyltoluene	<0.2	μg/l	0.2	0.67	i		02/20/06	MRD
Methylene Chloride	<0.4	μg/l μg/l	0.4	1.33	i		02/20/06	MRD
Methyl t-Butyl Ether(MTBE)	<0.1	μg/l μg/l	0.4	0.33	i		02/20/06	MRD
Naphthalene	<1.00	μg/l	1.0	3.33	i	S2H	02/20/06	MRD
n-Propylbenzene	<0.1	μg/l μg/l	0.1	0.33	i	JEII	02/20/06	MRD
Styrene	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD
7,1,1,2-Tetrachloroethane	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD
1,1,2,2-Tetrachloroethane	<0.1	μg/l μg/l	0.1	0.33	i		02/20/06	MRD
Jetrachloroeth(yl)ene	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD
Toluene	<0.4	μg/l μg/l	0.4	1.33	i		02/20/06	MRD
1,2,3-Trichlorobenzene	<0.5	μg/t μg/l	0.5	1.67	1		02/20/06	MRD
1,2,4-Trichlorobenzene	<0.5	μg/l μg/l	0.5	1.67	i		02/20/06	MRD
1,1,1-Trichloroethane	<0.2	μg/l	0.2	0.67	i		02/20/06	MRD
7,1,2-Trichloroethane	<0.1	μg/t μg/t	0.1	0.33	1		02/20/06	MRD
Frichloroeth(yl)ene	<0.2	μg/l μg/l	0.1	0.67	1		02/20/06	MRD
■richlorofluoromethane	<0.2	μg/l μg/l	0.2	0.67	i		02/20/06	MRD
1,2,3-Trichloropropane	<0.55	μg/l μg/l	0.55	1.83	1		02/20/06	MRD
_1,2,4-Trimethylbenzene	0.445	μg/l μg/l	0.15	0.50	i	J S2H	02/20/06	MRD
1,3,5-Trimethylbenzene	<0.15	μg/l	0.15	0.50	i	0 3211	02/20/06	MRD
Vinyl Chloride	<0.15	μg/l μg/l	0.15	0.50	i		02/20/06	MRD
o-Xylene	<0.1	μg/t μg/l	0.15	0.33	i		02/20/06	MRD
m-& p-Xylene	<0.4	μg/l μg/l	0.4	1.33	i		02/20/06	MRD
_ ` `		F3/ \	•••	.,	•		02, 20, 00	71110
EPA 8310								
Acenaphthene	<0.06	μg/ί	Ū.Ū6	0.20	1		02/23/06	LMP
Acenaphthylene	<0.06	μg/l	0.06	0.20	1		02/23/06	LMP
≜ nthracene	<0.09	μg/l	0.09	0.30	1		02/23/06	LMP
#enzo(a)Anthracene	<0.1	μg/l	0.1	0.33	1		02/23/06	LMP
enzo(a)Pyrene	<0.02	μg/l	0.02	0.067	1	CSL	02/23/06	LMP
Benzo(b)Fluoranthene	0.097	μg/l	0.02	0.067	1		02/23/06	LMP
Benzo(k)Fluoranthene	<0.07	μg/l	0.07	0.23	1		02/23/06	LMP
≣enzo(ghi)Perylene	0.1	μg/l	0.06	0.20	1	J	02/23/06	LMP
Phrysene	0.15	μg/l	0.02	0.067	1	MB	02/23/06	LMP
D ibenzo(a,h)Anthracene	<0.11	μg/l	0.11	0.37	1		02/23/06	LMP
Fluoranthene	<0.12	μg/l	0.12	0.40	1		02/23/06	LMP
fluorene	<0.12	μg/l	0.12	0.40	1		02/23/06	LMP
ndeno(1,2,3-cd)Pyrene	<0.12	μg/l	0.12	0.40	1		02/23/06	LMP
-Methyl Naphthalene	<0.08	μg/l	0.08	0.27	1		02/23/06	LMP
Z-Methyl Naphthalene	<0.11	μg/l	0.11	0.37	1		02/23/06	LMP
Naphthalene	<0.11	μg/l	0.11	0.37	1		02/23/06	LMP
⊇hananthrona	JO 11	n m / l	0.11	0.77	4		03/37/04	LMD

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE

800-338-7226 715-355-3221 www.usfilter.com

Short Elliott Henderickson 421 Frenette Drive Chippewa Falls , WI 54729 PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.14 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

Attn: John Guhl

Sample ID: B11	Matri	x: GRDWTR	S	Sample Date/Time: 02/16/06 13:45				Lab No. 195288		
	<u>Result</u>	<u>Units</u>	LOD	<u>LOQ</u>	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	Analyst		
<u>EPA 150.1</u>										
pH - Laboratory	8.28		-	-	1		02/20/06	JJP		
_pH - Laboratory Time	08:15		•	-	-		02/20/06	JJP		
EPA 245.1 Diss. Mercury	<0.07	μg/l	0.07	0.23	1		02/21/06	MPM		
≝PA 6020										
Diss. Arsenic	1.30	μg/l	0.6	2.0	1	J	02/20/06	JCH		
Diss. Cadmium	<0.2	μg/l	0.2	0.67	1		02/20/06	JCH		
Diss. Chromium	2.50	μg/l	1.6	5.33	1	J	02/20/06	JCH		
₽iss. Lead	<0.3	μg/l	0.3	1.0	1		02/20/06	JCH		
piss. Selenium	0.97	μg/l	0.6	2.0	1	J	02/20/06	JCH		
Diss. Barium	60.5	μg/l	2.0	6.66	1		02/20/06	JCH		
Diss. Silver	<0.2	μg/l	0.2	0.67	1	MB	02/20/06	JCH		
EPA 8260										
Benzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		
Bromobenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		
Bromochloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		
Bromodichloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		
Bromomethane	<0.2 <0.15	μg/l	0.2 0.15	0.67 0.50	1 1		02/20/06	MRD		
n-Butylbenzene	<0.2	μg/l	0.13	0.67	1		02/20/06	MRD		
sec-Butylbenzene	<0.15	μg/l μg/l	0.15	0.50	1		02/20/06	MRD MRD		
tert-Butylbenzene	<0.15	μg/l μg/l	0.15	0.50	i		02/20/06 02/20/06	MRD		
Carbon Tetrachloride	<0.2	μg/l μg/l	0.2	0.67	1		02/20/06	MRD		
Chlorobenzene	<0.1	μg/ί	0.1	0.33	i		02/20/06	MRD		
Chloroethane	<0.6	μg/l	0.6	2.0	i		02/20/06	MRD		
£hloroform	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD		
#hloromethane	<0.2	μg/l	0.2	0.67	i		02/20/06	MRD		
⊉-Chlorotoluene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		
4-Chlorotoluene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD		
Dibromochloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		
⊃ibromochloropropane(DBCP)	<0.3	μg/l	0.3	1.0	1		02/20/06	MRD		
■,2-Dibromoethane(EDB)	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		
∍ibromomethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		
1,2-Dichlorobenzene	<0.79	μg/l	0.75	2.5	1		02/20/06	MRD		
1,3-Dichlorobenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		
4-Dichlorobenzene	<0.75	μg/l	0.75	2.5	1		02/20/06	MRD		
ichlorodifluoromethane	<0.25	μg/l	0.25	0.83	1		02/20/06	MRD		
1,1-Dichloroethane	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		
1,2-Dichloroethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD		
<pre>↓■,1-Dichloroeth(yl)ene ■=is-1,2-Dichloroeth(yl)ene</pre>	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD		
=rans-1,2-Dichloroeth(yl)en	1.57 <0.1	μg/l	0.2 0.1	0.67 0.33	1		02/20/06	MRD		
1,2-Dichloropropane	<0.1	μg/l μg/l	0.1	0.33	1 1		02/20/06	MRD MDD		
1,3-Dichloropropane	<0.1	μg/l μg/l	0.1	0.33	1		02/20/06 02/20/06	MRD MRD		
⊋,2-Dichloropropane	<0.1	μg/l μg/l	0.1	0.33	'-	CSH	02/20/06	MRD		
,1-Dichloropropene	<0.2	μg/l μg/l	0.2	0.67	-	CSH	02/20/06	MRD		
cis-1,3-Dichloropropene	<0.1	μg/l	0.1	0.33	1	0311	02/20/06	MRD		
trans-1,3-Dichloropropene	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD		
Ethylbenzene	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD		
•		,			•		,, 50			

TELEPHONE FACSIMILE WEBSITE W

800-338-7226 715-355-3221 www.usfilter.com

Short Elliott Henderickson 21 Frenette Drive hippewa Falls , WI 54729 PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.15 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

Attn: John Guhl

ample ID: B11 Matrix: GRDWTR Sample Date/Time: 02/16/06 13:45 Lab No. 195288

	<u>Result</u>	<u>Units</u>	<u>LOD</u>	<u>LOQ</u>	Dilution <u>Factor</u>	<u>Qualifiers</u>	Date <u>Analyzed</u>	<u>Analyst</u>
PA 8260								
Hexachlorobutadiene	-1 00		1.0	7 77	4		02/20/04	MDD
	<1.00 <0.1	μg/l	1.0	3.33 0.33	1 1		02/20/06	MRD
	<0.2	μg/l	0.1		1		02/20/06	MRD
-Isopropyltoluene Tethylene Chloride	<0.4	μg/l	0.2	0.67 1.33	1		02/20/06	MRD
		μg/l	0.4		1		02/20/06	MRD
Methyl t-Butyl Ether(MTBE)	<0.1 <1.00	μg/l	0.1	0.33 3.33	1		02/20/06	MRD
Naphthalene		μg/l	1.0		1		02/20/06	MRD
m-Propylbenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
tyrene	<0.1	μg/l	0.1	0.33			02/20/06	MRD
1,1,1,2-Tetrachloroethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
1,1,2,2-Tetrachloroethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
Tetrachloroeth(yl)ene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
Toluene	<0.4	μg/l	0.4	1.33	1		02/20/06	MRD
,2,3-Trichlorobenzene	<0.5	μg/l	0.5	1.67	1		02/20/06	MRD
1,2,4-Trichlorobenzene	<0.5	μg/l	0.5	1.67	1		02/20/06	MRD
1,1,1-Trichloroethane	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
,1,2-Trichloroethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
richloroeth(yl)ene	0.415	μg/l	0.2	0.67	1	J	02/20/06	MRD
Irichlorofluoromethane	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
1,2,3-Trichloropropane	<0.55	μg/l	0.55	1.83	1		02/20/06	MRD
1,2,4-Trimethylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
,3,5-Trimethylbenzene inyl Chloride	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
™inyl Chloride	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
o-Xylene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
m-& p-Xylene	<0.4	μg/l	0.4	1.33	1		02/20/06	MRD
)	•							
EPA 8310_								
Acenaphthene	<0.06	μg/l	0.06	0.20	1		02/23/06	LMP
Acenaphthylene	<0.06	μg/l	0.06	0.20	1		02/23/06	LMP
∎nthracene	<0.09	μg/l	0.09	0.30	1		02/23/06	LMP
enzo(a)Anthracene	<0.1	μg/l	0.1	0.33	1		02/23/06	LMP
enzo(a)Pyrene	<0.02	μg/l	0.02	0.067	1 -	CSL	02/23/06	LMP
Benzo(b)Fluoranthene	<0.02	μg/l	0.02	0.067	1		02/23/06	LMP
Benzo(k)Fluoranthene	<0.07	μg/l	0.07	0.23	1		02/23/06	LMP
∃enzo(ghi)Perylene	<0.06	μg/l	0.06	0.20	1		02/23/06	LMP
thrysene	0.131	μg/l	0.02	0.067	1	MB	02/23/06	LMP
bibenzo(a,h)Anthracene	<0.11	μg/l	0.11	0.37	1		02/23/06	LMP
Fluoranthene	<0.12	μg/l	0.12	0.40	1		02/23/06	LMP
fluorene	<0.12	μg/l	0.12	0.40	1		02/23/06	LMP
Indeno(1,2,3-cd)Pyrene	<0.12	μg/l	0.12	0.40	1		02/23/06	LMP
!- Methyl Naphthalene	<0.08	μg/l	0.08	0.27	1		02/23/06	LMP
2-Methyl Naphthalene	<0.11	μg/l	0.11	0.37	1		02/23/06	LMP
Naphthalene	<0.11	μg/l	0.11	0.37	1		02/23/06	LMP
⊃henanthrene	<0.11	μg/l	0.11	0.37	1		02/23/06	LMP
⇒yrene	<0.1	μg/l	0.1	0.33	i		02/23/06	LMP
→,10-Diphenylanthracene (S)	54.2	%	•	•	1		02/23/06	LMP
Method 3510 Liquid Ext.	COMP		-	-	•		02/20/06	KAM

TELEPHONE FACSIMILE WEBSITE

800-338-7226 715-355-3221 www.usfilter.com

Short Elliott Henderickson ≒21 Frenette Drive ⊃hippewa Falls , WI 54729 PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.12 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

Attn: John Guhl

Sample ID:	B12	Matrix: GRDWTR	Sample Date/Time:	02/16/06	13:15	Lab No.	195287
pumped 10.	DIE	Maci IV. arrair	sample bate/illie.	02/10/00	13.13	Lab Mo.	173201

					Dilution		Date	
	Result	Units	LOD	LOQ	<u>Factor</u>	Qualifiers	Analyzed	Analyst
								
EPA 150.1								
pH - Laboratory	8.67		-	-	1		02/20/06	JJP
PH - Laboratory Time	08:15		-	•	-		02/20/06	JJP
L								
PA 245.1								
Diss. Mercury	<0.07	μg/l	0.07	0.23	1		02/21/06	MPM
-n. /000								
<u>≡PA 6020</u> ■iss. Arsenic	4 00		0.4	2.0	4		02 (20 (0)	1011
■iss. Arsentc ■iss. Cadmium	1.80	μg/l	0.6	2.0	1	J	02/20/06	JCH
Diss. Chromium	<0.2 2.00	μg/l	0.2 1.6	0.67 5.33	1 1		02/20/06	JCH
Piss. Lead	<0.3	μg/l	0.3	1.0	i	J	02/20/06	JCH
miss. Selenium	1.30	μg/l	0.5	2.0	1	J	02/20/06 02/20/06	JCH JCH
mice Barium	40.0	μg/l μg/l	2.0	6.66	1	J	02/20/06	JCH
miss. Barium Diss. Silver	<0.2	μg/l μg/l	0.2	0.67	i	MB	02/20/06	JCH
5133. 51(VC)	٧٠.٤	μ9/ (0.2	0.07	•	MD	02/20/00	JCH
≡PA 8260								
B enzene	0.157	μg/l	0.15	0.50	1	J	02/20/06	MRD
■ romobenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
Bromochloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
#romodichloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
romoform	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
romomethane	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
n-Butylbenzene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
sec-Butylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
ert-Butylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
arbon Tetrachloride	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
= hlorobenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
Chloroethane	<0.6	μg/l	0.6	2.0	1		02/20/06	MRD
Chloroform	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
hloromethane	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
t-Chlorotoluene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
4-Chlorotoluene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
Dibromochloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
ibromochloropropane(DBCP)	<0.3	μg/l	0.3	1.0	1		02/20/06	MRD
,2-Dibromoethane(EDB)	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
ibromomethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
1,2-Dichlorobenzene	<0.75	μg/l	0.75	2.5	1		02/20/06	MRD
3-Dichlorobenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
,4-Dichlorobenzene	<0.75	μg/l	0.75	2.5	1		02/20/06	MRD
ichlorodifluoromethane 1.1-Dichloroethane	<0.25 <0.15	μg/l	0.25	0.83	1		02/20/06	MRD
1,2-Dichloroethane	<0.15	μg/l	0.15 0.1	0.50 0.33	1		02/20/06	MRD
,1-Dichloroeth(yl)ene	<0.15	μg/l	0.15	0.50	1		02/20/06 02/20/06	MRD
is-1,2-Dichloroeth(yl)ene	2.77	μg/l	0.13	0.67	1		02/20/06	MRD MRD
_rans-1,2-Dichloroeth(yl)en	<0.7	μg/l	0.2	0.33	1			MRD
1,2-Dichloropropane	<0.1	μg/l μg/l	0.1	0.33	<u> </u>		02/20/06 02/20/06	MRD
3-Dichloropropane	<0.1	μg/l μg/l	0.1	0.33	i		02/20/06	MRD
2.2-Dichloropropane	<0.1	μg/l μg/l	0.1	0.33	'-	CSH	02/20/06	MRD
,1-Dichloropropene	<0.2	μg/l μg/l	0.2	0.67	-	CSH	02/20/06	MRD
cis-1,3-Dichloropropene	<0.1	μg/l μg/l	0.1	0.33	1	0011	02/20/06	MRD
trans-1,3-Dichloropropene	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD
thylbenzene	0.269	μg/l	0.1	0.33	i	J	02/20/06	MRD
•		,- g, -			•	-	,,	

TELEPHONE FACSIMILE WEBSITE

800-338-7226 715-355-3221 www.usfilter.com

Short Elliott Henderickson ≒21 Frenette Drive □hippewa Falls , WI 54729 PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.13 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

Attn: John Guhl

\$ample ID: B12 Matrix: GRDWTR Sample Date/Time: 02/16/06 13:15 Lab No. 195287

	Result	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	Analyst
L., 0040								_
EPA 8260	-4 00	41	4.0	7 77			02 (20 (0)	
Hexachlorobutadiene	<1.00	μg/l	1.0	3.33	1 1		02/20/06	MRD
Isopropylbenzene	<0.1 <0.2	μg/l	0.1	0.33	1		02/20/06	MRD
4-Isopropyltoluene		μg/l	0.2	0.67	1		02/20/06	MRD
Methylene Chloride "Methyl t-Butyl Ether(MTBE)	<0.4	μg/l	0.4	1.33	1		02/20/06	MRD
Naphthalene	<0.1 <1.00	μg/l	0.1 1.0	0.33 3.33	1		02/20/06	MRD
mn-Propylbenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
Styrene	<0.1	μg/l μg/l	0.1	0.33	1		02/20/06 02/20/06	MRD MRD
1,1,1,2-Tetrachloroethane	<0.1	μg/ t		0.33	1			
1,1,2,2-Tetrachloroethane	<0.1	μg/l μg/l	0.1 0.1	0.33	1		02/20/06	MRD MRD
I etrachloroeth(yl)ene	<0.1		0.1	0.33	1		02/20/06	MRD
Foluene	0.512	μg/l	0.4	1.33	1	J	02/20/06 02/20/06	MRD
1,2,3-Trichlorobenzene	<0.5	μg/l μg/l	0.5	1.67	1	J	02/20/06	MRD
-1,2,4-Trichlorobenzene	<0.5		0.5	1.67	1			MRD MRD
1,1,1-Trichloroethane	<0.2	μg/l	0.3	0.67	1		02/20/06	
1,1,2-Trichtoroethane	<0.1	μg/l	0.2	0.87	1		02/20/06	MRD
Frichloroeth(yl)ene	<0.2	μg/l	0.2	0.33	1		02/20/06	MRD
Frichlorofluoromethane	<0.2 <0.2	μg/l μg/l	0.2	0.67	1		02/20/06 02/20/06	MRD
1,2,3-Trichloropropane	<0.55		0.55	1.83	1			MRD
_1,2,4-Trimethylbenzene	0.214	μg/l μg/l	0.15	0.50	1	J	02/20/06 02/20/06	MRD MRD
1,3,5-Trimethylbenzene	<0.15		0.15	0.50	1	J		
Vinyl Chloride	<0.15	μg/l	0.15	0.50	1		02/20/06 02/20/06	MRD
o-Xylene	0.188	μg/l	0.15	0.33	1		02/20/08	MRD MRD
m-& p-Xylene	0.796	μg/l μg/l	0.4	1.33	1	J J	02/20/06	MRD
iii d p-xytene	0.790	μ9/ (0.4	1.33	,	J	02/20/00	MKD
EPA 8310								
Acenaphthene	<0.06	μg/l	0.06	0.20	1		02/23/06	LMP
Acenaphthylene	<0.06	μg/l μg/l	0.06	0.20	i		02/23/06	LMP
_Anthracene	<0.09	μg/l	0.09	0.30	i		02/23/06	LMP
Benzo(a)Anthracene	<0.1	μg/l	0.1	0.33	i		02/23/06	LMP
Benzo(a)Pyrene	<0.02	μg/l	0.02	0.067	i	CSL	02/23/06	LMP
Benzo(b) Fluoranthene	0.155	μg/l	0.02	0.067	i	002	02/23/06	LMP
Benzo(k)Fluoranthene	<0.07	μg/l	0.07	0.23	i		02/23/06	LMP
Benzo(ghi)Perylene	<0.06	μg/l	0.06	0.20	i		02/23/06	LMP
Dhrysene	0.192	μg/l	0.02	0.067	i	MB	02/23/06	LMP
□ibenzo(a,h)Anthracene	<0.11	μg/l	0.11	0.37	i	MU	02/23/06	LMP
Fluoranthene	0.383	μg/l	0.12	0.40	i	J	02/23/06	LMP
▲Fluorene	<0.12	μg/l	0.12	0.40	i	·	02/23/06	LMP
Indeno(1,2,3-cd)Pyrene	0.145	μg/l	0.12	0.40	i	J	02/23/06	LMP
1-Methyl Naphthalene	<0.08	μg/l	0.08	0.27	i	•	02/23/06	LMP
2-Methyl Naphthalene	<0.11	μg/l	0.11	0.37	i		02/23/06	LMP
Naphthalene	<0.11	μg/l	0.11	0.37	i		02/23/06	LMP
=henanthrene	<0.11	μg/l	0.11	0.37	i		02/23/06	LMP
=yrene	<0.1	μg/l	0.1	0.33	i		02/23/06	LMP
,10-Diphenylanthracene (S)	43.8	μ ₃ , τ %	-	-	i		02/23/06	LMP
Method 3510 Liquid Ext.	COMP	,,	-	-	· <u>-</u>		02/20/06	KAM

TELEPHONE FACSIMILE WEBSITE

800-338-7226 715-355-3221 www.usfilter.com

Short Elliott Henderickson 21 Frenette Drive hippewa Falls , WI 54729

ttn: John Guhl

PROJECT NO.: NERUB0502.00 REPORT NO.: 195283.8 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

<pre>=ample ID: MW-1</pre>	11:30	Lab No. 195285
----------------------------	-------	----------------

II	<u>Result</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date Analyzed	Analyst
LPA 150.1								
pH - Laboratory	7.34		•	-	1		02/20/06	JJP
pH - Laboratory Time	08:15		-	-	-		02/20/06	JJP
PA 245.1								
Diss. Mercury	<0.07	μg/l	0.07	0.23	1		02/21/06	MPM
PA 6020	-0.0		0.4	2.0			00.00.01	
Diss. Arsenic Diss. Cadmium	<0.6 <0.2	μg/l	0.6	2.0	1		02/20/06	JCH
Diss. Chromium	<1.60	μg/l	0.2 1.6	0.67 5.33	1 1		02/20/06	JCH
Diss. Lead	<0.3	μg/l μg/l	0.3	1.0	i		02/20/06 02/20/06	JCH JCH
Diss. Selenium	0.6	μg/l	0.6	2.0	i	j	02/20/06	JCH
iss. Barium	62.5	μg/l	2.0	6.66	i	Ū	02/20/06	JCH
Diss. Silver	<0.2	μg/l	0.2	0.67	1	MB	02/20/06	JCH
<u> </u>								
tenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
Bromochloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
Bromodichloromethane	<0.1 <0.1	μg/l	0.1 0.1	0.33	1 1		02/20/06	MRD
Bromoform	<0.2	μg/l μg/l	0.1	0.33 0.67	1		02/20/06	MRD MRD
Bromomethane	<0.15	μg/l μg/l	0.15	0.50	1		02/20/06 02/20/06	MRD
n-Butylbenzene	<0.2	μg/l μg/l	0.13	0.67	i		02/20/06	MRD
_sec-Butylbenzene	<0.15	μg/l	0.15	0.50	i		02/20/06	MRD
tert-Butylbenzene	<0.15	μg/l	0.15	0.50	i		02/20/06	MRD
Carbon Tetrachloride	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
Chloropenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
Circor occinanc	<0.6	μg/l	0.6	2.0	1		02/20/06	MRD
=hloroform	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
<pre>=hloromethane =-Chlorotoluene</pre>	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
4-Chlorotoluene	<0.1 <0.2	μg/l	0.1 0.2	0.33 0.67	1 1		02/20/06	MRD
Pibromochloromethane	<0.1	μg/l μg/l	0.2	0.33	1		02/20/06 02/20/06	MRD MRD
pibromochloropropane(DBCP)	<0.3	μg/l μg/l	0.3	1.0	1		02/20/06	MRD
2-Dibromoothono(EDB)	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD
Dibromomethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
1,2-Dichlorobenzene	<0.75	μg/l	0.75	2.5	1		02/20/06	MRD
1,3-Dichlorobenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
1,4-Dichlorobenzene	<0.75	μg/l	0.75	2.5	1		02/20/06	MRD
ichlorodifluoromethane	<0.25	μg/l	0.25	0.83	1		02/20/06	MRD
1,1-Dichloroethane1,2-Dichloroethane	<0.15 <0.1	μg/l	0.15 0.1	0.50	1		02/20/06	MRD
1,1-Dichloroeth(yl)ene	<0.15	μg/l μg/l	0.15	0.33 0.50	i		02/20/06 02/20/06	MRD MRD
cis-1,2-Dichloroeth(yl)ene	<0.2	μg/l μg/l	0.13	0.67	i		02/20/06	MRD
trans-1,2-Dichloroeth(yl)en	<0.1	μg/t μg/t	0.1	0.33	i		02/20/06	MRD
1,2-Dichloropropane	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD
1,3-Dichloropropane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
2,2-Dichloropropane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
1,1-Dichloropropene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
cis-1,3-Dichloropropene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
trans-1,3-Dichloropropene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
Ethylbenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com

Short Elliott Henderickson 21 Frenette Drive hippewa Falls , WI 54729

PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.9 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

ittn: John Guhl

mample ID: MW-1 Matrix: GRDWTR Sample Date/Time: 02/16/06 11:30 Lab No. 195285

					Dilution		Date	
•	Result	Units	LOD	LOQ	Factor	Qualifiers	Analyzed	Analyst
i i					<u> </u>			
EPA 8260								
Hexachlorobutadiene	<1.00	μg/l	1.0	3.33	1		02/20/06	MRD
	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
-Isopropyltoluene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
Pethylene Chloride	<0.4	μg/l	0.4	1.33	1		02/20/06	MRD
Methyl t-Butyl Ether(MTBE)	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
<u>Naphthalene</u>	<1.00	μg/l	1.0	3.33	1		02/20/06	MRD
-Propylbenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
tyrene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
₹,1,1,2-Tetrachloroethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
1,1,2,2-Tetrachloroethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
<pre>■etrachloroeth(yl)ene</pre>	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
oluene	<0.4	μg/l	0.4	1.33	1		02/20/06	MRD
_,2,3-Trichlorobenzene	<0.5	μg/l	0.5	1.67	1		02/20/06	MRD
1,2,4-Trichlorobenzene	<0.5	μg/l	0.5	1.67	1		02/20/06	MRD
1,1,1-Trichloroethane	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
,1,2-Trichloroethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
richloroeth(yl)ene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
richlorofluoromethane	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
1,2,3-Trichloropropane	<0.55	μg/l	0.55	1.83	1		02/20/06	MRD
2,4-Trimethylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
,3,5-Trimethylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
inyl Chloride	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
o-Xylene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
ղ-& p-Xylene	4۔ 0>	μg/l	0.4	1.33	1		02/20/06	MRD
1 2 0740								
PA 8310					_			
Ucenaphthene	<0.06	μg/l	0.06	0.20	1		02/23/06	LMP
Acenaphthylene	<0.06	μg/l	0.06	0.20	1		02/23/06	LMP
nthracene	<0.09	μg/l	0.09	0.30	1		02/23/06	LMP
enzo(a)Anthracene	<0.1	μg/l	0.1	0.33	1		02/23/06	LMP
enzo(a)Pyrene	<0.02	μg/l	0.02	0.067	1	CSL	02/23/06	LMP
Benzo(b)Fluoranthene	0.052	μg/l	0.02	0.067	1	J	02/23/06	LMP
Renzo(k)Fluoranthene	<0.07	μg/l	0.07	0.23	1		02/23/06	LMP
enzo(ghi)Perylene	0.073	μg/l	0.06	0.20	1	J	02/23/06	LMP
hrysene	0.054	μg/l	0.02	0.067	1	J MB	02/23/06	LMP
Uibenzo(a,h)Anthracene	<0.11	μg/l	0.11	0.37	1		02/23/06	LMP
Fluoranthene	<0.12	μg/l	0.12	0.40	1		02/23/06	LMP
luorene	<0.12	μg/l	0.12	0.40	1		02/23/06	LMP
ndeno(1,2,3-cd)Pyrene	<0.12	μg/l	0.12	0.40	1		02/23/06	LMP
-Methyl Naphthalene	<0.08	μg/l	0.08	0.27	1		02/23/06	LMP
2-Methyl Naphthalene	<0.11	μg/l	0.11	0.37	1		02/23/06	LMP
Naphthalene	<0.11	μg/l	0.11	0.37	1		02/23/06	LMP
Phenanthrene Pyrene	<0.11	μg/l	0.11	0.37	1		02/23/06	LMP
	<0.1	μg/l	0.1	0.33	1		02/23/06	LMP
9,10-Diphenylanthracene (S)	46.4	%	-	-	1		02/23/06	LMP
Method 3510 Liquid Ext.	COMP		-	-	-		02/20/06	KAM

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com

Short Elliott Henderickson 21 Frenette Drive hippewa Falls , WI 54729

PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.6 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

Attn: John Guhl

ample ID: MW-2	Matri	x: GRDWTR	s	Sample Date/Ti	Lab No. 195284			
	Resul t	Units	LOD	. LOQ	Dilution Factor	Qualifiers	Date Analyzed	Analyst
	<u>itcout t</u>	<u> </u>	<u> </u>	LOG	<u>ractor</u>	<u>add(111c13</u>	Allatyzeu	Milatyst
EPA 150.1								
pH - Laboratory	7.34		-	-	1		02/20/06	JJP
■ H - Laboratory Time	08:15		-	-	-		02/20/06	JJP
PA 245.1								
Diss. Mercury	<0.07	μg/l	0.07	0.23	1		02/21/06	MPM
Diss. Nereally	10.01	μ9/ (0.07	0.23	•		02/21/00	FIFFI
≣PA_6020								
iss. Arsenic	1.70	μg/l	0.6	2.0	1	J	02/20/06	JCH
Biss. Cadmium	<0.2	μg/l	0.2	0.67	1		02/20/06	JCH
Diss. Chromium	<1.60	μg/l	1.6	5.33	1		02/20/06	JCH
■iss. Lead	<0.3	μg/l	0.3	1.0	1		02/20/06	JCH
∍iss. Selenium ∍iss. Barium	0.6 7/ E	μg/l	0.6	2.0	1	J	02/20/06	JCH
Diss. Silver	34.5 <0.2	μg/l μg/l	2.0 0.2	6.66 0.67	1 1	MB	02/20/06	JCH JCH
Diss. Sitvei	٧٠.٤	μ9/ (0.2	0.07	J	ND	02/20/06	JUN
≣PA 8260								
enzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
romobenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
Bromochloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
#Bromodichloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
Bromoform	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
romomethane	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
n-Butylbenzene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
sec-Butylbenzene ert-Butylbenzene	<0.15 <0.15	μg/l	0.15	0.50	1		02/20/06	MRD
Farbon Tetrachloride	<0.15	μg/l μg/l	0.15 0.2	0.50 0.67	1 1		02/20/06	MRD MRD
thlorobenzene	<0.1	μg/l μg/l	0.1	0.33	1		02/20/06 02/20/06	MRD
Chloroethane	<0.6	μg/l	0.6	2.0	i		02/20/06	MRD
hloroform	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD
Chloromethane	<0.2	μg/l	0.2	0.67	i		02/20/06	MRD
-Chiorotoluene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
4-Chlorotoluene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
Pibromochloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
ibromochloropropane(DBCP)	<0.3	μg/l	0.3	1.0	1		02/20/06	MRD
,2-Dibromoethane(EDB)	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
#ibromomethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
1,2-Dichlorobenzene 1,3-Dichlorobenzene	<0.75 <0.15	μg/l	0.75 0.15	2.5 0.50	1 1		02/20/06	MRD
,4-Dichlorobenzene	<0.75	μg/l μg/l	0.75	2.5	1		02/20/06 02/20/06	MRD MRD
• ichlorodifluoromethane	<0.25	μg/l	0.75	0.83	i		02/20/06	MRD
1,1-Dichloroethane	<0.15	μg/l	0.15	0.50	i		02/20/06	MRD
_1,2-Dichloroethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
1,1-Dichloroeth(yl)ene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
is-1,2-Dichloroeth(yl)ene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
rans-1,2-Dichloroeth(yl)en	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
1,2-Dichloropropane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
1,3-Dichloropropane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
‡,2-Dichloropropane	<0.1	μg/l	0.1	0.33	-	CSH	02/20/06	MRD
=,1-Dichloropropene	<0.2	μg/l	0.2	0.67	-	CSH	02/20/06	MRD
cis-1,3-Dichloropropene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
trans-1,3-Dichloropropene thylbenzene	<0.1 <0.1	μg/l μg/l	0.1 0.1	0.33 0.33	1 1		02/20/06 02/20/06	MRD MRD
1/	-0.1	#8/ (0.1	0.00	1		02/20/00	טאויו

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com

Short Elliott Henderickson ■21 Frenette Drive Chippewa Falls , WI 54729 PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.7 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

↑ttn: John Guhl

ample ID: MW-2 Matrix: GRDWTR Sample Date/Time: 02/16/06 11:00 Lab No. 195284

1	<u>Result</u>	<u>Units</u>	<u>LOD</u>	LOQ	Dilution <u>Factor</u>	<u>Qualifiers</u>	Date <u>Analyzed</u>	Analyst
EPA 8260								
Hexachlorobutadiene	<1.00	μg/l	1.0	3.33	1		02/20/06	MRD
Isopropylbenzene	<0.1	μg/l μg/l	0.1	0.33	i		02/20/06	MRD
#-Isopropyltoluene	<0.2	μg/l μg/l	0.2	0.67	1		02/20/06	MRD
Methylene Chloride	<0.4	μg/l μg/l	0.4	1.33	1		02/20/08	MRD
Methyl t-Butyl Ether(MTBE)	<0.1	μg/l μg/l	0.1	0.33	i		02/20/06	MRD
Naphthalene	<1.00	μg/l μg/l	1.0	3.33	1		02/20/06	MRD
n-Propylbenzene	<0.1	μg/t μg/l	0.1	0.33	1			MRD
Styrene	<0.1	. •	0.1	0.33	1		02/20/06	
1,1,1,2-Tetrachloroethane	<0.1	μg/l		0.33	i		02/20/06	MRD
1,1,2,2-Tetrachloroethane	<0.1	μg/l	0.1 0.1	0.33	1		02/20/06	MRD
	<0.1	μg/l					02/20/06	MRD
etrachloroeth(yl)ene oluene		μg/l	0.1	0.33	1 1		02/20/06	MRD
,2,3-Trichlorobenzene	<0.4	μg/l	0.4	1.33	•		02/20/06	MRD
	<0.5	μg/l	0.5	1.67	1		02/20/06	MRD
1,2,4-Trichlorobenzene	<0.5	μg/l	0.5	1.67	•		02/20/06	MRD
1,1,1-Trichloroethane	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
1,1,2-Trichloroethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
Frichloroeth(yl)ene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
Trichlorofluoromethane	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
1,2,3-Trichloropropane	<0.55	μg/l	0.55	1.83	1		02/20/06	MRD
1,2,4-Trimethylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
1,3,5-Trimethylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
Winyl Chloride	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
o-Xylene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
m-& p-Xylene	<0:4	μg/l	0.4	1.33	1		02/20/06	MRD
⊭ PA 8310								
	-0.04		0.00	0.00			00 (07 (0)	
Ucenaphthene	<0.06	μg/l	0.06	0.20	1		02/23/06	LMP
Acenaphthylene Anthracene	<0.06	μg/l	0.06	0.20	1		02/23/06	LMP
	<0.09	μg/l	0.09	0.30	1		02/23/06	LMP
Benzo(a)Anthracene	<0.1	μg/l	0.1	0.33	1		02/23/06	LMP
Benzo(a)Pyrene Benzo(b)Fluoranthene	0.048	μg/l	0.02	0.067	1	J CSL	02/23/06	LMP
	<0.02	μg/l	0.02	0.067	1		02/23/06	LMP
Benzo(k)Fluoranthene	<0.07	μg/l	0.07	0.23	1		02/23/06	LMP
Benzo(ghi)Perylene	<0.06	μg/l	0.06	0.20	1		02/23/06	LMP
hrysene	<0.02	μg/l	0.02	0.067	1	MB	02/23/06	LMP
Dibenzo(a,h)Anthracene	<0.11	μg/l	0.11	0.37	1		02/23/06	LMP
Fluoranthene	<0.12	μg/l	0.12	0.40	1		02/23/06	LMP
[luorene	<0.12	μg/l	0.12	0.40	1		02/23/06	LMP
ndeno(1,2,3-cd)Pyrene	<0.12	μg/l	0.12	0.40	1		02/23/06	LMP
-Methyl Naphthalene	<0.08	μg/l	0.08	0.27	1		02/23/06	LMP
2-Methyl Naphthalene	<0.11	μg/l	0.11	0.37	1		02/23/06	LMP
Naphthalene	<0.11	μg/l	0.11	0.37	1		02/23/06	LMP
Phenanthrene	<0.11	μg/l	0.11	0.37	1		02/23/06	LMP
yrene	<0.1	μg/l	0.1	0.33	1		02/23/06	LMP
7,10-Diphenylanthracene (S)	47.9	%	-	-	1		02/23/06	LMP
Method 3510 Liquid Ext.	COMP		-	-	-		02/20/06	KAM

TELEPHONE FACSIMILE WEBSITE

800-338-7226 715-355-3221 www.usfilter.com

Short Elliott Henderickson :=21 Frenette Drive |=hippewa Falls , WI 54729 PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.4 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

Attn: John Guhl

∃ample ID: MW-3 Matrix: GRDWTR Sample Date/Time: 02/16/06 10:30 Lab No. 195283

	Result	<u>Units</u>	LOD	<u>L00</u>	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	Analyst
EPA 150.1								
pH - Laboratory	7.37		•	-	1		02/20/06	JJP
pH - Laboratory Time	08:15		-	-	· -		02/20/06	JJP
· ·							,,	
EPA 245.1								
Diss. Mercury	<0.07	μg/l	0.07	0.23	1		02/21/06	MPM

EPA 6020 Diss. Arsenic	7 /0	u= (1	0.4	2.0	4		02/20/0/	
Diss. Cadmium	3.40 <0.2	μg/l	0.6 0.2	2.0	1		02/20/06	JCH
Diss. Chromium	<1.60	μg/l	1.6	0.67 5.33	1 1		02/20/06	JCH
	<0.3	μg/l			•		02/20/06	JCH
⊅iss. Lead ⊅iss. Selenium	<0.6	μg/l	0.3 0.6	1.0 2.0	1 1		02/20/06	JCH
Diss. Barium	33.7	μg/l	2.0	6.66	i		02/20/06	JCH
Diss. Silver	۶۶.، خ0.2	μg/l	0.2	0.67	1	MB	02/20/06	JCH
Diss. Sitvei	٧٠.٢	μg/l	0.2	0.67	1	מויז	02/20/06	JCH
EPA 8260								
Benzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
Bromobenzene	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD
Bromochloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
Bromodichloromethane	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD
Bromoform	<0.2	μg/l	0.2	0.67	i		02/20/06	MRD
Bromomethane	<0.15	μg/l	0.15	0.50	i		02/20/06	MRD
n-Butylbenzene	<0.2	μg/l	0.2	0.67	i		02/20/06	MRD
sec-Butylbenzene	<0.15	μg/l	0.15	0.50	i		02/20/06	MRD
tert-Butylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
Carbon Tetrachloride	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
Chlorobenzene	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD
Chloroethane	<0.6	μg/l	0.6	2.0	1		02/20/06	MRD
Chloroform	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
Chloromethane	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
2-Chlorotoluene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
4-Chlorotoluene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
Dibromochloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
⊇ibromochloropropane(DBCP)	<0.3	μg/l	0.3	1.0	1		02/20/06	MRD
,2-Dibromoethane(EDB) Dibromomethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
Dibromomethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
1,2-Dichlorobenzene	<0.75	μg/l	0.75	2.5	1		02/20/06	MRD
1,3-Dichlorobenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
1,4-Dichlorobenzene	<0.75	μg/l	0.75	2.5	1		02/20/06	MRD
Dichlorodifluoromethane	<0.25	μg/l	0.25	0.83	1		02/20/06	MRD
1,1-Dichloroethane	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
1,2-Dichloroethane	2.29	μg/l	0.1	0.33	1		02/20/06	MRD
1,1-Dichloroeth(yl)ene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
pis-1,2-Dichloroeth(yl)ene	2.22	μg/l	0.2	0.67	1		02/20/06	MRD
rans-1,2-Dichloroeth(yl)en	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
1,2-Dichloropropane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
1,3-Dichloropropane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
⊉,2-Dichloropropane	<0.1	μg/l	0.1	0.33	-	CSH	02/20/06	MRD
∃,1-Dichloropropene	<0.2	μg/l	0.2	0.67	-	CSH	02/20/06	MRD
cis-1,3-Dichloropropene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
trans-1,3-Dichloropropene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
Ethylbenzene	<0.1	μg/l	0.1	0.33	1	÷	02/20/06	MRD

