Source Prop	perty Information		CLOSURE DATE: Aug 3, 2005
BRRTS #:	02-30-522702		·
ACTIVITY NAME:	MANKOWSKI PROPERTY / BAIN ELEM	IENTARY SCHOOL	FID #: 230149590
PROPERTY ADDRESS	2600 50th St (26th Ave @ 45th-48th S	5t)	DATCP #:
			COMM #:
MUNICIPALITY:	Kenosha		
PARCEL ID #:	09-222-36-134-002 (old 09-4-0222-36	5-134-011)	
	*WTM COORDINATES:	WTM COORDINATES	S REPRESENT:
>	K: 697105 Y: 237956	C Approximate Center Of C	Contaminant Source
	* Coordinates are in WTM83, NAD83 (1991)	Approximate Source Pare	cel Center

Please check as appropriate: (BRRTS Action Code)

Contaminat	ed Media:
Groundwater Contamination > ES (236)	Soil Contamination > *RCL or **SSRCL (232)
Contamination in ROW	Contamination in ROW
Off-Source Contamination	Off-Source Contamination
(note: for list of off-source properties see "Impacted Off-Source Property" form)	(note: for list of off-source properties see "Impacted Off-Source Property" form)
Land Use (Controls:
N/A (Not Applicable)	X Cover or Barrier (222)
Soil: maintain industrial zoning (220)	(note: maintenance plan for groundwater or direct contact)
(note: soli contamination concentrations) between non-industrial and industrial levels)	Vapor Mitigation (226)
Structural Impediment (224)	Maintain Liability Exemption (230)
Site Specific Condition (228)	(note: local government unit or economic development corporation was directed to take a response action)
Monitorin	ng Wells:
Are all monitoring wells properly	abandoned per NR 141? (234)

● Yes ○ No ○ N/A

* Residual Contaminant Level **Site Specific Residual Contaminant Level

State of Wisconsin	GIS Registry Checklist	
Department of Natural Resources	Form 4400-245 (R 3/10)	Page 1 of 3
http://dnr.wi.gov	101114400-245 (K 5/10)	Fage 1015

This Adobe Fillable form is intended to provide a list of information that is required for evaluation for case closure. It is to be used in conjunction with Form 4400-202, Case Closure Request. The closure of a case means that the Department has determined that no further response is required at that time based on the information that has been submitted to the Department.

NOTICE: Completion of this form is mandatory for applications for case closure pursuant to ch. 292, Wis. Stats. and ch. NR 726, Wis. Adm. Code, including cases closed under ch. NR 746 and ch. NR 726. The Department will not consider, or act upon your application, unless all applicable sections are completed on this form and the closure fee and any other applicable fees, required under ch. NR 749, Wis. Adm. Code, Table 1 are included. It is not the Department's intention to use any personally identifiable information from this form for any purpose other than reviewing closure requests and determining the need for additional response action. The Department may provide this information to requesters as required by Wisconsin's Open Records law [ss. 19.31 - 19.39, Wis. Stats.].

BRRTS #:	02-30-522702	PARCEL ID #:	09-222-36-134-002 (old 09-4-02	22-36-134-0	11)	
ACTIVITY NAME:	MANKOWSKI PF	OPERTY / BAIN ELEMENTARY SCHOO	WTM COORDINATES:	X: 697105	Y:	237956

CLOSURE DOCUMENTS (the Department adds these items to the final GIS packet for posting on the Registry)

X Closure Letter

- X Maintenance Plan (if activity is closed with a land use limitation or condition (land use control) under s. 292.12, Wis. Stats.)
- **Continuing Obligation Cover Letter** (for property owners affected by residual contamination and/or continuing obligations)
- Conditional Closure Letter
- **Certificate of Completion (COC)** (for VPLE sites)

SOURCE LEGAL DOCUMENTS

Deed: The most recent deed as well as legal descriptions, for the **Source Property** (where the contamination originated). Deeds for other, off-source (off-site) properties are located in the **Notification** section.

Note: If a property has been purchased with a land contract and the purchaser has not yet received a deed, a copy of the land contract which includes the legal description shall be submitted instead of the most recent deed. If the property has been inherited, written documentation of the property transfer should be submitted along with the most recent deed.

Certified Survey Map: A copy of the certified survey map or the relevant section of the recorded plat map for those properties where the legal description in the most recent deed refers to a certified survey map or a recorded plat map. (lots on subdivided or platted property (e.g. lot 2 of xyz subdivision)).

Figure #:

Signed Statement: A statement signed by the Responsible Party (RP), which states that he or she believes that the attached legal description accurately describes the correct contaminated property.

MAPS (meeting the visual aid requirements of s. NR 716.15(2)(h))

Title:

Maps must be no larger than 11 x 17 inches unless the map is submitted electronically.

Location Map: A map outlining all properties within the contaminated site boundaries on a U.S.G.S. topographic map or plat map in sufficient detail to permit easy location of all parcels. If groundwater standards are exceeded, include the location of all potable wells within 1200 feet of the site.

Note: Due to security reasons municipal wells are not identified on GIS Packet maps. However, the locations of these municipal wells must be identified on Case Closure Request maps.

Figure #: A1 Title: Site Location Map

Detailed Site Map: A map that shows all relevant features (buildings, roads, individual property boundaries, contaminant sources, utility lines, monitoring wells and potable wells) within the contaminated area. This map is to show the location of all contaminated public streets, and highway and railroad rights-of-way in relation to the source property and in relation to the boundaries of groundwater contamination exceeding a ch. NR 140 Enforcement Standard (ES), and/or in relation to the boundaries of soil contamination exceeding a Residual Contaminant Level (RCL) or a Site Specific Residual Contaminant Levels (SSRCL) as determined under s. NR 720.09, 720.11 and 720.19.

Figure #: A2 Title: Site Configuration Map

Soil Contamination Contour Map: For sites closing with residual soil contamination, this map is to show the location of all contaminated soil and a single contour showing the horizontal extent of each area of contiguous residual soil contamination that exceeds a Residual Contaminant Level (RCL) or a Site Specific Residual Contaminant Level (SSRCL) as determined under s. NR 720.09, 720.11 and 720.19.

Figure #:

Title:

BRRTS #: 02-30-522702

ACTIVITY NAME: MANKOWSKI PROPERTY / BAIN ELEMENTARY SCHOO

MAPS (continued)

Geologic Cross-Section Map: A map showing the source location and vertical extent of residual soil contamination exceeding a Residual Contaminant Level (RCL) or a Site Specific Residual Contaminant Level (SSRCL). If groundwater contamination exceeds a ch. NR 140 Enforcement Standard (ES) when closure is requested, show the source location and vertical extent, water table and piezometric elevations, and locations and elevations of geologic units, bedrock and confining units, if any.

Figure #: D2 Title: Post Construction Geologic Cross-Section A-A

Figure #: Title:

Groundwater Isoconcentration Map: For sites closing with residual groundwater contamination, this map shows the horizontal extent of all groundwater contamination exceeding a ch. NR140 Preventive Action Limit (PAL) and an Enforcement Standard (ES). Indicate the direction and date of groundwater flow, based on the most recent sampling data. *Note: This is intended to show the total area of contaminated groundwater.*

Figure #: Title:

Groundwater Flow Direction Map: A map that represents groundwater movement at the site. If the flow direction varies by more then 20° over the history of the site, submit 2 groundwater flow maps showing the maximum variation in flow direction.

Figure #: Title:

Figure #: Title:

TABLES (meeting the requirements of s. NR 716.15(2)(h)(3))

Tables must be no larger than 11 x 17 inches unless the table is submitted electronically. Tables <u>must not</u> contain shading and/or cross-hatching. The use of **BOLD** or *ITALICS* is acceptable.

Soil Analytical Table: A table showing <u>remaining</u> soil contamination with analytical results and collection dates.
 Note: This is one table of results for the contaminants of concern. Contaminants of concern are those that were found during the site investigation, that remain after remediation. It may be necessary to create a new table to meet this requirement.

Table #: 12 Title: Fill/Soil Sample Metals Analytical Results Summary

Groundwater Analytical Table: Table(s) that show the <u>most recent</u> analytical results and collection dates, for all monitoring wells and any potable wells for which samples have been collected.

Table #: 16 Title: Groundwater Sample Analytical Results Summary

Water Level Elevations: Table(s) that show the previous four (at minimum) water level elevation measurements/dates from all monitoring wells. If present, free product is to be noted on the table.

Table #: E5 Title: Groundwater Measurements

IMPROPERLY ABANDONED MONITORING WELLS

For each monitoring well <u>not</u> properly abandoned according to requirements of s. NR 141.25 include the following documents. **Note:** If the site is being listed on the GIS Registry for only an improperly abandoned monitoring well you will only need to submit the documents in this section for the GIS Registry Packet.

X Not Applicable

Site Location Map: A map showing all surveyed monitoring wells with specific identification of the monitoring wells which have not been properly abandoned.

Note: If the applicable monitoring wells are distinctly identified on the Detailed Site Map this Site Location Map is not needed.

Figure #: Title:

Well Construction Report: Form 4440-113A for the applicable monitoring wells.

Deed: The most recent deed as well as legal descriptions for each property where a monitoring well was not properly abandoned.

Notification Letter: Copy of the notification letter to the affected property owner(s).

Page 3 of 3

BRRTS #: 02-30-522702

ACTIVITY NAME: MANKOWSKI PROPERTY / BAIN ELEMENTARY SCHOO

NOTIFICATIONS

Source Property

X Not Applicable

- Letter To Current Source Property Owner: If the source property is owned by someone other than the person who is applying for case closure, include a copy of the letter notifying the current owner of the source property that case closure has been requested.
- **Return Receipt/Signature Confirmation:** Written proof of date on which confirmation was received for notifying current source property owner.

Off-Source Property

Group the following information per individual property and label each group according to alphabetic listing on the "Impacted Off-Source Property" attachment.

X Not Applicable

Letter To "Off-Source" Property Owners: Copies of all letters sent by the Responsible Party (RP) to owners of properties with groundwater exceeding an Enforcement Standard (ES), and to owners of properties that will be affected by a land use control under s. 292.12, Wis. Stats.

Note: Letters sent to off-source properties regarding residual contamination must contain standard provisions in Appendix A of ch. NR 726.

Number of "Off-Source" Letters:

Return Receipt/Signature Confirmation: Written proof of date on which confirmation was received for notifying any off-source property owner.

Deed of "Off-Source" Property: The most recent deed(s) as well as legal descriptions, for all affected deeded off-source property(ies). This does not apply to right-of-ways.

Note: If a property has been purchased with a land contract and the purchaser has not yet received a deed, a copy of the land contract which includes the legal description shall be submitted instead of the most recent deed. If the property has been inherited, written documentation of the property transfer should be submitted along with the most recent deed.

Letter To "Governmental Unit/Right-Of-Way" Owners: Copies of all letters sent by the Responsible Party (RP) to a city, village, municipality, state agency or any other entity responsible for maintenance of a public street, highway, or railroad right-of-way, within or partially within the contaminated area, for contamination exceeding a groundwater Enforcement Standard (ES) and/or soil exceeding a Residual Contaminant Level (RCL) or a Site Specific Residual Contaminant Level (SSRCL).

Number of "Governmental Unit/Right-Of-Way Owner" Letters:

State of Wisconsin \ DEPARTMENT OF NATURAL RESOURCES

Jim Doyle, Governor Scott Hassett, Secretary Gloria L. McCutcheon, Regional Director Southeast Region Headquarters 2300 N. Dr. Martin Luther King, Jr. Drive Milwaukee, Wisconsin 53212-3128 FAX 414-263-8606 Telephone 414-263-8500 TTY Access via relay - 711

August 3, 2005

Patrick Finnemore, P.E. Director of Facilities Kenosha Unified School District 3600-52nd Street Kenosha, WI 53144-2697

SUBJECT:

A Certificate of Completion for the Environmental Investigation and Cleanup of Property Owned by Kenosha Unified School District located at 2600 50th St., Kenosha, WI

Dear Mr. Finnemore:

The Department of Natural Resources ("the Department") has received your request for issuance of a Certificate of Completion for the environmental investigation and cleanup of the property owned by the Kenosha Unified School District(KUSD) located at 2600 50th St., Kenosha, WI which will be referred to in this letter as "the Property". You have requested that the Department determine whether the KUSD has met the requirements under s. 292.15(2), Wis. Stats., for issuance of a Certificate of Completion.

The Property is a parcel of real property encompassing approximately 12 acres and is presently occupied by the Bain Elementary School of Language and Arts. The property is described as: Lots 1, 2, 3, 4, 5, 6, 7, 8 and 9, Block 2 and Lots 1, 2,3,4,5,6,7,8 and 9, Block 3, all in NEWELL-HOYT SECOND INDUSTRIAL SUBDIVISION; Together with the vacated North-South alleys in said Block 2 and 3., Also the Abandon Chicago North Shore and Milwaukee Railroad being a strip of land 100 feet in width running North and South from the South line of 45th Street South to the North line of 50th Street. Also vacated 46th Street and part of vacated 48th Street. Also part of Lot 16 of the RE-SUBDIVISION OF BLOCK 4 IN NEWELL-HOYT INDUSTRIAL SUBDIVISION, all that above described being part of the Northeast ¼ of Section 36, Town 2 North, Range 22 East of the Fourth Principal Meridian, and being more particularly described as follows: Beginning at the South line of 45th Street and the West line of 26th Avenue; thence South 1°09'25" East along said West line 860.90 feet to the North line of vacated 48th Street; thence North 89°54'32" West along said North line 140.00 feet to the Southeast corner of Lot 9, Block 3 of said Newell-Hovt Second Industrial Subdivision: thence South 1°09'25" East 310.00 feet: thence North 89°54'32" West 211.02 feet to the East line of abandon Chicago North Shore and Milwaukee Railroad; thence South 1°37'52" East along said East line 372.06 feet to the North line of 50th Street; thence North 89°52'29" West along said North line 100.00 feet to the West line of said abandon railroad; thence North 1°37'52" West 1544.07 feet to the South line of 45th Street; thence South 89°47'40" East along said South line 460.74 feet to the point of beginning, said land lying and being in the City of Kenosha, County of Kenosha and State of Wisconsin,

Part of Tax Key No.: 09-4-0222-36-134-011

Determination

As you are aware, s. 292.15, Wis. Stats., authorizes the Department to issue a Certificate of Completion to a voluntary party that conducts an approved environmental investigation of a property and restores the environment to the extent practicable and minimizes the harmful effects with respect to hazardous

substance discharges on or originating from the property. Based on the information received by the department, the Department has determined that the investigation and cleanup of the Property is complete and that all the conditions in s. 292.15(2), Wis. Stats., have been met. Attached is the Certificate of Completion for this Property.

Conclusions

The Department appreciates the work undertaken by the Kenosha Unified School District to investigate and clean up contamination associated with the Property. The exemption provided by the Certificate of Completion applies to any successor or assignee of KUSD if the successor or assignee complies with the appropriate conditions, pursuant to s. 292.15(3), Wis. Adm. Code. If you have any questions or concerns regarding this letter or the Certificate of Completion, please call me at (414) 263-8564 or Attorney Judy Ohm at (608) 266-9972.

Sincerely,

NLe 1 Ula

Michelle Williams Hydrogeologist Remediation & Redevelopment Program

Attachment: Certificate of Completion

cc: Michael Prager - RR/3 w/o attachment Judy Ohm - LS/5 w/o attachment Sean Cranley – ChemReport, Inc. Art Harrington, Godfrey and Kahn

State of Wisconsin Department of Natural Resources

CERTIFICATE OF COMPLETION OF RESPONSE ACTIONS UNDER SECTION 292.15(2)(ag), WIS. STATS.

