

2018 ANNUAL PROGRESS REPORT PENTAIR FLOW TECHNOLOGIES, LLC DELAVAN, WISCONSIN FACILITY SOURCE AREA REMEDIATION

BRRTS# 02-65-529579 FACILITY ID# 265091640

February 20, 2019

Prepared For:

Pentair Flow Technologies, LLC 293 Wright Street Delavan, Wisconsin 53115

Prepared By:

Tetra Tech Brookfield Lakes Corporate Center XII 175 N. Corporate Drive, Suite 100 Brookfield, Wisconsin 53045

Project No. 117-7469002

CERTIFICATION

Hydrogeologist:

I hereby certify that I am a hydrogeologist as that term is defined in s. NR712.03(1), Wis. Adm. Code, and that, to the best of my knowledge, all information contained in this document is correct and the document was prepared in compliance with all applicable requirements in chs. NR700 to 726, Wis. Adm. Code.

Mark A. Manthey, P.G. Associate Hydrogeologist

Tetra Tech

February 20, 2019 (117-7469002.02)

Mr. Thomas Wentland Waste Management Engineer Wisconsin Department of Natural Resources P.O. Box 408 Plymouth, WI 53073-0408

RE: Annual Progress Report, Source Area Remedial Action, Pentair Flow Technologies, LLC Facility, Delavan, Wisconsin BRRTS# 02-65-529579, FID# 265091640

Dear Mr. Wentland:

Enclosed is the Annual Progress Report for the source area remedial action at the Pentair Flow Technologies, LLC (former Sta-Rite Industries) facility in Delavan, Wisconsin.

SITE NAME/ACTIVITY: DATE: February 20, 2019

Contract No. SF-90-02 Delavan Municipal Well #4 Delavan, Wisconsin

Source Area Remediation PERIOD: January 1 through December 31, 2018

The format of this report follows the Wisconsin Department of Natural Resources (WDNR) "Guidance for Design, Installation, and Operation of Soil Venting Systems," WDNR Emergency and Remedial Response Section, July 1993, PUBL-SW185-93.

The following activities took place in 2018:

- 1. The groundwater extraction wells on the Delavan facility were operated and monthly samples were collected from the storm sewer outfall (SS-1 sample identification) where the groundwater is discharged.
- 2. Quarterly groundwater samples were collected from monitor well TW-4 per the request of the WDNR in February, May and July. Based on the quarterly sampling results from 2017 and 2018, the WDNR and U.S. Environmental Protection Agency (EPA) approved resuming annual sampling of TW-4 in a June 7, 2018 letter from Michelle Norman, Supervisor, WDNR Remediation & Redevelopment Program, Southeast Region.
- 3. Annual sampling of the wells that are part of the groundwater monitoring program for the Delavan facility was performed in July. All existing site monitor wells were also inspected and any damage to the surface seals, protective casings or well casings were noted. Monitor wells

D-3 and D-5, which are not part of the Delavan facility groundwater monitoring program, were found to be damaged during the well inspection. It is recommended that these two monitor wells and monitor wells D-4, which is nested with D-3, and D-6, which is nested with D-5, be abandoned in accordance with Chapter NR141 of the Wisconsin Administrative Code as all four monitor wells are no longer being sampled. The abandonment of the four monitor wells will be performed in 2019 if the recommendation is approved by the WDNR project manager. WDNR Well / Drillhole / Borehole Filling & Sealing Report (Form 3300-005) forms will be filled out for each monitor well and will be submitted to the WDNR. The locks were missing on the above-grade protector tops of five of the site monitor wells (TW-1A, D-1R, D-23, D-26 and P-2010) and the locks on the above-grace protector tops of two of the site monitor wells were found to be broken (D-25R and D-27) during the well inspection. New locks will be installed on the protector tops of these monitor wells in 2019.

- 4. A Final Institutional Control Implementation and Assurance Plan (ICIAP) was prepared for the Delavan facility property and submitted to the WDNR and EPA on Mach 6, 2018. The ICIAP was approved by the WDNR and EPA in a June 7, 2018 letter from Michelle Norman, Supervisor, WDNR Remediation & Redevelopment Program, Southeast Region.
- 5. As described in the ICIAP, an annual site inspection of the Delavan facility was performed during the annual groundwater sampling event to document the surface conditions in the two areas on the Delavan facility property containing residual volatile organic compounds (VOCs) impacts in the subsurface soil. A visual inspection of the entire Delavan facility property was also performed to document any potential land-use changes including the undeveloped east half of the property. Photographs were also be taken to document site conditions.
- 6. Pumping rate measurements were collected from Delavan facility extraction wells EX-1, EX-2R, EX-3R, EX-4R, EX-5R and EX-7R on March 26th, from extraction wells EX-1, EX-2R, EX-3R. EX-4R, EX-5R, EX-6 and EX-7R on June 29th and from EX-6 and EX-7R on July 31st. EX-6 was not operating when the pumping rate measurements were collected on March 26th because the water line from EX-6 was frozen and pumping rate measurements were only taken from EX-6 and EX-7R in July because the flow rates in the other extraction wells were being measured with electronic flow meters as discussed below.
- 7. Six Badger Meter Dynansonics® U500w Ultrasonic meters and Orion LTE cellular endpoints were installed on the groundwater discharge lines of the groundwater extraction system between May and November to eliminate having to take manual flow measurements at the extraction wells wellheads. The Orion cellular endpoints transmit the meter readings to the Badger Meter AquaCUE® Flow Measurement Manager site, which can be accessed over the internet to users who are given authorization to access the data. The meters that read flow from extraction wells EX-1, EX-2R, EX-3R, EX-4R and EX-5R were installed and brought on-line in May (note, one meter reads the combined flow from EX-3R and EX-4R). The meter that reads flow from EX-6 was installed and brought on-line in August and the meter that reads flow from EX-7R was installed and brought on-line in November.

If you require additional information or have any questions regarding these matters, please contact me at your convenience.

Sincerely,

Tetra Tech

Mark A. Manthey, P.G. Associate Hydrogeologist mark.manthey@tetratech.com

Encs.

cc: Maxwell Geyer, Pentair Flow Technologies, LLC (Electronic copy via email.)

Robert Thiboldeaux, PhD, Senior Toxicologist, Wisconsin Department of Health Services

(Electronic copy via email.)

William Ryan, EPA (Electronic copy via email.)

SUMMARY OF PROGRESS MADE THIS REPORTING PERIOD

The following remedial action activities took place in 2018:

- 1. The groundwater extraction wells on the Delavan facility were operated and monthly samples were collected from the storm sewer outfall (SS-1 sample identification) where the groundwater is discharged.
- 2. As requested by the Wisconsin Department of Natural Resources (WNDR) in its February 8, 2017 letter, Pentair Flow Technologies began collecting groundwater samples from monitor well TW-4 on a quarterly schedule beginning in 2017. The increase in sampling frequency of TW-4 from annual to quarterly was requested because the trichloroethene (TCE) concentration in the annual groundwater samples collected from TW-4 increased from 20 ug/L for the 2014 sample to 36 ug/L for the 2015 sample. Quarterly groundwater samples were collected from TW-4 during the first, second and third quarters of 2018 (January through September). The quarterly groundwater samples were collected from TW-4 on February 28th, May 10th and July 30th. Based on the results from the 2017 and 2018 sampling events, the WDNR and U.S. Environmental Protection Agency (EPA) approved resuming annual sampling of TW-4 in a June 7, 2018 letter from Michelle Norman, Supervisor, WDNR Remediation & Redevelopment Program, Southeast Region. A copy of the letter is included in Appendix A. The results from the first quarter and second quarter sampling events were reported to the WDNR, Wisconsin Department of Health Services and EPA in quarterly progress reports. The results from the third quarter sampling event are included and discussed in this progress report.
- 3. One round of groundwater samples was collected from the monitor wells and groundwater extraction wells that are part of the groundwater monitoring program for the Delavan facility July 30th to July 31st. All existing Delavan facility monitor wells were also inspected and any damage to the surface seals, protective casings or well casings were noted.

Two of the Delavan facility monitor wells were found to be damaged during the well

inspection. Photographs of the damaged monitor wells are included in Appendix B. The protective casing and well casing of monitor well D-3, which is a water table monitor well approximately 50 feet deep located on the Delavan facility property northeast of Plant 2, are damaged. As shown on the photograph in Appendix B, the protective casing and PVC well casing of D-3 are bent and the protective casing cover is missing. Monitor well D-4 is nested with D-3 and is approximately 80 feet deep. As shown on the photograph in Appendix B, the protective casing cover of monitor well D-5 cannot be closed because the top of the protective cover sunk below the top of the PVC well casing. Monitor well D-5 is a water table monitor well approximately 50 feet deep that is located on the property across the street from Plant 1. Monitor well D-6 is nested with D-5 and is approximately 110 feet deep. It is recommended that all four of these monitor wells be abandoned in 2019 as the monitor wells are no longer part of the Delavan facility groundwater monitoring program and therefore continued maintenance of these wells is not necessary. The monitor wells will be abandoned in accordance with Chapter NR141 of the Wisconsin Code if this recommendation is approved by the WDNR project manager. WDNR Well / Drillhole / Borehole Filling & Sealing Report (Form 3300-005) forms will be filled out for each monitor well and will be submitted to the WDNR.

The above-grade protector tops of monitor wells TW-1A, D-1R, D-23, D-26 and P-2010 were found to be missing locks during the well inspection and the locks on the above-grade protector tops of monitor wells D-25R and D-27 were broken. New locks will be installed on the protector tops of these monitor wells in 2019.

The analytical results from 2018 showed moderate to slight decreases in the concentrations or no detections of the volatile organic compounds (VOCs) analyzed in thirteen (13) of the wells sampled, a slight increase in concentrations in the sample collected from extraction well EX-1 and similar concentrations in the quarterly samples collected from monitor well TW-4 compared to the 2017 data. The analytical results from the 2018 sampling round indicate the contaminant plume is exhibiting an overall stable to decreasing trend in the site contaminants. The analytical results for the groundwater samples collected from the site during this reporting

Pentair Flow Technologies, LLC Progress Report #25 Page 3 of 17

period are summarized on Table 1, Table 2 and Figure 1. Charts showing the trends in VOC concentrations for select site monitor wells are included as Figures 2 through 8. Laboratory results and field data sheets for the annual groundwater sampling event are included in Appendix C and copies of the monthly discharge monitoring reports containing the analytical results collected at the storm sewer outfall where the groundwater pumped from the Delavan facility groundwater extraction system extraction wells discharges are provided in Appendix D.

- 4. A Final Institutional Control Implementation and Assurance Plan (ICIAP) was prepared for the Delavan facility property. The ICIAP was submitted to the WDNR and EPA via email on Mach 6, 2018. The ICIAP was approved by the WDNR and EPA in a June 7, 2018 letter from Michelle Norman, Supervisor, WDNR Remediation & Redevelopment Program, Southeast Region. A copy of the letter is included in Appendix A.
- 5. As described in the ICIAP, an annual site inspection of the Delavan facility was performed during the annual groundwater sampling event to document the surface conditions in the two areas on the Delavan facility property containing residual volatile organic compounds (VOCs) impacts in the subsurface soil. The first area is located next to the north wall of Plant 2 in the former sump source area and contains residual TCE impacts in the soil at a depth of 28 feet below ground surface that are protective of commercial and industrial site uses but are not protective of non-commercial/non-industrial uses. The second area is found beneath the concrete floor of Plant 1 and south of the south wall of Plant 1 and contains pervasive low-level VOCs impacts in the subsurface soil. The approximate extent of the low-level VOCs impacts in the soil beneath and south of Plant 1 is shown on Figure 1. Inspection of surface conditions in this area is needed to confirm the surface cover of the concrete floor of Plant 1 and the paved areas south of the south wall of Plant 1 are still intact to prevent direct-contact with the potentially impacted soils. A visual inspection of the entire Delavan facility property was also performed to document any potential land-use changes including the former locations of the chip storage extraction system (CSES) and southeast extraction system (SES) and the

Pentair Flow Technologies, LLC Progress Report #25

Page 4 of 17

undeveloped land on the east half of the property. Photographs were taken to document site

conditions.

The site inspection confirmed the surface cover remains intact in the area of the residual VOCs

impacts beneath and south of Plant 1 and the surface conditions in the former sump source area

are unchanged. The undeveloped land on the east half of the property remains undeveloped

and land use in and around the developed portion of the Delavan facility property including

the former CSES area and former SES area remains the same. Photographs documenting site

conditions are included in Appendix B.

6. Pumping rate measurements were collected from Delavan facility extraction wells EX-1, EX-

2R, EX-3R, EX-4R, EX-5R and EX-7R on March 26th, from extraction wells EX-1, EX-2R,

EX-3R. EX-4R, EX-5R, EX-6 and EX-7R on June 29th and from EX-6 and EX-7R on July

31st. EX-6 was not operating when the pumping rate measurements were collected on March

26th because the water line from EX-6 was frozen. Pumping from EX-6 was resumed in April.

Pumping rate measurements were only taken from EX-6 and EX-7R in July because the flow

rates in the other extraction wells were being measured with electronic flow meters as

discussed below.

7. Six Badger Meter Dynansonics® U500w Ultrasonic meters and Orion LTE cellular endpoints

were installed on the groundwater discharge lines of the groundwater extraction system

between May and November to eliminate having to take manual flow measurements at the

extraction wells wellheads. The Orion cellular endpoints transmit the meter readings to the

Badger Meter AquaCUE® Flow Measurement Manager site, which can be accessed over the

internet to users who are given authorization to access the data.

TETRA TECH

GROUNDWATER

Residual groundwater impacts originating from the former SES and former sump source areas are controlled by extraction wells EX-1 and EX-7R. Groundwater downgradient of the former CSES source area and the pervasive low-level residual VOCs impacts in the subsurface soil beneath a portion of the concrete floor of Plant 1 and south of the south wall of Plant 1 is controlled by extraction wells EX-2R, EX-3R, EX-4R, EX-5R, and EX-6 (see Figure 1). Wastewater discharge monitoring reports documenting the flow rate and effluent chemistry where the combined flow from the seven extraction wells is discharged to the storm sewer (storm sewer outfall SS-1) are provided in Appendix D.

Groundwater Sampling

As noted above quarterly groundwater samples were collected from monitor well TW-4 on February 28th, May 10th and July 30th. The annual groundwater sampling round was conducted July 30th to July 31st. The monitor wells and groundwater extraction wells that are part of the Delavan facility groundwater monitoring program are listed on Table 4. The field sampling forms and the analytical results for the annual sampling round are provided in Appendix C. The analytical results for the sampling points that are part of the Delavan facility groundwater monitoring plan are summarized on Table 1 and Table 2. Table 1 presents the analytical results for the chlorinated volatile organic compounds (CVOCs) for which all of the site monitoring points are analyzed, which include tetrachloroethene (PCE), 1,1,1-trichloroethane (TCA), trichloroethene (TCE), 1,1,2-trichloroethane and vinyl chloride. Table 2 summarizes the analytical results for monitor well TW-4, which is analyzed for the full list of volatile organic compounds (VOCs). Total VOC concentrations for the annual sampling event are also listed next to each sampling point on Figure 1. Time versus concentration plots were prepared and graphed for contaminant concentrations in the most highly impacted wells near Plant 1 and Plant 2 and are included as Figures 2 through 8.

The following summarizes the trends in water quality at site monitoring points.

Pentair Flow Technologies, LLC Progress Report #25 Page 6 of 17

Plant 1: Four monitor wells and two extraction wells were sampled during this reporting period. Contaminants of concern are 1,1,1-trichloroethane (TCA) and trichloroethene (TCE). The tetrachloroethene (PCE) results for the Plant 1 wells are also discussed as it is a contaminant of concern at Plant 2.

PCE: No PCE was detected in any of the groundwater samples collected from the Plant 1 wells.

TCA: TCA was detected in the groundwater samples collected from three of the Plant 1 monitor wells sampled and the samples collected from extraction wells EX-2R and EX-3R. All the reported TCA concentrations were below the TCA Chapter NR140 groundwater quality standards. Comparison of the 2017 TCA results to the 2018 TCA results is presented below:

TCA NR140 Enforcement Standard (ES) = 200 ug/L

TCA NR140 Preventive Action Limit (PAL) = 40 ug/L

- TCA concentrations in MW-1026 decreased from 14 ug/L to 11 ug/L. The reported TCA concentrations in previous samples collected from MW-1026 were 21 ug/L in 2016, 18 ug/L in 2015, 7.4 ug/L in 2014, 15 ug/L in 2013, 25 ug/L in 2012, 20 ug/L in 2011, 15 ug/L in 2010, 6.9 ug/L in 2009, not detected in 2008, 41 ug/L in 2007 and 93 ug/L in 2006. The 2018 analytical data confirms an overall declining trend in TCA concentrations at MW-1026 over the past twelve years.
- The TCA concentration in MW-1027 decreased from 7.1 ug/L to 4.9 ug/L. TCA concentrations in MW-1027 have exhibited a declining trend since the 2005 sampling event and TCA concentrations in MW-1027 have not exceeded its PAL since the July 2006 sampling event. 1994 was the last time the TCA concentration in MW-1027 exceeded the ES.

- between the July 2017 and July 2018 sampling events. The TCA concentration in the first quarter sample collected from TW-4 was 20 ug/L and the second quarter sample had a reported TCA concentration of 27 ug/L. TCA concentrations in TW-4 have been below its PAL since the July 2013 sampling round and the 2011 through 2018 TCA concentrations are the lowest reported TCA concentrations for samples collected from TW-4. The TCA data suggest there is a declining trend in TCA impacts at TW-4. 2001 was the last time the TCA concentration in TW-4 exceeded the ES.
- The TCA concentration in D-25R decreased from 2.9 ug/L in 2017 to no detection (detection limit = 0.38 ug/L) in 2018. TCA concentrations in the D-25R samples have exhibited a declining trend since the 2005 sampling event and TCA concentrations have been below the PAL since the October 1996 sampling round.
- The TCA concentration in extraction well EX-2R decreased from 3.7 ug/L to 1.7 ug/L. TCA concentration in EX-2R have not exceeded the PAL since 1997.
- The TCA concentration in extraction well EX-3R increased slightly from 2.3 ug/L in 2017 to 2.4 ug/l in 2018. EX-3R is the replacement extraction well for original extraction well EX-3 and was brought online in September 2017.
- TCE: TCE concentrations exceeded the NR140 ES of 5.0 ug/L in the groundwater samples collected from monitor wells MW-1027 and TW-4 during this reporting period. The reported TCE concentration in the sample collected from monitor well MW-1026 and D-25R and extraction wells EX-2R and EX-3R exceeded the PAL of 0.50 ug/L. Comparison of the 2017 TCE

Pentair Flow Technologies, LLC Progress Report #25 Page 8 of 17

results to the 2018 TCE results is presented below:

TCE NR140 ES = 5.0 ug/L

TCE NR140 PAL = 0.50 ug/L

- TCE concentrations in MW-1026 decreased from 3.6 ug/L to 2.6 ug/L.
 Review of the TCE results on Table 1 reveals TCE concentrations in the groundwater samples from MW-1026 are exhibiting an overall declining trend since the 2005 sampling round when the reported TCE concentration in the MW-1026 sample was 21 ug/L.
- The reported TCE concentrations in MW-1027 were the same in 2017 and 2018 (27 ug/L). The two 27 ug/L concentrations are the lowest historical TCE concentration for groundwater samples collected from MW-1027 and confirms a declining trend in TCE impacts at MW-1027.
- The reported TCE concentration in monitor well TW-4 decreased slightly from 19 ug/L in July 2017 to 18 ug/L in July 2018. The TCE concentrations in the quarterly samples collected from TW-4 during the first three quarters of 2018 ranged from 11 ug/L to 18 ug/L, which is similar to the range in TCE concentrations for the four quarterly samples collected from TW-4 in 2017 (8.0 ug/L to 19 ug/L). Review of the TCE results for the TW-4 samples presented on Table 1 shows TCE concentrations have been below 20 ug/L since the July 2016 sampling event and have exhibited on overall declining trend since 1993.
- At monitor well D-25R, the TCE concentration decreased from 2.3 ug/L to 0.55 ug/L. The 0.55 ug/L TCE concentration is the lowest TCE concentration reported for samples collected from D-25R since April of 1997 when no TCE was detected in the sample above the detection limit of 0.5 ug/L. The TCE data indicate an overall declining trend in TCE

Pentair Flow Technologies, LLC Progress Report #25 Page 9 of 17

impacts at D-25R. TCE concentrations in groundwater samples collected from D-25R have not exceeded the ES since the July 2010 sampling event.

- The TCE concentration in extraction well EX-2R decreased from 6.3 ug/L to 3.6 ug/L. TCE concentrations in the EX-2R samples have been below 10 ug/L since the July 2012 sampling event.
- The TCE concentration in extraction well EX-3R decreased from 3.3 ug/L in 2017 to 2.4 ug/L in 2018.

Plant 2: Seven monitor wells and two extraction wells were sampled during this reporting period. Contaminants of concern are PCE, TCA, and TCE.

PCE: PCE was detected above its ES of 5.0 ug/L in the groundwater sample collected from monitor well D-15. The PAL for PCE, which is 0.50 ug/L, was exceeded in the groundwater samples collected from extraction wells EX-1 and EX-7R. No PCE was detected in the groundwater samples collected from monitor wells D-18, MW-2004, MW-2005R, MW-2011, TW-1 and TW-3. A comparison of the 2017 PCE results to the 2018 PCE results is presented below:

PCE NR140 ES = 5.0 ug/LPCE NR140 PAL = 0.50 ug/L

• No PCE was detected in the samples collected from monitor wells D-18, MW-2004, MW-2005R, MW-2011 and TW-1 in 2017 and 2018. PCE was last detected in D-18 in 2009 and was last detected in MW-2004 in 1997. PCE has never been detected in MW-2011 and was last detected in TW-1 in 2008. The PCE concentrations in the samples collected from MW-2005R, which replaced original monitor well MW-2005 in 2007, have been below 3 ug/L since the July 2007 sampling

Pentair Flow Technologies, LLC Progress Report #25 Page 10 of 17

event and suggest an overall stable to declining trend in PCE impacts at MW-2005R since 2007. The last sample collected from MW-2005 in September 2004 had a reported PCE concentration of 17 ug/L.

- PCE concentrations in monitor well D-15 decreased from 9.8 ug/L to 6.3 ug/L. The PCE concentration in the 2016 sample was 10 ug/L and it was 4.5 ug/L in 2015. The 2014 sample had a reported PCE concentration of 4.2 ug/L. The PCE concentrations for the 2014 and 2015 samples are the lowest reported PCE concentration for samples collected from D-15 between the November 1991 sampling round and the 2018 sampling round. The 2018 PCE results confirms a decreasing trend in PCE concentrations at monitor well D-15.
- The PCE concentration in TW-3 decreased slightly from 0.59 ug/L to not detected above the detection of 0.37 ug/L. PCE impacts in TW-3 have been below the 5.0 ug/L ES since the 2002 sampling event.
- The PCE concentration in extraction well EX-1 increased slightly from no detection (0.37 ug/L detection limit) to 0.60 ug/L. PCE concentrations in EX-1 have been below the ES of 5.0 ug/L since the 2004 sampling event.
- The PCE concentration in replacement extraction well EX-7R, which replaced original extraction well EX-7 and was brought on-line in September 2017, decreased from 7.3 ug/L in 2017 to 4.7 ug/L in 2018. The PCE results from EX-7 and EX-7R from the 2010 to 2018 sampling rounds suggest an overall declining trend in PCE impacts in the former sump source area.

TCA: TCA was only detected in the groundwater sample collected from monitor well MW-2011 at a concentration of 1.2 ug/L, which is well below the

Chapter NR140 PAL of 40 ug/L. All the reported TCA detections in samples collected from MW-2011 are below the NR140 PAL.

TCE: The Chapter NR140 ES for TCE of 5.0 ug/L was exceeded in the groundwater samples collected from monitor wells MW-2011 and D-15. The PAL for TCE (0.50 ug/L) was exceeded in the groundwater sample collected from replacement extraction well EX-7R. TCE was detected in EX-1 at a reported concentration of 0.30 ug/L, which is below the PAL. No TCE was detected in the groundwater samples collected from monitor wells D-18, MW-2004, MW-2005R, TW-1 and TW-3. A comparison of the 2017 TCE results to the 2018 TCE results is presented below:

TCE NR140 ES = 5.0 ug/L

TCE NR140 PAL = 0.50 ug/L

No TCE was detected in the 2017 and 2018 groundwater samples collected from monitor wells MW-2004, MW-2005R, TW-1 and TW-3. TCE concentrations have been below the ES of 5.0 ug/L in groundwater samples collected from monitor well MW-2004 since the 1997 annual sampling event and the PAL has not been exceeded since the 2015 sampling event. TCE has never been detected in a groundwater sample collected from MW-2005R, which replaced original monitor well MW-2005 in 2007. The last sample collected from MW-2005 in September 2004 had a reported TCE concentration of 1.3 ug/L. TCE was last detected in a groundwater sample collected from monitor well TW-1 in July 2012 at a concentration of 0.31 ug/L. TCE concentrations in monitor well TW-3 decreased from 0.29 ug/L in 2016 to not being detected above the detection limit of 0.16 ug/L in 2017. The TCE concentration of 0.29 ug/L reported for the 2016 sample was the lowest reported TCE concentration for a groundwater sample collected from TW-3 between 1991 and 2016 and the 2017 sample was the first time

TCE has not been detected in a sample collected from TW-3.

- The TCE concentration in monitor well D-18 decreased from 0.61 ug/L to not being detected above the detection limit of 0.16 ug/L. TCE impacts in D-18 have been below 1.0 ug/L since the July 2010 sampling event and have not exceeded the ES of 5.0 ug/L since 2003.
- The TCE concentration in monitor well MW-2011 decreased from 16 ug/L to 7.6 ug/L. The reported TCE concentration in the 2016 sample was 29 ug/L and the TCE concentration in the 2015 sample was 7.2 ug/L. The TCE concentrations in the 2015 and 2018 samples are the lowest reported TCE concentrations for samples collected from MW-2011.
- The TCE concentration in monitor well D-15 decreased from 12 ug/L to 7.0 ug/L. The reported TCE concentration in the July 2016 sample was 13 ug/L. The July 2015 sample collected from D-15 had a reported TCE concentration of 8.5 ug/L and the July 2014 had a reported TCE concentration 7.7 ug/L. The 7.0 ug/L, 7.7 ug/L and 8.5 ug/L concentrations are the lowest TCE concentrations reported for samples collected from D-15 between 1991 and 2018. Review of the TCE data presented on Figure 5 shows TCE concentrations in D-15 are exhibiting on overall decreasing trend since the April 2001 sampling event.
- The TCE concentration in EX-1 increased slightly from not being detected above the detection of 0.16 ug/L in 2017 to 0.30 ug/L in 2018.
 TCE concentrations in EX-1 have been below the PAL of 0.50 ug/L since the July 2013 sampling event and have been below the ES of 5.0 since the September 2004 sampling event.
- The TCE concentration in replacement extraction well EX-7R

decreased from 3.8 ug/L in 2017 to 2.4 ug/L in 2018. The TCE results from EX-7 and EX-7R from the 2010 to 2018 sampling rounds suggest an overall declining trend in PCE impacts in the former sump source area.

Installation of Electronic Flow Meters and Extraction Wells Pumping Rate Measurements

As noted in the summary section, six Badger Meter Dynansonics® U500w Ultrasonic meters and Orion LTE cellular endpoints were installed on the groundwater discharge lines of the groundwater extraction system between May and November to eliminate having to take manual flow measurements at the extraction wells wellheads. The Orion cellular endpoints transmit the meter readings to the Badger Meter AquaCUE® Flow Measurement Manager site, which can be accessed over the internet to users who are given authorization to access the data. The meters that read flow from extraction wells EX-1, EX-2R, EX-3R, EX-4R and EX-5R were installed and brought online in May. The meter that reads flow from EX-6 was installed and brought on-line in November. The meters that read flow from extraction wells EX-1, EX-2R, EX-3R, EX-4R, EX-5R and EX-6 are installed in storm sewer manholes on the Delavan facility property. One meter reads the combined flow from extraction wells EX-2R and EX-3R and four meters read the individual flow from EX-1, EX-4R, EX-5R and EX-6. The meter that reads the flow from extraction well EX-7R is installed in an insulated enclosure at the wellhead.

Delavan facility personnel collected manual pumping rate measurements from extraction wells EX-1, EX-2R, EX-3R, EX-4R, EX-5R and EX-7R on March 26th, from extraction wells EX-1, EX-2R, EX-3R. EX-4R, EX-5R, EX-6 and EX-7R on June 29th and from EX-6 and EX-7R on July 31st. As noted in the summary section, EX-6 was not operating when the pumping rate measurements were collected on March 26th because the water line from EX-6 was frozen. Pumping from EX-6 was resumed in April. Pumping rate measurements were only taken from EX-6 and EX-7R in July because the flow rates in the other extraction wells were being measured with the new U500w Ultrasonic meters. The pumping rates were measured by fully closing the valve

Pentair Flow Technologies, LLC

Progress Report #25 Page 14 of 17

to the buried groundwater discharge line that transports groundwater flow from the extraction well

to the storm sewer and fully opening the valve on the sample tap line of the extraction well. The

groundwater was then discharged into a 55-gallon drum and the amount of time required to fill the

55-gallon drum was recorded. Three pumping rate measurements were taken at each extraction

well and the average pumping rate was calculated from the three measurements. The pumping rate

measurements are summarized on Table 3. The July 31st pumping rates include the pumping rates

registered by the U500w Ultrasonic meters that were in operation on July 31st.

The flow data from the U500w Ultrasonic meters indicate extraction wells EX-2R, EX-3R, EX-

4R and EX-7R are operating at pumping rates of approximately 40 to 43 gallons per minute (gpm),

EX-5R is operating at pumping rates of approximately 36 to 42 gpm and EX-6 is operating at

pumping rates of approximately 80 to 87 gpm. The data from the U500w Ultrasonic meter installed

on the groundwater discharge line of extraction EX-1 indicate very erratic pumping rates for the

submersible pump in EX-1 with average daily pumping rates ranging from less than one gpm to

approximately 61 gpm. The flow data from the U500w Ultrasonic meter also indicates the pumping

rate in EX-1 has been below 15 gpm since November 6th.

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

Significant reductions in VOC impacts at site monitor wells have been observed since the remedial

action began. While VOC removal from the dual soil vapor extraction/groundwater extraction

(SVE/GWE) wells in the former CSES and former SES areas and the SVE wells in the former

sump source area has been discontinued, hydraulic control of the contaminant plume is maintained

by pumping from the seven groundwater extraction wells located on the Delavan facility property

(EX-1, EX-2R, EX-3R, EX-4R, EX-5R, EX-6 and EX-7R).

Recommendations

1. Pumping from extraction wells EX-1, EX-2R, EX-3R, EX-4R, EX-5R, EX-6 and EX-7R

TETRA TECH

Pentair Flow Technologies, LLC Progress Report #25 Page 15 of 17

will continue.

2. The erratic pumping rate readings in extraction well EX-1 suggest the wiring to the electric submersible pump in EX-1 or the pump itself are damaged and should be replaced. A new pump and pump wiring will be installed in EX-1 in 2019.

The groundwater samples collected from EX-1 indicate concentrations of the Delavan facility contaminants of concern have been below their respective ESs since the September 2004 sampling event, which suggest it may be appropriate to stop groundwater extraction from EX-1 within a few years. If it is determined that pumping from EX-1 is longer necessary, EX-1 will not be decommissioned as it will be used as a backup for extraction well EX-7R for instances when EX-7R is shut down for repairs or if the pump in EX-7R fails.

- 3. It is recommended that damaged monitor wells D-3 and D-5 and monitor wells D-4 and D-6, which are nested with D-3 and D-5, be abandoned in accordance with Chapter NR141 of the Wisconsin Code. Monitor wells D-3, D-4, D-5 and D-6 are no longer part of the Delavan facility groundwater monitoring program and therefore continued maintenance of these wells is not necessary. The monitor wells will be abandoned in 2019 if this recommendation is approved by the WDNR project manager. WDNR Well / Drillhole / Borehole Filling & Sealing Report (Form 3300-005) forms will be filled out for each monitor well and the completed forms will be submitted to the WDNR.
- 4. New locks will be installed on the seven monitor wells (TW-1A, D-1R, D-23, D-25R, D-26, D-27 and P-2010) that were found to have broken or missing locks during the well inspection in 2019.
- 5. Annual sampling of the monitor wells and extraction wells that are part of the groundwater monitoring program for the Delavan facility will continue (Table 4). All the site monitor wells will be inspected as part of the annual groundwater sampling event. Groundwater samples will also be collected from all the Delavan facility groundwater extraction wells

Pentair Flow Technologies, LLC Progress Report #25 Page 16 of 17

that are not part of the Delavan facility groundwater monitoring program during the annual groundwater sampling event. The groundwater samples collected from the extraction wells will be submitted for laboratory analysis of VOCs to document current contaminant concentrations in the extraction wells.

6. An annual site inspection of the Delavan facility property to document current site conditions and land use as described in the Draft ICIAP will be performed in conjunction with the annual groundwater sampling event.

Figure 3.

FIGURES

Figure 1. Site Layout and Total VOC Concentrations for Site Groundwater Monitoring Points

Figure 2. Plant 1 Trichloroethene (TCE) Concentration Changes

Plant 1 1,1,1-Trichloroethane (TCA) Concentration Changes

- Figure 4. Plant 1 Total VOC Concentration Changes
- Figure 5. Plant 2 Trichloroethene (TCE) Concentration Changes
- Figure 6. Plant 2 1,1,1-Trichloroethane (TCA) Concentration Changes
- Figure 7. Plant 2 Tetrachloroethene (PCE) Concentration Changes
- Figure 8. Plant 2 Total VOC Concentration Changes

TABLES

- Table 1. Summary of Target Compound List VOCs Groundwater Monitoring Analytical Results for Pentair Flow Technologies, LLC Delavan Facility Monitoring Points
- Table 2. Summary of VOCs Groundwater Monitoring Analytical Results for Plant #1 Monitor Well TW-4
- Table 3. Pentair Flow Technologies, LLC Delavan Facility Extraction Wells Pumping Rate Measurements
- Table 4. Delavan Facility Groundwater Monitoring Program

APPENDICES

- Appendix A. Wisconsin Department of Natural Resources Correspondence
- Appendix B. Monitor Well and Site Inspection Photographs
- Appendix C. Groundwater Monitoring Analytical Results and Field Data Sheets.
- Appendix D. Wastewater Discharge Monitoring Reports and Storm Sewer Outfall SS-1 Analytical Results

FIGURES

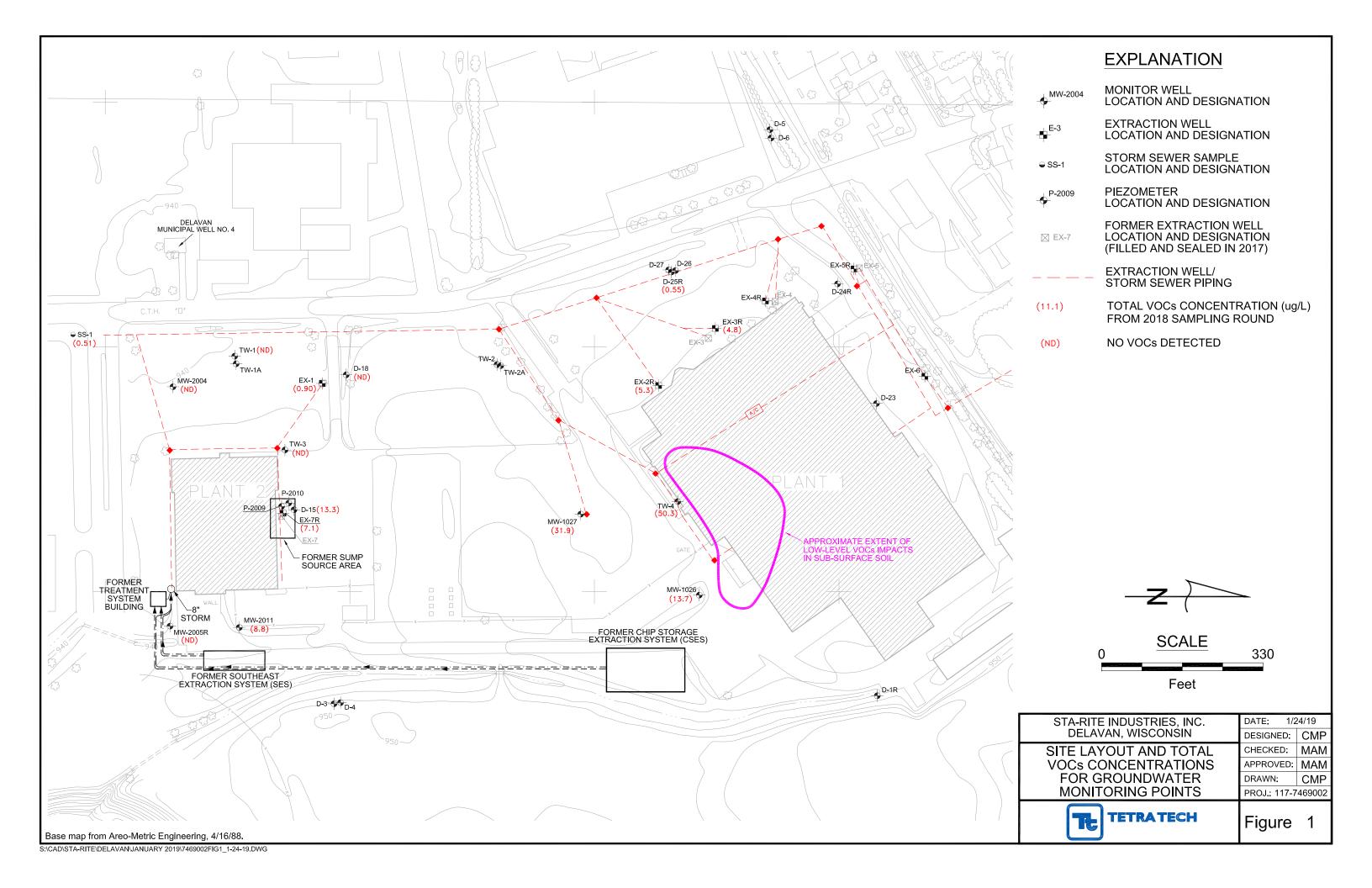


Figure 2. Plant 1 Trichloroethene (TCE) Concentration Changes ES = 5 ug/L, PAL = 0.5 ug/L

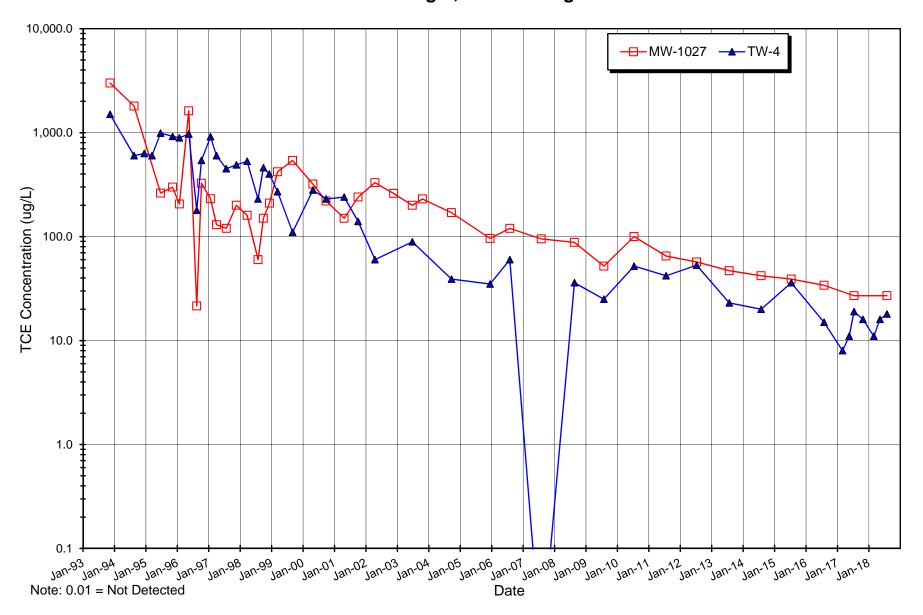
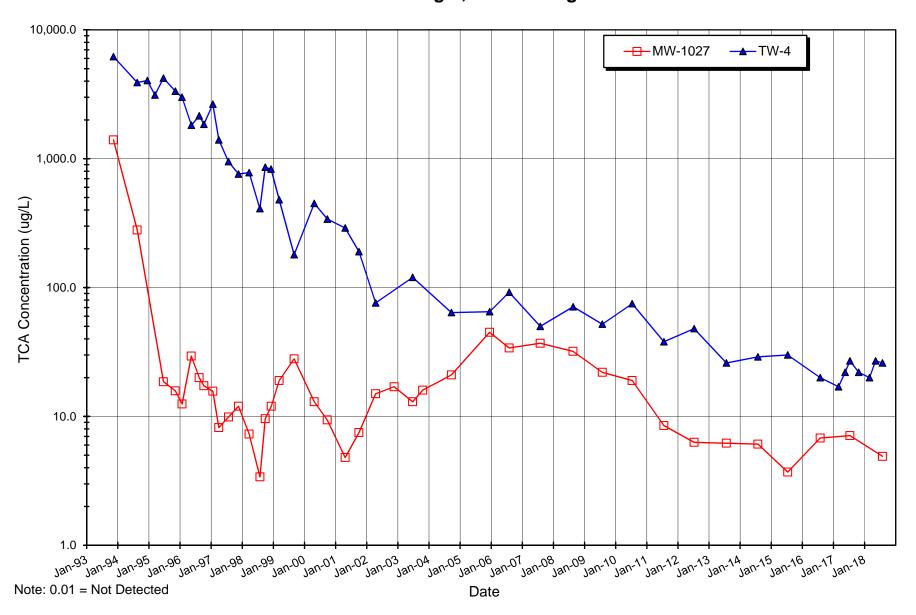



Figure 3. Plant 1 1,1,1-Trichloroethane (TCA) Concentration Changes ES = 200 ug/L, PAL = 40 ug/L

Figure 4. Plant 1 Total VOC Concentration Changes

Figure 5. Plant 2 Trichloroethene (TCE) Concentration Changes ES = 5 ug/L, PAL = 0.5 ug/L

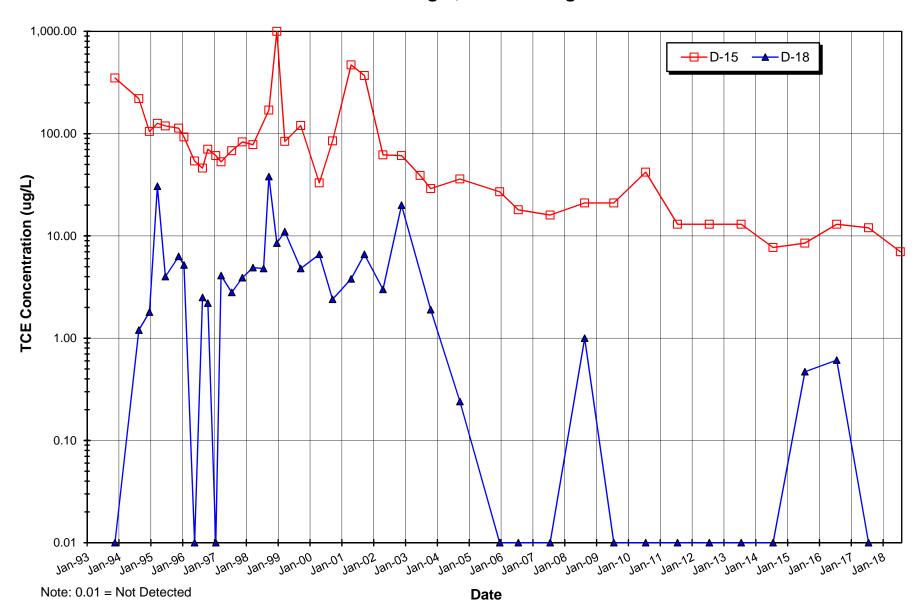


Figure 6. Plant 2 1,1,1-Trichloroethane (TCA) Concentration Changes ES = 200 ug/L, PAL = 40 ug/L

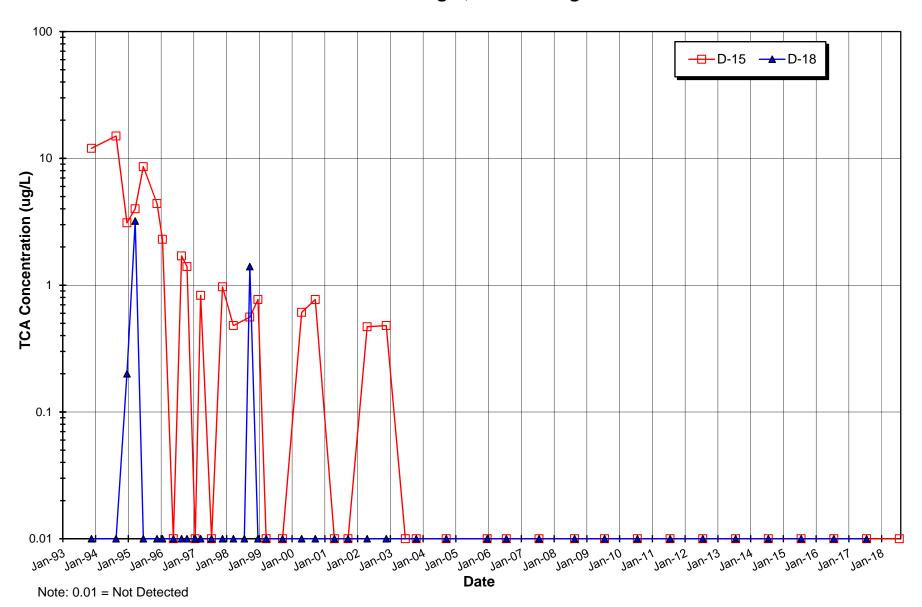
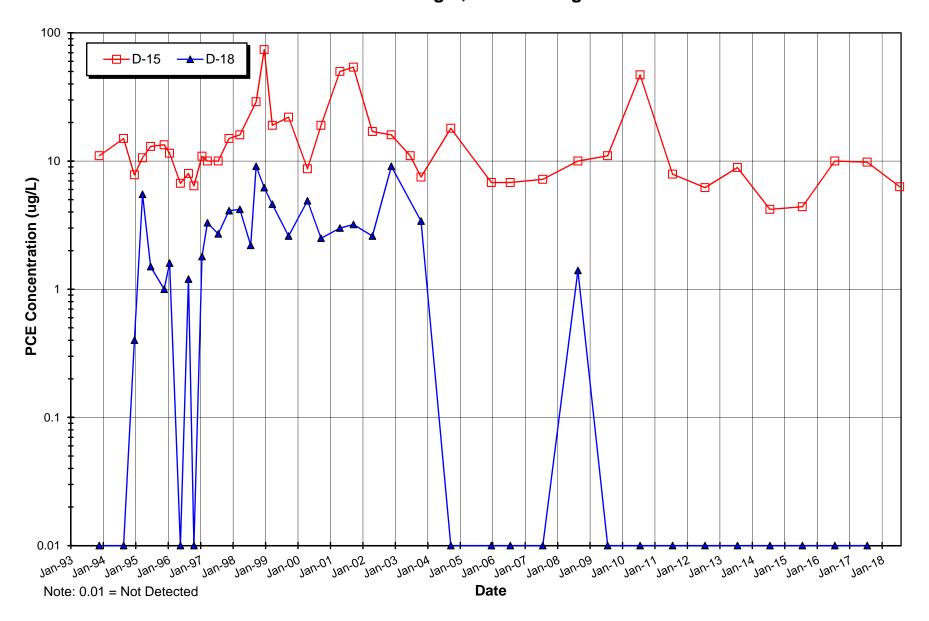
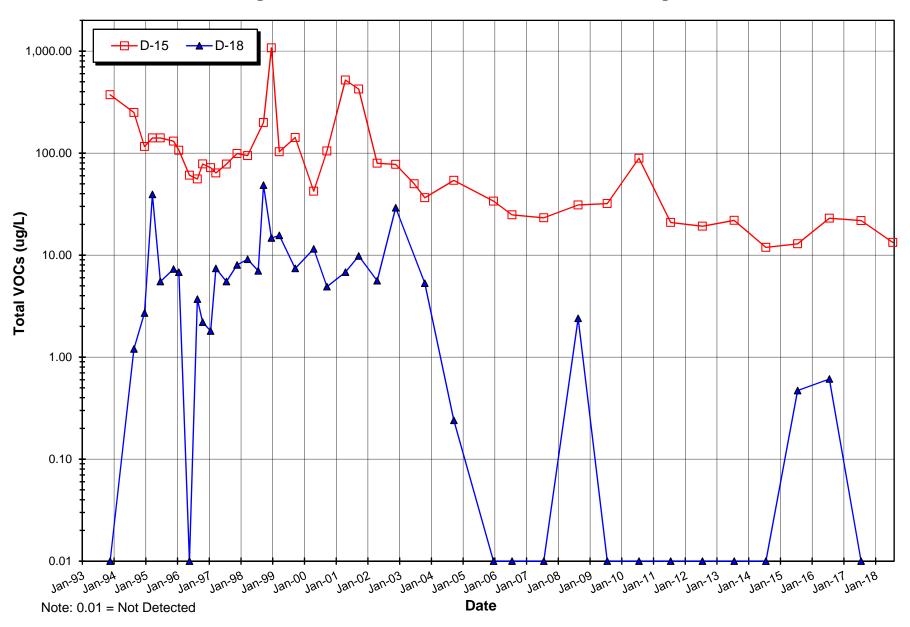




Figure 7. Plant 2 Tetrachloroethene (PCE) Concentration Changes ES = 5 ug/L, PAL = 0.5 ug/L

Figure 8. Plant 2 Total VOC Concentration Changes

TABLES

Table 1. Summary of Target Compound List VOCs Groundwater Monitoring Analytical Results for Pentair Flow Technologies, LLC Delavan Facility Monitoring

