Hanson, David L - DNR

From: Sean Cranley <mwenvirocon@gmail.com>

Sent: Friday, October 30, 2020 11:55 AM

To: Hanson, David L - DNR; Wentland, Thomas A - DNR

Subject: Mankowski Property/Bain Elementary School 02-30-522702

Attachments: 20050803_56_CO_Packet.pdf; 11 - Site Elevation Map.pdf; 6 - Soil Contamination .pdf

Hello David and Thomas,

Paul Grittner suggested I contact you both regarding the proposed installation of a stairway at this site. This VLPE site received a Certificate of Completion in 2005 and was developed as an elementary school after receiving a Development at a Historic Fill Site Exemption. See pages 5 and 18 of the attached Closure Packet.

Due to covid 19, students are being released from exits at the school to assist in dispersal. Students are exiting the property through a gate in eastern fence adjacent to 26th Avenue and opposite 46the Street. During construction, clean fill materials were brought into this location to establish the site grade and proper drainage and as a consequence, there is a significant grass covered slope down to the sidewalk, see attached site maps from the Remedial Implementation Report.

With wear being caused by foot traffic and winter coming this area will become muddy and slippery. Therefore, Kenosha Unified School District would like to install a metal staircase with two concrete landings at this location, see attached Design and Budget Report.

Four 6-foot deep soil augers will need to be advanced to install concrete support piers, which will penetrate into soil beneath the clean fill that exhibits arsenic and lead contamination exceeding RCLs, see Figure 6. Therefore, the soil generated will require sampling and landfill disposal.

Due to the limited nature of the project and the limited timeframe to complete the project before winter weather, I would like to know if a Post Closure Modification Request and a new Development at a Historic Fill Site Exemption Request are necessary. The Site Cap Maintenance Plan is provided on page 16 of the attached Closure Packet.

I would appreciate your feedback. Please let me know if you have any questions.

Thank you,

Sean Cranley, P.G.

Midwest Environmental Consulting
N6395 E. Paradise Rd.
Burlington, WI 53105
(262) 237-4351

GIS REGISTRY

Cover Sheet

March, 2010 (RR 5367)

Source Property Information CLOSURE DATE: Aug 3, 2005 **BRRTS #:** 02-30-522702 FID #: 230149590 **ACTIVITY NAME:** MANKOWSKI PROPERTY / BAIN ELEMENTARY SCHOOL DATCP #: PROPERTY ADDRESS: 2600 50th St (26th Ave @ 45th-48th St) COMM #: Kenosha MUNICIPALITY: PARCEL ID #: 09-222-36-134-002 (old 09-4-0222-36-134-011) *WTM COORDINATES: WTM COORDINATES REPRESENT: Approximate Center Of Contaminant Source 697105 237956 Approximate Source Parcel Center * Coordinates are in WTM83, NAD83 (1991) Please check as appropriate: (BRRTS Action Code) **Contaminated Media:** Groundwater Contamination > ES (236) Soil Contamination > *RCL or **SSRCL (232) Contamination in ROW Contamination in ROW Off-Source Contamination Off-Source Contamination (**note:** for list of off-source properties (**note:** for list of off-source properties see "Impacted Off-Source Property" form) see "Impacted Off-Source Property" form) **Land Use Controls: ◯** Cover or Barrier (222) (**note:** maintenance plan for Soil: maintain industrial zoning (220) groundwater or direct contact) (note: soil contamination concentrations ☐ Vapor Mitigation (226) between non-industrial and industrial levels) Structural Impediment (224) Maintain Liability Exemption (230) (note: local government unit or economic Site Specific Condition (228) development corporation was directed to take a response action)

Monitoring Wells:

Are all monitoring wells properly abandoned per NR 141? (234)

^{*} Residual Contaminant Level

^{**}Site Specific Residual Contaminant Level

State of Wisconsin			GIS Regist	ry Checklist	
Department of Natural http://dnr.wi.gov	ural Resources		Form 4400-245	•	Page 1 of 3
Form 4400-202, Cas	se Closure Request. The clo	e a list of information that is require sure of a case means that the Depa ubmitted to the Department.			
including cases clos are completed on the not the Departmen and determining the	sed under ch. NR 746 and ch his form and the closure fee t's intention to use any pers	ory for applications for case closuren. NR 726. The Department will not e and any other applicable fees, requently identifiable information from sonse action. The Department mand.	consider, or act upon your ap uired under ch. NR 749, Wis. <i>A</i> n this form for any purpose o	oplication, unless all a Adm. Code, Table 1 are ther than reviewing c	pplicable sections e included. It is losure requests
BRRTS #:	02-30-522702	PARCEL ID #:	09-222-36-134-002 (old 0)9-4-0222-36-134-0	11)
ACTIVITY NAME:	MANKOWSKI PROPERTY	/ / BAIN ELEMENTARY SCHOO	WTM COORDINAT	ES: X: 697105	Y: 237956
CLOSURE DOC	UMENTS (the Departn	nent adds these items to the	final GIS packet for post	ing on the Registi	ry)
☐ Continuing ☐ Conditional	•	with a land use limitation or con r (for property owners affected r VPLE sites)			
SOURCE LEGAL	L DOCUMENTS				
for other, off- Note: If a pro which include	source (off-site) properti operty has been purchased es the legal description si	as legal descriptions, for the Sc es are located in the Notification divided in the Notification divided in the post of the submitted instead of the should be submitted along with	on section. urchaser has not yet receive most recent deed. If the	ed a deed, a copy of	the land contrac
Certified Sur where the leg	rvey Map: A copy of the	certified survey map or the rele recent deed refers to a certified su	vant section of the record		
Figure #:	Title:				
		ed by the Responsible Party (RF orrect contaminated property.	P), which states that he or s	he believes that the	e attached legal
MAPS (meeting	the visual aid requirer	ments of s. NR 716.15(2)(h))			
Maps must be no	larger than 11 x 17 inch	es unless the map is submitted	electronically.		
in sufficient o wells within	detail to permit easy locat 1200 feet of the site.	roperties within the contaminat tion of all parcels. If groundwate	er standards are exceeded,	, include the locatio	on of all potable
	security reasons municipo ified on Case Closure Requ	ลl wells are not identified on GIS F uest maps.	acket maps. However, the l	ocations of these mu	unicipal wells
Figure #: A1	Title: Site	Location Map			
utility lines, n	nonitoring wells and pota	s all relevant features (buildings able wells) within the contamin nway and railroad rights-of-way	ated area. This map is to s	how the location of	fall

Figure #: A2 Title: Site Configuration Map

(SSRCL) as determined under s. NR 720.09, 720.11 and 720.19.

Soil Contamination Contour Map: For sites closing with residual soil contamination, this map is to show the location of all contaminated soil and a single contour showing the horizontal extent of each area of contiguous residual soil contamination that exceeds a Residual Contaminant Level (RCL) or a Site Specific Residual Contaminant Level (SSRCL) as determined under s. NR 720.09, 720.11 and 720.19.

boundaries of groundwater contamination exceeding a ch. NR 140 Enforcement Standard (ES), and/or in relation to the boundaries of soil contamination exceeding a Residual Contaminant Level (RCL) or a Site Specific Residual Contaminant Levels

Figure #: Title:

State of Wisconsin
Department of Natural Resources
http://dnr.wi.gov

GIS Registry Checklist
Form 4400-245 (R 3/10) Page 2 of 3

BRRTS #: 02-30-522702 ACTIVITY NAME: MANKOWSKI PROPERTY / BAIN ELEMENTARY SCHOO

MAPS (continued)

Geologic Cross-Section Map: A map showing the source location and vertical extent of residual soil contamination exceeding a Residual Contaminant Level (RCL) or a Site Specific Residual Contaminant Level (SSRCL). If groundwater contamination exceeds a ch. NR 140 Enforcement Standard (ES) when closure is requested, show the source location and vertical extent, water table and piezometric elevations, and locations and elevations of geologic units, bedrock and confining units, if any.

Figure #: D2 Title: Post Construction Geologic Cross-Section A-A

Figure #: Title:

Groundwater Isoconcentration Map: For sites closing with residual groundwater contamination, this map shows the horizontal extent of all groundwater contamination exceeding a ch. NR140 Preventive Action Limit (PAL) and an Enforcement Standard (ES). Indicate the direction and date of groundwater flow, based on the most recent sampling data.

Note: This is intended to show the total area of contaminated groundwater.

Figure #: Title:

Groundwater Flow Direction Map: A map that represents groundwater movement at the site. If the flow direction varies by more then 20° over the history of the site, submit 2 groundwater flow maps showing the maximum variation in flow direction.

Figure #: Title:

Figure #: Title:

TABLES (meeting the requirements of s. NR 716.15(2)(h)(3))

Tables must be no larger than 11 x 17 inches unless the table is submitted electronically. Tables $\underline{\text{must not}}$ contain shading and/or cross-hatching. The use of **BOLD** or *ITALICS* is acceptable.

Soil Analytical Table: A table showing remaining soil contamination with analytical results and collection dates.

Note: This is one table of results for the contaminants of concern. Contaminants of concern are those that were found during the site investigation, that remain after remediation. It may be necessary to create a new table to meet this requirement.

Table #: 12 Title: Fill/Soil Sample Metals Analytical Results Summary

Groundwater Analytical Table: Table(s) that show the <u>most recent</u> analytical results and collection dates, for all monitoring wells and any potable wells for which samples have been collected.

Table #: 16 Title: Groundwater Sample Analytical Results Summary

Water Level Elevations: Table(s) that show the previous four (at minimum) water level elevation measurements/dates from all monitoring wells. If present, free product is to be noted on the table.

Table #: E5 Title: Groundwater Measurements

IMPROPERLY ABANDONED MONITORING WELLS

For each monitoring well <u>not</u> properly abandoned according to requirements of s. NR 141.25 include the following documents. **Note:** If the site is being listed on the GIS Registry for only an improperly abandoned monitoring well you will only need to submit the documents in this section for the GIS Registry Packet.

▼ Not Applicable

Site Location Map: A map showing all surveyed monitoring wells with specific identification of the monitoring wells which have not been properly abandoned.

Note: If the applicable monitoring wells are distinctly identified on the Detailed Site Map this Site Location Map is not needed.

Figure #: Title:

Well Construction Report: Form 4440-113A for the applicable monitoring wells.

Deed: The most recent deed as well as legal descriptions for each property where a monitoring well was not properly abandoned.

Notification Letter: Copy of the notification letter to the affected property owner(s).

State of Wisconsin	GIS Registry Checklist	
Department of Natural Resources	Form 4400-245 (R 3/10) Page 3 o	ر f
http://dnr.wi.gov	1 01111 4400-243 (N 3/10) Page 3 0	כ וי

ACTIVITY NAME: MANKOWSKI PROPERTY / BAIN ELEMENTARY SCHOO BRRTS #: 02-30-522702 **NOTIFICATIONS Source Property ⋉** Not Applicable Letter To Current Source Property Owner: If the source property is owned by someone other than the person who is applying for case closure, include a copy of the letter notifying the current owner of the source property that case closure has been requested. Return Receipt/Signature Confirmation: Written proof of date on which confirmation was received for notifying current source property owner. **Off-Source Property** Group the following information per individual property and label each group according to alphabetic listing on the "Impacted Off-Source Property" attachment. **▼** Not Applicable Letter To "Off-Source" Property Owners: Copies of all letters sent by the Responsible Party (RP) to owners of properties with groundwater exceeding an Enforcement Standard (ES), and to owners of properties that will be affected by a land use control under s. 292.12, Wis. Stats. **Note:** Letters sent to off-source properties regarding residual contamination must contain standard provisions in Appendix A of ch. NR 726. **Number of "Off-Source" Letters:** Return Receipt/Signature Confirmation: Written proof of date on which confirmation was received for notifying any off-source property owner. **Deed of "Off-Source" Property:** The most recent deed(s) as well as legal descriptions, for all affected deeded **off-source property(ies).** This does not apply to right-of-ways. **Note:** If a property has been purchased with a land contract and the purchaser has not yet received a deed, a copy of the land contract which includes the legal description shall be submitted instead of the most recent deed. If the property has been inherited, written documentation of the property transfer should be submitted along with the most recent deed.

Letter To "Governmental Unit/Right-Of-Way" Owners: Copies of all letters sent by the Responsible Party (RP) to a city, village, municipality, state agency or any other entity responsible for maintenance of a public street, highway, or railroad right-of-way, within or partially within the contaminated area, for contamination exceeding a groundwater Enforcement Standard (ES) and/or soil exceeding a Residual Contaminant Level (RCL) or a Site Specific Residual Contaminant Level (SSRCL).

Number of "Governmental Unit/Right-Of-Way Owner" Letters:

State of Wisconsin \ DEPARTMENT OF NATURAL RESOURCES

Jim Doyle, Governor Scott Hassett, Secretary Gloria L. McCutcheon, Regional Director Southeast Region Headquarters 2300 N. Dr. Martin Luther King, Jr. Drive Milwaukee, Wisconsin 53212-3128 FAX 414-263-8606 Telephone 414-263-8500 TTY Access via relay - 711

August 3, 2005

Patrick Finnemore, P.E. Director of Facilities Kenosha Unified School District 3600-52nd Street Kenosha, WI 53144-2697

SUBJECT:

A Certificate of Completion for the Environmental Investigation and Cleanup of Property Owned by Kenosha Unified School District located at 2600 50th St.,

Kenosha, WI

Dear Mr. Finnemore:

The Department of Natural Resources ("the Department") has received your request for issuance of a Certificate of Completion for the environmental investigation and cleanup of the property owned by the Kenosha Unified School District(KUSD) located at 2600 50th St., Kenosha, WI which will be referred to in this letter as "the Property". You have requested that the Department determine whether the KUSD has met the requirements under s. 292.15(2), Wis. Stats., for issuance of a Certificate of Completion.

The Property is a parcel of real property encompassing approximately 12 acres and is presently occupied by the Bain Elementary School of Language and Arts. The property is described as: Lots 1, 2, 3, 4, 5, 6, 7, 8 and 9, Block 2 and Lots 1, 2,3,4,5,6,7,8 and 9, Block 3, all in NEWELL-HOYT SECOND INDUSTRIAL SUBDIVISION; Together with the vacated North-South alleys in said Block 2 and 3., Also the Abandon Chicago North Shore and Milwaukee Railroad being a strip of land 100 feet in width running North and South from the South line of 45th Street South to the North line of 50th Street. Also vacated 46th Street and part of vacated 48th Street. Also part of Lot 16 of the RE-SUBDIVISION OF BLOCK 4 IN NEWELL-HOYT INDUSTRIAL SUBDIVISION, all that above described being part of the Northeast ¼ of Section 36, Town 2 North, Range 22 East of the Fourth Principal Meridian, and being more particularly described as follows: Beginning at the South line of 45th Street and the West line of 26th Avenue; thence South 1°09'25" East along said West line 860.90 feet to the North line of vacated 48th Street; thence North 89°54'32" West along said North line 140.00 feet to the Southeast corner of Lot 9, Block 3 of said Newell-Hoyt Second Industrial Subdivision: thence South 1°09'25" East 310.00 feet: thence North 89°54'32" West 211.02 feet to the East line of abandon Chicago North Shore and Milwaukee Railroad; thence South 1°37'52" East along said East line 372.06 feet to the North line of 50th Street; thence North 89°52'29" West along said North line 100.00 feet to the West line of said abandon railroad; thence North 1°37'52" West 1544.07 feet to the South line of 45th Street; thence South 89°47'40" East along said South line 460.74 feet to the point of beginning, said land lying and being in the City of Kenosha, County of Kenosha and State of Wisconsin.

Part of Tax Key No.: 09-4-0222-36-134-011

Determination

As you are aware, s. 292.15, Wis. Stats., authorizes the Department to issue a Certificate of Completion to a voluntary party that conducts an approved environmental investigation of a property and restores the environment to the extent practicable and minimizes the harmful effects with respect to hazardous

substance discharges on or originating from the property. Based on the information received by the department, the Department has determined that the investigation and cleanup of the Property is complete and that all the conditions in s. 292.15(2), Wis. Stats., have been met. Attached is the Certificate of Completion for this Property.

Conclusions

The Department appreciates the work undertaken by the Kenosha Unified School District to investigate and clean up contamination associated with the Property. The exemption provided by the Certificate of Completion applies to any successor or assignee of KUSD if the successor or assignee complies with the appropriate conditions, pursuant to s. 292.15(3), Wis. Adm. Code. If you have any questions or concerns regarding this letter or the Certificate of Completion, please call me at (414) 263-8564 or Attorney Judy Ohm at (608) 266-9972.

Sincerely,

Michelle Williams Hydrogeologist

Remediation & Redevelopment Program

Attachment:

Certificate of Completion

cc:

Michael Prager - RR/3 w/o attachment Judy Ohm - LS/5 w/o attachment Sean Cranley – ChemReport, Inc. Art Harrington, Godfrey and Kahn

State of Wisconsin Department of Natural Pesources

CERTIFICATE OF COMPLETION OF RESPONSE ACTIONS UNDER SECTION 292.15(2)(ag), WIS. STATS.

hereas, Kenosha Unified School District has applied for an exemption from liability under s. 292.15, Wis. Stats., for the property located at 2600 50th Street, Kenosha, WI, which is commonly referred to as Bain Elementary School of Language and Arts, further described in the legal description found on Attachment A and heretofore referred to as 'the Property';

has determined that contamination exists at the Property;

Thereas, Kenosha Unified School District has submitted to the Wisconsin Department of Natural Resources ("WDNR") investigation reports and a remedial action plan for the Property which comply with the requirements set forth in chs. NR 700-754, Wis. Adm. Code, consisting of the documents and reports listed in Attachment B;

Thereas, in accordance with s. 292.15(2)(ag) and (a), Wis. Stats., the WDNR has determined that an environmental investigation has been conducted which adequately identified and evaluated the nature and extent of the hazardous substance discharges on the Property and WDNR has approved of the remedial action plan for the Property;

past does not qualify as exempt under s. NR 500.08, Wis. Adm. Code. Due to the non-exempt status of the fill, any person who proposes to develop this Property must obtain approval from the WDNR under s. NR 506.085, Wis. Adm. Code, prior to the initiation of any development of the Property. On June 9, 2003, WDNR issued a Conditional Grant of Exemption for Development on a Property Where Solid Waste Has Been Disposed, included as Attachment D;

Thereas, Kenosha Unified School District has filed with the Register of Deeds of Kenosha a deed restriction (Attachment C) on the Property which declares that the Property

is held and shall be held, conveyed or encumbered, leased, rented, used, occupied and improved subject to the following limitations and restrictions:

The following activities are prohibited on that portion of the property above where a cap or cover has been placed, unless prior written approval has been obtained from the Wisconsin Department of Natural Resources or its successor or assign(1) Excavating or grading of the land surface; (2) Filling on the capped area; (3) Plowing for agricultural cultivation; and (4) Construction or installation of a building or other structure with a foundation that would sit on or be placed within the cap or cover. In addition, the cap or cover shall be maintained in compliance with a plan prepared and submitted to the Wisconsin Department of Natural Resources by a responsible party, as required by section NR 724.13(2), Wis. Adm. Code (1997). See the Site Cap Maintenance Plan attached.

Thereas, on June 7, 2005, WDNR determined that response actions necessary to restore the environment to the extent practicable with respect to the discharges and minimize the harmful effects from the discharges to the air, land, and waters of the state were completed, except with respect to chlorinated volatile organic compounds which are on the property from off-site, for which Kenosha Unified School District is exempt from liability under s. 292.13(1), Wis. Stats.;

Whereas, on April 28, 2005, Kenosha Unified School District obtained a written determination from WDNR under s. 292.13(2), Wis. Stats., that Kenosha Unified School District is exempt from liability under s. 292.13 (1), Wis. Stats., with respect to chlorinated volatile organic compounds in groundwater on the Property; and

WDNR, the WDNR hereby certifies that the response actions set forth in the WDNR approved remedial action plan for the Property and any other necessary response actions have been completed, except with respect to chlorinated volatile organic compounds in groundwater, for which Kenosha Unified School District is exempt from liability under s. 292.13(1) Wis. Stats.