Whereas, Kenosha Unified School District has applied for an exemption from liability under s. 292.15, Wis. Stats., for the property located at 2600 50th Street, Kenosha, WI, which is commonly referred to as Bain Elementary School of Language and Arts, further described in the legal description found on Attachment A and heretofore referred to as 'the Property';

Whereas, an environmental investigation of the Property has been conducted and has determined that contamination exists at the Property;

Whereas, Kenosha Unified School District has submitted to the Wisconsin Department of Natural Resources ("WDNR") investigation reports and a remedial action plan for the Property which comply with the requirements set forth in chs. NR 700-754, Wis. Adm. Code, consisting of the documents and reports listed in Attachment B;

Whereas, in accordance with s. 292.15(2)(ag) and (a), Wis. Stats., the WDNR has determined that an environmental investigation has been conducted which adequately identified and evaluated the nature and extent of the hazardous substance discharges on the Property and WDNR has approved of the remedial action plan for the Property;

Whereas, the WDNR has determined that the fill brought onto the Property in the past does not qualify as exempt under s. NR 500.08, Wis. Adm. Code. Due to the non-exempt status of the fill, any person who proposes to develop this Property must obtain approval from the WDNR under s. NR 506.085, Wis. Adm. Code, prior to the initiation of any development of the Property. On June 9, 2003, WDNR issued a Conditional Grant of Exemption for Development on a Property Where Solid Waste Has Been Disposed, included as Attachment D;

Whereas, Kenosha Unified School District has filed with the Register of Deeds of Kenosha a deed restriction (Attachment C) on the Property which declares that the Property

Page 1 - Certificate of Completion - Bain Elementary School of Language and Arts - BRRTS # 06-30-269300

is held and shall be held, conveyed or encumbered, leased, rented, used, occupied and improved subject to the following limitations and restrictions:

The following activities are prohibited on that portion of the property above where a cap or cover has been placed, unless prior written approval has been obtained from the Wisconsin Department of Natural Resources or its successor or assign(1) Excavating or grading of the land surface; (2) Filling on the capped area; (3) Plowing for agricultural cultivation; and (4) Construction or installation of a building or other structure with a foundation that would sit on or be placed within the cap or cover. In addition, the cap or cover shall be maintained in compliance with a plan prepared and submitted to the Wisconsin Department of Natural Resources by a responsible party, as required by section NR 724.13(2), Wis. Adm. Code (1997). See the Site Cap Maintenance Plan attached.

Whereas, on June 7, 2005, WDNR determined that response actions necessary to restore the environment to the extent practicable with respect to the discharges and minimize the harmful effects from the discharges to the air, land, and waters of the state were completed, except with respect to chlorinated volatile organic compounds which are on the property from off-site, for which Kenosha Unified School District is exempt from liability under s. 292.13(1), Wis. Stats.;

Whereas, on April 28, 2005, Kenosha Unified School District obtained a written determination from WDNR under s. 292.13(2), Wis. Stats., that Kenosha Unified School District is exempt from liability under s. 292.13 (1), Wis. Stats., with respect to chlorinated volatile organic compounds in groundwater on the Property; and

Therefore, based upon the information that has been submitted to the WDNR, the WDNR hereby certifies that the response actions set forth in the WDNR approved remedial action plan for the Property and any other necessary response actions have been completed, except with respect to chlorinated volatile organic compounds in groundwater, for which Kenosha Unified School District is exempt from liability under s. 292.13(1) Wis. Stats.

Upon issuance of this Certificate, Kenosha Unified School District and the persons qualified for protection under s. 292.15(3), Wis. Stats., are exempt from the provisions of ss. 289.05(1), (2), (3) and (4), 289.42(1), 289.67, 291.25(1) to (5), 291.29, 291.37, 292.11(3), (4), and (7)(b) and (c) and 292.31(8), Wis. Stats., with respect to the existence of hazardous substances on or originating from the Property, the release of which occurred prior to the date the department approved the environmental investigation required under s. 292.15(2)(ag) and (a)1., Wis. Stats., was approved provided that Kenosha Unified School District or current owner of the Property continues to satisfy the conditions under s. 292.13(1)(d) to (g) Wis. Stats. Those conditions are detailed in s. 292.13, Wis. Stats., but can be summarized as follows, with respect to discharges of hazardous substances that originated from a source other than the Property: allow WDNR, parties responsible for the hazardous substance discharges, and their representatives, to enter the Property to take action to respond to the discharges; agree to avoid any interference with action taken to respond to the discharge and avoid actions that worsen the discharge; and agree to any other conditions WDNR determines are reasonable and necessary to ensure that WDNR and the responsible parties can respond to the discharge.

Kenosha Unified School District and a person otherwise qualified for protection under s. 292.15(3), Wis. Stats., who owns or controls the Property would no longer qualify for this liability exemption if that person fails to maintain or monitor the Property as required by rules promulgated by the WDNR, and as required to meet the conditions of the June 9, 2003, Conditional Grant of Exemption for Development on a Property Where Solid Waste Has Been Disposed.

Any releases of a hazardous substance to or from the Property that occur after the date that the environmental investigation was approved will be the responsibility of the current Property owner and any other person who possesses or controls that discharge and any person who caused the discharge.

The protection from liability provided under s. 292.15(2), Wis. Stats., does not apply to any person who has obtained a Certificate of Completion by fraud or misrepresentation, or by the knowing failure to disclose material information or under circumstances in which Kenosha Unified School District knew or should have known about more discharges of hazardous substances than was revealed by the investigation approved by the WDNR.

Nothing in this Certificate or in s. 292.15, Wis. Stats., affects the authority of the WDNR to exercise any powers or duties under applicable laws other than s. 289.05(1), (2), (3) and (4), 289.42(1), 289.67, 291.25(1) to (5), 291.29, 291.37, 292.11(3), (4), and (7)(b) and (c) and 292.31(8), Wis. Stats., with respect to any release or threatened release of contaminants at the Property, or the right of the WDNR to seek relief available against any person who is not entitled to protection from liability under s. 292.15, Wis. Stats., with respect to such release or threatened release.

SIGNED AND CERTIFIED this 18 day of JULY

Scott Hassett, Secretary Wisconsin Department of Natural Resources

ATTACHMENT A LEGAL PROPERTY DESCRIPTION Bain Elementary School of Language and Arts, 2600 50th Street, Kenosha, WI

Lots 1, 2, 3, 4, 5, 6, 7, 8 and 9, Block 2 and Lots 1, 2,3,4,5,6,7,8 and 9, Block 3, all in NEWELL-HOYT SECOND INDUSTRIAL SUBDIVISION; Together with the vacated North-South alleys in said Block 2 and 3., Also the Abandon Chicago North Shore and Milwaukee Railroad being a strip of land 100 feet in width running North and South from the South line of 45th Street South to the North line of 50th Street. Also vacated 46th Street and part of vacated 48th Street. Also part of Lot 16 of the RE-SUBDIVISION OF BLOCK 4 IN NEWELL-HOYT INDUSTRIAL SUBDIVISION, all that above described being part of the Northeast ¼ of Section 36, Town 2 North, Range 22 East of the Fourth Principal Meridian, and being more particularly described as follows: Beginning at the South line of 45th Street and the West line of 26th Avenue; thence South 1°09'25" East along said West line 860.90 feet to the North line of vacated 48th Street; thence North 89°54'32" West along said North line 140.00 feet to the Southeast corner of Lot 9, Block 3 of said Newell-Hoyt Second Industrial Subdivision; thence South 1°09'25" East 310.00 feet; thence North 89°54'32" West 211.02 feet to the East line of abandon Chicago North Shore and Milwaukee Railroad; thence South 1°37'52" East along said East line 372.06 feet to the North line of 50th Street; thence North 89°52'29" West along said North line 100.00 feet to the West line of said abandon railroad; thence North 1°37'52" West 1544.07 feet to the South line of 45th Street; thence South 89°47'40" East along said South line 460.74 feet to the point of beginning, said land lying and being in the City of Kenosha, County of Kenosha and State of Wisconsin.

Part of Tax Key No.: 09-4-0222-36-134-011

ATTACHMENT B INVESTIGATION AND REMEDIAL ACTION PLAN REPORTS Bain Elementary School of Language and Arts

1.	Subsurface Site Environmental Assessment Report-Phase II, Hydrosearch, March 1990
2.	Subsurface Investigation and Remedial Action, Triad Eng. Inc. October 1997
3.	Phase I Environmental Assessment, Benchmark Environmental, June 1999
4.	Phase II Environmental Site Assessment, ChemReport, August 2000
5.	Site Investigation Workplan, ChemReport, April 2001
6.	Site Investigation Report, ChemReport, October 2001
7.	Site Investigation Report, GZA, GeoEnvironmental, April 2002
8.	Supplemental Site Investigation/Remedial Options Report, ChemReport, August 2002
9.	Remedial Design Report, ChemReport, March 2003
10.	Soil Mitigation Report, GZA, GeoEnvironmental, July 2003
11.	Site Remediation Workplan, GZA, GeoEnvironmental, February 2004
12.	Remedial Implementation Report, ChemReport, October 2004
13.	Closure Request, ChemReport, April 2005

Appendix B - Certificate of Completion - Bain Elementary School of Language and Arts - BRRTS # 06-30-269300

ATTACHMENT C DEED RESTRICTION Bain Elementary School of Language and Arts

See Attached Deed Restriction

Appendix C - Certificate of Completion - Bain Elementary School of Language and Arts - BRRTS # 06-30-269300

Document Number

DEED RESTRICTION

Declaration of Restrictions

In Re: See Legal Description attached as Addendum A.

STATE OF WISCONSIN

SS

COUNTY OF <u>Kenosha</u> County where document is signed]

WHEREAS, <u>Kenosha Unified School District</u> is the owner of the above-described property.

WHEREAS, arsenic, lead, polynuclear aromatic hydrocarbon (PAH) and volatile organic compound (VOC) discharges have occurred on this property. Arsenic, lead, PAH and/or VOC-contaminated soil is considered to remain beneath the entire property. Recording Area Recording Area

Name and Return Address Patrick Finnemore Kenosha Unified School District No.1 3600 - 52nd Street Kenosha, WI 53144

09-4-0222-36-134-011 Parcel Identification Number (PIN)

WHEREAS, it is the desire and intention of the property owner to impose on the property restrictions which will make

it unnecessary to conduct further soil remediation activities on the property at the present time.

NOW THEREFORE, the owner hereby declares that all of the property described above is held and shall be held, conveyed or encumbered, leased, rented, used, occupied and improved subject to the following limitation and restrictions:

The following activities are prohibited on that portion of the property described above where a cap or cover has been placed, unless prior written approval has been obtained from the Wisconsin Department of Natural Resources or its successor or assign: (1) Excavating or grading of the land surface; (2) Filling on the capped area; (3) Plowing for agricultural cultivation; and (4) Construction or installation of a building or other structure with a foundation that would sit on or be placed within the cap or cover. In addition, the cap or cover shall be maintained in compliance with a plan prepared and submitted to the Wisconsin Department of Natural Resources by a responsible party, as required by section NR 724.13(2), Wis. Adm. Code (1997). See the Site Cap Maintenance Plan attached as Addendum B.

This restriction is hereby declared to be a covenant running with the land and shall be fully binding upon all persons acquiring the above-described property whether by descent, devise, purchase or otherwise. This restriction inures to the benefit of and is enforceable by the Wisconsin Department of Natural Resources, its successors or assigns. The Department, its successors or assigns, may initiate proceedings at law or in equity

against any person or persons who violate or are proposing to violate this covenant, to prevent the proposed violation or to recover damages for such violation.

Any person who is or becomes owner of the property described above may request that the Wisconsin Department of Natural Resources or its successor issue a determination that one or more of the restrictions set forth in this covenant is no longer required. Upon the receipt of such a request, the Wisconsin Department of Natural Resources shall determine whether or not the restrictions contained herein can be extinguished. If the Department determines that the restrictions can be extinguished, an affidavit, attached to a copy of the Department's written determination, may be recorded by the property owner or other interested party to give notice that this deed restriction, or portions of this deed restriction, are no longer binding.

By signing this document, ______ asserts that he or she is duly authorized to sign this document on behalf of ______ Kenosha Unified School District.

IN WITNESS WHEREOF, the owner of the property has executed this Declaration of Restrictions, this 15 day of June, 2005

Signature: Printed Name:

Subscribed and sworn to before me this 15 day of 2005.

Kothleen Q. De Sol Notary Public, State of Usine

My commission <u>7-31-05</u>

This document was drafted by the Wisconsin Department of Natural Resources.

[FILENAME :Z:\deeddocs\Deed restriction.doc][revised October 6, 1999]

≁.q

.onI,troqeAmedJ

604:80 20 II Iuu

Lots 1, 2, 3, 4, 5, 6, 7, 8 and 9, Block 2 and Lots 1, 2, 3, 4, 5, 6, 7, 8 and 9, Block 3, all in NEWELL- HOYT SECOND INDUSTRIAL SUBDIVISION; Together with the vacated North-South alleys in said Block 2 and 3., Also the Abandon Chicago North Shore and Milwaukee Railroad being a strip of land 100 feet in width running North and South from the South line of 45th Street South to the North line of 50th Street. Also vacated 46th Street and part of vacated 48th Street. Also part of Lot 16 of the RE-SUBDIVISION OF BLOCK 4 IN NEWELL-HOYT INDUSTRIAL SUBDIVISION, all that above described being part of the Northeast 1/4 of Section 36, Town 2 North, Range 22 East of the Fourth Principal Meridian, and being more particularly described as follows: Beginning at the South line of 45th Street and the West line of 26th Avenue; thence South 1°09'25" East along said West line 860.90 feet to the North line of vacated 48th Street; thence North 89°54'32" West along said North line 140.00 feet to the Southeast corner of Lot 9, Block 3 of said Newell-Hoyt Second Industrial Subdivision; thence South 1°09'25" East 310.00 feet; thence North 89°54'32" West 211.02 feet to the East line of abandon Chicago North Shore and Milwaukee Railroad; thence South 1°37'52" East along said East line 372.06 feet to the North line of 50th Street; thence North 89°52'29" West along said North line 100.00 feet to the West line of said abandon railroad; thence North 1°37'52" West 1544.07 feet to the South line of 45th Street; thence South 89°47'40" East along said South line 460.74 feet to the point of beginning, said land lying and being in the City of Kenosha, County of Kenosha and State of Wisconsin.

Part of Tax Key No.: 09-4-0222-36-134-011

Addendum B Edward Bain School of Language and Art Site Cap Maintenance Plan

Site Cap Construction: The site construction incorporated three different types of cap construction that effectively cap the entire property. The school building with its subbase, vapor barrier and concrete floor provides capping for contaminated materials beneath the school. The hard surface playground, access drives and parking areas and walkways were capped with pavement. Landscaped areas and athletic fields were capped with clean soil. The pavement caps were constructed with a minimum of 3 inches of concrete or bituminous pavement overlying 10 inches of crushed aggregate. Grass covered portions of the site were capped by 6 inches of topsoil overlying 6 inches of compacted clay obtained from an off-site source.


Site Cap Inspection: Routine maintenance activities at the property are conducted by Kenosha Unified School District (KUSD) personnel and Edward Bain School of Language and Art custodians. These activities include, but are not limited to, lawn mowing, landscaping and snow removal activities. Personnel performing routine maintenance activities will be made aware of the restriction outlined in the property deed and the necessity of maintaining the site cap integrity. If during the course of these routine activities a significant breach in the cap materials is noted, the Director of Facilities will be promptly notified and repairs to the cap will be made expeditiously.

<u>Site Cap Maintenance</u>: Cracks, holes and other small penetrations of paved portions of the site cap will be patched with compatible surface materials on an annual basis. Holes or erosion features in the grassed or landscaped portions of the site cap will be filled and graded with clay, soil or other compatible earth materials as soon as practical.

Excavation: Should excavation through the cap materials be necessary good judgment should be used. Soils below one foot in depth should be considered contaminated. Small excavations for landscaping purposes should avoid penetration of the one-foot thick clean soil cap, if possible. If soils below the one foot depth are removed, they should be placed back into the excavation and covered with one-foot of clean soil or paved.