SAMPLE ID	DATE	PCE	1,1,1-TCA	тсе	1,1,2-TCA	Vinyl Chloride	Total VOCs
Units		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
NR 140 ES	9	5.0	200	5	5	0.2	
NR 140 PA	L	0.5	40	0.5	0.5	0.02	
Plant #1							
MW-1026	10/29/91	0.60	16000	1300	8.2	<0.3	17308.8
	10/29/91	1.2	15000	1300	7.1	<0.3	16308.3
Downgradient	12/11/91	1.0	22000	1500	10	<0.3	23511
Monitor	11/11/93	<0.5	4500	250	1.0	<0.3	4751
Wells	08/16/94	<1	1500	210	NA	<5	1710
MW-1026	12/13/94	<25	865	183	NA	<25	1048
	03/13/95	NA	NA	NA	NA	NA	0
	06/21/95	<0.34	41.9	72	<0.19	<0.27	113.9
	11/07/95	<0.5	<0.5	52.4	NA	<0.5	52.4
	01/25/96	<0.5	49.6	30.8	NA	<0.5	80.4
	05/13/96	<0.5	74.4	27.1	NA	<0.5	101.5
	08/13/96	<0.5	41	33.1	5.6	<0.5	79.7
	10/08/96	<0.5	26.1	21.5	1.8	<0.5	49.4
	01/21/97	<0.5	27	17.1	NA	<0.5	44.1
	04/01/97	< 0.63	28	15	NA	<0.46	43
	07/23/97	< 0.63	22	11	1.0	<0.46	34
	11/18/97	<0.25	20	13	NA	<0.25	33
	03/23/98	< 0.63	15	10	NA	<0.46	25
	07/27/98	<0.25	8.4	4.5	1.8	<0.25	14.7
	09/28/98	< 0.63	21	15	1.7	<0.46	37.7
	12/08/98		24	14	NA	<0.46	38
	03/12/99	< 0.63	21	13	NA	<0.46	34
	09/25/03	<0.50	25	6.1	<0.25	<0.25	31.1
	12/15/03	<0.50	34	10	<0.20	<0.25	44
	12/14/05	<0.50	91	21	0.27	<0.20	112.27
	07/31/06	<1.0	93	18	NA	NA	111
	07/31/07	<0.50	41	9.8	<0.25	<0.20	50.8
	08/19/08	<0.50	<0.50	<0.20	<0.25	<0.20	0
	07/28/09	<0.50	6.9	8	<0.25	<0.20	14.9
	07/14/10	<0.50	15	3.2	<0.25	<0.20	18.2
	07/21/11	<0.50	20	5.9	<0.25	<0.20	25.9
MW-1026	07/10/12	<0.17	25	7.3	<0.28	<0.10	32.3

Table 1. Summary of Target Compound List VOCs Groundwater Monitoring Analytical Results for Pentair Flow Technologies, LLC Delavan Facility Monitoring

						le	
			⋖		⋖	Vinyl Chloride	Total VOCs
			1,1,1-TCA		1,1,2-TCA	Chl	0
		Щ	<u> </u>	щ	,2-	ک	tal
SAMPLE ID	DATE	PCE	1,1	TCE	1,1		То
Units		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
NR 140 ES		5.0	200	5	5	0.2	
NR 140 PA		0.5	40	0.5	0.5	0.02	
MW-1026	07/24/13	<0.17	15	4.4	<0.28		19.4
	07/29/14	<0.17	7.4	1.8			9.2
	07/14/15		18		<0.28	<0.10	23.3
	07/29/16		21	6.2		<0.20	27.2
	07/13/17	< 0.37	14		< 0.35	<0.20	17.6
MW-1026	07/30/18	<0.37	11	2.7	<0.35	<0.20	13.7
MW-1027	10/29/91	<0.5	780	1700	<0.5	<0.3	2480
	12/12/91	<0.5	500	1200	<0.5	< 0.3	1700
	11/11/93	<0.5	1400	3000	<0.5	<0.3	4400
	08/17/94	<1	280	1800	NA	<5	2080
	06/21/95	<0.34	18.6	262	<0.19	<0.27	280.6
	11/07/95	<0.5	15.8	299	NA	<0.5	314.8
	01/26/96	<0.5	12.5	206	NA	<0.5	218.5
	05/13/96	<0.5	29.4	1620	NA	<0.5	1649.4
	08/14/96	<0.5	20	21.5	<0.5	<0.5	41.5
	10/08/96	<0.5	17.3	326	<0.5	<0.5	343.3
	01/21/97	<0.5	15.7	231	NA	<0.5	246.7
	04/01/97	<0.63	8.2	130	NA	<0.46	138.2
	07/24/97	<0.63	9.9	120	<0.15	<0.46	129.9
	11/18/97	<0.25	12	200	NA	<0.25	212
	03/23/98	<0.63	7.3	160	NA	<0.46	167.3
	07/28/98	<1.2	3.4	60	<1.2	<1.2	63.4
	09/28/98	<0.63	9.6	150	<0.28	<0.46	159.6
	12/08/98	<1.3	12	210	NA	<0.46	222
	03/11/99	<3.2	19	420	NA	<2.3	439
	09/02/99	<3.2	28	540	NA	NA	568
	04/25/00	<3.2	13	320	NA	<2.3	333
	09/25/00	<3.2	9.4	220	NA	NA	229.4
	04/23/01	<1.0	4.8	150	NA	<1.0	154.8
	10/02/01	<1.0	7.5	240	<1.0	NA	247.5
	04/16/02	<1.2	15	330	<1.2	NA	345
	11/19/02	<1.2	17	260	<1.2	NA	277
MW-1027	06/24/03	<5.0	13	200	<2.5	NA	213

Table 1. Summary of Target Compound List VOCs Groundwater Monitoring Analytical Results for Pentair Flow Technologies, LLC Delavan Facility Monitoring

		PCE	1,1,1-TCA	TCE	1,1,2-TCA	Vinyl Chloride	Total VOCs
SAMPLE ID	DATE						
Units		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
NR 140 ES		5.0	200	5	5	0.2	
NR 140 PA		0.5	40	0.5	0.5	0.02	0.40
MW-1027	10/20/03	<0.50	16	230	<0.25	NA	246
	09/21/04	<2.0	21	170	NA	<0.80	191
	12/14/05	<0.50	45	96	0.38	<0.20	141.38
	07/31/06	<1.0	34	120	NA	NA	154
	07/31/07	<0.50	37	95	<0.25		132
	08/19/08	<0.50	32	88	<0.25	<0.20	120
MW-1027	07/28/09	<0.50	22	52	<0.25	<0.20	74
	07/14/10	<0.50	19	100	<0.25	<0.20	119
	07/21/11	<0.50	8.5	65	<0.25		73.5
	07/10/12	<0.17	6.3	57	<0.28		63.3
	07/24/13	<0.17	6.2	47	<0.28		53.2
	07/29/14	<0.17	6.1	42	<0.28		48.1
	07/14/15	<0.17	3.7	39	<0.28	<0.10	42.7
	07/29/16	< 0.37	6.8	34	< 0.35	<0.20	40.8
	07/13/17	<0.37	7.1	27	<0.35	<0.20	34.1
MW-1027	07/30/18	<0.37	4.9	27	< 0.35	<0.20	31.9
TW-4	11/05/91	0.50	10000	1100	5.6	<0.3	11106.1
	12/12/91	0.60	11000	1200	4.5	<0.3	12205.1
	11/11/93	0.80	6200	1500	3.2	<0.3	7704
	08/17/94	<1	3900	600	NA	<5	4500
	12/14/94	<50	4040	630	NA	<50	4670
	03/13/95	ND	3120	600	NA	ND	3720
	06/21/95	NA	4220	990	17.6	5.4	5233
TW-4	11/08/95	1.2	3340	920	NA	<0.5	4261.2
	01/25/96	1.1	3000	891	NA	<0.5	3892.1
	05/14/96	0.90	1820	969	NA	<0.5	2789.9
	08/14/96	<0.5	2150	179	1.8	<0.5	2330.8
	10/08/96	0.90	1850	541	6.3	<0.5	2398.2
	01/21/97	<0.5	2650	913	NA	<0.5	3563
	04/01/97	0.83	1400	600	NA	<0.46	2000.83
	07/23/97	0.67	950	450	4.4	<0.46	1405.07
	11/18/97	0.83	760	490	NA	<0.25	1250.83
TW-4		0.74	780	530	NA	<0.46	1310.74

Table 1. Summary of Target Compound List VOCs Groundwater Monitoring Analytical Results for Pentair Flow Technologies, LLC Delavan Facility Monitoring

			1,1,1-TCA		1,1,2-TCA	Vinyl Chloride	Total VOCs
SAMPLE ID	DATE	PCE	1,1,1	TCE	1,1,2	Viny	Tota
Units		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
NR 140 E	S	5.0	200	5	5	0.2	Ŭ
NR 140 PA	۱L	0.5	40	0.5	0.5	0.02	
TW-4	07/27/98	<2.5	410	230	<2.5	<2.5	640
	09/28/98	< 0.63	860	460	2.8	<0.46	1322.8
	12/05/98	<6.3	830	400	NA	<4.6	1230
	03/11/99	<6.3	480	270	NA	<4.6	750
	09/02/99	<3.2	180	110	2.4	<2.3	292.4
	04/25/00	<3.2	450	280	NA	<2.3	730
	09/26/00	<6.3	340	230	<1.5	<4.6	570
	04/23/01	0.60	290	240	NA	<0.25	530.6
	10/02/01	<2.0	190	140	<2.0	<2.0	330
	04/16/02	<0.25	76	60	1.5	<0.25	137.5
TW-4	06/24/03	<1.0	120	89	1.4	<1.0	210.4
	09/21/04	<0.50	64	39	NA	<0.20	103
	12/14/05	<0.50	65	35	0.92	<0.20	100.92
	07/31/06	<0.50	92	60	1.3	<0.20	153.3
	07/31/07	<0.50	50	<0.20	<0.25	<0.20	50
	08/20/08	<0.50	71	36	0.73	<0.20	107.73
	07/28/09	<0.50	52	25	0.34	<0.20	77.34
TW-4	07/14/10	<0.50	75	52	0.28	<0.20	127.28
	07/21/11	<0.50	38	42	0.28	<0.20	80.28
	07/10/12	<0.17	48	53	<0.28	<0.10	101
	07/24/13	<0.17	26	23		<0.10	49
	07/29/14	<0.17	29	20	<0.28	<0.10	49
	07/14/15	<0.17	30	36	<0.28	<0.10	66
TW-4	07/29/16	< 0.37	20	15	<0.35	<0.20	35
	03/01/17	< 0.37	17	8.0	<0.35	<0.20	25
	05/17/17	< 0.37	22	11	<0.35	<0.20	33
	07/13/17	< 0.37	27	19	<0.35	<0.20	46
	10/24/17	<0.37	22	16	< 0.35	<0.20	38
	02/28/18	<0.37	20	11	<0.35	<0.20	31
	05/10/18	<0.74	27	16	<0.33	<0.50	43
TW-4		< 0.37	26	18	< 0.35	<0.20	44
D-25R	10/29/91	<0.5	<0.5	11	<0.5	<0.3	11
D-25R	12/13/91	0.60	13	13	<0.5	<0.3	26.6

Table 1. Summary of Target Compound List VOCs Groundwater Monitoring Analytical Results for Pentair Flow Technologies, LLC Delavan Facility Monitoring

SAMPLE ID DATE 0 1-1 2 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Units ug/L <
Units ug/L <
Units ug/L ug/L <t< td=""></t<>
Units ug/L ug/L <t< td=""></t<>
NR 140 ES 5.0 200 5 5 0.2 NR 140 PAL 0.5 40 0.5 0.5 0.02 D-25R 11/11/93 <0.5
D-25R 11/11/93 <0.5 6.0 4.7 <0.5 <0.3 10 08/17/94 <1 3.1 4.6 NA <5 7 12/13/94 0.40 4.7 5.4 NA <0.5 10 03/13/95 ND 4.3 3.2 NA ND 7 06/26/95 <0.34 3.1 <0.19 <0.19 <0.19 <0.27 3.3
08/17/94 <1
12/13/94 0.40 4.7 5.4 NA <0.5 10 03/13/95 ND 4.3 3.2 NA ND 706/26/95 <0.34 3.1 <0.19 <0.19 <0.27
03/13/95 ND 4.3 3.2 NA ND 7 06/26/95 <0.34
06/26/95 <0.34 3.1 <0.19 <0.19 <0.27
D 25D 11/07/05 40 5 54 40 5 NA 40 5
D-25R 11/07/95 <0.5 5.1 <0.5 NA <0.5
01/25/96 <0.5 4.7 5.1 NA <0.5
05/14/96 <0.5 6.9 6.3 NA <0.5 13
08/14/96 1.5 43.7 38.3 <0.5 <0.5 83
D-25R 10/09/96 <0.5 8.2 10.1 <0.5 <0.5 18
01/20/97 <0.5 10.4 <0.5 NA <0.5 10
04/01/97 0.77 11 9.1 NA <0.46 20.
07/24/97 0.86 9.5 9.8 <0.15 <0.46 20.
11/18/97 0.84 6.7 8.7 NA <0.25 16.
03/23/98
07/28/98 <0.25 2.1 2.7 <0.25 <0.25
09/28/98
12/08/98
03/12/99 0.78 5.6 7.7 NA <0.46 14.
09/02/99 0.72 6.7 8.4 NA NA 15.
04/25/00 1.0 3.5 4.0 NA <0.46
09/26/00 0.82 4.5 4.7 NA NA 10.
D-25R 04/23/01 0.45 3.1 4.3 NA <0.25 7.
10/02/01 0.58 4.0 3.8 <0.25 NA 8.
04/16/02 0.58 4.3 4.7 <0.25 NA 9.
11/19/02 0.87 7.6 6.2 <0.25 NA 14.
06/24/03 0.86 6.1 7.7 <0.25 NA 14.
10/20/03 0.71 4.3 4.6 <0.25 NA 9.
09/21/04
12/13/05 0.59 15 12 <0.25 <0.20 27.
07/31/06
07/31/07 <0.50 8.0 12 <0.25 <0.20
D-25R 08/20/08 0.51 7.3 8.3 <0.25 <0.20 16.

Table 1. Summary of Target Compound List VOCs Groundwater Monitoring Analytical Results for Pentair Flow Technologies, LLC Delavan Facility Monitoring

SAMPLE ID	DATE	PCE	1,1,1-TCA	TCE	1,1,2-TCA	Vinyl Chloride	Total VOCs
Units		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
NR 140 ES		5.0	200	5	5	0.2	
NR 140 PA		0.5	40	0.5	0.5	0.02	40.0
D-25R	07/28/09		6.2	6.0		<0.20	12.2
	07/13/10		8.4	7.6	<0.25	<0.20	16
	07/20/11		1.4	2.7	<0.25	<0.20	4.1
	07/10/12		1.3	1.4	<0.28		2.7
	07/24/13		1.0	1.0	<0.28	<0.10	2
D-25R			0.7	0.82	<0.28	<0.10	1.49
	07/14/15		<0.20	0.71	<0.28	<0.10	0.71
	07/28/16		<0.38	0.57	<0.35	<0.20	0.57
	07/12/17	< 0.37	2.9	2.3	<0.35	<0.20	5.2
D-25R	07/30/18		<0.38	0.55		<0.20	0.55
EX-2	11/07/91	<0.5	870	210	1.1	<0.3	1081.1
	12/18/91	<0.5	1260	268	1.4	<0.3	1529.4
Original	11/11/93	<0.5	890	250	1.3	<0.3	1141.3
Extraction	12/13/94	<0.5	17.3	3.5	NA	<0.5	20.8
Wells	06/21/95	< 0.34	375	96.4	<0.19	<0.27	471.4
EX-2 /		<0.5	99.8	52	<0.5	<0.5	151.8
EX-2R	07/25/97	< 0.63	1.2	2.6	<0.15	<0.46	3.8
	07/28/98	<0.25	0.79	2.1	<0.25	<0.25	2.89
	09/07/99	< 0.63	15	34	NA	NA	49
	04/18/00	< 0.63	1.3	3.7	NA	<0.46	5
	09/26/00	< 0.63	18	36	NA	<0.46	54
	04/19/01	<0.25	2.6	8.4	NA	<0.25	11
	10/02/01	<0.25	16	34	<0.25	NA	50
	04/16/02	<0.25	8.4	22	<0.25	NA	30.4
	06/24/03	< 0.50	0.69	2.9	<0.25	NA	3.59
	09/21/04	<0.50	11	25	NA	<0.20	36
	07/31/06	<0.50	0.61	1.7	NA	NA	2.31
	07/31/07	<0.50	6.3	6.7	<0.25	<0.20	13
EX-2R	08/20/08	<0.50	15	22	<0.25	<0.20	37
	07/28/09	<0.50	5.0	4.5	<0.25	<0.20	9.5
	10/05/10	<0.50	8.2	21	<0.25	<0.20	29.2
	07/21/11	<0.50	5.0	15	<0.25	<0.20	20
EX-2R	07/11/12	<0.17	3.2	9.8	<0.28	<0.10	13

Table 1. Summary of Target Compound List VOCs Groundwater Monitoring Analytical Results for Pentair Flow Technologies, LLC Delavan Facility Monitoring

						Φ	
			_		-	orid	S
			2		/2	hlc	Ŏ
		111	<u>-</u>	111	2-1) N	al /
SAMPLE ID	DATE	PCE	1,1,1-TCA	TCE	1,1,2-TCA	Vinyl Chloride	Total VOCs
Units		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
NR 140 ES	3	5.0	200	5	5	0.2	•
NR 140 PA	ιL	0.5	40	0.5	0.5	0.02	
EX-2R	07/24/13	<0.17	4.6	7.0	<0.28	<0.10	11.6
	07/30/14	<0.17	3.3	5.8	<0.28	<0.10	9.1
	07/15/15	<0.17	1.4	3.8	<0.28	<0.10	5.2
	07/28/16	<0.37	4.2	7.1	< 0.35	<0.20	11.3
	10/24/17	< 0.37	3.7	6.3	< 0.35	<0.20	10
EX-2R	07/31/18	< 0.37	1.7	3.6	< 0.35	<0.20	5.3
EX-3	11/07/91	<0.5	50	14	<0.5	<0.3	64
	12/18/91	<0.5	30.3	9.5	<0.5	<0.3	39.8
Original	11/11/93	<0.5	<0.5	<0.5	<0.5	<0.3	0
Extraction	12/13/94	<0.5	14.4	5.8	NA	<0.5	20.2
Wells	06/21/95	< 0.34	8.7	4.0	<0.19	<0.27	12.7
	08/14/96	<0.5	4.5	3.6	<0.5	<0.5	8.1
	07/25/97	< 0.63	93	52	0.4	<0.46	145.4
EX-3	07/28/98	<0.25	30	28	<0.25	<0.25	58
	09/07/99	< 0.63	22	26	NA	NA	48
	04/18/00	< 0.63	37	55	NA	<0.46	92
	09/26/00	< 0.63	25	28	NA	NA	53
	04/19/01	<0.25	27	38	NA	<0.25	65
	10/02/01	<0.25	13	17	<0.25	NA	30
	04/16/02	<0.25	21	28	<0.25	NA	49
	06/24/03	<0.50	23	46	<0.25	NA	69
	09/21/04		13	17	NA		30
	12/14/05	<0.50	28	34	0.29	<0.20	62.29
	07/31/06	<0.50	32	66	NA	NA	98
	07/31/07	<0.50	15	25	<0.25	<0.20	40
	08/20/08	<0.50	7.5	3.6	<0.25	<0.20	11.1
	07/28/09		14	21	<0.25		35
	07/14/10		38	29		<0.20	67.34
EX-3	07/21/11	<0.50	34	33	0.33		67.33
	07/11/12		15	18		<0.10	33
	07/24/13		2.2	2.2		<0.10	4.4
	07/30/14		1.6	2.2		<0.10	3.8
EX-3/			3.1	3.5		<0.10	6.6
			* · ·				

Table 1. Summary of Target Compound List VOCs Groundwater Monitoring Analytical Results for Pentair Flow Technologies, LLC Delavan Facility Monitoring

						Φ.	
		111	1,1,1-TCA		1,1,2-TCA	Vinyl Chloride	Total VOCs
SAMPLE ID	DATE	PCE	۲, ۲,	TCE	۲, ۲,	Viny	Tot
Units		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
NR 140 ES	3	5.0	200	5	5	0.2	
NR 140 PA	ľ	0.5	40	0.5	0.5	0.02	
EX-3R	10/24/17	< 0.37	2.3	3.3	< 0.35	<0.20	5.6
EX-3R	07/31/18	< 0.37	2.4	2.4	< 0.35	<0.20	4.8
SS-1	11/11/93	0.90	71	24	<0.5	<0.3	95.9
	08/16/94	<1	55	25	NA	<5	80
Storm Sewer	12/14/94	0.10	11.2	3.0	NA	<0.5	14.3
Outfall	06/21/95	< 0.34	31.2	18.1	<0.19	<0.27	49.3
	11/06/95	<0.5	21.7	<0.5	NA	<0.5	21.7
	01/25/96	2.6	17.1	21.1	NA	<0.5	40.8
SS-1	05/13/96	0.60	12.6	8.2	NA	<0.5	21.4
	08/13/96	0.70	8.3	7.8	<0.5	<0.5	16.8
	10/08/96	0.70	6.7	8.8	<0.5	<0.5	16.2
	01/20/97	0.70	8.1	8.9	<0.5	<0.5	17.7
	04/01/97	0.74	5.8	6.6	NA	<0.46	13.14
	07/23/97	< 0.63	1.2	1.5	<0.15	<0.46	2.7
	11/18/97	<0.25	4.9	4.9	NA	<0.25	9.8
SS-1	09/02/99	3.4	3.1	17	NA	<0.46	23.5
	09/25/00	< 0.63	0.37	2.1	NA	NA	2.47
	10/01/01	<0.25	1.5	3.7	<0.25	<0.25	5.2
	04/17/02	1.1	1.4	5.2	<0.25	NA	7.7
	12/04/02	0.71	1.2	4.4	<0.25	<0.25	6.31
	03/08/04	<0.50	0.90	2.5	<0.25	<0.20	3.4
	04/05/04	<0.50	<0.50	3.2	<0.25	<0.20	3.2
	06/22/05	0.78	0.52	2.2	<0.25	<0.20	3.5
	12/07/05	1.8	0.67	0.64	<0.25	<0.20	3.11
	08/01/06	0.71	<0.50	1.6	NA	<0.20	2.31
	08/01/07	<0.50	0.80	1.9	<0.25	<0.20	2.7
	08/20/08	0.50	<0.50	0.79	<0.25	<0.20	1.29
	07/28/09	<0.50	1.8	3.2	<0.25	<0.20	5
	07/20/10	<0.50	<0.50	0.47	<0.25	<0.20	0.47
	07/13/11	<0.50	<0.50	1.5	<0.25	<0.20	1.5
	07/10/12	<0.17	<0.20	1.5	<0.28	<0.10	1.5
	07/15/13	<0.17	< 0.20	<0.19	<0.28	<0.10	0
SS-1	07/14/14	<0.17	<0.20	0.75	<0.28	<0.10	0.75

Table 1. Summary of Target Compound List VOCs Groundwater Monitoring Analytical Results for Pentair Flow Technologies, LLC Delavan Facility Monitoring

						٥	
			⋖		⋖	Vinyl Chloride	Total VOCs
			1,1,1-TCA		1,1,2-TCA	Chi	8
		щ	-	ш	,) Já	<u>ta</u>
SAMPLE ID	DATE	PCE	1,1	TCE	1,1	Vin	P
Units		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
NR 140 ES		5.0	200	5	5	0.2	
NR 140 PA		0.5	40	0.5	0.5	0.02	
SS-1	07/06/15	0.67	<0.20	0.85	<0.28		1.52
	07/20/16	<0.37	<0.38	0.88	<0.35		0.88
	07/19/17	<0.37	<0.38		< 0.35		0
SS-1	07/11/18	<0.37	<0.38	0.51	<0.35	<0.20	0.51
Plant #2	44/04/04	.0.5	2.5	4 6	.0.5	.0.0	4 -
D-18	11/04/91	< 0.5	<0.5	1.5	<0.5	<0.3	1.5
D-18	12/12/91	0.90	0.5	2.1	<0.5	<0.3	3.5
Southeast	11/11/93		<0.5	< 0.5	<0.5	<0.3	0
Source Area	08/16/94	<1	<1	1.2	NA	<5	1.2
and	12/13/94	0.40	0.20	1.8	NA	0.30	2.7
Former Sump	03/13/95		3.2	30.6	NA -0.40	ND	39.3
Source Area	06/21/95	1.5	<0.13	4.0	<0.19 NA		5.5
Monitor Wells	11/06/95 01/25/96	1.0 1.6	<0.5 <0.5	6.3 5.2	NA	<0.5 <0.5	7.3 6.8
1							0.0
D-18	05/13/96	<0.5	<0.5	<0.5 2.5	NA -0.5		3.7
D-18	08/13/96 10/08/96	1.2 <0.5	<0.5 <0.5	2.2	<0.5 <0.5	<0.5 <0.5	2.2
D-18	01/20/97		<0.5	<0.5	VO.5	<0.5	1.8
D-10	03/31/97	1.8 3.3	<0.28	4.1	NA		7.4
-	03/31/97	2.7	<0.28	2.8	<0.15		5.5
-	11/17/97		<0.28				8
-	03/23/98		<0.28	4.9	NA		9.1
	07/27/98		<0.25	4.8	<0.15		7
	09/25/98		1.4	38		<0.46	48.5
	12/08/98	6.2	<0.28	8.5	NA		14.7
	03/11/99	4.6	<0.28	11	NA	<0.46	15.6
	09/07/99	2.6	<0.28	4.8	NA	NA	7.4
	04/25/00	4.9	<0.28	6.6	NA		11.5
	09/25/00	2.5	<0.28	2.4	NA	NA	4.9
	04/19/01	3.0	<0.25	3.8			6.8
	09/27/01	3.2	<0.25	6.6		NA	9.8
	04/17/02	2.6	<0.25	3.0	<0.25	NA	5.6
D-18	06/20/03	9.1	<0.50	20	<0.25	NA	29.1

Table 1. Summary of Target Compound List VOCs Groundwater Monitoring Analytical Results for Pentair Flow Technologies, LLC Delavan Facility Monitoring

SAMPLE ID DATE Q F D F E E D E E D E E D E E							<u>0</u>	
Units	CAMPLEID	DATE	CE	,1,1-TCA	CE	,1,2-TCA	inyl Chlorid	otal VOCs
NR 140 ES S.0 200 5 5 0.2		DATE					>	
NR 140 PAL		<u> </u>						ug/L
D-18								
D-18						0.5	0.02	
12/14/05	D-10					NΙΛ	√ 0.20	5.3
D-18 O7/31/06 O.50 O.50 O.20 NA								
D-18								
D-18 07/14/15 0.17 0.20 0.20 0.25 0.20 0.00 0.7/28/16 0.17 0.20 0.19 0.28 0.10 0.07/29/14 0.17 0.20 0.19 0.28 0.10 0.07/29/14 0.17 0.20 0.19 0.28 0.10 0.07/29/14 0.17 0.20 0.19 0.28 0.10 0.00 0.7/29/14 0.17 0.20 0.19 0.28 0.10 0.00 0.7/28/16 0.37 0.38 0.47 0.35 0.20 0.47 0.7/28/16 0.37 0.38 0.47 0.35 0.20 0.61 0.7/29/14 0.37 0.38 0.61 0.35 0.20 0.61 0.7/29/14 0.37 0.38 0.61 0.35 0.20 0.61 0.7/29/14 0.37 0.38 0.61 0.35 0.20 0.61 0.7/29/14 0.37 0.38 0.61 0.35 0.20 0.61 0.7/29/14 0.37 0.38 0.61 0.35 0.20 0.61 0.7/29/14 0.37 0.38 0.61 0.35 0.20 0.61 0.29/29/14 0.29/29/14 0.25 0.25 0.3 0.20 0.2	D 10							
D-18 07/28/09 1.4 <0.50 1.0 <0.25 <0.20 2.4	D-10							
D-18								
07/20/11 <0.50 <0.50 <0.20 <0.25 <0.20 0.20 0.25 <0.20 0.20 0.710 0.710 0.710 0.712 <0.17 <0.20 <0.19 <0.28 <0.10 0.7124 <0.17 <0.20 <0.19 <0.28 <0.10 0.7124 <0.17 <0.20 <0.19 <0.28 <0.10 0.7129 <0.28 <0.10 0.7129 <0.28 <0.10 0.7129 <0.28 <0.10 0.7129 <0.28 <0.10 0.7129 <0.28 <0.10 0.7129 <0.28 <0.10 0.7129 <0.28 <0.10 0.7129 <0.28 <0.10 0.7129 <0.28 <0.10 0.7129 <0.28 <0.10 0.7129 <0.28 <0.20 0.47 <0.35 <0.20 0.47 <0.7121 <0.37 <0.38 0.47 <0.35 <0.20 0.47 <0.7121 <0.37 <0.38 <0.16 <0.35 <0.20 0.61 <0.7129 <0.20 0.61 <0.35 <0.20 0.61 <0.35 <0.20 0.61 <0.35 <0.20 0.61 <0.35 <0.20 0.61 <0.35 <0.20 0.61 <0.35 <0.20 0.61 <0.35 <0.20 0.61 <0.35 <0.20 0.61 <0.35 <0.20 0.61 <0.35 <0.20 0.61 <0.35 <0.20 0.61 <0.35 <0.20 0.61 <0.35 <0.20 0.61 <0.35 <0.20 0.61 <0.35 <0.20 0.61 <0.35 <0.20 0.61 <0.35 <0.20 0.61 <0.35 <0.20 0.61 <0.35 <0.20 0.61 <0.35 <0.33 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0	D_18							
D-18	D-10							
D-18 07/24/13 0.17 0.20 0.19 0.28 0.10 0 07/29/14 0.17 0.20 0.19 0.28 0.10 0 0 07/28/16 0.37 0.38 0.47 0.35 0.20 0.47 07/12/17 0.37 0.38 0.61 0.35 0.20 0.61 0.7/28/16 0.37 0.38 0.61 0.35 0.20 0.61 0.7/29/18 0.37 0.38 0.61 0.35 0.20 0.61 0.7/29/18 0.37 0.38 0.61 0.35 0.20 0 0.61 0.7/29/19 0.4 0.4 0.35 0.20 0 0 0 0 0 0 0 0 0								
D-18								
D-18								
D-18	D-18							
D-18 07/12/17 <0.37 <0.38 0.61 <0.35 <0.20 0.61								
D-18 07/30/18 <0.37 <0.38 <0.16 <0.35 <0.20 0 MW-2004 10/29/91 6.4 4.8 37 <0.5 <0.3 48.2 12/13/91 11 2.6 61 <0.5 <0.3 74.6 11/11/93 2.5 14 5.6 <0.5 <0.3 22.1 12/13/94 0.70 0.20 1.8 NA 0.3 3 06/21/95 3.2 17.6 14.2 3.4 <0.27 38.4 08/13/96 0.96 7.2 5.2 <0.5 <0.5 13.36 07/23/97 <0.63 1.9 1.7 <0.15 <0.46 3.6 07/27/98 <0.25 <0.25 0.94 <0.15 <0.25 0.94 MW-2004 09/07/99 <0.63 <0.28 <0.49 NA NA 0 09/27/01 <0.25 <0.25 <0.25 <0.25 <0.25 NA 0 11/18/02 <0.25 <0.25 <0.25 <0.25 <0.25 NA 0 06/20/03 <0.50 <0.50 <0.25 <0.25 <0.25 <0.25 NA 0 09/20/04 <0.50 <0.50 <0.20 NA <0.20 0 12/13/05 <0.50 <0.50 <0.20 NA <0.20 0 12/13/07 <0.50 <0.50 <0.20 <0.25 <0.20 0.50 07/29/06 <0.50 <0.50 <0.20 <0.25 <0.20 0.50 07/31/07 <0.50 <0.50 <0.20 <0.25 <0.20 0.20 0.20 0								
MW-2004 10/29/91 6.4 4.8 37 <0.5 <0.3 48.2 12/13/91 11 2.6 61 <0.5 <0.3 74.6 11/11/93 2.5 14 5.6 <0.5 <0.3 22.1 12/13/94 0.70 0.20 1.8 NA 0.3 3 06/21/95 3.2 17.6 14.2 3.4 <0.27 38.4 08/13/96 0.96 7.2 5.2 <0.5 <0.5 13.36 07/23/97 <0.63 1.9 1.7 <0.15 <0.46 3.6 07/27/98 <0.25 <0.25 0.94 <0.15 <0.25 0.94 NA NA 0 00/4/26/00 <0.63 <0.28 <0.49 NA NA 0 00/9/27/01 <0.25 <0.25 <0.25 <0.25 NA 0 00/9/27/01 <0.25 <0.25 <0.25 <0.25 <0.25 NA 0 00/9/20/04 <0.50 <0.50 <0.25 <0.25 NA 0 00/9/20/04 <0.50 <0.50 <0.25 <0.25 NA 0 00/9/20/04 <0.50 <0.50 <0.25 <0.25 <0.25 <0.25 NA 0 00/9/20/04 <0.50 <0.50 <0.25 <0.25 <0.25 <0.25 <0.25 NA 0 00/9/20/04 <0.50 <0.50 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0	D-18							
12/13/91								
11/11/93 2.5 14 5.6 <0.5 <0.3 22.1 12/13/94 0.70 0.20 1.8 NA 0.3 3 06/21/95 3.2 17.6 14.2 3.4 <0.27	2001							
12/13/94 0.70 0.20 1.8 NA 0.3 3 06/21/95 3.2 17.6 14.2 3.4 <0.27 38.4 08/13/96 0.96 7.2 5.2 <0.5 <0.5 13.36 07/23/97 <0.63 1.9 1.7 <0.15 <0.46 3.6 07/27/98 <0.25 <0.25 0.94 <0.15 <0.25 0.94								
06/21/95 3.2 17.6 14.2 3.4 <0.27 38.4 08/13/96 0.96 7.2 5.2 <0.5								
08/13/96								
07/23/97 <0.63 1.9 1.7 <0.15 <0.46 3.6 07/27/98 <0.25								
MW-2004								
MW-2004								
04/26/00 <0.63	MW-2004							_
09/27/01 <0.25								
11/18/02 <0.25 <0.25 <0.25 <0.25 NA 0 06/20/03 <0.50 <0.50 <0.25 <0.25 NA 0 09/20/04 <0.50 <0.50 <0.20 NA <0.20 0 12/13/05 <0.50 <0.50 0.50 <0.25 <0.20 0.50 07/29/06 <0.50 <0.50 0.37 NA NA 0.37 07/31/07 <0.50 <0.50 <0.20 <0.25 <0.20 0								
06/20/03 <0.50						<0.25		
09/20/04 <0.50							NA	0
12/13/05 <0.50								
07/29/06 <0.50 <0.50								0.5
07/31/07 <0.50 <0.50 <0.20 <0.25 <0.20 0								
	MW-2004							

Table 1. Summary of Target Compound List VOCs Groundwater Monitoring Analytical Results for Pentair Flow Technologies, LLC Delavan Facility Monitoring

SAMPLE ID	DATE	PCE	1,1,1-TCA	TCE	1,1,2-TCA	Vinyl Chloride	Total VOCs
Units	Units		ug/L	ug/L	ug/L	ug/L	ug/L
NR 140 ES	3	5.0	200	5	5	0.2	
NR 140 PA	\L	0.5	40	0.5	0.5	0.02	
MW-2004	07/28/09	< 0.50	<0.50	<0.20	<0.25	<0.20	0
	07/13/10	< 0.50	< 0.50	<0.20	<0.25	<0.20	0
	07/20/11	< 0.50	<0.50	<0.20	<0.25	<0.20	0
	07/10/12	<0.17	<0.20	<0.19	<0.28	<0.10	0
MW-2004	07/24/13	<0.17	<0.20	<0.19	<0.28	<0.10	0
	07/29/14	<0.17	<0.20	<0.19	<0.28	<0.10	0
	07/14/15	< 0.17	<0.20	0.65	<0.28	<0.10	0.65
	07/28/16	< 0.37	<0.38	<0.16	< 0.35	<0.20	0
	07/12/17	< 0.37	<0.38	<0.16	< 0.35	<0.20	0
MW-2004	07/30/18	< 0.37	<0.38	<0.16	< 0.35	<0.20	0
MW-2005	10/28/91	30	2.7	20	<0.5	<0.3	52.7
	12/13/91	32	3.0	23	<0.5	<0.3	58
MW-2005	11/11/93	47	3.1	31	<0.5	<0.3	81.1
	12/13/94	0.40	<0.5	<0.5	NA	<0.5	0.4
	08/16/94	<1	<1	<1	NA	<5	0
	06/21/95	0.70	<0.13	0.70	<0.19	<0.27	1.4
	11/07/95	1.9	<0.5	2.7	NA	<0.5	4.6
	01/25/96	10.9	<0.5	5.2	NA	<0.5	16.1
	05/13/96	<0.5	<0.5	<0.5	NA	<0.5	0
	08/13/96	10.2	<0.5	2.1	<0.5	<0.5	12.3
MW-2005	10/08/96	13	<0.5	<0.5	<0.5	<0.5	13
	01/20/97	24	<0.5		NA	<0.5	34.1
	04/01/97	47	0.76	8.8	NA		56.56
	07/23/97	< 0.63	15	1.6	<0.15		16.6
	11/18/97	2.7	<0.25	0.33	NA	<0.25	3.03
	03/23/98	3.0	<0.28	0.51	NA	<0.46	3.51
	07/21/98	19	<0.25	1.3	<0.15		20.3
	09/25/98	14		1.1			15.1
			<0.28 <0.28	5.2	<0.28 NA	<0.46	
	12/05/98	6.2				<0.46	11.4
	03/12/99	7.8	<0.28	8.9	NA	<0.46	16.7
	09/07/99	7.8	<0.28	1.0	NA	NA 0.40	8.8
NAVA (000 =	04/25/00	1.2	<0.28		NA	<0.46	1.2
MW-2005	09/25/00	1.7	<0.28	<0.49	NA	NA	1.7

Table 1. Summary of Target Compound List VOCs Groundwater Monitoring Analytical Results for Pentair Flow Technologies, LLC Delavan Facility Monitoring

			1,1,1-TCA		1,1,2-TCA	Vinyl Chloride	Total VOCs
SAMPLE ID	DATE	PCE	1,1,	TCE	1,1,	Viny	Tota
Units		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
NR 140 ES	6	5.0	200	5	5	0.2	
NR 140 PA	L	0.5	40	0.5	0.5	0.02	
MW-2005	04/19/01	5.7	<0.25	0.60	NA	<0.25	6.3
	09/27/01	7.5	<0.25	0.62	<0.25	NA	8.12
	04/17/02	9.8	<0.25	0.89	<0.25	NA	10.69
	06/20/03	6.0	<0.50	0.87	<0.25	NA	6.87
MW-2005	09/20/04	17	<0.50	1.3	NA	<0.20	18.3
MW-2005R	07/30/07	2.8	<0.50	<0.20	<0.25	<0.20	2.8
	08/18/08	< 0.50	<0.50	<0.20	<0.25	<0.20	0
	07/27/09	<0.50	<0.50	<0.20	<0.25	<0.20	0
	07/13/10	<0.50	<0.50	<0.20	<0.25	<0.20	0
	07/20/11	<0.50	<0.50	<0.20	<0.25	<0.20	0
	07/10/12	<0.17	<0.20	<0.19	<0.28	<0.10	0
	07/24/13	<0.17	<0.20	<0.19	<0.28	<0.10	0
	07/29/14	2.9	<0.20	<0.19	<0.28	<0.10	2.9
MW-2005R	07/14/15	<0.17	<0.20	<0.19	<0.28	<0.10	0
	07/28/16	2.4	<0.38	<0.16	< 0.35	<0.20	2.4
	07/12/17	< 0.37	<0.38	<0.16	< 0.35	<0.20	0
MW-2005R	07/30/18	< 0.37	<0.38	<0.16	< 0.35	<0.20	0
MW-2011	07/30/07	<0.50	2.9	30	<0.25	<0.20	32.9
	08/18/08	<0.50	2.0	12	<0.25	<0.20	14
MW-2011	07/27/09	<0.50	1.5	14	<0.25	<0.20	15.5
	07/13/10	<0.50	2.8	13	<0.25	<0.20	15.8
	07/20/11	<0.50	2.7	20	<0.25	<0.20	22.7
	07/10/12	<0.17	3.4	39	<0.28	<0.10	42.4
MW-2011	07/24/13	<0.17	2.3	9.0	<0.28	<0.10	11.3
	07/29/14	<0.17	4.1	35	<0.28	<0.10	39.1
	07/14/15	<0.17	<0.20	7.2	<0.28	<0.10	7.2
	07/28/16	< 0.37	3.3	29	< 0.35	<0.20	32.3
	07/12/17	< 0.37	2.1	16	< 0.35	<0.20	18.1
MW-2011	07/30/18		1.2	7.6	< 0.35	<0.20	8.8
D-15	11/05/91	26	45	420	<0.5	<0.3	491
	12/12/91	24	31	390	<0.5	<0.3	445
	11/11/93	11	12		<0.5	<0.3	373
D-15	08/16/94	15	15	220	NA	<5	250

Table 1. Summary of Target Compound List VOCs Groundwater Monitoring Analytical Results for Pentair Flow Technologies, LLC Delavan Facility Monitoring

Units ug/L ug/L ug/L ug/L ug/L u	୍ଦ୍ର Total VOCs
Units ug/L ug/L ug/L ug/L ug/L u	
Units ug/L ug/L ug/L ug/L ug/L u	
Units ug/L ug/L ug/L ug/L ug/L u	
Units ug/L ug/L ug/L ug/L ug/L u	
NR 140 ES 5.0 200 5 5 0.2	
NR 140 PAL 0.5 40 0.5 0.5 0.02	
D-15 12/13/94 7.8 3.1 105 NA <5	115.9
03/13/95 10.6 4.0 126 NA ND	140.6
06/21/95 13 8.6 119 <0.19 <0.27	140.6
11/06/95 13.4 4.4 113 NA <0.5	130.8
D-15 01/25/96 11.5 2.3 92.8 NA <0.5	106.6
05/13/96 6.7 <0.5 54 NA <0.5	60.7
08/15/96 8.0 1.7 46 <0.5 <0.5	55.7
D-15 10/08/96 6.4 1.4 70.4 <0.5 <0.5	78.2
01/20/97 10.9 <0.5 61 NA <0.5	71.9
03/31/97 10 0.83 53 NA <0.46	63.83
07/23/97 10 <0.28 68 <0.15 <0.46	78
11/17/97 15 0.97 83 NA <0.48	98.97
	94.48
07/27/98 Not Sampled.	
	99.56
12/08/98 74 0.77 1000 NA <0.46 10	74.77
03/11/99 19 <0.56 84 NA <0.92	103
09/07/99 22 <0.56 120 NA NA	142
04/25/00 8.7 0.61 33 NA <0.46	42.31
09/28/00 19 0.77 85 NA NA 1	04.77
04/19/01 50 <2.5 470 NA <2.5	520
09/27/01 54 <2.5 370 <2.5 NA	424
D-15 04/15/02 17 0.47 62 <2.5 NA	79.47
11/19/02 16 0.48 61 < 0.25 NA	77.48
06/20/03 11 <0.50 39 <0.25 NA	50
10/20/03 7.5 <0.50 29 <0.25 NA	36.5
D-15 09/20/04 18 <0.50 36 NA <0.20	54
12/13/05 6.8 <0.50 27 <0.25 <0.20	33.8
07/27/06 6.8 <0.50 18 NA NA	24.8
07/31/07 7.2 <0.50 16 <0.25 <0.20	23.2
08/18/08 10 <0.50 21 <0.25 <0.20	31
07/27/09 11 <0.50 21 <0.25 <0.20	32
D-15 07/13/10 47 <0.50 42 <0.25 <0.20	89

Table 1. Summary of Target Compound List VOCs Groundwater Monitoring Analytical Results for Pentair Flow Technologies, LLC Delavan Facility Monitoring

			4			Vinyl Chloride	S
			1,1,1-TCA		1,1,2-TCA	Chlc	Total VOCs
		ш	'-	ш	-2,	Σ	la
SAMPLE ID	DATE	PCE	1,1	TCE	1,1	Vin	Tof
Units		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
NR 140 ES	6	5.0	200	5	5	0.2	
NR 140 PA		0.5	40	0.5		0.02	
D-15	07/20/11	7.9	<0.50	13	<0.25		20.9
	07/10/12	6.2	<0.20	13			19.2
	07/24/13	8.9	<0.20	13	<0.28		21.9
	07/29/14	4.2	<0.20	7.7	<0.28		11.9
D-15	07/14/15	4.4	<0.20	8.5	<0.28		12.9
	07/28/16	10	<0.38	13	< 0.35		23
	07/12/17	9.8	<0.38	12	< 0.35	<0.20	21.8
D-15	07/31/18	6.3	<0.38	7.0	< 0.35	<0.20	13.3
TW-1	10/29/91	<0.5	1.3	18	<0.5	<0.3	19.3
	12/13/91	4.9	1.1	48	<0.5	<0.3	54
	11/11/93	4.0	9.1	20	<0.5	<0.3	33.1
	08/16/94	2.4	<1	14	NA	<5	16.4
	12/13/94	0.40	0.30	4.1	NA	<0.5	4.8
	03/13/95	NA	NA	NA	NA	NA	0
	06/21/95	1.1	1.8	4.9	<0.19	<0.27	7.8
	11/07/95	1.0	<0.5	8.7	NA	<0.5	9.7
	01/25/96	1.5	1.3	4.7	NA	<0.5	7.5
	05/13/96	1.1	0.60	2.9	NA	<0.5	4.6
	08/13/96	0.90	0.70	2.7	<0.5	<0.5	4.3
	10/08/96	<0.5	<0.5	<0.5	<0.5	<0.5	0
	01/20/97	2.1	3.0	10	NA	<0.5	15.1
	03/31/97	2.0	3.1	5.9	NA		11
	07/23/97	0.88	0.74	2.5	<1.1	<0.46	4.12
	11/17/97	0.88	0.55	2.0	NA	<0.48	3.43
	03/23/98	< 0.63	<0.28	1.7	NA	<0.46	1.7
	07/28/98	<0.25	<0.25	1.7	<0.15	<0.25	1.7
	09/26/98	<0.63	<0.28	1.7	<0.28	<0.46	1.7
	12/08/98	< 0.63	<0.28	1.5	NA	<0.46	1.5
TW-1	03/12/99	<0.63	<0.28	1.0	NA	<0.46	1
	09/07/99	< 0.63	0.57	2.4	NA	NA	2.97
	09/26/00	1.1	0.81	7.3	NA	NA	9.21
TW-1	09/28/01	<0.25	<0.25	1.2		NA	1.2
TW-1	12/13/05		<0.50	0.22			0.22

Table 1. Summary of Target Compound List VOCs Groundwater Monitoring Analytical Results for Pentair Flow Technologies, LLC Delavan Facility Monitoring

SAMPLE ID I	DATE	PCE	1,1,1-TCA	тсе	1,1,2-TCA	Vinyl Chloride	Total VOCs
Units		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
NR 140 ES		5.0	200	5	5	0.2	- g, _
NR 140 PAL		0.5	40		0.5	0.02	
	2/13/05	< 0.50	< 0.50			<0.20	0.22
0	7/29/06	<0.50	<0.50		NA	NA	0.2
0	7/31/07	<0.50	<0.50	1.2	<0.25	<0.20	1.2
0	8/19/08	0.53	<0.50	0.62	<0.25	<0.20	1.15
TW-1 0	7/28/09	<0.50	<0.50		<0.25	<0.20	0.27
0	7/13/10	<0.50	<0.50		<0.25	<0.20	0.38
0	7/20/11	<0.50	<0.50	0.28		<0.20	0.28
0	7/10/12	<0.17	<0.20		<0.28	<0.10	0.31
	7/24/13	<0.17		<0.19	<0.28	<0.10	0
	7/29/14	<0.17		<0.19	<0.28	<0.10	0
TW-1 0	7/14/15	<0.17		<0.19	<0.28	<0.10	0
0	7/28/16	< 0.37	<0.38	<0.16	<0.35	<0.20	0
0	7/12/17	< 0.37	<0.38	<0.16	< 0.35	<0.20	0
TW-1 0	7/30/18	< 0.37	<0.38	<0.16	< 0.35	<0.20	0
TW-3 1	0/30/91	6.8	1.7	19	<0.5	<0.3	27.5
1	2/12/91	8.3	1.3	22	<0.5	<0.3	31.6
1	1/11/93	7.5	0.70	12	<0.5	<0.3	20.2
1	2/14/94	5.3	11.6	5.5	NA	<0.5	22.4
0	6/21/95	5.5	11.9	7.4	<0.19	<0.27	24.8
0	8/13/96	2.3	9.7	8.1	<0.5	<0.5	20.1
0	7/23/97	1.7	3.6	4.3	<0.15	<0.46	9.6
0	7/28/98	<0.25	1.0	1.6	<0.15	<0.25	2.6
0	9/07/99	1.9	1.1	3.2	NA	NA	6.2
0	4/25/00	1.2	0.74	1.9	NA	<0.46	3.84
TW-3 0	9/25/00	1.5	0.72	3.0	NA	NA	5.22
0	4/19/01	2.7	0.68	6.0	NA	<0.25	9.38
0	9/27/01	7.5	1.3	21.0	<0.25	NA	29.8
0	4/16/02	2.1	0.40	3.2	<0.25	NA	5.7
1	1/19/02	4.0	0.53	7.8	<0.25	NA	12.33
0	6/24/03	2.5	<0.50	2.6	<0.25	NA	5.1
TW-3 1	0/20/03	2.8	<0.50	2.0	<0.25	NA	4.8
0	9/20/04	2.8	<0.50	2.8	NA	<0.20	5.6
TW-3 1	2/13/05	1.7	<0.50	1.6	<0.25	<0.20	3.3

Table 1. Summary of Target Compound List VOCs Groundwater Monitoring Analytical Results for Pentair Flow Technologies, LLC Delavan Facility Monitoring

						Φ	
		щ	1,1,1-TCA	Ä	1,1,2-TCA	Vinyl Chloride	Total VOCs
SAMPLE ID	DATE	PCE	7,	TCE	7,		To
Units		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
NR 140 ES		5.0	200	5	5	0.2	
NR 140 PA		0.5	40	0.5	0.5	0.02	
TW-3	07/27/06	1.4	<0.50	1.2	NA	NA	2.6
	07/31/07	0.97	<0.50	0.94	<0.25	<0.20	1.91
	08/20/08	1.5	<0.50	0.79	<0.25		2.29
	07/27/09	1.8	<0.50	0.86	<0.25		2.66
TW-3	07/13/10	3.1	<0.50	4.9	<0.25		8
	07/20/11	1.5	<0.50	0.63	<0.25		2.13
TW-3	07/10/12	2.7	<0.20	1.1	<0.28	<0.10	3.8
	07/24/13	1.3	<0.20	0.61	<0.28	<0.10	1.91
	07/29/14	0.63	<0.20	0.38	<0.28	<0.10	1.01
TW-3	07/14/15	<0.17	<0.20	0.64	<0.28	<0.10	0.64
	07/28/16	0.54	<0.38	0.29	<0.35	<0.20	0.83
	07/12/17	0.59	<0.38	<0.16	< 0.35	<0.20	0.59
TW-3	07/30/18	< 0.37	<0.38	<0.16	< 0.35	<0.20	0
EX-1	11/07/91	8.2	3.7	20	<0.5	< 0.3	31.9
Original	12/18/91	6.3	3.9	14.6	<0.5	< 0.3	24.8
Extraction	11/11/93	6.8	2.3	13	<0.5	<0.3	22.1
Well	12/13/94	4.7	2.7	11	NA	<0.5	18.4
EX-1	06/21/95	6.2	<0.13	14.7	<0.19	<0.27	20.9
	08/13/96	2.8	1.6	6.7	<0.5	<0.5	11.1
	07/23/97	3.1	1.5	5.4	<0.15	<0.46	10
	07/28/98	<0.25	0.47	5.2	<0.15	<0.25	5.67
	09/07/99	3.4	0.32	8.7	NA	NA	12.42
	09/26/00	3.0	0.39	11	NA	NA	14.39
	10/02/01	7.1	<0.25	27	<0.25	NA	34.1
	09/21/04	3.8	<0.50	4.2	NA	<0.20	8
	12/14/05	1.4	<0.50	1.4	<0.25	<0.20	2.8
	07/31/06	1.4	<0.50	1.5	NA	NA	2.9
	07/31/07	1.3	<0.50	0.84	<0.25	<0.20	2.14
	08/20/08	1.1	<0.50	0.75	<0.25	<0.20	1.85
	07/14/10	1.7	<0.50	3.1	<0.25	<0.20	4.8
	07/21/11	1.1	<0.50	1.0	<0.25	<0.20	2.1
	07/11/12	1.3	<0.20	1.2	<0.28	<0.10	2.5
EX-1	07/24/13	0.89	<0.20	0.47	<0.28	<0.10	1.36

Table 1. Summary of Target Compound List VOCs Groundwater Monitoring Analytical Results for Pentair Flow Technologies, LLC Delavan Facility Monitoring

						4)	
SAMPLE II) DATE	PCE	1,1,1-TCA	TCE	1,1,2-TCA	Vinyl Chloride	Total VOCs
Units		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
	S	5.0	200	5	5	0.2	
	<u>AL</u>	0.5	40	0.5	0.5	0.02	
EX-		0.71	<0.20	0.42	<0.28		1.13
	07/15/15	<0.17	<0.20	<0.19	<0.28		0
	07/28/16	0.72	<0.38	<0.16	<0.35		0.72
	07/13/17	<0.37	<0.38		< 0.35		0
EX-		0.60	<0.38	0.30	<0.35		0.9
EX-7		37	5.0	350	<0.5	<0.3	392
Original	12/18/91	44	5.1	241	<0.5	<0.3	290.1
Extraction	11/11/93	27	8.1	160	<0.5	<0.3	195.1
Well	12/13/94	19.6	0.80	62.8	NA	<0.5	83.2
	06/21/95	60.6	<0.13	105	<0.19	<0.27	165.6
EX-7	7 08/13/96	48.3	<0.5	243	<0.5	<0.5	291.3
	07/23/97	24	0.49	130	<0.15	<0.5	154.49
	07/28/98	<50	<50	1000	<50	<50	1000
	09/07/99	130	<2.8	490	NA	NA	620
	04/18/00	77	0.87	150	NA	<0.46	227.87
	09/26/00	56	<0.56	140	NA	NA	196
	04/19/01	56	<1.0	110	NA	<1.0	166
	04/16/02	19	<0.25	35	NA	<1.0	54
	11/19/02	26	0.40	58	<0.25	NA	84.4
EX-7	7 06/24/03	20	<0.50	26	<0.25	NA	46
	10/20/03	<0.50	<0.50	30	<0.25	NA	30
	09/21/04	25	<0.50	36	NA	<0.20	61
	12/14/05	14	<0.50	29	<0.25	<0.20	43
	07/31/06	14	<0.50	22	NA	NA	36
	07/31/07	9.0	<0.50	10	<0.25	<0.20	19
	08/20/08	6.2	<0.50	7.5	<0.25	<0.20	13.7
	07/29/09	7.5	<0.50	9.3	<0.25	<0.20	16.8
	07/15/10	98	<0.50	130		<0.20	228
	07/21/11	7.8	<0.50	8.6	<0.25		16.4
	07/11/12	7.0	<0.20	<0.19	<0.28		7
	07/24/13	5.6	<0.20	3.9	<0.28		9.5
	07/30/14	6.4	<0.20	4.6	<0.28		11
EX-		8.8	<0.20	6.4	<0.28		15.2

Table 1. Summary of Target Compound List VOCs Groundwater Monitoring Analytical Results for Pentair Flow Technologies, LLC Delavan Facility Monitoring

SAMPLE ID	DATE	PCE	1,1,1-TCA	TCE	1,1,2-TCA	Vinyl Chloride	Total VOCs
Units		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
NR 140 ES	S	5.0	200	5	5	0.2	
NR 140 PA	ľ	0.5	40	0.5	0.5	0.02	
EX-7/	07/28/16	6.5	<0.38	3.4	< 0.35	<0.20	9.9
EX-7R	10/24/17	7.3	<0.38	3.8	< 0.35	<0.20	11.1
EX-7R	07/31/18	4.7	<0.38	2.4	< 0.35	<0.20	7.1

Notes:

VOCs = Volatile Organic Compounds

ug/L = micrograms parts per liter, which is equivalent to parts per billion (ppb).