Upon issuance of this Certificate, **Kenosha Unified School District** and the persons qualified for protection under s. 292.15(3), Wis. Stats., are exempt from the provisions of ss. 289.05(1), (2), (3) and (4), 289.42(1), 289.67, 291.25(1) to (5), 291.29, 291.37, 292.11(3), (4), and (7)(b) and (c) and 292.31(8), Wis. Stats., with respect to the existence of hazardous substances on or originating from the Property, the release of which occurred prior to the date the department approved the environmental investigation required under s. 292.15(2)(ag) and (a)1., Wis. Stats., was approved provided that **Kenosha Unified School District** or current owner of the Property continues to satisfy the conditions under s. 292.13(1)(d) to (g) Wis. Stats. Those conditions are detailed in s. 292.13, Wis. Stats., but can be summarized as

follows, with respect to discharges of hazardous substances that originated from a source other than the Property: allow WDNR, parties responsible for the hazardous substance discharges, and their representatives, to enter the Property to take action to respond to the discharges; agree to avoid any interference with action taken to respond to the discharge and avoid actions that worsen the discharge; and agree to any other conditions WDNR determines are reasonable and necessary to ensure that WDNR and the responsible parties can respond to the discharge.

Kenosha Unified School District and a person otherwise qualified for protection under s. 292.15(3), Wis. Stats., who owns or controls the Property would no longer qualify for this liability exemption if that person fails to maintain or monitor the Property as required by rules promulgated by the WDNR, and as required to meet the conditions of the June 9, 2003, Conditional Grant of Exemption for Development on a Property Where Solid Waste Has Been Disposed.

Any releases of a hazardous substance to or from the Property that occur after the date that the environmental investigation was approved will be the responsibility of the current Property owner and any other person who possesses or controls that discharge and any person who caused the discharge.

The protection from liability provided under s. 292.15(2), Wis. Stats., does not apply to any person who has obtained a Certificate of Completion by fraud or misrepresentation, or by the knowing failure to disclose material information or under circumstances in which **Kenosha Unified School District** knew or should have known about more discharges of hazardous substances than was revealed by the investigation approved by the WDNR.

Nothing in this Certificate or in s. 292.15, Wis. Stats., affects the authority of the WDNR to exercise any powers or duties under applicable laws other than s. 289.05(1), (2), (3) and (4), 289.42(1), 289.67, 291.25(1) to (5), 291.29, 291.37, 292.11(3), (4), and (7)(b) and (c) and 292.31(8), Wis. Stats., with respect to any release or threatened release of contaminants at the Property, or the right of the WDNR to seek relief available against any person who is not entitled to protection from liability under s. 292.15, Wis. Stats., with respect to such release or threatened release.

SIGNED AND CERTIFIED this 18 day of July

/

Scott Hassett, Secretary

Wisconsin Department of Natural Resources

ATTACHMENT A LEGAL PROPERTY DESCRIPTION

Bain Elementary School of Language and Arts, 2600 50th Street, Kenosha, WI

Lots 1, 2, 3, 4, 5, 6, 7, 8 and 9, Block 2 and Lots 1, 2,3,4,5,6,7,8 and 9, Block 3, all in NEWELL-HOYT SECOND INDUSTRIAL SUBDIVISION; Together with the vacated North-South alleys in said Block 2 and 3., Also the Abandon Chicago North Shore and Milwaukee Railroad being a strip of land 100 feet in width running North and South from the South line of 45th Street South to the North line of 50th Street. Also vacated 46th Street and part of vacated 48th Street. Also part of Lot 16 of the RE-SUBDIVISION OF BLOCK 4 IN NEWELL-HOYT INDUSTRIAL SUBDIVISION, all that above described being part of the Northeast ¼ of Section 36, Town 2 North, Range 22 East of the Fourth Principal Meridian, and being more particularly described as follows: Beginning at the South line of 45th Street and the West line of 26th Avenue; thence South 1°09'25" East along said West line 860.90 feet to the North line of vacated 48th Street; thence North 89°54'32" West along said North line 140.00 feet to the Southeast corner of Lot 9, Block 3 of said Newell-Hoyt Second Industrial Subdivision; thence South 1°09'25" East 310.00 feet; thence North 89°54'32" West 211.02 feet to the East line of abandon Chicago North Shore and Milwaukee Railroad; thence South 1°37'52" East along said East line 372.06 feet to the North line of 50th Street; thence North 89°52'29" West along said North line 100.00 feet to the West line of said abandon railroad; thence North 1°37'52" West 1544.07 feet to the South line of 45th Street; thence South 89°47'40" East along said South line 460.74 feet to the point of beginning, said land lying and being in the City of Kenosha, County of Kenosha and State of Wisconsin.

Part of Tax Key No.: 09-4-0222-36-134-011

ATTACHMENT B INVESTIGATION AND REMEDIAL ACTION PLAN REPORTS Bain Elementary School of Language and Arts

- 1. Subsurface Site Environmental Assessment Report-Phase II, Hydrosearch, March 1990
- 2. Subsurface Investigation and Remedial Action, Triad Eng. Inc. October 1997
- 3. Phase I Environmental Assessment, Benchmark Environmental, June 1999
- 4. Phase II Environmental Site Assessment, ChemReport, August 2000
- 5. Site Investigation Workplan, ChemReport, April 2001
- 6. Site Investigation Report, ChemReport, October 2001
- 7. Site Investigation Report, GZA, GeoEnvironmental, April 2002
- 8. Supplemental Site Investigation/Remedial Options Report, ChemReport, August 2002
- 9. Remedial Design Report, ChemReport, March 2003
- 10. Soil Mitigation Report, GZA, GeoEnvironmental, July 2003
- 11. Site Remediation Workplan, GZA, GeoEnvironmental, February 2004
- 12. Remedial Implementation Report, ChemReport, October 2004
- 13. Closure Request, ChemReport, April 2005

ATTACHMENT C DEED RESTRICTION Bain Elementary School of Language and Arts

See Attached Deed Restriction

DEED RESTRICTION

Declaration of Restrictions

In Re: See Legal Description attached as Addendum A.

STATE OF WISCONSIN

COUNTY OF Kenosha County where document is signed]

WHEREAS, Kenosha Unified School District is the owner of the above-described property.

WHEREAS, arsenic, lead, polynuclear aromatic hydrocarbon (PAH) and volatile organic compound (VOC) discharges have occurred on this property. Arsenic, lead, PAH and/or VOC-contaminated soil is considered to remain beneath the entire property.

Parcel Identification Number (PIN) WHEREAS, it is the desire and intention of the property owner to impose on the property restrictions which will make it unnecessary to conduct further soil remediation activities on the property at the present time.

NOW THEREFORE, the owner hereby declares that all of the property described above is held and shall be held, conveyed or encumbered, leased, rented, used, occupied and improved subject to the following limitation and restrictions:

The following activities are prohibited on that portion of the property described above where a cap or cover has been placed, unless prior written approval has been obtained from the Wisconsin Department of Natural Resources or its successor or assign: (1) Excavating or grading of the land surface; (2) Filling on the capped area; (3) Plowing for agricultural cultivation; and (4) Construction or installation of a building or other structure with a foundation that would sit on or be placed within the cap or cover. In addition, the cap or cover shall be maintained in compliance with a plan prepared and submitted to the Wisconsin Department of Natural Resources by a responsible party, as required by section NR 724.13(2), Wis. Adm. Code (1997). See the Site Cap Maintenance Plan attached as Addendum B.

This restriction is hereby declared to be a covenant running with the land and shall be fully binding upon all persons acquiring the above-described property whether by descent, devise, purchase or otherwise. This restriction inures to the benefit of and is enforceable by the Wisconsin Department of Natural Resources, its successors or assigns. The Department, its successors or assigns, may initiate proceedings at law or in equity

Recording Area

09-4-0222-36-134-011

Name and Return Address Patrick Firmemore Kenosha Unified School District No.1 3600 - 52nd Street Kenosha, WI 53144

against any person or persons who violate or are proposing to violate this covenant, to prevent the proposed violation or to recover damages for such violation.

Any person who is or becomes owner of the property described above may request that the Wisconsin Department of Natural Resources or its successor issue a determination that one or more of the restrictions set forth in this covenant is no longer required. Upon the receipt of such a request, the Wisconsin Department of Natural Resources shall determine whether or not the restrictions contained herein can be extinguished. If the Department determines that the restrictions can be extinguished, an affidavit, attached to a copy of the Department's written determination, may be recorded by the property owner or other interested party to give notice that this deed restriction, or portions of this deed restriction, are no longer binding.

By signing this document, asserts that he or she is duly authorized to significant on behalf of Kenosha Unified School District.	gn
IN WITNESS WHEREOF, the owner of the property has executed this Declaration of Restrictions, this 15 day of June 2005	
Signature:	
Subscribed and sworn to before me this 15 day of June, 2005. Kathleen Q. Ol Folius	
Notary Public, State of wisinain	

This document was drafted by the Wisconsin Department of Natural Resources.

[FILENAME :Z:\deeddocs\Deed restriction.doc][revised October 6, 1999]

My commission 7-31-05

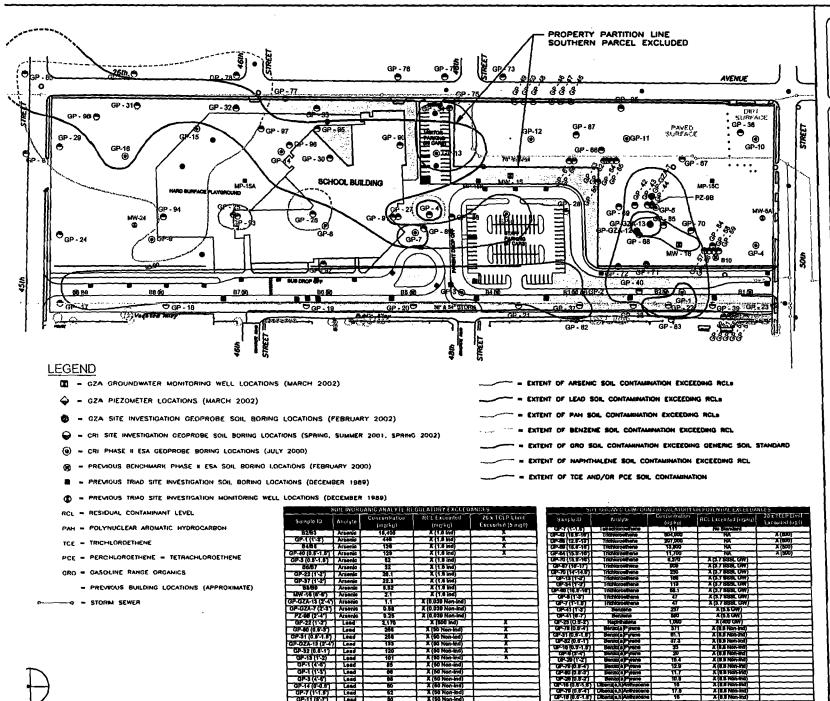
ADDENDUM A

Lots 1, 2, 3, 4, 5, 6, 7, 8 and 9, Block 2 and Lots 1, 2, 3, 4, 5, 6, 7, 8 and 9, Block 3, all in NEWELL- HOYT SECOND INDUSTRIAL SUBDIVISION; Together with the vacated North-South alleys in said Block 2 and 3., Also the Abandon Chicago North Shore and Milwaukee Railroad being a strip of land 100 feet in width running North and South from the South line of 45th Street South to the North line of 50th Street. Also vacated 46th Street and part of vacated 48th Street. Also part of Lot 16 of the RE-SUBDIVISION OF BLOCK 4 IN NEWELL-HOYT INDUSTRIAL SUBDIVISION, all that above described being part of the Northeast 1/4 of Section 36, Town 2 North, Range 22 East of the Fourth Principal Meridian, and being more particularly described as follows: Beginning at the South line of 45th Street and the West line of 26th Avenue; thence South 1°09'25" East along said West line 860.90 feet to the North line of vacated 48th Street; thence North 89°54'32" West along said North line 140.00 feet to the Southeast corner of Lot 9, Block 3 of said Newell-Hoyt Second Industrial Subdivision; thence South 1°09'25" East 310.00 feet; thence North 89°54'32" West 211.02 feet to the East line of abandon Chicago North Shore and Milwaukee Railroad; thence South 1°37'52" East along said East line 372.06 feet to the North line of 50th Street: thence North 89°52'29" West along said North line 100.00 feet to the West line of said abandon railroad; thence North 1°37'52" West 1544.07 feet to the South line of 45th Street; thence South 89°47'40" East along said South line 460.74 feet to the point of beginning, said land lying and being in the City of Kenosha, County of Kenosha and State of Wisconsin.

Part of Tax Key No.: 09-4-0222-36-134-011

Addendum B Edward Bain School of Language and Art Site Cap Maintenance Plan

Site Cap Construction: The site construction incorporated three different types of cap construction that effectively cap the entire property. The school building with its subbase, vapor barrier and concrete floor provides capping for contaminated materials beneath the school. The hard surface playground, access drives and parking areas and walkways were capped with pavement. Landscaped areas and athletic fields were capped with clean soil. The pavement caps were constructed with a minimum of 3 inches of concrete or bituminous pavement overlying 10 inches of crushed aggregate. Grass covered portions of the site were capped by 6 inches of topsoil overlying 6 inches of compacted clay obtained from an off-site source.


Site Cap Inspection: Routine maintenance activities at the property are conducted by Kenosha Unified School District (KUSD) personnel and Edward Bain School of Language and Art custodians. These activities include, but are not limited to, lawn mowing, landscaping and snow removal activities. Personnel performing routine maintenance activities will be made aware of the restriction outlined in the property deed and the necessity of maintaining the site cap integrity. If during the course of these routine activities a significant breach in the cap materials is noted, the Director of Facilities will be promptly notified and repairs to the cap will be made expeditiously.

<u>Site Cap Maintenance:</u> Cracks, holes and other small penetrations of paved portions of the site cap will be patched with compatible surface materials on an annual basis. Holes or erosion features in the grassed or landscaped portions of the site cap will be filled and graded with clay, soil or other compatible earth materials as soon as practical.

Excavation: Should excavation through the cap materials be necessary good judgment should be used. Soils below one foot in depth should be considered contaminated. Small excavations for landscaping purposes should avoid penetration of the one-foot thick clean soil cap, if possible. If soils below the one foot depth are removed, they should be placed back into the excavation and covered with one-foot of clean soil or paved.

Excavations that will result in the removal of large amounts of soil from below one foot will require practices to properly handle the contaminated material. The contaminated soil must be staged on, and covered by plastic sheeting until it can be placed back in the excavation or properly disposed. The excavations should be capped with one foot of clean soils or paved. Although the contaminated soil does not pose a risk to human health through short-term exposure, workers contacting the soil should be apprised of the presence of the contamination and directed to employ good hygiene practices to limit exposure.

Reporting: Since the routine cap maintenance activities are consistent with the standard grounds care practices of KUSD, period reporting of routine maintenance activities is not warranted. Large penetrations, catastrophic failures and/or breaches of the site cap will be reported to the Department of Natural Resources as soon as practical.

ChemReport, Inc.

4515 WashIngton Road Kenosha, WI 53144 800-965-5323

engineer@chemreport.com

NATION DISTRIBUTION PRE-CONSTRUCTION SOIL CONTAIN

AVENUE

26th

8

STREET

45th

KENOSHA,

Approved By: 8. CRANLEY	Figure
Date Approved: 3/17/05	16
Date Drawn: 3/15/05	6 of 9
Drawn by:	

ONSTRUCTION SOIL CONTAMINATI I DISTRIBUTION SUMMARY SCALE: - = 200°

GP-11 (5'-7') Lead GP-16 (0.5'-1.5') Lead

CP-76 (0.5-1.6) Ciberna a.h.)Anii GP-76 (0.5-4) Berna a.j.Aniin CP-78 (0.5-4) Berna (b.)Buon

X (8.8 Non-Ind

A (88 Non-Ind

ATTACHMENT D EXEMPTION FOR DEVELOPMENT ON A PROPERTY WHERE SOILD WASTE HAS BEEN DISPOSED

Bain Elementary School of Language and Arts

See Attached Conditional Grant of Exemption for Development on a Property Where Solid Waste Has Been Disposed

State of Wisconsin \ DEPARTMENT OF NATURAL RESOURCE

Jim Doyle, Governor . Scott Hassett, Secretary Gloria L. McCutcheon, Regional Director

Plymouth Service Center 1155 Pilgrim Rd. Plymouth, Wisconsin 53073 Telephone 920-892-8756 FAX 920-892-6638

June 9, 2003

Mr. Sean Cranley ChemReport Incorporated 4515 Washington Road Kenosha, WI 53144

Ref: BRRTS# 06-30-269300 FID# 230149590

Subject: Conditional Grant of Exemption for the Development of the Mankowski Property Where Solid Waste has been Disposed

Dear Mr. Cranley:

We have reviewed your request dated August 1, 2002 for a grant of exemption from regulation under s. NR 506.085, Wis. Adm. Code. Based on that evaluation, the Department is issuing this general grant of exemption from the prohibitions contained in s. NR 506.085, Wis. Adm. Code for the property identified in your application as the Mankowski Property, also known as the American Motors Receving Lot, located at 2600 45th Street in the City of Kenosha, Kenosha County, Wisconsin. You must comply with the conditions of this grant of exemption in order to maintain the exemption. This grant of exemption is limited to the proposed changes described in your application. If you are considering additional changes beyond those described in the application, a new application must be submitted to the department for approval.

Please review the information contained in the publication Development at Historic Fill Sites and Licensed Landfills: Considerations and Potential Problems PUB-RR-685 to assist you in preventing environmental or safety problems during and after development.

You are reminded that this approval does not relieve you of obligations to meet all other applicable federal, state and local permits, as well as zoning and regulatory requirements. If you have any questions concerning this letter, please contact Thomas A. Wentland at 920-892-8756 Ex. 3028.

Sincerely.

mus a Showold James A. Schmidt, Supervisor

Remediation and Redevelopment Section

Southeast Region

Cc: City of Kenosha, Building Inspection

BEFORE THE

STATE OF WISCONSIN DEPARTMENT OF NATURAL RESOURCES

CONDITIONAL GRANT OF EXEMPTION FOR DEVELOPMENT ON A PROPERTY WHERE SOLID WASTE HAS BEEN DISPOSED

FINDINGS OF FACT

The Department finds that:

- 1. The Kenosha Unified School District owns the property describer as the Mankowski Property at 2600 45th Street, Kenosha, Wisconsin.
- 2. Based on information provided by the applicant solid waste materials consisting primarily of foundry sand waste have been disposed of at this property.
- 3. Mr. Sean Cranley of ChemReport Incorporated submitted the application for exemption and a Project Status Update Supplemental Soil Gas Methane Monitoring Report, dated May 19, 2003 relating to the proposed development and the environmental conditions at the property.
- 4. Based upon the evaluation provided to the Department, there are low levels of methane gas present at the site.
- 5. If the conditions set forth below are complied with, the development of the property will not result in environmental pollution as defined in ss. 289.01(8) and 299.01(4), Wis. Stats.

