

175 N. Corporate Drive Suite 100 Brookfield, WI 53045

www.geotransinc.com

262-792-1282 FAX 262-792-1310

January 10, 2002 (P556)

Mr. Tom Wentland Wisconsin Department of Natural Resources 4041 N. Richards Street P.O. Box 12436 Milwaukee, WI 53212

RE: Progress Report and Request to Discontinue Soil Vapor Extraction and Heated Soil Vapor Extraction at the Sta-Rite Industries, Inc. Facility in Delavan, Wisconsin

Dear Mr. Wentland:

Enclosed is the revised combined Annual Progress Report for the source area remediation at the Sta-Rite Industries, Inc. facility in Delavan, Wisconsin. As was agreed at the meeting held on March 8, 2001, the Annual Progress Reports for the period of February 1999 through April 2001 have been combined into one document.

SITE NAME/ACTIVITY:	DATE: December 2001
Contract No. SF-90-02	
Delavan Municipal Well #4	
Delavan, Wisconsin	
Source Remediation	PERIOD: February 28, 1999 through April 30, 2001

The format of this report follows the Wisconsin Department of Natural Resources (WDNR) "Guidance for Design, Installation, and Operation of Soil Venting Systems," WDNR Emergency and Remedial Response Section, July 1993, PUBL-SW185-93. In addition, included in this report is a proposed revised groundwater monitoring plan for the Delavan facility.

Please note it is recommended in the enclosed report that soil vapor extraction (SVE) be discontinued at the former chip storage area and the source area in the southeast corner of the Delavan facility as soil samples collected from these areas in March 2001 indicate no trichloroethene (TCE), 1,1,1-trichloroethane (TCA) or tetrachloroethene (PCE) impacts remain in the soil above the water table. Two rounds of soil samples will be collected at two locations from the former chip storage area and source area in the southeast corner of the Delavan facility in 2002 to confirm the results of the March 2001 sampling event. It is also recommended that heated soil vapor extraction (HSVE) be stopped in the former sump source area as recent soil vapor sampling analytical data indicate volatile organic compound (VOC) removal rates are declining and as a result it is no longer cost-effective to continue the operation of the HSVE system. SVE cycling (several days on followed by several days off) will be used to address the soil impacts that remain in the former sump area. Soil samples collected from the former sump source area during this reporting period indicate the mass of VOC impacts in the former sump

area has declined and the TCE, TCA and PCE impacts to the soils above the water table in the eastern portion of the former sump area have been remediated to acceptable levels. The mass of VOC impacts that remain in the soil above the water table in the former sump area is estimated to be approximately 325 pounds. Semi-annual soil sampling will be conducted by Sta-Rite Industries to confirm that SVE cycling is effective in remediating the soil impacts that remain in the former sump area.

SVE in the former chip storage area and southeast source area will be discontinued and SVE cycling will replace HSVE in the former sump source area at the Sta-Rite Delavan facility pending written approval of these actions by the WDNR. If you require additional information or have any questions regarding these matters, please contact Jon Raymond or myself at your convenience.

Sincerely,

GEOTRANS, INC.

Mark A. Manthey, P.G. Senior Hydrogeologist Encs.

cc: Jon Raymond (2 copies), Sta-Rite Industries, Inc. Henry Nehls-Lowe/Wisconsin Division of Health, Madison

SUMMARY OF PROGRESS MADE THIS REPORTING PERIOD

The dual soil vapor extraction/groundwater extraction (SVE/GWE) remediation system was operated from February 28, 1999 through April 31, 2001 with minimal shutdowns due to power outages or system maintenance. Copies of the Daily Operation Logs for the SVE/GWE remediation system are provided in Appendix A. The SVE/GWE remediation system consists of three legs, which are shown on Figure 1. The first leg of the SVE/GWE remediation system addresses the impacts at the former chip storage area southeast of Plant 1 and is referred to as the chip storage extraction system (CSES). The second leg remediates the impacts found in the southeast corner of the Sta-Rite facility property and is referred to as the southeast extraction system (SES). The third leg remediates the impacts at the former sump area, next to the north wall of Plant 2.

Volatile organic compound (VOC) removal using SVE has significantly decreased due to the source areas decreased VOC concentrations. As noted in the last two annual reports, significant decreases in concentrations were reported at two of the three locations, with one location (southeast extraction system source area) showing no remaining soil impacts. VOC mass removal rates at the former sump source area, which had been insignificant in 1997, were addressed by using heated soil vapor extraction (HSVE) to enhance remediation efforts in this location. The HSVE system began operating in August 1998 and was enhanced by increasing the temperature in August 1999. The rate of VOC removal increased immediately following initiation of the HSVE, and again following the increased temperature. Soil samples from the area around the HSVE showed declining VOC concentrations and then increases in concentration as the increased temperatures mobilized VOCs trapped within the soil in the former sump area. The major increase in VOCs removed following the temperature increase was from the less volatile compounds which are generally less easily removed. Soil sampling conducted in the three source areas during this reporting period indicate no VOC impacts remain in the CSES and SES. Analytical results for soil samples collected from the former sump area during this reporting period show, that with the exception of the soil samples collected closest to the water table at a depth of 28 feet below ground surface (bgs), total VOC impacts in the soil have declined from 93% to 100%.

Geo[rans, Inc.

Ongoing groundwater monitoring show stabilized or continued declining VOC concentrations in groundwater both at Plant 1 and Plant 2. The analytical results for soil, soil vapor and groundwater samples collected from the site are summarized on Tables 1, 2, and 3 and Figure 1. Laboratory results for soil, soil vapor, and groundwater monitoring are included in Appendices B, C and D for the period from February 1999 through April 2001.

Reporting Period VOC Removal

For the reporting period from February 28, 1999 through April 30, 2001 the following amounts of VOCs are estimated to have been removed from the three source areas (not including VOCs removed from groundwater extraction wells EX-1 through EX-7):

Pounds of	Vapor Phase (pounds)	Liquid Phase (pounds)	Total (pounds)
Trichloroethene (TCE)	10.4	5.0	15.4
1,1,1-trichloroethane (TCA)	41.3	5.0	46.3
Tetrachloroethene (PCE)	0	0.3	0.3
TOTAL VOCS*	73.9	10.8	84.7

(*Total VOCs in vapor includes TCE, TCA, PCE, and the rest as hexane. Liquid phase does not have a total VOC analyzed, so it is a sum of TCE, TCA, and PCE.)

Cumulative VOC Removal Results

Since system initiation on June 16, 1994, the groundwater extracted from the CSES and the SES source areas has removed an estimated 140 pounds of VOCs through April 31, 2001, and an estimated 1799 pounds have been removed in the vapor phase over the same time. A total of 1939 pounds of VOCs have been removed in 82 months of operation.

SOIL SOURCE AREAS

The SVE system combined with the HSVE in the former sump area remove VOCs alternately from the three soil source areas: soil impacts in the former chip storage area are addressed by the chip storage extraction system (CSES) leg of the remedial system; the soil in the southeast corner of Plant 2 is remediated by the southeast extraction system (SES) leg; and the soil near the former sump area adjacent to the north side of Plant 2 is addressed by the sump leg, including the heating system.

Due to this remedial effort, the concentration of VOCs in the CSES, SES and former sump source areas has significantly decreased, thereby causing decreased VOC removal rates. The decline in VOC removal rates is illustrated by the decrease in slope on the charts showing the cumulative mass of VOCs removed via the SVE/HSVE system (Figures 2 and 3). During this reporting period, two of the three legs of the system were operated simultaneously while the third leg "rested" in order to more effectively continue to remove VOCs from the soil in the source areas. The active legs were rotated on approximately a monthly basis.

To enhance the VOC removal rate from the former sump area, which had significant soil impacts remaining, heating wells were added to the former sump area and HSVE began operation in August 1998. The HSVE enhancement has been successful at increasing the VOC removal rate from this area. When the HSVE began operation in August 1998, an immediate improvement in the VOC removal rate was noted (see Table 1 and Figure 4). Temperature probes were installed to monitor the effectiveness of the heat wells at raising the temperature of the subsurface. These probes have consistently maintained a temperature between 70 and 90 degrees F vs. an ambient subsurface temperature of approximately 55 degrees F. In addition, periodic soil sampling and analysis shows the concentration of VOCs in the soil surrounding the sump has decreased significantly (Table 2). Therefore, the HSVE appears to have been effective at enhancing the soil remediation in the former sump area.

A summary of the total mass of VOCs removed from the vapor phase is presented on Table 1 and Figures 2 and 3. Steady decreases in the rate of VOC removal are apparent from the initiation of the

SVE system; however, the rate of VOC removal increased following installation and operation of the HSVE system at the former sump location (Figure 4). The decreasing trend in VOC removal is illustrated by the decrease in the slopes of the curves on Figures 2 and 3. Prior to initiating HSVE at the former sump source area, the average VOC removal rate of the SVE system had dropped to approximately 0.14 pounds/day (Figure 4). After HSVE was started at the former sump source area, the average VOC removal rate for the SVE/HSVE system from August 1998 to December 1998 increased to approximately 0.33 pounds/day. Average VOC removal rates have declined over the past two years and as Figure 4 illustrates, the average VOC removal rate in 2000 for the SVE/HSVE system was approximately 0.082 pounds/day, which is lower than the average VOC removal rate prior to the start of HSVE.

Soil Sampling

Besides the normal soil vapor and groundwater monitoring, Sta-Rite collected soil samples from the former sump source area to evaluate the progress of the HSVE remediation. Soil samples were also collected from the CSES and SES to document the progress of the remedial action in these areas. Soil samples were collected from one location in the former sump source area on April 2, 1999 and August 19, 1999, and from two locations on October 5, 1999, December 20, 1999, March 28, 2000, December 13, 2000, and March 21, 2001. One round of soil samples were collected from two locations in the CSES and SES on March 21, 2001.

The Geoprobe direct-push sampling system was used to collect the soil samples from the former sump, CSES and SES areas. Portions of the soil samples collected from the Geoprobe borings were screened in the field for the presence of ionizable VOCs using a photoionization detector (PID) equipped with an 11.7 eV lamp. Selected soil samples were also submitted for laboratory analysis of VOCs to document VOC concentrations in the soil. Copies of the borehole logs and borehole abandonment forms for the last two soil sampling rounds are provided in Appendix E.

Former Sump Area

Soil samples have been collected periodically from beside the former location of the sump, and beginning in October 1999, samples from the east end of the former sump source area were added to better evaluate concentration changes in soil throughout the affected area. These samples were submitted under chain of custody to a Wisconsin-certified laboratory for analysis of VOCs. The samples have been collected at three to five depths, 16 feet bgs, 20 feet bgs, and 26 feet bgs, and in some sampling rounds 24 feet bgs and 28 feet bgs were added. The results (Appendix B) were compared with the 1991 Remedial Investigation (RI) soil analytical results, field PID screening results, and soil gas sampling results to evaluate what changes in concentration have occurred since the start of remediation. The results of the analyses, presented in Table 2, indicate VOC impacts in the soil have decreased since operation of the HSVE system began, and then increased again following addition of increased heat to the subsurface, which better mobilized the lower volatility contaminants.

HSVE was initiated in August 1998 to increase the rate of VOC removal from the former sump area and the subsurface temperature was increased in August 1999. Table 2 shows the decreases in VOC concentrations at three sample depths; 16 feet, 20 feet, and 26 feet bgs up until the temperature increase, and then a significant increase in VOC concentrations as additional VOCs were mobilized. The deepest soil sample (28 feet bgs) is located just above the water table; the soil impacts at that depth have been and remain higher than the other sample depths due to volatilization from the impacted groundwater.

Since HSVE initiation, the concentration of VOCs, especially the most volatile compounds, TCE and PCE, have been significantly reduced using the HSVE. Review of the soil sample analytical data from the former sump source area show that TCA, which with TCE and PCE are the contaminants of concern, has not been detected in any of the soil samples.

The analytical results from 2000 and 2001 for the soil samples collected from the Geoprobe borings installed on the east end of the former sump source area (SB-2008) indicate TCE concentrations in the eastern portion of the former sump source area have declined to non-detectable levels. Also, with the exception of the soil sample collected at 28 feet bgs, no PCE was detected in the soil samples collected in March 2001 from the Geoprobe boring installed on the east side of the former sump source area. As the depth to groundwater in this area is near 30 feet bgs, the PCE detected in the soil at 28 feet bgs is most likely associated with volatilization of contaminants off of the water table.

TCE and PCE were not detected in the soil samples collected at 24 feet bgs and 26 feet bgs from the Geoprobe boring installed near the former location of the sump (SB-SumpE) during the March 2001 sampling round, but were detected in the soil samples collected at 16 feet bgs, 20 feet bgs and 28 feet bgs. Again, the VOC impacts detected in the soil sample collected at 28 feet bgs are most likely associated with volatilization of contaminants off of the water table. The analytical data from the March 2000 through March 2001 sampling events for the soil samples collected at 16 feet bgs and 20 feet bgs do not show a clear trend in VOC impacts. TCE concentrations decreased in the soil samples collected at 20 feet bgs but increased in the soil samples collected at 16 feet bgs, while PCE concentrations decreased in the soil samples collected at 20 feet bgs.

The soil sample analytical results from 2000 and 2001 indicate that, with the exception of the soil closest to the water table, the TCE and PCE impacts to the soil in the eastern portion of the former sump source area have been effectively remediated. TCE and PCE impacts remain in the soil located closest to the former location of the sump. The alternating increase and decrease in TCE and PCE concentrations in the soil samples collected near the former location of the sump suggest the HSVE may have reached its practical limits in remediating the impacted soil.

Soil Performance Standards for the Former Sump Source Area

The U.S. Environmental Protection Agency (EPA) guidance documents entitled *Soil Screening Guidance: User's Guide* (July 1996) and *Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites* (March 2001) were used to calculate soil performance standards based on protection of groundwater for TCE, TCA, PCE and cis-1,2-dichloroethene (DCE). A soil performance standard was calculated for DCE, which is a breakdown product of TCE, because it has been detected in the soil samples collected from the former sump area at concentrations equal to or greater than TCE and PCE. TCA has not been detected in the soil samples collected from the former sump area, but soil performance standards were calculated for it as it is a contaminant of concern in the groundwater.

The soil/water partitioning equation and mass-limit equation presented in the July 1996 EPA guidance document were used to calculate site-specific soil performance standards for TCE, TCA, PCE and DCE. Default values provided in the July 1996 EPA guidance document for fraction of organic carbon in soil, water-filled soil porosity, dry soil bulk density, soil particle density, soil porosity, air-filled soil porosity, infiltration rate and exposure duration were used in the equations or used to calculate parameters used in the equations. Chemical-specific values provided in Appendix C of the March 2001 EPA guidance document for the soil/organic carbon partition coefficient and Henry's Law Constant were used to calculate values for some of the parameters used in the equations. Site-specific values used in the equations or used to calculate values for some of the parameters. The equations, default values, chemical-specific values and site-specific values used to calculate the soil performance standards are provided in Appendix F.

The site-specific soil performance standards calculated for TCE, TCA, PCE and DCE are listed on Table 4. As Table 4 shows, the soil performance standards calculated using the mass-limit equation are higher than values calculated using the soil/water partitioning equation for all four compounds. The July 1996 EPA guidance document recommends that if values are calculated using both equations, the values should be compared for each chemical and the higher of the two values should

be selected. Generic soil performance standards for 110 compounds calculated using the soil/water partitioning equation and default values for the aquifer properties are listed in Appendix A of the March 2001 EPA guidance document and are also included on Table 4. As Table 4 shows, the generic soil performance standards for TCE, TCA and PCE are higher than the values calculated using site-specific data. The generic soil performance standard for DCE is higher than the site-specific value calculated using the soil/water partitioning equation, but lower than the site-specific value calculated using the mass-limit equation.

The analytical results for the most recent soil samples collected from the former sump area (March 29, 2001) were compared to the generic soil performance standards and higher of the two site-specific soil performance standards. As mentioned above, the soil sample collected from 28 feet bgs was the only soil sample from the Geoprobe boring installed on the east side of the former sump source area that contained detectable levels of TCE. The reported TCE concentration of 30 ug/kg for this sample is below the generic soil performance standard of 60 ug/kg and the site-specific value of 48 ug/kg. The following pertains to the soil samples collected from the Geoprobe boring installed near the former location of the sump (SB-SumpE):

- The generic and site-specific soil performance standards for TCE were exceeded in the soil samples collected at 16 feet bgs, 20 feet bgs and 28 feet bgs.
- The site-specific soil performance of 48 ug/kg for PCE was exceeded in the soil samples collected at 16 feet bgs, 20 feet bgs and 28 feet bgs. The generic soil performance standard of 60 ug/kg was also exceeded in the soil samples collected at 20 feet bgs and 28 feet bgs.
- The generic soil performance standard of 400 ug/kg for DCE was exceeded in the soil samples collected from 16 feet bgs, 20 feet bgs, 24 feet bgs and 28 feet bgs. The site-specific soil performance standard of 675 ug/kg for DCE was also exceeded in the soil samples collected at 24 feet bgs and 28 feet bgs.

The soil sample analytical results from the most recent round of soil sampling indicate the volume of impacted soil in the former sump area has decreased as the soil samples collected from the east side of the area either have no VOC detections or have TCE concentrations below the generic and site-specific soil performance standards. The mass of VOC impacts remaining in the former sump area is estimated to be approximately 324.5 pounds. The mass of VOC impacts remaining was calculated using an estimated volume of 18,900 cubic feet for the impacted soil and average total VOCs concentrations calculated from the analytical results for the soil samples collected from the Geoprobe boring installed near the former location of the sump. The calculations used to estimate the mass of VOC impacts remaining in the former sump area are provided in Appendix F.

CSES and SES Areas

Soil samples collected from Geoprobe borings installed in the SES and CSES in March 2001 confirm the remediation in these two source areas is complete as none of the contaminants have concern (PCE, TCE and TCA) were detected in the soil samples submitted for VOCs analysis from these areas. Copies of the laboratory analytical results for the soil samples collected from the SES and CSES are provided in Appendix B. The only VOC detected in the soil samples collected from the SES and CSES was methylene chloride, which is flagged as a probable laboratory contaminant as it was also detected in the methanol blank submitted with the samples.

Soil Vapor Sampling

Soil vapor air samples were collected March 11, April 1, May 3, June 1, July 2, August 3, September 2, October 1, November 1 and December 1, 1999, and January 3, February 1, March 1, April 3, May 3, August 11, September 25, October 20 and November 1, 2000. A summary of the VOCs detected and removed since the inception of SVE in June 1994 is provided in the attached Table 1, and analytical results are provided in Appendix C.

As previously noted, the VOC removal rates had decreased to nearly undetectable prior to initiation of the HSVE system in August 1998, at which time an increase in VOC removal rates occurred (Figure 4). Average VOC removal rates for the SVE/HSVE system have declined since the initiation of HSVE and indicate the system may have reached its practical limits in remediating the soil impacts.

Contaminants Removed

Approximate contaminant removal rates were calculated based on concentrations in the soil vapor and the rate of soil vapor extraction. During this reporting period, VOC removal rates ranged from 0.0011 pounds/hour (0.026 pounds/day or 9.6 pounds/year) to 0.020 pounds/hour (0.49 pounds/day or 178 pounds/year). Since HSVE was initiated in August 1998, the average total VOCs removal rate has declined from 0.33 pounds/day in 1998 to 0.082 pounds/day in 2000 (Figure 4).

GROUNDWATER

The GWE system removes impacted groundwater from two areas; the groundwater in the CSES is remediated by seven dual SVE/GWE wells; and the groundwater in the southeast corner of Plant 2 is remediated by the four SES dual SVE/GWE wells, two of which remain inoperable for groundwater extraction. In addition, the groundwater in the former sump area continues to be remediated by downgradient wells EX-7 and EX-1, extraction wells installed prior to and operated separately from the SVE/GWE system. Groundwater downgradient of the CSES source area is controlled by the previously installed EX-2R, EX-3, EX-4, EX-5, and EX-6. A summary of the total mass of VOCs removed from the liquid phase by the two dual SVE/GWE systems (not including the downgradient extraction wells previously installed) is provided in Table3.

The groundwater extraction system operated throughout the year. Repairs made to the GWE system during this reporting period are noted below:

GeoTrans, Inc.

- The discharge line for EX-7 was found to be leaking. Pumping from EX-7 was stopped and the discharge line was repaired on September 28, 2000.
- On March 29, 2001, it was discovered that the submersible pump in EX-7 stopped pumping. The pump in EX-7 was replaced with a new submersible pump on April 18, 2001. As a result of the stoppage in pumping from EX-7, VOC impacts in monitor well D-15 increased between the September 2000 and April 2001 sampling rounds.

The source area has been decreasing in concentration due to the remedial efforts, and so has the groundwater VOC removal rate. The mass of VOCs removed during each reporting period are provided on Table 4 and show a decreasing trend in VOC removal rates.

Groundwater Sampling

Groundwater samples were collected in March 1999, September 1999, April 2000, September 2000 and April 2001. The September 1999 through April 2001 groundwater sampling rounds were conducted in accordance with revisions made to the groundwater monitoring plan in the February 1998 through February 1999 Progress Report. Groundwater analytical data from the site monitor wells are presented in Appendix D and summarized in Tables 3 and 4. Total VOC concentrations for each sampling round are also listed next to each monitor well on Figure 1. As can be seen on Table 3, the rate of VOC concentration reductions in impacted wells has significantly reduced since system initiation, due to source removal.

Time versus concentration plots were prepared and graphed for contaminant concentrations in the most highly impacted wells near Plant 1 and Plant 2 and are included as Figures 5 through 11. Charts showing VOC removal rates and the cumulative mass of VOCs removed from the SES and CSES groundwater extraction areas are provided as Figures 12 and 13 respectively. The concentration of impacts at these locations has decreased fairly regularly with time, indicating a reduction in the source of impacts due to the remedial action.

The following summarizes the trends in water quality at site monitoring points.

Plant 1: Seven monitor wells, five extraction wells, the seven CSES extraction points. Contaminants of concern are TCA, and TCE.

PCE is generally absent at Plant 1. However, it was detected above its Chapter NR140 preventive action limit (PAL) of 0.5 ug/L in the groundwater samples collected from monitor well D-25R during the March 1999 through September 2000 sampling rounds, the groundwater sample collected from monitor well TW-4 during the April 2001 sampling round and the groundwater sample collected from the CSES in March 1999. PCE was not detected in any other Plant 1 well sampled during this reporting period.

- TCA: As of the April 2001 sampling event, only TW-4 exceeded the NR 140 Enforcement Standard (ES) of 200 ug/L for TCA. The remaining wells sampled during this reporting period were below groundwater quality standards for TCA.
- TCE: TCE concentrations exceeded the ES in one or more of the groundwater samples collected from monitor wells MW-1026, MW-1027, TW-4 and D-25R, extraction wells EX-2R and EX-3, and the CSES during this reporting period. MW-1026 was only sampled during the March 1999 sampling round as it was removed from the monitoring plan in the February 1998 through February 1999 Progress Report. TCE concentrations in MW-1027 increased from 210 ug/L in the December 1998 sampling round to 540 ug/L in the September 1999, but decreased to 150 ug/l in the April 2001 sampling round. TCE concentrations in TW-4 remained fairly stable between 110 and 280 ug/L and have been at or below 600 ppb for four years, down from 1,500 ug/L before system installation. At monitor well D-25R, TCE concentrations

exceeded the ES for TCE of 5.0 ug/L during the March 1999 and September 1999 sampling rounds, but have declined to levels below the ES since.

TCE concentrations in extraction wells EX-2R and EX-3 and the CSES are still above the ES and in the same range of TCE concentrations reported during the previous reporting period.

- Plant 2: Nine monitor wells, two extraction wells, and the two operable SES extraction points. Contaminants of concern are PCE, TCE, and TCA.
 - TCA: No TCA was detected in any of the groundwater samples collected from monitor wells D-18, MW-2004 and MW-2005 during this reporting period. TCA concentrations in the two extraction wells (EX-1 and EX-7), the SES, and the other Plant 2 monitor wells sampled during this reporting period (D-15, TW-1, TW-3) were either non-detectable or below Chapter NR140 groundwater quality standards.
 - TCE: The Chapter NR140 ES for TCE of 5.0 ug/L was exceeded in all of the groundwater samples collected from the two extraction wells during this reporting period and in the groundwater sampled collected from the SES during the March 1999 and September 1999 sampling rounds. TCE concentrations also exceeded the ES at monitor wells D-18 during the March 1999 and April 2000 sampling rounds, MW-2005 during the April 2001 sampling round, D-15 during all five sampling rounds, TW-1 during the September 2000 sampling round, and TW-3 during the April 2001 sampling round. No TCE was detected in the groundwater samples collected from MW-2004 during this reporting period.

> PCE: Concentrations exceeded the ES of 5.0 ug/L at monitor wells MW-2005 during the March 1999, September 1999 and April 2001 sampling rounds and D-15 during all of the sampling rounds. The ES for PCE was also exceeded at extraction well EX-7 during all of the sampling rounds. No PCE was detected in the groundwater samples collected from MW-2004 during this reporting period.

Flow Rate

Table 5 presents groundwater extraction information, including revised and updated flow rate information. The flow rate from the CSES has generally remained at or above initial flow rates, while the flow rate from the SES has declined from rates above 5 gallons/minute to less than 2 gallons/minute since June 1999. Silt has accumulated in many of the dual SVE/GWE wells of the SES causing the pumping rate to decline.

Contaminants Removed

Table 5 indicates the total TCE, TCA, and PCE removed from the CSES and SES through the end of the reporting period. Approximately 47.6 pounds of TCE, 89.7 pounds of TCA, and 1.5 pounds of PCE have been removed from June 1994 through April 19, 2001, for a total of 140.3 pounds of VOCs. Most of the VOCs were removed from the Plant 1 CSES location (see Figure 13).

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

Groundwater

Significant reductions in VOC impacts at site monitor wells have been observed since the remediation began, and VOC removal from the groundwater at the source areas continues to provide control and reduction of the contaminant plume. Based on these reductions, revisions to the ongoing groundwater monitoring program are recommended. The changes proposed in the last progress report were implemented in the September 1999 sampling round. The changes proposed herein will be implemented in 2002.

<u>Soil</u>

Analytical results for soil samples collected from the CSES and SES areas in March 2001 indicate impacts in these areas have been successfully remediated. The analytical data from the most recent round of soil sampling conducted in the former sump source area (March 29, 2001) indicate the soils in the eastern portion of the area have been successfully remediated, but soil impacts above generic and site-specific performance standards remain in the vicinity of the former location of the sump.

Based on the soil vapor samples collected from the SVE/HSVE system, the VOC removal rate has declined to levels below the removal rate just prior to the start of HSVE in the former sump area. Soil vapor analytical data indicate the SVE/HSVE has reached its practical limits in remediating the soil impacts. SVE cycling will be used to address the soil impacts that remain in the vicinity of the former location of the sump. SVE cycling will consist of operating the SVE system in the former sump area for several days followed by a period when the SVE system is turned off. The duration of the on and off cycles will be varied to determine the most effective operating cycle that will improve VOC removal rates.

<u>Recommendations</u>

SVE/HSVE System

The SVE/HSVE system will be turned off pending approval of this action by the WDNR. Soil samples collected from SES and CSES confirm that no TCE, TCA or PCE impacts remain in the soil above the water table in these areas. Soil samples collected from the former sump area during this reporting period indicate the soil above the water table in the eastern portion of the former sump area is remediated. Soil vapor sampling results from 2000 indicate VOC removal rates are diminishing and that it is no longer cost-effective to continue operating the HSVE. It is recommended that the HSVE system at the former sump source area be turned off. Cycling of the SVE system will be used to remediate the soil impacts that remain in the vicinity of the former sump. The duration of the on and off cylces will be varied during the next reporting period to determine the most effective operating cycle for the SVE system in the former sump area.

Semi-annual soil samples will be collected from one Geoprobe boring installed in the area around the former location of the sump to document the progress of SVE cycling in reducing the degree of soil impacts. Soil samples collected from 16, 20, 24, 26 and 28 feet bgs will be submitted for laboratory analysis of VOCs to document that SVE cycling is reducing TCE, PCE and DCE impacts in the soil above the water table.

Semi-annual soil samples will be collected from the SES and CSES areas during the next reporting period to confirm the results of the March 21, 2001 sampling event. Soil samples will be collected at two locations in the CSES and SES during each sampling round using the Geoprobe direct-push sampling system. Portions of the soil samples collected from the Geoprobe borings will be screened in the field for the presence of ionizable VOCs using a PID equipped with an 11.7 eV lamp. The PID screening results will be used to select the sample interval from each probehole that will be submitted for laboratory analysis of VOCs.

Groundwater Extraction System

It is recommended that pumping from the SES be stopped at this time as TCE and PCE concentrations in the groundwater pumped from the SES over the past year have been below their respective ESs and the volume of groundwater pumped from this area is small compared to the volume of groundwater extracted from the other areas. Pumping from the other source areas and from extraction wells EX-1, EX-7, EX-2R and EX-3 will continue at their current rates. Groundwater samples will continue to be collected from the SES semi-annually. If the analytical results from the groundwater samples collected from the SES indicate TCE or PCE concentrations in the groundwater are above applicable ESs, pumping from the SES may be continued.

Additional Surface Water and Air Sampling

The proposed additional surface water and air sampling proposed in Attachment E of the February 1998 through February 1999 Progress Report will be completed in 2002. Surface water samples will be collected from the detention pond located south of the Sta-Rite property and air samples will be collected from the storm sewer to which the treated groundwater from the site groundwater extraction system is discharged. The air samples will be collected from the storm sewer grate designated SS-1 (Figure 1). The surface water and air sampling will be conducted in accordance with the Surface Water and Air Sampling Plan included as Attachment E in the February 1998 through February 1999 Progress Report. A copy of the Surface Water and Air Sampling Plan is provided in Appendix G.

Ongoing Groundwater Monitoring

Proposed revisions to the current groundwater monitoring program for the site are presented below:

• Annual sampling for the complete VOC list will be limited to those wells that have had recent reported concentrations of VOCs besides TCE, TCA and PCE at or near water quality

GeoTrans, Inc.

> standards; monitor well TW-4 is the only sampling point that falls into this category. Groundwater samples from the remaining wells on the monitoring plan will be analyzed only for TCE, TCA and PCE.

- The sampling frequency for monitor wells MW-2005, D-18 and TW-4 will be decreased to annual sampling. Monitor well MW-2005 is located near the SES source area and contaminant concentrations in MW-2005 have been similar to those in the groundwater samples collected from the SES. As stated above, groundwater samples will continue to be sampled from the SES semi-annually to document groundwater quality in this area. D-18 is located downgradient of monitor well TW-3, which is on a semi-annual sampling schedule. TW-3 will serve as sentinel well for D-18. If the analytical data from TW-3 indicate an increasing trend in VOC concentrations, the sampling frequency for D-18 may increased. TW-4 is located within the contaminant plume, near the area of highest VOC impacts at Plant 1, and has shown fairly stable VOC concentrations over the past two years. Annual sampling of TW-4 will be sufficient to monitor changes in the degree of VOC impacts within the plume at Plant 1.
- The sampling frequency for extraction wells EX-2R and EX-3 will be decreased to annual sampling. The extraction wells are located downgradient of the area of VOC impacts at Plant 1 and VOC concentrations in the wells haven't changed significantly over the past three semi-annual sampling events.
- Monitor well TW-1 will be added to the annual sampling list for Plant 2 as total VOC concentrations increased in TW-1 between the 1999 and 2000 sampling rounds.

The revised monitoring program is presented on Table 6.

FIGURES

- Figure 1. Site Layout and total VOC concentrations for Site Groundwater Monitoring Points
- Figure 2. Sta-Rite Delavan SVE/HSVE System Cumulative Mass Removed Chart 1
- Figure 3. Sta-Rite Delavan SVE/HSVE System Cumulative Mass Removed Chart 2
- Figure 4. Average Total VOCs Removal Rates, Sta-Rite Delavan SVE/HSVE System
- Figure 5. Plant 1 Trichloroethene (TCE) Concentration Changes
- Figure 6. Plant 1 1,1,1-Trichloroethane (TCA) Concentration Changes
- Figure 7. Plant 1 Total VOC Concentration Changes
- Figure 8. Plant 2 Trichloroethene (TCE) Concentration Changes
- Figure 9. Plant 2 1,1,1-Trichloroethane (TCA) Concentration Changes
- Figure 10. Plant 2 Tetrachloroethene (PCE) Concentration Changes
- Figure 11. Plant 2 Total VOC Concentration Changes
- Figure 12. Groundwater VOC Removal Rates
- Figure 13. Cumulative Mass of VOCs Removed from Groundwater

TABLES

- Table 1.SVE System Monitoring Data
- Table 2.
 Summary of Soil Sample Analytical Results, Sump Area Investigation
- Table 3.
 Summary of Groundwater Monitoring Analytical Results
- Table 4.
 Site-Specific and Generic Soil Performance Standards for Former Sump Source Area
- Table 5. Groundwater Discharge Summary, CSES and SES
- Table 6.Proposed Groundwater Monitoring Program

<u>APPENDICES</u>

- Appendix A. Dual Soil Vapor/Groundwater Extraction System Daily Operation Logs
- Appendix B. Soil Sample Analytical Results
- Appendix C. Soil Vapor Extraction System Analytical Results
- Appendix D. Groundwater Monitoring Analytical Results.
- Appendix E. Soil Boring Logs and Borehole Abandonment Forms
- Appendix F. Calculations
- Appendix G. Surface Water and Air Sampling Plan

FIGURES

Figure 2. Sta-Rite Delavan SVE/HSVE System Cumulative Mass Removed Chart 1

Date

Figure 3. Sta-Rite Delavan SVE/HSVE System Cumulative Mass Removed Chart 2

Figure 4. Average Total VOCs Removal Rates, Sta-Rite Delavan SVE/HSVE System

Figure 6. Plant 1 1,1,1-Trichloroethane (TCA) Concentration Changes ES = 200 ug/L, PAL = 40 ug/L

Figure 10. Plant 2 Tetrachloroethene (PCE) Concentration Changes

Figure 11. Plant 2 Total VOC Concentration Changes

Figure 13. Cumulative Mass of VOCs Removed from Groundwater
TABLES

GeoTrans, Inc.

Table 1. SVE System Monitoring Data.

ι

Page 1 of 3

		SVE MONITO	RING N	(EASU	REMENTS			ľ	BORATOR	IY RESUL	TS.		Ċ	LCULATED) REMOVAI	l rate	<u> </u>	ALCULATED	d mass re es	MOVED BI	ETWEEN	
	Hours of	SAMPL	C DATA	F	ā	F				R			TCE	TCA	PCE	Hexane	Total	TCE	TCA	PCE	lexane	Total
	SVE	Sample	Flow	Tine	Exhaust	Sampling						Total					vocs				-	vocs
Date	Operation	:	Rate		Pressure 1	Temp - Air	TCE	TCA	PCE B	enzene R	est as	<oc></oc>		-					i	į	į	í
	•		(Lmin)	(min)	("H2O)	(deg F)				Ĩ	exane (C	alculated)	(lb/hr)	(ip/hr)	(Ib/hr)	(Infil)	(Julia)	(q)	(<u>q</u>)	(<u>a</u>)	(g)	Î
06/16/94	1.5	1130-8-5	1.7	ŝ	12	165	Ŋ	g	Ŷ	Q	Q	0	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.00	0.000	0.000	0.00
06/16/94	0.25	1145-2-5	1.7	'n	12	165	0.18	0.052	0.068	<0.001	0.0073	0.3073	0.0448	0.0129	0.0169	0.0018	0.0765	0.011	0.003	0.004	0.000	0.02
06/16/94	0.25	1150-2-15	0.22	15	12	<u>8</u>	0.065	0.024	0.021	<0.001	0.0046	0.11	0.0414	0.0153	0.0134	0.0000	0.0700	0.010	0.004	0.003	0.000	0.02
06/16/94	2	200-023-5	1.7	ŝ	15	<u>8</u>	0.089	0.018	0.027	<0.001 (0,0057	0.1397	0.0208	0.0042	0.0063	0.0013	0.0326	0.042	0.008	0.013	0.003	0.07
06/16/94	2.3	420-001-5	1.7	Ś	13	145	2.6	42	<0.0056	<u>60.00</u>	1.7	46.3	0.6252	10.0996	0.0000	0.4068	11.1336	1.438	23.229	0.000	0.940	25.61
06/16/94	0.6	440-123-10	1.7	9	14	ŝ	1.3	17	0.029	<0.001	0.1	18.429	0.1521	1.9885	0.0034	0.0117	2.1557	0.091	1.193	0.002	0.007	1.29
06/16/94	0.3	450-123-5	1.7	ŝ	4	<u>8</u>	0.78	9	0.015	<0.001	0.05	10.845	0.1825	2.3394	0.0035	0.0117	2.5371	0.055	0.702	0.001	0.004	0.76
06/17/94	15	740-123-5	1.7	ŝ	14	130	0.69	7.1	0.011	<0.001	0.11	7.911	0.1614	1.6610	0.0026	0.0257	1.8507	2.421	24.915	0.039	0.386	27.76
06/18/94	24	740-123-5	1.7	ŝ	4	<u>6</u>	0.7	5.6	0.01	<u>60.00</u>	0.12	6.43	0.1638	1.3101	0.0023	0.0281	1.5042	3.930	31.442	0.056	0.674	36.10
07/14/94	630	115-123-5	1.7	ŝ	4	Ê	0.23	-	<0.0068	AN	0.028	1.258	0.0054	0.0234	0.0000	0.0007	0.0294	3.387	14.726	0.00	0.412	18.53
-08/23/94	957	945-123-5	1.7	ŝ	4	ŝ	0.16	0.66	0.0062	٩	0.05	0.8752	0.0374	0.1544	0.0015	0.0117	0.2050	35.802	147.685	1.387	11.188	96.06
09/14/94	ğ	***estimated	1.7	ŝ	11.5	<u>165</u>	0.1	9.0	<0.0068	¥ N	0.014	0.624	0.0274	0.1247	0.0000	0.0035	0.1556	13.822	62.827	000	1./59	78.41
09/28/94	339	109-123-5	1.7	ŝ	₽	180	<0.0067	×0.0056	<0.0058	¥ NA	0.0051	0	0.000	0000	0.0000	0.0000	0.000	0.000	0,000	0.000	0.000	8.6
11/15/94	1150	1030-123-5	1.7	ŝ	80	115	0.32	0.85	0.33	₹	0.0048	1.5	0.0740	0.1966	0.0763	0000	0.3469	19.354	1409	19.959	0.000	90.72
12/19/94	815	850-123	1.7	ŝ	æ	1 30	0.27	0.69	0.07	NA ≼(0.0055	1.03	0.0641	0.1638	0.0166	0.000	0.2444	52.191	133.377	13.531	000	199.10
01/06/95	433	1000-123-5	1.7	G	5	<u>6</u>	0.23	0.60	No Data	AA	0.07	0.90	0.0548	0.1431	00000	0.0166	0.2145	23.750	61.956	0.000	7.177	92.88
02/05/95	719	845-123-5	1.7	w	13	5	No Data	•	ò	o	0	8	0.0000	0.0000	0.000	0.0000	0.0000.0	0.000	0.00	0.000	0.000	8.0
03/06/95	669	1130-123-5	1.7	w	14	82	0.14	0.03	¢0.0060	AN	0.07	0.239	0.0301	0.0058	0000	0.0155	0.0514	21.014	4.053	0.000	10.807	35.87
04/11/95	863	1015-123-5	1.7	ŝ	13.6	66	0.11	0.18	<0.0060	٩N	0.06	0.346	0.0241	0.0395	0.0000	0.0123	0.0759	20.834	34.092	0.00	10,606	65.53
05/02/95	503	1255-123-5	1.7	ŝ	13.6	96	0.07	0,10	٩N	ž	0.03	0.196	0.0153	0.0219	0.0000	0.0062	0.0434	7.747	11,115	0.00	3.144	22.01
-06/22/95	1222	1050-123-5	1.7	ŝ	13.6	8	0.013	0.0055	٩	ĭ> NA ⊲	0.0096	0.0185	0.0029	0.0012	0.0000	0.000	0.0041	3.518	1.488	0.000	0.000	5.01
First Year S	Subtotal											1						209.418	604.225	34.995	47.107	895.74
3.000		3 661 0011		4	6 7	0	0.070	0	00000	NA	900	974B	0.0150	0.0266		0.0124	0.0549	7 653	12 756	0.000	5.953	26.36
CRIMAR	1035	220-123-5		o un	13.4	021	20.0	0.011	40.0066	s a	0.07	0.152	0.0161	0.0025	0.0000	0.0164	0.0350	16,685	2.622	0.000	16.924	36.23
~10/30/95	1581	1105-123-5		ы	13.4	120	0.036	0.049	<0.0064	A N	0.0	0.121	0.0083	0.0113	0,0000	0.0083	0.0279	13.108	17.841	0.000	13.108	44.06
~11/03/95	8	1025-123-5	1.7	цо -	13.4	120	0.046	0.072	<0.0060	AN	0.059	0.177	0.0106	0.0166	0:0000	0.0136	0.0408	1.017	1.592	0.000	1.304	3.91
	161	845-123-5	1.7	ŝ	14.7	8	0.046	0.072	<0.0060	¥	0.059	0.177	0.0100	0.0157	0.0000	0.0128	0.0385	7.921	12.399	0,000	10.160	30.48
01/19/96	1056	915-123-5	1.7	ιn	14.5	95	0.046	0.072	<0.0060	ž	0.059	0.177	0.0101	0.0158	0,000	0.0130	0.0389	10.676	16.711	0.000	13.694	41.08
02/14/96	625	1030-123-5	1.7	۰۰	14.5	3 2	0.039	0.059	<0.0065	¥	0.069	0.167	0.0086	0.0130	0.0000	0.0152	0.0367	5.357	8.105	0.000	9.47B	22.94
03/28/96	1030	830-123-5	-		12.6	3	0.022	0.7	<0.0190	¥ :	360.0	2.0	0.0054	1271.0	00000	211000	0.0039	060.0	240.//I		5 795	00.00
04/30/96	792	640-123-5 540-123-5	- 7		13.2	201	0.042	850'0	 <0.0068 <0.0068 	¥ X	20.02	01.10	6500 0	0.0198	2000.0	0.0013	0,000	070./	3 611		0.251	5.05
	761	3 22 4 20 4 20 4		о ч				e /0'0			0.041	0.1176	0.0110	0.0088	0,000	0.0106	0.0303	9 764	7 394	0000	8.916 8	25.57
96/71/90	440	100-123-0		n	2	6	07400	500	000010	ş	50	2	2012	2000	333	2010.0		107.6	EST DTC	0000	95 709	461.13
Second 16																	ſ			2000	22	
07/22/96	8 2 6	1030-123-5	0	120	12.7	135	0.035	0.083	se00.0>	¥	0.0504	0.1684	0.0059	0.0139	0.0000	0.0084	0.0282	5.621	13.329	0.00	8.094	27.04
08/27/96	867	13-12-45	0.1	45	12.7	135	0.040	0.022	0.028	NA	<0.005	0.0896	0.0179	0.0098	0.0124	0.000	0.0401	15.503	8.526	10.774	0.000	34.80
08/24/96	648	12-40	0.1	4	13	127	0.015	0.015	<0.0062	V AN	0.0048	0.03	0.0074	0.0074	0.0000	0.000	0.0149	4.819	4.819	0.00	0.000	9.64
10/24/96	717	1045-23-1h	.01	80	12.6	122	0.018	0.008	<0.0098	¥ ¥N	:0.0052	0.0259	0.0059	0.0026	0.0000	00000	0.0085	4.233	1.858	0.000	0.000	6.09
11/04/96	266	1245-12-1hi	r 0.1	8	13	112	0.013	0.043	<0.011	ž	0.025	0.081	0.0042	0.0138	0.000	0.0081	0.0261	1.114	3.584	0.000	2,142	6.94
12/17/96	1028	900-13-60	0.1	8	13.5	8	0.022	0.029	<0.0057	A A	0.0050	0.051	0.0063	0600.0	0.000	00000	0.0158	6.995	9.221	0.00	0.000	16.22
12/11/20	1346	1055-12-60		8	12	120	0.022	0.042	<0.0063	¥	0:030	0.094	0.0072	0.0137	00000	0.0098	0.0308	9.693	18,506	0.00	13.218	41.42
Subtotal F	ebruary 19	96 Through F	ebruary	1997 (1	note overts	ap with sec	cond year	subtotal	3/96 throu	igh 6/96)								1.843	267.050	10.7/4	48.544	17.965

•

Data.
Monitoring
SVE System
÷
able

e
2
2
ge
E B

		SVE MONITO	RING M	EASU	REMENTS			5	BORATO	גע RESUL	JS		CAL	CULATED	REMOVAL	RATE	<u></u>	ALCULATED AMPLE DATI	- MASS RE	MOVED B	ETWEEN	
i				F	2	;				(hu			UVF	4.77	L L	avana		TCF	TCA	PCF PCF	lexane	Total
		SAMPLE	DATA	F Internet	P1 P1	1 i						Total	3	5				1	5	\$		NOC.
Date	Operation		Rate		Pressure T	emp - Air	TCE	TCA	PCE	tenzene Ri	est as	vocs					}					
	•		(I_/min)	(min)	(° H2O)	(deg F)				Í	exane (Ce	alculated)	(lb/hr)	(lb/hr)	(lh/h) (lb/hr) (p/µr)	(q)	(e)	Ð	(q)	Ð
03/26/97	1031	1005-13-60	0.1	8	3.8	103	0.012	0.029	<0.0068	y> AN	0.0051	0.041	0.0039	0.0094	0.0000	0.0000	0.0133	4.010	9.691	0.00	0.000	13.70
04/18/97	551	835-23-30	0.1	8	12.7	128	<0.0052	0.010	<0.0061	₹ V	0.0051	0.0095	0,0000	0.0063	0,0000	0.0000	0.0063	0.000	3.465	0.000	0.000	3.47
06/10/97	1274	1047-13-60	0.1	8	4	112	0.009	0.013	<0.0073	ע א	0.0054	0.022	0.0029	0.0042	0.0000	00000	0.0071	3.684	5.321	000	0,000	9.01
07/24/97	1065	1245-12-60	0.1	8	13.2	135	0.010	0.044	<0.0069	ĀN	0.048	0.1019	0.0033	0.0147	0.0000	0.0160	0.0341	3.533	15.547	0.000	16.925	36.01
09/23/97	1462	1030-13-60	0.1	99	13.4	123	0.027	0.027	<0.0072	y> ∧A	0.0051	0.054	0.0069	0.0089	0.0000	00000	7.10.C	12.943	12.943	0.000	0,000	25.89
10/21/97	675	130-12-60	0.1	80	13.5	120	0.007	0.029	<0.0069	y> v N	0.0052	0.0362	0.0023	0.0095	0.0000	0.0000	0.0118	1.585	6.385	0.00	0.000	7.97
11/20/97	715	840-13-60	0.1	8	13.8	102	0.016	0.010	<0.0066	J> AN	0.0046	0.026	0.0051	0.0032	0,0000	0,0000	0.0082	3.613	2.258	0.000	0.000	5.87
11/20/97	1.25	1015-1-60	0.1	80	13.8	102	0.014	0.023	0.0066	¥ AN	0.0048	0.0436	0.0044	0.0073	0.0021	00000	0.0138	0.006	0.009	0.003	0.000	0.02
11/20/97	1.5	1145-2-60	0.1	8	13.8	102	0.005	<0.0053	<0.0066)> AN	0.0048	0.0053	0.0017	0.0000	0.0000	00000	0.0017	0.003	0.000	0.000	0.000	8
11/20/97	2	0115-3-60	0	3	13.8	102	0.024	<0.0048	<0.0066	AN A	0.0048	0.024	0.0076	0.0000	0.0000	0.0000	0.0076	0.015	0.000	0,000	0.000	0.02
12/16/97	622	1045-23-60	0.1	8	12.9	129	0.016	<0.0056	<0.0069)> AN	0.0051	0.016	0.0053	0.0000	0.0000	0.0000	0.0053	3.299	0.000	0.000	0.000	3.30
01/27/98	1007	1000-12-60	0.1	09	12.8	132	0.009	0.027	<0.0072)> AN	0.0052	0.036	0:0030	0600.0	0.0000	0.0000	0.0120	3.023	9.070	0.000	0.000	12.09
02/25/96	969	1005-13-60	0.1	3	12.7	128	0.010	0.020	<0.0068	¥ AN	0.0051	0.0298	0.0032	0.0066	0.0000	0.0000	0.0099	2.260	4.612	0.000	0.000	6.87
Subtotal Fe	bruary 199	7 through Feb	fuary 1	866														37.974	69.302	0.003	16.925	24.ZU
	67.5	10.00 00 161	č	¢9	ç	117	6100	20,0066	00000	NA <	1,0050	0.013	0 0042	0,0000	0000	0000 0	0.0042	2.7137	0.0000	0.0000	0.0000	2.7137
		10122-23-111 1010101	52	8 8		; ;	2000	0.072	<0.0010>		0.0052	0.0284	0.0021	0.0071	0,000	0.000	0.0091	1.4339	4.9291	0.0000	0.0000	6.3630
0500080	840	60150	5 5	39	13	1.5	0.008	0.007	<0.0064	₹ Z	0.0049	0.0158	0.0028	0.0025	0.000	0.000	0.0053	2.3560	2.0755	0,0000	0.0000	4.4315
06/17/98	672	sve-thr	5	8	11.8	172	<0.0057	<0.0055	<0.0072	}> AN	0,0054	0	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000
07/15/98	672	60-123	0	8	12.8	155	<0.0052	<0.0053	<0.024	¥ AN	0.0048	0	0.000	0.0000	0.0000	0,0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000.0
08/24/98	19 6	60-123	0.1	8	13.5	117	<0.0045	0.008	<0.0058	٨A	0.011	0.0187	0.000	0.0025	0.0000	0.0036	0.0061	0.0000	2.3987	0.0000	3.4266	5.8253
09/22/98	969	sves-13-60	0.1	3	13.3	118	0.007	0.007	¢0.006	AA	0.031	0.0441	0.0021	0.0021	0.0000	0.0101	0.0143	1.4713	1.4939	0,000	7.0167	9.9819
10/26/98	816	1245-60-23	0.1	8	11.6	160	<u>\$0.005</u>	<0.0053	<0.0067	٩N	0.060	90.06	0000	0.0000	0000	0.0210	0.0210	0.000	0.0000	0.0000	17.1499 1	7.1499
11/18/98	552	125-60-123	0.1	8	13.7	109	<0.0048	0:008	×0.006	AN	0.035	0.0417	0.000	0.0020	0.0000	0.0113	0.0133	0.0000	1.1299	0.0000	6.2322	1296.7
01/11/99	1296	13-60	5	8	12.5	138	0.009	0.022	40.0064	¥	0.067	0.0982	0.0031	0.0074	00000	0.0226	0.0331	4.0195 0.6339	9.0119 1 6158		6 62/2.67	3.9899
01/26/99	99	13-60	56	88	12.2	122	60000 1900 02	0.013	<0.0004		410.0	1260.0	00000	00000	0.0000	0.0032	0.0032	0.0000	0.0000	0.0000	1.5527	1.5527
UZ/15/99	40U	SVEDULTUU-23		20 60 6	0.71	20		2000.02		Ē			200					12.628	23.255	0.000	66.391	102.27
03/11/99	576	11.20-60-13	5	8	14.3	85	\$0.05	1 0.015	<0.0068	A	0.0072	0.0222	0.0000	0.0046	0.0000	0.0022	0.0068	0.0000	2.6429	0.0000	1.2686	3.9116
04/01/99	5	60-2:40	0,1	\$	12.4	148	<0.0048	3 <0.0053	<0.0058	ž	0.0072	0.0072	0,0000	0.000	0.0000	0.0025	0.0025	0.0000	0.000	0.0000	1.2441	1.2441
05/03/99	768	60-9:20	0.1	8	13	128	£0.005(5 0.01	<0.0073	Ň	0.0052	0.01	0.000	0.0033	0.000	0,000	0.0033	0.000	2.5427	0.0000	0.0000	2.5427
06/01/99	672	10:30-60-123	0.1	8	12.3	169	<0.005	5 0.016	40.007	, AN	<0.005	0.016	0.000	0.0057	0.0000	00000	0.0057	0.0000	3.8145	0.000	0.000	0.6140
07/02/99	744	SVES 7299	1.0	8	13.2	112	0.005	4 0.011	<0.0067	AN	0.0053	0.0164	0.0017	0.0035	00000	000070	0.0053	1.2933	2-6345	0.000		3.9278 6 0003
66/00/80	768	SVE60-123	0.1	8	13.3	118	-0°05	7 0.028	≤0.0073	AN	0.0054	0.028	0.0000	0.0031	0.0000	0.000	1600.0	0.000	0,000 0		0,000,0	0.0000.0
09/02/99	720	23-60	0	ខ	11.6	155	800.09	1 <0.0057	<0.0074	¥	0.0075	0.0075	0.000	0.0000	0000	0.0026	0.0026	0.0000	0.0000	0.000	L0/8/1	1.8703
10/01/39	969	10:25-13-60	0.1	8	12.7	122	0.007	9 0.048	<0.0074	AN	0.006	0.0619	0.0026	0.0157	0.0000	0.0020	0.0203	1.8031	10.9555	00000	1.3694	14.1281
11/01/99	744	60-13	0.1	8	12.6	132	4	0.007	×0.094	AN	0.0057	0.0127	0000	0.0023	0.000	0.0019	0.0042	0.0000	1./3//	0.0000	1.4149	3.1520
12/01/99	720	60-123	0.1	8	12.6	120	\$0.00 \$	9 <0.0053	<0.0062	M	0.0049	0.0049	0.0000	0000	0,000	0.0016	0.0016	0.0000	0.000	00000	1,1532	2691.1
01/03/00	792	60-13	0.1	3	14.1	95	00 00 00 00 00	7 <0.0053	\$0.00 0	ž	0.0054	0.0054	0.000.0	0,000	0.0000	10000	/100.0	0.000.0	0.000		5255.1	6700 I
02/01/00	969		ā	180	14.2	8	0.0	1 0.012	<0.006	AN	0.0047	0.02771	0.0011	0.0012	0,000	60000	620010	2 884	0.8590 32 181	00000	1055.U	46.06
Subtotal F	ebruary 19	99 through Fe	Druary		4		6		10000	NA V	0000	è	0.0011	0000	0.000	umo o	0 0011	0 7192	00000	00000	0.0000	0.7192
03/01/00	512	1	50	ğ G	0.7L	2 6	25.0		1000105 0		1200 v	0.0315	00019	0.0059	0000	0.0025	0 0103	1.5016	4.6600	0.0000	1.9935	8,1550
04/03/00	76/	43002360340	5	8	12.0	2	600 D	5 U.VIG	NUM:02	Ş	2000	1010010	0,000	2000'D	2000	~		2.22) > > > > > + + + + + + + + + + + + + +			5

Table 1. SVE System Monitoring Data.

e	
đ	
3	
a)	
5	
۵	

		SVE MONITO	RING	MEASUF	REMENTS			LAB	ORATOR (III	(Y RESUL 10)	ST.		CA	-culated	REMOVAL	RATE	00	ALCULATED	MASS RE	MOVED B	ETWEEN	
	Hours of	SAMPL	E DATA		E	F							TCE	TCA	PCE	lexane	Total	TCE	TCA	PCE	lexane	Total
	SVE	Sample	Flow	Time	Exhaust 3	Sampling						Total					vocs					500
Date	Operation	: 0	Rate	<u></u>	Dressure T	emp - Air	TCE	TCA	PCE B	enzene R	est as	VOC.										i
	•		(L/min)	(min)	(° H2O)	(deg F)				Ĩ	exane (Ca	alculated)	(lb/hr)	(Ibhr)	(lb/hr)	(ib/hr)	(Ibthr)	(<u>a</u>)	Ð	9	(q)	
							1 100 0	01000	01.00	4	10064	0110	0,000	0,000		0.0007	0 0013	0.4348	0.0000	0000	0.5153	0.9501
02/03/00	120	-	5	181	12.4	22					1000	2	2000	~~~~								1200 0
08/11/00	2400	•	0	180	12.2	143	0.007	0.011 <	0.0071	٩X	0.031	0.049	0.0008	0.0012	0,000	0.0035	0.0056	1.9050	2.9936	0.0000	B.4365	3.3351
09/25/00	1080	-	0	180	12.3	125	0.0066	0.0071 <	0:0000	AA	0.0055	0.0192	0.0007	0.0008	0.0000	0.0006	0.0021	0.7839	0.8433	0.0000	0.6533	2.2805
10/2000	609	•	C	300	12.2	140	0.015	0.01	0.0073	AA	0.0093	0.0343	0.0010	0.0007	0.0000	0.0006	0.0023	0.6093	0.4062	0.0000	0.3778	1.3932
11/01/00	285				12.1	137	0.016	0.0064 <	0.0069	A	0.0074	0.0298	0.0018	0.0007	0.0000	0.0008	0.0033	0.5174	0.2070	0.0000	0.2393	0.9637
	1		Ċ		ļ					٩N		0	0000	0,000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000.0	0.0000	00000
			č							AN		0	0.0000	0,000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0,0000
			jC			_				٩X		0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
•			č							¥		0	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000
			ē							AN		Ó	0.0000	0.000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Cuthtotel	Eehnien 200	M throad h	- Neind	2004		-												6.471	9.110	0.000	12.216	27.80
TOTAL C		MASS REM	OVED														4	04.637 1,	077.148	45.772	71,798 1	1799.35
														I								

Blower discharge rate is 500 cfm. Notes:

- This colurm indicates how long the SVE unit has been operating since the last sampling event. sample identification by (date)-(time)-(SVE legs on)-(sampling time in minutes). The date is not shown in this colurm, but appears on the lab report.
 - Sampling legs: 001 = Plant #1 CSES, 002 = Plant #2 SES (east leg), 003 = former sump (Plant #2 north leg).
 - Example: 61694-1145-002-5 sampled on 6/16/04 at 11:45, Plant #2 east leg only, sample time 5 minutes.
- Values for this date are estimated as half of the previous sampled values due to air filter plugging. No VOCs were detected at the next sample date due to clogging of the filter.
 - Pressure and/or temperature values for these dates are estimated to be the same as the previous results. 1 1
 - Concentration values for these dates are estimated to be the same as the previous results. The 9/23/97 sample blank had TCE detected at 0.0167 ppm

 - NA = Not Analyzed, ND = Not Detected HSVE (Heated Soil Vapor Extraction) initiated at the 003 leg (former sump) 8/39.

 Table 2.
 Summary of Soil Sample Analytical Results, Sump Area Investigation

 Sta-Rite Industries, Delavan Wisconsin

TOTAL VOCs	210100	807400	56694	24362	358	4576	66900	139	232	652	ļ	18970	103130	2441	4773	1583	15264	345	1821	985	1322	122947	117120	284160	• 	2120	
меғиуіеле сһіогідә	na	13000	390	<55	<54	~ 23	<250	27	<54	73		B D	1200	110	10	<54	÷5	<25	<27	\$53	85	3680	2200	1740	<255 <	6	
aneznediyilæninT-ð,¢,†	na	21000	<270	40	<27	\$ <u>7</u>	<250	<27	<27	<27		g	5500	<54	5 4	<27	738	<25	427	<26	<27	4120	1810	8350	27	<27	
eneznediyhtemirT-4,2,1	Ш	72000	<270	69	<27	427	<250	<27	27	<27		na	16000	<54	<54 54	<27	1300	<25	<27	<26	<27	3900	1050	28200	<27	<27	
n-Propylbenzene	Га	9400		<27	<27	<27	<250	<27	<27	<27		na	3300		<54	<27	<27	<25	<27	5	<27	1300	<500	5100	<27	<27	
enelsdfdga	Ц	6000		<27	<27	<27	<250	<27	<27	<27		na	750		<54	<27	<27	<25	<27	<26	427	867	<500	4340	<27	<27	
ananioilyqoroel-q	na	9000	390	<27	<27	<27	<250	<27	<27	<27	-	na	2800	<54	<54	27	99	<25	<27	<26	<27	3900	3940	3580	<27	<27	_
anscrete	na	5600		<27	<27	<27	<250	<27	<27	<27		na	2200		<54	<27	34	<25	<27	<26	<27	1010	<500	<680	<27	427	_
enezneditylbenzene	La La	8600		<27	<27	<27	<250	<27	<27	<27	:	Ца	2200		~2 <u>5</u> 4	<27	293	<25	<27	<26	<27	1730	1710	3250	<27	<27	
səuəliy	na	144000	1520	601	<27	<37	<250	<27	~38 ~38	<38	<u>.</u>	ВП	2700	<76	<76	<27	55	<25	427	<37	<37	7800	11500	61800	<38	37	; ;
aneuloT		3800		120	<27	<27	<250	<27	<27	<27		Па	<250		<54	<27	<27	<25	<27	<26	<27	 <270	<500	1190	<27	<27	
ənəznədlұd1∃	- Ua	43000	444	142	<27	<27	<250	<27	<27	<27		23	2700	<54	<54	<27	<27	<25	<27	<26	<27	4330	1470	<680	<27	<27	
enantsorol∩sib-Ω,t-sic	Ua		1950	<27	<27	1070	9800	<27	76	443		g	680	433	<54	474	336	106	1180	445	404	1410	<500	4010	<27	2030	
enedteoroldastteT	33100	139000	26000	6990	130	736	20600	95	89	52		8470	59000	1520	4230	431	11900	121	94	265	585	40100	92800	95400	<27	<27	
Frichlorosthene	177000	333000	26000	16400	228	2770	36500	44	67	84		10500	4100	488	543	678	542	118	547	275	248	48800	2840	67200	<27	<27	
Sample date	10/30/97	10/23/98	01/13/99	04/02/99	08/12/99	10/05/99	12/20/99	03/21/00	12/13/00	03/29/01		10/30/97	10/23/98	01/13/99	04/02/99	08/12/99	10/05/99	12/20/99	03/21/00	12/13/00	03/29/01	10/05/99	12/20/99	03/21/00	12/13/00	03/29/01	
Depth (#)	9	2 4	2.0	16	16	16	16	16	16	16		20	50	20	20	20	20	20	20	20	20	24	24	24	24	24	
Samoje []	SR-2008A	SB-2008B	SB-7C	SB-16	SB-2008-16	SB-2008-16	SB-2008-16	SB-SumpE-16	SB-SumpE-16	SB-SumpE-16		SB-2008A	SB-2008B	SB-7C	SB-20	SB-2008-20	SB-2008-20	SB-2008-20	SB-SumpE-20	SB-SumpE-20	SB-SumpE-20	SB-2008-24	SB-2008-24	SB-SumpE-24	SB-SumpE-24	SB-SumpE-24	

HSVE_soil_chem.xls

Page 1 of 3

•

 Table 2.
 Summary of Soil Sample Analytical Results, Sump Area Investigation

 Sta-Rite industries, Delavan Wisconsin

						_	_												_							_			_
\$00V JATOT	0	1398000	23970	131780	81873	1134390	316560	176093	988170	653	33685		700670	1492600	81410	828890		647	57	386	•	0		6879	4698	105	•	62	
Methylene chloride		na	<500	<2,600	<55	<2,690	<120	<500	<2700	<54	<268		<1250	<28000	<270	<2620		<53	~25	183	<53	<53		503	<25	105	<53	62	
ənəznədiyitiəminT-Ə,E, h		na	<250	1820	3270	10200	9650	8630	9130	<27	943		10700	<14000	8860	18900	•	<27	<25	<27	<27	<27		1610	77	<26	<27	<27	
ənəznədiyrijəmirT-A,S,t		Па	790	5030	7520	31100	20900	15500	33700	<27	15000		37000	40700	8540	61800		33	<25	<27	<27	<27		771	214	<26	<27	<27	
eneznediy(qor ^q -n		na	<250		1200	5050	4070	<500	6960	<27	2890		4940	<14000	1190	8910	:	<27	<25	<27	<27	<27		<140	34	< <u>26</u>	<27	<27	
enelediriqsn		na	550		676	4830	3370	993	5430	<27	1390		3870	<14000	1070	9010	i	<27	<25	<27	<27	<27		257	29	<26	<27	<27	
eneulojiyqordosi-q	• ····	na	1800	<1,500	3600	<1,290	4880	4180	4460	<27	2360		4730	<14000	6490	7970		<27	<25	<27	<27	<27		2460	35	<26	<27	<27	
aopropylbenzene		na	<250		927	4400	3490	1620	5760	<27	2410		3850	<14000	1730	8600		<27	<25	<27	<27	\$27		<140 140	30	<26	<27	<27	
enezneditju8-ces			<250		1850	<1,290	3140	3190	4130	<27	1500		3820	<14000	3350	6810		<27	<25	<27	<27	<27		<140	31	<26	<27	427	
sənəiyX		ВП	430	11800	9050	105000	45300	20680	120000	<38	2470		107600	154000	32400	273000	:	140	<25	<27	<37	<37		1010	674	<26	<37	<37	
ənəujoT		na	<250		<27	4510	<580	<500	6300	~27	<129		2760	<14000	<130	6390	!	<27	<25	<27	<27	<27	:	<140	29	<26	<27	<27	ĺ
eneznediyibê		na	<250	5030	3160	41900	18600	2530	58700	<27	4390		25600	74900	14100	82800		<27	<25	<27	<27	<27		<140	156	<26	<27	<27	
enetteoroldoib-S.f-sio		na	<250	<1,500	<27	<1,290	6860	<500	19600	272	332		<1250	<14000	3680	67100		205	<25	32	<27	<27		268	<25	<26	<27	<27	
etrachioroethene	>23,000	1290000	19000	47100	48000	64400	66300	117000	109000	163	<129		53800	123000	<130	00966		205	<25	86	<27	<27		<140	609	<26	<27	<27	
Trichloroethene	>8,200	108000	1400	61000	2620	863000	130000	1770	605000	218	<129		442000	1100000	<130	178000		64	22	85	<27	27		- 140	2780	5 2	27	27	
Sample date	09/10/91	10/30/97	10/23/98	01/13/99	04/02/99	08/12/99	10/05/99	12/20/99	03/21/00	12/13/00	03/29/01		12/20/99	03/21/00	12/13/00	03/29/01		10/05/99	12/20/99	03/21/00	12/13/00	03/29/01		10/05/99	12/20/99	03/21/00	12/13/00	03/29/01	
Depth (ft)	26	26	26	26	26	26	26	26	26	26	26		28	28	28	5 8		16	16	16	16	16		ຊ	20	20	20	30	
Sample ID	SB-2008	SB-2008A	SB-2008B	SB-7C	SB-26	SB-2008-26	SB-2008-26	SB-2008-26	SB-SumpE-26	SB-SumpE-26	SB-SumpE-26	•	SB-2008-28	SB-SumpE-28	SB-SumpE-28	SB-SumpE-28		SB-SumpE-16	SB-SumpE-16	SB-2008-16	SB-2008-16	SB-2008-16		SB-SumpE-20	SB-SumpE-20	SB-2008-20	SB-2008-20	SB-2008-20	

HSVE_soil_chem.xls

Page 2 of 3

Summary of Soit Sample Analytical Results, Sump Area Investigation Sta-Rite Industries, Delavan Wisconsin

Table 2.

<u></u>	<u>.</u>	-	<u>_</u>	0	<u> </u>	- 10	Ξ Ω	2	2	40	0	9	0	00	0
200V JATOT	20371	28	N	-	-	2040	181	5	1 2	~	32801	4	đ	17	9
	932	161	5 <u>5</u> 4	51	. 233	<270	<25	62	99	75	<1,400	121	<54	83	<54
neznedlyftjeminT-2,5,t	3590	<25	57	8	5 8	2490	<25	<27	<27	<27	4170	<25	~27	<27	<27
nəznediyrtəmirT-4,2,†	1910	<25	<27	~ <u>2</u> 6	<26	2600	<25	<27	<27	\$2	4060	<25	<27	<27	<27
anaznadiyqor9-n	393	<25	<27	<26	<26	520	<25	<27	<27	<27	<1,400	<25	<27	<27	<27
อทอโธต์ว่าไตุธก	505	<25	<27	<26	<26	1080	<25	<27	<27	<27	<1,400	<25	<27	<27	<27
p-lsopropyltoluene	3480	<25	<27	<26	<26	1080	<25	<27	<27	<27	250	<25	<27	<27	<27
eneznediyqorqosl	382	<25	<27	<26	<26	520	-55 -52	<27	<27	<27	<1.400	<25	<27	<27	<27
ອນອzuອqi⁄ນຸກg-ວອຣ	505	<25	<27	<26	<26	715	<25	<27	<27	<27	<1.400	<25	-27	<27	<27
Xylenes	5050	<25	<27	36	37	412N	<255	\$27	<37	<37	9300	<25	<27	<38	<38
eneuloT	<280	<25	<27	<26	<26	140	<25	\$	<27	<27	<1 400	<25	<27	<27	<27
Ethylbenzene	819	<25	<27	<26	<26	5340	2 C>	27	<27	<27	1390	~25	<27	<27	<27
enanteorolnaib-2,1-eia	2810	51	<27	<26	<26	1840	133	<27	<27	<27	9840	194	<27	<27	<27
Tetrachloroethene	<280	37	29	29 29	<26	120	2 2	60	86	<27	171000	01	63	95	30
Trichloroethene	<280	32	<27	<26	<26		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-27	<27	128000	31	27	<27	~27
Sample date	10/05/99	12/20/99	03/21/00	12/13/00	03/29/01		10/00/00	03/21/00	12/13/00	03/29/01	10/05/99	12/20/99	03/21/00	12/13/00	03/29/01
Depth (ft)	24	24	54	24	24	9	07 4C	29	26	26	ac BC	2 00	3 8	80	8
Samole ID	SR-SumnE-24	SB-SumpE-24	SB-2008-24	SB-2008-24	SB-2008-24		SB-Sumperzo	SB-2008-26	SB-2008-26	SB-2008-26	CB_CIMOE_28	SB-SumpE-28	SB-2008-28	SB-2008-28	SB-2008-28

Notes:

HSVE was initiated August 23, 1998. Concentrations of VOCs in soil have decreased significantly since that time. HSVE temperature was increased significantly in late August, 1999. Concentrations of VOCs in soil have increased significantly since that time, indicating additional mobilization of soil and/or groundwater impacts.

HSVE_soil_chem.xls

ſ			Semi-Anr	nual Para	meters				Ann	ual Par	ameter	s			
	\A/E-1.4	DATE	°CE	1,1,1-TCA	LCE	Vinyl Chloride	Acetone	Chloroform	1,1-DCA	1,2-DCA	1,1-DCE	CIS-1,2-DCE	Methylene Chloride	1,1,2-TCA	Total VOCs
NR 140	FS	DATE	5.0	200	- 5	0.2	1000	6	850	5	7	70	5	5	
NR 140	PAL	··	0.5	40	0.5	0.02	200	0.6	85	0.5	0.7	7	0.5	0.5	
Plant #1									i						
N	/W-1026	10/29/91	0.6	16000	1300	< 0.3	<1.0	3	920	87	1,200	5.6	5.3	8.2	19541
		10/29/91	1.2	15000	1300	< 0.3	<1.0	2	850	76	1,100	20	4.6	7.1	18 <u>389.</u> 4
Downgra	dient	12/11/91	1.0	22000	1500	<0.3	<1.0	3.7	350	6.1	1,400	40	4.3	10	25315.8
_ • • • • • 3 • • •		11/11/93	<0.5	4500	250	⁻ <0.3	<1.0	<0.5	4.8	<0.5	150	0.5	<1.0	1	4906.3
		08/16/94	<1	1500	210	<5	NA	NA	NA	NA	NA	NA	NA	NA	1710
		12/13/94	<25	865	183	<25	NA	NA	NA	NA	NA	NA	NA	NA	1048
		06/21/95	<0.34	41.9	72	<0.27	<1.0	<0.28	7.8		3	< 0.30	NA	<0.19	124.7
		11/07/05	<0.5	<0.5	52 4	<0.5	NA	NA	NA	NA	NA	NÄ	NA	NA	52.4
		01/05/06	<0.5	AQ 6	30.8	<0.5	NA	NA	NA	NA	NA	NA	NA	NĂ	80.4
		01/20/80	-0.5	74 4	27.1	<0.0		NA	NA	NA	NA	NA	NA	ŇA	101.5
		00/13/90		44	27.1	-0.5 -0.5	<10	<0.5	5.5	<16	0.5	NA	NA	5.6	86.2
		08/13/90	< <u><0.5</u>			-0.5	~1.0	<0.5	2.0	<1.6	11	NA	NA	1.8	52.7
		10/08/96	<0.5	20.1	47.4	-0.0 -0.5	<u> </u>	-0.0		NΔ		NA	NA	NA	44 1
		01/21/97	<0.5	21	17.1	<0.5		NA.			NA	NA	NA		43
		04/01/97	<0.63	- 28	15	<0.40		-0.4P	4 0		<0.72	0.6	<0.87	1	36.4
		07/23/97	<0.63		11	<0.46	<1.0	<u. 10<="" td=""><td>1.0</td><td>~0.20 NIA</td><td>NIA</td><td></td><td>NA</td><td></td><td>33</td></u.>	1.0	~0.20 NIA	NIA		NA		33
		11/18/97	<0.25	20	13	<0.25	NA	NA						NA	25
		03/23/98	<0.63	15	10	<0.46	NA	NA	NA	NA	NA				
		07/27/98	<0.25	8,4	4.5	<0.25	3.7	<0.18	3.7	<0.20	<0.73	0.48	<0.87	1.0	22.50
		09/28/98	<0.63	21	15	<0.46	NA	NA	NA	NA	NA	NA		<u>1.</u>	
		12/08/98	<0.63	24	14	<0.46	NA	NA	NA	<u>NA</u>	NA	NA	NA		
		03/12/99	<0.63	21	13	<0.46	NA	NA'	NA	NA NA	NA	NA	NA	NA.	
(SA)	MW-1027	10/29/91	<0.5	780	1700	<0.3	<1.0	<u>1</u>	1.2	_<0.5	68	22	<1	<0.5	2596.3
		12/12/91	<0.5	500	1200	<0.3	<1.0	0.5	0.6	<0.5	35	11	0.5	<0.5	1/4/.6
		11/11/93	<0.5	1400	3000	<0.3	<1.0	<0.5	3.1	<0.5	100	24	<1.0	<0.5	4527.1
		08/17/94	<1	280	1800	<5	NA	NA	NA	NA	<u>NA</u>	NA	NA NA	NA	2080
		06/21/95	< 0.34	18.6	262	<0.27	<1.0	<0.28	<0.12		<0.18	<0.30	NA.	<0.19	280.6
		11/07/95	<0.5	15.8	299	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	299
		01/26/96	<0.5	12.5	206	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	218.5
		05/13/96	<0.5	29.4	1620	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	1649.4
		08/14/96	<0.5	20	21.5	<0.5	<1.0	<0.5	<0.5	<1.6	<0.5	NA	NA	<0.5	42
		10/08/96	<0.5	17.3	326	<0.5	່ <1.0	<0.5	<0.5	<1.6	1.5	NA	NA	<0.5	344.8
		01/21/97	<0.5	15.7	231	<0.5	NA	NA	NA	NA	NÄ	NA	NA	NA	246.7
		04/01/07	<0.0	82	130	<0.46	NA	NA	NA	NA	NA	NA	NA	NA	138.2
		07/24/07	<0.03	9.2	120	<0.46	30	<0.18	<0.25	<0.20	<0.73	0.26	<0.87	<0.15	130.16
		11/19/07	~0.00	- 12	200	<0.25	- NA	NA	NA	NA	NA	NA	NA	NA	212
		03/22/09	20.20	7 2	160	<0.46	NA	NA	NA	NA	NA	NA	NA	NA	167.3
		03/23/90			200	212	<10	<1.2	<12	<12	<12	<1.2	7.5	<1.2	70.9
		01128/98	<u>- 51.2</u>	3.4 0.6	120	<0 A6		ΝΔ	NA	NA	NA	NA	NA	<0.28	159.6
		109/28/98	<0.03		130	<0.40	<u></u> мла 1. мла	NA NA			NA	NA	NA	NA	222
		12/08/98	+ <1.3 +	12	210	-0.40					NA		NA	NA	439
i i		03/11/99	<3.2	19	420										568
		09/02/99	<3.2	28	540	NA NA	NA .				AVE -			NA	233
		04/25/00	<3.2	13	320	<2.3	NA TT DA	. NA		NA		- INA - 11A			2204
		09/25/00	<3.2	9.4	220	NANA	NA	NA	<u>N</u> A	NA		NA	- INA	. INA	L 223.4

[Semi-An	nual Para	ameters				Anr	ual Pa	rameter	s			
	WELL.	DATE	PCE	1,1,1-TCA	TCE	Vinyl Chloride	Acetone	Chloroform	1.1-DCA	1,2-DCA	1,1-DCE	CIS-1,2-DCE	Methylene Chloride	1,1,2-TCA	Total VOCs
NR 140	ES		5.0	200	5	0.2	1000	6	850	. 5	7	70	5	5	
NR 140	PAL		0.5	40	0.5	0.02	200	0.6	85	0.5	0.7	7	0.5	0.5	
	MW-1027	04/23/01	<1.0	4.8	150	<1.0	NA	NA	NA	NA	NA	NA	NA	NĄ	154.8
(SA)	TW-4	11/05/91	0.5	10000	1100	<0.3	<1.0	4	61	<0.5	440.0	50	2.4	5.6	11663.5
(0.1)		12/12/91	0.6	11000	1200	<0.3	<1.0	3.7	93	3	680.0	52	<1	4.5	13036.8
		11/11/93	0.8	6200	1500	<0.3	<1.0	<0.5	26	<0.5	490	25	<1.0	3.2	8245
		08/17/94	<1	3900	600	<5	NA	NA	NA	NA	NA	NA	NĀ	NA	4500
		12/14/94	<50	4040	630	<50 [°]	NA	NÄ	NA	NA	NA	NA	NA	NA	4670
		03/13/95	ND	3120	600	ND	NA	NA	NA	NA	NA	NA	NA	NA	3720
		06/21/95	NA	4220	990	5.4	<1.0	3.8	113	Ì.	415	93.6	NA	17.6	5858.4
		11/08/95	1.2	3340	920	< 0.5	NA	NA	NA	NA	NA	NA	NA	NA	4261.2
		01/25/96	1.1	3000	891	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	3892.1
		05/14/96	0.9	1820	969	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	2789.9
		08/14/96	< 0.5	2150	179	<0.5	<1.0	<0.5	12	<1.6	36.7	NA	NA	1.8	2379.5
		10/08/96	0.9	1850	541	<0.5	<1.0	1	36.3	<1.6	196	NA	NA	6.3	2631.5
		01/21/97	< 0.5	2650	913	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	3563
		04/01/97	0.8	1400	600	<0.46	NA	NA	ŇA	NA	NA	NA	NA	NA	2000.8
ļ		07/23/97	0.7	950	450	<0.46	3.4	0.7	24	<0.20	66	36	<0.87	4.4	1536.0
		11/18/97	0.8	760	490	<0.25	NA	NA	NA	NA	NA	NA	NA	NA	1250.8
		03/23/98	0.7	780	530	<0.46	NA	NA	NA	NA	NA	NA	ŇA	NA	1310.7
ĺ		07/27/98	<2.5	410	230	<2.5	<20	<2.5	13	<2.5	16	21	15	<2.5	705.0
		09/28/98	<0.63	860	460	<0.46	NA	NA	NA	NA	NA	NA	Í NA	2.8	1322.8
		12/05/98	<6.3	830	400	<4.6	NA	NA	NA	NA	NA	NA	NA	NÄ	1230
		03/11/99	<6.3	480	270	<4.6	NA	NA	NA	NA	NA	NA	NA	NA	750
		09/02/99	<3.2	180	110	<2.3	NA	<0.90	<1.2	<1.0	19	2.0	<4.4	2.4	313.4
		04/25/00	<3.2	450	280	<2.3	NA	NA	NA	NA	NA	NA	NA	NA	730
		09/26/00	<6.3	340	230	<4.6	NA	<1.8	5.2	<2.0	15	10	<8.7	<1.5	600.2
		04/23/01	0.60	290	240	<0.25	NA	NA	NA	NA	NA	NA	NA	NA	530.6
-	D.5	11/04/01	<0.5	7 6	7 8	<0.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	15.4
	0-0	11/04/01	<0.5	8.8	8.3	<0.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	17.1
		12/16/01	<0.5	87	8.4	<0.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3.8	<0.5	21.6
		11/11/93	<0.5	9.7	8.8	<0.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	< 0.5	18.5
		08/17/94	<1	5.5	6.7	<5	NA	NA	NA	NA	NA	NA	NA	NA	12.2
		12/13/94	<0.5	5.4	6	<0.5	NA	NA	NA	NA	NA	NÄ	NA	NA	11.4
		03/13/95	ND	3.3	3.4	ND	NA	NA	NA	NA	NA	NA	NA	NA	6.7
		06/26/95	<0.34	3.6	<0.19	<0.27	< 0.5	<0.28	<0.12		<0.18	<0.30	NA	3.4	9
		11/08/95	<0.5	41.9	15.8	<0.5	NA	NA	ŇA	NA	NA	NA	NA	NA	57.7
		01/25/96	<0.5	4.1	5.2	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	9.3
[05/14/96	<0.5	3.7	4.4	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	8.1
		08/14/96	<0.5	0.9	1	<0.5	<0.5	<0.5	<0.5	<1.6	<0.5	NA	NA	<0.5	1.9
		10/09/96	<0.5	5.4	<0.5	<0.5	<0.5	<0.5	<0.5	<1.6	<0.5	NA	NA	<0.5	5.4
		01/21/97	<0.5	3.6	5.1	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	8.7
		04/01/97	<0.63	3.1	4.4	<0.46	NA	NA	NA	NA	NA	NA	NA	NA	7.5
		07/24/97	<0.63	3.1	3.2	<0.46	<3.0	<0.18	<0.25	<0.20	<0.73	<0.23	<0.87	<0.15	6.3

-			Semi-An	nual Para	meters				Ann	iual Pa	rametei	rs			
NR 140	WELL ES	DATE	Ш Од 5.0	00 1.1.1-TCA	TCE 5	o Vinyl Chloride	0001 Acetone	ക Chloroform	058 1,1-DCA	۵, 1,2-DCA	4 1,1-DCE	6 CIS-1,2-DCE	Methylene Chloride G	دہ 1,1,2-TCA	Total VOCs
NR 140	PAL		0.5	40	0.5	0.02	200	0.6	85	0.5	0.7	7	0.5	0.5	
	D-5	11/18/97	<0.25	3.1	4.4	<0.25	NA	NA	NA	NA	_ NA	NA	NA	NA	7.5
		03/23/98	< 0.63	1.8	3	<0.46	NA	NA	NA	NA	NA	NA	NA	NA	4.8
		07/28/98	<0.25	2.2	2.7	<0.25	<2.0	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	4.9
		09/28/98	<0.63	2.8	3.3	<0.46	NA	NA	NA	NA	NA	NA	NA	<0.28	6.1
		12/08/98	<0.63	2.8	3.6	<0.46	NA	NA	NA	NA	NA	NA	NA	NA	6.4
		03/11/99	<0.63	2.8	3.1	<0.46	NA	NA	NA	NA	NA	NA	' NA	NA	5.9
														↓	
(SA)	D-25R	10/29/91	< 0.5	<0.5	11	<0.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<0.5	11
		12/13/91	0.6	13	13	<0.3	<0.5	<0.5	<0.5	<0.5	<0.5	ັ <0.5	2.6	<0.5	29.2
		11/11/93	<0.5	6	4.7	<0.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	່ <1.0	<0.5	10.7
		08/17/94	<1	3.1	4.6	<5	NA	NA	NA	NA	NA	NA	NA	NA	7.7
		12/13/94	0.4	4.7	5.4	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	10.5
		03/13/95	ND	4.3	3.2	ND	NA	NA	NA	NA	NA	NA	NA	NA	7.5
		06/26/95	<0.34	3.1	<0.19	<0.27	<0.5	<0.28	<0.12		<0.18	<0.30	NA	<0.19	3.1
		11/07/95	<0.5	5.1	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	5.1
		01/25/96	< 0.5	4.7	5.1	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	9.8
		05/14/96	<0.5	6.9	6.3	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	13.2
		08/14/96	1.5	43 7	38.3	<0.5	<0.5	<0.5	<0.5	<1.6	<0.5	NA	NA	<0.5	83.5
		10/09/96	<0.5	8.2	10.1	<0.5	<0.5	<0.5	<0.5	<1.6	<0.5	NA	NA	<0.5	18.3
		01/20/97	<0.5	10.4	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	10.4
		04/01/97	0.77	11	9.1	<0.46	NA	NA	NA	NA	NA	NA	NA	NA	20.87
		07/24/97	0.86	9.5	8.0	<0.46	<3.0	<0.18	<0.25	<0.20	<0.73	<0.23	<0.87	<0.15	21.66
		11/18/97	0.84	67	87	<0.25	NA	NA	NA	NA	NA	NA	NA	NA	16.24
		03/23/08	0.04	5	7.5	<0.46	NΔ	NA	NA	NA	NA	NA	NA	NA	13.21
		03/23/08	<0.25	21	27	<0.70	<2.0	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	4.8
		00/28/08	0.20	6 6 C		<0.20	<u>~2.0</u> ΝΔ	NΔ	-0.20	NA	NΔ	NA	NA	<0.28	16.58
		12/08/08	0.70	6.5	8.Z	<0.46	NA	NA		ΝΔ	NA	NA	NA	NA	15.9
		02/12/00	0.7	5.5	7.7	<0.40	NA.	NA	NΔ	<u>ΝΔ</u>		NA	NA	NA	14.08
		03/12/33	0.70	5.0 E 7	9 A	-0.40 NA				NA.	NA.	NA	NA		15.82
		03/02/33	1.0	2 5	4.0	20.46	NA.		<u>ΝΔ</u>		NA	NA	NA	NA	85
		00/20/00	0.92	J.J A 5	4.7	~0.40 NA			MA	NA.	NA	NA	NA	NA	10.02
		03/20/00	0.02		4.1	~0.25	NIA			<u></u>			NA	NA	7 85
		04/23/01	0.45	J. 1	4.0	-0.20			1.0						
_	D-24R	10/30/91	<0.5	57	27	<0.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<0.5	8.4
	0-2413	12/12/01	<0.5	6.1	5 9	<0.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<0.5	12
		11/11/03	<0.0	4.7	1 9	<0.0	<0.5	<0.5	<0.0	<0.5	<0.5	<0.5	<1.0	<0.5	6.6
		08/17/04	~0.0	<1	····· <1	<5	ΝΔ	-0.5 NA	NA	NA	NA	NA	NΔ	NA	O
		12/13/94	<0.5	0.5		<0.5	NA	NΔ	NA	NA	NA	NA	NA	NA	1.6
		03/13/95		1 7		ND	NA	NA	NA	NA	NA	NA	NA	NA	17
		06/21/05	<1 34	<0.13	<0.10	<0.27	<0.5	<0.28	<0.12		<0.18	<0.30	NA	<0.19	··· 0
		11/07/95	<0.5	3.6	2	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	5.6
		01/25/96	3.5	1	2	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	6.5
		05/13/96	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	
		08/14/06	-0.0 -0.6	0.0		<0.5	<0.5	<0.5	<0.5	<1.6	<0.5	N۵	NΔ	<0.5	15
		10/00/06	-0.0 -0.0	4.9	27	<0.5	<0.0	<0.5	 <0.5	<1.6	<0.5	NΔ	NA	<0.5	4 5
		10/03/30	-0.0	1.0	4.	-0.0	-0.0	-0.0	-0.0		-0.0		1 47.1		

			Semi-Ann	ual Para	ameters				Ann	ual Pa	rameter	3			
				1-TCA		/I Chloride	tone	oroform	DCA	DCA	DCE	-1,2-DCE	hylene Chloride	2-TCA	al VOCs
	WELL	DATE	U D	-	Ũ	l is	A Ce	ਸ਼ੁੱ	<u>-</u>	연	÷	S S S	Met	1,1	Tot
NR 140	ES		5.0	200	5	0.2	1000	6	850	5	7	70	5	5	
NR 140	PAL	1	0.5	40	0.5	0.02	200	0.6	85	0.5	0.7	7	0.5	0.5	
	D-24R	01/20/97	<0.5	0.8	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	0.8
		04/01/97	<0.63	0.68	<0.49	<0.46	NA	NA	NA	NA	NA	NA	NA	NA	0.68
		07/24/97	<0.63	1.2	1.3	<0.46	_<3.0	<0.18	<0.25	<0.20	<0.73	<0.23	<0.87	<0.15	2.5
		11/18/97	<0.25	1.4	0.94	<0.25	NA	NA	<u>N</u> A	NA	NA	NA	NA	NA	2.34
		03/23/98	<0.63	_ 1	0.86	<0.46	NA	NA	NA	NA	NA	NA	NA	NA	1.86
		07/28/98	<0.25	0.33	<0.25	<0.25	<2.0	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	0.33
		09/28/98	<0.63	0.99	0.81	<0.46	NA	NA	NA	NA	NA	NA	NA	<0.28	1.8
		12/08/98	< 0.63	0.76	0.64	<0.46	<u>NA</u>	NA	NA	NA	NA	NA	NA		1.4
		03/12/99	<0.63	0.67	0.68	<0.46	NA	NA	NA	NĄ	NA	NA	NA	NA	1.35
	D-27	11/04/91	<0.5	9.9	5.6	<0.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<0.5	15.5
		12/18/91	<0.5	5.3	2.6	<0.3	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<1	<0.5	7.9
		12/18/91	<0.5	4.9	2.8	<0.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<0.5	7.7
		11/11/93	<0.5	<0.5	<0.5	<0.3	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<0.5	0
		12/14/95	<0.5	<0.5	< 0.5	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	0
		06/21/95	< 0.34	<0.13	<0.19	<0.27		<0.28	<0.12		<0.18	<0.30	NA	<0.19	0
		08/15/96	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<1.6	<0.5	NA	NA	<0.5	0
		07/23/97	<0.63	<0.28	<0.49	<0.46	<3.0	<0.18	<0.25	<0.20	<0.73	<0.23	<0.87	<0.15	0
		07/29/98	<0.25	<0.25	<0.25	<0.25	<2.0	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	0
	EY_2 /	11/07/91	<0.5	870	210	<0.3	<0.5	<0.5	18	<0.5	56	24	<1	1.1	1179.1
	FX-2R	12/18/91	<0.5	1260	268	<0.3	<0.5	0.8	<0.5	9.1	92	30	3	1.4	1664.3
Original		11/11/93	<0.5	890	250	<0.3	<0.5	<0.5	15	<0.5	55	22	NA	1.3	1233.3
Extractio	n	12/13/94	<0.5	17.3	3.5	<0.5	NA	NA	NA	NA	NA	NÄ	NA	NA	20.8
Wells		06/21/95	<0.34	375	96.4	<0.27	<0.5		<0.12		13.4	9	NA	<0.19	495.1
		08/14/96	<0.5	99.8	52	<0.5	<0.5	<0.5	1.6	<1.6	4	NA	NA	<0.5	157.4
		07/25/97	<0.63	1.2	2.6	<0.46	<3.0	<0.18	<0.25	<0.20	<0.73	<0.23	<0.87	<0.15	3.8
		07/28/98	<0.25	0.79	2.1	<0.25	<2.0	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	2.89
		09/07/99	< 0.63	15	34	NA	NA	NA	NA	NA	NA	NA	NA	NA	49
		04/18/00	< 0.63	1.3	3.7	<0.46	NA	NA	NA	NA	NA	NA	NA	NA	5
		09/26/00	<0.63	18	36	<0.46	NA	NA	NA	NA	NA	NA	ŇA	NA	54
		04/19/01	<0.25	2.6	8.4	<0.25	NA	NA	NA	NA	NA	NA	NA	NA	11
				ŀ											
(SA)	EX-3	11/07/91	<0.5	50	14	<0.3	<0.5	<0.5	0.8	<0.5	3.4	0.8	<1	<0.5	69
		12/18/91	< 0.5	30.3	9.5	<0.3	<0.5	<0.5	0.5	<0.5	1.9	<0.5	2.6	<0.5	44.8
		11/11/93	<0.5	<0.5	<0.5	<0.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<0.5	0
		12/13/94	<0.5	14.4	5.8	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	20.2
		06/21/95	<0.34	8.7	4	<0.27	<0.5	<0.28	<0.12		<0.18	<0.30	NA	<0.19	21.6
		08/14/96	<0.5	4.5	3.6	<0.5	<0.5	<0.5	<0.5	<1.6	<0.5	NA	NA	<0.5	8.1
		07/25/97	<0.63	93	52	<0.46	<3.0	<0.18	1.7	<0.20	6.6	2.9	<0.87	0.4	156.6
		07/28/98	<0.25	30	28	<0.25	<2.0	<0.25	0.74	<0.25	<0.25	1.4	2.2	<0.25	62.34
1		09/07/99	<0.63	22	26	NA	NA	NA	NA	NA	NA	NA	NA	NA	48
		04/18/00	<0.63	37	55	<0.46	NA	NA	NA	NA	NA	NA	NA	NA	
		09/26/00	<0.63	25	28	NA :	NA	NA	NA	NA:	NA	NA	NA	NA	53
		04/19/01	<0.25	27	38	<0.25	NA	NA	NA	NA	NA	NA	NA	NA	65

		Semi-An	nual Para	ameters				An	nual Pa	ramete	rs			ļ
					<u>a</u>							thoride	1	
WELL	DATE	CE	1,1,1-TCA	TCE	Vinyt Chlorid	Acetone	Chloroform	1,1-DCA	1,2-DCA	1,1-DCE	cIS-1,2-DCF	Methylene C	1,1,2-TCA	Total VOCs
NR 140 ES		5.0	200	5	0.2	1000	6	850	5	7	70	5	5	· ·
NR 140 PAL		0.5	40	0.5	0.02	200	0.6	85	0.5	0.7	7	0.5	0.5	
	11/14/02	-0.5	-0.5	-0.5	-0.2		-0 F	<0.5	<0.5	-0 E	-0.5	<1.0	<0.5	0
(SA) CSES	08/16/94	<0.5	1200	<0.5 360	<0.3		0.0~ NA	NA	NA	 NA		NA	NA	1560
Chip Storage	06/21/95	< 0.34	245	109	<0.27	<0.5	<0.28	6.8		16.7	9	NA	<0.19	388.8
Extraction	11/07/95	<0.5	266	106	< 0.5	NA	NA	NA	NA	NA	NA	NA	NA	372
System	01/25/96	<0.5	254	129	<0.5	NA	NA	NA	NA	NÄ	NA	NA	NA	383
	05/13/96	<0.5	141	55.2	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	196.2
	08/13/96	<0.5	139	60.2	<0.5	<0.5	<0.5	3.1	<1.6	6.8	NÄ	NA	2.1	211.2
	10/08/96	<0.5	112	54.4	<0.5	<0.5	<0.5	3.2	<1.6	<0.5	NA	NA	1.5	171.1
	01/20/97	<0.5	81	36	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	117
	03/31/97	<0.63	120	67	<0.46	NA	NA	NA	NA	NA	NA	NA	NA	187
	07/23/97	<0.63	67	32	<0.46	<3.0	<0.18	2.3	<0.20	5.5	1.6	<0.87	1.0	109.4
	11/18/97	<0.25	55	39	<0.25	NA	NA	NA	NA	<u>NA</u>	NA	NA	NA	94
	03/23/98	<0.63	44	38	<0.46	NA	NA	NA	NA	NA	NA	NA	NA	82
	07/28/98	<0.25	32	23	<0.25	<2.0	<0.25	1.7	<0.25	1.1	0.87	<0.25	1.1	59.77
	09/25/98	8.1	2.1		<0.46			NA					<0.28	20.2
	12/08/98	7.9	1.9	13	<0.46					NA NA				22.0
	03/11/99	4.4	1.9	19	<0.46	NA	NA -0.10		NA;				NA 1	20.3
	03/02/99	<0.03 <0.63	ວວ <u> </u> ວວ.	29 10	<0.40 <0.46		-0.10 NA	. 3.5 NA	~0.20 NA	1.4 ΝΔ	1.3	<u>\</u> .07	. 3.1 . NA	13.3
	04/10/00	<0.03	10	1.0	<0.40		<0.18	- 01 - 10 - 10	<0.20	<0.73	0.38	<0.87	0.32	34 56
	04/19/01	<0.14	17	13	<0.25	NA	NA	NA	NA	NA	NA	NA	NA	30
MW-1030	10/30/91	<0.5	1.5	4	<0.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<0.5	5.5
Off-Site	12/12/91	<0.5	2	3.5	<0.3	< 0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	2.3	<0.5	7.8
	11/11/93	<0.5	<0.5	50	<0.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<0.5	50
	12/13/94	1.4	0.5	56.5	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	58.4
	06/21/95	<0.34	<0.13	<0.19	<0.27	<0.5	<0.28	<0.12		<0.18	<0.30	NA	<0.19	0
	08/13/96	<0.5	0.8	26	<0.5	<0.5	<0.5	<0.5	<1.6	<0.5	NA	NA	<0.5	26.8
	07/24/97	1.5	0.48	15	<0.46	<3.0	<0.18	<0.25	<0.20	<0.73	<0.23	<0.87	<0.15	16.98
	07/28/98	<0.25	2.2	1.7	<0.25	<2.0	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	3.9
(SA)SS-1	11/11/93	0.9	71	24	<0.3	<0.5	<0.5	13	<0.5	4.5	1.6	<1.0	<0.5	103.3
Storm Sewer	08/16/94	<1	55	25	<5	NA	NA	NA	NA	NA	NA	NA	NA	80
	12/14/94	0.1	11.2	3	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	14.3
	06/21/95	< 0.34	31.2	18.1	<0.27	<0.5	<0.28	<0.12		1.4	1.3	NA	<0.19	52
	11/06/95	<0.5	21.7	<0.5	<0.5	NA		NA	NA	NA	NA	NA.	NA	21.7
	01/25/96	2.6	17.1	21.1	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	40.8
	05/13/96	0.6	12.6	8.2	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	21.4
	08/13/96	0.7	8.3	7.8	<0.5	<0.5	<0.5	<0.5	<1.6	<0.5	NA	NA	<0.5	16.8
	10/08/96	0.7	6.7	8.8	<0.5	<0.5	<0.5	<0.5	<1.6	<0.5	NA	NA	<0.5	21.8
	01/20/97	0.7	8.1	8.9	<0.5	<0.5	<0.5	<0.5	<1.6	<0.5	NA	NA	<0.5	17.7
	04/01/97	0.7	5.8	6.6	<0.46	NA	NA	NA	NA	NA	NA	NA	NA	13.14
	07/23/97	<0.63	1.2	1.5	<0.46	9.1	<0.18	<0.25	<0.20	<0.73	<0.23	<0.87	<0.15	12.49
	11/18/97	<0.25	4.9	4.9	<0.25	NA	NA	NA	NA	NA	NA	NA.	NA	9.8

			Semi-An	nual Par	ameters				Anr	nual Pa	rametei	rs			
	1												ride		
	-41	DATE	CE	,1,1-TCA	СЕ	inyl Chloride	cetone	hloroform	1-DCA	2-DCA	1-DCE	ils-1,2-DCE	lethylene Chlo	1,2-TCA	otal VOCs
NR 140 F		DATE	50	200	<u> </u>		<u> </u>	0 6	850	5	7	70	<u>≥</u> 5	5	
NR 140 P	PAL		0.5	40	0.5	0.02	200	0.6	85	0.5	0.7	7	0.5	0.5	
	SS-1	09/02/99	3.4	3.1	17	<0.46	NA	NA	NA	NA	NA	NA	NA	NA	23.5
		09/25/00	<0.63	0.37	2.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.47
Diant #2							ļ		 	· ·					
(SA)	D-18	11/04/91	<0.5	<0.5	15	<0.3	<0.5	<0.5	<0.5	<16	<0.5	<0.5	<0.5	<0.5	3.8
(0/1)		12/12/91	0.9	0.5	2.1	< 0.3	<0.5	<0.5	<0.5	<1.6	<0.5	<0.5	6	<0.5	13
Southeast		11/11/93	<0.5	<0.5	<0.5	<0.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	< 0.5	0
Source Area		08/16/94	<1	<1	1.2	<5	NA	NA	NA	NA	NA	NA	NA	NA	1.2
and		12/13/94	0.4	0.2	1.8	0.3	NA	NA	NA	NA	NA	NA	NA	NA	2.7
Former Sum	P	03/13/95	5.5	3.2	30.6	ND	NA	NA	NA	NA	NA	NA	NA	NA	39.3
Source Area		06/21/95	1.5	<0.13	4	<0.27	_ <0.5	<0.28	<0.12	İ	<0.18	<0.30	NA	<0.19	5.5
		11/06/95	1.0	<0.5	6.3	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	7,3
		01/25/96	1.6	<0.5	5.2	<0.5	NA	NA	<u>NA</u>	NA	NA	NA	NA	NA	6.8
		05/13/96	< 0.5	< 0.5	< 0.5	<0.5	i NA	NA	NA	NA	NA			NA	0
	-	08/13/96	1.2	<0.5	2.5	<0.5	<0.5	<0.5	<0.5	<1.6 - 1.6	<0.5			<0.5	3.7
		10/08/95	<0.5	<0.5 <0.5	Z.Z	<0.5	: <0.5 MA	<0.5		<1.0 NA	< <u>0.0</u>			<0.5 NA	<u> 4.4</u> 1.8
		01/20/97	1.0	<0.0	-0.5	<0.0									74
		07/23/97	27	<0.20	28	<0.40	<3.0	<0.18	<0.25	<0.20	<0.73	<0.23	<0.87	<0.15	55
		11/17/97	4.1	<0.20	3.9	<0.48	NA	NA	NA	NA	NA	NA	NA	NA	8
		03/23/98	4.2	<0.28	4.9	<0.46	NA	NA	NA	NA	NA	NA	NA	NA	9.1
		07/27/98	2.2	<0.25	4.8	<0.25	3.5	<0.18	<0.25	<0.20	<0.73	<0.23	<0.87	<0.15	10.5
		09/25/98	9.1	1.4	38	<0.46	NA	NA	NA	NA	NA	NA	NA	<0.28	48.5
		12/08/98	6.2	<0.28	8.5	<0.46	NA	NA	NA	NA	NA	NA	NA	NA	14.7
	[03/11/99	4.6	<0.28	11	<0.46	NA	NA	NA	NA	NA	NA	NA	NA	15.6
		09/07/99	2.6	<0.28	4.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	7.4
		04/25/00	4.9	<0.28	6.6	<0.46	NA	NA	NA	NA	NA	NA	NA	NA	11.5
		09/25/00	2.5	<0.28	2.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	4.9
		04/19/01	3.0	<0.25	3.8	<0.25	NA	NA	NA	NA	NA	NA	NA.	NA	6.8
	2004	10/20/01	6.4	18	37	<0.3	<0.5	<0.5	<0.5	<1.6	<0.5	<0.5	<1	<0.5	96.4
(/~) 14141-	2004	12/13/91	11.0	26	61	<0.3	<0.5	<0.5	<0.5	<1.0	<0.5	<0.5	<1	<0.5	149.2
	ł	11/11/93	2.5	14	5.6	<0.3	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<1.0	<0.5	22.1
	ŀ	12/13/94	0.7	0.2	1.8	0.3	NA	NA	NA	NA	NA	NA	NA	NA	3
	F	06/21/95	3.2	17.6	14.2	<0.27	<0.5	<0.28	<0.12	·	<0.18	< 0.30	NA	3.4	38.4
	Ē	08/13/96	1.0	7.2	5.2	<0.5	<0.5	<0.28	<0.12		<0.18	<0.30	NA	<0.5	13.36
		07/23/97	<0.63	1.9	1.7	<0.46	4.2	<0.18	<0.25	<0.20	<0.73	<0.23	<0.87	<0.15	7.8
		07/27/98	<0.25	<0.25	0.94	<0.25	13	<0.18	<0.25	<0.20	<0.73	<0.23	<0.87	<0.15	13.94
		09/07/99	<0.63	<0.28	<0.49	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	-	04/26/00	<0.63	<0.28	<0.49	NA	NA	NA	NA	NA	NA	NA	NA		0
(SA) MW-3	2005	10/28/91	30.0	2.7	20	<0.3	<0.5	0.7	<0.5	<1.6	<0.5	12	<1	<0.5	118.1
1 9		12/13/91	32.0	3	23	<0.3	<0.5	0.8	<0.5	<1.6	<0.5	17	<1	<0.5	133.8
	ł	11/11/93	47.0	3.1	31	<0.3	<0.5	⊂<0.5	<0.5	<0.5	<0.5	4	<1.0	<0.5	85.1
	Ì	12/13/94	0.4	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	0.4

		Semi-An	nual Par	ameters				Ann	ual Pa	rametei	'S			
												oride		
		111	1-TCA		yt Chloride	tone	oroform	DCA	DCA	DCE	-1,2-DCE	thylene Chio	2-TCA	al VOCs
WELL	DATE	PC I		10	- N N	Ace	ਦੋ		12	1,1	<u> </u>	Me	÷-	10
NR 140 ES		5.0	200	5	0.2	1000	6	850	5	7	70	5	5	
NR 140 PAL	00/40/04	0.5	40	0.5	0.02	200	0.6	85	U.5	<u>U.7</u>	/ NA	0.5	0.0 NA	0
10100-2003	06/10/94		<0.13	07	<0.27	<0.5	<0.28	<0.12		<0.18	<0.30	NA	<0.19	1.4
	11/07/95	1.9	<0.10	2.7	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	4.6
	01/25/96	10.9	<0.5	5.2	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	16,1
	05/13/96	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	0
	08/13/96	10.2	<0.5	2.1	<0.5	<0.5	<0.5	<0.5	<1.6	<0.5	NA	NA	<0.5	12.3
	10/08/96	13.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.6	<0.5	NA	NA	<0.5	13
	01/20/97	24.0	<0.5	10.1	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	34.1
	04/01/97	47.0	0.76	8.8	<0.46	NA	NA	NA	NA	NA	NA	NA	NA	56.56
	07/23/97	<0.63	15	1.6	<0.46	4.2	<0.18	<0.25	<0.20	<0.73	<0.23	<0.87	<0.15	20.8
	11/18/97	2.7	<0.25	0.33	<0.25	NA	NA	NA	NA	NA	NA	NA	NA	3.03
	03/23/98	3.0	<0.28	0.51	<0.46	NA	NA	NA	NA	NA	NA			3.51
	07/21/98	19.0	<0.25	1.3	<0.25	<3.0	<0.18	<0.25	<0.20	<0.73	<0.23	<0.87	<0.15	20.3
	09/25/98	14.0	<0.28	1.1	<0.46	NA		NA	NA	NA	NA		<0.28	15.1
	12/05/98	6.2	<0.28	5.2	<0.46	NA			NA	NA NA				11.4
	03/12/99	7.8	<0.28	8.9	<0.46	NA NA								10.7
	09/07/99	· · · · · ·	<0.20	1.0										1.0
	04/25/00	1.2	<0.20	~0.49	1~U.40	N/A							. NA	17
	09/25/00	E 7	<0.20	~0.49 0.60										63
	04/15/01	0.1	~0.25	0.00	-0.25			110						
(SA) D-15	11/05/91	26.0	45	420	<0.3	<0.5	<0.5	1.5	<1.6	3.6	12	1.4	<0.5	1019
	12/12/91	24.0	31	390	<0.3	<0.5	<0.5	<0.5	<1.6	3	8.8	<0.5	<0.5	913.6
	11/11/93	11.0	12	350	<0.3	<0.5	<0.5	1.3	<0.5	1.3	11	<1.0	<0.5	386.6
	08/16/94	15.0	15	220	<5	NA	NA	NA	NA	NA	NA	NA	NA	250
	12/13/94	7.8	3.1	105	<5	NA	NA	NA	NA	NA	NA	NA	NA	115.9
	03/13/95	10.6	4	126	ND	NA	NA	NA	NA	NA	NA	NA	NA	140.6
	06/21/95	13.0	8.6	119	<0.27	<0.5	<0.28	0.9		<0.18	3.3	NA	<0.19	144.8
	11/06/95	13.4	4.4	113	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	130.8
	01/25/96	11.5	2.3	92.8	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	106.6
	05/13/96	6.7	<0.5	54	<0.5	NA	NA	NA	NA	NA	NA	NA NA	NA	60.7
	08/15/96	8.0	1.7	46	<0.5	<0.5	<0.5	<0.5	<1.6	<0.5		NA	<0.5	
	10/08/96	6.4	1.4	70.4	<0.5	<0.5	<0.5	<0.5	<1.6	<0.5			<0.5	/8.2
D-15	01/20/97	10.9	<0.5	61	<0.5	NA NA		<u>NA</u>	<u>NA</u>	NA NA	NA NA			62.02
	03/31/97	10	0.83	53	<0.46	- NA		NA 	-0.20	-0.72	NA 20.02		NA 20.15	79
	11/23/97	10	<u.20< td=""><td>00</td><td><0.40</td><td>- 5.0- NA</td><td><u>NIA</u></td><td>-V.25</td><td>~0.20 NA</td><td></td><td>~0.23 NA</td><td>~U.07</td><td>NA</td><td>08 07</td></u.20<>	00	<0.40	- 5.0- NA	<u>NIA</u>	-V.25	~0.20 NA		~0.23 NA	~U.07	NA	08 07
	03/23/08	10	0.97		<0.40 <0.46		NA NA				NΔ			94.48
	03/23/98		NΔ	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA
	09/26/98	29	0.56	170	<0.46	NA	NA	NA	NA	NA	NA	NA	<0.28	199.56
	12/08/98	74	0.77	1000	<0.46	NA	NA	NA	NA	NA	NA	NA	NA	1074.77
	03/11/99	19	<0.56	84	<0.92	NA	NA	NA	NA	NA	NA	NA	NA	103
	09/07/99	22	<0.56	120	NA	NA	NA	NA	NA	NA	NA	NA	NA	142
	04/25/00	8.7	0.61	33	<0.46	NA	NĀ	NA	NA	NA	NA	NA	NA	42.31
	09/28/00	19	0.77	85	NA	NA	NA	NA	NA	NA	NÁ	NA	NA	104.77

			Semi-An	nual Para	meters	[Anr	nual Pa	rameter	~ 9		_	
										i					
				: 									e e		
													Ť		
						e e				!		ų.	ਲ		
				4		ju Joj		Ē	_	_		8	ē	5	Ö
				<u></u>		ਓ	e U	l Pe	ర్	5	빙	ຸ່ນ້	je j	-1 1-	×
			Щ	÷	щ	<u> </u>	eto	칠	Ģ	<u> </u>	Ģ	- -	j ₽	1.2	otal
	WELL	DATE	2	., ,	Ϋ́	5	<u> </u>	<u>ರ</u>	÷.	*		<u></u>	ž	-	Ĕ.
NR 140	ES		5.0		5	0.2	1000	6	850	5	7	70	5	5	
NR 140	PAL	04/40/04	0.5	40	0.5	0.02	200	0.6	85	0.5	0.7	/ NA	<u> </u>		520
	D-15	04/19/01	90	<2.5	4/U	<2.5	NA	NA			INA	NA	INA		520
-	P-2009	11/05/01	<0.5	<0.5	<0.5	<0.3	<0.5	<0.5	<0.5	<1.6	<0.5	<0.5	<1	<0.5	0
	1-2005	12/12/91	<0.5	1.1	1.2	<0.3	<0.5	<0.5	< 0.5	<1.6	<0.5	< 0.5	<1.0	<0.5	4.6
		01/10/92		<0.7	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	0
		11/11/93	<0.5	<0.5	<0.5	< 0.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<0.5	0
		12/14/94	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NÁ	NA	NA	NA	0
		06/21/95	<0.34	<0.13	0.4	<0.27	<0.5	<0.28	<0.12		<0.18	<0.30	NA	<0.19	0.4
		08/15/96	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.6	<0.5	NA	NA	<0.5	0
		07/25/97	<0.63	<0.28	<0.49	<0.46	<3.0	<0.18	<0.25	<0.20	<0.73	<0.23	<0.87	<0.15	0
		07/27/98	<0.25	<0.25	<0.25	<0.25	11	<0.18	<0.25	<0.20	<0.73	<0.23	<0.87	<0.15	11
	P-2010	11/05/91	<0.5	<0.5	<0.5	<0.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<0.5	0
	1 20,0	12/12/91	<0.5	8.3	5.4	<0.3	<0.5	<0.5	< 0.5	<0.5	0.6	<0.5	2.4	<0.5	30.4
		01/10/92	<0.7	<0.7	1.2	NA	NA	-	NA	NA	NA	NA	NA	NA	1.2
		11/11/93	<0.5	<0.5	<0.5	<0.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<0.5	0
		12/14/94	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	0
		06/21/95	2.8	<0.13	<0.19	<0.27	<0.5	<0.28	<0.12		<0.18	<0.30	NA	<0.19	2.8
		08/15/96	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.6	<0.5	NA	NA	<0.5	0
		07/25/97	<0.63	<0.28	<0.49	<0.46	<3.0	<0.18	<0.25	<0.20	<0.73	<0.23	<0.87	<0.15	0
		07/29/98	<0.25	<0.25	<0.25	<0.25	<3.0	<0.18	<0.25	<0.20	< 0.73	<0.23	<0.87	<0.15	0
(SA)	TW-1	10/29/91	<0.5	1.3	18	<0.3	<0.5	<0.6	<0.5	<1.6	<0.5	<0.5	1.7	<0.5	42
(12/13/91	4.9	1.1	48	<0.3	<0.5	<0.5	<0.5	<1.6	<0.5	<0.5	<1.0	<0.5	108
		11/11/93	4.0	9.1	20	<0.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<0.5	33.1
		08/16/94	2.4	<1	14	<5	NA	NA	NA	NA	NA	NA	NA	NA	16.4
		12/13/94	0.4	0.3	4.1	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	4.8
		06/21/95	1.1	1.8	4.9	<0.27	<0.5	<0.28	<0.12		<0.18	<0.30	NA	<0.19	9.4
		11/07/95	1.0	<0.5	8.7	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	9.7
		01/25/96	1.5	1.3	4.7	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	7.5
		05/13/96	1.1	0.6	2.9	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	4.6
		08/13/96	0.9	0.7	2.7	<0.5	<0.5	<0.5	<0.5	<1.6	<0.5	NA :	NA	<0.5	4.3
	TW-1	10/08/96	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<1.6	< 0.5	NA.		<0.5	45 4
		01/20/97	2.1	3	10	<0.5	NAj								10.1
		03/31/97	2.0	3.1	5.9	<0.40		NA	0.20	NA 20.72	-0 22	-0.20	NA -0.20	- NA	18.8
		11/12/19/	00.00	0.74	2.5	<0.40	4.3 NIA	~U.30	U.30	NA	NA	-U.39 NA	-0.29 NA	NA	3 43
		03/23/08	<0.63	<0.35	4	<0.40	. ΝΑ. ΝΔ	NA					NA		1 7
		07/28/08	<0.03	<0.20	1.7	<0.70	10	<0 18	<0.25	<0.20	<0.73	<0.23	<0.87	<0.15	11 7
		09/26/98	<0.63	<0.28	1.7	<0.46	NA	NA	NA	NA	NA	NA	NA	<0.28	1.7
	ŀ	12/08/98	<0.63	<0.28	1.5	<0.46	NA	NA	NA	NA	NA	NA	NA	NA	1.5
		03/12/99	<0.63	<0.28	1	<0.46	NA	NA	NA	NA	NA	NA	NA	NA	1
	ŀ	09/07/99	<0.63	0.57	2.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.97
]	09/26/00	1.1	0.81	7.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	9.21
			•	· ·· F·		:									

			Semi-Ann	ual Para	meters				Ann	ual Pa	rameter	' 9			
NR 140	WELL_	DATE	BOA 50	00 1,1,1-TCA	1CE	Vinyl Chloride	0001 Acetone	a Chlaroform	858	თ 1.2-DCA	2 1.1-DCE	d cis-1,2-DCE	Methylene Chloride	م 1,1,2-TCA	Total VOCs
NR 140	PAL		0.5	40	0.5	0.02	200	0.6	85	0.5	0.7	7	0.5	0.5	
	TW-1A	10/29/91	<0.5	0.6	0.6	<0.3	<0.5	<0.5	<0.5	<1.6	<0.5	<0.5	<1.0	<0.5	2.4
		12/18/91	<0.5	0.9	6.8	<0.3	<0.5	<0.5	<0.5	້ <1.6	<0.5	<0.5	2.2	<0.5	19.8
		11/11/93	<0.5	<0.5	<0.5	<0.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<0.5	0
1		12/14/94	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	0
		06/21/95	2.4	<0.13	1.8	<0.27	<0.5	<0.28	1.7		<0.18	<0.30	NA	<0.19	15.2
		08/15/96	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.6	<0.5	NA	NA	<0.5	
		07/25/97	<0.63	<0.28	<0.49	<0.46	<3.0	<0.18	<0.25	<0.20	<0.73	<0.23	<0.87	<0.15	<u> </u>
		07/27/98	<0.25	<0.25	<0.25	<0.25	<3.0	<0.18	<0.25	<0.20	<0.73	<0.23	<0.87	<0.15	0
						- 0.0	-0.5	-0.5	-0 F		-0.5	24		<0 F	50.2
(SA)	1W-3	10/30/91	5.8	1.7	19	<0.3	<0.5	<0.5	<0.5	<1.0	<0.5	4.1	· ~1	-0.5	66.4
		12/12/91	8.3	1.3	22	<0.3	<0.5	<0.5	<0.5	<1.0 <0.5	<0.5	- 1.0		<0.5	20.2
		11/11/93	7.5	U.7	12	<0.3	SU.5	<0.5 NA	<u>NA</u>	-0.5 NA	~0.5 NA	-0.5 NA	-1.0 ΝΔ	~0.0 NA	20.2
		12/14/94		44.0	9.3 7.4	~0.0	-0.6	20.29	-0.12		~0 18		NA	<0 19	25.2
		00/21/95	2.5	0.7	2.1	<0.27	<0.5	<0.20	<0.12	<1.6	<0.10		NA	<0.5	20.1
		00/13/90	4.3	3.r	43	<0.0	5 9	<0.0	<0.25	<0.20	<0.0	<0.23	<0.87	<0.0	15.5
		07/28/08	<0.25		4.5	<0.40	<3.0	<0.10	<0.25	<0.20	<0.73	<0.20	<0.87	<0.15	2.6
		00/120/90	10	4.4	3.2	NA	-0.0 ΝΔ	NA	NA	NA	NA	NA	- NA	NA	6.2
		03/07/33	1.3	0.74	19	<0.46	NA	NA	NA	NA	NA	NA	NA	NA	3.84
		09/25/00	1.5	0.74	- 30	NA	NA	NA	NA	NA	NA	NA	NA	NA	5.22
		03/20/00	27	0.68	6.0	<0.25	NA	NA	NA	NA	NA	- NA	NA	NA	9.38
		04/10/01													
(A)	EX-1	11/07/91	8.2	3.7	20	< 0.3	<0.5	<0.5	<0.5	<1.6	<0.5	0.7	<1	<0.5	64.5
		12/18/91	6.3	3.9	14.6	<0.3	<0.5	<0.5	<0.5	<1.6	<0.5	0.5	<1	<0.5	50,1
		11/11/93	6.8	2.3	13	<0.3	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<0.5	22.1
Original		12/13/94	4.7	2.7	11	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	18.4
Extraction	n	06/21/95	6.2	<0.13	14.7	<0.27	<0.5	<0.28	<0.12	i 	<0.18	<0.30	NA	<0.19	20.9
Wells		08/13/96	2.8	1.6	6.7	<0.5	<0.5	<0.5	<0.5	<1.6	<0.5	NA	NA	<0.5	11.1
		07/23/97	3.1	1.5	5.4	<0.46	5.5	<0.18	<0.25	<0.20	<0.73	<0.23	<0.87	<0.15	15.5
		07/28/98	<0.25	0.47	5.2	<0.25	<3.0	<0.18	<0.25	<0.20	<0.73	<0.23	<0.87	<0.15	5.67
		09/07/99	3.4	0.32	8.7	NA	NA	NA	NA	NA NA	NA				12.42
		09/26/00	3.0	0.39	11	NA.	NA	NA	NA	NA	NA	NA	NA	NA	14.39
(en)-	EV 7	11/07/01	37.0	5	350	<0.3	<0.5	0.6	<0.5	<1.6	<0.5	15	33	<0.5	796 0
	LA-1	12/18/01	AA 0	5.1	241	<0.3	<0.5	<0.5	<0.5	<1.6	<0.5	2.3	2.2	< 0.5	584.7
		11/11/03	27.0	81	160	<0.3	<0.5	<0.5	0.6	<0.5	0.7	3.6	<1.0	<0.5	200.0
		12/13/94	19.6	0.8	62.8	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	83.2
		06/21/95	60.6	<0.13	105	<0.27	<0.5	<0.28	<0.12		<0.18	2.4	NA	<0.19	168.0
		08/13/96	48.3	<0.5	243	<0.5	<0.5	<0.5	<0.5	<1.6	<0.5	NA	NA	<0.5	291.3
		07/23/97	24.0	0.49	130	<0.5	<3.0	<0.18	<0.25	<0.20	<0.73	9.5	<0.87	<0.15	164.0
		07/28/98	<50	<50	1000	<50	<400	<50	<50	<50	<50	<50	<50	<50	1000.0
		09/07/99	130	<2.8	490	NA	NA	NA	NA	NA	NA	NA	NA	NA	620.0
		04/18/00	77	0.87	150	<0.46	NA	NA	NA	ŇA	NA	NA	NA	NA	227.9
		09/26/00	56	<0.56	140	NA	NA	NA	ŇA	NA	NA	NA	NA	NA	196.0
		04/19/01	56	<1.0	110	<1.0	NA	NA	NA	NA	NA	NA	NA	NA	166.0
		•		·····-											

Table 3.	Summary of	Groundwater	Monitorina	Analytical	Results
14010 0.	cannary o	Olonia mator	mormoning		11000100

			Semi-An	nual Para	ameters				Anr	ual Pa	rameter	s			
	WELL	DATE	CE	1,1,1-TCA	TCE	Vinyl Chloride	Acetone	Chloroform	1,1-DCA	1,2-DCA	1,1-DCE	CIS-1,2-DCE	Methylene Chloride	1,1,2-TCA	Total VOCs
NR 140	ES		5.0	200	5	0.2	1000	6	850	5	7	70	5	5	
NR 140	PAL		0.5	40	0.5	0.02	200	0.6	85	0.5	0.7	7	0.5	0.5	
(SA)	SES	11/11/93	<0.5	<0.5	<0.5	< 0.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<0.5	0.0
		08/16/94	1.7	25	130	<5	NA	NA	NA	NA	NA	NA	NA	NA	156.7
		06/21/95	1.7	14	90	<0.27	<0.5	<0.28	0.8		1.1	<0.30	NA	<0.19	107.6
Southeas	st	11/07/95	12.2	11.5	67.2	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	90.9
Extractio	n	01/25/96	9.1	9.6	65	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	83.7
System		05/13/96	1.5	10.4	92.3	<0.5 ₁	NA	NA	NA	NA	NA	NA	NA.	NA	104.2
		08/13/96	4.6	7.8	47.1	<0.5	<0.5	<0.5	<0.5	<1.6	<0.5	NA	NA	<0.5	59.5
		10/08/96	<0.5	<0.5	1.5	<0.5	<0.5	8.5	<0.5	<1.6	<0.5	_ NA	NA	<0.5	14.8
		01/20/97	8.5	5	31	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	44.5
		03/31/97	6.3	3.4	24	<0.46	NA	NA	NA	NA	NA	<u>NA</u>	NA	NA	33.7
		07/23/97	7.5	4.8	26	<0.46	6.2	<0.18	0.27	<0.20	<0.73	1.9	<0.87	<0.15	46.7
		11/18/97	10.0	6.2	49	<0.25	NA	NA	NA	NA	NA	NA	NA	NA	65.2
		03/23/98	7.8	2.5	24	<0.46	NA	NA.	NA	NA	NA	NA	NA	NA	34.3
		07/28/98	<0.25	0.68	3.8	<0.25	<2.0	<0.25	<0.25	<0.25	<0.25	0.41	<0.25	<0.25	4.9
		09/25/98	<0.63	38	25	<0.46	NA	NA	NA	NA	NA	NA	NA	1.1	64.1
		12/08/98	<0.63	35	27	<0.46	NA	NA	NA	NA	NA	NA	NA	NA	62
		03/11/99	<0.63	36	28	<0.46	NA	<u>NA</u>	NA	NA	NA .	NA	NA	NA	64
		09/02/99	4.3	0.70	5.3	NA :	NA	NA	NA	NA,	NA	NA	NA	<u>NA</u>	10.3
		04/18/00	1.6	<0.28	1.8	<0.46	NA	NA	NA	NA.	NA .	NA	NA	NA	3.4
		09/27/00	2.2	0.35	2.2	<0.46	NA	NA	NA	NA	NA	NA	NA.	NA	4.75
		04/19/01	1.4	<0.25	1.6	<0.25	NA	NA,	NA	NA	NA	NA	NA NA	NA	3
1					1										

Notes:

All values listed are in parts per billion (ug/L).

SA = Semi-Annual monitoring point.

A = Annual monitoring point.

ES = Enforcement Standard, PAL = Preventative Action Limit

Orange Highlight = above ES, Yellow Highlight = above PAL ND = not detected, NA = not analyzed

Site-Specific and Generic Soil Performance Standards for Former Sump Source Area Sta-Rite Industries, Delavan NPL Site Table 4.

cis-1,2-Dichloroethene (DCE)		0.21	210	0.68	675	cis-1,2-Dichloroethene	(DCE)		0.4	400
1,1,1-Trichloroethane (TCA)		1.01	1,014	1.93	1,930	1,1,1-Trichloroethane	(TCA)		2	2000
Tetrachloroethene (PCE)		0.03	30	0.048	48	Tetrachloroethene	(PCE)		0.06	60
Trichloroethene (TCE)		0.03	30	0.048	48	Trichloroethene	(TCE)		0.06	60
Soil	Units	mg/kg	ug/kg	mg/kg	ug/kg		ndards	Units	mg/kg	ug/kg
Site-Specific S Berformance Star	Equation	Soil/Water	Partitioning		Mass-Limit	Generic Soi	Performance Star	Equation	Soil/Water	Partitioning

entitled "Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites (March 2001) Generic soil performance standards taken from Exhibit A-1 in Appendix A of EPA guidance document Notes:

Equations and calculations for site-specific soil performance standards provided in Appendix F.

ľ							L		*	VUL V			1 U L			otal VOCs	
	Timo far	Elosu	Time Cince	Manthly	Cumulative	Monthly	Monthly	Cumulative	Monthly N	Apolitik (Cumulative	Monthly N	Monthly	Cumulative	Monthly	Monthly	Cumulative
	5 gallons	Rate	Last Sampled	Discharge	Discharge	detected	removed	removed	detected a	emoved	removed	detected	removed	removed	detected	removed	removed
ΥE	(sec)	(mdg)	(min)	(gailons)	(gallons)	(l/gn)	(q)	(q)	(l/gu)	(q)	(q)	(J/gu)	(q)	e	(//6/1)	(a)	
nt #1	Chio Storae	oe Extra	ction System (C	SES)													
11/93	off	NA	0	NA	NA	<0.5	0	0	<0.5	0.0	0.00	0.5 0.5	0.0	0.00	-	0.00	0.0
16/94	4	21.4	312480	6696000	6.70E+06	<0.5	0	0	40.5 40.5	0.00	0.00	0.5 0.5	0.0 2				
16/94	19.92	15.1	87840	1322892	8.02E+06	Ţ	0	0	1200	13.24	13.24	360	3.97	3.97	1001	17.71	17.71 AG 15
15/94	18.3	16.4	131040	2148197	1.02E+07	Ý	0	0	1200	21.49	34.73	360	6.6	10.42		46.17	
23/94	18.3	16.4	11520	188852	1.04E+07	Ý	0	ō	1200	1.89	36.62	360	0.57	10.99	1560	2.40	47.01
17/94	off	0.0	34560	0	1.04E+07	٩N	0	0	٨A	0.00	36.62	AN	0.0	10.99		0.0	10.74
14/95	14	21.4	169920	0	1.04E+07	ΨN	0	0	٩N	0.00	36.62	AN	0.0	10.99		001	47.61
02/95	13	23.1	25920	598154	1.10E+07	2	o	0	1200	5.98	42.60	360	1.80	12.78	1560	8/.7	00.00
22/95	10.44	28.7	73440	2110345	1.31E+07	<0.34	0	0	245	4.31	46.92	109	1.92	14.70	354	6.23	10.10
total:	First Year				1.31E+07	1		0		i	46.92		i	14.70	:		10.10
	i													:			с, с <u>э</u>
12/95	14.02	21.4	28800	616262	1.37E+07	<0.34	0	0	245	1.26	48.17	109	0.56	15.26	405	79.1	04.40
24/95	11.52	26.0	61920	1612500	1.53E+07	<0.34	0	0	245	3.29	51.47	109	1.47	16.72	354	4.76	50°.18
13/95	12.92	23.2	28800	668731	1.60E+07	<0.34	0	0	245	1.37	52.83	109	0.61	17.33	P.	1.97	11.07
96/20	÷	27.3	79200	2160000	1.81E+07	< <0.5	0	0	266	4.79	57.62	99	1.91	19.24	372	6.70	/9.9/
125/96	22	13.6	113760	1551273	1.97E+07	<0.7	0	0	254	3.29	60.91	129	1.67	20.91	383	4.95	81.82
13/96	31	9.7	69120	668903	2.03E+07	<0.5	0	0	141	0.79	61.70	129	0.72	21.63	270	1.51	83.33
15/96	40	7.5	90720	680400	2.10E+07	<0.5	0	0	141	0.80	62.50	55.2	0.31	21.94	196.2	1.11	84.44
total:	Second Ye	ar			7.96E+06	:		Ö	ļ		15.58			7.24			78777
							c	C	190	7C Y	00 33	60 J	1 86	73 81	2112	6.54	90.98
96/60/	₽ !	0.05	123840	3/15200	2.4/E+U/	0.0					00.00	1.00	9. F	20.02	1711	02.6	94.68
96/80/	p :	30.0	86400	2592000	2.73E+U/	C.U 2.05	- 0		2 6	74.7 72.0	77.50		2 5	26.18	117	06.6	98.58
127/197	12	25.0	159840	0009655	3.13E+U/ 2.43T-07			50	<u> </u>	0.75	AL C1	8 8	2 C	26.30	117	0.38	98.96
19/91	2U Mart 1006	10.01 House	Eahruan, 1007	200000	3.17E+07	2	>	ò	5		69.6			4.36			14.52
COURT	ALLA LOOP	nirougu	Leuinait 1921					>	:						 		
10/2 10	<i>ЕС</i>	12.0	44640	5R7261	3 236+07	<0.63	C	0	120	0.58	72.77	67	0.33	26.62	187	0.91	99.8 6
10/21/	3 5	2 4	44640	608727	3 295+07	40.63	. 0	o	120	0.61	73.38	67	0.34	26.96	187	0.95	100.81
20/21/	1∈	30.0	43200	1296000	3 42E+D7	<0.63		0	120	1.30	74.67	67	0.72	27.69	187	2.02	102.83
70/21/	2 2 2	30.0	44640	1339200	3.55E+07	<0.63	0	0	120	1.34	76.01	67	0.75	28.44	187	2.09	104.93
17/97	: =	27.3	43200	1178182	3.67E+07	<0.63	0	0	67	0.66	76.67	32	0.31	28.75	109.4	1.07	106.0
117/97	10	30.0	44640	1339200	3.81E+07	<0.63	0	0	67	0.75	77.42	32	0.36	29.11	109.4	1.22	107.2
117/97	12	25.0	44640	1116000	3.92E+07	<0.63	0	0	67	0.62	78.04	32	0.30	29,41	109.4	1.02	108.2
17/97	ŭ	25.0	43200	1080000	4.03E+07	<0.63	0	0	67	0.60	78.65	8	0.29	29.69	109.4	0.99	109.2
117/97	12	25.0	44640	1116000	4,14E+07	<0.63	0	0	55	0.51	79.16	Ē	0.36	30.06	64	0.87	110.11
17/97	13	23.1	43200	996923	4.24E+07	<0.63	0	0	55	0,46	79.61	68	0.32	30.38	8	0.78	110.8
117/98	13	23.1	44640	1030154	4.34E+07	<0.63	0	0	55	0.47	80.09	<u>ଟ</u>	0.33	30,72		0.81	111.6
17/98	14	21.4	44640	956571	4.44E+07	<0.63	0	0	55	0.44	80.53	39	0.31	31.03		0.75	112.4
ototal:	February	1997 thr	ough February	1998	1.26E+07			•			8.34			4.73		!	13.48
211 7 109	5	75.0	00200	1008000	4 54F+07	<0.63	c	0	44	0.37	80.90	38	0.32	31.35	82.0	0.69	113.1
117709	<u>י ר</u>	15.0	44640	009699	4 60F+07	40.63		0	44	0.25	81.14	38	0.21	31.56	82.0	0.46	113.5
1717/08	3 5	1	43200	480000	4 65E+07	<0.63			44	0.18	81.32	38	0.15	31.71	82.0	0.33	113.9
22/11/08	77	314	4464D	956571	4 75E+07	<0.63	• 0		44	0.35	81.67	38	0.30	32.01	82.0	0.65	114.5
117/08	16		43200	480000	4.79E+07	<0.63	. 0		32	0.13	81.80	3	0.09	32.11	59.8	0.24	114.8
86/11/8	3	13.0	44640	582261	4.85E+07	<0.63	0	G	32	0.16	81.95	23	0.11	32.22	59.8	0.29	115.0
5			•			-			_			-					

• •

Table 5. Groundwater Discharge Summary, CSES and SES

Page 1 of 4

imulative smoved (lb)	115.20 115.30 115.40 115.49 115.57 3.14	115.72 115.86 115.89 116.11 116.35 116.85 116.87 118.22 118.96	119.68 4.11 4.11 120.62 121.28 122.50 123.16 123.61 125.31 5.63 125.31	0.00 0.00 0.224 3.335 3.355 3.355	3,68 5,33 5,33 6,69 6,69 6,92 6,92
al VOCs xrthly CL moved rt (lb)	0.10 0.10 0.09 0.09 0.08	0.15 0.14 0.13 0.24 0.22 0.23 0.23 0.23 0.23 0.23 0.74	0.72 0.93 0.66 1.22 0.66 0.45 1.70	0.00 0.17 0.17 0.17 0.00 0.00 0.00 0.00	0.33 0.74 0.39 0.51 0.16 0.23
Tota Aonthly Mo etected rei (ug/l)	26.2 26.2 26.2 27.8 22.8 22.8 22.8	22 25 25 25 25 25 25 25 25 25 25 25 25 2	73.3 73.3 73.3 42 34.56 30	156.7 156.7 156.7 156.7 156.7 156.7 165.7 105.7	105.7 105.7 90.9 83.7 83.7 104.2
umulative removed d	32.28 32.34 32.41 32.46 32.46	32.59 32.59 32.70 32.88 32.88 33.20 33.20 33.32 33.32 33.32 33.32 33.32 33.32 33.32 33.23 33.23 33.23 33.23 33.23 33.23 32.23 32.23 32.23 32.23 32.23 32.23 32.23 32.23 32.23 32.25	34.56 35.19 35.19 35.75 36.05 36.05 36.96 36.96	0.00 0.00 0.25 0.25 0.25 2.20 2.20 2.20	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
TCE onthly C emoved (Ib)	0.06 0.06 0.05 0.05	0.00 0.11 0.25 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23	0.28 0.37 0.55 0.30 0.18 0.18	0.00 0.25 0.25 0.24 0.00 0.00 0.25 0.25 0.25 0.26 0.26 0.25	0.28 0.63 0.38 0.38 0.38 0.38
Monthly M detected r (ug/l)	9 9 9 <u>6</u> 6 6 6 6	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	13 4 19 13 4 19	90 1 20 20 20 20 20 20 20 20 20 20 20 20 20	90 90 67.2 65 65 92.3
Jumulative removed ((b)	81.96 81.97 81.98 81.98 81.98 81.98 1.46	82.00 82.01 82.03 82.03 82.05 82.05 82.03 82.03 82.03 82.03 82.03 82.03 82.03	83.43 84.19 84.19 84.19 85.23 85.47 86.44 86.44 86.44	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.56 0.71 0.78 0.93 0.93
.1,1-TCA Monthly (removed (lb)	0.0 0.0 0.0 0.0 0.0	84 84 84 84 86 86 86 86 86 86 86 86 86 86 86 86 86	0.34 0.45 0.36 0.36 0.36 0.36 0.36 0.36	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.04 0.05 0.07 0.02 0.02 0.02
1 Monthly detected (ug/l)	2 2 2 5 1 7 1 2 6 6	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	493388	40.5 25 25 25 25 25 25 25 25 25 25 25 25 25	4 4 4 7 5 6 6 0 4 4 4 7 5 6 6 0 4 9 6 0 4 7 6 6 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Sumulative removed (lb)	0.032 0.064 0.095 0.126 0.155	0.207 0.231 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.405 0.405	0.406 0.406 0.406 0.406 0.406 0.406 0.406 0.406 0.406 0.406 0.406	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.04 0.06 0.13 0.28 0.28 0.28
PCE Monthly (emoved (lb)	0.032 0.031 0.031 0.028	0.052 0.025 0.022 0.021 0.053 0.053 0.053 0.053	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.005 0.012 0.006 0.069 0.129 0.018
Monthiy detected (ug/l)	8,89 1,99 1,90 2,90 9,90	0,4,4,4,4,4,4,0,0,0,0,0,0,0,0,0,0,0,0,0	 0.63 <l< td=""><td>0.5 0.5 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7</td><td>47777 7777 7777 777 777 777 776 776 776</td></l<>	0.5 0.5 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	47777 7777 7777 777 777 777 776 776 776
Cumulative Discharge (gallons)	4.90E+07 4.95E+07 4.99E+07 5.04E+07 5.04E+07 5.08E+07 6.49E+07	5.16E+07 5.23E+07 5.23E+07 5.23E+07 5.35E+07 5.46E+07 5.56E+07 5.51E+07 5.31E+07 5.33E+07 5.33E+07	6.105-07 1.0815-07 6.325-07 6.325-07 6.325-07 6.785-07 7.125-07 7.125-07 7.805-07 7.805-07 7.805-07	9.87E+05 9.87E+05 1.21E+06 2.83E+06 2.83E+06 2.83E+06 2.83E+06 2.83E+06 3.13E+06 3.13E+06 3.13E+06 3.75E+06	4.12E+06 5.97E+06 5.42E+06 6.09E+06 7.80E+06 8.30E+06 8.30E+06
Monthly Discharge (gallons)	478286 462857 461793 480000 432000	787765 672000 608727 563478 1116000 1440000 1440000 1030154 1178182 2517455	1178182 1178182 1528615 1080000 3489231 1894154 1561846 6785856	NA 986779 227368 1489091 130909 0 0 299077 618876	372574 845132 445361 678857 1706400 235200 267840
ime Since st Sampled (min)	44640 44640 44640 43200 44640 44640 44640	44640 44640 44640 44640 44640 44640 44640 44640 44640	43200 43200 43200 151200 82080 67680 293760 293760 1 April 2001	System (SES) 0 312480 87840 131040 11520 34560 169920 25920 73440	28800 61920 28800 79200 113760 70560 89280
Flow T Rate La (gpm)	10.7 10.7 10.3 11.1 9.7 9.7	17.6 17.6 13.0 25.0 23.3 23.1 23.3 23.3 23.3 27.3	27.3 27.3 2999 throug 23.1 25.0 23.1 23.1 23.1 23.1 23.1 23.1 23.1 23.1	Extraction 5 3.2 3.2 11.4 11.5 11.5 11.5 8.4 8.4	12 12 13 13 13 13 13 13 13 13 13 13 13 13 13
Time for 5 gallons (sec)	28 28 29 27 31 February 15	1 1 3 3 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	February 11 11 12 13 13 13 13 13 13 13 13 13 13 13 13 13	Southeast I NM 95 115.9 26.4 26.4 26.4 150 25.6 35.6 First Year	23.19 21.98 19.4 35 20 90 100
DATE	09/17/98 10/17/98 11/17/98 12/17/98 01/17/98 01/17/99 12 /04 al: 1	02/1 7/99 03/1 7/99 03/1 7/99 06/1 7/99 06/1 7/99 06/1 7/99 06/1 1/01 06/1 1/01 06/1 1/01	12/11/12/3 2020/17/99 02/01/00 05/12/00 06/12/00 08/11/5/00 08/11/5/00 08/11/5/00 08/11/5/00 08/11/5/00 08/12/100 08/27/00 09/27/00	Plant#2 11/11/93 06/16/94 11/15/94 11/15/94 11/15/94 06/12/95 05/02/95 06/22/95	07/12/95 08/24/95 09/13/95 11/07/95 01/25/96 03/14/96 03/14/96
	بة * * *	<u> </u>	ທ່າ <u>່</u> ທີ່ທ	۵) • • •	

Table 5. Groundwater Discharge Summary, CSES and SES

Page 2 of 4

• ·

PCE	PCE
y Cumutative Monthly ge Discharge detected	nthly Cumulative Monthly harge Discharge detected
s) (galtons) (ug/l)	lons) (galtons) (ug/l)
42 8.61E+06 1.5	1442 8.61E+06 1.5
4.86E+06	4.86E+06
00 9.36E+06 4.6	12500 9.36E+06 4.6
00 1.07E+07 <0.5	36000 1.07E+07 <0.5
00 1.26E+07 8.5	0800 1.26E+07 8.5
00 1.27E+07 8.	71000 1.27E+07 8.
4.11E+06	4.11E+06
40 1,30E+07	7840 1.30E+07
51 1.36E+07	32261 1.36E+07
53 1.43E+07	32353 1.43E+07
29 1.47E+07	32629 1.47E+07
05 1.54E+07	32105 1.54E+07
00 1.5/E+U/	34000 1.3/E+U/
00 171E+07	171E+07
00 1.78E+07	14000 1.78E+07
00 1.84E+07	18400 1.84E+07
27 1.90E+07	38727 1.90E+07
00 1.93E+07	37600 1.93E+07
6.53E+06	6.53E+06
00 1 00E+07	70/00 1 00E+07
55 2.11E+07	17455 2.11E+07
14 2.21E+07	25714 2.21E+07
77 2.26E+07	15077 2.26E+07
00 2.33E+07	20000 2.33E+07
54 2.43E+07	30154 2.43E+07
54 2.54E+07	30154 2.54E+07
53 2.61E+07	52353 2.61E+07
65 2.69E+07	87765 2.69E+07
00 2.76E+07 -	20000 2.76E+07 -
27 2.82E+07 <	08727 2.82E+07 <
8.99E+06	8.99E+06
46 2.86E+07	61946 2.86E+07
15 2.88E+07 <	32615 2.88E+07
97 2.91E+07 <	30897 2.91E+07 <
00 2.93E+07	70000 2 93E+07
00 3.01E+07	44000 3.01E+07
0 3015+07	0 301E+07
0 3.01E+07	0 3.01E+07
00 3.03E+07	16000 3.03E+07
00 3 04E+07	81000 3 04E+07
20 3.05F+07	65970 3.05F+07
3.05E+07	44690 3.05E+07
2.25E+06	2.25E+06

Table 5. Groundwater Discharge Summary, CSES and SES

Page 3 of 4

CSES and SES
Summary,
Discharge
Groundwater [
Table 5.