Excavations that will result in the removal of large amounts of soil from below one foot will require practices to properly handle the contaminated material. The contaminated soil must be staged on, and covered by plastic sheeting until it can be placed back in the excavation or properly disposed. The excavations should be capped with one foot of clean soils or paved. Although the contaminated soil does not pose a risk to human health through short-term exposure, workers contacting the soil should be apprised of the presence of the contamination and directed to employ good hygiene practices to limit exposure.

Reporting: Since the routine cap maintenance activities are consistent with the standard grounds care practices of KUSD, period reporting of routine maintenance activities is not warranted. Large penetrations, catastrophic failures and/or breaches of the site cap will be reported to the Department of Natural Resources as soon as practical.

SCALE: , = 200'

Drawn by:

6

PHY

B,

of 9

ATTACHMENT D EXEMPTION FOR DEVELOPMENT ON A PROPERTY WHERE SOILD WASTE HAS BEEN DISPOSED Bain Elementary School of Language and Arts

See Attached Conditional Grant of Exemption for Development on a Property Where Solid Waste Has Been Disposed

1. 1

State of Wisconsin \ DEPARTMENT OF NATURAL RESOURCE

Jim Doyle, Governor Scott Hassett, Secretary Gloria L. McCutcheon, Regional Director Plymouth Service Center 1155 Pilgrim Rd. Plymouth, Wisconsin 53073 Telephone 920-892-8756 FAX 920-892-6638

June 9, 2003

Mr. Sean Cranley ChemReport Incorporated 4515 Washington Road Kenosha, WI 53144

Ref: BRRTS# 06-30-269300 FID# 230149590

Subject: Conditional Grant of Exemption for the Development of the Mankowski Property Where Solid Waste has been Disposed

Dear Mr. Cranley:

We have reviewed your request dated August 1, 2002 for a grant of exemption from regulation under s. NR 506.085, Wis. Adm. Code. Based on that evaluation, the Department is issuing this general grant of exemption from the prohibitions contained in s. NR 506.085, Wis. Adm. Code for the property identified in your application as the Mankowski Property, also known as the American Motors Receiving Lot, located at 2600 45th Street in the City of Kenosha, Kenosha County, Wisconsin. You must comply with the conditions of this grant of exemption in order to maintain the exemption. This grant of exemption is limited to the proposed changes described in your application. If you are considering additional changes beyond those described in the application, a new application must be submitted to the department for approval.

Please review the information contained in the publication *Development at Historic Fill Sites and Licensed Landfills: Considerations and Potential Problems* PUB-RR-685 to assist you in preventing environmental or safety problems during and after development.

You are reminded that this approval does not relieve you of obligations to meet all other applicable federal, state and local permits, as well as zoning and regulatory requirements. If you have any questions concerning this letter, please contact Thomas A. Wentland at 920-892-8756 Ex. 3028.

Sincerely,

Khowst

Jappes A. Schmidt, Supervisor Remediation and Redevelopment Section Southeast Region

Cc: City of Kenosha, Building Inspection

BEFORE THE

STATE OF WISCONSIN DEPARTMENT OF NATURAL RESOURCES

CONDITIONAL GRANT OF EXEMPTION FOR DEVELOPMENT ON A PROPERTY WHERE SOLID WASTE HAS BEEN DISPOSED

FINDINGS OF FACT

The Department finds that:

- 1. The Kenosha Unified School District owns the property describer as the Mankowski Property at 2600 45th Street, Kenosha, Wisconsin.
- 2. Based on information provided by the applicant solid waste materials consisting primarily of foundry sand waste have been disposed of at this property.
- 3. Mr. Sean Cranley of ChemReport Incorporated submitted the application for exemption and a Project Status Update Supplemental Soil Gas Methane Monitoring Report, dated May 19, 2003 relating to the proposed development and the environmental conditions at the property.
- 4. Based upon the evaluation provided to the Department, there are low levels of methane gas present at the site.
- 5. If the conditions set forth below are complied with, the development of the property will not result in environmental pollution as defined in ss. 289.01(8) and 299.01(4), Wis. Stats.

CONCLUSIONS OF LAW

- 1. The Department has the authority under s. NR 500.08(4), Wis. Adm. Code to issue an exemption from the prohibition in s. NR 506.085, Wis. Adm. Code, if the proposed development will not cause environmental pollution as defined in ss. 289.01(8) and 299.01(4), Wis. Stats.
- 2. The Department has authority to approve a grant of exemption with conditions if the conditions are necessary to ensure compliance with the applicable provisions of chapters NR 500 to 538, Wis. Adm. Code, or to assure that environmental pollution will not occur.
- 3. The conditions set forth below are necessary to ensure compliance with the applicable provisions of chapters NR 500 to 538, Wis. Adm. Code, and to assure that environmental pollution will not occur.
- 4. In accordance with the foregoing, the Department has the authority under s. NR 500.08(4), Wis. Adm. Code, to issue the following conditional grant of exemption.

CONDITIONAL GRANT OF EXEMPTION

The Department hereby issues an exemption to Kenosha Unified School District from the prohibition in s. NR 506.085, Wis. Adm. Code for development on a property which contains solid waste as proposed in the submittal dated April 11, 2003 subject to the following conditions:

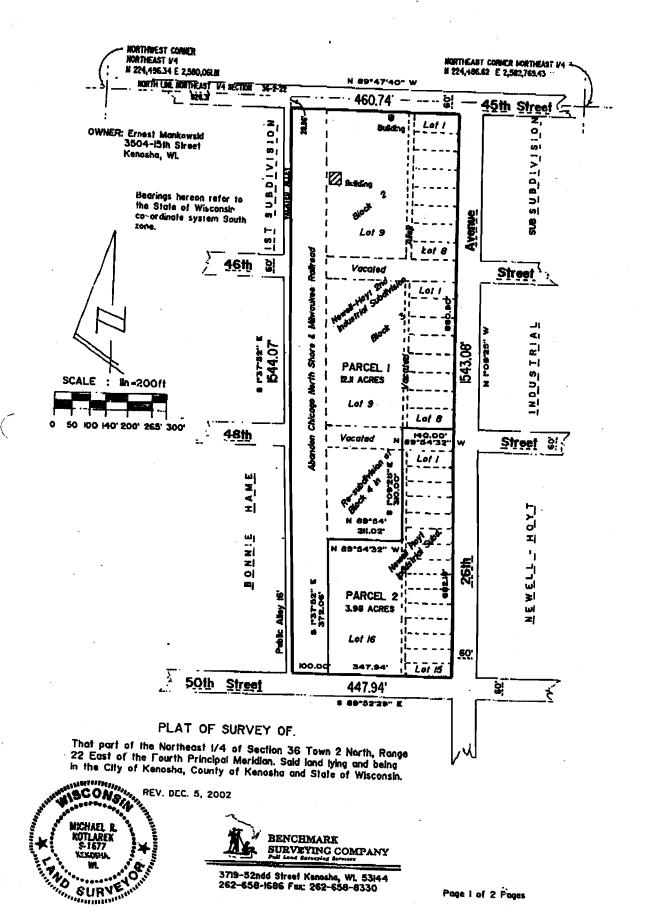
- 1. No action related to the development of the property may be taken which will cause a significant adverse impact on wetlands as provided in ch. NR 103, Wis. Adm. Code.
- 2. No action related to the development of the property may be taken which will cause a significant adverse impact on critical habitat areas, as defined in s. NR 500.03(55), Wis. Adm. Code.
- 3. No action related to the development of the property may be taken which will cause a detrimental effect on any surface water, as defined in s. NR 500.03(62), Wis. Adm. Code.
- 4. No action related to the development of the property may be taken which will cause a detrimental effect on groundwater, as defined in s. NR 500.03(62), Wis. Adm. Code, or will cause or exacerbate an attainment or exceedance of any preventive action limit or enforcement standard at a point of standards application in ch. NR 140, Wis. Adm. Code.

- 5. No action related to the development of the property may be taken which will cause a migration and concentration of explosive gases in any structures in excess of 25% of the lower explosive limit for such gases at any time. No actions may be taken which will cause a migration and concentration of explosive gases in the soils outside of the limits of solid waste disposal within 200 feet of the property boundary or beyond the property boundary in excess of the lower explosive limit for such gases at any time. No actions may be taken which will cause a migration and concentration of explosive gases in the air outside of the limits of solid waste disposal within 200 feet of the landfill boundary or beyond the limits of solid waste disposal within 200 feet of the landfill boundary or beyond the landfill property boundary in excess of the lower explosive limit for such gases at any time.
- 6. No action related to the development of the property may be taken which will cause an emission of any hazardous air contaminant exceeding the limitations for those substances contained in s. NR 445.03, Wis Adm. Code.
- 7. No action related to the development of the property may be taken which will cause an exceedance of a soil clean up standard in ch. NR 720, Wis. Adm. Code.
- 8. Safeguards should be taken to prevent methane gas from collecting in the structure. The installation of vents, trenches, methane alarms, flexible membrane liners under foundations, and constructing with slab foundations may prevent the migration of methane into the building. At a minimum, the external venting system should consist of a 6 to 12 inch pea gravel layer laid directly over the waste with an interconnected system of 4-inch diameter polyvinyl chloride (PVC) or corrugated drainage pipe installed in the top 4 inches of the pea gravel. A vapor barrier consisting of a minimum 30-mil thick polyethlylene geomembrane welded at the seams to provide a continuous barrier between the venting system and the floor slab should be installed. Filter fabric or a 6-inch layer of fine sand should be placed on top of the geomembrane to act as a cushion.
- 9. This grant of exemption is limited to the proposed changes described in your application. If you are considering additional changes beyond those described in the application, a new application must be submitted to the department for approval. The Department reserves the right to require the submittal of additional information and to modify this grant of exemption at any time, if in the Department's opinion, modifications are necessary. Unless specifically noted, the conditions of this grant of exemption do not supersede or replace any previous conditions of approval for this property.

NOTICE OF APPEAL RIGHTS

If you believe that you have a right to challenge this decision, you should know that Wisconsin statutes and administrative rules establish time periods within which requests to review Department decisions must be filed.

For judicial review of a decision pursuant to section 227.52 and 227.53, Stats., you have 30 days after the decision is mailed, or otherwise served by the Department, to file your petition with the appropriate circuit court and serve the petition on the Department. Such a petition for judicial review shall name the Department of Natural Resources as the respondent.


Dated: 6.

DEPARTMENT OF NATURAL RESOURCES For the Secretary

James A. Schmidt, Supervisor Remediation and Redevelopment Section Southeast Region

Thomas A. Wentland

Waste Management Engineer Remediation and Redevelopment Section Southeast Region

KENOSHA UNIFIED SCHOOL DISTRICT NO. 1

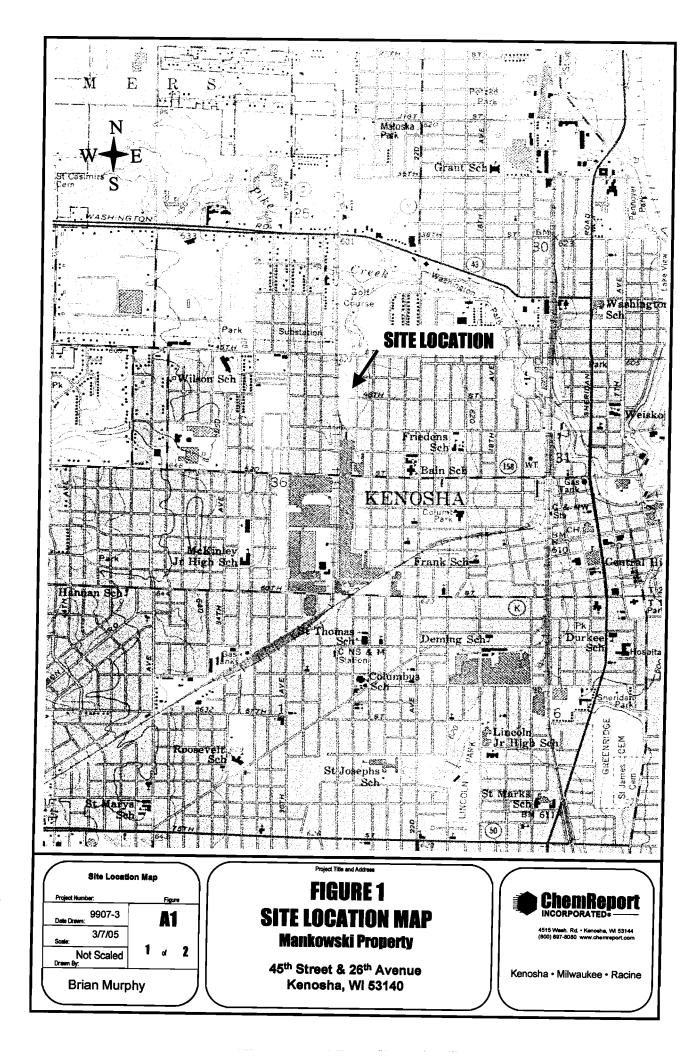
EDUCATIONAL SUPPORT CENTER 3600 - 52ND STREET • KENOSHA, WISCONSIN 53144-2697 • PHONE 262-653-6300 www.kusd.edu

