ARCS V

00037 **-** -

96446

Remedial Activities at Uncontrolled Hazardous Waste Sites in Region V

SEPA United States Environmental Protection Agency

REMEDIAL INVESTIGATION REPORT Volume 2

> **MOSS-AMERICAN SITE** Milwaukee, Wisconsin

WA 15-5LM7.0/Contract No. 68-W8-0040

January 9, 1990

REMEDIAL INVESTIGATION REPORT Volume 2

MOSS-AMERICAN SITE Milwaukee, Wisconsin

WA 15-5LM7.0/Contract No. 68-W8-0040

January 9, 1990

GLT595/066.50

۰.

CONTENTS

VOLUME 2

Appendix A. Field Mapping and Surveying of the Little Menomonee River Attachment A-1. Little Menomonee River Maps

Appendix B. Sediment Sampling

Attachment B-1. Sampling Locations Attachment B-2. River Cross Section EO Data

Attachment B-3. GC/FID Data

Attachment B-4. Field Data by Sample Number and Extractable Organic Concentrations

Appendix C. Surface Water Sampling

Appendix D. Mapping and Surveying

Appendix E. Surface Soil Investigations

Appendix F. Monitoring Well Installation and Findings on Site Geology

Appendix G. Hydraulic Conductivity Testing and Groundwater Elevations

Appendix H. Groundwater Sampling

Appendix I. Groundwater Flow Calculations

Appendix J. Contaminant Velocity Calculations

Appendix K. Baseline Risk Assessment

Appendix L. Risk Assessment Methodology

Appendix M. Risk Calculation Data Tables

Appendix N. Quality Assurance/Quality Control Evaluation of Laboratory Data [not included]

Appendix O. Analytical Data Summary Tables

Appendix P. Analytical Data

Appendix Q. Bibliography

GLT595/067.50

Appendix A FIELD MAPPING AND SURVEYING OF THE LITTLE MENOMONEE RIVER

.

۱,

GLT595/057.50

\$

Appendix A FIELD MAPPING AND SURVEYING OF THE LITTLE MENOMONEE RIVER

INTRODUCTION

This appendix describes conditions observed during the field mapping of sediment along the Little Menomonee River at and downstream of the Moss-American site (Figure A-1). Data gathered during this field effort were evaluated along with previous information to determine locations suitable for sampling.

OBJECTIVES

The field mapping and surveying task consisted of both river mapping and site mapping. River mapping and surveying were performed before actual sampling so that current information could be used to determine sediment sample locations and also to refine data quality objectives for remaining Remedial Investigation (RI) activities.

PROCEDURES

RECONNAISSANCE

Preliminary reconnaissance of the Little Menomonee River was performed from 500 feet upstream of the site to the confluence with the Menomonee River on November 30 through December 2, 1987. The length of the river was measured with a 100-foot tape; flags were used to mark 300-foot intervals. Downstream lengths were measured from a zero point set halfway between the two railroad bridges that cross the Little Menomonee River north of the site and south of Brown Deer Road. The zero point corresponds to river mile 5.84 (SEWRPC 1986). Soils and bank sediments were uncovered or stirred with a shovel for visual inspection. An HNu was used for preliminary analysis of volatile organic compounds in soils and sediments. All observations were logged and plotted on 1 inch = 400 feet aerial photos taken in 1985 obtained from the Southeastern Wisconsin Regional Planning Commission. These observations are summarized and included in Attachment A-1.

General features of channel width and depth, channel and bank alignment, areas of deposition and erosion, vegetation, log jams, and evidence of dredging were noted as the distance downstream was measured. Discharge points to the river were noted (Table A-1). The information collected was used to describe variations in stream channel configuration and to delineate stream segments.

CHANNEL PROFILES

Based on the results of the stream characterization, 28 typical sections were profiled on December 3 and 4, 1987. The profiles were taken at 1,200-foot intervals using a boat, a 100-foot measuring tape, and a wooden pole marked with 1/4-foot increments. Depth of water was measured at five locations along each profile: 1 to 3 feet from the west bank, at the 1/4, 1/2, and 3/4 points, and 1 to 3 feet from the east bank. Side banks higher than 1 foot above the water surface were noted in the field book. General characteristics of bottom sediments were also recorded.

DATA LIMITATIONS

HNu readings were unstable because of high humidity on the days of river reconnaissance and surveying. On the first day, approximately 8,500 feet downstream of the zero point, use of the HNu was abandoned because of the heavy snowfall. From that point to the confluence with the Menomonee River, no HNu readings were taken.

Dredgings and sediment were sampled at 300-foot intervals on the west bank of the Little Menomonee River. The samples examined were shallow because of the method of excavation.

A surveying error was made between West Silver Spring Drive and State Highway 100 while measuring the length of the Little Menomonee River. A 200-foot length was recorded as being 300 feet.

)

)

Channel and inlet depths and widths apply only to the dates and times for which the field data were collected. Variations in volume and depth of flow were clearly visible during the 2 days that channel sections were profiled. Grates draining road runoff directly into the river through bridge structures were not recorded in the field notes.

The release of oily residues from west bank sediments during reconnaissance was erratic. Therefore, a sampler walking to the same locations may not immediately find the same condition, even in areas where significant oily residue was recorded by the survey team.

RESULTS

The results of the river reconnaissance and surveying are shown on the maps in Attachment A-1.

The average width of the Little Menomonee River in the sections profiled is approximately 20 feet; the average depth is 2 feet. The Little Menomonee River flows predominantly through a trapezoidal channel of silty clay. The channel runs through both woods and marsh with few variations in channel alignment.

FIGURE A-1 LOCATION MAP MOSS-AMERICAN RI

۱.

Inlet	Width	Depth	Comments
A B C D E F G H	4 2 5 7 13 10 5 4	0.3 2 2 1 1 1	Oil found in inlet sediments.
J	47	0.5 0.5	Manmade channel, only shallow flow about
K L M	4 4 4	2 2 1	1/2 inch deep in the concrete channel.
N P Q R	4 15 4 15 0,3	1 2 1 1 0.04	Oil found in inlet sediments. Only 1/4 inch of flow in culvert itself. Backwater.
5 T -0 V	3 2 15 3 2	0.08 1 2 0.25 2	
X Y Z	4 3 2	2 0.2 0.2	Oth found to toles addresses
AB AC	10	2	Bluish green water in inlet.
AD AE AF AG	0.3 Wet 3 2	0.02 wet 0.75 0.2	From culvert 6 to 8 inches in diameter. From culvert 6 to 8 inches in diameter.
	3 5 2	1 2 0,25	Oil found in inlet sediments. From box culvert 8 feet wide, 20 feet from Little Menomonee River. Oil found in inlet sediments.
	3 7 25	1 2 2	Oil found in inlet sediments. Well developed channel (old bed?).
▲ ▲ ▲ ▲ 0 ▲ 〇 ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲	3 4 0.5 1	1 0.75 1 0.2	Joining of stream west of dredgings.
AR As At Au	5 3 3 1	2 2 3 0.2	Culvert about 3/4 submarged. Culvert submarged.
AV AV AX	10 8 1 5	3 2 0.5	Coming from 8-foot box culvert.
AZ BA BB	4 1 5	1 0.04 2	
BC BD BE BF	5 0.4 5	0.25 0.04 1	Oily sheen on water. Culvert about 15 inches in diameter.
BG	6	1	ATA BREEN AN ARTELY

٠

١.

Table A-1 INLETS INTO THE LITTLE MENONOMEE RIVER (12/3/87 and 12/4/87)

GLT595/60

1

(

ţ

Intermittent meanders are seen south of the Mill Road Bridge to the Lovers Lane bridge. Erosion occurs on the outside of the river curves and deposition occurs on the inside. In the wooded areas of the same stretch, the Little Menomonee River has undercut and toppled large trees rooted in the riverbanks. The river width tends to narrow as it cuts through the sod of the marshy land and as it passes through low wet areas where bushy willows grow into the channel. Slumps occur where the channel banks are steep and composed of clay.

The entire length of the Little Menomonee River has undergone minor channelization for agricultural or other purposes. The dates of those alterations are not known precisely. Major channelization at West Fond du Lac Avenue routes the river through a bridge that passes over both the river and a local road. Dredgings have been deposited over much of the surveyed length of the Little Menomonee River (Attachment A-1). Downstream of the first 3,900 feet, very large trees stand in the dredging piles.

The river occasionally conveys large volumes of water, as indicated by brush and debris caught high on flood plain deposit areas and in trees and bushes adjacent to the channel. No vegetation or wildlife were seen in the channel, although deer, rabbits, mice and birds seem abundant around the river. A muskrat was seen on a flooded part of the flood plain deposit area immediately upstream of the Appleton Avenue bridge, and farther upstream in the woods along the east bank a mink was seen.

At this time, the oily sheens and residues seen during river mapping and surveying are assumed to indicate the presence of creosote. Oily releases from disturbed sediments came almost exclusively from areas of softer sediments. Portions of the stream with a coarse sand and gravel bed yielded no oil when they were stirred.

)

1

Oil was released from bottom sediments along the Little Menomonee River from approximately 3,900 feet downstream of the railroad bridge zero point to the confluence with the Menomonee River. Locations where the oily sheens and residue were seen are mapped in Attachment A-1.

CONCLUSIONS

Information gathered during initial river survey activities suggests intermittent creosote contamination in the Little Menomonee River from 3,900 feet downstream of the river mapping zero point to the confluence with the Menomonee River. No contamination was detected either visually or with an HNu for the first 3,900 feet of the river survey, corresponding closely to the 4,000 feet dredged in 1973 by the U.S. EPA. The data are insufficient, however, to state that no contamination exists in that reach.

Contamination was seen predominantly in softer silty sediments. Only a few locations of harder packed clays had signs of creosote contamination; sand, gravel, and rock exhibited no signs of contamination.

Surface runoff is a potential contamination hazard for the Moss-American site. Exposing soils containing creosote to erosion facilitates their transport to the sediments of the Little Menomonee River. River flooding is a concern in that soils inundated with flood water may potentially carry creosote residues and compounds with them as they recede. Site investigation and remedial activities should minimize transport and erosion of sediment materials.

RECOMMENDATIONS

SAMPLE SELECTION

As part of the sediment sampling program, samples will be taken at intervals of approximately 300 feet (see Attachment A-1). At each surveyed cross section, about every 1,200 feet, samples should be taken at several depths and locations across the section. Dredging piles, flood plain deposit areas, and certain inlets will also be sampled. Extractable organics (EO) concentrations will be measured on approximately 265 samples; approximately 60 samples will be sent for GC/FID analysis.

Specific sampling locations will be tailored in the field to best determine the extent of creosote contamination of the Little Menomonee River. The sampling guidelines described here are an outline that will be refined in the field. Visual inspection of samples and initial EO results can help direct subsequent sampling. Most river sampling will focus on sediment depositional areas; that is, at pools and inside curves. Samples will be taken from portions of the river where the deepest sediment deposits can be determined with a probe, particularly for sections where only one sample will be taken. Natural processes of sedimentation are expected to have provided a shallow covering of clean deposits over the sediments of interest.

Sediments will be sampled at either of two intervals. A shallow sample will be taken from a sediment depth of 0 to 1 foot and a deep sample will be taken from a depth of 1 to 2 feet. If sediments appear visually to be contaminated at 2 feet, sampling should extend deeper. If EO screening shows that contamination consistently exists in only the top 4 to 6 inches of sediment, the usefulness of deeper samples should be reevaluated. Deep samples that consistently show no contamination through EO screening should be reassigned to a shallower depth interval or extended horizontally to sample a wider area.

SAMPLE LOCATIONS

Samples will be collected at about 300-foot intervals along the Little Menomonee River from the site to the confluence with the Menomonee River. Cross section sampling locations will be determined, in part, by the EO concentrations and will be more or less evenly distributed along the river. Specific cross sections will be located at the locations of highest EO concentrations when possible. Since the history of the dredging piles is unknown, they will be spot sampled to see if they contain creosote. Samples will also be taken from other land features and flood plain deposit areas along the Little Menomonee River. Soil samples will be selected from a 2- to 3-foot-deep core. The selection of samples will be based upon representative appearance or a combination of HNu response and visual judgment of contamination.

The inlets to be sampled were selected on the basis of their size or contamination detected within the inlet. Samples will be taken in the Little Menomonee River before and after the inlet, as well as from the inlet itself, in locations most likely to collect sediment. Sampling may include any combination of the three locations, depending upon the characteristics of the inlet. Samples taken near the inlet will be approximately 10 feet from the inlet itself whenever possible. Samples taken in the inlet will be taken within 100 feet of the Little Menomonee River. Approximately 33 inlet samples will be collected.

REFERENCES

Envirex. Demonstration of Removal and Treatment of Contaminated River Bottom Muds--Phase II. Environmental Sciences Division, Envirex, Inc., EPA contract 68-03-0182.

SEWRPC (Southeastern Wisconsin Regional Planning Commission). A Comprehensive Plan for the Menomonee River Watershed. Volumes I and II, Planning Report No. 26. October 1986.

GLT595/054.50

2

Attachment A-1 LITTLE MENOMONEE RIVER MAPS

GLT595/057.50

•

والماسات فيكأن فأكلت ومساعدتها الدرخان موت را ، بيغان - 4

LOW REPORT ۵

¥.,

Appendix B SEDIMENT SAMPLING

٢

۱.

GLT595/057.50

9

ł

Appendix B SEDIMENT SAMPLING

INTRODUCTION

This appendix describes the sediment screening and sampling performed at the Moss-American site. Objectives, tasks, results, and observations are presented for:

Task S1--Initial Sediment Screening Task S2--Confirmatory Sediment Sampling

Sediment sampling proceeded as described in the Quality Assurance Project Plan (September 14, 1987) and the Work Plan (July 23, 1987). Field modifications to the Sampling Plan described in the QAPP are noted in the section following each task description.

INITIAL SEDIMENT SCREENING

The data collected during initial sediment screening will be used to define the volume and extent of contamination in the sediments of the Little Menomonee River adjacent to and downstream of the Moss-American site. A total of 261 sediment samples and 30 bank and flood plain samples were collected.

The Little Menomonee River was sampled in three stages from downstream to upstream. Sampling was performed by Solveig Christenson, Stuart Grubb, and Kevin Olson of CH2M HILL from May 4 to May 19. The first stage of sampling consisted of the collection of samples at 300-foot intervals for the length of the river from the confluence with the Menomonee River to the Chicago and Northwestern (C&NW) Railroad bridge from May 4 to 10, 1988 (samples SD001 to SD104). Samples were analyzed throughout the task in the onsite close support laboratory (CSL) to determine the concentration of extractable organic (EO) compounds. Cross-section sampling and inlet sampling were completed in the second stage from May 11 to 18 (samples SD105 to SD261). Flood plain and bank sampling were performed in the final stage of sampling on May 18 and 19 (samples SS1001 to SS1029). Sample locations are shown in the maps in Attachment B-1.

Representative samples were selected and sent to CH2M HILL's Montgomery laboratory for analysis of polynuclear aromatic hydrocarbons (PAHs) and phenolic compounds using capillary gas chromatography with flame ionization detection (GC/FID). This analysis is used to achieve U.S. EPA Level III data quality objectives. The CSL and GC/FID analytical methods are described in the Sampling Plan.

METHODOLOGY

Environmental Protection

Before sampling began, an oil boom was placed across the Little Menomonee River directly upstream of the confluence with the Menomonee River. During reconnaissance, floating oil frequently appeared when sediments were disturbed. The oil boom was used to catch oil that could float into the Menomonee River beyond the study area. It remained in place until sediment screening was completed. Upon completion of Task S1, the boom was removed and placed onsite for reuse during Task S2.

Sampling

Samples were initially gathered with a 2-inch-diameter, 20-inch-long corer lined with a plastic sleeve and stainless steel, bronze, or plastic sediment catcher. After the sample was collected, the plastic tube was removed from the corer, capped, labeled, and transported to the field trailer. The corer was decontaminated and refilled with another decontaminated plastic sleeve and sediment catcher.

Sediment cores were visually inspected and described in the log; samples were stored in 4-ounce jars. The plastic sleeves, caps, and sediment catchers were decontaminated by washing in a detergent solution, washing in potable water, rinsing with a methanol solution, and rinsing with distilled water.

The softer sediments were not always retained by the corer and the corer was not capable of penetrating to depths sufficient for cross-section sampling. Therefore, a 1-inch auger was substituted for the corer at cross section No. 4 and used for all subsequent sediment sampling. Sediment samples collected with the auger were described and bottled at each sample location. The auger was decontaminated between sample locations using the procedure described above.)

),

Sampling at 300-foot Intervals

Sediment samples were taken along the Little Menomonee River from downstream to upstream at approximately 300-foot intervals from the confluence with the Menomonee River to the north edge of the Moss-American site at the C&NW Railroad bridge. The intervals were adjusted for river characteristics as necessary.

Samples were taken from the portion of the river cross section where sediments were the deepest. If water depth or apparent severity of contamination made wading across the section unadvisable, samples were collected from the bank. When the quantity of sediment remaining in the corer after extraction from the riverbed was insufficient for analysis, more sediment was collected from a series of adjacent cuts until sufficient sediment was collected.

Cross Section and Inlet Sampling

Cross Section Sampling. Cross section locations were chosen from 300-foot interval locations having higher concentrations of EO compounds than neighboring intervals. The average distance between cross sections was about 1,400 feet. Cross section locations are shown on the location map in Attachment B-2.

The width of the channel was measured and water depth at the sampling locations was estimated. Samples were taken from the 1/4, 1/2, and 3/4 points across the cross section. Sediment depth was based on the depth to which the auger could penetrate. Samples were collected at 1-foot intervals to a maximum depth of about 3 feet, depending on auger penetration.

Inlet Sampling. All inlets that potentially carry residential, industrial, and roadway drainage were sampled to investigate other possible sources of contamination. Inlets were defined as flows tributary to the Little Menomonee River (culverts, outfalls, streams, and other drainageways). Ideally, all inlet samples were to be taken from outside (above) the Little Menomonee River flood plain; however, that was usually not possible.

Flood Plain and Bank Sampling

Flood plain and bank sample locations were chosen to provide a representative sampling of river banks, the flood plain, and dredging piles. Samples were collected with a shovel or post hole digger. A hole was dug to a depth of 18 to 24 inches, and a sample of the bottom material was collected from the shovel or post hole digger and put into a sample jar. The shovel or post hole digger was decontaminated between each sample.

LABORATORY SCREENING AND ANALYSIS

Sediment samples were analyzed at the CSL to determine the concentration of EO compounds. Sixty samples were selected to represent ranges of EO concentration and to provide an even distribution of samples along the Little Menomonee River for PAHs and phenolic compounds. The selection process was intentionally biased to include a greater number of samples from contaminated areas. The results of the GC/FID analysis (Attachment B-3) were used to validate the EO screening results, to provide concentrations of specific compounds found in creosote, and to provide a further basis for selection of samples for RAS and SAS analysis by CLP laboratories.

FIELD MODIFICATIONS TO THE SAMPLING PLAN

The three sampling subtasks were not performed in the sequence presented in the Sampling Plan. The cross sections were to be sampled first; then 300-foot intervals were to be sampled between cross sections. It was determined upon completion of Task FM, however, that sampling the river at 300-foot intervals from the confluence to the site would more effectively place cross sections. Therefore, the 300-foot interval sampling was performed before cross section sampling.

The decision was made not to collect HNu headspace readings from the sediment samples because initial sampling indicated no HNu headspace readings even from visually contaminated sediments. No readings above background were obtained at any time during the sediment sampling or from the sample headspace. Headspace measurements using the OVA were misleading because of methane in the samples, so further OVA headspace readings were not taken.

Only one sample was collected in each inlet, eliminating the samples to be taken immediately above and below each inlet and allowing more inlets to be sampled.

RESULTS AND OBSERVATIONS

Locations and Results

A total of 291 samples were collected. Of these, 210 were collected from the Little Menomonee River sediments, 51 from inlets to the river, and 30 from flood plain and bank areas. Twenty-two cross sections were sampled. Sample locations are shown in Attachment B-1. The distribution of EO concentrations at each cross section is shown in Attachment B-2. Attachment B-3 contains the results of the GC/FID Analyses. Results of analysis for EO compounds are tabulated in Attachment B-4. Figure B-1 shows the concentration of extractable organics and total PAHs plotted against the distance downstream in the Little Menomonee River. Results from locations with more than one sample, such as cross sections, were averaged for the graph.

)

١

Observations

The Little Menomonee River sediment contamination is best characterized by its erratic distribution along the length of the channel and within the sediments. Pockets of highly contaminated sediment appear to exist side by side with visibly clean sediments. For example, disturbing sediments during sampling may have caused a surface sheen; however, within a few feet there may have been no response from the disturbed sediments.

The data indicate that contaminated sediments are present from the site to the confluence of the Little Menomonee River at the Menomonee River. EO concentrations apparently do not decrease with distance from the site, although concentrations are higher in some areas than in others.

For most of the inlet samples, it was not possible to sample outside the Little Menomonee River flood plain, particularly when the inlet was a culvert. Therefore, the data obtained for the inlets cannot be attributed to the inlet alone. Most of the inlet samples can be expected to contain sediments deposited there by the Little Menomonee River.

Contaminated sediment may be buried below substantial amounts of clean sediment. For example, north of Bradley Road a large quantity of light brown silt was entering the river. Three inlets in particular, located 600 to 1,100 feet downstream of the site, appeared to be filled with the silt from a new development area. About 680 feet downstream of the site, a culvert had approximately 70 percent of its area clogged with the silt. Downstream cross section samples showed the same silt in layers up to 14 inches over potentially contaminated silty sand and sandy silt sediments.

The qualitative correlation between visual observations and concentrations of EO compounds was good. Generally, sediments with more than 1,000 ppm (0.1 percent) of EO compounds showed visible signs of contamination. The statistical correlation between EO compounds and total PAHs was also significant (see Figure B-2). The value of the correlation coefficient (R) for a log-log comparison of these data is 0.7. At a significance level of 0.05, the EO and total PAH concentrations are linearly dependent; higher EO concentration correspond to higher PAH concentration. Although a correlation appears to exist, the curve on Figure B-2 was not used for predicting PAH concentrations at specific points. The curve is presented for information only.

CONFIRMATORY SEDIMENT SAMPLING

Following the review of data from Task S1, confirmatory samples were collected at 16 sites (see Figure B-3) on June 16 and 17 by Solveig Christenson and John Gannon. Samples were sent to CLP laboratories for detailed analysis. A list cross-referencing the sample numbers for these samples and earlier samples is given in Table B-1.

The sediment sampling results will be used to confirm the results of the GC/FID analyses with legally defensible analytical results that will be used in the endangerment assessment. In addition, an analysis of Target Compound List substances will be done to determine whether other contaminants are present, and treatment parameters will be analyzed to support the feasibility study.

TASK DESCRIPTION

Į

Environmental Protection

Before confirmatory sediment sampling began, the oil boom was again placed across the Little Menomonee River directly upstream of its confluence with the Menomonee River. Upon completion of the task, the boom was placed in a 55gallon drum and stored onsite.

Sample Locations

Ten samples were collected from areas representative of the most contaminated soils based on GC/FID and EO results. Six background or noncontaminated samples were also collected from along the length of the Little Menomonee River (see Figure B-3).

CI P Sample	Previous Sample
Number	Location
SD301-01	SD110-01
SD302-01	SD116-01
S D303-01	SD131-01
SD304-01	SD 031-01
SD305-01	SD154-01
SD306-01	SD164-01
SD307-01	SD062-01
SD308-01	SD197-01
SD309-01	SD204- 01
SD310-01	SD 076-01
SD311-01	SD227-01
SD312-01	SD231-01
SD313-01	SD234- 01
SD 314-01	SD236-01
SD 315-01	SD244- 01
SD 316-01	SD255-01

Table B-1 SAMPLES COLLECTED FOR CLP ANALYSES

GLT779/034.50

•

),

ì

)

7

ţ

FIGURE B-2 RELATIONSHIP BETWEEN EO AND PAH CONCENTRATIONS MOSS-AMERICAN RI

-- -- -

.

FIGURE B-3 CONFIRMATORY SEDIMENT SAMPLING LOCATIONS (TASK S2) MOSS-AMERICAN RI

¥

Sample Collection

Samples for this task were taken from the same location as the corresponding EO screening samples taken previously. The sample location within the cross section was measured from the west bank and the sample depth was measured along the auger. For each sample, four 8-ounce jars, one 32-ounce jar, and two 4-ounce VOA vials were filled. Enough sediment was collected by making several adjacent cuts at the specified depth. The sediment was extruded from the auger onto a stainless steel tray and mixed. The jars were then filled using a stainless steel spoon. Implements were decontaminated before the next sample with a detergent wash and freshwater rinse followed by spray rinses of methanol and distilled water.

LABORATORY ANALYSIS

The samples were sent to CLP laboratories for detailed analysis of target compounds and analytes. Additional parameters analyzed to support the feasibility study consisted of carbon, hydrogen, sulfur, oxygen, nitrogen, moisture content, ash content, volatile content, fixed carbon, total organic carbon, water soluble chlorides, heating value, flash point, and pH.

RESULTS AND OBSERVATIONS

Analytical results are not available at this time.

Because of the dry weather during the period between sampling tasks, the Little Menomonee River stage was significantly lower during Task S2 sampling than during previous sampling. Since sample location was keyed to the location of the west bank, the change in water surface elevation may have affected the ability to locate precisely the sampling point to have been replicated from Task S1. Variations in the degree of contamination from S2 and S1 samples may occur because of difficulties in locating the sampling point.

CONCLUSIONS

Based on the observations and results obtained to date, the following conclusions have been reached regarding the sediments in the Little Menomonee River:

- Contaminated sediments are present over the entire length of the river below the Moss-American site.
- Contamination is not evenly distributed along the length of the river, across its width, or with depth.
- No significant decrease in contaminant concentrations was observed at increasing distances from the site.

• Contamination is assumed to have been deposited in the Menomonee River downstream of its confluence with the Little Menomonee River.

Oily sediment is present in varying degrees over the entire length of the Little Menomonee River. At several locations, when sediments were disturbed during sampling, iridescent or silver sheens were produced across the entire width of the river. Visual observations were verified by analytical results. EO concentrations up to approximately 1 percent (by dry weight) were measured in the sediment.

The distribution of contamination varies over the length, width, and depth of the river. Several areas of oily sediments are buried under approximately 1 foot of clean sediment between the site and Bradley Road. Samples with low EO concentrations are interspersed between higher values throughout the river. Contaminated sediments are generally present along the banks and other depositional areas. Where the channel has been scoured, the sediments consist primarily of uncontaminated sands and gravels.

Based on the analytical data, no significant decrease in the level and extent of contamination was observed with distance from the site. Two areas between the site and Bradley Road and in the vicinity of Leon Terrace have higher levels of contamination. A trend in the EO data indicated that a slight decrease in contaminant concentration may occur below Leon Terrace. It should be noted, however, that samples were collected at 300-foot intervals. If samples had been collected at more frequent intervals, these trends may or may not have been substantiated. On the basis of the extent of contamination in the Little Menomonee River, it is reasonable to expect that contamination has been deposited in the Menomonee River.

)

).

GLT779/030.50

Attachment B-1 SAMPLING LOCATIONS

۰.

١

GLT779/031.50-1

- **1**

1. .

Ĩ

3

1

MAY 4 - 19 AND JUNE 16 - 17, 1988

MOSS-AMERICAN SITE

LEGEND

()

SW007 LOCATION AND SAMPLE NUMBER NOTE: LOCATIONS ARE APPROXIMATE.

RIVER

SW002

. SW001

FIGURE C-1 SURFACE WATER SAMPLE LOCATIONS MOSS-AMERICAN RI

١

*

ŝ,

FIGURE 5 LITTLE MENOMONEE RIVER SEDIMENT SAMPLING LOCATIONS MAY 4 - 19 AND JUNE 16 - 17, 1988

Attachment B-2 RIVER CROSS SECTION EO DATA

١

٩,

ş

RIVER CROSS SECTION LOCATION MAP MOSS-AMERICAN RI

¥.

Distance from West Bank in feet

۲

•

Distance from West Bank in feet

/

)

CROSS SECTION 5 Somples SD137-139 1 0 LITTLE MENOMONEE RIVER -1 . Depth In feet -2 160 350 --3 140 -4 -5 · Extractable Organic Concentrations in ppm -6 0 2 8 10 12 14 16 4 6 Distance from West Bank in feet

> CROSS SECTION 6 Somples SD031, SD142-145

Distance from West Bank In feet

ì

۱

1

}

)

ì

CROSS SECTION 14

Distance from West Bank in feet

)

)

)

١

Distance from West Bank in feet

CROSS SECTION 16 Somples SD081, SD216-218

, , ,

Distance from West Bank in feet

٠

1

)

3

-7 - 7

Distance from West Bank in feet

٠

١.

Attachment B-3 GC/FID DATA

.

.

•

______ _____

t

ABAREVI	
U - NT @	**************************************
ritected (detect substitutione substitutione substitutione substitutione substitutione substitutione substitutione substitutione	
- Chryse - Benzott - Benzott - Benzott - Benzott - Benzott - Dibenzo - Dibenzo - Dibenzo - Arnat	
e Sil Ivorant Sil Ivorant Silvorane Silvora Fra Shomth Fra Shomth Fra Shomth	
hene hene hracene ryrene ryrene	
	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	CCCCCCCC C CCC CCC CCC C C C CCCCCCCCC

PHENOLIC COMPOUNDS ANALYZED BY GC/FID AND MINIMUM DETECTABLE CONCENTRATIONS

)

)

)

¥

Phenol	2
2-Chlorophenol	2
2-Nitrophenol	2
2,4-Dimethylphenol	2
2,4-Dichlorophenol	2
4-Chloro-3-methylphenol	2
2,4,6-Trichlorophenol	2
2,4-Dinitrophenol	5
4-Nitrophenol	5
4,6-Dinitro-2-methylphenol	5
Pentachlorophenol	5

Sample locations are the same as those listed for the PAH results. No phenolic compounds were detected.

GLT779/34-2

Attachment B-4 FIELD DATA BY SAMPLE NUMBER AND EXTRACTABLE ORGANIC CONCENTRATIONS

٠

۲

GLT779/031.50-3

1,

SAMPLE	x	Y	Z	W	S	DEPTH	EO	COMMENTS
\$0001-01	30780			•••••• 74	0 7	••••••	2800	Oil sheen during sample
SD002-01	30500	15	0.0	30	1.0	1	1700	Slight sheen on water
SD003-01	30200	5	0.5	25	2.0	1	1100	Sheen on water
\$D004-01	29900	5	0.8	20	0.5	1	2300	Sheen on water
\$D005-01	29600	-1	0.0	20	0.5	1	2700	Sheen on water
SD006-01	29300	14	1.5	18	0.8	1	730	ND sheen
SD007-01	29000	12	1.5	15	0.5	1	890	Sheen on water
SD008-01	28650	14	0.5	15	1.0	1	1300	Sheen on water
\$0010+01	28400	- 3	1.5	20	0.5	1	3800	Angen on weter
SD011-01	27750	ż	1.5	25	0.8	i	2000	Sheen on water
\$D012-01	27600	1	1.5	15	0.8	1	210	Slight sheen on water
SD013-01	27600	- 1	0.0	15	0.5	1	710	NO visible sheen
\$D014-01	27200	3	1.0	20	1.3	1	1100	Large sheen on water
SD015-01	27000	12	3.0	25	1.5	1	1000	Large oil sheen on water
SD016-01	26600	3	2.0	12	2.5	1	2000	Sheen on water
SD017-01	20300	10	1.0	17	2.3	•	3000	Slight sheen on water
SD019-01	25670	12	1.0	17	40.0	i	4200	Oil sheen on water and sample
SD020-01	25370	1	0.7	11	0.8	1	1100	No sheen
SD021-01	25270	0	0.0	25	1.5	1	3800	Sheen on water
SD022-01	24900	1	0.3	22	2.5	1	640	Slight sheen on water
\$D023-01	24610	1	1.0	16	2.0	1	720	No sheen
\$D024-01	24300	1.5	2.0	12	1.0	1	540	No sheen
SD025-01	24000	12	0.0	12	0.5	1	520	No sheen
SD026-01	23700	14	0.5	14	0.5	1	370	NO SHEER
SD028-01	22800	17	2.5	18	2.3	1	270	No sheen
SD029-01	22410	1	1.0	20	2.0	1	940	Slighy sheen on water
SD030-01	21920	1	1.0	15	0.3	1	75	Sheen on water
SD031-01	21750	16	1.5	17	2.5	1	8600	sheen on water and sample
SD031-01R	21750	16	1.5	17	0.5	1	1100	Field id RPSD001
SD032-01	21400	14.5	1.0	16	1.5	1	830	No sheen
SD033-01	21100		0.7	16	0.5	1	200	NO sheen
SD034-01	20100	-0.5	0.5	10	1.5	1	1000	NO Sheen
SD036-01	20100	-0.5	0.5	17	0.8	1	590	Sheen on water
SD037-01	19800	2	1.0	16	2.0	1	480	Sheen on water
SD038-01	19500	1.5	1.0	12	1.0	1	2700	Sheen on water and sample
SD039-01	19200	0	1.0	15	0.8	1	380	Slight sheen on water
SD040-01	18800	1	1.0	20	1.5	1	520	Sheen on water
SD041-01	18500	15	1.0	20	0.7	1	250	Slight sneen on water
SD042-01	18300	- 1	1.0	20	2.5		1400	Sheen on water and sample
SD043-01R	18000	1	1.0	20	2.5	i	2300	Field id RPSD002
SD044-01	17700	3	2.0	20	2.5	1	2000	Sheen on water and sample
\$D045-01	17450	. 3	2.5	20	2.5	1	3000	Sheen on water
SD046-01	17100	4	2.5	12	0.5	1	1700	Sheen on water and sample
\$0047-01	16800	3	2.0	12	2.5	1	4700	Heavy sheen on water & sample
\$D048-01	16500	2	1.0	15	2.5	1	2100	Sheen on water and sample
SD049+01	16200	2	1.0	13	2.0	1	450	
SD051-01	15400	2	2.5	17	1.0	1	1200	Sheen on water
SD052-01	15050	2	2.0	15	2.5	1	46	Sheen on sample
\$D053-01	14700	1	2.0	15	2.5	1	480	No sheen
SD054-01	14400	2	1.0	15	0.5	1	1500	Slight sheen on sample
SD055-01	14100	1	2.0	15	0.5	1	680	Sheen on water and sample
SD056-01	13800	8	2.5	16	0.5	1	660	Sheen on water and sample
SD057-01	13450	7	2.5	14	1.0	1	1000	Shight these on writes a second
SU035-01	13200	3	2.0	17	1.0 5 E	1	1000	aright sheet on water a sample weavy sheet water and sample
SD023-01	12880	1	3.U 3 K	•	4.7 3 K	1	200	Sheen on water
SD061-01	12300	2	2.0	12	1.0	1	830	Sheen on water and sample
\$D062-01	12000	2	2.0	10	1.5	1	10000	Heavy sheen, water and sample
SD063-01	11700	2	2.5	12	1.0	1	1100	Sheen on water and sample
\$D064-01	11400	13	2.5	18	0.7	1	840	Sheen on water and sample
SD065-01	10950	5	2.0	18	1.5	1	1300	Sheen on water and sample
SD066-01	10670	3	2.0	14	1.5	1	3900	meavy sneen, water and sample

•

•

. .

~

•

)

}.

1

SAMPLE	x	¥	Z	W	S	DEPTH	EO	COMMENTS
		••••••	• • •					
SD067-01	10500	4	2.0	15	2.0	1	670	Sheen on water
SD068-01	6800		2.0	10	2.0		1400	angen un water and samle
SD070-01	9600	•1	0.0	14	2.3	;	370	Sheen on water
SD070-01R	9600	-1	0.0	14	2 5	÷	450	Field id RPSD003
SD071-01	9300	1	1.5	15	1.0	ì	100	Slight sheen on water
SD072-01	9000	3	2.0	10	1.0	1	830	Sheen on water
SD073-01	8700	6	3.0	8	1.0	1	370	Slight sheen on water
SD074-01	8400	15	0.0	15	0.8	1	330	Slight sheen on water
SD075-01	\$100	4	2.0	15	2.5	1	1200	Sheen on water and sample
SD076-01	7800	5	2.0	18	2.0	1	1400	Sheen on water and sample
SD077-01	7500	6	2.0	10	2.0	1	590	Sheen on sample and water
SD078-01	7200	2	2.0	10	0.7	1	410	No sheen, OVA methane perhaps
SD079-01	6900	2	1.5	12	0.7	1	\$50	No sheen
SD080-01	6600	2	1.5	11	0.7	1	350	Sheen on water
SD081-01	6300	1	1.5	10	0.3	1	1000	Sheen on water and sample
SD082-01	6000		1.0	14	1.5	1	330	Slight sheen on water
SD084-01	5700	1	2.0	12	2.0	1	200	Sheen on water and sample
SD085-01	5100	0.5	1.0	14	2.3		2500	Sheen on water and samle
SD086-01	4800	0.5	2.0	10	2.5	1	1300	Sheen on water and sample
SD087-01	4500	1	2.0	12	1.0	1	4500	Sheen on water and sample
\$D087-01R	4500	1	2.0	12	1.0	1	3500	Field id RPSD004
SD088-01	4200	1	1.0	10	3.5	2	6100	Heavy sheen, water and sample
SD089-01	3900	2	3.0	10	3.0	1	3000	very oily sample, water sheen
SD090-01	3600	2	1.0	15	2.5	1	330	No sheen, soil structure
SD091-01	3300	2	1.0	0	2.5	1	13000	No sheen, soil structure
SD092-01	3070	5	0.5	22	0.5	1	390	No sheen, soil structure
SD093-01	2770	6	0.5	25	1.5	1	2000	No sheen, soil structure
SD094-01	2550	1	2.0	15	0.5	1	560	No sheen, soil structure
SD095-01	2310	2	0.5	12	1.0	1	570	Slight sheen on water
SD096-01	2100	0.5	1.0	12	0.5	1	1200	Siight sheen on water
SD097-01	1600	0	0.3	13	0.3	1	73	Slight sheen on water
50098-01	1400		0.5	20	0.7		290	Singer on water
SD100-01	1030	3	0.5	20	1.5	1	120	Sheen on water
SD100-018	900	3	0.5	20	1.5	1	250	Field id RPSD005
\$0101-01	600	,	0.5	20	2.0	1	270	Sheen on water
SD102-01	300	2	0.5	15	2.0	1	460	Sheen on waler
SD103-01	-70	1	1.0	17	1.0	1	470	No sheen
SD104-01	- 300	2	2.0	35	2.0	1	820	No sheen
SD105-01	30650	7	0.7	30	1.0	1	150	Section 1, no sheen
SD106-01	30650	15	0.7	30	1.7	2	420	Section 1, no sheen
SD107-01	30650	15	0.7	30	1.7	1	560	Section 1, no sheen
SD108-01	30650	23	0.7	30	2.0	2	1900	Section 1, no sheen
SD109-01	30650	23	0.7	30	2.0	1	1100	Section 1, no sheen
SD110-01	30650	0	0.0	30	1.2	1	750	Section 1, no sheen
SD111-01	29530	20	0.3	3	0.3	1	530	East intel BG, some sneen
30112-01	29160	20	0.3	3	0.3	1	230	EAST INTEL BE, SHEEN ON WALEF
SD113-01	29170	- 15	0.0	0	0.7	1	1000	West inicial BF, no sneens
B0114-01	20370	- 20	V.1		4.7	•	3/0	HEAL INTEL DU, STREEN UN WALCH East inial an no sheen
SD115-01	28400	-0.5	0.7	12 6	1.0		570	Section 2 theen on water
SD117-01	38400	-0.3	0.0	15.5	0.5		250	Section 2 no sheen
SD118-01	28400	4.5	0.8	15	0.5	2	230	Section 2. no sheen
SD119-01	28400	10.5	1.5	15.5	0.1	1	62	Section 2, no sheen
SD120-01	28060	-30	0.1	2	0.2	1	650	west inlet AZ, sheen on water
\$D121-01	27240	-40	0.5	4	0.3	1	390	west inlet AY, sheen on water
SD122-01	26630	20	0.1	1	0.1	1	380	East inlet AX, no sheen
SD123-01	25670	4	0.7	22	1.7	1	1000	Section 3, sheen on water
SD124-01	25670	4	0.7	22	1.7	2	640	Section 3, sheen on water
SD125-01	25670	13	0.7	22	1.7	1	1100	Section 3, sheen on water
SD126-01	25670	13	0.7	22	1.7	2	420	Section 3, sheen on water
SD127-01	25670	18	0.7	22	1.7	1	1600	Section 3, sheen on water
SD128-01	25670	18	0.7	22	1.7	2	230	Section 3, sheen on water
SD129-01	25050	- 10	0.5	9	0.3	1	280	west infet AV, sheen on water
SD130-01	25050	20	2.0	5	0.3	1	2800	East Injet AW, Sheen on water
SD131-01	24900	9	0.5	37	Z.5	1	730	SECTION 4, NO SNEEN

•

SAMPLE	x	Y	Z	W	S	DEPTH	EO	COMMENTS
SD132-01	34900	 6		•••••	••••••	3	410	Section 4 no chean
SD133-01	24900	18	2.0	37	1.2	1	590	Section 4 no sheen
SD134-01	24900	18	2.0	37	1.2	2	1000	section 4, no sheen
SD135-01	24900	28	0.5	37	2.2	1	590	Section 4, no sheen
SD136-01	24900	28	0.5	37	2.2	2	660	Section 4, no sheen
SD137-01	23100	4	2.5	16	0.5	0	160	Section 5, some sheen
SD138-01	23100		2.5	16	0.7	1	140	Section 5, some sheen
SD139-01	23100	12	2.5	16	0.5	0	350	Section 5, some sneen
SD140-01	22550		0.1	2	0.4	1	20000	West inlet AS, no sneen
SD142-01	21730	- 60	1.5	22	0.4	0	490	Section 6 no sheen
SD143-01	21745	10.5	2.0	22	1.0	ĩ	510	Section 6, no sheen
SD144-01	21745	16	2.0	22	1.5	Ó	1000	Section 6, oily
SD145-01	21745	16	2.0	22	1.5	1	720	Section 6, oily
SD146-01	21350	-40	0.2	1	0.8	1	380	west inlet AP, no sheen
SD147-01	21150	- 30	0.0	4	0.3	1	16	west inlet AO, no sheen
SD148-01	20600	-120	0.5	7	0.7	1	630	west inlet AM, no sheen
SD149-01	20140	-25	0.2	3	0.3	1	80	West inlet AL, no sheen
SD151-01	19500	- / 0	2 0	25	1.3	,	470	Section 7 some sheen
SD152-01	19500	ó	2.0	25	1.2	ĩ	1100	Section 7, some sheen
SD153-01	19500	15	2.0	25	0.5	ò	490	Section 7, very oily
SD154-01	19500	20	1.5	25	0.3	Ō	250	Section 7, no sheen
SD155-01	18115	-70	0.0	5	0.5	1	530	west inlet AI, no sheen
SD156-01	17400	4	1.5	19	2.0	1	940	Section 8, some oil
SD157-01	17400	4	1.5	19	2.0	2	1800	Section 8, very oily
SD158-01	17400	9	1.0	19	1.5	0	4000	Section 8, some oil
SD159-01	17400	9	1.0	19	1.5	1	130	Section 8, some oil
SD160-01	17400	- 100	2.0	19	0.7		120	Section 8, no sheen
SD167-01	17210	- 200	0.2	2	0.3	÷	1200	west inlet AGA, no sheen
SD163-01	17995	- 40	0.1	1	0.4	1	370	west inlet AC, no sheen
SD164-01	16800	5	1.0	18	1.0	1	6400	Section 9, oily
SD165-01	16800	5	1.0	18	2.0	2	4200	Section 9, oily
SD166-01	16800	9	1.8	18	1.5	1	2600	Section 9, no sheen
SD167-01	16800	9	1.8	18	1.5	2	2500	Section 9, some oil
SD168-01	16800	14	2.0	16	1.0	1	1800	Section 9, no sheen
SD169-01	16630	30	0.2	1.5	0.3	1	290	East inlet AF, sneen on water
\$0171-01	14560	- 30	0.3	10	0.3	, ,	590	west inlet AA the sheen
SD172-01	14400	- 30	2.0	18	2.0	1	780	Section 10, no sheen
SD173-01	14400	6	2.0	18	2.0	2	180	Section 10, no sheen
SD174-01	14400	9	2.3	18	2.5	1	2400	Section 10, no sheen
SD175-01	14400	9	2.3	18	2.5	2	540	Section 10, some sheen
SD176-01	14400	14	2.0	18	1.0	1	790	Section 10, no sheen
SD177-01	13200	-45	0.0	3	0.3	1	140	west inley Y, no sheen
SD178-01	12920	3	2.5	12	0.8	1	500	Section 11, very bily
SD179-01	12920	2	2.0	12	1.5	1	5700	Section 11, some sneen
SD181-01	12920		2.5	12	1.5	2	1900	Section 11, oily
SD182-01	12000	3	1.5	11	1.0	ō	1800	Section 12, oily
SD182-01R	12000	3	1.5	11	1.0	0	280	Field id RPSD006
SD183-01	12000	3	1.5	11	1.0	1	850	Section 12, oily
SD184-01	12000	5	2.0	11	0.8	0	230	Section 12, no sheen
\$D185-01	12000	5	2.0	11	0.8	1	850	Section 12, no sheen
SD186-01	12000	9	2.0	11	1.0	0	200	Section 12, no sheen
SD187-01	12000		2.0	11	1.0	1	410	Section 12, no sneen
SD189-01	11870	- 30 AQ	0.4	•4 5	04	1	1200	East inlet WA. no sheen
SD190-01	11705	- 30	0.3	1	0.5	1	560	west inlet w, no sheen
SD191-01	11220	40	0.0	4	0.4	1	420	East inlet V, sheen on water
SD192-01	11000	5	0.3	3	0.2	0	380	East inlet UB, no sheen
SD193-01	10670	3	1.0	17	0.7	1	1300	Section 13, oily
SD194-01	10670	9	2.0	17	2.2	0	5000	Section 13, very oily
SD195-01	10670	9	2.0	17	2.2	1	6100	Section 13, very oily
SD196-01	10670	9	2.0	17	2.2	2	1900	Section 13, Very Oily
SD197-01	10670	13	0.7	17	0.7	1	14000	Section 13, VETY OILY Mest inlet 1, no cheen
30140-01	10010	- 100	V.3	4	U. D	•	340	WERE INTEL D, HU BREEN

۱

۱.

٦,

ر _

٩,

)

.

),

.

SAMPLE	x	Y	z	W	S	DEPTH	EO	COMMENTS
•••••	•••••		•••••	• • • • • • •		******		
SD199-01	10430	5	0.0	3	0.1	1	1000	west inlet T, no sheen
SD200-01	10180	-40	0.0	3	0.5	1	380	west inlet S, no sheen
SD201-01	9900	3	1.5	15	3.0	1	4800	Section 14, some oil
SD202-01	9900	3	1.5	15	3.0	2	4900	Section 14, only
SD203-01	9900	3	1.5	15	3.0	3	3900	Section 14, Dily
SD204-01	9900		2.0	15	0.5	0	11000	Section 14, Some Sheen
SD205-01	9900	12	2.0	15	0.7	1	470	Section 14, 0119 East inist O sheen on Walst
SD200-01	9430	- 10	0.2		0.3		1000	mast inlet P no theen
SD207-01	8880	100	1.0	14	0.2	1	490	East intel O sheen on water
SD208-01R	8680	100	1.0	14	0.7	i	920	Field id RPSD007
SD209-01	7800	4	1.0	16.5	0.8	1	760	Section 15, some oil
SD210-01	7800		1.0	16.5	0.7	1	790	section 15, no sheen
\$D211-01	7800	13	1.0	16.5	0.5	0	790	Section 15, no sheen
SD212-01	7660	-45	0.0	4	0.3	0	120	west inlet N, no sheen
SD213-01	7020	-70	0.3	3	0.3	0	140	west inlet M, no sheen
SD214-01	6380	20	0.0	1.5	0.2	0	5900	East inlet LA, no sheen
SD215-01	6320	- 30	0.7	3	0.3	0	650	west inlet L, some sheen
SD216-01	6300	3	1.0	12	0.3	0	240	Section 16, no sheen
SD217-01	6300	6	1.0	12	0.3	0	680	Section 16, no sheen
SD218-01	6300	9	1.0	12	0.3	0	740	Section 16, oily below surface
SD219-01	5960	-4	2.0	7	0.5	0	150	west inlet J, no sheen
SD220-01	5260	35	0.0	3	0.8	1	100	East injet i, no sneen
SD221-01	5160	4	0.0	4	0.7	1	47	East curvert H. no sneen
SD221-01R	5160	4	0.0	4	0.7	1	220	Field Id RPSDUB
SD222-01	5100	2	0.0	20	3.0	1	200	Section 17, no sheen
SD223-01	5100	3	0.0	20	3.0	1	440	Section 17 no sheen
SD225-01	5100	11	10	20	3.0	1	230	Section 17, no sheen
SD226-01	5100	11	1.0	20	3.2	2	4900	Section 17, very very oily
SD227-01	\$100	11	1.0	20	3.2	3	6300	Section 17, oily
SD228-01	5100	15	1.8	20	1.8	1	2000	Section 17, no sheen
\$D229-01	5100	15	1.8	20	1.8	2	4700	Section 17, some oil
SD229-01R	5100	15	1.8	20	1.8	2	2000	Field id RPSD009
SD230-01	4200	3	1.0	12	2.0	1	1100	Section 18, oily underneath
SD231-01	4200	3	1.0	12	2.0	2	16000	Section 18, very bily
SD232-01	4200	6	2.5	12	2.0	1	2600	Section 18, oily underneath
SD233-01	4200	6	2.5	12	2.0	2	7900	Section 18, very very bily
SD234-01	4200	9	2.0	12	1.0	1	11000	Section 18, oily underneath
SD235-01	3300	5	1.0	20	2.5	1	4100	Section 19, oily underneath
SD236-01	3300	5	1.0	20	2.5	2	20000	Section 19, very oily
SD237-01	3300	10	1.5	20	2.0	1	940	Section 19, no sneen
SD238-01	3300	10	1.5	20	2.0	2	5800	Section 19. Very Olly
SD239-01	3300	15	1.3	20	1.0		1000	Section 19, Very Cily
SD239+01K	3300	13	1.3	20	1.0		2000	Ent inlet C so theen
SD240-01	3110	40	0.2	3	0.3		150	East milet 6, no sheen
50241-01	2480	70	0.0	4	2.5	1	100	East culver! E no sheen
SD242-01	2250	- 20	0 1	2	0.5	ò	29	west inlet D no sheen
\$0244-01	2100	3	2.0	13	1.0	1	2600	Section 20. oily
SD245-01	2100	6	2.5	13	3.0	1	680	Section 20, no sheen
SD246-01	2100	6	2.5	13	3.0	2	2100	Section 20, oily
SD247-01	2100	6	2.5	13	3.0	3	290	Section 20, oil sheen
SD248-01	2100	9	2.0	13	1.0	1	2300	Section 20, oil underneath
SD248-01R	2100	9	2.0	13	1.0	1	940	Field id RPSD011
SD249-01	1780	- 25	0.1	2	0.3	0	400	west inlet C, no sheen
SD250-01	1500	20	0.0	2	0.4	0	220	East inlet BAA, no sheen
SD251-01	600	5	1.0	21	0.8	1	890	Section 21, no sheen
\$D252-01	600	11	1.0	21	3.0	1	760	Section 21, very oily
SD253-01	600	11	1.0	21	3.0	2	1000	Section 21, very oily
SD254-01	600	11	1.0	21	3.0	3	080	Section 21, some oil
SD255-01	600	16	0.8	21	0.8	1	\$30	Section 21, Ofly
SD256-01	50	- 30	0.7	4	0.5	1	270	WEST INTEL A, NO Sheen
SD257-01	50	- 150	0.5	4	0.3	0	620	WEST INIET A, NO Sheen
SD258-01	-70	7	1.5	26	0.5	<i>a</i>	510	Section 22, no sneen
SD259-01	-70	12	1.5	26	0.8	1	740	BECTION 22, NO SHEEN
50259-01R	-70	12	1.5	20	U.0	,	1000	Section 33 no sheep
30/200101	• / 0	17	1.0	40		v		

SAMPLE	X	Y	Z	W	S	DEPTH	EO	COMMENTS
SD261-01	-70	19	1.0	26	1.5	1	840	Section 22, no sheen
\$\$1001-01	30130	- 20	••		••	2	640	Floodplain
\$\$1002-01	28500	- 15	••	••	••	2	190	Floodplain
\$\$1003-01	25580	15	••		••	2	180	Grassy slope
\$\$1004-01	23550	- 30	••	••	••	2	20	Circular mound in woods
\$\$1005-01	22370	15	••	••	••	2	20	Tall dredging piles
\$\$1005-01	22370	15		••	••	2	110	Field id RPSS1001
\$\$1006-01	21030	- 20	••	••	••	2	170	Dredging piles
\$\$1007-01	16950	- 10	••	••	••	2	3600	wide floodplain, oily
\$\$1008-01	16190	20	••	••	••	2	120	small dredging pites
\$\$1009-01	14630	-20	••	••		1	90	small dredging piles
\$\$1010-01	14470	- 100	••	••	••	2	60	Large mounds of dirt
\$\$1011-01	13180	- 15		••	• •	2	8400	Floodplain, oily
\$\$1012-01	12580	20	••		••	1	450	Floodplain
\$\$1013-01	10400	- 50	••		••	2	50	in ponded area
\$\$1014-01	8700	20	••			2	30	Dredging piles
\$\$1015-01	7010	30	••	••	• •	0	\$0	Dredging piles, many rocks
\$\$1016-01	5840	- 10			••	2	6500	Floodplain
SS1017-01	3430	40	••	••		2	130	in piles of dirt
\$\$1017A-0	1910	- 40		••		2	0	Dredging pile, C1 task sample
SS1018-01	1670	- 40	••	••	••	1	0	Dredging pile, C1 task sample
\$\$1019-01	1500	- 40	••	••	••	1	450	G1 task sample
SS1020-01	1295	- 40	••	••	••	2	10	G1 task sample
\$\$1021-01	1105	- 40	••	••	••	2	790	G1 task sample
SS1022-01	1095	- 45	••	••	••	2	300	Dirt mound, C1 task sample
\$\$1023-01	915	- 50	••			2	720	Dirt pile, C1 Lask sample
\$\$1023-01	905	- 50	••		••	2	890	Replicale, C1 task sample
\$\$1024-01	700	- 40	••		••	1	20	Grassy area, C1 task sample
\$\$1025-01	455	- 40	••		••	2	2400	G1 task sample
\$\$1026-01	700	40	••	••	••	2	0	Dredging pile, C1 task sample
\$\$1027-01	925	40	• •			1	0	High organics, C1 task sample
\$\$1028-01	1240	20		••	••	2	30	C1 task sample
\$\$1029-01	1570	40	••	••	••	1	20	G1 task sample
\$51029-01	1570	40	••	••		1	0	Replicate, C1 task sample

NOTES: SAMPLE + SD, SEDIMENT SAMPLES, OR SS, BANK OR FLOODPLAIN SAMPLES. R, FIELD REPLICATE X + DISTANCE DOWNSTREAM OF LITTLE MENOMINEE RIVER ZERO POINT, IN FEET

X = O AT CENTERLINE OF C & NW RAILROAD NORTH OF MOSS AMERICAN SITE.

Y = DISTANCE FROM WEST BANK, IN FEET.

FOR INLETS, DISTANCE FROM LITTLE MENOMINEE RIVER EITHER EAST(+) OR WEST(+)

•

١

Z . DEPTH OF WATER, IN FEET

٩,

W . WIDTH OF RIVER OR INLETS, IN FEET

- S . TOTAL SEDIMENT DEPTH, IN FEET
- DEPTH . DEPTH INTERVAL FROM WHICH SAMPLE WAS TAKEN.
- ED . EXTRACTABLE ORGANICS IN SAMPLE.

Appendix C SURFACE WATER SAMPLING

۱

1

Appendix C SURFACE WATER SAMPLING

INTRODUCTION

This appendix describes the surface water sampling performed in the Little Menomonee River (Task FW) as part of the Moss-American Remedial Investigation (RI). The data collected will be used to assess the nature and extent of surface water contamination and to evaluate the potential for endangerment of public health and the environment. These analyses and an examination of contaminant loading to the Little Menomonee River from surface water routes or groundwater recharge will be presented in the RI report. Surface water sampling proceeded as described in the Quality Assurance Project Plan (September 14, 1987) and the Work Plan (July 23, 1987). Changes to the Site Sampling Plan are noted after the task description.

SURFACE WATER SAMPLING COLLECTION

Eight surface water samples were taken on the Little Menomonee River. Sampling was performed by Solveig Christenson and Gerald Bills of CH2M HILL on May 2, 1988. At each sampling location, seven 1-liter polyethylene bottles, two 1/2-gallon amber glass bottles, and two 40-milliliter VOA vials were filled. Each was labeled with the sample number and stored in a cooler. Two sets of bottles were filled at SW003-01 for matrix spike analysis, a field replicate was taken at SW005-01, and a field blank was prepared using distilled water.

Sample bottles were filled directly from the Little Menomonee River and the drainage ditches. Samples were taken at the approximate midpoint of the river or ditches at mid-depth. Water temperature and conductivity were measured in the field with a conductivity meter (Table C-1). Filtering and sample preservation were performed at the site trailer. Samples were labeled and shipped the same day to designated EPA Contract Laboratory Program (CLP) laboratories.

Sample locations (Figures C-1 and C-2) were chosen as outlined in the Sampling Plan. Distances were measured downstream from the Chicago and Northwestern (C&NW) Railroad Bridge that crosses the Little Menomonee River at the northern edge of the site.

- SW001 was taken about 40 feet upstream of the confluence of the Little Menomonee River with the Menomonee River (30,800 feet) to determine the quality of the water leaving the Little Menomonee River.
- SW002 and SW003 were collected to represent general water quality conditions in the Little Menomonee River downstream of the site and upstream of the confluence with the Menomonee

Table C-1 FIELD MEASUREMENTS OF SURFACE WATER SAMPLES

)

)

).

١

Sample Number	Conductivity (µmhos)	Temperature (°C)
SW001	780	14.0
SW002	780	14.5
SW003	700	15.0
SW004	730	17.0
SW005	720	17.0
SW006	710	17.5
SW007	930	14.0
SW008	NR	NR

NR--No reading taken; inlet too shallow.

GLT779/032.50

ъ

River. They were collected about 750 feet south of Silver Spring Drive (25,720 feet) and 250 feet north of West Calumet Road (8,780 feet).

- SW004 was taken to evaluate water quality where the Little Menomonee River exited the Moss-American site (2,100 feet).
- SW005 was taken where the Little Menomonee River enters the site (40 feet), just north of an unnamed drainage ditch.
- SW006 was taken upstream of the site (350 feet) about 100 feet north Brown Deer Road as a background sample.
- SW007 was taken in the drainage ditch that flows from the northern boundary of the site to the Little Menomonee River. It was collected about 60 feet from the Little Menomonee River (50 feet) to evaluate the quality of water flowing to the northern boundary of the site.
- SW008 was taken at a drainage ditch that drains a wet area on the south end of the site into the Little Menomonee River. It was taken about 40 feet from the river (1,800 feet) to determine the quality of the water from the ditch.

FIELD MODIFICATIONS TO THE SAMPLING PLAN

Samples SW008 and SW005 were collected from locations different from those presented in the Sampling Plan. The planned location for SW008 was dry, so the sample was collected in a ditch that drains a wet area on the south side of the site. Sample SW005 was taken upstream of a drainage ditch instead of downstream to provide a water quality sample where the river entered the site.

According to the Sampling Plan, surface water samples were to have been collected using a stainless steel laboratory beaker. Instead, sample bottles were filled directly from the river. The pH of the water not measured in the field, but was measured as part of the CLP laboratory's analysis.

OBSERVATIONS

No visible evidence of surface water contamination was noted during the sampling effort, except that oil sheens were produced in several areas when sediments were disturbed during the collection process.

Later in the summer, however, a continuous streamer of oil was observed on the surface of the Little Menomonee River adjacent to the Moss-American site where the outfall of the settling ponds had previously existed. The discharge was most notable during the low flow condition that resulted from the summer drought. The discharge was not noted during the original surface water sampling or during a site visit on October 18, 1988. At both times flow in the river appeared to be near normal, based on observations of the banks and channel width.

)

1

)

CONCLUSIONS

Oil from the site is being discharged to the river and transported downstream. The discharge is visible during low flow conditions. During normal flow conditions, the discharge is either not noticeable (possibly because of dilution) or it does not occur. This conclusion is based upon observations during the field investigation. A final conclusion will, of course, include the analytical results from the samples and will be reported in the Remedial Investigation reports.

GLT779/029.50

FIGURE C-2 SURFACE WATER SAMPLE LOCATIONS MOSS AMERICAN N

Appendix D MAPPING AND SURVEYING

1

•

GLT595/057.50

Appendix D MAPPING AND SURVEYING

INTRODUCTION

This appendix describes the field work and related investigation associated with mapping and surveying for the remedial investigation of the Moss-American Superfund site. It also describes the methods and field procedures that were employed and recommendations made for the next phase of the investigation, initial soil screening. Appendix A describes the mapping and surveying along the Little Menomonee River from the southern boundary of the site to its confluence with the Menomonee River.

OBJECTIVES

The objectives of the surveying and mapping task (Task FM) were to inspect existing conditions at the site and to establish sample locations in preparation for the initial soil sampling program.

METHODOLOGY

SITE RECONNAISSANCE

٩.

The site was inspected by Don Johnson, Kevin Olson, and Solveig Christenson of CH2M HILL on November 19, 1987. The purpose of the inspection was to gain familiarity with the site and develop a strategy for completing Task FM.

Recent aerial photographs were compared to existing conditions to identify and correlate landforms and other surface features. Reference points found both in the field and on the photographs were identified for subsequent use in laying out a grid for field mapping. The general locations of potential sources of contaminants and other features that existed before the creosoting facility was closed were established in the field. Visible evidence of contamination at these and other locations was noted. The presence and general location of dredgings along the river were noted and an attempt was made to identify the general location of the dredgings landfill in the northeast corner of the site.

SITE SURVEY AND MAPPING

Onsite field work was conducted from November 20 to 24, 1987, by Don Johnson, Kevin Olson and Solveig Christenson, and on December 10 by Don Johnson and Solveig Christenson.

A rectangular grid (200 by 100 feet) was established and existing surface features were observed and mapped. Surface soils were evaluated at intersecting grid lines by digging test holes approximately 2 feet deep with a hand shovel (Figure D-1). The freshly disturbed soil was screened for organic vapor using an HNu photoionization detector. The type of soil or fill material was then described and visually evaluated for evidence of contamination.

The reference line for the grid west of the Little Menomonee River is a northsouth fence that is the eastern boundary of an automobile storage lot on the site. Starting at the northeast corner of the fence, 200-foot intervals were marked in a southerly direction along the fence line. Transects perpendicular to the fence line (roughly east-west) were flagged at 100-foot intervals both east and west of the fence line. The grid included the open area between the paved portion of the automobile storage area on the west and either the Little Menomonee River or a wooded area on the east. The area includes potentially contaminated areas previously used for processing and storage of lumber treated with creosote. Test holes were dug along extensions of the grid within the wooded areas to evaluate dredging piles along the river.

Two areas east of the Little Menomonee River were evaluated. Test holes were dug in a small open area immediately southeast of the railroad bridges crossing the river, which may have contained standing liquid according to previous interpretations of aerial photographs. The other area was the field in the northeast corner of the site. Dredgings from the settling ponds and river are reportedly buried in a landfill within the field. The reference point for the grid east of the river is the intersection of two one-lane dirt roads in the northwest corner of the field. Intervals of 100 feet were flagged along three north-south transects, starting at 100, 300, and 500 feet east of the reference point.

COMPARISON OF CURRENT AND HISTORICAL CONDITIONS

Information obtained during the site survey, recent topographic maps, and aerial photographs of the site were compared to older maps and aerial photographs to identify changes to the site. In particular, changes that would affect the sampling strategy were identified, such as the addition of fill or pavement. Cross sections were constructed of the landfill area using current and historical maps to delineate potential areas of deposition or fill and to identify the general location of the landfill. Cross sections of the settling ponds and the automobile storage area were constructed to estimate the depth and lateral extent of the fill covering those areas.

)

DATA LIMITATIONS

Organic vapor concentrations in the disturbed soil measured with the HNu photoionization detector were erratic and unreliable, presumably because of high humidity and cold temperatures. HNu readings ranging from background to as high as 190 ppm were recorded; however, it was also noted that the standby meter reading increased along with the normal meter reading, indicating considerable drift in background levels during sample measurement. In addition, the response time for these measurements was on the order of 1 to 2 minutes. During measurement at test holes in which visible evidence of contamination was present, the response time was less than 5 seconds. Remeasurement at several test holes resulted in significant variation in the meter readings. Therefore, the HNu readings are suspect and will not be used for analytical purposes.

Crushed limestone fill prevented digging test holes to the desired depth in several areas (see Figure D-2). If the limestone fill was not laterally extensive, such as at the abandoned railroad bed, then the test hole was offset to the edge of the fill. In laterally extensive limestone fill areas, an attempt was made to dig through the bed to determine its thickness and observe the underlying soil for evidence of contamination. This was particularly important for one large gravelly area that, according to previous interpretations, was used as a sludge disposal area. In all cases, however, it was not possible to penetrate the gravel with a shovel. Test holes in those areas ranged from approximately 6 inches to 1 foot.

RESULTS

The results of the site and soil survey are presented in Figure D-2. Figure D-3 is a map of the Moss-American facility as it appeared in 1962. The delineations shown on Figure D-3 divide the site according to the different land uses occurring during site operation. Most of the changes to the site occurred between 1976 and 1978 after Moss-American ceased the creosoting operations. All buildings, storage tanks, and process vessels were demolished and contaminated residue was shipped offsite. The surface of the process area was reportedly backfilled and leveled. The western part of the site was graded with new fill and paved sometime after March 1980, when Kerr-McGee sold this portion of the site to the Chicago and North Western (C&NW) Railroad Company.

PROCESSING AREA, DRIP TRACKS, AND UNTREATED STORAGE AREA

The processing area, drip tracks, and untreated storage area are roughly coincident with the portion of the site currently owned by the C&NW railroad and used for automobile storage. The locations of three cross sections in those areas are shown in Figure D-4. Figure D-5 illustrates the extent of the fill material in those areas. The previous topography is superimposed on the present topography to show the minimum depth of fill and the location of borrow (cut) areas.

Cross section A-A' (Figure D-5) shows a small cut and fill area, presumably for leveling the area currently used for parking rail cars. In addition, a drainage ditch that previously paralleled the tracks on the northern edge of the site has been filled with at least 4 feet of material.

At cross section B-B', it appears that a wedge of fill ranges in thickness from 2 feet on the south side to approximately 8 feet on the north. At least 3 or 4 feet of material covers what used to be the foundation of a building. However, according to documents in EPA files, buildings demolished during closure were excavated to a depth of 18 inches, backfilled with clean fill and leveled. Inasmuch as episodes of cut and fill occurring between 1962 and 1987 may not be shown in the cross sections, it is possible that more than 5 feet of fill (18 inches from site closure and 3 to 4 feet from redevelopment) covers the old building along cross section B-B'. At the northern end of the cross section,
the old drainage on the northern edge of the site is covered with approximately 7 feet of fill.

Cross section C-C' shows little if any change in topography along the southern half of the area. The existing land surface in the vicinity of what was previously a building and storage tank along C-C' is fairly close to the elevation of the land surface in 1962. However, according to Kerr-McGee documents in EPA files approximately 18 inches of backfill may exist there. Part of one building foundation was observed along the paved road near the eastern part of the processing area. Therefore, the fill added near the foundation during and after site closure appears to be minimal.

During the site survey an oily sheen was observed on ponded surfaces in the area previously used for storing untreated railroad ties. The oil appeared to emanate from the fill material below the asphalt surface. It was not possible to determine if the oil was a remnant of past creosoting activity or the result of current activity at the site.

Three patches of black, dried, tarry deposits were noted in the eastern part of the processing area. The area is littered with railroad ties that appear to be remnants of abandoned railroad beds.

TREATED STORAGE AREA

No significant changes are evident in the treated storage area. The surface materials consist of either cinder fill mixed with varying amounts of silt, sand, and wood chips, or an organic rich silty sandy material. The variability in the silty sandy material indicates that it is probably fill material or reworked soil. Remnants of abandoned railroad beds are present throughout the area.

The settling ponds that previously drained this area (see Figure D-3) were reportedly dredged and backfilled with clean fill in 1971. Figure D-6 shows a cross section through the ponds (from 1962) superimposed on the existing topography. The thickness of fill in that area is shown as 2 to 6 feet in Figure D-6, but the actual depth of fill includes the depth to which the ponds were dredged before backfilling, which is not known.

A clay wall 75 feet long and 12 feet deep was reportedly constructed between the settling ponds and Little Menomonee River in 1971. Its exact location was not determined during the field investigation.

SLUDGE DISPOSAL AREA

The sludge disposal area consists of coarse limestone or dolomite gravel. No evidence of contamination was observed; however, it was not possible to dig to the base of the gravel to evaluate the interface between the gravel and underlying soil.

FIGURE D-3 AREAS OF POTENTIAL CONCERN NOBS-AMERICAN FI

FIGURE D-4 CROSS SECTION LOCATIONS MOSS-AMERICAN R

FIGURE D-6 CROSS SECTION THROUGH SETTLING PONDS MOSS-AMERICAN RI

SOLID WASTE PILES

A mound of rubble was observed in the area of the solid waste piles. The mound consisted of concrete and asphalt slabs, rocks, bricks, and dirt. No other evidence of solid waste disposal was observed near the areas delineated as solid waste piles, but trash disposal areas were observed in low-lying wooded areas along the river. Trash consisting of old bottles, cans, and automobile parts appeared to have been dumped on the surface. No signs of industrial or hazardous waste were observed in the trash disposal areas. One area, interpreted from an aerial photograph as a solid waste pile, was an overgrown drainage ditch.

DREDGINGS PILES

Piles of dredgings were observed along both banks of the river. River dredging was performed at least twice in this area. Although not documented, it appears from observing old river channels meandering through the woods onsite and from the straightness of the existing river channel that the channel was dredged and straightened before 1950, the date of the earliest aerial photograph. In 1971, Moss-American dredged parts of the river to remove creosote deposits. According to Kerr-McGee's "Notification of Hazardous Waste Site" (June 4, 1985), 6 inches of creosote contaminated dredgings, 50 feet wide and 1,700 feet long, are deposited on the south bank of the river. During the field investigation it was not possible to distinguish the source or age of the dredging piles.

STANDING LIQUID AREA

The standing liquid area was identified in an aerial photograph taken in 1969. Dredging piles along the river have created a dike that traps water and possibly other fluids in the area behind the dredgings. The aerial photograph showed a new road connecting the sludge disposal area and the standing liquid area that may have been used to transport liquids to the standing liquid area. During the field investigation, however, it was noted that the road connects two manholes on a sewer in the Metropolitan Interceptor Sewer System.

DREDGINGS LANDFILL

Kerr-McGee's "Notification of Hazardous Waste Site" describes a landfill in the northeast corner of the site that was created around 1971 to dispose of creosote contaminated soil (K001) generated by the closure of the impoundment area. Land-fill construction included four trenches measuring 8 feet wide, 8 feet deep and 100 feet long each. Approximately 8,100 cubic feet of residue was mixed with clean clay soil in a ratio of approximately 2:1 clean clay soil to residue. The trenches were filled to a depth of approximately 6 feet and then covered with a 2-foot clean clay soil cap.

The "impoundment area" is a series of settling ponds west of the river. Other reports have suggested that river dredgings may also be landfilled. The exact locations of the trenches and trench arrangement were not given. During the site survey black, dried, tarry deposits were observed on the land surface along the 2-track road on the south side of the field (see Figure D-2). Two deposits were observed. The combined surface dimensions of the deposits (including a middle area with no visual evidence of contamination) are approximately 200 by 50 feet. Four trenches with the dimensions given in the hazardous waste site notification could easily fit within that area.

Figure D-7 shows a comparison of the existing topography in the vicinity of the landfill and the topography as of 1962. Borrow areas are clearly shown on the cross sections as large cuts from the eastern part of the field. Areas of potential fill, which could indicate the location of the landfill or other material spread on the surface, are shown on the three easternmost cross sections in Figure D-7 (G-G', H-H', and I-I').

RECOMMENDATIONS

This section summarizes the recommendations made regarding sample locations and sampling methodology for initial soil screening. The use of a backhoe in place of a hollow-stem auger was recommended for most samples, as were location refinements to the sampling plan described in the work plan and QAPP (Figure D-8). Proposed sample locations for the initial soil sampling based on these recommendations are shown in Figure D-9.

BACKHOE VERSUS AUGER

A backhoe, rather than a trailer-mounted auger, was recommended for digging test holes in all areas except the paved automobile storage area for the following reasons:)

)

- Augering in coarse gravel areas could be difficult.
- Abandoned railroad beds and the sludge disposal area, which are composed of coarse gravel, should be visually evaluated because of their potential significance as conduits for contaminant transport.
- Test holes dug by backhoe would allow visual inspection of the subsurface, improving the quality and accuracy of observation and interpretations.
- Subsurface samples obtained from discrete layers would provide more meaningful data than compositing samples over a particular depth, which is often necessary to obtain sufficient sample volume from split spoons.

Test holes dug by backhoe would follow the same general sampling plan prepared for augering except the hole would be dug rather than augered. The number of test holes and samples would remain unchanged. Auger samples are

.

IN THE WORK PL/ MOSS-AMERICAN RI

and the second second

still recommended for the paved area to minimize damage and interference to the facility and operations at the auto storage lot.

UNTREATED STORAGE AREA

2

Contamination is not expected in the untreated storage area. Figure D-8 shows five sample locations in that area, in addition to four samples along a trench and pit that previously drained the area.

Because of extensive redevelopment and the addition of significant amounts of fill over the northern half of the area, the following recommendations were made:

- Arrange the five spot samples at regular intervals along the southern and eastern boundaries of the untreated storage area, approximately 50 feet inside the area boundary. This would avoid areas of new fill and should help delineate the actual boundary between contaminated and uncontaminated areas.
- Because of the thickness of the fill, samples near the pit and trench should be limited to the existing drainageway. The drainageway is perpendicular to the previous drainage. The intersection of the two ditches is near the culvert that passes under the paved area. Surface samples should be taken at each end of the culvert of the existing drainageway.
- If additional sampling in the pit and ditch area is warranted, precise surveying techniques should be used to locate the buried pit and trench before sampling. Sampling should be done to the necessary depth with soil borings using a hollow-stem auger.
- Samples in the pit and ditch area should be carefully screened so the clean new fill is properly logged but not sampled. Sampling depth should be adjusted from 0 to 4 feet (the current plan) to 0 to 12 feet to identify the top of the original land surface and then to evaluate the next 4 feet.

DRIP TRACK AREA

Six samples were proposed for the drip track area on a grid of approximately 100 by 200 feet. The following clarification was recommended:

- The samples down the center of the drip track area from the first round of sampling should be adequate to determine the degree of contamination.
- Four samples should be considered for the second round--two on each side of the centerline, staggered, and at different distances from the centerline. These, in conjunction with the samples taken in the

untreated storage area along the boundary, should focus on determining the lateral extent of contamination.

PROCESSING AREA

The processing area was considered the most difficult to characterize. Unlike most of the other areas, which should be fairly uniform, the processing area contained buildings, railroad beds, aboveground storage tanks, waste piles, and an oil separator. The area around the retort room was probably one of the most contaminated areas during site operation. Although the processing area was reportedly excavated and backfilled during site closure, thorough investigation of the area was still warranted. The following recommendations were made:

- A trench should be excavated through the retort area using a backhoe. Visual observations of the trench wall should provide information about the extent of removal operations occurring during site closure. The observations on the trench should also improve the interpretations of subsequent split-spoon samples from the paved part of the processing area west of the retort building.
- Instead of collecting samples on a 200-foot grid, samples should be collected on a 100-foot grid during the first round of sampling. Additional locations should be for a selected the second round of sampling on the basis of the initial results.
- The sampling depth should be adjusted to a maximum of 5 feet in areas where clean fill is obviously present.

)

1

TREATED STORAGE AREA

The treated storage area should be fairly uniform except for the area previously containing settling ponds. No changes or refinements, other than the use of a backhoe, were recommended for that area.

SLUDGE DISPOSAL AREA

No changes or refinements to the sampling plan were recommended for the sludge disposal area.

SOLID WASTE AREA

No changes or refinements to the sampling plan were recommended for the solid waste area.

RIVER DREDGINGS

The following strategy was recommended for sampling the south bank of the river:

- Collect samples at regular intervals to identify dredgings that were leveled and may blend with the topography.
- Collect spot samples from representative areas where dredgings have been placed in piles.

Contaminated soil was not expected on the north bank of the river, but verification with random samples along the bank and spot samples of representative piles of dredgings and in clearings along the bank was considered appropriate.

STANDING LIQUID AREA

The dimensions of the standing liquid area, measured from an aerial photograph taken June 13, 1969, are approximately 130 by 70 feet. Because of the limited size of the area, the following recommendations were made:

- Dig two test holes approximately 40 feet apart in the center of the area for the first round of sampling.
- If contamination is detected, collect additional samples to identify the extent of the contamination.

LANDFILL AREA

The following strategy was recommended to identify the location and verify the extent of the landfill area:

- Collect one sample from the center of each of the patches of tarry deposits to determine the depth and general character of the deposits. It was not considered necessary or desirable to go deeper than 4 feet for these samples. Four-foot holes would verify whether the deposits were entrenched or merely spread on the surface. If the deposits were entrenched, then the shallow soil boring planned for the area would identify the vertical extent of the creosote contaminated fill.
- Construct four trenches or a series of closely spaced test pits extending radially outward from the edge of the tarry deposits in the four compass directions. Again, the intention was to identify the lateral extent of the deposits. Once tarry substances were encountered it would not be necessary to dig deeper. The maximum depth of the trench should not exceed 4 feet.
- If the tarry deposits were determined to be the landfill, samples should be taken from a 200-foot grid for random evaluations of the rest of the field. If the tarry deposits are not the landfill, samples should be collected on a 100-foot grid.

GLT595/052.50

Appendix E SURFACE SOIL INVESTIGATIONS

٤

)

Appendix E SURFACE SOIL INVESTIGATIONS

INTRODUCTION

TASK SUMMARY

1

This appendix describes the field work and results of Tasks G1 and G2, Initial Soil Screening and Confirmatory Soil Analysis, for the Moss-American site. The objective of the tasks was to provide the data necessary to determine the native and lateral extent of contamination at the site.

Soil samples were collected at depths of 0 to 4 feet from clean and contaminated areas onsite and from background locations offsite. Samples were generally collected from test pits dug with a backhoe. However, offsite samples and samples from wooded and swampy areas onsite were collected from holes dug with a hand-held post hole digger, and samples beneath paved areas onsite were collected using split-spoon samplers in auger borings advanced with a truck-mounted drill rig.

All test pits and holes were screened in the field for evidence of contamination by visual observation, odor detection, and organic vapor monitoring. Total extractable organics of at least one sample from each location was measured by the onsite close support laboratory (CSL). Following an evaluation of results from the initial screening, 40 samples were sent to an offsite laboratory to determine the concentration of polyaromatic hydrocarbons (PAHs) and phenolic acids. On the basis of the results from the offsite laboratory, 16 sites were resampled and samples were submitted to CLP laboratories for analysis of Target Compound List parameters, dioxin, and several treatment parameters.

TASK SCHEDULE AND PERSONNEL

Surface soil sampling began on May 18 and continued through May 31. Sampling in the paved area was performed on June 29. Confirmatory soil sampling was (Task G2) done on June 30.

Test pit excavation by backhoe and augering in the paved area was subcontracted to Exploration Technology, Inc., of Madison, Wisconsin. Samples were collected and logged by CH2M HILL personnel. Kevin Olson, Stu Grubb, Ned Pennock, John Gannon, and Don Johnson performed field work under these tasks. Brian Laude and Dave Shekoski analyzed samples in the CSL for extractable organic compounds. Results from the onsite screening and priority pollutant PAH and phenolic acid determination are included in this memorandum. Analytical results from the confirmatory sampling will be presented in the remedial investigation report.

OBJECTIVES

The overall objective of these tasks was to determine the nature and extent of contamination on the site. In addition, geologic and other factors affecting contaminant migration at the site were identified, and organic vapor concentrations were monitored for assessment of air quality.

METHODS

STRATEGY

Based on past site activities and a site inspection, an initial set of sample locations was identified as part of Task FM. A 100-foot-square grid was established over most of the site to locate sampling points in the field. Samples were generally collected at 200-foot intervals. Samples were collected at 100foot intervals from the processing area and other areas of high contaminant levels. In addition, 14 offsite samples were collected: 7 near active railroad beds and 7 from areas with physical characteristics similar to those on the site. The samples near the railroad beds were collected to compare the compounds present near offsite railroad tracks with those found where tracks once existed on the site. Figure E-1 shows the sampling locations.

Samples taken from the test pits were assumed to be representative of the material surrounding the pit. However, localized areas of high contamination were expected near the processing building, in the landfill east of the river, and possibly surrounding the old settling ponds. The test pits were lengthened into trenches in those areas to better define the limits of contamination.

)

)

Each location was screened in the field for evidence of contamination. Field screening consisted of making visual observations, detecting odors, and monitoring with an HNu during soil disturbance. The sample from each pit was collected in a plastic bag and a 4-ounce glass jar. The most visibly contaminated soil was collected at each pit. Organic vapors in the headspace of the plastic bag were measured with the HNu. The CSL analyzed each jarred sample for extractable organic compounds. A site map was kept up-to-date with data on extractable organic compounds, field screening data, and pertinent field observations. Additional sample locations were then selected, as necessary, to further define the limits of contamination. Generally, additional sample locations were on the 100-foot grid nodes.

Upon completion of sampling and evaluation of results from the CSL, about 30 percent of the samples were sent to an offsite laboratory and analyzed for priority pollutant PAHs and phenolic acid compounds. A total of 40 samples were analyzed: 30 from areas with high concentrations of extractable organic compounds and 10 from areas with concentrations less than 1,000 ppm (Figure E-2). CH2M HILL's Montgomery laboratory performed the GC/FID analyses.

Following receipt of laboratory results, 16 locations were resampled for submittal to CLP laboratories for more extensive analyses. Ten sample locations representative of contaminated areas and six in clean areas were selected for this phase of sampling (Figure E-3). Samples were collected using the same procedures as before. New test pits were dug adjacent to the original test pits at each location. Samples were collected from the same depth and soil horizon as the original samples. Samples were analyzed for the Target Compound List of organic compounds, dioxin, and several treatment parameters. The treatment parameters consisted of the proximate and ultimate analysis for coal and coke, heating value, flash point, total organic carbon, and water soluble chlorides.

SAMPLING PROCEDURES

Three methods were used to excavate surface soils to screen and collect samples during this task: 1) tractor-mounted backhoe; 2) post hole digger; and 3) truckmounted auger. Most of the onsite samples were collected with the backhoe. The post hole digger was used where backhoe access was difficult and offsite. Truck-mounted augers were used in the paved area to minimize destruction of private property and interference with the existing business.

Backhoe

Backhoe excavation was preferred because it allowed observation of the nearsurface stratigraphy and contamination at each location. Each test pit was dug to a depth of about 4 feet, which was adjusted as necessary at the direction of the field engineer. Generally, the depth was increased if it was felt the additional depth could aid estimation of volume of contaminated soil. The depth was decreased when contamination was obvious and additional depth information was not warranted. The test pit area and disturbed soil were monitored for organic vapor using an HNu.

Samples from each pit were collected from the backhoe bucket, from the pile of excavated material, or directly from the wall of the excavated pit. Samples were collected in glass jars using a stainless steel spoon and in plastic bags using either a spoon or by hand (sampler wearing gloves). In most cases the sample was from an identifiable soil horizon or depth, and care was taken to avoid sampling material in contact with the backhoe bucket and other soil horizons. However, when no contaminated material was identified, a representative sample was taken from the excavated spoils. In those cases, the depth of the sample was estimated on the basis of the depth of similar material in the pit.

The backhoe bucket and sampling equipment were decontaminated between each pit. The bucket was scraped and brushed to remove dirt. When oily soils were encountered, the backhoe was steam-cleaned before the next pit was excavated. Other sampling equipment (spoons, gloves, pans) was washed and rinsed in a detergent solution and potable water followed by spray rinses with methanol and distilled water. Following excavation and sample collection, the soils were described on test pit logs along with other pertinent information regarding the extent of contamination in each pit.

Test pits were backfilled before the team left for lunch and at the end of each day. Spoils were returned to the pit as closely as possible to their original position. Each pit was covered with either the original vegetation, clean spoils, or clean gravel fill.

Post Hole Digger

A post hole digger was used to collect samples from piles of dredgings along the river, from other wooded areas onsite, and for all offsite samples. All sampling and logging procedures were identical to those used with the backhoe, except that decontamination of the post hole digger consisted of a detergent wash, freshwater rinse, methanol rinse, and distilled water rinse.

Truck-Mounted Auger

Samples from under the asphalt were collected by drilling a 4-inch hole with continuous flight augers and then driving a 2.5-inch I.D. split-spoon sampler 2 feet into the undisturbed soil at the bottom of the hole. Flight augers were steam cleaned between each hole. Split-spoon samplers were cleaned with a detergent solution and rinsed with water, methanol, and distilled water between each sample interval. Samples were transferred from the split spoons to the sample containers using a stainless steel spoon. Boreholes were backfilled with spoils and capped with approximately 2 feet of concrete.

RESULTS

DATA

Sample locations, extractable organic concentrations and field observations are given in Tables E-1 and E-2. Table E-1 is arranged according to sample number; Table E-2 in order of decreasing extractable organic concentration. Values for offsite extractable organic measurements are given in Table E-3.

The distribution of extractable organic concentrations across the site is shown in Figure E-4. The distribution of total PAH concentrations is shown in Figure E-5. The results of the PAH analysis for individual compounds are given in Table E-4. No phenols were detected in any of the samples.

The correlation between extractable organics (measured onsite) and the sum of the 16 priority pollutant PAH concentrations is shown in Figure E-6. The correlation coefficient (r) is 0.89. A test of significance was performed on the correlation coefficient to determine if it is spuriously high by assuming that no relationship exists between the EO and PAH concentrations. The test concluded that a linear relationship does exist and that higher EO concentrations correspond to higher total PAH contractions.

١,

Table E-1SOIL SCREENING RESULTS(arranged by sample number)

.

				HEAD-	
SAMPLE	CRID LOO	CATION(1) EO(2) SPACE	(3)
NUMBER	x	Y	ppm	ppm	FIELD OBSERVATIONS
******					***********************************
SS001-1	1540	-65	210	NR	Offsite-RR, between tracks, silt
SS002-1	1700	-55	140	NR	Offsite-RR, below ballast, clay
SS003-1	1950	-400	220	NR	Offsite, Fence row, silty clay
55004-1	400	60	140	NR	Offsite-RR, edge of ballast, sand
SS005-1	-600	130	210	NR	Offsite-RR, natural peaty soil
SS006-1	-40	-680	17	.0	
SS007-1	~50	-500	2,600	.0	
SS008-1	-15	-390	21	. 5	Oil floating on water at 1.2'
SS009-1	-15	-200	220	. 0	-
SS010-1	-200	-300	130	1.0	Odor, .1 ppm HNu, oily water at 3'
SS011-1	-200	-500	140	.0	
SS012-1	-200	-600	1.200	.0	Oil floating at 1.3', odor
SS013-1	-300	-70	170	.0	
55014-1	-500	-200	3.600	0	Black, appears farry, polodors
\$\$015-1	-400	-300	19 000	10 0	Creosote odor, slightly tarry
55016-1	-400	-500	180	2	
55017-1	-500	+500	87		Possibly farry soils at 4'
SS017-2	-500	-500	930	NR	Tarry soil w/ wood & ties at 2'
55018-1	-600	-500	39 000	5	Creosote odor tarry
55019-1	-500	-600	13 000	1 0	Creosote odor
55070-1	-600	-620	160	1.0	
SS020-1	-400	-600	1 100	.0	Creasate adar rubble in nit
55021-1	-300	-600	1,100	.0	creosore odor, rubbie in pit
55022-1	-300	-500	540	.0	
55023-1	-300	-500	540	.0	Note contaminated than 55022-1
55023-2	-350	-500	41 000	.0	
55024-1	-350	-550	41,000	1.2	Pubble
55025-1	-300	-700	460	.0	Rubble
55020-1	-200	-/00	400	.0	Slight crocrote odor
55027-1	-300	-400	140	. U	Singht credsure duoi
55020-1	-200	-400	9	. 2	Create adar devedation at 21
55029-1	-4/0	-630	1,400	.4	Creosole opor, foundation at 2
55030-1	-460	-290	108,000	20.0	Free product under foundation
55031-1	-450	-550	54	6.0	Contm. less just N. of foundation
55032-1	-80	-790	2.400	.0	
55033-1	20	-25	160	. 5	
55034-1	200	-100	30	.4	
55035-1	360	-230	36,000	2.0	Odor, oily luster on soil
55036-1	200	-300	430	. 4	
55037-1	400	-300	39,000	1.3	Trash and wood chips, v. oily
SS038-1	500	-500	57,000	1.0	Strong creosote odor
55039-1	400	-600	60	. 0	
SS040-1	100	-400	11	. 2	
55041-1	300	-400	110	. 0	
55042-1	500	-400	7,200	. 0	Trash and rubble
55043-1	600	-600	35	NR	
SS044-1	300	-590	1,200	. 4	

٠

¥

Table E-1 SOIL SCREENING RESULTS (arranged by sample number)

1

t

				HEAD-	
SAMPLE			1) EO(2)	SPACE	
	۸ 	T 	ppm 		FIELD UBSERVATIONS
SS045-1	100	-600	42	.0	
55046-1	200	-700	190	.0	
SS047-1	100	-800	56	1.0	
SS048-1	300	-800	33	. 0	
SS049-1	500	-800	8,900	5.0	Creosote odor
SS050-1	500	-700	25	. 2	Slight creosote odor
SS051-1	700	-700	0	.0	
SS052-1	700	-800	17	.0	
55053-1	90 0	-800	8	. 5	
55054-1	910	-670	20	.0	
\$\$055-1	1000	-8000	120	. 0	
SS056-1	1010	-930	570	.0	
55057-1	900	-1000	38	.0	
55058-1	800	-900	59	. 0	
55059-1	600	-900	140	NR	
SS060-1	400	-900	140	NR	
55061-1	200	-900	140	NK	
55062-1	500	- 1000	510	NK	Slight grapate oder
55064-1	1100	- 1000	24,000		Singht Creosole odor
55064-1	400	-100	38,000	1.0	Creosole door, RR lies at 3
55065-1	400 500	-100	430	.0	
55000-1	600	-100	310	ND	
55067-1	600	-300	300	D	
55060-1	820	-100	160	0	
SS070-1	1160	-570	46	.0	
55071-1	1300	-300	45	.0	
SS072-1	1100	-200	0	.0	
SS073-1	1300	-100	Ō	.0	
SS074-1	1400	-200	0	.0	
S S075-1	1500	-100	0	.0	
SS076-1	1500	-300	24	.0	
55077-1	1500	-500	8	. 0	
55078-1	1600	-200	24	.0	
55079-1	1600	-400	23	.0	
SS080-1	1700	-300	920	4.0	Oil coating in fractures
SS080-2	1700	-300	11,000	1.0	Black tarry, HNU=1 ppm in pit
55081-1	1700	-500	0	. 0	Sheen on cobbles and some soll
SS082-1	1700	-200	29	0.0	
55083-1	1800	-200	69	. 0	
SS084-1	1800	-400	65	. 0	
SS085-1	1900	-300	34	. 0	
SS086-1	1900	-500	42	.0	
55087-1	1800	-600	24	.0	
SS088-1	1700	-620	56	.0	
SS089-1	1680	-440	63,000	.0	Very oily, tarry, 2 ppm HNu in pit

Table E-1

SOIL SCREENING RESULTS (arranged by sample number)

•

.