													1 V L			otal VOCe	i
							РСЕ		•	401-1-1-C			2		-		;
	Time for		Time Since	Monthly	Cumulative	Monthly	Monthly	Cumulative	Monthly 1	Monthly	Cumulative	Monthly	Monthly	Cumulative ¹	Monthly I	Monthly 1	Cumulative
			Lost Complex	Discharge	Discharoe	detected	removed	removed	detected	removed	removed	detected	removed	removed	detected	removed	removed
DATC	suoileg c	nom)	Last Sampicu (min)	(nations)	(callons)	(no/)	(q)	(q)	(VCN)	(Q)	(q)	(l/gn)	(ql)	(qj)	(//50)	(q)	(Q)
	(SRC)	11110151		ferrorieR1	12:10:10 R	2.21											
	010				3 05F+07			1,13			3.22			10.60			14.94
SUDTOTAL	200				1000												
		Ċ	01000	67600	2 BUETUE	εv	0000	1.13	07	0.00	3.22	5.3	0.0	10.61	10.3	0.00	14.94
00/10/20	345	יפ	04700	00010) (2.0	000	20 E	5	0.00	10.61	10.3	0.01	14.95
+ 03/02/00	190	1,6	43200	11289	Z.3/E+U0	- -	700.0	2	500					10.61		0.01	14 96
08/15/00	205	1.5	151200	221268	2.59E+06	1.6	0.003	1.13	<0.28	000	3.22	0.1	0.00	10.01			
	202	0	RUCR	76235	2 67E+06	1.6	0.001	1.14	<0.28	0.0	3.22	1.8	0.0	10.61	3.4	0.00	14.90
00/11/20 -	C 200		000000	20000	0 77E406	000	0.000	1 14	0.35	0.00	3.22	2.2	0.00	10.62	4.75	0.00	14,96
06/2 1/00	20/	4, I	00010	10006		1 4	1000		40 0 V	0000	3 22	16	0.01	10.62	m	0.01	14.97
04/19/01	(a)	1,4	293/60	411264	3, 18E+U0	.	0000		70.02	2		2	1	0.00			0.03
Subtotal:	February 2	2000 thru	ough April 2001		9.33E+05			0.02	:		N .				-		
Cubtotal	SES	!			3.18E+06			1.14			3.22			10.62			14.41
					8 12F+07			1.55			89.66			47.59			140.28
101ALS	COES AU	000			0.14				0114100								
NOTE: Th	e system wat	s shut of	for the winter on	11/23/94 du	e to a cracker	l header. L	sperauon wa	as restored or	104/14/90								
*The conct	entrations for	these da	ltes are estimate	d to have bet	en une same a	s ure previo	JUS LESUIS.										
NM = Not I	Veasured																
(a) - Flow r	ate measure	d on 9/2)	//00 used in calc	ulations.													

-

······································	Sampling	
Monitoring Point	Frequency	Parameters
Plant 1 Monitoring Points		
MW-1027	Semi-Annual	TCE, TCA, PCE
D-25R	Semi-Annual	TCE, TCA, PCE
Chip Storage Extraction		
System (CSES)	Semi-Annual	TCE, TCA, PCE
TW-4	Annual	VOCs
EX-2R	Annual	TCE, TCA, PCE
EX-3	Annual	TCE, TCA, PCE
Plant 2 Monitoring Points		
TW-3	Semi-Annual	TCE, TCA, PCE
D-15	Semi-Annual	TCE, TCA, PCE
EX-7	Semi-Annual	TCE, TCA, PCE
Southeast Extraction		
System (SES)	Semi-Annual	TCE, TCA, PCE
MW-2004	Annual	TCE, TCA, PCE
MW-2005	Annual	TCE, TCA, PCE
D-18	Annual	TCE, TCA, PCE
EX-1	Annual	TCE, TCA, PCE
Site Monitoring Point		
Storm Sewer Grate (SS-1)	Semi-Annual	TCE, TCA, PCE

Table 6.Proposed Groundwater Monitoring ProgramSta-Rite Industries, Delevan, Wisconsin

-

APPENDIX A

DUAL SOIL VAPOR/GROUNDWATER EXTRACTION SYSTEM DAILY OPERATION LOGS

GeoTrans, Inc.

STA-RITE INDUSTRIES, INC.

DELAVAN, WISCONSIN

DAILY OPERATIONAL LOG

Date	Hour Meter Reading	Operating Exhaust Temperature (°F)	Inlet Vacuum (* Hg)	Exhaust Pressure (* Water)	Special Vacuum Reading and Location	Running Lights Checked	Initials of Technician
	liscen	1200	6.5	12-2	6.2 7.7		2x
12 13 49	8:45 am	118°	6.5	12.3	6.2/7.9		BG
12-12.99	Q'3S AM	1180	6.5	12.4	6.2/7.9		tot
20.98	2:45AM	1180	4.4	12.3	6.2/7.8		2 the
22-99	9:45Am	88	4.2	14.4	3.7/5.5		XX-
12.02.99	10:2SAM	88	4.2	14.6	3.7/5.0	<u> </u>	AD -
1.3.00	MADIN	9.5°	4.0	14.1	3.5/6.2		
1.4.00	9:07AM	950	H.2	14.0	3.7/5.3	 	20
5.00	8:45Am	92°	4,2	14.3	3.7/5.3	{	dat_
1- 1.00	8:15AM	9.5°	41	14,0	3.3/5.4	<u> </u>	22
1-7-00	11340 Am	93°	3.9	14.1	3.7 / 5.5	·]	PD
1-10-00	7:55An	102°	4.0	13-1	3.6/5.9	<u> </u>	ad _
1.11.00	12:25 Pm	1020	3.9	13.4	3.615.9	} 	PD
1.12-00	2:05PM	1020	3.9	137	3.6/6.0	2	Prot
1-13.00	SUSSAM	980	3.9	13.8	3.6/6.	2	RO
1-14-00	8:15 AM	iço	3.9	14.0	3.6/6.2	2	Po
1.17-02	IOSSAM	98°	3.7	13.8	3.4/6.	3	Rd
1-18.00	855 AM	100 °	3.6	13.5	3,4/6.	3	-PD
1.19.00	9:45AM	1020	3.6	/3.3	3.3/6.5	<u> </u>	100
1-20-00	8:25	1020	3.6	13.4	3.3/6.4	2	-det-
1-21-00	10:1.5km	102	3.2	13.1	5.2/6.	(<u> </u>	1 PD
1-25-00	9:55 AM		3.4	12,1	3.0/7:	5	120
1-15-02	2:00AM	1100	3.2	12.4	2 J.Y/ 7.1	e	RO.
1-26-00	9:0001	1120	3.2	128	2.9/ 1.5	<u>}</u>	<u> </u>
1. 17.00	855 AM	1140	31	12.6	211/ 82		pe

FORM 3

HSI SIMON HYDRO-SEARCY

าไ

STA-RITE INDUSTRIES, INC.

DELAVAN , WISCONSIN

DAILY OPERATIONAL LOG

Dat	c	Hour Meter Reading	Operating Exhaust Temperature (°F)	Inlet Vacuum (* Hg)	Exhaust Pressure (* Water)	Special Vacuum Reading and Location	Running Lights Checked	Initials of Technician
<u> </u>				2.4		2.6/80		Land
1-28.	00	11:37AM	1220	<u>~</u> .9	12.4	22/0 0		L
- 12.1	00	9:45 pm	1220	×.4	11.8	1 7.0		-P.O2
1.31.	00	2:00AM	CHANLE	O FILT	Ee.	3.9-15-0		10
2-1-0	0	8:30An	<u> 98</u>	4.0	14.2	3.7/50		PD
2.2.	00	10 25 m	900	4.0	14.3	36/52		
2.3.0	0	9:35Am	92°	4.0	13.9	3.6/5.2		P
2-4-6	20	9 NORM	Goo	4.0	14.F	3.6/5.2		ax.
2-2 0		7:12	92°	4.0	14.2.	3.6/5.2		72
<u> </u>	<u>^</u>	7:40A	90	4.0	14.3	3.4/5.3		Ast_
<u> </u>	20	9:55 AM	95°	3,9	14.1	3.6/5.3		22
2.40	.00	740Am	950	4.0	13.9	3.7/5.4		da -
1.11	00	7:10 AM	910	4.1	14.2	3.8/ 5.3	<u> </u>	BB
	.00	0 53Q1A	92	40	13.9	3.7/5.4	<u> </u>	The state
	- 00	JO SSAM	1120	5.5	12.6	5.2/9.7		dd/
5 <u>12 / 2</u>	- 00	8 40an	1320	5.5	12.7	5.2/7.4	ą	T AK
2012		14500	HS°	5.5	12.6	5.2/7.7		X.L
2.19	- <u></u>	832AM	1140	5.5	12.5	15.2/7.7	<u> </u>	IZZ_
2.3	- 000	8:43AM)180	5.3	12.5	4.9/7.7	<u></u>	Z.L
		9:2020	1250	5.4	12.3	5.0/8.0		1 LL
0.11	200	9:400m	1258	<u> </u>	12.2	5.0/8.0	>	kk_
0-0-	3-00	11:40 m	1270	5.2	12.1	5.0/8.0	<u> </u>	BM_
6-2	<u> </u>	7:00 101	1220	5.1	12.1	5.0/8.1		BM
2.20	7.00	10:10 1	134°	4.9	12.1	4.4/8-5	Ť	d'x
10-28 	100	1130	(340	4.7	11.9	4.3/ 8.6		del.
2-29	- 00	1 (2137		<u></u>				

HSI SIMON HYDRO-SERROH

-1

STA-RITE INDUSTRIES, INC.

DELAVAN, WISCONSIN

DAILY OPERATIONAL LOG

Date	Hour Meter Reading	Operating Exhaust	Inlet Vacuum	Exhaust Pressure	Special Vacuum Rending	Running Lights Checked	Initials of Technician
		Temperature (°F)	(* Hg)	(" water)	and Location		
3-1-00	6 cman	CHNDLED	FILTER		5.34 6.5		00
3-1-00	MAZZIP	1100	5.7	12.8	5.3/6.5	<u></u> . <u></u> . <u></u> _	JZ.
3.2.07	8:30m	1128	5.7	13.0	5.4/6.5		2n
3.3.00	8:05	112	.5.7	13.0	5.3/6.7		PD-
3.6.00	10:4544	116	5.7	12.8	53/6.6		40
3.7.02	8:20 Dm	i15 ⁰	5.7	12.8	5.3/6.6		-20
3-8-00	7:35A1	116	5.6	12.7.	5.3/6.6		25
3-9-00	9:55AM	113°	5.6	12.7	53/6.5		22
3.10.00	930AN	1130	5.6	13.1	53/47		PO
3-13-00	81302M	/13 ⁰	5.6	12.9	15-3/6.7	<u> </u>	dz_
3-14 -00	10:25 AM	1170	5:57	12.8	5.3/6.7		20
3-15.00	8:25 AM	1130	6.6	12-7	5.3/6.7	 	An Z
316-00	8:10 AM	1100	5.7	12.9	5.3/6.7	<u> </u>	P.D
3.17.00	6:45AM	1080	5.6	13.2	5.3/6.7	<u> </u>	DA
3-20-00	GiDDAM	1120	5.8	12.7	15/70	<u></u>	an
3-21.00	8:25AM	1150	5.8	12.8	5.5/7.0	<u> </u>	× ×
3.22.00	840pm	1150	5-8	12.9	5.5/7.0	<u> </u>	122
3-23-00	9:SOAM	119°	5.8	12.9	5.5/ 7.0	<u> </u>	22
3.24.00	HUSAH	1200	57	12.6	5.5/6.9	<u> </u>	A
3-27-00	8:25 AM	1,90	5.6	12.5	5.3/6.3	<u> </u>	142
3-28-00	7:45 AM	113°	6.0	12.5	123/6.7		an
3-29-00	10:SOAM	1150	5.6	12.7	53/6.7	<u> </u>	-00
3.30.00	10:05 AN	190	5.6	12.8	3.3/6.7	<u> </u>	0.0
3-31-00	12:40 Pm	1200	5.6	12.8	5-3/7.0		JAN

.

HSI SIMON HYGRO-SERACH

FORM 3

STA-RITE IND.

1 262 728 7213 P.07/18

STA-RITE INDUSTRIES, INC.

DELAVAN, WISCONSIN

DAILY OPERATIONAL LOG

Date	Hour Meter Reading	Operating Exhaust Temperature (°F)	Inlet Vacuum (* Hg)	Exhaust Pressure (* Water)	Special Vacuum Reading and Location	Running Lights Checked	Initials of Technician
4-3.00	8-35An	120°	5.4	12.6	5.3/6.7		d d
4.4-00	9:15AM	1170	5.6	12.6	53/67		TL
4.5.00	8:18AM	1190	5.6	12.7	\$5/67		XZ
4.6.00	945 AW	1200	5.5	12.6	5.2/6.7	<u></u>	2x
4.7.00	8:45Am	ירו(5.6	12.7	5.2/6.8		L.
4.10.00	277Pro	i18°	5.7	12-8	5.5/2.2		2x
4-11-00	11:05 AD	1180	5,9	12.8	5.6/7.2		L'L
4-12.00	950An	120	5.7	12.9	55/7.2	<u> </u>	Z.L
4-13.00	9.40An	118°	5.7	128	5.4/7.2		LL_
4-13-00	19:10 Am	1150	5.7	13.0	3.8/7.2		xz_
4-14-00	11:15An	148°	7.8	11.7	7.5/8.8		ZL_
4-17.00	10:07 Am	/33"	7.8	11.7	7.5/9.0		ZL
4-18-00	9:07AN)	1400	7.9	11-8	2-6/8.9		122 ···
4-19-00	12:3097	1400	8-0	ק. וו	7.6/9.0		22
4-2000	<i>٤</i> (٣	TRIC STOAT	n Pun	704 8	RUNNIN	6	22
4+21-00	1010M	200	5.5	12.2	6.0/7:5		La _
4.24.00	8:55Am	138°	4.3	12,5	6.0/7.5	<u> </u>	LL_
4.25-00	8:35AN	1200	6.2	125	6.0/7.8		LP_
4-26.00	9-40AM	1250	6.2	12.6	3.9/73		XX
4-27-00	9:20Am	125°	le. 2	12.5	5.2 /7.2		L.
4.28.00	8 SOMM	1290	(₈ .2	12.5	5.8/7.2	<u> </u>	
5-1-00	10:30AM	130°	6.2	12-4	5.8/7.2		122-
5-2-00	8:45 Am	1298	6.2	12-5	5.8/7.4		dd.
5.3.00	10:32 AM	135	6.0	12.4	51/7.4	<u> </u>	LL_

.

- - -

FORM 3

HSI SIMON HYDRO-SEERCH

STA-RITE IND. STA-RITE INDUSTRIES, INC.

DELAVAN , WISCONSIN

DAILY OPERATIONAL LOG

Date .	Hour Meter Reading	Operating Exhaust Temperature (*F)	Inlet Vacuum (⁻ Hg)	Exhaust Pressure (* Water)	Special Vacuum Reading and	Running Lights Checked	Initials of Technician
							I.I.
5-4-00	2:15PM	1450	S.I	11.8	4.7 /8.8		- p.J.
52-5-00	9:12 Am	1550	4.2	11.9	3.9/ 9.8		22
5.8.00	926Am	1450	4.9	11.7	5.7 / 8.7		d Z
6.5.00		CHANGED	FILTE	e			10
5 90 80	7:50AM	1500	4.9	11.6	4.5/9.0		dd
3, , , , , , , , , , , , , , , , , , ,	2:30Pm	1520	4.9	11.6	4.4/9.4		
5-10-00	2:2290	ريم، الاع	4.8	11.4 -	4.4/9.2	<u> </u>	22
Cold and	IL SAM	1620	4.7	11.6	4.2/9.2	<u> </u>	ZZ
2.00	9720AM	1500	4.6	خ.11	4.2/9.5		JL_
	2:35 PM	1580	4.6	11.7	42/95		det
<u>3-13-00</u>	130PM	158	4.6	11.7	4.2/7.5	<u> </u>	dat
Strict ou	CIL	ANGER KI	ETER_			· · ·	
5 16 90	9000	132°	6.2	12.5	60/7.2	<u> </u>	Lt.
0-11-00	845 pm	130°	6.2	12.1	61/7.5		B.H.
5-10-00	11:40 AM	1240	61	11.5	6.1/7.5		BG
5-17-00	1:27 1110	130°	6.0	12.2	58/7.5	<u> </u>	B.H
12.00	7.1/2 1111	1310	5.8	12.0	5.5/7.5	·	0.4
5-25-00	1.40,400	1330	5.7	121	5.3/7.6		BU
5-24-00	11:25 44	130 50	5.6	121	5.4/7.7		BH_
5-15-00	1:28	1370	55	12.0	5,4/8.0		BY
5-26-00	Vn. d. J. ANT	1400	5.7	11.8	\$4/7.9		LL_
5.30-00	1.1000	1430	5.4	11.8	5.0 /8.8		LL_
5.31-00	1.10113	14.30	5.9	119	5.6/8.2		<u> LL</u>
6-2-00	10.38	1420	5.8	11.9	5.5/8.	5	La
11/ . 5 100	110:55 00	1 · · · · · ·	· · · ·				

FORM 3

HSI SIMON HYDRO-SERROH

.

STA-RITE IND.

1 262 728 7213 P.05/18

STA-RITE INDUSTRIES, INC.

DELAVAN, WISCONSIN

DAILY OPERATIONAL LOG

Date	Hour Mcter Reading	Operating Exhaust Temperature (°F)	Inlet Vacoum (* Hg)	Exhaust Pressure (* Water)	Special Vacuum Reading and Location	Running Lights Checked	Initials of Technician
6400	24KS PM	148°	5.6	11.9	5.3 8.5		SL
67.00	814AAS	148	5.6	11.8	5.3 8.7		LL_
6-8-00	10,4000	· S 2°	5.5	11.7	\$.2 8.6		Ld_
62.00	101 30 Am	155°	S.Y	11-8	5.6 / 8.7		IL
6-12-00	SYDAM	155°	5.5	11.2:	5.2/9.2		L.
6-13-00	54858	m off El	ECTUGO	5700	eas		tot-
bouroo	1140 00	1380	6.0	1.1.8-	5.6/80		Le_
6-15-00	820ms	1438	6.0	11.6	5.6/8.0		t.
6-15-00	10730 ANS	CLEAN	EP FI	ER SV	ES		Tagy
-16-0-0	100 PM	* ۲۵	6.4	11.9	4.0/8.4		L LR
6-19-00	910500	139°	6.y	12.3	40/7.4		LPP
6-20-00	10:05Am	1380	6.4	12.0	6.0/7.4		LZZ
6-21-60	10:1000	143	6.3	H.9	6.0/7.4		LK_
6-22-00	12:40PM	1420	le. 3	12.1	6.1/7.9		za
6.23.00	1.40Pas	1420	6.4	12.0	61/2.4	· <u> </u>	ZZ
6-26-00	9:45Am	1430	6-3	12.0	6.1/7.5		LL.
6.27-00	10:45 Am	1 9 3°	6.3	12.2	6.1/7.5		ZZ
6-28.00	12:50Pm	138°	6.3	12.0	6.1/1.5		T.L
6-28-00	8:30m	1420	6.4	12.1	6.1/7.6		LL
6-30.00	12:37 AN	1420	le.3	12.0	6.0/7.5	, 	de
7-5-00	10:00Am	1380	5.9	12./	6.2/7.6	· · · · · · · · · · · · · · · · · · ·	de la companya de la
7-6:00	2458m	1920	6.3	11.9	6.017.5	 	the
7-7-00	3:00Pm	/ 38°	6.3	12.3	6.0/ 7.5	- 	al-
7.10.00		CHANGED	GITCR	6053	OR WAT	عد	L

÷.

FORM 3

_

HEI SIMON HYDRO-SERRÖH

STA-RITE IND.

STA-RITE INDUSTRIES, INC.

DELAVAN , WISCONSIN

DAILY OPERATIONAL LOG

							• • • • • • • • •
Date	Hour Meter Reading	Operating Exhaust Temperature (*F)	Inlet Vacuum (* Hg)	Exhaust Pressure (* Water)	Special Vacuum Reading and	Running Lights Checked	Initials of Technician
ļ					Location		70
17-11-02	220Am	143°	6.5	12.0	6.2/6.7		dd_
7-17-00	7.3 Am	1430	6.5	12.1	6.2/7.6	۱ 	LL_
7. 12.00		POWER Sud	GE SHA	T 5450	En Ion	لم	
	INBOAM	150	le:4	11.9	L.2/7.7		IL.
7.17	9:25 am	1459	6.4	12.0	6.2/7.6		LL_
7	8534.	1450	6.4	13.0	6.2/7.6		IL_
7, 19:00	ORA R	OR ALUSIS O	VE AND	2 REPA	as	<u> </u>	122m
7. 27	Bree	ON LINF		1		<u> </u>	Lat
-7 -2-00	10:00An	1450	6.4	13.0	6.1/7.5	ŧ	da.
(-11-00	STRAM	TO MUCH	WATER	work	Run		Jd
8.1-20	9:40 m	/38°	6.6	12.0	6-4/7.6	ļ	La-
5.2.00	10 55 EM	1420	6.6	12.0	6.2/7.5	1	IT-
9-3-00	10:40	1420	4.10	12.1	6.2/71.5	ļ	<u> </u>
8.4.00	10:50	1450	66	12.3	6.2/7.5		155-
S. L.	Romp	DoutF	TROM	ELECTA	AL 57	PRA	1 #
R-7	Don	IN ING -	TANK			ļ	Tack-
Q.7.00	11:20 AM	135"	6.6	12.1	6.2/7.4	· 	att -
8.8.00	THESAN	1426	6.6	12.1	6.2/7.5	· 	122
9-9-000	11130 Ar	142	66	1211	6.217.5	<u> </u>	I Za
8.10-00	1013000	1450	le-6	12.2	6.2/24	·	the second
8-11-00	12:55 PM	143°	6.5	12.2		<u>{</u>	100-
8.11.00	Am	CHANLE	FILT	ER	162/74	·	150-
	-+	1	1 1	11.1	11-170	1	1xd
8.14.00	\$ 35 BM	1430	6.5	1417	1. c/ 1.		20

HSI SIMON HYDRO-SEARCH

FORM 3

STA-RITE IND.

STA-RITE INDUSTRIES, INC.

DELAVAN , WISCONSIN

DAILY OPERATIONAL LOG

Date	Hour Meter Reading	Operating Exhaust Temperature (*F)	Inlet Vacuum (* Hg)	Exhaust Pressure (* Water)	Special Vacuum Reading and Location	Running Lights Checked	Initials of Technician
8-14:00	8:20An	145°	6.5	12.1	6.2 7.5		đ <u>đ</u>
8-17-00	Pu	mp off	F whe	w he	re		BG
8-18.00	<i>Pun</i>	nP Off	DRAN	EO WAT	sa def	ANO STARTE	
8.21.00	7.30Gm	138"	6.5	12.4	6.2/7.5		1.7
8.22.00	1:35 PM	1420	6.4	12.2	6.1/7.5		J.L_
8.23.00	10:20 Am	142	6.4	12.3	6.17.5		det
9-24.00	10:25 PM	۱ <u>५</u> ३ ^۵	6.3	12.2	6.2/7.5	<u> </u>	IL_
8.25.00	IDNS NM	143	6.5	12.2	6.2/7.5	<u> </u>	Let
8.28-00	8:33 Am	1410	6.4	12.2	6.2/7.5		the
3.29.00	9:45 AM	1430	6.4	12.2	6.2/7.5	<u> </u>	Lat
8.30.00	2200PM	1400	6.4	12.2	6.2/7.5	† 	dot_
8-31-00	6:50 AM	1400	6.4	12.2	6-2/7.5	ļ	at
9.1-00	T:ISPM	1500	6.4	12.1	6.2/7.5		122
9.5-00	9:03AM	1390	6.5	12.4	6.2/7.5	∤	at
9-6.00	11:07AM	141°	4.5	12.3	6.2/7.5	+	at _
9-2-00	9:47 AM	1430	Le.4	12.1	6.2/7.5	·	La
9-11-00	1000Am	1450	6.5	12.0	6.2/7.4	·	L L L
	OFF C	AUSE OF S	TORM	720	6678-3		L z z
9-12-00	11415AM	138°	7.0	12.0	6.6/35		at -
9.13.00	10,400 mg	145	6.5	12.1	6.2/1.5	<u> </u>	1 XX
9.15.00	905 AM	1282	6.5	12.3	6.2/7.5	-	IJP
9-18.00	11:00 Am	1400	6.2	12.3	6.0/7.2	<u></u>	1 dd
9-19-00	9:45 AM	1400	6-2	12.0	5:8/7-2	<u> </u>	J.L
9.20.00	9:00 Am	138	6.2	12.1	40/7.2	<u> </u>	dd

HSI SIMON HYDRO-SEARCH

STA-RITE IND.

1 262 728 7213 P.02/18

STA-RITE INDUSTRIES, INC.

DELAVAN , WISCONSIN

DAILY OPERATIONAL LOG

		<u> </u>					y 242-1F
Date	Hour Meter Reading	Operating Exhaust Temperature (°F)	Inlet Vacuum (* Hg)	Exhaust Pressure (* Water)	Special Vacuum Reading and Location	Running Lights Checked	Initials of Technician
				<u></u>			PO
9.21.00	lottoram	1.380	6.2	12.2	14/27		90
0 22-00	11:120	1380	6.4	12.3	62/7.5		dt
0.28-	7:234	1250	6.2	12.3	6.4/7.8		az
<u>50-20-1</u>	7:4-0	1270	6:2	62.4	6.4/7.8		tothe
M-26-00	1.2 KED.	/37°	6.6	10.4	6.4/7.8		ad -
4.28.00	10 25000	1370	6.6	12.3	6.3/7.7		dol_
7.29.00	(۳۹۲ میں ۵۰ ۸ محرب ۱	1200	1.5	12.0	6.2/7.6		LL_
10-2.00	11 155 ATH	<u> </u>	6.5	12.2	6.2/7.7		del_
10-3.00	2.25017	0	1 7	12 2	6.408.0		LL.
" 1 <u>0 - 4, 00</u>	1 copm	138	+	10 0	6.3/40		Lal
10-5-00	9:50 Am	137°	4.1	10-d	1-10-	<u> </u>	PO
10.6-00	10:25 Am	1370	6.7	12.2	6.3/0.0	<u> </u>	PD
10.9.00	10:50 PM	1370	167	12.5	6.8/8.0		Po
10-10-00	800Am	1370	6-7	12.5	6.3/7.8	<u> </u>	PD
10+11-010	12 40Pm	137	6.6	12.3	63/79	<u> </u>	Pn
10-12-08	8:50 NM	13,2	6.6	12.5	6.8/7.8	<u> </u>	PD
100300	8:55 Am	135	6.6	12.3	6.3/7.7	<u>'</u>	192
10-14.00	8:40 AM	1320.	6.6	12.4	63/78	<u> </u>	dat -
10.12.00	11:40AM	/32°	6.6	12.3	6.3/2.7		90
10-18-00	11:20/Am	139°	6.6	12.3	63/27	<u> </u>	A.R.
10.19.0-	THOAM	133°	6.6	12.3	6.3/7.7		1 del
10-20-00	2:10 PM	1400	6.6	12.2	6.3/7.7	<u></u>	- AL-
11.23.00	955AM	148	6.4	12.1	4.2/8.	<u> </u>	105-
10.24.00	11720 AM	142*	6.9	12.1	6.2/8	\$	10-0K
10-25.00	10:45 AM	1410	6.4	12.0	6.2/8.2	<u> </u>	1 For

HSI SIMON HYDRO-SEARDH

FORM 3

STA-RITE INDUSTRIES, INC.

DELAVAN, WISCONSIN

DAILY OPERATIONAL LOG

Date	Hour Meter Reading	Operating Exhaust Temperature (°F)	Inlet Vacuum (* Hg)	Exhaust Pressurc (* Water)	Special Vacuum Reading and Location	Running Lights Checked	Initials of Technician
10-2600	745AM	1410	4.3	12.0	6.2/8.2		LL_
10-27-00	1032An	1450	6.3	11.9	6.2/8.2		f f f f
10.30.00	TE18AM	1380	6.3	11.9	6.0/8.2	· · · · · · · · · · · · · · · · · · ·	LL_
10-31-00	1:34Pm	1430	6:3	11.9	5.9 /8.3		LL_
11-1-00	teason	a en	EO F	ITER			L
11-1-00	155Pm	137°	6.7	12.1	6.3/7.5		PJ
11 2.00	10:08	137°	6.7	11.9.	6.5/7.6		LL
11.3.00	8=5SAM	137°	6.8	12.1	6.5/7.7		L
11-6.00	1002 BM	1300	6.6	12.0	64/ 7.5		LL
1-9-00	9:254M	128°	6.9	12.0	6.3/7.7		86
11-12.00	11:27Am	1200	7.2	12.1	6.3 7.7		L
11-14-00	855 Am	1200	6.6	12-1	6.3/7.6		ZR
11 15.00	10:30 BM	1200	6.7	12.2	6.3/7.6		L
11-16.00	11:10 AM	121°	6.5	12.1	6.3/7,5		BH
11-20-20	10:25AM	1.20°	6.6	12.3	6.4/2.6		d L
11.24.00	7:45AM	/17°	4.le_	12,4	64/7.6		LL
H-22-80	9:000m	1170	6.6	12.5	6.4/2.6		Tol .
11-22.00	NOPM	1200	6.7	12.1	6.4/27		LL
11-28-00	940 Am	1190	60	12.2	6.5t/7.5		BL
11-29-00	10:10 BM	1200	6.8	12.2	6.6/7.7		L
11-30-00	8.15 MM	1190	6.8	12.2	6.6/7,8	_	BY
12-1-00	2:13Pm	1.70	6.8	12.5	6.6/7.8		LL_
12-4-00	9.45 Am	1.5 ⁰	6.7	12.3	64/7.7		L'À
12-5-00	6:30 AM	110°	6.7	12,1	55/ 7.8		69

FORM 3

 \otimes

HSI SIMON HYDRO-SEARCH

STA-RITE IND.

1 262 728 7213 P.06/13

STA-RITE INDUSTRIES, INC.

DELAVAN , WISCONSIN

DAILY OPERATIONAL LOG

Date	Hour Meter Reading	Operating Exhaust Temperature (°F)	Inlet Vacuum (* Hg)	Exhaust Pressure (* Water)	Special Vacuum Reading and Location	Running Lights Checked	Initials of Technician
12-600	11:05Am	110°	6.6	12.5	6.4/76		22
12-7-00	8:00 Am	111	6.6	12.3	6.4/7.6		BH
12-8-00	11-20Am	ir5"	6.6	12.5	6-4/7.6		<u> </u>
12-11-00	8:40 MM	1070	6:6_	12.4	6.4/76		all
12.13.00	135 Pm	107°	6.6	12.8	6.5/26		J.L
12-14-00	3:05 PM	111°	6.5	13,0	6.5/7.6		By
12.15.00	855 AM	J140	4.4	12.6-	6.5/7.7		det -
,2-18-00	853 Mm	115°	6.8	12.5	6.6/7.8		~d
12-19-00	950AN	iı,°	6.7	12.3	6.4/7.7		d d
12.20-00	10:30 Am	1080	6.7	12.4	65/27		IL.
12-21-00	7:25An	1100	6.7	12.4	6.5/7.7		XX
12-21-00	CHANG	ED FILTE	re				
2.1.00			<u> </u>			·	
	. <u> </u>				·		
			[ļ	· · · · · · · · · · · · · · · · · · ·		
				· · · · · · · · · · · · · · · · · · ·			
			; 		• 		
				<u> </u>			
			i 		 		
			<u> </u>				
				ļ			
					ļ		
							·

HSI SIMON HYDRO-SEARCH

8

STA-RITE IND.

1 262 728 7213 P.05/13

STA-RITE INDUSTRIES, INC.

5.3

DELAVAN, WISCONSIN DAILY OPERATIONAL LOG

Date	Hour Meter Reading	Operating Exhaust Temperature (°F)	Inlet Vacuum (* Hg)	Exhaust Pressure (* Water)	Special Vacuum Reading and Location	Running Lights Checked	Initials of Technician
	Q. CA	,, o	1.0	12.0	6.6/8.0		L
1-2-01	7.03An	110	10	12 2	10/10		of L
<u>1-3-0:</u>	1:1020		4.0	17=	1. ho		RD
1-4-01	10:45AM	114	6.1	12.5	1.1-1.		J.S.
1.5.01	8:30AM	<u>"S</u> "	4.6	12.1	6.4/1.6	·	_DN
1-801	10:05 AM	J13°	6.6	12.3	6 3/2-6		ZZn-
1-9-01	2:257m	<u></u>	6.6	12.5	6.4/7.7		XX_
i-10-00	7:35AM	113	6.7	12.5	6.4/7.8		ZR_
1-11-01	lijoan	1.5°	6.6	12.3	6.4/7.7		La.
1.12.01	9:50An	1150	6.6	12.3	6.4/7.8		L.
1-15-04	10:05AM	117°	6.6	12.1	6.4/7.8	l	x.L
1-16-06	9345 AM	117	6.7	12.2	65/8.0		Z.C.
1.12-01	11:37 Am	1150	6.8	12.3	6.5 8.0		de la
1-1801	10:05 AM	1150	6.8	12.2	6.5 7.9		Joz_
1-19-01	1:10Pm	nù a	6.6	12.3	69/7.9		Z.
1-22-01	I O BS AM	1150	6.8	12.4	6.6/8.0		×
1-23-01	2:25PM	1150	6.7	12-3	6-4/7-9	ļ	ZK_
1-24.01	10 +15 Am	1,5	6.7	12.3	6-4/,7.9		dal
1-25-01	8:15 A.	1150	6.7	12.4	6.5/8.0		- SA
1-26-01	1308m	1150	6.7	12.1	6.4 7.2		00
1-27.01	11:30 AN	115	6.8	12.0	6.5/ 8.0		₹¥_
1-79-01		······					ļ
1-20-01	8:45 MM	Not Pu	NNING	+AN.	K Full of	Ewiter_	BH
11	8:50	990	7,3	11.2	7.0/8.3	AFter	start up
1-31-01		NO RU	もことの	That	Fy# O	E WATTE	2

HSI SIMON HYDRO-SEARCH

FORM 3
STA-RITE INDUSTRIES, INC.

DELAVAN, WISCONSIN

DAILY OPERATIONAL LOG

Date	Hour Meter Reading	Operating Exhaust Temperature (°F)	Inlet Vacuum (* Hg)	Exhaust Pressure (* Water)	Special Vacuum Reading and Location	Running Lights Checked	Initials of Technician
2-1-01	11:25 RM	liso	6.9	12.1	46 7.9	{ 	L
2-2-01	10:50AM	<u>n5°</u>	6.9	12-2	6.6/ 8.0		d.
2.5-01	10:15 AM	1130	6.6	12.2	63/7.8		Le .
2.6.01	12:40 PM	115	6:19	12.2	6.4/ 7.8	<u>_</u>	L.
2-7-01	835	11.3°	6.7	122	6.5 8.0		2 d
2-8-01	9:40 Am	1170	4.7	122	1.5 8.0		LR
2-9-01	Not	RUNNU	WG	DRIAN	+ Rest	ARt	BH
2-12-01	Sizzam	STAR FUNK FU	11 OF WA 6.5	res, 2. 2.	7.2 /8.5		LL
2-14.01	16115 Au	}is≈	6.9	11.9	6.6 /8.0		2L_
2-15-01	8:18Hm	115°	6.9	12.0	6.6/8.0		64
2-16-01	855 AM	1180	6.9	12.0	6.6/8.0		OH
2-19-01	9:35km	180	12.0	10.9	11, 1 12.5		ll_
2-19.01	10:40pm	CAHANGEO	RILTER	2			fd
J-19.01	10:45 Am	1450	8.0	11.8	7.7/.8.7		2P
2-20-01	12:35Pm	1170	6.9	-12-/	66 (7.9		22
2-21-01	10:50AM	11 2 [°]	7.0	12.3	6.7/ 7.9	·	Le
2-22-01	7135ha	1100	7.0	12,2	6.6/7.9		LL
2-23-01	1:30PM	1120	6.9	12.3	6.6/ 7.9	,	LL_
2.27.01	8:45An	1120	7.0	12.3	6.81 80		~~
2-28.01	12:50 AM	1120	6.9	12.3	6.6/78		dr
3-1-01	11;20 M	113°	6.8	12.2	6.5/7.6		La_
3.2.01	hioran	1200	6.9	11,9	6.5/7.8	<u> </u>	da
3-5-01	10:00 NH	1120	4.8	12.2	6.5/ 7.4	·	I.L.
3-6-01	10:35AM	1120	6.7	12.1	6.5/7.6		d L
2-2-01	147 Pm	1/3°	6.7	12.1	6.5/7.6		dd.

FORM 3

8

HEI SIMON HYDRO-SEARCH

STA-RITE IND. SIA-RITE INDUSIRIES, INC.

DELAVAN, WISCONSIN

DAILY OPERATIONAL LOG

Date	Hour Meter	Operating	Inlet	Exhaust	Special	Running	Initials of Technician
	Reading		("Hg)	("Water)	Reading	Checked	
	ł	(*F)			and		
	1			<u> </u>	LOCATION		40
3.8.01	9:10 An)13	<u>ما، ما</u>	12.2	64/7.5		ad
3.9.01	10:22 AM	<u>°£1(</u>	6.6	12.2	6.4/7.6		de la
3-12-01	10:35AM	113	6.6	12.1	6.4/7-6		2L
3-13.01	10:50AM	113	6:6	12.0	6.4/7.6		LL
3.14.01	MAZOR	1120	6.6	12.1	64/7.6		Lol
3-15-01	120Pm	1120	6.6	12.1	64/27		dz.
3-16-01	11:15 mm	1/3	6-6	12.1	6.4/2.7		XL
3-19-01	10:17 AM	1150	6.6	12.4	6.4/7.6		2 X
3-20-5'	HOV SM	119	la le	12.3	6.3/7.5		22
-21. Dr	9:00Qm	115°	6.6	12.2.	6.3/7.5		22
3-22.01	10:35Am	119°	6.6	12.2	6.3 7.5		det
3-23-01	10-27AM	1190	6.6	12.1	63/7.5		LL
3-26-01	12:2590		6.6	12.3	6.3/7.5		Le
3-27-01	550 AM	116	6.6	12.1	6.4/7.6		BG
3-28-0:	1 sid PM		6.5	12.2	6.3/7.6		22
3-29-01	205 PM	166	6.5	12.2	6.3/7.6		Lef
3-30-01	840Am) 200	6.6	12.1	6.2/7.5	<u> </u>	LL
4-2-01	9:10Am	1180	6.4	12.1	6.2/7.5		22
4.3.01	JOSPM	1180	6.6	12.2	6.3/7.6		LL_
4.4.01	3:35PM	118	6-6	12.3	6.2/7.6		IL_
4-5-01	9:35 AM	120	4.01	12.2	6.3/7.6		the
4.601	10:00 MM	125	6.6	12.0	6.4/7.6		Lob
4.9.01	8:55AM	124	6.8	11.9	6.6/7.9		for
4-10-01	8:22AM	117°	6.9	11.9	6.6/8.0		dL

FORM 3

 \otimes

HSI SIMON HYDRO-SERROH

\$

STA-RITE IND.

STA-RITE INDUSTRIES, INC.

DELAVAN, WISCONSIN

DAILY OPERATIONAL LOG

Date	Hour Moter Reading	Operating Exhaust Temperature (°F)	Inlet Vacuum (* Hg)	Exhaust Pressure (* Water)	Special Vacuum Reading and Location	Running Lights Checked	Initials of Technician
4-11.01	V	VIT DONN	700	MUCI	WAGER		
4.12.01	5	IF DOWN	7 00	MUCH	Warta		DD
4. 13.01	11:20 AN	1,20° ·	6.9	11.9	6.6/7.9		de
4.1601	8:45AM	1170	6.5	12.1	4-2/7.5	<u> </u>	aa
4-17-01	loydown	·120°	6.5	12.3	6.2/25		LL.
4.18.01	2:45 RM	1220	6.5	12.3	6.2/7.5		ZZ
4-19-01	10:45	122"	6.5	12.2.	6-2/25		IL
4-20.01	1:510	122°	6.6	12./	6.3/76		ZL
4-23-01	8:00am	1260	6.6	12.0	6.2/7.6		ZL
4-24-01	1033SAM	1270	6.5	12.2	6.2/75		LL_
4-25-01	7:45 AM	1220	6.5	12-2	6.2/7.6		I.L
4-26-01	11:23 AM	1280	le.4_	12.2	6-2/7.6		12
φ-27-0,	8:276m	1270	6.4	12.0	6-21/7.5	<u> </u>	a de
4.30.01	9:55 Am	133	6.4	12-2	6-2/7.5		the
5.1.01	10:55 AM	135°	6.4	11.9	6.1/7.4		Le
5.2-01	11:25Am	1.33°	6.4	12.0	6.1 7.4		ad_
5-3.01	10:05AM	130°	6.4	12.2	6-2/715		Re
5.4.01	955 AM	1280	6.6	12.2	6.3/7.6		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5.7.01	G:42AM	1320	6.5	12.1	6-2/7.6		2P
5-8.01	9:35AM	,32°	6.5	11.9	6.3/7.6	<u> </u>	1 LL
5-9.01	1530PM	137°	6.4	12.0	6.2/7.5	<u> </u>	LL_
5-10-7'	1.22Pm	1380	6.6	11.8	6.2/7.6	 	La -
5-11-01	10:05 A	1 72°	6,6	11.9	6.4/7.6		LP
5-14.01	935An	125	6.5	12.2	6.3/7.6	<u> </u>	d.L.

FORM 3

.

⊗

HEI SIMON HYDRÖ-SERREH

APPENDIX B

SOIL SAMPLE ANALYTICAL RESULTS

GeoTrans, Inc.

Test/America

ANALYTICAL AND QUALITY CONTROL REPORT

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

04/09/2001 Job No: 01.01956 Page 1 of 47

Enclosed are the Analytical and Quality Control reports for the following samples submitted for analysis:

Sample Number	Sample Description	Date	Date
431276 431277 431279 431280 431281 431282 431283 431283 431283 431284 431285 431286 431287 431288 431289 431289 431290	SB-Sump E-16' P556 Sta-Rite SB-Sump E-20' P556 Sta-Rite SB-Sump E-24' P556 Sta-Rite SB-Sump E-26' P556 Sta-Rite SB-Sump E-28' P556 Sta-Rite SB-2008 16' P556 Sta-Rite SB-2008 20' P556 Sta-Rite SB-2008 24' P556 Sta-Rite SB-2008 26' P556 Sta-Rite SB-2008 28' P556 Sta-Rite SB-SE1-24' P556 Sta-Rite SB-SE1-24' P556 Sta-Rite SB-SE2-4' P556 Sta-Rite SB-SE2-10' P556 Sta-Rite SB-SE2-10' P556 Sta-Rite SB-SE2-10' P556 Sta-Rite	03/28/2001 03/28/2001 03/28/2001 03/28/2001 03/28/2001 03/28/2001 03/28/2001 03/28/2001 03/28/2001 03/28/2001 03/28/2001 03/28/2001 03/28/2001 03/28/2001	Received 03/29/2001 03/29/2001 03/29/2001 03/29/2001 03/29/2001 03/29/2001 03/29/2001 03/29/2001 03/29/2001 03/29/2001 03/29/2001 03/29/2001 03/29/2001 03/29/2001

Soil results are reported on a dry weight basis. The above sample(s) may have a result flag shown on the report. The following are the result flag definitions:

- A = Analyzed/extracted past hold time
- C = Standard outside of control limits
- F = Sample filtered in lab
- H = Late eluting hydrocarbons present J = Estimated concentration
- M = Matrix interference
- Q = Result confirmed via re-analysis T = Does not match typical pattern
- X = Unidentified compound(s) present

- B = Blank is contaminated
- D = Diluted for analysis
- G = Received past hold time
- I = Improperly handled sample
- L = Common lab solvent and contaminant
- P = Improperly preserved sample
- S = Sediment present
- W = BOD re-set due to missed dilution
- Z = Internal standard outside limits

Brian D. BeJong Organic Operations Manager

Test/America

ANALYTICAL AND QUALITY CONTROL REPORT

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

04/09/2001 Job No: 01.01956 Page 2 of 47

.

Enclosed are the Analytical and Quality Control reports for the following samples submitted for analysis:

Sample Number	Sample Des	scription	Date Taken	Date Received
431291	SB-CS1-16'	P556 Sta-Rite	03/28/2001	03/29/2001
431292	SB-CS2-20'	P556 Sta-Rite	03/28/2001	03/29/2001
431293	SB-CS2-26'	P556 Sta-Rite	03/28/2001	03/29/2001
431294	Trip Blank	P556 Sta-Rite	03/28/2001	03/29/2001

Soil results are reported on a dry weight basis. The above sample(s) may have a result flag shown on the report. The following are the result flag definitions:

- A = Analyzed/extracted past hold time
- C = Standard outside of control limits
- F = Sample filtered in lab
- H = Late eluting hydrocarbons present
- J = Estimated concentration
- M = Matrix interference
- Q = Result confirmed via re-analysis
- T = Does not match typical pattern
- X = Unidentified compound(s) present
- B = Blank is contaminated
- D = Diluted for analysis
- G = Received past hold time
- I = Improperly handled sample
- $L = Common \ lab \ solvent \ and \ contaminant$
- P = Improperly preserved sample
- S = Sediment present
- W = BOD re-set due to missed dilution
 - Z = Internal standard outside limits

Brian D. DeJong Organic Operations Manager

602 COMMERCE DRIVE / WATERTOWN, WI 53094 / 920-261-1660 / FAX: 920-261-8120 WDNR NO. 128053530

Test America

•

ANALYTICAL REPORT

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

04/09/2001 Job No: 01.01956 Sample No: 431276 Account No: 39150 Page 3 of 47

JOB DESCRIPTION: P556 Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-Sump E-16' P556 Sta-Rite Delavan, WI Rec'd on ice

Date/Time Taken: 03/28/2001 09:55

			Reporting		Date	Prep/Run
Parameter	Results	Units	Limit	Method	Analyzed	Batch
Solids, Total	92 E	<u>9</u> .	- 1-			
VOC - METHANOL - 8260B	52.0	ō	п/а	SW 5030	04/06/2001	3619
Benzene	<27	ua/ka	25	GW DDCOD	0	
Bromobenzene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
Bromochloromethane	<27	ug/kg ug/kg	25	SW 8260B	04/04/2001	1 19 9
Bromodichloromethane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
Promoform	<27	ug/kg	20	SW 8260B	04/04/2001	1199
momethane	<108	ug/kg	45	SW 8260B	04/04/2001	1199
💷 Jutylbenzene	<27	ug/kg	100	SW 8260B	04/04/2001	1199
sec-Butylbenzene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
tert-Butylbenzene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
Carbon Tetrachloride	<27	ug/kg	25	SW 8260B	04/04/2001	1199
Chlorobenzene	<27	ug/kg ug/kg	20	SW 8260B	04/04/2001	1199
Chlorodibromomethane	<27	ug/kg ug/kg	25	SW 8260B	04/04/2001	1199
Chloroethane	238	ug/kg ug/ka	25	SW 8260B	04/04/2001	1199
Chloroform	<27	ug/kg	30	SW 8260B	04/04/2001	1199
Chloromethane	<54	ug/kg	25	SW 8260B	04/04/2001	1199
2-Chlorotoluene	<27	ug/kg ug/kg	50	SW 8260B	04/04/2001	1199
4-Chlorotoluene	~27	ug/kg	25 05	SW 8260B	04/04/2001	1199
1,2-Dibromo-3-Chloropropane	< 5.4	ug/kg	25	SW 8260B	04/04/2001	1 1 99
1,2-Dibromoethane (EDB)	<27	ug/kg	50	SW 8260B	04/04/2001	1199
Dibromomethane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1,2-Dichlorobenzene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1,3-Dichlorobenzene	~27	ug/kg	25	SW 8260B	04/04/2001	1199
1,4-Dichlorobenzene	<27	ug/kg	25 25	SW 8260B	04/04/2001	1199
Dichlorodifluoromethane	~27	ug/kg	25	SW 8260B	04/04/2001	1199
1,1-Dichloroethane	~27	ug/kg	25	SW 8260B	04/04/2001	1199
1,2-Dichloroethane	~27	ug/kg	25	SW 8260B	04/04/2001	1199
1,1-Dichloroethene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
cis-1,2-Dichloroethene	443	ug/kg	25	SW 8260B	04/04/2001	1199
trans-1,2-Dichloroethene	-27	ug/kg	25	SW 8260B	04/04/2001	1199
1,2-Dichloropropane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1,3-Dichloropropane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
2,2-Dichloropropane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1,1-Dichloropropene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
-1,3-Dichloropropene	~27	ug/kg	25	SW 8260B	04/04/2001	1199
ans-1,3-Dichloropropene	~27	ug/kg	25	SW 8260B	04/04/2001	1199
Di-isopropyl ether	~27	ug/kg	25	SW 8260B	04/04/2001	1199
Ethylbenzene	NG 1 207	ug/kg	25	SW 8260B	04/04/2001	1199
• · · · · · · · · · · · · · · · · · · ·	<27	ug/kg	25	SW 8260B	04/04/2001	1199

Test America

ANALYTICAL REPORT

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

-

04/09/2001 Job No: 01.01956 Sample No: 431276 Account No: 39150 Page 4 of 47

JOB DESCRIPTION: P556 Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-Sump E-16' P556 Sta-Rite Delavan, WI Rec'd on ice

Date/Time Taken: 03/28/2001 09:55

Date Received: 03/29/2001

Parameter		Results	Units	Reporting Limit	Method	Date Analyzed	Prep/Run Batch
Hexachlorobutadiene		< 3.8	ug /kg	75	011 00 com		
Isopropylbenzene		<27	ug/kg ug/kg	35	SW 8260B	04/04/2001	1199
p-Isopropyltoluene		~27	ug/kg	25	SW 8260B	04/04/2001	1199
Methylene Chloride	т.	<2/ 70	ug/kg	25	SW 8260B	04/04/2001	1199
Methyl-t-butyl ether	-	/3	ug/kg	50	SW 8260B	04/04/2001	1199
Naphthalene		<27	ug/kg	25	SW 8260B	04/04/2001	1199
p-Propylbenzene		<27	ug/kg	25	SW 8260B	04/04/2001	1199
rene		<27	ug/kg	25	SW 8260B	04/04/2001	1199
1 1 2-Tetrachloroothere		<27	ug/kg	25	SW 8260B	04/04/2001	1199
1 1 2 2-Totraghlementhere		<27	ug/kg	25	SW 8260B	04/04/2001	1199
Tetrachloroothane		<27	ug/kg	25	SW 8260B	04/04/2001	1199
Toluono		52	ug/kg	25	SW 8260B	04/04/2001	1199
1 2 2 Trainblanchau		<27	ug/kg	25	SW 8260B	04/04/2001	1199
1,2,3-111Chiorobenzene		<27	ug/kg	25	SW 8260B	04/04/2001	1199
1,2,4-Trichlorobenzene		<27	ug/kg	25	SW 8260B	04/04/2001	1199
1,1,1-Trichloroethane		<27	ug/kg	25	SW 8260B	04/04/2001	1199
1,1,2-Trichloroethane		<27	ug/kg	25	SW 8260B	04/04/2001	1100
Trichloroethene		84	ug/kg	25	SW 8260B	04/04/2001	1100
Trichlorofluoromethane		<27	uq/kq	25	SW 8260B	04/04/2001	1199
1,2,3-Trichloropropane		<27	uq/kq	25	SW 8260B	04/04/2001	1199
1,2,4-Trimethylbenzene		<27	ug/kg	25	SW 8260B	04/04/2001	1199
1,3,5-Trimethylbenzene		<27	ug/kg	25	SW SOCOD	04/04/2001	T199
Vinyl Chloride		<27	ug/kg	25	SM 6260B	04/04/2001	1199
Xylenes, Total		<38	ug/kg	35	SW 8260B	04/04/2001	1199
Surr: Dibromofluoromethane		100.4	% %	95_110	SW 0260B	04/04/2001	1199
Surr: Toluene-d8		98.2	*	92 107	an 0200B	04/04/2001	1199
Surr: Bromofluorobenzene		98 4	8	92-10/ 91 110	SW 8260B	04/04/2001	1199
		2011	0	AT- 110	SW 8260B	04/04/2001	1199

. .. .

Reporting

Test/America

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

04/09/2001 Job No: 01.01956 Sample No: 431277 Account No: 39150 Page 5 of 47

JOB DESCRIPTION: P556 Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-Sump E-20' P556 Sta-Rite Delavan, WI Rec'd on ice

Date/Time Taken: 03/28/2001 10:05

Date Received: 03/29/2001

- .. -

Parametor			Reporting	J	Date	Prep/Run	
Falameter	Results	Units	Limit	Method	Analyzed	Batch	
Solids, Total	94 0	o_					
VOC - METHANOL - 8260B	54.0	ъ	n/a	SW 5030	04/06/2001	3619	
Benzene	-27	11 m / I =	~-				
Bromobenzene	<27	ug/kg	25	SW 8260B	04/04/2001	1199	
Bromochloromethane	<27	ug/kg	25	SW 8260B	04/04/2001	1199	
Bromodichloromethane	<27	ug/kg	25	SW 8260B	04/04/2001	1199	
Bromoform	~ 27	ug/kg	25	SW 8260B	04/04/2001	1199	
omomethane	<106	ug/kg	25	SW 8260B	04/04/2001	1199	
∂utylbenzene	<227	ug/kg	100	SW 8260B	04/04/2001	1199	
sec-Butylbenzene	<27	ug/kg	25	SW 8260B	04/04/2001	1199	
tert-Butylbenzene	<27	ug/kg	25	SW 8260B	04/04/2001	1199	
Carbon Tetrachloride	<27	ug/kg	25	SW 8260B	04/04/2001	1199	
Chlorobenzene	<27	ug/kg	25	SW 8260B	04/04/2001	1199	
Chlorodibromomethane	<27	ug/kg	25	SW 8260B	04/04/2001	1 199	
Chloroethane	<27	ug/kg	25	SW 8260B	04/04/2001	1199	
Chloroform	< 37	ug/kg	35	SW 8260B	04/04/2001	1199	
Chloromethane	<27	ug/kg	25	SW 8260B	04/04/2001	1199	
2-Chlorotoluene	< 53	ug/kg	50	SW 8260B	04/04/2001	1199	
4-Chlorotoluene	<27	ug/kg	25	SW 8260B	04/04/2001	1 19 9	
1,2-Dibromo-3-Chloropropane	<27	ug/kg	25	SW 8260B	04/04/2001	1199	
1,2-Dibromoethane (EDB)	<53	ug/kg	50	SW 8260B	04/04/2001	1199	
Dibromomethane	<27	ug/kg	25	SW 8260B	04/04/2001	1199	
1,2-Dichlorobenzene	<27	ug/kg	25	SW 8260B	04/04/2001	1199	
1,3-Dichlorobenzene	<27	ug/kg	25	SW 8260B	04/04/2001	1199	
1,4-Dichlorobenzene	<27	ug/kg	25	SW 8260B	04/04/2001	1199	
Dichlorodifluoromethane	<27	ug/kg	25	SW 8260B	04/04/2001	1199	
1,1-Dichloroethane	<27	ug/kg	25	SW 8260B	04/04/2001	1199	
1,2-Dichloroethane	<27	ug/kg	25	SW 8260B	04/04/2001	1199	
1,1-Dichloroethene	<27	ug/kg	25	SW 8260B	04/04/2001	1199	
cis-1,2-Dichloroethene	<27	ug/kg	25	SW 8260B	04/04/2001	1199	
trans-1,2-Dichloroethene	404	ug/kg	25	SW 8260B	04/04/2001	1199	
1,2-Dichloropropane	<27	ug/kg	25	SW 8260B	04/04/2001	1199	
1,3-Dichloropropane	<27	ug/kg	25	SW 8260B	04/04/2001	1199	
2,2-Dichloropropane	<27	ug/kg	25	SW 8260B	04/04/2001	1199	
1,1-Dichloropropene	<27	ug/kg	25	SW 8260B	04/04/2001	1199	
3-1.3-Dichloropropens	<27	ug/kg	25	SW 8260B	04/04/2001	1199	
ans-1.3-Dichloropropera	<27	ug/kg	25	SW 8260B	04/04/2001	1199	
Di-isopronyl ether	<27	ug/kg	25	SW 8260B	04/04/2001	1199	
Ethylbenzeno	<27	ug/kg	25	SW 8260B	04/04/2001	1199	
Leny Loenzene	<27	ug/kg	25	SW 8260B	04/04/2001	1190	
					,,		

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

04/09/2001 Job No: 01.01956 Sample No: 431277 Account No: 39150 Page 6 of 47

JOB DESCRIPTION: P556 Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-Sump E-20' P556 Sta-Rite Delavan, WI Rec'd on ice

Date/Time Taken: 03/28/2001 10:05 Date Received: 03/29/2001

Donautium

Parameter				Reporting		Date	Prep/Run
		Results	Units	Limit	Method	Analyzed	Batch
Hexachlorobutadiene		<37	ug/kg	35		D.4. (D.4. (D.4.)-	
Isopropylbenzene		<27	ug/kg	33	SW 8260B	04/04/2001	. 1199
p-Isopropyltoluene		<27	ug/kg	25	SW 8260B	04/04/2001	. 1199
Methylene Chloride	L	85	ug/kg	25	SW 8260B	04/04/2001	1199
Mathyl-t-butyl ether	Ц	<00 <07	ug/kg	50	SW 8260B	04/04/2001	1 199
hthalene		<27	ug/kg	25	SW 8260B	04/04/2001	1199
1. Propylbenzene		<27	ug/kg	25	SW 8260B	04/04/2001	1199
Styrene		<27	ug/kg	25	SW 8260B	04/04/2001	1199
1,1,1,2-Tetrachloroethane		<27	ug/kg	25	SW 8260B	04/04/2001	1199
1.1.2.2-Tetrachloroethano		<27	ug/kg	25	SW 8260B	04/04/2001	1199
Tetrachloroethene		<27	ug/kg	25	SW 8260B	04/04/2001	1199
Toluene		585	ug/kg	25	SW 8260B	04/04/2001	1199
1.2.3-Trighlorobenzere		<27	ug/kg	25	SW 8260B	04/04/2001	1199
1 2 4-Trichlorchonzone		<27	ug/kg	25	SW 8260B	04/04/2001	1199
1 1 l-Trichloroothers		<27	ug/kg	25	SW 8260B	04/04/2001	1199
1 1 2 Trichlemeths		<27	ug/kg	25	SW 8260B	04/04/2001	1190
Trichloroethers		<27	ug/kg	25	SW 8260B	04/04/2001	1100
Trichlenefluene		245	ug/kg	25	SW 8260B	04/04/2001	1199
1.2.2 Dwishlaw		<27	ug/kg	25	SW 8260B	04/04/2001	1199
1,2,3-Ifichloropropane		<27	ug/kg	25	SW 8260B	04/04/2001	1199
1,2,4-Trimethylbenzene		<27	ug/kg	25	SW 8260B	04/04/2001	1199
1,3,5-Trimethylbenzene		<27	uq/kq	25	SW 8260B	04/04/2001	1199
Vinyl Chloride		<27	uq/kq	25	SW 8260B	04/04/2001	1199
Xylenes, Total		<37	ug/kg	35	SW 8260B	04/04/2001	1199
Surr: Dibromofluoromethane		102.8	ş.	85-119	SW 9260B	04/04/2001	1199
Surr: Toluene-d8		98.6	*	92-107		04/04/2001	1199
Surr: Bromofluorobenzene		96.8	2 2	91-110	SM 0260B	04/04/2001	1199
			•	21-110	SM 8260B	04/04/2001	1199

-

ANALYTICAL REPORT

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

04/09/2001 Job No: 01.01956 Sample No: 431278 Account No: 39150 Page 7 of 47

JOB DESCRIPTION: P556 Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-Sump E-24' P556 Sta-Rite Delavan, WI Rec'd on ice

Date/Time Taken: 03/28/2001 10:10

Demonstration			Reporting	ſ	Date	Prep/Run
Farameter	Results	Units	Limit	Method	Analyzed	Batch
Solids, Total	93.5	ş	n/a	SH EORO	01/05/0000	
VOC - METHANOL - 8260B		-	11 <i>7</i> u	DW 2030	04/06/2001	3619
Benzene	<27	ug/kg	25	CN ODEAD	04/00/0000	
Bromobenzene	<27	ug/kg	25	90020 WG	04/02/2001	1195
Bromochloromethane	<27	ug/kg	25	SW 0200B	04/02/2001	1195
Bromodichloromethane	<27	ug/kg	25		04/02/2001	1195
Bromoform	<27	ug/kg	25	SW 8260B	04/02/2001	1195
omomethane	<107	ug/kg	100		04/02/2001	1195
Butylbenzene	<27	ug/kg	25	SW 8260B	04/02/2001	1195
sec-Butylbenzene	<27	ug/kg	25	SW 8260B	04/02/2001	1195
tert-Butylbenzene	<27	ug/kg	25	SW 8260B	04/02/2001	1195
Carbon Tetrachloride	<27	ug/kg	25	SW 8260B	04/02/2001	1195
Chlorobenzene	<27	ug/kg Vg/kg	25	SW 8260B	04/02/2001	1195
Chlorodibromomethane	~27	ug/kg	45	SW 8260B	04/02/2001	1195
Chloroethane	<37	ug/kg	25	SW 8260B	04/02/2001	1195
Chloroform	<37	ug/kg	35	SW 8260B	04/02/2001	1195
Chloromethane	~57	ug/kg	25	SW 8260B	04/02/2001	1195
2-Chlorotoluene	< 33	ug/kg	50	SW 8260B	04/02/2001	1195
4-Chlorotoluene	<27	ug/kg	25	SW 8260B	04/02/2001	1195
1,2-Dibromo-3-Chloropropane	<27	ug/kg	25	SW 8260B	04/02/2001	1195
1,2-Dibromoethane (EDB)	<53	ug/kg	50	SW 8260B	04/02/2001	1195
Dibromomethane	<27	ug/kg	25	SW 8260B	04/02/2001	1195
1,2-Dichlorobenzene	<27	ug/kg	25	SW 8260B	04/02/2001	1195
1.3-Dichlorobenzene	<27	ug/kg	25	SW 8260B	04/02/2001	1195
1,4-Dichlorobenzene	<27	ug/kg	25	SW 8260B	04/02/2001	1195
Dichlorodifluoromethane	<27	ug/kg	25	SW 8260B	04/02/2001	1195
1.1-Dichloroethane	<27	ug/kg	25	SW 8260B	04/02/2001	1195
1.2-Dichloroethane	<27	ug/kg	25	SW 8260B	04/02/2001	1195
1.1-Dichloroethene	<27	ug/kg	25	SW 8260B	04/02/2001	1195
Cis-1 2-Dichloroothone	<27	ug/kg	25	SW 8260B	04/02/2001	1195
trans-1 2-Dichloroothana	2,030	ug/kg	25	SW 8260B	04/02/2001	1195
1.2-Dichloropropage	<27	ug/kg	25	SW 8260B	04/02/2001	1195
1 3-Dichloropropane	<27	ug/kg	25	SW 8260B	04/02/2001	1195
2 2-Dichloropropane	<27	ug/kg	25	SW 8260B	04/02/2001	1195
1 1-Dichloropropane	<27	ug/kg	25	SW 8260B	04/02/2001	1195
z-1.2 Dichlautan	<27	ug/kg	25	SW 8260B	04/02/2001	1195
s-1, 3-Dichloropropene	<27	ug/kg	25	SW 8260B	04/02/2001	1105
Di jaonyonul atl	<27	ug/kg	25	SW 8260B	04/02/2001	1175
Di-isopropyi ether	<27	ug/kg	25	SW 8260B	04/02/2001	1105
Etnyipenzene	<27	uq/kq	25	SW 8260P	04/02/2001	1192
		<u> </u>		01 0200B	V*/VZ/ZUUI	1195

Test/America

ANALYTICAL REPORT

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

٠ .

> 04/09/2001 Job No: 01.01956 Sample No: 431278 Account No: 39150 Page 8 of 47

JOB DESCRIPTION: P556 Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-Sump E-24' P556 Sta-Rite Delavan, WI Rec'd on ice

Date/Time Taken: 03/28/2001 10:10

Parameter		Results	Units	Reporting Limit	Method	Date Analyzed	Prep/Run Batch
Parameter Hexachlorobutadiene Isopropylbenzene p-Isopropyltoluene 'hylene Chloride .hyl-t-butyl ether Naphthalene n-Propylbenzene Styrene 1,1,1,2-Tetrachloroethane 1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,1,2-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Trichlorofluoromethane 1,2,3-Trichloropropane 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Vinyl Chloride Xylenes, Total	L	Results <37 <27 90 <27 <27 <27 <27 <27 <27 <27 <27 <27 <27	Units ug/kg	Limit 35 25 25 25 25 25 25 25 25 25 2	Method SW 8260B SW 8260B	Analyzed Analyzed 04/02/2001	Prep/Run Batch 1195 1195 1195 1195 1195 1195 1195 119
Surr: Dibromofluoromethane Surr: Toluene-d8 Surr: Bromofluorobenzene		<37 104.8 97.6 99.6	ug/kg % % %	35 85-118 92~107 91-110	SW 8260B SW 8260B SW 8260B SW 8260B	04/02/2001 04/02/2001 04/02/2001 04/02/2001	1195 1195 1195 1195

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

04/09/2001 Job No: 01.01956 Sample No: 431279 Account No: 39150 Page 9 of 47

JOB DESCRIPTION: P556 Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-Sump E-26' P556 Sta-Rite Delavan, WI Rec'd on ice

Date/Time Taken: 03/28/2001 10:15

Parameter	Poquel	L	Reportin	ng	Date -	- .
Solids Mater	ACSU1:	ts Units	Limit	- Method	Date	Prep/Run
VOC - MEMURYAR	93 3	<u>,</u>			maryzed	Batch
Benzena	20.5	¥	n/a	SW 5030	04/06/2007	
Bromohonana	<129	<i>.</i> -			04/06/2001	3619
Bromochleme	<129	ug/kg	25	SW 8260F	8 04/00/0000	
Bromodiata	<129	ug/kg	25	SW 8260F	04/02/2001	1 195
reference	<129	ug/kg	25	SW 8260F	04/02/2001	1195
nororm	<129	ug/kg	25	SW 8260B		1195
	<129	ug/kg	25	SW 8260b	04/02/2001	1195
1-ButyIbenzene	< 336	ug/kg	100	SW 8260B	04/02/2001	1195
sec-Butylbenzene	<129 1 Eac	ug/kg	25	SW 8260B	04/02/2001	1195
lert-Butylbenzene	1,500	ug/kg	25	SW 8260D	04/02/2001	1195
arbon Tetrachloride	<129	ug/kg	25	SW 8260B	04/02/2001	1195
nlorobenzene	<129	ug/kg	25	SW 92COD	04/02/2001	1195
nlorodibromomethane	<129	ug/kg	25	SH 0260B	04/02/2001	1195
hloroethane	<129	ug/kg	25	SW 0260B	04/02/2001	1195
hloroform	<193	ug/kg	35	SW 8260B	04/02/2001	1195
hloromethane	<129	ug/kg	25	SW 8260B	04/02/2001	1195
-Chlorotoluene	<268	ug/kg	50	SW 8260B	04/02/2001	1195
-Chlorotoluene	<129	ug/kg	25	SW 8260B	04/02/2001	1195
2-Dibromo-3-Chloropropana	<129	uq/kq	25	SW 8260B	04/02/2001	1195
2-Dibromoethane (EDB)	<268	uq/kq	50	SW 8260B	04/02/2001	1195
bromomethane	<129	uq/kq	25	SW 8260B	04/02/2001	1195
2-Dichlorobenzene	<129	uq/kq	25	SW 8260B	04/02/2001	1195
3-Dichlorobenzene	<129	uq/ka	25	SW 8260B	04/02/2001	1195
4-Dichlorobenzene	<129	ug/kg	25	SW 8260B	04/02/2001	1195
chlorodifluoromether	<129	ug/kg	25	SW 8260B	04/02/2001	1195
1-Dichloroethano	<129	ug/kg	40 25	SW 8260B	04/02/2001	1195
2-Dichloroethane	<129	ug/kg	25	SW 8260B	04/02/2001	1195
1-Dichloroothan-	<129	ug/kg	25	SW 8260B	04/02/2001	1195
s-1.2-Dichlones+t	<129	ug/kg	45 25	SW 8260B	04/02/2001	1195
ans-1 2-Dichloroethene	332	ug/kg ug/kg	25	SW 8260B	04/02/2001	1195
2-Dichlement	<129	ug/kg vœ/l	25	SW 8260B	04/02/2001	1105
3-Dichlerer	<129	ug/kg ug/ke	25	SW 8260B	04/02/2001	1106
2-Dichler	<129	ug/kg	25	SW 8260B	04/02/2001	1105
Dichloropropane	<129	ug/kg	25	SW 8260B	04/02/2001	1195
-Dichloropropene	<129	ug/kg	25	SW 8260B	04/02/2001	1105
-1,3-Dichloropropene	<129	ug/kg	25	SW 8260B	04/02/2001	1105
ins-1,3-Dichloropropene	<129	ug/kg	25	SW 8260B	04/02/2001	1195
usopropyl ether	<129	ug/kg	25	SW 8260B	04/02/2001	1105
lyipenzene	4 200	ug/kg	25	SW 8260B	04/02/2001	7722
	¥,590	ug/kg	25	SW 8260B	04/02/2001	1105
					, 04/4001	1192

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

04/09/2001 Job No: 01.01956 Sample No: 431279 Account No: 39150 Page 10 of 47

JOB DESCRIPTION: P556 Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-Sump E-26' P556 Sta-Rite Delavan, WI Rec'd on ice

Date/Time Taken: 03/28/2001 10:15 Date Received: 03/29/2001

- --- ----

Parameter	Results	Units	Reporting Limit	Moth-2	Date	Prep/Run
Hexachlorobutadiene Isopropylbenzene p-Isopropyltoluene Mathylene Chloride iyl-t-butyl ether Naphthalene A-Propylbenzene Styrene 1,1,1,2-Tetrachloroethane cluene 2,2-Tetrachloroethane cluene 2,3-Trichlorobenzene 1,2-Trichloroethane ichloroethene richloroethene richloroethene 2,3-Trichloropropane 2,4-Trimethylbenzene 3,5-Trimethylbenzene 3,5-Trimethylbenzene inyl Chloride Venes, Total arr: Dibromofluoromethane rr: Toluene-d8 rr: Bromofluorobenzene	<pre><193 2,140 2,360 <268 <129 1,390 2,890 <129 <129 <129 <129 <129 <129 <129 <129</pre>	ug/kg ug/kg	Limit 35 25 25 25 25 25 25 25 25 25 2	Method SW 8260B SW 8260B	Analyzed 04/02/2001	Batch 1195
					// 2001	TT32

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

04/09/2001 Job No: 01.01956 Sample No: 431280 Account No: 39150 Page 11 of 47

-

JOB DESCRIPTION: P556 Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-Sump E-28' P556 Sta-Rite Delavan, WI Rec'd on ice

Date/Time Taken: 03/28/2001 10:20

Baramatam			Reporting	-	Date	Prep/Run
Patameter	Results	Units	Limit	Method	Analyzed	Batch
Solids, Total	95.4	8	n / a	0W 5000		
VOC - METHANOL - 8260B		5	11/a	SW 2030	04/06/2001	3619
Benzene	<1.260	ug/kg	25	014 00.000		
Bromobenzene	<1.260	ug/kg	25	SW 8260B	04/04/2001	1199
Bromochloromethane	<1,260	ug/kg	23	SW 8260B	04/04/2001	1199
Bromodichloromethane	<1.260	ug/kg	25	SW 8260B	04/04/2001	1199
Bromoform	<1,260	ug/kg	20	SW 8260B	04/04/2001	1199
nomethane	<5.240	ug/kg	23	SW 8260B	04/04/2001	1199
utylbenzene	<1.260	ug/kg ug/kg	100	SW 8260B	04/04/2001	1199
sec-Butylbenzene	6.810	ug/kg ug/kg	25	SW 8260B	04/04/2001	1199
tert-Butylbenzene	<1 260	ug/kg vg/hg	25	SW 8260B	04/04/2001	1199
Carbon Tetrachloride	<1 260	ug/kg	25	SW 8260B	04/04/2001	1199
Chlorobenzene	<1,200	ug/kg	25	SW 8260B	04/04/2001	1199
Chlorodibromomethane	<1,200	ug/kg	25	SW 8260B	04/04/2001	1199
Chloroethane	<1,200	ug/kg	25	SW 8260B	04/04/2001	1199
Chloroform	<1,090	ug/kg	35	SW 8260B	04/04/2001	1199
Chloromethane	<1,260	ug/kg	25	SW 8260B	04/04/2001	1199
2-Chlorotoluene	<2,620	ug/kg	50	SW 8260B	04/04/2001	1199
4-Chlorotoluene	<1,260	ug/kg	25	SW 8260B	04/04/2001	1199
1,2-Dibromo-3-Chloropropane	<1,260	ug/kg	25	SW 8260B	04/04/2001	1199
1,2-Dibromoethane (EDB)	<2,620	ug/kg	50	SW 8260B	04/04/2001	1199
Dibromomethane	<1,260	ug/kg	25	SW 8260B	04/04/2001	1199
1,2-Dichlorobenzene	<1,260	ug/kg	25	SW 8260B	04/04/2001	1199
1,3-Dichlorobenzene	<1,260	ug/kg	25	SW 8260B	04/04/2001	1199
1,4-Dichlorobenzene	<1,260	ug/kg	25	SW 8260B	04/04/2001	1199
Dichlorodifluoromethane	<1,260	ug/kg	25	SW 8260B	04/04/2001	1199
1.1-Dichloroethane	<1,260	ug/kg	25	SW 8260B	04/04/2001	1199
1,2-Dichloroethane	<1,260	ug/kg	25	SW 8260B	04/04/2001	1199
1.1-Dichloroethene	<1,260	ug/kg	25	SW 8260B	04/04/2001	1199
cis-1.2-Dichloroethene	<1,260	ug/kg	25	SW 8260B	04/04/2001	1199
trans-1.2-Dichloroothere	67,100	ug/kg	25	SW 8260B	04/04/2001	1199
1.2-Dichloropropane	<1,260	ug/kg	25	SW 8260B	04/04/2001	1199
1.3-Dichloropropane	<1,260	ug/kg	25	SW 8260B	04/04/2001	1199
2.2-Dichloropropane	<1,260	ug/kg	25	SW 8260B	04/04/2001	1199
1.1-Dichloropropane	<1,260	ug/kg	25	SW 8260B	04/04/2001	1100
-1 3-Dighloroproperty	<1,260	ug/kg	25	SW 8260B	04/04/2001	1199
r, J-Dichlopropene	<1,260	ug/kg	25	SW 8260B	04/04/2001	1100
Disigonropyl athen	<1,260	ug/kg	25	SW 8260B	04/04/2001	1100
Di-isopiopyi etner	<1,260	uq/ka	25	SW 8260B	04/04/2001	1100
achyidenzene	82,800	uq/kq	25	SW 8260B	04/04/2001	1133
	-			040VB	04/04/2001	1199

Test/Merica

ANALYTICAL REPORT

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

04/09/2001 Job No: 01.01956 Sample No: 431280 Account No: 39150 Page 12 of 47

JOB DESCRIPTION: P556 Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-Sump E-28' P556 Sta-Rite Delavan, WI Rec'd on ice

Date/Time Taken: 03/28/2001 10:20

Date Received: 03/29/2001

Parameter	Results	Units	Reporting Limit	Method	Date Analyzed	Prep/Run Batch
Parameter Hexachlorobutadiene Isopropylbenzene p-Isopropyltoluene Methylene Chloride Methyl-t-butyl ether N=ohthalene ropylbenzene 2-yrene 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethene	Results <1,890 8,600 7,970 <2,620 <1,260 9,010 8,910 <1,260 <1,260 <1,260 99,600	Units ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	Reporting Limit 35 25 25 25 25 25 25 25 25 25 25 25 25	Method SW 8260B SW 8260B	Date Analyzed 04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001	Prep/Run Batch 1199 1199 1199 1199 1199 1199 1199 11
Toluene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichlorofluoromethane 1,2,3-Trichloropropane 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Vinyl Chloride Xylenes, Total Surr: Dibromofluoromethane Surr: Toluene-d8	6,390 <1,260 <1,260 <1,260 <1,260 178,000 <1,260 <1,260 61,800 18,900 <1,260 273,000 103.4 98.4	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg g/kg	25 25 25 25 25 25 25 25 25 25 25 35 85-118 82-107	SW 8260B SW 8260B	04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001	1199 1199 1199 1199 1199 1199 1199 119
Surr: Bromofluorobenzene	100.4	oło oś	92-107 91-110	SW 8260B SW 8260B	04/04/2001 04/04/2001	1199 1199

.

Test/Merica

ANALYTICAL REPORT

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

04/09/2001 Job No: 01.01956 Sample No: 431281 Account No: 39150 Page 13 of 47

JOB DESCRIPTION: P556 Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-2008 16' P556 Sta-Rite Delavan, WI Rec'd on ice

Date/Time Taken: 03/28/2001 10:40

Domonation			Reporting		Date	Prep/Run
Palameter	Results	Units	Limit	Method	Analyzed	Batch
Solids, Total VOC - METHANOL - 8260B	94.2	8	n/a	SW 5030	04/06/2001	3619
Benzene	~27	1.00 (1	<u> </u>			
Bromobenzene	~27	ug/kg	25	SW 8260B	04/02/2001	1195
Bromochloromethane	<27	ug/kg	25	SW 8260B	04/02/2001	1195
Bromodichloromethane	<27	ug/kg	25	SW 8260B	04/02/2001	1195
r pmoform	<27	ug/kg	25	SW 8260B	04/02/2001	1195
nomethane	<100	ug/kg	25	SW 8260B	04/02/2001	1195
n-Butylbenzene	<106	ug/kg	100	SW 8260B	04/02/2001	1195
sec-Butvlbenzene	<27	ug/kg	25	SW 8260B	04/02/2001	1195
tert-Butvlbenzene	<27	ug/kg	25	SW 8260B	04/02/2001	1195
Carbon Tetrachloride	<27	ug/kg	25	SW 8260B	04/02/2001	1195
Chlorobenzene	<27	ug/kg	25	SW 8260B	04/02/2001	1195
Chlorodibromomethane	<27	ug/kg	25	SW 8260B	04/02/2001	1195
Chloroethane	<27	ug/kg	25	SW 8260B	04/02/2001	1195
Chloroform	<37	ug/kg	35	SW 8260B	04/02/2001	1195
Chloromethano	<27	ug/kg	25	SW 8260B	04/02/2001	1195
2-Chlorotoluono	<53	ug/kg	50	SW 8260B	04/02/2001	1195
A-Chlorotoluone	<27	ug/kg	25	SW 8260B	04/02/2001	1195
1 2-Dibromo 2 Chlosene	<27	ug/kg	25	SW 8260B	04/02/2001	1195
1.2-Dibromo-3-Chioropropane	<53	ug/kg	50	SW 8260B	04/02/2001	1105
L'EDEDIOROECHARE (EDE)	<27	ug/kg	25	SW 8260B	04/02/2001	1195
1. 2. Dishlawaki	<27	ug/kg	25	SW 8260B	04/02/2001	1105
1,2-Dichlorobenzene	<27	ug/kg	25	SW 8260B	04/02/2001	1195
1,3-Dichlorobenzene	<27	ug/kg	25	SW 8260B	04/02/2001	1105
1,4-Dichlorobenzene	<27	ug/kq	25	SW 8260B	04/02/2001	1195
1 Dichlorodifiuoromethane	<27	uq/kq	25	SW 8260B	04/02/2001	1195
1,1-Dichloroethane	<27	ug/kg	25	SW 8260B	04/02/2001	1192
1,2-Dichloroethane	<27	uq/kq	25	SW 8260B	04/02/2001	1195
1,1-Dichloroethene	<27	uq/kq	25	SW B260B	04/02/2001	1195
Cis-1,2-Dichloroethene	<27	uq/kg	25	SW 9260B	04/02/2001	1195
trans-1,2-Dichloroethene	<27	ug/kg	25	SW 9260B	04/02/2001	1195
1,2-Dichloropropane	<27	ug/kg	25	SH 0200B	04/02/2001	1195
1,3-Dichloropropane	<27	ug/kg	25	SW 0260B	04/02/2001	1195
2,2-Dichloropropane	<27	ug/kg	25	SW 8260B	04/02/2001	1195
' 1-Dichloropropene	<27	ug/kg	25	SW 8260B	04/02/2001	1195
-1,3-Dichloropropene	<27	ug/kg	25	SW 8260B	04/02/2001	1195
Lans-1,3-Dichloropropene	<27	vg/rg	40 05	SW 8260B	04/02/2001	1195
Di-isopropyl ether	~27	ug/kg	20	SW 8260B	04/02/2001	1195
Ethylbenzene	~~~	ug/kg	25	SW 8260B	04/02/2001	1195
	\$27	ug/kg	25	SW 8260B	04/02/2001	1195

Test/America

ANALYTICAL REPORT

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

04/09/2001 Job No: 01.01956 Sample No: 431281 Account No: 39150 Page 14 of 47

JOB DESCRIPTION: P556 Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-2008 16' P556 Sta-Rite Delavan, WI Rec'd on ice

Date/Time Taken: 03/28/2001 10:40

Date Received: 03/29/2001

Parameter	Results	Units	Reporting Limit	Method	Date Analyzed	Prep/Run Batch
Hexachlorobutadiene	- 7 7					
Isopropylbenzene	< 37	ug/kg	35	SW 8260B	04/02/2001	1195
p-Isopropyltoluene	<27	ug/kg	25	SW 8260B	04/02/2001	1195
Methylene Chloride	<27	ug/kg	25	SW 8260B	04/02/2001	1195
hvl-t-butyl ether	<53	ug/kg	50	SW 8260B	04/02/2001	1195
www.bthalene	<27	ug/kg	25	SW 8260B	04/02/2001	1195
n-Propyl benzene	<27	ug/kg	25	SW 8260B	04/02/2001	1195
Styrene	<27	ug/kg	25	SW 8260B	04/02/2001	1195
1 1 1 2-Tetrachloroothers	<27	ug/kg	25	SW 8260B	04/02/2001	1195
1 1 2 2-Tetrachlomether	<27	ug/kg	25	SW 8260B	04/02/2001	1195
Tetrachloroethere	<27	ug/kg	25	SW 8260B	04/02/2001	1105
Toluene	<27	ug/kg	25	SW 8260B	04/02/2001	1195
1.2.3-Trichlensher	<27	ug/kg	25	SW 8260B	04/02/2001	1105
1,2,3-111Chlorobenzene	<27	ug/kg	25	SW 8260B	04/02/2001	1195
1,2,4 Illentoropenzene	<27	ug/kg	25	SW 8260B	04/02/2001	1105
1,1,1-Irichioroethane	<27	ug/kg	25	SW 8260B	04/02/2001	1195
Trichlensth	<27	ug/kg	25	SW 8260B	04/02/2001	1195
Trichlensfl	<27	uq/kq	25	SW 8260B	04/02/2001	1195
1 2 2 mainly	<27	uq/kq	25	SW 8260B	04/02/2001	1195
1,2,3-Trichloropropane	<27	ua/ka	25	SW 9260D	04/02/2001	1195
1,2,4-Trimethylbenzene	<27	ug/kg	25	SW 0200B	04/02/2001	1195
1,3,5-Trimethylbenzene	<27	ug/kg	25	SW 0260B	04/02/2001	1195
vinyi Chloride	<27	ug/kg	25	SW 9260B	04/02/2001	1195
Xylenes, Total	<37	ug/kg	35	SW 8260B	04/02/2001	1195
Surr: Dibromofluoromethane	97.2	*	85-110	SW 6260B	04/02/2001	1195
Surr: Toluene-d8	98.0	- 8	97_107	SH BACOD	04/02/2001	1195
Surr: Bromofluorobenzene	103.6	÷.	91- 1 10	ON 026UB	04/02/2001	1195
	·	•	21-110	SW 8260B	U4/02/2001	1795

-

Test/America

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

04/09/2001 Job No: 01.01956 Sample No: 431282 Account No: 39150 Page 15 of 47

JOB DESCRIPTION: P556 Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-2008 20' P556 Sta-Rite Delavan, WI Rec'd on ice

Date/Time Taken: 03/28/2001 10:45

Daramotor			Reporting	r	Date	Prep/Run
Parameter	Results	Units	Limit	Method	Analyzed	Batch
Solids, Total	91 9	\$	-		-	
VOC - METHANOL - 8260B	24.2	3	n/a	SW 5030	04/06/2001	3619
Benzene	<27	1107 / 1009	a F			
Bromobenzene	~27	ug/kg	25	SW 8260B	04/02/2001	1195
Bromochloromethane	<27	ug/kg	25	SW 8260B	04/02/2001	1195
Bromodichloromethane	~27	ug/kg	25	SW 8260B	04/02/2001	1195
Bromoform	<27	ug/kg	25	SW 8260B	04/02/2001	1195
momethane	<27	ug/kg	25	SW 8260B	04/02/2001	1195
Jutylbenzene	<105	ug/kg	100	SW 8260B	04/02/2001	1195
sec-Butylbenzene	<27	ug/kg	25	SW 8260B	04/02/2001	1195
tert-Butylbenzene	<27	ug/kg	25	SW 8260B	04/02/2001	1195
Carbon Tetrachloride	<27	ug/kg	25	SW 8260B	04/02/2001	1195
Chlorobenzene	<27	ug/kg	25	SW 8260B	04/02/2001	1 195
Chlorodibromomethane	<27	ug/kg	25	SW 8260B	04/02/2001	1195
Chloroethane	<27	ug/kg	25	SW 8260B	04/02/2001	1195
Chloroform	<38	ug/kg	35	SW 8260B	04/02/2001	1195
Chloromethane	<27	ug/kg	25	SW 8260B	04/02/2001	1195
2-Chlorotoluene	< 54	ug/kg	50	SW 8260B	04/02/2001	1195
4-Chlorotoluene	<27	ug/kg	25	SW 8260B	04/02/2001	1195
1.2-Dibromo-3-Chloropropage	<27	ug/kg	25	SW 8260B	04/02/2001	1195
1,2-Dibromoethana (RDB)	<54	ug/kg	50	SW 8260B	04/02/2001	1195
Dibromomethane	<27	ug/kg	25	SW 8260B	04/02/2001	1195
1.2-Dichlorobenzone	<27	ug/kg	25	SW 8260B	04/02/2001	1195
1,3-Dichlorobongona	<27	ug/kg	25	SW 8260B	04/02/2001	1105
1 4-Dichlorobonzene	<27	ug/kg	25	SW 8260B	04/02/2001	1195
Dichlorodifluoromethers	<27	ug/kg	25	SW 8260B	04/02/2001	1195
1 l-Dichloroothane	<27	ug/kg	25	SW 8260B	04/02/2001	1105
1.2-Dichloroothane	<27	ug/kg	25	SW 8260B	04/02/2001	1195
1 l-Dichlowethane	<27	ug/kg	25	SW 8260B	04/02/2001	1195
r,r-Dichloroethene	<27	ug/kg	25	SW 8260B	04/02/2001	1195
trong 1 2 Dichloroethene	<27	ug/kg	25	SW 8260B	04/02/2001	1195
1 2 Dickley	<27	uq/kq	25	SW 8260B	04/02/2001	1195
1,2-Dichioropropane	<27	ug/kg	25	SW 8260B	04/02/2001	1195
1, 3-Dichloropropane	<27	uq/kq	25	SW 8260B	04/02/2001	1195
2,2-Dichloropropane	<27	ug/kg	25	SW 9260B	04/02/2001	1195
1,1-Dichioropropene	<27	ug/kg	25	SW 0260B	04/02/2001	1195
3-1, 3-Dichloropropene	<27	ua/ka	25	SW BOCOD	04/02/2001	1195
ns-1,3-Dichloropropene	<27	ug/kg	25		04/02/2001	1195
J1-1sopropyl ether	<27	ug/kg	25	on ozous	04/02/2001	1195
Ethylbenzene	<27	~9/~9	20 25	SW 826UB	04/02/2001	1195
		-91 rg	40	SW 8260B	04/02/2001	1195

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

.

04/09/2001 Job No: 01.01956 Sample No: 431282 Account No: 39150 Page 16 of 47

JOB DESCRIPTION: P556 Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-2008 20' P556 Sta-Rite Delavan, WI Rec'd on ice

Date/Time Taken: 03/28/2001 10:45

Date Received: 03/29/2001

- .--- .----

Parameter		Results	Units	Reporting Limit	Method	Date Analyzed	Prep/Run Batch
Hexachlorobutadiene Isopropylbenzene p-Isopropyltoluene Methylene Chloride hyl-t-butyl ether whthalene n-Propylbenzene Styrene 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,1,2-Trichloroethane 1,1,2-Trichloroethane Trichlorofluoromethane 1,2,3-Trichloropropane 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Vinyl Chloride Xylenes, Total Surr: Dibromofluoromethane Surr: Toluene-d8	L	<38 <27 <27 62 <27 <27 <27 <27 <27 <27 <27 <27 <27 <2	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	35 25 25 25 25 25 25 25 25 25 25 25 25 25	SW 8260B SW 8260B	Analyzed 04/02/2001	Batch 1195
surr: Bromofluorobenzene		100.4	da da	91-110	SW 8260B	04/02/2001 04/02/2001	1195 1195

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

04/09/2001 Job No: 01.01956 Sample No: 431283 Account No: 39150 Page 17 of 47

JOB DESCRIPTION: P556 Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-2008 24' P556 Sta-Rite Delavan, WI Rec'd on ice

Date/Time Taken: 03/28/2001 10:50

Parameter			Reporting	ſ	Date	Prep/Run
Farameter	Results	Units	Limit	Method	Analyzed	Batch
Solids, Total VOC - METHANOL - 8260B	94.4	ole	n/a	SW 5030	04/06/2001	3619
Benzene	<26	ug/kg	5 E	011 00000		
Bromobenzene	<26	ug/kg	25	SW 8260B	04/02/2001	1195
Bromochloromethane	<26	ug/kg	20	SW 8260B	04/02/2001	1195
Bromodichloromethane	<26	ug/kg	20 05	SW 8260B	04/02/2001	1195
Bromoform	<26	ug/kg	25	SW 8260B	04/02/2001	1195
momethane	<106	ug/kg	45	SW 8260B	04/02/2001	1195
Jutylbenzene	<26	ug/kg	100	SW 8260B	04/02/2001	1195
sec-Butylbenzene	<26	ug/kg Ng/kg	25	SW 8260B	04/02/2001	1195
tert-Butylbenzene	<26	ug/kg	25	SW 8260B	04/02/2001	1195
Carbon Tetrachloride	<26	ug/kg	25	SW 8260B	04/02/2001	1 195
Chlorobenzene	<26	ug/kg	25	SW 8260B	04/02/2001	1195
Chlorodibromomethane	<26	ug/kg	25	SW 8260B	04/02/2001	1195
Chloroethane	<37	ug/kg	25	SW 8260B	04/02/2001	1195
Chloroform	<26	ug/kg	35	SW 8260B	04/02/2001	1195
Chloromethane	< 53	ug/kg	25	SW 8260B	04/02/2001	1195
2-Chlorotoluene	<25	ug/kg	50	SW 8260B	04/02/2001	1195
4-Chlorotoluene	<20	ug/kg	25	SW 8260B	04/02/2001	1195
1,2-Dibromo-3-Chloropropane	<53	ug/kg	25	SW 8260B	04/02/2001	1195
1,2-Dibromoethane (EDB)	<25	ug/kg	50	SW 8260B	04/02/2001	1195
Dibromomethane	<26	ug/kg	25	SW 8260B	04/02/2001	1195
1,2-Dichlorobenzene	<20	ug/kg	25	SW 8260B	04/02/2001	1195
1,3-Dichlorobenzene	<26	ug/kg	25	SW 8260B	04/02/2001	1195
1,4-Dichlorobenzene	<26	ug/kg	25	SW 8260B	04/02/2001	1195
Dichlorodifluoromethane	<26	ug/kg	25	SW 8260B	04/02/2001	1 19 5
1,1-Dichloroethane	<20	ug/kg	25	SW 8260B	04/02/2001	1195
1,2-Dichloroethane	<20	ug/kg	25	SW 8260B	04/02/2001	1195
1,1-Dichloroethene	<20	ug/kg	25	SW 8260B	04/02/2001	1195
cis-1,2-Dichloroethene	<20	ug/kg	25	SW 8260B	04/02/2001	1195
trans-1,2-Dichloroethene	<20	ug/kg	25	SW 8260B	04/02/2001	1195
1,2-Dichloropropane	<26	ug/kg	25	SW 8260B	04/02/2001	1195
1,3-Dichloropropane	<26	ug/kg	25	SW 8260B	04/02/2001	1195
2,2-Dichloropropane	<26	ug/kg	25	SW 8260B	04/02/2001	1195
1,1-Dichloropropene	<26	ug/kg	25	SW 8260B	04/02/2001	1195
1-1,3-Dichloropropene	<26	ug/kg	25	SW 8260B	04/02/2001	1 195
.ns-1,3-Dichloropropene	<20	ug/kg	25	SW 8260B	04/02/2001	1195
Di-isopropyl ether	~20	ug/kg	25	SW 8260B	04/02/2001	1195
Ethylbenzene	N20 -20	ug/kg	25	SW 8260B	04/02/2001	1195
	S20	ug/kg	25	SW 8260B	04/02/2001	1195

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

04/09/2001 Job No: 01.01956 Sample No: 431283 Account No: 39150 Page 18 of 47

JOB DESCRIPTION: P556 Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-2008 24' P556 Sta-Rite Delavan, WI Rec'd on ice

Date/Time Taken: 03/28/2001 10:50

Date Received: 03/29/2001

-- ... --

Parameter	Results	Units	Reporting Limit	Method	Date Analyzed	Prep/Run Batch
Hexachlorobutadiene	~37					
Isopropylbenzene	<37	ug/kg	35	SW 8260B	04/02/2001	. 1195
p-Isopropyltoluene	<26	ug/kg	25	SW 8260B	04/02/2001	. 1195
Methylene Chloride	<26	ug/kg	25	SW 8260B	04/02/2001	1195
hyl-t-butyl ethon	<53	ug/kg	50	SW 8260B	04/02/2001	1195
hthaleno	<26	ug/kg	25	SW 8260B	04/02/2001	1195
ncharene R-Bronylbonzone	<26	ug/kg	25	SW 8260B	04/02/2001	1195
n-Propyrbenzene Stymone	<26	ug/kg	25	SW 8260B	04/02/2001	1195
	<26	ug/kg	25	SW 8260B	04/02/2001	1195
1,1,1,2-Tetrachloroethane	<26	ug/kq	25	SW 8260B	04/02/2001	1195
1,1,2,2-Tetrachloroethane	<26	uq/kq	25	SW 8260B	04/02/2001	1195
Tetrachloroethene	<26	uq/kq	25	SW 8260B	04/02/2001	1195
Toluene	<26	ua/ka	25	SW 8260B	04/02/2001	1195
1,2,3-Trichlorobenzene	<26	ug/kg	25	SW 9260B	04/02/2001	1195
1,2,4-Trichlorobenzene	<26	ug/kg	25	SW 0260B	04/02/2001	1195
1,1,1-Trichloroethane	<26	ug/kg	25	SW 826UB	04/02/2001	1195
1,1,2-Trichloroethane	<26	ug/kg	25	SW 8260B	04/02/2001	1195
Trichloroethene	c26	ug/kg	25	SW 8260B	04/02/2001	1195
Trichlorofluoromethane	<20	ug/kg	25	SW 8260B	04/02/2001	1195
1,2,3-Trichloropropane	~26	ug/kg	25	SW 8260B	04/02/2001	1195
1,2,4-Trimethylbenzene	<26	ug/kg	25	SW 8260B	04/02/2001	1195
1.3.5-Trimethylbenzene	<26	ug/kg	25	SW 8260B	04/02/2001	1195
Vinyl Chloride	<26	ug/kg	25	SW 8260B	04/02/2001	1195
Xvlenes, Total	<26	ug/kg	25	SW 8260B	04/02/2001	1195
Surr: Dibromofluoromothere	<37	ug/kg	35	SW 8260B	04/02/2001	1195
Surr: Toluepe-da	101.4	율	85-118	SW 8260B	04/02/2001	1195
Surr: Bromofluowohan-au	100.0	₽¢	92-107	SW 8260B	04/02/2001	1195
Sull. Diomoliaoropenzene	98.0	ક	91 -1 10	SW 8260B	04/02/2001	1195

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

04/09/2001 Job No: 01.01956 Sample No: 431284 Account No: 39150 Page 19 of 47

JOB DESCRIPTION: P556 Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-2008 26' P556 Sta-Rite Delavan, WI Rec'd on ice

Date/Time Taken: 03/28/2001 10:55

Parameter	Result		Reportin	ıg	Date	Prep / Bur
Solids, Total		b onits	Limit	Method	Analyzed	Batab
VOC - METHANOL BOCOD	93.7	ş.				Batch
Benzene		•	n/a	SW 5030	04/06/2001	2610
Bromobenzene	<27	ug/ka	0 -		,	2013
Bromochloromethana	<27	ug/kg	25	SW 8260E	3 04/04/2001	1100
Bromodichloromethane	<27	ug/kg	25	SW 8260E	3 04/04/2001	1199
noform	<27	ug/kg ug/kg	25	SW 8260B	04/04/2001	1199
nomethane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
a-Butvlhenzeno	<107	ug/kg	25	SW 8260B	04/04/2001	1100
ec-Butylbenzone	<27	ug/kg	100	SW 8260B	04/04/2001	1199
ert-Butylbenzene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
arbon Tetrachland 1	<27	ug/kg	25	SW 8260B	04/04/2001	1199
hlorobenzeno	<27	ug/kg	25	SW 8260B	04/04/2001	1199
hlorodibromonati	<27	ug/kg	25	SW 8260B	04/04/2001	1199
hloroethane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
bloroform	<37	ug/kg	25	SW 8260B	04/04/2001	1199
bloromethane	<27	ug/kg	35	SW 8260B	04/04/2001	1199
-Chlorotalus-	<53	ug/kg	25	SW 8260B	04/04/2001	1199
-Chlorotoluene	<27	ug/kg	50	SW 8260B	04/04/2001	1199
2-Dibrora 2 au	<27	ug/kg	25	SW 8260B	04/04/2001	1199
2-Dibromo-3-Chloropropane	<53	ug/kg	25	SW 8260B	04/04/2001	1199
bromomoshane (EDB)	<27	ug/kg	50	SW 8260B	04/04/2001	1199
	<27	ug/kg	25	SW 8260B	04/04/2001	1199
2-Dichlorobenzene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
4-Dichlorobenzene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
ablens l's	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1 Division Internet Internet	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1-Dichloroethane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
2-Dichloroethane	~27	ug/kg	25	SW 8260B	04/04/2001	1199
1-Dichloroethene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
s-1,2-Dichloroethene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
ans-1,2-Dichloroethene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
2-Dichloropropane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
3-Dichloropropane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
2-Dichloropropane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
-Dichloropropene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
-1,3-Dichloropropene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
ns-1,3-Dichloropropene	< 27	ug/kg	25	SW 8260B	/04/2001 04/04/2001	1199
isopropyl ether	<27	ug/kg	25	SW 8260B	04/04/2001 04/04/2001	1199
lylbenzene	<27	ug/kg	25	SW 8260B	V=/V4/2001 04/04/2001	1199
	<27	ug/kg	25	SW 8260B	04/04/2001 04/04/2001	1199
					~=/04/2001	1199

÷

ANALYTICAL REPORT

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

04/09/2001 Job No: 01.01956 Sample No: 431284 Account No: 39150 Page 20 of 47

JOB DESCRIPTION: P556 Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-2008 26' P556 Sta-Rite Delavan, WI Rec'd on ice

Date/Time Taken: 03/28/2001 10:55

Date Received: 03/29/2001

_ ._

Parameter		Results	Units	Reporting Limit	Method	Date Analyzed	Prep/Run Batch
Hexachlorobutadiene Isopropylbenzene p-Isopropyltoluene Methylene Chloride 'yl-t-butyl ether '_inthalene n-Propylbenzene Styrene 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,1,2-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Trichlorofluoromethane 1,2,3-Trichloropropane 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Vinyl Chloride Xylenes, Total Surr: Dibromofluoromethane Surr: Bromofluorobenzene	L	Results <37 <27 <27 <27 <27 <27 <27 <27 <2	Units ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg s s	Limit 35 25 25 25 25 25 25 25 25 25 2	Method SW 8260B SW 8260B	Analyzed 04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001	Batch Batch 1199
					06 020VB	04/04/2001	1199

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

04/09/2001 Job No: 01.01956 Sample No: 431285 Account No: 39150 Page 21 of 47

JOB DESCRIPTION: P556 Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-2008 28' P556 Sta-Rite Delavan, WI Rec'd on ice

Date/Time Taken: 03/28/2001 11:00

Parameter	Popula		Reportin	q		
Solida matal	Result	s Units	Limit	Method	Apalupad	Prep/Run
VOC - MERUNANO	92 0	P			HILAT A SEC	Batch
Benzene	-2.0	Ť	n/a	SW 5030	04/06/2007	
Bromobenzone	<27				01/00/2001	3619
Bromochlonensth	<27	ug/kg	25	SW 8260E	3 04/02/2001	
Bromodiablemen	<27	ug/kg	25	SW 8260E	3 04/02/2001	1195
Bromoform	<27	ug/kg	25	SW 8260E	04/02/2001 04/02/2001	1195
)momether	<27	ug/kg	25	SW 8260E	04/02/2001	1195
	<109	ug/kg	25	SW 8260B	04/02/2001	1195
Sucyipenzene	<27	ug/kg	100	SW 8260B		1195
tert Butylbenzene	<27	ug/kg	25	SW 8260B	04/02/2001	1195
Carbon Duly Denzene	~27	ug/kg	25	SW 8260B	04/02/2001	1195
Chloreba	<27	ug/kg	25	SW 8260B	04/02/2001	1195
Chlenstene	<27	ug/kg	25	SW 8260B	04/02/2001	1195
chierodibromomethane	<27	ug/kg	25	SW 8260B	04/02/2001	1195
Chloroethane	<20	ug/kg	25	SW 8260B	04/02/2001	1195
	< 38	ug/kg	35	SW 8260B	04/02/2001	1195
-nioromethane	<27	ug/kg	25	SW 8260B	04/02/2001	1195
2-Chlorotoluene	<54	ug/kg	50	SW 82600	04/02/2001	1195
-Chlorotoluene	<27	ug/kg	25	SW 8260B	04/02/2001	1 195
,2-Dibromo-3-Chloropropane	<27	ug/kg	25	SW 8260B	04/02/2001	1195
,2-Dibromoethane (EDB)	< 54	ug/kg	50	SW 8260B	04/02/2001	1195
lbromomethane	<27	ug/kg	25	SW 9360D	04/02/2001	1195
,2-Dichlorobenzene	<27	ug/kg	25	SW 8260B	04/02/2001	1195
,3-Dichlorobenzene	<27	ug/kg	25	SW 8260B	04/02/2001	1195
,4-Dichlorobenzene	<27	ug/kg	25	SW 8260B	04/02/2001	1195
ichlorodifluoromethane	<27	ug/kg	25	SW 8260B	04/02/2001	1195
,1-Dichloroethane	<27	ug/kg	25	SW 0260B	04/02/2001	1195
,2-Dichloroethane	<27	ug/kg	25	SW 9260B	04/02/2001	1195
,1-Dichloroethene	<27	ug/kg	25	SW POCOD	04/02/2001	1195
is-1,2-Dichloroethene	<27	ug/kg	25	SM 9260B	04/02/2001	1195
rans-1,2-Dichloroethene	<27	ug/kg	25	SM 8260B	04/02/2001	1195
2-Dichloropropane	<27	ug/kg	25	SW 0260B	04/02/2001	1195
3-Dichloropropane	<27	ug/kg	25	SW 0260B	04/02/2001	1195
2-Dichloropropane	<27	ug/kg	25	SN 8260B	04/02/2001	1195
1-Dichloropropana	<27	uq/kg	25	SW 8260B	04/02/2001	1195
3-1.3-Dichloroproper-	<27	uq/kq	25	SW 8260B	04/02/2001	1195
Ans-1.3-Dichloroppene	<27	uq/kg	25	SW 82608	04/02/2001	1195
-isopropyl ether	<27	ug/kg	25	SW 82608 SW 82608	04/02/2001	1195
hvlbenzene	<27	uq/kq	25	SW 8260B (04/02/2001	1195
1	<27	ug/kg	20 25	SW 8260B	04/02/2001	1195
			ر م	SW 8260B (04/02/2001	1195

Test America

ANALYTICAL REPORT

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

04/09/2001 Job No: 01.01956 Sample No: 431285 Account No: 39150 Page 22 of 47

JOB DESCRIPTION: P556 Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-2008 28' P556 Sta-Rite Delavan, WI Rec'd on ice

Date/Time Taken: 03/28/2001 11:00

Parameter	Results	Units	Reporting Limit	Method	Date Analyzed	Prep/Run Batch
Hexachlorobutadiene	~ 30					
Isopropylbenzene	<22	ug/kg	35	SW 8260B	04/02/2001	. 1195
p-Isopropyltoluene	<27	ug/kg	25	SW 8260B	04/02/2001	. 1195
Methylene Chloride	527	ug/kg	25	SW 8260B	04/02/2001	1195
' Wl-t-butyl ether	< 54	ug/kg	50	SW 8260B	04/02/2001	. 1195
ithalene	<27	ug/kg	25	SW 8260B	04/02/2001	1195
n-Propylbenzene	<27	ug/kg	25	SW 8260B	04/02/2001	1195
Styrene	<27	ug/kg	25	SW 8260B	04/02/2001	1195
1 1 1 2-Totrachloweethers	<27	ug/kg	25	SW 8260B	04/02/2001	1195
1 1 2 2-Tetrachiereethane	, <27	ug/kg	25	SW 8260B	04/02/2001	1195
Tetrachloroethane	<27	ug/kg	25	SW 8260B	04/02/2001	1195
Teluene	30	ug/kg	25	SW 8260B	04/02/2001	1195
	<27	ug/kg	25	SW 8260B	04/02/2001	1195
1,2,3-Trichlorobenzene	<27	ug/kg	25	SW 8260B	04/02/2001	1195
1,2,4-Trichlorobenzene	<27	uq/kq	25	SW 8260B	04/02/2001	1105
1,1,1-Trichloroethane	<27	ug/kg	25	SW 8260B	04/02/2001	1195
1,1,2-Trichloroethane	<27	ug/kg	25	SW 8260B	04/02/2001	1195
Trichloroethene	<27	ua/ka	25	SW 9260B	04/02/2001	1195
Trichlorofluoromethane	<27	ug/kg	25	SW 9260B	04/02/2001	1195
1,2,3-Trichloropropane	<27	ug/kg	25	SW 8260B	04/02/2001	1195
1,2,4-Trimethylbenzene	<27	ug/ng	20	SW 8260B	04/02/2001	1195
1,3,5-Trimethylbenzene	<27	ug/kg	20	SW 8260B	04/02/2001	1195
Vinyl Chloride	<27	ug/kg	25	SW 8260B	04/02/2001	1195
Xylenes, Total	<38	ug/kg	25	SW 8260B	04/02/2001	1195
Surr: Dibromofluoromethane	101 0	ug/kg	35	SW 8260B	04/02/2001	1195
Surr: Toluene-d8	101.0	*	85-118	SW 8260B	04/02/2001	1195
Surr: Bromofluorobenzene	100.0	Ť	92-107	SW 8260B	04/02/2001	1195
	98.4	*	91-110	SW 8260B	04/02/2001	1195

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

04/09/2001 Job No: 01.01956 Sample No: 431286 Account No: 39150 Page 23 of 47

JOB DESCRIPTION: P556 Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-SE1-24' P556 Sta-Rite Delavan, WI Rec'd on ice

Date/Time Taken: 03/28/2001 14:10

Parameter	Result	s Units	Reportin	a	Date	Prep/Run
Solids, Total				Method	Analyzed	Batch
VOC - METHANOL - 8260B	92.5	8	n/a			
Benzene			117 a	SW 5030	04/06/2001	3619
Bromobenzene	<27	ua/ka	25			. – •
Bromochloromethane	<27	uq/ka	25	SW 8260B	04/04/2001	1199
Bromodichloromethane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
Bromoform	<27	ug/kg	25	SW 8260B	04/04/2001	1199
momethane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
Jutylbenzene	<108	ug/kg	100	SW 8260B	04/04/2001	1199
sec-Butylbenzene	<27	ug/kg	26	SW 8260B	04/04/2001	1199
tert-Butylbenzene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
Carbon Tetrachlorido	<27	ug/kg	25	SW 8260B	04/04/2001	1199
Chlorobenzene	<27	ug/kg	20	SW 8260B	04/04/2001	1199
Chlorodibromomethane	<27	ug/kg	20	SW 8260B	04/04/2001	1199
Chloroethane	<27	ug/kg	20	SW 8260B	04/04/2001	1199
Chloroform	<38	ug/kg	25	SW 8260B	04/04/2001	1199
Chloromethane	<27	ug/kg	35	SW 8260B	04/04/2001	1199
2-Chlorotoluene	<54	ug/kg	45 E0	SW 8260B	04/04/2001	1199
-Chlorotoluere	<27	ug/kg	30	SW 8260B	04/04/2001	1199
, 2-Dibromo-3-Chloren	<27	ug/kg	23	SW 8260B	04/04/2001	1199
2-Dibromoethane (Epp)	<54	ug/kg	25	SW 8260B	04/04/2001	1199
ibromomethane	<27	ug/kg	30 25	SW 8260B	04/04/2001	1199
,2-Dichlorobenzeno	<27	ug/kg	25	SW 8260B	04/04/2001	1199
3-Dichlorobenzene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
4-Dichlorobenzene	<27	ug/kg	20 25	SW 8260B	04/04/2001	1199
ichlorodifluoromatia	<27	ug/kg	45	SW 8260B	04/04/2001	1199
.1-Dichloroothan-	<27	$u \sigma / k \sigma$	20 25	SW 8260B	04/04/2001	1199
2-Dichloroethane	<27	ug/kg	23	SW 8260B	04/04/2001	1199
1-Dichloroothan-	<27	ug/kg	40 0E	SW 8260B	04/04/2001	1199
is-1 2-Dichlement	<27	ug/kg	20	SW 8260B	04/04/2001	1199
rans-1 2-Dichlement	<27	ug/kg	40 25	SW 8260B	04/04/2001	1199
2-Dichleren	<27	ug/kg	20	SW 8260B	04/04/2001	1199
3-Dichloropropane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
2-Dichlemenus	<27	ug/kg	40 25	SW 8260B	04/04/2001	1199
l-Dichlenne	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1 Dichioropropene	<27	ug/kg ug/kg	40 0F	SW 8260B	04/04/2001	1199
,-1, 3-Dichloropropene	<27	ug/hg ug/ka	25	SW 8260B (04/04/2001	1199
-isopropulational	:27	ng/kg	49 25	SW 8260B (04/04/2001	1199
-isopropyl ether	:27	-9//29 Ug/kg	40 25	SW 8260B (04/04/2001	1199
-nyibenzene <	:27	-3/14 Ng/kg	40	SW 8260B (04/04/2001	1199
		ng / rg	25	SW 8260B (04/04/2001	1199

Test America

ANALYTICAL REPORT

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

04/09/2001 Job No: 01.01956 Sample No: 431286 Account No: 39150 Page 24 of 47

-

JOB DESCRIPTION: P556 Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-SE1-24' P556 Sta-Rite Delavan, WI Rec'd on ice

Date/Time Taken: 03/28/2001 14:10 Date Received: 03/29/2001

Parameter		Results	Units	Reporting Limit	Method	Date Analyzed	Prep/Run Batch
Hexachlorobutadiene		~ 7 0	(1		••	. L iur <i>j</i> 2 Cu	Daten
Isopropylbenzene		<00 -07	ug/kg	35	SW 8260B	04/04/2001	. 1199
p-Isopropyltoluene		<27	ug/kg	25	SW 8260B	04/04/2001	1199
Methylene Chloride	т	<27	ug/kg	25	SW 8260B	04/04/2001	1199
Methyl-t-butyl ether	1	69	ug/kg	50	SW 8260B	04/04/2001	1199
Nephthalene		<27	ug/kg	25	SW 8260B	04/04/2001	1199
:opv]benzene		<27	ug/kg	25	SW 8260B	04/04/2001	1199
5. grene		<27	ug/kg	25	SW 8260B	04/04/2001	1199
1 1 1 2-Tetrachloweethe		<27	ug/kg	25	SW 8260B	04/04/2001	1199
1 1 2 2-Tetrachlemether		<27	ug/kg	25	SW 8260B	04/04/2001	1199
Tetrachloroethane		<27	ug/kg	25	SW 8260B	04/04/2001	1799
Teluare		<27	ug/kg	25	SW 8260B	04/04/2001	1100
		<27	ug/kg	25	SW 8260B	04/04/2001	1100
1,2,3-irichlorobenzene		<27	ug/kq	25	SW 8260B	04/04/2001	1199
1,2,4-Trichlorobenzene		<27	uq/kq	25	SW 8260B		1199
1,1,1-Trichioroethane		<27	uq/kq	25	SW 8260B	04/04/2001	1199
1,1,2-Trichloroethane		<27	uq/kq	25	SW 8260B	04/04/2001	1199
Trichloroethene		<27	ua/ka	25	SW BOGAD	04/04/2001	1199
Trichlorofluoromethane		<27	ug/kg	25	SW 0260B	04/04/2001	1199
1,2,3-Trichloropropane		<27	ug/kg	25	SW BOCOD	04/04/2001	1199
1,2,4-Trimethylbenzene		<27	ug/kg	25	SW 8260B	04/04/2001	1199
1,3,5-Trimethylbenzene		<27	ug/kg Ng/kg	20	SW 8260B	04/04/2001	1199
Vinyl Chloride		<27	ug/kg	25	SW 8260B	04/04/2001	1199
Xylenes, Total		< 3.8	ug/kg	25	SW 8260B	04/04/2001	1199
Surr: Dibromofluoromethane		99 6	ug/kg	35	SW 8260B	04/04/2001	1199
Surr: Toluene-d8		97 7	5 9-	85-118	SW 8260B	04/04/2001	1199
Surr: Bromofluorobenzene		27. <u>2</u> 95 0	5	92-107	SW 8260B	04/04/2001	1199
···		22.0	5	91-110	SW 8260B	04/04/2001	1199

Test/America

ANALYTICAL REPORT

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

.

04/09/2001 Job No: 01.01956 Sample No: 431286 Account No: 39150 Page 24 of 47

JOB DESCRIPTION: P556 Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-SE1-24' P556 Sta-Rite Delavan, WI Rec'd on ice

Date/Time Taken: 03/28/2001 14:10

Parameter		Results	Units	Reporting Limit	Method	Date Analyzed	Prep/Run Batch
Hexachlorobutadiene Isopropylbenzene p-Isopropyltoluene Methylene Chloride hyl-t-butyl ether nthalene n-Propylbenzene Styrene 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,2,3-Trichloroethane 1,2,3-Trichloroethane 1,2,3-Trichloropethane 1,2,3-Trichloropethane 1,2,5-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Vinyl Chloride Xylenes, Total Surr: Dibromofluoromethane Surr: Bromofluorobenzene	L	Results <38 <27 <27 69 <27 <27 <27 <27 <27 <27 <27 <27 <27 <27	Units ug/kg s ug/kg ug/kg ug/kg s ug/kg ug/kg s ug/kg s ug/kg ug/kg ug/kg s ug/kg ug/kg s ug/kg s ug/kg s ug/kg s ug/kg s ug/kg s ug/kg s ug/kg s ug/kg s ug/kg s ug/kg s ug/kg s ug/kg s ug/kg s ug/kg s ug/kg s ug/kg s ug/kg ug/kg ug/kg s ug/kg s ug/kg	Limit 35 25 25 25 25 25 25 25 25 25 2	Method SW 8260B SW 8260B	Analyzed Analyzed 04/04/2001	Batch Batch 1199 1199 1199 1199 1199 1199 1199 11
		95.8	5	91-110	SW 8260B	04/04/2001	1199

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

04/09/2001 Job No: 01.01956 Sample No: 431287 Account No: 39150 Page 25 of 47

JOB DESCRIPTION: P556 Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-SE1-28' P556 Sta-Rite Delavan, WI Rec'd on ice

Date/Time Taken: 03/28/2001 14:20

Daramatan		Reporting		r	Date	Prep/Run
Faraneter	Results	Units	Limit	Method	Analyzed	Batch
Solids, Total	57	g	,		-	
VOC - METHANOL - 8260B	55.7	*	n/a	SW 5030	04/06/2001	3619
Benzene	~ 7 7	(1				
Bromobenzene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
Bromochloromethane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
Bromodichloromethane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
Bromoform	<27	ug/kg	25	SW 8260B	04/04/2001	1199
momethane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
Jutylbenzene	<107	ug/kg	100	SW 8260B	04/04/2001	1199
sec-Butylbenzene	< 4 7	ug/kg	25	SW 8260B	04/04/2001	1199
tert-Butylbenzene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
Carbon Tetrachloride	<27	ug/kg	25	SW 8260B	04/04/2001	1199
Chlorobenzene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
Chlorodibromomethane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
Chloroethane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
Chloroform	<37	ug/kg	35	SW 8260B	04/04/2001	1199
Chloromethane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
2-Chlorotoluene	<53	ug/kg	50	SW 8260B	04/04/2001	1199
4-Chlorotoluene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1.2-Dibromo-3-Chloropyon	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1.2-Dibromoethane (EDB)	<53	ug/kg	50	SW 8260B	04/04/2001	1199
Dibromomethene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1.2-Dichlorobenzono	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1.3-Dichlorobenzene	<27	ug/kg	25	SW 8260B	04/04/2001	1100
1.4-Dichloroberzene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
Dichlorodifluoromotheme	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1.1-Dichloroethane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1.2-Dichloroethane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1,1-Dichloroethene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
Cis-1 2-Dichloroothese	<27	ug/kg	25	SW 8260B	04/04/2001	2001
trans-1 2-Dichloroother-	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1.2-Dichloropropage	<27	ug/kg	25	SW 8260B	04/04/2001	1100
1 3-Dichloropropane	<27	ug/kg	25	SW 8260B	04/04/2001	7100
2.2-Dichloropropane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1 1-Dichloropropane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
-1. 2 Dichlemenne	<27	ug/kg	25	SW 8260B	04/04/2001	1199
a l a pichla	<27	ug/kq	25	SW 8260B	04/04/2001	1199
Di-iconversional att	<27	ug/kg	25	SW 8260B	04/04/2001	1100
Etalba	<27	ug/ka	25	SW 8260D	04/04/2001	1133
Bunyidenzene	<27	uq/kq	25	SW 8260B	04/04/2001	1199
		· · · · · · ·		DA 0200B	V4/2001	1199

Test/America

ANALYTICAL REPORT

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

04/09/2001 Job No: 01.01956 Sample No: 431287 Account No: 39150 Page 26 of 47

- .

JOB DESCRIPTION: P556 Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-SE1-28' P556 Sta-Rite Delavan, WI Rec'd on ice

Date/Time Taken: 03/28/2001 14:20

Parameter		Results	Units	Reporting Limit	Method	Date Analyzed	Prep/Run Batch
<pre>Parameter Hexachlorobutadiene Isopropylbenzene p-Isopropyltoluene [№] 'hylene Chloride nyl-t-butyl ether Naphthalene n-Propylbenzene Styrene 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Toluene 1,2,3-Trichlorobenzene 1,1,1-Trichloroethane 1,2,3-Trichloroethane 1,2,3-Trichloropenane 1,2,4-Trichloropenane 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Vinyl Chloride Xylenes, Total Surr: Dibromofluoromethane</pre>	L	Results <37 <27 <27 <27 <27 <27 <27 <27 <27 <27 <2	Units ug/kg	Limit 35 25 25 25 25 25 25 25 25 25 2	Method SW 8260B SW 8260B	Analyzed 04/04/2001	Plep/Run Batch 1199 1199 1199 1199 1199 1199 1199 11
Surr: Toluene-d8 Surr: Bromofluorobenzene		99.0 98.6	oto oto	92-107 91-110	SW 8260B SW 8260B SW 8260B	04/04/2001 04/04/2001 04/04/2001	1199 1199 1199

Test America

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

04/09/2001 Job No: 01.01956 Sample No: 431287 Account No: 39150 Page 26 of 47

JOB DESCRIPTION: P556 Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-SE1-28' P556 Sta-Rite Delavan, WI Rec'd on ice

.

Date/Time Taken: 03/28/2001 14:20

Parameter		Results	Units	Reporting Limit	Method	Date Analyzed	Prep/Run Batch
Hexachlorobutadiene		<37	ua/ka	35		0	
Isopropylbenzene		<27	ug/kg	35	SW 8260B	04/04/2001	1199
p-Isopropyltoluene		227	ug/kg Ng/kg	25	SW 8260B	04/04/2001	1199
Methylene Chloride	т.	66	ug/kg	25	SW 8260B	04/04/2001	1199
Methyl-t-butyl ether		<27	ug/kg	50	SW 8260B	04/04/2001	1199
Naphthalene		<27	ug/kg	25	SW 8260B	04/04/2001	1199
n-Propylbenzene		<27	ug/kg	25	SW 8260B	04/04/2001	1199
rene		<27	ug/kg	25	SW 8260B	04/04/2001	1199
		<27	ug/kg	25	SW 8260B	04/04/2001	1199
1.1.2.2-Tetrachloroethane		<27	ug/kg	25	SW 8260B	04/04/2001	1199
Tetrachloroethene		<27	ug/kg	25	SW 8260B	04/04/2001	1199
Toluene		<27	ug/kg	25	SW 8260B	04/04/2001	1199
1.2.3-Trichlorobenzene		<27	ug/kg	25	SW 8260B	04/04/2001	1199
1 2 4-Trichlorobongene		<27	ug/kg	25	SW 8260B	04/04/2001	1199
1 1 1-Trichloroothone		<27	ug/kg	25	SW 8260B	04/04/2001	1199
1 1 2-Trichloroethane		<27	ug/kg	25	SW 8260B	04/04/2001	1199
Trichloroothone		<27	ug/kg	25	SW 8260B	04/04/2001	1199
Trichlorofluorenthan		<27	ug/kg	25	SW 8260B	04/04/2001	1199
1.2.2. Twichland		<27	ug/kg	25	SW 8260B	04/04/2001	1199
1,2,3-IIIChioropropane		<27	ug/kg	25	SW 8260B	04/04/2001	1199
1,2,4-11imetnyibenzene		<27	ug/kg	25	SW 8260B	04/04/2001	1199
1,3,5-1fimetnyibenzene		<27	ug/kg	25	SW 8260B	04/04/2001	1199
Vilyi Chioride		<27	ug/kg	25	SW 8260B	04/04/2001	1199
Ayrenes, Total		<37	ug/kg	35	SW 8260B	04/04/2001	1100
Surr: Dibromofluoromethane		102.4	8	85-118	SW 8260B	04/04/2001	1100
Surr: Toluene-d8		99.0	olo	92-107	SW 8260B	04/04/2001	1100
Suir: Bromofluorobenzene		98.6	8	91-110	SW 8260B	04/04/2001	1199

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

04/09/2001 Job No: 01.01956 Sample No: 431288 Account No: 39150 Page 27 of 47

JOB DESCRIPTION: P556 Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-SE2-4' P556 Sta-Rite Delavan, WI Rec'd on ice

Date/Time Taken: 03/28/2001 16:30

-		Reporting			Date	Prep/Run
Parameter	Results	Units	Limit	Method	Analyzed	Batch
Solids, Total	92.6	ę.	n/a	SM 5020	04/06/2002	2.600
VOC - METHANOL - 8260B	•	v	11/4	3M 3030	04/08/2001	3620
Benzene	<27	ua/ka	25	CW 9960D	04/04/2001	1100
Bromobenzene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
Bromochloromethane	<27	ug/kg	25	SW 9260B	04/04/2001	1199
Bromodichloromethane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
Bromoform	<27	ug/kg	25	SW 0260B	04/04/2001	1199
omethane	<108	ug/kg	100	SM 0260B	04/04/2001	1133
n Lutylbenzene	<27	ug/kg ug/kg	25	SW 0200B	04/04/2001	1199
sec-Butylbenzene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
tert-Butylbenzene	<27	ug/kg	40 25	SW 8260B	04/04/2001	1199
Carbon Tetrachloride	<27	ug/kg ug/kg	25	SW 626UB	04/04/2001	1199
Chlorobenzene	<27	ug/kg ug/kg	25	SW 8260B	04/04/2001	1199
Chlorodibromomethane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
Chloroethane	<27	ug/kg	25 25	SW 8260B	04/04/2001	1199
Chloroform	<27	ug/kg	35	SW 8260B	04/04/2001	1199
Chloromethane	< 5.4	ug/kg	25	SW 8260B	04/04/2001	1199
2-Chlorotoluene	< 34	ug/kg	50	SW 8260B	04/04/2001	1199
4-Chlorotoluene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1,2-Dibromo-3-Chloropropane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1.2-Dibromoethane (EDB)	< 54	ug/kg	50	SW 8260B	04/04/2001	1199
Dibromomethane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1,2-Dichlorobenzene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1.3-Dichlorobenzene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1.4-Dichlorobenzene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
Dichlorodifluoromethano	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1.1-Dichloroethane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1.2-Dichloroethane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1.1-Dichloroethene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
Cis-1 2-Dichloroethene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
trans-1 2-Dichloroothere	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1 2-Dichloropropage	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1 3-Dichloropropane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
2,3 Dichloropropane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1 l-Dichloropropane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1.1 2-Dichloropropene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
ng l 2 Dichlemanne	<27	ug/kg	25	SW 8260B	04/04/2001	1199
Di igonyanul the	<27	ug/kg	25	SW 8260B	04/04/2001	1199
Dialogy etner	<27	ug/kg	25	SW 8260B	04/04/2001	1199
#tnyidenzene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
		-			, , =	/

INCORPOBATED

•

Test/America

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

04/09/2001 Job No: 01.01956 Sample No: 431288 Account No: 39150 Page 28 of 47

JOB DESCRIPTION: P556 Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-SE2-4' P556 Sta-Rite Delavan, WI Rec'd on ice

Date/Time Taken: 03/28/2001 16:30

Date Received: 03/29/2001

··-·· ____

Parameter		Peculto	Insita	Reporting	M-+12	Date	Prep/Run
		Repuiles	onits	LT UTÉ	Method	Analyzed	Batch
Hexachlorobutadiene		<38	ua/ka	35	EW POCOD	04/04/0003	
Isopropylbenzene		<27	ug/kg	22	SW 0200B	04/04/2001	1199
p-Isopropyltoluene		<27	ug/kg	25	SW 8260B	04/04/2001	1199
Methylene Chloride	T.	94	ug/kg ug/kg	23 E0	SW 8260B	04/04/2001	1199
Methyl-t-butyl ether	-	23 20 7	ug/kg	50	SW 8260B	04/04/2001	1199
Naphthalene		<27	ug/kg	25	SW 8260B	04/04/2001	1199
r-Propylbenzene		<27	ug/kg	25	SW 8260B	04/04/2001	1199
rene		<27	ug/kg	25	SW 8260B	04/04/2001	1199
1.1.1.2-Tetrachloroethane		<27	ug/kg	25	SW 8260B	04/04/2001	1199
1.1.2.2-Tetrachloroethano		<27	ug/kg	25	SW 8260B	04/04/2001	1199
Tetrachloroethene		<27	ug/kg	25	SW 8260B	04/04/2001	1199
Toluene		<27	ug/kg	25	SW 8260B	04/04/2001	1199
1.2.3-Trichlorobenzene		<27	ug/kg	25	SW 8260B	04/04/2001	1199
1 2 A-Trichlorohonzone		<27	ug/kg	25	SW 8260B	04/04/2001	1199
1 1 1-Trightereathere		<27	ug/kg	25	SW 8260B	04/04/2001	1199
1,1,2-Trichloroothane		<27	ug/kg	25	SW 8260B	04/04/2001	1199
Trichleresthere		<27	ug/kg	25	SW 8260B	04/04/2001	1199
Trichlorofluonemathe		<27	ug/kg	25	SW 8260B	04/04/2001	1199
1 2 2 Tricklaue		<27	ug/kg	25	SW 8260B	04/04/2001	1199
1,2,3-111Chloropropane		<27	ug/kg	25	SW 8260B	04/04/2001	1199
1,2,4-Trimetnylbenzene		<27	ug/kg	25	SW 8260B	04/04/2001	1199
1,3,5-Trimetnyibenzene		<27	ug/kg	25	SW 8260B	04/04/2001	1199
Vinyi Chioride		<27	ug/kg	25	SW 8260B	04/04/2001	1199
Aylenes, Total		<38	ug/kg	35	SW 8260B	04/04/2001	1199
Surr: Dibromofluoromethane		102.8	 ao	85-118	SW 8260B	04/04/2001	1199
Surr: Toluene-d8		97.4	용	92-107	SW 8260B	04/04/2001	1199
Surr: Bromofluorobenzene		99.0	eko A	91-110	SW 8260B	04/04/2001	1199

Test America

ANALYTICAL REPORT

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

04/09/2001 Job No: 01.01956 Sample No: 431289 Account No: 39150 Page 29 of 47

JOB DESCRIPTION: P556 Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-SE2-10' P556 Sta-Rite Delavan, WI Rec'd on ice

Date/Time Taken: 03/28/2001 16:40

Date Received: 03/29/2001

D			Reporting		Date	Prep/Run
Parameter	Results	Units	Limit	Method	Analyzed	Batch
Solids, Total	93 0	\$	nla		01/05/0000	
VOC - METHANOL - 8260B		0	11/a	SW 5030	04/06/2001	. 3620
Benzene	<27	ua/ka	25	EN OCCOD	04/04/0001	
Bromobenzene	<27	ug/kg	25	SW 9260B	04/04/2001	1199
Bromochloromethane	<27	ug/kg	25	SW 0260B	04/04/2001	1199
Bromodichloromethane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
Promoform	<27	ug/kg	25		04/04/2001	1199
momethane	<108	ug/kg	100	SW 826UB	04/04/2001	1199
. Butylbenzene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
sec-Butylbenzene	<27	ug/kg	20	SW 8260B	04/04/2001	1199
tert-Butylbenzene	<27	ug/kg ug/kg	23	SW 8260B	04/04/2001	1199
Carbon Tetrachloride	<27	ug/kg	20 05	SW 8260B	04/04/2001	1199
Chlorobenzene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
Chlorodibromomethane	<27	ug/kg	20	SW 8260B	04/04/2001	1199
Chloroethane	<38	ug/kg	25	SW 8260B	04/04/2001	1199
Chloroform	<27	ug/kg	35	SW 8260B	04/04/2001	1199
Chloromethane	~54	ug/kg	25	SW 8260B	04/04/2001	1199
2-Chlorotoluene	~ 27	ug/kg	50	SW 8260B	04/04/2001	1199
4-Chlorotoluene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1,2-Dibromo-3-Chloropropage	~51	ug/kg	25	SW 8260B	04/04/2001	1199
1,2-Dibromoethane (EDB)	<04	ug/kg	50	SW 8260B	04/04/2001	1199
Dibromomethane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1,2-Dichlorobenzene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1,3-Dichlorobenzene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1,4-Dichlorobenzene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
Dichlorodifluoromethane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1.1-Dichloroethane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1,2-Dichloroethane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1.1-Dichloroethene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
cis-1,2-Dichloroethene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
trans-1.2-Dichloroethene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1,2-Dichloropropane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1,3-Dichloropropane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
2,2-Dichloropropane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1.1-Dichloropropene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
:-1.3-Dichloropropene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
dns-1.3-Dichloropropene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
Di-isopropyl ether	<27	ug/kg	25	SW 8260B	04/04/2001	1199
Ethylbenzene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
	<27	ug/kg	25	SW 8260B	04/04/2001	1199

...

Test/America

ANALYTICAL REPORT

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

04/09/2001 Job No: 01.01956 Sample No: 431289 Account No: 39150 Page 30 of 47

JOB DESCRIPTION: P556 Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-SE2-10' P556 Sta-Rite Delavan, WI Rec'd on ice

Date/Time Taken: 03/28/2001 16:40

Dear and be			Reporting			Date	Prep/Run
Parameter		Results	Units	Limit	Method	Analyzed	Batch
Hexachlorobutadiene		<38	ua/ka	35	90 92600	04/04/2001	1100
Isopropylbenzene		<27	$u \sigma / k \sigma$	25	SW 0200B	04/04/2001	. 1199
p-Isopropyltoluene		<27	ug/kg	25	SW B260B	04/04/2001	1199
Methylene Chloride	ľ	110	ug/kg	20 50	SW 8260B	04/04/2001	. 1199
hyl-t-butyl ether	_	<27	ug/kg	25	SW 8260B	04/04/2001	1199
phthalene		<27	ug/kg	25	SW 8260B	04/04/2001	1199
n-Propylbenzene		<27	ug/kg	20	SW 8260B	04/04/2001	1199
Styrene		<27	ug/kg	25	SW 8260B	04/04/2001	1199
1,1,1,2-Tetrachloroethane		<27	ug/kg	25	SW 8260B	04/04/2001	1199
1,1,2,2-Tetrachloroethane		<27	ug/kg	25	SW 8260B	04/04/2001	1199
Tetrachloroethene		<27	ug/kg	25	SW 8260B	04/04/2001	1199
Toluene		<27	ug/kg	25	SW 8260B	04/04/2001	1199
1,2,3-Trichlorobenzene		<27	ug/kg	25	SW 8260B	04/04/2001	1199
1,2,4-Trichlorobenzene		<27	ug/kg	25	SW 8260B	04/04/2001	1199
1,1,1-Trichloroethane		<27	ug/kg	25	SW 8260B	04/04/2001	1199
1,1,2-Trichloroethane		<27	ug/kg	25	SW 8260B	04/04/2001	1199
Trichloroethene		<27	ug/kg	25	SW 8260B	04/04/2001	1199
Trichlorofluoromethane		<27	ug/kg	25	SW 8260B	04/04/2001	1199
1.2.3-Trichloropropage		<27	ug/kg	25	SW 8260B	04/04/2001	1199
1 2 4-Trimethylbonzone		<27	ug/kg	25	SW 8260B	04/04/2001	1199
1 3 5-Trimethylbenzene		<27	ug/kg	25	SW 8260B	04/04/2001	1199
Yinyl Chlorido		<27	ug/kg	25	SW 8260B	04/04/2001	1199
Yrlong Tetal		<27	ug/kg	25	SW 8260B	04/04/2001	1 199
Surry Dibromefluctured		<38	ug/kg	35	SW 8260B	04/04/2001	1199
Surr. Taluant do		102.4	울	85-118	SW 8260B	04/04/2001	1199
Sull: IOIUENE-08		95.8	9	92-107	SW 8260B	04/04/2001	1199
Suff: Bromofluorobenzene		101.2	8-	91-110	SW 8260B	04/04/2001	1199
TestAmerica

.

. .