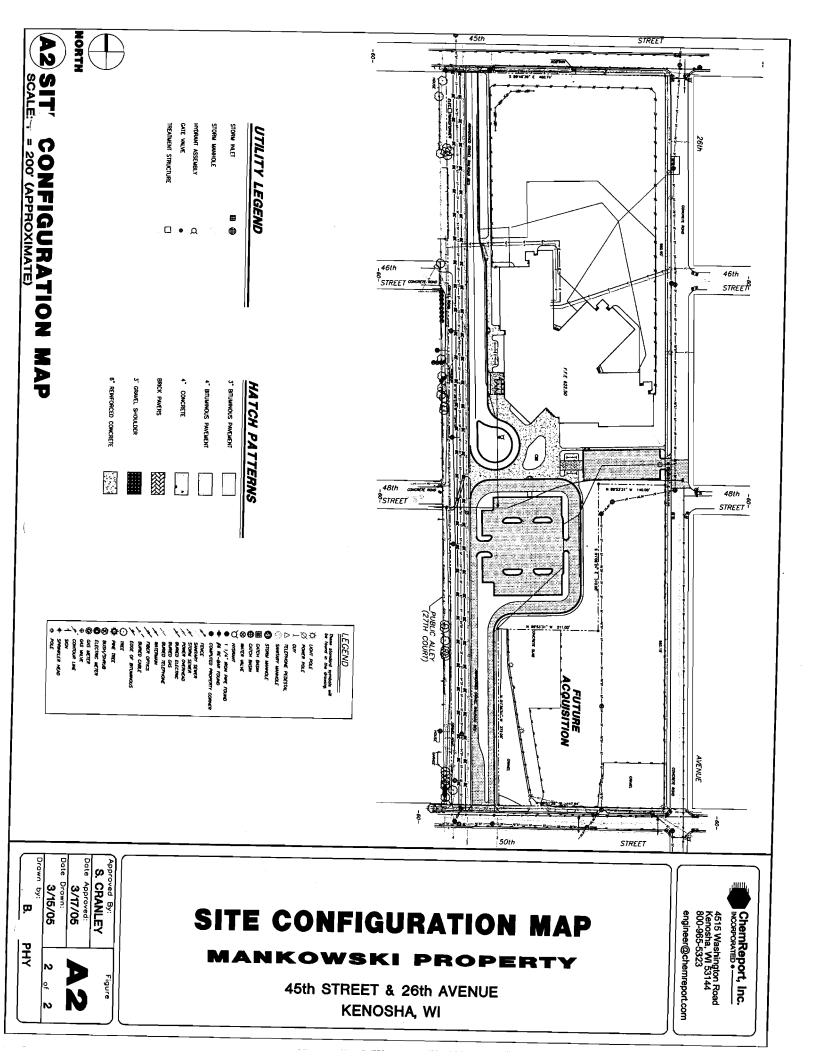
April 4, 2005

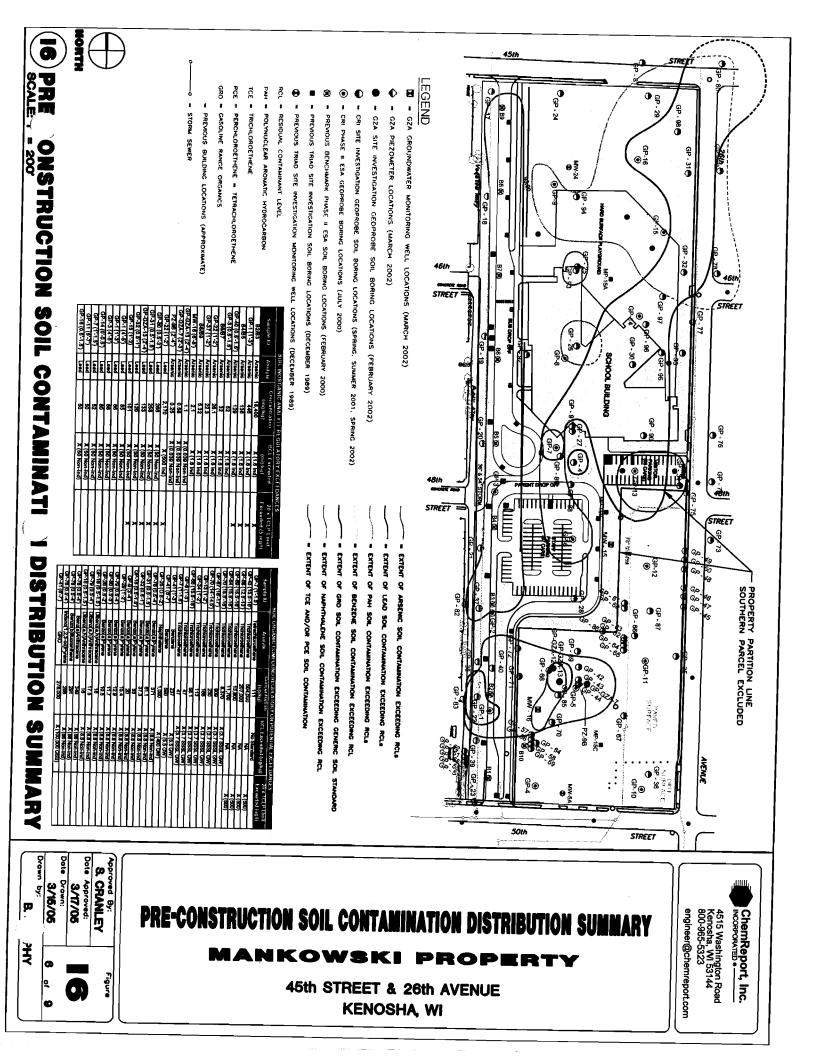
Ms. Michelle Williams Hydrogeologist Wisconsin Department of Natural Resources P.O. Box 12436 Milwaukee, WI 53212-0436

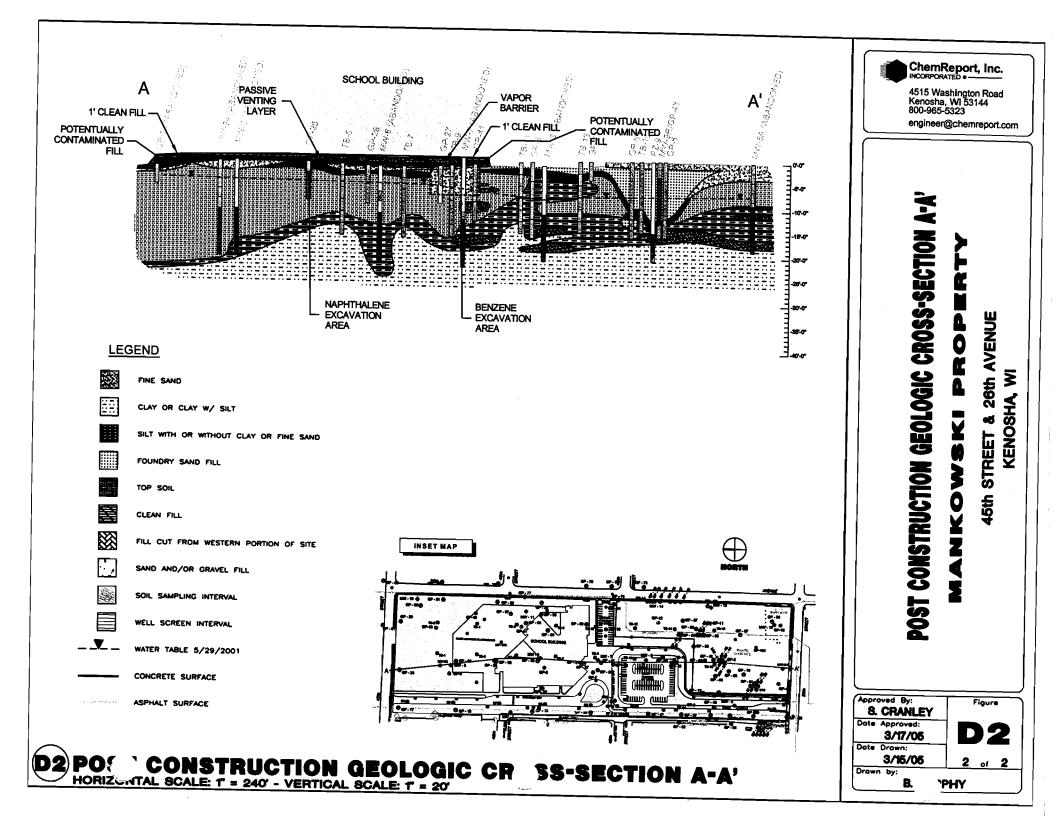
RE: Edward Bain School of Language & Art 2600 50th Street Kenosha, Wisconsin 53140 WDNR BRRTS# 06-03-269300 WDNR FID# 230149590 Parcel ID# 09-4-0222-36-134-011

Dear Ms. Williams:


This letter is to certify that to the best of my knowledge the legal description provided in Addendum A of the attached Draft Deed Restriction, for the above referenced site is accurate.


If you have any questions please call Sean Cranley of ChemReport, Inc. at (262) 654-7020. Thank you.


Sincerely,


Datuch 1. Jun

Patrick M. Finnemore, P.E. Director of Facilities

TABLE I2 Fill/Soil Sample Metals Analytical Results Summary Mankowski Property May 2001, April 2002

Parameter									Matrix and Coli									110.72	0 RCLs	RCRA TC
	GP-17 (0.5-2')	GP-18 (0.5'-1.5')	GP-19 (1'-3')	GP-20 (1'-3')	GP-21 (1'-3')	GP-22 (1'-2')	GP-23 (1°-2)	GP-24 (0.5-2')	GP-25 (0.5'-2')	GP-25 (5-7)	GP-26 (0.5-2')	GP-26 (5-7')	GP-27 (0.5-2)	GP-27 (5-7')	GP-29 (1*-2*)	GP-31 (0.5-1.5)	GP-32 (0.5-1)		
	Sol	Soli	Soli	Soll	Fill/Soil	Soli	Fill	Soll	Soil	Soit	Fit/Soil	Soil	비귀	Soil	Fig	Fix	ការ	Direct	Contact	
	5-14-01	5-14-01	5-14-01	6-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	6-14-01	5-14-01	5-14-01	Non-Industria	industrial	TCLP x20 (2
Total Metals (mg/kg)																		mg/kg	ma/ka	mg/l
Arsonic	<2.82	<2.78	<2.89	<2.98	<2.50	26.1 🔳	<2.50	<2.97	<2.98	<2.89	<2.96	<2.94	<2.82	<2.95	NA	NA	NA	0.039	1,6	100
ead	NA	NA	NA	NA	NA	2,170 (TC) 🔳	10,3	7.41	19.5	7.47	48.2	6.36	10.3	5.47	20.3	258 (TC) ●	120 (TC) ●	60	500	100
.ead (Retested) (1)						1,550 (TC) 🛤													,	
Parameter							Sample	iD, Matrix, a	nd Collection E	Date							NR 72	0 RCLs	RCRA TCLF	· ·
iampie I.D.	GP-33 (0.5'-1')	GP-34 (1'-2')	GP-35 (1'-2')	GP-36 (1-2)	GP-36 (5*-6*)	GP-37 (1*-2*)	GP-38 (11-27)	GP-39 (1'-2')	GP-40 (0.5'-1.6')	GP-40 (5'-6')	GP-40 (10-111	GP-40 (15-16)	GP-41 (1'-3')	GP-41 (6'-7')	GP-41 (11'-12')	Decon Blank				
Sample Matrix	Fill/Soil	Fill/Soll	Fill	Fill/Solt	Soli	Soli	Sol	FW	Fill	Soli	Sol	Soil	Fill/Soli	Soil	Soil	Water	Direct	Contact		
Date Collected	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	Non-Industria		TCLP x20 (2)	
Total Metals (mg/kg)				•												mgA	mg/kg	mg/kg	тэрЛ	
Visionic	NA	NA	NA	<2.91	<2.86	22.3 🔳	<2.50	<2.50	129 (TC) 🔳	<2.76	<2.91	3.00	NA	NA	NA	<0.0500	0.039	1.6	100	•
oad	14.6	36.6	23.3	7.74	6.62	NA	2.35	21.4	NA	NA	NA	NA	17.1	4.62	5.15	0.00834	50	500	100	
Parameter		Sample ID, N	latrix, and Co	disction Date		NR 720	RCLB	RCRA TCLP												
Sample I.D.	GP-78 (0.5'-4')	GP-79 (0.5'-4')	GP-80 (0.5-3')	GP-82 (0.5°-1')	GP-83 (0.5'-1')															
Sample Matrix	Fil	FIII	Fil	Soil	Fit	Direct Cor	nact													
Date Collected	4-4-02	4-4-02	4-4-02	4-3-02	4-3-02	Non-Industrial	Industrial	TCLP x20 (2)												
Total Metals (mg/kg)						mg/kg	mg/kg	mg/l		·										
Arsonic	NA,	NA	NA	<3.18	<3,13	0.039	1.8	100												
.0ad	35.1	33.6	266 (TC) 🗢	NA	20.5	60	500	100												
iotes:																				
 Indicates concentration Indicates concentration 																				
TC) indicates that the tota Sold typed results indicate					than the laborato	ry detection limit.							·							
1) A total concentration gr	reater than 20 tim ant Lovel	es the RCRA TC	LP limit indicates	that the material	would constitute	a hazardous waa	ste if disposed	, unleas TCLP to	sting indicated othe	orwise.										

NA = Not Analyzed

Interim Guidance RCLs

TABLE 13

Fill/Soil Sample PAH Analytical Results Summary Mankowski Property - Kenosha, Wisconsin May 2001, April 2002

Pa	ram	oter
----	-----	------

Sample ID, Matrix, and Collection Date	

	GP-24 (0.5'-2')	GP-25 (0.5'-2')	GP-25 (5*-7*)	GP-26 (0.5'-2')	GP-26 (5'-7')	GP-27 (0.5'-2')	GP-27 (5'-7')	GP-29 (1'-2')	GP-31 (0.5'-1.5')	GP-32 (0.5-1')	GP-36 (1'-2')	GP-36 (5'-6')	Decon Blank	GP-78 (0.5'-4')	GP-79 (0.5'-4')	GP-80 (0.5'-3')	GP-81 (1'-2')			
	Şoil	Sol	Soil	Fill/Soil	Soil	Fil	Soli	Fill	FW	Fill	Fill/Soil	Soil	Water	FN	Fill	Fil	Soll	Protection of	Direct	t Contact
	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	4-4-02	4-4-02	4-4-02	4-4-02		Non-Industria	
PAHs (ug/kg)													uch					ug/kg	ua/ka	ug/kg
Aconaphtheno	<119	<119	<118	<119	<118	<113	<118	<121	149	<119	<117	<114	<5.00	719	<131	<126	<118	39,000	900,000	60,000,000
Anthracene	<119	<119	<118	<119	<118	<113	<118	<121	<124	<119	<114	<114	<5.00	181	<131	<126	<118	3,000,000	5,000,000	300,000,000
Benz (a) anthracone	<59.3	<59.7	<57.8	-59.3	<58.8	<56.5	<59.0	<80.4	461.9	<59.7	<58.3	\$7.2	<0.100	349 ●	465.7	<62.9	<58.8	17,000		3,900
Banzo (a) pyrane	<5.93	<5.97	<5.78	10.5 ●	<5,88	<5.65	<5.90	15,4 🗢	61.1 ●	37,3 ●	<5.83	<5.72	<0.0200	371 ●	12.9 ●	11.7 .	\$5.88	48,000	8.8	390
Benzo (b) fluorenthene	<59.3	< 9.7	<57.8	<\$9.3	<58,8	<\$6.5	<\$9.0	<60.4	<61.9	<\$9.7	<58.3	<57.2	<0.0200	291 ●	<65.7	<62.9	<58.8	360,000	88	3,900
Banzo (ghi) perylone	<119	<119	<118	<119	<118	<113	<118	<121	<124	<119	<117	<114	<5.00	226	<131	<126	<188	6,800,000	1,800	39,000
Benzo (k) fluoranthene	<119	<119	<118	<119	<118	<113	<118	<121	<124	<119	<117	বা14	<0.100	140	<131	<126	<118	870,000	680	39.000
Chrysone	<119	<119	<116	<119	<118	<113	<118	<121	<124	<119	<117	<14	<0.0200	404	<131	<128	<118	37,000	8.800	390,000
Dibenz (a,h) anthracene	<5.93	< 5 ,97	<5.78	<5.93	<5,88	<5.65	<5.90	<6.04	<6.19	<5,97	<5.83	S.72	<0.100	32.6 ●	17.5 ●	<6.29	<5.88	38,000	8.8	390
Fluoranthono	<119	<119	<116	<119	<118	<113	<118	<121	179	<119	<117	<114	<5.00	369	<131	<128	<118	500.000	600.000	40.000.000
Indeno (1,2,3-cd) pyrane	<\$9.3	<\$9,7	<57.8	<59,3	<58.8	<58.5	<59,0	<60.4	<61.9	<59.7	<58,3	\$7.2	<0.200	266 ●	<85.7	<82.9	<8.8	680,000	88	3,900
1-Mothylnaphthalene	<119	213	<116	<119	<118	<113	<118	<121	<124	<119	<117	<114	<5.00	206	<131	<126	<118	23,000	1.100.000	70,000,000
2-Mothylnaphthalene	<119	157	<116	<119	<118	<113	<118	<121	<124	<119	<117	<114	<5.00	279	<131	<126	<118	20,000	600,000	40,000,000
Naphthalone	<119	<119	<116	<119	<118	<113	<118	<121	<124	<119	<117	<114	<5.00	131	<131	<128	<118	400	20.000	110,000
Phonanthrene	<119	<118	<116	<119	<118	<113	<118	<121	152	<119	<117	<114	<5.00	838	<131	<126	<118	1,800	18,000	390,000
Pyrene	<119	<119	<116	<119	<118	<113	<118	<121	142	<119	<17	<114	<5.00	837	<131	<126	<118	8,700.000	500.000	30,000,000

A Indicates concentration exceeds groundwater protection RCL

Bold typed results indicate that the analyte was present at a concentration equal to or greater than the laboratory detection limit. PAHe = Polynuclear Aromatic Hydrocarbons RCL = Residual Contaminant Levol

TABLE 14 Fill/Soll Sample VOC/GRO Analytical Results Summary Mankowski Property - Kenosha, Wisconsin Spring, Summer 2001