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE

800-338-7226 715-355-3221 www.usfilter.com

Short Elliott Henderickson ■21 Frenette Drive Chippewa Falls , WI 54729 PROJECT NO.: NERUB0502.00 REPORT NO.: 195283.5 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

Attn: John Guhl

imample ID: MW-3	Matri	x: GRDWTR		Sample Date/Ti	Lab No. 195283			
	<u>Result</u>	<u>Units</u>	<u>LOD</u>	<u>L00</u>	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	Analyst
≡PA 8260								
Hexachlorobutadiene	<1.00	μg/l	1.0	3.33	1		02/20/06	MRD
Isopropylbenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
Isopropyltoluene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
ethylene Chloride	<0.4	μg/l	0.4	1.33	i		02/20/06	MRD
Methyl t-Butyl Ether(MTBE)	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
Naphthalene	<1.00	μg/l	1.0	3.33	1		02/20/06	MRD
n-Propylbenzene	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD
Styrene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
1,1,1,2-Tetrachloroethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
1 1 2 2-Totachlopoothopo	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
Tetrachloroeth(yl)ene	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD
Foluene	<0.4	μg/l	0.4	1.33	1		02/20/06	MRD
1,2,3-Trichlorobenzene	<0.5	μg/l	0.5	1.67	i		02/20/06	MRD
1,2,4-Trichlorobenzene	<0.5	μg/l	0.5	1.67	i		02/20/06	MRD
1.1.1-Trichloroethane	<0.2	μg/l	0.2	0.67	i		02/20/06	MRD
1,1,2-Trichloroethane	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD
Trichloroeth(yl)ene	0.535	μg/l	0.2	0.67	i	J	02/20/06	MRD
Trichlorofluoromethane	<0.2	μg/l	0.2	0.67	i	•	02/20/06	MRD
1,2,3-Trichloropropane	<0.55	μg/l	0.55	1.83	i		02/20/06	MRD
1,2,4-Trimethylbenzene	<0.15	μg/l	0.15	0.50	i		02/20/06	MRD
,3,5-Trimethylbenzene	<0.15	μg/l	0.15	0.50	i		02/20/06	MRD
inyl Chloride	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
o-Xylene	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD
m-& p-Xylene	<0.4	μg/l	0.4	1.33	i		02/20/06	MRD
<u> </u>								
cenaphthene	<0.06	μg/l	0.06	0.20	1		02/23/06	LMP
Acenaphthylene	<0.06	μg/l	0.06	0.20	1		02/23/06	LMP
Anthracene	<0.09	μg/l	0.09	0.30	1		02/23/06	LMP
Benzo(a)Anthracene	<0.1	μg/l	0.1	0.33	1		02/23/06	LMP
βenzo(a)Pyrene	<0.02	μg/l	0.02	0.067	1	CSL	02/23/06	LMP
Benzo(b)Fluoranthene	<0.02	μg/l	0.02	0.067	1		02/23/06	LMP
Benzo(k)Fluoranthene	<0.07	μg/l	0.07		1		02/23/06	LMP
≣enzo(ghi)Perylene	<0.06	μg/l	0.06	0.20	1		02/23/06	LMP
hrysene	<0.02	μg/l	0.02	0.067	1	MB	02/23/06	LMP
ibenzo(a,h)Anthracene	<0.11	μg/l	0.11	0.37	1		02/23/06	LMP
Fluoranthene	<0.12	μg/l	0.12	0.40	1		02/23/06	LMP
Fluorene	<0.12	μg/l	0.12	0.40	1		02/23/06	LMP
ndeno(1,2,3-cd)Pyrene	<0.12	μg/l	0.12	0.40	1		02/23/06	LMP
-Methyl Naphthalene	<0.08	μg/l	0.08	0.27	1		02/23/06	LMP
2-Methyl Naphthalene	<0.11	μg/l	0.11	0.37	1		02/23/06	LMP
Naphthalene	<0.11	μg/l	0.11	0.37	1.		02/23/06	LMP
henanthrene	<0.11	μg/l	0.11	0.37	1		02/23/06	LMP
yrene	<01	μg/l	0.1	0.33	1		02/23/06	LMP
,10-Diphenylanthracene (S)	56.6	%	-	•	1		02/23/06	LMP
Method 3510 Liquid Ext.	COMP		-	-	-		02/20/06	KAM

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com

Short Elliott Henderickson 21 Frenette Drive Chippewa Falls , WI 54729 PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.80 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

Attn: John Guhl

ample ID: MW-4	Matri	x: GRDWTR	Sa	mple Date/T	Lab No. 195320			
	<u>Result</u>	<u>Units</u>	LOD	<u>LOQ</u>	Dilution <u>Factor</u>	Qualifiers	Date Analyzed	<u>Analyst</u>
≣PA 150.1								
pH - Laboratory	7.48		-	-	1		02/20/06	JJP
pH - Laboratory Time	08:30		-	-	•		02/20/06	JJP
							02,20,00	
PA 245.1								
Diss. Mercury	<0.07	μg/l	0.07	0.23	1		02/21/06	MPM
, , , , , , , , , , , , , , , , , , ,	10.01	#9/ t	0.0.	0.23	•		02/21/00	rir ri
EPA 6020								
iss. Arsenic	<0.6	μg/l	0.6	2.0	1		02/28/06	JCH
iss. Cadmium	0.77	μg/l	0.2	0.67	1		02/28/06	JCH
Diss. Chromium	2.80	μg/l	1.6	5.33	i	J	02/28/06	JCH
⇒Diss. Lead	<0.3	μg/l	0.3	1.0	1	-	02/28/06	JCH
iss. Selenium	0.7	μg/l	0.6	2.0	ì	J	02/28/06	JCH
iss. Barium	48.2	μg/l	2.0	6.66	1	-	02/28/06	JCH
Diss. Silver	<0.2	μg/l	0.2	0.67	i		02/28/06	JCH
		F3/ 1		••••	•		02, 20, 00	
<u> PA 8260</u>								
enzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
romobenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
Bromochloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
romodichloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
romoform	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
romomethane	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
n-Butylbenzene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
sec-Butylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
_ert-Butylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
arbon Tetrachloride	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
I hlorobenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
Chloroethane	<0.6	μg/l	0.6	2.0	1		02/20/06	MRD
Phloroform	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
hloromethane	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
-Chlorotoluene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
4-Chlorotoluene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
Dibromochloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
ibromochloropropane(DBCP)	<0.3	μg/l	0.3	1.0	1		02/20/06	MRD
,2-Dibromoethane(EDB)	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
ibromomethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
1,2-Dichlorobenzene	<0.75	μg/l	0.75	2.5	1		02/20/06	MRD
1,3-Dichlorobenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
,4-Dichlorobenzene	<0.75	μg/l	0.75	2.5	1		02/20/06	MRD
ichlorodifluoromethane	<0.25	μg/l	0.25	0.83	. 1		02/20/06	MRD
1,1-Dichloroethane	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
_1,2-Dichloroethane	0.296	μg/l	0.1	0.33	1	J	02/20/06	MRD
1-Dichloroeth(yl)ene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
is-1,2-Dichloroeth(yl)ene	5.57	μg/l	0.2	0.67	1		02/20/06	MRD
rans-1,2-Dichloroeth(yl)en	0.138	μg/l	0.1	0.33	1	J	02/20/06	MRD
1,2-Dichloropropane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
,3-Dichloropropane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
,2-Dichloropropane	<0.1	μg/l	0.1	0.33	-	CSH	02/20/06	MRD
,1-Dichloropropene	<0.2	μg/l	0.2	0.67	-	CSH	02/20/06	MRD
cis-1,3-Dichloropropene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
trans-1,3-Dichloropropene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
thylbenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE

800-338-7226 715-355-3221 www.usfilter.com

PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.81 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

Attn: John Guhl

Short Elliott Henderickson

hippewa Falls , WI 54729

21 Frenette Drive

Sample ID: MW-4 Matrix: GRDWTR Sample Date/Time: 02/16/06 08:00 Lab

Lab No. 195320

				•				
ì					Dilution		Date	
Ī	Result	Units	LOD	LOQ	Factor	Qualifiers	Analyzed	Analyst
<u>EPA 8260</u>								
Hexachlorobutadiene	<1.00	μg/l	1.0	3.33	1		02/20/06	MRD
sopropylbenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
4-Isopropyltoluene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
lethylene Chloride	<0.4	μg/l	0.4	1.33	1		02/20/06	MRD
Methyl t-Butyl Ether(MTBE)	0.112	μg/l	0.1	0.33	1	J	02/20/06	MRD
Naphthalene	<1.00	μg/l	1.0	3.33	1	-	02/20/06	MRD
n-Propylbenzene	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD
\$tyrene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
1,1,1,2-Tetrachloroethane	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD
1,1,2,2-Tetrachloroethane	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD
▼etrachloroeth(yl)ene	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD
oluene	<0.4	μg/l	0.4	1.33	i		02/20/06	MRD
■,2,3-Trichlorobenzene	<0.5	μg/l	0.5	1.67	i		02/20/06	MRD
1,2,4-Trichlorobenzene	<0.5	μg/l	0.5	1.67	i		02/20/06	MRD
1,1,1-Trichloroethane	<0.2	μg/l	0.2	0.67	i		02/20/06	MRD
1,1,2-Trichloroethane	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD
Frichloroeth(yl)ene	<0.2	μg/l	0.2	0.67	i		02/20/06	MRD
Trichlorofluoromethane	<0.2	μg/l μg/l	0.2	0.67	i		02/20/06	MRD
1,2,3-Trichloropropane	<0.55	μg/l	0.55	1.83	i		02/20/06	MRD
1,2,4-Trimethylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
1,3,5-Trimethylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
/inyl Chloride	<0.15	μg/l μg/l	0.15	0.50	i			MRD
o-Xylene	<0.1	μg/l μg/l	0.13	0.33	1		02/20/06	
m-& p-Xylene	<0.4	μg/l μg/l	0.4	1,33	1		02/20/06	MRD MRD
F u p xyteric	٠٠.۶	μg/t	0.4	1,33	1		02/20/06	טאוין
 ₽A 8310								
Acenaphthene	<0.06		0.06	0.20	4		02/27/0/	LMD
Acenaphthylene	<0.06	μg/l	0.06	0.20	1 1		02/27/06	LMP
=Anthracene	<0.00	μg/l	0.09		1		02/27/06	LMP
Benzo(a)Anthracene	<0.1	μg/l	0.09	0.30 0.33	1		02/27/06	LMP
Benzo(a)Pyrene	<0.02	μg/l			1		02/27/06	LMP
Benzo(b)Fluoranthene	<0.02	μg/l	0.02	0.067	•	0011	02/27/06	LMP
Benzo(k)Fluoranthene		μg/l	0.02	0.067	1	CSH	02/27/06	LMP
	<0.07	μg/l	0.07	0.23	1		02/27/06	LMP
Benzo(ghi)Perylene	<0.06	μg/l	0.06	0.20	1		02/27/06	LMP
Chrysene	<0.02	μg/l	0.02	0.067	1		02/27/06	LMP
Dibenzo(a,h)Anthracene	<0.11	μg/l	0.11	0.37	1		02/27/06	LMP
Fluoranthene	<0.12	μg/l	0.12	0.40	1		02/27/06	LMP
Fluorene	<0.12	μg/l	0.12	0.40	1		02/27/06	LMP
Indeno(1,2,3-cd)Pyrene	<0.12	μg/l	0.12	0.40	1	CSH	02/27/06	LMP
1-Methyl Naphthalene	<0.08	μg/l	0.08	0.27	1		02/27/06	LMP
2-Methyl Naphthalene	<0.11	μg/l	0.11	0.37	1		02/27/06	LMP
Naphthalene	<0.11	μg/l	0.11	0.37	1		02/27/06	LMP
Phenanthrene	<0.11	μg/l	0.11	0.37	1		02/27/06	LMP
₽yrene	<0.1	μg/l	0.1	0.33	1		02/27/06	LMP
7,10-Diphenylanthracene (S)	63.8	%	•	-	1		02/27/06	LMP
Method 3510 Liquid Ext.	COMP		-	-	-		02/22/06	KAM

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com

Short Elliott Henderickson -21 Frenette Drive -hippewa Falls , WI 54729 PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.86 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

Attn: John Guhl

Sample ID: MW-5	Matrix: GRDWTR			ample Date/Ti	Lab No. 195323			
					Dilution		Date	
_	<u>Result</u>	<u>Units</u>	LOD	LOQ	<u>Factor</u>	Qualifiers	<u>Analyzed</u>	<u>Analyst</u>
L. 450 4								
<u> PA 150.1</u>	7 70						02/20/04	
pH - Laboratory #H - Laboratory Time	7.38 08:30		•	-	1_		02/20/06 02/20/06	JJP JJP
In a caboratory rime	00:30		-	•	-		02/20/08	JJP
PA 245.1								
iss. Mercury	<0.07	μg/l	0.07	0.23	1		02/21/06	MPM
							,,	
<u>≡PA 6020</u>								
iss. Arsenic	0.6	μg/l	0.6	2.0	1	J	02/28/06	JCH
iss. Cadmium Diss. Chromium	<0.2	μg/l	0.2	0.67	1		02/28/06	JCH
Riss. Lead	1.90 <0.3	μg/l	1.6 0.3	5.33 1.0	1	J	02/28/06	JCH
wiss. Selenium	0.7	μg/l μg/l	0.6	2.0	i	J	02/28/06 02/28/06	JCH JCH
riss. Barium	68.5	μg/l	2.0	6.66	i	·	02/28/06	JCH
Diss. Silver	<0.2	μg/l	0.2	0.67	i		02/28/06	JCH
		,						
<u>=PA 8260</u>								
enzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
romobenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
Bromochloromethane _Bromodichloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
romoform	<0.1 <0.2	μg/l μg/l	0.1 0.2	0.33 0.67	1 1		02/20/06 02/20/06	MRD MRD
romomethane	<0.15	μg/l μg/l	0.15	0.50	i		02/20/06	MRD
n-Butylbenzene	<0.2	μg/l	0.2	0.67	i		02/20/06	MRD
sec-Butylbenzene	<0.15	μg/l	0.15	0.50	i		02/20/06	MRD
ert-Butylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
arbon Tetrachloride	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
hlorobenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
Chloroethane	<0.6	μg/l	0.6	2.0	1		02/20/06	MRD
Chloroform	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
hloromethane ·	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
-Chlorotoluene 4-Chlorotoluene	<0.1 <0.2	μg/l μg/l	0.1 0.2	0.33 0.67	1 1		02/20/06 02/20/06	MRD MRD
Dibromochloromethane	<0.1	μg/l μg/l	0.2	0.33	1		02/20/06	MRD
ibromochloropropane(DBCP)	<0.3	μg/l	0.3	1.0	i		02/20/06	MRD
,2-Dibromoethane(EDB)	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD
ibromomethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
1,2-Dichlorobenzene	<0.75	μg/l	0.75	2.5	1		02/20/06	MRD
.3-Dichlorobenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
,4-Dichlorobenzene	<0.75	μg/l	0.75	2.5	1		02/20/06	MRD
ichlorodifluoromethane	<0.25	μg/l	0.25	0.83	1		02/20/06	MRD
1,1-Dichloroethane	<0.15 0.357	μg/l	0.15 0.1	0.50 0.33	1 1		02/20/06	MRD MRD
,1-Dichloroeth(yl)ene	<0.15	μg/l μg/l	0.15	0.50	i		02/20/06 02/20/06	MRD
is-1,2-Dichloroeth(yl)ene	8.26	μg/l	0.2	0.67	i		02/20/06	MRD
rans-1,2-Dichloroeth(yl)en	0.262	μg/l	0.1	0.33	i	j	02/20/06	MRD
1,2-Dichloropropane	<0.1	μg/l	0.1	0.33	i	-	02/20/06	MRD
1,3-Dichloropropane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
,2-Dichloropropane	<0.1	μg/l	0.1	0.33	-	CSH	02/20/06	MRD
",1-Dichloropropene	<0.2	μg/l	0.2	0.67	•	CSH	02/20/06	MRD
cis-1,3-Dichloropropene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
trans-1,3-Dichloropropene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
thylbenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE

800-338-7226 715-355-3221 www.usfilter.com

PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.87 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

Attn: John Guhl

+21 Frenette Drive Chippewa Falls , WI 54729

Short Elliott Henderickson

Sample ID: MW-5 Matrix: GRDWTR Sample Date/Time: 02/16/06 09:30 Lab No. 195323

Isopropylbenzene <0.1 $\mu g/l$ 0.1 0.33 1 $02/20/06$ MR 4 -Isopropyltoluene <0.2 $\mu g/l$ 0.2 0.67 1 $02/20/06$ MR 4 -Interpolation <0.4 $\mu g/l$ 0.4 1.33 1 $02/20/06$ MR 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4 4 -Interpolation <0.4	IRD IRD IRD IRD IRD IRD IRD IRD IRD
Hexachlorobutadiene <1.00 μ g/l 1.0 3.33 1 02/20/06 MR sopropylbenzene <0.1 μ g/l 0.1 0.33 1 02/20/06 MR -1sopropyltoluene <0.2 μ g/l 0.2 0.67 1 02/20/06 MR -1sopropyltoluene <0.4 μ g/l 0.4 1.33 1 02/20/06 MR	IRD IRD IRD IRD IRD IRD IRD IRD
Isopropylbenzene <0.1 $\mu g/l$ 0.1 0.33 1 $02/20/06$ MR 4 -Isopropyltoluene <0.2 $\mu g/l$ 0.2 0.67 1 $02/20/06$ MR Methylene Chloride <0.4 $\mu g/l$ 0.4 1.33 1 $02/20/06$ MR	IRD IRD IRD IRD IRD IRD IRD IRD
#-Isopropyltoluene <0.2 μg/l 0.2 0.67 1 02/20/06 MR Methylene Chloride <0.4 μg/l 0.4 1.33 1 02/20/06 MR	IRD IRD IRD IRD IRD IRD IRD
Methylene Chloride <0.4 µg/l 0.4 1.33 1 02/20/06 MR	IRD IRD IRD IRD IRD IRD
	IRD IRD IRD IRD IRD
	IRD IRD IRD IRD
	IRD IRD IRD
	IRD IRD
	IRD
	מאו
etrachloroeth(yl)ene <0.1 μg/l 0.1 0.33 1 02/20/06 MR	
oluene	
,2,3-Trichlorobenzene <0.5 μg/l 0.5 1.67 1 02/20/06 MR	
1,2,4-Trichlorobenzene <0.5 $\mu g/l$ 0.5 1.67 1 02/20/06 MR	
1,1,1-Trichloroethane	
$1,1,2$ -Trichloroethane <0.1 μ g/l 0.1 0.33 1 02/20/06 MR	
Fichloroeth(yl)ene <0.2 µg/l 0.2 0.67 1 02/20/06 MR	
Firithfore the control of the contr	
1,2,3-Trichloropropane <0.55 μg/l 0.55 1.83 1 02/20/06 MR	
1,3,5-Trimethylbenzene <0.15 µg/l 0.15 0.50 1 02/20/06 MR	IRD
III /inyl Chloride <0.15 $\mu g/l$ 0.15 0.50 1 02/20/06 MR	IRD
o-Xylene <0.1 μg/l 0.1 0.33 1 02/20/06 MR	
m-& p-Xylene <0.4 μg/l 0.4 1.33 1 02/20/06 MR	IRD
No. and	
PA 8310_	
	.MP
	.MP
	.MP
· ·	.MP
. <u> </u>	.MP
	.MP
	.MP
	.MP
	MP
	.MP
	.MP
	.MP
	.MP
-Methyl Naphthalene <0.08 μg/l 0.08 0.27 1 02/28/06 LM	.MP
2-Methyl Naphthalene <0.11 μg/l 0.11 0.37 1 02/28/06 LM	MP
II. '	.MP
	.MP
	.MP
	.MP
Method 3510 Liquid Ext. COMP 02/22/06 KA	CAM

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE

800-338-7226 715-355-3221 www.usfilter.com

Short Elliott Henderickson 421 Frenette Drive Chippewa Falls , WI 54729 PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.88 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

Attn: John Guhl

Sample ID: PZ-5	Matri	x: GRDWTR	s	ample Date/T	Lab No. 195324			
•	<u>Result</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	Analyst
EPA_150.1								
pH - Laboratory	7.48		-	-	1		02/20/06	JJP
→pH - Laboratory Time	08:30		-	-	· <u>-</u>		02/20/06	JJP
							,,	
EPA 245.1								
Diss. Mercury	<0.07	μg/l	0.07	0.23	1		02/21/06	MPM
EPA 6020_								
Diss. Arsenic	10.3	μg/l	0.6	2.0	1		02/28/06	JCH
Diss. Cadmium	<0.2	μg/l	0.2	0.67	1		02/28/06	JCH
Diss. Chromium	<1.60	μg/l	1.6	5.33	1		02/28/06	JCH
∯iss. Lead	<0.3	μg/l	0.3	1.0	1		02/28/06	JCH
🏲iss. Selenium	8.0	μg/l	0.6	2.0	1	j	02/28/06	JCH
₱iss. Barium	71.2	μg/l	2.0	6.66	1		02/28/06	JCH
Diss. Silver	<0.2	μg/l	0.2	0.67	1		02/28/06	JCH
<u>≡PA 8260</u>								
≢ enzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
₿romobenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
Bromochloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
₽romodichloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
#romoform	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
≡ romomethane	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
n-Butylbenzene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
sec-Butylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
tert-Butylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
Carbon Tetrachloride	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
Chlorobenzene	<0.3	μg/l	0.1	0.33	1		02/20/06	MRD
Chloroethane	<0.6	μg/l	0.6	2.0	1		02/20/06	MRD
hloroform	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
hloromethane	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
-Chlorotoluene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
4-Chlorotoluene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
Dibromochloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
(ibromochloropropane(DBCP)	<0.3	μg/l	0.3	1.0	1		02/20/06	MRD
,2-Dibromoethane(EDB)	<0.1	μg/l	0.1	0.33	1 1		02/20/06	MRD
1,2-Dichlorobenzene	<0.1 <0.75	μg/l	0.1 0.75	0.33 2.5	1		02/20/06 02/20/06	MRD
1,3-Dichtorobenzene	<0.15	μg/l μg/l	0.75	0.50	1		02/20/06	MRD MRD
,4-Dichlorobenzene	<0.75	μg/l μg/l	0.15	2.5	i		02/20/06	MRD
ichlorodifluoromethane	<0.25	μg/l μg/l	0.25	0.83	i		02/20/06	MRD
1,1-Dichloroethane	<0.15	μg/l μg/l	0.15	0.50	i		02/20/06	MRD
1,2-Dichloroethane	0.335	μg/l μg/l	0.1	0.33	i		02/20/06	MRD
,1-Dichloroeth(yl)ene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
is-1,2-Dichloroeth(yl)ene	<0.2	μg/l μg/l	0.13	0.67	i		02/20/06	MRD
lrans-1,2-Dichloroeth(yl)en	<0.1	μg/l μg/l	0.1	0.33	i		02/20/06	MRD
1,2-Dichloropropane	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD
1,3-Dichloropropane	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD
2,2-Dichloropropane	<0.1	μg/l μg/l	0.1	0.33	'-	CSH	02/20/06	MRD
1.1-Dichloropropene	<0.2	μg/l	0.2	0.67	-	CSH	02/20/06	MRD
cis-1,3-Dichloropropene	<0.1	μg/l	0.1	0.33	1	JJ.,	02/20/06	MRD
trans-1,3-Dichloropropene	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD
thylbenzene	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD
• • • • • • • • • • • • • • • • • • • •		F3/ ·	~• ·	7.00	•		12, 20, 00	

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE W

800-338-7226 715-355-3221 www.usfilter.com

PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.89 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

≜ttn: John Guhl

≘1 Frenette Drive

Short Elliott Henderickson

■ippewa Falls , WI 54729

ample ID: PZ-5 Matrix: GRDWTR Sample Date/Time: 02/16/06 10:00 Lab No. 195324

-				•				
					Dilution		Date	
	Result	Units	LOD	LOQ	Factor	Qualifiers	Analyzed	Analyst
			_					
<u> </u>								
Hexachlorobutadiene	<1.Ò0	μg/l	1.0	3.33	1		02/20/06	MRD
ĭ≢opropylbenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
Isopropyltoluene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
:∋thylene Chloride	<0.4	μg/l	0.4	1.33	1		02/20/06	MRD
Methyl t-Butyl Ether(MTBE)	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
Naphthalene	<1.00	μg/l	1.0	3.33	1		02/20/06	MRD
Propylbenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
±yrene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
tyrene 1,1,1,2-Tetrachloroethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
1,1,2,2-Tetrachloroethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
Ţ≢trachloroeth(yl)ene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
⇒luene	<0.4	μg/l	0.4	1.33	1		02/20/06	MRD
_2,3-Trichlorobenzene	<0.5	μg/l	0.5	1.67	1		02/20/06	MRD
1,2,4-Trichlorobenzene	<0.5	μg/l	0.5	1.67	1		02/20/06	MRD
1,1,1-Trichloroethane	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
1,2-Trichloroethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
richloroeth(yl)ene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
Trichlorofluoromethane	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
1,2,3-Trichloropropane	<0.55	μg/l	0.55	1.83	1		02/20/06	MRD
1_2,4-Trimethylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
_3,5-Trimethylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
i≣ny l Chloride	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
o-Xylene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
m-& p-Xylene	<0.4	μg/l	0.4	1.33	1		02/20/06	MRD .
PA 8310								
Acenaphthene	<0.06	μg/l	0.06	0.20	1		02/28/06	LMP
Acenaphthylene	<0.06	μg/l	0.06	0.20	1		02/28/06	LMP
nthracene	<0.09	μg/l	0.09	0.30	1		02/28/06	LMP
enzo(a)Anthracene	<0.1	μg/l	0.1	0.33	1		02/28/06	LMP
enzo(a)Pyrene	<0.02	μg/l	0.02	0.067	1		02/28/06	LMP
Benzo(b)Fluoranthene	<0.02	μg/l	0.02	0.067	1		02/28/06	LMP
Benzo(k)Fluoranthene	<0.07	→ μg/l	0.07	0.23	1		02/28/06	LMP
enzo(ghi)Perylene	<0.06	μg/l	0.06	0.20	1		02/28/06	LMP
hrysene	<0.02	μg/l	0.02	0.067	1		02/28/06	LMP
Tibenzo(a,h)Anthracene	<0.11	μg/l	0.11	0.37	1		02/28/06	LMP
Fluoranthene	0.123	μg/l	0.12	0.40	1 .	J	02/28/06	LMP
Luorene	<0.12	μg/l	0.12	0.40	1		02/28/06	LMP
ndeno(1,2,3-cd)Pyrene	<0.12	μg/l	0.12	0.40	1		02/28/06	LMP
-Methyl Naphthalene	<0.08	μg/l	0.08	0.27	1		02/28/06	LMP
2-Methyl Naphthalene	<0.11	μg/l	0.11	0.37	1		02/28/06	LMP
Naphthalene	<0.11	μg/l	0.11	0.37	1		02/28/06	LMP
Hhenanthrene	<0.11	μg/l	0.11	0.37	1		02/28/06	LMP
rene	0.169	μg/l	0.1	0.33	1	J	02/28/06	LMP
,10-Diphenylanthracene (S)	68.4	%	-	-	1		02/28/06	LMP
Method 3510 Liquid Ext.	COMP		-	-	-		02/22/06	KAM

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474

TELEPHONE FACSIMILE WEBSITE

800-338-7226 715-355-3221 www.usfilter.com

PROJECT NO.: NERUB0502.00 REPORT NO.: 195283.82 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

Attn: John Guhl

Short Elliott Henderickson

-21 Frenette Drive =hippewa Falls , WI 54729

Sample ID: MW-6	Matrix: GRDWTR		S	ample Date/Ti	Lab No. 195321			
					Dilution		Date	
	<u>Result</u>	<u>Units</u>	LOD	<u>LO0</u>	<u>Factor</u>	Qualifiers	<u>Analyzed</u>	<u>Analyst</u>
PA 150.1								
pH - Laboratory	7.39		_	_	1		02/20/06	JJP
pH - Laboratory Time	08:30		-	-	' <u>-</u>		02/20/06	JJP
Laboratory 77mic	00.50						02,20,00	001
<u> </u>								
Diss. Mercury	<0.07	μg/l	0.07	0.23	1		02/21/06	MPM
≣PA 6020								
iss. Arsenic	1.20	μg/l	0.6	2.0	1	J	02/28/06	JCH
Diss. Cadmium	0.28	μg/l	0.2	0.67	1	J	02/28/06	JCH
Diss. Chromium	1.90	μg/l	1.6	5.33	1	J	02/28/06	JCH
piss. Lead	<0.3	μg/l	0.3	1.0	1		02/28/06	JCH
iss. Selenium	0.8	μg/l	0.6	2.0	1	J	02/28/06	JCH
⊞iss. Barium	52:4	μg/l	2.0	6.66	1		02/28/06	JCH
Diss. Silver	<0.2	μg/l	0.2	0.67	1		02/28/06	JCH
EPA 8260								
Benzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
Bromobenzene	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD
Bromochloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
Bromodichloromethane	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD
#romoform	<0.2	μg/l	0.2	0.67	i		02/20/06	MRD
Bromomethane	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
n-Butylbenzene	<0.2	μg/l	0.2	0.67	i		02/20/06	MRD
sec-Butylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
tert-Butylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
Earbon Tetrachloride	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
thlorobenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
Chloroethane	<0.6	μg/l	0.6	2.0	1		02/20/06	MRD
Chloroform	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
Chloromethane	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
-Chlorotoluene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
4-Chlorotoluene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
pibromochloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
♦ ibromochloropropane(DBCP)	<0.3	μg/l	0.3	1.0	1		02/20/06	MRD
.2-Dibromoethane(EDB)	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
∍ibromomethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
1,2-Dichlorobenzene	<0.75	μg/l	0.75	2.5	1		02/20/06	MRD
₫,3- Dichlorobenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
4-Dichlorobenzene	<0.75	μg/l	0.75	2.5	1		02/20/06	MRD
<pre> ichlorodifluoromethane </pre>	<0.25	μg/l	0.25	0.83	1		02/20/06	MRD
1,1-Dichloroethane	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
1,2-Dichloroethane	0.678	μg/l	0.1	0.33	1		02/20/06	MRD
day,1-Dichloroeth(yl)ene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
‡is-1,2-Dichloroeth(yl)ene	0.869	μg/l	0.2	0.67	1		02/20/06	MRD
trans-1,2-Dichloroeth(yl)en	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
1,2-Dichloropropane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
■,3-Dichloropropane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
⊉,2-Dichloropropane	<0.1	μg/l	0.1	0.33	-	CSH	02/20/06	MRD
1.1-Dichloropropene	<0.2	μg/l	0.2	0.67	-	CSH	02/20/06	MRD
cis-1,3-Dichloropropene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
trans-1,3-Dichloropropene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
≢thylbenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
ı								

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE

800-338-7226 715-355-3221 www.usfilter.com

PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.83 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

≜ttn: John Guhl

Short Elliott Henderickson

■21 Frenette Drive □hippewa Falls , WI 54729

=ample ID: MW-6 Matrix: GRDWTR Sample Date/Time: 02/16/06 08:30 Lab No. 195321

•								
					Dilution		Date	
	Result	Units	LOD	LOQ	Factor	Qualifiers	Analyzed	Analyst
			_	_				
<u>EPA 8260</u>								
Hexachlorobutadiene	<1.00	μg/l	1.0	3.33	1		02/20/06	MRD
■ Isopropylbenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
4-Isopropyltoluene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
Methylene Chloride	<0.4	μg/l	0.4	1.33	1		02/20/06	MRD
Methyl t-Butyl Ether(MTBE)	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
Naphthalene	<1.00	μg/l	1.0	3.33	1		02/20/06	MRD
ף-Propylbenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
\$tyrene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
■,1,1,2-Tetrachloroethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
1,1,2,2-Tetrachloroethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
¶etrachloroeth(yl)ene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
oluene	<0.4	μg/l	0.4	1.33	1		02/20/06	MRD
1,2,3-Trichlorobenzene	<0.5	μg/l	0.5	1.67	1		02/20/06	MRD
1,2,4-Trichlorobenzene	<0.5	μg/l	0.5	1.67	1		02/20/06	MRD
1,1,1-Trichloroethane	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
,1,2-Trichloroethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
≢richloroeth(yl)ene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
すrichlorofluoromethane	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
1,2,3-Trichloropropane	<0.55	μg/l	0.55	1.83	1		02/20/06	MRD
1,2,4-Trimethylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
1,3,5-Trimethylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
Vinyl Chloride	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
o-Xylene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
m-& p-Xylene	<0. ⁴	μg/l	0.4	1.33	1		02/20/06	MRD
EPA 8310								
Acenaphthene	<0.06	μg/l	0.06	0.20	1		02/28/06	LMP
Acenaphthylene	<0.06	μg/l	0.06	0.20	1		02/28/06	LMP
nthracene	<0.09	μg/l	0.09	0.30	1		02/28/06	LMP
enzo(a)Anthracene	<0.1	μg/l	0.1	0.33	1		02/28/06	LMP
enzo(a)Pyrene	<0.02	μg/l	0.02	0.067	1		02/28/06	LMP
Benzo(b)Fluoranthene	<0.02	μg/l	0.02	0.067	1		02/28/06	LMP
Benzo(k)Fluoranthene	<0.07	μg/l	0.07	0.23	1		02/28/06	LMP
Benzo(ghi)Perylene	<0.06	μg/l	0.06	0.20	1		02/28/06	LMP
Ehrysene	<0.02	μg/l	0.02	0.067	1		02/28/06	LMP
∌ibenzo(a,h)Anthracene	<0.11	μg/l	0.11	0.37	1		02/28/06	LMP
Fluoranthene	<0.12	μg/l	0.12	0.40	1		02/28/06	LMP
 ¶luorene	<0.12	μg/l	0.12	0.40	1		02/28/06	LMP
ndeno(1,2,3-cd)Pyrene	<0.12	μg/l	0.12	0.40	1		02/28/06	LMP
-Methyl Naphthalene	<0.08	μg/l	0.08	0.27	1		02/28/06	LMP
2-Methyl Naphthalene	<0.11	μg/l	0.11	0.37	1		02/28/06	LMP
Naphthalene	<0.11	μg/l	0.11	0.37	1		02/28/06	LMP
Phenanthrene	<0.11	μg/l	0.11	0.37	1		02/28/06	LMP
Pyrene	<0.1	μg/l	0.1	0.33	1		02/28/06	LMP
9,10-Diphenylanthracene (S)	66.4	%	-	-	1		02/28/06	LMP
Method 3510 Liquid Ext.	COMP		-	-	-		02/22/06	KAM

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE

800-338-7226 715-355-3221 www.usfilter.com

Short Elliott Henderickson -421 Frenette Drive -Chippewa Falls , WI 54729 PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.84 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

Attn: John Guhl

⇒ample ID: MW-7	Matri	x: GRDWTR	Si	ample Date/Ti	Lab No. 195322			
					Dilution		Date	
1	<u>Result</u>	<u>Units</u>	LOD	LOQ	<u>Factor</u>	Qualifiers	Analyzed	<u>Analyst</u>
EPA 150.1								
pH - Laboratory	7.49		-	-	1		02/20/06	JJP
pH - Laboratory Time	08:30		-	_	' <u>-</u>		02/20/06	JJP
1							04, 20, 00	•••
EPA 245.1								
Diss. Mercury	<0.07	μg/l	0.07	0.23	1		02/21/06	MPM
EPA 6020	/ 70			• •			00.00.00	
Diss. Arsenic	4.70	μg/l	0.6	2.0	1		02/28/06	JCH
Diss. Cadmium Diss. Chromium	<0.2	μg/l	0.2	0.67	1		02/28/06	JCH
Diss. Lead	<1.60	μg/l	1.6	5.33	1		02/28/06	JCH
Diss. Selenium	<0.3 0.9	μg/l	0.3 0.6	1.0 2.0	1 1		02/28/06	JCH
Diss. Barium	58.5	μg/l "α/l	2.0	6.66	1	J	02/28/06	JCH
Diss. Silver	<0.2	μg/l μg/l	0.2	0.67	1		02/28/06 02/28/06	JCH JCH
priss. Sitte	٧٠.٤	μ9/ (0.2	0.07	'		02/20/00	JCH
■EPA 8260								
Benzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
Bromobenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
Bromochloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
■Bromodichloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
₿romoform	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
Bromomethane	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
n-Butylbenzene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
sec-Butylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
tert-Butylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
Carbon Tetrachloride	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
Chlorobenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
Chloroethane	<0.6	μg/l	0.6	2.0	1		02/20/06	MRD
Chloroform	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
Chloromethane	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
2-Chlorotoluene 4-Chlorotoluene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
Dibromochloromethane	<0.2 <0.1	μg/l	0.2 0.1	0.67	1		02/20/06	MRD
Dibromochloropropane(DBCP)	<0.3	μg/l	0.3	0.33 1.0	1		02/20/06	MRD
1,2-Dibromoethane(EDB)	<0.1	μg/l μg/l	0.3	0.33	i		02/20/06 02/20/06	MRD MRD
Dibromomethane	<0.1	μg/l μg/l	0.1	0.33	i		02/20/06	MRD
1,2-Dichlorobenzene	<0.75	μg/l μg/l	0.75	2.5	i		02/20/06	MRD
1,3-Dichlorobenzene	<0.15	μg/l	0.15	0.50	i		02/20/06	MRD
7,4-Dichlorobenzene	<0.75	μg/l	0.75	2.5	i		02/20/06	MRD
⊅ichlorodifluoromethane	<0.25	μg/l	0.25	0.83	i		02/20/06	MRD
1,1-Dichloroethane	<0.15	μg/l	0.15	0.50	i		02/20/06	MRD
1,2-Dichloroethane	0.786	μg/l	0.1	0.33	i		02/20/06	MRD
1,1-Dichloroeth(yl)ene	<0.15	μg/l	0.15	0.50	i		02/20/06	MRD
cis-1,2-Dichloroeth(yl)ene	1.82	μg/l	0.2	0.67	i		02/20/06	MRD
trans-1,2-Dichloroeth(yl)en	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD
1,2-Dichloropropane	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD
1,3-Dichloropropane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
⊉,2-Dichloropropane	<0.1	μg/l	0.1	0.33	-	CSH	02/20/06	MRD
1,1-Dichloropropene	<0.2	μg/l	0.2	0.67	-	CSH	02/20/06	MRD
cis-1,3-Dichloropropene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
trans-1,3-Dichloropropene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
Ethylbenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474