CONCLUSIONS OF LAW

- 1. The Department has the authority under s. NR 500.08(4), Wis. Adm. Code to issue an exemption from the prohibition in s. NR 506.085, Wis. Adm. Code, if the proposed development will not cause environmental pollution as defined in ss. 289.01(8) and 299.01(4), Wis. Stats.
- 2. The Department has authority to approve a grant of exemption with conditions if the conditions are necessary to ensure compliance with the applicable provisions of chapters NR 500 to 538, Wis. Adm. Code, or to assure that environmental pollution will not occur.
- 3. The conditions set forth below are necessary to ensure compliance with the applicable provisions of chapters NR 500 to 538, Wis. Adm. Code, and to assure that environmental pollution will not occur.
- 4. In accordance with the foregoing, the Department has the authority under s. NR 500.08(4), Wis. Adm. Code, to issue the following conditional grant of exemption.

CONDITIONAL GRANT OF EXEMPTION

The Department hereby issues an exemption to Kenosha Unified School District from the prohibition in s. NR 506.085, Wis. Adm. Code for development on a property which contains solid waste as proposed in the submittal dated April 11, 2003 subject to the following conditions:

- 1. No action related to the development of the property may be taken which will cause a significant adverse impact on wetlands as provided in ch. NR 103, Wis. Adm. Code.
- 2. No action related to the development of the property may be taken which will cause a significant adverse impact on critical habitat areas, as defined in s. NR 500.03(55), Wis. Adm. Code.
- 3. No action related to the development of the property may be taken which will cause a detrimental effect on any surface water, as defined in s. NR 500.03(62), Wis. Adm. Code.
- 4. No action related to the development of the property may be taken which will cause a detrimental effect on groundwater, as defined in s. NR 500.03(62), Wis. Adm. Code, or will cause or exacerbate an attainment or exceedance of any preventive action limit or enforcement standard at a point of standards application in ch. NR 140, Wis. Adm. Code.

- 5. No action related to the development of the property may be taken which will cause a migration and concentration of explosive gases in any structures in excess of 25% of the lower explosive limit for such gases at any time. No actions may be taken which will cause a migration and concentration of explosive gases in the soils outside of the limits of solid waste disposal within 200 feet of the property boundary or beyond the property boundary in excess of the lower explosive limit for such gases at any time. No actions may be taken which will cause a migration and concentration of explosive gases in the air outside of the limits of solid waste disposal within 200 feet of the landfill boundary or beyond the landfill property boundary in excess of the lower explosive limit for such gases at any time.
- 6. No action related to the development of the property may be taken which will cause an emission of any hazardous air contaminant exceeding the limitations for those substances contained in s. NR 445.03, Wis Adm. Code.
- 7. No action related to the development of the property may be taken which will cause an exceedance of a soil clean up standard in ch. NR 720, Wis. Adm. Code.
- 8. Safeguards should be taken to prevent methane gas from collecting in the structure. The installation of vents, trenches, methane alarms, flexible membrane liners under foundations, and constructing with slab foundations may prevent the migration of methane into the building. At a minimum, the external venting system should consist of a 6 to 12 inch pea gravel layer laid directly over the waste with an interconnected system of 4-inch diameter polyvinyl chloride (PVC) or corrugated drainage pipe installed in the top 4 inches of the pea gravel. A vapor barrier consisting of a minimum 30-mil thick polyethlylene geomembrane welded at the seams to provide a continuous barrier between the venting system and the floor slab should be installed. Filter fabric or a 6-inch layer of fine sand should be placed on top of the geomembrane to act as a cushion.
- 9. This grant of exemption is limited to the proposed changes described in your application. If you are considering additional changes beyond those described in the application, a new application must be submitted to the department for approval. The Department reserves the right to require the submittal of additional information and to modify this grant of exemption at any time, if in the Department's opinion, modifications are necessary. Unless specifically noted, the conditions of this grant of exemption do not supersede or replace any previous conditions of approval for this property.

NOTICE OF APPEAL RIGHTS

If you believe that you have a right to challenge this decision, you should know that Wisconsin statutes and administrative rules establish time periods within which requests to review Department decisions must be filed.

For judicial review of a decision pursuant to section 227.52 and 227.53, Stats., you have 30 days after the decision is mailed, or otherwise served by the Department, to file your petition with the appropriate circuit court and serve the petition on the Department. Such a petition for judicial review shall name the Department of Natural Resources as the respondent.

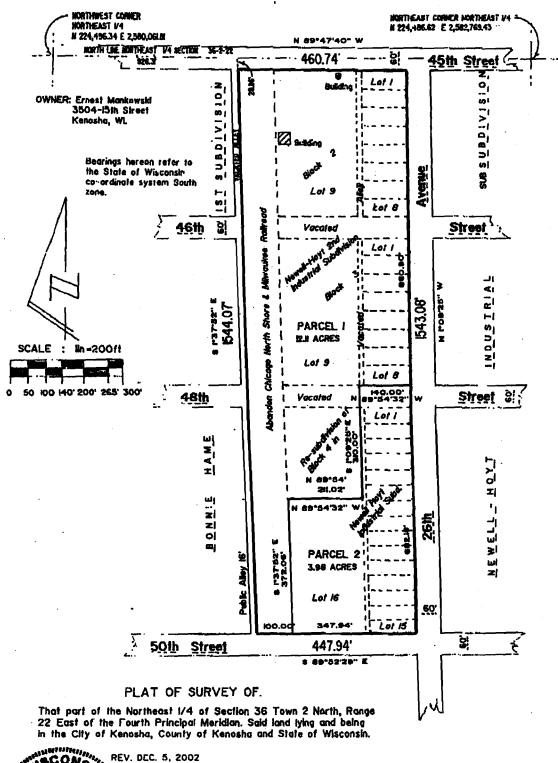
Dated:

DEPARTMENT OF NATURAL RESOURCES

For the Secretary

James A. Schmidt, Supervisor

Remediation and Redevelopment Section


Southeast Region

Thomas A. Wentland

Waste Management Engineer

Remediation and Redevelopment Section

Southeast Region

3719-52ndd Street Kenosha, Wl. 53144 262-658-1686 Fax: 262-658-8330

KENOSHA UNIFIED SCHOOL DISTRICT NO. 1

EDUCATIONAL SUPPORT CENTER

3600 - 52ND STREET • KENOSHA, WISCONSIN 53144-2697 • PHONE 262-653-6300

www.kusd.edu

April 4, 2005

Ms. Michelle Williams
Hydrogeologist
Wisconsin Department of Natural Resources
P.O. Box 12436
Milwaukee, WI 53212-0436

RE:

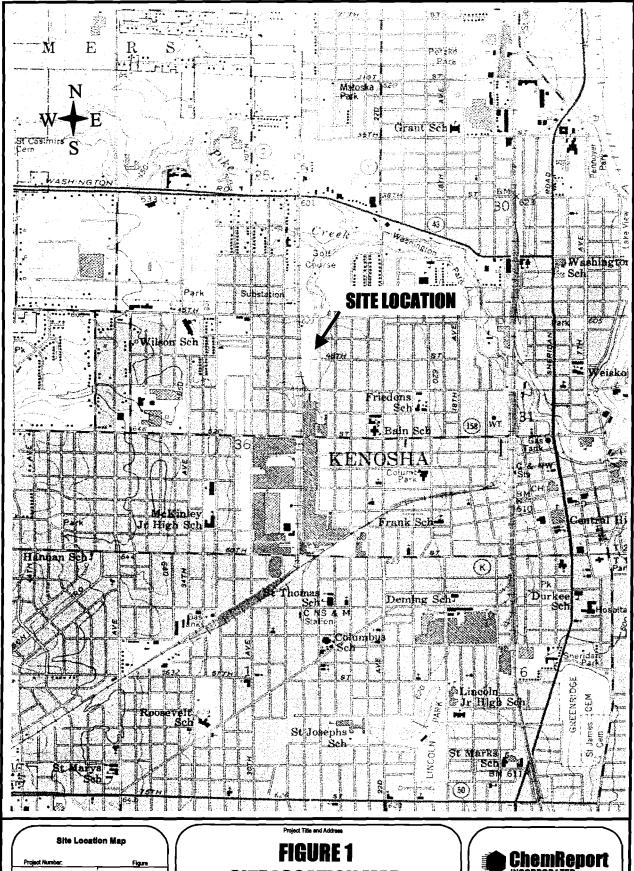
Edward Bain School of Language & Art 2600 50th Street

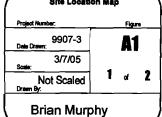
Kenosha, Wisconsin 53140 WDNR BRRTS# 06-03-269300 WDNR FID# 230149590

Parcel ID# 09-4-0222-36-134-011

Dear Ms. Williams:

This letter is to certify that to the best of my knowledge the legal description provided in Addendum A of the attached Draft Deed Restriction, for the above referenced site is accurate.

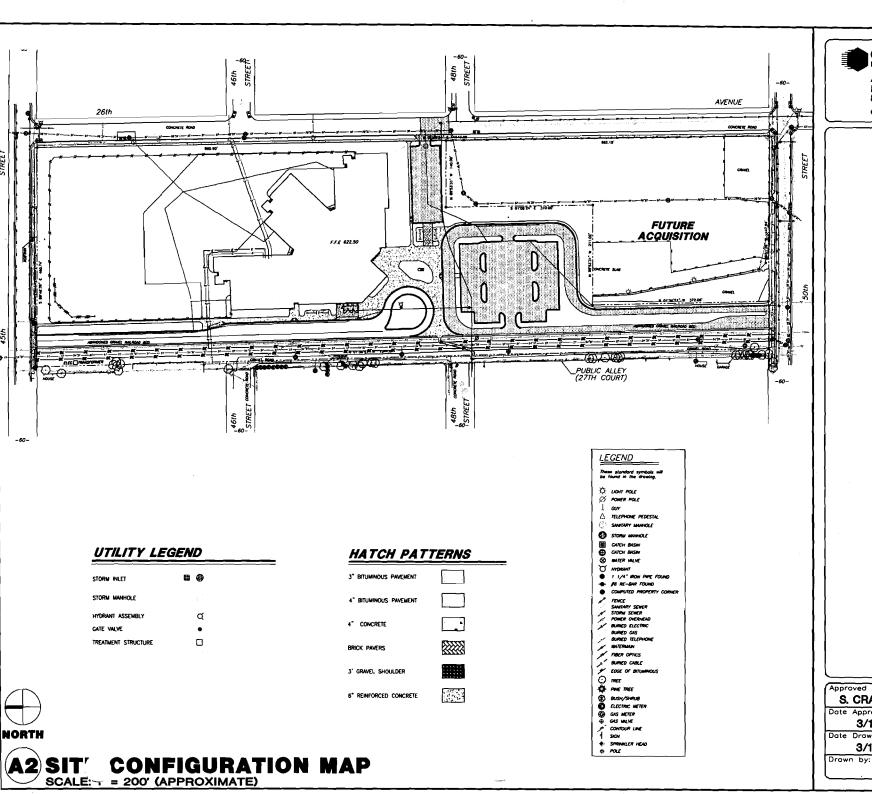

If you have any questions please call Sean Cranley of ChemReport, Inc. at (262) 654-7020. Thank you.


Sincerely,

Patrick M. Finnemore, P.E.

Detruk 1. Jun

Director of Facilities



SITE LOCATION MAP **Mankowski Property**

45th Street & 26th Avenue Kenosha, Wi 53140

Kenosha • Milwaukee • Racine

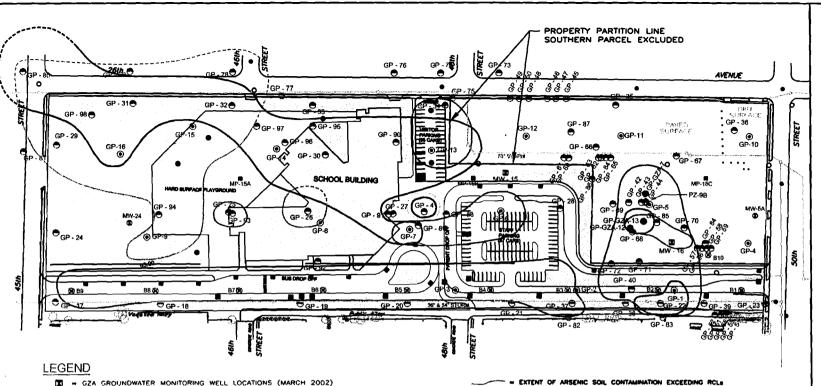
4515 Washington Road Kenosha, WI 53144 800-965-5323

engineer@chemreport.com

AVENUE

STREET

45th


₹ 26th ,

KENOSHA, ∞

Approved By: Figure S. CRANLEY Date Approved: 3/17/05 Date Drawn: 3/15/05

PHY

B.

■ GZA GROUNDWATER MONITORING WELL LOCATIONS (MARCH 2002)

GZA PIEZOMETER LOCATIONS (MARCH 2002)

GZA SITE INVESTIGATION GEOPROBE SOIL BORING LOCATIONS (FEBRUARY 2002)

- CRI SITE INVESTIGATION GEOPROBE SOIL BORING LOCATIONS (SPRING, SUMMER 2001, SPRING 2002)

CRI PHASE II ESA GEOPROBE BORING LOCATIONS (JULY 2000)

PREVIOUS BENCHMARK PHASE II ESA SOIL BORING LOCATIONS (FEBRUARY 2000)

- PREVIOUS TRIAD SITE INVESTIGATION SOIL BORING LOCATIONS (DECEMBER 1989)

- PREVIOUS TRIAD SITE INVESTIGATION MONITORING WELL LOCATIONS (DECEMBER 1989)

RCL - RESIDUAL CONTAMINANT LEVEL

PAH - POLYNUCLEAR AROMATIC HYDROCARBON

TCE - TRICHLOROETHENE.

PCE = PERCHLOROETHENE = TETRACHLOROETHENE

GRO = GASOLINE RANGE ORGANICS

- PREVIOUS BUILDING LOCATIONS (APPROXIMATE)

-0 - STORM SEWER

	OIL INORU		GULATORY EXCEED	
Sample (D	Analyle	Concentration	RCL Exceeded	20 x TCLP Limit
Sample to	1.1.7.17.10	(mg/kg)	(mg/kg)	Exceeded (5 mg/l
B2/B3	Arsenic	18,400	X (1.5 Ind)	X
GP-1 (1'-3')	Arsenic	446	X (1.6 ind)	
84/85	Arsenic	138	X (1.6 Ind)	x
GP-40 (0.5'-1.5')	Arsenic	129	X (1.5 Ind)	
GP-3 (0.5'-1.5')	Arsenic	52	X (1.6 ind)	
86/87	Arsenic	32	X (1.5 ind)	
GP-22 (1'-2')	Arsenic	26.1	X (1.6 ind)	
GP-37 (1'-2')	Arsenic	22.3	X (1.6 Ind)_	
88/89	Arsenic	5.32	X (1.8 ind)	
MW-16 (6'-8')	Arsenic	2.1	X (1,6 Ind)	
3P-GZA-13 (2'-4')	Arsenic	1.1	X (0.039 Non-Ind)	
GP-GZA-7 (2'-3')	Arsenic	0.58	X (0.039 Non-Ind)	
PZ-98 (2'-4")	Arsenic	0.25	X (0.039 Non-Ind)	
GP-22 (1'-2')	Lead	2,170	X (500 Ind)	X
GP-80 (0.5'-3')	Lead	266	X (50 Non-Ind)	X
GP-31 (0.5'-1.5')	Lead	258	X (50 Non-Ind)	X
3P-GZA-13 (2-4')	Lead	133	X (50 Non-Ind)	X
GP-32 (0.5'-1')	Load	120	X (50 Non-Ind)	
GP-13 (1'-2)	Lead	101	X (50 Non-Ind)	
GP-1 (4'-5')	Lead	85	X (50 Non-Ind)	
GP-1 (1'-3')	Lead	- 66	X (50 Non-Ind)	
GP-3 (4'-5')	Lead	66	X (50 Non-Ind)	
GP-14 (0'-0.5')	Lead	80	X (50 Non-Ind)	
GP-7 (1'-1,5')	Lead	52	X (50 Non-ind)	
GP-11 (5'-7')	Lead	- 50	X (50 Non-Ind)	
GP-16 (0.8'-1.8')	Lead	50	X (50 Non-Ind)	

St	JIL ORGANIC COMPOUR	ID REGULATORY O	OR POTENTIAL EXCELUAT	ICES
Sample ID	Analyte	Concentration (ug/kg)	RCL Exceeded (irg/kg)	26 x TCLP Llinit Excourted (ug/l)
GP 7 (1-1.5)	Tetrachicrosthene	- 111	No Standard	
GP-43 (15.5-16)	Trichloroethene	504,000	NA T	X (500)
GP-68 (12 5-13)	Trichiarosthans	207,000	, AA	X (500)
GP-69 (15.5'-16)	Trichloroethene	13,800	NA -	X (500)
GP-64 (15.6-16)		11,700	NA.	X (500)
GP-70 (18.8-18)		8,370	X (3.7 SSSL GW)	
GP-87 (18-17)	Trichiorcethane	909	X (3.7 \$555, GW)	
GP 70 (14-14.5)	Trichiaroethene	230	X (3.7 \$55L GW)	
GP-13 (1'-2')	Trichlarcethene	106	X (3.7 SSSL GW)	
GP-34 (1-2)	Trichlorosthene	113	X (3.7 SSSL GW)	
GP-68 (15.5-16)	Trichicroethene	58.1	X (3.7 SSSL GW)	
GP-6(1'-3')	Trichloroethene	47	X (3.7 SSSL GW)	
GP-7 (1'-1.5')	Trichlaroethene	47	X (3.7 85SL GW)	
GP-41 (1'-3')	Benziine	237	X (5.5 GW)	
GP-41 (8-7)	Benzene	560	X (5.5 GW)	
GP-25 (O.5-Z)	Néphthalene	1,090	X (400 GW)	
GP-78 (0.5-41)	Benzo(a)Pyrene	371	X (8.8 Non-Ind)	
GP-31 (0.5-1.5)	Benzo(a)Pyrene	61.1	X (8.8 Non-Ind)	
GP-32 (0.5'-1')	Berzo(a)Pyrene	37.3	X (8.8 Non-Ind)	
GP-16 (0.5-1.5)	Benzo(a)Pyrene	- 13	X (8.8 Non-Ind)	
GP-9(3-4)	Senzo(a)Pyrene	20	X (8.8 Non-Ind)	
GP-29 (1'-2')	Genzo(a)Pyrene	15.4	X (8.8 Non-Ind)	
GP-79 (0.5-4')	Bentto(a)Pyrene	12.9	X (6.5 Non-Ind)	
GP-80 (0.5-3")	Benzo(a)Pyrene	11.7	X (8.5 Non-Ind)	
GP-28 (0.5-2)	Benzo(a)Pyrene	10.5	X (8.8 Non-Ind)	
GP-18 (0.5-1.5)	Dibenz(a,h)Anthracene	18	X (8.5 Non-Ind)	
GP-79 (0.5-4')	Olberta(a,h)Anthracene	17.5	X (8.8 Non-ind)	
GP-16 (0.5-1.5')	Dibenz(a,h)Anthracene	16	X (8.8 Non-Ind)	
GP-78 (0.5-41)	Bent(a)Anthracene	340	X (88 Non-Ind)	
GP-78 (0.5-4*)	Senzo(b)lluoranihena	291	X (56 Non-Ind)	
GP-78 (0.5-4*)	Indenc(1,2,3-cd)Pyrene	266	X (86 Non-Ind)	
GP-41 (6-7)	GRO	278,000	X (100,000 GSS)	

EXTENT OF LEAD SOIL CONTAMINATION EXCEEDING RCLs

EXTENT OF PAH SOIL CONTAMINATION EXCEEDING RCLs

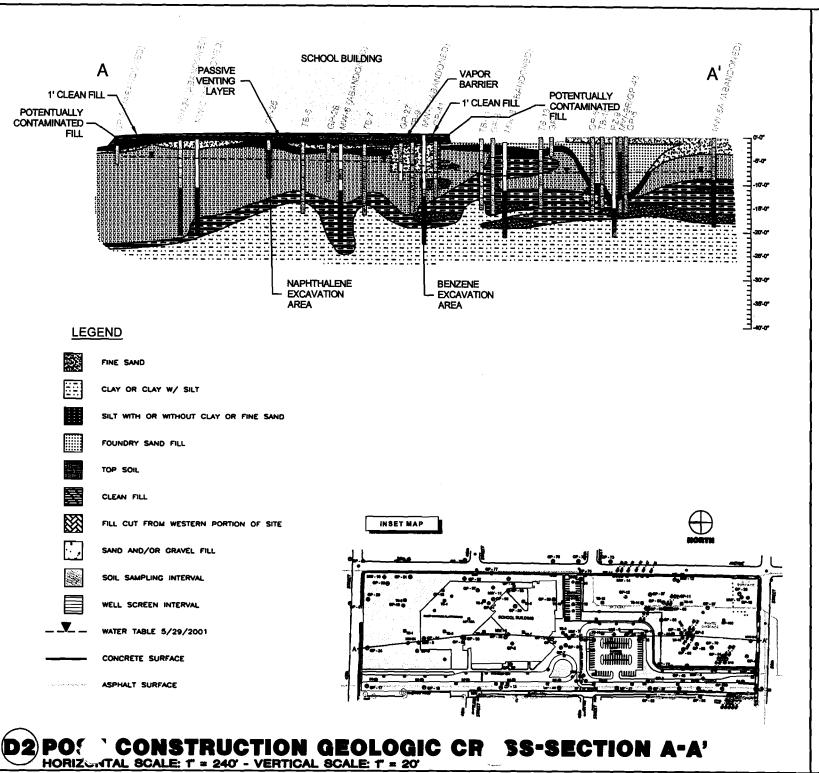
- EXTENT OF TCE AND/OR PCE SOIL CONTAMINATION

- EXTENT OF BENZENE SOIL CONTAMINATION EXCEEDING RCL

- EXTENT OF NAPHTHALENE SOIL CONTAMINATION EXCEEDING RCL

EXTENT OF GRO SOIL CONTAMINATION EXCEEDING GENERIC SOIL STANDARD

ChemReport, Inc.