Parameter

Sample ID, Matrix, and Collection Date

NR 720 RCLs RCRA TCLP

	Soli	Soli	FIVSol	Sol	Sol	FN/Sol	Sol	Fill	Sol	FillSol	FIL	FM	FI#/Soli	Fil/Sol	FIII/Sof	Sol	Fil/Soli	Sol	Sol	Water	Water	Methanol	Protection of	
	5-14-01	5-14-01	5-14-01	5-14-01	6-14-01	5-14-01	6-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	6-14-01	5-14-01	5-14-01	6-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	Groundwater	TCLP x20 (
VOCa (ug/kg)																				wall	un/i	ug/i	unika	
12000 e	<26.0		<25.0	<50.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<26.0	<25.0	<25.0	<25.0	<25.0	<25.0	237 🔺	590 🔺	<25.0	<0.500	<0.600	<25.0		ugf
omobenzene	<26.0	<26.0	<26.0	<50.0	<25.0	<25.0	<25.0	<25.0	<25.0	<26.0	<25.0	<25.0	<25.0	<26.0	<25.0	<26.0	<50.0	432	<25.0	<0.500	<0.500	<25.0	NS	10,000 NS
Sulyibenzene	<26.0	<26.0	<25.0	1,980	<26.0	<25.0	<25,0	98,4	<25.0	<26.0	<25,0	<25.0	<25.0	<26.0	<25.0	<26.0	117	1,150	<25.0	<0.500	<0.500	<25.0	NS NS	NS NS
c-Butylbenzene	<26.0	<26.0	<26.0	1,150	<25.0	<26.0	<25.0	<26.0	<25.0	28,0	<25,0	<26.0	<25.0	<25.0	<25.0	<25.0	155	1,350	<25.0	<0.500	<0,500	<25.0	NS	
1-Butytbenzene	<26.0	<26.0	<25.0	315	<25,0	<25.0	<25.0	<26.0	<25.0	<25.0	<26.0	<25.0	<26.0	<25.0	<25.0	<25.0	69.5	635	<25.0	<0.500	<0.500	<25.0	NS NS	NS
nioroform	<26.0	<25.0	<25.0	<50.0	<25.0	<25.0	<25,0	<25.0	<25.0	<25.0	<25.0	<25.0	<26.0	<25.0	<28.0	<25.0	<50.0	<100	<25.0	<0,140	<0.140	<25.0	NS NS	NS
3-Dichlorobenzene	<25.0	<26.0	<25.0	<60.0	<25.0	<25.0	<26.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<50.0	<100	<26.0	<0.500	<0.500	<25.0	NS NS	6,000
4-Dichlorobenzene	<25,0	<26.0	<25.0	<50.0	<26.0	<25.0	<26.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<26.0	<50.0	<100	<25,0	<0.600	<0.500	<25.0	NS	NS
s-1,2-Dichloroethene	<25.0	<25.0	<26.0	<60.0	<25.0	<26.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<\$0.0	<100	<25.0	<0.500	<0.600			7,500
ans-1,2-Dichloroathana	<28.0	<25,0	<25.0	<50.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<60.0	<100	<25.0	<0.500	<0.500	<25.0	NS NS	NS
2-Dichloropropana	<25.0	<26.0	<25.0	<50.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<50.0	<100	<25.0	<0,600	<0.500		NS	NS
hylbenzene	<25.0	<26.0	<25,0	<50.0	<26,0	<25.0	<25.0	<25,0	<25.0	<25.0	33.0	32.0	<25.0	<25.0	<25.0	<25.0	128	662	<26.0	<0.600	<0.500	<26.0		NS
opropyloenzene	<25.0	<25.0	<25.0	<60,0	<26.0	<25.0	<25.0	<26.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	70.5	712	<25.0	<0.600	<0.500	<25.0	2,900 NS	N5
Isopropyltokuene	<25.0	<25.0	<25.0	1,220	<25.0	<26.0	<25,0	70.6	<25.0	32.1	31.3	<25.0	<25.0	<25,0	<25.0	<25.0	208	729	<25.0	<0.500	<0.600	<25.0	NS NS	NS
iethylene ohloride	<100	<100	<100	<200	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<200	<400	<100	<0.630	3.94	<100	NG NG	NS
aphthalene	<26.0	<25,0	<25.0	1,090 🔺	<25.0	<26.0	<25.0	151	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<50.0	<100	<26.0	<2.00	<2.00	<25.0		NS NS
Propylaenzene	<26.0	<25.0	<25,0	115	<26.0	<25,0	<25.0	<\$5.0	<25.0	<26.0	<25.0	<25.0	<25.0	<25.0	<25.0	<26.0	108	668	<26.0	<0.600	<0,500		400 (2) NS	
atrachloroathana	<26.0	<26.0	<25.0	<50.0	<25.0	<25.0	<25.0	<26.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<50.0	<100	<26.0	<0.500	<0.500	<26.0	NS	N5
aluene	<26.0	<26.0	<\$5.0	<50.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<50.0	<100	<25.0	<0.500	<0.600	<25,0		14,000
1,2-Trichloroethane	<26.0	<26.0	<26.0	<50.0	<25.0	<28.0	<25,0	<25.0	<25.0	<25.0	<26.0	<25.0	<26.0	<25.0	<26.0	<25.0	<50.0	<100	<25.0	<0.500	<0.160	<25.0	1,600	NS
nahlaraethene	<26.0	<26.0	<25.0	<60.0	<25,0	<25.0	<25,0	<25.0	<25.0	<25.0	<25.0	<25.0	<28.0	113	<26.0	<25.0	<50.0	<100	<26.0	<0.500	<0.500	<25,0	NS NS	NS
2,4-Trimethylbenzene	<26.0	<26.0	<28.0	653	<25,0	<25.0	<26.0	<25.0	<25.0	<25.0	16.3	<25.0	<25.0	<25.0	<26.0	<25.0	<50.0	726	<25.0	<1.00	<1.00	<25.0	NS	10,000
3,5-Trimethylboruzene	<25.0	<26.0	<25.0	428	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<26.0	<26.0	<25.0	<26.0	<26.0	<26.0	<50.0	662	<25.0	<1.00				NS
nyi ohioride	<25,0	<25.0	<5.0	<50.0	<25.0	<26.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<26.0	<50.0	<100	<25.0	<0.170	<1.00	 <25.0	NS NS	NS
otal Xylenes	<\$5.0	<25.0	<25.0	<50,0	<25.0	<25.0	<25.0	<26.0	<25.0	33.7	74,6	45.7	<25,0	<25.0	<25.0	<26.0	125	676	<25,0	<0.500	<0.500	<25.0	4,100	4,000 NS
GRO (mg/kg)																							_	
30	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	10.5	178 +	<i>26.74</i>	8 H d			mg/kg	
(as;																1.64	10.0	278 ★	<5.71	NA	NA	NA	100/250 (3)	NS
bie includes detected ana	lytes only.																							

(TC) indicates that the total concentration is greater than 20 times the RCRA TCLP limit,

Bold typed results indicate that the analyte was present at a concentration equal to or greater than the laboratory detection limit.

(1) A total concentration greater than 20 times the RCRA TCLP limit indicates that the materiel would constitute a hazardous wests if disposed, unless TCLP testing indicated otherwise.

(2) interim guidance RCLs for polynuclear aromatic hydrocarbons (PAHs), including naphthalone have been established by the Wisconsin Department of Natural Resources,

The non-industrial and industrial direct contact RCLs for naphthalene are 20,000 up/kg and 110,000 up/kg, respectively. (3) NR 720 establishes generic soil cleanup standards of 100 mg/kg or 250 mg/kg, depending on site hydraulic conductivity.

RCL = Residual Contaminant Level

- RCRA = Resource Conservation and Recovery Act TCLP = Toxicity Cheracteristic Leachate Procedure
- VOCs = Votatile Organic Compounds
- ORO = Gasoline Range Organics
- NA = Not Analyzed
- NS = No Standard

TABLE I4 Continued Fill/Soli Sample VOC/GRO Analytical Results Summary Mankowski Property - Kenosha, Wisconsin Spring, Summer 2001

......

Sample ID, Matrix, and Collection Date

NR 720 RCLs RCRA TCLP

Sample Matrix	GP-43 (15.5'-16') (Soli	Sol	Sol	Soil	Fil/Soli	Soll	Soli	Fil/Soil	Soli	Filt		GP-75 (2.5-37)	GP-76 (3'-4')	Trip Blank	M=OH Blank		
Jete	6-27-01	6-27-01	8-16-01	6-15-01	6-16-01	5-16-01	8-16-01	8-16-01	50a 5-16-01	F# 8-17-01	Soli 8-17-01	Pil/Sol 8-17-01	FNI	Water	Methanol	Protection of	
						0.000	0.001		0-10-01	6-17-01	0-17-01	0-17-01	8-17-01	8-10-01	8-16-01	Groundwater	TCLP x20 (1
VOCa (ug/kg)														ьgл	ug/t	ug/kg	40 ⁴
anzone	<250		<26.0	<25.0	<25.0	75.8 🔺	<26.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<0,500	<25.0	5.5	10.000
Iromobenzene	<250	<25.0	<26.0	<25.0	<25.0	<25.0	<26.0	-25,0	<26.0	<25.0	<25.0	<25.0	<26.0	<0.600	<25.0	NS	NS
Butylbenzene	1,400	<25.0	<26.0	62,1	<28.0	<25.0	<25.0	<25.0	29,5	<26.0	<25.0	<25.0	44.5	<0.600	<25.0	NS	NS
oc-Butylbenzene	1,400	<25.0	<26.0	223	<25.0	<25.0	<25.0	<25.0	<25.0	<26.0	<25.0	<25.0	39.3	<0.500	<25.0	NS	NS
ert-Butylbenzene	570	<25.0	<26.0	81.A	<25.0	<25.0	<25.0	<25.0	<25.0	<26.0	<25.0	<26.0	<26.0	<0.500	<25.0	NS	NS
hioroform	<250	<26.0	<25.0	244	30.6	86,2	36.5	89,9	29.4	<25.0	<25.0	<25.0	<25.0	<0.140	<25.0	NS	8,000
3-Dichiorobenzene	<250	<26.0	<25.0	203	<26.0	<25,0	<26.0	<25.0	<25.0	<25.0	<25.0	<25.0	<26.0	<0.600	<25.0	NS	NS
4-Dichlorobenzene	<250	<26.0	<26.0	<25.0	<26.0	<25.0	<26.0	<25.0	<25.0	<100	<100	<100	43,6	<0.500	<25.0	NS	7,500
s-1,2-Dichlorcethene	46,500	<26.0	138,000	10,300	1,370	1,170	6,060	905	200	<26.0	<25.0	<25.0	<25.0	<0.500	<26.0	NS	NS
ans-1,2-Dichloroethene	484	<26.0	<25,0	170	77,0	<25.0	<25.0	79,8	<25.0	<25.0	<25.0	<25.0	<26.0	<0.500	<26.0	NS	NS
2-Dichioropropane	1,070	<26.0	<25.0	<25.0	<25.0	<25.0	<28.0	<25.0	<25.0	<25.0	<25.0	<25.0	<26.0	<0.500	<25.0	NS	NS
thylbenzene	16,600 🔺	<25.0	886	010	<25.0	37.2	<25.0	<25.0	<26.0	<25.0	<25.0	<26.0	<25.0	<0.500	<25.0	2,900	NS
opropytoenzene	1,210	<25.0	<26.0	79,7	<25.0	41.0	<25.0	<25.0	<25.0	<26.0	<25.0	<25.0	<25.0	<0.500	<25.0	NS	NS
Isopropyltoluene	1,410	<25.0	<26.0	241	<25.0	<26.0	<25.0	<25.0	<25.0	<26.0	<25.0	<25.0	50.2	<0.500	<25.0	NS	NS
ethylene chloride	<1,000	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<0.530	<100	NG	NS
laphthalene	<250	<25.0	<75,0	240	<25,0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	108	<2.00	<25.0	400 (2)	NS
Propylbenzene	381	<26.0	<25.0	44.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<26.0	<25.0	<0.600	<25.0	NS	NS
etrachioroethene	1,920	<25,0	1,100	<25.0	<26.0	174	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<0.600	<25.0	NS NS	14,000
oluono	<250	<25.0	409	44.4	<25,0	162	30,1	<25.0	<25,0	<25.0	<26.0	<26.0	<25,0	<0.500	<25.0	1,500	NS
1,2-Trichloroethane	<250	<28.0	<25.0	<26.0	<25.0	195	<26.0	<25.0	48.0	<25.0	<25.0	<25.0	<26.0	<0.160	<28.0	NS	NS
richloroathane	504,000 (TC	<28.0	11,700 (TC	58,1	909	207,000 (TC	13,800 (TC)	230	8,370	<26.0	<25.0	<25.0	<28.0	<0.600	<25.0	NS	10,000
2,4-Trimathylbanzene	705	<25.0	122	62.0	<25.0	<25.0	<26.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<1.00	<25.0	NS	NS
3,5-Trimethylbenzene	<260	<25.0	<25.0	141	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<1.00	<25.0	NS	NS
Inyl chioride	999	<25.0	1,920	<25,0	214	254	567	<26.0	<26.0	<25.0	<25,0	<26.0	<25.0	<0.170	<25.0	NS	4,000
otal Xylenes	688	<25.0	895	138	<25.0	82.3	<25,0	<25.0	<25.D	<25.0	<25,0	<26.0	<25.0	<0.500	<25.0	4,100	NS
GRO (mg/kg)																	
RO	NA	NA	NA	NA	NA	NA										mg/kg	
	100		NA	N/A	NA	19 0	NA	NA	NA	NA	NA	NA	NA	NA	NA	100/250 (3)	NS

* indicates concentration exceeds generic soil cleanup level for GRO. A Indicatos concentration exceeds groundwater protection RCL.

(TC) indicates that the total concentration is greater than 20 times the RCRA TCLP limit.

(Pd) (Materian and and outperformance) and particular the standard standard and the standard An a concentration of generative concentration of the second secon

RCL = Residual Contaminant Level

RCRA = Resource Conservation and Recovery Act

TCLP = Toxicity Characteristic Leachate Procedure

VOCe * Volatile Organic Compounds

GRD = Gasoline Range Organica

NA = Not Analyzed

NS = No Standard

Page 2 of 3

TABLE 14 Continued Fill/Soil Sample VOC/GRO Analytical Results Summary Mankowski Property - Kenosha, Wisconsin April 2002

Parameter		San	nple ID, Matrix, J	and Collection Da	te		NR 720 RCLs	RCRA TCLP
Sample I.D.	GP-88 (12.5'-13')	GP-89 (5.5'-6'')	GP-90 (12.5'13')	GP-01 (10,5'-11')	Trip Blank	NeOH Blank		
Sample Matrix	Soll	Sol	Sol	Sol	Weter	Methanol	Protection of	
Date	4-3-02	4-3-02	4-3-02	4-3-02	4-3-02	4-3-02	Groundwater	TCLP x20 (1)
VOCs (ug/kg)		•			ugA	ug/l	upika	ug/i
Banzana	<26.0	<25.0	<26.0	<25.0	<0.500	<25.0	5.6	10,000
Bromobenzene	<26.0	<25.0	<26.0	<25.0	<0.500	<26.0	NS	NS
Butytoenzene	<25.0	<25.0	<26.0	<25,0	<0.600	<25.0	NS	NS
ec-Butylbenzene	<5.0	<26.0	<26.0	<25,0	<0.600	<25.0	NS	NS
ert-Butylbenzene	<25.0	<25.0	<25,0	<25.0	<0.500	<25,0	NS	NS
zhloroform	<26.0	<25.0	<25.0	<25.0	<0.140	<25,0	NS	6.000
3-Dichlorobenzene	<26.0	<25,0	<25.0	<25.0	<0.500	<25.0	NS	NS
4-Dichlorobenzene	<25.0	<25.0	<25.0	<25.0	<0.500	<25.0	NS	7,500
s-1,2-Dichloroethane	<25,0	<25.0	<25.0	<25.0	<0.500	<25.0	NS	NS
ans-1,2-Dichloroethene	<25.0	<26.0	<25.0	<25.0	<0.500	<26.0	N3	NS
2-Dichloropropane	<25.0	<25.0	<25.0	<26,0	<0.500	<25.0	NS	NS
Bhylbenzene	<26.0	<25.0	<25.0	<25.0	<0.500	<25.0	2.900	NS
sopropyibenzene	<26.0	<25.0	<26.0	<25.0	<0.500	<25.0	NS	NS
-Isopropytoluane	<26.0	<26.0	<25.0	<25.0	*0.500	<25.0	NS	NS
lethylene chloride	<100	<100	<100	<100	<0.630	<100	NS	NS
laphthalone	<25.0	<26.0	<25.0	<25.0	<2.00	<25.0	400 (2)	NS
Propylbenzene	<25.0	<25,0	<26.0	<25.0	<0.500	<25.0	NS	NS
atrachloroethene	<26.0	<25,0	<26.0	<25.0	<0,600	<25.0	NS	14.000
olume	<25.0	<26.0	<25.0	<75,0	<0.500	<25.0	1,500	NS
1,2-Trichloroethane	<25,0	<25.0	<25.0	<26.0	<0.100	<25.0	NS	NS
richlaroethene	<25.0	<25.0	<25.0	<25.0	40.500	<25,0	NS	10.000
2,4-Trimethylbenzene	<26.0	<25.0	<28.0	<25.0	<1.00	<25.0	NS	NS
3,6-Trimethylbenzane	<25.0	<26.0	<25.0	<25.0	<1.00	<25.0	NS	NS
Inyl chloride	<25.0	<26.0	<25.0	<25.0	+0.170	<26.0	NS	4.000
otal Xylenes	<25.0	<25.0	<25.0	<25.0	-0.500	<25.0	4,100	NS
GRO (mg/kg)							mg/kg	
RO	ND	ND	ND	ND	NA	NA	100/250 (3)	NS

Notes:

Table includes detected analytes only. Table includes detected analytes only. Indicates concentration exceeds generic soil cleanup level for CRO.