ES = Enforcement Standard, PAL = Preventative Action Limit

Orange Highlight = above ES, Yellow Highlight = above PAL

PCE = Tetrachloroethene

TCA = Trichloroethane TCE = Trichloroethene

Table 2. Summary of VOCs Groundwater Monitoring Analytical Results for Plant #1 Monitor Well TW-4

		,						iaiytioa										
WELL	DATE	PCE	1,1,1-TCA	TCE	1,1,2-TCA	Vinyl Chloride	Acetone	Benzene	Chloroform	1,1-DCA	1,2-DCA	1,1-DCE	CIS-1,2-DCE	Trans-1,2-DCE	Methylene Chloride	Ethylbenzene	Xylenes, Total	Total VOCs
Units		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
NR 140) ES	5.0	200	5	5	0.2	9000	5.0	6	850	5		70	100	5	700	2000	
NR 140		0.5	40	0.5	0.5	0.02	1800	0.5	0.6	85	0.5	0.7	7	20	0.5		400	
TW-4	11/05/91	0.50	10000	1100	5.6	<0.3	<1.0	<0.5	4.0	61	<0.5		50	<0.5	2.4	<0.5	<1.0	11663.5
	12/12/91	0.60	11000	1200	4.5	<0.3	<1.0	<0.5	3.7	93	3	680.0	52	<0.5	<1	<0.5	<1.0	13036.8
	11/11/93	0.80	6200	1500	3.2	<0.3	<1.0	<0.5	<0.5	26	<0.5	490	25	<0.5	<1.0	<0.5	<1.0	8245
	08/17/94	<1	3900	600	NA	<5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	4500
	12/14/94	<50	4040	630	NA	<50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	4670
	03/13/95	ND	3120	600	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	3720
	06/21/95	NA	4220	990	17.6	5.4	<1.0	NA	3.8	113	<0.5	415	93.6	NA	NA	NA	NA	5858.4
	11/08/95	1.2	3340	920	NA	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	4261.2
	01/25/96	1.1	3000	891	NA	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	3892.1
	05/14/96	0.90	1820	969	NA	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2789.9
	08/14/96	<0.5	2150	179	1.8	<0.5	<1.0	<0.5	<0.5	12	<1.6	36.7	NA	<0.5	NA	<0.5	NA	2379.5
	10/08/96	0.90	1850	541	6.3	<0.5	<1.0	<0.5	1.0	36.3	<1.6	196	NA	<0.5	NA	<0.5	NA	2631.5
	01/21/97	<0.5	2650	913	NA	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	3563
	04/01/97	0.83	1400	600	NA	<0.46	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2000.83
	07/23/97	0.67	950	450	4.4	<0.46	3.4	0.3	0.70	24	<0.20	66	36	0.5	<0.87	<0.38	<1.1	1535.97
	11/18/97	0.83	760	490	NA	<0.25	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1250.83
	03/23/98	0.74	780	530	NA	<0.46	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1310.74
	07/27/98	<2.5	410	230	<2.5	<2.5	<20	<1.0	<2.5	13	<2.5	16	21	<2.5	15	<2.5	<5.0	705
	09/28/98	<0.63	860	460	2.8	<0.46	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1322.8
	12/05/98	<6.3	830	400	NA	<4.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1230
	03/11/99	<6.3	480	270	NA	<4.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	750
	09/02/99	<3.2	180	110	2.4	<2.3	NA	<1.6	<0.90	<1.2	<1.0	19	2.0	<2.0	<4.4	<1.9	<5.5	313.4
	04/25/00	<3.2	450	280	NA	<2.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<5.5	730
	09/26/00	<6.3	340	230	<1.5	<4.6	NA	<3.1	<1.8	5.2	<2.0	15	10	<3.9	<8.7	<3.8	<5.5	600.2
	04/23/01	0.60	290	240	NA	<0.25	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	530.6
<u>_,,, </u>	10/02/01	<2.0	190	140	<2.0	<2.0	NA	<0.80	<2.0	2.1	<2.0	6.8	3.0	<2.0	8.1	<2.0	<2.0	350
TW-4	04/16/02	<0.25	76	60	1.5	<0.25	NA	<0.10	<0.25	1.4	<0.25	2.5	0.76	<0.25	0.47	< 0.25	<0.25	142.63

Table 2. Summary of VOCs Groundwater Monitoring Analytical Results for Plant #1 Monitor Well TW-4

1 4010 1	Julillia	,		. • • • • •			· · · · · · · · · · · · · · · · · · ·	inary trou		100 101	· idiic	, , ,,,,	101 1101					
WELL	DATE	PCE	1,1,1-TCA	TCE	1,1,2-TCA	Vinyl Chloride	Acetone	Benzene	Chloroform	1,1-DCA	1,2-DCA	1,1-DCE	CIS-1,2-DCE	Trans-1,2-DCE	Methylene Chloride	Ethylbenzene	Xylenes, Total	Total VOCs
Units		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
NR 140) ES	5.0	200			0.2	9000	5.0	6	850			70	100			2000	
NR 140		0.5	40				1800	0.5	0.6			0.7	7	20			400	
TW-4	06/24/03		120						<0.50				3.7	<1.0				220.9
	09/21/04		64			<0.20		NA		NA			NA	NA	NA	NA	NA	103
	12/14/05		65			<0.20			<0.20		<0.50			< 0.50		<0.50		103.83
	07/31/06					<0.20			<0.20		<0.50			< 0.50		<0.50	< 0.50	158.9
	07/31/07			<0.20				NA		NA			NA	NA	NA		NA	50
	08/20/08	< 0.50	71			<0.20		NA		NA			NA	NA	NA		NA	107.73
	07/28/09		52			<0.20		NA		NA	NA		NA	NA			NA	77.34
	07/14/10		75			<0.20					< 0.50			< 0.50		<0.50		129.38
	07/21/11	< 0.50	38			< 0.20			< 0.20		< 0.50			< 0.50		<0.50		81.58
	07/10/12		48			<0.10		< 0.074			<0.28						<0.068	104.6
	07/24/13	<0.17	26			<0.10		< 0.074			<0.28					0.13		50.97
	07/29/14		29			<0.10		< 0.074									<0.068	49.9
	07/14/15		30			<0.10					<0.28						<0.068	82.2
	07/29/16		20			<0.20					< 0.39			< 0.35		<0.18		35
	03/01/17		17			<0.20					< 0.39			< 0.35		<0.18		25
	05/17/17		22			<0.20			< 0.37		< 0.39			< 0.35		<0.18		34.86
	07/13/17		27			<0.20			< 0.37		< 0.39			< 0.35		<0.18		48.1
l L	10/24/17		22			<0.20					< 0.39			< 0.35		<0.18		38.91
1 6	02/28/18		20			<0.20					< 0.39			< 0.35		<0.18		31
TW-4	05/10/18					<0.50			<0.50		<0.50			< 0.37		< 0.33		44.28
	07/30/18	< 0.37	26	18	< 0.35	<0.20	NA	<0.15	< 0.37	4.7	< 0.39	1.6	<0.41	< 0.35	<1.6	<0.18	<0.22	50.3
N 1 4	A II					/ / \					ممسماما	4.1		7	D : 1 1	4.1		

Notes: All values listed are in parts per billion (ug/L).

VOCs = Volatile Organic Compounds

ES = Enforcement Standard, PAL = Preventative Action Limit Orange Highlight = above ES, Yellow Highlight = above PAL ND = not detected, NA = not analyzed or no data available PCE = Tetrachloroethene

TCA = Trichloroethane

TCE = Trichloroethene

DCA = Dichloroethane DCE = Dichloroethene

DCE = Dichloroethene

B = Detected in blank sample at a similar concentration.

Table 3. Pentair Flow Technologies, LLC Delavan Facility Extraction Wells Pumping Rates Measurements

Well Identification	Date	Pumping Rate (gpm)	Comments
EX-1	3/26/2018	48.1	
EX-2R	3/26/2018	47.8	
EX-3R	3/26/2018	43.8	
EX-4R	3/26/2018	44.4	
EX-5R	3/26/2018	44.8	
EX-6	3/26/2018	0.0	Down since mid-January due to frozen water line.
EX-7R	3/26/2018	44.0	
TOTAL PUMPING	RATES	272.9	gpm
		392,948.1	gallons per day
		0.3929	million gallons per day
Well Identification	Date	Pumping Rate (gpm)	Comments
EX-1	6/29/2018	56.6	
EX-2R	6/29/2018	52.9	
EX-3R	6/29/2018	46.3	
EX-4R	6/29/2018	44.8	
EX-5R	6/29/2018	44.4	
EX-6	6/29/2018	117.9	
EX-7R	6/29/2018	44.8	
TOTAL PUMPING	RATES	407.7	gpm
			gallons per day
			million gallons per day
Well Identification	Date	Pumping Rate (gpm)	Comments
EX-1	7/31/2018		Calculated from Badger Meter daily flow data.
EX-2R & EX-3R	7/31/2018		Calculated from Badger Meter daily flow data.
EX-4R	7/31/2018		Calculated from Badger Meter daily flow data.
EX-5R	7/31/2018		Calculated from Badger Meter daily flow data.
EX-6	7/31/2008		Calculated from manual flow measurements
EX-7R	7/31/2018	44.6	using 55-gallon drum.
TOTAL PUMPING	RATES	336.0	
			gallons per day
		0.4839	million gallons per day

Notes: gpm = gallons per minute NM = Not Measured

Table 4. Delavan Facility Groundwater Monitoring Program Well List Pentair Flow Technologies, LLC, Delavan, Wisconsin

	Compling	
	Sampling	
Monitoring Point	Frequency	Parameters
Plant 1 Monitoring Points		
D-25R	Annual	PCE, TCA, TCE, VC
MW-1026	Annual	PCE, TCA, TCE, VC
MW-1027	Annual	PCE, TCA, TCE, VC
TW-4	Annual	VOCs
EX-2R	Annual	PCE, TCA, TCE, VC
EX-3R	Annual	PCE, TCA, TCE, VC
Plant 2 Monitoring Points		
D-15	Annual	PCE, TCA, TCE, VC
D-18	Annual	PCE, TCA, TCE, VC
MW-2004	Annual	PCE, TCA, TCE, VC
MW-2005R	Annual	PCE, TCA, TCE, VC
MW-2011	Annual	PCE, TCA, TCE, VC
TW-1	Annual	PCE, TCA, TCE, VC
TW-3	Annual	PCE, TCA, TCE, VC
EX-1	Annual	PCE, TCA, TCE, VC
EX-7R	Annual	PCE, TCA, TCE, VC
Site Monitoring Point		
Storm Sewer Grate (SS-1)	Annual	PCE, TCA, TCE, VC

PCE = Tetrachloroethene

TCA = 1,1,1-Trichloroethane and 1,1,2-Trichloroethane

TCE = Trichloroethene

VC = Vinyl Chloride

VOCs = Volatile Organic Compounds

APPENDIX A WISCONSIN DEPARTMENT OF NATURAL RESOURCES CORRESPONDENCE

State of Wisconsin
DEPARTMENT OF NATURAL RESOURCES
Plymouth Service Center
1155 Pilgrim Road
Plymouth WI 53073

Scott Walker, Governor Daniel L. Meyer, Secretary Telephone 608-266-2621 Toll Free 1-888-936-7463 TTY Access via relay - 711

June 7, 2018

Mr. Steve Scharinger EHS Manager Pentair Flow Technologies 293 Wright Street Delayan, WI 53115

Subject: Resumption of Annual Sampling

Delavan Municipal Well No. 4 Superfund Site 290 S. Wright Street, Delavan, Wisconsin BRRTS #02-65-529579, FID #265091640

Dear Mr. Scharinger:

The Wisconsin Department of Natural Resources (DNR), in cooperation with the U.S. Environmental Protection Agency (EPA), has reviewed the 2017 Annual Progress Report, Pentair Flow Technologies, LLC, Delavan, Wisconsin, Source Area Remediation, (Report) dated February 13, 2018, as submitted by Tetra Tech, for the site identified above. Specific to Monitoring Well TW-4, the Report indicates the last five monitoring events have concentrations of trichloroethylene (TCE) below the EPA Office of Land Emergency Management, Removal Management Level of 22 µg/L. Based on these results, the DNR and the EPA are no longer requiring quarterly sampling of Monitoring Well TW-4, and Pentair can resume annual sampling of TW-4. Enclosed with this letter is a memorandum from Mr. Keith Fusinski, EPA Toxicologist, further explaining the decision to discontinue quarterly sampling and to resume an annual sampling and reporting schedule.

The DNR appreciates your efforts to restore the environment at the Pentair site. If you have any questions regarding this remedial action approval or anything outlined in the letter, please contact the DNR Project Manager, Thomas Wentland at 920-893-8528, or at thomas.wentland@wisconsin.gov.

Sincerely,

Michele R. Norman, Supervisor

Remediation & Redevelopment Program

Michele R. Hormon

Southeast Region

Attachment:

EPA Memo - Updated Recommendation for TCE monitoring well TW-4, dated Feb. 22, 2018

cc: Mr. Mark Manthey, Tetra Tech

Mr. William J. Ryan,, EPA

THE DEATH OF THE CONTROL OF THE CONT

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION 5 9311 GROH ROAD GROSSE ILE, MI 48138

MEMORANDUM

SUBJECT: Updated recommendation for TCE monitoring well TW-4 at the

Delavan Municipal Well No.4 Superfund site

FROM: Keith Fusinski, PhD Toxicologist US EPA

Superfund Division, Remedial Response Branch #1,

Science and Quality Assurance Section.

TO: Michelle Heger, Remedial Project Manager, US EPA

Superfund Division, Remedial Response Branch #1,

Remedial Response Section #2

DATE: 02/22/2018

STATEMENT OF THE ISSUES:

RPM Heger requested a review of the most recent groundwater data for the Delavan Municipal Well No. 4 site for potential vapor intrusion issues.

DISCUSSION

The following provides a brief discussion about vapor intrusion and the hazard quotient (HQ) for TCE. Vapor intrusion is the migration of volatile chemicals from the subsurface into overlying buildings. Volatile chemicals in contaminated groundwater can emit vapors that may migrate through subsurface soils and into indoor air spaces of overlying buildings. In extreme cases, the vapors may accumulate in dwellings or occupied buildings to levels that may pose near-term safety hazards (e.g., explosion), acute health effects, or aesthetic problems (e.g., odors).

The vapor intrusion pathway is considered complete when the vapors move from the source (or groundwater contamination) through the deep soil and subsurface soil gas, and into a structure. Each of these components must exist in order for the pathway to be considered complete. It is possible for volatile compounds to impact deep and subsurface soil gas but still not impact indoor air. In this case the pathway would not be considered complete and no mitigation would be required.

The US EPA determines probability of a non-cancer detrimental health effect to occur by calculating a hazard quotient (HQ). The HQ is a ratio of a single substance exposure level over a specified period of time to a reference dose of the same substance derived from a similar exposure period. It is recommended that the HQ of an exposure to a chemical of concern be below or equal to 1, which is the level at which no adverse human health effects are expected to occur. For cancer risk, the US EPA recommends a screening level that would equate to a one in a million (1x10⁻⁶) or greater lifetime risk of developing cancer from exposure to a contaminated site. US EPA Office of Land Emergency Management (OLEM) has recommended that Removal Management Levels (RML) be set at a non-cancer risk (HQ) greater than 3, or a lifetime cancer risk greater than 1 in 10,000 for most chemicals, whichever is most protective.

The IRIS Toxicological Review for trichloroethene (TCE) describes the basis for the chronic oral Reference Dose (RfD) and chronic inhalation Reference Concentration (RfC) used to determine risk at Superfund sites. One of the health endpoints for the TCE RfD and RfC is increased fetal cardiac malformations observed in laboratory animals exposed *in utero* to TCE. There is also some human evidence of developmental heart defects from TCE exposure in community studies. Because this health endpoint, by definition, is the result of a short-term exposure (during a two week period of human gestation), the chronic RfD and chronic RfC provide important information to incorporate into the evaluation of short-term exposures to TCE, including the potential for Imminent Hazards based on potential noncancer risk.

As stated previously, OLEM has set the RML for most chemicals at 3. However, due to the short-term exposure effects which may occur during gestation, the RML for TCE has been set to a HQ of 1. This would equate to 22µg/L for TCE in groundwater to protect against a commercial/industrial exposure.

PREVIOUS REVIEW

The previous review on May 2, 2016, of the groundwater data 2012 through 2014, showed TCE concentrations in monitoring well TW-4 (on the southeast side of plant 1) were decreasing. In 2012, the TCE concentration was 53μg/L. In 2013, it dropped to 23μg/L. In 2014, the TCE concentration fell below the HQ of 1 value to 20μg/L. However, in 2015 the concentration rose to 36μg/L, above the EPA HQ of 1 value. Therefore, it was recommended that monitoring of well TW-4 be increased to quarterly sampling until TCE concentrations fall below 22μg/L and show a consistent trend of staying below this value in order to protect female workers of child-bearing age. It is important to note that these recommendations were made with no information on the manufacturing process which take place near the area of Plant 1, well TW-4 or on the employee demographics.

CURRENT REVIEW

RPM Heger provided the following TCE concentrations results from sampling data which was collected from TW-4 based the recommendations above.

7/29/16 TCE = 15 μg/L Q1: 3/1/17 TCE = 8 μg/L Q2: 5/17/17 TCE = 11 μg/L Q3: 7/13/17 TCE = 19 μg/L Q4: 10/24/17 TCE = 16 μg/L

CURRENT RECOMMENDATIONS

Since the quarterly sampling results shown above are below the RML of 22 μ g/L, it is currently recommended that sampling of TW-4 revert back to annual sampling and that no additional vapor intrusion investigation is required at this time.

State of Wisconsin
DEPARTMENT OF NATURAL RESOURCES
2300 N. Dr. Martin Luther King, Jr. Drive
Milwaukee WI 53212-3128

Scott Walker, Governor Daniel L. Meyer, Secretary Telephone 608-266-2621 Toll Free 1-888-936-7463 TTY Access via relay - 711

June 7, 2018

Mr. Steve Scharinger EHS Manager Pentair Flow Technologies 293 Wright Street Delavan, WI 53115

Subject: Approval of Institutional Control Implementation and Assurance Plan

Delavan Municipal Well No. 4 Superfund Site 290 S. Wright Street, Delavan, Wisconsin BRRTS #02-65-529579, FID #265091640

Dear Mr. Scharinger:

The Wisconsin Department of Natural Resources (DNR) and the U.S. Environmental Protection Agency (EPA) are in receipt of your submittal entitled, "Institutional Control Implementation and Assurance Plan" (ICIAP), dated February 16, 2018, and submitted by Tetra Tech on behalf of Pentair Flow Technologies (Pentair), formerly Sta-Rite Industries, Inc., for the Delavan Municipal Well No.4 Superfund site (Site). The purpose of this letter is to approve the ICIAP, including the use of Institutional Controls (ICs) as a component of remedial actions at the Site. You, as the current owner, as well as future owners of the Site, must comply with the ICs within the final ICIAP, as approved, and as explained in the conditions in this letter. Please read this letter closely to ensure that you comply with all conditions and other on-going requirements.

ICs are non-engineered instruments, such as administrative and/or legal controls, that help minimize the potential for exposure to contamination and protect the integrity of the remedy. Compliance with ICs is required to ensure long-term protectiveness for any areas which do not allow for unlimited use and unrestricted exposure. Groundwater at the Site currently exceeds applicable groundwater cleanup standards, and ICs are required to restrict groundwater use until the groundwater cleanup standards are achieved. Soils at the Site have been cleaned up to levels that are protective of industrial uses, but are not protective of non-industrial uses. The residual soil contamination on the Site requires ICs to prevent non-industrial uses.

For this Site, ICs are imposed through DNR's Continuing Obligations (COs) process which includes listing on the DNR's Bureau for Remediation and Redevelopment Tracking System (BRRTS) database. BRRTS is an online, publicly-accessible registry of sites in Wisconsin which have environmental contamination. The DNR has placed the Delavan Municipal Well No. 4 Site on BRRTS, issued the CO notice letter on October 25, 2017, received the final IC Implementation and Assurance Plan (ICIAP) from Pentair on February 16, 2018 and imposes the continuing obligations on the site with this approval letter. EPA concurs with the implementation of the final ICIAP upon formal approval by DNR via this letter.

Due to contamination remaining on the Site, the COs are part of the cleanup and remedial actions approved for the Site. The continuing obligations imposed on the Site are listed below:

- Groundwater contamination exists across the Site above regulatory standards. Water supply wells shall
 not be constructed on the Site without prior approval of the DNR pursuant to Wis. Admin. Code § NR
 812.09(4)(w). This requirement also applies to private drinking water wells and high capacity wells. See
 Wis. Admin. Code § NR 812.09(4)(a).
- 2. The following Industrial Soil Standards apply to the three former TCE-source areas (former sump area, former chip storage area, and former southeast extraction area) where contaminated soils remain at levels exceeding the non-industrial standard, per Wis. Admin. Code §§ NR 726.15, NR 727.07. Refer to Figure 1: Site Layout and Total VOCs Concentrations for Groundwater Monitoring Points, Jan. 23, 2018. These areas may not be used or developed for a residential, commercial, agricultural or other non-industrial use, unless prior written approval has been obtained from the DNR. Pentair or future property owners shall notify the DNR at least 45 days before changing the use in these areas. An investigation and remedial action to meet applicable soil cleanup standards may be required at that time.
- All site monitoring wells shall be inspected annually and repaired as needed to maintain the integrity of the wells.

The DNR expects the continued submittal of annual reports and plans to prepare the next 5-Year Review of the Site in 2020, as required by the EPA.

The DNR appreciates your efforts to restore the environment at the Pentair site. If you have any questions regarding this remedial action approval or anything outlined in the letter, please contact the DNR Project Manager, Thomas Wentland at 920-893-8528, or at thomas.wentland@wisconsin.gov.

Sincerely,

Michele R. Norman, Supervisor

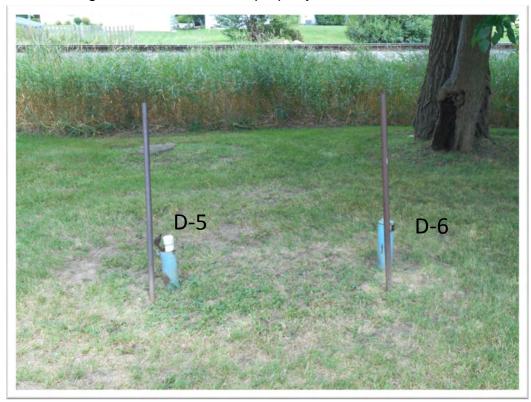
Remediation & Redevelopment Program

Michele R. Horman

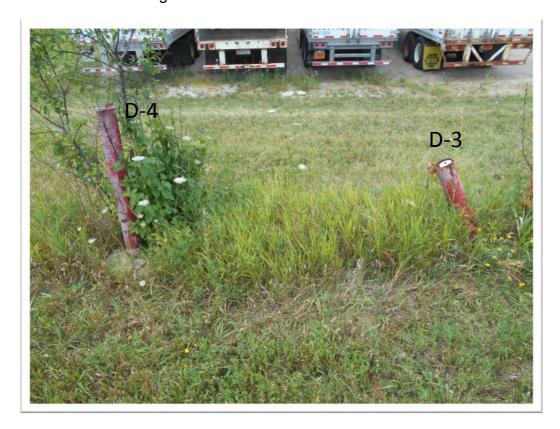
Southeast Region

Attachment:

Figure 1: Site Layout and Total VOCs Concentrations for Groundwater Monitoring Points, Jan. 23, 2018


cc: Mr. Mark Manthey, Tetra Tech

Ms. Michelle Heger, U.S. Environmental Protection Agency



APPENDIX B MONITOR WELL AND SITE INSPECTON PHOTOGRAPHS

1. Monitoring wells D-5 and D-6 on property across the street of Plant 1.

2. Monitoring wells D-3 and D-4 located northeast of Plant 2.

3. North side of property next to Plant 1.

4. West side of property looking towards Plant 1.

5. West side of property located west of Plant 2.

6. South side of property looking towards Plant 2.

7. View looking north along east side of property. .

8. View looking east towards Extraction well EX-7R located on north side of Plant 2 in former sump source area.

9. View looking east towards monitoring well TW-4 located on south side of Plant 1.

10. View inside south side of Plant 1 in area where low-level VOCs impacts occur in the sub-surface soil.

APPENDIX C GROUNDWATER MONITORING ANALYTICAL RESULTS AND FIELD DATA SHEETS

TETRA TECH FIELD WATER QUALITY SAMPLING AND ANALYSIS FORM

	PROJECT	INFORMATION	INSTRUMENTS						
ROJECT	Delavan Fa	cility Remedial A	Action	Temp. & pH	Li	anna	www.		
PROJECT NO.	117-746900)2.0 ⁻		Conductivity		LONA			
OCATION	Delavan, W	/1	-	ORP NA					
PERSONNEL	Todd M. Th	nomson		DO	N	A			
SAMPLE PO	TNIC	MW-2005R	MW-2011	D-15		TW-3	MW-2004		
WATER TYPE		Groundwater	Groundwater	Groundwa	ter	Groundwater	Groundwater		
DATE (month/da	y/year)	7-30-18	7-3-18	7-31-1	8	7-30-18	7-30-18		
CLOCK TIME (M	ilitary)	13:35	Ke:20	08:10		15.3	11:50		
DEPTH TO WAT	ER (ft)*	22.93	24.30	3.35	-0	30.99	25.103		
MEASURED WE	LL DEPTH (ft)*	37.81	36.51	38.18		50.73	39.33		
CASING VOLUN	IE (gallons)	24	20	1.3		3.2	2.1		
PURGE VOLUM	E (gallons)	12,	10	10		15	10		
DEPTH SAMPLI	E TAKEN (ft)*	35	32.	3/2		40	35		
SAMPLING DEV	rice 2	VarGING Bail	0						
FIELD TEMPER	ATURE (°C)	12.4	12.6	13.0		13.6	15.		
pH		7.05	711	7.10		7.03	6.80		
ELEC. COND. (uS/cm) at 25° C	15/23	2/15	3037		1049	92/2		
ORP (mV)		1/8	NA	NE		NA	1/0		
DISSOLVED OXYGEN (ppm)		1/2	1/2	1/1		18	NA		
DISSOLVED OXYGEN (% Sat.)		1/2	MA	1/0		172	1/4		
COLOR	· \	CITAR	(15AR)	C/see		C/SAR	Cler		
ODOR	1	Nox(E)	Nosts	NowlE		Nowe	HONE		
CLARITY		(13AR)	1-1540	-/INC	- Andrew	C/JAR.	,		
SAMPLING PA	RAMETERS	# OF CONTAINERS &	VOLUME; CONTAINE	R TYPE (A = AMBE	R GL	ASS; G = GLASS; P = PL JTRAL; FILTERED (YES	ASTIC);		
DCE TCE	TCA Vinul	THESERVATIVE THE	C (C = CAB ADDED, F =	- FIELD ADDED) O	n NE	TRAL, FILTERED (TES	I I		
	TCA, Vinyl PA Method	3 – 40 ml; G; L; HCl; No	3 – 40 ml; G; L; HCl; No	3 – 40 ml; L; HCl; No		3 – 40 ml; G; L; HCl; No	3 – 40 ml; G; L; HCl; No		
					(4)				
Comments	<u>:</u>						1		
NAME OF LAS	ORATORY	Test America	Test America	Test Ame	rica	Test America	Test Americ		
DATE SENT TO LAB		8-1-18	2-1-18	8-1-18		8-1-18 TMT	2-1-12		
SAMPLER'S NAME		TMT	TMT	TMT					

TETRA TECH FIELD WATER QUALITY SAMPLING AND ANALYSIS FORM

	PROJEC	T INFORMATION	INSTRUMENTS					
PROJECT	Delavan Fa	cility Remedial A	Action	Temp. & pH	HANNA			
PROJECT NO.	117-746900	02.01		Conductivity	HAMMA			
LOCATION	Delavan, V	/1		ORP	NA	4		
PERSONNEL	Todd M. TI	nomson		DO	NA			
SAMPLE PO	TNIC	TW-1	D-18	D-25R	MW-1027	TW-4		
WATER TYPE	169.2	Groundwater	Groundwater	Groundwat	er Groundwater	Groundwater		
DATE (month/da	y/year)	7-30-18	7-30-18	7-30-1	8 7-3-18	7-30-18		
CLOCK TIME (M	ilitary)	12:45	14:30	11:00	3:45	2:30		
DEPTH TO WAT	ER (ft)*	25.25	28-87	30.80	28.10	3/2.11		
MEASURED WE	LL DEPTH (ft)*	45.50	37.90	42.39		5.52		
CASING VOLUM	E (gallons)	3.3	1.8	1.9	1.9	2.4		
PURGE VOLUMI	E (gallons)	15	10	10	10	10		
DEPTH SAMPLE	TAKEN (ft)*	40	35	40	35	45		
SAMPLING DEV	ICE A	VANGING BAILER				7		
FIELD TEMPERA	ATURE (°C)	12.5	12.7	15.1	15.8	1/2.		
pН		6.97	7.00	7.38	7.52	7.08		
ELEC. COND. (uS/cm) at 25° C	9/3/8	922	1005	13:15	2499		
ORP (mV)	740 152 AS	NA	NA	NA	K/E	NA		
DISSOLVED OX	YGEN (ppm)	NA	NA	NA	NA	A(A)		
DISSOLVED OXYGEN (% Sat.)		NA	NA	MA	NA	RE		
COLOR		CLEAR	dese	depe	dire	dipa		
ODOR		Norte	NONE	NONE,	NoxE	NONE		
CLARITY		CLIAR	CLEAR	CLEAR	dee	CLEAR		
SAMPLING PAF	RAMETERS	# OF CONTAINERS & PRESERVATIVE TYP	VOLUME; CONTAINER E (L = LAB ADDED; F =	TYPE (A = AMBER FIELD ADDED) OR	GLASS; G = GLASS; P = PL NEUTRAL; FILTERED (YES	ASTIC); or NO)		
PCE, TCE, Chloride (El 8260B)		3 – 40 ml; G; L; HCl; No	3 – 40 ml; G; L; HCl; No	3 – 40 ml; 6 HCl; No	3 – 40 ml; G; L; HCl; No			
VOCs (EPA 8260B)	Method					3 – 40 ml; G; L; HCl; No		
Comments			1	1	1	1		
NAME OF LAB	ORATORY	Test America	Test America	Test Ameri	ca Test America	Test America		
DATE SENT TO	LAB	8-1-18	8-1-18	8-1-12	3 8-1-18	8-1-18		
SAMPLER'S N	THOUSEND ON	TMT	TMT	TMT	TMT	TMT		

TETRA TECH FIELD WATER QUALITY SAMPLING AND ANALYSIS FORM

	PROJEC	T INFORMATION	المراجعة المناسبة	INSTRUMENTS					
PROJECT	Delavan Fa	acility Remedial	Action	Temp. & pH	H	PANA			
PROJECT NO.	117-746900	02.01		Conductivity	14	ONNA			
LOCATION	Delavan, V	VI		ORP NA					
PERSONNEL	Todd M. T	homson		DO	N/				
SAMPLE POINT		MW-1026	EX-1	EX-2R		EX-3R	EX-7R		
WATER TYPE		Groundwater	Groundwater	Groundwa	ter	Groundwater	Groundwater		
DATE (month/da	y/year)	7-3-18	7-31-18	7-31-1	8	7-31-18	7-31-18		
CLOCK TIME (M	ilitary)	1:15	89:10	29:40	•	10:00	28:30		
DEPTH TO WAT	ER (ft)*	29.79	NA	NA		NA	NA		
MEASURED WE	LL DEPTH (ft)*	36,00	NA	NA		NA	NA		
CASING VOLUM	IE (gallons)	1.0	NA	NA		NA	NA		
PURGE VOLUM	E (gallons)	5	(374R)	GRAB		223	(FAR		
DEPTH SAMPLE	TAKEN (ft)*	35	NA	NA		MA	NA		
SAMPLING DEV	ICE _	INGHE BULL	SPISOT	SPV-01	-	591501	57501		
FIELD TEMPER		13.2	11.2	14.5		14.6	13.6		
pH		7.53	7.29	7.7		7.20	7.32		
ELEC. COND. (uS/cm) at 25° C		929	1263	1995		1046	1287		
ORP (mV)		NA	NA	NA		1/0	NA		
DISSOLVED OX	YGEN (ppm)	NA	NA	NA		1/1	1/A		
DISSOLVED OX	YGEN (% Sat.)	NA	NA	MA		NE	NA		
COLOR		BROUSES	classe	Clear		Clear	dese		
ODOR		1618	Novie	164/5		Nov2	NONE		
CLARITY		TUEBIA	CHAR	Clerk		r/zee	1/200		
SAMPLING PAR	RAMETERS	# OF CONTAINERS & PRESERVATIVE TYPE	k VOLUME; CONTAINER PE (L = LAB ADDED; F =	TYPE (A = AMBE FIELD ADDED) O	R GLA R NEU	SS; G = GLASS; P = PL TRAL; FILTERED (YES o	ASTIC); or NO)		
PCE, TCE, Chloride (E 8260B)		3 – 40 ml; G; L; HCl; No	3 – 40 ml; G; L; HCl; No	3 – 40 ml; L; HCl; No	G;	3 – 40 ml; G; L; HCl; No	3 – 40 ml; G; L; HCl; No		
Comments									
NAME OF LAB	ORATORY	Test America	Test America	Test Amer	ica	Test America	Test America		
DATE SENT TO LAB		8-1-18	8-1-18	8-1-18		8-1-18	8-1-1%		
SAMPLER'S NAME		TMT	TMT	TMT					

Sta-Rite Delavan Facility Field Water Level Data Sheet

Well ID	Date	Time	Depth to Groundwater (feet btoc)	Notes
Plant 1 Wells				
EX-2R	NA	NA	NA	
EX-3	NA	NA	MA	
EX-4	K/A	NA	SA	
EX-5	N/A	NA	NA	
EX-6	NA	NA	M	
TW-2			/	
TW-2A				
TW-4	7-3-18	1:50	36.11	
D-1R	7-3-18	1.35	30.83	
D-5	7-30-18	11:45	31.01	
19-14RD-6	7-30-18	11:40	31.00	
D-23	7-3-18	12.15	30.78	
D-24R	7-31-18	11:05	28.59	
D-25R	7-30-18	10:15	30 80	
D-26	7-3-18	11:15	3.32	100 C
D-27	7-3-18	11:20	3.28	
MW-1026	7-3-18	12:45	29.79	
MW-1027	7-3-18	3:15	28.10	
Plant 2 Wells				
EX-1	MA	NA	NA	
EX-7	NA	NA	NA	
TW-1	7-3-18	12:10	25.25	27xc 477
TW-1A	7-3-18	12:05	26.50	2" RIC G"PTNo Lock
TW-3	7-30-18	14:40	30.99	
D-15	7-31-18	07:35	3.35	
P-2009	7-31-18	07:25	30.05	
P-2010	7-31-18	07.30	29.75	6"97 No Lok
D-18	7-3-18	13:45	28.87	CAP VENT
MW-2004	7-30-18	11:25	25.63	2'7K 4"PT
MW-2005R	7-3-18	13:05	22.93	
MW-2011	7-3-18	15:40	24.30	

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Chicago 2417 Bond Street University Park, IL 60484 Tel: (708)534-5200

TestAmerica Job ID: 500-149315-1

Client Project/Site: Pentair - Delavan, WI - 117-7469002-04

For:

Tetra Tech GEO 175 N Corporate Drive Suite 100 Brookfield, Wisconsin 53045

Attn: Mr. Mark Manthey

Sanda freduct

Authorized for release by: 8/15/2018 7:52:35 AM

Sandie Fredrick, Project Manager II (920)261-1660

sandie.fredrick@testamericainc.com

..... LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page. This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Project/Site: Pentair - Delavan, WI - 117-7469002-04

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Detection Summary	4
Method Summary	6
Sample Summary	7
Client Sample Results	8
Definitions	16
QC Association	17
Surrogate Summary	18
QC Sample Results	19
Chronicle	26
Certification Summary	29
Chain of Custody	30
Receipt Checklists	33

3

4

8

46

11

13

14

Case Narrative

Client: Tetra Tech GEO

Project/Site: Pentair - Delavan, WI - 117-7469002-04

TestAmerica Job ID: 500-149315-1

Job ID: 500-149315-1

Laboratory: TestAmerica Chicago

Narrative

Job Narrative 500-149315-1

Comments

No additional comments.

Receipt

The samples were received on 8/2/2018 9:15 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.3° C.

GC/MS VOA

Method(s) 8260B: The following sample was collected in properly preserved vials for analysis of volatile organic compounds (VOCs). However, the pH was outside the required criteria when verified by the laboratory, and corrective action was not possible: Trip Blank (500-149315-16).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

9

3

/

6

1

_

1 1

12

13

Client: Tetra Tech GEO

Trichloroethene

Project/Site: Pentair - Delavan, WI - 117-7469002-04

TestAmerica Job ID: 500-149315-1

8260B

Client Sample ID: TW-4 Lab Sample ID: 500-149315-1 Analyte Result Qualifier RL **MDL** Unit Dil Fac D Method Prep Type 1.1-Dichloroethane 1.0 0.41 ug/L 8260B Total/NA 4.7 1.1-Dichloroethene 1.6 1.0 0.39 ug/L 1 8260B Total/NA 1,1,1-Trichloroethane 26 1.0 0.38 ug/L 1 8260B Total/NA

Client Sample ID: D-25R Lab Sample ID: 500-149315-2

0.50

0.16 ug/L

18

Analyte Result Qualifier RL **MDL** Unit Dil Fac D Method Prep Type Trichloroethene 0.55 0.50 8260B Total/NA 0.16 ug/L

Client Sample ID: MW-1026 Lab Sample ID: 500-149315-3

Result Qualifier RL **MDL** Unit Dil Fac D Method Analyte **Prep Type** 1,1,1-Trichloroethane 1.0 0.38 ug/L 8260B 11 Total/NA Trichloroethene 2.7 8260B Total/NA 0.50 0.16 ug/L

Client Sample ID: MW-1027 Lab Sample ID: 500-149315-4

Analyte Result Qualifier RL **MDL** Unit Dil Fac D Method Prep Type 1,1,1-Trichloroethane 4.9 1.0 0.38 ug/L 8260B Total/NA 8260B 27 Trichloroethene 0.50 0.16 ug/L Total/NA

Client Sample ID: MW-2005R Lab Sample ID: 500-149315-5

No Detections.

Client Sample ID: MW-2011 Lab Sample ID: 500-149315-6

Analyte Result Qualifier RL **MDL** Unit Dil Fac D Method Prep Type 1,1,1-Trichloroethane 1.2 1.0 0.38 ug/L 8260B Total/NA Trichloroethene 7.6 0.50 8260B Total/NA 0.16 ug/L

Client Sample ID: TW-3 Lab Sample ID: 500-149315-7

No Detections.

Client Sample ID: MW-2004 Lab Sample ID: 500-149315-8

No Detections.

Client Sample ID: TW-1 Lab Sample ID: 500-149315-9

No Detections.

Client Sample ID: D-18 Lab Sample ID: 500-149315-10

No Detections.

Client Sample ID: D-15 Lab Sample ID: 500-149315-11

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Tetrachloroethene	6.3	1.0	0.37 ug/L	1 8260B	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Chicago

8/15/2018

Page 4 of 33

Total/NA

Detection Summary

Client: Tetra Tech GEO

Project/Site: Pentair - Delavan, WI - 117-7469002-04

TestAmerica Job ID: 500-149315-1

Client Sample ID: D-15 (Continued)	Lab Sample ID: 500-149315-11

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Trichloroethene	7.0	0.50	0.16 ug/L		8260B	Total/NA

Client Sample ID: EX-1 Lab Sample ID: 500-149315-12

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Tetrachloroethene	0.60	J	1.0	0.37	ug/L	1	_	8260B	Total/NA
Trichloroethene	0.30	J	0.50	0.16	ug/L	1		8260B	Total/NA

Client Sample ID: EX-2R Lab Sample ID: 500-149315-13

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
1,1,1-Trichloroethane	1.7	1.0	0.38 ug/L	1 8260B	Total/NA
Trichloroethene	3.6	0.50	0.16 ug/L	1 8260B	Total/NA

Lab Sample ID: 500-149315-14 **Client Sample ID: EX-3**

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
1,1,1-Trichloroethane	2.4	1.0	0.38 ug/L	1 8260B	Total/NA
Trichloroethene	2.4	0.50	0.16 ug/L	1 8260B	Total/NA

Client Sample ID: EX-7 Lab Sample ID: 500-149315-15

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Tetrachloroethene	4.7		1.0	0.37	ug/L		_	8260B	Total/NA
Trichloroethene	2.4		0.50	0.16	ug/L	1		8260B	Total/NA

Client Sample ID: Trip Blank Lab Sample ID: 500-149315-16

No Detections.

This Detection Summary does not include radiochemical test results.