ANALYTICAL REPORT

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

04/09/2001 Job No: 01.01956 Sample No: 431290 Account No: 39150 Page 31 of 47

JOB DESCRIPTION: P556 Sta-Rite PROJECT DESCRIPTION: Soil Analysis SB-CS1-12' P556 Sta-Rite Delavan, WI Rec'd on ice SAMPLE DESCRIPTION:

Date/Time Taken: 03/28/2001 19:10 Date Received: 03/29/2001

Darameter			Reporting	•	Date	Prep/Run
Parameter	Results	Units	Limit	Method	Analyzed	Batch
Solids, Total	91 5	9.		ON FOR	24/25/222	
VOC - METHANOL - 8260B	24.5	6	n/a	SW 5030	04/06/2001	3620
Benzene	<27	ug/kg	25	CW ODCOD	04 /04 /0001	1100
Bromobenzene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
Bromochloromethane	<27	ug/kg	25	SW 9360D	04/04/2001	1199
Bromodichloromethane	<27	ug/kg	25	SH 02005	04/04/2001	199
F moform	<27	ug/kg	25	SW 0260B	04/04/2001	1199
lomethane	<109	ug/kg	100	SH 02000	04/04/2001	1199
n-Butylbenzene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
sec-Butylbenzene	<27	ug/kg	25	SW 0200B	04/04/2001	1199
tert-Butylbenzene	<27	ug/kg	25	SW 6260B	04/04/2001	1199
Carbon Tetrachloride	<27	ug/kg	25	SW 8260B	04/04/2001	1199
Chlorobenzene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
Chlorodibromomethane	<27	ug/kg	23	SW 8260B	04/04/2001	1199
Chloroethane	<38	ug/kg	23	SW 8260B	04/04/2001	1199
Chloroform	<27	ug/kg	22	SW 826UB	04/04/2001	1199
Chloromethane	<55	ug/kg	20	SW 8260B	04/04/2001	1199
2-Chlorotoluene	<2.7	ug/kg	25	SW 8260B	04/04/2001	1199
4-Chlorotoluene	<27	ug/kg ug/kg	25	SW 8260B	04/04/2001	1199
1,2-Dibromo-3-Chloropropane	< 55	ug/kg	20 E0	SW 8260B	04/04/2001	1199
1,2-Dibromoethane (EDB)	<27	ug/kg	30	SW 8260B	04/04/2001	1199
Dibromomethane	<27	ug/kg ug/kg	25	SW 8260B	04/04/2001	1199
1,2-Dichlorobenzene	<27	ug/kg ug/kg	25	SW 82608	04/04/2001	1199
1,3-Dichlorobenzene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1,4-Dichlorobenzene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
Dichlorodifluoromethane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1,1-Dichloroethane	<27	ug/kg	25 DE	SW 8260B	04/04/2001	1199
1,2-Dichloroethane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1,1-Dichloroethene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
cis-1,2-Dichloroethene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
trans-1,2-Dichloroethene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1,2-Dichloropropane	<27	ug/kg	25 25	SW 8260B	04/04/2001	1199
1,3-Dichloropropane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
2,2-Dichloropropane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
' '-Dichloropropene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
-1,3-Dichloropropene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
tians-1,3-Dichloropropene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
Di-isopropyl ether	<27	ug/kg	25	SW 8260B	04/04/2001	1199
Ethylbenzene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
· · · · · · · · · · · · · · · · · · ·	<21	ug/kg	25	SW 8260B	04/04/2001	1199

Test/America

ANALYTICAL REPORT

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

04/09/2001 Job No: 01.01956 Sample No: 431290 Account No: 39150 Page 32 of 47

JOB DESCRIPTION: P556 Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-CS1-12' P556 Sta-Rite Delavan, WI Rec'd on ice

Date/Time Taken: 03/28/2001 19:10

Date Received: 03/29/2001

· · · · ·

Parameter		Results	Units	Reporting Limit	Method	Date Analyzed	Prep/Run Batch
Hexachlorobutadiene		<38	ua/ka	35	SW 8260B	04/04/2001	1100
Isopropylbenzene		<27	ug/kg	25	SW 8260B		1100
p-Isopropyltoluene		<27	ug/kg	25	SW 8260B	04/04/2001	1192
Methylene Chloride	L	63	ug/kg	50	SW 8260B	04/04/2001	1100
Methyl-t-butyl ether		<27	ug/kg	25	CW 97600	04/04/2001	1195
Naphthalene		<27	ug/kg	25	SW 8260B	04/04/2001	1199
n-Propylbenzene		<27	ug/kg	25	CW 0260B	04/04/2001	1199
rene		<27	ug/kg	25	SW 02008	04/04/2001	1199
1,1,1,2-Tetrachloroethane		<27	ug/kg	25	SW 0200B	04/04/2001	1199
1,1,2,2-Tetrachloroethane		<27	ug/kg	25	SW 8260B	04/04/2001	1199
Tetrachloroethene		<27	ug/kg ug/kg	25	SW 8260B	04/04/2001	1199
Toluene		<27	ug/kg	25	SW 8260B	04/04/2001	1199
1,2,3-Trichlorobenzene		<27	ug/kg	25	SW 8260B	04/04/2001	1199
1,2,4-Trichlorobenzene		<27	ug/kg ug/kg	20	SW 8260B	04/04/2001	1199
1,1,1-Trichloroethane		~27	ug/kg ug/kg	25	SW 8260B	04/04/2001	1199
1,1,2-Trichloroethane		<27	ug/kg	25	SW 8260B	04/04/2001	1199
Trichloroethene		<27	ug/kg	25	SW 8260B	04/04/2001	1199
Trichlorofluoromethane		<27	ug/kg	25	SW 8260B	04/04/2001	1199
1,2,3-Trichloropropane		<27	ug/kg	25	SW 8260B	04/04/2001	1199
1,2,4-Trimethylbenzene		<27	ug/kg	25	SW 8260B	04/04/2001	1199
1.3.5-Trimethylbenzene		<27	ug/kg	25	SW 8260B	04/04/2001	1199
Vinvl Chloride		<27	ug/kg	25	SW 8260B	04/04/2001	1199
Xvlenes, Total		<27	ug/kg	25	SW 8260B	04/04/2001	1199
Surr: Dibromofluoromethane		< 38	ug/kg	35	SW 8260B	04/04/2001	1199
Surr: Toluene-d8		101.2	*	85-118	SW 8260B	04/04/2001	1199
Surr: Bromofluorobenzeno		20.8	*	92-107	SW 8260B	04/04/2001	1199
earle stomotivorobenzene		T00.8	*	91-110	SW 8260B	04/04/2001	1199

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

04/09/2001 Job No: 01.01956 Sample No: 431291 Account No: 39150 Page 33 of 47

JOB DESCRIPTION: P556 Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-CS1-16' P556 Sta-Rite Delavan, WI Rec'd on ice

Date/Time Taken: 03/28/2001 19:20

			Reporting		Date	Prep/Run
Parameter	Results	Units	Limit	Method	Analyzed	Batch
Solids, Total	94 6	8-	7/2	OW FORO	04/06/0000	
VOC - METHANOL - 8260B		0	11/a	SW 5030	04/06/2001	3620
Benzene	<26	ug/kg	25	CW ODEAD	04/04/2002	1100
Bromobenzene	<26	ug/kg	25	SW 9260B		1199
Bromochloromethane	<26	ug/kg	25	SW 0200B	04/04/2001	1199
Bromodichloromethane	<26	ug/kg	25	SW 92600	04/04/2001	1199
Promoform	<26	ug/kg	25	SW 8260B	04/04/2001	1199
momethane	<105	ug/kg	100	SN 62608	04/04/2001	1199
. dutylbenzene	<26	ug/kg	25	SW 8260B	04/04/2001	1199
sec-Butylbenzene	<26	ug/xg ug/kg	25	SW 8260B	04/04/2001	1199
tert-Butylbenzene	<26	ug/kg	20	SW 8260B	04/04/2001	1199
Carbon Tetrachloride	<26	ug/kg	20	SW 8260B	04/04/2001	1199
Chlorobenzene	<26	ug/kg	20	SW 8260B	04/04/2001	1199
Chlorodibromomethane	<26	ug/kg ug/kg	20	SW 8260B	04/04/2001	1199
Chloroethane	<37	ug/kg	25	SW 8260B	04/04/2001	1199
Chloroform	<26	ug/kg	35	SW 8260B	04/04/2001	1199
Chloromethane	<52	ug/kg	25	SW 8260B	04/04/2001	1199
2-Chlorotoluene	<26	ug/kg	50	SW 8260B	04/04/2001	1199
4-Chlorotoluene	<26	ug/kg	25	SW 8260B	04/04/2001	1199
1,2-Dibromo-3-Chloropropane	<20	ug/kg	25	SW 8260B	04/04/2001	1199
1,2-Dibromoethane (EDB)	<05	ug/kg	50	SW 8260B	04/04/2001	1199
Dibromomethane	<26	ug/kg	25	SW 8260B	04/04/2001	1199
1.2-Dichlorobenzene	<26	ug/kg	25	SW 8260B	04/04/2001	1199
1,3-Dichlorobenzene	<26	ug/kg	25	SW 8260B	04/04/2001	1199
1,4-Dichlorobenzene	<26	ug/kg	25	SW 8260B	04/04/2001	1199
Dichlorodifluoromethane	<26	ug/kg	25	SW 8260B	04/04/2001	1199
1.1-Dichloroethane	<26	ug/kg	25	SW 8260B	04/04/2001	1199
1.2-Dichloroethane	<26	ug/kg	25	SW 8260B	04/04/2001	1199
1.1-Dichloroethene	<26	ug/kg	25	SW 8260B	04/04/2001	1199
cis-1.2-Dichloroethene	<26	ug/kg	25	SW 8260B	04/04/2001	11 9 9
trans-1 2-Dichloroethono	<26	ug/kg	25	SW 8260B	04/04/2001	1199
1 2-Dichloropropana	<26	ug/kg	25	SW 8260B	04/04/2001	1199
1.3-Dichloropropane	<26	ug/kg	25	SW 8260B	04/04/2001	1199
2.2-Dichloropropane	<26	ug/kg	25	SW 8260B	04/04/2001	1199
1.1-Dichloropropane	<26	ug/kg	25	SW 8260B	04/04/2001	1199
ial 3-Dichloropropene	<26	ug/kg	25	SW 8260B	04/04/2001	1199
ans-1 3-Dichloronyonana	<26	ug/kg	25	SW 8260B	04/04/2001	1199
Disisopropul ether	<26	ug/kg	25	SW 8260B	04/04/2001	1199
Prisopropyi etner	<26	ug/kg	25	SW 8260B	04/04/2001	1199
Pruttheurselle	<26	ug/kg	25	SW 8260B	04/04/2001	1199

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

04/09/2001 Job No: 01.01956 Sample No: 431291 Account No: 39150 Page 34 of 47

JOB DESCRIPTION: P556 Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-CS1-16' P556 Sta-Rite Delavan, WI Rec'd on ice

Date/Time Taken: 03/28/2001 19:20

Parameter		Results	Units	Reporting Limit	Method	Date Analyzed	Prep/Run Batch
Hexachlorobutadiene		<37	ua/ka	35	SW 8260B	04/04/2001	1100
Isopropylbenzene		<26	ug/kg	25	CW 0200B	04/04/2001	1199
p-Isopropyltoluene		<26	ug/kg	25	SW 8260B	04/04/2001	1199
Methylene Chloride	L	69	ug/kg	2.) E0	SW 0260B	04/04/2001	1199
Methyl-t-butyl ether	_	<26	ug/kg	50	SW 8260B	04/04/2001	1199
Naphthalene		<26	ug/kg	20	SW 8260B	04/04/2001	1199
n-Propylbenzene		<26	ug/kg	25	SW 8260B	04/04/2001	1199
cene		<26	ug/kg	25	SW 8260B	04/04/2001	1199
+.+.1.2-Tetrachloroethane		<26	ug/kg	25	SW 8260B	04/04/2001	1199
1.1.2.2-Tetrachloroethane		<26	ug/kg	25	SW 8260B	04/04/2001	1199
Tetrachloroethene		<46	ug/kg	25	SW 8260B	04/04/2001	1199
Toluene		<26	ug/kg	25	SW 8260B	04/04/2001	1199
1 2 3-Trichlovohonzono		<26	ug/kg	25	SW 8260B	04/04/2001	1199
1,2,3 Trichiorobenzene		<26	ug/kg	25	SW 8260B	04/04/2001	1199
1,2,4-IIIChiofobenzene		<26	ug/kg	25	SW 8260B	04/04/2001	1199
1,1,1-Trichloroethane		<26	ug/kg	25	SW 8260B	04/04/2001	1199
1,1,2-Trichloroethane		<26	ug/kg	25	SW 8260B	04/04/2001	1199
Trichloroetnene		<26	ug/kg	25	SW 8260B	04/04/2001	1199
Trichlorofluoromethane		<26	ug/kg	25	SW 8260B	04/04/2001	1199
1,2,3-Trichloropropane		<26	ug/kg	25	SW 8260B	04/04/2001	1199
1,2,4-Trimethylbenzene		<26	ug/kg	25	SW 8260B	04/04/2001	1199
1,3,5-Trimethylbenzene		<26	uq/kq	25	SW 8260B	04/04/2001	1100
Vinyl Chloride		<26	uq/kq	25	SW 8260B	04/04/2001	1100
Xylenes, Total		<37	uq/kq	35	SW 8260B	04/04/2001	1199
Surr: Dibromofluoromethane		104.8	* *	85-118	SW 8260B	04/04/2001	1199
Surr: Toluene-d8		99.2	8	92-107	SW 8260B		1100
Surr: Bromofluorobenzene		100.4	8	91-110	SW 8260B	04/04/2001	1199

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

04/09/2001 Job No: 01.01956 Sample No: 431292 Account No: 39150 Page 35 of 47

JOB DESCRIPTION: P556 Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-CS2-20' P556 Sta-Rite Delavan, WI Rec'd on ice

Date/Time Taken: 03/28/2001 20:10

Date Received: 03/29/2001

Davamoter			Reporting		Date	Prep/Run
Parameter	Results	Units	Limit	Method	Analyzed	Batch
Solids, Total	92.9	욯	n/a	SW 5030	04/05/2001	2600
VOC - METHANOL - 8260B		-	, u	011 0000	04/00/2001	5020
Benzene	<27	ua/ka	25	SW 8260B	04/04/2001	1100
Bromobenzene	<27	ug/kg	25	SW 8260B	04/04/2001	1190
Bromochloromethane	<27	ug/kg	25	SW 8260B	04/04/2001	1100
Bromodichloromethane	<27	ua/ka	25	SW 8260B	04/04/2001	1100
moform	<27	ug/kg	25	SW 8260B	04/04/2001	1190
	<108	ug/kg	100	SW 8260B	04/04/2001	1100
n-Butylbenzene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
sec-Butylbenzene	<27	ug/kg	25	SW 8260B	04/04/2001	1100
tert-Butylbenzene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
Carbon Tetrachloride	<27	ug/kg	25	SW B260B	04/04/2001	1199
Chlorobenzene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
Chlorodibromomethane	<27	ug/kg	25	SW 8260B	04/04/2001	1100
Chloroethane	<38	ug/kg	35	SW 8260B	04/04/2001	1199
Chloroform	<27	ug/kg	25	SW 8260B	04/04/2001	1199
Chloromethane	<54	uq/kg	50	SW 8260B	04/04/2001	1100
2-Chlorotoluene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
4-Chlorotoluene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1,2-Dibromo-3-Chloropropane	<54	ug/kg	50	SW 8260B	04/04/2001	1199
1,2-Dibromoethane (EDB)	<27	ua/ka	25	SW 8260B	04/04/2001	1100
Dibromomethane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1,2-Dichlorobenzene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1,3-Dichlorobenzene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1,4-Dichlorobenzene	<27	ug/kg	25	SW 9360B	04/04/2001	1199
Dichlorodifluoromethane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1,1-Dichloroethane	<27	ug/kg	25	SW 0200B	04/04/2001	1199
1,2-Dichloroethane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1,1-Dichloroethene	<27	ug/kg	25	SH SZOUB	04/04/2001	1199
cis-1,2-Dichloroethene	<27	ug/kg	25	SW 0200B	04/04/2001	1199
trans-1,2-Dichloroethene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1,2-Dichloropropane	<27	ug/kg	25	SW 0260B	04/04/2001	1199
1,3-Dichloropropane	<27	ug/kg	25	SW BOCOD	04/04/2001	1199
2,2-Dichloropropane	<27	ug/kg	25	SW 826UB	04/04/2001	1199
-Dichloropropene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
3-1,3-Dichloropropene	<27	ug/kg	25	SW 82608	04/04/2001	1199
trans-1,3-Dichloropropene	<27	ug/ng	25	SW 8260B	04/04/2001	1199
Di-isopropyl ether	207	ug/kg	25	SW 8260B	04/04/2001	1199
Ethylbenzene	~27	ug/kg	25	SW 8260B	04/04/2001	1199
-	\4 /	ug/kg	25	SW 8260B	04/04/2001	1199

Test/America

ANALYTICAL REPORT

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

04/09/2001 Job No: 01.01956 Sample No: 431292 Account No: 39150 Page 36 of 47

JOB DESCRIPTION: P556 Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-CS2-20' P556 Sta-Rite Delavan, WI Rec'd on ice

Date/Time Taken: 03/28/2001 20:10

Date Received: 03/29/2001

- - -

Parameter	Results	Units	Reporting Limit	Method	Date	Prep/Run
Hexachlorobutadiene				Method	Analyzed	Batch
Hexachlorobutadiene Isopropylbenzene p-Isopropyltoluene ' hylene Chloride hyl-t-butyl ether Naphthalene h-Propylbenzene Styrene 1,1,2,2-Tetrachloroethane L,1,2,2-Tetrachloroethane cetrachloroethene Soluene h,2,3-Trichlorobenzene h,2,4-Trichlorobenzene h,2,4-Trichloroethane h,2,3-Trichloroethane h,2,3-Trichloroethane h,2,3-Trichloroethane h,2,3-Trichloroethane horoethene richlorofluoromethane h,2,3-Trichloropropane h,2,3-Trichloropropane h,2,3-Trichloropropane h,2,3-Trichloropropane h,2,3-Trichloropropane h,2,3-Trichloropropane h,2,3-Trichloropropane horoethane horoethene	Results <38 <27 <27 657 <27 <27 <27 <27 <27 <27 <27 <2	Units ug/kg	Reporting Limit 35 25 25 25 25 25 25 25 25 25 25 25 25 25	Method SW 8260B SW 8260B	Date Analyzed 04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001	Prep/Run Batch 1199 1199 1199 1199 1199 1199 1199 11
arr: Dibromofluoromethane arr: Toluene-d8 arr: Bromofluorobenzene	<38 106.0 98.4 101.0	ug/kg \$ } }	25 35 85-118 92-107 91-110	SW 8260B SW 8260B SW 8260B SW 8260B SW 8260B SW 8260B	04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001	1199 1199 1199 1199 1199

Test America

.

ANALYTICAL REPORT

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

04/09/2001 Job No: 01.01956 Sample No: 431293 Account No: 39150 Page 37 of 47

JOB DESCRIPTION: P556 Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-CS2-26' P556 Sta-Rite Delavan, WI Rec'd on ice

Date/Time Taken: 03/28/2001 20:20 Date Received: 03/29/2001

Parameter	D1	- · · ·	Reporting		Date	Prep/Run
	Results	Units	Limit	Method	Analyzed	Batch
Solids, Total	91 9	9.	n / -	64 5000		
VOC - METHANOL - 8260B	~~	6	11/a	SW 5030	04/06/2001	3620
Benzene	<27	110 /200	25	0HL 00 CON		
Bromobenzene	<27	ug/kg	20	SW 8260B	04/04/2001	1199
Bromochloromethane	<27	ug/kg ug/kg	25	SW 8260B	04/04/2001	1199
Bromodichloromethane	<27	ug/kg ug/kg	25	SW 8260B	04/04/2001	1199
Promoform	-27	ug/kg	25	SW 8260B	04/04/2001	1199
momethane	<109	ug/kg vg/kg	25	SW 8260B	04/04/2001	1199
11-Butylbenzene	<27	ug/kg	100	SW 8260B	04/04/2001	1199
sec-Butylbenzene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
tert-Butylbenzene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
Carbon Tetrachloride	<27	ug/kg	25	SW 8260B	04/04/2001	1199
Chlorobenzene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
Chlorodibromomethane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
Chloroethane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
Chloroform	<38	ug/kg	35	SW 8260B	04/04/2001	1199
Chloromethane	<27	ug/kg	25	SW 8260B	04/04/2001	1 199
2-Chlorotoluene	< 54	ug/kg	50	SW 8260B	04/04/2001	1199
4-Chlorotoluene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1.2-Dibromo-3-Chloropropano	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1,2-Dibromoethane (EDB)	< 54	ug/kg	50	SW 8260B	04/04/2001	1199
Dibromomethane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1.2-Dichlorobenzene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1.3-Dichlorobenzene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1 4-Dichlorobenzene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
Dichlorodifluoromotheme	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1 1-Dichloroothane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1,2-Dichloroethane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1 l-Dichloroothone	<27	ug/kg	25	SW 8260B	04/04/2001	1199
cis-l 2-Dichloroother-	<27	ug/kg	25	SW 8260B	04/04/2001	1199
trang_l 2 Dichlowether	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1 2-Dichloropman-	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1,2-Dichloropropane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
2. 2-Dichloropropane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1 Dichloropropane	<27	ug/kg	25	SW 8260B	04/04/2001	1199
1 2 Dichlene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
-1, 3-Dichioropropene	<27	ug/kg	25	SW 8260B	04/04/2001	1199
Di interne di la	<27	ug/kg	25	SW 8260B	04/04/2001	1199
D1-1Sopropyl ether	<27	ug/kg	25	SW 8260B	04/04/2001	1100
Etnylbenzene	<27	ug/ka	25	SW 8260B	04/04/2001	1139
				0.02000	V4/2001	TT 2 2

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

-

04/09/2001 Job No: 01.01956 Sample No: 431293 Account No: 39150 Page 38 of 47

JOB DESCRIPTION: P556 Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-CS2-26' P556 Sta-Rite Delavan, WI Rec'd on ice

Date/Time Taken: 03/28/2001 20:20

Parameter	Results	Units	Reporting Limit	Method	Date Analyzed	Prep/Run Batch
Parameter Hexachlorobutadiene Isopropylbenzene p-Isopropyltoluene Methylene Chloride Methyl-t-butyl ether hthalene ropylbenzene Styrene 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,1,1-Trichloroethane	Results <38 <27 <27 81 <27 <27 <27 <27 <27 <27 <27 <27 <27 <27	Units ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	Reporting Limit 35 25 25 25 25 25 25 25 25 25 25 25 25 25	Method SW 8260B SW 8260B	Date Analyzed 04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001	Prep/Run Batch 1199 1199 1199 1199 1199 1199 1199 11
1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Trichlorofluoromethane 1,2,3-Trichloropropane 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Vinyl Chloride Xylenes, Total Surr: Dibromofluoromethane Surr: Toluene-d8 Surr: Bromofluorobenzene	<27 <27 <27 <27 <27 <27 <27 <27 <38 102.0 98.2 100.8	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg % %	25 25 25 25 25 25 25 25 25 25 35 85-118 92-107 91-110	SW 8260B SW 8260B	04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001 04/04/2001	1199 1199 1199 1199 1199 1199 1199 119

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

04/09/2001 Job No: 01.01956 Sample No: 431294 Account No: 39150 Page 39 of 47

JOB DESCRIPTION: P556 Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: Trip Blank P556 Sta-Rite Delavan, WI Rec'd on ice

Date/Time Taken: 03/28/2001 20:30

Parameter	Results	Units	Reporting Limit	Method	Date	Prep/Run
				neenou	Maryzeu	Datti
Benzene	_					
Bromohongono	<25	ug/kg	25	SW 8260B	04/04/2001	1199
Bromochloromothane	<25	ug/kg	25	SW 8260B	04/04/2001	1199
Bromodichlementher	<25	ug/kg	25	SW 8260B	04/04/2001	1199
Bromaform	<25	ug/kg	25	SW 8260B	04/04/2001	1199
Bromomothers	<25	ug/kg	25	SW 8260B	04/04/2001	1199
	<100	ug/kg	100	SW 8260B	04/04/2001	1199
ltylbenzene	<25	ug/kg	25	SW 8260B	04/04/2001	1199
Lud-Butylbenzene	<25	ug/kg	25	SW 8260B	04/04/2001	1199
Cart-Butylbenzene	<25	ug/kg	25	SW 8260B	04/04/2001	1199
Carbon Tetrachioride	<25	ug/kg	25	SW 8260B	04/04/2001	1199
Chlorobenzene	<25	ug/kg	25	SW 8260B	04/04/2001	1199
Chlorodibromomethane	<25	ug/kg	25	SW 8260B	04/04/2001	1199
Chloroethane	<35	ug/kg	35	SW 8260B	04/04/2001	1199
Chloroform	<25	ug/kg	25	SW 8260B	04/04/2001	1100
Chloromethane	<50	ug/kg	50	SW 8260B	04/04/2001	1100
2-Chlorotoluene	<25	uq/kq	25	SW 8260B	04/04/2001	1199
4-Chlorotoluene	<25	ug/kg	25	SW 8260B	04/04/2001	1199
1,2-Dibromo-3-Chloropropane	<50	uq/kq	50	SW 8260B	04/04/2001	1199
1,2-Dibromoethane (EDB)	<25	ug/kg	25	SW 8260B	04/04/2001	1199
Dibromomethane	<25	ug/kg	25	SW 8260B	04/04/2001	1199
1,2-Dichlorobenzene	<25	ua/ka	25	SM BJENB	04/04/2001	1199
1,3-Dichlorobenzene	<25	ug/kg	25	SM 9260B	04/04/2001	1199
1,4-Dichlorobenzene	<25	ug/kg	25	SW BACOD	04/04/2001	1199
Dichlorodifluoromethane	<25	ug/kg	25	SW 82605	04/04/2001	1199
1,1-Dichloroethane	<25	ug/kg	25	SW 8260B	04/04/2001	1199
1,2-Dichloroethane	<25	ug/kg	25	SW BZOUB	04/04/2001	1199
1,1-Dichloroethene	<25	ug/kg	25	SW 8260B	04/04/2001	1199
cis-1,2-Dichloroethene	<25	ug/kg	25	SW 8260B	04/04/2001	1199
trans-1,2-Dichloroethene	<25	ug/kg	20 05	SW 8260B	04/04/2001	1199
1,2-Dichloropropane	<25	ug/kg	25	SW 8260B	04/04/2001	1199
1,3-Dichloropropane	<25	ug/kg	25	SW 8260B	04/04/2001	1199
2,2-Dichloropropane	<25	ug/kg	25	SW 8260B	04/04/2001	1199
1,1-Dichloropropene	<25	ug/kg	25	SW 8260B	04/04/2001	1199
cis-1,3-Dichloropropene	<25	ug/kg	25	SW 8260B	04/04/2001	1199
ns-1,3-Dichloropropene	<25	ug/kg	25	SW 8260B	04/04/2001	1199
isopropyl ether	<20	ug/kg	25	SW 8260B	04/04/2001	1199
Ethylbenzene	<40 -05	ug/kg	25	SW 8260B	04/04/2001	1199
Hexachlorobutadiene	<25 • 2 5	ug/kg	25	SW 8260B	04/04/2001	1199
	<35	ug/kg	35	SW 8260B	04/04/2001	1199

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

04/09/2001 Job No: 01.01956 Sample No: 431294 Account No: 39150 Page 40 of 47

JOB DESCRIPTION: P556 Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: Trip Blank P556 Sta-Rite Delavan, WI Rec'd on ice

Date/Time Taken: 03/28/2001 20:30

Deveryet		Reporting				Date	Prep/Run
Parameter		Results	Units	Limit	Method	Analyzed	Batch
Isopropylbenzene		<25	ua/ka	25	SM 83600	04/04/2001	1100
p-Isopropyltoluene		<25	ug/kg	25	ON B200B	04/04/2001	1133
Methylene Chloride	L	86	ug/kg	20	SW 8260B	04/04/2001	1199
Methyl-t-butyl ether		c25	ug/kg	50	SW 825UB	04/04/2001	1199
Naphthalene		<25	ug/kg	25	SW 8260B	04/04/2001	1199
" "ropylbenzene		<25	ug/kg	25	SW 826UB	04/04/2001	1199
rene		<25	ug/kg	25	SW 8260B	04/04/2001	1199
1,1,1,2-Tetrachloroethane		<25	ug/kg	25	SW 8260B	04/04/2001	1199
1,1,2,2-Tetrachloroethane		<20	ug/kg	25	SW 8260B	04/04/2001	1199
Tetrachloroethene		.<25	ug/kg	25	SW 8260B	04/04/2001	1199
Toluene		<25	ug/kg	25	SW 8260B	04/04/2001	1199
1.2.3-Trichlorobenzene		<25	ug/kg	25	SW 8260B	04/04/2001	1199
1 2 4-Trichlorobenzene		<25	ug/kg	25	SW 8260B	04/04/2001	1199
1 1 1-Trichloroothana		<25	ug/kg	25	SW 8260B	04/04/2001	1199
1 1 2 Trichlongethers		<25	ug/kg	25	SW 8260B	04/04/2001	1199
Trichlonethere		<25	ug/kg	25	SW 8260B	04/04/2001	1199
Trichloroetnene		<25	ug/kg	25	SW 8260B	04/04/2001	1199
Trichlorofluoromethane		<25	ug/kg	25	SW 8260B	04/04/2001	1199
1,2,3-Trichloropropane		<25	ug/kg	25	SW 8260B	04/04/2001	1199
1,2,4-Trimethylbenzene		<25	ug/kg	25	SW 8260B	04/04/2001	1199
1,3,5-Trimethylbenzene		<25	ug/kg	25	SW 8260B	04/04/2001	1199
Vinyl Chloride		<25	uq/kq	25	SW 8260B	04/04/2001	1100
Xylenes, Total		<35	ug/kg	35	SW 8260B	04/04/2001	1100
Surr: Dibromofluoromethane		100.4	8	85-118	SW 8260B	04/04/2001	1100
Surr: Toluene-d8		100.4	8	92-107	SW 8260P	04/04/2001	1199
Surr: Bromofluorobenzene		98.2	ş.	91.110	CW 0200B	04/04/2001	1199
			*	21-110	3M 6260B	04/04/2001	1199

QUALITY CONTROL REPORT CONTINUING CALIBRATION VERIFICATION

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045 04/09/2001

Job No: 01.01956 Account No: 39150

Page 41 of 47

Job Description: P556 Sta-Rite

Parameter	Run Batch	True Value	Observe Value	d Percent	Control	
VOC - METHANOL - 8260B				Recover	Y Limits	Analyst
Benzene						
Bromoform	1195	50.0	51.0	102.0		
Chlorobenzene	1195	50.0	53.5	107 0		aba
Chloroform	1195	50.0	51.5	103 0		aba
Chloromethane	1195	50.0	54.2	108 4	80 700	aba
1,1-Dichloroethane	1195	50.0	55.1	110 2	80 - 120	aba
1,1-Dichloroethene	1195	50.0	52.2	104 4		aba
1,2-Dichloropropana	1195	50.0	54.2	108 4		aba
Di-isopropyl ether	1195	50.0	53.9	107.0	80 - 120	aba
Ethylbenzene	1195	50.0	51.5	102 0	80 - 120	aba
Methyl-t-butyl other	1195	50.0	53.8	103.0		aba
1,1,2,2-Tetrachlonett	1195	50.0	51 2	107.6	80 - 120	aba
Toluene	1195	50.0	51.7	102.4		aba
Trichloroethere	1195	50.0	51 6	103.4		aba
1,2,4-Trimethylban	1195	50.0	52 4	103.2	80 - 120	aba
1,3,5-Trimethylber-	1195	50.0	55 1	104.8		aba
Vinyl Chloride	1195	50.0	53 4	110.2		aba
Xvlenes Total	1195	50.0	57 4	106.8		aba
Surr: Dibromofluces	1195	150	158	114.8	80 - 120	aba
Surr: Toluono do	1195	50.0	52 2	105.3		aba
Surr: Bromefluence	1195	50.0	50 0	104.6	85 - 118	aba
VOC - METHANOL	1195	50.0	50.0	100.0	91 - 109	aba
Benzene			20.0	101.6	85 - 113	aba
Bromoform	1199	50.0	49 4	0		
Chlorobon	119 9	50.0	55 7	98.8	85 - 1 15	aba
Chloroform	1199	50.0	50.2	110.2		aba
Chloromothan	1199	50.0	50.3	100.6	85 - 115	aba
	1199	50.0	JI.Z 41 4	102.4	80 - 120	aba
1 1-Dichloroethane	1199	50.0	41.4 10 0	82.8		aba
1,1-Dichloroethene	1199	50 0	49.U 50.1	98.0		aba
Di interne	1199	50 0	50.1	100.2	80 - 120	aba
Ether	1199	50.0	51.7	103.4	80 - 120	aba
Mablala	1199	50.0	49.6	99.2		aba
Metnyl-t-butyl ether	1199	50.0	52.2	104.4	80 - 120	aba
1,1,2,2-Tetrachloroethane	1199	50.0	50.2	100.4	80 - 120	aba
Toluene	1199	50.0	52.8	105.6		aba
Trichloroethene	1199	50.0	49.9	99.8	80 - 120	aba
1,2,4-Trimethylbenzene	1199	50.0	51.7	103.4		aba
1,3,5-Trimethylbenzene	1199	50.0	50.2	100.4		aba
Vinyl Chloride	1199	50.0	49.6	99.2		aba
Xylenes, Total	1199	30.0	52,7	105.4 8	30 - 120	aba
Surr: Dibromofluoromethane	1199	15U 50 0	151	100,7		aba
		50.0	50.6	101.2 8	35 - 118	aba

QUALITY CONTROL REPORT CONTINUING CALIBRATION VERIFICATION

04/09/2001

Job No: 01.01956 Account No: 39150

. .

175 N. Corporate Drive Suite 100 Brookfield, WI 53045

Mr. Mark Manthey GEOTRANS, INC.

Page 42 of 47

Job Description: P556 Sta-Rite

Parameter	Run Batch	True Value	Observed Value	Percent Recovery	Control Limits	Analyst
Surr: Toluene-d8	1199	50.0	49.8	99.6	91 - 109	aba
Surr: Bromofluorobenzene	1199	50.0	48.6	97.2	85 - 113	aba

QUALITY CONTROL REPORT BLANKS

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045 04/09/2001

Job No: 01.01956 Account No: 39150

Page 43 of 47

Job Description: P556 Sta-Rite

Parameter	Prep Batch	Run Batch	Blank Result	Reporting Limit	y Units
VOC - METHANOL - 8260B					
Benzene		1195	<25	25	• • • • / I= ~
Bromobenzene		1195	<25	25	ug/kg
Bromochloromethane		1195	<25	20	ug/kg
Bromodichloromethane		1195	<25	25	ug/kg
Bromoform		1195	<20	25 25	ug/kg
Bromomethane		1195	<40	25	ug/kg
n-Butylbenzene		1105	<100	100	ug/kg
sec-Butylbenzene		1195	<25	25	ug/kg
tert-Butylbenzene		1195	< 45	25	ug/kg
Carbon Tetrachloride		1105	<25	25	ug/kg
Chlorobenzene		1195	<25	25	ug/kg
Chlorodibromomethane		1195	<25	25	ug/kg
Chloroethane		1195	<25	25	ug/kg
Chloroform		1195	<35	35	ug/kg
Chloromethane		1195	<25	25	ug/kg
2-Chlorotoluene		1195	<50	50	ug/kg
4-Chlorotoluene		1195	<25	25	ug/kg
1,2-Dibromo-3-Chloropropane		1195	<25	25	ug/kg
1,2-Dibromoethane (EDB)		1195	<50	50	ug/kg
Dibromomethane		1195	<25	25	ug/kg
1,2-Dichlorobenzene		1195	<25	25	ug/kg
1,3-Dichlorobenzene		1195	<25	25	ug/kg
1.4-Dichlorobenzene		1195	<25	25	ug/kg
Dichlorodifluoromethane		1195	<25	25	ug/kg
1.1-Dichloroethane		1195	<25	25	ug/kg
1.2-Dichloroethane		1195	<25	25	ug/kg
1.1-Dichloroethene		1195	<25	25	ug/kg
cis-1.2-Dichloroethene		1195	<25	25	ug/kg
trans-1.2-Dichloroethene		1195	<25	25	ug/kg
1.2-Dichloropropage		1195	<25	25	ug/kg
1,3-Dichloropropane		1195	<25	25	ug/kg
2.2-Dichloropropane		1195	<25	25	ug/kg
1,1-Dichloropropane		1195	<25	25	ug/kg
cis-1 3-Dichloropropone		1195	<25	25	ug/kg
trans-1 3-Dichloropropene		1195	<25	25	ug/kg
Dirisopropyl ether		1195	<25	25	ug/kg
pr roobrobkt ernet		1195	<25	25	ug/kg

QUALITY CONTROL REPORT

BLANKS

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045 04/09/2001

Job No: 01.01956 Account No: 39150

--- · · ·----

Page 44 of 47

Job Description: P556 Sta-Rite

Deventer	Prep	Run	Blank	Reporti	ng
Parameter	Batch	Batch	Result	Limit	Units
Ethylbenzene		1195	-25	25	
Hexachlorobutadiene		1195	~35	25	ug/kg
Isopropylbenzene		1195	<25	35	ug/kg
p-Isopropyltoluene		1195	<25	25	ug/kg
Methylene Chloride		1195	50	23	ug/kg
Methyl-t-butyl ether		1195	225	30 25	ug/kg
Naphthalene		1195	~25	25	ug/kg
n-Propylbenzene		1195	<25	25	ug/kg
Styrene		1195	<25	25	ug/kg
1,1,1,2-Tetrachloroethane		1195	<25	20 25	ug/kg
1,1,2,2-Tetrachloroethane		1195	<25	25	ug/kg
Tetrachloroethene		1195	~25	23	ug/kg
Toluene		1195	<25	20	ug/kg
1,2,3-Trichlorobenzene		1195	<25	25	ug/kg
1,2,4-Trichlorobenzene		1195	<25	23	ug/kg
1,1,1-Trichloroethane		1195	<25	23	ug/kg
1,1,2-Trichloroethane		1195	<25	20 05	ug/kg
Trichloroethene		1195	<25	20	ug/kg
Trichlorofluoromethane		1195	<25	∠ 5	ug/kg
1,2,3-Trichloropropane		1195	<25	20	ug/kg
1,2,4-Trimethylbenzene		1105	<25	25	ug/kg
1,3,5-Trimethylbenzene		1195	<20 <25	25	ug/kg
Vinyl Chloride		1195	<20	25	ug/kg
Xylenes, Total		1195	<25	25 25	ug/kg
Surr: Dibromofluoromethane		1195	104 0		ug/kg
Surr: Toluene-d8		1195	104.2	02 107	15 0.
Surr: Bromofluorobenzene		1195	20.0	92-107	б о
VOC - METHANOL - 8260B			30.0	91-110	5
Benzene		1199	<2E	۵E	
Bromobenzene		1100	<25	25	ug/kg
Bromochloromethane		1199	<25	25	ug/kg
Bromodichloromethane		1199	<25	20	ug/kg
Bromoform		1199	<23 <25	25	ug/kg
Bromomethane		1199	<25	25	ug/kg
n-Butylbenzene		1199	<100	100	ug/kg
sec-Butylbenzene		1199	< 40 20 E	20	ug/kg
tert-Butylbenzene		1199	<20	25 25	ug/kg
-		1199	N40	4 5	ug/kg

QUALITY CONTROL REPORT

BLANKS

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045 04/09/2001

Job No: 01.01956 Account No: 39150

Page 45 of 47

Job Description: P556 Sta-Rite

	Prep	Run	Blank	Reporti	ng
Parameter	Batch	Batch	Result	Limit	Units
Carbon Tetrachloride		1100	-05	25	12
Chlorobenzene		1199	<25	25	ug/kg
Chlorodibromomethane		1100	<25	25	ug/kg
Chloroethane		1199	<25	25	ug/kg
Chloroform		1199	<35	35	ug/kg
Chloromethane		1199	<25	25	ug/kg
2-Chlorotoluene		1199	<50	50	ug/kg
4-Chlorotoluene		1199	<25	25	ug/kg
1.2-Dibromo-3-Chloropropane		1199	<25	25	ug/kg
1,2-Dibromoethane (EDB)		1199	<50	50	ug/kg
Dibromomethane		1199	<25	25	ug/kg
1,2-Dichlorobenzene		1199	<25	25	ug/kg
1,3-Dichlorobenzene		1199	<25	25	ug/kg
1,4-Dichlorobenzene		1199	<25	25	ug/kg
Dichlorodifluoromethane		1199	<25	25	ug/kg
1.1-Dichloroethane		1199	<25	25	ug/kg
1,2-Dichloroethane		1199	<25	25	ug/kg
1,1-Dichloroethene		1199	<25	25	ug/kg
cis-1,2-Dichloroethene		1199	<25	25	ug/kg
trans-1.2-Dichloroethere		1199	<25	25	ug/kg
1,2-Dichloropropane		1199	<25	25	ug/kg
1,3-Dichloropropane		1199	<25	25	ug/kg
2.2-Dichloropropane		1199	<25	25	ug/kg
1,1-Dichloropropene		1199	<25	25	ug/kg
cis-1.3-Dichloropropene		1199	<25	25	ug/kg
trans-1.3-Dichloropropene		1199	<25	25	ug/kg
Di-isopropyl ether		1199	<25	25	ug/kg
Ethylbenzene		1199	<25	25	ug/kg
Hexachlorobutadiene		1199	<25	25	ug/kg
Isopropylbenzene		1199	<35	35	ug/kg
p-Isopropyltoluene		1199	<25	25	ug/kg
Methylene Chloride		1199	<25	25	ug/kg
Methyl-t-butyl ether		1199	88	50	ug/kg
Naphthalene		1199	<25	25	ug/kg
n-Propylbenzene		1199	<25	25	ug/kg
Styrene		1100	<25	25	ug/kg
1,1,1,2-Tetrachloroethane		1199	<25	25	ug/kg
		1199	<25	25	ug/kg

QUALITY CONTROL REPORT

BLANKS

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045 04/09/2001

Job No: 01.01956 Account No: 39150

Page 46 of 47

Job Description: P556 Sta-Rite

Parameter	Prep Batch	Run Batch	Blank Result	Reporti: Limit	ng Units
1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichlorofluoromethane 1,2,3-Trichloropropane 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Vinyl Chloride Xylenes, Total Surr: Dibromofluoromethane Surr: Toluene-d8		1199 1199 1199 1199 1199 1199 1199 119	<25 <25 <25 <25 <25 <25 <25 <25 <25 <25	25 25 25 25 25 25 25 25 25 25 25 25 25 35 85-118 92-107	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
- +1 5112 6116		1133	95.4	91-110	옹

Test/America

QUALITY CONTROL REPORT LABORATORY CONTROL STANDARD

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045 04/09/2001

Job No: 01.01956 Account No: 39150

÷ .

Page 47 of 47

Job Description: P556 Sta-Rite

Analyte	Prep Batch Number	Run Batch Number	LCS Amount	Units	LCS Result	LCSD Result	LCS Percent Recovery	LCSD Percent Recovery	Control Limits	Relative Percent Difference
VOC - METHANOL - 8260B										
Benzene		1195	50.0	ug/kg	46 5	46 5	0 60	63 5		
Chlorobenzene		1195	50.0	ug/kg	46.6	48.2	99.0 B2 2	22.2 56 A		0.2
1,1-Dichloroethene		1195	50.0	ug/kg	48.9	46 A	07 0	20.4 03.0		3.4
Ethylbenzene		1195	50.0	ua/ka	47 Q	50.0	97.0 BE 0	92,8 100 0		5.2
Methyl-t-butyl ether		1195	50.0	ug/kg	51.0	30.0	75.8 105.0	100.0		4.3
Toluene		1195	50.0	ug/kg	47.7	44.4	102.0	88.8		13.8
Trichloroethene		1195	50.0	ug/kg	47.2	49.2	94.4	98.4		4.1
1,2,4-Trimethylbenzene		1195	50.0	ug/kg	40.0	49.1	97.0	98.2		1.2
1,3,5-Trimethylbenzene		1195	50.0	ug/kg	40.9	50.3	97.8	100.6		2.8
Xylenes, Total		1195	150	ug/kg	40.5	49.7	97.0	99.4		2.4
Surr: Dibromofluoromethane		1195	50 0	ug/kg	142	148	94.7	98.7		4.1
Surr: Toluene-d8		1195	50.0	ug/L	52.6	50.3	105.2	100.6	85 - 118	4.5
Surr: Bromofluorobenzene		1195	50.0	ug/1	49.7	50.8	99.4	101.6	91 - 109	2. 2
VOC - METHANOL - 8260B			50.0	ug/ь	49.6	50.1	99.2	100.2	85 - 113	1.0
Benzene		1199	E0 0							
Chlorobenzene		1199	50.0 50.0	ug/kg	48.0	46.9	96.0	93.8	64 - 124	2.3
1,1-Dichloroethene		1100	50.0	ug/kg	49.2	47.7	98.4	95.4	80 - 123	3.1
Ethylbenzene	-	1100	50.0 50.0	ug/kg	45.0	46.5	90.0	93.0	43 - 141	3.3
Methyl-t-butyl ether		1150	50.0	ug/kg	51.2	50.1	102.4	100.2	79 - 122	2.2
Toluene	-	1199	50.0	ug/kg	49.4	44.8	98.8	89.6	55 - 137	9.8
Trichloroethene		1199	50.0	ug/kg	49.2	47.7	98.4	95.4	78 - 120	3.1
1.2.4-Trimethylbengene	-		50.0	ug/kg	49.6	48.8	99.2	97.6	78 - 124	1.6
1.3 5.Trimethylbenzone	1	199	50.0	ug/kg	50.3	49.5	100.6	99.0	75 - 128	1.6
Yvlenes Total	1	199	50.0	ug/kg	49.7	49.0	99.4	98.0	76 - 127	1.4
Surr. Dibranaflutures	1	.199 :	150	ug/kg	148	147	98.7	98.0	79 - 122	0,7
Surr: Dibionorilloromethane	1	.199 9	50.0	ug/L	51.1	52.8	102.2	105.6	89 - 114	3.3
Sull: IGluene-du	1	199 9	50.0	ug/L	51.0	49.0	102.0	99.6	90 - 109	2.4
surr: promotiuorobenzene	1	199 5	50.0	ug/L	50.2	52.2	100.4	104.4	89 - 111	3.9

To assist us in using the proper analytical methods, is this work being conducted for regulatory purposes? Compliance Monitoring	Project Marrier 27.2.6	Site/Location ID: D.S. AVGN State: 11. Report To: M.R.K.M.B.KI/H.E.Y	Invoice To: Samé AS ABOUN	Analyze For;	C Deliverables	Cother:	REMARKS									ABORATORY COMMENTS:	32-101 1/205 Ree Lets Temps		art 1/6/ Time/4/; 3 S Method af Shioment 747- CV4 1.	13 3/X/0/	
Phone: 920-261-1660 Fax: 920-261-8120 Client #:	Sull for	Fax 262) 722-1310		0X Preservation & # of Containers		ea (2becity) the control of the con											Redelerative Rist of	Received By:	Received By: CVA Da		×
Matertown Division 502 commerce Driv Watertown, WI 5309	. Itan Corteste De.	(262) 792-1282	1011 Martin		ežoirso	ate Sampled = Grab, C = C = Grab, C = C - V- Groundwater		<u></u>	2-20 03 3	2-26/0:10 S	3-28 10:20 5	3-26 6 4 5	3-28 10 15 5	3-28 10-54 5	3-25 11:00 V S	() ()	2 - 3 - 29 - 01 Mac. 00	Date: Time:	Date: Time:		
	Addres City/State/Zip Code	Project Manage Telephone Numbe Sammer Name (Drive Name	Certified Trainer Signature Sampler Signature	TAT		Fax Results: Y N samoisin			11 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	Sid - Europe - 21, 1	53-5-25	52-2008-16'	50-208-201	50 - 2008 - 24	53-2008-25'		telinquished Block In Literation	telinquished By:	Cetinquished By:		

• .

To assist us in using the proper analytical methods, is this work being conducted for regulatory purposes? Compliance Monitoring	Project Name: STA - R./. E		Report To: MURK MAJIHEY States (211.	Invoice To: SAME AS REVE.		Analyze For Analyz	[Level 2 [Batch QC]	Level 3		KEMARKS										1 1.205 Rec Lets Temps	Bottles Supplied by TestAmerica	61 Time 14)33 Method of Shioment CULL	12/20/01
			0			A N	13) 83	BRK.				L.								3390 Date:	Date:	h C / A	
0-261-1660 0-261-8120 Client #:	6		1-26 (20)		# of Containand			Specify)	Verthan Vone Uther (<u>`</u>		1 1	111	111	111	1 1 1			Swed		Ś	Ň
Phone: 92 B Fax: 92	e Sullo	2	Fax		ix Preenvation &	A Olher	zbecu	JƏIEMƏISEAA	H ² 2O ¹ HO ¹¹ HCI HIO ²											Meddler (Received By:	Received By:	
rtown Divlsion Commerce Drive rtown, WI 53094	Electre De	Marth 11	1282	Harrison 1	Matr	⊖jis teleVV pr bilo29io3	S - S Nunki	irab, C = Co bundge DW - Filtered	0 - M9 IS - IS I PIPIJ D = D	G 5							>	1063		P Time Co	Time:	Time:	
iCa wat	Bintry.	mak	(11) 72	with				bałqms2	20 80 / Dec	3-22 1410	E-28 14 20	3.28 16 3	7.28 10 4	3-28 17 10	3-28 11:20	3-25 2.10	2.28 20 2	×		 Z_Date:	Date:	Date:	
	Address. City/State/Zip Code:	Project Manager:	Telephone Number,	oarupuar Name: (Frint Name) Sampler Signature:		TAT Stendard Rush (surcharges may apply)	Date Needed:	Fax Results: Y N	SAMPLE ID	52-521-241	58-551-28'	53-52-4	53-522-6	SB-C51-12'	- <u></u>	53-652-20	-22-27- 2r	IM ELENIN	Special Instructions:	Reinquished Bar. A	Relinquished By:	Relinquished By:	

ANALYTICAL AND QUALITY CONTROL REPORT

DU:	 •••

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045 12/28/2000 Job No: 00.10774 Page 1 of 30

Enclosed are the Analytical and Quality Control reports for the following samples submitted for analysis:

Sample Number	Sample Description	Date Taken	Date Received
422038 422039 422040 422041 422042 422043 422043 422044 422045 422046 422047	SB Sump E-16' Sta-Rite SB Sump E-20' Sta-Rite SB Sump E-24' Sta-Rite SB Sump E-26' Sta-Rite SB Sump E-28' Sta-Rite SB 2008-16' Sta-Rite SB 2008-20' Sta-Rite SB 2008-24' Sta-Rite SB 2008-26' Sta-Rite SB 2008-28' Sta-Rite	12/13/2000 12/13/2000 12/13/2000 12/13/2000 12/13/2000 12/13/2000 12/13/2000 12/13/2000 12/13/2000 12/13/2000	12/14/2000 12/14/2000 12/14/2000 12/14/2000 12/14/2000 12/14/2000 12/14/2000 12/14/2000 12/14/2000 12/14/2000 12/14/2000
422048	Trip Blank Sta-Rite	12/13/2000	12/14/2000

Soil results are reported on a dry weight basis. The above sample(s) may have a result flag shown on the report. The following are the result flag definitions:

- A = Analyzed/extracted past hold time
- C = Standard outside of control limits
- F = Sample filtered in lab
- H = Late eluting hydrocarbons present
- J = Estimated concentration
- M = Matrix interference
- Q = Result confirmed via re-analysis
- T = Does not match typical pattern
- X = Unidentified compound(s) present

- B = Blank is contaminated
- D = Diluted for analysis
- G = Received past hold time
- I = Improperly handled sample
- L = Common lab solvent and contaminant
- P = Improperly preserved sample
- S = Sediment present
- W = BOD re-set due to missed dilution
- Z = Internal standard outside limits

Brian D. DeJong

Brian D. DeJong Organic Operations Manager

602 COMMERCE DRIVE / WATERTOWN, WI 53094 / 920-261-1660 / FAX: 920-261-8120 WDNR No. 128053530

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

12/28/2000 Job No: 00.10774 Sample No: 422038 Account No: 39150 Page 2 of 30

JOB DESCRIPTION: Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB Sump E-16' Sta-Rite Rec'd at 4 degrees C

Date/Time Taken: 12/13/2000 10:50 Date Received: 12/14/2000

			Reporting		Date	Prep/Run
Parameter	Results	Units	Limit	Method	Analyzed	Batch
Solids, Total	92.6	8	n/a	SW 5030	12/20/2000	3527
VOC - METHANOL - 8260B		-	,		, , , ~	
Benzene	<27	ua/ka	25	SW 8260B	12/21/2000	1085
Bromobenzene	<27	ug/kg	25	SW 8260B	12/21/2000	1085
Bromochloromethane	<27	ug/kg	25	SW 8260B	$\frac{12}{21}$	1085
Bromodichloromethane	<27	ug/kg	25	SW 8260B	12/21/2000	1085
oform	<27	ug/kg	25	SW 8260B	12/21/2000	1085
E_smomethane	<108	ug/kg	100	SW 8260B	12/21/2000	1085
n-Butylbenzene	<27	ug/kg	25	SW 8260B	$\frac{12}{21}$	1085
sec-Butylbenzene	<27	11g/kg	25	SW 8260B	12/21/2000	1085
tert-Butylbenzene	<27	ug/kg	25	SW 8260B	12/21/2000	1085
Carbon Tetrachloride	<27	ug/kg	25	SW 8260B	12/21/2000	1085
Chlorobenzene	<27	ug/kg	25	SW 8260B	12/21/2000	1085
Chlorodibromomethane	<27	ug/kg	25	SW 8260B	12/21/2000	1085
Chloroethane	<38	ug/kg	35	SW 8260B	12/21/2000	1085
Chloroform	<27	na/ka	25	SW 8260B	12/21/2000	1085
Chloromethane	<54	ug/kg	50	SW 8260B	12/21/2000	1085
2-Chlorotoluene	<27	ug/kg	25	SW 8260B	12/21/2000	1085
4-Chlorotoluene	<27	ug/kg	25	SW 8260B	12/21/2000	1085
1,2-Dibromo-3-Chloropropane	<54	ug/kg	50	SW 8260B	12/21/2000	1085
1,2-Dibromoethane (EDB)	<27	ug/kg	25	SW 8260B	$\frac{12}{21}$	1085
Dibromomethane	<27	ug/kg	25	SW 8260B	12/21/2000	1085
1,2-Dichlorobenzene	<27	ug/kg	25	SW 8260B	12/21/2000	1085
1,3-Dichlorobenzene	<27	ug/kg	25	SW 8260B	$\frac{12}{21}$	1085
1,4-Dichlorobenzene	<27	ug/kg	25	SW 8260B	12/21/2000	1085
Dichlorodifluoromethane	<27	ug/kg	25	SW 8260B	12/21/2000	1085
1,1-Dichloroethane	<27	ug/kg	25	SW 8260B	12/21/2000	1085
1,2-Dichloroethane	<27	ug/kg	25	SW 8260B	12/21/2000	1085
1,1-Dichloroethene	<27	uq/kq	25	SW 8260B	12/21/2000	1085
cis-1,2-Dichloroethene	76	uq/kq	25	SW 8260B	12/21/2000	1085
trans-1,2-Dichloroethene	<27	ua/ka	25	SW 8260B	12/21/2000	1085
1,2-Dichloropropane	<27	ug/kg	25	SW 8260B	12/21/2000	1085
1,3-Dichloropropane	<27	uq/kq	25	SW 8260B	12/21/2000	1085
2 2-Dichloropropane	<27	uq/kq	25	SW 8260B	12/21/2000	1085
-Dichloropropene	<27	ug/kg	25	SW 8260B	12/21/2000	1085
s-1,3-Dichloropropene	<27	ug/kg	25	SW 8260B	12/21/2000	1085
trans-1,3-Dichloropropene	<27	ug/kg	25	SW 8260B	12/21/2000	1085
Di-isopropyl ether	<27	ua/ka	25	SW 8260B	12/21/2000	1085
Ethylbenzene	<27	ug/kg	25	SW 8260B	12/21/2000	1085
		-9/9	2. . .	20 02000	12/21/2000	T005

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

-

12/28/2000 Job No: 00.10774 Sample No: 422038 Account No: 39150 Page 3 of 30

JOB DESCRIPTION: Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB Sump E-16' Sta-Rite Rec'd at 4 degrees C

Date/Time Taken: 12/13/2000 10:50

Daramotor			Reporting		Date	Prep/Run
Zarameter	Results	Units	Limit	Method	Analyzed	Batch
Hexachlorobutadiene	<38	ug/kg		111 00 00		
Isopropylbenzene	~27	ug/kg væ/kæ	35	SW 8260B	12/21/2000	1085
p-Isopropyltoluene	~27	ug/kg	25	SW 8260B	12/21/2000	1085
Methylene Chloride	<54	ug/kg	25	SW 8260B	12/21/2000	1085
Methyl-t-butyl ether	~ 24	ug/kg	50	SW 8260B	12/21/2000	1085
Naphthalene	<27	ug/kg	25	SW 8260B	12/21/2000	1085
: :onvibenzene	<27	ug/kg	25	SW 8260B	12/21/2000	1085
> cono	<27	ug/kg	25	SW 8260B	12/21/2000	1085
1 1 1 2-Totrachlanath	<27	ug/kg	25	SW 8260B	12/21/2000	1085
1,1,2,2 Tetrachioroethane	<27	ug/kg	25	SW 8260B	12/21/2000	1085
T, 1, 2, 2- Telfachioroethane	<27	ug/kg	25	SW 8260B	12/21/2000	1085
Teluene	89	ug/kg	25	SW 8260B	12/21/2000	1085
	<27	ug/kg	25	SW 8260B	12/21/2000	1085
1,2,3-Trichlorobenzene	<27	uq/kq	25	SW 8260B	12/21/2000	1005
1,2,4-Trichlorobenzene	<27	uq/kq	25	SW 8260B	12/21/2000	1005
1,1,1-Trichloroethane	<27	ug/kg	25	SM 9260B	12/21/2000	1085
1,1,2-Trichloroethane	<27	ug/kg	25	SH 92000	12/21/2000	1085
Trichloroethene	67	ug/kg	25	SW 02COD	12/21/2000	1085
Trichlorofluoromethane	<27	ug/kg	25	SW 8260B	12/21/2000	1085
1,2,3-Trichloropropane	<27	ug/kg	25	SW 8260B	12/21/2000	1085
1,2,4-Trimethylbenzene	-27	ug/kg	23	SW 8260B	12/21/2000	1085
1,3,5-Trimethylbenzene	~27	ug/kg	25	SW 8260B	12/21/2000	1085
Vinyl Chloride	<27	ug/kg	25	SW 8260B	12/21/2000	1085
Xylenes, Total	-20	ug/kg	25	SW 8260B	12/21/2000	1085
Surr: Dibromofluoromethane	< 38	ug/kg	35	SW 8260B	12/21/2000	1085
Surr: Toluene-d8	102.0	*	85-113	SW 8260B	12/21/2000	1085
Surr: Bromofluorobenzono	100.0	몽	93-105	SW 8260B	12/21/2000	1085
	101.4	99	85-111	SW 8260B	12/21/2000	1085

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

•

12/28/2000 Job No: 00.10774 Sample No: 422039 Account No: 39150 Page 4 of 30

JOB DESCRIPTION: Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB Sump E-20' Sta-Rite Rec'd at 4 degrees C

Date/Time Taken: 12/13/2000 10:40 Date Received: 12/14/2000

			Reporting		Date	Prep/Run
Parameter	Results	Units	Limit	Method	Analyzed	Batch
Solids, Total	94 4	\$	n/a	SM 5030	12/20/2000	3507
VOC - METHANOL - 8260B		5	m, a	5N 3030	12/20/2000	1200
Benzene	<26	ug/kg	25	SW 8260B	12/21/2000	1085
Bromobenzene	<26	ug/kg	25	SW 8260B	12/21/2000	1085
Bromochloromethane	<26	ug/kg	25	SW 8260B	12/21/2000	1085
Bromodichloromethane	<26	ug/kg	25	SW 8260B	12/21/2000	1085
oform	<26	ug/kg	25	SW 8260B	12/21/2000	1085
E_Jmomethane	<106	ug/kg	100	SW 8260B	12/21/2000	1085
n-Butylbenzene	<26	ug/kg	25	SW 8260B	12/21/2000	1085
sec-Butylbenzene	<26	ug/kg	25	SW 8260B	12/21/2000	1085
tert-Butylbenzene	<26	ug/kg	25	SW 8260B	12/21/2000	1085
Carbon Tetrachloride	<26	vg/kg	25	SW 8260B	12/21/2000	1085
Chlorobenzene	<26	ug/kg	25	SM 8260B	12/21/2000	1085
Chlorodibromomethane	<26	ug/kg	25	SW 8260B	12/21/2000	1085
Chloroethane	<37	ug/kg	25	SW 8260B	12/21/2000	1085
Chloroform	<26	ug/kg	25	SW 8260B	12/21/2000	1085
Chloromethane	<53	ng/kg	50	SW 8260B	12/21/2000	1085
2-Chlorotoluene	<26	ug/kg	25	SW 8260B	12/21/2000	1085
4-Chlorotoluene	<26	ug/kg	25	SW 8260B	12/21/2000	1085
1,2-Dibromo-3-Chloropropane	<53	ug/kg	50	SW 8260B	12/21/2000	1085
1,2-Dibromoethane (EDB)	<26	ug/kg	25	SW 8260B	12/21/2000	1085
Dibromomethane	<26	ug/kg	25	SW 8260B	12/21/2000	1085
1,2-Dichlorobenzene	<26	ug/kg	25	SW 8260B	12/21/2000	1085
1,3-Dichlorobenzene	<26	ug/kg	25	SW 8260B	12/21/2000	1085
1,4-Dichlorobenzene	<26	ug/kg	25	SW 8260B	12/21/2000	1085
Dichlorodifluoromethane	<26	ug/kg	25	SW 8260B	12/21/2000	1085
1,1-Dichloroethane	<26	ug/kg	25	SW 8260B	12/21/2000	1085
1,2-Dichloroethane	<26	ug/kg	25	SW 8260B	12/21/2000	1085
1,1-Dichloroethene	<26	uq/kq	25	SW 8260B	12/21/2000	1085
cis-1,2-Dichloroethene	445	uq/kq	25	SW 8260B	$\frac{12}{21}$	1085
trans-1,2-Dichloroethene	<26	ug/kg	25	SW 8260B	12/21/2000	1085
1,2-Dichloropropane	<26	ug/kg	25	SW 8260B	12/21/2000	1085
1,3-Dichloropropane	<26	uq/kq	25	SW 8260B	12/21/2000	1085
2 2-Dichloropropane	<26	uq/kq	25	SW 8260B	12/21/2000	1085
-Dichloropropene	<26	ug/kg	25	SW 8260B	12/21/2000	1085
<pre>us-1,3-Dichloropropene</pre>	<26	ug/kg	25	SW 8260B	12/21/2000	1085
trans-1,3-Dichloropropene	<26	ug/kg	25	SW 8260B	12/21/2000	1085
Di-isopropyl ether	<26	uq/ka	25	SW 8260B	12/21/2000	1085
Ethylbenzene	<26	ug/kg	25	SW 8260B	12/21/2000	1091
				00 0200D	12/21/2000	1001

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045 12/28/2000 Job No: 00.10774 Sample No: 422039 Account No: 39150 Page 5 of 30

JOB DESCRIPTION: Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB Sump E-20' Sta-Rite Rec'd at 4 degrees C

Date/Time Taken: 12/13/2000 10:40

_	Reporting				Date Prep/Run		
Parameter	Results	Units	Limit	Method	Analyzeđ	Batch	
Hexachlorobutadiene	<37	uq/kq	. 35	SW 8260B	12/21/2000	1085	
Isopropylbenzene	<26	ug/kg	25	SW 8260B	12/21/2000	1085	
p-Isopropyltoluene	<26	ug/kg	25	SW 8260B	12/21/2000	1085	
Methylene Chloride	<53	ug/kg	50	SW 8260B	12/21/2000	1085	
Methyl-t-butyl ether	<26	ug/kg	25	SW 8260B	12/21/2000	1085	
Naphthalene	<26	ug/kg	25	SW 8260B	12/21/2000	1085	
r opylbenzene	<26	ug/kg	25	SW 8260B	12/21/2000	1085	
Sene	<26	ug/kg	25	SW 8260B	12/21/2000	1085	
1,1,1,2-Tetrachloroethane	<26	ug/kg	25	SW 8260B	12/21/2000	1085	
1,1,2,2-Tetrachloroethane	<26	ug/kg	25	SW 8260B	12/21/2000	1085	
Tetrachloroethene	265	ug/kg	25	SW 8260B	12/21/2000	1085	
Toluene	<26	ug/kg	25	SW 8260B	12/21/2000	1085	
1,2,3-Trichlorobenzene	<26	uq/kq	25	SW 8260B	12/21/2000	1085	
1,2,4-Trichlorobenzene	<26	ug/kg	25	SW 8260B	12/21/2000	1085	
1,1,1-Trichloroethane	<26	ug/kg	25	SW 8260B	12/21/2000	1085	
1,1,2-Trichloroethane	<26	ug/kg	25	SW 8260B	12/21/2000	1085	
Trichloroethene	275	ug/kg	25	SW 8260B	12/21/2000	1085	
Trichlorofluoromethane	<26	ug/kg	25	SW 8260B	12/21/2000	1085	
1,2,3-Trichloropropane	<26	ug/kg	25	SW 8260B	12/21/2000	1085	
1,2,4-Trimethylbenzene	<26	ug/kg	25	SW 8260B	12/21/2000	1085	
1,3,5-Trimethylbenzene	<26	ug/kg	25	SW 8260B	12/21/2000	1085	
Vinyl Chloride	<26	ug/kg	25	SW 8260B	12/21/2000	1085	
Xylenes, Total	<37	uq/kq	35	SW 8260B	12/21/2000	1085	
Surr: Dibromofluoromethane	104.0	*/.~ %	85~113	SW 8260B	12/21/2000	1085	
Surr: Toluene-d8	99.0	20	93-105	SW 8260B	12/21/2000	1085	
Surr: Bromofluorobenzene	104.4	8	85-111	SW 8260B	12/21/2000	1085	

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045 12/28/2000 Job No: 00.10774 Sample No: 422040 Account No: 39150 Page 6 of 30

JOB DESCRIPTION: Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB Sump E-24' Sta-Rite Rec'd at 4 degrees C

Date/Time Taken: 12/13/2000 11:10

		***	Reporting	Method	Date H Analyzed	Prep/Run Batch
Parameter	Results	Units		Meenou	-	
e l'in metal	91.7	ş	n/a	SW 5030	12/20/2000	3527
SOLIDS, TOLAL	22.1				- 1 1	1095
VUC - METHANOL - 8200B	<27	ug/kg	25	SW 8260B	12/21/2000	1085
Reuzene	<27	ug/kg	25	SW 8260B	12/21/2000	1005
Bromodenzene	<27	uq/kq	25	SW 8260B	12/21/2000	1085
Bromochiofomechane	<27	ug/kg	25	SW 8260B	12/21/2000	1085
Bromodichioromethane	<27	uq/kq	25	SW 8260B	12/21/2000	1085
loiorm	<109	ug/kg	100	SW 8260B	12/21/2000	1085
b.omomethane	<27	ug/kg	25	SW 8260B	12/21/2000	1085
n-Butylbenzene	<27	ug/kg	25	SW 8260B	12/21/2000	1085
sec-ButyIDenzene	<27	ug/kg	25	SW 8260B	12/21/2000	1085
tert-ButylDenzene	<27	ug/kg	25	SW 8260B	12/21/2000	1085
Carbon Tetrachioride	~27	ug/kg	25	SW 8260B	12/21/2000	1085
Chlorobenzene	~27	11g/kg	25	SW 8260B	12/21/2000	1085
Chlorodibromomethane	<28	ug/kg	35	SW 8260B	12/21/2000	1085
Chloroetnane	<27	ug/kg	25	SW 8260B	12/21/2000	1085
Chloroform	~55	ug/kg	50	SW 8260B	12/21/2000	1085
Chloromethane	<27	ug/kg	25	SW 8260B	12/21/2000	1085
2-Chlorotoluene	~27	ug/kg	25	SW 8260B	12/21/2000	1085
4-Chlorotoluene	~55	$\frac{ug}{k\sigma}$	50	SW 8260B	12/21/2000	1085
1,2-Dibromo-3-Chloropropane	-77	ug/kg	25	SW 8260B	12/21/2000	1085
1,2-Dibromoetnane (EDB)	<27 <27	ug/kg	25	SW 8260B	12/21/2000) 1085
Dibromomethane	<27	ug/kg	25	SW 8260B	12/21/2000) 1085
1,2-Dichiorobenzene	<27	ug/kg	25	SW 8260B	12/21/2000) 1085
1,3-Dichlorobenzene	-27	ug/kg	25	SW 8260B	12/21/2000) 1085
1,4-Dichlorobenzene	<27	ug/kg	25	SW 8260B	12/21/2000) 1085
Dichlorodifluoromethane	<27	ug/kg	25	SW 8260B	12/21/2000) 1085
1,1-Dichloroethane	<27	ug/kg	25	SW 8260B	12/21/2000) 1085
1,2-Dichloroethane	<27	ug/kg	25	SW 8260B	12/21/2000) 1085
1,1-Dichloroethene	<27	ug/kg	25	SW 8260B	12/21/2000) 1085
cis-1,2-Dichloroethene	<27	ug/kg	25	SW 8260B	12/21/2004) 1085
trans-1,2-Dichloroethene	<27	ug/kg	25	SW 8260B	12/21/200) 1085
1,2-Dichloropropane	< 2 /	ug/kg	25	SW 8260B	12/21/200	D 1085
1,3-Dichloropropane	<27	ug/kg	25	SW 8260B	12/21/200	0 1085
2 2-Dichloropropane	<27	ug/kg	25	SW 8260B	12/21/200	0 1085
-Dichloropropene	<27	ug/kg	25	SW 8260B	12/21/200	0 1085
us-1,3-Dichloropropene	<27	ug/kg	25	SW 8260B	12/21/200	0 1085
trans-1,3-Dichloropropene	<27	ug/Kg	4 D D E	SW 9260B	12/21/200	0 1085
Di-isopropyl ether	<27	ug/kg	45	GW R260R	12/21/200	0 1085
Ethylbenzene	<27	ug/Kg	20	3n 02005	,,	

.

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045 12/28/2000 Job No: 00.10774 Sample No: 422040 Account No: 39150 Page 7 of 30

JOB DESCRIPTION: Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB Sump E-24' Sta-Rite Rec'd at 4 degrees C

Date/Time Taken: 12/13/2000 11:10

Parameter	Results	Units	Reporting Limit	Method	Date Analyzed	Prep/Run Batch
Hexachlorobutadiene	<38	ug/kg	35	SW 8260B	12/21/2000	1085
Isopropylbenzene	<27	ug/kg	25	SW 8260B	12/21/2000	1085
p-Isopropyltoluene	<27	ug/kg	25	SW 8260B	12/21/2000	1085
Methylene Chloride	<55	ug/kg	50	SW 8260B	12/21/2000	1085
Methyl-t-butyl ether	<27	ug/kg	25	SW 8260B	12/21/2000	1085
Naphthalene	<27	uq/kq	25	SW 8260B	12/21/2000	1085
ropylbenzene	<27	uq/kq	25	SW 8260B	12/21/2000	1085
tene	<27	ug/kg	25	SW 8260B	12/21/2000	1085
1.1.1.2-Tetrachloroethane	<27	uq/kq	25	SW 8260B	12/21/2000	1085
1.1.2.2-Tetrachloroethane	<27	uq/kq	25	SW 8260B	12/21/2000	1085
Tetrachloroethene	<27	ug/kg	25	SW 8260B	12/21/2000	1085
Toluene	<27	ug/kg	25	SW 8260B	12/21/2000	1085
1.2.3-Trichlorobenzene	<27	uq/kq	25	SW 8260B	12/21/2000	1085
1.2.4-Trichlorobenzene	<27	uq/kq	25	SW 8260B	12/21/2000	1085
1.1.1-Trichloroethane	<27	uq/kq	25	SW 8260B	12/21/2000	1085
1.1.2-Trichloroethane	<27	ug/kg	25	SW 8260B	12/21/2000	1085
Trichloroethene	<27	uq/kq	25	SW 8260B	12/21/2000	1085
Trichlorofluoromethane	<27	ug/kg	25	SW 8260B	12/21/2000	1085
1,2,3-Trichloropropane	<27	ug/kg	25	SW 8260B	12/21/2000	1085
1.2.4-Trimethylbenzene	<27	uq/kq	25	SW 8260B	12/21/2000	1085
1.3.5-Trimethylbenzene	<27	uq/kq	25	SW 8260B	12/21/2000	1085
Vinvl Chloride	<27	uq/kq	25	SW 8260B	12/21/2000	1085
Xvlenes, Total	<38	ug/kg	35	SW 8260B	12/21/2000	1085
Surr: Dibromofluoromethane	103.2	8	85-113	SW 8260B	12/21/2000	1085
Surr: Toluene-d8	100.0	왕	93-105	SW 8260B	12/21/2000	1085
Surr: Bromofluorobenzene	100.4	8	85-111	SW 8260B	12/21/2000	1085

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045 12/28/2000 Job No: 00.10774 Sample No: 422041 Account No: 39150 Page 8 of 30

JOB DESCRIPTION: Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB Sump E-26' Sta-Rite Rec'd at 4 degrees C

Date/Time Taken: 12/13/2000 11:20

Parameter	Results	Units	Reporting Limit	Method	Date 1 Analyzed	Prep/Run Batch
Solids, Total	91.9	양	n/a	SW 5030	12/20/2000	3527
VOC - METHANOL - 8260B						1097
Benzene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
Bromobenzene	<27	ug/kg	25	SW 8260B	12/26/2000	1007
Bromochloromethane	<27	ug/kg	25	SW 8260B	12/26/2000	1087
Bromodichloromethane	<27	ug/kg	25	SW 8260B	12/26/2000	1087
i oform	<27	ug/kg	25	SW 8260B	12/26/2000	1087
Bromomethane	<109	ug/kg	100	SW 8260B	12/26/2000	1087
n-Butylbenzene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
sec-Butylbenzene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
tert-Butylbenzene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
Carbon Tetrachloride	<27	ug/kg	25	SW 8260B	12/26/2000	1087
Chlorobenzene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
Chlorodibromomethane	<27	ug/kg	25	SW 8260B	12/26/2000	1087
Chloroethane	<38	ug/kg	35	SW 8260B	12/26/2000	1087
Chloroform	<27	ug/kg	25	SW 8260B	12/26/2000	1087
Chloromethane	<54	ug/kg	50	SW 8260B	12/26/2000	1087
2-Chlorotoluene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
4-Chlorotoluene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
1.2-Dibromo-3-Chloropropane	<54	ug/kg	50	SW 8260B	12/26/2000	1087
1,2-Dibromoethane (EDB)	<27	ug/kg	25	SW 8260B	12/26/2000	1087
Dibromomethane	<27	ug/kg	25	SW 8260B	12/26/2000	1087
1,2-Dichlorobenzene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
1.3-Dichlorobenzene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
1,4-Dichlorobenzene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
Dichlorodifluoromethane	<27	ug/kg	25	SW 8260B	12/26/2000	1087
1.1-Dichloroethane	<27	ug/kg	25	SW 8260B	12/26/2000	1087
1.2-Dichloroethane	<27	ug/kg	25	SW 8260B	12/26/2000	1087
1.1-Dichloroethene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
cis-1,2-Dichloroethene	272	ug/kg	25	SW 8260B	12/26/2000	1087
trans-1,2-Dichloroethene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
1.2-Dichloropropane	<27	ug/kg	25	SW 8260B	12/26/2000	1087
1.3-Dichloropropane	<27	ug/kg	25	SW 8260B	12/26/2000) 1087
2 ^-Dichloropropane	<27	ug/kg	25	SW 8260B	12/26/2000) 1087
Dichloropropene	<27	ug/kg	25	SW 8260B	12/26/2000) 1087
cis-1.3-Dichloropropene	<27	ug/kg	25	SW 8260B	12/26/2000) 1087
trans-1.3-Dichloropropene	<27	ug/kg	25	SW 8260B	12/26/2000) 1087
Di-isopropyl ether	<27	ug/kg	25	SW 8260B	12/26/2000) 1087
Ethylbenzene	<27	ug/kg	25	SW 8260B	12/26/2000) 1087

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045 12/28/2000 Job No: 00.10774 Sample No: 422041 Account No: 39150 Page 9 of 30

JOB DESCRIPTION: Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB Sump E-26' Sta-Rite Rec'd at 4 degrees C

Date/Time Taken: 12/13/2000 11:20

			Reporting		Date	Prep/Run
Parameter	Results	Units	Limit	Method	Analyzed	Batch
Hexachlorobutadiene	<38	ug/kg	35	SW 8260B	12/26/2000	1087
Isopropylbenzene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
o-Isopropyltoluene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
Mc-hvlene Chloride	<54	uq/kq	50	SW 8260B	12/26/2000	1087
vl-t-butvl ether	<27	uq/kq	25	SW 8260B	12/26/2000	1087
Naunthalene	<27	uq/kq	25	SW 8260B	12/26/2000	1087
-Propylbenzene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
Stvrene	<27	uq/kq	25	SW 8260B	12/26/2000	1087
1.1.1.2-Tetrachloroethane	<27	uq/kq	25	SW 8260B	12/26/2000	1087
1.1.2.2-Tetrachloroethane	<27	uq/kq	25	SW 8260B	12/26/2000	1087
Tetrachloroethene	163	uq/kq	25	SW 8260B	12/26/2000	1087
Toluene	<27	uq/kq	25	SW 8260B	12/26/2000	1087
1.2.3-Trichlorobenzene	<27	uq/kq	25	SW 8260B	12/26/2000	1087
1.2.4-Trichlorobenzene	<27	uq/kq	25	SW 8260B	12/26/2000	1087
1,1,1-Trichloroethane	<27	uq/kq	25	SW 8260B	12/26/2000	1087
1.1.2-Trichloroethane	<27	uq/kq	25	SW 8260B	12/26/2000	1087
Trichloroethene	218	uq/kq	25	SW 8260B	12/26/2000	1087
Trichlorofluoromethane	<27	uq/kq	25	SW 8260B	12/26/2000	1087
1.2.3-Trichloropropane	<27	uq/kq	25	SW 8260B	12/26/2000	1087
1,2,4-Trimethylbenzene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
1.3.5-Trimethylbenzene	<27	uq/kq	25	SW 8260B	12/26/2000	1087
Vinvl Chloride	<27	uq/kq	25	SW 8260B	12/26/2000	1087
Xvlenes, Total	<38	uq/kq	35	SW 8260B	12/26/2000	1087
Surr: Dibromofluoromethane	101.4	*	85-113	SW 8260B	12/26/2000	1087
Surr: Toluene-d8	101.2	8	93-105	SW 8260B	12/26/2000	1087
Surr: Bromofluorobenzene	99.6	8	85-111	SW 8260B	12/26/2000	1087

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

12/28/2000 Job No: 00.10774 Sample No: 422042 Account No: 39150 Page 10 of 30

JOB DESCRIPTION: Sta-Rite PROJECT DESCRIPTION: Soil Analysis SB Sump E-28' Sta-R: Rec'd at 4 degrees C SAMPLE DESCRIPTION: Sta-Rite

Date/Time Taken: 12/13/2000 11:30 Date Received: 12/14/2000

	Reporti				Date	Prep/Run
Parameter	Results	Units	Limit	Method	Analyzed	Batch
Solids, Total	92.5	ojo	n/a	SW 5030	12/20/2000	3527
VOC - METHANOL - 8260B			ŗ			
Benzene	<130	ug/kg	25	SW 8260B	12/27/2000	1088
Bromobenzene	<130	ug/kg	25	SW 8260B	12/27/2000	1088
Bromochloromethane	<130	ug/kg	25	SW 8260B	12/27/2000	1088
Bromodichloromethane	<130	ug/kg	25	SW 8260B	12/27/2000	1088
r hoform	<130	ug/kg	25	SW 8260B	12/27/2000	1088
Liomethane	<541	ug/kg	100	SW 8260B	12/27/2000	1088
n-Butylbenzene	<130	ug/kg	25	SW 8260B	12/27/2000	1088
sec-Butylbenzene	3,350	ug/kg	25	SW 8260B	12/27/2000	1088
tert-Butylbenzene	<130	ug/kg	25	SW 8260B	12/27/2000	1088
Carbon Tetrachloride	<130	ug/kg	25	SW 8260B	12/27/2000	1088
Chlorobenzene	<130	ug/kg	25	SW 8260B	12/27/2000	1088
Chlorodibromomethane	<130	ug/kg	25	SW 8260B	12/27/2000	1088
Chloroethane	<195	ug/kg	35	SW 8260B	12/27/2000	1088
Chloroform	<130	ug/kg	25	SW 8260B	12/27/2000	1088
Chloromethane	<270	ug/kg	50	SW 8260B	12/27/2000	1088
2-Chlorotoluene	<130	ug/kg	25	SW 8260B	12/27/2000	1088
4-Chlorotoluene	<130	ug/kg	25	SW 8260B	12/27/2000	1088
1,2-Dibromo-3-Chloropropane	<270	ug/kg	50	SW 8260B	12/27/2000	1088
1,2-Dibromoethane (EDB)	<130	ug/kg	25	SW 8260B	12/27/2000	1088
Dibromomethane	<130	ug/kg	25	SW 8260B	12/27/2000	1088
1,2-Dichlorobenzene	<130	ug/kg	25	SW 8260B	12/27/2000	1088
1,3-Dichlorobenzene	<130	ug/kg	25	SW 8260B	12/27/2000	1088
l,4-Dichlorobenzene	<130	ug/kg	25	SW 8260B	12/27/2000	1088
Dichlorodifluoromethane	<130	ug/kg	25	SW 8260B	12/27/2000	1088
1,1-Dichloroethane	<130	ug/kg	25	SW 8260B	12/27/2000	1088
1,2-Dichloroethane	<130	ug/kg	25	SW 8260B	12/27/2000	1088
1,1-Dichloroethene	<130	ug/kg	25	SW 8260B	12/27/2000	1088
cis-1,2-Dichloroethene	3,680	ug/kg	25	SW 8260B	12/27/2000	1088
trans-1,2-Dichloroethene	<130	ug/kg	25	SW 8260B	12/27/2000	1088
1,2-Dichloropropane	<130	ug/kg	25	SW 8260B	12/27/2000	1088
1,3-Dichloropropane	<130	ug/kg	25	SW 8260B	12/27/2000	1088
2,2-Dichloropropane	<130	ug/kg	25	SW 8260B	12/27/2000	1088
-Dichloropropene	<130	ug/kg	25	SW 8260B	12/27/2000	1088
-1,3-Dichloropropene	<130	ug/kg	25	SW 8260B	12/27/2000	1088
trans-1,3-Dichloropropene	<130	ug/kg	25	SW 8260B.	12/27/2000	1088
Di-isopropyl ether	<130	ug/kg	25	SW 8260B	12/27/2000	1088
Ethylbenzene	14,100	ug/kg	25	SW 8260B	12/27/2000	1088
		-				

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045 12/28/2000 Job No: 00.10774 Sample No: 422042 Account No: 39150 Page 11 of 30

JOB DESCRIPTION: Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB Sump E-28' Sta-Rite Rec'd at 4 degrees C

· .

Date/Time Taken: 12/13/2000 11:30

			Reporting		Date	Prep/Run
Parameter	Results	Units	Limit	Method	Analyzed	Batch
Iexachlorobutadiene	<195	ug/kg	35	SW 8260B	12/27/2000	1088
sopropylbenzene	1,730	ug/kg	25	SW 8260B	12/27/2000	1088
Jordene	6,490	ug/kg	25	SW 8260B	12/27/2000	1088
Methylene Chloride	<270	ug/kg	50	SW 8260B	12/27/2000	1088
lethyl-t-butyl ether	<130	ug/kg	25	SW 8260B	12/27/2000	1088
Japhthalene	1,070	uq/kq	25	SW 8260B	12/27/2000	1088
opylbenzene	1,190	ug/kg	25	SW 8260B	12/27/2000	1088
ene	<130	ug/kg	25	SW 8260B	12/27/2000	1088
,1,1,2-Tetrachloroethane	<130	ug/kg	25	SW 8260B	12/27/2000	1088
,1,2,2-Tetrachloroethane	<130	ug/kg	25	SW 8260B	12/27/2000	1088
etrachloroethene	<130	ug/kg	25	SW 8260B	12/27/2000	1088
Coluene	<130	uq/kq	25	SW 8260B	12/27/2000	1088
.,2,3-Trichlorobenzene	<130	ua/ka	25	SW 8260B	12/27/2000	1088
.2,4-Trichlorobenzene	<130	uq/kq	25	SW 8260B	12/27/2000	1088
,1,1-Trichloroethane	<130	uq/kq	25	SW 8260B	12/27/2000	1088
,1,2-Trichloroethane	<130	uq/kq	25	SW 8260B	12/27/2000	1088
Trichloroethene	<130	ug/kg	25	SW 8260B	12/27/2000	1088
richlorofluoromethane	<130	uq/kq	25	SW 8260B	12/27/2000	1088
.,2,3-Trichloropropane	<130	ug/kg	25	SW 8260B	12/27/2000	1088
,2,4-Trimethylbenzene	8,540	ug/kg	25	SW 8260B	12/27/2000	1088
.3.5-Trimethylbenzene	8,860	ug/kg	25	SW 8260B	12/27/2000	1088
Vinvl Chloride	<130	ua/ka	25	SW 8260B	12/27/2000	1088
Vlenes, Total	32,400	uq/kq	35	SW 8260B	12/27/2000	1088
Surr: Dibromofluoromethane	100.8	8	85-113	SW 8260B	12/27/2000	1088
Surr: Toluene-d8	98.2	÷	93-105	SW 8260B	12/27/2000	1088
Surr: Bromofluorobenzene	92.6	8	85-111	SW 8260B	12/27/2000	1088

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045 12/28/2000 Job No: 00.10774 Sample No: 422043 Account No: 39150 Page 12 of 30

JOB DESCRIPTION: Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB 2008-16' Sta-Rite Rec'd at 4 degrees C

-

Date/Time Taken: 12/13/2000 12:00

Parameter			Reporting		Date	Prep/Run	
	Results	Units	Limit	Method	Analyzed	Batch	
olids, Total	93.8	ato .	n/a	SW 5030	12/20/2000	3527	
OC - METHANOL - 8260B							
enzene	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
romobenzene	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
romochloromethane	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
romodichloromethane	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
oform	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
1 .omethane	<107	ug/kg	100	SW 8260B	12/26/2000	1087	
-Butylbenzene	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
ec-Butylbenzene	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
ert-Butylbenzene	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
arbon Tetrachloride	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
hlorobenzene	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
hlorodibromomethane	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
hloroethane	<37	ug/kg	35	SW 8260B	12/26/2000	1087	
hloroform	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
hloromethane	<53	ug/kg	50	SW 8260B	12/26/2000	1087	
-Chlorotoluene	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
-Chlorotoluene	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
,2-Dibromo-3-Chloropropane	<53	ug/kg	50	SW 8260B	12/26/2000	1087	
,2-Dibromoethane (EDB)	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
ibromomethane	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
,2-Dichlorobenzene	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
,3-Dichlorobenzene	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
,4-Dichlorobenzene	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
ichlorodifluoromethane	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
,1-Dichloroethane	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
,2-Dichloroethane	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
,1-Dichloroethene	<27	uq/kq	25	SW 8260B	12/26/2000	1087	
is-1,2-Dichloroethene	<27	uq/kg	25	SW 8260B	12/26/2000	1087	
rans-1,2-Dichloroethene	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
,2-Dichloropropane	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
,3-Dichloropropane	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
,2-Dichloropropane	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
Dichloropropene	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
1,3-Dichloropropene	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
rans-1,3-Dichloropropene	<27	ug/kg	25	SW 8260B.	12/26/2000	1087	
i-isopropyl ether	<27	uq/kq	25	SW 8260B	12/26/2000	1087	
thylbenzene	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
		<u>.</u>					

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045 12/28/2000 Job No: 00.10774 Sample No: 422043 Account No: 39150 Page 13 of 30

JOB DESCRIPTION: Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB 2008-16' Sta-Rite Rec'd at 4 degrees C

Date/Time Taken: 12/13/2000 12:00

Parameter	Results	Units	Reporting Limit	Method	Date Analyzed	Prep/Run Batch
exachlorobutadiene	<37	ug/kg	35	SW 8260B	12/26/2000	1087
sopropylbenzene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
-Isopropyltoluene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
ethylene Chloride	<53	ug/kq	50	SW 8260B	12/26/2000	1087
l-t-butyl ether	<27	ug/kg	25	SW 8260B	12/26/2000	1087
aphthalene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
-Propylbenzen e	<27	ug/kg	25	SW 8260B	12/26/2000	1087
tyrene	<27	uq/kq	25	SW 8260B	12/26/2000	1087
,1,1,2-Tetrachloroethane	<27	ug/kg	25	SW 8260B	12/26/2000	1087
,1,2,2-Tetrachloroethane	<27	ug/kg	25	SW 8260B	12/26/2000	1087
etrachloroethene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
oluene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
,2,3-Trichlorobenzene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
,2,4-Trichlorobenzene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
,1,1-Trichloroethane	<27	uq/kq	25	SW 8260B	12/26/2000	1087
,1,2-Trichloroethane	<27	uq/kq	25	SW 8260B	12/26/2000	1087
richloroethene	<27	uq/kq	25	SW 8260B	12/26/2000	1087
richlorofluoromethane	<27	uq/kq	25	SW 8260B	12/26/2000	1087
,2,3-Trichloropropane	<27	uq/kq	25	SW 8260B	12/26/2000	1087
2,4-Trimethylbenzene	<27	uq/kq	25	SW 8260B	12/26/2000	1087
3,5-Trimethylbenzene	<27	uq/kq	25	SW 8260B	12/26/2000	1087
inyl Chloride	<27	uq/kq	25	SW 8260B	12/26/2000	1087
ylenes, Total	<37	ug/kg	35	SW 8260B	12/26/2000	1087
irr: Dibromofluoromethane	98.4	ु, <u> </u> २	85-113	SW 8260B	12/26/2000	1087
ırr: Toluene-d8	100.4	¥.	93-105	SW 8260B	12/26/2000	1087
irr: Bromofluorobenzene	100.8	alo Io	85-111	SW 8260B	12/26/2000	1087

TestAmerica

ANALYTICAL REPORT

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

12/28/2000 Job No: 00.10774 Sample No: 422044 Account No: 39150 Page 14 of 30

JOB DESCRIPTION: Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB 2008-20' Sta-Rite Rec'd at 4 degrees C

Date/Time Taken: 12/13/2000 12:10 Date Received: 12/14/2000

Parameter	Results	Units	Reporting Limit	Method	Date Analyzed	Prep/Run Batch
olids, Total	94.1	ક	n/a	SW 5030	12/20/2000	3527
OC - METHANOL - 8260B						
enzene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
romobenzene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
romochloromethane	<27	ug/kg	25	SW 8260B	12/26/2000	1087
dichloromethane	<27	ug/kg	25	SW 8260B	12/26/2000	1087
form	<27	ug/kg	25	SW 8260B	12/26/2000	1087
romomethane	<106	ug/kg	100	SW 8260B	12/26/2000	1087
-Butylbenzene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
ec-Butylbenzene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
ert-Butylbenzene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
arbon Tetrachloride	<27	ug/kg	25	SW 8260B	12/26/2000	1087
hlorobenzene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
hlorodibromomethane	<27	ug/kg	25	SW 8260B	12/26/2000	1087
hloroethane	<37	ug/kg	35	SW 8260B	12/26/2000	1087
hloroform	<27	ug/kg	25	SW 8260B	12/26/2000	1087
hloromethane	<53	ug/kg	50	SW 8260B	12/26/2000	1087
-Chlorotoluene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
-Chlorotoluene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
,2-Dibromo-3-Chloropropane	<53	ug/kg	50	SW 8260B	12/26/2000	1087
,2-Dibromoethane (EDB)	<27	ug/kg	25	SW 8260B	12/26/2000	1087
ibromomethane	<27	ug/kg	25	SW 8260B	12/26/2000	1087
,2-Dichlorobenzene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
,3-Dichlorobenzene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
,4-Dichlorobenzene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
ichlorodifluoromethane	<27	ug/kg	25	SW 8260B	12/26/2000	1087
,1-Dichloroethane	<27	ug/kg	25	SW 8260B	12/26/2000	1087
,2-Dichloroethane	<27	ug/kg	25	SW 8260B	12/26/2000	1087
,1-Dichloroethene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
is-1,2-Dichloroethene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
rans-1,2-Dichloroethene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
,2-Dichloropropane	<27	ug/kg	25	SW 8260B	12/26/2000	1087
,3-Dichloropropane	<27	ug/kg	25	SW 8260B	12/26/2000	1087
Dichloropropane	<27	ug/kg	25	SW 8260B	12/26/2000	1087
) Dichloropropene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
is-1,3-Dichloropropene	<27	ug/kg	25	SW 8260B.	12/26/2000	1087
rans-1,3-Dichloropropene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
i-isopropyl ether	<27	ug/kg	25	SW 8260B	12/26/2000	1087
thylbenzene	<27	ug/kg	25	SW 8260B	12/26/2000	1087

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

12/28/2000 Job No: 00.10774 Sample No: 422044 Account No: 39150 Page 15 of 30

JOB DESCRIPTION: Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB 2008-20' Sta-Rite Rec'd at 4 degrees C

Date/Time Taken: 12/13/2000 12:10 Date Received: 12/14/2000

			Reporting		Date Prep/Run	
Parameter	Results	Units	Limit	Method	Analyzed	Batch
xachlorobutadiene	<37	uq/kq	. 35	SW 8260B	12/26/2000	1087
opropylbenzene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
Isopropyltoluene	<27	uq/kq	25	SW 8260B	12/26/2000	1087
thylene Chloride	<53	ug/kg	50	SW 8260B	12/26/2000	1087
thyl-t-butyl ether	<27	uq/kq	25	SW 8260B	12/26/2000	1087
phthalene	<27	uq/kq	25	SW 8260B	12/26/2000	1087
- pylbenzene	<27	uq/kq	25	SW 8260B	12/26/2000	1087
ne	<27	uq/kq	25	SW 8260B	12/26/2000	1087
1,1,2-Tetrachloroethane	<27	ug/kg	25	SW 8260B	12/26/2000	1087
1,2,2-Tetrachloroethane	<27	uq/kq	25	SW 8260B	12/26/2000	1087
trachloroethene	<27	uq/kq	25	SW 8260B	12/26/2000	1087
luene	<27	uq/kq	25	SW 8260B	12/26/2000	1087
2,3-Trichlorobenzene	<27	uq/kq	25	SW 8260B	12/26/2000	1087
2,4-Trichlorobenzene	<27	uq/kq	25	SW 8260B	12/26/2000	1087
1,1-Trichloroethane	<27	uq/kq	25	SW 8260B	12/26/2000	1087
1,2-Trichloroethane	<27	uq/kq	25	SW 8260B	12/26/2000	1087
ichloroethene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
ichlorofluoromethane	<27	ug/kg	25	SW 8260B	12/26/2000	1087
2,3-Trichloropropane	<27	uq/kq	25	SW 8260B	12/26/2000	1087
2,4-Trimethylbenzene	<27	uq/kq	25	SW 8260B	12/26/2000	1087
3,5-Trimethylbenzene	<27	uq/kq	25	SW 8260B	12/26/2000	1087
nyl Chloride	<27	ug/kg	25	SW 8260B	12/26/2000	1087
lenes, Total	<37	ug/kg	35	SW 8260B	12/26/2000	1087
rr: Dibromofluoromethane	97.8	8	85-113	SW 8260B	12/26/2000	1087
rr: Toluene-d8	100.2	olo	93-105	SW 8260B	12/26/2000	1087
rr: Bromofluorobenzene	98.4	olo	85-111	SW 8260B	12/26/2000	1087

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

12/28/2000 Job No: 00.10774 Sample No: 422045 Account No: 39150 Page 16 of 30

JOB DESCRIPTION: Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB 2008-24' Sta-Rite Rec'd at 4 degrees C

Date/Time Taken: 12/13/2000 12:20

12/14/2000 Date Received:

		Reporting			Date	Prep/Run	
Parameter	Results	Units	Limit	Method	Analyzed	Batch	
Solids, Total	97.8	2	n/a	SW 5030	12/20/2000	3527	
VOC - METHANOL - 8260B			,		,,		
Benzene	<26	uq/kq	25	SW 8260B	12/26/2000	1087	
Bromobenzene	<26	uq/kq	25	SW 8260B	12/26/2000	1087	
Bromochloromethane	<26	uq/kq	25	SW 8260B	12/26/2000	1087	
Bromodichloromethane	<26	uq/kq	25	SW 8260B	12/26/2000	1087	
· oform	<26	uq/kq	25	SW 8260B	12/26/2000	1087	
.nomethane	<102	ug/kg	100	SW 8260B	12/26/2000	1087	
n-Butylbenzene	<26	uq/kq	25	SW 8260B	12/26/2000	1087	
sec-Butylbenzene	<26	uq/kq	25	SW 8260B	12/26/2000	1087	
tert-Butylbenzene	<26	ug/kg	25	SW 8260B	12/26/2000	1087	
Carbon Tetrachloride	<26	ug/kg	25	SW 8260B	12/26/2000	1087	
Chlorobenzene	<26	ug/kg	25	SW 8260B	12/26/2000	1087	
Chlorodibromomethane	<26	ua/ka	25	SW 8260B	12/26/2000	1087	
Chloroethane	<36	uq/kq	35	SW 8260B	12/26/2000	1087	
Chloroform	<26	ug/kg	25	SW 8260B	12/26/2000	1087	
Chloromethane	<51	uq/kq	50	SW 8260B	12/26/2000	1087	
2-Chlorotoluene	<26	uq/kq	25	SW 8260B	12/26/2000	1087	
4-Chlorotoluene	<26	uq/kq	25	SW 8260B	12/26/2000	1087	
1,2-Dibromo-3-Chloropropane	<51	uq/kq	50	SW 8260B	12/26/2000	1087	
1,2-Dibromoethane (EDB)	<26	ug/kg	25	SW 8260B	12/26/2000	1087	
Dibromomethane	<26	ug/kg	25	SW 8260B	12/26/2000	1087	
1,2-Dichlorobenzene	<25	ug/kg	25	SW 8260B	12/26/2000	1087	
1,3-Dichlorobenzene	<26	ug/kg	25	SW 8260B	12/26/2000	1087	
l,4-Dichlorobenzene	<26	ug/kg	25	SW 8260B	12/26/2000	1087	
Dichlorodifluoromethane	<26	ug/kg	25	SW 8260B	12/26/2000	1087	
l,1-Dichloroethane	<26	ug/kg	25	SW 8260B	12/26/2000	1087	
1,2-Dichloroethane	<26	ug/kg	25	SW 8260B	12/26/2000	1087	
1,1-Dichloroethene	<26	ug/kg	25	SW 8260B	12/26/2000	1087	
cis-1,2-Dichloroethene	<26	ug/kg	25	SW 8260B	12/26/2000	1087	
trans-1,2-Dichloroethene	<26	ug/kg	25	SW 8260B	12/26/2000	1087	
1,2-Dichloropropane	<26	ug/kg	25	SW 8260B	12/26/2000	1087	
1,3-Dichloropropane	<26	ug/kg	25	SW 8260B	12/26/2000	1087	
2,2-Dichloropropane	<26	uq/kq	25	SW 8260B	12/26/2000	1087	
-Dichloropropene	<26	ug/kg	25	SW 8260B	12/26/2000	1087	
-1,3-Dichloropropene	<26	ug/kg	25	SW 8260B	12/26/2000	1087	
rans-1,3-Dichloropropene	<26	uq/kq	25	SW 8260B.	12/26/2000	1087	
Di-isopropyl ether	<26	uq/kq	25	SW 8260B	12/26/2000	1087	
Ethylbenzene	<26	uq/kq	25	SW 8260B	12/26/2000	1087	

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045 12/28/2000 Job No: 00.10774 Sample No: 422045 Account No: 39150 Page 17 of 30

.

JOB DESCRIPTION: Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB 2008-24' Sta-Rite Rec'd at 4 degrees C

Date/Time Taken: 12/13/2000 12:20

Parameter		Reporting			Date	Prep/Run
	Results	Units	Limit	Method	Analyzed	Batch
Hexachlorobutadiene	<36	uq/kq	35	SW 8260B	12/26/2000	1087
ſsopropylbenzene	<26	uq/kq	25	SW 8260B	12/26/2000	1087
p-Isopropyltoluene	<26	uq/kq	25	SW 8260B	12/26/2000	1087
Methylene Chloride	<51	ug/kg	50	SW 8260B	12/26/2000	1087
Methyl-t-butyl ether	<26	ug/kg	25	SW 8260B	12/26/2000	1087
Japhthalene	<26	uq/kq	25	SW 8260B	12/26/2000	1087
opylbenzene	<26	uq/kq	25	SW 8260B	12/26/2000	1087
ene	<26	ug/kg	25	SW 8260B	12/26/2000	1087
.,1,1,2-Tetrachloroethane	<26	ug/kg	25	SW 8260B	12/26/2000	1087
,1,2,2-Tetrachloroethane	<26	uq/kq	25	SW 8260B	12/26/2000	1087
Petrachloroethene	<26	ug/kg	25	SW 8260B	12/26/2000	1087
Coluene	<26	ug/kg	25	SW 8260B	12/26/2000	1087
,2,3-Trichlorobenzene	<26	uq/kq	25	SW 8260B	12/26/2000	1087
.,2,4-Trichlorobenzene	<26	ug/kg	25	SW 8260B	12/26/2000	1087
.,1,1-Trichloroethane	<26	ug/kg	25	SW 8260B	12/26/2000	1087
.,1,2-Trichloroethane	<26	ug/kg	25	SW 8260B	12/26/2000	1087
richloroethene	<26	ug/kg	25	SW 8260B	12/26/2000	1087
richlorofluoromethane	<26	ug/kg	25	SW 8260B	12/26/2000	1087
.,2,3-Trichloropropane	<26	ug/kg	25	SW 8260B	12/26/2000	1087
.,2,4-Trimethylbenzene	<26	uq/kq	25	SW 8260B	12/26/2000	1087
.,3,5-Trimethylbenzene	<26	ug/kg	25	SW 8260B	12/26/2000	1087
'inyl Chloride	<26	ug/kg	25	SW 8260B	12/26/2000	1087
ylenes, Total	<36	ug/kg	35	SW 8260B	12/26/2000	1087
urr: Dibromofluoromethane	99.4	8	85-113	SW 8260B	12/26/2000	1087
urr: Toluene-d8	98.8	왕	93-105	SW 8260B	12/26/2000	1087
urr: Bromofluorobenzene	100.0	客	85-111	SW 8260B	12/26/2000	1087

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

12/28/2000 Job No: 00.10774 Sample No: 422046 Account No: 39150 Page 18 of 30

JOB DESCRIPTION: Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB 2008-26' Sta-Rite Rec'd at 4 degrees C

Date/Time Taken: 12/13/2000 12:30 Date Received: 12/14/2000

Parameter	Results	Units	Reporting Limit	Method	Date Analyzed	Prep/Run Batch
olids, Total	93.4	8	n/a	SW 5030	12/20/2000	3527
DC - METHANOL - 8260B		-				
enzene	<27	uq/kq	25	SW 8260B	12/26/2000	1087
romobenzene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
romochloromethane	<27	ug/kg	25	SW 8260B	12/26/2000	1087
romodichloromethane	<27	ug/kg	25	SW 8260B	12/26/2000	1087
form	<27	ug/kg	25	SW 8260B	12/26/2000	1087
r	<107	ug/kg	100	SW 8260B	12/26/2000	1087
-Butylbenzene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
ec-Butylbenzene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
ert-Butylbenzene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
arbon Tetrachloride	<27	ug/kg	25	SW 8260B	12/26/2000	1087
nlorobenzene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
nlorodibromomethane	<27	ug/kg	25	SW 8260B	12/26/2000	1087
nloroethane	<37	ug/kg	35	SW 8260B	12/26/2000	1087
nloroform	<27	ug/kg	25	SW 8260B	12/26/2000	1087
nloromethane	<54	ug/kg	50	SW 8260B	12/26/2000	1087
-Chlorotoluene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
-Chlorotoluene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
,2-Dibromo-3-Chloropropane	<54	ug/kg	50	SW 8260B	12/26/2000	1087
,2-Dibromoethane (EDB)	<27	ug/kg	25	SW 8260B	12/26/2000	1087
ibromomethane	<27	ug/kg	25	SW 8260B	12/26/2000	1087
,2-Dichlorobenzene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
,3-Dichlorobenzene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
,4-Dichlorobenzene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
ichlorodifluoromethane	<27	ug/kg	25	SW 8260B	12/26/2000	1087
,1-Dichloroethane	<27	ug/kg	25	SW 8260B	12/26/2000	1087
,2-Dichloroethane	<27	ug/kg	25	SW 8260B	12/26/2000	1087
1-Dichloroethene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
is-1,2-Dichloroethene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
rans-1,2-Dichloroethene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
,2-Dichloropropane	<27	ug/kg	25	SW 8260B	12/26/2000	1087
,3-Dichloropropane	<27	ug/kg	25	SW 8260B	12/26/2000	1087
2-Dichloropropane	<27	ug/kg	25	SW 8260B	12/26/2000	1087
Dichloropropene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
1,3-Dichloropropene	<27	ug/kg	25	SW 8260B	12/26/2000	1087
rans-1,3-Dichloropropene	<27	ug/kg	25	SW 8260B.	12/26/2000	1087
i-isopropyl ether	<27	ug/kg	25	SW 8260B	12/26/2000	1087
thylbenzene	<27	ug/kg	25	SW 8260B	12/26/2000	1087

Test America

ANALYTICAL REPORT

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045 12/28/2000 Job No: 00.10774 Sample No: 422046 Account No: 39150 Page 19 of 30

JOB DESCRIPTION: Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB 2008-26' Sta-Rite Rec'd at 4 degrees C

Date/Time Taken: 12/13/2000 12:30

		Reporting				Date Prep/Run		
Parameter		Results	Units	Limit	Method	Analyzed	Batch	
exachlorobutadiene		<37	ug/kg	35	SW 8260B	12/26/2000	1087	
sopropylbenzene		<27	ug/kg	25	SW 8260B	12/26/2000	1087	
Isopropyltoluene		<27	ug/kg	25	SW 8260B	12/26/2000	1087	
thylene Chloride	\mathbf{L}	66	ug/kg	50	SW 8260B	12/26/2000	1087	
ethyl-t-butyl ether		<27	ug/kg	25	SW 8260B	12/26/2000	1087	
aphthalene		<27	ug/kg	25	SW 8260B	12/26/2000	1087	
pylbenzene		<27	ug/kg	25	SW 8260B	12/26/2000	1087	
, .ne		<27	uq/kg	25	SW 8260B	12/26/2000	1087	
1,1,2-Tetrachloroethane		<27	ug/kg	25	SW 8260B	12/26/2000	1087	
1,2,2-Tetrachloroethane		<27	ug/kg	25	SW 8260B	12/26/2000	1087	
etrachloroethene		86	ug/kg	25	SW 8260B	12/26/2000	1087	
oluene		<27	ug/kg	25	SW 8260B	12/26/2000	1087	
2,3-Trichlorobenzene		<27	ug/kg	25	SW 8260B	12/26/2000	1087	
2,4-Trichlorobenzene		<27	ug/kg	25	SW 8260B	12/26/2000	1087	
1,1-Trichloroethane		<27	ug/kg	25	SW 8260B	12/26/2000	1087	
1,2-Trichloroethane		<27	ug/kg	25	SW 8260B	12/26/2000	1087	
richloroethene		<27	ug/kg	25	SW 8260B	12/26/2000	1087	
ichlorofluoromethane		<27	ug/kg	25	SW 8260B	12/26/2000	1087	
2,3-Trichloropropane		<27	ug/kg	25	SW 8260B	12/26/2000	1087	
2,4-Trimethylbenzene		<27	ug/kg	25	SW 8260B	12/26/2000	1087	
3,5-Trimethylbenzene		<27	ug/kg	25	SW 8260B	12/26/2000	1087	
nyl Chloride		<27	ug/kg	25	SW 8260B	12/26/2000	1087	
lenes, Total		<37	ug/kg	35	SW 8260B	12/26/2000	1087	
rr: Dibromofluoromethane		99.6	8	85-113	SW 8260B	12/26/2000	1087	
rr: Toluene-d8		98.8	铬	93-105	SW 8260B	12/26/2000	1087	
rr: Bromofluorobenzene		100.8	하	85-111	SW 8260B	12/26/2000	1087	

Test America

ANALYTICAL REPORT

.

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045 12/28/2000 Job No: 00.10774 Sample No: 422047 Account No: 39150 Page 20 of 30

JOB DESCRIPTION: Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB 2008-28' Sta-Rite Rec'd at 4 degrees C

Date/Time Taken: 12/13/2000 12:40

			Reporting		Date	Prep/Run	
Parameter	Results	Units	Limit	Method	Analyzed	Batch	
Solids, Total	91.1	2	n/a	SW 5030	12/20/2000	3527	
JOC - METHANOL - 8260B			,		,		
Benzene	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
Bromobenzene	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
Bromochloromethane	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
Bromodichloromethane	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
3 oform	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
omethane	<110	uq/kq	100	SW 8260B	12/26/2000	1087	
n-Butylbenzene	<27	uq/kq	25	SW 8260B	12/26/2000	1087	
sec-Butylbenzene	<27	uq/kq	25	SW 8260B	12/26/2000	1087	
ert-Butylbenzene	<27	uq/kq	25	SW 8260B	12/26/2000	1087	
Carbon Tetrachloride	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
Chlorobenzene	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
Chlorodibromomethane	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
Chloroethane	<38	ug/kg	35	SW 8260B	12/26/2000	1087	
Chloroform	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
Chloromethane	<55	ug/kg	50	SW 8260B	12/26/2000	1087	
2-Chlorotoluene	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
-Chlorotoluene	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
L,2-Dibromo-3-Chloropropane	< 55	ug/kg	50	SW 8260B	12/26/2000	1087	
1,2-Dibromoethane (EDB)	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
Dibromomethane	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
,2-Dichlorobenzene	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
,3-Dichlorobenzene	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
.,4-Dichlorobenzene	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
Dichlorodifluoromethane	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
.,1-Dichloroethane	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
,2-Dichloroethane	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
,1-Dichloroethene	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
is-1,2-Dichloroethene	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
rans-1,2-Dichloroethene	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
.,2-Dichloropropane	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
,3-Dichloropropane	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
,2-Dichloropropane	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
 Dichloropropene 	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
1,3-Dichloropropene	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
rans-1,3-Dichloropropene	<27	ug/kg	25	SW 8260B.	12/26/2000	1087	
i-isopropyl ether	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
Sthylbenzene	<27	ug/kg	25	SW 8260B	12/26/2000	1087	
		<u> </u>					

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

12/28/2000 Job No: 00.10774 Sample No: 422047 Account No: 39150 Page 21 of 30

JOB DESCRIPTION: Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB 2008-28' Sta-Rite Rec'd at 4 degrees C

Date/Time Taken: 12/13/2000 12:40

_		Reporting				Date	Prep/Run
Parameter		Results	Units	Limit	Method	Analyzed	Batch
Hexachlorobutadiene		<38	ua/ka	35	SW 8260B	12/26/2000	1085
Isopropylbenzene		<27	ug/kg	25	SW 8260B	12/26/2000	1087
p-Isopropyltoluene		<27	ug/kg	25	SW 8260B	12/26/2000	1087
Methylene Chloride	\mathbf{L}	83	ug/kg	50	SW 8260B	12/26/2000	1087
Methyl-t-butyl ether		<27	ug/kg	25	SW 8260B	12/26/2000	1087
Naphthalene		<27	ug/kg	25	SW 8260B	12/26/2000	1087
r ropylbenzene		<27	ua/ka	25	SW 8260B	12/26/2000	1085
ene		<27	ug/kg	25	SW 8260B	12/26/2000	1097
1,1,1,2-Tetrachloroethane		<27	ug/kg	25	SW 8260B	12/26/2000	1085
1,1,2,2-Tetrachloroethane		<27	ug/kg	25	SW 8260B	12/26/2000	1007
fetrachloroethene		95	ug/kg	25	SW 8260B	12/26/2000	1087
Foluene		<27	ug/kg	25	SW 8260B	12/20/2000	1007
L,2,3-Trichlorobenzene		<27	ug/kg	25	SW 8260B	12/26/2000	1097
L,2,4-Trichlorobenzene		<27	ug/kg	25	SW 8260B	12/26/2000	1007
L,1,1-Trichloroethane		<27	ug/kg	25	SM 8260B	12/26/2000	1007
L,1,2-Trichloroethane		<27	ug/kg	25	SM 8260B	12/26/2000	1007
Frichloroethene		<27	ug/kg	25	SW BREAD	12/20/2000	1007
Frichlorofluoromethane		<27	ug/kg	25	SW 9260B	12/26/2000	1007
.,2,3-Trichloropropane		<27	ug/kg	25	SW 9260B	12/26/2000	1007
,2,4-Trimethylbenzene		<27	ug/kg	25	SW 9260D	12/26/2000	1087
.,3,5-Trimethylbenzene		<27	ug/kg	25	SW 8260B	12/26/2000	1007
Vinyl Chloride		<27	ug/kg	25	SW 0260B	12/26/2000	1007
Ylenes, Total		<38	ug/kg	25	SW 0200D	12/26/2000	1087
Surr: Dibromofluoromethane		99.6	29/73 8	85-112	SW 8260B	12/26/2000	1007
Surr: Toluene-d8		98.6	e de	93-105	04 0200B	12/26/2000	1087
urr: Bromofluorobenzene		100 6	<u>ي</u>	25-105	SW 0260B	12/26/2000	1087
			9	00~111	5W 8260B	12/20/2000	T08/

Test America

ANALYTICAL REPORT

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045 12/28/2000 Job No: 00.10774 Sample No: 422048 Account No: 39150 Page 22 of 30

JOB DESCRIPTION: Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: Trip Blank Sta-Rite Rec'd at 4 degrees C

Date/Time Taken: 12/13/2000 UNKNOWN

Demonstration	_ _	•	Reporting		Date	Prep/Run
Palameter	Results	Units	Limit	Method	Analyzed	Batch
OC - METHANOL - 8260B						
enzene	<25	uq/kq	25	SW 8260B	12/26/2000	1087
romobenzene	<25	ug/kg	25	SW 8260B	12/26/2000	1087
romochloromethane	<25	ug/kg	25	SW 8260B	12/26/2000	1087
romodichloromethane	<25	uq/kq	25	SW 8260B	12/26/2000	1087
romoform	<25	ug/kg	25	SW 8260B	12/26/2000	1087
r omethane	<100	uq/kq	100	SW 8260B	12/26/2000	1087
ylbenzene	<25	ug/kg	25	SW 8260B	12/26/2000	1087
ec-Butylbenzene	<25	ug/kg	25	SW 8260B	12/26/2000	1087
ert-Butylbenzene	<25	uq/kq	25	SW 8260B	12/26/2000	1087
arbon Tetrachloride	<25	ug/kg	25	SW 8260B	12/26/2000	1087
hlorobenzene	<25	uq/kq	25	SW 8260B	12/26/2000	1087
hlorodibromomethane	<25	uq/kq	25	SW 8260B	12/26/2000	1087
hloroethane	<35	ug/kg	35	SW 8260B	12/26/2000	1087
hloroform	<25	ug/kg	25	SW 8260B	12/26/2000	1087
hloromethane	<50	uq/kq	50	SW 8260B	12/26/2000	1087
-Chlorotoluene	<25	ug/kg	25	SW 8260B	12/26/2000	1087
-Chlorotoluene	<25	ug/kg	25	SW 8260B	12/26/2000	1087
,2-Dibromo-3-Chloropropane	<50	ug/kg	50	SW 8260B	12/26/2000	1087
,2-Dibromoethane (EDB)	<25	uq/kq	25	SW 8260B	12/26/2000	1087
ibromomethane	<25	ua/ka	25	SW 8260B	12/26/2000	1087
,2-Dichlorobenzene	<25	uq/kq	25	SW 8260B	12/26/2000	1087
,3-Dichlorobenzene	<25	uq/kq	25	SW 8260B	12/26/2000	1087
,4-Dichlorobenzene	<25	uq/kq	25	SW 8260B	12/26/2000	1087
ichlorodifluoromethane	<25	uq/kq	25	SW 8260B	12/26/2000	1087
,l-Dichloroethane	<25	uq/kq	25	SW 8260B	12/26/2000	1087
,2-Dichloroethane	<25	ug/kg	25	SW 8260B	12/26/2000	1087
,1-Dichloroethene	<25	uq/kq	25	SW 8260B	12/26/2000	1087
is-1,2-Dichloroethene	<25	uq/kq	25	SW 8260B	12/26/2000	1087
rans-1,2-Dichloroethene	<25	uq/kq	25	SW 8260B	12/26/2000	1087
,2-Dichloropropane	<25	uq/kq	25	SW 8260B	12/26/2000	1087
,3-Dichloropropane	<25	ug/kg	25	SW 8260B	12/26/2000	1087
2-Dichloropropane	<25	uq/kq	25	SW 8260B	12/26/2000	1087
1-Dichloropropene	<25	uq/kq	25	SW 8260B	12/26/2000	1087
1,3-Dichloropropene	<25	ua/ka	25	SW 8260B	12/26/2000	1087
:-1,3-Dichloropropene	<25	uq/kq	25	SW 8260B	12/26/2000	1087
i-isopropyl ether	<25	ug/kg	25	SW 8260B	12/26/2000	1087
hylbenzene	<25	<u>-</u> 3,9	25	SW 8260B	12/26/2000	1087
exachlorobutadiene	<35	ug/kg	35	SW 8260B	12/26/2000	1087
-		~9/ ~9		ON OZOOD	12/20/2000	1007

Test/America

ANALYTICAL REPORT

-

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

12/28/2000 Job No: 00.10774 Sample No: 422048 Account No: 39150 Page 23 of 30

JOB DESCRIPTION: Sta-Rite PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: Trip Blank Sta-Rite Rec'd at 4 degrees C

Date/Time Taken: 12/13/2000 UNKNOWN

		Reporting				Prep/Run	
Parameter	Results	Units	Limit	Method	Analyzed	Batch	
sopropylbenzene	<25	u q/ kq	25	SW 8260B	12/26/2000	1087	
-Isopropyltoluene	<25	ug/kg	25	SW 8260B	12/26/2000	1087	
ethylene Chloride	<50	uq/kq	50	SW 8260B	12/26/2000	1087	
ethyl-t-butyl ether	<25	uq/kq	25	SW 8260B	12/26/2000	1087	
aphthalene	<25	uq/kq	25	SW 8260B	12/26/2000	1087	
- Propylbenzene	<25	uq/kq	25	SW 8260B	12/26/2000	1087	
ne ne	<25	uq/kq	25	SW 8260B	12/26/2000	1087	
, .,2-Tetrachloroethane	<25	uq/kq	25	SW 8260B	12/26/2000	1087	
1,2,2-Tetrachloroethane	<25	uq/kq	25	SW 8260B	12/26/2000	1087	
etrachloroethene	<25	ug/kg	25	SW 8260B	12/26/2000	1087	
oluene	<25	ug/kg	25	SW 8260B	12/26/2000	1087	
2,3-Trichlorobenzene	<25	uq/kq	25	SW 8260B	12/26/2000	1087	
2,4-Trichlorobenzene	<25	uq/kq	25	SW 8260B	12/26/2000	1087	
1,1-Trichloroethane	<25	uq/kq	25	SW 8260B	12/26/2000	1087	
1,2-Trichloroethane	<25	uq/kq	25	SW 8260B	12/26/2000	1087	
richloroethene	<25	uq/kq	25	SW 8260B	12/26/2000	1087	
ichlorofluoromethane	<25	uq/kq	25	SW 8260B	12/26/2000	1087	
2,3-Trichloropropane	<25	uq/kq	25	SW 8260B	12/26/2000	1087	
2,4-Trimethylbenzene	<25	ug/kg	25	SW 8260B	12/26/2000	1087	
3,5-Trimethylbenzene	<25	ug/kg	25	SW 8260B	12/26/2000	1087	
nyl Chloride	<25	ug/kg	25	SW 8260B	12/26/2000	1087	
lenes, Total	<35	ug/kg	35	SW 8260B	12/26/2000	1087	
irr: Dibromofluoromethane	103.4	8	85~113	SW 8260B	12/26/2000	1087	
urr: Toluene-d8	99.6	용	93-105	SW 8260B	12/26/2000	1087	
rr: Bromofluorobenzene	99.2	황	85-111	SW 8260B	12/26/2000	1087	

QUALITY CONTROL REPORT CONTINUING CALIBRATION VERIFICATION

12/28/2000

Job No: 00.10774 Account No: 39150

Page 24 of 30

175 N. Corporate Drive Suite 100 Brookfield, WI 53045

Mr. Mark Manthey GEOTRANS, INC.

Job Description: Sta-Rite

Parameter	Run Batch	True Value	Observed Value	Percent Recovery	Control Limits	Analyst
VOC - METHANOL - 8260B						
Benzene	1085	50.0	48.6	97.2		aba
Bromoform	1085	50.0	46.3	92.6		aba
Chlorobenzene	1085	50.0	48.9	97.8		aba
Chloroform	1085	50.0	50.8	101.6	80 - 120	aba
Chloromethane	1085	50.0	48.4	96.8		aba
1,1-Dichloroethane	1085	50.0	49.6	99.2		aba
1,1-Dichloroethene	1085	50.0	51.1	102.2	80 - 120	aba
1,2-Dichloropropane	1085	50.0	51.4	102.8	80 - 120	aba
i-isopropyl ether	1085	50.0	48.9	97.8		aba
Ethylbenzene	1085	50.0	50.9	101.8	80 - 120	aba
Methyl-t-butyl ether	1085	50.0	48.8	97.6		aba
1,1,2,2-Tetrachloroethane	1085	50.0	44.8	89.6		aba
Toluene	1085	50.0	49.1	98.2	80 - 120	aba
Trichloroethene	1085	50.0	50.4	300.8		aba
1,2,4-Trimethylbenzene	1085	50.0	48.5	97 0		aba
1,3,5-Trimethylbenzene	1085	50.0	49.0	98.0		aba
Vinyl Chloride	1085	50.0	52.3	104 6	80 - 120	aba
Xylenes, Total	1085	150	148	98 7		aba
Surr: Dibromofluoromethane	1085	50.0	50.8	101 6	85 - 118	aba
Surr: Toluene-d8	1085	50.0	50.3	100.6	91 - 109	aba
Surr: Bromofluorobenzene	1085	50.0	49 7	99 4	85 - 113	aba
VOC - METHANOL - 8260B		5010	13.1		03 113	u.su
Benzene	1087	50.0	49.6	99 2		aba
Bromoform	1087	50.0	46.6	93.2		aba
Chlorobenzene	1087	50.0	48.5	97.0		aba
Chloroform	1087	50.0	52.3	104.6	80 - 120	aba
Chloromethane	1087	50.0	48.9	97 8	•• ••	aba
1,1-Dichloroethane	1087	50.0	52.1	104.2		aba
1,1-Dichloroethene	1087	50.0	53.4	106 8	80 - 120	aba
1,2-Dichloropropane	1087	50.0	52.5	105.0	80 - 120	aba
Di-isopropyl ether	1087	50.0	51.7	103.4		aba
Ethylbenzene	1087	50.0	50.4	100.8	80 - 120	aba
Methyl-t-butyl ether	1087	50.0	51.9	103.8		aba
1,1,2,2-Tetrachloroethane	1087	50.0	47.9	95.8		aba
Toluene	1087	50.0	50.0	100 0	80 - 120	aba
Trichloroethene	1087	50.0	50.4	100.8	00 120	aba
L,2,4-Trimethylbenzene	1087	50.0	49.5	99.0		aba
1,3,5-Trimethylbenzene	1087	50.0	49.6	99.2		aba
Vinyl Chloride	1087	50.0	56 1	112 2	80 - 120	aha
Xylenes, Total	1087	150	150	100 0	50 120	aha
Surr: Dibromofluoromethane	1087	50.0	52.8	105.6	85 - 118	aba
_						

602 COMMERCE DRIVE / WATERTOWN, WI 53094 / 920-261-1660 / FAX: 920-261-8120 WDNR No. 128053530

QUALITY CONTROL REPORT CONTINUING CALIBRATION VERIFICATION

12/28/2000

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

.

Job No: 00.10774 Account No: 39150

Page 25 of 30

Job Description: Sta-Rite

Parameter	Run Batch	True Value	Observed Value	Percent Recovery	Control Limits	Analyst
Surr: Toluene-d8	1087	50.0	50.3	100.6	91 - 109	aba
Surr: Bromofluorobenzene	1087	50.0	51.2	102.4	85 - 113	aba

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045 12/28/2000

Job No: 00.10774 Account No: 39150

Page 26 of 30

Job Description: Sta-Rite

	Prep	Run	Blank	Reporting	
Parameter	Batch	Batch	Result	Limit	Units
VOC - METHANOL - 8260B			A -F	0.5	
Benzene		1085	<25	25	ug/kg
Bromobelizene		1085	<25	25	ug/kg
Bromochiofomethane		1085	<25	25	ug/kg
Bromofest		1085	<25	25	ug/kg
Bromotorm		1085	<25	25	ug/kg
Bromomethane		1085	<100	100	ug/kg
n-Butyibenzene		1085	<25	25	ug/kg
sec-BulyIdenzene		1085	<25	25	ug/kg
ert-Butyibenzene		1085	<25	25	ug/kg
Chlampherene		1085	<25	25	ug/kg
Chlorodenzene		1085	<25	25	ug/kg
Chlorodibromomethane		1085	<25	25	ug/kg
Chloroethane		1085	<35	35	ug/kg
Chloroform		1085	<25	25	ug/kg
Chloromethane		1085	<50	50	ug/kg
2-Chlorotoluene		1085	<25	25	ug/kg
4-Chlorotoluene		1085	<25	25	ug/kg
1,2-Dibromo-3-Chloropropane		1085	<50	50	ug/kg
1,2-Dibromoethane (EDB)		1085	<25	25	ug/kg
Dibromomethane		1085	<25	25	ug/kg
1,2-Dichlorobenzene		1085	<25	25	ug/kg
1,3-Dichlorobenzene		1085	<25	25	ug/kg
1,4-Dichlorobenzene		1085	<25	25	ug/kg
Dichlorodifluoromethane		1085	<25	25	ug/kg
1,1-Dichloroethane		1085	<25	25	ug/kg
1,2-Dichloroethane		1085	<25	25	ug/kg
1,1-Dichloroethene		1085	<25	25	ug/kg
cis-1,2-Dichloroethene		1085	<25	25	ug/kg
trans-1,2-Dichloroethene		1085	<25	25	ug/kg
1,2-Dichloropropane		1085	<25	25	ug/kg
1,3-Dichloropropane		1085	<25	25	ug/kg
2,2-Dichloropropane		1085	<25	25	ug/kg
1,1-Dichloropropene		1085	<25	25	ug/kg
cis-1,3-Dichloropropene		1085	<25	25	ug/kg
trans-1,3-Dichloropropene		1085	<25	25	ug/kg
Di-isopropyl ether		1085	<25	25	ug/kg

Method blank results exceed control limits when results are higher than the highest of any of the following: 1 - The limit of detection; .2 - Five percent of the regulatory limit for that analyte; 3 - Five percent of the measured concentration in the sample. NR149.14 (3)d

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045 12/28/2000

Job No: 00.10774 Account No: 39150

Page 27 of 30

Job Description: Sta-Rite

	Prep	Run	Blank	Reportin	ıg
Parameter	Batch	Batch	Result	Limit	Units
Ethylbenzene		1085	c25	25	ug/kg
Hexachlorobutadiene		1085	<35	25	ug/kg
Isopropylbenzene		1085	<25	25	ug/kg
p-Isopropyltoluene		1085	<25	25	ug/kg
Methylene Chloride		1085	<50	50	ug/kg
Methyl-t-butyl ether		1085	<25	25	ug/kg
Naphthalene		1085	<25	25	ug/kg
n-Propylbenzene		1085	<25	25	ug/kg
Styrene		1085	<25	25	ug/kg
,1,1,2-Tetrachloroethane		1085	<25	25	
1,1,2,2-Tetrachloroethane		1085	<25	25	ug/kg
Tetrachloroethene		1085	<25	25	ug/kg
Toluene		1085	<25	25	ug/kg
1,2,3-Trichlorobenzene		1085	<25	25	ug/kg
1,2,4-Trichlorobenzene		1085	<25	25	ug/kg
1,1,1-Trichloroethane		1085	<25	25	ug/kg
1,1,2-Trichloroethane		1085	<25	25	ug/kg
Trichloroethene		1085	<25	25	ug/kg
Trichlorofluoromethane		1085	<25	25	ug/kg
1,2,3-Trichloropropane		1085	<25	25	ug/kg
1,2,4-Trimethylbenzene		1085	<25	25	ug/kg
1,3,5-Trimethylbenzene		1085	<25	25	ug/kg
Vinyl Chloride		1085	<25	25	ug/kg
Xylenes, Total		1085	<35	35	ug/kg
Surr: Dibromofluoromethane		1085	103.0	85-113	8
Surr: Toluene-d8		1085	99.6	93-105	5
Surr: Bromofluorobenzene		1085	98.8	85-111	ę
VOC - METHANOL - 8260B					-
Benzene		1087	<25	25	ug/kg
Bromobenzene		1087	<25	25	na/ka
Bromochloromethane		1087	<25	25	ug/kg
Bromodichloromethane		1087	<25	25	ug/kg
Bromoform		1087	<25	25	ug/kg
Bromomethane		1087	<100	100	ug/kg
n-Butylbenzene		1087	<25	25	ug/kg
sec-Butylbenzene		1087	<25	25	ug/kg
tert-Butylbenzene		1087	<25	25	ug/kg

Method blank results exceed control limits when results are higher than the highest of any of the following: 1 - The limit of detection; .2 - Five percent of the regulatory limit for that analyte; 3 - Five percent of the measured concentration in the sample. NR149.14 (3)d

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045 12/28/2000

Job No: 00.10774 Account No: 39150

Page 28 of 30

Job Description: Sta-Rite

	Prep	Run	Blank	Reporting	ਸ
Parameter	Batch	Batch	Result	Limit	Units
Carbon Tetrachloride		1007	-25	0-	11
Chlorobenzene		1007	<25	25	ug/kg
Chlorodibromomethane		1007	<25	25	ug/kg
Chloroethane		1007	<25	25	ug/kg
Chloroform		1007	<35	35	ug/kg
Chloromethane		1007	<25	25	ug/kg
2-Chlorotoluene		1007	< 30	50	ug/kg
4-Chlorotoluene		1007	<25	25	ug/kg
1,2-Dibromo-3-Chloropropane		1007	<45	25	ug/kg
2-Dibromoethane (EDB)		1087	< 30	50	ug/kg
1bromomethane		1007	<25	25	ug/kg
1,2-Dichlorobenzene		1007	<25	25	ug/kg
1,3-Dichlorobenzene		1007	<25	25 07	ug/kg
1,4-Dichlorobenzene		1007	<25	25	ug/kg
Dichlorodifluoromethane		1007	<20	25	ug/kg
1,1-Dichloroethane		1007	<25	25	ug/kg
1,2-Dichloroethane		1007	<25	25	ug/kg
1,1-Dichloroethene		1087	<20	25	ug/kg
cis-1,2-Dichloroethene		1087	<25	25 25	ug/kg
trans-1,2-Dichloroethene		1087	<25	25	ug/kg
1,2-Dichloropropane		1087	<25	25 25	ug/kg
1,3-Dichloropropane		1087	<25	45 25	ug/kg
2,2-Dichloropropane		1097	<25	25 25	ug/kg
1,1-Dichloropropene		1087	<25	25	ug/kg
cis-1,3-Dichloropropene		1087	<25	25	ug/kg
trans-1,3-Dichloropropene		1087	<25	25	ug/kg
Di-isopropyl ether		1087	<25	25	ug/kg
Ethylbenzene		1087	<25	25	ug/kg
Hexachlorobutadiene		1087	<25	35	ug/kg ug/kg
Isopropylbenzene		1087	<25	33	ug/kg ug/kg
p-Isopropyltoluene		1087	<25	25	ug/kg
Methylene Chloride		1087	<50	50	ug/kg
Methyl-t-butyl ether		1087	<25	25	ug/kg
Naphthalene		1087	<25	25	ug/kg ug/kg
n-Propylbenzene		1087	<25	25	ug/kg
Styrene		1087	<25	25	ug/rg ug/ra
1,1,1,2-Tetrachloroethane		1087	<25	25	ug/kg
					~3/~3

Method blank results exceed control limits when results are higher than the highest of any of the following: 1 - The limit of detection; 2 - Five percent of the regulatory limit for that analyte; 3 - Five percent of the measured concentration in the sample. NR149.14 (3)d

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045 12/28/2000

Job No: 00.10774 Account No: 39150

Page 29 of 30

Job Description: Sta-Rite

	Prep	Run	Blank	Reportin	nar
Parameter	Batch	Batch	Result	Limit	Units
1,1,2,2-Tetrachloroethane		1087	<25	25	na/ka
Tetrachloroethene		1087	<25	25	ug/kg
Toluene		1087	<25	25	ug/kg
1,2,3-Trichlorobenzene		1087	<25	25	ug/kg vg/kg
1,2,4-Trichlorobenzene		1087	<25	25	ug/kg
1,1,1-Trichloroethane		1087	<25	25	ug/kg
1,1,2-Trichloroethane		1087	<25	25	ug/kg
ichloroethene		1087	<25	20	ug/kg
richlorofluoromethane		1087	<25	25	ug/kg
1,2,3-Trichloropropane		1087	<25	25	ug/kg
1,2,4-Trimethylbenzene		1087	<25	45	ug/kg
1,3,5-Trimethylbenzene		1097	<20	25	ug/kg
Vinyl Chloride		1007	<20	25	ug/kg
Xylenes, Total		1007	<25	25	ug/kg
Surr: Dibromofluoromethane		1087	< 35	35	ug/kg
Surr: Toluene-d8		1087	105.4	85-113	ato .
Surr: Bromofluorobenzano		1087	101.4	93-105	9 1
ourry promorrdoropenzene		1087	99.2	85-111	5

Method blank results exceed control limits when results are higher than the highest of any of the following: 1 - The limit of detection; 2 - Five percent of the regulatory limit for that analyte; 3 - Five percent of the measured concentration in the sample 602 CONMERCE DRIVE / WHERTOWN, WI 53094/ 920-261-1660 / FAX: 920-261-8120 WDNR No. 128053530

QUALITY CONTROL REPORT LABORATORY CONTROL STANDARD

12/28/2000

Mr. Mark Manthey GEOTRANS, INC. 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

Job No: 00.10774 Account No: 39150

Page 30 of 30

Job Description: Sta-Rite

.

	Prep	Run					LCS	LCSD		Relative
	Batch	Batch	LCS		LCS	LCSD	Percent	Percent	Control	Percent
Analyte	Number	Number	Amount	Units	Result	Result	Recovery	Recovery	Limits	Difference
VCC - METHANOL - 8260B										
Benzene		1085	50.0	ua/ka	52 4	51 4	104 8	102 8		1 9
Chlorobenzene		1085	50.0	ug/kg	52.5	52.2	105.0	104 4		0.6
,1-Dichloroethene		1085	50.0	uar/kar	57.2	52.7	114 4	105 4		8.7
thylbenzene		1085	50.0	ua/ka	55 2	54 6	110 4	109.2		5.2
Methyl-t-butyl ether		1085	50.0	ug/kg	54.2	50.8	108 4	103.2		6.5
Toluene		1085	50.0	ug/kg	54.1	52 B	108 2	101.0		2 4
Trichleroethene		1085	50.0	ug/kg	55.0	54.9	110 0	109.6		2. 1 0.4
1,2,4-Trimethylbenzene		1085	50.0	ug/kg	52.7	53.0	105 4	105.0		0.6
1,3,5-Trimethylbenzene		1085	50.0	ua/ka	52.6	53.8	105.2	107.6		2.0
Xylenes, Total		1085	150	ua/ka	160	160	106 7	106 7		2.5
Surr: Dibromofluoromethane		1085	50.0	ug/L	51.6	51 7	102.7	103 4	95 - 119	0.0
Surr: Toluene-d8		1085	50.0	ug/L	50.7	50 0	101.4	100.0	01 - 100	1 4
Surr: Bromofluorobenzene		1085	50.0	10g/L	50.8	52.2	101.4	104 4	21 - 102	1.1
VOC - METHANOL - 8260B					50.0	<i>42,4</i>	101.0	104.4	65 - 113	2.1
Велгеле		1087	50.0	ua/ka	55 1	49.3	110 2	00 6		
Chlorobenzene		1087	50.0	ua/ka	57 3	53 3	104 5	70.0		11.1
1,1-Dichloroethene		1087	50.0	ug/kg	61 1	25.5	101.0	100.0		1.7
Sthylbenzene		1087	50.0	-9//kg	55 3	56 6	220.6	112 2		24.2
Methyl-t-butyl ether	:	1087	50.0	ug/kg	53.6	49.7	107.0	113.Z		2.3
Teluene		1087	50.0	ug/kg	55 8	53 7	111 6	107 4		8.0 3.0
Trichloroethene		1087	50.0	ug/kg	54 8	54 7	100 6	107.4		3.0
1,2,4-Trimethylbenzene		1087	50.0	ug/kg	57 1	55.7	103.0	110.4		1.1
1,3,5-Trimethylbenzene		1087	50.0	ug/kg	52.1	55.7	105.2	110.0		6.U
Xylenes, Total		1087	150	ug/kg	163	145	103.2	111.4		5,7
Surr: Dibromofluoromethane	-	1087	 50.0	-9/09 1107/L	57 4	51 5	100.7	103 0 TTU,Ų	05 110	1.2
Surr: Toluene-d8		1087	50.0	ug/L	54.1	50 6	107.0	103.0	811 - Ca	1.1
Surr: Bromofluorobenzene	:	1087	50.0	ug/L	50.2	50.4	102.0	100.8	85 - 113	0.8 0.4

To assist us in using the proper analytical methods, Is this work being conducted for regulatory purposes? Compliance Monitoring	ject Name: 577 - 707.E Project #:	.ocation ID: DS/AVAN State: 211. Report To: MAK MUNIKY	Invoice To: Sum & A.S. A.B. V.S. Quote #. PO#.	Analyze For:	OC Deliverables	(Betch OC) (Betch OC) (Betch OC) (Level 3		REMARKS												Rectable	Time: Custody Seals: N XMA	Bottles Supplied by TestAmerica. (Y) N	D Trimel 3'55 Method of Shipment: 777	2,171,5180
-261-1660 -261-8120 Client #:	00	262)792-1310 Sitelu		t of Containers	25.	373 877	S S S S S S S S S S S S S S S S S S S	Melhand Other (1 1 1				, (dund 12/14/20	Date:	2	
own Divlsion Phone: 920 mmerce Drive Fax: 920 own, WI 53094	PORTEZR Suntel	12-1282 Fax	m. 1Honson	Matrix Preservation & #	sjite SoivSolid Ther SoivSolid	Spread - S - S - S - S - S - S - S - S - S - S	rab, C = C iffered woundwate voundwate Vastewater	Н ³ со ⁴ ноі ноі ноі ноі но ² ем - м ем - е ег - гі с = еі	SS	5		S	5	s S	2	5	S S	S	V VICON 1		Time OS : CRECEIVED BY	Time: Received By:	Time: Received By:	
Denica Waterto 602 Col Waterto Client Name	Address: 175 N. Fe.S. teZip Code: B.R.a.K.F.S.	ct Manager. Mullek /	Print Name) a 23		nay apply)		belqmsč	Date 5) 2: 0/ 2/ - 2/ 9/ - 2	2-20 12-13 10:4	2-24/2-13 11.10	5-26 12-31 20	25 12-21 22-	16' 12-13/2:00	20 12-13 12:10	24 2-13/2	24 12-21 12 3	23' 12-13/2:4			Carles 1.4.	Date:	Date:	
TestAr	City/Sta	Proje Telepho	Sampler Name: (Sample		TAT Standard Rush (surcharges n	Date Needed:	Fax Results: Y N	SAMPLE ID	5B-5w72	53-5,23	SB-Swy	Sa-Sung	53-5402	53-2008-	58-2008-	58-202-	52-2005-	52 - 208 - Special Instructions	/		Relinquished By	Relinquished By:	Relinquished By	

ANALYTICAL AND QUALITY CONTROL REPORT

Test/America

and the second

Ms. Jenny Johanson HYDRO-SEARCH, INC. 175 N. Corporate Drive Brookfield, WI 53045

•

and the former -.07#

04/03/2000

Job No: 00.02330

Page 1 of 28

Enclosed are the Analytical and Quality Control reports for the following samples submitted for analysis:

Sample	Sample Description	Date	Date
Number		Taken	Received
388450 388451 388452 388453 388454 388455 388455 388456 388457	SB Sump E-16 N127 NPL SB Sump E-20 N127 NPL SB Sump E-24 N127 NPL SB Sump E-26 N127 NPL SB Sump E-28 N127 NPL SB 2008-16 N127 NPL SB 2008-20 N127 NPL SB 2008-24 N127 NPL	03/21/2000 03/21/2000 03/21/2000 03/21/2000 03/21/2000 03/21/2000 03/21/2000 03/21/2000	03/23/2000 03/23/2000 03/23/2000 03/23/2000 03/23/2000 03/23/2000 03/23/2000 03/23/2000 03/23/2000
388458	SB 2008-26 N127 NPL	03/21/2000	03/23/2000
388459	SB 2008-28 N127 NPL	03/21/2000	03/23/2000

Soil results are reported on a dry weight basis. The above sample(s) may have a result flag shown on the report. The following are the result flag definitions:

- A = Analyzed/extracted past hold time
- C = Standard outside of control limits
- F = Sample filtered in lab
- H = Late eluting hydrocarbons present
- J = Estimated concentration
- M = Matrix interference
- Q = Result confirmed via re-analysis
- T = Does not match typical pattern
- X = Unidentified compound(s) present
- B = Blank is contaminated D = Diluted for analysis

 - G = Received past hold time
 - I = Improperly handled sample
 - L = Common lab solvent and contaminant
 - P = Improperly preserved sample
- S = Sediment present W = BOD re-set due to missed dilution
 - Z = Internal standard outside limits

Brian D. DeJong

Organic Operations Manager

602 COMMERCE DRIVE / WATERTOWN, WI 53094 / 920-261-1660 / FAX: 920-261-8120 WDNR NO. 128053530

Test/America

Ms. Jenny Johanson HYDRO-SEARCH, INC. 175 N. Corporate Drive Brookfield, WI 53045

.