•

				HEAD-	
SAMPLE	CRID LC	CATION(1) EO(2)) SPACE	(3)
NUMBER	X	Y	ppm	DDW	FIELD OBSERVATIONS

SS08 9-2	1680	-440	17,000	11.0	Free product in pit
SS09 0-1	1670	-430	112	.0	
55097-1	1630	-380	44,000	13.0	
SS092-1	-500	-300	63	. 0	Slight odor
SS093-1	-400	-100	32	.0	
\$5094-1	-400	-200	200	.0	
SS095-1	-400	-400	100	.0	
SS096-1	-300	-200	14, 0 00	. 5	Odor, tarry silt at 3'
SS097-1	-300	-300	790	. 5	Creosote odor
SS098-1	-300	-400	22,000	. 5	Odor, sheen on soil/chips at 4'
SS098-2	-300	-400	7,400	. 0	Wood chips and cable at 4'
SS099-1	-200	- 100	340	. 0	Possibly tarry
55100-1	-200	-200	66	. 0	
SS101-1	-100	-300	540	2.0	Oil sheen on water at 3'
S \$102-1	-100	-400	730	. 0	
SS103-1	- 100	-500	3,300	5.0	Slight odor
SS104-1	-100	-600	5,000	1.0	Oil mixed w/water at 3', odor
SS105-1	-100	-700	530	. 5	
SS106-1	-130	-360	100	.0	Oil stringers in water at 1'
SS106-2	-130	-360	170	.0	Oily water flowing from culvert
SS107-1	100	-200	320	. 0	
SS108-1	200	-200	3,700	. 4	
S 5109-1	300	-200	20,000	5.5	Oily water at 2', odor
55110-1	300	-300	310	.0	Oily odor
SS111-1	100	-300	71	NR	
SS112-1	370	-370	4,300	NR	Slight odor
SS113-1	250	-250	98,000	4.5	Odor and oil in hay and wood chips
SS114-1	100	-500	1,200	.0	
SS115-1	200	-500	30	. 0	
SS116-1	300	-500	160	.0	
SS117-1	400	-500	440	.0	
55118-1	600	-450	580	. 0	Slight odor
SS119-1	950	- 1000	300	.0	Dump site, rubbish
\$\$120-1	600	- 1000	140	. 0	
SS121-1	800	-1060	61	.0	
SS122-1	1000	-1130	420	.0	Dump
S 5123-1	1160	- 1200	2,200	6.0	Dump, creosote odor, sheen at 3'
SS124-1	870	-1110	120	.0	
SS125-1	1180	-1120	19 <i>,</i> 000	.0	Dump
55126-1	1070	-1180	2.000	.0	Dump
55127-1	1275	-1230	55	.0	Dump
SS128-1	1460	-1300	130	.0	
SS129-1	0	-900	10	NR	Offsite-RR, Organic Silt
SS130-1	-300	-800	27	NR	Offsite-RR, ditch by ballast, silt
SS131-1	270	- 1000	17	NR	Offsite-RR, Silty sand
SS132-1	300	550	18	NR	Offsite, cattails, silt loam

۱

Table E-1 SOIL SCREENING RESULTS (arranged by sample number)

	HEAD-													
SAMPLE	CRID LC	CATION(1)	EO(2)	SPACE(3)										
NUMBER	X	Y	ppm	ppm	FIELD OBSERVATIONS									
SS132-2	300	550	6	NR	Offsite, cattalis, alluvial clay									
SS133-1	500	650	10	NR	Offsite, grassy, org. silty clay									
SS134-1	550	1450	0	NR	Offsite, grassy meadow, silt-sand									
SS135-1	-500	1350	22	NR	Offsite, woods, lowland, org. clay									
SS136-1	-50	550	270	NR	Offsite, cattail marsh, org. silt									
SS137-1	1060	-850	14	NR										
SS138-1	1110	-1030	0	NR										
SS139-1	1150	-790	0	NR										
55140-1	-1270	-280	22	.0										
SS141-1	-1100	-350	1,500	. 0										
SS141-2	-1100	-350	15	.0										
SS142-1	-700	-500	28	. 0										
55143-1	-1070	-240	0	.0										
SS144-1	-690	-400	0	. 0	Tarry seam at 3'									
SS145-1	-1300	-100	24	. 0										
SS146-1	-660	-300	41	. 0	Tarry seam at 3'									
SS1017A-1	1880	-1220	0	NR										
SS1018-1	1730	-1100	0	NR										
551019-1	1550	-995	450	NR										
SS1020-1	1370	-880	14	NR										
SS1021-1	1220	-770	790	NR										
SS1022-1	1040	-660	300	NR										
SS1023-1	980	-560	720	NR										
SS1024-1	710	-440	O .	NR										
SS1025-1	510	-310	2,400	NR	Scrap metal in fill on bank									
SS1026-1	740	-395	7	NR	Dredging pile									
SS1027-1	930	-520	0	NR										
SS1028-1	1370	-795	31	NR										
SS1029-1	1640	-980	21	NR										

NOTES: (1) Grid Location:

7

X = distance east (+) or west (-) of the origin, Y = distance north (+) or south (-) of the origin. The origin is the north east corner of the auto storage lot. It is shown on Figure E-1

(2) EO = Extractable Organic Concentration

(3) HEADSPACE = Organic vapor concentration of the air in a plastic bag containing the soil sample. Concentrations are reported in parts per million of benzene equivalents

۲ ۲

				HEAD-	
SAMPLE	CRID LO	CATION(1) EO(2)	SPACE (3)
NUMBER	x	Y	ppm	ppm	FIELD OBSERVATIONS
SS030-1	-460	-590	108.000	20.0	Free product under foundation
SS113-1	250	-250	98.000	4 5	Odor and oil in hay and wood chips
SS089-1	1680	-440	63,000	0	V. oily and tarry, 2 ppm (HNU pit)
SS038-1	500	-500	57,000	1.0	Strong creosote odor
\$\$091-1	1630	-380	44.000	13.0	
SS024-1	-350	-550	41,000	1.2	Tarry seam @ 1', creosote odor
\$\$089-2	1680	-440	41.000	11.0	Free product in hole
55018-1	-600	-500	39 000	5	Creosote odor, tarry
55037-1	400	-300	39,000	13	Trash and wood chins, v oliv
SS064-1	1100	-1100	38,000	1.0	Creosote odor. RR ties @ 3'
55035-1	360	-230	36 000	2 0	Odor, oily luster on soil
\$\$063-1	900	-1060	24,000	0	Slight creosote odor
SS098-1	-300	-400	22.000	.5	Odor, sheen on soil/chips @ 4'
SS109-1	300	-200	20,000	5.5	Oily water at 2', odor
55015-1	-400	- 300	20.000	10.0	Creosote odor
SS125-1	1180	-1120	19,000	.0	
\$5089-2	1680	-440	17.000	11.0	Free product in hole
SS096-1	-300	-200	14.000	.5	Odor, black silt at 3' is tarry
55019-1	-500	-600	13.000	1.0	Creosote odor
55080-2	1700	-300	11.000	1.0	Black tarry, 1 ppm in pit
55049-1	500	-800	8,900	5.0	Creosote odor
55098-2	-300	-400	7.400	.0	Wood chips and cable at 4'
\$\$042-1	500	-400	7.200	.0	Trash and rubble
55104-1	-100	-600	5.006	1.0	Oil mixed w/water @ 3', odor
55112-1	370	-370	4,300	.0	Slight odor
SS108-1	200	-200	3,700	.4	
SS014-1	-500	-200	3,600	.0	Black, appears contam., no odor
SS103-1	-100	-500	3,300	5.0	Slight odor
SS007-1	-50	-500	2,600	.0	•
55032-1	-80	-790	2,400	.0	
SS1025-1	510	-310	2,400	.0	Scrap metal in fill on bank
SS123-1	1160	-1200	2.200	6.0	Dump, creosote odor, sheen @3'
SS126-1	1070	-1180	2,000	.0	Dump
55141-1	-1100	-350	1,500	.0	
55029-1	-470	-630	1,400	.4	Creosote odor, pad € 2'
SS128-1	1460	-1300	1,300	. 0	
SS114-1	100	-500	1,200	.0	
55044-1	390	-590	1,200	. 4	
SS022-1	-300	-600	1,200	.0	
\$\$012-1	-200	-600	1,200	. 0	Oil floating @ 1.3', odor
SS021-1	-400	-600	1,100	.0	Creosote odor, rubble in pit
SS066-1	500	-100	1,000	.0	-
55017-2	-500	-500	930	.0	Tarry soil w/ wood & ties @ 2'
SS080-1	1700	-300	920	4.0	Oil coating in fractures
SS1021-1	1220	-770	800	.0	
55097-1	-300	-300	790	. 5	Creosote odor

•

)

1

¥

.

				HEAD-								
SAMPLE	CRID LOCATION(1)		EO(2)	SPACE (3)							
NUMBER	X	Y	ppm	ppm	FIELD OBSERVATIONS							

SS102-1	-100	-400	730	.0								
551023-1	98 0	-560	720	.0								
SS023-2	-300	-500	620	.0								
SS118-1	600	-450	580	.0	Slight odor							
SS056-1	1010	-930	570	.0								
SS023-1	-300	-500	540	.0								
SS101-1	-100	-300	540	2.0	Oil sheen on water at 3'							
S S105-1	-100	-700	530	. 5								
SS062-1	500	-1000	510	.0								
SS025-1	-300	-680	460	.0	Rubble							
SS1019-1	1550	-995	450	.0								
SS117-1	400	-500	440	.0								
\$\$065-1	400	-100	430	. 0								
SS036-1	200	-300	430	. 4								
SS122-1	1000	-1130	420	. 0	Dump							
55026-1	-200	-700	400	.0								
SS099-1	-200	-100	340	.0	Black, appears contaminated							
55107-1	100	-200	320	.0								
SS110-1	300	-300	310	.0	Oily odor							
\$\$067-1	600	-100	310	.0								
SS068-1	600	-300	300	.0								
SS1022-1	1040	-660	300	.0								
SS119-1	950	-1000	300	.0	Dump site, rubbish							
SS136-1	-50	550	270	.0	Offsite, cattail marsh, org. silt							
S S009-1	- 15	-200	220	.0								
S 5003-1	1950	-400	220	.0	Offsite, Fence row, silty clay							
SS005-1	-600	130	210	.0	Offsite-RR, natural peaty soil							
\$\$001-1	1540	-65	210	.0	Offsite-RR, between tracks, silt							
SS094-1	-400	-200	200	.0								
SS046-1	200	-700	190	.0								
55016-1	-400	-500	180	.2								
SS013-1	-300	-70	170	.0								
SS106-2	-130	-360	170	.0	Oily water flowing from culvert							
SS069-1	820	- 100	160	.0								
SS020-1	-600	-620	160	.0								
S 5033-1	20	-25	160	. 5	Black, creosote odor							
SS116-1	300	-500	160	.0								
SS004-1	400	60	140	.0	Offsite-RR, edge of ballast, sand							
\$5002-1	1700	-55	140	.0	Offsite-RR, below ballast, clay							
55027-1	-500	-400	140	. 0	Slight creosote odor							
55120-1	600	- 1000	140	.0								
55059-1	600	-900	140	.0								
SS011-1	-200	-500	140	. 0								
SS060-1	400	-900	140	.0								
SS061-1	200	-900	140	.0								
55010-1	-200	-300	130	1.0	Odor, .1 PPM HNu, Oily water at 3'							

1

				HEAD-	
SAMPLE	CRID LO	CATION(1)	EO(2)	SPACE (3)
NUMBER	X	Y	DDM	DDM	FIELD OBSERVATIONS

SS124-1	8 70	-1110	120	.0	
SS055-1	1000	-8000	120	.0	
55041-1	300	-400	120	.0	
55090-1	1670	-430	110	.0	
SS095-1	~400	-400	110	.0	
SS106-1	-130	-360	100	.0	Oil stringers in water @ 1'
SS017-1	~500	-500	87	.2	Possibly tarry solls @ 4'
SS111-1	100	-300	71	. 0	
SS083-1	1800	-200	69	.0	
55100-1	-200	-200	66	.0	
55084-1	1800	-400	65	.0	
\$\$092-1	-500	-300	63	.0	Slight odor
SS121-1	800	-1060	61	.0	-
SS039-1	400	-600	60	.0	
55058-1	800	-900	59	.0	
SS088-1	1700	-620	56	.0	
SS047-1	100	-800	56	1.0	
SS127-1	1275	-1230	55	.0	Dump
\$\$031-1	-450	-550	54	6.0	
SS070-1	1160	-570	46	.0	
SS071-1	1300	-300	45	.0	
SS086-1	1900	-500	42	.0	
SS045-1	100	-600	42	.0	
SS146-1	-660	-300	41	.0	Tarry seam 🕈 3'
SS057-1	900	-1000	38	. 0	
SS043-1	600	-600	35	.0	
55085-1	1900	-300	34	. 0	
SS048-1	300	-800	33	. 0	
SS093-1	-400	-100	32	. 0	
551028-1	1370	~795	31	.0	
55115-1	200	~500	30	.0	
SS034-1	200	-100	30	.4	Black, possibly due to contam.
55082-1	1700	-200	29	.0	
55102-1	-100	~400	28	.0	
55142-1	-700	-500	28	.0	
\$ 5130-1	-300	~800	27	.0	Offsite-RR, ditch by ballast, silt
SS050-1	500	-700	25	. 2	Slight creosote odor
SS087-1	1800	-600	24	.0	
SS145-1	-1300	-100	24	.0	
55078-1	1600	-200	24	.0	
\$\$076-1	1500	-300 ·	24	.0	
SS079-1	1600	-400	23	.0	
55135-1	-500	1350	22	.0	Offsite, woods, lowland, org. clay
SS140-1	-1270	-280	22	.0	
SS008-1	-15	-390	- 21	. 5	Oil floating on wtr @ 1.2'
SS1029-1	1640	-980	21	. 0	

۰.

)

Ì

1

			EO(2)	HEAD-	(2)
NUMBER	X	Y	ppm	ppm	FIELD OBSERVATIONS
SS054-1	910	-670	20	.0	
SS132-1	300	550	18	.0	Offsite, cattails, silt loam
SS052-1	700	-800	17	.0	
SS006-1	-40	-680	17	.0	
SS131-1	270	- 1000	17	.0	Offsite-RR, Silty sand
SS141-2	-1100	-350	15	.0	
551020-1	1370	-880	14	.0	
SS137-1	1060	-850	14	.0	
SS040-1	100	-400	11	.2	
SS133-1	500	650	10	.0	Offsite, grassy, org. silty clay
SS129-1	0	-900	10	.0	Offsite-RR, Organic Silt
\$5028-1	-200	-400	9	. 2	
SS077-1	1500	-500	8	.0	
SS053-1	900	-800	8	. 5	•
SS1026-1	740	-395	7	.0	Dredging pile
55132-2	300	550	6	.0	Offsite, cattails, alluvial clay
55139-1	1150	-790	0	. 0	
55134-1	550	1450	0	.0	Offsite meadow, silt and sand
SS081-1	1700	-500	0	.0	Sheen on cobbles & some soil
\$\$075-1	1500	-100	0	.0	
SS138-1	1110	-1030	0	.0	
SS1018-1	1730	-1100	0	.0	
55072-1	1100	-200	0	.0	
SS051-1	700	-700	0	.0	
SS074-1	1400	-200	0	.0	
SS143-1	-1070	-240	0	.0	
SS073-1	1300	-100	0	.0	
551027-1	930	-520	0	.0	
SS144-1	-690	-400	0	.0	Tarry seam at 3'
NOTES: (1) Grid X = d	Location: listance ea	st (+)	or we	st (-) of the origin,
	Y = d	listance no	orth (+) or so	outh (-) of the origin.
	The o	riain is t	he nor	th east	corner of the auto storage

lot. It is shown on Figure E-1

- (2) EO = Extractable Organic Concentration
- (3) HEADSPACE = Organic vapor concentration of the air in a plastic bag containing the soil sample. Concentrations are reported in parts per million of benzene equivalents

Table E-3 OFFSITE SOIL SAMPLES

			EXTRACTABL	.E
SAMPLE	CRID LO	CATION(1) ORGANICS	
NUMBER	X	Y	ppm	FIELD OBSERVATIONS

SS003-1	1950	-400	215	Fence row, silty clay
SS134-1	550	1450	0	Grassy meadow, silt and sand
SS135-1	-500	1350	22	Woods, lowland, organic clay
SS133-1	500	650	10	Grassy, Organic silty clay
SS136-1	-50	550	270	Cattail marsh, organic silt
SS132-1	300	550	18	Cattails, silt loam
\$\$132-2	300	550	6	Cattails, alluvial clay
\$\$ 005-1	-600	130	211	RR, natural peaty soil
SS004-1	400	60	143	RR, edge of ballast, sand
SS 002-1	1700	-55	139	RR, under ballast, clay
55001-1	1540	-65	210	RR, between tracks, silt
S S130-1	-300	-800	27	RR, ditch by ballast, silt
SS129-1	0	-900	10	RR, organic silt
SS131-1	270	-1000	17	RR, silty sand

NOTES: (1) Grid Location: Distance in feet from the origin as shown on Figure E-1

(2) EO = Extractable Organic Concentration

٩,

(3) HEADSPACE = Organic vapor concentration of the air in a plastic bag containing the soil sample. Concentrations measured with an HNU.

Table E-4 - POLYANDWITC NYANDXANDN CONCENTRATIONS IN ONSITE SUILS Concentrations in pan (wet weight)

۳ ۴

4804	22	>>) - 1	3•	• -			2:	22) - 2	2:		33	-	> - g	2		2:				21	F -	3:	2	÷	27					
Y	>>		> = - g) > : - :		2	22	23	2				2:	-); -,	2	> = -	2		2		2	> > R -	2:	-	> = -) - R	•				
ţ	24	- •	~ 3		2	>:	>>	>=	5	- - R	2	2	;;	2	⊃ ~≰	2	<u>,</u>	2:		•	<u> </u>	21	; ^	21			, :=\$					
3	44	-			0 	22		> = -	3	- 6	2	2	22	2	- ,	2	. "			-	, n ••	21	7	2:		~ 2	•6	9 9 9 9 7 9 8 9 8 9 9 9 9 9 9				
	۶-		> - 1	!	2	22		22	Ē	- 2	>:	>>	r :	2	<u>، د</u>	2	5-	2:			2	21	•	21	- 2	~ <u>9</u>	= 3	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9				
ì	5		- -		2	23				- 2	22		29	,- ;-	- r	2	5-); 		~	2-	={	¥.~	29	- -	•	= 2					
8	3=	-	230	-	0 - 2 -	> = +		>>	120	- 9	2	2	2 <u>2</u>	2	- 5	2				•••	• • •	81	7	Ĕ:	2-	~ 5	82					
¥	7 2	- •		-	2	22			2	- <u>8</u>) -,	2	29	-		2	F -			-	•	2:	•	P.		• •	9 0					
£		•	- 3	-	2	>=		> > 	1400		22					2	•	~ -	2	~ -	- 14	7	í.	Į	12		40 7 7					
N	0 8 7	- <u>-</u>	- 2	~	2	22	, ; 			- 23	> = =	2	<u>,</u>			2	1	~ -		~ 1		2;	:	3;	121	2008.2	6 17	1				
ANT	£ =				• >	22					22	5	22		> - <u>-</u>	2	2	>:		>: - ·		22		- :		3300	10					
n E	88		- 901	•	• >	> =					2:	5	535		-1	2		2:		•••		2	12	270	2	: ;	5 ;	analyzed but as detected diluction re				
1	27		-3	>				>>	3		22	2	22	-	-	-		2:		>:		35	-	<u>.</u>	1		÷.	Compound Compound Secondary				
VCI	37		> - 8	2	2	22		>			22) > ;		-	-	-	-	>:		22		2 j	-	379			~8					
ACV	2:		>> • 8	>		>>		>>	2:	• •	22	-)) 	5	- 2	>: - (22	2:		22		>: * f) - -	>: ? ') : \		- 2		the acene	uor an thene uor an thene r ene	. 3- cd)pyr ene h)ah thracene h 1)aery lene	N. 7 1976 - 7 1111
1	.	2:		23		> >));			• *	> >	2	>	2		> - [2	2:			-	.	! ~	21	•		- 2	Numbrication Accuration for Accuration a country fluor on Menantry fluor and	 Pyrene Benzo(a)an Chrysene 	• 8cn2e(8)11: • 8cn2e(8)11: • 8cn2e(8)11:	 Indeno(1,2 Dibenzo(3,1 Benzo(4,1 	
PERCENT MOISTURE	22	:2	\$;	21	?£	<u> </u>	: : :		21	; ;	22	•	• :	*	22	= 1	1 2	24	2	R	2	21	; 2	51		- 5	23	ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC	I			
Ĩ	5040-1		1-015		1-62155	1-12-12	×	5578-1 1578-2	+-9C025	1-64055	55053-1 55056-1	55061-1	55043-1 55044-1	55066-1	55000-2	55081-1	1-040%S	55093-1	1-110155	1-520155	55000-1	55612-1	35017-2	55010-1 55010-1	55024-1	1-62855	55032-1 55037-1	ABBREVIA				

)

)

)

FIGURE E-3 SAMPLING LOCATIONS FOR CLP ANALYSES MOSS-AMERICAN RI

ことのであるというで、「そのない」ではないです。 ふうかん アイアスプログロング ないないない ないしょう スティー・チャー・ド・チャー・ド・チャー・ド・チャー・ド・チャー・

! ション・システム ションテンクシン 二十二十十八 三十二 ĺ ●日本とうをしてき、「こころ」」という やっしたね and the state of the second . ₹ ž

ł

FIGURE E-6 RELATIONSHIP BETWEEN CONCENTRATIONS OF EXTRACTABLE ORGANIC COMPOUNDS AND TOTAL PAHS IN ONSITE SOIL MOSS-AMERICAN RI

INTERPRETATION

Four primary areas of soil contamination at the Moss-American site are shown in Figure E-7:

Area I--Processing area and vicinity Area II--Contaminated fill east of the storage area Area III--Contaminated fill to the southeast Area IV--Landfill for dredgings

Low levels of contamination were detected south of Area I west of the fence and between areas I and II (see Figure E-7).

The areas shown in Figure E-7 were identified on the basis of:

- EO concentrations greater than 1,000 ppm
- Visible contamination or strong creosote odors
- Proximity to other pits deemed contaminated with similar soil horizons, especially when samples may have been taken from uncontaminated horizons

The extent of each area was determined by the interpretation of available data. Risk-based criteria were not used. The extent of contamination will be modified as necessary following completion of the public health and environmental assessment.

Area I

Extractable organic concentrations in the processing area (the southern third of Area I excluding the panhandle) ranged from negligible to over 10 percent. Inasmuch as spatial variability and high localized levels of contamination characterize the area, it is likely that unidentified "hot spots" are present.

The northern two-thirds of Area I was categorized as the clean, or untreated, lumber storage area in earlier parts of the investigation. However, extractable organic concentrations as high as 2 percent and several visibly contaminated pits indicate contamination in the area.

Existing data describing the history of the site do not explain the contaminated soils found here. Three possible explanations are:

- Contaminants were deposited during site activities not described in the background information.
- Contamination is the result of being in the vicinity of and downhill from the processing area.

۱.
• Contaminated soils were reworked following site closure and placed in this area.

The southern panhandle of Area I is the drip track area. Low levels of contamination with limited horizontal and vertical extent may be present there as indicated by one soil boring, or the area may be relatively clean as indicated by three soil borings. The area is shown as potentially contaminated because of the potential for spatial variability.

Areas II and III

Areas II and III were both used as either solid waste disposal areas or fill areas in which the fill included solid waste. Lumber, railroad ties, scrap metal, and other debris are buried in soils containing up to 5.7 percent extractable organic compounds. The area north of Area III contained similar material; however, the extractable organic concentration and visual observations of that solid waste pile did not indicate the presence of contamination. The northern part of Area II coincides with the outfall of the old settling ponds.

Area IV

Dredgings contaminated with creosote from the old settling ponds are buried in the landfill in Area IV. The lateral extent of the landfill is well-defined by stressed surface vegetation. Extractable organic concentrations in the landfill range up to 6 percent.

No dredgings were observed in the area north of Area IV; however, the extractable organic concentration in one test pit was 1.1 percent. Fracture surfaces of the blocky soil were coated with oil. The contamination at that location is believed to be the result of vertical percolation from landfilled dredgings that have since been removed from the site. The area was excavated, presumably for use as fill material, sometime after the dredgings were landfilled. 1

GLT595/059.50

Appendix F MONITORING WELL INSTALLATION AND FINDINGS ON SITE GEOLOGY

.

۰.

1

Appendix F MONITORING WELL INSTALLATION AND FINDINGS ON SITE GEOLOGY

٦

INTRODUCTION

This appendix summarizes the soil boring and monitoring well installation performed by CH2M HILL at the Moss-American site and the interpretation of the site geology. Well locations, well logs, and construction diagrams are included in this appendix. The field work was part of Task FI, Field Work--Monitoring Well Installation, and Task FS, Field Work--Subsurface Soil.

Monitoring wells were installed between June 2 and July 1, 1988. Exploration Technology, Inc., of Madison, Wisconsin drilled and constructed the wells.

SUMMARY OF FIELD WORK

Monitoring well, soil boring, and cross section locations are shown on Figure F-1. The well locations were chosen:

- To monitor contaminants migrating offsite or to the Little Menomonee River
- To monitor contaminant migration away from known source areas
- To monitor the quality of the groundwater coming onsite
- To define the horizontal extent of groundwater contamination onsite
- To determine horizontal and vertical groundwater gradients

Well nests were installed downgradient from known source areas to monitor vertical contaminant migration. At each well site except MW-14, shallow wells were completed above less permeable silt and till layers. Deeper wells were completed in sandier zones when they were encountered.

Soil borings were completed at four locations where high levels of surface contamination were detected in test pits. Monitoring wells were not installed at those locations because of the potential for cross-contamination during drilling, especially during construction of the deep wells.

Specific objectives for the wells and observations made during installation are as follows:

• MW-1S and MW-1I were installed as "background" wells to monitor groundwater coming onto the site. MW-1I monitors groundwater in the silty clay and sand seams below MW-1S. MW-1S is completed at the interface between the fill and weathered till.

- MW-2S is in a filled ditch that had drained from the process area to a ditch along the north boundary of the site. It is screened in weathered till and a silty fine sand seam immediately above a dense unweathered till.
- MW-3S and MW-3I monitor an area where some soil contamination was detected during the digging of test pits (see the Technical Memorandum for Task G1). MW-3S monitors groundwater in the silty fine sand that lies beneath a silty clay till. MW-3I is screened in the silt and silty clay till below the screened interval for MW-3S. The well nest is at the outfall of a spring that drains the gravel beneath the paved parking lot.
- MW-4S, MW-4I, and MW-4D are in a well nest immediately downgradient of the former process area--the most contaminated part of the site. MW-4S is screened close to the water table. Free product was seen initially in the water purged from the well; however it was removed during development and not observed during sampling. MW-4I was installed immediately above the reddish brown lacustrine clay encountered at a depth of 39 feet. MW-4D monitors the lacustrine silt and fine sand below the reddish brown clay. A deep well was installed at that location to determine the depth to which groundwater quality has been affected at the most contaminated part of the site.
- MW-5S was positioned to monitor contaminants that may be migrating offsite to the north. The base of the screen is set at the top of a dense silty clay till to monitor contaminants migrating laterally along the top of this low permeability till.

)

)

- MW-6S monitors shallow groundwater in the former storage area. As with MW-5S, the well is positioned above the silty clay till to monitor contaminants migrating along the top of the till.
- MW-7S and MW-7I, well nests MW-8 and MW-9, and well MW-12S make up a network for monitoring groundwater contaminants as they approach the river. MW-7I is installed in a sandier section of the till. The reddish brown silty clay below the well may be related to the reddish brown clay below MW-4I.
- MW-8S and MW-8I are in a well nest near the river and at the end of the series of former settling ponds. The nest is between the river and the subsurface clay barrier constructed in 1971. The soil boring for MW-8S did not appear highly contaminated; however, one coarse sand and gravel seam contained small amounts of black, oily liquid. When the well was sampled approximately 2 feet of free product had accumulated in the well. MW-8I is completed in a silt and sand zone and did not appear contaminated when it was installed. The clay

FIGURE F-1 MONITORING WELL AND SOIL BORING LOCATIONS MOSS-AMERICAN RI immediately below the well screen may be related to the clay below wells MW-4I and MW-7I.

٩,

- MW-9S and MW-9I are in an area where the shallow soils appear to be contaminated. The subsurface soils and the water purged from the well during development and sampling did not appear to be contaminated. MW-9I is installed in the Oak Creek Formation at a depth containing silt and sand seams. The well is set at an elevation close to that of MW-7I and MW-8I so that the lateral extent of deep contamination can be determined.
- MW-10S is located in an area that may have been intended for use as a storage area. The area has been graded an covered with crushed rock. MW-10S is screened in what appears to be alluvial sediments.
- MW-11S and MW-11I--The southeast portion of the site was used as a landfill for various types of waste, as described in the Technical Memorandum on surface soils. MW-11S is installed between the landfill and the top of the till. Although the landfill material contains some treated railroad ties and oily liquids, the wells there do not appear to contain any free product. MW-11I was installed because of the contamination found in the surface soils. It is completed in a sandy layer within the Oak Creek Formation.
- MW-12S is in a small clearing in the woods near the river. Although site activities apparently did not take place there, the well is generally downgradient from the southeast landfill and the storage areas. It is also near the outfall of a low, swampy area that receives drainage from much of the southeastern part of the site.
- MW-13S is a background well use to determine groundwater gradients in the south central part of the site.
- MW-14S is downgradient of the landfill in the northeastern part of the site. It is deeper than other shallow wells and is screened in unweathered till and lacustrine deposits of the Oak Creek Formation.
- MW-15S is a background well intended to monitor groundwater quality upgradient of the landfill. During drilling and installation the soil appeared saturated from 6 feet below ground to the bottom of the screened interval 20 feet below ground; however, the well did not yield water.
- SB-16 was completed through the former process building area.
- SB-17 is in the former drip track area. No evidence of soil contamination was observed at this boring.
- SB-18--In 1971 the settling ponds were excavated. The excavated soil was mixed with clean soil and placed in the landfill in the northeast

part of the site. The trench was backfilled with clean soil. Boring SB-18 was made to determine the depth of the excavated trench and to determine if the soil below the trench is contaminated.

- SB-19 was drilled to determine the depth of the northeast landfill and whether contaminants have migrated below the landfill.
- MW-20S was installed to determine whether the Little Menomonee River is actually the groundwater divide for the area. When MW-8S was found to be highly contaminated, there was concern that contaminants may have migrated to the other side of the river, especially through thin sand and gravel seams. MW-20S does not appear contaminated, but the results of the groundwater and soils analyses must be evaluated before final conclusions can be made.

DRILLING METHODS

Exploration Technology used track- and truck-mounted Dietrich D-50 rigs and an ATV-mounted CME 550 drill rig to drill the borings. The drill rigs were steam cleaned at the beginning and end of the job. All down-hole equipment was steam cleaned between borings.

The shallow soil borings and borings not used for monitoring wells were completed using 4-1/4-inch I.D. hollow-stem augers. The borings not used for monitoring wells were filled with cement grout after completion.

For the intermediate and deep borings, hollow-stem augers were used for the first 15 feet of drilling. A temporary 6-inch I.D. steel casing was put in the borehole to prevent migration of contaminant from shallow to deep areas. The casing was driven into a silt or till formation and sealed at the bottom with granular bentonite. Soil that fell to the bottom of the borehole was washed out with clean water before proceeding, and the wash water was drummed. The borehole was advanced below the casing using rotary wash methods and a 4-7/8-inch bit.

ł

Exceptions to the above procedures are described below:

- MW-11 is located in an area where contamination was neither expected nor observed. The boring was advanced using 4-1/4-inch I.D. hollow-stem augers for the entire length of the boring.
- MW-4D--The 6-inch I.D. steel casing used to drill MW-4D was grouted permanently in place. A 4-inch protective casing was installed around the well.
- MW-8I was advanced to 30 feet below ground with 4-1/4-inch I.D. hollow-stem augers. The boring was continued using the rotary wash method with a 3-7/8-inch bit. The augers were left in place and acted as a temporary casing for the borehole.

WELL CONSTRUCTION

Well construction diagrams are included on the well logs in Attachment F-1. All wells were constructed with 2-inch I.D. stainless steel well screens and riser pipe and installed with 0.010-inch slotted, continuous wire-wound screens. The riser pipe joints above the well screen were covered with teflon tape before installation. The well construction materials were steam cleaned before the well was installed.

Shallow wells were installed with 5-foot screens, with the exception of MW-14S which has a 10-foot screen. The intermediate wells were screened in the till, which was not expected to yield much water. They were installed with 10-foot screens to make sampling and aquifer testing possible. The one deep well, MW-4D, was installed with a 5-foot screen.

The annular space between the well and the outside of the borehole was backfilled with No. 30 Flint sand to approximately 2 feet above the well screen, a bentonite seal, and cement-bentonite grout to the ground surface. On a few wells the bentonite seal was extended to the surface, and no grout was necessary. The natural formation collapsed during some of the constructions as well. The details of each construction are noted on the well logs.

A 6-foot-long, 4- or 6-inch O.D. locking protective standpipe was installed over all but three wells. Each is locked with a Number 1 Master padlock. Wells in high traffic areas (MW-01S, MW-01D, and MW-2S) were installed with flushmounted casings. A concrete pad that slopes away from the protective casing was constructed around each standpipe. Protective posts were installed around the wells in potential traffic areas.

SOIL SAMPLING AND ANALYSIS

Split-spoon samples were collected continuously during drilling to a depth of approximately 20 feet below ground and every 5 feet thereafter. A depth interval was sampled only once at each well nest. For example, if the interval from 0 to 20 feet below ground had already been sampled during the intermediate well installation, it was not sampled during the shallow well installation.

The split-spoon samplers used were 2 feet long and 2.5 inches in diameter (larger than standard samplers) to collect the necessary volume for laboratory analysis. If the sample recovery from the sampler was not large enough for the analysis, two or three successive samples were composited. The samplers were driven with a standard 140-pound hammer. The sample intervals and penetration test results are reported on the well logs.

Samples were collected directly from the split-spoon sampler, or they were transferred to a clean stainless steel pan before being put into jars. The samples were put into jars using a stainless steel spoon. Sample jars to be analyzed for volatile organic compounds were filled first before mixing. If the sample was not very cohesive, it was mixed in a pan. Cohesive samples were composited by filling a sample jar with several pieces of cohesive soil from different parts of the sampler. The sampling equipment, including the splitspoon samplers, was decontaminated between samples using a detergent wash, methanol rinse, and distilled water rinse.

)

)

)

Each of the split-spoon samples was analyzed for extractable organic compounds content by the onsite close support laboratory (CSL). The analytical methods are described in the Quality Assurance Project Plan. The results of these analyses are reported on the well logs. One, two, or three of the split-spoon samples from each well were sent through the U.S. EPA Contract Laboratory Program (CLP) for analysis of organic priority pollutants, metals, cyanide, carbon, hydrogen, sulfur, oxygen, nitrogen, moisture content, ash content, volatile matter, fixed carbon, total organic carbon, water soluble chlorides, dioxin, heating value, flash point, and pH. These sample locations are also reported on the well logs.

WELL DEVELOPMENT

All wells were developed by purging with a stainless steel bailer. Water was removed from the well until pH, conductivity, and clarity stabilized. Wells that did not recharge quickly were bailed dry several times until clarity did not improve with successive bailings. All development water was retained in labeled 55-gallon drums. Development equipment was decontaminated with a detergent wash, potable water rinse, methanol rinse, and distilled water rinse between wells. Rather then decontaminating the bailer used at MW-8S, which contained substantial oil, that bailer was dedicated to the well.

FINDINGS

GENERAL GEOLOGIC SETTING

The bedrock below the Moss-American site is dolomite and shale of either the Milwaukee Formation or the Thiensville Formation. Pre-glacial erosion cut deep valleys in these rocks. Glacial erosion tended to widen the valleys and leave glacial deposits 0 to 250 feet thick. The unconsolidated deposits below the site are probably about 150 feet thick (SEWRPC 1976).

The glacial deposits encountered at the site are interpreted to be the Oak Creek Formation. The Oak Creek formation has been described as follows:

Till of the Oak Creek Formation was deposited by ice of the Lake Michigan Lobe as it moved west-southwestward out of the Lake Michigan basin and crossed a large area of southeastern Wisconsin. Lacustrine sediment in the formation was laid down mainly in proglacial environments during brief intervals of ice-front recession.

The Oak Creek Formation includes fine-textured glacial till, lacustrine clay, silt and sand, and some glaciofluvial sand and gravel. The till is strongly calcareous and fine grained, commonly containing between 80 and 90 percent silt and clay in the matrix (less-than-2-mm fraction). Because the relative amounts of silt and clay vary from place to place, the texture of the till ranges from silty clay through clay loam and silty clay loam to silt loam. Commonly, however, the deposit is silty clay or silty clay loam till. The average composition is about 12 percent sand, 43 percent silt, and 45 percent clay. Stones are generally small and not terribly abundant. Illite is the dominant clay mineral in the less-than-0.002-mm fraction, averaging 72 percent of the clays; expandable clay minerals and kaolinite plus chlorite are about equal, 15 and 13 percent, respectively. Dolomite dominates the pebble assemblage, but the drift contains a considerable variety of igneous and metamorphic rock types from the Canadian Shield; basalt is particularly common. Perhaps the most diagnostic item, however, is the presence of dark gray shale fragments, which are presumably derived from the Lake Michigan basin. (Mickelson et al. 1984)

SITE HYDROGEOLOGIC SETTING

Interpretation of site-specific stratigraphy was made by comparing units identified in the field to the known regional geology. Four general units were encountered during the field investigation: fill, recent alluvium, glacial till, and lacustrine deposits of interbedded silt, clay, and fine sand.

Fill materials are described in the Appendix D, Mapping and Surveying, and Appendix E, Surface Soil Screening Investigations. The location and composition of the fill varies considerably across the site, and has changed over time as land use changed. The alluvial sediments are associated with the Little Menomonee River. They consist of silty flood deposits and sand and gravel channel deposits. The alluvial deposits are 4 to 8 feet thick and traverse the center of the site on both sides of the river.

The glacial till and lacustrine deposits make up the Oak Creek Formation. On the site, the till was generally weathered to a depth of 2 to 10 feet. The weathered till and lacustrine deposits are generally brown rather than the gray that is characteristic of Oak Creek till. In addition, the penetration resistance (N) is two to four times higher in the unweathered till than in the weathered zones. ("N" was determined by dropping a 140-pound hammer 2 feet to drive a 3-inch O.D. split-spoon sampler). These two features were used to estimate the boundary between the weathered and unweathered Oak Creek till.

Hydrogeologically, the site consists of a surficial aquifer and a confining unit. It is questionable, however, whether the surficial aquifer would yield enough water to be classified as a true aquifer. It consists of a thin mantle of fill, alluvium, and weathered till. The confining unit is the unweathered Oak Creek Formation.

Slug tests conducted on the Oak Creek Formation in the deep and intermediate wells indicate average conductivities in the screened zones of 1×10^{-5} cm/s to 1×10^{-6} cm/s. The screened zones of the deep and intermediate wells were completed in sandy layers when encountered, or in the zone believed to be most

permeable in the absence of well defined sand zones. Therefore, the bulk conductivity of the entire unit is probably less than the reported values. In addition, the stratigraphy of the screened section of the intermediate wells typically included interbedded lacustrine silts, sands and clays. In those cases, because the silt and clay layers would impede vertical flow, the reported values of hydraulic conductivity are probably due to horizontal flow. Bulk vertical conductivities are probably much lower.

The surficial aquifer comprises everything above the confining unit, including the weathered Oak Creek Formation, alluvial sediments, and fill. The hydraulic conductivities from the tests on shallow wells completed in the alluvium and weathered Oak Creek Formation ranged from 1×10^3 cm/s to 1×10^4 cm/s. Hydrogeologic properties of the fill are probably comparable; however, more variability should be expected because of the variability in fill material.

The cross sections were constructed to reflect these hydraulic similarities, rather than following a strict geologic interpretation (see Figures F-2 through F-5). Accordingly, three units are shown.

Fill

The fill unit consists of a variety of materials that have been added to the surface between 1920 and the present. It is coarse gravel beneath the paved area; cinders and wood chips in the treated storage areas; silty loam in the old settling ponds; dredgings along the river and in the landfill; and trash and miscellaneous debris along the old stream channels (roughly coincident with the edge of the wooded areas).

1

Recent Alluvium and Weathered Oak Creek Formation

The recent alluvium is associated with the Little Menomonee River. It consists of silt and clay flood deposits and sand and gravel channel deposits. These deposits are hydraulically connected to the weathered Oak Creek Formation. This formation is typically a brown till; however, interbedded proglacial lacustrine deposits are present at several elevations.

Oak Creek Formation

The unweathered part of the Oak Creek Formation is gray. It is dense and typically consisting of silty clay till and interbedded lacustrine deposits. The lacustrine beds consist of laminated or thinly bedded clays, silts, fine sands, and occasionally medium sands.

CROSS SECTION C - C' MOSS-AMERICAN RI FIGURE F-4

۱

MONITORING WELL AND SCREENED INTERVAL

LEGEND Fill

F

AW

OC.

Osk Creek Formation

<u>5</u>8

MW

- fine sands.

the section (profile) were generalized from and interpolated between test borings. Information on actual subsurface conditions exists only at the specific locations indicated.

FIGURE F-5 **CROSS SECTION D - D'** MOSS-AMERICAN RI

. .

REFERENCES

Mickelson, D. M., L. Clayton, R. W. Baker, W. N. Mode, and A. F. Schneider. *Pleistocene Stratigraphic Units of Wisconsin.* Geological and Natural History Survey, Misc. Paper 84-1 University of Wisconsin-Extension, Madison, Wisconsin. 1984

SEWRPC (Southeastern Wisconsin Regional Planning Commission). A Comprehensive Plan for the Menomonee River Wasteshed, Vol I, Inventory Findings and Forecasts. October 1976. pp. 123-29.

GLT779/024.50

Attachment F-1 WELL LOGS AND SAMPLING INFORMATION

۲

GLT779/031.50

7

;

MONITORING WELL BORING LOGS MOSS-AMERICAN SITE

Legend

٩.

2" ID #10 SLOT STAINLESS STEEL WELL SCREEN

2" ID STAINLESS STEEL WELL RISER WITH CAP

6" ID STEEL OUT CASING

STEEL PROTECTIVE CASING WITH NO. 1 MASTER LOCK

¥

CEMENT/BENTONITE GROUT

BENTONITE SEAL

NO. 30 "FLINT" SAND PACK

NATURAL FORMATION COLLAPSE

MOSS-AMERICAN MONITORING WELL MW-01S and MW-01I MW-01S COMPLETED 6/27/88, MW-01I COMPLETED 6/27/88

MW-01S MW-011	Soil Description (USCS GROUP SYMBOL)	EXTRAC- TABLE ORGANNCS (%)	CLP ANNLYSIS SAMPLE NUMBER	STANDARD PENETRATION TEST RESULTS S"-S"-S"-S"	750
FLUSH-MOUNTED PROTECTIVE CASINGS					745
	Brown and gray loose silty SAND and GRAVEL (SM and GM) (Fill). Asphalt on surface.	0.00 0.01 0.02 0.01		50-25-20-18 100/9 3-3-4-5 30-14-10-7 24-14-19-32	740
	Gray, wet, danse silty SANDS. Gray, fine sandy SILT (ML). Laminated.	0.00 0.01 0.01	SB-01-01	24-39-44-58 4-8-18-24 8-13-13-12	730
	Gray silty CLAY with pebbles, wet (CL). Oak Creek till.	0.01		7-7-9-14	720
		0.00		19-28-46-48	715
		0.01		26-31-33-39 21-29-18-27	710
					700
					695
					685
					680
					670
╡		1	<u> </u>	Rev.9	⊨ 665 -12-88

.

.

MOSS-AMERICAN MONITORING WELL MW-02S MW-02S COMPLETED 6/28/88

		SOIL DESCRIPTION (USCS GROUP SYMBOL)	EXTRAC- TABLE ORGANICS (%)	CLP ANALYSIS SAMPLE NUMBER	STANDARD PENETRATION TEST REBULTS C"-C"-C"-C"	
						750
Ξ	MW-02S					
	FLUSH-MOUNTED PROTECTIVE CASING					74 0
			 			735
		SILT (ML). Some gravel. Moist (FILL).	2.05		12-8-10-10	
Ξ		Asphalt on surface.	0.21		7-7-6-4	730
Ξ			0.21		5-5-4-5	
=		Light brown wet silty CLAY (CL). Trace	0.00		2-5-7-10	- 725
		sand and pebbles (Till).	0.00		10-10-26-26	
=			0.01	EP 02 01	8-17-19-30	720
		Gray silty CLAY (CL). Trace pebbles. Wet.	0.01	38-02-01	8-11-27-33	
Ξ		(TII)				715
=			:			
Ξ						$= \frac{710}{2}$
=						
Ξ						
Ξ						Ē
∃						- 405
Ξ						
Ξ						
=						= "
Ξ]			685
						E
Ξ						680
1						E
\exists						E 675
=						E
Π						670
Ξ						E
Ξ.		l	l			665
					Rev.9-3	12-88

)

)

;

MOSS-AMERICAN MONITORING WELL MW-03S AND MW-03I MW-03S COMPLETED 6/23/88, MW-03I COMPLETED 6/24/88

i

OHM : CT

MOSS-AMERICAN MONITORING WELL MW-04S, MW-04I, AND MW-04D MW-04S COMPLETED 6/7/88, MW-04I COMPLETED 6/20/88, MW-04D COMPLETED 6/9/88

1

MOSS-AMERICAN MONITORING WELL MW-05S MW-05S COMPLETED 6/29/88

2

2

MOSS-AMERICAN MONITORING WELL MW-06S MW-06S COMPLETED 6/28/88

ħ

٩_

MOSS-AMERICAN MONITORING WELL MW-07S AND MW-07I MW-07S COMPLETED 6/15/88, MW-07I COMPLETED 6/15/88

MOSS-AMERICAN MONITORING WELL MW-08S MW-08I MW-08S COMPLETED 6/13/88 MW-08I COMPLETED 6/13/88

MOSS-AMERICAN MONITORING WELL MW-09S AND MW-09I MW-09S COMPLETED 6/17/88, MW-09I COMPLETED 6/16/88

MOSS-AMERICAN MONITORING WELL MW-10S MW-10S COMPLETED 6/21/88

MOSS-AMERICAN MONITORING WELL MW-11S, MW-11I MW-11S COMPLETED 6/28/88, MW-11I COMPLETED 6/27/88.

٦,

MOSS-AMERICAN MONITORING WELL MW-12S MW-12S COMPLETED 6/21/88

	SOIL DESCRIPTION (USCS GROUP SYMBOL)	EXTRAC- TABLE ORGANICS (%)	CLP ANNLYSIS SAMPLE NUMBER	STANDARD PENETRATION TEST RESULTS 9"-9"-9"-9"	
MW-12S 6° CD PROTECTIVE CASENG	(UBCS GROUP SYMBOL) Dark brown, dry, loose, weathered silry fine SAND (SM). Gray and brown fine sandy SILT (ML). Increasing sand with depth.		SB-12-01	7.10-13.12 10-8-8-9 4-10-13-15 1-4-6-8 5.13-73-29	750 745 740 735 730 725 720 715 710
	Gray line to medium SAND (SP). Brown fine to medium SAND (SP). Brown silty CLAY(CL)(Till). Cohesive silty fine sand in seams (Till).	0.00 Net Asstysed	35-12-01	<u>5-11-13-45</u> <u>3-5-7-9</u> Rev.9-	705 700 695 690 685 680 680 675 670 670 670 665 12-88

)

•

MOSS-AMERICAN MONITORING WELL MW-13S MW-13S COMPLETED 6/29/88

٦

MOSS-AMERICAN MONITORING WELL MW-14S MW-14S COMPLETED 6/22/88

	-	Soil Description (USCS Group Symbol)	EXTRAC TABLE ORGANICS (%)	CLP ANALYSIS SAMPLE NUMBER	STANDARD PENETRATION TEST NESULTS S*-S*-S*-S*			
Ę	M W-14S					Ē	/50	
	6" OD PROTECTIVE CASING					E,	745	
						E		
╡		Brown SILT (ML). Some sand and gravel,	0.00		10-15-21-22	E	740	
		roots.	0.00		15-27-51-57	F	i a	
Ξ		Brown silty CLAY (CL). Some sand and	0.00		19-25-31-47	E	735	
Ξ		Brand (1m)	0.00		10-19-36-31	F		
			0.00		22-31-41-45	E	730	
			0.00		12-17-29-21	E		
		Gray CLAY (CL). Some suit and sand in seam	. <u>0.00</u>	SB-14-01	5-10-20-19	E	725	
-		Gray, hard, sandy SILT (SM-ML)(Till).	0.00		17-30-100/0.4	F		
		Trace gravel.	0.00		51-62-100/0.4	E	720	
						F		}
Ξ			Not Analyzed		100/0.4	E	715	,
		······································	0.00		12-100/0.4'	E		
Ξ						E	710	
Ξ						E		
						E	705 🍑	
Ξ						E		
						Ē	70 0	
Ξ						E		
						E	695	
Ξ						E		
						۲	59 0	
						E		
						E٩	685	
Ξ						E		
						E	580	
						E		
=						E	675	
						E)
						E'	570	
Ξ						E.		
		<u> </u>	L	L	Per 9	12.88	600	

)

١

)

MOSS-AMERICAN SOIL BORING SB-16 SB-16 COMPLETED 6/2/88

		SOIL DESCRIPTION (USCS GROUP SYMBOL)	EXTRAC- TABLE ORGANICS (%)	CLP ANNLYSIS SAMPLE NUMBER	STANDARD PENETRATION TEST REBULTS 6"-6"-6"-6"	750
						745
ПП	SB-16					
4						E 735
		Well sorted sandy GRAVEL (Fill). Pieces of former concrete floor.				730
Ξ					16-10-5-9	E
Ξ		Gray, dry to moist stiff silty CLAY (CL-ML).	1.49		5-8-10-13	E 725
=		Visibly contaminated.	0.45	SB-16-01	5-8-48-67	F
Ξ		Light brown, dry, hard SILT (ML). Some sand	0.00		100/8"	Em
		and gravel. Brown to grave moist hard silty CLAY (CL	0.00		100/6"	$E^{\prime 20}$
╡		ML)(Till). Some gravel and sand, Dark red	0.00		8-12-34	
Ħ		mottling throughout.			12-50/4"	F 715
Ξ						E.
=			0.01	SB-16-02	27-48-50/5"	710
-						E
\mathfrak{A}						705
Ħ						F
Ξ						700
						F
=						695
Ξ						E
Ξ				ł		E 690
Н						F
Π			l	l	ł	E
П						
Π						E
					1	680
-						E
Π			1			675
П			l	ļ	l	F
П						670
Π			ļ		l	E
Π						上 665

k

)

}

2

MOSS-AMERICAN MONITORING WELL MW-15S MW-15S COMPLETED 6/22/88

MW_155					1
6" OD PROTECTIVE CASING	SOIL DESCRIPTION (USCS GROUP SYMBOL)	EXTRAC- TABLE ORGANICS (%)	CLP ANNLYSIS SAMPLE NUMBER	STANDARD PENETRATION TEST REBULTS G"-G"-G"-G"	
					F 750
	Brown dry silty CLAY (CL). Trace pebbles	0.00		15-30-30-33	—
	and sand-size shale chips. Formation is moist	0.00		45-58-45-50	745
	below 735 ft.	0.00		31-19-21-23	
		0.00		12-19-24-30	
		0.00		2-15-9-12	740
		0.00		7-10-17-17	
		Not analyzed		10-13-15-17	H.
		0.00		15-20-25-30	E "
		0.00	SB-15-01	7-15-23-20	
		0.00		14-21-25-25	730
3					E
		1			- ms
3					
3					E
					720
=					F
7					F
コ					
コ					710
ゴ				:	· · ·
1					
1					705
=					E
					700
_					
<u> </u>					695
1					
					- 600
3					E
3					
7					685
7					E
7					F
7					F 680
1					F
ゴ	1				675
1					F
1	1]]		F
H					670
—]		1			E
コ					
				Rev.9-	12-88

٠

.

7,

MOSS-AMERICAN SOIL BORING SB-17 SB-17 COMPLETED 6/3/88

MOSS-AMERICAN SOIL BORING SB-18 SB-18 COMPLETED 6/17/88

_	Soil Description (USCS GROUP SYMBOL)	EXTRAC- TABLE ORGANICS (%)	CLP ANNLYSIS SAMPLE NUMBER	STANDARD PENETRATION TEST RESULTS 6"-6"-6"-6"		
					730	
					740	
					730	
	Brown sandy silty CLAY (CL)(Fill).	0.00		<u>4-7-4-6</u> 3-5-7-11	725	
	Brown sandy silty CLAY (CL)(Till).	0.00 0.27 0.00 0.00	SB-18-01	4-5-5-6 4-11-10-9 7-7-7-8 4-10-35-100/5"	715)
		Net Analyzed	SB-18-02	40-100/6" 56-40-67-100	705	
					685 680	
					675	•
				Per Q	670 665	

١

t

MOSS-AMERICAN SOIL BORING SB-19 SB-19 COMPLETED 6/23/88

	ŗ					
		SOIL DESCRIPTION (USCS GROUP SYMBOL)	EXTRAC- TABLE ORGANICS (%)	CLP ANALYSIS SAMPLE NUMBER	STANDARD PENETRATION TEST REBULTS C'-C'-C'-C'	
						750
II	SB-19					
						- 745
	774					E
-		Dark blackish brown SILT (ML) with sand,	0.98			-
		clay. Some oil (landfill).			8-5-4-5	740
			3.73		4-4-7-10	
			2.48	SB-19-01	4-3-3-4	—
		Brown, moist, hard silty CLAY (CL). Trace	0.00		6-32-65-73	735
		pebbles and gravel. Oxidized surfaces and oil	0.00	SB-19-02	21-25-47-65	
		stains present (Till).	0.00		10-20-20-41	E 730
	-		Not Analyzed	SB-19-03	6-19-30-41	
1	—					-
						- 725
						F
						F
						720
_						E
-						F
П						F
П						710
LL						
Ц						E
						705
						<u> </u>
T						E m
Π						F ~
11						F
11						- 695
_						
						F
_						690
_						E
			1			
_						
						F
_				İ		680
_				1		F
					1	F
					1	E 675
	}		1	1	1	E
_	4			1		Em
	4	1	Ĩ	1	1	E
	4					E
	L	I		l	<u> </u>	665
					Rev. 9-	12-88

١

Ť

MOSS-AMERICAN MONITORING WELL MW-20S MW-20S COMPLETED 6/29/88

_		SOIL DESCRIPTION (USCS GROUP SYMBOL)	EXTRAC- TABLE ORGANICS (%)	CLP ANNLYSIS SAMPLE NLMBER	STANDARD PENETRATION TEST RESULTS G*-G*-G*-G*		750
TITI							745
HIII							740
							735 730
	MW-20S						725
	6" OD PROTECTIVE CASING		0.00		2448		720
		Gray brown, wet, sandy SILT (ML). Some clay, trace grayel. Interbadded with fine sand.	0.00		<u> </u>		710
		Gray silty CLAY(CLXTill). Yellowish brown wet sandy SILT (ML). Gray, moist, silty CLAY (CL). Trace pebbles	0.00 0.00 0.00		5-7-55-25 3-5-10-18 12-35-21-27		705
IIIII		and gravel (Till).					700
							69 5 690
IIIII							685
11111							68 0
							675 670
						E	665

Rev. 9-12-88

)

)

)

¥

Appendix G HYDRAULIC CONDUCTIVITY TESTING AND GROUNDWATER ELEVATIONS

.

*

-

۱

.

GLT595/057.50

Appendix G HYDRAULIC CONDUCTIVITY TESTING AND GROUNDWATER ELEVATIONS

INTRODUCTION

Tests were conducted at the Moss-American site to determine hydraulic conductivities, and groundwater elevations were measured. This appendix describes the methods and results.

HYDRAULIC CONDUCTIVITY TESTING

Recovery tests were performed on July 5, 6, and 7, 1988 by Kevin Olson, Stu Grubb, Don Johnson, and Dorothy Hall of CH2M HILL. Each recovery test consisted of measuring water levels in a well following the rapid removal of water from the well. Well locations are shown in Figure G-1. Well recovery data were evaluated using the Bouwer and Rice method.

METHODOLOGY

The tests were conducted as follows:

- 1. Depth to water (i.e., the static water level) was measured. All depth measurements were done with an electric water level indicator using a tape with 0.1-foot divisions.
- 2. About 1 gallon of water was quickly removed from the well using a 4-foot-long stainless steel bailer (about three bailer volumes).
- 3. The depth to water was measured and time was recorded until approximately 90 percent of the initial drawdown in the well recovered.
- 4. The recovery data for each well were plotted as drawdown versus time. Drawdown is the difference between the static water level (measured before the start of the test) and each measurement taken during the test. Drawdown is plotted on a log scale and a straight line drawn through the plotted data. The drawdown at time = t and at time = 0 is determined from the plot and used in the equation in the next step.
- 5. The hydraulic conductivity (K) was calculated using the equation

 $K = [r_{c}^{2} * \ln (R_{e}/r_{w})]/2L * 1/t * \ln(y_{o}/y_{t})$

where,

r_c = Radius of the section of the well in which water rises during the test. When water rose in the sand pack during the test, r_c was corrected to include the pore space in the sand pack.)

1

 $\ln (R_e/r_w) =$ Empirical value determined for each well which depends on aquifer and monitoring-well geometry. Each of the screened intervals at the Moss-American site as assumed to be fully penetrating. Therefore:

$$\ln (\mathbf{R}_{\mathbf{v}}/\mathbf{r}_{\mathbf{w}}) = \left[\frac{1.1}{\ln(H/r_{\mathbf{w}})}\right]^{+} \left[\frac{C}{L/r_{\mathbf{w}}}\right]^{-1}$$

- L = Screen length if the static water level is above the top of the screen; or H, if the static water level is below the top of the screen
- H = Static hydraulic head in the well, measured from the bottom of the screen
- $r_w = Radius of the borehole$
- C = Emperical constant obtained from Bouwer and Rice
- y_o = Initial drawdown in the well (at t = 0) (taken from the graph)
- y_t = Drawdown in well at time t (taken from the graph)

RESULTS

Hydraulic conductivities range from 1.7×10^{-3} cm/s to 3.9×10^{-6} cm/s. The values of the parameters used to calculate hydraulic conductivity for each well are given in Table G-1. A plot of drawdown versus time for each test is shown in Attachment G-1.

Values of hydraulic conductivity across the site indicate the values are consistent with published values of hydraulic conductivity for glacial tills (Todd 1980). Hydraulic conductivities of the shallow wells generally range from 1×10^{-3} cm/s to 5×10^{-4} cm/s in wells completed in zones of alluvium and weathered till. Exceptions to this are MW-14S, MW-06S, MW-01S, and MW-10S, with conductivities of 1×10^{-5} to 1×10^{-6} cm/s. Although MW-14S is classified as a shallow well, it is completed in dense till and interbedded silts and fine sands and is therefore more comparable to the intermediate wells. Hydraulic conductivities calculated at MW-01S and MW-10S are probably not indicative of the soils near those wells. Caving around the screen at MW-01S and the low water level at MW-10S resulted in poor development of the sand

Table G-1

AQUIFER SLUG TEST CALCULATIONS MOSS AMERICAN SUPERFUND SITE

143

- 1

WELL I CONDUCTIVITY I CONDUCTIVITY I RADIUS I ISORN LGTHI @ T=0 I @ T=L I I I HEAD I RADIUS I NUMBER I K (IL/day) I K (Cm/s) I f (II) I I L (II) I YO (II) I YI (II) I (seconds)I H (II) I r (IN) IN MUT-015 0.011 3.9E-06 0.2 2.17 5 6.85 5.01 21000 7.3 4 MUT-015 0.011 3.9E-06 0.2 2.17 5 6.85 5.01 21000 7.3 4 MUT-015 0.011 3.9E-06 0.2 2.17 5 6.85 5.01 21000 7.3 4 MUT-011 0.136 4.8E-05 0.08 3.2 10 8.57 2.51 800 29.0 4 MUT-035 1.373 4.8E-04 0.2 2.2 5 2.84 1.26 450 32.0 4 MUT-035 1.373 4.8E-04 0.2 2.2 5 2.84 1.26 450 32.0 4 MUT-031 0.332 1.2E-04 0.08 3.64 10 5.19 1.58 360 31.9 2.5 MUT-045	C (illess (1.5 2 1.5 1.5 2.7 1.7 1.5 1.5 1.5 1.5 1.5
HLMBER I K (II/day) I K (Cm/s) I (II) I I CINIC I <thi< th=""> I<!--</th--><th>1.1ess (1.5 2 1.5 1.5 2.7 2.7 1.7 1.5 1.5</th></thi<>	1.1ess (1.5 2 1.5 1.5 2.7 2.7 1.7 1.5 1.5
Imm-o1S 0.011 3.9E-06 0.2 2.17 S 6.85 S.01 21000 7.3 4 Imm-o11 0.136 4.8E-05 0.08 3.2 10 8.57 2.51 800 29.0 4 Imm-o2S 1.064 3.8E-04 0.2 2.4 5 4.19 1.58 760 7.9 4 Imm-o2S 1.373 4.8E-04 0.2 2.2 5 2.84 1.26 450 32.0 4 Imm-o31 0.332 1.2E-04 0.08 3.64 10 5.19 1.58 360 31.9 2.5 Imm-o45 NOT TESTED DUE TO EXCESSIVE CONTAMINATION IN WELL Imm-o41 0.161 5.7E-05 0.08 3.64 10 4.05 1.26 730 31.9 2.5 Imm-o40 0.471 1.7E-04 0.08 3.5 5 4.5 2.51 240 35.2 2.5 Imm-o45 0.968 3.4E-04 0.2 2.5 5.89 4.9 2000 4.1 4 Imm-o55 0.968	1.5 2 1.5 1.5 2.7 2.7 1.7 1.5 1.5
MW-01S 0.011 3.9E-06 0.2 2.17 5 6.85 5.01 21000 7.3 4 MW-011 0.136 4.8E-05 0.08 3.2 10 8.57 2.51 400 29.0 4 MW-02S 1.064 3.8E-04 0.2 2.4 5 4.19 1.56 760 7.9 4 MW-03S 1.373 4.8E-04 0.2 2.2 5 2.84 1.26 450 32.0 4 MW-03S 1.373 4.8E-04 0.2 2.2 5 2.84 1.26 450 32.0 4 MW-03S 1.373 4.8E-04 0.2 2.2 5 2.84 1.26 450 32.0 4 MW-041 0.332 1.2E-04 0.08 3.64 10 4.05 1.26 730 31.9 2.5 MW-041 0.161 5.7E-05 0.08 3.64 10 4.05 1.26 730 31.9 2.5 MW-045 0.471 1.7E-04 0.08 2.5 5	1.5 2 1.5 1.5 2.7 2.7 1.7 1.5 1.5
MWY-011 0.136 4.8E-05 0.08 3.2 10 8.57 2.51 800 29.0 4 MWY-025 1.064 3.8E-04 0.2 2.4 5 4.19 1.36 760 7.9 4 MWY-035 1.373 4.8E-04 0.2 2.2 5 2.84 1.26 450 32.0 4 MWY-031 0.332 1.2E-04 0.08 3.64 10 5.19 1.38 360 31.9 2.5 MWY-045 NOT TESTED DUE TO EXCESSIVE CONTAMINATION IN WELL 3.64 10 4.05 1.26 730 31.9 2.5 MWY-041 0.161 5.7E-05 0.00 3.64 10 4.05 1.26 730 31.9 2.5 MWY-04D 0.471 1.7E-04 0.08 3.5 5 4.5 2.51 240 35.2 2.5 MWY-04D 0.471 1.7E-04 0.2 2.5 5 3.2 1.58 630 13.8 4 MWY-055 0.970 2.5E-05 </th <td>2 1.5 1.5 2.7 1.7 1.5 1.5</td>	2 1.5 1.5 2.7 1.7 1.5 1.5
MW-025 1.064 3.8E-04 0.2 2.4 5 4.19 1.58 760 7.9 4 MM-035 1.373 4.0E-04 0.2 2.2 5 2.04 1.26 450 32.0 4 MM-031 0.332 1.2E-04 0.00 3.64 10 5.19 1.58 360 31.9 2.5 MM-045 NOT TESTED DUE TO EXCESSIVE CONTAMINATION IN WELL MWELL MM-041 0.161 5.7E-05 0.08 3.64 10 4.05 1.26 730 31.9 2.5 MM-040 0.161 5.7E-05 0.08 3.64 10 4.05 1.26 730 31.9 2.5 MM-040 0.161 5.7E-05 0.08 3.64 10 4.05 1.26 730 31.9 2.5 MM-055 0.968 3.4E-04 0.2 2.5 5 3.2 1.58 630 13.8 4 MM-055 0.968 3.7E-05 0.2 2.2 5 5.89 4.9 2000 6.1 4 MM	1.5 1.5 2.7 2.7 1.7 1.5 1.5
INIT-03S 1.273 4.8E-04 0.2 2.2 5 2.84 1.26 450 32.0 4 INIT-031 0.332 1.2E-04 0.00 3.64 10 5.19 1.56 340 31.9 2.5 INIT-045 NOT TESTED DUE TO EXCESSIVE CONTAMINATION IN WELL IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	1.5 2.7 2.7 1.7 1.5 1.5
ANT-031 0.332 1.2E-04 0.08 3.64 10 5.19 1.58 360 31.9 2.5 NOT TESTED DUE TO EXCESSIVE CONTAMINATION IN WELL NOT TESTED DUE TO EXCESSIVE CONTAMINATION IN WELL V	2.7 2.7 1.7 1.5 1.5
IMP-04S NOT TESTED DUE TO EXCESSIVE CONTAMINATION IN WELL IMP-041 0.161 3.7E-05 0.08 3.64 10 4.05 1.26 730 31.9 2.5 IMP-04D 0.471 1.7E-04 0.08 3.5 5 4.5 2.51 240 35.2 2.5 IMP-04D 0.471 1.7E-04 0.08 2.5 5 3.2 1.58 630 13.8 4 IMP-05S 0.070 2.5E-05 0.2 2.2 5 5.89 4.9 2000 8.1 4 IMP-07S 1.041 3.7E-04 0.08 2.2 5 1.66 0.3 200 8.0 4 IMP-071 0.071 2.5E-05 0.08 3.64 10 3.62 1.26 1500 32.4 2.5 IMP-005 NOT TESTED DUE TO EXCESSIVE CONTAMINATION IN WELL NOT TESTED DUE TO EXCESSIVE CONTAMINATION IN WELL 5 5 1.26 1.26 1.20 32.4 2.5	2.7 1.7 1.5 1.5
MNY-041 0.161 5.7E+05 0.08 3.64 10 4.05 1.26 730 31.9 2.5 MNY-04D 0.471 1.7E+04 0.08 3.5 5 4.5 2.51 240 35.2 2.5 MNY-04D 0.968 3.4E+04 0.2 2.5 5 3.2 1.58 630 13.8 4 MNY-06S 0.070 2.5E+05 0.2 2.2 5 5.89 4.9 2000 8.1 4 MNY-07S 1.041 3.7E+04 0.08 2.2 5 1.66 0.3 200 8.0 4 MNY-071 0.071 2.5E+05 0.08 3.64 10 3.62 1.26 1500 32.4 2.5 MNY-071 0.071 2.5E+05 0.08 3.64 10 3.62 1.26 1500 32.4 2.5 MNY-00S NOT TESTED DUE TO ERCESSIVE CONTAMINATION IN WELL S S S S S S	2.7 1.7 1.5 1.5
MW-04D 0.471 1.7E+04 0.08 3.5 5 4.5 2.51 240 35.2 2.5 MW-05S 0.968 3.4E+04 0.2 2.5 5 3.2 1.58 630 13.8 4 MW-05S 0.070 2.5E+05 0.2 2.2 5 5.89 4.9 2000 8.1 4 MW-07S 1.041 3.7E+04 0.08 2.2 5 1.66 0.3 200 8.1 4 MW-071 0.071 2.5E+05 0.08 3.64 10 3.62 1.26 1500 32.4 2.5 MW-08S MOT TESTED DUE TO EXCESSIVE CONTAMINATION IN WELL 5 5 5 5 5 5 5 5 5 5 5 5 6 7 4 6 7 7 6 7 4 7 7 7 7 7 7 7 7 7 7 7 7 7	1.7 1.5 1.5
NNV-055 0.968 3.4E+04 0.2 2.5 5 3.2 1.58 630 13.8 4 NNV-055 0.070 2.5E+05 0.2 2.2 5 5.89 4.9 2000 8.1 4 NNV-075 1.041 3.7E+04 0.06 2.2 5 1.66 0.3 200 8.0 4 NNV-071 0.071 2.5E+05 0.08 3.64 10 3.62 1.26 1500 32.4 2.5 NNV-005 NOT TESTED DUE TO EXCESSIVE CONTAMINATION IN WELL 5 <td< th=""><td>1.5 1.5</td></td<>	1.5 1.5
MNT-06S 0.070 2.5E-05 0.2 2.2 5 5.89 4.9 2000 8.1 4 MNT-07S 1.041 3.7E-04 0.00 2.2 5 1.66 0.3 200 8.0 4 MNT-07S 1.041 3.7E-03 0.00 2.2 5 1.66 0.3 200 8.0 4 MNT-071 0.071 2.5E-05 0.00 3.64 10 3.62 1.26 1500 32.4 2.5 MNT-00S NOT TESTED DUE TO EXCESSIVE CONTAMINATION IN WELL 5 <td< th=""><td>1.5</td></td<>	1.5
AW7-075 1.041 3.7E+04 0.06 2.2 5 1.66 0.3 200 8.0 4 MW-071 0.071 2.5E+05 0.08 3.64 10 3.62 1.26 1500 32.4 2.5 MW-005 NOT TESTED DUE TO EXCESSIVE CONTAMINATION IN WELL 10 3.62 1.26 1500 32.4 2.5	
NW-071 0.071 2.5E+05 0.08 3.64 10 3.62 1.26 1500 32.4 2.5 NW-00S NOT TESTED DUE TO EXCESSIVE CONTAMINATION IN WELL	1.5
MIN-00S NOT TESTED DUE TO EXCESSIVE CONTAMINATION IN WELL	1.7
MN-081 0.051 1.8E-05 0.08 4.1 10 3.83 2.45 1000 42.6 2	3.1
MW-095 1.487 5.2E-04 0.2 1.8 4 0.71 0.4 300 4.0 4	1.2
MIT-091 0.013 4.5E-06 0.08 3.64 10 5.52 2 8000 31.0 2.5	2.7
MNY+105 0.012 4.1E-06 0.2 1.3 2 1.75 1.62 7500 2.0 4	0.9
MW-115 0.300 1.4E-04 0.00 2.4 5 3.0 1.50 300 10.2 4	1.5
MNY-111 0,182 6,4E-05 0,08 3,64 10 4,89 1,58 625 30.8 2.5	2.7
NNV-125 4.746 1.7E-03 0.2 1.3 2 0.40 0.16 260 2.0 4	0.9
NW-135 3.669 1.3E-03 0.2 2.4 5 2 0.79 210 7.3 4	1.5
NW-145 0.119 4.2E-05 0.2 2.5 9 0.86 0.76 500 9.0 4	1.8
MN-15S NOT TESTED, DRY WELL	
MN-205 0.840 3.0E-04 0.2 2.2 5 1.51 0.5 1000 6.9 4	1.5

pack around the wells. Also, the small number of data points obtained during the tests make the results questionable.

Conductivities in the deep and intermediate wells are distinctly lower than for the shallow wells. The values range from 1.2×10^4 cm/s to 4.5×10^6 cm/s. The stratigraphy adjacent to the screened section of the wells consists of unweathered glacial till and interbedded lacustrine silts, sands, and clays.

GROUNDWATER ELEVATIONS

Groundwater elevations were collected to define the groundwater flow system and the relationship between groundwater and the Little Menomonee River. Groundwater levels were used to contour groundwater elevations on the site.

METHODOLOGY

Groundwater within each well was measured using an electric water level indicator graduated in 0.01-foot increments. All measurements were taken from the top of the riser pipe in each well and converted to feet above an arbitrary datum. The datum was estimated for the side topographic map.

Surface water elevations were measured at the site concurrently with groundwater level measurements. Surface water elevation data were used to determine the relationship between surface and groundwater at the site. Surface water measurements were recorded to the nearest 0.01 foot from a staff gauge installed in the river between MW-08S and MW-20S.

Groundwater and surface water elevations are summarized in Table G-2 and plotted and contoured in Figure G-2.

RESULTS

Contoured groundwater elevations indicate that a trough exists on the west side of the Little Menomonee River. Limited data exist for the east side, but a similar trough is assumed to exist there. The data indicate that the Little Menomonee River is a gaining stream above monitoring well nest 8 and a losing stream downstream of the well nest. The losing stream may be due to unusually low water levels because of this year's drought. The gaining reach of river upstream of MW-08S is probably due to the swamp north of Brown Deer Road that acts as a constant head boundary and continuous source of groundwater recharge.

Water level measurements should be taken during a period of normal rainfall to determine if these conditions are typical.

Table G
N

			. 7-1		7-5-	:	7-	19-88
	RISER 1	ELEVATION	DEPTH TO WATER	ELEVATION	DEPTH TO	ELEVATION	DEFTH TO WATER	ELEVATION
						1 12 12	A 02	734 17
MI-011	742.29	742.04	7.27	735.02	35.52	704.77	7.29	715.00
-025	734. 52	735.00	10.35	724.17	20.36	714.26	10.30	724.22
SC0-M	- 731. 55 1	726.89 (9 .40	722.15	17.31	714.24	9.31	722.04
MI-031	730.65	738.78	a. 50	722.15	8.5	490.11	0.63	722.02
11-04S	732.91	731.13 I	.	727.87	NOT TAKEN	NOT TAKEN 1	5.03	727.66 -
W-041	1 733.10 1	730.00		724.3	40.69	692.41 1	9.09	724.01
	732.49	731.15 1	16.25	716.24	\$1.66	68 0.83 (17.15	715.34
WF-055	724.97	723.15	6.42	710.55	20.42	704.55	6.67	718.30
MI-065	725.50	722.71	7.15	718.35	15.39	710.11	8.99	717.41
MT-075	721.84	719,79	7.35	714.49	15.37	704.47	7.46	714.34
MW-071	721.66 1	720.06 1	5.82	715.84	38.81	682.85	6.68	714.98
280-FM	721.08 1	718.50	7.57	713.51 5	NOT TAKEN	NOT TAKEN I	6.73	712.35
M7-081	721.73	718.60	7.79	713.94	50.57	671.16	7.92	713.81
200-M	1 722.03 1	719.77	11.26	710.77	15.38	706.65	12.09	709.94
160-1	721.44	719.30	9.72	711.72	40.86	48 0. 58	10.50	710.94
105	726.48	734.13	10.44	716.04	12.55	713.93	11.52	714.96
115	725.57	723. 56 1	10.02	715.55	20.29	705.28	10.74	714.83
111-1	725.80 1	723.49 [10.52	715.26	42.87	683.23	12.42	713.38
125	719.87	717.74	0.21	711.66	12.45	707.42	9.35	711.52
- 135	738.55	737.93	5.21	733.34	12.49	726.06	5.73	732.82
M-145 [742.97 1	740.97 I	22.48	720.49	10.5	712.39	22.63	720.34
#**-195 I	1 750.53 1	749.39	DRY	24	10.43	740.1		-
NS-205	720.13	716.90	• .53	710.6	15.65	704.46	0. JO	711.83
Little meno	minee River 1	711.97	1.47	713.44		_	-	713.5

(

ALL MONITORING WELL MEASUREMENTS STAFF CAGE REFERENCE: 0 + 711.97 ī 2

.

ð

.

.

÷

The stratigraphy adjacent to the screened section of the wells consists of unweathered glacial till and interbedded lacustrine silts, sands, and clays.

GROUNDWATER ELEVATIONS

Groundwater elevations were collected to define the groundwater flow system and the relationship between groundwater and the Little Menomonee River. Groundwater levels were used to contour groundwater elevations on the site.

METHODOLOGY

Groundwater within each well was measured using an electric water level indicator graduated in 0.01-foot increments. All measurements were taken from the top of the riser pipe in each well and converted to feet above an arbitrary datum. The datum was estimated for the side topographic map.

Surface water elevations were measured at the site concurrently with groundwater level measurements. Surface water elevation data were used to determine the relationship between surface and groundwater at the site. Surface water measurements were recorded to the nearest 0.01 foot from a staff gauge installed in the river between MW-08S and MW-20S.

Groundwater and surface water elevations are summarized in Table G-2 and plotted and contoured in Figure G-2.

RESULTS

Contoured groundwater elevations indicate that a trough exists on the west side of the Little Menomonee River. Limited data exist for the east side, but a similar trough is assumed to exist there. The data indicate that the Little Menomonee River is a gaining stream above monitoring well nest 8 and a losing stream downstream of the well nest. The losing stream may be due to unusually low water levels because of this year's drought. The gaining reach of river upstream of MW-08S is probably due to the swamp north of Brown Deer Road that acts as a constant head boundary and continuous source of groundwater recharge.

Water level measurements should be taken during a period of normal rainfall to determine if these conditions are typical.

REFERENCES

Bouwer, Herman, and R. C. Rice. A slug test for determining conductivity of unconfined aquifers with completely or partially penetrating wells. *Water Resources Research.* 12(1976): 423-8.

Todd, David K. Groundwater Hydrology. New York: John Wiley and Sons. 1980.

GLT779/020.50

٩,

•

Attachment G-1 AQUIFER TEST DATA PLOTS

۱

١.

2

GLT595/057.50

•

آر ا

Drawdown In Feet (H-h)

Drawdown in Feet (H-h)

٩.

}

Ŧ

Drawdown in Feet (H-h)

2

1

Drawdown in Feet (H—h)

٦,

MONITORING WELL RECOVERY TEST

1

Drawdown Im Feet (H-h)

MONITORING WELL RECOVERY TEST

۱

1

)

Drawdown in Feet (H-h)

MONITORING WELL RECOVERY TEST

)

)

1

MONITORING WELL RECOVERY TEST

Drawdown in Feet (H-h)

1

Drowdown in Feet (H-h)

Appendix H GROUNDWATER SAMPLING

٩

١

GLT595/057.50

Appendix H GROUNDWATER SAMPLING

INTRODUCTION

Groundwater monitoring wells at the Moss-American site were sampled by Kevin Olson, Stu Grubb, Dorothy Hall, and Don Johnson of CH2M HILL on July 11, 12, and 13, 1988. Sample temperature, pH, and conductivity were measured onsite. Samples sent to CLP laboratories were analyzed for BOD, COD, TOC, TDS, TSS, acidity (or alkalinity), total phenols, sulfate, organic compounds, and inorganic chemicals.

SAMPLING PROCEDURE

EQUIPMENT

Four-foot-long, stainless steel, bottom-loading bailers were used to purge and sample each well. Bailers were raised and lowered with 1/8-inch-diameter nylon string. Five-gallon buckets were used to collect and measure purge water. Purge water was stored onsite in 55-gallon drums for disposal by the EPA.

DECONTAMINATION

Bailers were cleaned between each well by scrubbing with a detergent wash and rinsing in tap water, followed by spray rinses with a methanol and distilled water solution and finally with distilled water. Bailer string was discarded after each well and replaced with new string.

PURGING

Each well was purged immediately before sampling. At least five well volumes were removed from wells with sufficient recovery to allow continuous bailing. Other wells were bailed dry three times before sampling. Between each successive bailing the wells were allowed to recover approximately 50 percent. Purge volumes for each well are listed in Table H-1.

SAMPLING

Sample bottles were filled in the field by pouring the sample from the bailer. Following collection, the sample was taken to the field trailer for measurement of pH, conductivity, and temperature, and for preservation and filtering. Information regarding containers, preservation, and filtration of samples is provided in the project Quality Assurance Project Plan. Sampling locations are shown on Figure H-1.

	Depth		Ga: Be:	llons Purge fore Sampli	d ng
	of Water	Well	lst	2nd	3rd
Well No.	in Well (ft)	Volume (gal)	Purge	Purge	Purge
16 -015	7.3	1.2	1	1	
167-01I	28.2	4.6	28		
M -025	9.9	1.6	10		
26 7-035	7.9	1.3	5	· 3	
10-031	32.0	5.2	13	5	10
267-04S	10	1.6	4	4	
16 -041	31.9	5.2	31		
M-0 4D	35.4	5.8	35		
M -05S	14.0	2.3	Bai	led dry thr	ee times,
			5 g	al (total)	removed
M -06S	8.2	1.3	2	1	1
M -07S	7.9	1.3	8		
MW-071	33.0	5.4	33	**	
15-08S	5	0.8	(#)		
16-081	42.8	7.0	42		
M-095	4.1	0.7	5		
MW-091	31.1	5.1	9	5	5
MW-10S	2.1	0.3	0.5	0.1	(b)
MW-11S	10.3	1.7	10		
MW-11I	32.1	5.2	17	14	
MJ-125	4.2	0.7	4		
MJ-13S	7.3	1.2	4.5	3	
MJ-145	8.1	1.3	8	-	
M-15S	Drv	0			
MW-20S	6.1	1.0	5		

Table H-1 MONITORING WELL PURGE VOLUMES

.....

- - - - --

¥

^aSampled without purging ^bNot sampled due to insufficient recovery

GLT779/018.50

.

-

FIGURE H-1 MONITORING WELL LOCATIONS MOBS-AMERICAN RI

٠.

FIELD OBSERVATIONS

The following observations were made during sampling:

- Purge water from MW-04 contained occasional slight oil sheens.
- Creosote odor was detected in MW-07 during purging, although that may have been due to the proximity of a creosoted railroad bridge.
- Occasional oil sheens were noted on purge water from MW-08I.
- Approximately 2 feet of oil had accumulated in MW-08S prior to sampling. The only contamination detected during well construction was in one small sand seam.

The field measurements of pH, conductivity, and temperature are listed in Table H-2. The field parameters were used to indicate abnormal conditions. If any had been found to be abnormal, then resampling after additional purging would have been considered. However, no wells were resampled on the basis of field parameter measurements.

The temperature readings do not accurately reflect the actual groundwater temperature. Ambient air temperature was in the 90s and the warm sensor may have affected the readings. Field measurements of the sample took place with 5 to 10 minutes of sample collection, but some warming may have occurred in that time.

The values obtained for pH fall within a reasonable range. The slightly basic conditions are typical of natural waters in carbonaceous environments. The soils at the Moss-American site are derived from a carbonate-rich glacial till, and part of the site is covered with either dolomite or limestone gravel.

Conductivity in shallow groundwater ranged from 480 to 1,240 μ mhos/cm (mean = 875 μ mhos/cm). Groundwater from intermediate and deep wells was less conductive, ranging from 250 to 820 μ mhos/cm (mean = 450 μ mhos/cm). Conductivity measurements are indicative of differences in dissolved ion concentrations in groundwater. The relevance, if any, of the variability in conductivity measurements at the Moss-American site will be evaluated further when complete analytical results are available.

GLT779/017.50

Table H-2 FIELD MEASUREMENTS

ï

Ŧ

			Temperature ^a		Conductivity
Well No.	Date	Time	(°C)	PH	(unhos)
MW-01S	7/13/88	1652	22	7.80	1,050
MW-01I	7/11/88	1130	22	7.53	680
MW-02S	7/11/88	1401	19	7.65	480
MW-03S	7/11/88	1504	22	7.35	9 60
MW-03I	7/11/88	1511	20	8.50	280
MW-04S	7/13/88	1542	26	7.64	1,020
MW-041	7/13/88	1113	22	8.14	820
MW-04D	7/12/88	1320	20	8.12	280
MW-055	7/11/88	1614	16	7.47	800
MW-06S	7/12/88	1457	17	7.61	570
NW-07S	7/12/88	1632	17	6.79	9 70
MW-07I	7/12/88	1728	19	8.61	350
MW-085		Not analyz	ed due to oil co	ntamination	L .
MW-08I	7/13/88	1028	26	8.41	250
MW-095	7/12/88	9 55	24	6.79	860
MW-091	7/12/88	1653	17	8.21	310
MW-10S			Not sampleddry	7	
MW-115	7/13/88	1611	19	7.11	9 50
MW-111	7/12/88	1656	16	7.59	640
MW-125	7/12/88	1142	23	7.08	770
MW-135	7/11/88	1218	24	7.11	1,120
MW-145	7/13/88	1406	20	7.37	600
MW-155			Not sampleddry	7	
MW-205	7/13/88	1518	21	7.00	1,240

^aTemperature measurements are not indicative of actual groundwater temperature.

GLT779/18-2

Appendix I GROUNDWATER FLOW CALCULATIONS

.

\$

GLT779/076.50

•

:

Appendix I GROUNDWATER FLOW CALCULATIONS

Groundwater flow calculations for the Moss-American site were made using Darcy's law (Freeze and Cherry 1979). The water levels used in these calculations were measured on July 19, 1988, and are reported in Appendix G. Additional calculations using estimated values for normal water levels are also presented. (Data from July 1988 are representative of extremely dry conditions during a drought.)

The governing equation (Darcy's law) used in the calculations is:

Q = KIA

where:

- Q = Groundwater volume passing a given area
- K = Hydraulic conductivity of the sediments
- I = Hydraulic gradient
- A = Cross sectional area through which groundwater flows

Contoured groundwater elevations are shown in Figure I-1. The flow is generally to the east-northeast toward the Little Menomonee River. For these calculations, it is assumed that all of the water passing the 715-foot contour eventually leaves the site. The extreme drought in Wisconsin during the time groundwater elevations were measured has greatly affected the groundwater flow. During more typical periods, the groundwater probably discharges to the river and then flows away from the site.

The portion of the site upgradient of the 715-foot contour has been separated into five flow channels as shown in Figure I-1. Each channel represents the path along which groundwater would flow in that part of the site. The hydraulic characteristics of the nearest monitoring well are considered representative of the entire flow channel. The calculations are summarized in Table I-1. The total horizontal groundwater outflow based on actual conditions in July 1988 is 556,000 gallons per year.

Table I-2 summarizes a similar flow calculation based on anticipated normal conditions. The water table in this case is assumed to be 2 feet below ground. Minimum and maximum estimates for normal flow were obtained by using the minimum and maximum values of hydraulic conductivity measured in the shallow onsite wells. The estimated normal horizontal outflow is between 1.5 and 4.4 million gallons per year.

GLT779/025.50

Table I-1 GROUNDWATER OUTFLOW

		F	low Channel	8	
	1	2	3	4	5
Width (ft)	190	225	430	430	270
Nearest Monitoring Well	N W-75	M W-85	MW-9S		MW- 11S
Water Level Elevation on 7/19/88	715	715	715	715	715
Top of Till	710	700	707	712	706
Saturated Thickness (ft)	5	5	8	3	9
Area (Width x Saturated Thickness) (ft ¹)	95 0	1,125	3,440	1,290	2,430
Hydraulic Conductivity (K) (ft/day)	1.0	1.4	1.5	1.0	0.4
Gradient (I)	0.015	0.022	0.026	0.022	0.022
Flow Volume (Q)					
(ft ³ /day)	15	35	130	28	21
(gal/day)	110	260	1,000	210	160
(gal/yr)	41,000	95,000	360,000	78,000	57,000
Total (gal/day)	1,700				
(gal/yr)	634,000				

^aMW-10S is the nearest monitoring well. Because the measured value for K in MW-10 (0.012 ft/day) is not representative of the material and the slug test data for that well are questionable, the value used (1.0 ft/day) is the log average value from all shallow wells.

GLT779/026.50

٩,

}

1

)

Table I-2 GROUNDWATER OUTFLOW ESTIMATED "NORMAL" CONDITIONS

		Flo	w Channels		
	1	2	3	4	5
Width (ft)	190	225	430	430	270
Thickness of					
Overburden (ft)	14 (MW-07)	11 (MW-08)	12 (MW-06)	11 (MW-10)	19 (MW-11)
Saturated					
Thickness (ft)	12	9	10	9	15
Area (cross section ft ²)	2,200	2,700	4,300	3,900	4,000
Hydraulic					
Conductivity ^a		2	x 10 ⁻³ cm/	6	
Hydraulic					
Conductivity ^b		4	x 10 ⁻⁴ cm/	5	
Gradient		*	0.02		

Estimated Normal Flow: 1 to 5 million gallons per year (3,000 to 14,000 gpd, or 2 to 10 gpm)

•

۰.