Method Summary

Client: Tetra Tech GEO

Project/Site: Pentair - Delavan, WI - 117-7469002-04

TestAmerica Job ID: 500-149315-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL CHI
5030B	Purge and Trap	SW846	TAL CHI

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

9

4

5

6

8

9

11

13

14

Sample Summary

Client: Tetra Tech GEO

Project/Site: Pentair - Delavan, WI - 117-7469002-04

TestAmerica Job ID: 500-149315-1

Lab Sample ID	Client Sample ID	Matrix	Collected Received
500-149315-1	TW-4	Ground Water	07/30/18 02:30 08/02/18 09:19
500-149315-2	D-25R	Ground Water	07/30/18 11:00 08/02/18 09:1
500-149315-3	MW-1026	Ground Water	07/30/18 01:15 08/02/18 09:1
500-149315-4	MW-1027	Ground Water	07/30/18 03:45 08/02/18 09:19
500-149315-5	MW-2005R	Ground Water	07/30/18 13:35 08/02/18 09:19
500-149315-6	MW-2011	Ground Water	07/30/18 16:20 08/02/18 09:1
500-149315-7	TW-3	Ground Water	07/30/18 15:30 08/02/18 09:19
500-149315-8	MW-2004	Ground Water	07/30/18 11:50 08/02/18 09:1
500-149315-9	TW-1	Ground Water	07/30/18 12:45 08/02/18 09:1
500-149315-10	D-18	Ground Water	07/30/18 14:30 08/02/18 09:1
500-149315-11	D-15	Ground Water	07/31/18 08:10 08/02/18 09:19
500-149315-12	EX-1	Ground Water	07/31/18 09:10 08/02/18 09:19
500-149315-13	EX-2R	Ground Water	07/31/18 09:40 08/02/18 09:1
500-149315-14	EX-3	Ground Water	07/31/18 10:00 08/02/18 09:1
500-149315-15	EX-7	Ground Water	07/31/18 08:30 08/02/18 09:1
500-149315-16	Trip Blank	Water	07/31/18 00:00 08/02/18 09:1

6

Я

9

10

4.0

13

14

Client Sample Results

Client: Tetra Tech GEO

Project/Site: Pentair - Delavan, WI - 117-7469002-04

Lab Sample ID: 500-149315-1

TestAmerica Job ID: 500-149315-1

Matrix: Ground Water

Date Collected: 07/30/18 02:30 Date Received: 08/02/18 09:15

Client Sample ID: TW-4

Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
<0.15		0.50	0.15	ug/L		<u> </u>	08/09/18 14:54	
<0.36		1.0		-			08/09/18 14:54	
< 0.43		1.0		_			08/09/18 14:54	
<0.37		1.0	0.37	ug/L			08/09/18 14:54	
<0.48		1.0		-			08/09/18 14:54	
<0.80		2.0		_			08/09/18 14:54	
<0.38		1.0		-			08/09/18 14:54	
< 0.39		1.0					08/09/18 14:54	
<0.51		1.0		_			08/09/18 14:54	
<0.37		2.0		-			08/09/18 14:54	· · · · · · .
< 0.32		1.0					08/09/18 14:54	
				-				
				_				· · · · · · .
				-				
<0.42				-				
				_				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				· · · · · .
				-				
				-				
								,
				-				
				-				
								•
<0.15								•
< 0.35		1.0	0.35				08/09/18 14:54	
	<0.15 <0.36 <0.43 <0.37 <0.48 <0.80 <0.38 <0.39 <0.51 <0.37 <0.32 <0.31 <0.35 <0.41	<0.36 <0.43 <0.37 <0.48 <0.80 <0.38 <0.39 <0.51 <0.37 <0.32 <0.31 <0.35 <0.41 <0.42 <0.49 <2.0 <0.39 <0.27 <0.33 <0.40 <0.36 <0.67 4.7 <0.39 1.6 <0.43 <0.36 <0.44 <0.30 <0.18 <0.45 <0.39 <0.28 <1.6 <0.39 <0.28 <1.6 <0.39 <0.28 <1.6 <0.39 <0.28 <1.6 <0.39 <0.28 <1.6 <0.39 <0.28 <1.6 <0.39 <0.28 <1.6 <0.39 <0.28 <1.6 <0.39 <0.41 <0.36 <0.40 <0.39 <0.41 <0.36 <0.40 <0.39 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.37	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15 0.50 0.15 ug/L 08/09/18 14:54 <0.36 1.0 0.36 ug/L 08/09/18 14:54 <0.43 1.0 0.43 ug/L 08/09/18 14:54 <0.37 1.0 0.37 ug/L 08/09/18 14:54 <0.48 1.0 0.48 ug/L 08/09/18 14:54 <0.80 2.0 0.80 ug/L 08/09/18 14:54 <0.80 2.0 0.80 ug/L 08/09/18 14:54 <0.38 1.0 0.38 ug/L 08/09/18 14:54 <0.39 1.0 0.39 ug/L 08/09/18 14:54 <0.37 2.0 0.37 ug/L 08/09/18 14:54 <0.37 2.0 0.37 ug/L 08/09/18 14:54 <0.31 1.0 0.32 ug/L 08/09/18 14:54 <0.35 1.0 0.35 ug/L 08/09/18 14:54 <0.41 1.0 0.41 ug/L 08/09/18 14:54 <0.42 1.0 0.42 ug/L

TestAmerica Chicago

Page 8 of 33 8/15/2018

Client Sample ID: TW-4

Date Collected: 07/30/18 02:30 Date Received: 08/02/18 09:15

Lab Sample ID: 500-149315-1

Matrix: Ground Water

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Analyte	Result	Qualifier	, RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3-Trichlorobenzene	<0.46		1.0	0.46	ug/L			08/09/18 14:54	1
1,2,4-Trichlorobenzene	<0.34		1.0	0.34	ug/L			08/09/18 14:54	1
1,1,1-Trichloroethane	26		1.0	0.38	ug/L			08/09/18 14:54	1
1,1,2-Trichloroethane	< 0.35		1.0	0.35	ug/L			08/09/18 14:54	1
Trichloroethene	18		0.50	0.16	ug/L			08/09/18 14:54	1
Trichlorofluoromethane	<0.43		1.0	0.43	ug/L			08/09/18 14:54	1
1,2,3-Trichloropropane	<0.41		1.0	0.41	ug/L			08/09/18 14:54	1
1,2,4-Trimethylbenzene	< 0.36		1.0	0.36	ug/L			08/09/18 14:54	1
1,3,5-Trimethylbenzene	<0.25		1.0	0.25	ug/L			08/09/18 14:54	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			08/09/18 14:54	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			08/09/18 14:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			72 - 124					08/09/18 14:54	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		72 - 124		08/09/18 14:54	1
Dibromofluoromethane	87		75 - 120		08/09/18 14:54	1
1,2-Dichloroethane-d4 (Surr)	87		75 - 126		08/09/18 14:54	1
Toluene-d8 (Surr)	101		75 - 120		08/09/18 14:54	1

Client Sample ID: D-25R

Date Collected: 07/30/18 11:00 Date Received: 08/02/18 09:15

Lab Sample ID: 500-149315-2

Matrix: Ground Water

Method: 8260B - Volatil	e Organic Compounds (GC	/MS)						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	<0.37	1.0	0.37	ug/L			08/09/18 15:21	1
1,1,1-Trichloroethane	<0.38	1.0	0.38	ug/L			08/09/18 15:21	1
1,1,2-Trichloroethane	<0.35	1.0	0.35	ug/L			08/09/18 15:21	1
Trichloroethene	0.55	0.50	0.16	ug/L			08/09/18 15:21	1
Vinyl chloride	<0.20	1.0	0.20	ug/L			08/09/18 15:21	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102	72 - 124		08/09/18 15:21	1
Dibromofluoromethane	84	75 - 120		08/09/18 15:21	1
1,2-Dichloroethane-d4 (Surr)	86	75 - 126		08/09/18 15:21	1
Toluene-d8 (Surr)	101	75 - 120		08/09/18 15:21	1

Client Sample ID: MW-1026

Date Collected: 07/30/18 01:15

Date Received: 08/02/18 09:15

Lab Sample ID: 500-149315-3 **Matrix: Ground Water**

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	<0.37	1.0	0.37	ug/L			08/09/18 15:48	1
1,1,1-Trichloroethane	11	1.0	0.38	ug/L			08/09/18 15:48	1
1,1,2-Trichloroethane	<0.35	1.0	0.35	ug/L			08/09/18 15:48	1
Trichloroethene	2.7	0.50	0.16	ug/L			08/09/18 15:48	1
Vinyl chloride	<0.20	1.0	0.20	ug/L			08/09/18 15:48	1

Surrogate	%Recovery	Qualifier	Limits	Prepared Analy	zed Dil Fa	ac
4-Bromofluorobenzene (Surr)	102		72 - 124	08/09/18	15:48	1
Dibromofluoromethane	90		75 - 120	08/09/18	15:48	1

TestAmerica Chicago

Page 9 of 33

8/15/2018

Project/Site: Pentair - Delavan, WI - 117-7469002-04

Client Sample ID: MW-1026

Date Collected: 07/30/18 01:15 Date Received: 08/02/18 09:15 Lab Sample ID: 500-149315-3

Matrix: Ground Water

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	1,2-Dichloroethane-d4 (Surr)	87		75 - 126		08/09/18 15:48	1
l	Toluene-d8 (Surr)	100		75 - 120		08/09/18 15:48	1

Client Sample ID: MW-1027

Date Collected: 07/30/18 03:45 Date Received: 08/02/18 09:15

Lab Sample ID: 500-149315-4

Matrix: Ground Water

Method: 8260B - Volatile Organic Compounds (GC/MS)

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	<0.37	1.0	0.37	ug/L			08/09/18 16:16	1
1,1,1-Trichloroethane	4.9	1.0	0.38	ug/L			08/09/18 16:16	1
1,1,2-Trichloroethane	<0.35	1.0	0.35	ug/L			08/09/18 16:16	1
Trichloroethene	27	0.50	0.16	ug/L			08/09/18 16:16	1
Vinyl chloride	<0.20	1.0	0.20	ug/L			08/09/18 16:16	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		72 - 124		08/09/18 16:16	1
Dibromofluoromethane	96		75 - 120		08/09/18 16:16	1
1,2-Dichloroethane-d4 (Surr)	96		75 - 126		08/09/18 16:16	1
Toluene-d8 (Surr)	102		75 - 120		08/09/18 16:16	1

Client Sample ID: MW-2005R

Date Collected: 07/30/18 13:35 Date Received: 08/02/18 09:15

Lab Sample ID: 500-149315-5

Matrix: Ground Water

Method: 8260B - Volatile Organic Compounds (GC/MS)

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	<0.37	1.0	0.37	ug/L			08/09/18 16:43	1
1,1,1-Trichloroethane	<0.38	1.0	0.38	ug/L			08/09/18 16:43	1
1,1,2-Trichloroethane	<0.35	1.0	0.35	ug/L			08/09/18 16:43	1
Trichloroethene	<0.16	0.50	0.16	ug/L			08/09/18 16:43	1
Vinyl chloride	<0.20	1.0	0.20	ug/L			08/09/18 16:43	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102	72 - 124		08/09/18 16:43	1
Dibromofluoromethane	97	75 - 120		08/09/18 16:43	1
1,2-Dichloroethane-d4 (Surr)	88	75 - 126		08/09/18 16:43	1
Toluene-d8 (Surr)	87	75 - 120		08/09/18 16:43	1

Client Sample ID: MW-2011

Date Collected: 07/30/18 16:20 Date Received: 08/02/18 09:15

Lab Sample ID: 500-149315-6

Matrix: Ground Water

Method: 8260B - Volatile Or								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	<0.37	1.0	0.37	ug/L			08/09/18 17:10	1
1,1,1-Trichloroethane	1.2	1.0	0.38	ug/L			08/09/18 17:10	1
1,1,2-Trichloroethane	<0.35	1.0	0.35	ug/L			08/09/18 17:10	1
Trichloroethene	7.6	0.50	0.16	ug/L			08/09/18 17:10	1
Vinyl chloride	<0.20	1.0	0.20	ug/L			08/09/18 17:10	1

TestAmerica Chicago

Page 10 of 33

Project/Site: Pentair - Delavan, WI - 117-7469002-04

Client Sample ID: MW-2011

Date Collected: 07/30/18 16:20 Date Received: 08/02/18 09:15 Lab Sample ID: 500-149315-6

Matrix: Ground Water

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		72 - 124	08/09/18 17:10	1
Dibromofluoromethane	88		75 - 120	08/09/18 17:10	1
1,2-Dichloroethane-d4 (Surr)	90		75 - 126	08/09/18 17:10	1
Toluene-d8 (Surr)	103		75 - 120	08/09/18 17:10	1

Client Sample ID: TW-3 Lab Sample ID: 500-149315-7

Date Collected: 07/30/18 15:30 Date Received: 08/02/18 09:15

Matrix: Ground Water

Matrix: Ground Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	<0.37		1.0	0.37	ug/L			08/10/18 13:36	1
1,1,1-Trichloroethane	<0.38		1.0	0.38	ug/L			08/10/18 13:36	1
1,1,2-Trichloroethane	< 0.35		1.0	0.35	ug/L			08/10/18 13:36	1
Trichloroethene	<0.16		0.50	0.16	ug/L			08/10/18 13:36	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			08/10/18 13:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		72 124			-		08/10/18 13:36	1

4-Bromofluorobenzene (Surr) Dibromofluoromethane 95 75 - 120 08/10/18 13:36 1,2-Dichloroethane-d4 (Surr) 75 - 126 08/10/18 13:36 94 Toluene-d8 (Surr) 100 75 - 120 08/10/18 13:36

Client Sample ID: MW-2004 Lab Sample ID: 500-149315-8

Date Collected: 07/30/18 11:50 Date Received: 08/02/18 09:15

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	<0.37	1.0	0.37	ug/L			08/10/18 14:03	1
1,1,1-Trichloroethane	<0.38	1.0	0.38	ug/L			08/10/18 14:03	1
1,1,2-Trichloroethane	<0.35	1.0	0.35	ug/L			08/10/18 14:03	1
Trichloroethene	<0.16	0.50	0.16	ug/L			08/10/18 14:03	1
Vinyl chloride	<0.20	1.0	0.20	ug/L			08/10/18 14:03	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	107		72 - 124		08/10/18 14:03	1
Dibromofluoromethane	86		75 - 120		08/10/18 14:03	1
1,2-Dichloroethane-d4 (Surr)	87		75 - 126		08/10/18 14:03	1
Toluene-d8 (Surr)	101		75 - 120		08/10/18 14:03	1

Client Sample ID: TW-1 Lab Sample ID: 500-149315-9 Date Collected: 07/30/18 12:45 **Matrix: Ground Water**

Date Received: 08/02/18 09:15

	Method: 8260B - Volatile Organic	Compounds (GC/I	MS)				
	Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
	Tetrachloroethene	<0.37	1.0	0.37 ug/L		08/10/18 14:30	1
	1,1,1-Trichloroethane	<0.38	1.0	0.38 ug/L		08/10/18 14:30	1
	1,1,2-Trichloroethane	<0.35	1.0	0.35 ug/L		08/10/18 14:30	1
l	Trichloroethene	<0.16	0.50	0.16 ug/L		08/10/18 14:30	1

TestAmerica Chicago

8/15/2018

Page 11 of 33

Client: Tetra Tech GEO

Project/Site: Pentair - Delavan, WI - 117-7469002-04

Lab Sample ID: 500-149315-9

TestAmerica Job ID: 500-149315-1

Date Collected: 07/30/18 12:45 Date Received: 08/02/18 09:15

Client Sample ID: TW-1

Matrix: Ground Water

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

ride	<0.20	Qualifier	1.0			D	Prepared	Analyzed 08/10/18 14:30	Dil Fac	
•	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
uorobenzene (Surr)	101		72 - 124			_		08/10/18 14:30	1	
uoromethane	97		75 - 120					08/10/18 14:30	1	
roethane-d4 (Surr)	89		75 - 126					08/10/18 14:30	1	
8 (Surr)	100		75 - 120					08/10/18 14:30	1	
	e uorobenzene (Surr) uoromethane roethane-d4 (Surr)	vide <0.20 e %Recovery uorobenzene (Surr) 101 uoromethane 97 roethane-d4 (Surr) 89	worobenzene (Surr) 101 uoromethane 97 roethane-d4 (Surr) 89	vide <0.20 1.0 e %Recovery uorobenzene (Surr) Qualifier Limits uorobenzene (Surr) 101 72 - 124 uoromethane 97 75 - 120 roethane-d4 (Surr) 89 75 - 126	Name	Column	Column	Compared Compared	ride <0.20 1.0 0.20 ug/L 08/10/18 14:30 e %Recovery qualifier Limits Prepared Analyzed uorobenzene (Surr) 101 72 - 124 08/10/18 14:30 uoromethane 97 75 - 120 08/10/18 14:30 roethane-d4 (Surr) 89 75 - 126 08/10/18 14:30	ride <0.20 1.0 0.20 ug/L 08/10/18 14:30 1 e %Recovery uorobenzene (Surr) Limits Prepared Analyzed Dil Fac 08/10/18 14:30 1 uoromethane 97 75 - 120 08/10/18 14:30 1 roethane-d4 (Surr) 89 75 - 126 08/10/18 14:30 1

Lab Sample ID: 500-149315-10 Client Sample ID: D-18

Date Collected: 07/30/18 14:30 **Matrix: Ground Water**

Date Received: 08/02/18 09:15

Method: 8260B - Volatile Organic Compounds (GC/MS)

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
						Trepared		- Dil 1 ac
Tetrachloroethene	<0.37	1.0	0.37	ug/L			08/10/18 14:57	1
1,1,1-Trichloroethane	<0.38	1.0	0.38	ug/L			08/10/18 14:57	1
1,1,2-Trichloroethane	<0.35	1.0	0.35	ug/L			08/10/18 14:57	1
Trichloroethene	<0.16	0.50	0.16	ug/L			08/10/18 14:57	1
Vinyl chloride	<0.20	1.0	0.20	ug/L			08/10/18 14:57	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104	72 - 124			•		08/10/18 14:57	1

Dibromofluoromethane 08/10/18 14:57 91 75 - 120 1,2-Dichloroethane-d4 (Surr) 75 - 126 08/10/18 14:57 Toluene-d8 (Surr) 102 75 - 120 08/10/18 14:57

Client Sample ID: D-15

Date Collected: 07/31/18 08:10

Date Received: 08/02/18 09:15

Lab Sample ID: 500-149315-11

Matrix: Ground Water

Method: 8260B - Volatile Organic Compounds (GC/MS)

Method. 0200D - Volatile Olig		ilius (Gorini	3)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	6.3		1.0	0.37	ug/L			08/10/18 15:24	1
1,1,1-Trichloroethane	<0.38		1.0	0.38	ug/L			08/10/18 15:24	1
1,1,2-Trichloroethane	<0.35		1.0	0.35	ug/L			08/10/18 15:24	1
Trichloroethene	7.0		0.50	0.16	ug/L			08/10/18 15:24	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			08/10/18 15:24	1

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	105		72 - 124	-		08/10/18 15:24	1
Dibromofluoromethane	85		75 - 120			08/10/18 15:24	1
1,2-Dichloroethane-d4 (Surr)	85		75 - 126			08/10/18 15:24	1
Toluene-d8 (Surr)	83		75 - 120			08/10/18 15:24	1

Client Sample ID: EX-1 Lab Sample ID: 500-149315-12

Date Collected: 07/31/18 09:10 Date Received: 08/02/18 09:15

Method: 8260B - Volatile Orga	nic Compounds (GC/MS)					
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Totrachloroothono	0.60 1	1.0	0.37 μα/Ι			08/10/18 15:52	

TestAmerica Chicago

Matrix: Ground Water

Page 12 of 33

Project/Site: Pentair - Delavan, WI - 117-7469002-04

104

87

104

Lab Sample ID: 500-149315-12

TestAmerica Job ID: 500-149315-1

Matrix: Ground Water

08/10/18 15:52

08/10/18 16:19

08/10/18 16:19

Matrix: Ground Water

Date Collected: 07/31/18 09:10 Date Received: 08/02/18 09:15

Client Sample ID: EX-1

Method: 8260B - Volatile C	Organic Compo	unds (GC/	'MS) (Continເ	ıed)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<0.38		1.0	0.38	ug/L			08/10/18 15:52	1
1,1,2-Trichloroethane	< 0.35		1.0	0.35	ug/L			08/10/18 15:52	1
Trichloroethene	0.30	J	0.50	0.16	ug/L			08/10/18 15:52	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			08/10/18 15:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	110		72 - 124					08/10/18 15:52	1
Dibromofluoromethane	84		75 - 120					08/10/18 15:52	1
1,2-Dichloroethane-d4 (Surr)	85		75 - 126					08/10/18 15:52	1

Client Sample ID: EX-2R Lab Sample ID: 500-149315-13

75 - 120

Date Collected: 07/31/18 09:40 Matrix: Ground Water

Date Received: 08/02/18 09:15

Toluene-d8 (Surr)

Method: 8260B - Volatile O	rganic Compo	unds (GC/	MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	<0.37		1.0	0.37	ug/L			08/10/18 16:19	1
1,1,1-Trichloroethane	1.7		1.0	0.38	ug/L			08/10/18 16:19	1
1,1,2-Trichloroethane	<0.35		1.0	0.35	ug/L			08/10/18 16:19	1
Trichloroethene	3.6		0.50	0.16	ug/L			08/10/18 16:19	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			08/10/18 16:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	109		72 - 124			·=		08/10/18 16:19	1
Dibromofluoromethane	88		75 - 120					08/10/18 16:19	1

Client Sample ID: EX-3 Lab Sample ID: 500-149315-14

75 - 126

75 - 120

Date Collected: 07/31/18 10:00

1,2-Dichloroethane-d4 (Surr)

Toluene-d8 (Surr)

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	<0.37	1.0	0.37	ug/L			08/10/18 16:46	1
1,1,1-Trichloroethane	2.4	1.0	0.38	ug/L			08/10/18 16:46	1
1,1,2-Trichloroethane	<0.35	1.0	0.35	ug/L			08/10/18 16:46	1
Trichloroethene	2.4	0.50	0.16	ug/L			08/10/18 16:46	1
Vinyl chloride	<0.20	1.0	0.20	ug/L			08/10/18 16:46	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101	72 - 124			,		08/10/18 16:46	1
Dibromofluoromethane	93	75 - 120					08/10/18 16:46	1
1,2-Dichloroethane-d4 (Surr)	93	75 - 126					08/10/18 16:46	1
Toluene-d8 (Surr)	98	75 - 120					08/10/18 16:46	1

4

6

9

10

12

14

Client Sample Results

Client: Tetra Tech GEO

Project/Site: Pentair - Delavan, WI - 117-7469002-04

Lab Sample ID: 500-149315-15

TestAmerica Job ID: 500-149315-1

Matrix: Ground Water

Client Sample ID: EX-7 Date Collected: 07/31/18 08:30

Date Received: 08/02/18 09:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	4.7		1.0	0.37	ug/L			08/10/18 17:13	1
1,1,1-Trichloroethane	<0.38		1.0	0.38	ug/L			08/10/18 17:13	1
1,1,2-Trichloroethane	<0.35		1.0	0.35	ug/L			08/10/18 17:13	1
Trichloroethene	2.4		0.50	0.16	ug/L			08/10/18 17:13	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			08/10/18 17:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		72 - 124			•		08/10/18 17:13	1
Dibromofluoromethane	103		75 - 120					08/10/18 17:13	1
1,2-Dichloroethane-d4 (Surr)	96		75 - 126					08/10/18 17:13	1
Toluene-d8 (Surr)	100		75 - 120					08/10/18 17:13	1

Client Sample ID: Trip Blank Lab Sample ID: 500-149315-16 Date Collected: 07/31/18 00:00 **Matrix: Water**

Date Received: 08/02/18 09:15

Analyte	Result	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.15	0.50	0.15	ug/L			08/13/18 13:56	1
Bromobenzene	<0.36	1.0	0.36	ug/L			08/13/18 13:56	1
Bromochloromethane	<0.43	1.0	0.43	ug/L			08/13/18 13:56	1
Bromodichloromethane	<0.37	1.0	0.37	ug/L			08/13/18 13:56	1
Bromoform	<0.48	1.0	0.48	ug/L			08/13/18 13:56	1
Bromomethane	<0.80	2.0	0.80	ug/L			08/13/18 13:56	1
Carbon tetrachloride	<0.38	1.0	0.38	ug/L			08/13/18 13:56	1
Chlorobenzene	< 0.39	1.0	0.39	ug/L			08/13/18 13:56	1
Chloroethane	<0.51	1.0	0.51	ug/L			08/13/18 13:56	1
Chloroform	<0.37	2.0	0.37	ug/L			08/13/18 13:56	1
Chloromethane	< 0.32	1.0	0.32	ug/L			08/13/18 13:56	1
2-Chlorotoluene	< 0.31	1.0	0.31	ug/L			08/13/18 13:56	1
4-Chlorotoluene	<0.35	1.0	0.35	ug/L			08/13/18 13:56	1
cis-1,2-Dichloroethene	<0.41	1.0	0.41	ug/L			08/13/18 13:56	1
cis-1,3-Dichloropropene	< 0.42	1.0	0.42	ug/L			08/13/18 13:56	1
Dibromochloromethane	<0.49	1.0	0.49	ug/L			08/13/18 13:56	1
1,2-Dibromo-3-Chloropropane	<2.0	5.0	2.0	ug/L			08/13/18 13:56	1
1,2-Dibromoethane	< 0.39	1.0	0.39	ug/L			08/13/18 13:56	1
Dibromomethane	<0.27	1.0	0.27	ug/L			08/13/18 13:56	1
1,2-Dichlorobenzene	< 0.33	1.0	0.33	ug/L			08/13/18 13:56	1
1,3-Dichlorobenzene	<0.40	1.0	0.40	ug/L			08/13/18 13:56	1
1,4-Dichlorobenzene	<0.36	1.0	0.36	ug/L			08/13/18 13:56	1
Dichlorodifluoromethane	< 0.67	2.0	0.67	ug/L			08/13/18 13:56	1
1,1-Dichloroethane	<0.41	1.0	0.41	ug/L			08/13/18 13:56	1
1,2-Dichloroethane	<0.39	1.0	0.39	ug/L			08/13/18 13:56	1
1,1-Dichloroethene	< 0.39	1.0	0.39	ug/L			08/13/18 13:56	1
1,2-Dichloropropane	< 0.43	1.0	0.43	ug/L			08/13/18 13:56	1
1,3-Dichloropropane	<0.36	1.0	0.36	ug/L			08/13/18 13:56	1
2,2-Dichloropropane	<0.44	1.0	0.44				08/13/18 13:56	1
1,1-Dichloropropene	< 0.30	1.0	0.30	ug/L			08/13/18 13:56	1
Ethylbenzene	<0.18	0.50	0.18	ug/L			08/13/18 13:56	1
Hexachlorobutadiene	<0.45	1.0	0.45				08/13/18 13:56	1

TestAmerica Chicago

Page 14 of 33

Client Sample Results

Client: Tetra Tech GEO

Client Sample ID: Trip Blank

Project/Site: Pentair - Delavan, WI - 117-7469002-04

Lab Sample ID: 500-149315-16

TestAmerica Job ID: 500-149315-1

Date Collected: 07/31/18 00:00 **Matrix: Water** Date Received: 08/02/18 09:15

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Isopropylbenzene	<0.39		1.0	0.39	ug/L			08/13/18 13:56	1
Isopropyl ether	<0.28		1.0	0.28	ug/L			08/13/18 13:56	1
Methylene Chloride	<1.6		5.0	1.6	ug/L			08/13/18 13:56	1
Methyl tert-butyl ether	<0.39		1.0	0.39	ug/L			08/13/18 13:56	1
Naphthalene	<0.34		1.0	0.34	ug/L			08/13/18 13:56	1
n-Butylbenzene	<0.39		1.0	0.39	ug/L			08/13/18 13:56	1
N-Propylbenzene	<0.41		1.0	0.41	ug/L			08/13/18 13:56	1
p-Isopropyltoluene	<0.36		1.0	0.36	ug/L			08/13/18 13:56	1
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			08/13/18 13:56	1
Styrene	<0.39		1.0	0.39	ug/L			08/13/18 13:56	1
tert-Butylbenzene	<0.40		1.0	0.40	ug/L			08/13/18 13:56	1
1,1,1,2-Tetrachloroethane	<0.46		1.0	0.46	ug/L			08/13/18 13:56	1
1,1,2,2-Tetrachloroethane	<0.40		1.0	0.40	ug/L			08/13/18 13:56	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			08/13/18 13:56	1
Toluene	<0.15		0.50	0.15	ug/L			08/13/18 13:56	1
trans-1,2-Dichloroethene	< 0.35		1.0	0.35	ug/L			08/13/18 13:56	1
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			08/13/18 13:56	1
1,2,3-Trichlorobenzene	<0.46		1.0	0.46	ug/L			08/13/18 13:56	1
1,2,4-Trichlorobenzene	<0.34		1.0	0.34	ug/L			08/13/18 13:56	1
1,1,1-Trichloroethane	<0.38		1.0	0.38	ug/L			08/13/18 13:56	1
1,1,2-Trichloroethane	<0.35		1.0	0.35	ug/L			08/13/18 13:56	1
Trichloroethene	<0.16		0.50	0.16	ug/L			08/13/18 13:56	1
Trichlorofluoromethane	<0.43		1.0	0.43	ug/L			08/13/18 13:56	1
1,2,3-Trichloropropane	<0.41		1.0	0.41	ug/L			08/13/18 13:56	1
1,2,4-Trimethylbenzene	<0.36		1.0	0.36	ug/L			08/13/18 13:56	1
1,3,5-Trimethylbenzene	<0.25		1.0	0.25	ug/L			08/13/18 13:56	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			08/13/18 13:56	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			08/13/18 13:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90		72 - 124					08/13/18 13:56	1
Dibromofluoromethane	93		75 - 120					08/13/18 13:56	1
1,2-Dichloroethane-d4 (Surr)	94		75 - 126					08/13/18 13:56	1
Toluene-d8 (Surr)	93		75 - 120					08/13/18 13:56	1

Definitions/Glossary

Client: Tetra Tech GEO TestAmerica Job ID: 500-149315-1

Project/Site: Pentair - Delavan, WI - 117-7469002-04

Qualifiers

GC/MS VOA

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.							
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis							
%R	Percent Recovery							
CFL	Contains Free Liquid							
CNF	Contains No Free Liquid							
DER	Duplicate Error Ratio (normalized absolute difference)							
Dil Fac	Dilution Factor							
DI	Detection Limit (DoD/DOE)							

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

Estimated Detection Limit (Dioxin) **EDL** LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin)

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RLReporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

8/15/2018

Page 16 of 33

QC Association Summary

Client: Tetra Tech GEO

Project/Site: Pentair - Delavan, WI - 117-7469002-04

TestAmerica Job ID: 500-149315-1

GC/MS VOA

Analysis Batch: 444688

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-149315-1	TW-4	Total/NA	Ground Water	8260B	
500-149315-2	D-25R	Total/NA	Ground Water	8260B	
500-149315-3	MW-1026	Total/NA	Ground Water	8260B	
500-149315-4	MW-1027	Total/NA	Ground Water	8260B	
500-149315-5	MW-2005R	Total/NA	Ground Water	8260B	
500-149315-6	MW-2011	Total/NA	Ground Water	8260B	
MB 500-444688/5	Method Blank	Total/NA	Water	8260B	
LCS 500-444688/28	Lab Control Sample	Total/NA	Water	8260B	

Analysis Batch: 444855

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-149315-7	TW-3	Total/NA	Ground Water	8260B	-
500-149315-8	MW-2004	Total/NA	Ground Water	8260B	
500-149315-9	TW-1	Total/NA	Ground Water	8260B	
500-149315-10	D-18	Total/NA	Ground Water	8260B	
500-149315-11	D-15	Total/NA	Ground Water	8260B	
500-149315-12	EX-1	Total/NA	Ground Water	8260B	
500-149315-13	EX-2R	Total/NA	Ground Water	8260B	
500-149315-14	EX-3	Total/NA	Ground Water	8260B	
500-149315-15	EX-7	Total/NA	Ground Water	8260B	
MB 500-444855/6	Method Blank	Total/NA	Water	8260B	
LCS 500-444855/4	Lab Control Sample	Total/NA	Water	8260B	

Analysis Batch: 445063

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-149315-16	Trip Blank	Total/NA	Water	8260B	
MB 500-445063/6	Method Blank	Total/NA	Water	8260B	
LCS 500-445063/16	Lab Control Sample	Total/NA	Water	8260B	

А

5

8

9

10

12

Surrogate Summary

Client: Tetra Tech GEO

Project/Site: Pentair - Delavan, WI - 117-7469002-04

TestAmerica Job ID: 500-149315-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Ground Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		BFB	DBFM	DCA	TOL
Lab Sample ID	Client Sample ID	(72-124)	(75-120)	(75-126)	(75-120)
500-149315-1	TW-4	100	87	87	101
500-149315-2	D-25R	102	84	86	101
500-149315-3	MW-1026	102	90	87	100
500-149315-4	MW-1027	101	96	96	102
500-149315-5	MW-2005R	102	97	88	87
500-149315-6	MW-2011	102	88	90	103
500-149315-7	TW-3	102	95	94	100
500-149315-8	MW-2004	107	86	87	101
500-149315-9	TW-1	101	97	89	100
500-149315-10	D-18	104	91	91	102
500-149315-11	D-15	105	85	85	83
500-149315-12	EX-1	110	84	85	104
500-149315-13	EX-2R	109	88	87	104
500-149315-14	EX-3	101	93	93	98
500-149315-15	EX-7	104	103	96	100

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane

DCA = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

_			Pe	ercent Surre	ogate Reco
		BFB	DBFM	DCA	TOL
Lab Sample ID	Client Sample ID	(72-124)	(75-120)	(75-126)	(75-120)
500-149315-16	Trip Blank	90	93	94	93
LCS 500-444688/28	Lab Control Sample	98	86	83	97
LCS 500-444855/4	Lab Control Sample	97	90	87	101
LCS 500-445063/16	Lab Control Sample	92	96	90	92
MB 500-444688/5	Method Blank	101	93	89	99
MB 500-444855/6	Method Blank	105	89	89	101
MB 500-445063/6	Method Blank	91	93	90	90

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane

DCA = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

Page 18 of 33

Client: Tetra Tech GEO

Project/Site: Pentair - Delavan, WI - 117-7469002-04

TestAmerica Job ID: 500-149315-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 500-444688/5

Matrix: Water

Analysis Batch: 444688

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Benzene	<0.15		0.50	0.15	ug/L			08/09/18 10:20	
Bromobenzene	<0.36		1.0	0.36	ug/L			08/09/18 10:20	•
Bromochloromethane	<0.43		1.0	0.43	ug/L			08/09/18 10:20	•
Bromodichloromethane	<0.37		1.0	0.37	ug/L			08/09/18 10:20	
Bromoform	<0.48		1.0	0.48	ug/L			08/09/18 10:20	•
Bromomethane	<0.80		2.0	0.80	ug/L			08/09/18 10:20	•
Carbon tetrachloride	<0.38		1.0	0.38	ug/L			08/09/18 10:20	
Chlorobenzene	<0.39		1.0	0.39	ug/L			08/09/18 10:20	•
Chloroethane	<0.51		1.0	0.51	ug/L			08/09/18 10:20	•
Chloroform	<0.37		2.0	0.37	ug/L			08/09/18 10:20	,
Chloromethane	< 0.32		1.0	0.32	ug/L			08/09/18 10:20	
2-Chlorotoluene	<0.31		1.0	0.31	ug/L			08/09/18 10:20	
4-Chlorotoluene	<0.35		1.0	0.35	ug/L			08/09/18 10:20	• • • • • • • • •
cis-1,2-Dichloroethene	<0.41		1.0		ug/L			08/09/18 10:20	
cis-1,3-Dichloropropene	<0.42		1.0		ug/L			08/09/18 10:20	
Dibromochloromethane	<0.49		1.0		ug/L			08/09/18 10:20	
1,2-Dibromo-3-Chloropropane	<2.0		5.0		ug/L			08/09/18 10:20	
1.2-Dibromoethane	<0.39		1.0		ug/L			08/09/18 10:20	
Dibromomethane	<0.27		1.0		ug/L			08/09/18 10:20	,
1,2-Dichlorobenzene	<0.33		1.0		ug/L			08/09/18 10:20	
1,3-Dichlorobenzene	<0.40		1.0		ug/L			08/09/18 10:20	
1,4-Dichlorobenzene	<0.36		1.0		ug/L			08/09/18 10:20	
Dichlorodifluoromethane	<0.67		2.0		ug/L			08/09/18 10:20	
1,1-Dichloroethane	<0.41		1.0		ug/L			08/09/18 10:20	
1,2-Dichloroethane	<0.39		1.0		ug/L			08/09/18 10:20	
1,1-Dichloroethene	<0.39		1.0		ug/L			08/09/18 10:20	
1,2-Dichloropropane	<0.43		1.0		ug/L			08/09/18 10:20	
1,3-Dichloropropane	<0.36		1.0		ug/L			08/09/18 10:20	
2,2-Dichloropropane	<0.44		1.0		ug/L			08/09/18 10:20	
1,1-Dichloropropene	<0.30		1.0		ug/L			08/09/18 10:20	,
Ethylbenzene	<0.18		0.50		ug/L			08/09/18 10:20	,
Hexachlorobutadiene	<0.45		1.0		ug/L			08/09/18 10:20	,
Isopropylbenzene	<0.39		1.0		ug/L			08/09/18 10:20	,
Isopropyl ether	<0.28		1.0		ug/L			08/09/18 10:20	,
Methylene Chloride	<1.6		5.0		ug/L			08/09/18 10:20	
Methyl tert-butyl ether	<0.39		1.0		ug/L			08/09/18 10:20	,
Naphthalene	<0.39		1.0					08/09/18 10:20	,
n-Butylbenzene	<0.39		1.0		ug/L ug/L			08/09/18 10:20	
N-Propylbenzene	<0.39		1.0		ug/L			08/09/18 10:20	
p-Isopropyltoluene	<0.36		1.0		ug/L			08/09/18 10:20	,
sec-Butylbenzene	<0.30		1.0		ug/L ug/L			08/09/18 10:20	
•					-				
Styrene tert-Butylbenzene	<0.39		1.0		ug/L			08/09/18 10:20 08/09/18 10:20	,
1,1,1,2-Tetrachloroethane	<0.40 <0.46		1.0 1.0		ug/L			08/09/18 10:20	,
					ug/L				•
1,1,2,2-Tetrachloroethane	<0.40		1.0		ug/L			08/09/18 10:20	
Tetrachloroethene	<0.37		1.0		ug/L			08/09/18 10:20	,
Toluene	<0.15		0.50	0.15	ug/L			08/09/18 10:20	•

TestAmerica Chicago

Page 19 of 33

8/15/2018

Project/Site: Pentair - Delavan, WI - 117-7469002-04

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 500-444688/5

Matrix: Water

Analysis Batch: 444688

Client: Tetra Tech GEO

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			08/09/18 10:20	1
1,2,3-Trichlorobenzene	<0.46		1.0	0.46	ug/L			08/09/18 10:20	1
1,2,4-Trichlorobenzene	<0.34		1.0	0.34	ug/L			08/09/18 10:20	1
1,1,1-Trichloroethane	<0.38		1.0	0.38	ug/L			08/09/18 10:20	1
1,1,2-Trichloroethane	<0.35		1.0	0.35	ug/L			08/09/18 10:20	1
Trichloroethene	<0.16		0.50	0.16	ug/L			08/09/18 10:20	1
Trichlorofluoromethane	<0.43		1.0	0.43	ug/L			08/09/18 10:20	1
1,2,3-Trichloropropane	<0.41		1.0	0.41	ug/L			08/09/18 10:20	1
1,2,4-Trimethylbenzene	<0.36		1.0	0.36	ug/L			08/09/18 10:20	1
1,3,5-Trimethylbenzene	<0.25		1.0	0.25	ug/L			08/09/18 10:20	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			08/09/18 10:20	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			08/09/18 10:20	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		72 - 124		08/09/18 10:20	1
Dibromofluoromethane	93		75 - 120		08/09/18 10:20	1
1,2-Dichloroethane-d4 (Surr)	89		75 - 126		08/09/18 10:20	1
Toluene-d8 (Surr)	99		75 - 120		08/09/18 10:20	1

Lab Sample ID: LCS 500-444688/28

Matrix: Water

Analysis Batch: 444688

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 444688	Cuika	1.00	LCS				0/ Dag	
Analyte	Spike Added	_	Qualifier	Unit	D	%Rec	%Rec. Limits	
Benzene		50.9	Qualifier	ug/L		102	70 - 120	
				•				
Bromobenzene	50.0	51.2		ug/L		102	70 - 122	
Bromochloromethane	50.0	48.0		ug/L		96	65 - 122	
Bromodichloromethane	50.0	49.3		ug/L		99	69 - 120	
Bromoform	50.0	47.0		ug/L		94	56 - 132	
Bromomethane	50.0	63.6		ug/L		127	40 - 152	
Carbon tetrachloride	50.0	52.3		ug/L		105	59 - 133	
Chlorobenzene	50.0	52.4		ug/L		105	70 - 120	
Chloroethane	50.0	65.7		ug/L		131	48 - 136	
Chloroform	50.0	48.0		ug/L		96	70 - 120	
Chloromethane	50.0	73.3		ug/L		147	56 - 152	
2-Chlorotoluene	50.0	55.8		ug/L		112	70 - 125	
4-Chlorotoluene	50.0	54.7		ug/L		109	68 - 124	
cis-1,2-Dichloroethene	50.0	52.5		ug/L		105	70 - 125	
cis-1,3-Dichloropropene	50.0	44.3		ug/L		89	64 - 127	
Dibromochloromethane	50.0	50.2		ug/L		100	68 - 125	
1,2-Dibromo-3-Chloropropane	50.0	42.9		ug/L		86	56 - 123	
1,2-Dibromoethane	50.0	52.7		ug/L		105	70 - 125	
Dibromomethane	50.0	48.0		ug/L		96	70 - 120	
1,2-Dichlorobenzene	50.0	48.8		ug/L		98	70 - 125	
1,3-Dichlorobenzene	50.0	50.0		ug/L		100	70 - 125	
1,4-Dichlorobenzene	50.0	48.5		ug/L		97	70 - 120	
Dichlorodifluoromethane	50.0	79.3		ug/L		159	40 - 159	
1,1-Dichloroethane	50.0	61.3		ug/L		123	70 - 125	

TestAmerica Chicago

Page 20 of 33

Project/Site: Pentair - Delavan, WI - 117-7469002-04

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 500-444688/28

Matrix: Water

Analysis Batch: 444688

Client: Tetra Tech GEO

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS I	LCS		%Rec.	
Analyte	Added	Result (Qualifier Unit	D %Rec	Limits	
1,2-Dichloroethane	50.0	47.4	ug/L	95	68 - 127	
1,1-Dichloroethene	50.0	58.1	ug/L	116	67 - 122	
1,2-Dichloropropane	50.0	53.4	ug/L	107	67 _ 130	
1,3-Dichloropropane	50.0	53.8	ug/L	108	62 - 136	
2,2-Dichloropropane	50.0	56.9	ug/L	114	58 - 139	
1,1-Dichloropropene	50.0	53.2	ug/L	106	70 - 121	
Ethylbenzene	50.0	57.3	ug/L	115	70 - 123	
Hexachlorobutadiene	50.0	53.1	ug/L	106	51 ₋ 150	
Isopropylbenzene	50.0	58.1	ug/L	116	70 - 126	
Methylene Chloride	50.0	55.0	ug/L	110	69 - 125	
Methyl tert-butyl ether	50.0	52.2	ug/L	104	55 - 123	
Naphthalene	50.0	44.0	ug/L	88	53 - 144	
n-Butylbenzene	50.0	61.8	ug/L	124	68 - 125	
N-Propylbenzene	50.0	61.0	ug/L	122	69 - 127	
p-Isopropyltoluene	50.0	56.6	ug/L	113	70 - 125	
sec-Butylbenzene	50.0	60.0	ug/L	120	70 - 123	
Styrene	50.0	53.6	ug/L	107	70 - 120	
tert-Butylbenzene	50.0	55.2	ug/L	110	70 - 121	
1,1,1,2-Tetrachloroethane	50.0	47.0	ug/L	94	70 - 125	
1,1,2,2-Tetrachloroethane	50.0	58.1	ug/L	116	62 - 140	
Tetrachloroethene	50.0	56.5	ug/L	113	70 - 128	
Toluene	50.0	53.1	ug/L	106	70 - 125	
trans-1,2-Dichloroethene	50.0	59.0	ug/L	118	70 - 125	
trans-1,3-Dichloropropene	50.0	50.8	ug/L	102	62 - 128	
1,2,3-Trichlorobenzene	50.0	42.0	ug/L	84	51 ₋ 145	
1,2,4-Trichlorobenzene	50.0	45.0	ug/L	90	57 - 137	
1,1,1-Trichloroethane	50.0	54.1	ug/L	108	70 - 125	
1,1,2-Trichloroethane	50.0	53.5	ug/L	107	71 - 130	
Trichloroethene	50.0	51.0	ug/L	102	70 - 125	
Trichlorofluoromethane	50.0	57.5	ug/L	115	55 ₋ 128	
1,2,3-Trichloropropane	50.0	50.8	ug/L	102	50 - 133	
1,2,4-Trimethylbenzene	50.0	54.4	ug/L	109	70 - 123	
1,3,5-Trimethylbenzene	50.0	55.8	ug/L	112	70 - 123	
Vinyl chloride	50.0	57.5	ug/L	115	64 - 126	
Xylenes, Total	100	106	ug/L	106	70 - 125	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	98		72 - 124
Dibromofluoromethane	86		75 - 120
1,2-Dichloroethane-d4 (Surr)	83		75 - 126
Toluene-d8 (Surr)	97		75 - 120

Lab Sample ID: MB 500-444855/6

Matrix: Water

Analysis Batch: 444855

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 1.0 08/10/18 09:58 Tetrachloroethene < 0.37 0.37 ug/L

TestAmerica Chicago

Page 21 of 33

Project/Site: Pentair - Delavan, WI - 117-7469002-04

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

<0.20

LCS LCS

Lab Sample ID: MB 500-444855/6

Matrix: Water

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichloroethene

Vinyl chloride

Analyte

Analysis Batch: 444855

Client: Tetra Tech GEO

Client Sample ID: Method Blank **Prep Type: Total/NA**

08/10/18 09:58

MB MB **MDL** Unit Result Qualifier RL Prepared Analyzed Dil Fac < 0.38 1.0 0.38 ug/L 08/10/18 09:58 < 0.35 1.0 0.35 ug/L 08/10/18 09:58 < 0.16 0.50 0.16 ug/L 08/10/18 09:58

0.20 ug/L

MB MB Surrogate Qualifier Limits Prepared %Recovery Analyzed Dil Fac 105 72 - 124 4-Bromofluorobenzene (Surr) 08/10/18 09:58 Dibromofluoromethane 89 75 - 120 08/10/18 09:58 1,2-Dichloroethane-d4 (Surr) 89 75 - 126 08/10/18 09:58 Toluene-d8 (Surr) 101 75 - 120 08/10/18 09:58

1.0

Lab Sample ID: LCS 500-444855/4

Matrix: Water

Analysis Batch: 444855

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

LCS LCS Spike %Rec. Unit Analyte Added Result Qualifier D %Rec Limits Tetrachloroethene 50.0 56.4 113 70 - 128 ug/L 70 - 125 1,1,1-Trichloroethane 50.0 54.9 ug/L 110 1,1,2-Trichloroethane 50.0 56.4 ug/L 113 71 - 130 Trichloroethene 50.0 57.7 ug/L 115 70 - 125 Vinyl chloride 50.0 52.8 ug/L 106 64 - 126

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	97		72 - 124
Dibromofluoromethane	90		75 - 120
1,2-Dichloroethane-d4 (Surr)	87		75 - 126
Toluene-d8 (Surr)	101		75 - 120

Lab Sample ID: MB 500-445063/6

Matrix: Water

Analysis Batch: 445063

Client Sample ID: Method Blank Prep Type: Total/NA

7 thai yolo Batom 1 10000									
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.15		0.50	0.15	ug/L			08/13/18 09:09	1
Bromobenzene	<0.36		1.0	0.36	ug/L			08/13/18 09:09	1
Bromochloromethane	<0.43		1.0	0.43	ug/L			08/13/18 09:09	1
Bromodichloromethane	<0.37		1.0	0.37	ug/L			08/13/18 09:09	1
Bromoform	<0.48		1.0	0.48	ug/L			08/13/18 09:09	1
Bromomethane	<0.80		2.0	0.80	ug/L			08/13/18 09:09	1
Carbon tetrachloride	<0.38		1.0	0.38	ug/L			08/13/18 09:09	1
Chlorobenzene	<0.39		1.0	0.39	ug/L			08/13/18 09:09	1
Chloroethane	<0.51		1.0	0.51	ug/L			08/13/18 09:09	1
Chloroform	<0.37		2.0	0.37	ug/L			08/13/18 09:09	1
Chloromethane	<0.32		1.0	0.32	ug/L			08/13/18 09:09	1
2-Chlorotoluene	<0.31		1.0	0.31	ug/L			08/13/18 09:09	1
4-Chlorotoluene	<0.35		1.0	0.35	ug/L			08/13/18 09:09	1
cis-1,2-Dichloroethene	<0.41		1.0	0.41	ug/L			08/13/18 09:09	1
cis-1,3-Dichloropropene	<0.42		1.0	0.42	ug/L			08/13/18 09:09	1
I control of the cont									

TestAmerica Chicago

Page 22 of 33

8/15/2018

Client: Tetra Tech GEO

Surrogate

4-Bromofluorobenzene (Surr)

Project/Site: Pentair - Delavan, WI - 117-7469002-04

TestAmerica Job ID: 500-149315-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 500-4450 Matrix: Water								ole ID: Method Prep Type: To	
Analysis Batch: 445063									
		МВ							
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Dibromochloromethane	<0.49		1.0		ug/L			08/13/18 09:09	
1,2-Dibromo-3-Chloropropane	<2.0		5.0		ug/L			08/13/18 09:09	•
1,2-Dibromoethane	<0.39		1.0		ug/L			08/13/18 09:09	
Dibromomethane	<0.27		1.0		ug/L			08/13/18 09:09	•
1,2-Dichlorobenzene	<0.33		1.0	0.33	ug/L			08/13/18 09:09	•
1,3-Dichlorobenzene	<0.40		1.0	0.40	ug/L			08/13/18 09:09	•
1,4-Dichlorobenzene	<0.36		1.0		ug/L			08/13/18 09:09	•
Dichlorodifluoromethane	<0.67		2.0	0.67	ug/L			08/13/18 09:09	•
1,1-Dichloroethane	<0.41		1.0	0.41	ug/L			08/13/18 09:09	
1,2-Dichloroethane	<0.39		1.0	0.39	ug/L			08/13/18 09:09	•
1,1-Dichloroethene	< 0.39		1.0	0.39	ug/L			08/13/18 09:09	•
1,2-Dichloropropane	<0.43		1.0	0.43	ug/L			08/13/18 09:09	•
1,3-Dichloropropane	<0.36		1.0		ug/L			08/13/18 09:09	
2,2-Dichloropropane	<0.44		1.0	0.44	ug/L			08/13/18 09:09	
1,1-Dichloropropene	<0.30		1.0		ug/L			08/13/18 09:09	
Ethylbenzene	<0.18		0.50		ug/L			08/13/18 09:09	,
Hexachlorobutadiene	<0.45		1.0		ug/L			08/13/18 09:09	
Isopropylbenzene	<0.39		1.0		ug/L			08/13/18 09:09	
Isopropyl ether	<0.28		1.0		ug/L			08/13/18 09:09	
Methylene Chloride	<1.6		5.0		ug/L			08/13/18 09:09	
Methyl tert-butyl ether	<0.39		1.0		ug/L			08/13/18 09:09	
Naphthalene	<0.34		1.0		ug/L			08/13/18 09:09	
n-Butylbenzene	<0.39		1.0	0.39	-			08/13/18 09:09	
N-Propylbenzene	<0.41		1.0		ug/L			08/13/18 09:09	
p-Isopropyltoluene	<0.36		1.0	0.36				08/13/18 09:09	
sec-Butylbenzene	<0.40		1.0	0.40	-			08/13/18 09:09	
Styrene	<0.40		1.0		ug/L			08/13/18 09:09	
tert-Butylbenzene	<0.40		1.0		ug/L			08/13/18 09:09	,
1,1,1,2-Tetrachloroethane	<0.46		1.0		_			08/13/18 09:09	
1,1,2,2-Tetrachloroethane	<0.40		1.0		ug/L				
Tetrachloroethene					ug/L			08/13/18 09:09	
	<0.37 <0.15		1.0		ug/L			08/13/18 09:09	,
Toluene			0.50	0.15	-			08/13/18 09:09	•
trans-1,2-Dichloroethene	<0.35		1.0	0.35				08/13/18 09:09	
trans-1,3-Dichloropropene	<0.36		1.0	0.36				08/13/18 09:09	•
1,2,3-Trichlorobenzene	<0.46		1.0	0.46				08/13/18 09:09	_
1,2,4-Trichlorobenzene	<0.34		1.0		ug/L			08/13/18 09:09	
1,1,1-Trichloroethane	<0.38		1.0		ug/L			08/13/18 09:09	•
1,1,2-Trichloroethane	<0.35		1.0	0.35				08/13/18 09:09	•
Trichloroethene	<0.16		0.50		ug/L			08/13/18 09:09	
Trichlorofluoromethane	<0.43		1.0		ug/L			08/13/18 09:09	•
1,2,3-Trichloropropane	<0.41		1.0	0.41	ug/L			08/13/18 09:09	•
1,2,4-Trimethylbenzene	<0.36		1.0		ug/L			08/13/18 09:09	
1,3,5-Trimethylbenzene	<0.25		1.0	0.25	ug/L			08/13/18 09:09	
Vinyl chloride	<0.20		1.0	0.20	ug/L			08/13/18 09:09	•
Xylenes, Total	<0.22		1.0		ug/L			08/13/18 09:09	

TestAmerica Chicago

8/15/2018

Analyzed

08/13/18 09:09

Prepared

Page 23 of 33

Limits

72 - 124

%Recovery Qualifier

Client: Tetra Tech GEO

Project/Site: Pentair - Delavan, WI - 117-7469002-04

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

TestAmerica Job ID: 500-149315-1

Client Sample ID: Method Blank

Lab Sample ID: MB 500-445063/6

Matrix: Water

Analysis Batch: 445063

Prep Type: Total/NA

	MB MB				
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane	93	75 - 120		08/13/18 09:09	1
1,2-Dichloroethane-d4 (Surr)	90	75 - 126		08/13/18 09:09	1
Toluene-d8 (Surr)	90	75 - 120		08/13/18 09:09	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Matrix: Water