4515 Washington Road Kenosha, WI 53144 800-965-5323

engineer@chemreport.com

INATION DISTRIBUTION SU **AVENUE 26th** KENOSHA 9 PRE-CONSTRUCTION SOIL CONTA STREET **15th**

Approved By: 8. CRANLEY	Figure
Date Approved: 3/17/05	16
Date Drawn: 3/15/05	6 of 9
Drawn by:	PHY

ONSTRUCTION SOIL CONTAMINATI I DISTRIBUTION SUMMARY

4515 Washington Road Kenosha, WI 53144 800-965-5323

engineer@chemreport.com

POST CONSTRUCTION GEOLOGIC CROSS-SECTION 26th AVENUE KENOSHA, ٥Ę STREET 45th

Approved By:

8. CRANLEY

Date Approved:
3/17/05

Date Drawn:
3/15/05

2 of 2

Drawn by:

B. PHY

TABLE I2 Fill/Soil Sample Metals Analytical Results Summary Mankowski Property May 2001, April 2002

	m	

Sample ID, Matrix and Collection Date

NR 720 RCLs

RCRA TCLP

	GP-17 (0.5°-2")	GP-18 (0.5'-1.5')	GP-19 (1'-3')	GP-20 (11-31)	GP-21 (1'-3')	GP-22 (1'-2')	GP-23 (1'-2')	GP-24 (0.5-2')	GP-25 (0.5-2')	GP-25 (6-7)	GP-26 (0.5'-2')	GP-26 (5'-7')	GP-27 (0.5'-2')	GP-27 (5'-7')	GP-29 (1°-2')	GP-31 (0.5'-1.5')	GP-32 (0.5'-1")		
	Soll	Soli	Soll	Soil	FII/Soll	Soli	FIR	Soll	Soli	Solt	Fill/Soil	Soil	FII	Soil	Fig	FM	뒈	Direct 0	ontact	
	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	6-14-01	5-14-01	5-14-01	Non-Industria	Industrial	TCLP x20 (2)
																		_		_
Total Metals (mg/kg)																		mg/kg	mg/kg	mg/l
Total Metals (mg/kg) Arsenic	<2.82	<2.78	<2.89	<2.98	<2.50	26.1 ■	<2,50	<2.97	<2.98	<2.89	<2.96	<2.94	<2.82	<2.96	NA	NA.	NA .	mg/kg 0,039	mg/kg 1.6	mg/l 100
		<2.78 NA	<2.89 NA	<2.98 NA		26.1 ■ 2,170 (TC) ■	<2,50 10,3	<2.97 7.41	<2.98 19.5	<2.89 7,47	<2.98 48.2	<2.94 6.36	<2.82 10.3	<2.96 5.47	NA 20.3	NA 258 (TC) ●	NA 120 (TC) ●	XXX	mg/kg 1,6 500	

	nata	

Sample ID, Matrix, and Collection Date

NR 720 RCLs

RCRA TCLP

Sample LD. Sample Matrix	GP-33 (0.5'-1') FII/Soll	GP-34 (1'-2') Fill/Soil	GP-35 (1'-2') Fill	GP-36 (1'-2') Fill/Soli	GP-36 (5'-6') Soli	GP-37 (1*-2*) Soli	GP-38 (11-21) Soli	GP-39 (1'-2') Fill	GP-40 (0.5-1.5') Fili	GP-40 (5'-6') Soli	GP-40 (107-117) Soli	GP-40 (15-16') Soil	GP-41 (1'-3') FII/Soil	GP-41 (6'-7') Soil	GP-41 (11'-12') Soll	Decon Blank Water	Direct C	ontact	
Date Collected	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	Non-Industrial	industrial	TCLP x20 (2)
Total Metals (mg/kg)																mg/l	mg/kg	mg/kg	mg/l
Total Metals (mg/kg) Arsenic	NA_	NA_	NA	<2.91	<2.86	22.3 ■	_<2.50	<2.50	129 (TC) ■	<2.76	<2.91	<3.00	NA NA	NA	NA	mg/l <0.0500	mg/kg 0.039	mg/kg 1.6	mg/l

Parameter

Date Collected

Sample ID, Matrix, and Collection Date

4-4-02

NR 720 RCLs

RCRA TCLP

| Sample I.D. | GP-78 (0.5-4") | GP-79 (0.5-4") | GP-80 (0.5-3") | GP-82 (0.5-1") | GP-83 (0.5-1") | Sample Matrix | Fill | Fill | Soil | Fill

4-4-02

Direct Contact

Non-Industrial Industrial TCLP x20 (2)

Total Metals (mg/kg)						mg/kg	mg/kg	mg/l
Arsenic	NA.	NA	NA	<3.18	<3.13	0,039	1.6	100
Load	35.1	33.6	266 (TC)	NA.	20.5	60	500	100

4-3-02

4-3-02

Notes:

• Indicates concentration exceeds non-industrial direct contact RQL.

4-4-02

■ Indicates concentration exceeds industrial direct contact RCL.

(TC) indicates that the total concentration is greater than 20 times the RCRATCLP limit.

Bold typed results indicate that the analyte was present at a concentration equal to or greater than the laboratory detection limit.

- (1) A total concentration greater than 20 times the RCRA TCLP limit indicates that the material would constitute a hazardous waste if disposed, unless TCLP testing indicated otherwise.
- RCL = Residual Contaminant Level
- RCRA = Resource Conservation and Recovery Act
- TCLP = Toxicity Characteristic Leachate Procedure
- NA = Not Analyzed

TABLE 13 Fill/Soil Sample PAH Analytical Results Summary Mankowski Property - Kenosha, Wisconsin May 2001, April 2002

Parameter

Sample ID, Matrix, and Collection Date

Interim Guidance RCLs

	GP-24 (0.5'-2')	GP-25 (0.5-2')	GP-25 (5°-7")	GP-26 (0.5'-2')	GP-26 (5'-7')	GP-27 (0.5°-2')	GP-27 (6'-7')	GP-29 (1'-2')	GP-31 (0.5'-1.5')	GP-32 (0.5'-1')	GP-36 (1'-2')	GP-36 (5'-6')	Decon Blank	GP-78 (0.5'-4")	SP-79 (0.5'-4')	GP-80 (0.5'-3')	GP-81 (1'-2')			
	Şoil	Soll	Soli	Fill/Soil	Soil	줴	Soli	FIB	₩	Fili	Fill/Soll	Şoil	Water	FM	FIII	FII	Soil	Protection of	Direct	Contact
	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	4-4-02	4-4-02	4-4-02	4-4-02	Groundwater	Non-Industria	industrial
PAHs (ug/kg)													ug/l					ug/kg	ug/kg	ug/kg
Aconaphthene	<119	ব119	<118	<119	<118	<113	<118	<121	149	<119	<117	<114	<5.00	719	<131	<128	<118	39,000	900,000	60,000,000
Anthracene	<119	<119	<116	বা19	<118	<113	<118	<121	<124	<119	<114	<114	<5.00_	181	<131	<128	<118	3,000,000	5,000,000	300,000,000
Benz (a) anthracone	<59.3	<59.7	<57.8	< 59.3	<58.8	<56,5	<59.0	<80.4	48 1.9	<59.7	<58.3	<57.2	<0.100	349 ●	< 65.7	<62.9	<58.8	17,000	88	3,900
Bonzo (a) pyrone	<5.93	<5.97	<5.78	10.5 ●	<5,88	<5,65	<5.90	15.4 👄	61.1 ●	37.3 ●	<5.83	<5.72	<0.0200	371 ●	12.9 ●	11.7 •	<5.88	48,000	8.8	390
Benzo (b) fluorenthene	<59.3	<59.7	<57.8	<59.3	<58.8	<56,5	<59.0	<80.4	<6 1.9	<59.7	<58.3	<57.2	<0.0200	291 ●	<65.7	<62.9	<58.8	360,000	88	3,900
Banzo (ghi) perylone	<119	<119	<118	<119	< 118	<113	<118	<121	<124	<119	<117	<114	≪5.00	226	<131	* =126	<188	6,800,000	1,800	39,000
Benzo (k) fluoranthene	<119	<119	<118	<119	<118	<113	<118	<121	<124	<119	<117	<114	<0,100	140	<131	<126	<118	870,000	880	39,000
Chrysono	<119	<119	<116	<119	<118	<113	<118	<121	<124	<119	<117	<114	<0.0200	404	<131	<126	<118	37,000	8,800	390,000
Dibenz (a,h) anthrecene	<5.93	<5,97	<5.78	<5.93	<5,88	<5.65	<5.90	<6.04	<6.19	<5,97	<5.83	<5.72	<0.100	32.6 •	17.5 ●	<6,29	<5.88	38,000	8,8	390
Fluoranthono	<119	<119	<116	<119	<118	<113_	<118	<121	179	<119	<117	<114	<5.00	369	<131	<128	<118	500,000	600,000	40,000,000
Indono (1,2,3-cd) pyrane	<59,3	<59,7	<57.8	<59,3	<58.8	< 58.5	<59,0	<80.4	_<61,9	<59.7	<58,3	<57.2	<0,200	266 🗭	<65,7	<62.9	<58,8	680,000	88	3,900
1-Mathylnaphthalene	<119	213	<116	<119	<118	<113	<118	<121	<124	<119	<117	<114	<5,00	206	<131	<126	<118	23,000	1,100,000	70,000,000
2-Mothylnaphthalone	<119	167	<116	<119	< 118	<113_	<118	<121	<124	<119	<117	<114	<5.00	279	<131	<126	<118	20,000	600,000	40,000,000
Naphthalene	<119	<119	<116	<119	<118	<113	<118	<121	<124	<119	<117	<114	<5.00	131	<131	<128	<118	400	20,000	110,000
Phononthreno	বাগ	<119	<116	<119	<118	<113	<118	<121	152	<119	<117	<114	<5.00	838	<131	<126	<118	1,800	18,000	390,000
Pyrene	<119	<119	<116	<119	<118	<113	<118	<121	142	<119	<117	<114	<5.00	837	<131	<126	<118	8,700,000	600,000	30,000,000

Table includes detected analytes only.

● Indicates concentration exceeds non-industrial direct contact RCL.

■ Indicates concentration exceeds industrial direct contact RCL.

▲ Indicates concentration exceeds groundwater protection RCL.

Bold typed results indicate that the analyte was present at a concentration equal to or greater than the laboratory detection limit. PAHs = Polynuclear Arcmatic Hydrocarbons RCL = Residual Contaminant Level

TABLE 14 Fill/Soil Sample VOC/GRO Analytical Results Summary Mankowski Property - Kenosha, Wisconsin Spring, Summer 2001

Parameter

Sample ID, Matrix, and Collection Date

NR 720 RCLs RCRA TCLP

	GP-19 (1'-3')	. ,	• •		. , ,			GP-27 (0.5'-2')				OP-32 (0.5'-1')							GP-41 (11'-12'		Decon Blank	t MeOH Blank		
	Soil	Soli	FIN'Soll	Soil	Soll	F)R/Soll	Soil	Fili	Soil	FiltSoil	FW	FM	FIM/Solf	FIII/Sol	FIII/Soil	Sol	FII/Soll	Soli	Soll	Water	Water	Methanol	Protection of	
	5-14-01	5-14-01	5-14-01	5-14-01	6-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	6-14-01	5-14-01	5-14-01	6-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	Groundwater	TCLP x20 (
VOCs (ug/kg)																				ugil	ug/f	ug/l	ug/kg	ug/l
Sonzene	<26.0	<26.0	<25.0	<80.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<26.0	<25.0	<25.0	<25,0	<25.0	<25.0	237 ▲	590_A	<26.0	<0.500	<0.600	<25,0	5.6	10,000
romobenzene	<26.0	<25.0	<26.0	<50.0	<26.0	<25.0	<28.0	<25.0	<25.0	<26.0	<25.0	<25.0	<25.0	<26.0	<28.0	<26.0	<50.0	432	<26.0	<0.500	<0.500	<25,0	NS	NS
-Bulyibenzene	<26.0	<25.0	<26.0	1,980	<26.0	<25.0	<25.0	98.4	<26.0	<26.0	<25,0	<25.0	<25,0	<26.0	<25.0	<26.0	117	1,150	<25.0	<0.500	<0,500	<26.0	2N	NG_
ec-Butylbenzene	<26.0	<26.0	<26.0	1,150	<25.0	<26.0	<25.0	<26.0	<26.0	28.0	<26,0	<26.0	<25.0	<26.0	<25,0	<26.0	155	1,350	<25.0	<0.500	<0,500	<25.0	NS	NS_
ert-Butythenzene	<26.0	<26.0	<25.0	315	<25,0	<25.0	<25.0	<26.0	<26.0	<25,0	<26.0	<25.0	<26.0	<25,0	<25,0	<25.0	69.8	635	<25.0	<0,500	< 0.600	<25,0	NS_	NS_
hioroform	<26.0	<25.0	<26.0	<50.0	<25.0	<25.0	<25,0	<25,0	<26.0	<25,0	<26.0	<25.0	<26.0	<26.0	<28.0	<26.0	<50.0	<100	<26.0	<0,140	<0.140	<25.0	NS	6,000
3-Dichlorobenzene	<25.0	<25.0	<25.0	<60.0	<25.0	<25.0	<26.0	<26.0	<26.0	<25,0	<25.0	<25.0	<25.0	<25.0	<26.0	<25,0	<50.0	<100	<26.0	<0,500	<0.500	<25.0	NS_	NS
,4-Diohiorobenzene	<25,0	<26.0	<26.0	<50.0	<26.0	<26.0	<26.0	<25.0	<25.0	<25.0	<25.0	<26.0	<25.0	<26.0	<26.0	<26.0	<50,0	<100	<25,0	<0.500	<0.500	<25.0	NS	7,500
is-1,2-Dichloroethene	<26.0	<25,0	<26.0	<60.0	<25,0	<26.0	<25.0	<25.0	<25.0	<25.0	<26.0	<28.0	<25,0	<25.0		<25.0	<50,0	<100	<25.0	<0,500	<0.500	<25.0	NSNS	NIS
ans 1,2-Dichloroethana	<26.0	<25,0	<25.0	<50.0	<25,0	<26.0	<26.0	<25.0	<25.0	<25.0	<26.0	<25.0	<26.0	<25.0	<26.0	<25,0	<60.0	<100	<25.0	<0,500	<0.500	<25.0	NS	NS
2-Dichloropropana	<25.0	<25.0	<25,0	<50.0	<26.0	<26.0	<25.0	<25,0	<25.0	<25.0	<26.0	<25.0	<26.0	<25.0	<26.0	<25.0	<60.0	<100	<25.0	≪0,600	<0.500	<26.0	NS	NS
thylbenzene	<25.0	<25.0	<25,0	<50.0	<26.p	<25.0	<25.0	<25.0	<26.0	<25.0	33,0	32.0	<25.0	<26.6	<25.0	<25.0	128	682	<26.0	<0.600	<0,500	<25.0	2,900	NS
eopropylbenzene	<25.0	<25.0	<25.0	<60,0	<26.0	<25.0	<25.0	<26.0	<25.0	<25.0	<25.0	<25.0	<25,0	<26.0	<25.0	<25.0	70,5	712	<25,0	<0.600	<0,500	<26.0	NS.	NS_
-Isopropyltokene	<25.0	<25.0	<26.0	1,220	<25.0	<26.0	<25,0	70.6	<25.0	32,1	31.3	<25.0	<25.0	<25,0	<25.0	<25.0	208	729	<25.0	<0,500	<0.500	<26.0	N3	NS_
Nethylene chloride	<100	<100	<100	<200	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<200	<400	<100	<0.530	3.94	<100	NS	N3_
aphthalene	<26.0	<25,0	<25.0	1,090 ▲	<26.0	<26.0	<25.0	151	<25.0	<25,0	<25.0	<25.0	<25.0	<25,0	<26.0	<26.0	<50.0	4100	<26.0	<2.00	<2.00	<25.0	400 (2)	NS_
-Propylbenzene	<26.0	<26.0	<25,0	115	<26.0	<25.0	<26.0	<25.0	<25.0	<26.0	<25,0	<25,0	<25.0	<26.0	<25,0	<26.0	198	668	<26.0	<0.500	<0,500	<26.0	NS	NS_
atrachlorosthene	<25.0	<26.0	< 25.0	<50.0	<26.0	<26.0	<25.0	<26.0	<26,0	<26.0	<25,0	<25.0	<25.0	<25.0	<25,0	<25.0	<50,0	<100	<26.0	<0.500	<0,500	<25.0	, NS	14,000
cluene	<26.0	<26.0	<25.0	<50.0	<26.0	<25.0	<25.0	<26.0	<25.0	<26.0	<25.0	<26.0	<25.0	<26.0	<26.0	<26.0	<60.0	<100	<25.0	<0.500	<0.500	<25,0	1,500	NS_
1,2-Trichloroethane	<26.0	<26.0	<25.0	<50.0	<25.0	<28.0	<25.0	<25.0	<26.0	<25.0	<26.0	<25.0	<26.0	<26.0	<25,0	<25.0	<50.0	<100	<25.0	<0,500	<0.160	<25.0	NS	NS_
richloraethene	<26.0	<25.0	<25.0	<60.0	<25,0	<25.0	<25,0	<26.0	<26.0	<25.0	<26.0	<25.0	<26.0	113	<26.0	<25,0	<50.0	<100	<26.0	<0.500	<0.500	<25,0	NS	10,000
2,4-Trimethylbenzene	<26.0	<26.0	<25,0	658	<25,0_	<25.0	<26.0	<25,0	<26.0	<25,0	16.3	<25,0	<25.0	<25.0	<26.0	<5.0	<60.0	726	<25.0	<1,00	<1.00	<26.0	NS_	NS
3,5-Trimethylbenzene	<25.0	<26.0	<26.0	428	<25.0	<25.0	<25.0	<25.0	<26.0	<26.0	<26.0	<26.0	<25.0	<26.0	<26.0	<26.0	<50,0	662	<25.0	<1.00_	<1,00	<25.0	NS	NS
Inyl chloride	<25,0	<26.0	<25.0	<50.0	<28.0	<26.0	<26.0	<25.0	<26.0	<25.0	<26.0	<25.0	<25,0	<26.0	<26.0	<26.0	<50,0	<100	<25,0	<0.170	<0.170	<25.0	NS	4,000
otal Xylenes	<25.0	<25.0	<26.0	<50,0	<28.0	<25.0	<26.0	<26.0	<25.0	33.7	74,6	45.7	<25,0	<26.0	<25.0	<26.0	136	676	<25,0	<0,500	<0.500	<25.0	4,100	NS
GRO (mg/kg)																							mg/kp	
3RO	NA.	NA.	NA.	NA NA	NA	NA	NA	NA.	NA.	NA.	NA	NA	NA	NA.	NA	NA.	10.5	278 *	<5.71	NA.	NA.	NA.	100/250 (3)	NS

Table includes detected analytes only.