TELEPHONE FACSIMILE WEBSITE

800-338-7226 715-355-3221 www.usfilter.com

Short Elliott Henderickson 421 Frenette Drive Chippewa Falls , WI 54729

■Attn: John Guhl Sample ID: MW-7

Matrix: GRDWTR

REPORT NO.: 195283.85 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

PROJECT NO.: NERUB0502.00

Sample Date/Time: 02/16/06 09:00 Lab No. 195322

Sample ID. Hw	Matri	A. GRUNIK		sample pate/in	me: UZ/10/C	00 09:00	Lab No. 13	73366	
					Dilution		Date		
	Result	<u>Units</u>	LOD	LOQ	Factor	Qualifiers	Analyzed	Analyst	
EPA 8260									
Hexachlorobutadiene	<1.00	μg/l	1.0	3.33	1		02/20/06	MRD	
Isopropylbenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD	
	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD	
Methylene Chloride	<0.4	μg/l	0.4	1.33	1		02/20/06	MRD	
Methyl t-Butyl Ether(MTBE)	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD	
Naphthalene	<1.00	μg/l	1.0	3.33	1		02/20/06	MRD	
n-Propylbenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD	
≒Styrene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD	
1,1,1,2-Tetrachloroethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD	
1,1,2,2-Tetrachloroethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD	
Tetrachloroeth(yl)ene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD	
Toluene	<0.4	μg/l	0.4	1.33	1		02/20/06	MRD	•
1,2,3-Trichlorobenzene	<0.5	μg/l	0.5	1.67	1		02/20/06	MRD	
1,2,4-Trichlorobenzene	<0.5	μg/l	0.5	1.67	1		02/20/06	MRD	
1,1,1-Trichloroethane	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD	
1,1,2-Trichloroethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD	
Trichloroeth(yl)ene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD	
Trichlorofluoromethane	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD	
1,2,3-Trichloropropane	<0.55	μg/l	0.55	1.83	1		02/20/06	MRD	
1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	<0.15 <0.15	μg/l	0.15	0.50	1		02/20/06	MRD	
Vinyl Chloride	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD	
o-Xylene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD	
m-& p-Xylene	<0.4	μg/l μg/l	0.1 0.4	0.33 1.33	1		02/20/06 02/20/06	MRD MRD	
u p xytene	10.4	μg/ t	0.4	1.55	•		02/20/00	MKD	
EPA 8310									
Acenaphthene	<0.06	μg/l	0.06	0.20	1		02/28/06	LMP	
Acenaphthylene	<0.06	μg/l	0.06	0.20	1		02/28/06	LMP	
-Anthracene	<0.09	μg/l	0.09	0.30	1		02/28/06	LMP	
∄enzo(a)Anthracene	<0.1	μg/l	0.1	0.33	1		02/28/06	LMP	
₿enzo(a)Pyrene	<0.02	μg/l	0.02	0.067	1		02/28/06	LMP	
Benzo(b)Fluoranthene	<0.02	μg/l	0.02	0.067	1		02/28/06	LMP	
Benzo(k)Fluoranthene	<0.07	μg/l	0.07	0.23	1		02/28/06	LMP	
Benzo(ghi)Perylene	<0.06	μg/l	0.06	0.20	1		02/28/06	LMP	
Chrysene	<0.02	μg/l	0.02	0.067	1		02/28/06	LMP	
Dibenzo(a,h)Anthracene	<0.11	μg/l	0.11	0.37	1		02/28/06	LMP	
Fluoranthene	<0.12	μg/l	0.12	0.40	1		02/28/06	LMP	
Fluorene	<0.12	μg/l	0.12	0.40	1		02/28/06	LMP	
Indeno(1,2,3-cd)Pyrene	<0.12	μg/l	0.12	0.40	1		02/28/06	LMP	
1-Methyl Naphthalene	<0.08	μg/l	0.08	0.27	1		02/28/06	LMP	
2-Methyl Naphthalene	<0.11	μg/l	0.11	0.37	1		02/28/06	LMP	
Naphthalene	<0.11	μg/l	0.11	0.37	1		02/28/06	LMP	
Phenanthrene	<0.11	μg/l	0.11	0.37	1		02/28/06	LMP	
Pyrene	<0.1	μg/l	0.1	0.33	1		02/28/06	LMP	
9,10-Diphenylanthracene (S)	55.9	%	-	-	1		02/28/06	LMP	
Method 3510 Liquid Ext.	COMP		-	-	-		02/22/06	KAM	

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE

800-338-7226 715-355-3221 www.usfilter.com

Short Elliott Henderickson 421 Frenette Drive Chippewa Falls , WI 54729

PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.76 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

Attn: John Guhl

⇒ample ID:	MW-8	Matrix: GRDWTR	Sample Date/Time: 02/16/06	07:00	Lab No.	195318
			Dilution		Date	

					Ditution		vale	
	Result	<u>Units</u>	LOD	LOQ	<u>Factor</u>	Qualifiers	Analyzed	Analyst
1								
≢PA 150.1								
pH - Laboratory	7.28		-	-	1		02/20/06	JJP
∟pH - Laboratory Time	08:15		-	•	-		02/20/06	JJP
, , , , , , , , , , , , , , , , , , , ,							0-, -0, 00	•••
+na 2/5 4								
EPA 245.1								
Diss. Mercury	<0.07	μg/l	0.07	0.23	1 .		02/21/06	MPM
■EPA 6020								
Diss. Arsenic	0.6	u a /1	0.6	2.0	1	J	02/20/04	JCH
		μg/l				J	02/28/06	
Diss. Cadmium	<0.2	μg/l	0.2	0.67	1		02/28/06	JCH
Diss. Chromium	3.20	μg/l	1.6	5.33	1	J	02/28/06	JCH
Diss. Lead	<0.3	μg/l	0.3	1.0	1		02/28/06	JCH
Diss. Selenium	0.96	μg/l	0.6	2.0	1	j	02/28/06	JCH
						U		
Diss. Barium	81.0	μg/l	2.0	6.66	1		02/28/06	JCH
Diss. Silver	0.27	μg/l	0.2	0.67	1	J	02/28/06	JCH
EPA 8260								
Benzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
Bromobenzene								
	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
Bromochloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
₽romodichloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
∌ romoform	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
B romomethane	<0.15	μg/l	0.15	0.50	i		02/20/06	MRD
n-Butylbenzene	<0.2	,	0.2	0.67	i			
		μg/l					02/20/06	MRD
sec-Butylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
≡ert-Butylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
<pre>= arbon Tetrachloride</pre>	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
⊒hlorobenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
Chloroethane	<0.6	μg/l	0.6	2.0	1		02/20/06	MRD
£hloroform	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD
					•			
Ehloromethane	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
‡-Chlorotoluene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
4-Chlorotoluene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
Dibromochloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
■ibromochloropropane(DBCP)	<0.3	μg/l	0.3	1.0	1		02/20/06	MRD
,2-Dibromoethane(EDB)	<0.1							
		μg/l	0.1	0.33	1		02/20/06	MRD
■ ibromomethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
1,2-Dichlorobenzene	<0.75	μg/l	0.75	2.5	1		02/20/06	MRD
1,3-Dichlorobenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
,4-Dichlorobenzene	<0.75	μg/l	0.75	2.5	1		02/20/06	MRD
ichlorodifluoromethane	<0.25	μg/l	0.25	0.83	i		02/20/06	MRD
					•			
1,1-Dichloroethane	0.26	μg/l	0.15	0.50	1	J	02/20/06	MRD
1,2-Dichloroethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
,1-Dichloroeth(yl)ene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
<pre>#is-1,2-Dichloroeth(yl)ene</pre>	5.06	μg/l	0.2	0.67	1		02/20/06	MRD
rans-1,2-Dichloroeth(yl)en	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
1,2-Dichloropropane					i			
4.7 Disking and	<0.1	μg/l	0.1	0.33			02/20/06	MRD
1,3-Dichloropropane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
2,2-Dichloropropane	<0.1	μg/l	0.1	0.33	-	CSH	02/20/06	MRD
,1-Dichloropropene	<0.2	μg/l	0.2	0.67	•	CSH	02/20/06	MRD
cis-1,3-Dichloropropene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
trans-1,3-Dichloropropene	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD
thylbenzene	<0.1		0.1		i			
city (Delizene	\0. 1	μg/l	0.1	0.33	t		02/20/06	MRD

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE

800-338-7226 715-355-3221 www.usfilter.com

PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.77 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

Attn: John Guhl

■21 Frenette Drive Chippewa Falls , WI 54729

Short Elliott Henderickson

∏ = ample ID: MW-8 Matrix: GRDWTR Sample Date/Time: 02/16/06 07:00 Lab No. 195318

	<u>Result</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	<u>Analyst</u>
≡PA 8260								
Hexachlorobutadiene	<1.00	μg/l	1.0	3.33	1		02/20/06	MRD
Isopropylbenzene	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD
-Isopropyltoluene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
ethylene Chloride	<0.4	μg/l	0.4	1.33	i		02/20/06	MRD
Methyl t-Butyl Ether(MTBE)	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
Naphthalene	<1.00	μg/l	1.0	3.33	1		02/20/06	MRD
n-Propylbenzene	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD
≣tyrene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
≡,1,1,2-Tetrachloroethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
1,1,2,2-Tetrachloroethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
_Tetrachloroeth(yl)ene	0.236	μg/l	0.1	0.33	1	J	02/20/06	MRD
Toluene	<0.4	μg/l	0.4	1.33	1		02/20/06	MRD
1,2,3-Trichlorobenzene	<0.5	μg/l	0.5	1.67	1		02/20/06	MRD
1,2,4-Trichlorobenzene	<0.5	μg/l	0.5	1.67	1		02/20/06	MRD
1,1,1-Trichloroethane	0.241	μg/l	0.2	0.67	1	J	02/20/06	MRD
1,1,2-Trichloroethane	<0.1	μg/l	0.1	0.33	1	_	02/20/06	MRD
Trichloroeth(yl)ene	0.228	μg/l	0.2	0.67	1	J	02/20/06	MRD
Trichlorofluoromethane	<0.2	μg/l	0.2	0.67	1	-	02/20/06	MRD
1,2,3-Trichloropropane	<0.55	μg/l	0.55	1.83	1		02/20/06	MRD
1,2,4-Trimethylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
,3,5-Trimethylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
≠inyl Chloride	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
o-Xylene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
m-& p-Xylene	<0.4	μg/l	0.4	1.33	1		02/20/06	MRD
#PA 8310 _								
cenaphthene	<0.06	μg/l	0.06	0.20	1		02/27/06	LMP
Acenaphthylene	<0.06	μg/l	0.06	0.20	1		02/27/06	LMP
≜ nthracene	<0.09	μg/l	0.09	0.30	1		02/27/06	LMP
enzo(a)Anthracene	<0.1	μg/l	0.1	0.33	1		02/27/06	LMP
enzo(a)Pyrene	<0.02	μg/l	0.02	0.067	1		02/27/06	LMP
Benzo(b)Fluoranthene	<0.02	μg/l	0.02	0.067	1	CSH	02/27/06	LMP
Benzo(k)Fluoranthene	<0.07	μg/l	0.07	0.23	1		02/27/06	LMP
≣enzo(ghi)Perylene	<0.06	μg/l	0.06	0.20	1		02/27/06	LMP
thrysene	<0.02	μg/l	0.02	0.067	1		02/27/06	LMP
ibenzo(a,h)Anthracene	<0.11	μg/l	0.11	0.37	1		02/27/06	LMP
Fluoranthene	<0.12	μg/l	0.12	0.40	1		02/27/06	LMP
Eluorene	<0.12	μg/l	0.12	0.40	1		02/27/06	LMP
ndeno(1,2,3-cd)Pyrene	<0.12	μg/l	0.12	0.40	1	CSH	02/27/06	LMP
-Methyl Naphthalene	<0.08	μg/l	0.08	0.27	1	••	02/27/06	LMP
Z-Methyl Naphthalene	<0.11	μg/l	0.11	0.37	1		02/27/06	LMP
Naphthalene	<0.11	μg/l	0.11	0.37	1		02/27/06	LMP
-henanthrene	<0.11	μg/l	0.11	0.37	1		02/27/06	LMP
tyrene tyrene	<0.1	μg/l	0.1	0.33	1		02/27/06	LMP
10-Diphenylanthracene (S)	45.8	%	-	-	1		02/27/06	LMP
Method 3510 Liquid Ext.	COMP		-	-	-		02/22/06	KAM

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE

800-338-7226 715-355-3221 www.usfilter.com

PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.79 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

4ttn: John Guhl

Short Elliott Henderickson

-21 Frenette Drive =hippewa Falls , WI 54729

=ample ID: MW-9 Matrix: GRDWTR Sample Date/Time: 02/16/06 07:30 Lab No. 195319

	11411	A. Gabain	0.	impre bute, i	111101 027 107	00 01150	Lub No. 1	,,,,,,
					Dilution		Date	
•	<u>Result</u>	<u>Units</u>	LOD	LOQ	<u>Factor</u>	<u>Qualifiers</u>	Analyzed	<u>Analyst</u>
EPA 8260								
	-1.00		4.0	7 77			00 (00 (0)	MDD
Hexachlorobutadiene	<1.00	μg/l	1.0	3.33	1		02/20/06	MRD
sopropylbenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
4-Isopropyltoluene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
Methylene Chloride	<0.4	μg/l	0.4	1.33	1		02/20/06	MRD
Methyl t-Butyl Ether(MTBE)	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
Naphthalene	1.87	μg/l	1.0	3.33	1		02/20/06	MRD
-Propylbenzene	0.117	μg/l	0.1	0.33	1	J	02/20/06	MRD
tyrené	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
1,1,1,2-Tetrachloroethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
1,1,2,2-Tetrachloroethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
etrachloroeth(yl)ene	<0.1	μg/l	0.1	0.33	1	•	02/20/06	MRD
oluene	0.4	μg/l	0.4	1.33	1	J	02/20/06	MRD
,2,3-Trichlorobenzene	<0.5	μg/l	0.5	1.67	1		02/20/06	MRD
1,2,4-Trichlorobenzene	<0.5	μg/l	0.5	1.67	1		02/20/06	MRD
1,1,1-Trichloroethane	0.206	μg/l	0.2	0.67	1	J	02/20/06	MRD
,1,2-Trichloroethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
richloroeth(yl)ene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
richlorofluoromethane	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
1,2,3-Trichloropropane	<0.55	μg/l	0.55	1.83	1		02/20/06	MRD
1,2,4-Trimethylbenzene	1.64	μg/l	0.15	0.50	1		02/20/06	MRD
1,3,5-Trimethylbenzene	0.409	μg/l	0.15	0.50	1	J	02/20/06	MRD
/inyl Chloride	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
o-Xylene	0.685	μg/l	0.1	0.33	1		02/20/06	MRD
m-& p-Xylene	1.65	μg/l	0.4	1.33	1		02/20/06	MRD
PA 8310								
Acenaphthene	0.081	μg/l	0.06	0.20	1	J	02/27/06	LMP
Acenaphthylene	<0.06	μg/l	0.06	0.20	1		02/27/06	LMP
1nthracene	<0.09	μg/l	0.09	0.30	1		02/27/06	LMP
enzo(a)Anthracene	<0.1	μg/l	0.1	0.33	1		02/27/06	LMP
enzo(a)Pyrene	0.167	μg/l	0.02	0.067	1		02/27/06	LMP
Benzo(b)Fluoranthene	<0.02	μg/l	0.02	0.067	1	CSH	02/27/06	LMP
Benzo(k)Fluoranthene	<0.07	μg/l	0.07	0.23	1		02/27/06	LMP
enzo(ghi)Perylene	<0.06	μg/l	0.06	0.20	1		02/27/06	LMP
hrysene	<0.02	μg/l	0.02	0.067	1		02/27/06	LMP
ibenzo(a,h)Anthracene	<0.11	μg/l	0.11	0.37	1		02/27/06	LMP
Fluoranthene	<0.12	μg/l	0.12	0.40	1		02/27/06	LMP
■ luorene	<0.12	μg/l	0.12	0.40	1		02/27/06	LMP
ndeno(1,2,3-cd)Pyrene	<0.12	μg/l	0.12	0.40	1	CSH	02/27/06	LMP
-Methyl Naphthalene	1.31	μg/l	0.08	0.27	1		02/27/06	LMP
2-Methyl Naphthalene	2.73	μg/l	0.11	0.37	1		02/27/06	LMP
Naphthalene	1.05	μg/l	0.11	0.37	1		02/27/06	LMP
henanthrene	<0.11	μg/l	0.11	0.37	1		02/27/06	LMP
yrene	<0.1	μg/l	0.1	0.33	1		02/27/06	LMP
,10-Diphenylanthracene (S)	76.6	%	-	-	1		02/27/06	LMP
Method 3510 Liquid Ext.	COMP		-	-	-		02/22/06	KAM

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.usfilter.com

Short Elliott Henderickson 421 Frenette Drive Chippewa Falls , WI 54729 PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.78 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

Attn: John Guhl

Sample ID: MW-9	Matri	x: GRDWTR	s	ample Date/Ti	ime: 02/16/ 0	6 07:30	Lab No. 1	95319
•	Result	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	Analyst
EPA 150.1								
pH - Laboratory	7.66		_	-	1		02/20/06	JJP
pH - Laboratory Time	08:30		_	_	'-		02/20/06	JJP
I'' Laboracory rime	00.50						02/20/00	JUF
PA 245.1								
Diss. Mercury	<0.07	ua (1	0.07	0.23	4		02/21/04	MDM
Diss. Heredry	\0.0 <i>i</i>	μg/l	0.07	0.23	1		02/21/06	MPM
EPA_6020								
Diss. Arsenic	1.20	μg/l	0.6	2.0	1	J	02/28/06	JCH
Diss. Cadmium	0.34	μg/l μg/l	0.2	0.67	i	ľ	02/28/06	
Diss. Chromium	4.90		1.6	5.33	1	J		JCH
Piss. Lead	<0.3	μg/l	0.3	1.0	i		02/28/06	JCH
Diss. Selenium	2.01	μg/l	0.6	2.0	1		02/28/06	JCH
Piss. Barium	113.	μg/l					02/28/06	JCH
Diss. Silver	<0.2	μg/l	2.0	6.66	1 1		02/28/06	JCH
Diss. Sitve	10.2	μg/l	0.2	0.67	ı		02/28/06	JCH
EPA 8260								
3enzene	<0.15	ua/l	0.15	0.50	1		02/20/04	MDD
Bromobenzene	<0.13	μg/l μg/l	0.15	0.33	i		02/20/06	MRD
Bromochloromethane	<0.1	μg/l μg/l	0.1	0.33	1		02/20/06	MRD
## ## ## ## ## ## ## ## ## ## ## ## ##	<0.1		0.1	0.33	i		02/20/06	MRD
Bromoform	<0.2	μg/l			1		02/20/06	MRD
Bromomethane	<0.15	μg/l	0.2	0.67 0.50	1		02/20/06	MRD
n-Butylbenzene	<0.2	μg/l	0.15		1		02/20/06	MRD
sec-Butylbenzene	<0.15	μg/l	0.2 0.15	0.67 0.50	1		02/20/06	MRD
_ert-Butylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
#arbon Tetrachloride	<0.13	μg/l	0.13	0.67	1		02/20/06	MRD
thlorobenzene	<0.1	μg/l			1		02/20/06	MRD
Chloroethane	<0.6	μg/l	0.1	0.33	1		02/20/06	MRD
#hloroform	<0.1	μg/l	0.6 0.1	2.0 0.33	1		02/20/06	MRD
#hloromethane	<0.2	μg/l μg/l	0.1	0.67	1		02/20/06	MRD
T-Chlorotoluene	<0.1			0.33	, 1		02/20/06	MRD
4-Chlorotoluene	<0.2	μg/l	0.1 0.2	0.67	1		02/20/06	MRD
Dibromochloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
ibromochloropropane(DBCP)	<0.3	μg/l	0.1	1.0	1		02/20/06	MRD
1,2-Dibromoethane(EDB)	<0.1	μg/l μg/l	0.1	0.33	i		02/20/06 02/20/06	MRD MRD
ibromomethane	<0.1	μg/l μg/l	0.1	0.33	i		02/20/06	MRD
1,2-Dichlorobenzene	<0.75	μg/l	0.75	2.5	i		02/20/06	MRD
3-Dichlorobenzene	<0.15	μg/l	0.15	0.50	i		02/20/06	MRD
4-Dichlorobenzene	<0.75	μg/l	0.75	2.5	1		02/20/06	MRD
ichlorodifluoromethane	<0.25	μg/l μg/l	0.25	0.83	i		02/20/06	MRD
1,1-Dichloroethane	<0.15	μg/l μg/l	0.15	0.50	i		02/20/06	MRD
1,2-Dichloroethane	<0.1	μg/l μg/l	0.1	0.33	i		02/20/06	MRD
,1-Dichloroeth(yl)ene	<0.15	μg/l	0.15	0.50	i		02/20/06	MRD
is-1,2-Dichloroeth(yl)ene	<0.2	μg/l	0.13	0.67	i		02/20/06	MRD
rans-1,2-Dichloroeth(yl)en	<0.1	μg/l μg/l	0.1	0.33	1		02/20/06	MRD
1,2-Dichloropropane	<0.1	μg/l μg/l	0.1	0.33	i		02/20/06	MRD
,3-Dichloropropane	<0.1	μg/l μg/l	0.1	0.33	i		02/20/06	MRD
,2-Dichloropropane	<0.1	μg/l μg/l	0.1	0.33	' <u>-</u>	СЅН	02/20/06	MRD
,1-Dichloropropene	<0.2	μg/l μg/l	0.2	0.67	•	CSH	02/20/06	MRD
cis-1,3-Dichloropropene	<0.1	μg/l μg/l	0.1	0.33	1	CON	02/20/06	MRD
trans-1,3-Dichloropropene	<0.1	μg/l μg/l	0.1	0.33	i		02/20/06	MRD
thylbenzene	0.411	μg/l	0.1	0.33	i		02/20/06	MRD
1 ' "		r3/ ·		-100	•		JE, 20, 00	

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474

TELEPHONE FACSIMILE WEBSITE

800-338-7226 715-355-3221 www.usfilter.com

Short Elliott Henderickson 421 Frenette Drive Chippewa Falls , WI 54729

PROJECT NO.: NERUB0502.00 REPORT NO. : 195283.10 DATE REC'D : 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

Attn: John Guhl

Sample ID: EAST SUMP	Matri	k: GRDWTR	Sam	ple Date/Ti	me: 02/16/0 6	3 11:30	Lab No. 19	95286
	Result	<u>Units</u>	<u>LOD</u>	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	<u>Analyst</u>
EPA 150.1								
pH - Laboratory	7.31		_	_	1		02/20/06	LID
pH - Laboratory Time	08:15		_	_				JJP
pii Laboratory Tille	00:15		-	_	_		02/20/06	JJP
EPA 245.1								
Diss. Mercury	<0.7	μg/l	0.07	0.23	10		03/02/06	MPM
Diss. Nereury	·0.7	μ9/ τ	0.07	0.23	10		03/02/08	MPM
EPA 6010								
Diss. Arsenic	<0.125	mg/l	0.01	0.033	12.5	DUP	03/09/06	DJB
Diss. Barium	<0.0375	mg/l	0.003	0.01	12.5		03/09/06	DJB
∖Diss. Cadmium	<0.0212	mg/l	0.0017	0.0057	12.5	DUP	03/09/06	DJB
piss. Chromium	0.0354	mg/l	0.0016	0.0053	12.5	J	03/09/06	DJB
piss. Lead	<0.2	mg/l	0.016	0.053	12.5		03/09/06	DJB
Diss. Selenium	<0.225	mg/l	0.018	0.06	12.5		03/09/06	DJB
Diss. Silver	<0.075	mg/l	0.006	0.02	12.5		03/09/06	DJB
EPA 8260								
Benzene	<0.15	μg/l	0.15	0.50	1		03/02/06	MRD
Bromobenzene	<0.1	μg/l	0.1	0.33	1		03/02/06	MRD
Bromochloromethane	<0.1	μg/l	0.1	0.33	1		03/02/06	MRD
∄romodichloromethane	<0.1	μg/l	0.1	0.33	1		03/02/06	MRD
∌ romoform	<0.2	μg/l	0.2	0.67	1		03/02/06	MRD
Bromomethane	<0.15	μg/l	0.15	0.50	1		03/02/06	MRD
n-Butylbenzene	<0.2	μg/l	0.2	0.67	1		03/02/06	MRD
sec-Butylbenzene	<0.15	μg/l	0.15	0.50	1		03/02/06	MRD
tert-Butylbenzene	<0.15	μg/l	0.15	0.50	1		03/02/06	MRD
Carbon Tetrachloride	<0.2	μg/l	0.2	0.67	1		03/02/06	MRD
Chlorobenzene Chloroethane	<0.1	μg/l	0.1	0.33	1		03/02/06	MRD
£hloroform	<0.6 <0.1	μg/l	0.6	2.0	1		03/02/06	MRD
Thloromethane	<0.1 <0.2	μg/l	0.1	0.33	i		03/02/06	MRD
₹-Chlorotoluene	<0.1	μg/l μg/l	0.2 0.1	0.67 0.33	1		03/02/06 03/02/06	MRD
4-Chlorotoluene	<0.2	μg/l μg/l	0.1	0.67	1		03/02/06	MRD MRD
Dibromochloromethane	<0.1	μg/l μg/l	0.1	0.33	1		03/02/06	MRD
pibromochloropropane(DBCP)	<0.3	μg/l μg/l	0.3	1.0	1		03/02/06	MRD
,2-Dibromoethane(EDB)	<0.1	μg/l	0.1	0.33	i		03/02/06	MRD
Dibromomethane	<0.1	μg/l	0.1	0.33	i		03/02/06	MRD
1,2-Dichlorobenzene	<0.75	μg/l	0.75	2.5	i		03/02/06	MRD
₡,3-Dichlorobenzene	<0.15	μg/l	0.15	0.50	i		03/02/06	MRD
4-Dichlorobenzene	<0.75	μg/l	0.75	2.5	i		03/02/06	MRD
⇒ichlorodifluoromethane	<0.25	μg/l	0.25	0.83	i		03/02/06	MRD
1,1-Dichloroethane	<0.15	μg/l	0.15	0.50	1		03/02/06	MRD
1,2-Dichloroethane	<0.1	μg/l	0.1	0.33	1		03/02/06	MRD
⊒,1-Dichloroeth(yl)ene	<0.15	μg/l	0.15	0.50	1		03/02/06	MRD
<pre>‡is-1,2-Dichloroeth(yl)ene</pre>	2.06	μg/l	0.2	0.67	1		03/02/06	MRD
trans-1,2-Dichloroeth(yl)en	<0.1	μg/l	0.1	0.33	1		03/02/06	MRD
1,2-Dichloropropane	<0.1	μg/l	0.1	0.33	1		03/02/06	MRD
1,3-Dichloropropane	<0.1	μg/l	0.1	0.33	1		03/02/06	MRD
⊉,2-Dichloropropane	<0.1	μg/l	0.1	0.33	1		03/02/06	MRD
∃,1-Dichloropropene	<0.2	μg/l	0.2	0.67	1		03/02/06	MRD
cis-1,3-Dichloropropene	<0.1	μg/l	0.1	0.33	1		03/02/06	MRD
trans-1,3-Dichloropropene	<0.1.	μg/l	0.1	0.33	1		03/02/06	MRD
≡thylbenzene	<0.1	μg/l	0.1	0.33	1		03/02/06	MRD

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474

TELEPHONE FACSIMILE WEBSITE

800-338-7226 715-355-3221 www.usfilter.com

PROJECT NO.: NERUB0502.00 REPORT NO.: 195283.11 DATE REC'D : 02/17/06 REPORT DATE: 03/13/06

PREPARED BY: JRS

-Attn: John Guhl

≰21 Frenette Drive

ater Org Ext - DRO

Short Elliott Henderickson

■Chippewa Falls , WI 54729

Sample ID: EAST SUMP Sample Date/Time: 02/16/06 11:30 Matrix: GRDWTR Lab No. 195286 Dilution Date <u>Result</u> <u>Units</u> LOD Qualifiers LOQ <u>Factor</u> <u>Analyzed</u> Analyst **EPA** 8260 Hexachlorobutadiene <1.00 1.0 3.33 03/02/06 MRD μg/l **i**sopropylbenzene < 0.1 μg/l 0.1 0.33 1 03/02/06 MRD *-Isopropyltoluene Methylene Chloride <0.2 03/02/06 μg/l 0.2 0.67 MRD 1.33 <0.4 03/02/06 μg/l 0.4 MRD Methyl t-Butyl Ether(MTBE) <0.1 μg/l 0.1 0.33 03/02/06 MRD Naphthalene <1.00 1.0 3.33 03/02/06 MRD μg/l n-Propylbenzene <0.1 μg/l 0.1 0.33 03/02/06 MRD μg/l **≢tyrene** < 0.1 0.1 0.33 03/02/06 MRD ■,1,1,2-Tetrachloroethane <0.1 μg/l 0.1 0.33 03/02/06 MRD 1,1,2,2-Tetrachloroethane <0.1 μg/l 0.1 0.33 03/02/06 MRD **▼**etrachloroeth(yl)ene <0.1 0.33 μg/l 0.1 03/02/06 MRD <0.4 1.33 03/02/06 μg/l 0.4 MRD 1,2,3-Trichlorobenzene <0.5 μg/l 0.5 1.67 03/02/06 MRD 1,2,4-Trichlorobenzene < 0.5 0.5 1.67 03/02/06 μg/l MRD 1,1,1-Trichloroethane <0.2 0.67 μg/l 0.2 03/02/06 MRD ■,1,2-Trichloroethane <0.1 μg/l 0.1 0.33 03/02/06 MRD **■**richloroeth(yl)ene 0.2 0.293 μg/l 0.67 03/02/06 J MRD richlorofluoromethane <0.2 μg/l 0.2 0.67 03/02/06 MRD μg/l 1,2,3-Trichloropropane <0.55 0.55 1.83 03/02/06 MRD ₫,2,4-Trimethylbenzene <0.15 03/02/06 0.15 0.50 MRD μg/l ■,3,5-Trimethylbenzene <0.15 0.15 0.50 03/02/06 μg/l MRD dinyl Chloride < 0.15 0.15 0.50 03/02/06 μg/l 1 MRD o-Xylene <0.1 μg/l 0.1 0.33 03/02/06 MRD m-& p-Xylene <0.4 μg/l 0.4 1.33 1 03/02/06 MRD EPA 8310 cenaphthene <6.90 μg/l 0.06 0.20 115 02/23/06 LMP Acenaphthylene <6.90 0.06 0.20 115 02/23/06 μg/l LMP **≜**nthracene <10.4 μg/l 0.30 0.09 115 02/23/06 LMP enzo(a)Anthracene <11.5 μg/l 0.1 0.33 115 02/23/06 LMP enzo(a)Pyrene Benzo(b)Fluoranthene <2.30 0.02 0.067 CSL 02/23/06 μg/l 115 LMP <2.30 μg/l 0.02 0.067 115 02/23/06 LMP μg/l Benzo(k)Fluoranthene <8.05 0.07 0.23 115 02/23/06 LMP Benzo(ghi)Perylene <6.90 02/23/06 μg/l 0.06 0.20 115 LMP thrysene ibenzo(a,h)Anthracene <2.30 0.02 0.067 02/23/06 μg/l 115 MB LMP <12.7 0.11 0.37 02/23/06 μg/l 115 LMP Fluoranthene <13.8 μg/l 0.12 0.40 115 02/23/06 LMP 02/23/06 Luorene <13.8 μg/l 0.12 0.40 115 LMP indeno(1,2,3-cd)Pyrene <13.8 μg/l 0.12 0.40 115 02/23/06 LMP -Methyl Naphthalene 2-Methyl Naphthalene μg/l 02/23/06 <9.20 0.08 0.27 115 LMP 02/23/06 <12.7 μg/l 0.11 0.37 115 LMP Naphthalene <12.7 0.37 02/23/06 μg/l· 0.11 115 LMP -henanthrene <12.7 0.37 02/23/06 μg/l 0.11 115 LMP Hyrene <11.5 μg/l 0.1 0.33 115 02/23/06 LMP Hethod 3510 Liquid Ext. COMP 02/20/06 KAM iesel Range Organics 3,864,059

100.

50

D2B D5

02/24/06

02/21/06

LMP

KAM

μg/l

COMP

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE

800-338-7226 715-355-3221 www.usfilter.com

PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.16 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

∔ttn: John Guhl

Short Elliott Henderickson 21 Frenette Drive hippewa Falls , WI 54729

=ample ID: LARGE SUMP	Matri	x: GRDWTR	S	Sample Date/Ti	me: 02/16/0 6	14:15	Lab No. 19	95289
					Dilution		Data	
	Result	Units	LOD	LOQ		Qualifiers	Date Analyzed	Analyst
	KCOGEC	011110	200	Lou	<u>ractor</u>	4441111613	MICHTECO	Allacyse
EPA_150.1								
pH - Laboratory	7.51		-	-	1		02/20/06	JJP
∍H - Laboratory Time	08:15		-	-	-		02/20/06	JJP
<u>EPA 245.1</u>					_			
Diss. Mercury	<0.07	μg/l	0.07	0.23	1		02/21/06	MPM
≣PA 6020								
iss. Arsenic	2.00	μg/l	0.6	2.0	1		02/28/06	JCH
iss. Cadmium	<0.2	μg/l	0.2	0.67	i		02/28/06	JCH
Diss. Chromium	<1.60	μg/l	1.6	5.33	1		02/28/06	JCH
■iss. Lead	0.5	μg/l	0.3	1.0	1	J	02/28/06	JCH
■iss. Selenium	0.9	μg/l	0.6	2.0	1	J	02/28/06	JCH
∍iss. Barium	56.0	μg/l	2.0	6.66	1		02/28/06	JCH
Diss. Silver	<0.2	μg/l	0.2	0.67	1		02/28/06	JCH
PA 8260 enzene	<0.15	" ~ / l	0.15	0.50	1		02/20/06	MDD
promobenzene	<0.15	μg/l μg/l	0.15	0.33	1		02/20/06	MRD MRD
Bromochloromethane	<0.1		0.1	0.33	i		02/20/06	MRD
Bromodichloromethane	<0.1	μg/l μg/l	0.1	0.33	i		02/20/06	MRD
=romoform	<0.2	μg/l μg/l	0.2	0.67	1		02/20/06	MRD
=romomethane	<0.15	μg/l	0.15	0.50	i		02/20/06	MRD
n-Butylbenzene	<0.2	μg/l	0.2	0.67	i		02/20/06	MRD
sec-Butylbenzene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
ert-Butylbenzene arbon Tetrachloride	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
thlorobenzene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
Chloroethane	<0.6	μg/l	0.6	2.0	1		02/20/06	MRD
=hloroform	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
=hloromethane	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
=-Chlorotoluene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
4-Chlorotoluene	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
ibromochloromethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
ibromochloropropane(DBCP) ,2-Dibromoethane(EDB)	<0. 3 <0.1	μg/l	0.3	1.0 0.33	1 1		02/20/06	MRD
Vibromomethane	<0.1	μg/l μg/l	0.1 0.1	0.33	1		02/20/06 02/20/06	MRD MRD
1,2-Dichlorobenzene	<0.75	μg/l μg/l	0.75	2.5	i		02/20/06	MRD
,3-Dichlorobenzene	<0.15	μg/l	0.15	0.50	i		02/20/06	MRD
,4-Dichlorobenzene	<0.75	μg/l	0.75	2.5	i		02/20/06	MRD
ichlorodifluoromethane	<0.25	μg/l	0.25	0.83	i		02/20/06	MRD
1,1-Dichloroethane	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
1.2-Dichloroethane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
,1-Dichloroeth(yl)ene	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
<pre>is-1,2-Dichloroeth(yl)ene</pre>	1.46	μg/l	0.2	0.67	1		02/20/06	MRD
trans-1,2-Dichloroeth(yl)en	<0.1	$\mu g/l$ 0.1 0.33		1		02/20/06	MRD	
1,2-Dichloropropane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
,3-Dichloropropane	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
,2-Dichloropropane	<0.1	μg/l	0.1	0.33	-	CSH	02/20/06	MRD
,1-Dichloropropene	<0.2	μg/l	0.2	0.67	-	CSH	02/20/06	MRD
cis-1,3-Dichloropropene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
rans-1,3-Dichloropropene thylbenzene	<0.1 <0.1	μg/\ "a/\	0.1	0.33 0.33	1 1		02/20/06 02/20/06	MRD MRD
thy the lizelie	١٠.١	μg/l	0.1	0.55	•		02/20/00	PIKU

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE

800-338-7226 715-355-3221 www.usfilter.com

Short Elliott Henderickson 式21 Frenette Drive □hippewa Falls , WI 54729

PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.17 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

∄ttn: John Guhl

⇒ample ID: LARGE SUMP Matrix: GRDWTR Sample Date/Time: 02/16/06 14:15 Lab No. 195289

				•				
					Dilution		Date	
_	Result	Units	LOD	LOQ	Factor	Qualifiers	Analyzed	Analyst
			_					
<u>≢PA_8260</u>								
Hexachlorobutadiene	<1.00	μg/l	1.0	3.33	1		02/20/06	MRD
Isopropylbenzene	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD
4-Isopropyltoluene	<0.2	μg/l	0.2	0.67	ĺ		02/20/06	MRD
Methylene Chloride	<0.4	μg/l	0.4	1.33	1		02/20/06	MRD
Methyl t-Butyl Ether(MTBE)	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
Naphthalene	<1.00	μg/l	1.0	3.33	i		02/20/06	MRD
n-Propylbenzene	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD
≢ tyrene	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD
■,1,1,2-Tetrachloroethane	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD
1,1,2,2-Tetrachloroethane	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD
■etrachloroeth(yl)ene	<0.1	μg/l	0.1	0.33	i		02/20/06	MRD
Foluene	<0.4	μg/l	0.4	1.33	i		02/20/06	MRD
,2,3-Trichlorobenzene	<0.5	μg/l	0.5	1.67	i		02/20/06	MRD
1,2,4-Trichlorobenzene	<0.5	μg/l	0.5	1.67	i		02/20/06	MRD
1,1,1-Trichloroethane	<0.2	μg/l	0.2	0.67	1		02/20/06	MRD
1,1,2-Trichloroethane	<0.1	μg/l μg/l	0.1	0.33	1		02/20/06	MRD
Frichloroeth(yl)ene	0.645	μg/l μg/l	0.2	0.67	i	J		
▼richlorofluoromethane	<0.2	μg/l μg/l	0.2	0.67	1	J	02/20/06	MRD
1,2,3-Trichloropropane	<0.55		0.55		1		02/20/06	MRD
1,2,4-Trimethylbenzene	<0.15	μg/l		1.83	1		02/20/06	MRD
1,3,5-Trimethylbenzene		μg/l	0.15	0.50			02/20/06	MRD
Vinyl Chloride	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
• • • • • • • • • • • • • • • • • • • •	<0.15	μg/l	0.15	0.50	1		02/20/06	MRD
o-Xylene	<0.1	μg/l	0.1	0.33	1		02/20/06	MRD
m-& p-Xylene	<0.4	μg/l	0.4	1.33	1		02/20/06	MRD
‡PA 8310								
	-0.04	41	0.04	0.00			00 (07 (0)	
Acenaphthene	<0.06	μg/l	0.06	0.20	1		02/23/06	LMP
Acenaphthylene	<0.06	μg/l	0.06	0.20	1		02/23/06	LMP
Inthracene	<0.09	μg/l	0.09	0.30	1		02/23/06	LMP
enzo(a)Anthracene	<0.1	μg/l	0.1	0.33	1		02/23/06	LMP
#enzo(a)Pyrene	<0.02	μg/l	0.02	0.067	1	CSL	02/23/06	LMP
Benzo(b)Fluoranthene	<0.02	μg/l	0.02	0.067	1		02/23/06	LMP
Benzo(k)Fluoranthene	<0.07	μg/l	0.07	0.23	1		02/23/06	LMP
Eenzo(ghi)Perylene	<0.06	μg/l	0.06	0.20	1		02/23/06	LMP
hrysene	<0.02	μg/l	0.02	0.067	1	MB	02/23/06	LMP
ibenzo(a,h)Anthracene	<0.11	μg/l	0.11	0.37	1		02/23/06	LMP
Fluoranthene	<0.12	μg/l	0.12	0.40	1		02/23/06	LMP
[luorene	<0.12	μg/l	0.12	0.40	1		02/23/06	LMP
ndeno(1,2,3-cd)Pyrene	<0.12	μg/l	0.12	0.40	1		02/23/06	LMP
-Methyl Naphthalene	<0.08	μg/l	0.08	0.27	1		02/23/06	LMP
2-Methyl Naphthalene	<0.11	μg/l	0.11	0.37	1		02/23/06	LMP
Naphthalene	<0.11	μg/l	0.11	0.37	1		02/23/06	LMP
-henanthrene	<0.11	μg/l	0.11	0.37	1		02/23/06	LMP
tyrene	<0.1	μg/l	0.1	0.33	1		02/23/06	LMP
•,10-Diphenylanthracene (S)	75.1	%	-	-	1		02/23/06	LMP
Method 3510 Liquid Ext.	COMP		-	-	-		02/20/06	KAM

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE

800-338-7226 715-355-3221 www.usfilter.com

PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.22 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

Attn: John Guhl

Short Elliott Henderickson 21 Frenette Drive Chippewa Falls , WI 54729

Sample ID: WEST SUMP Matrix: GRDWTR Sample Date/Time: 02/16/06 15:45 Lab No. 195292