^aMaximum hydraulic conductivity measured onsite ^bLog-average hydraulic conductivity for shallow wells

GLT779/077.50

2

le en die Gesternen werden en der einen gegenzen der seine eine gesternen versternen die seine der die die eine

FIGURE 1-1 GROUNDWATER ELEVATIONS AND FLOW CHANNELS MOSS-AMERICAN RI
Appendix J CONTAMINANT VELOCITY CALCULATIONS

•

۱

۱.

GLT779/078.50

٩,

Appendix J CONTAMINANT VELOCITY CALCULATIONS

This appendix contains the retarded velocity calculations performed for select contaminants at the Moss-American site.

1. The first step was to determine the average linear velocity of groundwater along the four flowpaths illustrated in Figure J-1 using the following equation:

 $V = KI/\theta$

where:

- V = the linear velocity of groundwater (ft/yr)
- K = the log averaged hydraulic conductivity of the aquifer (ft/day)
- I = the hydraulic gradient along a specific flowpath (ft/ft)
- θ = the effective porosity of the squifer (dimensionless), assumed to be 0.34 (Todd)

FLOWPATH 1

MW-02S to MW-07S I = 724.22 - 714.38 ft/945 ft = 0.0104 ft/ft

- $V = KI/\theta$
- $K = 0.4230 \, ft/day$
- $\theta = 0.34 \text{ (Todd)}$

V = (0.4230 ft/day)(0.0104 ft/ft)/0.34 = 0.0129 ft/day = 4.71 ft/yr

FLOWPATH 2

MW-04S to MW-08S 727.88 to 712.35 ft over 720 ft I = 727.88 - 712.35 ft/720 ft = 0.0220 ft/ft V = KI/ Θ K = 0.4230 ft/day Θ = 0.34 V = (0.4230 ft/day)(0.0220 ft/ft)10.34 = 0.0274 ft/day = 10.00 ft/yr

FLOWPATH 3

MW-11S to the Little Menomonee River 714.83 to 711.52 ft over 360 ft l = 714.83 - 711.52 ft/360 ft = 0.0092 ft/ft $V = Kl/\theta$ K = 0.4230 ft/day

- $\theta = 0.34$
- V = (0.4230 ft/day)(0.0092 ft/ft)10.34 = 0.0115 ft/day = 4.20 ft/yr

```
FLOWPATH 4
```

MW-14S to MW-12S 720.34 to 711.52 ft over 525 ft I = 720.34 - 711.52 ft/525 ft = 0.0168 ft/ft V = K1/ θ K = 0.4230 ft/day θ = 0.34 V = (0.4230 ft/day)(0.0168 ft/ft)/0.34 = 0.0209 ft/day = 7.63 ft/yr

The average linear velocity for the site is about 7 ft/yr.

ъ

2. The second step was to calculate the distribution coefficient for the site using the equation:

.....

.....

. ..

• • • •

•••••

. .

)

۱

Kd = K_{cc} • % OC/100

where:

___ .

.

Kd = the distribution coefficient (dimensionless)

 K_{oc} = the organic carbon partition coefficient (ml/g) % OC= the percent of organic carbon in the soils at the site (average = 3%)

Compound	\underline{K}_{oc} (ml/g)		<u>oc</u>	K. (ml/g)
Benzofalanthracene	1.380.000(1)		0.3	41,000
Benzolalpyrene	676.083(2)	•	0.3	20,000
Benzolbilluoranthene	550.000(1)		0.3	16.500
Benzolkifluoranthene	550,000(1)	٠	0.3	16.500
Chrysene	200.000(1)	٠	0.3	6.000
Dibenzola hlanthracene	3.300.000(1)	٠	0.3	99.000
Indeno[1.2.3-cd]pyrene	1.600.000(1)	٠	0.3	48.000
Naphthalene	1.300(3)	٠	0.3	39
Phenanthrene	14.000(1)		0.3	420
Benzene	83(1)	٠	0.3	3
Ethvihenzene	1,100(1)	٠	0.3	33
Toluene	300(1)	٠	0.3	9
Xviene	240(1)	٠	0.3	7
	(-)			

Superfund Public Health Evaluation Manual, OSWER Directive 9285.4-1, 10/1/86. Karickhoff, S. W. Sorption of Hydrophobic Pollutants on Natural Sediment. In W. J. Lyman, Chemical Property Estimation Methods. 1982. (1) (2)

(3) Griffen, R. A. Preliminary Report of Soil Contamination Investigation, Seymour RI/FS. 1985.

3. The third step was to calculate the retardation coefficient for the selected contaminants at the site using the following equation:

 $Rd = 1 + K_d (\rho/\theta)$

Compound	K_{t} (ml/g)	Rd
Benzo[a]anthracene	41,000	240,000
Benzojajpyrene	20,000	120,000
Benzo b fluoranthene	16,500	97,000
Benzo k fluoranthene	16,500	97,000
Chrysené	6,000	35,000
Dibenzo[a,h]anthracene	99,000	580,000
Indeno[1,2,3-cd]pyrene	48,000	280,000
Naphthalene	39	230
Phenanthrene	420	2,500
Benzene	3	18
Ethylbenzene	33	195
Toluene	9	54
Xyiene	7	42

The fourth and final step was to calculate the contaminants retarded velocity using the following 4. equation:

Vc = V/Rd

where:

V = the average linear velocity of groundwater (ft/yr) estimated to be about 7 ft/yr Rd = the retardation coefficient (dimensionless)

Compound	V/Rd	<u>Vc</u>
Benzo[a]anthracene	7 ft/vr/240.000	10 ⁻⁵ ft/yr
Benzolalpyrene	7 ft/vt/120.000	10 ⁻⁴ ft/yr
Benzo b flouranthene	7 ft/vr/97.000	10 ⁻⁴ ft/vr
Benzoklflouranthene	7 ft/vr/97.000	10 ⁻⁴ ft/yr
Chrysène	7 ft/vt/35.000	10 ⁻⁴ fl/yr
Dibenzo[a,h]anthracene	7 ft/vt/580.000	10 ⁻⁵ ft/yr
Indeno[1,2,3-cd]pyrene	7 ft/yr/280.000	10 ⁻⁵ ft/yr
Naphthalene	7 ft/vr/230	0.03 fl/vr
Phénanthrene	7 ft/vt/2_500	0.003 ft/vt
Benzene	7 ft/vt/18	0.4 ft/yt
Ethylbenzene	7 ft/vt/195	0.04 ft/yr
Toluene	7 ft/vt/54	0.1 ft/vr
Xylene	7 ft/y1/42	0.1 ft/yt

In summary, the retarded travel times range from a few inches per year for the BTX compounds to almost zero for the PAH compounds. These calculations assume migration occurs in the dissolved state with the groundwater.

The calculations do not address the question of free product migration or migration of microemulsions (micelles). Since oil stringers and sheens were observed in the groundwater at the site, it is reasonable to expect that most of the transport is by way of the oil phase (oil seepage). A rigorous calculation of travel times for a saturated oil slug is not possible because of the heterogeneity of the surface soils at the site.

An upper bound for oil seepage is the groundwater velocity. At 7 feet per year, a particle of oil could take 100 years to migrate from the source area to the Little Menomonee River.

GLT779/074.50

١

FIGURE J-1 GROUNDWATER FLOWPATHS MOSS-MERCAN RI

6

Appendix K BASELINE RISK ASSESSMENT .

٠

١.

GLT779/078.50

Ъ

Appendix K BASELINE RISK ASSESSMENT

INTRODUCTION

A baseline risk assessment is an evaluation of the potential threats to public health and the environment from the site in the absence of any remedial action (U.S. EPA 1988d). It identifies and characterizes the toxicity of contaminants of concern, the potential exposure pathways, the potential human and environmental receptors, and the extent of expected impact or threat under the conditions defined for the site.

This appendix presents the baseline risk assessment for the Moss-American site. A risk assessment was performed to characterize the potential risk posed by the site in order to support a decision whether to proceed with a feasibility study of potential remedial actions. It addresses the potential risks associated with the Moss-American site assuming no corrective actions will take place and no restrictions will be placed on future use of the site (i.e., the "no-action alternative"). Thus, it addresses potential risks from the site under current and feasible future land uses. Evaluation of a no-action alternative is required under Section 300.68(f)(1)(v) of the National Contingency Plan (NCP) (U.S. EPA 1985c).

BASIS

This risk assessment was performed consistent with the following guidances:

- U.S. EPA risk assessment guidelines (U.S. EPA 1986a, 1986b, 1986c, and 1986d)
- The Risk Assessment Guidance for Superfund--Human Health Evaluation Manual Part A (U.S. EPA 1989f)
- The Risk Assessment Guidance for Superfund--Environmental Evaluation Manual (U.S. EPA 1989e)

This risk assessment is based on the following major assumptions:

- No remedial actions will be taken.
- No land use restrictions will be in effect.
- There is the potential for future development of the site.

• For the purpose of calculations, contaminant concentrations will not change over time.

١

)

)

• All carcinogenic PAHs are as potent as benzo[a]pyrene.

This risk assessment is based on the data collected during the RI and presented in Chapter 3. Data that may represent contamination of samples in the laboratory or in the field or that failed to meet quality control guidelines (e.g., insufficient surrogate spike recovery) were not used. Estimated results (data with a "J" qualifier) that met data validation requirements were used.

ORGANIZATION

This appendix is organized into the following sections:

- Contaminant Identification identifies the contaminants evaluated in the assessment.
- Toxicity Assessment summarizes the toxicity of the selected contaminants.
- Exposure Assessment describes how receptors could come into contact with contaminants from the site.
- **Public Health Risk Characterization** integrates the toxicity and exposure assessments to estimate the potential risks to public health from exposure to site contaminants.
- Environmental Evaluation considers the potential environmental effects associated with the site.
- Limitations and Assumptions summarizes the basic assumptions used in the risk assessment and limitations of data and methodology.

The methodology used to assess public health risk is outlined in Appendix L. The risk calculation data tables are presented in Appendix M.

CONTAMINANT IDENTIFICATION

Seventy chemicals on the U.S. EPA's Target Compound List (TCL) and Target Analyte List (TAL) were detected at the site. These chemicals are presented by media of occurrence on Table K-1. There were 47 organic compounds and 23

CHEMICAL	BUTFACE BOIL	SUBBURFACE SOIL	GEDIMENTS	GROUNDWATER WELLS	SURFACE WATER
	~	~	2	~	
Benadialenenacene	×	X	*	×	
	~	× ~	, ,	Ŷ	
	~	~	Ŷ	Ŷ	
Champer	~	~	Ŷ	Ŷ	
	Ŷ	Ŷ	Ŷ	~	
	Ŷ	Ŷ	Ŷ		
Assachthese	x	Ŷ	x	x	x
Asso sphthylese	×	Ŷ	Ŷ	x	ĥ
Anthronom	Ŷ	Ŷ	× ×	Ŷ	
Bestole h Brendene	×	Ŷ	Ŷ	~	
Skierathees	Ŷ	Ŷ	x	x	
Eberese	Ŷ	Ŷ	Ŷ	х х	¥
2. Mathida and thailens	Ŷ	Ŷ	x	x	Ŷ
Naphthalana	x	×	x	x	x
Phone of the open	Ŷ	Ŷ	×	x	x
Pyrene	x	x	x	x	-
PHTHALATES					
bie(2-Ethylhexyl)phthalate	x	x		x	
Butylbenzylphthalate			x		
Diethylphthalate		x			
Dimethylphthalate	x	x			
Di-n-butyiphthalate		x	x		x
Di-n-octylph thalate		x	x		
BENZENE/TOLUENE/XYLENE (BTX)					
Benzene	x			x	
Ethylbenzene	x	x	x	x	
Taluene	×	x	x		
Xylenes	×	x		×	
OTHER VOLATILES					
Styrene	x	x		x	
Carbon disulfide		X			
KETONES					
Acetone	x	X	X		
2-Butanone		x	x		
4-Methyl-2-pentanone	×				
İsopharone		X		×	
HALOGENATED ALKENES & ALKANES					
Chloroform		x	x		
1,1,-Dichloroethane	x				

Table K-1 COMPOUNDS DETECTED AT THE MOSS AMERICAN SITE

٩,

٠

•

وبرواد المعادية المتعاد المتواف المستحد والمتعاد	BURFACE		ويسطين والمتعاد	GROUNDWATER	BURFACE
CHEMICAL	SOIL	BOIL	SEDMENTS	WELLS	WATER
Blothylane chieride	x	×	x		x
Tetrachicrosthene	x				
1,1,1-Trishisrosthane	x	x			
OTHER SEMI-VOLATILE COMPOUNDS					
Bonasic Acid	x	x	x		
Chiersbongene		x			
Disenaciuran	x	x	x	x	x
4-Chiorentine					
PHENOLIC COMPOUNDS					
2,4-Dimethylphenol	x			x	
2,4-Dinkrephenol	x				
81-Nitrasadiphenylamine	x		x		
Pentachiorophenol		x			
Phenoi		x		x	
NORDANIC CHEMICALS					
Auminum	x	x	x	x	x
Antimony	x	x	x		
Amenic	×	x	x	x	
Bariu m	x	x	x	×	x
Beryllium	x	x	x		
Cadmium	x	x	x		
Calcium	x	x	x	x	x
Chromium	x	x	X	×	
Cobalt	×	x	×		
Capper	x	x	x		
Cyanide	×	x			
Iron	×	x	x	x	x
Lead	x	x	x	x	
Magnesium	x	x	×	x	x
Manganose	x	x	x	x	x
blerouty	x	x	x		
Aligko i	x	x	x	x	
Potesium	x	x	x	x	x
Belenium	x		x		
Sedium	x	x	x	x	x
Thelium	x				
Vanadium	x	×	x	x	
Zinc	x	x	x	x	x
DICIXINS and FURANS					
Histiachiaradiaxin	x		x		
Heptachiorofuran			x		
Hexachlorodioxin		x	x		

Table K-1 COMPOUNDS DETECTED AT THE MOSS AMERICAN SITE

•

۱

٠

}

)

CHEMICAL	BURFACE BOIL	BUBBURFACE BOIL	SEDMENTS	GROUNDWATER WELLS	SURFACE WATER
Nexabioroluran			x		
Östashloradiotin	x		x		
Tetrachioro-dictin(total)	x				
Tetrachioro-2,3,7,8-dicxin	x				
Pentachioradioxin			x		
Pontachioroluran			X		

Table K-1 COMPOUNDS DETECTED AT THE MOSS AMERICAN SITE

•

4

٠

¥

inorganic chemicals. As discussed in Chapter 3, many of the organic chemicals detected are constituents of creosote.

٩,

From this group of chemicals a subset of chemicals were identified as contaminants of potential concern to be used in this risk assessment. Contaminants of potential concern were selected in a two-step process. The first step entailed identifying all chemicals that have either a toxicity factor (i.e., cancer potency factor or reference dose) issued by U.S. EPA or a state or federal environmental media standard or criterion and were detected in an environmental medium or location with which people or wildlife could have contact. Thirty chemicals detected at the site met this selection criterion (see Table K-2).

Since not all chemicals detected at the site have toxicity values or environmental standards, a second review step was performed to determine whether any other chemicals should be included as contaminants of potential concern for the risk. Factors considered in this review included toxicity information, frequency of detection at the site, concentration detected, and environmental fate considerations.

Seven polycyclic aromatic hydrocarbons (PAHs) were added as contaminants of potential concern based on carcinogenicity concerns. They do not have individual cancer potency factors, so they were evaluated using the cancer potency factor of benzo[a]pyrene (see Table K-2). Chemicals that do not have critical toxicity values but were included as contaminants of potential concern include noncarcinogenic PAHs (e.g., anthracene, phenanthrene, and fluorene) and dibenzofuran. These chemicals are major constituents of creosote. The risks from exposure to these chemicals were not quantitatively estimated, however, the significance of exposure to these chemicals is discussed under "Toxicity Assessment".

}

ł

Nine chlorinated dioxins and furans were selected as chemicals of potential concern. Based on toxicity concerns of these chemicals, only 2,3,7,8-tetrachloridbenzo-p-dioxin (TCDD) has a cancer potency. The other compounds were addressed using the dioxin equivalency approach outlined in Chapter 3.

The remaining chemicals detected at this site were not included in this risk assessment. Their exclusion, however, should not significantly alter the outcome of the risk assessment. For example, the chemicals not included either have relatively low toxicity, were detected in only one or two of the samples analyzed, or were present at relatively low concentrations. Inorganic compounds were not included if the detected concentrations did not exceed background soil concentrations.

CHEMICAL	Selected based on critical toxicity values	Selected based on toxicity concerns	Selected based on other factors	
			4	
Acenaphthylene			đ	
Acetone			•	
Anthracene	-		đ	
Antimony			-	
Arsenic	b			
Barium				
Banzane	b			
Benzolalanthracene	-	C		
Benzolbifluoranthene		c		
Benzolkifluoranthene		c		
Benzolo.h.iberviene		c		
Benzolalovrene		-		
Benzoic Acid	-			
Beryllium	1			
bis(2-Ethvihexvi)ohthalate	a/b			
2-Butanone	1			
Cadmium	a/b			
Chlorinated dioxins and furan	5		1	
Chloroform	a/b			
Chromium	a/b			
Chrysene			d	
Copper	8			
Creosote	b		•	
Dibenz[a,h]anthracene		C		
Dibenzofuran			d	
1,1-Dichloroethane	a/ b			
2,4-Dinitrophenol	a '			
Ethylbenzene	8			
Fluoranthene			d	
Fluorene			d	
indeno[1,2,3-cd]pyrene		C		
Lead	Ł			
Manganese	8			
Mercury	8			
Methylene chioride	a/b			
Naphthalene	t			
Nickel	8			
Phenanthrene			đ	
Phenol	8			
Pyrene			ď	
Styrene	8			
2,3,7,8-TCDD	D			
Toluene	4			
1,1,1-Trichloroethane	8			
Vanadium	a .			
Xylenes	4			
Zinc				

.

۱.

Table K-2 Potential Contaminants of Concern and Criteria for Selection Moss-American Site

7

a. Selected based on having a reference dose value.

b. Selected based on having a cancer potency value.

c. PAHs selected based on potential carcinogenicity.

d. Selected based on frequency of occurance and relative abundance.

e. Creosote selected because it is the major source material.

f. Dioxins and furans selected based on toxicity.

TOXICITY ASSESSMENT

HUMAN HEALTH EFFECTS

This section summarizes the toxicological effects associated with exposure of people to the contaminants of concern and the dose-response relationships for those chemicals.

Contaminant Classification

For the purpose of this risk assessment, human health effects were divided into two broad categories--carcinogenic or noncarcinogenic. Consequently, human health risks were evaluated in terms of carcinogenic and noncarcinogenic risks. This division was based on the mechanism of action currently associated with each category. Although the chemicals was divided into two categories, some are associated with effects in both categories. The division was based on the mechanism of action currently associated with each category.

Carcinogens are chemicals that cause or induce cancer. Carcinogenic effects demonstrate a nonthreshold mechanism. In this approach, there is no level of exposure (i.e., threshold) to a carcinogen that will not result in the possibility of developing cancer. Chemicals causing noncarcinogenic effects (i.e., systemic toxins) exhibit a level of exposure from above zero to some finite value that can be tolerated by the organism without causing an observed health effect.

1

)

U.S. EPA has developed a carcinogen classification scheme (U.S. EPA 1986d) using a weight-of-evidence approach to classify the likelihood of a chemical to be a human carcinogen. Information considered in developing the classification includes human studies of the association between cancer incidence and exposure as well as long-term animal studies under controlled laboratory conditions. Other supporting evidence considered includes short-term tests for genotoxicity, metabolic and pharmacokinetic properties, toxicological effects other than cancer, structure-activity relationships, and physical/chemical properties of the chemical.

Nineteen of the individual contaminants detected at the site and creosote as mixture are classified as known (class A), probable (class B1 and B2), or possible (class C) human carcinogens by the U.S. EPA Carcinogen Assessment Group. Those chemicals and definitions of the EPA classifications are presented on Table K-3.

Noncarcinogenic health effects include a variety of toxic effects on body systems such as renal toxicity (toxicity to the kidney), teratogenicity (damage to the developing fetus), and central nervous system disorders. It is believed that organisms may have adaptive mechanisms that must be overcome before a toxic

Table K-3 POTENTIAL CARCINOGENS MOSS-AMERICAN SITE

U.S. EPA Carcinogen Assessment Group			
8	Classification (a)		
CHEMICAL	INGESTION	INHALATION	
Arsenic	A	A	
Benzene	A	A	
Benzojajanthracene	B 2	B 2	
Benzo[b]fluoranthene	B 2	B 2	
Benzo[k]fluoranthene	B 2	B2	
Benzo[a,h]anthracene	B 2	B2	
Benzo[a]pyrene	B 2	B 2	
Beryllium	D	B2	
bis(2-Ethylhexyl)phthalate	B2	D	
Cadmium	D	B 1	
Chloroform	B2	D	
Chromium (hexavalent)	D	Α	
Chrysene	B 2	B 2	
Creosote	B 1	Bi	
1,1-Dichloroethane	С	D	
Indeno[1,2,3-cd]pyrene	С	C	
Methylene Chloride	B 2	B 2	
Nickel	D	A	
N-Nitrosodiphenylamine	B 2	D	
Tetrachloroethene	B 2	B 2	

(a) U.S. EPA Carcinogen Assessment Group Classification

A: Human carcinogen - Sufficient evidnece from epidemiological studies.

- B1: Probable human carcinogen Limited evidence of carcinogenicity to humans.
- B2: Probable human carcinogen Sufficient evidence in animals and Inadequate or no human evidence.
- C: Possible human carcinogen Limited evidence in animals and the absence of human data.
- D: Not Classified Inadequate or no evidence to classify.

endpoint (effect) is manifested. The toxicity of a chemical is assessed through a review of toxic effects noted in short-term (acute) animal studies, long-term (chronic) animal studies, and epidemiological investigations. The noncarcinogenic effects of the chemicals at the site are summarized below.

Toxicity Profiles

Summary toxicity profiles for selected contaminants are presented in Table K-4. The chemicals listed in Table K-4 are representative of the contaminants of potential concern for the site. The omission from Table K-4 of a chemical listed on Table K-2 does not imply that the chemical is without toxic effects. The profiles describe specific toxic effects associated with exposure to those chemicals. Detailed profiles can be found in the toxicological literature.

Creosote

Creosote is the major material used at the Moss-American site. It is a complex mixture of more than 200 compounds. Because of this, its properties and effects are summarized separately in this section.

Creosote is a heavy, flammable, oily liquid with a characteristic caustic burning taste and sharp, smoky odor. PAHs comprise 75 percent of creosote, with phenanthrene and anthracene being the major constituents (17.4 to 23 percent) (Lorenz and Gjovik 1972). Other components include phenolic compounds, aromatic amines, and specifically dibenzofuran, naphthalene, and methylnaphthalene.

)

1

Acute Effects. Acute exposure to creosote liquid or vapor may cause local effects such as skin irritation and ulceration. Human fatalities have been reported 14 to 16 hours after ingestion of 1 to 2 grams by children or 7 grams by adults (Clayton and Clayton 1981). Systemic poisoning effects may include salivation, vomiting, respiratory difficulties, headache, cyanosis, convulsions, and cardiovascular failure. Dermal contact may produce burning, itching, skin eruptions, and contact dermatitis (Sittig 1985).

Chronic Effects. Prolonged exposure to creosote may cause degeneration of organ tissues. Results of organ damage indicate kidney inefficiency and hemolytic anemia (Gosselin, et al. 1984). Creosote may also indirectly alter the toxicity of other chemicals by induction of metabolizing enzymes of the liver and lungs (IARC 1985).

Carcinogenicity. Creosote is listed as a class B1 carcinogen according to the U.S. EPA 1986 classification scheme. It has been reported to cause skin carcinomas in humans through chronic dermal exposure to the compounds in industry (NCI 1985). It has been found to be carcinogenic to mice and

Chlerofora	Cadinitum	Brnzo (a) py rewe	Bente coo	Arsenic	Chemical	
Anasthetic depresses CMS. Fatalities in humans may be repid, resulting from cor- diac arrest (approach) sensitization to opinghrism) as deleged with hidder and liver demages regulatory depression, come, liver and hidney damage are among the symptoms of exposure to chickforform. In laboratory animals, acute toxicity depends on species, strain, set, and age: liver damage may be cause of death in rats and mice after acute exposure.	For acute exposures by injection, symptoms of codeius toxicity facinde names, volting, distines, macciar cramps, solivetion, spame, drop in blood pressure, vertigo, loss of conscioneners, and collapse. Acute resal failure, liver damage, and death any accur. Exposure by inhelation con cases irritation, combing labored respiration, vesiting, acute chemical prevenouitis, and peinsmary edema.	Acute tomicity appears low when administered by oral or dermal routes to lab animals.	Acute esposures (inhelation) to high levels of benzeme may lead to depression of the central merrous system, unconsciousness, and death or may cause fatal cordiac arrhythmiss.	Acute oral exposure can cause mascular cramps, facial swelling, cardiovascular reactions, severe sastrointestinal dealey, and vascular collapse leading to dealty sensory loss, hematopoletic symp- toms delayed after exposure to high con- centrations and usally reversible. Inhelation exposures can cause severe inhelation of mass lining, larynz, and bronchi.	Acute Texicity Summary*	
Eidney damage (renal tabular necrosis) can occur in sice; and kidney and liver damage in rate, rabbits, dogs, and guines pigs exposed by inhelation.	Respiratory and remai toxicity are major effects in workers. Chronic otal exposures can produce bidney damage. Cadaius accumulates in bidney damage. Cadaius accumulates in bidney damage. Cadaius accumulates in bidney, and mephropathy results after critical inhalation can cause chronic obstructive pulmonary disease, including bronchilis, progressive (bronic, and tempingena. Chronic emposure affects colcius netabolism and can cause loss of colcius from bone, bone pulm, outerumulation, and outroporealis. Chronic exponence any be associated with hypertension. Codaius sterility, and teratopenic effects in experimental minute.	Prolomped exposure may produce chronic dermstitis and reproductive changes. Repeated oral doses to sice have caused hypoplastic anemia.	Major toxic effect is hematopoietic toxicity (affects formation of blood) chronic exposure of vorters to low levels has been associated with blood disorders, such as lewheels and aplastic encels (depression of all three cell types of the blood in absence of functioning marrow).	Chronic oral or inhalation emposers can produce changes in stin, including hyper- plementation and hyperteratosis; peripheral neuropathy; liver injury; cardiovascular discritera; oral emposures associated with peripheral vascular disease, blactfoot disease.	Chronic Toxicity Summary*	Table K-4 (Page 1 of 5) PROFILES OF SELECTED CHEMICALS MCRS-AMERICAN SITE
Carcinopenic in mice Trapetones, hepatocellular cericinenss), maje rets (maingnesk kidney tumore), and female rets (thyroid tumore).	Increased risk of prostate concer and perhaps respira- tory tract cancer is workers emposed by inhalation. We eridence of carcimopenicity from chromic oral empowere.	Denso(a)pyreme is a contituent of coal ter which is classified as a Lavel i thourn carcinopen by IANC and a Level B2 probable carcinopen by DPA. Impesion may produce stomach tumors and inholation lang concer. Prolonged sits exposure has been linked to an increase in skin cancer among workers.	Sufficient evidence that humm and unionic concilionment strong correlation between emposure to benevem by inhalation and leutenia.	Rnown human carcinogen; oral erposures associated with skin cancer, inhelation erposures with lung cancer.	Cancer Potential	
Petotoric in rets and rabbits.	A nonessentisi element.	Benzo[a]pyreme is the most carcinogenic of the PNHs. It is also a mutagen. (See PNHs for general toxicity information.)	Chromesonal aberrations in bone marrow and blood have beam reported in experimental animals and some workers.	May be essential. Toxicity varies for different compounds inorquaic trivalent arsenic compounds war- ally more toxic than pentavalent compounds high doses of some inorquate arsenic com- pounds to present inforquate alformations produced mailtons in offspring.	Other	

GLT008/007

٩

•

•

Et hy Ibenzene	1,2-Dichlorvethane	Cressot	Chroaite	Chemicel	
Ethylbeneene is irritating to eyes, success sembranes, and skin. It can cause heedaches and marcosis.	Central nervous system depression, lung irritation, and injury to liver, kidney, and adremals have been reported. Deaths in Named emposed by impetion or inhaletion may remait from circulatory and respiratory failure.	The liquid and vapors of creeoute are atrong irritants. Exponents may produce local erthema, benthing, itching, pigmentation, and possible electration of the skin. By indering could remail from direct contact to the eyre. Systemic poissening may remail in solivetion, veniting may remail in solivetion, veniting may remain in solivetion, and rempiratory difficulties. Direct contact with skin may cause perere chanical burns.	Hajer acute offect from oral exposure is remail tubeler mecrosis. Inholation of chromate saits remails in irritation and inflammation of mesal mecosa, ulcoration, and perforation of mesal septum.	Acute Textcity Summerr ⁴	
	Chronic exponent can cause liver degeneration and hidney demaps in laboratory animals. Eye demaps inscredin of corneal spithelium) has been observed in dogs injected with 1,2-dichloroethame. Repeated empowerve have been associated with anorrails, hauses, liver and hidney dysfanction, and meanological disorders in workers.	Repeated engeneurs has been associated with an increased risk of developing bronchits, and cancer of the lungs, shin, bladder and kidneys isee cancer potential).	Chronic exponers to herevolved chronium has resulted in Eidery damage in animals and herease. Inheletion exponerse to chromates in inheletion exponers to resulted in meal subbrase inflammedian, chronic ribuitis, larympilis, and pher- ympilis. Exponense to skin can result in allergic skin reactions in sensitive individual. Overall, heuretlent forms are usually more tonic them trivalent forms.	Chronic Texicity Summary*	Table R-4 (Page 2 of 5) PROFILES OF SELECTED CHEMICALS HUGS-AMERICAN SITE
	Cercinegenic in mice and reta exposed orally.	Creasest is classified as a B1 probable corringen by the U.S. The. Morters accrustionally wappend to creased by chronic skin exposure have dereilqued cancer pupillones on the forears and acrotum. Repeated skin exposure to rate has produced skin cancer.	Encess lung concer has been associated with chromate- producing industry workers. Chromate suits are carcino- genic in rats exposed by inhelation.	Cancer Petential	
	Natagemic in some tests in bacteria, barley, and fruit files.	Cressols has shown to be mategoric to rats and micr ofter the chemical is first artibolized by the organism. Cressols contains way known carringpress and other PNMs, as well as other PNMs, as well as other Chemicals that may act us initiations, or promotors of carringpmesis.	Essential element. Toxicity is related to valence state.	Other	

٩,

GL7388/007

1

٩

• t

(

(_

- _____

Table K-4 (Page 3 of 5) PROFILES OF SELECTED CHERICALS NOSS-AMERICAN SITE

2

a a

٠

Chestcal	Acute Toxicity Summery*	Chronic Toxicity Dennery*	Cancer Potential	Other
Leed	Acute inorganic leaf intoxication in humans is characterized by encephalopathy, abdominal pain, hemolysis, liver damage, renal tubular necrosis, seisures, come, and respiratory arrest.	Chronic low levels of exposure to lead can affect the hematopoletic system, the mervous system, and the curdiovascular system. Lead inhibits several key ensymes involved in home biosynthesis. One characteristic effect of chronic lead intoxication is amenia, by reduced hemoglobin production and shortened erythrocyte survival. In humans, lead erythrocyte survival in nerveus system injury including reduced hand-eye coordination, reaction time, visual motor performance, and nerve conduction velocity. The developing child appears especially sentitive to lead-induced nervous system injury. Lead can also affect the immune system and produce gingival lead lines. Epidemiological studies have indicated that chronic lead exponure may be associated with increased blood pressure in humans. Exposure to lead is associated with sterility, abortion, meonatal mortality, and morbidity. Oryanolead compounds are neurotoxic.	Lead saits have some evidence of carcinogenicity in amimals.	Children are especially sensitive to low level effects.
Manganese	Acute inhalation exposures to very high concentrations can cause manganese pneumonitis.	Chronic manganese poisoning results from inhalation of high concentrations of manganese dust. Chronic manganese poisoning is characterised by psychiatric symptoms, such as irritability, difficulty in walking, speech disturbances, and compulsive behavior and by encephalopathy and progressive deterioration of the contral nervous system. Chronic effects of manganese poisoning are similar to Pertimeon's disease. Liver changes are also frequently seen. Individuals with an iron deficiency may be more susceptible to chronic poisoning.		Ranganese is an essential mutrient. Manganese concentrations in mater a 50 Mg/1 may exhibit undesirable taste and discoloration.
Reroury	Inholation of mercury vapor can cause branchilis and mervous system effects. Oral exposure can result in abdominal cramps, gastrointestinal effects, ulceration, shock, circulatory collapse, and remai failure.	Occupational exposure to inorganic mercury can produce effects on mervous system, including tremors, orethism, muscular weakness, personality changes, gingivitis, and colored eye reflex. In children, pink eye disease has been reported after ingestion of mercurous compounds. Exposure to organic mercury can cause sensory and visual dis- turbances, tingling, paresthesiae, numbness, weakness in extremities and progressive ataxis, tremor, cerabral atrophy, and degeneration of merves; visual, peripheral neuropothy, and deeth.		Mercury crosses placenta. Toxicity depends on chemical form. Metallic, organic, and inorganic compounds can be blotromsformed.
Nethylene chloride	Acts on the central nervous system, causing marcosis; affects the liver. Fatalities have been assolciated with acute or prolonged exposure.	In animals chronic exposure can affect the liver and kidney. Damage to liver and central nervous system following long-term occupational exposure has been reported.	Carcinogen in laboratory animals.	Mutagenic in some bacterial tests.

-

•

Table K-4 (Page 4 of 5) PROFILES OF SELECTED CHENICALS NOSS-AMERICAN SITE						
Chenics1	Acute Toxicity Summery*	Chronic Toxicity Dumery*	Cancer Potential	Other		
Naphthelene	Inhation of vapor may cause eye irritation, headsche, and confusion. Ingestion may cause abdominal pain, nauses and vomitting. Skin and/or eye contact may lead to systemic effects such as bladder irritation, kidney effects and hemoletic effects such as anemia, decreased hemoglobin. In animal studies, maphthalene was observed to produce branchiolar necrosis in rats.	Occurence of calaracts upon suphthelene vapor and dust exposure has been observed in humans. Subchronic animal studies have shown that oral doess of naphthelene produced cataracts and degeneration of the rotins. Dermatis has also been reported in workers that have reposted skin exposure. Two studies have reported hemolytic anomia in infants born to mothers exposed to maphthelene during pregnancy.	Studies have not shown that maphthalane is carcinogenic. Naphthalane is cumuonly found in coal tar and apidemiological studies have shown coal tar to be carcinogenic. The role of naphthalane alone could not be determined.	Acute enposure to large doses may cause hemolytic effects (destruction of red blood cells). This effect is most promounced in individuels with a hereditary deficiency of glurose-6-phosphate dehydrogenese.		
Pheno1	Corrosive to tissue; severe eye damage and blindness may result from direct eye contact; skin contact may produce whitening of skin, burn, or systemic poisoning. Paleness, weakness, sweating, headches, cyanosis, kidney damage, and death may occur.	Chronic phenol poisoning is rare; it induces womlting, difficulty swallowing, diarrhee, lack of appetite, headaches, fainting, disziness, and neural disturbances. Liver and kidney damage may occur.	Phenol may promote the effects of certain carcinogens.			
Polycyclic aronatic hydrocarbons	Acute toxicity by oral and dermal doses appears low when administered to lab animals.	Exposure to high concentrations of noncarcinogenic PAHs may reput in widespread tissue damage to proliferating tissues such as intestinel epithelium, bone marrow jumphoid organs, and testes. Chronic dermatitis and hyperkeratosis may also result from repeated stin exposure. Carcinogenic PAHs com produce immunosuppressive effects in humans.	PARe are constituents of coal tar which is classified as a level 82 probable carcinogen by CAG and level known carcinogen by IARC. Stomach tunors can result from ingestion and lung cancer from inhelation emposure. An increased incidence of stin cancer has been noted from direct.	PANs include: bento[a]anthracens, bento[b]fluoranthene, bento[t]fluoranthene, bento[a]pyrene, chrysene, dibento[a,h]anthracene, indemo[1,2.3-cd]pyrene.		
2,3,7,8-Tetrachlorodibenzo- p-dloxin (TCDD)	2,3,7,8-TCDD is the most toxic known synthetic chemical, based on LD30 stud- ics. The oral LD30 in guines pigs is 0.6 to 2 bg/kg and in uice is 204 bg/kg. A single dome of 0.1 to 300 bg/kg can produce toxic effects in rats, guines pigs, chickews, and nice. Toxic effects include liver damage (histopathologic change, jeundice, increased liver weights), thymic alrophy, gastric hen- orriage, testicular degeneration, weight loss, pericordial edems (chickens), and kidney and hematological effects. Namans exposed to TCDD by industrial accidents reported namesa, vomiting, headaches, fatigue, mascular aches and joint palms, pripheral neuropathy, loss of libido, and irritation of eyes, res- piratory tract, and skin; skin reactions resembled a chemical burn, followed by chiorache (am often persistent, disfig- uring skin disease with blackheeds, cysts, and pustules, wusaily on face and shoulders); some symptoms persisted for years after exposure.	Toxic effects from chronic emposure are similar to those from acute emposure. In information and the second	In animals, aral exposure to TCDD produced malignant tumors in weitiple organs, including liver, thyroid, adrenals, lung, kidney, testes, neas structure, ear duct, and sking lewteels was demonstrated in some studies. Nonse skin studies have indi- cated that TCDD is a complete carcinogen, while other studies support that TCDD is a promoter, particulary in liver. Soft timme sarcoms have been foumd in workers occupationally emposed to TCDD and other chanicals, usually trichlorophenol or phenomy acids.	Nectorial tests and a study of chromosomal breaks in rats are among these indicating that TCDD is mata- genic; many other tasts have been mega- tive. TCDD can accu- mulate in fat and milk. It alters enzyme activity and may affect metabolism of other chemicals. TCDD is a contaminant that can be produced in the manufacture of chlorophemols.		

GL**T888/0**07

-

· -

 \smile

,*

T

÷

		Table K-4 (Page 5 of 5) PROFILES OF STLEXTED CHEMICALS MOSS-NHERICAN SITE	
Chemical	Acute Toxicity Summery*	Chronic Toxicity Summery ⁴	Cancer Potential
folwene	Numers ergoned by inhalation experi- mentally or occupationally or by intentional abuse may exhibit excita- tion, them CDS depression and merrorisy meurotoxic effects include mauses, fatigue, and incoordination at low levels and confusion, staris, and weak- mess at higher levels; in rats, irrita- tion of succes membranes and incoordi- nation have been observed, as well as pulsonary irritation with swhchronic exposure.	CRS effects have been reported in wort- ers, such as disturbances in memory and thinking, psychomotor skills, visual accuracy, sensorimotor skills, visual accuracy, sensorimotor sheed, and per- formance tests; indications of cerebral and cerebellar dysfunction include tran- ors, ataxis, and equilibrium disorders, bitarre behavior and emotional iddility may occur. In cases of abuse, changes in liver and kidney function have been observed. In rais, a futurense in hematorit has been reported.	Embryotosicity and possil teratogenicity in mice h been reported in an abat in rats, skeletal retard of offspring has been described.
Xy lene	Acute exponentes to inhaled sylene can depress the central merrous system and irritate succus membranes.	Changes is behavioral tests, manual coordination, balance, and electro- encephalographic patterns have been reported in humans supposed to sylenes; development of tolerance against some of these effects has been described. Effects on liver of rats have been reported.	
Iluc	Acute adverse effects of sinc include metal fume fever by the inheletion of fumes. Fever, haveau, vositing, stomach cramps, diarrhee may result from acute ingestions.	Prolonged ingestion of sinc can result in irritability, measular stiftness and pais, loss of appetite, and neases. High lowels of sinc in diet may retard growth and produce defective sinerali- sation of bone.	
	The Instant and I from a f C. D. Massam. H. O	Juday and J. Provid Manufillan Babilables Pa	Ĩ

Casarett and Dwall's Theiroslogy, 3rd editions, ed. C. D. Klassen, R. O. Ander, and J. Doull, Hacrillan Publishing Co., New York IAR Humographe, Yol. 3, 70, 73, International Academy of Sciences, 1977.
Phirokook of Their and Maaith, Yo. 1, Mational Academy of Sciences, 1977.
Phirokook of Their and Maaith, Yo. 1, Mational Academy of Sciences, 1977.
Phirokook of Their and Maaith, Yo. 1, Mational Academy of Sciences, 1977.
Phirokook of Their and Maaith, Yo. 1, Mational Academy of Sciences, 1977.
Phirokook of Their and Maaith, Yo. 1, Mational Academy of Sciences, 1977.
Phirokook of Their and Maaith, Yo. 1, Mational Academy of Sciences, 1977.
Phirokook of Their Constraints, organics, organics, and perticides, March, 1987.
Physiciant and Academy of J. J. Spectra and M. H. Schwamburg, Hilliana and Hilkins, Baltimere, 1980.
Physiciant and Their Sciences 10, 1985. Williana and Wiltins, Baltimore, 1982.
Physiciant Studies In Man, W. J. Phys. J. Nerves. 1011, 1984.
O (The 1910;30417-50495, December 10, 1985, ORM, Occupational Exposure to Formaldehyde.
O (The 141:32170-32570-32570, 52570-52570, 5270, Drinking Water.
ACUIN, American Conference of Covernmental Industrial Mysienists, Inc., Documentation of the Threshold Limit Values, 1990, 1994.
Nealth Effects Assessment Document for Haphthalame, V.S. EPA, 1994. CO., MAN YORK 1995.

Meeith effect or target organ may be based on unimal studies and does not imply that the results of exposure to humans will be the same.

GLTMMM/007

Other

y and possible y in sice have in an abstracty etal retardation has been

Essential metrient. Traste threshold 15 ppm; 40 ppm soluble sinc salts import a metallic taste.

mutagenic to mice and rats after it was first metabolized by the organism (Bos, et al. 1987). The lack of oral and inhalation exposure data make it difficult to determine toxicity in humans from these routes. Total creosote concentrations were not determined, but the following are some of the major constituents detected at the site that contribute to the toxicity of creosote.

PAHs are major constituents of creosote. Some PAHs are carcinogenic, such as benzo[a]anthracene and benzo[a]pyrene and have been related to the carcinogenic characteristics of creosote (U.S. EPA 1987). Studies have documented that PAHs induce tumors of the skin, lung, and other epithelial tissues and have been summarized by the EPA (1980a).

Noncarcinogenic Components. Noncarcinogenic PAHs such as phenanthrene, anthracene, and fluorene are also found in creosote. Fluoranthene, like most other noncarcinogenic PAHs, has a relatively low LD_{50} of 2 g/kg (oral) and 3.2 g/kg (dermal). However, application of fluoranthene to mouse skin previously exposed to a carcinogenic PAH (e.g., benzo[a]pyrene) has greatly enhanced the carcinogenic effects (U.S. EPA 1980b). No reference dose values have been determined for noncarcinogenic PAHs. Exposure to high concentrations of PAHs may produce noncarcinogenic effects including widespread tissue damage to proliferating tissues such as skin, intestinal epithelium, and lymphoid organs.

Phenol is also a constituent of creosote. Although present in low concentrations, phenol and phenolic-derivations of tar acids have been related to the acute toxicity of creosote (Gosselin, et al. 1984). Phenol itself is known to cause severe skin burns upon dermal contact and is rapidly absorbed through the skin. Systemic effects may result from this absorption or other routes of acute exposure and include paleness, weakness, stomach disturbances, shock and possibly death. Phenol has been shown to increase the carcinogenic effects of PAHs and other carcinogens when applied simultaneously to the skin of a mouse (Casarett and Doull 1986). The chemical skin burns and systemic effects that were reported in children cleaning up the Little Menomonee River may have been caused by the phenolic compounds in creosote.

)

1

Dose-Response Relationships

Toxicity is dependent upon the dose or concentration of the substance (i.e., the dose-response relationship). Critical toxicity values are a quantitative expression of the dose-response relationship for a chemical. Critical toxicity values take the form of reference doses and cancer potency factors, both of which are specific to exposure routes.

Two primary sources of toxicity values were used. The primary source is the U.S. EPA's Integrated Risk Information System (IRIS) database

(U.S. EPA, 1989b). IRIS is the U.S. EPA's repository of agencywide verified toxicity values. If a toxicity value was not available through IRIS, then the Quarterly Update of the Health Effects Assessment Summary Table (HEAST) issued by the EPA's Office of Research and Development (U.S. EPA 1989g) was consulted. Cancer potency factors for arsenic and benzo[a]pyrene were taken from other U.S. EPA sources (U.S. EPA 1988b and U.S. EPA 1980a).

Reference Dose. The toxicity value describing the dose-response relationship for noncarcinogenic effects is the reference dose (RfD). The U.S. EPA RfD Work Group (U.S. EPA 1989b) defines RfDs as follows:

In general, the RfD is an estimate (with uncertainty spanning perhaps an order of magnitude) of a daily exposure to the human population (including sensitive subgroups) that is likely to be without an appreciable risk of deleterious effects during a lifetime. The RfD is generally expressed in units of milligram per kilogram of body weight per day (mg/kg/day).

The RfDs used in this assessment are presented in Table K-5. This assessment uses the term RfD to describe all of the toxicity values for noncarcinogenic effects. Some of the RfDs listed in the HEAST update have also not yet undergone the agencywide verification process that values in IRIS have.

RfDs for some inorganic compounds are for specific forms (e.g., hexavalent and trivalent chromium). The TAL analyses do not, however, report concentrations of specific forms, but rather give results in terms of "total" inorganic chemical. In such situations, it was assumed that unless otherwise known, the most toxic form is present and its RfD used.

Cancer Potency Factor. The dose-response relationship for carcinogens is expressed as a carcinogenic potency factor or slope factor. Carcinogenic potency factors are presented in units of the inverse of milligrams of chemical per kilogram of body weight per day. The potency factors used in this assessment are summarized on Table K-5.

The data used for estimating the dose-response relationship are taken from lifetime animal studies or human occupational or epidemiological studies where excess cancer risk has been associated with exposure to the chemical. In animal studies, it is assumed that if a carcinogenic response occurs at the dose levels used in the study, then a response will occur at all lower doses. For practical reasons, low levels of risk cannot be measured directly, either by animal experiments or epidemiologic studies (U.S. EPA 1984a). Use of cancer potency factors inherently assumes that cancer risk is probalistic and any degree of exposure leads to some degree of risk.

•

.

Table K-5 TOXICITY VALUES MOSS-AMERICAN SITE

	Ingestion Route:			Inhalation Ploute:			Ingestion Picule:			Inhelation Route:				
	U.S.EPA Carcinogen	Carolnegente Potency Factor			U.S.EPA Caroinogen	Caroinogenie Potency Factor			Flaturanae Dcae (FilD)			Palarance Dose (RD)		
Chemical	Classification	(tig-day/ing)	Source	Date	Ciscolication	(kg-deying)	Bource	Dete	mphpiday	Bource	Date	mg/kg/day	Source	Date
Acetone	-	-	-	-	-	-		•	0.1	IRIS	7-1-80	-	-	-
Antimony	-	-	-	-	-	-	-	-	0.0004	IFIIS	3-1-88	-	-	-
Areenic	Α	1.75	•	-	A	50	1 Fi1S	6-1-88	-	-	-	-	-	-
Berlum	-	-	-	-	-	-	-	-	0.05	IFIS	8-1-00	0.0001	HEAST	7-1-80
Benzene	A	0.029	IFIIS	2-1-88	A	0.029	IFN S	2-1-88	-	-	-	-	-	-
Benzojajanihracene	82	11.5	đ	đ	82	6.1	đ	đ	-	-	-	-	-	-
Benzojbjilvoranihene	82	11.5	d	d	82	6.1	đ	d	-	-	-	-	-	-
Benzofkjiluoranthene	82	11.5	d	đ	B2	6.1	đ	đ	-	-	-	-	-	-
Benzoic acid	-	-	-	-	• -	-	-	-	4	111S	8-1-89	-	-	-
Benzolajpyrene	82	11.5		đ	82	0.1	đ	đ	-	-	-	-	-	-
Benzolg,h,ljpertyene	82	11.6	đ	d	B2	6.1	đ	đ	-	-		-	-	-
Beryllium	-	-	-	-	B2	8.4	IFIS	9-7-88	0.005	1918	9-7-86	-	-	-
bie(2-Ethylhexyl)phthelate	82	0.014	1Fi18	8-7-88	-	-	-	-	0.02	IFN8	8-1-89	-	-	-
2-Butanone	-	-	-	-	-	-	-	-	0.05	IRIS.	8-1-88	0.00	HEAST	7-1-89
Butyl benzyl phthalate	-	-		-	-	-	-	-	0.2	HEAST	7-1-89	-	-	-
Cedmium	-	-	-	-	Bt	6.1	1FHS	3-1-88	0.0005	IFIIS	10-1-00	-	•	-
Carbon disutlide	-	-	-	-	-	-	-	-	0.1	IFIIS	2-1-00	-	-	-
Chlorobenzene	-	-	-	-	-	-	-	-	0.03	HEAST	7-1-89	0.005	HEAST	7-1-89
Chierolom	82	0.0081	IRIS	-30-88	82	0.081	IRIS	-30-88	0.01	1718	6-30-86	-	-	-
Chromium III	-	-	-	-	-	-	-	-	1	IFIIS	8-1-88	-	-	-
Chromium VI	-	-	-	-	A	41	IRIS	3-1-88	0.005	IFIS	3-1-88	-	-	-
Chyreene	C	11.5	đ	d	B2	0.1	đ	đ	-	-	-	-	-	-
Coel Ters	-	-	-	-	ND	2.2	HEAST	7-1-89	-	-	-	-	-	-
Copper	-	-	-	-	-	-	-	-	0.037	1	-	-	-	-
Crecente	81	-	1R18	3-1-88	B1	-	IRIS	3-1-88	-	-	-	-	•	-
Cyanide	-	-	-	-	-	-	-	-	0.02	b	b	-	-	-
Dibenzja.hjanthracene	82	11.5	d	đ	82	6.1	b	đ	-	-	-	-	-	-
Dibutyi phthelete	-	-	-	-	-	-	-	-	0.1	IFIIS	8-7-88	-	-	-
1,1-Dichloroethane	C	0.091	HEAST	7-1-89	-	-	-	-	0.1	HEAST	7-1-88	0.1	HEAST	7-1-89
Diethyl phthalate	-	-	-	-	-	-	-	-	0.8	IRIS	9-7-88	-	-	-
2,4-Dinitrophenol	-	-	-	-	-	-	-	-	0.002	IRIS	3-1-88	-	-	-
Ethylbenzone	-	-	-	-	-	-	-	-	0.1	IRIS	9-7-88	-	-	-
Indenaj 1,2,3-cd]pyrene	82	11.5	d	d	82	6.1	d	đ	-	-	-	-	-	-

(

(

Table K-5 TOXICITY VALUES MOSS-AMERICAN SITE

	Ingestion Plaute:			Inhelation Floute:				Ingestion Floute:			Inhalation Route:			
	U.S.EPA Cercinagen	Carcinogenic Potency Factor			U.S.EPA Carcinogen	Carcinogenic Potency Factor			Reference Dose (RID)			Rolerence Dose (RID)		
Chemical	Classification	(kg-deying)	Source	Date	Classification	(kg-deying)	Bource	Dete	mg/kg/day	Source	Date	mghyday	Source	Date
Leed	-	-	-	-	-	-	-	-	9		-	+	-	
Manganese	-	-	-	-	-	-	-	-	0.2	HEAST	7-1-89	0.0003	HEAST	7-1-89
Mercury (inorganic)	-	-	-	-	-	-	-	-	0.0003	HEAST	71-89	-	-	-
4-Methyl-2-pentanone	-	-	-	-	-	-	-	-	0.05	IFIS	7-1-80	0.02	HEAST	7-1-89
Naphthalene	-	-	-	-	-	-	-	-	0.4	HEAST	7-1-89	-	-	-
Nickel	-	-	-	-	-	-	-	-	0.62	IFIIS	3-1-88	-	-	-
N-Nitrosodiphenylamine	82	0.0049	IRIS	3-1-88	-	-	-	-	-	-	-	-	-	-
PAHe	82/C	11.5	d	đ	· 82/C	6.11	d	d	-	-	-	-	-	-
Pentachlorophenol	-	-	-	_	-	-	-	-	0.03	1718	6-30-65	-	•	-
Phonal	-	-	-	-	-	-	-	-	0.04	IRI8	8-1-89	-	-	-
Selenium	-	-	-	-	-	-	-	-	0.003	HEAST	7-1-89	0.001	HEAST	7-1-89
Styrene	-	-	-	-	-	-	-	-	0.2	IFIIS	6-30-88	-	-	-
2,3,7,8-TCDD (Dlaxin)	82	150000	HEAST	7-1-89	82	158000	HEAST	7-1-89	-	-	-	-	-	-
Tetrachloroethene	82	0.051	HEAST	7-1-89	82	0.0033	HEAST	7-1-89	0.01	HW8	3-1-88	-	-	-
Toluene	-	-	-	-	-	-	-	-	0.3	IRI8	9-7-89	1	HEAST	7-1-89
1,1,1—Trichloroethene	-	-	-	-	-	-	-	-	0.09	IFNS	6-1-89	0.3	HEAST	7-1-89
Venedium	-	-	-	-	-	-	-	-	0.007	HEAST	7-1-88	-	-	-
Xylenes	-	-	-	-	-	-	-	-	2	1 Fi1S	7-1-89	0.4	HEAST	71-89
Zinc	-	-	-	-	-	-	-	-	0.2	HEAST	7-1-89		-	-

a. Sources of Toxicity Values:

IRIS - Integrated Rick Information System, U.S. EPA 1989a.

SPHEM - Superfund Public Health Evaluation Manual. U.S.EPA 1986e.

HEAST - Health Effects Assessment Summary Tables - Quarterly Summary, U.S. EPA 1989g.

HEAST(v) - Health Effects Assessment Summary Tables, Verified values awaiting entry into IRIS.

b. Cyanida value based on free cyanida.

c. Nickel value based on nickel-soluble salts.

d, Carcinoginic PAHs based on benzo(a)pyrene. Benzo(a)pyrene potency listed in The Ambient Water Quality Criteria Document for PAHs, U.S. EPA 1980a.

e, Based on Risk Assessment Council unit risk of 5E-5(I/ug) U.S. EPA 1988b.

f. Based on MCCG of 1.3 (mg/l).

-

g. RID for lead under review. This assessment uses the AIC value of 0.0014 given in the Superfund Public Health Evaluation Manual.

The approach used by the U.S. EPA to estimate the carcinogenic potency factor from animal studies or human data assumes a dose-response relationship with no threshold. There is uncertainty and conservatism built into the EPA's risk extrapolation approach. EPA has stated that cancer risks estimated by this method produce estimates that provide a rough but plausible upper limit of risk; that is, it is not likely that the true risk would be much more than the estimated risk, but it could be considerably lower (U.S. EPA 1985d).

)

)

1

Benzo[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[g,h,i]perylene, chrysene, dibenzo[a,h]anthracene, and indeno[1,2,3,c,d]pyrene are carcinogenic PAHs that do not have cancer potency factors. Guidance from the U.S. EPA has been to apply the cancer potency factor of benzo[a]pyrene for those chemicals (U.S. EPA 1980a, 1984b). This assessment follows that guidance.

ENVIRONMENTAL EFFECTS

2

PAHs are the primary chemicals detected at the Moss-American site that may pose an environmental concern. There are, however, no promulgated criteria or standards for PAHs for the protection of sensitive species of aquatic organisms or wildlife. A major review of the environmental effects of PAHs on wildlife and plants was conducted by Eisler (1987). The information presented in the following sections is derived primarily from that review.

Toxicity to Aquatic Organisms

Early indications of carcinogenicity and toxicity to animals and the common occurrence of PAH in petroleum, creosote, and combustion products has resulted in numerous studies of effects of mixtures and pure compounds of PAH on aquatic organisms. Much of the recent literature on toxicity of PAH has been reviewed by Eisler (1987). Toxic effects of the PAH compounds vary widely among compounds and among groups of aquatic organisms, but some generalizations can be derived from the studies reviewed by Eisler.

The impacts of PAH include examples of lethality from acute (short-term) and chronic (long-term) exposures to concentrations ranging form 30 to 150,000 μ g/l of various compounds. Some compounds are extremely variable in toxicity to different animals. For example, the acute toxicity of naphthalene ranges from 920 to 150,000 μ g/l while the single value reported for chronic toxicity was 50 μ g/l (Eisler 1987, Table 5). However, reported acute toxicity values for other PAH compounds range from 250 to 5,800 μ g/l.

Acute toxicities are generally well above concentrations found in water of environmental settings (Neff 1979) or even above the solubility of some compounds. However, concentrations of PAH in interstitial water (pore water) in sediment containing high concentrations of PAH may approach or exceed toxic concentrations. For example, Socha and Carpenter (1987) found concentrations of 110 µg/l phenanthrene and 52 µg/l fluoranthene in pore water of heavily contaminated marine sediment (free creosote present). Those concentrations are up to 10 times higher than acutely toxic concentrations reported by Eisler (1987, Table 5), and above concentrations of fluoranthene that are toxic at chronic exposures (U.S. EPA 1986).

Lower concentrations of PAH can adversely affect behavior of aquatic animals. Reduced predatory ability of bluegill sunfish has been reported at 62 μ g/l of fluorene (Boyle, et al. 1984; 1985; Finger, et al. 1985). Feeding by marine copepods was reduced at concentrations of naphthalene of 1,000 μ g/l, while 50 μ g/l was toxic over 10 days to 30 percent of the copepods (Berdugo, et al. 1977). Socha and Carpenter (1987) found concentrations of several PAHs up to 0.5 to 1.0 μ g/l in pore water of creosote-contaminated marine sediment.

Particulate material in sediment that is ingested by aquatic animals can be an important means of exposure. Landrum and Scavia (1983) found that sediment-associated anthracene contributed about 77 percent of the body burden of a freshwater amphipod, *Hyallela azteca*. Lesser contributions from sediment sources (9 to 53 percent) were found for other amphipods (Landrum, et al. 1984).

PAHs that are carcinogenic to mammals are generally also carcinogenic to fish (Eisler 1987 and references therein). The mechanism of carcinogenesis appears to be similar in fish to that in mammals, in that some intermediate products of biodegradation in the liver are the actual carcinogens. Many aquatic invertebrates lack the enzyme systems for degrading PAH and appear to be at lower risk of cancer, but tend to bioconcentrate PAH to a greater extent. High incidences of tumors, particularly of the liver and skin, have been observed in several populations of marine and freshwater fish that live in close proximity to PAH contaminated sediment. One population of marine fish with a high incidence of PAH-induced tumors was also found to experience reduced ovarian development (Johnson, et al. 1988), an effect that could reduce reproduction.

In many cases, aquatic organisms from PAH-contaminated environments have a higher incidence of tumors and hyperplastic diseases than those from nonpolluted environments. Carcinogenic PAHs have not been unequivocally identified as the causative agent for an increased incidence of cancer in any natural population of aquatic organisms, according to Neff (1982). However, a growing body of evidence, mostly circumstantial, links PAHs to cancer in fish populations, especially bottom dwelling fish from areas with sediments heavily contaminated with PAHs (Baumann and Lech, in press).

Terrestrial Plants

Biological effects of PAHs on terrestrial vegetation have been reviewed by U.S. EPA (1980a), Lee and Grant (1981), Wang and Meresz (1982), Edwards (1983), and Sims and Overcash (1983). In general, these authors agreed on several points:

- Plants and vegetables can absorb PAHs from soils through their roots, and translocate them to other plant parts such as developing shoots. Lower molecular weight PAHs were absorbed by plants more readily than higher molecular weight PAHs.
- Aboveground parts of a vegetable, especially the outer shell or skin, contained more PAHs than underground parts. This was attributed to airborne deposition and subsequent adherence to the plant.
- PAH-induced phytotoxic effects were rare although the database for this subject is small.
- Most higher plants can catabolize benzo[a]pyrene and possibly other PAHs, but metabolic pathways are not clearly defined.
- The biomagnification potential of vegetation in terrestrial and aquatic food chains has not been determined.

1

Wildlife

Limited data were available on biological effects on reptiles and amphibians. Although some studies indicated the potential for carcinogenic effects from exposure to PAHs, amphibians are more resistant to PAH carcinogenics than mammals (Eisler 1987).

Eisler only found two articles on PAHs and avian wildlife, and both concerned mallards. One study showed no signs of mortality or visible signs of toxicity during exposure, although increased liver weight and blood flow to the liver were observed in mallards fed diets containing 4,000 mg/kg PAHs/kg (mostly naphthalenes, naphthenes, and phenanthrene) for 7 months. A second study measured embryo toxicity of various PAHs applied externally to the surface of mallard eggs.

Numerous PAH compounds are distinct in their ability to produce tumors in skin and in most epithelial tissues of almost all animal species tested. Malignancies were often induced by acute exposures to microgram qualities. Acute and chronic exposure to various carcinogenic PAHs have resulted in destruction of hematopoietic and lymphoid tissues, ovotoxicity, antispermatogenic effects, adrenal necrosis, change in the intestinal and respiratory epithelina, and other effects. For the most part, however, tissue damage occurs at dose levels that would also be expected to induce carcinomas. There is a scarcity of data available on the toxicological properties of PAHs which are not demonstrably carcinogenic to mammals.

Unsubstituted aromatic PAHs with less than four condensed rings have not shown tumorigenic activity. Many but not all 4-, 5-, and 6-ring PAH compounds are carcinogenic. Only a few unsubstituted hydrocarbons with seven rings or greater are tumorigenic or carcinogenic.

EXPOSURE ASSESSMENT

This section identifies the means by which people or terrestrial and aquatic wildlife can come into contact with chemicals from the site. It addresses exposures under current site conditions and exposures that may result from potential use of the site and surrounding area in the future. This section also identifies the potential magnitude, frequency, and duration of exposures, and the routes by which the receptors may be exposed.

EXPOSURE PATHWAY ANALYSIS

An exposure pathway is the means by which a contaminant moves from a source to a receptor. A complete exposure pathway has five elements (Figure K-1):

- A contaminant source
- A mechanism for contaminant release
- An environmental transport medium
- An exposure point (receptor location)
- A feasible route of exposure

Exposure may occur when contaminants migrate from the site to an exposure point (i.e., a location where receptors can come into contact with contaminants) or when a receptor comes into direct contact with waste or contaminated media at the site. An exposure pathway is complete (i.e., there is exposure) if there is a way for the receptor to take in contaminants through ingestion, inhalation, or dermal absorption of contaminated media or waste.

Sources

The existing sources of contamination at the site are identified in Chapter 2. They include the surface soil and subsurface soil in the process area, the treated tie storage area, the northeast landfill, and the southwest landfill. The sediments in the Little Menomonee River are also considered a source.

Factors Influencing Release and Transport

٩.

The behavior of the chemicals at the Moss-American site are influenced by physical and chemical conditions at the site and in the surrounding area. Their form, transport, and fate depend upon such factors as pH, temperature, soil moisture, oxidation-reduction potential, physiochemical properties of the surface and subsurface strata, water chemistry, and the macro and micro-organisms present. Table K-6 lists some of the important physical and chemical properties of the major chemical groups.

Release and Transport Mechanisms

Potential mechanisms for contaminant release and migration at the Moss-American site are:

- Release of contaminants to the atmosphere by volatilization or erosion and transport by the wind
- Leaching of contaminants into the groundwater and subsequent discharge to the Little Menomonee River

ł

- Surface runoff of contaminants from the site into the Little Menomonee River
- Nonaqueous phase liquid transport
- Release of contaminants from the sediments of the Little Menomonee River and the movement of sediments

Releases to the Air. Contaminants in surface soils could be released from the site by erosion (wind or mechanical) or volatilization. Contaminants that tend to be bound to soil (i.e., have high K_{OC} values or low solubility) would be released to the air by erosion. This would include PAHs and inorganic chemicals. These contaminants are found in both portions of the site.

The site east of the river contains the area where creosote wastes were landfilled. There is no vegetative cover over this area, and it is possible for dust to be released both by the wind and mechanical resuspension. A path used by children riding dirt bikes run through by this area.

Most of the site west of the river contains some sort of cover that would limit dust release. The site has portions that are vegetated, covered with wet areas,

FIGURE K-1 ELEMENTS OF A COMPLETE EXPOSURE PATHWAYS MOSS-AMERICAN RI

٤

١

Table K-6 PHYSICAL AND CHENICAL PROPERTIES OF SELECTED CHEMICALS OF CONCERN

, •

<u>Chemical</u>	Nolecular ^a Weight (g/mole)	Vapor ^a Pressure (mm/Hg)	Solubility [®] in Water (mg/l @ 25°C)	Log ^{b,e}	K _{oc} c,d (ml/g)	Nenry's Law [®] Constant (atm-m ³ /mole)	Specific Gravity (at 20°C)
Polycyclic Aromatic Hydrocarbons (PAHs)							
Benzolalanthracene*	228	2.2 x 10-8	5.7 x 10 ⁻³	5.60	1,380,000	1.16 x 10 ⁻⁶	1.27
Benzo(a)pyrene*	252	5.6 x 10 ⁻⁹	3.8 x 10 ⁻³	6.04	676,083 ^h	1.55×10^{-6}	1.35
Benzo(b)fluoranthene*	252	5.0 x 10 ⁻⁷	1.4 x 10 ⁻²	6.06	550,000	1.19 x 10 ⁻⁵	**
Benzoikifluoranthene*	252	5.1×10^{-7}	4.3×10^{-3}	6.06	550,000	3.94×10^{-5}	
Chrysene*	228	6.3 x 10^{-9}	1.8×10^{-3}	5.61	200,000	1.05×10^{-6}	1.27
Dibenzola.hlanthracene*	278	1.0×10^{-10}	5.0 x 10^{-4}	6.80	3,300,000	7.33 x 10 ⁻⁸	1.28
Indenoil.2.3-cdipyrene*	276	1.0×10^{-10}	5.3 x 10^{-4}	6.50	1,600,000	6.86 x 10 ⁻⁸	
Naphthalene	128	4.9×10^{-2}	34.0	3.37	1.300	2.40×10^{-4}	1.15
Phenenthrene	178	6.8 x 10 ⁻⁴	1.0	4.46	14,000	1.59×10^{-4}	
Benzene/Toluene/Xylene (BTX)							
Benzene	78	95.2	1.75×10^{-3}	2.12	83	5.59 x 10 ⁻³	0.88
Ethylbenzene	106	7.0	1.52 x 10 ⁻²	3.15	1.100	6.43 x 10^{-3}	0.87
Toluene	92	28.7	5.35 x 10 ⁻²	2.69	300	6.37×10^{-3}	0.87
Xylene	106	10.0	1.98 x 10 ⁻²	3.26	240	7.04×10^{-3}	0.86
Inorganica							
Cadmium	112	Negligible	Varies ¹				11.30
Lead	207	Negligible	Varies ¹				6.90 - 7.20
Zinc	65	Wegligible	Variesi		*•		3.25 - 3.50
Arsenic	75	Wegligible	Variesi				5.70
Hercury	201	Negligible	Varies ⁱ			••	13.55

*Carcinogenic PAHs.

GLT864/052.50

.

-

^AU.S. EPA Treatability Hannal, 1980. W.H.O., 1978. ^bLog K_{ow} = Log of Octonal-water partition coefficient. ^cK_{oc} = Organic carbon partition coefficient. ^dLyman, 1982.

eVerschueren, 1983. ^hCalculated using regression formula: Log K_{oc} = 1.0; Log K_{ow} - 0.21. ¹Solubility of inorganics is highly dependent on valance state and ionic strength of solution.

covered with gravel, paved, or crusted with tar, because of these factors, so the wind-driven release of dust and gravel is not unlikely. There is some potential for release of dusts, especially when soil condition are dry, if dirt bikes are ridden across exposed areas.

)

)

١

Volatile organic compounds (such as benzene, ethylbenzene, toluene, and xylene) were detected in the subsurface soil. Chemical and physical properties of the volatile compounds include relatively high vapor pressures, Henry's law constants, and solubility in water and relatively low octanol-water and organic carbon partition coefficients. These chemicals could be released through volatilization and diffusion up through the soil or volatilization if site soils were excavated. The amount of volatile compounds released from undisturbed soil is expected to be low because the average concentration of these chemicals in the subsurface soil is low. For example the average concentration in the east landfill and western site are respectively, benzene--not detected and 4 μ g/kg; ethylbenzene--29 μ g/kg and 6 μ g/kg; toluene--120 μ g/kg and 41 μ g/kg; and xylene 53 μ g/kg.

The semivolatile compounds such as PAHs are present in the subsurface soil at much higher concentrations than volatile compounds such as benzene. These chemicals, however, have relatively low vapor pressure, Henry's law constants, solubilities in water and relatively high octanol-water and organic carbon partition coefficient. Therefore, their potential to be released to the ambient area is limited.

To evaluate the potential for volatization from the western portion of the site, volatilization was modeled using a simple model based on Farmer and Shen (U.S. EPA 1988a). The methodology is described in Appendix L. It produces estimates of volatile emissions that are conservative for most conditions.

It was assumed that the source area was $100,000 \text{ m}^2$. The average contaminant concentration to a depth of 10 feet was used to describe the source term. Ambient air concentrations for both onsite and at a distance of 300 meters were estimated. (See Table L-1, Appendix L).

The highest onsite air concentration of a volatile compound was benzene at $3 \times 10^{-6} \text{ mg/m}^3$. The onsite air concentration of total carcinogenic PAHs was estimated at $4 \times 10^{-10} \text{ mg/m}^3$. The air concentrations 300 meters from the site are estimated to be 100 times less than the onsite concentrations. These levels suggest that volatilization to a minor contaminant release mechanism for this site.

Releases to Groundwater. Contaminants could also be transported from onsite soils through leaching to the groundwater. Inorganic chemicals and organic compounds could enter the groundwater as water infiltrates are the percolates

through contaminated soils. Once contaminants have entered the groundwater, one primary potential migration pathway exists. Groundwater could recharge the Little Menomonee River in the area adjacent to the site. Contaminants that migrate along this pathway could volatilize, precipitate, or sorb onto sediment. Another potential migration pathway could be the recharge of underlying aquifers by contaminated groundwater.

PAHs have a high molecular weight, an extremely low vapor pressure, low Henry's law constant, low solubility in water, and very high octanol-water and organic carbon partition coefficients. In general, these properties make PAH compounds relatively immobile and quite persistent in the environment. PAHs would therefore be expected to leach slowly from soils at the site because of their high affinity for sorption in most soils. Although the rate is expected to be extremely slow relative to other compounds detected at the site, PAHs could migrate once introduced into the groundwater at the site.

Benzene, toluene, xylene and other VOCs exhibit relatively high mobility and low persistence in the environment because their chemical and physical properties allow them to leach easily from contaminated soils and waste. Under existing site conditions, these compounds could leach from soils into the groundwater.

Releases to the Little Menomonee River. Contaminants can be released to the river by the discharge of shallow groundwater and surface runoff to the river. Contaminants may also discharge by nonaqueous phase liquid transport along the former ditch.

As discussed previously, contaminants can leach to the groundwater. The primary pathway for current releases from the site is groundwater. This pathway appears to be responsible for much of the current contaminant movement to the Little Menomonee River for both the soluble and free product phase. The shallow groundwater beneath the site is believed to move toward the river.

Contaminant velocities were estimated for the recent alluvium and weathered till at the site. The estimates were intended to quantify the relative mobility of the compounds of concern in groundwater. Retarded velocities were calculated using the log average hydraulic conductivities and the average hydraulic gradient of the site. Specific calculations are provided in Appendix I.

Table K-7 summarizes the retardation coefficients calculated for each compound and the retarded velocities of compounds along four distinct flow paths at the site (see Appendix J for the development of these values). Retarded velocities for PAH range from 7.0 x 10^{-4} to 1.25 ft/yr and for BTX compounds from 5.25 x 10^{-1} to 1.67 ft/yr in the recent alluvium and weathered Oak Creek till.

Table K-7 RETARDED VELOCITIES®

. .

Compound	<u>Rd^b</u>	V ^c = 4.71 ft/yr	V = 10.00 ft/yr	<u>V - 4.20 ft/yr</u>	V = 7.63 ft/yr
PAHs					
Benzo(a)anthracene	2440	0.0019 ft/yr	0.0041 ft/yr	0.0017 ft/yr	0.0031 ft/yr
Benzo[a]pyrene	1200	0.0039	0.0083	0.0035	0.0064
Benzo(b)fluoranthene	976	0.0048	0.0103	0.0043	0.0078
Benzo[k]fluoranthene	976	0.0048	0.0103	0.0043	0.0078
Chrysene	359	0.0131	0.0279	0.0117	0.0213
Dibenzo[a,h]anthracene	5827	0.0008	0.0017	0.0007	0.0013
Indeno[1,2,3-cd]pyrene	2828	0.0017	0.0035	0.0015	0.0027
Naphthalene	8	0.5888	1.2500	0.5250	0.9538
Phenathrene	31	0.1519	0.3226	0.1355	0.2461
BTXe		•			
Benzene	6	0.7850	1.6667	0.7000	1.2717
Ethylbenzene	8	0.5888	1.2500	0.5250	0.9538
Toluene	6	0.7850	1.6667	0.7000	1.2717
Xylene	6	0.7850	1.6667	0.7000	1.2717

(

^aSee Appendix J for the development of these values ^bRD = Contaminant retardation coefficient

^cV = Average linear velocity

GLT864/053.50

. –

.

The velocity calculations indicate that the migration of contaminants in groundwater is very slow (7.0 x 10^4 ft/yr to 1.67 ft/yr). These estimates tend to support the observation of limited contamination found in groundwater at the site, with the exception of the free product found in monitoring wells MW-04S and MW-08S. The small amounts of contamination found in the solution of 5 of the 24 monitoring wells at the site were PAH compounds. These PAH compounds go into solution sparingly and migrate at very slow rates, which may be why they have not been detected in the Little Menomonee River.

Contamination was not observed in groundwater sampled from the intermediate and deep monitoring wells, indicating that migration of contaminants to the underlying bedrock aquifer has not occurred. The lack of contamination in groundwater at the site can also be partially explained by the physical properties associated with the PAH compounds (i.e., low solubility, low Henry's law constants, and high organic carbon partition coefficients).

Free product (primarily PAHs) was detected in monitoring well MW-8S, which is installed near the Little Menomonee River and the ditch formerly used to discharge wastewater into the river. During field work, free product was observed being emitted to the river from the area where the outfall of the settling ponds previously existed. It appears that the filled ditch and surrounding soils may act as a potential conduit for migration of free product from the site to the Little Menomonee River.

Contaminants at the site migrate in solution and as free product. The flux of contaminants entering the Little Menomonee River from groundwater in either phase cannot be quantified based on existing data.

Runoff is the other potential source of continued releases of contaminants to the river. Runoff from the site could carry contaminants to the river, either in dissolved form or sorbed on soil. The potential for this transport mechanism is low because of the relatively flat grade across the site and the vegetative cover that helps inhibit erosion.

BTXs could also be dissolved and transported to surface water by surface runoff. Under existing site conditions, the BTX compounds could leach from the soils into the groundwater or be transported to surface waters by runoff. Once in the surface water and exposed to aerobic and sunlit conditions, the compounds may be volatilized or oxidized and dispersed. BTXs bound to river sediments will be slowly released to surface waters.

Release and Transport from Sediments. Once contaminants have been transported to the Little Menomonee River sediments, several potential contaminant migration pathways exist. Contaminants in these sediments could dissolve, re-enter solution, and volatilize or migrate intact with scoured or
suspended sediment when streamflow is high. In this manner, contaminants could eventually be transported downstream to the Menomonee River. Based on the interpretation of site investigation results, this seems to have occurred.

Sediment contamination in the Little Menomonee River is best characterized by its erratic distribution. Based on field observations, the relatively insoluble PAHs sorbed to river sediments seem to be carried along the stream bottom and eventually to collect in sedimentation areas with low stream velocities. The interpretation of the analyses of onsite and downstream samples leads to the conclusion that some relatively insoluble PAHs partition into bottom sediments, while more soluble and volatile compounds such as naphthalene occur in the bottom sediments at a relatively lower concentration range.

Potential Exposure Pathways

L

Based on the analysis of potential contaminant migration and a review of the site setting, potential exposure pathways for the Moss-American site under current land use and potential future land use were identified and evaluated for their potential feasibility. The potential exposure pathways evaluated are illustrated in Figure K-2. The analyses of the pathways are summarized in Table K-8. The following exposure pathways were evaluated as the most feasible exposure pathways for the site:

• Exposure of recreational users (especially children) by direct contact of contaminated sediments in the Little Menomonee River

ł

- Exposure of aquatic organisms and wildlife through direct contact of contaminated sediments in the Little Menomonee River
- Exposure of wildlife through consumption of aquatic organisms from the Little Menomonee River
- Exposure of site visitors under current conditions from the release of contaminants in the surface to the air by erosion
- Exposure of site visitors under current conditions by direct contact with contaminated surface soil
- Exposure of construction workers or future site users by direct contact with subsurface material exposed by site development

The following sections discuss the exposure pathways in greater detail.

K-16

•

.

FIGURE K-2 POTENTIAL EXPOSURE ROUTES MOSS-AMERICAN RI .

quantities and species type.		Bloconcentration	and sediment)	to river.		and subsurface soll
Yes. Aquatic organism inhabit waters, but in limited	Aquatic organieme	Ingestion	Line Menomonee Filver (water	Groundwater release	Leaching and decorption	Conterninated surface soli
contaminated. Land area eurounding river is county part land.	Menomonee Filver	Dermal absorption				
Yes. Discharge of conterminants has occured, Sediments are	Pacreational users of the Linte	n Ingestion	Little Menomonee Pilver (sedime			
feer conteminante.	Menomonee Pilver	Dermal absorption		to river.		and subsurface soll
Mo. Discharge of contaminants has occured. Water has relatively	Percentional users of the Little	Ingestion	Little Menomonee Filver (water)	Groundwater release	Leaching and description	Contaminated surface soll
					3	LITTLE MENOMONEE PIVE
Existing water mains nearby can supply water to the site.		Dermal absorption				and subsurface soft
No. Shallow equilier has breatflabert yield for water supply.	Futura site occupante	Ingestion	Ometie	Groundwater	Leaching and description	Conterninated serface edit
the use and gumerthy.					exposed by excevation.	
development as a park has greater potential given the current		Dermal absorption		•	through direct contact with each	and subsurface soli
Yee. She has patenthi ter residenthi develapment although	Future alte occupante	Ingestion	Omethe	3	No release or transport-expan	Conteminated seriess edit
terra, personant, ar atructures.						
development would result in most of the site being carered by					mechanical erasion	and subsurface soli
No. Subserface and surface soft conteminated, however,	Future alla accupante	Inhalation	Onella	4	Wind-driven er	Conteminated seriace add
						ONSITE - FUTURE UGE
		Dennal absorption				and subsurface soli
No. No well current wells anote at downgradient of elle.	Onolie well wears	Ingestion	Ometra	Groundwater	Leaching and description	Contembrated surface edit
Indications of recreational use of the site.		Dermal absorption			through direct contact	
Yes. The access is not completely neetfolid. There are	Bite visitore	Ingestion		3	No release ar transport-expose	Conteminated services edit
central subservines tell.					pieco conteminante	
conteninated euritee eail. Burrowing animals can					contact with in	
Yes. Mammak and birds can come into direct contact with	Terrestial wildlike	ingestion	0714		Expresses Surryh direct	Contuminated surface and
businesses mare than 1/4 mile away.						
receptore at tenceline except car tacility. Nearest realdences and						
be exterioritally dilated at all the receptor locations. He			·.			
release al duct, however, cantantmant concentration would	bushnesse.					
potential. Diri titles can periodically neutlike localized	recidents, people at offsite				mechanical erosion	
No. Because of the cover wind-driven erasion has a low	People at lenceline, ofteke	Inhalation	Onene	¥	Wind-driven at	Conteminated surface coli
duel neuropension and exposure to those individuals.						
emissions, however, use of dist bitue by children may result in						
covered by vegetation and coment. Low potential for wind-driven					mechanical encelon	
Ver. Contenthants present in surface eall. The site is partially	Site visitors	Inheletton	Onelle	¥	Wind-driven gr	Conteminated surface coll
	people al offiche businesses.					
releases from this mechanism are relatively four.	tenceline, ottette realdentu,					and subsurface soll
No. Estimates of potential valuation indicate that	One visitors, people at the	Inhalation	OnehelOttele	¥	Volumilization	Conteminated surface coll
						SITE - CURPENT USE
Channel Lawrence and Annual La						
Ensure Print	Potential Promotorn	Emanue Paulo	Emonero Phin	Timmeri Muhan	Puisas Hacharian	Baurce
			MOGS-AMERICAN			

t

۱

Page 1 d 2

٩,

•
ъ
Ø.
2
Z

Tain K-a POTENTIM. EXPOSURE PATHMINS MOSS-AMERICAN SITE

٦,

erree Burree	Prices Moderium	Transport Medium	Esponue Point	Espanne Parte	Printial Receptor	Esponse Pathway Restrict for Evaluation?
Contaminated earlieve soft	Leaching and description	Groundwater release	Linte Menamanes Filver (Neh)	Ingestion	People who consume fich.	Yes. Bome potential for fishing along the river although
and subsurface add		to river.				most fishing secure upstream from the site. No date on PAH
						concentration in their or trequency of fishing activities.
Conteminated excitace coll	Leadhing and description	Groundwater release	Little Menomonee Fliver (fieh)	Ingestion	Wildlife that consumes lich	Yee. Abundant withite utilize the river comider.
and subsurface sol		to cheer.				
Contaminated sediments in	Volentization	ž	Little Menomonee Fliver	Inhelian	Recreational weeks	No. Athrough access to the rher is not restricted, volution
the Little Menomonee Pluer						present in wher and sediment are at relatively law
						concentrations.
Conteminents extimates in	No release or transport - expose	ţ	Litte Menomones Piver	Cernel ebergeton	Pectentional years	Yee. Pher sodiments are contembrated and essentially exposed.
the Little Menomones Piver	through direct contact			Ingeston		Accrete to river is not restricted. Pleer comfor is hearing
						wood.
Conteminated sediments in	No release or transport - expose	5	Unte Menomonee Pliver	Cermel absorption	Whichie	You. Row andmonts are conteminated and economity exposed.
. the Liste Menomones Fliver	through ditect contact			Ingestion		Abundant sheftis in are.
Contaminated extiments in	Bohbilization or evenencian	a de la compañía	Little Menamonee Phree	Ingeoticn	Aquetic organisme	Yes. Aquatto the to present but hitinitied quantities
the Little Menomones Planer				Blaconcentretion		and species type.
Conternineted extiments in	Botebilication or externation	New	Little Menomones Pliver	haesten	Prode the contains the	Ver Sees setsed to the dea dea dea dea
the Little Menomones Piver						most fishing sources machiness from the data. No data as PAN
				i		concentration in fish or frequency of fishing articities.
Contaminated sediments in	Solubilization or suspension	-	Little Menamonee Pluer	Ingestion	Whillie theil consume fieh.	Yee. Whilling is abundant in the river contider.
the Little Monamanes Filver						

1

),

ì

)

EXPOSURE PATHWAYS-LITTLE MENOMONEE RIVER

ţ

The 5-mile segment of the Little Menomonee River that extends from the site to the river's confluence with the Menomonee River is considered a primary environmental corridor. The land bordering the river is owned by the Milwaukee County Park District, and although most of the land is not formally a park, it is heavily used as a park area (Sullivan 1989). Figure K-3 illustrates the general land use of the area surrounding the Little Menomonee River and the Moss-American site. Surrounding the river are numerous residential subdivisions and a school.

A bike trail runs along the river corridor from Good Hope Road to the confluence of the river with the Menomonee River. The river corridor is heavily used by joggers, hikers, picnickers, and bird and wildlife watchers.

The river is not generally used for swimming because of its shallow depths and channelization, but it is possible for children to swim in the river (SEWRPC 1976). During the RI investigation a rope swing over the river was observed, indicating the use of the river for recreation and possibly swimming. Undeveloped portions of the river corridor could be developed into formal park facilities that could be used by more people than currently use it. The bike trails are to be extended to Appleton Avenue and Silver Spring Drive within the year (Sullivan 1989). The Southeastern Wisconsin Regional Planning Commission (SEWRPC) concluded that the potential for development of these areas as children's swimming sites is great because of the good access to the river.

Potential Human Exposures-Sediment

People engaging in activities such as hiking and swimming in or near the river could have contact with contaminated sediments. This contact could result in exposure through ingestion of sediment, dermal absorption of contaminants in the sediment, or inhalation of contaminants in the sediment.

The river level declines in some seasons, resulting in areas of dry, exposed sediments or sediments with shallow depth of water covering them. Children and adults who use the bike trails and park facility, as well as students walking home from school, may come in contact with the sediments. In 1971 high school students participating in a cleanup project developed chemical burns on their arms and legs after direct contact with the sediment (DNR 1985).

Potential Human Exposures-Surface Water

٩,

Inadvertent ingestion or direct contact with surface water by people swimming or working in the river, playing along its banks, or fishing along it could result in exposure to contaminants in the water. However, since very few contaminants were detected in the surface water of the river and those detected were at relatively low concentrations, these pathways do not appear to be major exposure pathways for this site.

Potential Human Exposures--Fish Consumption

People are known to fish upstream of the site. The wetlands area north of Brown Deer Road is suitable for sustaining fishable populations of sport fish (DNR 1985). Fish indigenous to the Little Menomonee River and Menomonee River are transient, especially seasonally. As such, fish in both adult and subadult life stages may be exposed to contaminated habitats and migrate to less contaminated areas, such as the area above Brown Deer Road, where they could be caught and consumed. Fishing is not restricted in the Little Menomonee River adjacent to and downstream from the site, and there are no data available to quantify the number of individuals who may fish there or the frequency of this activity.

There are no data available on potential contaminant concentrations in fish in the Little Menomonee River. Sampling and analysis of fish tissue was not part of the RI so the potential bioconcentration of PAHs from sediments and surface water cannot be estimated. Although PAHs have a high octanol water partition coefficient, often a predictor of bioconcentration potential in fish, fish metabolize PAHs limiting the amount of PAHs that could accumulate in fish tissues. Consequently, tissue concentrations would be substantially less than levels predicted from octanol water partition coefficients. While consumption of fish from the river is possible, exposures from this pathway are not quantifiable.

1

)

Potential Aquatic/Terrestrial Wildlife Exposures

Aquatic organisms in the river could come into contact with contaminants in solution or sorbed to solids. They may also be exposed to contaminants when water containing the chemicals passes over their gill surfaces, when they ingest water, or when they ingest other organisms that have incorporated contaminants. The first mechanism is termed "bioconcentration." The mechanisms associated with dietary intake are referred to as "bioaccumulation."

Terrestrial organisms that feed on aquatic organisms that have incorporated contaminants may also be exposed, as would people who consume fish from the river. Fish populations are limited in the river downstream of the site because of the lack of suitable habitat, but migrating or spawning organisms could be

7

FIGURE K-3 LAND USE MAP MOSS-AMERICAN R

١

exposed. Small numbers of benthic organisms and macroinvertebrates are also present.

Many wildlife such as deer, raccoon, opossum, rabbit, mink, waterfowl, and songbirds use the river as a food and water resource. Terrestrial wildlife can come into contact with contaminated soil, ingest plants that have taken up contaminants, or become coated with creosote. Birds or mammals could become exposed through the food chain by ingesting other organisms that also have contact with the river.

EXPOSURE PATHWAYS ONSITE

Exposures onsite could occur as a result of direct contact with contaminants or the inhalation of contaminates released to the ambient air. This assessment considers the potential exposures under current site conditions as well as exposures associated with future development of the site.

Current Site Conditions

The Moss-American site is easily accessible and located in an urban area (Figure K-4). The portion of the site east of the Little Menomonee River is bounded by Brown Deer Road on the north and on the east by an area being developed commercially. It has trails that are frequently used by teenagers as dirt bike trails. The site west of the river consists of an open unfenced area and a fenced automobile storage and loading facility. The area nearest the river is heavily vegetated, undeveloped land that is not fenced and has unrestricted access. It is owned by the Milwaukee County Park District. The park-like appearance of the area may encourage recreational use of the site.

Site visitors would most likely be children. Exposure could result from direct contact with the soil resulting in inadvertent ingestion or dermal absorption of contaminants. Additionally, teenagers who ride dirt bikes on the site could be exposed through inhalation of dust. It is possible that both the east area and west unfenced areas may be used as a park by children and even adults.

An automobile storage and loading facility is located on the far western section of the site. The original process area was located there and is now covered with a gravel parking lot. The storage area is separated from the rest of the site by a chainlink fence. Because the area is covered, neither site visitors nor workers at the facility are expected to be exposed. The workers at the automobile facility could come in contact with the unfenced areas of the site, but there is currently no work-related reason for them to be there.

Site Development

Development of the site for residential, recreational, or commercial purposes could present situations in which people would have direct contact with contaminants. The degree of exposure potential posed by any of these situations depends on the specific use of the site.)

1

)

The site is owned by Milwaukee County Park District, and it may be developed into a formal park facility. If the site is used for recreation, exposure could occur from contact with contaminants in the site surface. Exposure in a recreation setting would be similar to exposure in trespass setting except for two major differences. First, park development may require landscaping, which could limit direct exposure or minor excavations to construct baseball diamonds and restroom facilities, which could increase the potential for direct contact exposure. Second, either type of park development may attract more people to the site than would be attracted if the land remained undeveloped.

Both commercial and residential development of the site would require the excavation of subsurface material for building foundations and utility lines. Excavation could expose buried waste and contaminated soil. If left in place on the surface, future site occupants could come into contact with it.

Commercial or light industrial development, such as a warehouse, shopping plaza, or office park, would have relatively low potential for direct contact. Access to contaminants would be limited because much of the site would be covered by the building and parking lot. Potentially exposed individuals would most likely be maintenance personnel or utility workers.

Residential site use would have a greater potential for direct exposure than other uses. Gardens and lawns may provide ready access to contaminants present in the surface soil. People could be exposed through a variety of outdoor activities including gardening and play activities. Studies at other Superfund sites have indicated that contaminant levels in indoor dust are similar to those found in contaminated outdoor soil (ICF 1986; Binder, et al. 1985). Therefore, direct contact exposures could occur year round. Small children (toddlers) are most likely to be exposed in the indoor setting.