- ★ indicates concentration exceeds generic soil cleanup level for GRO,
 ★ indicates concentration exceeds groundwater protection RGL
- (EC) indicates that the total concentration is greater than 20 times the RCRA TCLP limit,
- Bold typed results indicate that the analyte was present at a concentration equal to or greater than the laboratory detection limit.
- (1) A total concentration greater than 20 times the RCRATCLP limit indicates that the material would constitute a hazardous waste if disposed, unless TCLP testing indicated otherwise.
- (2) interim guidance RCLs for polynuclear aromatic hydrocarbons (PAHs), including naphthalene have been established by the Wisconsin Department of Natural Resources,
- The non-industrial and industrial direct contact RCLs for naphthalene are 20,000 ug/kg and 110,000 ug/kg, respectively, (3) NR 720 establishes generic soil cleanup standards of 100 mg/kg or 250 mg/kg, depending on site hydraulic conductivity.
- RCL = Residual Contaminant Level
 RCRA = Resource Conservation and Resovery Act
- TCLP = Toxicity Characteristic Leachate Procedure
- VOCs = Votatile Organic Compounds GRO = Gasolina Range Organics
- NA = Not Analyzed
- NS = No Standard

TABLE I4 Continued Fill/Soil Sample VOC/GRO Analytical Results Summary Mankowski Property - Kenosha, Wisconsin Spring, Summer 2001

Sample ID, Matrix, and Collection Date

NR 720 RCLs RCRA TCLP

Sample I.D.	GP-43 (15.5'-16') O	IP-48 (14'-14.5')	OP-84 (15,5"-16")	3P-60 (18.8°-16°)	OP-07 (10'-17')	GP-68 (12.5'-13') G	P-69 (15.5'-16') C	P-70 (14'-14.6')	GP-70 (15.5'-10')	GP-73 (3.5°-4')	GP-74 (3'-3.5')	GP-75 (2.5°-3°)	GP-76 (3'-4")	Trip Blank	MeOH Blank		
Sample Matrix	Sall	Soll	Sof	Soll	FIII/Soll	Sell	Soli	PM/Soil	Soli	Fill	Solt	FIVSol	FNI	Water	Methanol	Protection of	
ate	6-27-01	6-27-01	8-16-01	6-15-01	8-10-01	8-16-01	a-16-01	8-16-01	8-16-01	8-17-01	8-17-01	8-17-01	8-17-01	8-16-01	6-16-01	Groundwater	TCLP x20
VOCs (ug/kg)														ьдЛ	ugit	ug/kg	ugfl
Sanzene	<250	<25.0	<26.0	<25.0	<25.0	75.8 A	<26.0	<25.0	<25.0	<25.0	<25,0	<25.0	<25.0	<0,500	<26.0	6.5	10,000
9romobenzene	<250	<25.0	<26.0	<25.0	<25,0	<25.0	<26.0	<25,0	<26.0	<25.0	<26.0	<25.0	<26.0	<0.500	<25.0	NS.	NS
-Butylbenzene	1,400	<25.0	<25,0	62,1	<26.0	<25.0	<25.0	<25.0	29,5	<25.0	<25.0	<26.0	44,5	<0.500	<25.0	NS NS	NS_
sec-Bulylbenzene	1,400	<25.0	<26.0	223	<26.0	<25.0	<25.0	<25.0	<25,0	<26.0	<25.0	<25.0	39,3	<0.500	<25.0	NS	N3
tert-Butylbenzene	570	<26.0	<26.0	91.4	<25,0	<25.0	<25.0	₹6.0	<25.0	<26.0	<25.0	<25.0	<26.0	<0.500	<25.0	NS	NS
Chloroform	<260	<26.0	<25.0	244	39.8	86,2	36.5	49,0	29.4	<25.0	<26.0	<25.0	425.0	<0.140	<26.0	NS	6,000
1,3-Dichiorobenzene	<250	<25.0	<25.0	203	<25.0	<25,0	<26.0	<25,0	<25.0	<25.0	<25.0	<25.0	<26.0	<0.500	<26.0	NS	NS_
1,4-Dichlorobenzene	<250	<25.0	<26.0	<25,0	<26.0	<25.0	<26.0	<26.0	<25,0	<100	<100	<100	43,8	<0.500	<26.0	NS	7,500
als-1,2-Diahloraethene	46,500	<26.0	138,000	10,300	1,370	1,170	6,060	905	300	<26.0	<25.0	<25.0	<26.0	<0.500	<26.0	NS	NS
trans-1,2-Dichloroethene	484	<26.0	<25.0	170	77,0	<25.0	<25.0	79,8	<25.0	<25.0	<25.0	<25.0	<26.0	<0,500	<26.0	NS	NS
2,2-Dichloropropane	1,070	<26.0	<25.0	<26.0	<25.0	<26.0	<25.0	<25.0	<25.0	<25,0	<26.0	<25.0	<26.0	<0,500	<26.0	NS	NS
Ethylbenzene	16,600 ▲	<25.0	886	010	<26.0	37,2	<25.0	<25.0	<25.0	<25.0	<25.0	<26.0	<25.0	<0.500	<25.0	2,900	NS_
Isopropylbenzene	1,210	<25.0	<26.0	79,7	<25.0	41.0	<25.0	<26.0	<25.0	<25.0	<25.0	<26.0	<25.0	<0.500	<25.0	NS	NS
p-Isopropylitoluene	1,410	<25.0	<25.0	241	<25,0	<26.0	<25,0	<26.0	<25,0	<26.0	<26.0	<25.0	50,2	<0.500	<25.0	NS.	NS_
Methylene chloride	<1,000	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<0.530	<100	NS	NS
Naphthalone	<280	<26.0	<25,0	240	<25,0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	108	<2.00	<28.0	400 (2)	NS_
n-Propylbenzene	381	<26.0	<26.0	44.0	<25.0	<25,0	<25.0	<25.0	<25.0	<25.0	<26,0	<26.0	<25.0	<0.500	<25.0	NS	NS
Tetrachloroethene	1,920	<25,0	1,150	<25.0	<25.0	174	<25.0	<25.0	<25,0	<26.0	<26,0	<25.0	<25.0	<0.500	<25.0	NS NS	14,000
Toluene	<250	<25.0	409	44.4	<25,0	162	30,1	<26.0	<25,0	<25.0	<25.0	<26.0	<26,0	<0.500	<25.0	1,500	NS
1,1,2-Trichloroethane	<250	<25.0	<25.0	<26.0	<25.0	195	<26.0	<25.0	48.0	<25.0	<26.0	<25.0	<26.0	<0.160	<28.0	NS.	NB
Trichloroathene	504,000 (TC	<25.0	11,700 (TC	58.1	909	207,000_(TC	13,806 (TC)	230	8,370	<26.0	<26.0	<25,0	<25.0	<0.600	<25.0	NS	10,000
1,2,4-Trimethy/benzene	705	<25.0	122	62.0	<25.0	<25,0	<26.0	<26.0	<25.0	<26.0	<28.0	<25.0	<25.0	<1.00	<26.0	NS NS	NS_
1,3,5-Trimethylbenzene	<260_	<25,0	<26.0	141	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<28,0	<25,0	<25.0	<1.00	<25.0	NS	NS_
Vinyl chloride	999	<25.0	1,920	<25,0	214	284	567	<26.0	<25.0	<26.0	<25,0	<26.0	<25.0	<0.170	<26.0	NS	4,000
Total Xylenes	800	<25.0	895	136	<25.0	82.3	<25,0	<26.0	<25.0	<25.0	<25,0	<26.0	<25.0	<0.500	<25.0	4,100	NS
GRO (mg/kg)					_											mg/kg	
GRO	NA.	NA NA	NA	NA.	NA NA	NA.	NA NA	NA.	NA.	NA.	NA	NA.	NA.	NA.	NA	100/250 (3)	NS

Table includes detected analytes only.

 $\boldsymbol{\star}$ indicates concentration exceeds generic soil cleanup level for GRO.

▲ Indicates concentration exceeds groundwater protection RCL.

(TC) indicates that the total concentration is greater than 20 times the RCRA TCLP limit.

Book typed results indicate that the analyse was present at a concentration equal to or greater than the laboratory detection limit.

(1) A total concentration greater than 20 times the RCRA TCLP limit indicates that the material would constitute a hazardous waste if disposed, unless TCLP testing indicated otherwise.

(2) Interim guidance RCLs for polynuciear aromatic hydrocarbons (PAHs), including rephthelene have been established by the Wisconsin Department of Natural Resources.

The non-industrial and industrial direct contact RCLs for naphthalene are 20,000 ug/kg and 110,000 ug/kg, respectively. (3) NR 720 establishes generic soil cleanup standards of 100 mg/kg or 250 mg/kg, depending on site hydraulic conductivity.

RCL = Residual Contaminant Level

RCRA = Resource Conservation and Recovery Act TCLP = Toxicity Characteristic Leachate Procedure

VOCe = Volatile Organic Compounds GRO = Casoline Range Organics

NA = Not Analyzed

NS = No Standard

TABLE 14 Continued Fill/Soil Sample VOC/GRO Analytical Results Summary Mankowski Property - Kenosha, Wisconsin April 2002

Parameter		NR 720 RCLs	RCRA TCL					
Sampie LD.	GP-88 (12.6'-13')	GP-89 (5,5'-6")	GP-90 (12.5'13')	GP-01 (10,5'-11')	Trip Blank	MeOH Blank		
Sample Matrix	Soil	Soll	Soll	Soli	Water	Methenol	Protection of	
Date	4-3-02	4-3-02	4-3-02	4-3-02	4-3-02	4-3-02	Groundwater	TCLP x20 (1)
VOCs (ugfkg)					идЛ	ирЛ	up/leg	Ngs
Banzene .	<26.0	<25.0	<25.0	<25.0	<0.500	<25.0	5.6	10,000
Bromobenzene	<25.0	<25,0	<26.0	<25.0	<0,500_	<26.0	NS NS	NS
n-Butylbenzene	<25.0	<25.0	<26.0	<25,0	<0.600	<26.0	N\$	NS
sec-Butylbenzene	<25,0	<26.0	<26.0	<25,0	<0.500	<25.0	NS	NS
ert-Butylbenzene	<25.0	<25.0	<25,0	<26.0	<0.500	<25,0	NS	NS
Chloroform	<25.0	<25.0	<25.0	<25.0	<0.140	<25,0	NS NS	8,000
1,3-Dichlorobenzene	<26.0	<25,0	<28.0	<25.0	<0.500	<28.0	NS NS	NS
1,4-Dichlorobenzene	<25,0	<25.0	<25.0	<25.0	<0,500	<26.0	NS	7,500
ss-1,2-Dichloroethene	<25,0	<26.0	<25.0	<25,0	<0.500	<26.0	NS	NS
rans-1,2-Dichlomethene	<25,0	<26.0	<25.0	<26.0	<0.500	<26.0	N3_	NS
2.2-Dichloropropane	<25.0	<26.0	<25.0	<26,0	<0.500	<26.0	NS	NS
Ethylbenzone	<25.0	<25.0	<25.0	<25.0	<0.500	<26.0	2,900	RS
sopropyibenzene	<25.0	<25,0	<26.0	<25.0	<0,500	<25.0	NS_	NS
- isopropyltoluene	<26.0	<26.0	<26.0	<25,0	<0.500	<26.0	NS	NS
vlethylene chloride	<100	<100	<100	<100_	<0.630	<100	N\$	NS_
Vaphthalene	<25.0	<25.0	<25,0	<25.0	<2.00	<25,0	400 (2)	NS
n-Propyibanzana	<25.0	<25,0	<26.0	<25.0	<0.500_	<25,0	NS	NS
Tatrachloroethene	<25.0	<25,0	<26.0	<25.0	<0.600	<25.0	_NS	14,000
Toluene	<25.0	<26.0	<25.0	<25,0	<0.600	<25.0	1,500	NS_
1,1,2-Trichloroethane	<25.0	<25.0	<25.0	<26.0	<0.150	<25.0	NS	NS
frichloroethene	<25.0	<25.0	<25.0	<26.0	<0.500	<25,0	NS	10,000
1,2,4-Trimethylbenzene	<25.0	<25.0	<25.0	<26.0	<1,00	<25.0	NS	NS
1,3,5-Trimethylbenzane	<25.0	<25.0	<25.0	<25.0	<1.00	<26.0	NS	NS_
/Inyl chloride	<25.0	<26.0	<25.0	<25.0	<0.170	<26.0	NS	4,000
Yotel Xylenes	<25.0	<25.0	<26.0	<26.0	<0.500	<25.0	4,100	NS
GRO (mg/kg)							nyg/kg	
GRO	ND	ND.	ND	ND	NA	NA	100/250 (3)	NS

Table includes detected analytes only.

 $\dot{\mathbf{x}}$ indicates concentration exceeds generic soil cleanup level for GRQ.

▲ indicates concentration exceeds groundwater protection RCL.

(TC) indicates that the total concentration is greater than 20 times the RCRA TCLP limit.

Bold typed results indicate that the enalyte was present at a concentration equal to or greater than the laboratory detection limit.

(1) A total concentration greater than 20 times the RCRA TCLP limit indicates that the meterial would constitute a hazardous wasts if disposed, unless TCLP testing indicated otherwise.

(2) Intering guidance RCLs for polynuclear arounds hydrocarbons (PAHs), including naphtheline have been established by the Wissonsin Department of Natural Resources.
The non-includinal and industrial direct contact RCLs for naphtheline are 20,000 up/kg and 110,000 up/kg, respectively.

(3) NR 720 establishes generic soil cleanup standards of 100 mg/kg or 250 mg/kg, depending on site hydraulic conductivity.

RCL = Residual Contaminant Level

RCRA * Resource Conservation and Recovery Act

TCLP = Toxicity Characteristic Leachate Procedure

VOCa = Volatile Organic Compounds

GRO ≈ Gasoline Range Organics

NA = Not Analyzed

NS = No Standard

TABLE IS Fill/Soil Sample Protocol B Waste Profile Analytical Results Summary Mankowski Property - Kenosha, Wisconsin May 2001, April 2002

Parameter

Sample ID, Matrix, and Collection Date

RCRA Limit

	GP-25 (0.5°-2")	GP-25 (5°-7")	GP-26 (0.5'-2")	GP-26 (5"-7")	GP-27 (0.5'-2")	GP~27 (5'-7')	GP-84 (1°-10°)	GP-85 (1'-10')	GP-86 (1'-10')	GP-87 (1'-11')	GP-98 (1°-8°)	
	Soll	Soil	FIII/Soll	Soil	Fill	Şoll	Fill	FIII	Fill	Fill	Fill	
	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	5-14-01	4-4-02	4-4-02	4-4-02	4-3-02	4-4-02	
Characteristics												
Free Liquids (Pass/Falf)	Pass	Pass	Pass	Pass	Pass	Рава	Pass	Pass	Pass	Pass	Pass	Pass/Fall
Flashpoint (deg. F)	>220	>220	>220	>220	>220	>220	>220	>220	>220	>220	>220	≥140 deg. F
Chlorine (%)	0.191	0,202	0.190	0,394	0.290	0.261	<0.130	0.151	0.199	<0.117	<0.125	NS
Phenol (mg/kg)	0.925	1,91	2.08	2,01	1.35	0.953	2,51	2.02	_ 1.17	0,821	1.39	NS
pH (s.u.)	7.44	8,07	7.92	8.08	7.74	7.91	7,48	8.35	7.82	7.50	7.98	≤ 2.0, ≥ 12.5
Reactive Cyanide (mg/l)	<0.155	<0.150	<0.154	<0.153	<0.147	<0.153	<0,168	<0.144	<0.149	<0.152	<0.162	200
Reactive Sulfide (mg/kg)	<7.75	12.6	8,14	22.7	<7.34	<7.66	<8.42	<7.20	<7.43	<7.62	<8.12	200
Specific Gravity (g/ml)	2,10	2.19	2,73	2.17	2.01	2,17	2.27	2.11	2,35	2.2	1,88	NS
Total Solids (%)	83,1	85.5	95,8	84.8	81.9	76.7	88,8	91.7	96.1	79.2	86.2	NS
TCLP Metals (mg/l)												mg/l
Barlum	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1,00	<1.00	<1.00	1,36	<1.00	<100 (1)
Cadmium	<0.00500	<0,00500	<0.00500	<0.00500	0.0228	<0.00500	<0.00500	<0.00500	<0.00500	<0,00500	<0.00500	<1,0 (1)
Chromium	<0.0100	<0,0100	<0.0100	<0,0100	0.0234	<0.0100	<0.0100	<0.0100	<0.0100	<0,0100	<0.0100	<5,0 (1)
Load	<0.00500	<0.00500	0.00606	<0,00500	<0.00500	<0.00500	0.0242	0.0107	0,0306	0.00738	0.0752	<5,0 (1)
Nickel	<0.0500	<0.0500	<0.0500	<0,0500	0.0580	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	0.0561	NS
TCLP SVOCs (mg/l)												
TCLP SVOCs	ND	ND	. ND	ND	ND	ND	ND .	ND	ND	ND	ND	(2)
TCLP VOCs (mg/l)												
TCLP VOCs	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	(2)
PCBs (ug/kg)												
PC8s	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	(3)

Notes:

Table includes detected analytes only.

Bold typod results indicate that the analyte was present at a concentration equal to or greater than the laboratory detection limit.

- (1) RCRA TCLP limit, above which the material would constitute a hazardous waste if disposed.
- (2) Compound specific RCRA TCLP limits apply.
- (3) The TSCA land disposal limit for aggregate PCBs is 50 mg/kg.