04/03/2000 Job No: 00.02330 Sample No: 388450 Account No: 39150 Page 2 of 28

JOB DESCRIPTION: N127 NPL PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB Sump E-16 N127 NPL Rec'd 4 degrees C

Date/Time Taken: 03/21/2000 10:20

			Reporting		Date	Prep/Run
Parameter	Results	Units	Limit	Method	Analyzed	Batch
Solids, Total	91 4	\$	n/a	GM EOSO	03/20/2000	21.61
VOC - METHANOL - 8260B		. *	n/a	30 3030	03/29/2000	3101
Benzene	<27	ua/ka	25	SW 8260P	03/20/2000	970
Bromobenzene	<27	ug/kg	25	SW 9260B	03/30/2000	870
Bromochloromethane	<27	ug/kg	25	SW 8260B	03/30/2000	870
Bromodichloromethane	<27	ug/kg	25	SH 8260B	03/30/2000	870
Bromoform	<27	ug/kg	25	SW 8260B	03/30/2000	870
momethane	<109	ug/kg	100	SN 82605 SW 82605	03/30/2000	870
Butylbenzene	<27	ug/kg	25	GW 0260B	03/30/2000	870
sec-Butylbenzene	<27	ug/kg	25	SW 0260B	03/30/2000	870
tert-Butylbenzene	<27	ug/kg	25	SW 8260B	03/30/2000	870
Carbon Tetrachloride	<27	ug/kg	25	ON OZOVO	03/30/2000	870
Chlorobenzene	<27	ug/kg	25	SW 02000 SW 02600	03/30/2000	870
Chlorodibromomethane	<27	ug/kg	25	SW 0200B	03/30/2000	870
Chloroethane	<38	ug/kg	25	5W 8260B	03/30/2000	870
Chloroform	<27	ug/kg	35	SW 0400B	03/30/2000	870
Chloromethane	< 3.2	ug/kg	20	SW 8260B	03/30/2000	870
2-Chlorotoluene	<27	ug/kg	30	SW 8260B	03/30/2000	870
4-Chlorotoluene	<27	ug/kg	25	SW 8260B	03/30/2000	870
1,2-Dibromo-3-Chloropropane	~55	ug/kg	20	SW 82608	03/30/2000	870
1,2-Dibromoethane (EDB)	<27	ug/kg	20	SW 8260B	03/30/2000	870
Dibromomethane	<27	ug/kg	25	SW 8260B	03/30/2000	870
1,2-Dichlorobenzene	<27	ug/kg	20	SW 8260B	03/30/2000	870
1,3-Dichlorobenzene	<27	ug/kg	25	SW 8260B	03/30/2000	870
1,4-Dichlorobenzene	<27	ug/kg	25	SW 8260B	03/30/2000	870
Dichlorodifluoromethane	<27	ug/kg	20	SW 8260B	03/30/2000	870
1,1-Dichloroethane	<27	ug/kg ug/kg	25	SW 8260B	03/30/2000	870
1,2-Dichloroethane	~27	ug/kg	25	SW 8260B	03/30/2000	870
1,1-Dichloroethene	<27	ug/kg	25	SW 8260B	03/30/2000	870
cis-1,2-Dichloroethene	<27	ug/kg	25	SW 8260B	03/30/2000	870
trans-1,2-Dichloroethene	<27	ug/kg	25	SW 8260B	03/30/2000	870
1,2-Dichloropropane	<27	ug/kg	20	SW 8260B	03/30/2000	870
1,3-Dichloropropane	<27	ug/kg	25	SW 8260B	03/30/2000	870
2,2-Dichloropropane	<27	ug/kg	25 20	SW 8260B	03/30/2000	870
1,1-Dichloropropene	<27	ug/kg ug/kg	45 DF	SW 8260B	03/30/2000	870
3-1,3-Dichloropropene	<27	ug/kg	25	SW 8260B	03/30/2000	870
ms-1,3-Dichloropropene	<27	ug/kg	25	SW 8260B	03/30/2000	870
Di-isopropyl ether	×47	ug/kg	25	SW 8260B	03/30/2000	870
Ethylbenzene	<41	ug/kg	25	SW 8260B	03/30/2000	870
	<27	ug/kg	25	SW 8260B	03/30/2000	870

ANALYTICAL REPORT

Ms. Jenny Johanson HYDRO-SEARCH, INC. 175 N. Corporate Drive Brookfield, WI 53045

04/03/2000 Job No: 00.02330 Sample No: 388450 Account No: 39150 Page 3 of 28

JOB DESCRIPTION: N127 NPL PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB Sump E-16 N127 NPL Rec'd 4 degrees C

Date/Time Taken: 03/21/2000 10:20

Parameter	Results	Units	Reporting Limit	Method	Date Analyzed	Prep/Run Batch
Hexachlorobutadiene	<38	va/ka	35	SW SOCOD	07/20/2000	
Isopropylbenzene	<27	ug/kg	22	SW 8260B	03/30/2000	870
p-Isopropyltoluene	<27	ug/kg	45	SW 8260B	03/30/2000	970
Methylene Chloride	~55	ug/kg	23	SW 8260B	03/30/2000	870
Methyl-t-butyl ether	<27	ug/kg	50	SW 8260B	03/30/2000	870
Naphthalene	-27	ug/kg	25	SW 8260B	03/30/2000	870
n-Propylbenzene	<27	ug/kg	25	SW 8260B	03/30/2000	870
/rene	<27	ug/kg	25	SW 8260B	03/30/2000	870
1 2-Tetrachloroothana	<27	ug/kg	25	SW 8260B	03/30/2000	870
1 1 2 2 Totrachloroethaue	<27	ug/kg	25	SW 8260B	03/30/2000	870
Tetrachloweethane	<27	ug/kg	25	SW 8260B	03/30/2000	870
	95	ug/kg	25	SW 8260B	03/30/2000	870
	<27	ug/kg	25	SW 8260B	03/30/2000	870
1,2,3-Trichlorobenzene	<27	ug/kg	25	SW 8260B	03/30/2000	870
1,2,4-Trichlorobenzene	<27	ug/kg	25	SW 8260B	03/30/2000	870
1,1,1-Trichloroethane	<27	ug/kg	25	SW 8260B	03/30/2000	870
1,1,2-Trichloroethane	<27	ug/kg	25	SW 8260B	03/30/2000	070
Trichloroethene	44	ug/kg	25	SW 9260D	03/30/2000	870
Trichlorofluoromethane	<27	ug/kg	25	SW BOCOD	03/30/2000	870
1,2,3-Trichloropropane	<27	ug/kg	25	SW 8260B	03/30/2000	870
1,2,4-Trimethylbenzene	<27	ug/kg	25	SW 8260B	03/30/2000	870
1,3,5-Trimethylbenzene	~27	ug/kg	25	SW 8260B	03/30/2000	870
Vinyl Chloride	<27	ug/kg	25	SW 8260B	03/30/2000	870
Xylenes, Total	<20	ug/kg	25	SW 8260B	03/30/2000	870
Surr: Dibromofluoromethane	< 38	ug/kg	35	SW 8260B	03/30/2000	870
Surr: Toluene-d8	95.6	*	92-111	SW 8260B	03/30/2000	870
Surr: Bromofluorobenzone	96.6	*	91-100	SW 8260B	03/30/2000	870
early promotifuoropenzene	96.8	왉	87-104	SW 8260B	03/30/2000	870

Ms. Jenny Johanson HYDRO-SEARCH, INC. 175 N. Corporate Drive Brookfield, WI 53045

04/03/2000 Job No: 00.02330 Sample No: 388451 Account No: 39150 Page 4 of 28

JOB DESCRIPTION: N127 NPL PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB Sump E-20 N127 NPL Rec'd 4 degrees C

Date/Time Taken: 03/21/2000 10:25

•			Reporting		Date	Prep/Run
Parameter	Results	Units	Limit	Method	Analyzed	Batch
Solids, Total	93 3	ይ	n/-	CM 5030		
VOC - METHANOL - 8260B	20.0	8	II/a	SW 5030	03/29/2000	3161
Benzene	<27	ug/kg	25	CM DOCOD	00 100 10000	
Bromobenzene	<27	ug/kg	20	SW 8260B	03/30/2000	870
Bromochloromethane	<27	ug/kg	25	SW 8260B	03/30/2000	870
Bromodichloromethane	<27	ug/kg	25	SW 8250B	03/30/2000	870
Bromoform	<27	ug/kg	25	SW 8260B	03/30/2000	870
momethane	<107	ug/kg	45 100	SW 8260B	03/30/2000	870
Jutylbenzene	<27	ug/kg	100	SW 8250B	03/30/2000	870
sec-Butylbenzene	<27	ug/kg	25	SW 8260B	03/30/2000	870
tert-Butylbenzene	<27	ug/kg	25	SW 8260B	03/30/2000	870
Carbon Tetrachloride	<27	ug/kg	25	SW 8260B	03/30/2000	870
Chlorobenzene	<27	ug/kg	25	SW 8260B	03/30/2000	870
Chlorodibromomethane	<27	ug/kg	25	SW 8260B	03/30/2000	870
Chloroethane	<27	ug/kg	25	SW 8260B	03/30/2000	870
Chloroform	<38	ug/kg	35	SW 8260B	03/30/2000	870
Chloromethane	<27	ug/kg	25	SW 8260B	03/30/2000	870
2-Chlorotoluene	<32	ug/kg	30	SW 8260B	03/30/2000	870
4-Chlorotoluene	<27	ug/kg	25	SW 8260B	03/30/2000	870
1.2-Dibromo-3-Chloropropage	<27	ug/kg	25	SW 8260B	03/30/2000	870
1,2-Dibromoethana (EDB)	<54	ug/kg	50	SW 8260B	03/30/2000	870
Dibromomethane	<27	ug/kg	25	SW 8260B	03/30/2000	870
1.2-Dichlorobengene	<27	ug/kg	25	SW 8260B	03/30/2000	870
1 3-Dichlorobenzene	<27	ug/kg	25	SW 8260B	03/30/2000	870
1 4-Dichlorobongene	<27	ug/kg	25	SW 8260B	03/30/2000	870
Dichlorodiflyeromethews	<27	ug/kg	25	SW 8260B	03/30/2000	870
1 l-Digbloroothone	<27	ug/kg	25	SW 8260B	03/30/2000	870
1,1-Dichloroethane	<27	ug/kg	25	SW 8260B	03/30/2000	870
1 l-Dichloroethane	<27	ug/kg	25	SW 8260B	03/30/2000	870
7,1-Dichloroethene	<27	ug/kg	25	SW 8260B	03/30/2000	870
trangel 2 Dichloroethene	1,180	ug/kg	25	SW 8260B	03/30/2000	870
1.2-Dichlemener	<27	ug/kg	25	SW 8260B	03/30/2000	870
1,2-Dichloropropane	<27	ug/kg	25	SW 8260B	03/30/2000	870
2. D. Dichlemann	<27	ug/kg	25	SW 8260B	03/30/2000	870
1 1 Dichleropropane	<27	ug/kg	25	SW 8260B	03/30/2000	870
1,1-Dichioropropene	<27	ug/kg	25	SW 8260B	03/30/2000	870
-1,3-Dichloropropene	<27	uq/kq	25	SW 8260B	03/30/2000	870
ns-1,3-Dichloropropene	<27	ug/kg	25	SW 8260B	03/30/2000	870
D1-1sopropy1 ether	<27	ug/kg	25	SW 8260P	03/30/2000	070
Ethylbenzene	<27	ug/kg	25	SW BJEND	03/30/2000	870
			20	SH 020VB	03/30/2000	870

ANALYTICAL REPORT

Ms. Jenny Johanson HYDRO-SEARCH, INC. 175 N. Corporate Drive Brookfield, WI 53045

04/03/2000 Job No: 00.02330 Sample No: 388451 Account No: 39150 Page 5 of 28

-

JOB DESCRIPTION: N127 NPL PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB Sump E-20 N127 NPL Rec'd 4 degrees C

Date/Time Taken: 03/21/2000 10:25

Parameter	Results	Units	Reporting Limit	Method	Date Analyzed	Prep/Run Batch
Hexachlorobutadiene	<38	va/ka	35	SW 926AD	03/30/2000	0.7.0
Isopropylbenzene	<27	ug/kg	25	SH 0200B	03/30/2000	8/0
p-Isopropyltoluene	<27	ug/kg	25	SW 8260B	03/30/2000	870
Methylene Chloride	<54	ug/kg	25	SW 8260B	03/30/2000	870
Methyl-t-butyl ether	<27	ug/kg	20	SW 6260B	03/30/2000	870
Naphthalene	<27	ug/kg vg/kg	20	SW 8260B	03/30/2000	870
n-Propylbenzene	~27	ug/kg	25	SW 8260B	03/30/2000	870
rene	<27	ug/kg	25	SW 8260B	03/30/2000	870
,1,2-Tetrachloroethane	<27	ug/kg	25	SW 8260B	03/30/2000	870
1,1,2,2-Tetrachloroethane	<27	ug/kg	25	SW 8260B	03/30/2000	870
Tetrachloroethene	Q4	ug/kg	25	SW 8260B	03/30/2000	870
Toluene	24 - 07	ug/kg	25	SW 8260B	03/30/2000	870
1,2,3-Trichlorobenzene	<27	ug/kg	25	SW 8260B	03/30/2000	870
1,2,4-Trichlorobenzene	<27	ug/kg	25	SW 8260B	03/30/2000	870
1,1,1-Trichloroethane	<27	ug/kg	25	SW 8260B	03/30/2000	870
1.1.2-Trichloroethane	<27	ug/kg	25	SW 8260B	03/30/2000	870
Trichloroethene	<27	ug/kg	25	SW 8260B	03/30/2000	870
Trichlorofluoromethano	547	ug/kg	25	SW 8260B	03/30/2000	870
1.2.3-Trichloropropage	<27	ug/kg	25	SW 8260B	03/30/2000	870
1.2 4-Trimethylbenzene	<27	ug/kg	25	SW 8260B	03/30/2000	870
1 3 5-Trimethylbenzene	<27	ug/kg	25	SW 8260B	03/30/2000	870
Vinvl Chlorido	<27	ug/kg	25	SW 8260B	03/30/2000	870
Yinyi Chioride Yylenes Total	<27	ug/kg	25	SW 8260B	03/30/2000	870
Surry Dibromoflueretthe	<38	ug/kg	35	SW 8260B	03/30/2000	870
Surry Tolyopo de	98.0	*	92-111	SW 8260B	03/30/2000	870
Surr. Promofluowohau	96.4	용	91-100	SW 8260B	03/30/2000	870
Sett. BIOMOLIUOLODENZENE	97.2	ક	87-104	SW 8260B	03/30/2000	870

TestAmerica

-

Ms. Jenny Johanson HYDRO-SEARCH, INC. 175 N. Corporate Drive Brookfield, WI 53045

04/03/2000 Job No: 00.02330 Sample No: 388452 Account No: 39150 Page 6 of 28

JOB DESCRIPTION: N127 NPL PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB Sump E-24 N127 NPL Rec'd 4 degrees C

Date/Time Taken: 03/21/2000 10:45

~			Reporting		Date	Prep/Run
Parameter	Results	Units	Limit	Method	Analyzed	Batch
Solids, Total	92.2	ይ	n / n	GW 5000	00 (00 (0000	
VOC - METHANOL - 8260B	52.2	D	II/a	SW 5030	03/29/2000	3161
Benzene	<680	ua/ka	25	EM ODCOD	00/01/0000	
Bromobenzene	<680	ug/kg ug/kg	25	SW 8260B	03/31/2000	871
Bromochloromethane	<680	ug/kg	25	SW 8260B	03/31/2000	871
Bromodichloromethane	<680	ug/kg	25	SW 8250B	03/31/2000	871
Bromoform	<680	ug/kg	25	SW 8260B	03/31/2000	871
nomethane	<2 700	ug/kg	25	SW 8260B	03/31/2000	871
utylbenzene	<2,700	ug/kg	100	SW 8260B	03/31/2000	871
sec-Butylbenzene	2 250	ug/kg	25	SW 8260B	03/31/2000	871
tert-Butylbenzene	3,230	ug/kg	25	SW 8260B	03/31/2000	871
Carbon Tetrachloride	<680	ug/kg	25	SW 8260B	03/31/2000	871
Chlorobenzene	< 680	ug/kg	25	SW 8260B	03/31/2000	871
Chlorodibromomethane	< 680	ug/kg	25	SW 8260B	03/31/2000	871
Chloroethane	< 680	ug/kg	25	SW 8260B	03/31/2000	871
Chloroform	<950	ug/kg	35	SW 8260B	03/31/2000	871
Chloromethane	< 680	ug/kg	25	SW 8260B	03/31/2000	871
2-Chlorotoluene	<820	ug/kg	30	SW 8260B	03/31/2000	871
4-Chlorotoluene	<680	ug/kg	25	SW 8260B	03/31/2000	871
2-Dibromo-3-Chloropropage	<680	ug/kg	25	SW 8260B	03/31/2000	871
1.2-Dibromosthana (EDD)	<1,400	ug/kg	50	SW 8260B	03/31/2000	871
Dibromomethane (EDB)	<680	ug/kg	25	SW 8260B	03/31/2000	871
	<680	ug/kg	25	SW 8260B	03/31/2000	871
1,2-Dichlercherset	<680	ug/kg	25	SW 8260B	03/31/2000	871
1 4 Dichlorobenzene	<680	ug/kg	25	SW 8260B	03/31/2000	871
l, 4-bichlorodifluererethere	<680	ug/kg	25	SW 8260B	03/31/2000	871
1 l-Dichlemether-	<680	ug/kg	25	SW 8260B	03/31/2000	871
1,1-Dichloroethane	<680	ug/kg	25	SW 8260B	03/31/2000	871
1,2-Dichloroethane	<680	ug/kg	25	SW 8260B	03/31/2000	871
ziz 1 2 Dichloroethene	<680	ug/kg	25	SW 8260B	03/31/2000	871
cis-1,2-Dichloroethene	4,010	ug/kg	25	SW 8260B	03/31/2000	871
1 2 Dichler	<680	ug/kg	25	SW 8260B	03/31/2000	871
1,2-Dichloropropane	<680	ug/kg	25	SW 8260B	03/31/2000	871
1,3-Dichloropropane	<680	ug/kg	25	SW 8260B	03/31/2000	871
2,2-Dichloropropane	<680	ug/kg	25	SW 8260B	03/31/2000	871
1,1-Dichloropropene	<680	ug/kg	25	SW 8260B	03/31/2000	871
-1,3-Dichloropropene	<680	ug/kg	25	SW 8260B	03/31/2000	871
.ns-1,3-Dichloropropene	<680	ug/kg	25	SW 8260B	03/31/2000	971
D1-1sopropyl ether	<680	uq/kq	25	SW 8260B	03/31/2000	071
Ethylbenzene	<680	ug/kg	25	SW 82600	03/31/2000	871
		-3775		01 020VB	03/31/2000	871

ANALYTICAL REPORT

Ms. Jenny Johanson HYDRO-SEARCH, INC. 175 N. Corporate Drive Brookfield, WI 53045

•

04/03/2000 Job No: 00.02330 Sample No: 388452 Account No: 39150 Page 7 of 28

JOB DESCRIPTION: N127 NPL PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB Sump E-24 N127 NPL Rec'd 4 degrees C

Date/Time Taken: 03/21/2000 10:45

Domomotor		_		Reporting		Date	Prep/Run
Faramerer		Results	Units	Limit	Method	Analyzed	Batch
Hexachlorobutadiene		<950	ug/kg	35	SW 8260B	03/31/2000	071
lsopropylbenzene		<680	uq/kq	25	SW 8260B	03/31/2000	, 371) 971
p-Isopropyltoluene		3,580	ua/ka	25	SW 8260B	03/31/2000	/ 0/1 \ 071
Methylene Chloride	L	1,740	ug/kg	50	SW 8260B	03/31/2000	/ 8/1
Methyl-t-butyl ether		<680	ug/kg	25	SW 8260B	03/31/2000	871
Naphthalene		4,340	ug/kg	25	SW 8260B	03/31/2000	8/1
n-Propylbenzene		5,100	ug/kg	25	SW 9260B	03/31/2000	8/1
rene		<680	ug/kg	25	SW 8260B	03/31/2000	871
1, 1, 2-Tetrachloroethane		<680	ug/kg	25	SW BACOD	03/31/2000	871
1,1,2,2-Tetrachloroethane		<680	ug/kg	25	SW BOCOD	03/31/2000	871
Tetrachloroethene		95.400	ug/hg	25	SW 8260B	03/31/2000	871
Toluene		1.190	ug/kg	20	SW 8250B	03/31/2000	871
1,2,3-Trichlorobenzene		<680	ug/kg ug/kg	20	SW 8260B	03/31/2000	871
1,2,4-Trichlorobenzene		<680	ug/kg	25	SW 8260B	03/31/2000	871
1,1,1-Trichloroethane		<680	ug/kg	25	SW 8260B	03/31/2000	871
1,1,2-Trichloroethane		<680	ug/kg	25	SW 8260B	03/31/2000	871
Trichloroethene		67 200	ug/kg	25	SW 8260B	03/31/2000	871
Trichlorofluoromethane		<590	ug/kg	25	SW 8260B	03/31/2000	871
1,2,3-Trichloropropane		<000	ug/kg	25	SW 8260B	03/31/2000	871
1,2,4-Trimethylbenzene		<000	ug/kg	25	SW 8260B	03/31/2000	871
1,3,5-Trimethylbenzene		28,200	ug/kg	25	SW 8260B	03/31/2000	871
Vinyl Chloride		8,350	ug/kg	25	SW 8260B	03/31/2000	871
Xvlenes. Total		<680	ug/kg	25	SW 8260B	03/31/2000	871
Surr: Dibromofluoromethane		61,800	ug/kg	35	SW 8260B	03/31/2000	871
Surr: Toluene-da		87.2	\$	92-111	SW 8260B	03/31/2000	871
Surr: Bromofluorobenzono		99.6	S	91-100	SW 8260B	03/31/2000	871
		97.4	S	87-104	SW 8260B	03/31/2000	871

Test/America

Ms. Jenny Johanson HYDRO-SEARCH, INC. 175 N. Corporate Drive Brookfield, WI 53045

· .

04/03/2000 Job No: 00.02330 Sample No: 388453 Account No: 39150 Page 8 of 28

JOB DESCRIPTION: N127 NPL PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB Sump E-26 N127 NPL Rec'd 4 degrees C

Date/Time Taken: 03/21/2000 10:48

_			Reporting		Date	Prep/Run
Parameter	Results	Units	Limit	Method	Analyzed	Batch
Solids, Total	92 0	9	m/=	GW EODO	03 /00 /0000	
VOC - METHANOL - 8260B	52.0	D	11/a	SW 5030	03/29/2000	3161
Benzene	<1 400	ug/kg	25	CM OCCOD	00/00/0000	
Bromobenzene	<1.400	ug/kg	25	SW 8260B	03/30/2000	870
Bromochloromethane	<1,400	ug/kg	25	SW 0260B	03/30/2000	870
Bromodichloromethane	<1,400	ug/kg	25	SW 8260B	03/30/2000	870
Bromoform	<1,400	ug/kg	25	SW 8260B	03/30/2000	870
momethane	<5 400	ug/kg	23	SW 8260B	03/30/2000	870
Jutylbenzene	<1 400	ug/kg ug/kg	25	SW 8260B	03/30/2000	870
sec-Butylbenzene	4 130	ug/kg	45	SW 8260B	03/30/2000	870
tert-Butylbenzene	~1 400	ug/kg ug/kg	25	SW 8260B	03/30/2000	870
Carbon Tetrachloride	<1,400	ug/kg	25	SW 8260B	03/30/2000	870
Chlorobenzene	<1,400	ug/kg	25	SW 8260B	03/30/2000	870
Chlorodibromomethane	<1,400	ug/kg	25	SW 8260B	03/30/2000	870
Chloroethane	<1,400	ug/kg	25	SW 8260B	03/30/2000	870
Chloroform	<1,900	ug/kg	35	SW 8260B	03/30/2000	870
Chloromethane	<1,400	ug/kg	25	SW 8260B	03/30/2000	870
2-Chlorotoluene	<1,600	ug/kg	30	SW 8260B	03/30/2000	870
4-Chlorotoluene	<1,400	ug/kg	25	SW 8260B	03/30/2000	870
1.2-Dibromo-3-Chloropropano	<1,400	ug/kg	25	SW 8260B	03/30/2000	870
1,2-Dibromoethane (EDB)	<2,700	ug/kg	50	SW 8260B	03/30/2000	870
Dibromomethane	<1,400	ug/kg	25	SW 8260B	03/30/2000	870
1.2-Dichlorobenzono	<1,400	ug/kg	25	SW 8260B	03/30/2000	870
1 3-Dichlorobongene	<1,400	ug/kg	25	SW 8260B	03/30/2000	870
1 4-Dichlorobenzene	<1,400	ug/kg	25	SW 8260B	03/30/2000	870
Dichlorodifluoromethane	<1,400	ug/kg	25	SW 8260B	03/30/2000	870
1 1-Dichloroethane	<1,400	ug/kg	25	SW 8260B	03/30/2000	870
1.2-Dichloroothana	<1,400	ug/kg	25	SW 8260B	03/30/2000	870
1 l-Digbloroothere	<1,400	ug/kg	25	SW 8260B	03/30/2000	870
cis-1 2 Dichlemethe	<1,400	ug/kg	25	SW 8260B	03/30/2000	870
trang 1 2 Dichlement	19,600	ug/kg	25	SW 8260B	03/30/2000	870
1.2-Dichlemene	<1,400	ug/kg	25	SW 8260B	03/30/2000	870
1.2 Dichlemann	<1,400	ug/kg	25	SW 8260B	03/30/2000	870
2.3 Dichloropropane	<1,400	ug/kg	25	SW 8260B	03/30/2000	870
1 1 Dishlawa	<1,400	ug/kg	25	SW 8260B	03/30/2000	870
1,1-Dichloropropene	<1,400	ug/kg	25	SW 8260B	03/30/2000	870
-1,3-Dichloropropene	<1,400	ug/kg	25	SW 8260B	03/30/2000	870
ns-1,3-Dichloropropene	<1,400	ug/kg	25	SW 8260B	03/30/2000	870
D1-1SOPropyl ether	<1,400	ug/kg	25	SW 8260B	03/30/2000	870
Ethylbenzene	58,700	ug/kg	25	SW 8260B	03/30/2000	870
				02002	~~/~~~~	8/0

Test/America

ANALYTICAL REPORT

Ms. Jenny Johanson HYDRO-SEARCH, INC. 175 N. Corporate Drive Brookfield, WI 53045

04/03/2000 Job No: 00.02330 Sample No: 388453 Account No: 39150 Page 9 of 28

JOB DESCRIPTION: N127 NPL PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB Sump E-26 N127 NPL Rec'd 4 degrees C

Date/Time Taken: 03/21/2000 10:48

Date Received: 03/23/2000

-

Parameter	Results	Units	Reporting Limit	Method	Date Analyzed	Prep/Run Batch
Hexachlorobutadiene	<1.900	ua/ka	35	SW ROCOD	03/30/3000	
Isopropylbenzene	5.760	ug/kg	25	SW 9260B		. 870
p-Isopropyltoluene	4,450	ug/kg	25	SW 8260B	03/30/2000	870
Methylene Chloride	<2.700	ug/kg	25	SW 8260B	03/30/2000	870
Methyl-t-butyl ether	<1,700	ug/kg	50	SW 8260B	03/30/2000	870
Naphthalene	5 420	ug/kg	25	SW 8260B	03/30/2000	870
n-Propylbenzene	5,450	ug/kg	25	SW 8260B	03/30/2000	870
rene	6,960	ug/kg	25	SW 8260B	03/30/2000	870
1 2-Tetrachloroethana	<1,400	ug/kg	25	SW 8260B	03/30/2000	870
1 1 2 2-Tetrachloroothers	<1,400	ug/kg	25	SW 8260B	03/30/2000	870
Tetrachlorosthene	<1,400	ug/kg	25	SW 8260B	03/30/2000	870
	109,000	ug/kg	25	SW 8260B	03/30/2000	870
	6,300	ug/kg	25	SW 8260B	03/30/2000	870
1,2,3-Trichlorobenzene	<1,400	ug/kg	25	SW 8260B	03/30/2000	870
1,2,4-Trichlorobenzene	<1,400	ug/kg	25	SW 8260B	03/30/2000	870
1,1,1-Trichloroethane	<1,400	ug/kg	25	SW 8260B	03/30/2000	870
1,1,2-Trichloroethane	<1,400	ug/kg	25	SW 8260B	03/30/2000	870
Trichloroethene	605,000	ug/kg	25	SW 8260B	03/31/2000	070
Trichlorofluoromethane	<1,400	ug/kg	25	SM BOSOB	03/30/2000	071
1,2,3-Trichloropropane	<1.400	ug/kg	25	SW 9260B	03/30/2000	870
1,2,4-Trimethylbenzene	33,700	ug/kg	25	SW 8260B	03/30/2000	870
1,3,5-Trimethylbenzene	9,130	ug/kg	25	SW 8260B	03/30/2000	870
Vinyl Chloride	<7 400	ug/kg ug/kg	25	SW 8260B	03/30/2000	870
Xylenes, Total	120 000	ug/kg	25	SW 8260B	03/30/2000	870
Surr: Dibromofluoromethane	120,000	ug/kg	35	SW 8260B	03/30/2000	870
Surr: Toluene-d8	97.0	*	92-111	SW 8260B	03/30/2000	870
Surr: Bromofluorobenzene	97.0	8	91-100	SW 8260B	03/30/2000	870
	96.4	*	87-104	SW 8260B	03/30/2000	870

Test/America

÷.

Ms. Jenny Johanson HYDRO-SEARCH, INC. 175 N. Corporate Drive Brookfield, WI 53045

04/03/2000 Job No: 00.02330 Sample No: 388454 Account No: 39150 Page 10 of 28

JOB DESCRIPTION: N127 NPL PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB Sump E-28 N127 NPL Rec'd 4 degrees C

Date/Time Taken: 03/21/2000 10:50

Date Received: 03/23/2000

			Reporting		Date	Prep/Run
Parameter	Results	Units	Limit	Method	Analyzed	Batch
Solids, Total	90.8	8	7/2	GW 5000	00 /00 /0000	
VOC - METHANOL - 8260B	2010	0	11/a	SW 2030	03/29/2000	3161
Benzene	<14.000	ua/ka	25	SW SOCOD	02/21/2000	
Bromobenzene	<14,000	ug/kg ug/kg	25	SW 8260B	03/31/2000	871
Bromochloromethane	<14,000	ug/kg ug/kg	25	SW 8260B	03/31/2000	871
Bromodichloromethane	<14,000	ug/kg ug/kg	25	SW 0200B	03/31/2000	871
Bromoform	<14,000	ug/kg ug/kg	25	SW 6260B	03/31/2000	871
momethane	<55,000	ug/kg	100	SW 8260B	03/31/2000	871
. Jutylbenzene	<14 000	ug/kg ug/kg	200	SW 8260B	03/31/2000	871
sec-Butylbenzene	<14 000	ug/kg	20	SW 8260B	03/31/2000	871
tert-Butylbenzene	<14 000	ug/kg	25	SW 8260B	03/31/2000	871
Carbon Tetrachloride	<14 000	ug/kg vg/kg	20	SW 8260B	03/31/2000	871
Chlorobenzene	<14,000	ug/kg	40	SW 8260B	03/31/2000	871
Chlorodibromomethane	<14,000	ug/kg ug/kg	25	SW 8260B	03/31/2000	871
Chloroethane	<20,000	ug/kg vg/kg	25	SW 8260B	03/31/2000	871
Chloroform	<14 000	ug/kg ug/kg	35	SW 8260B	03/31/2000	871
Chloromethane	<14,000	ug/kg	25	SW 8260B	03/31/2000	871
2-Chlorotoluene	<14,000	ug/kg	30	SW 8260B	03/31/2000	871
4-Chlorotoluene	<14,000	ug/kg	25	SW 8260B	03/31/2000	871
1,2-Dibromo-3-Chloropropane	<14,000	ug/kg	25	SW 8260B	03/31/2000	871
1,2-Dibromoethane (EDB)	<28,000	ug/kg	50	SW 8260B	03/31/2000	871
Dibromomethane	<14,000	ug/kg	25	SW 8260B	03/31/2000	871
1,2-Dichlorobenzene	<14,000	ug/kg	25	SW 8260B	03/31/2000	871
1,3-Dichlorobenzene	<14,000	ug/kg	25	SW 8260B	03/31/2000	871
1,4-Dichlorobenzene	<14,000	ug/kg	25	SW 8260B	03/31/2000	871
Dichlorodifluoromethane	<14,000	ug/kg	25	SW 8260B	03/31/2000	871
1,1-Dichloroethane	<14,000	ug/kg	25	SW 8260B	03/31/2000	871
1,2-Dichloroethane	<14,000	ug/kg	25	SW 8260B	03/31/2000	871
1,1-Dichloroethene	<14,000	ug/kg	25	SW 8260B	03/31/2000	871
cis-1,2-Dichloroethene	<14,000	ug/kg	25	SW 8260B	03/31/2000	871
trans-1.2-Dichloroethene	<14,000	ug/kg	25	SW 8260B	03/31/2000	871
1,2-Dichloropropane	<14,000	ug/kg	25	SW 8260B	03/31/2000	871
1.3-Dichloropropane	<14,000	ug/kg	25	SW 8260B	03/31/2000	871
2.2-Dichloropropane	<14,000	ug/kg	25	SW 8260B	03/31/2000	871
1.1-Dichloropropene	<14,000	ug/kg	25	SW 8260B	03/31/2000	871
-1.3-Dichloropropene	<14,000	ug/kg	25	SW 8260B	03/31/2000	871
as-1.3-Dichloropropene	<14,000	ug/kg	25	SW 8260B	03/31/2000	871
Di-isopropyl ether	<14,000	ug/kg	25	SW 8260B	03/31/2000	871
Ethylbenzene	<14,000	ug/kg	25	SW 8260B	03/31/2000	871
new Themselle	74,900	ug/kg	25	SW 8260B	03/31/2000	871

Test/America

Ms. Jenny Johanson HYDRO-SEARCH, INC. 175 N. Corporate Drive Brookfield, WI 53045

.

04/03/2000 Job No: 00.02330 Sample No: 388454 Account No: 39150 Page 11 of 28

JOB DESCRIPTION: N127 NPL PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB Sump E-28 N127 NPL Rec'd 4 degrees C

Date/Time Taken: 03/21/2000 10:50

_	Reporting				Date	Prep/Run
Parameter	Results	Units	Limit	Method	Analyzed	Batch
Hexachlorobutadiene	<20,000	ua/ka	35	SW 8260B	03/31/2000	. 871
Isopropylbenzene	<14,000	ug/kg	25	SW 8260B	03/31/2000	, 071) 071
p-Isopropyltoluene	<14,000	ug/kg	25	SW 8260B		/ 0/1 / 071
Methylene Chloride	<28,000	ug/kg	50	SM BOEND		071
Methyl-t-butyl ether	<14.000	vg/kg	25	SW 8260B	03/31/2000	071
Naphthalene	<14,000	ug/kg	25	SW 8260B	03/31/2000	8/1
n-Propylbenzene	<14,000	ug/kg	25	SW SACOR		8/1
'rene	<14,000	ug/kg	25	SW 8260B	03/31/2000	871
,1,1,2-Tetrachloroethane	<14.000	ug/kg	25	SW 0260B	03/31/2000	8/1
1,1,2,2-Tetrachloroethane	<14 000	ug/kg	25	SM BZOVB	03/31/2000	8/1
Tetrachloroethene	123,000	ug/kg	25	SM 8260B	03/31/2000	871
Toluene	<14.000	ug/kg	25	SW 0200B	03/31/2000	871
1,2,3-Trichlorobenzene	<14,000	ug/kg ug/kg	25	OW OCOD	03/31/2000	871
1,2,4-Trichlorobenzene	<14.000	ug/kg	25	CW OCCOD	03/31/2000	871
1,1,1-Trichloroethane	<14.000	ug/kg	25	SW 0200B	03/31/2000	871
1,1,2-Trichloroethane	<14,000	ug/kg	25	SW 6260B	03/31/2000	871
Trichloroethene	1,100,000	ug/kg	20	SW 8260B	03/31/2000	871
Trichlorofluoromethane	<14 000	ug/kg	25	SW 8260B	03/31/2000	871
1,2,3-Trichloropropane	<14,000	ug/kg	20	SW 8260B	03/31/2000	871
1,2,4-Trimethylbenzene	40 700	ug/kg	25	SW 8260B	03/31/2000	871
1,3,5-Trimethylbenzene	-14 000	ug/kg	25	SW 8260B	03/31/2000	871
Vinyl Chloride	<14,000	ug/kg	25	SW 8260B	03/31/2000	871
Xvlenes. Total	<14,000	ug/kg	25	SW 8260B	03/31/2000	871
Surr: Dibromofluoromethane	154,000	ug/kg	35	SW 8260B	03/31/2000	871
Surr: Toluene-d8	91.0	*	92-111	SW 8260B	03/31/2000	871
Surr: Bromofluorobenzeno	98,2	5	91-100	SW 8260B	03/31/2000	871
Sall, Browerlderobenzene	98.2	ક	87-104	SW 8260B	03/31/2000	871

ANALYTICAL REPORT

Ms. Jenny Johanson HYDRO-SEARCH, INC. 175 N. Corporate Drive Brookfield, WI 53045

04/03/2000 Job No: 00.02330 Sample No: 388455 Account No: 39150 Page 12 of 28

JOB DESCRIPTION: N127 NPL PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB 2008-16 N127 NPL Rec'd 4 degrees C

Date/Time Taken: 03/21/2000 UNKNOWN

Parameter Results Units Limit Method Analyzed Batch Solids, Total 92.7 * n/a SW 5030 03/29/2000 3161 Benzene 227 ug/kg 25 SW 8260B 03/31/2000 871 Bromochloromethane 227 ug/kg 25 SW 8260B 03/31/2000 871 Bromochloromethane 227 ug/kg 25 SW 8260B 03/31/2000 871 Bromochloromethane 227 ug/kg 25 SW 8260B 03/31/2000 871 Bromoform 227 ug/kg 25 SW 8260B 03/31/2000 871 sec-Butylbenzene 227 ug/kg 25 SW 8260B 03/31/2000 871 chtoroberaene 227 ug/kg 25 SW 8260B 03/31/2000 871 Chloroberaene 227 ug/kg 25 SW 8260B 03/31/2000 871 Chloroberaene 232 ug/kg 25 SW 8260B 03/31				Reporting		Date	Prep/Run	
Solids, Total 92.7 % n/a SW 5030 03/29/2000 3161 VOC - METHANOL - 8260B 227 ug/kg 25 SW 8260B 03/31/2000 871 Bernech 227 ug/kg 25 SW 8260B 03/31/2000 871 Bromochloromethane 227 ug/kg 25 SW 8260B 03/31/2000 871 sc-Butylbenzene 227 ug/kg 25 SW 8260B 03/31/2000 871 chlorodbromethane 227 ug/kg 25 SW 8260B 03/31/2000 871 chlorodbromethane 227 ug/kg 25 SW 8260B 03/31/2000 871 chlorodbromethane 227 ug/kg 25 SW 8260B 03/31/2000 871 chlorodbromomethane 227 u	Parameter	Results	Units	Limit	Method	Analyzed	Batch	
VOC - METHANOL - 8260B ATT W Draw SW 3030 03/29/2000 3161 Bernzene <27	Solids, Total	92 7	s.	m / a		<u></u>		
Benzene <27 ug/kg 25 SW 8260B 03/31/2000 871 Bromobenzene <27	VOC - METHANOL - 8260B		0	11/a	SW 5030	03/29/2000	3161	
Bromochenzene Car Ug/kg 25 SW 82605 03/31/2000 871 Bromochloromethane <27	Benzene	<27	ug /kg	ΟF	CM ODCOD	00/01/0000		
Bromochloromethane -27 ug/kg 25 SN 82605 03/31/2000 871 Bromochloromethane -27 ug/kg 25 SN 82608 03/31/2000 871 Bromochloromethane -27 ug/kg 25 SN 82608 03/31/2000 871 Bromothane -27 ug/kg 25 SN 82608 03/31/2000 871 .sutylbenzene -27 ug/kg 25 SN 82608 03/31/2000 871 sec-Butylbenzene -27 ug/kg 25 SN 82608 03/31/2000 871 Carbon Tetrachloride -27 ug/kg 25 SN 82608 03/31/2000 871 Chlorodibromomethane -27 ug/kg 25 SN 82608 03/31/2000 871 1,2-Dibromoethane -27 <td>Bromobenzene</td> <td><27</td> <td>ug/kg</td> <td>25</td> <td>SW 8250B</td> <td>03/31/2000</td> <td>871</td>	Bromobenzene	<27	ug/kg	25	SW 8250B	03/31/2000	871	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Bromochloromethane	<27	ug/kg	25	SW 8260B		871	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Bromodichloromethane	<27	ug/kg	25	SW 8260B	03/31/2000	871	
momethane 108 ug/kg 23 50 52/05 03/31/2000 871 . sutylbenzene 27 ug/kg 25 50 03/31/2000 871 sec-Butylbenzene 27 ug/kg 25 50 03/31/2000 871 tert-Butylbenzene 27 ug/kg 25 50 03/31/2000 871 Carbon Tetrachloride 27 ug/kg 25 50 8260B 03/31/2000 871 Chlorobenzene 27 ug/kg 30 50 8260B 03/31/2000 871 2-Chlorobelnzene 27 ug/kg 25 50 8260B 03/31/2000 871 1,2-Dibromo-3-Chloropro	Bromoform	<27	ug/kg	25	SW 8260B	03/31/2000	871	
. sutylbenzene 27 ug/kg 25 SW 8260B 03/31/2000 871 sec-Butylbenzene 27 ug/kg 25 SW 8260B 03/31/2000 871 carbon Tetrachloride 27 ug/kg 25 SW 8260B 03/31/2000 871 Carbon Tetrachloride 27 ug/kg 25 SW 8260B 03/31/2000 871 Chlorobenzene 27 ug/kg 25 SW 8260B 03/31/2000 871 Chlorobenzene 27 ug/kg 25 SW 8260B 03/31/2000 871 Chloroform 27 ug/kg 30 SW 8260B 03/31/2000 871 2-Chlorotoluene 32 ug/kg 30 SW 8260B 03/31/2000 871 1,2-Dibromo-3-Chloropropane 427 ug/kg 50 SW 8260B 03/31/2000 871 1,2-Dibromoethane 27 ug/kg 25 SW 8260B 03/31/2000 871 1,2-Dichlorobenzene 27 ug/kg 25 SW 8260	momethane	<108	ug/kg	2.5	SW 8260B	03/31/2000	871	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. Jutylbenzene	<27	ug/kg	200	SW 8260B	03/31/2000	871	
tett-Butylbenzene 27 ug/kg 25 SW 8260B 03/31/2000 871 Carbon Tetrachloride 27 ug/kg 25 SW 8260B 03/31/2000 871 Chlorobenzene 27 ug/kg 25 SW 8260B 03/31/2000 871 Chlorobenzene 27 ug/kg 25 SW 8260B 03/31/2000 871 Chloroform 27 ug/kg 25 SW 8260B 03/31/2000 871 Chloroform 27 ug/kg 35 SW 8260B 03/31/2000 871 Chloroform 27 ug/kg 30 SW 8260B 03/31/2000 871 2-Chlorotoluene 232 ug/kg 30 SW 8260B 03/31/2000 871 1, 2-Dibromo-3-Chloropropane <27	sec-Butylbenzene	<27	ug/kg	20	SW 8260B	03/31/2000	871	
Carbon Tetrachloride 21 ug/kg 25 SW 8260B 03/31/2000 871 Chlorobenzene <27	tert-Butylbenzene	<27	ug/kg	25 25	SW 8260B	03/31/2000	871	
Chlorobenzene Car ug/kg 25 SW 8260B 03/31/2000 871 Chlorodibromomethane C27 ug/kg 25 SW 8260B 03/31/2000 871 Chlorodibromomethane C37 ug/kg 25 SW 8260B 03/31/2000 871 Chlorothane C38 ug/kg 35 SW 8260B 03/31/2000 871 Chlorototluene C32 ug/kg 30 SW 8260B 03/31/2000 871 2-Chlorotoluene C27 ug/kg 25 SW 8260B 03/31/2000 871 1,2-Dibromo-3-Chloropropane C47 ug/kg 25 SW 8260B 03/31/2000 871 1,2-Dibromoethane C27 ug/kg 25 SW 8260B 03/31/2000 871 1,2-Dibromoethane C27 ug/kg 25 SW 8260B 03/31/2000 871 1,2-Dichlorobenzene C27 ug/kg 25 SW 8260B 03/31/2000 871 1,4-Dichlorobenzene C27 ug/kg 25 SW 8260B 03/31/2000 871 1,1-Dichloroethane C27 <td>Carbon Tetrachloride</td> <td><27</td> <td>ug/kg</td> <td>25</td> <td>SW 8260B</td> <td>03/31/2000</td> <td>871</td>	Carbon Tetrachloride	<27	ug/kg	25	SW 8260B	03/31/2000	871	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Chlorobenzene	<27	ug/kg	25	SW 8260B	03/31/2000	871	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Chlorodibromomethane	<27	ug/kg	25	SW 8260B	03/31/2000	871	
Chloroform <27	Chloroethane	~39	ug/kg	25	SW 8260B	03/31/2000	871	
Chloromethane <27	Chloroform	<27	ug/kg	35	SW 8260B	03/31/2000	871	
2-Chlorotoluene <27	Chloromethane	<27	ug/kg	25	SW 8260B	03/31/2000	871	
4-Chlorotoluene <27	2-Chlorotoluene	<27	ug/kg	30	SW 8260B	03/31/2000	871	
1,2-Dibromo-3-Chloropropane <54	4-Chlorotoluene	<27	ug/kg	25	SW 8260B	03/31/2000	871	
1,2-Dibromoethane(EDB)(27)ug/kg50SW 8260B03/31/2000871Dibromomethane(27)ug/kg25SW 8260B03/31/20008711,2-Dichlorobenzene(27)ug/kg25SW 8260B03/31/20008711,3-Dichlorobenzene(27)ug/kg25SW 8260B03/31/20008711,4-Dichlorobenzene(27)ug/kg25SW 8260B03/31/2000871Dichlorobenzene(27)ug/kg25SW 8260B03/31/20008711,1-Dichlorobethane(27)ug/kg25SW 8260B03/31/20008711,2-Dichloroethane(27)ug/kg25SW 8260B03/31/20008711,1-Dichloroethene(27)ug/kg25SW 8260B03/31/20008711,1-Dichloroethene(27)ug/kg25SW 8260B03/31/20008711,2-Dichloroethene(27)ug/kg25SW 8260B03/31/20008711,2-Dichloroethene(27)ug/kg25SW 8260B03/31/20008711,2-Dichloropropane(27)ug/kg25SW 8260B03/31/20008711,2-Dichloropropane(27)ug/kg25SW 8260B03/31/20008711,2-Dichloropropane(27)ug/kg25SW 8260B03/31/20008711,3-Dichloropropane(27)ug/kg25SW 8260B03/31/20008711,1-Dichloropropene(27)ug/kg25 <t< td=""><td>1,2-Dibromo-3-Chloropropage</td><td>< 5 /</td><td>ug/kg</td><td>25</td><td>SW 8260B</td><td>03/31/2000</td><td>871</td></t<>	1,2-Dibromo-3-Chloropropage	< 5 /	ug/kg	25	SW 8260B	03/31/2000	871	
Dibromomethane227ug/kg25SW8260B03/31/20008711,2-Dichlorobenzene<27	1,2-Dibromoethane (EDB)	< 34	ug/kg	50	SW 8260B	03/31/2000	871	
1,2-Dichlorobenzene <27	Dibromomethane	<27	ug/kg	25	SW 8260B	03/31/2000	871	
1,3-Dichlorobenzene<27ug/kg25SW8260B03/31/20008711,4-Dichlorobenzene<27	1,2-Dichlorobenzene	<27	ug/kg	25	SW 8260B	03/31/2000	871	
1,4-Dichlorobenzene<27ug/kg25SW 8260B03/31/2000871Dichlorodifluoromethane<27	1,3-Dichlorobenzene	<27	ug/kg	25	SW 8260B	03/31/2000	871	
Dichlorodifluoromethane<27ug/kg25SW 8260B03/31/20008711,1-Dichloroethane<27	1,4-Dichlorobenzene	<27	ug/kg	25	SW 8260B	03/31/2000	871	
1,1-Dichloroethane<27ug/kg25SW 8260B03/31/20008711,2-Dichloroethane<27	Dichlorodifluoromethane	<27	ug/kg	25	SW 8260B	03/31/2000	871	
1,2-Dichloroethane<27ug/kg25SW 8260B03/31/20008711,1-Dichloroethene<27	1,1-Dichloroethane	<27	ug/kg	25	SW 8260B	03/31/2000	871	
1,1-Dichloroethene<27ug/kg25SW 8260B03/31/2000871cis-1,2-Dichloroethene32ug/kg25SW 8260B03/31/2000871trans-1,2-Dichloroethene32ug/kg25SW 8260B03/31/20008711,2-Dichloropropane<27	1,2-Dichloroethane	<27	ug/kg	25	SW 8260B	03/31/2000	871	
cis-1,2-Dichloroethene227ug/kg25SW 8260B03/31/2000871trans-1,2-Dichloroethene32ug/kg25SW 8260B03/31/20008711,2-Dichloropropane<27	1,1-Dichloroethene	<27	ug/kg	25	SW 8260B	03/31/2000	871	
32 ug/kg 25 SW 8260B 03/31/2000 871 1,2-Dichloropropane <27	cis-1.2-Dichloroethene	<27	ug/kg	25	SW 8260B	03/31/2000	871	
1,2-Dichloropropane <27	trans-1.2-Dichloroethene	32	ug/kg	25	SW 8260B	03/31/2000	871	
1,3-Dichloropropane <27	1,2-Dichloropropane	<27	ug/kg	25	SW 8260B	03/31/2000	871	
2,2-Dichloropropane <27	1.3-Dichloropropane	<27	ug/kg	25	SW 8260B	03/31/2000	871	
1,1-Dichloropropene <27	2,2-Dichloropropane	<27	ug/kg	25	SW 8260B	03/31/2000	871	
-1,3-Dichloropropene <27	1.1-Dichloropropene	<27	ug/kg	25	SW 8260B	03/31/2000	871	
.ns-1,3-Dichloropropene <27	-1.3-Dichloropropene	<27	ug/kg	25	SW 8260B	03/31/2000	871	
2/2 ug/kg 25 SW 8260B 03/31/2000 871 Di-isopropyl ether <27	ns-1.3-Dichloropropens	<27	ug/kg	25	SW 8260B	03/31/2000	871	
<27 ug/kg 25 SW 8260B 03/31/2000 871 Sthylbenzene <27	Di-isopropyl ether	<27	ug/kg	25	SW 8260B	03/31/2000	871	
<27 ug/kg 25 SW 8260B 03/31/2000 871	Ethvlbenzene	<27	ug/kg	25	SW 8260B	03/31/2000	871	
		<27	ug/kg	25	SW 8260B	03/31/2000	871	

ANALYTICAL REPORT

Ms. Jenny Johanson HYDRO-SEARCH, INC. 175 N. Corporate Drive Brookfield, WI 53045

04/03/2000 Job No: 00.02330 Sample No: 388455 Account No: 39150 Page 13 of 28

JOB DESCRIPTION: N127 NPL PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB 2008-16 N127 NPL Rec'd 4 degrees C

Date/Time Taken: 03/21/2000 UNKNOWN

Parameter		Results	Units	Reporting Limit	Method	Date Analyzed	Prep/Run Batch
Hexachlorobutadiene		<38	ua/ka	35	SW 82600	02/21/2000	0.71
Isopropylbenzene		<27	ug/kg	25	SW BOCOD	03/31/2000	8/1
p-Isopropyltoluene		<27	ug/kg	25	SN 6260B		8/1
Methylene Chloride	т.	183	ug/kg	25	SW 8260B		871
Methyl-t-butyl ether	-	<27	ug/kg	50	SW 8260B	03/31/2000	871
Naphthalene		<27	ug/kg	25	SW 8260B	03/31/2000	871
n-Propylbenzene		~27	ug/kg ug/kg	20	SW 8260B	03/31/2000	871
rene		<27	ug/kg	25	SW 8260B	03/31/2000	871
		<27	ug/kg	25	SW 8260B	03/31/2000	871
1.1.2.2-Tetrachloroethane		<27	ug/kg	25	SW 8260B	03/31/2000	871
Tetrachloroethene		<27	ug/kg	25	SW 8260B	03/31/2000	871
Toluene		86	ug/kg	25	SW 8260B	03/31/2000	871
1 2 3-Trighloroborrers		<27	ug/kg	25	SW 8260B	03/31/2000	871
1,2,4 Triablemene		<27	ug/kg	25	SW 8260B	03/31/2000	871
1,2,4ª Trichloropenzene		<27	ug/kg	25	SW 8260B	03/31/2000	871
1,1,1-Trichloroethane		<27	ug/kg	25	SW 8260B	03/31/2000	871
1,1,2-Trichloroethane		<27	ug/kg	25	SW 8260B	03/31/2000	871
Trichloroethene		85	ug/kg	25	SW 8260B	03/31/2000	871
Trichlorofluoromethane		<27	ug/kg	25	SW 8260B	03/31/2000	871
1,2,3-Trichloropropane		<27	ug/kg	25	SW 8260B	03/31/2000	871
1,2,4-Trimethylbenzene		<27	uq/kq	25	SW 8260B	03/31/2000	071
1,3,5-Trimethylbenzene		<27	ug/kg	25	SW 8260B	03/31/2000	071
Vinyl Chloride		<27	ug/kg	25	SW 8260B	03/31/2000	071 071
Xylenes, Total		<38	ua/ka	35	SW 9260B	03/31/2000	871
Surr: Dibromofluoromethane		92.0	% %	92-111	SW 6260B	03/31/2000	871
Surr: Toluene-d8		98.6	ě.	91-100	SH 0200B	03/31/2000	871
Surr: Bromofluorobenzene		96.6	9.	91-100 97 104	SW 8250B	03/31/2000	871
			0	87-104	SW 8260B	03/31/2000	871

ANALYTICAL REPORT

Ms. Jenny Johanson HYDRO-SEARCH, INC. 175 N. Corporate Drive Brookfield, WI 53045

04/03/2000 Job No: 00.02330 Sample No: 388456 Account No: 39150 Page 14 of 28

JOB DESCRIPTION: N127 NPL PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB 2008-20 N127 NPL Rec'd 4 degrees C

Date/Time Taken: 03/21/2000 UNKNOWN

_			Reporting		Date	Prep/Run	
Parameter	Results	Units	Limit	Method	Analyzed	Batch	
Solids, Total	95.0	ę.	n/2	CW 5020	02/00/2000	21.64	
VOC - METHANOL - 8260B	22.0	.0	11/a	SW 5030	03/29/2000	3161	
Benzene	<26	ug/kg	25	ew pocon	02/20/0000		
Bromobenzene	<26	ug/xg ug/kg	25	SW 8260B	03/30/2000	870	
Bromochloromethane	<26	ug/kg	25	SW 8260B	03/30/2000	870	
Bromodichloromethane	<26	ug/kg	20	SW 8260B	03/30/2000	870	
Bromoform	<26	ug/kg	25	SW 8260B	03/30/2000	870	
momethane	<105	ug/kg	25	SW 8260B	03/30/2000	870	
utylbenzene	<26	ug/kg	100	SW 8260B	03/30/2000	870	
sec-Butylbenzene	<26	ug/kg	25	SW 8260B	03/30/2000	870	
tert-Butvlbenzene	<26	ug/kg	25	SW 8260B	03/30/2000	870	
Carbon Tetrachloride	<26	ug/kg	25	SW 8260B	03/30/2000	870	
Chlorobenzene	<20	ug/kg	25	SW 8260B	03/30/2000	870	
Chlorodibromomethane	<20	ug/kg	25	SW 8260B	03/30/2000	870	
Chloroethane	<20	ug/kg	25	SW 8260B	03/30/2000	870	
Chloroform	<37	ug/kg	35	SW 8260B	03/30/2000	870	
Chloromethane	<26	ug/kg	25	SW 8260B	03/30/2000	870	
2-Chlorotoluene	<32	ug/kg	30	SW 8260B	03/30/2000	870	
4-Chlorotoluene	<26	ug/kg	25	SW 8260B	03/30/2000	870	
1 2-Dibromo-3-Chloropropaga	<26	ug/kg	25	SW 8260B	03/30/2000	870	
1,2-Dibromoethano (EDB)	<53	ug/kg	50	SW 8260B	03/30/2000	870	
Dibromomothane (EDB)	<26	ug/kg	25	SW 8260B	03/30/2000	870	
1 2 Dichlerchenzene	<26	ug/kg	25	SW 8260B	03/30/2000	870	
1,2-Dichlorobenzene	<26	ug/kg	25	SW 8260B	03/30/2000	870	
1 4 Dichlorobenzene	<26	ug/kg	25	SW 8260B	03/30/2000	870	
1,4-Dichlorobenzene	<26	ug/kg	25	SW 8260B	03/30/2000	870	
1 Dichlemethane	<26	ug/kg	25	SW 8260B	03/30/2000	870	
1,1-Dichloroethane	<26	ug/kg	25	SW 8260B	03/30/2000	870	
1,2-Dichioroethane	<26	ug/kg	25	SW 8260B	03/30/2000	870	
1,1-Dichioroethene	<26	ug/kg	25	SW 8260B	03/30/2000	870	
cis-1,2-Dichioroethene	<26	ug/kg	25	SW 8260B	03/30/2000	870	
rans-1,2-Dichloroethene	<26	ug/kg	25	SW 8260B	03/30/2000	870	
1,2-Dichloropropane	<26	ug/kg	25	SW 8260B	03/30/2000	870	
1,3-Dichloropropane	<26	ug/kg	25	SW 8260B	03/30/2000	870	
2,2-Dichloropropane	<26	ug/kg	25	SW 8260B	03/30/2000	870	
1,1-Dichloropropene	<26	ug/kg	25	SW 8260B	03/30/2000	870	
-1,3-Dichloropropene	<26	uq/kq	25	SW 8260B	03/30/2000	870	
.ns-1,3-Dichloropropene	<26	ug/ka	25	SW 8260B	03/30/2000	870	
Di-isopropyl ether	<26	ua/ka	25	SW 8260P	03/30/2000	070	
Ethylbenzene	<26	ug/kg	25	GW 9260B	03/30/2000	870	
		-3/9	22	UM 020VB	03/30/2000	870	

Test/America

ANALYTICAL REPORT

Ms. Jenny Johanson HYDRO-SEARCH, INC. 175 N. Corporate Drive Brookfield, WI 53045

•

04/03/2000 Job No: 00.02330 Sample No: 388456 Account No: 39150 Page 15 of 28

JOB DESCRIPTION: N127 NPL PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB 2008-20 N127 NPL Rec'd 4 degrees C

Date/Time Taken: 03/21/2000 UNKNOWN

Parameter		Results	Units	Reporting Limit	Method	Date Analyzed	Prep/Run Batch
Hexachlorobutadiene		<37	ua/ka	35	SW B260B	03/30/2000	070
Isopropylbenzene		<26	ug/kg	25	SW 82608	03/30/2000	070
p-Isopropyltoluene		<26	ug/kg	25	CW 0260B	03/30/2000	870
Methylene Chloride	L	105	ug/kg	50	SW 8260B	03/30/2000	870
Methyl-t-butyl ether	_	<26	ug/kg	25	SW 0200B	03/30/2000	870
Naphthalene		<26	ug/kg	25	SW 8260B	03/30/2000	870
n-Propylbenzene		<26	ug/kg	25	SW 8260B	03/30/2000	870
rene		<20	ug/kg	20	SW 8250B	03/30/2000	870
. +,1,2-Tetrachloroethane		<20	ug/kg	25	SW 8260B	03/30/2000	870
1,1,2,2-Tetrachloroethane		<26	ug/kg	25	SW 8260B	03/30/2000	870
Tetrachloroethene		<20	ug/kg	25	SW 8260B	03/30/2000	870
Toluene		<26	ug/kg	25	SW 8260B	03/30/2000	870
1.2.3-Trichlorobenzene		<26	ug/kg	25	SW 8260B	03/30/2000	870
1,2,4-Trichlorobenzene		<26	ug/kg	25	SW 8260B	03/30/2000	870
1 1 1-Trichloroethano		<26	ug/kg	25	SW 8260B	03/30/2000	870
1 1 2-Trichloroethane		<26	ug/kg	25	SW 8260B	03/30/2000	870
Trichloroothono		<26	ug/kg	25	SW 8260B	03/30/2000	870
Trichlorofluoremethese		<26	ug/kg	25	SW 8260B	03/30/2000	870
1.2.2 Trichlenerane		<26	ug/kg	25	SW 8260B	03/30/2000	870
1,2,3-Ifichioropropane		<26	ug/kg	25	SW 8260B	03/30/2000	870
1,2,4-Trimetnylbenzene		<26	ug/kg	25	SW 8260B	03/30/2000	870
1,3,5-Trimethylbenzene		<26	ug/kg	25	SW 8260B	03/30/2000	870
Vinyl Chloride		<26	ug/kg	25	SW 8260B	03/30/2000	870
Xylenes, Total		<37	ug/kg	35	SW 8260B	03/30/2000	970
Surr: Dibromofluoromethane		97.4	કું	92-111	SW 8260B	03/30/2000	870
Surr: Toluene-d8		96.8	봉	91-100	SW 8260B	03/30/2000	870
Surr: Bromofluorobenzene		95.8	2- -	87-104	SW 8260B	03/30/2000	870

TestAmerica

Ms. Jenny Johanson HYDRO-SEARCH, INC. 175 N. Corporate Drive Brookfield, WI 53045

-

04/03/2000 Job No: 00.02330 Sample No: 388457 Account No: 39150 Page 16 of 28

JOB DESCRIPTION: N127 NPL PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB 2008-24 N127 NPL Rec'd 4 degrees C

Date/Time Taken: 03/21/2000 UNKNOWN

			Reporting		Date	Prep/Run	
Parameter	Results	Units	Limit	Method	Analyzed	Batch	
Solids, Total	92.8	\$	n/2	GM EODO	02 /20 /2000	21.63	
VOC - METHANOL - 8260B		Ū	17.4	34 3030	03/29/2000	3101	
Benzene	<27	ua/ka	25	SW BOCOD	02/20/2000	070	
Bromobenzene	<27	ug/kg	25	SW 8260B	03/30/2000	870	
Bromochloromethane	<27	ug/kg	25	SW 8260B	03/30/2000	870	
Bromodichloromethane	<27	ug/kg	25	SW 8260B	03/30/2000	870	
Bromoform	<27	ug/kg	25	SW 8260B	03/30/2000	870	
momethane	<108	ug/kg	100	SW 9260B	03/30/2000	870	
Butylbenzene	<27	ug/kg	25	SW 8260B	03/30/2000	870	
sec-Butylbenzene	<27	ug/kg	25	SW 9260B	03/30/2000	870	
tert-Butylbenzene	<27	ug/kg	25	SW 8260B	03/30/2000	870	
Carbon Tetrachloride	<27	ug/kg	25	SW 6260B	03/30/2000	870	
Chlorobenzene	<27	ug/kg	25	SW 8260B	03/30/2000	870	
Chlorodibromomethane	<27	ug/kg	23	SW 8260B	03/30/2000	870	
Chloroethane	<38	ug/kg	23	SW 8260B	03/30/2000	870	
Chloroform	<20	ug/kg	20 25	SW 8260B	03/30/2000	870	
Chloromethane	<32	ug/xg ug/kg	20	SW 8260B	03/30/2000	870	
2-Chlorotoluene	~27	ug/kg	30	SW 8260B	03/30/2000	870	
4-Chlorotoluene	<27	ug/kg	25	SW 8260B	03/30/2000	870	
1,2-Dibromo-3-Chloropropane	< 54	ug/kg	25	SW 8260B	03/30/2000	870	
1,2-Dibromoethane (EDB)	~27	ug/kg	50	SW 8260B	03/30/2000	870	
Dibromomethane	<27	ug/kg	25	SW 8260B	03/30/2000	870	
1,2-Dichlorobenzene	<27	ug/kg	25	SW 8260B	03/30/2000	870	
1,3-Dichlorobenzene	<27	ug/kg	25	SW 8260B	03/30/2000	870	
1,4-Dichlorobenzene	<27	ug/kg	25	SW 8260B	03/30/2000	870	
Dichlorodifluoromethane	~27	ug/kg	25	SW 8260B	03/30/2000	870	
1,1-Dichloroethane	~27	ug/kg	25	SW 8260B	03/30/2000	870	
1,2-Dichloroethane	<27	ug/kg	25	SW 8260B	03/30/2000	870	
1,1-Dichloroethene	<27	ug/kg	25	SW 8260B	03/30/2000	870	
cis-1,2-Dichloroethene	~27	ug/kg	25	SW 8260B	03/30/2000	870	
trans-1,2-Dichloroethene	<27	ug/kg	25	SW 8260B	03/30/2000	870	
1,2-Dichloropropane	~27	ug/kg	25	SW 8260B	03/30/2000	870	
1,3-Dichloropropane	<27	ug/kg	25	SW 8260B	03/30/2000	870	
2,2-Dichloropropane	<27	ug/kg	25	SW 8260B	03/30/2000	870	
1,1-Dichloropropene	~27	ug/kg	25	SW 8260B	03/30/2000	870	
1-1,3-Dichloropropene	<27	ug/kg	25	SW 8260B	03/30/2000	870	
uns-1,3-Dichloropropene	~27	ug/kg	45	SW 8260B	03/30/2000	870	
Di-isopropyl ether	<27 -07	ug/kg	25	SW 8260B	03/30/2000	870	
Ethylbenzene	<27	ug/kg	25	SW 8260B	03/30/2000	870	
· · · · · · · · · · · · · · · · · · ·	<27	ug/kg	25	SW 8260B	03/30/2000	870	

Test/America

ANALYTICAL REPORT

Ms. Jenny Johanson HYDRO-SEARCH, INC. 175 N. Corporate Drive Brookfield, WI 53045

04/03/2000 Job No: 00.02330 Sample No: 388457 Account No: 39150 Page 17 of 28

JOB DESCRIPTION: N127 NPL PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB 2008-24 N127 NPL Rec'd 4 degrees C

Date/Time Taken: 03/21/2000 UNKNOWN

	Reporting				Date	Prep/Run
Parameter	Results	Units	Limit	Method	Analyzed	Batch
Hexachlorobutadiene	<38	ua/ka	35	SW 8260B	03/30/2000) 970
Isopropylbenzene	<27	vg/kg	25	SW 8260B	03/30/2000) 070
p-Isopropyltoluene	<27	ug/kg	25	SW 8260B	03/30/2000	, 870) 870
Methylene Chloride	<54	ug/kg	50	SW 8260B	03/30/2000	/ 070) 970
Methyl-t-butyl ether	<27	ug/kg	25	SW 8260B	03/30/2000	, 870 1 970
Naphthalene	<27	ug/kg	25	SW 8260B	03/30/2000	, 070 , 970
n-Propylbenzene	<27	ug/kg	25	SW 8260B	03/30/2000	, 670 , 670
rene	<27	ug/kg	25	SW 8260B	03/30/2000	070
1, ., 1, 2-Tetrachloroethane	<27	ug/kg	25	SW 8260B	03/30/2000	070
1,1,2,2-Tetrachloroethane	<27	ug/kg	25	SW 9260B	03/30/2000	070
Tetrachloroethene	29	ug/kg	25	SW 82608	03/30/2000	870
Toluene	<27	ug/kg	25	SW 8260B	03/30/2000	870
1,2,3-Trichlorobenzene	<27	ug/kg	25	SW 8260B	03/30/2000	870
1,2,4-Trichlorobenzene	<27	ug/kg	25	SW 8250B	03/30/2000	870
1,1,1-Trichloroethane	<27	ug/kg	25	SW 0200B	03/30/2000	870
1,1,2-Trichloroethane	<27	ug/kg	25	SW 0260B	03/30/2000	870
Trichloroethene	<27	ug/kg	25	SW B260B	03/30/2000	870
Trichlorofluoromethane	<27	ug/kg	25	CM CACOB	03/30/2000	870
1,2,3-Trichloropropane	<27	$\frac{ug}{kg}$	25	SW 8260B	03/30/2000	870
1,2,4-Trimethylbenzene	<27	ug/kg	25	SW 020VD	03/30/2000	870
1,3,5-Trimethylbenzene	<27	ug/kg	25	SW 6260B	03/30/2000	870
Vinyl Chloride	<27	ug/kg	25	SW 8260B	03/30/2000	870
Xylenes, Total	<38	ug/xg	2.5	SW 6260B	03/30/2000	870
Surr: Dibromofluoromethane	98 8	49/79 *	92,111	SW 8260B	03/30/2000	870
Surr: Toluene-d8	96.6	8 8-	92-111	SW 8260B	03/30/2000	870
Surr: Bromofluorobenzene	97.2	o ate	87-104	SW 8260B	03/30/2000	870 870

Test/America

ANALYTICAL REPORT

Ms. Jenny Johanson HYDRO-SEARCH, INC. 175 N. Corporate Drive Brookfield, WI 53045

04/03/2000 Job No: 00.02330 Sample No: 388458 Account No: 39150 Page 18 of 28

JOB DESCRIPTION: N127 NPL PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB 2008-26 N127 NPL Rec'd 4 degrees C

Date/Time Taken: 03/21/2000 UNKNOWN

D			Reporting		Date	Prep/Run
Parameter	Results	Units	Limit	Method	Analyzed	Batch
Solids, Total	92 9	8	n / n	011 5030		
VOC - METHANOL - 8260B	22.2	0	11/d	SW 5030	03/29/2000	3161
Benzene	<27	ug/kg	Э.F.	OM DOCOD	00/00/0000	
Bromobenzene	<27	ug/kg	20	SW 8260B	03/30/2000	870
Bromochloromethane	<27	ug/kg	25	SW 8260B	03/30/2000	870
Bromodichloromethane	<27	ug/kg	25	SW 8260B	03/30/2000	870
Bromoform	<27	ug/kg	25	SW 8260B	03/30/2000	870
momethane	<108	ug/kg vg/kg	20	SW 8260B	03/30/2000	870
. Jutylbenzene	<27	ug/kg	200	SW 8260B	03/30/2000	870
sec-Butylbenzene	207	ug/kg	25	SW 8250B	03/30/2000	870
tert-Butylbenzene	<27	ug/kg	25	SW 8260B	03/30/2000	870
Carbon Tetrachloride	<27	ug/kg	25 25	SW 8260B	03/30/2000	870
Chlorobenzene	<27	ug/kg	25	SW 8260B	03/30/2000	870
Chlorodibromomethane	~07	ug/kg	45	SW 8260B	03/30/2000	870
Chloroethane	<38	ug/kg	25	SW 8260B	03/30/2000	870
Chloroform	<27	ug/kg	35	SW 8260B	03/30/2000	870
Chloromethane	<27	ug/kg	25	SW 8260B	03/30/2000	870
2-Chlorotoluene	<227	ug/kg	30	SW 8260B	03/30/2000	870
4-Chlorotoluene	<27	ug/kg	25	SW 8260B	03/30/2000	870
1,2-Dibromo-3-Chloropropane	<54	ug/kg	25	SW 8260B	03/30/2000	870
1,2-Dibromoethane (EDB)	~27	ug/kg	50	SW 8260B	03/30/2000	870
Dibromomethane	<27	ug/kg	25	SW 8260B	03/30/2000	870
1,2-Dichlorobenzene	~27	ug/kg	25	SW 8260B	03/30/2000	870
1,3-Dichlorobenzene	<27	ug/kg	25	SW 8260B	03/30/2000	870
1,4-Dichlorobenzene	<27	ug/kg	25	SW 8260B	03/30/2000	870
Dichlorodifluoromethane	<27	ug/kg	25	SW 8260B	03/30/2000	870
1,1-Dichloroethane	<27	ug/kg	25	SW 8260B	03/30/2000	870
1,2-Dichloroethane	<27	ug/kg	25	SW 8260B	03/30/2000	870
1,1-Dichloroethene	<27	ug/kg	25	SW 8260B	03/30/2000	870
cis-1,2-Dichloroethene	<27	ug/kg	25	SW 8260B	03/30/2000	870
trans-1,2-Dichloroethene	<27	ug/kg	25	SW 8260B	03/30/2000	870
1,2-Dichloropropane	<27	ug/kg	25	SW 8260B	03/30/2000	870
1,3-Dichloropropane	<27	ug/ĸg	25	SW 8260B	03/30/2000	870
2,2-Dichloropropane	<27	ug/kg	25	SW 8260B	03/30/2000	870
1,1-Dichloropropene	<27	ug/kg	25	SW 8260B	03/30/2000	870
-1.3-Dichloropropene	<27	ug/kg	25	SW 8260B	03/30/2000	870
.ns-1,3-Dichloropropere	<27	ug/kg	25	SW 8260B	03/30/2000	870
Di-isopropyl ether	547	ug/kg	25	SW 8260B	03/30/2000	870
Ethylbenzene	<27	ug/kg	25	SW 8260B	03/30/2000	870
	<27	ug/kg	25	SW 8260B	03/30/2000	870

-

Test/America

Ms. Jenny Johanson HYDRO-SEARCH, INC. 175 N. Corporate Drive Brookfield, WI 53045

04/03/2000 Job No: 00.02330 Sample No: 388458 Account No: 39150 Page 19 of 28

JOB DESCRIPTION: N127 NPL PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB 2008-26 N127 NPL Rec'd 4 degrees C

Date/Time Taken: 03/21/2000 UNKNOWN

				Reporting			Prep/Run	
Parameter		Results	Units	Limit	Method	Analyzed	Batch	
Hexachlorobutadiene		<38	ug/kg	35	SW 8260B	03/30/2000	970	
Isopropylbenzene		<27	ug/kg	25	SW 9260B	03/30/2000	070	
p-Isopropyltoluene		<27	ug/kg	25	SH 8260B	03/30/2000	870	
Methylene Chloride	\mathbf{L}	62	ug/kg	50	SW 6260B	03/30/2000	870	
Methyl-t-butyl ether	-	<27	ug/kg	20	SW 826UB	03/30/2000	870	
Naphthalene		~27	ug/kg	25	SW 8260B	03/30/2000	870	
n-Propylbenzene		<27	ug/kg	25	SW 8260B	03/30/2000	870	
rene		<27	ug/kg	25	SW 8250B	03/30/2000	870	
+, +, 1, 2-Tetrachloroethane		<27	ug/kg	25	SW 8260B	03/30/2000	870	
1,1,2,2-Tetrachloroethane		<27	ug/kg	25	SW 8260B	03/30/2000	870	
Tetrachloroethene		<27	ug/kg	25	SW 8260B	03/30/2000	870	
Toluene		60	ug/kg	25	SW 8260B	03/30/2000	870	
1 2 3-Trichlorobenzeno		<27	ug/kg	25	SW 8260B	03/30/2000	870	
1,2,4-Trichlorobongene		<27	ug/kg	25	SW 8260B	03/30/2000	870	
1,2,4-ITICHIOTOBEHZEHE		<27	ug/kg	25	SW 8260B	03/30/2000	870	
1 1 2 Trichlemethers		<27	ug/kg	25	SW 8260B	03/30/2000	870	
Trichlorophane		<27	ug/kg	25	SW 8260B	03/30/2000	870	
Trichlersfluessette		<27	ug/kg	25	SW 8260B	03/30/2000	870	
111Chlorofluoromethane		<27	ug/kg	25	SW 8260B	03/30/2000	870	
1,2,3-Trichloropropane		<27	ug/kg	25	SW 8260B	03/30/2000	870	
1,2,4-Trimethylbenzene		<27	ug/kg	25	SW 8260B	03/30/2000	870	
1,3,5-Trimethylbenzene		<27	ug/kg	25	SW 8260B	03/30/2000	870	
Vinyl Chloride		<27	uq/kq	25	SW 8260B	03/30/2000	870	
Xylenes, Total		<38	uq/kq	35	SW 8260B	03/30/2000	970	
Surr: Dibromofluoromethane		95.8	2, - <u>-</u> J	92-111	SW 8260B	03/30/2000	870	
Surr: Toluene-d8		97.2	ક	91-100	SW 8260B	03/30/2000	870	
Surr: Bromofluorobenzene		95.6	a'e	87-104	SW 8260B	03/30/2000	870	

TestAmerica

ANALYTICAL REPORT

Ms. Jenny Johanson HYDRO-SEARCH, INC. 175 N. Corporate Drive Brookfield, WI 53045

04/03/2000 Job No: 00.02330 Sample No: 388459 Account No: 39150 Page 20 of 28

•

JOB DESCRIPTION: N127 NPL PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB 2008-28 N127 NPL Rec'd 4 degrees C

Date/Time Taken: 03/21/2000 UNKNOWN

			Reporting		Date	Prep/Run
Parameter	Results	Units	Limit	Method	Analyzed	Batch
Solids, Total	92.5	ę.	n/a	SM EORO	02/20/2000	
VOC - METHANOL - 8260B			п/а	34 5030	03/29/2000	3161
Benzene	<27	ua/ka	25	SW 9060D	03/20/2000	070
Bromobenzene	<27	ug/kg ug/kg	25	SW 8260B	03/30/2000	870
Bromochloromethane	<27	ug/kg	25	SW 8260B	03/30/2000	870
Bromodichloromethane	<27	ug/kg	25	SW 0260B	03/30/2000	870
Bromoform	<27	ug/kg	25	SW 02008	03/30/2000	870
nomethane	<108	ug/kg	100	SW 8260B	03/30/2000	870
utylbenzene	<27	ug/kg	25	SW 8260B	03/30/2000	870
sec-Butylbenzene	<27	ug/kg	25	SW 8250B	03/30/2000	870
tert-Butylbenzene	<27	ug/kg	25	SW 8260B	03/30/2000	870
Carbon Tetrachloride	<27	ug/kg	25	SW 8260B	03/30/2000	870
Chlorobenzene	<27	ug/kg ug/kg	25	SW 8260B	03/30/2000	870
Chlorodibromomethane	~27	ug/kg	45 25	SW 8260B	03/30/2000	870
Chloroethane	<38	ug/kg	25	SW 8260B	03/30/2000	870
Chloroform	<27	ug/kg	35	SW 8260B	03/30/2000	870
Chloromethane	<37	ug/kg	25	SW 8260B	03/30/2000	870
2-Chlorotoluene	<27	ug/kg	30	SW 8260B	03/30/2000	870
4-Chlorotoluene	~27	ug/kg	25	SW 8260B	03/30/2000	870
1,2-Dibromo-3-Chloropropane	<54	ug/kg	25	SW 8260B	03/30/2000	870
1,2-Dibromoethane (EDB)	<27	ug/kg	50	SW 8260B	03/30/2000	870
Dibromomethane	~27	ug/kg	25	SW 8260B	03/30/2000	870
1,2-Dichlorobenzene	<27	ug/kg	45	SW 8260B	03/30/2000	870
1,3-Dichlorobenzene	<27	ug/kg	25	SW 8260B	03/30/2000	870
1,4-Dichlorobenzene	<27	ug/kg	25	SW 8260B	03/30/2000	870
Dichlorodifluoromethane	<27	ug/kg	25	SW 8260B	03/30/2000	870
1,1-Dichloroethane	<27	ug/kg	25	SW 8260B	03/30/2000	870
1,2-Dichloroethane	<27	ug/kg	25	SW 8260B	03/30/2000	870
1,1-Dichloroethene	<27	ug/kg	25	SW 8260B	03/30/2000	870
cis-1,2-Dichloroethene	<27	ug/kg	25	SW 8260B	03/30/2000	870
trans-1,2-Dichloroethene	<27	ug/kg	25	SW 8260B	03/30/2000	870
1,2-Dichloropropane	<27	ug/kg	25	SW 8260B	03/30/2000	870
1,3-Dichloropropane	<27	ug/kg	25	SW 8260B	03/30/2000	870
2,2-Dichloropropane	<27	ug/kg	25	SW 8260B	03/30/2000	870
1,1-Dichloropropene	<27	ug/kg	25	SW 8260B	03/30/2000	870
-1,3-Dichloropropene	<27	ug/kg	25	SW 8260B	03/30/2000	870
	~27	ug/kg	25	SW 8260B	03/30/2000	870
Di-isopropyl ether	<27 27	ug/kg	25	SW 8260B	03/30/2000	870
Ethvlbenzene	<27	ug/kg	25	SW 8260B	03/30/2000	870
· · · · · · · · · · · · · · · · · · ·	<27	ug/kg	25	SW 8260B	03/30/2000	870

ANALYTICAL REPORT

Ms. Jenny Johanson HYDRO-SEARCH, INC. 175 N. Corporate Drive Brookfield, WI 53045

04/03/2000 Job No: 00.02330 Sample No: 388459 Account No: 39150 Page 21 of 28

JOB DESCRIPTION: N127 NPL PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB 2008-28 N127 NPL Rec'd 4 degrees C

Date/Time Taken: 03/21/2000 UNKNOWN

Parameter	Results	Units	Reporting Limit	Method	Date Analyzed	Prep/Run Batch
Hexachlorobutadiene	<38	ug/kg	35	SW 8260B	03/30/2000	070
Isopropylbenzene	<27	ug/kg	25	SW 82608	03/30/2000	870
p-Isopropyltoluene	<27	ug/kg	25	SW 9260D	03/30/2000	870
Methylene Chloride	<54	ug/kg	50	SW 8260B	03/30/2000	870
Methyl-t-butyl ether	<27	ug/kg	25	SW 0260B	03/30/2000	870
Naphthalene	<27	ug/kg	25	SW 8260B	03/30/2000	870
n-Propylbenzene	<27	ug/kg	25	SW 6260B	03/30/2000	870
rene	<27	ug/kg	20	SW 8260B	03/30/2000	870
, 1, 2-Tetrachloroethane	~27	ug/kg	20	SW 8260B	03/30/2000	870
1,1,2,2-Tetrachloroethane	~27	ug/kg	25	SW 8260B	03/30/2000	870
Tetrachloroethene	62	ug/kg	25	SW 8260B	03/30/2000	870
Toluene	<03	ug/kg	25	SW 8260B	03/30/2000	870
1.2.3-Trichlorobenzene	<27	ug/kg	25	SW 8260B	03/30/2000	870
1.2.4-Trichlorobenzene	<27	ug/kg	25	SW 8260B	03/30/2000	870
1.1.1-Trichloroethane	<27	ug/kg	25	SW 8260B	03/30/2000	870
1.1.2-Trichloroethane	<27	ug/kg	25	SW 8260B	03/30/2000	870
Trichloroethene	<27	ug/kg	25	SW 8260B	03/30/2000	870
Trichlorofluoromethane	27	ug/kg	25	SW 8260B	03/30/2000	870
1 2 2-Trichlerenne	<27	ug/kg	25	SW 8260B	03/30/2000	870
1.2.4 Trimethallesses	<27	ug/kg	25	SW 8260B	03/30/2000	870
1,2,4-IIImethylbenzene	<27	ug/kg	25	SW 8260B	03/30/2000	870
1,3,5-Trimethylbenzene	<27	ug/kg	25	SW 8260B	03/30/2000	870
Vinyi Chloride	<27	ug/kg	25	SW 8260B	03/30/2000	870
Aylenes, Total	<38	ug/kg	35	SW 8260B	03/30/2000	870
Surr: Dibromofluoromethane	100.4	8	92-111	SW 8260B	03/30/2000	870
Surr: Toluene-d8	96.6	ક	91-100	SW 8260B	03/30/2000	870
surr: Bromofluorobenzene	96.4	*	87-104	SW 8260B	03/30/2000	870

Test/America

•

QUALITY CONTROL REPORT CONTINUING CALIBRATION VERIFICATION

Ms. Jenny Johanson HYDRO-SEARCH, INC. 175 N. Corporate Drive Brookfield, WI 53045 04/03/2000

Job No: 00.02330 Account No: 39150

Page 22 of 28

Job Description: N127 NPL

_	Run	True	Observed	Percent	Control	
Parameter	Batch	Value	Value	Recovery	Limits	Analvet
VOC - METHANOL - 82608				-		
Benzene	070					
Bromoform	870	50.0	45.1	90.2		mai
Chlorobenzene	870	50.0	45.9	91.8		mai
Chloroform	870	50.0	50.2	100.4		mai
Chloromethane	870	50.0	46.9	93.8	80 - 120	mai
1.1-Dichloroethane	870	50.0	51.2	102.4		mai
1.1-Dichloroethene	870	50.0	45.8	91.6		mai
1.2-Dichloropropana	870	50.0	56.1	112.2	80 - 120	mai
Di-isopropyl ether	870	50.0	42.6	85.2	80 - 120	mai
St isopropyi ether	870	50.0	40.0	80.0		mai
Methyl_t_butyl_other	870	50.0	49.5	99.0	80 - 120	mai
1 1 2 2-Tetrachlomosthere	870	50.0	48.6	97.2		mai
Toluene	870	50.0	43.6	87.2		mai
Trichloroothone	870	50.0	50.5	101.0	80 - 120	mai
1.2 A-Trimothylbonese	870	50.0	49.9	99.8		mai
1 3 5-Trimethylbenzene	870	50.0	49.1	98.2		mai
Vinvl Chlorido	870	50.0	49.3	98.6		mai
Yulenes Total	870	50.0	51.7	103.4	80 - 120	mai
Surry Dibromoflusser	870	150	153	102.0		mai
Surr. Tolucno do	870	50.0	48.6	97.2	85 - 118	mai
Surry Broneflyersham	870	50.0	49.4	98.8	91 - 109	mai
VOC METUNNOL SACAR	870	50.0	48.0	96.0	85 - 113	mai
Benzeno						
Bromoform	871	50.0	48.2	96.4		mai
Chlorobongene	871	50.0	55.4	110.8		mai
Chloroform	871	50.0	54.7	109.4		mai
Chloromothene	871	50.0	45.2	90.4	80 - 120	mai
l 1-Dichleresthere	871	50.0	45.1	90.2		mai
1,1-Dichloroethane	871	50.0	43.3	86.6		mai
1.2-Digbloroproper-	871	50.0	55.0	110.0	80 - 120	mai
Di-icorropul athau	871	50.0	43.8	87.6	80 - 120	mai
Ethylbonzona	871	50.0	41.8	83.6		mai
Mothyl t butch all	871	50.0	51.9	103.8	80 - 120	mai
1 1 2 2 Motorshier	871	50.0	47.7	95.4	·•	mai
Tolueno	871	50.0	45.4	90.8		mai
Toidene Triablanachtan	871	50.0	55.6	111.2	80 - 120	mai
1 D A Weinschaft	871	50.0	56.2	112.4		mai
1,2,4-1rimetnyibenzene	871	50.0	52.7	105.4		mai
(,), 5-Trimetnylbenzene	871	50.0	53.3	106.6		mai
Vilyi Unioride	871	50.0	47.0	94.0	80 - 120	mai
Ayrenes, Total	871	150	165	110.0		mai
surr: Dibromotluoromethane	871	50.0	43.9	87.8	85 - 118	mai
						and the state of t

QUALITY CONTROL REPORT CONTINUING CALIBRATION VERIFICATION

04/03/2000

Job No: 00.02330 Account No: 39150

Page 23 of 28

Job Description: N127 NPL

Ms. Jenny Johanson HYDRO-SEARCH, INC.

175 N. Corporate Drive Brookfield, WI 53045

Parameter	Run Batch	True Value	Observed Value	Percent Recovery	Control Limits	Analyst
Surr: Toluene-d8	871	50.0	50.1	100.2	91 - 109	mai
Surr: Bromofluorobenzene	871	50.0	48.7	97.4	85 - 113	mai

Test/America

INCORPORATE

QUALITY CONTROL REPORT BLANKS

Ms. Jenny Johanson HYDRO-SEARCH, INC. 175 N. Corporate Drive Brookfield, WI 53045

÷

04/03/2000

Job No: 00.02330 Account No: 39150

Page 24 of 28

Job Description: N127 NPL

Darameter	Prep	Run	Blank	Reporti	nq
ratameter	Batch	Batch	Result	Limit	Units
VOC - METHANOL - 8260B					
Benzene					
Bromobenzene		870	<25	25	ug/kg
Bromochloromethane		870	<25	25	ug/kg
Bromodichloromethane		870	<25	25	ug/kg
Bromoform		870	<25	25	ug/kg
Bromomethane		870	<25	25	ug/kg
n-Butvlbenzene		870	<100	100	ug/kg
sec-Butylbenzene		870	<25	25	ug/kg
tert-Butvlbenzene		870	<25	25	ug/kg
Carbon Tetrachloride		870	<25	25	ug/kg
Chlorobenzene		870	<25	25	ug/kg
Chlorodibromomethane		870	<25	25	ug/kg
Chloroethane		870	<25	25	ug/kg
Chloroform		870	<35	35	ug/kg
Chloromethane		870	<25	25	ug/kg
2-Chlorotoluere		870	<30	30	ug/kg
4-Chlorotoluene		870	<25	25	ug/kg
1.2-Dibromo-3-Chloropropane		870	<25	25	ug/kg
1.2-Dibromoethane (FDR)		870	<50	50	ug/kg
Dibromomethane		870	<25	25	ug/kg
1.2-Dichlorobenzene		870	<25	25	ug/kg
1.3-Dichlorobenzene		870	<25	25	ug/kg
1.4-Dichlorobenzene		870	<25	25	ug/kg
Dichlorodifluoromethano		870	<25	25	ug/kg
1.1-Dichloroethane		870	<25	25	ug/kg
1,2-Dicbloroethane		870	<25	25	ug/kg
1.1-Dichloroethene		870	<25	25	ug/kg
cis-1.2-Dichloroethene		870	<25	25	ug/kg
trans-1.2-Dichloroethono		870	<25	25	ug/kg
1,2-Dichloropropane		870	<25	25	ug/kg
1.3-Dichloropropane		870	<25	25	ug/kg
2.2-Dichloropropane		870	<25	25	ug/kg
1,1-Dichloropropene		870	<25	25	ug/kg
Cis-1.3-Dichloropropene		870	<25	25	ug/kg
trans-1.3-Dichloropropene		870	<25	25	ug/kg
Di-isopropyl ether		870	<25	25	ug/ka
		870	<25	25	ug/kg

Method blank results exceed control limits when results are higher than the highest of any of the following: 1 - The limit of detection; 2 - Five percent of the regulatory limit for that analyte; 3 - Five percent of the measured concentration in the sample. NR149.14 (3)d

QUALITY CONTROL REPORT BLANKS

Ms. Jenny Johanson HYDRO-SEARCH, INC. 175 N. Corporate Drive Brookfield, WI 53045 04/03/2000

Job No: 00.02330 Account No: 39150 -

Page 25 of 28

Job Description: N127 NPL

D	Prep	Run	Blank	Reportia	ng
Parameter	Batch	Batch	Result	Limit	Units
Ethylbenzene		870	<25	25	· · · · /]
Hexachlorobutadiene		870	<25	20	ug/kg
Isopropylbenzene		870	<35	33	ug/kg
p-Isopropyltoluene		870	<25	25	ug/kg
Methylene Chloride		870	<50	23	ug/kg
Methyl-t-butyl ether		870	<25	20	ug/kg
Naphthalene		870	<25	25	ug/kg
n-Propylbenzene		870	<25	25	ug/kg
Styrene		870	<25	25	ug/kg
1,1,1,2-Tetrachloroethane		870	<25	25	ug/kg
1,1,2,2-Tetrachloroethane		870	<25	25	ug/kg
Tetrachloroethene		870	<25	20	ug/kg
Toluene		870	<25	25	ug/kg
1,2,3-Trichlorobenzene		870	<25	25	ug/kg
1,2,4-Trichlorobenzene		870	<25	25	ug/kg
1,1,1-Trichloroethane		870	<25	25	ug/kg
1,1,2-Trichloroethane		870	<25	25	ug/kg
Trichloroethene		870	<25	25	ug/kg ug/kg
Trichlorofluoromethane		870	<25	25	ug/kg vg/kg
1,2,3-Trichloropropane		870	<25	25	ug/kg
1,2,4-Trimethylbenzene		870	<25	25	ug/kg
1,3,5-Trimethylbenzene		870	<25	25	ug/kg ug/kg
Vinyl Chloride		870	<25	25	ug/kg
Xylenes, Total		870	< 35	25	ug/kg
Surr: Dibromofluoromethane		870	92.2	92-111	ug/kg s
Surr: Toluene-d8		870	98.0	91-100	° 8-
Surr: Bromofluorobenzene		870	95.6	87-104	9-
VOC - METHANOL - 8260B				07 104	0
Benzene		871	<25	25	ua/ka
Bromobenzene		871	<25	25	ug/kg
Bromochloromethane		871	<25	25	ug/kg
Bromodichloromethane		871	<25	25	ug/kg
Bromoform		871	<25	25	ug/kg
Bromomethane		871	<100	100	ug/kg
n-Butylbenzene		871	<25	25	ug/kg
sec-Butylbenzene		871	<25	25	ug/kg
tert-Butylbenzene		871	<25	25	$\frac{\sqrt{9}}{\sqrt{k}\sigma}$
					~ 3/ ~ 3

Method blank results exceed control limits when results are higher than the highest of any of the following: 1 - The limit of detection; 2 - Five percent of the regulatory limit for that analyte; 3 - Five percent of the measured concentration in the sample. NR149.14 (3)d

Test/America

QUALITY CONTROL REPORT **BLANKS**

Ms. Jenny Johanson HYDRO-SEARCH, INC. 175 N. Corporate Drive Brookfield, WI 53045

04/03/2000

Job No: 00.02330 Account No: 39150

Page 26 of 28

Job Description: N127 NPL

Doromotor	Prep	Run	Blank	Reportin	ng
Falameter	Batch	Batch	Result	Limit	Units
Carbon Tetrachloride		<u> </u>			
Chlorobenzene		871	<25	25	ug/kg
Chlorodibromomethane		871	<25	25	ug/kg
Chloroethane		871	<25	25	ug/kg
Chloroform		871	<35	35	ug/kg
Chloromethane		871	<25	25	ug/kg
2-Chlorotolyene		871	<30	30	ug/kg
4-Chlorotoluene		871	<25	25	ug/kg
1.2-Dibromo-3-Chloropropaga		871	<25	25	ug/kg
1.2-Dibromoethano (EDD)		871	<50	50	ug/kg
Dibromomethane		871	<25	25	ug/kg
1 2-Dichlorobenzono		871	<25	25	ug/kg
1 3-Dichlorobenzene		871	<25	25	ug/kg
1 4-Dichlorobenzene		871	<25	25	ug/kg
Dichlorodiflyonamethau		871	<25	25	ug/kg
1 l-Dichloroothane		871	<25	25	ug/kg
1.2-Dichloroethane		871	<25	25	ug/kg
1.1-Dichloroothane		871	<25	25	ug/kg
Cis-1 2-Dichlorootha		871	<25	25	uq/kq
trans-1 2-Dichlorechene		871	<25	25	ug/kg
1 2-Dichloropropage		871	<25	25	uq/kq
1.3-Dichloropropane		871	<25	25	uq/kq
2.2-Dichloropropane		871	<25	25	ug/kg
1 laDichloropropane		871	<25	25	uq/kq
Lis-1 3-Dichlorennen		871	<25	25	uq/kq
trans_1 3 Dichloropropene		871	<25	25	uq/kq
Disisopropul ather		871	<25	25	ug/kg
Ethylbergene		871	<25	25	uq/kq
Herachlorobutedien-		871	<25	25	ug/kg
Leopropul banages		871	<35	35	uq/kq
n-Isopropultalware		871	<25	25	ug/kg
Methylono Chlendd		871	<25	25	ug/kg
Methylene Chloride		871	190	50	ug/kg
Namhthalasa		871	<25	25	ug/kg
P-Brandbar		871	<25	25	ug/kg
Styropa		871	<25	25	ug/kg
1 1 1 2 Matrix 1 2		871	<25	25	$\frac{-g}{k\sigma}$
+, +, +, 2-letrachloroethane		871	<25	25	ug/kg
					<u> </u>

Method blank results exceed control limits when results are higher than the highest of any of the following: 1 - The limit of detection; 2 - Five percent of the regulatory limit for that analyte; 3 - Five percent of the measured concentration in the sample. NR149.14 (3)d

INCORPORATE

QUALITY CONTROL REPORT

BLANKS

Ms. Jenny Johanson HYDRO-SEARCH, INC. 175 N. Corporate Drive Brookfield, WI 53045 04/03/2000

.

Job No: 00.02330 Account No: 39150

Page 27 of 28

Job Description: N127 NPL

Parameter	Prep Batch	Run Batob	Blank	Reportin	ig
		Bacen	RESUIL	LTWTC	Units
1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Trichlorofluoromethane 1,2,3-Trichloropropane 1,2,4-Trimethylbenzene		871 871 871 871 871 871 871 871 871 871	<25 <25 <25 <25 <25 <25 <25 <25 <25 <25	25 25 25 25 25 25 25 25 25 25 25 25	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
1,3,5-Trimethylbenzene Vinyl Chloride Xylenes, Total Surr: Dibromofluoromethane Surr: Toluene-d8 Surr: Bromofluorobenzene		871 871 871 871 871 871 871	<25 <25 <35 95.0 102.8 97.2	25 25 35 92-111 91-100 87-104	ug/kg ug/kg ug/kg % % %

Method blank results exceed control limits when results are higher than the highest of any of the following: 1 - The limit of detection; 2 - Five percent of the regulatory limit for that analyte; 3 - Five percent of the measured concentration in the sample. NR149.14 (3)d

Test/America

QUALITY CONTROL REPORT LABORATORY CONTROL STANDARD

Ms. Jenny Johanson HYDRO-SEARCH, INC. 175 N. Corporate Drive Brookfield, WI 53045 04/03/2000

Job No: 00.02330 Account No: 39150

Page 28 of 28

Job Description: N127 NPL

Analyte	Prep Batch Number	Run Batch Number	LCS Amount	Units	LCS Result	LCSD Result	LCS Percent Recovery	LCSD Percent Recovery	Control Limits	Relative Percent Difference
VOC - METHANOL - 8260B										
Benzene		870	50.0	ua/ka	41 7	41.2	03.4			
Chlorobenzene		870	50.0	ug/kg	47 1	19.2	03.4	#2.4 DC C		1.2
1,1-Dichloroethene		870	50.0	ug/kg	45 0	40.0	74.Z	96.6		2,5
Ethylbenzene		870	50.0	ug/kg	45.5	46 1	90.0	80.8		10.8
Methyl-t-butyl ether		870	50.0	ug/kg	40.5	40.1	91.0	92.2		1.3
Toluene		870	50.0	wa/ka	10.9	40.0	93.8	97.2		3.6
Trichloroethene		870	50.0	ug/kg	40.7	48.4	93.8	96.8		3.1
1,2,4-Trimethylbenzene		870	50.0	ug/kg	47.L	48.2	94.2	96.4		2.3
1,3,5-Trimethylbenzene		870	50.0	ug/xg	44.4	46.1	88.8	92.2		3.8
Xylenes, Total		870	250	ug/kg	45.0	46.3	90.0	92.6		2.8
Surr: Dibromofluoromethane	1	ຊ7ຄ	50 0	ng∖xg	142	144	94.7	96.0		1.4
Surr: Toluene-d8	ز	370	50.0	ъ 1.	48.3	49.7	96.6	99.4	85 - 118	2.9
Surr: Bromofluorobenzene	, ,	870	50.V 60.0	- T	47.9	49.6	95.8	99.2	91 - 1 09	3.5
VOC - METHANOL - 8260B			10. 0	8	47.3	49.1	94.6	98.2	85 - 113	3.7
Велгеле	\$	171	E0 0							
Chlorobenzene		171	50.0	ug/kg	44.3	43.0	88.6	86, 0		3.0
1,1-Dichloroethene	- -	171	50.0	ug/kg	51.0	51,2	102.0	102.4		0.4
Ethylbenzene	c		50.0 50.0	ug/kg	44.2	36.7	88.4	73.4		18.5
Methyl-t-butyl ether	- -	, 1⊥ i	50.0	ug/kg	49.8	50,2	99.6	100.4		0.8
Toluene	-	71 :	50.0	ug/kg	47.6	46.4	95.2	92.8		2.6
Trichloroethene	6	·/⊥ :	50.0	ug/kg	50.8	52.5	101.6	105.0		3.3
1.2.4-Trimethylbenzene	8	-/1 -	50.0	ug/kg	52.4	52.4	104.8	104.8		0.0
1.3.5-Trimethylbenzene	9	71 5	50.0	ug/kg	49.1	49.1	98.2	98.2		0.0
Xvlenes Total	8	71 5	50.0	ug/kg	49.4	48.8	96.8	97.6		1.2
Sprry Dibromofluoweethews	8	71 1	150	ug/kg	150	151	100.0	100.7		0.7
Surr. Toluene.do	8	71 5	50.0	퇃	45.8	46.2	91.6	92.4	35 - 118	0.9
Surr: Bromofluggeboard	8	71 5	0.0	*	48.7	50.4	97.4	100.8	91 - 1 09	3.4
sair, bromorruoropenzene	8	71 5	0.0	8	48.1	48.4	96.2	96.8 8	35 - 113	0.6

B.02323	REPORT IO.	P.O. NO.	How Privatisë,	Which regulations apply: NPDES/WastewaterKCRA51	COMMENTS								IEMPERATURE UPON RECEIPT	KC Calla B RECEINED LORIAN BY	R 3/24/00
CHAIN OF CI OBY RECORD	CONFAUX HOT GOOD RANS	PROJECT MANNER 1100 FOR 14100 FOR 161		k and type of Contannes	Аргд А Аргд Аргд А Аргд Аргд А Аргд Аргд Аргд А Аргд Аргд Аргд Аргд Аргд Аргд Аргд Аргд								VOLATILES FREE OF HEADSPACE? YES / NO BOTILES SUPPLIED BY LABS	RECEIVED BY: S.M. RECEIVED BY: DATE IM. 3.2.2.3.2.1 FEINKUUSHED BY DATE IM. 3.2.2.3.2.1 FEINKUUSHED BY DATE IM.	REMARKS:
That, manian	TCONTINUE TCO	602 Commerce Drive / Watertown, Wt 53094 Phone: (920) 261-1660 / Fax: (920) 261-8120	Forti Brind Berlin Brind	NAME	DATE IIME SAMPLE (D/DESC 8: PTION	3-21 10: 20 53 50 mp E - 16 10. 25 53 50mp E - 20	10.45 Schot - 24	10.50 5/5 SUMPE - 28	5B 2003 - 16 5B 2003 - 20	58 2303-24	V 56 2008 - 24		CONDITION OF SAMPLE: BOTTLES INTACTS CONDITION	VELINGUISHED BY DATE THAT THAT THAT THAT THAT THAT THAT T	METHOD OF SHIPMENT: lestAmerica Courier Client

APL Environmental ~22 W. Calumet Rd., Milwaukee, WI 53223 .one: (414) 355-5800 Fax: (414) 355-3099	Project N STA-RI Project II	Project Name: STA-RITE DELEVAN Project ID:						Project Manager: Company: Address: City/State/Zip					Jenny Johanser HSI Geotrans 175 N. Corporate Dr #700 Brockfield, W1 53045 Phone: Fax: 262792-1282 262792-1311					#760 45 2-1310	
Samples received "On Ice" Tempera Test Required	itore:	c .	Samj	ple i	ntac	t/noi	len	king		А. В. С.	HCI HN(NaC	D3 DH	E, F, G,	Met Filto Nor	than ered te	ol	Pre: Filti	serva	ation / n Code
VOCS Dry WT	50									р. 	1123		11.						EG
Additional Information:	Collection Time									•									COC#
1 402 JAr with Methianol Por VOUs	Collection Date	12-20-97	12-20-99	12-20-59	12-20-95	66-02-21	12-20-99	12-20-95	12-20-99	12-20-99	12-20-39								
) Plastic JAr, no Preservative, for Dry WT.	Sample ID	58-2005-16	58-2008-20	56-2008-24	5B-2W8-26	58-2008-28	SB-SumpE-16	58-SumpE-20	58- SumpEr 24	58-JumpE-26	SB-SumpE-28	-		-					
	Lab ID																		
			2	3	4	5	6	7	8	2	10	 11	12	13	14	15	16	17	

Originals Lab robults

,

A CONTRACTOR OF A CONTRACTOR O		
Relinquished By:	Date/Time Received By:	Special Instructione:
		special instructions.
Manuel Planet	12120 KC 1620 Shot2 Thinks	
Thomas K Coming 101		
· /		
I	└·····//// L	

•

سر .

ORGANIC REPORT

6222 W. Calumet Ed., Milwaukee, WI 53223 Phone: (414) 355-5800 Fax: (414) 355-3099

		······
Jenny Johanson	•••••••••••••••••••••••••••••••	CO.
HSI Geotrans		ెర్టిట్టి కె. సి. సి. సి. సి. సి. సి. సి. సి. సి. సి
175 N. Corporate Drive	Suite 400	
Brookfield, WI 53045		

WDNR# 241340550

с,

1

in hand in

1257 & N129

INVOICE NUMBER:	991062
DATE REPORTED:	29-Dec-99
DATE RECEIVED:	21-Dec-99
SAMPLE TEMP (C):	Rec On Ice
PROJECT ID:	
PROJECT NAME:	STA-RITE DELEVAN

Dry Weight and Dilution Factor Corrected										
Compound	LUST		LUST	LUST	NOVA	Dilution				Date of
	Result	Units	LOD	LOQ	LOD	Factor	RQ	Method	Analyst	Analysis
Sample Number 18099	D								 *****	
Clime ID OR TOOR 45	rercem Solla:	93%	QC Bate	h Number: S	<i>193013</i>	Sample a	nalyzęd w	mhin I Da	y(s) from	collection.
CHEM 112 SB-2008-16	Sample Des	emption:				· · · · · ·	Collection	:: <i>12/207</i> 99	Time	
1,1,1-1 richloroethane	<250*	ug/kg	250	600	58	10		8260	cps	12/27/99
1,1,2,2-1 etrachioroethane	<250*	ug/kg	250	600	73	10		8260	cps	12/27/99
1,1,2-1 Pichloroethane	<250*	ug/kg	250	600	73	10		8260	cps	12/27/99
1,1-Dichloroethane	<250*	ug/kg	250	600	38	10		8260	cps	12/27/99
1,1-Dichloroethene	<250*	ug/kg	250	600	89	10		8260	cps	12/27/99
1,2,3-1 richlorobenzene	<250*	ug/kg	250	600	55	10		8260	cps	12/27/99
1,2,4-1 Hichlorobenzene	<250*	ug/kg	250	600	40	10		8260	cps	12/27/99
1,2,4-1 rimethylbenzene	<250*	ug/kg	250	600	73	10		8260	cps	12/27/99
1,2-Dibromo-3-chloropropan	<250*	ug/kg	250	600	148	10		8260	cps	12/27/99
1,2-Dichlorobenzene	<250*	ug/kg	250	600	51	10		8260	cps	12/27/99
1,2-Dichloroethane	<250*	ug/kg	250	600	49	10		8260	cps	12/27/99
1,2-Dichloropropane	<250*	ug/kg	250	600	58	10		8260	CDS	12/27/99
1,3,5-Trimethylbenzene	<250*	ug/kg	250	600	57	10		8260	CDS	12/27/99
1,3-Dichlorobenzene	<250*	ug/kg	250	600	47	10		8260	cns	12/27/99
1,3-Dichloropropane	<250*	ug/kg	250	600	53	10		8260	CDS	12/27/99
1,4-Dichlorobenzene	<250*	ug/kg	250	600	36	10		8260	CDS	12/27/99
2,2-Dichloropropane	<250*	ug/kg	250	600	100	10		8260	ens	12/27/99
2-Chlorotoluene	<250*	ug/kg	250	600	38	10		8260	cos	12/27/09
4-Chlorotoluene	<250*	ug/kg	250	600	62	10		8260	eps cos	12/27/99
Benzene	<250*	ug/kg	250	600	47	10		8260	cns	12/27/00
Bromobenzene	<250*	ug/kg	250	600	48	10		8260	cos	12/27/00
Bromodichloromethane	<250*	ug/kg	250	600	64	10		8260	cns	12/27/90
Carbon tetrachloride	<250*	ug/kg	250	600	54	10		8260	cps cms	12/27/99
Chlorobenzene	<250*	ug/kg	250	600	51	10		8260	eps	12/27/00
Chloroethane	<290	ug/kg	250	600	290	10		8260	cps	12/27/99
Chloroform	<250*	ug/kg	250	600	68	10		8260	eps one	12/27/99
Chloromethane	<250*	ug/kg	250	600	193	10		8260	eps one	12/27/97
cís-1,2-Dichloroethene	9800	ug/kg	250	600	50	10		8260	ops	12/2//72
Dibromochloromethane	<250*	ug/kg	250	600	53	10		8260	clis See	12/27/99
Dichlorodifluoromethane	<250*	ug/kg	250	600	89	10		8260	cps	12/27/99
Ethylbenzene	<250*	ug/kg	250	600	39	10		8260	cps	12/27/99
Hexachlorobutadiene	<250*	ug/kg	250	600	56	10		8260	cps	32/27/99
lsopropyl Ether	<250*	ug/kg	250	600	80	10		8260	cps	12/27/99
lsopropylbenzene	<250*	ug/kg	250	600	41	10		0200 9260	cps	12/27/99
n&p-xylene	<250*	ug/kg	250	600	01	10		020U 9760	cps	12/27/99
Methylenc chloride	<250*	ug/kg	250	600	190	10		620U 9720	cps	12/27/99
мтве	<250*	ug/ke	250	600	57	10		8200	cps	12/27/99
-Butylbenzene	<250*	no/ko	250	600	57	10		8260	cps	12/27/99
-Propylbenzene	<250*	ug/ka	250	600	57	10		8260	cps	12/27/99
	~200	ug/ng	2002	000	62	10		8260	cps	2/27/99

8222 W. Calamet Rd., Milwaukee, WI 53223 Phone: (414) 355-5800 Fax: (414) 355-3099

Jenny Johanson

HSI Geotrans

175 N. Corporate Drive Suite 100 Brookfield, WI 53045

ORGANIC REPORT

WDNR# 241340550

INVOICE NUMBER:991062DATE REPORTED:29-Dec-99DATE RECEIVED:21-Dec-99SAMPLE TEMP (C):Rec On IcePROJECT ID:PROJECT NAME:STA-RITE DELEVAN

Dry Wei	ight and Dilution Fact	or Corrected	1							
Compound	LUST Result	Units	LUST LOD	LUST LOQ	NOVA LOD	Dilution Factor	RQ	Method	Analyst	Date of Analysis
Naphthalene	<250*	ug/kg	250	600	1]4	10		8260		17/77/99
o-xylene	<250*	ug/kg	250	600	44	10		8260	cns	12/27/99
p-Isopropyltoluene	<250*	ug/kg	250	600	45	10		8260	cns	12/27/99
sec-Butylbenzene	<250*	ug/kg	250	600	74	10		8260	cns	12/27/99
tert-Butylbenzene	<250*	ug/kg	250	600	51	10		8260	cns	12/27/99
Tetrachloroethene	20600	ug/kg	250	600	72	10		8260	CDS	12/27/99
Tolucne	<250*	ug/kg	250	600	82	10		8260	cros	12/27/99
trans-1,2-Dichloroethene	<250*	ug/kg	250	600	41	10		8260	cne	12/27/99
Trichloroethene	36500	ug/kg	250	600	40	10		8260	cos	12/27/99
Trichlorofluoromethanc	<250*	ug/kg	250	600	85	10		8260	cos	17/77/09
Vinyl chloride	<250*	ug/kg	250	600	54	10		8260	cps	12/27/99

Sample Number: 18100	Percent Solid:	92.2%	OC Batel	1 Numher 1	202747	Samala and wad u	(1)	ran state to a	
Client ID: SB-2008-20	Sample Des	cription	2			Collection	12/20/9	19157 Jron 19 Tim	n coneciion. e
1,1,1-Trichloroethane	<25*	ug/kg	25	60		10	8760		12/27/00
1,1,2,2-Tctrachloroethane	<25*	ug/kg	25	60	7	1.0	8760	cps	12/27/99
1,1,2-Trichloroethane	<25*	ug/kg	25	60	, 7	1.0	8260	cps	12/27/99
1,1-Dichloroethane	<25*	ug/kg	25	60	4	1.0	8260	cps	12/27/99
1,1-Dichloroethene	<25*	ug/kg	25	60	. 9	1.0	8260	cps	12/27/99
1,2,3-Trichlorobenzene	<25*	ug/kg	25	60	5	1.0	8260	cps	12/27/99
1,2,4-Trichlorobenzene	<25*	ug/kg	25	60	4	1.0	8260	cps	12/27/99
1,2,4-Trimethylbenzene	<25*	ug/kg	25	60	. 7	1.0	0200 0240	cps	12/27/99
1,2-Dibromo-3-chloropropan	<25*	ug/kø	25	60	, 15	1.0	8260	cps	12/27/99
1,2-Dichlorobenzene	<25*	us/kg	25	60	5	1.0	8200	cps	12/27/99
1,2-Dichloroethane	<25*	-вв 119/ko	25	60	5	1.0	8200	cps	12/27/99
1,2-Dichloropropane	<25*	uø/ko	25	60	5	1.0	8260	cps	12/27/99
1,3,5-Trimethylbenzene	<25*	-6''-5 UØ/kø	25	60	6	1.0	8200	cps	12/27/99
1,3-Dichlorobenzene	<25*	-86 110/ko	25	60	4	1.0	8260	cps	12/27/99
1,3-Dichloropropane	<25*	-52 UØ/kø	25	60	ר ד	1.0	8260	cps	12/27/99
1,4-Dichlorobenzene	<25*	nø/kø	25	60	4	1.0	8260	cps	12/27/99
2,2-Dichloropropane	<25*	no/ka	25	60	-4 10	1.0	8260	cps	12/27/99
2-Chlorotoluene	<25*	- <u>s</u>	25	60	10	1.0	8260	cps	12/27/99
4-Chlorotoluene	<25*	ч <u>ы</u> не 1197/24	25	60	4	1.0	8260	cps	1 2/27/99
Benzene	<25*	ug/kg	25	60	0 5	1.0	8260	cps	12/27/99
Bromobenzene	<25*	ug/ka	25	60	5	1.0	8260	cps	12/27/99
Bromodichloromethane	 <25*	ua/ka	25	60	с С	1.0	N260	cps	12/27/99
Carbon tetrachloride	<2.5*	ug/kg	25	60	ь с	1.0	8260	cps	12/27/99
Chlorobenzene	<25*	ug/ng ha/ka	23	00	3 •	1.0	8260	cps	12/27/99
Chloroethane	<79	ug/ng ug/hg	25	00	с С	1.0	8260	cps	12/27/99
Chloroform	<25*	ug/hg	23	60	29	1.0	8260	cps	12/27/99
Chloromethane	~42*	чg/кg	25	60	7	1.0	8260	cps	12/27/99
	<u>∼</u> 23*	ug/kg	25	60	19	1.0	8260	cps	12/27/99

8222 W. Calumet Rd., Milwaukee, Wi 53223 Phone: (414) 355-5800 Fax: (414) 355-3099

Jenny Johanson HSI Geotrans 175 N. Corporate Drive Suite 100

Brookfield, WI 53045

ORGANIC REPORT

WDNR# 241340550

PROJECT NAME:

STA-RITE DELEVAN

Dry Weigl	ht and Dilution Fac	tor Corrected	1							
Compound	LUST		LUST	LUST	NOVA	Dilution				Date of
	Result	Units	LOD	LOQ	LOD	Factor	RQ	Method	Analyst	Analysis
cis-1,2-Dichloroethene	106	ug/kg	25	60	5	1.0		8260	cps	12/27/99
Dibromochloromethane	<25*	ug/kg	25	60	5	1.0		8260	cps	12/27/99
Dichlorodifluoromethane	<25*	ug/kg	25	60	9	1.0		8260	cps	12/27/99
Ethylbenzene	<25*	ug/kg	25	60	4	1.0		8260	cps	12/27/99
Hexachlorobutadiene	<25*	ug/kg	25	60	6	1.0		8260	cps	12/27/99
Isopropyl Ether	<25*	ug/kg	25	60	8	1.0		8260	cps	12/27/99
Isopropylbenzene	<25*	ug/kg	25	60	4	1.0		8260	CDS	12/27/99
m&p-xylene	<25*	ug/kg	25	60	9	1.0		8260	cos	12/27/99
Methylene chloride	<25*	ug/kg	25	60	19	1.0		8260	cps	12/27/99
MTBE	<25*	ug/kg	25	60	5	1.0		8260	cps	12/27/99
n-Butylbenzene	<25*	ug/kg	25	60	6	1.0		8260	CDS	12/27/99
n-Propylbenzene	<25*	ug/kg	25	60	6	1.0		8260	cps	12/27/99
Naphthalene	<25*	ug/kg	25	60	11	1.0		8260	CDS	12/27/99
o-xylene	<25*	ug/kg	25	60	4	1.0		8260	CDS	12/27/99
p-Isopropyltoluene	<25*	ug/kg	25	60	5	1.0		8260	cps	12/27/99
sec-ButyIbenzene	<25*	ug/kg	25	60	7	1.0		8260	ens	12/27/99
tert-Butylbenzene	<2.5*	ug/kg	25	60	5	1.0		8260	cos	12/27/99
Tetrachloroethene	121	ug/kg	25	60	7	1.0		8260	CDS	12/27/99
Toluene	<25*	ug/kg	25	60	8	1.0		8260	CDS	12/27/99
trans-1,2-Dichloroethene	<25*	ug/kg	25	60	4	1.0		8260	CDS	12/27/99
Trichloroethene	118	ug/kg	25	60	4	1.0		8260	CDS	12/27/99
Trichlorofluoromethane	<25*	ug/kg	25	60	9	1.0		8260	CDS	12/27/99
Vinyl chloride	<25*	ug/kg	25	60	5	1.0		8260	cos	12/27/99
									-r-	

Sample Number: 18101	Percent Solid:	23 %	QC Batc	h Number:	993043	Sample anal	vzed within 7 De	nys) fra	n collection.
Client ID: SB-2008-24	Sample Desc	ription:				Coll	ection: 12/20/99) 71m	e:
1,1,1-Trichloroethane	<500*	ug/kg	500	1200	116	20	8260	CDS	12/27/99
1,1,2,2-Tetrachloroethane	<500*	ug/kg	500	1200	146	20	8260	CDS	12/27/99
1,1,2-Trichloroethane	<500*	ug/kg	500	1200	147	20	8260	CDS	12/27/99
1,1-Dichloroethane	<500*	ug/kg	500	1200	76	20	8260	cps	12/27/99
1,1-Dichloroethene	<500*	ug/kg	500	1200	178	20	8260	CDS	12/27/99
1,2,3-Trichlorobenzenc	<500*	ug/kg	500	1200	110	20	8260	CDS	12/27/99
1,2,4-Trichlorobenzene	<500*	ug/kg	500	1200	79	20	8260	CDS	12/27/99
1,2,4-Trimethylbenzene	1050	ug/kg	500	1200	147	20	8260	cps	12/27/99
1,2-Dibromo-3-chloropropan	<500*	ug/kg	500	1200	295	20	8260	cros	12/27/99
1,2-Dichlorobenzene	<500*	ug/kg	500	1200	101	20	8260	CDS	12/27/99
1,2-Dichloroethane	<500*	ug/kg	500	1200	97	20	8260	cos	12/27/99
1,2-Dichloropropane	<500*	ng/kg	500	1200	116	20	8260	cns	12/27/99
1,3,5-Trimethylbenzene	1810	ug/kg	500	1200	114	20	8260	cns	12/27/99
1,3-Dichlorobenzene	<500*	ug/kg	500	1200	94	20	8260	CDS	12/27/99
1,3-Dichloropropane	<500*	ug/kg	500	1200	107	20	8260	cps	12/27/99

\$222 W. Calumet Rd., Milwaukee, WI 53223 Phone: (414) 355-5800 Fax: (414) 355-3099

Jenny Johanson

HSI Geotrans

175 N. Corporate Drive Suite 100

Brookfield, WI 53045

ORGANIC REPORT

STA-RITE DELEVAN

WDNR# 241340550

INVOICE NUMBER: 991062 DATE REPORTED: 29-Dec-99 DATE RECEIVED: 21-Dec-99 SAMPLE TEMP (C); Rec On Ice PROJECT ID: PROJECT NAME:

Dry Weight and Dilution Factor Corrected LUST LUST LUST NOVA Dilution Date of Compound Result LOD LOQ Units LOD RQ Factor Method Analyst Analysis 1,4-Dichlorobenzene <500* ug/kg 500 1200 73 20 8260 12/27/99 cps 2.2-Dichloropropane <500* ug/kg 500 1200 200 20 8260 cps 12/27/99 2-Chlorotoluene <500* ug/kg 500 1200 76 20 8260 12/27/99 ¢ps 4-Chlorotoluene <500* 500 ug/kg 1200 124 20 8260 12/27/99 cps Benzene <500* 500 ug/kg 1200 94 20 8260 12/27/99 cps Bromobenzene <500* 500 ug/kg 1200 96 20 8260 12/27/99 CDS Bromodichloromethane <500* ug/kg 500 1200 129 20 8260 cps 12/27/99 Carbon tetrachloride <500* 500 ug/kg 1200 108 20 8260 cps 12/27/99 Chlorobenzene <500* ug/kg 500 1200 101 20 8260 12/27/99 cps Chloroethane <579 ug/kg 500 1200 579 20 8260 12/27/99 cps Chloroform <500* ug/kg 500 1200 137 20 8260 cps 12/27/99 Chloromethane <500* ug/kg 500 1200 386 20 8260 12/27/99 cps cis-1.2-Dichloroethene <500* ug/kg 500 1200 100 208260 cps 12/27/99 Dibromochloromethane <500* ug/kg 500 1200 105 20 8260 12/27/99 cps Dichlorodifluoromethane <500* ug/kg 500 1200 178 20 8260 12/27/99 cps Ethylbenzene 1470 ug/kg 500 1200 78 20 8260 12/27/99 CDS Hexachlorobutadiene <\$00* ug/kg 500 1200 112 20 8260 cps 12/27/99 **Isopropyl Ether** <500* ug/kg 500 1200 160 20 8260 12/27/99 cps Isopropylbenzene <500* ug/kg 500 1200 82 20 8260 cps 12/27/99 m&p-xylene 2280 ug/kg 500 1200 181 20 8260 12/27/99 cps Methylene chloride <500* ug/kg 500 1200 379 20 8260 12/27/99 cps MTBE <500* ug/kg 500 1200 103 208260 12/27/99 cps n-Butylbenzene <500* ug/kg 500 1200 113 20 8260 cps 12/27/99 n-Propylbenzene <500* ug/kg 500 1200 123 20 8260 12/27/99 cps Naphthalene <500* ug/kg 500 1200 229 20 8260 cps 12/27/99 o-xylene 9220 ug/kg 500 1200 88 20 8260 12/27/99 cps p-Isopropyltoluene 3940 ug/kg 500 1200 90 20 8260 12/27/99 cps sec-Butylbenzene 1710 ug/kg 500 1200 148 20 8260 12/27/99 cps tert-Butylbenzene <500* ug/kg 500 1200 102 20 8260 cps 12/27/99 Tetrachloroethene 92800 ug/kg 500 1200 144 20 8260 cps 12/27/99 Ториспе <500* ug/kg 500 1200 164 20 8260 cps 12/27/99 trans-1,2-Dichloroethene <500* ug/kg 500 1200 82 20 8260 12/27/99 cps Trichloroethene 2840 ug/kg 500 1200 80 20 8260 12/27/99 cps Trichlorofluoromethanc <500* ug/kg 500 1200 170 20 8260 12/27/99 cpş Vinyl chloride <500* ug/kg \$00 1200 107 20

Sample Number: 18102 p Client ID: SB-2008-26 S	ercent Solid: ample Desc.	91.7% ription:	QC Batcl	h Number;	993043	Sample am Co	ilyzed within 7 Day diection: 12720/99	(s) fro Tur	m collection, w
1,1,1-Trichloroethane	<500*	ug/kg	500	1200	116	20	8760		10/07/00
1,1,2,2-Tetrachloroethane	<500*	ug/kg	500	1200	146	20	8260	cns	12/27/99
1,1,2-Trichloroethane	<500*	ug/kg	500	1200	147	20	8260	cps	12/27/99

* According to LUST Release News, October 1994 Volume 4, Number 5, ; Laboratories are not required to report sample results that are below 25 ug/kg, but are required to report their actual MDL on the report.