POTENTIALLY EXPOSED POPULATIONS

Land use in the area surrounding the Moss-American site and the Little Menomonee River is approximately 48 percent agricultural, 13 percent woodlands, 10 percent industrial, and the remainder recreational parkland and residences (U.S. EPA 1977). However, residential development has incurred in this area over the past 10 years. The population was estimated to be between 3,500 to 10,000 persons per square mile in 1970 (SEWRPC 1976), and further

LEGEND

FIGURE K-4 LAND USE MAP MENOMONEE RIVER MOSS-AMERICAN RI

ł

residential development of this area has increased this number in the past 10 years.

The primary population at risk of exposure to site-related contamination under current site conditions are visitors to the site. This would most likely be children who live nearby and use the site for recreational purposes such as hiking and dirt bike riding. Workers at the automobile storage facility may also come into minimal contact with contaminated surface soil. If the site is further developed, construction workers and future occupants such as recreational users or residents of the site may also be exposed through direct contact with subsurface soils. The site and areas south of Brown Deer Road are classified by the Milwaukee County Park District as underdeveloped parkland since they are large enough to be developed into a usable park facility (Sullivan 1989).

The Wisconsin DNR (1985) has concluded that land use in the Little Menomonee Watershed is 60 percent rural and 40 percent urban, with most of the urban use in Milwaukee County. The river south of Brown Deer Road is classified by the DNR as an intermediate fish and aquatic life stream capable of supporting tolerant to very tolerant forage fish and macroinvertebrates. Boating is limited because of inadequate river flow in some areas, but children may use rafts and other flotation devices (SEWRPC 1976).

Since the Milwaukee County Park District owns the land surrounding the river, there is a potential for people to come to the park from other communities. A paved bike path extends north for 3 miles adjacent to the Little Menomonee River beginning at the confluence with the Menomonee River. This path was used by Milwaukee County for a biking event in 1976 (Emerick 1989). Many dirt trails also lie adjacent to the river. Soccer playing fields are located in the landscaped parks between Silver Spring Drive and Hampton Avenue. These park areas have high intensity use on an informal basis according to the Milwaukee County Park District (Sullivan 1989). A 1970 survey (SEWRPC 1976) listed the four most important recreational activities associated with the entire Menomonee watershed to be swimming, picnicking, fishing, and target shooting. Forty-three percent of recreational activities were water-based. People participating in these activities or other outdoor activities such as picnicking, jogging, hiking, and bird watching may also come in contact with the river.

The most heavily urbanized areas are on the Little Menomonee River area near Fond du Lac Avenue and Silver Spring Drive (Figure K-3). Residential areas border the parks along the river. The population in those areas has the greatest potential for exposure to sediments in the Little Menomonee River as access to the river is unrestricted. The children who attend the many schools located along the river also have a potential of coming in contact with the river while walking to and from school. The site is not directly adjacent to residential areas. The land use north of the site along and north of Brown Deer Road is primarily commercial. People using the commercial establishments along Brown Deer Road have little reason to enter the site. The railroad tracks directly north and southwest of the site may serve to restrict access to the site from those directions. Commercial development of the land east of the site may also limit access from that direction.

)

)

Ì

In contrast, the Little Menomonee River, the surrounding wooded areas, and county park lands to the south may attract people toward the area of the site. Along the lower reaches of the Little Menomonee River there are residential areas adjacent to the site as well as developed park land that can provide potential receptors. The group most likely to come onto the site or play along the river banks are children and teenagers. The summer months would be time of the year when the most site visits would be made. Adults could also come onto the site. Although there was some indication of one individual attempting to spend extended periods of time on the site, the most typical adult visit is presumed to be on weekends.

Weather conditions can limit trespass exposures by discouraging outdoor activities as well as reducing exposures while onsite. For example, snow covered or frozen soil would reduce or eliminate direct contact exposures as well as prevent airborne releases. The number of days with frozen soil conditions or with precipitation can give some indication of the number of potential exposure days. On average in Milwaukee, there are 139 days per year with temperatures below 32°F. (i.e., frozen soil) and 77 days per year with precipitation greater than 0.01 inch (National Weather Service-Mitchell Field).

PUBLIC HEALTH RISK CHARACTERIZATION

This section presents an evaluation of the potential risks to public health associated with the Moss-American site. Exposure situations are evaluated by estimating the carcinogenic and noncarcinogenic risk associated with them. The estimation of risks assumed that exposure remains constant over the exposure periods assessed (i.e., contaminant concentrations and intake levels are constant). Where appropriate, exposure media concentrations are also compared to standards and criteria for protection of human health.

RISK ESTIMATION METHODOLOGY

This section summarizes the approach used in developing the human health risk estimates presented in this section. Appendix L presents a description of the methodology used.

Noncarcinogenic Effects

Noncarcinogenic risk is assessed by comparison of the estimated daily intake of a contaminant to its RfD. This comparison serves as a measure of the potential for noncarcinogenic health effects. To assess the potential for noncarcinogenic effects posed by multiple chemicals, a "hazard index" approach has been adopted (U.S. EPA 1986c). The method assumes dose additivity. The estimated daily intake of each chemical by an individual route of exposure is divided by its RfD and the resulting quotients are summed to provide a hazard index. When the index exceeds one, there is potential for a noncarcinogenic health risk.

If the estimated daily intake for any single chemical is greater than its reference dose, the hazard index will exceed unity. The hazard index can exceed unity even if no single chemical's daily intake exceeds its reference dose. In this situation, to determine if there is potential for a health risk the chemicals in the mixture are segregated by similar critical effect or target organ. Separate hazard indexes are derived for each effect, and if any of the separate indexes exceed unity there is potential for a noncarcinogenic health risk.

Carcinogenic Effects

The potential for carcinogenic effects is evaluated by estimating excess lifetime cancer risk. Excess lifetime cancer risk is the incremental increase in the probability of developing cancer during one's lifetime over the background probability of developing cancer (i.e., if no exposure to site contaminants occurs). For example, a 1×10^{-6} excess lifetime cancer risk means that for every 1 million people exposed to the carcinogen throughout their lifetime (typically assumed to be 70 years), the average incidence of cancer is increased by one case of cancer. Because of the methods followed by U.S. EPA in estimating cancer potency factors, the excess life cancer risks estimated in the assessment should be regarded as upper bounds on the potential cancer risks rather than accurate representations of true cancer risk.

While synergistic or antagonistic interactions might occur between carcinogens and other chemicals at the site, especially PAHs, there is insufficient information in the toxicological literature to predict the effects of such interactions. Therefore, consistent with EPA guidelines on chemical mixtures (U.S. EPA 1986c), carcinogenic risks were treated as additive in the assessment.

RISK ESTIMATION

The exposure assessment section identified the potential exposure pathways associated with the Moss-American site. Based on that analysis three exposure settings were defined to describe potential exposures for current site conditions and future potential site use. These exposure settings were used to evaluate the health threats from the Moss-American site. They are:

• Current conditions--onsite trespass setting

7

- Current conditions-river recreational setting
- Future use-residential development setting

The factors used in estimating exposure include the frequency and duration of exposure, the magnitude of exposure, the point of exposure, the route of exposure, and the concentrations at the point of exposure. The methodology for calculating exposures is presented in Appendix L.

In this assessment, exposure point concentrations were estimated by direct measurement at a point of potential contact, except for airborne dust which was modeled. The highest detected contaminant concentrations and mean contaminant concentrations were estimated. To estimate a mean concentration, at least 10 percent of the samples had to be positive for the contaminant of concern. One-half the contract required detection limit was used in the calculation of mean concentrations when a chemical was reported as "not detected."

Acute exposures to contaminants are not quantitatively addressed because no methodologies are currently available. Acute effects, (e.g., skin burns) are addressed qualitatively. This acute effect has been related to the phenolic compounds in creosote. However, as discussed in Chapter 3, phenols were not frequently detected in the sediment which may be due to limitations in the analytical methods used.

)

1

Current Conditions--Onsite Trespass Setting

The exposure pathway analysis indicated that exposures under existing conditions would be a result of individuals coming onto the site. This activity will be termed "trespass," although use of this term is not meant to imply trespass in the legal sense. The trespass exposure setting is used to evaluate whether health threats exist under existing site conditions.

Exposure Assumptions. Trespass is an intermittent type of exposure. There is no standard exposure settings to describe trespass exposures. People would not be expected to come onto the site daily. The frequency of exposure will depend on such factors as site access, proximity of the site to residential areas or other areas of human activity, seasonal considerations, weather conditions, and attractiveness of the site.

To assess the potential exposures to people under the trespass setting, assumptions describing potential exposures were made. An average of 40 site visits per year was assumed for the individual most exposed. This corresponds approximately to two visits per week in the summer and one visit per week in the spring (April and May) and fall (September and October). An average of 2 hours is assumed to be spent onsite per visit. It is assumed exposure occurs for 10 years. Exposure assumptions are summarized in Table K-9.

The exposure routes associated with trespass that were evaluated include:

- Direct contact with surface soil resulting in incidental ingestion of contaminated soil
- Direct contact with surface soil resulting in dermal absorption of contaminants in soil
- Inhalation of contaminants bound to airborne dust

For direct contact with surface soil, a typical soil ingestion rate 0.1 g/day was assumed. This ingestion rate is based on recent guidance from U.S. EPA (U.S. EPA 1989c). It was assumed that 100 percent of the contaminants bound to the soil are bioavailable. For soil, this is probably a conservative assumption. Contaminants bound to soil tend to be less bioavailable than contaminants in an aqueous solution, but estimates of bioavailability of contaminants bound to soil are not readily obtainable.

Dermal absorption exposure was not estimated because of the considerable uncertainties associated with such an estimate. An illustrative, conservative estimate of dermal absorption exposure was made for comparison to ingestion exposures. While subject to substantial uncertainty, conservative estimates of potential dermal absorption exposure were substantially less than estimates of potential exposure through to ingestion (see Appendix L). Consequently, potential exposure through the dermal absorption route was not quantitatively estimated in this assessment.

It was assumed that the greatest release of dust to the air would occur when children ride dirt bikes across the site. Individuals with the greatest exposure to dust would be the people riding the dirt bikes. Although it is likely that children would not ride dirt bikes as often as people trespass onto the site, the same assumptions regarding frequency of exposure used for direct contact by trespassers were used to estimate inhalation risks. This should result in a conservative estimate of inhalation risks. Dust was assumed to be 100 percent respirable. Inhalation rates of 20 l/min and 13 l/min were assumed to be representative for adults and children engaged in light activities, respectively (ICRP 1974).

Table K-9 EXPOSURE ASSUMPTIONS MOSS-AMERICAN SITE

. ____.

Target Receptor	Route	Intake Rate	Body Weight	Frequency
Trespass Setting				
Child	Ingestion	0.1 g/day	35-kg	-
Adult	Ingestion	0.1 g/day	70-kg	-
Individual used for lifetime cancer risk estimate	ingestion	0.1 g/day	70-kg	40 days/yr 10 yrs
Child	Inhalation	13 Vmin	35-kg	-
Adult	Inhalation	20 Vmin	70-kg	-
Individual used for lifetime cancer risk estimate	inhalation	20 l/min	70-kg	2 hr/day 40 days/yr 10 yrs
Residential Setting				
Toddler	ingestion	0.2 g/day	15-kg	-
Adult	Ingestion	0.1 g/day	70-kg	-
Individual used for lifetime cancer risk	Ingestion	Age 1-5: 0.2 g/day	70-kg	365 days/y 70 yrs
		Age 6-70: 0.1 g/day		
Recreational Setting				
Child	Ingestion	0.1 g/day	35-kg	-
Adult	Ingestion	0.1 g/day	70-kg	-
Individual used for lifetime cancer risk estimate	Inges tion	0.1 g/day	70-kg	40 days/yr 10 yrs

.

)

}

¥

١

Noncarcinogenic risks are evaluated by comparing daily chemical intakes to RfDs. Because trespass exposures are intermittent, averaging exposure over a lifetime or an extended period may underestimate noncarcinogenic risks. In this assessment, the daily chemical intake during an exposed day was estimated and used as the basis for evaluation. The daily chemical intake is in milligrams of contaminant per kilogram of body weight per day (mg/kg/day). Noncarcinogenic risks from trespass exposures were evaluated for a 10-year child (35-kg body weight) and an adult (70-kg body weight).

To evaluate exposure to carcinogens, exposures over a lifetime yielded an average chemical intake in milligrams of contaminant per kilogram of body weight per day (mg/kg/day). Carcinogenic risk from trespass exposure was evaluated for an individual weighing 70 kg with a 70-year lifetime.

Concentrations. Onsite exposures in the trespass setting would result from direct contact with surface soil and inhalation of dusts. No samples were taken that represent strictly surface soil (i.e., the top several inches). The samples that were used to represent trespass exposure were those taken from shallow test pits.

These samples were used for the following reasons. The site history does not indicate any subsurface disposal of creosote. Consequently, contamination found below the site surface are a result of spills and drippings from treated rail ties. There is evidence of visible surface contamination. While the site contains fill material, the fill is from or before the time of site operation, therefore the site surface is same as the site surface during operations. Based on this information, samples taken from the test pits are used as representative of the surface soil. Test pit samples from areas currently paved or covered by gravel were not used. The samples and concentrations used to estimate onsite trespass exposure are presented on Table K-10.

To evaluate onsite trespass exposures, the site was divided into regions east and west of the river. The area east of the river is the landfill disposal area. Evaluation of the eastern area was based on the results of limited sampling in the portion of the site where dredgings from the drainage ditch were landfilled. Consequently, risks estimated from those data are conservative and represent only a small subset of the eastern portion of the site. The area west of the river extends from the river west up the automobile storage area fenceline.

Dust may be released to the air by the wind or by mechanical erosion (i.e., dirt bikes). Potential dust levels were modeled using the mass balance approach (see Appendix L). In this approach, ambient dust levels were assumed to be $100 \ \mu g/m^3$. Furthermore, contaminant concentrations in the dust were assumed to be the same as in the surface soil.

Table K-10
Concentrations Of Contamiants To Estimate Exposure
Soil Ingestion Exposure - Trespass Setting
Moss-American Site

	East Site Conce	ntrations (ug/l)	West Site Conce	Intrations (ug/I)
	Highest Detected	Geometric Mean	Highest Detected	Geometric Mean
CHEMICAL	Concentration	Concentration	Concentration	Concentration
Acetone	b	ь	210	36
Arsenic	5600	4490	110000	7780
Barium	85300	82762	197000	98 628
Benzene	b	b	11	4
Benzo(a)anthracene	170000	2893	380000	8418
Benzo(b)fluoranthene	78000	2232	270000	9050
Benzo(k)fluoranthene	78000	2232	240000	8714
Benzo(a)pyrene	71000	2163	200000	5673
Beryllium	1100	978	1400	1010
Cadmium	6700	6125	75900	1010
Chromium	2650 0	25008	2970 0	13484
Chrysene	190000	30 03	490000	11448
Copper	31900	27028	50000	18517
Dibenzo(g,h,i)perylene	12000	1190	51000	3790
2,4-Dinitrophenol	b	b	620000	2
Ethylbenzene	1600	24	240	12
Indeno(1,2,3-cd)pyrene	13000	1228	49000	3387
Lead	14800	10606	411000	60430
Manganese	729000	651926	407000	225443
Mercury	1300	603	1400	379
Naphthalene	1500000	5979	66000	11103
Nickel	30900	29256	21700	15904
Styrene	2600	29	b	b
Toluene	1300	206	580	171
1,1,1-Trichloroethane	19000	56	b	b
Vanadium	34500	33 537	22400	17686
Xylenes	1400	50	120	8
Zinc	128000	124451	9760000	73 5438

(a) This chemical detected in less than 10% of samples taken.

No estimate of a mean concentration made.

(b) Not detected.

٦

2

١

)

)

Trespass Risks. The estimation of trespass risks for both east and west site locations is presented in Appendix M, Tables M-1 to M-12. A summary of this assessment based on average and highest detected concentrations is presented in Table K-11.

No estimated intakes by ingestion exceeded RfDs for the eastern section of the site for highest or average concentrations. Total excess lifetime cancer risks by ingestion were 3×10^{-4} for highest detected concentrations and 5×10^{-6} for geometric mean concentrations. Carcinogenic PAHs were detected in surface soil samples and contributed the most to the carcinogenic risks. The highest detected concentrations of PAHs were in the east landfill area.

A comparison of estimated ingestion intakes to RfDs for the western site area showed no RfDs to be exceeded for either adult or child exposure. However, the hazard index exceeded one for highest concentrations for both adult and child ingestion. Cadmium, 2,4-dinitrophenol, and lead are the primary contributors to the hazard index value. However, because these chemicals do not have similar toxic effects they can not be assumed to be additive. Therefore, the segregation of these chemicals suggest no potential for noncarcinogenic effects. Further, the chemical 2,4-dinitrophenol was detected in only one sample (SS113), located near the discharge ditch.

Excess lifetime cancer risk estimates associated with the western site area range from 5×10^{-4} (for highest detected concentrations) to 2×10^{-5} (for geometric mean concentrations). The risks are attributed primarily to PAHs. The highest concentrations were detected near the former drainage ditch and treated storage area.

No estimated chemical intakes through inhalation exposures exceeded the RfDs on the east or west side of the site. The excess lifetime cancer risks from inhalation exposures ranged from 2×10^{-6} to 4×10^{-8} (highest detected and mean concentration respectively) for the western site area and 3×10^{-6} to 1×10^{-7} (highest detected and mean concentration, respectively) for the eastern site area.

A conservative approach was taken in making assumptions that describe potential human exposures resulting from the Moss-American site. The trespass setting assumed that under current site conditions children or adults could use the site informally for recreation. The number of times they might come to the site is unknown. An intermittent exposure at a frequency of 40 times per year was assumed to be a conservative outer bound to describe recreational use.

The application of toxicity values is another example of the use of conservative assumptions to address uncertainty. Because there are no toxicity values based on intermittent exposure, the toxicity values used in the assessment are based on long-term or chronic exposure. These values were used to assess both the

Table K-11 Summary of Onsite Trespass Risks Moss-American Site

		Nom	archogenic Alshe			Carcinopenic Risks -	Ingestion	<u>Carcinogenic Fileke – h</u>	nhalation
Exposure Setting	Concentration	Tanget Population	Ingestion Hazard Index	inheletion Hezerd Index	Chamicala Exceeding RID	Total Ingestion Excess Lifetime Cancer Flisk	Major Chemiosie	Total Inhelation Excess Lifetime Cancer Rick	Major Chemicale
East	Highest Delected	Child	0.15	0.14	None	-	-	-	-
	Geometric Meen	Child	0.11	0.014	None	-	-	-	-
	Highest Delected	Adult	0.073	0.012	None	3E-04	PAHe(a)	25-08	PAHa(a)
	Geometric Meen	Adult	0.065	0,011 ×	None	6E-08	PAH a(a)	45-08	PAHe(a)
West	Highest Detected	Child	2.4	0.023	None	<u> </u>	-	-	
	Geometric Meen	Child	0.24	0.008	None	-	-	-	-
	Highest Detected	Adult	1.2 b	0.018	None	5E-04	PAHe(a)	SE-06	PAHe(a)
	Geometric Meen	Adult	0.12	0.006	None	2E-05	PAHe(a)	1E-07	PAHs(a) ·

Exposure Assumptions:

Noncercinogenic Flicks - 35 kg body weight (child), 70 kg body weight (edult), 0.1 g/day soil inteke.

child inhelation rate 13 Vm/m, adult inhelation rate 20 Vm/m.

Cercinogenic Flisks - 70 kg body weight, 0,1 g/day soll intake, 2-daylwk, 20-wkelyr, 10 years.

 PAHs include benzo[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, benzo[g,h,i]perylene chrysene, dibenz[a,h]anthracene, indeno[1,2,3-cd]pyrene.

b. No individual chemical intake exceeds RFD. When hazard indexes are re-estimated by health effect, no subindexes exceed 1.

intermittent trespass and continuous residential exposure. Applying these values to intermittent exposures was conservative from the standpoint of health protection.

Dermal contact is the most probable route of exposure, but that route was not evaluated quantitatively. A conservative sample estimate of dermal absorption from direct contact was made (Appendix L) to compare with estimates from ingestion. The comparison indicated that the intake of chemicals from dermal exposure would be an order of magnitude less than that resulting from ingestion exposures. Although the potential for acute exposure effects from dermal exposure is probable, the route is not addressed. No methodologies are currently available to address acute exposures. Further, there are no data that relate concentrations of creosote constituents to the potential for skin burns.

One final source of uncertainty is associated with PAH toxicity. The majority of the chemicals detected onsite were PAHs. Except for benzo[a]pyrene, there are insufficient data for developing cancer potency factors for PAHs. Following U.S. EPA guidance, the cancer potency factors for all carcinogenic PAHs were assumed to be the same as benzo[a]pyrene. Studies have indicated that benzo[a]pyrene is the most potent of the PAHs, so the application of this potency factor to other PAHs may result in an overestimate of risks. This apparent conservatism may be balanced by the identified potential for synergistic interaction between PAHs. The carcinogenicity of some PAHs may be enhanced in the presence of others.

Noncarcinogenic PAHs make up the majority of the contaminants present at the site, but most do not have RfDs. They have low toxicity, but their contribution to overall site risks cannot be quantified and is a major uncertainty in the risk assessment.

Future Use--Residential Development Setting

The future use exposure setting is used to evaluate public health threats that may be associated with any change in the site use or conditions. Although the site currently has a mixed use--open land and automobile storage--it is feasible that the land use may change to include residential or commercial development. Since part of the site is owned by the county it could be used as park land.

Because land use cannot be predicted accurately, the EPA has suggested that a "reasonable maximum exposure scenario" be used to assess future exposures (U.S. EPA 1988b). A residential use would be the most restrictive use (i.e., the use with the most potential exposures), so it was adopted as the future use evaluated in this assessment.

Exposure Assumptions. Assumptions were made to describe a potential residential exposure setting (see Table K-9). It was assumed that residential exposure occurs daily over an entire lifetime. This assumption is conservative in that it assumes indoor contact with contaminated dust is similar to outdoor contact with contaminated soil.

)

}

)

The routes of exposure associated with residential development of the site that are evaluated include:

- Direct contact with outdoor surface soil and indoor dust resulting in incidental ingestion of contaminants
- Direct contact with outdoor surface soil and indoor dust resulting in dermal absorption of contaminants in soil and dust

For direct contact with surface soil and indoor dust, a typical soil ingestion rate of 0.2 g/day was assumed for children aged 1 to 6 and 0.1 g/day for older children and adults. These ingestion rates are based on recent EPA guidance (U.S. EPA 1989a). As in the trespass setting, it is assumed that 100 percent of the contaminants bound to the soil and dust are absorbed upon ingestion.

Dermal absorption exposures are not explicitly estimated but are assumed to be less than those for ingestion (see Appendix L). Inhalation of soil and dust is assumed to be minor, unlike the current setting where dirt bikes and other activities can cause dust release. A residential use would not have the same potential for mechanical erosion and would lead to more of the site being covered than currently (i.e., by lawns, driveways, and structures).

Noncarcinogenic risks from residential exposures were evaluated for a small child/toddler (15-kg body weight) and an adult (70-kg body weight). Carcinogenic risk from residential exposures were evaluated for an individual weighing 70 kg with a 70-year lifetime.

Concentrations. Onsite exposures in the residential setting would result from direct contact with contaminants in the surface soil. Residential development of the site could require the excavation of subsurface material for building foundations and utility lines. Excavation could expose contaminated subsurface material. If left in place on the surface, residents could come into contact with the material. The contaminant levels present in the surface would depend on the location of the excavation, the amount of material excavated, and the deposition of excavated material.

This assessment based future residential soil contamination concentrations on all onsite test pit samples and soil borings to a depth of 15 feet (the approximate limit of potential building foundation excavation). The samples and

concentrations used to estimate residential exposure are presented on Table K-12.

To evaluate residential exposures at the site, the site was divided into two regions, as mentioned above. The area east of the river is the land disposal area; the other extends west from the river and includes the current automobile storage area fenceline.

Risk Estimates. The risk estimates for site development are presented in Appendix M, Tables M-13 to M-18. Noncarcinogenic and carcinogenic risks are summarized in Table K-13.

No estimated intakes exceeded RfDs for noncarcinogens for the eastern site area. Estimated risks for the highest detected and geometric mean concentrations were 2×10^{-2} and 2×10^{-4} , respectively. PAH concentrations detected in the east landfill area contributed to the estimated lifetime cancer risk.

No estimated intakes for mean concentrations exceeded the RfDs for development of the western section. However, the RfDs for cadmium, lead and 2,4-dinitrophenol were exceeded for highest detected concentrations. 2,4-dinitrophenol was detected in only one sample and was not included for the average concentrations.

Carcinogenic PAHs detected in the surface and subsurface samples contributed most to the carcinogenic risks. The excess lifetime cancer risks ranged from 4×10^{-2} (highest detected concentrations) to 3×10^{-4} (geometric mean concentrations). Contaminants detected in the former drainage ditch, process area, treated storage area, and west landfill contributed the most to risk.

The future uses of the site are uncertain. The future site use evaluated in this assessment was residential development. Although it is not the most likely use, it is feasible. The evaluation of this setting produced a conservative upper bound on risks associated with future site uses.

Current Conditions--River Recreational Setting

The exposure pathway analysis indicated that exposures under existing conditions would be a result of individuals engaged in activities along the Little Menomonee River. There is direct and indirect evidence to demonstrate these activities, which are referred to here as "recreational." The recreational exposure setting was used to evaluate whether health threats exist at the river on the basis of existing conditions.

	East Site Concentra	tions (uo/ka)	West Site Concentr	ations (ua/ka)
CHEMICAL	Highest Detected Concentration	Geometric Mean Concentration	Highest Detected Concentration	Geometric Mean Concentration
Acetone	120		370	60
Araenic	6800	4695	71400	4482
Barium	183000	58263	197000	62253
Benzene	b	b	100	4
Benzo(a)anthracene	190000	2675	380000	1802
Benzolbifluoranthene	87000	3274	270000	1466
Benzo[k]fluoranthene	78000	1707	250000	1009
Benzo(a)pyrene	71000	1736	230000	1315
Benzoic Acid	230	1	810	212
Beryllium	1200	409	1300	491
Bis(2-ethylhexyl)phthalat	460	8	1600	265
Cadmium	6900	5315	75900	4952
Chromium	26500	20789	51200	15696
Chrysene	460	2524	510000	1864
Copper	36600	25659	137000	24814
Dibenz[a,h]anthracene	b	b	24000	452
Dibenzo(g,h,i)perylene	12000	1050	77000	977
1,1-Dichloroethane	210	8	b	b
2,4-Dinitrophenol	b	b	620000	2
Dioxin (equivalent)	0.28	•	0.001	-
Ethylbenzene	4100	29	450	6
Indeno(1,2,3-cd)pyrene	13000	1065	78000	927
Lead	31000	14926	519000	21609
Manganese	841000	517778	828000	328182
Mercury	1300	239	3900	247
Methylene chloride	b	b	10000	6
Naphthalene	2600000	6549	1800000	2135
Nickel	30900	24181	21900	15254
Styrene	9300	36	380	4
Toluene	2000	120	580	41
1,1,1-Trichloroethane	19000	8	11	11
Vanadium	38200	25948	34900	13719
Xylenes	1700	53	1100	5
Zinc	219000	1 3 0310	9760000	285190

Table K-12 Concentrations Of Contamiants To Estimate Exposure Soil Ingestion Exposure – Residential Development Setting Moss-American Site

)

)

۱

(a) This chemical detected in less than 10% of samples taken. No estimate of a mean concentration made.

(b) Not detected.

1

Table K-13
Summary of Residential Development Risks
Moss-American Site

 \mathcal{D}^{*}

		Non	carcinogenic Flieke		<u>Carcinopenic Flicks - Ingestion</u>	
Exposure Setting	Concentration	Target Population	ingestion Hezard Index	Chemicals Exceeding RID	Total Ingestion Excess Lifetime Cancer Risk	Major Chemicale
East	Highest Detected	Child	0.92	None	-	-
	Geometric Mean	Child	0.40	None	-	-
	Highest Detected	Adult	0.000	None	25-02	PAHe(a)
	Geometric Mean	Adult	0.051	None	2E-04	PAHe(a)
West	Highest Detected	Child	12	Cadmium, lead 2,4-dinitrophenol		-
	Geometric Mean	Child	0.5	None	-	-
	Highest Detected	Adult	1.3 b	None	4 E-02	PAHa(a)
	Geometric Mean	Adult	0.054	None	3E-04	PAHa(a)

Exposure Assumptions:

•

Noncarcinogenic Flicks - Child: 35 kg body weight 0.2 g/day soil intake.

- Adult: 70-kg body weight, 0.1 g/day soll intake.

Carcinogenic Fleke - Lifetime average: 70 kg body weight, 0.1 giday soll intake.

Exposure daily for 70 years.

a. PAHa include benzojajanthracene, benzojbjiluoranthene, benzojkjiluoranthene, benzojajpyrene, benzojg,h.ijperylene,

chrysene, dibenzja, hjanthracene, indenoj 1,2,3-cdjpyrene.

b. No individual chemical intake exceeds RFD. When hazard indexes are re-estimated by health effect, no subindexes exceed 1.

Exposure Assumptions. The same exposure assumptions used to describe trespass exposures onsite (except for inhalation of dust) are used to define recreational exposures along the river. While it is possible that exposures may be more frequent along the river than for the site given the proximity to residences and the park setting, the two settings were treated the same for the purpose of this assessment. The exposure assumptions are summarized in Table K-9.

The routes of exposure associated with recreational exposures along the river that were evaluated include:

- Direct contact with river sediments resulting in incidental ingestion of contaminated sediment
- Direct contact with river sediment resulting in dermal absorption of contaminants in sediments

ł

.

The river is part of county park lands. It is assumed that in the future the corridor along the Little Menomonee River will remain undeveloped parkland. Consequently, the recreational exposure defined here also applies to the potential recreational exposures in the future.

Concentrations. Offsite exposures in the recreational setting would result from direct contact with the river sediment. Although the sediments are some times underwater, it was assumed that there would be ready access to the sediments, especially in periods of low stream levels. For exposures to contaminated sediments in the Little Menomonee River, the river was divided into mile long segments (river miles) (Figure K-5).

The highest detected contaminant concentrations per river mile were used to represent the high exposure point concentrations for individual river miles. Average exposure point concentrations were estimated by calculating the geometric mean for detected concentrations of contaminants within a river mile. Since contaminants in the sediments are not distributed uniformly throughout the river, the mean sediment concentrations of contaminants within a river mile may be more representative of a typical exposure than the highest detected sediment concentrations may overestimate actual exposures, but it may be used to approximate an upper end of potential exposures. Concentrations used to estimate exposures are presented in Table K-14.

Risk Estimates. The estimation of the recreational river risks are presented in Tables M-19 to M-33. A summary of the results of this assessment are presented in Table K-15.

RIVER SEGMENTS LITTLE MENOMONEE RIVER MOSS-AMERICAN RI

۱

Table K-14 Concentrations Of Contamiants To Estimate Exposure Sediment Ingestion Exposure - Recreational Exposure Setting Moss-American Site

l

		ارتقارت فالمرديان	Same And S (South		SHOW NEED S CONSIN		Bream Pleach 4 Cancers		Streen Presh 5 Cancerd	
CHEMICAL	Onentratin Ore	dentration .	Concentration (Incentration	Concentration C		Canantration O		Omentuden Gr	
Acetane	32000	300	8	8	2190	2100		-	•	•
Anthrony	1198	1198	1700	1100	•	•	•	ı	•	1
Avento	8	4200	6100	499	7080	600		I	ŧ	1
		0000	80008		60096	81908	12040		78088	
Benzajajantivacene	140008	2000	87008	18008	00001	22440	64016	1	1	Ĩ
Benzajbjikarenthene	100	22000	480	Į	60000	18	44000	ž		i
Benzaftfikerenthene	4 1000	9 700	60008	5	6000		17000	Í	Ĭ	Ĩ
Benzelg, h. Jpontono	14000	2	14000	3408	24000	1700		ź	Ĭ	i
Benzolalayrana	1000	22000	6700		64000	8768	37000	916		Í
Benzaia Add	•	•	•	ł	•	ı	ŧ	8	8002	Ĩ
	1180	• •	1300	Ŧ	7100	710	1	1	•	•
2-Butamone	97	87	9	8		•	•	ı	•	1
Buybonzytphihalans	•	1	•	•	•	•	•	1	đ	7
Cadmium	14000	7198	7408	Į	7100	ŧ		ŧ	I	i
4.Chimountine	,	•	•	٠	•	•	•	ł		•
Chicochum	Ŧ	I	43	Ż	•	1	•	•	,	•
Chrombum	60023		19009	10000	24040	Ĩ	NON	Í	1100a	
Chrysene	180008	18008	8100	5000	110000	1000		4298	202	2790
Capper	32909	20000	50042	22008	20000	24000	27000	1000	4000	
Dibenz(a, hjanthracene	Ĩ	1300	,	,	•	ı	•	•	•	ı
1,1-Dichiarcathane	•	ı	•	,	ı	•	ľ	•	•	ı
2,4-Chilleghand	•	ı	1	ł	•	•	•	ı	•	•
Disatin (equivalente)	•	ı	J	,	0.00014	0.00014	0.74	•	Ĩ	Ĩ
Ethylbonzone	3	110	•	¥	240	i	•	•	•	•
Indena(1,2,3-ad)pyrene	60002		2000	ġ	9100	23000	1	1	ž	ŧ
E	110008	22000	60003		110000	60009	1808		210000	178008
Manganose	80008	480000	73000	80008	00000	00000		8	450000	408008
Marcury	5	128	æ	ŧ	120	38	510	30	428	ğ
Methylane chiartáe		8400	12000	4200	1400	ł	•	ı		1
Naphihatana		140800	11000	4708	310000		•	ı	•	,
Nichol	1	ı	•	•	24000	21000	1909	19099	24048	21000
Balantum	•	ı	•	•		•	94C1	1380	•	•
Bijnene	•	•	•	·	•	1	•	•	•	•
Toheene	880	8	220	ŧ	•	٠	•	ı		•
1, 1, 1-Trichlarcethene	•	·	1	1	•	,	•	•	•	•
Vanadium	31000	20000	29000	22000	30000	28000	23000	21000	23000	21000
Xylanca	•	,		ı	ŀ	ŀ	•	·	•	ı
Zine	2200000	670000	91000	47000	350000	310000	30000	20000	40000	

٩

•

•

		N	oncarcinogenic risk	s - Ingestion	Carcinopenic risks	- ingestion
Stream Mile	Concentration	Target Population	ingestion Hazard Index	Chemicals Exceeding RfD	Excess Lifetime Cancer Risk	Major Chemicals
1	Highest Detected	Child	0.46	None		•
	Geometric Mean	Child	0.16	None	-	-
	Highest Detected	Adult	0.20	None	1 E-04	PAHs (a)
	Geometric Mean	Adult	0.08	None	3E-05	PAHs (a)
2	Highest Detected	Child	0.21	None	•	-
	Geometric Mean	Child	0.14	None	•	-
	Highest Detected	Adult	0.10	None	1E-04	PAHs (a)
	Geometric Mean	Adult	0.07	None	2E-0 5	PAHs (a)
3	Highest Detected	Child	0.32	None	-	-
	Geometric Mean	Child	0.26	None	-	-
	Highest Detected	Adult	0.16	None	1E-04	PAHs (a)
	Geometric Mean	Adult	0.13	None	2E-05	PAHs (a)
4	Highest Detected	Child	0.12	None	-	-
	Geometric Mean	Child	0.23	None	-	-
	Highest Detected	Adult	0.06	None	5E-05	PAHs (a)
	Geometric Mean	Adult	0.12	None	5E-06	PAHs (a)
\$	Highest Detected	Child	0.56	None	•	•
	Geometric Mean	Child	0.47	None	. •	-
	Highest Detected	Adult	0.30	None	3E-0 5	PAHs (a)
	Geometric Mean	Adult	0.23	None	3E-06	PAHs (a)

Table K-15 Summary of Recreational Use Risks Little Menomonee River

Exposure Assumptions:

1

Noncarcinogenic Risks - Child: 35 kg body weight, 0.1 g/day soil intake - Adult: 70 kg body weight, 0.1 g/day soil intake Carcinogenic Rieks - 70 kg body weight, 0.1 g/day soil intake Exposure duration: 2 days/week for 20 weeks/year, 10 years

a. PAHs include benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, benzo(g,h,ijperylene, chrysene, dibenz(a,h)anthracene, indeno(1.2,3-c,d)pyrene

۲

A comparison of estimated intakes to RfDs has shown that no RfDs were exceeded for any river mile. This evaluation suggests that there does not appear to be a potential chronic noncarcinogenic risk from ingestion exposure to noncarcinogens.

7

Carcinogenic PAHs were detected in all stream miles of the Little Menomonee River. The excess lifetime cancer risks levels for all stream miles ranged from 1×10^4 (highest detected concentration) to 3×10^6 (mean concentration). The carcinogenic PAHs were the major contributors to the risk estimates. The highest estimated risks were associated with river miles 1, 2, and 3, for which the risk estimates were the same. The excess cancer risk levels ranged from 1×10^4 (for highest detected concentrations) to 2×10^{-5} (for geometric mean concentrations). All river miles had estimated risks greater than 1×10^{-6} .

A conservative approach was taken in making assumptions that describe potential human exposures resulting from contact with contaminated sediments. The trespass setting assumed that under current conditions children or adults could use the river informally for recreation. The number of times they might be in contact with the river is unknown, but an intermittent exposure at a frequency of 40 times per year was assumed to be a conservative outer bound for recreational use.

The application of toxicity values is another example of the use of conservative assumptions to address uncertainty. Because there are no toxicity values based on intermittent exposure, the toxicity values used in the assessment were based on long-term or chronic exposure. These values were used to assess the intermittent trespass or recreational exposure. Applying these values to intermittent exposures was conservative from the standpoint of health protection.

Dermal contact was not quantitatively evaluated but it is the most probable route of exposure to sediments. A conservative sample estimate of dermal absorption from direct contact was made to compare with estimates from ingestion (Appendix L). The comparison indicated that the intake of chemicals from dermal exposure would be an order of magnitude less than that resulting from ingestion exposure.

The effects from acute dermal exposure to contaminants in the sediments is a potential concern. In 1971 teenagers who came into contact with river sediments received skin burns, as did laboratory workers conducting tests in the late 1970s. Burns associated with creosote are typically the result of phenolic compounds; however, phenols were rarely detected in the sediment or soil samples taken in the RI. As discussed in Chapter 3, analytical methods routinely used may not be adequate to quantify phenolic concentrations. Even if they were quantifiable, there are no data that relate concentrations of creosote constituents to the potential for skin burns from contact with creosote

constituents. Additionally, no current methods are available for quantitatively evaluating acute exposure risks. In the absence of these data and recognizing the site's history and the presence of creosote, the continued potential for burns is assumed.

One final source of uncertainty is associated with PAH toxicity. The majority of the chemicals detected onsite were PAHs. Except for benzo[a]pyrene, sufficient data do not exist for developing cancer potency factors for PAHs. Following U.S. EPA guidance, the cancer potency factors for all carcinogenic PAHs were assumed to be the same as benzo[a]pyrene. Studies have indicated that benzo[a]pyrene is the most potent of the PAHs, so the application of this potency factor to other PAHs may overestimate risks. This apparent conservatism may be balanced by the identified potential for synergistic interaction between PAHs. The carcinogenicity of some PAHs be enhanced in the presence of other PAHs.

Most noncarcinogenic PAHs do not have RfDs, but they nevertheless make up the majority of the contaminants present in the sediments. They have low toxicity, but their contribution to overall site risk cannot be quantified and is a major uncertainty in the risk assessment. Studies have indicated that some noncarcinogenic PAHs may enhance the carcinogenicity of carcinogenic PAHs.

ENVIRONMENTAL EVALUATION

1

)

The sediments of the Little Menomonee River are contaminated with creosote from the Moss-American site to the confluence with the Menomonee River. In some areas the sediment contains visible amounts of creosote and oils. In many areas disturbance of the sediment results in the release of oily substances that cause sheens and slicks on the water surface. Aquatic plants and animals in the Little Menomonee River are exposed to creosote that continues to be released to the river by groundwater flow and to creosote contained in the sediment from past releases.

Most of the creosote in the river is in the sediment and often with higher concentrations at depth. Aquatic plants and animals that rest on or burrow in the sediment are likely to be exposed more often and to higher concentrations than organisms living in the water or on the water surface. Disturbance of the sediment by high flows or by people or animals wading in the river causes occasional releases of creosote to the water and water surface.

Birds or terrestrial animals that travel through, rest or feed on the river may also be exposed to contaminants from creosote. Birds and animals with a high affinity for water are probably exposed more than animals that have only incidental contact with the river. Most of the Little Menomonee River has been altered by channelization for drainage and flood control. Aerial photographs of the flood plain downstream of the Moss-American site show the presence of former channel meanders that were eliminated by channel straightening. Dredge spoil piles are also evident along much of the lower river. Channelization was performed upstream of Brown Deer Road and the Moss-American site, but some sections of the river flow through or are adjacent to wetlands and are somewhat less altered. The watershed above Brown Deer Road contains more agricultural and less residential and urban land use than the watershed below Brown Deer Road. The Little Menomonee River receives contaminants from agricultural land, stormwater discharge, seven industrial and one municipal permitted discharges, a closed landfill, and the Moss-American site.

The Wisconsin DNR has considered past changes in habitat (channelization and removal of cover) the past and present effects of sources of contamination in establishing classifications for the Little Menomonee River. Above Brown Deer Road, the river is classified as a full fish and aquatic life stream capable of supporting intolerant-to-tolerant forage fish and macroinvertebrates. Below Brown Deer Road to the confluence with the Menomonee River the river had been classified an intermediate fish and aquatic life stream capable of supporting tolerant to very tolerant forage fish and macroinvertebrates. It has been recently revised upward to full fish and aquatic life based on additional data obtained by the DNR (Mace 1989).

Aquatic animals in the Little Menomonee River have been sampled several times to determine the effects of land use and pollution on aquatic resources. Several studies were reviewed by Bannerman, et al. (1976) and the DNR (1984). Studies by the DNR between 1973 and 1977 found 11 species of fish from four classes. There was a general decrease in species diversity and numbers downstream of the Milwaukee County line. The most common species were green sunfish, creek chub, brown bullhead, blacknose dace, white sucker, and fathead minnows. Abrams and Chesters (1977) examined data on benthic macroinvertebrates from the Menomonee River basin to determine if trends indicating adverse effects of urban runoff could be detected. Their review included the Little Menomonee River and employed a biotic index developed by Hilsenhoff (1977) to describe water quality and the effects of contamination. Abrams and Chesters noted that earlier sampling programs indicated that in 1953 only pollution-tolerant sludge worms lived in oil- and tar-contaminated sediment near the Moss-American site. A qualitative study in 1971 by the DNR showed varying degrees of pollution from the Moss-American site to the Menomonee River. Four sites on the Little Menomonee River sampled in 1977, including one upstream of the site, all had biotic indices that indicated poor water quality in May 1977, but the index for one location downstream of the site (91st Street and Good Hope Road) had an index that represented good water quality in November 1976. Abrams and Chesters concluded that for the

Menomonee River basin as a whole, the adverse effects or urban and industrial point sources of pollution masked any effects of urban nonpoint sources of pollution.

١

ł

A more recent study by the DNR (1984) found that the same fish species reported in 1977 still dominated the Little Menomonee River, but also reported northern pike above river mile 7 upstream of the site. It was concluded that pike migrated up the river past the Moss-American site. The DNR also noted that the blacknose dace, thought to be somewhat intolerant of pollution, was found downstream of the site. Small individuals of some species of sport fish were also found downstream of the site and are believed to use some parts of the lower river for migration, and possibly spawning. Aquatic life in general was found to be about 50 percent as abundant downstream than it is upstream of the site.

The sediment in the Little Menomonee River are contaminated with PAHs. As discussed, aquatic organisms from PAH-contaminated environments have a higher incidence of tumors and hyper plastic diseases than those from nonpolluted environments. There is a growing body of evidence, mostly circumstantial, linking PAHs to cancer in fish population, especially bottom dwelling fish from areas with sediments heavily contaminated with PAHs. The concentrations of PAHs found in the sediments of the Little Menomonee River are similar to those in water bodies where increased fish tumors have been found.

Most biological investigations of the Little Menomonee River have concluded that the lower river is ecologically impaired, with some effects attributed to creosote contamination from the Moss-American site. Those same studies have generally noted that the various effects of habitat loss, chemical pollution, soil erosion, and nonpoint source pollution cannot be readily distinguished.

UNCERTAINTIES AND LIMITATIONS IN THIS ASSESSMENT

Uncertainties in this risk assessment are due to uncertainties in the risk assessment process in general (i.e., the toxicological database), specific uncertainties in characterizing the site, and uncertainties associated with describing exposures. Uncertainties and limitations in this assessment are described below.

UNCERTAINTY FACTORS

The uncertainties in this risk assessment are summarized in Table K-16. This risk assessment is subject to uncertainty from:

Table K-16

•

.

UNCERTAINTY FACTORS MOSS-AMERICAN SITE

Uncertainty	Effect of	Comment
Use of cancer potency factors	May overestimate risks	Potencies are upper 95th percent confidence limits. Considered unlikely to underestimate true risk.
Risks/doess assumed to be additive	May over or under estimate risks	Does not account for synergism or antagonism.
Critical toxicity values derived primarily from animal studies.	May over or under estimate risks	Extrapolation from animal to humans may induce error due to differences in absorption, pharmacokinetics, target organs, enzymes, and population variability.
Critical toxicity values derived primarily from high doses, most exposures are at low doses.	May over or under estimate risks	Assumes linear at low doses. Tend to have conservative exposure assumptions.
Critical toxicity values	May over or under estimate risks	Not all values represent the same degree of certainty. All are subject to change as new evidence becomes available.
Bioavailibity from soil assumed to be 100%	May overestimate risk	Contaminants may preferently bind to soil and not entirely release to GI tract. Actual Intake may be less than the intake amount estimated.
Affect of absorption	May over or under estimate risks	The assumption that absorption is equivalent across species is implicit in the derivation of the critical toxicity values. Absorption may actually vary with chemical.
Estimates of inhalation exposure	May overestimate risk	Methods used to estimate dust concentrations were conservative.
Inorganic analysis	May overestimate risk	Inorganic analysis reports results for total metals and not specific forms. Assumed the metal was present in its most toxic form.
Not all chemicals at the site have critical toxicity values.	May underestimate risk	Can not quanititatively estimate risks, must address these chemicals quantitatively.
No criteria for acute exposures to creosote or phenolics.	May underestimate risk	Can not quantitatively evaluate acute effects from contact with sediments and soils.
Analysis for phenolic compounds.	May underestimate risk	Analytical methods may undersetimate the presence of phenolic compounds in sediment.

۱.

١

Table K-16

۹,

UNCERTAINTY FACTORS MOSS-AMERICAN SITE

•

)

)

)

١

٠

Uncertainty Factor	Effect of Uncertainty	Comment	
Relative source contribution is not accounted for.	May underestimate risk	Exposures not associated with the site are not included within the risk assessment. This approach may miss incremental risks from the site.	
Contaminant loss during sampling	May underestimate risk	May underestimate contaminant concentrations, especially VOCs.	
The dermal absorption route of exposure was not quantified	May underestimate risk	Exposures from dermal contact were not included in assessment, however, exposures estimated to be less than exposures from ingestion.	•
Analysis limited to TAL and TCL chemicals.	May underestimate risk	The TAL and TCL chemicals may represent only a subset of the toxic chemicals which are present at the site.	
Exposure assumptions	May under or overestimate risk	Assumptions regarding media intake, population characteristics, and exposure patterns may not characterize exposures.	
Contaminant concentrations assumed constant.	May under or overestimate risk	Did not account for environmental fate, transport, or transfer which may alter contaminant concentration.	
Method detection limits	May underestimate risk	For some chemicals (PAHs) the method detection limit is above a concentration which might be of concern.	

- Sampling and analysis
- Fate and transport estimation
- Exposure estimation
- Toxicological data

Uncertainty associated with sampling and analysis includes the inherent variability (standard error) in the analysis, representativeness of the samples, sampling errors, and heterogeneity of the sample matrix. While the QA/QC used in the RI serves to reduce such errors, it cannot eliminate all errors associated with sampling and analysis.

The toxicological database is also a source of uncertainty. The EPA outlined some of the sources of uncertainty in its *Guidelines for Carcinogen Risk* Assessment (U.S. EPA 1986d). They include extrapolation from high to low doses and from animals to humans; species differences in uptake, metabolism, and organ distribution; species differences in target site susceptibility; and human population variability with respect to diet, environment, activity patterns, and cultural factors.

ASSUMPTIONS IN THIS ASSESSMENT

Major assumptions used in this risk assessment are:

- Contaminant concentrations remain constant over the exposure period.
- Exposure remains constant over time.
- The selected ingestion rates and population characteristics (weight, life span) are representative for a potentially exposed population.
- Risks are additive.
- All intake of contaminants is from the exposure medium being evaluated (no relative source contribution).

SUMMARY

This baseline risk assessment evaluated the potential threats to public health and the environment from the Moss-American site under the no-action alternative. The following exposure settings were developed to evaluate potential risks from current and future site conditions:
- Exposure of visitors (or trespassers), using the site for recreational purposes by direct contact with contaminated surface soils and inhalation of dusts
- Exposure of future site users by direct contact with subsurface wastes disturbed during site development
- Exposure of recreational users of the Little Menomonee River through direct contact with contaminated sediments
- Exposure of aquatic organisms and wildlife to contaminated sediments in the Little Menomonee River

A trespass setting was developed to address the informal recreational uses of the site. This setting assumed that people used the site intermittently (approximately 40 times per year). This evaluation indicated that the estimated intake of the chemicals evaluated for chronic noncarcinogen effects did not exceed the RfDs for those chemicals. The individual excess lifetime cancer risks estimated for the site east of the river ranged from 3×10^{-4} (highest detected contaminant concentration) to 5×10^{-6} (geometric mean contaminant concentration) to 2×10^{-5} (geometric mean). Contaminants detected in the east landfill, west landfill, treated storage area, and former drainage ditch contribute the most to the risk. PAHs were the main chemical group contributing to risk.

1

Inhalation exposure was evaluated to determine the potential risk to people generating dust onsite while participating in certain activities, such as dirt bike riding. The evaluation indicated that there does not appear to be a potential for adverse noncarcinogenic health effects. The individual excess lifetime cancer risk estimates for the site east of the river ranged from 3×10^{-6} (highest detected contaminant concentration) to 8×10^{-8} (mean contaminant concentrations); for the site west of the river estimates ranged from 5×10^{-6} (highest detected contaminant concentration) to 2×10^{-7} (geometric mean contaminant concentrations).

To evaluate potential future risks associated with the site, a residential setting was employed. The setting represents a reasonable maximum exposure setting if the site is developed. Based on this evaluation, there appears to be a potential noncarcinogenic risk resulting from exposure of adults and children to concentrations of lead and cadmium. The individual excess lifetime cancer risk estimates for the site east of the river were concentrations of 2×10^{-2} (highest detected) and 2×10^{-4} (geometric mean). The individual excess lifetime cancer risk estimates for the site west of the river were concentrations of 4×10^{-2} (highest detected) and 3×10^{-4} for (geometric mean). The locations of greatest concern are the east and west landfills, treated storage area, and former drainage ditch. The PAHs were the major chemical group that contributed to the risk.

The potential health risks to people engaged in recreation along the Little Menomonee River were evaluated. The evaluation indicated that the estimated intakes of noncarcinogens did not exceed their RfDs. Individual excess lifetime cancer risk estimates from ingestion of sediment were greater than 1×10^{-6} for all river segments. The highest estimates were associated with river miles 1, 2, and 3 and ranged from concentrations of 1×10^{-5} (highest detected) to and 2×10^{-5} (geometric mean).

The cancer risks that were estimated are conservative in the selection of exposure assumptions and the application of the cancer potency factor of benzo[a]pyrene to the other carcinogenic PAHs. They were not conservative in that they do not account for synergism and co-carcinogenic effects that are known to occur with PAHs.

There is a potential for acute dermal effects from contact with creosote contamination in the river sediments. The toxicity of creosote was reviewed, and it was concluded that creosote and some of its constituents are dermally toxic and may cause skin burns and systemic toxic effects. This risk cannot be quantified with current available methodologies. No current literature is available that relates concentrations of creosote to the acute dermal effects. However, the continued potential for acute dermal effects from sediment contact may be assumed to still exist because: 1) there is documentation of people receiving skin burns after they came in contact with sediments in the Little Menomonee River; 2) creosote is known to be associated with skin burns; and 3) constituents of creosote have been detected in the sediment.

Biological investigations of the Little Menomonee River performed before the RI concluded that the river downstream of the site is ecologically impaired. This could be a result of creosote contamination from the Moss-American site. PAHs have been associated with increased tumor production in fish living in PAH-contaminated environments. The various effects other human activities including habitat loss, soil erosion, channelization, and nonpoint pollution on the river may also severely restrict the quality of the ecological community in the river.

GLT938/032.50

Appendix L RISK ASSESSMENT METHODOLOGY

¥

GLT779/078.50

(

Appendix L RISK ASSESSMENT METHODOLOGY

NONCARCINOGENIC RISKS

Noncarcinogenic health risks are evaluated by comparison of the estimated daily intake of a chemical to the reference dose (RfD) for the chemical.

CHEMICAL INTAKE ESTIMATION

Estimating of chemical intake requires estimating the concentration of the chemical at the point of exposure and estimating intake of the exposure medium. Since RfDs are provided in milligrams of chemical per kilogram of body weight per day (mg/kg/day), chemical intakes must be expressed in similar units to account for the body weight of the potentially exposed individual. The daily intake of a chemical from a single exposure medium is estimated as:

$$DL_{x} = C_{x} * MI_{m} * Abs * [1/BW]$$
 (L-1)

where:

DĻ	= Daily intake of chemical x (mg/kg/day)
C _x [*]	= Concentration of chemical x in the medium (units are media specific)
MI	= Daily intake of the exposure medium (mass or volume per day)
Abs	= Absorption factor (percent of the chemical absorbed by the body)
BW	= Body weight (kg)

The RfDs are typically estimated based on the amount of chemical delivered to the test species (delivered dose), not on the amount actually absorbed (absorbed dose). In such instances, an absorption factor of one is used, which assumes that the absorption of the chemical is constant across species (i.e., that absorption is the same in humans as it is in the test species).

A medium-specific daily chemical intake is made by substituting an estimate of daily medium intake for MI_m in equation L-1. The medium intake is selected appropriate to the route of exposure and exposure setting. The body weight of the potentially exposed individual is also specific to the exposure situation.

COMPARISON OF DAILY CHEMICAL INTAKE TO REFERENCE DOSE

Noncarcinogenic risk from the exposure to a single chemical is evaluated by comparing the estimated daily intake of the chemical to the reference dose of the chemical. This comparison may be expressed as the ratio of the daily intake to the reference dose and can be interpreted as follows:

[DI/RfD]	21	Potential for health effects	(L-2)

)

)

1

[DI/RfD] \$ 1 Health effects not anticipated (L-3)

HAZARD INDEX APPROACH

Exposure situations may involve the potential exposure to more than one chemical. To assess the potential for noncarcinogenic effects posed by multiple chemicals, a "hazard index" approach can be used. This approach, which is based on EPA's *Guidelines for Health Risk Assessment of Chemical Mixtures* (U.S. EPA 1986a), assumes dose additivity and sums the ratios of the daily intakes of individual chemicals to their reference doses. This sum is called the hazard index.

Hazard Index = $DI_1/RfD_1 + DI_2/RfD_2 + ... DI_1/RfD_1$ (L-4)

where:

 DI_i = daily intake of the ith chemical (mg/kg/day) RfD_i = reference dose of the ith chemical (mg/kg/day)

When the hazard index exceeds unity, it is a numerical indicator of the transition between acceptable and unacceptable exposure levels. Any single chemical with an estimated daily intake greater than the corresponding reference dose will cause the hazard index to exceed unity, and there may be a concern for potential health effects resulting from the exposure.

For multiple chemical exposures, the hazard index can exceed unity even if no single chemical exceeds the reference dose for that chemical. The assumption of additivity is most properly applied to chemicals that induce the same effect by the same mechanism or in the same target organ. If the hazard index is near or exceeds unity, the chemicals in the mixture are segregated by critical effect or target organ and separate indices are derived for each effect or target organ. If any of the separate indices exceed unity, then there may be a concern for potential health effects. Chemicals that are essential nutrients are excluded from the index when in the range of essentiality.

CARCINOGENIC RISK

To estimate risks from exposure to carcinogens, the following is needed:

- Lifetime average daily intake of the chemical
- Carcinogenic potency factor

LIFETIME AVERAGE DAILY CHEMICAL INTAKE ESTIMATION

To estimate lifetime average daily chemical intake, it is necessary to estimate the chemical concentration at the exposure point throughout the exposure period and the exposure medium intake throughout the exposure period.

Generalized Method for Estimating Exposure Medium Intake

The lifetime average daily exposure media intake can be estimated from the following general equation:

$$LMI_{m} = (1/N) \sum_{i=1}^{M} MI_{i} * Abs * [1/BW_{i}] * f$$
 (L-5)

where:

7

LMI_m = Lifetime average daily media intake (mass or volume/kg/day)
 N = Number of years in a lifetime (assume 70)
 M = Number of age classes (one age class per year)
 MI_i = Average daily media intake in age class i
 Abs = Absorption factor (percent of the chemical absorbed by the body-assume 100 percent)
 BW_i = Body weight in age class i (kg)
 f = Fraction of the year exposed

U.S. EPA typically assumes a constant body weight (typically 70 kg) in estimating lifetime cancer risk. This assumption would alter equation L-5 to yield:

$$LMI_{m} = (1/N) * (1/BW) \sum_{i=1}^{M} MI_{i} * Abs * f$$
 (L-6)

If media intake is also assumed to be constant, the estimate of intake further simplifies to:

$$LMI_m = (1/BW) * MI * Abs$$
 (L-7)

Generalized Method for Estimating Chemical Intake

The lifetime average daily chemical intake can be estimated from the following alteration in equation L-5:

$$LCI_{x} = (1/N) \sum_{i=1}^{M} Cx_{i} * MI_{i} * Abs * [1/BW_{i}] * f$$
 (L-8)

where:

LCL	= Lifetime average daily intake of chemical x (mg/kg/day)
N Î	= Number of years in a lifetime (assume 70)
Μ	= Number of age classes (one age class per year)
Cx _i	= Concentration of chemical x during age class i
Mĺ	= Average daily media intake in age class i
Abs	= Absorption factor (percent of the chemical absorbed by the body)

BW_i = Body weight in age class i (kg) f = Fraction of the year exposed

This equation accounts for changing chemical concentrations over time. When concentrations are assumed to remain constant over time, equation L-8 changes to:

$$LCI_{x} = (1/N) * C_{x} \sum_{i=1}^{M} MI_{i} * Abs * [1/BW_{i}] * f$$
(L-9)

where:

$$C_x$$
 = Concentration of chemical x over entire exposure period

If body weight and intake are assumed to be constant, as in equation L-7, then chemical intake can be estimated as:

$$LCI_m = C_x * (1/BW) * MI * Abs$$
 (L-10)

ESTIMATING CANCER RISKS CAUSED BY EXPOSURE TO A SINGLE CARCINOGEN

Excess lifetime cancer risk from exposure to a single carcinogen can be estimated by the following:

$$R = 1 - e^{-(P_X \cdot LCL_X)}$$
(L-11)

where:

R = Excess lifetime cancer risk e = 2.71828 P_x = Cancer potency factor (mg/kg/day)⁻¹ for chemical x LCL_x = Lifetime average daily chemical intake (mg/kg/day) of chemical x

Where the risks are low (R \ge 10⁻³), equation L-11 can be approximated by:

$$R = P + LCL$$

(L-12)

1

)

ESTIMATING CANCER RISKS CAUSED BY EXPOSURE TO MULTIPLE CARCINOGENS

Exposure situations may involve the potential exposure to more than one carcinogen. To assess the potential for carcinogenic effects posed by exposure to multiple carcinogens, it is assumed in the absence of information on estimating synergistic or antagonistic effects that risks are additive. This approach is based on EPA's Guidelines for Health Risk Assessment of Chemical Mixtures (U.S. EPA 1986a) and EPA's Guidelines for Cancer Risk Assessment (U.S. EPA 1986b).

For estimating cancer risks from exposure to multiple carcinogens from a single exposure route, equation H-12 may be generalized to:

$$R_{m} = \sum_{i=1}^{N} 1 - e^{-(P_{i} + LC_{i})}$$
(L-13)

where:

C

R_m = Sum of the excess lifetime cancer risks of the individual carcinogens for exposure route m

P_i LCI_i = Cancer potency factor $(mg/kg/day)^{-1}$ for the ith chemical

= Lifetime average daily chemical intake (mg/kg/day) of the ith chemical

DERMAL ABSORPTION FROM SOIL

Factors such as the health of the skin, the location of the area of skin exposed, hydration of the skin, time of exposure, molecular size of the chemical, lipid solubility of the skin, thickness of the skin, temperature, and the type of solvent the solute is dissolved in influence the absorption of chemicals into the skin layer. Dermal absorption is a complex activity controlled by many factors, and it is not possible to predict exposures from this route.

Skin is not very permeable, so it is a relatively good lipoid barrier separating humans from their environment. However, the skin can absorb some chemicals in sufficient quantities to produce systemic effects (Casserett and Doull 1986). Absorption of a chemical requires passage through the outer skin layer, the stratum corneum. Passage through this barrier is the rate limiting step in dermal absorption. It appears all toxicants move across the stratum corneum by passive diffusion following Fick's Law.

Dermal absorption of volatile compounds in pure form or dilute solution has been observed and documented by several studies (Dutkiewitz and Tyros 1967; Dutkiewitz and Tyros 1968; Scheuplein and Blank 1971; Scheuplein and Ross 1974).

Dermal absorption from soil will be a function of the concentration of contaminants in the soil, the amount of soil in contact with the skin, the amount of skin in contact with soil, the duration and frequency of the contact, and the type of contaminant. The amount of soil that accumulates on a person's skin will be controlled by several factors including soil type, soil conditions, activity the person is engaged in, soil conditions, body surface area exposed, hygiene habits, and time of contact. Schaum (1984) used a range of soil accumulation of 0.5 to 1.5 mg/cm². OHEA also suggests this range, with an average value of 1.0 mg/cm². EPA's Superfund Exposure Assessment Manual suggests a range of 1.45 to 2.77 mg/cm² (U.S. EPA 1988).

The area of skin exposed depends on climate and the activity in which the individual is engaged. For example, the hands and face are the areas most likely to be exposed. If gloves are worn, then exposure could be significantly reduced. The surface area of the head is estimated as 1,180 cm² for males and 1,100 cm² for females based on one reference (Anderson et al. 1984) and 1,350 cm² for males and 1,200 cm² based on a second reference (ICRP 1974). The surface areas of the hands and arms, respectively, are estimated as 840 cm² and 2,280 cm² for men and 746 cm² and 2,100 cm² for women (Anderson et al. 1984). Schaum estimated that 910 cm² of skin would be exposed by an individual wearing long sleeves, gloves, pants, and shoes and 2,940 cm² by an individual wearing short sleeves, open necked shirts, pants, shoes, but no hat or gloves.

In addition to factors influencing the amount of soil contact with the skin, numerous factors control the absorption process. A significant factor in soil exposures is the transfer of the chemical from the soil to the skin. This multistep process requires the chemical to first desorb from the soil and then diffuse across the outer skin layer. Desorption will be governed by the chemical's relative affinity for the soil as compared to the skin or water (i.e., sweat or water associated with the soil). It will also be governed by the amount of moisture present on the skin or with the soil, skin conditions (e.g., health, thickness, hydration), and the time in contact.

These factors are not generally estimated or well correlated and understood. In lieu of these relationships, it has been suggested that a certain percentage of contaminants present in the soil adhering to the skin be assumed to be absorbed by the skin. Varying amounts have been suggested: from 0.07 to 3 percent for dioxin (Schaum, 1984), 5 percent for PCBs (U.S. EPA 1986c), up to 100 percent for compounds where no absorption information is available.

1

}

Based on the above and U.S. EPA guidance (U.S. EPA 1988; U.S. EPA 1986c), a conservative estimate of dermal absorption exposure can be estimated if one assumes the following:

- Body weight: 70 kg
- Soil deposition: 1 mg/cm²
- Surface area of hands: 840 cm²
- Absorption: 5 percent
- Frequency: Once daily

Exposure = 1 mg/cm¹ x 840 cm¹ x 5 percent x 1/70 kg = 0.60 mg of soil/kg body weight/day

If this is compared to the intake through ingestion (assume 100 mg/day; 70 kg body weight) of 1.4 mg of soil/kg bw/day, it is seen that dermal absorption from soil during contact may not be as great as ingestion exposures, and, as discussed, there is uncertainty with such an estimate. Consequently, dermal absorption from direct contact with contaminated soil is not estimated in this assessment.

MASS LOADING APPROACH FOR AIRBORNE DUST

In addition to emissions of volatile organic compounds from soil, soil may become suspended in the ambient air. Surface soil may be suspended by wind or mechanical forces. Subsurface soil may be suspended in air during excavation activities. The approach in this analysis assumes that a given amount of soil mass is present in the ambient air. The dust loading is not modeled but rather is assumed to be the same as levels typically found in urban environments. This mass loading approach has been previously used to model the airborne concentrations in excavation exposures (U.S. NRC 1986; U.S. DOE 1986; Healy, **198**0).

It is assumed that dust containing site-related chemicals is present in the ambient air at the level typically found in urban air, or 100 µg/m³ (U.S. DOE, 1986). This approach also assumes that all airborne particles are of respirable size.

The mass loading approach requires two parameters: dust loading in the atmosphere and chemical concentration in the source soil. To calculate the effective airborne concentrations of a given chemical, the following equation can be applied:

$$C_{a} = ML * C_{a} * UC \qquad (L-14)$$

where:

 C_{a} = Chemical concentration in air (mg/m²)

 $ML = Mass loading (\mu g/m^3)$

C_s = Soil concentration (mg/kg) UC = Unit conversion 10⁻⁹ (kg/ug)

VOLATILE EMISSION CALCULATIONS

The model used to estimate volatile emissions is based on a model for estimating volatile releases from covered landfills (without internal gas generation) containing toxic materials developed by Farmer and later modified (U.S. EPA, 1988). Diffusion to the atmosphere is assumed to occur from a planar surface within the landfill using Fick's Law of steady-state diffusion. Processes such as biodegradation, transport in water, adsorption, and landfill gas production are ignored by the calculation. The modified equation used to described the volatilization is:

$$E_{i} = D_{i} * C_{s} i * A * P_{s} * M_{i}/d_{sc}$$
(L-15)

where:

 E_i = emission rate of compound i (g/s) D_i = diffusion coefficient of compound i (cm²/s) $C_i = saturated vapor concentration of compound i (g/cm³)$ A = exposed area (cm²)

- $P_s =$ the ratio of air-filled soil porosity to total soil porosity (dimensionless)
- M_i = weight fraction of compound i in the waste (g/g)
- d_{sc} = effective depth of soil cover (cm)

The soil moisture may be accounted for by replacing the total soil porosity with a porosity ratio term. This ratio is defined as:

$$P_{s} = P_{s}^{10/3} / P_{t}^{2}$$
 (L-16)

where:

1

 $P_t = \text{total soil porosity (dimensionless)}$ $P_a = \text{the air-filled soil porosity (dimensionless)}$

The total soil porosity and the air-filled porosity are computed once the soil types are defined. In the rare case where the soil is completely dry, the air-filled porosity becomes the total soil porosity, and P_s becomes $P_1^{4/3}$. This occurs in the original formulation of eq. L-16. The total soil porosity is calculated as:

$$P_t = 1.0 - (B/p)$$
 (L-17)

where:

B = bulk density of the soil
$$(g/cm^3)$$

p = particle density (g/cm^3) ; 2.65 for mineral material

The air-filled porosity, P_a , can be calculated using the total soil porosity minus the field capacity for water of the soil. The equation for computing air-filled porosity is:

$$\mathbf{P}_{\mathbf{a}} = \mathbf{P}_{\mathbf{i}} - \mathbf{\Theta} \tag{L-18}$$

1

where:

θ = percent field capacity for water of soil (dimensionless)

If the diffusion coefficient for the chemical is unknown, it can be calculated using Fuller's method given by Perry and Chilton:

$$D_{i} = \frac{(0.01 + T^{1.75} (1/MW_{i} + 1/MW_{air})^{0.5})}{PR_{air} + ((EV_{i})^{.333}) + (EV_{air})^{.333})^{2}}$$
(L-19)

where:

Di	=	diffusion coefficient of compound i (cm ² /s)
T [`]	E	annual average air temperature (°K)
MW,	=	molecular weight of compound i (g/mol)
MW	=	molecular weight of air (328.8) (g/mol)
PR _{air}	=	atmospheric pressure of site (atm)
EVi	Z	molecular diffusion volume of air (20.1) (cm ³ /mole)

The molecular weight and volume of a compound are needed to compute the vapor concentration (C_{ij}) using the following:

$$C_{si} = \frac{VP_i * MW_i}{R * T}$$
(L-20)

 C_{ii} = saturated vapor concentration of compound i (g/cm³)

where:

VP,	=	saturated vapor pressure of the compound i (mm H _e)
MŴ,	=	molecular weight of compound i (g/mole)
R	-	molar gas constant (6.23 x 104 cm ³ mm Hg/ ^e K mole)
Т	*	annual average air temperature (°K)

Since the saturated vapor concentration of the compound in the soil is used, this assumes that contaminant concentrations are constant throughout the soil layer. This assumption provides an upper limit for the volatilization rate.

Although there is no generally accepted methodology for estimating onsite concentration from an area source, onsite air concentration was estimated based on the "box mode" approach (U.S. EPA, 1986c):

$$C = Q/(LS * V * H)$$
 (L-21)

where:

- H = mixing height (2 meters)
- V = average wind speed with mixing zone
 - = 0.5 times wind speed at mixing height
- LS = width dimension of contaminated area perpendicular to the wind direction

The contaminant source term was based on the average subsurface contaminant concentration in the west side of the site to a depth of 10 feet. A source area of 100,000 m² was assumed. The depth of soil above the source material was assumed to be 0.1 m.

The mixing width for the box model was assumed to be 10 m, and the mixing height was assumed to be 2 m. A wind speed of 6 m/s was assumed. The estimates of volatilization and onsite concentration are presented in Table L-1.

The ambient air concentration at a distance of 300 meters was also estimated by a centerline of a plume directly downwind from the source using Turner's method (U.S. EPA, 1988). It is based on:

$$C(X) = \frac{Q}{\pi d_y d_z \mu}$$
(L-22)

where:

C(X)	-	concentration of substance at distance x from site (mass/
0	=	release rate of substance from site (mass/time)
~		release rate of substitute from site (mass, time)
ō _y	*	dispersion coefficient in the lateral (crosswind) direction (distance)
4	8	mean wind speed (distance/time)
1	-	the value $pi = 3.14$

}

1

).

١

A stability class of D was assumed. The results are presented in Table L-1.

GLT864/051.50

٩.

Table L-1 MOSS-AMERICAN SITE ESTIMATION OF POTENTIAL VOLATILIZATION WEST SITE

SITES VOLATILE EMISSION CALCULATIONS	CAS #	(1) Concen- tration in soil (mg/kg)	(l) Molecular Weight (g/mol)	(1) Atomic Diffusion Volume	(1) Vapor Pressure (mm Hg)	(1/C) Diffusion Coefficien (cm2/sec.)	(C) Saturated Vapor Conc. (g/cm3)	(C) Emission Rate (g/sec. per cm2)	(C) Emission Rate (g/sec. from Aree	(C) Airborne Conc. On-site (mg/m3)	(C) Airborne Conc. at Distance (mg/m3)
Benzene	71-43-2	0.004	78.0	90.68	9.52E+01	0.06187	4.21E-04	1.89E-12	1.89E-06	3.15E-05	3.80E-07
Benzo (a) pyrene	50-32-8	1.3	252.3	252.76	5.601-09	0.04698	8.01E-14	6.71E-20	6.71E-14	1.12E-12	1.35E-14
Benzo (b) fluoranthene	205-99-2	2.8	252.3	252.76	5.00E-07	0.04698	7.15E-12	1.29E-17	1.29E-11	2.15E-10	2.59E-12
Benzo[g,h,i]perylene	191-24-2	2.1	276.0	252.76	1.03E-10	0.04677	1.61E-15	2.17E-21	2.17E-15	3.62E-14	4.36E-16
Benzo(k) fluoranthene	207-08-9	2.2	252.3	252.76	5.10E-07	0.04698	7.29E-12	1.03E-17	1.03E-11	1.72E-10	2.08E-12
Benzo (a) anthracene	56-55-3	3.9	228.3	239.96	2.20E-08	0.04839	2.85E-13	7.37E-19	7.37E-13	1.23E-11	1.48E-13
Chrysene	218-01-9	- 4	228.3	239.96	6.30E-09	0.04839	8.15E-14	2.16E-19	2.16E-13	3.61E-12	4.35E-14
Dibenzo(a,h)anthrancene	53-70-3	0.45	278.4	289.72	1.00E-10	0.04385	1.58E-15	4.27E-22	4.27E-16	7.12E-15	8.58E-17
Ethylbenzene	100-41-4	0.006	116.0	151.80	7.00€+00	0.06268	4.60E-05	2.37E-13	2.37E-07	3.96E-06	4.77E-08
Indeno(1,2,3-cd)pyrene	193-39-5	2.1	276.0	265.56	1.00E-10	0.04570	1.56E-15	2.06E-21	2.06E-15	3.43E-14	4.14E-16
Naphthalene	91-20-3	4.3	128.2	140.44	8.70E-02	0.06425	6.32E-07	2.39E-12	2.39E-06	3.99E-05	4.81E-07
Toluene	108-88-3	0.041	92.0	111.14	2.81E+01	0.07359	1.46E-04	6.07E-12	6.07E-06	1.01E-04	1.22E-06
Xylene	1330-20-7	0.005	106.0	131.60	1.00E+01	0.06735	6.01E-05	2.78E-13	2.78E-07	4.63E-06	5.58E-08
Parameters used to Calculated Volititis Ambient Temperature (C) Absolute Pressure (atmospheres) Soil Bulk Density (g/cm3) Particle Density (g/cm3) Moisture Filled Porosity Total Porosity Air Filled Porosity Ratio of Air Filled to Total Porosity Surface Area of contaminated zone (m2) Depth of Soil Cover (cm)	100 1.00 1.50 2.65 0.10 0.43 0.33 0.14 1000000 100	(1) Typic (1) Use 1 (1) Typic (1) 2.65 (1) Range (C) As a (C) Calcu (C) Calcu (1) Site (1) Site	al subsurf .0 al range f is represe 0 to 1.0 check this lated by s lated by s specific specific	ace tempera s 1.0 to 2. ntative of but must be should be preadsheet preadsheet	ntue is 10 0 average d : less tha between 0	degrees C. ensity mate n Total Por .33 and 0.5	rial osity 5				*********
Parameters Used to Calculated Airborne	Concentrati	on:		• •							
Average Wind Speed (M/S)	6.00	(1) 5110	specific (⊃ myscant	re used as	a conserva	TIVE ESTIN	m(2)			
ninimum Afea Wigin (M) Mining Holeba (m)	10.00	(1) 51(0	specific								
mixing metght (M)	2.00	(I) USE 2	IN TOP ON-	site calcul			dianant				
STROTTTY LLOSS	0 70	WOT U	sed in spr	eadsheet, t	SUT USED T		dispersion	1 COETTICIO			
Receptor Distance Downing (KM)	22.00	WO(U	sed in spr	TAUSHEEL, L	nul used t		uispersion	T COETTICIO	TILS		
Lateral Dispersion Coefficient (#)	12 00	(1) See p	p 3.14 and	J-13 OT SU	pertund E	ALUSUTE ASS	essment M	HINDE (VEFS	ar, 170/)		
Fraction of Time Wind Blows Toward Receptor	1.00	(1) see p (1) site	specific (.3 can be (pertund E Ised as a	conservativ	e upper bo	muat (vers sund)	Har, 190/)		

(1) Indicates value must be input by user.

-

•

(C) Indicates value is calculated by spreadsheet.
 (1/C) Indicates value may be input by user or calculated by the spreadsheet.

Appendix M RISK CALCULATION DATA TABLES

۰.

١

GLT779/078.50

9

ľ

TABLE N-1 MOSS-AMERICAN SITE COMPARISON OF ESTIMATED DAILY INTAKE TO REFERENCE DOSE (RfD) CHILD SOIL INGESTION EXPOSURE - TRESPASSERS EAST

Chemical	(D) Reference Dose (RfD) mg/kg/day	Highest Detected Concentration ug/kg	Estimated Daily Intake (DI) mg/kg/day	DI/R fD	Exceed Reference Dose	Geometric Hean Concentration ug/kg	Estimated Daily Intake (D1) mg/kg/day	01/R f 0	Exceed Reference Dose
Bortun	0.05 1	85000	0.0002	0.005	10	83009	0.8862	9.005	•••••
Beryllium	0,005	1100	0.0000	0.001	NO	989	0.0000	0.001	NO.
Cedulum	0.0005 1	6700	0.0000	0.038	10	6100	0.0000	0.035	ND
Chromium (b)	0.005 1	27900	0.0001	0.015	10	25000	0.8091	0.014	10
Copper	0,037 N	32000	0.0001	0.002	10	27000	0.0001	0.002	10
Ethylbenzene	0.1 1	1600	0.0000	0.000	10	24	0.000	9.000	NO
Lead	0.0014 5	15000	0.0000	0.031	NO	11000	0.000	0.022	NO
Hengenese	0.2 1	730000	0.0021	0.018	10	650000	0.0019	0.009	NO
Hercury (c)	0.0003 W	1300	0.0000	0.012	00	600	0.000	0.006	HO
Naphthalene	0.4 N	1500000	0.0043	0.011	NO	7400	0.0000	0.000	10
Nickel (d)	0.02 1	31000	0.0001	0.004	NO	29000	0.0001	9.004	NO
Styrene	0.2 1	2600	0.0000	0.008	110	29	0.0000	0.000	HO NO
Toluene	0.3 1	1300	0.000	0.000	80	200	9.0000	8.000	10
1,1,1-Trichloroethane	0.09 1	19000	0.0001	0.001	NO	56	0.0000	0.000	HO III
Vanadium	0,007 N	35000	0.0001	0.014	NO	34000	0.0001	9.014	WD
Xylenes	21	1400	0.000	0.000	10	50	9.0000	0.000	NO
Zinc	9.2 1	130000	0.0004	0.002	10	120000	0,0003	0.002	NO

Hazard Index (Sum of DI/RfD)

0.147

0.114

49

.

EXPOSURE ASSUMPTIONS

-

Exposure Setting	Tresposs	
Exposed Individual	child	
Soil Intake (grams/day)	0.1	
Body Weight (kilograms)	35	
···	***************************************	

(a) Source: I: IRIS - Integrated Risk Information System.

S: SPHEN - Superfund Public Health Evaluation Hanual.

N: NEAST - Newith Effects Assessment Summary Tables - Quarterly Summary.

(b) Assumed to be in the (+6) hexavalent state.

(c) Assumed to be alkyl mercury.

-

(d) Nickel value based on nickel-soluble salts.

TABLE M-2 MOSS-AMERICAN SITE COMPARISON OF ESTIMATED DAILY INTAKE TO REFERENCE DOSE (RMD) ADULT SOIL INGESTION EXPOSURE - TRESPASSERS EAST

•

hemi cel	Reference Dase (RfD) my/kg/day	Nighest Detected Concentration ug/kg	Estimated Doily Intake (DI) mg/kg/day	01/R10	Exceed Reference Dose	Geometric Nean Concentration ug/kg	Estimated Daily Intake (DI) mg/tg/day		Exceed Reference Dose
er i S arvi i lin		85088 1100	e. 0001	n 0.002	5 8	8008	9.9001		58
admitum	0.0005	6700	0.000	0.019	88	6100	9.0000	0.017	53
hramium (b)	0.005	27000	0.0000	0,000	8	25000	9.999	9.007	8
opper	0.037 1	32000	0.0000	0.001	8	27009	•.	•.901	8
thylbenzene	0.1	1600	0.000	0.000	8	2	0.0000	0 .00 0	8
i	0,0014 \$	15000	0.0000	0.015	8	10000	9.0000	0.010	8
orgenzee	0.2 11	730000	0.0010	9.995	8	650000	0.0009	9.99	8
ercury (c)	0.0003 1	1300	0.0000	0.006	8	<u>8</u>	0.0000	.	8
aph the lene	0.4 1	1500000	0.0021	0.005	8	7400	0.0000	0.900	8
licket (d)	0.02 1	31000	0.0000	0.002	8	29000	0.0000	0.902	8
tyrate	0.2 1	2600	0.000	9.000	3	3	9.0000	:	8
oluene	0.3 1	1300	. 0.0000	0.000	5	2	9.0000	0.000	8
, 1, 1-1richloroethune	0.93	19000	0000	0.000	8	x	0.0000	0.000	₹
anadium	0.007 N	35000	0.0001	0.007	8	34000	0.000	0.007	8
ylenes	2 1	1400	0.000	0.000	5	2	e.0000	0.000	8
Ā	0.2 1	130000	0.0002	0.001	5	12000	0.0002	0.001	8
azard Index (Sum of D1/RfD)				0.074				0.956	

EXPOSURE ASSUMPTIONS

Farman Satting	
Exposed Individual	Adult
Soil Intake (grams/day)	0.1
Body Weight (kilograms)	3
(a) Source: 1: IRIS - Integrated Risk Information System	

S STREN - Superfund Public Realth Evaluation Nanual <u>LLC. the 1980.</u>
S STREN - Superfund Public Realth Evaluation Nanual <u>LLC. the 1980.</u>
N: MRAST - Realth Effects Assessment Summary Tubles - Quarterly Summary. <u>LLC. EAA 1989.</u>
S: Cyanide value based on free cyanide.
(b) Assumed to be in the (+6) hexavalent state.
(c) Assumed to be altyl mercury.
(d) Nickel value based on nickel-soluble salts.

ŧ

٠

TABLE N-3 MOSS-AMERICAN SITE EXCESS LIFETIME CANCER RISK SOIL INGESTION EXPOSURE - TRESPASSERS EAST

. .

4

	*******************	• • • • • • • • • • • • • • • • • • •			
U.S. EPA Carcinogen Classification	(a) Carcinogenic Potency Factor (kg-day/mg)	Highest Detected Concentration ug/kg	Encess Lifetime Concer Risk	Geometric Hean Concentration ug/kg	Excess Lifetime Cancer Risk
A 42 62 62 62 62 62 62 62 62 62	1.75 A 11.5 C 11.5 C 11.5 C 11.5 C 11.5 C 11.5 C 11.5 C	5600 410000 98000 98000 100000 31000 300000 210000	22-07 12-04 32-05 32-05 32-05 82-06 82-05 52-05	4500 3800 2700 2600 2100 3700 2200	2E-87 1E-06 7E-07 7E-07 7E-07 5E-07 1E-06 6E-07
	U.S. EPA Carcinogen Classification A 82 82 82 82 82 82 82 82 82 82 82 82 82	(a) U.S. EPA Carcinogenic Carcinogen Potency Factor Classification (kg-day/mg) A 1.75 A U2 11.5 C U2 11.5 C	(a) Highest U.S. EPA Carcinogenic Detected Carcinogen Potency Factor Concentration Classification (kg-day/mg) ug/kg A 1.75 A 5600 B2 11.5 C 410000 B2 11.5 C 98000 B2 11.5 C 310000 B2 11.5 C 31000 B2 11.5 C 300000 B2 11.5 C 210000	(a) Nighest U.S. EPA Carcinogenic Detected Encess Carcinogen Potency Factor Concentration Lifetime Classification (kg-day/mg) ug/kg Cancer Risk A 1.75 A 5600 2E-07 B2 11.5 C 410000 1E-04 B2 11.5 C 98000 3E-05 B2 11.5 C 98000 3E-05 B2 11.5 C 310000 8E-05 B2 11.5 C 310000 8E-05 B2 11.5 C 300000 8E-05 B2 11.5 C 31000 8E-05 B2 11.5 C 300000 8E-05 B2 11.5 C 300000 8E-05 B2 11.5 C 300000 8E-05 B2 11.5 C 210000 5E-05 B2 11.5 C 210000 5E-05	(a) Nighest Geometric U.S. EPA Carcinogenic Detected Encess Nean Carcinogen Potency Factor Concentration Lifetime Concentration Classification (kg-day/mg) ug/kg Cancer Risk ug/kg A 1.75 A 5600 2E-07 4500 B2 11.5 C 410000 1E-04 3600 B2 11.5 C 90000 3E-05 2700 B2 11.5 C 90000 3E-05 2700 B2 11.5 C 31000 8E-05 2700 B2 11.5 C 31000 8E-05 3700 B2 11.5 C 300000 8E-05 3700 B2 11.5 C 210000 5E-05 2200 B2 11.5 C 210000 5E-05 2200 B2 11.5 C 210000 5E-05 2200

EXPOSURE ASSUMPTIONS

.

.

.

•••••	
Exposure Setting	Tresposs
Daily Soil Intake (grams/day)	0.1
Bndy Weight (kilograms)	70
Number of days/week exposed	2
Number of weeks/year exposed	20
Number of years exposed	10
Lifetime Average Soil Intake	0.00002
(grams/kg body weight/day)	

·····

(a) Source: A: U.S. EPA 1988.

8: U.S. EPA 1980.

C: Based on benzotalpyrene.

Table H-4 MOSS-AMERICAN SITE COMPARISON OF ESTIMATED DAILY INTAKE TO REFERENCE DOSE (RfD) CWILD SOIL INGESTION EXPOSURE - TRESPASSERS WEST

Chemicol	Reference Dose (RfD) mg/kg/day	(=)	Highest Detected Concentration ug/kg	Estimated Daily Intake (DI) mg/kg/day	D1/RfD	Exceed Reference Dose	Geometric Hean Concentration ug/kg	Estimated Daily Intake (DI) mg/kg/day	01/R f 9	Exceed Reference Dose
Acetone	9.1	1	210	0.0000	0.000	NO	36	9.000	0.000	WO
tarius	0.05	1	200000	0.0006	0.011	NO	99000	0.0003	0.006	NO
Beryllium	0.005	1	1400	0.0000	0.001	NO	1000	9.0000	9.001	NO
Coduium	0.0005	1	76000	0.0002	0.434	10	13000	0.0000	0.074	10
Chromium (b)	0.005	f	30000	0.0001	0.017	NO	19000	9.0001	0.011	10
Copper	0.037		50000	0.0001	0.004	NO	25000	9.0001	0.002	10
Cyanide (d)	0.02	E .	2300	0.000	0.000	10	1700	0.0000	8.000	
2,4-Dinitrophenol	0.002	1	620000	0.0016	0.886	NO	(f)	0.0000	0.000	10
Ethylbenzene	0.1	1	248	0.0000	0.000	NO	12	0.0000	0.000	NO
Lead	8.0014	5	410000	0.0012	0.837	NO	60000	0.0002	0.122	10
Hanganese	0.2		410000	0.0012	0.006	10	230000	0.0007	0.003	10
Hercury (c)	0.0003		1400	0.0000	0.013	NO	380	0.000	0.004	
Nachthalene	0.4		66000	0.0002	0.000	10	13000	0,0000	0.000	
Nickel (e)	0.02	1	22000	0.0001	0.003	NO	16000	0.0000	0.002	10
Toluene	0.3	1	580	0.0000	0.000	10	170	0.0000	0.000	NO
Vanadium	0.007		22000	0.0001	0.009	NO	18000	0.0001	0.007	NO
Xylenes	2	ŧ	120	0.0000	0.000	NO	8	0.0000	0.000	10
Zinc	0.2	1	9800080	0.0280	0,140	NO	740000	0.0021	0.011	10
			•••••	••••••			• • • • • • • • • • • • • • • • • • • •			

Nezard Index (Sum of D1/RfD)

2.362

EXPOSURE ASSUMPTIONS

-

Exposure Setting	Tresposs	
Exposed Individual	Child	
Soil Intake (grams/day)	0.1	
Body Weight (kilograms)	35	

(a) Source: I: IRIS - Integrated Risk Information System.

S: SPNEH - Superfund Public Health Evaluation Nanual.

N: MEAST - Newlth Effects Assessment Summery Tables - Quarterly Summery.

(b) Assumed to be in the (+6) hexavalent state.

(c) Assumed to be alkyl mercury.

(d) Cyanide value based on free cyanide.

(e) Nickel value based on nickel-soluble salts.

(f) Insufficient number of positive detections to estimate a mean concentration.

0.243

.

Table H-5 HOSS-AMERICAN SITE COMPARISON OF ESTIMATED DAILY INTAKE TO REFERENCE DOSE (RID) ADULT SOIL INGESTION EXPOSURE - TRESPASSERS WEST

. .

• • • • • • • • • • • • • • • • • • • •					• • • • • • • • • • • • • • • • • • • •		****************		
Chemical	(a) Reference Dose (RfD) mg/kg/day	Righest Detected Concentration ug/kg	Estimated Daily Intake (DI) mg/kg/day	D1/RfD	Exceed Reference Dose	Geometric Nean Concentration ug/kg	Estimated Daily Intake (DI) mg/kg/day	DI/R f D	Exceed Reference Dose
Acetone	0.1 I	210	.0000	0.000	80	36	9.000	9.809	10
Berium	0.05 1	200000	0.0003	0.006	10	99000	9.0001	0.003	10
Beryllium	0.005 1	1400	0.000	0.000	ND	1000	0.0000	0.000	10
Cadmium	0.0005 1	76000	0.0001	0.217	10	13000	0.0009	0.037	NO
Chromium (b)	0.005 1	30000	0.000	0.009	10	19000	0.0000	0.005	10
Copper	0,037 N	50000	0.0001	0.002	10	25000		0.001	10
Cyanide (d)	0.02 (2300	0.0000	0.000	10	1700	6.0006	0.000	NO
2,4-Dinitrophenol	0.002 1	620000	0.0009	0.443	ND	(f)	0.0000	0.000	10
Ethylbenzene	0.1 t	240	0.000	9.000	HD.	12	0.0000	9.000	NO
Lead	0.0014 \$	410000	0.0006	0.418	NO	60000	0.0001	0.061	ND
Nongonese	0.2 #	410000	0.0006	0.003	ND	230000	0.0003	0.002	ND
Hercury (c)	0.0003 H	1400	0.0000	0.007	ND	380	0.000	0.002	W0
Naphthalene	0.4 N	66000	0.0001	0.000	NO	13000	0.000	0.000	10
Wickel (e)	0.02 1	22000	0.0000	0.002	ND	16000	0.0000	9.001	10
Toluene	0.3 1	580	0.000	0.000	NO	170	0.000	9.000	HO
Vanadium	0.007 W	22000	0.000	0.004	NO	18009	0.000	9,004	NO
Xylenes	2 1	120	0.0000	0.000	10	8	0.000	0.000	NO
Zinc	0.2 1	9800000	0.0140	0.070	MO	740000	0.0011	0.005	NO
Hazard Index (Sum of D1/RfD)				1.181				0.122	

EXPOSURE ASSUMPTIONS

.