•	Result	<u>Units</u>	LOD	<u>L00</u>	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	<u>Analyst</u>
EPA 150.1								
pH - Laboratory	8.00		-	-	1		02/20/06	JJP
pH - Laboratory Time	08:15		-	-	•		02/20/06	JJP
PA 245.1								
Diss. Mercury	<0.07	μg/l	0.07	0.23	1		02/21/06	MPM
EPA 6020								
Diss. Arsenic	1.00	μg/l	0.6	2.0	1	J	02/28/06	JCH
Diss. Cadmium	<0.2	μg/l	0.2	0.67	1		02/28/06	JCH
Diss. Chromium	2.10	μg/l	1.6	5.33	1	J	02/28/06	JCH
Piss. Lead	<0.3	μg/l	0.3	1.0	1		02/28/06	JCH
⊅iss. Selenium	1.50	μg/l	0.6	2.0	1	J	02/28/06	JCH
Þiss. Barium	33.4	μg/l	2.0	6.66	1		02/28/06	JCH
Diss. Silver	<0.2	μg/l	0.2	0.67	1		02/28/06	JCH
<u>≡PA 8260</u>								
senzene	<0.15	μg/l	0.15	0.50	1		02/21/06	MRD
B romobenzene	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD
Bromochloromethane	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD
#romodichloromethane	<0.1	μg/l	. 0.1	0.33	1		02/21/06	MRD
₿romoform	<0.2	μg/l	0.2	0.67	1		02/21/06	MRD
∃romomethane	<0.15	μg/l	0.15	0.50	1		02/21/06	MRD
n-Butylbenzene	<0.2	μg/l	0.2	0.67	1		02/21/06	MRD
sec-Butylbenzene	<0.15	μg/l	0.15	0.50	1		02/21/06	MRD
⊒ert-Butylbenzene	<0.15	μg/l	0.15	0.50	1		02/21/06	MRD
‡arbon Tetrachloride	<0.2	μg/l	0.2	0.67	1		02/21/06	MRD
thlorobenzene	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD
Chloroethane	<0.6	μg/l	0.6	2.0	1		02/21/06	MRD
£ hloroform	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD
‡ hloromethane	<0.2	μg/l	0.2	0.67	1		02/21/06	MRD
‡-Chlorotoluene	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD
4-Chlorotoluene	<0.2	μg/l	0.2	0.67	1		02/21/06	MRD
Dibromochloromethane	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD
⊋ibromochloropropane(DBCP)	<0.3	μg/l	0.3	1.0	1		02/21/06	MRD
,2-Dibromoethane(EDB)	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD
,2-Dibromoethane(EDB) Dibromomethane	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD
1,2-Dichlorobenzene	<0.75	μg/l	0.75	2.5	1		02/21/06	MRD
1,3-Dichlorobenzene	<0.15	μg/l	0.15	0.50	1		02/21/06	MRD
4-Dichlorobenzene	<0.75	μg/l	0.75	2.5	1		02/21/06	MRD
ichlorodifluoromethane	<0.25	μg/l	0.25	0.83	1		02/21/06	MRD
1,1-Dichloroethane	<0.15	μg/l	0.15	0.50	1		02/21/06	MRD
1,2-Dichloroethane	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD
1.1-Dichloroeth(yl)ene	<0.15	μg/l	0.15	0.50	1		02/21/06	MRD
is-1,2-Dichloroeth(yl)ene	<0.2.	μg/l	0.2	0.67	1		02/21/06	MRD
trans-1,2-Dichloroeth(yl)en	<0.1	μg/l	0.1	0.33	i		02/21/06	MRD
1,2-Dichloropropane	<0.1	μg/l	0.1	0.33	i		02/21/06	MRD
■,3-Dichloropropane	<0.1	μg/l	0.1	0.33	i		02/21/06	MRD
1,3-Dichloropropane 2,2-Dichloropropane	<0.1	μg/l	0.1	0.33	1		02/21/06	MRD
1,1-Dichloropropene	<0.2	μg/l	0.2	0.67	i		02/21/06	MRD
cis-1,3-Dichloropropene	<0.1	μg/l	0.1	0.33	i		02/21/06	MRD
trans-1,3-Dichloropropene	<0.1	μg/l	0.1	0.33	i		02/21/06	MRD
‡thylbenzene	<0.1	μg/l	0.1	0.33	i		02/21/06	MRD
1 '		-5, 1		****	•		,, 50	

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE

800-338-7226 715-355-3221 www.usfilter.com

PROJECT NO.: NERUBO502.00 REPORT NO.: 195283.23 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

fttn: John Guhl

Short Elliott Henderickson

ippewa Falls , WI 54729

≡ample ID: WEST SUMP Matrix: GRDWTR Sample Date/Time: 02/16/06 15:45 Lab No. 195292 Dilution Date <u>Result</u> LOD LOQ Qualifiers <u>Units</u> Factor <u>Analyzed</u> <u>Analyst</u> PA 8260 **Hexachlorobutadiene** <1.00 1.0 3.33 1 02/21/06 MRD μg/l sopropylbenzene <0.1 μg/l 0.1 0.33 1 02/21/06 MRD -Isopropyltoluene <0.2 μg/l 0.2 0.67 1 02/21/06 MRD ethylene Chloride <0.4 μg/l 0.4 1.33 1 02/21/06 MRD Methyl t-Butyl Ether(MTBE) <0.1 μg/l 0.1 0.33 02/21/06 1 MRD Naphthalene <1.00 02/21/06 1.0 **CSH** μg/l 3.33 1 MRD -Propylbenzene <0.1 0.1 0.33 02/21/06 μg/l MRD tyrene μg/l <0.1 0.1 0.33 1 02/21/06 MRD 1,1,1,2-Tetrachloroethane <0.1 μg/l 0.1 0.33 02/21/06 MRD 1,1,2,2-Tetrachloroethane <0.1 μg/l 0.1 0.33 1 02/21/06 MRD etrachloroeth(yl)ene <0.1 μg/l 0.1 0.33 02/21/06 MRD oluene <0.4 μg/l 0.4 1.33 02/21/06 MRD ,2,3-Trichlorobenzene <0.§ 0.5 μg/l 1.67 02/21/06 MRD 1,2,4-Trichlorobenzene <0.5 0.5 1.67 02/21/06 μg/l MRD 1,1,1-Trichloroethane <0.2 μg/l 0.2 0.67 02/21/06 MRD ,1,2-Trichloroethane <0.4 μg/l 0.1 0.33 02/21/06 MRD richloroeth(yl)ene <0.2 μg/l 0.2 0.67 1 02/21/06 MRD Irichlorofluoromethane <0.2 μg/l 0.2 0.67 02/21/06 MRD 1,2,3-Trichloropropane <0.55 μg/l 0.55 1.83 02/21/06 MRD 1,2,4-Trimethylbenzene <0.15 0.15 0.50 02/21/06 μg/l MRD ,3,5-Trimethylbenzene <0.15 0.15 0.50 02/21/06 μg/l MRD /inyl Chloride μg/l <0.15 0.15 0.50 02/21/06 1 MRD o-Xylene <0.1 μg/l 0.1 0.33 1 02/21/06 MRD m-& p-Xylene <0.4 μg/l 0.4 1.33 1 02/21/06 MRD EPA 8310 Acenaphthene <0.06 μg/l 0.06 0.20 1 02/27/06 LMP Acenaphthylene <0.06 0.06 0.20 02/27/06 μg/l 1 LMP Inthracene <0.09 0.30 μg/l 0.09 1 02/27/06 LMP Benzo(a)Anthracene <0.1 μg/l 0.1 0.33 1 02/27/06 LMP Benzo(a)Pyrene <0.02 0.02 0.067 μg/l 1 02/27/06 LMP Benzo(b)Fluoranthene 0.035 μg/l 0.02 0.067 1 **CSH** 02/27/06 LMP Renzo(k)Fluoranthene <0.07 μg/l 0.07 0.23 02/27/06 1 1 MP enzo(ghi)Perylene 0.094 thrysene bibenzo(a,h)Anthracene ----hene μg/l 0.06 0.20 1 J 02/27/06 LMP 0.045 0.02 0.067 1 μg/l J 02/27/06 LMP <0.11 0.11 0.37 μg/l 1 02/27/06 LMP <0.12 μg/l 0.12 0.40 1 02/27/06 LMP Luorene <0.12 μg/l 0.40 02/27/06 0.12 1 I MP ndeno(1,2,3-cd)Pyrene <0.12 μg/l 0.12 0.40 1 **CSH** 02/27/06 LMP -Methyl Naphthalene μg/l 02/27/06 <0.08 0.08 0.27 LMP 1 2-Methyl Naphthalene <0.11 μg/l 0.11 0.37 02/27/06 LMP Naphthalene Thenanthrene <0.11 μg/l 0.11 0.37 02/27/06 LMP <0.11 μg/l 0.11 0.37 LMP 1 02/27/06 yrene <0.1 μg/l 0.1 0.33 1 02/27/06 LMP ,10-Diphenylanthracene (S) 75.0 02/27/06 1 LMP Method 3510 Liquid Ext. COMP 02/22/06 KAM

ENVIROSCAN SERVICES **301 WEST MILITARY ROAD** ROTHSCHILD, WI 54474

TELEPHONE FACSIMILE WEBSITE

800-338-7226 715-355-3221 www.usfilter.com

hort Elliott Henderickson 421 Frenette Drive Chippewa Falls , WI 54729

Attn: John Guhl

PROJECT NO.: NERUB0502.00 REPORT NO.: 195283.90 DATE REC'D: 02/17/06 REPORT DATE: 03/13/06 PREPARED BY: JRS

■alifier Descriptions

МВ	Analyte observed in method blank. Sample results may be biased high.
CSH	Check standard for this analyte exhibited a high bias. Sample results may also be biased high.
J	Estimated concentration below laboratory quantitation level.
CSL	Check standard for this analyte exhibited a low bias. Sample results may also be biased low.
DUP	Result of duplicate analysis in this quality assurance batch exceeds the limits for precision.
D2B	The chromatogram is characteristic for a heavier petroleum product other than diesel. (i.e. motor oil, hydraulic oil, etc.)
D5	The chromatogram contained significant peaks and a raised baseline outside the DRO window.
S2H	Sample matrix spike duplicate recovery was high. Sample result may be biased high.
LCL	The laboratory control sample for this analyte exibited a low bias. Sample results may also be biased low.
S1L	Sample matrix spike recovery was low. Sample result may be biased low.
S2L	Sample matrix spike duplicate recovery was low. Sample result may be biased low.
ISL	Internal standard recovery below normal limits. Sample results may be biased high.
SPL	Matrix spike recovery within analytical batch was low. Sample matrix appears similar to your sample; result may be biased low.
LCH	The laboratory control sample for this analyte exibited a high bias. Sample results may also be biased high.

STL Chicago 2417 Bond Street University Park, IL 60466

Tel: 708 534 5200 Fax: 708 534 5211 www.stl-inc.com

SEVERN TRENT LABORATORTES ANALYTICAL REPORT

JOB NUMBER: 244419

Prepared For

USFilter, Enviroscan Services 301 W. Military Road Rothschild, WI 54474

Project: Subcontract Lab Services

Attention: Eric Lorge

Date: 02/28/2006

Signature

Name: Nancy S. McDonald

Title: Project Manager

E-Mail: nmcdonald@stl-inc.com

Date

STL Chicago

2417 Bond Street

University Park, IL 60466 ·

2/28/06

PHONE: (708) 534-5200

FAX..: (708) 534-5211

This Report Contains (12) Pages

STL Chicago PCB Case Narrative

USFilter, Enviroscan Services Subcontract Lab Services SEHCHI Job #: 244419-1 **PCBs**

1. STL Chicago used the following Gas Chromatographic systems for the analysis of PCBs:

<u>ID#</u> .	<u>INSTRUMENT</u>	COLUMN TYPE	DETECTOR
32	HP 6890	Rtx-Clp2 (Primary)	Electron Capture
31	HP 6890	Rtx-5 (confirmation)	Electron Capture

- 2. This soil sample was extracted based on SW846 method 3541. The extracts were analyzed for PCBs based on SW846 method 8082. All extracts received a sulfuric acid cleanup and a GPC cleanup in order to reduce matrix interference.
- 3. All required holding times were met for the extraction and for the analysis.
- 4. The method blank was below the reporting limits for all Aroclors.
- 5. The surrogate compounds used for this analysis were Decachlorobiphenyl (DCB) and Tetrachloro-m-xylene (TCX). All surrogate recoveries were within statistical control limits except DCB in method blank and blank spike, which had recoveries of 69% and 66%, respectively. No further action was taken since sample surrogate recoveries were in control.
- 6. A solution containing Aroclor 1016 and Aroclor 1260 was used for spiking.
- 7. All blank spike recoveries were within statistical control limits.
- 8. A matrix spike and a matrix spike duplicate were not performed on this sample.
- 9. All initial and continuing standard calibrations associated with this sample were in control on both columns. All SSV recoveries were within limits of 85%-115%.
- 10. Target compounds were confirmed using a second column. All results were reported from the primary column,

Patti Gibson

Organics Section Manager

2-28-66 Date

S.A.M.P.L.E. IN F.D.R.M.A.T.T.O.N. Date: 02/28/2006

Job Number.: 244419

Customer...: USFilter, Enviroscan Services
Attn.....: Eric Lorge

Project Number.....: 20004567 Customer Project ID...: SEHCHI Project Description...: Subcontract Lab Services

Laboratory Semple 10	Custămer Sample ID	Sample Matrix	Date Sampled	fime Salgnaz	Date Received	Time Received
244419-1	21195314	Soil	02/14/2006	05:15	02/18/2006	09:30
		<u> </u>				
		}				
				-		
	·					

Job Number: 244419

LABORATORY TEST RESULTS

Date:02/28/2006

CUSTOMER: USFilter, Enviroscan Services

PROJECT: SEHCHI

ATTN: Eric Lorge

Customer Sample ID: 21195314
Date Sampled....: 02/14/2006
Time Sampled....: 05:15
Sample Matrix...: Soil

Laboratory Sample ID: 244419-1 Date Received.....: 02/18/2006 Time Received.....: 09:30

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	D FLAGS	NOL	RL	DILUTION	UNITE	BATCH	ÓΤ	DATE/TIME	TECH
	PCB Analysis Aroclor 1016, 3541 Solid* Aroclor 1221, 3541 Solid* Aroclor 1232, 3541 Solid* Aroclor 1242, 3541 Solid* Aroclor 1248, 3541 Solid* Aroclor 1254, 3541 Solid* Aroclor 1260, 3541 Solid*	ND ND ND ND ND ND 18	מיהפרחה	6.4 5.3 5.2 5.6 4.1 4.2 3.8	19 19 19 19 19 19	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	174382 174382 174382 174382 174382 174382 174382		02/27/06 1812 02/27/06 1812 02/27/06 1812 02/27/06 1812 02/27/06 1812 02/27/06 1812 02/27/06 1812	bjt bjt bjt bjt
Method	% Solids Determination % Solids, Solid % Moisture, Solid	84.9 15.1		0.10 0.10	0.10 0.10	1111	X	173702 173702		02/20/06 2159 02/20/06 2159	
						<u> </u> 					

^{*} In Description = Dry Wgt.

Jop	Number: 244419	LABORATORY	CH	RONI	CLE	Date:	02/28/2006		
USTOMER: USFflee	, Enviroscan Services	PROJECT	SEHDHI				ATTN: Eric Lorg	B -1. (11).	1.474 A.TTT
ab ID: 244419-1 METHOD Method 3541 8082	Client 1D: 21195314 DESCRIPTION % Solids Determination Extraction Soxhlet (PCBs PCB Analysis		Date Ro	ecvd: 02/ BATCH# 173702 173707	18/2006 PREP BT 173702 173707	Sample #(S)	Pate: 02/14/20 DATE/TIME AN 02/20/2006 02/21/2006 02/27/2006	ALYZED 2159 0814	DILUTIO

		Job	Numbe	r.: 244419	S	UR	R O	G	A T I	E	RE	C	0 Y	E	RI	E	S	R	Ef	0	R T		Repo	ort D	ate.	.: 0	2/2	8/2	006			
CUSTOME	R : U	Filte	f, Er	viroscan Ser	VÌC	5			PRO	JEC1	(). SI	EHIC)	θŧ	:									ATT!	No Er	ie L	org	je:					
		d Code		PCB Analysis 8082													trix						#				Pre	рΒ	atcl	1:	173	707
Lab ID		DT	San	ple ID									Da	te		DC	CB		TC)	•												
LCS MB 244419-	1		211	95314									/27, /27, /27,	/20	06		66 69 81	*		57 52 82	-	• -										
Test	Te	est Do	ecrip	tion						Lin	its																					
DCB TCX				phenyl (surr m-xylene (su							- 12! - 13!																					

•	Job Number.: 244419	QUALITY	TROD	ROLR	ESUL	T S	Report Da	te.: 02/1	28/2006	
CUSTOMER: USF		PROJEC	T. SEHCH1				ATTN: Eri	Lorge		
QC Type	Descriptio		Reag.	Code	Lab		Dilution		Date	Time

Test Method.....: 8082 Equipment Code...: INST3132 Analyst...: bit Method Description: PCB Analysis Batch.....: 174382

Laboratory Control Sam	ole:	.06AI	ÆPCBA	173707-002	.02	727/2006: 1747
Parameter/Test Description	Units	QC Result	QC Result	True Value	Orig. Value QC Calc.	* Limits F
Aroclor 1016, 3541 Solid Aroclor 1260, 3541 Solid	ug/Kg ug/Kg	93.007 114.317		166.700 167.000	5,600 U 56 3,300 U 68	% 52-105 % 63-122

	Job Number.: 244419	CONTROL R	-	Report Date.: 02/2		
CUSTOMER: U		T: SEHCHI		ATTN:		
QC Type	Description	Reag. Code	Lab ID	Dilution, Factor	Date	Time

Test Method.....: 8082 Equipment Code...: INST3132 Analyst...: bjt
Method Description: PCB Analysis Batch.....: 174382

MB Method Blank			<u>,:: </u>	. 173707-001			/27/2006: 172	2
Parameter/Test Description	Units	QC Result	QC Result	True Value	Orig. Value	QC Calc.	* Limits	F
Aroctor 1016, 3541 Solid	ug/Kg	5.600	Tu Tu					
Aroctor 1221, 3541 Solid	ug/Kg	4.600	U					
Aroclor 1232, 3541 Solid	ug/Kg	4.500	U					
Aroctor 1242, 3541 Solid	ug/Kg	4.900	U					
Araclar 1248, 3541 Solid	⊔g/Kg	3.600	U					
Aroctor 1254, 3541 Solid	ug/Kg	3.700	U					
Aroctor 1260, 3541 Solid	ug/Kg	3.300	U					

Job Mumber_: 244419	QUALIT	Y CONTRO) L RESUI		:: 02/28/2006
CUSTOMER: USEILTER, Enviroscan Services	-PRO	JECT: SEHCHI		ATTH: Eric	Lorge
Test Method: Method Method Description: % Solids Determine Parameter % Solids	ation.	Equip:	ment Code	1737.02	Analyst.;;\clb Test.Code:= %SOLID
QC Lab ID Reagent Units QC				Value QC Calc. F *	Limits Date Time

×

0.1000 U

MB 173702-001

02/20/2006 2100

QUAL ITY ASSURANCE METHODS

REFERENCES AND NOTES

Report Date: 02/28/2006.

REPORT COMMENTS

- 1) All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.
- 2) Soil, sediment and sludge sample results are reported on a "dry weight" basis except when analyzed for landfill disposal or incineration parameters. All other solid matrix samples are reported on an "as received" basis unless noted differently.
- 3) Reporting limits are adjusted for sample size used, dilutions and moisture content if applicable.
 4) The test results for the noted analytical method(s) meet the requirements of NELAC. Lab Cert. 1D# 100201 5) According to 40CFR Part 136.3, pH, Chlorine Residual and Dissolved Oxygen analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH Field) they were not analyzed immediately, but as soon as possible on laboratory receipt.

Glossary of flags, qualifiers and abbreviations (ony number of which may appear in the report) Inorganic Qualifiers (Q-Column)

- Analyte was not detected at or above the stated limit.
- Not detected at or above the reporting limit.
- Result is less than the RL, but greater than or equal to the method detection limit.
- Result is less than the CRDL/RL, but greater than or equal to the IDL/MDL.
- Result was determined by the Method of Standard Additions.
- AFCEE: Result is less than the RL, but greater than or equal to the method detection limit. Inorganic Flags (Flag Column)
 - ICV, CCV, ICB, CCB, ISA, ISB, CRI, URA, MRL: Instrument related QC exceed the upper or tower control limits.
- LCS, LCD, MD: Batch QC exceeds the upper or lower control limits.
- MSA correlation coefficient is less than 0.995.
- MS, MSD: The analyte present in the original sample is 4 times greater
 - than the matrix spike concentration; therefore, control limits are not applicable.
- E SD: Serial dilution exceeds the control limits.
- MB, EB1, EB2, EB3: Batch QC is greater than reporting limit or had a
- negative instrument reading lower than the absolute value of the reporting limit.
- MS, MSD: Spike recovery exceeds the upper or lower control limits.
- AS(GFAA) Post-digestion spike was outside 85-115% control limits.
- Organic Qualifiers (Q Column)
- Analyte was not detected at or above the stated limit.
- Compound not detected.
- L Result is an estimated value below the reporting limit or a tentatively identified compound (TIC).
- Result was qualitatively confirmed, but not quantified.
- C Pesticide identification was confirmed by GC/MS.
- The chromatographic response resembles a typical fuel pattern.
- Z The chromatographic response does not resemble a typical fuel pattern.
- Result exceeded calibration range, secondary dilution required. E
- AFCEE:Result is an estimated value below the reporting limit or a tentatively identified compound (TIC) Organic Flags (Flags Column)
- MB: Batch QC is greater than reporting limit.
- LCS, LCD, ELC, ELD, CV, MS, MSD, Surrogate: Batch QC exceeds the upper or lower control limits. EB1, EB2, EB3, MLE: Batch QC is greater than reporting Limit
- A Concentration exceeds the instrument calibration range
- Concentration is below the method Reporting Limit (RL)
- B Compound was found in the blank and sample.
- n Surrogate or matrix spike recoveries were not obtained because the extract was diluted for
 - analysis; also compounds analyzed at a dilution will be flagged with a D.
- Н Alternate peak selection upon analytical review
- Indicates the presence of an interfence, recovery is not calculated.
- М Manually integrated compound.
- The lower of the two values is reported when the % difference between the results of two GC columns is

ODALITY ASSURANCE METHODS BEFERENCES AND NOTES

Report Date: 02/28/2006

RTW Retention Time Window Sample 10 A 9 digit number unique for each sample, the first six digits are referred as the job number SCB Seeded Control Blank SD Serial Dilution (Calculated when sample concentration exceeds 50 times the HDL) UCB Unseeded Control Blank SSV Second Source Verification Standard Solid Laboratory Control Standard(LCS) SLCS pH Calibration Check LCSP pH Laboratory Control Sample PHC pH Laboratory Control Sample Duplicate LCDP pH Sample Duplicate MOPH MDFP Flashpoint Sample Duplicate Flashpoint LCS LCFP G1 Gelex Check Standard Range 0-1 Gelex Check Standard Range 1-10 GΖ G3 Gelex Check Standard Range 10-100 Gelex Check Standard Range 100-1000 Note 1: The Post Spike Designation on Batch QC for GFAA is designated with an "S" added to the current abbreviation used. Ex. LCS S=LCS Post Spike (GFAA); MSS=MS Post Spike (GFAA) Note 2: The MD calculates an absolute difference (A) when the sample concentration is less than 5 times the reporting limit. The control limit is represented as +/- the RL.

ENVIROSCAN SERVICES 301 WEST MILITARY ROAD ROTHSCHILD, WI 54474 TELEPHONE FACSIMILE WEBSITE

800-338-7226 715-355-3221 www.ustifter.com

244419

A Siemens Business Subcontract Laboratory Services Request

•		~~	 	-			₩.		~.		 • •	•			 •									
-	•	-		_	_	-	_	_	-	_	2	-				-	-	-	فلا	-		-	-	
																							帰	В

TO:	· 'YE	LMI Client (4°C)	Jwo Week Tom	Report Format
STL Chicago	••-		Three Week Turn	-E-L2QFND
2417 Bond Street		•		☐ 130END
University Park, IL 6	0466		RUSH-1-2 DAY (2X)	14QFND
Ph. 708-534-5200			RUSH-3 DAY TAT (1.7X)	
	Alt Fax.708-534-5270		RUSH-# DAT TAT (1.3X)	•
PM: Nancy McDona	Ю		•	Quotation No.
Please analyze the C Special Instruction	enclosed samples for the a xis:	nalytes specified:		20004484 7/9/20
Sample ID	Sample Date & Time	· · · · · · · · · · · · · · · · · · ·	Analyzis Réquest	
195314	7/14/16 5:15	Soil [] Organ	ochlorine Pesticides by EPA 8081A*	
·	711/16 2115	1 "	ochlorine Pesticides by EPA 608*	}
		1	by EPA 8082	·
		₹ <i>}</i>	by EPA 608	
		1	by 3541WI extraction and clean-up	
		1 * -	ides by EPA 8151A*	
		1 ' '	Suplicate Analysis	
		1 · · ·	kıad Analysis	
		٦	Auplicate Analysis on Soil	
		1 []	Carbon-Duplicate Analysis on Soil	Ì
	· · · · · · · · · · · · · · · · · · ·	1 "	s as checked on all samples.	
"See attached list for	required compounds	1 desditt bereit de l'est des	The state of the s	·····
REPORT TO:		•	BILL TO:	•
USFiller, Environcer	Services		USFiller, Enviroscan Service	bes .
301 W. Military Rd. Rothschild, WI 5447	14		301 W. Millery Rd. Rothschild, Wi 54474	
Altn: Eric Lorge			Attn: Accounts Payable	
E-mail: eric.lorge@s	lemens.com			
Au	ming the above request c		-1 - 4 -3	
or Jim Salkowski, G	eneral Manager, Phone &			•
Refinquished by:	Sugaret	Ville Da	te: 21706 Time: 1430	
Received by Subcon	· \ \ \		He: 2/18/06 Time: 0930	

Sample Receipt Report

Client:	SEH Date Received: 2/17/06	
Analyti	cal No.: 21195283 Through 21195324	
Check	all deviations from EPA or WDNR sample protocol.	
[]	Sample(s) received at°C which is above the EPA and WDNR limit of 4°C.	
[]	VOC vial(s) received with headspace. Explain:	
	Sample(s) received in bottles not furnished by Enviroscan. Preservation method, if used, is unknown.	
	Sample(s) not properly preserved per EPA/WDNR protocol for the following:	
[]	Sample(s) received beyond EPA holding time for:	
[]	Sample date/time not supplied by client. Actual holding time unknown.	
[]	GRO/PVOC/VOC/DRO (circle appropriate) sample(s) are <19.5 gms and this report is the flag for that information. Sample(s) under-weight:	
H ^o	GRO/PVOC/VOC (circle appropriate) sample(s) were between 26.4-35.4 gms so methanol was added in a 1.1 ratio. Sample(s) included: 21195297 + 4ml, 195298+3ml, 195309+4ml, 195309+4ml, 195309+4ml, 195309+4ml,	299:44ml.
[]	195305 + 4ml, 195301 + 4ml, 195302+4ml, 195303+4ml, 195305+4ml, 195305+4ml, 195305+2ml, 195306+2 GRO/PVOC/VOC/DRO (circle appropriate) sample(s) were >35.4 gms and are required to 19 be rejected. Sample(s) included:	5307 + 4m
[]	Other:	*
Client	contact concerning the above deviations:	
Client at	(contact name) notified of the above deviation(s) on/_/_/95 am/pm by and the client ordered:	314+3M
	[] Do NOT proceed with analyses.	

REQUEST FOR SERVICES

A Siemens Business

ENVIROSCAN S	ERVICES	30	01 W. MILIT	ARY RD.	ROTHSC	CHILE), WI	5447	4	1-800	-338-SC	AN
REPORT TO:	ohn	E 0	/. \		_L TO: (if			m Re	port T	o info)		
		<u>с, ср</u>			me: mpany:			-3/1/2 -3/1/2				_
Address:		rene th		<u>'∈</u> Ad	dress:			W.				
Dhama: / 71/	in pper	<u>Jil F</u> 6 Z00	EL 1 15,		/		- 1957 Villa	4				_
Phone: (<u>715</u>) P.O.# _ <i>W</i>		70	.*	-	one: (`)/#: ////				-{#	_
Project # NER	1BO502.	<i>ರು</i> Quote	#	7492	ን	<i>!!</i>				~		
Location CHI	LTON			- 144 m			33.30			L RE	QUESTS	3
Sample Ty (Check all that Groundway Wasteway Soil/Solid	at apply) ater ter	Nor Rus	und Time mal sh (Pre-approveded eded d By	, , 				/ ,	arate :	sheet if n	REMARK	- 20 m
☐ Oil☐ Vapor☐ Other.	· j*				4-	ل /			^ که که	λ Ο (,		,×,
LAB USE ONLY	DATE	TIME	No. of Containers COMP GRAB	SAMPLE I	D /	3	THE STATE OF THE S	(F) (7)	7/1-	\\	REMARK	(S
21195283	2-16-8	10:30	6	Mw-	3 /		//					
21195284	7-16-06	11:00	6	mw-2	2							
21195285	Z-16-06	11:30	6	WW-1				/				
21195286	2-16-06	17:45	7	EAST	المادا وم	7		/			Phase Th	Oil teran
21195287	2-16-06	1:15	6	BIZ				1				H
2119528	8-16.0	1:45	6,	BII		//				_		
21195289	2-16-06	2:15	6	LARGE	2	//	/					
21195290	2-16.41	2:45	6	B9				/				
21195290 2119529	2-1606	3:15	6	B6				/				
21195292	-2-16-06		6	WESTSUM	17					J		
CHAIN OI	F CUST	ľODY	RECOL	RD			Del'v: Ship. Samp Seals	Cont. les le	OK aking	(Y)	N N/A N N/A N N/A 2	
			,		· 1		Rec'd			⑦	N N/A	. . C
SAMPLERS: (Signa	khr-	- Z. o	Gulf	1			Comi	ments			Mr. Gul	스
RELINQUISHED BY:	Signature)	1		RECEIVED BY: (Si	gnature)	 7-)K-to	s (es	teast	sark ?	71
BELINQUISHED BY:	(Signature)		-06 10:15 E/TIME	RECEIVED BY: (Si	gnature)							_ _
RELINQUISHED BY: ((Signature)	DAT	E/TIME	RECEIVED FOR L BY: (Signature)	1 1	1.0	DATE/	经付出帐 "抓"	0/1			

REQUEST FOR SERVICES

A Siemens Business

ENVIROSCAN SERVICES 301 W. MILITARY RI						ROTH	ISCH	ILD,	WI !	5447	4	1-800	-338-SCAI	1
REPORT TO: Name: Company: Address: HTI Ch Phone: Phone: HIECO Project # NECO Location Sample To	<u>5477</u> 9	BILL TO Name: _ Compan Address): (if di ny:	ifferei	AN/	m Re	port Τ	L RE	QUESTS necessary)	_\\				
(Check all that Groundw Groundw Soil/Solid Drinking Oil Vapor Other	ater ter I	Date Ne Approve	sh (Pre-a eded _ ed By _		ed by Lab)			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Supple of the su	Ca n)		REMARKS	, Selection of the sele
LAB USE ONLY	DATE	TIME	No. (Contain	ners	SAMP	LE ID		\Q\	c a	<i>\\</i>	<u> </u>		REMARKS	3
21195293				6	BS									
21195294	2-16-€	4:45		6	85A				/					
														_
					·									_
						<u>,,,-</u> ,,								
														_
														
1000 1000 1000 1000 1000 1000 1000 100										<u> </u>				_
CHAIN O	F CUS	ODY	REC	ZOI:	RD			3	Ship:√ Samp	Har Cont- les le OK?	ÓK aking	omm, Y	N N/A N N/A	
SAMPLERS: (Signa		hni	9.0	Gr	aff				Rec'd	on ic	e?	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	N N/A N N/A <u>ナ</u> (ِ ا
RELINQUISHED BY:	(Signature)		E/TIME		RECEIVED B	Y: (Signature	e)					······································		
BELINQUISHED BY:	(Signature)		06/09 E/TIME		RECEIVED B	Y: (Signature	e)							
RELINQUISHED BY:	(Signature)	DAT	E/TIME	ं	RECEIVED F	OR LABORA	ATORY	1 1 1 1 1 1 1	DATE/			-		

REQUEST FOR SERVICES

A Siemens Business

ENVIROSCAN S	SERVICES	3	01 W. MILIT	TARY RD.	ROTH	1SCH	IILD,	WI 5	5447	4	1-800	-338-SC	CAN
REPORT TO:					BILL TO	: (if d	ifferer	nt froi	n Re	port T	o info)		
Name:					Name: _			<u>-</u>					
Company: _SEI					•	-	-						
Address: <u>421</u>					Address	:							
Chi	ppema +	115, C	ال		Di	, –							
Phone: (715) P.O.# MIRA	120 · 6	0 COO			Pnone:	()				:		_
Project # NERC													
Location CHI	LTON, U		, п									QUEST	
Sample T	\vne	Turnaro	und Time					(us	e sep	arate	sheet if r	ecessary)	
(Check all tha	at apply)	☐ Nor	mal					/		/ œ	/ A	í /	λ
☐ Groundw☐ Wastewa		☐ Rus	sh (Pre-appro	ved by Lab)			/	/		کریہ ا	京文	Jan 25	\$.
Soil/Solid		Date Ne	eded						10	1. 7		12 /	~
☐ Drinking ☐ Oil	Water	Approve	d By						/F	Ų′;	<u>:</u>	- ♂	7 1
☐ Vapor) /	/ /	/. /	20	7 3/	/ /	<i>102.</i> 1√2 ∧	3,64
☐ Other						/	.9/	Jn/_	~ N+	\times /	\sum_{a}	$\mathcal{N}(\mathcal{X})$	~ <i>\$</i> _
	D4==		No. of			1/3	ر اس ال	7/3 7/3/3	2	×			, ·
LAB USE ONLY	DATE	TIME	Containers COMP GRAB	SAMP		/		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7		/-	REMAR	KS
21195295			3	MW-5/P=	<u>, † ' </u>			/				•	
2119 5296	2-13-06	11:45	3	mw-6	0-78								
211 95 29 7	2-13-0%		3	MW-7	0-492								
21195298	2-1306	2:30	3	MW-8	0-4A								
2119 5299	2-13-06		3	MW1-8		/	/	/					
21195300	2-13.0k	3:15	3	N 4 9	0-44								
21195301			3	3/4 N 34	464								
21195302	2.13-34	11.84	舅	神四月	2-34	7	200	Y	X	*		11-4	oryo
2 119 5303	1 7 74	ì	ist	BI	4-641	1	/	1	./			د	/
21195304	2-13-0		1	BZ	0 -22	/							
				다. 사 가 보 보			S	Ship. (Cont.		omm. ?	N N/A N N/A	
CHAIN O	F CUST	CODY	RECO	RD			S	Seals Rec'd	OK?			N N/A	
SAMPLERS: (Signa	iture)	2 Sh	ull				10.00	Comr	laka dilak	· municipality		N N/A <u>.</u>	
RELINQUISHED BY:	(Signature)	DATI	E/TIME	RECEIVED B	Y: (Signature	e)	ր -						
Chan?	9/ 1	ما	4/0:5	_		-	-						
RELINQUISHED BY:	(Signature)		E/TIME	RECEIVED B	Y: (Signatur	e)	-						
RELINQUISHED BY:	(Signature)	DATI	E/TIME	RECEIVED FO	OR LABOR	ATORY		DATE/	TIME				

REQUEST FOR SERVICES

A Siemens Business

ENVIROSCAN S REPORT TO: Name: Company: Address: Phone: Phone: Project # Net2	1/20-1 1/20-1 1/20-1 1/20-1	14. D. 115. 200	1115 . Her-	<u></u> <u>412</u> 4'	BILL TO Name: _ Company	: (if dif y:	fferent	NALY	eport To	o info	EQUESTS if necessary)
Sample Ty (Check all that Groundw Wastewa Soil/Solid Drinking V Oil Vapor Other	at apply) ater ter	☐ Norr☐ Rusl	h (Pre-approv eded d By	·			CALL MERMON				
LAB USE ONLY	DATE	TIME	No. of Containers COMP GRAB	SAM	PLE ID		*/ (K	¥ / S	3/ 2	72/	REMARKS
21195305	2-13-06	-1.45	. 30	BZ	2.7						
2119 5306			3.	BB	0-261		4				
21195307	2-13-06	5,00	13v	133	2-4 ft						+1-202min
21195308	2-1,3-06	5:30	<u> </u>	134	4-61						F1 70 18
119 5309	i		3,	135 c), 5-0, 86.						
2119 5810			3°	P6	- ft 1,5-3,0 ts		//				
21195311 21195312			3,	1 /	1.0-2.5						
	- 11,46			-	1.0-25						
21195314				/ 	1.0-2.0ft),5-1.5(t						71-45216
		3, 10		pio c	7 3 17311		De	 l'v: Ha	Md C	omm.	
CHAIN O	F CUST	ODY	RECOI	RD			Sa Se	ip. Con mples I als OK' c'd on i	eaking ?		ON N/A N N/A N N/A N N/A C
SAMPLERS: (Signal	ture) Jan	<i>C.</i>	In	U			TATALAN T	and the state of	ere Market Brack •	16 5.	in strchecojo
RELINQUISHED	Signature)	بر الح		RÉCEIVED	BY: (Signature	∌)	_				
RELINQUISHED BY:	Signature)		-03 /0:15 E/TIME	RECEIVED	BY: (Signature	e)					
RELINQUISHED BY: ((Signature)	DATE		RECEIVED BY: (Signat	FOR LABORA	ATORY	第四月的 电点	TE/TIME		-	

REQUEST FOR SERVICES

A Siemens Business

ENVIROSCAN S	SERVICES	30	o1 W. MILIT	ARY RD.	ROTH	ISCH	ILD,	WI :	5447	4	1-800-338-SCAN
REPORT TO: Name:	ilin 6	: Gu	hl		BILL TO Name: _	-			-		o info)
Company:			•		Compan	ıy:					
Address:	1 Fan		W1 57	7770	Address	:					
Phone: (715) P.O.# FORM Project # NCR Location) 7720 LEG MI 130502.	<u>. (, کن:</u> دیم	PLANT	キマコ	Phone:	()				L REQUESTS
Samula T		Turnana	d Time							arate s	sheet if necessary)
Sample T (Check all that Groundw Soil/Solic Drinking Oil Vapor Other	at apply) vater iter i	☐ Nor ☐ Rus Date Ne	und Time mal th (Pre-approveded d By					3/	12/2	1	REMARKS
LAB USE ONLY	DATE	TIME	No. of Containers	SAME	LE ID	1/:	1/12			2/2	REMARKS
			COMP GRAB			1		/ 😴		- 1	/ nciviants
21195315	2-15-06			BII	1-314	1	/	1			
211 953 1 6	2-15-06	9:15	3	B12 1	1-2 fi	/					
21195317	2-15-06	11:16	H	3130).S-4.5ft						+1-202
21195318			6	MW:			/	/	/		Suspher, 198
21195319	1		6	MW			/	1	/		1-125 Physical
1195320			6	MW.				/			1-1142/2011
2 11 95321			· · · - · · ·	MW			1		7		1-11-200 HOC: NR 1-125 Photos 1-11-4-4-4-11
			6	mw		/	1	/	/		
21195322 2119532	23 1	() - 7				/			/		
I Take the Common of the Indian				MW	-5		/	/	/		
21195324	2-16-6	10100	6	29	- 5		/				
CHAIN O		ODY	RECOI	RD	·		3 3 3	Ship. (Samp Seals	Cont.	OK aking	omm. Y N N/A ? Y N N/A ? N N/A O N N/A _ C
SAMPLERS: (Signa	Zlu	- E. c	Sel					Comr	nents	s:	
RELINQUISHED BY:	(Signature)	2		RECEIVED E	3Y: (Signatur	e)					
DELINOUS CO	July		-a. 10:15	חבסביייבי	2V. (Ci						
BELINQUISHED BY:	(Signatu rp)	DATE	E/TIME	RECEIVED E	οτ: (Signatur	e)					
RELINQUISHED BY:	(Signature)	DATE		RECEIVED F BY: (Signatur		ATORY		DATE/		/0/	(

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

June 14, 2006

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

REPORT NO.: 0606003

PROJECT NO.: ANERUB0502.00 Chilton

Please find enclosed the analytical report, including the Sample Summary, Sample Narrative and Chain of Custody for your sample set received June 1, 2006.

All analyses were performed in accordance with NELAC Standards using approved methods as indicated on this report.

If you have any questions about the results, please call. Thank you for using USFilter, Enviroscan Services for your analytical needs.

Sincerely,

USFilter, Enviroscan Services

James Salkowski

Lab Director

I certify that the data contained in this report has been generated and reviewed in accordance with the USFilter, Enviroscan Services Quality Assurance Program. Exceptions, if any, are discussed in the sample narrative. Samples will be retained for 30 days from the date of this report, then disposed in an appropriate manner. USFilter, Enviroscan Services reserves the right to return samples identified as hazardous. Release of this Final Report is authorized as verified by the following signature.