12/27/99

8260

cps

8222 W. Calumet Rd., Milwaukee, WI 53223 Phone: (414) 355-5808 Fax: (414) 355-3099

Jenny Johanson

HSI Geotrans

175 N. Corporate Drive Suite 100

Brookfield, WI 53045

ORGANIC REPORT

WDNR# 241340550

991062 INVOICE NUMBER: DATE REPORTED: 29-Dec-99 21-Dec-99 DATE RECEIVED: SAMPLE TEMP (C): Rec On Ice PROJECT ID: PROJECT NAME:

STA-RITE DELEVAN

Dry Weigi	ht and Dilution Fact	or Corrected							_	
	LUST		LUST	LUST	NOVA	Dilution				Data of
Compound	Result	Units	LOD	LOQ	LOD	Factor	RQ	Method	Analyst	Analysis
1,1-Dichloroethane	<500*	us/ko	500		76	20		¥760	· · · · ·	10/07/00
1,1-Dichloroethene	<500*	ng/ka	500	1200	179	20		0200	cps	12/27/99
1,2,3-Trichlorobenzene	<500*	ng/ko	500	1200	110	20		020U 0120	cps	12/27/99
1,2,4-Trichlorobenzene	<500*	ng/kg	500	1200	70	20		8260	cps	12/27/99
1,2,4-Trimethylbenzene	15500		500	1200	147	20		8260	cps	12/27/99
1,2-Dibromo-3-chloropropan	<500*	ng/kg	500	1200	295	20		8200	cps	12/27/99
1,2-Dichlorobenzene	<500*	110/kg	500	1200	101	20		8200	cps	12/27/99
1,2-Dichloroethane	<500*	110/kg	500	1200	07	20		8200	cps	12/27/99
1,2-Dichloropropane	<500*	nø/kø	500	1200	116	20		0200 0260	cps	12/27/99
1,3,5-Trimethylbenzenc	8630	ug/kg	500	1200	114	20		0200	cps	12/27/99
1,3-Dichlorobenzene	<500*	-5	500	1200	94	20		8260	cps	12/27/99
1,3-Dichloropropane	<500*	- <u>6</u> /1-5	500	1200	107	20		0200 9140	cps	12/27/99
1,4-Dichlorobenzene	<500*	nø/ko	500	1200	73	20		8260	cps	12/27/99
2,2-Dichloropropane	<500*	uo/ko	500	1200	200	20		8260	cps	12/27/99
2-Chlorotoluene	<500*	ng/kg	500	1200	76	20		8760	cps	12/27/99
4-Chlorotoluene	<500*		500	1200	174	20		8240	cps	12/27/99
Benzene	<500*	-6.45 110/kg	500	1200	04	20		8200	cps	12/27/99
Bromobenzene	<500*	nø/kø	500	1200	96	20		8200	cps	12/27/99
Bromodichloromethane	<500*	ug/kg	500	1200	179	20		8260	cps	12/27/99
Carbon tetrachloride	<500*	1.00/kg	500	1200	122	20		8260	cps	12/2//99
Chlorobenzene	<500*	-g/~g ug/kg	500	1200	103	20		8260	cps	12/27/99
Chloroethane	<579	- <u>8</u> 6 ug/kg	500	1200	579	20		8260	cps	12/27/99
Chloroform	<500*		500	1200	137	20		8200	cps	12/27/99
Chloromethane	<500*	ug/kg	500	1200	386	20		8200	cps	12/27/99
cis-1,2-Dichloroethene	<500*		500	1200	100	20		0200 9240	cps	12/27/99
Dibromochloromethane	<500*	ug/kg	500	1200	105	20		8200	cps	12/27/99
Dichlorodifluoromethanc	<500*	ug/kg	500	1200	178	20		8260	cps	12/27/99
Ethylbenzene	2530	ug/kg	500	1200	78	20		8200	cps	12/27/99
Hexachlorobutadiene	<500*	ug/kg	500	1200	112	20		0200	cps	12/27/99
Isopropyl Ether	<500*	ug/kg	500	1200	160	20		8200	cps	12/27/99
Isopropyibenzene	1620	ug/kg	500	1200	87	20		8260	cps	12/27/99
m&p-xylene	6680	ug/kg	500	1200	181	20		8200	cps	12/27/99
Methylene chloride	<500*	ug/kg	500	1200	379	20		8260	cps	12/27/99
MTBE	<500*	ug/kg	500	1200	103	20		8260	cps	12/27/99
n-Butylbenzene	<500*	ug/kg	500	1200	113	20		8260	cps	12/27/99
n-Propylbenzenc	<500*	ug/kg	500	1200	123	20		8260	cps	12/27/99
Naphthalene	993	ug/kg	500	1200	229	20		8260	cps	12/27/99
0-xylene	14000	ug/kg	500	1200	88	20		8260	cps	12/27/99
p-Isopropyltoluene	4180	ug/kg	500	1200	90	20		8260	cps	12/27/99
sec-Butylbenzene	3190	ug/kg	500	1200	148	20		8260	cps	12/27/99
tert-Butylbenzene	<500*	ug/kg	500	1200	102	20		8360	eps	12/27/99
Tetrachloroethene	117000	119/kg	500	1200	102	20		8200	cps	12/27/99
			200	1200	1	20		8200	cps	12/27/99

Jenny Johanson HSI Geotrans 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

ORGANIC REPORT

WDNR# 241340550

INVOICE NUMBER: 991062 DATE REPORTED: 29-Dec-99 21-Dec-99 DATE RECEIVED: SAMPLE TEMP (C): Rec On Ice PROJECT ID: PROJECT NAME: STA-RITE DELEVAN

Dry Weig	ht and Dilution Fact	or Corrected								
Compound	LUST Result	Units	LUST LOD	LUST LOQ	NOVA LOD	Dilution Factor	RQ	Method	Analyst	Date of Analysis
Toluene	<500*	ug/kg	500	1200	164	20		8260	cns	12/27/99
trans-1,2-Dichloroethene	<500*	ug/kg	500	1200	82	20		8260	ens	12/27/99
Trichloroethene	1770	ug/kg	500	1200	80	20		8260	cns	12/27/99
Trichlorofluoromethane	<500*	ug/kg	500	1200	170	20		8260	cos	12/27/99
Vinyl chloride	<500*	ug/kg	500	1200	107	20		8260	cps	12/27/99

Sample Number: 18103	Percent Solid	93.20%	OC Baie	hNumber:	993043	Somple analyzed wi	ihin 7 D	ntes inco	n collacitan
Client ID: SB-2008-28	Sample Desc	ription:				Collection:	122015	ig Timi	
1,1,1-Trichloroethane	<1250*	ug/kg	1250	3000	289	50	8760		-
1,1,2,2-Tetrachloroethane	<1250*	ug/kg	1250	3000	366	50	8260	cps	12/27/99
1,1,2-Trichloroethane	<1250*	ug/kg	1250	3000	367	50	8260	cps	12/27/90
1,1-Dichloroethane	<1250*	ug/kg	1250	3000	190	50	8760	ops	12/27/99
1,1-Dichloroethene	<1250*	ug/kg	1250	3000	445	50	8260	cps	12/27/00
1,2,3-Trichlorobenzene	<1250*	ug/kg	1250	3000	274	50	8260	cps	12/27/00
1,2,4-Trichlorobenzene	<1250*	ug/kg	1250	3000	199	50	8260	cps	12/27/00
1,2,4-Trimethylbenzene	37000	ug/kg	1250	3000	367	50	8260	cps	12/27/00
1,2-Dibromo-3-chloropropan	<1250*	ug/kg	1250	3000	739	50	8260	cps	12/27/90
1,2-Dichlorobenzene	<1250*	ug/kg	1250	3000	253	50	8260	cps	12/2///00
1,2-Dichloroethane	<1250*	ug/kg	1250	3000	244	50	8260	ср <i>э</i> ств	12/27/09
1,2-Dichloropropane	<1250*	ug/kg	1250	3000	290	50	8260	cne	12/27/99
1,3,5-Trimethylbenzene	10700	ug/kg	1250	3000	284	50	8260	cos	12/27/99
1,3-Dichlorobenzene	<1250*	ug/kg	1250	3000	234	50	8260	cos	12/27/99
1,3-Dichloropropane	<1250*	ug/kg	1250	3000	267	50	8260	ср <i>5</i> стуз	12/27/99
1,4-Dichlorobenzene	<1250*	ug/kg	1250	3000	182	50	8260	eps	12/27/99
2,2-Dichloropropane	<1250*	ug/kg	1250	3000	500	50	8260	cns	12/27/99
2-Chlorotoluene	<1250*	ug/kg	1250	3000	191	50	8260	cns	12/27/99
4-Chlorotoluene	<1250*	ug/kg	1250	3000	309	50	8260	cns	12/27/99
Benzene	<1250*	ug/kg	1250	3000	236	50	8260	cos	12/27/99
Bromobenzene	<1250*	ug/kg	1250	3000	239	50	8260	cps	12/27/99
Bromodichloromethane	<1250*	ug/kg	1250	3000	322	50	8260	cos	12/27/99
Carbon tetrachloride	<1250*	ug/kg	1250	3000	269	50	8260	CDS	12/27/99
Chlorobenzene	<1250*	ug/kg	1250	3000	254	50	8260	CDS	12/27/99
Chloroethane	<1450	ug/kg	1250	3000	1448	50	8260	cps	12/27/99
Chloroform	<1250*	ug/kg	1250	3000	342	50	8260	cps	12/27/99
Chloromethane	<1250*	ug/kg	1250	3000	965	50	8260	cps	12/27/99
cis-1,2-Dichloroethene	<1250*	ug/kg	1250	3000	250	50	8260	cps	12/27/99
Dibromochloromethane	<1250*	ug/kg	1250	3000	263	50	8260	cps	12/27/99
Dichlorodifluoromethane	<1250*	ug/kg	1250	3000	446	50	8260	cps	12/27/99
Ethylbenzene	25600	ug/kg	1250	3000	195	50	8260	cps	12/27/99
Hexachlorobutadiene	<1250*	ug/kg	1250	3000	281	50	8260	cps	12/27/99
Isopropyl Ether	<1250*	ug/kg	1250	3000	401	50	8260	cps	12/27/99

8222 W. Calumet Bd., Milwaukee, WI 58223 Phone: (414) 355-5800 Fax: (414) 355-3099

Jenny Johanson

HSI Geotrans

175 N. Corporate Drive Suite 100 Brookfield, WI 53045

ORGANIC REPORT

WDNR# 241340550

INVOICE NUMBER: 991062 DATE REPORTED: 29-Dec-99 DATE RECEIVED: 21-Dec-99 SAMPLE TEMP (C): Rec On Ice PROJECT ID: PROJECT NAME: **STA-RITE DELEVAN**

Dry We	ight and Dilution Facto	r Corrected								
Compound	LUST Result	Units	LUST LOD	LUST LOQ	NOVA LOD	Dilution Factor	RQ	Method	Analyst	Date of Analysis
Isopropylbenzene	3850	ug/kg	1250	3000	205	50		8260	CTD5	12/27/99
m&p-xylene	65000	ug/kg	1250	3000	453	50		8260	one	12/27/00
Methylene chloride	<1250*	ug/kg	1250	3000	948	50		8260	ope	12/27/99
MTBE	<1250*	ug/kg	1250	3000	258	50		8260	ens	12/27/00
n-Butylbenze ne	<1250*	ug/kg	1250	3000	283	50		8260	e po	12/27/00
n-Propylbenzene	4940	ug/kg	1250	3000	309	50		8260	eps opr	12/27/00
Naphthalene	3870	ug/kg	1250	3000	572	50		8260	cps	12/27/22
o-xylene	42600	ug/ke	1250	3000	220	50		8260	cps	12/27/99
p-Isopropyltoluene	4730	ug/kg	1250	3000	226	50		\$260	cps	12/27/99
sec-Butylbenzen <i>e</i>	3820	ug/kg	1250	3000	371	50		8260	cps	12/27/99
tert-Butylbenzene	<1250*		1250	3000	255	50		8260	cps	12/27/99
Tetrachloroethene	53800	- <u>ь</u> ь ца/ка	1250	3000	360	50		8260	cps	12/27/99
Toluene	2760	-55 ba/ka	1250	3000	400	50		8200	cps	12/27/99
trans-1,2-Dichloroethene	<1250*	ug/ka	1250	3000	903	50		8260	cps	12/27/99
Trichloroethene	442000	чылы ua/ka	1250	2000	204	50		8260	cps	12/27/99
Trichlorofluoromethane	<1250*	ug/ng ng/ka	1250	2000	200	50		8260	cps	12/27/99
Vinyl chloride	<1250*	ug/Kg	1230	3000	426	50		8260	cps	12/27/99
	~1250*	ug/Kg	1250	3000	268	50		8260	cps	12/27/99

Sample Number: 18104	Percent Salid;	25,4 %	OC Batch	Number S	<i>}93043</i>	Sample anot	ved within 7 Pr	111/1) <u>fi</u> r	w collection
Chent ID: SB-SumpE-16	Sample Dest	mption:				Cal	lection 10/20/01	97,59 97 9 Tau	w [.]
1,1,1-Trichloroethane	<25*	ug/kg	25	60	6	1.0	\$760		12/27/00
1,1,2,2-Tetrachloroethane	<25*	ug/kg	25	60	7	1.0	8260	cps	12/27/99
1,1,2-Trichloroethane	<25*	ug/kg	25	60	7	1.0	8260	ops	12/27/00
1,1-Dichloroethane	<25*	ug/kg	25	60	4	1.0	8260	cps	12/27/00
1,1-Dichloroethene	<25*	ug/kg	25	60	9	1.0	8260	cps	12/27/99
1,2,3-Trichlorobenzene	<25*	ug/kg	25	60	5	1.0	8260	ops	12/27/99
1,2,4-Trichlorobenzene	<25*	ug/kg	25	60	4	1.0	8260	cps	12/27/99
1,2,4-Trimethylbenzene	<25*	ug/kg	25	60	7	1.0	8260	cps	12/27/99
1,2-Dibromo-3-chloropropan	<25*	ug/kg	25	60	15	1.0	8260	cps cps	12/27/09
1,2-Dichlorobenzene	<25*	ug/kg	25	60	5	1.0	8260	cps	12/27/99
1,2-Dichloroethane	<25*	ug/kg	25	60	5	1.0	8260	cps	12/27/99
1,2-Dichloropropane	<25*	ug/kg	25	60	6	1.0	8260	ope	12/27/99
1,3,5-Trimethylbenzenc	<25*	ug/kg	25	60	6	1.0	8260	cps	12/27/99
1,3-Dichlorobenzene	<25*	ug/kg	25	60	5	1.0	8260	cpa	12/27/99
1,3-Dichloropropane	<25*	ug/kg	25	60	5	1.0	8260	cps	12/27/00
1,4-Dichlorobenzene	<25*	ug/kg	25	60	4	1.0	8260	cps	12/27/99
2,2-Dichloropropane	<25*	ug/kg	25	60	10	1.0	8260	cps	12/27/09
2-C'hlorotoluene	<25*	ug/kg	25	60	4	1.0	8260	cps	12/27/99
4-Chlorotohuene	<25*	ug/kg	25	60	6	1.0	8260	ops	12/27/99
Benzene	<25*	ug/kg	25	60	5	1.0	8260	cps	12/27/00
Bromobenzene	<25*	ug/kg	25	60	5	1.0	8260	cps	12/27/99

8222 W. Calumet Rd., Milwaukee, WI 53223 Phone: (414) 355-5800 Fax: (414) 355-3099

Jenny Johanson

HSI Geotrans

175 N. Corporate Drive Suite 100

Brookfield, WI 53045

ORGANIC REPORT

WDNR# 241340550

INVOICE NUMBER:991062DATE REPORTED:29-Dec-99DATE RECEIVED:21-Dec-99SAMPLE TEMP (C):Rec On IcePROJECT ID:PROJECT NAME:STA-RITE DELEVAN

Dry Weight and Dilution Factor Corrected LUST LUST LUST NOVA Dilution Date of Compound LOD Result Units LOQ LOD RQ Factor Method Analyst Analysis Bromodichloromethanc <25* ug/kg 25 60 6 1.0 8260 12/27/99 cps Carbon tetrachloride <25* ug/kg 25 60 5 1.0 8260 12/27/99 cps Chlorobenzene <25* ug/kg 25 60 5 1.0 8260 12/27/99 cps Chloroethane <29 ug/kg 25 60 29 1.0 8260 12/27/99 cps Chloroform <25* ug/kg 25 60 7 1.08260 cps 12/27/99 Chloromethane <25* ug/kg 25 60 19 1.0 8260 12/27/99 cps cis-1,2-Dichloroethene <25* ug/kg 25 60 5 1.0 8260 12/27/99 cps Dibromochloromethane <25* ug/kg 25 60 5 1.0 8260 12/27/99 cps Dichlorodifluoromethane <25* ug/kg 25 60 9 1.0 8260 12/27/99 cps Ethylbenzene <25* ug/kg 25 60 4 1.0 8260 12/27/99 ops Hexachlorobutadiene <25* ug/kg 25 60 6 1.0 8260 cps 12/27/99 Isopropyl Ether <25* ug/kg 25 60 8 1.0 8260 cps 12/27/99 Isopropylbenzene <25* ug/kg 25 60 4 1.0 8260 12/27/99 cps m&p-xylene <25* ug/kg 25 60 9 1.08260 cps 12/27/99 Methylene chloride <25* ug/kg 25 60 19 1.0 8260 cps 12/27/99 MTBE <25* 25 ug/kg 60 5 1.0 8260 12/27/99 CIDS n-Butylbenzene <25* ug/kg 25 60 6 1.0 8260 12/27/99 cps n-Propylbenzene <25* ug/kg 25 60 6 1.08260 12/27/99 cps Naphthalene <25* ug/kg 25 60 11 1.0 8260 cps 12/27/99 o-xylene <25* 25 ug/kg 60 Δ 1.0 8260 cps 12/27/99 p-Isopropyltoluene <25* ug/kg 25 60 5 1.0 8260 12/27/99 cps sec-Butylbenzene <25* 25 7 ug/kg 60 1.0 8260 12/27/99 cps tert-Butylbenzene <25* ug/kg 25 60 5 1.0 8260 cps 12/27/99 Tetrachloroethene <25* 25 7 ug/kg 60 1.08260 12/27/99 eps Toluene <25* ug/kg 25 8 60 1.0 8260 cps 12/27/99 trans-1,2-Dichloroethene <25* ug/kg 25 60 4 1.0 8260 12/27/99 cps **Trichloroethene** 57 25 ug/kg 60 4 1.0 8260 12/27/99 cps Trichlorofluoromethane <25* 25 60 9 ug/kg 1.0 8260 12/27/99 cps Vinyl chloride <25* ug/kg 25 60 5 1.0 8260 CDS 12/27/99

Sample Number: 18105	Percent Solid.	93.20%	QC Batch	Number 9	93064	Sample anals	zed within 2 De	nvel from	n collection
Client ID: SB-SumpE-20	Sample Desc	ription:				Colle	witton: 12/20/95) Fan	
1,1,1-Trichloroethane	<25*	ug/kg	25	60	6	1.0	8260	ens.	17/77/00
1,1,2,2-Tetrachloroethane	<25*	ug/kg	25	60	7	1.0	8260	cns	12/22/22
1,1.2-Trichloroethanc	<25*	ug/kg	25	60	7	1.0	8260	(TDS	12/22/99
1,1-Dichlorocthane	<25*	ug/kg	25	60	4	1.0	8260	eps cms	12/22/99
1,1-Dichloroethene	<25*	ug/kg	25	60	9	1.0	8260	cns	12/22/99
1.2,3-Trichlorobenzene	<25*	ug/kg	25	60	5	1.0	8260	eps	12/22/99
1,2,4-Trichlorobenzene	<25*	ug/kg	25	60	4	1.0	8260	-F"	12/22/99
1,2,4-Trimethylbenzene	214	ug/kg	25	60	7	1.0	8260	CDS	12/22/99
1,2-Dibromo-3-chloropropan	<25*	ug/kg	25	60	15	1.0	8260	cps	12/22/99

Jenny Johanson HSI Geotrans 175 N. Corporate Drive Suite 100

Brookfield, WI 53045

ORGANIC REPORT

WDNR# 241340550

INVOICE NUMBER:991062DATE REPORTED:29-Dec-99DATE RECEIVED:21-Dec-99SAMPLE TEMP (C):Rec On IcePROJECT ID:PROJECT NAME:STA-RITE DELEVAN

Dry Weight and Dilution Factor Corrected LUST LUST LUST NOVA Dilution Date of Compound LOD Result LOO LOD RO Units Factor Method Analyst Analysis 1,2-Dichlorobenzene <2.5* 25 ug/kg 60 5 1.08260 12/22/99 cps 1,2-Dichloroethane <25* 25 ug/kg 60 5 1.0 8260 cps 12/22/99 1,2-Dichloropropane <25* ug/kg 25 60 6 1.0 8260 12/22/99 cps 1,3,5-Trimethylbenzene 77 25 ug/kg 60 6 1.0 8260 12/22/99 cps 1,3-Dichlorobenzene <25* ug/kg 25 60 5 1.0 8260 12/22/99 cps 1,3-Dichloropropane <25* ug/kg 25 60 5 1.0 8260 12/22/99 cps 1,4-Dichlorobenzene <25* 25 ug/kg 60 4 1.0 8260 12/22/99 cps 2,2-Dichloropropane <25* 25 ug/kg 60 10 1.0 8260 12/22/99 cps 2-Chlorotoluene <25* 25 ug/kg 60 4 1.0 8260 12/22/99 cps 4-Chlorotoluene <25* 25 ug/kg 60 б 1.0 8260 12/22/99 cps Benzene <25* ug/kg 25 60 5 1.0 8260 12/22/99 cps Bromobenzene <25* ug/kg 25 60 5 1.0 8260 12/22/99 cps Bromodichloromethane <25* 25 6 ug/kg 60 1.0 8260 12/22/99 cps **Carbon** tetrachloride <25* ug/kg 25 60 5 1.0 8260 12/22/99 cps Chlorobenzene <25* ug/kg 25 60 5 1.0 8260 12/22/99 cps Chloroethane <29 ug/kg 25 60 29 1.0 8260 12/22/99 cps Chloroform <25* 25 ug/kg 60 7 1.0 8260 12/22/99 cps Chloromethane <25* ug/kg 25 60 19 1.0 8260 cps 12/22/99 cis-1,2-Dichloroethene <25* ug/kg 25 60 5 1.0 8260 12/22/99 cps Dibromochloromethane <25* ug/kg 25 60 5 1.0 8260 eps 12/22/99 Dichlorodifluoromethane <25* ug/kg 25 60 9 1.0 8260 cps 12/22/99 Ethylhenzene 156 25 ug/kg 60 4 1.0 8260 cps 12/22/99 Hexachlorobutadiene <2.5* ug/kg 25 60 6 1.0 8260 cps 12/22/99 **Isopropyl Ether** <25* ug/kg 25 60 8 1.0 8260 12/22/99 CDS Isopropylbenzene 30 ug/kg 25 60 4 1.0 8260 cps 12/22/99 m&p-xylene 391 ug/kg 25 60 9 1.0 8260 12/22/99 cps Methylene chloride <25* ug/kg 25 60 19 1.0 8260 cps 12/22/99 MTBE <25* ug/kg 25 60 5 1.08260 cps 12/22/99 n-Butylbenzene <25* ug/kg 25 60 6 1.0 8260 cps 12/22/99 n-Propylbenzene 34 ug/kg 25 60 6 1.0 8260 12/22/99 cps Naphthalene 29 ug/kg 25 60 11 1.0 J 8260 cps 12/22/99 o-xylene 283 ug/kg 25 60 4 1.0 8260 12/22/99 cps p-Isopropyltoluenc 35 ug/kg 25 60 5 1.0 8260 cps 12/22/99 sec-Butylbenzene 31 25 60 ug/kg 7 1.0 8260 CDS 12/22/99 tert-Butylbenzene <25* ug/kg 25 60 5 1.0 8260 cps 12/22/99 Tetrachloroethene 609 ug/kg 25 60 7 1.0 8260 12/22/99 CDS Tolucne 29 ug/kg 25 60 8 1.0 8260 12/22/99 cps trans-1,2-Dichloroethene <25* ug/kg 25 60 4 1.0 8260 12/22/99 cps Trichlorocthene 2780 ug/kg 25 60 4 1.0 8260 cps 12/22/99 Trichlorofluoromethane <25* ug/kg 25 9 60 1.0 8260 cps 12/22/99 Vinyl chloride <25* 25 ug/kg 60 5 1.0 8260 12/22/99 cps

Jenny Johanson HSI Geotrans 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

ORGANIC REPORT

WDNR# 241340550

INVOICE NUMBER:	991062
DATE REPORTED:	29-Dec-99
DATE RECEIVED;	21-Dec-99
SAMPLE TEMP (C):	Rec On Ice
PROJECT ID:	
PROJECT NAME:	STA-RITE DELEVAN

Compound LUST Result LUST Units LUST LOD LUST LOD LUST LOD KUVA LOD Dist of Each Factor Matche RQ Matche Analysis Sample Number, 18106 Jample Compound Jample Sounder, 18106 Jample Sounder, 18106 Jample Compound Jample Compound	Dry Weight :	and Dilution Fac	tor Corrected								
Compound Result Units LOD LOQ LOD Fordor RQ Method Analysis Sample Number: 18/106 forecere Salar 21.4% Q2.5 Stath Humber:99/043 Sample complexe with of 2 Log a fore enlanceme. 2 Log a fore enlanceme. 12.27799 1.1.3. Trichloroethane -2.5* ug/kg 25 60 7 1.0 82.60 qp 12.27799 1.3.2. Trichloroethane -2.5* ug/kg 25 60 7 1.0 82.60 qp 12.27799 1.3.2. Trichloroethane -2.5* ug/kg 25 60 4 1.0 82.60 qp 12.27799 1.3.4. Trichloroethane -2.5* ug/kg 25 60 4 1.0 82.60 qp 12.27799 1.3.4. Trichloroethane -2.5* ug/kg 25 60 5 1.0 82.60 qp 12.27799 1.3.4. Trichloroethane -2.5* ug/kg 25 60 5 1.0 82.60 qp 12.27799 1.3.4. Trichloroethane -2.5* ug	Company	LUST		LUST	LUST	NOVA	Dilution				Date of
Simple Number 1910 Description Description Supple studyed problem Supple studyed problem Supple studyed problem 1.1.1 - fieldoroethate 25< ugkg 25 60 6 1.0 8260 cpi 122799 1.1.2 - fieldoroethate 25* ugkg 25 60 7 1.0 8260 cpi 122799 1.1.2 - fieldoroethate 22* ugkg 25 60 7 1.0 8260 cpi 122799 1.1.2 - fieldoroethate 22* ugkg 25 60 7 1.0 8260 cpi 122799 1.2.3 - fieldorobetzee 22* ugkg 25 60 5 1.0 8260 cpi 122799 1.2.4 - fieldorobetzee 22* ugkg 25 60 5 1.0 8260 cpi 122799 1.2.4 - fieldorobetzee 22* ugkg 25 60 5 1.0 8260 cpi 122799 1.2.4 - fieldorobetzee		Result	Units	LOD	LOQ	LOD	Factor	RQ	Method	Analyst	Analysis
Cleme D) SB-Sumple 24 Sample Description Coderoid Drate 1.1.1 - Trickhoroethane 23* ug/kg 25 60 6 1.0 8260 cps 122799 1.1.2.3 - Trickhoroethane 23* ug/kg 25 60 7 1.0 8260 cps 122799 1.1.Dichloroethane 23* ug/kg 25 60 7 1.0 8260 cps 122799 1.2.JTrickhorobenzene 23* ug/kg 25 60 4 1.0 8260 cps 122799 1.3.J-Trickhorobenzene 23* ug/kg 25 60 5 1.0 8260 cps 122799 1.3.J-Trickhorobenzene 23* ug/kg 25 60 5 1.0 8260 cps 122799 1.3.Dichoroen-achioropropan 25* ug/kg 25 60 5 1.0 8260 cps 122799 1.3.Dichoroenzene 25* ug/kg 25 60	Sample Number: 18106	Percent Solid:	93.10%	ОС Вансі	n Number: S	793043	Sample o	nalvzed wi	thin 7 Da	vis) from	collection
1.1.2-Trichloroethane 23* ug/kg 25 60 6 1.0 8260 cps 12.2799 1.1.2.3-Trichloroethane 23* ug/kg 25 60 7 1.0 8260 cps 12.2799 1.1.3-Trichloroethane 23* ug/kg 25 60 4 1.0 8260 cps 12.2799 1.1.3-Trichloroethane 23* ug/kg 25 60 4 1.0 8260 cps 12.2799 1.2.4-Trichloroethazen 23* ug/kg 25 60 4 1.0 8260 cps 12.2799 1.2.4-Trinethythenzene 23* ug/kg 25 60 5 1.0 8260 cps 12.2799 1.2.Dichlorobenzene 23* ug/kg 25 60 5 1.0 8260 cps 12.2799 1.3.5-Trichloropenzen 23* ug/kg 25 60 5 1.0 8260 cps 12.2799 1.3.5-Trinethylbenzen	Client ID: SB-SumpE24	Sauple Des	cription.				•	Mentioar	17/00/00	Tima	
1.1.2.3-Tetrachloroethane 25 03 0 1.0 8260 eps 1227/99 1.1.2-Trichloroethane 23* ug/kg 25 60 7 1.0 8260 eps 1227/99 1.1.0-bichoroethane 23* ug/kg 25 60 9 1.0 8260 eps 1227/99 1.2.3-Trichlorobenzene 23* ug/kg 25 60 9 1.0 8260 eps 1227/99 1.2.4-Trichlorobenzene 23* ug/kg 25 60 7 1.0 8260 eps 1227/99 1.2.4-Trichlorobenzene 23* ug/kg 25 60 7 1.0 8260 eps 1227/99 1.2.4-Trichlorobenzene 23* ug/kg 25 60 5 1.0 8260 eps 1227/99 1.3.Dichloropropane 23* ug/kg 25 60 6 1.0 8260 eps 1227/99 1.3.Dichloropropane 23* ug/kg 25 60 6 1.0 8260 eps 1227/99	1,1,1-Trichloroethane	<25*	nø/ka	25	03	6	1.0	~~	91/0	11000	10.02.00
1.1.2. Trichloroethane 25* ug/kg 25 60 7 1.0 8260 qps 12/2799 1.1.Dichloroethane <25*	1,1,2,2-Tetrachloroethane	<25*	uø/kø	25	60	7	1.0		8760	cps	12/27/99
1.1-Dichloroethane 25* ug/kg 25 60 4 1.0 8260 qps 12/2799 1.1-Dichloroethane 25* ug/kg 25 60 9 1.0 8260 qps 12/2799 1.2.J. Trichlorobenzene 25* ug/kg 25 60 5 1.0 8260 qps 12/2799 1.2.J. Trichlorobenzene 25* ug/kg 25 60 7 1.0 8260 qps 12/2799 1.2.Dicomo-chloropropan 25* ug/kg 25 60 7 1.0 8260 qps 12/2799 1.2.Dichloropropane 25* ug/kg 25 60 5 1.0 8260 qps 12/2799 1.3.Dichloropropane 25* ug/kg 25 60 6 1.0 8260 qps 12/2799 1.3.Dichloropropane 25* ug/kg 25 60 5 1.0 8260 qps 12/2799 1.3.Dichloropropane 25* ug/kg 25 60 5 1.0 8260 qps	1,1,2-Trichloroethane	<25*	ug/kg	25	60	7	1.0		8260	cps	12/27/99
1.1-Dichloroethene -25* ug/kg 25 60 9 1.0 8260 cps 1227799 1.2.4-Trithorobenzene -23* ug/kg 25 60 5 1.0 8260 cps 1227799 1.2.4-Trithorobenzene -23* ug/kg 25 60 7 1.0 8260 cps 1227799 1.2.Dichlorobenzene -23* ug/kg 25 60 5 1.0 8260 cps 1227799 1.2.Dichlorobenzene -23* ug/kg 25 60 5 1.0 8260 cps 1227799 1.3.Dichlorobenzene -23* ug/kg 25 60 5 1.0 8260 cps 1227799 1.3.Dichlorobenzene -23* ug/kg 25 60 5 1.0 8260 cps 1227799 1.3.Dichlorobenzene -23* ug/kg 25 60 5 1.0 8260 cps 1227799 1.3.Dichlorobenzene -23* ug/kg 25 60 5 1.0 8260 cps	1,1-Dichloroethane	<25*	ug/kg	25	60	4	1.0		8260	cps	12/27/99
1.2.3. Trichlorobenzenc -2.5* ug/kg 25 60 5 1.0 82.00 cps 12.27799 1.2.4. Trinchtybenzenc -2.5* ug/kg 25 60 4 1.0 82.60 cps 12.27799 1.2.4. Trinchtybenzenc -2.5* ug/kg 25 60 5 1.0 82.60 cps 12.27799 1.2. Dichorobenzenc -2.5* ug/kg 25 60 5 1.0 82.60 cps 12.27799 1.2. Dichoropropan -2.5* ug/kg 25 60 6 1.0 82.60 cps 12.27799 1.3. Dichoropropan -2.5* ug/kg 25 60 6 1.0 82.60 cps 12.27799 1.3. Dichoropropan -2.5* ug/kg 25 60 5 1.0 82.60 cps 12.27799 1.3. Dichoropropan -2.5* ug/kg 25 60 4 1.0 82.60 cps 12.27799 1.4. Dichorobenzenc -2.5* ug/kg 25 60 5 1.0 82.6	1,1-Dichloroethene	<25*	ug/kg	25	60	ģ	1.0		8260	cps	12/27/00
1.2.4-Trichlorobenzene <2.5*	1,2.3-Trichlorobenzene	<25*	ug/kg	25	60	5	1.0		8760	cps	12/27/99
1.2.4-Trimethylhenzene <2.5*	1.2,4-Trichlorobenzene	<25*	ug/kg	25	60	4	1.0		8260	cps	12/27/99
1.2-Dibromo-3-chloropropan <25*	1,2,4-Trimethylbenzene	<25*	ug/kg	25	60	7	1.0		8260	cps	12/27/00
1.2-Dichlorobenzene <25*	1,2-Dibromo-3-chloropropan	<25*	ug/kg	25	60	15	1.0		8260	-ps	12/27/99
1.2-Dichloroerhane 25* ug/kg 25 60 5 1.0 8260 cps 1227799 1.3-Dichloropropane 25* ug/kg 25 60 6 1.0 8260 cps 1227799 1.3-Dichlorobenzene 25* ug/kg 25 60 6 1.0 8260 cps 1227799 1.3-Dichlorobenzene 25* ug/kg 25 60 5 1.0 8260 cps 1227799 1.3-Dichlorobenzene 25* ug/kg 25 60 4 1.0 8260 cps 1227799 2.2-Dichlorobenzene 25* ug/kg 25 60 4 1.0 8260 cps 1227799 2.2-Dichlorobenzene 25* ug/kg 25 60 4 1.0 8260 cps 1227799 2.2-Dichlorobenzene 25* ug/kg 25 60 5 1.0 8260 cps 1227799 Bromobenzene 25* ug/kg 25 60 5 1.0 8260 cps 1227799	1,2-Dichlorobenzene	<25*	ug/kg	25	60	5	1.0		8260	cps	12/27/00
1.2-Dickloropropane <25*	1,2-Dichloroethane	<25*	ug/kg	25	60	5	1.0		8260	cps	12/27/00
1.3.5-Trimethylbenzene <25*	1,2-Dichloropropane	<25*	ug/kg	25	60	6	1.0		8260	cps	12/27/00
1.3-Dichlorobenzene 25* ug/kg 25 60 5 1.0 8260 cps 1227/99 1.4-Dichloropropane 225* ug/kg 25 60 5 1.0 8260 cps 1227/99 1.4-Dichloropropane 225* ug/kg 25 60 4 1.0 8260 cps 1227/99 2.2-Dichloropropane 225* ug/kg 25 60 4 1.0 8260 cps 1227/99 2.2-Dichloropropane 225* ug/kg 25 60 6 1.0 8260 cps 1227/99 2.2-Dichotoluene 225* ug/kg 25 60 5 1.0 8260 cps 1227/99 Bromodichloromethane 225* ug/kg 25 60 5 1.0 8260 cps 1227/99 Chlorobenzene 225* ug/kg 25 60 5 1.0 8260 cps 1227/99 Chlorobenzene 225* ug/kg 25 60 5 1.0 8260 cps 1227/99 <td>1,3,5-Trimethylbenzene</td> <td><25*</td> <th>ug/kg</th> <td>25</td> <td>60</td> <td>6</td> <td>1.0</td> <td></td> <td>8260</td> <td>ops ope</td> <td>12/27/00</td>	1,3,5-Trimethylbenzene	<25*	ug/kg	25	60	6	1.0		8260	ops ope	12/27/00
1.3-Dichloropropane <25*	1,3-Dichlorobenzene	<25*	ug/kg	25	60	5	1.0		8260	cps	12/27/00
1,4-Dichlorobenzene <25*	1,3-Dichloropropane	<25*	ug/kg	25	60	5	1.0		8260	cps	12/27/00
2.2-Dichloropropane <25*	1,4-Dichlorobenzene	<25*	ug/kg	25	60	4	1.0		8260	cps	12/2/199
2-Chlorotoluene <25*	2,2-Dichloropropane	<25*	ug/kg	25	60	10	1.0		8260	cps	12/27/00
4-Chlorotoluene <25*	2-Chlorotoluene	<25*	ug/kg	25	60	4	1.0		8260	cps	12/2//27
Benzene <25* ug/kg 25 60 5 1.0 82.00 cps 12/27/99 Bromobenzene <25* ug/kg 25 60 5 1.0 82.60 cps 12/27/99 Bromobenzene <25* ug/kg 25 60 6 1.0 82.60 cps 12/27/99 Bromodichloromethane <25* ug/kg 25 60 6 1.0 82.60 cps 12/27/99 Chlorobenzene <25* ug/kg 25 60 5 1.0 82.60 cps 12/27/99 Chlorootma <25* ug/kg 25 60 5 1.0 82.60 cps 12/27/99 Chlorootma <25* ug/kg 25 60 7 1.0 82.60 cps 12/27/99 Chlorootma <25* ug/kg 25 60 7 1.0 82.60 cps 12/27/99 Chlorootmethane <25* ug/kg	4-Chlorotoluene	<25*	ug/kg	25	60	6	1.0		8260	cps	12/27/00
Bromobenzene <th< th=""></th<>	Benzene	<25*	ug/ke	25	60	5	1.0		8260	che	12/27/99
Bromodichloromethane <25* ug/kg 25 60 6 10 8260 cps 12/2/7/99 Carbon tetrachloride <25* ug/kg 25 60 5 1.0 8260 cps 12/2/7/99 Chlorobenzene <25* ug/kg 25 60 5 1.0 8260 cps 12/2/7/99 Chlorobenzene <25* ug/kg 25 60 5 1.0 8260 cps 12/2/7/99 Chloroothane <29 ug/kg 25 60 29 1.0 8260 cps 12/2/7/99 Chloromethane <25* ug/kg 25 60 7 1.0 8260 cps 12/2/7/99 Chloromethane <25* ug/kg 25 60 5 1.0 8260 cps 12/27/99 Dichorotifuoromethane <25* ug/kg 25 60 5 1.0 8260 cps 12/27/99 Dichorodifluoromethane <25*<	Bromobenzene	<25*	ug/kg	25	60	5	1.0		8260	cros	12/27/00
Carbon tetrachloride <25*	Bromodichioromethane	<25*	ug/kg	25	60	6	1.0		8260	cps	12/27/00
Chlorobenzene <25* ug/kg 25 60 5 1.0 8260 cps 12/27/99 Chlorothane <29 ug/kg 25 60 29 1.0 8260 cps 12/27/99 Chlorothane <29* ug/kg 25 60 7 1.0 8260 cps 12/27/99 Chlorothrm <25* ug/kg 25 60 7 1.0 8260 cps 12/27/99 Chlorothrm <25* ug/kg 25 60 19 1.0 8260 cps 12/27/99 Chlorothrme <25* ug/kg 25 60 5 1.0 8260 cps 12/27/99 Dibromochloromethane <25* ug/kg 25 60 5 1.0 8260 cps 12/27/99 Dichlorodifluoromethane <25* ug/kg 25 60 9 1.0 8260 cps 12/27/99 Dichlorodifluoromethane <25* ug/kg 25 60 6 1.0 8260 cps 12/27/99 12	Carbon tetrachloride	<25*	ug/kg	25	60	5	1.0		8260	cps	12/27/29
Chloroethane <29 ug/kg 25 60 29 1.0 8260 cps 12/27/99 Chloroform <25* ug/kg 25 60 7 1.0 8260 cps 12/27/99 Chloromethane <25* ug/kg 25 60 7 1.0 8260 cps 12/27/99 Chloromethane <25* ug/kg 25 60 19 1.0 8260 cps 12/27/99 Dibromochloromethane <25* ug/kg 25 60 5 1.0 8260 cps 12/27/99 Dichlorodifluoromethane <25* ug/kg 25 60 5 1.0 8260 cps 12/27/99 Ethylbenzene <25* ug/kg 25 60 5 1.0 8260 cps 12/27/99 Isoproyl Ether <25* ug/kg 25 60 4 1.0 8260 cps 12/27/99 Isoproyl Ether <25* ug/kg 25 60 6 1.0 8260 cps 12/27/99	Chlorobenzene	<25*	ug/kg	25	60	5	1.0		8260	cros	12/27/99
Chloroform <25* ug/kg 25 60 7 1.0 8260 cps 12/27/99 Chloromethane <25* ug/kg 25 60 19 1.0 8260 cps 12/27/99 Chloromethane <25* ug/kg 25 60 5 1.0 8260 cps 12/27/99 Dibromochloromethane <25* ug/kg 25 60 5 1.0 8260 cps 12/27/99 Dichlorodifluoromethane <25* ug/kg 25 60 5 1.0 8260 cps 12/27/99 Dichlorodifluoromethane <25* ug/kg 25 60 9 1.0 8260 cps 12/27/99 Ethylbenzene <25* ug/kg 25 60 4 1.0 8260 cps 12/27/99 Isopropyl Ether <25* ug/kg 25 60 6 1.0 8260 cps 12/27/99 Isopropyl Ether <25* ug/kg 25 60 9 1.0 8260 cps 12/27/99	Chloroethane	<29	ug/kg	25	60	29	1.0		8260	cns	12/27/99
Chloromethane <25* ug/kg 25 60 19 1.0 82.60 cps 12/17/9 cis-1,2-Dichloroethene 51 ug/kg 25 60 5 1.0 82.60 cps 12/27/99 Dibromochloromethane <25* ug/kg 25 60 5 1.0 82.60 cps 12/27/99 Dichlorodifluoromethane <25* ug/kg 25 60 5 1.0 82.60 cps 12/27/99 Ethylbenzene <25* ug/kg 25 60 9 1.0 82.60 cps 12/27/99 Hexachlorobutadiene <25* ug/kg 25 60 4 1.0 82.60 cps 12/27/99 Isopropyl Ether <25* ug/kg 25 60 6 1.0 82.60 cps 12/27/99 Isopropyl Ether <25* ug/kg 25 60 4 1.0 82.60 cps 12/27/99 Isopropylbenzene <25* ug/kg 25 60 9 1.0 82.60 cps <	Chloroform	<25*	ug/kg	25	60	7	1.0		8260	cos	12/27/99
cis-1,2-Dichloroethene 51 ug/kg 25 60 5 1.0 8260 cps 12/27/99 Dibromochloromethane <25* ug/kg 25 60 5 1.0 8260 cps 12/27/99 Dichlorodifluoromethane <25* ug/kg 25 60 9 1.0 8260 cps 12/27/99 Ethylbenzene <25* ug/kg 25 60 9 1.0 8260 cps 12/27/99 Hexachlorobutadiene <25* ug/kg 25 60 4 1.0 8260 cps 12/27/99 Isopropyl Ether <25* ug/kg 25 60 6 1.0 8260 cps 12/27/99 Isopropyl Ether <25* ug/kg 25 60 8 1.0 8260 cps 12/27/99 Isopropylbenzene <25* ug/kg 25 60 9 1.0 8260 cps 12/27/99 M&p-xylene <25* ug/kg 25 60 9 1.0 B 8260 cps	Chloromethane	<25*	ug/kg	25	60	19	1.0		8260	cns	12/27/99
Dibromochloromethane <25* ug/kg 25 60 5 1.0 8260 cps 12/27/99 Dichlorodifluoromethane <25*	cis-1,2-Dichloroethene	51	ug/kg	25	60	5	1.0		8260	cus	12/27/99
Dichlorodifluoromethane <25* ug/kg 25 60 9 1.0 8260 cps 12/27/99 Ethylbenzene <25* ug/kg 25 60 4 1.0 8260 cps 12/27/99 Hexachlorobutadiene <25* ug/kg 25 60 6 1.0 8260 cps 12/27/99 Isopropyl Ether <25* ug/kg 25 60 6 1.0 8260 cps 12/27/99 Isopropyl Ether <25* ug/kg 25 60 8 1.0 8260 cps 12/27/99 Isopropyl Ether <25* ug/kg 25 60 8 1.0 8260 cps 12/27/99 Isopropylbenzene <25* ug/kg 25 60 9 1.0 8260 cps 12/27/99 Methylene chloride 161 ug/kg 25 60 19 1.0 B 8260 cps 12/27/99 MTBE <25* ug/kg 25 60 5 1.0 8260 cps 12/27	Dibromochloromethane	<25*	ug/kg	25	60	5	1.0		8260	cns	12/27/99
Ethylbenzene <25* ug/kg 25 60 4 1.0 8260 cps 12/27/99 Hexachlorobutadiene <25* ug/kg 25 60 6 1.0 8260 cps 12/27/99 Isopropyl Ether <25* ug/kg 25 60 8 1.0 8260 cps 12/27/99 Isopropyl Ether <25* ug/kg 25 60 8 1.0 8260 cps 12/27/99 Isopropylbenzene <25* ug/kg 25 60 4 1.0 8260 cps 12/27/99 Map-xylene <25* ug/kg 25 60 9 1.0 8260 cps 12/27/99 Methylene chloride 161 ug/kg 25 60 9 1.0 B 8260 cps 12/27/99 MTBE <25* ug/kg 25 60 5 1.0 8260 cps 12/27/99 n-Butylbenzene <25* ug/kg 25 60 5 1.0 8260 cps 12/27/99 </td <td>Dichlorodifluoromethane</td> <td><25*</td> <th>ug/kg</th> <td>25</td> <td>60</td> <td>9</td> <td>1.0</td> <td></td> <td>8260</td> <td>CDS</td> <td>12/27/99</td>	Dichlorodifluoromethane	<25*	ug/kg	25	60	9	1.0		8260	CDS	12/27/99
Hexachlorobutadiene <25* ug/kg 25 60 6 1.0 8260 cps 12/27/99 Isopropyl Ether <25* ug/kg 25 60 8 1.0 8260 cps 12/27/99 Isopropyl Ether <25* ug/kg 25 60 4 1.0 8260 cps 12/27/99 Isopropylbenzene <25* ug/kg 25 60 4 1.0 8260 cps 12/27/99 m&p-xylene <25* ug/kg 25 60 9 1.0 8260 cps 12/27/99 Methylene chloride 161 ug/kg 25 60 19 1.0 B 8260 cps 12/27/99 MTBE <25* ug/kg 25 60 19 1.0 B 8260 cps 12/27/99 m-Butylbenzene <25* ug/kg 25 60 5 1.0 8260 cps 12/27/99 No B S260 cps 12/27/99 S260 cps 12/27/99 S260	Ethylbenzene	<25*	ug/kg	25	60	4	1.0		8260	ens	12/27/99
Isopropyl Ether <25* ug/kg 25 60 8 1.0 8260 cps 12/27/99 Isopropylbenzene <25* ug/kg 25 60 4 1.0 8260 cps 12/27/99 m&p-xylene <25* ug/kg 25 60 9 1.0 8260 cps 12/27/99 Methylene chloride 161 ug/kg 25 60 19 1.0 B 8260 cps 12/27/99 MTBE <25* ug/kg 25 60 19 1.0 B 8260 cps 12/27/99 m-Butylbenzene <25* ug/kg 25 60 5 1.0 8260 cps 12/27/99 n-Butylbenzene <25* ug/kg 25 60 5 1.0 8260 cps 12/27/99 No 8260 cps 12/27/99 8260 cps 12/27/99 8260 cps 12/27/99 MTBE	Hexachlorobutadiene	<25*	ug/kg	25	60	6	1.0		8260	CDS	12/27/99
Isopropylbenzene <25* ug/kg 25 60 4 1.0 8260 cps 12/27/99 m&p-xylene <25* ug/kg 25 60 9 1.0 8260 cps 12/27/99 Methylene chloride 161 ug/kg 25 60 19 1.0 B 8260 cps 12/27/99 MTBE <25* ug/kg 25 60 5 1.0 8260 cps 12/27/99 n-Butylbenzene <25* ug/kg 25 60 5 1.0 8260 cps 12/27/99 MTBE <25* ug/kg 25 60 5 1.0 8260 cps 12/27/99 Nettylenzene <25* ug/kg 25 60 6 1.0 8260 cps 12/27/99	Isopropyl Ether	<25*	ug/kg	25	60	8	1.0		8260	CDS	12/27/99
m&p-xylene <25* ug/kg 25 60 9 1.0 8260 cps 12/27/99 Methylene chloride 161 ug/kg 25 60 19 1.0 B 8260 cps 12/27/99 MTBE <25* ug/kg 25 60 5 1.0 8260 cps 12/27/99 n-Butylbenzene <25* ug/kg 25 60 6 1.0 8260 cps 12/27/99 Description State State State State State State State	Isopropylbenzene	<25*	ug/kg	25	60	4	0.1		8260	cps	12/27/99
Methylene chloride 161 ug/kg 25 60 19 1.0 B 8260 cps 12/27/99 MTBE <25* ug/kg 25 60 5 1.0 8260 cps 12/27/99 n-Butylbenzene <25* ug/kg 25 60 6 1.0 8260 cps 12/27/99	m&p-xylene	<25*	ug/kg	25	60	9	1.0		8260	CDS	12/27/99
MTBE <25* ug/kg 25 60 5 1.0 8260 cps 12/27/99 n-Butylbenzene <25* ug/kg 25 60 6 1.0 8260 cps 12/27/99	Methylene chloride	161	ug/kg	25	60	19	1.0 B		8260	cps	12/27/99
n-Butylbenzene <25* ug/kg 25 60 6 1.0 8260 cps 12/27/99	MTBE	<25*	ug/kg	25	60	5	1.0		8260	cps	12/27/99
	n-Butylbenzene	<25*	ug/kg	25	60	6	1.0		8260	CDS	12/27/99
n-PropyiBenzene <25* ug/kg 25 60 6 1.0 8260 cps 12/27/99	n-Propylbenzene	<25*	ug/kg	25	60	6	1.0		8260	cps	12/27/99

Jenny Johanson HSI Geotrans

175 N. Corporate Drive Suite 100 Brookfield, WI 53045

ORGANIC REPORT

WDNR# 241340550

INVOICE NUMBER:991062DATE REPORTED:29-Dec-99DATE RECEIVED:21-Dec-99SAMPLE TEMP (C):Rec On IcePROJECT ID:PROJECT NAME:STA-RITE DELEVAN

i	Dry Weight and Dilution Fac	ctor Corrected	1							
Compound	LUST Result	Units	LUST LOD	LUST LOQ	NOVA LOD	Dilution Factor	RQ	Method	Analyst	Date of Analysis
Naphthalene	<25*	ug/kg	25	60	11	1.0		8260	cps	12/27/99
o-xylene	<25*	ug/kg	25	60	4	1.0		8260	cps	12/27/99
p-Isopropyltoluene	<25*	ug/kg	25	60	5	1.0		8260	cps	12/27/99
sec-Butylbenzene	<25*	ug/kg	25	60	7	1.0		8260	cps	12/27/99
tert-Butylbenzene	<25*	ug/kg	25	60	5	1.0		8260	cps	12/27/99
Tetrachloroethene	37	ug/kg	25	60	7	1.0		8260	cps	12/27/99
Toluene	<25*	ug/kg	25	60	8	1.0		8260	cps	12/27/99
trans-1,2-Dichloroethe	ene <25*	ug/kg	25	60	4	1.0		8260	cps	12/27/99
Trichloroethene	32	ug/kg	25	60	4	1.0		8260	cps	12/27/99
T richlor ofluorometha	ле <25*	ug/kg	25	60	9	1.0		8260	crps	12/27/99
Vinyl chloride	<25*	ug/kg	25	60	5	1.0		8260	cps	1 2/27/99

Sample Number: 18107	Percent Solid:	93.1 %	QC Batch :	umber:	993043	Sample an	alized within 7 Day	xs) tra	m collection.
Client ID: SB-SumpE26	Sample Desc	ription:					Alection: 12/20/99	Tin	42:
1,1,1-Trichloroethane	<25*	ug/kg	25	60	6	1.0	8260	cps	1 2/27/99
1,1,2,2-Tetrachloroethane	<25*	ug/kg	25	60	7	1.0	8260	cps	12/27/99
1,1,2-Trichloroethane	<25*	ug/kg	25	60	7	1.0	8260	cps	12/27/99
1.1-Dichloroethane	<25*	ug/kg	25	60	4	1.0	8260	cps	12/27/99
1,1-Dichloroethene	<25*	ug/kg	25	60	9	1.0	8260	cps	12/27/99
1,2,3-Trichlorobenzene	<25*	ug/kg	25	60	5	1.0	8260	cos	1 2/27/99
1.2,4-Trichlorobenzene	<25*	ug/kg	25	60	4	1.0	8260	CDS	12/27/99
1,2,4-Trimethytbenzene	<25*	ug/kg	25	60	7	1.0	8260	cps	12/27/99
1,2-Dibromo-3-chioropropan	<25*	ug/kg	25	60	15	1.0	8260	CDS	12/27/99
1,2-Dichlorobenzene	<25*	ug/kg	25	60	5	1.0	8260	CDS	12/27/99
1,2-Dichloroethane	<25*	ug/kg	25	60	5	1.0	8260	cps	12/27/99
1,2-Dichloropropane	<25*	ug/kg	25	60	6	1.0	8260	cps	12/27/99
1,3,5-Trimethylbenzene	<25*	ug/kg	25	60	6	1.0	8260	cps	12/27/99
1,3-Dichlorobenzene	<25*	ug/kg	25	60	5	1.0	8260	cos	12/27/99
1,3-Dichloropropane	<25*	ug/kg	25	60	5	1.0	8260	CIDS	12/27/99
1,4-Dichlorobenzene	<25*	ug/kg	25	60	4	1.0	8260	cps	12/27/99
2,2-Dichloropropane	<25*	ug/kg	25	60	10	1.0	8260	cos	12/27/99
2-Chlorotoluene	<25*	ug/kg	25	60	4	1.0	8260	CDS	12/27/99
4-Chlorotoluene	<25*	ug/kg	25	60	6	1.0	8260	CIDS	12/27/99
Benzene	<25*	ug/kg	25	60	5	1.0	8260	cros	12/27/99
Bromobenzene	<25*	ug/kg	25	60	5	1.0	82 60	eps	12/27/99
Bromodichloromethane	<25*	ug/kg	25	60	6	1.0	8260	cps	12/27/99
Carbon tetrachloride	<25*	ug/kg	25	60	5	1.0	8260	cps	12/27/99
Chlorobenzene	<25*	ug/kg	25	60	5	1.0	8260	cps	12/27/99
Chloroethane	<29	ug/kg	25	60	29	1.0	8260	cps	12/27/99
Chloroform	<25*	ug/kg	25	60	7	1.0	8260	cus	12/27/99
Chloromethane	<25*	ug/kg	25	60	19	1.0	82 60	cps	12/27/99

Jenny Johanson

.

HSI Geotrans

175 N. Corporate Drive Suite 100 Brookfield, WI 53045

ORGANIC REPORT

WDNR# 241340550

INVOICE NUMBER: 991062 DATE REPORTED: 29-Dec-99 21-Dec-99 DATE RECEIVED: SAMPLE TEMP (C): Rec On Ice PROJECT ID: PROJECT NAME:

STA-RITE DELEVAN

Dry Weight and Dilution Factor Corrected												
Compound	LUST Result	Units	LUST LOD	LUST LOQ	NOVA LOD	Dilution Factor	RQ	Method	Analyst	Date of Analysis		
cis-1,2-Dichloroethene	133	ug/kg	25	60	5	1.0		8260	cps	12/27/99		
Dibromochloromethane	<25*	ug/kg	25	60	5	1.0		8260	CDS	12/27/99		
Dichlorodifluoromethane	<25*	ug/kg	25	60	9	1.0		8260	CDS	12/27/99		
Ethylbenzene	<25*	ug/kg	25	60	4	1.0		8260	CDS	12/27/99		
Hexachlorobutadiene	<25*	ug/kg	25	60	6	1.0		8260	cos	12/27/99		
Isopropyl Ether	<25*	ug/kg	25	60	8	1.0		8260	cros	12/27/99		
lsopropylbenzene	<25*	ug/kg	25	60	4	1.0		8260	cps	12/27/99		
m&p-xylene	<25*	ug/kg	25	60	9	1.0		8260	CDS	12/27/99		
Methylene chloride	<25*	ug/kg	25	60	19	1.0		8260	CDS	12/27/99		
MTBE	<25*	ug/kg	25	60	5	1.0		8260	CDS	12/27/99		
n-Butylbenzene	<25*	ug/kg	25	60	6	1.0		8260	-P* CDS	12/27/99		
n-Propylbenzene	<25*	ug/kg	25	60	6	1.0		8260	CDS	12/27/99		
Naphthalene	<25*	ug/kg	25	60	11	1.0		8260	ens	12/27/99		
o-xylene	<25*	ug/kg	25	60	4	1.0		8260	cos	12/27/99		
p-Isopropyltoluene	<25*	ug/kg	25	60	5	1.0		8260	CDS	12/27/99		
sec-Butylbenzene	<25*	ug/kg	25	60	7	1.0		8260	CDS	12/27/99		
tert-Butylbenzene	<25*	ug/kg	25	60	5	1.0		8260	-r-	12/27/99		
Tetrachloroethene	55	ug/kg	25	60	7	1.0		8260	ens	12/27/99		
Toluene	<25*	ug/kg	25	60	8	1.0		8260	-p~	12/27/99		
trans-1,2-Dichloroethene	<25*	ug/kg	25	60	4	1.0		8260	cros	12/27/99		
Trichloroethene	<25*	ug/kg	25	60	4	1.0		8260	cos	12/27/99		
Trichlorofluoromethane	<25*	ug/kg	25	60	9	1.0		8260	cns	12/27/99		
Vinyl chloride	<25*	ug/kg	25	60	5	1.0		8260	cps	12/27/99		

Sample Number: 18108	Percent Solid	92 %	QC Batch	Number 9	93043	Sample anali	zed within 7 De	wst tro	n collection.
Client ID: SB-SumpE-28	Sample Desc	fiption:				Colli	ection: 12/2019	2 Tim	2.
1,1,1-Trichloroethane	<25*	ug/kg	25	60	6	1.0	8260	CDS	12/27/99
1,1,2,2-Tetrachloroethane	<25*	ug/kg	25	60	7	1.0	8260	CDS	12/27/99
1,1,2-Trichloroethane	<25*	ug/kg	25	60	7	1.0	8260	cos	12/27/99
1,1-Dichloroethane	<25*	ug/kg	25	60	4	1.0	8260	cns	12/27/99
1,1-Dichloroethene	<25*	ug/kg	25	60	9	1.0	8260	CDS	12/27/99
1,2,3-Trichlorobenzene	<25*	ug/kg	25	60	5	1.0	8260	cns	12/27/99
1,2,4-Trichlorobenzene	<25*	ug/kg	25	60	4	1.0	8260	005 005	12/27/99
1,2,4-Trimethylbenzene	<25*	ug/kg	25	60	7	1.0	8260	ens	12/27/99
1,2-Dibromo-3-chloropropan	<25*	ug/kg	25	60	15	1.0	8260	eps	12/27/99
1,2-Dichlorobenzene	<25*	ug/kg	25	60	5	1.0	8260	cos	12/27/99
1,2-Dichloroethane	<25*	ug/kg	25	60	5	1.0	8260	ens	12/27/99
1,2-Dichloropropane	<25*	ug/kg	25	60	6	1.0	8260	one	12/27/99
1,3,5-Trimethylbenzene	<25*	uø/kø	25	60	6	1.0	8260	cps	12/27/00
1,3-Dichlorobenzene	<25*	ug/kg	25	-* 60	5	1.0	8260	chs	12/27/99
1,3-Dichloropropane	<25*	ug/kg	25	60	5	1.0	8260 8260	cps	12/27/99

Jenny Johanson HSI Geotrans

0

175 N. Corporate Drive Suite 100 Brookfield, WI 53045

ORGANIC REPORT

WDNR# 241340550

PROJECT NAME:

STA-RITE DELEVAN

Dry Weigh	t and Dilution Fac	for Corrected								
	LUST		LUST	LUST	NOVA	Dilution				Date of
Compound	Result	Units	LOD	LOQ	LOD	Factor	RQ	Method	Analyst	Analysis
1,4-Dichlorobenzene	<25*	ug/kg	25	60	4	1.0		8260	CDS	12/27/99
2,2-Dichloropropane	<25*	ug/kg	25	60	10	1.0		8260	cos	12/27/99
2-Chlorotoluene	<25*	ug/kg	25	60	4	1.0		8260	-r-	12/27/99
4-Chlorotoluene	<25*	ug/kg	25	60	6	1.0		8260	cos	12/27/99
Benzene	<25*	ug/kg	25	60	5	1.0		8260	cns	12/27/99
Bromobenzene	<25*	ug/kg	25	60	5	1.0		8260	CDS	12/27/99
Bromodichloromethane	<25*	ug/kg	25	60	6	1.0		8260	cns	12/27/99
Carbon tetrachloride	<25*	ug/kg	25	60	5	1.0		8260	-r- cns	12/27/99
Chlorobenzene	<25*	ug/kg	25	60	5	1.0		8260	ers Cres	12/27/99
Chloroethane	<29	ug/kg	25	60	29	1.0		8260	ens	12/27/99
Chloroform	<25*	ug/kg	25	60	7	1.0		8260	cos	12/27/99
Chloromethane	<25*	ug/kg	25	60	19	1.0		8260	eps ens	12/27/99
cis-1,2-Dichloroethene	194	ug/kg	25	60	5	1.0		8260	cps	12/27/99
Dibromochloromethane	<25*	ug/kg	25	60	5	1.0		8260	cos	12/27/99
Dichlorodiffuoromethane	<25*	ug/kg	25	60	9	1.0		8260	cos	12/27/99
Ethylbenzene	<25*	ug/kg	25	60	4	1.0		8260	ops cos	12/27/99
Hexachlorobutadiene	<25*	ug/kg	25	60	6	1.0		8260	cos	12/27/99
Isopropyl Ether	<25*	ug/kg	25	60	8	1.0		8260	cps	12/27/99
Isopropylbenzene	<25*	ug/kg	25	60	4	1.0		8260	cps	12/27/00
m&p-xylene	<25*	ug/kg	25	60	9	1.0		8260	cps	12/2//22
Methylene chloride	121	ug/kg	25	60	19	1.0 F	3	8260	ငျား	12/2/172
MTBE	<25*	ug/kg	25	60	5	10	-	8260	eps ops	12/27/00
n-Butylbenzene	<25*	ug/kg	25	60	-	1.0		8260	cps cps	12/27/00
n-Propylbenzene	<25*	ug/kg	25	60	6	1.0		8260	cha	12/27/00
Naphthalene	<25*	ug/kg	25	60	11	1.0		8260	cps	12/27/99
o-xylene	<25*	ug/kg	25	60	4	10		8760	cps	12/27/22
p-Isopropyttoluene	<25*	ug/kg	25	60	5	1.0		8260	cps	12/27/29
sec-Butylbenzene	<25*	ug/kg	25	60	7	1.0		8260	cps	12/27/99
tert-Butylbenzene	<25*	ug/kg	25	60	5	1.0		8260	eps ore	12/27/00
Tetrachloroethene	70	ug/kg	25	60	7	1.0		8260	ope	12/27/00
Toluene	<25*	ug/kg	25	60	8	1.0		8260	cos	12/27/99
trans-1,2-Dichloroethene	<25*	ug/kg	25	60	4	ŁO		8260	- 120 (2006	12/27/00
Trichloroethene	31	ug/kg	25	60	4	1.0		8260	cps c	12:21/22
Trichlorofluoromethane	<25*	ug/kg	25	60	9	1.0		8260	eps me	12/27/00
Vinyl chloriđe	<25*	ug/kg	25	60	5	1.0		8260	CDS	12/27/99

Sample Number: 18109 Parcer Client ID: Trip Blank Samp	n Solid He Desci	<i>100%</i> tiption:	QC Batch N	iumber:	993064	Samplea	analyzed within 2 Day Collection: 12/20/99	rs) <i>fr</i> Ti	om collection, me:
1,1,1-Trichloroethane	<25*	ug/kg	25	60	6	1.0	8260	cps	12/22/99
1,1,2,2-Tetrachioroethane	<25*	ug/kg	25	60	7	1.0	8260	cps	12/22/99
1,1,2-Trichloroethane	<25*	ug/kg	25	60	7	1.0	8260	cns	12/22/99

Jenny Johanson HSI Geotrans 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

ORGANIC REPORT

•

WDNR# 241340550

INVOICE NUMBER: 991062 29-Dec-99 DATE REPORTED: 21-Dec-99 DATE RECEIVED: SAMPLE TEMP (C): Rec On Ice PROJECT ID:

PROJECT NAME:

STA-RITE DELEVAN

LUSTLUSTLUSTNOVADilutionCompoundResultUnitsLODLOQLODFactorRQMethodAnalyst1,1-Dichloroethane<25*ug/kg256041.08260cps1,1-Dichloroethane<25*ug/kg256091.08260cps	Date of Analysis 12/22/99 12/22/99 12/22/99 12/22/99 12/22/99 12/22/99 12/22/99 12/22/99
CompoundResultUnitsLODLOQLODFactorRQMethouAnalyst1,1-Dichloroethane<25*ug/kg256041.08260cps1,1-Dichloroethane<25*ug/kg256091.08260cps	12/22/99 12/22/99 12/22/99 12/22/99 12/22/99 12/22/99
1,1-Dichloroethane <25*	12/22/99 12/22/99 12/22/99 12/22/99 12/22/99
1,1-Dichloroethene <25*	12/22/99 12/22/99 12/22/99 12/22/99
	12/22/99 12/22/99 12/22/99
173 Trichlorobenzene <25* ug/kg 25 60 5 1.0 8260 cps	12/22/99 12/22/99
1.7.4 Trichtorobenzene <25* ug/kg 25 60 4 1.0 8260 cps	12/22/99
1.2.4 Trimethylbenzene <25* ug/kg 25 60 7 1.0 8260 cps	
1.2 Dibromo 3-chloropropen <25* ug/kg 25 60 15 1.0 8260 cps	12/22/99
1.2 Dichlorobenzene <25* ng/kg 25 60 5 1.0 8260 cps	12/22/99
1.2 Dichloreethane $<25^*$ ug/kg 25 60 5 1.0 8260 cps	12/22/99
$1,2-1,k$ in the foregroup $<25^*$ ug/kg 25 60 6 1.0 8260 cps	12/22/99
1.2 Trimethylhenzene $<25^*$ ug/kg 25 60 6 1.0 8260 cps	12/22/99
1.3 Dichlandhanzana $<25^*$ ug/kg 25 60 5 1.0 8260 cps	12/22/99
1,3 Di-line property <25 ug/kg 25 60 5 1.0 8260 cps	12/22/99
2.5 ug/kg 2.5 60 4 1.0 8260 cps	12/22/99
2.3 ug/kg 2.5 60 10 1.0 8260 cps	12/22/99
2,2-inchioropropane 25 loging 25 60 4 1.0 8260 cps	12/22/99
2.Chlorotoluene (25) ug/kg (25) (0) (10) (25)	12/22/99
4-Chlorotoluene 225 ug/kg 25 60 5 1.0 8260 cps	12/22/99
Benzene <25 ug/kg 25 60 5 1.0 8260 cps	12/22/99
Bromobenzenc 25 ug/kg 25 60 6 1.0 8260 cps	12/22/99
Bromodichloromethane 25 ug/ug 25 60 5 1.0 8260 cps	12/22/99
Carbon tetrachloride 25 40 5 1.0 8260 cps	12/22/99
Chlorobenzene $\langle 23^{\circ} $ ug/kg 25° 60° 5° 10° 8260° cps	12/22/99
Chloroethane 29 ug/kg 25 60 7 10 8260 cps	12/22/99
Chloroform <23 ug/kg 25 60 19 10 8260 cps	12/22/99
Chloromethane $\langle 23^{\circ} $ ug/kg 25° 60 15° 1.0 8260° cps	12/22/99
cis-1,2-Dichlorocthene $\langle 25^{\circ} $ ug/kg 25° 60 5° 1.0 8260 cps	12/22/99
Dibromochloromethane <25* ug/kg 25 60 9 1.0 8260 cps	12/22/99
Dichlorodifluoromethane <25 ⁴ ug/kg 25 60 9 1.0 8260 cps	12/22/99
Ethylbenzene $\langle 25^{\circ} ug/kg \rangle = 25^{\circ} 60^{\circ} 4^{\circ} 1.0^{\circ} 25^{\circ} 60^{\circ}$	12/22/99
Hexachlorobutadiene <25* ug/kg 25 60 0 1.6 8260 cps	12/22/99
Isopropyl Ether <25° ug/kg 25 60 8 1.0 5200 spc	12/22/99
Isopropylbenzene <25* ug/kg 25 60 4 1.0 2200 epo	12/22/99
m&p-xylene <25* ug/kg 25 60 9 1.0 2200 cps	12/22/99
Methylene chloride <25* ug/kg 25 60 19 1.0 8260 eps	12/22/99
MTBE <25* ug/kg 25 60 5 1.0 8260 cps	12/22/99
n-Butylbenzene <25* ug/kg 25 60 6 1.0 8260 cps	12/22/99
n-Propylbenzene <25* ug/kg 25 60 6 1.0 8260 cps	12/22/99
Naphthalene <25* ug/kg 25 60 11 1.0 8260 cps	12/22/99
o-xylene <25* ug/kg 25 60 4 1.0 8260 cps	12/22/22
p-lsopropyitoluene <25* ug/kg 25 60 5 1.0 8260 cps	12/22/22
sec-Butylbenzene <25* ug/kg 25 60 7 1.0 8260 cps	10/00/00
tert-Butylbenzene <25* ug/kg 25 60 5 1.0 8260 cps	12/22/99
Tetrachloroethene <25* ug/kg 25 60 7 1.0 8260 cps	12/22/99

Jenny Johanson HSI Geotrans 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

ORGANIC REPORT

WDNR# 241340550

INVOICE NUMBER:	991062
DATE REPORTED:	29-Dec-99
DATE RECEIVED:	21-Dec-99
SAMPLE TEMP (C):	Rec On Ice
PROJECT ID:	
PROJECT NAME:	STA-RITE DELEVAN

Dry Weigl	it and Dilution Faci LUST	or Corrected	LUST	LUST	NOVA	Dilution	RO	Method	Analyst	Date of Analysis
Compound	Result	Units	LOD			ration				
Tuhiene	<25*	ug/kg	25	60	8	1.0		8260	cps	12/22/99
trans-1.2-Dichloroethene	<25*	ug/kg	25	60	4	1.0		8260	cps	12/22/99
Trichloroethene	<25*	ug/kg	25	60	4	1.0		8260	cps	12/22/99
Trichlorofluoromethane	<25*	ug/kg	25	60	9	1.0		8260	cps	12/22/99
Vinyl chloride	<25*	ug/kg	25	60	5	1.0		8260	cps	12/22/99
	<u> </u>		Арргоу	ved By		/		Date: _	<u> 13</u>	<u></u>

James Chang, Ph.D., Lab Director

* Special LUST Format for Methanol - Preserved Soil PVOCs or YOCs, (Release News, July and October 1994)

NOVA Lab LOD = where the LOD has been determined in accordance with 40 CFR, Part 136, Appendix B.

LUST LOD = LUST program PVOC/VOC LOD of 25 ug/kg (wet weight basis)

LUST LOQ = LUST program PVOC/VOC LOQ of 60 ug/kg (wet weight basis)

RQ: Run Qualifier; "J" = Results between LOD and LOQ "L" = Samples less than 20 g, "B" = Showed in Blank sample.

Rounding Rules: Three significant figures were used for concentrations above 99 ug/L, two significant figures for concentrations between 1-99 ug/L, and one significant figure for lower concentrations.

DNR Analytical Detection Limit Guidance, April 1995.

APL Environmental ?2 W. Calumet Rd., MIlwaukee, WI 53223 , Hone: (414) 355-5800 Fax: (414) 355-3099	Project Name: STA-RITE DELEVAN Project ID:					P	Project Manager: Company: Address: City/State/Zip					Jenny Johansey HST Geentrans 175 N. Corporate Dr #700 Brockfield, Wi 53045 Phone: Fax: 262 792-1282 262 792-1310							
Samples received "On Ice" Tempera	(ure;C	s	amp	le in	tact/	not	leak	ing		A. I B. I C. I	fCl 1NO NaOl	3 H	E. N F. P G. N	Aeth Filter None	red e	I F F	rese iltra	rvat <u>tion</u>	ion / <u>Code</u>
Test Required	Matrix						li an			D. 1	H2SC	J4	<u>н.</u> ч		ers		0.000		E/G
Additional Information:	Collection Time	&	8	8		2	8	8	36	79	34					+			coc#
For VOUS	Collection Date	12-20-	12:21	12-20-1	12-05-51	12-20-	12-20-1	12-20-	12-20-1	12-20-	12-20								
1 Plastic Jar, no Preservative, for Dry WT.	Sample ID	58-2005-16	SA-2008-20	56-2008-24	5B-2008-26	58-2008-28	SB-SumpE-16	58-SumpE-20	58- SumpE-24	SB - SumpE-26	SB-SumpE-28	-							1062
	Lab ID	18099	18100	10181	18102	18103	Ha181	18105	18106	ta181	18108								66
	_ i	<u> </u>	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	

Relinguished By:	Date/Time Received By: / /	Special Instructions:
al of 11	12) mrc 162 (1/2) 122/15	
flomas Comby 101	1/2/11/ ···	
l í		

.

. .

•

MASTER SUBCONTRACT ADDENDUM

HSI GeoTrans, Inc. 175 N. Corporate Drive, Suite 100 Brookfield, Wisconsin 53045 (414) 792-1282 Fax: (414) 792-1310 Contractor:

On-site Environmental Services, Inc. 3701 Token Road DeForest, Wisconsin 53532 (608) 837-8992 Fax: (608) 837-5906

Prepared By:	Contract Addendum No. Type of Action: New Assignment:	
Project No.	Addendum: Change Order:	

- 1. General: This Addendum is hereby appended and made part of the contract between HSI GeoTrans, Inc. and On-site Environmental Services, Inc. dated December 12, 1994 (the Original Contract). The terms and conditions set forth in the Original Contract are still in effect for the work addressed in this addendum.
- 2. Scope of Services: The scope of services defined in the Original Contract and/or any prior addendum are hereby modifed as follows:
- 3. Schedule: The schedule for performance of services defined in the Original Contract, any prior addendum, and in this addendum are hereby modifed as follows:

4. Compensation: The compensation to be paid for the work defined by this addendum is specified below:

Compensation Summary:

Original Authorization Amount for this Assignment:	\$
Net Change by previous addenda:	\$
Cost Increase/Decrease by this Addendum:	\$
Revised Authorized Amount for this Assignment:	\$

- 5. Special Provisions:
- 6. Execution: The person signing below on behalf of Contractor represents and warrants that such person has read and agrees to the terms and conditions set forth in the Original Contract, any prior addendum and in this addendum, and that such person is authorized to enter into this agreement on behalf of Contractor and has the legal ability to bind Contractor to this agreement. This agreement shall not be binding upon HSI GeoTrans, Inc. unless it is signed by the appropriate HSI GeoTrans, Inc. representative designated below.

On-site Environmental Services, Inc.	HSI GeoTrans, Inc.
Ву:	By:
Name:	Name:
Title:	Title:
Date:	Date:
	HSI GEOTRANS

On-site Environmental Services, Inc.

P.O. Box 280 Sun Prairie, WI 53590 (608) 837-8992 Fax (608) 837-5906

December 11, 2000

HSI GEOTRANS 175 North Corporate Drive, Suite 100 Brookfield, WI 53045

Attention: Mark

RE: Bid for Soil Probe Investigation Sta-Rite Industries <u>Delavan, Wisconsin</u> OES Bid #3823

Based on your request for cost estimate regarding a soil probe investigation at the referenced site, Onsite Environmental Services, Inc. (OES) is pleased to provide the following quotation. OES will use a Geoprobe Systems hydraulic probe to collect continuous soil samples at 2 locations to approximately 28 feet. Based on the scope of work provided, it is estimated that the field work for this project can be completed within 4 hours. It is our understanding that HSI will arrange for public utility clearance and establish the location of underground obstacles associated with site operations.

The fee for these services is:

\$125/Hour No Charge

Mobilization, Per Diem, Expendables and Equipment

NOTE: Our minimum fee is \$350.00.

For this investigation OES will:

- Make a reasonable effort to minimize property damage and return each location to its original condition;
- Abandon soil probe locations in accordance with the provisions of Chapter NR141, Wisconsin Administrative Code;
- Provide personnel who have 40-hour OSHA Training (29 CFR 1910.120), annual 8-hour refresher course, CPR and First Aid, and who are involved in a medical surveillance program. (OES maintains a Health and Safety Plan); and
- Provide Liability Insurance as specified in Wisconsin Chapter ILHR 47.

We are prepared to begin this project following the execution of a contract authorizing OES to proceed.

Sincerely,

Kim R. Lapugi

Kim R. Kapugi President

On-site Environmental Services, Inc.

P.O. Box 280 Sun Prairie, WI 53590 (608) 837-8992 Fax-(608) 837-5906

FACSIMILE TRANSMITTAL SHEET FROM: TO: Kim Kapugi Mark DATE: COMPANY: 12/12/00 HSI GeoTrans TOTAL # OF PAGES (INCL. COVER): FAX NUMBER: 2 (262) 792-1310 PHONE NUMBER: (262) 792-1282 D PLEASE REPLY DPLEASE COMMENT D FOR REVIEW DURGENT

NOTES/COMMENTS:

Cost estimate for soil probe services in Delavan, Wisconsin. We are scheduled for 9:00 a.m. on Wednesday December 13.

ANALYTICAL AND QUALITY CONTROL REPORT

Test/America

Ms. Jennifer Johanson HYDRO-SEARCH/GEO TRANS 175 N. Corporate Drive Suite 100 Brookfield, WI 53045 10/18/1999

Job No: 99.08852

OC:

FROJECT # N129-901

Page 1 of 31

Enclosed are the Analytical and Quality Control reports for the following samples submitted for analysis:

Sample Number	Sample Description	Date Taken	Date Received
368255 368256 368257 368258 368259 368260 368260 368261 368261 368262	SB-2008-16 Sta-Rite SB-2008-20 Sta-Rite SB-2008-24 Sta-Rite SB-2008-26-28 Sta-Rite SB-SUMPE-16 Sta-Rite SB-SUMPE-20 Sta-Rite SB-SUMPE-24 Sta-Rite SB-SUMPE-26 Sta-Rite	10/05/1999 10/05/1999 10/05/1999 10/05/1999 10/05/1999 10/05/1999 10/05/1999 10/05/1999	10/06/1999 10/06/1999 10/06/1999 10/06/1999 10/06/1999 10/06/1999 10/06/1999
368263	SB-SUMPE-28 Sta-Rite	10/05/1999	10/06/1999
300204	TITD DIGHT MECHANDI DUG NICC		

Soil results are reported on a dry weight basis. The above sample(s) may have a result flag shown on the report. The following are the result flag definitions:

- A = Analyzed/extracted past hold time
- C = Standard outside of control limits
- F = Sample filtered in lab
- H = Late eluting hydrocarbons present
- J = Estimated concentration
- M = Matrix interference
- Q = Result confirmed via re-analysis
- T = Does not match typical pattern
- X = Unidentified compound(s) present

- B = Blank is contaminated
- D = Diluted for analysis
 - G = Received past hold time
- I = Improperly handled sample
 - L = Common lab solvent and contaminant
- P = Improperly preserved sample
- S = Sediment present
- W = BOD re-set due to missed dilution
- Z = Internal standard outside limits

Brian D. DeJong

Organic Operations Manager

602 COMMERCE DRIVE / WATERTOWN, WI 53094 / 920-261-1660 / FAX: 920-261-8120 WDNR NO. 128053530

Ms. Jennifer Johanson HYDRO-SEARCH/GEO TRANS 175 N. Corporate Drive Suite 100 Brookfield, WI 53045 10/18/1999 Job No: 99.08852 Sample No: 368255 Account No: 39150 Page 2 of 31

JOB DESCRIPTION: Sta-Rite Delavan PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-2008-16 Sta-Rite Rec'd on ice

Date/Time Taken: 10/05/1999 11:30

Date Received: 10/06/1999

			Reporting		Date	Prep/Run
Parameter	Results	Units	Limit	Method	Analyzed	Batch
Solids Total	93.8	8	n/a	SW 5030	10/12/1999	2974
VOC = METHANOL = 8260B		-	·			
Ponzepe	<27	ua/ka	25	SW 8260B	10/13/1999	773
Bromobenzene	<27	ug/kg	25	SW 8260B	10/13/1999	773
Bromochloromethane	<27	ug/kg	25	SW 8260B	10/13/1999	773
Bromodichloromethane	<27	ug/kg	25	SW 8260B	10/13/1999	773
Promotorm	<27	uq/kq	25	SW 8260B	10/13/1999	773
momethane	<107	ug/kg	100	SW 8260B	10/13/1999	773
n-Butylbenzene	<27	ug/kg	25	SW 8260B	10/13/1999	773
sec_Butylbenzene	<27	uq/kq	25	SW 8260B	10/13/1999	773
tert-Butylbenzene	<27	ug/kg	25	SW 8260B	10/13/1999	773
Carbon Tetrachloride	<27	uq/kq	25	SW 8260B	10/13/1999	773
Chlorobenzene	<27	ug/kg	25	SW 8260B	10/13/1999	773
Chlorodibromomethane	<27	ug/kg	25	SW 8260B	10/13/1999	773
Chloroethane	<37	ug/kg	35	SW 8260B	10/13/1999	773
Chloroform	<27	ug/kg	25	SW 8260B	10/13/1999	773
Chloromethane	<32	ug/kg	30	SW 8260B	10/13/1999	773
2. Chlorotoluene	<27	ug/kg	25	SW 8260B	10/13/1999	773
4-Chlorotoluene	<27	ug/kg	25	SW 8260B	10/13/1999	773
4 - Circorocoluciene	<53	ug/kg	50	SW 8260B	10/13/1999	773
1.2 Dibromoethane (EDB)	<27	ug/kg	25	SW 8260B	10/13/1999	773
Dibromomethane	<27	ug/kg	25	SW 8260B	10/13/1999	773
1 2-Dichlorobenzene	<27	ug/kg	25	SW 8260B	10/13/1999	773
1.2-Dichlorobenzene	<27	ug/kg	25	SW 8260B	10/13/1999	773
1,3-Dichlorobenzene	<27	ug/kg	25	SW 8260B	10/13/1999	773
Dichlorodifluoromethane	<27	ug/kg	25	SW 8260B	10/13/1999	773
1 1 Dichloroethane	<27	ug/kg	25	SW 8260B	10/13/1999	773
1.2-Dichloroethane	<27	ug/kg	25	SW 8260B	10/13/1999	773
1,2-Dichloroethene	<27	ug/kg	25	SW 8260B	10/13/1999	773
ais-1 2-Dichloroethene	1.070	ug/kg	25	SW 8260B	10/13/1999	773
trang_1_2-Dichloroethene	~27	ug/kg	25	SW 8260B	10/13/1999	773
1.2 Dichloropropane	<27	ug/kg	25	SW 8260B	10/13/1999	773
1,2-Dichloropropane	~27	ug/kg	25	SW 8260B	10/13/1999	773
1,3-Dichioropropane	~27	ug/kg	25	SW 8260B	10/13/1999	773
2,2-Dichioropropane	<27	ug/kg	25	SW 8260B	10/13/1999	773
1 - Dichioropropene	<27	ug/kg	25	SW 8260B	10/13/1999	, 773
-1,3-Dichioropropene	~ ~ 7 7	ug/kg	25	SW 8260B	10/13/1999) 773
Lians-1,3-Dichioropropene	-27	ug/ng ug/kg	25	SW 8260B	10/13/1999	773
Di-isopropyi ether	<27	ug/kg	25	SM 8260B	10/13/1999	773
Ethylbenzene	<21	ug/kg	43	3W 0200B	10/10/10/2000	

Ms. Jennifer Johanson HYDRO-SEARCH/GEO TRANS 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

10/18/1999 Job No: 99.08852 Sample No: 368255 Account No: 39150 Page 3 of 31

JOB DESCRIPTION: Sta-Rite Delavan PROJECT DESCRIPTION: Soil Analysis SB-2008-16 Sta-Rite SAMPLE DESCRIPTION: Rec'd on ice

Date/Time Taken: 10/05/1999 11:30 Date Received: 10/06/1999

			Reporting	Wethod	Date Apalyzed	Prep/Run Batch
Parameter	Results	Units	Limit	Methou	Analyzea	Ducch
Hexachlorobutadieue	<37	ug/kg	35	SW 8260B	10/13/1999	773
Teopropylhenzene	<27	uq/kq	25	SW 8260B	10/13/1999	773
n Jappropyliolizene	<27	uq/kq	25	SW 8260B	10/13/1999	773
Mathulana Chloride	< 53	ug/kg	50	SW 8260B	10/13/1999	773
Methylene chioride	<27	ug/kg	25	SW 8260B	10/13/1999	773
Methyl-t-Dutyl ether	<27	ug/kg	25	SW 8260B	10/13/1999	773
Naphthalene	<27	ug/kg	25	SW 8260B	10/13/1999	773
p-propyldenzene	<27	ug/kg	25	SW 8260B	10/13/1999	773
rene	<27	ug/kg	25	SW 8260B	10/13/1999	773
1,1,1,2-Tetrachloroethane	<27	ug/kg	25	SW 8260B	10/13/1999	773
1,1,2,2-Tetrachloroethane	<27	ug/kg ug/kg	25	SW 8260B	10/13/1999	773
Tetrachloroethene	/36	ug/kg	25	GW 8260B	10/13/1999	773
Toluene	<27	ug/kg	25	SW 82005	10/13/1999	773
1,2,3-Trichlorobenzene	<27	ug/kg	25	SW 8260B	10/13/1999	773
1,2,4-Trichlorobenzene	<27	ug/kg	25	SW 8260B	10/13/2000	773
1,1,1-Trichloroethane	<27	ug/kg	25	SW 8260B	10/13/1999	ני, ברר
1,1,2-Trichloroethane	<27	ug/kg	25	SW 8260B	10/13/1999	273
Trichloroethene	2,770	ug/kg	25	SW 8260B	10/13/1999	272
Trichlorofluoromethane	<27	ug/kg	25	SW 8260B	10/13/1999	//3
1,2,3-Trichloropropane	<27	ug/kg	25	SW 8260B	10/13/1999	773
1,2,4-Trimethylbenzene	<27	ug/kg	25	SW 8260B	10/13/1999	773
1.3.5-Trimethylbenzene	<27	ug/kg	25	SW 8260B	10/13/1999	773
Vinvl Chloride	<27	ug/kg	25	SW 8260B	10/13/1999	773
Xylenes. Total	<37	ug/kg	35	SW 8260B	10/13/1999	773
Surr. Dibromofluoromethane	99.4	ક	82-129	SW 8260B	10/13/1999	773
Surr: Toluene-d8	105.0	ę	87-109	SW 8260B	10/13/1999	773
Surr: Bromofluorobenzene	107.8	용	86-108	SW 8260B	10/13/1999	773

Ms. Jennifer Johanson HYDRO-SEARCH/GEO TRANS 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

.

10/18/1999 Job No: 99.08852 Sample No: 368256 Account No: 39150 Page 4 of 31

JOB DESCRIPTION: Sta-Rite Delavan PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-2008-20 Sta-Rite Rec'd on ice

Date/Time Taken: 10/05/1999 12:00

Date Received: 10/06/1999

Parameter	Results	Units	Reporting Limit	Method	Date Analyzed	Prep/Run Batch
				04 5020	10/10/1999	2974
Solids, Total	92.2	%	n/a	SW 5030	10/12/1999	22/13
VOC - METHANOL - 8260B		<i>(</i> -			10/12/1000	773
Benzene	<27	ug/kg	25	SW 8260B	10/13/1999	2773
Bromobenzene	<27	ug/kg	25	SW 8260B	10/13/1999	773
Bromochloromethane	<27	ug/kg	25	SW 82608	10/13/1999	277 נדד
Bromodichloromethane	<27	ug/kg	25	SW 8260B	10/13/1999	211 277
Promoform	<27	ug/kg	25	SW 8260B	10/13/1999	773
momethane	<108	ug/kg	100	SW 8260B	10/13/1999	773
1. Butylbenzene	<27	ug/kg	25	SW 8260B	10/13/1999	773
sec-Butylbenzene	293	ug/kg	25	SW 8260B	10/13/1999	773
tert-Butylbenzene	<27	ug/kg	25	SW 8260B	10/13/1999	//3
Carbon Tetrachloride	<27	ug/kg	25	SW 8260B	10/13/1999	773
Chlorobenzene	<27	ug/kg	25	SW 8260B	10/13/1999	773
Chlorodibromomethane	<27	ug/kg	25	SW 8260B	10/13/1999	773
Chloroethane	<38	ug/kg	35	SW 8260B	10/13/1999	773
Chloroform	<27	ug/kg	25	SW 8260B	10/13/1999	773
Chloromethane	<33	ug/kg	30	SW 8260B	10/13/1999	773
2-Chlorotoluene	<27	ug/kg	25	SW 8260B	10/13/1999	773
4-Chlorotoluene	<27	ug/kg	25	SW 8260B	10/13/1999	773
1 2-Dibromo-3-Chloropropane	<54	ug/kg	50	SW 8260B	10/13/1999	773
1 2-Dibromoethane (EDB)	<27	uq/kq	25	SW 8260B	10/13/1999	773
Dibromomethane	<27	uq/kq	25	SW 8260B	10/13/1999	773
1 2-Dichlorobenzene	<27	ug/kg	25	SW 8260B	10/13/1999	773
1 3-Dichlorobenzene	<27	ug/kg	25	SW 8260B	10/13/1999	773
1 4-Dichlorobenzene	<27	ug/kg	25	SW 8260B	10/13/1999	773
Dichlorodifluoromethane	<27	uq/kq	25	SW 8260B	10/13/1999	773
1 l-Dicbloroethane	<27	ug/kg	25	SW 8260B	10/13/1999	773
1.2-Dichloroethaue	<27	ua/ka	25	SW 8260B	10/13/1999	773
1,2 Bichloroethene	<27	ug/kg	25	SW 8260B	10/13/1999	773
cis-1 2-Dichloroethene	336	ug/kg	25	SW 8260B	10/13/1999	773
trang-1 2-Dichloroethene	<27	ug/kg	25	SW 8260B	10/13/1999	773
1 2-Dichloropropage	<27	ug/kg	25	SW 8260B	10/13/1999	773
1,2-Dichloropropane	<27	ug/kg	25	SW 8260B	10/13/1999	773
2.2 Dichloropropane	~27	ug/kg	25	SW 8260B	10/13/1999	773
2,2-Dichiolopiopane	227	ug/kg	25	SW 8260B	10/13/1999	773
1.2-Dichloropropene	~27	ug/kg	25	SW 8260B	10/13/1999	773
-1,3-Dichioropropene	~27	ug/kg	25	SW 8260B	10/13/1999	773
ans-1,5-Dientotopropene	~~~		25	SW 8260B	10/13/1999	773
D1-1sopropy1 etner	547 - 27	ug/kg	25	SW 8260B	10/13/1999	773
Ethylbenzene	<21	uy/ky	2.1	50 52005		-

Ms. Jennifer Johanson HYDRO-SEARCH/GEO TRANS 175 N. Corporate Drive Suite 100 Brookfield, WI 53045 10/18/1999 Job No: 99.08852 Sample No: 368256 Account No: 39150 Page 5 of 31

JOB DESCRIPTION: Sta-Rite Delavan PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-2008-20 Sta-Rite Rec'd on ice

Date/Time Taken: 10/05/1999 12:00

Date Received: 10/06/1999

Parameter	Results	Units	Reporting Limit	Method	Date Analyzed	Prep/Run Batch
Hexachlorobutadiene	<38	ug/kg	35	SW 8260B	10/13/1999	773
Isopropylbenzene	34	ug/kg	25	SW 8260B	10/13/1999	773
p-Isopropyltoluene	66	ug/kg	25	SW 8260B	10/13/1999	773
Methylene Chloride	<54	ug/kg	50	SW 8260B	10/13/1999	773
Methyl-t-butyl ether	<27	ug/kg	25	SW 8260B	10/13/1999	773
Naphthalene	<27	ug/kg	25	SW 8260B	10/13/1999	773
n-Propylbenzene	<27	ug/kg	25	SW 8260B	10/13/1999	773
rene	<27	ug/kg	25	SW 8260B	10/13/1999	773
1 2-Tetrachloroethane	<27	ug/kg	25	SW 8260B	10/13/1999	773
1 1 2 2-Tetrachloroethane	<27	ug/kg	25	SW 8260B	10/13/1999	773
Tetrachloroethene	11,900	ug/kg	25	SW 8260B	10/14/1999	775
Toluene	<27	uq/kq	25	SW 8260B	10/13/1999	773
1 2 3-Trichlorobenzene	<27	ug/kg	25	SW 8260B	10/13/1999	773
1,2,3-Trichlorobenzene	<27	uq/kq	25	SW 8260B	10/13/1999	773
1 1 1 Trichloroethane	<27	ug/kg	25	SW 8260B	10/13/1999	773
1,1,2-Trichloroethane	<27	ug/kg	25	SW 8260B	10/13/1999	773
Trichloroethere	542	ug/kg	25	SW 8260B	10/13/1999	773
Trichlorofluoromethane	<27	ug/kg	25	SW 8260B	10/13/1999	773
1 2 2 Trichloropropage	<27	ug/kg	25	SW 8260B	10/13/1999	773
1,2,3-IIICHIOIOpiopane	1.300	ug/kg	25	SW 8260B	10/13/1999	773
1,2,4-111methylbenzene	738	ug/kg	25	SW 8260B	10/13/1999	773
1,3,5-111methyibenzene	~27	ug/kg	25	SW 8260B	10/13/1999	773
Vinyi Chioride	55	ug/kg	35	SW 8260B	10/13/1999	773
Aylenes, Iotal	105 2	& %	82-129	SW 8260B	10/13/1999	773
Surr: Dibiomoridoromethane	105 4	ş.	87-109	SW 8260B	10/13/1999	773
Surr: Bromofluorobenzene	98.6	8	86-108	SW 8260B	10/13/1999	773

Ms. Jennifer Johanson HYDRO-SEARCH/GEO TRANS 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

10/18/1999 Job No: 99.08852 Sample No: 368257 Account No: 39150 Page 6 of 31

JOB DESCRIPTION: Sta-Rite Delavan PROJECT DESCRIPTION: Soil Analysis SB-2008-24 Sta-Rite SAMPLE DESCRIPTION: Rec'd on ice

Date/Time Taken: 10/05/1999 12:00 Date Received: 10/06/1999

			Reporting		Date	Prep/Run
Parameter	Results	Units	Limit	Method	Analyzed	Batch
Solids, Total	92.3	20	n/a	SW 5030	10/12/1999	2975
VOC - METHANOL - 8260B						_
Benzene	<270	ug/kg	25	SW 8260B	10/14/1999	775
Bromobenzene	<270	ug/kg	25	SW 8260B	10/14/1999	775
Bromochloromethane	<270	ug/kg	25	SW 8260B	10/14/1999	775
Bromodichloromethane	<270	ug/kg	25	SW 8260B	10/14/1999	775
Bromoform	<270	ug/kg	25	SW 8260B	10/14/1999	775
nomethane	<1,100	ug/kg	100	SW 8260B	10/14/1999	775
1. Jutylbenzene	<270	ug/kg	25	SW 8260B	10/14/1999	775
sec-Butylbenzene	1,730	ug/kg	25	SW 8260B	10/14/1999	775
tert-Butylbenzene	<270	ug/kg	25	SW 8260B	10/14/1999	775
Carbon Tetrachloride	<270	ug/kg	25	SW 8260B	10/14/1999	775
Chlorobenzene	<270	ug/kg	25	SW 8260B	10/14/1999	775
Chlorodibromomethane	<270	ug/kg	25	SW 8260B	10/14/1999	775
Chloroethane	<380	ug/kg	35	SW 8260B	10/14/1999	775
Chloroform	<270	ug/kg	25	SW 8260B	10/14/1999	775
Chloromethane	<330	ug/kg	30	SW 8260B	10/14/1999	775
2-Chlorotoluene	<270	ug/kg	25	SW 8260B	10/14/1999	775
4-Chlorotoluene	<270	ug/kg	25	SW 8260B	10/14/1999	775
1.2-Dibromo-3-Chloropropane	<540	ug/kg	50	SW 8260B	10/14/1999	775
1,2-Dibromoethane (EDB)	<270	ug/kg	25	SW 8260B	10/14/1999	775
Dibromomethane	<270	ug/kg	25	SW 8260B	10/14/1999	775
1,2-Dichlorobenzene	<270	ug/kg	25	SW 8260B	10/14/1999	775
1,3-Dichlorobenzene	<270	ug/kg	25	SW 8260B	10/14/1999	775
1.4-Dichlorobenzene	<270	ug/kg	25	SW 8260B	10/14/1999	775
Dichlorodifluoromethane	<270	ug/kg	25	SW 8260B	10/14/1999	775
1.1-Dichloroethane	<270	ug/kg	25	SW 8260B	10/14/1999	775
1,2-Dichloroethane	<270	ug/kg	25	SW 8260B	10/14/1999	775
1,1-Dichloroethene	<270	ug/kg	25	SW 8260B	10/14/1999	775
cis-1,2-Dichloroethene	1,410	ug/kg	25	SW 8260B	10/14/1999	775
trans-1,2-Dichloroethene	<270	ug/kg	25	SW 8260B	10/14/1999	775
1,2-Dichloropropane	<270	ug/kg	25	SW 8260B	10/14/1999	775
1,3-Dichloropropane	<270	ug/kg	25	SW 8260B	10/14/1999	775
2,2-Dichloropropane	<270	ug/kg	25	SW 8260B	10/14/1999	775
1.1-Dichloropropene	<270	ug/kg	25	SW 8260B	10/14/1999	775
-1,3-Dichloropropene	<270	ug/kg	25	SW 8260B	10/14/1999	775
uns-1,3-Dichloropropene	<270	ug/kg	25	SW 8260B	10/14/1999	775
Di-isopropyl ether	<270	ug/kg	25	SW 8260B	10/14/1999	775
Ethylbenzene	4,330	ug/kg	25	SW 8260B	10/14/1999	775

Ms. Jennifer Johanson HYDRO-SEARCH/GEO TRANS 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

10/18/1999 Job No: 99.08852 Sample No: 368258 Account No: 39150 Page 8 of 31

•

JOB DESCRIPTION: Sta-Rite Delavan PROJECT DESCRIPTION: Soil Analysis SB-2008-26-28 Sta-Rite SAMPLE DESCRIPTION: Rec'd on ice

Date/Time Taken: 10/05/1999 12:30 Date Received: 10/06/1999

			Reporting		Date	Prep/Run
Parameter	Results	Units	Limit	Method	Analyzed	Batch
Solids. Total	86.0	옹	n/a	SW 5030	10/12/1999	2975
VOC - METHANOL - 8260B						
Benzene	<580	ug/kg	25	SW 8260B	10/15/1999	776
Bromobenzene	<580	ug/kg	25	SW 8260B	10/15/1999	776
Bromochloromethane	<580	ug/kg	25	SW 8260B	10/15/1999	776
Bromodichloromethane	<580	ug/kg	25	SW 8260B	10/15/1999	776
Bromoform	<580	ug/kg	25	SW 8260B	10/15/1999	776
momethane	<2,300	ug/kg	100	SW 8260B	10/15/1999	7 7 6
sutvlbenzene	<580	ug/kg	25	SW 8260B	10/15/1999	776
sec-Butylbenzene	3,140	ug/kg	25	SW 8260B	10/15/1999	776
tert-Butylbenzene	<580	ug/kg	25	SW 8260B	10/15/1999	776
Carbon Tetrachloride	<580	ug/kg	25	SW 8260B	10/15/1999	776
Chlorobenzene	<580	ug/kg	25	SW 8260B	10/15/1999	7 76
Chlorodibromomethane	<580	ug/kg	25	SW 8260B	10/15/1999	776
Chloroethane	<820	ug/kg	35	SW 8260B	10/15/1999	776
Chloroform	<580	ug/kg	25	SW 8260B	10/15/1999	776
Chloromethane	<700	uq/kq	30	SW 8260B	10/15/1999	776
2-Chlorotoluene	<580	uq/kq	25	SW 8260B	10/15/1999	776
4-Chlorotoluene	<580	ug/kg	25	SW 8260B	10/15/1999	776
1.2-Dibromo-3-Chloropropane	<1,200	ug/kg	50	SW 8260B	10/15/1999	776
1.2-Dibromoethane (EDB)	<580	ug/kg	25	SW 8260B	10/15/1999	776
Dibromomethane	<580	ug/kg	25	SW 8260B	10/15/1999	776
1,2-Dichlorobenzene	<580	ug/kg	25	SW 8260B	10/15/1999	776
1,3-Dichlorobenzene	<580	ug/kg	25	SW 8260B	10/15/1999	776
1,4-Dichlorobenzene	<580	ug/kg	25	SW 8260B	10/15/1999	776
Dichlorodifluoromethane	<580	ug/kg	25	SW 8260B	10/15/1999	776
1,1-Dichloroethane	<580	ug/kg	25	SW 8260B	10/15/1999	776
1,2-Dichloroethane	<580	ug/kg	25	SW 8260B	10/15/1999	776
1,1-Dichloroethene	<580	ug/kg	25	SW 8260B	10/15/1999	776
cis-1,2-Dichloroethene	6,860	ug/kg	25	SW 8260B	10/15/1999	776
trans-1,2-Dichloroethene	<580	ug/kg	25	SW 8260B	10/15/1999	776
1,2-Dichloropropane	<580	ug/kg	25	SW 8260B	10/15/1999	776
1,3-Dichloropropane	<580	ug/kg	25	SW 8260B	10/15/1999	776
2,2-Dichloropropane	<580	ug/kg	25	SW 8260B	10/15/1999	776
1,1-Dichloropropene	<580	ug/kg	25	SW 8260B	10/15/1999	776
-1,3-Dichloropropene	<580	ug/kg	25	SW 8260B	10/15/1999	776
ans-1,3-Dichloropropene	<580	ug/kg	25	SW 8260B	10/15/1999	776
Di-isopropyl ether	<580	ug/kg	25	SW 8260B	10/15/1999	776
Ethylbenzene	18,600	ug/kg	25	SW 8260B	10/15/1999	776

Test/Merica

-

ANALYTICAL REPORT

Ms. Jennifer Johanson HYDRO-SEARCH/GEO TRANS 175 N. Corporate Drive Suite 100 Brookfield, WI 53045 10/18/1999 Job No: 99.08852 Sample No: 368258 Account No: 39150 Page 9 of 31

JOB DESCRIPTION: Sta-Rite Delavan PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-2008-26-28 Sta-Rite Rec'd on ice

Date/Time Taken: 10/05/1999 12:30

Date Received: 10/06/1999

	Reporting				Date	Prep/Run
Parameter	Results	Units	Limit	Method	Analyzed	Batch
Hexachlorobutadiene	<820	ug/kg	35	SW 8260B	10/15/1999	776
Isopropylbenzene	3,490	ug/kg	25	SW 8260B	10/15/1999	776
p-Isopropyltoluene	4,880	ug/kg	25	SW 8260B	10/15/1999	776
Methylene Chloride	<1,200	ug/kg	50	SW 8260B	10/15/1999	776
Methyl-t-butyl ether	<580	ug/kg	25	SW 8260B	10/15/1999	776
Naphthalene	3,370	ug/kg	25	SW 8260B	10/15/1999	776
n-Propylbenzene	4,070	ug/kg	25	SW 8260B	10/15/1999	776
rene	<580	ug/kg	25	SW 8260B	10/15/1999	776
., 1, 1, 2-Tetrachloroethane	<580	ug/kg	25	SW 8260B	10/15/1999	776
1,1,2,2-Tetrachloroethane	<580	uq/kq	25	SW 8260B	10/15/1999	776
Tetrachloroethene	66,300	ug/kg	25	SW 8260B	10/15/1999	776
Toluene	<580	ug/kg	25	SW 8260B	10/15/1999	776
1,2,3-Trichlorobenzene	<580	ug/kg	25	SW 8260B	10/15/1999	776
1,2,4-Trichlorobenzene	<580	ug/kg	25	SW 8260B	10/15/1999	776
1,1,1-Trichloroethane	<580	ug/kg	25	SW 8260B	10/15/1999	776
1,1,2-Trichloroethane	<580	uq/kq	25	SW 8260B	10/15/1999	776
Trichloroethene	130,000	ug/kg	25	SW 8260B	10/15/1999	776
Trichlorofluoromethane	<580	ug/kg	25	SW 8260B	10/15/1999	776
1,2,3-Trichloropropane	<580	ug/kg	25	SW 8260B	10/15/1999	776
1,2,4-Trimethylbenzene	20,900	ug/kg	25	SW 8260B	10/15/1999	776
1,3,5-Trimethylbenzene	9,650	ug/kg	25	SW 8260B	10/15/1999	776
Vinyl Chloride	<580	ug/kg	25	SW 8260B	10/15/1999	776
Xylenes, Total	45,300	ug/kg	35	SW 8260B	10/15/1999	776
Surr: Dibromofluoromethane	97.2	8	82-129	SW 8260B	10/15/1999	776
Surr: Toluene-d8	96.8	ક્ષ	87-109	SW 8260B	10/15/1999	776
Surr: Bromofluorobenzene	100.6	ક	86-108	SW 8260B	10/15/1999	776

Test/Merica

ANALYTICAL REPORT

Ms. Jennifer Johanson HYDRO-SEARCH/GEO TRANS 175 N. Corporate Drive Suite 100 Brookfield, WI 53045 10/18/1999 Job No: 99.08852 Sample No: 368259 Account No: 39150 Page 10 of 31

JOB DESCRIPTION: Sta-Rite Delavan PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-SUMPE-16 Sta-Rite Rec'd on ice

Date/Time Taken: 10/05/1999 13:30

Date Received: 10/06/1999

			Reporting		Date	Prep/Run
Parameter	Results	Units	Limit	Method	Analyzed	Batch
Solids, Total	92.7	뵹	n/a	SW 5030	10/12/1999	2975
VOC - METHANOL - 8260B						
Benzene	<27	ug/kg	25	SW 8260B	10/14/1999	775
Bromobenzene	<27	ug/kg	25	SW 8260B	10/14/1999	775
Bromochloromethane	<27	ug/kg	25	SW 8260B	10/14/1999	775
Bromodichloromethane	<27	ug/kg	25	SW 8260B	10/14/1999	775
Bromoform	<27	ug/kg	25	SW 8260B	10/14/1999	775
momethane	<108	ug/kg	100	SW 8260B	10/14/1999	775
Butylbenzene	<27	ug/kg	25	SW 8260B	10/14/1999	775
sec-Butylbenzene	<27	ug/kg	25	SW 8260B	10/14/1999	775
tert-Butylbenzene	<27	ug/kg	25	SW 8260B	10/14/1999	775
Carbon Tetrachloride	<27	ug/kg	25	SW 8260B	10/14/1999	775
Chlorobenzene	<27	ug/kg	25	SW 8260B	10/14/1999	775
Chlorodibromomethane	<27	ug/kg	25	SW 8260B	10/14/1999	775
Chloroethane	<38	ug/kg	35	SW 8260B	10/14/1999	775
Chloroform	<27	ug/kg	25	SW 8260B	10/14/1999	775
Chloromethane	<32	ug/kg	30	SW 8260B	10/14/1999	775
2-Chlorotoluene	<27	ug/kg	25	SW 8260B	10/14/1999	775
4-Chlorotoluene	<27	ug/kg	25	SW 8260B	10/14/1999	775
1,2-Dibromo-3-Chloropropane	<54	ug/kg	50	SW 8260B	10/14/1999	775
1,2-Dibromoethane (EDB)	<27	ug/kg	25	SW 8260B	10/14/1999	775
Dibromomethane	<27	ug/kg	25	SW 8260B	10/14/1999	775
1,2-Dichlorobenzene	<27	ug/kg	25	SW 8260B	10/14/1999	775
1,3-Dichlorobenzene	<27	ug/kg	25	SW 8260B	10/14/1999	775
1,4-Dichlorobenzene	<27	ug/kg	25	SW 8260B	10/14/1999	775
Dichlorodifluoromethane	<27	ug/kg	25	SW 8260B	10/14/1999	775
1,1-Dichloroethane	<27	ug/kg	25	SW 8260B	10/14/1999	775
1,2-Dichloroethane	<27	ug/kg	25	SW 8260B	10/14/1999	775
1,1-Dichloroethene	<27	ug/kg	25	SW 8260B	10/14/1999	775
cis-1,2-Dichloroethene	205	ug/kg	25	SW 8260B	10/14/1999	775
trans-1,2-Dichloroethene	<27	ug/kg	25	SW 8260B	10/14/1999	775
1,2-Dichloropropane	<27	ug/kg	25	SW 8260B	10/14/1999	775
1,3-Dichloropropane	<27	ug/kg	25	SW 8260B	10/14/1999	775
2,2-Dichloropropane	<27	ug/kg	25	SW 8260B	10/14/1999	775
1,1-Dichloropropene	<27	ug/kg	25	SW 8260B	10/14/1999	775
'-1, 3-Dichloropropene	<27	ug/kg	25	SW 8260B	10/14/1999	775
ans-1,3-Dichloropropene	<27	ug/kg	25	SW 8260B	10/14/1999	775
Di-isopropyl ether	<27	ug/kg	25	SW 8260B	10/14/1999	775
Ethylbenzene	<27	ug/kg	25	SW 8260B	10/14/1999	775
ANALYTICAL REPORT

Ms. Jennifer Johanson HYDRO-SEARCH/GEO TRANS 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

10/18/1999 Job No: 99.08852 Sample No: 368259 Account No: 39150 Page 11 of 31

JOB DESCRIPTION: Sta-Rite Delavan PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-SUMPE-16 Sta-Rite Rec'd on ice

Date/Time Taken: 10/05/1999 13:30 Date Received: 10/06/1999

.

Parameter	Results	Units	Reporting Limit	Method	Date Analyzed	Prep/Run Batch
Hexachlorobutadiene	<38	ug/kg	35	SW 8260B	10/14/1999	775
Isopropylbenzene	<27	ug/kg	25	SW 8260B	10/14/1999	775
p-Isopropyltoluene	<27	ug/kg	25	SW 8260B	10/14/1999	775
Methylene Chloride	< 54	ug/kg	50	SW 8260B	10/14/1999	775
Methyl-t-butyl ether	<27	ug/kg	25	SW 8260B	10/14/1999	775
Naphthalene	<27	ug/kg	25	SW 8260B	10/14/1999	775
r-Propylbenzene	<27	ug/kg	25	SW 8260B	10/14/1999	775
rene	<27	ug/kg	25	SW 8260B	10/14/1999	775
<pre>., 1, 2-Tetrachloroethane</pre>	<27	ug/kg	25	SW 8260B	10/14/1999	775
1,1,2,2-Tetrachloroethane	<27	ug/kg	25	SW 8260B	10/14/1999	775
Tetrachloroethene	205	ug/kg	25	SW 8260B	10/14/1999	775
Toluene	<27	ug/kg	25	SW 8260B	10/14/1999	775
1,2,3-Trichlorobenzene	<27	ug/kg	25	SW 8260B	10/14/1999	775
1,2,4-Trichlorobenzene	<27	ug/kg	25	SW 8260B	10/14/1999	775
1,1,1-Trichloroethane	<27	ug/kg	25	SW 8260B	10/14/1999	775
1,1,2-Trichloroethane	<27	ug/kg	25	SW 8260B	10/14/1999	775
Trichloroethene	64	ug/kg	25	SW 8260B	10/14/1999	775
Trichlorofluoromethane	<27	ug/kg	25	SW 8260B	10/14/1999	775
1,2,3-Trichloropropane	<27	ug/kg	25	SW 8260B	10/14/1999	775
1,2,4-Trimethylbenzene	33	ug/kg	25	SW 8260B	10/14/1999	775
1,3,5-Trimethylbenzene	<27	ug/kg	25	SW 8260B	10/14/1999	775
Vinyl Chloride	<27	ug/kg	25	SW 8260B	10/14/1999	775
Xylenes, Total	140	ug/kg	35	SW 8260B	10/14/1999	775
Surr: Dibromofluoromethane	98.4	8	82-129	SW 8260B	10/14/1999	775
Surr: Toluene-d8	96.4	\$	87-109	SW 8260B	10/14/1999	775
Surr: Bromofluorobenzene	87.0	f	86-108	SW 8260B	10/14/1999	775

-

ANALYTICAL REPORT

Ms. Jennifer Johanson HYDRO-SEARCH/GEO TRANS 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

10/18/1999 Job No: 99.08852 Sample No: 368260 Account No: 39150 Page 12 of 31

JOB DESCRIPTION: Sta-Rite Delavan PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-SUMPE-20 Sta-Rite Rec'd on ice

Date/Time Taken: 10/05/1999 13:30 Date Received: 10/06/1999

		Repo				Date	Prep/Run
Parameter		Results	Units	Limit	Method	Analyzed	Batch
Solids, Total		93.4	a) a	n/a	SW 5030	10/12/1999	2975
VOC - METHANOL - 8260B	М						
Benzene		<140	ug/kg	25	SW 8260B	10/14/1999	775
Bromobenzene		<140	ug/kg	25	SW 8260B	10/14/1999	775
Bromochloromethane		<140	ug/kg	25	SW 8260B	10/14/1999	775
Bromodichloromethane		<140	ug/kg	25	SW 8260B	10/14/1999	775
Bromoform		<140	ug/kg	25	SW 8260B	10/14/1999	775
nomethane		<540	ug/kg	100	SW 8260B	10/14/1999	775
n. Lutylbenzene		<140	uq/kq	25	SW 8260B	10/14/1999	775
sec-Butylbenzene		<140	ug/kg	25	SW 8260B	10/14/1999	775
tert-Butylbenzene		<140	ug/kg	25	SW 8260B	10/14/1999	775
Carbon Tetrachloride		<140	ug/kg	25	SW 8260B	10/14/1999	775
Chlorobenzene		<140	ug/kg	25	SW 8260B	10/14/1999	775
Chlorodibromomethane		<140	ug/kg	25	SW 8260B	10/14/1999	775
Chloroethane		<180	ug/kg	35	SW 8260B	10/14/1999	775
Chloroform		<140	uq/kq	25	SW 8260B	10/14/1999	775
Chloromethane		<160	uq/kq	30	SW 8260B	10/14/1999	775
2-Chlorotoluene		<140	uq/kq	25	SW 8260B	10/14/1999	775
4-Chlorotoluene		<140	uq/kq	25	SW 8260B	10/14/1999	775
1,2-Dibromo-3-Chloropropane		<270	uq/kq	50	SW 8260B	10/14/1999	775
1,2-Dibromoethane (EDB)		<140	uq/kq	25	SW 8260B	10/14/1999	775
Dibromomethane		<140	uq/kq	25	SW 8260B	10/14/1999	775
1,2-Dichlorobenzene		<140	ug/kg	25	SW 8260B	10/14/1999	775
1,3-Dichlorobenzene		<140	ug/kg	25	SW 8260B	10/14/1999	775
1,4-Dichlorobenzene		<140	uq/kq	25	SW 8260B	10/14/1999	775
Dichlorodifluoromethane		<140	uq/kg	25	SW 8260B	10/14/1999	775
1,1-Dichloroethane		<140	uq/kq	25	SW 8260B	10/14/1999	775
1,2-Dichloroethane		<140	ug/kg	25	SW 8260B	10/14/1999	775
1,1-Dichloroethene		<140	ug/kg	25	SW 8260B	10/14/1999	775
cis-1,2-Dichloroethene		268	ug/kg	25	SW 8260B	10/14/1999	775
trans-1,2-Dichloroethene		<140	uq/kq	25	SW 8260B	10/14/1999	775
1,2-Dichloropropane		<140	ug/kg	25	SW 8260B	10/14/1999	775
1,3-Dichloropropane		<140	uq/kq	25	SW 8260B	10/14/1999	775
2,2-Dichloropropane		<140	ug/kg	25	SW 8260B	10/14/1999	775
1,1-Dichloropropene		<140	uq/kq	25	SW 8260B	10/14/1999	775
-1,3-Dichloropropene		<140	ug/kg	25	SW 8260B	10/14/1999	775
.ns-1,3-Dichloropropene		<140	ug/kg	25	SW 8260B	10/14/1999	775
Di-isopropyl ether		<140	uq/ka	25	SW 8260B	10/14/1999	775
Ethylbenzene		<140	ug/kg	25	SW 8260B	10/14/1999	775

ANALYTICAL REPORT

Ms. Jennifer Johanson HYDRO-SEARCH/GEO TRANS 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

÷ .

10/18/1999 Job No: 99.08852 Sample No: 368260 Account No: 39150 Page 13 of 31

JOB DESCRIPTION: Sta-Rite Delavan PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-SUMPE-20 Sta-Rite Rec'd on ice

Date/Time Taken: 10/05/1999 13:30 Date Received: 10/06/1999

				Date	Prep/Run		
Parameter		Results	Units	Limit	Method	Analyzed	Batch
Hexachlorobutadiene		<180	ug/kg	35	SW 8260B	10/14/1999	775
Isopropylbenzene		<140	ug/kg	25	SW 8260B	10/14/1999	775
p-Isopropyltoluene		2,460	ug/kg	25	SW 8260B	10/14/1999	775
Methylene Chloride	ь	503	ug/kg	50	SW 8260B	10/14/1999	775
Methyl-t-butyl ether		<140	ug/kg	25	SW 8260B	10/14/1999	775
Naphthalene		257	ug/kg	25	SW 8260B	10/14/1999	775
n-Propylbenzene		<140	ug/kg	25	SW 8260B	10/14/1999	775
rene		<140	ug/kg	25	SW 8260B	10/14/1999	775
., _, 1, 2-Tetrachloroethane		<140	ug/kg	25	SW 8260B	10/14/1999	775
1,1,2,2-Tetrachloroethane		<140	ug/kg	25	SW 8260B	10/14/1999	775
Tetrachloroethene		<140	ug/kg	25	SW 8260B	10/14/1999	775
Toluene		<140	ug/kg	25	SW 8260B	10/14/1999	775
1,2,3-Trichlorobenzene		<140	ug/kg	25	SW 8260B	10/14/1999	775
1,2,4-Trichlorobenzene		<140	ug/kg	25	SW 8260B	10/14/1999	775
1,1,1-Trichloroethane		<140	ug/kg	25	SW 8260B	10/14/1999	775
1,1,2-Trichloroethane		<140	ug/kg	25	SW 8260B	10/14/1999	775
Trichloroethene		<140	ug/kg	25	SW 8260B	10/14/1999	775
Trichlorofluoromethane		<140	ug/kg	25	SW 8260B	10/14/1999	775
1,2,3-Trichloropropane		<140	ug/kg	25	SW 8260B	10/14/1999	775
1,2,4-Trimethylbenzene		771	ug/kg	25	SW 8260B	10/14/1999	775
1,3,5-Trimethylbenzene		1,610	ug/kg	25	SW 8260B	10/14/1999	775
Vinyl Chloride		<140	ug/kg	25	SW 8260B	10/14/1999	775
Xylenes, Total		1,010	ug/kg	35	SW 8260B	10/14/1999	775
Surr: Dibromofluoromethane		99.0	*	82-129	SW 8260B	10/14/1999	775
Surr: Toluene-d8		98.4	8	87-109	SW 8260B	10/14/1999	775
Surr: Bromofluorobenzene		92.2	*	86-108	SW 8260B	10/14/1999	775

ANALYTICAL REPORT

Ms. Jennifer Johanson HYDRO-SEARCH/GEO TRANS 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

10/18/1999 Job No: 99.08852 Sample No: 368261 Account No: 39150 Page 14 of 31

JOB DESCRIPTION: Sta-Rite Delavan PROJECT DESCRIPTION: Soil Analysis SB-SUMPE-24 Sta-Rite SAMPLE DESCRIPTION: Rec'd on ice

Date/Time Taken: 10/05/1999 14:00 Date Received: 10/06/1999

				Reporting		Date	Prep/Run
Parameter		Results	Units	Limit	Method	Analyzed	Batch
1 dz dile CO2						-	
Solids. Total		89.1	욯	n/a	SW 5030	10/12/1999	2975
VOC - METHANOL - 8260B	м						
Benzene		<280	ug/kg	25	SW 8260B	10/14/1999	775
Bromobenzene		<280	ug/kg	25	SW 8260B	10/14/1999	775
Bromochloromethane		<280	ug/kg	25	SW 8260B	10/14/1999	775
Bromodichloromethane		<280	ug/kg	25	SW 8260B	10/14/1999	775
Bromoform		<280	ug/kg	25	SW 8260B	10/14/1999	775
momethane		<1,100	ug/kg	100	SW 8260B	10/14/1999	775
Butylbenzene		<280	ug/kg	25	SW 8260B	10/14/1999	775
sec-Butylbenzene		505	ug/kg	25	SW 8260B	10/14/1999	775
tert-Butylbenzene		<280	ug/kg	25	SW 8260B	10/14/1999	775
Carbon Tetrachloride		<280	uq/kq	25	SW 8260B	10/14/1999	775
Chlorobenzene		<280	uq/kq	25	SW 8260B	10/14/1999	775
Chlorodibromomethane		<280	uq/kq	25	SW 8260B	10/14/1999	775
Chloroethane		<390	ug/kg	35	SW 8260B	10/14/1999	775
Chloroform		<280	ug/kg	25	SW 8260B	10/14/1999	775
Chloromethane		<340	uq/kq	30	SW 8260B	10/14/1999	775
2-Chlorotoluene		<280	uq/kq	25	SW 8260B	10/14/1999	775
4-Chlorotoluene		<280	uq/kq	25	SW 8260B	10/14/1999	775
1.2-Dibromo-3-Chloropropane		<560	uq/kq	50	SW 8260B	10/14/1999	775
1.2-Dibromoethane (EDB)		<280	ua/ka	25	SW 8260B	10/14/1999	775
Dibromomethane		<280	ug/kg	25	SW 8260B	10/14/1999	775
1.2-Dichlorobenzene		<280	ug/kg	25	SW 8260B	10/14/1999	775
1.3-Dichlorobenzene		<280	uq/kq	25	SW 8260B	10/14/1999	775
1.4-Dichlorobenzene		<280	uq/kq	25	SW 8260B	10/14/1999	775
Dichlorodifluoromethane		<280	uq/kq	25	SW 8260B	10/14/1999	775
1.1-Dichloroethane		<280	uq/kq	25	SW 8260B	10/14/1999	775
1.2-Dichloroethane		<280	ug/kg	25	SW 8260B	10/14/1999	775
1.1-Dichloroethene		<280	ua/ka	25	SW 8260B	10/14/1999	775
cis-1.2-Dichloroethene		2,810	uq/kq	25	SW 8260B	10/14/1999	775
trans-1.2-Dichloroethene		<280	uq/kq	25	SW 8260B	10/14/1999	775
1.2-Dichloropropane		<280	uq/kq	25	SW 8260B	10/14/1999	775
1.3-Dichloropropane		<280	ug/kg	25	SW 8260B	10/14/1999	775
2.2-Dichloropropane		<280	ug/kg	25	SW 8260B	10/14/1999	775
1.1-Dichloropropene		<280	ua/ka	25	SW 8260B	10/14/1999	775
-1.3-Dichloropropene		<280	ug/kg	25	SW 8260B	10/14/1999	775
ns-1,3-Dichloropropene		<280	uq/kq	25	SW 8260B	10/14/1999	775
Di-isopropyl ether		<280	ug/kg	25	SW 8260B	10/14/1999	775
Ethylbenzene		819	ug/kg	25	SW 8260B	10/14/1999	775
Don's Thompson			-3/**3		···· = = = = = =		

Test/Merica

ANALYTICAL REPORT

Ms. Jennifer Johanson HYDRO-SEARCH/GEO TRANS 175 N. Corporate Drive Suite 100 Brookfield, WI 53045 10/18/1999 Job No: 99.08852 Sample No: 368261 Account No: 39150 Page 15 of 31

-

JOB DESCRIPTION: Sta-Rite Delavan PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-SUMPE-24 Sta-Rite Rec'd on ice

Date/Time Taken: 10/05/1999 14:00

Date Received: 10/06/1999

			Reporting				Prep/Run
Parameter		Results	Units	Limit	Method	Analyzed	Batch
Hexachlorobutadiene		<390	ug/kg	35	SW 8260B	10/14/1999	775
Isopropylbenzene		382	ug/kg	25	SW 8260B	10/14/1999	775
p-Isopropyltoluene		3,480	ug/kg	25	SW 8260B	10/14/1999	775
Methylene Chloride	Ľ	932	ug/kg	50	SW 8260B	10/14/1999	775
Methyl-t-butyl ether		<280	ug/kg	25	SW 8260B	10/14/1999	775
Naphthalene		505	ug/kg	25	SW 8260B	10/14/1999	775
n-Propylbenzene		393	ug/kg	25	SW 8260B	10/14/1999	775
rene		<280	ug/kg	25	SW 8260B	10/14/1999	775
, 1, 2-Tetrachloroethane		<280	uq/kg	25	SW 8260B	10/14/1999	775
1,1,2,2-Tetrachloroethane		<280	ug/kg	25	SW 8260B	10/14/1999	775
Tetrachloroethene		<280	ug/kg	25	SW 8260B	10/14/1999	775
Toluene		<280	ug/kg	25	SW 8260B	10/14/1999	775
1,2,3-Trichlorobenzene		<280	ug/kg	25	SW 8260B	10/14/1999	775
1,2,4-Trichlorobenzene		<280	ug/kg	25	SW 8260B	10/14/1999	775
1,1,1-Trichloroethane		<280	uq/kq	25	SW 8260B	10/14/1999	775
1,1,2-Trichloroethane		<280	ug/kg	25	SW 8260B	10/14/1999	775
Trichloroethene		<280	ug/kg	25	SW 8260B	10/14/1999	775
Trichlorofluoromethane		<280	ug/kg	25	SW 8260B	10/14/1999	775
1,2,3-Trichloropropane		<280	ug/kg	25	SW 8260B	10/14/1999	775
1,2,4-Trimethylbenzene		1,910	ug/kg	25	SW 8260B	10/14/1999	775
1,3,5-Trimethylbenzene		3,590	ug/kg	25	SW 8260B	10/14/1999	775
Vinyl Chloride		<280	ug/kg	25	SW 8260B	10/14/1999	775
Xylenes, Total		5,050	ug/kg	35	SW 8260B	10/14/1999	775
Surr: Dibromofluoromethane		98.8	ξ, <u>Γ</u>	82-129	SW 8260B	10/14/1999	775
Surr: Toluene-d8		96.8	ક	87-109	SW 8260B	10/14/1999	775
Surr: Bromofluorobenzene		94.8	8	86-108	SW 8260B	10/14/1999	775

ANALYTICAL REPORT

Ms. Jennifer Johanson HYDRO-SEARCH/GEO TRANS 175 N. Corporate Drive Suite 100 Brookfield, WI 53045 10/18/1999 Job No: 99.08852 Sample No: 368262 Account No: 39150 Page 16 of 31

. .

JOB DESCRIPTION: Sta-Rite Delavan PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-SUMPE-26 Sta-Rite Rec'd on ice

Date/Time Taken: 10/05/1999 14:15

Date Received: 10/06/1999

	Reporting				Date	Prep/Run
Parameter	Results	Units	Limit	Method	Analyzed	Batch
Solids, Total	92.3	8	n/a	SW 5030	10/12/1999	2975
VOC - METHANOL - 8260B						
Benzene	<140	ug/kg	25	SW 8260B	10/15/1999	776
Bromobenzene	<140	ug/kg	25	SW 8260B	10/15/1999	776
Bromochloromethane	<140	ug/kg	25	SW 8260B	10/15/1999	776
Bromodichloromethane	<140	ug/kg	25	SW 8260B	10/15/1999	776
Bromoform	<140	ug/kg	25	SW 8260B	10/15/1999	776
nomethane	<540	ug/kg	100	SW 8260B	10/15/1999	776
1. utylbenzene	<140	ug/kg	25	SW 8260B	10/15/1999	776
sec-Butylbenzene	715	ug/kg	25	SW 8260B	10/15/1999	776
tert-Butylbenzene	<140	ug/kg	25	SW 8260B	10/15/1999	776
Carbon Tetrachloride	<140	ug/kg	25	SW 8260B	10/15/1999	776
Chlorobenzene	<140	ug/kg	25	SW 8260B	10/15/1999	776
Chlorodibromomethane	<140	ug/kg	25	SW 8260B	10/15/1999	776
Chloroethane	<190	ug/kg	35	SW 8260B	10/15/1999	776
Chloroform	<140	ug/kg	25	SW 8260B	10/15/1999	776
Chloromethane	<160	ug/kg	30	SW 8260B	10/15/1999	776
2-Chlorotoluene	<140	ug/kg	25	SW 8260B	10/15/1999	776
4-Chlorotoluene	<140	ug/kg	25	SW 8260B	10/15/1999	776
1,2-Dibromo-3-Chloropropane	<270	ug/kg	50	SW 8260B	10/15/1999	776
1.2-Dibromoethane (EDB)	<140	uq/kq	25	SW 8260B	10/15/1999	776
Dibromomethane	<140	ug/kg	25	SW 8260B	10/15/1999	776
1,2-Dichlorobenzene	<140	ug/kg	25	SW 8260B	10/15/1999	776
1,3-Dichlorobenzene	<140	ug/kg	25	SW 8260B	10/15/1999	776
1,4-Dichlorobenzene	<140	uq/kg	25	SW 8260B	10/15/1999	776
Dichlorodifluoromethane	<140	ug/kg	25	SW 8260B	10/15/1999	776
1,1-Dichloroethane	<140	ug/kg	25	SW 8260B	10/15/1999	776
1,2-Dichloroethane	<140	ug/kg	25	SW 8260B	10/15/1999	776
1,1-Dichloroethene	<140	ug/kg	25	SW 8260B	10/15/1999	776
cis-1,2-Dichloroethene	1,840	ug/kg	25	SW 8260B	10/15/1999	776
trans-1,2-Dichloroethene	<140	ug/kg	25	SW 8260B	10/15/1999	776
1,2-Dichloropropane	<140	ug/kg	25	SW 8260B	10/15/1999	776
1,3-Dichloropropane	<140	ug/kg	25	SW 8260B	10/15/1999	776
2,2-Dichloropropane	<140	ug/kg	25	SW 8260B	10/15/1999	776
1,1-Dichloropropene	<140	ug/kg	25	SW 8260B	10/15/1999	776
-1,3-Dichloropropene	<140	uq/kg	25	SW 8260B	10/15/1999	776
ns-1,3-Dichloropropene	<140	ug/kg	25	SW 8260B	10/15/1999	776
Di-isopropyl ether	<140	ug/kg	25	SW 8260B	10/15/1999	776
Ethylbenzene	5,310	ug/kg	25	SW 8260B	10/15/1999	776

ANALYTICAL REPORT

Ms. Jennifer Johanson HYDRO-SEARCH/GEO TRANS 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

10/18/1999 Job No: 99.08852 Sample No: 368262 Account No: 39150 Page 17 of 31

JOB DESCRIPTION: Sta-Rite Delavan PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-SUMPE-26 Sta-Rite Rec'd on ice

Date/Time Taken: 10/05/1999 14:15 Date Received: 10/06/1999

-

	Reporting				Date	Prep/Run	
Parameter	Results	Units	Limit	Method	Analyzed	Batch	
Hexachlorobutadiene	<190	ug/kg	35	SW 8260B	10/15/1999	776	
Isopropylbenzene	520	ug/kg	25	SW 8260B	10/15/1999	776	
p-Isopropyltoluene	1,080	ug/kg	25	SW 8260B	10/15/1999	776	
Methylene Chloride	<270	ug/kg	50	SW 8260B	10/15/1999	776	
Methyl-t-butyl ether	<140	ug/kg	25	SW 8260B	10/15/1999	776	
Naphthalene	1,080	ug/kg	25	SW 8260B	10/15/1999	776	
n-Propylbenzene	520	ug/kg	25	SW 8260B	10/15/1999	776	
rene	<140	uq/kq	25	SW 8260B	10/15/1999	776	
.,1,2-Tetrachloroethane	<140	uq/kg	25	SW 8260B	10/15/1999	776	
1,1,2,2-Tetrachloroethane	<140	ug/kg	25	SW 8260B	10/15/1999	776	
Tetrachloroethene	130	ug/kg	25	SW 8260B	10/15/1999	776	
Toluene	<140	ug/kg	25	SW 8260B	10/15/1999	776	
1,2,3-Trichlorobenzene	<140	ug/kg	25	SW 8260B	10/15/1999	776	
1,2,4-Trichlorobenzene	<140	ug/kg	25	SW 8260B	10/15/1999	776	
1,1,1-Trichloroethane	<140	ug/kg	25	SW 8260B	10/15/1999	776	
1,1,2-Trichloroethane	<140	uq/kq	25	SW 8260B	10/15/1999	776	
Trichloroethene	<140	uq/kq	25	SW 8260B	10/15/1999	776	
Trichlorofluoromethane	<140	uq/kq	25	SW 8260B	10/15/1999	776	
1,2,3-Trichloropropane	<140	uq/kq	25	SW 8260B	10/15/1999	776	
1,2,4-Trimethylbenzene	2,600	ug/kg	25	SW 8260B	10/15/1999	776	
1.3.5-Trimethylbenzene	2,490	ua/ka	25	SW 8260B	10/15/1999	776	
Vinyl Chloride	<140	ug/kg	25	SW 8260B	10/15/1999	776	
Xvlenes, Total	4,120	ua/ka	35	SW 8260B	10/15/1999	776	
Surr: Dibromofluoromethane	98.8	8	82-129	SW 8260B	10/15/1999	776	
Surr: Toluene-d8	95.6	*	87-109	SW 8260B	10/15/1999	776	
Surr: Bromofluorobenzene	100.4	8	86-108	SW 8260B	10/15/1999	776	

Test/Merica

ANALYTICAL REPORT

Ms. Jennifer Johanson HYDRO-SEARCH/GEO TRANS 175 N. Corporate Drive Suite 100 Brookfield, WI 53045 10/18/1999 Job No: 99.08852 Sample No: 368263 Account No: 39150 Page 18 of 31

JOB DESCRIPTION: Sta-Rite Delavan PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-SUMPE-28 Sta-Rite Rec'd on ice

Date/Time Taken: 10/05/1999 14:15

Date Received: 10/06/1999

			Reporting		Date	Prep/Run
Parameter	Results	Units	Limit	Method	Analyzed	Batch
T dT		•			-	
Solids, Total	93.5	ક	n/a	SW 5030	10/12/1999	2975
VOC - METHANOL - 8260B						
Benzene	<1,400	ug/kg	25	SW 8260B	10/15/1999	776
Bromobenzene	<1,400	ug/kg	25	SW 8260B	10/15/1999	776
Bromochloromethane	<1,400	ug/kg	25	SW 8260B	10/15/1999	776
Bromodichloromethane	<1,400	ug/kg	25	SW 8260B	10/15/1999	776
Bromoform	<1,400	ug/kg	25	SW 8260B	10/15/1999	776
nomethane	<5,400	ug/kg	100	SW 8260B	10/15/1999	776
utylbenzene	<1,400	ug/kg	25	SW 8260B	10/15/1999	776
sec-Butylbenzene	<1,400	ug/kg	25	SW 8260B	10/15/1999	776
tert-Butylbenzene	<1,400	ug/kg	25	SW 8260B	10/15/1999	776
Carbon Tetrachloride	<1,400	ug/kg	25	SW 8260B	10/15/1999	776
Chlorobenzene	<1,400	ug/kg	25	SW 8260B	10/15/1999	776
Chlorodibromomethane	<1,400	ug/kg	25	SW 8260B	10/15/1999	776
Chloroethane	<1,800	ug/kg	35	SW 8260B	10/15/1999	776
Chloroform	<1,400	ug/kg	25	SW 8260B	10/15/1999	776
Chloromethane	<1,600	ug/kg	30	SW 8260B	10/15/1999	776
2-Chlorotoluene	<1,400	ug/kg	25	SW 8260B	10/15/1999	776
4-Chlorotoluene	<1,400	ug/kg	25	SW 8260B	10/15/1999	776
1,2-Dibromo-3-Chloropropane	<2,600	uq/kq	50	SW 8260B	10/15/1999	776
1,2-Dibromoethane (EDB)	<1,400	ug/kg	25	SW 8260B	10/15/1999	776
Dibromomethane	<1,400	uq/kq	25	SW 8260B	10/15/1999	776
1,2-Dichlorobenzene	<1,400	ug/kg	25	SW 8260B	10/15/1999	776
1,3-Dichlorobenzene	<1,400	ug/kg	25	SW 8260B	10/15/1999	776
1,4-Dichlorobenzene	<1,400	ug/kg	25	SW 8260B	10/15/1999	776
Dichlorodifluoromethane	<1,400	uq/kq	25	SW 8260B	10/15/1999	776
1.1-Dichloroethane	<1,400	uq/kq	25	SW 8260B	10/15/1999	776
1,2-Dichloroethane	<1,400	ug/kg	25	SW 8260B	10/15/1999	776
1,1-Dichloroethene	<1,400	uq/kq	25	SW 8260B	10/15/1999	776
cis-1,2-Dichloroethene	9,840	ug/kg	25	SW 8260B	10/15/1999	776
trans-1,2-Dichloroethene	<1,400	ug/kg	25	SW 8260B	10/15/1999	776
1,2-Dichloropropane	<1,400	ug/kg	25	SW 8260B	10/15/1999	776
1,3-Dichloropropane	<1,400	ug/kg	25	SW 8260B	10/15/1999	776
2,2-Dichloropropane	<1,400	ug/kg	25	SW 8260B	10/15/1999	776
1,1-Dichloropropene	<1,400	ug/kg	25	SW 8260B	10/15/1999	776
-1,3-Dichloropropene	<1,400	ug/kg	25	SW 8260B	10/15/1999	776
<pre></pre>	<1,400	ug/kg	25	SW 8260B	10/15/1999	776
Di-isopropyl ether	<1,400	uq/kq	25	SW 8260B	10/15/1999	776
Ethylbenzene	1,390	ug/kg	25	SW 8260B	10/15/1999	776
-						

Test/Merica

ANALYTICAL REPORT

Ms. Jennifer Johanson HYDRO-SEARCH/GEO TRANS 175 N. Corporate Drive Suite 100 Brookfield, WI 53045 10/18/1999 Job No: 99.08852 Sample No: 368263 Account No: 39150 Page 19 of 31

JOB DESCRIPTION: Sta-Rite Delavan PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-SUMPE-28 Sta-Rite Rec'd on ice

Date/Time Taken: 10/05/1999 14:15

Date Received: 10/06/1999

Parameter	Results	Units	Reporting Limit	Method	Date Analyzed	Prep/Run Batch
Hexachlorobutadiene	<1,800	u q /kq	35	SW 8260B	10/15/1999	776
Isopropylbenzene	<1,400	ug/kg	25	SW 8260B	10/15/1999	776
p-Isopropyltoluene	2,250	uq/kq	25	SW 8260B	10/15/1999	776
Methylene Chloride	<2,600	uq/kq	50	SW 8260B	10/15/1999	776
Methyl-t-butyl ether	<1,400	ug/kg	25	SW 8260B	10/15/1999	776
Naphthalene	<1,400	ug/kg	25	SW 8260B	10/15/1999	776
n-Propylbenzene	<1,400	uq/kg	25	SW 8260B	10/15/1999	776
rene	<1,400	uq/kq	25	SW 8260B	10/15/1999	776
.,1,2-Tetrachloroethane	<1,400	ug/kg	25	SW 8260B	10/15/1999	776
1,1,2,2-Tetrachloroethane	<1,400	uq/kg	25	SW 8260B	10/15/1999	776
Tetrachloroethene	171,000	uq/kg	25	SW 8260B	10/15/1999	776
Toluene	<1,400	ug/kg	25	SW 8260B	10/15/1999	776
1,2,3-Trichlorobenzene	<1,400	ug/kg	25	SW 8260B	10/15/1999	776
1,2,4-Trichlorobenzene	<1,400	ug/kg	25	SW 8260B	10/15/1999	776
1,1,1-Trichloroethane	<1,400	ug/kg	25	SW 8260B	10/15/1999	776
1,1,2-Trichloroethane	<1,400	ug/kg	25	SW 8260B	10/15/1999	776
Trichloroethene	128,000	ug/kg	25	SW 8260B	10/15/1999	776
Trichlorofluoromethane	<1,400	ug/kg	25	SW 8260B	10/15/1999	776
1,2,3-Trichloropropane	<1,400	ug/kg	25	SW 8260B	10/15/1999	776
1,2,4-Trimethylbenzene	4,060	uq/kq	25	SW 8260B	10/15/1999	776
1,3,5-Trimethylbenzene	4,170	ug/kg	25	SW 8260B	10/15/1999	776
Vinyl Chloride	<1,400	ug/kg	25	SW 8260B	10/15/1999	776
Xylenes, Total	9,300	ug/kg	35	SW 8260B	10/15/1999	776
Surr: Dibromofluoromethane	99.6	8	82-129	SW 8260B	10/15/1999	776
Surr: Toluene-d8	96.2	91 10	87-109	SW 8260B	10/15/1999	776
Surr: Bromofluorobenzene	96.2	\$	86-108	SW 8260B	10/15/1999	776

ANALYTICAL REPORT

-

Ms. Jennifer Johanson HYDRO-SEARCH/GEO TRANS 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

10/18/1999 Job No: 99.08852 Sample No: 368264 Account No: 39150 Page 20 of 31

JOB DESCRIPTION: Sta-Rite Delavan PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: Trip Blank Methanol Sta-Rite Rec'd on ice

Date/Time Taken: 10/05/1999 UNKNOWN Date Received: 10/06/1999

			Reporting		Date	Prep/Run
Parameter	Results	Units	Limit	Method	Analyzed	Batch
VOC - METHANOL - 8260B						
Benzene	<25	uq/kq	25	SW 8260B	10/14/1999	775
Bromobenzene	<25	uq/kq	25	SW 8260B	10/14/1999	775
Bromochloromethane	<25	ug/kg	25	SW 8260B	10/14/1999	775
Bromodichloromethane	<25	ua/ka	25	SW 8260B	10/14/1999	775
Bromoform	<25	ug/kg	25	SW 8260B	10/14/1999	775
Bromomethane	<100	uq/kq	100	SW 8260B	10/14/1999	775
utylbenzene	<25	ua/ka	25	SW 8260B	10/14/1999	775
-Butylbenzene	<25	ug/kg	25	SW 8260B	10/14/1999	775
tert-Butylbenzene	<25	ua/ka	25	SW 8260B	10/14/1999	775
Carbon Tetrachloride	<25	ug/kg	25	SW 8260B	10/14/1999	775
Chlorobenzene	<25	ug/kg	25	SW 8260B	10/14/1999	775
Chlorodibromomethane	<25	ug/kg	25	SW 8260B	10/14/1999	775
Chloroethane	<35	ug/kg	35	SW 8260B	10/14/1999	775
Chloroform	<25	ug/kg	25	SW 8260B	10/14/1999	775
Chloromethane	<30	ug/kg	30	SW 8260B	10/14/1999	775
2-Chlorotoluene	<25	ug/kg	25	SW 8260B	10/14/1999	775
4-Chlorotoluene	<25	ug/kg	25	SW 8260B	10/14/1999	775
1,2-Dibromo-3-Chloropropane	<50	ug/kg	50	SW 8260B	10/14/1999	775
1,2-Dibromoethane (EDB)	<25	ug/kg	25	SW 8260B	10/14/1999	775
Dibromomethane	<25	ug/kg	25	SW 8260B	10/14/1999	775
1,2-Dichlorobenzene	<25	ug/kg	25	SW 8260B	10/14/1999	775
1,3-Dichlorobenzene	<25	va/ka	25	SW 8260B	10/14/1999	775
1,4-Dichlorobenzene	<25	ug/kg	25	SW 8260B	10/14/1999	775
Dichlorodifluoromethane	<25	ug/kg	25	SW 8260B	10/14/1999	775
1,1-Dichloroethane	<25	ug/kg	25	SW 8260B	10/14/1999	775
1,2-Dichloroethane	<25	ug/kg	25	SW 8260B	10/14/1999	775
1,1-Dichloroethene	<25	ug/kg	25	SW 8260B	10/14/1999	775
cis-1,2-Dichloroethene	<25	ug/kg	25	SW 8260B	10/14/1999	775
trans-1,2-Dichloroethene	<25	ua/ka	25	SW 8260B	10/14/1999	775
1,2-Dichloropropane	<25	ug/kg	25	SW 8260B	10/14/1999	775
1,3-Dichloropropane	<25	ug/kg	25	SW 8260B	10/14/1999	775
2,2-Dichloropropane	<25	ug/kg	25	SW 8260B	10/14/1999	775
1,1-Dichloropropene	<25	ug/kg	25	SW 8260B	10/14/1999	775
cis-1,3-Dichloropropene	<25	ug/kg	25	SW 8260B	10/14/1999	775
ns-1,3-Dichloropropene	<25	ug/kg	25	SW 8260B	10/14/1999	775
isopropyl ether	<25	ug/kg	25	SW 8260B	10/14/1999	775
Ethylbenzene	<25	ug/kg	25	SW 8260B	10/14/1999	775
Hexachlorobutadiene	<35	ug/kg	35	SW 8260B	10/14/1999	775
		-9/9		J. 0200D		,,,,

ANALYTICAL REPORT

Ms. Jennifer Johanson HYDRO-SEARCH/GEO TRANS 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

-

10/18/1999 Job No: 99.08852 Sample No: 368264 Account No: 39150 Page 21 of 31

JOB DESCRIPTION: Sta-Rite Delavan PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: Trip Blank Methanol Sta-Rite Rec'd on ice

Date/Time Taken: 10/05/1999 UNKNOWN Date Received: 10/06/1999

Parameter	Results	units	Reporting Limit	Method	Date Analyzed	Prep/Run Batch
Isopropylbenzene	<25	ug/kg	25	SW 8260B	10/14/1999	775
p-Isopropyltoluene	<25	ug/kg	25	SW 8260B	10/14/1999	775
Methylene Chloride	<50	ug/kg	50	SW 8260B	10/14/1999	775
Methyl-t-butyl ether	<25	ug/kg	25	SW 8260B	10/14/1999	775
Naphthalene	<25	ug/kg	25	SW 8260B	10/14/1999	775
n-Propylbenzene	<25	ug/kg	25	SW 8260B	10/14/1999	775
Styrepe	<25	ug/kg	25	SW 8260B	10/14/1999	775
.1.2-Tetrachloroethane	<25	ug/kg	25	SW 8260B	10/14/1999	775
2.2-Tetrachloroethane	<25	uq/kq	25	SW 8260B	10/14/1999	775
Tetrachloroethene	<25	ug/kg	25	SW 8260B	10/14/1999	775
Toluene	<25	uq/kq	25	SW 8260B	10/14/1999	775
1.2.3-Trichlorobenzene	<25	ug/kg	25	SW 8260B	10/14/1999	775
1.2.4-Trichlorobenzene	<25	uq/kg	25	SW 8260B	10/14/1999	775
1.1.1.Trichloroethane	<25	ug/kg	25	SW 8260B	10/14/1999	775
1.1.2-Trichloroethane	<25	uq/kq	25	SW 8260B	10/14/1999	775
Trichloroethene	<25	ug/kg	25	SW 8260B	10/14/1999	775
Trichlorofluoromethane	<25	uq/kq	25	SW 8260B	10/14/1999	775
1.2.3-Trichloropropane	<25	ua/ka	25	SW 8260B	10/14/1999	775
1,2,4-Trimethylbenzene	<25	ug/kg	25	SW 8260B	10/14/1999	775
1.3.5-Trimethylbenzene	<25	ug/kg	25	SW 8260B	10/14/1999	775
Vinyl Chloride	<25	ug/kg	25	SW 8260B	10/14/1999	775
Xvlenes. Total	<35	uq/kq	35	SW 8260B	10/14/1999	775
Surr: Dibromofluoromethane	102.4	8	82-129	SW 8260B	10/14/1999	775
Surr: Toluene-d8	97.2	옿	87-109	SW 8260B	10/14/1999	775
Surr: Bromofluorobenzene	95.0	ala	86-108	SW 8260B	10/14/1999	775

QUALITY CONTROL REPORT CONTINUING CALIBRATION VERIFICATION

10/18/1999

Job No: 99.08852 Account No: 39150

Page 22 of 31

Ms. Jennifer Johanson HYDRO-SEARCH/GEO TRANS 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

• •

Job Description: Sta-Rite Delavan

Parameter	Run Batch	True Value	Observed Value	Percent Recovery	Control Limits	Analyst
VOC - METHANOL - 8260B						
Benzene	773	50.0	47.2	94.4		mai
Bromoform	773	50.0	45.4	90.8		mai
Chlorobenzene	773	50.0	47.7	95.4		mai
Chloroform	773	50.0	47.2	94.4	80 - 120	mai
Chloromethane	773	50.0	45.4	90.8		mai
1,1-Dichloroethane	773	50.0	48.5	97.0		mai
1,1-Dichloroethene	773	50.0	50.7	101.4	80 - 120	mai
1,2-Dichloropropane	773	50.0	47.0	94.0	80 - 120	mai
Di-isopropyl ether	773	50.0	47.9	95.8		mai
Ethylbenzene	773	50.0	51.8	103.6	80 - 120	mai
Methyl-t-butyl ether	773	50.0	46.3	92.6		mai
1,1,2,2-Tetrachloroethane	773	50.0	46.2	92.4		mai
Toluene	773	50.0	47.7	95.4	80 - 120	mai
Trichloroethene	773	50.0	47.7	95.4		mai
1,2,4-Trimethylbenzene	773	50.0	52.3	104.6		mai
1,3,5-Trimethylbenzene	773	50.0	51.2	102.4		mai
Vinyl Chloride	773	50.0	48.5	97.0	80 - 120	mai
Xylenes, Total	773	150	142	94.7		mai
Surr: Dibromofluoromethane	773	50.0	49.6	99.2	85 - 118	mai
Surr: Toluene-d8	773	50.0	50.5	101.0	91 - 109	mai
Surr: Bromofluorobenzene	773	50.0	51.0	102.0	85 - 113	mai
VOC - METHANOL - 8260B						
Benzene	775	50.0	51.1	102.2		mai
Bromoform	775	50.0	52.5	105.0		mai
Chlorobenzene	775	50.0	52.9	105.8		mai
Chloroform	775	50.0	52.1	104.2	80 - 120	mai
Chloromethane	775	50.0	50.3	100.6		mai
1,1-Dichloroethane	775	50.0	52.1	104.2		mai
1,1-Dichloroethene	775	50.0	55.3	110.6	80 - 120	mai
1,2-Dichloropropane	775	50.0	50.6	101.2	80 - 120	mai
Di-isopropyl ether	775	50.0	49.7	99.4		mai
Ethylbenzene	775	50.0	52.3	104.6	80 - 120	mai
Methyl-t-butyl ether	775	50.0	51.6	103.2		mai
1,1,2,2-Tetrachloroethane	775	50.0	48.5	97.0		mai
Toluene	775	50.0	51.5	103.0	80 - 120	mai
Trichloroethene	775	50.0	53.7	107.4		mai
1,2,4-Trimethylbenzene	775	50.0	51.5	103.0		mai
1,3,5-Trimethylbenzene	775	50.0	51.8	103.6		mai
Vinyl Chloride	775	50.0	53.5	107.0	80 - 120	mai
Xylenes, Total	775	150	157	104.7		mai
Surr: Dibromofluoromethane	775	50.0	49.9	99.8	85 - 118	mai

QUALITY CONTROL REPORT CONTINUING CALIBRATION VERIFICATION

10/18/1999

Job No: 99.08852 Account No: 39150

Page 23 of 31

HYDRO-SEARCH/GEO TRANS 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

Ms. Jennifer Johanson

Job Description: Sta-Rite Delavan

Parameter	Run Batch	True Value	Observed Value	Percent Recovery	Control Limits	Analyst
Surr: Toluene-d8	775	50.0	49.3	98.6	91 - 109	mai
Surr: Bromofluorobenzene VOC - METHANOL - 8260B	775	50.0	48.3	96.6	85 - 113	mai
Benzene	776	50.0	50.7	101.4		mai
Bromoform	776	50.0	51.6	103.2		mai
Chlorobenzene	776	50.0	51.9	103.8		mai
Chloroform	776	50.0	52.2	104.4	80 - 120	mai
Chloromethane	776	50.0	50.7	101.4		mai
1,1-Dichloroethane	776	50.0	53.2	106.4		mai
1,1-Dichloroethene	776	50.0	53.0	106.0	80 - 120	maí
1,2-Dichloropropane	776	50.0	49.9	99.8	80 - 120	mai
Di-isopropyl ether	776	50.0	49.5	99.0		mai
Ethylbenzene	776	50.0	51.3	102.6	80 - 120	mai
Methyl-t-butyl ether	776	50.0	52.8	105.6		mai
1,1,2,2-Tetrachloroethane	776	50.0	48.8	97.6		mai
Toluene	776	50.0	50.4	100.8	80 - 120	mai
Trichloroethene	776	50.0	52.1	104.2		mai
1,2,4-Trimethylbenzene	776	50.0	50.1	100.2		mai
1,3,5-Trimethylbenzene	776	50.0	50.8	101.6		mai
Vinyl Chloride	776	50.0	52.0	104.0	80 - 120	mai
Xylenes, Total	776	150	155	103.3		mai
Surr: Dibromofluoromethane	776	50.0	50.8	101.6	85 - 118	mai
Surr: Toluene-d8	776	50.0	49.4	98.8	91 - 109	mai
Surr: Bromofluorobenzene	776	50.0	49.0	98.0	85 - 113	mai

QUALITY CONTROL REPORT BLANKS

Ms. Jennifer Johanson HYDRO-SEARCH/GEO TRANS 175 N. Corporate Drive Suite 100 Brookfield, WI 53045 10/18/1999

Job No: 99.08852 Account No: 39150

Page 24 of 31

Job Description: Sta-Rite Delavan

	Prep	Run	Blank	Reporting	
Parameter	Batch	Batch	Result	Limit	Units
Benzepa		772	- D F	25	
Bromobenzene		773	<25	25	ug/kg
Bromochloromethane		773	<25	25	ug/kg
Bromodichloromethane		773	<25	25	ug/kg
Bromoform		773	<25	25	ug/kg
Bromomethane		773	<25	25 100	ug/kg
n-Putylbanzana		773	<100	100	ug/kg
n-BucyIDenzene		773	<25	25	ug/kg
text Putulbergene		173	<25	25	ug/kg
Carbon Tetrachlamide		773	<25	25	ug/kg
Chlarabarrene		773	<25	25	ug/kg
Chlorodenzene		773	<25	25	ug/kg
		773	<25	25	ug/kg
Chloroethane		773	<35	35	ug/kg
Chioroform		773	<25	25	ug/kg
		773	<30	30	ug/kg
2-Chlorotoluene		773	<25	25	ug/kg
4-Chlorotoluene		773	<25	25	ug/kg
1,2-Dibromo-3-Chloropropane		773	<50	50	ug/kg
1,2-Dibromoethane (EDB)		773	<25	25	ug/kg
Dibromomethane		773	<25	25	ug/kg
1,2-Dichlorobenzene		773	<25	25	ug/kg
1,3-Dichlorobenzene		773	<25	25	ug/kg
1,4-Dichlorobenzene		773	<25	25	ug/kg
Dichlorodifluoromethane		773	<25	25	ug/kg
1,1-Dichloroethane		773	<25	25	ug/kg
1,2-Dichloroethane		773	<25	25	ug/kg
1,1-Dichloroethene		773	<25	25	ug/kg
cis-1,2-Dichloroethene		773	<25	25	ug/kg
trans-1,2-Dichloroethene		773	<25	25	ug/kg
1,2-Dichloropropane		773	<25	25	uq/kq
1,3-Dichloropropane		773	<25	25	uq/kq
2,2-Dichloropropane		773	<25	25	uq/kq
1,1-Dichloropropene		773	<25	25	uq/kq
cis-1,3-Dichloropropene		773	<25	25	uq/kq
trans-1,3-Dichloropropene		773	<25	25	uq/kq
Di-isopropyl ether		773	<25	25	uq/ka
Ethylbenzene		773	<25	25	ug/kg

• •

QUALITY CONTROL REPORT BLANKS

Job No: 99.08852 Account No: 39150

Page 25 of 31

10/18/1999

HYDRO-SEARCH/GEO TRANS 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

Ms. Jennifer Johanson

Job Description: Sta-Rite Delavan

	Prep	Run	Blank	Reportin	g
Parameter	Batch	Batch	Result	Limit	Units
Hexachlorobutadiene		773	<35	35	ug/kg
Isopropylbenzene		773	<25	25	ug/kg
p-Isopropyltoluene		773	<25	25	ug/kg
Methvlene Chloride		773	<50	50	ug/kg
Methyl-t-butyl ether		773	<25	25	ug/kg
Naphthalene		773	<25	25	ug/kg
n-Propylbenzene		773	<25	25	ug/kg
Styrene		773	<25	25	ug/kg
1,1,1,2-Tetrachloroethane		773	<25	25	ug/kg
1.1.2.2-Tetrachloroethane		773	<25	25	ug/kg
Tetrachloroethene		773	<25	25	ug/kg
Toluene		773	<25	25	ug/kg
1,2,3-Trichlorobenzene		773	<25	25	ug/kg
1,2,4-Trichlorobenzene		773	<25	25	ug/kg
1,1,1-Trichloroethane		773	<25	25	ug/kg
1,1,2-Trichloroethane		773	<25	25	ug/kg
Trichloroethene		773	<25	25	ug/kg
Trichlorofluoromethane		773	<25	25	ug/kg
1,2,3-Trichloropropane		773	<25	25	ug/kg
1,2,4-Trimethylbenzene		773	<25	25	ug/kg
1,3,5-Trimethylbenzene		773	<25	25	ug/kg
Vinyl Chloride		773	<25	25	ug/kg
Xylenes, Total		773	<35	35	ug/kg
Surr: Dibromofluoromethane		773	92.0	82-129	ę
Surr: Toluene-d8		773	103.0	87-109	જ
Surr: Bromofluorobenzene		773	102.4	86-108	ક
VOC - METHANOL - 8260B					
Benzene		775	<25	25	ug/kg
Bromobenzene		775	<25	25	ug/kg
Bromochloromethane		775	<25	25	ug/kg
Bromodichloromethane		775	<25	25	ug/kg
Bromoform		775	<25	25	ug/kg
Bromomethane		775	<100	100	ug/kg
n-Butylbenzene		775	<25	25	ug/kg
sec-Butylbenzene		775	<25	25	ug/kg
tert-Butylbenzene		775	<25	25	ug/kg
Carbon Tetrachloride		775	<25	25	ug/kg
Chlorobenzene		775	<25	25	ug/kg

QUALITY CONTROL REPORT BLANKS

Ms. Jennifer Johanson HYDRO-SEARCH/GEO TRANS 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

-

10/18/1999

Job No: 99.08852 Account No: 39150

Page 26 of 31

Job Description: Sta-Rite Delavan

	Prep	Run	Blank	Reporting	ſ
Parameter	Batch	Batch	Result	Limit	Units
Chlorodibromomethane		775	<25	25	
Chloroethane		775	<25	25	ug/kg
Chloroform		775	~25	35	ug/kg
Chloromethane		775	<20	20	ug/kg
2-Chlorotoluene		775	<25	30	ug/kg
4-Chlorotoluene		775	<25	25	ug/kg
1,2-Dibromo-3-Chloropropane		775	<50	20	ug/kg
1.2-Dibromoethane (EDB)		775	< 25	20	ug/kg
Dibromomethane		775	<25	40	ug/kg
1,2-Dichlorobenzene		775	<25	25	ug/kg ug/kg
1,3-Dichlorobenzene		775	~25	25	ug/kg
1,4-Dichlorobenzene		775	<25	20	ug/kg
Dichlorodifluoromethane		775	<25	25	ug/kg
1,1-Dichloroethane		775	<25	25	ug/kg ug/kg
1,2-Dichloroethane		775	<25	25	ug/kg ug/kg
1,1-Dichloroethene		775	<25	25	ug/kg
cis-1,2-Dichloroethene		775	<25	25	ug/kg ug/kg
trans-1,2-Dichloroethene		775	<25	25	ug/kg
1,2-Dichloropropane		775	<25	25	ug/kg
1,3-Dichloropropane		775	<25	25	ug/kg
2,2-Dichloropropane		775	<25	25	ug/kg
1,1-Dichloropropene		775	<25	25	ug/kg
cis-1,3-Dichloropropene		775	<25	25	ug/kg
trans-1,3-Dichloropropene		775	<25	25	ug/kg
Di-isopropyl ether		775	<25	25	ug/kg
Ethylbenzene		775	<25	25	ug/kg
Hexachlorobutadiene		775	<35	35	ug/kg
Isopropylbenzene		775	<25	25	ug/kg
p-Isopropyltoluene		775	<25	25	ug/kg
Methylene Chloride		775	<50	50	ug/kg
Methyl-t-butyl ether		775	<25	25	ug/kg
Naphthalene		775	<25	25	ug/kg
n-Propylbenzene		775	<25	25	ug/kg
Styrene		775	<25	25	ua/ka
1,1,1,2-Tetrachloroethane		775	<25	25	ug/kg
1,1,2,2-Tetrachloroethane		775	<25	25	uq/kq
Tetrachloroethene		775	<25	25	uq/kq
Toluene		775	<25	25	ug/kg

QUALITY CONTROL REPORT BLANKS

Ms. Jennifer Johanson HYDRO-SEARCH/GEO TRANS 175 N. Corporate Drive Suite 100 Brookfield, WI 53045 10/18/1999

Job No: 99.08852 Account No: 39150

Page 27 of 31

Job Description: Sta-Rite Delavan

	Prep	Run	Blank	Reporting	
Parameter	Batch	Batch	Result	Limít	Units
1.2.3-Trichlorobenzene		775	~25	25	ug/kg
1,2,4-Trichlorobenzene		775	<25	25	ug/kg
1,1,1-Trichloroethane		775	<25	25	ug/kg
1.1.2-Trichloroethane		775	<25	25	ug/kg
Trichloroethene		775	<25	25	ug/kg
Trichlorofluoromethane		775	<25	25	ug/kg
1,2,3-Trichloropropane		775	<25	25	ug/kg
1.2.4-Trimethylbenzene		775	225	25	ug/kg
1.3.5-Trimethylbenzene		775	<25	25	ug/kg
Vinvl Chloride		775	<25	25	ug/kg
Xvlenes. Total		775	<25	25	ug/kg
Surr: Dibromofluoromethane		775	117 0	97-179	49/19 8
Surr: Toluene-d8		775	91 0	87-109	9 9
Surr: Bromofluorobenzene		775	97.9	96-109	ъ 8-
VOC - METHANOL - 8260B			27.0	90-109	6
Benzene		776	<25	25	ua/ka
Bromobenzene		776	<25	25	ug/kg
Bromochloromethane		776	<25	25	ug/kg
Bromodichloromethane		776	<25	25	ug/kg
Bromoform		776	<25	25	ug/kg
Bromomethane		776	<100	100	ug/kg
n-Butylbenzene		776	<25	25	ug/kg
sec-Butylbenzene		776	<25	25	ug/kg
tert-Butylbenzene		776	<25	25	ug/kg
Carbon Tetrachloride		776	<25	25	ug/kg
Chlorobenzene		776	<25	25	ug/kg
Chlorodibromomethane		776	<25	25	uq/kq
Chloroethane		776	<35	35	uq/kq
Chloroform		776	<25	25	ug/kg
Chloromethane		776	<30	30	ua/ka
2-Chlorotoluene		776	<25	25	ug/kg
4-Chlorotoluene		776	<25	25	ug/kg
1,2-Dibromo-3-Chloropropane		776	<50	50	ug/kg
1,2-Dibromoethane (EDB)		776	<25	25	ug/kg
Dibromomethane		776	<25	25	ug/kg
1,2-Dichlorobenzene		776	<25	25	ua/ka
1,3-Dichlorobenzene		776	<25	25	uq/kq
1,4-Dichlorobenzene		776	<25	25	ug/kg

QUALITY CONTROL REPORT BLANKS

Ms. Jennifer Johanson HYDRO-SEARCH/GEO TRANS 175 N. Corporate Drive Suite 100 Brookfield, WI 53045 10/18/1999

Job No: 99.08852 Account No: 39150

Page 28 of 31

Job Description: Sta-Rite Delavan

	Prep	Run	Blank	Reporting		
Parameter	Batch	Batch	Result	Limit	Units	
Dichlorodifluoromethane		776	<25	25	ug/kg	
1,1-Dichloroethane		776	<25	25	ug/kg	
1,2-Dichloroethane		776	<25	25	ug/kg	
1,1-Dichloroethene		776	<25	25	ug/kg	
cis-1,2-Dichloroethene		776	<25	25	ug/kg	
trans-1,2-Dichloroethene		776	<25	25	ug/kg	
1,2-Dichloropropane		776	<25	25	ug/kg	
1,3-Dichloropropane		776	<25	25	ug/kg	
2,2-Dichloropropane		776	<25	25	ug/kg	
1,1-Dichloropropene		776	<25	25	ug/kg	
cis-1,3-Dichloropropene		776	<25	25	ug/kg	
trans-1,3-Dichloropropene		776	<25	25	ug/kg	
Di-isopropyl ether		776	<25	25	ug/kg	
Ethylbenzene		776	<25	25	ug/kg	
Hexachlorobutadiene		776	<35	35	ug/kg	
Isopropylbenzene		776	<25	25	ug/kg	
p-Isopropyltoluene		776	<25	25	ug/kg	
Methylene Chloride		776	240	50	ug/kg	
Methyl-t-butyl ether		776	<25	25	ug/kg	
Naphthalene		776	<25	25	ug/kg	
n-Propylbenzene		776	<25	25	ug/kg	
Styrene		776	<25	25	ug/kg	
1,1,1,2-Tetrachloroethane		776	<25	25	ug/kg	
1,1,2,2-Tetrachloroethane		776	<25	25	ug/kg	
Tetrachloroethene		776	<25	25	ug/kg	
Toluene		776	<25	25	ug/kg	
1,2,3-Trichlorobenzene		776	<25	25	ug/kg	
1,2,4-Trichlorobenzene		776	<25	25	ug/kg	
1,1,1-Trichloroethane		776	<25	25	ug/kg	
1,1,2-Trichloroethane		776	<25	25	uq/kq	
Trichloroethene		776	<25	25	uq/kq	
Trichlorofluoromethane		776	<25	25	ug/kg	
1,2,3-Trichloropropane		776	<25	25	ug/kg	
1,2,4-Trimethylbenzene		776	<25	25	ug/kg	
1,3,5-Trimethylbenzene		776	<25	25	ug/kg	
Vinyl Chloride		776	<25	25	ug/kg	
Xylenes, Total		776	<35	35	ug/kg	
Surr: Dibromofluoromethane		776	94.2	82-129	ş	

QUALITY CONTROL REPORT BLANKS

10/18/1999

•

Job No: 99.08852 Account No: 39150

HYDRO-SEARCH/GEO TRANS 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

Ms. Jennifer Johanson

Page 29 of 31

Job Description: Sta-Rite Delavan

Parameter	Prep Batch	Run Batch	Blank Result	Reporting Limit	Units
Surr: Toluene-d8		776	95.6	87-109	*
Surr: Bromofluorobenzene		776	94.2	86-108	8

QUALITY CONTROL REPORT LABORATORY CONTROL STANDARD

10/18/1999

Job No: 99.08852 Account No: 39150

Page 30 of 31

HYDRO-SEARCH/GEO TRANS 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

Ms. Jennifer Johanson

-

Job Description: Sta-Rite Delavan

Analyte	Prep Batch Number	Run Batch Number	LCS	Unite	LCS	LCSD	LCS Percent	LCSD Percent	Control	Relative Percent
						NUUUIC	noooverj	Recovery	DIMICS	2111010100
VOC - METHANOL - 8260B										
Benzene		773	50 0	ua/ka	43.9	41 6	97 B	63 7		5 4
Chlorobenzene		773	50.0	ug/kg	51 0	51 8	102 0	103.2		1.6
1.1-Dichlorgethene		,,,, ,,,,	50.0	ug/kg	JI.U JI.U	17 0	102.0 E7 6	203.0		47.2
Ethylbenzene		773	50.0	ug/kg	20.0 53 5	55 4	107.0	33.0		31.2
Methyl-t-butyl ether		773	50.0	ug/kg	25.5	35.7	107.0	71 4		3.5
Toluene		גרל גרל	50.0	ug/kg	33.1 40.0	3D.7	/1.4	71.4		0.0
Trichloroethere		773	50.0	ug/kg	43.3	50.0	97.8	100.0		0.2
1 2 4-Trimethylbenzene		773	50.0	ug/kg	40,9	40.0	93.8	92.0		1.9
1 3 5-Trimethylbenzene		()) (17)	50.0	ug/kg	50.9	57.5	113.8	115.0		1.0
Yvlenes Total		773	10.0	ug/kg	55.0	57.3	112.0	114.6		2.3
Ayrenes, focal		773	150	ug/kg	153	150	102.0	96.2		2.0
Surr: Dibroworldoromechane		773	50.0	δ.	49.3	53.7	98.5	107.4	85 - 118	8.5
Surr: Dromefluorehoneere		773	50.0	*	52.3	53.7	104.6	107.4	91 - 109	2.6
		113	50.0	ł	52.7	54.8	105.4	109,6	85 - 113	3.9
VOC - METHANOL - 8260B										
Senzene		775	50.0	ug/kg	48.5	33.0	97.0	66.0		38.0
		775	50.0	ug/kg	53.7	54.8	107.4	109.6		2.0
1,1-Dichloroethene		775	50.0	ug/kg	39.5	4.1	79.0	8.2		162.3
Ethylbenzene		775	50.0	ug/kg	52.4	52.7	104.8	105.4		0.6
Methyl-t-butyl ether		775	50.0	ug/kg	43.5	29.4	87.0	58.8		38.7
Toluene		775	50.0	ug/kg	51.3	47.3	102.6	94.6		8.1
Trichloroethene		775	50.0	ug/kg	51.7	44.4	103.4	88.8		15.2
1,2,4-Trimethylbenzene		775	50.0	ug/kg	52.2	54.4	104.4	108.8		4.1
1,3,5-Trimethylbenzene		775	50.0	ug/kg	51.7	54.0	103.4	108.0		4.4
Xylenes, Total		775	150	ug/kg	156	160	104.0	106.7		2.5
Surr: Dibromofluoromethane		775	50.0	949 949	50.2	50.8	100.4	101.6	85 - 118	1.2
Surr: Toluene-d8		775	50.0	ł	50.0	50.3	100.0	100.6	91 - 109	0.6
Surr: Bromofluorobenzene		775	50.0	锋	49.0	47.9	98.0	95.8	85 - 113	2.3
VOC - METHANOL - 8260B										
Benzene		776	50.0	ug/kg	47.5		95.0			
Chlorobenzene		776	50.0	ug/kg	53.7		107.4			
1,1-Dichloroethene		776	50.0	ug/kg	40.8		81.6			
Ethylbenzene		776	50.0	ug/kg	52.1		104.2			
Methyl-t-butyl ether		776	50.0	ug/kg	40.8		81.6			
Toluene		776	50.0	ug/kg	50.7		101.4			
Trichloroethene		776	50.0	ug/kg	50.3		100.6			
1,2,4-Trimethylbenzene		776	50.0	ug/kg	52.5		105.0			
1,3,5-Trimethylbenzene		776	50.0	ug/kg	52.8		105.6			

QUALITY CONTROL REPORT LABORATORY CONTROL STANDARD

10/18/1999

Job No: 99.08852 Account No: 39150

HYDRO-SEARCH/GEO TRANS 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

Ms. Jennifer Johanson

Page 31 of 31

Job Description: Sta-Rite Delavan

Analyte	Frep Batch Number	Run Batch Number	LCS Amount	Units	LCS Result	LCSD Result	LCS Percent Recovery	LCSD Percent Recovery	Control Limits	Relative Percent Difference
Xylenes, Total		776	150	ug/kg	158		105.3			
Surr: Dibromofluoromethane		776	50.0	8	51.0		102.0		85 - 118	
Surr: Toluene-d8		776	50.0	\$	50.0		100.0		91 - 109	
Surr: Bromofluorobenzene		776	50.0	ŧ	49.0		98.0		85 - 113	

CHAIN OF CL DY RECORD CAC A 292	COMPANY HST GEOTRANS REPORT TO JENUITER JOURISM	FADA INVOILE IO. INVOILE IO.	-BI20 PROJECT MANAGER JENNIFTE JOHANSON QUOTE NO. ANTEN 40/		Which regulations apply?	# and Type of Containers											anol blank			VE) NO VOLATILES GOLE CE READEDACCES VES / NO VOLATILES GOLE VES / NO VOLATILES VES / NO VOLATILES VES / NO VOLATILES VES / NO VOLATILES GOLE VES / NO VOLATILES GOLE VES / NO VOLATILES VES / NO VOLATILES VES / NO VOLATILES / NO VOLATILES VES / NO VOLATILES VES / NO VOLATILES VES / NO VOLATILES VES / NO VES / NO VOLATILES VES / NO VOLATILES VES / NO VES / NO VOLATILES VES / NO VOLATILES VES / NO VOLATILES VES / NO	VOLATILES THEE OF HEADSYACES YES / NO BOTTLES SUPPLIED BY LAB? CEST NO IEMPERATURE UPON RECEIPTE DA LCC.	INME GECLIVED BY: RELINCAUSHED BY: DATE TIME RECEIVED IN EACHING	We loss & Mill I will will and a contract
		Commerce Drive / Wortertown WI 53094	CONTRACTOR / FOX: (920) 261-8120 PROJECT MAN	les And	114 COM14		COMP COMP SAMPLE D/06SCRPPICN SAMPLE D/06SCRPPICN SAMPLE D/06SCRPPICN	30 SB-2008 - 16	200 SG-2008-20	200 SG-2008-24	230 513 - 2008 - 26-28	330 56- SumpE-16	130 SB-SUMPE-20	400 53-SWPE-24	115 58- Sumpe-26	115 SB-SUMPE-28	- TRIP BLANK - methanol			ON OF SAMPLE: BOTTES INTAC (YES) NO VOI		FO BY: DATE RME SECTIVED BY:	AT Milate la molega 1030 2
L S	Ŭ	602.6	Pho	SAMPLED BJ	NAME	NAME	DATE T	11 5/24	10/2 15	1.15 13	<u>~6~112</u>	K E	10/5 13	<u>1</u> 2 2	<u>*5 14</u>	15 Id	195 -			CONDITIC		5ELINQUISHE	Rolai

ANALYTICAL AND QUALITY CONTROL REPORT

FROJECT # NIZA

April 2011年1日

Ms. Jenny Johanson HSI GEOTRANS 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

08/24/1999

Job No: 99.07090

Page 1 of 11

Enclosed are the Analytical and Quality Control reports for the following samples submitted for analysis:

Sample	Sample Description	Date	Date
Number		Taken	Received
361323	SB2008 16' Delavan Soil	08/12/1999	08/13/1999
361324	SB2008 20' Delavan Soil	08/12/1999	08/13/1999
361325	SB2008 26' Delavan Soil	08/12/1999	08/13/1999

Soil results are reported on a dry weight basis. The above sample(s) may have a result flag shown on the report. The following are the result flag definitions:

- A = Analyzed/extracted past hold time
- C = Standard outside of control limits
- F = Sample filtered in lab
- H = Late eluting hydrocarbons present
- J = Estimated concentration
- M = Matrix interference
- Q = Result confirmed via re-analysis
- T = Does not match typical pattern
- X = Unidentified compound(s) present

B = Blank is contaminated

- D = Diluted for analysis
- G = Received past hold time
- I = Improperly handled sample
 - L = Common lab solvent and contaminant
 - P = Improperly preserved sample
- S = Sediment present
 - W = BOD re-set due to missed dilution
 - Z = Internal standard outside limits

Brian D DeJong

Organic Operations Manager

ANALYTICAL REPORT

Ms. Jenny Johanson HSI GEOTRANS 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

08/24/1999 Job No: 99.07090 Sample No: 361323 Account No: 39150 Page 2 of 11

JOB DESCRIPTION: Delavan Soil PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB2008 16' Delavan Soil Rec'd at 4 degrees C

Date/Time Taken: 08/12/1999 13:53

Date Received: 08/13/1999

.