Exposure Setting	Tresposs	
Exposed Individual	Adul t	
Soil Intake (grams/day)	0.1	
Body Weight (kilograms)	70	

(a) Source: I: IRIS - Integrated Risk Information System.

S: SPHEN - Superfund Public Health Evaluation Hanual.

N: MEAST - Nealth Effects Assessment Summary Tables - Quarterly Summary.

(b) Assumed to be in the (+6) hexavalent state.

(c) Assumed to be alkyl mercury.

.

(d) Cyanide value based on free cyanide.

(e) Nickel value based on nickel-soluble salts.

(f) Insufficient number of positive detections to estimate a mean concentration.

TABLE N-6 MOSS-AMERICAN SITE EXCESS LIFETIME CANCER RISK SOIL INGESTION EXPOSURE -TRESPASSERS WEST

٠

اھ

٠.

	U.S. EPA Carcinogen	(a) Carcinogenic Potency Factor	Nighest Detected Concentration	Excess Lifetime	Geometric Hean Concentration	Excess Lifetime
LINEWICEL	ULESSITICATION	(Kg-Cey/mg)	U 9/K9	Cancer Kisk	uj/kg	Concer Risk
Arsenic	۸	1.75 A	110000	4E-06	7800	SE-07
Benzene	Ä	0.029 1	11	7E-12	4	32-12
Venzo (a) anthracene	82	11.5 8	380000	1E-04	13000	32-06
Benzo (b) f luoranthene	82	11.5 8	270000	た・の	11000	狭-06
Senzo(k) fluoranthene	82	11.5 0	240000	6E-05	10000	3E-06
Senzo (a) pyrene	82	11.5 C	200000	5E-05	8200	2E-06
Senzo(g,h,i)perylene	82	11.5 8	51000	16-05	6800	2E-06
Chyrsene	С	11.5 8	490000	1E-04	16000	4E-06
Indeno[1,2,3-cd]pyrene	82	11.5 8	120000	3E-05	6800	2 E-06
SUM OF RISKS =				5E-04		22-05

EXPOSURE ASSUMPTIONS

.

Exposure Setting	Tresposs
Daily Soil Intake (grams/day)	0.1
Body Weight (kilograms)	70
Number of days/week exposed	2
Number of weeks/year exposed	20
Number of years exposed	10
Lifetime Average Soil Intake	50000.0
(grams/kg body weight/day)	

(a) Source: I: IRIS - Integrated Risk Information System.

A: U.S. EPA 1988.

8: Based on benzo(a)pyrene.

C: U.S. EPA 1980.

Table N-7 MOSS-AMERICAN SITE COMPARISON OF ESTIMATED DAILY INTAKE TO REFERENCE DOSE (RFD) CHILD INNALATION EXPOSURE - TRESPASSERS EAST

emical	Reference Bose (RfD) mg/kg/day	Source (8)	Geometric Mean Concentration mg/m3	Daiły Intake (DI) mg/kg/day	D1/RfD	Reference Dose Exceeded?	Highest Detected Concentration mg/m3	Doily Inteke (DI) mg/kg/dey	DI/RfD	Reference Dose Exceeded?
ir tum	0.0001	NEAST	9,0000063	0.000	0.003699	NO	0.000005	0.000	0.003789	NO
eryttfum	0.005	IRIS b	0.00000098	0.000	0.000001	NO	0.0000011	0.000	0.000001	NO
dinium	0.0005	IRIS b	0.00000061	0.000	0.000054	NO	0.0000067	0.000	0.000060	NO
romium VI	0.005	IRIS b	0.0000025	0.000	0.000022	NO	0.0000027	0.000	0.000024	NO
oper	0.01	HEAST b	0.0000027	0,000	0.000001	HO .	0.000032	9.000	9,000014	NO
hylbenzene	0.1	IRIS b	0.000000024	0.000	0.000000	NO	0.00000016	0.000	0.00000	80
ad	0.0014	SPHEN b	0.0000011	0.000	0.000035	HO I	0.0000015	0.000	9.000048	HO ***
ingenese	0.0003	WEAST	0.000066	0.000	0.009806	NO	0.000073	0.000	0.010846	NO
rcury (inorganic)	9.0003	HEAST b	0.00000079	0.000	0.000012	NO	0.00000013	0.000	0.000019	HO
phthalene	0.4	WEAST b	0.0000059	0.000	0.00000	WD.	0.00014	0.000	0.000016	NO
ckel	0.02	NEAST b/d	0.000029	0.000	0.000006	HD .	0.000031	0.000	0.000007	NO
yrene	0.2	IRIS b	0.000000028	0,000	0.000000	NO	0.0000026	0.000	0.000000	ND
luene	1	HEAST	0.0000002	0.000	0.000000	NO	0.00000013	0.000	0.000000	110
1,1-Trichloroethene	0.3	HEAST	0.00000005	0.000	0.000000	NO	0.000019	0.000	0.000000	NO
medium	0.007	HEAST b	0.0000034	0.000	0.000022	90	0.0000035	0.000	9,000022	80
rt enes	0.4	NEAST	0.00000005	0.000	0.00000	NO.	0.0000014	0.000	0.000000	NO
nc	0.01	WEAST	0.000012	0.000	0.000053	NO	0.00013	0.000	0.000058	NO
zard Index (Sum of D1/RfD)					0.014				0.015	

a .a

XPOSURE ASSUMPTIONS

menne tetting	Treeness
nposed individual	Child
ody weight (kg)	35
nhutation rate (1/min)	13
ime exposed (hrs/day)	2
plume of air inhaled/day (1/d	1560

a) Sources of Toxicity Values:

IRIS - Integrated Risk Information System.

SPHEN - Superfund Public Health Evaluation Manual, U.S.

MEAST - Nealth Effects Assessment Summery Tables - Quarterly Summery.

b) No inhalation RfD available, based on ingestion RfD.

c) Nickel value based on nickel-soluble saits.

d) Air concentrations based on surface soil data. Assumed dust loading of 100 mg/m3.

Pable N-B Noss-American Site Comparison of Estimated Daily Intake to reference Dose (rfd) Adult Immalation Exposure - trespassers east

•

٩,

Chemical	Reference Bose (RfD) my/tg/day	Source (a)	Geometric Rean Concentration mg/m3	Daily Intake (Di) mg/kg/day	ei Mie	Reference Bose Exceeded?	Righeat Detected Concentration Ma/MG	beily Intake (01) my/tg/day	ęzie	Reference Dose Exceeded?
Borium	0.001	IREAST	0.000063	000-0	0.002846	8	0.000085	0.000	A19580.0	8
Beryl i fun	0.005	4 SIN	0-0000000	000.0	0.00001	2	0.0000011	000.0	0.00001	₽
Cadatum Line	5000°0		0.0000061	000'0	0.00042	₽	0.0000067		0.00046	2
Chronium VI	500.0 10 0	IRIS D Beat	COUCHER D		0.000017	2 5	7200000.0 CTANNAA A			
Ethylbenene	0	Ints b	0.00000026	000.0	0.00000	2	0.0000016	0.00	0.00000	2 2
Lead	0.0014	SPNEN b	0.0000011	0.000	0.00027	2	0.000015	000.0	0.000037	2
Nergencae	0.0003	NEAST	0.00066	0.00	0.007543	P	0.000073	000'0	0.000343	₽
Nercury (Inorganic)	0.0003	HEAST IS	0.00000079	0.00	0,00009	£	0.0000013	0.00	0.000015	£
Haphthal ene	1.0	NEAST b	0.0000059	000.0	0.00000	2	0.0014	000.0	0.00012	₽
Nickel	0.02	IKAST byd	6200000.0	000.0	0.00005	£	0.0000031	000.0	0.00005	¥
Styrene	0.2	a siat	0.000000028	000.0	0,00000	2	0.0000026	0.00	0.00000	
Toluene	-	NEAST	0.0000002	000.0	0,00000	2	0.00000013	900.0	0.00000	₽
1, 1, 1- 1r ichloroethane	0.3	NEAST	00000000	0000	0.00000	2	0.000019	900.9	0.00000	₽
Vanadium	0.007	HEAST b	0.000034	000.0	0.00017	£	6.000035	000.0	0.00017	2
Xyl enes	4.0	INEAST	0.00000005	0.00	0.00000	₽	0.0000014	000.0	0.00000	2
Zine	0.01	NEAST b	0.000012	0.00	0.000041	2	0.00013	000.8	0.00045	£
Nazard Index (Sum of DI/RfD)				8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.011				0.011	• • • • •

EXPOSIME ASSUMPTIONS

Trespess Adult 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
Exposure setting Exposed individual Body weight (kg) Inhalation rate ((/min) Time exposed (hrs/day) Volume of air inhaled/day (1	

•

1

(a) Sources of Toxicity Values: IRIS - Integrated Risk Information System. SPMEN - Superfund Public Health Evaluation Narual. MEAST - Mealth Effects Assessment Summary Tables - Quarterly Summary.
(b) No inhalation RfD available, bused on ingestion RfD.
(c) Nickel value based on nickel-soluble salts.
(d) Air concentrations based on surface soil data. Assumed dust loading of 100 mg/mJ.

Table M-9 MDSS-AMERICAN SITE EXCESS LIFETIME CANCER RISK INMALATION EXPOSURE - TRESPASSERS EAST

**********************	******	(a)	Nichest		Geometric (b)	
Chemical	U.S. EPA Corcinogen Clossification	Carcinogenic Potency Factor (kg-day/mg)	Detected Concentration mg/m3	Exc ess Lifetime Cancer Risk	Hean Concentration mg/m3	Excess Lifetime Cancer Risk
Arsenic	A	50 1	5.6E-07	6E-08	4.5E-07	SE-OR
Venzo (a) anthracene	82	6.1 8	4.1E-05	5E-07	3.8E-07	SE-09
Benzo (b) fluor on thene	82	6.1 8	9.80-06	1E-07	2.7E-07	4E-09
Benzo (k) fluor on theme	82	6.1 8	9.86-06	1E-07	2.7E-07	4E-09
Benzola, h. ilperviene	82	6.1 8	1.2E-06	2E-08	2.1E-07	3E-09
Bento (a) pyrene	82	6.1 C	1.0E-05	1E-07	2.6E-07	3E-09
Chyrsene	82	6.1 8	3.0E-05	4E-07	3.72-07	5E-09
Indeno(1,2,3-cd)pyrene	82	6.1 B	2.1E-05	3E-07	2.2E-07	3E-09
SUM OF RISKS =				2E-06		7E-08

EXPOSURE ASSUMPTIONS

•

.

Exposure Setting	Tresposs
Inhelation rate (1/min)	20
Body weight (kilograms)	70
Time exposed (hrs)	8
Number of days per week	2
Number of weeks per year	20
Number of years exposed	10
Lifetime øvernge sir intøke	2,15
(liters/kg body weight/day)	
······································	

a. Source: I: IRIS - Integrated Risk Information System.

8: Based on benzo(a)pyrene.

C: U.S. EPA 1980

b. Air concentrations based on surface soil data. Assumed dust loading of 100 mg/m3.

Table N-10 NOSS-AMERICAN SITE COMPARISON OF ESTIMATED DAILY INTAKE TO REFERENCE DOSE (RfD) CNILD INWALATION EXPOSURE - TRESPASSERS WEST

				Nighest	(d)			Geometric	(d)		
	Reference			Detected	Deily		Reference	Hean	Deily		Reference
	Dose (RfD)			Concentration	Intake (DI)		Dose	Concentration	Intake (DI)		Dose
Chemical	mg/kg/day	Source	(*)	mg/m3	mg/kg/day	DI/RfD	Exceeded?	mg/n3	mg/kg/dey	B1/RfD	Exceeded?
Acetone	0.1	HEAST	(b)	0.00000021	0.000	0.000000	10	0.000000035	0.000	0.000000	110
Barium	0.0001	HEAST		50000.0	0.000	0.008914	NO	0.0000099	0.000	0.004413	10
Beryltium	0.005	INIS	(6)	0.00000014	0.000	0.000001	NO	0.000001	0.000	0.000001	10
Cadaium	0.0005	1815	(b)	0.000076	0.000	0.000677	NO	0.000001	0.000	0.000009	110
Chromium VI	0.005	IRIS	(b)	0.00003	0.000	0.000027	HO	0.0000013	0.000	0.000012	NO.
Copper	0.01	HEAST		0.000005	0.000	0.000022	NO	0.0000019	0.000	0.000005	NO
Cyanide	0.02	HEAST	(b)	0.00000023	0.000	0.000001	NO	0,0000017	0.000	0.00000	10
2,4-Ditrophenol	0.002	1815	(b)	0.000062	0.000	0.001382	NO	•	0.000	0.00000	NO
Ethylbenzene	0.1	IRIS	(b)	0.00000024	0.000	0,000000	NO	0.000000012	0.000	0.000000	80
Lend	0.0014	SPHEN	(6)	0.000041	0.000	0.001305	ND	0.00006	0.000	0.000191	NO
Nonganese	0.0003	HEAST		0.000041	0.000	0.006091	NO	0.000023	0.000	0.003417	NO
Hercury (inorganic)	0.0003	NEAST	(b)	0.0000014	0.000	0.000021	NO	0,00000038	0.000	0.000006	NO
Naphthalene	0.4	NEAST	(b)	0.000066	0.000	0.000001	NO	0.000013	0.000	0.000000	10
Nickel	0.02	NEAST	(b/d)	0.0000022	0.000	0.000005	NO	0.000016	0.000	0.000004	10
Toluene	1	NEAST		0.00000058	0.000	0.000000	NO	0.00000017	0.000	0.00000	NO
Vanadium	0.007	NEAST	(b)	0.000022	0.000	0.000014	NO	0.0000018	0.000	0.000011	80
Xylenes	0.4	NEAST		0.00000012	0.000	0.00000	NO	0.000000008	0.000	0.00000	10
Zinc	0.01	WEAST	(b)	0.00098	0.000	0.004368	NO	0.000073	0.000	0.000325	NO
Nazard Index (Sum of D1/Rft))		******			0.023	********			0.008	

EXPOSURE ASSUMPTIONS

-

-

Exposure setting	Tresposs
Exposed individual	Child
Body weight (kg)	35
Inhelation rate (1/min)	13
Time exposed (hrs/day)	2
Volume of air inhaled/day (1	1560

(a) Sources of Toxicity Values:

IRIS - Integrated Risk Information System.

SPIREN - Superfund Public Nealth Evaluation Manual.

MEASI - Nealth Effects Assessment Summary Tables - Quarterly Summary.

(b) No inhalation RfD available, based on ingestion RfD.

(c) Cyanide value based on free cyanide.

(d) Air concentrations based on surface soil data. Assumed dust londing of 100 mg/m3.

(c) insufficient number of positive detections to estimate a mean concentration.

Table N-11 NUSS-AMERICAM SITE Comparison of Estimated Daily Intake to reference dose (RfD) Adult Innalation Exposure - trespassers Mest