(TC) indicates that the total concentration is greater than 20 times the RCRA TCLP limit.

(10) Indicates that the same concentration in greater than 20 units the rules in curve in

(c) Unimity generation of the second seco

TCLP = Toxicity Characteristic Leachate Procedure

VDCs = Volatile Organic Compounds

GRO = Gasoline Range Organics

NA = Not Analyzed

NS = No Standard

TABLE I5 Fill/Soil Sample Protocol B Waste Profile Analytical Results Summary Mankowski Property - Kenosha, Wisconsin May 2001, April 2002

Parameter					Sample ID, Mai	trix, and Collecti	on Date					RCRA Limit
	GP-25 (0.5°-2°) Soli	GP-25 (5'-7'') Soil	GP-26 (0.5'-2') Fill/Soli	GP-26 (5'-7') Soil	GP-27 (0.5-2') Fill	GP-27 (5-77) Soli	GP-84 (1*-10") Fill	GP-85 (1*-10*) Fill	G P-86 (1'-10') Fill	GP-87 (1'-11') Fill	GP-98 (1°-8') Fill	
	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	4-4-02	4-4-02	4-4-02	4-3-02	4-4-02	
Characteristics												
Free Liquids (Pass/Fall)	Pass	Pase	Pass	Pass	Pass	Рава	Pass	Pass	Pass	Pass	Pass	Pase/Fali
Flashpoint (deg. F)	>220	>220	>220	>220	>220	>220	>220	>220	>220	>220	>220	≥140 deg. F
Chlorine (%)	0.191	0.202	0.190	0.394	0.290	0.261	<0.130	0.151	0.199	<0.117	<0.125	NS
Phenol (mg/kg)	0.925	1,91	2.08	2.01	1.35	0.953	2.51	2.02	1.17	0.821	1.39	NS
pH (s.u.)	7,44	8,07	7.92	8.06	7.74	7.91	7,46	8.35	7.82	7.56	7.98	≤ 2.0, ≥ 12.5
Reactive Cyanide (mg/l)	<0.155	<0.150	<0.154	<0.153	<0.147	<0.153	<0,168	<0.144	<0.149	<0.152	<0.162	200
Reactive Sulfide (mg/kg)	<7.75	12.6	8.14	22.7	<7.34	<7.66	<8.42	<7.20	<7.43	<7.62	<8.12	200
Specific Gravity (g/ml)	2,10	2.19	2.73	2.17	2.01	2,17	2.27	2.11	2,35	2.2	1.86	NS
Total Solids (%)	83.1	85.5	95,8	84.8	81.9	76,7	88,8	91.7	96.1	79.2	86.2	NS
TCLP Metals (mg/l)												mg/i
Barlum	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1,00	<1.00	<1.00	1.36	<1.00	<100 (1)
Cadmium	<0.00500	<0.00500	<0.00500	<0.00500	0.0228	<0.00500	<0.00500	<0.00500	<0.00500	<0.00500	<0.00500	<1.0(1)
Chromium	<0.0100	<0.0100	<0.0100	<0.0100	0.0234	<0.0100	<0.0100	<0.0100	<0.0100	<0,0100	<0.0100	<5,0(1)
Load	<0.00500	<0.00500	0.00606	<0,00500	<0.00500	<0.00500	0.0242	0.0107	0.0306	0.00738	0.0752	<5,0(1)
Nickol	<0.0500	<0.0500	<0.0500	<0,0500	0.0560	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	0.0561	NS
TCLP SVOCs (mg/l)												
TCLP SVOCa	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	(2)
TCLP VOCs (mg/l)												
TCLP VOCs	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	(2)
PCBs (ug/kg)												
PC8s	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	(3)
												(+)

Notes:

Table includes detected analytes only.

Bold typed results indicate that the analyte was present at a concentration equal to or greater than the laboratory detection limit.

RCRA TCLP limit, above which the material would constitute a hazardous waste if diaposed.
 Compound specific RCRA TCLP limits apply.
 The TSCA land diaposal limit for aggregate PCBs is 50 mg/kg.

TCLP = Toxicity Characteristic Leachate Procedure SVOCs = Somi-Volatile Organic Compounds VOCs = Volatile Organic Compounds PCBs = Polychioninated Biphenyls RCRA = Resource Conservation and Recovery Act NS = No Standard ND = None Detected

ø

Table F1 Vapor Measurements Mankowski Property - Kenosha, Wisconsin Spring 2002

Vapor Monitoring Point ID, Date, Time

Measurement (Units)

			GP-84			1		GP-85			1		MW-9R			1									1				,	1				
Date:	4/8/02	4/11/02		4/15/02	4/10/02	4/8/02	4/11/02	4/12/02	4/15/02	4/10/02	4/0/02	4/11/02	4/12/02	4/15/02	4/10/02	4/8/02	4/11/02	4/12/02	4/16/02	GP-88 4/16/02	0/14/02	0/18/02	6/19/02	6/20/02	419.000	4/11/02	GP-87 4/12/02					NW-14		
गण ः	NA	0940	0940	0900	0855	1310	1210	0850	0940	0930	1315	1225	0555	0945	0935	1325	1140	0900	0955	0045	1430	1330	1330	0830	4/5/02 NA	1160		4/15/02 1000	4/10/02	4/8/02 NA	4/11/02 1120	4/12/02	4/15/02	4/10/02 0650
Methane (%)	NA (2)	0.0	0.0	0.0	0.0	0.0	0.1	0,0	0,1	0.1	0.0	0,0	0.0	0.0	0,0	12.0 *		11,0 *	12.2 *	11,8 *	0,7	7.3 *	2.7 🛢	11.9 *	NA (2)	0.0	0.0	0.0	0.0	Na /2)		0.0	0.0	0.0
Carbon Dioxide (%)	NA (2)	0.0	0.0	0.0	0.0	7,5	8.4	6.2	8.4	9,1	6.6	7.4	7,5	8.1	9.0	6,5	0.0	0,6	7.0	7.1	0,5	8.2	10.8	12.5	NA (2)	1.6	1.3	10	22	NA (7)	0.3	0.3	0.4	0.4
Oxygen (%)	NA (2)	21.2	21.1	21,1	20.8	0,1	0.2	1.7	0.0	0.2	1.1	0.4	0.0	0.6	0.4	0.0	0.2	0.0	0,7	0.7	19.3	4,7	0.0	0.0	NA (2)	11.3	12.3	11.5	123	NA (2)	20.0		16.1	
Volatile Organic Vapore (ppm)	NA (2)	1.7	. 0,4	0.9	0.0	47.0	68.4	00.1		03.7	0,0	4.7	5.8	1.7	0,3	NA (2)	0.0	0.0	0.0	0,0	NA	NA	NA	NA	NA (2)	1.6	0.8	0.8	0.2	NA (2)	1.9		1.3	
Barometric Pressure (inches Hg)	NA (2)	29.5	29.3	29.0	29,3	29.2	29.2	20.3	29,0	29.1	29.2	29,2	29.3	29.0	29.1	29.2	29.5	29,3	28.9	20,1	29.0	29.2	29,1	29,1	NA (2)	29.3	29,3	28,9	29.1	NA (2)	29.5	29.3	29,1	29.3

Measurement (Units)																v	apor Monito	ring Point i	D, Date, Tim	•														
			GP-88			1		GP-89			1		QP-90			1				OP-01					1		GP-92			1		GP-63		
Date:	4/5/02	4/11/02	4/12/02	4/15/02	4/10/02	4/0/02	4/11/02	4/12/02	4/15/02	4/16/02	4/8/02	4/11/02	4/12/02	4/16/02	4/16/02	4/0/02	4/11/02	4/12/02	4/15/02	4/16/02	6/14/02	8/16/02	6/19/02	6/20/02	4/8/02	4/11/02	4/12/02	4/15/02	4/16/02	4/8/02	4/11/02		4/15/02	4148759
Time:	1326	1230	0840	0930	0925	1345	1240	0835	0925	0922	NA	1200	0910	1010	0055	1360	1235	0845	0935	0927	1400	1300	1300	0800	NA	1300	0945	0905	0900	1400	1250	0830	0920	0920
Methane (%)	0.0	0.0	0.1	_0.2_	0,2	0.0	0.0	0.0	0.1	0.1	NA (2)	0.0	0.0	0,0	0.0	9.2 *	0.2	2,3 🔳	2.7 🖬	1,6 🔳	0.0	0,0	6,6	0.7	NA (2)	0	D	0	0	NA (1)	0	NA (1)	-	
Carbon Dioxide (%)	1.2	0.1	1.1	2,4	4.2	0.0	0,0	0,0	1.1	1.2	NA (2)	0.0	0.2	0.2	4.5	1.7	0.0	0.3	1.8	1,7	0.0	0.0	0.7	0.7	NA (2)	0	0	0	0	NA (1)	0	NA (1)		
Oxygen (%)	14.1	19.3	13.8	9.6	4,3	0.0	21.3	21,2	15.7	15.0	NA (2)	21.0	19.7	20.3	14.7	6.5	20.7	18.4	14.4	10,5	21.0	20.0	20.8	10.4	NA (2)	21.3	21.1	21.1	20.0	NA(1)	21.4	NA (1)	20.0	20.4
Volatile Organic Vapors (ppm)	0.0	1,2	0,4	0,2	0,0	0.0	0.4	0,2	0.7	0.0	NA (2)	1,3	1,0	0.2	0.2	3.5	0.0	0,5	0,3	. 0	NA	NA	NA	NA	NA (2)	1.3	0.3	1.3	0	NA(1)		NA(1)	0.4	
Barometric Pressure (Inches Hg)	29,2	29.2	29.3	29.0	20,2	29.2	29.2	29.3	29,0	29.2	NA (2)	29.3	29,3	26.0	29.1	29.2	29.2	29.3	29	29.1	29.0	20.2	29.1	20.1	NA (2)	20.2	20.2			ATA (4)	200.0			v

Measurement (Units)														۷	apor Moni	toring Poin	l 1D, Date, T	Juse											
	İ		GP-04					GP-95					GP-96					GP-97					MW-10				GP	-99	
Date:	4/6/02	4/11/02	4/12/02	4/15/02	4/16/02	4/0/02	4/11/02	4/12/02	4/15/02	4/16/02	4/8/02	4/11/02	4/12/02	4/16/02	4/16/02	4/0/02	4/11/02	4/12/02	4/15/02	4/16/02	4/8/02	4/11/02	4/12/02	4/15/02	4/10/02	6/14/02	6/18/02	0/19/02	6/20/02
Time:	1405	1266	0826	0915	0915	1415	1205	0915	1015	. 1000	NA	1210	0926	1020	1005	1425	1215	0920	1025	1010	NA	1130	0030	1030	1015	1415	1315	1315	0815
Methane (%)	NA (1)	٥	0	0,1	0,4	0.0	0,0	0,0	0.0	0.0	NA (2)	0.0	0.0	0.0	0.0	NA (1)	0,0	0.0	0.0	0.0	NA (2)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Carbon Dioxide (%)	NA (1)	0	0	٥	0.1	2.3	0.0	2.5	4.4	5.6	NA (2)	0,0	2.3	1.9	2.7	NA (1)	1.2	1.4	2.0	2.2	NA (2)	5.9	6.8	5.0	44	0,0			0.0
Oxygen (%)	NA (1)	21.2	21.3	20.6	20,9	18.0	21.2	13,4	5.2	4.1	NA (2)	21.0	18.5	17.6	10.5	NA (1)	19.1	16.6	14.1	14.3	NA (2)	12.3		*** /				4.4	5,8
Volatile Organic Vapors (ppm)	NA (1)	1,0	1.4	0.4	0.1	NA (2)	0.6	1.0	2.4	0.2	NA (2)	1.4	0.2	1.0	0.6	NA (1)	0.2		1.0	0.5			12.3	12.4	13,4	8.0	10,9	13.3	16.1
Berometric Pressure (Inches Hg)	NA (1)	29.2	29.3	29	29.2	29.2	20.3	29.3	29.9	29,1	NA (2)	29.3	29.3	28.9	29.1	NA (1)	29.3	29.3	28,9	29.0	<u>NA (2)</u> NA (2)	2.0 29.4	0,4 20.0	1.2 25.9	0.0 29.0	NA 29,0	NA 29.2	NA 29,1	NA 29,1

Notes:

Bold type indicates the detection of methane, carbon dioxide, or volatile organic vapors,

★ indicates methane concentration exceeded the lower explosive limit of 6% by volume.
■ indicates methane concentration exceeded the 20% of the lower explosive limit, or 1.25% by volume.

NA = Not Available {1} Measurement not collected due to a saturated screen section, resulting from a rain event. {2} Measurement not collected due to meter mathunction.

Weather Conditions: April 6, 2002, Fain, Iveezy, 40%, pressure failing, April 11, 2002, Sunny, Wichy, 70%, pressure failing, April 12, 2002, Sunny, Wichy, UD%, pressure failing, April 15, 2002, Sunny, Wichy, UD%, pressure failing, April 10, 2002, Sunny, Wichy, UD%, pressure failing, June 14, 2002, Sunny, Wichy, UD%, pressure failing, June 19, 2002, Sunny, Wichy, UD%, pressure failing, June 19, 2002, Woolty surny, Windy, UD%, pressure steady, June 20, 2002, Partly cloudy, Windy, 90%, pressure steady.

Table F2

Soil Gas Vapor Measurements

Mankowski Property - Kenosha, Wisconsin

May 2003

Measurement (Units)

Vapor Monitoring Point ID, Date, Time

		G	P-100			GP-	101			GP	-102			GI	P-103	
	5/7/03 1601	5/9/03 1308	5/12/03 1327	5/14/03 1552	5/7/03 1605	5/9/03 1313	5/12/03 1335	5/14/03 1559	5/7/03 1610	5/9/03 1316	5/9/03 1340	5/14/03 1603	5/7/03 1615	5/9/03 1321	5/12/03 1345	5/14/03
Methane (%)	0.0	0.0	0.0	0.0	0.0	1.8 🔺	0.2	0.8	0.0	0.0	0.0	0.5	0.0	0.0	0.0	0.0
Carbon Dioxide (%)	0.0	0.0	0.0	0.0	0.3	3.7	0.3	3.6	0.7	0.0	0.1	6.2	0.2	0.6	1.0	0.0
Oxygen (%)	21.1	21.1	21.1	21.0	20.1	11.3	20.9	13.3	18.6	20.9	20.9	4.5	20.5	20.8	18.9	20.8
Barometric Pressure (Inches Hg)	29.1	29.0	29.0	29.1	29.1	28.9	28.9	29.1	29.1	28.9	29.0	29.1	29,1	28.9	29.0	29.1

Notes:

Bold type indicates the detection of methane or carbon dioxide.