Approved by:

Certifications:

Wisconsin 737053130 Minnesota 055-999-302

Illinois 100317

RECEIVED

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

SAMPLE SUMMARY

0606003-01 MW-1 05/30/06 14:45 Ground W 0606003-02 MW-2 05/30/06 15:15 Ground W 0606003-03 MW-3 05/30/06 15:45 Ground W 0606003-04 MW-4 05/30/06 17:15 Ground W 0606003-05 MW-5 05/30/06 17:45 Ground W	ater ater ater ater
0606003-03 MW-3 05/30/06 15:45 Ground W 0606003-04 MW-4 05/30/06 17:15 Ground W 0606003-05 MW-5 05/30/06 17:45 Ground W	ater ater ater
0606003-04 MW-4 05/30/06 17:15 Ground W 0606003-05 MW-5 05/30/06 17:45 Ground W	ater ater
0606003-05 MW-5 05/30/06 17:45 Ground W	ater
	ater
0606003-06 PZ-5 05/30/06 18:15 Ground W	
0606003-07 MW-6 05/30/06 16:45 Ground W	ater
0606003-08 MW-7 05/30/06 16:15 Ground W	ater
0606003-09 MW-8 05/30/06 18:45 Ground W	ater
0606003-10 MW-9 05/30/06 14:20 Ground W	ater
0606003-11 B-5 05/30/06 12:50 Ground W	ater
0606003-12 B-5A 05/30/06 13:10 Ground W	ater
0606003-13 B-6 05/30/06 12:05 Ground W	ater
0606003-14 B-9 05/30/06 11:45 Ground W	ater
0606003-15 B-11 05/30/06 11:05 Ground W	ater
0606003-16 B-12 05/30/06 10:35 Ground W	ater
0606003-17 Large Sump 05/30/06 11:20 Ground W	ater
0606003-18 West Sump 05/30/06 12:30 Ground W	ater
0606003-19 MW-5 Dup 05/30/06 17:45 Ground W	ater
0606003-20 Trip Blank 05/30/06 00:00 Water	

TELEPHONE FACSIMILE WEBSITE

800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

Sample ID: MW-1	Matrix: Ground Water	Sample Date/Time: 05/30/06 14:45	Lab No. 0606003-01
-----------------	----------------------	----------------------------------	--------------------

					Dilution	1	Date	
	<u>Results</u>	<u>Units</u>	LOD	LOQ	<u>Factor</u>	Qualifiers	Analyzed	<u>Analyst</u>
EPA 8260B								
1,1,1,2-Tetrachloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,1,1-Trichloroethane	ND	ug/L	0.20	0.67	1		06/06/06	MPM
1,1,2,2-Tetrachloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,1,2-Trichloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,1-Dichloroethane	ND	ug/L	0.15	0.50	1		06/06/06	MPM
1,1-Dichloroethylene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
1,1-Dichloropropylene	ND	ug/L	0.30	1.00	1		06/06/06	MPM
1,2,3-Trichlorobenzene	ND	ug/L	0.50	1.70	1		06/06/06	MPM
1,2,3-Trichloropropane	ND	ug/L	0.55	1.80	1		06/06/06	MPM
1,2,4-Trichlorobenzene	ND	ug/L	0.50	1.70	1		06/06/06	MPM
1,2,4-Trimethylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
1,2-Dibromo-3-chloropropane	ND	ug/L	0.35	1.17	1		06/06/06	MPM
1,2-Dibromoethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,2-Dichlorobenzene	ND	ug/L	0.75	2.50	1	S2H, S1H	06/06/06	MPM
1,2-Dichloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,2-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,3,5-Trimethylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
1,3-Dichlorobenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
1,3-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,4-Dichlorobenzene	ND	ug/L	0.75	2.50	1		06/06/06	MPM
2,2-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
2-Chlorotoluene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
4-Chlorotoluene	ND	ug/L	0.20	0.67	1		06/06/06	MPM
4-Isopropyltoluene	. ND	ug/L	0.20	0.67	1		06/06/06	MPM
Benzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
Bromobenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Bromochloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Bromodichloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Bromoform	ND	ug/L	0.20	0.67	1		06/06/06	MPM
Bromomethane	ND	ug/L	0.15	0.50	1	CSL, S1L, S2L	06/06/06	MPM
Butylbenzene	ND	ug/L	0.20	0.67	1	, -1-,	06/06/06	MPM
Carbon Tetrachloride	ND	ug/L	0.20	0.67	1		06/06/06	MPM
Chlorobenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Chloroethane	ND	ug/L	0.60	2.00	1		06/06/06	
Chloroform	ND	ug/L ug/L	0.10	0.50	i		06/06/06	MPM MPM
Chloromethane	ND	ug/L ug/L	0.20	0.67	1		06/06/06	MPM
cis-1,2-Dichloroethylene	ND	ug/L ·	0.20	0.67	1		06/06/06	
cis-1,3-Dichloropropylene	ND	ug/L ug/L	0.10	0.50				MPM
1.5 Diemoropropytene	MD	ug/L	0.10	0.50	1		06/06/06	MPM

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

PREPARED BY: JRS

Sample ID: MW-1	Matrix: Gr	ound Water	Sar	nple Date/	Time: 05	/30/06 14:45	Lab No.	0606003-01
•					Dilution	1	Date	
	Results	<u>Units</u>	<u>LOD</u>	<u>LOO</u>	Factor	Qualifiers	<u>Analyzed</u>	<u>Analyst</u>
EPA 8260B Continued								
Dibromochloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Dibromomethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Dichlorodifluoromethane	ND	ug/L	0.25	0.83	1	CSL	06/06/06	MPM
Ethylbenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Hexachlorobutadiene	ND	ug/L	1.00	3.30	1		06/06/06	MPM
Isopropylbenzene (Cumene)	ND	ug/L	0.10	0.50	1		06/06/06	MPM
m,p-Xylenes	ND	ug/L	0.40	1.30	1		06/06/06	MPM
Methylene Chloride	ND	ug/L	0.40	1.30	1		06/06/06	MPM
Methyl-tert-Butyl Ether	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Naphthalene	ND	ug/L	1.00	3.30	1		06/06/06	MPM
o-Xylene	ND	ug/L	0.10	0.50	I		06/06/06	MPM
Propylbenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
sec-Butylbenzene	ND	ug/L ·	0.15	0.50	1		06/06/06	MPM
Styrene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
tert-Butylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
Tetrachloroethene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Toluene	ND	ug/L	0.40	1.30	1		06/06/06	MPM
trans-1,2-Dichloroethylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
trans-1,3-Dichloropropylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Trichloroethene	ND	ug/L	0.20	0.67	1		06/06/06	MPM
Trichlorofluoromethane	ND	ug/L	0.20	0.67	1		06/06/06	MPM
Vinyl chloride	ND	ug/L	0.15	0.50	1		06/06/06	MPM
EPA 8310								
Prep Method: Method 3510C Liquid Extraction	By: KAM					Date Prepared:	06/02/06	
1-Methylnaphthalene	ND	ug/L	0.080	0.260	1	•	06/06/06	LMP
2-Methylnaphthalene	ND	ug/L	0.110	0.370	1		06/06/06	LMP
Acenaphthene	ND	ug/L	0.060	0.200	1		06/06/06	LMP
Acenaphthylene	ND	ug/L	0.060	0.200	1		06/06/06	LMP
Anthracene	ND	ug/L	0.090	0.300	1		06/06/06	LMP
Benzo(a)anthracene	ND	ug/L	0.100	0.330	1		06/06/06	LMP
Benzo(a)pyrene	ND	ug/L	0.020	0.067	1	LCH	06/06/06	LMP
Benzo(b)fluoranthene	ND	ug/L	0.020	0.067	1	LCII	06/06/06	LMP
Benzo(g,h,i)perylene	ND	ug/L	0.020	0.200	1		06/06/06	
Benzo(k)fluoranthene	ND	ug/L ug/L	0.000	0.233	1		06/06/06	LMP
Chrysene	ND	ug/L ug/L	0.070	0.233	1		06/06/06	LMP
Dibana (a to a diamana	110	ug/L	0.020	0.007	1		00/00/00	LMP

0.110

ug/L

0.370

1

06/06/06

LMP

ND

Dibenzo(a,h)anthracene

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

Sample ID: MW-1 Matrix: Ground Water	Sample Date/Time: 05/30/06 14:45	Lab No. 0606003-01
--------------------------------------	----------------------------------	--------------------

					Dilution		Date	
	Results	<u>Units</u>	LOD	LOO	Factor	Qualifiers	Analyzed	Analyst
EPA 8310 Continued								
Prep Method: Method 3510C Liquid Extraction	By: KAM				1	Date Prepared:	06/02/06	
Fluoranthene	ND	ug/L	0.120	0.400	1		06/06/06	LMP
Fluorene	ND	ug/L	0.120	0.400	1		06/06/06	LMP
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.120	0.400	1		06/06/06	LMP
Naphthalene	ND	ug/L	0.110	0.370	i		06/06/06	LMP
Phenanthrene	ND	ug/L	0.110	0.370	1		06/06/06	LMP
Pyrene	ND	ug/L	0.100	0.330	1		06/06/06	LMP

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

PREPARED BY: JRS

Sample ID: MW-2 Matrix: Ground Water Sample Date/Time: 05/30/06 15:15 Lab No. 0606003-02

_						Dilution		Date	
1		Results	<u>Units</u>	LOD	<u>LOQ</u>	Factor	Qualifiers	Analyzed	<u>Analyst</u>
ļ	EPA 8260B								
	1,1,1,2-Tetrachloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	1,1,1-Trichloroethane	ND	ug/L	0.20	0.67	1		06/06/06	MPM
1	1,1,2,2-Tetrachloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	1,1,2-Trichloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
7	1,1-Dichloroethane	ND	ug/L	0.15	0.50	1		06/06/06	MPM
l	1,1-Dichloroethylene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
	1,1-Dichloropropylene	ND	ug/L	0.30	1.00	1		06/06/06	MPM
	1,2,3-Trichlorobenzene	ND	ug/L	0.50	1.70	1		06/06/06	MPM
	1,2,3-Trichloropropane	ND	ug/L ·	0.55 ·	1.80	1		06/06/06	MPM
	1,2,4-Trichlorobenzene	ND	ug/L	0.50	1.70	1		06/06/06	MPM
	1,2,4-Trimethylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
	1,2-Dibromo-3-chloropropane	ND	ug/L	0.35	1.17	1		06/06/06	MPM
	1,2-Dibromoethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	1,2-Dichlorobenzene	ND	ug/L	0.75	2.50	1	S2H, S1H	06/06/06	MPM
	1,2-Dichloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	1,2-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	1,3,5-Trimethylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
	1,3-Dichlorobenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
	1,3-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	1,4-Dichlorobenzene	ND	ug/L	0.75	2.50	1		06/06/06	MPM
	2,2-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	2-Chlorotoluene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	4-Chlorotoluene	ND	ug/L	0.20	0.67	1		06/06/06	MPM
	4-Isopropyltoluene	ND	ug/L	0.20	0.67	1		06/06/06	MPM
	Benzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
	Bromobenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	Bromochloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	Bromodichloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	Bromoform	ND	ug/L	0.20	0.67	1		06/06/06	MPM
	Bromomethane	ND	ug/L .	0.15 .	0.50	1	CSL, S1L, S2L	06/06/06	MPM
	Butylbenzene	ND	ug/L	0.20	0.67	1		06/06/06	MPM
	Carbon Tetrachloride	ND	ug/L	0.20	0.67	1		06/06/06	MPM
	Chlorobenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	Chloroethane	ND	ug/L	0.60	2.00	1		06/06/06	MPM
	Chloroform	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	Chloromethane	ND	ug/L	0.20	0.67	1		06/06/06	MPM
	cis-1,2-Dichloroethylene	ND	ug/L	0.20	0.67	1		06/06/06	MPM
	cis-1,3-Dichloropropylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

Sample ID: MW-2	Matrix: Gr	ound Water	Sar	nple Date/	Time: 05	/30/06 15:15	Lab No.	0606003-02
					Dilutior	1	Date	
T	Results	<u>Units</u>	<u>LOD</u>	LOQ	<u>Factor</u>	Qualifiers	<u>Analyzed</u>	<u>Analyst</u>
EPA 8260B Continued								
Dibromochloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Dibromomethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Dichlorodifluoromethane	ND	ug/L	0.25	0.83	1	CSL	06/06/06	MPM
Ethylbenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Hexachlorobutadiene	ND	ug/L	1.00	3.30	1		06/06/06	MPM
Isopropylbenzene (Cumene)	ND	ug/L	0.10	0.50	1		06/06/06	MPM
m,p-Xylenes	ND	ug/L	0.40	1.30	1		06/06/06	MPM
Methylene Chloride	ND	ug/L	0.40	1.30	1		06/06/06	MPM
Methyl-tert-Butyl Ether	0.14	ug/L	0.10	0.50	1	J	06/06/06	MPM
Naphthalene	ND	ug/L	1.00	3.30	1		06/06/06	MPM
o-Xylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Propylbenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
sec-Butylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
Styrene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
tert-Butylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
Tetrachloroethene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Toluene	ND	ug/L	0.40	1.30	1		06/06/06	MPM
trans-1,2-Dichloroethylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
trans-1,3-Dichloropropylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Trichloroethene	ND	ug/L	0.20	0.67	1		06/06/06	MPM
Trichlorofluoromethane	ND	ug/L	0.20	0.67	ì		06/06/06	MPM
Vinyl chloride	ND	ug/L	0.15	0.50	1		06/06/06	MPM
EPA 8310								
Prep Method: Method 3510C Liquid Extraction	By: KAM					Date Prepared:	06/02/06	
1-Methylnaphthalene	ND	ug/L	0.080	0.260	1		06/06/06	LMP
2-Methylnaphthalene	ND	ug/L	0.110	0.370	1		06/06/06	LMP
Acenaphthene	ND	ug/L	0.060	0.200	1		06/06/06	LMP
Acenaphthylene	ND	ug/L	0.060	0.200	1		06/06/06	LMP
Anthracene	ND	ug/L	0.090	0.300	1		06/06/06	LMP
Benzo(a)anthracene	ND	ug/L	0.100	0.330	1		06/06/06	LMP
Benzo(a)pyrene	ND	ug/L	0.020	0.067	1	LCH	06/06/06	LMP
Benzo(b)fluoranthene	ND	ug/L	0.020	0.067	1		06/06/06	LMP
Benzo(g,h,i)perylene	ND	ug/L	0.060	0.200	1		06/06/06	LMP
Benzo(k)fluoranthene	ND	ug/L	0.070	0.233	1		06/06/06	LMP
Chrysene	ND	ug/L	0.020	0.067	1		06/06/06	LMP
Dibenzo(a,h)anthracene	ND	ug/L	0.110	0.370	1		06/06/06	LMP

TELEPHONE FACSIMILE WEBSITE

800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

PREPARED BY: JRS

Sample ID: MW-2 Matrix: Ground Water Sample Date/Time: 05/30/06 15:15 Lab No. 0606003-02

	Results	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Oualifiers	Date Analyzed	Analyst
EPA 8310 Continued	Kesuns	Omts	<u>LOD</u>	LOO	<u>ractor</u>	Quantiers	Analyzeu	Allaiyst
Prep Method: Method 3510C Liquid Extraction	By: KAM					Date Prepared:	06/02/06	
Fluoranthene	ND	ug/L	0.120	0.400	1		06/06/06	LMP
Fluorene	ND	ug/L	0.120	0.400	1		06/06/06	LMP
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.120	0.400	1		06/06/06	LMP
Naphthalene	ND	ug/L	0.110	0.370	1		06/06/06	LMP
Phenanthrene	ND	ug/L	0.110	0.370	1		06/06/06	LMP
Pyrene	ND	ug/L	0.100	0.330	1		06/06/06	LMP

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

Sample ID: MW-3	Matrix: Ground Water	Sample Date/Time: 05/30/06 15:45	Lab No. 0606003-03
-----------------	----------------------	----------------------------------	--------------------

					Dilution	n	Date	
	Results	<u>Units</u>	<u>LOD</u>	LOO	Factor	Qualifiers	Analyzed	<u>Analyst</u>
EPA 8260B Continued								
Dibromochloromethane	ND	ug/L *	0.10	0.50	1		06/06/06	MPM
Dibromomethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Dichlorodifluoromethane	ND	ug/L	0.25	0.83	1	CSL	06/06/06	MPM
Ethylbenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Hexachlorobutadiene	ND	ug/L	1.00	3.30	1		06/06/06	MPM
Isopropylbenzene (Cumene)	ND	ug/L	0.10	0.50	1		06/06/06	MPM
m,p-Xylenes	ND	ug/L	0.40	1.30	1		06/06/06	MPM
Methylene Chloride	ND	ug/L	0.40	1.30	1		06/06/06	MPM
Methyl-tert-Butyl Ether	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Naphthalene	ND	ug/L	1.00	3.30	1		06/06/06	MPM
o-Xylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Propylbenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
sec-Butylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
Styrene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
tert-Butylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
Tetrachloroethene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Toluene	ND	ug/L	0.40	1.30	ı		06/06/06	MPM
trans-1,2-Dichloroethylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
trans-1,3-Dichloropropylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Trichloroethene	0.61	ug/L	0.20	0.67	1	J	06/06/06	MPM
Trichlorofluoromethane	ND	ug/L	0.20	0.67	1		06/06/06	MPM
Vinyl chloride	ND	ug/L •	0.15 ·	0.50	1		06/06/06	MPM
EPA 8310								
Prep Method: Method 3510C Liquid Extraction	By: KAM					Date Prepared:	06/02/06	
1-Methylnaphthalene	ND	ug/L	0.080	0.260	1	•	06/06/06	LMP
2-Methylnaphthalene	ND	ug/L	0.110	0.370	1		06/06/06	LMP
Acenaphthene	ND	ug/L	0.060	0.200	1		06/06/06	LMP
Acenaphthylene	ND	ug/L	0.060	0.200	1		06/06/06	LMP
Anthracene	ND	ug/L	0.090	0.300	1		06/06/06	LMP
Benzo(a)anthracene	ND	ug/L	0.100	0.330	1		06/06/06	LMP
Benzo(a)pyrene	ND	ug/L	0.020	0.067	1	LCH	06/06/06	LMP
Benzo(b)fluoranthene	ND	ug/L	0.020	0.067	1		06/06/06	LMP
Benzo(g,h,i)perylene	ND	ug/L	0.060	0.200	1		06/06/06	LMP
Benzo(k)fluoranthene	ND	ug/L	0.070	0.233	1		06/06/06	LMP
Chrysene	ND	ug/L	0.020	0.067	1		06/06/06	LMP
Dibenzo(a,h)anthracene	ND	ug/L	0.110	0.370	1		06/06/06	LMP

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

PREPARED BY: JRS

Sample ID: MW-3	Matrix: Ground Water	Sample Date/Time: 05/30/06 15:45	Lab No.	0606003-03

					Dilution		Date	
	Results	<u>Units</u> .	LOD .	<u>LOQ</u>	Factor	Qualifiers	Analyzed	Analyst
EPA 8310 Continued								
Prep Method: Method 3510C Liquid Extraction	By: KAM				1	Date Prepared:	06/02/06	
Fluoranthene	ND	ug/L	0.120	0.400	1		06/06/06	LMP
Fluorene	ND	ug/L	0.120	0.400	1		06/06/06	LMP
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.120	0.400	1		06/06/06	LMP
Naphthalene	ND	ug/L	0.110	0.370	1		06/06/06	LMP
Phenanthrene	ND	ug/L	0.110	0.370	1		06/06/06	LMP
Pyrene	ND	ug/L	0.100	0.330	1		06/06/06	LMP

Page 11 of 62

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

Sample ID: MW-3 Matrix: Ground Water	Sample Date/Time: 05/30/06 15:45	Lab No. 0606003-03
--------------------------------------	----------------------------------	--------------------

_						Dilution		Date	
		Results	<u>Units</u>	<u>LOD</u>	<u>LOQ</u>	<u>Factor</u>	Qualifiers	Analyzed	<u>Analyst</u>
	EPA 8260B) ID				_			
	1,1,1,2-Tetrachloroethane	ND	ug/L	0.10	0.50	I		06/06/06	MPM
	1,1,1-Trichloroethane	ND	ug/L	0.20	0.67	1		06/06/06	MPM
	1,1,2,2-Tetrachloroethane	ND	ug/L ·	0.10	0.50	1		06/06/06	MPM
	1,1,2-Trichloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	1,1-Dichloroethane	ND	ug/L	0.15	0.50	1		06/06/06	MPM
ľ	1,1-Dichloroethylene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
	1,1-Dichloropropylene	ND	ug/L	0.30	1.00	1		06/06/06	MPM
	1,2,3-Trichlorobenzene	ND	ug/L	0.50	1.70	1		06/06/06	MPM
	1,2,3-Trichloropropane	ND	ug/L	0.55	1.80	1		06/06/06	MPM
	1,2,4-Trichlorobenzene	ND	ug/L	0.50	1.70	1		06/06/06	MPM
1	1,2,4-Trimethylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
	1,2-Dibromo-3-chloropropane	ND	ug/L	0.35	1.17	1		06/06/06	MPM
•	1,2-Dibromoethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
_	1,2-Dichlorobenzene	ND	ug/L	0.75	2.50	1	S2H, S1H	06/06/06	MPM
Ĭ.	1,2-Dichloroethane	2.57	ug/L	0.10	0.50	1		06/06/06	MPM
ı	1,2-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	1,3,5-Trimethylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
	1,3-Dichlorobenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
	1,3-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	1,4-Dichlorobenzene	ND	ug/L	0.75	2.50	1		06/06/06	MPM
1	2,2-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	2-Chlorotoluene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
•	4-Chlorotoluene	ND	ug/L	0.20	0.67	1		06/06/06	MPM
	4-Isopropyltoluene	ND	ug/L •	0.20 ·	0.67	1		06/06/06	MPM
	Benzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
	Bromobenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	Bromochloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	Bromodichloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	Bromoform	ND	ug/L	0.20	0.67	1	•	06/06/06	MPM
	Bromomethane	ND	ug/L	0.15	0.50		CSL, S1L, S2L	06/06/06	MPM
	Butylbenzene	ND	ug/L	0.20	0.67	1	, , , , , , , , , , , ,	06/06/06	MPM
	Carbon Tetrachloride	ND	ug/L	0.20	0.67	1		06/06/06	MPM
	Chlorobenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	Chloroethane	ND	ug/L	0.60	2.00	1		06/06/06	MPM
	Chloroform	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	Chloromethane	ND	ug/L	0.20	0.67	1		06/06/06	MPM
Ì	cis-1,2-Dichloroethylene	2.55	ug/L	0.20	0.67	1		06/06/06	MPM
	cis-1,3-Dichloropropylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
_	• • •				- 100	•		00,00,00	1411 141

TELEPHONE FACSIMILE WEBSITE

800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

Sample ID: MW-4	e ID: MW-4 Matrix: Ground Water		Lab No. 0606003-04
		Dilution	Date

					Dilution		Date	
	Results	<u>Units</u>	<u>LOD</u>	LOQ	<u>Factor</u>	Qualifiers	Analyzed	Analyst
EPA 8260B								
1,1,1,2-Tetrachloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,1,1-Trichloroethane	ND	ug/L	0.20	0.67	1		06/06/06	MPM
1,1,2,2-Tetrachloroethane	ND	ug/L	0.10	0.50	I		06/06/06	MPM
1,1,2-Trichloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,1-Dichloroethane	ND	ug/L	0.15	0.50	1		06/06/06	MPM
1,1-Dichloroethylene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
1,1-Dichloropropylene	ND	ug/L	0.30	1.00	1		06/06/06	MPM
1,2,3-Trichlorobenzene	ND	ug/L	0.50	1.70	1		06/06/06	MPM
1,2,3-Trichloropropane	ND	ug/L	0.55	1.80	1		06/06/06	MPM
1,2,4-Trichlorobenzene	ND	ug/L	0.50	1.70	1		06/06/06	MPM
1,2,4-Trimethylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
1,2-Dibromo-3-chloropropane	ND	ug/L	0.35	1.17	1		06/06/06	MPM
1,2-Dibromoethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,2-Dichlorobenzene	ND	ug/L	0.75	2.50	1	S2H, S1H	06/06/06	MPM
1,2-Dichloroethane	0.30	ug/L	0.10	0.50	1	J	06/06/06	MPM
1,2-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,3,5-Trimethylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
1,3-Dichlorobenzene	ND	ug/L ·	0.15	0.50	1		06/06/06	MPM
1,3-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,4-Dichlorobenzene	ND	ug/L	0.75	2.50	1		06/06/06	MPM
2,2-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
2-Chlorotoluene	ND	ug/L	0.10	0.50	i		06/06/06	MPM
4-Chlorotoluene	ND	ug/L	0.20	0.67	I		06/06/06	MPM
4-Isopropyltoluene	ND	ug/L	0.20	0.67	I		06/06/06	MPM
Benzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
Bromobenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Bromochloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Bromodichloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Bromoform	ND	ug/L	0.20	0.67	1		06/06/06	MPM
Bromomethane	ND	ug/L	0.15	0.50	1	CSL, S1L, S2L	06/06/06	MPM
Butylbenzene	ND	ug/L	0.20	0.67	1	, ,	06/06/06	MPM
Carbon Tetrachloride	ND	ug/L	0.20	0.67	1		06/06/06	MPM
Chlorobenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Chloroethane	ND	ug/L	0.60	2.00	1		06/06/06	MPM
Chloroform	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Chloromethane	ND	ug/L	0.20	0.67	1		06/06/06	MPM
cis-1,2-Dichloroethylene	4.55	ug/L	0.20	0.67	1		06/06/06	MPM
cis-1,3-Dichloropropylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
· · · · · · · · · · · · · · · · · · ·		~					*	

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

PREPARED BY: JRS

Sample ID: MW-4		Matrix: Ground Water		Sar	Sample Date/Time: 05/30/06 17:15				0606003-04
		Results	Units	LOD	LOQ	Dilution Factor	ı <u>Qualifiers</u>	Date <u>Analyzed</u>	Analyst
	EPA 8260B Continued		011140	202	<u> </u>	23,0101	Quantitors	<u> </u>	<u> 211141431</u>
	Dibromochloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	Dibromomethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	Dichlorodifluoromethane	ND	ug/L	0.25	0.83	1	CSL	06/06/06	MPM
	Ethylbenzene	ND	ug/L	0.10	0.50	1	CCL	06/06/06	MPM
Ì	Hexachlorobutadiene	ND	ug/L	1.00	3.30	1		06/06/06	MPM
	Isopropylbenzene (Cumene)	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	m,p-Xylenes	ND	ug/L	0.40	1.30	1		06/06/06	MPM
	Methylene Chloride	ND	ug/L	0.40	1.30	1		06/06/06	MPM
	Methyl-tert-Butyl Ether	0.22	ug/L	0.10	0.50	1	J	06/06/06	MPM
	Naphthalene	ND	ug/L	1.00	3.30	1		06/06/06	MPM
	o-Xylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	Propylbenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	sec-Butylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
	Styrene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
2	tert-Butylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
į	Tetrachloroethene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	Toluene	ND	ug/L	0.40	1.30	1		06/06/06	MPM
	trans-1,2-Dichloroethylene	0.30	ug/L	0.10	0.50	1	J	06/06/06	MPM
	trans-1,3-Dichloropropylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	Trichloroethene	ND	ug/L	0.20	0.67	i		06/06/06	MPM
	Trichlorofluoromethane	ND	ug/L	0.20	0.67	1		06/06/06	MPM
	Vinyl chloride	ND	ug/L	0.15	0.50	1		06/06/06	MPM
ŀ	EPA 8310								
ļ	Prep Method: Method 3510C Liquid Extraction	By: KAM					Date Prepared:	06/02/06	
	1-Methylnaphthalene	ND	ug/L	0.080	0.260	1.01		06/06/06	LMP
	2-Methylnaphthalene	ND	ug/L	0.110	0.370	1.01		06/06/06	LMP
	Acenaphthene	ND	ug/L	0.060	0.200	1.01		06/06/06	LMP
	Acenaphthylene	ND	ug/L	0.060	0.200	1.01		06/06/06	LMP
	Anthracene	ND	ug/L	0.090	0.300	1.01		06/06/06	LMP
	Benzo(a)anthracene	ND	ug/L	0.100	0.330	1.01		06/06/06	LMP
	Benzo(a)pyrene	ND	ug/L ug/L	0.020	0.067	1.01	LCH	06/06/06	LMP
,	Benzo(b)fluoranthene	ND	ug/L	0.020	0.067	1.01	2011	06/06/06	LMP
	Benzo(g,h,i)perylene	ND	ug/L ug/L	0.020	0.200	1.01		06/06/06	LMP
Ļ	Benzo(k)fluoranthene	ND	ug/L	0.070	0.233	1.01		06/06/06	LMP
	. ,,		~B.D	0.070	0.200	1.01		00/00/00	LIVIE

ND

ND

ug/L .

ug/L

0.020

0.110

0.067

0.370

1.01

1.01

06/06/06

06/06/06

LMP

LMP

Dibenzo(a,h)anthracene

Chrysene

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

Sample ID: MW-4	Matrix: Ground Water	Sample Date/Time: 05/30/06 17:15	Lab No. 0606003-04
-----------------	----------------------	----------------------------------	--------------------

					Dilution		Date	
	Results	<u>Units</u>	LOD	LOQ	Factor	Qualifiers	Analyzed	<u>Analyst</u>
EPA 8310 Continued								
Prep Method: Method 3510C Liquid Extraction	By: KAM				· L	Date Prepared:	06/02/06	
Fluoranthene	ND	ug/L	0.120	0.400	1.01		06/06/06	LMP
Fluorene	ND	ug/L	0.120	0.400	1.01		06/06/06	LMP
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.120	0.400	1.01		06/06/06	LMP
Naphthalene	ND	ug/L	0.110	0.370	1.01		06/06/06	LMP
Phenanthrene	ND	ug/L	0.110	0.370	1.01		06/06/06	LMP
Pyrene	ND	ug/L	0.100	0.330	1.01		06/06/06	LMP

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

Sample ID: MW-5	Matrix: Ground Water	Sample Date/Time: 05/30/06	17:45	Lab No.	0606003-05

					Dilution	ı	Date	
	Results	<u>Units</u>	<u>LOD</u>	LOQ	<u>Factor</u>	Qualifiers	Analyzed	<u>Analyst</u>
EPA 8260B Continued								
Dibromochloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Dibromomethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Dichlorodifluoromethane	ND	ug/L	0.25	0.83	1	CSL	06/06/06	MPM
Ethylbenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Hexachlorobutadiene	ND	ug/L	1.00	3.30	1		06/06/06	MPM
Isopropylbenzene (Cumene)	ND	ug/L	0.10	0.50	1		06/06/06	MPM
m,p-Xylenes	ND	ug/L	0.40	1.30	i		06/06/06	MPM
Methylene Chloride	ND	ug/L	0.40	1.30	1		06/06/06	MPM
Methyl-tert-Butyl Ether	0.17	ug/L	0.10	0.50	1	J	06/06/06	MPM
Naphthalene	ND.	ug/L ·	1.00 .	3.30	1		06/06/06	MPM
o-Xylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Propylbenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
sec-Butylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
Styrene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
tert-Butylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
Tetrachloroethene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Toluene	ND	ug/L	0.40	1.30	1		06/06/06	MPM
trans-1,2-Dichloroethylene	0.46	ug/L	0.10	0.50	1	J	06/06/06	MPM
trans-1,3-Dichloropropylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Trichloroethene	ND	ug/L	0.20	0.67	1		06/06/06	MPM
Trichlorofluoromethane	ND	ug/L	0.20	0.67	1		06/06/06	MPM
Vinyl chloride	ND	ug/L	0.15	0.50	1		06/06/06	MPM
EPA 8310								
Prep Method: Method 3510C Liquid Extraction	By: JEG					Date Prepared:	06/05/06	
1-Methylnaphthalene	ND	ug/L	0.080	0.260	1		06/06/06	LMP
2-Methylnaphthalene	ND	ug/L	0.110	0.370	1		06/06/06	LMP
Acenaphthene	ND	ug/L	0.060	0.200	1		06/06/06	LMP
Acenaphthylene	ND	ug/L	0.060	0.200	1		06/06/06	LMP
Anthracene	ND	ug/L	0.090	0.300	1		06/06/06	LMP
Benzo(a)anthracene	ND	ug/L ·	0.100	0.330	1		06/06/06	LMP
Benzo(a)pyrene	ND	ug/L	0.020	0.067	1	LCH	06/06/06	LMP
Benzo(b)fluoranthene	ND	ug/L	0.020	0.067	1		06/06/06	LMP
Benzo(g,h,i)perylene	0.230	ug/L	0.060	0.200	1		06/06/06	LMP
Benzo(k)fluoranthene	ND	ug/L	0.070	0.233	1		06/06/06	LMP
Chrysene	ND	ug/L	0.020	0.067	1		06/06/06	LMP
Dibenzo(a,h)anthracene	ND	ug/L	0.110	0.370	1		06/06/06	LMP

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

PREPARED BY: JRS

Sample ID: MW-5 Matrix: Ground Water Sample Date/Time: 05/30/06 17:45 Lab No. 0606003-05

	Results	Units	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date Analyzed	Analyst
EPA 8310 Continued	<u>ixesuits</u>	Onts	<u>LOD</u>	LOO	ractor	Qualifiers	Anaryzeu	Allalyst
Prep Method: Method 3510C Liquid Extraction	By: JEG				, i	Date Prepared:	06/05/06	
Fluoranthene	ND	ug/L	0.120	0.400	i		06/06/06	LMP
Fluorene	ND	ug/L	0.120	0.400	1		06/06/06	LMP
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.120	0.400	1		06/06/06	LMP
Naphthalene	ND	ug/L	0.110	0.370	1		06/06/06	LMP
Phenanthrene	ND	ug/L	0.110	0.370	1		06/06/06	LMP
Pyrene	ND	ug/L	0.100	0.330	1		06/06/06	LMP

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

Sample ID: MW-5	Matrix: Ground Water	Sample Date/Time: 05/30/06 17:45	Lab No. 0606003-05
		D'' (1	Data

					Dilution	ı	Date	
	Results	<u>Units</u>	LOD	LOQ	Factor	Qualifiers	Analyzed	<u>Analyst</u>
EPA 8260B								
1,1,1,2-Tetrachloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,1,1-Trichloroethane	ND	ug/L	0.20	0.67	1		06/06/06	MPM
1,1,2,2-Tetrachloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,1,2-Trichloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,1-Dichloroethane	ND	ug/L	0.15	0.50	I		06/06/06	MPM
1,1-Dichloroethylene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
1,1-Dichloropropylene	ND	ug/L	0.30	1.00	1		06/06/06	MPM
1,2,3-Trichlorobenzene	ND	ug/L	0.50	1.70	1		06/06/06	MPM
1,2,3-Trichloropropane	ND	ug/L	0.55	1.80	1		06/06/06	MPM
1,2,4-Trichlorobenzene	ND	ug/L	0.50	1.70	I		06/06/06	MPM
1,2,4-Trimethylbenzene	ND	ug/L	0.15	0.50	ī		06/06/06	MPM
1,2-Dibromo-3-chloropropane	ND	ug/L ·	0.35 ·	1.17	1		06/06/06	MPM
1,2-Dibromoethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,2-Dichlorobenzene	ND	ug/L	0.75	2.50	I	S2H, S1H	06/06/06	MPM
1,2-Dichloroethane	0.29	ug/L	0.10	0.50	i	J	06/06/06	MPM
1,2-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,3,5-Trimethylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
1,3-Dichlorobenzene	ND	ug/L	0.15	0.50	i		06/06/06	MPM
1,3-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,4-Dichlorobenzene	ND	ug/L	0.75	2.50	1		06/06/06	MPM
2,2-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
2-Chlorotoluene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
4-Chlorotoluene	ND	ug/L	0.20	0.67	1		06/06/06	MPM
4-Isopropyltoluene	ND	ug/L	0.20	0.67	1		06/06/06	MPM
Benzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
Bromobenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Bromochloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Bromodichloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Bromoform	ND	ug/L	0.20	0.67	1		06/06/06	MPM
Bromomethane	ND	ug/L	0.15	0.50	1	CSL, S1L, S2L	06/06/06	MPM
Butylbenzene	ND	ug/L	0.20	0.67	1	, , ,	06/06/06	MPM
Carbon Tetrachloride	ND	ug/L	0.20	0.67	1		06/06/06	MPM
Chlorobenzene	ND	ug/L .	0.10	0.50	1		06/06/06	MPM
Chloroethane	ND	ug/L	0.60	2.00	1		06/06/06	MPM
Chloroform	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Chloromethane	ND	ug/L	0.20	0.67	1		06/06/06	MPM
cis-1,2-Dichloroethylene	5.98	ug/L	0.20	0.67	1		06/06/06	MPM
cis-1,3-Dichloropropylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
-		5			-			

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

Sample ID: PZ-5	Matrix: Gr	Ground Water Sample Date		nple Date/	Time: 05 /	30/06 18:15	Lab No.	0606003-06
	<u>Results</u>	<u>Units</u>	<u>LOD</u>	LOQ	Dilution <u>Factor</u>	<u>Qualifiers</u>	Date <u>Analyzed</u>	<u>Analyst</u>
EPA 8260B								
1,1,1,2-Tetrachloroethane	ND	ug/L	0.10	0.50	I		06/06/06	MPM
1,1,1-Trichloroethane	ND	ug/L	0.20	0.67	1		06/06/06	MPM
1,1,2,2-Tetrachloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,1,2-Trichloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,1-Dichloroethane	ND	ug/L	0.15	0.50	1		06/06/06	MPM
1,1-Dichloroethylene	ND	ug/L .	0.15 .	0.50	1		06/06/06	MPM
1,1-Dichloropropylene	ND	ug/L	0.30	1.00	1		06/06/06	MPM
1,2,3-Trichlorobenzene	ND	ug/L	0.50	1.70	I		06/06/06	MPM
1,2,3-Trichloropropane	ND	ug/L	0.55	1.80	1		06/06/06	MPM
1,2,4-Trichlorobenzene	ND	ug/L	0.50	1.70	1		06/06/06	MPM
1,2,4-Trimethylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
1,2-Dibromo-3-chloropropane	ND	ug/L	0.35	1.17	1		06/06/06	MPM
1,2-Dibromoethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,2-Dichlorobenzene	ND	ug/L	0.75	2.50	1	S2H, S1H	06/06/06	MPM
1,2-Dichloroethane	0.31	ug/L	0.10	0.50	1	J	06/06/06	MPM
1,2-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,3,5-Trimethylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
1,3-Dichlorobenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
1,3-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,4-Dichlorobenzene	ND	ug/L	0.75	2.50	1		06/06/06	MPM
2,2-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
2-Chlorotoluene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
4-Chlorotoluene	ND	ug/L	0.20	0.67	1		06/06/06	MPM
4-Isopropyltoluene	ND	ug/L	0.20	0.67	1		06/06/06	MPM
Benzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
Bromobenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Bromochloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Bromodichloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Bromoform	ND	ug/L	0.20	0.67	1		06/06/06	MPM
Bromomethane	ND	ug/L	0.15	0.50	1	CSL, S1L, S2L	06/06/06	MPM
Butylbenzene	ND	ug/L	0.20	0.67	1		06/06/06	MPM
Carbon Tetrachloride	ND	ug/L	0.20	0.67	ī		06/06/06	MPM
Chlorobenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Chloroethane	ND	ug/L	0.60	2.00	1		06/06/06	MPM
Chloroform	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Chloromethane	ND	ug/L	0.20	0.67	1		06/06/06	MPM
cis-1,2-Dichloroethylene	0.21	ug/L	0.20	0.67	1	J	06/06/06	MPM
cis-1,3-Dichloropropylene	ND	ug/L	0.10	0.50	1	-	06/06/06	MPM
		-						

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

PREPARED BY: JRS

Sample ID: PZ-5 Matrix: Ground Water Sample Date/Time: 05/30/06 18:15 Lab No. 0606003-06

	<u>Results</u>	<u>Units</u>	<u>LOD</u>	LOQ	Dilution <u>Factor</u>	ı <u>Qualifiers</u>	Date Analyzed	<u>Analyst</u>
EPA 8260B Continued								
Dibromochloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Dibromomethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Dichlorodifluoromethane	ND	ug/L	0.25	0.83	1	CSL	06/06/06	MPM
Ethylbenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Hexachlorobutadiene	ND	ug/L	1.00	3.30	1		06/06/06	MPM
Isopropylbenzene (Cumene)	ND	ug/L	0.10	0.50	1		06/06/06	MPM
m,p-Xylenes	ND	ug/L	0.40	1.30	1		06/06/06	MPM
Methylene Chloride	ND	ug/L	0.40	1.30	1		06/06/06	MPM
Methyl-tert-Butyl Ether	0.14	ug/L	0.10	0.50	I	J	06/06/06	MPM
Naphthalene	ND	ug/L	1.00	3.30	1		06/06/06	MPM
o-Xylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Propylbenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
sec-Butylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
Styrene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
tert-Butylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
Tetrachloroethene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Toluene	ND	ug/L	0.40	1.30	1		06/06/06	MPM
trans-1,2-Dichloroethylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
trans-1,3-Dichloropropylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Trichloroethene	ND	ug/L	0.20	0.67	1		06/06/06	MPM
Trichlorofluoromethane	ND	ug/L	0.20	0.67	1		06/06/06	MPM
Vinyl chloride	ND	ug/L	0.15	0.50	1		06/06/06	MPM
EPA 8310								
Prep Method: Method 3510C Liquid Extraction	By: JEG	•	•			Date Prepared:	06/05/06	
I-Methylnaphthalene	ND	ug/L	0.080	0.260	1		06/06/06	LMP
2-Methylnaphthalene	ND	ug/L	0.110	0.370	1		06/06/06	LMP
Acenaphthene	ND	ug/L	0.060	0.200	I		06/06/06	LMP
Acenaphthylene	ND	ug/L	0.060	0.200	1		06/06/06	LMP
Anthracene	ND	ug/L	0.090	0.300	1		06/06/06	LMP
Benzo(a)anthracene	ND	ug/L	0.100	0.330	1		06/06/06	LMP
Benzo(a)pyrene	ND	ug/L	0.020	0.067	1	LCH	06/06/06	LMP
Benzo(b)fluoranthene	ND	ug/L	0.020	0.067	1		06/06/06	LMP
Benzo(g,h,i)perylene	ND	ug/L	0.060	0.200	1		06/06/06	LMP
Benzo(k)fluoranthene	ND	ug/L	0.070	0.233	1		06/06/06	LMP
Chrysene	ND	ug/L	0.020	0.067	1		06/06/06	LMP
Dibenzo(a,h)anthracene	ND	ug/L	0.110	0.370	1		06/06/06	LMP