•

				Nighest ((þ			Geometric	(þ)		
Chemical	Neverance Dose (RfD) mg/kg/day	Source	Ĵ	betected Concentration mg/m3	ually Intake (DI) mg/kg/day	01/A fb	Exceeded?	Concentration mg/m3	Intake (DI) mg/kg/day	8 X 10	Reference Dose Exceeded?
Acetone	0.1	MEAST	e	0.00000021	0.00	0.00000	8	0.000000035	000.0	0.00000	8
Barium	0.001	NEAST		0.0002	0.00	0.006857	₽	6600000"0	000.0	0.003394	₽
Beryllium	360.0	SIN1	Ð	0.0000014	0.00	0.00001	£	0.000001	000.0	0.00001	₽
Cadhium	9.000	IKAST	Ð	0.000076	000.0	0.000521	₽	0.000001	000.0	0.00007	¥
Chromium VI	9.00	INIS	Q	0.00003	000.0	0.000021	₽	0.000013	0.00	0.00000	2
Copper	0.01			0,00005	000.0	0.00017	₽	0.000019	000.0	0.00007	2
Cyanide	0.02	NEAST	ê	0.0000023		0.00000	₽	0.0000017	0.00	0.00000	₽
2,4-Ditrophenol	0.002	and a second sec	Ð	0.00062	000.0	0.001063	₽	•			
E thy I benzerne	0.1	Sint	Ð	9.00000024	0.000	0.00000	2	0.000000012	0.00	0.00000	£
Lend	0.0014		Ą	0.000041	000.0	0.001004	₽	0.00006	000.0	0.000147	£
Nanganese	0.003	NEAST		0.00041	0.00	0.004686	2	0.000023	000.0	0.002629	£
Mercury (inorganic)	0.000051	NEAST	ê	0.0000014	000.0	0.00094	₽	0.00000038	000.0	0.00026	£
Maph that erre	9.0	NEAST	ą	0.000066	0.00	0.00001	2	0.000013	000.0	0.00000	£
Wickel	0.02	NEAST	ŝ	0.000022	0.00	0.00004	£	0.000016	000.0	0.00003	P
t ol verre	-	NEAST		0.00000058	000.0	0,00000	₽	0.00000017	000.0	0.00000	P
Versedium	0.007	NEAST	Ð	0.0000022	000.0	0.00011	₽	0.000018	000.0	600000"0	£
Xyl enes	4.0	NEAST		0.00000012	000.0	0,00000	₽	0.00000000	0.00	0.00000	2
zinc	0.0	HEAST	Ð	0,0008	0.00	0.003360	8	0.000073	0.00	0.000250	8
Hazard Index (Sum of D1/RfD)			•		6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0.018				0.006	•
~~~~~~~~~~~~~~~~~											

# EXPOSURE ASSUMPTIONS

Trespose		2 2400	
Exposure setting	sposed individual Body weight (kg) Inhelation rate (l/min)	lime exposed (hrs/dwy) /olume of air inhaled/day (1/day)	(a) Sources of Toxicity Values:

3

ı

IRIS - Integrated Risk Information System. SPREN - Superfund Public Nealth Evaluation Nurual. MEAST - Nuclith Effects Assessment Summary Tables - Quarterly Summary. (b) No inhalation RfD available, based on imgestion RfD. (c) Cyanide value based on free cyanide. (d) Air concentrations based on surface soil data. Assumed dust loading of 100 mg/m3. (e) Insufficient number of positive detections to estimate a mean concentration.

### Table H-12 MOSS-AMERICAN SITE EXCESS LIFETIME CANCER RISK INNALATION EXPOSURE - TRESPASSERS WEST

			()	Highest (	(Ь)	Geometric (b)	)
Chemical	U.S. EPA Corcinogen Classification	Carcinogenic Potency Factor (kg-day/mg)		Detected Concentration mg/m3	Excess Lifetime Cancer Risk	Hean Concentration mg/m3	Excess Lifetime Cancer Risk
Arsenic	A	50	1	1.1E-05	1E-06	7.8E-07	8E-08
Senzene	<b>A</b>	0.029	÷.	1.1E-09	7E - 14	4.0E-10	22-14
Senzo (a) anthracene	82	6.1	÷.	3.8E-05	5E-07	1.3E-06	2E-06
Benzo (b) fluor on these	82	6.1		2.た・防	4E-07	1.1E-06	1E-08
Benzo (k) fluor on thene	UŽ	6.1		2.42-05	3E-07	1.0E-06	1E-08
Venzpig.h. ilperviene	82	6.1		5.1E-06	7E-08	6.8E-07	9E-09
Benzo (a) pyrene	82	6.1	C	2.0E-05	5年-07	8.2E-07	1E-06
Chyrsene	82	6.1		4.96-05	6E-07	1.6E-06	2E-08
Indeno[1,2,3-cd]pyrene SUM OF RISKS =	82	6.1		1.2E-05	2E-07 3E-06	6.8E-07	9E-09 2E-07

(

,

### EXPOSURE ASSUMPTIONS

-

.

-----

Exposure Setting	Tresposs
Inhalation rate (l/min)	20
Body weight (kilograms)	70
Time exposed (hrs)	8
Number of days per week	2
Number of weeks per year	20
Number of years exposed	10
Lifetime average air intake	2.15
(liters/kg body wt./day)	
***************************************	

### a. Source: 1: IRIS - Integrated Risk Information System.

U: Based on benzo(a)pyrene. C: U.S. EPA 1980

b. Air concentrations based on surface soll data. Assumed dust loading of 100 mg/m3.

TABLE N-13 MOSS-AMERICAN SITE COMPARISON OF ESTIMATED DAILY INTAKE TO REFERENCE DOSE (RFD) CHILD SOIL INDESTION EXPOSURE - DEVELOPMENT EAST

licel	Roferenze Bose (Rito) mj/kg/day	a) Highest Detected Concentration Ug/kg	Estimated baily Intake (bi) mg/tg/day	61×10	Exceed Reference Dose	Geometric Newn Concentration ug/kg	Estimated Daily Intake (DI) my/tg/day	61 / 10 6	Exceed Reference Dose
tane	0.1 1	120	0.0000	9.000	8	12	0.000	0.000	8
Ś	9,9	180000	0.0024	0.048	₹	2000	0.000	0.015	8
roic Acid	-	230	0.000	0.000	8	662	0.000	e. 990	8
	0.055 1	1200	0.0000	0.003	8	410	0.0000	0.001	8
;(2-Ethy(hexy()phthelate	9,21	<b>193</b>	0.0000	0.000	8	55	0.000	<b>.</b>	8.
	0.005 1	0069	0.0001	0.184	5		0.0001	0.141	8
alun (b)	0.005 1	27000	0.0004	0.072	8	21000	0.0003	0.056	8
	0.037 H	37000	0.0005	0.013	5	26000	0.0003	<b>0.00</b> 9	8
-Dichlargethane	0.12 9	210	0.0000	0.000	8	210	0.000	0.000	8
ylbenzene	0.1 1	4100	0.0001	0.001	8	ઝ	0.000	0.000	8
<b>e</b>	0.0014 9	31000	0.0004	0.295	8	15000	0.0002	0.143	8
	0.2 H	000046	0.0112	0.956	8	52000	0.0069	0.035	8
cury (c)	0.0003 1	1300	0.0000	0.050	8	240	0.000	0_011	8
hthelene	0,4 1	2600000	0.0347	0.087	5	Soo	0.0001	0.000	3
itel (d)	0,02 H	31000	0.0004	0.021	8	24000	0.0003	0.016	8
	0.2	0056	0.000t	0.001	8	<b>X</b>	0.0000	0.000	8
UTT	0.3 1	2000	0.000	0.000	8	120	0.000	0.000	8
, 1 - Trichlaraethane	0,97 1	19000	0.0003	0.003	8	19008	0.0003	0.003	8
	0.007 1	38008	0.0005	0.072	8	26000	0.0003	9.950	8
lenes	12	1700	0.0000	0.000	8	2	0.000		8
đ	0.2 II	220000	0.0029	0.015	8	220000	0.0029	0.015	8
ard Index (Sum of D1/Rfb)				0.928				0.495	
								*****	

	•	-
Ξ.		
•		•
ð		2
28		-
8		
2		2
		-
÷		2
- <b>P</b>	٠	
		-
÷.	٠	2
-	•	-
-		-
.2		
		=
		Ξ
		ж.
	٠	
	•	- 68
	٠	
	÷.	
	- 1	
	- 1	

posure Setting posed Individual it Intuke (grama/day) by Veight (tilograms)
Resident Ial Child 0.2 13

a) Source: 1: IRIS - Integrated Risk Information System.
b) Source: 1: SPNEM - Superfund Public Meeth Evaluation Manual.
N: MEAST - Realth Effects Assessment Summary Tables - Quarterly Summary.
b) Assumed to be in the (+6) hexavalent state.
c) Assumed to be alkyl mercury.
d) Nickel value based on nickel-soluble salts.

Trable N-14 NOSS-AMERICAN SITE COMPARISON OF ESTIMATED DAILY INTAKE TO REFERENCE DONE (R10) ADULT SOIL INGESTION EXPOSURE - DEVELOPMENT EAST

Reference Dose (RfD) mg/kg/dey	Highest Detected Concentration ug/kg	Estimated Baily Intake (DI) mg/kg/day	01/R10	Exceed Reference Dose	Geometric Mean Concentration ug/kg	Estimated baily Intake (DI) mg/kg/day		Exceed Reference Dose
0.1 1	<b>621</b>	9.0009	0.000	8	<b>6</b> 21	9.000	e.99	8
	10000	0.0003	<b>.</b>	5	2000	0.0001	<b>.</b>	8
	230	8.000	0.000	8	002	0.0000	0.000	YES
9.995 -	1200	0.000	0.000	8	-10	0.0000	<b>.</b>	8
0.02 1	53	0.0000	<b>.</b>	8	ş	<b>8.000</b>	•.000	8
0.0005 1	0069	0.000	0.020	5		0.0000	0.015	8
9.995 -	27000	0.0000	0,000	5	21000	9.000	0.005	8
0.037 1	37000	0.0001	0.001	8	26080	9.000	<b>0</b> .001	8
0.12 1	210	0.000 <del>0</del>	0.000	8	210	0.000	0.000	8
•.1	4100	0.000	<b>0.000</b>	8	3	9,000	9.99	8
0.0014 \$	31000	0.0000	0.032	8	tsoo	9.8000	0.015	8
0.2 H	84000	0.0012	9.006	8	52000	0.0007	0.004	8
0,0003 #	1300	. 0000	9.005	5	240	0.000	<b>9.00</b> 1	8
0.4 #	2680008	0.0037	0.009	8	2000	9.000	0.000	8
0.02 C	31000	0.0000	0.002	8	24000	<b>9.000</b>	0.002	8
0.2 M	9300	0.000	0.000	8	*	<b>1</b> .000	0.000	8
0.3 1	2000	0.0000	.000	8	120	<b>8.900</b>	0.000	8
0.07 1	19000	0.0000	<b>.</b>	8		9.000		8
0.007 H	38000	0.0001	<b>.</b> .006	8	26000	9.000	<b>0.9</b> 5	5
2 1	1700	0.0000	0.000	5	S	0.000	0.000	8
0.2 H	220000	0.0003	0.002	8	22000	0.0003	0.002	5
			8.099				<b>9.9</b> 53	
	(a) Reference Dose (RfB) my/Kg/dey 0.02 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.2 0.	(c) heferance bose (117) 0.1 1 0.22 0.005 1 0.005 0 0.005 1 0.000 0 0.005 1 0.000 0 0.000  0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.	(a)         Neferance         Nighest Detected         Estimated Daily           Dose (NTD)         Concentration         Intake (DI)           my/kg/day         0.11         120         0.000           0.051         100000         0.000         0.000           0.051         1200         0.000         0.000           0.051         1200         0.000         0.000           0.051         27000         0.000         0.000           0.051         27000         0.000         0.000           0.051         27000         0.000         0.000           0.051         27000         0.000         0.000           0.051         27000         0.000         0.000           0.051         31000         0.000         0.000           0.051         31000         0.000         0.000           0.02         1300         0.000         0.000           0.02         1300         0.000         0.000           0.02         1300         0.000         0.000           0.02         1300         0.000         0.000           0.2         1000         0.000         0.0000           0.2	(a)         Information         Injunct         Estimated         Buily Introduct           0.1         1         120         Introduct         Introduct         0.000           0.11         120         1200         0.0000         0.000         0.000           0.05         1         100000         0.0000         0.0000         0.000         0.000           0.05         1         230         0.0000         0.0000         0.000         0.000           0.005         1         27000         0.0000         0.000         0.000         0.000           0.005         1         37000         0.0000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000	(a)         Inference         Inference         Inference         Inference         Inference         Inference         Inference         Inference         Interest on         Interest on	(s)         Inference marking/m         Inference (intraction         Infanto         Belly intraction         Exceed         Geometric film for the marking/m           0.11         120         0.0000         0.0000         0.0000         0.0000         0.0000         100         100           0.001         120         0.0000         0.0000         0.0000         0.0000         100         100         100           0.001         1200         0.0000         0.0000         0.0000         0.0000         100         100         100           0.001         13000         0.0000         0.0000         0.0000         100         210         21000         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210 </td <td>(a)         (b)         Extended bally         Exceed formation         Extended bally         Exceed formation         Extended bally           base (trino)         10         10         10         10         10         10                      base (trino)         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10</td> <td>(*)         Encode         Sevent First         Estimated         Builty         Encode         Sevent First         Estimated         Builty           Base (RTR)         Encode         Estimated         Builty         Reference         Concentifiet (RTR)         Reference         Conce</td>	(a)         (b)         Extended bally         Exceed formation         Extended bally         Exceed formation         Extended bally           base (trino)         10         10         10         10         10         10                      base (trino)         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10	(*)         Encode         Sevent First         Estimated         Builty         Encode         Sevent First         Estimated         Builty           Base (RTR)         Encode         Estimated         Builty         Reference         Concentifiet (RTR)         Reference         Conce

# EXPOSURE ASSUMPTIONS

Exposure Setting	Resident ial
Exposed Individual	Adult
Soil Intake (grams/day)	0.1
Body Weight (kilograms)	8
(a) Source: 1: 1815 - Integrated Risk Informatio	an Svaten.

(a) source is shift - Superfund much interview is specify Summery.
(b) Assumed to be in the (+6) hexavalent state.
(c) Assumed to be altyl mercury.
(d) Nickel value based on nickel-soluble salts.

### Table H-15 HOSS-AMERICAN EXCESS LIFETIME CANCER RISK SOIL INGESTION EXPOSURE - EAST DEVELOPMENT

Chemical	U.S. EPA Carcinogen Classification	(a) Carcinogenic Potency Factor (kg-day/mg)	Nighest Detected Concentration ug/kg	Excess Lifetime Concer Risk	Geometric Hean Concentration ug/kg	Encess Lifetime Cancer Risk
Arsenic	A	1.75 A	6800	22-05	4760	12-05
Senzo (a) anthracene	82	11.5 8	410000	7E-03	2800	5E-05
Benzo (b) fluoranthene	82	11.5 0	99000	26-03	2100	笑-65
Benzo(k) fluoranthene	82	11.5 8	99000	2E-03	1900	<b>王-</b> 65
Benzo(g,h,i)perylene	82	11.5 8	12000	22-04	1500	た・の
Benzo (a) pyrene	82	11.5 C	100000	<b>天-03</b>	1900	32-05
bis(2-Ethylheavi)phthelate	82	0,014 1	460	9E-09	460	9E-09
Chyrsene	Ē	11.5 0	300000	SE-03	2709	4E-05
1.1-Dichloroethene	C	0.091 N	210	3E-08	210	3E-08
Indeno(1,2,3-cd)pyrene	82	11.5 8	210000	32-03	1500	2E-05
2.3.7.8-1000 (Dioxin)	82	156000 W	0.28	6E-05	Ъ	0E+00
SUM OF RISKS =				26-05	-	2E-04

### EXPOSURE ASSUMPTIONS

-

.

-----

Exposure Setting	Residential
Daily Soil Intake (grams/day)	0.1
Body Weight (kilograms)	70
Number of days/week exposed	7
Number of weeks/year enposed	52
Number of years exposed	70
Lifetime Average Soil Intake	0.0014
(grams/kg body weight/day)	

.....

(a) Source: I: IRIS - Integrated Risk Information System.

N: WEAST - Health Effects Assessment Summery Tables - Quarterly Summery.

U: Based on benzo(a)pyrene.

A: U.S. EPA 1986

C: U.S. EPA 1980

 $\mathbb{N}^{2}$ 

### Table N-16

### NOSS-AMERICAN SITE COMPARISON OF ESTIMATED DAILY INTAKE TO REFERENCE DOSE (RfD) CNILD SOIL INGESTION EXPOSURE - DEVELOPMENT WEST

***************************************		· • • • • • • • • • • • • • • • • • • •		*******					***********
	Reference	Nighest Detected	Estimated Daily		Exceed	Geometric Hean	Estimated Baily		Exceed
	Dose (RfD)	<b>Concentration</b>	Intoke (DI)		Reference	Concentration	Intake (DI)		Reference
Chemical	mg/kg/day	ug/kg	mg/kg/day	DI/RfD	Dose	ug/kg	mg/kg/day	DI/R <b>fD</b>	Dose
Acetane	0.1 I	370	0.0000	0.000	NO	60	0.0000	0.000	NO
Barium	0.05 i	200000	0.0027	0.053	10	62000	9.0006	0.017	10
Benzoic Acid	<b>4</b> I	810	0.000	0.000	NO	210	0.000	0.000	HO III
Beryllium	9.005 1	1300	0,0000	0.003	10	490	0.0000	0.001	NO
bis(2-Ethylhexyl)phthelate	<b>8.02</b> 1	1600	9,0000	0.001	NO	266	0.0000	0.000	10
Cadaium	0.0005 1	76000	0.0010	2.027	YES	5000	0.0001	0.133	10
Chromium (b)	0.005 1	81000	9.0011	0.216	NO	16000	0.0002	0.043	10
Copper	9.037 N	140000	0.0019	0.050	10	25000	0.0003	9.809	10
Cvanide (d)	0.02 #	3000	0.0000	0.002	10	1400	0.0000	0.001	10
2.4-Dinitrophenol	0.002 1	620000	0.0083	4.133	YES	(f)	0.0000	0.000	10
Ethylbenzene	0.1 1	450	0.0000	0.000	10	6	0.0000	0.000	10
Leed	0.0014 \$	520000	0.0069	4.952	YES	22000	0.0003	0.210	10
Nonemese	0.2 H	830000	0.0111	0.055	HO I	330000	0.0044	0.022	10
Hercury (c)	0.0003 N	3900	0.0001	0.173	10	250	0.0000	0.011	NO
Hethylene chloride	0.06 1	10000	0.0001	0.002	10	6	0.000	0.000	NO
Naphthalene	D.4 N	1800000	0.0240	0.060	10	4300	0.0001	0.000	10
Nickel (e)	0.02 N	220	0.0000	0.000	10	15000	0.0002	0.010	10
Styrene	0.2 1	380	0.000	0.000	NO	4	0.0000	0.000	10
Tetrachloroethene	0.01 1	9	0,000	0.000	NO.	3	0.0000	0.000	NO
Toluene	0.3 1	580	0.000	0.000	10	41	0.0000	9.000	NO
1,1,1-Trichloroethane	0.09 1	11	0.000	0.000	HD.	11	0.0000	0.000	10
Vanadium	0.007 N	35000	0.0005	0.067	10	14000	0.0002	0.027	10
Xyl enes	21	1100	0.0000	0.000	10	5	0.0000	0,000	10
Zinc	0.21 \$	9800000	0.1307	0.622	10	290000	0.0039	0.018	NO
Nazard Index (Sum of D1/RfD)			******	12.419				0.502	

### EXPOSURE ASSUMPTIONS

Exposure Setting	Residential
Exposed Individual	Child
Soil Intake (grams/day)	0.2
Body Weight (kilograms)	15

(a) Source: 1: IRIS - Integrated Risk Information System.

S: SPWEH - Superfund Public Health Evaluation Manual.

H: MEAST - Nealth Effects Assessment Summery Tables - Quarterly Summery.

.

(b) Assumed to be in the (+6) hexavalent state.

(c) Assumed to be alkyl mercury.

(d) Cyanide value based on free cyanide.

(c) Wickel value based on nickel-soluble salts.

(f) insufficient number of positive detections to estimate a mean concentration.

### Table N-17 HOSS-AMERICAN SITE COMPARISON OF ESTIMATED DAILY INTAKE TO REFERENCE DOSE (RFD) ADULT SOIL INGESTION EXPOSURE - DEVELOPMENT WEST

	(a)								
Chamical	Reference Dose (RfD)	Righest Detected Concentration	Estimated Daily Intake (DI)	A1 /845	Exceed Reference	Geometric Hean Concentration	Estimated Daily Intake (DI)	b1/045	Exceed Reference
	mg/ kg/ uay	<b>ug/ky</b>	mg/ ky/ uey	UI/WIU		Ug/ K <b>y</b>	mg/ xg/ uay	<b>UI/KIU</b>	vose
Acetone	<b>0.1</b> t	370	0.0000	0.000	10	60	0.0000	8.000	
0erium	0.05 1	200000	0.0003	0.006	NO	62000	0.0001	9.002	10
Denzoic Acid	4.1	810	0.0000	0.000	NO	210	0.000	0.000	
Beryllium	0.005 i	1300	0.0000	0.000	10	500	0.0000	0.000	
bis(2-Ethylhexyl)phtholate	0.02 1	1600	0.0000	0.000	10	266	0,0000	0.000	
Cadmium	0.0005 t	76000	0.0001	0.217	10	5000	0.0000	0.014	
Chromium (b)	0,005 t	81000	0.0001	0.023	10	16000	0.0000	0.005	
Copper	0.037 1	140000	0.0002	0.005	10	25000	0.0000	0.001	
Cyanide (d)	9.02 H	3000	0.000	0.000	10	1400	0.000	0.000	
2,4-Dinitrophenol	0.902 1	620000	.0.0009	0.443	NO	(1)	0.000	000.0	
Ethylbenzene	0.1 (	450	0.0000	0.000	NO	6	0.000	9.000	
Lead	0.0014 5	520000	0.0007	0.531	10	22000	0.0000	0.022	
Hanganese	0.2 #	830000	0.0012	0.006	10	330000	0.0005	0.002	
Hercury (c)	0.0003 N	3900	0.0000	0.019	10	250	0.000	0.001	
Nethylene chloride	0.06 1	10000	0.0000	0.000	10	6	0.000	0.000	
Naphthalene	0.4 #	1800000	0,0026	0.006	10	4300	0.000	0.000	
Nickel (e)	0.02 H	229	0.0000	0.000	10	15000	9,0000	9.001	
Styrene	0.2 1	380	0.0000	0.000	10	4	9.000	0.000	· •
Tetrachloroethene	0.01 1	9	0.0000	0.000	10	3	9.0008	0.000	
Toluene	0.3 1	580	0.0000	0.000	10	41	0.000	0.000	NC
1, 1, 1-Trichloroethane	0.09 1	11	0.0000	0.000	10	11	0.000	0.000	WC NC
Vanadium	0.007 #	35000	0.0001	0.007	NO	14000	0.0000	0.003	
Xylenes	21	1100	0.000	0.000	NO	5	0.000	0.000	
Zinc	0.2 0	9800000	0.0140	0.070	NO	290000	0.0004	0.002	
Wazard Index (Sum of D)/RfD)				1.334		***************		0.054	*********

### EXPOSURE ASSUMPTIONS

•

Exposure Setting	Residentiat	
Exposed Individual	Adult	
Soil Intake (grams/day)	0.1	
Body Weight (kilograms)	70	
***************************************		

(a) Source: 1: IRIS - Integrated Risk Information System.

S: SPNEH - Superfund Public Health Evaluation Nanual.

H: MEASI - Mealth Effects Assessment Summary Tables - Quarterly Summary.

(b) Assumed to be in the (+6) hexavalent state.

(c) Assumed to be alkyl mercury.

.

(d) Cyanide value based on free cyanide.

(c) Nickel value based on nickel-soluble salts.

(f) Insufficient number of positive detections to estimate a mean concentration.

### Table H-18 NOSS-AMERICAN SITE EXCESS LIFETIME CANCER RISK SOIL INGESTION EXPOSURE - DEVELOPMENT WEST

Chemical	U.S. EPA Carcinogen Classification	(a Carcinogenic Potency factor (kg-day/mg)	) Nighest Detected Concentration ug/kg	Excess Lifetime Cancer Risk	Geometric Nean Concentration ug/kg	Excess Lifetime Cancer Risk
Arsenic	٨	1.75 A	71000	22-04	4508	1E-05
Benzene	A	0.029 1	100	4E-09	4	22-10
Benzo (a) anthracene	82	11.5 8	650000	1E-02	3900	6€・65
Benzo (b) fluoranthene	82	11.5 8	270000	4E-03	2800	SE-05
Benzo (k) fluoranthene	92	11.5 8	250000	46-03	2208	4E-05
Benzola, h. ilperviene	82	11.5 8	77000	1E-03	2100	32-05
Senzo(a)pyrene	82	11.5 C	230000	4E-03	2609	48-05
bis(2-Ethvihexvi)shthelate	92	0.014 1	16000	死-07	270	SE-09
Chyrsene	C	11.5 B	550000	96-03	4000	7E-65
Dibenz (a, h) anthracene	UŽ	11.5 8	24000	4E-04	450	7E-86
Indeno(1,2,3-cd)pyrene	82	11.5 8	120000	28-03	2100	32-05
Nethviene chioride	82	0.0075 1	10000	1E-07	6	7E-11
Nitrosodiphenvlamine	82	0.0049 1	270	28-09	290	22-07
2.3.7.8-1CD0 (Dioxin)	82	156000 N	0.00	22-07	0.00079	22-07
Tetrachloroethene	82	0.051 N	9	7E-10	3	2E-10
SUM OF RISKS =				4E-02	_	32-04

. ..

### EXPOSURE ASSUMPTIONS

-

-

Exposure Setting	Resident ial
Daily Soil Intake (grams/day)	0.1
Body Weight (kilograms)	70
Number of days/week exposed	7
Number of weeks/year exposed	52
Number of years exposed	70
Lifetime Average Soil Intake	0.0014
(grams/kg body weight/day)	

### (a) Source: 1: IRIS - Integrated Risk Information System.

8: SPIEN - Superfund Public Neelth Evaluation Manual. H: MEAST - Neelth Effects Assessment Summary Tables - Quarterly Summary.

8: Based on benzo(a)pyrene.

- A: U.S. EPA 1988
- C: U.S. EPA 1980

### Table N-19 MOSS AMERICAN SITE COMPARISON OF ESTIMATED DAILY INTAKE TO REFERENCE DOSE (RfD) CHILD SOIL INGESTION EXPOSURE - STREAM REACH 1

Chemical	(a) Reference Dose (RfD) mg/kg/day	Nighest Detected Concentration ug/kg	Estimated Daily Intake (DI) mg/kg/day	D1/RfD	Exceed Reference Dose	Geometric Hean Concentration Ug/kg	Estimated Daily Intake (D1) mg/kg/day	01/RfD	Exceed Reference Dose
lcetone	0.1 1	32000	0.0001	0.001	ND	3300	9.0006	0.000	NQ
Ant imony	0.0004 1	1100	0.0000	0.008	NO	1100	0.0000	0.008	10
lorium	0.05 1	92000	0.0003	0.005	10	00008	0.0002	0.005	10
Jeryl Liun	0.005 1	1100	0.0000	0.001	10	910	0.0009	0.001	90
2-Butanone	0.05 i	87	0.0000	0.000	HO	87	0.0000	0.000	10
Cechnium	0.0005 1	14000	0.0000	0.000	NO	7100	0,0000	0.041	10
i-Chlorountline	0.004 N	60000	0.0002	0.043	NO	đ			-
chloroform .	0.01 1	990	0.0000	0.000	NO	200	0,0000	0.000	NO
Chromium (b)	0.005 1	22000	0.0001	0.013	ND	18000	0.0001	0.010	10
Copper	0.037 W	32000	0,0001	0.002	NO	25000	0.0001	0.002	10
thy l benzene	0.1 1	730	0.0000	0.000	NO	110.43	0.000	0.000	10
lead	0.0014 5	120000	0.0003	0.245	80	32000	0.0001	0.065	NO
langanese	0,2 #	660000	0.0019	0.009	NO	460000	0.0013	9.007	10
Hercury (c)	0.0003 #	430	0.0000	0.004	NO	120	0.0000	0.001	NO
lethylene chloride	0.06 1	33000	0.0001	0.002	WD	6400	0.0000	0.000	10
Inphtholene	0.4 #	350000	0.0010	0.003	NO	140000	0.0004	0.001	IO
lotuene	0.3 1	950	0.0000	0.009	10	99.44	0.0000	0.000	10
/anadium	0.007 #	31000	0.0001	0.013	NO	26000	0.0001	0.011	10
Linc	0.2 #	2200000	0.0063	0.031	WO	570000	0.0016	0.008	10
lozord index (Sum of Di/RfD)			552 a z a z a a a a a a a a a a a a a a a	0.460				0.159	

### EXPOSURE ASSUMPTIONS

******************************		
Exposure Setting	Trespose	
Exposed Individual	Child	
Soil Intake (grams/day)	0.1	
Body Weight (kilograms)	35	

(a) Source: 1: IRIS - Integrated Risk Information System.

S: SPHEN - Superfund Public Health Evaluation Naruel.

H: MEAST - Health Effects Assessment Summary Tables - Quarterly Summary.

(b) Assumed to be in the (+6) hexavalent state.

(c) Assumed to be alkyl mercury.

### Table N-20 Moss American Comparison of Estimated Daily Intake to Reference Dose (RMD) Adult Soil Ingestion Exposure - Stream Reach 1

themical	(a) Reference Dose (RfD) mg/kg/day	Nignest Detected Concentration Ug/kg	Estimated Daily Intake (DI) mg/kg/day	D1/RfD	Exceed Reference Dose	Geometric Hean Concentration ug/kg	Estimated Daily Intake (DI) mg/kg/day	01/RfD	Exceed Reference Dose
leetone	0.1 1	32000	0.0000	0.000	NO	3300	0.000	0.000	10
wit imany	0.0004 1	1100	0.0000	0.004	10	1100	0.0000	0.004	10
larium	0.05 1	92000	0,0001	0.003	NO	80000	0.0001	0.002	10
lervitium	0.005 1	1100	0.0000	0.000	NO	910	0.0000	0.000	10
- But anone	0.05 1	87	0.0000	0.000	10	87	0.0000	0.000	10
Cadini un	0.0005 1	14000	0.0008	0.040	10	7100	0.0000	0.020	10
hloroform	0.01 (	990	0.0000	0.000	NO	200	0.000	0.000	10
thranium (b)	0.005 1	22000	0.0000	0.006	NÖ	18000	0.0000	0.005	ND
Cober	0.037 W	32000	0.000	0.001	80	25000	0.0000	0.001	10
thyl benzene	0.1 1	730	0.000	0.000	10	110	0.0000	0.000	10
ead	0.0014 \$	110000	0.0002	0.112	00	32000	0.000	0.033	NO
langenese	0.2 #	660000	0.0009	0.005	10	460000	0.0007	0.003	HD.
lercury (c)	0.0003 N	430	0.0000	0.002	10	120	0.0000	0.001	10
lethviene chioride	0.06 f	33000	0.0000	0.001	10	6400	0.0000	0.000	NO
laphthal cnc	0.4 8	350000	0.0005	0.001	NO	140000	0.0002	0.001	10
loi vere	0.3 1	950	0.0000	0.000	NO	99	0.000	0.000	HO
Vanadium	0.007 N	31000	0.0000	0.006	NO	26000	0.0000	0.005	10
Zinc	0.2 #	2200000	0.0031	0.016	NO	\$70000	0.0008	0.004	NO

Rezard Index (Sum of D1/RfD)

0,198

### EXPOSURE ASSUMPTIONS

-

***************************************		
Exposure Setting	Tresposs	
Exposed Individual	Adul t	
Soit Intake (grams/day)	0.1	
Body Weight (kilograms)	70	
		,

(a) Source: I: IRIS - Integrated Risk Information System.

S: SPHEN - Superfund Public Health Evaluation Manuel.

H: MEAST - Nealth Effects Assessment Summary Tables - Quarterly Summary.

(b) Assumed to be in the (+6) hexavalent state.

(c) Assumed to be alkyl mercury.

0.079

. .

....

Table N-21 MOSS-AMERICAN SITE EXCESS LIFETIME CANCER RISK SOIL INGESTION EXPOSURE - STREAM REACH 1 .

Chemical	U.S. EPA Carcinogen Classification	(a) Carcinogenic Potency Factor (kg-day/mg)	Nighest Detected Concentration ug/kg	Excess Lifetime Cancer Risk	Geometric Hean Concentration ug/kg	Excess Lifetime Cancer Risk
Arsenic	A	1.75 A	8000	3E-07	4208	2E-07
Senzo (a) anthracene	82	11.5 8	140000	46-05	26000	7E-06
Benzo (b) fluoranthene	50	11.5 8	64000	26-05	13000	3E-06
Benzo (k) / Luor anthene	82	11.5 8	41000	1E-05	9100	2E-06
Benzo (a) pyrene	82	11.5 C	54000	1E-05	12000	3E-06
Chloroform	82	0.0061 1	990	1E-10	200	32-11
Chyrsene	C	11.5 B	150000	4E-05	19000	5E-06
Dibenz (a.h)anthracene	82	11.5 0	1600	4E-07	1300	3E-07
Indeno(1.2.3-cd)pyrene	82	11.5 8	23000	6E-06	4300	1E-06
Nethylene chloride	82	0.0075 1	33000	6E-09	6400	1E-09
SUM OF RESKS =				1E-04		2E-05

### EXPOSURE ASSUMPTIONS

•

.

******	
Exposure Setting	Tresposs
Daily Soil Intake (grams/day)	0.1
Body Weight (kilograms)	70
Number of days/week exposed	2
Number of weeks/year exposed	20
Number of years exposed	10
Lifetime Average Soil Intake	0.00002
(grams/kg body weight/day)	

(a) Source: I: IRIS - Integrated Risk Information System.

N: MEAST - Nealth Effects Assessment Summary Tables - Quarterly Summary.

8: Based on benzo(a)pyrene.

A: U.S. EPA 1988

C: U.S. EPA 1980
#### Table N-22 Moss-American Site Comparison of Estimated Daily Intake to Reference Dose (RfD) Child Soil Ingestion Exposure -Stream Reach 2

Chemical	() Reference Dose (RfD) mg/kg/døy	<ul> <li>Highest</li> <li>Detected</li> <li>Concentration</li> <li>Ug/kg</li> </ul>	Estimated Daily Intake (D1) mg/kg/day	DI/RfD	Exceed Reference Dose	Geometric Hean Concentration ug/kg	Estimated Dolly Intake (DI) mg/kg/day	91/Rfb	Exceed Reference Dose
Acetone	0.1 1	290	0.0000	0.000	HQ	290	0.000	0.000	ND
Ant imony	0.0004 1	1700	0.000	0.012	10	1100	0.0000	0.006	10
Barium	0.05 1	93000	0.0003	0.005	10	59000	0.0002	0.003	10
Beryllium	0.005 I	1300	8.000	0.001	10	880	0.000	8.001	NO
2-flutanone	0.05 1	67	0.000	0.000	10	67	0.0000	0.000	NO
Cadmium	0.0005 1	7600	0.000	0.043	10	5600	0.0000	0.032	NO
Chloroform	0.01 1	- 420	0.0000	0.000	10	120	0.0000	0.000	10
Chromium (b)	0.005 1	15000	0.0000	0.009	80	15000	0.0000	0.009	NO
Conner	0.037 W	29000	0.0001	0.002	10	22000	0,0001	0.002	10
Ethylbenzene	0.1 1	3	0.000	0.000	NO	3	0.0000	0.000	NO
Lead	0.0014 \$	53000	0.0002	0.108	10	34000	0.0001	0.069	NO
Hangenese	0.2 #	730000	0.0021	0.010	NO	500000	0.0014	0.007	NO
Hercury (c)	0.0003 #	360	0.0000	0.003	NO	160	0.0000	0.002	10
Nethylene chloride	0.06 1	12000	0.0000	0.001	10	4208	0.0000	0.000	NO
Nachthalene	0.4 #	11000	0.0000	0.000	NO	4700	0.000	9.000	HO
Tolucne	0.3 1	230	0.0000	0.000	01	100	0.0000	0.000	NO
Vanadium	0.007 #	29000	0.0001	0.012	NO	22000	0.0001	0.009	10
Zinc	0.2 #	91000	0.0003	0.001	NO	47000	0.0001	0.001	NO

Nazard Index (Sum of D1/RfD)

0.208

9.142

.

.

# EXPOSURE ASSUMPTIONS

-

-

Exposure Setting Exposed Individual Soit Intake (grams/day) Body Weight (kilograms)	Trespess Child 0.1 35	
	************************************	***************************************

(a) Source: I: IRIS - Integrated Risk Information System.

S: SPNEH - Superfund Public Health Evaluation Hanual.

N: MEAST - Nealth Effects Assessment Summery Tables - Quarterly Summery.

(b) Assumed to be in the (+6) hexavalent state.

(c) Assumed to be alkyl mercury.

#### Table H-23 MOSS-AMERICAN STREAM REACH 2 COMPARISON OF ESTIMATED DAILY INTAKE TO REFERENCE DOSE (RfD) ADULT SOIL INGESTION EXPOSURE

•••••••••••••••••••••••••••••••••••••••	Reference	(a)	Nighest Detected	Estimated Daily		Faceed	Geometric Nean	Fetimated Bailu		Evened
	Dose (RfD)		Concentration	Intake (DI)		Reference	Concentration	Intake (DI)		Reference
Chemical	#g/kg/day		ug/kg	mg/kg/day	D1/RfD	Dose	ug/kg	mg/kg/day	D1/RfD	Dose
Acetone	0.1	1	290	0.0000	0.000	10	290	9.0000	0.000	NO
Antimony	0.0004	1	1700	0,0000	0.006	10	1100	0.0000	0.004	10
Barium	0.05	1	93000	0.0001	0.003	80	59000	0.0001	0.002	10
Beryllium	0.005	1	1300	0,0000	0.000	ND	068	0.000	0.000	10
2-Butanone	0.05	t i	67	0.000	0.000	10	67	0.0000	0.000	10
Cadaium	0.0005	t i	7600	0.0000	0.022	10	5600	9.000	0.016	10
Chloroform	0.01	E .	420	0.0000	0.000	NO	120	0.0000	0.000	10
Chromium (b)	0.005	I	15000	0,0000	0.004	10	15000	0.0000	0.004	ID
Copper	0.037	1	29000	0.0000	0.001	NO	22000	0.0000	<b>0.001</b>	NO
Ethylbenzene	0.1	I	3	0.0000	0.000	10	3	0.0000	0.000	ND
Lead	0.0014	5	53000	0.0001	0.054	10	34000	0.000	0.035	NO
Nanganese	0.2		730000	0.0010	0.005	NO	500000	0.0007	0.004	HO I
Mercury (c)	0.0003		360	0.0000	0.002	10	160	0.0000	0.001	10
Nethylene chloride	0.06	1	12000	0.0000	0.000	NO	4200	0.0000	0.000	NO
Naphthalene	0.4	1	11000	0.0000	0.000	NO	4700	0.0009	0.000	NO
Toluene	0.3	1	230	0.0000	0.000	10	100	0.0000	0.000	NO
Vanadium	0.007		29000	0.0000	0.006	10	22000	0.000	0.004	NO
Zinc	0.2	Ħ	90000	0.0001	0.001	WO	47000	0.0001	0.000	WO
Nazard Index (Sum of D1/RfD)		•••••	********		0,104				0.071	

0.0/1

. .

#### EXPOSURE ASSUMPTIONS

-

·····		
Exposure Setting	Tresposs	
Exposed Individual	Adul t	
Soil Intake (grams/day)	0.1	
Body Weight (kilograms)	70	

(a) Source: I: IRIS - Integrated Risk Information System.

S: SPNEN - Superfund Public Health Evaluation Manunt.

N: NEAST - Nealth Effects Assessment Summery Tables - Quarterly Summary.

(b) Assumed to be in the (+6) hexavalent state.

(c) Assumed to be alkyl mercury.

-

#### Table M-24 MOSS-AMERICAN SITE EXCESS LIFETINE CANCER RISK SOIL INGESTION EXPOSURE - STREAM REACH 2

_ + |

. .

Chemical	U.S. EPA Carcinogen Classification	(a) Carcinogenic Potency Factor (kg-day/mg)	Nighest Detected Concentration ug/kg	Excess Lifetime Cancer Risk	Geometric Hean Concentration Ug/kg	Encess Lifetime Cancer Risk
Arsenic	A	1.75 A	5100	2E-07	4800	2E-07
Benzo(a) anthracene	82	11.5 8	97000	3E-05	18000	5E-06
Senzo (b) fluoranthene	82	11.5 8	49000	1E-05	9900	3E-06
Benzo (k) fluoranthene	82	11.5 B	53000	16-05	5500	1E-06
Benzolg, h, ilperviene	82	11.5 B	14000	4E-06	3400	9E-07
Benzo (a) pyrene	82	11.5 C	67000	たいの	8600	26-06
Chloroform	82	0.0061 1	420	6E-11	120	22-11
Chyrsene	C	11.5 8	81000	21-05	9300	28-06
Dibenz (a, h) anthracene	82	11.5 8	2400	6E-07	2200	6E-07
Indeno[1,2,3-cd]pyrene	82	11.5 8	26000	7E-06	4700	1E-06
Nethylene chloride	82	0.0075 1	12000	2E-09	4200	7E-10
Nitrosodiphenylanine	82	0.0049 1	3100	3E-10	3100	3E-10
SUM OF RISKS =				1E-04		2E-05

#### EXPOSURE ASSUMPTIONS .....

Exposure Setting	trespass
Daily Soil Intake (grams/day)	0.1
Body Weight (kilograms)	70
Number of days/week exposed	2
Number of weeks/year exposed	20
Number of years exposed	10
Lifetime Average Soil Intake	0,0000
(grams/kg body weight/day)	

(n) Source: I: IRIS - Integrated Risk Information System.

N: MEAST - Nealth Effects Assessment Summary Tables - Quarterly Summary.

8: Based on benzo(a)pyrene. A: U.S. EPA 1988

C: U.S. EPA 1980

#### Table H-25 NOSS-ANERRICAN SITE COMPARISON OF ESTIMATED DAILY INTAKE TO REFERENCE DOSE (RED) CHILD SOIL INGESTION EXPOSURE - STREAM REACH 3

Chemicat	(a) Reference Dose (RfD) mg/kg/day	llighest Detected Concentration ug/kg	Estimated Daily Intake (DI) mg/kg/day	D1/RfD	Exceed Reference Dose	Geometric Hean Concentration ug/kg	Estimated Daily Intake (DI) mg/kg/day	D1/RfD	Exceed Reference Dose
Acetone	0.1 1	2100	0.0000	0.000	WO	2100	0.0000	0.000	
Barium	0.05 1	85000	5000.0	0.005	NO	81000	0.0002	0.005	NO
Beryllium	0.005 1	710	0.0000	0.000	10	710	0.0000	0.000	NO
Cadaium	0.0005 1	7100	0.000	0.041	NO	6800	0.0000	0.039	NO
Chromium (b)	0.005 1	24000	0.0001	0.014	NO	21000	0.0001	0.012	NO
Copper	Q.037 M	20000	0.0001	0.002	NO	24000	0.0001	0.002	NO
Ethylbenzene	0.1 1	240	0.0000	0.000	10	190	0.000	0.000	NO
Lead	0.0014 \$	110000	0.0003	0.224	10	83000	9.0002	0.169	10
Hanganese	0.22 N	950000	0,0027	0.012	10	800008	0.0023	0.010	NO
Hercury (c)	0.0003 N	420	0.0000	0.004	10	360	0.0000	0.003	NO
Hethylene chloride	0.06 1	1400	0.000	0,000	NO	890	0.0000	0.000	HO
Naphthalene	0.4 N	310000	0.0009	0.002	10	6400	0.0000	0.000	NO
Nickel (d)	0.02 #	24000	0.0001	0.003	NO	21000	0.0001	0.003	NO
Vanadium	0.007 N	30000	0.0001	0.012	NO	28000	0.0001	0.011	NO
Zinc	0.2 W	350000	0.0010	0.005	NO	310000	0.0009	0.004	NO
Nazard Index (Sum of D1/RfD)				0.326				0.260	

0.326

0.260

.. ..

#### EXPOSURE ASSUMPTIONS

******************************		
Exposure Setting	Tresposs	
Exposed Individual	Child	
Soil intake (grams/day)	0.1	
Body Weight (kilograms)	35	

(n) Source: 1: IRIS - Integrated Risk Information System.

S: SPNEN - Superfund Public Nealth Evaluation Manual.

H: HEAST - Health Effects Assessment Summary Tables - Quarterly Summary.

(b) Assumed to be in the (+6) hexavalent state.

(c) Assumed to be alkyl mercury.

(d) Nickel value based on nickel-soluble salts.

# Table M-26 Moss-American Site Comparison of Estimated Daily Intake to Reference Dose (Rfd) Adult Soil Indestion Exposure -Stream Reach 3

# EXPOSURE ASSUMPTIONS

Exposure Setting Exposed Individual Soil Intake (gramm/day)	Trespess Adult 0.1
Soil Intake (grams/day)	0.1
Body Weight (kilograms)	3
(a) Source: [: IRIS - Integrated Risk Information Su	istem.

# 1....

SPMEN - Superfund Public Realth Evoluation Nurual.
SPMEN - Superfund Public Realth Evoluation Nurual.
N: MEASI - Nealth Effects Assessment Summary Tables - Quarterly Summary.
(b) Assumed to be in the (+6) hexavalent state.
(c) Assumed to be altyl mercury.
(d) Nickel value bused on nickel-soluble salts

ŧ

2

TABLE N-27 MOSS-AMERICAN SITE EXCESS LIFETIME CANCER RISK SOIL INGESTION EXPOSURE -STREAM REACH 3 ...

Chemical	U.S. EPA Carcinogen Classification	(a) Carcinogenic Potency factor (kg-day/mg)	Nighest Detected Concentration ug/kg	Exc <b>ess</b> Lifetime Cancer Risk	Geometric Hean Concentration ug/kg	Excess Lifetime Cancer Risk
Arsenic	۸	1.75 A	7000	3E-07	6200	2E-07
Benzo(a) anthracene	82	11.5 8	190000	SE-05	22000	6E-06
Benzo (b) filvoranthene	82	11.5 0	58000	1E-05	9600	SE-06
Benzo(k) fluoranthene	82	11.5 8	58000	1E-05	6600	2E-06
Benzola, h. ilperviene	82	11.5 8	4000	1E-06	1700	4E-07
Benzolalpyrene	82	11.5 C	54000	1E-05	8700	2E-06
Chytsene	C	11.5 8	110000	38-05	18000	SE-06
Dibenz (a, h) anthracene	82	11.5	1400	46-07	1400	4E-07
Indeno11.2.3-cdipyrene	82	11.5 8	9100	26-06	2300	6E-07
Methylene chloride	82	0.0075 1	1400	2E-10	890	1E-10
2,3,7,8-1CDD (Dioxin)	82	156000 N	0.00014	SE-10	0.00014	5E-10
SUN OF RISKS =				1E-04		22-05

#### EXPOSURE ASSUMPTIONS

-

-

**********************************	
Exposure Setting	Trespass
Daily Soil Intake (grams/day)	0.1
Body Weight (kilograms)	70
Number of days/week exposed	2
Number of weeks/year exposed	20
Number of years exposed	10
Lifetime Average Soil Intake	0.0000
(grams/kg body weight/day)	

(n) Source: I: IRIS - Integrated Risk Information System.

N: MEAST - Mealth Effects Assessment Summary Tables - Quarterly Summary.

- 8: Based on benzo(a)pyrene.
- A: U.S. EPA 1988
- C: U.S. EPA 1980

#### TABLE M-28 MOSS-AMERICAN SITE COMPARISON OF ESTIMATED DAILY INTAKE TO REFERENCE DOSE (RFD) CHILD SOIL INGESTION EXPOSURE - STREAM REACH 4

.

Chemical	(a Reference Dose (RfD) mg/kg/day	) Highest Detected Concentration ug/kg	Estimated Daily Intake (D1) mg/kg/day	01/R fD	Exceed Reference Dose	Geometric Hean Concentration ug/kg	Estimated Daily Intake (DI) mg/kg/day	DI/RTD	Exceed Reference Dose
Barfum	9.05 1	82000	0.0002	0.005	<b>M</b> O	46000	0.0001	0.003	WO
Benzoic Acid	4 1	660	0.000	0.000	NO	500	0.0000	0.000	NO
Cadwium	0.0005 1	6200	0,0000	0.035	NO	4800	0.0000	0.027	HO .
Chromium (b)	0.005 1	24000	0.0001	0.014	HO.	16000	0.0000	0.009	NO
Conper	0.037 M	27000	0,0001	0.002	NO.	20000	0.0001	0.002	10
Ethylbenzene	0.1 (	4	0.0000	0.000	10	4	0.0000	0.000	80
Lend	0.0014 \$	19000	0.0001	0.039	ND	85000	0.0002	0.173	NO
Hanganese	0.2 H	650000	0.0019	0.009	NO	590	0.0000	0.000	HŪ.
Hercury (c)	0,0003 H	310	0,0000	0.003	10	300	0.0000	0.003	10
Nickel (d)	0.02 #	19000	0.0001	0.003	NO	18000	0.0001	0.003	NÖ
Selenium	0.003 H	1300	0.0000	0.001	80	1300	0.0000	0.001	80
Vanadium	0.007 N	23000	0.0001	0.009	NO	21000	0.0001	0.009	NO
Zinc	0.21 W	360000	0.0010	0.005	NO	280000	0.0008	0.004	HO
Nazard Index (Sum of D1/RfD)			•••••••	0.125				0.233	

#### EXPOSURE ASSUMPTIONS

-

******************************		
Exposure Setting	<b>Trespo</b> ss	
Exposed Individual	Child	
Soil Intake (grams/day)	0.1	
Body Weight (kilograms)	35	

(a) Source: I: IRIS - Integrated Risk Information System.

S: SPNEN - Superfund Public Newlth Evaluation Manual.

N: MEAST - Mealth Effects Assessment Summery Tables - Quarterly Summery.

(b) Assumed to be the (+6) hexavalent state.

(c) Assumed to be alkyl mercury.

(d) Nicket value based on nicket-soluble salts.

#### Table N-29 MOSS-AMERICAN SITE COMPARISON OF ESTIMATED DAILY INTAKE TO REFERENCE DOSE (RfD) ADULT SOIL INGESTION EXPOSURE - STREAM REACH 4

....

Chemical	(a Reference Dose (RfD) mg/kg/day	) Highest Detected Concentration ug/kg	Estimated Dally Intake (DI) mg/kg/day	D1/RfD	Exceed Reference Dose	Geometric Hean Concentration ug/kg	Estimated Daily Intake (DI) my/kg/day	01/R <b>f0</b>	Exceed Reference Dose
Bartum	0.05 1	82200	0.0001	500.0	NO	46000	9.0001	0.001	HD
Benzoic Acid	4 1	660	0.000	0.000	10	490	0.000	0.000	NO
Cadmium	0.0005 1	0059	0,0000	0.018	10	4800	0.000	0.014	10
Chromium (b)	0.005 1	24000	0.000	0.007	NO	16000	0.000	0.005	NO
Conper	0.037 #	27000	0.000	0.001	NO	20000	0.0000	0.001	NO
Ethylbenzene	0.1 /	- 4	0.0000	0.000	10	4	0.0000	0.000	NO
Lead	0.0014 S	19000	0.0000	0.019	10	85000	0.0001	0.087	NO
Nanganese	0.2 N	650000	0.0009	0.005	10	590	0.0000	0.000	NO
Hercury (c)	0.0003 N	310	0.0000	0.001	10	300	0.000	0.001	NO
Nickel (d)	0.02 N	19000	0.0000	0.001	NO	18000	0.000	0.001	NO
Selenium	0.003 S	1300	0.000	0.001	NO	1300	0.0000	0.001	NO
Vanadium	0.007 N	23000	0.0000	0.005	NO	21000	0.000	0.004	NO
Zinc	N 5.0	360000	0.0005	0.003	WO.	280000	0.0004	0.002	HO
Nazard Index (Sum of D1/RfD)				0.063				0.117	

#### EXPOSURE ASSUMPTIONS

Exposure Setting	Tresposs	
Exposed Individual	Adult	
Soil Intake (grams/day)	0.1	
Body Weight (kilograms)	70	

(a) Source: 1: IRIS - Integrated Risk Information System.

S: SPNEN - Superfund Public Health Evaluation Manual.

N: MEAST - Nealth Effects Assessment Summary Tables - Quarterly Summary.

(b) Assumed to be the (+6) hexavalent state.

(c) Assumed to be alkyt mercury.

(d) Nickel value based on nickel-soluble salts.

#### Table H-30 HOSS-AMERICAN SITE EXCESS LIFETIME CANCER RISK SOIL INGESTION EXPOSURE - STREAM REACH 4

. .

•

Chemical	U.S. EPA Carcinogen Classification	(a) Carcinogenic Potency factor (kg-day/mg)	Nighest Detected Concentration ug/kg	Excess Lifetime Concer Risk	Geometric Hean Concentration ug/kg	Excess Lifetime Concer Risk
Arsenic	A	1.75 A	10000	4E-07	5800	2E-07
Benzo (a) anthracene	82	11.5 8	56000	1E-05	4900	18-06
Senzo(b) fluoranthene	82	11.5 8	44000	1E-05	3400	96-07
Benzo(k) fluoranthene	82	11.5 0	17000	4E-06	1800	56-07
Benzolg, h, ilpervlene	82	11.5 8	3400	9E-07	1000	3E-07
Benzo(a)pyrene	82	11.5 C	37000	1E-05	3100	8E-07
Chyrsene	C	11.5 8	38000	1E-05	4200	1E-06
Dibenz (a, h) anthracene	82	11.5 8	180	5E-08	280	7E-08
Indeno(1,2,3-cd)pyrene	82	11.5 8	4400	1E-06	1100	32-07
2,3,7,8-100 (Dioxin)	82	156000 N	0.74	3E-06	Ь	0E+00
SUM OF RISKS =				5E-05		5E-06

#### EXPOSURE ASSUMPTIONS

-

.

Exposure Setting	Tresposs
Daily Soil Intake (grams/day)	0.1
Rody Weight (kilograms)	70
Number of days/week exposed	2
Number of weeks/year exposed	20
Number of years exposed	10
Lifetime Average Soil Intake	0.0000
(grams/kg body weight/day)	

(a) Source: N: NEAST - Newlth Effects Assessment Summary Tables - Quarterly Summary.

.

8: Based on benzo(a)pyrene.

A: U.S. EPA 1988 C: U.S. EPA 1980

#### Table N-31 MOSS-AMERICAN SITE COMPARISON OF ESTIMATED DAILY INTAKE TO REFERENCE DOSE (RMD) CHILD SOIL INGESTION EXPOSURE - STREAM REACH 5

. .

Chemical	(a) Reference Dose (RfD) ag/kg/day	Nighest Detected Concentration ug/kg	Estimated Daily Intake (DI) mg/kg/dny	D1/RfD	Exceed Reference Dose	Geometric Hean Concentration ug/kg	Estimated Daily Intake (DI) mg/kg/day	D1/R <b>f</b> D	Exceed Reference Dose
Ant impry	0.0004 1	4500	0.0000	0.032	WO	4500	0.000	0.032	ND
Barium	0.05 1	750000	0.0021	0.043	10	68000	0.0002	0.004	10
Renzoic Acid	4 1	2300	0.000	0.000	90	2000	0,0000	0.000	10
Butyl benzyl phthalate	0.2 H	720	0.000	0.000	NO	720	0.0000	0.000	- 10
Cadinium	0.0005 1	5900	0.000	0.034	10	5100	0.000	0.029	10
Chromium (b)	0.005 1	33000	0.0001	0.019	10	28000	0.0001	0.016	
Copper	0.037 N	46000	0.0001	0.004	10	39000	0.0001	0.003	
Lead	0.0014 5	210000	0.0006	0.429	10	170000	0.0005	0.347	10
Hanganese	0.2 #	450000	0.0013	0.006	NO	400000	0.0011	0.006	10
Hercury (c)	0.0003 N	420	0.0000	0.004	NO	300	0.0000	0.003	
Nickel (d)	0.02 H	24000	0.0001	0.003	NO	21000	0.0001	0.003	10
Vanedium	0.007 N	23000	0,0001	0.009	NO	21000	0.0001	0.009	100
Zinc	W 5.0	490000	0.0014	0.007	WO	380000	0.0011	0.005	NO
Rezard Index (Sum of DI/RfD)		***************		0.590			****************	0.457	

#### EXPOSURE ASSUMPTIONS

***********************************		
Exposure Setting	Tresposs	
Exposed Individual	Child	
Soil Intake (grams/day)	0.1	
Body Weight (kilograms)	35	
***************************************	***************************************	

(a) Source: 1: IRIS - Integrated Risk Information System.

S: SPHEH - Superfund Public Health Evaluation Hanual.

N: WEAST - Nealth Effects Assessment Summary Tables - Quarterly Summary.

(b) Assumed to be in the (+6) hexavalent state.

(c) Assumed to alkyl mercury.

.

-

(d) Wickel value based on nickel-soluble salts.

#### TABLE N-32 MOSS-AMERICAN SITE COMPARISON OF ESTIMATED DAILY INTAKE TO REFERENCE DOSE (RfD) ADULT SOIL INGESTION EXPOSURE + STREAM REACH 5

. .

.....

Chemical	Reference Dose (RfD) mg/kg/day	(.)	Nighest Detected Concentration ug/kg	Estimated Daily Intake (DI) mg/kg/day	DI/RfD	Exceed Reference Dose	Geometric Hean Concentration ug/kg	Estimated Daily (ntake (Dl) mg/kg/day	DI/Rfð	Exceed Reference Dose
Antimony	0.0004	1	4500	0.0000	0.016	NO	4500	0.0000	0.016	NO
Barium	0.05	1	750000	0.0011	0.021	NO	68000	0.0001	0.002	NO
Benzoic Acid	4	1	2300	0.000	0.000	NO	2000	0.0000	0.000	WO NO
Butyl benzyl phthalate	0.2		720	0.000	0.000	NO	720	0.0000	0.000	NO
Caduium	0.0005	1	5900	0.0000	0.017	NO	5100	0.0000	0.015	10
Chromium (b)	0.005	1	33000	0.0000	0.009	NO	28000	0.0000	0.008	NO.
Copper	0.037		46000	0.0001	0.002	NO	39000	0.0001	0.002	NO
Lead	0.0014	5	210000	0.0003	0.214	NO	170000	0.0002	0.173	NO
Nanganese	0.2	Ħ	450000	0.0006	0.003	NO	400000	0.0006	0.003	NO
Hercury (c)	0.0003		420	0.000	0.002	NO	300	0.0000	0.001	NO.
Nickel (d)	0.02		24000	0.0000	0.002	NO	21000	0.0000	0.002	10
Vanadium	0.007	N	23000	0.0000	0.005	10	21000	0.0000	0.004	NO
Zinc	0.21	Ħ	490000	0.0007	0.003	NO	380000	0.0005	0.003	NO.
Nazard Index (Sum of D1/RfD)					0.295				0.228	

#### EXPOSURE ASSUMPTIONS

Exposure Setting	Trespos	
Exposed Individual	Adul t	
Soil Intake (grams/day)	0.1	
Body Weight (kilograms)	70	

(a) Source: I: IRIS - Integrated Risk Information System.

S: SPNEH - Superfund Public Nealth Evaluation Manual.

N: WEAST - Nealth Effects Assessment Summry Tables - Quarterly Summery.

(b) Assumed to be in the (+6) hexavalent state.

(c) Assumed to alkyl mercury.

(d) Wickel value based on nickel-soluble salts.

#### Table N-33 HOSS-AMERICAN SITE EXCESS LIFETIME CANCER RISK SOIL INGESTION EXPOSURE - STREAM REACH 5

.

...

Chemical	U.S. EPA Carcinogen Classification	(a) Carcinogenic Potency Factor (kg-day/mg)	Highest Detected Concentration ug/kg	Excess Lifetime Cancer Risk	Geometric Hean Concentration ug/kg	Excess Lifetime Concer Risk
Arsenic	A	1.75 A	4500	2E-07	4500	2E-07
Renzo ( a) anthracene	82	11.5 8	4000	1E-06	2000	SE-07
Benzolb) fluoranthene	82	11.5 8	26000	7E-06	1900	SE-07
Benzo (k) fluoranthene	82	11.5 8	36000	9E-06	1300	32-07
Bentola, h. ilnervlene	82	11.5 8	3400	9E-07	1000	32-07
Benzolalovrene	82	11.5 C	28000	7E-06	1800	SE-07
Chyrsene	C	11.5 0	3400	9E-07	2700	7E-07
Dibenz (a, h) anthracene	82	11.5 8	200	SE-08	b	••
Indeno[1,2,3-cd]pyrene	82	11.5 8	3400	9E-07	1000	<b>克-07</b>
2,3,7,8-1000 (Dioxin)	82	156000 N	0.004	1E-08	Ь	••
SUM OF RISKS =				38-05		<b>3E-06</b>

#### EXPOSURE ASSUMPTIONS

÷

••••••	
Exposure Setting	Tresposs
Daily Soil Intake (grams/day)	0.1
Body Weight (kilograms)	70
Number of days/week exposed	2
Number of weeks/year exposed	20
Number of years exposed	10
Lifetime Average Soil Intake	0.00002
(grams/kg body weight/day)	

(n) Source: H: WEAST - Nealth Effects Assessment Summary Tables - Quarterly Summary.

8: Based on benzo(a)pyrene. A: U.S. EPA 1968

C: U.S. EPA 1980

(b) Insufficient positive detects to calculate a mean.

Appendix N QUALITY ASSURANCE/QUALITY CONTROL EVALUATION OF LABORATORY DATA

۰,

1

GLT864/070.50

; ,

# Appendix N QUALITY ASSURANCE/QUALITY CONTROL EVALUATION OF LABORATORY DATA

# INTRODUCTION

The U.S. EPA requires that all chemical data gathered during an RI be evaluated for precision and accuracy. Errors in the data can originate either during sampling or during the laboratory analysis of the samples. The magnitude and source of errors can be assessed through the collection and analysis of field replicate, duplicate, split, spiked, and blank samples. This appendix presents the RI analytical data and a quality assurance/quality control evaluation of those data at the Moss-American site.

# PROCEDURE

The QA/QC procedures stated in the Quality Assurance Project Plan (QAPP) for this project include both field sampling and laboratory analysis. Data review is performed by U.S. EPA's Region V CRL according to the Laboratory Data Validation Functional Guidelines for Evaluating Inorganics Analyses and the Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses (U.S. EPA Office of Emergency and Remedial Response 1988). These reviews, plus additional observations by CH2M HILL, are incorporated into the final data validation written for each set of data before its use.

# **BLANKS**

Generally, at least one field blank and one laboratory blank are prepared for every set of samples submitted for analyses. Trip blanks were not prepared. Refer to Appendixes B, C, E, F and H for details on blanks that were used for each sampling effort. The field blank (HPLC-grade water for groundwater, surface water, and leachate samples; clean sand for soil and sediment samples) provides a means of identifying contaminants introduced during sampling. The laboratory blank (reagent blank) has a similar function with respect to the identification of contaminants introduced during laboratory preparation and analysis of the samples.

# DUPLICATES/REPLICATES

Duplicate samples characterize the precision of the data. Usually at least one field replicate and one laboratory duplicate are prepared for each set of samples submitted. By comparing field replicates and laboratory duplicates, a determination can be made as to whether scatter in the data is due to field sampling or laboratory techniques. Scatter attributable to chemical testing is measured by comparing the concentrations of spiked constituents in split portions of the same sample. The presence of greater scatter in the values reported for the field replicates than what is found among the laboratory duplicate data is attributable in general to sampling error.

Both field replicates and laboratory duplicate samples are analyzed to determine data precision, a measure of the reproducibility of an analysis. The results are reported as relative percent difference (RPD) and calculated by:

$$RPD = \frac{D1 - D2}{(D1 + D2)/2} \times 100\%$$

where:

1

<b>D</b> 1	-	concentration of original sample
<b>D</b> 2	-	concentration of duplicate or replicate sample

Acceptable RPDs are specified by the U.S. EPA and are listed in the QA/QC portion of the data.

## SPIKE RECOVERIES

Spike sample analyses are done to determine the effect of the sample matrix on extraction, digestion, and measurement procedures. Spike recoveries are also used to determine the accuracy of the analyses, which is a measure of the agreement between an experimental determination and the true value of the parameter being measured.

In general, a known amount of compound is added to a sample, the sample is analyzed, and the amount of spike compound recovered by analysis is compared to the amount added. The type of spikes varies from organic to inorganic analyses and from low to high concentration analyses.

١

}

A "surrogate spike" in organic analysis is a compound not expected to be present in environmental samples, but with properties similar to those of the target compounds. It is added to all samples before extraction and other sample preparation. Percent recovery (%R) is calculated by:

 $\Re R = SSR/SA \times 100\%$ 

where:

quantity measured in spiked sample SSR SA quantity of spike added

A "matrix spike" consists of target compounds added to a sample just before analysis. It is analogous to the "method spike" done for high concentration inorganic analysis. Both analyses are performed to evaluate matrix effects on the analytical methodology and data accuracy.

Percent recovery for a matrix spike is calculated by:

$$\%R = \frac{SSR \cdot SR}{SA} \times 100\%$$

where:

SR	-	quantity measured in unspiked sample
SSR	-	quantity measured in spiked sample
SA	-	quantity of spike added

The "method spike" for high concentration inorganics and the "spike sample analysis" for low and medium inorganic concentrations are the same. The spike is added before any reagents are added to the sample. Percent recovery is calculated as for a matrix or method spike.

A recovery above the control limits may indicate a high bias in the data, while a recovery below the control limits may indicate a low bias and detection limits higher than those specified by the contract.

# QUANTITATION/DETECTION LIMITS

A quantitation/detection limit is the minimum amount of a chemical that can be confidently detected and quantified. An individual laboratory's quantitation/ detection limits may be lower than the Contract Required Detection Limits (CRDL) or Contract Required Quantitation Limits (CRQL) established for the CLP. In that case, data lower than the CRDL or CRQL are reported and they are considered estimated because the accuracy of quantification below these levels is uncertain. Contamination or other analytical problems (such as low sample recoveries) may cause the actual detection limit to be higher than that reported by the laboratory. When that occurs, it is noted in the laboratory validation documentation.

# SERIAL DILUTION

For inductively coupled plasma analysis, a serial dilution analysis is done for each set of samples of similar matrix type and concentration. For an analyte concentration at least a factor of 10 above CRDL, the measured concentrations of the undiluted sample and of the sample after a five-fold dilution should agree within 10 percent. If the difference is greater than 10 percent, the results for that compound are considered estimated due to matrix interference.

# **INSTRUMENT QC**

In addition to the above procedures, other instrument-specific tests are done such as initial continuing calibration, decafluorotriphenylphosphine, and bromofluorobenzene tuning for the gas chromatograph/mass spectrometer (GC/MS), and determining linearity of standard calibration curves by calculating the coefficient of correlation. Initial and continuing calibration of instruments with standard solutions are used to ensure that the instrument is capable of producing acceptable quantitative data. Calibration verification results must fall within control limits or the results are flagged estimated, or unusable.

# DATA REVIEW AND VALIDATION

## **CRL DATA REVIEW**

The U.S. EPA Sample Management Office (SMO) receives data packages through the CLP and distributes them to the Laboratory Sciences Services Section (LSSS) of the U.S. EPA Region V CRL. In Region 5, LSSS reviews all data packages resulting from regional sampling efforts. The following items are reviewed by the LSSS, as stated in Laboratory Data Validation Functional Guidelines:

- Sample holding times at the CLP laboratory
- GC/MS tuning and performance (organic compounds only)
- Instrument calibration (initial and continuing)
- Blanks
- Interference check sample analysis (inorganic chemicals only)

}

ŧ.

- Surrogate recoveries (organic compounds only)
- Matrix and analytical spike analysis
- Duplicate sample analysis
- Compound identification (organic compounds only)
- Overall assessment of data

# **DATA VALIDATION**

After the LSSS-reviewed data packages are received by CH2M HILL, the reviewer's comments are summarized in the final data validation before interpretation of the data by project staff. Any data noted in the review that should be qualified are flagged with the appropriate symbol. Results for field blanks and field replicates are reviewed (these may or may not be considered by the LSSS), and the data further qualified if necessary. Finally, the data set as a whole is examined for consistency, anomalous results, and whether the data are reasonable for the samples involved. The following data qualifiers were used on this project:

- Data are flagged as estimated (J) if a QA/QC parameter has not been satisfied or the sample concentration was above the analytical detection limit but less than the CRQL or the CRDL. However, the data are still used quantitatively. Whenever possible, the estimated data are compared to similar data that are not estimated.
- If a chemical is detected in a blank, that chemical is flagged in all the samples for the set as blank contaminated (B) if the concentrations in the sample are less than five times the blank concentration. Acetone, methylene chloride, 2-butanone, toluene, and the phthalate esters are common laboratory contaminants.

When these chemicals are detected in a blank, they are flagged in the samples when they are less than 10 times the blank concentration. Blank contaminated data are not used quantitatively or qualitatively.

 Data are flagged as unusable (R) when the analytical procedures and results exceed the QA/QC limits specified in the EPA guidelines. Unusable data are not used either quantitatively or qualitatively.

Sample data are identified by case numbers and traffic report by numbers for routine analytical services (RAS), and by SAS numbers for special analytical services (e.g., fast turnaround times or high hazard samples). For RAS samples, a case number is assigned to a group of samples collected at one time, and individual samples are assigned unique traffic report numbers to identify them from time of sampling through reporting of the analytical data. For SAS samples, the first four numbers define a group of samples and the final letters/ numbers identify individual samples (e.g., SAS3136E01, SAS3136E02). CH2M HILL assigns each sample another unique identification related to sampling location, time of sampling, and depth of sample (e.g., SW87-01-T, for surface water sample collected in 1987 at location 1 and at the top portion of the pond).

Tables N-1 and N-2 list parameters analyzed for in each sample and the detection limits before data interpretation by project staff.

# ORGANIC COMPOUNDS IN SOIL AND SEDIMENT

Four soil boring samples were analyzed by Environmental Control Technology Corporation (ENCOTECH) for low and medium concentration organic compounds, Case No. 9736, OTR Nos. ES622, ES623, EW801, and EW802. The data are qualified as follows:

- The 7-day extraction holding time was not met for the VOC fraction of all four samples. The VOC data should be considered estimated; they have been flagged "J."
- Methylene chloride (10 µg/kg) and acetone (17 µg/kg) were measured in the method blank. All positive results for these compounds less than 10 times the blank concentration have been flagged "B" and should be considered unusable because of possible blank contamination. Methylene chloride (3 µg/kg) was also measured in the field blanks.
- Matrix spike recoveries were below the control limits for the base/ neutral extractable fraction (36 and 35 percent). Matrix spike duplicate results were out of control limits for the base/neutral fraction (56 percent) and acid extractable fraction (-53 and

Table N-1
TARGET ANALYTE LIST AND
CONTRACT-REQUIRED DETECTION LIMITS

Inorganic Target Analyte	Detection Limit Low Concentration Analysis ⁴ Water (ug/1)		
Aluminum	200		
Antimony	60		
Arsenic	10		
Barium	200		
Bervllium	5		
Cadmium	5		
Calcium	5,000		
Chromium	10		
Cobalt	50		
Copper	25		
Iron	100		
Lead	5		
Magnesium	5,000		
Manganese	15		
Mercury	0.2		
Nickel	50		
Potassium	<b>5,00</b> 0		
Selenium	5		
Silver	10		
Sodium	5,000		
Thallium	10		
Vanadium	50		
Zinc	20		
Cyanide	10		

The detection limits for samples may be considerably higher depending on the sample matrix.

[12/87]

Ì

ł

1

GLT863/049.50

. -

, , ,

# Table N-2 (Page 1 of 3) TARGET COMPOUND LIST AND CONTRACT REQUIRED QUANTITATION LIMITS

Quantization Limits

•

.

7

9 .

Volatile			Low Concentration Analysis		
		CAS Runber	Mater (ug/l)	Soil/Sediment ^b (ug/kg)	
1.	Chloromethane	74-87-3	10	10	
2.	Brononethane	74-83-9	10	10	
3.	Vinyl Chloride	75-01-4	10	10	
4.	Chlorethane	75-00-3	10	10	
5.	Methylene Chloride	75-09-2	5	5	
6.	Acetope	67-64-1	10	10	
7.	Carbon Disulfide	75-15-0	5	5	
	J, J-DICALOTOSTASDO	75-34-4	5	5	
	1,1-Dichioroethane	75-35-3	5	5	
40.	1+1-NICUTOLOGEDEDE (LOCAT)	340-39-0	5	5	
11.	Chloroform	67-66-3	5	5	
12.	1,2-Dichiorosthane	107-06-2	5	5	
14		78-93-2	10	10	
15.	Carbon Tatrachlorida	71-33-6	5	5	
	CELDON VELLECTIONIDE	30-23-3	2	5	
16.	Vinyl Acetate	106-05-4	10	10	
17.	Bromodichloromethane	75-27-4	5	5	
10.	1,1,2,2-Tetrachloroethane	79-34-5	5	5	
13.	1, Z-Dichioropropane	78-87-5	5	5	
20.	Cls-1,3-Dichipropropene	10061-02-5	5	5	
21.	Trichloroethene	79-01-6	5	5	
22.	Dibromochloromethane	124-48-1	5	5	
23.	1,1,2-Trichloroethane	79-00-5	5	5	
24.	Jenzene	71-43-2	5	5	
25.	TTADS-1,3-Dichloropropene	10061-01-6	5	5	
26.	Bromoform	75-25-2	5	5	
27.	2-Bexanone	591-78-6	10	10	
28.	4-Methyl-2-pentanone	108-10-1	10	10	
39.	Tetrachloroethene	127-18-4	5	5	
30.	Toluene	108-88-3	5	5	
31.	Chlorobenzene	108-90-7	5	5	
32.	Ethyl Benzene	100-41-4	5	5	
33.	Styrene	100-42-5	5	5	
34.	Aylebes (total)	133-02-7	5	5	
Semi	volatile				
35.	Phenol	108-95-2	10	330	
36.	bis(2-Chlorosthyl)ether	111-44-4	10	330	
37.	2-Chlorophenol	95-57-8	10	330	
38.	1,3-Dichlorobenzene	541-73-1	10	330	
39.	1,4-Dichlorobenzene	106-46-7	10	330	
40.	Benryl Alcohol	100-51-6	10	330	
41.	1,2-Dichlorobenzene	95-50-1	10	330	
42.	2-Methylphenol	95-48-7	10	330	
43.	bis(2-Chloroisopropyl)ether	39638-32-9	10	330	

Note: Specific quantitation limits are highly matrix dependent. The quantitation limits listed berein are provided for guidance and may not always be achievable.
 ^aQuantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated by dry weight as required by the contract, will be higher.
 ^bNedium soil/sediment CRQLs for volatile TCL compounds are 100 times the individual low soil/sediment CRQL.

# Table 3-2 (Page 2 of 3)

)

)

) ۲.

¥

• •

			Quanti Low Copce	tation Limits ntration Analysis a
Sem	ivolatile (Continued)	CAS Humber	Water (ug/1)	Soil/Sedimentb (ug/kg)
AG.		£91-£4-7	10	330
<b>X</b> .	Betachloroethene	67-72-1	10	330
47.	Hitrohensene	88-95-1	10	330
48.	Leophorone	78-59-1	10	330
49.	2-Eitrophenol	88-75-5	10	330
30.	Z,4-Dimethylphenol	105-67-9	10	330
21.		63-83-0	50	1,000
34. 61	SLS(2+CELOTOCLEORY)SCIERDS	111-71-1	10	330
		*******		• • •
54.	1,7,4-Trichlorobensene	120-82-1	10	330
33.		91-20-3	10	330
20.	e-Chloroenilize	100-4/-8	10	330
54.	4-Chloro-3-methylphenol	0/-00-3	10	330
	(pers-caloro-dets-cresol)	39-30-7	10	330
59.	2-Methylmaphthalene	91-57-6	10	330
60.	Bezachlorocyclopentadiene	77-47-4	10	330
61.	2,4,6-Trichlorophenol	88-06-2	10	330
62.	2,4,5-Trichlorophenol	95-95-4	50	1,600
63.	Z-Chlorosnaphthalene	91-58-7	10	330
64.	2-Witroaniline	88-74-4	50	1,600
65.	Dimethyl Phthalate	131-11-3	10	330
66.	Acensphthylene	208-96-8	10	330
67.	Z, 6-Dimitrotoluene	606-20-Z	10	330
<b>6</b> 5.	J-Mitroeniline	99-09-2	50	1,000
69.	Acenaphthene	83-32-9	10	330
70.	2,4-Dinitrophenol	51-28-5	50	1,600
71.	4-Hitrophenol	100-02-7	50	1,600
72.	Sidebioruran	132-64-9	10	330
73.	2,4-DIDICIOLOGDE	121-14-2	10	330
74.	Disthylphthalate	84-66-2	10	330
75.	4-Chlorophenyl Phenyl ether	7005-72-3	10	330
76.	Finorene	86-73-7	10	330
77.	4-Hitroaniline	100-01-6	50	1,600
78.	4,6-Dibitro-2-BetBylphebol	534-52-1	50	1,600
79.	E-mitrosodiphenylamine	86-30-6	10	330
80.	4-Bromophenyl Phenyl ether	101-55-3	10	330
<b>3</b> ].	<b>Bezachlorobensene</b>	118-74-1	10	330
<b>8</b> Z.	Fentachlorophenol	87-86-5	50	1,600
\$3.	Phenanthrene	83-01-8	10	330
84.	Anthracene	120-12-7	10	330
85.	Di-n-butylphthalate	84-74-2	10	330
56.	Fluoranthene	206-44-0	10	330
57.	Fyrene	129-00-0	10	330
<b>31</b> .	Butyl Bensyl Fathalate	83-68-7	10	330

Bote: Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable. Quantitation limits listed for soil/sediment are based on wer weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated by dry weight as required by the contract, will be higher. Medium soil/sediment CRQLs for volatile TCL compounds are 100 times the individual low soil/ sediment CRQL; for semivolatile TCL compounds they are 60 times the individual low soil/sediment CRQL.

#### Table H-2 (Page 3 of 3)

			Quantitation Limits Low Concentration Analysis ²		
Send	volatile (Continued)	CAS Number	Water (ug/1)	Soil/Sedimentb (ug/kg)	
89.	3.3'-Dichlorobenzidine	91-94-1	20	660	
<b>90</b> .	Benzo(a)anthracene	\$6-55-3	10	330	
<b>9</b> 2.	bis(2_sthelese)) whethelese	215-01-9 112-81-7	10	330	
93.	Di-B-OCTYl Phthalate	117-84-0	10	330	
94.	Senzo(b)fluoranthene	205-99-2	10	330	
75.	Jenso (k) fluoranthene	207-08-9	10	330	
47.	Tedepo(1.2 3.ed)empere	30-32-8	10	330	
98.	Dibenz (a, h) anthracene	<b>53-70-3</b>	10	330	
<b>99</b> .	Benzo(g,h,1)perylene	191-24-2	10	330	
Pest	icides/PCBs				
100.	alpha-BEC	310-84-4	0.05	8.0	
101.	beta-BEC	319-85-7	0.05	8.0	
102.	delta-BEC	319-86-8	0.05	8.0	
103. 104.	gauna-HEC (Lindane) Beptachlor	<b>58-8</b> 9-9 76-44-8	0.05 0.05	8.0 8.D	
105.	Aldrin	309-00-2	0.05	8.0	
106.	Septachlor Epoxide	1024-57-3	0.05	8.D	
10/.		739-98-8	0.05	<b>8.</b> 0 ·	
109.	4,4'-DDE	72-55-9	0.10	16.0	
110.	Endrin	72-20-8	0.10	16.0	
111.	Endosulfan II	33213-65-9	0.10	16.0	
112.	4,4'-DDD	72-54-8	0.10	16.0	
113.	Ebdosulfan Sulfate	1031-07-8	0.10	16.0	
114.	<b>▲,4*-DDI</b>	50-29-3	0.10	16.0	
115.	Endrin Ketone	53494-70-5	0.10	16.0	
116.	Nethoxychlor	72-43-5	0.5	80.0	
117.	Alpha-chiordane	5103-71-9	0.5	8D.D	
119.	Tozaphene	<b>80</b> 01- <b>3</b> 5-2	1.0	160.0	
120.	PCB Arechlor-1016	12674-11-2	0.5	80.0	
121.	PCB Arochlor-1221	11104-28-2	0.5	80.0	
122.	PCB Arochlor-1232	11141-16-5	0.5	80.0	
123.	PCB Arochlor-1242	53469-21-9	0.5	80.0	
174.	FUS AFOCALOT-1245	12672-29-6	0.5	50.0	
125.	PCB Arochlor-1254	11097-69-1	1.0	160.0	
126.	PCB Arochlor-1260	11096-82-5	1.0	160.0	

Note: Specific quantitation limits are highly matrix dependent. The quantitation limits listed berein are provided for guidance and may not always be achievable. "Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated by dry weight as required by the contract, will be higher. "Medium soil/sediment CRQLs for volatile TCL compounds are 100 times the individual low soil/ sediment CRQL; for semivolatile TCL compounds they are 60 times the individual low soil/sediment CRQL.

GL7863/050.50

٩

1

•

[8/87]

.

\$

52 percent). Although there may be matrix interferences, the data were not qualified based on the MS/MSD results.

Fifteen sediment and one soil sample, including two field replicates and one field blank, were analyzed for low and medium concentration organic compounds by York Laboratories (YORK), case No. 9773, OTR Nos. EW805, EW814, and EW816 to EW828, and EW830. The data are gualified as follows:

- For the medium concentration sample (EW805), methylene chloride (1,100 µg/kg), acetone (2,300 µg/kg), 2-butanone (810 µg/kg), toluene (260 µg/kg), styrene (88 µg/kg), xylene (380 µg/kg), butylbenzylphthalate (160 µg/kg), and bis(2-ethylhexyl)phthalate (410 µg/kg) were measured in the laboratory method blanks. Styrene results less than 5 times the blank concentration, or results for any of the other compounds less than 10 times the blank concentration should be considered unusable because of contamination, and have been flagged "B."
- For the low concentration samples, the following table lists the laboratory method blank results:

			Associat	ed Samples	I	
		EW818				
		EW819		EW614		
		EW821		<b>2WB</b> 20	257814	
	EW816	<b>Ev823</b>		EW825	<b>E</b> 4816	
	EW817	<b>EW8</b> 24		EW826	EW817	
	EW827	EW828	<b>Ews</b> 22	EW830	<b>SW827</b>	<b>EN8</b> 05
(µg/kg):				متتجويهم		
chloroform	250	••		1		
2-butanone	1,400	1,600	97D	5		
toluene	150	••	170	1		
xylene	130	320	290			
acetone		2,400	4,200	12		
methylene chloride		••	390	8		
butylbensylphthalate					180	160
bis(2-ethylhexyl)phthalate					700	410

Any sample result less than 5 or 10 times the associated blank concentration should be considered unusable because of contamination; it has been flagged "B." }

)

- In the sediment field blanks, xylene (2 µg/kg), chloroform (2 µg/kg), di-n-butylphthalate (26 and 42 µg/kg), butylbenzylphthalate (62 µg/kg), diethylphthalate (25 µg/kg), fluoranthene (16 µg/kg), phenanthrene (29 µg/kg), and pyrene (15 µg/kg) were measured in the blanks. Any sample result less than 10 times the blank concentration for the phthalates or 5 times the blank concentration for the other compounds should be considered unusable; it has been flagged "B."
- Matrix spike recoveries were out of control limits for phenol (105 percent), 2-chlorophenol (114 percent), 1,4 dichlorobenzene

(109 percent), N-nitro-di-n-propylamine (130 percent), 1,2,4-trichlorobenzene (127 and 120 percent), and 2-4-dinitrotoluene (100 percent). Matrix spike duplicates were out of control limits for 4-nitrophenol (200 RPD). Data have not been flagged based on MS/MSD results.

- Holding times were exceeded for the semivolatile fraction of sample EW805. All detected data should be considered estimated and have been flagged "J."
- Because of calibration outliers (difference between initial and continuing calibration) outside of the control limits for methylene chloride (76 percent), acetone (65 percent) and 2-butanone (43 percent) for samples EW814, EW820, EW825, EW826, and EW830, the results for these compounds should be considered estimated and have been flagged "J."
- The relative standard deviation (RSD) for the initial calibration response factor was above the control limit for methylene chloride (81 percent) and acetone (85 percent) for samples EW805, EW814, EW816, EW817, EW819, EW821 to EW825, and EW828. The average relative response factor for 2-butanone (0.032) was also below the acceptable range for these samples. Nondetected 2-butanone results should be considered unusable due to possible false negatives, and have been flagged "R." All other results for these compounds should be considered estimated and have been flagged "J." The RSD was also out of the control limits for benzo[b]fluoranthene (83 percent), indeno[1,2,3-cd]pyrene (53 percent), and benzo[g,h,i]perylene (32 percent) for samples EW818 to EW826 and EW828. These results should be considered estimated and have been flagged "J."

Fifteen soil and sediment samples were analyzed by YORK for low and medium concentration organic compounds, case No. 9773, OTR Nos. EW806 to EW813, EW815, and EW829 to EW834. The data are qualified as follows:

- For the medium concentration sample EW833, acetone (2,400 µg/kg), 2-butanone (1,600 µg/kg), and xylenes (320 µg/kg), were measured in the volatile fraction laboratory method blank. Bis(2-ethylhexyl)phthalate (270 µg/kg) was measured in the semivolatile fraction method blank for samples EW830, EW833, and EW834. Any sample result less than 5 times the blank concentration for xylenes, or 10 times the blank for the other compounds, should be considered unusable; it has been flagged "B."
- For the low concentration samples, the following table lists the laboratory method blank results:

			Associated	Samples	
(ug/kg):	<b>2118 08</b> <b>2118 09</b>	<b>E18</b> 06 <b>E18</b> 07	<b>2118</b> 10	<b>31/0 3</b> 0 <b>31/0 3</b> 4	EW811 to EW813 EW815 EW829 EW831 EW832
methylene chloyide	•		10	•	
	17	1	10	12	20
			33		34
		•	•		
	4	**	••		
					201811 to 201813 201815 201829
	ENG 33EE		DE TO ENEIG		EW531
	EW834EE		ENBOTE		EW832
fluoranthene	21		••		
Pyrene	10		••		••
bis(2-ethylbexyl)phthalate	10		26		38
benzoic acid	**		44		•-

Any sample result less than 5 or 10 times the associated blank concentration should be considered unusable; it has been flagged "B."

)

ł

- For the sediment samples, xylene (2 µg/kg), chloroform (2 µg/kg), di-n-butylphthalate, (26 and 42 µg/kg), butylbenzylphthalate (62 µg/kg), diethyl-phthalate (25 µg/kg), fluoranthene (16 µg/kg), phenanthrene (29 µg/kg), and pyrene (15 µg/kg) were measured in the field blanks. For the soil boring samples, methylene chloride (3 µg/kg) was measured in the field blanks. Any sample result less than 10 times the associated blank concentration for the phthalates or methylene chloride, or less than 5 times the associated blank concentration for the other compounds should be considered unusable because of possible blank contamination; it has been flagged "B."
- Because of calibration outliers, the following data should be considered estimated: methylene chloride in samples EW810, EW830, EW833, and EW834 (difference between initial and continuing calibration of 42 to 76 percent); acetone in samples EW806 to EW810, EW830 and EW834 (difference of 63 to 68 percent) and in sample EW833 (relative standard deviation (RSD) of response factor for initial calibration of 35 percent); 2-butanone in samples EW806 to EW810, EW830, EW833, and EW834 (response factor of 0.02 to 0.04); benzoic acid in samples EW807, EW809, EW810, EW812, EW813, EW815, EW829, and EW831 to EW834 (27 to 59 percent D); and benzo[k]fluoranthene (33 percent RSD), indeno[1,2,3-cd]pyrene (53 percent RSD) and benzo[g.h.i]perylene (32 percent RSD) in samples EW806 to

EW808, EW810, EW812, EW813, EW815, and EW829 to EW832. Nondetected 2-butanone results for the associated samples should be considered unusable because of possible false-negatives; they have been flagged "R." All other results should be considered estimated and have been flagged "J."

Because of surrogate spike recoveries for the BNA fraction of 0 percent for samples EW833, EW834, and EW346 to 548 percent for EW807, these samples were reanalyzed. The recoveries improved on reanalysis, and the results from the reanalysis were used instead of the original results. Surrogate recoveries were still out of the control limits for EW807RE (220 to 280 percent), EW833RE (119 to 155 percent) and EW834RE (122 to 144 percent). All semivolatile results should be considered estimated, and have been flagged "J."

Twenty soil borings and surface soil samples were analyzed by Radian Corporation (RADIAN) for low concentration organic compounds, Case No. 9917, OTR Nos. EW803, EW844 to EW852, and EW866 to EW875. The data are qualified as follows:

- Acetone (5 to 6 µg/kg), 2-butanone (4 µg/kg), di-n-butylphthalate (70 to 180 µg/kg), bis(2-ethylhexyl)phthalate (95 to 290 µg/kg), fluoranthene (110 µg/kg), and pyrene (91 µg/kg), were measured in the laboratory method blanks. Any sample result less than 5 times the blank concentration for fluoranthene or pyrene, or 10 times the associated blank concentration for the other compounds should be considered unusable; it has been flagged "B."
- Methylene chloride (3 µg/kg) was measured in the soil boring field blanks, and 2-butanone (6 to 9 µg/kg), phenol (100 µg/kg), di-n-butylphthalate (1,100 µg/kg), and bis(2-ethylhexyl)phthalate (1,400 µg/kg), were measured in the surface soil field blanks. Any sample result less than 5 times the associated field blank concentration for phenol, or less than 10 times for the other compounds, should be considered unusable; it has been flagged "B."
- Holding times were exceeded for volatile and semivolatile fractions of all samples. Any detected data should be considered estimated, possibly biased low; they have been flagged "J."
- The following calibration outliers were noted: 2-butanone (0.02 RF and 93 to 100 percent D) and acetone (49 to 100 percent D) for all samples, and dimethylphthalate (47 percent D) and diethylphthalate (100 percent D) for samples EW803 and EW866. Any nondetected 2-butanone results should be considered unusable due to possible false negatives and have been flagged "R." All other data should be considered estimated.

Eleven surface soil samples were analyzed by RADIAN for low and medium concentration organic compounds, case No. 9917, OTR Nos. EW853 to EW863. The data are qualified as follows:

- For the low concentration samples, acetone (5 to 6 µg/kg) were measured in the laboratory method blanks. Acetone (1,900 µg/kg) and 2-butanone (4,500 µg/kg) were also measured in the medium-concentration method blank associated with sample EW857.
- The following table lists the compounds measured in the laboratory method blanks, and their associated samples:

-	Associated Samples					
	EH853-857, EH857DL, EH858DL	<u>84861</u>	EH260, EH260DL, EH262, EH263	Bin 55RE		
phenol	23,000	••				
bis(2-ethylbexyl)phthalate	9,100	110	95	2,300		
fluoranthene	••	110	••			
P7Iene		91	••			
di-a-buthylphthelate	**	••	70			

• The field blanks contained 2-butanone (6 to 9 µg/kg), phenol (100 µg/kg), bis(2-ethylhexyl)phthalate (1,400 µg/kg) and di-n-butylphthalate (1,100 µg/kg). Any sample result less than 5 times the field blank concentration for phenol, or 10 times the blank concentration for the other compounds should be considered unusable, and has been flagged "B."

)

)

- Holding times were exceeded for the volatile and semivolatile fractions in all samples. All usable detected data should be considered estimated, possibly biased low, and have been flagged "J."
  - The following calibration outliers were noted: 2-butanone (RF of 0.027 to 0.038 and 41 to 100 percent D) for all samples, xylene (63 percent D), and 1,1,1-trichloroethane (26 percent D) for sample EW857, acetone (97 to 150 percent D) for all samples, benzoic acid (26 percent D) and indeno [1,2,3-cd]pyrene (78 percent D) for samples EW860, EW860DL, and EW863, and benzoic acid (53 percent RSD) for samples EW853 to EW859, EW861, EW857DL, EW858DL, and EW855RE. Any nondetected 2-butanone results should be considered unusable due to possible false negatives, and have been flagged "R." All other data should be considered estimated (J).

• Several samples were diluted to be within the calibration range of high concentration compounds. For these samples, the detection limits for nondetected compounds from the undiluted samples were reported, while the diluted sample results were reported for the detected compounds.

Nine subsurface soil samples were analyzed by Keystone Environmental Resources (KEYTX) for low and medium concentration organic compounds, case No. 9897, OTR Nos. EW835 to EW843. The data are qualified as follows:

- Methylene chloride (3 µg/kg) was measured in the field blanks. Any sample result less than 10 times the blank concentration should be considered unusable, and has been flagged "B." No target compounds were detected in the laboratory method blanks.
- Because of a low response factor (RF) for 2-butanone (0.01 to 0.04) nondetected results for all samples should be considered unusable due to possible false negatives, and have been flagged "R." All detected results should be considered estimated, and have been flagged "J."
- Acetone results for samples EW835 to EW838, EW840 to EW843, EW837DL and EW838DL should be considered estimated because of calibration outliers (29 to 45 percent D) for continuing calibration, and 33 percent RSD for initial calibration, and have been flagged "J."
- Matrix spike recoveries were out of the control limits for toluene (145 percent) in the low concentration MS/MSD sample (EW835), and benzene (163 percent), toluene (144 percent), n-nitroso-di-n-propylamine (40 percent), 1,2,4-trichlorobenzene (33 and 0 percent), 2,4-dinitrotoluene (0 percent), pyrene (16 percent), and acenaphthene (554 percent) for the medium-concentration MS/MSD sample (EW839). All positive results associated with the compounds mentioned above would be considered estimated, and have been flagged "J."
- The relative percent difference (RPD) between matrix spike duplicates was out of the control limits for benzene (32 percent), 1,2,4-trichlorobenzene (200 percent), acenaphthene (125 percent), 2,4-dinitrotoluene (200 percent), and pyrene (221 percent) for the medium concentration MSD sample (EW839). All positive results associated with the above-mentioned compounds in sample EW839 should be considered estimated and have been flagged "J."

Sixty-six sediment samples were analyzed for PAHs and phenolic acids by CH2M HILL's Montgomery laboratory, laboratory Nos. 11269001 through 11269066. The data are qualified as follows:

• The PAH fraction had low surrogate spike recoveries for samples SD038 (16, 31 percent), SD222 (10, 23 percent), and SD227 (16, 28 percent). All PAH data for these samples should be considered estimated, possibly biased low, and have been flagged "J."

Forty-four surface soil samples, including two field blanks, were analyzed for PAHs and phenolic acids by CH2M HILL's laboratory in Montgomery, Alabama, laboratory Nos. 11354001 to 11354044. The data are qualified as follows:

 Phenanthrene (1,000 µg/kg) and anthracene (3,000 µg/kg) were measured in the method blank. Any sample result less than 5 times the blank concentration for these compounds should be considered unusable because of possible blank contamination, and has been flagged "B."

## DIOXINS IN SOIL AND SEDIMENT

Seventy-two soil and sediment samples were analyzed by Enseco/California Analytical Labs (CAL) for total tetra-through octacloro dioxins and furans, and 2,3,7,8-tetra-chlorodioxin and furan, SAS No. 3770E, Sample Nos. E01, E02, E07 to E12, E21, E24, E27, E30, E33, E36, E39, E42, E45, E48, E51, E54, E57, E60, E63, E66, E69, E72, E75, E78, E81, E84, E87, E90, E93, E96, E99, E102, E105, E108, E111, E126 to E137, E152, E153, E157, E160, E163, E166, E169, E172, E175, E178, E181, E184, E187, E190, E193, E194, E196, E202, E205, E208, and E211. The data are qualified as follows:

1

1.

Surrogate spike recoveries were out of control limits for samples E11 (5 to 229 percent, and 21 to 179 percent on reanalysis) E48 (3.6 to 142 percent), E63 (2.7 to 278 percent), E66 (2.4 to 337 percent), E160 (5 to 340 percent), E166 (3 percent), E190 (1 to 484 percent), E202 (6 percent), E75 (26 to 133 percent), E108 (1 to 224 percent), E30, and E87. The poor surrogate recoveries were attributed to low internal standard recoveries by the EPA reviewer. Reanalysis was requested for these samples, and later received for samples E30, E48, E63, E66, E75, E87, E108, E160, E166, E190, and E202. Data from the reanalysis should be used for samples E11, E30, and E87. Recoveries were not improved with reanalysis for samples E48, E63, and E66 and the data were considered unusable. Recoveries for samples E75, E108, E160, E166, E190, and E202 were not improved upon reanalysis, and the data from the first analyses should be used for these samples.

- Duplicates of E157, E164, E193, and E199 were run by the laboratory.
- All other QA/QC results were acceptable.

# INORGANIC ANALYTES IN SOIL AND SEDIMENT

Nine soil boring samples, including one field replicate, were analyzed by Northern Labs and Engineering, Inc. (NLE) for low concentration metals and cyanide, case No. 9897, ITR Nos. MEW412 to MEW420. The data are qualified as follows:

- The method blank contained aluminum (4.4 mg/kg), iron (1.8 mg/kg), silver (0.8 mg/kg), and zinc (0.5 mg/kg). Any sample result less than 5 times the blank concentration should be considered unusable due to contamination and has been flagged "B."
- Low spike sample recoveries were reported for antimony (33.7 percent), arsenic (51.5 percent), selenium (53.0 percent), silver (72.7 percent), and thallium (52.1 percent). (No selenium or thallium was detected in any sample, and all positive silver results were already flagged "B.") All antimony and arsenic data should be considered estimated, possibly biased low, and have been flagged "J."