◆ Indicates methane concentration exceeded the lower explosive limit of 5% by volume.

▲ indicates methane concentration exceeded 20% of the lower explosive limit, or 1.25% by volume.

Table I6 Groundwater Sample Analytical Results Summary Mankowski Property - Kenosha, Wisconsin Spring, Summer 2001

Paramotor									Sample	D, Collecti	on Date									NR 140 \$	Standard
	NN-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-6	MW-9	MW-9 RT	MW-OR	PZ-9	MW-10	MW- 11	MW-12	MW-13	Duplicate (1)	econn Blank	Trip Blask		
	5/14/01	5/18/01	5/15/01	5/18/01	5/18/01	5/18/01	5/15/01	5/15/01	5/18/01	5/18/01	7/2/01	7/2/01	5/17/01	6/17/01	5/10/01	6/18/01	6/10/01	6/17/01	5/17/01	PAL	E8
VDCs (ug/l)																				ացվ	սցմ
enzene	<0.500	<0.600	<0.500	<0,500	<0,500	<0.500	17.9 🖬	<0,500	2,88 🖷	<600	1.35 👄	2,43 🖷	<0.500	<0.500	<0.500	<0,500	<0.600	<0,500	<0,500	0.5	5
Butylbenzene	<0.500	<0.500	<0.500	<0.600	⊲0.500	<0.500	<0.500	<0.600	<0.500	<5,000	1.14	1.06	<0,500	<0.500	<0.500	<0,500	<0.500	<0.500	<0.500	NS	NS
ec-Butylbenzene	<0,500	<0.500	<0.500	<0.500	<0.600	<0.500	<0.500	<0.600	<0,500	<5,000	0.759	0.821	<0,500	<0.500	<0.600	<0.600	<0,600	<0.600	<0.600	NS NS	NS
rt-Butylbenzene	<0,500	<0.500	<0.600	<0.600	<0.500	<0.500	<0.500	<0.500	<0.500	<5,000	1.16	1.36	-0,500	<0.500	<0.500	<0.600	<0.500	<0.500	<0.500	NS	NS
hioroform	<0.140	<0.140	<0,140	<0.140	<0.140	<0.140	<0,140	<0.140	<0.140	<0.140	<0,140	<0,140	<0.140	<0,140	<0.140	<0.140	<0,140	<0.140	<0.140	0.0	8
2-Dichloroethane	<0.500	<0,500	<0.600	<0.600	<0.500	<0.500	<0,500	<0.600	0.714 👄	<500	<0,500	<0,500	<0.600	<0.500	<0.500	<0.600	<0.600	<0,500	<0,500	0.5	5
1-Dichloroethene	<0.500	<0,600	<0.600	<0.600	<0.500	<0.500	<0,500	<0.600	90,9 🖩	<600	182 🔳	138 🔳	<0.500	<0.500	<0.500	<0.600	<0.600	<0.500	<0,500	0.7	7
a-1,2-Dichloroethene	<0.600	<0.500	<0,600	<0.500	⊲0.500	<0.600	<0,500	<0,500	24,400 1	24,700 1	27,600 1	21,400	<0.500	2.45	<0.500	<0.500	<0.600	<0,500	<0,500	7	70
ans-1,2-Dichloroethene	<0.500	<0.600	<0.600	<0.600	<0.600	<0.600	<0.000	<0,500	172 🔳	<5,000	274 🗰	272 🔳	<0.500	<0.500	<0.500	<0.600	<0.600	<0.500	<0.500	20	100
thylbenzene	<0.500	<0.600	<0,500	<0.500	<0.500	<0.500	<0.500	<0.500	91,6	<5.000	200 🖝	180 .	1,45	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	140	700
iopropy/benzena	<0.500	<0.500	<0.600	<0,600	<0.500	<0,500	<0.500	<0.500	<0.500	<5.000	2.60	3.21	<0.600	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	NS	NS
-isopropyticiuene	<0.500	<0,500	<0.600	<0.600	<0.500	<0.500	<0,500	<0.500	<0.500	<5,000	1.10	1.10	<0.600	<0.500	<0.500	<0.600	<0.500	<0,500	<0.500	NS	NG
athylana chlorida	<0.630	<0,630	<0.630	<0.530	<0.630	<0,530	<0,530	<0.530	<0.630	2,040 1	<0.630	<0,530	<0.630	<0.530	<0,530	<0.530	<0.630	3,71	<0.630	0.6	
ethyl tert-butyl ether	<0.600	<0.600	<0.600	<0.500	<0.500	<0.500	<0,500	<0.500	<0.500	<101	<0.500	<0.500	<0.500	≪0.500	<0.500	<0,500	<0.600	<0.500	<0.500	12	60
aphihalone	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<8.000	<2.00	<2.00	<200	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	ß	40
Propylbenzene	<0,500	<0.500	<0.600	<0.600	<0.500	<0.500	<0.500	<0.500	<0.500	<5.000	1.42	0.960	<0,600	<0,500	40.500	<0.600	<0.500	<0.500	<0.500	NS	NS
otrechloroethene	<0,500	<0.600	<0.600	<0.600	<0.500	<0.500	<0.500	<0.600	3.50 ●	<500	3.92 ●	25.2 1	<0.600	<0.500	<0.500	<0.600	<0,500	<0.500	<0.600	0.5	B
oluene	<0,500	<0,500	<0.600	<0.600	<0.500	<0.600	<0,500	<0.500	4.25	<5.000	10,8	21.0	10.0	<0.500	<0.500	<0.600	<0.500	<0.500	<0.500	200	1,000
2.3-Trichlorobenzene	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<10.000	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00		_200	
1,2-Trichloroethene	<0.160	<0.150	<0.150	<0.160	<0.160	<0.160	<0.100	<0,160	<0.160	<153	<0.160	<0.160	<0.160	<0.160	<0.160	<0.160	<0.160	<0.160	<2.00	0.6	NS
nchloroethene	<0.600	<0.600	<0.600	<0.600	<0.500	<0.500	<0.000	<0,600	22,400	20,500	21,000	30,400 1	<0.500	6.27	<0.000	1.05 ●	1.06 ●				6
richlorofluoromathane	<0.600	<0.600	<0.600	<0.600	<0.600	<0.500	<0.500	<0,600	<0.500	<5,000	1.22	<0.600	<0,500	<0.500	<0.500	<0.500	<0.500	<0.500	<0,500	0.5	
2,4-Trimethylbenzene	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<5,000	4.20	2.92	<1.00	<1.00	<1.00	<1.00		<0.500	<0,500	NS	NS
3,6-Trimethylbenzene	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<5,000	1,48	1,38	<1.00				<1.00	<1.00	<1.00	90 (3)	480 (3)
inyl chloride	<0.170	<0.170	<0.170	<0.170	<0.170	<0.170	<0,170	<0.170	2,360 ₩	1,980	3,770 #	2,210		<1.00	<1.00	<1,00	<1.00	<1.00	<1.00	90 (3)	480 (3)
yieneo	<0.600	<0.600	<0.500	<0.600	<0.500	<0.500	<0.500						<0.170	<0.170	<0.170	<0.170	<0.170	<0,170	<0.170	0.02	0.2
Aler Ian	~0.000	-0.000	~0.000	0.000	NO.000	-0.000	40,000	<0.500	7.30	<5000	22.2	17.6	5.27	<0.600	0.038	<0.600	<0.600	<0,500	<0.500	1,000	10,000
РАКа (ug/ī)																				ug/l	սցո
rysene	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	-0.0200	<0.0200	NA	NA	NA	<0.0200	<0.0200	<0,0200	<0.0200	0.0267 🜰	<0.0200	NA	0.02	0.2
Dissolved Metals (mgil)																				നുഗി	mgß
asolved Nickel	<0.0600	<0.0500	<0.0500	<0,0500	<0.0500	<0.0600	<0.0600	<0.0500	<0.0500	NA	NA	NA	0,0590 .	<0.0500	<0.0600	<0,0500	<0.0600	<0.0500	NA	0.020	0.100
olen:																					
indicates concentration exc		ection limit																			

Bold typed results indicate that the analyte was present at a concentration equal to or greater than the laboratory detection limit. (1) The 5/16/2001 bind duplicate sample (ID AMV-14) was collected from monitoring well MV-13. (2) The NR 140 groundwater quality standards are for combined lotsl trimethybenzanee. The motion analysis were arranic, lead, noted, and mercury. RT = Retext. Sample MMV-4 was released to confirm the VOC concentrations, some of which were significantly higher then levels observed in other samples from the site.

PAL = Preventive Action Limit

E8 = Enforcement Standard

PAHa = Polynuclear Aromatic Hydrocarbons

VOCs = Volatile Organic Compounds NA = Not Analyzed / Not Applicable NS = No Standard

Table I6 Continued Groundwater Sample Analytical Results Summary Mankowski Property - Kenosha, Wisconsin Spring, Summer 2001

Parameter										Sample ID, (Collection Dat	te									NR 140 S	itandan
Sample ID	MW-14	PZ-14	Duplicate (2)	Decon Blank	Trip Slank	GP-51W	GP-59W	GP-64W	GP-66W	GP-67W	GP-00W	QP-60W	OP-70W	GP-71W	GP-72W	GP-73W	GP-75W	OP-70W	GP-77W	Trip Blank		
Date	7/2/01	7/2/01	7/2/01	7/2/01	7/2/01	8/15/01	8/15/01	8/16/01	8/16/01	8/16/01	8/16/01	8/16/01	0/16/01	8/17/01	8/17/01	8/17/01	8/17/01	8/17/01	8/20/01	8/10/01	PAL	ES
VOCa (ug/l)																						
enzene	1,34 🖷	<0.500	<0.500	<0.500	<0,600	<0.500	<0.500	31.2 🔳	<0,500	0.514 单	181 🔳	<10.0	<0,500	<0.600	<0.500	<0.600	<0,500	<0.500	<0,500	<0.500	ug/l 0,5	<u></u>
Butylbenzene	<0.500	<0.600	<0.600	<0.500	<0.500	<0.600	<0.500	<10.0	0.674	<0.500	<10,0	<10.0	<0,500	<0.500	<0,500	<0.500	<0,500	<0.600	<0.500	<0.500	NS	NS
o-Butylbenzene	<0.500	<0,600	<0.600	<0.600	<0.500	<0.600	<0,500	<10.0	2.63	<0.500	<10.0	<10.0	<0.600	<0.500	<0,500	<0.500	<0.500	<0.500	<0.500	<0,500	NS	NE
rl-Butylbenzene	<0.500	<0.600	<0.600	<0.600	<0.500	<0.600	<0.500	<10.0	<0.500	<0,500	<10.0	<10.0	<0.500	<0.600	<0.500	<0.500	<0.500	<0.500	<0.500	<0.600	NS	
horoform	<0.140	<0.140	<0.140	<0.140	<0.140	<0.140	<0.140	<0,140	<0,140	1.05 ●	65,2 🔳	16.4 🔳	<0.140	<0.140	<0.140	<0.140	<0.140	<0.140	<0.140	<0.140	0.5	N
2-Dichioroethane	<0.500	<0.500	<0.600	<0.500	<0.500	<0.500	<0,500	<10.0	<0.500	<0.500	<10.0	<10.0	<0.500	<0.500	<0.500	<9.500	<0.500	<0.600	<0.500	<0.500	0.5	
-Dichloroathene	<0,500	<0.500	<0.600	<0.500	<0.500	<0.600	<0,500	103 🖿	<0.500	1.37 ●	71.8 .	<10,0	<0.500	<0.500	<0,500	<0.600	<0.500	<0,500		<0.500		5
-1,2-Dichloroethene	13,6 🖷	<0.600	<0.600	<0.500	<0.500	<0.500	<0.500	35,100 #	103 8	173 8	3,010 #	1,780 ■	47.6 ●	<0.500	<0,500	<0.600	<0.500		<0.500		0.7	'
ns-1,2-Dichloroethene	<0,500	<0.600	<0,500	<0.500	<0.500	<0,500	<0.500	150 🖿	3.06	26.8 •	75,4 ●	<10.0	2.29	<0.500	<0,500	<0.600	<0,500	<0.500	<0,500	<0.600		70
hylbenzene	1.55	<0,600	<0.600	<0.500	<0.500	<0.600	<0,500	23.1	1.07	<0.500	20.1	<10.0	<0.500	<0.500	<0.600	<0.600	<0.600	<0.500	<0,500	<0.600	20	10
opropy/benzene	<0.500	<0,500	<0,600	<0.500	<0,500	<0.500	<0.500	<10.0	<0.600	<0.500	33.3	<10.0	<0.500	<0,500	<0.500	<0.500	<0.600		<0.500	<0,500	140	70
sopropytoluene	<0.500	<0.500	<0,600	<0.500	<0,500	<0,500	<0.600	<10.0	1.43	<0.500	<10.0	<10.0	<0.500	<0.500	<0.500			<0,500	<0.500	<0,600	<u>N5</u>	N
thylene chloride	<0,530	<0.630	<0.630	<0.530	<0.530	<0.530	<0.530	<10.0	<0.630	<0.530	<10.6	<10.0	<0,630	<0.630	<0.530	<0.500	<0,500	<0.500	1.95	<0.600	NS	N
thyl tert-butyl ether	<0.500	<0,500	<0.600	<0.500	<0.500	<0.500	<0.500	<10.0	<0.500	<0.600	<10.0	<10.0	<0.600	<0.500	<0.500	<0.530	<0.630	<0.530	<0.530	<0.530	0.5	
phthelene	<2.00	<2.00	<2.00	<2.00	<2,00	<2.00	<2.00	<40.0	<2.00	<2.00	<40.0	<40.0	<2.00	<2.00		1,47	<0.600	<0,500	<0,500	<0,500	12	
Propylbenzene	<0,500	<0.500	<0,500	<0,500	<0.600	<0.500	<0,600	<10.0	<0.500	<0.500	<10.0	<10.0	<0.500	······································	<2.00	<2.00	<2.00	<2.00	3.73	<2.00		4
krachloroethene	<0.500	<0.600	-0.600	<0,500	<0.500	<0,500	<0.500	<10.0	<0.500	<0.500	33.3			<0.500	<0,500	<0.500	<0.500	<0.600	1.77	<0.500	NS	<u>N</u>
kuene	<0,500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	12.9	0.600	<0.500	99.9	<10.0 <10.0	<0.500	<0.500	<0.600	<0.500	<0.500	<0.500	<0.500	<0,500	0.5	
2,3-Trichlorobenzene	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<40,0	6,18	<2.00	<40.0		<0.500	<0,500	<0.500	<0.500	<0.600	<0.500	<0.500	<0.500	200	1,0
1,2-Trichlorgethane	<0.160	<0,150	<0.160	<0.160	<0.160	<0.160	<0.100	8.82 I	<0.100	<0,160		<40.0	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	NS	N ²
chioroethone	40,9 #	<0.600	<0,500	<0.600	<0.600	<0.600	<0.500	6.320	40.7	29.1	82,200 H	<3.20	<0.100	<0.160	<0.160	<0,100	<0.160	<0.160	<0,150	<0.160	0,0	6
chlorofluoromethane	<0.500	<0.600	<0.600	<0.500	<0.600	<0.600	<0.500	<10.0	<0.500			73.0 8	95,7 🔳	<0.500	<0,500	<0.600	<0,500	<0.500	<0.500	<0.500	0.6	5
4-Trimethylbenzene	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1,00	12.7	and the second se	<0.000	<10.0	<10.0	<0.500	<0.500	<0,500	<0.500	<0,500	<0.500	<0.600	<0.500	NS	N
1,5-Trimethylbonzene	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00			<1.00	<1.00	<20.0	<20.0	<1.00	<1.00	<1.00	<1.00	<1.00	<1,00	<1,00	<1.00	(C) 29	480
tyl chloride	<0.170	<0.170	<0.170	<0.170	<0.170	<0.170	<1.00	40,4	<1,00	<1.00	<20.0	<20,0	<1.00	<1.00	<1.00	<1.00	<1.00	<1,00	<1.00	<1.00	(3)	450
iones	<0.500	<0.500	<0,500	<0.500	<0.500	<0.500	<0.170	4,210 20.2	23.1 M	113 =	1,390 M 35,6	1,460 M <10.0	7.77 ■	<0.170	<0,170 <0.500	<0.170	<0,170	<0.170	<0.170 <0.500	<0.500	0.02	0,1
DAM- Aven																		-4.000	-0.000	-0,000	1,000	10,01
PAHa (ug/l)			· · · · · · · · · · · · · · · · · · ·																		og/i	
rysona	NA	NA	NA	NA	NA	NA	NA	NA	NA .	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0,02	0,3
Dissolved Metale (mg/l)													•								mail	т
solved Nickel	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.020	0.1
oten: Indicates concentration exce Indicates concentration exce																						

Bold typed results indicate that the analyte was present at a concentration equal to or greater than the laboratory detection limit. (1) The 5/10/2011 bind duplicate sample (ID MW-14) was collected from monitoring well MW-13. (2) The 7/2/2001 bind duplicate sample (ID PZ-15) was collected from plazonator PZ-14.