Lab Sample ID: LCS 500-445063/16

Analysis Batch: 445063

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	50.0	47.3		ug/L		95	70 - 120
Bromobenzene	50.0	47.0		ug/L		94	70 - 122
Bromochloromethane	50.0	47.7		ug/L		95	65 - 122
Bromodichloromethane	50.0	46.7		ug/L		93	69 - 120
Bromoform	50.0	45.2		ug/L		90	56 - 132
Bromomethane	50.0	44.0		ug/L		88	40 - 152
Carbon tetrachloride	50.0	48.9		ug/L		98	59 ₋ 133
Chlorobenzene	50.0	45.6		ug/L		91	70 - 120
Chloroethane	50.0	53.2		ug/L		106	48 - 136
Chloroform	50.0	47.2		ug/L		94	70 - 120
Chloromethane	50.0	50.6		ug/L		101	56 - 152
2-Chlorotoluene	50.0	45.5		ug/L		91	70 - 125
4-Chlorotoluene	50.0	45.3		ug/L		91	68 - 124
cis-1,2-Dichloroethene	50.0	47.7		ug/L		95	70 - 125
cis-1,3-Dichloropropene	50.0	43.9		ug/L		88	64 - 127
Dibromochloromethane	50.0	44.5		ug/L		89	68 - 125
1,2-Dibromo-3-Chloropropane	50.0	36.2		ug/L		72	56 - 123
1,2-Dibromoethane	50.0	45.4		ug/L		91	70 - 125
Dibromomethane	50.0	45.4		ug/L		91	70 - 120
1,2-Dichlorobenzene	50.0	44.5		ug/L		89	70 - 125
1,3-Dichlorobenzene	50.0	46.4		ug/L		93	70 - 125
1,4-Dichlorobenzene	50.0	45.4		ug/L		91	70 - 120
Dichlorodifluoromethane	50.0	39.4		ug/L		79	40 - 159
1,1-Dichloroethane	50.0	47.6		ug/L		95	70 - 125
1,2-Dichloroethane	50.0	45.7		ug/L		91	68 - 127
1,1-Dichloroethene	50.0	46.4		ug/L		93	67 - 122
1,2-Dichloropropane	50.0	48.2		ug/L		96	67 - 130
1,3-Dichloropropane	50.0	42.9		ug/L		86	62 - 136
2,2-Dichloropropane	50.0	46.7		ug/L		93	58 - 139
1,1-Dichloropropene	50.0	47.0		ug/L		94	70 - 121
Ethylbenzene	50.0	44.6		ug/L		89	70 - 123
Hexachlorobutadiene	50.0	47.6		ug/L		95	51 ₋ 150
Isopropylbenzene	50.0	47.0		ug/L		94	70 - 126
Methylene Chloride	50.0	46.6		ug/L		93	69 - 125
Methyl tert-butyl ether	50.0	45.1		ug/L		90	55 - 123
Naphthalene	50.0	37.6		ug/L		75	53 - 144
n-Butylbenzene	50.0	46.7		ug/L		93	68 - 125
N-Propylbenzene	50.0	46.9		ug/L		94	69 - 127
p-Isopropyltoluene	50.0	47.6		ug/L		95	70 - 125

TestAmerica Chicago

8/15/2018

Page 24 of 33

Client: Tetra Tech GEO

Project/Site: Pentair - Delavan, WI - 117-7469002-04

TestAmerica Job ID: 500-149315-1

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Lab Sample ID: LCS 500-445063/16

Matrix: Water

Analysis Batch: 445063

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
sec-Butylbenzene	50.0	47.3		ug/L		95	70 - 123	
Styrene	50.0	43.9		ug/L		88	70 - 120	
tert-Butylbenzene	50.0	47.5		ug/L		95	70 - 121	
1,1,1,2-Tetrachloroethane	50.0	46.7		ug/L		93	70 - 125	
1,1,2,2-Tetrachloroethane	50.0	43.2		ug/L		86	62 - 140	
Tetrachloroethene	50.0	48.0		ug/L		96	70 - 128	
Toluene	50.0	44.6		ug/L		89	70 - 125	
trans-1,2-Dichloroethene	50.0	47.7		ug/L		95	70 - 125	
trans-1,3-Dichloropropene	50.0	43.7		ug/L		87	62 - 128	
1,2,3-Trichlorobenzene	50.0	40.7		ug/L		81	51 ₋ 145	
1,2,4-Trichlorobenzene	50.0	43.4		ug/L		87	57 - 137	
1,1,1-Trichloroethane	50.0	47.1		ug/L		94	70 - 125	
1,1,2-Trichloroethane	50.0	44.3		ug/L		89	71 - 130	
Trichloroethene	50.0	50.1		ug/L		100	70 - 125	
Trichlorofluoromethane	50.0	52.7		ug/L		105	55 - 128	
1,2,3-Trichloropropane	50.0	44.1		ug/L		88	50 - 133	
1,2,4-Trimethylbenzene	50.0	45.7		ug/L		91	70 - 123	
1,3,5-Trimethylbenzene	50.0	46.6		ug/L		93	70 - 123	
Vinyl chloride	50.0	47.4		ug/L		95	64 - 126	
Xylenes, Total	100	90.3		ug/L		90	70 - 125	

LCS	LCS

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	92		72 - 124
Dibromofluoromethane	96		75 - 120
1,2-Dichloroethane-d4 (Surr)	90		75 - 126
Toluene-d8 (Surr)	92		75 - 120

-

4

6

9

11

12

14

Client: Tetra Tech GEO

Project/Site: Pentair - Delavan, WI - 117-7469002-04

Client Sample ID: TW-4

Lab Sample ID: 500-149315-1

Matrix: Ground Water

Date Collected: 07/30/18 02:30 Date Received: 08/02/18 09:15

Batch Dilution Batch Batch **Prepared** Method Factor Number or Analyzed Lab **Prep Type** Type Run **Analyst** TAL CHI Total/NA Analysis 8260B 444688 08/09/18 14:54 JJH

Client Sample ID: D-25R Lab Sample ID: 500-149315-2

Matrix: Ground Water

Date Collected: 07/30/18 11:00 Date Received: 08/02/18 09:15

Dilution Batch Batch Batch **Prepared Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab TAL CHI Total/NA 8260B 444688 08/09/18 15:21 JJH Analysis

Client Sample ID: MW-1026 Lab Sample ID: 500-149315-3

Date Collected: 07/30/18 01:15 Matrix: Ground Water

Date Received: 08/02/18 09:15

Dilution Batch Batch Batch **Prepared** Method Number or Analyzed **Prep Type** Type Run **Factor** Analyst Lab Total/NA Analysis 8260B 444688 08/09/18 15:48 JJH TAL CHI

Client Sample ID: MW-1027 Lab Sample ID: 500-149315-4

Date Collected: 07/30/18 03:45 Matrix: Ground Water

Date Received: 08/02/18 09:15

Batch Batch Dilution Batch **Prepared** Method Factor Number or Analyzed **Prep Type** Type Run Analyst Lab 8260B 08/09/18 16:16 JJH TAL CHI Total/NA Analysis 444688

Client Sample ID: MW-2005R Lab Sample ID: 500-149315-5

Date Collected: 07/30/18 13:35 Matrix: Ground Water

Date Received: 08/02/18 09:15

Batch Dilution Batch Batch Prepared Method **Factor** Number or Analyzed Prep Type Type Run Analyst TAL CHI Total/NA Analysis 8260B 444688 08/09/18 16:43 JJH

Client Sample ID: MW-2011 Lab Sample ID: 500-149315-6

Date Collected: 07/30/18 16:20 Matrix: Ground Water

Date Received: 08/02/18 09:15

Batch Batch Dilution Batch Prepared Method Number or Analyzed **Prep Type** Type Run **Factor** Analyst Lab TAL CHI Total/NA Analysis 8260B 444688 08/09/18 17:10 JJH

Matrix: Ground Water

Client: Tetra Tech GEO

Project/Site: Pentair - Delavan, WI - 117-7469002-04

Client Sample ID: TW-3 Lab Sample ID: 500-149315-7

Date Collected: 07/30/18 15:30 Matrix: Ground Water

Date Received: 08/02/18 09:15

Batch Batch Dilution Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab TAL CHI Total/NA Analysis 8260B 444855 08/10/18 13:36 JJH

Client Sample ID: MW-2004 Lab Sample ID: 500-149315-8

Date Collected: 07/30/18 11:50

Date Received: 08/02/18 09:15

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	444855	08/10/18 14:03	JJH	TAL CHI

Client Sample ID: TW-1 Lab Sample ID: 500-149315-9

Date Collected: 07/30/18 12:45

Date Received: 08/02/18 09:15

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	444855	08/10/18 14:30	JJH	TAL CHI

Client Sample ID: D-18 Lab Sample ID: 500-149315-10

Date Collected: 07/30/18 14:30

Date Received: 08/02/18 09:15

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			444855	08/10/18 14:57	JJH	TAL CHI

Client Sample ID: D-15 Lab Sample ID: 500-149315-11

Date Collected: 07/31/18 08:10

Date Received: 08/02/18 09:15

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	444855	08/10/18 15:24	JJH	TAL CHI

Client Sample ID: EX-1 Lab Sample ID: 500-149315-12

Date Collected: 07/31/18 09:10

Date Received: 08/02/18 09:15

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	444855	08/10/18 15:52	JJH	TAL CHI

Lab Chronicle

Client: Tetra Tech GEO

Project/Site: Pentair - Delavan, WI - 117-7469002-04

TestAmerica Job ID: 500-149315-1

Lab Sample ID: 500-149315-13

Matrix: Ground Water

Date Collected: 07/31/18 09:40 Date Received: 08/02/18 09:15

Client Sample ID: EX-2R

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			444855	08/10/18 16:19	JJH	TAL CHI

Client Sample ID: EX-3 Lab Sample ID: 500-149315-14

Date Collected: 07/31/18 10:00 **Matrix: Ground Water**

Date Received: 08/02/18 09:15

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	444855	08/10/18 16:46	JJH	TAL CHI

Lab Sample ID: 500-149315-15 **Client Sample ID: EX-7**

Date Collected: 07/31/18 08:30 **Matrix: Ground Water**

Date Received: 08/02/18 09:15

Batch Batch Dilution Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Total/NA Analysis 8260B 444855 08/10/18 17:13 JJH TAL CHI

Client Sample ID: Trip Blank Lab Sample ID: 500-149315-16

Date Collected: 07/31/18 00:00 **Matrix: Water**

Date Received: 08/02/18 09:15

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	445063	08/13/18 13:56	PMF	TAL CHI

Laboratory References:

TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

Accreditation/Certification Summary

Client: Tetra Tech GEO TestAmerica Job ID: 500-149315-1

Project/Site: Pentair - Delavan, WI - 117-7469002-04

Laboratory: TestAmerica Chicago

The accreditations/certifications listed below are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Wisconsin	State Program	5	999580010	08-31-19

4

၁ —

9

10

12

13

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

2417 Bond Street, University Park, IL 60484 Phone: 708.534.5200 Fax: 708.534.5211

lab ID

345

(0

Sample ID

Lab Project #

Perameter Parameter	Preservative Key
Samoling Date/S Time 100 3 7-30 11:00 3 7-30 11:00 3 7-30 11:35 3 70 7-30 13:35 3 70 7-30 13:35 3 70 7-30 13:35 3 70 70 70 70 70 70 70 70 70 70 70 70 70	1. HCL, Cool to 4° 2. H2SO4, Cool to 4° 3. HN03, Cool to 4° 4. NaOH, Cool to 4° 5. NaOH/Zn, Cool to 4° 6. NaHSO4 7. Cool to 4° 8. None 9. Other
7-36 16:26 3 V V V V V V V V V V V V V V V V V V	

		lired (Business Days)		Sample Disposal						
	Requested Due Date	ays 5 Days 7 Days	10 Days 15 Days	Other Return to	Client Disposal by Lai	Archive f	or Months (A f	ee may be assessed if samples	are retained longer than 1 n	nonth)
1	Relinquienes By	Company / BTAR EN	Date / 8-1-18	10:30	sceived by	Company + A	SD-1-18	10.30	Lab Courier	
	Relinquished By	Company	8-1-18 Date	17:00	Sceived By Will Study			02/18 TIMB 0915	Shipped	(Priority
	Tromquistou by			Time Re	eceived By /	Company	Date	Time	Hand Delivered	
	WW - Wastewater	Matrix Key SE – Sediment	Client Comments			Lab	Comments:			
	W - Water	SO - Soil								
	S ~ Soil	L – Leachate								
	SL Sludge	WI – Wipe								
	MS - Miscellaneous	DW - Drinking Water				1				
	OL – Oil	O – Other								
	Δ = Δir		1			I				

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

2417 Bond Street, University Park, IL 60484 Phona: 708.534.5200 Fax: 708.534.5211

Ol de

16

A – Air

Sample ID

Eff Not Lab Project #

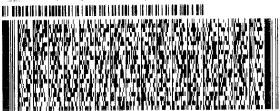
(optional) Report To Contact: MARK MANHEY Company: FEFA TELL Address: BRANFIEDE STILLS Address: BRANFIEDE STANFIEDE	Address:	Chain of Custody Record Lab Job #: 500-149312 Chain of Custody Number: 149315		
Phone:	Phone: Fax: PO#/Reference#	Temperature °C of Cooler: 3.3		
F-Mail: Preservative Parameter Parameter PASDRACK	T W Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	Preservative Key 1. HCl., Cool to 4° 2. H2SO4, Cool to 4° 3. HNO3, Cool to 4° 4. NaOH, Cool to 4° 5. NaOH/Zn, Cool to 4° 6. NaHSO4 7. Cool to 4° 8. None 9. Other		
Sampling south N Sampling Samp		Comments		
7-31 09:10 3				
7-31 61:00 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		LAB PREPARED		
Sample Disposal 5 Days Other Return to Client	Disposal by Lab	may be assassad if samples are retained longer than 1 month)		
ate Time Received By Sun (Company A 8 1-18	10:30 Lab Courier		
Time Received by Parties Time Received by Parties Time Received by	Sauce Company TAUL Date 08/02	Time Shipped FX Priority Hand Delivered		
ents	Lab Comments:	Figure Dull Portor		

Turnaround Time Requi	red (Business Days) STAP ys 5 Days 7 Days	(DAPE) 10 Days 15 Days	Sample Disposal Other Return to Cl	lient Disposal by Lal	Archive for Mo	nths (A fee may be assessed if samples	are retained longer than 1 month)
Relinquished By	Company Company Company	Date Date	/6:3 ₆ Time Rece	elved by Lived By Liv	Company A 8 Date Company Date C	08/02/18 0915	Shipped FX Priority
WW – Wastewater W – Water S – Soli	Matrix Key SE – Sediment SO – Soil L – Leachate	Client Comments			Lab Comments:		Hand Delivered
SL - Sludge MS - Miscellaneous. OL - Oll	WI – Wipe DW – Drinking Water O – Other						

TAL-4124-500 (1209)

ORIGIN ID:RRLA (262) 202-595 SHIPPING TESTAMERICA 4125 N 124TH ST

BROOKFIELD, WI 53005 UNITED STATES US


10 SAMPLE RECEIPT **TESTAMERICA LABS** 2417 BOND STREET

SHIP DATE: 01AUG18 ACTWGT: 46.20 LB CAD: 525155/CAFE3210

BILL RECIPIENT

UNIVERSITY PARK IL 60484

(708) 534 - 5200 1801 201

500-149315 Waybill

 $^{TRK\#}_{|0201}|\,7125\,\,4938\,\,5428$

THU - 02 AUG 10:30A PRIORITY OVERNIGHT

79 JOTA

60484 IL-US ORD

Page 32 of 33

Job Number: 500-149315-1

Login Number: 149315

List Source: TestAmerica Chicago

List Number: 1

Creator: Sanchez, Ariel M

Client: Tetra Tech GEO

Creator: Sanchez, Ariel M		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	3.3
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

TestAmerica Chicago

APPENDIX D WASTEWATER DISCHARGE MONITORING REPORTS AND STORM SEWER OUTFALL SS-1 ANALYTICAL RESULTS

Wastewater Discharge Monitoring Long Report

Facility Name: PENTAIR FLOW TECHNOLOGIES LLC

Contact Address: 293 S. Wright St

Delavan, WI 53115

Facility Contact: Dennis Schwind, Env. Tech

Phone Number: 262-728-7225

Reporting Period: 01/01/2018 - 01/31/2018

Form Due Date: 02/21/2018 Permit Number: 0055816

For DNR Use Only

Date Received:

DOC: 394259

FIN: 7072

FID: 265010900 Region: Southeast Region

Permit Drafter: Cathy M Baerwald
Reviewer: Andrew K Greer

Office: Milwaukee

	Sample Point	001	001	001	001	001
	Description	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole		Storm sewer manhole
	2000.10001	Starring and marmore		Starring and marmore	C.S.III CON OF MIGHNOIC	
	Parameter	211	487	457	388	388
	Description	Flow Rate	Temperature	Suspended Solids, Total	Phosphorus, Total	Phosphorus, Total
				Total		
	Units	MGD	degF	mg/L	mg/L	lbs/day
	Sample Type	TOT DAILY	GRAB	GRAB	GRAB	CALCULATED
	F=====================================	MONTHLY	MONTHLY	MONTHLY	MONTHLY	MONTHLY
Sample Results	Frequency Day 1	MONTHLY	MONTHLY	MONTHLY	MONTHLY	MONTHLY
Campio Recalls	2					
	3					
	4					
	5					
	6					
	7					
	8					
	9					
	10					
	11					
	12					
	13					
	14					
	15					
	16					
	17					
	18					
	19					
	20					
	21					
	22					
	23					
	24 25	0.5734	39.56	2.5	0.13	0.622
	26	0.57.54	39.50	3.5	0.13	0.622
	26					
	28					
	29					
	30					
	31					

	Sample Point	001	001	001	001	001
	Description	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole
	Parameter	211	487	457	388	388
	Description	Flow Rate	Temperature	Suspended Solids, Total	Phosphorus, Total	Phosphorus, Total
	Units	MGD	degF	mg/L	mg/L	lbs/day
Summary Values	Monthly Avg	0.5734	39.56	3.5	0.13	0.622
	Daily Max	0.5734	39.56	3.5	0.13	0.622
	Daily Min	0.5734	39.56	3.5	0.13	0.622
Limit(s) in Effect	Monthly Avg				0.24 0	
QA/QC Information	LOD			1.9	0.024	
	LOQ			5	0.05	
	QC Exceedance	N	N	Y	N	N
	Lab Certification			999580010	999580010	

	Sample Point	001	001	001	001
	Description	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole
	Parameter	490	508	561	517
	Description	Tetrachloroethylene	Trichloro- ethylene	1,1,1-Trichloro- ethane	Vinyl chloride
	Units	ug/L	ug/L	ug/L	ug/L
	Sample Type	GRAB	GRAB	GRAB	GRAB
	Frequency	MONTHLY	MONTHLY	MONTHLY	MONTHLY
Sample Results	Day 1				
	2				
	3				
	4				
	5				
	6				
	7				
	8				
	9				
	10				
	11				
	12				
	13				
	14				
	15				
	16 17				
	18				
	19				
	20				
	21				
	22				
	23				
	24	<0.37	<0.16	<0.38	<0.20
	25				
	26				
	27				
	28				
	29				
	30				
	31				

	Sample Point	001	001	001	001	
	Description	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	
	Parameter	490	508	561	517	
	Description	Tetrachloroethylene	Trichloro- ethylene	1,1,1-Trichloro- ethane	Vinyl chloride	
	Units	ug/L	ug/L	ug/L	ug/L	
Summary Values	Monthly Avg	0	0	0	0	
	Daily Max	<0.37	<0.16	<0.38	<0.2	
	Daily Min	<0.37	<0.16	<0.38	<0.2	
Limit(s) in Effect	Monthly Avg	50 0	50 0	50 0	10 0	
QA/QC Information	LOD	0.37	0.16	0.38	0.2	
	LOQ	1	0.5	1	0.5	
	QC Exceedance	N	N	N	N	
	Lab Certification	999580010	999580010	999580010	999580010	

Footnotes (DNR Use Only; Instructions for completing this form that are unique for your facility may be displayed here.)
General Remarks
The total flow rate was calculated from pumping rate measurements taken from the Delavan facility extraction wells by Pentair Flow Technologies Delavan facility personnel on September 22, 2017.
Laboratory Quality Control Comments
J = Result is less than the LOQ but greater than the LOD and the concentration is an approximate value.

GEOTRANS, INC. FIELD WATER QUALITY SAMPLING AND ANALYSIS FORM

PROJECT INFORMATION				INSTRUMENTS				
PROJECT				Temp. & pH	DP. & PH HI 9.8/29			
PROJECT NO.	Delai	ian Well #9	I WPDES	Conductivity	HI 9813			
LOCATION	Delavan,			ORP				
PERSONNEL	Denn	is Schwin	nd	00				
SAMPLE		SS-1	SS-1	SS-1	SS-1	SS-1		
WATER TYPE		Groundwater	Groundwater	Groundwater	r Groundwater	Groundwater		
DATE (month/c	iay/year}	01/25/18						
CLOCK TIME (Military)	0915				*****		
DEPTH TO WA	TER (ft)*	NA	NA	NA	NA	NA		
MEASURED W	ELL DEPTK (H)*	NA	NA	NA	NA	NA		
CASING VOLUI	ME (gallons)	NA	NA	NA	NA	NA		
PURGE VOLUM	IE (gailons)	NA	NA	NA	NA	NA		
DEPTH SAMPLI	E TAKEN (n)*	NA	NA	NA	NA	NA		
SAMPLING DEV	/IČE	HI 98129						
FIELD TEMPER	ATURE (°C)	4.2						
рH		7,85						
ELEC. COND.	Measured	681						
(uS/cm)	at 25° C							
ORP (mV)		NA	NA	NA	NA	NA		
DISSOLVED OX	YGEN (ppm)	NA	NA	NA	NA	NA		
DISSOLVED OXY	YGEN (% Sat.)	NA	NA	NA	NA	NA		
COLOR		<u>Clear</u>						
ODOR		None_						
CLARITY		Clear						
SAMPLING PARA	METERS	# OF CONTAINERS & V PRESERVATIVE TYPE	OLUME; CONTAINER T (L = LAB ADDED; F = FI	YPE (A = AMBER GLA ELD ADDED) OR NEU	SS; G = GLASB; P = PLAS TRAL; FILTERED (YES or I	TIC); NO)		
TCE, 1,1,1-T 1,1,2-TCA, P Chloride (EF Method SW (CE, Vinyl	3 – 40 ml; G; HCl – L; No.	3 – 40 ml; G; HCl – L; No.	3 – 40 ml; G; HCl – L; No.	3 – 40 ml; G; HCl – L; No.	3 – 40 ml; G; HCl – L; No.		
···				***************************************				
Comments:		proethene. TCA =	Trichloroethane. I	PCE = Tetrachlo	roethene.			
AME OF LABORA	ATORY	1 .	Test America	Test America	Test America	Test America		
ATE SENT TO LA	IB E	125/18						
AMPLER'S NAME		Jennis 1						
asured from top	of well capins	**						

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Chicago 2417 Bond Street University Park, IL 60484 Tel: (708)534-5200

TestAmerica Job ID: 500-140184-1

Client Project/Site: Delavan Well #4 WPDES

For:

Pentair Water 293 Wright Street Delavan, Wisconsin 53115

Sanda heduik

Attn: Steve Scharinger

Authorized for release by: 2/1/2018 1:40:40 PM

Sandie Fredrick, Project Manager II (920)261-1660

sandie.fredrick@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Pentair Water Project/Site: Delavan Well #4 WPDES TestAmerica Job ID: 500-140184-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	
Client Sample Results	5
Lab Chronicle	6
Certification Summary	7
Method Summary	8
Sample Summary	9
Chain of Custody	10
Racaint Chacklists	11

4

5

8

9

Definitions/Glossary

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-140184-1

Qualifiers

General Chemistry

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry)
MDC Minimum Detectable Concentration (Radiochemistry)

Mathe d Detection Unit

MDL Method Detection Limit
ML Minimum Level (Dioxin)
NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TestAmerica Chicago

2/1/2018

Page 3 of 11

3

5

6

9

10

Case Narrative

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-140184-1

Job ID: 500-140184-1

Laboratory: TestAmerica Chicago

Narrative

Job Narrative 500-140184-1

Comments

No additional comments.

Receipt

The sample was received on 1/26/2018 10:25 AM; the sample arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 0.5° C.

Receipt Exceptions

One or more containers for the following sample was received broken or leaking: SS1 (500-140184-1). Trip blank sent with sample was received broken. no volume could be salvaged.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

6

6

0

1 በ

Client Sample Results

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-140184-1

Lab Sample ID: 500-140184-1

Matrix: Water

Client Sample ID: SS1
Date Collected: 01/25/18 09:15

Date Received: 01/26/18 10:25

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<0.38		1.0	0.38	ug/L			01/31/18 18:05	1
1,1,2-Trichloroethane	<0.35		1.0	0.35	ug/L			01/31/18 18:05	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			01/31/18 18:05	1
Trichloroethene	<0.16		0.50	0.16	ug/L			01/31/18 18:05	1
Vinyl chloride	<0.20		0.50	0.20	ug/L			01/31/18 18:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		75 - 126			-		01/31/18 18:05	1
4-Bromofluorobenzene (Surr)	97		72 - 124					01/31/18 18:05	1
Dibromofluoromethane	97		75 - 120					01/31/18 18:05	1
Toluene-d8 (Surr)	101		75 - 120					01/31/18 18:05	1

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids	3.5	J -	5.0	1.9	mg/L			01/31/18 12:57	1
Chloride	130		10	5.0	mg/L			01/26/18 15:19	5
Phosphorus as P	0.13		0.050	0.024	mg/L		01/29/18 10:23	01/30/18 14:14	1

2/1/2018

2

6

8

9

Lab Chronicle

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-140184-1

Lab Sample ID: 500-140184-1

Matrix: Water

Client Sample ID: SS1
Date Collected: 01/25/18 09:15
Date Received: 01/26/18 10:25

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			418554	01/31/18 18:05	JDD	TAL CHI
Total/NA	Analysis	SM 2540D		1	418652		SMO	TAL CHI
					(Start) 0	01/31/18 12:57		
					(End) ()1/31/18 12:59		
Total/NA	Analysis	SM 4500 CI- E		5	418164	01/26/18 15:19	ССК	TAL CHI
Total/NA	Prep	SM 4500 P B			418304	01/29/18 10:23	RMP	TAL CHI
Total/NA	Analysis	SM 4500 P E		1	418507		RMP	TAL CHI
					(Start) 0	01/30/18 14:14		
					(End) (01/30/18 14:14		

Laboratory References:

TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

4

4

__

6

8

9

Accreditation/Certification Summary

Client: Pentair Water TestAmerica Job ID: 500-140184-1

Project/Site: Delavan Well #4 WPDES

Laboratory: TestAmerica Chicago

The accreditations/certifications listed below are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Wisconsin	State Program	5	999580010	08-31-18

4

_

8

3

10

Method Summary

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-140184-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL CHI
SM 2540D	Solids, Total Suspended (TSS)	SM	TAL CHI
SM 4500 CI- E	Chloride, Total	SM	TAL CHI
SM 4500 P E	Phosphorus	SM	TAL CHI

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater",

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

3

4

O

8

Sample Summary

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-140184-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
500-140184-1	SS1	Water	01/25/18 09:15	01/26/18 10:25

2

4

5

7

8

9

	ĺ	
	ſ	

TestAmerica THE LEADER IN ENVIRONMENTAL TESTING

2417 Bond Street, University Park, IL 60484 Phone: 708.534.5200 Fax: 708.534.5211

(optional)	(optional)
Report To Steve Schoolinger	Bill To
Report To Steve Scheringer Contact: Mark, Marriner	Contact:
Company: Pental T	Company:
Address: 293 Wright St.	Address:
Address: Delavan WI 53115	Address:
Phone: 262-728-7408	Phone:
Fax:	Fax:
F-Mail:	PO#/Reference#

Chai	n o	f C	usi	toa	ly	Re	CO	rd
		7	- / ()	`	1	100	D.	Λ

Lab Job #:	500-40	184
	1 7 -	•

Chain of Custody I	Number:	 			_
Page	of	 Λ	<i></i>	V	=

	Fax:		Fax:			Temperature °C of Cooler:
	E-Mail:		PO#/Refere	nce#		temperature con cooler.
Petatair Flow Tech	int Project # 1 NOLOGIES LCC	Preservative HCI	HCI HCI	HC/	H2501	Preservative Key 1. HCL, Cool to 4°
Project Name Delavan Well	#4 WADES	Parameter			6 2 ve	2. H2SO4, Cool to 4° 3. HNO3, Cool to 4° 4. NaOH, Cool to 4°
Project Logation/State Lat	Project #			10 de	200	5. NaOH/Zn, Cool to 4° 6. NaHSO4 7. Cool to 4°
Project Name Project Name Project Name Project Logation/State Lab Serpier Lab	PM	w w	A M	inyl Chloride Moride	Suspende Suspende Nosphorus	8. None 9. Other
OSWWSW Sample ID	Sampling Date Time	# of Containers Matrix	27 29	Vinyl Chloria Chloride	\$20, 50 \$20, 60	Comments
· · -·· · · · · · · · · · · · · · · ·	01/85/18 6915	5 W A	99	AA	44	Commence
1 SSI 2 Trip Blank						
						500-140184 COC
Turnaround Time Required (Business Days)		Sample Disposal				
1 Day 2 Days 5 Days 7 Days Requested Due Date		Return to Client	Disposal by Lab		Months (A fee may be asses	ssed if samples are retained longer than 1 month)
Relinquished By Company	Date Tim	ne Received By	nd Saired	TA-L-HI	Date ON 1210 LCP Tim	Lab Courier
Relinquished By Company	Date Tim	ne Received By	7	ompany	Date Tim	Object Til Att

				- and	aurel 1 AUF	π_0	10/2	Lab Courier
inquished By	Company	Date	Time	Received By	Company	Date	Time	Shipped TV ST
inquished By	Company	Date	Time	Received By	Company	Date	Time	Hand Delivered
V – Wastewater - Water - Soil - Sludge - Miscellaneous	Matrix Key SE – Sediment SO – Soil L – Leachate WI – Wipe DW – Drinking Water	Client Comments			Lab C	omments: TB bro	Ke in tra	nsit, no Salvaged

WW S – Soil SL – Sludge

A – Air

WI - Wipe MS - Miscellaneous DW - Drinking Water OL - Oil

O - Other

Page 10 of 11

Client: Pentair Water Job Number: 500-140184-1

Login Number: 140184 List Source: TestAmerica Chicago

List Number: 1

Creator: Sanchez, Ariel M

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	0.5
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	False	COC not relinquished.
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	False	TB broke in transit
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Wastewater Discharge Monitoring Long Report

Facility Name: PENTAIR FLOW TECHNOLOGIES LLC

Contact Address: 293 S. Wright St

Delavan, WI 53115

Facility Contact: Dennis Schwind, Env. Tech

Phone Number: 262-728-7225

Reporting Period: 02/01/2018 - 02/28/2018

Form Due Date: 03/21/2018 Permit Number: 0055816

For DNR Use Only

Date Received:

FID:

DOC: 394260

FIN: 7072

Region: Southeast Region

265010900

Permit Drafter: Cathy M Baerwald Reviewer: Andrew K Greer

Office: Milwaukee

	Sample Point	001	001	001	001	001
	Description	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole		Storm sewer manhole
	Parameter	211	487	457	388	388
	Description	Flow Rate	Temperature	Suspended Solids, Total	Phosphorus, Total	Phosphorus, Total
				lotai		
	Units	MGD	degF	mg/L	mg/L	lbs/day
	Sample Type	TOT DAILY	GRAB	GRAB	GRAB	CALCULATED
	Frequency	MONTHLY	MONTHLY	MONTHLY	MONTHLY	MONTHLY
Sample Results	Day 1					
	2					
	3					
	4					
	5					
	6					
	7					
	8					
	9					
	10					
	11					
	12					
	13					
	14	0.5734	53.78	<1.9	0.052	0.249
	15					
	16					
	17					
	18					
	19					
	20					
	21					
	22					
	23					
	24					
	25					
	26					
	27					
	28					
	29					
	30					
	31					
	l .			l .		

	Sample Point	001	001	001	001	001
	Description	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole
	Parameter	211	487	457	388	388
	Description	Flow Rate	Temperature	Suspended Solids, Total	Phosphorus, Total	Phosphorus, Total
	Units	MGD	degF	mg/L	mg/L	lbs/day
Summary Values	Monthly Avg	0.5734	53.78	0	0.052	0.249
	Daily Max	0.5734	53.78	<1.9	0.052	0.249
	Daily Min	0.5734	53.78	<1.9	0.052	0.249
Limit(s) in Effect	Monthly Avg				0.24 0	
QA/QC Information	LOD			1.9	0.024	
	LOQ			5	0.05	
	QC Exceedance	N	N	N	N	N
	Lab Certification			999580010	999580010	

	Sample Point	001	001	001	001
	Description	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole
	Parameter	490	508	561	517
	Description	Tetrachloroethylene	Trichloro- ethylene	1,1,1-Trichloro- ethane	Vinyl chloride
	Units	ug/L	ug/L	ug/L	ug/L
	Sample Type	GRAB	GRAB	GRAB	GRAB
					0
	Frequency	MONTHLY	MONTHLY	MONTHLY	MONTHLY
Sample Results	Day 1				
	2				
	3				
	4				
	5				
	6				
	7				
	8				
	9				
	10				
	11				
	12				
	13				
	14	<0.37	0.70	<0.38	<0.20
	15				
	16				
	17				
	18				
	19				
	20				
	21				
	22				
	23				
	24				
	25				
	26				
	27				
	28				
	29				
	30				
	31				
		l	l .	l .	

	Sample Point	001		001		001		001	
	Description	Storm sewer manh	nole	Storm sewer man	hole	Storm sewer man	hole	Storm sewer ma	nhole
								1	
	Parameter	490		508		561		517	
	Description	Tetrachloroethyle	Tetrachloroethylene		ne	1,1,1-Trichloro- et	hane	Vinyl chlorid	e
	Units	ug/L		ug/L		ug/L		ug/L	
Summary Values	Monthly Avg	0		0.7		0		0	
	Daily Max	<0.37	<0.37 0.7 <0.38		<0.2				
	Daily Min	<0.37		0.7		<0.38		<0.2	
							10.00		
Limit(s) in Effect	Monthly Avg	50	0	50	0	50	0	10	0
QA/QC Information	LOD	0.37		0.16		0.38	0.38		1
	LOQ	1		0.5	1.5		0.5		
	QC Exceedance	N		N	N N		N		
	Lab Certification	999580010		999580010		999580010)	99958001	0

Footnotes (DNR Use Only; Instructions for completing this form that are unique for your facility may be displayed here.)
General Remarks
The total flow rate was calculated from pumping rate measurements taken from the Delavan facility extraction wells by Pentair Flow Technologies Delavan facility personnel on September 22, 2017.
Laboratory Quality Control Comments

GEOTRANS, INC. FIELD WATER QUALITY SAMPLING AND ANALYSIS FORM

	PROJECT INFORMA	ATION		INSTRUMENTS				
PROJECT DE	lavan Facility Reme	dial Action	Temp. & pH					
PROJECT NO.	elavan Well	#4	Conductivity	<u></u>				
	lavan, WI		ORP		***************************************			
PERSONNEL	enn's		DO					
SAMPLE POINT	SS-1	SS-1	SS-1	SS-1	SS-1			
WATER TYPE	Groundwa		er Groundwate	er Groundwate	er Groundwater			
DATE (month/day/year)	2/14/18							
CLOCK TIME (Military)	0840							
DEPTH TO WATER (ft)	NA	NA	NA	NA	NA			
MEASURED WELL DEP	TH (ft)* NA	NA	NA	NA	NA			
CASING VOLUME (gallo	ns) NA	NA	NA	NA	NA			
PURGE VOLUME (gallor	ns) NA	NA	NA	NA	NA			
DEPTH SAMPLE TAKEN	(n)• NA	NA	NA	NA	NA			
SAMPLING DEVICE	. HI9872	9						
FIELD TEMPERATURE (′ -						
pH	7,67							
ELEC. Measure	· · ·							
COND. (uS/cm) at 25° C	1169							
ORP (mV)	NA	NA	NA	NA	NA			
DISSOLVED OXYGEN (pp	om) NA	NA	NA	NA	NA			
DISSOLVED OXYGEN (%	Sat.) NA	NA	NA	NA	NA			
COLOR	Clear							
ODOR	None							
CLARITY	Clear							
SAMPLING PARAMETERS	# OF CONTAINERS PRESERVATIVE T	S & VOLUME; CONTAINER YPE (L = LAB ADDED; F =	R TYPE (A = AMBER GL) FIELD ADDED) OR NEU	SS; G = GLASS; P = PL TRAL; FILTERED (YES)	ASTIC); or NO)			
TCE, 1,1,1-TCA, 1,1,2-TCA, PCE, Vi Chloride (EPA Method SW 8260B)	nyl 3 – 40 ml; G; HCl – L; No.	3 – 40 ml; G; HCl – L; No.	3 – 40 ml; G; HCl – L; No.	3 – 40 ml; G; HCl – L; No.	3 – 40 ml; G; HCl – L; No.			
comments: TCE = 1	richloroethene. TC	A = Trichloroethane	e. PCE = Tetrachlo	roethene.				
AME OF LABORATORY	Test America	Test America	Test America	Test America	Test America			
ATE SENT TO LAB	2/14/18							
MPLER'S NAME	Dennis	1						

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Chicago 2417 Bond Street University Park, IL 60484 Tel: (708)534-5200

TestAmerica Job ID: 500-140962-1

Client Project/Site: Delavan Well #4 WPDES

For:

Pentair Water 293 Wright Street Delavan, Wisconsin 53115

Sanda freduit

Attn: Steve Scharinger

Authorized for release by: 2/26/2018 12:27:54 PM

Sandie Fredrick, Project Manager II (920)261-1660

sandie.fredrick@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Pentair Water Project/Site: Delavan Well #4 WPDES TestAmerica Job ID: 500-140962-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	
Client Sample Results	5
Lab Chronicle	6
Certification Summary	7
Method Summary	8
Sample Summary	9
Chain of Custody	10
Racaint Chacklists	11

5

4

5

6

8

9

Definitions/Glossary

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-140962-1

Qualifiers

GC/MS VOA

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviati	on These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid

CNF Contains Free Liquid
CNF Contains No Free Liquid
DER Duplicate Error Ratio (no

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry)
MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
NC Net Colouleted

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

4

5

6

0

4 6

10

1-

Case Narrative

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-140962-1

Job ID: 500-140962-1

Laboratory: TestAmerica Chicago

Narrative

Job Narrative 500-140962-1

Comments

No additional comments.

Receipt

The samples were received on 2/15/2018 9:40 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.1° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

-3

4

6

O

Q

9

10

Client Sample Results

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-140962-1

Lab Sample ID: 500-140962-1

Matrix: Water

Date Collected: 02/14/18 08:40 Date Received: 02/15/18 09:40

Client Sample ID: SS1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<0.38		1.0	0.38	ug/L			02/23/18 16:44	1
1,1,2-Trichloroethane	< 0.35		1.0	0.35	ug/L			02/23/18 16:44	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			02/23/18 16:44	1
Trichloroethene	0.70		0.50	0.16	ug/L			02/23/18 16:44	1
Vinyl chloride	<0.20		0.50	0.20	ug/L			02/23/18 16:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		75 - 126			•		02/23/18 16:44	1
4-Bromofluorobenzene (Surr)	96		72 - 124					02/23/18 16:44	1
Dibromofluoromethane	92		75 - 120					02/23/18 16:44	1
Toluene-d8 (Surr)	95		75 - 120					02/23/18 16:44	1

General Chemistry						
Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Total Suspended Solids	<1.9	5.0	1.9 mg/L		02/20/18 10:54	1
Chloride	200	10	5.0 mg/L		02/16/18 01:42	5
Phosphorus as P	0.052	0.050	0.024 mg/L	02/21/18 09:15	02/22/18 14:41	1

Lab Sample ID: 500-140962-2 **Client Sample ID: Trip Blank** Date Collected: 02/14/18 00:00

Matrix: Water

Date Received: 02/15/18 09:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<0.38		1.0	0.38	ug/L			02/23/18 17:14	1
1,1,2-Trichloroethane	<0.35		1.0	0.35	ug/L			02/23/18 17:14	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			02/23/18 17:14	1
Trichloroethene	0.34	J	0.50	0.16	ug/L			02/23/18 17:14	1
Vinyl chloride	<0.20		0.50	0.20	ug/L			02/23/18 17:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		75 - 126			•		02/23/18 17:14	1
4-Bromofluorobenzene (Surr)	96		72 - 124					02/23/18 17:14	1
Dibromofluoromethane	118		75 - 120					02/23/18 17:14	1
Toluene-d8 (Surr)	95		75 - 120					02/23/18 17:14	1

2/26/2018

Lab Chronicle

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-140962-1

Lab Sample ID: 500-140962-1

Matrix: Water

Matrix: Water

Client Sample ID: SS1
Date Collected: 02/14/18 08:40
Date Received: 02/15/18 09:40

	Batch	Batch	_	Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	421205	02/23/18 16:44	PMF	TAL CHI
Total/NA	Analysis	SM 2540D		1	420803		SMO	TAL CHI
					(Start) 0	02/20/18 10:54		
					(End) (02/20/18 10:56		
Total/NA	Analysis	SM 4500 CI- E		5	420483	02/16/18 01:42	HMW	TAL CHI
Total/NA	Prep	SM 4500 P B			420913	02/21/18 09:15	RMP	TAL CHI
Total/NA	Analysis	SM 4500 P E		1	421196		RMP	TAL CHI
					(Start) 0)2/22/18 14:41		
					(End) ()2/22/18 14:41		

Client Sample ID: Trip Blank

Lab Sample ID: 500-140962-2

Date Collected: 02/14/18 00:00

Date Received: 02/15/18 09:40

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			421205	02/23/18 17:14	PMF	TAL CHI

Laboratory References:

TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

3

4

6

ا

9

Accreditation/Certification Summary

Client: Pentair Water TestAmerica Job ID: 500-140962-1

Project/Site: Delavan Well #4 WPDES

Laboratory: TestAmerica Chicago

The accreditations/certifications listed below are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Wisconsin	State Program	5	999580010	08-31-18

1

•

4

5

7

Method Summary

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-140962-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL CHI
SM 2540D	Solids, Total Suspended (TSS)	SM	TAL CHI
SM 4500 CI- E	Chloride, Total	SM	TAL CHI
SM 4500 P E	Phosphorus	SM	TAL CHI

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater",

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

3

4

5

6

8

10

10

TestAmerica Chicago

Sample Summary

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-140962-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
500-140962-1	SS1	Water	02/14/18 08:40	02/15/18 09:40
500-140962-2	Trip Blank	Water	02/14/18 00:00	02/15/18 09:40

4

6

8

9

Test <u>A</u> merica	Report To C J	charinger	Bill To	(optional)	Chain of Cust	ody Record
	Contact:	cravinger in Flow Tech	Contact:		500	-140962
THE LEADER IN ENVIRONMENTAL TESTING	Address: 293 W	Nobel Od	Address:		Lab Job #:	11010
2417 Bond Street, University Park, IL 60484	Address: Address:	n WI 53	Address:		Chain of Custody Number:	
Phone: 708.534.5200 Fax: 708.534.5211	Phone: 262.7	n WI 53 28-5551	Phone:		Page of	
	Fax:		Fax:		V =	-0.4-11
	E-Mail:		PO#/Reference#		Temperature °C of Cooler:	
Client Project #	Preserva	ative MC HC	HC HCI	A Hason		Preservative Key 1. HCL, Cool to 4°
Pentair Project Name	Param		1101	8 1929		2. H2SO4, Cool to 4°
Delavan Well 4 WFDE	5		7			3. HNO3, Cool to 4° 4. NaOH, Cool to 4°
Project Location/State Lab Project # Lab Project #				ride Susp Oborus		5. NaOH/Zn, Cool to 4° 6. NaHSO4
Salgoler Lab PM			- M - 6	3005		7. Cool to 4° 8. None
Salopler Lab PM			75 12 1	\$ 25 B		9. Other
480	Sampling Date Time Sampling Sampling Sampling Sampling			2502		
O O SWW SW Sample ID	Date Time 5	Matrix /		OK WIT		Comments
		WNX	Ø Ø	AXX X		
2 Trip Blank	1					
A JAIP DRINK						
					Kara	
					500-140962 CO	
					10200	C
Turnaround Time Required (Business Days)	Sample	Disposal				
1 Day 2 Days 5 Days 7 Days 10 Days 15 Da	vs Other		Disposal by Lab Arct	nive for Months (A fee may	be assessed if samples are retained longer	r than 1 month)
Requested Due Date Company Date					T	
Lenn Shun Penlair of	14/18 1200	Received By	VILLOLA Company	AUT Date 02/15/18	Lab Couri	er
Relinquished By Company Date	Time	Received By	Ompany	Date	Time	ed TV CTT
Relinquished By Company Date	Time	Received By	Company	Date	Time	
					Hand Deliver	∋d
Matrix Key WW - Wastewater Matrix Key Client Comments				Lab Comments:		
W – Water SO – Soil S – Soil L – Leachate			ŀ			
SL – Sludge WI – Wipe						
MS - Miscellaneous DW - Drinking Water OL - Oil O - Other						
A – Air						

Page 10 of 11

TAL-**2%26/201**8

Client: Pentair Water Job Number: 500-140962-1

Login Number: 140962 List Source: TestAmerica Chicago

List Number: 1

Creator: Sanchez, Ariel M

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	1.1
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Wastewater Discharge Monitoring Long Report

Facility Name: PENTAIR FLOW TECHNOLOGIES LLC

Contact Address: 293 S. Wright St

Delavan, WI 53115

Facility Contact: Dennis Schwind, Env. Tech

Phone Number: 262-728-7225

Reporting Period: 03/01/2018 - 03/31/2018

Form Due Date: 04/21/2018 Permit Number: 0055816

For DNR Use Only

Date Received:

DOC: 394261

FIN: 7072 FID: 26501090

FID: 265010900 Region: Southeast Region

Permit Drafter: Cathy M Baerwald
Reviewer: Andrew K Greer

Office: Milwaukee

	Sample Point	001	001	001	001	001
	Description	Storm sewer manhole		Storm sewer manhole	Storm sewer manhole	
	·					
	Parameter	211	487	457	388	388
	Description	Flow Rate	Temperature	Suspended Solids, Total	Phosphorus, Total	Phosphorus, Total
	Units	MGD	degF	mg/L	mg/L	lbs/day
	Sample Type	TOT DAILY	GRAB	GRAB	GRAB	CALCULATED
	Frequency	MONTHLY	MONTHLY	MONTHLY	MONTHLY	MONTHLY
Sample Results	Day 1					
	2					
	3					
	4					
	5					
	6					
	7					
	8					
	9					
	10					
	11					
	12					
	13					
	14					
	15					
	16					
	17					
	18					
	19		53.78	<1.9	0.052	0.170
	20					
	21					
	22					
	23					
	24					
	25					
	26	0.3929				
	27					
	28					
	29					
	30					
	31					

	Sample Point	001	001	001	001	001
	Description	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole
	Parameter	211	487	457	388	388
	Description	Flow Rate	Temperature	Suspended Solids, Total	Phosphorus, Total	Phosphorus, Total
	Units	MGD	degF	mg/L	mg/L	lbs/day
Summary Values	Monthly Avg	0.3929	53.78	0	0.052	0.17
	Daily Max	0.3929	53.78	<1.9	0.052	0.17
	Daily Min	0.3929	53.78	<1.9	0.052	0.17
Limit(s) in Effect	Monthly Avg				0.24 0	
QA/QC Information	LOD			1.9	0.024	
	LOQ			5	0.05	
	QC Exceedance	N	N	N	N	N
	Lab Certification	_		999580010	999580010	

	Sample Point	001	001	001	001
	Description	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole
	Parameter	490	508	561	517
	Description	Tetrachloroethylene	Trichloro- ethylene	1,1,1-Trichloro- ethane	Vinyl chloride
	Units	ug/L	ug/L	ug/L	ug/L
	Sample Type	GRAB	GRAB	GRAB	GRAB
0 1 5 "	Frequency	MONTHLY	MONTHLY	MONTHLY	MONTHLY
Sample Results	Day 1				
	2				
	3				
	4				
	5				
	6				
	7				
	8				
	9				
	10				
	11				
	12				
	13				
	14				
	15				
	16				
	17				
	18				
	19	0.41	0.69	<0.38	<0.20
	20				
	21				
	22				
	23				
	24				
	25				
	26				
	27				
	28				
	29				
	30				
	31				

	Sample Point	001	001	001	001
	Description	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole
	Parameter	490	508	561	517
	Description	Tetrachloroethylene	Trichloro- ethylene	1,1,1-Trichloro- ethane	Vinyl chloride
	Units	ug/L	ug/L	ug/L	ug/L
Summary	Monthly	0.41	0.69	0	0
Values	Avg				
	Daily Max	0.41	0.69	<0.38	<0.2
	Daily Min	0.41	0.69	<0.38	<0.2
Limit(s) in	Monthly	50 0	50 0	50 0	10 0
Effect	Avg				
QA/QC Information	LOD	0.37	0.16	0.38	0.2
	LOQ	1	0.5	1	0.5
	QC	Y	N	N	N
	Exceedance	<u> </u>			
	Lab Certification	999580010	999580010	999580010	999580010

Footnotes (DNR Use Only; Instructions for completing this form that are unique for your facility may be displayed here.)
General Remarks
The total flow rate was calculated from pumping rate measurements taken from the Delavan facility extraction wells by Pentair Flow Technologies Delavan facility personnel on March 26, 2018.
Laboratory Quality Control Comments
J = Result is less than the LOQ but greater than the LOD and the concentration is an approximate value.

GEOTRANS, INC. FIELD WATER QUALITY SAMPLING AND ANALYSIS FORM

	PROJE	CT INFORMATI	ON		INSTRUMEN	TS
PROJECT	Delavan	Facility Remedial	Action	Temp. & pH	HI 9.81	29
PROJECT NO.	Delay	an Well=	#4	Conductivity	HI 981	
LOCATION	Delavan,	WI		ORP	70.	
PERSONNEL	Thomas	5 Schwing		DO		
SAMPLE P		SS-1	SS-1	SS-1	SS-1	SS-1
WATER TYPE		Groundwater	Groundwater	Groundwate	r Groundwate	r Groundwater
DATE (month/da	ny/year)	03/19/18				
CLOCK TIME (M	lilitary)	0920				
DEPTH TO WAT	ER (n)*	NA	NA	NA	NA	NA .
MEASURED WE	LL DEPTH (tt)*	NA	NA	NA	NA	NA
CASING VOLUM	E (galions)	NA	NA	NA	NA	NA
PURGE VOLUME	E (galions)	NA	NA	NA	NA	NA
DEPTH SAMPLE	TAKEN (II)	NA	NA	NA	NA	NA
SAMPLING DEVI	ĆE	HI98/29				
FIELD TEMPERA	TURE (°C)	12.1				
pН		7.69	`		۲	
ELEC. COND.	Measured	1175				
	at 25° C	. ,	1			
ORP (mV)		NA	NA	NA	NA	NA
DISSOLVED OXY	GEN (ppm)	NA	NA	NA	NA	NA
DISSOLVED OXY	GEN (% Sat.)	NA	NA	NA.	NA	NA
COLOR		Clear				
ODOR		None_				
CLARITY		Clear				
SAMPLING PARA	METERS	# OF CONTAINERS & PRESERVATIVE TYPE	VOLUME; CONTAINER 1 (L = LAB ADDED; F = F	TYPE (A = AMBER GLA IELD ADDED) OR NEU	SS; G = GLASS; P = PL TRAL; FILTERED (YES	LSTIC); ir NO)
TCE, 1,1,1-T(1,1,2-TCA, P(Chloride (EP/ Method SW 8	CE, Vinyl	3 – 40 ml; G; HCl – L; No.	3 – 40 ml; G; HCl – L; No.	3 – 40 ml; G; HCl – L; No.	3 – 40 ml; G; HCI – L; No.	3 – 40 ml; G; HCl – L; No.
omments: T	CE = Trichl	oroethene. TCA :	= Trichloroethane.	PCE = Tetrachio	roethene.	
AME OF LABORA		Test America	Test America	Test America	Test America	Test America
ATE SENT TO LAI		31.19/18				

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Chicago 2417 Bond Street University Park, IL 60484 Tel: (708)534-5200

TestAmerica Job ID: 500-142484-1

Client Project/Site: Delavan Well #4 WPDES

For:

Pentair Water 293 Wright Street Delavan, Wisconsin 53115

Attn: Steve Scharinger

Therese Hargaves

Authorized for release by: 3/30/2018 8:11:56 AM

Therese Hargraves, Project Manager I therese.hargraves@testamericainc.com

Designee for

Sandie Fredrick, Project Manager II (920)261-1660

sandie.fredrick@testamericainc.com

..... LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Pentair Water Project/Site: Delavan Well #4 WPDES TestAmerica Job ID: 500-142484-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Lab Chronicle	6
Certification Summary	7
Method Summary	8
Sample Summary	9
Chain of Custody	10
Receint Checklists	11

-6

_

5

7

0

10

Definitions/Glossary

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-142484-1

Qualifiers

GC/MS VOA

Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry) Estimated Detection Limit (Dioxin) **EDL** LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RLReporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

TestAmerica Chicago

Page 3 of 11

Case Narrative

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-142484-1

Job ID: 500-142484-1

Laboratory: TestAmerica Chicago

Narrative

Job Narrative 500-142484-1

Comments

No additional comments.