TCLP = Toxicity Characteristic Leachate Procedure

SVOCs = Semi-Volatile Organic Compounds

VOCs = Volatile Organic Compounds

PCBs = Polychlorinated Biphenyls

RCRA = Resource Conservation and Recovery Act

NS = No Standard

ND ≃ None Detected

Table F1 Vapor Measurements Mankowski Property - Kenosha, Wisconsin Spring 2002

Measurement (Units)

Vapor Monitoring Point ID, Date, Time

			GP-84					GP-85			ĺ		MW-OR							GP-86					1		GP-87					MW-14		
Date:	4/8/02	4/11/02	4/12/02	4/15/02	4/10/02	4/8/02	4/11/02	4/12/02	4/15/02	4/10/02	4/0/02	4/11/02	4/12/02	4/15/02	4/10/02	4/8/02	4/11/02	4/12/02	4/16/02	4/16/02	0/14/02	@10/02	6/18/02	8/20/02	4/8/02	4/11/02	4/12/02	4/15/02	4/10/02	4/8/02	4/11/02	4/12/02	4/15/02	4/16/02
Time:	NA.	0940	0940	0900	0855	1310	1210	0850	0940	0930	1315	1225	0855	0045	0935	1325	1140	0900	0955	0045	1430	1330	1330	0830	NA.	1160	0905	1000	0960	NA	1120	0936	0855	0850
Methane (%)	NA (2)	0.0	0.0	0.0	6.0	0.0	0.1	0,0	0,1	0.1	0.0	0,0	0.0	0.0	0,0	12.0 *	11.8 *	11.0 *	12.2 *	11,8 🖈	0.7	7.3 ★	2.7 🚍	11.9 ★	NA (2)	0.0	0,0	0.0	0.0	NA (2)	0,0	0.0	0.0	0.0
Carbon Dioxide (%)	NA (2)	0.0	0.0	0.0	0.0	7,5	8.4	5.2	8.4	9,1	6.6	7.4	7.5	8,1	9.0	6,5	0.0	0,5	7.0	7.1	0,5	8,2	10.8_	12.5	NA (2)	1,8	1.3	1.9	2.2	NA (2)	0,3	0,3	0.4	0.4
Oxygen (%)	NA (2)	21.2	21.1	21,1	20,8	0,1	0.2	1.7	0.6	0.2	1.1	0.4	0.6	0.6	0.4	0.0	0.2	0.0	0,7	0.7	19.3	4,7	0.0	0,0	NA (2)	11,3	12.3	11.5	12.3	NA (2)	20.0	10.2	16,1	18.0
Volatile Organic Vapore (ppm)	NA (2)	1,7	0.4	0.0	0.0	47.0	68.4	00,1	54.1	63.7	0,0	4.7	5,8	1.7	0,3_	NA (2)	0.0	0.0	0.0	0.0	NA .	NA_	NA.	NA.	NA (2)	1.5	0,8	8,0	0.2	NA (2)	1,9	0.3	1.3	1,6
Barometric Pressure (Inches Hg)	NA (2)	29.5	29.3	29.0	29,3	29.2	29.2	20.3	29.0	29.1	29.2	29,2	29.3	29.0	29.1	29.2	29.5	29,3	28.9	20,1	29.0	29.2	29,1	29.1	NA (2)	29.3	29,3	28,9	29.1	NA (2)	29.5	29.3	29,1	29,3

Measurement (Units)

Vapor Monitoring Point ID, Date, Time

			GP-88					QP-89					OP-90							OP-01							GP-92					GP-83		
Date:	4/8/02	4/11/02	4/12/02	4/15/02	4/16/02	4/8/02	4/11/02	4/12/02	4/15/02	4/18/02	4/8/02	4/11/02	4/12/02	4/15/02	4/16/02	4/8/02	4/11/02	4/12/02	4/15/02	4/16/02	6/14/02	8/16/02	6/19/02	6/20/02	4/8/02	4/11/02	4/12/02	4/15/02	4/10/02	4/8/02	4/11/02	4/12/02	4/15/02	4/16/02
Time:	1326	1230	0840	0030	0925	1345	1240	0835	0926	0922	NA	1200	0910	1010	Ω955	1350	1235	0846	0935	0927	1400	1300	1300	0800	NA.	1300	0945	0905	0900	1400	1250	0830	0920	0920
Methane (%)	0.0	0.0	0.1	0.2	0.2	0.0	0.0	0.0	6.1	0.1	NA (2)	0.0	0.0	0,0	0.0	9.2 *	0.2	2.3 ■	2.7 📆	1.6 ■	0.0	0,0	و,ه	0.7	NA (2)	0	0	0	٥	NA (1)	0	NA (1)	٥	0
Carbon Dioxide (%)	1,2	0.1	1.1	2.4	4.2	0.0	0,0	0,0	1.1	1.2	NA (2)	0.0	0.2	0.2	4.5	1.7	0.0	0,3	1.8	1.7	0.0	0.0	0.7	0.7	NA (2)	0		0	0	NA (1)		NA (1)	0	o
Oxygen (%)	14.1	19.3	13.8	0.5	4,3	0.0	21.3	21,2_	15.7	15.0	NA (2)	21.0	19.7	20.3	14,7	5.5	20.7	18.4	14.4	10.5	21.0	20.0	20,8	10.4	NA (2)	21.3	21.1	21,1	20,0	NA (1)	21,4	NA (1)	20,0	20,4
Volatile Organic Vapors (ppm)	0.0	1,3	0.4	0,2	0,0	0.0	0.4	0,2	0,7	0.0	NA (2)	1,3	1.0	0.2	0.2_	3.5	0.0	0,5	0,3	. 0	NA NA	NA_	NA_	NA.	NA (2)_	1.3	0,3	1,3	00	NA (1)	0.4	NA (1)	0.4	o
Barometric Pressure (Inches Hg)	29,2	29.2	29.3	29.0	20.2	29.2	29.2	29.3	29,0	29.2	NA (2)	29.3	29,3	28.0	29.1	29.2	29.2	29.3	29	29.1	29,0	20.2	29.1	29.1	NA (2)	20,2	29.3	20	29,2	NA (1)	29.2	NA (1)	29	29.2

Measurement (Units)

Vapor Monitoring Point ID, Date, Time

			GP-04					GP-95					GP-96					OP-97					MW-10				GI	P-99	
Date:	4/0/02	4/11/02	4/12/02	4/15/02	4/18/02	4/0/02	4/11/02	4/12/02	4/15/02	4/16/02	4/8/02	4/11/02	4/12/02	4/15/02	4/16/02	4/0/02	4/11/02	4/12/02	4/15/02	4/10/02	4/8/02	4/11/02	4/12/02	4/15/02	4/10/02	6/14/02	6/18/02	0/19/02	0/20/02
Time:	1405	1266	0825	0915	0915	1415	1205	0915	1015	1000	NA	1210	0926	1020	1005	1426	1215	0920	1026	1010	NA.	1130	0930	1030	1015	1415	1315	1315	0815
Methane (%)	NA (1)	0	-0	0,1	0,4	0.0	0,0	0.0	0.0	0.0	NA (2)_	0.0	0.0	0,0	0,0	NA (1)	0,0	0.0	0.0	0.0	NA (2)	0,0	0.0	0,0	0.0	0,0	0.0	0.0	0.0
Carbon Dioxide (%)	NA (1)	00	. 0	0	0,1_	2.3	0.0	2.5	4.4	5.6	NA (2)	0,0	2.3	1.9	2,7	NA (1)	1.2	1,4	2.0	2,2	NA (2)	5.9	6,8	5,9	4.4	0,0	2.4	4.4	5.4
Oxygen (%)	NA (1)	21.2	21.3	20.6	20.9	18.0	21,2	13,4	5.2	4.1	NA (2)	21.0	18.5	17.6	10.5	NA (1)	19.1	18.6	14.1	14.3	NA (2)	12.3	12.3	12.4	13,4	8.0	10,9	13.3	16.1
Volatile Organic Vapors (ppm)	NA (1)	1.0	1.4	0.4	0.1	NA (2)	0.6	1.0	2.4	0.2	NA (2)	1.4	0.2	1.0	0.6	NA (1)	0.2	0,0	1,0	0,5	NA (2)	2.0	0,4	1.2	0.0	NA_	NA.	NA	NA
Berometrio Pressure (Inches Ha)	NA (1)	29.2	29.3	29	29.2	29.2	29.3	29.3	29.9	29.1	NA (2)	29.3	29.3	28.9	29.1	NA (1)	29.3	20.3	28.9	29.0	NA (2)	29.4	20.3	28.9	29.0	29.0	29.2	29.1	29.1

Bold type indicates the detection of methans, carbon dioxide, or volatile organic vapors,

- * indicates methane concentration exceeded the lower explosive limit of 5% by volume.
- Indicates methans concentration exceeded the 20% of the lower explosive limit, or 1,25% by volume.

- NA = Not Available

 {1} Measurement not collected due to a saturated screen section, resulting from a rain event,

 (2) Measurement not collected due to meter mailtunction.

Weather Conditions:

April 6, 2002. Rain, Ireary, 40%, pressure failing.

April 14, 2002. Sunny, vindy, 70%, pressure failing.

April 14, 2002. Sunny, vindy, 70%, pressure failing.

April 15, 2002. Sunny, vindy, 80%, pressure failing.

April 16, 2002. Sunny, vindy, 80%, pressure failing.

April 16, 2002. Sunny, vindy, 80%, pressure failing.

June 14, 2002. Sunny, windy, 80%, pressure failing.

June 19, 2002. Sunny, windy, 80%, pressure stanting.

June 19, 2002. Modely surny, windy, 80% pressure stanting.

June 20, 2002. Partly cloudy, windy, 90%, pressure stanting.

Table F2 Soil Gas Vapor Measurements Mankowski Property - Kenosha, Wisconsin May 2003

Measurement (Units)

Vapor Monitoring Point ID, Date, Time

		GI	-100			GP-	101			GP	-102			GF	P-103	
	5/7/03	5/9/03	5/12/03	5/14/03	5/7/03	5/9/03	5/12/03	5/14/03	5/7/03	5/9/03	5/9/03	5/14/03	5/7/03	5/9/03	5/12/03	5/14/03
	1601	1308	1327	1552	1605	1313_	1335	1559	1610	1316	1340	1603	1615	1321	1345	1607
Methane (%)	0.0	0.0	0.0	0.0	0.0	1.8 ▲	0.2	8.0	0.0	0.0	0.0	0.5	0.0	0.0	0.0	0.0
Carbon Dioxide (%)	0.0	0.0	0.0	0.0	0.3	3.7	0.3	3.6	0.7	0.0	0.1	6.2	0.2	0.6	1.0	0.0
Охудел (%)	21.1	21.1	21.1	21.0	20.1	11.3	20.9	13.3	18.6	20.9	20.9	4.5	20.5	20.8	18.9	20.8
Barometric Pressure (Inches Hg)	29.1	29.0	29.0	29.1	29.1	28.9	28.9	29.1	29.1	28.9	29.0	29.1	29,1	28.9	29.0	29.1

Notes:

Bold type indicates the detection of methane or carbon dioxide.

◆ Indicates methane concentration exceeded the lower explosive limit of 5% by volume.

▲ Indicates methane concentration exceeded 20% of the lower explosive limit, or 1.25% by volume.

Table 16 Groundwater Sample Analytical Results Summary Mankowski Property - Kenosha, Wisconsin Spring, Summer 2001

Sample ID, Collection Date

NR 140 Standards

	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-6	MW-9	MW-9 RT	MW-oR	PZ-9	MW-10	WW-11	MW-12	MW-13	Dunikate (1)	econn Blank	Trio Blank		
	5/18/91	5/18/01	5/18/01	5/18/01	5/18/01	5/18/01	5/18/01	5/18/01	5/18/01	5/18/01	7/2/01	7/2/01	5/17/01	6/17/01	5/10/01	6/18/01	5/10/01	6/17/01	5/17/01	PAL	E8
VOCs (ugili)																				uail	ugA
Bonzone	<0.500	<0.600	<0.500	<0,500	<0,500	<0.500	17.9	<0,500	2.88	<500	1.35 ●	2,43 @	<0,500	<0.500	<0.500	<0.500	<0.600	<0,500	<0.500	0.5	5
n-Butylbenzene	<0.500	<0.500	<0.500	<0.600	<0.500	<0.500	<0.500	<0.500	<0.500	<5,000	1.14	1.05	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	NS	
sec-Butylbenzene	<0.500	<0,500	<0.500	<0.500	<0,600	<0,500	<0.500	<0.500	<0.500	<5,000	0,759	0.821	<0,600	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	NS	NS_
· · · - · · · · · · · · · · · · · · · ·		<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<5,000	1,16	1.86	<0.500	40,500	<0.600	<0.500	<0.500	<0.500		NES	NS_
tert-Butytbenzene	<0,500_						<0.140		<0.140	<0.140	1,16 <0.140		<0.140			<0.140			<0.500	0.0	NS_
Chloroform	<0.140	<0.140	<0,140	<0.140	<0.140	<0.140		<0.140				<0.140		<0.140	<0,140		<0,140	<0.140	<0.140		
1,2-Dichloroethane	<0.600	≺0,500	≪0.600	<0.600	<0.500	<0.500	<0,500	<0.500	0.714 +	<500	<0,500	<0,500	<0.600	<0,500	<0,500	<0.600	< 0.600	<0,500	<0.500_	0.5	5
1,1-Dichloroethene	<0.600	<0,500	<0.500	<0.600	<0.500_	<0.500	<0,500	<0.500	90,9	<500	182_8_	138	<0.500	<0,500	<0,500	<0.500	<0.600	<0.500	<0,500	0.7	<u>7</u>
cls-1,2-Dichloroethene	<0,600	<0.500	<0,500	<0.500	<0.500	<0.600	<0,500	<0,500	24,400 M	24,700 H	27,600 ■	_21,400 ■_	<0.500	2.45	<0.500	<0.500	<0.600	<0,500	<0,500		70
trans-1,2-Dichloroethene	<0.500	<0.600	<0.500	<0.500	<0.500	<0.500	<0.000	<0,500	172 ■	<5,000	274 🗒	272_■	<0.500	<0.500	<0.500	<0.500	<0.500	<0,500	<0.500	20	100
Ethylbenzene	<0.500	<0.600	<0,500	<0.500	<0.500	<0.500	<0.500	<0,500	91,6	<5,000	260 ●	180	1,45	<0,500	<0.500	≪0.500_	<0.500	<0.500	≪0 .500	140	700
Isopropy/benzene	<0.600	<0.500	<0.600	<0,600	<0.500_	<0,500	<0.500	<0.500	<0.500	<5,000	2.60	3.21	<0.600	<0,500	<0.500	<0.500	<0.500	<0.500	<0.500	NS	NS
p-Isopropyllaluene	<0.500_	<0,500	<0.600	<0.600	<0.500	<0.500	<0,500	<0.500	<0.f00	<6,000	1,10	1,10	<0.600	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	NS	NB
Methylene chloride	<0.630	<0,530	<0.530	<0.530	<0.530	<0,530	<0,530	<0.530	<0.630	2,040 ■	<0,530	<0,530	<0.630	<0.630	<0.630	<0.500	<0.530	3,71	<0.630	0.6	
Methyl tert-butyl other	<0.600	<0.600_	<0.500	<0,500	<0.500	<0.500	<0,500	<0.500	<0.500	<101	<0.500	<0,500	<0.500	<0.500	<0.500	<0.500	<0.500	<0,500	<0.500	12	60
Naphthalane	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00_	<8,000	<2.00	<2.00_	<2.00	<2.00	<2.00	<2.00_	<2.00	<2.00	<2.00	B	40
n-Propylbenzene	<0,500	<0,500	₹ 0.600	<0.600	<0.500	<0.500	<0.600	<0.500	<0,500	<5,000	1.42	0.960	<0,600	<0,500	<0.500	<0.500	<0,500	<0.500	<6.500	NS	NS
Tetrachioroethene	<0,500	<0.500	<0.500	<0.600	<0.500	<0.500	<0.500	<0.600	3.50 👄	<500	3,92 ♣	25.2_W	<0.600	<0,500	<0.500	<0.500	<0.500_	<0.500	<0.600	0,5	B
Toluene	<0.500	<0.500	<0.500	<0.600	<0.500	<0.500	<0.500	<0.500	4.25	<5,000	10,8	21.0	10.D	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	200	1,000
1,2,3-Trichlorobenzene	<2.00	<2.00_	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<10,000	<2,00	<2.00	<2.00	<2.00_	<2.00	<2.00	<2.00	<2.00	<2.00	NS	NS
1,1,2-Trichioroethene	<0.160	<0.150	<0.150	<0.160	<0,100	<0.160	<0,150	<0.160	<0.160	<153	<0.160	<0.160	<0.160	<0.160	<0.160	<0.160	<0.180	<0,160	<0,160	0.6	6
Trichloroethene	<0.600	<0.600	<0.600	<0.500	<0.500_	<0.500	<0.500	<0,600	22,400 ■_	20,500 🖩	21,000 🗷	30,400 ■	<0.500	6.27 M	<0.500	1.05 ●	1,08 👁	<0.500	<0,500	0.5	5
Trichlorofluoromethane	<0.600	<0.600	<0.500	<0.500	<0.600	<0.500	<0.500	<0,600	<0,500	<6,000	1.22	<0.600	<0,500	<0.500	<0.500	<0.500	<0.500	<0.500	<0,500	NS	N:S
1,2,4-Trimethylbenzene	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1,00	<5,000	4.20	2.92	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	90 (3)	480 (3)
1,3,5-Trimethylbenzene	<1.00	<1,00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<5,000	1,46	1.38	<1.00	<1.00	<1.00	<1,00	<1.00	<1.00	<1.00	90 (3)	480 (3)
Vinyl chloride	<0.170	<0.170	<0,170	<0.170	<0.170	<0.170	<0.170	<0.170	2,360_W	1,980 ■	3,770 ₪	2,210 =	<0.170	<0.170	<0.170	<0.170	<0.170	<0,170	<0.170	0.02	0.2
Xylenes	<0.600	<0.500	<0,500	<0.500	<0.600	<0.500	<0,500	<0.500	7.30	<5000	22.2	17.6	5.27	<0.600	880.0	<0.500	<0.600	<0.500	<0.500	1,000	10,000
PAHs (ugfl)																				ug/I	ugfl
Chrysene	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	NA	NA	NA	<0.0200	<0.0200	<0,0200	<0,0200	0,0267 🖷	<0.0200	NA	0.02	0.2
Dhashad Mataba for one																				mg/l	
Dissolved Metals (mg/li)	<0.0600	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	<0.0600	<0.0500	<0.0500	NA.	NA.	NA .	0.0590	<0.0600	<0.0600	<0.0500	<0.0500	<0.0600	NA.	0.020	ოგმ 0.100
FISSOIAEC LAICKE	<0.0000	~0.0000	40.0500	~0,0000	<0,0000	~0.0000	~0.0000	≪0.0500	~0.0000	NA	NA	NA.	A'1000 A	_ ~0.0000	~0.0000	40,0000	~0,0000	~0.0000	NA	0.020	Q.100

Notes:

• Indicates concentration exceeds preventive action limit

III Indicates concentration exceeds enforcement standard

Bold typed results indicate that the analyte was present at a concentration equal to or greater than the laboratory detection limit.

(1) The 5/18/2001 blind duplicate sample (ID MW-14) was collected from monitoring well MW-13.

(2) The 7/2/2001 blind duplicate sample (ID PZ-15) was collected from piezometer PZ-14.