- The relative percent difference for method duplicates was out of the control limits for arsenic (49.4 percent). All arsenic data should be considered estimated, and have been flagged "J."
- The percent difference after serial dilution was above the limit of 10 percent for iron, manganese and zinc. All data for these metals have been flagged "J" and should be considered estimated.
- Field duplicate precision was poor. Samples MEW416 and MEW417 were replicates from SB19-02. Relative percent difference ranged from -139 percent (calcium) to 181 percent (barium) and was above ±35 percent for most of the metals detected. No qualifications were applied to the data, as the poor precision may be due to nonhomogeneity of the field samples.

Fourteen soil and sediment samples, including one field blank and one field replicate, were analyzed by Roy F. Weston, Inc. (WESTON) for low concentration metals and cyanide, case No. 9773, ITR Nos. MEW395 to MEW403, MEW405, MEW407, and MEW409 to MEW411. The data are qualified as follows:

• Aluminum (23 to 26 mg/kg) beryllium (0.14 mg/kg), and sodium (232 mg/kg) were measured in the laboratory blanks. All sample

results for these analytes less than 5 times the highest blank concentrations should be considered unusable due to contamination, and have been flagged "B."

Spike sample recoveries were out of the control limits for antimony (12.6 percent), selenium (68 percent), silver (18.4 percent), cyanide (12.3 percent) and zinc (128 percent). Nondetected antimony, silver and cyanide results should be considered unusable due to possible false negatives, and have been flagged "R." All other results should be considered estimated (antimony, selenium, silver, and cyanide possibly biased low, and zinc possibly biased high) and have been flagged "J."

The difference after serial dilution exceeded 10 percent for aluminum and manganese. All aluminum and manganese results should be considered estimated due to matrix interference and have been flagged "J."

Twenty soil and sediment samples, including one field blank and one field replicate, were analyzed by WESTON for low concentration metals and cyanide, case No. 9773, ITR Nos. MEW388 to MEW394, MEW404, MEW406, MEW408, and MEW791 to MEW800. The data are qualified as follows:

- Aluminum (23 to 26 mg/kg), antimony (0.8 mg/kg), beryllium (0.14 mg/kg), and sodium (232 mg/kg) were measured in the laboratory preparation blanks. All sample results less than 5 times the blank concentration should be considered unusable due to contamination, and are flagged "B."
- Spike sample recoveries were poor for the data set as a whole. Antimony (5.6 to 27.6 percent), arsenic (60.2 percent), beryllium (71.8 percent), chromium (73 percent), cobalt (70.9 percent), copper (72.3 percent), lead (-50 to 72.8 percent), mercury (-34.1 to 146 percent), nickel (69.2 percent), selenium (0 to 71.9 percent), silver (25.2 percent), thallium (33.5 to 52 percent), vanadium (73.7 percent) and cyanide (63 percent) recoveries were all out of the control limits. Due to possible false negatives, all nondetected results for antimony, lead, mercury, selenium, and silver should be considered unusable, and have been flagged "R." All other results should be considered estimated and possibly biased low and have been flagged "J."
- The relative percent difference between method duplicates was out of the control limits for antimony (73.5 to 200 percent), cadmium (40.9 percent), mercury (200 percent) and lead (41.8 to 58.4 percent). Results for these analytes should be considered estimated due to poor precision, and have been flagged "J."
- Postdigestion spike recoveries were also out of control limits for antimony, chromium, lead, selenium, thallium and vanadium.

Results for these analytes are already flagged due to other QC parameters, and should be considered estimated.

• The difference after serial dilution exceeded 10 percent for manganese and zinc. These results should be considered estimated and have been flagged "J."

Thirty-one soil samples, including four field blanks and four field replicates, were analyzed by Roy F. Weston, Inc., California (WESCA), for low concentration inorganics, case No. 9917. The samples were divided into two sample delivery groups (SDG), with ITR Nos. MEW422 to MEW440 in SDG MEW430, and ITR Nos. MEW421, MEW441, and MEW443 to MEW452 in SDG MEW441. The results of the data review are summarized below. For SDG MEW430:

- Antimony (0.4 mg/kg), cadmium (0.62 mg/kg), potassium (102 mg/kg), and thallium (0.18 mg/kg) were measured in the laboratory preparation blank. Any sample results less than 5 times the associated blank concentrations should be considered unusable due to possible contamination, and have been flagged "B."
- Spike sample results were out of the control limits for antimony (11 percent), silver (68 percent), mercury (-90 percent), and cyanide (126 percent). Nondetected antimony results should be considered unusable due to possible false negatives, and have been flagged "R." Results for silver and mercury, possibly biased low, and cyanide, possibly biased high, should be considered estimated and have been flagged "J."
- The relative percent difference between method duplicates was above the control limit for calcium (42 percent), copper (38 percent), magnesium (54 percent), and mercury (148 percent). Results for these analytes should be considered estimated due to poor precision and have been flagged "J."
- The percent difference after serial dilution was above the control limit of 10 percent for zinc. All zinc results should be considered estimated due to matrix interference, and have been flagged "J."
- Lead showed poor precision on results reanalysis. All lead data should be considered estimated and have been flagged "J." MEW436 and MEW437. Results for samples MEW436 and MEW437 were calculated incorrectly (according to the EPA reviewer) and should be considered unusable (flagged "R").

The results for SDG MEW441 are qualified as follows:

• Antimony (0.4 mg/kg), potassium (102 mg/kg), and cadmium (0.62 mg/kg), were measured in the laboratory preparation blanks. Any sample results less than 5 times the blank concentration

should be considered unusable due to possible contamination, and have been flagged "B."

- Spike sample results were out of the control limits for antimony (4.3 percent), copper (30 percent), lead (129 percent), manganese (74.6 percent) nickel (73 percent), selenium (51 percent), silver (61 percent), thallium (64 percent), and zinc (-80 percent). Any nondetected antimony or zinc results should be considered unusable due to possible false negatives, and have been flagged "R." Lead may be biased high; the other analytes may be biased low. All results for these analytes should be considered estimated and have been flagged "J."
- The relative percent difference between method duplicates was out of the control limits for copper (108 percent), mercury (194 percent), and zinc (97 percent). Results for these analytes should be considered estimated due to poor precision, and have been flagged "J."
- The difference after serial dilution was above the control limit for manganese (14 percent) and zinc (65 percent). Results for these analytes should be considered estimated due to matrix interference and have been flagged "J."

)

)

# PHYSICAL PARAMETERS IN SOIL AND SEDIMENT

Eleven soil samples were analyzed for grain size and seven of these samples were also analyzed for Atterberg limits (Case SAS 3770E, Sample Nos. E213-E223) by IT Analytical Services (ITPA). No qualification of the data was necessary.

# TREATMENT PARAMETERS IN SOIL AND SEDIMENT

Six soil samples were analyzed for ultimate analysis (percent carbon, percent oxygen, percent hydrogen, percent sulfur, percent nitrogen, percent moisture, and percent ash); TOC; soluble chloride; heating value; and flashpoint (Case SAS 3770E, Sample Nos. E13-18) by Versar, Inc. (VERSAR). One soil sample was analyzed for TOC and percent moisture only (case SAS 3770E, Sample No. E19) by VERSAR. No qualification of the data was necessary, although it should be noted that the Btu sample aliquot did not combust completely and the analytical results should be used with caution.

Thirty-three soil and sediment samples including two replicate sets and two field blanks were analyzed for ultimate analysis (percent carbon, percent oxygen, percent hydrogen, percent sulfur, percent nitrogen, percent moisture, and percent ash); TOC; soluble chloride; heating value; and flashpoint (Case SAS 3770E, Sample Nos. E22, E25, E28, E31, E34, E37, E40, E43, E46, E46R, E49, E52, E55, E55R, E58, E61, E64, E67, E70, E73, E76, E79, E82, E85, E88, E91, E94, E97, E100, E103, E106, E109, and E112) by VERSAR. One soil sample was analyzed for TOC and percent moisture only (Case SAS 3770E, Sample No. E113) by VERSAR. The data are qualified as follows:

- The Btu sample aliquot did not combust completely and the analytical results should be used with caution, although the data were not qualified.
- Spike sample recovery was out of control limits for percent hydrogen (127 percent). The data are biased high. All detected results for percent hydrogen are considered estimated and flagged "J."

Twenty-eight soil and sediment samples including four replicate sets and four field blanks were analyzed for ultimate analysis (percent carbon, percent oxygen, percent hydrogen, percent sulfur, percent nitrogen, percent moisture, and percent ash); TOC; soluble chloride; heating value; and flashpoint (Case SAS 3770E, Sample Nos. E114-125, E154, E155, E161, E164, E167, E173, E176, E179, E182, E185, E188, E191, E197, E203, E209, and E212) by VERSAR. Five soil samples (Case 3770E, Sample Nos. E158, E170, E194, E200, and E206) were analyzed for TOC and percent moisture only. No qualification of the data was necessary although it should be noted that the Btu sample aliquot did not combust completely and the analytical results should be used with caution, although the data were not qualified.

Thirty-three soil and sediment samples were analyzed for proximate analysis (percent moisture, percent ash, percent volatile matter, and percent fixed carbon) by Nanco Laboratories, Inc. (NANCO) (Case SAS3770E, Sample Nos. E20, E23, E26, E29, E32, E35, E38, E41, E44, E47, E50, E53, E56, E59, E62, E65, E68, E71, E74, E77, E80, E83, E83FB, E86, E86FB, E89, E92, E95, E98, E101, E104, E107, and E110). The sample location identification for samples E77, E80, E83, E83FB, E86, and E86FB is uncertain. The data for these samples are unusable and have not been reported in the tables. No qualification of the data is necessary.

Twenty-eight soil samples including four replicate sets and four field blanks were analyzed for proximate analysis (percent moisture, percent ash, percent volatile matter, and percent fixed carbon) by NANCO (Case SAS 3770E, Sample Nos. E138-151, E159, E162, E165, E171, E174, E177, E180, E183, E186, E189, E195, E201, E207, and E210). No qualification of the data is necessary, but it should be noted that percent moisture and percent volatile organic matter are accurate to only one significant digit because the weight measurement was only done to the nearest 0.1 gram (although the data were not adjusted).

Six soil samples were analyzed for proximate analysis (percent moisture, percent ash, percent volatile matter, and percent fixed carbon) but NANCO (Case SAS 3770E, Sample Nos. E01 to E06). No qualification of the data is necessary, but it should be noted that the percent moisture may be biased high due to the organics that may have volatilized during drying.

.

The relative percent difference (RPD) for field replicates exceeded control limits for percent hydrogen (dry) (128 RPD) for samples E46 and E46R, percent hydrogen (dry) (73 RPD), TOC (88 RPD) for samples E124 and E125, chloride (38 RPD) for samples E118 and E119, percent oxygen (dry) (112 RPD), percent hydrogen (dry) (135 RPD), percent hydrogen (as rec'd) (69 RPD), and chloride (52 RPD) for samples E173 and E176, percent carbon (dry and as rec'd) (49 RPD) for samples E179 and E182, percent moisture (120 RPD) for samples E148 and E149, percent moisture (200 RPD) and percent volatile matter (67 RPD) for E177 and E180 and percent moisture (67 RPD) and percent volatile matter (43 RPD) for samples E142 and E143. These samples for the listed parameters are considered estimated and flagged "J."

## SURFACE WATER

Twenty surface water samples, including one field duplicate and one field blank, were analyzed for either total or dissolved inorganics by KEYIX, case No. 9529, ITR Nos. MEW765 to MEW768, MEW785 to MEW790, and MEW480 to MEW489. The data are qualified as follows:

 Iron was measured in the field blank (51.7 µg/l dissolved and 43.1 µg/l total). All iron data less than 5 times the associated blank concentration should be considered unusable and have been flagged "B."

١

)

- Copper, iron, and thallium were measured in the preparation blank at 20.0, 27.4, and 111.3 µg/l, respectively. Iron data are already qualified due to the field blanks, and no thallium was detected in any samples. All copper data less than 100 µg/l should be considered unusable and have been flagged "B."
- Spike sample recoveries were above the control limits for arsenic (130.8 percent) and iron (135.7 percent). Arsenic was not detected in any sample. All total iron data should be considered estimated (possibly biased high) and have been flagged "J."

Ten surface water samples, including one field blank and one field replicate, were analyzed by Environmental Science and Engineering, Inc. (ESECO) for low concentration organic compounds, case No. 9529, OTR Nos. ES612 to ES621. The data are qualified as follows:

• Bromoform (2 µg/l), methylene chloride (1 µg/l), chloroform (4 µg/l), and bis(2-ethylhexyl)phthalate (13 µg/l) were measured in the method blanks. Any bromoform or chloroform sample results less than 5 times the blank concentration, or of methylene chloride or bis(2-ethylhexyl)phthalate results less than 10 times the blank concentration should be considered unusable due to contamination and have been flagged "B."  The percent difference between initial and continuing calibration was out of the control limit for 2-methylnaphthalene (38.4 percent). This compound was only detected in sample ES618, which should be considered estimated, and has been flagged "J."

Ten surface water samples, including one field replicate and one field blank were analyzed for alkalinity, COD, BOD, TOC, sulfate, TSS, TDS, pH, and phenol by JTC Environmental Consultants (JTC), SAS Nos. 3370-E01 to 3370-E10. The data are qualified as follows:

- BOD (2 mg/l) and COD (1.6 mg/l) were measured in the field blank, and COD (4.9 mg/l) was measured in the method blank.
   All BOD data less than 10 mg/l and all COD data less than 2.5 mg/l should be considered unusable and have been flagged "B."
- Spike recovery for TOC (62.5 percent) was below the control limits. All TOC data should be considered estimated, possibly biased low, and have been flagged "J." The COD recovery was above control limits (127.9 percent). All COD data should be considered estimated, possibly biased high, and have been flagged "J."

#### GROUNDWATER

Twenty groundwater samples, including two field replicates, were analyzed by ENSECO/Rocky Mountain Analytical (RMAL) for either low concentration total and dissolved metals and cyanide, case No. 10009, ITR Nos. MET951, MET952, MET959 to MET962, MET971, MET972, MEW453, MEW454, MEW465 to MEW468, MEW473 to MEW478. The data are qualified as follows:

- Two field blanks were analyzed both as filtered and unfiltered samples. The following results apply to all groundwater inorganic data (a total of three data sets). Aluminum (66.9 µg/l), barium (2.5 µg/l), calcium (697 and 1,060 µg/l), lead (3.8 and 6.8 µg/l), magnesium (162 µg/l), nickel (10.3 µg/l), sodium (2,490 µg/l), and zinc (9 and 18.3 µg/l) were measured in the filtered field blanks. Aluminum (42.4 and 51.2 µg/l), barium (3.9 to 10.3 µg/l), calcium (481 and 680 µg/kg), lead (2.4 and 3 µg/l), magnesium (104 µg/l), nickel (15 µg/l), and zinc (10.5 and 4.8 µg/l) were measured in the unfiltered field blanks. Any sample results less than 5 times the associated blank concentrations should be considered unusable due to possible contamination, and have been flagged "B."
- Copper (6.8 and 20 µg/l), antimony (38.6 µg/l), and beryllium (1.0 µg/l) were measured in the calibration or preparation blanks. Sample concentrations less than 5 times the blank concentration for these metals should be considered unusable due to contamination and are flagged "B."
- Spike sample recoveries for aluminum (74 percent) and selenium (0 percent) were below the control limits. All aluminum data are considered estimated, probably biased low, and flagged "J." All selenium data should be considered unusable and flagged "R." (No selenium was detected in any sample, and false negatives are possible.)
- Total concentrations were greater than dissolved for sodium in samples MET951 and MET952, MET961 and MET962, MET971 and MET972, MEW467 and MEW468, and MEW475 and MEW476; for arsenic in samples MET959 and MET960; for barium and potassium in samples MEW453 and MEW454; for copper in MEW467 and MEW468; and for lead in samples MEW477 and MEW478. Although total should be greater or equal to dissolved concentrations, the differences are generally small and within the variability of the analytical methods.
- The relative percent difference for method duplicates for cadmium (22.6 percent) was above the control limit. All cadmium was above the control limit. All cadmium data should be considered estimated, and have been flagged "J."
- Because of percent differences after serial dilution greater than 10 percent, all barium, chromium, manganese, nickel, vandium, and zinc data should be considered estimated because of matrix interference, and have been flagged "J."

)

)

• Lead in sample MET960 should be considered estimated because of a coefficient of correlation for the method of standard addition less than 0.995, and has been flagged "J."

Twenty groundwater samples, including one field blank, were analyzed by RMAL for either low concentration total or dissolved metals and total cyanide, Case No. 10009, ITR Nos. MEW455 to MEW464, MEW469 to MEW472, MET953, MET954, MET963, MET964, MET967 and MET968. The data are qualified as follows:

- The field blanks discussed above apply to these samples as well.
- Antimony (29 to 47 µg/l), beryllium (1.0 µg/l), copper (20 µg/l), calcium (66 to 121 µg/l), iron (74.2 µg/l), lead (2.5 µg/l), magnesium (91 µg/l), thallium (2.5 and 2.6 µg/l) and zinc (3 to 10.3 µg/l) were measured in the calibration and/or preparation blanks. Sample results less than five times the highest associated blank concentration should be considered unusable due to contamination, and have been flagged "B."
- The spike sample recovery for aluminum (157 percent) is above the control limits; aluminum results may be biased high. Arsenic

(73.8 percent) and selenium (0 percent) recoveries are below the control limits; arsenic results may be biased low, and false negatives are possible for selenium. All aluminum and arsenic data should be considered estimated and have been flagged "J." All selenium data should be considered unusable and have been flagged "R."

- The relative percent difference between method duplicates was above the control limit for lead (200 percent). All lead data should be considered estimated, and have been flagged "J."
- The correlation coefficient for the method of standard additions (MSA) is below the limit of 0.995 for lead in samples MET954 and MET964. These data should be considered estimated.
- Total concentrations are greater than dissolved concentrations for arsenic in samples MET953, MET954, MEW455 and MEW456; for sodium in samples MEW455, MEW456, MEW461, MEW462, MEW471, and MEW472; and for all detected inorganics in the field blank (MET967 and MET968). The differences are within the variability of the analytical methods, and no flags have been added.

Ten groundwater samples, including one field blank, were analyzed by RMAL for either low and medium concentration dissolved or total metals and cyanide, case No. 10009. The samples are divided into two QC sample delivery groups (SDG) with ITR Nos. MET957, MET958, MET965, MET966, MET969, MET970, MET973, and MET974 in SDG MET957; and MET975 and MET976 in SDG MET975. The data are qualified as follows:

- The field blanks discussed above also apply to these samples.
- Calcium (80.6 µg/l) and iron (25.4 µg/l) were measured in the laboratory blanks associated with SDG MET957; and magnesium (75.8 and 91.0 µg/l) and calcium (87 µg/l) were found in laboratory blanks associated with SDG MET975. Any sample concentration less than 5 times the associated field or laboratory blank concentration should be considered unusable and has been flagged "B."
- Spike sample recoveries for antimony (59 percent), arsenic (73.5 percent), lead (62 percent), and selenium (0 percent) were below the control limits for SDG MET957. For these samples nondetected selenium results should be considered unusable and have been flagged "R." Antimony, arsenic, and lead data should be considered estimated (possibly biased low) and have been flagged "J." Recoveries for lead (71 percent) selenium (74 percent), thallium (73.2 percent), and silver (72.8 percent) are below the control limits for SDG MET975. All lead, selenium,

thallium, and silver for these samples should also be considered estimated, (possibly biased low) and have been flagged "J."

- The relative percent difference between laboratory method duplicates was outside of the control limits for cadmium (200 percent) in SDG MET957 and zinc (41.9 percent) in SDG MET975. These results should be considered estimated because of poor precision, and have been flagged "J."
- Dissolved concentrations were higher than total for every analyte detected in samples MET975 and MET976 (MW04S) and MET969 and MET970 (a field blank). This may be expected for the field blank due to added exposure to contamination during filtration; however, results for MET975 and MET976 should be considered unusable (unless a switch in sample identification can be shown) and have been flagged "R."
- The difference after serial dilution exceeds 10 percent for barium (13.8 percent), copper (15.8 percent), iron (12 percent), and manganese (12.1 percent) in SDG MET975. Results for these samples should be considered estimated and have been flagged "J."

One groundwater sample from a monitoring well was analyzed by JTC for metals (Case SAS3249I, Sample No. 101) by high concentration procedures. The sample was composed of a water and a nonwater miscible phase but only the nonwater miscible phase (free product phase) was analyzed. The data are qualified as follows:

• The holding time for mercury analysis was exceeded and the mercury data is considered estimated although it was not detected in the sample.

1

),

- Spike sample recoveries were out of control limits for aluminum (61 percent), copper (70 percent), barium (84 percent), mercury (68 percent), nickel (18 percent), sodium (-76.5 percent), magnesium (83 percent), silver (0 percent), and thallium (60 percent). The data are biased low and the quantification limits may be higher than reported. The result for silver is considered unusable and flagged "R." All detected results for the other metals are considered estimated and flagged "J."
- The relative percent difference between method duplicates was out of control limits for sodium (18 and 33) and the sodium data were considered estimated (J).
- The laboratory control sample for silicon was outside control limits. No silicon was detected and no qualification was necessary.

Twenty-five groundwater samples, including two field blanks and two field replicates, were analyzed for low concentration organic compounds by PEI

Associates, Inc. (PEI), case No. 10009, OTR Nos. EW864, EW876 to EW890, EW892 to EW900. The data are qualified as follows:

- Chloroform (7 and 15 µg/l), toluene (8 µg/l) ethylbenzene (4 µg/l), and xylene (5 µg/l) were measured in the field blanks. All chloroform, ethylbenzene, and xylene results less than 5 times and toluene results less than 10 times the blank concentrations should be considered unusable because of contamination and have been flagged "B."
- Volatile fraction holding times were exceeded for all samples. All volatile data should be considered estimated, possibly biased low, and have been flagged "J."
- Semivolatile organic compound holding times were exceeded for samples EW877 to EW880, EW884, EW895, and EW897. All semivolatile data for these samples should be considered estimated, and have been flagged "J."
- Methylene chloride was detected in the laboratory blanks (6 to 9 µg/l). All methylene chloride results less than 10 times the corresponding blank concentration should be considered unusable and have been flagged "B."
- Because of a difference between initial and continuing calibration greater than the control limit of 25 percent, the following data should be considered estimated, and have been flagged "J": benzene in samples EW864, EW877 to EW880, EW884, EW885, EW895, EW889, EW900, EW892, EW896, and EW898; and styrene and xylene in all samples. (These have already been flagged "J" because of holding times.)
- Samples EW864, EW886, and EW887 contained compounds at concentrations beyond the linear calibration range and were diluted and reanalyzed. The diluted sample results should be used.

One monitoring well groundwater sample was analyzed by Clayton Environmental Consultants (CLAYTN) for volatile and extractable organic compounds and toxaphene/aroclors (Case SAS 30001, Sample No. 101) by high concentration procedures. The extractable and toxaphene/aroclor fraction was separated into a water and a nonwater miscible phase (free product phase) for analysis. The data are qualified as follows:

• Because of calibration outliers, the results for 2-butanone and endosulfan I are considered estimated (J) for all detected results and unusable (R) for nondetected results for these compounds. Also because of calibration outliers, the positive results for acetone are considered estimated (J).

- Common laboratory contaminants, acetone (7 mg/kg) and bis(2-ethylhexyl)phthalate (86 mg/kg) were found in the method blank. Bromoform (0.8 mg/kg), carbon disulfide (0.4 mg/kg), naphthalene (11 mg/kg), 2-methylnaphthalene (6 mg/kg), acenaphthene (3 mg/kg), dibenzofuran (2 mg/kg), fluorene (3 mg/kg), phenanthrene (8 mg/kg), fluoranthene (3 mg/kg), and pyrene (3 mg/kg) were found in the method blank. Samples associated with these blanks that contain these contaminants at concentrations less than 10 times the common laboratory contaminant or 5 times the other compound concentrations are considered unusable and flagged "B."
- Calibration curve criteria were not met for the toxaphene/aroclor analysis and the data are considered estimated although no compounds were detected.

Twenty-five groundwater samples, including two field blanks and two field replicates, were analyzed by JTC Environmental Consultants (JTC) for BOD, COD, SO₄, TDS, TSS, alkalinity, acidity, TOC, and phenols, SAS No. 3770E, sample Nos. E224 to E246, E248 and E250. The data are qualified as follows:

- The calibration verification was out of control limits for alkalinity (89 percent). Samples E230 to E238 should be considered estimated, and have been flagged "J."
- The holding time for BOD was exceeded for samples E224 to E231, E239, and E234. The holding time limit for COD was exceeded for samples E224 to E241. These data should be considered estimated, and have been flagged "J."
- Raw laboratory results were not submitted for EPA review for BOD in samples E244 and E248. These data should be considered estimated and have been flagged "J."

#### REFERENCES

CH2M HILL. Quality Assurance Project Plan, Moss-American Site. October 15, 1987.

U.S. Environmental Protection Agency. Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses. February 1988.

U.S. Environmental Protection Agency. Laboratory Data Validation Functional Guidelines for Evaluating Inorganics Analyses. July 1988.

GLT864/043.50

Appendix O ANALYTICAL DATA SUMMARY TABLES

•

۱.

#### TAD 14 0-1 OCCURRENCE AND CONCENTRATION RANCE OF ORGANIC COMPOUNDS DETECTED IN SURFACE SOILS

9

•

1

	number of Samples in Which Compound	Concentration	Range (ug/kg)
Campound	was Detected (Total = 18 Samples)	at in timum	ang x jimum
Carcinopenic Parts :	••••••		
Benzo(a)anthracene	14	79	420.000
Benzo(a)pyrene	14	82	230.000
Benzo(b)fluoranthene	14	130	270,000
Benzo(k)fluoranthene	11	170	250,000
Chrysene	14	110	\$10,000
Dibenz(a,h)anthracene	4	890	24.000
indeno(1,2,3-cd)pyrene	10	160	78.000
Benzo(g,h,i)perviene	11	220	77,000
Noncarcinogenic PAMs:			
Acenaphlhene	11	290	2.000.000
Acenaphthylene	10	220	30.000
Anthracene	12	140	2.200.000
Fluoranthene	12	800	2,200,000
Fluorene	11	190	<b>1,700</b> .000
2-methyinaphthalene	11	410	1,000.000
Naphinalene	13	110	1,600,000
Phenanthrene	13	350	2,700,000
Pytene	12	600	2,000.000
Benzene, Ethylbenzene, Toluene, Xylenes	(BTX):		
Benzene	3	4	100
Toluene	18	2	1,300
Xyiene (total)	4	5	14.000
Elhyibenzene	5	1	1,500
Chiorinated VOCs:			
1,1,1-Trichioroethane	1	19.000	19,000
Telfachloroethene	1	9	9
methyiene chioride	1	2	2
1.1-D:chloroethane	1	210	210
Other VOCs:	_		
Styrene	2	380	2.600
Kelones	-		
ACEIONE	5	•3	370
4+methyi+2+pentanone	2	7	
Diner Semi-volatile Compounds:			
Dibenzoluran	13	•9	1.300.000
BENZOIC ACIO	3	220	280
Phenolic Compounds:			
2,4-DimelnyIphenol	1	280	280
N-NITrosocipnenyiamine	1	270	270
2,4-Dinitrophenol	1	620.000	620.000
Phinalales	-		
Dimethyiphinalate	1	230	230
DIDINS and FUTANS:	-	• •	_
PEDIACHIOTO GIOXIN	3	<b>U.46</b>	1
	3	1.4	4.3
TELTACHIOTO GIOXIN (TOLBI)	1	0.13	0.13
TELIACHIOIO GIOXIN (2.3.7.8)	1	0.11	Q.11

٠

۱.

#### Table 0-2 ORGANIC CONTAMINANTS IN SURFACE SOILS MOSS AMERICAN SITE

Summary of Concentrations (ug/kg)

-----

)

)

Sample ID	BTX	Chiorinated VOC	Carcinogenic PAH	Noncarcinogenic PAH
MA-55012-02	21	(6)	59.000	160,000
MA-SS012-02FR	40	2	130,000	520,000
MA-SS015-02	89	(6)	37.000	97.000
MA-SS015-02FR	33	(6)	37,000	100,000
MA-SS018-02	31	(6)	880,000	250,000
MA-55024-02	27	(6)	5,300	13,000
MA-55030-02	2.000	9	1,800,000	16,000,000
MA-SS038-02	830	(24)	150,000	2.000.000
MA-S5053-02	100	(6)	570	(790)
MA-55061-02	27	(5)	1,500	600
MA-SS064-02	230	(11)	1,700,000	6,500,000
MA-55066-02	24	(7)	(860)	(860)
MA-SS078-02	67	(6)	(760)	(760)
MA-55081-02	100	(6)	(750)	(750)
MA-55089-02	17,000	19.000	610,000	9,800,000
MA-SS113-02	550	(16)	1,300,000	8,800,000
MA-55129-02	2	(7)	2.500	3,900
MA-55142-01	120	(6)	(800)	460

**************

NOTES:

۰,

BTX = benzene, ethylbenzene, toluene, and xylenes Chlorinated VOC = chlorinated volatile organic compounds Carcinogenic PAH = benzo(a)anthracene, chrysene, benzo(b)fiuoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, dibenzo(a,h)anthracene, and benzo(g,h,i)perylene Noncarcinogenic PAH = all other target PAHs FR = field replicate (___) = no compounds in group detected, detection limit for individual compounds reported.

#### Table 0-3 ORCANIC CONTAMINANTS IN SURFACE SOILS PAH DATA MOSS AMERICAN SITE

. —

٦,

•

	Summary of Con	centrations (ug/kg)
Sample ID	Carcinogenic PAH	Noncarcinogenic PAH
SS004-01	(1000)	1.000
\$\$009-01	24.000	4,000
55012-01	140.000	390,000
SS017-02	28 000	<b>2.500.000</b>
SS018-01	920,000	2,100,000
\$\$019-01	240,000	1,400,000
<b>\$\$</b> 024-01	(1000)	61,000
55025-01	27,000	30,000
<b>55032-01</b>	120 000	<b>30.000.000</b>
<b>SS</b> 037-01	1.600.000	6.500.000
\$\$038-01	1,100,000	8.200.000
55044-01	(1000)	(1000)
55049-01 55053-01	<b>550.000</b>	3.600.000
\$\$056-01	8,000	(1000)
\$5061-01	(1000)	(1000)
<b>\$\$06</b> 3-01	290,000	430,000
55064-01 66066-01	500,000	1,400,000
SS078-01	(1000)	(1000)
SS080-02	380,000	1,500,000
\$5081-01	(1000)	(1000)
55089-01	1,400,000	14.000.000
55090-01	12,000	12,000
SS098-01	330,000	650 000
\$5103-01	86.000	350.000
\$5106-01	(1000)	3.000
55108-01	60.000	42.000
\$\$113-01	1 500 000	32.000 14.000.000
SS114-01	52.000	11.000
\$\$126-01	40,000	23.000
55129-01	(1000)	(1000)
\$\$130-01 \$\$1003-01	(1000)	
•\$\$1019-01	(1000)	(1000)
*\$\$1023-01	38.000	<b>9,00</b> 0
*\$\$1023-01FR	65,000	4.000
NOTES:		
Carcinogenic P	AH = benzo(a)anthrace	ine, chrysene,
benzo(b)fl	uoranthene. benzo(k)1	luoranthene,
Denzo(a)Dy	rene, indeno[1,2,3-CC	JJDYTENE, Jola D. Liberviene
Noncarcinogeni	C PAH = all other far	loet PAHs
FR = field rep	licate	
() = no com	pounds in group detec	cted, detection
limit for	Individual compounds	reported.
rom the D	anks or tioodpiains C	DT THE LITTLE MENOMONEE Rive

٠

ì

#### Table 0-4 OCCURRENCE AND CONCENTRATION RANGE OF INORGANIC ANALYTES DETECTED IN SURFACE SOILS

•••••••

.

	Number of Samples In Which Compound	Concentration Range (mg/kg)	
Analyte	(Total = 18 Samples)	Minimum	Maxlmum
TRACE ELEMENTS:			
Antimony	1	3.2	3.2
Arsenic	17	1.8	110
Barium	18	19.9	197
Beryllium	18	0.45	1.4
Cadmium	16	4	75.9
Chromium	18	9.5	81.2
Cobalt	18	5.1	14.4
Copper	18	8	137
Lead	16	4.7	519
Mercury	18	0.15	3.9
Nickel	18	11.2	30.9
Selenium	2	1.8	2.1
Silver	1	1.8	1.8
Thallium	1	0.25	0.25
Vanadium	18	12.2	38.2
Zinc	18	112	9,760
OTHER ANALYTES:			
*************			
Aluminum	18	2,260	16.400
Calcium	18	11,400	162.000
Cyanide	· · · · · · · · · · · · · · · · · · ·	1.6	3
Iron	18	8.040	32.200
Magnesium	18	3,680	64.400
Potassium	16	521	2.570
Sodium	18	612	1.500

Ì

#### TAD IE 0-5 OCCLARENCE AND CONCENTRATION RANCE OF ORGANIC COMPOUNDS DETECTED IN BUBSURFACE SOILS

•

•

	Number of Samples in which Compound was Dejected	Concentration Range (ug/kg)	
Calipound	(Total + 34 Samples)	a in inum	Maximum
Catcinogenic Paris:	*********************		
Benzo(a)anthracene	6	69	190.000
BENZO(A)DVIENE		40	34.000
Senzo(b) ( (uoranihene	10	10	87.000
Benzo(k) f (Noranthene	•	14	20.000
Chrysene	•	38	120.000
Dibenzo(a.h)anthracene	2	\$1	1.800
Indeno(1,2,3-cd)pyrene	4	29	9,900
Benzo(a.h.i)perviene	5	44	10.000
NONCATCINOPENIC PAHS:	-		
Acenaphinene	12	•	2.700.000
Acenaphthylene	3	24	47,000
Anthracene	11	11	1,800,000
Fluoranthene	14	16	2.300.000
Fluorene	11	17	2.100.000
2-Methyinaphinalene	•		1,300,000
Naphthalene	11	19	2.600.000
Phenanthrene	13	60	4,600,000
Pyrene	13	16	1,600,000
Benzene, Ethylbenzene, Toluene, Xylenes (BTX)			
Toluene	26	2	2.000
Ethylbenzene	6	3	4,100
Xylene (lotal)	•	2	17.000
Chiorinaled VOCs			
1,1,1-Trichloroethane	3	6	11
Chioroform	٦	2	2
methylene Chloride	2	33	10,000
Other VOCs :			
Slyrene	4	1	9.300
Carbon disulfide	1	4	4
Kelones :			
is aphorone	1	27	27
Aceione	7	20	120
2-Bulanone	٦	10	10
Other Semi-volatile Compounds:			
Dibenzoluran	11	11	1,600.000
Benzoic Acid	3	76	\$10
Phenois:			
4+Nitrophenol	1	240	240
Phenoi	2	46	78
Penlachiorophenoi	2	110	700
Phinalales.			
Dienebutyiphihalaie	10	25	2,800
DI-R-DCIVIDINAIAIE	2	12	25
DIS[2-ELNYINEXYI]Dhinalale	•	42	5,800
pimethyiphinalate	2	700	1,300
Dietnyiphinalale	3	31	6,000
DIOXINS AND FUTANS:	-	_	-
19-01 HEXACTIOIO GIOXIT 1	1	7	7

١

Table 0-6					
ORGANIC	CONTAMINANTS	IN SUBSURFACE	SOILS		
	MOSS AMER	LICAN SITE			

Sample ID	BTX	Chiorinated VOC	Carcinogenic PAH	Noncarcinogenic PAH
MA-SB001-01	170	(6)	(750)	(750)
MA-SB002-01	110	(6)	(780)	(780)
MA-SB003-01	19	44	(370)	(370)
MA-SB003-02	16	6	(360)	(360)
MA-SB004-01	(710)	(710)	200.000	2,100.000
MA-SB004-02	12	(6)	(370)	210
MA-58004-03	8	(6)	60	<b>69</b> 0
MA-58005-01	380	(6)	120	240
MA-SB005-01FR	50	(6)	(790)	(790)
MA-SB006-01	71	(6)	(750)	(750)
MA-SB007-01	2	(6)	(420)	(420)
MA-SB008-01	35	(6)	280	32
MA-SB008-02	79	(29)	120	<b>26.0</b> 00
MA-SB009-01	(6)	2	1.700	390
MA-SB009-02	(6)	(6)	10	(540)
MA-SB010-01	51	(6)	(570)	(570)
MA-SB011-01	290	(5)	(720)	(720)
MA-SB011-02	55	(6)	590	5,000
MA-SB011-02FR	120	(5)	1,100	12.000
MA-SB012-01	13	(6)	(400)	(400)
MA-SB013-01	220	(6)	(740)	160
MA-58014-01	<b>6</b> 60	. (6)	(410)	(410)
MA-58015-01	860	(6)	(380)	(380)
MA-58016-01	21	(6)	(23.000)	120.000
MA-SB016-02	26	(6)	(380)	5,900
MA-58017-01	7	(6)	(370)	(370)
MA-SB017-02	9	(6)	(380)	(380)
MA-SB017-05	NA	NA	(1000)	(1000)
MA-SB017-05FR	NA	NA	(1000)	(1000)
MA-SB018-01	140	10,000	1,700	6,600
MA-SB018-02	16	(6)	66	160
MA-SB019-01	23.000	(880)	450,000	<b>19.00</b> 0.000
MA-SB019-02	7	(6)	(370)	1,300
MA-SB019-03	(6)	(6)	(380)	(380)

Summary of Concentrations (ug/kg)

)

)

)

١

-----

NOTES:

ت م

> BTX = benzene, ethylbenzene, toluene, and xylenes Chlorinated VOC = chlorinated volatile organic compounds Carcinogenic PAH = benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene,indeno(1,2,3-cd)pyrene, dibenzo(ah)anthracene, and benzo(g,h,l)perylene Noncarcinogenic PAH = all other target PAHs FR = field replicate NA = not analyzed (___) = no compounds in group detected, detection limit for individual compounds reported.

#### Table 0-7 OCCURRENCE AND CONCENTRATION RANCE OF INORGANIC ANALYTES DETECTED IN SUBSURFACE SOILS

•

	Number of Samples in Which Compound	Concentration	Range (mg/kg)
Analyte	(Total = 32 Samples)	Minimum	Max i mum
TRACE ELEMENTS:			
Antimony	Э	0.66	5 1
Arcanic	* 20	1 2	7 R
Rarium	32	5 2	105
Bervilium	12	0.45	
Cadmium	29	1.6	6.9
Chromium	32	4.6	24
Cobalt	32	2.8	14
Copper	32	5.6	87.5
Lead	31	2.3	31
Manganese	32	95.7	841
Mercury	18	0.1	4.5
Nickel	29	7.1	28
Thallium	8	0.21	0.38
Vanadium	29	5.8	37
Zinc	32	36	1,740
OTHER ANALYTES:			
	••		
Aluminum	32	1.620	10,900
	32	9,100	194.000
LIOD	3 n	6 220	26 600
Alagaat ium	32	0.320 8 380	20.000 66 ADD
mayires i uni Potsee i um		3.330 AA7	00,400 2 200
rolessium Sodium	40 10	77/ 204	4,430
300100	17	4V7	1.430

•

#### Table 0-8 OCCURRENCE AND CONCENTRATION RANGE OF ORGANIC COMPOUNDS DETECTED IN GROUNDWATER

-----

9

-----

	Number of Samples	Concentration Range (ug/l)		
Compound	In Which Compound was Detected [Total = 25 Samples	) Minimum	Maximum w/o Free Product	
Carcinogenic PAHs:				
Senzo(a)anthracene	1	81	81	
Senzo(a)pyrene	1	23	23	
Senzo(b)fluoranthene	1	23	23	
Benzo(k)fluoranthene	1	25	25	
Chrysene	1	69	69	
Noncarcinogenic PAHs:				
Acenaphthene	3	11	1,400	
Acenaphthylene	1	22	22	
Anthracene	2	8	110	
Fluoranthene	3	13	460	
Fluorene	2	20	630	
2-Methylnaphthalene	1	520	520	
Naphthalene	3	3.100	5,500	
Phenanthrene	2	28	2,000	
Pyrene	3	11	300	
Benzene, Ethylbenzene, Toluene, Xyl	enes (BTX):			
Benzene	2	5	7	
Ethylbenzene	1	27	27	
Xylene (total)	3	30	45	
Other VOCs:				
Styrene	1	9	9	
Other semi-volatile compounds:				
Dibenzofuran	2	9	560	
isophorone	1	41	41	
Phenols:				
Phenot	1	8	8	
2.4-Dimethylphenol	1	14	14	
Phthalates:				
Bis(2-Ethylhexyl)phthalate	3	9	13	

)

1

)

}

#### Table 0-9 ORGANIC CONTAMINANTS IN CROUNDWATER MOSS AMERICAN SITE

Sample 1D	Summary of Concentrations (ug/l)				
	BTX	Chiorinated VOC	Carcinogenic PAH	Noncarcinogenic PAH	
MA-MW025-01	(5)	(5)	(10)	35	
MA-MW045-01	72	(5)	220	11.000	
MA-MW075-01	37	(5)	(10)	3,100	
MA-MW075-01FR	35	(5)	(10)	3.100	
MA-MWD85-01	(2.500)	(2,500)	(20,000)	<b>(20.00</b> 0)	
MA-MW085-FP	NA	NA	20,000,000	200,000,000	
MA-MW115-01	(5)	(5)	(10)	120	

----

NOTES:

BTX = benzene, ethylbenzene, toluene, and xylenes Chlorinated VOC = chlorinated volatile organic compounds Carcinogenic PAH = benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1.2.3-cd)pyrene, dibenzo(ah)anthracene, and benzo(g,h,i)perylene Noncarcinogenic PAH = all other target PAHs FR = field replicate FP = free product sample NA = not analyzed (____) = no compounds in group detected, detection limit for individual compounds reported.

The remainder of the groundwater samples were below the detection limits of 5 ug/l for BTX and Chlorinated VOC, and 10 ug/l for Carcinogenic PAH and Noncarcinogenic PAH compounds. These include groundwater samples MA-MW015-D1, MA-MW011-D1, MA-MW035-D1, MA-MW031-D1, MA-MW041-D1, MA-MW04D-D1, MA-MW04D-D1FR, MW-D5S-D1, MW-D6S-D1, MA-MW071-D1, MA-MW081-D1, MA-MW095-D1, MA-MW09101, MA-MW111-D1, MA-MW125-D1, MA-MW135-D1, MA-MW145-D1, and MA-MW205-D1

.

### Table 0-10 OCCURRENCE AND CONCENTRATION RANGE OF DISSOLVED INORGANIC ANALYTES DETECTED IN GROUNDWATER

)

1

)

1

٦,

	Numbers of Samples in Which Compound	Concentration Range (ug/i)	
Analyte	(Total = 22 Samples)	Minimum	Maximum
TRACE ELEMENTS			
Arsenic	13	1.3	7.8
Barium	22	40	294
Chromium	2	6.7	7.8
Manganese	22	32	1.440
Vanadium	5	4.7	6.9
OTHER ANALYTES:			
Calcium	22	21,600	<b>250,00</b> 0
iron	19	156	4,810
Magnesium	22	10.100	90.200
Potassium	22	1.580	<b>6.2</b> 60
Sodium	19	14,400	<b>97 . 10</b> 0

#### Table 0-11 OCCURRENCE AND CONCENTRATION RANCE OF ORGANIC COMPOUNDS DETECTED IN SURFACE WATER

____

;

.

	Number of Samples in Which Compound	Concentration Range (ug/i)	
Compound	(Total = 9 Samples)	Minimum	Maximum
Noncarcinogenic PAHs:			
Acenaphthene	1	11	11
Fluorene	1	5	5
2-Methylnaphthalene	٦	2	2
Naphthalene	1	11	11
Phenanthrene	1	2	2
Chlorinated VOCs:			
Methylene chioride	1	1	1
Other Semi-volatile Compounds	:		
Dibenzofuran	1	6	6
Phthalates:			
Di-n-butylphthalate	2	2	4

4

¥

#### Table 0-12 ORGANIC CONTAMINANTS IN SURFACE WATER MOSS AMERICAN SITE

	5	Summary of Concentrations (ug/1)								
SAMPLE ID	BTX	Chiorinated VOC	Carcinogenic PAH	Noncarcinogenic PAH						
	(5)	1	(10)	(10)						
MA-SW007-01	(5)	(5)	(10)	31						

NOTES:

1

 BTX = benzene, ethylbenzene, toluene, and xylenes
Chiorinated VOC = chlorinated volatile organic compounds
Carcinogenic PAH = benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1.2.3-cd)pyrene, dibenzo(ah)anthracene, and benzo(g,h,i)perylene
Noncarcinogenic PAH = all other target PAHs
FR = field replicate
(___) = no compounds in group detected, detection limit for individual compounds reported.

Ì

}

The remainder of the surface water samples were below the detection limits of 5 ug/l for BTX and Chlorinated VOC, and 10 ug/l for Carcinogenic PAH and Noncarcinogenic PAH compounds, including MA-SW002-01, MA-SW003-01, MA-SW004-01, MA-SW005-01, MA-SW006-01, and MA-SW008-01.

### Table 0-13 OCCURRENCE AND CONCENTRATION RANGE OF DISSOLVED INORGANIC ANALYTES DETECTED IN SURFACE WATER

, ,

	Number of Samples in Which Compound was Detected	Concentration Range (mg/kg)				
Analyte	(Total = 9 Samples)	Minimum	Maximum			
TRACE ELEMENTS:						
Barium	9	41.1	95.9			
Manganese	9	53.5	124			
Zinc	5	10.7	46.9			
OTHER ANALYTES:						
************		••				
Aluminum	2	55.4	73.6			
Calcium	9	<b>95,9</b> 00	<b>135,0</b> 00			
iron	2	465	632			
Magneslum	9	42.900	45,400			
Potassium	9	1,520	4,580			
Sodium	9	7,010	<b>62.9</b> 00			

٩

¥

## ٥ Ar-0 sidet

.

٩.

	STUBMICES	
	DICHAIC CONCORDS DELECTED IN	
3Ö	SOURRENCE MD CONCENTRATION RANCE	¢
	NI-0 31001	

(8%/ <b>80) 200</b>	Concentration &	seignes 10 temperot brundens fright ni	
wine; x	<b>With</b> ; U ; W	(10[9] - 19 2980]62)	punoduso
	•••		Carcinopanic Puts:
000.001	092	*L	84832/4146( P)02488
000'#6	025	41.	
000.50	0.00	61.	
		•• / L	
007 L		•	
000 10	00L	•	
000 61	001	*** **	
000'51	OFL	f L	
	~~~	••	
000.008	09L	, 	
	4	••	
000.011	14	41	
000.058	054	91	219010210812
000.059	002	24	20210811 20210811
		•	aus : PLI LLCPLI : LLI Aus - P
000,065	006'L	A	
000 000	002	41 61	
000.000	004		TVTEL INVALUE ANALIAE ANALAATUATE ANALAAE
~~~	•	• .	(YIG) (SUSIÁN 'SUSCICL' SUSCIENTS' SUSCIENTS'
054	¢.	•	34324301 4412
064		•	
	UFE	7	
000 15			anteresting anteresting
000.65		•	
	67	6	
	006	*	VC5   CUP 9 _ 00 / 0   INP
000.15	047	-	- Indianana Alitelau-jaal 1410
000 055		YL .	
	041	<b>T</b>	bist Signal
000 09	000 09		4-CULOLOSUI   106
001.6	001.5	L	anime i ynandi bo to 1 fin-w
			autus (sa) (sa) (sa) (sa)
027	027	L	atelehindivide aug
000.012	000'012	L	Di-n-putylphinatete
06	32	ſ	Di-h-bctylbhthalate
		•	Dioxins and Furans;
4.4		6	Octachioro furan
55'0	55.0	L	neiul oroinseinen
	P1 0	C	nizoib ototnastane
¥ •	0.33	ť	naul oloitasan
S' S	<b>tP</b> 0	•	nixoib ototast20
57.0	SP 0	L	nixoib oroinsernee
22	54.0	E	nsiul oloidasigne
4.4	4° 🖲	L	nixolo oloidaran

.

٩

. (

(

(_____

#### Table 0-15 ORGANIC CONTAMINANTS IN SEDIMENTS MOSS AMERICAN SITE

Summary of Concentrations (ug/kg)

			**************	
Sample ID	BTX	Chiorinated VOC	Carcinogenic PAH	Noncarcinogenic PAH
MA-SD301-01	3	(8)	8,900	<b>8 , 30</b> 0
MA-SD302-01	(8)	(8)	15.000	<b>17 , 0</b> 00
MA-SD303-01	(7)	(7)	12.000	<b>22.00</b> 0
MA-SD304-01	(36)	(36)	68.000	<b>150,0</b> 00
MA-5D305-01	4	(6)	1,700	1.800
MA-SD306-01	240	790	140,000	1, <b>100,0</b> 00
MA-SD306-01FR	130	630	210,000	2,900,000
MA-SD307-01	230	1,400	320,000	4,800,000
MA-SD308-01	(1100)	12.000	200.000	1,600,000
MA-SD309-01	230	1,900	150.000	1,200,000
MA-SD309-01FR	(1000)	4,600	150.000	650.000
MA-SD310-01	47	(7)	74,000	100,000
MA-SD311-01	(930)	3,400	130,000	1,400,000
MA-SD312-01	730	990	450,000	5,500,000
MA-SD313-01	640	33.000	270.000	3,200,000
MA-SD314-01	<b>95</b> 0	3.600	160.000	1,800,000
MA-SD315-01	(46)	(46)	20,000	<b>290,0</b> 00
MA-SD316-01	(9)	(9)	83,000	610,000

-----

NOTES:

BTX = benzene, ethylbenzene, toluene, and xylenes Chlorinated VOC = chlorinated volatile organic compounds Carcinogenic PAH = benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1.2.3-cd)pyrene dibenzo(ah)anthracene, and benzo(g,h,i)perylene Noncarcinogenic PAH = all other target PAHs FR = field replicate [___] = no compounds in group detected, detection limit for individual compounds reported.

۱.

#### Table 0-16 (Page 1 of 2) ORGANIC CONTAMINANTS IN SEDIMENTS PAH ANALYSIS MOSS AMERICAN SITE

', •,

.

Summary of Concentrations (ug/kg)

}

)

)

۱.

		****************
Sample ID	Carcinogenic PAH	Noncarcinogenic PAH
SD001-01	96.000	10.000
SD005-01	21,000	17,000
SD007-01	4.000	4,000
SD009-01	8,000	8,000
SD014-01	<b>5,00</b> 0	<b>6,0</b> 00
SD018-01	5,000	6,000
SD019-01	6,000	10.000
SD025-01	9,000	<b>8.00</b> 0
SD031-01	140,000	960.000
SD035-01	(1000)	(1000)
SD038-01	22.000	<b>65,00</b> 0
SD051-01	<b>16.0</b> 00	28.000
SD054-01	34,000	39,000
SD058-01	140.000	610,000
SD062-01	500,000	3,800,000
SD063-01	100,000	460,000
SD067-01	26,000	160.000
SD070-01	20.000	6.000
SD070-01FR	18,000	3.000
SD073-01	46,000	<b>73,0</b> 00
\$D076-01	140,000	<b>570 , 0</b> 00
SD078-01	(1000)	(1000)
SD091-01	210.000	430,000
SD093-01	51.000	(8000)
SD097-01	(1000)	(1000)
SD100-01	(2000)	(2000)
SD110-01	(1000)	(1000)
SD116-01	(1000)	(1000)
SD131-01	100.000	<b>25,0</b> 00
SD134-01	12.000	16.000
SD137-01	(1000)	(1000)
SD140-01	8.000	6000
SD144-01	53.000	<b>130.0</b> 00
SD147-01	(1000)	(1000)
SD154-01	(1000)	(1000)
SD155-01	(8000)	(8000)
SD158-01	18.000	61.000
SD164-01	310.000	1,900,000
SD165-01	270,000	1.600.000
SD175-01	10,000	24.000
SD179-01	7,000	11,000
SD187-01	31.000	34.000
SD192-01	1.000	10.000
SD197-01	240.000	39.000

#### Table 0-16 (Page 1 of 2) ORGANIC CONTAMINANTS IN SEDIMENTS PAH ANALYSIS MOSS AMERICAN SITE

	Summary of Concentrations (ug/kg)						
Sample 1D	Carcinogenic PAH	Noncarcinogenic PAH					
SD204-01	320.000	2,800.000					
SD207-01	22.000	<b>13,00</b> 0					
SD207-01FR	260.000	2,500,000					
SD214-01	77.000	46,000					
SD217-01	4,000	4,000					
SD221-01	(1000)	(1000)					
SD221-01FR	(1000)	(1000)					
SD222-01	87.000	100.000					
SD227-01	11,000	34.000					
SD231-01	280,000	1,700,000					
SD233-01	340,000	2,400,000					
SD234-01	240,000	1,700,000					
SD236-01	230,000	2,000,000					
SD244-01	220,000	740.000					
SD255-01	29,000	110,000					
SD257-01	(2000)	(2000)					
SD258-01	(1000)	(1000)					
SD260-01	20,000	20,000					

-----

NOTES:

٦,

BTX = benzene, ethylbenzene, toluene, and xylenes Carcinogenic PAH = benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1.2.3-cd)pyrene, dibenzo(ah)anthracene, and benzo(g.h,i)perylene Noncarcinogenic PAH = all other target PAHs FR = field replicate (___) = no compounds in group detected, detection

limit for individual compounds reported.

#### Table 0-17 OCCURRENCE AND CONCENTRATION RANCE OF INORGANIC ANALYTES DETECTED IN SEDIMENTS

•

٩

.

	Number of Samples in Which Compound was Detected	Concentration i	Range (mg/kg)
Analyte	(Total = 18 Samples)	Minimum	Maximum
TRACE ELEMENTS:			
Antimony	4	0.77	4.5
Arsenic	18	3.5	10.1
Barium	18	19.3	93.1
Beryllium	9	0.71	1.3
Cadmi um	18	4.1	14.1
Chromium	18	10.6	32.6
Cobalt	18	5.1	11.5
Copper	18	13.5	45.5
Lead	18	18.4	213
Manganese	18	296	945
Mercury	10	0.21	0.43
Nickel	8	16.4	24.4
Selenium	1	1.3	1.3
Vanadium	18	16.5	30.9
Zinc	18	230	2.200
OTHERS ANALYTES:			
*************			
Aluminum	18	3.330	14,500
Calcium	18	49.400	119,000
Iron	18	12.900	28,100
Magneslum	18	20.400	61,800
Potassium	8	466	1,840
Sodium	5	1,190	1,250

)

3

)

Appendix P ANALYTICAL DATA

٠

۱.

GLT779/078.50

•

## SAMPLES COLLECTED

May, June, and July 1988

# **DATA OUALIFIERS:** (same for all tables)

- B: Detected in blank
- D: Diluted sample results reported
- J: Estimated value
- R: Unusable value
- U: Not detected at specified quantification limit
- -: Not analyzed for
- *: The reported value is the average of four replicates

٠

- FR: Field Replicate
- FB: Field Blank

9

ż.

SOIL DATA

۰.

١.

GLT799/079.50-1

•

# NOSS-AVERICAN BURFACE SOIL BENIVOLATILES

Ċ

.....

Sample No.: TR No.:	INA-5357805 EU862	M-55F3-06 ENB63	NA-33012-02 EN851	M-55012-02FR EV860	HA-55015-02 EN652
************************	Field Blank	Field Blank		Replicate	
Parameter	Conc. (ug/kg)				
Phenol	r 001	U 0 <b>60</b>	760 U	330 1	1500 U
Dis(2-Ch(oroethy)) Jether			760 0		
a-union opinionia 1,3-D (chilorobenzene		<b>6</b>	760	1600 U	1500 0
1,4-Dichlorobenzene	660 U	460 U	760 U	1600 U	1500 U
Senzyl alcohol			760 U	1 00 <b>91</b>	
1,6°01th tot www.cene 2-Nethylphenol			760 0	1600 U	1500 0
bis(2-Chloroisopropyl)ether	660 U		760 U	1600 U	1500 U
4-Nethylphenol M-M(+nnen-d(+n-monnyl maine			760 U 760 U	n 0 <b>091</b>	1500 U
Hexach Loroethane	660 U	660 L	760 U	1600 U	1500 U
Witrobenzene Isochorone			760 U 760 U	1 0001	1500 U
2-Witrophenol	660 U	660 U	760 U	1600 U	1500 U
2,4-Dimethylphenol Banzoic Acid			760 U	r 002	7500 U
bis(2-Chloroethoxy)methane	660 U	660 U	760 U	1600 U	1500 U
2,4-Dichlorophenol 1,2,4-Trichlorobenzene		0 0 0 0 0 0 0 0	760 U	1600 U	1500 U
Haphthelene 4-74 Innonil Inn	660 u	660 U	r 00061 -	57000 b	J · 3500 J
A such longbut adiene	660 U	660 U	760 U	1600 U	1500 U
4-Chiloro-3-methylphenol 2-Nethylnaphthalene		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	r 0028	r 00022	r 0051
Nexachiorocyclopentadiene	660 U	660 U	760 U	1600 U	1500 U
2,4,5-Trichlorophenol	3200 U	3200 U	3700 U	10081	7400 U
2-Chieronaphthaiene 2-Nitreaniiine			1 0925 1 0925	1600 U	1500 U 7400 U
Dimethylphthelate	660 U	660 U	760 U	1600 U	1500 U
2,6-Dinitrotolume	660 U	660 U	760 U	1600 U	1500 U
Aconsphthene	660 U	660 U	7500 L	L 00012	r 0029
Z,4-Dinitrophenol 4-Witrophenol	3200 U	3200 U	3700 U	7800 U	7400 U
Dibenzofuran 2 4-Distant			r 0009L	43000 D	J 7300 J
Diethylphthalate	660 C	660 0	760 U	1600 U	1500 U
4-Chlorophenyl-phenylether Fluorene		0.099	r 00 <b>25</b>	1 002 1	r 0008
4-Kitrosniline	<b>1200</b> U	3200 U	3700 U		7400 U
N-Nitrosodiphenylamine	660 U	660 0	760 U	1600 U	1500 L
4-Bromophenyl-phenylether Nexachlorobenzene	960 U	1 099 1 0 00	760 U	1600 U	1500 L
Pentach I oropheno I	3200 U	3200 U	3700 U	1 0007	1 0015
Anthracene	660 U	160 U	r 00021	r 00052	2 00 <b>9</b>
Pluoranthene		160 L	r 00025	140000 0	r 00052
Pyrene Butvi bentvi phtha late			r 00022	1 0001	r 00512 f
3,3'-Dichlorobenzidine	1300 U	1300 U	1500 U	3200 U	3000 U
Senzo(a)anthracene Chrvsane			r 000ZL	21000 p	r 0056
bis(2-Ethylehexyl)phthalate	1400 8	290	550 8	1200	630
Di-n-octylphthalate Benzo(b)fluoranthene			r 000 <b>91</b> 0 267	r 00022	500 J
Benzo(k)fluoranthene	660 U	660 U	760 U	L 00002	r 0025
Jenzo(a)pyrene Indeno(1,2,3-cd)pyrene		1000 U	5700 J	16000 U	1500 U
Dibenz(a, h)anthracene	660 U		1000 U	r 0002	r 048

.

-

(

۱

1

-----

NDES-AMERICAN SURFACE SOIL SENIVOLATILES

*****	Sample No.: TR No.:	NA-85015-02FR BNB61 Replicate		NA-55018-02 EU854		NA-88024-02 EV855		NA-88030-02 EN859		MA-88038-02 EU856
Perameter										
Phenol		2300	υ	46000	U	100	B	180000	U	49000 U
bis(2-Chloroethyl	)ether	2300	U	46000	U	740	U	180000	U	49000 U
Z-Chiorophenol		2300	U.	46000	Ü	740	U	180000	U	49000 U
1.4-Dichlorobenze		2300	U U	44000	ŭ	740	ŭ	180000	ŭ	49000 U
Benzyl alcohol		2300	Ū	46000	Ū	740	Ū	180000	Ū	49000 U
1,2-Dichlorobenze	ne	2300	U	46000	U	740	U	180000	Ü	49000 U
Z-Rethylphenol		2300	U.	46000	U	740	0	180000	U	49000 0
4-Hethylphenol	upy ( )e cher	2300	ŭ	44000	ŭ	740	ŭ	180000	ŭ	49000 U
W-Witroso-di-n-pr	opylamine	2300	Ū	46000	Ū	740	Ū	180000	Ŭ	49000 U
Nexach Loroethane	•••	2300	U	46000	U	740	U	180000	U	49000 U
Nitrobenzene		2300	Ü	46000	U	740	Ü	180000	Ü.	49000 U
Isophorone 2-Nitrophonol		2500	U	46000	U	740	Ň	180000	U 11	49000 0
2.4-Dimethylpheno	1	2300	Ŭ	46000	Ŭ	740	Ŭ	180000	U	49000 U
Benzoic Acid	-	11000	Ū	220000	Ŭ	220	Ĵ	870000	U	240000 U
bis(2-Chloroethox	y)methane	2300	U	46000	U	740	U	180000	U	49000 U
2,4-Dichloropheno		2300	U	46000	U	740	U	180000	U	49000 U 49000 U
Nachthalene		3900	1	38000	ĭ	890	ľ	1800000	J.	> 530000 J
4-Chloroeniline		2300	Ū	46000	Ŭ	740	Ū	180000	Ŭ	49000 U
Nexachlorobutadie	ne	2300	U	46000	U	740	U	180000	U	49000 U
4-Chloro-3-methyl	phenol	2300	U.	46000	Ų	740	U.	180000	U.	49000 U
Severny inspirituate	ntadiene	2300	u U	46000	ů	740	ů	180000	ů.	49000 1
2,4,6-Trichloroph	enol	2300	Ū	46000	Ū	740	Ū	180000	U	49000 U
2,4,5-Trichloroph	enol	11000	U	220000	U	3600	U	870000	U	240000 U
2-Chloronephthale	ne	2300	U	46000	U.	740	U.	180000	U .	49000 U
2°#1Treen)(Ine Dimethy(chthalate		2300	U U	44000	ŭ	230	J	180000	и Ц	L 00005
Aceneohthylene		460	J	7000	J	220	J	17000	J	49000 U
2,6-Dinitrotoluen	•	2300	Ū	46000	U	740	U	180000	U	49000 U
3-Mitroeniline		11000	Ų	220000	U	3600	Ų	870000	IJ	240000 U
Acenephthene 2 4-Disitesehenel		7500	ł.	14000	4	290	a II	2000000	J 11	180000 J
4-Nitrophenol		11000	ŭ	220000	U	3600	U U	870000	ы Ш	240000 1
Dibenzofuran		8100	J	16000	Ĵ	650	J	1300000	Ĵ	120000 J
2,4-Dinitrotoluen	•	2300	U	46000	U	740	U	180000	U	49000 U
Disthylphthalate		2300	U.	46000	U	740	U.	180000	U.	49000 U
e-uniorophenyl•ph Flunnene	enyletner	9700	J L	7000	1	190	1	1700000	1	150000 J
4-Mitroeniline		11000	Ū	220000	Ū	3600	Ū	870000	Ū	240000 U
4,6-Dinitro-2-met	hylphenol	11000	U	220000	U	3600	U	870000	U	240000 U
N-Nitresodiphenyl	amine Sul anhan	270	1	46000	U	740	U	180000	U.	49000 U
e-promophenyl-phe	nyletner	2300	U	46000	U	740	U	180000	U 11	49000 0
Pentachlorophenol		11000	Ū	220000	Ū	3600	Ū	870000	Ū	240000 U
Phenanthrene		21000	J	40000	J	2500	J	2700000	J	480000 J
Anthracene		13000	1		R	1000	1	2200000	1	6000 J
Di-n-butyiphthele	te	2500	Ů	46000		1000		180000	U.	49000 U
PLUDFERICHERE		25000	1	52000	ĩ	3800	1	2000000	1	200000 J
Butylbenzylphthal	ate	2300	Ū	46000	Ū	740	Ū	180000	Ū	49000 U
3,3'-Dichlorobenz	idine	4600	U	91000	U	1500	U	360000	U	97000 U
Senzo(a)anthracen	•	6500	1	50000	1	690	j.	420000	ł	40000 J
Chrysene	\ <b>abt</b> halata	9600	J	83000	J	1100	J.	310000	J	45000 J <u>48</u> 00 R
Bi-n-octvichthaia	/priinelaid te	2300	Ū.	46000	ū	740	ū	180000	Ū	49000 LL
Benzo(b)fluorenth	ene	11000	J.	230000	Ĵ	1100	J	260000	ī	23000 J
Benzo(k)fluoranth	ene	2300	U	170000	J	920	J	250000	J	18000 J
Senzo(a)pyrene		4400	٩.	180000	ļ	670	4	230000	٩.	16000 J
Indeno(1,2,3-cd)p	yrene	2000	J.	/8000 44000	J U	510 740	đ U	53000	4	
Benzola h ilenui	Gene	1900	3	77000	J	740	ŭ	51000	1	49000 LI
		•••••	•••		• • •		•••	•••••		

٠

۲

#### NOSS-AMERICAN SURFACE SOIL SEMIVOLATILES

. :

• •.

Sample No.:	MA-88053-02	MA-55061-02	MA-55064-02	MA-85066-02	MA-85078-02
TR NO.:	EW645	EU049	EN653	<b>BNB</b> 50	EN645
•••••		*********	•••••	•••••	•••••
<b>B</b>					
		*************			
Phenol	790 U	710 U	230000 U	860 U	760 U
bis(2-Chloroethyl)ether	790 U	710 U	230000 U	860 U	760 U
Z-Chlorophenol 1 Z-bichioschenzen	790 U	710 U	230000 U	860 0	760 U
1.4-Dichlorobenzene	790 0	710 0	230000 1	860 U	760 U
Benzyl alcohol	790 U	710 U	230000 U	860 U	760 U
1,2-Dichlorobenzene	790 U	710 U	230000 U	860 U	760 U
2-Nethylphenol	790 U	710 U	230000 U	60 U	760 U
4-Nethylphanol	790 0	710 0	230000 M	860 U	760 U
N-Nitroso-di-n-propylamine	790 U	710 U	230000 0	860 U	760 U
NexachLoroethane	790 U	710 U	230000 U	860 U	760 U
Nitrobenzene	790 U	710 U	230000 U	860 U	760 U
1sepherone 2-Mitconhenol	790 0	710 0	230000 U	860 U	7600
2.4-Dimethylphenol	790 U	710 U	230000 U	860 U	760 U
Benzoic Acid	3800 U	3500 U	1100000 U	230 J	3700 U
bis(2-Chloroethoxy)methane	790 U	710 U	230000 U	860 U	760 U
2,4-Dichlorophenol	790 0	710 U	250000 0	860 0	760 0
Nachthaiene	790 U	130 4	+ 230000 U	860 U	760 U
4-Chloroeniline	790 U	710 U	230000 U	860 U	760 U
Nexachiorobutadiene	790 U	710 U	230000 U	860 U	760 U
4-Chloro-3-methylphenol	790 U	710 U	230000 U	860 U	760 U
Z-Methylnephtnelene Nevechlosocytlopentediene	790 0	710 0	230000 0	860 0	760 U
2,4,6-Trichlorophenol	790 U	710 U	230000 U	860 U	760 U
2,4,5-Trichlorophenol	3800 U	3500 U	1100000 U	4200 U	3700 U
2-Chloronaphthalone	790 U	710 U	230000 U	860 U	760 U
Z-Nitrosniline	3800 0	3500 0	1100000 0	4200 U 840 U	3700 0
Acenechthylene	790 0	710 0	30000 J	860 U	760 U
2,6-Dinitrotoluene	790 U	710 U	230000 U	860 U	760 U
3-Nitroaniline	3800 U	3500 U	1100000 U	4200 U	3700 U
Acenaphthene	790 U	710 U	1200000 J	860 U	760 U
4-Witrophenol	3800 0	3500 0	1100000 U	4200 U	3700 U
Dibenzofuran	790 U	69 J	210000 J	860 U	760 U
2,4-Dinitrotoluene	790 U	710 U	230000 U	860 U	760 U
Disthylphthalate	790 U	710 0	230000 U	860 U	760 U
e-Chlorophenyl-phenylether	790 0	710 0	480000 1	860 U	760 0
4-Nitroeniline	3800 U	3500 U	1100000 U	4200 U	3700 U
4,6-Dinitro-2-methylphenol	3800 U	3500 U	1100000 U	4200 U	3700 U
N-Nitrosodiphenylamine	790 U	710 U	230000 U	860 U	760 U
4-Bromophenyl-phenylether	790 0	710 0	250000 0	840 0	760 0
Pentachiprophenol	3800 U	3500 U	1100000 U	4200 U	3700 U
Phenenthrene	790 U	350 J	320000 J	860 U	760 U
Anthracene	790 U	140 J	440000 J	860 U	760 U
Di-n-butylphthalate	790 0	710 U	230000 U	510 8	230 B
Pruorentneme Pyrane	110 8	300 B	1800000 J	860 1	760 U
Butylbenzylphthalate	790 U	710 U	230000 U	860 U	760 U
3,3'-Dichlorobenzidine	1600 U	1400 U	450000 U	1700 U	1500 U
Senzo(a)anthracene	79 J	110 J	380000 J	860 U	760 U
ble(7-Sthylehervilehereiste	110 J 196 B	200 3	26000 B	320 2	300 R
Di-n-octylphthalate	790 L	710 U	230000 U	860 U	760 U
Senzo(b)fluoranthene	130 J	470 J	270000 J	860 U	760 U
Benzo(k)fluoranthene	170 J	710 U	240000 J	860 U	760 U
Senzo(s)pyrene	52 J	140 J	200000 J	000 U 940 II	700 0
Sibenz(1,4,3°CO)pyrene Dibenz(4,1)anthracene	790 0	200 J 710 L	230000 L	260 L	760 U
Senzo(g,h,i)perviene	790 U	330 J	51000 J	860 U	760 U

٩

1

.

NDSS-AMERICAN SURFACE SOIL SEMIVOLATILES ----

.-----

۰,

Sample No.	: MA-55081-02		MA-85089-02		MA-\$\$113-02		MA-8\$129-02		NA-55142-01
TR No.	: EN647		EU857		<b>EV658</b>		EV646		EUB44
*****	************	•••	**********				***********		
Parameter									
	•••••			•••					*****
Phenol	750	U	46000	U	130000	U	110	8	800 U
bis(2-Chloroethyl)ether	750	U	46000	U	130000	U	910	U	800 U
Z-Chiorophenol	750	Ü.	46000	U	130000	U.	910	U	800 U
1,3-Dichloschenzene	/30		46000		130000	N.	910		800 1
Benzvi alcohol	750	ŭ	46000	ŭ	130000	ŭ	910	ŭ	800 U
1.2-Dichlorobenzene	750	Ū	44000	Ū	130000	ŭ	910	Ū	800 U
2-Nethylphenol	750	Ŭ	46000	Ŭ	130000	Ū	910	Ū	800 U
bis(2-Chloroisopropyl)ether	750	U	46000	U	130000	U	910	บ	800 U
4-Nethylphenol	750	U	46000	U	130000	U	910	U	800 U
N-Nitroso-di-n-propylamine	750	U.	46000	U.	130000	U	910	U	800 U
Mexachi oroethane	750	U.	48000		130000	U	710		800 0
Incohorope	750		44000	ň	130000	ŭ	910		800 0
2-Nitrophenol	750	ū	46000	ū	130000	ū	910	ū	800 U
2,4-Dimethylphenol	750	Ŭ	46000	Ŭ	130000	Ū	910	Ū	800 U
Benzoic Acid	3600	U	220000	U	620000	U	280	J	<b>390</b> 0 U
bis(2-Chloroethoxy)methane	750	U	46000	U	130000	U	910	ป	800 U
2,4-Dichlorophenol	750	U	46000	U	130000	Ü	910	Ü.	800 U
1,2,4-Trichlorobenzene	750	U	46000	U	130000	Ů,	910	Ů,	0 005
A Chiorospiline	730	U.	A4000	11		لو 11	910	J 11	900 J 900 J
Nexachiocolutadiene	750	ŭ	46000	ŭ	130000	ŭ	910	ŭ	800 U
4-Chloro-3-methylchenol	750	ŭ	66000	Ū	130000	ŭ	910	Ū.	800 B
2-Nethylnephthalene	750	Ū	990000	Đ.	200000	Ĵ.	510	Ĵ	800 U
Nexachiorocyclopentadiene	750	U	46000	U	130000	U	910	U	800 U
2,4,6-Trichlorophenol	750	U	46000	U	130000	U	910	U	800 U
2,4,5-Trichlorophenol	3600	U	220000	U	620000	U	4400	U	3900 U
2-Chloronaphthalene	750	2	46000	U.	130000	U	910	U.	U 008
2-WITFOUTILITE Dimethylabthalata	3000	U.	220000	ų,	130000		44UU 810		800 0
Acanachthylana	750	ŭ	9200	ĭ	18000	ĭ	910	มั	800 U
2.6-Dinitrotoluene	750	Ū	46000	Ũ	130000	Ū	910	Ū	800 U
3-Nitrosniline	3600	U	220000	U	620000	U	4400	Ü	3900 U
Acenaphthene	750	υ	1700000	DJ	930000	J	910	U	800 U
2,4-Dinitrophenol	3600	U	220000	U	620000	J	4400	U	3900 U
4-Nitrophenol	. 3600	U	220000	U.	620000	U.	4400	Ų.	3900 U
2 4 Distantalussa	750		120000	- D-3	130000		<b>27</b> 0	ال 11	800 0
Biethvichtheiste	750	มั	46000	ŭ	130000	ŭ	910	0	800 U
4-Chlorophenvl-phenvlether	750	ม	46000	Ū	130000	Ū	910	Ū	800 U
Fluorene	750	Ũ	1100000	ĎJ	950000	Ĵ.	910	Ū	800 U
4-Nitroaniline	3600	U	220000	U	620000	U	4400	U	3900 U
4,6-Dinitro-2-methylphenol	3600	IJ	220000	U	620000	U	4400	U	3900 U
N-Nitrosodiphenylamine	750	U	46000	U	130000	U	910	U	800 U
4-Bromophenyl-phenylether	750		46000		130000	U.	910	U	800 U
Rexact Longbonzene	730	U.	220000	H	130000		910	U	800 U
Pentachtorophenot	750	ŭ	2000000		2400000	n.	1100		3700 0
Anthracene	750	ũ.	390000	1	710000	1	230	1	800 U
Di-n-butylphthelate	480	ī	46000	Ū	130000	Ū.	980	i	170 8
Fluoranthene	750	U	1100000	DJ	1700000	J	800	Ĵ	800 U
Pyrene	750	U	100000	DJ	1200000	J	600	J	800 U
Butylbenzylphthalate	750	U	46000	U	130000	U	910	U	800 U
3,3'-Dichlorobenzidine	1500	U.	93000	Ņ	260000	ĥ.	1800	IJ	1600 U
	730	U 11	1/0000	الە ر	320000	1	200 870		800 U 800 H
bie/2. Ethyl shawyl labebal ses	130	ž	120000	ž	300000	í	730		500 U 176 B
Bi-n-octvinthalate	750	ŭ	000044	ŭ	130000	ū	910	Ū	800 U
Senzo(b)fluoranthene	750	Ū	78000	Ĵ	160000	J	710	J	800 U
Benzo(k)fluoranthene	750	U	78000	J	190000	J	380	j	800 U
Benzo(a)pyrene	750	U	71000	J	160000	J	260	J	800 U
Indeno(1,2,3-cd)pyrene	750	U	13000	J	34000	J	160	J	800 U
Dibenz(a,h)anthracene	750	U	46000	Ų	130000	Ů,	910	Ŭ	800 U
senzo(g,h,1)perylene	750	U 	12000	ل. 	31000	ية. معاد	<b>22</b> 0	ل • • •	500 U
		_							

#### (Page 1 of 3)

.

.

NOSS-AMERICAN SURFACE SOIL VOLATILES

-

-

Sample No.: TR No.:	MA-SSF805-01 EV862 Field Blank	MA-SSF806-01 EV863 Field Blank	NA-55012-02 EV851	MA-SSD12-02FR EMB60 Replicate	NA-55015-02 EV1052	MA-SS015-02FR EV061 Replicate	MA- <b>85918-02</b> EV854	MA-85024-02 EV855	MA- <b>85030-02</b> EV859
Parameter	Conc. (ug/kg)								
Chloranethane	<b>10</b> U	<b>10</b> U	12 U	12 U	12 U	12 U	12 U	11 U	57 U
Bromomethane	10 U	10 U	12 U	12 U	12 0	12 V	12 Ū	11 Ŭ	57 U
Vinyl chloride	10 U	10 U	12 U	12 U	12 U	12 U	12 U	11 U	57 U
Chloroethane	10 U	10 U	12 U	12 U	12 U	12 U	12 U	11 U	57 U
Hethylene chloride	5 U	5 U	3 U	23	6 U	6 U	6 U	6 U	29 U
Acetone	8 8	98	11 8	58	63 J	17 8	72 J	11 8	260 J
Cerbon disulfide	5 U	5 U	6 U	6 U	6 U	6 U	6 U	6 U	29 U
1,1-Dichloroethene	5 U	5 U	6 U	6 U	6 U	6 U	6 U	6 U	29 U
1,1-Dichloroethane	5 U	5 U	6 U	6 U	6 U	6 U	6 U	6 U	29 U
1,2-Dichloroethene (total)	) 50	5 U	6 U	6 U	6 U	6 U	6 U	6 U	29 U
Chloroform	5 U	5 U	6 U	6 U	6 U	6 U	6 U	6 U	29 U
1,2-Dichloroethane	5 0	5 U	6 U	6 U	6 U	6 U	6 U	6 U	29 U
2-Butanone	6 J	9 J	R	R	12 8	R	78	88	63 8
1, 1, 1-Trichloroethane	5 U	5 U	6 U	6 U	6 U	6 U	6 U	6 U	29 U
Carbon tetrachloride	5 U	5 U	6 U	6 U	6 U	6 U	6 U	6 U	29 U
Vinyl acetate	10 U	10 U	12 U	12 U	12 U	12 U	12 U	11 0	57 U
Bromodichloromethane	5 U	5 U	6 U	6 U	6 U	6 U	6 U	6 U	29 U
1,2-Dichloropropene	20	5 U	6 U	6 U	6 U	6 U	6 U	6 U	29 U
cis-1,3-Dichloropropent	5 U	50	6 U	6 U	6 U	6 U	6 U	6 U	27 U
1richloroethene	<b>7</b> U	5 U	0 U	6 U	0 U	6 U	6 U	0 U	27 U
Dibromochioromethane	2 U 8 H	5 U	6 U	0 U	0 U	0 U	6 U	6 U	27 U
1,1,2-Irichloroethane	5 U 5 U	5 U	0 U	6 U	5 U	0 U	0 U	0 U	27 0
terne t tobleblesensense	2 U 8 H	5 V 5 H	0 U 4 H	5 U 4 U	0 U 4 H	0 U 4 H	0 U 4 H	0 U 4 H	
trans-1,5-propropene	5 U 8 H	5 U 8 H	0 U 4 H	0 U 4 H	0 U 4 M	5 U 4 H	6 U 4 H	0 U 4 H	27 0
4 Mathul - 2-mentenene	5 U 10 H	5 U 10 H	12 11	17.4	17 11	12 M	47 H	5 U 1 J	
2. Neverano	10 1		12 0	12 0	12 0	12 0	12 0		87 11
totrachi acosthana	5 11	5 11		4 11	4 11	12 0	12 0		570
1 1 2 2 totachlosothem	10 11	10 11	12 11	12 11	17 11	13 11	42 11	11 11	87 11
Toluge	5 11	5 11	21 1		12 0		25 1	27 1	10
Chiocobenzene	50	5 0	<b>A</b> 11	4 11	4 H	55 U 4 H	25 U 4 H	<b>4</b> 11	20 11
F thvi henzene	50	50	1 0 1 1	U 0 U A	6 U 4 A	5 U 4 H	• •	6 U 4 H	450 1
Cturana	50	50	4 H		4 U	4 U		5 U 4 H	
Xylene (total)	5 U	5 U	6 U	6 U	6 U	6 U	5 1	6 U	1100 J

# NOSS-MERICAN SURFACE SOIL VOLATILES

Sample No.: TR No.:	MA-85030-02 EM056	MA-55053-02 ENB45	MA-55061-02 EN849	HA-55064-02 EM853	60-920 ENG20	MA-850778-02 EV048	MA-88081-02 EU047	M-55089-02 EN857	MA-85113-02 EM858
Peruneter									
	N 01			2		t) =			3
Bremunetherne	a 67	12 6	11		13 0	12 0		1200 4	
Vinyl chloride	n 67	12 U				12 U		1200 U	
Chloroethere	N 67	U 21	1	23	13 0	12 0	11 0	1200 U	3
Nethylene chloride	24 U	9 G	2 C		U 7 U	8 U	0-	600 U	16 6
Acetone	r 012	12 U	13 8	19	- -	98	5 8	3000 8	33 0
Carbon disulfide	24 U	6 U	2 5	u 11	U 7 U	0 U	- C	000 U	16 U
1, 1-Dichloroethene	24 0				7 6	6 C	• •	A 609	16 U
1,1-Dichloroethane (total)		> • = =			70			r 012	
Chloroform	24 6			3	7 0	6 C	6 (	000 U	200
1,2-Dichloroethene	24 U	6 U	A 5	U 11	1 7 U	0 O	<b>6</b> E	000 U	16 6
Z-Butanone	37 8			12 0		; 7		6300 8	
Cerbon tetrachieride	24 6	6 C			7 6				5 8
Vinyl acetate	1 67	12 U		23	13 0	12 0	5 U	1200 U	
Brandich lerenethere	24 0	6 C	2		U 7 U	<b>6</b> U	8 U 9	U 009	16 U
1,2-Dichteropropere	2 N E				70	6 E		600 U	a c
cis-1,3-Dichlorapropent	24 U				78				
b throught or one there					7 6				5 8
1, 1, 2-Trickloreethane	24 0	6 (			7 0	6 C	6 (	600 u	16 6
Senzene	, 11 ,	6 U	8 S	- 11 0	1 7 U	9 9	9 0 1	000 U	*
trans-1,3-Bichloropropene	2 V V	6 8	2	11	7 U	6 U	6 U	U 809	16 U
Bramofort	2 2	6 U	2 U	1	70	90	6 U	000 U	16 U
4-Methyl-2-pentanone	1 d y	12 0			13 0	12 0	11	1200 U	33 6
2- Hexandria		0 21		: 2	13 0	A 21	. 1		3
1.1.2.2-Tetrachtoroethene	2 6 7 2 2 2	12 8				10 0			
Toluene	7 002	18	r 12	1 052	- X2	r 29			- 00)
Chlorobenzene	24 U	0 0	5	1	7 4	•	6 C	D 009	16 0
Ethylbenzene	r 072	6 U	2 6	11 6	9 7 8	<del>ہ</del> د	•	r 0091	L 12
Styrene	24 U	6 U			70	6 U	6 U	r 0092	16 U
	78	<u>ہ</u> د			7 8				

٩

(Page 2 of 3)

۰.

NOSS-ANERICAN SURFACE SOIL VOLATILES

			- 1
Par anet er			
Chil or ome there	14 U	12 U	
Bromone there	14 U	12 U	
vinyl chloride	14 U	12 U	
Chi oroethene	14 U	12 U	
Nethylene chloride	<b>n</b> ~	9	
Acetone			
carbon disu(fice			
1 2-Dichiorocheme (total)			
chlorafore	. ~		
1.2-Dichloraethene	n 4	9.9	
2-But shone		1	
1, 1, 1-Trichloroethere	7 0	39	
Carbon tetrachieride	7 0	3 4	
vinyl acetate	14 U	12 U	
Browdicht oromethene	D ~	9	
1,2-01ch(oropropene		) •	
cis-1,3-0 ichi oropropene	> :		
1.1.2.frichteronthene	- ~		
Benzene	7 0	9	
trans-1,3-Dichloropene	7 0	79	
Branoform	7 0	9	
6-Methyl-2-pentanone	14 U	12 U	
2-Nexanone	14 U	12 N	
Tetrachloroethene	9 ~	9	
1,1,2,2-Tetrachioroethane	14 U	12 U	
tol vene	2 1	120 01	-
chlorobenzene	7 (	N 9	
E thy I benzene	7 U	A 9	
Styrene	7 U	9	
Kylene (total)	7 U	6 U	

1

¥

(Page 3 of 3)

9

٩_

.

, •

NOSS-AMERICAN SURFACE SOIL DIOXIN

-

-

#### SAMPLING DATES: 6/29/88 to 6/30/88

Sample No.: OTR No.: Comments:	MA- <b>SSO12-02</b> E172	MA-SS012-02FR E175 Replicate	MA-85015-02 E178	MA-SS015-02FR E181 Replicate	MA-55018-02 E184	MA- <b>55024-02</b> E 187	MA- <b>85030-02</b> E190	M-55038-02 E 163
Parameter (ng/g)								
Tetrachloro furan (Total)	0.0090 U	0.0053 U	0.011 U	0.0078 U	0.028 U	0.017 U	0.13 U	0.033 U
Tetrachloro furan (2,3,7,8)	0.0090 U	0.0053 U	0.011 U	0.0078 U	0.028 U	0.017 U	0.13 U	0.033 U
Pentachloro furan	0.063 U	0.043 U	0.12 U	0.077 U	0.86 U	0.059 U	0.45 U	0.20 U
Nexachloro furan	0.059 U	0.041 U	0.044 U	0.025 U	0.028 U	0.019 U	0.050 U	0.066 U
Neptachioro furan	0.13 U	0.064 U	0.065 U	0.069 U	0.036 U	0.027 U	0.13 U	0.050 U
Octachloro furan	0.27 U	0.28 U	0.29 U	0.59 U	0.26 U	0.062 U	0.46 U	0.47 U
Tetrachloro dioxin (Total)	U 050.0	0.016 U	0.024 U	0.013 U	0.019 U	0.013 U	0.14 U	0.013 U
Tetrachloro dioxin (2,3,7,8)	0.020 U	0.016 U	0.024 U	0.013 U	0.019 U	0.013 U	0.14 U	0.013 U
Pentachloro dioxin	9.040 U	0.022 U	0.054 U	0.045 U	0.059 U	9.025 U	0.25 U	0.058 U
Nexachloro dioxin	0.062 U	0.030 U	0.063 U	0.073 U	0.077 U	0.033 U	0.16 U	0.058 U
Neptechloro dioxin	0.83	0.46	0.074 U	0.11 U	0.066 U	0.042 U	1.0 J	0.070 U
Octachloro dioxin	2.0	1.4	0.36 U	0.64 U	0.47 U	0.20 U	4.3 J	0.40 U
***********************************								

(

.

(

(Fage 2 of 3)

9

NOSS-ANERICAN SURFACE SOIL DIOXIN

41	Coments:	M-55053-02	MA-55061-02 E 169	MA-55064-02 E166	M-55066-02 E196	M-55078-02 E199	M59081-02 E193	2023 20-40068 - Wi	M1-55113-02 E160
Parameter (ng/g)									
Tetrachloro furan	(total)	0.0006 U	0.035 U	0.44 U	0.013 U	0.010 U	0.025 U	0.030 V	0.14 U
Tetrachioro furan	(2,3,7,8)	0.0096 U	0.035 U	1 0.44 U	0.013 U	0.010 V	0.025 U	0.030 U	0.14 U
Pentachloro furan		0.10 U	0.24 U	1 2.9 0	0.12 U	0.12 0	0.17 U	1.9 U	0.34 U
Nexachloro furen		0.028 U	0.082 0	1 0.32 U	0.038 U	0.024 U	0.039 U	0.005 U	0.004 U
Neptachloro furan		0.040 U	9.20	0.42 U	0.075 U	0.062 U	0.17 U	0.11 0	0.062 U
Octachioro furan		0.14 U	1.5 U	1 2.0 U	0.36 U	0.27 U	0.43 U	0.60 0	0.28 U
tetrachioro dioxin	( ( totel )	0.0081 U	0.020 U	0.31 U	0.014 U	0.013 U	0.021 0	0.056 U	0.047 U
Tetrachlore dioxin	1 (2,3,7,8)	0.0061 U	0.020 U	1 0.31 U	0.014 U	0.013 U	0.021 U	0.056 U	0.047 U
Pentechtore dioxir		0.060 U	7 02.0	1 2.5 U	0.062 U	0.048 U	0.074 U	0.45 U	0.23 U
<b>Nexachloro dioxin</b>		0.040 U	0.11 0	U 74.0	0.097 U	0.060 U	0.11 U	0.35 U	0.10 U
Heptechlore diath	-	0.041 U	<b>0.26</b> U	10.40 UF	0.090 U	0.11 U	0.13 U	0.15 U	0.12 U
Octachtoro dioxin		0.21 U	1.2 U	1 2.5 W	0.90 U	0.42 U	U 59.0	0.47 U	0.40 U

۰
(Fege 3 of 3)

• •

MDSS-AMERICAN SURFACE SOIL DICKIN

	Sample No. : OTR No. : Coments:	M-55129-02 E205	MA-55142-01 E135	MA-SSFB05-01 E205 Field Blank	MA-SSF906-01 E211 Field Blank
arameter (ng/g)	•    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •    •				
letrachiore furan	(lotal)	0.0072 U	0.012 U	0.0055 U	0.0003 U
letrachloro furan	(2,3,7,8)	0.0072 U	0.012 U	0.0055 U	0.0063 U
Pentachloro furan	_	0.10 U	000.0	0.048 U	0.002 U
lexachiaro furen		0.037 U	0.021 U	0.014 U	0.030 U
teptachlore furen	_	0.13 U	0.033 U	0.019 U	0.030 U
<b>Detachlore furan</b>		0.26 U	0.13 U	0.058 U	0.006 U
fetrachioro dioxi	n (Total)	0.13	0.011 U	0.0000	0.014 U
letrachioro dioxi	n (2,3,7,8)	0.11	0.011 U	0.0000 נ	0.014 U
Pentachiono dioxi	E	0.063 U	0.062 U	0.035 U	0.069 0
Nexachioro diaxin	_	0.063 U	0.042 U	0.035 U	n 620.0
leptachiere dioxi	5	0.11 U	0.037 U	0.019 U	0.027 U
Octachiore diaxin	_	9.26 8	0.16 U	0.056 U	0.11 U

٠

۲

(Page 1 of 2)

NOSS-ANERICAN SURFACE SOIL INORGANICS

Semple ID: 18 No.:	M-SSFB05 HEW39 Field Blank	M-SSF806 NEW40 Field Blank	MA-55012-02 NEUK28	MA-SSO12-02FR NEWA37 Replicate	MA-55015-02 NEW/29	MA-SSO15-02FR NEUK38 Replicate	MA-55018-02 NEMA31	M-\$\$026-02 NEW32	MA-85030-02 NEW36	M-55038-02 MEM533
brameter	Conc. (mg/kg)									
l unime	36.3	42.8	09/1	4830	5810	6360	2000	2610	6540	2360
int imony	*	*	0.43 8	1.0 8	2.5 8	3.2 J	0.25		0.45 8	1.5 8
Irenic	0.16 J	0.00 V	22.7	<b>46.8</b>	15.8	23.8 J	1.7	1.r	2.1	1.4.7
	8.6 J	7.5 U	4.49	52.2	<b>61.6</b>	67.4	3.5	41.7	65.8	124
lery ( ) ( un	l 85.0	0.21 U		0.87 J	1.2	1.0.1		0.72 J	0.53 J	1.2
	0.49 U	U 44.0	5.4	4.4	8.3	6.0	10.2	3.0 8	8.2	5.5
alcium	56.1 J	59.62	62400 J	F 80562	36700 J	27300 1	130000 J	123000 J	F 00099	13100 1
thranium	1.3 U	1.3 U	36.9	36.2	35.7	21.1	9.5	12.5	81.2	29.7
obel t	2.7 U	2.7 U	r 0.9	1 9.7	11.8	2.1.2	8.1 1	6.4.1	1.1.1	9.4 1
opper	2 J	1.9 U	, E	23.5 J	1 351		137 J	19.6 J	27.5 J	27.6 J
E L	62.2	9.R	17100	11200	32200	20922	90662	Divide Boxed	16100	15200
	0.41 J	0.24 J	<b>85.1 J</b>		519 1	335 J	59.1 1			116 J
lagres i un	27.9 U	27.9 U		r 001/62	16000 J	12100 J	- 90095	60200 1		
lengenese	1.2.1	0.70 U	3	5	3	Ŕ	8	22	515	2
tercury	0.81 J	0.63 J	0.37 J	0.61 J	3.9 J	2.6 J	1 66.0	1 62.9	1.1 J	7 67.0
lickel	3.0 U	3.0 U	21.9	17.8	2.0	17.4	7.92	13.8	15.6	21.7
Potessium	92.2		r 817		55	521 4			r 926	<b>1</b> 23
selentum	0.09 U	0.89 U	1.10	1.1 U	1.0 U	0.96 0		0.02 0	0.96 U	1.1 U
silver	1.5 U	1.5 U	1.9 U	2.0 U	1.9 U	1.6 U	1.9 0	1.7 0	1.9 0	1.9 U
sodium	1 661	1 26 1	10501	F 666	0671	L 0001	1210	7 639		1 924
that Live	0.18 U	0.15 U	0.50	0.21 U	0.52 8	0.26	0.60	0.40	0.60	0.62 8
Venedium	2.9 U	2.9 U	5.R	18.7	r.e	17.9	27.9	14.7	19.4	14.6
the	22.2 J	31.0 J	F 668	626 J	1200 1	10201	1890 4	260 1	2500	F 168
yanide	1.5 U	1.5 0	3.0 1	1.5 0	1.5 0	1.5 U	1.5 U	1.5 0	1.6.1	2.3 J

.......

:

۱.

)

### •

(Pege 2 of 2)

•

MOSS-AMERICAN Surface Soil Inorganics

Sample ID: TR No.:	M-\$\$053-02 NEW/22	MA-\$\$061-02 NEWA26	MA-\$\$064-02 New30	NN-\$5066-02 NEWA27	20-02055-W	MA-55081-02 HEWK24	NN - \$5089 - 02 NEW 34	M-\$\$113-02 NEM35	M-55129-02 NEW23	M-\$\$142-01 NEW21
Pereneter										
Atum	10300	2260	855	12300	164.00	15100	14 108	9562	8266	13060
Ant leony	0.43 8	0.39 8	2.2 8	e	0.53 J	0.41 8	0.44	~	1.5 8	1.2 8
Arsenic	1.0 0	1.0.1	<b>6.5</b>	3.2 4	2.6 J	3.6	5.6	2	•.8	1.8.1
Berica	7.6 7	19.91	2.1	1 1 1 1	86.5	<b>6</b> .3	2.2	191	113	<b>1</b> 2
Beryllium	0.65 J	0.45 4	- K	1.2	1.2	1.1	0.67 J	1.4.1	1.3	
Cedhiu	4.0	2.8 8	19.8	6.4	6.7	6.7	5.6	1.K	6.2	9-9
Celeium	16000 1	162000 J		11400 1	103000 1	1 00124	62100 1		21200 J	61100
Chromium	16.8	8.6	12.4	19.9	27.9	28.5	23.6	19.0	17.8	2.2
Cobel t	5.9 1	1.9.1	5.1.1	<b>8</b> .6	14.4	12.6	13.6	9.5 J	10.2	10.0
Copper	12.0 1	8.0 J	22.6 J	36.6 1	22.5 J	31.9 J	22.9 1	20.0	42.6 1	87.2 J
Iron	10400	9370	11100	12000	20200	1986	21200	806Y	22(00	10400
Lead	10.7 J	4.7.1	28.6 J	21.9 J	11.4 J	1 9.7	14.8 J		76.7 J	20.5 1
Negresiun	r 0596	7 00713	F 00/62	F 0077	7 0000	F 00682	22000 1		P 00111	22100
Nergenese	92.6	676	<b>R</b>	Ī	<b>8</b>	283	<b>6</b> 2	<b>19</b>	2	
Nercury	1.4.1	9.51 4	0.15 4	0.72 1	1.82.0	1 82.0	1.3 4	- 32.0	9.50	
Nickel	11.2	14.2	12.3	23.0	2°.5	27.7	•.9	21.4	21.6	20.5 J
Pot <b>aes fun</b>			877 J	812 J	RS	2140	1620		1 892	127
Selenium	1.10	4.9 U	0.90 U	2.1	7.8 5	0.97 U	1.10	1.1	1.2 0	1.0 4
Silver	1.9 0	1.0 U	1.9 U	1.8 U	1.9 0	1.8	2.0 U	2.0 0	2.1 U	1.9 U
Sodium	1130	655 J	1 069	612 4	- 659 -	1500		7 36		r 249
The Li Lun	0.57 8	28.0		0.30	8 62.0	0.42	0.40	- 3.0	0.42 8	l 2.0
Venedius	15.5	12.2	19.3	38.2	33.0	32.6	5.3	22.4	27.2	33.4
zinc	145 J		F 0926	r 161	112 J	121 J	r 921			202
Cyanida	1.5 U	1.5 U	1.5 U	1.5 0	1.5 0	1.5 U	1.5 0	1.5 0	1.5 0	2.4 1

•

## MOSS AMERICAN RI SURFACE SOIL TREATMENT PARAMETERS SAS No.: 3770E

# SAMPLE BATES: 6/29/88 to 6/30/88

Manager (Ma):  20  20  20    X Mointure  20  57  53  60    X Nointile Matter  20  57  53  60    X Fined Carbon	Sample ID: M-55012-02 M-55012-02FR M-55015-02 M- TR No.: E171/E173 E176/E176 E177/E179 Comments: Replicate
3 3 3 3 3 3 3 3 3 3 3 3 3 3	M-55012-02 E171/E173
525 55 55 55 55 55 55 55 55 55 55 55 55	M-55012-02FR E174/E176 Replicate
5000 U U U U U U U U U U U U U U U U U U	MA-55015-02 E177/E179
8868×-268-268855 2888	MA-SS015-02FR E 180/E 182 Rept i cate
e ee	MA-\$\$018-02 E 183/185
C CC CC C	NA-55024-02 E 186/E 188
Soo a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a see a	MA-55030-02 E 189/E 191
	MA-55030-02 E162/E164
	<b>WA-55053-02</b> /E 158
	IM-55061-02 /E170

t

٠

(Page 1 of 2)

MOSS AMERICAN RI SURFACE SOIL TREATMENT PARAMETERS SAS No.: 3770E

Sample ID: TR No.: Comments:	MA-55064-02 E165/E167	M-55066-02 E195/E197	M- <b>55078-0</b> 2 /E200	M-55001-02	M-55089-02 E201/E203	NA-55113-02 E159/E161	NA-55129-02 /E206	MA-85142-01 E147/E123	IM-557805-01 E207/E209 Field Blank	MA- <b>85F006-01</b> E210/E212 Field Blank
NANCO LAS:										
X Noisture	8	8	:	:	10	40	:	2	10	0 =
7 Ash	52	3:	:	:	8 1	5	:	28	8	i a
X Volatile Hatter	3	-	:	:	26	24	:	<b>F</b> :		
X Fixed Carbon		-	:	:			:			
			:	:			:			
VERSAR LAB:			:	:			:			
X Carbon (dry)	8	7.87	:	:	12.3	28.9	:	•. 8	-	2
X Carbon (as rec'd)	19.8	6. Q4	:	:	9.95	13.8	:	5.22	-	
X Oxygen (dry)	6.5	7.2	:	:	6.4	5.5	:	9.5	•	0
X Oxygen (as rec'd)	10	26.2	:	:	20.9	49.1	:	20.1		•
X Hydrogen (dry)	0.46	0.43	:	:	-0.37	-1.49	:	•.8	•	
X Hydrogen (as rec'd)	1.86	2.94	:	:	1.84	5.14	:	1.57	•	<b>u</b>
X Hitrogen (dry)	1.2 (	1.3 1	:	:	1.2 0	J 2.1 U	:	1.2 (	-	
X Hitrogen (as rec'd)			:	:	-		:	-	-	
X Ash (dry)	2	<b>%</b> 5	:	:	83.2	67.1	:	<b>3</b> .4	18	18
X Ash (as rec'd)	60.2	<b>64.8</b>	:	:	67.3	X	:	73.1	18	18
X Sulphur (dry)	1.2 (	1.31	:	:	1.2 1	J 2.1 U	:	1.2 (		
X Sulphur (as rec'd)	-	-	:	:	-		:	-		
X Noisture	7	23.3	:	:	19.1	52.3	:	13.4	•	9
TOC (mg/kg)	85600	59500	4100	12200	56000	127000	67600	18508	12	• 624
Chloride (mg/kg)	37.1	13.8	:	:	13.9	33.8	:	13.3	8.5	8
Flashpoint (degrees F	5	75	:	:	143	136	;	16	623	<b>6</b> 230
BTU (per lb.)	2214	200 I	:	:	200	J 005	:	500	200	u 200 u
X Total Solids			<b>55.</b> 8	87			<b>69.</b> 5			

٩

٩

(Page 2 of 2)

### NDSS-AMERICAN BUBSURFACE SOILS BENIVOLATILES

۰ •

1

Sample No.: TR No.:	MA-SB001-01 EU803	NA-58002-01 EN869	MA-58003-01 EV842	NA-58003-02 EV643	NA-SBFB03 EU874 Field Blank
**********************	Conc.	***********			
Parameter	(ug/kg)				
			**************		
bis/2-Chiorosthyl Jether	750 0	780	u 370	U 360	U 460 U
2-Chlorophenol	750 0	780	u 370	u <b>36</b> 0	U 660 U
1,3-Dichlorobenzene	750 U	780	U 370	U 360	U 660 U
1,4-Dichlorobenzene	750 U	780	U 370	U 360	U 660 U
Senzyl Biconol 1. 2-Dichiorobenzene	750 U	750	U 370	U 360	U 860 U
2-Nethvishenol	750 0	780	u 370	u 360	ม <u>สร</u> บบ
bis(2-Chloroisopropyl)ether	750 U	780	U 370	U <b>36</b> 0	U 660 U
4-Nethylphenol	750 U	780	U 370	U 360	ย 🍪 ย
N-Nitroso-di-n-propylamine	750 U	780	U 370	U 360	<u>ຢ 660 ປ</u>
Mexachioroethane	750 0	750	U 370	U 360	U 00UU
Isophorone	750 U	780	U 370	U 360	ม <u>66</u> 0 ม
2-Nitrophenol	750 U	780	U <b>37</b> 0	U <b>36</b> 0	U 660 U
2,4-Dimethylphenol	750 U	780	U 370	U <b>36</b> 0	ປ 660 ປ
Benzoic Acid	3700 U	3800	U 1900	U <b>1800</b>	U 3200 U
Dis(2-Chloroethoxy)methane	750 0	750	U 370	U 360	U 860 U
1 2 4-Trichlorobenzene	750 0	780	U 370	U 360	ย 660 ย
Nachthalene	750 U	780	J 370	U 360	น 660 บ
4-Chlorosniline	750 U	780	U 370	U <b>36</b> 0	ປ 660 ປ
NexachLorobutadiene	750 U	780	U 370	U <b>36</b> 0	ປ <b>66</b> 0 ປ
4-Chipro-3-methylphenol	750 U	780	U 370	U <b>36</b> 0	U 660 U
Z-Wethylnaphthalene	750 U	780	U 370	U 360	U 660 U
2 4 4-Trichlorophenol	750 0	780	u 370	0 360 11 360	U 660 U
2.4.5-Trichlorophenol	3700 U	3800	u <b>190</b> 0	U 1800	ປ 3200 ປ
2-Chieronaphthalene	750 U	780	U 370	U 360	U 660 U
2-Mitroaniline	3700 U	3800	U 1900	U <b>18</b> 00	U 3200 U
Dimethylphthalate	1300 J	780	U 370	U <b>36</b> 0	U 660 U
Acementnylene	750 0	750	U 370	U 360	U 800 U
3-Witneniline	3700 U	3800	LI 1900 :	U 1800	U 3200 U
Acenaphthene	750 U	780	U 370	U 360	ບ 660 ບ
2,4-Dinitrophenol	3700 U	3800	U 1900	U <b>18</b> 00	ບ 3200 ປ
4-Nitrophenol	3700 U	3800	U 1900	U 1800	U 3200 U
Dibenzofuran 2. (	750 U	750	U 37U	U 360	U 860 U
Diethvichthalate	L 000à	780	u <b>37</b> 0	u 360	บ <u>660</u> บ
4-Chlorophenyl-shenylether	750 U	780	ປ 370	U <b>36</b> 0	ບ 660 ປ
Fluorene	750 U	780	ü 370	U <b>36</b> 0	ບ 660 ປ
4-Nitroeniline	3700 U	3800	U 1900	U 1800	U 3200 U
4,6-Dinitro-2-methylphenol	3700 U	3800	U 1900	U 1800	U 3200 U
W-HITFOSOGIPHENVLamine	750 0	780	U 370 I	U 360	U 0000
Nexachi or obenzene	750 ม	780	ม 370	U 360	บ 660 บ
Pentachiorophenol	3700 U	3800	U 1900	U 1800	U 3200 U
Phenanthrene	750 U	780	U 370	U 360	ປ 660 ປ
Anthracene	750 U	780	U 370	U 360	U 660 U
Di-n-Butylphthalate	240 B	750	U 370	U 360	U 660 U
Prone	750 U	780	U 370	u <b>36</b> 0	ม <u>440</u> ม
Butylbenzylphthalate	750 U	780	U 370	U <b>36</b> 0	U 660 U
3,3'-Dichlorobenzidine	1500 U	1600	U 750	U 730	บ 1300 ป
Benzo(a)anthracene	750 U	780	U 370	U <b>36</b> 0	U 660 U
Chrysene	750 U	780	U 370	<b>360</b>	U \$60 U
Dis[2-Einvienexviphihalate	1300 8	220	B 3/0	U 240	270 B
PI-MOCLY (PRIMELETE Renzalb) fluoranthena	750 0	700 7180	u <b>37</b> 0		U (AA) U
Senzo(k)fluoranthene	750 J	780	U 370	J 360	U 660 U
Benzo(a)pyrene	750 U	780	U 370	U <b>36</b> 0	ม 🍈 🔂 มี
Indeno(1,2,3-cd)pyrene	750 U	780	U 370	U <b>360</b>	U 660 U
Dibenz(a,h)anthracene	750 U	780	U 370	U <b>360</b>	U 560 U
senzo(g,n,1)perylene	U UC7	/15U	u 3/U	JOU 	U 1960/U

.

٢

¥.

NOSS-AMERICAN SUBSURFACE SOILS SEMIVOLATILES

•

'-

Sample No.:	MA-58004-01	14	-58004-02	!	MA-SE004-03		NA-SEFE04		MA-SB005-01
TR No.:	EUB05		ELECO		E1607		EU875		EV872
							Field Blank		
***************************************			********		**********	• • •	**********		*************
Recenctor									
Phonol	22000	11	370	1	AA	 נ	660	u	<b>#3</b> 0 U
bis(2-Chioroethyl)ether	22000	Ŭ.	370	ū	390	ū	660	ŭ	830 U
2-Chlorophenol	22000	ม	370	Ū	390	ŭ	660	Ŭ	830 U
1,3-Dichlorobenzene	22000	Ŭ	370	Ū	390	Ū	660	Ű	830 U
1,4-Dichlorobenzene	22000	U	370	U	390	U	660	U	830 U
Senzyl alcohol	22000	U	370	U	390	U	660	U	830 U
1,2-Dichlorobenzene	22000	U	370	U.	390	U	660	IJ	<b>83</b> 0 U
Z-METRYLPHENOL	22000		370	U	390	U	660	N.	830 U
BIS(2"Childreisopropyl Jether	22000		3/4		390		660		
N-Mitroso-di-p-promission	22000	ŭ	370		390	ŭ	440	ŭ	830 U
Hexachioroethane	22000	ŭ	370	E U	390	ŭ	440	ŭ	<b>83</b> 0 U
Nitrobenzene	22000	Ŭ	370	Ū	390	ū	660	Ŭ	830 U