Receipt

The samples were received on 3/20/2018 9:25 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.0° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

6

a

Project/Site: Delavan Well #4 WPDES

Lab Sample ID: 500-142484-1

TestAmerica Job ID: 500-142484-1

Matrix: Water

Client Sample ID: SS1
Date Collected: 03/19/18 09:20

Date Received: 03/20/18 09:25

Method: 8260B - Volatile O	rganic Compo	unds (GC/	MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<0.38		1.0	0.38	ug/L			03/23/18 02:53	1
1,1,2-Trichloroethane	<0.35		1.0	0.35	ug/L			03/23/18 02:53	1
Tetrachloroethene	0.41	J	1.0	0.37	ug/L			03/23/18 02:53	1
Trichloroethene	0.69		0.50	0.16	ug/L			03/23/18 02:53	1
Vinyl chloride	<0.20		0.50	0.20	ug/L			03/23/18 02:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108		75 - 126			•		03/23/18 02:53	1
4-Bromofluorobenzene (Surr)	106		72 - 124					03/23/18 02:53	1
Dibromofluoromethane	94		75 - 120					03/23/18 02:53	1
Toluene-d8 (Surr)	104		75 - 120					03/23/18 02:53	1

General Chemistry Analyte	Result Qualifier	r RL	MDL	Unit	D Prepared	Analyzed	Dil Fac
Total Suspended Solids	<1.9	5.0	1.9	mg/L		03/21/18 12:43	1
Chloride	190	10	5.0	mg/L		03/23/18 19:04	5
Phosphorus as P	0.052	0.050	0.024	mg/L	03/21/18 08:05	03/22/18 14:39	1

Client Sample ID: Trip Blank

Date Collected: 03/19/18 00:00

Lab Sample ID: 500-142484-2

Matrix: Water

Date Collected: 03/19/18 00:00 Matrix: Water Date Received: 03/20/18 09:25

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<0.38		1.0	0.38	ug/L			03/23/18 03:19	1
1,1,2-Trichloroethane	< 0.35		1.0	0.35	ug/L			03/23/18 03:19	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			03/23/18 03:19	1
Trichloroethene	<0.16		0.50	0.16	ug/L			03/23/18 03:19	1
Vinyl chloride	<0.20		0.50	0.20	ug/L			03/23/18 03:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108		75 - 126			:		03/23/18 03:19	1
4-Bromofluorobenzene (Surr)	103		72 - 124					03/23/18 03:19	1
Dibromofluoromethane	98		75 - 120					03/23/18 03:19	1
Toluene-d8 (Surr)	103		75 - 120					03/23/18 03:19	1

Lab Chronicle

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-142484-1

Lab Sample ID: 500-142484-1

Matrix: Water

Client Sample ID: SS1
Date Collected: 03/19/18 09:20
Date Received: 03/20/18 09:25

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			424635	03/23/18 02:53	JDD	TAL CHI
Total/NA	Analysis	SM 2540D		1	424432		SMO	TAL CHI
					(Start) 0	3/21/18 12:43		
					(End) C	3/21/18 12:44		
Total/NA	Analysis	SM 4500 CI- E		5	424889	03/23/18 19:04	HMW	TAL CHI
Total/NA	Prep	SM 4500 P B			424354	03/21/18 08:05	RMP	TAL CHI
Total/NA	Analysis	SM 4500 P E		1	424673		RMP	TAL CHI
					(Start) 0	3/22/18 14:39		
					(End) C	3/22/18 14:39		

Client Sample ID: Trip Blank

Lab Sample ID: 500-142484-2

Date Collected: 03/19/18 00:00 Matrix: Water

Date Received: 03/20/18 09:25

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	424635	03/23/18 03:19	JDD	TAL CHI

Laboratory References:

TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

Accreditation/Certification Summary

Client: Pentair Water TestAmerica Job ID: 500-142484-1

Project/Site: Delavan Well #4 WPDES

Laboratory: TestAmerica Chicago

The accreditations/certifications listed below are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Wisconsin	State Program	5	999580010	08-31-18

4

5

7

Q

Method Summary

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-142484-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL CHI
SM 2540D	Solids, Total Suspended (TSS)	SM	TAL CHI
SM 4500 CI- E	Chloride, Total	SM	TAL CHI
SM 4500 P E	Phosphorus	SM	TAL CHI

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater",

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

2

/

5

__

8

3

10

. .

Sample Summary

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-142484-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
500-142484-1	SS1	Water	03/19/18 09:20	03/20/18 09:25
500-142484-2	Trip Blank	Water	03/19/18 00:00	03/20/18 09:25

_

4

_

6

Q

Q

TestAmerica

THE LEADER IN ENVIRONMENTAL

(optional)	(optional)	Ol to CO alaska Danami
Report To Mark Manthey	Bill To	Chain of Custody Record
Contact: ///Cirk ///Cipther	Contact:	1.60 0
company: Steve Schafinger	Company:	Lab Job #: <u>500 - 142484</u>
ddress: Dennis Schwind	Address:	Chain of Custody Number:
ddress:	Address:	Origin of oddody Nambon
hone:	Phone:	Page of
ax:	Fax:	Temperature °C of Cooler: $0,5 \rightarrow 2,0$
-Mail:	PO#/Reference#	remperature *C or Cooler: V/3 / VCC

2417 Bond S Phone: 708.53	l	-142484 COC	Address: Phone: Fax:		JONA		Address: Address: Phone:					Page	Custody Number:
			E-Mail:				PO#/Refere	nce#				Tempera	ature °C of Cooler: 013 7040
Phent Entair Flow	w Technologic	nt Project #		Preservative	HCI	HCI	HCI	HCI	Jet	HSOY			Preservative Key 1. HCL, Cool to 4° 2. H2SO4, Cool to 4°
roject Name Velavan Spiect Location/State Dellowan Sampler Dennis	W.F	WPDES Project #		Parameter	W	A	E	y/ Moride	al Suspend 1,ds	esphorus			3. HNO3, Cool to 4° 4. NaOH, Cool to 4° 5. NaOH/Zn, Cool to 4° 6. NaHSO4 7. Cool to 4° 8. None 9. Other
OI OR WS/WSD Sample ID		Date	Sampling Time	# of Containers Matrix	12/2	12	L	V	1500	Pha			Comments
I SSI		3/19	18 0980	5 W	-				-				
7 1114	blank												
urnaround Time Required 1 Day 2 Days equested Due Date	f (Business Days) 5 Days 7 Days	_10 Days 15 Days	Other	Sample Dispo	osal n to Client	Disp	osal by Lab	Archi	ve for	_ Months	(A fee may b	e assessed if samples	are retained longer than 1 month)
elinquished By Long elinquished By	Mun Penta	vá 3/19/	18 0	ime 945 ime	Received By	mix	lot	ompany ompany	CH	Date S	0/18	Time 925	Lab Courier
elinquished By	Company	Date		ime -	Received By			ompany		Date		Time	Shipped Fed
Matewater - Water - Soil - Sludge S - Miscellaneous L - Oil - Air	atrix Key SE – Sediment SO – Soil L – Leachate WI – Wipe DW – Drinking Water O – Other	Client Comments						L	ab Comments	S:			
, m		l											TAL -4124-500 (1209)

3/30/2018

Client: Pentair Water Job Number: 500-142484-1

Login Number: 142484 List Source: TestAmerica Chicago

List Number: 1

Creator: Scott, Sherri L

Creator: Scott, Snerri L		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a surmeter.</td <td>rvey True</td> <td></td>	rvey True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	2.0
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the CC	OC. True	
Samples are received within Holding Time (excluding tests with immedia HTs)	te True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

TestAmerica Chicago

Wastewater Discharge Monitoring Long Report

Facility Name: PENTAIR FLOW TECHNOLOGIES LLC

Contact Address: 293 S. Wright St

Delavan, WI 53115

Facility Contact: Dennis Schwind, Env. Tech

Phone Number: 262-728-7225

Reporting Period: 04/01/2018 - 04/30/2018

Form Due Date: 05/21/2018 Permit Number: 0055816

For DNR Use Only

Date Received:

DOC: 401170

FIN: 7072 FID: 265010900

Region: Southeast Region

Permit Drafter: Cathy M Baerwald Reviewer: Andrew K Greer

Office: Milwaukee

	Sample Point	001	001	001	001	001
	Description	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole		
	Parameter	211	487	457	388	388
	Description	Flow Rate	Temperature	Suspended Solids, Total	Phosphorus, Total	Phosphorus, Total
				Total		
	Units	MGD	degF	mg/L	mg/L	lbs/day
	Sample Type	TOT DAILY	GRAB	GRAB	GRAB	CALCULATED
Camania Bassilta	Frequency	MONTHLY	MONTHLY	MONTHLY	MONTHLY	MONTHLY
Sample Results	Day 1					
	2					
	3					
	4					
	5					
	6					
	7					
	8					
	9					
	10					
	11					
	12					
	13					
	14					
	15					
	16					
	17 18					
	19					
	20					
	21					
	22					
	23	0.3929	53.96	<1.9	0.036	0.118
	24	0.0020	33.30	11.0	0.000	0.110
	25					
	26					
	27					
	28					
	29					
	30					
	31					

Permit: 0055816

	Sample Point	001	001	001	001	001
	Description	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole
	Parameter	211	487	457	388	388
	Description	Flow Rate	Temperature	Suspended Solids, Total	Phosphorus, Total	Phosphorus, Total
	Units	MGD	degF	mg/L	mg/L	lbs/day
Summary Values	Monthly Avg	0.3929	53.96	0	0.036	0.118
	Daily Max	0.3929	53.96	<1.9	0.036	0.118
	Daily Min	0.3929	53.96	<1.9	0.036	0.118
Limit(s) in Effect	Monthly Avg				0.24 0	
QA/QC Information	LOD			1.9	0.024	
	LOQ			5	0.05	
	QC Exceedance	N	N	N	Y	N
	Lab Certification			999580010	999580010	

Page 2 of 5

	Sample Point	001	001	001	001
	Description	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole
	Parameter	490	508	561	517
	Description	Tetrachloroethylene	Trichloro- ethylene	1,1,1-Trichloro- ethane	Vinyl chloride
	Units	ug/L	ug/L	ug/L	ug/L
	Sample Type	GRAB	GRAB	GRAB	GRAB
	Frequency	MONTHLY	MONTHLY	MONTHLY	MONTHLY
Sample Results	Day 1				
	2				
	3				
	4				
	5				
	6				
	7				
	8				
	9				
	10				
	11				
	12				
	13				
	14				
	15				
	16				
	17				
	18				
	19				
	20				
	21				
	22	<0.37	1.4	<0.38	<0.20
	23				
	24				
	25				
	26				
	27				
	28				
	29				
	30				
	31				

	Sample Point	001		001		001		001	
	Description	Storm sewer manho	le	Storm sewer manhole		Storm sewer manhole		Storm sewer manho	
								517	
	Parameter	490		508	508		561		
	Description	Tetrachloroethylene)	Trichloro- ethyle	ne	1,1,1-Trichloro- et	hane	Vinyl chlorid	e
	Units	ug/L		ug/L		ug/L		ug/L	
Summary Values	Monthly Avg	0		1.4		0		0	
	Daily Max	<0.37		1.4		<0.38		<0.2	
	Daily Min	<0.37		1.4		<0.38		<0.2	
	,								
Limit(s) in Effect	Monthly Avg	50)	50	0	50	0	10	0
QA/QC Information	LOD	0.37		0.16		0.38		0.2	
	LOQ	1		0.5		1		1	
	QC Exceedance	N		N		N		N	
	Lab Certification	999580010		999580010		999580010		999580010	

Footnotes (DNR Use Only; Instructions for completing this form that are unique for your facility may be displayed here.)
General Remarks
The total flow rate was calculated from pumping rate measurements taken from the Delavan facility extraction wells by Pentair Flow Technologies Delavan facility personnel on March 26, 2018.
Laboratory Quality Control Comments
J = Result is less than the LOQ but greater than the LOD and the concentration is an approximate value.

GEOTRANS, INC. FIELD WATER QUALITY SAMPLING AND ANALYSIS FORM

	PROJ	ECT INFORMATION	ON		INSTRUMENT	S
PROJECT	Delavan	Facility Remedial	Action	Temp. & pH	HI98129	
PROJECT	vo. Delave	an Well #4	WADES	Conductivity	HI98129	
LOCATION	Delavan			ORP		
PERSONNE	1 Deni	715		DO		
SAMPLE	POINT	SS-1	SS-1	SS-1	SS-1	SS-1
WATER TYP	E	Groundwater	Groundwater	Groundwater	Groundwater	Groundwa
DATE (mont	th/day/year)	04/23/18				
CLOCK TIM	E (Milhary)	1000	N 27 L - Z1			
DEPTH TO V	VATER (ft)*	NA	NA	NA	NA	NA
MEASURED	WELL DEPTH (ft)*	NA	NA	NA	NA	NA
CASING VOL	.UME (gallons)	NA	NA	NA	NA	NA
PURGE VOL	UME (gallons)	NA	NA	NA	NA	NA
	PLE TAKEN (n)	NA	NA	NA	NA	NA
SAMPLING D	EVICE	H.198129				
	ERATURE (°C)	12.2				
pH		7.65				
ELEC.	Measured	1259				
COND. uS/cm)	a1 25° C	1001				
ORP (mV)	1 3.25	NA	NA	NA	NA	NA
	XYGEN (ppm)	NA	NA	NA	NA	NA
	XYGEN (% Sal.)	NA	NA	NA	NA	NA
OLOR		Clear				
HODO		Done -				
LARITY		Clear				
AMPLING PA	RAMETERS	# OF CONTAINERS & V PRESERVATIVE TYPE	/OLUME; CONTAINER T (L = LAB ADDED; F = Fl	YPE (A = AMBER GLAS: ELD ADDED) OR NEUTF	S; G = GLASS; P = PLA! IAL; FILTERED (YES or	PTIC); NO)
CE, 1,1,1-TCA, ,1,2-TCA, PCE, Vinyl Chloride (EPA Method SW 8260B)		3 – 40 ml; G; HCl – L; No.	3 – 40 ml; G; HCl – L; No.	3 – 40 ml; G; HCl – L; No.	3 – 40 ml; G; HCl – L; No.	3 – 40 ml; G; HCl – L; No.
omments:	TCE = Trichl	oroethene. TCA =	Trichloroethane.	PCE = Tetrachloro	pethene.	
ME OF LABO			Test America	Test America	Test America	Test America
TE SENT TO	LAB	4/28/18				
MPLER'S NA		Lennis				

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Chicago 2417 Bond Street University Park, IL 60484 Tel: (708)534-5200

TestAmerica Job ID: 500-144238-1

Client Project/Site: Delavan Well #4 WPDES

For:

Pentair Water 293 Wright Street Delavan, Wisconsin 53115

Attn: Dennis Schwind

Authorized for release by: 5/7/2018 1:12:49 PM

Sanda Jreduik

Sandie Fredrick, Project Manager II (920)261-1660

sandie.fredrick@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Pentair Water Project/Site: Delavan Well #4 WPDES TestAmerica Job ID: 500-144238-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	
Client Sample Results	5
Lab Chronicle	6
Certification Summary	7
Method Summary	8
Sample Summary	9
Chain of Custody	10
Racaint Chacklists	12

5

4

5

8

9

10

4 -

Definitions/Glossary

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-144238-1

Qualifiers

General Chemistry

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

<u> </u>	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin) **EDL** LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RLReporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

Page 3 of 12

Case Narrative

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-144238-1

Job ID: 500-144238-1

Laboratory: TestAmerica Chicago

Narrative

Job Narrative 500-144238-1

Comments

No additional comments.

Receipt

The samples were received on 4/24/2018 9:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.4° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

6

7

8

9

10

10

Client Sample Results

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-144238-1

Lab Sample ID: 500-144238-1

Matrix: Water

Client Sample ID: SS1
Date Collected: 04/23/18 10:00

Date Received: 04/24/18 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<0.38		1.0	0.38	ug/L			05/03/18 20:45	1
1,1,2-Trichloroethane	< 0.35		1.0	0.35	ug/L			05/03/18 20:45	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			05/03/18 20:45	1
Trichloroethene	1.4		0.50	0.16	ug/L			05/03/18 20:45	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			05/03/18 20:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	90		75 - 126			•		05/03/18 20:45	1
4-Bromofluorobenzene (Surr)	116		72 - 124					05/03/18 20:45	1
Dibromofluoromethane	97		75 - 120					05/03/18 20:45	1
Toluene-d8 (Surr)	100		75 - 120					05/03/18 20:45	1

General Chemistry Result Qualifier RL MDL Unit Analyzed Dil Fac Analyte Prepared Total Suspended Solids <1.9 5.0 1.9 mg/L 04/30/18 12:44 5.0 mg/L 10 04/27/18 00:38 **Chloride** 240 5 Phosphorus as P 0.036 J 0.050 0.024 mg/L 04/27/18 08:10 05/02/18 11:54

Client Sample ID: Trip Blank Lab Sample ID: 500-144238-2

Date Collected: 04/23/18 00:00 Matrix: Water

Date Received: 04/24/18 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<0.38		1.0	0.38	ug/L			05/03/18 13:50	1
1,1,2-Trichloroethane	<0.35		1.0	0.35	ug/L			05/03/18 13:50	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			05/03/18 13:50	1
Trichloroethene	<0.16		0.50	0.16	ug/L			05/03/18 13:50	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			05/03/18 13:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	84		75 - 126			•		05/03/18 13:50	1
4-Bromofluorobenzene (Surr)	114		72 - 124					05/03/18 13:50	1
Dibromofluoromethane	93		75 - 120					05/03/18 13:50	1
Toluene-d8 (Surr)	101		75 - 120					05/03/18 13:50	1

2

4

6

8

9

10

Lab Chronicle

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-144238-1

Lab Sample ID: 500-144238-1

Lab Sample ID: 500-144238-2

Matrix: Water

Matrix: Water

Client Sample ID: SS1
Date Collected: 04/23/18 10:00

Date Received: 04/24/18 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			430483	05/03/18 20:45	PMF	TAL CHI
Total/NA	Analysis	SM 2540D		1	(/)4/30/18 12:44)4/30/18 12:46	SMO	TAL CHI
Total/NA	Analysis	SM 4500 CI- E		5	429628	04/27/18 00:38	HMW	TAL CHI
Total/NA	Prep	SM 4500 P B			429665	04/27/18 08:10	IEL	TAL CHI
Total/NA	Analysis	SM 4500 P E		1	` ,	05/02/18 11:54 05/02/18 11:55	MTB	TAL CHI

Client Sample ID: Trip Blank

Date Collected: 04/23/18 00:00

Date Received: 04/24/18 09:00

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	430483	05/03/18 13:50	PMF	TAL CHI

Laboratory References:

TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

2

3

6

8

Accreditation/Certification Summary

Client: Pentair Water TestAmerica Job ID: 500-144238-1

Project/Site: Delavan Well #4 WPDES

Laboratory: TestAmerica Chicago

The accreditations/certifications listed below are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Wisconsin	State Program	5	999580010	08-31-18

4

7

9

Method Summary

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-144238-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL CHI
SM 2540D	Solids, Total Suspended (TSS)	SM	TAL CHI
SM 4500 CI- E	Chloride, Total	SM	TAL CHI
SM 4500 P E	Phosphorus	SM	TAL CHI
5030B	Purge and Trap	SW846	TAL CHI
SM 4500 P B	Phosphorous, Total and Ortho	SM	TAL CHI

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"
SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

3

4

10

TestAmerica Chicago

Sample Summary

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-144238-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
500-144238-1	SS1	Water	04/23/18 10:00	04/24/18 09:00
500-144238-2	Trip Blank	Water	04/23/18 00:00	04/24/18 09:00

2

Λ

6

8

9

- 1	
1	
i	

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

2417 Bond Street, University Park, IL 60484 Phone: 708.534.5200 Fax: 708.534.5211

	(optiona	D	1. M	th and		(optional)		1	Obain of	Ourstack: Docomel
Report To Form Sar	nue	Mark	< Con	BIII XO					Chain of (Custody Record
Report To Fon Sar Contact: Denn	15 =	Chw\1	res	Contact:	_				•	-N 1/1/228
Company Pentair							111		Lab Job #:	500-144238
Address: 293 W	righ	<u> 14 St</u>		Address:					Chain of Cust	adu Number
Address: Dolava	nw	<u>T 53</u>	115	Address:					Chain of Custo	ody Number:
Phone: 262-78	18- E	<u> 5651</u>		Phone:					Page	of
Fax:				Fax:					Temperature °	0.9724
E-Mail:				PO#/Refere	nce#				iemperature °	C of Cooler:
Prese	ervative	HCI	HCI	HCI	Hel	H,504				Preservative Key 1. HCL, Cool to 4°
Para	ameter	1144			7,0	7 7				2. H2SO4, Cool to 4° 3. HNO3, Cool to 4°
					l o			l ,		4. NaOH, Cool to 4°
			1		9	1			I -	5 NaOH/Zn Cool to 4º

Pentair F	Tow Technologie	Client Project #			Preservative	HCI	HCI	HCI	Hel	H,504				Preservative Key `- 1. HCL, Cool to 4° 2. H2SO4, Cool to 4°
Project Name COPDE: Project Location/St De Convention Sampler Dennas	Tlow Technologie S Delowan G In WI				Parameter				oride			de		2. H2S04, Cool to 4° 3. HNO3, Cool to 4° 4. NaOH, Cool to 4° 5. NaOH/Zn, Cool to 4° 6. NaHS04 7. Cool to 4°
Gampler		Lab PM				W	1	W			5	. 7		8. None 9. Other
DI QI QI SVWSD	mple ID		Sam Date	oling Time	# of Containers Matrix	2	P	Z	Sur /	2	Est	Chlo		Comments
	5/		4/93/18	1000	51	N	P	P	X	X	R	X		
	rip Blank		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		ī		<u> </u>			<u></u>		-		
	7 1/2 10 101.11													
												:		b' con.
								_						500-144238 COC
										 				
								<u> </u>						
	Required (Business Days) 2 Days 5 Days 7 Days	10 Dave 1	5 Dava	Other	Sample Dispo		Die	oosal by Lab						
Requested Due Da	ate	s 10 Days 1	o Days			n to Client		· .		ive for	_ Months	(A fee may b	e assessed if samples	are retained longer than 1 month)
Reinquished By	No company	Penlair !	ate 1/23/1	8 1	ime 150	Received By	150	udr	Company //	UHO	Date ()4	124/18	? ™091010 S	Lab Courier
Relinquished By	Company	[Date		Time	Received By	MA SAGA		Company	<u> </u>	Date	ļ <u>[- 3</u> 3	Time	Shipped TX Phonits.
Relinquished By	Company	. [Date	7	Time	Received By	···	(Company		Date		Time	Hand Delivered
	Matrix Key	Client Comm	ents				·	<u> </u>	Ī	Lab Comments	3:			Tight Delivoied
WW - Wastewater W - Water														
S – Soil SL – Sludge	L – Leachate WI – Wipe													
MS - Miscellaneou OL - Oil		r												
A – Air	O - Other													

ORIGIN ID:JVLA (888) 472-0884 CUSTOMER SERVICE PENTAIR FLOW TECHNOLOGIES 293 SOUTH WRIGHT STREET

SHIP DATE: 23APR18 ACTWGT: 11.00 LB CAD: 583065/CAFE3111

DELAVAN, WI 53115 UNITED STATES US

BILL SENDER

TEST AMERICA

2417 BOND ST

UNIVERSITY PARK IL 60484

TRK# 0201 4215 2706 3530 TUE - 24 APR 10:30A PRIORITY OVERNIGHT

79 JOTA

Pat # 158148-434 RITZ 08/10

60484

IL-US ORD

500-144238 Waybill

10

Page 11 of 12

5/7/2018

Client: Pentair Water Job Number: 500-144238-1

Login Number: 144238 List Source: TestAmerica Chicago

List Number: 1

Creator: Sanchez, Ariel M

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	2.4
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Wastewater Discharge Monitoring Long Report

Facility Name: PENTAIR FLOW TECHNOLOGIES LLC

Contact Address: 293 S. Wright St

Delavan, WI 53115

Facility Contact: Dennis Schwind, Env. Tech

Phone Number: 262-728-7225

Reporting Period: 05/01/2018 - 05/31/2018

Form Due Date: 06/21/2018 Permit Number: 0055816

For DNR Use Only

Date Received:

DOC: 401171 FIN: 7072

FID: 265010900

Region: Southeast Region
Permit Drafter: Cathy M Baerwald
Reviewer: Andrew K Greer

Office: Milwaukee

De	scription					001
		Storm sewer manhole				
Po Po	arameter	211	487	457	388	388
	escription	Flow Rate	Temperature	Suspended Solids,	Phosphorus, Total	Phosphorus, Total
Je.	scription	1 low Itale	remperature	Total	T nosphorus, rotal	i nospilorus, rotai
	Units	MGD	degF	mg/L	mg/L	lbs/day
San	nple Type	TOT DAILY	GRAB	GRAB	GRAB	CALCULATED
-		MONITHIN	MONITHIN	MONTHLY	MONTHLY	MONITHIN
	equency Day 1	MONTHLY	MONTHLY	MONTHLY	MONTHLY	MONTHLY
	2					
	3					
	4					
	5					
	6					
	7					
	8	0.3929	55.76	<1.9	0.048	0.157
	9					
	10					
	11					
	12					
	13					
	14					
	15					
	16					
	17					
	18					
<u> </u>	19					
	20 21					
<u> </u>	22					
	23					
	24					
	25					
	26					
	27					
	28					
	29					
	30					
	31					

Permit: 0055816

	Sample Point	001	001	001	001	001
	Description Storm		Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole
	Parameter	211	487	457	388	388
	Description	Flow Rate	Temperature	Suspended Solids, Total	Phosphorus, Total	Phosphorus, Total
	Units	MGD	degF	mg/L	mg/L	lbs/day
Summary Values	Monthly Avg	0.3929	55.76	0	0.048	0.157
	Daily Max	0.3929	55.76	<1.9	0.048	0.157
	Daily Min	0.3929	55.76	<1.9	0.048	0.157
Limit(s) in Effect	Monthly Avg				0.24 0	
QA/QC Information	LOD			1.9	0.024	
	LOQ			5	0.05	
	QC Exceedance	N	N	N	Y	N
	Lab Certification	_		999580010	999580010	

	Sample Point	001	001	001	001
	Description	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole
	Parameter	490	508	561	517
	Description	Tetrachloroethylene	Trichloro- ethylene	1,1,1-Trichloro- ethane	Vinyl chloride
	Units	ug/L	ug/L	ug/L	ug/L
	Sample Type	GRAB	GRAB	GRAB	GRAB
	Frequency	MONTHLY	MONTHLY	MONTHLY	MONTHLY
Sample Results	Day 1	WONTHLY	WONTHLY	WONTHLY	MONTHLY
, , , , , , , , , , , , , , , , , , ,	2				
	3				
	4				
	5				
	6				
	7				
	8	<0.37	0.51	<0.38	<0.20
	9				
	10				
	11				
	12				
	13				
	14				
	15 16				
	17				
	18				
	19				
	20				
	21				
	22				
	23				
	24				
	25				
	26				
	27				
	28				
	29				
	30				
	31				

	Sample Point	001	001	001	001
	Description	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole
	Parameter	490	508	561	517
	Description	Tetrachloroethylene	Trichloro- ethylene	1,1,1-Trichloro- ethane	Vinyl chloride
	Units	ug/L	ug/L	ug/L	ug/L
Summary Values	Monthly Avg	0	0.51	0	0
	Daily Max	<0.37	0.51	<0.38	<0.2
	Daily Min	<0.37	0.51	<0.38	<0.2
Limit(s) in Effect	Monthly Avg	50 0	50 0	50 0	10 0
QA/QC Information	LOD	0.37	0.16	0.38	0.2
	LOQ	1	0.5	1	1
	QC Exceedance	N	N	N	N
	Lab Certification	999580010	999580010	999580010	999580010

Footnotes (DNR Use Only; Instructions for completing this form that are unique for your facility may be displayed here.)
General Remarks
The total flow rate was calculated from pumping rate measurements taken from the Delavan facility extraction wells by Pentair Flow Technologies Delavan facility personnel on March 26, 2018.
Laboratory Quality Control Comments
J = Result is less than the LOQ but greater than the LOD and the concentration is an approximate value.
grand and a series of the seri

GEOTRANS, INC. FIELD WATER QUALITY SAMPLING AND ANALYSIS FORM

	-	ECT INFORMATION		-	INSTRUMENT	
PROJECT		Facility Remedial		Temp, & pH	HI 98/29	2
PROJECT N	o. Delak	un Well #4	WADES	Conductivity	HI 98129	
LOCATION	Delavan	, WI		ORP		
PERSONNEL	benr	715		DO		
SAMPLE	POINT	SS-1	SS-1	SS-1	SS-1	SS-1
WATER TYPE		Groundwater	Groundwater	Groundwater	Groundwater	Groundwa
DATE (month/day/year) CLOCK TIME (Military)		05/08/18				
		0945				41 5 -
DEPTH TO W	ATER (h)"	NA	NA	NA	NA	NA
MEASURED Y	VELL DEPTH (M)*	NA	NA	NA	NA	NA
CASING VOLI	JME (gallons)	NA	NA	NA	NA	NA
PURGE VOLU	ME (gallons)	NA	NA	NA	NA	NA
DEPTH SAMP	LE TAKEN (11)"	NA	NA	NA	NA	NA
SAMPLING DE	VIĆE	HI98 [29				1
FIELD TEMPE	RATURE (°C)	13.2				-
pH		7.58	1 - 1			
ELEC.	Measured	1222				-
COND. (uS/cm)	a1 25° C	10.00			7.00	
ORP (mV)		NA	NA	NA	NA	NA
DISSOLVED O	KYGEN (ppm)	NA	NA	NA	NA	NA
	(YGEN (% Sal.)	NA	NA	NA	NA	NA
COLOR		Clear				
		7	**			
DOOR		None				
LARITY		Cler		Mar to division of the		
AMPLING PAR	AMETERS				BS; G = GLASS; P = PLA RAL; FILTERED (YES or	
CE, 1,1,1. ,1,2-TCA, Chloride (E Method SW	PCE, Vinyl PA	3 – 40 ml; G; HCl – L; No.	3 – 40 ml; G; HCl – L; No.	3 – 40 ml; G; HCl – L; No.	3 – 40 ml; G; HCl – L; No.	3 – 40 ml; G; HCl – L; No.
omments:	TCE = Trich	loroethene. TCA =	Trichloroethane.	PCE = Tetrachlor	roethene.	
ME OF LABOR	RATORY	Test Ameriça	Test America	Test America	Test America	Test America
TE SENT TO L	AB	5/8/18				
	IE 'A	/ 1				

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Chicago 2417 Bond Street University Park, IL 60484 Tel: (708)534-5200

TestAmerica Job ID: 500-145148-1

Client Project/Site: Delavan Well #4 WPDES

For:

Pentair Water 293 Wright Street Delavan, Wisconsin 53115

Sanda Jreduik

Attn: Dennis Schwind

Authorized for release by: 5/22/2018 1:37:10 PM

Sandie Fredrick, Project Manager II (920)261-1660

sandie.fredrick@testamericainc.com

..... LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Pentair Water Project/Site: Delavan Well #4 WPDES TestAmerica Job ID: 500-145148-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	
Client Sample Results	
Lab Chronicle	6
Certification Summary	7
Method Summary	8
Sample Summary	9
Chain of Custody	10
Receipt Chacklists	11

6

6

<u>۾</u>

9

10

Definitions/Glossary

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-145148-1

Qualifiers

General Chemistry

Qualifier D	escription
	Qualifier D

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

DLC

Abbreviation	These commonly used abbreviations may or may not be present in this report.			
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis			
%R	Percent Recovery			
CFL	Contains Free Liquid			
CNF	Contains No Free Liquid			
DER	Duplicate Error Ratio (normalized absolute difference)			
Dil Fac	Dilution Factor			
DL	Detection Limit (DoD/DOE)			
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample			

Estimated Detection Limit (Dioxin) **EDL** LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

Decision Level Concentration (Radiochemistry)

PQL Practical Quantitation Limit

QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RLReporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

5/22/2018

Page 3 of 11

Case Narrative

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-145148-1

Job ID: 500-145148-1

Laboratory: TestAmerica Chicago

Narrative

Job Narrative 500-145148-1

Comments

No additional comments.

Receipt

The samples were received on 5/9/2018 9:30 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 7.4° C.

Receipt Exceptions

The following samples were received at the laboratory outside the required temperature criteria: SS1 (500-145148-1) and Trip Blank (500-145148-2). On ice.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

6

7

Ö

9

10

Client Sample Results

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-145148-1

Lab Sample ID: 500-145148-1

Matrix: Water

Client Sample ID: SS1 Date Collected: 05/08/18 09:45

Date Received: 05/09/18 09:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<0.38		1.0	0.38	ug/L			05/19/18 05:15	1
1,1,2-Trichloroethane	<0.35		1.0	0.35	ug/L			05/19/18 05:15	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			05/19/18 05:15	1
Trichloroethene	0.51		0.50	0.16	ug/L			05/19/18 05:15	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			05/19/18 05:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	94		75 - 126			•		05/19/18 05:15	1
4-Bromofluorobenzene (Surr)	100		72 - 124					05/19/18 05:15	1
Dibromofluoromethane	104		75 - 120					05/19/18 05:15	1
Toluene-d8 (Surr)	97		75 - 120					05/19/18 05:15	

General Chemistry Analyte Result Qualifier RL MDL Unit Dil Fac Prepared Analyzed Total Suspended Solids <1.9 5.0 1.9 mg/L 05/15/18 10:44 5.0 mg/L 05/13/18 19:49 10 **Chloride** 170 5 Phosphorus as P 0.048 J 0.050 0.024 mg/L 05/17/18 12:05 05/18/18 13:23

Client Sample ID: Trip Blank Lab Sample ID: 500-145148-2

Date Collected: 05/08/18 00:00 **Matrix: Water** Date Received: 05/09/18 09:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<0.38		1.0	0.38	ug/L			05/19/18 05:45	1
1,1,2-Trichloroethane	<0.35		1.0	0.35	ug/L			05/19/18 05:45	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			05/19/18 05:45	1
Trichloroethene	<0.16		0.50	0.16	ug/L			05/19/18 05:45	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			05/19/18 05:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93	·	75 - 126			-		05/19/18 05:45	1
4-Bromofluorobenzene (Surr)	99		72 - 124					05/19/18 05:45	1
Dibromofluoromethane	105		75 - 120					05/19/18 05:45	1
Toluene-d8 (Surr)	96		75 - 120					05/19/18 05:45	1

5/22/2018

Lab Chronicle

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-145148-1

Lab Sample ID: 500-145148-1

Matrix: Water

Matrix: Water

Client Sample ID: SS1
Date Collected: 05/08/18 09:45

Date Received: 05/09/18 09:30

Batch Batch Dilution Batch Prepared **Prep Type** Method Factor Number Type Run or Analyzed Analyst Lab Total/NA Analysis 8260B 433008 05/19/18 05:15 EMA TAL CHI 432321 Total/NA Analysis SM 2540D 1 SMO TAL CHI (Start) 05/15/18 10:44 (End) 05/15/18 10:45 Total/NA Analysis SM 4500 CI- E 432035 05/13/18 19:49 HMW TAL CHI Total/NA Prep 432774 05/17/18 12:05 IEL TAL CHI SM 4500 P B Total/NA Analysis SM 4500 P E 1 433015 MTB TAL CHI (Start) 05/18/18 13:23 (End) 05/18/18 13:23

Client Sample ID: Trip Blank Lab Sample ID: 500-145148-2

Date Collected: 05/08/18 00:00 Date Received: 05/09/18 09:30

Batch Dilution Batch **Batch** Prepared **Prep Type** Method Run Factor Number or Analyzed Type Analyst Lab TAL CHI Total/NA Analysis 8260B 433008 05/19/18 05:45 EMA

Laboratory References:

TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

F

6

8

TestAmerica Chicago

Accreditation/Certification Summary

Client: Pentair Water TestAmerica Job ID: 500-145148-1

Project/Site: Delavan Well #4 WPDES

Laboratory: TestAmerica Chicago

The accreditations/certifications listed below are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Wisconsin	State Program	5	999580010	08-31-18

4

5

7

10

Method Summary

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-145148-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL CHI
SM 2540D	Solids, Total Suspended (TSS)	SM	TAL CHI
SM 4500 CI- E	Chloride, Total	SM	TAL CHI
SM 4500 P E	Phosphorus	SM	TAL CHI
5030B	Purge and Trap	SW846	TAL CHI
SM 4500 P B	Phosphorous, Total and Ortho	SM	TAL CHI

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"
SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

3

4

O

0

Sample Summary

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-145148-1

Lab Sample ID	Client Sample ID	Matrix	Collected Received
500-145148-1	SS1	Water	05/08/18 09:45 05/09/18 09:30
500-145148-2	Trip Blank	Water	05/08/18 00:00 05/09/18 09:30

Δ

4

6

Ω

9

<u>TestAmerica</u>	Report To Mark Continued Contact Tem Samuel	Dennis Schu	(option Bill To 2) Contact:	nal)		stody Record
THE LEADER IN ENVIRONMENTAL 1	Company: Pentair Fr. Address: 293 Wrig	ow lechnologi	Gompany:		Lab Job #: <u>少りと</u>	0-145148
2417 Bond Street, University Park, IL 6048 Phone: 708.534.5200 Fax: 708.534.5	Address: Delavan	UI63115	Address:		Chain of Custody N	Number:
	Address: Delavan U Phone: 202-728-	5551	Phone:		Page	of
500-145148 COC	Fax:E-Mail:		Fax:PO#/Reference#		Temperature °C of	Cooler: 7.4
Project Name Delayan Well #4 WPDES	Preservative Parameter	HCI BEI	HCI ALI Has	/		Preservative Key 1. HCL, Cool to 4° 2. H2SO4, Cool to 4° 3. HNO3, Cool to 4° 4. NaOH, Cool to 4°
Sampler Schwind Lab PM Lab PM Lab PM		D A	J.C.	Fhosphorus T. 95 Nhloride		5. NaOH/Zn, Cool to 4° 6. NaHSO4 7. Cool to 4° 8. None 9. Other
Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	Sampling of Time # O Watrix		J 50 9	2 12		Comments
1 351 5/8	18 6945 5 W	X X	p n x			COMMINA
2 Trip Brank	4 1					
Turnaround Time Required (Business Days)1 Day2 Days 5 Days 7 Days 10 Days 15 Days Requested Due Date	neturi	to Client Dispo	osal by Lab Archive for		e assessed if samples are retaine	ed longer than 1 month)
Felinchished By Company Lenkein 5/8/1.		Received by Manual Manu		- 5/9/18	0100	ab Courier
Relinquished By Company Date	Time	Received By	Company	Date /	Time	Shipped Fed X
Relinquished By Company Date	Time	Received By	Company	Date ⁻	Time Hand	Delivered
Matrix Key Client Comments		~-	Lab Com	nments:		

Client: Pentair Water Job Number: 500-145148-1

Login Number: 145148 List Source: TestAmerica Chicago

List Number: 1

Creator: Scott, Sherri L

Creator. Scott, Silem L		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	False	On ice
Cooler Temperature is recorded.	True	7.4
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Wastewater Discharge Monitoring Long Report

Facility Name: PENTAIR FLOW TECHNOLOGIES LLC

Contact Address: 293 S. Wright St

Delavan, WI 53115

Facility Contact: Dennis Schwind, Env. Tech

Phone Number: 262-728-7225

Reporting Period: 06/01/2018 - 06/30/2018

Form Due Date: 07/21/2018 Permit Number: 0055816

For DNR Use Only

Date Received:

DOC: 401172 FIN: 7072

FID: 265010900

Region: Southeast Region
Permit Drafter: Cathy M Baerwald
Reviewer: Andrew K Greer

Office: Milwaukee

	Sample Point	001	001	001	001	001
	Description	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole
	Parameter	211	487	457	388	388
	Description	Flow Rate	Temperature	Suspended Solids, Total	Phosphorus, Total	Phosphorus, Total
				Total		
	Units	MGD	degF	mg/L	mg/L	lbs/day
	Sample Type	TOT DAILY	GRAB	GRAB	GRAB	CALCULATED
	F	MONTHLY	MONITHIN	MONTHLY	MONTHLY	MONITHIN
Sample Results	Frequency	MONTHLY	MONTHLY	MONTHLY	MONTHLY	MONTHLY
Sample Results	Day 1					
	3					
	4					
	5					
	6					
	7					
	8					
	9					
	10					
	11					
	12					
	13					
	14					
	15					
	16					
	17					
	18					
	19					
	20					
	21					
	22					
	23					
	24					
	25		69.08	5.5	0.079	0.387
	26					
	27					
	28					
	29	0.5871				
	30					
	31					

	Sample Point	001	001	001	001	001
	Description	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole
	Parameter	211	487	457	388	388
	Description	Flow Rate	Temperature	Suspended Solids, Total	Phosphorus, Total	Phosphorus, Total
	Units	MGD	degF	mg/L	mg/L	lbs/day
Summary Values	Monthly Avg	0.5871	69.08	5.5	0.079	0.387
	Daily Max	0.5871	69.08	5.5	0.079	0.387
	Daily Min	0.5871	69.08	5.5	0.079	0.387
Limit(s) in Effect	Monthly Avg				0.24 0	
QA/QC Information	LOD			1.9	0.024	
	LOQ			5	0.05	
	QC Exceedance	N	N	N	N	N
	Lab Certification			999580010	999580010	

	Sample Point	001	001	001	001
	Description	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole
	Parameter	490	508	561	517
	Description	Tetrachloroethylene	Trichloro- ethylene	1,1,1-Trichloro- ethane	Vinyl chloride
	Units	ug/L	ug/L	ug/L	ug/L
	Sample Type	GRAB	GRAB	GRAB	GRAB
			J		
	Frequency	MONTHLY	MONTHLY	MONTHLY	MONTHLY
Sample Results	Day 1				
	2				
	3				
	4				
	5				
	6				
	7				
	8				
	9				
	10				
	11				
	12				
	13				
	14				
	15				
	16				
	17				
	18				
	19				
	20				
	21				
	22				
	23				
	24	40.07	10.10	40.00	40.00
	25	<0.37	<0.16	<0.38	<0.20
	26				
	27				
	28				
	29				
	30				
	31				
			1	Į.	

	Sample Point	001	001	001	001	
	Description	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	
	Parameter	490	508	561	517	
	Description	Tetrachloroethylene	Trichloro- ethylene	1,1,1-Trichloro- ethane	Vinyl chloride	
	Units	ug/L	ug/L	ug/L	ug/L	
Summary Values	Monthly Avg	0	0	0	0	
	Daily Max	<0.37	<0.16	<0.38	<0.2	
	Daily Min	<0.37	<0.16	<0.38	<0.2	
Limit(s) in Effect	Monthly Avg	50 0	50 0	50 0	10 0	
QA/QC Information	LOD	0.37	0.16	0.38	0.2	
	LOQ	1	0.5	1	1	
	QC Exceedance	N	N	N	N	
	Lab Certification	999580010	999580010	999580010	999580010	

Footnotes (DNR Use Only; Instructions for completing this form that are unique for your facility may be displayed here.)
. completely (2.1.1. cos c.1.1), mediadana for completing and form that are an que for your facility be displayed florely
General Remarks
The total flow rate was calculated from pumping rate measurements taken from the Delavan facility extraction wells by Pentair Flow Technologies Delavan facility personnel on June 29, 2018.
Laboratory Quality Control Comments

GEOTRANS, INC. FIELD WATER QUALITY SAMPLING AND ANALYSIS FORM

PROJECT INFORMATION				INSTRUMENTS			
PROJECT Delavan Facility Remedial Action			Temp. & pH	Temp. & pH ## HF 98/29			
PROJECT NO. Delavan Well+4 WADES			Conductivity				
LOCATION Delayan, WI				ORP			
PERSONNE	EL Denn	is Schwir	d	DO			
SAMPLE	E POINT	SS-1	SS-1	SS-1	SS-1	SS-1	
WATER TY	PE	Groundwater	Groundwater	Groundwater	Groundwater	Groundwa	
DATE (men	th/day/year)	06/25/18					
CLOCK TIM	E (Milhary)	0850					
DEPTH TO V	WATER (ft)*	NA	NA	NA	NA	NA	
MEASURED	WELL DEPTH (n)	NA	NA	NA	NA	NA	
CASING VO	LUME (gallons)	NA	NA	NA	NA	NA	
PURGE VOL	UME (galions)	NA	NA	NA	NA	NA	
DEPTH SAM	PLE TAKEN (M)*	NA	NA	NA	NA	NA	
SAMPLING D	DEVIĆE	HI98129					
FIELD TEMPI	ERATURE (°C)	20.6				1	
oH		7.71	T- 5	TO BE THE PERSON NAMED IN			
LEC.	Measured	983 -		70			
COND. uS/cm)	e1 25° C	, , ,				 	
ORP (mV)		NA	NA	NA	NA	NA	
	DXYGEN (ppm)	NA	NA	NA	NA	NA	
	OXYGEN (% Sat.)	NA	NA	NA	NA	NA	
OLOR		Clear		1			
DOR		None					
LARITY		Olear					
AMPLING PA	RAMETERS	# OF CONTAINERS &	VOLUME; CONTAINER TE	YPE (A = AMBER GLAS	S; G = GLASS; P = PLA RAL: FILTERED (YES or	STIC);	
CE, 1,1,1 ,1,2-TCA, thloride (I lethod SV	, PCE, Vinyl EPA	3 – 40 ml; G; HCl – L; No.	3 – 40 ml; G; HCl – L; No.	3 – 40 ml; G; HCl – L; No.	3 – 40 ml; G; HCl – L; No.	3 – 40 ml; G; HCl – L; No.	
omments:	: TCE = Trich	loroethene. TCA	Trichloroethane.	PCE = Tetrachlore	pethene.		
ME OF LABO	PROTARO	Test America	Test America	Test America	Test America	Test America	
TE SENT TO	LAB	6/25/18			***		
		property profiles			The state of the s		

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Chicago 2417 Bond Street University Park, IL 60484 Tel: (708)534-5200

TestAmerica Job ID: 500-147528-1

Client Project/Site: Delavan Well #4 WPDES

For:

Pentair Water 293 Wright Street Delavan, Wisconsin 53115

Sanda Jreduik

Attn: Dennis Schwind

Authorized for release by: 7/11/2018 1:25:23 PM

Sandie Fredrick, Project Manager II (920)261-1660

sandie.fredrick@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Pentair Water Project/Site: Delavan Well #4 WPDES TestAmerica Job ID: 500-147528-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	
Client Sample Results	
Lab Chronicle	6
Certification Summary	7
Method Summary	8
Sample Summary	
Chain of Custody	
Receipt Chacklists	

4

6

R

9

Definitions/Glossary

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

Not Calculated

Quality Control

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Not Detected at the reporting limit (or MDL or EDL if shown)

Relative Percent Difference, a measure of the relative difference between two points

Reporting Limit or Requested Limit (Radiochemistry)

TestAmerica Job ID: 500-147528-1

Glossary

NC

ND

PQL

QC

RER

RLRPD

TEF

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)

7/11/2018

Case Narrative

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-147528-1

Job ID: 500-147528-1

Laboratory: TestAmerica Chicago

Narrative

Job Narrative 500-147528-1

Comments

No additional comments.