					Date	Prep/Run	
Parameter		Results	Units	Limit	Method	Analyzed	Batch
Solids, Total		92.2	ę	n/a	SW 5030	08/23/1999	2913
VOC - METHANOL - 8260B	I						
Benzene		<27	ug/kg	25	SW 8260B	08/17/1999	749
Bromobenzene		<27	ug/kg	25	SW 8260B	08/17/1999	749
Bromochloromethane		<27	ug/kg	25	SW 8260B	08/17/1999	749
Bromodichloromethane		<27	ug/kg	25	SW 8260B	08/17/1999	749
Bromoform		<27	ug/kg	25	SW 8260B	08/17/1999	749
momethane		<108	ug/kg	100	SW 8260B	08/17/1999	749
utylbenzene		<27	ug/kg	25	SW 8260B	08/17/1999	749
sec-Butylbenzene		<27	ug/kg	25	SW 8260B	08/17/1999	749
tert-Butylbenzene		<27	ug/kg	25	SW 8260B	08/17/1999	749
Carbon Tetrachloride		<27	ug/kg	25	SW 8260B	08/17/1999	749
Chlorobenzene		<27	ug/kg	25	SW 8260B	08/17/1999	749
Chlorodibromomethane		<27	ug/kg	25	SW 8260B	08/17/1999	749
Chloroethane		<38	ug/kg	35	SW 8260B	08/17/1999	749
Chloroform		<27	ug/kq	25	SW 8260B	08/17/1999	749
Chloromethane		<33	ug/kg	30	SW 8260B	08/17/1999	749
2-Chlorotoluene		<27	uq/kq	25	SW 8260B	08/17/1999	749
4-Chlorotoluene		<27	uq/kq	25	SW 8260B	08/17/1999	749
1,2-Dibromo-3-Chloropropane		<54	ug/kg	50	SW 8260B	08/17/1999	749
1,2-Dibromoethane (EDB)		<27	uq/kq	25	SW 8260B	08/17/1999	749
Dibromomethane		<27	ug/kg	25	SW 8260B	08/17/1999	749
1,2-Dichlorobenzene		<27	uq/kq	25	SW 8260B	08/17/1999	749
1,3-Dichlorobenzene		<27	uq/kq	25	SW 8260B	08/17/1999	749
1,4-Dichlorobenzene		<27	ug/kg	25	SW 8260B	08/17/1999	749
Dichlorodifluoromethane		<27	uq/kq	25	SW 8260B	08/17/1999	749
1,1-Dichloroethane		<27	ug/kg	25	SW 8260B	08/17/1999	749
1,2-Dichloroethane		<27	ug/kg	25	SW 8260B	08/17/1999	749
1,1-Dichloroethene		<27	uq/kq	25	SW 8260B	08/17/1999	749
cis-1,2-Dichloroethene		<27	ug/kg	25	SW 8260B	08/17/1999	749
trans-1,2-Dichloroethene		<27	ug/kg	25	SW 8260B	08/17/1999	749
1,2-Dichloropropane		<27	ug/kg	25	SW 8260B	08/17/1999	749
1,3-Dichloropropane		<27	uq/kq	25	SW 8260B	08/17/1999	749
2,2-Dichloropropane		<27	ug/kg	25	SW 8260B	08/17/1999	749
1,1-Dichloropropene		<27	uq/kq	25	SW 8260B	08/17/1999	749
-1,3-Dichloropropene		<27	ug/kg	25	SW 8260B	08/17/1999	749
ns-1,3-Dichloropropene		<27	uq/kq	25	SW 8260B	08/17/1999	749
Di-isopropyl ether		<27	ua/ka	25	SW 8260B	08/17/1999	749
Ethylbenzene		<27	ug/kq	25	SW 8260B	08/17/1999	749
				—			

ANALYTICAL REPORT

Ms. Jenny Johanson HSI GEOTRANS 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

08/24/1999 Job No: 99.07090 Sample No: 361323 Account No: 39150 Page 3 of 11

JOB DESCRIPTION: Delavan Soil PROJECT DESCRIPTION: Soil Analysis SB2008 167 Delavan Soil SAMPLE DESCRIPTION: Rec'd at 4 degrees C

Date/Time Taken: 08/12/1999 13:53 Date Received: 08/13/1999

.

			Reporting	3	Date	Prep/Run
Parameter	Results	Units	Limit	Method	Analyzed	Batch
Hexachlorobutadiene	<38	ug/kg	35	SW 8260B	08/17/1999	749
Isopropylbenzene	<27	ug/kg	25	SW 8260B	08/17/1999	749
p-Isopropyltoluene	<27	ug/kg	25	SW 8260B	08/17/1999	749
Methylene Chloride	< 54	ug/kg	50	SW 8260B	08/17/1999	749
Methyl-t-butyl ether	<27	ug/kg	25	SW 8260B	08/17/1999	749
Naphthalene	<27	ug/kg	25	SW 8260B	08/17/1999	749
n-Propylbenzene	<27	uq/kq	25	SW 8260B	08/17/1999	749
rene	<27	ug/kg	25	SW 8260B	08/17/1999	749
.,1,2-Tetrachloroethane	<27	ug/kg	25	SW 8260B	08/17/1999	749
1,1,2,2-Tetrachloroethane	<27	ug/kg	25	SW 8260B	08/17/1999	749
Tetrachloroethene	130	ug/kg	25	SW 8260B	08/17/1999	749
Toluene	<27	ug/kg	25	SW 8260B	08/17/1999	749
1,2,3-Trichlorobenzene	<27	ug/kg	25	SW 8260B	08/17/1999	749
1,2,4-Trichlorobenzene	<27	uq/kq	25	SW 8260B	08/17/1999	749
1,1,1-Trichloroethane	<27	uq/kq	25	SW 8260B	08/17/1999	749
1,1,2-Trichloroethane	<27	uq/kq	25	SW 8260B	08/17/1999	749
Trichloroethene	228	uq/kq	25	SW 8260B	08/17/1999	749
Trichlorofluoromethane	<27	ug/kg	25	SW 8260B	08/17/1999	749
1,2,3-Trichloropropane	<27	uq/kq	25	SW 8260B	08/17/1999	749
1,2,4-Trimethylbenzene	<27	uq/kq	25	SW 8260B	08/17/1999	749
1,3,5-Trimethylbenzene	<27	ug/kg	25	SW 8260B	08/17/1999	749
Vinyl Chloride	<27	ug/kg	25	SW 8260B	08/17/1999	749
Xylenes, Total	<38	ug/kg	35	SW 8260B	08/17/1999	749
Surr: Dibromofluoromethane	115.0	ક	n/a	SW 8260B	08/17/1999	749
Surr: Toluene-d8	97.0	ę	n/a	SW 8260B	08/17/1999	749
Surr: Bromofluorobenzene	97.4	ę	n/a	SW 8260B	08/17/1999	749

Test/Merica

ANALYTICAL REPORT

Ms. Jenny Johanson HSI GEOTRANS 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

08/24/1999 Job No: 99.07090 Sample No: 361324 Account No: 39150 Page 4 of 11

JOB DESCRIPTION: Delavan Soil PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB2008 20' Delavan Soil Rec'd at 4 degrees C

Date/Time Taken: 08/12/1999 14:09

Date Received: 08/13/1999

				Reporting	r	Date	Prep/Run
Parameter		Results	Units	Limit	Method	Analyzed	Batch
Solids, Total		92.9	ojo	n/a	SW 5030	08/23/1999	2911
VOC - METHANOL - 8260B	I		-		00000	00/20/1000	2911
Benzene		<27	uq/kq	25	SW 8260B	08/17/1999	749
Bromobenzene		<27	uq/kq	25	SW 8260B	08/17/1999	749
Bromochloromethane		<27	ug/kg	25	SW 8260B	08/17/1999	749
Bromodichloromethane		<27	uq/kq	25	SW 8260B	08/17/1999	749
Bromoform		<27	uq/kq	25	SW 8260B	08/17/1999	749
momethane		<108	uq/kq	100	SW 8260B	08/17/1999	749
. utylbenzene		<27	uq/kq	25	SW 8260B	08/17/1999	749
sec-Butylbenzene		<27	uq/kq	25	SW 8260B	08/17/1999	749
tert-Butylbenzene		<27	uq/kq	25	SW 8260B	08/17/1999	749
Carbon Tetrachloride		<27	uq/kq	25	SW 8260B	08/17/1999	749
Chlorobenzene		<27	uq/kq	25	SW 8260B	08/17/1999	749
Chlorodibromomethane		<27	ug/kg	25	SW 8260B	08/17/1999	749
Chloroethane		<38	ug/kg	35	SW 8260B	08/17/1999	749
Chloroform		<27	uq/kq	25	SW 8260B	08/17/1999	749
Chloromethane		<32	ug/kg	30	SW 82608	08/17/1999	749
2-Chlorotoluene		<27	ug/kg	25	SW 8260B	08/17/1999	749
4-Chlorotoluene		<27	uq/kq	25	SW 8260B	08/17/1999	749
1,2-Dibromo-3-Chloropropane		<54	ug/kg	50	SW 8260B	08/17/1999	749
1,2-Dibromoethane (EDB)		<27	ua/ka	25	SW 8260B	08/17/1999	749
Dibromomethane		<27	uq/kq	25	SW 8260B	08/17/1999	749
1,2-Dichlorobenzene		<27	ug/kg	25	SW 8260B	08/17/1999	749
1,3-Dichlorobenzene		<27	ua/ka	25	SW 8260B	08/17/1999	749
1,4-Dichlorobenzene		<27	uq/kq	25	SW 8260B	08/17/1999	749
Dichlorodifluoromethane		<27	uq/kq	25	SW 8260B	08/17/1999	749
1,1-Dichloroethane		<27	uq/kq	25	SW 8260B	08/17/1999	749
1,2-Dichloroethane		<27	ug/kg	25	SW 8260B	08/17/1999	749
1,1-Dichloroethene		<27	ug/kg	25	SW 8260B	08/17/1999	749
cis-1,2-Dichloroethene		474	ug/kg	25	SW 8260B	08/17/1999	749
trans-1,2-Dichloroethene		<27	uq/kq	25	SW 8260B	08/17/1999	749
1,2-Dichloropropane		<27	ug/kg	25	SW 8260B	08/17/1999	749
1,3-Dichloropropane		<27	ug/kg	25	SW 8260B	08/17/1999	743
2,2-Dichloropropane		<27	ua/ka	25	SW 8260B	08/17/1099	749
1,1-Dichloropropene		<27	ug/kg	25	SW 8260B	08/17/1999	749
c -1,3-Dichloropropene		<27	ua/ka	25	SW 8260B	08/17/1999	749
us-1,3-Dichloropropene		<27	ug/kg	25	SW 8260B	08/17/1000	743
Di-isopropyl ether		<27	ua/ka	25		00/17/1000	749
Ethylbenzene		<27	ug/kg	25	SH 020VB	00/17/1999	749
		- ·	-9/119	2.2	DW 020VB	00/1//1998	149

Test/Merica

ANALYTICAL REPORT

Ms. Jenny Johanson HSI GEOTRANS 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

.

08/24/1999 Job No: 99.07090 Sample No: 361324 Account No: 39150 Page 5 of 11

JOB DESCRIPTION: Delavan Soil PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB2008 20' Delavan Soil Rec'd at 4 degrees C

Date/Time Taken: 08/12/1999 14:09

Date Received: 08/13/1999

			Reporting	न	Date	Prep/Run
Parameter	Results	Units	Limit	Method	Analyzed	Batch
Hexachlorobutadiene	<38	ug/kg	35	SW 8260B	08/17/1999	749
Isopropylbenzene	<27	ug/kg	25	SW 8260B	08/17/1999	749
p-Isopropyltoluene	<27	uq/kq	25	SW 8260B	08/17/1999	749
Methylene Chloride	<54	uq/kq	50	SW 8260B	08/17/1999	749
Methyl-t-butyl ether	<27	ug/kg	25	SW 8260B	08/17/1999	749
Naphthalene	<27	uq/kq	25	SW 8260B	08/17/1999	749
n-Propylbenzene	<27	uq/kq	25	SW 8260B	08/17/1999	749
/rene	<27	uq/kq	25	SW 8260B	08/17/1999	749
1, 1, 2-Tetrachloroethane	<27	uq/kq	25	SW 8260B	08/17/1999	749
1,1,2,2-Tetrachloroethane	<27	ug/kg	25	SW 8260B	08/17/1999	749
Tetrachloroethene	431	ua/ka	25	SW 8260B	08/17/1999	749
Toluene	<27	ug/kg	25	SW 8260B	08/17/1999	749
1,2,3-Trichlorobenzene	<27	uq/kq	25	SW 8260B	08/17/1999	749
1,2,4-Trichlorobenzene	<27	ug/kg	25	SW 8260B	08/17/1999	749
1,1,1-Trichloroethane	<27	uq/kq	25	SW 8260B	08/17/1999	749
1,1,2-Trichloroethane	<27	ug/kg	25	SW 8260B	08/17/1999	749
Trichloroethene	678	uq/kq	25	SW 8260B	08/17/1999	749
Trichlorofluoromethane	<27	ug/kg	25	SW 8260B	08/17/1999	749
1,2,3-Trichloropropane	<27	ua/ka	25	SW 8260B	08/17/1999	749
1,2,4-Trimethylbenzene	<27	ug/kg	25	SW 8260B	08/17/1999	749
1,3,5-Trimethylbenzene	<27	ug/kg	25	SW 8260B	08/17/1999	749
Vinyl Chloride	<27	uq/kq	25	SW 8260B	08/17/1999	749
Xylenes, Total	<38	uq/kq	35	SW 8260B	08/17/1999	749
Surr: Dibromofluoromethane	112.6	8	n/a	SW 8260B	08/17/1999	749
Surr: Toluene-d8	96.6	5	n/a	SW 8260B	08/17/1999	7/9
Surr: Bromofluorobenzene	96.0	各	n/a	SW 8260B	08/17/1999	749

ANALYTICAL REPORT

Ms. Jenny Johanson HSI GEOTRANS 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

08/24/1999 Job No: 99.07090 Sample No: 361325 Account No: 39150 Page 6 of 11

Peparting

JOB DESCRIPTION: Delavan Soil PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB2008 26' Delavan Soil Rec'd at 4 degrees C

Date/Time Taken: 08/12/1999 UNKNOWN

Date Received: 08/13/1999

Data Dran/Bun

				reporting		Date	Frep/Run
Parameter		Results	Units	Limit	Method	Analyzed	Batch
Solids, Total		93.1	e.	n/a	SW 5030	08/23/1999	2911
VOC - METHANOL - 8260B	I					,,	
Benzene		<1,290	ug/kg	25	SW 8260B	08/17/1999	749
Bromobenzene		<1,290	ug/kg	25	SW 8260B	08/17/1999	749
Bromochloromethane		<1,290	uq/kq	25	SW 8260B	08/17/1999	749
Bromodichloromethane		<1,290	ug/kg	25	SW 8260B	08/17/1999	749
Bromoform		<1,290	ug/kg	25	SW 8260B	08/17/1999	749
momethane		<5,370	ug/kg	100	SW 8260B	08/17/1999	749
Butylbenzene		<1,290	ug/kg	25	SW 8260B	08/17/1999	749
sec-Butylbenzene		3,870	ug/kg	25	SW 8260B	08/17/1999	749
tert-Butylbenzene		<1,290	ug/kg	25	SW 8260B	08/17/1999	749
Carbon Tetrachloride		<1,290	ug/kg	25	SW 8260B	08/17/1999	749
Chlorobenzene		<1,290	ug/kg	25	SW 8260B	08/17/1999	749
Chlorodibromomethane		<1,290	ug/kg	25	SW 8260B	08/17/1999	749
Chloroethane		<1,930	ug/kg	35	SW 8260B	08/17/1999	749
Chloroform		<1,290	ug/kg	25	SW 8260B	08/17/1999	749
Chloromethane		<1,610	ug/kg	30	SW 8260B	08/17/1999	749
2-Chlorotoluene		<1,290	ug/kg	25	SW 8260B	08/17/1999	749
4-Chlorotoluene		<1,290	ug/kg	25	SW 8260B	08/17/1999	749
1,2-Dibromo-3-Chloropropane		<2,690	ug/kg	50	SW 8260B	08/17/1999	749
1,2-Dibromoethane (EDB)		<1,290	ug/kg	25	SW 8260B	08/17/1999	749
Dibromomethane		<1,290	ug/kg	25	SW 8260B	08/17/1999	749
1,2-Dichlorobenzene		<1,290	ug/kg	25	SW 8260B	08/17/1999	749
1,3-Dichlorobenzene		<1,290	ug/kg	25	SW 8260B	08/17/1999	749
1,4-Dichlorobenzene		<1,290	ug/kg	25	SW 8260B	08/17/1999	749
Dichlorodifluoromethane		<1,290	ug/kg	25	SW 8260B	08/17/1999	749
1,1-Dichloroethane		<1,290	ug/kg	25	SW 8260B	08/17/1999	749
1,2-Dichloroethane		<1,290	ug/kg	25	SW 8260B	08/17/1999	749
1,1-Dichloroethene		<1,290	ug/kg	25	SW 8260B	08/17/1999	749
Cis-1,2-Dichloroethene		<1,290	ug/kg	25	SW 8260B	08/17/1999	749
trans-1,2-Dichloroethene		<1,290	ug/kg	25	SW 8260B	08/17/1999	749
1,2-Dichloropropane		<1,290	ug/kg	25	SW 8260B	08/17/1999	749
1,3-Dichloropropane		<1,290	ug/kg	25	SW 8260B	08/17/1999	749
2,2-Dichloropropane		<1,290	ug/kg	25	SW 8260B	08/17/1999	749
1,1-Dichioropropene		<1,290	ug/kg	25	SW 8260B	08/17/1999	749
-1,3-Dichloropropene		<1,290	ug/kg	25	SW 8260B	08/17/1999	749
Ins-1, 3-Dichloropropene		<1,290	ug/kg	25	SW 8260B	08/17/1999	749
D1-1sopropyl ether		<1,290	ug/kg	25	SW 8260B	08/17/1999	749
EINYIDENZENE		41,900	ug/kg	25	SW 8260B	08/17/1999	749

ANALYTICAL REPORT

Ms. Jenny Johanson HSI GEOTRANS 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

08/24/1999 Job No: 99.07090 Sample No: 361325 Account No: 39150 Page 7 of 11

JOB DESCRIPTION: Delavan Soil PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB2008 267 Delavan Soil Rec'd at 4 degrees C

Date/Time Taken: 08/12/1999 UNKNOWN Date Received: 08/13/1999

			Reporting	a	Date	Prep/Run
Parameter	Results	Units	Limit	Method	Analyzed	Batch
Hexachlorobutadiene	<1,930	ug/kg	35	SW 8260B	08/17/1999	749
Isopropylbenzene	4,400	uq/kq	25	SW 8260B	08/17/1999	749
p-Isopropyltoluene	<1,290	uq/kq	25	SW 8260B	08/17/1999	749
Methylene Chloride	<2,690	uq/kq	50	SW 8260B	08/17/1999	749
Methyl-t-butyl ether	<1,290	uq/kq	25	SW 8260B	08/17/1999	749
Naphthalene	4,830	ug/kg	25	SW 8260B	08/17/1999	749
n-Propylbenzene	5,050	uq/kq	25	SW 8260B	08/17/1999	749
rene	<1,290	ug/kg	25	SW 8260B	08/17/1999	749
.,1,2-Tetrachloroethane	<1,290	ua/ka	25	SW 8260B	08/17/1999	749
1,1,2,2-Tetrachloroethane	<1,290	ug/kg	25	SW 8260B	08/17/1999	749
Tetrachloroethene	64,400	ug/kg	25	SW 8260B	08/17/1999	749
Toluene	4,510	ug/kg	25	SW 8260B	08/17/1999	749
1,2,3-Trichlorobenzene	<1.290	ug/kg	25	SW 8260B	08/17/1999	752
1,2,4-Trichlorobenzene	<1,290	ug/kg	25	SW 8260B	00/17/1999	749
1,1,1-Trichloroethane	<1.290	ug/kg	25	SM 8260B	00/17/1999	749
1,1,2-Trichloroethane	<1,290	ug/kg	25	SW 8260B	00/17/1999	749
Trichloroethene	863.000	ug/kg	25	SW 8260B	08/17/1999	742
Trichlorofluoromethane	<1,290	ug/kg	25	SW 9260B	00/17/1000	745
1,2,3-Trichloropropane	<1,290	vg/kg	25	SW 8260B	00/17/1999	749
1,2,4-Trimethylbenzene	31,100	ug/kg	25	SW 9260D	00/17/1999	749
1,3,5-Trimethylbenzene	10,200	ug/kg	25	SW 0260B	08/17/1999	749
Vinyl Chloride	<1.200	ug/kg	25	SW 6260B	08/17/1999	749
Xylenes, Total	105 000	ug/kg	25	SW 8260B	08/17/1999	749
Surr: Dibromofluoromethane	109 2	49/79 8	35 n/n	SW 8260B	08/17/1999	749
Surr: Toluene-d8	99 2	8 9-	11/a n/a	SW 8260B	08/17/1999	749
Surr: Bromofluorobenzene	101 2	° 2-	11/a 5/2	SW 826UB	08/1//1999	749
	IVI.2	.e	n/a	5W 826VB	08/17/1999	749

QUALITY CONTROL REPORT CONTINUING CALIBRATION VERIFICATION

08/24/1999

.

Job No: 99.07090 Account No: 39150

Page 8 of 11

Job Description: Delavan Soil

Ms. Jenny Johanson HSI GEOTRANS 175 N. Corporate Drive Suite 100 Drackfield NJ 52045

Brookfield, WI 53045

Parameter	Run Batch	True Value	Observed Value	Percent Recovery	Control Limits	Analyst
VOC - METHANOL - 8260B						
Benzene	749	50.0	53.3	106.6		mai
Bromoform	749	50.0	51.3	102.6		mai
Chlorobenzene	749	50.0	50.1	100.2		mai
Chloroform	749	50.0	55.6	111.2	80 - 120	mai
Chloromethane	749	50.0	48.8	97.6		mai
1,1-Dichloroethane	749	50.0	53.1	106.2		mai
1,1-Dichloroethene	749	50.0	47.5	95.0	80 - 120	mai
1,2-Dichloropropane	749	50.0	54.2	108.4	80 - 120	mai
Di-isopropyl ether	749	50.0	54.8	109.6		mai
Ethylbenzene	749	50.0	51.5	103.0	80 - 120	mai
Methyl-t-butyl ether	749	50.0	55.6	111.2		mai
1,1,2,2-Tetrachloroethane	749	50.0	48.0	96.0		mai
Toluene	749	50.0	51.7	103.4	80 - 120	mai
Trichloroethene	749	50.0	52.3	104.6		mai
1,2,4-Trimethylbenzene	749	50.0	48.2	96.4		mai
1,3,5-Trimethylbenzene	749	50.0	51.6	103.2		mai
Vinyl Chloride	749	50.0	49.6	99.2	80 - 120	mai
Xylenes, Total	749	150	153	102.0		mai
Surr: Dibromofluoromethane	749	50.0	52.6	105.2	85 - 118	mai
Surr: Toluene-d8	749	50.0	49.0	98.0	91 - 109	mai
Surr: Bromofluorobenzene	749	50.0	49.1	98.2	85 - 113	mai

.

QUALITY CONTROL REPORT BLANKS

Ms. Jenny Johanson HSI GEOTRANS 175 N. Corporate Drive Suite 100 Brookfield, WI 53045 08/24/1999

Job No: 99.07090 Account No: 39150

Page 9 of 11

Job Description: Delavan Soil

	Prep	Run	Blank	Reporting	
Parameter	Batch	Batch	Result	Limit	Units
VOC - METHANOL - 8260B			~-	A -	
Benzene		749	<25	25	ug/kg
Bromodenzene		749	<25	25	ug/kg
Bromochloromethane		749	<25	25	ug/kg
Bromodichioromethane		749	<25	25	ug/kg
Bromotorm		749	<25	25	ug/kg
Bromomethane		749	<100	100	ug/kg
n-Butylbenzene		749	<25	25	ug/kg
sec-Butylbenzene		749	<25	25	ug/kg
tert-Butylbenzene		749	<25	25	ug/kg
Carbon Tetrachloride		749	<25	25	ug/kg
Chlorobenzene		749	<25	25	ug/kg
Chlorodibromomethane		749	<25	25	ug/kg
Chloroethane		749	<35	35	ug/kg
Chloroform		749	<25	25	uq/kq
Chloromethane		749	<30	30	ug/kg
2-Chlorotoluene		749	<25	25	uq/kq
4-Chlorotoluene		749	<25	25	ug/kg
1,2-Dibromo-3-Chloropropane		749	<50	50	ug/kg
1,2-Dibromoethane (EDB)		749	<25	25	ug/kg
Dibromomethane		749	<25	25	ug/kg
1,2-Dichlorobenzene		749	<25	25	ug/kg
1,3-Dichlorobenzene		749	<25	25	ug/kg
1,4-Dichlorobenzene		749	<25	25	ug/kg
Dichlorodifluoromethane		749	<25	25	ug/kg
1,1-Dichloroethane		749	<25	25	ug/kg
1,2-Dichloroethane		749	<25	25	ug/kg
1,1-Dichloroethene		749	<25	25	ug/kg ug/kg
cis-1,2-Dichloroethene		749	<25	25	ug/kg
trans-1,2-Dichloroethene		749	<25	25	ug/kg ug/kg
1,2-Dichloropropane		749	<25	25	ug/kg
1.3-Dichloropropane		749	<25	25	ug/kg
2.2-Dichloropropane		749	<25	25	ug/kg
1.1-Dichloropropene		749	<22	25	ug/kg
cis-1.3-Dichloropropene		749	~25	25	ug/kg
trans-1.3-Dichloropropene		749	~25	27 25	ug/kg
Di-isopropyl ether		749	<20 <25	40 0E	ug/kg
Ethylbenzene		747	540 - 25	40 25	ug/kg
		143	540	20	ug/kg

Method blank results exceed control limits when results are higher than the highest of any of the following: 1 - The limit of detection; 2 - Five percent of the regulatory limit for that analyte; 3 - Five percent of the measured concentration in the sample. NR149.14 (3)d

602 COMMERCE DRIVE / WATERTOWN, WI 53094 / 920-261-1660 / FAX: 920-261-8120 WDNR NO. 128053530

QUALITY CONTROL REPORT BLANKS

Ms. Jenny Johanson HSI GEOTRANS 175 N. Corporate Drive Suite 100 Brookfield, WI 53045 08/24/1999

Job No: 99.07090 Account No: 39150

Page 10 of 11

Job Description: Delavan Soil

-

	Prep	Run	Blank	Reporting	
Parameter	Batch	Batch	Result	Limit	Units
Hexachlorobutadiene		749	< 35	35	va/ka
Isopropylbenzene		749	<25	25	ug/kg
p-Isopropyltoluene		749	<25	25	ug/kg
Methylene Chloride		749	< 50	50	ug/kg
Methyl-t-butyl ether		749	<25	25	ug/kg
Naphthalene		749	<25	25	ug/kg
n-Propylbenzene		749	<25	25	ug/kg ug/kg
Styrene		749	<25	25	ug/kg
1,1,1,2-Tetrachloroethane		749	<25	25	ug/kg
1,1,2,2-Tetrachloroethane		749	<25	25	ug/kg
Tetrachloroethene		749	<25	25	ug/kg
Toluene		749	<25	25	ug/kg
1,2,3-Trichlorobenzene		749	<25	25	ug/kg
1,2,4-Trichlorobenzene		749	<25	25	ug/kg
1,1,1-Trichloroethane		749	<25	25	ug/kg
1,1,2-Trichloroethane		749	<25	25	ug/kg
Trichloroethene		749	<25	25	ug/hg
Trichlorofluoromethane		749	<25	25	ug/kg
1,2,3-Trichloropropane		749	<25	25	ug/kg ug/kg
1,2,4-Trimethylbenzene		749	<25	25	ug/kg
1,3,5-Trimethylbenzene		749	<25	25	ug/kg
Vinyl Chloride		749	<25	25	ug/kg
Xylenes, Total		749	<35	35	ug/kg ug/kg
Surr: Dibromofluoromethane		749	103 0	n/a	eg/rg
Surr: Toluene-d8		749	99.4	n/a	\$
Surr: Bromofluorobenzene		749	93.2	n/a	울

QUALITY CONTROL REPORT LABORATORY CONTROL STANDARD

Ms. Jenny Johanson HSI GEOTRANS 175 N. Corporate Drive Suite 100 Brookfield, WI 53045 08/24/1999

Job No: 99.07090 Account No: 39150

Page 11 of 11

Job Description: Delavan Soil

	Prep Batch	Run Batch	LCS		LCS	I CSD	LCS	LCSD	Control	Relative
Analyte	Number	Number	Amount	Units	Result	Result	Recovery	Recovery	Limits	Difference
VOC - METHANOL - 8260B										
Benzene		749	50.0	ug/kg	53.0	47.8	106.0	95.6		10.3
Chlorobenzene		749	50.0	ug/kg	56.9	52.8	113.8	105.6		7.5
l,l-Dichloroethene		749	50.0	ug/kg	32.0	39.0	64.0	78.0		19.7
Ethylbenzene		749	50.0	ug/kg	57.6	51.9	115.2	103.8		10.4
Methyl-t-butyl ether		749	50.0	ug/kg	46.4	57.8	92.8	115.6		21,9
Toluene		749	50.0	ug/kg	56.1	50.9	112.2	101.8		9.7
Trichloroethene		749	50.0	ug/kg	54.2	57.9	108.4	115.8		6.6
1,2,4-Trimethylbenzene		749	50.0	ug/kg	56.4	52.6	112.8	105.2		7.0
1,3,5-Trimethylbenzene		749	50.0	ug/kg	58.6	55.4	117.2	110.8		5.6
Xylenes, Total		749	150	ug/kg	173	157	115.3	104.7		9.7
Surr: Dibromofluoromethane		749	50.0	46	53.6	56.5	107.2	113.0	85 - 118	5.3
Surr: Toluene-d8		749	50.0	8	49.0	47.0	98.0	94.0	91 - 109	4.2
Surr: Bromofluorobenzene		749	50.0	ş	50.2	50.7	100.4	101.4	85 - 113	1.0

That we		CHAIN OF (TODY RECORD	990 0 7091
ICOULIN	ICLICA	COMPANY # St Gradian (REPORTION KINN WHAN SON
		ADDRESS 175 N CARANTAN Dr. W. #100	INVOICE TO: 0
602 Commerce Drive	? / Watertown, WI 53094	PHONE 742-7282 FAX 792-1360	. GN C d
HST Statton	60 / Fax: (920) 261-8120 Гл с.	PROJECT MANAGER ANNY ANALYNY	Callofe No.
SAMPLED BY:		ANALYSES	Fax Results?QC w/Results?
ASITH TYCKE NAME	5		
Jenny Shan	ciar		Which regulations apply? NPDES/WastewaterRCRAUS1
		# and Type of Containers	Drinking Water Other Volve
DATF IIMC SAMPLE ID/	DESCRIPTION	нися н о н н н н н н н н н	COMMENTS
8/12/10:53 512008	16 50 J		
8/2/99 14:01 53200	[las , DZ		
9/2/9 562W3	26' 50.1		edar- puist thinner
	*		
			Carled duct wierwer
			werents Region containing
			I with no laber weight
CONDITION OF SAMPLE:	BOITLES INTACT	LAB USE ONLY BOTHES REE OF HEADSPACE? YES / NO BOTHES SUPPLIED BY LAB	
RELINDUISHED BY:	DATE TIME	RELEVED BY: RELINCAUS-4ED 3Y: DAT	E 1ME RECEIVED FOR LAB BY:
		AVon Ruede 1305 AVon Rued 15	2) Bluth 0805 Jaren a Voigt
METHOD OF SHIPMENT:		REMARKS: CAEF (-x results to Jon Kannond 414 -	728-7213 and him here
isstamence CourierAV Client		Snub	444-742-1310 44110100 bi- hider d. 21/00-
Contractor Contest	тт т с политични с соло с с соло с с соло с с соло с соло с соло с соло с		41.316 Command 1 13 - 10 - 0

August 24, 1999

and the state

FROJECT # M29

ATTN: Ms Jenny Johanson HSI Geotrans 175 N. Corporate Drive, Suite 100 Brookfield, WI 53045

RE: Sta-Rite VOC Data

Dear Ms Johanson:

We have reviewed the VOC data as reported for Job 99.07090. The results appear correct as reported. Sample 361325 was analyzed twice. The initial analysis was at a 1:50 dilution. The second analysis was at a 1:500 dilution. The two analyses reasonably agree with each other.

There is a comment noted on the Chain of Custody that this sample contains an odor of paint thinner. Maybe that is the cause of the higher than expected results.

If I can provide of any further information regarding this project, please feel free to contact me at the number below. I can also be reached by e-mail at PJunio@testamericainc.com.

Sincerely,

Paul P. 'Junio

QA Coordinator

/letters/hsi99.07090

ANALYTICAL AND QUALITY CONTROL REPORT

Test/America

-

Constant and the second

ار المعادية من المراجع المعادية المعادية المراجع المعادية المراجع المعادية المعادية المعادية المعادية المعادية المعادية معادية معادية المعادية المعادية المعادية المعادية المعادية المعادية المعادية المعادية المعادية المعادي

> Ms. Jenny Johanson HYDRO-SEARCH/GEO TRANS 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

F Gu N129-901

08/30/1999

Job No: 99.07342

Page 1 of 7

Enclosed are the Analytical and Quality Control reports for the following samples submitted for analysis:

Sample Number	Sample	Description	n	Date Taken	Date Received
362264	#361325	SB2008 26'	Sta-Rite	08/12/1999	08/13/1999

Soil results are reported on a dry weight basis. The above sample(s) may have a result flag shown on the report. The following are the result flag definitions:

- A = Analyzed/extracted past hold time
- C = Standard outside of control limits
- F = Sample filtered in lab
- H = Late eluting hydrocarbons present
- J = Estimated concentration
- M = Matrix interference
- Q = Result confirmed via re-analysis
- T = Does not match typical pattern
- X = Unidentified compound(s) present

B = Blank is contaminated

- D = Diluted for analysis
- G = Received past hold time
- I = Improperly handled sample
 - L = Common lab solvent and contaminant
 - P = Improperly preserved sample
 - S = Sediment present
 - W = BOD re-set due to missed dilution
 - Z = Internal standard outside limits

Brian D. DeJong Organic Operations Manager
ANALYTICAL REPORT

TestAmerica

Ms. Jenny Johanson HYDRO-SEARCH/GEO TRANS 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

08/30/1999 Job No: 99.07342 Sample No: 362264 Account No: 39150 Page 2 of 7

JOB DESCRIPTION: Sta-Rite Delavan Soil PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: #361325 SB2008 26' Sta-Rite Rec'd 4 degrees C

Date/Time Taken: 08/12/1999 UNKNOWN

Date Received: 08/13/1999

			Reportin	g	Date	Prep/Run
Parameter	Result	s Units	Limit	Method	Analyzed	Batch
Solids. Total	0.2 1	۵.	_ /_			
VOC - METHANOL - 8260B	73.1 T	5	n/a	SW 5030	08/23/1999	2914
Benzene		na /lea	25	5 11 00 000		
Bromobenzene	<6,800	ug/kg	20 0E	SW 8260B	08/27/1999	754
Bromochloromethane	<6,800	ug/kg ug/kg	20	SW 8260B	08/27/1999	754
Bromodichloromethane	<6,000	ug/kg ug/kg	25	SW 8260B	08/27/1999	754
Bromoform	<6,000	ug/kg ug/kg	25	SW 8260B	08/2//1999	754
momethane	<26,000	ug/kg ug/kg	200	SW 8260B	08/2//1999	/54
Butvlbenzene	<20,000 <6 800	ug/kg	100	SW 8260B	08/2//1999	754
sec-Butvlbenzene	<6,800	ug/kg ug/kg	20	SW 8260B	08/27/1999	754
tert-Butylbenzene		ug/kg ug/kg	25 25	SW 8260B	08/27/1999	754
Carbon Tetrachloride	<0,800	ug/kg	25 05	SW 8260B	08/27/1999	754
Chlorobenzene	<6,800	ug/kg	25	SW 8260B	08/27/1999	754
Chlorodibromomethane	<6,800	ug/kg	25 25	SW 8260B	08/27/1999	754
Chloroethane	<0,800	ug/kg	25	SW 8260B	08/27/1999	754
Chloroform	< 2,000	ug/kg	35	SW 8260B	08/27/1999	754
Chloromethane	<0,000	ug/kg	25	SW 8260B	08/27/1999	754
2-Chlorotoluene		ug/kg	30	SW 8260B	08/27/1999	754
4-Chlorotoluene		ug/kg	25	SW 8260B	08/27/1999	754
1.2-Dibromo-3-Chloropropane	<0,000	ug/kg	25	SW 8260B	08/27/1999	754
1,2-Dibromoethane (EDB)	<5 900	ug/kg	50	SW 8260B	08/27/1999	754
Dibromomethane (2007)	<6,800	ug/kg	45	SW 8260B	08/27/1999	754
1.2-Dichlorobenzene		ug/kg	25	SW 8260B	08/27/1999	754
1.3-Dichlorobenzene		ug/kg	25	SW 8260B	08/27/1999	754
1,4-Dichlorobenzene	<6,800	ug/kg ug/kg	25	SW 8260B	08/27/1999	754
Dichlorodifluoromethane		ug/kg Ng/kg	25	SW 8260B	08/27/1999	754
1.1-Dichloroethane		ug/kg vg/kg	25	SW 8260B	08/27/1999	754
1.2-Dichloroethane	<6,000	ug/kg	25	SW 8260B	08/27/1999	754
1.1-Dichloroethene		ug/kg	25	SW 8260B	08/27/1999	754
cis-1.2-Dichloroethene	<6,800	ug/kg	25	SW 8260B	08/27/1999	754
trans-1.2-Dichloroethene	<6,000	ug/kg	25	SW 8260B	08/27/1999	754
1.2-Dichloropropane	<6,800	ug/kg	25	SW 8260B	08/27/1999	754
1.3-Dichloropropane	<6,800	ug/kg	25	SW 8260B	08/27/1999	754
2.2-Dichloropropane	<6,800	ug/kg	25	SW 8260B	08/27/1999	754
1.1-Dichloropropene	<6,800	ug/kg	25	SW 8260B	08/27/1999	754
3-1.3-Dichloropropene	<6,800	ug/kg	25	SW 8260B	08/27/1999	754
Ans-1.3-Dichloronronene	<0,800	ug/kg	25	SW 8260B	08/27/1999	754
Di-icopropul ather	<6,800	ug/kg	25	SW 8260B	08/27/1999	754
Ethylbenzene	<6,800	ug/kg	25	SW 8260B	08/27/1999	754
Deny inclizene	35,400	ug/kg	25	SW 8260B	08/27/1999	754

ANALYTICAL REPORT

Ms. Jenny Johanson HYDRO-SEARCH/GEO TRANS 175 N. Corporate Drive Suite 100 Brookfield, WI 53045 08/30/1999 Job No: 99.07342 Sample No: 362264 Account No: 39150 Page 3 of 7

JOB DESCRIPTION: Sta-Rite Delavan Soil PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: #361325 SB2008 26' Sta-Rite Rec'd 4 degrees C

Date/Time Taken: 08/12/1999 UNKNOWN

Date Received: 08/13/1999

- .		_		Date	Prep/Run		
Parameter		Results	Units	Limit	Method	Analyzed	Batch
Hexachlorobutadiene		<9,500	ug/kg	35	SW 8260B	08/27/1999	754
Isopropylbenzene		<6,800	uq/kq	25	SW 8260B	08/27/1999	754
p-Isopropyltoluene		<6,800	uq/kq	25	SW 8260B	08/27/1999	754
Methylene Chloride	\mathbf{L}	36,500	ua/ka	50	SW 8260B	08/27/1999	754
Methyl-t-butyl ether		<6,800	uq/kq	25	SW 8260B	08/27/1999	754
Naphthalene		<6,800	ug/kg	25	SW 8260B	08/27/1999	754
n-Propylbenzene		<6,800	ug/kg	25	SW 8260B	08/27/1999	754
rene		<6,800	ug/kg	25	SW 8260B	08/27/1999	754
_, ⊥, 1, 2-Tetrachloroethane		<6,800	ug/kg	25	SW 8260B	08/27/1999	754
1,1,2,2-Tetrachloroethane		<6,800	uq/kq	25	SW 8260B	08/27/1999	754
Tetrachloroethene		63,400	uq/kq	25	SW 8260B	08/27/1999	754
Toluene		<6,800	uq/kq	25	SW 8260B	08/27/1999	754
1,2,3-Trichlorobenzene		<6,800	ug/kg	25	SW 8260B	08/27/1999	754
1,2,4-Trichlorobenzene		<6,800	ug/kg	25	SW 8260B	08/27/1999	754
1,1,1-Trichloroethane		<6,800	uq/kq	25	SW 8260B	08/27/1999	754
1,1,2-Trichloroethane		<6,800	ug/kg	25	SW 8260B	08/27/1999	754
Trichloroethene		817,000	ug/kg	25	SW 8260B	08/27/1999	754
Trichlorofluoromethane		<6,800	uq/kq	25	SW 8260B	08/27/1999	754
1,2,3-Trichloropropane		<6,800	ug/kg	25	SW 8260B	08/27/1999	754
1,2,4-Trimethylbenzene		31,100	uq/kq	25	SW 8260B	08/27/1999	754
1,3,5-Trimethylbenzene		9,990	uq/kq	25	SW 8260B	08/27/1999	754
Vinyl Chloride		<6,800	uq/kq	25	SW 8260B	08/27/1999	754
Xylenes, Total		96,700	ug/kg	35	SW 8260B	08/27/1999	754
Surr: Dibromofluoromethane		106.4	8	n/a	SW 8260B	08/27/1999	754
Surr: Toluene-d8		100.4	*	n/a	SW 8260B	08/27/1999	754
Surr: Bromofluorobenzene		97.8	S.	n/a	SW 8260B	08/27/1999	754

QUALITY CONTROL REPORT CONTINUING CALIBRATION VERIFICATION

08/30/1999

Job No: 99.07342 Account No: 39150 -

175 N. Corporate Drive Suite 100 Brookfield, WI 53045

Ms. Jenny Johanson HYDRO-SEARCH/GEO TRANS

Page 4 of 7

Job Description: Sta-Rite Delavan Soil

	Run	True	Observed	Percent	Control	
Parameter	Batch	Value	Value	Recovery	Limits	Analyst
VOC - METHANOL - 8260B						
Benzene	754	50.0	54.1	108.2		mai
Bromoform	754	50.0	46.8	93.6		mai
Chlorobenzene	754	50.0	53.1	106.2		mai
Chloroform	754	50.0	58.8	117.6	80 - 120	mai
Chloromethane	754	50.0	40.4	80.8		mai
1,1-Dichloroethane	754	50.0	58.4	116.8		mai
1,1-Dichloroethene	754	50.0	54.1	108.2	80 - 120	mai
1,2-Dichloropropane	754	50.0	56.1	112.2	80 - 120	mai
Di-isopropyl ether	754	50.0	59.8	119.6	00 120	mai
Ethylbenzene	754	50.0	52.0	104.0	80 - 120	mai
Methyl-t-butyl ether	754	50.0	59.8	119.6		mai
1,1,2,2-Tetrachloroethane	754	50.0	52.3	104.6		mai
Toluene	754	50.0	53.4	106.8	80 - 120	mai
Trichloroethene	754	50.0	50.8	101.6		mai
1,2,4-Trimethylbenzene	754	50.0	50.1	100.2		mai
1,3,5-Trimethylbenzene	754	50.0	51.6	103.2		mai
Vinyl Chloride	754	50.0	42.9	85.8	80 - 120	mai
Xylenes, Total	754	150	159	106 0		mai
Surr: Dibromofluoromethane	754	50.0	55.4	110.8	85 - 118	mai
Surr: Toluene-d8	754	50.0	50.9	101.8	91 - 109	mai
Surr: Bromofluorobenzene	754	50.0	49.6	99.2	85 - 113	mai

QUALITY CONTROL REPORT BLANKS

Ms. Jenny Johanson HYDRO-SEARCH/GEO TRANS 175 N. Corporate Drive Suite 100 Brookfield, WI 53045 08/30/1999

-

Job No: 99.07342 Account No: 39150

Page 5 of 7

Job Description: Sta-Rite Delavan Soil

	Prep	Run	Blank	Reporting	
Parameter	Batch	Batch	Result	Limit	Units
VOC - METHANOL - 8260B					
Benzene		754	<25	25	ug/kg
Bromobenzene		754	<25	25	ug/kg
Bromochloromethane		754	<25	25	ug/kg
Bromodichloromethane		754	<25	25	uq/kq
Bromoform		754	<25	25	uq/kq
Bromomethane		754	<100	100	ug/kg
n-Butylbenzene		754	<25	25	ua/ka
sec-Butylbenzene		754	<25	25	ug/kg
tert-Butylbenzene		754	<25	25	ug/kg
Carbon Tetrachloride		754	<25	25	uq/kq
Chlorobenzene		754	<25	25	ug/kg
Chlorodibromomethane		754	<25	25	ug/kg
Chloroethane		754	<35	35	uq/kq
Chloroform		754	<25	25	ug/kg
Chloromethane		754	<30	30	ug/kg
2-Chlorotoluene		754	<25	25	ug/kg
4-Chlorotoluene		754	<25	25	uq/kq
1,2-Dibromo-3-Chloropropane		754	<50	50	ug/kg
1,2-Dibromoethane (EDB)		754	<25	25	ug/kg
Dibromomethane		754	<25	25	ug/kg
1,2-Dichlorobenzene		754	<25	25	uq/kq
1,3-Dichlorobenzene		754	<25	25	ug/kg
1,4-Dichlorobenzene		754	<25	25	uq/kq
Dichlorodifluoromethane		754	<25	25	ug/kg
1,1-Dichloroethane		754	<25	25	ug/kg
1,2-Dichloroethane		754	<25	25	ug/kg
1,1-Dichloroethene		754	<25	25	ug/kg
cis-1,2-Dichloroethene		754	<25	25	ug/kg
trans-1,2-Dichloroethene		754	<25	25	uq/kq
1,2-Dichloropropane		754	<25	25	ug/kg
1,3-Dichloropropane		754	<25	25	ug/kg
2,2-Dichloropropane		754	<25	25	ug/kg
1,1-Dichloropropene		754	<25	25	ug/kg
cis-1,3-Dichloropropene		754	<25	25	ug/kg
trans-1,3-Dichloropropene		754	<25	25	ug/kg
Di-isopropyl ether		754	<25	25	ug/kg
Ethylbenzene		754	<25	25	ug/kg

Method blank results exceed control limits when results are higher than the highest of any of the following: 1 - The limit of detection; 2 - Five percent of the regulatory limit for that analyte; 3 - Five percent of the measured concentration in the sample. NR149.14 (3)d

602 COMMERCE DRIVE / WATERTOWN, WI 53094 / 920-261-1660 / FAX: 920-261-8120 WDNR NO. 128053530

QUALITY CONTROL REPORT BLANKS

08/30/1999

Job No: 99.07342 Account No: 39150

Page 6 of 7

Job Description: Sta-Rite Delavan Soil

Ms. Jenny Johanson HYDRO-SEARCH/GEO TRANS

175 N. Corporate Drive Suite 100 Brookfield, WI 53045

-

	Prep	Run	Blank	Reporti	ng
Parameter	Batch	Batch	Result	Limit	Units
Hexachlorobutadiene		754	<35	35	ua/ka
Isopropylbenzene		754	<25	25	ug/kg
p-Isopropyltoluene		754	<25	25	ug/kg
Methylene Chloride		754	250	50	ug/kg
Methyl-t-butyl ether		754	<25	25	ug/kg
Naphthalene		754	<25	25	ug/kg
n-Propylbenzene		754	<25	25	ug/kg
Styrene		754	<25	25	ug/kg
1,1,1,2-Tetrachloroethane		754	<25	25	ua/ka
1,1,2,2-Tetrachloroethane		754	<25	25	ug/kg
Tetrachloroethene		754	<25	25	uq/kq
Toluene		754	<25	25	uq/kq
1,2,3-Trichlorobenzene		754	<25	25	ua/ka
1,2,4-Trichlorobenzene		754	<25	25	uq/kq
1,1,1-Trichloroethane		754	<25	25	uq/kq
1,1,2-Trichloroethane		754	<25	25	uq/kq
Trichloroethene		754	<25	25	ug/kg
Trichlorofluoromethane		754	<25	25	uq/kq
1,2,3-Trichloropropane		754	<25	25	uq/kq
1,2,4-Trimethylbenzene		754	<25	25	ug/kg
1,3,5-Trimethylbenzene		754	<25	25	ug/kg
Vinyl Chloride		754	<25	25	ug/kg
Xylenes, Total		754	<35	35	uq/kq
Surr: Dibromofluoromethane		754	100.4	n/a	8
Surr: Toluene-d8		754	103.4	n/a	010
Surr: Bromofluorobenzene		754	94.6	n/a	\$

Method blank results exceed control limits when results are higher than the highest of any of the following: 1 - The limit of detection; 2 - Five percent of the regulatory limit for that analyte; 3 - Five percent of the measured concentration in the sample. NR149.14 (3)d

602 COMMERCE DRIVE / WATERTOWN, WI 53094 / 920-261-1660 / FAX: 920-261-8120 WUNR NO. 128053530

QUALITY CONTROL REPORT LABORATORY CONTROL STANDARD

08/30/1999

Job No: 99.07342 Account No: 39150

HYDRO-SEARCH/GEO TRANS 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

Ms. Jenny Johanson

Page 7 of 7

Job Description: Sta-Rite Delavan Soil

	Prep Batch	Run Batch	LCS		LCS	LCSD	LCS Percent	LCSD Percent	Control	Relative Percent
Analyte Number	Number	Number	Amount	Units	Result	Result	Recovery	Recovery	Limits	Difference
VOC - METHANOL - 8260B										
Benzene		754	50.0	ug/kg	51.1	47.9	102.2	95.8		6.5
Chlorobenzene		754	50.0	ug/kg	52.5	53.3	105.0	106.6		1.5
1,1-Dichloroethene		754	50.0	ug/kg	49.2	41.5	98.4	83.0		17.0
Ethylbenzene		754	50.0	ug/kg	51.7	50.5	103.4	101.0		2.3
Methyl-t-butyl ether		754	50.0	ug/kg	42.4	51.1	84.8	102.2		18.6
Toluene		754	50.D	ug/kg	41.7	48.7	83.4	97.4		15.5
Trichloroethene		754	50.0	ug/kg	50.6	60.8	101.2	121.6		18.3
1,2,4-Trimethylbenzene		754	50.0	ug/kg	51.5	52.6	103.0	105.2		2.1
1,3,5-Trimethylbenzene		754	50.0	ug/kg	53.0	53.3	106.0	106.6		0.6
Xylenes, Total		754	150	ug/kg	159	156	105.0	104.0		1.9
Surr: Dibromofluoromethane		754	50.0	8	51.3	57.3	102.6	114.6	85 - 118	11.0
Surr: Toluene-d8		754	50.0	£	49.4	48.4	98.8	96.8	91 - 109	2.0
Surr: Bromofluorobenzene		754	50.0	*	50.9	51.6	101,8	103.2	85 - 113	1.4

APR 1 1997

AC. REGIMERS ANALYTICAL AND QUALITY CONTROL REPORT

MARCE 130

PROJECT # NIZA

Ms. Jenny Johanson HYDRO-SEARCH/GEO TRANS 175 N. Corporate Drive Suite 100 Brookfield, WI '3045 04/12/1999

Job No: 99.02785

Page 1 of 11

Enclosed are the Analytical and Quality Control reports for the following samples submitted for analysis:

Sample	Sample Description	Date	Date
Number .		Taken	Received
345005	SB-16 N873	04/02/1999	04/05/1999
345006	SB-20 N873	04/02/1999	04/05/1999
345007	SB-26 N873	04/02/1999	04/05/1999

Soil results are reported on a dry weight basis. The above sample(s) may have a result flag shown on the report. The following are the result flag definitions:

- A = Analyzed/extracted past hold time
- C = Standard outs of control limits
- F = Sample filtered in lab
- H = Late eluting hydrocarbons present
- J = Estimated concentration
- M = Matrix interference
- Q = Result confirmed via re-analysis
- T = Does not match typical pattern
- X = Unidentified compound(s) present

- B = Blank is contaminated
- D = Diluted for analysis
- G = Received past hold time
- I = Improperly handled sample
- L = Common lab solvent and contaminant
- P = Improperly preserved sample
- S = Sediment present
- W = BOD re-set due to missed dilution
 - Z = Internal standard outside limits

Brian D. Detong

Organic Operations Manager

602 COMMERCE DRIVE / WATERTOWN, WI 53094 / 920-261-1660 / FAX: 920-261-8120 WDNR NO. 128053530

ANALYTICAL REPORT

TestAmerica

-

Reporting

Ms. Jenny Johanson HYDRO-SEARCH/GEO TRANS 175 N. Corporate Prive Suite 100 Brookfield, WI 53045 04/12/1999 Job No: 99.02785 Sample No: 345005 Account No: 39150 Page 2 of 11

JOB DESCRIPTION: Sta-rite N873 PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-16 N873 Rec'd at 4 degrees C

Date/Time Taken: 04/02/1999 10:25

Date Received: 04/05/1999

Pren/Run

Date

			Topor orn-		DIACO	TTOP/ Run
Parameter	Results	Units	Limit	Method	Analyzed	Batch
Solids, Total	91.5	s,	n/a	SW 5030	04/08/1999	2745
VOC - METHANOL - 8260B					,,	
Benzene	<27	ug/kg	25	SW 8260B	04/09/1999	696
Bromobenzene	<27	uq/kq	25	SW 8260B	04/09/1999	696
Bromochloromethane	<27	ug/kg	25	SW 8260B	04/09/1999	696
Bromodichloromethane	<27	ug/kg	25	SW 8260B	04/09/1999	696
Bromoform	<27	ug/kg	25	SW 8260B	04/09/1999	696
nomethane	<109	ug/kg	100	SW 8260B	04/09/1999	696
n Jutylbenzene	<27	ug/kq	25	SW 8260B	04/09/1999	696
sec-Butylbenzene	<27	uq/kq	25	SW 8260B	04/09/1999	696
tert-Butylbenzene	<27	ug/kg	25	SW 8260B	04/09/1999	696
Carbon Tetrachloride	<27	ug/kg	25	SW 8260B	04/09/1999	696
Chlorobenzene	<27	ug/kg	25	SW 8260B	04/09/1999	696
Chlorodibromomethane	<27	ug/kg	25	SW 8260B	04/09/1999	696
Chloroethane	<38	ug/kg	35	SW 8260B	04/09/1999	696
Chloroform	<27	ug/kg	25	SW 8260B	04/09/1999	696
Chloromethane	<33	ug/kg	30	SW 8260B	04/09/1999	696
2-Chlorotoluene	<27	uq/kq	25	SW 8260B	04/09/1999	696
4-Chlorotoluene	<27	ug/kg	25	SW 8260B	04/09/1999	696
1,2-Dibromo-3-Chloropropane	<55	ug/kg	50	SW 8260B	04/09/1999	696
1,2-Dibromoethane (EDB)	<27	ug/kg	25	SW 8260B	04/09/1999	696
Dibromomethane	<27	uq/kq	25	SW 8260B	04/09/1999	696
1,2-Dichlorobenzene	<27	ug/kg	25	SW 8260B	04/09/1999	696
1,3-Dichlorobenzene	<27	ug/kg	25	SW 8260B	04/09/1999	696
1,4-Dichlorobenzene	<27	ug/kg	25	SW 8260B	04/09/1999	696
Dichlorodifluoromethane	<27	ug/kg	25	SW 8260B	04/09/1999	696
1,1-Dichloroethane	<27	ug/kg	25	SW 8260B	04/09/1999	696
1,2-Dichloroethane	<27	ug/kg	25	SW 8260B	04/09/1999	696
1,1-Dichloroethene	<27	ug/kg	25	SW 8260B	04/09/1999	696
cis-1,2-Dichloroethene	<27	ug/kg	25	SW 8260B	04/09/1999	696
trans-1,2-Dichloroethene	<27	ug/kg	25	SW 8260B	04/09/1999	696
1,2-Dichloropropane	<27	ug/kg	25	SW 8260B	04/09/1999	696
1,3-Dichloropropane	<27	ug/kg	25	SW 8260B	04/09/1999	696
2,2-Dichloropropane	<27	ug/kg	25	SW 8260B	04/09/1999	696
1,1-Dichloropropene	<27	ug/kg	25	SW 8260B	04/09/1999	696
-1,3-Dichloropropene	<27	ug/kg	25	SW 8260B	04/09/1999	696
.ns-1,3-Dichloropropene	<27	ug/kg	25	SW 8260B	04/09/1999	696
Di-isopropyl ether	<27	ug/kg	25	SW 8260B	04/09/1999	696
Ethylbenzene	142	ug/kg	25	SW 8260B	04/09/1999	696

ANALYTICAL REPORT

TestAmerica

Ms. Jenny Johanson HYDRO-SEARCH/GEO TRANS 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

.

.

04/12/1999 Job No: 99.02785 Sample No: 345005 Account No: 39150 Page 3 of 11

JOB DESCRIPTION: Sta-rite N873 PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-16 N873 Rec'd at 4 degrees C

Date/Time Taken: 14/02/1999 10:25

Date Received: 04/05/1999

		Date	Prep/Run			
Parameter	Results	Units	Limit	Method	Analyzed	Batch
Hexachlorobutadiene	<38	ug/kg	35	SW 8260B	04/09/1999	696
Isopropylbenzene	<27	ug/kg	25	SW 8260B	04/09/1999	696
p-Isopropyltoluene	<27	ug/kg	25	SW 8260B	04/09/1999	696
Methylene Chloride	<55	ug/kg	50	SW 8260B	04/09/1999	696
Methyl-t-butyl ether	<27	ug/kg	25	SW 8260B	04/09/1999	696
Naphthalene	<27	uq/kq	25	SW 8260B	04/09/1999	696
n-Propylbenzene	<27	ug/kg	25	SW 8260B	04/09/1999	696
rene	<27	uq/kq	25	SW 8260B	04/09/1999	696
., ., 1, 2-Tetrachloroethane	<27	ug/kg	25	SW 8260B	04/09/1999	696
1,1,2,2-Tetrachloroethane	<27	uq/kq	25	SW 8260B	04/09/1999	696
Tetrachloroethene	6,990	uq/kq	25	SW 8260B	04/09/1999	696
Toluene	120	ug/kg	25	SW 8260B	04/09/1999	696
1,2,3-Trichlorobenzene	<27	ug/kg	25	SW 8260B	04/09/1999	696
1,2,4-Trichlorobenzene	<27	ug/kg	25	SW 8260B	04/09/1999	696
1,1,1-Trichloroethane	<27	ug/kg	25	SW 8260B	04/09/1999	696
1,1,2-Trichloroethane	<27	ug/kg	25	SW 8260B	04/09/1999	595
Trichloroethene	16,400	ug/kg	25	SW 8260B	04/09/1999	696
Trichlorofluoromethane	<27	ug/kg	25	SW 8260B	04/09/1999	696
1,2,3-Trichloropropane	<27	ug/kg	25	SW 8260B	04/09/1999	696
1,2,4-Trimethylbenzene	69	ug/kg	25	SW 8260B	04/09/1999	630 202
1,3,5-Trimethylbenzene	40	ug/kg	25	SW 9260B	04/09/1999	696
Vinyl Chloride	<27	ug/kg	25	SW 9260B	04/09/1999	696
Xylenes, Total	601	ug/kg	25	SW 8260B	04/09/1999	696
Surr: Dibromofluoromethane	90 0	*	л/а	SM 8260B	04/09/1999	696
Surr: Toluene-d8	103.0	e e	n/a	SM 87605	04/09/1999	696
Surr: Bromofluorobenzene	104.4	2	n/a	SW 8260B	04/09/1999	696 696

ANALYTICAL REPORT

Ms. Jenny Johanson HYDRO-SEARCH/GEO TRANS 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

04/12/1999 Job No: 99.02785 Sample No: 345006 Account No: 39150 Page 4 of 11

Reporting

JOB DESCRIPTION: Sta-rite N873 PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-20 N873 Rec'd at 4 degrees C

Date/Time Taken: 04/02/1999 10:41

Date Received: 04/05/1999

Drop / Bup

Date

						Date	FICP/Run
Parameter		Results	Units	Limit	Method	Analyzed	Batch
Solids, Total		92.1	alo	n/a	SW 5030	04/08/1999	2749
VOC - METHANOL - 8260B	I			,	0. 2030	01/00/1000	4/12
Benzene		< 54	uq/kq	25	SW 8260B	04/09/1999	696
Bromobenzene		<54	ug/kg	25	SW 8260B	04/09/1999	696
Bromochloromethane		<54	ug/kg	25	SW 8260B	04/09/1999	696
Bromodichloromethane		<54	ug/kg	25	SW 8260B	04/09/1999	696
Bromoform		<54	ug/kg	25	SW 8260B	04/09/1999	606
nomethane		<220	ug/kg	100	SW 8260B	04/09/1999	696
. Jutylbenzene		<54	ug/kg	25	SW 8260B	04/09/1999	696
sec-Butylbenzene .		< 54	ug/kg	25	SW 8260B	04/09/1999	696
tert-Butylbenzene		<54	ug/kg	25	SW B260B	04/09/1999	690
Carbon Tetrachloride		<54	ug/kg	25	SW 8260B	04/09/1999	696
Chlorobenzene		<54	ug/kg	25	SW 8260B	04/09/1999	696
Chlorodibromomethane		<54	ua/ka	25	SW 82608	04/09/1999	696
Chloroethane		<76	ug/kg	35	SW 8260B	04/09/1999	696
Chloroform		<54	ug/kg	25	SW 9260B	04/09/1999	696
Chloromethane		<66	ug/kg	30	SW 0260B	04/09/1999	696
2-Chlorotoluene		<54	$u\sigma/k\sigma$	25	SM 82608	04/09/1999	696
4-Chlorotoluene		<54	ug/kg	25	SW 9260B	04/09/1999	696
1,2-Dibromo-3-Chloropropane		<110	ug/kg	50	SM 8260B	04/09/1999	696
1,2-Dibromoethane (EDB)		<54	ug/kg	25	SW 0260B	04/09/1999	696
Dibromomethane		<54	ug/kg	25	SN 8260B	04/09/1999	696
1,2-Dichlorobenzene		<54	ug/kg	25	SW 0200B	04/09/1999	696
1,3-Dichlorobenzene		<54	ug/kg	25	SW 0260B	04/09/1999	696
1,4-Dichlorobenzene		<54	ug/kg	25	SW 8260B	04/09/1999	696
Dichlorodifluoromethane		< 54	ug/kg	25	SH OZOUB	04/09/1999	696
1,1-Dichloroethane		< 54	ug/kg	25	SW 0260B	04/09/1999	696
1,2-Dichloroethane		<54	ug/kg	25	SW 8260B	04/09/1999	696
1,1-Dichloroethene		<54	ua/ka	25	SW BOGOD	04/09/1999	696
cis-1,2-Dichloroethene		<54	ug/kg	25	CW ODEAD	04/09/1999	696
trans-1,2-Dichloroethene		<54	ug/kg	25	SW 0260B	04/09/1999	696
1,2-Dichloropropane		<54	ug/ka	25	SM 8260B	04/09/1999	696
1,3-Dichloropropane		<54	ug/kg	25	SW 8260B	04/09/1999	696
2,2-Dichloropropane		<54	ug/kg	25	SW 0260B	04/09/1999	696
1,1-Dichloropropene		<54	ug/kg	25	SW 0260B	04/09/1999	696
-1,3-Dichloropropene		<54	ug/kg	25	SW 83600	04/09/1999	696
.ns-1,3-Dichloropropene		<54	ug/kg	25	SH GZOVB	04/09/1999	696
Di-isopropyl ether		< 54	ug/kg	25	CW BOCOD	04/09/1999	696
Ethylbenzene		< 54	ug/kg	25	SW 626UB	04/09/1999	696
-		~~ ~	49/ K 9	20	SW 8260B	04/09/1999	696

ANALYTICAL REPORT

Test/America

Ms. Jenny Johanson HYDRO-SEARCH/GEO TRANS 175 N. Corporate Drive Suite 100 Brookfield, WI 53045 04/12/1999 Job No: 99.02785 Sample No: 345006 Account No: 39150 Page 5 of 11

JOB DESCRIPTION: Sta-rite N873 PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-20 N873 Rec'd at 4 degrees C

Date/Time Taken: 04/02/1999 10:41

Date Received: 04/05/1999

-

Reporting					Frep/Run
Results	Units	Limit	Method	Analyzed	Batch
<76	ug/kg	35	SW 8260B	04/09/1999	696
<54	uq/kq	25	SW 8260B	04/09/1999	696
<54	ug/kg	25	SW 8260B	04/09/1999	696
<110	ug/kg	50	SW 8260B	04/09/1999	696
<54	ug/kg	25	SW 8260B	04/09/1999	696
<54	uq/kq	25	SW 8260B	04/09/1999	696
<54	uq/kq	25	SW 8260B	04/09/1999	696
<54	ua/ka	25	SW 8260B	04/09/1999	696
<54	ug/kg	25	SW 8260B	04/09/1999	696
<54	uq/kq	25	SW 8260B	04/09/1999	696
1,230	uq/kq	25	SW 8260B	04/09/1999	696
<54	uq/kq	25	SW 8260B	04/09/1999	696
<54	ug/kg	25	SW 8260B	04/09/1999	696
<54	ug/kg	25	SW 8260B	04/09/1999	696
<54	ug/kg	25	SW 8260B	04/09/1999	696
<54	ug/kg	25	SW 8260B	04/09/1999	696
543	ug/kg	25	SW 8260B	04/09/1999	696
:54	ug/kg	25	SW 8260B	04/09/1999	696
<54	ug/kg	25	SW 8260B	04/09/1999	696
:54	ug/kg	25	SW 8260B	04/09/1999	696
54	ນຕ/kσ	25	SW 8260B	04/09/1999	696
:54	ua/ka	25	SW 8260B	04/09/1999	696
.76	ug/kg	35	SW 92609	04/09/1999	636
9.4	8	n/a	SW 8260B	04/09/1999	696
02.4	٠ ۶	n/a	SW 92600	04/09/1999	696
10.0	8	n/a	SW 8260B	04/09/1999	696 696
	Results <76 <54 <54 <54 <54 <54 <54 <54 <54 <54 <54	Results Units <76	Results Units Reporting Limit <76	Results Units Limit Method <76	ResultsUnitsLimitMethodDate Analyzed<76

Test/Merica

ANALYTICAL REPORT

-

Ms. Jenny Johanson HYDRO-SEARCH/GEO TRANS 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

04/12/1999 Job No: 99.02785 Sample No: 345007 Account No: 39150 Page 6 of 11

JOB DESCRIPTION: Sta-rite N873 PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-26 N873 Rec'd at 4 degrees C

Date/Time Taken: 04/02/1999 11:00

Date Received: 04/05/1999

_			Reporting	Date	Prep/Run	
Parameter	Results	Units	Limit	Method	Analyzed	Batch
Solids, Total	91.7	왕	n/a	SW 5030	04/08/1999	2749
VOC - METHANOL - 8260B			,	0. 0000	04/00/1999	2149
Benzene	<27	ug/kg	25	SW 8260B	01/00/1000	606
Bromobenzene	<27	ug/kg	25	SW 8260B	04/09/1999	696
Bromochloromethane	<27	ug/kg	25	SW 8260B	04/09/1999	696
Bromodichloromethane	<27	ug/kg	25	SW 8260B	04/09/1999	696
Bromoform	<27	uq/kq	25	SW 8260B	04/09/1999	696
nomethane	<109	ug/kg	100	SW 8260B	04/09/1999	696
. atylbenzene	<27	ug/kg	25	SW 9260B	04/09/1999	696
sec-Butylbenzene	1,850	ug/kg	25	SW 82600	04/09/1999	696
tert-Butylbenzene	<27	ug/kg	25	SW 9260B	04/09/1999	696
Carbon Tetrachloride	<27	ug/kg	25	SW 8260B	04/09/1999	696
Chlorobenzene	<27	ug/kg	25	SW 0260B	04/09/1999	696
Chlorodibromomethane	<27	ug/kg	25	SW 8260B	04/09/1999	696
Chloroethane	<38	ug/kg	35	SW 8260B	04/09/1999	696
Chloroform	<27	ug/kg	25	SW 8260B	04/09/1999	696
Chloromethane	<33	ug/kg	30	SW BOCOD	04/09/1999	696
2-Chlorotoluene	<27	ug/kg	25		04/09/1999	696
4-Chlorotoluene	<27	ug/kg	25	SW 0260B	04/09/1999	696
1,2-Dibromo-3-Chloropropane	< 55	ug/kg	50	SW BOCOD	04/09/1999	696
1,2-Dibromoethane (EDB)	<27	ug/kg	25	SW 8260B	04/09/1999	696
Dibromomethane	<27	ug/kg	25	SW 8260B	04/09/1999	696
1,2-Dichlorobenzene	<27	ug/kg	20	SW 8260B	04/09/1999	696
1,3-Dichlorobenzene	<27	ug/kg	25	SW 8260B	04/09/1999	696
1,4-Dichlorobenzene	<27	ug/kg	25	SW 8260B	04/09/1999	696
Dichlorodifluoromethane	<27	ug/kg	25	SW 8260B	04/09/1999	696
1,1-Dichloroethane	<27	ug/kg	25	SW 8260B	04/09/1999	696
1,2-Dichloroethane	<27	ug/kg	25	SW 8260B	04/09/1999	696
1,1-Dichloroethene	<27	ug/kg	20	SW 8260B	04/09/1999	696
cis-1,2-Dichloroethene	<27	ug/kg	20	SW 8260B	04/09/1999	696
trans-1,2-Dichloroethene	<27	ug/kg	25	SW 8260B	04/09/1999	696
1,2-Dichloropropane	<27	ug/kg	20	SW 8260B	04/09/1999	696
1,3-Dichloropropane	<27	ug/kg ug/kg	25	SW 8260B	04/09/1999	696
2,2-Dichloropropane	<27	ug/kg	25	SW 8260B	04/09/1999	696
1,1-Dichloropropene	<27	ug/kg	25	SW 8260B	04/09/1999	696
-1,3-Dichloropropene	<27	ug/kg ug/kg	25	SW 8260B	04/09/1999	696
us-1,3-Dichloropropene	<27	ug/ng ug/kg	20 25	SW 8260B	04/09/1999	696
Di-isopropyl ether	~27	ug/xg ug/kg	25	SW 8260B	04/09/1999	696
Ethylbenzene	3 160	uy/ky vg/kg	25	SW 8260B	04/09/1999	696
	3,100	ug/kg	25	SW 8260B	04/09/1999	696

ANALYTICAL REPORT

Ms. Jenny Johanson HYDRO-SEARCH/GEO TRANS 175 N. Corporate Drive Suite 100 Brookfield, WI 53045 04/12/1999 Job No: 99.02785 Sample No: 345007 Account No: 39150 Page 7 of 11

JOB DESCRIPTION: Sta-rite N873 PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-26 N873 Rec'd at 4 degrees C

-

Date/Time Taken: 04/02/1999 11:00

Date Received: 04/05/1999

Parameter	Results	Units	Reporting Limit	Method	Date Analyzed	Prep/Run 3atch
Hexachlorobutadiene	<38	ug/kg	35	SW 8260B	04/09/1999	696
Isopropylbenzene	927	uq/kq	25	SW 8260B	04/09/1999	696
p-Isopropyltoluene	3,600	uq/kq	25	SW 8260B	04/09/1999	696
Methylene Chloride	<55	uq/kq	50	SW 8260B	04/09/1999	696
Methyl-t-butyl ether	<27	uq/kq	25	SW 8260B	04/09/1999	696
Naphthalene	676	ua/ka	25	SW 8260B	04/09/1999	696
n-Propylbenzene	1,200	ug/kg	25	SW 8260B	04/09/1999	696
rene	<27	ug/kg	25	SW 8260B	04/09/1999	696
., ., 1, 2-Tetrachloroethane	<27	ug/kg	25	SW 8260B	04/09/1999	696
1,1,2,2-Tetrachloroethane	<27	ug/kg	25	SW 8260B	04/09/1999	696
Tetrachloroethene	48,000	ug/kg	25	SW 8260B	04/09/1999	690
Toluene	<27	ug/kg	25	SW 8260B	04/09/1999	090 202
1,2,3-Trichlorobenzene	<27	ug/kg	25	SW 8260B	04/09/1999	696
1,2,4-Trichlorobenzene	<27	ug/kg	25	SW 8260B	04/09/1999	696
1,1,1-Trichloroethane	<27	ug/kg	25	SW 8260B	04/09/1999	696
1,1,2-Trichloroethane	<27	ug/kg	25	SW 9260D	04/09/1999	696
Trichloroethene	2,620	ug/kg	25	SH 8260B	04/09/1999	636
Trichlorofluoromethane	<27	ug/kg	25	SW 8260B	04/09/1999	696
1,2,3-Trichloropropane	<27	ug/kg	25	SW 9260B	04/09/1999	696
1,2,4-Trimethylbenzene	7.520	ug/kg	25	SW 0200B	04/09/1999	696
1,3,5-Trimethylbenzene	3,270	ug/kg	25	SW 6260B	04/09/1999	696
Vinyl Chloride	<27	ug/kg	25	SW 8260B	04/09/1999	696
Xylenes, Total	9 050	ug/kg ug/kg	23	SW 8260B	04/09/1999	696
Surr: Dibromofluoromethane	94 4	ug/ng s		SW 826UB	04/09/1999	696
Surr: Toluene-d8	105 2	9.	11/a n/a	SW 8260B	04/09/1999	696
Surr: Bromofluorobenzene	45 g	о 9-	п/а э/э	SW 8260B	04/09/1999	696
	23.0	0	u/a	SW 8260B	04/09/1999	696

QUALITY CONTROL REPORT CONTINUING CALIBRATION VERIFICATION

04/12/1999

Job No: 99.02785 Account No: 39150

Page 8 of 11

Ms. Jenny Johanson HYDRO-SEARCH/GEO TRANS 175 N. Corporate Drive Suite 100 Brookfield, WI 53045

.

-

Job Description: Sta-rite N873

Parameter	Run Batch	True Value	Observed Value	Percent Recovery	Control Limíts	Analyst
VOC - METHANOL - 8260B						
Benzene	696	50.0	52.9	105 8		moi
Bromoform	696	50.0	46.6	93 2		mai
Chlorobenzene	696	50.0	50.7	101 4		mai
Chloroform	696	50.0	56.4	112 8	80 - 120	mai
Chloromethane	696	50.0	50.9	101 8	00 - 120	mai
1,1-Dichloroethane	696	50.0	55.5	111 0		mai
1,1-Dichloroethene	696	50.0	46.5	93 0	80 - 120	mai
1,2-Dichloropropane	696	50.0	51.7	103 4	80 - 120	mai
Di-isopropyl ether	696	50.0	56.4	112 8	00 - 120	ma⊥ moi
Ethylbenzene	696	50.0	50.1	100 2	80 - 120	mai
Methyl-t-butyl ether	696	50.0	53.3	106 6	00 - 120	mai
1,1,2,2-Tetrachloroethane	696	50.0	31.6	63 2		mai
Toluene	696	50.0	52.4	104 8	80 - 120	mai
Trichloroethene	696	50.0	54.3	108 6	00 - 120	mai
1,2,4-Trimethylbenzene	696	50.0	47.5	95.0		mai
1,3,5-Trimethylbenzene	696	50.0	47.5	95 0		mai
Vinyl Chloride	696	50.0	49.8	99.6	80 100	mai
Xylenes, Total	696	150	154	102 7	50 - 120	mai
Surr: Dibromofluoromethane	696	50.0	49.9	99 8	85 - 110	mai
Surr: Toluene-d8	696	50.0	53.3	106 6	91 - 100	mai
Surr: Bromofluorobenzene	696	50.0	49.6	99.2	85 - 113	mai

QUALITY CONTROL REPORT BLANKS

Ms. Jenny Johanson HYDRO-SEARCH/GEO TRANS 175 N. Corporate Drive Suite 100 Brookfield, WI 53045 04/12/1999

Job No: 99.02785 Account No: 39150

Page 9 of 11

Job Description: Sta-rite N873

•	Prep	Run	Blank	Reporti	ng
Parameter	Batch	Batch	Result	Limit	Units
VOC - METHANOL - 8260B					
Benzene		696	-25	25	
Bromobenzene		696	<25	25	ug/kg
Bromochloromethane		696	<25	25	ug/kg
Bromodichloromethane		696	<25	25	ug/kg
Bromoform		696	<20	25	ug/kg
Bromomethane		696	<20	25	ug/kg
n-Butylbenzene		696	<100	100	ug/kg
sec-Butvlbenzene		696	<25	25	ug/kg
tert-Butvlbenzene		696	<25	45	ug/kg
Carbon Tetrachloride		696	<25	25	ug/kg
Chlorobenzene		696	< <u>45</u>	25	ug/kg
Chlorodibromomethane		696	<25	25	ug/kg
Chloroethane		696	<25	25	ug/kg
Chloroform		696	<35	35	ug/kg
Chloromethane		696	<25	25	ug/kg
2-Chlorotoluene		696	<30	30	ug/kg
4-Chlorotoluene		696	<25	25	ug/kg
1.2-Dibromo-3-Chloropropane		696	<25	25	ug/kg
1.2-Dibromoethane (FDR)		696	<50	50	ug/kg
Dibromomethane		696	<25	25	ug/kg
1.2-Dichlorobenzene		696	<25	25	ug/kg
1.3-Dichlorobenzene		696	<25	25	ug/kg
1.4-Dichlorobenzene		696	<25	25	ug/kg
Dichlorodifluoromethene		696	<25	25	ug/kg
1.1-Dichloroethane		696	<25	25	ug/kg
1.2-Dichloroethane		696	<25	25	ug/kg
1.1-Dichloroethene		696	<25	25	ug/kg
cis-1.2-Dichloroethene		696	<25	25	ug/kg
trans-1.2-Dichloroethene		696	<25	25	ug/kg
1.2-Dichloropropapa		696	<25	25	ug/kg
1.3-Dichloropropane		696	<25	25	ug/kg
2.2-Dichloropropane		696	<25	25	ug/kg
1 1-Dichloropropane		696	<25	25	ug/kg
Cisal 3-Dichloropropene		696	<25	25	ug/kg
transel 3-Dichloropropene		696	<25	25	ug/kg
Di-isopropul ether		696	<25	25	ug/kg
Ethylbenzene		696	<25	25	ug/kg
a city 10 cit2 cite		696	<25	25	ug/kg

Method blank results exceed control limits when results are higher than the highest of any of the following: 1 - The limit of detection; 2 - Five percent of the regulatory limit for that analyte; 3 - Five percent of the measured concentration in the sample. NR149.14 (3)d

602 COMMERCE DRIVE / WATERTOWN, WI 53094 / 920-261-1660 / FAX: 920-261-8120 WDNR NO. 128053530

QUALITY CONTROL REPORT BLANKS

Ms. Jenny Johanson HYDRO-SEARCH/GEO TRANS 175 N. Corporate Drive Suite 100 Brookfield, WI 53045 04/12/1999

Job No: 99.02785 Account No: 39150

-

Page 10 of 11

Job Description: Sta-rite N873

	Prep	Run	Blank	Reporti	ng
Parameter	Batch	Batch	Result	Limit	Units
Hexachlorobutadiene		696	<35	35	ug/kg
Isopropylbenzene		696	<25	25	ug/kg
p-Isopropyltoluene		696	<25	25	ug/kg
Methylene Chloride		696	< 50	50	ug/kg ug/kg
Methyl-t-butyl ether		696	<25	25	ug/kg
Naphthalene		696	<25	25	ug/kg
n-Propylbenzene		696	<25	25	ug/kg
Styrene		696	<25	25	ug/kg
1,1,1,2-Tetrachloroethane		696	<25	25	ug/kg
1,1,2,2-Tetrachloroethane		696	<25	25	ug/kg
Tetrachloroethene		696	<25	25	ug/kg
Toluene		696	<25	25	ug/kg
1,2,3-Trichlorobenzene		696	<25	25	ug/kg
1,2,4-Trichlorobenzene		696	<25	25	ug/kg
1,1,1-Trichloroethane		696	<25	25	ug/kg
1,1,2-Trichloroethane		6 96	<25	25	ug/kg
Trichloroethene.		696	<25	25	ug/kg
Trichlorofluoromethane		696	<25	25	ug/kg
1,2,3-Trichloropropane		696	<25	25	ug/kg
1,2,4-Trimethylbenzene		696	<25	25	ug/kg
1,3,5-Trimethylbenzene		696	<25	25	$\frac{ug}{kg}$
Vinyl Chloride		696	<25	25	ug/kg
Xylenes, Total		696	<35	35	ug/kg
Surr: Dibromofluoromethane		696	93.8	n/a	*
Surr: Toluene-d8		696	103.0	n/a	÷
Surr: Bromofluorobenzene		696	93.0	n/a	2

Method blank results exceed control limits when results are higher than the highest of any of the following: 1 - The limit of detection; 2 - Five percent of the regulatory limit for that analyte; 3 - Five percent of the measured concentration in the sample. NR149.14 (3)d

Test/Merica

-

INCORPORATE

QUALITY CONTROL REPORT LABORATORY CONTROL STANDARD

Ms. Jenny Johanson HYDRO-SEARCH/GEO TRANS 175 N. Corporate Drive Suite 100 Brookfield, WI 53045 04/12/1999

Job No: 99.02785 Account No: 39150

Page 11 of 11

Job Description: Sta-rite N873

Analyte J	Prep Batch Number	Run Batch Number	LCS Amount	Units	LCS Result	LCSD Result	LCS Percent Recovery	LCSD Percent Recovery	Control Limits	Relative Percent Difference
VOC - METHANOL - 8260B										
Benzene		696	50.0	ug/kg	48.9	44.7	97 B	90 /		
Chlorobenzene		696	50.0	uq/kq	52.2	47 5	104 4	07.4 05 A		9.0
1,1-Dichloroethene		696	50.0	uq/kq	42.2	41.0	84 4	93.0 93.0		7.3
Ethylbenzene		696	50.0	ua/ka	51.6	45 0	103 3	04.0		2.9
Methyl-t-butyl ether		696	50.0	uq/kq	53.5	51.8	202.2	30.0		13.6
Toluene	4	696	50.0	uq/ka	51 3	44 1	102 6	203.0		3.2
Trichloroethene		596	50.0	ug/kg	53 7	52 4	102.0	104 0		15.0
1,2,4-Trimethylbenzene		596	50.0	uor/kor	53.0	47 6	106.0	104.8		2.5
1,3,5-Trimethylbenzene		596	50.0	ug/kg	54 2	49.2	100.0	95.4 06.5		10.6
Xylenes, Total	6	596	150	ua/ka	159	120	108.4	96.6		11.4
Surr: Dibromofluoromethane	e	596	50.0	29,	57 8	199	105.0	92.7		13.3
Surr: Toluene-d8	f	96	50.0	*	53 A	50.0	105.6	101.6	85 - 118	3.9
Surr: Bromofluorobenzene	e	596	50.0	e e	50.2	49.2	106.8	101.Q 98.4	91 - 109 85 - 113	5.6 1.9

- - -	CHAIN OF CUSTODY CORD	99,02185 T Jahraca
TestAmerica	ADDRESS 175 Calpicate Di, Sui le los Brockfixld we 530415	REPORT TO:
0 3 1 4 8 0 9 8 1	PHONE 417-792-128 - FAX 117-792-1510 PROJECT NAME/LOCATION STA- 21TE / DELAVAN	INVOICE TO:
	PROJECT NUMBER 14 5 7 3 PROJECT MANAGER JEANY JUNGADUA	auote no.
SAMPLED BY CONNUL		To assist us in selecting the proper method
(PRINT NAME) SIG	MATURE	Is this work being conducted for regulatory ves No
(PRINT NAME) SIGN	iNATURE # and Type of Containers	Is this work being conducted for regulatory enforcement action? Yes No
	<u>ج ٦ (</u> ٤. ٢ ٩ ٩ ٩	Which regulations apply: RCRA NPDES Wastewater UST Drnking Water
DATE TIME SAMPLE DODESCRIPTION	МАТР 6ПА 6СОМ 740 740 740 740 740 740 740 740 740 740	Other None
4-2 1025 53-16		COMMENTO
4-2 1041 5g - 20		
4-2 1100 53-26		
4.2 1023 DPY WEICHT S3 1		
4-2 1044 227 WEIGHT 53-2		
4-2 1104 DEY WEIGHT 53-7	26 1 1	
CONDITION OF SAMPLE: BOTTLES INTACT? YES FIELD FILTERED? YES	S / NO COC SEALS PRESENT AND INTACT? YES / NO VOLATILES FREE OF HEADSPACE? YES / NO	TEMPERATURE UPON RECEIPT:
SAMPLE REMAINDER DISPOSAL: RETURN SAMP	PLE REMAINDER TO CLIENT VIA B TO DISPOSE OF ALL SAMPLE REMAINDERS DATE	
RELINCUSHED F	RECEIVED BY. 11/5/99 RELINQUISHED BY. DATE	TIME RECEIVED FOR DAB BY 415/99
METHOD OF/SHIPMENT	REMARKS:	Shuperborn
	PT 1. OBIGINAL WHITE PT 2. PROJECT MAMAGER, VELLOW PT 2. CLISTOMED CODV. DNN	111111 p

APPENDIX C

SOIL VAPOR EXTRACTION SYSTEM ANALYTICAL RESULTS

GeoTrans, Inc.

1 262 728 7213 P.11/13

__DEC 06. 2000

NOV 29. 2000

327373

LABORATORY ANALYSIS REPORT

PAGE NUMBER _____ OF 3____

REPORT DATE

SAMPLES REC'D

REQUEST NUMBER

Kemper Drive Long Grove, IL 60049-0075 Phone (847) 320-2438 Fax (847) 320-4331 Toll Free (888) 576-7522

> JON RAYMOND TO: STA-RITE INDUSTRIES 293 S. WRIGHT STREET

SAMPLE	AIR VOLUME / ANALYSIS REQUESTED		Med Res	DIA TYPE / Solts	-
18.18 Liters			Anaso	orb CSC Tube	
	TRICHLOROETHYLENE	microg Front 16	rams Back < 5.3	PF Front 0.16	M Back < 0.054
	(DE = 99%) 1,1,1 TRICHLOROETHANE (DE = 99%)	6.4	< 5.3	0.065	< 0.053
	PERCHLOROETHYLENE (DE = 98%)	< 6.9	< 6.9	< 0.056	< 0.056
	REST AS HEXANE (DE = 100%)	7.4	< 5.0	0.12	< 0.078

COMMENTS:

IF PRESENT, DE MEANS DESORPTION EFFICIENCY

Respectfully submitted,

When When 10

'illiam M. Walsh, CIH, ROH lanager of Operations Environmental Sciences Laboratory

ACCREDITED BY THE AMERICAN INDUSTRIAL HYGIENE ASSOCIATION

.

8

MAY-25-2001 09:37

STA-RITE IND.

Kemper Drive Long Grove, IL 60049-0075 Phone (847) 320-2488 Fax (847) 320-4331 Toll Free (888) 576-7522

> TO: JON RAYMOND STA-RITE INDUSTRIES 293 S. WRIGHT STREET DELAVAN WI 53115 USA

1 262 728 7213 P.10/13 LABORATORY ANALYSIS REPORT

REPORT DATE	<u></u>
SAMPLES REC'D	NOV 29, 2000
REQUEST NUMBER	
PAGE NUMBER	2 OF 3

٦

SAMPLE	AIR VOLUME / ANALYSIS REQUESTED	MEDIA TYPE / RESULTS
#2	TRICHLOROETHYLENE (DE = 99%) (BLANK)	Anasorb CSC Tube micrograms Front Back < 5.3 < 5.3 NONE DETECTED
	1,1,1 TRICHLOROETHANE (DE = 99%)(BLANK)	< 5.3 < 5.3 NONE DETECTED
	PERCHLOROETHYLÊNE (DE = 88%)(BLANK)	< 6.9 < 6.9 NONE DETECTED
	REST AS HEXANE (DE = 100%)(BLANK)	< 5.0 < 5.0 NONE DETECTED

COMMENTS:

IF PRESENT, DE MEANS DESORPTION EFFICIENCY

Respectfully submitted,

When We 12

William M. Walsh, CIH, ROH Manager of Operations Environmental Sciences Laboratory

MAY-25-2001 09:37 STA-RITE IND.

Kemper Drive ong Grove, IL 60049-0075 Phone (847) 320-2488 Fax (847) 320-4331 Toll Free (888) 576-7522

1 262 728 7213 P.09/13 LABORATORY ANALYSIS REPORT

REPORT DATE	DEC 06, 2000
SAMPLES REC'D	NOV 29, 2000
REQUEST NUMBER	327373
PAGE NUMBER	<u></u>

JON RAYMOND TO: STA-RITE INDUSTRIES 293 S. WRIGHT STREET DELAVAN WI USA

53115

LLD *	ANALYSIS REQUESTED	methodology	сля #
5.3	1,1,1 TRICHLOROETHANE CT2	OSHA 14 GAS CHROMATOGRAPHY	71-55-6
4.8	PERCHLOROETHYLENE CT2	osha 07 Gas Chromatography	127-18-4
4	REST AS HEXANE CT2	osha 07 Gas Chromatography	110-54-3
4.2	TRICHLOROETHYLENE CT2	OSHA 07 GAS CHROMATOGRAPHY	79-01-6

COMMENTS:

CONCENTRATION CALCULATED USING AIR VOLUMES SUPPLIED BY CLIENT * LLD IS THE REPORTING LIMIT IN MICROGRAMS

Respectfully submitted,

With lut 10

illiam M. Walsh, CIH, ROH Manager of Operations Environmental Sciences Laboratory

1 Kemper Drive = Long Grove, IL 60049-0075 + (847) 320-2488

Toli Free (888) 576-7522

LABORATORY, K-2

FAX (847) 320-4331 www.natisco.com

ł

1 262 728 7213 P.11/18

NATLSCO

No. 327373

ASAP SERVICE REQUESTED Advanced Notification Required

Additional Charges Approved _

300

10- Freetman lame. Enfiner Tide _ ٢. スシマム ZLI) Firm 571--)/ Address 1) 216 ෙ 4 Phone No. රාත් 721 ----7-2 FAX NO. OKO -₹ FIELD SAMPLING ANALYZE FOR ---LAB # COMMENTS NUMBER VOLUME* Kot LARP. Inic 012 -lorco 12m i m ling 10 Ĺ 2hile 10.00 s en a c 1. د. ت نام resa∰anserato 1000 100 म १९४० हु . . z vietak a secondar 114 1.45 × : *Sampling times for diffusion monitors. Billing Information/Comments: DATE SAMPLES TAKEN DATE RECEIVED BY LAB

For Internal Use Only **B**# F#

DATE COMPLETED

MAY-25-2001 09:37

STA-RITE IND.

3 hours

LABORATORY, K-2

¹ Kemper Drive .ong Grove, IL 60049-0075 Phone (\$47) 320-2488 Fax (847) 320-4331 Toll Free (888) \$76-7522

> TO: JON RAYMOND STA-RITE INDUSTRIES 293 S. WRIGHT STREET DELAVAN WI 53115 USA

1 262 728 7213 P.08/13

LABORATORY ANALYSIS REPORT

REPORT DATE	<u>OCT 30, 2000</u>
SAMPLES REC'D	OCT 23, 2000
REQUEST NUMBER	327372
PAGE NUMBER	LOF3

Sample	AIR VOLUME / ANALYSIS REQUESTED 33.33 Liters	Media type / Results			
1		Anasorb CSC Tube			
	TRICHLOROETHYLENE (DE = 99%)	Front Back Front Back 15 < 4.8 0.085 < 0.027			
	1,1,1 TRICHLOROETHANE (DE = 99%)	10 < 5.6 0.056 < 0.031			
	PERCHLOROETHYLENE (DE = 88%)	< 7.3 < 7.3 < 0.032 < 0.032			
	REST AS HEXANE ($DE = 100$ %)	9.3 < 5.3 0.079 < 0.045			
1					

COMMENTS:

IF PRESENT, DE MEANS DESORPTION EFFICIENCY

Respectfully submitted,

William M. Walsh Jasm

lliam M. Walsh, CIH, ROH ager of Operations Environmental Sciences Laboratory

STA-RITE IND.

- .

1 Kemper Drive Jong Grove, IL 60049-0075 Phone (847) 320-2488 Fax (847) 320-4331 Toll Free (888) 576-7522

> TO: JON RAYMOND STA-RITE INDUSTRIES 293 S. WRIGHT STREET DELAVAN WI 53115 USA

1 262 728 7213 P.12/13 LABORATORY ANALYSIS REPORT

REPORT DATE	<u> </u>
SAMPLES REC'D	OCT 23, 2000
REQUEST NUMBER	.327372
PAGE NUMBER	7 OF 3

Sample	AIR VOLUME / ANALYSIS REQUESTED	MEDIA TYPE / RESULTS		
2	TRICHLOROETHYLENE (DE = 99%)(BLANK) 1,1,1 TRICHLOROETHANE (DE = 99%)(BLANK) PERCHLOROETHYLENE (DE = 88%)(BLANK) REST AS HEXANE (DE = 100%)(BLANK)	Anasorb CSC Tube micrograms < 4.8 < 4.8 NONE DETECTED < 5.6 < 5.6 NONE DETECTED < 7.3 < 7.3 NONE DETECTED < 5.3 < 5.3 SUETRACTED		

COMMENTS:

IF PRESENT, DE MEANS DESORPTION EFFICIENCY

Respectfully submitted,

illiam M. Walsh Josm

william M. Walsh, CIH, ROH nager of Operations invironmental Sciences Laboratory

STA-RITE IND.

(emper Drive Long Grove, IL 60049-0075 Phone (847) 320-2488 Fax (847) 320-4331 Toll Free (888) 576-7522

> TO: JON RAYMOND STA-RITE INDUSTRIES 293 S. WRIGHT STREET DELAVAN WI 53115 USA

1 262 728 7213 P.13/13 LABORATORY ANALYSIS REPORT

REPORT DATE	<u> </u>
SAMPLES REC'D	OCT 23. 2000
BEAUBER MINER	327372
REQUEST NUMBER	<u></u>
PAGE NUMBER	<u>3 OF 3</u>

LLD *	ANALYSIS REQUESTED	Methodology	сле #
5.3	1,1,1 TRICHLOROETHANE CT2	osha 14 Gas Chromatografhy	71-55-6
4.6	PERCHLOROETHYLENE CT2	OSHA 07 GAS CHROMATOGRAPHY	127-18-4
4	rest as mexane CT2	OSHA 07 GAS CHROMATOGRAPHY	110-54-3
. 2	TRICHLOROETHYLENE CT2	OSHA 07 GAS CHROMATOGRAPHY	79-01-6

COMMENTS:

CONCENTRATION CALCULATED USING AIR VOLUMES SUPPLIED BY CLIENT * LLD IS THE REPORTING LIMIT IN MICROGRAMS

Respectfully submitted,

lliam M. Walsh, CIH, ROH Manager of Operations Environmental Sciences Laboratory

REPORT DATE

LABORATORY, K-2

. Kemper Drive Long Grove, IL 60049-0075 Phone (847) 320-2488 Fax (847) 320-4331 Toll Free (888) 576-7522

USA

TO: JON RAYMOND STA-RITE INDUSTRIES 293 S. WRIGHT STREET DELAVAN
 SAMPLES REC'D
 SEP 28, 2000

 REQUEST NUMBER
 327370

 PAGE NUMBER
 1 OF 3

<u>OCT 03, 2000</u>

SAMPLE	AIR VOLUME / ANALYSIS REQUESTED		MEDIA TYPE / RESULTS				
#1	18.18 Liters		Anasorb CSC Tube				
		microq	rams	PP	M		
	TRICHLOROETHYLENE (DE = 99%)	6.6	< 4.7	0.068	< 0.048		
	S-TETRACHLOROETHANE (DE = 67%)	< 9.0	< 9.0	< 0.072	< 0.072		
	1,1,1 TRICHLOROETHANE (DE = 99%)	7.1	< 5.3	0.072	< 0.053		
	REST AS HEXANE (DE = 100%)	5.5	< 4.4	0.086	< 0.369		

53115

WI

COMMENTS:

IF PRESENT, DE MEANS DESORPTION EFFICIENCY

Respectfully submitted,

william m. Walsh Josm

/illiam M. Walsh, CIH, ROH
Manager of Operations
Environmental Sciences Laboratory

LABORATORY, K-2

1 Kemper Drive Long Grove, IL 60049-0075 Phone (847) 320-2488 Fax (847) 320-4331 Toll Free (888) 576-7522

TO: JON RAYMOND

STA-RITE INDUSTRIES 293 S. WRIGHT STREET DELAVAN USA

53115

WI

LABORATORY ANALYSIS REPORT

REPORT DATE	<u>OCT 03. 2000</u>
SAMPLES REC'D	<u>SEP 28, 2000</u>
REQUEST NUMBER	327370
PAGE NUMBER2	OF 3

SAMPLE	AIR VOLUME / ANALYSIS REQUESTED	MEDIA TYPE / RESULTS		
BLANK	TRICHLOROETHYLENE (DE = 99%)(BLANK)	Anasorb CSC Tube micrograms < 4.7 < 4.7 NONE DETECTED		
	S-TETRACHLOROETHANE (DE = 67%)(BLANK)	< 9.0 < 9.0 NONE DETECTED		
:	1,1.1 TRICHLOROETHANE (DE = 99%)(BLANK)	< 5.3 < 5.3 NONE DETECTED		
	REST AS HEXANE (DE = 100%)(BLANK)	< 4.4 < 4.4		

COMMENTS:

IF PRESENT, DE MEANS DESORPTION EFFICIENCY

Respectfully submitted,

m. Walsh / acom U am

William M. Walsh, CIH, ROH Manager of Operations Environmental Sciences Laboratory

LABORATORY, K-2

1 Kemper Drive Long Grove, IL 60049-0075 Phone (847) 320-2488 Fax (847) 320-4331 Toll Free (888) 576-7522

-r

REPORT DATE	OCT 03. 2000
SAMPLES REC'D	SEP 28, 2000
REQUEST NUMBER	327370
PAGE NUMBER	3 OF 3

TO: JON RAYMOND

STA-RITE INDUSTRIES 293 S. WRIGHT STREET DELAVAN USA

.

53115

WI

LLD *	ANALYSIS REQUESTED	METHODOLOGY	CAS #
5.3	1,1,1 TRICHLOROETHANE CT2	OSHA 14 GAS CHROMATOGRAPHY	71-55-6
4	REST AS HEXANE CT2	OSHA 07 GAS CHROMATOGRAPHY	110-54-3
5	S-TETRACHLOROETHANE CT2	OSHA 07 GAS CHROMATOGRAPHY	79-34-5
4.2	CT2	OSHA 07 GAS CHROMATOGRAPHY	79-45-€

COMMENTS:

CONCENTRATION CALCULATED USING AIR VOLUMES SUPPLIED BY CLIENT * LLD IS THE REPORTING LIMIT IN MICROGRAMS

Respectfully submitted,

William M. Walsh 100m

William M. Walsh, CIH, ROH Manager of Operations Environmental Sciences Laboratory

ANALYSIS REQUEST

Kemper.

LABORATORY, K-2

1 Kemper Drive • Long Grove, IL 60049-0075 • (847) 320-2488 FAX (847) 320-4331 Toll Free (888) 576-7522

www.natisco.com ranne Name _ Encal Title Z 10 Ű 77 \sim Firm 4 . Address 🤇 ÷ 3 Ŵ 71 Σ 72 (-----70 £. 265 Phone No. ____ 4C1 CAR FAX No.

No. 327370

NATLSCO

ASAP SERVICE REQUESTED Advanced Notification Required

Additional Charges Approved __

FIELD NUMBER	SAMPLING VOLUME*	ANALYZE FOR —	LAB #	COMMENTS
	10 me	the Ut		Show- Fer He
#/	min	I I TOW Del Lyene		(2) Colmin
		etrachoider und		
	·	1/1 /richloroethane		
		Vestas Hexane		· · · · · · · · · · · · · · · · · · ·
	<u> </u>			
	T.m.	FOR Blank		
				· · · · · · · · · · · · · · · · · · ·
	 	· · · · · · · · · · · · · · · · · · ·		
			- 	
9/23	5/dd	Billing Information/Comments:	*s	ampling times for diffusion monitors.
DATE SAMPLES	S TAKEN			
DATE RECEIVE	D BY LAB			
DATE COMPLE	TED			
·		For Internal Use Only	·	
B#			· •••• •••	
F#		_		

LABORATORY ANALYSIS REPORT

LABORATORY, K-2

1 Kemper Drive Long Grove, IL 60049-0075 Phone (847) 320-2488 Fax (847) 320-4331 Toll Free (888) 576-7522

> TO: JON RAYMOND STA-RITE INDUSTRIES 293 S. WRIGHT STREET

DELAVAN

USA

53115

WI

REPORT DATE <u>A</u>	<u>UG 31, 2000</u>
SAMPLES REC'D	UG 28, 2000
REQUEST NUMBER 3	27369
PAGE NUMBER 1 OF	4

SAMPLE	AIR VOLUME / ANALYSIS REQUESTED		MEDIA TYPE / Results				
#1	18.18 Liters	microq	Anasorb CSC Tube micrograms PPM				
	TRICHLOROETHYLENE (DE = 99%)	7.0	< 5.5	0.071	< 0.056		
	PERCHLOROETHYLENE (DE = 88%)	< 7.1	< 7.1	< 0.058	. < 0.058		
	1,1,1 TRICHLOROETHANE (DE = 99%)	11	< 5.3	0.11	< 0.053		
	REST AS HEXANE (DE = 100%)	31	< 5.0	0.48	< 0.078		

COMMENTS:

IF PRESENT, DE MEANS DESORPTION EFFICIENCY

Respectfully submitted,

Am unWaln

William M. Walsh, CIH, ROH Manager of Operations Environmental Sciences Laboratory

-

LABORATORY, K-2

1 Kemper Drive Long Grove, IL 60049-0075 Phone (847) 320-2488 Fax (847) 320-4331 Toll Free (888) 576-7522

TO: JON RAYMOND

STA-RITE INDUSTRIES 293 S. WRIGHT STREET DELAVAN WI USA

53115

LABORATORY ANALYSIS REPORT

REPORT DATE	<u>AUG 31, 2000</u>
SAMPLES REC'D	AUG 28, 2000
REQUEST NUMBER	327369
PAGE NUMBER	2 OF 4

SAMPLE	AIR VOLUME / ANALYSIS REQUESTED	MEDIA TYPE / Results			
#2		Anasorb CSC Tube			
	TRICHLOROETHYLENE (DE = 99%)(BLANK)	<pre>mlcrograms < 5.5 < 5.5 NONE DETECTED</pre>			
	PERCHLOROETHYLENE (DE = 83%)(ELANK)	< 7.1 < 7.1 NONE DETECTED			
	1,1,1 TRICHLOROETHANE (DE = 99%)(BLANK)	< 5.3 < 5.3 NONE DETECTED			
	REST AS HEXANE (DE = 100%)(BLANK)	< 5.0 < 5.0 SUBTRACTED			

COMMENTS:

IF PRESENT, DE MEANS DESORPTION EFFICIENCY

Respectfully submitted,

-mlik

WHIIam M. Walsh, CIH, ROH Manager of Operations Environmental Sciences Laboratory

LABORATORY ANALYSIS REPORT

1 Kemper Drive Long Grove, IL 60049-0075 Phone (847) 320-2488 Fax (847) 320-4331 Toll Free (888) 576-7522

REPORT DATE	AUG 31, 2000
SAMPLES REC'D	AUG 28, 2000
REQUEST NUMBER	327369
DACE MIMBER	3 OF 4
FAGE NUMBER	

TO: JON RAYMOND STA-RITE INDUSTRIES 293 S. WRIGHT STREET

DELAVAN USA 53115

WI

.

LLD *	ANALYSIS REQUESTED	METHODOLOGY	CAS #
5.3	1,1,1 TRICHLOROETHANE CT2	osha 14 Gas chromatography	71-55-6
4.8	PERCHLOROETHYLENE CT2	OSHA 07 GAS CHROMATOGRAPHY	127-18-4
4	REST AS HEXANE CT2	OSHA 07 GAS CHROMATOGRAPHY	110-54-3
4.2 	TRICHLOROETHYLENE CT2	OSHA 07 GAS CHROMATOGRAPHY	79-01-6

COMMENTS:

CONCENTRATION CALCULATED USING AIR VOLUMES SUPPLIED BY CLIENT * LLD IS THE REPORTING LIMIT IN MICROGRAMS

Respectfully submitted,

William M. Walsh, CIH, ROH Manager of Operations Environmental Sciences Laboratory

LABORATORY ANALYSIS REPORT

-

LABORATORY,	K-2
-------------	-----

1 Kemper Drive Long Grove, IL 60049-0075 Phone (847) 320-2488 Fax (847) 320-4331 Toll Free (888) 576-7522

REPORT DATE	<u>AUG 31, 2000</u>
SAMPLES REC'D	AUG 28, 2000
REQUEST NUMBER	327369
PAGE NUMBER	4 OF 4

TO: JON RAYMOND STA-RITE INDUSTR

STA-RITE INDUSTRIES 293 S. WRIGHT STREET DELAVAN WI 53115 USA

REQUEST CLIENT COMMENTS:

REQUEST TAKEN OPP HOLD ON 8/29/00, NEW DUE DATE IS
09/07/00.

Respectfully submitted,

William M. Walsh, CIH, ROH Manager of Operations Environmental Sciences Laboratory

ANALYSIS REQUEST

Kemper.

LABORATORY, K-2

 1 Kemper Drive
 Long Grove, IL 60049-0075
 (847) 320-2488

 FAX (847)
 320-4331
 Toll Free (888) 576-7522

www.natlsco.com INAN Name Title <u>fav:</u> a 🕹 trajineer Firm STA- RITE In). Ţ)right ~ 5 +~ Address 🖄 エ 1) U oluca. ~ -728 -7216 Phone No. 262 1 213 FAX No. \propto

NATLSCO

No. 327369

ASAP SERVICE REQUESTED Advanced Notification Required

Additional Charges Approved ____

FIELD NUMBER	SAMPLING VOLUME*	ANALYZE FOR —	LAB #	COMMENTS
#1	101 me/ Min	THE RETA		3 hour say plas
		Restusterane		Leg 3
				Lete B/11/00
世2		Blank	i ka	
			· ·	
•				
			:	
	Ì	· · · · · · · · ·		
8/11/00		Billing Information/Comments:	<u> </u>	*Sampling times for diffusion monitors.
DATE SAMPLES	S TAKEN			·····
DATE RECEIVE	D BY LAB			· · · · · · · · · · · · · · · · · · ·
DATE COMPLE	TED			
		For Internal Use Only		
B#		· · · · · · · · · · · · · · · · · · ·		
ſ#		· _ · · · · · · · · · · · · · · · · · ·		

NATLSCO

LABORATORY ANALYSIS REPORT

LABORATORY, K-2

1 Kemper Drive • Long Grove, IL 60049-0075 • (847) 320-2488 Fax (847) 320-4331 Toll Free (888) 576-7522 www.natlsco.com

- .- .-

REPORT DATEMAY 18, 2000SAMPLES REC'D.Herit 2000REQUEST NUMBER327368PAGE NUMBER1 OF 3 OF REQUEST.

TO:

•

SERVER ANTONIA Electronic de Calendar Interna Server Britter Interna

li çle komter	Arvi z.: requeroed	Results		
		micrograms Fight Back 5.4 5.4	만만번 기산니지 U 	żaci: C 0.055
	ng ng ng ting kang kang kang kang kang kang kang ka	- 5 Č Š.Ž	0.053	€ 0.053
	11 B. (11 Ben 1977 B. 117 Ben 1912 ABE) 11 B. (11 Ben 1977 B. 117 Ben 1912 ABE)	17.0 07.0	6 0.057	C 0.057
		6.4 C 5.0	0.1	C Q 077
ar = îN i i	THE CHEMP OF TRACEMENT OF THE STRENGT BEAMED	micrograms (5.4 (5.4 Nove percenter		
	1.1.1 THEREORDETHANE	1 C 5.3 C 5.3		
	PERCHLORGETHYLENE (DE = RBC(\BLANK)	MBNE DETENTED (7.0) (7.0) NTHE DETENTED		
	an de Reise anna de <mark>na AdMER</mark> X	SUFTRACTED		
	1			
				E Companya a

COMMENTS: The PRECENCE of the Construction Service of the

Respectfully submitted,

In On vun

William M. Walsh, CIH, ROH Manager of Operations Environmental Sciences Laboratory
LABORATORY ANALYSIS REPORT

LABORATORY, K-2

TO:

1 Kemper Drive • Long Grove, IL 60049-0075 • (847) 320-2488 Fax (847) 320-4331 Toll Free (888) 576-7522 www.natisco.com

ula Tantag Sherilia islaa siii Dia Sherileat siii Dia Can Usa

: :

MAY 18, 2000 REPORT DATE _ MAY 15, 2000 SAMPLES REC'D. _ 327369 **REQUEST NUMBER_** PAGE NUMBER $\frac{2}{2}$ OF \mathbb{R} OF REQUEST.

	ANHORSE (ENGLARES)	në të totetëti	060 f
	1 <u>1. 5</u> 52 1	Déch 14 Gar Obronatografity	71-85-6
- -	$\frac{1}{2} \sum_{i=1}^{n} \frac{1}{i} \sum_{j=1}^{n} \frac{1}{i} \sum_{i=1}^{n} \frac{1}{i} \sum_{j=1}^{n} \frac{1}$	EAS CHROMATOGRAPHY	127-18-4
		SSHA 07 GAS CHROMATOGRAPHY	110-54-3
2 I	TRICHLORDETHYLENE	OSHA 07 GAS CHROMATOGRAPHY	79-01-6

-

COMPENSE. FUTE-TIME CONTRACTOR USING AIR UP DASS SUPPLIED BY CLIENT LLD 15 THE REPORTING LIMIT IN AIGROGRAMS + MODIFICATIONS HAY BE PLOT TO ABOVE METHODS TO OPTIMIZE RESULTS

Respectfully submitted,

William M. Walsh, CIH, ROH Manager of Operations **Environmental Sciences Laboratory**

ACCREDITED BY THE AMERICAN INDUSTRIAL HYGIENE ASSOCIATION

LABORATORY ANALYSIS REPORT

.

LABORATORY, K-2

TO:

1 Kemper Drive • Long Grove, IL 60049-0075 • (847) 320-2488 Fax (847) 320-4331 Toll Free (888) 576-7522 www.natlsco.com

> CON RAYMONI Pitantito (HOOSITA)EE Sigues, Anight Synget Delanan Usa

. . .
 REPORT DATE
 MAY 18, 2000

 SAMPLES REC'D.
 MAY 15, 2000

 REQUEST NUMBER
 327369

 PAGE NUMBER
 3 0F 3
 OF REQUEST.

	TAN TO JEANN ROTTODU - 1282-792-1310.
2	

03:15

Respectfully submitted,

William M. Walsh, CIH, ROH Manager of Operations Environmental Sciences Laboratory

ACCREDITED BY THE AMERICAN INDUSTRIAL HYGIENE ASSOCIATION

ANALYSIS REQUEST

Kemper.

LABORATORY, K-2

1 Kemper Drive • Long Grove, IL 60049-0075 • (847) 320-2488 FAX (847) 320-4331 Toll Free (888) 576-7522

www.па	tisco.com)
Name _	Von Kannonu	
Title	Environment	al Frat .
ہ ح	STA-Rile	
Address	843 WI 5HT	Street
	,	

Phone No	202-	728-	7216
		723-	72/2
FAX NO	$\Delta A = \Delta A = \Delta A$	100	د_د.`

No. 327368

NATLSCO

ASAP SERVICE REQUESTED Advanced Notification Required

Additional Charges Approved ____

FIELD NUMBER	SAMPLING VOLUME*	ANALYZE FOR —	LAB #	COMMENTS
#1	101 m1/. min	Trichlorsethere		3hour
		111 Trichloroethand		Sample
		Tetra Chloroetining		
		Restas yexane		
			-	
		· · · · · · · · · · · · · · · · · · ·	.	
	·································			
_				
5/	 	Billing Information/Comments:		*Sampling times for diffusion monitors
DATE SAMPLE	S TAKEN	Far To Jana	in 10hm.	1 SO ₂ 2
DATE RECEIVE	ED BY LAB	262-792-1	310	
DATE COMPL	ETED			
	· · · · · · · · · · · · · · · · · · ·	For Internal Use Only		
B#		_]		
F#	·			

LABORATORY ANALYSIS REPORT

LABORATORY, K-2

TO:

1 Kemper Drive • Long Grove, IL 60049-0075 • (847) 320-2488 Fax (847) 320-4331 Toll Free (888) 576-7522 www.natisco.com

1154

UOR FEIDOND STE-RITE INDUSTRIES 253 S. WIIGHT STREET DELAVAN

27

REPORT DATE ______ APR _27, _2000 APR 20, 2000 SAMPLES REC'D. REQUEST NUMBER 327367 PAGE NUMBER 1 DF 3 OF REQUEST.

nle Noabet Assilution Production Results micrograms Eact PPD. Front Front Beck TRICHLENDETHYLEND 5.8 < 5.501 02360340 (DE = FELSENE 1/1/1 TRICHLORDETHANE (DE = SPC) REFU AS NETAND 1/27 = 1000 0.18(0.17 (5.4 0.54 C 0.16 18 7.7 15.1 0.36 ¢ 0.24 PÉPORLOXIETRYLEME 6 7.3 67.3 (0.18) < 0.18 5 Ξ. ыстраныны С 5.5 С 5.5 . - 14K 1RICHLORGETHYLENE (DE = \$9%)(DLANK) NONE DETECTED 1,1,1 TRICHLOROETHANE /OF = PRINCELANK) (5.4 65.4 NONE DETECTED \langle 5.1 REST AS HEXANE (DE = 100%)(BLANK) 0.5.1 NONE DETECTED 0.1.3 . -(日本) = 法私公公司任由权利 LIE DETECTIO ;

53:15

GAMERTS: - PRESENT: DI NEW 3 DESCRIPTION EFFICIENCY

Respectfully submitted,

In malt

William IVI. Walsh, CIH, ROH Manager of Operations Environmental Sciences Laboratory

ACCREDITED BY THE AMERICAN INDUSTRIAL HYGIENE ASSOCIATION

LABORATORY ANALYSIS REPORT

LABORATORY, K-2

TO:

1 Kemper Drive • Long Grove, IL 60049-0075 • (847) 320-2488 Fax (847) 320-4331 Toll Free (888) 576-7522 www.natisco.com

REPORT DATE	AFR 27, 2000
SAMPLES REC'D.	APR 20, 2000
REQUEST NUMBER_	327367
PAGE NUMBER 2 DF	∃_ OF REQUEST.

UDH REIGCHD STA-RITE INDUSTRIES 1973 S. UMIGHT STREET DELACHH USA

.LC *	AMALYSIC REQUESTED	METHODOLOGY	CAS #
	i i jîrîtiri.Skutkutîrame	OBHA 14 Daf Chromatography	71-55-0
÷ .	PERCHLOS DETENTLEME CTO	OSHA O7 Gas <mark>Chrom</mark> atography	127-18-4
		OSHA 07 DAI LakunaTCBARAD.	110-54-3
	TRECHLONGETHYLEME	OSHA 07 GAS CHROMATOGRAPHY	79-01-6

10111

•

OMMENTS: SACENTRATION LIQUETED DELVE ALR FILLED DE LIEU DE CLIENT > LLD IS THE REPORTING LIMIT IN MICROGRAMS * MODIFICATIONS MAY BE MADE TO ABOVE METHODS TO OPTIMIZE RESULTS

Respectfully submitted,

William M. Walsh, CIH, ROH Manager of Operations **Environmental Sciences Laboratory**

ACCREDITED BY THE AMERICAN INDUSTRIAL HYGIENE ASSOCIATION

LABORATORY ANALYSIS REPORT

.

LABORATORY, K-2

1 Kemper Drive • Long Grove, IL 60049-0075 • (847) 320-2488 Fax (847) 320-4331 Toll Free (888) 576-7522 www.natlsco.com

REPORT DATE	AFR 27, 2000
SAMPLES REC'D	APR 20, 2000
REQUEST NUMBER_	327367
PAGE NUMBER 3 OF	3 OF REQUEST.

TO:

JON FAIMOND STA-RITE INDUSTRIES 253 E VRIGHT CTREET DELAVAN US-

53115

. j

ſ	 and the second	
		FAN RESULTS TO JENNY JOHNSON, HS1 414-792- 1910.
	· · · · ·	

Respectfully submitted,

William M. Walsh, CIH, ROH Manager of Operations Environmental Sciences Laboratory

ACCREDITED BY THE AMERICAN INDUSTRIAL HYGIENE ASSOCIATION

ANALYSIS REQUEST

Kemper.

LABORATORY, K-2

1 Kemper Drive • Long Grove, IL 60049-0075 • (847) 320-2488 FAX (847) 320-4331 Toll Free (888) 576-7522

www.natisco.com
Name
Title Ens. 1011100/10/ France
Firm STAR RETE
Address 893 Dright Street
Neuros
Phone No. 24-2-728-7216
FAX No. 000 772 - 72

NATLSCO

No. 327367

ASAP SERVICE REQUESTED Advanced Notification Required

Additional Charges Approved ____

FIELD NUMBER	SAMPLING VOLUME*	ANALYZE FOR —	LAB #	COMMENTS
300 Z S 0 - 340	101 may	Trichbroethylene		Gom Supp
- <u> </u>		Tetrarchloroething		
		121 Tric horoestane		
·		Rest 45 Herane		
Blank	and the second s	and and a second se Second second		
	×	DEDER 40 MAR	₩.	
· • • • • • • • • • • • • • • • •		Sangle Tipes		
		· · · ·		
	-			
4/3/3	C	Billing Information/Comments:	· ·	*Sampling times for diffusion monitors
DATE SAMPLE	S TAKEN	Fax to South	The set Star	- 47 ZZ
date receive	ED BY LAB	4/14-752	- 1310	
DATE COMPL	ETED			
		For Internal Use Only		
B#		-		
+#			····	

NC 82-12 25M 3-97

.

LABORATORY, K-2

• ·

TO:

1 Kemper Drive • Long Grove, IL 60049-0075 • (847) 320-2488 Fax (847) 320-4331 Toll Free (888) 576-7522 www.natlsco.com

> JOR RAYMOND STA-RITE INDUSTRIES 253 S. WRIGHT STREET DELAVAN USA

. Wil

REPORT DATE	MAR 13, 2000
SAMPLES REC'D.	MAR 05, 2000
	327366
PAGE NUMBER ^{1_QF}	3 OF REQUEST.

ີ່ແຮ່ວ່າ ທີ່ປະນວຍາ	Analysii nagaraces	Resu	
	TRICHLOROETHYLENE (DE = 972) PERCHLOROETHYLENE (DE = 882) 1,1,1 TRICHLOROETHAME (DE = 972) REST AS HEXAME (DE = 1002)	micrograms Front Back 10 (5.4 (6.7 (6.7 (5.3 (5.3 (5.0 (5.0	PPM Back Front Back 0.1 C 0.055 C 0.055 C 0.055 C 0.053 C 0.053 C 0.053 C 0.053 C 0.078 C 0.078
	TRICHLOROETHYLEHE (DE = 99%)(BLANK) PERCHLOROETHYLENE (DE = 99%)(BLANK) REST AS HEXANE (DE = 100%)(BLANK)	C 5.4 C 5.4 HOME DETECTED C 6.7 C 6.7 NONE DETECTED C 5.3 C 5.3 NONE DETECTED C 5.0 C 5.0 HOHE DETECTED	

53115

DOMMENTS:

IF PRESENT, DE MEANS DESORFTION EFFICIENCY

Respectfully submitted,

Walch/re

William M. Walsh, CIH, ROH Manager of Operations Environmental Sciences Laboratory

ACCREDITED BY THE AMERICAN INDUSTRIAL HYGIENE ASSOCIATION

LABORATORY ANALYSIS REPORT

LABORATORY, K-2

1 Kemper Drive • Long Grove, IL 60049-0075 • (847) 320-2488 Fax (847) 320-4331 Toll Free (888) 576-7522 www.natisco.com

REPORT DATE	MAR 13, 2000
SAMPLES REC'D.	MAR 06, 2000
REQUEST NUMBER_	327366
PAGE NUMBER 2 DF	3 OF REQUEST.

JON RAYMOND STA-RITE INDUSTRIES 293 S. WRIGHT STREET DELAVAN TO: USA

02115

WT

-

	ANALVEIS REQUESTIO	METHODOLOGY	CAS #
5.3	1,1,1 TRICHLOROETHANE CT2	OSHA 14 GAS CHROMATOGRAPHY	71-55-6
at şu	PERCHLORGETHYLENE CT2	USHA 07 Das chromatography	127-18-4
Ľ	REST AS HEXANE CT2	OSHA 07 GAS CHROMATOGRAFWY	110-54-3
, .	TRICHLOROFTHYLENE CT2	OSHA 07 GAS CHROMATOGRAPHY	79-01-6

OMMENTS

CONCENTRATION CALCULATED USING AIR VOLUMES SUPPLIED BY CLIENT * LLD REPORTED IN MICROGRAMS - MODIFICATIONS MAY BE MADE TO ABOVE METHODS TO OPTIMIZE RESULTS

Respectfully submitted,

MUalahy William M. Walsh, CIH, ROH

Manager of Operations Environmental Sciences Laboratory

ACCREDITED BY THE AMERICAN INDUSTRIAL HYGIENE ASSOCIATION

LABORATORY ANALYSIS REPORT

.