(a) its interaction to incomplete earlight to Party and access on the processor of the proc

PAL = Preventive Action Limit EB = Enforcement Standard

PAHs = Polynuclear Aromatic Hydrocarbons

VOCs = Volatile Organic Compounds NA = Not Analyzed / Not Applicable

NS = No Standard

Table 16 Continued Groundwater Sample Analytical Results Summary Mankowski Property - Kenosha, Wisconsin Spring, Summer 2001

Parameter Sample ID, Collection Date NR 140 Standards Semple ID MW-14 PZ-14 Dumilicate (2) Decon Stank Trip Rilanic GP-51W GP-89W GP-64W GP-88W GP-67W GP-00W GP-69W GP-70W **GP-71W** GP-72W GP-73W **GP-75W** OP-76W **GP-77W** Trin Blank 7/2/01 7/2/01 8/15/01 8/15/01 8/10/01 8/16/01 8/16/01 8/10/01 8/16/01 8/17/01 8/17/01 8/17/01 8/17/01 0/20/01 PAL E\$ VOCs (ug/l) Benzene 1,34 . <0.500 <u style="background-color: green; color: white; color: wh <0.500 <0.600 <0.500 < 0.500 31.2 ■ <0,500 0.514 . 181 🔳 <10.0 <0,500 <0.600 <0.500 <0.000 < 0.500 <n 500 <0.500 <0.500 0.5 <0.600 <0.600 <0.500 <0.500 <0.600 <0.500 <10.0 0.674 <0.500 <10,0 <10.0 <0,500 <0.500 <0,500 <0.500 <0,500 <0.600 <0.500 <0.500 NS NS anc-Putybenzane <0.600 <0.500 <0,500 <0.600 <0.500 < 0.500 <0.500 <10.0 2.53 <0.500 <10.0 <10.0 < 0.600 <0.500 < 0.500 <0.500 <0.500 <0.500 <0.500 <0.500 NS NS tert-Butylbenzene <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <10.0 <10.0 <0.500 <0.500 <0,500 < 0.500 <0,500 < 0.500 < 0.600 1.00 @ 16.4 Chloroform < 0.140 < 0.140 <0.140 < 0.140 <0.140 <0.140 < 0.140 <0.140 < 0.140 85.2 <0.140 < 0.140 <0.140 <0.140 < 0.140 <0.140 < 0.140 < 0.140 0.6 1,2-Dichloroethane <0.500 < 0.500 <0,500 <0.500 <0.500 <0.500 <0.500 <10.0 <0,500 <0.500 <10.0 <10.0 <0.500 < 9.500 <0.500 <0.500 <0,500 <0.600 <0.500 <0.500 0.5 1.37 <10.0 < 0.500 <0.500 1,1-Dichloroethene <0.500 < 0.500 <0.500 < 0.500 < 0.600 < 0.500 <0.500 103 <0.500 71.B <0.600 <0.500 40,500 <0.500 < 0.500 < 0.500 0.7 cis-1,2-Dichlorosthana 13.6 👄 <0.500 <0.500 <0.500 <0,500 40.500 35,100 -103 W 173 8 3,010 🖷 1,780 ■ 47,6 < 0.600 <0.500 <0.500 <0.500 <0.500 <0,500 <0.500 26.8 ● <0.600 <0.600 <0.500 c0.500 <0.500 150 🗷 75.4 <10.0 <0.500 <0.000 <0.500 100 trans-1,2-Dichloroethene < 0.500 <0.500 **c0.500** <0.500 3.66 2.29 <0.500 <0.500 Ethylbenzene 1.88 <0,600 <0,500 <0.500 <0.500 <0.500 <0,500 23.1 1.07 <0.500 20.1 <10,0 <0.600 <0.500 <0.606 <0.500 <0.600 <0,500 <0.500 <0,500 140 700 <0.500 <0.500 < 0.500 <10.0 <0.600 < 0.500 33.3 <10.0 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 < 0.600 NS N3 **Buopropylbenzene** < 0.500 <0.000 <0.500 <0.500 <0.500 p-isopropyttoluene <0.500 <0.500 <0,500 <0.500 <0,500_ <0,500 <0.500 <10.0 1.43 < 0.500 <10.0 ≺10.0 <0.000 <0.500 <0.500 <0.500 <0,500 <0.500 1,95 <0.600 NS NS <0.530 <10.6 <0.530 <0.530 <10.6 <0.630 <0.630 < 0.530 <0.530 <0.530 < 0.530 Mathylene obloride <0.530 < 0.530 <0.530 < 0.530 <0.530 <0.530 <10.6 <0.530 <0.530 0.5 Melinyl tert-butyl ether <0.500 <0.500 <0,500 <0,500 <0.500 <0.500 <0.500 <10.0 <0.500 < 0.500 <10.0 <10.0 <0.600 <0.500 <0.600 1,47 <0.600 <0,500 <0,500 <0,500 60 <2.00 <200 <2.00 3,73 <2.00 **©** 00 <2.00 < 2.00 <2.00 <40.0 <2.00 <40.0 <40.0 <2.00 <2.00 <2.00 <2.00 <2.00 40 Naphthalene <2.00 <2.00 <0,500 < 0.500 <0,500 <0.500 <0.600_ <0,500 <0.500 <10,0 < 0.500 <0.500 <10.0 ≺10.0 <0.500 <0.800 <0.500 <0.500 <0.500 <0,600 1,77 <0.500 NS NS n-Propylbenzene <0.500 <0.600 <0,500 <0.500 <10.0 <0.500 <0.500 33.3 ■ <10.0 <0.500 <0.500 <0.600 <0.500 <0.500 <0,500 <0.500 <0.500 0.5 <0.500 <0,500 <0.500 Tetrachloroethene 5 <0,500 <0,500 <0,500 <0,500 <0.500_ <0,500 <0.500 12.9 0,600 <0.500 99.9 <10.0 <0.600 <0.500 <0.600 <0.500 <0.500 <0,500 <0.500 <0,500 200 1,000 < 2.00 2.00 <2.00 <40.0 <40.0 <2.00 <2.00 <2.00 < 2.00 <2.00 NS NS 1,2,3-Trichlorobenzen <2.00 <2.00 <2.00 <40.0 6.18 <2.00 _<2.00 <2.00 < 2.00 <2.00 1,1,2-Trichlorgethane <0.160 <0.150 <0,160 <0.150 <0.160_ <0.160 < 0.160 A82 B <0.100 <0.160 853 M <3.20 <0.160 <0.150 < 0.160 <0.100 <0.160 c0 160 <0.150 <0.160 48,9 🗯 <0.500 <0,500 <0.500 <0.500 < 0.500 6,320 ■ 40.7 M 29.1 ■ 82,200 73.6 🗷 95,7 🗮 <0.600 <0,500 <0.500 <0,500 <0.500 <0.500 < 0.500 0.6 Trichle <0.500 <0.500 <0.500 <0.600 <0.500 <0.500 <0.600 < 0.500 <10.0 <0.500 <0.600 <10.0 <10.0 <0.500 <0.600 <0.500 <0.500 <0,500 <0,500 <0.600 <0.500 NS BN B <1.00 <20.0 <1.00 96 (3) 480 (3) 1,2,4-Trimethylbenzene <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 12.7 <1.00 <20.0 <1.00 <1.00 <1,00 <1.00 <1,00 <1,00 <1.00 1,3,5-Trimethylbenzene <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 46.4 <1,00 <1.00 <20.0 <20.0 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 96 (3) 480 (3) <0.170 4,210 = 23.1 🗎 113 🗷 1,390 M 1,460 M 7,77 <0.170 <0.170 <0.170 0.02 0,2 < 0.170 <0.170 < 0.170 < 0.170 <0.170 <0,170 <0,170 <0.170 < 0.500 Vinyl chloride <0.170 Xylenes < 0.500 < 0.500 <0,500 <0.500 <0.500 <0.500 <0.600 20.2 0,090 <0.500 35,8 <10.0 <0.500 < 0.500 <0.600 <0.500 <0,500 <0,500 <0.500 <0,500 1,000 10,000 PAHs (ug/l) DOM: NA NΑ NA NA NA NA NA NA 0,02 0,2 Chrysona

Notes

Dissolved Nickel

- Indicates concentration exceeds preventive action limit
- M Indicates concentration exceeds enforcement standard

Bold typed results indicate that the analyte was present at a concentration equal to or greater than the laboratory detection limit.

NA

- (1) The 5/18/2001 blind duplicate sample (ID MW-14) was collected from monitoring well MW-13.
- (2) The 7/2/2001 blind duplicate sample (ID PZ-15) was collected from plezometer PZ-14.

NA

- (3) The NR 140 groundwater quality standards are for combined total trimethylbenizenes.
- The metals analyzed were estenic, lead, nickel, and mercury.
- RT = Retest. Sample MW-b was retested to confirm the VOC concentrations, some of which were significantly higher than levels observed in other samples from the site.

NA

NA

NA

NA

NA

NΑ

NA

NA

NA

NΑ

NA

NA

NA

NA

NA

NA

PAL = Preventive Action Limit

Dissolved Motals (mg/l)

- E8 = Enforcement Standard
- PAHs = Polynuclear Aromatic Hydrocarbons
- VOCa = Volatile Organic Compounds
- NA = Not Analyzed / Not Applicable
- NS = No Standard

mg/l

0.100

0.020

Table 16 Continued Groundwater Sample Analytical Results Summary Mankowski Property - Kenosha, Wisconsin April 2002

Parameter				Samp	le ID, Collecti	on Date				NR 140 S	itandards
Sample ID	GP-88W	GP-89W	GP-90W	GP-91W	GP-93W	GP-96W	GP-96W	GP-P7W	Trip Slank		
Deta-	4/4/02	4/4/02	4/4/02	4/4/02	4/4/02	4/4/02	4/4/02	4/4/02	4/4/02	PAL	E8
VOC= (41p/l)										ug/l	ugil
Benzene	<0.500	<0.500	<0,500	<0.600	<0.500	<0.500	<0,500	<0.600	<0,500	0,5	- 5
n-Buly/benzene	<0,500	<0.500	<0.506	<0.500	<0.500	<0.500	<0.500	<0.500	<0,600	NS	NS_
sec-Butylbenzene	<0.500	<0,500	<0.500	<0.500	<0.500	<0.500	<0,600	<0.500	<0,600	PN PN	NS
tart-Butylbenzene	<0.500	<0.500	<0.600	<0.500	<0.500	<0,500	<0.500	<0.500	<0.600	NS_	NS
Chloraform	<0,140	<0.140	<0,140	<0.140	<0,140	<0.140	<0.140	<0.140	<0.140	0,6	
1,2-Dichloroethane	<0,500	<0.500	<0,500	<0.500	<0,500	<0.500	<0,500	<0.500	<0,500	0,5	5_
1,1-Dichloroethene	<0.500	<0.500	<0.600	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	0.7	7
ole-1,2-Dichicroethene	<0.500	<0.500	<0.500	<0.500	<0.500	<0,500	<0.500	<0.500	<0.500	7	70
trans-1,2-Dighloroethene	<0.500	<0.500	<0.500	<0.600	<0.500	<0.500	<0.600	<0.500	<0.500	20	100
Ethylbenzene	<0.500	<0.500	<0.500	<0.600	<0.500	<0.600	<0.500	≪0.500	<0.500	140	700
Isopropyfbenzene	<0,500	<0.500	<0.500	<0.600	<0,500	<0.600	<0,500	<0.500	<0.600	NS_	NS
p-Isopropy!toluene	<0.500	<0.500	<0.500	<0.500	<0.500	<0.600	<0.500	<0.500	<0.500	NS_	NS
Methylene chloride	<0.530	<0.530	<0.530	<0.530	<0.530	<0.530	<0.530	<0.530	<0.530	0.5	5
Methyl tert-butyl ether	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.600	<0.500	12	60
Naphthalene	<2.00	<2.00_	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00_	<2,00	8	40
n-Propylbenzene	<0.500	<0.600	<0,500	<0.600	<0.500	<0.500	<0.500	<0.500	<0.600	NS_	NS
Tetrachioroethene	<0,500	<0.500	<0,500	<0.500	<0,500	<0.500	<0.500	<0.500	<0.600	0,5	
Toluene	<0.500	<0.500	<0,500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	200	1,000
1,2,3-Trichlorobenzene	<2.00	<2.00	<2.00	<2,00	<2.00	<2.00_	<2.00	<2.00	<2.00	NS	NS
1,1,2-Trichloroethane	<0.160	<0.160	<0.160	<0,160	<0.160	<0.160	<0.160	co.160	<0.160	0.6	đ
Trichloroethene	<0.500	<0.500	<0,600	<0,600	<0.500	<0.506	<0.500	<0,500	<0.500	0,5	
Trichlorofluoromethane	<0.500	<0.600	<0.500	<0.500	<0.500	<0,600	<0.500	<0.500	<0.500	NS_	NS
1,2,4-Trimethylbenzene	<1.00	<1.00	<1,00	<1.00	<1.00	≺1,00	<1.00	<1,00	<1.00	95 (3)	480 (3)
1,3,5-Trimathylbenzana	<1.00	<1.00_	<1.00	<1.00	<1.00	<1,00	<1.00	<1.00	<1.00	96 (3)_	480 (3)
Vinyi chioride	<0,170	<0.170	<0,170	<0.170	<0.170	<0.170	<0.170	<0.170	<0.800	0.02	0.2
Xylenes	<0.500	<0.600	<0,500	<0.600	<0,500	<0.500	<0,500	<0.500	<0.800	1,000	10,000
PAHa (ug/l)										ugil	սցմ
Chrysene	NA	NA	NA	NA .	NA	NA.	NA	NA	NA	0.02	0.2
Dissolved Metals (mg/l)										Toper	mg/l
Dissolved Nickel	NA	NA	NA	NA	NA	NA	NA	NA	NA	0,020	0.100

- Indicates concentration exceeds preventive action limit
- E Indicates concentration exceeds enforcement standard

Bold typed results indicate that the analyte was present at a concentration equal to or greater than the laboratory detection limit, (1) The \$1/82,001 blind duplicate sample (ID NW-14) was odifected from monitoring well MW-13.

(2) The 7/82,001 blind duplicate sample (ID P2-19 was collected from jectomater P2-14.

- (3) The NR 140 groundwater quality alanderds are for combined total trimethylbenzenes.
- The metals analyzed were arcenic, lead, nickel, and meticury.

 RT = Retest, Sample MW-9 was retealed to confirm the VOC concentrations, some of which were significantly higher than levels observed in other samples from the site.
- PAL * Preventive Action Limit EB = Enforcement Standard
- ES = Emproprint santaed

 PAHs = Polynuclear Aramalia Hydrocarbons

 VOCs = Volatie Organic Compounds

 NA = Not Analyzed / Not Applicable

 NS = No Standard

Table I7 Groundwater Monitoring Analytical Results Summary Mankowski Property - Kenosha, Wisconsin August, November 2004

Parameter

Sample ID, Collection Date

NR 140 Standards

	MV	v-7R	MV	V-8R	MV	/-10R	MV	V-11R	M	W-17	M	W-18	Trip Blank		
	8/24/04	11/24/04	8/24/04	11/24/04	8/24/04	11/24/04	8/23/04	11/24/04	8/24/04	11/24/04	8/24/01	11/24/04	11/24/04	PAL.	ES
VOCs/PVOCs (ug/l)												18881.5		ug/l	Ngu
Benzene	<0.500	0.21	<0.500	<0.500	<0.500	<0.20	<0.500	<0.20	<0.500	<0.20	<0.500	<0.20	<0.20	0.5	5
Dissolved Metals (mg/l)														mg/l	mg/l
Dissolved Arsenic	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	NA	0.005	0.050
Dissolved Nickel	NA	NA	NA	NA	<0.0500	<0.0500	NA	NA	NA	NA	<0.0500	<0.0500	NA	0.020	0.100

Notes:

Bold typed results indicate that the analyte was present at a concentration equal to or greater than the laboratory detection limit.

PAL = Preventive Action Limit

ES = Enforcement Standard

VOCs = Volatile Organic Compounds

PVOCs - Petroleum Volatile Organic Compounds

NA = Not Analyzed / Not Applicable

NS = No Standard

Table E5 **Groundwater Measurements** Mankowski Property - Kenosha, Wisconsin Spring, Summer 2001

Measurement

Well ID, Date

		MV/-1			MW-2			MW-3		Ì	MW-4			MW-5			MW-6			MW-7	
	5/16/01	5/29/01	7/2/01	5/16/01	5/29/01	7/2/01	5/16/01	5/29/01	7/2/01	5/16/01	5/29/01	7/2/01	5/16/01	5/29/01	7/2/01	5/16/01	5/29/01	7/2/01	5/16/01	5/29/01	7/2/01
TOC Elevation (ft)		95.55			97.20			98.63			97.97			96.03			95.65			95,74	
Depth to Groundwater Below TOC (ft)	12.20	11.91	12.56	10.43	10.27	11.32	8.17	5.89	7.07	14.60	8.92	10.30	2,31	2.87	3.04	2.18	2.49	5.01	5.39	4.06	4.45
Groundwater Elevation (ft)	83.35	83.64	82.99	86.77	86.93	85.88	90.46	92.74	91.56	83.37	89.05	87.67	93.72	93.16	92.99	93.47	93.16	90.64	90.35	91.68	91.29
Ground Surface Elevation (ft)		95.6		<u> </u>	97.8		<u> </u>	98.9			98.4			96.6		ļ	96.1		<u> </u>	96.4	
Depth to Groundwater bis (ft)	12,24	11.95	12.60	11.03	10.87	11.92	8.47	6.19	7.37	15.00	9.32	10.70	2.91	3.47	3.64	2.58	2.89	5.41	6.09	4,76	5.15
Total Well Depth (ft)		19.9			18.0			19.9			24.9			20.0			19.8		<u> </u>	17.3	
Screened Length (ft)		10			10		<u></u>	10			15			10			10			10	
Water Column Height (ft)	7.7	8.0	7,3	7.6	7.7	6,7	11.7	14.0	12.8	10.3	16.0	14.6	17.7	17.1	17.0	17.6	17.3	14.8	11.9	13.2	12.9
Well Volume (gal)	4.7	NA_	NA.	4.8	NA	NA_	7.2	NA_	NA .	6.3	NA_	NA	8.6	NA_	NA	8.6	NA	NA	7,2	NA.	NA_
Volume Removed (gal)	5 (1)	NA	NA	8 (1)	ŅΑ	NA	9 (1)	NA	NA	10 (1)	NA	NA	13 (1)	NA	NA	10 (1)	NA	NA	10 (1)	NA	NA

Measurement

Well ID, Date

	1	MW-8		M	N-9	MW-9R	PZ-9		MV-10		}	MW-11			MW-12		}	MVV-13		MW-14	PZ-14
	5/16/01	5/29/01	7/2/01	5/16/01	5/29/01	7/2/01	7/2/01	5/16/01	5/29/01	7/2/01	5/16/01	5/29/01	7/2/01	5/16/01	5/29/01	7/2/01	5/16/01	5/29/01	7/2/01	7/2/01	7/2/01
TOC Elevation (ft)		96.48		96	.37	NA	NA.		91.46			93.21			93.96			95.50		NA	NA.
Depth to Groundwater Below TOC (ft)	8.87	7.46	8.36	7.02	6.87	6.92	6.69	8.12	8.05	8.47	5.04	3.70	3.75	7.36	7.61	8.81	7.66	7.98	9.39	8.06	15.24
Groundwater Elevation (ft)	87.61	89.02	88.12	89.35	89.50	NA	NA.	83.34	83.41	82.99	88.17	89.51	89.46	86.60	86.35	85.15	87.84	87.52	86.11	NA.	NA
Ground Surface Elevation (ft)		96.9		97	7,1	, NA	NA_		92.0			93.7		L	94.5			95.7		NA.	NA
Depth to Groundwater bis (ft)	9.27	7.86	8.76	7.72	7.57	NA.	NA.	8.62	8.55	8,97	5.54	420	4.25	7.86	8.11	9.31	7.86	8.18	9.59	NA.	NA.
Total Well Depth (ft)		18.5		1	7.0	13.0	20.0	ļ	14.8			17.2			17.0			19.9		13.0	20.0
Screened Length (ft)		10		1	0	10	5		10			10			10			10		10	5
Water Column Height (ft)	9.6	11.0	10.1	10.0	10.1	6.08	13.31	6,7	6.8	6.3	12.2	13.5	13.5	9.6	9.4	8.2	12.2	11.9	10.5	4.9	4.7
Well Volume (gal)	6.2	NA	NA	6.3	NA	4.0	4.7	4.3	NA	NA	7.5	NA	NA	6.2	NA_	NA.	7.5	NA	NA.	3.4	3,4
Volume Removed (gal)	24 (1)	NA	NA	63	NA	45	47	45	NA	NA	15 (1)	NA	NA	43 (1)	NA	NA	13 (1)	NA	NA	3.5 (1)	4 (1)

Site elevations are relative to a reference point on site with an arbitrarily assigned elevation of 100.00 feet.