Receipt

The samples were received on 6/26/2018 9:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.6° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

Б

6

7

8

9

10

a a

TestAmerica Job ID: 500-147528-1

Client Sample ID: SS1

Date Collected: 06/25/18 08:50 Date Received: 06/26/18 09:00

Lab Sample ID: 500-147528-1

Matrix: Water

N	Method: 8260B - Volatile O	rganic Comp	0	unds (GC/M	S)
Α	Analyte	Resu	ılt	Qualifier	
1	.1.1-Trichloroethane	<0.3	38		

Analyte	Resuit	Qualifier	KL	MIDL	Ullit	ט	Prepareu	Allalyzeu	DII Fac
1,1,1-Trichloroethane	<0.38		1.0	0.38	ug/L			06/29/18 15:21	1
1,1,2-Trichloroethane	< 0.35		1.0	0.35	ug/L			06/29/18 15:21	1
Tetrachloroethene	< 0.37		1.0	0.37	ug/L			06/29/18 15:21	1
Trichloroethene	<0.16		0.50	0.16	ug/L			06/29/18 15:21	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			06/29/18 15:21	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	91	75 - 126		06/29/18 15:21	1
4-Bromofluorobenzene (Surr)	95	72 - 124		06/29/18 15:21	1
Dibromofluoromethane	98	75 - 120		06/29/18 15:21	1
Toluene-d8 (Surr)	96	75 - 120		06/29/18 15:21	1

General Chemistry

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Total Suspended Solids	5.5	5.0	1.9 mg/L		06/30/18 12:43	1
Chloride	210	10	5.0 mg/L		07/02/18 18:06	5
Phosphorus as P	0.079	0.050	0.024 mg/L	07/05/18 11:15	07/09/18 11:55	1

Client Sample ID: Trip Blank Lab Sample ID: 500-147528-2 Date Collected: 06/25/18 00:00 **Matrix: Water**

Date Received: 06/26/18 09:00

Method: 8260B - Volatile Org	anic Compounds (GC/MS)
------------------------------	------------------------

Welliou. 6260D - Volatile (organic compo	ilius (GC/IVI	3)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<0.38		1.0	0.38	ug/L			06/29/18 14:51	1
1,1,2-Trichloroethane	<0.35		1.0	0.35	ug/L			06/29/18 14:51	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			06/29/18 14:51	1
Trichloroethene	<0.16		0.50	0.16	ug/L			06/29/18 14:51	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			06/29/18 14:51	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	89		75 - 126		06/29/18 14:51	1
4-Bromofluorobenzene (Surr)	95		72 - 124		06/29/18 14:51	1
Dibromofluoromethane	97		75 - 120		06/29/18 14:51	1
Toluene-d8 (Surr)	97		75 - 120		06/29/18 14:51	1

Lab Chronicle

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-147528-1

Lab Sample ID: 500-147528-1

Matrix: Water

Client Sample ID: SS1

Date Collected: 06/25/18 08:50 Date Received: 06/26/18 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			439200	06/29/18 15:21	JDD	TAL CHI
Total/NA	Analysis	SM 2540D		1	439306		SMO	TAL CHI
					(Start) C	6/30/18 12:43		
					(End) C	06/30/18 12:44		
Total/NA	Analysis	SM 4500 CI- E		5	439856	07/02/18 18:06	HMW	TAL CHI
Total/NA	Prep	SM 4500 P B			439776	07/05/18 11:15	IEL	TAL CHI
Total/NA	Analysis	SM 4500 P E		1	440378		IEL	TAL CHI
					(Start) 0	7/09/18 11:55		
					(End) C	7/09/18 11:55		

Client Sample ID: Trip Blank

Lab Sample ID: 500-147528-2

Date Collected: 06/25/18 00:00

Date Received: 06/26/18 09:00

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			439200	06/29/18 14:51	JDD	TAL CHI

Laboratory References:

TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

5

7

a

10

00-147528-2 Matrix: Water

Accreditation/Certification Summary

Client: Pentair Water TestAmerica Job ID: 500-147528-1

Project/Site: Delavan Well #4 WPDES

Laboratory: TestAmerica Chicago

The accreditations/certifications listed below are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Wisconsin	State Program	5	999580010	08-31-18 *

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

TestAmerica Chicago

Method Summary

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-147528-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL CHI
SM 2540D	Solids, Total Suspended (TSS)	SM	TAL CHI
SM 4500 CI- E	Chloride, Total	SM	TAL CHI
SM 4500 P E	Phosphorus	SM	TAL CHI
5030B	Purge and Trap	SW846	TAL CHI
SM 4500 P B	Phosphorous, Total and Ortho	SM	TAL CHI

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"
SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

3

4

<u>၁</u>

_

10

Sample Summary

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-147528-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
500-147528-1	SS1	Water	06/25/18 08:50	06/26/18 09:00
500-147528-2	Trip Blank	Water	06/25/18 00:00	06/26/18 09:00

4

5

6

8

9

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

2417 Bond Street, University Park, IL 60484 Phone: 708.534.5200 Fax: 708.534.5211

Ellent Plow Technologies LCC.

Palar Name

Trip Blank

O ~ Other

Project Location/State
Delawan W.I

OSW/SW Sample ID

☐ qe

OL -- OII

Delgvan Well #4 WADES

Lab PM

0850 5 W

W

Ø

4

Report To Tom.	(optiona Samu Mant		Dennis	Bill To		(optional)			Chain of (Custody Record
Company: Penja Address: 293 Address: Deley Phone: 163 Fax:	is Flow Wrig van V 728-S	Techn Int 5 UF 5	∂ <i>logì es (</i> †•	Address:_ Address:_ Phone:					Lab Job #: Chain of Custo Page Temperature °C	of
	Preservative Parameter	He!	HCI	Hal	HOL	Hzsoy	SA.	Pride		Preservative Key 1. HCL, Cool to 4° 2. H2SO4, Cool to 4° 3. HNO3, Cool to 4° 4. NaOH, Cool to 4° 5. NaOH/Zn, Cool to 4° 6. NaHSO4 7. Cool to 4° 8. None 9. Other
Sampling Time	# of Containers Matrix	B	15	$ \mathcal{J} $	3 3	}	121	E		Commonto

X

X

500-147528 COC

X

1 Day2 Date_	quired (Business Days) Days 5 Days 7 Days	10 Days 15 Days	Sample Disp Other		Disposal by Lab Archive for	Months (A fe	ee may be assessed if samples a	are retained longer than 1 month)	
Relinquished By Relinquished By	Company Company	Dair 6/05/18	* 09/0 Time	Received By Received By	Company TA	Date 06/26	/18 Time 0900	Lab Courier	
Relinquished By	Company	Date	Time	Received By	Company	Date	Time	Hand Delivered	
WW Wastewater W Water S Soil SL Sludge MS Miscellaneous	Matrix Key SE - Sediment SO - Soil L - Leachate WI - Wipe DW - Drinking Water	Client Comments							

Comments

ORIGIN ID: JVLA (800) 472-0004 CUSTOMER SERVICE PENTAIR FLOW TECHNOLOGIES 293 SOUTH WRIGHT STREET

ACTWGT: 25JUN18 ACTWGT: 23.10 LB MAN CAD: 583065/CAFE3111

DELAVAN, WI 53115 UNITED STATES US

BILL SENDER

TO

TEST AMERICA 2417 BOND STR.

UNIVERSITY PARK IL 60484

4215 2706 6481

TUE - 26 JUN 10:30A PRIORITY

19 JOTA

60484 IL-US ORD

500-147528 Waybill

Page 11 of 12

Client: Pentair Water Job Number: 500-147528-1

Login Number: 147528 List Source: TestAmerica Chicago

List Number: 1

Creator: Kelsey, Shawn M

Creator: Kelsey, Snawn W		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	3.6c
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	True	

TestAmerica Chicago

Wastewater Discharge Monitoring Long Report

Facility Name: PENTAIR FLOW TECHNOLOGIES LLC

Contact Address: 293 S. Wright St

Delavan, WI 53115

Facility Contact: Dennis Schwind, Env. Tech

Phone Number: 262-728-7225

Reporting Period: 07/01/2018 - 07/31/2018

Form Due Date: 08/21/2018 Permit Number: 0055816

For DNR Use Only

Date Received:

DOC: 406247

FIN: 7072 FID: 265010900

Region: Southeast Region

Permit Drafter: Cathy M Baerwald Reviewer: Andrew K Greer

Office: Milwaukee

	Sample Point	001	001	001	001	001
	Description	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole		Storm sewer manhole
	Parameter	211	487	457	388	388
	Description	Flow Rate	Temperature	Suspended Solids, Total	Phosphorus, Total	Phosphorus, Total
				rotai		
	Units	MGD	degF	mg/L	mg/L	lbs/day
	Sample Type	TOT DAILY	GRAB	GRAB	GRAB	CALCULATED
	Frequency	MONTHLY	MONTHLY	MONTHLY	MONTHLY	MONTHLY
Sample Results	Day 1					
	2					
	3					
	4					
	5					
	6					
	7					
	8					
	9					
	10					
	11		60.26	<1.9	0.045	0.182
	12					
	13					
	14					
	15					
	16					
	17					
	18					
	19					
	20					
	21					
	22					
	23					
	24					
	25					
	26					
	27					
	28					
	29					
	30					
	31	0.4839				
				<u>L</u>		

	Sample Point	001	001	001	001	001
	Description	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole
	Parameter	211	487	457	388	388
	Description	Flow Rate	Temperature	Suspended Solids, Total	Phosphorus, Total	Phosphorus, Total
	Units	MGD	degF	mg/L	mg/L	lbs/day
Summary Values	Monthly Avg	0.4839	60.26	0	0.045	0.182
	Daily Max	0.4839	60.26	<1.9	0.045	0.182
	Daily Min	0.4839	60.26	<1.9	0.045	0.182
Limit(s) in Effect	Monthly Avg				0.24 0	
QA/QC Information	LOD			1.9	0.024	
	LOQ			5	0.05	
	QC Exceedance	N	N	N	Y	N
	Lab Certification			999580010	999580010	

		·	 	-	
	Sample Point	001	001	001	001
	Description	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole
	Parameter	490	508	561	517
	Description	Tetrachloroethylene	Trichloro- ethylene	1,1,1-Trichloro- ethane	Vinyl chloride
	Units	ug/L	ug/L	ug/L	ug/L
	Sample Type	GRAB	GRAB	GRAB	GRAB
	Frequency	MONTHLY	MONTHLY	MONTHLY	MONTHLY
Sample Results	Day 1				
	2				
	3				
	4				
	5				
	6				
	7				
	8				
	9				
	10				
	11	<0.37	0.51	<0.38	<0.20
	12				
	13				
	14				
	15				
	16				
	17				
	18				
	19				
	20				
	21				
	22				
	23				
	24				
	25				
	26				
	27				
	28				
	29				
	30				
	31				

	Sample Point	001	001	001	001
	Description	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole
	Parameter	490	508	561	517
	Description	Tetrachloroethylene	Trichloro- ethylene	1,1,1-Trichloro- ethane	Vinyl chloride
	Units	ug/L	ug/L	ug/L	ug/L
Summary Values	Monthly Avg	0	0.51	0	0
	Daily Max	<0.37	0.51	<0.38	<0.2
	Daily Min	<0.37	0.51	<0.38	<0.2
Limit(s) in Effect	Monthly Avg	50 0	50 0	50 0	10 0
QA/QC Information	LOD	0.37	0.16	0.38	0.2
	LOQ	1	0.5	1	1
	QC Exceedance	N	N	N	N
	Lab Certification	999580010	999580010	999580010	999580010

Footnotes (DNR Use Only; Instructions for completing this form that are unique for your facility may be displayed here.)
and the same that the same tha
General Remarks
The total flow rate was calculated from pumping rate measurements taken from Delavan facility extraction wells EX-6 and EX-7R by Pentair Flow Technologies Delavan facility and Tetra Tech personnel on July 31, 2018 and the July 31, 2018 daily flow readings recorded by the Badger U500w ultrasonic meters installed on the discharge lines of extraction wells EX-1, EX-2R, EX-3R, EX-4R and EX-5.
Laboratory Quality Control Comments
J = Result is less than the LOQ but greater than the LOD and the concentration is an approximate value.

GEOTRANS, INC. FIELD WATER QUALITY SAMPLING AND ANALYSIS FORM

	PROJ	ECT INFORMATION	ON		INSTRUMENT	S
PROJECT	Delavan	Facility Remedial	Action	Temp. & pH	HI 7812G	
PROJECT N	10. 100	pr 100 =	UDFUES	Conductivity	-2 25 C	1
LOCATION	Delavan,			ORP		
PERSONNE	L Derr	5 -3200115	1	00		
SAMPLE	POINT	SS-1	SS-1	SS-1	SS-1	SS-1
WATER TYP	E	Groundwater	Groundwater	Groundwater	Groundwater	Groundwa
DATE (mont	h/day/year)	07/11/18				
CLOCK TIME	(Military)	0937				
DEPTH TO W	ATER (ft)*	NA	NA	NA	NA	NA
MEASURED	METT DELLH (41).	NA	NA	NA	NA	NA
CASING VOL	UME (gallons)	NA	NA	NA	NA	NA
PURGE VOLU	ME (gallons)	NA	NA	NA	NA	NA
DEPTH SAMP	LE TAKEN (h)*	NA	NA	NA	NA	NA
SAMPLING D	EVICE	HIZ09139				1
FIELD TEMPE	RATURE (°C)	15.7	4. 3 - 4 - 4 - 4 - 4 - 4 - 4 - 4	1/2 22 1/		1
oH		7.48				1
LEC.	Measured	1326				
OND. JS/cm)	at 25° C	15280	V 40 30 E			
RP (mV)		NA	NA	NA	NA	NA
ISSOLVED O	XYGEN (ppm)	NA	NA	NA	NA	NA
ISSOLVED O	XYGEN (% Sal.)	NA	NA	NA	NA	NA
OLOR		Clear				
DOR		None_				
LARITY		Clear				
AMPLING PA	PAMETERS	# OF CONTAINERS &	OLUME; CONTAINER T			
		PRESERVATIVE TYPE	(L = LAB ADDED; F = FI	ELD ADDED) OR NEUT	AL; FILTERED (YES of	NO)
CE, 1,1,1- ,1,2-TCA, hloride (Elethod SW	PCE, Vinyl PA	3 – 40 ml; G; HCl – L; No.	3 – 40 ml; G; HCl – L; No.	3 – 40 ml; G; HCl – L; No.	3 – 40 ml; G; HCl – L; No.	3 – 40 ml; G; HCl – L; No.
mments:	TCE = Trichi	oroethene. TCA =	Trichloroethane.	PCE = Tetrachlore	pethene.	
ME OF LABO	RATORY	Test America	Test America	Test America	Test America	Test America
TE SENT TO	LAB	7-11-19				
		Jannie				

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Chicago 2417 Bond Street University Park, IL 60484 Tel: (708)534-5200

TestAmerica Job ID: 500-148298-1

Client Project/Site: Delavan Well #4 WPDES

For:

Pentair Water 293 Wright Street Delavan, Wisconsin 53115

Sanda Jreduik

Attn: Dennis Schwind

Authorized for release by: 7/25/2018 5:36:18 PM

Sandie Fredrick, Project Manager II

(920)261-1660

sandie.fredrick@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Pentair Water Project/Site: Delavan Well #4 WPDES TestAmerica Job ID: 500-148298-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	
Client Sample Results	
Lab Chronicle	6
Certification Summary	7
Method Summary	8
Sample Summary	9
Chain of Custody	10
Receipt Chacklists	11

3

4

Q

9

10

Definitions/Glossary

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-148298-1

Qualifiers

General Chemistry

Qualifier D	escription
	Qualifier D

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC.	Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RLReporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

TestAmerica Chicago

Page 3 of 11

3

7/25/2018

Case Narrative

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-148298-1

Job ID: 500-148298-1

Laboratory: TestAmerica Chicago

Narrative

Job Narrative 500-148298-1

Comments

No additional comments.

Receipt

The samples were received on 7/12/2018 9:15 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 5.4° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

6

a

_

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

Client Sample ID: SS1 Lab Sample IE

Date Collected: 07/11/18 09:37 Date Received: 07/12/18 09:15 Lab Sample ID: 500-148298-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<0.38		1.0	0.38	ug/L			07/19/18 22:19	1
1,1,2-Trichloroethane	< 0.35		1.0	0.35	ug/L			07/19/18 22:19	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			07/19/18 22:19	1
Trichloroethene	0.51		0.50	0.16	ug/L			07/19/18 22:19	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			07/19/18 22:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	86	· -	75 - 126			-		07/19/18 22:19	1
4-Bromofluorobenzene (Surr)	98		72 - 124					07/19/18 22:19	1
Dibromofluoromethane	97		75 - 120					07/19/18 22:19	1
Toluene-d8 (Surr)	98		75 - 120					07/19/18 22:19	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D Pre	pared	Analyzed	Dil Fac
Total Suspended Solids	<1.9		5.0	1.9	mg/L			07/13/18 12:34	1
Chloride	200		10	5.0	mg/L			07/15/18 12:48	5
Phosphorus as P	0.045	J	0.050	0.024	mg/L	07/24	/18 15:20	07/25/18 16:08	1

Client Sample ID: Trip Blank

Date Collected: 07/11/18 00:00

Lab Sample ID: 500-148298-2

Matrix: Water

Date Received: 07/12/18 09:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<0.38		1.0	0.38	ug/L			07/19/18 22:48	1
1,1,2-Trichloroethane	< 0.35		1.0	0.35	ug/L			07/19/18 22:48	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			07/19/18 22:48	1
Trichloroethene	<0.16		0.50	0.16	ug/L			07/19/18 22:48	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			07/19/18 22:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	85		75 - 126					07/19/18 22:48	1
4-Bromofluorobenzene (Surr)	96		72 - 124					07/19/18 22:48	1
Dibromofluoromethane	97		75 - 120					07/19/18 22:48	1
Toluene-d8 (Surr)	99		75 - 120					07/19/18 22:48	1

Lab Chronicle

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-148298-1

Lab Sample ID: 500-148298-1

Matrix: Water

Client Sample ID: SS1
Date Collected: 07/11/18 09:37
Date Received: 07/12/18 09:15

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			441583	07/19/18 22:19	JDD	TAL CHI
Total/NA	Analysis	SM 2540D		1	,	07/13/18 12:34 07/13/18 12:36	SMO	TAL CHI
Total/NA	Analysis	SM 4500 CI- E		5	440956	07/15/18 12:48	HMW	TAL CHI
Total/NA	Prep	SM 4500 P B			442258	07/24/18 15:20	BRS	TAL CHI
Total/NA	Analysis	SM 4500 P E		1	(/ -	07/25/18 16:08 07/25/18 16:09	BRS	TAL CHI

Client Sample ID: Trip Blank

Date Collected: 07/11/18 00:00

Date Received: 07/12/18 09:15

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			441583	07/19/18 22:48	JDD	TAL CHI

Laboratory References:

TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

2

4

5

9

- 1

Lab Sample ID: 500-148298-2

Matrix: Water

Accreditation/Certification Summary

Client: Pentair Water TestAmerica Job ID: 500-148298-1

Project/Site: Delavan Well #4 WPDES

Laboratory: TestAmerica Chicago

The accreditations/certifications listed below are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Wisconsin	State Program	5	999580010	08-31-18 *

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

Method Summary

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-148298-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL CHI
SM 2540D	Solids, Total Suspended (TSS)	SM	TAL CHI
SM 4500 CI- E	Chloride, Total	SM	TAL CHI
SM 4500 P E	Phosphorus	SM	TAL CHI
5030B	Purge and Trap	SW846	TAL CHI
SM 4500 P B	Phosphorous, Total and Ortho	SM	TAL CHI

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"
SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

3

4

5

8

9

10

Sample Summary

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-148298-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
500-148298-1	SS1	Water	07/11/18 09:37	07/12/18 09:15
500-148298-2	Trip Blank	Water	07/11/18 00:00	07/12/18 09:15

3

4

6

8

9

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL

2417 Bond Street, University Park, IL 60 Phone: 708.534.5200 Fax: 708.534

500-148298 COC

		_ ·	X "
F	Report To Mark Meptional hey Contact: Tum samuel Dennis Contact: Schwind	(optional) Bill To	Chain of Custody Record
10	Contact: Samon Schwind	Contact:	CA 11/8200
, c	Company: Penkir Flow Technologies	Company:	Lab Job #: <u>500 - 148298</u>
11	Address: 293 (Wrigh+51.	Address:	Chain of Custody Number:
/	Address: Dravan WI53/15	Address:	Origin of oustody Number.
	Phone:	Phone:	Page of
F	Fax:	Fax:	5.4
	E-Mail:	PO#/Reference#	Temperature °C of Cooler:
	Preservative +0 1 +/C	HC 1 HC 1 H/SU,	Preservative Key 1. HCL, Cool to 4°

Client	nlo	in Flow Techno	Client Project #	Ċ		Preser	rvative	HOI	HCI	HCI	HCI	41,50,					Preservative Key 1. HCL, Cool to 4°
Project Project Samp	t Name	Van WI	Lab Project #	`S		Para	meter	V		7		Sphorus	\checkmark	9			2. H2SO4, Cool to 4° 3. HNO3, Cool to 4° 4. NaOH, Cool to 4° 5. NaOH/Zn, Cool to 4° 6. NaHSO4 7. Cool to 4° 8. None
0	017	nis.		J		60	· -	121		~		37		<u>_</u>		,	9. Other
Lab ID	, MS/MSD	Sample ID	gianne y	Sam Date	pling Time	# of Containers	Matrix	F	7	3	(u)) A		3	- 4		Comments
		551	id)	7/11/18	0937	5	ω	X	X	X	X	4			1. 1000	.	
2		Trip Blank	Ž.	•		1	•		[· (
					•												
				•													14
			-			-					-						
Turnar	ound Ti	me Required (Business Days)				Sampl	le Dispo	sal				· · · · · · · · · · · · · · · · · · ·					

Turnaround Time Re	equired (Business Days)		Sample Dispo	sal				•	**
Requested Due Date	Days 5 Days 7 Days 10	Days 15 Days Other	Return	to Client	Disposal by Lab Ard	hive for Months (A fee m	ay be assessed if samples	are retained longer thar	1 1 month) .
Refinquished By Relinquished By Relinquished By	Company Company	Date 7//// 8	Time 0947 Time	Received By	Un football	ent 7/12/18	Time 915	Lab Courier	
			Title	Hoceived by	Company	Date	Time	Shipped	Fed X
Relinquished By	Company	Date	Time	Received By	Company	Date	Time	Hand Delivered	
	Matrix Key	Client Comments				Lab Comments:			
WW - Wastewater	SE – Sediment								
W - Water	SO – Soil								i
S – Soil	L - Leachate								
SL - Sludge	Wi - Wipe								
MS - Miscellaneous	DW - Drinking Water								İ
OL - Oil	O – Other								
A – Air									i

Client: Pentair Water Job Number: 500-148298-1

Login Number: 148298 List Source: TestAmerica Chicago

List Number: 1

Creator: Scott, Sherri L

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	5.4
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Wastewater Discharge Monitoring Long Report

Facility Name: PENTAIR FLOW TECHNOLOGIES LLC

Contact Address: 293 S. Wright St

Delavan, WI 53115

Facility Contact: Dennis Schwind, Env. Tech

Phone Number: 262-728-7225

Reporting Period: 08/01/2018 - 08/31/2018

Form Due Date: 09/21/2018 Permit Number: 0055816

For DNR Use Only

Date Received:

DOC: 406248

FIN: 7072

FID: 265010900

Region: Southeast Region
Permit Drafter: Cathy M Baerwald
Reviewer: Andrew K Greer

Office: Milwaukee

	Sample Point	001	001	001	001	001
	Description	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole		Storm sewer manhole
	Parameter	211	487	457	388	388
	Description	Flow Rate	Temperature	Suspended Solids, Total	Phosphorus, Total	Phosphorus, Total
				Total		
	Units	MGD	degF	mg/L	mg/L	lbs/day
	Sample Type	TOT DAILY	GRAB	GRAB	GRAB	CALCULATED
	Frequency	MONTHLY	MONTHLY	MONTHLY	MONTHLY	MONTHLY
Sample Results	Day 1					
	2					
	3					
	4					
	5					
	6					
	7					
	8					
	9					
	10					
	11					
	12					
	13					
	14					
	15					
	16					
	17					
	18					
	19 20					
	21					
	22					
	23					
	24					
	25					
	26					
	27					
	28					
	29					
	30					
	31	0.444597	59.18	<1.9	0.037	0.137

Permit: 0055816

	Sample Point	001	001	001	001	001
	Description	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole
	Parameter	211	487	457	388	388
	Description	Flow Rate	Temperature	Suspended Solids, Total	Phosphorus, Total	Phosphorus, Total
	Units	MGD	degF	mg/L	mg/L	lbs/day
Summary Values	Monthly Avg	0.444597	59.18	0	0.037	0.137
	Daily Max	0.444597	59.18	<1.9	0.037	0.137
	Daily Min	0.444597	59.18	<1.9	0.037	0.137
Limit(s) in Effect	Monthly Avg				0.24 0	
QA/QC Information	LOD			1.9	0.024	
	LOQ			5	0.05	
	QC Exceedance	N	N	N	Y	N
	Lab Certification			999580010	999580010	

	Sample Point	001	001	001	001
	Description	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole
	Parameter	490	508	561	517
	Description	Tetrachloroethylene	Trichloro- ethylene	1,1,1-Trichloro- ethane	Vinyl chloride
	Units	ug/L	ug/L	ug/L	ug/L
	Sample Type	GRAB	GRAB	GRAB	GRAB
	Frequency	MONTHLY	MONTHLY	MONTHLY	MONTHLY
Sample Results	Day 1				
	2				
	3				
	4				
	5				
	6				
	7				
	8				
	9				
	10				
	11				
	12				
	13				
	14				
	15				
	16				
	17				
	18				
	19				
	20				
	21				
	22				
	23				
	24				
	25				
	26				
	27				
	28				
	29				
	30				
	31	<0.37	0.48	<0.38	<0.20
	V 1	1 .0.07	1 5.40	5.50	10.20

	Sample Point	001	001	001	001	
	Description	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	
	Parameter	490	508	561	517	
	Description	Tetrachloroethylene	Trichloro- ethylene	1,1,1-Trichloro- ethane	Vinyl chloride	
	Units	ug/L	ug/L	ug/L	ug/L	
Summary Values	Monthly Avg	0	0.48		0	
	Daily Max	<0.37	0.48	<0.38	<0.2	
	Daily Min	<0.37	0.48	<0.38	<0.2	
Limit(s) in Effect	Monthly Avg	50 0	50 0	50 0	10 0	
QA/QC Information	LOD	0.37	0.16	0.38	0.2	
	LOQ	1	0.5	1	1	
	QC Exceedance	N	Y	N	N	
	Lab Certification	999580010	999580010	999580010	999580010	

Footnotes (DNR Use Only; Instructions for completing this form that are unique for your facility may be displayed here.)
General Remarks
The total flow rate was calculated from pumping rate measurements taken from Delavan facility extraction well EX-7R by Pentair Flow Technologies Delavan facility and Tetra Tech personnel on July 31, 2018 and the August 31, 2018 daily flow readings recorded by the Badger U500w ultrasonic meters installed on the discharge lines of extraction wells EX-1, EX-2R,
EX-3R, EX-4R, EX-5R and EX-6.
Laboratory Quality Control Comments
J = Result is less than the LOQ but greater than the LOD and the concentration is an approximate value.

GEOTRANS, INC. FIELD WATER QUALITY SAMPLING AND ANALYSIS FORM

	PROJ	ECT INFORMATION	N	N. Committee	INSTRUMENT:	3
PROJECT	Delavan	Facility Remedial	Action	Temp, & pH	HI 98:20	
PROJECT	vo. Delask	m Well#4	WADES	Conductivity	21500.53	
LOCATION Delavan, WI				ORP		
PERSONNE	Den	nis		DO		
SAMPLE	Contract to Authority	SS-1	SS-1	SS-1	SS-1	SS-1
WATER TYP	E	Groundwater	Groundwater	Groundwater	Groundwater	Groundwa
DATE (ment	h/day/year)	08/3//18				
CLOCK TIME	E (Military)					
DEPTH TO Y	VATER (ft)*	NA	NA	NA	NA	NA
MEASURED	WELL DEPTH (ft)*	NA	NA	NA	NA	NA
CASING VO	.UME (gallons)	NA	NA	NA	NA	NA
PURGE VOL	UME (gellons)	NA	NA	NA	NA	NA
DEPTH SAM	PLE TAKEN (ft)*	NA	NA	NA	NA	NA
SAMPLING D	EVICE	4-20-2	V	No. of Concession, Name of		
FIELD TEMP	ERATURE (°C)	15.1				
pH		7.49				
ELEC.	Measured	1577				
COND. (uS/cm)	at 25° C	100				
ORP (mV)		NA	NA	NA	NA	NA
DISSOLVED (XYGEN (ppm)	NA	NA	NA	NA	NA
DISSOLVED	XYGEN (% Sat.)	NA	NA	NA	NA	NA
COLOR						
DOOR						
LARITY						
SAMPLING PA	RAMETERS	# OF CONTAINERS & V	VOLUME; CONTAINER T	YPE (A = AMBER GLAS ELD ADDED) OR NEUTF	S; G = GLASS; P = PLAS	TIC); NOI
CE, 1,1,1 ,1,2-TCA, Chloride (I Method SV	PCE, Vinyl	3 – 40 ml; G; HCl – L; No.	3 – 40 ml; G; HCl – L; No.	3 – 40 ml; G; HCl – L; No.	3 – 40 ml; G; HCl – L; No.	3 – 40 ml; G; HCl – L; No.
	TOT THE	TO A	Trichlessother	PCE Tetrophic	anthono .	•
omments:	ICE = Trichl	oroethene. TCA =	: I richloroethane,	PUE = etrachior	bernene.	
ME OF LABO	PRATORY	Test America	Test America	Test America	Test America	Test America
ATE SENT TO	LAB	8/30/18				
		Dennis				100

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Chicago 2417 Bond Street University Park, IL 60484 Tel: (708)534-5200

TestAmerica Job ID: 500-150871-1

Client Project/Site: Delavan Well #4 WPDES

For:

Pentair Water 293 Wright Street Delavan, Wisconsin 53115

Sanda Jreduck

Attn: Dennis Schwind

Authorized for release by: 9/18/2018 12:15:22 PM

Sandie Fredrick, Project Manager II (920)261-1660

sandie.fredrick@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Pentair Water Project/Site: Delavan Well #4 WPDES TestAmerica Job ID: 500-150871-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	
Client Sample Results	5
Lab Chronicle	6
Certification Summary	7
Method Summary	8
Sample Summary	9
Chain of Custody	10
Receipt Checklists	12

6

6

ا

9

Definitions/Glossary

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-150871-1

Qualifiers

GC/MS VOA

Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.						
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis					
%R	ercent Recovery					
CFL	Contains Free Liquid					
CNF	Contains No Free Liquid					
DER	Duplicate Error Ratio (normalized absolute difference)					
Dil Fac	Dilution Factor					

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MLMinimum Level (Dioxin) NC Not Calculated

Not Detected at the reporting limit (or MDL or EDL if shown) ND

PQL Practical Quantitation Limit

Quality Control QC

Relative Error Ratio (Radiochemistry) **RER**

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TEF **TEQ** Toxicity Equivalent Quotient (Dioxin)

Case Narrative

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-150871-1

Job ID: 500-150871-1

Laboratory: TestAmerica Chicago

Narrative

Job Narrative 500-150871-1

Comments

No additional comments.

Receipt

The samples were received on 9/1/2018 10:28 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 4.7° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

4

6

O

_

. .

10

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

Lab Sample ID: 500-150871-1

Matrix: Water

Client Sample ID: SS1 Date Collected: 08/31/18 08:40

Date Received: 09/01/18 10:28

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<0.38		1.0	0.38	ug/L			09/08/18 16:34	1
1,1,2-Trichloroethane	<0.35		1.0	0.35	ug/L			09/08/18 16:34	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			09/08/18 16:34	1
Trichloroethene	0.48	J	0.50	0.16	ug/L			09/08/18 16:34	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			09/08/18 16:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		75 - 126			•		09/08/18 16:34	1
4-Bromofluorobenzene (Surr)	93		72 - 124					09/08/18 16:34	1
Dibromofluoromethane	93		75 - 120					09/08/18 16:34	1
Toluene-d8 (Surr)	94		75 - 120					09/08/18 16:34	1

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids	<1.9		5.0	1.9	mg/L			09/07/18 13:16	1
Chloride	210		10	5.0	mg/L			09/02/18 19:42	5
Phosphorus as P	0.037	J	0.050	0.024	mg/L		09/11/18 09:47	09/17/18 15:48	1

Client Sample ID: Trip Blank Lab Sample ID: 500-150871-2 Date Collected: 08/31/18 00:00

Matrix: Water

Date Received: 09/01/18 10:28

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<0.38		1.0	0.38	ug/L			09/08/18 14:51	1
1,1,2-Trichloroethane	< 0.35		1.0	0.35	ug/L			09/08/18 14:51	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			09/08/18 14:51	1
Trichloroethene	<0.16		0.50	0.16	ug/L			09/08/18 14:51	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			09/08/18 14:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	91		75 - 126			-		09/08/18 14:51	1
4-Bromofluorobenzene (Surr)	95		72 - 124					09/08/18 14:51	1
Dibromofluoromethane	95		75 - 120					09/08/18 14:51	1
Toluene-d8 (Surr)	95		75 - 120					09/08/18 14:51	1

Lab Chronicle

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-150871-1

Lab Sample ID: 500-150871-1

Matrix: Water

Date Collected: 08/31/18 08:40 Date Received: 09/01/18 10:28

Client Sample ID: SS1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			448821	09/08/18 16:34	PMF	TAL CHI
Total/NA	Analysis	SM 2540D		1	448707		SMO	TAL CHI
					(Start) 0	09/07/18 13:16		
					(End) (09/07/18 13:18		
Total/NA	Analysis	SM 4500 CI- E		5	448227	09/02/18 19:42	HMW	TAL CHI
Total/NA	Prep	SM 4500 P B			449156	09/11/18 09:47	BRS	TAL CHI
Total/NA	Analysis	SM 4500 P E		1	450408		BRS	TAL CHI
					(Start) 0	09/17/18 15:48		
					(End) (9/17/18 15:48		

Client Sample ID: Trip Blank

Date Collected: 08/31/18 00:00

Date Received: 09/01/18 10:28

Lab Sample ID: 500-150871-2

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			448821	09/08/18 14:51	PMF	TAL CHI

Laboratory References:

TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

Accreditation/Certification Summary

Client: Pentair Water TestAmerica Job ID: 500-150871-1

Project/Site: Delavan Well #4 WPDES

Laboratory: TestAmerica Chicago

The accreditations/certifications listed below are applicable to this report.

Authority Program		EPA Region	Identification Number	Expiration Date
Wisconsin	State Program	5	999580010	08-31-19

4

5

7

Q

Method Summary

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-150871-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL CHI
SM 2540D	Solids, Total Suspended (TSS)	SM	TAL CHI
SM 4500 CI- E	Chloride, Total	SM	TAL CHI
SM 4500 P E	Phosphorus	SM	TAL CHI
5030B	Purge and Trap	SW846	TAL CHI
SM 4500 P B	Phosphorous, Total and Ortho	SM	TAL CHI

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"
SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

3

4

6

Q

10

Sample Summary

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-150871-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
500-150871-1	SS1	Water	08/31/18 08:40	09/01/18 10:28
500-150871-2	Trip Blank	Water	08/31/18 00:00	09/01/18 10:28

4

6

Ω

9

<u>TestAmerica</u>	Report To Tam Samuel Man & Contact: Mark Man they Se	eyer Bill To (optional)	Chain of Custody Record
THE LEADER IN ENVIRONMENTAL TESTING	Company: Proteir How Tech	valar conshany	Lab Job #: 600 + 100 #
2417 Bond Street, University Park, IL 60484 Phone: 708.534.5200 Fax: 708.534.5211	Address: 293 Wright 57 Address: Bebran WI53	Address: Address:	Chain of Custody Number:
Prione: 708.534.5200 Fax: 708.534.5211	Phone: 262-728-5551	Phone:	Page of
	Fax:	Fax:	Temperature °C of Cooler: 47
Client Project # Pentair Flow Technologies Project Name	Preservative Hall o	401 HO1 HO1 HOSON	Preservative Key 1. HCL, Cool to 4°
Poject Nather Delavan Well #4 WADES	Parameter .		2. H2SO4, Cool to 4° 3. HNO3, Cool to 4° 4. NaOH, Cool to 4°
Project Location/State Delavan WI Lab Project #		i i	5. NaOH/Zn, Cool to 4°
Sampler Lab PM	<i>p</i>	A M - Sold &	7. Cool to 4° 8. None 9. Other
CI qap Date	Sampling by dot of the state of	The Car	7. Cool to 4° 8. None 9. Other
1 SS/ 8/31	26 26 26	A A A A O	
2 Trip Blank	1 1		
2 Trip Blank Seal Broken on Bottle &	Empty) 1		Page 10 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
' -			
			500-150871 COC
		15.	
Turnaround Time Required (Business Days) 1 Day 2 Days 5 Days 7 Days 10 Days 15 Days Requested Due Date	Sample Disposal Other Return to Client	Disposal by Lab Archive for Months (A fee r	may be assessed if samples are rétained longer than 1 month)
Rejunshed By Sharper Portain B/3/	18 Time Received By	iel Salum Mus Date 09/82	Lab Courier
Relinquished By Company Date	Time Received By	Company Date	Time Shipped Transford
Relinquished By Company Date	Time Received By	Company Date	Time Hand Delivered
Matrix Key Client Comments		Lab Comments:	

10

DELAVAN, WI 53115 UNITED STATES US

TO

Part # 156148-434 BIT EXP

TEST AMERICA 2417 BOND ST.

UNIVERSITY PARK IL 60484

TRK# 4215 2706 9815

SATURDAY 12:00P PRIORITY OVERNIGHT

XØ JOTA

60484 1L-US ORD

500-150871 Waybill

Client: Pentair Water Job Number: 500-150871-1

Login Number: 150871 List Source: TestAmerica Chicago

List Number: 1

Creator: Sanchez, Ariel M

Oreator. Sanchez, Arier W		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	4.7
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Wastewater Discharge Monitoring Long Report

Facility Name: PENTAIR FLOW TECHNOLOGIES LLC

Contact Address: 293 S. Wright St

Delavan, WI 53115

Facility Contact: Dennis Schwind, Env. Tech

Phone Number: 262-728-7225

Reporting Period: 09/01/2018 - 09/30/2018

Form Due Date: 10/21/2018 Permit Number: 0055816

For DNR Use Only

Date Received:

DOC: 406249

FIN: 7072

FID: 265010900 Region: Southeast Region

Permit Drafter: Cathy M Baerwald
Reviewer: Andrew K Greer

Office: Milwaukee

	Sample Point	001	001	001	001	001
	Description	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole		Storm sewer manhole
	Parameter	211	487	457	388	388
	Description	Flow Rate	Temperature	Suspended Solids, Total	Phosphorus, Total	Phosphorus, Total
	Units	MGD	degF	mg/L	mg/L	lbs/day
	Sample Type	TOT DAILY	GRAB	GRAB	GRAB	CALCULATED
	Frequency	MONTHLY	MONTHLY	MONTHLY	MONTHLY	MONTHLY
Sample Results	Day 1					
	2					
	3					
	4					
	5					
	6					
	7					
	8					
	9					
	10					
	11	0.44500	07.00	40	0.40	0.050
	12 13	0.41566	67.82	18	0.19	0.658
	14					
	15					
	16					
	17					
	18					
	19					
	20					
	21					
	22					
	23					
	24 25					
	26					
	27					
	28					
	29					
	30					
	31					

Permit: 0055816

Page 1 of 5

	Sample Point	001	001	001	001	001
	Description	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole
	Parameter	211	487	457	388	388
	Description	Flow Rate	Temperature	Suspended Solids, Total	Phosphorus, Total	Phosphorus, Total
	Units	MGD	degF	mg/L	mg/L	lbs/day
Summary Values	Monthly Avg	0.41566	67.82	18	0.19	0.658
	Daily Max	0.41566	67.82	18	0.19	0.658
	Daily Min	0.41566	67.82	18	0.19	0.658
Limit(s) in Effect	Monthly Avg				0.24 0	
QA/QC Information	LOD			1.9	0.048	
	LOQ			5	0.1	
	QC Exceedance	N	N	N	N	N
	Lab Certification			999580010	999580010	

	Sample Point	001	001	001	001
	Description	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole
	Parameter	490	508	561	517
	Description	Tetrachloroethylene	Trichloro- ethylene	1,1,1-Trichloro- ethane	Vinyl chloride
	Units	ug/L	ug/L	ug/L	ug/L
	Sample Type	GRAB	GRAB	GRAB	GRAB
			J		Q
	Frequency	MONTHLY	MONTHLY	MONTHLY	MONTHLY
Sample Results	Day 1				
	2				
	3				
	4				
	5				
	6				
	7				
	8				
	9				
	10				
	11				
	12	<0.37	<0.16	<0.38	<0.20
	13				
	14				
	15				
	16				
	17				
	18				
	19				
	20				
	21				
	22				
	23				
	24				
	25				
	26				
	27				
	28				
	29				
	30				
	31				
		l	l	l .	

	Sample Point	001	001	001	001	
	Description	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	
	Parameter	490	508	561	517	
	Description	Tetrachloroethylene	Trichloro- ethylene	1,1,1-Trichloro- ethane	Vinyl chloride	
	Units	ug/L	ug/L	ug/L	ug/L	
Summary Values	Monthly Avg	0 0		0	0	
	Daily Max	<0.37	<0.16	<0.38	<0.2	
	Daily Min	<0.37	<0.16	<0.16 <0.38		
Limit(s) in Effect	Monthly Avg	50 0	50 0	50 0	10 0	
QA/QC Information	LOD	0.37	0.16	0.38	0.2	
	LOQ	1	0.5	1	1	
	QC Exceedance	N	N	N	N	
	Lab Certification	999580010	999580010	999580010	999580010	

Footnotes (DNR Use Only; Instructions for completing this form that are unique for your facility may be displayed here.)
General Remarks
The total flow rate was calculated from pumping rate measurements taken from Delavan facility extraction well EX-7R by Pentair Flow Technologies Delavan facility and Tetra Tech personnel on July 31, 2018 and the September 12, 2018 daily flow readings recorded by the Badger U500w ultrasonic meters installed on the discharge lines of extraction wells EX-1, EX-2R, EX-3R, EX-4R, EX-5R and EX-6.
Laboratory Quality Control Comments

Permit: 0055816 DOC: 406249

GEOTRANS, INC. FIELD WATER QUALITY SAMPLING AND ANALYSIS FORM

	PRO	JECT INFORMAT	ION		INSTRUMENT	S	
PROJECT	Delavar	r Facility Remedia	I Action	Temp. & pH	HI98129		
PROJECT NO. Delayam Well #4WADES			Conductivity	HI9812	9		
LOCATION Delavan, WI			ORP		1		
PERSONNE	I Jon	min		DO			
SAMPLE	POINT	SS-1	SS-1	SS-1	SS-1	SS-1	
WATER TYPE		Groundwater	Groundwater	Groundwater	Groundwater	Groundwa	
DATE (month	h/day/year)	19/12/18		9			
CLOCK TIME	(Military)	0940					
DEPTH TO WATER (ft)*		NA	NA	NA	NA	NA	
MEASURED WELL DEPTH (ft)*		NA	NA	NA	NA	NA	
CASING VOL	UME (gallons)	NA	NA	NA	NA	NA	
PURGE VOLU	JME (gallons)	NA	NA	NA	NA	NA	
DEPTH SAMP	LE TAKEN (ft)*	NA	NA	NA	NA	NA	
SAMPLING DE	EVICE	HI 99729					
IELD TEMPE	RATURE (°C)	19.9					
Н		7.68					
LEC.	Measured	60					
OND. uS/cm)	at 25° C	0 F /					
RP (mV)		NA	NA	NA	NA	NA	
DISSOLVED OXYGEN (ppm)		NA	NA	NA	NA	NA	
DISSOLVED OXYGEN (% Sat.)		NA	NA	NA	NA	NA	
OLOR		1					
DOR		Dage					
ARITY		Wone					
MPLING PAR	RAMETERS	# OF CONTAINERS &	VOLUME; CONTAINER T	YPE (A = AMBER GLASS	S; G = GLASS; P = PLAS	TIC);	
		PRESERVATIVE TYPE	(L = LAB ADDED; F = FI	ELD ADDED) OR NEUTR	IAL; FILTERED (YES or I	NO)	
		3 – 40 ml; G; HCl – L; No.	3 – 40 ml; G; HCl – L; No.	3 – 40 ml; G; HCl – L; No.	3 – 40 ml; G; HCl – L; No.	3 – 40 ml; G; HCl – L; No.	
		oroethene. TCA =	Trichloroethane.	PCE = Tetrachloro	ethene.		
mments:	TCE = Trichl						
			Test America T	Toot America	Tost America T	Tost America	
mments:	MATORY	Test America					

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Chicago 2417 Bond Street University Park, IL 60484 Tel: (708)534-5200

TestAmerica Job ID: 500-151416-1

Client Project/Site: Delavan Well #4 WPDES

For:

Pentair Water 293 Wright Street Delavan, Wisconsin 53115

Sanda Jreduik

Attn: Dennis Schwind

Authorized for release by: 9/27/2018 6:50:54 AM

Sandie Fredrick, Project Manager II (920)261-1660

sandie.fredrick@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Pentair Water Project/Site: Delavan Well #4 WPDES TestAmerica Job ID: 500-151416-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Lab Chronicle	6
Certification Summary	7
Method Summary	8
Sample Summary	9
Chain of Custody	10
Racaint Chacklists	11

4

5

7

8

9

Definitions/Glossary

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

Not Calculated

Quality Control

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin)

Not Detected at the reporting limit (or MDL or EDL if shown)

Relative Percent Difference, a measure of the relative difference between two points

Reporting Limit or Requested Limit (Radiochemistry)

TestAmerica Job ID: 500-151416-1

Glossary

NC ND

PQL

QC

RER

RPD TEF

TEQ

RL

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)

9/27/2018

Case Narrative

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-151416-1

Job ID: 500-151416-1

Laboratory: TestAmerica Chicago

Narrative

Job Narrative 500-151416-1

Comments

No additional comments.

Receipt

The samples were received on 9/13/2018 9:10 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 4.8° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

6

7

8

9

10

. .

TestAmerica Job ID: 500-151416-1

Project/Site: Delavan Well #4 WPDES

Lab Sample ID: 500-151416-1

Matrix: Water

Client Sample ID: SS1
Date Collected: 09/12/18 09:40
Date Received: 09/13/18 09:10

Client: Pentair Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<0.38		1.0	0.38	ug/L			09/19/18 00:21	1
1,1,2-Trichloroethane	<0.35		1.0	0.35	ug/L			09/19/18 00:21	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			09/19/18 00:21	1
Trichloroethene	<0.16		0.50	0.16	ug/L			09/19/18 00:21	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			09/19/18 00:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	86		75 - 126			•		09/19/18 00:21	1
4-Bromofluorobenzene (Surr)	87		72 - 124					09/19/18 00:21	1
Dibromofluoromethane	90		75 - 120					09/19/18 00:21	1
Toluene-d8 (Surr)	96		75 - 120					09/19/18 00:21	1

General Chemistry								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids	18	5.0	1.9	mg/L			09/19/18 17:33	1
Chloride	110	10	5.0	mg/L			09/16/18 16:41	5
Phosphorus as P	0.19	0.10	0.048	mg/L		09/20/18 11:49	09/25/18 15:24	1

Client Sample ID: Trip Blank

Date Collected: 09/12/18 00:00

Lab Sample ID: 500-151416-2

Matrix: Water

Date Received: 09/13/18 09:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<0.38		1.0	0.38	ug/L			09/18/18 23:04	1
1,1,2-Trichloroethane	<0.35		1.0	0.35	ug/L			09/18/18 23:04	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			09/18/18 23:04	1
Trichloroethene	<0.16		0.50	0.16	ug/L			09/18/18 23:04	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			09/18/18 23:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	86		75 - 126			-		09/18/18 23:04	1
4-Bromofluorobenzene (Surr)	87		72 - 124					09/18/18 23:04	1
Dibromofluoromethane	93		75 - 120					09/18/18 23:04	1
Toluene-d8 (Surr)	93		75 - 120					09/18/18 23:04	1

9/27/2018

Lab Chronicle

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-151416-1

Lab Sample ID: 500-151416-1

Matrix: Water

Client Sample ID: SS1 Date Collected: 09/12/18 09:40 Date Received: 09/13/18 09:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	450537	09/19/18 00:21	PMF	TAL CHI
Total/NA	Analysis	SM 2540D		1	450777		SMO	TAL CHI
					(Start) 0	9/19/18 17:33		
					(End) (9/19/18 17:34		
Total/NA	Analysis	SM 4500 CI- E		5	450900	09/16/18 16:41	HMW	TAL CHI
Total/NA	Prep	SM 4500 P B			450954	09/20/18 11:49	BRS	TAL CHI
Total/NA	Analysis	SM 4500 P E		1	451809		BRS	TAL CHI
					(Start) 0	9/25/18 15:24		
					(End) (9/25/18 15:25		

Client Sample ID: Trip Blank

Date Collected: 09/12/18 00:00

Date Received: 09/13/18 09:10

Lab Sample ID: 500-151416-2 **Matrix: Water**

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			450537	09/18/18 23:04	PMF	TAL CHI

Laboratory References:

TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

Accreditation/Certification Summary

Client: Pentair Water TestAmerica Job ID: 500-151416-1

Project/Site: Delavan Well #4 WPDES

Laboratory: TestAmerica Chicago

The accreditations/certifications listed below are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Wisconsin	State Program	5	999580010	08-31-19

3

4

5

7

9

Method Summary

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-151416-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL CHI
SM 2540D	Solids, Total Suspended (TSS)	SM	TAL CHI
SM 4500 CI- E	Chloride, Total	SM	TAL CHI
SM 4500 P E	Phosphorus	SM	TAL CHI
5030B	Purge and Trap	SW846	TAL CHI
SM 4500 P B	Phosphorous, Total and Ortho	SM	TAL CHI

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"
SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

3

4

5

7

8

9

Sample Summary

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-151416-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
500-151416-1	SS1	Water	09/12/18 09:40	09/13/18 09:10
500-151416-2	Trip Blank	Water	09/12/18 00:00	09/13/18 09:10

2

4

6

8

9

Test/	/U	ner	iC	C

<u>TestAmerica</u>	(optional) Report To Mar Geve (Contact: Wark Man) Company Penter (Address: 223 W 1.19 Address: 2019 Van L	Ton Samuel	Bill To Contact:	(optional)	Chain o	f Custody Record <u>SOD~IS 4 </u> 6
THE LEADER IN ENVIRONMENTAL TESTING	Company Period From) lechmologie	Company:		Lab Job	#: 500 131 11 V
2417 Bond Street, University Park, IL 60484	Address: 029 Cer LIA	2553775	Address:	100	Chain of	Custody Number:
Phone: 708.534.5200 Fax: 708.534.5211	Phone: 262-728-	5661	Phone:		Page	of
	Fax:		Fax:		Tomporat	ture °C of Cooler: 48
	E-Mail: Preservative		PO#/Reference#		Temperat	
PENTAIR FLOW TECHNOLOGIES LL	_C Preservative	CI HCI	HCI HCI	HSO4		Preservative Key 1. HCL, Cool to 4° 2. H2SO4, Cool to 4°
Project Name Project Ligation/State Lab Project # Lab Project # Lab Project # Lab Project #	Parameter	w C	T. Jak	Sorus	7. A.A.	3. HNO3, Cool to 4° 4. NaOH, Cool to 4° 5. NaOH/Zn, Cool to 4° 6. NaHSO4 7. Cool to 4° 8. None
Dennis	হূ	12 6		数 , g 二		9. Other
Cample ID Date	Sampling # O Outgine # O Containe	P B	CZ D	The PC		Comments
1 351 9/121	18 0940 5 W	XX	8 1	XXX)	
2 Trip Blank	1					
	1					
						500-151416 COC
Turnaround Time Required (Business Days)1 Day2 Days 5 Days 7 Days 10 Days 15 Days Requested Due Date	netuin to	o Client Dispo				are retained longer than 1 month)
Relinquished By Parlan 9/12/1	8 /000 F	Received By Will	and Company	UIT 09/13/	18 Time 0910	Lab Courier
Relinquished By Company Date	Time	Received By	O Company	Date	Time	Shipped FX Privity
Relinquished By Company Date	Time F	Received By	Company	Date	Time	Hand Delivered
Matrix Key Client Comments				ab Comments:		

Client: Pentair Water Job Number: 500-151416-1

Login Number: 151416 List Source: TestAmerica Chicago

List Number: 1

Creator: Sanchez, Ariel M

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	4.8
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Wastewater Discharge Monitoring Long Report

Facility Name: PENTAIR FLOW TECHNOLOGIES LLC

Contact Address: 293 S. Wright St

Delavan, WI 53115

Facility Contact: Dennis Schwind, Env. Tech

Phone Number: 262-728-7225

Reporting Period: 10/01/2018 - 10/31/2018

Form Due Date: 11/21/2018 Permit Number: 0055816

For DNR Use Only

Date Received:

DOC: 413230 FIN: 7072

FID: 265010900

Region: Southeast Region
Permit Drafter: Bryan D Hartsook
Reviewer: Bryan D Hartsook

Office: Milwaukee

	Sample Point Description	001	001	001		
		Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	001 Storm sewer manhole	001 Storm sewer manhole
	2000.pa.o	Storm sewer mannole	Storm sewer mannole	Storm sewer mannole	Storm sewer mannole	Storm sewer mannole
	Parameter	211	487	457	388	388
	Description	Flow Rate	Temperature	Suspended Solids, Total	Phosphorus, Total	Phosphorus, Total
	Units	MGD	degF	mg/L	mg/L	lbs/day
	Sample Type	TOT DAILY	GRAB	GRAB	GRAB	CALCULATED
	Frequency	MONTHLY	MONTHLY	MONTHLY	MONTHLY	MONTHLY
Sample Results	Day 1					
	2					
[3					
	4					
	5					
[6					
	7					
	8					
	9					
	10					
	11					
	12					
	13					
	14					
	15					
	16					
	17		53.42	<1.9	0.034	0.146
	18	0.514805				
	19					
	20					
	21					
	22					
	23					
	24					
	25					
	26					
	27					
	28					
	29					
	30					
	31					

Facility Name: PENTAIR FLOW TECHNOLOGIES LLC Reporting Period: 10/01/2018 to 10/31/2018

Permit: 0055816 DOC: 413230

	Sample Point	001	001	001	001	001
	Description	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole
	Parameter	211	487	457	388	388
	Description	Flow Rate	Temperature	Suspended Solids, Total	Phosphorus, Total	Phosphorus, Total
	Units	MGD	degF	mg/L	mg/L	lbs/day
Summary Values	Monthly Avg	0.514805	53.42	0	0.034	0.146
	Daily Max	0.514805	53.42	<1.9	0.034	0.146
	Daily Min	0.514805	53.42	<1.9	0.034	0.146
Limit(s) in Effect	Monthly Avg				0.24 0	
QA/QC Information	LOD			1.9	0.024	
	LOQ			5	0.05	
	QC Exceedance	N	N	N	Y	N
	Lab Certification			999580010	999580010	

	Sample Point	001	001	001	001
	Description	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole
	Parameter	490	508	561	517
	Description	Tetrachloroethylene	Trichloro- ethylene	1,1,1-Trichloro- ethane	Vinyl chloride
	Units	ug/L	ug/L	ug/L	ug/L
	Sample Type	GRAB	GRAB	GRAB	GRAB
			J		Q
	Frequency	MONTHLY	MONTHLY	MONTHLY	MONTHLY
Sample Results	Day 1				
	2				
	3				
	4				
	5				
	6				
	7				
	8				
	9				
	10				
	11				
	12				
	13				
	14				
	15				
	16				
	17	<0.37	<0.16	<0.38	<0.20
	18				
	19				
	20				
	21				
	22				
	23				
	24				
	25				
	26				
	27				
	28				
	29				
	30				
	31				
		l	l		

	Sample Point	001	001	001	001	
	Description	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	
	Parameter	490	508	561	517	
	Description	Tetrachloroethylene	Trichloro- ethylene	1,1,1-Trichloro- ethane	Vinyl chloride	
	Units	ug/L	ug/L	ug/L	ug/L	
Summary Values	Monthly Avg	0	0	0	0	
	Daily Max	<0.37	<0.16	<0.38	<0.2	
	Daily Min	<0.37	<0.16	<0.38	<0.2	
Limit(s) in Effect	Monthly Avg	50 0	50 0	50 0	10 0	
QA/QC Information	LOD	0.37	0.16	0.38	0.2	
	LOQ	1	0.5	1	1	
	QC Exceedance	N	N	N	N	
	Lab Certification	999580010	999580010	999580010	999580010	

Footnotes (DNR Use Only; Instructions for completing this form that are unique for your facility may be displayed here.)
General Remarks
The total flow rate was calculated from pumping rate measurements taken from Delavan facility extraction well EX-7R by Pentair Flow Technologies Delavan facility and Tetra Tech personnel on July 31, 2018 and the October 18, 2018 daily flow readings recorded by the Badger U500w ultrasonic meters installed on the discharge lines of extraction wells EX-1, EX-2R, EX-3R, EX-4R, EX-5R and EX-6.
Laboratory Quality Control Comments
J = Result is less than the LOQ but greater than the LOD and the concentration is an approximate value.