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

PREPARED BY: JRS

Sample ID: PZ-5 Matrix: Ground Water Sample Date/Time: 05/30/06 18:15 Lab No. 0606003-06

					Dilution		Date	
	Results	<u>Units</u>	LOD	<u>LOO</u>	<u>Factor</u>	Qualifiers	Analyzed	<u>Analyst</u>
EPA 8310 Continued								
Prep Method: Method 3510C Liquid Extraction	By: JEG				i	Date Prepared:	06/05/06	
Fluoranthene	ND	ug/L	0.120	0.400	1		06/06/06	LMP
Fluorene	ND	ug/L	0.120	0.400	1		06/06/06	LMP
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.120	0.400	1		06/06/06	LMP
Naphthalene	ND	ug/L	0.110	0.370	1		06/06/06	LMP
Phenanthrene	ND	ug/L	0.110	0.370	1		06/06/06	LMP
Pyrene	ND	ug/L	0.100	0.330	1		06/06/06	LMP

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

PREPARED BY: JRS

Sample ID: MW-6 Matrix: Ground Water Sample Date/Time: 05/30/06 16:45 Lab No. 0606003-07

					Dilution		Date	
	Results	<u>Units</u>	<u>LOD</u>	<u>LOO</u>	<u>Factor</u>	Qualifiers	<u>Analyzed</u>	<u>Analyst</u>
EPA 8260B	MD		0.10	0.50			06/04/04	
1,1,1,2-Tetrachloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,1,1-Trichloroethane	ND	ug/L	0.20	0.67	1		06/06/06	MPM
1,1,2,2-Tetrachloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,1,2-Trichloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,1-Dichloroethane	ND	ug/L	0.15	0.50	1		06/06/06	MPM
1,1-Dichloroethylene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
1,1-Dichloropropylene	ND	ug/L	0.30	1.00	1		06/06/06	MPM
1,2,3-Trichlorobenzene	ND	ug/L	0.50	1.70	1		06/06/06	MPM
1,2,3-Trichloropropane	ND	ug/L	0.55	1.80	1		06/06/06	MPM
1,2,4-Trichlorobenzene	ND	ug/L	0.50	1.70	1		06/06/06	MPM
1,2,4-Trimethylbenzene	ND	ug/L	0.15	0.50	I		06/06/06	MPM
1,2-Dibromo-3-chloropropane	ND	ug/L	0.35	1.17	1		06/06/06	MPM
1,2-Dibromoethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,2-Dichlorobenzene	ND	ug/L	0.75	2.50	1	S2H, S1H	06/06/06	MPM
1,2-Dichloroethane	0.67	ug/L	0.10	0.50	1		06/06/06	MPM
1,2-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,3,5-Trimethylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
1,3-Dichlorobenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
1,3-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,4-Dichlorobenzene	ND	ug/L	0.75	2.50	1		06/06/06	MPM
2,2-Dichloropropane	ND	ug/L •	0.10 ·	0.50	1		06/06/06	MPM
2-Chlorotoluene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
4-Chlorotoluene	ND	ug/L	0.20	0.67	1		06/06/06	MPM
4-Isopropyltoluene	ND	ug/L	0.20	0.67	1		06/06/06	MPM
Benzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
Bromobenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Bromochloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Bromodichloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Bromoform	ND	ug/L	0.20	0.67	t		06/06/06	MPM
Bromomethane	ND	ug/L	0.15	0.50	1	CSL, S1L, S2L	06/06/06	MPM
Butylbenzene	ND	ug/L	0.20	0.67	1		06/06/06	MPM
Carbon Tetrachloride	ND	ug/L	0.20	0.67	1		06/06/06	MPM
Chlorobenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Chloroethane	ND	ug/L	0.60	2.00	1		06/06/06	MPM
Chloroform	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Chloromethane	0.24	ug/L	0.20	0.67	1	J	06/06/06	MPM
cis-1,2-Dichloroethylene	0.81	ug/L	0.20	0.67	1		06/06/06	MPM
cis-1,3-Dichloropropylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

Sample ID: MW-6	Matrix: Gr	ound Water	San	nple Date/	Time: 05	/30/06 16:45	Lab No.	0606003-07
	<u>Results</u>	<u>Units</u>	<u>LOD</u>	LOQ	Dilutior <u>Factor</u>		Date <u>Analyzed</u>	<u>Analyst</u>
EPA 8260B Continued								
Dibromochloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Dibromomethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Dichlorodifluoromethane	ND	ug/L	0.25	0.83	1	CSL	06/06/06	MPM
Ethylbenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Hexachlorobutadiene	ND	ug/L	1.00	3.30	I		06/06/06	MPM
Isopropylbenzene (Cumene)	ND	ug/L	0.10	0.50	1		06/06/06	MPM
m,p-Xylenes	ND	ug/L	0.40	1.30	1		06/06/06	MPM
Methylene Chloride	ND	ug/L	0.40	1.30	1		06/06/06	MPM
Methyl-tert-Butyl Ether	0.21	ug/L	0.10	0.50	1	J	06/06/06	MPM
Naplithalene	ND	ug/L	1.00	3.30	1		06/06/06	MPM
o-Xylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Propylbenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
sec-Butylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
Styrene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
tert-Butylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
Tetrachloroethene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Toluene	ND	ug/L	0.40	1.30	1		06/06/06	MPM
trans-1,2-Dichloroethylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
trans-1,3-Dichloropropylene	ND	ug/L •	0.10	0.50	1		06/06/06	MPM
Trichloroethene	ND	ug/L	0.20	0.67	1		06/06/06	MPM
Trichlorofluoromethane	ND	ug/L	0.20	0.67	1		06/06/06	MPM
Vinyl chloride	ND	ug/L	0.15	0.50	1		06/06/06	MPM
EPA 8310								
Prep Method: Method 3510C Liquid Extraction	By: JEG					Date Prepared:	06/05/06	
1-Methylnaphthalene	ND	ug/L	0.080	0.260	1		06/06/06	LMP
2-Methylnaphthalene	ND	ug/L	0.110	0.370	1		06/06/06	LMP
Acenaphthene	ND .	ug/L	0.060	0.200	1		06/06/06	LMP
Acenaphthylene	ND	ug/L	0.060	0.200	1		06/06/06	LMP
Anthracene	ND	ug/L	0.090	0.300	1		06/06/06	LMP
Benzo(a)anthracene	ND	ug/L	0.100	0.330	1		06/06/06	LMP
Benzo(a)pyrene	ND	ug/L	0.020	0.067	1	LCH	06/06/06	LMP
Benzo(b)fluoranthene	ND	ug/L	0.020	0.067	1		06/06/06	LMP
Benzo(g,h,i)perylene	ND	ug/L	0.060	0.200	1		06/06/06	LMP
Benzo(k)fluoranthene	ND	ug/L	0.070	0.233	1		06/06/06	LMP
Chrysene	ND	ug/L	0.020	0.067	1		06/06/06	LMP
Dibenzo(a,h)anthracene	ND	ug/L	0.110	0.370	1		06/06/06	LMP

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

PREPARED BY: JRS

Sample ID: MW-6 Matrix: Ground Water Sample Date/Time: 05/30/06 16:45 Lab No. 0606003-07

EPA 8310 Continued	<u>Results</u>	<u>Units</u>	<u>LOD</u>	LOO	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	<u>Analyst</u>
Prep Method: Method 3510C Liquid Extraction	By: JEG				I	Date Prepared:	06/05/06	
Fluoranthene	ND	ug/L	0.120	0.400	1		06/06/06	LMP
Fluorene	ND	ug/L	0.120	0.400	1		06/06/06	LMP
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.120	0.400	1		06/06/06	LMP
Naphthalene	ND	ug/L	0.110	0.370	1		06/06/06	LMP
Phenanthrene	ND	ug/L	0.110	0.370	1		06/06/06	LMP
Pyrene	ND	ug/L	0.100	0.330	1		06/06/06	LMP

TELEPHONE FACSIMILE WEBSITE

800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

PREPARED BY: JRS

Sample ID: MW-7 Matrix: Ground Water Sample Date/Time: 05/30/06 16:15 Lab No. 0606003-08

					Dilution		Date	
	Results	<u>Units</u>	<u>LOD</u>	<u>LOO</u>	<u>Factor</u>	Qualifiers	<u>Analyzed</u>	<u>Analyst</u>
EPA 8260B	1.50							
1,1,1,2-Tetrachloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,1,1-Trichloroethane	ND	ug/L	0.20	0.67	1		06/06/06	MPM
1,1,2,2-Tetrachloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,1,2-Trichloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,1-Dichloroethane	ND	ug/L	0.15	0.50	1		06/06/06	MPM
1,1-Dichloroethylene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
1,1-Dichloropropylene	ND	ug/L	0.30	1.00	1		06/06/06	MPM
1,2,3-Trichlorobenzene	ND	ug/L	0.50	1.70	1		06/06/06	MPM
1,2,3-Trichloropropane	ND	ug/L	0.55	1.80	1		06/06/06	MPM
1,2,4-Trichlorobenzene	ND	ug/L	0.50	1.70	1		06/06/06	MPM
1,2,4-Trimethylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
1,2-Dibromo-3-chloropropane	ND	ug/L	0.35	1.17	1		06/06/06	MPM
1,2-Dibromoethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,2-Dichlorobenzene	ND	ug/L	0.75	2.50	1	S2H, S1H	06/06/06	MPM
1,2-Dichloroethane	0.53	ug/L ·	0.10 •	0.50	1		06/06/06	MPM
1,2-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,3,5-Trimethylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
1,3-Dichlorobenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
1,3-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,4-Dichlorobenzene	ND	ug/L	0.75	2.50	1		06/06/06	MPM
2,2-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
2-Chlorotoluene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
4-Chlorotoluene	ND	ug/L	0.20	0.67	1		06/06/06	MPM
4-Isopropyltoluene	ND	ug/L	0.20	0.67	1		06/06/06	MPM
Benzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
Bromobenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Bromochloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Bromodichloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Bromoform	ND	ug/L	0.20	0.67	1		06/06/06	MPM
Bromomethane	ND	ug/L	0.15	0.50	1	CSL, S1L, S2L	06/06/06	MPM
Butylbenzene	ND	ug/L	0.20	0.67	1	, , , , , , , , , , , , , , , , , , , ,	06/06/06	MPM
Carbon Tetrachloride	ND	ug/L	0.20	0.67	1		06/06/06	MPM
Chlorobenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Chloroethane	ND	ug/L	0.60	2.00	1		06/06/06	MPM
Chloroform	ND	ug/L	0.10	0.50	ı		06/06/06	MPM
Chloromethane	ND	ug/L .	0.20 .	0.67	1		06/06/06	MPM
cis-1,2-Dichloroethylene	1.38	ug/L . ug/L	0.20	0.67	1		06/06/06	MPM
cis-1,3-Dichloropropylene	ND	ug/L ug/L	0.20	0.50	1		06/06/06	
2.0 1,5 Dismoropropyrene	MD	ug/L	0.10	0.50	1		00/00/00	MPM

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

Sample ID: MW-7	Matrix: Ground Water	Sample Date/Time: 05/30/06 16:15	Lab No. 0606003-08
-----------------	----------------------	----------------------------------	--------------------

Results Units LOD LOQ Factor Qualifiers Analyzed Analyzed EPA 8260B Continued Dibromochloromethane ND ug/L 0.10 0.50 1 06/06/06 MPM Dibromomethane ND ug/L 0.10 0.50 1 06/06/06 MPM Dichlorodifluoromethane ND ug/L 0.25 0.83 1 CSL 06/06/06 MPM Ethylbenzene ND ug/L 0.10 0.50 1 06/06/06 MPM Hexachlorobutadiene ND ug/L 1.00 3.30 1 06/06/06 MPM
Dibromochloromethane ND ug/L 0.10 0.50 1 06/06/06 MPM Dibromomethane ND ug/L 0.10 0.50 1 06/06/06 MPM Dichlorodifluoromethane ND ug/L 0.25 0.83 1 CSL 06/06/06 MPM Ethylbenzene ND ug/L 0.10 0.50 1 06/06/06 MPM
Dibromomethane ND ug/L 0.10 0.50 1 06/06/06 MPM Dichlorodifluoromethane ND ug/L 0.25 0.83 1 CSL 06/06/06 MPM Ethylbenzene ND ug/L 0.10 0.50 1 06/06/06 MPM
Dichlorodifluoromethane ND ug/L 0.25 0.83 1 CSL 06/06/06 MPM Ethylbenzene ND ug/L 0.10 0.50 1 06/06/06 MPM
Ethylbenzene ND ug/L 0.10 0.50 1 06/06/06 MPM
•
Hexachlorobutadiene ND ug/L 1.00 3.30 1 06/06/06 MPM
Isopropylbenzene (Cumene) ND ug/L 0.10 0.50 1 06/06/06 MPM
m,p-Xylenes ND ug/L 0.40 1.30 1 06/06/06 MPM
Methylene Chloride ND ug/L 0.40 1.30 1 06/06/06 MPM
Methyl-tert-Butyl Ether 0.13 ug/L 0.10 0.50 1 J 06/06/06 MPM
Naphthalene ND ug/L 1.00 3.30 1 06/06/06 MPM
o-Xylene ND ug/L 0.10 0.50 1 06/06/06 MPM
Propylbenzene ND ug/L 0.10 0.50 1 06/06/06 MPM
sec-Butylbenzene ND ug/L 0.15 0.50 1 06/06/06 MPM
Styrene ND ug/L 0.10 0.50 1 06/06/06 MPM
tert-Butylbenzene ND ug/L 0.15 0.50 1 06/06/06 MPM
Tetrachloroethene ND ug/L 0.10 0.50 1 06/06/06 MPM
Toluene ND ug/L 0.40 1.30 1 06/06/06 MPM
trans-1,2-Dichloroethylene ND ug/L 0.10 0.50 1 06/06/06 MPM
trans-1,3-Dichloropropylene ND ug/L 0.10 0.50 1 06/06/06 MPM
Trichloroethene ND ug/L 0.20 0.67 1 06/06/06 MPM
Trichlorofluoromethane ND ug/L 0.20 0.67 1 06/06/06 MPM
Vinyl chloride ND ug/L 0.15 0.50 1 06/06/06 MPM
EPA 8310
Prep Method: Method 3510C Liquid Extraction By: JEG Date Prepared: 06/05/06
1-Methylnaphthalene ND ug/L 0.082 0.265 1.02 06/06/06 LMP
2-Methylnaphthalene ND ug/L 0.112 0.378 1.02 06/06/06 LMP
Acenaphthene ND ug/L 0.061 0.204 1.02 06/06/06 LMP
Acenaphthylene ND ug/L 0.061 0.204 1.02 06/06/06 LMP
Anthracene ND ug/L 0.092 0.306 1.02 06/06/06 LMP
Benzo(a)anthracene ND ug/L 0.102 0.337 1.02 06/06/06 LMP
Benzo(a)pyrene ND ug/L 0.020 0.068 1.02 LCH 06/06/06 LMP
Benzo(b)fluoranthene ND ug/L 0.020 0.068 1.02 06/06/06 LMP
Benzo(g,h,i)perylene ND ug/L 0.061 0.204 1.02 06/06/06 LMP
Benzo(k)fluoranthene ND ug/L 0.071 0.238 1.02 06/06/06 LMP
Chrysene ND ug/L 0.020 0.068 1.02 06/06/06 LMP
Dibenzo(a,h)anthracene ND ug/L 0.112 0.378 1.02 06/06/06 LMP

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton

REPORT NO.: 0606003

DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

PREPARED BY: JRS

Sample ID: MW-7 Matrix: Ground Water Sample Date/Time: 05/30/06 16:15 Lab No. 0606003-08

EPA 8310 Continued	Results	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	<u>Qualifiers</u>	Date <u>Analyzed</u>	<u>Analyst</u>
Prep Method: Method 3510C Liquid Extraction	By: JEG				L	ate Prepared:	06/05/06	
Fluoranthene	ND	ug/L	0.122	0.408	1.02		06/06/06	LMP
Fluorene	ND	ug/L	0.122	0.408	1.02		06/06/06	LMP
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.122	0.408	1.02		06/06/06	LMP
Naphthalene	ND	ug/L	0.112	0.378	1.02		06/06/06	LMP
Phenanthrene	ND	ug/L	0.112	0.378	1.02		06/06/06	LMP
Pyrene	ND	ug/L	0.102	0.337	1.02		06/06/06	LMP

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

PREPARED BY: JRS

Sample ID: MW-8 Matrix: Ground Water Sample Date/Time: 05/30/06 18:45 Lab No. 0606003-09

					Dilution		Date	
	Results	<u>Units</u>	LOD	LOO	Factor	<u>Qualifiers</u>	Analyzed	<u>Analyst</u>
EPA 8260B								· · · · · · · · · · · · · · · · · · ·
1,1,1,2-Tetrachloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,1,1-Trichloroethane	ND	ug/L	0.20	0.67	1		06/06/06	MPM
1,1,2,2-Tetrachloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,1,2-Trichloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,1-Dichloroethane	ND	ug/L	0.15	0.50	1		06/06/06	MPM
1,1-Dichloroethylene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
1,1-Dichloropropylene	ND	ug/L	0.30	1.00	1		06/06/06	MPM
1,2,3-Trichlorobenzene	ND	ug/L	0.50	1.70	1		06/06/06	MPM
1,2,3-Trichloropropane	ND	ug/L ·	0.55	1.80	1		06/06/06	MPM
1,2,4-Trichlorobenzene	ND	ug/L	0.50	1.70	1		06/06/06	MPM
1,2,4-Trimethylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
1,2-Dibromo-3-chloropropane	ND	ug/L	0.35	1.17	1		06/06/06	MPM
1,2-Dibromoethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,2-Dichlorobenzene	ND	ug/L	0.75	2.50	1	S2H, S1H	06/06/06	MPM
1,2-Dichloroethane	0.11	ug/L	0.10	0.50	1	J	06/06/06	MPM
1,2-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,3,5-Trimethylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
1,3-Dichlorobenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
1,3-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,4-Dichlorobenzene	ND	ug/L	0.75	2.50	1		06/06/06	MPM
2,2-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
2-Chlorotoluene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
4-Chlorotoluene	ND	ug/L	0.20	0.67	1		06/06/06	MPM
4-Isopropyltoluene	ND	ug/L	0.20	0.67	1		06/06/06	MPM
Benzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
Bromobenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Bromochloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Bromodichloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Bromoform	ND	ug/L	0.20	0.67	1		06/06/06	MPM
Bromomethane	ND	ug/L ·	0.15	0.50	1	CSL, S1L, S2L	06/06/06	MPM
Butylbenzene	ND	ug/L	0.20	0.67	1		06/06/06	MPM
Carbon Tetrachloride	ND	ug/L	0.20	0.67	1		06/06/06	MPM
Chlorobenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Chloroethane	ND	ug/L	0.60	2.00	1		06/06/06	MPM
Chloroform	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Chloromethane	0.28	ug/L	0.20	0.67	1	J	06/06/06	MPM
cis-1,2-Dichloroethylene	8.83	ug/L	0.20	0.67	1		06/06/06	MPM
cis-1,3-Dichloropropylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

Sample ID: MW-8	e ID: MW-8 Matrix: Ground Water Sample Date/Time: 05/30/06 18:45				/30/06 18:45	Lab No.	0606003-09	
					Dilution	1	Date	
Th. 0000 0	Results	<u>Units</u>	<u>LOD</u>	<u>LOO</u>	<u>Factor</u>	Qualifiers	Analyzed	<u>Analyst</u>
EPA 8260B Continued								
Dibromochloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Dibromomethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Dichlorodifluoromethane	ND	ug/L	0.25	0.83	I	CSL	06/06/06	MPM
Ethylbenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Hexachlorobutadiene	ND	ug/L	1.00	3.30	1		06/06/06	MPM
Isopropylbenzene (Cumene)	ND	ug/L	0.10	0.50	1		06/06/06	MPM
m,p-Xylenes	ND	ug/L	0.40	1.30	1		06/06/06	MPM
Methylene Chloride	ND	ug/L	0.40	1.30	1		06/06/06	MPM
Methyl-tert-Butyl Ether	0.19	ug/L	0.10	0.50	1	J	06/06/06	MPM
Naphthalene	ND	ug/L	1.00	3.30	I		06/06/06	MPM
o-Xylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Propylbenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
sec-Butylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
Styrene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
tert-Butylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
Tetrachloroethene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Toluene	ND	ug/L	0.40	1.30	1		06/06/06	MPM
trans-1,2-Dichloroethylene	0.22	ug/L	0.10	0.50	1	J	06/06/06	MPM
trans-1,3-Dichloropropylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Trichloroethene	2.66	ug/L	0.20	0.67	1		06/06/06	MPM
Trichlorofluoromethane	ND	ug/L	0.20	0.67	1		06/06/06	MPM
Vinyl chloride	0.16	ug/L	0.15	0.50	1	J	06/06/06	MPM
EPA 8310								
Prep Method: Method 3510C Liquid Extraction	By: JEG					Date Prepared:	06/05/06	
1-Methylnaphthalene	ND	ug/L	0.080	0.260	1		06/06/06	LMP
2-Methylnaphthalene	ND	ug/L	0.110	0.370	1		06/06/06	LMP
Acenaphthene	ND	ug/L	0.060	0.200	1		06/06/06	LMP
Acenaphthylene	ND	ug/L	0.060	0.200	1		06/06/06	LMP
Anthracene	ND	ug/L	0.090	0.300	1		06/06/06	LMP
Benzo(a)anthracene	ND	ug/L	0.100	0.330	1		06/06/06	LMP
Benzo(a)pyrene	ND	ug/L	0.020	0.067	1	LCH	06/06/06	LMP
Benzo(b)fluoranthene	ND	ug/L	0.020	0.067	1		06/06/06	LMP
Benzo(g,h,i)perylene	ND	ug/L	0.060	0.200	1		06/06/06	LMP
Benzo(k)fluoranthene	ND	ug/L	0.070	0.233	1		06/06/06	LMP
Chrysene	ND	ug/L	0.020	0.067	i		06/06/06	LMP
Dibenzo(a,h)anthracene	ND	ug/L	0.110	0.370	1		06/06/06	LMP

TELEPHONE FACSIMILE WEBSITE

800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

PREPARED BY: JRS

Sample ID: MW-8 Matrix: Ground Water Sample Date/Time: 05/30/06 18:45 Lab No. 0606003-09

	Results	<u>Units</u>	<u>LOD</u>	<u>LOQ</u>	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	<u>Analyst</u>
EPA 8310 Continued								
Prep Method: Method 3510C Liquid Extraction	By: JEG					Date Prepared:	06/05/06	
Fluoranthene	ND	ug/L	0.120	0.400	1		06/06/06	LMP
Fluorene	ND	ug/L	0.120	0.400	1		06/06/06	LMP
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.120	0.400	1		06/06/06	LMP
Naphthalene	ND	ug/L	0.110	0.370	1		06/06/06	LMP
Phenanthrene	ND	ug/L	0.110	0.370	1		06/06/06	LMP
Pyrene	ND	ug/L	0.100	0.330	1		06/06/06	LMP

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

Sample ID: MW-9	Matrix: Ground Water	Sample Date/Time: 05/30/06 14:20	Lab No. 0606003-10
-----------------	----------------------	----------------------------------	--------------------

Results Units Un
1,1,1,2-Tetrachloroethane
1,1-Trichloroethane
1,1,2,2-Tetrachloroethane
1,1,2-Trichloroethane
1,1-Dichloroethane
1.1-Dichloroethylene
1,1-Dichloropropylene
1,2,3-Trichlorobenzene
1,2,3-Trichloropropane
1,2,4-Trichlorobenzene ND ug/L 0.50 1.70 1 06/06/06 MPM 1,2,4-Trimethylbenzene ND ug/L 0.15 0.50 1 06/06/06 MPM 1,2-Dibromo-3-chloropropane ND ug/L 0.35 1.17 1 06/06/06 MPM 1,2-Dibromo-denane ND ug/L 0.75 2.50 1 S1H, S2H 06/06/06 MPM 1,2-Dichlorobenzene ND ug/L 0.10 0.50 1 06/06/06 MPM 1,2-Dichlorobenzene ND ug/L 0.10 0.50 1 06/06/06 MPM 1,2-Dichloropenane ND ug/L 0.10 0.50 1 06/06/06 MPM 1,3-Frimethylbenzene ND ug/L 0.10 0.50 1 06/06/06 MPM 1,3-Frimethylbenzene ND ug/L 0.15 0.50 1 06/06/06 MPM 1,3-Dichloropenane ND ug/L 0.15 0.50 1 06/06/06 MPM 1,3-Dichloropenane ND ug/L 0.15 0.50 1 06/06/06 MPM 1,3-Dichloropenane ND ug/L 0.15 0.50 1 06/06/06 MPM 1,3-Dichloropenane ND ug/L 0.10 0.50 1 06/06/06 MPM 1,4-Dichlorobenzene ND ug/L 0.10 0.50 1 06/06/06 MPM 1,4-Dichloropenane ND ug/L 0.10 0.50 1 06/06/06 MPM 1,4-Dichloropenane ND ug/L 0.10 0.50 1 06/06/06 MPM 1,4-Dichloropenane ND ug/L 0.10 0.50 1 06/06/06 MPM 1,4-Dichloropenane ND ug/L 0.10 0.50 1 06/06/06 MPM 1,4-Dichloropenane ND ug/L 0.10 0.50 1 06/06/06 MPM 1,4-Dichloropenane ND ug/L 0.10 0.50 1 06/06/06 MPM 1,4-Dichloropenane ND ug/L 0.10 0.50 1 06/06/06 MPM 1,4-Dichloropenane ND ug/L 0.10 0.50 1 06/06/06 MPM 1,4-Dichloropenane ND ug/L 0.10 0.50 1 06/06/06 MPM 1,4-Dichloropenane ND ug/L 0.10 0.50 1 06/06/06 MPM 1,4-Dichloropenane ND ug/L 0.10 0.50 1 06/06/06 MPM 1,4-Dichloropenane ND ug/L 0.10 0.50 1 06/06/06 MPM 1,4-Dichloropenane ND ug/L 0.10 0.50 1 06/06/06 MPM 1,4-Dichloropenane ND ug/L 0.10 0.50 1 06/06/06 MPM 1,4-Dichloropenane ND ug/L 0.10 0.50 1 06/06/06 MPM 1,4-Dichloropenane ND ug/L 0.10
1,2,4-Trimethylbenzene ND ug/L 0.15 0.50 1 06/06/06 MPM 1,2-Dibromo-3-chloropropane ND ug/L 0.35 1.17 1 06/06/06 MPM 1,2-Dibromoethane ND ug/L 0.10 0.50 1 SIH, S2H 06/06/06 MPM 1,2-Dichlorobenzene ND ug/L 0.10 0.50 1 SIH, S2H 06/06/06 MPM 1,2-Dichlorobenzene ND ug/L 0.10 0.50 1 06/06/06 MPM 1,2-Dichloropopane ND ug/L 0.10 0.50 1 06/06/06 MPM 1,3-Dichlorobenzene ND ug/L 0.15 0.50 1 06/06/06 MPM 1,3-Dichloropopane ND ug/L 0.10 0.50 1 06/06/06 MPM 1,4-Dichlorobenzene ND ug/L 0.10 0.50 1 06/06/06 MPM 2,2-Dichloropropane ND ug/L 0.10
1,2-Dibromo-3-chloropropane ND
1,2-Dibromoethane
1,2-Dichlorobenzene ND
ND
1,2-Dichloropropane ND
1,3,5-Trimethylbenzene ND
1,3-Dichlorobenzene ND ug/L 0.15 0.50 1 06/06/06 MPM 1,3-Dichloropropane ND ug/L 0.10 0.50 1 06/06/06 MPM 1,4-Dichlorobenzene ND ug/L 0.75 2.50 1 06/06/06 MPM 2,2-Dichloropropane ND ug/L 0.10 0.50 1 06/06/06 MPM 2-Chlorotoluene ND ug/L 0.10 0.50 1 06/06/06 MPM 4-Chlorotoluene ND ug/L 0.20 0.67 1 06/06/06 MPM 4-Isopropyltoluene ND ug/L 0.20 0.67 1 06/06/06 MPM Benzene ND ug/L 0.15 0.50 1 06/06/06 MPM Bromochloromethane ND ug/L 0.10 0.50 1 06/06/06 MPM Bromoform ND ug/L 0.10 0.50 1 06/06/06 MPM </td
1,3-Dichloropropane ND ug/L 0.10 0.50 1 06/06/06 MPM 1,4-Dichlorobenzene ND ug/L 0.75 2.50 1 06/06/06 MPM 2,2-Dichloropropane ND ug/L 0.10 0.50 1 06/06/06 MPM 2-Chlorotoluene ND ug/L 0.10 0.50 1 06/06/06 MPM 4-Chlorotoluene ND ug/L 0.20 0.67 1 06/06/06 MPM 4-Isopropyltoluene ND ug/L 0.20 0.67 1 06/06/06 MPM Benzene ND ug/L 0.15 0.50 1 06/06/06 MPM Bromobenzene ND ug/L 0.10 0.50 1 06/06/06 MPM Bromodichloromethane ND ug/L 0.10 0.50 1 06/06/06 MPM Bromoform ND ug/L 0.10 0.50 1 06/06/06 MPM
1,4-Dichlorobenzene ND ug/L 0.75 2.50 1 06/06/06 MPM 2,2-Dichloropropane ND ug/L 0.10 0.50 1 06/06/06 MPM 2-Chlorotoluene ND ug/L 0.10 0.50 1 06/06/06 MPM 4-Chlorotoluene ND ug/L 0.20 0.67 1 06/06/06 MPM 4-Isopropyltoluene ND ug/L 0.20 0.67 1 06/06/06 MPM Benzene ND ug/L 0.15 0.50 1 06/06/06 MPM Bromobenzene ND ug/L 0.10 0.50 1 06/06/06 MPM Bromochloromethane ND ug/L 0.10 0.50 1 06/06/06 MPM Bromoform ND ug/L 0.10 0.50 1 06/06/06 MPM Bromomethane ND ug/L 0.20 0.67 1 06/06/06 MPM
2,2-Dichloropropane ND ug/L 0.10 0.50 1 06/06/06 MPM 2-Chlorotoluene ND ug/L 0.10 0.50 1 06/06/06 MPM 4-Chlorotoluene ND ug/L 0.20 0.67 1 06/06/06 MPM 4-Isopropyltoluene ND ug/L 0.20 0.67 1 06/06/06 MPM Benzene ND ug/L 0.15 0.50 1 06/06/06 MPM Bromobenzene ND ug/L 0.10 0.50 1 06/06/06 MPM Bromochloromethane ND ug/L 0.10 0.50 1 06/06/06 MPM Bromoform ND ug/L 0.10 0.50 1 06/06/06 MPM Bromomethane ND ug/L 0.10 0.50 1 06/06/06 MPM Bromomethane ND ug/L 0.20 0.67 1 CSL, SIL, S2L 06/06/06 MPM </td
2-Chlorotoluene ND ug/L 0.10 0.50 1 06/06/06 MPM 4-Chlorotoluene ND ug/L 0.20 0.67 1 06/06/06 MPM 4-Isopropyltoluene ND ug/L 0.20 0.67 1 06/06/06 MPM Benzene ND ug/L 0.15 0.50 1 06/06/06 MPM Bromobenzene ND ug/L 0.10 0.50 1 06/06/06 MPM Bromochloromethane ND ug/L 0.10 0.50 1 06/06/06 MPM Bromoform ND ug/L 0.10 0.50 1 06/06/06 MPM Bromomethane ND ug/L 0.20 0.67 1 06/06/06 MPM Bromomethane ND ug/L 0.20 0.67 1 CSL, S1L, S2L 06/06/06 MPM
4-Chlorotoluene ND ug/L 0.20 0.67 1 06/06/06 MPM 4-Isopropyltoluene ND ug/L 0.20 0.67 1 06/06/06 MPM Benzene ND ug/L 0.15 0.50 1 06/06/06 MPM Bromobenzene ND ug/L 0.10 0.50 1 06/06/06 MPM Bromochloromethane ND ug/L 0.10 0.50 1 06/06/06 MPM Bromoform ND ug/L 0.10 0.50 1 06/06/06 MPM Bromomethane ND ug/L 0.10 0.50 1 06/06/06 MPM Bromomethane ND ug/L 0.20 0.67 1 CSL, S1L, S2L 06/06/06 MPM
4-Isopropyltoluene ND ug/L 0.20 0.67 1 06/06/06 MPM Benzene ND ug/L 0.15 0.50 1 06/06/06 MPM Bromobenzene ND ug/L 0.10 0.50 1 06/06/06 MPM Bromochloromethane ND ug/L 0.10 0.50 1 06/06/06 MPM Bromoform ND ug/L 0.10 0.50 1 06/06/06 MPM Bromomethane ND ug/L 0.20 0.67 1 06/06/06 MPM Bromomethane ND ug/L 0.15 0.50 1 CSL, S1L, S2L 06/06/06 MPM
Benzene ND ug/L 0.15 0.50 1 06/06/06 MPM Bromobenzene ND ug/L 0.10 0.50 1 06/06/06 MPM Bromochloromethane ND ug/L 0.10 0.50 1 06/06/06 MPM Bromoform ND ug/L 0.10 0.50 1 06/06/06 MPM Bromomethane ND ug/L 0.20 0.67 1 CSL, S1L, S2L 06/06/06 MPM
Bromobenzene ND ug/L 0.10 0.50 1 06/06/06 MPM Bromochloromethane ND ug/L 0.10 0.50 1 06/06/06 MPM Bromodichloromethane ND ug/L 0.10 0.50 1 06/06/06 MPM Bromoform ND ug/L 0.20 0.67 1 06/06/06 MPM Bromomethane ND ug/L 0.15 0.50 1 CSL, S1L, S2L 06/06/06 MPM
Bromochloromethane ND ug/L 0.10 0.50 1 06/06/06 MPM Bromodichloromethane ND ug/L 0.10 0.50 1 06/06/06 MPM Bromoform ND ug/L 0.20 0.67 1 06/06/06 MPM Bromomethane ND ug/L 0.15 0.50 1 CSL, S1L, S2L 06/06/06 MPM
Bromodichloromethane ND ug/L 0.10 0.50 1 06/06/06 MPM Bromoform ND ug/L 0.20 0.67 1 06/06/06 MPM Bromomethane ND ug/L 0.15 0.50 1 CSL, S1L, S2L 06/06/06 MPM
Bromoform ND ug/L 0.20 0.67 1 06/06/06 MPM Bromomethane ND ug/L 0.15 0.50 1 CSL, S1L, S2L 06/06/06 MPM
Bromomethane ND ug/L 0.15 0.50 1 CSL, S1L, S2L 06/06/06 MPM
Butylbenzene ND ug/L 0.20 0.67 1 06/06/06 MPM
Carbon Tetrachloride ND ug/L 0.20 0.67 1 06/06/06 MPM
Chlorobenzene ND ug/L 0.10 0.50 1 06/06/06 MPM
Chloroethane ND ug/L 0.60 2.00 1 06/06/06 MPM
Chloroform ND ug/L 0.10 0.50 1 06/06/06 MPM
Chloromethane 0.28 ug/L 0.20 0.67 1 J 06/06/06 MPM
cis-1,2-Dichloroethylene ND ug/L 0.20 0.67 1 06/06/06 MPM
cis-1,3-Dichloropropylene ND ug/L 0.10 0.50 1 06/06/06 MPM

TELEPHONE **FACSIMILE** WEBSITE

800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

PREPARED BY: JRS

	Sample ID: MW-9	Matrix: Ground Water		Sar	nple Date/	Time: 05	Lab No. 0606003-10		
						Dilution	1	Date	
		Results	<u>Units</u>	<u>LOD</u>	<u>LOO</u>	Factor	Qualifiers	Analyzed	<u>Analyst</u>
	EPA 8260B Continued								
	Dibromochloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	Dibromomethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	Dichlorodifluoromethane	ND	ug/L	0.25	0.83	1	CSL	06/06/06	MPM
	Ethylbenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	Hexachlorobutadiene	ND	ug/L	1.00	3.30	1		06/06/06	MPM
	Isopropylbenzene (Cumene)	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	m,p-Xylenes	ND	ug/L	0.40	1.30	I		06/06/06	MPM
ı	Methylene Chloride	ND	ug/L	0.40	1.30	1		06/06/06	MPM
ĺ	Methyl-tert-Butyl Ether	0.30	ug/L	0.10	0.50	1	J	06/06/06	MPM
•	Naphthalene	ND	ug/L	1.00	3.30	1		06/06/06	MPM
	o-Xylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	Propylbenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	sec-Butylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
	Styrene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	tert-Butylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
	Tetrachloroethene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	Toluene	ND	ug/L	0.40	1.30	1		06/06/06	MPM
	trans-1,2-Dichloroethylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	trans-1,3-Dichloropropylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	Trichloroethene	ND	ug/L	0.20	0.67	1		06/06/06	MPM
	Trichlorofluoromethane	ND	ug/L	0.20	0.67	1		06/06/06	MPM
	Vinyl chloride	ND	ug/L	0.15	0.50	1		06/06/06	MPM
	EPA 8310								
ĺ	Prep Method: Method 3510C Liquid Extraction	By: JEG					Date Prepared:	06/05/06	
	1-Methylnaphthalene	ND	ug/L	0.080	0.260	1	-	06/06/06	LMP
	2-Methylnaphthalene	ND	ug/L	0.110	0.370	1		06/06/06	LMP
	Acenaphthene	ND	ug/L	0.060	0.200	1		06/06/06	LMP
	Acenaphthylene	ND	ug/L	0.060	0.200	1		06/06/06	LMP
	Anthracene	ND	ug/L	0.090	0.300	1		06/06/06	LMP
	Benzo(a)anthracene	ND	ug/L	0.100	0.330	1		06/06/06	LMP
	Benzo(a)pyrene	ND	ug/L	0.020	0.067	ī	LCH	06/06/06	LMP
	Benzo(b)fluoranthene	ND	ug/L	0.020	0.067	1		06/06/06	LMP
	Benzo(g,h,i)perylene	ND	ug/L	0.060	0.200	1		06/06/06	LMP
	Benzo(k)fluoranthene	ND	ug/L	0.070	0.233	1		06/06/06	LMP
	Chrysene	ND	ug/L	0.020	0.067	1		06/06/06	LMP
	Dibenzo(a,h)anthracene	ND	ug/L	0.110	0.370	1		06/06/06	LMP
1					0.5.0	-		00,00,00	Livii

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

Sample ID: MW-9	Matrix: Gr	ound Water	Sam	ple Date/	Time: 05/3 (Lab No. 0606003-10		
	<u>Results</u>	<u>Units</u> .	<u>LOD</u> .	LOQ	Dilution <u>Factor</u>	Qualifiers	Date Analyzed	Analyst
EPA 8310 Continued								
Prep Method: Method 3510C Liquid Extraction	By: JEG				D	ate Prepared:	06/05/06	
Fluoranthene	ND	ug/L	0.120	0.400	1		06/06/06	LMP
Fluorene	ND	ug/L	0.120	0.400	1		06/06/06	LMP
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.120	0.400	1		06/06/06	LMP
Naphthalene	ND	ug/L	0.110	0.370	1		06/06/06	LMP
Phenanthrene	ND	ug/L	0.110	0.370	1		06/06/06	LMP
Pyrene	ND	ug/L	0.100	0.330	1		06/06/06	LMP

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

PREPARED BY: JRS

Sample ID: B-5 Matrix: Ground Water Sample Date/Time: 05/30/06 12:50 Lab No. 0606003-11