LABORATORY, K-2

TO:

1 Kemper Drive • Long Grove, IL 60049-0075 • (847) 320-2488 Fax (847) 320-4331 Toll Free (888) 576-7522 www.natisco.com

USA.

JON RAYMOND STA-RITE INDUSTRIES 293 S. WRIGHT STREET DELAVAN 184

ΨI

REPORT DATE	MAR 13, 2000
SAMPLES REC'D	MAR 06, 2000
REQUEST NUMBER	327366
PAGE NUMBER 3 OF	3 OF REQUEST.

REQUEST CLIEN' CONTENIS.	
	FAX RESULTS TO J. JOHANSON 414-792-1310.

53115

Respectfully submitted,

Welsh te William M. Walsh, CIH, ROH

Manager of Operations Environmental Sciences Laboratory

ACCREDITED BY THE AMERICAN INDUSTRIAL HYGIENE ASSOCIATION

ANALYSIS REQUEST

Kemper

LABORATORY, K-2

1 Kemper Drive • Long Grove, IL 60049-0075 • (847) 320-2488 FAX (847) 320-4331 Toll Free (888) 576-7522

www.natlsco.com
Name JonKauprand
Title _ F. I.J. Stangard TEmp
Firm STA-KILE ZAD IAC
Address 293 Wight Stick
السر المراجع ا
Phone No. 247 - 772 - 774
EAN NO 300 928 2015

NATLSCO

No. 327385

ASAP SERVICE REQUESTED Advanced Notification Required

Additional Charges Approved _

FIELD NUMBER	SAMPLING VOLUME*	ANALYZE FOR —	LAB #	COMMENTS
	ioi mille	Trichlorse hallesp		Lough of Sample
		Tetra chorsethane		190 m
		III Trichlowellhung.		3-1-20
		A Konta - march		243
			-	
			·· 🔭 🔹	
	<u></u>			
		· · · · · · · · · · · · · · · · · · ·	1	
·				
		Billing Information/Comments:		*Sampling times for diffusion monitors.
DATE SAMPLE	S TAKEN			
DATE RECEIVE	ED BY LAB	4/11- 7-5-2-	2.7	
DATE COMPL	ETED	-		
·	······································	For Internal Use Only		
B#		····		
┠#	·			

LABORATORY, K-2

TO:

1 Kemper Drive • Long Grove, IL 60049-0075 • (847) 320-2488 Fax (847) 320-4331 Toll Free (888) 576-7522 www.natlsco.com

USA.

LABORATORY ANALYSIS REPORT

 REPORT DATE
 FEB 22, 2000

 SAMPLES REC'D.
 FEB 14, 2000

 REQUEST NUMBER
 327365

 PAGE NUMBER 1
 DF 3
 OF REQUEST.

Sample Number Analysis Requested Results micrograms PPM Front Back Front Back (4.9 Č9.1 1 TRICHLOROETHYLENE 11 20 (DE = 99%)1,1,1 TRICHLORDETHANE (DE = 99%) 12 C 5.3 C 9.7 23 REST AS HEXANE (DE = 100%) 4.7 (4.6 13 (13 PÉRCHLOROETHYLENE (5.9 < 5.9 (8.8 (8.8 (0E = 88%)micrograms TRICHLORDETHYLENE (4.9 Č 4.9 (DE = 99%)(BLANK) NONE DETECTED 1,1,1 TRICHLOROETHANE (DE = 99%)(RLANP) (5.3 (5.3 NONE DETECTED C 4.6 REST AS HEXANE (4.6 (DE = 100%)(BLANK)NONE DETECTED C 5.9 PERCHLOROETHYLENE < 5.9 (DE = 88%)(BLANK)NONE DETECTED

OMMENTS:

IF PRESENT, DE MEANS DESORPTION EFFICIENCY

Respectfully submitted,

Inlater Nur

William M. Walsh, CIH, ROH Manager of Operations Environmental Sciences Laboratory

ACCREDITED BY THE AMERICAN INDUSTRIAL HYGIENE ASSOCIATION

NC0614-1 30M 12-99

JON RAYMOND STA-RITE INDUSTRIES 293 S. WRIGHT STREET DELAVAN

53115

WΙ

LABORATORY, K-2

TO:

1 Kemper Drive • Long Grove, IL 60049-0075 • (847) 320-2488 Fax (847) 320-4331 Toll Free (888) 576-7522 www.natlsco.com

USA

JON RAYMOND STA-RITE INDUSTRIES 293 S. WRIGHT STREET DELAVAN

ωI

LABORATORY ANALYSIS REPORT

+

REPORT DATE	FEB 22, 2000
SAMPLES REC'D	FEB 14, 2000
REQUEST NUMBER_	327365
PAGE NUMBER 2 OF	<u>3</u> OF REQUEST.

LLD *	ANALYSIS REQUESTED	METHODOLOGY	CAS #
2 B	1,1,1 TRICHLORDETHAME CT2	DSHA 14 GAS CHROMATOGRAPHY	71-55-6
4.8	PERCHLORGETHYLENE CT2	OSHA 07 GAS CHROMATOGRAPHY	127-18-4
4	REST AS HEXANE CT2	OSHA 07 GAS CHROMATOGRAPHY	110-54-3
4.2	TRICHLORDETHYLENE CT2	OSHA 07 GAS CHROMATOGRAPHY	79-01-6

53115

COMMENTS:

- CONCENTRATION CALCULATED USING AIR VOLUMES SUPPLIED BY CLIENT * LLD REPORTED IN MICROGRAMS * MODIFICATIONS MAY BE MADE TO ABOVE METHODS TO OPTIMIZE RESULTS

Respectfully submitted,

1. Welch/s_

William M. Walsh, CIH, ROH Manager of Operations Environmental Sciences Laboratory

ACCREDITED BY THE AMERICAN INDUSTRIAL HYGIENE ASSOCIATION

LABORATORY, K-2

TO:

1 Kemper Drive • Long Grove, IL 60049-0075 • (847) 320-2488 Fax (847) 320-4331 Toll Free (888) 576-7522 www.natisco.com

USA

JON RAYMOND STA-RITE INDUSTRIES 293 S. WRIGHT STREET DELAVAN

ΨI

 REPORT DATE
 FEB 22, 2000

 SAMPLES REC'D.
 FEB 14, 2000

 REQUEST NUMBER
 327365

 PAGE NUMBER 3_0F 3_OF REQUEST.

 REQUEST CLIENT COMMENTS:			· · ·
	FAX RESULTS TO 414-792-1310.	JENNY JOHANSON	HSI GED TRANS
I			

53115

Respectfully submitted,

M. Uddilo.

William M. Walsh, CIH, ROH Manager of Operations Environmental Sciences Laboratory

ACCREDITED BY THE AMERICAN INDUSTRIAL HYGIENE ASSOCIATION

ANALYSIS REQUEST

Kemper.

LABORATORY, K-2

1 Kemper Drive • Long Grove, 1L 60049-0075 • (847) 320-2488 FAX (847) 320-4331 Toll Free (888) 576-7522

www.natis<u>co.com</u> C 6ni an<u>mon</u> Name. 1:10 naeular 4 Title) ^ 4-6 le 2 4 Firm 56 Draht C7 Į <u>a</u>e Address with 15 WI 551 728 -1216 Phone No. -728 シンマネ doar شت ` FAX No.

NATLSCO

No. 327365

ASAP SERVICE REQUESTED Advanced Notification Required

Additional Charges Approved ____

FIELD NUMBER	SAMPLING VOLUME*	ANALYZE FOR —	LAB #	COMMENTS
)	101 M2/R	Trichbrochylene		180 min Sample
		Tetra Choroetlene		12:257 to 3:257m
		111 Trichloethane		Legs 1 on 2,30-1/2-2
		Rost as Hexand		SAMPLES 2/1/00
		en Serve		
2	Field			
	Hink			
			·	· · · · · · · · · · · · · · · · · · ·
			· · · · · · · · · · · · · · · · · · ·	
2/:/a	<u> </u>	Billing Information/Comments:	* <u>·</u>	bampling times for diffusion monitors.
DATE SAMPLES	, IAKEN	FAX Legal + 50	Same,	r. Elicans on
DATE RECEIVEI	D BY LAB	HEE Geo Tra	15 41	4- 392-1310
DATE COMPLE	TED			
.		For Internal Use Only		
Б# Б#		-		
F#				

LABORATORY, K-2

1 Kemper Drive • Long Grove, IL 60049-0075 • (847) 320-2488 Fax (847) 320-4331 Toll Free (888) 576-7522 www.natlsco.com

TO:

JON RAYHOND STA-RITE INDUSTRIES 293 S. WRIGHT STREET DELAVAN USA

53115

μI

REPORT DATE	JAN 13, 2000
SAMPLES REC'D.	JAN 10, 2000
REQUEST NUMBER_	327364
PAGE NUMBER 1	_2 OF REQUEST.

Sanple Number Analysis Requested Results micrograms PPh Back Front ទីត្រាងដ្ Back < 4.9 (4.9 € 1.0 TRICHLORDETHYLENE € 1.0 (0E = 99%)1,1,1 TRICHLORDETHANE (DE = 99%) < 5.3 < 5.3 € 1.0 € 1.0 PERCHLOROETHYLENE < 6.2 < 6.2 < 0.15 C 0.15 (DE = 86%) REST AS HEXANE (DE = 100%) 5.4 4.5 € 1.0 <1.0 micrograms (4.9 (4.9 TRICHLORGETHYLENE (DE = 99%)(BLANK) 2 NONE DETECTED (5.3 (5.3 1,1,1 TRICHLOROETHANE (DE = 99%)(BLANK)NONE DETECTED (6.2 PERCHLOROETHYLENE C 6.2 (DE = 88%)(BLANK) NONE DETECTED REST AS HEXANE (DE = 100%)(BLANK) (4.5 C4.5 SUBTRACTED

COMMENTS: IF PRESENT, DE MEANS DESORPTION EFFICIENCY

Respectfully submitted,

151 William M. Walsh, CIH, ROH

Manager of Operations Environmental Sciences Laboratory

ACCREDITED BY THE AMERICAN INDUSTRIAL HYGIENE ASSOCIATION

LABORATORY ANALYSIS REPORT

LABORATORY ANALYSIS REPORT

LABORATORY, K-2

TO:

1 Kemper Drive • Long Grove, IL 60049-0075 • (847) 320-2488 Fax (847) 320-4331 Toll Free (888) 576-7522 www.natisco.com

USA.

JON RAYMOND STA-RITE INDUSTRIES 293 S. WRIGHT STREET DELAVAN

μτ

REPORT DATE JAN 13, 2000
SAMPLES REC'D. JAN 10, 2000
REQUEST NUMBER 327364
PAGE NUMBER 2_DF_2_OF REQUEST.

LLD * ANALYSIS REQUESTED METHODOLOGY CAS # 5.3 1,1,1 TRICHLORDETHANE OSHA 14 71-55-6 CT2 GAS CHROMATOGRAPHY PERCHLOROETHYLENE OSHA 07 4.8 127-18-4 CT2 GAS CHROMATOGRAPHY REST AS HEXANE CT2 4 OSHA 07 110-54-3 GAS CHROMATOGRAPHY 4.2 TRICHLOROETHYLENE OSHA 07 79-01-6 GAS CHROMATOGRAPHY C72

S311S

COMMENTS:

CONCENTRATION CALCULATED USING AIR VOLUMES SUPPLIED BY CLIENT

* LLD REPORTED IN MICROGRAMS * MODIFICATIONS MAY BE MADE TO ABOVE METHODS TO OFTIMIZE RESULTS

Respectfully submitted,

William M. Walsh, CIH, ROH

Manager of Operations Environmental Sciences Laboratory

ACCREDITED BY THE AMERICAN INDUSTRIAL HYGIENE ASSOCIATION

ANALYSIS REQUEST

Kemper.

LABORATORY, K-2

1 Kemper Drive • Long Grove, IL 60049-0075 • (847) 320-2488 FAX (847) 320-4331 Toll Free (888) 576-7522

www.natisco.com
NameCerymon
Title Environmental Engineer
Firm STA-RETE IND. INC.
Address 343 Wright Streat
Defendera (1)= S3/15
Phone No. 362 . 728 . 7216
FAX No. 262-728 7213

NATLSCO

.

No. 327354

ASAP SERVICE REQUESTED Advanced Notification Required

Additional Charges Approved

FIELD NUMBER	SAMPLING VOLUME*	ANALYZE FOR —	LAB #	COMMENTS
1	10/ml/			SIE 2.12.1.
<u> </u>		TC4		Cominstryle
		PCE		Legs 1,2,+3
		Real as Hexand		
2		TE		F. W. Black
		TCA total tax to	r	
-		PCE MARKEN		
		VestASHEXMI		
		· · · · · · · · · · · · · · · · · · ·		
-5	-00	Billing Information/Comments:	*5	ampling times a controls
DATE SAMPLES	TAKEN			
DATE RECEIVED	D BY LAB	····		
DATE COMPLE	TED			
R #	· · · · ·	For Internal Use Only		
D# F#		-	_	
·····		-		

LABORATORY, K-2

TO:

1 Kemper Drive • Long Grove, IL 60049-0075 • (847) 320-2488 Fax (847) 320-4331 Toll Free (888) 576-7522 www.natlsco.com

DELAVAN

USA.

JON RAYMOND STA-RITE INDUSTRIES 293 S. WRIGHT STREET

WI

 REPORT DATE
 JAN 13, 2000

 SAMPLES REC'D.
 JAN 10, 2000

 REQUEST NUMBER
 327363

 PAGE NUMBER 1_DF_3_OF REQUEST.

Sample Number Analysis Requested Results FFM micrograms Back Front Front Back 12199 TRICHLOROETHYLENE (4.9 (4.9 C 1.0 < 1.0 (DE = 99%) 1,1,1 TRICHLOROETHANE (5.3 (5.3 C 1.0 C 1.0 (DE = 99%) PERCHLOROETHYLENE (6.2 (6.2 C 0.15 C 0.15 (DE = 88%) REST AS HEXANE (DE = 100%) (4.5 (4.5 C 1.0 C 1.0 PPM micrograms Front Back Front Back 1219960123 TRICHLOROETHYLENE **C** 4.9 0.1.0 < 4.9 < 1.0 (DE = 99%) 1,1,1 TRICHLOROETHANE (5.3 < 5.3 < 1.0 C 1.0 (DE = 99%) PERCHLOROETHYLENE ₹ 6.2 C 6.2 < 0.15 C 0.15 (DE = 88%) REST AS HEXANE (DE = 100%) < 1.0 4.9 (4.5 < 1.0 micrograms TRICHLOROETHYLENE BLANK C 4.9 (4.9)(DE = 99%)(BLANK) NONE DETECTED C 5.3 1,1,1 TRICHLOROETHANE (DE = 99%)(BLANK)NONE DETECTED PERCHLORDETHYLENE C 6.2 66.2 (DE = 88%)(BLANK)NONE DETECTED REST AS HEXANE C 4.5 (4.5 (DE = 1002)(BLANK) SUBTRACTED

53115

COMMENTS: IF PRESENT, DE MEANS DESORPTION EFFICIENCY

Respectfully submitted,

8 William M. Walsh, CIH, ROH

Manager of Operations Environmental Sciences Laboratory

ACCREDITED BY THE AMERICAN INDUSTRIAL HYGIENE ASSOCIATION

LABORATORY ANALYSIS REPORT

LABORATORY, K-2

1 Kemper Drive = Long Grove, IL 60049-0075 • (847) 320-2488 Fax (847) 320-4331 Toll Free (888) 576-7522 www.natlsco.com

REPORT DATE	JAN 13, 2000
SAMPLES REC'D.	JAN 10, 2000
REQUEST NUMBER_	327363
DACE NUMBERS OF	

TO:

JON RAYMOND STA-RITE INDUSTRIES 293 S. WRIGHT STREET DELAVAN ŪSĀ

53115

WΙ

.

<u>L</u> Ū *	ANALYSIS REQUESTED	METHODOLOGY	CAS #
5.3	1,1,1 TRICHLORDETHANE CT2	OSHA 14 GAS CHROMATOGRAPHY	71-55-6
4.8	PERCHLOROETHYLENE CT2	OSHA 07 GAS CHROMATOGRAPHY	127-18-4
4	REST AS HEXANE CT2	OSHA 07 GAS CHROMATOGRAPHY	110-54-3
4.2	TRICHLOROETHYLENE CT2	OSHA 07 GAS CHROMATOGRAPHY	79-01-6
5			

COMMENTS:

CONCENTRATION CALCULATED USING AIR VOLUMES SUPPLIED BY CLIENT * LLD REPORTED IN MICROGRAMS * MODIFICATIONS MAY BE MADE TO ABOVE METHODS TO OPTIMIZE RESULTS

Respectfully submitted,

William M. Walsh, CIH, ROH

Manager of Operations **Environmental Sciences Laboratory**

ACCREDITED BY THE AMERICAN INDUSTRIAL HYGIENE ASSOCIATION

LABORATORY ANALYSIS REPORT

LABORATORY, K-2

TO:

1 Kemper Drive • Long Grove, IL 60049-0075 • (847) 320-2488 Fax (847) 320-4331 Toll Free (888) 576-7522 www.natlsco.com

USA

JON RAYMOND STA-RITE INDUSTRIES 293 S. WRIGHT STREET DELAVAN

WΙ

REPORT DATE	JAN 13,	2000
SAMPLES REC'D	JAN 10,	2000
REQUEST NUMBER_	327363	

PAGE NUMBER 3 DE 3 OF REQUEST.

REQUEST CLIENT COMMENTS: FAX RESULTS TO HSI GEOTRAMS ATTH: JENNY JOHANSON 414-792-1310. REQUEST LAB COMMENTS: A BLANK MUST BE SUBMITTED WITH EACH SET OF SAMPLES.

53115

Respectfully submitted,

William M. Walsh, CIH, ROH

Manager of Operations Environmental Sciences Laboratory

ACCREDITED BY THE AMERICAN INDUSTRIAL HYGIENE ASSOCIATION

APPENDIX D

GROUNDWATER MONITORING ANALYTICAL RESULTS

GeoTrans, Inc.

STA-RITE IND.

1 262 728 7213 P.02/18

ANALYTICAL AND QUALITY CONTROL REPORT

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, WI 53115 05/03/2001

Job No: 01.02754

Page 1 of 14

Enclosed are the Analytical and Quality Control reports for the following samples submitted for analysis:

Sample Number	Sample Description	Date Taken	Date Received
434435 434436 434437 434438 4344439 4344440 4344441 4344442 4344443 4344443 4344445	MW2005 D-15 TW-3 D-18 EX-7 CSES SES EX-2 EX-2 EX-3 TW-4 MW-1027	04/19/2001 04/19/2001 04/19/2001 04/19/2001 04/19/2001 04/19/2001 04/19/2001 04/19/2001 04/19/2001 04/23/2001 04/23/2001	04/26/2001 04/26/2001 04/26/2001 04/25/2001 04/25/2001 04/25/2001 04/25/2001 04/25/2001 04/25/2001 04/25/2001 04/25/2001
434446	D-23K	01/05/2001	

Soil results are reported on a dry weight basis. The above sample(s) may have a result flag shown on the report. The following are the result flag definitions:

- A = Analyzed/extracted past hold time
- C = Standard outside of control limits
- F = Sample filtered in lab
- H = Late eluting hydrocarbons present
- J = Estimated concentration
- M = Matrix interference
- Q = Result confirmed via re-analysis
- T = Does not match typical pattern
- X = Unidentified compound(s) present

B = Blank is contaminated

- D = Diluted for analysis
- G = Received past hold time
- I = Improperly handled sample
- L = Common lab solvent and contaminant
- P = Improperly preserved sample
- S = Sediment present
- W = BOD re-set due to missed dilution
- Z = Internal standard outside limits

Brian D. DéJong Organic Operations Manager

MAY-16-2001 14:51

STA-RITE IND.

ANALYTICAL REPORT

Mr. Jon Raymond STA-RITE INDUSTRIES,	INC
293 S Wright Street Delavan, WI 53115	

05/03/2001 Job No: 01.02754 Sample No: 434435 Account No: 67550 Page 2 of 14

Well Samples DN: Volatile Analysis JOB DESCRIPTION: PROJECT DESCRIPTION: SAMPLE DESCRIPTION: MW2005 Rec'd on ice

Date/Time Taken: 04/19/2001 11:55 Date Received: 04/26/2001

Results	Units	MDL	LOQ	Mechod	Date Analyzed	Prep/Run Batch
<0.25	ug/L	0.25	0.93	SW 8250B	05/01/2001	2469
5.7	ug/L	0.25	0.83	SW 0260B	05/01/2001	2469
<0.25	ug/L	0.25	0.83	SW 9260B	05/01/2001	2459
0.60	ug/L	0.25	0.83	SW 82603	05/01/2001	2469
<0.25	ug/L	0.25	0.93	SW 8260B	05/01/2001	2469
101.6	\$		94-108	SW 8260B	05/01/2001	2469
95.6	3		90-104	SW 8260B	05/01/2001	2469
97.2	ł		94-107	SW 92603	05/01/2001	2469
	Results 5.7 <0.25 0.60 <0.25 101.6 95.6 97.2	Results Units <0.25	Results Units MDL <0.25	Results Units MDL LOQ <0.25	Results Units MDL LOQ Method <0.25	Results Units MDL LOQ Method Analyzed <0.25

ANALYTICAL REPORT

Mr Jon Raymond	05,
STA-RITE INDUSTRIES. INC	Joh
293 S Wright Street	Sar
Delavan, WI 53115	Acc
belavan, ni bollo	Par

/03/2001 b No: 01.02754 mple No: 434436 count No: 67550 Page 3 of 14

JOB DESCRIPTION: Well Samples PROJECT DESCRIPTION: Volatile Analysis SAMPLE DESCRIPTION: D-15 Rec'd on ice

Date/Time Taken: 04/19/2001 12:40 Date Received: 04/26/2001

Parameter	Results	Units	MDL	LOQ	Method	Date Analyzed	Prep/Run Batch
VOC - AQUEOUS - SPA 8260B							
Chloroethanc	<2,5	ug/L	0.25	0.83	SW 8260B	05/01/2001	2469
Tetrachlorocchene	50 -	ug/L	0.25	0.53	SW 0260B	05/01/2001	Z469
1.1.1-Trichloroethand	<2.5	ug/L	0.25	0.83	SW 32608	05/01/2001	2469
Trichlorosthene	470	ug/L	0.25	0.03	SW 82602	05/01/2001	2469
Vinyl Chloride	<2.5	ug/L	0.25	0.93	SW 8260B	05/01/2001	2469
Surr. Dibromofluoromethane	101.6	*		94-108	5W 8260B	05/01/2001	2469
Surr: Toluece-da	99.2	*		90-104	SW 82608	05/01/2001	2469
Surr: Bromofluorobenzene	95.8	*		94-107	SN 8250B	05/01/2001	2469

٢.

MAY-16-2001 14:51

STA-RITE IND.

1 262 728 7213 P.05/18

ANALYTICAL REPORT

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, WI 53115

05/03/2001 Job No: 01.02754 Sample No: 434437 Account No: 67550 Page 4 of 14

JOB DESCRIPTION: Well Samples Volatile Analysis PROJECT DESCRIPTION: SAMPLE DESCRIPTION: TW-3 Rec'd on ice

Date/Time Taken: 04/19/2001 13:25 Date Received: 04/26/2001

						Date	Preg/Run
Parameter	Results	Units	MDL	LOQ	Method	Analyzed	Batch
VOC - AQUEOUS - EPA 8260B							
Chloroethane	<0.25	ug/L	0.25	0.53	SW 92608	05/01/2001	2464
Tetrachloroethene	2.7	ug/L	0.25	0.83	SN 82608	05/01/2001	2464
1,1,1-Trichloroethane	0.68	ug/L	0,25	0.83	SH 8260B	05/01/2001	2464
Trichloroethene	6.0	ug/L	0.25	0.93	SW 8260B	05/01/2001	2464
Vinyl Chloride	<0.25	ug/L	0.25	0.93	SW 82605	05/01/2001	2454
Surr: Dibromofluoromethane	103.4	۶.		94-108	SW 8260B	05/01/2001	2454
Surr: Tolucne-d8	100.8	ŧ		90-104	SW 8260B	05/01/2001	2464
Surr: Bromofluorobenzene	93.4	ŧ		94-107	SW 8260B	05/01/2001	2464

ANALYTICAL REPORT

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, WI 53115

05/03/2001 Job No: 01.02754 Sample No: 434438 Account No: 67550 Page 5 of 14

JOB DESCRIPTION: Well Samples PROJECT DESCRIPTION: Volatile Analysis D-18 SAMPLE DESCRIPTION: Rec'd on ice

Date/Time Taken: 04/19/2001 14:00 Date Received: 04/26/2001

Paramçter	Results	Units	MDL	LOQ	Mechod	Date Analyzed	Prep/Run Batch
VOC - AQUEOUS - EPA 8260B							
Chloroethane	<0.25	ug/L	0.25	0.83	SW 8260B	05/01/2001	2464
Tetrachloroethene	3.0	ug/L	0.25	0.83	SW 8260B	05/01/2001	2464
1,1.1-Trichloroethane	<0.25	ug/L	¢,25	0,83	SW 9260B	05/01/2001	2464
Trichloroethene	3.9	ug/L	0.25	0.83	SW 82609	05/01/2001	2464
Vinyl Chloride	<0.25	ug/L	0.25	0.93	SW 82609	05/01/2001	2464
Surr: Dibromofluoromethanc	103,6	%		94-108	SW \$260B	05/01/2001	2464
Surr: Toluene-dB	99.4	¥		90-104	SW 8260B	05/01/2001	2454
Surr: Brompfluorobenzone	97.6	4		94-107	SW 8260B	05/01/2001	2464

ANALYTICAL REPORT

Mr.	Jon	Rayn	ond		
STA-	RIT	E IÑI	DUSTR	IES,	INC
293	SW	right	: Str	eet	
Dela	ivan	, WI	5311	5	

05/03/2001 Job No: 01.02754 Sample No: 434439 Account No: 67550 Page 6 of 14

JOB DESCRIPTION: Well Samples PROJECT DESCRIPTION: Volatile Analysis SAMPLE DESCRIPTION: EX-7 Rec'd on ice

Date/Time Taken: 04/19/2001 14:50 Date Received: 04/25/2001

Parameter	Results	Units	MDL	LOQ	Method	Date Analyzed	Prep/Run Batch
VOC - AQUEOUS - EPA 3260B							
Chloroethane	<1.0	ug/L	0.25	0.83	SW 8260B	05/01/2001	2469
Tetrachloroethene	56	ug/L	0.25	0,83	SW 8260B	05/01/2001	2469
1.1.1-Trichlorocthane	<1.0	ug/L	0.25	0.83	SW 8260B	05/01/2001	2469
Trichloroethene	110	ug/L	0.25	Q.83	SW 8260B	05/01/2001	2469
Vinvi Chloride	<1.0	uq/L	0,25	0.53	S¥ 8260B	05/01/2001	2469
Surr. Dibromofiuoromethand	102.2	*		94-108	SW 82608	05/01/2001	2469
Surry Toluenceds	99.0	ŧ		90-104	SH 9260B	05/01/2001	2469
Surr: Bromoflucrobenzene	97.8	¥		94-107	SW 8260B	05/01/2001	2469

MAY-16-2001 14:51

STA-RITÉ IND.

1 262 728 7213 P.08/18

ANALYTICAL REPORT

05/03/2001 Mr. Jon Raymond Job No: 01.02754 STA-RITE INDUSTRIES, INC Sample No: 434440 Account No: 67550 Page 7 of 14 293 S Wright Street Delavan, WI 53115

JOB DESCRIPTION: Well Samples Volatile Analysis PROJECT DESCRIPTION: SAMPLE DESCRIPTION: CSES Rec'd on ice

Date/Time Taken: 04/19/2001 14:57 Date Received: 04/25/2001

						Date	Prep/Run
Parameter	Results	Units	MDL	LOQ	Method	Analyzed	Batch
VOC - AQUEOUS - EPA 8260B							
Chloroethanc	<0.25	ug/L	0.25	0.93	SW \$260B	05/01/2001	2469
Tetrachloroethene	<0.25	ug/L	0.25	0.93	SW \$260B	05/01/2001	2469
1,1,1-Trichloroethane	17	ug/L	0.25	0,83	SW 8260B	05/01/2001	2469
Trichloroethene	13	ug/L	0.25	0.83	SW 8260B	05/01/2001	2469
Vinyl Chloride	<0.25	ug/L	0.25	0.83	SW 82608	05/01/2001	2459
Surr: Dibromofluoromethane	102.8	¥		94-105	SW 82608	05/01/2001	2469
Surr: Tolucne-d9	101.2	Ł		90-104	SW 8260B	05/01/2001	2469
Surr: Bromofluorobenzene	98.2	\$		94-107	SW 82608	05/01/2001	2469

Test/America NCORPORATED

ANALYTICAL REPORT

Mr. Jon Raymond		05/03/2001
STA-RITE INDUSTRIES,	INC	Job No: 01.02754
293 S Wright Street		Sample No: 434441
Delavan, ŴI 53115		Account No: 67550
		Page 8 of 14
		-

JOB DESCRIPTION: Well Samples PROJECT DESCRIPTION: Volatile Analysis SAMPLE DESCRIPTION: SES Rec'd on ice

Date/Time Taken: 04/19/2001 15:03 Date Received: 04/25/2001

						Date	Prep/Run
Parameter	Results	Units	MDL	LOQ	Method	Analyzed	Batch
VOC - AQUECUS - SPA 92608							
Chloroethans	<0.25	ug/L	0.25	0.83	SW 82608	05/01/2001	2464
Tetrachloroethene	1.4	ug/L	0.25	0.63	SW 82608	05/01/2001	2464
1,1,1-Trichloroethane	<0.25	ug/L	0.25	0.83	SW 92608	05/01/2001	2464
Trichloroethene	1.6	ug/L	C,25	0.83	SW 8260B	05/01/2001	2464
Vinyl Chloride	<0.25	ug/L	0.25	0.93	SW 0260B	05/01/2001	2464
Surr: Dibromofluoromothane	103.6	ŧ		94-109	SW 8260B	05/01/2001	2464
Surr: Toluene-d8	101.6	¥		90-104	SW 8260B	05/01/2001	2464
Surr: Bromofluorobenzene	98.2	\$		94-107	SW 8250B	05/01/2001	2464

STA-RITE IND.

ANALYTICAL REPORT

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, ŴI 53115

05/03/2001 Job No: 01.02754 Sample No: 434442 Account No: 67550 Page 9 of 14

JOB DESCRIPTION: Well Samples PROJECT DESCRIPTION: Volatile Analysis SAMPLE DESCRIPTION: EX-2 Rec'd on ice

Date/Time Taken: 04/19/2001 15:12 Date Received: 04/25/2001

						Date	Prep/Run
Parameter	Results	Unite	MDL	LOQ	Method	Analyzed	Batch
VOC - AQUEOUS - EPA 82608							
Chlorosthane	<0.25	սց/Ն	0.25	0.83	SW 8260B	05/01/2001	2454
Tetrachloroethene	<0.25	ug/L	0.25	0.33	SW 8260B	05/01/2001	2664
1,1,1-Trichloroethane	2.6	ug/L	0.25	0.63	SW 8260B	05/01/2001	2464
Trichloroethene	3.4	ug/L	0.25	0.63	SW 9260B	05/01/2001	2464
Vinyl Chloride	<0.25	ug/L	0.25	0.93	SW 8260B	05/01/2001	2464
Surr: Dibromofluoromethane	104.0	*		94-108	SW 82608	05/01/2001	2454
Surr: Toluene-d#	102.4	÷.		90-104	SW 9260B	05/01/2001	2454
Surr: Bromofluorobenzene	97.5	\$		94-107	SW \$260B	05/01/2001	2464

ANALYTICAL REPORT

Mr. Jon Raymond	05/03/2001
STA-RITE INDUSTRIES, INC	Job No: 01.02754
293 S Wright Street	Sample No: 434443
Delavan, WI 53115	Account No: 67550
	Page 10 of 14
TOR DESCRIPTION. Moll Complete	

JOB DESCRIPTION: Well Samples PROJECT DESCRIPTION: Volatile Analysis SAMPLE DESCRIPTION: EX-3 Rec'd on ice

Date/Time Taken: 04/19/2001 15:17 Date Received: 04/25/2001

						Date	Prep/Run
Parameter	Results	Units	MDL	LOQ	Method	Analyzed	Batch
VOC - AQUEOUS - EPA 5260B							
Chloroschane	<0.25	ug/L	0.25	6.63	SW 82608	05/01/2001	2464
Tetrachloroethene	<0.25	ug/L	0,25	0.83	SW \$260B	05/01/2001	2464
1,1,1-Trichloroethane	27	ug/L	0,25	0.53	SW 8260B	05/01/2001	2464
Trichlorosthene	38	ug/L	0.25	0.83	SW 8250B	05/01/2001	2464
Vinyl Chloride	<0.25	ug/L	0.25	0.83	SW 8260B	05/01/2001	2464
Surr: Dibromofluoromethanc	106.2	*		94-108	SW 8260B	05/01/2001	2464
Surr: Toluene-dS	100.4	ŧ		90-104	SW 82608	05/01/2001	2464
Surr: Bromofluorobenzene	96.4	*		94-107	SW 8260B	05/01/2001	2464

1 262 728 7213 P.12/18

STA-RITE IND.

ANALYTICAL REPORT

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, WI 53115

05/03/2001 Job No: 01.02754 Sample No: 434444 Account No: 67550 Page 11 of 14

JOB DESCRIPTION: Well Samples PROJECT DESCRIPTION: Volatile Analysis SAMPLE DESCRIPTION: TW-4 Rec'd on ice

Date/Time Taken: 04/23/2001 08:50 Date Received: 04/25/2001

Parameter	Regults	Units	MDL	roð	Method	Date Analyzed	Prep/Run Batch
VOC - AQUEOUS - EPA 9260B							
Chloroethane	<0.25	ug/L	0.25	0.83	SW 8260B	05/01/2001	2464
Tetrachloroethene	0.60	ug/L	0.25	0.83	SW 8260B	05/01/2002	2464
1,1,1-Trichlorosthane	290	ug/L	0.25	0,63	SW 8260B	05/03/2001	2475
Trichloroethene	240	ug/L	0.25	0.93	SW 8260B	05/03/2001	2475
Vinyl Chloride	<0.25	ug/L	0.25	0.83	SW 82608	05/01/2001	2464
Surr: Dibromofluoromechang	204.0	*		94-109	SW 82608	05/01/2001	2464
Surr: Tolyene-dö	98.4	£		90-104	SW 82608	05/01/2001	2464
Surr: Bromofluorobenzene	96.6	ŧ		94-107	SW 9260B	05/01/2001	2464

Test America N C O R P O R A T S D

ANALYTICAL REPORT

Mr. Jon Raymond	05/03/2001
STA-RITE INDUSTRIES, INC	Job No: 01.02754
293 S Wright Street	Sample No: 434445
Delavan, WI 53115	Account No: 67550
	Page 12 of 14

JOB DESCRIPTION: Well Samples PROJECT DESCRIPTION: Volatile Analysis SAMPLE DESCRIPTION: MW-1027 Rec'd on ice

Date/Time Taken: 04/23/2001 09:50 Date Received: 04/25/2001

						Date	Prep/Run
Parameter	Results	Units	MDL	LOQ	Method	Analyzed	Batch
VOC - AQUEQUS - EPA 82608							
Chloroethane	<1.0	ug/L	0.25	0.83	SW \$260B	05/01/2001	2469
Tetrachloroethene	<1.0	ug/L	0.25	0.83	SW 82602	05/01/2001	2469
1,1,1-Trichloroethane	4.8	ug/L	0.25	0,63	SW 8260B	05/01/2001	2469
Trichloroethene	150	vg/L	0.25	0.83	SW 3260B	05/01/2001	2469
Vinyl Chloride	<1.0	ug/L	0,25	0.33	SW 8260B	05/01/2001	2463
Surr: Dibromofluoromethane	102.8	ŧ		94-105	SM 8260B	05/01/2001	2469
Surr: Toluene-dâ	100.0	*		90-104	SW 8260B	05/01/2001	2469
Surr: Bromofluorobenzene	95.8	ł.		94-107	SW 82608	05/01/2001	2469

MAY-16-2001 14:52

STA-RITE IND.

ANALYTICAL REPORT

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, WI 53115

05/03/2001 Job No: 01.02754 Sample No: 434446 Account No: 67550 Page 13 of 14

JOB DESCRIPTION: Well Samples PROJECT DESCRIPTION: Volatile Analysis SAMPLE DESCRIPTION: D-25R Rec'd on ice

Date/Time Taken: 04/23/2001 10:40 Date Received: 04/25/2001

	Units	MDL	LOQ		Date Analyzed	Prep/Run Batch
Regults				Method		
<0.25	ug/L	0.25	0.93	SW 8260B	05/03/2001	2475
0.45	ug/L	0.25	0.83	SW 8260B	05/03/2001	2475
3.1	ug/L	0.25	0,83	SW 82508	05/03/2001	2475
4,3	ug/L	0.25	0.53	SW 6260B	05/03/2001	2475
<0.25	ug/L	0.25	0.83	SW 82602	05/03/2001	2475
100.2	¥		94-108	SW 8260B	05/03/2001	2475
98.0	3		90-104	SW 8260B	05/03/2001	2475
99.6	ŧ		94-107	SW 82602	05/03/2001	2475
	Regults 0.25 0.45 3.1 4.3 <0.25 100.2 98.0 98.6	Results Units <0.25	Results Unite MDL <0.25	Results Units MDL LOQ <0.25	Results Units MDL LOQ Method <0.25	Date Regults Units MDL LOQ Method Analyzed <0.25

MAY-16-2001 14:52

STA-RITE IND.

-

QUALITY CONTROL REPORT BLANKS

05/03/2001

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, WI 53115

Job No: 01.02754 Account No: 67550

Page 14 of 14

Job Description: Well Samples

	Prep	Run	Blank			
Parameter	Batch	Batch	Result	MDL	LOQ	Units
VOC - AQUEOUS - EPA 8260B						
Chloroethane		2464	<0.25	0.25	0.83	ug/L
Tetrachloroethene		2464	<0.25	0.25	0.83	ug/L
1,1,1-Trichloroethane		2464	<0.25	0.25	0.83	ug/L
Trichloroethene		2464	<0.25	0.25	0.83	ug/L
Vinyl Chloride		2464	<0.25	0.25	0.63	ug/L
Surr: Dibromofluoromethane		2464	105.6		94-108	\$
Surr: Toluene-d8		2464	100.4		90-104	a,e
Surr: Bromofluorobenzene		2464	98.6		94-107	ት
VOC - AQUEOUS - EPA 8260B						
Chloroethane		2469	<0.25	0.25	0.83	ug/L
Tetrachloroethene		2469	<0.25	0.25	0.83	ug/L
1,1,1-Trichloroethane		2469	<0.25	0.25	0.83	ug/L
Trichloroethene		2469	<0.25	0.25	0.83	ug/L
Vinvl Chloride		2469	<0.25	0.25	0.83	ug/L
Surr: Dibromofluoromethane		2469	100.8		94-108	άζο Γ
Surr: Toluene-d8		2469	99.6		90-104	ę.
Surr: Bromofluorobenzene		2469	95.8		94-107	*
VOC - AQUEOUS - EPA 8260B						
Chloroethane		2475	<0.25	0.25	0.93	ug/L
Tetrachloroethene		2475	<0.25	0.25	0.83	ug/L
1,1,1-Trichloroethane		2475	<0.25	0,25	0.83	ug/L
Trichloroethene		2475	<0.25	0.25	0.83	ug/L
Vinvl Chloride		2475	<0.25	0.25	0.83	ug/L
Surr: Dibromofluoromethane		2475	95.4		94-108	ş
Surr: Toluene-d8		2475	95.8		90-104	\$
Surr: Bromofluorobenzene		2475	94.2		94-107	5

Method blank results exceed control limits when results are higher than the highest of any of the following: 1 - The limit of detection; 2 - Five percent of the regulatory limit for that analyte; 3 - Five percent of the measured concentration in the sample. NR149.14 (3)d

602 COMMERCE DRIVE / WATERTOWN, W1 53094 / 920-261-1660 / FAX: 920-261-8120 WDNR No. 128083530
Ulidad 1	using the proper analytical methods. ng conducted for regulatory purposes? ance Monitoring			State:	2 RAYMOND	1 RAYMOND	PO#:					REMARKS	*	34 	3#* 1									currente + 🛞 🔥	Bottes supplied by TastAmarlow (1)	Method of Shpment:	
	aist us în s work bei Campli	ä			ĥ	よ	¥	bze For:	1500	130	10071	1			$\left \right $	_		$\overline{}$	$\overline{\mathbf{A}}$	\downarrow	,	7		633	ë	al 3'.(()	[a]
	To as is this	ect Nam	Project /	ocation {(Report To	nvoice T	Quote	Ana		כיול	740	1	7	2	7	7	7	7	5	2	<u>,</u>	<u>></u>			Titr	/o} T _{in}	126
		Proj	•	Site/L		_					t	24	7	7	7	2	7	2	2	7	2	2		Cr. S.	Date:	or he	Å.
					<u>813</u>						32	Ч Ч	-	-		-	7	>	7	2	<u> </u>	2		2			
					2 - 2						<u> </u>	5			7	1 1	-+	╶┼	~ ′		- -	7 		\mathbb{N}		5	
	-1660 -8120	ž ž			- 72			oniziner			(Specify)	9uon	-								-+				J	2	,
	20-261 20-261		5		262			18.# of ('OS ^z H												J.A	法	By:	
	hone: ax: 5	۲ ۱	5		Fax	R.		servation				N®OH HCI	त											Soelved	boelved	eceived	
	a. 11	4 2 2		ð	214	102	C al	bie Na	دية مسعد	ads ×	пемвіседа	^с олн - мм	<u>भ</u>	2	4	4			7	4	┛	ļ		<u> </u>	2 2	Ĕ	
	viston & Drive 11 53094		3	82	- 2	17		Ma	iding Watter	ير S. /-0ب	Princered NG Spui NG Spui Princered	5 - 15 5 - 15	5		_						-	_	1	inne:	ц Ш Ш	ech.	
	own Dl mmerc awn, V	- 3 W V	3	2	228	5		•	- এই হল	പ്നാ	= D .den) = 9	72	ž	Ž	5	Ì	<u>}</u>	\$	Z	7	2		10/	5		
	Walert 602 Cc Watert	2 01	Z	2	5	3		7			balqme2	ອເກເໄ	22.55	21	1 256	2009	250	257	3036	312	27.6	8500		Date:		Date:	
	Ca	STS STS		6	26	5	K				beigmes	etsO	4 - 19	4.19	4.19	۲. اح ا	۲. ק	4.5	4.19	2.5	•- · +	2	くす				
	Test/Ameri	Client Name, Address:	City/State/Zip Code:	Project Manager.	Telephone Number:	Sampler Name: (Print Name)	Sampter Signature:		TAT Stendard Rush (surcharges may apply)	Date Needed:	Fax Results: Y N	SAMPLE ID	Soot mw	2-15	16.3	D+18	EK 7	C585	555	52-2	2×٠3	Tw.4	Special Instructions Reed 4/24	CO CAM NOND Relinguisted BY:	Reinquished By:	Relinquished By:	

MAY-16-2001 14:53 STA-RITE IND.

1 262 728 7213 P.16/18

MAY-16-2001 14:53

STA-RITE IND.

1 262 728 7213 P.17/18

BI.9 JATOT	1			1	}			[ł		[ĺ			•								
<u>-</u> ;	REMARKS				*										;								
Š	SAMPLER	INT ALS	22	100	old l	x v v	K K	e e e	R.K.	م م ب ب ر	d'al	مر م	250	AN No									
GRAN	TEMP.							101	74													-	
S PRC	CONDUCT-														•								
STRIE VG DZ	Hď.					ŀ									•								
SAMF SAMF	PURGE VOLUME	9.01	4.68	10.73	6.16						0a/		2.5	200.									
RITE. TER SAI	FEET OF WATER	13.82	. 8/1	16.46	9.46						18.90	9 12	1.97					-					
	WATER LEVEL	22.32	30.82,	31.54	29.82						34.52	28.58	31.90	0) 7 7
SOUNE	WELL	36.14	38.00	48.00	39.17					.	50.48	37.71	43 25									• •	1
GF GF	TIME	11 55 M	W YOFM	NA SLU	2:2084	2!SOPM	ers? Pry	NQ EOIE	312 PM	3°17 PM	8:50 km	9 SO AM	1 0:40 AM									-	
:	DATE	4. 19-01	4-19-01	10.11.14	4.19.01	4.19.01	4-18-01	4-19.Dr	4-19.01	4. 19.01	4.23.31	4.23.01	4 23.01										1) 1 0 22
	SAMPLE NUMBER					-																	
,	WELL. JUMBER	714 2005	21-15	<u>د-</u> س	5-18	<u> </u>	525	Q	K-2	, E - X	2-4	7 1027	-25.6	 						1			Well n

•

ANALYTICAL AND QUALITY CONTROL REPORT

TestAmerica

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, WI 53115 10/04/2000 Job No: 00.08405 Page 1 of 24

Enclosed are the Analytical and Quality Control reports for the following samples submitted for analysis:

Sample Number	Sample Description	Date Taken	Date Received
412680	MW2005	09/25/2000	09/27/2000
412681	SS-1	09/25/2000	09/27/2000
412682	D-15	09/25/2000	09/27/2000
412683	TW-3	09/25/2000	09/27/2000
412684	D-18	09/25/2000	09/27/2000
412685	MW1027	09/25/2000	09/27/2000
412686	MW2004	09/26/2000	09/27/2000
412687	TW-1	09/26/2000	09/27/2000
412688	D25R	09/26/2000	09/27/2000
412689	TW-4	09/26/2000	09/27/2000
412690	EX - 7	09/26/2000	09/27/2000
412691	EX-1	09/26/2000	09/27/2000
412692	EX-2	09/26/2000	09/27/2000
412693	EX-3	09/26/2000	09/27/2000
412694	CSES	09/27/2000	09/27/2000

Soil results are reported on a dry weight basis. The above sample(s) may have a result flag shown on the report. The following are the result flag definitions:

- A = Analyzed/extracted past hold time
- C = Standard outside of control limits
- F = Sample filtered in lab
- H = Late eluting hydrocarbons present
- J = Estimated concentration
- M = Matrix interference
- Q = Result confirmed via re-analysis
- T = Does not match typical pattern
- X = Unidentified compound(s) present

- B = Blank is contaminated
- D = Diluted for analysis
- G = Received past hold time
- I = Improperly handled sample
- L = Common lab solvent and contaminant
- P = Improperly preserved sample
- S = Sediment present
- W = BOD re-set due to missed dilution
- Z = Internal standard outside limits

Brian D. DeJong Organic Operations Manager

ANALYTICAL AND QUALITY CONTROL REPORT

TestAmerica

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, WI 53115 10/04/2000 Job No: 00.08405

Page 2 of 24

Enclosed are the Analytical and Quality Control reports for the following samples submitted for analysis:

Sample	Sample Description	Date	Date
Number		Taken	Received
412695	SES	09/27/2000	09/27/2000

Soil results are reported on a dry weight basis. The above sample(s) may have a result flag shown on the report. The following are the result flag definitions:

- A = Analyzed/extracted past hold time
- C = Standard outside of control limits
- F = Sample filtered in lab
- H = Late eluting hydrocarbons present
- J = Estimated concentration
- M = Matrix interference
- Q = Result confirmed via re-analysis
- T = Does not match typical pattern
- X = Unidentified compound(s) present

B = Blank is contaminated

- D = Diluted for analysis
- G = Received past hold time
- I = Improperly handled sample
- L = Common lab solvent and contaminant
- P = Improperly preserved sample
- S = Sediment present
- W = BOD re-set due to missed dilution
- Z = Internal standard outside limits

Brion Def

Brian D. DeJong Organic Operations Manager

Test/Merica

ANALYTICAL REPORT

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, WI 53115 10/04/2000 Job No: 00.08405 Sample No: 412680 Account No: 67550 Page 3 of 24

JOB DESCRIPTION: Annual Sampling PROJECT DESCRIPTION: Groundwater Analysis SAMPLE DESCRIPTION: MW2005 Rec'd on ice

Date/Time Taken: 09/25/2000 10:20

Date Received: 09/27/2000

-

Parameter	Results	Units	MDL	LCQ	Method	Date Analyzed	Prep/Run Batch
VOC - AQUECUS - EPA 8260B							
Tetrachloroethene	1.7	ug/L	0.63	2.0	SW 8260B	09/28/2000	754
1.1.1-Trichloroethane	<0.28	ug/L	0.28	0.88	SW 8260B	09/28/2000	754
Trichloroethese	<0.49	ug/L	0.49	1.6	SW 8260B	09/28/2000	754
Surr: Dibromofluoromethane	110.4	¥		83-125	SW 8260B	09/28/2000	754
Surr: Toluene-d8	100.0	¥.		90-110	SW 8260B	09/28/2000	754
Surr: Bromofluorobenzene	104.4	ŝ		86-115	SW 8260B	09/28/2000	754

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, WI 53115

10/04/2000 Job No: 00.08405 Sample No: 412681 Account No: 67550 Page 4 of 24

JOB DESCRIPTION: Annual Sampling PROJECT DESCRIPTION: Groundwater Analysis SS-1 SAMPLE DESCRIPTION: Rec'd on ice

Date/Time Taken: 09/25/2000 11:30 Date Received: 09/27/2000

Parameter	Results	Units	MDL	LOQ	Method	Date Analyzed	Prep/Run Batch
VOC - AQUEOUS - EPA 0260B							
Tetrachloroethene	<0.63	ug/L	0.63	2.0	SW 8260B	09/28/2000	754
1,1,1-Trichloroethane	0.37	ug/L	0.28	0.88	SW 8260B	09/28/2000	754
Trichloroethene	2.1	ug/L	0.49	1.6	SW 8260B	09/28/2000	754
Surr: Dibromofluoromethane	110.8			83-125	\$₩ 8260B	09/28/2000	754
Surr: Toluene-d8	99.0	0. P		90-110	SW 82609	09/28/2000	754
Surr: Bromofluorobenzene	102.B	20		86-115	SW 8260B	09/28/2000	754

Test/Merica

-

ANALYTICAL REPORT

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, WI 53115 10/04/2000 Job No: 00.08405 Sample No: 412682 Account No: 67550 Page 5 of 24

JOB DESCRIPTION: Annual Sampling PROJECT DESCRIPTION: Groundwater Analysis SAMPLE DESCRIPTION: D-15 Rec'd on ice

Date/Time Taken: 09/25/2000 11:40

					Date	Prep/Run
Results	Units	MDL	LOQ	Method	Analyzed	Batch
19	ug/L	0.63	2.0	SW 8260B	09/28/2000	754
0.77	ug/L	0.28	0.88	SW 8260B	09/28/2000	754
85	ug/C	0.49	1.6	SW 8260B	09/28/2000	754
110.0	뫅		83-125	SW 8260B	09/28/2000	754
98.0	5		90-110	SW 8260B	09/28/2000	754
103.4	9 <u>1</u>		86-115	SW 8260B	09/28/2000	754
	Results 19 0.77 85 110.0 98.0 103.4	Results Units 19 ug/L 0.77 ug/L 85 ug/L 110.0 % 98.0 % 103.4 %	Results Units MDL 19 ug/L 0.63 0.77 ug/L 0.28 85 ug/L 0.49 110.0 % 98.0 \$ 103.4 %	Results Units MDL LOQ 19 ug/L 0.63 2.0 0.77 ug/L 0.28 0.88 85 ug/L 0.49 1.6 110.0 % 83-125 98.0 % 90-110 103.4 % 86-115 86-115 86-115	Results Units MDL LOQ Method 19 ug/L 0.63 2.0 SW 8260B 0.77 ug/L 0.28 0.88 SW 8260B 85 ug/L 0.49 1.6 SW 8260B 110.0 % 83-125 SW 8260B 98.0 % 90-110 SW 8260B 103.4 % 86-115 SW 8260B	Date Results Units MDL LOQ Method Analyzed 19 ug/L 0.63 2.0 SW 8260B 09/28/2000 0.77 ug/L 0.28 0.88 SW 8260B 09/28/2000 85 ug/L 0.49 1.6 SW 8260B 09/28/2000 110.0 % 83-125 SW 8260B 09/28/2000 98.0 % 90-110 SW 8260B 09/28/2000 103.4 % 86-115 SW 8260B 09/28/2000

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, WI 53115

10/04/2000 Job No: 00.08405 Sample No: 412683 Account No: 67550 Page 6 of 24

JOB DESCRIPTION: Annual Sampling PROJECT DESCRIPTION: Groundwater Analysis SAMPLE DESCRIPTION: TW-3 Rec'd on ice

Date/Time Taken: 09/25/2000 12:20 Date Received: 09/27/2000

Parameter	Results	Units	MDL.	LOQ	Method	Date Analyzed	Prep/Run Batch
						-	
VOC - AQUECUS - EPA 8260B							
Tetrachloroethene	1.5	ug/L	0.63	2.0	SW 8260B	09/29/2000	761
1,1,1-Trichloroethane	0.72	ug/L	0.28	0.88	SW 8260B	09/29/2000	761
Trichlorgethene	3.0	ug/L	0.49	1.6	SW 8260B	09/29/2000	761
Surr: Dibromofluoromethane	110.2	활		\$3-125	SW 9260B	09/29/2000	761
Surr: Toluene-d8	97.6	8		90-110	SW 8260B	09/29/2000	761
Surr: Bromofluorobenzene	100.0	\$		36-115	SW 8260B	09/29/2000	761

Test/America

ANALYTICAL REPORT

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, ŴI 53115

-

10/04/2000 Job No: 00.08405 Sample No: 412684 Account No: 67550 Page 7 of 24

JOB DESCRIPTION: Annual Sampling PROJECT DESCRIPTION: Groundwater Analysis D-18 SAMPLE DESCRIPTION: Rec'd on ice

Date/Time Taken: 09/25/2000 13:10 Date Received: 09/27/2000

D	D =) = -	11- i	MDT	7.00	14-11-2	Date	Prep/Run	
Parameter	Results	Units	MDT	TOÕ	меспоа	Analyzeo	Bacch	
VOC - AQUECUS - EPA \$260B								
Tetrachloroethene	2.5	ug/L	0.63	2.0	SW 8260B	09/28/2000	754	
1,1,1-Trichloroethane	<0.28	ug/L	0.28	0.88	SW 8260B	09/28/2000	754	
Trichloroethene	2.4	ug/L	0.49	1.5	SW 9260B	09/28/2000	754	
Surr: Dibromofluoromethane	117.0	*		83-125	SW 8260B	09/28/2000	754	
Surr: Toluene-d8	97.3	oj∎		93-110	SW 9260B	09/28/2000	754	
Surr: Bromofluorobenzene	102.6	ŝ		85-115	SW 82608	09/28/2000	754	

Mr. Jon Raymond	10/04/2000
STA-RITE INDUSTRIES, INC	Job No: 00.08405
293 S Wright Street	Sample No: 412685
Delavan, ŴI 53115	Account No: 67550
	Page 8 of 24

JOB DESCRIPTION: Annual Sampling PROJECT DESCRIPTION: Groundwater Analysis MW1027 SAMPLE DESCRIPTION: Rec'd on ice

Date/Time Taken: 09/25/2000 13:55 Date Received: 09/27/2000

-

						Date	Prep/Run
Parameter	Results	Units	MDL	LOQ	Method	Analyzed	Batch
VOC - AQUEOUS - EPA 8250B							
Tetrachloroethene	<3.2	ug/L	0.63	2.0	SW 8260B	09/29/2000	761
1,1,1-Trichloroethane	9.4	ug/L	0.28	0.88	SW 8260B	09/29/2000	761
Trichloroethene	220	ug/L	0.49	1.6	SW 8260B	39/29/2000	761
Surr: Dibromofluoromethane	118.6	ala		83-125	SW 8260B	09/29/2000	761
Surr: Toluene-d8	99.4	ŧ.		90-110	SW 8260B	09/29/2000	761
Surr: Bromofluorobenzene	205.4	9 <u>1</u>		86-115	SW 8260B	09/29/2000	761

Test/America N C O R P O R A T E D

ANALYTICAL REPORT

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, WI 53115

10/04/2000 Job No: 00.08405 Sample No: 412686 Account No: 67550 Page 9 of 24

JOB DESCRIPTION: Annual Sampling PROJECT DESCRIPTION: Groundwater Analysis SAMPLE DESCRIPTION: MW2004 Rec'd on ice

-

Date/Time Taken: 09/26/2000 08:40 Date Received: 09/27/2000

						Date	Prep/Run
Parameter	Results	Units	MDL	LOQ	Method	Analyzed	Batch
VCC - AQUEOUS - EPA 8260B							
Tetrachloroethene	<0.63	ug/L	0.63	2.0	SW 8260B	09/29/2000	761
1,1,1-Trichloroethane	<0.28	ug/L	0.28	0.88	SW 8260B	09/29/2000	761
Trichloroethene	< 0.49	ug/L	0.49	1.5	SW 8260B	09/29/2000	761
Surr: Dibromofluoromethane	110.8	eje		83-125	SW 8260B	09/29/2000	761
Surr: Toluene-d8	96.6	2		90-110	SW 8260B	09/29/2000	761
Surr: Bromofluorobenzene	134.4	*		86-115	SW 8260B	09/29/2000	761

TestAmerica N C O R P O R A T E O

ANALYTICAL REPORT

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, ŴI 53115

10/04/2000 Job No: 00.08405 Sample No: 412687 Account No: 67550 Page 10 of 24

JOB DESCRIPTION: Annual Sampling PROJECT DESCRIPTION: Groundwater Analysis TW-1 SAMPLE DESCRIPTION: Rec'd on ice

Date/Time Taken: 09/26/2000 11:50 Date Received: 09/27/2000

-

Parameter	Results	Units	MDL	LOQ	Method	Date Analyzed	Prep/Run Batch
VOC - AQUEOUS - EPA 8260B							
Tetrachloroethene	1.1	ug/L	0.63	2.0	SW 82608	09/29/2000	761
1,1,1-Trichloroethane	0.81	ug/L	0.28	C.88	SW 8260B	09/29/2000	761
Trichloroethene	7.3	ug/L	0.49	1.6	SW 8260B	09/29/2000	761
Surr: Dibromofluoromethane	108.2	9. •		83-125	SW 8260B	09/29/2000	761
Surr: Toluene-dB	97.2	\$		90-110	SW 8260B	09/29/2000	761
Surr: Bromofluorobenzene	103.2	de .		86-115	SW 8260B	09/29/2000	761

Test/America

ANALYTICAL REPORT

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, ŴI 53115

10/04/2000 Job No: 00.08405 Sample No: 412688 Account No: 67550 Page 11 of 24

JOB DESCRIPTION: Annual Sampling PROJECT DESCRIPTION: Groundwater Analysis D25R SAMPLE DESCRIPTION: Rec'd on ice

Date/Time Taken: 09/26/2000 12:32 Date Received: 09/27/2000

Parameter	Results	Units	MDL.	LOQ	Method	Date Analyzed	Prep/Run Batch
VCC - AQUEOUS - EPA 8260B							
Tetrachloroethene	0.82	ug/L	0.63	2.0	SW 8260B	09/28/2000	754
1,1,1-Trichloroethane	4.5	ug/L	0.28	0.88	SW 82608	09/28/2000	754
Trichloroethene	4.7	ug/L	0.49	1.6	SW 52603	09/28/2000	754
Surr: Dibromofluoromethane	108.6	*		83-125	SW 82603	09/28/2000	754
Surr: Toluene-d8	101.2	¥		90-110	SW 82608	09/28/2000	754
Surr: Bromofluorobenzene	103.0	돰		86-115	SW 82608	09/28/2000	754
1,1,1-Trichloroethane Trichloroethene Surr: Dibromofluoromethane Surr: Toluene-d8 Surr: Bromofluorobenzene	4.5 4.7 108.6 101.2 103.0	ug/L ug/L % %	0.28 0.49	0.88 1.6 83-125 90-110 86-115	SW 82608 SW 82609 SW 82603 SW 82608 SW 82608 SW 82608	09/28/2000 09/28/2000 09/28/2000 09/28/2000 09/28/2000	754 754 754 754 754

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, WI 53115 10/04/2000 Job No: 00.08405 Sample No: 412689 Account No: 67550 Page 12 of 24

JOB DESCRIPTION: Annual Sampling PROJECT DESCRIPTION: Groundwater Analysis SAMPLE DESCRIPTION: TW-4 Rec'd on ice

-

Date/Time Taken: 09/26/2000 13:25

						Date	Prep/Run
Parameter	Results	Units	MDL	LOQ	Method	Analyzed	Batch
VOC - AQUEOUS - EPA 8260B							
Benzene	<3.1	ug/L	0.31	J.98	SW \$260B	10/02/2000	764
Bromobenzene	<2.0	ug/L	0.20	0.64	SW 8260B	10/02/2000	754
Bromochloromethane	<3.2	ug/L	0.32	1.0	SW 8260B	10/02/2000	764
Bromodichloromethane	<2.0	ug/L	0.20	0.63	SW 8260B	10/02/2000	764
Bromoform	<1.4	ug/L	0.14	0.45	SW 8260B	10/02/2000	764
Bromomethane	<4.6	ug/L	0.46	1.5	SW 8260B	10/02/2000	764
n-Butylbenzene	<4.4	ug/L	0.44	1.4	SW 8260B	10/02/2000	764
sec-Bubylbanzene	44.5	ugyь	0.45	1.4	SW 8266B	10/02/2000	764
tert-Butylbenzene	<3.8	ug/L	0.30	1.2	SW 8260B	10/02/2000	764
Carbon Tetrachloride	<4.0	ug/L	0.40	1.3	SW 8260B	10/02/2000	764
Chlorobenzene	<2.2	ug/L	0.22	0.69	SW 8260B	10/02/2000	764
Chlorodibromomethane	<2.0	ug/L	0.10	0.33	SW 9260B	10/02/2000	764
Chloroethane	<12	ug/L	1.2	3.9	SW 82603	10/02/2000	764
Chloroform	<1,8	ug/L	0.18	0.58	SW 8260B	10/02/2000	764
Chloromethane	< 3.8	ug/L	0.38	1.2	SW 8260B	10/02/2000	764
2-Chlorotoluene	< 2.9	ug/L	0.28	0.90	SW 8260B	10/02/2000	764
4-Chlorotoluene	<4.7	ug/L	0.47	1.5	SW 8250B	10/02/2000	764
1,2-Dibromo-3-Chloropropane	<14	ug/L	1.4	4.5	SW 8260B	10/02/2000	764
1,2-Dibromoethane (EDB)	<0.16	ug/L	0.16	0.51	SW 8260B	10/01/2000	764
Dibromomethane	<1.1	ug/L	0.11	0.36	SW 8260B	10/02/2000	764
1,2-Dichlorobenzene	<2.0	ug/L	0.20	0.64	SW 8260B	10/02/2000	764
1,3-Jichlorobenzene	<2.2	ug/L	0.22	0.71	SW 8260B	10/02/2000	764
1,4-Dichlorobenzene	<3.5	ug/L	0.35	1.1	SW 82603	10/02/2000	- * -
Dichlorodifluoromethane	<4.9	ug/L	0.49	1.5	SW 8260B	10/02/2000	764
1,1-Dichloroethane	5.2	ug/L	0.25	0.79	SW 8260B	10/02/2000	764
1,2-Dichloroethane	<2.0	ug/L	0.20	0.63	SW 8260B	10/02/2000	764
1,1-Dichloroethene	15	ug/⊑	0.73	2.3	SW 8260B	10/02/2000	764
cis-1,2-Dichloroethene	10	ug/L	0.23	0.74	SW 8260B	10/02/2000	764
trans-1,2-Dichloroethene	<3.9	ug/L	0.39	1.2	SW 8260B	10/02/2000	764
1,2-Dichloropropane	<2.9	ug/L	0.29	0.93	SW 8260B	10/02/2000	764
1.3-Dichloropropane	<1.5	ug/L	0.15	0.46	SW 8260B	10/02/2000	764
2,2-Dichloropropane	<0.37	ug/L	0.37	1.2	SW 8260B	10/01/2000	764
1,1-Dichloropropene	<6.3	ug/L	0,63	2.0	SW 8260B	10/02/2000	764
cis-1,3-Dichloropropene	<1.7	ug/L	0.17	0.5 6	SW 8260B	10/02/2000	764
trans-1,3-Dichloropropene	<1.3	ug/L	0.13	0.42	SW 8260B	10/02/2000	764
Di-isopropyl ether	<1.3	ug/L	0.13	0.41	SW 8260B	10/02/2000	764
Ethylbenzene	<3.8	ug/L	0.38	1.2	SW 8260B	10/02/2000	764
Hexachlorobutadiene	<3.7	ug/L	0.37	1.2	SW 8260B	10/02/2000	764

Mr. Jon Raymond. STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, WI 53115

10/04/2000 Job No: 00.08405 Sample No: 412689 Account No: 67550 Page 13 of 24

JOB DESCRIPTION: Annual Sampling PROJECT DESCRIPTION: Groundwater Analysis SAMPLE DESCRIPTION: TW-4 SAMPLE DESCRIPTION: Rec'd on ice

Date/Time Taken: 09/26/2000 13:25 Date Received: 09/27/2000

• ·

						Date	Frep/Run
Parameter	Results	Units	MDL	LOQ	Method	Analyzed	Batch
Isopropylbenzene	<3.6	ug/L	0.36	1.1	SW 8260B	10/02/2000	764
p-Isopropyltoluene	<3.5	ug/L	0.35	1.1	SW 8260B	10/02/2000	764
Methylene Chloride	<8.7	ug/L	0.87	3.1	SW 8260B	10/02/2000	764
Methyl-t-butyl ether	<1.4	ug/L	0.14	0.45	SW 8260B	10/02/2000	764
Naphthalene	<3.5	ug/L	C.35	1.1	SW 8260B	10/02/2000	764
n-Propylbenzene	<4.6	ug/L	0.46	1.5	SW 8260B	10/02/2000	764
Styrene	<1.6	ug/L	0.16	0.51	SW 8260B	10/02/2000	764
1,1,1,2-Tetrachloroethane	<1.1	ug/L	0.11	0.34	SW 8260B	10/02/2000	764
1,1,2,1-Tetrac.loroethane	<3.9	ug/L	0.39	1.3	SW 8250B	10/02/2000	764
Tetrachloroethene	<6.3	ug/L	0.63	2.0	SW 8260B	10/02/2000	764
Toluene	<3.9	ug/L	0.39	1.3	SW 8260B	10/02/2000	764
1,2,3-Trichlorobenzene	<3.2	ug/L	0.32	1.0	SW 8260B	10/02/2000	764
1,2,4-Trichlorobenzene	<1.9	ug/L	0.18	0.57	SW 8260B	10/02/2000	764
1,1,1-Trichloroethane	340	ug/L	0.28	0.88	SW 8260B	10/02/2000	764
1,1,2-Trichloroethane	<1.5	ug/L	0.15	0.46	SW 8260B	10/02/2000	764
Trichloroethene	230	ug/L	0.49	1.6	SW \$260B	10/02/2000	764
Trichlorofluoromethane	<5.8	ug/L	0.58	1.8	SW 8260B	10/02/2000	764
1,2,3-Trichleropropane	<2.8	ug/L	0.28	0.90	SW 8260B	10/02/2000	764
1,2,4-Trimethylbenzene	< 3 . 2	ug/L	0.32	1.0	SW 8260B	10/02/2000	764
1,3,5-Trimethylbenzene	<3.3	ug/L	0.33	1,0	SW 8260B	10/02/2000	764
Vinyl Chloride	<4.6	ug/L	0.46	1.5	SW 8260B	10/02/2000	764
Xylenes, Total	<11	ug/L	1.1	3.5	SW 8260B	10/02/2000	764
Surr: Dibromofluoromethane	101.4	\$		83-125	SW 8260B	10/01/2000	764
Surr: Toluene-d8	98.6	8		90-110	SW 8260B	10/01/2000	764
Surr: Bromofluorobenzene	97.0	4		86-115	SW 8260B	10/01/2000	764

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, WI 53115 10/04/2000 Job No: 00.08405 Sample No: 412690 Account No: 67550 Page 14 of 24

JOB DESCRIPTION: Annual Sampling PROJECT DESCRIPTION: Groundwater Analysis SAMPLE DESCRIPTION: EX-7 Rec'd on ice

Date/Time Taken: 09/26/2000 14:00

Parameter	Results	Units	MDL	LOQ	Method	Date Analyzed	Prep/Run Batch
VOC - AQUECUS - EPA 8260B							
Tetrachloroethene	56	ug/L	0.63	2.0	SW 8260B	09/29/2000	751
1,1,1-Trichloroethane	<0.56	ug/L	0.28	0.88	SW 8260B	09/29/2000	761
Trichloroethene	140	ug/L	0.49	1.6	SW 8260B	09/29/2000	761
Surr: Dibromofluoromethane	119.6	¥		83-125	SW 8260B	09/29/2000	761
Surr: Toluene-d8	97.8	2		90-110	SW 8260B	09/29/2000	761
Surr: Bromofluorobenzene	104.6	5		86-115	SW 8260B	09/29/2000	761

Test/America NCORPORATE

-

ANALYTICAL REPORT

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, ŴI 53115

10/04/2000 Job No: 00.08405 Sample No: 412691 Account No: 67550 Page 15 of 24

JOB DESCRIPTION: Annual Sampling PROJECT DESCRIPTION: Groundwater Analysis EX-1 SAMPLE DESCRIPTION: Rec'd on ice

Date/Time Taken: 09/26/2000 14:10 Date Received: 09/27/2000

Parameter	Results	Units	MDL	LOQ	Method	Date Analyzed	Prep/Run Batch
VOC - AQUEOUS - EPA 8260B							
Tetrachloroethene	3.0	ug/L	0.63	2.0	SW 8260B	09/29/2600	761
1,1,1-Trichloroethane	0.39	ug/L	0.28	0.88	SW 8260B	09/29/2000	761
Trichloroethene	11	ug/L	0.49	1.6	SW 8260B	09/29/2000	761
Surr: Dibromofluoromethane	118.2	8		83-125	SW 8260B	09/29/2000	761
Surr: Toluene-d8	98.2	¥		90-110	SW 8260B	09/29/2000	761
Surr: Bromofluorobenzene	105.0	4		86-115	SW 8260B	09/29/2000	761

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, WI 53115 10/04/2000 Job No: 00.08405 Sample No: 412692 Account No: 67550 Page 16 of 24

JOB DESCRIPTION: Annual Sampling PROJECT DESCRIPTION: Groundwater Analysis SAMPLE DESCRIPTION: EX-2 Rec'd on ice

Date/Time Taken: 09/26/2000 14:30

						Date	Prep/Run	
Parameter	Results	Units	MDL	LOQ	Method	Analyzed	Batch	
VOC - AQUEOUS - EPA 8250B								
Tetrachloroethene	<0.63	ug/L	0.63	2.0	SW 8260B	09/29/2000	761	
1,1,1-Trichloroethane	18	ug/L	0.28	0.88	SW 8260B	09/29/2000	761	
Trichloroethene	36	ug/L	0.49	1.6	SW 8260B	09/29/2000	761	
Surr: Dibromofluoromethane	108.8	s ta		83-125	SW 8260B	09/29/2000	761	
Surr: Toluene-d8	98.8	*		90-110	SW 8260B	09/29/2000	761	
Surr: Bromofluorobenzene	105.6	방		86-115	SW 8260B	09/29/2000	761	

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, WI 53115

•

10/04/2000 Job No: 00.08405 Sample No: 412693 Account No: 67550 Page 17 of 24

JOB DESCRIPTION: Annual Sampling PROJECT DESCRIPTION: Groundwater Analysis SAMPLE DESCRIPTION: EX-3 Rec'd on ice

Date/Time Taken: 09/26/2000 14:20

						Date	Prep/Run
Parameter	Results	Units	MDL	LOQ	Method	Analyzed	Batch
VOC - AQUEOUS - EPA 8250B							
Tetrachloroethene	<0.63	ug/L	0.63	2.0	SW 82608	09/29/2000	761
1,1,1-Trichlorcethane	25	ug/L	0.28	0.98	SW 8260B	09/29/2000	761
Trichloroethene	28	ug/L	0.49	1.6	SW 8260B	09/29/2000	761
Surr: Dibromofluoromethane	108.4	육		83-125	SW 8260B	09/29/2000	751
Surr: Toluene-d8	97.2	*		90-110	SW 8260B	09/29/2000	761
Surr: Bromofluorobenzene	104.4	ŝ		86-115	SW 8260B	09/29/2000	761

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, WI 53115 10/04/2000 Job No: 00.08405 Sample No: 412694 Account No: 67550 Page 18 of 24

-

JOB DESCRIPTION: Annual Sampling PROJECT DESCRIPTION: Groundwater Analysis SAMPLE DESCRIPTION: CSES Rec'd on ice

Date/Time Taken: 09/27/2000 08:53

						Date	Prep/Run
Parameter	Results	Units	MDL	LOQ	Method	Analyzed	Batch
VOC - AQUEOUS - EPA 8260B							
Benzene	<0.31	ug/L	0.31	0.98	SW 8260B	09/29/2000	761
Bromobenzene	< 0.20	ug/L	0.20	0.64	SW 8260B	09/29/2000	761
Bromochloromethane	<0.32	ug/L	0.32	1.0	SW 8260B	09/29/2000	761
Bromodichloromethane	<0.20	ug/L	0.20	0.63	SW 8260B	09/29/2000	761
Bromoform	<0.14	ug/L	0.14	0.45	SW 8260B	09/29/2000	761
Sromomethane	<0.≑5	ug/L	0.46	1.5	SW 82609	09/29/2000	761
n-Butylbenzene	<0.44	ug/L	0.44	1.4	SW 8260B	09/29/2000	761
sec-Butylbenzene	<0.45	սց/Ն	0.45	1.4	SW 8260B	09/29/2000	761
tert-Butylbenzene	<0.39	ug/L	0,38	1.2	SW 8260B	09/29/2000	761
Carbon Terrachloride	<0.40	ug/L	0.40	1.3	SW 8260B	09/29/2000	761
Chlorobenzene	<0.22	ug/L	0.22	0.69	SW 8260B	09/29/2000	761
Chlorodibromomethane	<0.10	ug/L	0.10	0.33	SW 8260B	09/29/2000	761
Chloroethane	<1.2	ug/L	1.2	3.9	SW 8260B	09/29/2000	761
Chloroform	<0.13	ug/L	0.18	0.58	SW 8260B	09/29/2000	761
Chloromethane	<0.38	ug/L	0.38	1.2	SW 8260B	09/29/2000	761
2-Chlorotoluene	<0.28	ug/L	0.28	0.90	SW 8260B	09/29/2000	761
4-Chlorotoluene	<0.47	ug/L	0.47	1.5	SW 8260B	09/29/2000	761
1,2-Dibromo-3-Chloropropane	<1.4	ug/L	1.4	4.5	SW 8260B	09/29/2000	761
1,2-Dibromoethane (EDB)	<0.16	ug/L	0.16	0.51	SW 8260B	09/29/2000	761
Dibromomethane	<0.11	ug/L	0.11	0.36	SW 8260B	09/29/2000	761
1,2-Dichlorobensene	<0.27	ug/L	0.20	0.64	SW 8260B	09/29/2000	761
1,3-Dichlorobenzene	<0.22	ug/L	0.22	0.71	SW 8260B	09/29/2000	761
1,4.Dichlorobenzene	<0.35	ug/L	0.35	1.1	SW 8260B	09/29/2000	761
Dichlorodifluoromethane	<0.49	ug/L	0.49	1.6	SW 8260B	09/29/2000	761
1,1-Dichloroethane	0.35	ug/L	0.25	3.79	SW 8260B	09/29/2000	761
1,2-Dichloroethane	<0.20	ug/⊾	0.20	0.63	SW 8260B	09/29/2000	761
1,1-Dichloroethene	<0.73	ug/L	0.73	2.3	SW 8260B	09/29/2000	761
cis-1,2-Dichloroetheme	0.38	ug/L	0.23	0.74	SW 8260B	09/29/2000	761
trans-1,2-Dichloroethene	<0.39	ug/L	0.39	1.2	SW 8260B	09/29/2000	761
1,2-Dichloropropane	<0.29	ug/L	0.29	0.93	SW 8260B	09/29/2000	761
1,3-Dichloropropane	<0.15	ug/L	0.15	0.46	SW 8260B	09/29/2000	761
2,2-Dichloropropane	<0.37	ug/L	0.37	1.2	SW 8250B	09/29/2000	761
1,1-Dichloropropene	<0.63	ug/L	0.63	2.0	SW 8260B	09/29/2000	761
cis-1,3-Dichloropropene	<0.17	ug/L	0.17	0.56	SW 8250B	09/29/2000	761
trans-1,3-Dichloropropene	<0.13	ug/L	0.13	0.42	SW 8260B	09/29/2000	761
Di-isopropyl ether	<0.13	ug/L	0.13	0,41	SW 8260B	09/29/2000	761
Ethylbenzene	<0.30	ug/L	0.38	1.2	SW 8260B	09/29/2000	761
Hexachlorobutadiene	<0.37	ug/L	0.37	1.2	SW 8260B	09/29/2000	761

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, WI 53115 10/04/2000 Job No: 00.08405 Sample No: 412694 Account No: 67550 Page 19 of 24

÷

JOB DESCRIPTION: Annual Sampling PROJECT DESCRIPTION: Groundwater Analysis SAMPLE DESCRIPTION: CSES Rec'd on ice

Date/Time Taken: 09/27/2000 08:53

Date Received: 09/27/2000

Date Prep/Rup

						Dato	
Parameter	Results	Units	MDL	LOQ	Method	Analyzed	Batch
Isopropylbenzene	<0.36	ug/L	0.36	1.1	SW 8260B	09/29/2000	761
p-Isopropyltoluene	<0.35	ug/L	0.35	1.1	SW 8260B	09/29/2000	761
Methylene Chloride	<0.87	ug/L	0.87	3.1	SW 8260B	09/29/2000	761
Methyl-t-butyl ether	<0.14	ug/L	0.14	0.45	SW 8260B	09/29/2000	761
Naphthalene	<0.35	ug/L	0.35	1.1	SW 8260B	09/29/2000	761
n-Propylbenzene	<0.46	ug/L	0.46	1.5	SW 0260B	09/29/2000	761
Styrene	<0.15	ug/L	0.15	0.51	SW 82608	09/29/2000	761
1,1,1,2-Tetrachloroethane	<0.11	ug/L	0.11	0.34	SW 8260B	09/29/2000	761
1,1,2,2-Tetrachloroethane	<0.39	ug/L	0.39	1.3	SW 8260B	09/29/2000	761
Tetrachloroethene	<0.63	ug/L	С.63	2.9	SW 8260B	09/29/2000	761
Toluene	<0.39	ug/L	0.39	1.3	SW 8260B	09/29/2000	761
1,2,3-Trichlorobenzene	<0.32	ug/L	0.32	1.0	SW 8260B	09/29/2000	761
1,2,4-Trichlorobenzene	<0.18	ug/L	0.18	0.57	SW 8260B	09/29/2000	761
1,1,1-Trichloroethane	19	ug/L	0.20	0.88	SW 8260B	09/29/2000	761
1,1,2-Trichloroethane	0.32	ug/L	0.15	0.46	SW 8260B	09/29/2000	761
Trichloroethene	14	ug/L	0.49	1.6	SW \$260B	09/29/2000	761
Trichlorofluoromethane	<0.58	ug/L	0.58	1.9	SW 8260B	09/29/2000	761
1,2,3-Trichloropropane	<0.28	ug/L	0.28	0,90	SW 8260B	09/29/2000	761
1,2.4-Trimethylbenzene	<0.32	ug/L	0.32	1.0	SW 8260B	09/29/2000	761
1,3,5-Trimethylbenzene	<0.33	ug/L	0.33	1.0	SW 8260B	09/29/2000	761
Vinyl Chloride	<0.46	ug/L	0.46	1.5	SW 8260B	09/29/2000	761
Xylenes, Total	<1.1	ug/L	1.1	3.6	SW 8260B	09/29/2000	761
Surr: Dibromofluoromethane	107.2	¥		83-125	SW 8260B	09/2 9/2000	761
Surr: Toluene-dB	98.6	ž		90-110	SW 8260B	09/29/2000	761
Surr: Bromofluorobenzene	105.4	ŧ		86-115	SW 8260B	09/29/2000	761

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, WI 53115 10/04/2000 Job No: 00.08405 Sample No: 412695 Account No: 67550 Page 20 of 24

JOB DESCRIPTION: Annual Sampling PROJECT DESCRIPTION: Groundwater Analysis SAMPLE DESCRIPTION: SES Rec'd on ice

Date/Time Taken: 09/27/2000 09:02

						Date	Prep/Run
Parameter	Results	Units	MDL	LOQ	Method	Analyzed	Batch
VOC - AQUECUS - SPA 8260B							
Tetrachloroethene	2.2	ug/L	0.63	2.0	SW 8260B	09/29/2000	761
1,1,1-Trichloroethane	0.35	ug/L	0.28	0.88	SW 8260B	09/29/2000	761
Trichloroethene	2.2	ug/L	0.49	1.6	SW 8260B	09/29/2000	761
Surr: Dibromofluoromethane	113.6	봠		83-125	SW 8260B	09/29/2000	761
Surr: Toluene-da	97.6	桻		90-110	SW 8260B	09/29/2000	761
Surr: Bromofluorobenzene	104.2	1		86-115	SW 8260B	09/29/2000	761

QUALITY CONTROL REPORT BLANKS

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, WI 53115 10/04/2000

Job No: 00.08405 Account No: 67550

Page 21 of 24

Job Description: Annual Sampling

Darameter	Prep	Run	Blank			
Farameter	Batch	Batch	Result	MDL	LOQ	Units
VOC - AQUEOUS - EPA 8260B						
Tetrachloroethene		754	<0.63	0 62	2 0	<i>.</i> _
1,1,1-Trichloroethane		754	<0.03	0.03	2.0	ug/L
Trichloroethene		754	<0.20	0.28	0.88	ug/L
Surr: Dibromofluoromethane		754	107 6	0.49	1.6	ug/L
Surr: Toluene-d8		754	407.0 99 E		83-125	5
Surr: Bromofluorobenzene		754	100 K		90-110	*
VOC - AQUEOUS - EPA 8260B			100.0		86-115	*
Benzene		761	~0.31	0.01	<u> </u>	
Bromobenzene		761	<0.31	0.31	0.98	ug/L
romochloromethane		761	<0.20	0.20	0.64	ug/L
Bromodichloromethane		761	<0.32	0.32	1.0	ug/L
Bromoform		761	<0.20	0.20	0.63	ug/L
Bromomethane		761	<0.14	0.14	0.45	ug/L
n-Butylbenzene		761	<0.40	0.45	1.5	ug/L
sec-Butylbenzene		761		0.44	1.4	ug/L
tert-Butylbenzene		761	<0.45	0.45	1.4	ug/L
Carbon Tetrachloride		761	<0.38	0.38	1.2	ug/L
Chlorobenzene		761	<0.40	0.40	1.3	ug/L
Chlorodibromomethane		761	<0.22	0.22	0.69	ug/L
Chloroethane		761	<0.10	0.10	0.33	ug/L
Chloroform		761	<1.2	1.2	3.9	ug/L
Chloromethane		761	<0.18	0.18	0.58	ug/L
2-Chlorotoluene		761	<0.38	0.38	1.2	ug/L
4-Chlorotoluene		761	<0.28	0.28	0.90	ug/L
1,2-Dibromo-3-Chloropropane		761	< 0.4/	0.47	1.5	ug/L
1,2-Dibromoethane (EDB)		761	<1.4	1.4	4.5	ug/L
Dibromomethane (222,		761	<0.15	0.16	0.51	ug/L
1,2-Dichlorobenzene		761	<0.11	0.11	0.36	ug/L
1.3-Dichlorobenzene		761	<0.20	0.20	0.64	ug/L
1,4-Dichlorobenzene		761	<0.22	0.22	0.71	ug/L
Dichlorodifluoromethane		701	<0.35	0.35	1.1	ug/L
1,1-Dichloroethane		761	<0.49	0.49	1.6	ug/L
1.2-Dichloroethane		761	<0.25	0.25	0.79	ug/L
1.1-Dichloroethene		761	<0.20	0.20	0.63	ug/L
cis-1.2-Dichloroethene		761 761	< 0.73	0.73	2.3	ug/L
trans-1,2-Dichloroethene		761	<0.23	0.23	0.74	ug/L
		/01	<0.39	0.39	1.2	ug/L

Method blank results exceed control limits when results are higher than the highest of any of the following: 1 - The limit of detection; 2 - Five percent of the regulatory limit for that analyte; 3 - Five percent of the measured concentration in the sample. NR149.14 (3)d

602 COMMERCE DRIVE / WATERTOWN, WI 53094 / 920-261-1660 / FAX: 920-261-8120 WDNR No. 128053530

-

QUALITY CONTROL REPORT BLANKS

10/04/2000

Job No: 00.08405 Account No: 67550

Page 22 of 24

Job Description: Annual Sampling

Mr. Jon Raymond

293 S Wright Street Delavan, WI 53115

STA-RITE INDUSTRIES, INC

	Prep	Run	Blank			
Parameter	Batch	Batch	Result	MDL	LOQ	Units
1,2-Dichloropropane		761	<0.29	0.29	0.93	ug/L
1.3-Dichloropropane		761	<0.15	0.15	0.46	ug/L
2,2-Dichloropropane		761	<0.37	0.37	1.2	ug/L
1,1-Dichloropropene		761	<0.63	0.63	2.0	ug/L
cis-1.3-Dichloropropene		761	<0.17	0.17	0.56	ug/L
trans-1,3-Dichloropropene		761	<0.13	0.13	0.42	ug/L
Di-isopropyl ether		761	<0.13	0.13	0.41	ug/L
Ethylbenzene		761	<0.38	0.38	1.2	ug/L
Hexachlorobutadiene		761	<0.37	0.37	1.2	ug/L
Isopropylbenzene		761	<0.36	0.36	1.1	ug/L
p-Isopropyltoluene		761	<0.35	0.35	1.1	ug/L
Methylene Chloride		761	<0.87	0.87	3.1	ug/L
Methyl-t-butyl ether		761	<0.14	0.14	0.45	ug/L
Naphthalene		761	<0.35	0.35	1.1	ug/L
n-Propylbenzene		761	<0.46	0.46	1.5	ug/L
Styrene		761	<0.16	0.16	0.51	ug/L
1,1,1,2-Tetrachloroethane		761	<0.11	0.11	0.34	ug/L
1,1,2,2-Tetrachloroethane		761	<0.39	0.39	1.3	ug/L
Tetrachloroethene		761	<0.63	0.63	2.0	ug/L
Toluene		761	<0.39	0.39	1.3	ug/L
1,2,3-Trichlorobenzene		761	<0.32	0.32	1.0	ug/L
1,2,4-Trichlorobenzene		761	<0.18	0.18	0.57	ug/L
1,1,1-Trichloroethane		761	<0.28	0.28	0.88	ug/L
1,1,2-Trichloroethane		761	<0.15	0.15	0.46	ug/L
Trichloroethene		761	<0.49	0,49	1.6	ug/L
Trichlorofluoromethane		761	<0.58	0.58	1.8	ug/L
1,2,3-Trichloropropane		761	<0.28	0.28	0.90	ug/L
1,2,4-Trimethylbenzene		761	<0.32	0.32	1.0	ug/L
1,3,5-Trimethylbenzene		761	<0.33	0.33	1.0	ug/L
Vinyl Chloride		761	<0.46	0.46	1.5	ug/L
Xylenes, Total		761	<1.1	1.1	3.6	ug/L
Surr: Dibromofluoromethane		761	111.8		83-125	동
Surr: Toluene-d8		761	98.6		90-110	ala
Surr: Bromofluorobenzene		761	105.6		86-115	olo -
VOC - AQUEOUS - EPA 8260B						
Benzene		764	<0.31	0.31	0.98	ug/L
Bromobenzene		764	<0.20	0.20	0.64	ug/L

Method blank results exceed control limits when results are higher than the highest of any of the following: 1 - The limit of detection; 2 - Five percent of the regulatory limit for that analyte; 3 - Five percent of the measured concentration in the sample. NR149.14 (3)d

INCORPORATE

QUALITY CONTROL REPORT BLANKS

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, WI 53115 10/04/2000

Job No: 00.08405 Account No: 67550

•

Page 23 of 24

Job Description: Annual Sampling

	Prep	Run	Blank			
Parameter	Batch	Batch	Result	MDL	LOQ	Units
Bromochloromethane		764	<0.32	0.32	1.0	ug/L
Bromodichloromethane		764	<0.20	0.20	0.63	ug/L
Bromoform		764	<0.14	0.14	0.45	ug/L
Bromomethane		764	<0.46	0.46	1.5	ug/L
n-Butylbenzene		764	<0.44	0.44	1.4	uq/L
sec-Butylbenzene		764	<0.45	0.45	1.4	uq/L
tert-Butylbenzene		764	<0.38	0.38	1.2	uq/L
Carbon Tetrachloride		764	<0.40	0.40	1.3	ug/L
Chlorobenzene		764	<0.22	0.22	0.69	ug/L
Chlorodibromomethane		764	<0.10	0.10	0.33	uq/L
Chloroethane		764	<1.2	1.2	3.9	ug/L
hloroform.		764	<0.18	0.18	0.58	ug/L
Chloromethane		764	<0.38	0.38	1.2	uq/L
2-Chlorotoluene		764	<0.28	0.28	0.90	uq/L
4-Chlorotoluene		764	<0.47	0.47	1.5	uq/L
1,2-Dibromo-3-Chloropropane		764	<1.4	1.4	4.5	uq/L
1,2-Dibromoethane (EDB)		764	<0.16	0.16	0.51	uq/L
Dibromomethane		764	<0.11	0.11	0.36	uq/L
1,2-Dichlorobenzene		764	<0.20	0.20	0.64	uq/L
1,3-Dichlorobenzene		764	<0.22	0.22	0.71	ug/L
1,4-Dichlorobenzene		764	<0.35	0.35	1.1	ug/L
Dichlorodifluoromethane		764	<0.49	0.49	1.6	uq/L
1,1-Dichloroethane		764	<0.25	0.25	0.79	uq/L
1,2-Dichloroethane		764	<0.20	0.20	0.63	uq/L
l,l-Dichloroethene		764	<0.73	0.73	2.3	ug/L
cis-1,2-Dichloroethene		764	<0.23	0.23	0.74	uq/L
trans-1,2-Dichloroethene		764	<0.39	0.39	1.2	uq/L
1,2-Dichloropropane		764	<0.29	0.29	0.93	ug/L
1,3-Dichloropropane		764	<0.15	0.15	0.46	uq/L
2,2-Dichloropropane		764	<0.37	0.37	1.2	uq/L
1,1-Dichloropropene		764	<0.63	0.63	2.0	ug/L
cis-1,3-Dichloropropene		764	<0.17	0.17	0.56	uq/L
trans-1,3-Dichloropropene		764	<0.13	0.13	0.42	ug/L
Di-isopropyl ether		764	<0.13	0.13	0.41	ug/L
Ethylbenzene		764	<0.38	0.38	1.2	ug/L
Hexachlorobutadiene		764	<0.37	0.37	1.2	ug/L
Isopropylbenzene		764	<0.36	0.36	1.1	ug/L

Method blank results exceed control limits when results are higher than the highest of any of the following: 1 - The limit of detection; 2 - Five percent of the regulatory limit for that analyte; 3 - Five percent of the measured concentration in the sample. NR149.14 (3)d

QUALITY CONTROL REPORT

BLANKS

10/04/2000

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, WI 53115

Job No: 00.08405 Account No: 67550

Page 24 of 24

Job Description: Annual Sampling

Prep	Run	Blank			
Batch	Batch	Result	MDL	LOQ	Units
	764	<0.35	0.35	1.1	ug/L
	764	<0.87	0.87	3.1	ug/L
	764	<0.14	0.14	0.45	ug/L
	764	<0.35	0.35	1.1	ug/L
	764	<0.46	0.46	1.5	ug/L
	764	<0.16	0.16	0.51	ug/L
	764	<0.11	0.11	0.34	ug/L
	764	<0.39	0.39	1.3	ug/L
	764	<0.63	0.63	2.0	ug/L
	764	<0.39	0.39	1.3	ug/L
	764	<0.32	0.32	1.0	ug/L
	764	<0.18	0.18	0.57	ug/L
	764	<0.28	0.28	0.88	ug/L
	764	<0.15	0.15	0.46	ug/L
	764	<0.49	0.49	1.6	ug/L
	764	<0.58	0.58	1.8	ug/L
	764	<0.28	0.28	0.90	ug/L
	764	<0.32	0.32	1.0	ug/L
	764	<0.33	0.33	1.0	ug/L
	764	<0.46	0.46	1.5	ug/L
	764	<1.1	1.1	3.6	ug/L
	764	99.8		83-125	20
	764	98.8		90-110	울
	764	96.4		86-115	010
	Prep Batch	Prep Run Batch Batch 764 764 764 764 764 764 764 764 764 764	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	PrepRunBlankBatchBatchResultMDL 764 <0.35 0.35 764 <0.87 0.87 764 <0.14 0.14 764 <0.14 0.14 764 <0.35 0.35 764 <0.46 0.46 764 <0.16 0.16 764 <0.16 0.16 764 <0.39 0.39 764 <0.63 0.63 764 <0.32 0.32 764 <0.18 0.18 764 <0.15 0.15 764 <0.15 0.15 764 <0.28 0.28 764 <0.32 0.32 764 <0.28 0.28 764 <0.32 0.32 764 <0.32 0.32 764 <0.33 0.33 764 <0.46 0.46 764 <0.46 0.46 764 <0.46 0.46 764 <0.46 0.46 764 99.8 764 96.4	PrepRunBlankBatchBatchResultMDLLOQ 764 <0.35

Method blank results exceed control limits when results are higher than the highest of any of the following: 1 - The limit of detection; 2 - Five percent of the regulatory limit for that analyte; 3 - Five percent of the measured concentration in the sample. NR149.14 (3)d

METHOD OF SHIPMENT	RELINGUISHED BY	SAMPLE REMAINDER DEP	CONDITION OF SAMPLE:		1/26 2:20 pm	WHE: C 9/10	1/24 8: 10 M	1/16 200 /1	1/26 1:25Am	9.76 12:32 Pm	5/2 11: 2m T	9/26 3.42m	125 1:55M	1301:150	775 122mm -	1/25 11:40 An 2	1 2 W 2/	7/25 10:20 m W	DATE TIME	(PRINT NAME)	(PRINT NAME)	,) () ()	
AX.	127/00 10215	DSAL: RETURN SAMPLE	BOTTLES INTACT? YES /	Þ	EX-3	EX-2	Ex-(4-X1	Tw.4	Das-K		MW 2and	MU Bar	D-18		5-15	5-1	1W 2005	SAMPLE ID/DESCRIPTION	SIGNAT		>		TING, INC.	TIRONAL
REMARKS: /		E REMAINDER TO CLIENT VIA	NO COC SEALS PRESENT AND INTACT VOLATILES FREE OF HEADSPACE?	E	4 ××××			XXX										X X X	MATRIX GRAB COMP VHCI NaOH HNO3 H2SO4 OTHER PCE TCE	URE # and Type of Containers	URE	PROJECT MANAGER Jen Rough com	PROJECT NAME/LOCATION And Local Street	ADDRESS 253 JANTE MAR 1	CHAIN OF CUSTODY RECOR
als share	BY DATE TIME TRICEPYERFOR NETTER	DATE	T? YES / NO TEMPERATURE UPON RECEIPT	I I I I I I I I I I I I I I I I I I I															Full Drinking Water	Is this work being conducted for regulatory enforcement action? Yes No Which regulations apply: RCRA NPDES Wastewater	ANALYSES To assist us in selecting the proper method Is this work being conducted for regulatory compliance monitoring? Yes		Aplied P.O. NO.	262-72-7213 INVOICE TO: J. Carpador	PD 00,08405 J. Careguarand

PT 1 · ORIGINAL · WHITE PT 2 · NET PROJECT MANAGER · YELLOW PT 3 · CUSTOMER COPY · PINK

SAMPLE REMAINDER DISPOSAL: RETURN SAMP REUNQUISHED BY METHOD OF SHIPMENT	CONDITION OF SAMPLE: BOTTLES INTACT YES			7782m 12420191918	(<) </th <th>2127 B:31m (SES</th> <th>DATE TIME SAMPLE ID/DESCRIPTION</th> <th>(PRINT NAME) SIGN</th> <th>(PRINT NAME) SIGN</th> <th>SAMPLED BY</th> <th></th> <th>NATIONAL ENVIRONMENTAL TESTING, INC.</th>	2127 B:31m (SES	DATE TIME SAMPLE ID/DESCRIPTION	(PRINT NAME) SIGN	(PRINT NAME) SIGN	SAMPLED BY		NATIONAL ENVIRONMENTAL TESTING, INC.
T TO DISPOSE OF ACT SAMPLE REMAINDERS	NO COC SEALS PRESENT AND INTACT? YES / NO VOLATILES FREE OF HEADSPACE? YES / NO				Y Y		MATRIX GRAB COMP P HCI NAOH HNO3 H2SO4 OTHER TCU FC4/1 E	ATURE # and Type of Containers	ATURE	ANALYSES	PHONE CALL FLOT TO FAX VIO - 7 - 9 PROJECT NAME/LOCATION PROJECT NUMBER PROJECT MANAGER	CHAIN OF CUSTODY RECORD
DATE TIME REPERFED FOR NET BY:	TEMPERATURE UPON RECEIPT			×			UST Drinking Water Other Nome	this wor being conducted for regulatory Yes No	k this work being conducted for regulatory Yes No	To assist us in selecting the proper method		MOID REPORT TO ALLEY TO

-

9T 1 . OBIGINAL . WHITE DT 2 . NET DOO IECT MANAGED . VELLOW DT 3 . CHSTOMED CODY . PINK

<u> </u>	REMARKS															FLOW	13560	SMIN 27 SEC.					
5	SAMPLER INITALS	ΩΦ	d d	0.0	500	50	00	0.0	d B		50	5	0.0	2	18 18 18	9. K	285	8					
GRAN	TEMP.		47°	L]						-							23	532	-				
ATA ATA	CONDUCT-																						
STRIE UCINC	Hď.														-			·					
SAMF	PURGE VOLUME	9.20		06.14	10.92	6.52	6.78	8.69	10.75	7.88	9.30				1								
TER.)	FEET OF WATER	14.12	•	226	16.76	10.01	0), 01	13.33	16.50	12.09	14.7												
TA-I WA	WATER LEVEL	22.02		30.48	31.24	20.26	28.31	25.88	é 2.25	31.16	36:21					_				-	 `		
SOUND	WELL DEPTH	36.14		38,00	48.00	39.27	37.71	39.21	45.36	4/3.25	50.48					-	<u> </u>						
5	TIME	10 20 AN	11:30.00	11: 40 AM	MA02:21	1:10971	11529	224044	NSSAN	1232 Pr	ING SEI	2:00 PM	2: 10 PM	2:30PM	Myoric	8 53 PM	9: WARW					-	
:	DATE	9.25.00	9.25.00	9-25.00	00.58-6	9.25.00	9-25-00	9 - 26 G	9-2 G-m	9.26 00	9.26.00	9-26.00	9. 26 .00	9-26-00	3:26 00	9.27 00	7.27.00						
	SAMPLE NUMBER					-							<u> </u>				0						
	WELL	2005 mL	1-55	5-12	Tw-3	D- 18	(CO)MU	1002 (NI)	1.1.1	N.52C	H. m	2-2	3× ا	EL . 2	£x-3	CSES	255	 	 				

5 2

ANALYTICAL AND QUALITY CONTROL REPORT

-

TestAmerica

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, WI 53115 05/03/2000

Job No: 00.03398

Page 1 of 14

Enclosed are the Analytical and Quality Control reports for the following samples submitted for analysis:

Sample	Sample Description	Date	Date
Number		Taken	Received
392808 392809 392810 392811 392812 392813 392813 392814 392815 392816 392817 392818 392819	SES Semi Annual CES Semi Annual EX2 Semi Annual EX3 Semi Annual EX7 Semi Annual D15 Semi Annual D18 Semi Annual TW3 Semi Annual MW2005 Semi Annual D25R Semi Annual TW4 Semi Annual MW1027 Semi Annual	04/18/2000 04/18/2000 04/18/2000 04/18/2000 04/18/2000 04/25/2000 04/25/2000 04/25/2000 04/25/2000 04/25/2000 04/25/2000 04/25/2000	04/26/2000 04/26/2000 04/26/2000 04/26/2000 04/26/2000 04/26/2000 04/26/2000 04/26/2000 04/26/2000 04/26/2000 04/26/2000

Soil results are reported on a dry weight basis. The above sample(s) may have a result flag shown on the report. The following are the result flag definitions:

- A = Analyzed/extracted past hold time
- C = Standard outside of control limits
- F = Sample filtered in lab
- H = Late eluting hydrocarbons present
- J = Estimated concentration
- M = Matrix interference
- Q = Result confirmed via re-analysis
- T = Does not match typical pattern
- X = Unidentified compound(s) present

B = Blank is contaminated

- D = Diluted for analysis
- G = Received past hold time
- I = Improperly handled sample
- L = Common lab solvent and contaminant
- P = Improperly preserved sample
- S = Sediment present
- W = BOD re-set due to missed dilution
- Z = Internal standard outside limits

Brian D. Defong

Organic Operations Manager

602 COMMERCE DRIVE / WATERTOWN, WI 53094 / 920-261-1660 / FAX: 920-261-8120 WDNR No. 128053530

SIRTRUGNI JTIR-ATS

TestAmerica

ANALYTICAL REPORT

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, WI 53115

.

05/03/2000 Job No: 00.03398 Sample No: 392808 Account No: 67550 Page 2 of 14

JOB DESCRIPTION: Semi-Annual PROJECT DESCRIPTION: Wastewater Analysis SES Semi Annual SAMPLE DESCRIPTION: Rec'd on Ice

Date/Time Taken: 04/18/2000 16:05 Date Received: 04/26/2000

						Date	Prep/Run
Parameter	Results	Units	MDL	LOQ	Method	Analyzed	Batch
VOC - AQUEOUS - EPA 82608							
Chloroethane	<1.2	սց/Ն	1.2	3.9	SW 8260B	05/02/2000	688
Tetrachloroethene	1.6	ug/L	0.63	2.0	SW 8260B	05/02/2000	688
1,1,1-Trichloroethane	<0.28	ug/L	0.28	0.88	SW 8260B	05/02/2000	688
Trichloroethene	1.8	ug/L	0.49	1.6	SW 8260B	05/02/2000	688
Vinyl Chloride	<0.46	ug/L	0.46	1.5	SW 8260B	05/02/2000	688
Surr: Dibromofluoromethane	91.6	¥		83-125	SW 82603	05/02/2000	688
Surr: Toluene-d8	94.0	*		90-111	SW 8260B	05/02/2000	688
Surr: Bromofluorobenzene	94.0	*		87-115	SW 8260B	05/02/2000	688

602 COMMERCE DRIVE / WATERTOWN, WI 53094 / 920-261-1660 / FAX: 920-261-8120 WDNR No. 128053530

STA-RITE INDUSTRIES

Test/America

ANALYTICAL REPORT

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, WI 53115

.

05/03/2000 Job No: 00.03398 Sample No: 392809 Account No: 67550 Page 3 of 14

JOB DESCRIPTION: Semi-Annual PROJECT DESCRIPTION: Wastewater Analysis SAMPLE DESCRIPTION: CES Semi Annual Rec'd on Ice

• •

Date/Time Taken: 04/18/2000 16:10 Date Received: 04/26/2000

						Date	Frep/Run
Parameter	Results	Units	MDL	LOC	Method	Analyzed	Batch
VOC - AQUEOUS - EPA 6260B							
Chloroethane	<1.2	ug/L	1.2	3.9	SW 8260B	05/01/2000	687
Tetrachloroethene	<0.63	ug/L	0.63	2.0	SW 9260B	05/01/2000	687
1,1,1-Trichloroethane	23	ug/L	0.28	86.0	SW 8260B	05/01/2000	687
Trichloroethene	19	ug/L	0.49	1.6	SW 82608	05/01/2000	687
Vinyl Chloride	<0.46	ug/L	0.46	1.5	SW 8260B	05/01/2000	687
Surr: Dibromofluoromethane	100.2	*		83-125	SW 8260B	05/01/2000	687
Surr: Toluene-d8	97.6	ŧ		90-111	SW 82609	05/01/2000	687
Surr: Bromofluorobenzene	94.6	ł		87-115	SW 8260B	05/01/2000	667

602 COMMERCE DRIVE / WATERTOWN, WI 53094 / 920-261-1660 / FAX: 920-261-8120 WDNR No. 128053530

SIA-RITE INDUSTRIES

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, WI 53115 05/03/2000 Job No: 00.03398 Sample No: 392810 Account No: 67550 Page 4 of 14

JOB DESCRIPTION: Semi-Annual PROJECT DESCRIPTION: Wastewater Analysis SAMPLE DESCRIPTION: EX2 Semi Annual Rec'd on Ice

••

Date/Time Taken: 04/18/2000 14:25

Date Received: 04/26/2000

Parameter	Results	Units	MDL.	LOD	Merbod	Date Analyzed	Prep/Run Batch	
					201		10.017000	54000
voc -	AQUEOUS - EPA 82608							
Chlore	bethane	<1.2	ug/L	1.2	3.9	SW 8260B	05/01/2000	687
Tetra	chloroethene	<0.63	ug/L	0.63	2.0	SW 8260B	05/01/2000	687
1,1,1	Trichloroethane	1.3	ug/L	0.28	0.58	SW 8260B	05/01/2000	687
Trich	loroethene	3.7	ug/L	0.49	1.6	SW 9260B	05/01/2000	687
Vinyl	Chloride	<0.46	ug/L	0.46	1.5	SW 8260B	05/01/2000	687
Surr:	Dibromofluoromethane	104.2	¥		83-125	SW 0260B	05/01/2000	687
Surr:	Toluene-d8	97.4	*		90-111	SW 8260B	05/01/2000	687
Surr:	Bromofluorobenzene	95.4	\$		87-115	SW 8260B	05/01/2000	687

602 COMMERCE DRIVE / WATERTOWN, WI 53094 / 920-261-1660 / FAX: 920-261-8120 WDNR No. 128053530

STR-RITE INDUSTRIES

TestAmerica

ANALYTICAL REPORT

.

Mr. Jon Raymond	05/03/2000
STA-RITE INDUSTRIES, INC	Job No: 00.03398
293 S Wright Street	Sample No: 392811
Delavan, WI 53115	Account No: 67550
	Page 5 of 14

-

. •

JOB DESCRIPTION: Semi-Annual PROJECT DESCRIPTION: Wastewater Analysis SAMPLE DESCRIPTION: EX3 Semi Annual Rec'd on Ice

Date/Time Taken: 04/18/2000 14:35 Date Received: 04/26/2000

	Deculto	Unite	MD7	100	Nothod	Date	Prep/Run Batch
Parameter	Results	Units	200 B	500	meenou	Analyzeu	
VOC - AQUEOUS - EPA 8260B							
Chloroethane	<1.2	ug/L	1.2	3.9	SW 92608	05/01/2000	687
Tetrachloroethene	<0.63	ug/L	0.63	2.0	SW 82609	05/01/2000	687
1,1,1-Trichloroethane	37	ug/L	0.28	0.89	SW 8260B	05/01/2000	687
Trichloroethene	55	ug/L	0.49	1.6	SW 8260B	05/01/2000	687
Vinyl Chloride	<0.46	ug/L	0.46	1.5	SW 8260B	05/01/2000	687
Surr: Dibromofluoromethane	102.8	¥		83-125	SW 8260B	05/01/2000	687
Surr: Toluene-d8	98.4	*		90-111	SW 82608	05/01/2000	687
Surr: Bromofluorobenzene	96.4	ł		87-115	SW 8260B	05/01/2000	687

602 COMMERCE DRIVE / WATERTOWN, WI 53094 / 920-261-1660 / FAX: 920-261-8120 WDNR No. 128053530

SEIGUE AND STIA-ATE BE:80 0005-80-YAM

Test/America

ANALYTICAL REPORT

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, ŴI 53115

05/03/2000 Job No: 00.03398 Sample No: 392812 Account No: 67550 Page 6 of 14

JOB DESCRIPTION: Semi-Annual PROJECT DESCRIPTION: Wastewater Analysis SAMPLE DESCRIPTION: EX7 Semi Annual Rec'd on Ice

...

Date/Time Taken: 04/18/2000 14:20 Date Received: 04/26/2000

Parameter	Results	Units	MDL	LÓQ	Method	Date Analyzed	Prep/Run Batch
VOC - AQUEOUS - EPA 82608							
Chloroethane	<1.2	ug/L	1.2	3.9	SW 8260B	05/01/2000	687
Tecrachloroethene	77	ug/L	0.63	2.0	S¥ 8260B	05/01/2000	687
1,1,1-Trichloroethane	0.87	ug/L	0.28	0.98	SW 8260B	05/01/2000	687
Trichloroethene	150	ug/L	0.49	1.6	SW 8260B	05/01/2000	687
Vinyl Chloride	<0.46	ug/L	0.46	1.5	SW 8260B	05/01/2000	687
Surr: Dibromofluoromethane	104.0	*		83-125	SW 8260B	05/01/2000	687
Surr: Toluene-d8	98.Z	*		90-111	SW 8260B	05/01/2000	687
Surr: Bromofluorobenzene	94.0	ł		87-115	SW 8260B	05/01/2000	687

602 COMMERCE DRIVE / WATERTOWN, WI 53094 / 920-261-1660 / FAX: 920-261-8120 WDNR No. 128053530

W44-08-5000 08:38 SIB-KILE INDREIGIES
ANALYTICAL REPORT

Mr.	Jo	n	Ray	nond	L		
STA-	RI	ΤĖ	: IÑI	DUSI	RIE	S,	INC
293	S	Wr	ight	: St	ree	t	
Dela	ava	ın,	WI	531	15		

05/03/2000 Job No: 00.03398 Sample No: 392813 Account No: 67550 Page 7 of 14

JOB DESCRIPTION: Semi-Annual PROJECT DESCRIPTION: Wastewater Analysis D15 Semi Annual SAMPLE DESCRIPTION: Rec'd on Ice

Date/Time Taken: 04/25/2000 11:45 Date Received: 04/26/2000

						Date	Prep/Run
Parameter	Results	Units	MDL	LOQ	Method	Analyzed	Batch
VOC - AQUEOUS - EPA 8260B							
Chloroethane	<1.2	ug/L	1.2	3.9	SW 8260B	05/02/2000	688
Tetrachloroethene	6.7	ug/L	0.63	2.0	SW 8260B	05/02/2000	688
1,1,1-Trichlorosthame	0,61	ug/L	0.26	0.88	SW 8260B	05/02/2000	688
Trichloroethene	30	ug/L	0.49	1.6	SW 8260B	05/02/2000	686
Vinyl Chloride	<0.46	ug/L	0.46	1.5	SW 82608	05/02/2000	688
Surr: Dibromofluoromethane	98.4	¥		83-125	SW 82608	05/02/2000	688
Surr: Toluene-d8	93.0	\$		90-111	SW 82608	05/02/2000	688
Surr: Bromafluorobenzene	94.4	ŧ		87-115	SW 82608	05/02/2000	638

602 COMMERCE DRIVE / WATERTOWN, WI 53094 / 920-261-1660 / FAX: 920-261-8120 WDNR No. 128053530

STR-RITE INDUSTRIES

ANALYTICAL REPORT

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, WI 53115

05/03/2000 Job No: 00.03398 Sample No: 392814 Account No: 67550 Page 8 of 14

- ·

JOB DESCRIPTION: Semi-Annual PROJECT DESCRIPTION: Wastewater Analysis SAMPLE DESCRIPTION: D18 Semi Annual Rec'd on Ice

••

Date/Time Taken: 04/25/2000 12:40 Date Received: 04/26/2000

Parameter	Results	Units	MDL	roð	Method	Date Analyzed	Prep/Rus Batch
VOC - AQUEOUS - EPA 6260B							
Chloroethane	<1.2	ug/L	1.2	3.9	SW 8260B	05/01/2000	687
Tetrachloroethene	4.9	ug/L	0.63	2.0	SW 8260B	05/01/2000	697
1,1,1-Trichloroethane	<0.28	ug/L	0.28	0.88	SW 8260B	05/01/2000	687
Trichloroethene	6.6	ug/L	0.49	1.6	SW 8260B	05/01/2000	687
Vinyl Chloride	<0.46	ug/L	0.46	1.5	SW 8260B	05/01/2000	687
Surr: Dibromofluoromethane	110.0	۲		83-125	SW 8260B	05/01/2000	687
Surr: Toluene-d8	97.2	¥		90-111	SW 8260B	05/01/2000	687
Surr: Bromofluorobenzene	97.8	¥		87-115	SW 8260B	05/01/2000	687

602 COMMERCE DRIVE / WATERTOWN, WI 53094 / 920-261-1660 / FAX: 920-261-8120 WDNR No. 128053530

SEISTENDUS STA-RITE INDUSTRIES

~

ANALYTICAL REPORT

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, WI 53115

05/03/2000 Job No: 00.03398 Sample No: 392815 Account No: 67550 Page 9 of 14

JOB DESCRIPTION: Semi-Annual PROJECT DESCRIPTION: Wastewater Analysis SAMPLE DESCRIPTION: TW3 Semi Annual Rec'd on Ice

74

Date/Time Taken: 04/25/2000 13:45 Date Received: 04/26/2000

Parameter	Results	Units	MDL	roð	Method	Date Analyzed	Prep/Run Batch
VOC - AQUEOUS - EPA 8260B							
Chloroethane	<1.2	ug/L	1.2	3.9	SW 8260B	05/01/2000	687
Tetrachloroethene	1.2	ug/L	0.63	2.0	SW 8260B	05/01/2000	687
1,1,1-Trichloroethane	0.74	ug/L	0.28	0.68	SW 8260B	05/01/2000	687
Trichloroethene	1.9	ug/L	0,49	1.6	SW 8260B	05/01/2000	687
Vinyl Chloride	<0.46	ug/L	0.46	1.5	SW 8260B	05/01/2000	697
Surr: Dibromofluoromethane	100.6	¥		83-125	SW 82608	05/01/2000	687
Surr: Toluene-d8	99.6	*		90-111	SW 8260B	05/01/2000	667
Surr: Bromofluorobenzene	93.4	ŧ		87-115	SW 8260B	05/01/2000	687

602 COMMERCE DRIVE / WATERTOWN, WI 53094 / 920-261-1660 / FAX: 920-261-8120 WDNR No. 128053530

SEIATSUONI ETIA-ATS

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, WI 53115

.

05/03/2000 Job No: 00.03398 Sample No: 392816 Account No: 67550 Page 10 of 14

JOB DESCRIPTION: Semi-Annual PROJECT DESCRIPTION: Wastewater Analysis SAMPLE DESCRIPTION: MW2005 Semi Annual Rec'd on Ice

Date/Time Taken: 04/25/2000 14:30

Date Received: 04/26/2000

Parameter	Results	Units	MDL	LOQ	Method	Date Analyzed	Prep/Run Batch
VOC - AQUEOUS - EPA 8250B							
Chloroethane	<1.2	ug/L	1.2	3.9	SW 8260B	05/02/2000	688
Tetrachloroethene	1.2	ug/L	0.63	2.0	SW 82608	05/02/2000	688
1,1,1-Trichloroethane	<0.28	ug/L	0.28	9.88.C	SW 8260B	05/02/2000	588
Trichloroethene	<0.49	ug/L	0.49	1.6	SW 9260B	05/02/2000	688
Vinyl Chloride	<0,46	ug/L	0.46	1.5	SW 8260B	05/02/2000	683
Surr: Dibromofluoromethane	92.0	ŧ		83-125	SW 8260B	05/02/2000	688
Surr: Toluene-d8	95.4	*		90-111	SW 8260B	05/02/2000	658
Surr: Bromofluorobenzene	94.2	÷		87-115	SW 8260B	05/02/2000	688

602 COMMERCE DRIVE / WATERTOWN, WI 53094 / 920-261-1660 / FAX: 920-261-8120 WDNR No. 128053530

STA-RITE INDUSTRIES

ANALYTICAL REPORT

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, ŴI 53115

05/03/2000 Job No: 00.03398 Sample No: 392817 Account No: 67550 Page 11 of 14

JOB DESCRIPTION: Semi-Annual PROJECT DESCRIPTION: Wastewater Analysis SAMPLE DESCRIPTION: D25R Semi Annual Rec'd on Ice

Date/Time Taken: 04/25/2000 15:05 Date Received: 04/26/2000

Parameter	Results	Units	MDL	LOQ	Method	Date Analyzed	Prep/Run Batch
VOC - AQUEOUS - EPA 82608							
Chloroethane	<1.2	ug/L	1.2	3.9	SW 82600	05/01/2000	687
Tetrachloroethene	1.0	ug/L	0.63	2.0	SW 8260B	05/01/2000	687
1,1,1-Trichloroethane	3.5	ug/L	0.28	0.68	SW 8260B	05/01/2000	687
Trichloroethene	4.0	ug/L	0.49	2.6	SW 8260B	05/01/2000	687
Vinyl Chloride	<0.45	ug/L	0.46	1.5	SW 82603	05/01/2000	687
Surr: Dibromofluoromethane	109.4	\$		83-125	SW 8260B	05/01/2000	687
Surr: Toluene-d8	97.6			90-111	SW 8260B	05/01/2000	687
Surr: Bromofluorobenzene	96.8	¥		87-115	SW 8260B	05/01/2000	687

602 COMMERCE DRIVE / WATERTOWN, WI 53094 / 920-261-1660 / FAX: 920-261-8120 WDNR No. 128053530

SEISTEUDUI ETIS-ATE EE:80 0005-80-YAM

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, WI 53115 05/03/2000 Job No: 00.03398 Sample No: 392818 Account No: 67550 Page 12 of 14

JOB DESCRIPTION: Semi-Annual PROJECT DESCRIPTION: Wastewater Analysis SAMPLE DESCRIPTION: TW4 Semi Annual Rec'd on Ice

2

Date/Time Taken: 04/25/2000 16:05

Date Received: 04/26/2000

-

						Date	Prep/Run
Parameter	Results	Units	MDI.	LOQ	Method	Analyzed	Batch
VOC - AQUEOUS - EPA 8260B							
Chloroethane	<6.0	ug/L	1.2	3.9	5W 8260B	05/01/2000	687
Tetrachloroethene	<3.2	ug/L	0.63	2.0	5W 8260B	05/01/2000	687
1,1,1-Trichloroethane	450	ug/L	0.28	0.88	SW 8260B	05/01/2000	687
Trichloroethene	280	ug/L	0.49	1.6	SW 8260B	05/01/2000	687
Vinyl Chloride	<2.3	ug/L	0.46	1.5	SW 8260B	05/01/2000	687
Surr: Dibromofluoromethane	110.6	ŧ		83-125	SW 8260B	05/01/2000	687
Surr: Toluene-d8	95.0	ł		90-111	SW 82603	05/01/2000	687
Surr: Bromofluorobenzene	94.8	¥		87-115	SW 8260B	05/01/2000	687

602 COMMERCE DRIVE / WATERTOWN, WI 53094 / 920-261-1660 / FAX: 920-261-8120 WDNR No. 128053530

STA-RITE INDUSTRIES

Mr. Jon Raymond	
STA-RITE INDUSTRIES,	INC
293 S Wright Street	
Delavan, ŴI 53115	

05/03/2000 Job No: 00.03398 Sample No: 392819 Account No: 67550 Page 13 of 14

JOB DESCRIPTION: Semi-Annual PROJECT DESCRIPTION: Wastewater Analysis SAMPLE DESCRIPTION: MW1027 Semi Annual Rec'd on Ice

Date/Time Taken: 04/25/2000 16:10 Date Received: 04/26/2000

						Date	Prep/Run
Parameter	Results	Units	MDL	LOQ	Method	Analyzed	Batch
VOC - AQUEOUS - EPA 82608							
Chloroethane	<6.0	ug/L	1.2	3.9	SW 8260B	05/02/2000	688
Tetrachloroethene	< 3 . 2	ug/L	0.53	z.0	SW 8260B	05/02/2000	688
1.1.1-Trichloroethane	13	ug/L	0.29	0.88	SW 8260B	05/02/2000	688
Trichlorosthene	320	ug/L	0.49	1.6	SW 8260B	05/02/2000	688
Vinvl Chloride	<2.3	ug/L	0.46	1.5	SW 8260B	05/02/2000	688
Surr: Dibromofluoromethane	94.9	ł		83-125	SW 8260B	05/02/2000	688
Surr: Toluene-d8	93.2	ŧ		90-111	SW 8260B	05/02/2000	688
Surr: Bromofluorobenzene	94,8	ŧ		87-115	SW 8260B	05/02/2000	688

602 COMMERCE DRIVE / WATERTOWN, WI 53094 / 920-261-1660 / FAX: 920-261-8120 WDNR No. 128053530

STR-RITE INDUSTRIES

QUALITY CONTROL REPORT BLANKS

05/03/2000

Job No: 00.03398 Account No: 67550

Page 14 of 14

Job Description: Semi-Annual

STA-RITE INDUSTRIES, INC

Mr. Jon Raymond

293 S Wright Street Delavan, WI 53115

	Prep	Run	Blank			
Parameter	Batch	Batch	Result	MDL	LCQ	Units
VOC - AQUEOUS - EPA 8260B						
Chloroethane		687	<1.2	1.2	3.9	ug/L
Tetrachloroethene		687	<0.63	0.63	2.0	ug/L
1.1.1-Trichloroethane		687	<0.28	0.28	0.88	ug/L
Trichloroethene		687	<0.49	0.49	1.6	ug/L
Vinvl Chloride		687	<0.46	0.46	1.5	ug/L
Surr: Dibromofluoromethane		687	87.2		83-125	જ
Surr: Toluene-dB		687	98.0		90-111	ę
Surr: Bromofluorobenzene		687	96.4		87-115	*
VOC - AOUEOUS - EPA 8260B						
Chloroethane		688	<1.2	1.2	3.9	ug/L
Tetrachloroethene		688	<0.63	0.63	2.0	ug/L
1.1.1-Trichloroethane		688	<0.28	0.28	0.88	ug/L
Trichloroethene		688	<0.49	0.49	1.6	ug/L
Vinvl Chloride		688	<0.46	0.46	1.5	ug/L
Surr: Dibromofluoromethane		688	84.4		83-125	9a
Surr: Toluene-d8		688	94.4		90-111	B
Surr: Bromofluorobenzene		688	93.8		87-115	ato o

Method blank results exceed control limits when results are higher than the highest of any of the following: 1 - The limit of detection; 2 - Five percent of the regulatory limit for that analyte; 3 - Five percent of the measured concentration in the sample. NR149.14 (3)d

602 COMMERCE DRIVE / WATERTOWN, WI 53094 / 920-261-1660 / FAX: 920-261-8120 WDNR No. 128053530

414 728 7213 P.17/17

STA-RITE INDUSTRIES

REPORT TO: USSUL REPORT TO: USSUL INVOICE TO: USSUL P.I.(M. P.O. NO.	To assist us in selecting the proper method Is this work being conducted for regulatory complearce monitoring? Yes No	Is this work being conducted for regulatory enforcement action? Yes No No Which regulations apply: RCRA NPDES Wastewater UST Drinking Water Other Other	COMMENTS					TEMPERATURE UPON RECENT: //. Bottles supplied by NET? YES /NO	20 15:35 alereron nergy
HAIN OF CUSTODY CORD MPANY STA KI & End Pro DRESS 26 4 1 5 1 2 1 2 2 2 2 1 IONE 26 2 2 8 2 1 6 1 2 4 2 2 2 2 1 IOJECT NAMER OLICITION Server And 4 20 4 2 2 2 1 IOJECT NUMBER OLICITION	ANALYSES	MATRIX GAAB CONP H2SOL H2C CONP H2SOL HCI CONP HCI CONP H2C CONP HCI CONP C						COC SEALS PRESENT AND INTACT? YES / NO VOLATILES FREE OF HEADSPACET YES / NO MAINDER TO CLIENT VIA ISPOSE OF ALL SAMPLE REMAINDERS	VEDEN - 11: 20 RELIMOUISHEDEN DATE
ATIONAL ENVIRONMENTAL ® TESTING, INC.	C SAMPLED BY C SAMPLED BY C PHINT NAME C (PHINT NAME) C (PHINT NAME) C (PHINT NAME) C (PHINT NAME) C (PHINT NAME)	DATE TIME SAMPLE ID/DESCRIPTION	4/2012 SES	4/18 14:25 EX-2 4/18 14:35 15 13	1/27/11:45 7-15 1/25 12:45 7-18 1/25/13:45 7-40-18	R 4/25 14 30 101 2005	Exol mind of: m set	CONDITION OF SAMPLE: BOTTLES INTACT? YES/NO FIELD FILTERED? YES/NO SAMPLE REMAINDER DISPOSAL: RETURN SAMPLE REI N	PERHOD OF CHIPMENT ALL OC TIME REV

PT 1 · ORIGINAL · WHITE PT 2 · NET PROJECT MANAGER · VELLOW PT 3 · CUSTOMER COPY · PINK

GROUND WATER SA FIELD SAMP TIME WELL WATER FEET OF PUR DEPTH LEVEL WATER VOL BIESPH 38:0 32.42 5:58 3.6 Biesph 38:0 32.42 5:58 3.6 Biesph 38:14 26.46 9.68 6.3 Biesph 38.14 26.46 9.68 6.3 Biesph 38.1 26.46 9.68 6.3 Biesph 38.1 26.46 7.66 2.3 Augern 38.71 30.86 7.46 5.736
GROUND WATER AMPLINDUST STA-RITE INDUST FIELD SAMPLING TIME WELL WATER FEET OF PURGE PI PUESFIN BEPTH LEVEL WATER VOLUME PI ALL WATER FEET OF PURGE PI ALL FEET OF PURGE PICT PURGE PICTOR PURGE PI ALL FEET
GROUND ST GROUND VELL WAT TIME WELL WAT DEPTH LEV LEV ALISEPH 38.0 32.4 2.20 CPM 43.25 33.5 2.20 VB 38.0 32.4 2.20 CPM 43.25 33.5 2.20 VB 38.7 31.4 2.20 CPM 43.25 33.5 2.20 CPM 43.5 2.20

MAY-08-2000 08:36

.

<u>k</u>_~

STA-RITE INDUSTRIES

414 728 7213 P.02/17

ANALYTICAL AND QUALITY CONTROL REPORT

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, WI 53115

09/15/1999

Job No: 99.07832

Page 1 of 22

Enclosed are the Analytical and Quality Control reports for the following samples submitted for analysis:

Sampie		Date	Date
Number	Sample Description	Taken	Received
364149	SS-1	09/02/1999	09/08/1999
364150	CSES	09/02/1999	09/08/1999
364151	SES	09/02/1999	09/08/1999
364152	MW1027	09/02/1999	09/08/1999
364153	TW-4	09/02/1999	09/08/1999
364154	D25-R	09/02/1999	09/08/1999
364155	D-18	09/07/1999	09/08/1999
364156	MW2004	09/07/1999	09/08/1999
364157	MW2005	09/07/1999	09/08/1999
364158	D-15	09/07/1999	09/08/1999
364159	TW-1	09/07/1999	09/08/1999
364160	TW-3	09/07/1999	09/08/1999
364161	EX 1	09/07/1999	09/08/1999
364162	EX 2	09/07/1999	09/08/1999
364163	EX 3	09/07/1999	09/08/1999

Soil results are reported on a dry weight basis. The above sample(s) may have a result flag shown on the report. The following are the result flag definitions:

- A = Analyzed/extracted past hold time
- C = Standard outside of control limits
- F =Sample filtered in lab
- H = Late eluting hydrocarbons present
- J = Estimated concentration
- M = Matrix interference
- Q = Result confirmed via re-analysis
- T = Does not match typical pattern
- X = Unidentified compound(s) present

- B = Blank is contaminated
- D = Diluted for analysis
- G = Received past hold time
- I = Improperly handled sample
- L = Common lab solvent and contaminant

. .

- P = Improperly preserved sample
- S = Sediment present
- W = BOD re-set due to missed dilution
- Z = Internal standard outside limits

Brian D. DeJong Organic Operations Manager

602 COMMERCE DRIVE / WATERTOWN, WI 53094 / 920-261-1660 / FAX: 920-261-8120 WDNR NO. 128053530

ANALYTICAL AND QUALITY CONTROL REPORT

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, WI 53115

09/15/1999

Job No: 99.07832

Page 2 of 22

Enclosed are the Analytical and Quality Control reports for the following samples submitted for analysis:

Sample	Sample Description	Date	Date
Number		Taken	Received
364164	EX 7	09/07/1999	09/08/1999

Soil results are reported on a dry weight basis. The above sample(s) may have a result flag shown on the report. The following are the result flag definitions:

A = Analyzed/extracted past hold time

- C = Standard outside of control limits
- F = Sample filtered in lab
- H = Late eluting hydrocarbons present
- J = Estimated concentration
- M = Matrix interference
- Q = Result confirmed via re-analysis
- T = Does not match typical pattern
- X = Unidentified compound(s) present

B = Blank is contaminated

- D = Diluted for analysis
- G = Received past hold time
- I = Improperly handled sample
- L = Common lab solvent and contaminant
- P = Improperly preserved sample
- S = Sediment present
- W = BOD re-set due to missed dilution
- Z = Internal standard outside limits

Brian D. DeJong

Organic Operations Manager

602 COMMERCE DRIVE / WATERTOWN, WI 53094 / 920-261-1660 / FAX: 920-261-8120 WDNR No. 128053530

1.1.1 ł_ Ort

ANALYTICAL REPORT

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, $\overline{W}I$ 53115

09/15/1999 Job No: 99.07832 Sample No: 364149 Account No: 67550 Page 3 of 22

C

JOB DESCRIPTION: Volatile Samples PROJECT DESCRIPTION: Groundwater Analysis SAMPLE DESCRIPTION: SS-1 Rec'd on ice

Date/Time Taken: 09/02/1999 11:34 Date Received:

09/08/1999

- ,

Parameter	Results	Units	MDL	LOQ	Method	Date Analyzed	Prep/Run Batch
VOC - AQUECUS - EPA 8260B							
Chloroethane	<1.2	ug/L	1.2	3.9	SW 8260B	09/09/1999	615
Tetrachloroethene	3.4	ug/L	0.63	2.0	SW 8260B	09/09/1999	615
1,1,1-Trichloroethane	3.1	ug/L	0.28	0.88	SW 8260B	09/09/1999	615
Trichlcroethene	17	ug/L	0.49	1.6	SW 8260B	09/09/1999	615
Vinyl Chloride	<0,46	ug/L	9.46	1.5	SW 8260B	09/09/1999	615
Surr: Dibromofluoromethane	101.4	8	93-127	n/a	SW 8260B	09/09/1999	615
Surr: Toluene-d8	102.0	2	82-119	n/a	SW 8260B	09/09/1999	615
Surr: Bromofluorobenzene	101.8	\$	85-113 -	n/a	SW 8260B	09/09/1999	615

-

ANALYTICAL REPORT

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, WI 53115

.

09/15/1999 Job No: 99.07832 Sample No: 364149 Account No: 67550 Page 3 of 22

JOB DESCRIPTION: Volatile Samples PROJECT DESCRIPTION: Groundwater Analysis SAMPLE DESCRIPTION: SS-1 Rec'd on ice

Date/Time Taken: 09/02/1999 11:34 Date Received: 09/08/1999

- -

						Date	Prep/Run
Parameter	Results	Units	MDL	LOQ	Method	Analyzed	Batch
VOC - AQUEOUS - EPA 8260B							
Tetrachloroethene	3.4	ug/L	0.63	2.0	SW 8260B	09/09/1999	615
1,1,1-Trichloroethane	3.1	ug/L	0.28	0.88	SW 8260B	09/09/1999	615
Trichloroethene	17	ug/L	0.49	1.6	SW 8260B	09/09/1999	615
Surr: Dibromofluoromethane	101.4	ት	83-127	n/a	SW 8260B	09/09/1999	615
Surr: Toluene-d8	102.0	4	82-119	n/a	SW 8260B	09/09/1999	615
Surr: Bromofluorobenzene	101.8	5	85-113	n/a	SW 8260B	09/09/1999	615

. •

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, WI 53115

09/15/1999 Job No: 99.07832 Sample No: 364150 Account No: 67550 Page 4 of 22

JOB DESCRIPTION: Volatile Samples PROJECT DESCRIPTION: Groundwater Analysis SAMPLE DESCRIPTION: CSES Rec'd on ice

٠

Date/Time Taken: 09/02/1999 11:47 Date Received: 09/08/1999

Date Pren/Run

Parameter	Results	Units	MDL	LOQ	Methoà	Analyzed	Batch
VCC - AQUEOUS - EPA 8260B							
Benzene	<0.31	ug/L	0.31	0.98	SW 8260B	09/09/1999	615
Bromobenzene	<0.20	uq/L	0.20	0.64	SW 8260B	09/09/1999	615
Bromochloromethane	<0.32	ug/L	0.32	1.0	SW 8260B	09/09/1999	615
Bromodichloromethane	<0.20	ug/L	0.20	0.63	SW 8260B	09/09/1999	615
Bromoform	<0.14	ug/L	0,14	0.45	SW 8260B	09/09/1999	615
Bromomethane	<0,46	ug/L	0.46	1.5	SW 8260B	09/09/1999	615
n-Butylbenzene	<0.44	ug/L	0.44	1.4	SW 82608	09/09/1999	615
sec-Butylbenzene	<0.45	ug/L	0:45 -	1.4	SW 8260B	09/09/1999	615
tert-Butylbenzene	<0.38	ug/L	0.38	1.2	SW 8260B	09/09/1999	615
Carbon Tetrachloride	< 0.40	ug/L	0,40	1.3	SW 8260B	09/09/1999	615
Chlorobenzene	<0.22	ug/L	0.22	0.69	SW 8260B	09/09/1999	615
Chlorodibromomethane	<0.10	ug/L	0.10	0.33	SW 8260B	09/09/1999	615
Chloroethane	<1.2	ug/L	1.2	3.9	SW 8260B	09/09/1999	615
Chloroform	<0.18	ug/L	0.18	0.58	SW 8260B	09/09/1999	615
Chloromethane	<0.38	ug/L	0.38	1.2	SW 8260B	09/09/1999	615
2-Chlorotoluene	<0.28	ug/L	0.28	0.90	SW 0260B	09/09/1999	615
4-Chlorotoluene	<0.47	ug/L	0.47	1.5	SW 8260B	09/09/1999	615
1,2-Dibromo-3-Chloropropane	<1.4	ug/L	1.4	4.5	SW 8260B	09/09/1999	615
1,2-Dibromoethane (EDB)	<0.16	ug/L	0.16	0.51	SW 8260B	09/09/1999	615
Dibromomethane	<0.11	ug/L	0.11	0,36	SW 826CB	09/09/1999	- 615
1,2-Dichlorobenzene	< 0 . 2 0	ug/L	0.20	0.64	SW 8260B	09/09/1999	615
1,3-Dichlorobenzene	<0.22	ug/L	0.22	0.71	SW 8260B	09/09/1999	615
1,4-Dichlorobenzene	< 0.35	ug/L	0.35	1.1	SW 8260B	09/09/1999	615
Dichlorodifluoromethane	<0.49	ug/L	0.49	1,6	SW 8260B	09/09/1999	615
1,1-Dichloroethane	3.5	ug/L	0.25	0.79	SW 8260B	09/09/1999	615
1,2-Dichloroethane	<0.20	ug/L	0.20	0.63	SW 8260B	09/09/1999	615
1,1-Dichloroethene	1.4	ug/L	0.73	2.3	SW 8260B	09/09/1999	615
cis-1,2-Dichloroethene	1.3	ug/L	0.23	0,74	SW 8260B	09/09/1999	615
trans-1,2-Dichloroethene	<0.39	ug/L	0.39	1.2	SW 8260B	09/09/1999	61 5
1,2-Dichloropropane	<0.29	ug/L	0.29	0.93	SW 8260B	09/09/1999	615
1,3-Dichloropropane	<0.15	ug/L	0.15	0.46	SW 8260B	09/09/1999	- 615
2,2-Dichloropropane	<0.37	սց/Լ	0.37	1.2	SW 8260B	09/09/1999	615
1,1-Dichloropropene	<0.63	ug/L	0.63	2.0	SW 8260B	09/09/1999	615
cis-1,3-Dichloropropene	<0.17	ug/L	0.17	0.56	SW 8260B	09/09/1999	615
trans-1,3-Dichloropropene	<0.13	ug/L	0.13	0.42	SW 8260B	09/09/1999	615
Di-isopropyl ether	<0.13	ug/L	0.13	0.41	SW 8260B	09/09/1999	615
Ethylbenzene	<0.30	ug/L	0.30	1.2	SW 8260B	09/09/1999	615
Hexachlorobutadiene	<0.37	ug/L	0.37	1.2	SW 8260B	09/09/1999	615

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, ŴI 53115

-

09/15/1999 Job No: 99.07832 Sample No: 364150 Account No: 67550 Page 5 of 22

JOB DESCRIPTION: Volatile Samples PROJECT DESCRIPTION: Groundwater Analysis SAMPLE DESCRIPTION: CSES Rec'd on ice

Date/Time Taken: 09/02/1999 11:47 Date Received: 09/08/1999

- - -

						Date	Prep/Run
Parameter	Results	Units	MDL,	roð	Method	Analyzed	Batch
Isopropylbenzene	<0.36	ug/L	0.36	1.1	SW 8260B	09/09/1999	615
p-Isopropyltoluene	<0.35	ug/L	0.35	1,1	SW 8260B	09/09/1999	615
Methylene Chloride	< 0.87	ug/L	0.87	3.1	SW 8260B	09/09/1999	615
Methyl-t-butyl ether	<0.14	ug/L	0.14	0,45	SW 8260B	09/09/1999	615
Naphthalene	<0.35	ug/L	0.35	1.1	SW 8260B	09/09/1999	615
n-Propylbenzene	<0.46	ug/L	0.46	1.5	SW 8260B	09/09/1999	615
Styrene	<0.16	ug/L	0.16	0.51	SW 8260B	09/09/1999	615
1,1,1,2-Tetrachloroethane	<0,11	ug/L	0.11	0.34	SW 8260B	09/09/1999	615
1,1,2,2-Tetrachloroethane	<0.39	ug/L	0.39 ~	1.3	SW 8260B	09/09/1999	615
Tetrachloroethene	<0.63	ug/L	0:63	2.0	SW 8260B	09/09/1999	615
Toluene	<0.39	ug/L	0.39	1.3	SW 8260B	09/09/1999	615
1,2,3-Trichlorobenzene	<0.32	ug/L	0.32	1.0	SW 8260B	09/09/1999	615
1,2,4-Trichlorobenzene	<0.18	ug/L	0.18	0.57	SW 8260B	09/09/1999	615
1,1,1-Trichloroethane	35	ug/L	0.28	0.88	SW 8260B	09/09/1999	615
1,1,2-Trichloroethane	3.1	ug/L	0.15	0.46	SW 8260B	09/09/1999	615
Trichloroethene	29	ug/L	0.49	1.6	SW 8260B	09/09/1999	615
Trichlorofluoromethane	<0.58	ug/L	0.58	1.8	SW 8260B	09/09/1999	615
1,2,3-Trichloropropane	<0.28	ug/L	0.28	0.90	SW 8260B	09/09/1999	615
1,2,4-Trimethylbenzene	<0.32	ug/L	0.32	1.0	SW 8260B	09/09/1999	615
1,3,5-Trimethylbenzene	<0.33	ug/L	0.33	1.0	SW 8260B	09/09/1999	615
Vinyl Chloride	<0.46	ug/L	0.46	1.5	SW 8260B	09/09/1999	615
Xylenes, Total	<1.1	ug/L	1.1	3.6	SW 8260B	09/09/1999	615
Surr: Dibromofluoromethane	100.0	ş	83-127	n/ a	SW 8260B	09/09/1999	615
Surr: Toluene-d8	102.2	¥	\$2-119	n/a	SW 8260B	09/09/1999	615
Surr: Bromofluorobenzene	103.2	¥	85-113	n/a	SW 8260B	09/09/1999	615

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, WI 53115 09/15/1999 Job No: 99.07832 Sample No: 364151 Account No: 67550 Page 6 of 22

JOB DESCRIPTION: Volatile Samples PROJECT DESCRIPTION: Groundwater Analysis SAMPLE DESCRIPTION: SES Rec'd on ice

Date/Time Taken: 09/02/1999 11:57

Date Received: 09/08/1999

- .