GEOTRANS, INC. FIELD WATER QUALITY SAMPLING AND ANALYSIS FORM

PROJECT PROJECT NO. LOCATION PERSONNEL SAMPLE PO WATER TYPE DATE (month/da) CLOCK TIME (MII DEPTH TO WATE MEASURED WEL CASING VOLUME PURGE VOLUME DEPTH SAMPLE TO SAMPLING DEVICE FIELD TEMPERAT	Delavan, Den (DINT V/year) Ilitary) ER (ft)* L DEPTH (ft)* E (gallons) (gallons) TAKEN (ft)*		SS-1 Groundwater NA NA	Temp. & pH Conductivity ORP DO SS-1 Groundwater	HI 98 HI 98 SS-1		
LOCATION PERSONNEL SAMPLE PO WATER TYPE DATE (month/da) CLOCK TIME (MII DEPTH TO WATE MEASURED WEL CASING VOLUME PURGE VOLUME DEPTH SAMPLE T	Delavan, Pen (DINT Ilitary) IR (ft)* I DEPTH (ft)* I (gallons) (gallons)	SS-1 Groundwater /0//-7/18 /000 NA NA NA	SS-1 Groundwater NA NA	DO SS-1 Groundwater	HI 98	129 SS-1	
PERSONNEL SAMPLE PO WATER TYPE DATE (month/day) CLOCK TIME (MIII DEPTH TO WATE MEASURED WEL CASING VOLUME PURGE VOLUME DEPTH SAMPLE T	Delavan, Pen (DINT Ilitary) IR (ft)* I DEPTH (ft)* I (gallons) (gallons)	SS-1 Groundwater /0//-7/18 /000 NA NA NA	SS-1 Groundwater NA NA	SS-1 Groundwater			
SAMPLE PO WATER TYPE DATE (month/da) CLOCK TIME (MII DEPTH TO WATE MEASURED WEL CASING VOLUME PURGE VOLUME DEPTH SAMPLE TO SAMPLING DEVICE	y/year) litary) IR (ft)* L DEPTH (ft)* E (gallons) (gallons)	SS-1 Groundwater /0//7/18 /000 NA NA NA	Groundwater NA NA	SS-1 Groundwater			
WATER TYPE DATE (month/da) CLOCK TIME (MII DEPTH TO WATE MEASURED WEL CASING VOLUME PURGE VOLUME DEPTH SAMPLE T	y/year) litary) IR (ft)* L DEPTH (ft)* E (gallons) (gallons)	SS-1 Groundwater /0//7/18 /000 NA NA NA	Groundwater NA NA	Groundwater			
DATE (month/day CLOCK TIME (MII DEPTH TO WATE MEASURED WEL CASING VOLUME PURGE VOLUME DEPTH SAMPLE T	Ilitary) R (ft)* L DEPTH (ft)* (gallons) (gallons)	/0/17/18 /000 NA NA	NA NA		Groundwater	Groundwat	
CLOCK TIME (MII DEPTH TO WATE MEASURED WEL CASING VOLUME PURGE VOLUME DEPTH SAMPLE T	Ilitary) R (ft)* L DEPTH (ft)* (gallons) (gallons)	NA NA	NA	NA			
DEPTH TO WATE MEASURED WEL CASING VOLUME PURGE VOLUME DEPTH SAMPLE T	ER (ft)* L DEPTH (ft)* E (gallons) (gallons) FAKEN (ft)*	NA NA NA	NA	NA			
MEASURED WEL CASING VOLUME PURGE VOLUME DEPTH SAMPLE T SAMPLING DEVICE	L DEPTH (ft)* (gallons) (gallons) FAKEN (ft)*	NA NA NA	NA	NA			
CASING VOLUME PURGE VOLUME DEPTH SAMPLE T SAMPLING DEVIC	(gallons) (gallons) (AKEN (ft)*	NA	Take a		NA	NA	
PURGE VOLUME DEPTH SAMPLE T SAMPLING DEVIC	(gallons)		MA	NA	NA	NA	
DEPTH SAMPLE T	TAKEN (ft)*	NA	NA	NA	NA	NA	
SAMPLING DEVIC			NA	NA	NA	NA	
		NA	NA	NA	NA	NA	
IELD TEMPERAT	E	HI98/29					
	URE (°C)	11.9					
Н		7,55					
	leasured	1336					
OND.	1 25° C	1200					
RP (mV)	7 T T 1-11	NA	NA	NA	NA	NA	
DISSOLVED OXYGEN (ppm)		NA	NA	NA	NA	NA /	
DISSOLVED OXYGEN (% Sat.)		NA	NA	NA	NA	NA	
COLOR		() fear					
DOR		None					
LARITY		Clear				1 2 3 3 7 7	
MPLING PARAMI	ETERS	# OF CONTAINERS & V	OLUME; CONTAINER T	YPE (A = AMBER GLAS	S; G = GLASS; P = PLAS RAL; FILTERED (YES or I	TIC);	
CE, 1,1,1-TCA, ,1,2-TCA, PCE, Vinyl chloride (EPA dethod SW 8260B)		3 – 40 ml; G; HCl – L; No.	3 – 40 ml; G; HCl – L; No.	3 – 40 ml; G; HCl – L; No.	3 – 40 ml; G; HCl – L; No.	3 – 40 ml; G; HCl – L; No.	
						-	
mments: TC	E = Trichlo	proethene. TCA =	Trichloroethane. I	PCE = Tetrachloro	pethene.		
E OF LABORATO	DRY T	est America	Test America	Test America	Test America	Test America	
E SENT TO LAB		0-17-18					

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Chicago 2417 Bond Street University Park, IL 60484 Tel: (708)534-5200

TestAmerica Job ID: 500-153381-1

Client Project/Site: Delavan Well #4 WPDES

For:

Pentair Water 293 Wright Street Delavan, Wisconsin 53115

Sanda Jreduik

Attn: Dennis Schwind

Authorized for release by: 11/1/2018 4:02:07 PM

Sandie Fredrick, Project Manager II (920)261-1660

sandie.fredrick@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Pentair Water Project/Site: Delavan Well #4 WPDES TestAmerica Job ID: 500-153381-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Lab Chronicle	6
Certification Summary	7
Method Summary	8
Sample Summary	9
Chain of Custody	10
Racaint Chacklists	12

5

7

1 N

Definitions/Glossary

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-153381-1

Qualifiers

General Chemistry

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin) **EDL** LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RLReporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

11/1/2018

Page 3 of 12

Case Narrative

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-153381-1

Job ID: 500-153381-1

Laboratory: TestAmerica Chicago

Narrative

Job Narrative 500-153381-1

Comments

No additional comments.

Receipt

The samples were received on 10/18/2018 9:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 4.5° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

2

5

6

3

10

Dibromofluoromethane

Toluene-d8 (Surr)

TestAmerica Job ID: 500-153381-1

Client Sample ID: SS1

Date Collected: 10/17/18 10:00 Date Received: 10/18/18 09:00 Lab Sample ID: 500-153381-1

Matrix: Water

Method: 8260B - Volatile O	rganic Compοι	unds (GC/	MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<0.38		1.0	0.38	ug/L			10/27/18 23:07	1
1,1,2-Trichloroethane	<0.35		1.0	0.35	ug/L			10/27/18 23:07	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			10/27/18 23:07	1
Trichloroethene	<0.16		0.50	0.16	ug/L			10/27/18 23:07	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			10/27/18 23:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	111		75 - 126			-		10/27/18 23:07	1
I and the second									

 Surrogate
 %Recovery Qualifier
 Limits
 Prepared
 Analyzed
 Dil Fa

 1,2-Dichloroethane-d4 (Surr)
 111
 75 - 126
 10/27/18 23:07

 4-Bromofluorobenzene (Surr)
 104
 72 - 124
 10/27/18 23:07

 Dibromofluoromethane
 96
 75 - 120
 10/27/18 23:07

 Toluene-d8 (Surr)
 97
 75 - 120
 10/27/18 23:07

General Chemistry Result Qualifier **MDL** Unit Analyte RL Prepared Analyzed Dil Fac Total Suspended Solids <1.9 5.0 1.9 mg/L 10/24/18 12:25 5.0 mg/L 11/01/18 11:58 **Chloride** 220 10 Phosphorus as P 0.034 J 0.050 0.024 mg/L 10/29/18 09:58 11/01/18 14:13

Client Sample ID: Trip Blank

Date Collected: 10/17/18 00:00

Lab Sample ID: 500-153381-2

Matrix: Water

Date Collected: 10/17/18 00:00
Date Received: 10/18/18 09:00

92

98

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<0.38		1.0	0.38	ug/L			10/27/18 21:47	1
1,1,2-Trichloroethane	< 0.35		1.0	0.35	ug/L			10/27/18 21:47	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			10/27/18 21:47	1
Trichloroethene	<0.16		0.50	0.16	ug/L			10/27/18 21:47	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			10/27/18 21:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107		75 - 126			-		10/27/18 21:47	1
4-Bromofluorobenzene (Surr)	104		72 - 124					10/27/18 21:47	1

75 - 120

75 - 120

10/27/18 21:47

10/27/18 21:47

Lab Chronicle

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-153381-1

Lab Sample ID: 500-153381-1

Matrix: Water

Client Sample ID: SS1

Date Collected: 10/17/18 10:00 Date Received: 10/18/18 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			457154	10/27/18 23:07	PMF	TAL CHI
Total/NA	Analysis	SM 2540D		1	456585		SMO	TAL CHI
					(Start) 1	0/24/18 12:25		
					(End) 1	0/24/18 12:27		
Total/NA	Analysis	SM 4500 CI- E		5	457936	11/01/18 11:58	EAT	TAL CHI
Total/NA	Prep	SM 4500 P B			457323	10/29/18 09:58	BRS	TAL CHI
Total/NA	Analysis	SM 4500 P E		1	457988		BRS	TAL CHI
					(Start) 1	1/01/18 14:13		
					(End) 1	1/01/18 14:14		

Client Sample ID: Trip Blank

Date Collected: 10/17/18 00:00 Date Received: 10/18/18 09:00

Lab Sample ID: 500-153381-2 **Matrix: Water**

Batch **Batch** Dilution **Batch** Prepared **Prep Type** Type Method Run Factor Number or Analyzed Lab Analyst Total/NA 8260B 457154 10/27/18 21:47 PMF TAL CHI Analysis

Laboratory References:

TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

Accreditation/Certification Summary

Client: Pentair Water TestAmerica Job ID: 500-153381-1

Project/Site: Delavan Well #4 WPDES

Laboratory: TestAmerica Chicago

The accreditations/certifications listed below are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Wisconsin	State Program	5	999580010	08-31-19

1

4

O

9

10

1,6

Method Summary

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-153381-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL CHI
SM 2540D	Solids, Total Suspended (TSS)	SM	TAL CHI
SM 4500 CI- E	Chloride, Total	SM	TAL CHI
SM 4500 P E	Phosphorus	SM	TAL CHI
5030B	Purge and Trap	SW846	TAL CHI
SM 4500 P B	Phosphorous, Total and Ortho	SM	TAL CHI

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"
SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

3

4

5

ŏ

9

Sample Summary

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-153381-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
500-153381-1	SS1	Water	10/17/18 10:00	10/18/18 09:00
500-153381-2	Trip Blank	Water	10/17/18 00:00	10/18/18 09:00

9

4

6

0

_

46

Test A merica	Report To Mark Process Contact: <u>Geyer</u> Dr	Panthey Max	BillyTo	(optional)	Chain of Cus	stody Record
10317 (11101100	Contact: Gever De	FINT LOW	Peditact:		50	00-153381
THE LEADER IN ENVIRONMENTAL TESTING	Company: Pendair Address: 293 Wr Address: Delavar Phone: 262 72	ant St	Address:		Lab Job #:	0 150501
2417 Bond Street, University Park, IL 60484 Phone: 708.534.5200 Fax: 708.534.5211	Address: De 900	211) T.53115	Address:		Chain of Custody Num	nber;
Phone: 708.534.5200 Fax: 708.534.5211	Phone: 26272	8 5551	Phone:		Page of	
	Fax:		Fax:			aler: 4:5
	E-Mail:		PO#/Reference#		Temperature °C of Coo	oler:
Client Project # Client Project # TECHNOLOGIES 1	Preservativ	" HCI HCI	HCI HCI	H2504		Preservative Key 1. HCL, Cool to 4°
Project Name	Paramete		7,0			2. H2SO4, Cool to 4° 3. HNO3, Cool to 4°
Delavan Well 7 WFD	<u> </u>		_9	ℓ_{-} ℓ_{-}		4. NaOH, Cool to 4° 5. NaOH/Zn, Cool to 4°
Project Location/State Lab Project # Lab Project #		l l	, ,		-	6. NaHSO4 7. Cool to 4°
Sampfer Lab PM		1 2 4	41-3	hosphorou TSS	5	8. None
Dennis	ω	6 4	25 19	3 3 -	<u>.</u>	9. Other
O D D Sample ID	Sampling Jo Line Sampling Samp		Q 5 %	Thosphora TASS	,	
	Date Time 🔓 🗟 💆	,	.0 .0		<u> </u>	Comments
1 351 101	17/18 1000 5 W	<u> </u>	8 B	PPE	wass	<u> </u>
2 Trip Blank	1 8	7				£
'						
					500-15338	B1 COC
			l I			
Turnaround Time Required (Business Days) 1 Day 2 Days 5 Days 7 Days 10 Days 15 Days	Sample Dis	Dier	osal by Lab			
Requested Due Date	Ret	urn to Client	Arci	hive for Months (A fee ma	ay be assessed if samples are retained lo	onger than 1 month)
Relinquished By Longramy Pentair Date	17-18 1020	Received By	On Land Company	PM Date 10/18/18	Time 900 Lab 0	Courier
Relinquished By Company Date	Time	Received By	Company	Date Date	Time	L C+D
Relinquished By Company Date	Time	Received By	Company	Date	Time	hipped A STD
Trompulation by Computer Compu	THE CONTRACTOR OF THE PROPERTY	The convect by	Odripany	Date	Hand Del	livered
Matrix Key Cilent Comments WW – Wastewater SE – Sediment				Lab Comments:		
W - Water SO - Soil						
S – Soil L – Leachate SL – Sludge WI – Wipe						
MS - Miscellaneous DW - Drinking Water OL - Oil O Other						
A – Air		_				

CIGIN ID: JVLA (888) 472-0884 DSTOMER SERVICE VENTAIR FLOW TECHNOLOGIES SES SOUTH WRIGHT STREET SHIP DATE: 170CT18 ACTWGT: 0.20 LB MAN CAD: 583065/CAFE3111

DELAVAN, WI 53115 JUNITED STATES US

ΤO

BILL SENDER

TEST AMERICA 2417 BOND STR.

UNIVERSITY PARK IL 60484

REF

FedEx Express

TRK# 4215 2707 7055

THU - 18 OCT 3:00P STANDARD OVERNIGHT

79 JOTA

60484 IL-US ORD

500-153381 Waybill

c

7

Q

9

Client: Pentair Water Job Number: 500-153381-1

Login Number: 153381 List Source: TestAmerica Chicago

List Number: 1

Creator: Sanchez, Ariel M

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	4.5
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Wastewater Discharge Monitoring Long Report

Facility Name: PENTAIR FLOW TECHNOLOGIES LLC

Contact Address: 293 S. Wright St

Delavan, WI 53115

Facility Contact: Dennis Schwind, Env. Tech

Phone Number: 262-728-7225

Reporting Period: 11/01/2018 - 11/30/2018

Form Due Date: 12/21/2018 Permit Number: 0055816

For DNR Use Only

Date Received:

DOC: 413231 FIN: 7072

FID: 265010900

Region: Southeast Region
Permit Drafter: Bryan D Hartsook
Reviewer: Bryan D Hartsook

Office: Milwaukee

	Sample Point	001	001	001	001	001
	Description	Storm sewer manhole		Storm sewer manhole	Storm sewer manhole	Storm sewer manhole
	Description	otom sewer marriore	otomi ocwer marmore	otomi ocwer marinole	otomi ocwer marmore	otomi ocwer mamore
	Parameter	211	487	457	388	388
	Description	Flow Rate	Temperature	Suspended Solids,	Phosphorus, Total	Phosphorus, Total
				Total		
	Units	MGD	degF	mg/L	mg/L	lbs/day
	Sample Type	TOT DAILY	GRAB	GRAB	GRAB	CALCULATED
	Frequency	MONTHLY	MONTHLY	MONTHLY	MONTHLY	MONTHLY
Sample Results	Day 1					
	2					
	3					
	4					
	5					
	6					
	7					
	8					
	9					
	10					
	11					
	12	0.400.477				
	13	0.430477	52.04	2.5	0.040	0.475
	14	0.431054	53.24	2.5	0.049	0.175
	15	0.431200				
	16 17	0.430359 0.428280				
	18	0.428716				
	19	0.428702				
	20	0.427932				
	21	0.427932				
	22	0.428033				
	23	0.428533				
	24	0.428306				
	25	0.428236				
	26	0.426324				
	27	0.428562				
	28	0.427477				
	29	0.427278				
	30	0.429216				
	31					
	<u> </u>	l				

	Sample Point	001	001	001	001	001
	Description	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole
	Parameter	211	487	457	388	388
	Description	Flow Rate	Temperature	Suspended Solids, Total	Phosphorus, Total	Phosphorus, Total
	Units	MGD	degF	mg/L	mg/L	lbs/day
Summary Values	Monthly Avg	0.428700056	53.24	2.5	0.049	0.175
	Daily Max	0.4312	53.24	2.5	0.049	0.175
	Daily Min	0.426324	53.24	2.5	0.049	0.175
Limit(s) in Effect	Monthly Avg				0.24 0	
QA/QC Information	LOD			1.9	0.048	
	LOQ			5	0.1	
	QC Exceedance	N	N	Y	Y	N
	Lab Certification			999580010	999580010	

	Sample Point	001	001	001	001
	Description	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole
	Parameter	490	508	561	517
	Description	Tetrachloroethylene	Trichloro- ethylene	1,1,1-Trichloro- ethane	Vinyl chloride
	Units	ug/L	ug/L	ug/L	ug/L
	Sample Type	GRAB	GRAB	GRAB	GRAB
					0
	Frequency	MONTHLY	MONTHLY	MONTHLY	MONTHLY
Sample Results	Day 1				
	2				
	3				
	4				
	5				
	6				
	7				
	8				
	9				
	10				
	11				
	12				
	13				
	14	<0.37	<0.16	<0.38	<0.20
	15				
	16				
	17				
	18				
	19				
	20				
	21				
	22				
	23				
	24				
	25				
	26				
	27				
	28				
	29				
	30				
	31				
	<u> </u>	l	l .	l .	

	Sample Point	001	001	001	001	
	Description	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	
	Parameter	490	508	561	517	
	Description	Tetrachloroethylene	Trichloro- ethylene	1,1,1-Trichloro- ethane	Vinyl chloride	
	Units	ug/L	ug/L	ug/L	ug/L	
Summary Values	Monthly Avg	0	0	0	0	
	Daily Max	<0.37	<0.16	<0.38	<0.2	
	Daily Min	<0.37	<0.16	<0.38	<0.2	
Limit(s) in Effect	Monthly Avg	50 0	50 0	50 0	10 0	
QA/QC Information	LOD	0.37	0.16	0.38	0.2	
	LOQ	1	0.5	1	1	
	QC Exceedance	N	N	N	N	
	Lab Certification	999580010	999580010	999580010	999580010	

Footnotes (DNR Use Only; Instructions for completing this form that are unique for your facility may be displayed here.)
General Remarks
The total flow rates were calculated from daily flow readings recorded by the Badger U500w ultrasonic meters installed on the discharge lines of Delavan facility extraction wells.
Laboratory Quality Control Comments
J = Result is less than the LOQ but greater than the LOD and the concentration is an approximate value.

Submitted by Mark Manthey(mmanthey) on 12/10/2018 9:17:32 AM

GEOTRANS, INC. FIELD WATER QUALITY SAMPLING AND ANALYSIS FORM

PROJECT INFORMATION			INSTRUMENTS			
PROJECT	Delavar	Facility Remedial	Action	Temp. & pH H 198129		
PROJECT NO	. Delavo	an Well#4	WANES	Conductivity	NI98129	
LOCATION	Delavar			ORP		_
PERSONNEL	Denr	115		DO		
SAMPLE	POINT	SS-1	SS-1	SS-1	SS-1	SS-1
WATER TYPE		Groundwater	Groundwater	Groundwater	Groundwater	Groundwa
DATE (month/	/day/year)	11-14-18		4		
CLOCK TIME	(Military)	0945				
DEPTH TO WA	ATER (ft)*	NA	NA	NA	NA	NA
MEASURED W	ELL DEPTH (ft)	NA	NA	NA	NA	NA
CASING VOLU	ME (gallons)	NA	NA	NA	NA	NA
PURGE VOLUM	ME (gallons)	NA	NA	NA	NA	NA
DEPTH SAMPL	E TAKEN (ft)*	NA	NA	NA	NA	NA
SAMPLING DE	VIĆE	HI98129				
FIELD TEMPER	ATURE (°C)	111,8				
Н		7.61				
LEC.	Measured	1331				
OND. uS/cm)	at 25° C	1 331				
ORP (mV)		NA	NA	NA	NA	NA
ISSOLVED OX	YGEN (ppm)	NA	NA	NA	NA	NA
ISSOLVED OX		NA	NA	NA	NA	NA
OLOR		Clear				
DOR		T. X				
		None				
LARITY		Clear	VOLUME; CONTAINER 1	VDE (A - AMBER GLAS	S- G - GI ASS- D - DI AS	TIC).
MPLING PARA	AMETERS	PRESERVATIVE TYPE	(L = LAB ADDED; F = F	ELD ADDED) OR NEUT	RAL; FILTERED (YES or	NO)
CE, 1,1,1-T 1,2-TCA, P hloride (EF ethod SW (PCE, Vinyl PA	3 – 40 ml; G; HCl – L; No.	3 – 40 ml; G; HCl – L; No.	3 – 40 ml; G; HCl – L; No.	3 – 40 ml; G; HCl – L; No.	3 – 40 ml; G; HCl – L; No.
						1
mments:	TCE = Trichl	oroethene. TCA =	Trichloroethane.	PCE = Tetrachlor	oethene.	
		T-AA-1-I	Test America	Test America	Test America	Test America
E OF LABOR	ATORY	Test America	rest America	Test America	1 COL MITTERICA	1 bot / iiii onica
E SENT TO LA		Penna	rest America	rest America	TOST ATTORICA	Toot / Williams

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Chicago 2417 Bond Street University Park, IL 60484 Tel: (708)534-5200

TestAmerica Job ID: 500-154845-1

Client Project/Site: Delavan Well #4 WPDES

For:

Pentair Water 293 Wright Street Delavan, Wisconsin 53115

Sanda Jreduik

Attn: Dennis Schwind

Authorized for release by: 12/6/2018 5:22:08 PM

Sandie Fredrick, Project Manager II (920)261-1660

sandie.fredrick@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Pentair Water Project/Site: Delavan Well #4 WPDES TestAmerica Job ID: 500-154845-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	
Client Sample Results	5
Lab Chronicle	6
Certification Summary	7
Method Summary	8
Sample Summary	9
Chain of Custody	10
Receipt Checklists	11

4

5

7

8

9

Definitions/Glossary

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-154845-1

Qualifiers

General Chemistry

Qualifier	Qualifier Description
-----------	-----------------------

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RLReporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

Case Narrative

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-154845-1

Job ID: 500-154845-1

Laboratory: TestAmerica Chicago

Narrative

Job Narrative 500-154845-1

Comments

No additional comments.

Receipt

The samples were received on 11/15/2018 11:30 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was -0.4° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

6

8

9

Client Sample Results

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-154845-1

Lab Sample ID: 500-154845-1

Matrix: Water

Client Sample ID: Trip Blank Date Collected: 11/14/18 00:00

Date Received: 11/15/18 11:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<0.38		1.0	0.38	ug/L			11/28/18 02:51	1
1,1,2-Trichloroethane	<0.35		1.0	0.35	ug/L			11/28/18 02:51	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			11/28/18 02:51	1
Trichloroethene	<0.16		0.50	0.16	ug/L			11/28/18 02:51	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			11/28/18 02:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	88	· -	75 - 126			•		11/28/18 02:51	1
4-Bromofluorobenzene (Surr)	93		72 - 124					11/28/18 02:51	1
Dibromofluoromethane	84		75 - 120					11/28/18 02:51	1
Toluene-d8 (Surr)	99		75 - 120					11/28/18 02:51	1

Lab Sample ID: 500-154845-2 Client Sample ID: SS1 **Matrix: Water**

Date Collected: 11/14/18 09:45

Method: 8260B - Volatile O Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<0.38		1.0	0.38	ug/L			11/28/18 05:49	1
1,1,2-Trichloroethane	< 0.35		1.0	0.35	ug/L			11/28/18 05:49	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			11/28/18 05:49	1
Trichloroethene	<0.16		0.50	0.16	ug/L			11/28/18 05:49	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			11/28/18 05:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	92		75 - 126					11/28/18 05:49	1
4-Bromofluorobenzene (Surr)	94		72 - 124					11/28/18 05:49	1
Dibromofluoromethane	86		75 - 120					11/28/18 05:49	1
Toluene-d8 (Surr)	97		75 - 120					11/28/18 05:49	1
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids	2.5	J	5.0	1.9	mg/L		<u> </u>	11/21/18 13:48	1
Chloride	210		10	5.0	mg/L			12/04/18 15:49	5
Phosphorus as P	0.049	A.	0.10	0.048	mg/L		11/29/18 20:24	11/30/18 15:18	1

12/6/2018

Lab Chronicle

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-154845-1

Lab Sample ID: 500-154845-1

Client Sample ID: Trip Blank Date Collected: 11/14/18 00:00 **Matrix: Water**

Date Received: 11/15/18 11:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			461974	11/28/18 02:51	JJH	TAL CHI

Client Sample ID: SS1 Lab Sample ID: 500-154845-2

Date Collected: 11/14/18 09:45 **Matrix: Water**

Date Received: 11/15/18 11:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			461974	11/28/18 05:49	JJH	TAL CHI
Total/NA	Analysis	SM 2540D		1	461283		SMO	TAL CHI
					(Start) 1	1/21/18 13:48		
					(End) 1	1/21/18 13:49		
Total/NA	Analysis	SM 4500 CI- E		5	463047	12/04/18 15:49	EAT	TAL CHI
Total/NA	Prep	SM 4500 P B			462390	11/29/18 20:24	PFK	TAL CHI
Total/NA	Analysis	SM 4500 P E		1	462594		BRS	TAL CHI
					(Start) 1	1/30/18 15:18		
					(End) 1	1/30/18 15:19		

Laboratory References:

TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

Accreditation/Certification Summary

Client: Pentair Water TestAmerica Job ID: 500-154845-1

Project/Site: Delavan Well #4 WPDES

Laboratory: TestAmerica Chicago

The accreditations/certifications listed below are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Wisconsin	State Program	5	999580010	08-31-19

7

Q

Method Summary

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-154845-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL CHI
SM 2540D	Solids, Total Suspended (TSS)	SM	TAL CHI
SM 4500 CI- E	Chloride, Total	SM	TAL CHI
SM 4500 P E	Phosphorus	SM	TAL CHI
5030B	Purge and Trap	SW846	TAL CHI
SM 4500 P B	Phosphorous, Total and Ortho	SM	TAL CHI

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"
SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

3

4

6

Q

40

1,

Sample Summary

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-154845-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
500-154845-1	Trip Blank	Water	11/14/18 00:00	11/15/18 11:30
500-154845-2	SS1	Water	11/14/18 09:45	11/15/18 11:30

4

6

Ω

9

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTA

2417 Bond Street, University Park, IL Phone: 708.534.5200 Fax: 708.5

500-154845 COC

and proptionally and	(optional)
Report To Mark Selver	Bill To
Report To Mark monthly Contact: Benn's Schwind	Contact:
Company: Penta ir Flow TechnologiesL	Company:
Address: 293 Wright St.	Address:
Address: 293 Wright St. Address: Jelavan LUF 53115	Address:
Phone: <u>260-728-5551</u>	Phone:

Chain of Custody Record

Lab Job #: <u>900-154845</u>

Chain of Custody Number	1	

Page	of			
J		_1	1	~_K

				E~(Vià	all:					PU#/Herere	nce#					
Offent	NTA	ITR FLOW TERM	Client Project #	11C		Prese	rvative	HeI	HCI	HCI	Hei	H504	,	·		Preservative Key 1. HCL, Cool to 4°
Project Project De Sampl	t Name 2 lev t Locatio ler ler	ITIZ FLOW TEENS voin Well #44 on/WI pis Schwind	Lab Project #			Para	meter	E	D.	a.l	ny i	lasphoraus	55	bride		2. H2SO4, Cool to 4° 3. HNO3, Cool to 4° 4. NaOH, Cool to 4° 5. NaOH/Zn, Cool to 4° 6. NaHSO4 7. Cool to 4° 8. None 9. Other
Lab ID	S/MSD	Sample ID		Sam Date	pling Time	# of Containers	Matrix	70	72,	\mathcal{H}	C/2	Ag	F	M		Comments
		Trip Blank		11-14-18	0945	î										
2		351				5	W	X	P	Ø	80	0	0	0		
			_													

Turnaround Time Required	ı (Business Days)		Sample Dispos	sal					
Requested Due Date	5 Days 7 Days 1	10 Days 15 Days Other	Return	n to Client	Disposal by Lab An	rchive for Months	(A fee may be assessed if samples	are retained longer than 1 month)	
Relifiquished By Relinquished By	han Pentair	Date 14,2018	1000	Received By	unisant 1	HURT III	5/17 1/30	Lab Courier	
Relinquished By	Company	Date		Received By	Company	Date (*	t Time	Shipped Fed X	
Ma WW – Wastewater W – Water S – Soil SL – Sludge	atrix Key SE – Sediment SO – Soil L – Leachate WI – Wipe	Client Comments				Lab Comments:	ī	Hand Delivered	
MS – Miscellaneous OL – Oil A – Air	DW – Drinking Water O – Other						<u>.</u>		

Client: Pentair Water Job Number: 500-154845-1

Login Number: 154845 List Source: TestAmerica Chicago

List Number: 1

Creator: Scott, Sherri L

Creator: Scott, Sherri L		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	-0.4
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

TestAmerica Chicago

Wastewater Discharge Monitoring Long Report

Facility Name: PENTAIR FLOW TECHNOLOGIES LLC

Contact Address: 293 S. Wright St

Delavan, WI 53115

Facility Contact: Dennis Schwind, Env. Tech

Phone Number: 262-728-7225

Reporting Period: 12/01/2018 - 12/31/2018

Form Due Date: 01/21/2019 Permit Number: 0055816

For DNR Use Only

Date Received:

DOC: 413232 FIN: 7072

FID: 265010900

Region: Southeast Region
Permit Drafter: Bryan D Hartsook
Reviewer: Bryan D Hartsook

Office: Milwaukee

	Sample Point	001	001	001	001	001
	Description	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole
	Parameter	211	487	457	388	388
	Description	Flow Rate	Temperature	Suspended Solids, Total	Phosphorus, Total	Phosphorus, Total
	Units	MGD	degF	mg/L	mg/L	lbs/day
	Sample Type	TOT DAILY	GRAB	GRAB	GRAB	CALCULATED
	Frequency	MONTHLY	MONTHLY	MONTHLY	MONTHLY	MONTHLY
Sample Results	Day 1	0.427380				
	2	0.428456				
	3	0.429384				
	4	0.427355				
	5	0.427489				
	6	0.428315				
	7	0.427884				
	8	0.426956				
	9	0.426981				
	10	0.426992				
	11	0.427364	52.88	2.0	<0.024	0
	12	0.428577				
	13	0.428479				
	14	0.428045				
	15	0.427402				
	16	0.428274				
	17	0.428319				
	18	0.429587				
	19	0.428699				
	20	0.428998				
	21	0.429668				
	22	0.430716				
	23	0.430061				
	24	0.429373				
	25	0.428147				
	26	0.429787				
	27	0.429220				
	28	0.432412				
	29	0.431253				
	30	0.431834				
	31	0.432356				

Permit: 0055816

	Sample Point	001	001	001	001	001
	Description	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole
	Parameter	211	487	457	388	388
	Description	Flow Rate	Temperature	Suspended Solids, Total	Phosphorus, Total	Phosphorus, Total
	Units	MGD	degF	mg/L	mg/L	lbs/day
Summary Values	Monthly Avg	0.428895581	52.88	2	0	0
	Daily Max	0.432412	52.88	2	<0.024	0
	Daily Min	0.426956	52.88	2	<0.024	0
Limit(s) in Effect	Monthly Avg				0.24 0	
QA/QC Information	LOD			1.9	0.024	
	LOQ			5	0.05	
	QC Exceedance	N	N	Y	N	N
	Lab Certification			999580010	999580010	

	Sample Point	001	001	001	001
	Description	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole
	Parameter	490	508	561	517
	Description	Tetrachloroethylene	Trichloro- ethylene	1,1,1-Trichloro- ethane	Vinyl chloride
	Units	ug/L	ug/L	ug/L	ug/L
	Sample Type	GRAB	GRAB	GRAB	GRAB
					0
	Frequency	MONTHLY	MONTHLY	MONTHLY	MONTHLY
Sample Results	Day 1				
	2				
	3				
	4				
	5				
	6				
	7				
	8				
	9				
	10				
	11	<0.37	0.48	<0.38	<0.20
	12				
	13				
	14				
	15				
	16				
	17				
	18				
	19				
	20				
	21				
	22				
	23				
	24				
	25				
	26				
	27				
	28				
	29				
	30				
	31				

Permit: 0055816

DOC: 413232

	Sample Point	001	001	001	001	
	Description	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	Storm sewer manhole	
	Parameter	490	508	561	517	
	Description	Tetrachloroethylene	Trichloro- ethylene	1,1,1-Trichloro- ethane	Vinyl chloride	
	Units	ug/L	ug/L	ug/L	ug/L	
Summary Values	Monthly Avg	0	0.48	0	0	
	Daily Max	<0.37	0.48	<0.38	<0.2	
	Daily Min	<0.37	0.48	<0.38	<0.2	
Limit(s) in Effect	Monthly Avg	50 0	50 0	50 0	10 0	
QA/QC Information	LOD	0.37	0.16	0.38	0.2	
	LOQ	1	0.5	1	1	
	QC Exceedance	N	Y	N	N	
	Lab Certification	999580010	999580010	999580010	999580010	

Permit: 0055816

DOC: 413232

Footnotes (DNR Use Only; Instructions for completing this form that are unique for your facility may be displayed here.)
General Remarks
The total flow rates were calculated from daily flow readings recorded by the Badger U500w ultrasonic meters installed on the discharge lines of Delavan facility extraction wells.
Laboratory Quality Control Comments
J = Result is less than the LOQ but greater than the LOD and the concentration is an approximate value.

Permit: 0055816 Reporting Period: 12/01/2018 to 12/31/2018 DOC: 413232

GEOTRANS, INC. FIELD WATER QUALITY SAMPLING AND ANALYSIS FORM

	PROJ	ECT INFORMATION	ON	INSTRUMENTS			
PROJECT	Delavar	Facility Remedial	Action	Temp. & pH HI 98 129			
PROJECT NO	Delegi	an well #4	WADES	Conductivity	HI98129		
LOCATION	Delavan			ORP		-	
PERSONNEL	Denn	15		DO			
SAMPLE	POINT	SS-1	SS-1	SS-1	SS-1	SS-1	
WATER TYPE		Groundwater	Groundwater	Groundwater	Groundwater	Groundwa	
DATE (month/	/day/year)	12/41/18					
CLOCK TIME ((Military)	0938					
DEPTH TO WA	TER (ft)*	NA	NA	NA	NA	NA	
MEASURED W	ELL DEPTH (ft)	NA	NA	NA	NA	NA	
CASING VOLU	ME (gallons)	NA	NA	NA	NA	NA	
PURGE VOLUM	ME (gallons)	NA	NA	NA	NA	NA	
EPTH SAMPL	E TAKEN (ft)*	NA	NA	NA	NA	NA	
AMPLING DE	VICE	HI98129					
IELD TEMPER	ATURE (°C)	11.6					
н		7,62					
LEC.	Measured	1328					
OND. S/cm)	at 25° C	/					
RP (mV)		NA	NA	NA	NA	NA	
SSOLVED OX	YGEN (ppm)	NA	NA	NA	NA	NA	
SSOLVED OX	YGEN (% Sat.)	NA	NA	NA	NA	NA	
DLOR		CLEAR.					
OOR		None					
ARITY		CLEAR					
MPLING PARA	AMETERS	# OF CONTAINERS & V	OLUME; CONTAINER T	YPE (A = AMBER GLAS	S; G = GLASS; P = PLAS	TIC);	
		PRESERVATIVE TYPE	(L = LAB ADDED; F = FI	ELD ADDED) OR NEUTI	RAL; FILTERED (YES OF	NO)	
CE, 1,1,1-T 1,2-TCA, P nloride (EP ethod SW 8	PCE, Vinyl	3 – 40 ml; G; HCl – L; No.	3 – 40 ml; G; HCl – L; No.	3 – 40 ml; G; HCl – L; No.	3 – 40 ml; G; HCl – L; No.	3 – 40 ml; G; HCl – L; No.	
						à	
mments:	TCE = Trichl	oroethene. TCA =	Trichloroethane.	PCE = Tetrachloro	pethene.		
E OF LABORA	ATORY	Test America					
E OF LABORA		Test America					

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Chicago 2417 Bond Street University Park, IL 60484 Tel: (708)534-5200

TestAmerica Job ID: 500-156064-1

Client Project/Site: Delavan Well #4 WPDES

For:

Pentair Water 293 Wright Street Delavan, Wisconsin 53115

Attn: Dennis Schwind

Authorized for release by: 12/28/2018 12:13:50 PM Jim Knapp, Project Manager II

(630)758-0262

jim.knapp@testamericainc.com

Designee for

Sandie Fredrick, Project Manager II (920)261-1660

sandie.fredrick@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Pentair Water Project/Site: Delavan Well #4 WPDES TestAmerica Job ID: 500-156064-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	
Client Sample Results	5
Lab Chronicle	6
Certification Summary	7
Method Summary	8
Sample Summary	9
Chain of Custody	10
Racaint Chacklists	11

3

4

R

9

Definitions/Glossary

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-156064-1

Qualifiers

GC/MS VOA

Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.					
¤	isted under the "D" column to designate that the result is reported on a dry weight basis					
%R	Percent Recovery					
CFL	Contains Free Liquid					
CNF	Contains No Free Liquid					
DER	Duplicate Error Ratio (normalized absolute difference)					
Dil Fac	Dilution Factor					

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MLMinimum Level (Dioxin) NC Not Calculated

Not Detected at the reporting limit (or MDL or EDL if shown) ND

PQL Practical Quantitation Limit

Quality Control QC

Relative Error Ratio (Radiochemistry) **RER**

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TEF Toxicity Equivalent Quotient (Dioxin) **TEQ**

TestAmerica Chicago

Case Narrative

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-156064-1

Job ID: 500-156064-1

Laboratory: TestAmerica Chicago

Narrative

Job Narrative 500-156064-1

Comments

No additional comments.

Receipt

The samples were received on 12/12/2018 9:30 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.4° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

6

6

9

10

TestAmerica Job ID: 500-156064-1

Client Sample ID: SS1

Date Collected: 12/11/18 09:38 Date Received: 12/12/18 09:30 Lab Sample ID: 500-156064-1

Matrix: Water

Method: 8260B - Volatile Organic Compounds (GC/MS)

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<0.38	1.0	0.38	ug/L			12/22/18 01:11	1
1,1,2-Trichloroethane	<0.35	1.0	0.35	ug/L			12/22/18 01:11	1
Tetrachloroethene	<0.37	1.0	0.37	ug/L			12/22/18 01:11	1
Trichloroethene	0.48 J	0.50	0.16	ug/L			12/22/18 01:11	1
Vinyl chloride	<0.20	1.0	0.20	ug/L			12/22/18 01:11	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	92	75 - 126		12/22/18 01:11	1
4-Bromofluorobenzene (Surr)	105	72 - 124		12/22/18 01:11	1
Dibromofluoromethane	96	75 - 120		12/22/18 01:11	1
Toluene-d8 (Surr)	94	75 - 120		12/22/18 01:11	1

General Chemistry Analyte Result Qualifier RL MDL Unit Dil Fac Prepared Analyzed **Total Suspended Solids** 2.0 J 5.0 1.9 mg/L 12/13/18 13:59 10 5.0 mg/L 12/27/18 14:11 **Chloride** 210 5 Phosphorus as P < 0.024 0.050 0.024 mg/L 12/26/18 11:21 12/27/18 14:58

Client Sample ID: Trip Blank

Date Collected: 12/11/18 00:00

Lab Sample ID: 500-156064-2

Matrix: Water

Date Received: 12/12/18 09:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<0.38		1.0	0.38	ug/L			12/22/18 00:12	1
1,1,2-Trichloroethane	<0.35		1.0	0.35	ug/L			12/22/18 00:12	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			12/22/18 00:12	1
Trichloroethene	<0.16		0.50	0.16	ug/L			12/22/18 00:12	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			12/22/18 00:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analvzed	Dil Fac

5	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1	,2-Dichloroethane-d4 (Surr)	91		75 - 126		12/22/18 00:12	1
4	1-Bromofluorobenzene (Surr)	106		72 - 124		12/22/18 00:12	1
L	Dibromofluoromethane	95		75 - 120		12/22/18 00:12	1
7	Foluene-d8 (Surr)	95		75 - 120		12/22/18 00:12	1

Lab Chronicle

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-156064-1

Lab Sample ID: 500-156064-1

Lab Sample ID: 500-156064-2

Matrix: Water

Matrix: Water

Client Sample ID: SS1
Date Collected: 12/11/18 09:38

Date Received: 12/11/16 09:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			465920	12/22/18 01:11	PMF	TAL CHI
Total/NA	Analysis	SM 2540D		1	464596		SMO	TAL CHI
					(Start) 1	2/13/18 13:59		
					(End) 1	2/13/18 14:00		
Total/NA	Analysis	SM 4500 CI- E		5	466603	12/27/18 14:11	EAT	TAL CHI
Total/NA	Prep	SM 4500 P B			466368	12/26/18 11:21	BRS	TAL CHI
Total/NA	Analysis	SM 4500 P E		1	466632		BRS	TAL CHI
					(Start) 1	2/27/18 14:58		
					(End) 1	2/27/18 14:58		

Client Sample ID: Trip Blank

Date Collected: 12/11/18 00:00

Date Received: 12/12/18 09:30

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	465920	12/22/18 00:12	PMF	TAL CHI

Laboratory References:

TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

2

5

6

8

3

TestAmerica Chicago

Accreditation/Certification Summary

Client: Pentair Water TestAmerica Job ID: 500-156064-1

Project/Site: Delavan Well #4 WPDES

Laboratory: TestAmerica Chicago

The accreditations/certifications listed below are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Wisconsin	State Program	5	999580010	08-31-19

7

Q

Method Summary

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-156064-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL CHI
SM 2540D	Solids, Total Suspended (TSS)	SM	TAL CHI
SM 4500 CI- E	Chloride, Total	SM	TAL CHI
SM 4500 P E	Phosphorus	SM	TAL CHI
5030B	Purge and Trap	SW846	TAL CHI
SM 4500 P B	Phosphorous, Total and Ortho	SM	TAL CHI

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"
SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

3

4

5

7

8

9

Sample Summary

Client: Pentair Water

Project/Site: Delavan Well #4 WPDES

TestAmerica Job ID: 500-156064-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
500-156064-1	SS1	Water	12/11/18 09:38	12/12/18 09:30
500-156064-2	Trip Blank	Water	12/11/18 00:00	12/12/18 09:30

Λ

6

8

9

THE LEADER IN ENVIRONMENTAL T 2417 Bond Street, University Park, IL 6048- Phone: 708.534.5200 Fax: 708.534.52 500-156064 COC	Contact: Dentis Company Pertain Fle Address: 273 Wrig Address: 262-728 -	Mark Marthey Schwing John Tech rdegr John 5.4 05 53115	Fax:	iional)	Chain of Custody Record Lab Job #: 500 -/56064 Chain of Custody Number: Page of Temperature °C of Cooler: 2; 4
Client Project # Client Project # PRINTAIR FLOW TECHNOLOGIES 2 PRoject Name Delovan Well # WADES Project Location/State Delovan WI Sampler Denn'S Sample ID Date Trip Blank	Sampling January XII	HC1 HC1 D22 X	PCE Vinyl Obloride	8 Tres	Preservative Key 1. HCL, Cool to 4° 2. H2SO4, Cool to 4° 3. HNO3, Cool to 4° 4. NaCH, Cool to 4° 5. NaOH/Zn, Cool to 4° 6. NaHSO4 7. Cool to 4° 8. None 9. Other Comments
Reginquished By Company Date Company Date Company Date Company Date Company Date	-18 0955 Time		Sal by Lab Archive for Company	7 12/12/18 Date/	e assessed if samples are retained longer than 1 month) Lab Courier Time Shipped Feed Shipped
Company Date	Time	перегуед ву	Company Lab Co	Date omments:	Time Hand Delivered

Kenme	chand PENTH	TIR 12-11-18	0955	lhun	SCOTOTA CH	PI 12/12/18	0930	Lab Courier	
Relinquished By	Company	Date	Time	Received By	Company	Date	Time	Shipped	Feel X
Relinquished By	Company	Date	Time	Received By	Company	Date	Time	Hand Delivered	
WW - Wastewater W - Water S - Soil SL - Sludge MS - Miscellaneous OL - Oil A - Air	Matrix Key SE – Sediment SO – Soil L – Leachate WI – Wipe DW – Drinking Water O – Other	Client Comments			Lab (Comments:			
					- 40 - (44			-	TAL MILLOPPOVIEW

Client: Pentair Water

Job Number: 500-156064-1

Login Number: 156064 List Source: TestAmerica Chicago

List Number: 1

Creator: Scott, Sherri L

ordator: Good, Griorii E		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	2.4
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

TestAmerica Chicago