_						Dilution		Date	
		Results	<u>Units</u>	<u>LOD</u>	LOQ	Factor	Qualifiers	Analyzed	<u>Analyst</u>
	EPA 8260B								
	1,1,1,2-Tetrachloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	1,1,1-Trichloroethane	ND	ug/L	0.20	0.67	1		06/06/06	MPM
	1,1,2,2-Tetrachloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	1,1,2-Trichloroethane	0.58	ug/L	0.10	0.50	1		06/06/06	MPM
	1,1-Dichloroethane	ND	ug/L	0.15	0.50	1		06/06/06	MPM
	1,1-Dichloroethylene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
	1,1-Dichloropropylene	ND	ug/L	0.30	1.00	1		06/06/06	MPM
	1,2,3-Trichlorobenzene	ND	ug/L	0.50	1.70	1		06/06/06	MPM
ļ	1,2,3-Trichloropropane	ND	ug/L	0.55	1.80	1		06/06/06	MPM
7	1,2,4-Trichlorobenzene	ND	ug/L	0.50	1.70	1		06/06/06	MPM
_	1,2,4-Trimethylbenzene	0.22	ug/L	0.15	0.50	I	J	06/06/06	MPM
	1,2-Dibromo-3-chloropropane	ND	ug/L	0.35	1.17	1		06/06/06	MPM
, i	1,2-Dibromoethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	1,2-Dichlorobenzene	ND	ug/L	0.75	2.50	1	S1H, S2H	06/06/06	MPM
	1,2-Dichloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	1,2-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	1,3,5-Trimethylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
	1,3-Dichlorobenzene	ND	ug/L .	0.15 .	0.50	i		06/06/06	MPM
	1,3-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	1,4-Dichlorobenzene	ND	ug/L	0.75	2.50	1		06/06/06	MPM
	2,2-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	2-Chlorotoluene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
57	4-Chlorotoluene	ND	ug/L	0.20	0.67	1		06/06/06	MPM
	4-Isopropyltoluene	ND	ug/L	0.20	0.67	1		06/06/06	MPM
	Benzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
	Bromobenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
4	Bromochloromethane	ND	ug/L	0.10	0.50	I		06/06/06	MPM
N	Bromodichloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
,	Bromoform	ND	ug/L	0.20	0.67	1		06/06/06	MPM
خــ	Bromomethane	ND	ug/L	0.15	0.50	1	CSL, S1L, S2L	06/06/06	MPM
	Butylbenzene	ND	ug/L	0.20	0.67	1		06/06/06	MPM
•	Carbon Tetrachloride	ND	ug/L	0.20	0.67	1		06/06/06	MPM
	Chlorobenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	Chloroethane	ND	ug/L	0.60	2.00	I		06/06/06	MPM
	Chloroform	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	Chloromethane	0.24	ug/L	0.20	0.67	t	J	06/06/06	MPM
	cis-1,2-Dichloroethylene	ND	ug/L	0.20	0.67	1		06/06/06	MPM
	cis-1,3-Dichloropropylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

	Sample ID: B-5	Matrix: Gr	ound Water	Sample Date/Time: 05/30/06 12:50		Lab No.	0606003-11		
Ĥ		Results	<u>Units</u>	LOD	LOQ	Dilution Factor	ı Qualifiers	Date <u>Analyzed</u>	<u>A</u> nalyst
	EPA 8260B Continued								
•	Dibromochloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	Dibromomethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	Dichlorodifluoromethane	ND	ug/L	0.25	0.83	1	CSL, CSH	06/06/06	MPM
•	Ethylbenzene	ND	ug/L	0.10	0.50	1	,	06/06/06	MPM
	Hexachlorobutadiene	ND	ug/L	1.00	3.30	1		06/06/06	MPM
	Isopropylbenzene (Cumene)	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	m,p-Xylenes	ND	ug/L	0.40	1.30	1		06/06/06	MPM
	Methylene Chloride	ND	ug/L	0.40	1.30	1		06/06/06	MPM
V	Methyl-tert-Butyl Ether	0.66	ug/L	0.10	0.50	1		06/06/06	MPM
フ	Naphthalene	ND	ug/L	1.00	3.30	1		06/06/06	MPM
	o-Xylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
-	Propylbenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
l	sec-Butylbenzene	ND	ug/L	0.15	0.50	ī		06/06/06	MPM
	Styrene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
U	tert-Butylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
	Tetrachloroethene	ND	ug/L .	0.10	0.50	1		06/06/06	MPM
	Toluene	ND	ug/L	0.40	1.30	İ		06/06/06	MPM
	trans-1,2-Dichloroethylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	trans-1,3-Dichloropropylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	Trichloroethene	ND	ug/L	0.20	0.67	1		06/06/06	MPM
	Trichlorofluoromethane	ND	ug/L	0.20	0.67	1		06/06/06	MPM
•	Vinyl chloride	ND	ug/L	0.15	0.50	1		06/06/06	MPM
Î	EPA 8310								
	Prep Method: Method 3510C Liquid Extraction	By: JEG					Date Prepared:	06/05/06	
	1-Methylnaphthalene	ND	ug/L	0.080	0.260	1		06/07/06	LMP
	2-Methylnaphthalene	ND	ug/L	0.110	0.370	1		06/07/06	LMP
	Acenaphthene	ND	ug/L	0.060	0.200	1		06/07/06	LMP
	Acenaphthylene	ND	ug/L	0.060	0.200	1		06/07/06	LMP
	Anthracene	ND	ug/L	0.090	0.300	1		06/07/06	LMP
	Benzo(a)anthracene	ND	ug/L	0.100	0.330	1		06/07/06	LMP
	Benzo(a)pyrene	ND	ug/L	0.020	0.067	1	LCH	06/07/06	LMP
1	Benzo(b)fluoranthene	ND	ug/L	0.020	0.067	1		06/07/06	LMP
ı	Benzo(g,h,i)perylene	ND	ug/L	0.060	0.200	1		06/07/06	LMP
	Benzo(k)fluoranthene	ND	ug/L	0.070	0.233	1		06/07/06	LMP
	Chrysene	ND	ug/L	0.020	0.067	1		06/07/06	LMP
	Dibenzo(a,h)anthracene	ND	ug/L ·	0.110 •	0.370	1		06/07/06	LMP

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

PREPARED BY: JRS

Sample ID: B-5 Matrix: Ground Water Sample Date/Time: 05/30/06 12:50 Lab No. 0606003-11

EPA 8310 Continued	Results	<u>Units</u>	<u>LOD</u>	LOO	Dilution <u>Factor</u>	<u>Qualifiers</u>	Date <u>Analyzed</u>	<u>Analyst</u>
Prep Method: Method 3510C Liquid Extraction	By: JEG					Date Prepared:	06/05/06	
Fluoranthene	ND	ug/L	0.120	0.400	1		06/07/06	LMP
Fluorene	ND	ug/L	0.120	0.400	1		06/07/06	LMP
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.120	0.400	1		06/07/06	LMP
Naphthalene	ND	ug/L	0.110	0.370	1		06/07/06	LMP
Phenanthrene	ND	ug/L	0.110	0.370	1		06/07/06	LMP
Pyrene	ND	ug/L	0.100	0.330	1		06/07/06	LMP

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

Sample ID: B-5A	Matrix: Ground Water	Sample Date/Time: 05/30/06 13:10	Lab No. 0606003-12

					Dilution		Date	
`	Results	<u>Units</u>	LOD	LOO	Factor	Qualifiers	Analyzed	Analyst
EPA 8260B								
1,1,1,2-Tetrachloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,1,1-Trichloroethane	ND	ug/L	0.20	0.67	i		06/06/06	MPM
1,1,2,2-Tetrachloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,1,2-Trichloroethane	0.21	ug/L	0.10	0.50	1 1	Ī	06/06/06	MPM
1,1-Dichloroethane	ND	ug/L	0.15	0.50	1		06/06/06	MPM
1,1-Dichloroethylene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
1,1-Dichloropropylene	ND	ug/L	0.30	1.00	1		06/06/06	MPM
1,2,3-Trichlorobenzene	ND	ug/L	0.50	1.70	1		06/06/06	MPM
1,2,3-Trichloropropane	ND	ug/L	0.55	1.80	1		06/06/06	MPM
1,2,4-Trichlorobenzene	ND	ug/L	0.50	1.70	1		06/06/06	MPM
1,2,4-Trimethylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
1,2-Dibromo-3-chloropropane	ND	ug/L	0.35	1.17	1		06/06/06	MPM
1,2-Dibromoethane	ND	ug/L ·	0.10	0.50	1		06/06/06	MPM
1,2-Dichlorobenzene	ND	ug/L	0.75	2.50	1 5	S1H, S2H	06/06/06	MPM
1,2-Dichloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,2-Dichloropropane	ND	ug/L	0.10	0.50	i		06/06/06	MPM
1,3,5-Trimethylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
1,3-Dichlorobenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
1,3-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,4-Dichlorobenzene	ND	ug/L	0.75	2.50	1		06/06/06	MPM
2,2-Dichloropropane	ND	ug/L	0.10	0.50	I		06/06/06	MPM
2-Chlorotoluene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
4-Chlorotoluene	ND	ug/L	0.20	0.67	1		06/06/06	MPM
4-Isopropyltoluene	ND	ug/L	0.20	0.67	1		06/06/06	MPM
Benzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
Bromobenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Bromochloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Bromodichloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Bromoform	ND	ug/L	0.20	0.67	i		06/06/06	MPM
Bromomethane	ND	ug/L	0.15	0.50	1 (CSL, S1L, S2L	06/06/06	MPM
Butylbenzene	ND	ug/L	0.20	0.67	1		06/06/06	MPM
Carbon Tetrachloride	ND	ug/L	0.20	0.67	1		06/06/06	MPM
Chlorobenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Chloroethane	ND	ug/L *	0.60	2.00	1		06/06/06	MPM
Chloroform	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Chloromethane	ND	ug/L	0.20	0.67	1		06/06/06	MPM
cis-1,2-Dichloroethylene	ND	ug/L	0.20	0.67	1		06/06/06	MPM
cis-1,3-Dichloropropylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM

Matrix: Ground Water

TELEPHONE FACSIMILE WEBSITE

Sample Date/Time: 05/30/06 13:10

800-338-7226 715-355-3221 www.enviroscan.usfilter.com

Lab No. 0606003-12

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

Sample ID: B-5A

PROJECT NO.: ANERUB0502.00 Chilton

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

PREPARED BY: JRS

•								
EDA 92COD Continued	Results	<u>Units</u>	<u>LOD</u>	LOQ	Dilution <u>Factor</u>	<u>Qualifiers</u>	Date <u>Analyzed</u>	<u>Analyst</u>
EPA 8260B Continued	3.00		0.40					
Dibromochloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Dibromomethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Dichlorodifluoromethane	ND	ug/L	0.25	0.83	1	CSL, CSH	06/06/06	MPM
Ethylbenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Hexachlorobutadiene	ND	ug/L	1.00	3.30	1		06/06/06	MPM
Isopropylbenzene (Cumene)	ND	ug/L	0.10	0.50	1		06/06/06	MPM
m,p-Xylenes	ND	ug/L	0.40	1.30	1		06/06/06	MPM
Methylene Chloride	ND	ug/L	0.40	1.30	1		06/06/06	MPM
Methyl-tert-Butyl Ether	0.36	ug/L	0.10	0.50	1	J	06/06/06	MPM
Naphthalene	ND	ug/L .	1.00 .	3.30	1		06/06/06	MPM
o-Xylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Propylbenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
sec-Butylbenzene	ND.	ug/L	0.15	0.50	1		06/06/06	MPM
Styrene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
tert-Butylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
Tetrachloroethene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Toluene	ND	ug/L	0.40	1.30	1		06/06/06	MPM
trans-1,2-Dichloroethylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
trans-1,3-Dichloropropylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Trichloroethene	ND	ug/L	0.20	0.67	1		06/06/06	MPM
Trichlorofluoromethane	ND	ug/L	0.20	0.67	i		06/06/06	MPM
Vinyl chloride	ND	ug/L	0.15	0.50	1		06/06/06	MPM
EPA 8310								
Prep Method: Method 3510C Liquid Extraction	By: JEG					Date Prepared:	06/05/06	
1-Methylnaphthalene	ND	ug/L	0.080	0.260	1		06/07/06	LMP
2-Methylnaphthalene	ND	ug/L	0.110	0.370	1		06/07/06	LMP
Acenaphthene	ND	ug/L	0.060	0.200	1		06/07/06	LMP
Acenaphthylene	ND	ug/L	0.060	0.200	1		06/07/06	LMP
Anthracene	ND	ug/L	0.090	0.300	1		06/07/06	LMP
Benzo(a)anthracene	ND	ug/L •	0.100 .	0.330	1		06/07/06	LMP
Benzo(a)pyrene	ND	ug/L	0.020	0.067	1	LCH	06/07/06	LMP
Benzo(b)fluoranthene	ND	ug/L	0.020	0.067	1		06/07/06	LMP

0.060

0.070

0.020

0.110

ug/L

ug/L

ug/L

ug/L

0.200

0.233

0.067

0.370

1

1

1

06/07/06

06/07/06

06/07/06

06/07/06

LMP

LMP

LMP

LMP

ND

ND

ND

ND

Chrysene

Benzo(g,h,i)perylene

Benzo(k)fluoranthene

Dibenzo(a,h)anthracene

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

Sample ID: B-5A	Matrix: Ground Water	Sample Date/Time: 05/30/06 13:10	Lab No. 0606003-12
------------------------	----------------------	----------------------------------	--------------------

•		Results	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	<u>Analyst</u>
1	EPA 8310 Continued								
	Prep Method: Method 3510C Liquid Extraction	By: JEG				L	Date Prepared:	06/05/06	
	Fluoranthene	ND	ug/L	0.120	0.400	1		06/07/06	LMP
	Fluorene	ND	ug/L	0.120	0.400	1		06/07/06	LMP
	Indeno(1,2,3-cd)pyrene	ND	ug/L	0.120	0.400	i		06/07/06	LMP
·	Naphthalene	ND	ug/L	0.110	0.370	i		06/07/06	LMP
k	Phenanthrene	ND	ug/L	0.110	0.370	I		06/07/06	LMP
	Pyrene	ND	ug/L	0.100	0.330	I		06/07/06	LMP

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

PREPARED BY: JRS

Sample ID: B-6 Matrix: Ground Water Sample Date/Time: 05/30/06 12:05 Lab No. 0606003-13

						Dilution		Date	
E		Results	<u>Units</u>	<u>LOD</u>	LOQ	Factor	Qualifiers	Analyzed	<u>Analyst</u>
	EPA 8260B								
	1,1,1,2-Tetrachloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	1,1,1-Trichloroethane	ND	ug/L	0.20	0.67	1		06/06/06	MPM
	1,1,2,2-Tetrachloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	1,1,2-Trichloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	1,1-Dichloroethane	ND	ug/L	0.15	0.50	1		06/06/06	MPM
1	1,1-Dichloroethylene	ND	ug/L •	0.15 .	0.50	1		06/06/06	MPM
,	1,1-Dichloropropylene	ND	ug/L	0.30	1.00	1		06/06/06	MPM
د	1,2,3-Trichlorobenzene	ND	ug/L	0.50	1.70	1		06/06/06	MPM
3	1,2,3-Trichloropropane	ND	ug/L	0.55	1.80	i		06/06/06	MPM
	1,2,4-Trichlorobenzene	ND	ug/L	0.50	1.70	I		06/06/06	MPM
د.	1,2,4-Trimethylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
	1,2-Dibromo-3-chloropropane	ND	ug/L	0.35	1.17	1		06/06/06	MPM
Ţ	1,2-Dibromoethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	1,2-Dichlorobenzene	ND	ug/L	0.75	2.50	1	S1H, S2H	06/06/06	MPM
	1,2-Dichloroethane	0.20	ug/L	0.10	0.50	1	J	06/06/06	MPM
	1,2-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
•	1,3,5-Trimethylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
	1,3-Dichlorobenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
	1,3-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	1,4-Dichlorobenzene	ND	ug/L	0.75	2.50	1		06/06/06	MPM
	2,2-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	2-Chlorotoluene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
,	4-Chlorotoluene	ND	ug/L	0.20	0.67	1		06/06/06	MPM
	4-Isopropyltoluene	ND	ug/L	0.20	0.67	1		06/06/06	MPM
	Benzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
-	Bromobenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
ے	Bromochloromethane	0.20	ug/L .	0.10 .	0.50	1	J	06/06/06	MPM
	Bromodichloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Ç	Bromoform	ND	ug/L	0.20	0.67	1		06/06/06	MPM
,	Bromomethane	ND	ug/L	0.15	0.50	1	CSL, S1L, S2L	06/06/06	MPM
	Butylbenzene	ND	ug/L	0.20	0.67	1		06/06/06	MPM
•	Carbon Tetrachloride	ND	ug/L	0.20	0.67	1		06/06/06	MPM
~	Chlorobenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	Chloroethane	ND	ug/L	0.60	2.00	1		06/06/06	MPM
J,	Chloroform	ND	ug/L	0.10	0.50	1		06/06/06	MPM
-	Chloromethane	ND	ug/L	0.20	0.67	1		06/06/06	MPM
î	cis-1,2-Dichloroethylene	0.34	ug/L	0.20	0.67	1	J	06/06/06	MPM
	cis-1,3-Dichloropropylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
- 7									

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

Sample ID: B-6	Matrix: Ground Water	Sample Date/Time: 05/30/06 12:05	Lab No. 0606003-13
----------------	----------------------	----------------------------------	--------------------

_						Dilution		Date	
K		Results	<u>Units</u>	<u>LOD</u>	<u>LOQ</u>	<u>Factor</u>	Qualifiers	Analyzed	<u>Analyst</u>
-	EPA 8260B Continued								
	Dibromochloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	Dibromomethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
-	Dichlorodifluoromethane	ND	ug/L	0.25	0.83	1	CSL, CSH	06/06/06	MPM
	Ethylbenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	Hexachlorobutadiene	ND	ug/L	1.00	3.30	1		06/06/06	MPM
	Isopropylbenzene (Cumene)	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	m,p-Xylenes	ND	ug/L	0.40	1.30	1		06/06/06	MPM
1	Methylene Chloride	ND	ug/L	0.40	1.30	1		06/06/06	MPM
	Methyl-tert-Butyl Ether	0.33	ug/L	0.10	0.50	1	J	06/06/06	MPM
	Naphthalene	ND	ug/L	1.00	3.30	1		06/06/06	MPM
	o-Xylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	Propylbenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	sec-Butylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
	Styrene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	tert-Butylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
J	Tetrachloroethene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
ت	Toluene	ND	ug/L	0.40	1.30	1		06/06/06	MPM
\blacksquare_i	trans-1,2-Dichloroethylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	trans-1,3-Dichloropropylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
`	Trichloroethene	ND	ug/L	0.20	0.67	1		06/06/06	MPM
	Trichlorofluoromethane	ND	ug/L	0.20	0.67	1		06/06/06	MPM
	Vinyl chloride	ND	ug/L	0.15	0.50	1		06/06/06	MPM
	EPA 8310								
	Prep Method: Method 3510C Liquid Extraction	By: JEG	·	•			Date Prepared:	06/05/06	
	1-Methylnaphthalene	ND	ug/L	0.080	0.260	1		06/07/06	LMP
	2-Methylnaphthalene	ND	ug/L	0.110	0.370	1		06/07/06	LMP
	Acenaphthene	ND	ug/L	0.060	0.200	1		06/07/06	LMP
	Acenaphthylene	ND	ug/L	0.060	0.200	1		06/07/06	LMP
	Anthracene	ND	ug/L	0.090	0.300	1		06/07/06	LMP
	Benzo(a)anthracene	ND	ug/L	0.100	0.330	1		06/07/06	LMP
	Benzo(a)pyrene	ND	ug/L	0.020	0.067	1	LCH	06/07/06	LMP
	Benzo(b)fluoranthene	ND	ug/L	0.020	0.067	1		06/07/06	LMP
	Benzo(g,h,i)perylene	ND	ug/L	0.060	0.200	1		06/07/06	LMP
-	Benzo(k)fluoranthene	ND	ug/L	0.070	0.233	1		06/07/06	LMP
	Chrysene	ND	ug/L	0.020	0.067	1		06/07/06	LMP
	Dibenzo(a,h)anthracene	ND	ug/L	0.110	0.370	1		06/07/06	LMP

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

PREPARED BY: JRS

Sample ID: B-6 Matrix: Ground Water Sample Date/Time: 05/30/06 12:05 Lab No. 0606003-13

Ì	EPA 8310 Continued	Results	<u>Units</u>	<u>LOD</u>	LOQ	Dilution <u>Factor</u>	<u>Qualifiers</u>	Date <u>Analyzed</u>	<u>Analyst</u>
	Prep Method: Method 3510C Liquid Extraction	By: JEG				1	Date Prepared:	06/05/06	
	Fluoranthene	ND	ug/L	0.120	0.400	1	-	06/07/06	LMP
	Fluorene	ND	ug/L	0.120	0.400	1		06/07/06	LMP
	Indeno(1,2,3-cd)pyrene	ND	ug/L	0.120	0.400	1		06/07/06	LMP
	Naphthalene	ND	ug/L	0.110	0.370	1		06/07/06	LMP
)	Phenanthrene	ND	ug/L	0.110	0.370	1		06/07/06	LMP
	Pyrene	ND	ug/L	0.100	0.330	1		06/07/06	LMP

TELEPHONE FACSIMILE WEBSITE

800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

Sample ID: B-9	Matrix: Ground Water	Sample Date/Time: 05/30/06 11:45	Lab No. 0606003-14
-----------------------	----------------------	----------------------------------	--------------------

-					Dilution		Date	
	Results	<u>Units</u>	LOD	LOQ	<u>Factor</u>	Qualifiers	Analyzed	<u>Analyst</u>
<u>EPA 8260B</u>		•	•					
1,1,1,2-Tetrachloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,1,1-Trichloroethane	ND	ug/L	0.20	0.67	1		06/06/06	MPM
1,1,2,2-Tetrachloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,1,2-Trichloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,1-Dichloroethane	ND	ug/L	0.15	0.50	1		06/06/06	MPM
1,1-Dichloroethylene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
1,1-Dichloropropylene	ND	ug/L	0.30	1.00	1		06/06/06	MPM
1,2,3-Trichlorobenzene	ND	ug/L	0.50	1.70	1		06/06/06	MPM
1,2,3-Trichloropropane	ND	ug/L	0.55	1.80	1		06/06/06	MPM
1,2,4-Trichlorobenzene	ND	ug/L	0.50	1.70	1		06/06/06	MPM
1,2,4-Trimethylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
1,2-Dibromo-3-chloropropane	ND	ug/L	0.35	1.17	1		06/06/06	MPM
1,2-Dibromoethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,2-Dichlorobenzene	ND	ug/L	0.75	2.50	1	S1H, S2H	06/06/06	MPM
1,2-Dichloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,2-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,3,5-Trimethylbenzene	ND	ug/L	0.15	0.50	I		06/06/06	MPM
1,3-Dichlorobenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
- 1,3-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,4-Dichlorobenzene	ND	ug/L	0.75	2.50	1		06/06/06	MPM
2,2-Dichloropropane	ND	ug/L •	0.10	0.50	1		06/06/06	MPM
2-Chlorotoluene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
4-Chlorotoluene	ND	ug/L	0.20	0.67	1		06/06/06	MPM
4-Isopropyltoluene	ND	ug/L	0.20	0.67	1		06/06/06	MPM
_ Benzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
Bromobenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Bromochloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Bromodichloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Bromoform	ND	ug/L	0.20	0.67	1		06/06/06	MPM
Bromomethane	ND	ug/L	0.15	0.50	1	CSL, S1L, S2L	06/06/06	MPM
Butylbenzene	ND	ug/L	0.20	0.67	1		06/06/06	MPM
Carbon Tetrachloride	ND	ug/L	0.20	0.67	1		06/06/06	MPM
Chlorobenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Chloroethane	ND	ug/L	0.60	2.00	1		06/06/06	MPM
Chloroform	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Chloromethane	0.49	ug/L	0.20	0.67	1	J	06/06/06	MPM
cis-1,2-Dichloroethylene	ND	ug/L	0.20	0.67	1		06/06/06	MPM
cis-1,3-Dichloropropylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

-	Sample ID: B-9	Matrix: Gr	ound Water	Sar	nple Date/	Time: 05	/30/06 11:45	Lab No. 0606003-14	
		<u>Results</u>	<u>Units</u>	<u>LOD</u>	<u>LOQ</u>	Dilution <u>Factor</u>		Date <u>Analyzed</u>	<u>Analyst</u>
2	EPA 8260B Continued								
_	Dibromochloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	Dibromomethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
l	Dichlorodifluoromethane	ND	ug/L	0.25	0.83	1	CSL, CSH	06/06/06	MPM
	Ethylbenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
l	Hexachlorobutadiene	ND	ug/L	1.00	3.30	1		06/06/06	MPM
	Isopropylbenzene (Cumene)	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	m,p-Xylenes	ND	ug/L	0.40	1.30	1		06/06/06	MPM
	Methylene Chloride	ND	ug/L	0.40	1.30	1		06/06/06	MPM
	Methyl-tert-Butyl Ether	1.49	ug/L	0.10	0.50	1		06/06/06	MPM
	Naphthalene	ND	ug/L	1.00	3.30	1		06/06/06	MPM
	o-Xylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	Propylbenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	sec-Butylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
	Styrene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	tert-Butylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
7	Tetrachloroethene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Ľ	Toluene	ND	ug/L	0.40	1.30	1		06/06/06	MPM
ľ	trans-1,2-Dichloroethylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Į,	trans-1,3-Dichloropropylene	ND	ug/L ·	0.10 ·	0.50	1		06/06/06	MPM
_	Trichloroethene	ND	ug/L	0.20	0.67	1		06/06/06	MPM
ı	Trichlorofluoromethane	ND	ug/L	0.20	0.67	1		06/06/06	MPM
	Vinyl chloride	ND	ug/L	0.15	0.50	1		06/06/06	MPM
	EPA 8310								
	Prep Method: Method 3510C Liquid Extraction	By: JEG					Date Prepared:	06/05/06	
	1-Methylnaphthalene	ND	ug/L	0.080	0.260	1		06/07/06	LMP
	2-Methylnaphthalene	ND	ug/L	0.110	0.370	1		06/07/06	LMP
	Acenaphthene	ND	ug/L	0.060	0.200	1		06/07/06	LMP
	Acenaphthylene	ND	ug/L	0.060	0.200	1		06/07/06	LMP
	Anthracene	ND	ug/L	0.090	0.300	1		06/07/06	LMP
ŀ	Benzo(a)anthracene	ND	ug/L	0.100	0.330	1		06/07/06	LMP
	Benzo(a)pyrene	ND	ug/L	0.020	0.067	1	LCH	06/07/06	LMP
Í	Benzo(b)fluoranthene	ND	ug/L	0.020	0.067	1		06/07/06	LMP
	Benzo(g,h,i)perylene	ND	ug/L	0.060	0.200	1		06/07/06	LMP
•	Benzo(k)fluoranthene	ND	ug/L	0.070	0.233	1		06/07/06	LMP
P	Chrysene	0.090	ug/L	0.020	0.067	1		06/07/06	LMP
	Dibenzo(a,h)anthracene	ND	ug/L	0.110	0.370	1		06/07/06	LMP

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

PREPARED BY: JRS

Sample ID: B-9 Matrix: Ground Water Sample Date/Time: 05/30/06 11:45 Lab No. 0606003-14

						Dilution		Date	
		Results	<u>Units</u>	<u>LOD</u>	LOO	Factor	Qualifiers	Analyzed	<u>Analyst</u>
))	EPA 8310 Continued								
	Prep Method: Method 3510C Liquid Extraction	By: JEG				L	Date Prepared:	06/05/06	
	Fluoranthene	0.157	ug/L	0.120	0.400	- 1 J	f	06/07/06	LMP
l	Fluorene	ND	ug/L	0.120	0.400	1		06/07/06	LMP
	Indeno(1,2,3-cd)pyrene	ND	ug/L	0.120	0.400	1		06/07/06	LMP
	Naphthalene	ND	ug/L	0.110	0.370	1		06/07/06	LMP
	Phenanthrene	ND	ug/L	0.110	0.370	1		06/07/06	LMP
	Pyrene	ND	ug/L	0.100	0.330	1		06/07/06	LMP

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

PREPARED BY: JRS

Sample ID: B-11 Matrix: Ground Water Sample Date/Time: 05/30/06 11:05 Lab No. 0606003-15

_					Dilution		Date	
	Results	<u>Units</u>	LOD	<u>LOO</u>	<u>Factor</u>	Qualifiers	Analyzed	<u>Analyst</u>
EPA 8260B								
1,1,1,2-Tetrachloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,1,1-Trichloroethane	ND	ug/L	0.20	0.67	1		06/06/06	MPM
1,1,2,2-Tetrachloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,1,2-Trichloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,1-Dichloroethane	ND	ug/L	0.15	0.50	1		06/06/06	MPM
1,1-Dichloroethylene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
1,1-Dichloropropylene	ND	ug/L	0.30	1.00	1		06/06/06	MPM
1,2,3-Trichlorobenzene	ND	ug/L	0.50	1.70	1		06/06/06	MPM
1,2,3-Trichloropropane	ND	ug/L	0.55	1.80	1		06/06/06	MPM
1,2,4-Trichlorobenzene	ND	ug/L	0.50	1.70	1		06/06/06	MPM
1,2,4-Trimethylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
1,2-Dibromo-3-chloropropane	ND	ug/L	0.35	1.17	i		06/06/06	MPM
1,2-Dibromoethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,2-Dichlorobenzene	ND	ug/L	0.75	2.50	1	S1H, S2H	06/06/06	MPM
1,2-Dichloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,2-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,3,5-Trimethylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
1,3-Dichlorobenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
1,3-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,4-Dichlorobenzene	ND	ug/L	0.75	2.50	1		06/06/06	MPM
2,2-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
2-Chlorotoluene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
4-Chlorotoluene	ND	ug/L	0.20	0.67	1		06/06/06	MPM
4-Isopropyltoluene	ND	ug/L	0.20	0.67	1		06/06/06	MPM
Benzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
Bromobenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Bromochloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Bromodichloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Bromoform	ND	ug/L	0.20	0.67	1		06/06/06	MPM
Bromomethane	ND	ug/L	0.15	0.50	1	CSL, S1L, S2L	06/06/06	MPM
Butylbenzene	ND	ug/L	0.20	0.67	1		06/06/06	MPM
Carbon Tetrachloride	ND	ug/L	0.20	0.67	1		06/06/06	MPM
Chlorobenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Chloroethane	ND	ug/L	0.60	2.00	1		06/06/06	MPM
Chloroform	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Chloromethane	ND	ug/L	0.20	0.67	i		06/06/06	MPM
cis-1,2-Dichloroethylene	0.95	ug/L	0.20	0.67	1		06/06/06	MPM
cis-1,3-Dichloropropylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

Sample ID: B-11 Matrix: Ground Water Sample Date/Time: 05/30/06 11:05 Lab No	0606003-15
--	------------

					Dilution	l	Date	
	Results	<u>Units</u>	<u>LOD</u>	<u>LOO</u>	<u>Factor</u>	Qualifiers	Analyzed	<u>Analyst</u>
EPA 8260B Continued								
Dibromochloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Dibromomethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Dichlorodifluoromethane	ND	ug/L	0.25	0.83	1	CSL, CSH	06/06/06	MPM
Ethylbenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Hexachlorobutadiene	ND	ug/L	1.00	3.30	1		06/06/06	MPM
Isopropylbenzene (Cumene)	ND	ug/L	0.10	0.50	1		06/06/06	MPM
m,p-Xylenes	ND	ug/L	0.40	1.30	1		06/06/06	MPM
Methylene Chloride	ND	ug/L	0.40	1.30	1		06/06/06	MPM
Methyl-tert-Butyl Ether	0.56	ug/L	0.10	0.50	1		06/06/06	MPM
Naphthalene	ND	ug/L	1.00	3.30	I		06/06/06	MPM
o-Xylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Propylbenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
sec-Butylbenzene	ND	ug/L '	0.15	0.50	1		06/06/06	MPM
Styrene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
tert-Butylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
Tetrachloroethene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Toluene	ND	ug/L	0.40	1.30	1		06/06/06	MPM
trans-1,2-Dichloroethylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
trans-1,3-Dichloropropylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Trichloroethene	0.69	ug/L	0.20	0.67	1		06/06/06	MPM
Trichlorofluoromethane	ND	ug/L	0.20	0.67	I		06/06/06	MPM
Vinyl chloride	ND	ug/L	0.15	0.50	i		06/06/06	MPM
EPA 8310								
Prep Method: Method 3510C Liquid Extraction	By: JEG					Date Prepared:	06/05/06	
I-Methylnaphthalene	ND	ug/L	0.080	0.260	1		06/07/06	LMP
2-Methylnaphthalene	ND	ug/L	0.110	0.370	1		06/07/06	LMP
Acenaphthene	ND	ug/L	0.060	0.200	1		06/07/06	LMP
Acenaphthylene	ND	ug/L	0.060	0.200	1		06/07/06	LMP
Anthracene	ND	ug/L	0.090	0.300	1		06/07/06	LMP
Benzo(a)anthracene	ND	ug/L	0.100	0.330	1		06/07/06	LMP
Benzo(a)pyrene	ND	ug/L	0.020	0.067	1	LCH	06/07/06	LMP
Benzo(b)fluoranthene	ND	ug/L	0.020	0.067	1		06/07/06	LMP
Benzo(g,h,i)perylene	ND	ug/L	0.060	0.200	1		06/07/06	LMP
Benzo(k)fluoranthene	ND	ug/L	0.070	0.233	1		06/07/06	LMP
Chrysene	ND	ug/L	0.020	0.067	1		06/07/06	LMP
Dibenzo(a,h)anthracene	ND	ug/L	0.110	0.370	1		06/07/06	LMP
	. 120	-5/ 2	0.410	5.510	•		00/01/00	D1111

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

PREPARED BY: JRS

Sample ID: B-11 Matrix: Ground Water Sample Date/Time: 05/30/06 11:05 Lab No. 0606003-15

						Dilution		Date	
		Results	<u>Units</u>	<u>LOD</u>	<u>LOQ</u>	Factor	Qualifiers	Analyzed	<u>Analyst</u>
)	EPA 8310 Continued								
	Prep Method: Method 3510C Liquid Extraction	By: JEG				I	Date Prepared:	06/05/06	
ľ	Fluoranthene	ND	ug/L	0.120	0.400	1		06/07/06	LMP
į	Fluorene	ND	ug/L	0.120	0.400	1		06/07/06	LMP
	Indeno(1,2,3-cd)pyrene	ND	ug/L	0.120	0.400	1		06/07/06	LMP
	Naphthalene	ND	ug/L	0.110	0.370	1		06/07/06	LMP
1	Phenanthrene	ND	ug/L	0.110	0.370	1		06/07/06	LMP
	Pyrene	ND	ug/L	0.100	0.330	1		06/07/06	LMP

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

PREPARED BY: JRS

Sample ID: B-12 Matrix: Ground Water Sample Date/Time: 05/30/06 10:35 Lab No. 0606003-16

						Dilution		Date	
l		Results	<u>Units</u>	<u>LOD</u>	LOO	<u>Factor</u>	Qualifiers	Analyzed	<u>Analyst</u>
,	A 8260B								
	1,2-Tetrachloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,1,	,1-Trichloroethane	ND	ug/L	0.20	0.67	1		06/06/06	MPM
1,1,	2,2-Tetrachloroethane	ND-	ug/L	0.10	0.50	1		06/06/06	MPM
	2-Trichloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,1-	-Dichloroethane	ND	ug/L	0.15	0.50	1		06/06/06	MPM
1,1-	-Dichloroethylene	0.15	ug/L	0.15	0.50	1	J	06/06/06	MPM
1,1-	-Dichloropropylene	ND	ug/L	0.30	1.00	1		06/06/06	MPM
1,2,	3-Trichlorobenzene	ND	ug/L	0.50	1.70	1		06/06/06	MPM
1,2,	3-Trichloropropane	ND	ug/L	0.55	1.80	1		06/06/06	MPM
1,2,	4-Trichlorobenzene	ND	ug/L	0.50	1.70	1		06/06/06	MPM
1,2,	4-Trimethylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
1,2-	-Dibromo-3-chloropropane	ND	ug/L	0.35	1.17	1		06/06/06	MPM
1,2-	-Dibromoethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,2-	-Dichlorobenzene	ND	ug/L	0.75	2.50	1	S1H, S2H	06/06/06	MPM
1,2-	-Dichloroethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,2-	-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,3,	5-Trimethylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
1,3-	-Dichlorobenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
1,3-	-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
1,4-	-Dichlorobenzene	ND	ug/L	0.75	2.50	1		06/06/06	MPM
2,2-	-Dichloropropane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
2-C	hlorotoluene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
4-C	hlorotoluene	ND	ug/L	0.20	0.67	1		06/06/06	MPM
4-Is	opropyltoluene	ND	ug/L	0.20	0.67	1		06/06/06	MPM
Ben	izene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
Bro	mobenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Bro	mochloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Bro	modichloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Bro	moform	ND	ug/L	0.20	0.67	1		06/06/06	MPM
Bro	momethane	ND	ug/L	0.15	0.50	1	CSL, S1L, S2L	06/06/06	MPM
But	ylbenzene	ND	ug/L	0.20	0.67	1		06/06/06	MPM
Carl	bon Tetrachloride	ND	ug/L	0.20	0.67	1		06/06/06	MPM
Chl	orobenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Chl	oroethane	ND	ug/L	0.60	2.00	1		06/06/06	MPM
Chl	oroform	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Chl	oromethane	0.26	ug/L	0.20	0.67	1	J	06/06/06	MPM
cis-	1,2-Dichloroethylene	7.64	ug/L	0.20	0.67	i		06/06/06	MPM
cis-	1,3-Dichloropropylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
			-						

Matrix: Ground Water

TELEPHONE FACSIMILE WEBSITE

Sample Date/Time: 05/30/06 10:35

800-338-7226 715-355-3221 www.enviroscan.usfilter.com

Lab No. 0606003-16

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

Sample ID: B-12

PROJECT NO.: ANERUB0502.00 Chilton

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

PREPARED BY: JRS

R		<u>Results</u>	<u>Units</u>	LOD	LOQ	Dilution		Date	Amatas 4
	EPA 8260B Continued	Kesuits	Oms	LOD	<u>100</u>	<u>Factor</u>	<u>Qualifiers</u>	<u>Analyzed</u>	<u>Analyst</u>
	Dibromochloromethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
Į	Dibromomethane	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	Dichlorodifluoromethane	ND	ug/L	0.25	0.83	1	CSL, CSH	06/06/06	MPM
	Ethylbenzene	ND	ug/L	0.10	0.50	1	,	06/06/06	MPM
}	Hexachlorobutadiene	ND	ug/L	1.00	3.30	1		06/06/06	MPM
1	Isopropylbenzene (Cumene)	ND	ug/L	0.10	0.50	1		06/06/06	MPM
,	m,p-Xylenes	ND	ug/L	0.40	1.30	1		06/06/06	MPM
ſ	Methylene Chloride	ND	ug/L	0.40	1.30	1		06/06/06	MPM
	Methyl-tert-Butyl Ether	ND	ug/L	0.10	0.50	1		06/06/06	MPM
ŀ	Naphthalene	ND	ug/L	1.00	3.30	1		06/06/06	MPM
	o-Xylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	Propylbenzene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
)	sec-Butylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
	Styrene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	tert-Butylbenzene	ND	ug/L	0.15	0.50	1		06/06/06	MPM
	Tetrachloroethene	0.21	ug/L	0.10	0.50	1	J	06/06/06	MPM
	Toluene	ND	ug/L	0.40	1.30	1		06/06/06	MPM
	trans-1,2-Dichloroethylene	0.14	ug/L	0.10	0.50	1	J	06/06/06	MPM
l	trans-1,3-Dichloropropylene	ND	ug/L	0.10	0.50	1		06/06/06	MPM
	Trichloroethene	2.11	ug/L	0.20	0.67	1		06/06/06	MPM
	Trichlorofluoromethane	ND	ug/L	0.20	0.67	1		06/06/06	MPM
3	Vinyl chloride	0.26	ug/L	0.15	0.50	1	J	06/06/06	MPM
	EPA 8310								
l	Prep Method: Method 3510C Liquid Extraction	By: JEG					Date Prepared:	06/06/06	
	1-Methylnaphthalene	ND	ug/L	0.082	0.265	1.02		06/10/06	LMP
	2-Methylnaphthalene	ND	ug/L	0.112	0.378	1.02		06/10/06	LMP
	Acenaphthene	ND	ug/L .	0.061	0.204	1.02		06/10/06	LMP
	Acenaphthylene	ND	ug/L	0.061	0.204	1.02		06/10/06	LMP
	Anthracene	ND	ug/L	0.092	0.306	1.02		06/10/06	LMP
	Benzo(a)anthracene	ND	ug/L	0.102	0.337	1.02		06/10/06	LMP
	Benzo(a)pyrene	ND	ug/L	0.020	0.068	1.02	CSL, LCL	06/10/06	LMP
	Benzo(b)fluoranthene	ND	ug/L	0.020	0.068	1.02		06/10/06	LMP