						Date	Prep/Run
Parameter	Results	Units	MDL	LOQ	Method	Analyzed	Batch
VOC - AQUEOUS - EPA 8260B							
Tetrachloroethene	4.3	ug/L	0.63	2.0	SW 8260B	09/09/1999	615
1,1,1-Trichloroethane	0.70	ug/L	0.28	0.88	SW 8260B	09/09/1999	615
Trichloroethene	5.3	ug/L	0.49	1.6	SW 8260B	09/09/1999	615
Surr: Dibromofluoromethane	103.4	÷	83-127	n/a	SW 8260B	09/09/1999	615
Surr: Toluene-d8	102.6	¥	82-119	n/a	SW 8260B	09/09/1999	615
Surr: Bromofluorobenzene	106.6	*	85-113	n/a	SW 8260B	09/09/1999	615

.

••

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, WI 53115

_

09/15/1999 Job No: 99.07832 Sample No: 364152 Account No: 67550 Page 7 of 22

.

JOB DESCRIPTION: Volatile Samples PROJECT DESCRIPTION: Groundwater Analysis SAMPLE DESCRIPTION: MW1027 Rec'd on ice

Date/Time Taken: 09/02/1999 13:40

Date Received: 09/08/1999

۰.

						Date	Prep/Run
Parameter	Results	Units	MDL	LOQ	Method	Analyzed	Batch
VOC - AQUEOUS - EPA 8260B							
Tetrachloroethene	<3.2	ug/L	0.63	2.0	SW 8260B	09/09/1999	615
1,1,1-Trichloroethane	28	ug/L	0.28	0.88	SW 8260B	09/09/1999	615
Trichloroethene	540	ug/L	0.49	1.6	SW 8260B	39/09/1999	615
Surr: Dibromofluoromethane	107.4	Ŧ	83-127	n/a	SW 8260B	09/09/1999	615
Surr: Toluene-d8	99.8	8	82-119	n/a	SW 8260B	09/09/1999	615
Surr: Bromofluorobenzene	105.2	ata ta	85-113	п/а	SW 8260B	09 /09/19 99	615

- - • •

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, WI 53115

•

09/15/1999 Job No: 99.07832 Sample No: 364153 Account No: 67550 Page 8 of 22

JOB DESCRIPTION: Volatile Samples PROJECT DESCRIPTION: Groundwater Analysis TW-4 SAMPLE DESCRIPTION: Rec'd on ice

Date/Time Taken: 09/02/1999 15:05 Date Received: 09/08/1999

						Date	Prep/Run
Parameter	Results	Units	MDL	LOQ	Method	Analyzed	Batch
VOC - AQUEOUS - EPA 8260B							
Benzene	<1.6	ug/L	0.31	0.98	SW 8260B	09/09/1999	615
Bromobenzene	<1.0	ug/L	0.20	0.64	SW 8260B	09/09/1999	615
Bromochloromethane	<1.6	ug/L	0.32	1.0	SW 8260B	09/09/1999	615
Bromodichloromethane	<1.0	ug/L	0.20	0,63	SW 8260B	09/09/1999	615
Bromoform	<0.70	ug/L	0.14	0.45	SW 8260B	09/09/1999	615
Bromomethane	<2.3	ug/L	0.46	1.5	SW 8260B	09/09/1999	615
n-Butylbenzene	<2.2	ug/L	0.44	1.4	SW 8260B	09/09/1999	615
sec-Butylbenzene	<2.2	ug/L	0.45	1.4	SW 8260B	09/09/1999	615
tert-Butylbenzene	<1.9	ug/L	0.38	1.2	SW 8260B	09/09/1999	615
Carbon Tetrachloride	<2.0	ug/L	0.40	1.3	SW 8260B	09/09/1999	615
Chlorobenzene	<1.1	ug/L	0.22	0.69	SW 8260B	09/09/1999	615
Chlorodibromomethane	<0.50	ug/L	0.10	0,33	SW 8260B	09/09/1999	615
Chloroethane	<6.0	ug/L	1.2	3.9	SW 8260B	09/09/1 999	615
Chloroform	<0.90	ug/L	0.18	0.58	SW 8260B	09/09/1999	615
Chloromethane	<1.9	ug/L	0.38	1.2	SW 8260B	09/09/1999	615
2-Chlorotoluene	<1.4	ug/L	0.28	0.90	SW 8260B	09/09/1999	615
4-Chlorotoluene	<2.4	ug/L	0,47	1.5	SW 8260B	09/09/1999	615
1,2-Dibromo-3-Chloropropane	<7.0	ug/L	1.4	4.5	SW 8260B	09/09/1999	615
1,2-Dibromoethane (EDB)	<0.80	ug/L	0.16	0.51	SW 8260B	09/09/1999	615
Dibromomethane	<0.55	ug/L	0.11	0.36	SW 8260B	09/09/1999	·· 615
1,2-Dichlorobenzene	<1.0	ug/L	0.20	0.64	SW 8260B	09 /09/19 99	615
1,3-Dichlorobenzene	<1.1	ug/L	0.22	0.71	SW 8260B	09/09/1999	615
1,4-Dichlorobenzene	<1.8	ug/L	0.35	1.1	SW 8260B	09/09/1999	615
Dichlorodifluoromethane	<2.4	ug/L	0.49	1.6	SW 8260B	09/09/1999	615
1,1-Dichloroethane	<1.2	ug/L	0.25	0.79	SW 8260B	09/09/1999	615
1,2-Dichloroethane	<1.0	ug/L	0.20	0.63	SW 8260B	09/09/1999	615
1,1-Dichloroethene	19	ug/L	0.73	2.3	SW 8260B	09/09/1999	615
cis-1,2-Dichloroethene	2.0	ug/L	0.23	0.74	SW 8260B	09/09/1999	615
trans-1,2 Dichloroethene	<2.0	ug/L	0.39	1.2	SW 82608	09/09/1999	615
1,2-Dichloropropane	<1.4	ug/L	0.29	0.93	SW 8260B	09/09/1999	615
1,3-Dichloropropane	<0,75	ug/L	0.15	0.46	SW 8260B	09/09/1999	- 615
2,2-Dichloropropane	<1.8	ug/L	0.37	1.2	SW 8260B	09/09/1999	615
1,1-Dichloropropene	<3,2	ug/L	0.63	2.0	SW 8260B	09/09/1999	615
cis-1,3-Dichloropropene	<0.85	ug/L	0.17	0.56	SW 8260B	09/09/1999	615
trans-1,3-Dichloropropene	<0.65	ug/L	0.13	0.42	SW 8260B	09/09/1999	615
Di-isopropyl ether	<0.65	ug/L	0.13	3.41	SW 8260B	09/09/1999	615
Ethylbenzene	<1. 9	ug/L	0.38	1.2	SW 8260B	09/09/1999	615
Hexachlorobutadiene	<1.8	սց/ւ	0.37	1.2	SW 8260B	09/09/1999	615

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, WI 53115

.

09/15/1999 Job No: 99.07832 Sample No: 364153 Account No: 67550 Page 9 of 22

JOB DESCRIPTION: Volatile Samples PROJECT DESCRIPTION: Groundwater Analysis SAMPLE DESCRIPTION: TW-4Rec'd on ice

Date/Time Taken: 09/02/1999 15:05 Date Received: 09/08/1999

						Date	Prep/Run
Parameter	Results	Units	MDL	LOQ	Method	Analyzed	Batch
Isopropylbenzene	<1.8	ug/L	0.36	1.1	SW 8260B	09/09/1999	615
p-Isopropyltoluene	<1.8	ug/L	0.35	1.1	SW 8260B	09/09/1999	615
Methylene Chloride	<4.4	ug/L	0.87	3.1	SW 8260B	09/09/1999	615
Methyl-t-butyl ether	<0.70	ug/L	0.14	0.45	SW 8260B	09/09/1999	615
Naphthalene	<1.8	ug/L	0.35	1.1	SW 8260B	09/09/1999	615
n-Propylbenzene	<2.3	ug/L	0.46	1.5	SW 8260B	09/09/1999	615
Styrene	<0.80	ug/L	0.16	0.51	SW 8260B	09/09/1999	615
1,1,1,2-Tetrachloroethane	<0.55	ug/L	0.11	0.34	SW 82603	09/09/1999	615
1,1,2,2-Tetrachloroethane	<2.0	ug/L	0.39 -	1.3	SW 0260B	09/09/1999	615
Tetrachloroethene	<3.2	ug/L	0.63	2.0	SW 8260B	09/09/1999	615
Toluene	<2.0	ug/L	0.39	1.3	SW 8260B	09/09/1999	615
1,2,3-Trichlorobenzene	<1.6	ug/L	0.32	1.0	SW 8260B	09/09/1999	615
1,2,4-Trichlorobenzene	<0.90	ug/L	0.18	0.57	SW 8260B	09/09/1999	615
1,1,1-Trichloroethane	180	ug/L	0.28	3.88	SW 8260B	09/09/1999	615
1,1,2-Trichloroethane	2.4	ug/L	0.15	0.46	SW 8260B	09/09/1999	615
Trichloroethene	110	ug/L	0.49	1.6	SW 8260B	09/09/1999	615
Trichlorofluoromethane	<2.9	ug/L	0.58	1.8	SW 8260B	09/09/1999	615
1,2,3-Trichloropropane	<1.4	ug/L	0.28	0.90	SW 8260B	09/09/1999	615
1,2,4-Trimethylbenzene	<1.6	ug/L	0.32	1.0	SW 8260B	09/09/1999	615
1,3,5-Trimethylbenzene	<1.6	ug/L	0.33	1.0	SW 8260B	09/09/1999	615
Vinyl Chloride	<2.3	ug/L	0.46	1.5	SW 8260B	09/09/1999	615
Xylenes, Total	<5.5	ug/L	1.1	3.6	SW 8260B	09/09/1999	615
Surr: Dibromofluoromethane	119.0	*	83-127	n/a	SW 8260B	09/09/1999	615
Surr: Toluene-d8	103.0	ર	82-119	n/a	SW 8260B	09/09/1999	615
Surr: Bromofluorobenzene	100.6	4	85-113	n/a	SW 82608	09/09/1999	615

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, ŴI 53115

09/15/1999 Job No: 99.07832 Sample No: 364154 Account No: 67550 Page 10 of 22

JOB DESCRIPTION: Volatile Samples PROJECT DESCRIPTION: Groundwater Analysis SAMPLE DESCRIPTION: D25-R Rec'd on ice

Date/Time Taken: 09/02/1999 15:45 Date Received: 09/08/1999

- -

						Date	Prep/Run
Parameter	Results	Units	MDL	LOQ	Method	Analyzed	Batch
VOC - AQUEOUS - EPA 8260B							
Tetrachloroethene	0.72	ug/L	0.63	2_0	SW 8260B	09/09/1999	615
1,1,1-Trichloroethane	6.7	ug/L	0.28	0.88	SW 8260B	09/09/1999	615
Trichloroethene	8.4	ug/L	0.49	1.6	SW 8260B	09/09/1999	615
Surr: Dibromofluoromethane	95.4	¥	83-127	n/a	SW 8260B	09/09/1999	615
Surr: Toluene-d8	102.6	ŝ	82-119	n/a	SW 8260B	09/09/1999	615
Surr: Bromofluorobenzene	101.8	*	85-113	n /a	SW 8260B	09/09/1999	615

.

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, WI 53115

.....

.

14

..

09/15/1999 Job No: 99.07832 Sample No: 364155 Account No: 67550 Page 11 of 22

.

JOB DESCRIPTION: Volatile Samples PROJECT DESCRIPTION: Groundwater Analysis SAMPLE DESCRIPTION: D-18 Rec'd on ice

Date/Time Taken: 09/07/1999 09:45 Date Received: 09/08/1999

- ,

.

						Date	Prep/Run
Parameter	Results	Units	MDL	LOQ	Method	Analyzed	Batch
VOC - AQUEOUS - EPA 8260B							
Tetrachloroethene	2.6	ug/L	0.63	2.0	SW 8260B	09/14/1999	616
1,1,1-Trichloroethane	<0.28	ug/L	0.28	0.88	SW 8260B	09/14/1999	616
Trichloroethene	4.8	ug/L	0.49	1.6	SW 8260B	09/14/1999	616
Surr: Dibromofluoromethane	98.4	8	83-127	n/a	SW 8260B	09/14/1999	616
Surr: Toluene-d8	105.4	8	82-119	n/a	SW 8260B	09/14/1999	616
Surr: Bromofluorobenzene	98.0	\$	85-113	n/a	SW 8260B	09/14/1999	616

602 COMMERCE DRIVE / WATERTOWN, WI 53094 / 920-261-1660 / FAX: 920-261-8120 WDNR NO. 128053530

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, WI 53115

-

09/15/1999 Job No: 99.07832 Sample No: 364156 Account No: 67550 Page 12 of 22

JOB DESCRIPTION: Volatile Samples PROJECT DESCRIPTION: Groundwater Analysis SAMPLE DESCRIPTION: MW2004 Rec'd on ice

Date/Time Taken: 09/07/1999 10:25

Date Received: 09/08/1999

• •

.

. .

						Date	Prep/Run
Parameter	Results	Units	MDL	LOQ	Method	Analyzed	Batch
VOC - AQUEOUS - EPA 8260B							
Tetrachloroethene	<0.63	ug/L	0.63	2.0	SW 8260B	09/14/1999	616
1,1,1-Trichloroethane	<0.28	ug/L	0.28	0.88	SW 8260B	09/14/1999	616
Trichloroethene	<0.49	ug/L	0.49	1.6	SW 8260B	09/14/1999	616
Surr: Dibromofluoromethane	102.4	*	83-127	n/a	SW 8260B	09/14/1999	616
Surr: Toluene-d8	103.6	ት	82-119	n/a	SW 8260B	09/14/1999	616
Surr: Bromofluorobenzene	96.4	*	85-113	n/a	SW 8260B	09/14/1999	616

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, WI 53115

.

....

09/15/1999 Job No: 99.07832 Sample No: 364157 Account No: 67550 Page 13 of 22

.....

JOB DESCRIPTION: Volatile Samples PROJECT DESCRIPTION: Groundwater Analysis MW2005 SAMPLE DESCRIPTION: Rec'd on ice

Date/Time Taken: 09/07/1999 11:25 Date Received: 09/08/1999

٠.

						Date	Prep/Run
Parameter	Results	Units	MDL	LÓQ	Method	Analyzed	Batch
VOC - AQUEOUS - EPA 8260B							
Tetrachloroethene	7.8	ug/L	0.63	2.0	SW 8260B	09/14/1999	616
1,1,1-Trichloroethane	<0.28	ug/L	0.28	0.88	SW 8260B	09/14/1999	616
Trichloroethene	1.0	ug/L	0,49	1.6	SW 8260B	09/14/1999	616
Surr: Dibromofluoromethane	98.0	2	83-127	n/a	SW 8260B	09/14/1999	616
Surr: Toluene-d8	98.8	*	82-119	n/a	SW 8260B	09/14/1999	616
Surr: Bromofluorobenzene	88.2	r.	85-113	n/a	SW 8260B	09/14/1999	61 6

602 COMMERCE DRIVE / WATERTOWN, WI 53094 / 920-261-1660 / FAX: 920-261-8120 WDNR No. 128053530

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, WI 53115

.

09/15/1999 Job No: 99.07832 Sample No: 364158 Account No: 67550 Page 14 of 22

JOB DESCRIPTION: Volatile Samples PROJECT DESCRIPTION: Groundwater Analysis SAMPLE DESCRIPTION: D-15 Rec'd on ice

Date/Time Taken: 09/07/1999 11:55 Date Received: 09/08/1999

- -

						Date	Prep/Run
Parameter	Results	Units	MDL	LOQ	Method	Analyzed	Batch
VOC - AQUEOUS - EPA 8260B							
Tetrachloroethene	22	ug/L	0,63	2.0	SW 8260B	09/14/1999	616
l,1,1-Trichloroethane	<0.56	ug/L	0.28	0.89	SW 8260B	09/14/1999	616
Trichloroethene	120	ug/L	0.49	1.6	SW 8260B	09/14/1999	616
Surr: Dibromofluoromethane	93.6	*	83-127	n/a	SW 8260B	09/14/1999	616
Surr: Toluene-d8	103.6	÷	82-119	n/a	SW 8260B	09/14/1999	616
Surr: Bromofluorobenzene	96.2	ŝ	85-113	n/a	SW 8260B	09/14/1999	616

602 COMMERCE DRIVE / WATERTOWN, WI 53094 / 920-261-1660 / FAX: 920-261-8120 WDNR NO. 128053530

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, WI 53115

.

09/15/1999 Job No: 99.07832 Sample No: 364159 Account No: 67550 Page 15 of 22

•

JOB DESCRIPTION: Volatile Samples PROJECT DESCRIPTION: Groundwater Analysis SAMPLE DESCRIPTION: TW-1 Rec'd on ice

Date/Time Taken: 09/07/1999 13:35 Date Received: 09/08/1999

۰,

						Date	Prep/Run
Parameter	Results	Units	MDL	LOQ	Method	Analyzed	Batch
VOC - AQUEOUS - EPA 8260B							
Tetrachloroethene	<0.63	ug/L	0.63	2.0	SW 8260B	09/14/1999	616
1,1,1-Trichloroethane	0.57	ug/L	0.28	0.85	SW 8260B	09/14/1999	616
Trichloroethene	2.4	ug/L	0.49	1.6	SW 8260B	09/14/1999	616
Surr: Dibromofluoromethane	100.6	\$	83-127	n/a	SW 8260B	09/14/1999	616
Surr: Toluene-d8	104.0	ł	82-119	п/а	SW 8260B	09/14/1999	616
Surr: Bromofluorobenzene	98.0	94	85-113	n/a	SW 8260B	09/14/1999	616

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, WI 53115

.

.

09/15/1999 Job No: 99.07832 Sample No: 364160 Account No: 67550 Page 16 of 22

JOB DESCRIPTION: Volatile Samples PROJECT DESCRIPTION: Groundwater Analysis SAMPLE DESCRIPTION: TW-3 Rec'd on ice

Date/Time Taken: 09/07/1999 14:15

Date Received: 09/08/1999

- ,

						Date	Prep/Run
Parameter	Results	Units	MDL	LOQ	Method	Analyzed	Batch
VOC - AQUEOUS - EPA 8260B							
Tetrachloroethene	1.9	ug/L	0.63	2.0	SW 8260B	09/14/1999	616
1,1,1-Trichloroethane	1.1	ug/L	0.28	0.88	SW 8260B	09/14/1999	616
Trichloroethene	3.2	ug/L	0.49	1.6	SW 8260B	09/14/1999	616
Surr: Dibromofluoromethane	96.4	*	83-127	n/a	SW 8260B	09/14/1999	616
Surr: Toluene-d8	101.6	¥	82-119	n/a	SW 8260B	09/14/1999	616
Surr: Bromofluorobenzene	104.4	ŝ	85-11 3	n/a	SW 8260B	09/14/1999	616

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, WI 53115

09/15/1999 Job No: 99.07832 Sample No: 364161 Account No: 67550 Page 17 of 22

JOB DESCRIPTION: Volatile Samples PROJECT DESCRIPTION: Groundwater Analysis EX 1 SAMPLE DESCRIPTION: Rec'd on ice

Date/Time Taken: 09/07/1999 14:35 Date Received: 09/08/1999

- -

						Date	Prep/Run
Parameter	Results	Units	MDL.	LOQ	Method	Analyzed	Batch
VOC - AQUEOUS - EPA 8260B							
Tetrachloroethene	3.4	ug/L	0.63	2.0	SW 8260B	09/14/1999	616
1,1,1-Trichlcroethane	0.32	ug/L	0.28	0.88	SW 8260B	09/14/1999	616
Trichloroethene	8.7	ug/L	0.49	1.6	SW 8260B	09/14/1999	616
Surr: Dibromofluoromethane	89.4	ş	83-127	∴/a	SW 8260B	09/14/1999	616
Surr: Toluene-d8	105.2	¥	82-119	n/a	SW 8260B	09/14/1999	616
Surr: Bromofluorobenzene	96.0	al a	85-113	n/a	SW 8260B	09/14/1999	616

.

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, ŴI 53115

.

09/15/1999 Job No: 99.07832 Sample No: 364162 Account No: 67550 Page 18 of 22

JOB DESCRIPTION: Volatile Samples PROJECT DESCRIPTION: Groundwater Analysis SAMPLE DESCRIPTION: EX 2 Rec'd on ice

Date/Time Taken: 09/07/1999 14:32 Date Received: 09/08/1999

.

٠.

						Date	Prep/Run
Parameter	Results	Units	MDL	LOQ	Method	Analyzed	Batch
VOC - AQUEOUS - EFA 8260B							
Tetrachloroethene	<0.63	ug/L	0.63	2.0	SW 8260B	09/14/1999	616
1,1,1-Trichloroethane	15	ug/L	0.28	0.88	SW 8260B	09/14/1999	616
Trichloroethene	34	ug/L	0.49	1.6	SW 8260B	09/14/1999	616
Surr: Dibromofluoromethane	98.0	S.	83-127	n/a	SW 8260B	09/14/1999	616
Surr: Toluene-d8	104.2	8	82-119	n/a	SW 8260B	09/14/1999	616
Surr: Bromofluorobenzene	97.8	\$	85-113	n/a	SW 8260B	09/14/1999	616

•

602 COMMERCE DRIVE / WATERTOWN, WI 53094 / 920-261-1660 / FAX: 920-261-8120 WDNR NO. 128053530

.....

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, ŴI 53115

-

09/15/1999 Job No: 99.07832 Sample No: 364163 Account No: 67550 Page 19 of 22

JOB DESCRIPTION: Volatile Samples PROJECT DESCRIPTION: Groundwater Analysis SAMPLE DESCRIPTION: EX 3 Rec'd on ice

Date/Time Taken: 09/07/1999 14:40 Date Received: 09/08/1999

- -

. . .

.

-

						Date	Prep/Run
Parameter	Results	Units	MDL	LOQ	Method	Analyzed	Batch
VOC - AQUEOUS - EPA 8260B							
Tetrachloroethene	<0.63	ug/L	0.63	2.0	SW 8260B	09/14/1999	616
1,1,1-Trichloroethane	22	ug/L	0.28	0.88	SW 8260B	09/14/1999	616
Trichloroethene	26	ug/L	0.49	1.6	SW 8260B	09/14/1999	616
Surr: Dibromofluoromethane	93.0	8	83-127	n/a	SW 8260B	09/14/1999	616
Surr: Toluene-d8	102.0	ŧ	82-119	n/a	SW 8260B	09/14/1999	616
Surr: Bromofluorobenzene	91.6	*	85-113	n/a	SW 8260B	09/14/1999	616

-

•

602 COMMERCE DRIVE / WATERTOWN, WI 53094 / 920-261-1660 / FAX: 920-261-8120 WDNR NO. 128053530

-

ANALYTICAL REPORT

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, ŴI 53115

-

09/15/1999 Job No: 99.07832 Sample No: 364164 Account No: 67550 Page 20 of 22

JOB DESCRIPTION: Volatile Samples PROJECT DESCRIPTION: Groundwater Analysis EX 7 SAMPLE DESCRIPTION: Rec'd on ice

Date/Time Taken: 09/07/1999 15:50 Date Received: 09/08/1999

- -

Parameter	Results	Units	MDL	LOQ	Method	Date Analyzed	Prep/Run Batch
VOC - AQUEOUS - EPA 8260B							
Tetrachloroethene	130	ug/L	0.63	2.0	SW 8260B	09/14/1999	616
1,1,1-Trichloroethane	<2.8	ug/L	0.28	0.88	SW 8260B	09/14/1999	616
Trichloroethene	490	ug/L	0.49	1.6	SW 8260B	09/14/1999	616
Surr: Dibromofluoromethane	109.8	8	83-127	n/a	SW 8260B	09/14/1999	616
Surr: Toluene-dB	105.2	¥	82-119	n/a	SW 8260B	09/14/1999	616
Surr: Bromofluorobenzene	97.6	4	85-113	n/a	SW 8250B	09/14/1999	616

. . .

QUALITY CONTROL REPORT BLANKS

09/15/1999

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, WI 53115

Job No: 99.07832 Account No: 67550

...

Page 21 of 22

Job Description: Volatile Samples

	Prep	Run	Blank			
Parameter	Batch	Batch	Result	MDL	LOQ	Units
VOC - AQUEOUS - EPA 8260B						
Benzene		615	<0.31	0.31	0.98	ug/L
Bromobenzene		615	<0.20	0.20	0.64	ug/L
Bromochloromethane		615	<0.32	0.32	1.0	ug/L
Bromodichloromethane		615	<0.20	0.20	0.63	ug/L
Bromoform		615	<0.14	0.14	0.45	ug/L
Bromomethane		615	<0.46	0.46	1.5	ug/L
n-Butylbenzene		615	<0.44	0.44	1.4	ug/L
sec-Butylbenzene		615	<0.45	0.45	1.4	ug/L
tert-Butylbenzene		615	<0.38	0.38	1.2	ug/L
Carbon Tetrachloride		615	<0.40	0.40	1.3	ug/L
Chlorobenzene		615	<0.22 、	0.22	0.69	ug/L
Chlorodibromomethane		615	<0.10	0.10	0.33	ug/L
Chloroethane		615	<1.2	1.2	3.9 `	ug/L
Chloroform		615	<0.18	0.18	0.58	ug/L
Chloromethane		615	<0.38	0.38	1.2	ug/L
2-Chlorotoluene		615	<0.28	0.28	0.90	ug/L
4-Chlorotoluene		615	<0.47	0.47	1.5	ug/L
1,2-Dibromo-3-Chloropropane		615	<1.4	1.4	4.5	ug/L
1,2-Dibromoethane (EDB)		615	<0.16	0.16	0.51	ug/L
Dibromomethane		615	<0.11	0.11	0.36	ug/L
1,2-Dichlorobenzene		615	<0.20	0.20	0.64	ug/L
1,3-Dichlorobenzene		615	<0.22	0.22	0.71	ug/L
1,4-Dichlorobenzene		615	<0.35	0.35	1.1	ug/Ł
Dichlorodifluoromethane		615	<0.49	0.49	1.6	ug/L
1,1-Dichloroethane		615	<0.25	0.25	0.79	ug/L
1,2-Dichloroethane		615	<0.20	0.20	0.63	ug/L
1,1-Dichloroethene		615	<0.73	0.73	2.3	ug/L
cis-1,2-Dichloroethene		615	<0.23	0.23	0.74	ug/L
trans-1,2-Dichloroethene		615	<0.39	0.39	1.2	ug/L
1,2-Dichloropropane		615	<0.29	0.29	0.93	ug/L
1,3-Dichloropropane		615	<0.15	0.15	0.46	ug/L
2,2-Dichloropropane		615	<0.37	0.37	1.2	ug/L
1,1-Dichloropropene		615	<0.63	0.63	2.0	ug/L
cis-1,3-Dichloropropene		615	<0.17	0.17	0.56	ug/L
trans-1,3-Dichloropropene		615	<0.13	0.13	0.42	ug/L
Di-isopropyl ether		615	<0.13	0.13	0.41	ug/L
Ethylbenzene		615	<0.38	0.38	1.2	ug/L

Method blank results exceed control limits when results are higher than the highest of any of the following: 1 - The limit of detection; 2 - Five percent of the regulatory limit for that analyte; 3 - Five percent of the measured concentration in the sample. NR149.14 (3)d

602 COMMERCE DRIVE / WATERTOWN, WI 53094 / 920-261-1660 / FAX: 920-261-8120 WDNR No. 128053530

QUALITY CONTROL REPORT BLANKS

09/15/1999

Mr. Jon Raymond STA-RITE INDUSTRIES, INC 293 S Wright Street Delavan, WI 53115

Job No: 99.07832 Account No: 67550

--- --

Page 22 of 22

Job Description: Volatile Samples

	Prep	Run	Blank			
Parameter	Batch	Batch	Result	MDL	LOQ	Units
Hexachlorobutadiene		615	<0.37	0.37	1.2	ug/L
Isopropylbenzene		615	<0.36	0.36	1.1	ug/L
p-Isopropyltoluene		615	<0.35	0.35	1.1	ug/L
Methylene Chloride		615	<0.87	0.87	3.1	ug/L
Methyl-t-butyl ether		615	<0.14	0.14	0.45	ug/L
Naphthalene		615	<0.35	0.35	1.1	ug/L
n-Propylbenzene		615	<0.46	0.46	1.5	ug/L
Styrene		615	<0.16	0.16	0.51	uq/L
1,1,1,2-Tetrachloroethane		615	<0.11	0.11	0.34	ug/L
1,1,2,2-Tetrachloroethane		615	<0.39	0.39	1.3	ug/L
Tetrachloroethene		615	<0.63	0.63	2.0	uq/L
`oluene		615	<0.39 -	0.39	1.3	ug/L
1,2,3-Trichlorobenzene		615	<0.32	0.32	1.0	ug/L
1,2,4-Trichlorobenzene		615	<0.18	0.18	0.57	ug/L
1,1,1-Trichloroethane		615	<0.28	0.28	0.88	ug/L
1,1,2-Trichloroethane		615	<0.15	0.15	0.46	ug/L
Trichloroethene		615	<0.49	0.49	1.6	ug/L
Trichlorofluoromethane		615	<0.58	0.58	1.8	ug/L
1,2,3-Trichloropropane		615	<0.28	0.28	0.90	ug/L
1,2,4-Trimethylbenzene		615	<0.32	0.32	1.0	ug/L
1,3,5-Trimethylbenzene		615	<0.33	0.33	1.0	ug/L
Vinyl Chloride		615	<0.46	0.46	1.5	ug/L
Xylenes, Total		615	<1.1	1.1	3.6	ug/L
Surr: Dibromofluoromethane		615	96.8	83-127	n/a	2
Surr: Toluene-d8		615	103.2	82-119	n/a	÷
Surr: Bromofluorobenzene		615	103.8	85-113	n/a	8
VOC - AQUEOUS - EPA 8260B						
Tetrachloroethene		616	<0.63	0.63	2.0	ug/L
1,1,1-Trichloroethane		616	<0.28	0.28	0.88	ug/L
Trichloroethene		616	<0,49	0.49	1.6	ug/L
Surr: Dibromofluoromethane		616	93.6	83-127	n/a	*
Surr: Toluene-d8		616	105.4	82-119	n/a	oja
Surr: Bromofluorobenzene		616	98.2	85-113	n/a	8

Method blank results exceed control limits when results are higher than the highest of any of the following: 1 - The limit of detection; 2 - Five percent of the regulatory limit for that analyte; 3 - Five percent of the measured concentration in the sample. NR149.14 (3)d

602 COMMERCE DRIVE / WATERTOWN, WI 53094 / 920-261-1660 / FAX: 920-261-8120 WDNR NO. 128053530

EDBY EDBY MME MME MME MME MME MME MME MME MME MM

PT 1 - ORIGINAL - WHITE PT 2 - NET PROJECT MANAGER - YELLOW PT 3 - CUSTOMER COPY - PINK

NATIONAL ENVIRONMENTAL	CHAIN OF CUSTODY	ECORD J1/	1 - The second
TESTING, INC.	COMPANY JACK CUL	1 Threet	REPORT TO: NOT
	PHONE <u>111 725 7216</u>	FAX 4/4 728 7213	INVOICE TO: V FCELT MORE
	PROJECT NAME/LOCATION		P.O. NO.
		an man	NET QUOTE NO.
SAMPLED BY		ANALYSES	To assist us in selecting the proper method
(PRINT NAME) SIGN	NATURE		Is this work being conducted for regulatory compliance monitoring? Yes
(PRINT NAME) SIGN	NATURE # and Type of Containers		Is this work being conducted for regulatory enforcement action? Yes No
DATE TIME SAMPLE ID/DESCRIPTION	ичен 14204 14204 1403 1403 1403 1403 1401 1403 1403 1401 1403 1403 1401 1403 1405 140	12L 12L 12L 12L	Which regulations apply: RCFIA NPDES Wastewater UST Drinking Water Other None
	7 	- - -	COMMENTS
1-22-1 11-25-1	×	××× ×	
1 11-14 CSBS	X		
11:57 565			
13:40 MW 1027		XXX	
Isost Tw -4	8	×	
12-2-C Stril			
1/2 P. 5 2 D-18			
Har Mu Zord		► K ×	
11.25 MW 2025			
1155 D 15			-
1535 Tw -1			
14 2 Tw- 3			
H'35 EX 1			
IT W TX 2			
A B BXS			
CONDITION OF SAMPLE: BOTTLES INTACT? CES	\$ / NO COC SEALS PRESENT A / NO VOLATILES FREE OF HE	AND INTACT? YES/NO EADSPACE? YES/NO B	MPERATURE UPON RECEIPT: UN 1/2
SAMPLE REMAINDER DISPOSAL: RETURN SAMPL	PLE REMAINDER TO CLIENT VIA)
	I IO DISPOSE OF ALL SAMPLE REMAINDERS		AIE 1101 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4
RELINGSHED DE TIME	RECEIVED BY: Her Server de Ale	LINOUISHED BY: DATE	TIME RECEIVED FOR NET BY:
METHOD OF SHIPMENT	REMARKS:		Peleles

PT 1 · OHIGINAL · WHITE PT 2 - NET PROJECT MANAGER - YELLOW PT 3 · CUSTOMER COPY - PINK

E.	REMARKS		13 SEC.	62 SEC.																		
A See	SAMPLER	d'à	200	200	5	2	1 J2 J2	200	200	27	22	2	22 22	202	Con the second s	000	0					
GRAN	TEMP.	53°	420	450																		
ATA ATA	CONDUCT-																					
	Hď.																					
SAMF SAMF	PURGE VOLUME				7.29	9.14	6116	18.9	8.46	7.70	4.70	12.21	10.67									
TER SAI	FEET OF WATER		·		11.19	14.02 .	11.03	lo So	12.99	11.82	7,22	18.74	16,38									
TA-F WA	WATER LEVEL				27.52	36.46	31.22	29.26	26.22	2432	30.78	26.62	3162					 			 2,61	
GUND	WELL DEPTH				38.71	Sc.48	43.25	39.76	39.21	36.14	38,00	45.36	48.00						-		×× był	
С С	TIME	II23 YAN	1114781	N825:11	Maphi	3:05 PM	MASHIE	MR24:0	10:25AM	MBSSAI	MATE:11	MASEY	MASIL &	2:2SPM	132 PM	2 40 PM	ars apr				of water of water	
•	DATE	9-2-99	9-2-99	66.2-6	9-2-99	69-2-99	9-2-99	66-6-6	9-7-95	9-7-99	9.7.99	9- 7-99	9-7-99	9-7.99	9-7-99	9.7.9	3-7.99				lme = ft. c ime = ft. c	
• • •	SAMPLE NUMBER			1		-							-								urge volu urge volu	
·· ·	WELL	1-55	CSES	SES	NW 1020	7w - 4	D2S'R	81-0	Mw-2004	MW-2005	0-1 <i>S</i>	Tw-i	Twin	Ex./	84.2	Er-39	Ex.7				t" Well p " Well p	
₩ E	REMARKS		13 SEC.	62 SEC.										•								
---------------------	------------------	-------------	---------	---------	---------	---------	------------	---------	---------	----------	---------	--------	-------------	-----------	----------	--------	---------	---	------------	--	---	--------------------------
N Sk	SAMPLER	20 Color	200	200	,	202	9-9 2-6	200	200	200	22	2	202	A Charles	272	500	597	5				
GRAN	TEMP.	S3°	۰۳۴	450																		
E S ATA	CONDUCT-																					-
NG DG	Hď.																1					
SAMF SAMF	PURGE VOLUME		-		7.29	9.14	7.19	6.84	8.46	7.70	4.70	12.21	10.67									
RITE TER SAI	FEET OF WATER		-		11.19	14.02	11.03	10501	66.21	11.82	7.22	18.74.	16,38						 - 			
ELE TA-I TELE	WATER LEVEL				27.52	36.46	31.22	29.26	26.22	2433	30.78	26.62	31.62									2,61
SOUN	WELL DEPTH				38.71	S0.48	43.25	39.76	12.95	36.14	38,00	4536	48.00									×× A
Ц IJ	TIME	IL3 YAN	1114791	11:57AN	WJOH1	3:05 PM	3:45PM	9:45 AM	10:25AM	MBSENI	MATZ:11	MASEY	masis &	2:2SPM	Mid rer	240 PM	ars apm				•	of water of water
· ·	DATE	9-2-99	99-2-99	6.2.6	9.2.99	66-2-6	9-2-99	66-1-9	9-7-95	9 - 7.99	9.7.99	9-7-99	9-7-99	9-7-99	. 66-7-6	6.7.9	3-7.99					me = ft. c me = ft. c
6 3	SAMPLE NUMBER					-							-	-	-							urge volu urge volu
	WELL NUMBER	1-55	CSES	SES	NW 1020	ש- טר	D2S-R	81-0	MW-2004	MW-2005	5-15	1-m-1	Tw. m.m.	Ex./	54.2	Er-39	Ex.2					4" Well p

APPENDIX E

SOIL BORING LOGS AND BOREHOLE ABANDONMENT FORMS

GeoTrans, Inc.

Watershed/Wastewater 🛄 Waste Management 🔲 Route To: Remediation/Revelopment 🔲 Other 🔲 Page Boring Number License/Permit/Monitoring Number Facility/Project Name ß-c LADUSTRIES IR-KILE Date Drilling Completed Drilling Method Boring Drilled By: Name of crew chief (first, last) and Firm Date Drilling Started <u>2</u> ş <u>____</u>_28 <u>⊖</u> ÿ First Name: " Last Name: KA74G1 ଌୢୖ<mark>୷</mark>ୄୖ୷ୄୡୄୡୄୡୢଌୢ ş 10ply m m WIRONMENTA Firm: ON-STLE Borehole Diameter Final Static Water Level Surface Elevation DNR Well ID No. Well Name WI Unique Well No. 2.0 inches Feet MSL Feet MSL Local Grid Location n 🗖 E S/C/N Local Grid Origin 📫 (estimated: 🖬) or Boring Location 0 Lat ΠE 🗆 N State Plane ı 18 0 Feet W 1*6 D*w Feet D S Long T Z N. R 525 1/4 of NE 1/4 of Section 17 Civil Town/City/ or Village County Code Facility ID County [SALISOPI] DELAVAN Soil Properties Sample Depth in Feet (Below ground surface) Length Att. & Recovered (in) ¥¢⊃ Compressive Soil/Rock Description RQD/ Comments Blow Counts And Geologic Origin For Plasticity Index Moisture Content Number and Type S Well Diagram PID/FID Graphic Log Liquid Limit P 200 Each Major Unit So

I hereby certify that the information on this form is true and correct to the best of my knowledge.

Signature Firm GESTRANS 175 N. CORPORATE DR. SUTTE 100 BRock FTELD, WI. 53045

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis, Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

<u>5</u> 2	- <u>)</u> 4	mp.	<u>ک</u>			,								
San	ple									<u>Soil P</u>	roper	ties T		
Number and Ty.	Length Au. & Recovered (in)	Blow Counts	Depth in Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	uscs	Graphic Log	Well Diagram		Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
/				16.0-28.0: SILTY SILA (SM) ABOUT SE & FINE TO MEDIUM GROWND SAND, 40% FINES, AND SCO FINE TO COARSE GRAVEL LIGHT BROWNISH GRAY LIGHT BROWNISH GRAY	500			112 6.0						
,			E.	(oth 12) moist Non TLASTIC				60						
2	36			(JOYR'L); USEAK EDOR 24-28 FEET.	Sm	-		475 (3.0)						
4	, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				Sr			922 (5.0)			-			
5			21	E0B: 28.0	51		-1	3787 (5.2)	n) -					2
			<u>huluuluuluul</u>											

*= PID But GROUND REG.

,

Page <u>2 of 2</u>

			Route	<u>: To:</u> V R	Vatershed/W temediation/	astewater 🔲 W Revelopment 🛄	aste l Oth	Manage	ment			. <u> </u>							
															Page		of _	<u>2</u>	-
Facility	Proje	ct Nai	™ 	A-RII	5 TN	WETRIES	- **	Licens	e/Perm	it/Mor	utorin	g Numl	>er	Boring	Numb	$\frac{\pi}{2}$	8		
Boring	Drille	d By:	Name	of crew of	chief (first,)	ast) and Firm		Date D	rilling	Starter		Date D	rilling	Comp	leted	Drillin	g Meu	iod	-
First Na		100 51	1 7. <i>1</i> , 1	VIRDAR	"KATUE			음곱	28,	<u>૾ૢ</u> ૢૢૢૢૢ	ŝŤ	<u>0</u> <u>7</u> ,	<u>28</u> ,	<u>2</u> ç;	<u>></u> /y y y	Œ	opx	9.DC	-
WI Uni	ique W	/ell N	0.	DNR We	ll ID No.	Well Name		Final S	itatic V	Vater L Feet M	evel SL	Surface	Elevi	ition Feet N	ASL	Boreho Z·	ole Dia O ir	uncter nches	
Local (Srid O	rigin		imated: 🗖) or Bo	ning Location	 N1		 al	, ("	Local (Grid L	ocation	1				-
5000 F. 52J	1/4 of	NE	1/4 of 3	Section /	 7т <u>∡</u> ́	N. R 16 CE)w	Lon	8	, ,	*	<u> </u>	Fe	⊡ ≈t⊡	N S		Fcct		
Facility	/ ID			Co	unty LIA	ISORTH	C₀	unty Co	ode	Civil 1		City/or	Villag	(c					
Sam	ple		្រ	I								Ţ		Soil I	rope	rties			
	₹ 1. 8 	struct	FCCt Ind surf		Soil/Ro And Geo	ck Description logic Origin For					_	¥()	sive	0		~		sln	
mbcr Typ	ngth /	Š Š	pih in ow grou		Each	Major Unit		1	scs	phic	cll agram	D/FID	nprcs	oisturn tatant	quid	asticil dex	200	DD/ DD/	
A D	Å L	Ē	23						>	٤ گ	≯ä	Iď	5 <u>9</u>	žΰ		<u>1</u> 21	4	<u> </u>	-
			Ē,														-	X=PD	ò
			E'															Butter	Ð
		:	Ez															RIG.	
			1																
			E																
			E-4														-		
			E ~														:		
			E								ļ			ļ			ļ		
			-6							•							1		
			E7																
			Ę											ĺ					
			E-8									1					ĺ		
			Eq							ļ									
	Ì		E							1			ŀ				1		
			¦=≁°													1	ļ		
		1	E41								1				1				
			E12														ł		
	1	1		<u> </u>					<u> </u>	<u> </u>	1	_	1	I			1		

Signature

ereby certify that the information on this form is true and correct to the best of my knowledge. ignature
Firm GESTRANS 175 N. Conform I DR. SUITE 100
BRock FIED, W1-53045

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

58-	200	8								0-110				
San	ıgth Au. & Ö covered (in) ^G	ow Counts	pth in Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	scs	aphic E	cll agram	o/FID ¥	mpressive rength	oisture ontent	iquid imit	asticity dcx	200	QD/ onuncuts
Nu Nu	ភ្ល		Å		2	53	βä	PI	ర్లు	ΣŬ		6, 1	<u>d</u> ,	<u>~0</u>
				160-28.0: SILTY SAND EM ABOUT 55% FINGTO MEDIUM GRAINED SAND,				57 । 6 <u>इ</u>						-
2	36			FINE TO COARSE GRAVEL. FINE TO COARSE GRAVEL. VERY PALE BROWN (JOYR 74) TO JIGHT GRAY (JOYR 74), MOIST, NON TLASTIC.	5m			5.7 (6.0)						
m	<i>46</i>				Sm		-	32.7)					
4	32				50	ı 		85.5 (6.0						
5		-		5-3:28.0	50	r 		(2.3 (0.0	2					
			nhunhunh											

*= PDBackGRourd RDG.

.

Page 2 of 2

Route To: Watershed/Wastewater 🗋 Waste Management 🗋 Remediation/Revelopment 🗋 Other 🗋 _____

																Page		_of _	2	
Facility	/Projec	t Nan	57	A-R	TTS.	TN	Just TR	1125	Lice	nse/Perr	nit/Mo	nitorin	g Num	ber	Boring S	Numi B-	SE 1	1		
Boring First No	Driller	i By:	Name	of crev Last Na	w chief	(first, 1	ast) and I	Firm	Date	Drilling	Starte		Date D	rilling	Comp 2 out	oleted	Drillin	g Meil	not VBE	
Firm:	<u> 0,1-</u>	51	<u>E </u>	VIRA	Imzi	TAL	1112 11 N.		m T		Y y	y y y y			y y	ÿÿ	Boreho	ole Dia	ameter	
WI Un	ique W 	'ell No	».	DNK V	~eii iD 	NO.	WEIL NEI	m c	r in a		Feet M	ISL	Surrac		Feet 1	MSL	2	<u></u> i	nches	
Local C State P	Grid Or lane	rigin	🗋 (est	imated:	(D) N	or Bo	ring Locat	$ \underline{E} S/C/. $	м	Lai	<u> </u>	n 	Local	Grid L		n N		-	ΠE	-
<u>525</u> Facilit	1/4 of 4	NE.	1/4 of	Section		<u> </u>	<u>C_N, R</u>	<u> 16 @</u>	W I. County	ong Code	C <u>iv</u> il	 Town/	City/ or	F	eet ⊡ sc	<u>s</u>		Fæt		
- acon	····					WAL	WORT	H	ļ	<u></u>	Ð	<u>2A1</u>	IA^		Soil		rtioc	<u> </u>		
<u>Sam</u>	ple अद्ि	۲ ع	XCT Burface)			Soil/Ro	ck Descrij	ption					¥Ο	ų	3011					
ber Type	yth Att vered	, Coun	h in Fo r ground		А	ind Geo Each	logic Orig Major Ur	in For hit		CS	hic	tram	FID	pressiv ngth	sture	- 금 ::	tìcily ex	8	D/ nmcnt	
MuM 7 bus	Leng	Blow	Dept							ns	د ق	D No.		Sten	NO NO	<u> </u>	Plas Ind	P 24	2 <u>3</u>	
				-		<u>_</u>	·	11										-	¥ =Pű	Ð
				0.0	-/.4) <i>[E</i>	AGRA	vsL(t	-11_)				60.1						Butter	, mrD
		NA	Ez	1.0	-20.	0:0	5147	Sart	0 (Sm	9			6.0						RE	1
			E a		F	Bou	163	EIN	210	<i>5</i> m	4					Į				
7			Ē		na z c	EDU. V Tri	r~ 6,4 . (c. c. b)	WARD 10					47.1							
~			F- 4		JO' Fill	e [] E Te	۲۹ ۵۵۵ ۱ ۲ مد مسر	i Gr	ovel]	ļ	1				
			<u>-</u> 5		Beod) " في المولن	H YLL	Low	ere				34.1	ł						
3		NA	E,		M213	T,N	oNTLA	STIC-		·].		6.0							
			Ē							57										
			E-7]		30.7							
4		MA	E-8										(0.0)	+						
		1	Eg								ĺ				ļ					
5		AA	E,										0.0			ļ				
			Ē	1										Ţ			ļ			
			Ē	1						5	2									
<u>/_</u>	_	W	<u>}</u> [//	2		<u> </u>					Ì_		5,0	2				<u> </u>		

. nereby certify that the information on this form is true and correct to the best of my knowledge.

Signature Firm GESTRANS 175 N. CONFONTE DR. SUTTE 100 BROCKFIELD, WI 53045

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

<u> </u>	CF I	,	,								Pag	• <u>2</u>	_of_	<u>2</u>
<u>San</u>					<u> </u>					Soil P	roper	ties		
Numt and TJ.	Length Att. & Recovered (in)	Blow Counts	Depth in Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	uscs	Graphic Log	Well Diagram		Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
7		NA.			Sm			78.4 6.0)						
E		NA.						109 (0,0)						
9		NA			Sm			116 0.0)						
/0	 	A.A.	19	20.0-22.0: Sondy STU (ML) About Golo FINES, 35 6 FINE I'MEDIUM GRAINED				91.4 6.0)				-		
11		r.thi		June, And 5% FINE GRAVEL Yalow (104/27/6), WEL, NON- PLATTIC.		_		157 (3.9)				-		
12		NR.		22.0-28.0: SHIY JAND (5m) ABOUT 6% FINE TO MA 120-GRAINLD SAND, 30%	Sm			151 6.0);					
13		NA		GRAVEL YELLOWISH BROWN (10475/20) MOIST, NortPLASTIC	Sr	U		98.5 (6.0)	•					
14		NA	21	E03:28.0	 	-		148 (5.0)					1	
			ulunhunhun											

X=JDBockGRow DKDG.

•

Signature

Watershed/Wastewater 🔲 Waste Management 🛄 Route To: Remediation/Revelopment 🔲 Other 🔲 Page Boring Number License/Permit/Monitoring Number Facility/Project Name TR-KILE INDUSTRIES 5<u>Z</u>-*SE* Z Boring Drilled By: Name of crew chief (first, last) and Firm Date Drilling Completed Drilling Method Date Drilling Started Last Name: KAPuGI TONY (-JOPROBE First Name: <u>ୢ</u>ୢୖ୷ୄ୷ୄୡୄ୲ୢୖୢୡୢଡ଼ୢଡ଼ୢୢୢ୲ ୢୖୢୖ<u>୷</u>ୄୡୄୡୣ୷ୢୖୢୢୣୖୢୢୖୢ DNR Well ID No. SILL Firm: ON-Borehole Diameter Well Name Final Static Water Level Surface Elevation WI Unique Well No. 2.0 Feet MSL inches Feet MSL Local Grid Origin (estimated:) or Boring Location State Plane _____N, ____E S/C/N Local Grid Location 0 Lat ΠE State Plane 🗆 N Ð Feet 🗖 W T 2 N. R 160W Long Feet D S 1/4 of NE_ 1/4 of Section /7 County Code Civil Town/City/ or Village Facility ID County ISALISORTH DELAVAN Soil Properties Sample Depth in Feet (Below ground surface) ~ 3 Soil/Rock Description ¥() Blow Counts Compressive Strength RQD/ Comments Length Att. Recovered And Geologic Origin For Plasticity Index PID/FID Moisture Content Number and Type Graphic Log Weil Diagram Each Major Unit USC Liquid P 200 10.0-1.0; PEAGRAVEL (FIL) 139 5,0 1.0-28.0: SILTY SAND (SM) ABOUT GOLD EINE TO MEDIUM GRAND SAD 30% FINES AND 10% FINE TO COARSE GRAVEL BRO-UNISH YELLOW (104R %) TO YELLOWISH BROWNE (104R 5%), MOIST, WEL AT. 96 FISET ADATEM PETIT. 159 6.ì NA [#8 NA $(\mathcal{O},\mathcal{O})$ ናራ. *`0*,0 26'FEET NONPLASTIC /~ 0,0 994 SM 0,0 <u>(</u>a

nereby certify that the information on this form is true and correct to the best of my knowledge.

Firm GESTRANS 175 N. CONPORTEDR. SUTTE 100 BRock FIED, WI 53045

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

58	-52	2	•		-				_		Pag	• <u>2</u>	_of_	2
San	ple									Soil P	roper	ties		
Numt- and T	Length Au. & Recovered (in)	Blow Counts	Depth in Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	uscs	Graphic Log	Well Diagram		Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
7		NA			0			45.8 (0.0)						
8		NR_			pm			5.4 (0.0)						
9		NA						4.3 (0.0)						
<u> 0</u>		NA.			Sm		. '	57.3 (20)	•					
<u>] </u>		NA						27.9 (0.0)						
/Z		NA	23					45-3 (0,3)						
<u> 3</u> _		NA			Sm			40.4 6.0						
14		NA		EB: 28.0				36 (0.0)						

X=1/DBockGrowt DYDG.

-

.

Form 4400-122 Watershed/Wastewater 🔲 Waste Management 🔲 Route To: Remediation/Revelopment 🔲 Other 🔲 Page_ Boring Number License/Permit/Monitoring Number Facility/Project Name <u>5</u>7-0 TR-KILE INDUSTRIES Boring Drilled By: Name of crew chief (first, last) and Firm Drilling Method Date Drilling Completed Date Drilling Started Last Name: KAPuGI -EOPROBE First Name; TONY 을ᄏᅸᄰᆦᇾᅝᅸᇢᅌᆕᆝ WIRONMENTAL DNR Well ID No. Fin ON-STE Final Static Water Level Rorchole Diameter Well Name Surface Elevation WI Unique Well No. 2.0 inches Feet MSL Feet MSL Local Grid Origin (estimated:) or Boring Location State Plane _______E S/C/N Local Grid Location 0 Lat ΞE State Plane ΠN H o Feet^D W TZ N. R /6 @W 1/4 of NE 1/4 of Section 17 Long Feet D S County Code Civil Town/City/ or Village Facility ID County) (AL SORTH DELAVAN Soil Properties Sample n in Fect ground surface) Length Att. & Recovered (in) Soil/Rock Description ¥() Compressive Strength Blow Counts RQD/ Comments And Geologic Origin For Plasticity Index PID/FID USCS and Type Moisture Content Number Graphic Log Well Diagrarr Each Major Unit Liquid Depth i (Below gr P 200 -1 0.0-1.0: PEAGRAVEL (FILL 85 S 0.0 *l*A 1.0-6.0: 514 Y CLAY (CHM ABOUN (10/R/2) MOIST 17.1 0.2 24-3 0.3 A 6.0-28.0 (5m) ABout 60% FINE 11-6 TO MEDIUM GRAINED 63 (A NE TO JERSE GROVEL ROWNIZH YELLOW LOTRE OIST, NON PLASTIC. 18.3 <u>ه،ځ</u> V/S 6

nereby certify that the information on this form is true and correct to the best of my knowledge.

Signature Firm GEOTRANS 175 N. Corridon II DR. SUTTE 100 BRock FIED, USI 53045

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

SZ	-0	51	•								Paş	<u>. 2</u>	of	2	•
Sarr	ple খ.র	ч	ಕ	Soil/Rock Description				40		Soil <u>F</u>	roper	ues			
Number and T)	Length Att. Recovered (Blaw Count	Depth in Fo	And Geologic Origin For Each Major Unit	uscs	Graphic Lot	Well Diagram	PID/FID	Compressiv Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments	-
_			111								ŀ				
			E13 E					14.5							
		NA	_//		Sm	,		0.2						ļ	
	1							50.7							
8		NA						6.2							
			111	•											
9		10	Ē					14.9 6.7)						
<u> </u>	}. . 				ļ				1 .						
		Į	-19 -19					27.3							
[0_	 	NA	E		577			0,1	1						
		1	Ea					13.2							
//		NA	E22					6.2							
12.		1/4	Ê					16.2							
~	†		E ²⁴						4	ļ					
								15.1							
13	-	NA	E	2 A				0.3	2						
		-	E-27			۲		13.5							
'4	<u> </u>	NA	Eze	503:28.0				6.3	2						
												Ì			
			E												
_			Ц]	

.

X= FID Bock Chart D RDG.

•

Number and Type

5

5

UΑ

Watershed/Wastewater 🛄 Waste Management 🛄 Route To: Remediation/Revelopment 🗌 Other 🔲 Page _/ Boring Number License/Permit/Monitoring Number Facility/Project Name SB-CC TR-KILE INDUSTRIES Boring Dnilled By: Name of crew chief (first, last) and Firm Date Drilling Completed Drilling Method Date Drilling Started Last Name: KAPUGI LEOPROBE First Name: TONY <u>ୄ</u>ୄୢୖ୷୷ୄୡୄ୲*ୖ*ୣୄୡୢଡ଼ୢଡ଼ୢୢୢୗ Firm: ON-STIE ENVIRONMENTAL Borchole Diameter Final Static Water Level Surface Elevation Well Name WI Unique Well No. 2.0 Feet MSL inches Feet MSL Local Grid Location Local Grid Origin D (estimated: D) or Boring Location D o E S/C/N ΠE $\square N$ State Plane 11 0 525_1/4 of NE_1/4 of Section 17 Facility ID FeetD W T<u>2</u>N.R<u>/6@</u>W Long Feet 🖬 S Civil Town/City/ or Village County Code County SALSORTH DELAVAN Soil Properties Sample Depth in Feet (Below ground surface) ઝ 3 ¥⇔ Compressive Strength Soil/Rock Description Blow Counts RQD/ Comments Length Att. -Recovered (i And Geologic Origin For Plasticity Index PID/FID USCS Moisture Content Graphic Log Well Diagram Each Major Unit Liquid P 200 -1 0.0-1.0: PEAGRAVEL (ETIL) -2 1.0-6.0: SILIY (ILAY (EL/ML) -3 ABOUT 90% FINES AND 10% FINE (GRAINSED CL AND 10% FINE (GRAINSED CL SAND, BROWN (101/24/3) ML 2-2 6.Z RIG-NR 6.Ŧ) NA Moisi, medium PLOSTICI 1.9 6.Ŧ 1.0-28.0:514Y5AND(5 NA ABOUT 60% FINE. TO MORUM GRAINED SAND. 30% EINSES AND 10% 2.3 'ə.4 FINE IN COMPER GROVEL, BROWNISH YELLOW LOTR 16 TO LIGHTIGRA (10/1/2) 26 TO 28 FEED, MOIST, NON-JA. 0.4 MASTIC. 2-3

nereby certify that the information on this form is true and correct to the best of my knowledge.

Firm GEOTRANS 175 N. CONFORTE DR. SUTE 100 Signature BROCKFIELD, WI 53045 fre

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

0.5

52	-~	52									Pag	د <u>ک</u>	_ of	<u>2</u>
Sam		<u> </u>			1					Soil P	roper	ties		
Number and Ty,	Length Au. & Recovered (in)	Blow Counts	Depth in Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	uscs	Graphic Log	Well Diagram		Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
 7		NA			SM			3.4 (0.7)						
8		NP		· · ·				1.8 (0.4)						
9		NA	E-11 E-18 E-18					2.9 (6.4)						
10		NA			Sr	ų		5.1						
<u>)</u>		NA			2			4.3) 					
12		MA						4.1 (0,7 4.1						
13		MA		7	Sr	Ą		0.7						
14		N	لسلسلسلسليو	8 EaB: 28,0				<u>(03</u>						

-

-X-="110 BackGround RDG

.

•

,

All abandonment work shall be performed in accordance with the provisions of Chapters NR 811, NR 812 or NR 141, Wis. Adm. Code, whichever is applicable. Also, see instructions on back.

CENERAL INFORMATION	(2) FACILITY NAME
Well/Drillhole@orehole County	Original Well Owner (If Known)
Location 53-5107E	STA-KILL INDUSTRIES
	Present Well Owner
541 1/4 of NE 1/4 of Sec. 17 ; T. 2 N; R. 10 W	STA-RITE TUDUSIKIES
(If applicable)	Street or Route
Gov't Lot Grid Number	293 WRIGHT STREEL
Grid Location	City, State, Zip Code
ft, N. S.,ft, E. W.	DELAYAN, WI - 23/12 IWI Unique Well No.
Civil Town Name	Facility well No. and/or Name (II Applicable)
J-2LAVAN	
Street Address of Well	eprel Brochtel
~7.3 WKIGHT 21 1221	Dete of Abordonment
City, Village	3-28-0/
WELL/DRILLHOLE/BOREHULE INFORMATION	(4) Depth to Water (Feet)
(3) Original well/Drilliole/ <u>Borehole</u> Construction Completed on	Bung & Diping Removed? Ves I No M Not Applicable
(Date) $2 - 28 - 0/$	Liner(c) Removed?
	Screen Removed?
Monitoring Well Construction Report Available?	Caring Left in Place?
Water Well Yes No	
Drillhole	
Borehole	Was Casing Cut Off Below Surface?
	Did Seeling Material Rise to Surface? Ves No
Construction Type:	Did Material Settle After 24 Hours?
Drilled \square Driven (Sandpoint) \square Due	If Yes, Was Hole Retorned? Yes No
Other (Specify) <u>(-50/Kgaz</u>	
	(5) Required Method of Placing Sealing Material
Formation Type:	Conductor Pipe-Gravity Conductor Pipe-Pumped
E Unconsolidated Formation Bedrock	Dump Bailer Other (Explain)
Total Well Depth (ft.) 1/4 Casing Diameter (in.) 1/4	(6) Sealing Materials For monitoring wells and
(From groundsurface) Casing Depth (ft.) 1/2	Neat Cement Grout monitoring well boreholes on
- 11	Sand-Cement (Concrete) Grout
Lower Drillhole Diameter (in.)	Concrete Bentonite Pellets
	Clay-Sand Slurry
Was Well Annular Space Grouted? 📋 Yes 🔲 No 🛄 Unknown	Bentonite-Sand Slurry Bentonite - Cement Grout
If Yes, To What Depth? Feet	Chipped Bentonite
(7) Meterial Used To Fill Well/Drillhole	From (Ft) To (Ft) Sacks Scalant Circle Mix Ratio
	riom (re) or Volume One) or Midd weight
China Bead	Surface De ZCH
Citypeed Deren.	×3 234
	┝───┼──┼────┼───┼──────────────────────
(8) Comments:	
Di Mana of Demon on Dieu Data - Casting Wash	TAN FOR DND OR COUNTY USE ONLY
And of Person of Pirm Doing Sealing work	Day Reserved American Dispict/County
	Calle LOCELACIALIPLECION CORRECTOR
Signature of Person Doing Work Date Signed	Radause formation Work
(mainene) making, Jaron	
Street or Route	
1.U. LOY 200 1605 321-812	rollow-up Necessary
City, State, Zip Code	

All abandonment work shall be performed in accordance with the provisions of Chapters NR 811, NR 812 or NR 141, Wis. Adm. Code, whichever is applicable. Also, see instructions on back.

whichever is applicable, theet eee					
) GENERAL INFORMATION		(2) FACILII	I I NAME	2011/2	· · · · · · · · · · · · · · · · · · ·
Well/Drillhole Sorehol	County 2 () ()	Unginal Well	Wher (II h	unowit)	
Location 58-2008	WALWERTH	STA-KI	<u>(& 1+50</u>	<u></u>	
	E	Present Well	Owner		
521 114 of A/2 1/4 of Sec. ()	7 : <u>T. 2 N; R. //e </u> [] w ,	ITA-RIL	E. TAD	NATRIES	
(If semlicable)		Street or Rou	lic		
(II application)	Grid Number	293 /	RIGHT	TREEL	
Gov (Lot		City, State, Z	Lip Code		
Grid Location		DUAVA	S. P. I.S. 1.	53115	
ft. [] N. [] S.,		Eacility Well	No and/or h	Jame (If Applicable)	WI Unique Well No
Civil Town Name	ĺ	C2-2	~ ×		· ·
DELANANCE.		<u>~~~</u>		· · · · · · · · · · · · · · · · · · ·	
Street Address of Well		Reason For A		10	-
293/SR	IGHT STREEL	OPINI	<u>preno</u>		
City. Village		Date of Abai	ndonment		
DELAVIAN		<u>3-28-</u>	<u> </u>		
WELL/DBILLHOLF/BOREHOLE	INFORMATION				
(2) Original Well/Drillhole Borehold	Construction Completed On	(4) Depth to	Water (Feet)		
	Commentation	Pumn &	Piping Remo	ved? 🗍 Yes 🗌	No 🎆 Not Applicab
(Date) $3 - 28 - 01$		Liner(s)	Removed?		No 🔤 Not Applicab
		Sorrant D	emoved?		No Not Applicab
Monitoring Well	Construction Report Available?	Gudan I	of in Disca?		N-
🔲 Water Well	📙 Yes 🖼 No	Casing L	cit in Flaces		NO
Drillhole		If No, Ex	piain		
Borchole	•				V [] N-
- Dolesiole		Was Cas	ing Cut Off I	Below Surface?	
Construction Type:		Did Scal	ing Material	Rise to Surface?	
	n (Sandmaint) Dug	Did Mate	erial Settle A	fter 24 Hours?	Yes No N/-
	\mathbb{C}	If Yes,	Was Hole R	etopped?	Yes 🔲 No
Uner (specify)		152 D. 27-	1 Math and aff	Planing Sealing Material	
		(5) Required	I Method of		D' Durand
Formation Type:		Cond	luctor Pipe-G	ravity Conducto	r Pipe-Pumpeo
Unconsolidated Formation	E Bearock	🗌 🗌 Dumj	p Bailer	Other (E)	cplain)
Trans Wall Droth (A) A/A	Casing Diameter (in.)	(6) Sealing	Materials	For m	onitoring wells and
(Total well Depti (SL)	Casing Depth (ft.) Λ/Q	Neat	Cement Gro	ut monit	oring well boreholes of
(FIGIN grounds in face)		Sand	-Cement (Co	ncrete) Grout	
D III 1 D's state (in)	2011		rete	🗖 Be	ntonite Pellets
Lower Drilinole Diameter (In.)			-Sand Slurry	. 🗍 G	anular Bentonite
			mite-Send S		entonite - Cement Grou
Was Well Annular Space Groute					
If Yes, To What Depth? 🔟			peu Bentoini	6	
		<u> </u>		No Yarda	
(7)		From (Ft.)	To (Fr.)	Sacks Scalant (Circle	Mix Ralio or Mud Weight
Material Used 101		Hom (FC)	10(1.0)	or Volume One)	of Milda Height
	1	Surface	. 7	mit	
(hippice Ken	, te	Sullac	-20	>>4	
Crecepter Carre					ļ
					<u> </u>
······································		· · · · ·			
		t	 		
		<u></u>			
(8) Comments:					
				NUD OD COTINETS I	ISE ONLY
?) Name of Person or Firm Doing S	ealing Work	(10)	- FOF	DNK OK COUNTI U	
DES -	,	Date	Received/In	spected D	Reactive on the second s
Signature of Person Dothe Work	Date Signed /				
(VADAV	2128/01	Revi	ewer/Inspect	o r [[Complying Work
Sirret or Route	Telephone Number	1 📗		IC.	Noncomplying Wor
PO KAY XXX	(COJ) \$37.8552	Foll	ow-up Neces	SALY	
		╡ [830			
City, State, Zip Code CP (11)	p 53590				
·).•. •••	· - · ·	1			

All abandonment work shall be performed in accordance with the provisions of Chapters NR 811, NR 812 or NR 141, Wis. Adm. Code, whichever is applicable. Also, see instructions on back.

		(2) FACIL	TY NAME		
) GENERAL INFORMATION	unty	Original We	ll Owner (If I	(nown)	
Location CP - CF /	WALLORTH	JA-RI	IND.	USTRIES	
<u></u>		E Present Wel	l Owner		
Sit in reals 14 of Sec 17	·т 2 N:R. 16	W STA-R	TE. TAL	JUSTRIES_	
(f applicable)	<u>,</u>	Street or Ro	utc		
(it application)	Grid Numbe	2931	RIGHT	STREET	
		City, State,	Zip Code		
	ft. 🗍 E. 🗍 🤇	W. DELAL	IAN.USL.	53/15	
Civil Tonm Nemes		Facility We	I No. and/or I	Name (If Applicable)	WI Unique Well No.
DELAVAN		58-9	581		
Street Address of Well		Reason For	Abandonmen	nt.	
293 / JP/S	TT STREEL	OPEN	DOKEH	6 <u>1 E</u>	
City Village		Date of Ab	indonment		
DIAVAN		3-22	3-01		
WELL/DRILLHOLE/BOREHOLE INI	FORMATION				
(3) Original Well/Drillhole Borehole Co	nstruction Completed On	(4) Depth to	Water (Feel)) <u> </u>	
()		Pump &	Piping Remo	oved? 🗌 Yes 🗌	No 📰 Not Applicab
(Date)	········	Liner(s)	Removed?	T Yes] No 🧱 Not Applicab
Constanting Well	onstruction Report Available?	Screen	Removed?	📋 Yes 🗌	🛾 No 🎆 🛛 Not Applicab
		Casing	Left in Place?	Yes [] No
Drillhole		If No, E	xplain		
Borehole					<u> </u>
Dolchow		Was Ca	sing Cut Off I	Below Surface?	
Construction Type:	_	Did Sea	ling Material	Rise to Surface?	\downarrow Yes \downarrow No \sqrt{A}
Drilled Driven (S	andpoint) 🗖 Dug	Did Ma	terial Settle A	fter 24 Hours?	
Other (Specify) GORABE			, Was Hole R	letopped?	
		(5) Require	d Method of	Placing Scaling Mater	ial
Formation Type:	_	Con	ductor Pipe-G	inavity 🚺 Condu	ctor Pipe-Pumped
Unconsolidated Formation	Bedrock	1 🗍 Dun	p Bailer	🗋 Other	(Explain)
T THAT D-++ (F) AA Ca	sing Diameter (in.) NA	(6) Sealing	Materials	For	monitoring wells and
(From stroundsurface) Ca	sing Depth (ft.)	🗌 🗌 Nea	t Cement Gro	out mo	mitoring well boreholes or
(1 tom ground and)	· · · · · · · · · · · · · · · · · · ·	🗌 🗖 San	d-Cement (Co	oncrete) Grout	
Lower Drillhole Diameter (in.)	°.		crete		Bentonite Pellets
			y-Sand Slurry	· ¦Ц	Granular Bentonite
Was Well Annular Space Grouted?	🗌 Yes 🗌 No 🗌 Unkr	iown 🗌 Ben	tonite-Sand S	lurry	Bentonite - Cement Grou
If Yes, To What Depth?	/A Feet	Chi	pped Bentoni	te	
(7)		Ecom (Et)	TOTAL	No. Yards, (Cir	cle Mix Ratio
Material Used To Fill	weij/DHilliole		10(11)	or Volume On	c) Of Midd Weight
Olyphand De		Surface	\mathcal{X}	2CH	
I NURRED ISEN	<u>AATHER</u>		00	<u></u>	
			{	<u> </u>	
		ł			r
			<u> </u>		
(8) Comments:					
D M	an Work		FOI	ONR OR COUNTY	USE ONLY
9) Name of Person of Pilm Dong Scall	IS WORK		- Received/In	spected	District/County
CO	Date Classed	1			
Signature of Person Doing Work	2/20/01	RA	iewer/Inspec	lor	Complying Work
(matteric) [lepto] [Diarior Telephone Number	1			Noncomplying Wor
DA Real DR			0000000 M N (1995)		
W.C. DDY adder	((18) 827-8557	FA	low-up Neces	SRITY I	Constant de la Calenda de Calend a de Calenda
City State Zin Code	(6(5) 837-8552	Fol	low-up Neces	SELLA	
City, State, Zip Code S. P. W.T	(405) 837-8552 53550	Fol	low-up Neces	SATY	

All abandonment work shall be performed in accordance with the provisions of Chapters NR 811, NR 812 or NR 141, Wis. Adm. Code, whichever is applicable. Also, see instructions on back.

A CONTRACT INCODMATION		(2) FACILIT	Y NAME		
GENERAL INFORMATION	County .	Original Wel	Owner (If F	(nown)	
Location SR_SE?	1.SALIJORTH	JTA-R	ITE THE	WETRIES_	
		Present Well	Öwner		
511 14 15 ALS MARSON !	7. т. 2. N:R. 16. 🖬 🖬	STA-R	TTE TN	DUSTRIES	
		Street or Rou	ite		
(II applicable)	Grid Number	29310	EVENTS	TREST	
Govi Lot		City, State, Z	in Code		
Grid Location		DELAU	A 1.11 -	52115	
ftNS.,	I. [] ^{L.} [] ^{W.}	Escility Well	No. and/or h	Name (If Applicable)	WI Unique Well No.
Civil Town Name		~~~~~~	57		
DELAVAR		<u> </u>			
Street Address of Well	a transmission of the second	ADCA /	B-RC1	415	
212 WA	GAT SIREEL	O and	LAKCH	<u>~~</u>	· · · · · · · · · · · · · · · · · · ·
City, Village		$\mathcal{I} \rightarrow \rho$			
DELAVAN		2-20	-01		
WELL/DRILLHOLE/BOREHOLE	INFORMATION				
(3) Original Well/Drillhole/Borehole	Construction Completed On	(4) Depth to	Water (Feet)	—— <u>—</u> —	The Marken Mark
(Due) 3-28-01		Pump &	Piping Remo	oved?	No Not Applicat
$(Date) = \frac{2}{\sqrt{20}} \frac{2}{\sqrt{20}}$		Liner(s)	Removed?	🗌 Yes 🗌] No 🎆 Not Applicab
Acaditating Well	Construction Report Available?	Screen R	emoved?	🗌 Yes [] No 💹 Not Applicab
		Casing L	eft in Place?	Yes [] No
		If No, Ex	plain		
Borchole		Was Cas	ing Cut Off I	Below Surface?	Yes No
		Did Scal	ing Material	Rise to Surface?	Yes No
Construction Type:		Did Mate	erial Settle A	fter 24 Hours?	
	$n (Sandpoint) \square = 3$	If Yes.	Was Hole R	etopped?	Yes No
• Other (Specify) (-20/137			114 11 1 1 1	Marine Sealing Motor	
		(5) Required	1 Method of 1	Placing Scaling Match	
Formation Type:	D Bedrook	Cond	uctor Pipe-G	ravity Conduc	ctor Pipe-Pumped
Unconsolidated Formation	L BEGTOCK	🔶 🚺 Dumj	p Bailer		(Explain)
Total Well Depth (fL)	Casing Diameter (in.)	(6) Sealing	Materials	. For	monitoring wells and
(From groundsurface)	Casing Depth (ft.)	📔 🗌 Neat	Cement Gro	ut mo	nitoring well boreholes of
(1		Sand	-Cement (Co	mcrete) Grout	
Lower Drillhole Diameter (in.)	2.0"		rete		Bentonite Pellets
		Clay	-Sand Slurry		Granular Bentonite
Was Well Annular Snace Groute	d? 🔲 Yes 🛄 No 🗌 Unknown	📙 📙 Bent	onite-Sand S	ішту 🔲	Bentonite - Cement Grou
If Ves To What Denth?	NG Feet	Chip	ped Bentonit	`с	
11 103, 10 min Dopan			-		
(7)		1		No. Yards, (Cir	cle Mix Ratio
(7) Material Used To I	Fill Well/Drillhole	From (FL)	To (Ft.)	Sacks Sealant One	e) or Mud Weight
	· · · · · · · · · · · · · · · · · · ·				
Soutonite 12	-Lots	Surface	$ \lambda $	35#	
				· · · · · · · · · · · · · · · · · · ·	
		1			
		†			
		1			· · · · · · · · · · · · · · · · · · ·
(A) C					
(a) Comments:					····
	1 - 317-1-	1741AV	FOF	DNP OR COUNT	USE ONLY
') Name of Person or Firm Doing Se	caling work		Databadda	manted	District/County
CES			WO'CIACMIN	apartes [- an an and comment
Signature of Person Doing Work	Date Signed		π		Complying Work
(MAGIL KCPLL		Kevi	ewer/inspect	И	
Street or Route	Telephone Number				
P.C. Boy 250	(663 221-3415	Folk	iw•up Neces	багу	
				essenten en en anterestation de la compañsión 🔹	(a) (a) (a) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b
City, State, Zip Code					

-

Form 3300-5B Rev. 3-95

All abandonment work shall be performed in accordance with the provisions of Chapters NR 811, NR 812 or NR 141, Wis. Adm. Code, whichever is applicable. Also, see instructions on back.

	(2) FACILITY NAME
GENERAL INFORMATION	Original Well Owner (If Known)
Well/DrillholeBorchold	STA-RILE INDUSIRIES
Location 53-651 Windowski V	Present Well Owner
mi de la 17 m 2 No 1/2 m	STA-RITS TNDUSTRIES
5aJ = 1/4 of NZ = 1/4 of Sec. TT = 1. A = 1.100 m	Street or Route
(If applicable)	297) CEICUT STESSI
Gov't Lot Grid Number	City State Zin Code
Grid Location	Delavia () 11 SZIIS
ft. N. S.,ft. E. W.	E allie Wall No. and/or Name (If Applicable) WI Unique Well No.
Civil Town Name	
DELAVAN	
Street Address of Well	Reason For Abandonment
293 WRIGHT STREEL	ORN DORHOLL
City, Village	Date of Abandonment
DELAVAN	3-28-0
WELL/DBILLHOLE/BOREHOLE INFORMATION	
(3) Original Well/Drillhole Borehole Construction Completed On	(4) Depth to Water (Feet)
(J) Ongenia (102-12)	Pump & Piping Removed? Yes No 📰 Not Applicable
(Date)	Liner(s) Removed? I Yes I No 💽 Not Applicable
Construction Report Available?	Screen Removed? Yes 🗌 No 📰 Not Applicable
	Casing Left in Place? 🛛 Yes 🔲 No
Water Well	If No, Explain
Borehole	Was Casing Cut Off Below Surface? Yes No
,	Did Sealing Material Rise to Surface? Yes No
Construction Type:	Did Material Sente After 24 Hours? Yes No ///
Drilled Driven (Sandpoint)	If Yes, Was Hole Retopped? Yes No
Other (Specify) <u>(780/Raf35</u>	A A A A A A A A A A A A A A A A A A A
	(5) Required Method of Placing Sealing Matchia
Formation Type:	Conductor Pipe-Gravity
Unconsolidated Formation	Dump Bailer Other (Explain)
Terrel Wall Derith (ft) Λ/A Casing Diameter (in.) Λ/A	(6) Scaling Materials For monitoring wells and
(Ground generation of the Casing Depth (ft.)	Neat Cement Grout monitoring well boreholes of
(FIOIN BIOWIGE MILLIO)	Sand-Cement (Concrete) Grout
1.	Bentonite Peliets
Louiser Drillhole Dismeter (in.)	
Lower Drillhole Diameter (in.) <u>2. a</u>	Clay-Sand Slurry Granular Bentonite
Lower Drillhole Diameter (in.) <u>2.0</u>	Clay-Sand Slurry Bentonite-Sand Slurry Granular Bentonite Cement Grout
Lower Drillhole Diameter (in.) <u>2.0</u> Was Well Annular Space Grouted? If Yes No Unknown If Yes To What Depth? <u>A</u>	Clay-Sand Slurry Granular Bentonite Bentonite-Sand Slurry Chipped Bentonite
Lower Drillhole Diameter (in.) <u>2.0"</u> Was Well Annular Space Grouted? <u>I</u> Yes <u>No</u> <u>Unknown</u> If Yes, To What Depth? <u>A</u> Feet	Clay-Sand Slurry Granular Bentonite Bentonite-Sand Slurry Chipped Bentonite
Lower Drillhole Diameter (in.) 2.0 ^(') Was Well Annular Space Grouted? I Yes No Unknown If Yes, To What Depth? <u>A</u> Feet	Clay-Sand Slurry Bentonite-Sand Slurry Chipped Bentonite
Lower Drillhole Diameter (in.) 2.0" Was Well Annular Space Grouted? Yes No Unknown If Yes, To What Depth? 1997 Feet (7) Material Used To Fill Well/Drillhole	Clay-Sand Slurry Granular Bentonite Bentonite-Sand Slurry Bentonite - Cement Grout Chipped Bentonite Mo. Yards, Sacks Scalant or Volume From (Ft.) To (Ft.)
Lower Drillhole Diameter (in.) 2.0 ^(') Was Well Annular Space Grouted? Yes No Unknown If Yes, To What Depth? 1.2 (7) Material Used To Fill Well/Drillhole	Clay-Sand Slurry Granular Bentonite Bentonite-Sand Slurry Bentonite - Cement Grout Chipped Bentonite Mo. Yards, Sealant or Volume From (Ft.) To (Ft.) Sacks Sealant or Volume One) Or Mud Weight
Lower Drillhole Diameter (in.) <u>2.0"</u> Was Well Annular Space Grouted? <u>I</u> Yes <u>No</u> <u>Unknown</u> If Yes, To What Depth? <u>A</u> (7) <u>Material Used To Fill Well/Drillhole</u> Chiology Republic	Clay-Sand Slurry Granular Bentonite Bentonite-Sand Slurry Bentonite - Cement Grout Chipped Bentonite Mix Ratio or Volume From (Ft.) To (Ft.) Surface Surface
Lower Drillhole Diameter (in.) <u>2.0"</u> Was Well Annular Space Grouted? <u>Urknown</u> If Yes, To What Depth? <u>A</u> (7) Material Used To Fill Well/Drillhole <u>Chipped Bintchict</u>	Clay-Sand Slurry Granular Bentonite Bentonite-Sand Slurry Bentonite - Cement Grout Chipped Bentonite Mix Ratio From (Ft.) To (Ft.) Surface Sign 25 4
Lower Drillhole Diameter (in.) <u>2.0"</u> Was Well Annular Space Grouted? <u>Yes</u> No <u>Unknown</u> If Yes, To What Depth? <u>A</u> (7) <u>Material Used To Fill Well/Drillhole</u> <u>Chipped Bentchitt</u>	Clay-Sand Slurry Granular Bentonite Bentonite-Sand Slurry Bentonite - Cement Grout Chipped Bentonite Mo. Yards, Sacks Sealant or Volume From (Ft.) To (Ft.) Surface S 354
Lower Drillhole Diameter (in.) <u>2.0"</u> Was Well Annular Space Grouted? <u>Yes</u> No <u>Unknown</u> If Yes, To What Depth? <u>NA</u> (7) <u>Material Used To Fill Well/Drillhole</u> <u>Chipped Benteriet</u>	Clay-Sand Slurry Granular Bentonite Bentonite-Sand Slurry Bentonite - Cement Grout Chipped Bentonite Mo. Yards, Sacks Sealant or Volume From (Ft.) To (Ft.) Surface Size 35 4
Lower Drillhole Diameter (in.) 2.0" Was Well Annular Space Grouted? If Yes, To What Depth? <u>NA</u> (7) Material Used To Fill Well/Drillhole <u>Chipped Bintchict</u>	Clay-Sand Slurry Granular Bentonite Bentonite-Sand Slurry Bentonite - Cement Grout Chipped Bentonite Mo. Yards, Sacks Sealant or Volume From (Ft.) To (Ft.) Surface Signature Surface Signature
Lower Drillhole Diameter (in.) 2.0" Was Weil Annular Space Grouted? If Yes, To What Depth? <u>NA</u> (7) Material Used To Fill Well/Drillhole <u>Chipped Bintchicti</u>	Clay-Sand Slurry Bentonite-Sand Slurry Chipped Bentonite From (Ft.) To (Ft.) No. Yards, Surface 28 354 Surface 28 354
Lower Drillhole Diameter (in.) 2.0" Was Weil Annular Space Grouted? If Yes, To What Depth? <u>NA</u> (7) Material Used To Fill Well/Drillhole <u>Chipped Bentchict</u>	Clay-Sand Slurry Bentonite-Sand Slurry Chipped Bentonite From (Ft.) To (Ft.) No. Yards, (Circle Mix Ratio or Volume One) or Mud Weight Surface 28 354
Lower Drillhole Diameter (in.) 2.0" Was Weil Annular Space Grouted? If Yes, To What Depth? <u>NA</u> (7) Material Used To Fill Well/Drillhole <u>Chipped Bentchett</u>	Clay-Sand Slurry Bentonite-Sand Slurry Chipped Bentonite From (Ft.) To (Ft.) No. Yards, (Circle Mix Ratio or Volume One) Or Mud Weight Surface 28 354
Lower Drillhole Diameter (in.) 2.0" Was Well Annular Space Grouted? Yes No Unknown If Yes, To What Depth? <u>NA</u> Feet (7) Material Used To Fill Well/Drillhole <u>Chipped Bentchict</u> (8) Comments:	Clay-Sand Slurry Bentonite-Sand Slurry Chipped Bentonite From (Ft.) To (Ft.) No. Yards, One One Or Mud Weight Surface 28 354
Lower Drillhole Diameter (in.) 2.0" Was Well Annular Space Grouted? If Yes, To What Depth? Feet (7) Material Used To Fill Well/Drillhole Chipped Bentericti (8) Comments:	Clay-Sand Slurry Clay-Sand Slurry Bentonite-Sand Slurry Chipped Bentonite From (Ft.) To (Ft.) No. Yards, Sacks Sealant or Volume One) Mix Ratio or Mud Weight Surface Surface Clay-Sand Slurry Chipped Bentonite From (Ft.) To (Ft.) Sacks Sealant One) Clay-Sand Slurry Chipped Bentonite From (Ft.) To (Ft.) Sacks Sealant One) Clay-Sand Slurry Chipped Bentonite From (Ft.) To (Ft.) Sacks Sealant One) Clay-Sand Slurry Chipped Bentonite From (Ft.) To (Ft.) Sacks Sealant One) Clay-Sand Slurry Chipped Bentonite From (Ft.) To (Ft.) Sacks Sealant One) Clay-Sand Slurry Chipped Bentonite From (Ft.) To (Ft.) Sacks Sealant One) Clay-Sacks Cla
Lower Drillhole Diameter (in.) 2.0" Was Well Annular Space Grouted? Yes No Unknown If Yes, To What Depth? <u>A</u> (7) Material Used To Fill Well/Drillhole <u>Chipped Bintcritti</u> (8) Comments: Name of Person or Firm Doing Sealing Work	Clay-Sand Slurry Bentonite-Sand Slurry Chipped Bentonite From (Ft.) To (Ft.) Surface Surface (10) FOR DNR OR COUNTY USE ONLY District/County
Lower Drillhole Diameter (in.) 2.0" Was Well Annular Space Grouted? Yes No Unknown If Yes, To What Depth? <u>NA</u> Feet (7) Material Used To Fill Well/Drillhole <u>Chipped Bintchitt</u> (8) Comments: Name of Person or Firm Doing Sealing Work CES	Clay-Sand Slurry Bentonite-Sand Slurry Chipped Bentonite From (Ft.) To (Ft.) No. Yards, Circle Mix Ratio or Volume One) or Mud Weight Surface 28 354 10 FOR DNR OR COUNTY USE ONLY Date Received/Inspected District/County
Lower Drillhole Diameter (in.) 2.0" Was Weil Annular Space Grouted? If Yes No Unknown If Yes, To What Depth? Material Used To Fill Well/Drillhole (7) Material Used To Fill Well/Drillhole Chipped Bintcille (8) Comments: (8) Comments: Name of Person or Firm Doing Sealing Work CIES Signature of Person Doing Work Date Signed	Clay-Sand Slurry Clay-Sand Slurry Bentonite-Sand Slurry Chipped Bentonite From (Ft.) To (Ft.) No. Yards, Circle Mix Ratio or Volume One) Or Mud Weight Surface SS 354 (10) FOR DNR OR COUNTY USE ONLY Data Received/Inspected District/County
Lower Drillhole Diameter (in.) 2.0" Was Well Annular Space Grouted? If Yes INO Unknown Feet (7) Material Used To Fill Well/Drillhole (7) Material Used To Fill Well/Drillhole (7) Material Used To Fill Well/Drillhole (8) Comments: (8) Comments: Name of Person or Firm Doing Scaling Work (E.S. Signature of Person Doing Work (9) Material Used To Fill Well(C)	Clay-Sand Slurry Clay-Sand Slurry Bentonite-Sand Slurry Chipped Bentonite From (Ft.) To (Ft.) No. Yards, Circle One From (Ft.) To (Ft.) Sacks Sealant One Surface SS 354 (10) FOR DNR OR COUNTY USE ONLY Data Received/Inspected District/County Reviewer/Inspector Complying Work
Lower Drülhole Diameter (in.) 2.0" Was Weil Annular Space Grouted? Yes If Yes, To What Depth? A (7) Material Used To Fill Well/Drillhole (8) Comments: (8) Comments: (8) Comments: Name of Person or Firm Doing Sealing Work (F.S) Signature of Person Doing Work (10.110.110.110.110.110.110.110.110.110.	Clay-Sand Slurry Granular Bentonite Bentonite-Sand Slurry Bentonite - Cement Grout From (Ft.) To (Ft.) No. Yards, Scaks Sealant One) Mix Ratio or Mud Weight Surface Sacks Sealant One) One) Surface Sacks Sealant One) One) Surface Sacks Sealant One) One) Bentonite Sacks Sealant One) One) Surface Sacks Sealant One) Sacks Sealant One) Surface Sacks Sealant One) Sacks Sealant One) Bentonite
Lower Drillhole Diameter (in.) $2.5''$ Was Well Annular Space Grouted? \Box Yes \Box No \Box Unknown If Yes, To What Depth? $\underline{//2}$ Feet (7) Material Used To Fill Well/Drillhole Chipped Binterity (8) Comments: Name of Person or Firm Doing Scaling Work CF-5 Signature of Person Doing Work (JILCILLY A CIPLE?) Street or Route P.O. Box 2PC Telephone Number (5) 837 9752	Clay-Sand Slurry Granular Bentonite Bentonite-Sand Slurry Bentonite - Cement Grout From (Ft.) To (Ft.) No. Yards, or Volume Surface S 35 # Surface S 35 # Image: Surface S S
Lower Drillhole Diameter (in.) $2.5''$ Was Well Annular Space Grouted? \Box Yes \Box No \Box Unknown If Yes, To What Depth? $\underline{//2}$ Feet (7) Material Used To Fill Well/Drillhole Chipped Bintchildt (8) Comments: Name of Person or Firm Doing Sealing Work CF-S Signature of Person Doing Work (4) Micritich Accellent Street or Route P.O. Bax SPC City, State, Zip Code a content of Content	Clay-Sand Slurry Granular Bentonite Bentonite-Sand Slurry Bentonite - Cement Grout Chipped Bentonite Mo. Yards, Circle One) Mix Ratio or Mud Weight Surface S 35 H Surface S 35 H Image: Surface S S Surface S 35 H Surface S S Surface

WELL/DRILLHOLE/BOREHOLE ABANDONMENT

Rev. 3-95 Form 3300-5B

All abandonment work shall be performed in accordance with the provisions of Chapters NR 811, NR 812 or NR 141, Wis. Adm. Code, whichever is applicable. Also, see instructions on back.

-

whichever is applicable. Theo, see		ON FACILITY	NAME			
GENERAL INFORMATION		Original Well	Owner (If K	nown)		
Well/Drillhold Borehole	County	5-0-8	TT TA	DUSTRIES	5	
Location SB-CS2	WHEWORIFE	Dresent Well (When			
		Crea . 2		NUT 12155	•	
521 1/4 of NE 1/4 of Sec. /	<u>7</u> ; <u>T. ~ N; R. /22</u> W	<u> 2/A-C</u>	10.10	JUSTIA LA		
(If applicable)		Street of Koun	. man	FIREST		
Gov't Lot	Grid Number	272 W	SGH -	STRUC		
C-d Location		City, State, Zi	p Code	سر در دسمه ا		
	fr. 🗌 E. 🗌 W.	DELAVI	(~ <u>~</u>	22/12		WI Unique Well No
		Facility Well 1	No. and/or N	ame (If Applica	(DIC)	WI Ollique Wentite
CIVIL TOWN INAMINE DEL MIAN		SB-C	52_			<u> </u>
Bel silver		Reason For A	bandonment			
Street Address of Well 792 //	21015572551	OPENA	BORE HO	LE		· · · · · · · · · · · · · · · · · · ·
	KICHI AINCE	Date of Aban	donment			
City, Village Del Istral		- 2-28	-0(
Jan AVAT	INFORMATION					
WELL/DRILLHOLE/BOREHOLE	A Construction Completed On	(4) Depth to	Vater (Feet)	······		
(3) Original Well/Drillhole/Borehol	a construction completes on	Puma &	foing Remo	ved? \Box Y	es 🔲 N	o 🌉 Not Applicab
(Date) <u>3-28-0/</u>		Timenter	emoved?		es 🗖 N	o 🌆 Not Applicab
· · · · · · · · · · · · · · · · · · ·		Corpora Pa	moved?	H 🕯		o 🚮 Not Applicat
Monitoring Well	Construction Report Available?	Casina ta	ft in Place?	H÷		
Water Well	📙 Yes 🖼 No	TEM. E-		LI *		
Drillhole		II NO, EX	Jant			
Borebole	•		- C-+ Off T	alow Surface?	T Y	Ves 🗋 No
		Was Casi		Bine to Surface?	H	$r = \square N_0 / \alpha$
Construction Type:		Did Scali	ng Material			Cas H No N/A
	en (Sandpoint) 🔲 Dug	Did Mate	nal Settle A	ner 24 Hours:	H:	
Other (Specify) Sette	85	lf Yes,	Was Hole K	empped		
		(5) Required	Method of I	lacing Scaling	Material	
Formation Type:	-	Condi	actor Pine-G	ravity 🗖 C	onductor	Pipe-Pumped
Incorrectidated Formation	Bedrock		Bailer	П)ther (Exp	plain)
Chiconsondated i chinabon	-	(6) Sealing A	Asterials		For mo	nitoring wells and
Total Well Depth (ft.)	Casing Diameter (in.)		Carrier Com		monito	ring well boreholes o:
(From groundsurface)	Casing Depth (ft.)			- create) Crout		o
	. 14		Cement (Cu	nereal) oroan	Ben	tonite Pellets
Lower Drillhole Diameter (in.)	2.0					nular Bentonite
			Sand Slurry	L		tomite - Cement Grou
Was Well Annular Space Grout	ted? 💭 Yes 🛄 No 🛄 Unknown		mite-Sand S	lurry		
If Yes, To What Depth?	NA Feet	Chip	ped Bentonii	e		
		<u> </u>				
(7)			T- (C+)	No. Yaros, Secks Scalant	(Circle	Mix Ratio
(7) Material Used To	Fill Well/Drillhole	From (FL)	10 (FL)	or Volume	Une)	OI Mud Weight
		1				
Chinned Sin	1 - 1	Surface	10	- 7< H		
$\cup I \cup I \cup	toriti	Surface	.28	<u>35 #</u>		
	touity	Surface	.25	<u>35#</u>		
	touit	Surface	.25	35.#		
	tonicty	Surface	.25	35 #		
	toricty	Surface	.25	35#		
	toricty	Surface	.25	35#		
V /	toricty	Surface	.25	35 #		
	toricty	Surface	.25	35#		
(8) Comments:	toricty	Surface	.25	35 #		
(8) Comments:	tority	Surface	.25 	35 #	UNTY U	SE ONLY
(8) Comments:) Name of Person or Firm Doing	tority	Surface (10)	FOI	35 #	UNTY U	SE ONLY Strict/County
(8) Comments:) Name of Person or Firm Doing CES	Scaling Work	Surface 	.25 FOI Received/Ir	35 #		SE ONLY strict/County
(8) Comments: (8) Comments:) Name of Person or Firm Doing CES Signature of Person Doing Work.	Sealing Work	Surface (10) Date	.25 FOI Received/Ar	35 #	ע צדאט נוס	SE ONLY strict/County Complying Work
(8) Comments: (8) Comments:) Name of Person or Firm Doing CES Signature of Person Doing Work. (1) 10111 A QK US	Sealing Work	Surface (10) Date Revi	.25 FOI Received/Ar ower/Inspec	35 #		SE ONLY strict/County Complying Work Noncomplying Work
(8) Comments: (8) Comments:) Name of Person or Firm Doing OES Signame of Person Doing Work. (1) MOUL MAKUS Street or Route	Sealing Work Date Signed Telephone Number	Surface (10) Date Revi	.25 FOI Received/Ir ower/Inspec	35 #		SE ONLY strict/County Complying Work Noncomplying Work
(8) Comments: (8) Comments:) Name of Person or Firm Doing CES Signature of Person Doing Work. (1) 10111 104 14 Street or Route P.C. LCX 280	Sealing Work Date Signed Telephone Number ((CS))37-5992	Surface (10) Date Revi	.25 FOI Received/Ar ewer/Inspec	35 #		SE ONLY strict/County Complying Work Noncomplying Work
(8) Comments: ') Name of Person or Firm Doing (E.S.) Stgnature of Person Doing Work. (1) 1011 104 1011 Street or Route P(). 10x -280 City, State, Zip Code (2001)	Sealing Work Date Signed/ 3/28/Cv/ Telephone Number ((CS))37-5992	Surface (10) Date Follo	.25 FOI Received/Ar ewer/Inspec	35 # DNR OR CO specied		SE ONLY strict/County Complying Work Noncomplying Wor

	Ū.							Date(s):	3-28-0			
5 1 9		9900			V			Personnel:	1-W Cteo/	Homson		
	ation: 21/4	7 'NWA	· /	21212				Meter Numb	er MUNIKO	E. 2000 PID		
	r							Probe eV:	(1.1			i i
	Location	Depth	Sample	Moisture	Time	Ťime	Volatilization	OIL	Readings (Insturme	nt Units)	Conments	
2 Page		(feet)	Media (1)	(3	Sample Collected	Sample Analyzed	Penod Air Temp. (°C)	Background	Peak Response	After 15 sec.		
			K	2	25.64	12:15	202	0 0	112	MA		
		2 6	i v	E E	8	11.01		0.0	137	AA		
1		21	ξ V	, I	10.02	2.01	í.q	0	475	ЧA		
		2.	4	K	10:10	12.22	ૈસ્	0.0	922	ALA		
		20	V	Z	12:15	12:25	ۇغ كې	0 2	3787	MA		
	*	8	<u> </u>		29.5							
										i		
					-							
			-		-							
	-											
				_	_	-						
	SO - Sail		- SD - V	J Sediment		GW - Grot	Ind Water	[(2)	ioM - M - Moi	st W-Wet		
-	SW - Surfac	be Water	- SW	Waste (So	lid)	WL - Was	te (LIquid)					

				Comments																	
	1Hemsen	5200 PID		(Units)	After 15 sec.	MA	N/A	N/4	NA	ЧA											W - Wet
3-28-01	nel: / . DD m	lumber. MIN/RA	<u>w //.7</u>	PID Readings (Insturment	und Peak Response	125.1	56.7	0 22.7	35.5	2,20											D - Dry M - Moist
Date(s):	Person	Meter N	Probe e	lion	C) Backgro	0.5	0,0	0 V	0	0 0			 			 	 				(3)
				Volatitiza	e Period / ed Temp. (⁶	7 200	6 200	2 20	ۍ بر بر	200		 		 				 			I Sround Water /aste (Llquid)
			-	Time	ed Analyze	K 12:2	5 123	10 12 14	5 12.3	0 12:4			_		 -	_					GW-O GW-G GW-
	6155			Ire Time	Collect	101	10:4	10	0,5									-			nt (Solid)
	N.S.			e Moistu	(3)	3	ž	Σ	(<u></u>	3		 			 				-		- Sedime 5 - Waste
	R			Sampl	Media (1)	35	3	ا ن (3 18	₹; [}	j j		_{		-					-	- SS
No.	10-01	0/2/0		Depth	(feet)	1/2	20	776	20	20								-			ce Water
lumber D	Jame: 27	ation:		Location		S. 2. 2.															SO - Soil SV - Surfac
Deviact A	Project N	Site Loc		Samole	Number	-	2	Tr.	1 7	44	7										£

-

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	umber. F	256						Date(s): 3	-28-01			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6	2 - R 115	<u>Z</u> NDe	ustale	Ņ	ĺ		Personnel:	- m Cheo/	Homer		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	R.	ישיירי לי						Meter Numbi Probe eV:	er. MINIRA	i 2000 II	R	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	scation .	tion C	Sample	Moisture	Time	Time	Volatilization	OId	Readings (Insturme	at Units)	Comments	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(artH	(leel)	Media (1)	2	Sample Collected	Sample Analyzed	Period Air Temp. (°C)	Background	Peak Response	After 15 sec.		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	22	, , ,	V	R.	11:35	13.00	6	0.0	60.1	MA		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	2.4	4 4	Ę	11:37	13.02	د وي م	0.0	49.1	MA		
$ \begin{bmatrix} \dot{c} \cdot \ddot{S} & \ddot{z} & m & \cdot \dot{\zeta} \zeta & \vec{z} \cdot \dot{c} & \vec{c} \cdot \vec{c} \cdot \vec{c} & \vec{c} \cdot \vec{c} \cdot \vec{c} & \vec{c} \cdot \vec{c} & \vec{c} \cdot \vec{c} &$	 	\$-7 1-10	1	Ę	11:40	15:05	200	ବ୍	34.2	ЧA		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		8.9	in	Ę	11:42	13.07	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0. O	30.7	A/A		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	0/-3	N	٤	11-45	13:10	ŝ	Ø. Ø	25.5	NA		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		10-12	6 4		11.47	13:12	No.	0.0	30.0	МA		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	+-	10 14	i ii	3	5	/3:/5	200	ø	7:81	A/A		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	<u> </u>	14-16	18	2	3	13.30	° ° ×	0,0	109	МA		
R-2c R $II:57$		11.18	M		11.455	13.32	2007	ø Ø	116	MA		
$2c-22$ ∞ 12 : ∞ <		10 20	6 V	3	1:53	12 25	.9	0 0	91.6	МА		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	20-02	R V		12:00	12:27	2007	ø	107	NA		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		20-20	V	۶ ا	12:02	13.40	00%	0 Q	151	AA A		
V 22-28 So M 22:10 12:45 Zor 0.0 148 MA 0-Soil SD-Sediment GW-Ground Water (2) D-Dry M-Moist W-Wet	-	24-21.	ห	Ę	12:0.21	13:42	69	0.0	98.5	NА		
O-Soil SD-Sediment GW-Ground Water (2) D-Dry M-Moist W-Wet	╞	24.28	14	Ę	12:10	12.45	í. Y	0,0	/48	NA		
0-Soil SD-Sediment GW-Ground Water (2) D-Dry M-Moist W-Vet		2 1			} ⊁					-		
O-Soil SD-Sediment GW-Ground Water (2) D-Dry M-Moist W-Wet												
O-Soil SD-Sediment GW-Ground Water (2) D-Dry M-Moist W-Wet												
O-Soil SD-Sediment GW-Ground Water (2) D - Dry M - Moist W - Wet								 		-		
	0 - Soil		- GS	Sediment		GW - Grou	nd Water	(2)) - Dry M - Moi:	t w-Wet		

-

Numer: $2 \cdot S \cdot S$ Date: $3 \cdot S \cdot S \cdot S$ Nume: $2 \cdot S \cdot S \cdot S \cdot S$ Personant: $7 \cdot S \cdot S \cdot S \cdot S \cdot S \cdot S \cdot S$ Nume: $2 \cdot S \cdot $													Γ
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Number	A A							Date(s):	3-25-01			T
dots: $22.41/\lambda$, $1/1$. Meter Wruhte: M_{11}/T Meter Wruhte: M_{11}/T color: $22.41/\lambda$, $1/1$. Meter Wruhte: M_{11}/T Meter Wruhte: M_{11}/T Learning Trans of the Method Met	Name:				ustel.	23			Personnei:	/ marol	Homson		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	cation:		41/2000	771	-				Meter Numb	er MW/120	E Zoo Ple		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	~	. !							Probe eV:	11.7			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		ton	Depth	Sample	Moisture	Time	Тіте	Volatilization	OIA	Readings (Insturmer	it Units)	Comments	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N C	21	(feet)	Media (1)	8	Sample Collected	Sample Analyzed	Penod Alr Temp. (°C)	Background	Peak Response	After 15 sec.		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		3	0 15 15	V	3	12:4	121.05	0 47	0,0	139	NA		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			2-5	18	ξ	27.21	15:07		0.1	159	A/A		Т
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			4-6	K	۶	12:45	15:10	0°20	0	128	NA		Т
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			5-5	Y	Ę	12.47	1512	° ~~	0.0	55.2	NR		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			8-10	18	٤	12:55	15:15	د دیم	Ó Ó	8	NA		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		<u> </u>	10-12	Y	2	12:52	12.11	20	0.0	99.2	AN		-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			12-14	18	E	12:53	15.20	•	0. <i>0</i>	بلايحتر فلا	M		
K - R $K - R$			14-110	18	ž	12:27	15:22	و م « کر	0.0	56.4	NA		
B-2c $B-2c$			1/0-18	18	z	13:00	15.25	200	0 0	E. 72	RN		T
Z_{2} - Z_{2} Z_{2} M $ Z_{1}$ Z_{2} M $ Z_{1}$ Z_{2} M M 2^{4} - Z_{2} Z_{2} M $ Z_{2}$ Z_{2} Z_{2} M 2^{4} - Z_{2} Z_{2} Z_{2} Z_{2} Z_{2} M M V Z^{2} - Z_{2} Z_{2} Z_{2} Z_{2} M M V Z^{2} - Z_{2} Z_{2} Z_{2} Z_{2} M M V Z^{2} - Z_{2} Z_{2} Z_{2} Z_{2} M M V Z^{2} - Z_{2} Z_{2} Z_{2} Z_{2} M M V Z^{2} - Z_{2} Z_{2} Z_{2} M M M V Z^{2} - Z_{2} Z_{2} Z_{2} Z_{2} Z_{2} Z_{2} V Z^{2} Z_{2} Z_{2} Z_{2} Z_{2} Z_{2} V Z^{2} Z_{2} Z_{2} Z_{2} Z_{2} Z_{2} Z_{2}			15-20	M	z	13.45	15:27	۰ ډېر	0.0	57.3	NA		
$23-24$ 55 m 13.55 $57:32$ $2a$ $24-2b$ 55 m 13.55 $57:32$ $2a$ \sqrt{A} V $24-2b$ 55 m 13.55 $27:35$ $27:35$ $27:56$ \sqrt{A} V $24-2b$ 55 m $12:55$ $27:55$ $25:60$ \sqrt{A} V $24-2b$ $55:60$ \sqrt{A} \sqrt{A} \sqrt{A} V $24-2b$ $55:60$ \sqrt{A} \sqrt{A} V $24-2b$ $25:60$ \sqrt{A} \sqrt{A} V $24-2b$ $25:60$ \sqrt{A} \sqrt{A} V $24-2b$ $25:60$ \sqrt{A} \sqrt{A} $So-Soil SD-Sould SD-Sould M-Moist W-Wet $			22-22	8	2	13.47	M Vi	2007	\$ \$	29.9	ЧA		
24-26 M /2:35 /5:35 /5:35 /5:35 /5:35 /5:35 /5:35 V 26 M /4:35 26 26 MA V 26 M /4:35 26 MA V 26 7 7 26:0 MA So-sol 50-Sol 50-Sol M Methods 20-Dy			22-24	18	z	15	157.32	"	0,3	45.3	ΗŅ		
V 26-25 5 M M: (c) Z6:0 MA V 26-25 5 0.0 Z6:0 MA So-Soil 50-Soil 50-Dry M-Moist W-Wet			24-26	vå	Ę	13:35	15:35	لمريد م	0.0	the it	RN		Í
SO-Soil SD-Sediment GW-Ground Water (2) D-Dry M-Moist W-Wet			22-25	V	Ę	14.00	15.40	ميرم	0.0	2610	МA		
SO-Soil SD-Sediment GW-Ground Water (2) D-Dry M-Moist W-Wet													
SO-Soil SD-Sediment GW-Ground Water (2) D-Dry M-Moist W-Wet		-											
SO-Soil SD-Sediment GW-Ground Water (2) D-Dry M-Moist W-Wet													
SO-Soil SD-Sediment GW-Ground Water (2) D-Dry M-Moist W-Wet													
	- 03	Soil		- ds	Sediment		GW - Groun	td Water // Inuid)	0 (2)	- Dry M - Mois	t W-Wet		

-

												I
Droject	Number P							Date(s): 7	10-82-			_
Project	Name:	2. R.M.E	K	1 al	V			Personnel:	· w creo/	Homson		
Site Loc	ation:	0 1 1 1			Ŋ			Meter Numbi	IL MINIKA	5 2000 P12		
}	17317	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	÷					Probe eV:	11.7			Ī
Sample	Location	Depth	Sample	Moisture	Time	Time	Volatilization	Old	Readings (Insturmer	ıt Units)	Comments	
Number	South	(feet)	Media (1)	6	Sample Collected	Sample Analyzed	Period Air Temp. (°C)	Background	Peak Rcsponse	After 15 sec.		
	SS-CS/	0.2	મ્	Ę	14 3	18:40	20°	0.0	25.8	NA		
<u>م</u>		2.4	18	ĸ	14:31	27:81	.	0.2	17.1	ΝĤ		
m		4-6	18	Ę	14:32	18:45	203	0.3	24.3	ЫV		
4		8-%	Ŵ	r	14:35	18:47	000	n Q	11.6	ΜĤ		
5		6.10	is	r.	14:37	18:35	500	6	8.31	MA		Τ
		10-12.	19	ž	14:38	18:52	500	0.2 2	42	AVA.		i
		12-14	ષ	Ę	14.16	18:53	200	2.0	16:5	ЧR		
		14-16	18	ľų	54.71	15:57	200	2.0	56.7	NA		
v e		12-18	vi	Ę	14.47	19.00	5.02	10	14.9	ЧA		
0	 	18-20	V	Ę	14.55	19:02		e M	27.3	NA		
>		20-22	N	Ę	14.53	19:05	5.0	d r	13.2	NA		
2		22-24	19	Ę	14:57	19:21	200	i, o V	16.2	AM		Ì
× ۲		25-22	Vi	K	12:00	19:10	50	0 V	1:51	AN		
13	╞	26-28	14	л Г	15:10	19.15	°.2	0 Ŵ	13.5	AN		
							ī					
				<u> </u>								
Ξ	SO - Soil SV - Surfac	te Water	s-ds	Sediment Waste (Soli	(p	GW - Grour WL - Wasto	nd Water t (Liquid)	(2)	- Dry M - Moist	W - Wet		
		ļ										

Nart N	Timher V	No.			1			Date(s):	10-82-			
		DITC	1	Jair	V			Personnel:	m corol	THOMSON		Ť
	tion	1 -VVZ	1 A 641		Į			Meter Numbe	ar MUNIPA	E Dee PI	Q	- [
	177 A	ケレジン・						Probe eV: /	11.7			
a mine	I octation	Deoth	Sample	Moisture	Time	Time	Volatilization	1 OId	Readings (Insturmen	rt Units)	Comments	
Number	Marth	(feet)	Media (1)	8	Sample Collected	Sample Analyzed	Period Air Temp. (°C)	Background	Peak Response	After 15 sec.		
	58-52	2-0	Ч	E	15:52	19.25	200	04	2.2	NВ		
~		4-0	K	Ĩ	15:51	19:27	200	2.4	2.2	A/A		Τ
{ m		2-6	4	Ę	15:52	19:30	o or	7.0	1.9	NA		
13		1-8-	V	2	15:25	19.32	200	0.4	کی . حک	NA		
4		0-10	4	į	15.51	19:35	°.2	7.0	1.4	A/A		
* ?		10-12	14	Ę	16.00	19.37	2002	50	2.5	NA NA		
7		12-16	2 15	ž	1/2 2	4.61	, og	0.7	3.4	MA		
12		11.16	14	Ę	10:05	19.42	200	0.4	1.8	V/V		
0		N. N.	4	Ę	116:06	19.45	500	0.4	2.5	A/A		Γ
		10:00	4	3	11. 67	67.51	207	2.0	/:	ŃŅ		Ī
		00.00	V	2	1/2/	19.51	64	, Y	£.7	N/A		
1		76-56		3	1/ 1/2	2.51		7.0	1.7	MA MA		
10		24-210	v8	Ę	16:17	19:25	200	9.6	4.1	A/A		
		26-28	W.	K	16:20	20100	کی ت	0,5	3,7	NA		
				-			-					
ij				Codimont		GW - Grout	nd Water		1 - Dry M - Mois	t W-Wet		
Ξ	SO - Soil SW - Surfac	ce Water	- SM	Vaste (Sol	lid)	WL - Wast	e (Liquid)	ا ا				ł

-

GEOTRANS EQUIPMENT CALIBRATION FORM

.

Equipment Make/Model/I.D. Number MUNIX95 2000 710

-			<u> </u>	 		 ··· ·	_		1	 				
	COMMENTS	m Courser 751 = 250												
	RESULTS	1000/11/11/2 mile - 0 - 940/ 02/2												
	CALIBRATION MEDIA	ToBut Alson + AIR												
	TIME	@ <u>`</u> 20												
	2°DATE 0/	3-28											ĺ	

		Pro Contraction of the second		Comments														
0	Join at 1	45 2000		t Units)	After 15 sec.									-				 W - Wet
2-13-00	m affol	er. MN/R	11.7	eadings (Instrumen)	Peak Response	172	6.2	197	367	2193					 			Dry M - Maist
Date(s): /	Personnel:	Meter Numb	Probe eV:	PIDR	Back- ground	0.0	0.2	o vi	002	n M								 (2) D-
				Volatilization	Temp. (°C)	å	s of	200	202	200								 Water
	2			Time	Sample Analyzed	08:25	72:30	08:30	28:32	08:35								GW - Ground
	RIES			Time	Sample Collected	10.50	10:40	0/://	11:20	aE://						-		
	Tend			Moisture	J	r	W	rd	Ľ	Ĩ	-							ediment Maste (Solic
	2	5117		Sample	(1)	4	14	8	Vå	К							 	 S-OS
256	A-201	HVAN		Depth (500)	(teet)	16	20	24	22	28								Water
lumber: P	lame:	ation: JEL		Location		Flore-Et	25-28	שלייישר ש	35-2-3	3-2-2-8								SO - Soil SW - Surface
Project N	Project h	Site Loc		Sample		.0	ぺ	3	4	5								3

			d/D		Comments														
		1Homsont	152007		t Units)	After 15 sec.											 		t W-Wet
	12-13-0	W Ches/	er. myw/K	11.7	teadings (Instrumen	Peak Response	8	6.9	9.9	6	4.4								- Dry M - Mois
	Date(s):	Personnel:	Meter Numb	Probe eV:	H CIH	Back- ground	2.0	5.2	0.2	0.2	r, o					 			(2)
					Volatilization	Temp. (°C)	200	200	200	200	200	:	-						Water Jquid)
					Time	Sample Analyzed 12-14-00	07:80	28.42	28:45	77.80	08:50								GW - Ground ML - Waste (I
		Ň			Time	Collected	12:00	12:10	12:20	12:30	07:21								
		VISTEL			Moisture	(4	ĸ	rel	ž	re	ž								ediment Vaste (Solid
		TX2	· 117		Sample	(1)	18	43	48	4	18								s- ds
	22	1-R115	אועויד		Depth	(reet)	2	20	24	222	22								Water
٩ إ	Number:	Vame:	ation:	è	Location		8-2-EC	53-208	53-208	52-208	S-2008								SO - Soil SW - Surface
	Project h	Project h	Site Loci		Sample	Number	- -	2	M	7	4								(1)

HSI GEOTRANS EQUIPMENT CALIBRATION FORM

Equipment Make/Model/I.D. Number DR///KAE 2000 7/12

COMMENTS	(AUSTIK PS/ = 250										
RESULTS	ZikoCul, = O. O gim Jan Jan - 100 12										
CALIBRATION MEDIA	TSBUTTER TAIR										
TIME	08:10										
%DATE	12-14										

Route To:	Watershed/Wastewater 🚺 Waste Management 🔲
	Remediation/Revelopment 🗌 Other 🔲

																Page	_/_	_ of _	2	
Facili	у/Рюје	ct Na		TA-F	TTE THE	, L	FIRIES	License/Permit/Monitoring Number 5-3-5ump												
Borin	g Drille	d By:	Name	e of cre	w chief (firs	t, la	st) and Firm		Date D	 rilling	Start		Date I	Drilling	Com	pleted	Drillin	g Meti	 10d	
First)	iane: 7 FX/-	-571	/ 7 5.1	Last N	irme: KAPL Soussited	G	7	ł	1211312000 /					1211 312900 mm d d y y y y				GEOTROBE		
WI U	nique V	Vell N	0.	DNR	Well ID No.	-	Well Name	F	Final Static Water Level				Surface Elevation				Borehole Diameter			
Local	Local Grid Origin (estimated:) or Boring Location												- Local	Grid L	_reel l		<u> </u>			
State]	Plane_	.15			_N,	1	ES/C	/N	Lat					12		N				
Facili	1/4 of ty ID	<u>N4</u>	1/4 of	Secuo	$\frac{n}{2}$, 1 County /	\leq	<u>_ N, K /4(4</u>	Cou	nty C	ode	Civil	 Тоwл/	L City/ o	r Villa	ge L	5_		_ raci	<u> </u>	
					- WH		JORIN				Ð	<u>FLAU</u>	IAN	1	C 11					
San	nple ≪ ⊆	50	ur face)		Soil/	Roci	Description								Soil	Prope	rties			
ы Б	h Att.	Count	in Fo		And G	colo	ogic Origin For			S	0	5	e	cssive	212		ity		icnts	
Mumb dmuN	Lengt	Blow (Depth (Ilelow g	1	La	611 T				usc	Graphi	Vell	PID/F	Compr	Moist	Limit	Plastic Index	P 200	RQD/ Comit	
			E								_									
			E'																	
			Ez																	
			Ē													Į				
		ļ	Ę-₹								ļ									
			E	,																
			E	1													·			
		ļ	È-3																	
]	E,									Ì								
			E							1	1									
			F 7										ļ							
			E-s																	
			E,																	
			E								1									
			-/*	2								Ì					1			
		ĺ	E,							1				1						
			Ē																	
			- -/×	2 <u> </u>			 -													

reby certify that the information on this form is true and correct to the best of my knowledge.

STIALURE	Fim CEOTRANS 173N CORPORATE DR. SUTTL/CO
and the low	Bis47ED W1 53045

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

<u>58-</u> 2	Sum	7 <i>E</i>									Pag	<u>, 2</u>	_of_	2
San	nple									Soil F	rope	ties		
Nurr' and	Length Att. & Recovered (in)	Blow Counts	Depth in Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	uscs	Graphic Log	Well Diagram	PID/FID ¥	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
1				16.0-20.0: SILTY SAVD (SM) REDUIT 60% FINE TO MEDIUM CRAINED SAND, 30% FINES, AND 10% FINE TO ESNEE GRAVEL BROWNESH YELLOW (1048/16) MOIST, NON PLASTIC.	SM			172 0) 172 0) 1/2 (2)						-
<u>3</u>	30			24.0-25.0: POPLY GROUP SPAD (SP) ABOUT 95% FINE GOINED SAND, AND 5% FINES, UGHT YULLOWISH BROUM (10184) MIST, NON TLASTIC: 25.0-27.0: SHET SAND (SM) NON (101-FINE TO MEDIUM NOW (101-FINE TO MEDIUM	SP Sm Sm			197 (6.3) 3/27 (6.2) 2/193						
2				GRANNED SUND, Son ETHER KEAT 10% FILLE TO CREASE GRAVIL, LEAT HILLOWISH BROWN (154546), MOIST, NONTRESTICA 27.0-28.0: SUT (M) ABOUT 9560 FANIS AND ST& GANNED FANIS AND ST& GANNED STUD, LIGHT (SAN (104072)) WITH STUD. LIGHT (SAN (104072)) WITH STUDING AND FROM, MOIST TO 216T, LOW PLASTICTTY.	<u>m</u> L			(6. <u>3</u>)						

-

X=PID Botter DE.

Form 4400-122

Route To:	Watershed/Wastewater 🖸 Waste Management 🗌 Remediation/Revelopment 🗍 Other 🔲

								_			Page	_/	of	2	
Facility/Project Nan	° 5TA	-RITE TO DOB	TRIES	Licens	c/Pern	uit/Mor	nitorin	g Num	ber	Boring	Numl	Ξ.	B-,	2008	
Boring Drilled By:	Name o	of crew chief (first, l	ast) and Firm	Date I	Drilling	Starte	d	Date D	milling	Comp	leted	Drillin	g Meił	lod	
First Name: To, Y	5.10	Last Name: KAJUE	1			द् दुः	<u>9</u> <u>9</u>	12	12/13/2009				Folkobe		
WI Unique Well No	. E	NR Well ID No.	Well Name	Final Static Water Level					Surface Elevation				Borehole Diameter		
T cosl Grid Origin		nated: 🖸) or Bor	ing Location	<u> </u>	Feet MSL				inches						
State Plane N, E S/C					.at	<u>, ,</u>		אם						ΞE	
Tes 1/4 of NE	1/4 of S	ection <u>17</u> , T	<u>_ N, R <u>/</u> (B)W</u>	/ Lor	ode	Civil	 Fown/	City/ o	For Villa	$\frac{\infty t}{\frac{1}{2}}$	<u>s</u>				
Facility in		walk	iseTH			Ð	LAVA	كم ا		-					
Sample	(lace)									Soil I	Prope I	rties	_		
Image: Solit of the second					uscs	Jraphic .og	Wcll Diagram	PID/FID	ompressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments	

ereby certify that the information on this form is true and correct to the best of my knowledge.

Signature

22

4 min

FIR GEOTRANS 175N CAPATIE DR. SATTL 100 BROKHAD WI 53045

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

<u>58</u> -	-2a	.8									Paj	30 <u>2</u>	of	2
San	nple						}			Soil F	Prope	ties		
Numb and T	Length Att. 8 Recovered (ii	Blow Counts	Depth in Feel	Soil/Rock Description And Geologic Origin For Each Major Unit	uscs	Graphic Log	Well Diagram		Compressive Strength	Moisturc Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
1				16.0-20.0: SILTY SAND (5m) ABOUT (10% FINE TO MED- JUM GRAINED SWED, 30% FINES, AND 10% FINE TO CARESE GRAVEL BROWNESH HILLOW (0YEL), MOIST, NIN- FINES, NIN-	Sri			(0) (0)						
<i>مر</i>				24.0-25.0" Proply Geodo Sul				(9, (<u>a)</u>		-				
4	<u>3</u> 2."	-		(SP) RBOTT 95% FINE GRANNED SAND, 5% FINES, AND 5% FINE TO COARSE GRAVEL VELY PALE BROWN (107/23) MOIST, Nord FLASTIC. 25.0-28.0: SILLY SAND (SM) AROT / 2 FINE TO MEDIUM	57 5m 5m			4 (5.2) 9.4 (6.3)						
			halmhalmal	GRANNED STAD, 30% FINES, AND 10% FINE TO COARSE GRAVEL, VERY PALE BROWN (01R 14) MOUST TO WEL, NONTRASTIC. 50B: 28.0										

*=PID But GAR : WD RDG

-

•

_

All abandonment work shall be performed in accordance with the provisions of Chapters NR 811, NR 812 or NR 141, Wis. Adm. Code, whichever is applicable. Also, see instructions on back.

() GENERAL INFORMATION	(2) FACILITY NAME									
Well/Drillhole/Borehole County	Original Well Owner (If Known)									
Location IB- Sum & WALWORTH	STA-RITE TUDUSTRIES									
	F Present Well Owner									
Stal 114 of ALE 114 of Sec 17 . T 2 N.R. Va	1 × 578-2117 TUDUSTEN'S									
(If applicable)	Street or Boute									
	Junto 193 110 m TT STESST									
	Number 2/J WWGHI 2/MCU									
Grid Location	City, State, Zip Code									
ft. [N. [S.,ft. [E.	W. DELAVAN, WI. 2212									
Civil Town Name	Facility Well No. and/or Name (If Applicable) WI Unique Well No.									
HELAVAN	SB-SumPE									
Street Address of Well	Reason For Abandonment									
293 SRIGHT STREET	OPIN BOULHOLE									
City, Village	Date of Abandonment									
PELAVAN	12-13-00									
WELL/DRILLHOLE/BORFHOLE INFORMATION										
(3) Original Well/Drillhole/Borehold Construction Completed On	(4) Depth to Water (Feet)									
(Date) $\sqrt{3-\alpha}$	Pump & Piping Removed?									
	Liner(s) Removed? Yes Ves No Kot Applicable									
Monitoring Well Construction Report Availab	ible? Screen Removed? I Yes I No I Not Applicable									
Water Well Yes No	Casing Left in Place? Yes No									
Drillhole	If No, Explain									
Borchole										
	Was Casing Cut Off Below Surface? Yes No									
Construction Type:	Did Sealing Material Rise to Surface? TYes No /									
Drilled Driven (Sondroint) Dug	Did Material Settle After 24 Hours? Yes No NA									
$\Box = \Box =$	If Yes Was Hole Reformed?									
A Other (specify) (~2.0/ NBD2										
En-mation Theorem	(5) Required Method of Placing Sealing Material									
	Conductor Pipe-Gravity Conductor Pipe-Pumped									
Unconsolidated Formation L Bedrock	Dump Bailer Dther (Explain)									
Total Well Depth (ft) Λ / β Casing Diameter (in.) Λ / β	(6) Scaling Materials For monitoring wells and									
(From groundsurface) Casing Denth (ft.) A/C	Nest Coment Grout monitoring well howholes only									
	- Next Centern Oron Monitoring went boreholes only									
Lower Drillhole Discouter (in) 2/1										
	Clay-Sand Shurry E Granular Bentonite									
was well Annular Space Grouted? [] Yes [] No [] U	Unknown Bentonite-Sand Slurry Bentonite - Cement Grout									
If Yes, To What Depth? \sqrt{H}	Feet Chipped Bentonite									
(7) Material Used To Fill Well/Drillhole	No. Yards. (Circle Mix Ratio									
	From (FL) To (FL) Sacks Sealant One) or Mud Weight									
GRANULAR BUNTONITIE	Surface 28 0.1944-									
	······································									
(0) (1										
(6) Comments: GRANTY										
1) Name of Person or Firm Doing Sealing Work	(10) FOR DNR OR COUNTY USE ONLY									
, ON STIL (MVIRONMENTIAL) & (JOTRONS	Date Received/Inspected District/County									
Signature of Person Doing Work Date Signed										
12-13-0	Reviewer/Inspector									
Street or Route										
175.1. 5.05 5 5 5 5 - 1- (2/2) 749. 19(10)										
City State Zin Code										
BRack 17620. WI 53045										
and the contraction of the										

WELL/DRILLHOLE/BOREHOLE ABAN	DONMENT
------------------------------	---------

Form 3300-5B Rev. 3-95

All abandonment work shall be performed in accordance with the provisions of Chapters NR 811, NR 812 or NR 141, Wis. Adm. Code, ichever is applicable. Also, see instructions on back.

(1) GENERAL INFORMATION	<u> </u>	(2) FACILITY NAME										
Well/Drillhole Borehole	County	Original Well Owner (If Known)										
Location 5B-2008	WALLSCRIH	5TA	-KTLE]	DUSIKIES_								
	E	Present Well	I Owner	- A March								
52 1/4 of NE 1/4 of Sec. 1	7. ; <u>T. 2.</u> N; R. <u>16</u> 🗍 W	STR	-RALL	NOUSIKICS								
(If applicable)		Street or Ro	utc									
Gov't Lot	Grid Number	29	3)SRIGHT	T STREEL								
Cid Losstian		City, State,	Zip Code									
	θ ΓΊΕ, ΓΊ W	The	AVAN.	11.53/15								
II. 3. 3.		Facility Wel	No. and/or	Name (If Applicable)	WI Unique Well No.							
Civil Town Name DS/ DV/DA		58-	2008									
OLLIV		Reason For	Abandonmer									
Street Address of well		BUCI	Rosh	I S.E.								
	ICAL AIRIGI	Date of Aha	ndonment		<u> </u>							
City, Village Dil Avan		17-1	$\vec{x} - \vec{r} \vec{r}$									
det to the		Ale	1 00									
WELL/DRILLHOLE/BOREHOLE	INFORMATION	(A) Darth 1:	Water (Pres)									
(3) Original Well/Drillhole Borchole	Construction Completed On	(4) Depth to	wшег (Feet)		No Not Applicable							
(Date) $12 - 13 - \infty$		Pump &	Piping Remo									
		Liner(s)	Removed?		No Not Applicable							
Monitoring Well	Construction Report Available?	Screen R	(cmoved?	🔲 Yes 🗋	No 🔜 Not Applicable							
Water Well	🗋 Yes 🔤 No	Casing I	eft in Place?	🔲 Yes 🗌	No							
Drillhole		If No, E	xplain									
Borehole												
—		Was Cas	sing Cut Off I	Below Surface?	Yes No							
Construction Type:		Did Scal	ling Material	Rise to Surface?	Yes No							
Drilled Driver	(Sandpoint) 🔲 Dug	Did Mat	erial Settle A	fter 24 Hours?	Yes No NA							
Other (Specify)	BS.	If Yes	, Was Hole R	letopped?	Yes 🚺 No							
		(5) Require	d Method of	Placing Scaling Material	<u> </u>							
Formation Type:					r Pipe-Pumped							
Unconsolidated Formation	Bedrock		- D-11	D Other (E)	rolain)							
_			Motariala		onitoring wells and							
Total Well Depth (ft.)	Casing Diameter (in.) <u>MA</u>	(0) Scaling	Materials	nor monit	toring well boreholes only							
(From groundsurface)	Casing Depth (fL) $\underline{\Lambda / H}$	Sand-Cement (Concrete) Grout										
	- II	Sand-Cement (Concrete) Grout										
Lower Drillhole Diameter (in.)	2"		crete		consider Reptonite							
		Clay-Sand Slurry Granular Bentonite										
Was Well Annular Space Groute	d? 📋 Yes 🛄 No 📋 Unknown		tonite-Sand S		entointe - cement erout							
If Yes, To What Depth? 🔟	VA Feet		oped Bentonii	le								
		1			1							
(7) Material Used To F	au Well/Dollhole	From (Et)	TOFT	Sacks Sealant (Circle	Mix Ratio							
		110/11 (1 12)	10(1)	or Volume One)								
		Surface	20	a 1916 A 3								
GRANULAR, BENTONT	ε		10	0.117-11	<u> </u>							
		l	ł									
		!	<u> </u>									
		L	ļ	 	<u> </u>							
			l									
		<u> </u>	l	<u> </u>								
(8) Comments: GRAVITY												
	· · · · · · · · · · · · · · · · · · ·			CONTRACTOR OF THE OWNER OWNE	TOT ONLY							
(9) Name of Person or Firm Doing Se	aling Work	(10)	FOI	ONR OR COUNTY U	JSEUNLI							
ON-SITE ENVIRONMENT	TA/_) * GEFTRANS	Date	Received/In	spected	Istrict Comity							
Signature of Person Doing Work	Date Signed				• • • • • • • • • • • • • • • • • • •							
* hollow theman	12-13-00	Rev	iewer/Inspect	or I	Complying Work							
Street or Route	Telephone Number				Noncomplying Work							
175N CARPORTE DE SUTTE 100	(262) 742-1282	Foll	ow-up Neces	Багу								
City, State, Zip Code	Set Marchet											
LACOLITZED	1)1. 75040	ar second state										
APPENDIX F

CALCULATIONS

. .

· · · ·

GeoTrans, Inc.

SITE-SPECIFIC SOIL SCREENING LEVEL CALCULATIONS, STA-RITE INDUSTRIES, DELAVAN, WISCONSIN

Soil Screening Level (SSL) Calculations for Groundwater Migration Pathway

Equations from July 1996 U.S. EPA Guidance Document entitled "Soil Screening Guidance: User's Guide"

Soil/Water Partioning Equation: Screening Level in Soil (mg/kg) = Cw[Kd + (Ow + (Oa x H')) / Pb]

Mass-Limit Equation: Screening Level in Soil (mg/kg)≖(Cw x I x ED) / (Pb x ds)

Cw = target soil leachate concentration (mg/L)=Maximum Contaminant Level (MCL) x dilution factor

Kd=soil-water partion coefficient (L/Kg)=Koc x foc Koc=soil organic carbon/water partition coefficient (L/kg); chemical-specific foc=fraction organic carbon in soil (g/g): Default value=0.002 (0.2%)

Ow=water-filled soil porosity: Default=0.3 Pb=dry soil bulk density (kg/L): Default=1.5

Oa=air-filled soil porosity=n-Ow n=soil porosity=1-(Pb/Ps) Ps=soil particel density (kg/L): Default=2.65

H'=dimensionless Henry's Law constant; chemical-specific ds=depth of source (meters) ED=exposure duration (years); Default=70

```
Derivation of Dilution Factor:
dilution factor=1+(Kid/IL)
```

K=aquifer hydraulic conductivity (meters/year) i=hydraulic gradient d=mixing zone depth (meters) d=(0.0112L^2)^0.5+da{1-exp[(-L x 1)/(K x i x da)]} L=souce length parallel to groundwater flow (meters) l=infiltration rate (meters/year): Default=0.18 m/yr K=aquifer hydraulic conductivity (meters/year) i=hydraulic gradient da=aquifer thickness (meters) l=Infiltration rate (meters/year): Default=0.18 m/yr L=source length parallel to groundwater flow (meters)

DEFAULT VALUES USED IN EQUATIONS		
Parameter	Units	Value
Fraction Oganic Carbon in Soil (foc)	gram/gram	0.002
Water-Filled Soil Porosity (Ow)	%	0.3
Dry Soil Bulk Density (Pb)	kg/L	1.5
Soil Particle Density (Ps)	. kg/L	2.65
Soil Porosity (n)	%	0.43
Air-Filled Soil Porosity (Oa)	%	0.13
Infiltration Rate (I)	meters/year	0.18
Exposure Duration (ED)	years	70

SITE-SPECIFIC PARAMETER VALUES FOR FORMER SUMP		
AREA	.	
Parameter	Units	Value
Aquifer Hydraulic Conductivity (K)	meters/year	14,463
Hydraulic Gradient (i)	m/m	0.001
Source Length Parallel to Groundwater Flow	meters	18.3
Depth of Source (ds)	meters	9.14
Aquifer Thickness (da)	meters	30.48
Mixing Zone Depth (d)	meters	2.164
Dilution Factor		10.500

.500 (Default used for EPA generic standard = 20)

-

CHEMICAL-SPECIFIC PARAMETER VALUES					
Compound		TCE	PCE	TCA	cis-12-DCE
Parameter	Units				
Maximum Contaminant Level (MCL)/ NR140 Enforcement Standard (ES)	mg/L.	0.005	0.005	0.200	0.07
Soil Organic Carbon/Water Partition	L/kg	166	155	110	35.5
Soil-Water Partition Coefficient (Kd)	L/kg	0.332	0.310	0.220	0.071
Henry's Law Constant (H')		0.422	0.754	0.705	0,167
Target Soil Leachate Concentration (Cw)	mg/kg	0.052	0.052	2.100	0.735

-

_

CALCULATED SOIL SCREENING LEVELS FOR FORMER SUMP AREA				
Compound	TCE	PCE	TCA	cis-12-DCE
Soil/Water Partitioning Equation Soil Screening Level (mg/kg)	0.030	0.030	1.014	0.210
Soil/Water Partitioning Equation Soil Screening Level (ug/kg)	30	30	1,014	210
Mass-Limit Equation Soil Screening Level (mg/kg)	0.048	0.048	1.930	0.675
Mass-Limit Equation Soil Screening Level (ug/kg)	48	48	1,930	675

STA-RITE INDUSTRIES, DELAVAN NPL SITE Estimated Mass of VOCs Remaining in Former Sump Source Area Calculations

Estimated Dimensions of Impacted Soil				
Units	(feet)	(cm)		
Length	30	914.40		
Width	45	1371.60		
Thickness	14	426,72		

Note: Thickness of impacted soil = depth to water table (30ft) - depth to top of impacted soil (16 ft)

Estimated Volume of Impacted Soil		
10 00 0	5,400	ft3
10 - 20 M	152,910,971.60	cm3
20 - 24 ft	5,400	ft3
20-24 1	152,910,971.60	cm3
24 - 26 #	2,700	ft3
24 * 20 K	76,455,485.80	cm3
26 - 28 #	2,700	ft3
20-201	76,455,485.80	cm3
28 _ 30 ft	2,700	ft3
20 - 50 11	76,455,485.80	cm3
TOTAL	18,900	ft3
	535,188,400.59	cm3

Bulk Density of Soil =

1.5 grams/cm3 (Default Value)

Mass of Impacted Soil = (Volume Impacted Soil) x (Bulk Density of Soil)			
16 - 20 ft	229,366,457.40 grams (g)		
	229,366.46 kilograms (kg)		
20 - 24 #	229366457.4 grams (g)		
20 - 24 11	229366.4574 kilograms (kg)		
24 - 26 ft	114683228.7 grams (g)		
24 - 20 M	114683.2287 kilograms (kg)		
26 - 28 ft	114683228.7 grams (g)		
20 - 20 K	114683.2287 kilograms (kg)		
28 - 30 ft	114683228.7 grams (g)		
	114683.2287 kilograms (kg)		
TOTAL	802,782,600.88 grams (g)		
	802,782.60 kilograms (kg)		

STA-RITE INDUSTRIES, DELAVAN NPL SITE Estimated Mass of VOCs Remaining in Former Sump Source Area Calculations

Soil Sample Anal Sampling F	Soil Sample Analytical Results from Latest Sampling Round (March 2001)				
Sample Depth	Tota	VOCs			
(feet)	(ug/kg)	(kg/kg)			
16	652.00	0.00000065			
20	1,322.00	0.00000132			
24	2,120.00	0.00000212			
26	33,685.00	0.00003369			
28	828,890.00	0.00082889			
Average: 16-20	987.00	0.00000099			
Average: 20-24	1,721.00	0.00000172			
Average: 24-26	17,902.50	0.00001790			
Average: 26-28	431,287.50	0.00043129			
Average: 28-30	828,890.00	0.00082889			

Estimated	Mass of VOC Impacts Remaining in Former Sump Area Soil
(Mass of Im	apacted Soil) x (Average Total VOCs Concentration in Soil)
16 - 20 ft	0.23 kg
	0.50 pounds
20 24 #	0.39 kg
20 - 24 11	0.87 pounds
24 26 #	2.05 kg
24 - 20 II	4.53 pounds
26 29 #	49.46 kg
20-201	109.04 pounds
28 - 30 ft	95.06 kg
	209.57 pounds
TOTAL	147.20 kg
	324.51 pounds

APPENDIX G

SURFACE WATER AND AIR SAMPLING PLAN

GeoTrans, Inc.

SURFACE WATER AND AIR SAMPLING PLAN Sta-Rite Industries, Inc. Delavan, Wisconsin

On April 8, 1999 a meeting was held at the Wisconsin Department of Natural Resources (WDNR) offices in Milwaukee, Wisconsin to discuss the status of the Record of Decision for the Delavan, Wisconsin National Priorities List (NPL) site. Attendees were Mr. Tom Wentland from WDNR, Mr. Jon Raymond of Sta-Rite Industries, Inc., and Ms. Jenny Johanson of HSI GeoTrans, Inc., consultant for Sta-Rite.

At the meeting, Mr. Wentland stated that he would like to have Sta-Rite follow up on several of the recommendations presented in the Health Assessment prepared for the Delavan NPL site. Follow up would be limited to two areas of concern:

Potential volatilization of volatile organic carbons (VOCs) into the air at the storm sewer grating were water from the source areas is discharged. Mr. Wentland requested that four air samples be collected at the storm sewer grating, one each over a period of several months, to evaluate whether volatilization of the contaminants of concern at the NPL site (trichloroethene [TCE], tetrachloroethene [PCE], and 1,1,1-trichloroethane [TCA]) to the ambient air around the storm sewer grating is a problem.

Potential VOC impacts to surface water in the detention pond near the Sta-Rite property. Mr. Wentland requested that surface water and/or sediment samples be collected from the detention pond adjacent to the Sta-Rite property to evaluate whether the contaminants of concern at the NPL site are present in the detention pond.

Sta-Rite agreed to perform additional sampling to address the items Mr. Wentland listed. The following section describes a proposed sampling plan to address these items of concern.

Air Sampling

Air samples will be collected from the storm sewer grating known as SS-1, immediately downstream of the Sta-Rite property where the treated groundwater is discharged to storm sewer. One sample will be collected on each of four separate sampling dates, with a minimum of one week between sampling dates.

Samples will be collected using a calibrated air sampling pump (currently used to collect air samples from the soil vapor extraction system discharge). Samples will be collected onto a charcoal tube, and the tube will be sealed and shipped under chain of custody to NATLSCO for analysis of PCE, TCE, and TCA. The sampling date, time, length of sample collection, and sampling flow rate will be recorded. A sample blank will be shipped with the sample and analyzed for quality assurance/quality control (QA/QC) purposes.

Surface Water Sampling

Surface water will be collected from the detention pond adjacent to the Sta-Rite property to evaluate whether VOC. are present. The surface water sample will be collected from a depth of 2 to 3 feet below the water surface, near the northwest shore of the pond as close to a direct path from the Sta-Rite facility as possible. One sample will initially be collected from the pond to evaluate whether impacts are present. A second sample will be collected at least two weeks after the first sample to verify the results. If the results of the first two sampling events indicate that impacts are present in the pond, additional sampling, including surface water and sediment sampling, will be proposed. A separate sampling plan will be provided to WDNR if additional sampling is needed.

The surface water samples will be collected such that no sediment disturbed during sampling activities will enter the sampling device. The surface water sample will be collected from approximately 2/3 the water depth at the sampling location (eg. if the water depth is 3 feet, a sample will be collected from a depth of 2 feet below the water surface).

Water depth measurements will be collected at the sampling location prior to sampling. Field measurements of temperature, electrical conductivity, pH, and Eh or DO will also be collected and recorded following laboratory sample collection.

The surface water samples will be collected directly in the sample containers provided by the laboratory following the procedures described below:

- 1) The person collecting the surface water samples will wade to the desired location and lower the sample container to the desired depth below the water surface with the sample container sealed.
- 2) When the sample container is at the desired depth, the lid of the sample container will be removed so that water enters the container.
- 3) The lid of the sample container will then be screwed back onto the container while the container is still submerged. The sample container will then be retrieved and placed in a cooler filled with ice.
- 4) A similar procedure will be used to collect a sample for field parameters, which will then be measured immediately upon sample retrieval. The field sample will be collected following collection of the laboratory sample.

The surface water samples will be submitted for laboratory analyses of VOC.. Sample containers will be provided by the laboratory. The water samples will be kept chilled to approximately 4 degrees Celsius prior to analysis and will be delivered to the laboratory following standard chain-of-custody procedures. A trip blank will be provided by the laboratory and will be analyzed for VOCs for QA/QC purposes.