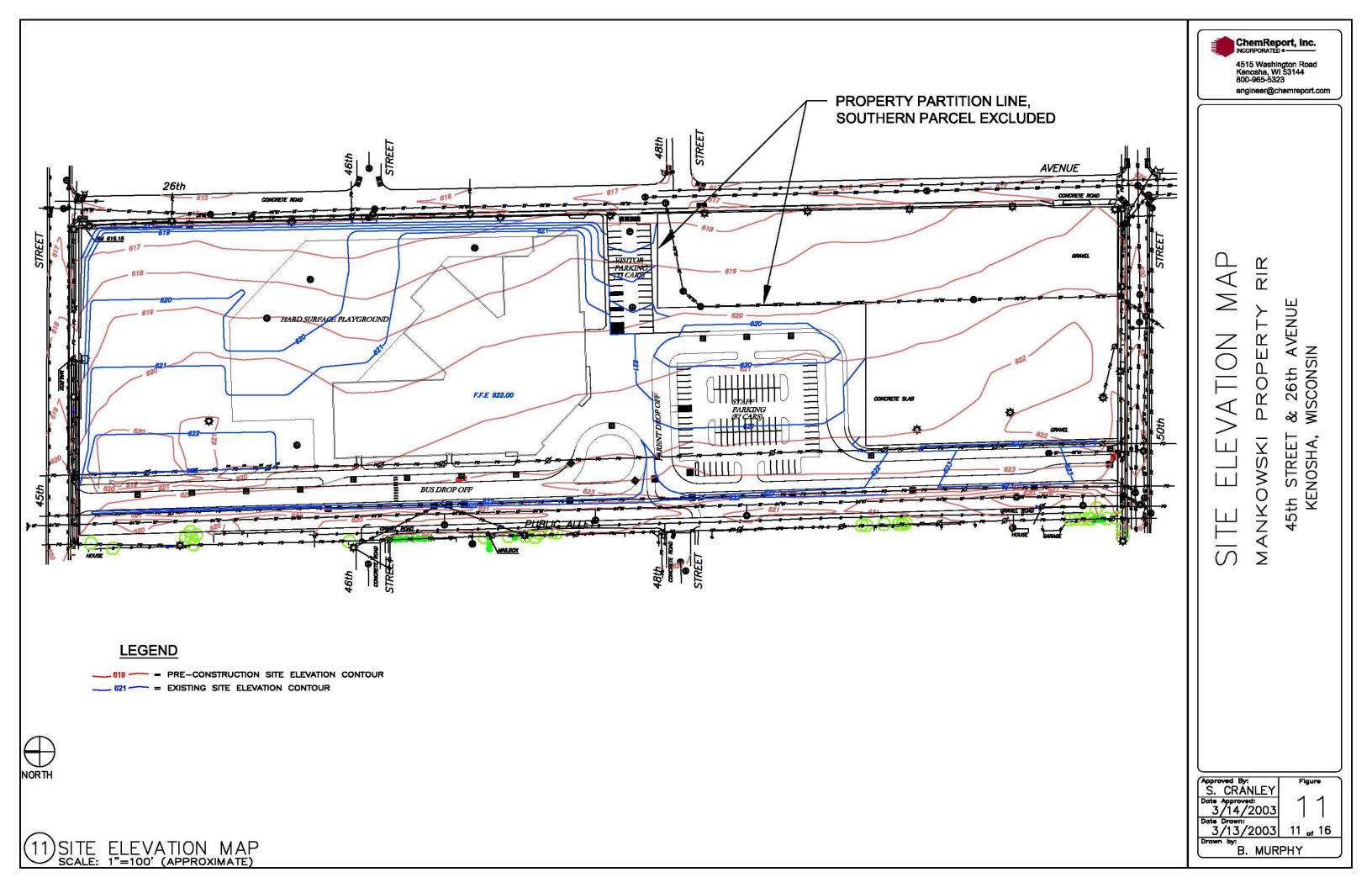
(1) = Well was purged dry TOC = Top of casing

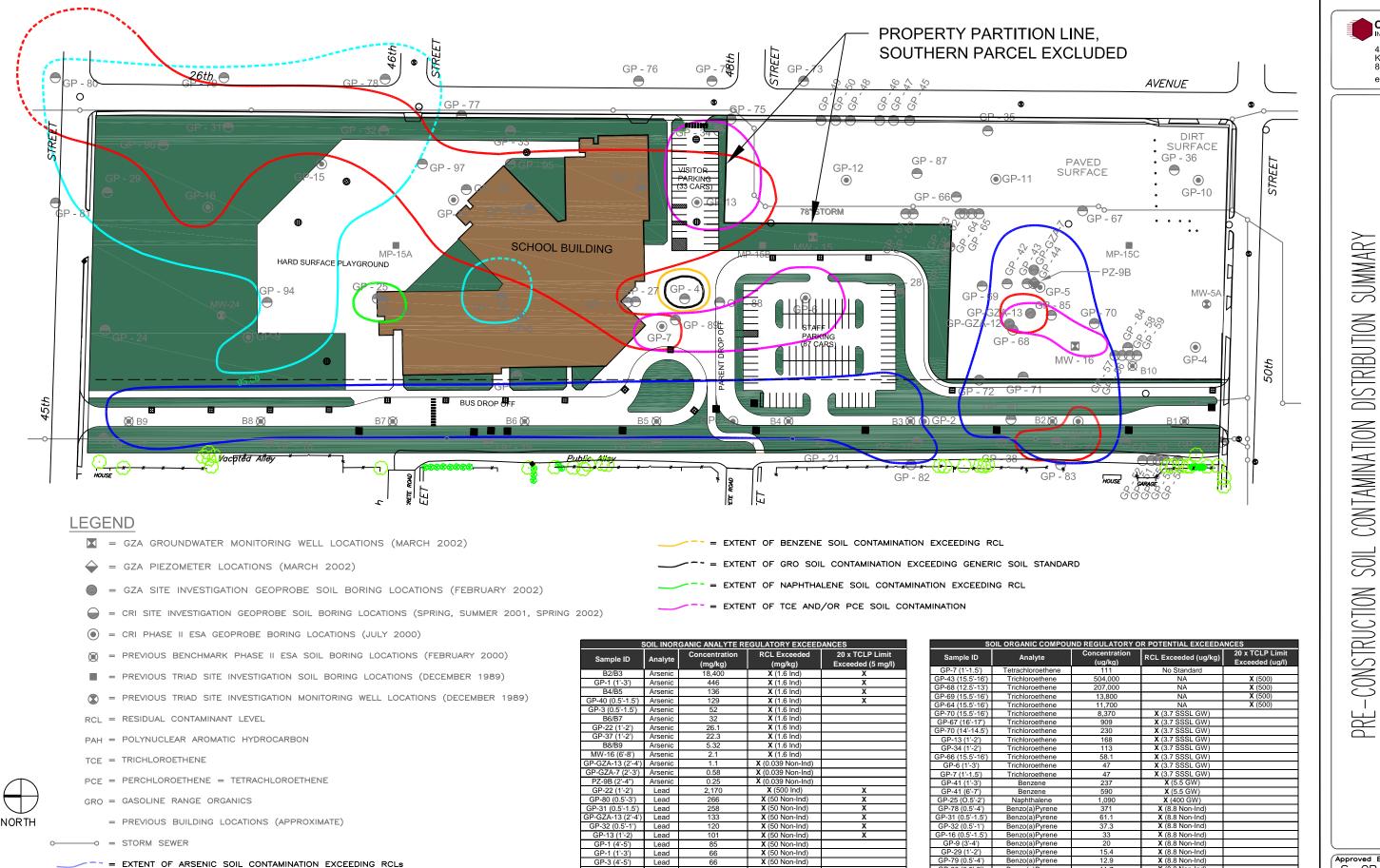
NA = Not Applicable

Table E6 Natural Attenuation Groundwater Monitoring Well Data Mankowski Property - Kenosha, Wisconsin August, November 2005

Measurement

Well ID, Date


	MV	V-7R	MV	V-8R	MV	/-10R	MV	/-11R	. MV	<i>إ-</i> 17	M	W-18
	8/24/04	11/23/04	8/24/04	11/23/04	8/24/04	11/23/04	8/24/04	11/23/04	8/24/04	11/23/04	8/24/04	11/23/04
TOC Elevation (ft)	97	7.40	95	.72	9	0.93	97	7.29	96	.59	9	8.20
Depth to Groundwater Below TOC (ft)	5.96	6.12	10.20	10.31	9.36	9.14	9.65	9.91	5.44	6.61	7.12	10.75
Groundwater Elevation (ft)	91.44	91,28	85.52	85.41	81.57	81,79	87.64	87,38	91.15	89.98	91.08	87.45
Ground Surface Elevation (ft)	97.7	97.7	95.9	97.7	91.2	97.7	97,6	97.7	96.8	97,7	98.5	97.7
Depth to Groundwater bis (ft)	6.2	6.4	10.4	12.2	9.6	15.9	10.0	10.3	5.6	7.7	7,4	10.2
Total Well Depth (ft)	21.3	21,3	19.6	21.3	14.7	21,3	19.4	21,3	19.6	21.3	19,6	21.3
Screened Length (ft)	10	10	10	10	10	10	10	10	10	10	10	10
Water Column Height (ft)	15.3	15.2	9.4	11.0	5.3	12.2	9.7	11.4	14.2	14.7	12.5	10.6
Well Volume (gal)	8.8	8,8	7.5	8,8	4.2	12,0	7.8	8,8	8.6	8.8	8.4	8.8
Volume Removed (gal)	B (1)	9(1)	18 (1)	12(1)	11 (1)	12 (1)	8 (1)	7(1)	8 .5(1)	7 (1)	8 .5 (1)	7 (1)


Notes

Site elevations are relative to a reference point on site with an arbitrarily assigned elevation of 100,00 feet.

(1) ≈ Well was purged dry

TOC = Top of casing

Lead Lead

X (50 Non-Ind)

X (50 Non-Ind) X (50 Non-Ind)

X (50 Non-Ind)

X (8.8 Non-Ind)

X (8.8 Non-Ind)

X (8.8 Non-Ind)

X (8.8 Non-Ind)

X (88 Non-Ind)

X (88 Non-Ind)

Benzo(a)Pyrene

Benzo(a)Pyrene Dibenz(a,h)Anthracen

DISTRIBUTION \mathcal{L} Ш 0 CONTAMINATION \Box OWSK X Z \triangleleft -CONSTRUCTION $\sum_{i=1}^{n}$

ChemReport, Inc.

4515 Washington Road Kenosha, WI 53144 800-965-5323

engineer@chemreport.com

AVENUE

26th

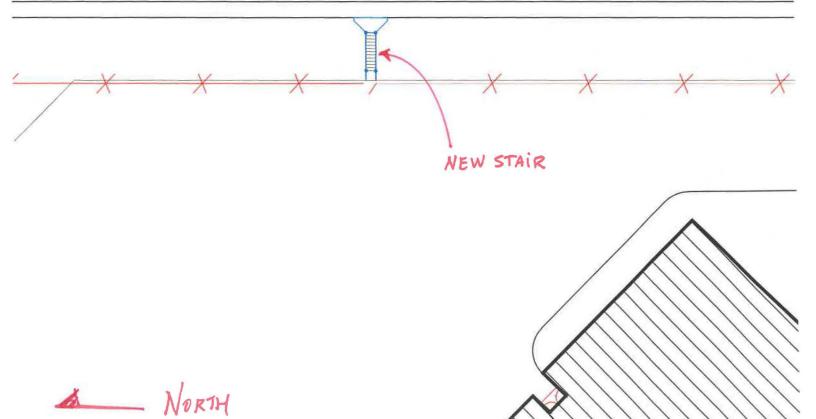
5th

MISCONSIN

KENOSHA, STRE

Figure S. CRANLEY 9/21/2004 \bigcirc 9/20/2004 6 _{of} 16

B. MURPHY


PRE-CONSTRUCTION SOIL CONTAMINATION DISTRIBUTION SUMMARY SCALE: 1" = 120'

= EXTENT OF LEAD SOIL CONTAMINATION EXCEEDING RCLs

EXTENT OF PAH SOIL CONTAMINATION EXCEEDING RCLs

46th STREET

26 TH AVE.

< - 26 th AVE ->

CRASS PARKWAY

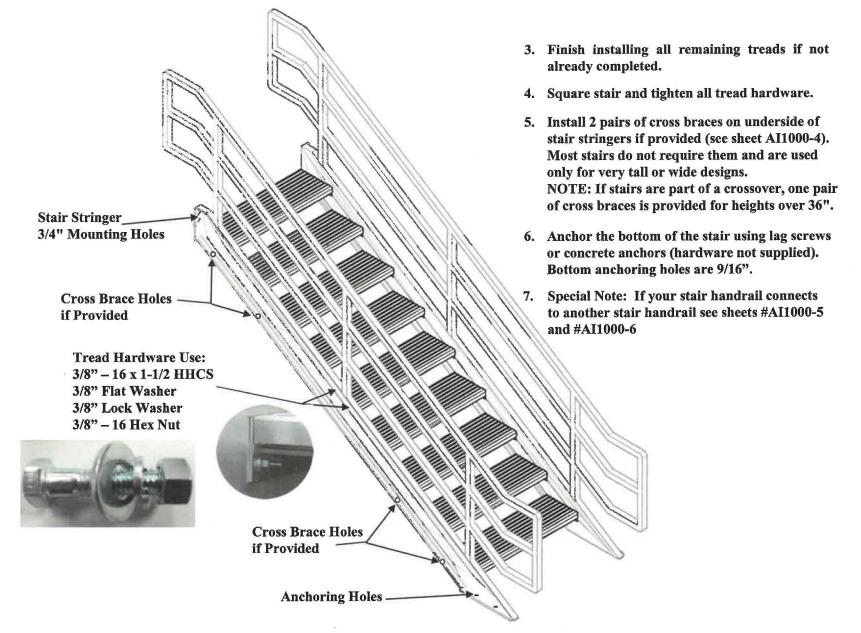
CONCRETE PIEZ

(4) REQUIRED

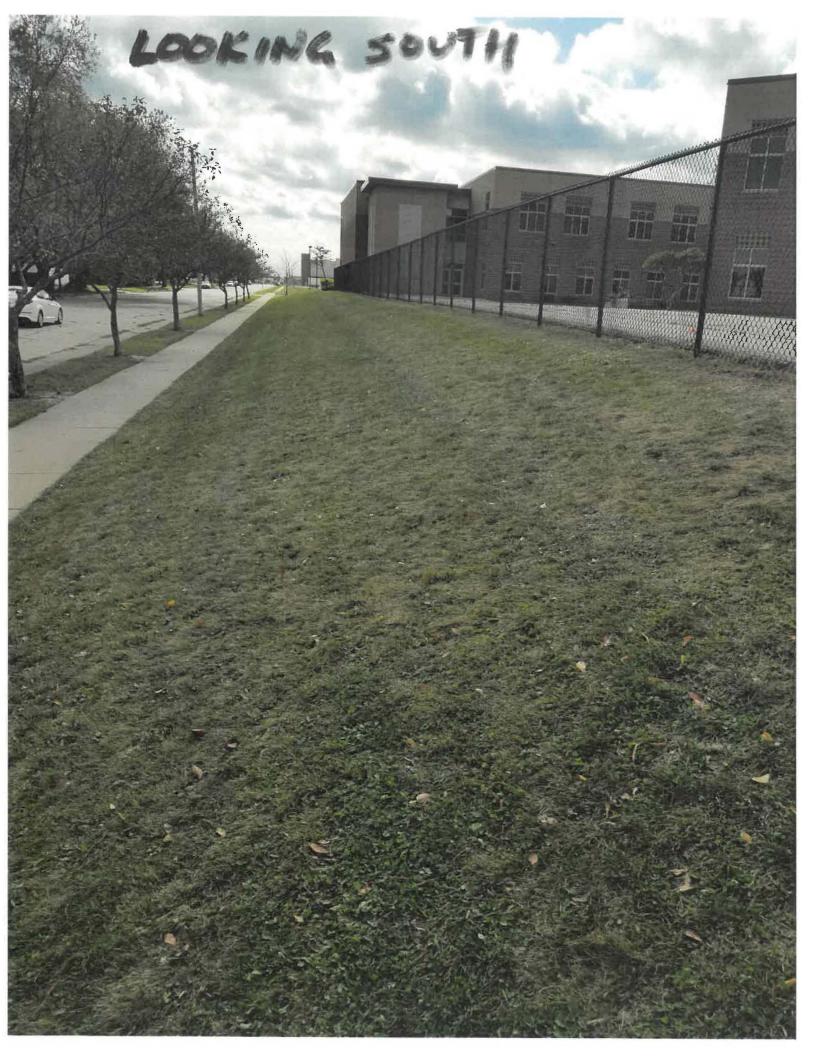
CRASS AREA

NEW METAL

STAIR


NEW CONCRETE 25 TH

EXISTING ASPHALT PLAYGROUND



October 26, 2020

Kenosha Unified School District No. I Attn: John Setter 3600 - 52nd Street Kenosha, WI 53144

Attn: John Setter

Re: KUSD Bain School Stair

John,

We are pleased to provide a budget for the KUSD Bain School Stair Project This quotation includes all material, labor, insurance and supervision necessary to complete the KUSD Bain School Stair Project work. See time and material budget breakdown below.

KUSD Bain School Stair Project: Budget

We include the following scope of work as outlined below. Scope of Work:

- I. Layout & General Conditions
- 2. Excavation:
 - a. Topsoil removal for stone base.
 - b. Auger 4 foundation pier holes.
 - c. Place topsoil at formed edge locations.
- 3. Concrete Work:
 - a. Place and fine grade base stone under concrete & stair treads.
 - b. Drill and pin lower sidewalk to existing city sidewalk.
 - c. Pour 4 foundation pier monolithic with sidewalk. Fiber mesh reinforcing.
 - d. Form and pour new 4' wide sidewalk landings with light broom finish. (52 SF)
 - e. Seal new concrete.
- 4. Furnish and install new galvanized steel stair with open risers and bar grating treads.
- 5. Landscaping, fine grade, seed and straw mat.
- 6. Field and office supervision to complete work.

We included the scope of work listed above for the sum of: (Fourteen Thousand Dollars).

\$14,000.00

Exclusions & Notes:

- 1. Permit Costs and disposal of excavated materials.
- 2. Private utility locates not included.
- 3. Premium time or off shift work
- 4. Electrical & Site Utility Work.

If you should have any questions, please contact me at (262) 552-9440.

Best Regards, Camosy Incorporated

Kenosha Unified School District

Joseph Makovsky

Project Manager / Senior Estimator

Construction Managers Design/Builders General Contractors 12795 120th Avenue Kenosha, WI 53142-7326 **262-552-9440** 43451 N. US Hwy 41 Zion, IL 60099-9455 **847-395-6800**

John E. Setter, AIA

Delivery Address: 43451 N. US Hwy. 41 Zion, IL 60099-9455

Building Trust Since 1910