ND

ND

ND

ND

ug/L

ug/L

ug/L

ug/L

0.061

0.071

0.020

0.112

0.204

0.238

0.068

0.378

1.02

1.02

1.02

1.02

06/10/06

06/10/06

06/10/06

06/10/06

LMP

LMP

LMP

LMP

Chrysene

Benzo(g,h,i)perylene

Benzo(k)fluoranthene

Dibenzo(a,h)anthracene

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

PREPARED BY: JRS

Sample ID: B-12 Matrix: Ground Water Sample Date/Time: 05/30/06 10:35 Lab No. 0606003-16

	Results	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	<u>Qualifiers</u>	Date <u>Analyzed</u>	<u>Analyst</u>
EPA 8310 Continued								
Prep Method: Method 3510C Liquid Extraction	By: JEG				I	Date Prepared:	06/06/06	
Fluoranthene	ND	ug/L	0.122	0.408	1.02		06/10/06	LMP
Fluorene	ND	ug/L	0.122	0.408	1.02		06/10/06	LMP
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.122	0.408	1.02		06/10/06	LMP
Naphthalene	ND	ug/L .	0.112 .	0.378	1.02		06/10/06	LMP
Phenanthrene	ND	ug/L	0.112	0.378	1.02		06/10/06	LMP
Pyrene	ND	ug/L	0.102	0.337	1.02		06/10/06	LMP

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

Sample ID: Large Sump	Matrix: Gr	ound Water	Sample Date/Time: 05/30/06 11:20		30/06 11:20	Lab No. 0606003-17		
	Results	<u>Units</u>	<u>LOD</u>	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	<u>Analyst</u>
EPA 8260B 1,1,1,2-Tetrachloroethane	ND	ug/L	0.10	0.50	1		06/07/06	MPM
1,1,1-Trichloroethane	ND	ug/L ug/L	0.10	0.50	1		06/07/06	MPM MPM
1,1,2,2-Tetrachloroethane	ND		0.10	0.50	1		06/07/06	MPM
1,1,2-Trichloroethane	ND	ug/L ug/L	0.10	0.50	1		06/07/06	MPM
1,1-Dichloroethane	ND	ug/L ug/L	0.15	0.50	1		06/07/06	MPM
1,1-Dichloroethylene	ND	ug/L	0.15	0.50	1		06/07/06	MPM
1,1-Dichloropropylene	ND	ug/L	0.30	1.00	1		06/07/06	MPM
1,2,3-Trichlorobenzene	ND	ug/L	0.50	1.70	1	CSH	06/07/06	MPM
1,2,3-Trichloropropane	ND	ug/L	0.55	1.80	i	0011	06/07/06	MPM
1,2,4-Trichlorobenzene	ND	ug/L	0.50	1.70	1		06/07/06	MPM
1,2,4-Trimethylbenzene	ND	ug/L	0.15	0.50	1		06/07/06	MPM
1,2-Dibromo-3-chloropropane	ND	ug/L	0.35	1.17	1		06/07/06	MPM
1,2-Dibromoethane	ND	ug/L	0.10	0.50	1		06/07/06	MPM
1,2-Dichlorobenzene	ND	ug/L	0.75	2.50	1		06/07/06	MPM
1,2-Dichloroethane	ND	ug/L	0.10	0.50	1		06/07/06	MPM
1,2-Dichloropropane	ND	ug/L	0.10	0.50	1		06/07/06	MPM
1,3,5-Trimethylbenzene	ND	ug/L	0.15	0.50	1		06/07/06	MPM
1,3-Dichlorobenzene	ND	ug/L	0.15	0.50	1		06/07/06	MPM
1,3-Dichloropropane	ND	ug/L	0.10	0.50	1		06/07/06	MPM
1,4-Dichlorobenzene	ND	ug/L	0.75	2.50	1		06/07/06	MPM
2,2-Dichloropropane	ND	ug/L	0.10	0.50	1		06/07/06	MPM
2-Chlorotoluene	ND	ug/L	0.10	0.50	1		06/07/06	MPM
4-Chlorotoluene	ND	ug/L	0.20	0.67	1		06/07/06	MPM
4-Isopropyltoluene	ND	ug/L	0.20	0.67	1		06/07/06	MPM
Benzene	ND	ug/L	0.15	0.50	1		06/07/06	MPM
Bromobenzene	ND	ug/L	0.10	0.50	1		06/07/06	MPM
Bromochloromethane	ND	ug/L	0.10	0.50	1		06/07/06	MPM
Bromodichloromethane	ND	ug/L	0.10	0.50	1		06/07/06	MPM
Bromoform	ND	ug/L	0.20	0.67	1		06/07/06	MPM
Bromomethane	ND	ug/L	0.15	0.50	1	CSL	06/07/06	MPM
Butylbenzene	ND	ug/L	0.20	0.67	1		06/07/06	MPM
Carbon Tetrachloride	ND	ug/L	0.20	0.67	1		06/07/06	MPM
Chlorobenzene	ND	ug/L	0.10	0.50	1		06/07/06	MPM
Chloroethane	ND	ug/L	0.60	2.00	1		06/07/06	MPM
Chloroform	ND	ug/L	0.10	0.50	1		06/07/06	MPM
Chloromethane	ND	ug/L	0.20	0.67	1		06/07/06	MPM
cis-1,2-Dichloroethylene	1.67	ug/L	0.20	0.67	1		06/07/06	MPM
cis-1,3-Dichloropropylene	ND	ug/L	0.10	0.50	1		06/07/06	MPM

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

Sample ID: Large Sump Matrix: Ground Water Sample Date/Time: 05/			/30/06 11:20	Lab No.	0606003-17				
		Results	<u>Units</u>	<u>LOD</u>	<u>LOQ</u>	Dilutior <u>Factor</u>		Date <u>Analyzed</u>	<u>Analyst</u>
	EPA 8260B Continued								
	Dibromochloromethane	ND	ug/L *	0.10	0.50	1		06/07/06	MPM
į	Dibromomethane	ND	ug/L	0.10	0.50	1		06/07/06	MPM
	Dichlorodifluoromethane	ND	ug/L	0.25	0.83	1	CSH	06/07/06	MPM
	Ethylbenzene	ND	ug/L	0.10	0.50	1		06/07/06	MPM
ì	Hexachlorobutadiene	ND	ug/L	1.00	3.30	1		06/07/06	MPM
	Isopropylbenzene (Cumene)	ND	ug/L	0.10	0.50	1		06/07/06	MPM
•	m,p-Xylenes	ND	ug/L	0.40	1.30	1		06/07/06	MPM
	Methylene Chloride	ND	ug/L	0.40	1.30	1		06/07/06	MPM
	Methyl-tert-Butyl Ether	1.01	ug/L	0.10	0.50	1		06/07/06	MPM
	Naphthalene	ND	ug/L	1.00	3.30	1	CSH	06/07/06	MPM
	o-Xylene	ND	ug/L	0.10	0.50	1		06/07/06	MPM
l	Propylbenzene	ND	ug/L	0.10	0.50	1		06/07/06	MPM
}	sec-Butylbenzene	ND	ug/L	0.15	0.50	1		06/07/06	MPM
	Styrene	ND	ug/L	0.10	0.50	1		06/07/06	MPM
Ì	tert-Butylbenzene	ND	ug/L	0.15	0.50	1		06/07/06	MPM
II	Tetrachloroethene	ND	ug/L	0.10	0.50	1		06/07/06	MPM
	Toluene	ND	ug/L	0.40	1.30	1		06/07/06	MPM
ı	trans-1,2-Dichloroethylene	0.14	ug/L	0.10	0.50	1	J	06/07/06	MPM
	trans-1,3-Dichloropropylene	ND	ug/L	0.10	0.50	1		06/07/06	MPM
	Trichloroethene	0.95	ug/L	0.20	0.67	1		06/07/06	MPM
ı	Trichlorofluoromethane	ND	ug/L	0.20	0.67	1	CSH	06/07/06	MPM
	Vinyl chloride	ND	ug/L •	0.15	0.50	1		06/07/06	MPM
	EPA 8310								
	Prep Method: Method 3510C Liquid Extraction	By: JEG					Date Prepared:	06/06/06	
	I-Methylnaphthalene	ND	ug/L	0.080	0.260	1		06/10/06	LMP
	2-Methylnaphthalene	ND	ug/L	0.110	0.370	1		06/10/06	LMP
	Acenaphthene	ND	ug/L	0.060	0.200	1		06/10/06	LMP
	Acenaphthylene	ND	ug/L	0.060	0.200	1		06/10/06	LMP
	Anthracene	ND	ug/L	0.090	0.300	i		06/10/06	LMP
	Benzo(a)anthracene	ND	ug/L	0.100	0.330	1		06/10/06	LMP
	Benzo(a)pyrene	ND	ug/L	0.020	0.067	1	CSL, LCL	06/10/06	LMP
	Benzo(b)fluoranthene	ND	ug/L	0.020	0.067	1		06/10/06	LMP
	Benzo(g,h,i)perylene	ND	ug/L	0.060	0.200	1		06/10/06	LMP
	Benzo(k)fluoranthene	ND	ug/L	0.070	0.233	1		06/10/06	LMP
	Chrysene	ND	ug/L	0.020	0.067	1		06/10/06	LMP
	Dibenzo(a,h)anthracene	ND	ug/L	0.110	0.370	1		06/10/06	LMP

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

Sample ID: Large Sump	Matrix: Gr	ound Water	Sam	ple Date/	Lab No. 0606003-17			
EPA 8310 Continued	Results	<u>Units</u> -	<u>LOD</u> ·	<u>LOQ</u>	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	<u>Analyst</u>
Prep Method: Method 3510C Liquid Extraction	By: JEG				L	Date Prepared:	06/06/06	
Fluoranthene	ND	ug/L	0.120	0.400	1		06/10/06	LMP
Fluorene	ND	ug/L	0.120	0.400	1		06/10/06	LMP
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.120	0.400	1		06/10/06	LMP
Naphthalene	ND	ug/L	0.110	0.370	1		06/10/06	LMP
Phenanthrene	ND	ug/L	0.110	0.370	1		06/10/06	LMP
Pyrene	ND	ug/L	0.100	0.330	1		06/10/06	LMP

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

Sample ID: West Sump	Matrix: Ground Water		Sar	nple Date/	Time: 05	Lab No. 0606003-18		
					Dilution		Date	
FDA 92COD Continued	<u>Results</u>	<u>Units</u>	<u>LOD</u>	<u>LOO</u>	<u>Factor</u>	Qualifiers	<u>Analyzed</u>	Analyst
EPA 8260B Continued								
Dibromochloromethane	ND	ug/L	0.10	0.50	1		06/07/06	MPM
Dibromomethane	ND	ug/L	0.10	0.50	1		06/07/06	MPM
Dichlorodifluoromethane	ND	ug/L	0.25	0.83	1	CSH	06/07/06	MPM
Ethylbenzene	ND	ug/L	0.10	0.50	1		06/07/06	MPM
Hexachlorobutadiene	ND	ug/L	1.00	3.30	1		06/07/06	MPM
Isopropylbenzene (Cumene)	ND	ug/L	0.10	0.50	1		06/07/06	MPM
m,p-Xylenes	ND	ug/L	0.40	1.30	1		06/07/06	MPM
Methylene Chloride	ND	ug/L	0.40	1.30	1		06/07/06	MPM
Methyl-tert-Butyl Ether	0.32	ug/L	0.10	0.50	1	J	06/07/06	MPM
Naphthalene	ND	ug/L	1.00	3.30	1	CSH	06/07/06	MPM
o-Xylene	ND	ug/L	0.10	0.50	1		06/07/06	MPM
Propylbenzene	ND	ug/L	0.10	0.50	1		06/07/06	MPM
sec-Butylbenzene	ND	ug/L	0.15	0.50	1		06/07/06	MPM
Styrene	ND	ug/L	0.10	0.50	1		06/07/06	MPM
tert-Butylbenzene	ND	ug/L	0.15	0.50	1		06/07/06	MPM
Tetrachloroethene	ND	ug/L .	0.10 .	0.50	1		06/07/06	MPM
Toluene	ND	ug/L	0.40	1.30	1		06/07/06	MPM
trans-1,2-Dichloroethylene	ND	ug/L	0.10	0.50	1		06/07/06	MPM
trans-1,3-Dichloropropylene	ND	ug/L	0.10	0.50	1		06/07/06	MPM
Trichloroethene	ND	ug/L	0.20	0.67	1		06/07/06	MPM
Trichlorofluoromethane	ND	ug/L	0.20	0.67	1	CSH	06/07/06	MPM
Vinyl chloride	ND	ug/L	0.15	0.50	1		06/07/06	MPM
EPA 8310								
Prep Method: Method 3510C Liquid Extraction	By: JEG					Date Prepared:	06/06/06	
1-Methylnaphthalene	ND	ug/L	0.080	0.260	1		06/10/06	LMP
2-Methylnaphthalene	ND	ug/L	0.110	0.370	1		06/10/06	LMP
Acenaphthene	ND	ug/L	0.060	0.200	1		06/10/06	LMP
Acenaphthylene	ND	ug/L	0.060	0.200	1		06/10/06	LMP
Anthracene	ND	ug/L	0.090	0.300	1		06/10/06	LMP
Benzo(a)anthracene	ND	ug/L	0.100	0.330	1		06/10/06	LMP
Benzo(a)pyrene	ND	ug/L	0.020	0.067	1	CSL, LCL	06/10/06	LMP
Benzo(b)fluoranthene	0.095	ug/L	0.020	0.067	1		06/10/06	LMP
Benzo(g,h,i)perylene	0.065	ug/L	0.060	0.200	1	J	06/10/06	LMP
Benzo(k)fluoranthene	ND	ug/L	0.070	0.233	1		06/10/06	LMP
Chrysene	0.143	ug/L	0.020	0.067	1		06/10/06	LMP
Dibenzo(a,h)anthracene	ND	ug/L ·	0.110	0.370	1		06/10/06	LMP

Matrix: Ground Water

TELEPHONE FACSIMILE WEBSITE

Sample Date/Time: 05/30/06 12:30

800-338-7226 715-355-3221 www.enviroscan.usfilter.com

Lab No. 0606003-18

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

Sample ID: West Sump

PROJECT NO.: ANERUB0502.00 Chilton

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

PREPARED BY: JRS

					Dilution		Date	
ED A GOCOD	Results	<u>Units</u>	<u>LOD</u>	<u>LOO</u>	<u>Factor</u>	Qualifiers	Analyzed	<u>Analyst</u>
EPA 8260B 1,1,1,2-Tetrachloroethane	ND	/7	0.10	0.50	,		06107106	1.451.4
1,1,1-Trichloroethane	ND ND	ug/L	0.10	0.50	1		06/07/06	MPM
1,1,2,2-Tetrachloroethane	ND ND	ug/L	0.20	0.67	1		06/07/06	MPM
1,1,2-Trichloroethane		ug/L	0.10	0.50	1		06/07/06	MPM
1,1-Dichloroethane	ND	ug/L	0.10	0.50	1		06/07/06	MPM
•	ND	ug/L	0.15	0.50	1		06/07/06	MPM
1,1-Dichlorography	ND	ug/L	0.15	0.50	1		06/07/06	MPM
1,1-Dichloropropylene	ND	ug/L	0.30	1.00	1	G011	06/07/06	MPM
1,2,3-Trichlorobenzene	ND	ug/L	0.50	1.70	1	CSH	06/07/06	MPM
1,2,3-Trichloropropane	ND	ug/L	0.55	1.80	1		06/07/06	MPM
1,2,4-Trichlorobenzene	ND	ug/L	0.50	1.70	1		06/07/06	MPM
1,2,4-Trimethylbenzene	ND	ug/L	0.15	0.50	1		06/07/06	MPM
1,2-Dibromo-3-chloropropane	ND	ug/L	0.35	1.17	1		06/07/06	MPM
1,2-Dibromoethane	ND	ug/L	0.10	0.50	1		06/07/06	MPM
1,2-Dichlorobenzene	ND	ug/L	0.75	2.50	1		06/07/06	MPM
1,2-Dichloroethane	ND	ug/L	0.10	0.50	1		06/07/06	MPM
1,2-Dichloropropane	ND	ug/L	0.10	0.50	1		06/07/06	MPM
1,3,5-Trimethylbenzene	ND	ug/L	0.15	0.50	1		06/07/06	MPM
1,3-Dichlorobenzene	ND	ug/L .	0.15 .	0.50	1		06/07/06	MPM
1,3-Dichloropropane	ND	ug/L	0.10	0.50	1		06/07/06	MPM
1,4-Dichlorobenzene	ND	ug/L	0.75	2.50	1		06/07/06	MPM
2,2-Dichloropropane	ND	ug/L	0.10	0.50	1		06/07/06	MPM
2-Chlorotoluene	ND	ug/L	0.10	0.50	1		06/07/06	MPM
4-Chlorotoluene	ND	ug/L	0.20	0.67	1		06/07/06	MPM
4-Isopropyltoluene	ND	ug/L	0.20	0.67	1		06/07/06	MPM
Benzene	ND	ug/L	0.15	0.50	1		06/07/06	MPM
Bromobenzene	ND	ug/L	0.10	0.50	1		06/07/06	MPM
Bromochloromethane	ND	ug/L	0.10	0.50	1		06/07/06	MPM
Bromodichloromethane	ND	ug/L	0.10	0.50	1		06/07/06	MPM
Bromoform	ND	ug/L	0.20	0.67	1		06/07/06	MPM
Bromomethane	ND	ug/L	0.15	0.50	1	CSL	06/07/06	MPM
Butylbenzene	ND	ug/L	0.20	0.67	1	_	06/07/06	MPM
Carbon Tetrachloride	ND	ug/L	0.20	0.67	1		06/07/06	MPM
Chlorobenzene	ND	ug/L	0.10	0.50	1		06/07/06	MPM
. =		~ ~ ~		0.00	•		30/0//00	1411 141

0.60

0.10

0.20

0.20

0.10

ug/L

ug/L

ug/L

ug/L

ug/L

2.00

0.50

0.67

0.67

0.50

1

1

1 J

1

1

06/07/06

06/07/06

06/07/06

06/07/06

06/07/06

MPM

MPM

MPM

MPM

MPM

ND

ND

0.22

ND

ND

Chloroethane

Chloroform

Chloromethane

cis-1,2-Dichloroethylene

cis-1,3-Dichloropropylene

TELEPHONE FACSIMILE WEBSITE

800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

Sample ID: West Sump	Matrix: Ground Water	Sample Date/Time: 0:	5/30/06 12:30	Lab No.	0606003-18

						Dilution	1	Date	
1		Results	Units	<u>LOD</u>	LOO	Factor	Qualifiers	Analyzed	<u>Analyst</u>
i	EPA 8310 Continued								
	Prep Method: Method 3510C Liquid Extraction	By: JEG					Date Prepared:	06/06/06	
	Fluoranthene	0.162	ug/L	0.120	0.400	1	J	06/10/06	LMP
	Fluorene	ND	ug/L	0.120	0.400	1		06/10/06	LMP
	Indeno(1,2,3-cd)pyrene	0.120	ug/L	0.120	0.400	1	J	06/10/06	LMP
	Naphthalene	ND	ug/L	0.110	0.370	1		06/10/06	LMP
	Phenanthrene	0.116	ug/L	0.110	0.370	1	J	06/10/06	LMP
	Pyrene	ND	ug/L	0.100	0.330	1		06/10/06	LMP

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

PREPARED BY: JRS

Sample ID: MW-5 Dup Matrix: Ground Water Sample Date/Time: 05/30/06 17:45 Lab No. 0606003-19

						Dilution		Date	
ŀ		Results	<u>Units</u>	<u>LOD</u>	<u>LOQ</u>	<u>Factor</u>	Qualifiers	Analyzed	<u>Analyst</u>
ŀ	EPA 8260B								
	1,1,1,2-Tetrachloroethane	ND	ug/L	0.10	0.50	1		06/07/06	MPM
}	1,1,1-Trichloroethane	ND	ug/L	0.20	0.67	1		06/07/06	MPM
	1,1,2,2-Tetrachloroethane	ND	ug/L	0.10	0.50	1		06/07/06	MPM
	1,1,2-Trichloroethane	ND	ug/L	0.10	0.50	i		06/07/06	MPM
	1,1-Dichloroethane	ND	ug/L	0.15	0.50	1		06/07/06	MPM
	1,1-Dichloroethylene	ND	ug/L	0.15	0.50	1		06/07/06	MPM
	1,1-Dichloropropylene	ND	ug/L	0.30	1.00	1		06/07/06	MPM
	1,2,3-Trichlorobenzene	ND	ug/L	0.50	1.70	1	CSH	06/07/06	MPM
	1,2,3-Trichloropropane	ND	ug/L	0.55	1.80	1		06/07/06	MPM
	1,2,4-Trichlorobenzene	ND	ug/L	0.50	1.70	1		06/07/06	MPM
	1,2,4-Trimethylbenzene	ND	ug/L	0.15	0.50	1		06/07/06	MPM
	1,2-Dibromo-3-chloropropane	ND	ug/L	0.35 .	1.17	1		06/07/06	MPM
	1,2-Dibromoethane	ND	ug/L	0.10	0.50	1		06/07/06	MPM
	1,2-Dichlorobenzene	ND	ug/L	0.75	2.50	1		06/07/06	MPM
	1,2-Dichloroethane	0.24	ug/L	0.10	0.50	1	J	06/07/06	MPM
•	1,2-Dichloropropane	ND	ug/L	0.10	0.50	1		06/07/06	MPM
	1,3,5-Trimethylbenzene	ND	ug/L	0.15	0.50	1		06/07/06	MPM
	1,3-Dichlorobenzene	ND	ug/L	0.15	0.50	1		06/07/06	MPM
	1,3-Dichloropropane	ND	ug/L	0.10	0.50	1		06/07/06	MPM
	1,4-Dichlorobenzene	ND	ug/L	0.75	2.50	1		06/07/06	MPM
	2,2-Dichloropropane	ND	ug/L	0.10	0.50	I		06/07/06	MPM
	2-Chlorotoluene	ND	ug/L	0.10	0.50	1		06/07/06	MPM
	4-Chlorotoluene	ND	ug/L	0.20	0.67	1		06/07/06	MPM
	4-Isopropyltoluene	ND	ug/L	0.20	0.67	1		06/07/06	MPM
	Benzene	ND	ug/L	0.15	0.50	1		06/07/06	MPM
	Bromobenzene	ND	ug/L	0.10	0.50	1		06/07/06	MPM
	Bromochloromethane	ND ·	ug/L	0.10	0.50	1		06/07/06	MPM
	Bromodichloromethane	ND	ug/L	0.10	0.50	1		06/07/06	MPM
	Bromoform	ND	ug/L	0.20	0.67	1		06/07/06	MPM
	Bromomethane	ND	ug/L	0.15	0.50	1	CSL	06/07/06	MPM
	Butylbenzene	ND	ug/L	0.20	0.67	1		06/07/06	MPM
	Carbon Tetrachloride	ND	ug/L	0.20	0.67	1		06/07/06	MPM
	Chlorobenzene	ND	ug/L	0.10	0.50	1		06/07/06	MPM
	Chloroethane	ND	ug/L	0.60	2.00	1		06/07/06	MPM
	Chloroform	ND	ug/L	0.10	0.50	1		06/07/06	MPM
	Chloromethane	ND	ug/L	0.20	0.67	1		06/07/06	MPM
	cis-1,2-Dichloroethylene	5.49	ug/L	0.20	0.67	1		06/07/06	MPM
	cis-1,3-Dichloropropylene	ND	ug/L	0.10	0.50	1		06/07/06	MPM

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

Sample ID: MW-5 Dup	Matrix: G	round Water	Sar	nple Date/	Time: 05 .	/30/06 17:45	Lab No.	0606003-19
					Dilutior	1	Date	
	Results	<u>Units</u>	<u>LOD</u>	<u>LOO</u>	<u>Factor</u>	Qualifiers	Analyzed	<u>Analyst</u>
EPA 8260B Continued								
Dibromochloromethane	ND	ug/L	0.10	0.50	1		06/07/06	MPM
Dibromomethane	ND	ug/L	0.10	0.50	1		06/07/06	MPM
Dichlorodifluoromethane	ND	ug/L	0.25	0.83	1	CSH	06/07/06	MPM
Ethylbenzene	0.11	ug/L	0.10	0.50	1	J	06/07/06	MPM
Hexachlorobutadiene	ND	ug/L	1.00	3.30	1		06/07/06	MPM
Isopropylbenzene (Cumene)	ND	ug/L	0.10	0.50	1		06/07/06	MPM
m,p-Xylenes	ND	ug/L	0.40	1.30	1		06/07/06	MPM
Methylene Chloride	ND	ug/L	0.40	1.30	1		06/07/06	MPM
Methyl-tert-Butyl Ether	0.18	ug/L	0.10	0.50	I	J	06/07/06	MPM
Naphthalene	ND	ug/L ,	1.00	3.30	1	CSH	06/07/06	MPM
o-Xylene	ND	ug/L	0.10	0.50	1		06/07/06	MPM
Propylbenzene	ND	ug/L	0.10	0.50	1		06/07/06	MPM
sec-Butylbenzene	ND	ug/L	0.15	0.50	1		06/07/06	MPM
Styrene	ND	ug/L	0.10	0.50	1		06/07/06	MPM
tert-Butylbenzene	ND	ug/L	0.15	0.50	1		06/07/06	MPM
Tetrachloroethene	ND	ug/L	0.10	0.50	1		06/07/06	MPM
Toluene	ND	ug/L	0.40	1.30	1		06/07/06	MPM
trans-1,2-Dichloroethylene	0.48	ug/L	0.10	0.50	1	J	06/07/06	MPM
trans-1,3-Dichloropropylene	ND	ug/L	0.10	0.50	1		06/07/06	MPM
Trichloroethene	ND	ug/L	0.20	0.67	1		06/07/06	MPM
Trichlorofluoromethane	ND	ug/L	0.20	0.67	1	CSH	06/07/06	MPM
Vinyl chloride	ND	ug/L	0.15	0.50	I		06/07/06	MPM
EPA 8310								
Prep Method: Method 3510C Liquid Extraction	By: JEG					Date Prepared:	06/06/06	
I-Methylnaphthalene	ND	ug/L	0.080	0.260	1		06/10/06	LMP
2-Methylnaphthalene	ND	ug/L	0.110	0.370	1		06/10/06	LMP
Acenaphthene	ND	ug/L	0.060	0.200	1		06/10/06	LMP
Acenaphthylene	ND	ug/L	0.060	0.200	1		06/10/06	LMP
Anthracene	ND	ug/L	0.090	0.300	1		06/10/06	LMP
Benzo(a)anthracene	ND	ug/L .	0.100 .	0.330	1		06/10/06	LMP
Benzo(a)pyrene	ND	ug/L	0.020	0.067	1	CSL, LCL	06/10/06	LMP
Benzo(b)fluoranthene	0.025	ug/L	0.020	0.067	1	J	06/10/06	LMP
Benzo(g,h,i)perylene	0.170	ug/L	0.060	0.200	1	J	06/10/06	LMP
Benzo(k)fluoranthene	ND	ug/L	0.070	0.233	1		06/10/06	LMP
Chrysene	ND	ug/L	0.020	0.067	1		06/10/06	LMP
Dibenzo(a,h)anthracene	ND	ug/L	0.110	0.370	1		06/10/06	LMP

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

Sample ID: MW-5 Dup	Matrix: Ground Water	Sample Date/Time: 05/30/06 17:45	Lab No. 0606003-19

					Dilution		Date	
	Results	<u>Units</u>	LOD	LOQ	<u>Factor</u>	Qualifiers	<u>Analyzed</u>	<u>Analyst</u>
EPA 8310 Continued								
Prep Method: Method 3510C Liquid Extraction	By: JEG				L	Date Prepared:	06/06/06	
Fluoranthene	ND	ug/L	0.120	0.400	1		06/10/06	LMP
Fluorene	ND	ug/L	0.120	0.400	1		06/10/06	LMP
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.120	0.400	1		06/10/06	LMP
Naphthalene	ND	ug/L	0.110	0.370	1		06/10/06	LMP
Phenanthrene	ND	ug/L	0.110	0.370	1		06/10/06	LMP
Pyrene	ND	ug/L	0.100	0.330	1		06/10/06	LMP

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

Sample ID: Trip Blank Matrix: Water Sample Date/Time: 05/30/06 0:00	Lab No. 0606003-20
---	--------------------

					Dilution		Date	
ED 4 04<0D	<u>Results</u>	<u>Units</u>	<u>LOD</u>	<u>LOO</u>	<u>Factor</u>	Qualifiers	<u>Analyzed</u>	<u>Analyst</u>
EPA 8260B 1,1,1,2-Tetrachloroethane	ND		0.10	0.50			06107106	3.453.4
1,1,1-Trichloroethane	ND	ug/L	0.10	0.50	1		06/07/06	MPM
1,1,2,2-Tetrachloroethane	ND ND	ug/L	0.20	0.67	1		06/07/06	MPM
1,1,2-Trichloroethane	ND ND	ug/L	0.10	0.50	1		06/07/06	MPM
1,1-Dichloroethane	ND ND	ug/L	0.10	0.50	1		06/07/06	MPM
1,1-Dichloroethylene	ND ND	ug/L	0.15	0.50	1		06/07/06	MPM
1,1-Dichloropropylene	ND ND	ug/L	0.15 .	0.50 1.00	1		06/07/06	MPM
1,2,3-Trichlorobenzene		ug/L			1	CGII	06/07/06	MPM
1,2,3-Trichloropropane	ND	ug/L	0.50	1.70	1	CSH	06/07/06	MPM
1,2,4-Trichlorobenzene	ND	ug/L	0.55	1.80	1		06/07/06	MPM
	ND	ug/L	0.50	1.70	1		06/07/06	MPM
1,2,4-Trimethylbenzene	ND	ug/L	0.15	0.50	1		06/07/06	MPM
1,2-Dibromo-3-chloropropane	ND	ug/L	0.35	1.17	1		06/07/06	MPM
1,2-Dibromoethane	ND	ug/L	0.10	0.50	1		06/07/06	MPM
1,2-Dichlorobenzene	ND	ug/L	0.75	2.50	1		06/07/06	MPM
1,2-Dichloroethane	ND	ug/L	0.10	0.50	I		06/07/06	MPM
1,2-Dichloropropane	ND	ug/L	0.10	0.50	1		06/07/06	MPM
1,3,5-Trimethylbenzene	ND	ug/L	0.15	0.50	I		06/07/06	MPM
1,3-Dichlorobenzene	ND	ug/L	0.15	0.50	1		06/07/06	MPM
1,3-Dichloropropane	ND	ug/L	0.10	0.50	1		06/07/06	MPM
1,4-Dichlorobenzene	ND	ug/L	0.75	2.50	1		06/07/06	MPM
2,2-Dichloropropane	ND	ug/L	0.10	0.50	1		06/07/06	MPM
2-Chlorotoluene	ND	ug/L	0.10	0.50	1		06/07/06	MPM
4-Chlorotoluene	ND	ug/L	0.20	0.67	1		06/07/06	MPM
4-Isopropyltoluene	ND	ug/L	0.20	0.67	1		06/07/06	MPM
Benzene	ND	ug/L	0.15	0.50	1		06/07/06	MPM
Bromobenzene	ND	ug/L	0.10	0.50	1		06/07/06	MPM
Bromochloromethane	ND	ug/L .	0.10	0.50	1		06/07/06	MPM
Bromodichloromethane	ND	ug/L	0.10	0.50	1		06/07/06	MPM
Bromoform	ND	ug/L	0.20	0.67	1		06/07/06	MPM
Bromomethane	ND	ug/L	0.15	0.50	1	CSL	06/07/06	MPM
Butylbenzene	ND	ug/L	0.20	0.67	1		06/07/06	MPM
Carbon Tetrachloride	ND	ug/L	0.20	0.67	1		06/07/06	MPM
Chlorobenzene	ND	ug/L	0.10	0.50	1		06/07/06	MPM
Chloroethane	ND	ug/L	0.60	2.00	1		06/07/06	MPM
Chloroform	ND	ug/L	0.10	0.50	1		06/07/06	MPM
Chloromethane	ND	ug/L	0.20	0.67	1		06/07/06	MPM
cis-1,2-Dichloroethylene	ND	ug/L	0.20	0.67	1		06/07/06	MPM
cis-1,3-Dichloropropylene	ND	ug/L	0.10	0.50	1		06/07/06	MPM

TELEPHONE FACSIMILE WEBSITE 800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Short Elliott Henderickson (Chipp Falls) 421 Frenette Dr Chippewa Falls, WI 54729

Attn: John Guhl

PROJECT NO.: ANERUB0502.00 Chilton REPORT NO.: 0606003

REPORT NO.: 0606003 DATE REC'D: 06/01/06 08:21 REPORT DATE: 06/14/06 13:55

PREPARED BY: JRS

Sample ID: Trip Blank Matrix: Water Sample Date/Time: 05/30/06 0:00 Lab No. 0606003-20

					Dilution		Date	
	Results	<u>Units</u>	LOD	LOO	Factor	Qualifiers	Analyzed	<u>Analyst</u>
EPA 8260B Continued								
Dibromochloromethane	ND	ug/L	0.10	0.50	1		06/07/06	MPM
Dibromomethane	ND	ug/L	0.10	0.50	1		06/07/06	MPM
Dichlorodifluoromethane	ND	ug/L	0.25	0.83	1	CSH	06/07/06	MPM
Ethylbenzene	ND	ug/L ·	0.10	0.50	1		06/07/06	MPM
Hexachlorobutadiene	ND	ug/L	1.00	3.30	1		06/07/06	MPM
Isopropylbenzene (Cumene)	ND	ug/L	0.10	0.50	1		06/07/06	MPM
m,p-Xylenes	ND	ug/L	0.40	1.30	1		06/07/06	MPM
Methylene Chloride	ND	ug/L	0.40	1.30	1		06/07/06	MPM
Methyl-tert-Butyl Ether	ND	ug/L	0.10	0.50	1		06/07/06	MPM
Naphthalene	ND	ug/L	1.00	3.30	1	CSH	06/07/06	MPM
o-Xylene	ND	ug/L	0.10	0.50	1		06/07/06	MPM
Propylbenzene	ND	ug/L	0.10	0.50	1		06/07/06	MPM
sec-Butylbenzene	ND	ug/L	0.15	0.50	1		06/07/06	MPM
Styrene	ND	ug/L	0.10	0.50	1		06/07/06	MPM
tert-Butylbenzene	ND	ug/L	0.15	0.50	1		06/07/06	MPM
Tetrachloroethene	ND	ug/L	0.10	0.50	1		06/07/06	MPM
Toluene	ND	ug/L	0.40	1.30	1		06/07/06	MPM
trans-1,2-Dichloroethylene	ND	ug/L	0.10	0.50	1		06/07/06	MPM
trans-1,3-Dichloropropylene	ND	ug/L	0.10	0.50	1		06/07/06	MPM
Trichloroethene	ND	ug/L	0.20	0.67	1		06/07/06	MPM
Trichlorofluoromethane	ND	ug/L	0.20	0.67	1	CSH	06/07/06	MPM
Vinyl chloride	ND	ug/L	0.15	0.50	1		06/07/06	MPM

TELEPHONE FACSIMILE WEBSITE

800-338-7226 715-355-3221 www.enviroscan.usfilter.com

A Siemens Business

Qualifer Descriptions

S2L	Second sample matrix spike recovery was low.
S2H	Second sample matrix spike recovery was high.
SIL	First sample matrix spike recovery was low.
S1H	First sample matrix spike recovery was high.
LCL	Laboratory control sample exhibited a low bias. Sample results may also be biased low.
LCH	Laboratory control sample exhibited a high bias. Sample results may also be biased high.
J	Estimated concentration below laboratory quantitation level.
CSL	Check standard for this analyte exhibited a low bias. Sample results may also be biased low.
CSH	Check standard for this analyte exhibited a high bias. Sample results may also be biased high.

Definitions

LOD = Limit of Detection (Dilution Corrected)
LOQ = Limit of Quanitation (Dilution Corrected)
ND = Not Detected
COMP = Complete
SUBCON = Subcontracted analysis
mv = millivolts
pci/L = picocurie per Liter
mL/L = milliliters/Liter
mg = milligram

When the word "dry" follows the units on the result page the sample results are dry weight corrected.

LODs and LOQs are dry weight corrected for all soils except methanol and methylene chloride preserved soils.

ug/l = Microgram per Liter = parts per billion (ppb)
ug/kg = Microgram per kilogram = parts per billion (ppb)
mg/l = Millgram per liter parts per million (ppm)
mg/kg = Millgram per kilogram parts per million (ppm)
NOT PRES = Not Present
ppth = Parts per thousand
* = Result outside established limits.
mg/m3 = Milligrams/ meter cubed
ng/L = Nanograms per Liter = Parts per trillion(ppt)
> = Greater Than

REQUEST FOR SERVICES

A Siemens Business

ENVIROSCAN S	ERVICES	30	on W. MILIT	TARY RD.	ROTH	ISCHIL	D, WI 5	54474	4	1-800-338-SCAN
REPORT TO: Name: John	Culi	i		!	BILL TO	if diffe	erent from	n Rej	oort T	o info)
Company: <u>5E</u>	1 6071	··········								
Addross: 1171	France	tk 1 Falls	WI 54		Address	iy				
Phone: (7/5)					Phone:	(_)			
Project # ANERU Location Chilo	B <u>osoz.oo</u> ton	Quote	#				A N I /	A I \ / 7	-10 A	L DECLIECTO
•										L REQUESTS sheet if necessary)
Sample Type (Check all that apply) Groundwater Wastewater Soil/Solid Drinking Water Turnaround Time Normal Rush (Pre-approved by La										
☐ Drinking \☐ Oil ☐ Vapor	Water			•		47/	' / ,	/ ,	/ ,	3. REMARKS
□ Other		16060C No. of		- ID	0	3 1/4 W				
LAB USE ONLY		TIME	Containers COMP GRAB			17	7	_		/ N REMARKS
	5-30-06	2:45	4	MW-1						
シ		3:15		MW-Z	.					
3		3:45		MW-3			_			
		5:15		MW-4						
45		5:45	्र व	MW:5				-		
- (o		6:15	4	PZ-5						
-7		4:45	1	MW-6			-			
<u>-8</u> -9		4:15		MW-7		-				
Maria (Service Comment of the fights with records for	1	6:45		MW-3)					
-10	Y	Z:20	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	mw-9					1	
		in the second se					Del'v: Ship.	Cont.	ok`	CY N N/A
CHAIN O	F CUST	TODY	RECO	RD			Samp Seals Rec'd	OK?		? Y N/N/A Y N N/A Y N N/A22°C
SAMPLERS: Signal	ture						21012818 Ause	nents	3: <u>_</u>	verified method
RELINOUSHED BY: (Signature)			DATE/TIME 5-31-06 12:00		RECEIVED BY: (Signature)			رس	/ C/	cent.
RELINQUISHED BY: (Signature)			E/TIME	RECEIVED BY: (Signature)						
RELINQUISHED BY:	(Signature)	DATI	E/TIME	RECEIVED FOR BY: (Signature)	EIVED FOR LABORATORY Signature)			TIME	2/	

A Siemens Business

ENVIROSCAN S	ERVICES	30	01 W. MILIT	TARY RD. RC	THSCHIL	D, WI !	54474	1-800-338	3-SCAN
REPORT TO: Name: John	1 6uh	/		Name	TO: (if diffe	<u>E</u>			
Company: 5E	<u>1+</u>	1/0 70		Comp					
Address: 421	<u>Frenci</u> Delain F	7115 1	UT 543	Addre					
<u>Chiyi</u> Phone: (<u>7-15</u>) P.O.#					e: (_)			
P.O.# Project # <u>ANERU</u>	UB050Z.	<i>00</i> Quote	#						
Location <u>Chil</u> t	01							CAL REQUE	
Sample Ty (Check all tha Groundw Wastewa Soil/Solid	at <i>apply)</i> ater ter	Turnaro Nor Rus		//		7///			
Drinking \		Approve	eded d By					/	A
□ Oil □ Vapor □ Other				0606003)/±/	/ /	160 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
LAB USE ONLY	DATE	TIME	No. of Containers COMP GRAB	SAMPLE ID		THE STATE OF THE S		REI	MARKS
	5-30-06	17:50	4	B-5					
[2		1:10		B-5A					
-13		17:05		B-6					
<u>-</u> [4		11:45		B-9					
\ [5		11:05		B-11					
-19		10:35		B-12					
11.		11:20							
41 8		17:30		Large Sump West Sump					
- 19	\downarrow	5:45	6	MW-5 DUP				QA/Q	.C
-20			2	Trip Blank	.				
	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)				-7-06	Ship.	Cont. C	Comm	
CHAIN O	F CUST	CODY	RECO	RD		Seals	les leal OK? on ice'	N/S	N/A N/A N/A <i>2:2</i> 2C
SAMPLERS: (Signal			Page 18 and	nents:					
RELINOVISHED BY	DATI	E/TIME 06 12:00	RECEIVED BY: (Signa	ature)					
RELINCUISHED BY: (Signature)			E/TIME	RECEIVED BY: (Signa	ature)				
RELINQUISHED BY: (DATI	E/TIME	RECEIVED FOR LAB		DATE/	Arren ir 21			