(3) The NR 140 groundwater quality standards are for combined total trimethylbanzenes,

The metals analyzed were artenic, lead, nickel, and mercury,

RT = Retest. Sample MW-B was releated to confirm the VOC concentrations, come of which were significantly higher than levels observed in other samples from the site.

PAL = Preventive Action Limit

E8 = Enforcement Standard PAHs = Polynuclear Aromatic Hydrocarbons

. – .

VOGa = Volatile Organic Compounds NA = Not Analyzed / Not Applicable

N6 = No Standard

Table I6 Continued Groundwater Sample Analytical Results Summary Mankowski Property - Kenosha, Wisconsin April 2002

Parameter				Salut	ple ID, Collect	ion Late				NR 140	Standar
Sample ID	GP-88W	GP-89W	GP-90W	GP-01W	GP-93W	GP-90W	GP-96W	GP-97W	Trip Slank		
Deta	4/4/02	4/4/02	4/4/02	4/4/02	4/4/02	414/02	4/4/02	4/4/02	4/4/02	PAL	EB
VOCs (up/l)										ug/l	ugil
Banzone	<0.600	<0.500	<0,500	<0.500	<0.500	<0.500	⊲0,500	<0.600	<0,500	0.5	5
-Butylbenzene	<0,600	<0.500	<0.500	<0,500	<0.500	<0.500	<0.500	<0.500	<0,600	NS	NS
wo-Butylbenzene	<0.500	<0,500	<0.500	<0,500	<0.500	<0,500	<0,500	<0.500	<0,600	NS	NS
tart-Butyloenzene	<0.600	<0.500	<0.600	<0.500	<0.500	<0,500	<0.500	<0,500	<0.500	NS	NS
Chioraform	<0,140	<0.140	<0,140	<0.140	<0,140	<0.140	<0.140	<0.140	<0.140	0.6	đ
1,2-Dichloroethane	<0,500	<0.600	<0,500	<0.500	<0,500	<0.500	<0,500	<0.500	<0.500	0,5	5
1,1-Dichloroethene	<0.000	<0,500	<0.600	<0.500	<0.500	<0,500	<0.500	<0.500	<0.500	0,7	7
ste-1,2-Dichioroathene	<0.500	<0.500	<0.500	<0.500	<0.000	<0,500	<0.600	<0,500	<0.500	7	70
trans-1,2-Dichloroethene	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	20	100
5thylbenzene	<0,500	<0.600	<0.500	≪0.600	<0.600	<0.600	<0,500	<0.500	<0.500	140	700
sopropylbenzene	<0,600	<0.500	<0.500	<0.500	<0,500	<0.600	<0,500	<0.500	<0.500	NS	NS
p-isopropy/toluene	<0.500	<0.500	<0.500	<0.500	<0.600	<0.500	<0.500	<0.600	<0,500	NS	NS
Methylene chloride	<0.630	<0.630	<0.530	<0.530	<0.530	<0.530	<0.630	<0.630	<0.530	0.5	
Methyl terl-butyl ether	<0.500	<0.500	<0.500	<0.500	<0.500	<0,500	≪0.500	<0.600	<0.500	12	55
Nephthalene	<2.00	<2.00	<2.00	<200	<2.00	<2.00	<2.00	<2.00	<2,00		
-Propylbenzene	<0.500	<0.000	<0,500	<0.500	<0.500	<0.500	<0.500	<0.600	<0.500	8 NS	40 NS
Tetrachioroethene	<0,500	<0.500	<0,500	<0.500	<0,500	<0.500	<0,500	<0.600			
Toluene	<0.500	<0,500	<0,500	<0.500	<0.500	<0.500	<0.500	<0.600	<0.500 <0.500	0,5	6
1,2,3-Trichlorobenzane	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	200	1,000
1,1,2-Trichkoroethane	<0.160	<0.160	<0,100	<0,160	<0.160	<0.160	<0.160	<0.160		NS	NS
Trichloroethene	<0,500	<0.500	<0,600	<0,000	<0.500	<0.000	<0.500	<0,500	<0.160	0.6	<u>s</u>
Trichlorofluoromethane	<0.500	<0.600	<0.500	<0,500	<0.500	<0,600			<0.500	0,5	5
1,2,4-Trimethylbenzene	<1.00	<1.00	<1.00	<1.00	<1.00		<0.500	=0,500	<0.500	NS	NG
1,3,5-Trimethylbenzene	<1.00	<1.00	<1.00	<1.00	<1.00	<1,00	<1.00	<1.00	<1.00	95 (3)	480 (3
/inyi chioride	<0,170	<0.170	<0,170	<0.170		<1.00	<1.00	<1.00	<1.00	<u>96 (3)</u>	480 (3
Kyleneo	<0,500	<0.600	<0,500		<0,170	<0.170	<0.170	<0.170	<0.600	0.02	0.2
- Y Initia U	-0.000	~0.000	-0.000	<0.500	<0,600	<0.500	<0.500	<0.000	<0.600	1,000	10,000
PAHa (ug/l)										ացմ	սցմ
Chrysene	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.02	0,2
Dissolved Metals (mg	n)									mgið	mg/l
Smeelved Nickel	NA	NA	NA	NA	NA	NA	NA	NA	NA	0,020	0.100
Dissolved Nickel	NA		NA	NA	NA	NA	NA	NA	NA	mg/f 0,020	
 Indicates concentration Indicates concentration 				`							
		THE ROLL OF									
Bold typed results indicate (1) The 6/18/2001 bilind dup (2) The 7/2/2001 bilind dup (3) The NR 140 groundwat The metals analyzed were	plicate sample (ID MW licate sample (ID PZ-1 ler quality standards au arcenic, lead, nickel, a	(-14) was collected 6) was collected it re for combined to and mercury.	d from monitorir from piezometer stal trimethylben	ng weli MW-13. PZ-14, zeneo.							
The metals analyzed were	arcenio, lead, nickel, a 9 was reteated to confi	ind mercury.			gnificantly higher	H	nan levels obsen	an levels observed in other samp	nan levels observed in other samples from the uite,	nan levels observed in other samples from the ulte,	nan levels observed in other samples from the site,

PAL = Preventive Action Limit ES = Enforcement Standard PAHs = Polynuclear Aromatic Hydrocarbons VOCe = Volatile Organic Compounds NA = Not Analyzad / Not Applicable NS = No Standard

Table I7 Groundwater Monitoring Analytical Results Summary Mankowski Property - Kenosha, Wisconsin August, November 2004

Parameter						Sample	ID, Collectic	n Date						NR 140 S	Standards
	MV	N-7R	MV	V-8R	MV	V-10R	MV	V-11R	м	W-17	M	W-18	Trip Blank		
	8/24/04	11/24/04	8/24/04	11/24/04	8/24/04	11/24/04	8/23/04	11/24/04	8/24/04	11/24/04	8/24/01	11/24/04	11/24/04	PAL	ES
VOCs/PVOCs (ug/l)														ug/l	ug/l
Benzene	<0.500	0.21	<0.500	<0.500	<0.500	<0.20	<0.500	<0.20	<0.500	<0.20	<0.500	<0.20	<0.20	0.5	5
Dissolved Metals (mg/l)														mg/l	mg/l
Dissolved Arsenic	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	NA	0.005	0.050
Dissolved Nickel	NA	NA	NA	NA	<0.0500	<0.0500	NA	NA	NA	NA	<0.0500	<0.0500	NA	0.020	0.100
Notes:															
Bold typed results indicate th		as present at a	concentration e	qual to or greate	er than the labo	aratory detection	ı limit.								
PAL = Preventive Action Limi	t														
ES = Enforcement Standard VOCs = Volatile Organic Con	1														

PVOCs - Petroleum Volatile Organic Compounds

NA = Not Analyzed / Not Applicable

NS = No Standard

Table E5 Groundwater Measurements Mankowski Property - Kenosha, Wisconsin Spring, Summer 2001

Measurement

Well ID, Date

		MW-1			MW-2			MW-3			MW-4			MW-5			MW-6			MW-7	
	5/16/01	5/29/01	7/2/01	5/16/01	5/29/01	7/2/01	5/16/01	5/29/01	7/2/01	5/16/01	5/29/01	7/2/01	5/16/01	5/29/01	7/2/01	5/16/01	5/29/01	7/2/01	5/16/01	5/29/01	7/2/01
TOC Elevation (ft)		95.55			97.20			98.63			97.97			96.03			95.65			95,74	
Depth to Groundwater Below TOC (ft)	12.20	11.91	12.56	10.43	10.27	11.32	8.17	5.89	7.07	14.60	8.92	10.30	2,31	2.87	3.04	2.18	2.49	5.01	5.39	4.06	4.45
Groundwater Elevation (ft)	83.35	83.64	82.99	86.77	86.93	85.88	90.46	92.74	91.56	83.37	89.05	87.67	93.72	93.16	92.99	93.47	93.16	90.64	90.35	91.68	91.29
Ground Surface Elevation (ft)		95.6			97.8			98.9			98.4		-	96.6			96.1			96.4	
Depth to Groundwater bis (ft)	12.24	11.95	12.60	11.03	10.87	11.92	8.47	6.19	7.37	15.00	9.32	10.70	2.91	3.47	3.64	2.58	2.89	5.41	6.09	4.76	5.15
Total Well Depth (ft)		19.9			18.0		[19.9			24.9			20.0			19.8			17.3	
Screened Length (ft)		10			10			10			15			10			10			10	• • • •
Water Column Height (ft)	7.7	8.0	7,3	7.6	7.7	6,7	11.7	14.0	12.8	10.3	16.0	14.6	17.7	17.1	17.0	17.6	17.3	14.8	11.9	13.2	12.9
Well Volume (gal)	4.7	NA	NA	4.8	NA	NA	7.2	NA	NA	6.3	NA	NA	8.6	NA	NA	8.6	NA	NA	72	NA	NA
Volume Removed (gal)	5 (1)	NA	NA	8 (1)	ŅA	NA	9 (1)	NA	NA	10 (1)	NA	NA	13 (1)	NA	NA	10 (1)	NA	NA	10 (1)	NA	NA

Measurement

Well ID, Date

		MW-8		M	V- 9	MW-9R	PZ-9		MW-10			MW-11			MW-12			MW-13		MW-14	PZ-14
	5/16/01	5/29/01	7/2/01	5/16/01	5/29/01	7/2/01	7/2/01	5/16/01	5/29/01	7/2/01	5/16/01	5/29/01	7/2/01	5/16/01	5/29/01	7/2/01	5/16/01	5/29/01	7/2/01	7/2/01	7/2/01
TOC Elevation (ft)		96.48		96	.37	NA	NA		91.46			93.21			93.96			95.50		NA	NA
Depth to Groundwater Below TOC (ft)	8.87	7.46	8.36	7.02	6.87	6.92	6.69	8.12	8.05	8.47	5.04	3.70	3.75	7.36	7.61	8.81	7.66	7.98	9.39	8.06	15.24
Groundwater Elevation (ft)	87.61	89.02	88.12	89.35	89.50	NA	NA	83.34	83.41	82.99	88.17	89.51	89.46	86.60	86.35	85,15	87.84	87.52	86.11	NA	NA
Ground Surface Elevation (ft)		96.9		97	7.1	NA	NA		92.0			93.7			94.5		1	95.7		NA	NA
Depth to Groundwater bis (ft)	9.27	7.86	8.76	7.72	7.57	NA	NA	8.62	8.55	8,97	5.54	4.20	4.25	7.86	8.11	9.31	7.86	8.18	9.59	NA	NA
Total Well Depth (ft)		18.5		17	7.0	13.0	20.0		14.8			17.2			17.0			19.9		13.0	20.0
Screened Length (ft)		10		1	0	10	5		10			10			10			10		10	5
Water Column Height (ft)	9.6	11.0	10.1	10.0	10.1	6.08	13.31	6.7	6.8	6.3	12.2	13.5	13.5	9.6	9.4	8.2	12.2	11.9	10.5	4.9	4.7
Well Volume (gal)	6.2	NA	NA	6.3	NA	4.0	4.7	4.3	NA	NA	7.5	NA	NA	6.2	NA	NA	7.5	NA	NA	3.4	3.4
Volume Removed (gal)	24 (1)	NA	NA	63	NA	45	47	45	NA	NA	15 (1)	NA	NA	43 (1)	NA	NA	13 (1)	NA	NA	3.5 (1)	4 (1)

Notes:

Site elevations are relative to a reference point on site with an arbitrarily assigned elevation of 100.00 feet.

(1) = Well was purged dry

TOC = Top of casing

NA = Not Applicable

Table E6 Natural Attenuation Groundwater Monitoring Well Data Mankowski Property - Kenosha, Wisconsin August, November 2005

Measurement

Well ID, Date

	MW-7R		MW-8R		MW-10R		MW-11R		. MW-17		MW-18	
	8/24/04	11/23/04	8/24/04	11/23/04	8/24/04	11/23/04	8/24/04	11/23/04	8/24/04	11/23/04	8/24/04	11/23/04
TOC Elevation (ft)	97,40		95.72		90,93		97.29		96.59		98.20	
Depth to Groundwater Below TOC (ft)	5.96	0.12	10.20	10.31	9.36	9.14	9.65	9.91	5.44	8.61	7.12	10.75
Groundwater Elevation (ft)	91.44	91,28	85.52	85.41	B1.57	81,79	87.64	87,38	91.15	89.98	91.08	87.45
Ground Surface Elevation (ft)	97.7	97.7	95,9	97.7	91.2	97.7	97,6	97.7	96.8	97.7	98.5	97.7
Depth to Groundwater bis (ft)	6.2	6.4	10.4	12.2	9.6	15.9	10.0	10.3	5.6	7.7	7.4	10.2
Total Well Depth (ft)	21.3	21,3	19.6	21.3	14.7	21,3	19.4	21,3	19.6	21.3	19.6	21.3
Screened Length (ft)	10	10	10	10	10	10	10	10	10	10	10	10
Water Column Height (ft)	15.3	15.2	9.4	11.0	6.3	12.2	9.7	11.4	14.2	14.7	12.5	10.6
Well Volume (gal)	8.8	8,8	7.5	8,8	4.2	12.0	7.8	8,8	8.6	B.8	8.4	8.8
Volume Removed (gal)	Đ (1)	9(1)	18 (1)	12(1)	11 (1)	12(1)	8(1)	7(1)	8.5(1)	7 (1)	8.5(1)	7 (1)

Notes:

Site elevations are relative to a reference point on site with an arbitrarily assigned elevation of 100,00 feet.

(1) ≈ Well was purged dry

TOC = Top of casing