Isophorone	22000	Ū	370	Ū	1900	Ū	660	U	830 U
2-Nitrophenol	22000	U	370	U	390	U	660	U	830 U
2,4-Dimethylphenol	22000	U	370	U	390	U	660	U	830 U
Benzoic Acid	104000	U	1800	U	35		3200	U	4000 U
Dis(2-Chloroethoxy)methane	22000		370	U	390	U.	660	U.	830 1
2,4-Ulchlorophenol	22000	0	3/0		390		60U 440		830 0
Hanhthal ane	A30000	J	87		10	J	660	ŭ	
4-Chloroaniline	22000	ū	370	Ū.	390	ŭ	660	ŭ	830 U
Nexachiorobutadiene	22000	ŭ	370	Ū	390	ū	660	Ū.	830 U
4-Chloro-3-methylphenol	22000	Ũ	370	Ū	390	Ŭ	660	Ū	830 U
2-Nethylnaphthalene	220000	J	370	U	390	U	<b>66</b> 0	U	<b>83</b> 0 U
Nexachlorocyclopentadiene	22000	U	370	U	390	U	660	U	<b>83</b> 0 U
2,4,6-Trichlorophenol	22000	U	370	U	390	U	660	U	830 U
2,4,5-Trichlorophenol	22000	U	1500	U	1900	U	3200	U	4000 U
Z-Chioronaphthalene	22000	U	370		390		860		830 U
Z"HITFOURILINE Rimethylchthelete	22000	U 11	1000		1900		3200	N.	830 11
Acarachthylana	47000	1	370	11	390	ŭ	660	ŭ	830 U
2.6-Dinitrotoluene	22000	ū	370	Ū.	390	ŭ	660	ŭ	830 U
3-Mitroeniline	104000	Ŭ	1800	Ū	1900	Ū	3200	Ū	4000 U
Aconaphthene	240000	J	370	U	240	J.	660	Ų	830 U
2,4-Dinitrophenol	104000	U	1800	U	1900	U	3200	U	4000 U
4-Nitrophenol	104000	U	1800	U	240	J	3200	U	4000 U
Dibenzofuran	180000	1	370	U	390	U	660	U	830 U
Z,4-Dinitrotoluene	22000	U.	370	U	390	U.	660	U.	830 U
Dietnylphthalate	22000		370		390	0	660	U.	850 U
e-unterophenyl-phenylether	750000	U J	370		370	4	600	N.	830 0
A-Nitrospilice	104000	U U	1800	ŭ	1900	ŭ	3200	ŭ	4000 II
4.6-Dinitro-2-methylphenol	106000	ม	1800	ŭ	1900	บั	3200	ŭ	4000 U
N-Nitrosodiphenylamine	22000	Ū	370	Ū	390	Ũ	660	Ū	830 U
4-Bromophenyl-phenylether	22000	U	370	U	390	U	660	U	830 U
Nexachlorobenzene	22000	U	370	U	390	U	660	U	<b>83</b> 0 U
Pentachlorophenol	104000	U	1800	U	110	1	3200	U	4000 U
Phonenthrene	22000	U.	73	3	180	1	660	U.	830 U
Anthracene Dianahutul ohthol ato	22000		3/0	U U	300		660		830 0
Simplethee	320000	J	210	J	390 40	ŭ.	440		110
Purene	290000	1	Ă	1	120	1	460	ŭ	130 1
Butvibenzvichthalate	22000	ū	370	Ū	390	ū	660	Ŭ.	830 U
3.3'-Dichlorobenzidine	43000	ŭ	740	Ū	790	Ū	1300	Ŭ	1700 U
Senzo(a)anthracene	70000	Ĵ	370	U	390	Ų	660	Ū	830 U
Chrysene	60000	J	370	U	60	J	660	U	830 U
bis(2-Ethylehexyl)phthalate	22000	U	370	U	1300	8	320	8	290 B
Di-n-octylphthalate	22000	U	370	U	390	U	660	U	830 U
Benzo(b)fluoranthene	15000	ì	370	U.	390	U	660	U	<b>E3</b> 0 U
Senzo(k)TLUOranthene	20000	J	370		390	0	660	U	120 J
	ELOO	4	3/0		340	U 11	600	U 11	63V U 930 II
Simeral 1;2;3"CU/pyrene Dibenz(s h)anthracana	1800	1	370	ŭ	300	ŭ	44A	U U	
Benzo(a,h,{)perviene	£100	1	370	ŭ	390	ŭ	660	บ	830 U
	••••••	*****	•••••			•••	•••••		••••••

- ----

(Page 2 of 7)

____

•

•

### NOSS-ANERICAN SUBSURFACE SOILS SEMIVOLATILES

Sample No.:	NA-58005-01FR	NA-58006-01	MA-58007-01	MA-58008-01	NA-58008-02
	Replicate				5.0047
Parameter					
Phenol	1 064	U 057	420 U	450 U	n 0021
bis(2-Chloroethyl)ether			420 0	450 U	n 0021
2-Uniorophenoi. 1_3-Dichiorophenoi.				1 057 2 064	1200 L
1,4-Dichlorabenzene	790 0	22	420 0	450 U	1200 1
Benzyl alcohol	700 0	2	420 U	450 U	1200 U
1,2-Dichlorobenzene 3-Markulakanal		202		450 U	n 0021
s-neiny (proview) bis(2-Chloroisopropy) )ether	780 -	3:	420 U	450 L	1200 -
4-Nethylphenol	78	17 17	420 U	450 U	1200 U
W-Withdo-di-n-propyies:	300	202	420 U	450 c	1200 U
Ni trobenzene	3	; 7	420 U	450 U	1200 L
1 septerene 2-li i trechene l				450 L	1200 U
2,4-Dimethylphenol	790 0	2	420 U	450 U	1200 U
bis(2-Chloroethoxy)methane	790 0	2 007	n 029 0 0007	450 U	1200 U
2,4-Dichloraphenol		22 27 27	420 U	450 U	1200 U
Nephthalene	790 0	750 0	420 U	450 0	16000
4-Chioroeniline Hezzchiorobutadiene			027 0 027	450 U	1200 U
4-Chloro-3-methylphenol	790 -	2	420 U	450 U	1200 U
Z-Wetnyinaphthaiene Wexachiorocyciopentadiene	790 0		420 U	450 U	1200 L
2,4,6-Trichloraphenol	790 0	750 0	420 U	450 U	1200 U
2,-Chloronaphthalene	7 064	1 054 1 054	420 U	450 0	1200 iU
2-Witroeniline	<b>36</b> 00 U	3700 U	2000 U	2200 U	1 00 <b>65</b>
Acenaph thy Lene	790	750 0	420 U	450 U	1200 U
2,6-Dinitrotoluene 3-Mitropolion	790 U	1 051	420 U	450 u	1200 U
Acenaphthene	790 U	750 0	420 U	450 U	3100
2,4-Dinitrophenol 4-Mitrophenol	3300 U	3700 U	2000 U	2200 L	0065 0065
Dibenzofuran	790	750 0	420 U	450 U	1300
2,4-Dinitrotoluene Diathuinhthalata			n uc7 n 029	450 U	n 0021
4-Chiorophenyl-phenylether	790 0	700	420 U	450 U	1200 U
Fluorene 4-Nitroaniline	0 042	1 0025	2000 U	450 U	7 00 <b>65</b>
4,6-Dinitro-2-methylphenol	3800 U	3700 U	2000 U	2200 U	3900 L
4-Brosochenyl-sherylather			420 U	450 U	1200 U
Hexachilorobenzene	790 U	750 U	420 U	450 U	1200 U
Pentach Iorophenol Bhonochrono	1 00 <b>01</b>		0002 0002	2200 U	500 U
Anthracene	790 0	750 0	420 U	450 U	1200 U
Di-n-butyiphthelate Fiustanthene	1 007	r 0042	1 027	16 J	r 072 n 0021
Pyrene	200	20	420 U	16 -	200 L
Butylbenzylphthalate 3.3/-bichlorobenzidine	1 0697	1500 0			1 0075
Benzo(a)anthracene	790 U	750	420 U	450 U	1200 U
Chrysene historysene	790 U				1200 U
Di-n-octylphthelate	790 0		420 0	450 U	1200 U
Benzo(b)fluoranthene	780 U		1 027	32.	4 <u>5</u>
Benzo(a)stigorantnene Benzo(a)svrene	790		420 0	450 U	51
Indeno(1,2,3-cd)pyrene	38	2	420 u	1 82	1200 U
Dinenz(a,h,i)oerviene Benzo(a,h,i)oerviene	790	78 c	120 L		1200 U
					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

•

-

(

Ć

•

NDSS-AMERICAN SUBSURFACE SOILS SEMIVOLATILES

۰.

Sample No.: TR No.:	NA- <b>38</b> 009-01 EU831	NA-88009-02 EV832	NA-58010-01 EU636	NA-58011-01 EV866	MA-58011-02 EU867
Perameter		**********			
	••••••••••••••••••••••••••••••••••••••	************	*****	••••••••••••••••	7/6 11
Frenol bie/2-thioroethyl Sether	350 0	540 U 540 J	570 U \$70 II	720 0	740 U
2-Chierenhenei	350 1	540 0	570 U	720 U	740 U
1.3-Dichlorobenzene	350 u	540 U	570 U	720 U	740 U
1,4-Dichlorobenzene	350 U	540 U	570 U	720 U	740 U
Benzyl alcohol	350 U	540 U	570 U	720 U	740 U
1,2-Dichlorobenzene	350 1	540 U	570 U	720 U	740 U
Z-Nethylphenol	350 U	540 U	570 U	720 0	740 U
Dis(2-Chioroisopropy) Jether	350 0	340 U 840 U	570 U \$70 II	720 0	740 0
N-Nitroso-di-n-propylanine	350 1	540 U	570 J	720 1	740 U
NexachLoroethane	350 1	540 U	570 U	720 U	740 U
Nitrobenzene	350 U	540 U	570 U	720 U	740 U
Isophorone	350 U	540 U	570 U	720 U	740 U
2-Nitrophenol	350 U	540 U	570 U	720 U	740 U
2,4-Dimethylphenol	350 U	540 U	570 U	720 U	740 U
Benzoic Acid	1700 U	2600 U	2500 U	3500 U	3600 U
2 A Dichiorostheool	350 0	340 U \$40 II	570 0	720 0	740 0
1 2 4-Trichlorophonot	350 0	540 U	570 4	720 U	740 U
Nachthalene	350 U	540 U	570 U	720 U	260 J
4-Chloroeniline	350 U	540 U	570 U	720 U	740 U
NexachLorobutadiene	350 U	540 U	570 U	720 U	740 U
4-Chloro-3-methylphenol	350 U	540 U	570 U	720 U	740 U
Z-Nethylnaphthalene	350 U	540 U	570 U	720 U	150 J
Action Corocyclopentaciene	350 0	240 U 8/0 U	570 0	720 0	740 0
2 4 5-Trichlocophenol	1700 U	2600 U	2800 U	3500 U	3600 N
2-Chloronachthaiene	350 1	540 U	570 U	720 U	740 U
2-Nitroaniline	1700 U	2600 U	2800 U	3500 U	3600 U
Dimethylphthalate	350 U	540 U	570 U	700 J	740 U
Acenaphthylene	56 J	540 U	570 U	720 U	740 U
2,6-Dinitrotoluene	350 U	540 U	570 U	720 U	740 U
3-Nitroaniline	1700 0	2500 U	2500 0	3500 0	3000 0
Acenepathene 2 Autopitzenhenel	1700 1	2400 U	2800 11	3500 11	3600 U
A-Nitrophenol	1700 1	2600 U	2800 U	3500 U	3600 U
Dibenzofuran	11 J	540 U	570 U	720 U	380 J
2,4-Dinitrotoluene	350 U	540 U	570 U	720 U	740 U
Diethylphthalate	350 U	540 U	570 U	1800 J	740 U
4-Chlorophenyl-phenylether	350 U	540 U	570 U	720 U	740 U
Fluorene	350 U	540 U	570 U	720 U	420 J
4-Nitroeniline	1700 0	2600 0	2800 0	3300 U	3600 0
4,0°01111110°2°metnytphenot	350 1	540 U	570 11	720 11	740 U
4-Broschenvi-chenviether	350 U	540 U	570 U	720 U	740 U
Nexachiorobenzene	350 U	540 U	570 U	720 U	740 U
Pentachlerophenol	1700 U	2600 U	2800 U	3500 U	3600 U
Phenanthrene	60 J	540 U	570 U	720 U	1400 J
Anthracene	60 J	540 U	570 U	720 U	310 J
Di-n-butylphthelate	20 J	35 J	570 U 870 U	280 8	740 U
PLUDFENCHERE	100 0	540 0	\$70.0	720 0	200 1
Eutyl bentyl ohthal ata	350 1	540 1	570 U	720 U	740 1
3 3/-Dichlorobenzidine	710 1	1100 1	1100 U	1400 U	1500 U
Senzo(a)anthracene	69 J	540 U	570 U	720 U	150 J
Chrysene	89 J	540 U	570 U	720 U	190 J
bis(2-Ethylehexyl)phthalate	110 B	540 U	570 U	730 B	270 8
Di-n-octylphthalate	350 U	25 J	570 U	720 U	740 U
Senzo(b)fluoranthene	500	J JF 2/0 ··	570 U	720 U	120 J
Senzo(K)TLUOFANTNene	L 577	540 U 640 II	570 U 570 H	720 0	740 U
Indeno(1.2.3-ed)ovrene	1 00Z	540 U	570 LI	720 U	740 U
Dibenz(a,h)anthracene	51 J	540 U	570 U	720 U	740 U
Benzo(g,h,i)perviene	280 J	540 U	570 U	720 U	740 U
				******	**************

1

•

### NOSS-ANERICAN BUBSURFACE SOILS BENIVOLATILES

Sample No.: TR No.: Persmeter Phenol bis(2-Chloroethyl)ether 2-Chlorophenol 1,3-Dichloroberzene Benzyl elcohol 1,2-Dichloroberzene 2-Hethylphenol bis(2-Chloroisopropyl)ether 4-Hethylphenol	000 000 000 000 000 000 000 000 000 00	<b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b>	<b>440</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140</b> <b>140114011401140114011401140114011401140111401140111401111111111111</b>	M-58014-01 BMCS8 410 U 410 U 410 U 410 U 410 U	200 200 200 200 200 200 200 200 200 200
Hexach Loroethene Hitrabenzene Isophorane 2-Hitrabenol	600 C C C C C C C C C C C C C C C C C C	5555	740 u u	410 C C 410 C C	r r r r
Z-Nitrophenol 2,4-Dimethylphenol Benzoic Acid	500 U	2000	740 U	410 U 2100 U	190
bis(2-Chloroethoxy)methene 2,4-Dichlorophenol 1.2.4-Trichlorobanzene	556 556 556 556 556 556	666	740 0	410 U 410 U	380
Haphthalene 4-Chlorouniline		498	740 U	410 U	
4-Chloro-J-methylphenol 3-Methylphenol					
2-metnyinsprineisne Nexachiorocyclopentadiene	1.089 1.086	400 504	740 0	410 0	300
2,4,6-Trichlorophenol 2,4,5-Trichlorophenol	3300 U	2000	3600 U	2100 U	1900
2-Witroeniline	3300 U	2000	3600 0	2100 U	1900
Dimethylphthalate Aconaphthylone	080 086	468 588	740 U	410 U	200
Z,6-Dinitrotoluene 3-Nitroeniline	1 0000 1 0000 1 0000	2000	740 U	410 U	200
2,4-Dinitrophenol		2000		2100 U	1900
ermitrophenot Dibenzofuren 2 4-Dinitrotoluene	1 040 1 046 1 076	498	760 0	410 0	
Diethylphthalate 4-Chlorophenyl-phenylether	080 1 086	498 698 6	740 U	410 U	55
Fluorene 4-Nitroeniline	1000 L	2000	3600 U	2100 L	1906 1906
<pre>+,e-yimitre-4"mathytemine H-Mitrosodiphenytemine</pre>		400	700	410 0	
4-Bromophenyl-phenylether Nexachlorobenzene	000 U	400	740 0	410 U	22
Pentach Lorophenol Phenanthrene	7 0055	400	1 00%	410 U	200
Di-n-butylphthalate	680 C	400 600	2800 -	410 U	S
Fluoranthene Pyrene	r 00 <b>51</b> r 000 <b>2</b>	400	L 740 U	10 L 1 0L7	88
Butylbenzylphthalate 3,3'-Dichlorobenzidine	1400 U		ט 1500 U	410 U	26
Senzo(a)anthracene	r 022	400	740 U	410 u	
bis(2-Ethylehexyl)phthalate		198	1000 8		5000
Benzo(b)fluoranthene	130	400	740 U	410 U	
Benzo(#)†Luorantnene Benzo(a)pyrene	r 091	400	740 0	410 U	
Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	080 080 0	400 C	740 U	410 u	200
Senzo(S,h, i)perviene	680 L	400	740 0	410 U	365

.

(

(

ania 1764 m

### NOS-MERICAN SUBSURFACE SOILS SEMIVOLATILES

.

(

ð

Sumple No.: TR No.:	NA-50016-01 E\$622	NA-58016-02 E\$623	NA-53017-01 EU801	MA-58017-02 ENB02	NA-58018-01 EN833
Phenol Phenol		<b>300</b> G	170 U		
eis(2-Chioreeny), jeuner 2-Chioreenol			370 0		6 { c :
1,3-Dichiorobenzene	23000 U	100 C	370 U	380 U	630 C
1,4-Dichlorobenzene	23000 U		370 0		
1_2-Dicklondenzene			1 025 2 2 2 2		
2-Nethylphenol	72000 U		100		
4-Nethylphenol	23000		200		
Herach Longethane			370 0		
Witrobenzene Jaaohorone		380 L	370 0	380 U	
2-II i trophenol	23000 U	380 L	370 0	380 U	So -
2,4-Dimethylphenol Benzoic Acid	110000 U	n 0061 n 085	1800 U	n 0061 n 085	
bis(2-Chioroethoxy)methane 2.4-Bichioroethoxy)	23000 U	360 U	370 U	360 U	
1,2,4-Trichlorobenzene	23000 U	380 U	370 0	380 U	430 U
4-Chloroeniline	7 00052	380 L	220		88
4-Chioro-3-methylphenol			370 0	100 U	
2-Nethylnaphthalene Mexachlorocyclopentadiene	1 3000 J	740 J	570 U		
2,4,6-Trichlorophenol	1 0005	1900 L	370 U	1000 U	430 L
2-Chloronaphthalene	23000 U	300 0	370 0	380 U	630 L
Z-Hitroeniline Dimethylphthelate	U 00011	0 00%	1800 U 370 U	0 005	0 0012
Acomphthylene 2.6-Dinitrotoluone	23000 U	- 	370 U 1800 U	380 U	1 25 L
3-Nitroaniline	110000 U	n 006L	370 U	1900 L	2100 U
2,4-Dinitrophenol	110000 1	1900	1800 1	1900	2100 0
4-Ritrephenol Dibenzofuran	r 00001	420 U	370 U	n 0 <b>85</b> 0 006L	490 0 0012
2,4-Dinitrotoluene	23000 U	380 C	378	360 U	430 
4-Chlorophenyl-phenylether			570		50
4-Hitrooniline	110000 1	n 006L	1800 U	1900 -	2100 U
4,6-Dinitro-2-methylphenol	110000 U	1900 U		1900 U	2100 U
4-Bromophenyl-phenylether	23000 U		370 0		50
Rexach Lorobenzene Pentach Lorophenol	U 00052	r 002	7 0081	n 0061 n ner	2100 U
Phonenthrone Anthracene	12000 J	910 910	370 U		<b>6</b> 00
Di-n-butylphthalate Flumpanthane	13000 L		370 U		
Pyrene	6700 J	420	378	300 C	3300
3,3′-Dichlorobenzidine	47000 U	7	72 0	38	
Benzo(a)anthracene Dinviane	23000 U		370 U		60 80 80
bis(2-Ethylehexyl)phthalate	23000 U	810	5	3400 L	51
Di-n-octylphthalate Benzo(b)fluoranthene	7 000 7 000 7	780 U	370 U	7 001 1 001	r 01 <b>2</b> r 21
Benzo(k)fluoranthene	23000 U	380 U	370 0		<b>3</b> 5
Indena(1,2,3-cd)pyrene	23000 U	380 C	101	100	430 c
Ditenz(a,h)enthracene Benzo(a.h.f)mervlene	23000 U	380 U	370 U		7 05 201

-

٠

•

### NDES-AMERICAN SUBSURFACE SOILS SENIVOLATILES

.

-,

 $\smile$ 

Sample N	lo.: (	M-58018-02		MA-38019-01		MA-58019-02		MA-58019-03	
TR N	10.1	ENE34		EU839		<b>EN6</b> 40		EUB41	
***********************						**********			
Bernneter									
Phenol		400	IJ	26000	U	370	υ	380 L	J
bis(2-Chloroethyl)ether		400	Ū	28000	Ū	370	Ü	380 L	J
2-Chlorophenol		400	U	28000	U	370	U	380 L	J
1,3-Dichlorobenzene		400	U	28000	U	370	U	380 L	,
1,4-Dichlorobenzene		400	U	28000	Ü.	370	Ü.	360 L	
Senzyi alconol		400		28000	U.	370		380 L	1
2-Methyl chenol		400		28000	ŭ	370	ŭ	380 1	í
bis(2-Chioroisopropyl)eth	er	400	ŭ	26000	ŭ	370	ŭ	380 1	
4-Nethylphenol		400	Ū	28000	ŭ	370	Ŭ	380 1	j.
N-Nitroso-di-n-propylamin		400	Ŭ	28000	Ū	370	Ū	380 L	j i
NexachLoroethane		400	U	28000	U	370	IJ	380 L	J
Nitrobenzene		400	U	28000	U	370	U	380 L	J
Isophorone		400	U	28000	U	370	U	380 L	J
2-Nitrophenol		400	U	28000	ñ	370	Ü	380 L	,
2,4-Dimethylphenol		400	U.	25000	5	370	0	360 L	
Senzoic Acid		<b>70</b>	9	38000		1900		380 1	
2 4-Dichlorophenol		400	ň	28000		370	ŭ	380 1	
1.2.4-Trichiorobenzene		400	ŭ	28000	ŭ	370	ŭ	380 L	1
Nachthalene		400	Ŭ	2600000	ĎJ	330	Ĵ	380 L	j
4-Chloroeniline		400	Ū	28000	U	370	U	380 L	J
Nexachiorobutadiene		400	U	28000	U	370	U	380 1	J
4-Chloro-3-methylphenol		400	U	28000	U	370	U	380 L	J .
2-Nethylnephthalene		400	U	1300000	DJ	97		380 L	1
NexachLorocyclopentadiene		400	U	25000	U	370	U	380 1	1
2,4,8-irichlorophenol		400	0	25000		3/0		300 1	1
2,4,2° if ichtorophenol		2000		28000		370		1900 L 380 L	, ,
2-Nitroaniline		2000	ŭ	140000	ŭ	1900	ŭ	1900 L	,
Dimethylphthalate		400	Ū	28000	Ū.	370	Ŭ	380 L	j
Acenaphthylene		400	Ŭ	28000	Ū	370	U	380 L	j l
2,6-Dinitrotoluene		400	U	28000	U	370	υ	380 L	J
3-Nitroaniline		2000	U	140000	U	1900	U	1900 L	)
Acenephthene		20	1	2700000	DJ	190	1	380 L	1
2,4-Dinitrophenol		2000	U	140000	U.	1900	IJ	1900 L	ļ
4-Nitrophenol		2000	5	140000	5	1900	U	1900 1	
2 4-Dipitrotoluppe		400	ŭ	28000	U	370	ū	380 1	j l
Disthvichthalate		31	J.	28000	ŭ	370	Ū	380 L	j
4-Chlorophenyl-phenylethe	r	400	Ŭ	28000	Ŭ	370	Ū	380 L	j
Fluorene		17	Ĵ	2100000	DJ	110	J	380 L	J
4-Nitrosniline		2000	U	140000	U	1900	U	1900 L	J
4,6-Dinitro-2-methylpheno	et in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	2000	U	140000	U	1900	U	1900 L	J
N-Nitrosodiphenylamine		400	U.	25000	n.	370	Ü.	380 L	ļ
4-Bromophenyl-phenylether		400	U.	25000	n.	370	U	380 L	
Nexachlorobenzene		4UU 3000		28000		570		360 L	) 1
Pentachtorophenol		2000	J	460000	ň	220	3	380	,
Anthracene		Ĩ	1	1800000	DJ	72	3	380 1	í
Di-n-butvinhthelate		48	Ĵ	28000	Ū	370	Ŭ	380 1	j
Fluoranthene		140	Ì	2300000	ĐJ	180	J	380 L	j
Pyrene		92		1600000	DJ	110	J	380 L	J
Butylbenzylphthalate		400	U	28000	U	370	U	380 L	j
3,3'-Dichlorobenzidine		800	U	56000	U	750	U	760 L	J
Senzo(a)anthracene		400	U	190000	j.	370	U.	380 L	1
Chrysene	•	38	1	120000	J.	570	U	360 L	J
Dis(2-stry(enexy))prthala	T	Ø1 400	<b>.</b>	28000	U II	1270	8	110 .	
Benzo(b)flumranthana		400	J L	20000	1	370	ŭ	380 1	í
Benzo(k)fluoranthana		12	J.	28000	ŭ	370	ū	380 1	j
Senzo(a)pyrene		400	Ū	34000	Ĵ	370	Ũ	380 L	,
Indeno(1,2,3-cd)pyrene		400	Ũ	9900	Ĵ	370	Ü	380 L	J
Dibenz(a,h)anthracene		400	U	28000	U	370	U	380 L	J
Benzo(g,h,i)perylene		400	U	10000	J	370	Ų	380 L	J
********			•••	•••••		•••••		•••••	•••

### MOSS-AMERICAN SUBSURFACE SOILS VOLATILES

. . . . . . . . .

-

-

.

	Sample ID: TR No.:	MA-58001-01 EV803	MA-88002-01 EW869	MA-58003-01 E1/842	MA-58003-02 Ev843	MA-SBFB03-01 EV874 Field Blank	MA-58004-01 E1/805	MA-SBF804-01 EV875 Field Blank	MA- <b>58004-02</b> Ev806	MA- <b>50004-03</b> EV807
Perameter		Conc. (ug/kg)							••••••	
Chloromethane		11 U	12 U	11 U	11 V	10 U	1400 U	10 U	11 U	11 U
Bromomethane		11 U	12 U	11 ป	11 U	10 U	1400 U	10 U	11 U	11 U
Vinyl chloride		11 U	12 U	11 U	11 U	10 U	1400 U	. 10 U	11 U	11 U
Chloroethane		11 U	12 U	11 U	11 U	10 U	1400 U	10 U	11 U	11 U
Methylene chloride		6 U	3 8	33	11 8	5 U	1300 8	31	68	15 8
Acetone		98	13 B	47 J	11 U	10 8	1400 U	78	29 8	79 8
Carbon disulfide		6 U	6 U	6 U	5 U	5 U	710 U	5 U	6 U	6 U
1,1-Dichloroetheme		6 U	6 U	6 U	5 U	5 U	710 U	5 U	6 U	6 U
1,1-Dichloroethane		6 U	6 U	6 U	5 U	5 U	710 U	5 U	6 U	6 U
1,2-Dichloroethene	(total)	6 U	6 U	- 6 U	5 U	5 U	710 U	5 U	6 U	6 U
Chloroform		6 U	6 U	6 U	5 U	5 U	710 U	5 U	6 U	6 U
1,2-Dichloroethene		6 U	6 U	6 U	5 U	5 U	710 U	5 U	6 U	6 U
2-Butanone		R	R	R	R	R	1400 U	R	5 8	13 🛛
1,1,1-Trichloroethe	me	6 U	6 U	11	6	5 U	710 U	5 U	6 U	6 U
Carbon tetrachlorid	je –	6 U	6 U	6 U	5 U	5 U	710 U	5 U	6 U	6 U
Vinyl acetate		11 U	12 U	11 U	11 U	10 U	1400 U	10 U	11 U	11 U
Bromodichloromether	18	6 U	6 U	6 U	5 U	5 U	710 U	5 U	6 U	6 U
1,2-Dichloropropent	•	6 U	6 U	6 U	5 0	5 U	710 U	5 U	6 U	6 U
cis-1,3-Dichloropro	opene	6 U	6 U	6 U	5 U	5 U	710 U	5 U	6 U	6 U
Trichloroethene	•	6 U	6 U	6 U	5 U	5 U	710 U	5 U	6 U	6 U
Dibromochloromether	18	6 U	6 U	6 U	5 U	5 U	710 U	5 U	6 U	6 U
1,1,2-Trichloroethe	Ine	6 U	6 U	6 U	5 U	5 U	710 U	5 U	6 U	6 U
Benzene		6 U	6 U	6 U	5 U	5 U	710 U	5 8	6 U	6 U
trans-1,3-Dichlorog	propene	6 U	6 U	6 U	5 U	5 U	710 U	5 U	6 U	6 U
2-Chloroethylvinyle	ether	••	••	••		••	••	••	••	••
Bromoform		6 U	6 U	6 U	5 U	5 U	710 U	5 U	6 U	6 U
4-Hethyl-2-pentanor	18	11 U	12 U	11 U	11 U	10 U	1400 U	10 U	11 U	11 U
2-Nexanone		11 U	12 U	11 U	11 ป	10 U	1400 U	10 U	11 U	11 U
Tetrachloroethene		6 U	6 U	6 U	5 U	5 U	710 U	5 V	6 U	6 U
1,1,2,2-Tetrachloro	pethane	11 U	12 U	6 U	5 U	10 U	710 U	10 U	6 U	6 U
Toluene		170 J	110 J	19	16	5 U	430 B	5 U	10	8
Chlorobenzene		6 U	6 U	6 U	5 U	5 8	710 U	5 U	6 U	6 U
Ethylbenzene		6 U	6 U	6 U	5 0	50	580 U	Ś Ũ	6 U	6 U
Styrene		6 0	6 U	6 U	5 0	5 U	160 B	5 Ŭ	6 U	6 U
Xylene (total)		6 U	6 U	6 U	5 U	5 U	1800 8	5 U	2 1	6 U

(Page 1 of 4)

......

•

### MOSS-AMERICAN

SUBSURFACE SOILS

VOLATILES

- -

-

.

	Sample ID: { TR No.:	MA-50005-01 EV872	MA-SB005-01FR EV673 Replicate	MA-SB006-01 EW870	MA-58007-01 EV610	MA-58006-01 Ev808	NA-58008-82 EV809	MA-58009-01 EV831	MA-58009-02 EV832	MA-58010-01 EV836
Perameter							•••••••	••••••••••		••••••••
Chloromethane		13 U	12 U	11 U	12 U	13 U	59 U	11 U	11 U	11 U
Bromomethane		13 U	12 U	11 U	12 U	13 U	59 U	11 U	11 U	11 U
Vinyl chloride		13 U	12 U	11 8	i 12 U	13 U	59 U	11 U	11 U	11 U
Chloroethene		13 U	12 U	11 U	i 12 U	13 U	59 U	11 U	11 U	11 U
Nethylene chloride		6 U	68	6 U	11 8	5 8	75 🛛	6 U	6 U	11 8
Acetone		98	12 U	8 6	87 🖬	81 U	420 B	78	10 8	120 J
Carbon disulfide		6 U	6 U	6 U	) 6 U	6 U	29 U	6 U	6 U	6 U
1,1-Dichloroethene		6 U	6 U	6 U	) <u>6</u> U	6 U	29 U	6 U	6 U	6 U
1,1-Dichloroethene		6 U	6 U	6 U	60	6 U	29 U	6 U	6 U	6 U
1,2-Dichloroethene	(total)	6 U	6 U	6 U	1 6 U	6 U	29 U	6 U	6 V	6 U
Chloroform		6 U	6 U	6 L	I 6 U	6 U	29 U	2 J	6 U	6 U
1,2-Dichloroethane		6 U	6 U	6 U	i 6 U	6 U	29 U	6 U	6 U	6 U
2-Butanone		R	R	11 U	10 B	10 B	39 8	78	98	R
1,1,1-Trichloroetha	ne	6 U	6 U		6 U	6 U	29 U	6 U	6 U	6 U
Carbon tetrachlorid	8	6 U	6 U	6 U	6 U	6 U	29 U	6 U	6 U	6 U
Vinyl acetate		13 U	12 U	11 U	i 12 U	13 U	59 U	11 U	11 U	11 U
Browodichlorowethen	•	6 U	6 U	6 L	) 6 U	6 U	29 U	6 U	6 U	6 U
1,2-Dichloropropene		6 U	6 U	6 U	1 6 U	6 U	29 U	6 U	· 6 U	6 U
cis-1,3-Dichloropro	pene	6 U	6 U	6 t	) <u>6</u> U	6 U	29 U	6 U	6 U	6 U
Trichloroethene		6 U	6 U	6 U	i 6 U	6 U	29 U	6 U	6 U	6 U
Dibromochloromethan	e	6 U	6 U	6 t	I 6 U	6 U	29 U	6 U	6 U	6 U
1,1,2-Trichloroetha	ne	6 U	6 U	6 L	I 6 U	· 6 U	29 U	6 U	6 U	6 U
Benzene		6 U	6 U	6 L	I 6 U	6 U	29 U	6 U	6 U	6 U
trans-1,3-Dichlorop	ropene	6 U	6 U	6 U	I 6 U	6 U	29 U	6 U	6 V	6 U
2-Chloroethylvinyle	ther		••	••	••	••	••			••
Bromoform		6 U	6 U	6 L	1 <u>6</u> U	6 U	29 U	6 U	6 U	6 U
4-Hethyl-2-pentanon	e	13 V	12 U	11 U	i 12 U	13 U	59 U	11 U	11 U	11 U
2-Nexanone		13 U	12 U	11 0	i 12 U	13 U	59 U	11 U	11 8	11 U
Tetrachloroethene		6 U	6 U	6 U	) 6 U	6 U	29 U	6 U	6 U	6 U
1,1,2,2-Tetrachloro	ethane	13 V	12 U	11 U	1 <u>6</u> U	6 U	29 U	6 U	6 U	6 U
Toluene		380 D.	J 50 J	71 .	) 2 J	23	34 8	58	8 8	51
Chlorobenzene		6 U	6 U	6 L	1 6 U	6 U	29 U	6 U	6 U	6 U
Ethylbenzene		6 U	6 U	6 L	I 6 U	3 J	21 J	6 U	6 U	6 U
Styrene		6 U	6 U	6 U	) <u>6</u> U	6 U	29 U	6 U	6 U	6 U
Xylene (total)		6 U	6 U	6 (	1 6 U	9	58	6 U	6 U	6 U

(

(Page 2 of 4)

_ *

### NOSS-AMERICAN SUBSURFACE SOILS

### VOLATILES

•

.

1	Sample ID: N TR No.:	A- <b>SB</b> 011-01 EV866	MA-58011-02 EV867	MA-SB011-02FR EV068 Replicate	MA-58012-01 EV635	MA-58013-01 EV671	MA-58014-01 EW638	MA- <b>SB</b> 015-01 EV837	MA-58016-01 E\$622	MA- <b>58016-02</b> E5623
Parameter				•••••						
Chloromethane		11 U	11 U	10 U	12 U	11 U	13 U	11 U	12 U	12 U
Bromomethene		11 U	11 U	10 U	12 U	11 U	13 U	11 U	12 U	12 U
Vinyl chloride		11 U	11 U	10 U	12 U	11 U	13 U	11 U	12 U	12 U
Chloroethane		11 U	11 U	10 U	12 U	11 U	13 U	11 U	12 U	12 U
Hethylene chloride		5 U	6 U	18	16 8	28	78	98	45 B	15 B
Acetone		11 U	13 B	14 B	20 J	5 B	34 J	81 J	29 B	49 8
Carbon disulfide		5 U	6 U	5 U	6 U	6 U	4.3	6 U	6 U	6 U
1,1-Dichloroethene		5 U	6 U	5 U	6 U	6 U	6 U	6 U	6 U	6 U
1,1-Dichloroethene		5 U	6 U	5 U	6 U	6 U	6 U	6 U	6 U	6 U
1,2-Dichloroethene	(total)	5 U	6 U	5 U	6 U	6 U	6 U	6 U	6 U	6 U
Chloroform		50	6 U	50	6 U	6 U	6 U	6 U	6 U	6 U
1,2-Dichloroethene		, v	6 U	5 U	6 0	0 U	0 U	6 U	0 U 12 II	0 U 13 H
		5 H			K A A	K 4 11	ж А н	K (1	12 U	
1, 1, 1-Irichloroethe			0 U 4 H	5 U 6 H	0 U 4 H		4 11	6 U 4 H	6 U 4 H	6 U 4 M
Virgi contete	4	11 11	0 U 11 H	3 U 10 H	12 11	11 4	11	11 11	12 11	12 11
Recordical examples	•	5.0	11 U 4 H	5.11	12 0		15 U A II	4 11	· 4 II	<b>A</b> H
1 2-Dichlerencenen		5.0	5 U 4 H	50	6 U A U	6 U 6 U	4 11	6 U	6 U	Ă II
cia-1 3-Bichioconco		Śŭ	с U U	5 0	A U	<b>A</b> 11	<b>A H</b>	<b>A</b> U	Ă Ŭ	Ă U
Trichleroethene		5 0	а и А и	5 4	A 11	6 11	A 11	6 11	Ă Ŭ	<b>6</b> U
Dibranochlacamethan		Śŭ	6 U	5 8	6 U	6 4	Ă Ŭ	6 U	<b>6</b> Ŭ	6 Ŭ
1.1.2-Trichloroethe		5 0	6 U	5 0	6 U	6 U	6 U	6 U	6 Ŭ	6 Ŭ
Benzene		5 Ŭ	6 U	Śū	6 Ŭ	6 U	6 Ŭ	<u>6</u> U	6 Ŭ	6 U
trans-1.3-Dichlorop	ropene	5 Ŭ	6 U	5 U	6 U	6 U	6 Ŭ	6 Ū	6 U	6 U
2-Chloroethylvinyle	ther	••	••	••		••	••	••	12 U	12 U
Bramoform		5 U	6 U	5 U	6 U	6 U	6 U	6 U	6 U	6 U
4-Methyl-2-pentanon	e	11 U	11 U	10 U	12 U	11 U	13 U	11 U	12 U	12 U
2-Nexanone		11 U	11 U	10 U	12 U	11 U	13 V	11 U	12 U	12 U
Tetrachloroethene		5 U	6 U	5 U	6 U	6 U	6 U	6 U	6 U	6 U
1,1,2,2-Tetrachloro	ethane	11 U	11 U	10 U	6 U	11 U	6 U	6 U	6 U	6 U
Toluene		290 D.	J 55 J	120 J	13 J	220 J	660 0	860 0	7 3	73
Chlorobenzene		5 U	6 U	5 U	6 U	6 U	6 U	6 U	2 J	5 1
Ethylbenzene		5 U	6 U	5 U	6 U	6 U	6 U	6 U	4 J	5 J
Styrene		5 U	6 U	1 J	6 U	6 U	6 U	6 U	4 3	5 1
Xylene (total)		5 U	6 U	3 1	6 U	6 U	6 U	6 U	10 J	14 J

(Page 3 of 4)

ð

### NOSS-AMERICAN SUBSURFACE SOILS

VOLATILES

....

-

•

Sem	ple 10: TR No.:	MA-SE017-01 EV801		MA-58017-02 EV802	MA-58018-01 EV833		MA-58018-02 EV834		MA-SB019-01 EV839	MA-58019-02 EV640	MA-58019-03 EN841
Parameter			••••								
Chierenthene		11		12 11	1500		11 1	••		 11 H	
Bromonethane		11	ň	12 1	1500	ň	11 1		1800 0	55 11	11 0
Vinvi chloride		11	ň	12 11	1500	ŭ	11 1	Ĭ	1800 1	11 1	11 11
Chiocoethene		11	ň	12 #	1500	ň	11	ŭ	1800 1	11 1	11 11
Nethylene chloride		15	ĭ.	10 8	10000	J.	47	ň	880 11	11 .	10 8
Acetone		80	Ξ.	85 8	6000	ž.	54		1800 11	120 .	100 4
Carbon disulfida		<b>A</b>	ŭ	4 4	740	ū.	A 1		880 1	A 11	
1 1-Dichlocosthere		Ă	ň	A U	740	ň	Ă	Ĭ	880 1	A 11	A 11
1 1-Dichlocosthane		Ă	ň	A U	740	ŭ	Å 1	ĥ	880 11	6 11	A U
1 2-Dichlocosthere (to	t al 1		ŭ	6 11	740	ň	۵ (	Ň	880 11	6 U A 11	44
Chloroform		Ă	ň	6 U	740	ň	Ă 1	Ň	880 1	6 11	6 U
1 2-Dichlocoethane		Ă	ŭ	6 U	740	ŭ	61	ŭ	220 0	6 1	<b>A</b> U
2-But enone		10	ĭ	12 11	470	ž		ě			
1.1.1-Trichlaroethane			ŭ	A 11	740	ŭ	A .	ĥ	<b>880</b> ii		<b>6</b>
Cerbon tetrachloride		Ă	ŭ	6 8	740	ŭ	Ă	Ň	830 1	A 11	6.11
Vinul acetate		11	ŭ	12 8	1500	ŭ	11 1	Ū	1800 1	11 1	11 11
Broundichloromethane		6	Ū	6 V	740	ŭ	6 1	Ū.	880 U	<b>6</b> U	6.0
1.2-Dichlocopropage		Ă	ŭ	6 1	740	ŭ	61	ii ii	880 U	6 1	6.1
cis-1.3-Dichloropropen	•	6	ŭ	6 Ŭ	740	ŭ	61	Ū.	880 U	6 Ŭ	6 U
Trichlorgethene	•	Ă	Ŭ	6 U	740	ŭ	61	ū	880 U	Á 1	61
Dibranchlaramethane		6	Ŭ	6 U	740	ŭ	61		880 U	6 1	6 U
1.1.2-Trichloroethane		6	Ū	6 U	740	ŭ	Ă 1	ŭ	880 U	6 1	61
Renzene		6	ŭ	6 Ŭ	740	ŭ	Ă I	ŭ	880 1	6 1	60
trans-1.3-Dichloroprop	ene	6	ŭ	6 U	740	ŭ	<b>Å</b> i	ŭ	880 U	6 U	6.0
2-Chloroethylvinvlethe	r	11	ŭ	12 U		-		•			
Bromoform	•	6	Ŭ	6 U	740	U	61	B	880 U	6 1	6 U
4-Nethyl-2-pentanone		11	ŭ	12 Ŭ	1500	Ŭ	11 (	Ŭ	1800 U	11 0	11 1
2-llexanone		11	Ū	12 0	1500	Ū	11 1	Ŭ	1800 U	11 0	11 0
Tetrachloroethene		6	Ŭ	6 U	740	Ŭ	61	Ū	880 U	<b>6</b> U	61
1.1.2.2-Tetrachloroeth	ane	6	Ū	6 U	740	Ū	6	Ū	880 U	6 0	60
Toluene		Ă	Ĵ.	ĽŐ	740	Ū	16	-	2000 1	7	6 1
Chlorobenzene		6	Ū	11	740	Ū		U	880 1		61
Ethylbenzene		Ă	ŭ	6 11	140	ī	61	Ŭ	4100 J	Ă Ŭ	61
Styrene		Ă	ŭ	A H	740	ŭ	Ă		9300 1	Ă II	61
Xylene (total)		3	Ĵ	6 U	310	8	6 1	Ū	17000 J	6 U	6 U

(

....

(Page 1 of 4)

•

MOSS-AMERICAN SUBSURFACE SOILS DIOXIN

-

-

Sample No. TR No.	: M-58001-01 : E129	MA-58002-01 E132	MA- <b>SB003-01</b> E126	MA-58003-02 E127	MA- <b>SBFB03-01</b> E152 Field Blank	MA-58004-01 E11	MA- <b>SBF904-01</b> E153 Field Blank	MA- <b>58004-02</b> E12	MA- <b>58005-01</b> E136
Parameter	Conc. (ng/g)			•••••					
Tetrachloro furan (Total) Tetrachloro furan (2,3,7,8) Pentachloro furan Nexachloro furan Octachloro furan Tetrachloro dioxin (Total) Tetrachloro dioxin (2,3,7,8 Pentachloro dioxin Nexachloro dioxin Neptachloro dioxin	0.033 U 0.033 U 0.096 U 0.052 U 0.095 U 0.31 U 0.022 U 0.022 U 0.063 U 0.063 U 0.078 U 0.12 U	0.032 U 0.032 U 0.16 U 0.037 U 0.078 U 0.36 U 0.018 U 0.018 U 0.018 U 0.018 U 0.018 U 0.018 U	0.0068 U 0.0058 U 0.027 U 0.037 U 0.14 U 0.013 U 0.013 U 0.055 U 0.036 U 0.14 U	0.0057 U 0.0057 U 0.043 U 0.020 U 0.023 U 0.13 U 0.0066 U 0.0066 U 0.0066 U 0.044 U 0.025 U 0.035 U	6.010 U 0.010 U 0.023 U 0.030 U 6.12 U 0.0067 U 0.0067 U 0.037 U 0.037 U 0.037 U	0.020 U 0.020 U 0.033 U 0.018 U 0.015 U 0.11 U 0.013 U 0.013 U 0.026 U 0.013 U 0.028 U	0.0069 U 0.0069 U 0.023 U 0.023 U 0.035 U 0.21 U 0.0074 U 0.0074 U 0.043 U 0.041 U	0.019 U 0.069 U 0.068 U 0.048 U 0.042 U 0.23 U 0.021 U 0.021 U 0.026 U 0.068 U 0.067 U	0.010 U 0.061 U 0.061 U 0.021 U 0.040 U 0.15 U 0.011 U 0.011 U 0.053 U 0.038 U 0.054 U

(

..... .

### HOSS-AMERICAN SUBSURFACE SOILS

.

Sample No.: TR No.:	NA-SB005-01FR E137 Replicate	MA-58006-01 E133	MA-58007-01 E27	MA-58008-01 E21	MA- <b>58006-02</b> E24	MA-58009-01 E84	MA-58009-02 E87	MA-58010-01 E99	MA-58011-01 E128
Parameter									
Tetrachioro furan (Total)	0 010 U	6 021 11	0 012 11	0 018 11	0 0004 11	0 011 11	8 8871 H	6 6047 11	<b>a</b> ata u
Tetrachloro furan (2 3 7 8)	0.010 0	0 021 0	0.012 11	0.018 1	0.0094 1		0.0071 #	0.0047 0	
Pentachioro furan	0.010 0	0 17 11	0.055 11	0.018 0	0.0074 0		0.00/1 0	0.0047 U	
Nevachioco furan	n n21 11	B 654 H	0.077 0	0.00J U	0.070 0	0.004 0			
Nextechloro furen	0.0CT U		0.057 0	0.040 0	0.050 0	0.020 0		0.010 0	0.017 0
	0.0450	0.000 0		0.072 0	0.000 0	U.UZZ U	U. 12 U	0.033 0	U.016 U
Octachioro Turan	U. 14 U	0.25 U	0.26 U	0.26 U	0.75 U	0.090 U	0.30 U	0.14 U	0.068 U
Tetrachioro dioxin (Total)	0.015 U	0.019 U	0.016 V	0.033 U	0.016 U	0.0094 U	0.011 U	0.0064 U	0.018 U
Tetrachloro dioxin (2,3,7,8)	0.015 U	0.019 U	0.016 U	0.033 V	0.016 U	0.0094 U	0.011 U	0.0064 U	0.018 U
Pentachloro dioxin	0.042 U	0.13 U	0.055 U	0.060 U	0.070 U	0.052 U	0.053 U	0.029 U	0.053 ม
Mexachloro dioxin	0.030 U	0.073 U	0.065 U	0.052 U	0.065 1/	0.044 11	0.16.11	0.039 11	0 023 H
Nentachloro diarin	0.031 U	0.11 0	0 061 1	0 087 11	n 11 H	0 020 11	0.087 1	0 022 1	
Octechioro dioxin	9.14 U	0.34 U	0.17 U	0.34 U	0.20 U	0.12 U	0.26 U	0.15 U	0.000 U

(Page 3 of 4)

ð

.

÷

ł

NDSS-AMERICAN SUBSURFACE SOILS DIOKIN

-

.

Sample Ho.: IR Ho.:	MA-50011-02 E130	NA-SOO11-O2FR E131 Replicate	MA-SB012-01 E96	MA-SB013-01 E134	NA-58014-01 E 105	MA-58015-01 E102	NA-58016-01 E07	MA- <b>580</b> 16-02 E08	MA- <b>58017-01</b> E09
Parameter									
Tetrachloro furan (Totel)	0.018 U	0.0093 V	0.0067 U	0.028 U	0.0060 U	0.0083 U	0.013 U	0.024 1	0.013 u
Tetrachloro furan (2,3,7,8)	0.018 U	0.0093 U	0.0067 U	0.028 U	0.0060 U	0,0063 9	0.013 U	0.024 U	0.013 1
Pentechloro furan	0.11 U	0.098 U	0.095 U	0.12 U	0.060 U	0.066 U	0.058 U	0.091 U	0.057 U
Nexachloro furan	0.038 U	0.032 U	0.038 U	0.042 U	0.022 U	0.039 U	0.040 U	0.040 U	0.041 U
Neptechloro furan	0.067 U	0.068 U	0.11 U	0.063 U	0.036 U	0.058 U	0.043 U	0.058 U	0.063 U
Octachloro furan	0.27 U	0.24 U	0.36 U	0.25 U	0.14 U	0.16 U	0.092 U	0.20 U	0.20 U
Tetrachloro dioxin (Total)	0.016 U	0.012 U	0.017 U	0.018 U	0.015 U	0.039 U	0.621 U	0.021 U	0.027 U
Tetrachloro dioxin (2,3,7,8)	0.016 U	0.012 U	0.017 U	0.018 U	0.015 U	0.039 U	0.021 U	0.021 1	0.027 U
Pentachloro dioxin	0.10 U	0.061 U	0.068 U	0.092 U	0.034 U	0.058 U	0.063 U	0.11 U	0.066 V
Nexachloro dioxin	0.046 U	0.042 U	0.000 U	0.068 U	0.052 U	0.067 V	0.056 U	0.086 U	0.076 U
Neptachloro dioxin	0.068 U	0.063 U	0.069 U	0.11 U	0.043 U	0.047 U	0.078 U	0.062 U	0.061 U
Octachloro dioxin	0.26 U	0.42 U	0.52 U	0.29 U	0.25 U	0.26 U	€.12 U	0.16 U	0.27 U

(Page 4 of 4)

.

(

•

.....

### MOSS-AMERICAN SUBSURFACE SOILS DIOXIN

-

-

Sample No.; TR No.;	MA-58017-02 E 10	MA- <b>58018</b> -01 E90	NA-58018-02 E93	MA-58019-01 E108	MA-58019-02 E111
•••••	•••••		•••••		
Parameter					
Tetrachioro furan (Total)	0.023 U	0.011 U	0.011 U	0.26 U	0.0027 U
Tetrachloro furan (2,3,7,8)	0.023 U	0.011 U	0.011 U	0.26 U	0.0027 U
Pentachloro furan	0.12 U	0.070 U	0.055 U	0.60 U	0.047 U
Hexachloro furan	0.046 U	0.022 U	0.025 U	0.18 U	0.016 U
Neptachloro furan	0.059 U	0.064 U	0.033 U	0.093 U	0.022 V
Octechloro furan	0.36 U	0.16 U	0.16 U	0.25 U	0.075 0
Tetrachloro dioxin (Total)	0.026 U	0.010 U	0.015 U	0.15 U	0.014 U
Tetrachloro dioxin (2,3,7,8)	0.026 U	0.019 U	0.015 U	0.15 U	0.014 U
Pentechloro dioxin	0.12 U	0.048 U	0.034 U	0.40 U	0.030 U
Nexechloro dioxin	0.092 U	0.039 U	0.052 U	7.0 J	0.041 U
Neptachloro dioxin	0.058 U	0.041 U	0.034 U	0.12 U	0.020 U
Octachloro dioxin	0.20 U	0.25 U	0.015 U	0.38 U	0.12 U

NOSS-AMERICAN

SUBSURFACE SOILS INORGANICS

-

.

01 19	MA-SBOO5- Meuk	MA-58004-03 HEV797	N- <b>58004-02</b> NEV796	NA-58004-01 NEW795	NA-S8F904 NEW452 Field Blank	MA-58003-02 MEV420	HA-58003-01 HEV419	NA-SOFDO3 NEV451 Field Blank	NA- <b>50</b> 002-01 NEW446	A- <b>50001-01</b> NEW441	Sample 10: M TR No.:
										Conc. (mg/kg)	Parameter
20	74	5840	5070	2510	43.3	4390	3370	44.9	5870	4180	Aluminum
i3 B	0.	1.3 8	1.4 8	1.3 8	0.72 8	3.5 U	3.7 U	0.36 8	R	0.48 8	Antimony
5 .	1	2.4 J	1.3 J	2.4 J	0.96 J	2.1 J	3.4 J	0.9 U	1.8 J	1.3 J	Arsenic
.9	61	51.3	45.4	46.8	7.9 U	52	39	8.1 U	81.1	51.3	Berium
K J	Ū,	0.18 8	0.26 8	0.16 W	0.22 U	0.2 U	U 5.0	0.36 J	0.68 J	0.58 J	Beryllium
.3	3	3.2	2.8	2.6	0.52 U	2.6	2.4	0.54 U	3.5	3.4	Cadmium
00	1250	147000	164000	188000	40.2 J	128000	182000	65.6 J	149000	144000	Calcium
.5	18	13.6 J	11.6 J	7.8 J	1.4 U	6.5	5.5	1.4 U	14.7	11.3	Chromium
.6 J	8	6.9 J	5.3 J	3.7 J	2.8 U	4.2 J	3.1 J	3.0 U	11.4	8.3 J	Cobelt
.3 J	19	13.3 J	11.2 J	9.5 J	2.0 U	12	11	2.1 U	14.4 J	42.3 J	Copper
00	123	11500	10400	8450	56.3	10300 J	8620 J	51.7	10900	7030	tron
L 0.	q	L 5.8	L 2.3	8.1 J	0.33 J	9.4	5.8	0.45 J	5.3 J	5.4 J	Lead
00	531	60000	55500	54300	30 U	64300	63400	30.2 U	58100	64300	Nøgnes i un
.5 J	99	477 J	394 J	499 J	1.2 J	529 J	557 J	46.6 J	522 4	268 J	Hangenese
23 J	0.	1.1 J	R	0.10 J	0.13 J	0.1 U	0.11 U	0.33 J	0.27 J	4.5 J	Hercury
L 8.	16	17.5 J	15.6 J	10.1 J	3.2 U	11	7.1	3.2 V	19.3 J	17.3 J	Hickel
20	13	1340	1130	612 J	246 8	1940	611 J	163 8	1240	776 J	Potassium
.1 U	1	R	R	R	0.86 U	9.4 U	1.0 U	1.1 V	1.0 U	1.0 V	Selenium
.1 U	7	R		R	1.86 U	0.6 B	0.5 V	2 U	1.9 U	1.8 U	Silver
50 J	8	839 8	817 B	668 9	218 J	305 J	212 J	264 J	845 J	961 J	Sodiun
1 82	0.	J 0.26 UJ	0.26 UJ	1.4 W	0.18 U	19 U	20 U	0.25 J	0.29 J	0.2 U	Thellium
.4	24	18.3 J	18.2 J	14.6 J	3.0 U	0.8 U	0.9 U	3.1 U	18.0	15.9	Vanadium
13 4	1	146 J	188 J	226 J	25.5 J	77 J	41 J	50.9 J	92.9 J	311 J	Zinc
.7 J	r <b>1</b>	J 2.6 UJ	2.6 W	2.6 W	1.5 U	8.2 U	7.9 U	1.5 U	L 0.5	1.5 U	Cyanide

(Page 1 of 4)

•

ł

(Page 2 of 4)

æ

HOSS-AMERICAN

SUBSURFACE SOIL INORGANICS

-

Sample ID: M TR No.:	A-SB005-01FR NEW450 Replicate	NA-58006-01 NEV647	MA-SB007-01 MEV800	NA-58008-01 MEV798	NA-58008-02 NEW799	NA-58009-01 NEW608	MA-58009-02 MEW409	NA-59010-01 MEW413	NA-50011-01 HEV443	MA-50011-02 MEV444
Parameter										
Atominum	9450	7910	4890	10900	6659	2660	2810 J	6030	2500	3390
Antimony	0.57 8	R	t	1.2 8	1.0 8	1.1 8	9.66 J	3.0 U	t	0.51 8
Arsenic	1.0 0	2.5	1.6 J	2.7 J	1.6 J	1.7 J	2 J	2.6 J	1.9 J	1.4 3
<b>Verium</b>	83.8	68.1	37.4 J	73.7	63.2	23.0 J	33.9 J	54	41.0 J	42.5
Beryllium	0.93 J	0.83 J	0.65 8	0.73 J	0.39 8	0.16 U	J 0.15 ປ	0.1 U	0.51 J	0.62 J
Cadalum	3.8	4.0	3.9	5.1	4.0	2.9	5.9	3.1	3.1	2.8 8
Calcium	77400	137000	68500	93900 J	126000	166000	174000	139000	150000	116000
Chromium	18.6	17.9	12.8 J	Z1.5 J	14.1 J	10.6 J	10.2	9.3	9.6	10.5
Cobelt	8.7 J	7.3 J	5.6 J	9.1 J	6.6 J	8.0 J	71	5.4 J	6.8 J	8.9 J
Copper	22.8 J	87.5 J	15.6 J	27.6 J	18.6 J	7.2 J	12.6	17	L 0.8	12.1 J
tron	12600	14908	14200	17600	13900	9210	9390	11400 J	7300	8619
Lead	7.5 J	6.9 J	11.3 J	7.5 J	6.8 J	9.1 J	13.8 J	8.8	6.5 J	6.5 J
Hagnesium	34500	54900	36500	48300	55200	66400	62000	57700	56000	51600
Hanganese	95.7 J	562 J	228 J	425 J	395 J	525 J	466 J	406 J	376 J	346 J
Hercury	0.23 J	0.21 J	R	0.33 J	0.16 J	L 02.0	1.2	0.10 U	0.21 J	0.51 J
Wickel	17.0 J	18,8 J	13.9 J	22.2 J	15.8 J	12.7 J	13.1 8	14	12.9 J	16.8 J
Potassium	1230	1400	748 J	2010	1080	447 J	636 8	1180	663 J	709 J
Selenium	1.1 U	0.97 U	l R	R	R	R	0.84 UJ	1.0 U	0.96 U	0.96 U
Silver	2. <b></b> U	1.9 U	R	R	R	R	. <b>R</b>	9.4 U	1.8 U	1.8 U
Sodium	929 J	1170	658 8	959 B	852 8	6 <b>9</b> 5 B	726 9	246 J	750 J	6 <b>30</b> J
Theilium	0.38 J	0.32 J	0.28 U	J 0.29 U.	J 1.4 W	) 0.25 U	J 0.24 UJ	20 U	0.21 J	0.26 J
Venedium	25.3	21.3	19.9 J	26.9 J	21.5 J	13.8 J	17.4	5.8 J	10.9	13.6
Zinc	189 J	189 J	117 J	118 J	127 J	235 J	633 J	59 J	107 J	91.8 J
Cyanide	1.5 U	1.5 U	2.9 U	J 2.8 V.	J 3.0 UJ	i 2.8 U	J R	11 U	1.5 U	1.5 U

NOSS-AMERICAN SUBSURFACE SOIL INORGANICS

-

.

Sample 10: M TR No.:	A-SOO11-02FR NEW445 Replicate	MA-58012-01 NEW412	MA-58013-01 NEV448	MA-58014-01 NEW415	NA-58015-01 NEU414	MA-58016-01 NEW791	NA-58016-02 NEV792	MA- <b>50017-01</b> NEV793	MA-58017-02 NEV794	MA-58018-61 HEV410
Perameter				•••••••••••••••••						
Aluminum	3060	2700	1820	10600	9230	3520	6960	12009	5990	14400 J
Antimony	0.46 8	3.7 U	0.62 8	3.1 U	3.4 U	2.9 8	t	1.5 8	R	R I
Arsenic	1.9 J	7.8 J	2.5 J	2.4 U	2.4 3	3.1 J	2.8 Ĵ	3.5 J	3.8 J	0.5 Ü
Barium	39.4 J	38	26.3 J	63	61	33.8 J	61.1	81.7	59.7	105
Beryllium	0.74 J	0.2 U	0.45 J	0.2 U	0.2 U	0.32 8	9.61 8	0.79 J	0.45 8	1
Cadaium	2.9 8	1.8	1.9 8	4.3	4.0	2.4	4.5	6	3.4	6.3
Celcium	136000	162000	141000	112000	139000	186000	140000	62800	159000	9100
Chronius	9.5	4.6	7.9	17	16	9.8 J	13.2 J	23.3 J	15.1 J	23.9
Cobelt	9.2 J	2.9 J	4.5 J	8.8	7.2 J	10.1 J	8.2 J	11.4 J	6.5 J	4.7 J
Copper	9.5 J	8.0	8.6 J	26	16	13.2 J	19.1 J	22.5 J	16.3 J	18.8
Iron	7620	6320 J	7600	15600 J	14000 J	10800	13100	21790	12700	16800
Lead	6.3 J	7.1	9.4 J	9.8	9.6	5.3 J	8.0 J	8.5 J	6.6 J	24 J
Nognesium	48000	62500	45700	53500	54000	64700	55800	39700	55100	5350
Nongonese	334 J	425 J	483 J	396 J	486 J	724 J	335 🌡	590 J	511 J	162 J
Nercury	0.30 J	9.10 U	0.17 J	0.12 U	0.1 U	<b>R</b>	0.22 J	0.60 J	0.31 J	0.12 U
Nickel	15.6 J	7.4	t 6.8	21	17	- <b>13.7 J</b>	15.4 J	24.0 J	15,3 J	13.9 B
Potaesiun	720 J	520 J	509 8	2140	2290	782 J	1650	2160	1290	861 B
Selenium	0.94 U	1.0 U	0.96 U	1.2 U	7.8 V	R	R	R	R	1.1 W
Silver	1.9 U	<b>0.9</b>	1.7 U	0.4 U	0.5 8	R	R	R	R	R
Sodium	645 J	227 J	612 J	317 J	277 J	773 🗉	806 8	1230	871 8	727 8
Thellium	0.27 J	19 U	0.34 J	24 U	16 U	0.26 U	) 1.4 W	I 0.28 U	j 0.26 U	J 0.3 U
Vanadium	12.3	0.9 U	l 9.8	16	10	18.6 J	22.7 J	34.9 J	19.4 J	19
Zinc	125 J	36 J	102 J	43 J	52 J	231 J	106 J	148 J	167 J	1740 J
Cyanida	1.5 U	8.3 U	1.7 J	11 U	11 U	2.6 U	i 2.9 U	j 3.1 U	J 2.9 ป	J R

(Page 3 of 4)

.

(Page 4 of 4)

.

.

من خ

MOSS-AMERICAN SUBSURFACE SOIL INCREANICS

ł.

Sample 1D: TR No.:	MA-58018-02 MEV411	MA- <b>58</b> 019-01 NEV416	MA-58019-02 NEV417	NA-58019-03 NEW418
Parameter				
Atuminum	21 <b>30</b> J	16900	7600	7130
Antimony	R	5.1 J	3.2 (	J 3.2 U
Arsenic	2.3 J	6.8 J	5.2	1 2.4 J
Derium	44.2	103	5.2	53
Beryltium	0.16 U	0.2 U	) <b>0.2</b> L	U 5.0
Ceduium	1.6	6.9	3.4	4.4
Celcium	194000	18500	103000	114000
Chronium	8.3	24	13	12
Cobelt	2.8 J	14	4.7 4	i 6.7 J
Copper	5.6	26	16	16
Iron	7280	26600	12600 J	I 16100 J
Lead	5.5 8	31	9.7	25
Negnesium	64 100	13600	56100	55400
Nonganese	595 J	841 J	518 J	I 475 J
Nercury	0.12 U	0.12 U	) <b>0.1</b> 0 l	J 0.10 U
Nickel	9 8	28	15	16
Potessium	420 1	1900	1520	1620
Selenium	0.92 U	u 1.3 u	) 1.1 (	J 1.1 U
Silver		0.6 U	) <b>0.5</b> t	J 0.4 U
Sodium	485 8	204 J	218 .	J 242 J
Thallium	0.26 U	J 2.6 U	22 1	J 22 U
Vanadium	10.6	37	7.4 .	J 6.9 J
Zinc	131 J	219 J	58 .	) 66 J
Cyanide		12 U	) 11 (	J 6.7 U

)

)

(Page 1 of 4)

. . .

HOSS-AMERICAN SOIL BORINGS TREATMENT PARAMETERS SAS No.: 3770E

-

-

Sample ID: TR No.:	MA-5001-01 E141/E117	MA-SBFD01-01 /E79	MA-5802-01 E144/E120	MA-5803-01 E138/E114	MA-5803-02 E139/E115	MA-SBFB03-01 E150/E154	MA- <b>SU04-01</b> E05/E17	MA- <b>5804-02</b> E06/E18	NA- <b>5904-03</b> E19	MA-SOF004-01 E151/E155
NANCO LAB:		••••••	••••••					••••••••••		
X Moisture	20		10	20	20	0 (	U <b>30</b>	20		0 U
X Ash	79		67	73	80	100	65	75		100
X Volatile Matter	18		29	22	17	1 (	U 8	18		1 U
% Fixed Carbon	1 U		1 (	V 1 U	) 11	• •	U 1U	) 11	)	1 U
VERSAR LAB:										
% Carbon (dry)	7,36	3.26	6.55	8	7.61	1 (	U 8.39	8,18		1 U
X Carbon (as rec'd)	6.49	3.26	5.66	7.02	6.79	11	U 7.14	7.57		1 U
X Oxygen (dry)	6.64	3.94	11.3	7.5	9.69	0	21.3	19.0		0
X Oxygen (as rec'd)	17.7	4.03	21.8	18.9	19.4	0	31.4	25.1		0
X Hydrogen (dry)	1.1 U	1 (	U 0.29	1.1 U	) 1.1 (	) 10	U -0 <b>.18</b>	1.07 U	)	1 U
X Hydrogen (as rec'd)	1 U	1 (	U 1.77	1 U	) 11	) 1(	V 1.51 U	) I U	1	1 U
X Nitrogen (dry)	1.1 U	1 (	U 1.2 (	U 1.1 U	1.1 u	) 1(	V 1.18 U	i 1.08 t	1	1 ป
X Nitrogen (as rec'd)	1 U	1 (	U 1(	บ 1 น	) 10	J 11	U 1 U	/ 18	)	1 U
X Ash (dry)	86	92.8	81.9	84.5	82.7	100	70.5	72.8		100
X Ash (as rec'd)	75.9	92.7	70.8	74.1	73.8	100	60.0	67.3		100
% Sulphur (dry)	1.1 U	1	U 1.2 (	V 1.1 V	1.1 1	J 1(	U 1 <b>.18</b> U	i 1.06 U		1 U
X Sulphur (as rec'd)	1 U	1	<b>U 1</b> (	บ 1 เ	1 1 1	J 11	U 10	, 10	1	1 U
X Hoisture	11.8	0.1	13.6	12.3	10.8	0	14.9	7.50	11.0	0
TOC (mg/kg)	21000	851	30600	12200	26600	142 1	• 26600	37700	28900	133 +
Chloride (mg/kg)	20.4	117	11.5	28.7	29.3	10.3	5 U	8.6		36.1
Flashpoint (degrees F	) 138	>230	138	142	136	144	134	133		148
BTU (per lb.)	500 U	500	U 500 (	U 500 U	i 500 l	J 500 (	U 500 U	J 500 L	)	500 U

(Page 2 of 4)

. .

ļ

NOSS-AMERICAN SOIL BORINGS TREATMENT PARAMETERS SAS No.: 3770E

-

-

### Moss American Soil Borings Treatment Parameters SAS No.: 3770E

(

Sample ID:	MA- <b>58</b> 05-01FR	MA- <b>50</b> 06-01	MA-5807-01	MA-5908-01	MA- <b>SB</b> 08-02	MA- <b>5009-01</b>	MA-5809-02	MA- <b>SU</b> 10-01	MA-5811-01	MA- <b>SE</b> 11-02
TR No.:	E149/E125	E145/E121	E26/E28	E20/E22	E23/E25	/E85	/E <b>88</b>	E98/E100	E140/E116	E142/E118
NANCO LAB:										
X Noisture	10	10	10	20	10			16	0	20
X Ash	64	69	71	74	78			68	82	79
% Volatile Matter	28	29	23	16	27			19	42	18
X Fixed Carbon	1 (	U 1	U 1	V 1	ี่ ปี 1	U		11	U 10	V 1.V
VERSAR LAB:										
% Cerbon (dry)	6	6.84	4.68	4.97	6.72	8.31	5.28	4.41	7.8	6.6
X Cerbon (as rec'd)	4.87	5.86	3.92	3.95	5.65	7.35	4.8	3.78	7.07	5.9
% Oxygen (dry)	9.8	9.6	9.8	17	17.3	15.5	20.1	14.5	21.9	8
% Oxygen (as rec'd)	24.7	20.9	24.5	31.8	28.7	24	27.4	26.7	28.2	17.8
% Hydrogen (dry)	-0.19	0.1	1.2	U -0.23	-0.42	0.74	J 1.1	U 9.7 d	J 0.31	1.1 U
% Hydrogen (as rec'd	l) 1.96	1.69	1 (	U 2.12	1.43	1.95	J 1.	U 2.2 J	1.33	1 U
X Nitrogen (dry)	1.2	V 1.2	V 1.2 I	U 1.3	U 1.2	U 1.1 (	V 1.1	u 1.17 i	U 1.1 (	V 1.1 V
% Nitrogen (as rec'd	D 1	U 1	U 1	U 1	U 1	U 10	ม 11	U 11	U 11	U 1 U
% Ash (dry)	84.4	83.5	85.5	78.3	76.4	75.4	74.6	81.1	· 70	85.4
X Ash (as rec'd)	68.4	71.6	71.6	62.2	64.3	66.7	67.8	69.5	63.4	76.3
X Sulphur (dry)	1.2	U 1.2 I	U 1.2 I	V 1.3	U 1.2	U 1.1 (	U 1.1 I	U 1.17 (	U 1.1 (	V 1.1 V
X Sulphur (as rec'd)	) 1	U 1.	U 1	V 1	U 1	<b>U 1</b> (	V 1.	U 11	u 11	U 1 U
X Hoisture	18.9	14.3	16.3	29.6	15.9	11.6	9.1	14.3	9.4	10.6
10C (mg/kg)	8130	24300	23400	29100	32600	21700	45900	11700	22200	18000
Chioride (mg/kg)	15.5	5.7	U 20.5	17.7	15.7	95.1	26.2	5.7 (	U 15.1	12.8
Flashpoint (degrees	F) 138	135	121	145	153	138	139	136	139	160
BTU (per lb.)	500	U 500 -	U 500	U 500	U 500	U 500 (	U 500 ·	V 500 (	U 500 (	U 500 U

(Page 3 of 4)

, **a** 

NDSS-AMERICAN SOIL BORINGS TREATMENT PARAMETERS SAS No.: 3770E

.

-

Noss American Soil Borings Treatment Parameters SAS No.: 3770E

Sample 1D: TR No.:	MA- <b>5811-02FR</b> E143/E119	MA-SB12-01 E95/E97	MA-SU13-01 E146/E122	MA-5814-01 E104/E106	MA-SU15-01 E101/E103	MA- <b>SB16-01</b> E01/E13	MA- <b>5816-02</b> E02/E14	MA- <b>SB17-01</b> E03/E15	MA-5817-02 E04/E16	MA- <b>5818-02</b> E92/E94
			••••		•••••	•••••	•••••	*************		
1 Moisture	10	14	20	17	16	22	20	77	10	20
T Ach		77	70	67	60	Å0	A1	20	43	EV 81
7 Volatile Matter	28	22	17	10	21	18	10	2		20
X Fixed Carbon	1 1	າ ໂບ	i iu	ו יו	ี โบ	) ¹ U	10	1 แ	i 1.	J 10
VERSAR LAN:										
% Carbon (dry)	6.84	7.22	7.97	6.03	6.69	9.65	6.97	4.09	6.50	7.7
X Carbon (as rec'd)	6.14	6.28	7.01	4.95	5.74	8.06	5.97	3.14	5.53	6.86
X Oxygen (dry)	7.4	6.72	4.2	14.2	13	20.9	15.9	10.6	17.7	17.8
X Oxygen (as rec'd)	15.7	17.4	14.3	27.6	23.8	32.1	28.0	28.8	28.3	25.3
X Hydrogen (dry)	-0.09	-0.44 J	-0.32	-0.43 J	-0.09	-0.25	1.15 U	0.17	0.27	-0,19 J
X Hydrogen (as rec'd)	1.06	1.07 4	1.06	1.65 J	1.51 J	1.64	1 U	2.73	1.90	1.02 J
% Nitrogen (drv)	1.11	9 <b>1.1</b> N	1.1 נ	I 1.2 U	1.2 u	1.2 1	) <b>1.17</b> Ŭ	1.3 0	1.18 1	1.1 0
% Nitrogen (as rec'd)	11	u 10	1	์ 1 บ	1	1 1	1 1	1 0	1	i 1ŭ
% Ash (drv)	85.9	86.5	86.2	80.2	80.4	74.9	77.1	85.1	75.5	76.7
X Ash (as rec'd)	77.1	75.3	77.6	65.8	69	58.2	66.0	65.4	64.3	66.8
X Sulphur (dry)	1.11	u 1.1 u	1.11	1.2 1	1.2 0	1.2 1	1.17 U	1.3 8	1.18 1	1.11
X Suighur (as rec'd)	11	1 1 1	11	) <u>1</u> u	1 1	i 1ŭ	1 1	1 0	1	i 10
X Hoisture	10.2	13	12	17.9	14.2	16.5	14.4	23.2	14.9	10.6
TOC (mi/ke)	13900	19200	28800	27600	5210	47900	36600	11800	32700	38900
Chieride (ma/ka)	8.7	18.5	15.2	13.8	16.3	54.8	74.8	45.2	65	77.6
Flashpoint (degrees F	) 138	139	134	131	138	130	163	141	141	138
BIU (per lb.)	500 (	U 500 U	500 L	) 500 U	500 U	i 500 u	500 U	500	500 1	J 500 U

(Page 4 of 4)

.

HOSS-AMERICAN SOIL BORINGS TREATMENT PARAMETERS SAS No.: 3770E

-

Sample ID:	MA-5819-01	MA-5819-02	MA-SE19-03
TR No.:	E107/E109	E110/E112	/E113
NANCO LAS:			
X Noisture	20	12	
X Ash	69	76	
% Volatile Matter	12	23	
X Fixed Carbon	1 U	1 (	
VERSAR LAD:			
% Carbon (dry)	16	4.55	
% Carbon (as rec'd)	13.4	4.04	
% Oxygen (dry)	2.2	14.8	
X Oxygen (as rec'd)	16.5	24.3	
% Hydrogen (dry)	0.41 J	-0.06	1
% Hydrogen (as rec'd)	2.19 J	1.2	J
X Nitrogen (dry)	1.2 U	1.1	V
X Nitrogen (as rec'd)	1 U	1 (	V
X Ash (dry)	81.3	80.7	
X Ash (as rec'd)	67.9	71.7	
X Sulphur (dry)	1.2 U	1.1	U
% Sulphur (as rec'd)	1 U	1	U
X Hoisture	16.5	11.2	19.1
10C (mg/kg)	47900	20508	25600
Chloride (mg/kg)	75.8	17	
Flashpoint (degrees F	) 140	137	
BTU (per lb.)	500 U	500	U

PERCENT RETAINED BY WEIGHT 0.0001 100. .<u>.</u> 20. 30. 90. 40. 20. 50. бŪ. 60. . • Į 27 Ľ 5121 1 ANAL YSIS **CLAY** i ٦ 12 I SILT AND CLAT ж KOX • 1 1-1 1111 HYDROMETI R USCS CL Ŧ 0.01 ļ • • 5111 BROWN CLAY-SOME SAND SOME GRAV+INC+3/4 PARTICLE DIAMETER IN MM. SOIL DESCRIPTION ŧ 0.1 1 FIME ç ` • -ç, SAND MEDIUM 1 1 1 1 1 1 1 ŧ **NALYSIS** i 2 COARSE i DEPTH : 10 ! SHEVE FIR 27-31 GRAVEL . CLEAR STER ; : Z 1 COARGE : SAMPLE 11/2 213 9 1001 . ł J/10 ;; COBBLES BUR!NG 20. 60. 50. **\$**0. 30. 10. .00, 50. 70. 6 PERCENT FINER BY WEIGHT ×

ORAIN SIZE ANALYSIS PROJECT NAME: USEPA PROJECT NO. - SAS 3770E

٩.

# # # # ORALN SUZE ANALYSIS # # # #

-

· .

0005

.

#######REDUCED RESULTSTONALULE

PRUJECT NAME:	USEPA	5B-04D-10 15-17'	
PROJECT NU.:	SAS 3770E	BORING NO.	37.10E
SANPLE NU.I	213	DEPTH:	x
ASSUKED	SPECIFIC GRAVITY - 2.70		

### #=#SIEVE ANALYSIS==#

SIEVE NO.	PIAHETER IN MM	PERCENT FINER
3.0 IN.	75.000	100.0
1.5 IN.	37.500	100.0
0.75 IN.	19.000	92.2
0.3751N.	9.500	87.9
NU, 4	4.750	84.9
ND. 10	2.000	81.4
NU. 20	0.950	78.2
ND. 40	0.425	75.1
NU, 60	0.250	71.8
ND. 140	0.106	66.1
NO. 200	0.075	43.0

### ===HYDRUMETER ANALYSIS===

PERCENT FINER	CURRECTED PERCEN	J
65.5	62.8	-
61.6	59.0	
57.6	55.2	
52.6	50.4	
45.7	43.8	
37.7	36.2	
33.8	\$2.4	
29.8	28.6	
25 - 8	24./	
22.3	21.4	
15.9	15.2	
	PERCENT FINER 65.5 61.6 57.6 52.6 45.7 37.7 33.8 29.8 25.8 22.3 15.9	PERCENT FINER    CURRECIEU    PERCE:      65.5    62.8      61.6    59.0      57.6    55.2      52.6    50.4      45.7    43.8      37.7    36.2      33.8    32.4      29.8    28.6      25.8    24.7      22.3    21.4      15.9    15.2

### CORRECTION FACTOR= 0.96

WT, OF SOIL FUR SIEVE ANALYSIS (GM)= 365.96 W1. OF SOIL FOR HYDROMETER ANALYSIS (GM)= 65.09 VISCOS(TY OF WAIER (MILLIPUISES)# 9.77



- - m ..... I ZII NAME SAS 7D F-· < (n)

* * * * BRAIN STZE ANALYSIS * * * *

.

0007

¥

### 

PROJECT NAME:	USEPA	'SB-040-10 15-17'	
PROJECT NO.:	SAS 3770E	ROKING NO.:	3770E
SAMPLE NO.:	213	DEPTH:	x

ASSUMED SPECIFIC BRAVITY # 2.70

.

### ===SIEVE ANALYSIS===

SIEVE NO.	DIAMETER IN MM	PERCENT FINER
3.0 IN.	25.000	100.0
1.5 IN.	37.500	100.0
0.75 IN.	19.000	100.0
0.375IN.	9.500	75.4
NU. 4	4.750	92.1
ND. 10	2.000	88.4
NU. 20	9.350	84.8
ND. 40	0.425	81.4
NU. 60	0.250	77.9
ND. 140	0.106	71.8
NU. 200	0.075	68.4

### ===HYDRUMETER ANALYSISH==

PERCENT FINER	CORRECTED PERCE	îr.
71.2	68.1	
66.9	64.0	
62.6	59.9	$\smile$
57.2	54.7	
49.6	47.5	
41.0	59.2	
36.7	35.1	
32.4	31.0	
28.0	26.8	
24.3	23.2	
17.3	16.5	
	PERCENT FINER 71.2 66.9 62.6 57.2 49.6 41.0 36.7 32.4 28.0 24.3 17.3	PERCENT FINER    CORRECTED PERCE      71.2    68.1      66.9    64.0      62.6    59.9      57.2    54.7      49.6    47.5      41.0    39.2      36.7    35.1      32.4    31.0      28.0    26.8      24.3    23.2      17.3    16.5

### CURRECTION FACTOR= 0.96

WT. OF SOIL FOR SIEVE ANALYSIS (GH)= 337.34 WT. OF SUIL FOR HYDROMETER ANALYSIS (GM)= 65.09 VISCUSITY OF WATER (HILLIPOISES)= 9.77



• •

~ 111 +-4 (1) E # # # GRAIN SITE ANALYSIS

٠

********REDUCED RESULTS*******

PROJECT NAME:	USEPA	58-04D-10	
PROJECT NO.:	SAS 3770E	73-17 Ruking Hu.:	3770E
SAMPLE NO.:	214	DEPTH:	x

ASSUMED SPECIFIC GRAVITY = 2.70

### ===SIEVE ANALYSIS===

SIEVE NO.	DIAMETER IN MM	PERCENT FINER
3.0 IN.	75.000	100.0
1.5 IN.	37.500	100.0
0.75 IN.	19.000	87.4
0.375IN.	9.500	79.3
NO. 4	4.750	77.1
ND. 10	2.000	74.4
NU. 20	0.550	· 71.8
ND. 40	0.425	64.9
ND. 60	0.250	67.0
NG. 140	0.106	61.2
ND. 200	0.075	58.0

### ===HYDRUMETER ANALYSIS===

DIAMETER IN MM	PERCENT FINER	CORRECTED	PERCEN
0.0721	58.6	57.6	
0.0526	55.5	54.5	
0.0387	51.0	50.1	
0.0288	44.7	43.9	
0.0184	36.2	35.6	
0.0113	28.2	27.7	
0.0082	23.7	23.3	
0.0059	20.4	20.2	
0.0043	17.4	17.1	
0.0031	13.0	12.7	
0.0013	9.4	9.2	

### CORRECTION FACTOR= 0.98

WT. OF SOIL FOR SIEVE ANALYSIS (BH)= 250.41 WT. OF SOIL FOR HYDROMETER ANALYSIS (BH)= 66.03 VISCUSITY OF WATER (MILLIPOISES)= 9.91

0009

¥

* * * *



00

### ORAIN SIZE ANALYSIS PROJECT NAME: USEPA PROJECT NOR SAS 3770E

:

0010

* * * * GRAIN SIZE ANALYSIS * * * *

0011

### 

PROJECT NAME:	USEPA	58-04D-10 N-17'	
PROJECT NU.:	SAS 3770E	BORING NU.:	3770E
SAMPLE NU.:	214	DEP (H:	x

ASSUMED SPECIFIC GRAVITY = 2.70

### -----

SIEVE NU.	DIAMETER IN MM	PERCENT FINER
3.0 IN.	/5.000	100.0
1.5 1N.	37.500	100.0
0./5 IN.	19.000	100.0
0.375IN.	9.500	88.7
NU. 4	4.750	86.2
ND. 10	2.000	83.2
ND. 20	0.850	80.3
ND. 40	0.425	78.2
NU. 60	0.250	74.9
ND. 140	0.106	68.4
NU. 200	0.075	64.8

### ===HYDRONETER ANALYSIS===

DIAMETER IN MM	PERCENT FINER	CORRECTED PERCE	ŕ
0.0721	65.5	64.4	
0.0526	62.0	60.9	
0.0387	57.0	56.0	~
0.0288	50.0	49.1	
0.0184	40.5	37.8	
0.0113	31.5	31.0	
0.0082	26.5	26.0	
0.0059	23.0	22.6	
0.0043	19.5	14.2	
0.0031	14.5	14.3	
0.0013	10.5	10.3	

### CORRECTION FACTOR# 0.98

WT. OF SUIL FOR SIEVE ANALYSIS (GM)= 231.06 WT. OF SUIL FOR HYDROMETER ANALYSIS (GM)= 66.03 VISCOSITY OF WATER (MILLIPOISES)= 9.91


0012

GRAIN SIZE ANALYSIS PROJECT NAME: USEPA

SAS 3770E PROJECT N0.:

* * * * BRAIN SIZE ANALISIS * * * *

· · · · · ·

.

.

- ----

-----

#######REBUCED_RESULTShows#####

PROJECT NAME:	USEPA	58-080-06 4-6	
PROJECT NO.:	SAS 3770E	BOKING NO.:	3779E
SAMPLE NU.:	215	DEFTH:	ĸ
ASSUNED	SPECIFIC GRAVITY = 2.70	)	

. .

#### ***SIEVE ANALYSIS***

SIEVE NO.	DIAMETER IN MM	PERCENT FINER
3.0 IN.	75.000	100.0
1.5 IN.	37.500	100.0
0.75 LN.	19.000	100.0
0.375IN.	9.500	100.0
NU. 4	4./50	100.0
ND. 10	2.000	99.B
NG. 20	0.850	YY.0
ND. 40	0.425	47.1
NU. 60	0.250	93.7
ND. 140	0.106	45.1
ND. 200	0.075	81.4

#### ===HYUROMETEK ANALYSIS===

DIANETER IN MH	PERCENT FINER	CORRECTED PERCERT
0.0/50	/7.5	81.4 🔍
0.0548	72.4	/6.1
0.0396	** • 6	72.0
0.0297	58.4	61.4
0.0145	40.7	42.7
0.0121	24.8	26.0
0.0088	19.1	20.0
0.0063	14.0	14.7
0.0045	11.4	12.0
0.0032	7.6	8.0
0.0013	5.7	<b>ė.</b> 0

#### CORRECTION FACTOR= 1.05

WT. OF SOIL FOR SIEVE ANALYSIS (GM)= 255.24 WT. OF SOIL FOR HYDROMETER ANALYSIS (GM)= 62.38 VISCOSITY OF WATER (MILLIPOISES)= 9.91



.

**** GRAIN SIZE ANALYSIS **** 0015

#### 

•

PROJECT NAME:	USEPA	58-07I-1 9-10	
PROJECT NO.:	SAS 3770F	BORING HO.:	3770E
SAMPLE NU.:	216	NEP 1 H 1	X
ASSUMEN	BPECIFIC BRAVITY = 2.65		

## ===SIEVE ANALYSIS===

SILVE NU.	DIANETER IN MN	PERCENT FINER
3.0 IN.	75.000	100.0
1.5 IN.	37.500	100.0
0.75 IN.	19.000	/0.B
0.375IN.	9.500	58.1
N13. 4	4.750	42.1
NO. 10	2.000	32.1
NU. 20	0.850	24.4
ND+ 40	0.425	17.7
N(), 60	0.250	14.2
ND. 140	0.106	10.3
NO. 200	0.075	¥.0

#### ===HYDRUMETER ANALYSIS===

DIAHETER IN MM	PERCENT FINER	CORRECTED PERCEP
0.0885	8.7	4.6
0.0643	/.8	8.5
0.0468	6.7	7.3 ~
0.0342	5.2	5.7
0.0215	3.7	4.1
0.0129	2.3	2.5
0.0092	1.7	1.9
0.0066	1.3	1.4
0.0047	1.1	1.2
0.0033	0.7	0.7
0.0014	0.4	0.5

۱

## CORRECTION FACTOR= 1.09

WT. OF SOIL FOR SIEVE ANALYSIS (GN)= 664.35 WT. OF SOIL FOR HYDROMETER ANALYSIS (GH)= 118.03 VISCOSITY OF WATER (HILLIPOISES)= 9.91

	CU= 108.0		UZ#	2.4	
₽60=	10.5145	D30=	1.5804	110×	0.0974



Þ 8-----Z 00 -1 -1 () 8- -- 8 •. S C  $\mathbf{P}$ テッズ N IT >> νiя, 377 - ≺ (I)(/)

C

.U

F # # # GRAIN SIZE ANALYSIS

____

PROJECT NAME:	USEPA	58-072 - 1 9-10	
PROJECT HO.:	SAS J779E	BORING RO.T	3770E
SAMPLE NU.:	216	DEPTH:	X

ASSUMED SPECIFIC BRAVITY = 2.65

#### ===SLEVE ANALYSIS===

SIEVE NU.	DIAMETER IN MM	PERCENT FINER
3.0 1N.	75.000	100.0
1.5 ln.	37.500	100.0
0./5 IN.	19.000	100.0
0.375IN.	9.500	82.1
NU. 4	4./50	57.4
ND. 10'	2.000	45.4
NU. 20	0.850	34.4
ND. 40	0.425	25.0
NU. 60	0.250	20.0
NO. 140	0.106	14.6
NU. 200	0.075	12.7

#### ===HYDROKETER ANALYSIS===

DIAMETER IN NH	PERCENT FINER	CORRECTED	FERUE
0.0885	12.4	13.5	
0.0643	11.0	12.0	$\smile$
0.0468	<b>4</b>	10.3	
0.0342	1.4	8.1	
0.0215	5.3	5.7	
0.0129	3.2	3.5	
0.0092	2.5	2.7	
0.0046	1.9	2.0	
0.0047	1.5	1.7	
0.0033	U . 9	1.0	
0.0014	0.6	0.7	

## CURRECTION FACTURE 1.09

WT. OF SOIL FOR SIEVE ANALYSIS (GH)= 470.63 WT. OF SOIL FOR HYDROMETER ANALYSIS (GH)= 118.03 VISCOSITY OF WATER (MILLIPOISES)= 9.91

CU= 107.8

ĽZ≈ 1.7

$D \neq A =$	0 7	C 2
1000-	 03	

D30= U.6143

.

٠

١

0017

* * * *

۰,



GRAIN SIZE ANALYSIS PROJECT NAME: USEPA PROJECT NO.: SAS 3770E

0018

ł

--•

# # # # GRAIN SITE ANALYSIS # # # #

PROJECT NAME:	USEPA	5B-098-01 10-12'	
PROJECT NO.:	545 3770E	BORING NO.:	37708
SAMPLE NU.:	217	DEFJH:	x

ASSUMED SPECIFIC BRAVITY # 2,65

#### ===SIEVE ANALYSIS===

SIEVE NU.	DIAMETER IN MK	PERCENT FINER
3.0 LN.	75.000	100.0
1.5 LN.	37.500	100.0
0.75 LN.	19.000	93.2
0.375IN.	9.500	79 <b>.</b> 9
NÚ. 4	4./50	67.2
NO. 10	2.000	57.1
NU. 20	0.850	47.2
ND. 40	0.425	40.2
NU. 60	0.250	53.1
ND. 140	0.106	26+2
NU. 200	0.075	23.5

#### ===HYDRUKETER ANALYSIS===

DIAMETER IN AM	PERCENT FINER	CORRECTED PERCEN	
0.0840	23.8	24.4	
0.0614	21.4	21.9	$\bigcirc$
0.0447	14.1	17.6	
0.0324	16.9	1/.3	
0.0209	11.2	31.4	
0.0125	/.9	8.1	
0.0090	6.0	6.1	
0.0064	5.0	1 . 1	
0.0046	4.0	4.1	
0.0033	3.0	1 . ف	
0.0014	2.0	2.0	

## CURRECTION FACTOR= 1.02

WT. OF SUIL FUR SIEVE ANALYSIS (GM)= 172.06 WI. OF SOIL FOR HYDROMETER ANALYSIS (GH)= 92.35 VISCOSITY OF WATER (MILLIPOISES)= 9.91

CU#	153.3	C	:Z-	0.7

D40= 2.5617

D30= 0.1708

D10= 0.0167

٩

3



* * * * BRAIN SIZE ANALYSIS * * * *

•

#### #######REDUCED RESULTS########

PROJECT NAME:	USEPA	SB-09I-1 10-12/	
PROJECT NO.:	SAS 3770E	BORING NU.:	3770E
SAMPLE NU.:	217	DEPTH:	x

ASSUMED SPECIFIC GRAVITY = 2.65

#### ===SIEVE ANALYSIS===

SIEVE NU.	DIAMETER IN MM	PERCENT FINER
3.0 IN.	75.000	100.0
1.5 IN.	37.500	100.0
0.75 IN.	19.000	100.0
0.375IN.	9.500	85.7
NU. 4	4.750	72.1
ND. 10	2.000	61.3
NU. 20	0.850	50.6
ND. 40	0.425	43.1
NU. 60	0.250	35.5
NO. 140	0.106	28.1
NU. 200	0.075	25.2

#### ***HYUROKETER ANALYSIS***

DIAMETER IN MM	PERCENT FINER	CORRECTED	PERCEN
0.0840	25.6	26.2	,
0.0614	22.9	23.5	$\bigcirc$
0.0447	20.5	21.0	
0.0324	18.1	18.5	
0.0209	12.0	12.3	
0.0125	8.5	8.7	
0.0090	6.4	6.5	
0.0064	5.3	5.5	
0.0046	4.3	4.4	
0.0033	3.2	3.3	
0.0014	2.1	2.2	

## CORRECTION FACTOR= 1.02

· .

•

WT. OF SOIL FOR SIEVE ANALYSIS (GH)= 160.42 WT. OF SOIL FOR HYDROMETER ANALYSIS (GH)= 92.35 VISCUSITY OF WATER (MILLJPDISES)= 9.91

CU= 120.1		CZ= 0.6			
D60=	1.8067	D30=	0.1327	D10=	0.0150

DÜ21

.

¥



PROJECT ND.- SAS 3770E PROJECT NAME+ USEPA DECT NOVE+ USEPA

*** BRAIN SEZE ANALYSIS ****

-----

• .

0023

### 

PROJECT NAME:	USEPA	58-105 -01	
PROJECT ND.:	SA5 3770E	BORING NO.	3770E
SAMPLE NO.:	218	DEPTH:	×
ASSUMED	SPECIFIC GRAVITY = 2.65		

#### ===SIEVE ANALYSIS===

SIEVE NU.	DIAMETER IN NM	PERCENT FINER
3.0 IN.	75.000	100.0
1.5 IN.	37.500	100.0
0.75 TN.	19.000	100.0
0.375IN.	9.500	68.1
ND. 4	4.750	69.8
ND. 10	2.000	51.4
NU. 20	0.850	32.7
ND. 40	0.425	26.8
NU. 60	0.250	23.5
ND. 140	0.106	18.7
NU. 200	0.075	16.1

#### ===HYDROMETER ANALYSIS===

DIAMETER IN MM	PERCENT FINER	CURRECTED	PERCENT
0.0896	16.7	17.7	
0.0656	14.1	14.9	$\sim$
0.0474	12.3	13.0	-
0.0348	4.2	7.8	
0.0218	6.6	7.0	
0.0129	4.0	4.2	
0.0093	2.6	2.8	
0.0066	1.8	1.9	
0.0047	1.1	1.2	
0.0033	0.9	0.9	
0.0014	0.4	0.5	

#### CORRECTION FACTOR= 1.06

NT. OF SULL FOR SIEVE ANALYSIS (BH)= 198.81 WT. OF SUIL FUR HYDRUMETER ANALYSIS (GH)= 93.94 VISCOSITY OF WATER (MILLIPOISES)= 9.91

CU= 84.5		CZ=	3.6	
R60= 3.0006	D30=	0.6191	D10=	0.0355

٠

STEVE ANALYSIS HYDROMETUR ANALYSIS US STANDARD GILVE NUMBERS CLEAR SIEVE Drentings (IN. ) 3 11/2 3/4 3/6 140 200 20 40 60 4 10 100-141-1-1-1 +0. 90. 10. 20. 80. M. . .... ..... _ •• ------ - --. . . . . . . . ... ... .... ----Ð ERCENT PERCENT FINER 70. 30. **U U** 20 :0 O OC. C. 60. 40. RETAINED min  $\sigma \sigma$ -1 -1 ( 150. 50. ZZ. BY WEIGHT Ű 40. 60. . WEIGHT S C 70. 3- (1) . 30. S III 10 F Cal De 80. 20. 1 701 90. 10. 100. 0. ----100 0.1 0.01 0.001 10 0.0001 PARTICLE DIAMETER IN MM. SAND SILT AND CLAY GRAVEL COBBLES COARSI SILT SIZE CLAY SIZE COARSE MEDIUM_ FINE FINE BORING DEPTH SOIL DESCRIPTION USCS SAMPLE WC'Z CU CZ 3170L 50-105 218 BROWN SANDY GRAVEL-TRACE CLAY . INC. 3/4 GP-GC 8.5 4.0 141 O <u>10=4</u> ō

 $\mathbf{N}$ 5

t

1

t,

٠ t # # # # GRAIN SIZE ANALYSIS

.

======REBUCED RESULTS=======

PROJECT NAME:	USEPA	98-105-01 10-11	
PROJECT NU.:	SAS 3770E	BOKING NU.:	3770E
SAMPLE NU.:	218	DEPTH:	x
ASSUMED	SPECIFIC BRAVITY = 2.6	5	

* * * *

#### ===SIEVE ANALYSIS===

SIEVE NO.	DIAMETER IN MM	PERCENT FINER
3.0 IN.	75.000	100.0
1.5 1N.	37.500	100.0
0.75 IN.	19.900	74.4
0.375IN.	7.500	65.6
NU. 4	4.750	51.9
ND. 10	2.000	38.2
ND. 20	0.850	24.3
ND. 40	0.425	19.9
NU. 60	0.250	17.5
ND. 140	0.106	13.9
NU. 200	0.075	12.0
NU. 60 NU. 140 NU. 200	0.250 0.106 0.075	17.5 13.9 12.0

#### ===HYIROMETER ANALYSIS===

DIAMETER IN HH	PERCENT FINER	CORRECTED	PERCEN
0.0896	12.4	13.2	
0.0456	10.4	11.1	$\sim$
0.0474	9.1	9.7	
0.0348	6.9	7.3	
0.0218	4.9	5.2	
0.0129	2.9	3.1	
0.0093	2.0	2.1	
0.0066	1.3	1.4	
0.0047	0.8	0.9	
0.0033	0.7	0.7	
0.0014	0.3	0.3	

#### CORRECTION FACTOR= 1.06

•

WT. OF SOLL FOR SIEVE ANALYSIS (8M)= 267.29 WT. OF SOLL FOR HYDRUMETER ANALYSIS (8M)= 93.94 VISCOSITY OF WATER (MILLIPOISES)= 9.91

	CU≃ 140.8		C2=	4.0	
D60=	7.1653	U30=	1.2048	· D10=	0.0509

0025

٠

۱.



GRAIN SIZE ANALYSIS PROJECT NÁME: USEPA PROJECT NO.: SAS 3770E

7

0026

)

**** ORALN SIZE ANALISIS **** 0027

#### #######REDUCED RESULIS########

۰.

PROJECT NAME:	USEPA	58-125-1 9-10'	
PROJECT NO.1	SAS 3770E	BORING NO. :	3770E
SAMPLE NO.:	219	DEPTH:	×
ASSUMED	SPECIFIC GRAVITY = 2.68		

## -----

SIEVE NO.	DIAMETER IN MM	PERCENT FINER
3.0 EN.	75.000	100.0
1.5 IN.	37.500	100.0
0.75 LN.	19.000	100.0
0.375IN.	9.500	92.8
NU. 4	4.750	90.9
ND. 10	2.000	86.1
NU. 20	0.850	79.8
ND. 40	0.425	76+4
NU. 60	0.250	71.2
ND. 140	0.106	55.2
ND. 200	0.075	49.9

#### ===HYDROMETER ANALYSIS===

DIAMETER IN MM	PERCENT FINER	CORRECTED	PERCEN
0.0872	41.6	53.0	
0.0635	36.5	46.5	$\sim$
0.0457	33.5	42.7	•
0.0332	28.4	36.2	
0.0212	18.9	23.9	
0.0127	11.7	14.9	
0.0091	9.1	11.6	
0.0065	6.6	8.4	
0.0046	6.1	7.8	
0.0033	5.6	7.1	
0.0013	4.1	5.2	

1

#### CORRECTION FACTOR= 1.27

WT. OF SUIL FOR SIEVE ANALYSIS (GH)= 242.32 WT. OF SUIL FOR HYDROMETER ANALYSIS (GH)= 67.72 VISCUSITY OF WATER (HILLIPOISES)= 9.91



• .

•. •

**** GRAIN SIZE ANALYSIS **** DU29

#### *******REDUCED RESULTS*******

PRUJECT NAME:	USEPA	58-025 - 1 16-18'	
PROJECT NO.:	SAS 3770E	BORING NO.	3770E
SAMPLE NO.:	220	DEPTH:	x

ASSUMED SPECIFIC BRAVITY = 2.70

.

#### ===SIEVE ANALYSIS===

SIEVE NU.	<b>DIAMETER IN NH</b>	PERCENT FINER
3.0 lN.	75.000	100.0
1.5 1N.	37.500	100.0
0.75 IN.	19.000	100.0
0.375IN.	9.500	100.0
NO. 4	4./50	99.6
NO. 10	2.000	48.7
ND. 20	0.850	98.2
ND. 40	0.425	97 <b>.8</b>
NU. 60	0.250	97.3
ND. 140	0.106	96.1
NU. 200	0.075	95.2

#### ***HYDROMETER ANALYSIS***

DIAMETER IN MM	PERCENT FINER	CURRECTED PERC	EN-
0.0732	97.2	95.0	
0.0526	94.3	92.1	~ /
0.0381	49.4	87.9	$\sim$
0.0278	84.1	82+2	
0.0177	71.1	69.5	
0.0112	52.2	51.0	
0.0083	40.6	39.7	
0.0040	32.6	31.9	
0.0044	25.4	24.8	
0.0032	19.6	19.1	
0.0013	12.3	12.0	

۰.

١

## CORRECTION FACTOR# 0.98

7

WT. OF SOIL FOR SIEVE ANALYSIS (GH)= 344.83 WT. OF SOIL FOR HYDROMETER ANALYSIS (GM)= 54.05 VISCOSITY OF WATER (HILLIPOISES)= 9.77



----

•

0030

PROJECT NOVY SAS 3770E

*** GRAIN SIZE ANALYSIS **** 0031

## ======REDUCED RESULTS=======

۰,

PROJECT NAME:	USEPA	58-045-01 12-12'	
PROJECT NU.:	SA8 3770E	BORING NO.:	3770E
SAMPLE NU.:	221	DEPTH:	x
ASSUKED	SPECIFIC GRAVITY = 2.65		

#### ==#SIEVE ANALYSIS===

SIEVE NU.	DIAMETER IN MM	PERCENT FINER
3.0 IN.	75.000	100.0
1.5 IN.	37.500	100.0
0.75 IN.	19.000	56.0
0.3751N.	9.500	53.3
ND. 4	4.750	50.0
ND. 10	2.000	48.0
NU. 20	0.850	45.8
ND. 40	0.425	43.9
NU. 60	0.250	41.8
NO. 140	0.106	38.0
ND. 200	0.075	35.8

#### ===HYDROMETER ANALYSIS===

DIAMETER IN MM	PERCENT FINER	CORRECTED PERCEN	
0.0749	38.1	35.8	
0.0352	35.2	33.1	
0.0405	32.3	30.4 🗸	ノ
0.0278	29.1	27.4	
0.0186	25.4	23.7	
0.0113	20.8	19.5	
0.0083	17.9	16.8	
0.0060	15.6	14.6	
0.0043	13.8	13.0	
0.0030	12.4	11.7	
0.0013	8.7	8.1	

٩

١

#### CORRECTION FACTOR 0.94

WT. OF SOIL FUR SIEVE AMALYSIS (UM)= 534.14 WT. OF SOIL FOR HYDROMETER ANALYSIS (GM)= 66.81 VISCUSITY OF WATER (MILLIPOISES)= 9.77



JRAIN SIZE ANALYSIS PROJECT NAME: USEPA PROJECT NO.: SAS 3770E

י ג

**** GRAIN SIZE ANALYSIS **** D033

#### 

PROJECT NAME:	USEPA	5B-065 -01 10-12'	
PROJECT NU.:	SAS J770E	BORING HO.:	3770E
SAMPLE NO.:	221	Dep TH:	x
ASSUMED	SPECIFIC GRAVITY = 2.65		

#### ==-SIEVE ANALYSIS===

SIEVE NO.	DIAMETER IN MM	PERCENT FINER
3.0 IN.	75.000	100.0
1.5 IN.	37.500	100.0
0.75 IN.	19.000	100.0
0.375IN.	7.500	95.3
NU. 4	4.750	89.4
ND. 10	2.000	85.7
ND. 20	U.250	. 81.8
ND. 40	0.425	78.5
NU. 60	0.250	74.7
ND. 140	0.106	67.9
ND. 200	0.075	<b>64.0</b>

#### ===HYDROHETER ANALYSIS===

DIANETER IN MM	PERCENT FINER	CORRECTED	PERCEN
0.0749	68.0	64.0	
0.0552	62.8	59.1	
0.0405	57.7	54.3	·
0.0298	52.0	48.9	
0.0186	45.3	42.6	
0.0113	37.1	34.9	
0.0083	31.9	30.0	
0.0060	27.8	26.2	
0.0043	24.7	23.3	
0.0030	22.1	20.8	
0.0013	15.5	14.5	

١

## CORRECTION FACTOR= 0.94

. :

WT. OF SOIL FOR SIEVE ANALYSIS (GH)= 298.92 WT. OF SOIL FOR HYDRONETER ANALYSIS (GH)= 66.81 VISCOSITY OF WATER (MILLIPOISES)= 9.77 DRAIN SIZE ANALYSIS PROJECT NAME+ USEPA PROJECT NO.+ SAS 3770E

. •



* * * * BRAIN SIZE ANALYSIS * * * * 0035

#### *******REDUCED RESULTS********

•

-

.

۹.

PROJECT NAME:	USEPA	58-115-2 16-17	
PROJECT NO.:	SAS 3770E	BURING NU.:	3770E
SAHPLE NU.:	222	DEPTH:	X
ASSUNED	SPECIFIC GRAVITY # 2.70		

## ===SIEVE ANALYSIS===

SIEVE NU.	UIAMETER IN MM	PERCENT FINER
3.0 IN.	75.000	100.0
1.5 IN.	37.500	100.0
0.75 IN.	19.000	92.3
0.375IN.	9.500	84.0
NU. 4	4.750	81.4
NG. 10	2.000	77.1
ND. 20	0.250	72.5
ND. 40	0.425	67.7
NU. 60	0.250	61.9
ND. 140	0.106	50.9
NU: 200	0.075	45.4

#### ===HYDRUMETER ARALYSIS===

DIAHETER IN MM	PERCENT FINER	CURRECTED PERCEN
0.0810	48.5	46.2
0.0589	45.2	42.8
0.0430	40.7	38.5
0.0313	36.6	34.7
0.0193	32.4	30.8
0.0117	25.8	24.4
0.0085	21.7	20.5
0.0061	14.0	18.0
0.0044	15.4	14.5
0.0031	13.6	12.8
0.0013	10.9	10.3

.

#### CURRECTION FACTOR= 0.95

WT. OF SUIL FOR SIEVE ANALYSIS (GH)= 271.32 WT. OF SUIL FOR HYDROHETER ANALYSIS (GH)= 67.71 VISCOSITY OF WATER (HILLIPOISES)= 9.77



-1 -1 m I ZE NAME NO ..... いにずるの S m > VI

**** ORAIN SIZE ANALYSIS **** 0037

#######REDUCED_RESULTS#######

9

		58-115-2	
PROJECT NAME:	USEPA	16-17	
PROJECT NU.:	SAS 3770E	BORING NO':	3770E
SAMPLE NO.:	222	DEPTH:	x
ASSUMED	SPECIFIC GRAVITY = 2.70		

## ###SIEVE ANALYSIS###

SIEVE NO.	DIAMETER IN MM	PERCENT FINER
3.0 1N.	75.000	100.0
1.5 IN.	37.500	100.0
0.75 LN.	19.000	100.0
0.375IN.	9.500	90.9
NU. 4	4.750	88.1
ND. 10	2.000	83.5
NU. 20	0.850	78.5
ND. 40	0.425	73.4
NU. 60	0.250	67.1
ND. 140	0.105	55.1
ND. 200	0.075	49.1

#### ===HYUROMETER ANALYSIS===

DIANETER IN MM	PERCENT FINER	CURRECTED PERCEN
0.0810	52.9	50.0
0.0589	47.0	46.3
0.0430	44.1	41.7
0.0313	34.7	37.5
0.0193	35.3	53.4
0.0117	27.9	26.4
0.0085	23.5	22.2
0.0061	20.6	19.5
0.0044	16.6	15.8
0.0031	14.7	13.9
0.0013	11.8	11.1

•

#### CURRECTION FACTOR= 0.95

WT. OF SUIL FOR SIEVE ANALYSIS (GH)= 250.51 WT. OF SUIL FOR HYDROMETER ANALYSIS (GH)= 67.71 VISCUSITY OF WAFER (MILLIPUISES)= 9.77



PROJECT NDL: SAS 3770E PROJECT NAME: USEPA PROJECT NDL: SAS 3770E

8800

-6

-0039

#### 

PRUJECT NAME:	USEPA	58-135-01 11-12	
PROJECT NO.:	SAS 3770E	BORING NO.:	37/0E
SAMPLE NU.:	223	DEPTH:	x

ASSUMED SPECIFIC GRAVITY = 2.68

#### ==-SIEVE ANALYSIS===

SIEVE NO.	<b><i>UIANETER IN MM</i></b>	PERCENT FINER
3.0 IN.	/5.000	100.0
1.5 IN.	37.500	100.0
0.75 IN.	14.000	97.6
0.375IN.	9.500	93.7
NU. 4	4.750	89.3
ND. 10	2.000	85.9
NO. 20	0.850	83.2
ND. 40	0.425	81.0
ND. 60	0.250	78.6
ND. 140	0.106	74.1
NU. 200	0.075	67.8

## ==HYUROMETER ANALYSIS===

DIAMETER IN MM	PERCENT FINER	CORRECTED PERCEN
0.0723	71.1	- <b>68.7</b>
0.0547	62.8	60.8
0.0412	54.1	52.3
0.0312	43.3	41.8
0.0202	30.9	29.9
0.0124	18.5	17.9
0.0090	14.4	13.9
0.0064	11.8	11.5
0.0046		9.5
0.0033	7.7	7.5
0.0013	5.7	5.5

#### CORRECTION FACTOR= 0.97

WT. OF BOIL FOR SIEVE ANALYSIS (BM) = 675.31 WT. OF SOIL FOR HYDROHETER ANALYSIS (GH)= 66.53 VISCOSITY OF WATER (HILLIPUISES)= 9.77

CU≈	10.6	CZ=	1.5	
		-		

D40= 0.0533

•*

.

B30# 0.0203

**D10= 0.00**50

•

1

(Page 2 of 2)

____

.

5

HOSS AMERICAN SEDIMENT TREATMENT PARAMETERS SAS No.: 3770E

.

Sample N TR N	Io.: MA-SD309-01FR Io.: /E55R Replicate	MA-SD310-01 E56/E58	MA-SD311-01 E59/E61	MA-SD312-01 E62/E64	NA-SD313-01 E65/E67	MA-SD314-01 E68/E70	NA-SD315-01 E71/E73	MA-SD316-01 E74/E76	MA-SDFB02-01 /E82 Field Blank
X Noisture		50	40	60	40	60	50	40	••
Z Ash		55	60	20	51	45	<i></i>	42	••
X Volatile Matter	• ••	1	u 6	11	15	1 1	1 7	18	••
% Fixed Carbon		1	j i	) ii	ม 1	v iŭ	i 1u	ı 'iı	J
VERSAR LAB:									
X Carbon (dry)	6.05	4.65	6.21	8.58	6.49	7.28	6.96	5.94	1.82
X Carbon (as rec'	'd) 3.84	3.21	3.92	3.8	3.88	3.7	3.91	3.28	1.82
% Oxygen (dry)	10.1	10.3	10.2	3.47	12.5	7.34	9.35	10.4	4.98
X Oxygen (as rec'	'd) 38.8	34.6	39.2	51	43.2	47.4	44.2	45.5	5.07
% Hydrogen (dry)	2.26	J 2.12	J 3.31 .	J. 6.65	5.09	J 4.67 J	4.89 J	3.65	I 1 U
% Hydrogen (as ro	c'd) 5.52	J 4.92	J 6.22 .	J 9.18	J 7.54	J 7.88 J	7.65 J	7.03	I 1 U
% Witrogen (dry)	1.6	U 1.4	ป 1.6 เ	J 2.3 (	J 1.7	U 2 U	i 1.8 u	i 1.8 l	J 1 U
X Nitrogen (as ro	ec'd) 1	U 1 (	ม 1เ	J 1 (	J 1	U 1U	) tu	1 11	J 1 U
% Ash (dry)	81.6	82.9	80.3	81.3	75.9	80.7	78.8	80	93.2
% Ash (as rec'd)	51.8	57.3	50.7	36	45.4	41	44.3	44.2	93.1
X Sulphur (dry)	1.6	U 1.4 (	ป 1.6 เ	J 2.3 (	J 1.7	U 2U	) <b>1.8</b> U	) <b>1.8</b> l	/ 1บ
% Sulphur (as rec	:'d) 1	U 1 (	ย 1เ	J 1 (	ม 1	U 1U	1	16	J 1 U
% Hoisture	36.5	30.9	36.9	55.7	40.2	49.2	43.8	44.8	0.1
TOC (mg/kg)	23900	24700	28200	55100	28100	57100	55700	39500	1200
Chloride (mg/kg)	90.2	98.5	21.9	148	124	205	140	203	49.9
Flashpoint (degro	tes F) 134	129	141	133	131	127	134	125	>230
BTU (per lb.)	500	U 500 (	ປ 500 ເ	J 500 (	J 500	U 500 U	i 500 u	) 500 L	J 500 U

(Page 2 of 3)

9

MOSS-ANERICAN SEDIMENT VOLATILES

Sample No. TR No.	: MA-50306-01 : Eu616	MA-50309-01 Eu819	MA-SD309-01FR EMB28 Replicate	MA - SD310-01 EW020	MA-SD311-01 EU821	MA-50312-01 EU822	MA-50313-01 EU823	MA-50314-01 EW824
Parameter (ug/kg)								
this armentione	11 0000	10001			i wat			
Branset have	2200 U	19001						
Virwi chioride	2200 U	1900	2000 U	15 u	1900 1	3500 U		
Chi or oe thene	2200 U	1900 U	2000	15 U	n 0061	5500 U	7 0007	1 00/7
Methylene chloride	12000	1500 4	1200 1	52	3100 4	2100 8	33000 4	7 0092
Acetone	1 0007	1900 U	3500	82	0052	5200	32000 4	12000
Carbon disuifide	1100 U	N 096	1000 U	7 N	026	2000 U	2000 U	2300 U
1,1-Dichloroethene	1100 U	D 096	1000	7 0	U 056	2800 U	2000 U	2300 U
1,1-Dichloroethene	1100 U	208	10001	- A C	N 026	2000 U	2000 U	2300 U
1,2-Dichloroethene (totel)	1100 U	n 096	1000	7 C	066	2000 U	2000 U	2300 U
Chloroform	F 923	380 -	7 07	0 C	7 0%	F 066	2000 U	7 98
1,2-Dichloroethene	1100 U	n 096	10001	70	n 069	n 0092	2000 U	2300 U
2-Butanone	1500	2200 B	1 0002	67	1500 8	3200 8	1 0024	4100 8
1, 1, 1- Trichloroethene	1100 U	∩ 9%	10001	70	A 066	2000 U	7 000Z	2300 U
Carbon tetrachloride	1100 U	n 096	1000 L	70	D 026	2000 U	7 000Z	2300 U
Vinyl acetate	2200 U	1900 U	2000	15 U	1900 U	2500 U	7 9007	7 0047
Bronodich! oromethene	100 L	7 096	1000 U	70	n 0£6	2000 U	2000 U	7 00£2
1,2-Dichloropropene	1100 U	n 096	1000 U	70	7 066	D 0002	7 8002	2300 U
cls-1,3-Dichloropropene	1100 U	∩ 0%	1000 U	70	7 056	0002	7 000Z	7 0052
Trichloroethene	1100 U	N 096	1000 U	3 C	N 066	N 0092	2000 U	2300 U
D (bromoch   orome thene	1100 U	N 096	1000 E	70	D 026	7 0092	2000 U	2300 U
1, 1, 2-Trichloroethene	1100 U	7 096 1	1000 U	2 6	N 066	2000 U	2000 U	7 00CZ
Benzene	1100 U	2 0%	1000 U	<b>n</b> 2 <b>n</b>	D 056	7 0092	2000 U	7 00 22
trens-1, 3-Dichloropene	1 00 L	2000	1000 U	- A U	N 056	n 0092	7 000Z	2300 U
Bromoform	1100 U	∩ 096	1000 U	- A U	<b>∩ 0£6</b>	2000 U	2000 L	2300 U
4-Nethyl-2-pentenone	2200 U	1900 U	2000	15 U	1900 U	5500 U	1 000†	4700 U
2-Nexanone	2200 U	1 0041	2000	15 U	1900 U	5500 U	7 0007	0029
Tetrachloroethene	1 00 L	n 096	1000	7 U	930 U	2800 U	2000 U	2300 U
1,1,2,2-Tetrachloroethane	1100 U	n 096	1000	7 0	026	2000 U	2000 U	2300 U
Tol uene	1100 U	230 J	10001	3	N 066	8 079	F 922	Г 0 <u>5</u> 6
Chi orobenzene	1100 U	208	1000	0 L	N 066	2000 U	7 0002	2300 U
Ethylbenzene	1001	n 096	1000 U	<b>7</b> M	N 0E6	F 952	410 J	2300 U
Styrene	1 00 L	788	1000 U	7 U	930 U	2000 U	7 000Z	2300 U
Xylene (total)	1100 U	230 8	1000 U	10	110	1600	1052	<b>S 09</b> 6

4

(Page 1 of 3)

MOSS-AMERICAN SEDINENT VOLATILES

-

SAMPLE DATES: 6/16/88 to 6/17/88

Semple Ho.: TR Ho.:	MA-SD301-01 EVB11	MA-S0302-01 EN812	MA-SD303-01 EN813	NA-SD304-01 EN814	NA-SD305-01 EN815	MA-50306-01 EN816	NA-50306-01FR EN827 Replicate	MA-50307-01 EW817
Parameter (ug/kg)								
Chi oromethane	14	14 =	• *	2	-	38		
Bromome thane	16 U	16 U	14	77		2100 11		
Vinvl chloride	16 u	16 U		77		2100 1		
Chloroethane	16 u	16 U	<b>T</b> :	77		2100 1		
Nethylene chloride			7 0				r ury 2 2003	
Acetone	190	24 B	110 1					2100 -
Carbon disulfide			7 1	36	6 2			
1, 1-Dichloroethene			7 -	36				
1, 1-Dichloroethane	8		7 6	26	6 C			
1,2-Dichloroethene (total)	0 C	8 2	70	8	60	1000 U		
Chloroform	3 4	8 C	70	28		340 1		1000 u
1,2-Dichlaraethane	50 C	8 U	71	36	- 60	1000 U	n 066	1000 U
2-Butanone		10 8	27 1	120 8	22	1990	1300 8	2400 8
1,1,1-Trichloroethene	9 C	8 U	74	36 1	- -	1000 U	7 006	
Carbon tetrachloride	8 C	8 U	71	28	- • -	1000 U	n 066	1000 U
Vinyl acetate .	16 Ú	16 U	22	22	- 13 u	2100 U	2000 U	2100 U
Bramodichloramethene	80	8 0	7 4	36 1	- -	1000 U	U 066	1000 u
1,2-Dichloropropene	8	8 C	70	36	- 60	1000 U	J 066	1000 u
cis-1,3-Dichloropropene	8 C	8 5	71	28	- 6 -	1000 U	1 066	1000 U
Trichloroethene	8 4	8 C	70	36	- 6 -	1000 U	1 066	1000 U
<b>b</b> ibranochlaranethane	8 4	80	71	36	-	1000 U	D 066	1000 U
1,1,2-Trichloroethane	9 C	8 C	7 4	28	- 6 -	1000 U	200	1000 U
Benzene	9 C		76	36	- • -	1000 U	200	1000 U
trans-1,3-Dichloropropene	8 U	8 U	71	36	- 6 U	U 0001	J 066	1000 U
Bramoform	8 C	00 C	74	36 [	- 6 u	1000 U	000 U	1000 U
4-Nethyl-2-pentanone	16 U	16 U	1 1	22	U 21	2100 U	2000 U	2100 U
2-Rexamone	16 U	16 U	21	22	13 0	2100 U	2000 U	2100 U
Tetrachloroethene	0 <b>6</b>	8 4	71	28	- -	U 0001	900	1000 u
1,1,2,2-Tetrachtoroethane	8 C	8 C	74	2		1000 U	000	1000 U
Toluene	-	58		3	6 U	240	210 8	320
Chlorobenzene	00 C	8	7 1	36	6 0			1000 u
Ethylbenzene		0 C	71	5		r 072		L 052
Styrene	8	8	7 1			1000 U	D 066	1000 u
		>		8				

•

٩

#### NOSS-AMERICAN SEDIMENTS

INORGANICS

-

.

Sample No.: TR No.:	MA-SD307-01 MEV/394	MA-SD308-01 NEV395	MA-SD309-01 NEV396	NA-SD309-01FR MEW405 Replicate	MA-SD310-01 MEV397	MA-SD311-01 MEV398	MA-SD312-01 NEV399	NA-SD313-01 NEV400	MA-SD314-01 MEV401
Parameter									
Atuminum	10700	5980 J	14500 J	7440 J	6630 J	9330 J	11200 J	9080 J	14200 J
Antimony	0.97 B	1.7 J	R	R	0.77 J	R	R	R	1.1 .
Arsenic	7 1	4.2	5.1	4.8	5	6.4	5.5	4.4	3.5
Berium	85.4	30.6 J	93.1	71.1	58.8	70.5	90.9	62.1	87.6
Beryltium	0.21 8	0.6 8	1.3	0.71 J	0.74 J	0.51 8	1	0.73 J	0.83 J
Cednium	6.3	4.4	7.6	4.9	5.9	6	5.9	5.2	7.6
Calcium	66000	101000	63200	70700	66300	61000	49400	119000	59600
Chromium	18.3 J	14.5	22.4	12.5	14.2	15.6	17.8	16.7	21
Cobelt	8.3 J	5.1 J	7.9 J	8.1 J	5.6 J	6.5 J	8.2 J	7.6 J	9.3 J
Copper	22.5 J	13.5	29.2	24	23.6	20.2	23.1	17.4	29.3
Iron	20200	14200	24200	16900	12900	18600	22800	16900	21500
Lead	58.2 J	52.6 J	30.5 J	35.7 J	24.6 J	19.7 J	20.2 J	18.4 J	33.7 J
Negnesium	26300	43200	27800	32500	26000	24200	20400	55900	25900
Nanganese	682 J	725 J	478 J	551 J	338 J	555 J	485 J	662 J	399 J
Hercury	0.42 J	0.36	U 15.0	0.17 U	0.21	0.15 U	0.15 U	0.15 U	0.25
Nickel	18 J	14.5 B	31 B	15.8 B	15.7 8	21.5 8	22.9 B	23.4 8	29 8
Potessium	1380	750 #	1960 8	699 B	665 B	846 B	1070 8	1450 8	1670 B
Selenium	R	1.3 U	J 1.8 U.	I 1.3 U.	i 1.2 U	J 1.2 UJ	1.4 UJ	) <b>1.2 Ա</b>	J 1.4 UJ
Silver	R	R	R	R	R	R	R	R	R
Sodium	1060 B	763 🛙	931 8	795 8	502 B	801 8	873 B	903 8	866 B
Thellium	0.35 U	J 0.37 U	J 0.52 U	0.36 U	0.33 U	J 0.33 U	0.4 U	0.33 U	l 0.39 U
Vanadium	29.9 J	19.6	28.5	23.9	16.5	22.1	27.9	21.4	30.9
Zinc	354 J	290 J	554 J	337 J	913 J	368 J	442 J	263 J	569 J
Cyanide	3.9 U	J R	R	R	R	R	R	R	R

.

# MOSS-AMERICAN SEDIMENTS INORGANICS

Sample No.: TR No.:	MA-SDFB01-01 MEW406 Field Blank	MA-SDF802-01 MEW407 Field Blank	MA-SD301-01 NEV388	MA-SD302-01 NEW389	MA-SD303-01 New390	MA-SD304-01 NEW391	MA-SD305-01 MEV392	MA-SD306-01 NEV393	NA-SD306-01FR NEW404 Replicate
Parameter	Conc. (mg/kg)								
Aluminum	972	876	7820	9380	9710	8820	3330	11000	11500
Antimony	1	t R	4.5 J	R	0.74 8	R	R	0.82 8	1.1 8
Arsenic	0.87	J 0.37 U	4.4 J	4.5 J	4.9 J	4 J	10.1 J	5.8 J	6 J
Berium	8.1 เ	J 8.4 U	62.8	74.6	82.2	62.1	19.3 J	82.8	75.6
Beryllium	0.14 1	UJ 0.14 B	0.24 U	0.56 8	0.45 8	0.35 8	0.17 8	0.71 J	0.65 8
Cadmium	0.97	0.5 U	4.4	5.9	6.2	4.3	4.1 J	6.9	7.1
Calcium	42500	43400	100000	80200	79900	76600	116000	91200	92000
Chromium	6.8	J 4.7	32.6 J	24.8 J	23.6 J	16.2 J	10.6 J	23.5 J	21.6 J
Cobelt	3.6	J 2.3 U	) <b>8.1 J</b>	· 7.1 J	7.4 J	6 J	7.9 J	9.8 J	8.9 J
Copper	2.3	J 1.8 U	<b>33.2</b> J	45.5 J	27.1 J	20.6 J	14.6 J	27.5 J	23.3 J
tron	3570	12100	16300	16900	18700	17800	28100	20400	22800
Lead	2.7	J 0.82 U	143 J	213 J	187 J	130 J	25.4 J	108 J	91.5 J
Nagnesium	21500	17700	37800	36500	33900	36100	61800	37900	40300
Nanganese	121 -	J 89.1 J	448 J	366 J	564 J	645 J	551 J	788 J	945 J
Nercury	(	R 0.09 U	L 15.0	0.42 J	0.3 J	0.31 J	R	0.31 J	R
Nickel	3.1 (	UJ 3.4 U	24.4 J	18 J	17.5 J	19 J	16.4 J	23.6 J	21.4 J
Pot <b>assium</b>	73.9	V 76 U	1050	1410	1390	1320	466 J	1830	1840
Selenium	1	R 0.79 U	l R	R	R	1.3 J	R	R	R
Silver	1	R R	R R	R	R	R	R	R	R
Sodium	422 (	B 192 E	1190	1200	1120 B	1230	1250	1220	1190 8
Thatlium	0.22	UJ 0.22 U	0.39 U.	J 0.36 U.	J 0.36 U	V 0.37 U	J 0.29 U	J 0.39 U	0.4 UJ
Vanadium	7 .	J 5.4 U	i 19.3 J	22.9 J	22.4 J	22.8 J	17 J	28.2 J	27.2 J
Zinc	74.3	J 77.4 J	298 J	493 J	279 J	359 J	230 J	288 J	304 J
Cyanide	2.4 (	UJ R	4.2 0.	J 4 U.	J 3.5 U	J 3.8 U	J 3.1 U	J 4 U.	l 3.9 UJ

#### NOSS AMERICAN SEDIMENT TREATMENT PARAMETERS SAS No.: 3770E

-

.

Sample No.: TR No.:	MA-SD301-01 E29/E31	MA-SD302-01 E32/E34	MA-SD303-01 E35/E37	NA-SD304-01 E38/E40	NA-SD305-01 E41/E43	MA-SD306-01 E44/E46	MA-SD306-01FR /E46R Replicate	MA-SD307-01 E47/E49	MA-SD308-01 E50/E52	NA-\$D309-01 E53/E55
			-							
K Moisture	55	50	30	36	10	50		50	45	40
X Ash	59	49	56	54	66	51	**	52	49	45
X Volatile Matter	Ő U	2	15	14	36	4		1 u	7	15
K Fixed Carbon	1 0	i iu	1 U	1	J ĨU	1 u	J	1 0	1 U	) <b>1</b> 0
VERSAR LAB:										
K Carbon (dry)	5.38	7.32	4.81	5.55	3.65	6.76	7.07	5.51	6.52	5.35
K Carbon (as rec'd)	2.84	4.58	3.12	3.5	2.79	3.86	4.01	3.52	4.1	3.32
X Oxygen (dry)	14.7	14.2	10.2	9.08	14	12.5	10.9	8.56	10.2	9.21
X Oxygen (as rec'd)	49.7	42.1	37.8	38.5	31.7	45.2	44.7	37.5	39.4	39.4
X Hydrogen (dry)	1.32 J	0.57 J	3.3 J	3.08	J 0.23 J	0.52	1 2.39 J	1.53 J	1.89 J	2.85 J
X Hydrogen (as rec'd)	5.98 J	4.54 J	6.07 J	6.07	J 2.82 J	5.1 4	i 6.2 J	5.02 J	5.34 J	6.01 J
X Hitrogen (dry)	1.9 U	) <b>1.6</b> U	1.5 U	1.6	J 1.3 U	1.8 u	រ 1.8 ប	1.6 U	1.6 U	1.6 U
X Witrogen (as rec'd)	1 U	I 1 U	1 U	1	U 1U	1 U	/ 10	1 U	1 U	10
X Ash (dry)	78.6	77.9	81.7	82.3	82.1	80.2	79.6	84.4	81.4	82.6
X Ash (as rec'd)	41.5	48.8	53	51.9	62.7	45.8	45.1	53.9	51.2	51.3
X Sulphur (dry)	1.9 U	i 1.6 u	) <b>1.5 U</b>	1.6	J 1.3 U	1.8 6	J 1.8 U	1.6 U	1.6 U	) <b>1.6</b> U
X Sulphur (as rec'd)	1 U	r 1u	) <b>1</b> U	1	ม 1 ม	10	ງ 10	1 U	1 U	10
X Moisture	47.2	37.4	35.1	36.9	23.6	42.9	43.3	36.1	37.1	37.9
TOC (mg/kg)	26700	36100	19300	26600	10100	32900	31700	28900	24800	29600
Chloride (mg/kg)	142	192	95.5	67.8	34	61.3	58.4	45.4	61.5	75.4
Flashpoint (degrees F	) 131	130	138	135	135	142	131	128	124	133
BTU (per lb.)	500 U	i 500 u	500 U	500 t	J 500 U	500 U	J 500 U	500 U	500 U	500 U

)

.

Parameter Aluminum Antiimony Ansenic Barium Cadaium Cadaium Cadaium Cadaium Cadaium Cadaium Cadaium Cadaium Cadaium Cadaium Cadaium Cadaium Selenium Selenium Selenium Selenium Thellium Yanadium Zinc	MOSS-AMERICAN SEDIMENTS INORGANICS Semple No. TR No.
13500 L 13500 L 13500 L 13500 L 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1	: MA-SD315-01 : MA-SD315-01
12900 J 82.7 1.1 6.3 6.3 6.3 6.3 11.4 52600 21.7 11.4 52600 117 J 28100 117 J 28100 217 J 217 J	MA-50316-01 MEN403

•

١

(Page 3 of 3)

## GROUNDWATER DATA

Þ

GLT799/079.50-2
ľ		
	Ler I	
ł		
l	LOC.	
•		

Þ TERBERG TESTS

OIL DESCRIPTION	H NO 3770E SAMPL	ROJECT NOSASS7706	ROJECT & SEAR
to like	E 2/3 CH	CA	1
53-04D-	ECKED BY - BIG		STED BY M. A.
-0	- DATE	DATE	DATE
	7-28-28	1-25-86	7-22-86

S 00 ט ש

s

95 ₹₹ **Determination** Water ¥ ¥! ¥ Container di Cantainer Soil, gm of Container + Soil, gm 9 of Water, Ww. LIMIT 9 Content, w, Dry Soil, Container, ¥ No Matzilal + 99 9 * 1 C. ~ <u> 211 - 121 - 115</u> 3.36 Ć, ŝ U, ц 13.43 50 i, 11.24 h3' 5 1 1 N 23.2 5 1 N. N 35 Ê **U** 15-17 28 U ٠. 11.53 Ю 14.3 E k L X 4 とた  $\sim$ . 2.72 153 Ŋ. 34 U 53

10 ASTIC 

8

9

Blows

5

			Water Content, w. %		mershine for in in	We at Dev Cail W an		Wt of Container, am		Win of Main Juny 10, 11		Ury Soll, gm				Wet Soil on		M of Container +					Determination No		
		10.1	•					FE 7								1.00	702	)	ŀ	2111	50	-	-		
10.1	3	0.0	5					バシン			0.11	1 1			I	6.75	27 /	-	ľ	6111	2	•	5	1	•
		10.1	\$ \$				Ţ	124	·	1	F	~~~				0.0	קמיו		ľ	E	5	•	6		
						W	L.	T	E	R	Ċ	0	N	1	E	: N	T					L.		_	
5				1. 199111111111111111111111111111111111	10. 11 <u>1</u> 101111111111111111111							1	SIBUE MEMORY SUBJECT		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1101 1111 111 111 111 111 111 111				2 2 <b>2 3 4 7 5 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7</b>	1		1115   2   2   2   4   4   4   1   1   1   1   1   1   1	
0													-					<u>}</u>	-		-	-	•		ľ
20							HLLLI.														•	•			
g					THE STREET	1111 C 121	HALL THE REAL		Design and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s							111111111	101111 (111111)					INTROL I			

ASTICI

Т Т Т

٣ Ħ

PLASTICITY INDEX

רוסיום

LINIT

LIGEN SYNDOL	NATURAL WATER CONTENT	PLASTICITY INDEX	PLASTIC LIMIT	LIQUID LIMIT
	33	لة	//	23

SUMMARY OF RESULTS

Ş

ମ୍ମ

BLOWS

δ

50 4 Ī **ATTERN** ñ, 1

FLOW CURVE

1 20

# 0119

	ATTERBE	RG LIMITS	<u>TESTS</u>		- 00
PROJECT		TESTE	0 BY M. 4	DATE	7-22-28
PROJECT NO 2770 E		CALC	BYAH	DATE _	1-25-88
BHNO SAMP	PLE 214	CHECK	ED BY _ EI	DATE -	124.94
SAMPLE DEPTH					
SOIL DESCRIPTION Liche Bo	men lines 1	0.1	SB-04D	-19	
		1	ノデーノフ	1	
LIGOID LIMIT PRIZICAL	15 SILVER	<u>·4C</u>			
Determination No.	1	2	3	4	. 5
Container Na.	Ma	m,c	m,,	M 12	m,3
Wt of Container + Wet Soil, gm	13.08	12.76	14.70	15.90	12.49
Wt. of Container+ Dry Soil, gm	11.07	10.76	12.37	12 21	10.38
Wt. of Water, Ww, gm			T	T	
Wt of Container, gm	سوو./	1.35	134	1.36	1.35
Wt of Dry Soil, Ws, gm	l				
Water Content, w, %	۲.0	21.3	21.1	27.7	23.4
No of Blows	36	30	25	20	15

PLASTIC LIMIT

Determination No.	l	2	3	
Container No.	Mit	Mrs	m16	
Wt of Container + Wet Soil, gm	6.93	6.95	7.59	ENT
Wt of Container + Dry Soil, gm	639	6.45	6.76	CONTE
Wt. of Water, Ww, gm				2
Wt. of Container, gm	135	1.35	1.35	IE
Wt of Dry Soil, Ws,gm				<b>S</b>
Water Content, w, %	10.7	10.9	11.2	
		10.9		•





# SUMMARY OF RESULTS

LIQUID LIMIT	22
PLASTIC LIMIT	11
PLASTICITY INDEX	11
NATURAL WATER CONTENT	5.3
USCS SYMBOL	CL





LIQUID LIMIT

	•

ATTERBERG L	IMITS TESTS
	TESTED BY ADA DATE
PROJECT NOTE 3 530 5	CALC BY CAN DATE 2-26-22
B H NO 2774 SAMPLE 220	CHECKED BY - EVA DATE 128 28
SAMPLE DEPTH	
SOIL DESCRIPTION down SILTY Chay	58-025-1
LIQUID LIMIT MARKA. ICH 12 CHAINA -UN	K18'

LIQUID LIMIT MICHICI	B sided -	40			
Determination No.	1	2	3	•	U.
Container Na	5	R2 .	ξŻ	ξų	オジー
Wt. of Container + Wet Soil, gm	21,71	18.81	, 0%e	18.70	\$\$.1C
Wt. of Container+ Dry Soil, gm	14.73	12.05	18.02	15.96	18.33
W1. of Water, Ww., gm					
Wt of Container, gm	2.23	2.26	2.21	2.24	2.21
Wt of Dry Soil, Ws, gm					
Water Content, w, %	18.1	18.7	19.9	20.0	91.9
No of Blows	36	30	26	20	14

PLASTIC LIMIT

FLOW

CURVE

	Water Content, w, %	Wh of Dry Soil, Wg, gm	Wt of Container, gm	Wt of Water, Ww, gm	Wt. of Container + Dry Soil, gm	we of Container + Wet Soil, gm	Container No.	Determination No.
	14.1		2.20		6.66	1.29	PC	
14.2	12.8		2.23		8.22	206	57	2
	14.6		2.24		9.11	10.11	38	ω
•		W	ATE	R	CONT	ENT		



δ

Š

q

BLOWS

ឌ

8 

8



רוסניום

LIMIT

PLASTICITY INDEX



SUMMARY R RESULTS



10 1-4

(いろい ) いい

~ . . . . . 3

20

		AT TERBERG
CALC BY	- TESTED B	LIMITS T
RON .	Y KON	ESTS
	DATE 2	•
26-26	25.28	C

PROJECT NOTS 3550 2 B H NO 37742 DEPTH. SAMPL E 2 CHECKED ų K での DATE -7944

SAMPLE SOIL DESCRIPTION Þ Ter Ti Chy XX tins sad

9-010-ES

LIQUID LIMIT MATERIAL	is sicred	-40			
Determination No.	-	. 2	3	*	3
Container No.	01	5C	03	של	05
Wt. of Container + Wet Soil, gm	19.83	1/.33	15.11	2/25	23.0 r
Wt. of Container+ Dry Soil, gm	19.11	12.8.3	12.70	18.09	18. 8.5
Wt. of Water, Ww. gm					
Wt of Container, gm	2.26	2.20	2.23	2.23	2.24
Wt. of Dry Soil, Ws, gm					
Water Content, w, %	32.1	22.4	23.0	13.9	25.0
No of Blows	3.5	57	23	51	151

PLASTIC LIMIT

Wet Soil, gm Determination No. w. of Dry Soil, Ws.gm Wt. of Container Dry Soil, gm Container No. Water Cantent, w, % ž of Water, Ww.gm of Container, gm + + 2 12 7.02 202 J デキ 8.85 16.3 2.23 3 0 N 2.2 523 208 6 3 U 2 WATER CONTENT FLOW δ 8 g 8 Ē 121 8 

¥

PLASTICITY CHART

PLASTICITY INDEX q

רוסיום

LIMIT

USCS SYMBOL

NATURAL WATER CONTENT

14.6

kt)

PLASTICITY INDEX

PLASTIC LIMIT LIQUID LIMIT 6 Щ

23

SUMMARY OF RESULTS

Ş q BLOWS

-		

P	
ų	

ATTERBERG LIMITS TESTS         PA       ATTERBERG LIMITS TESTS         SAMPLE       Tested by       Kon       Date       2-25         SAMPLE       221       CALC. BY       Kon       Date       2-26         SAMPLE       221       CHECKED BY       Kon       Date       2-26         SAMPLE       221       CHECKED BY       Kon       Date       2-26         SAMPLE       221       CHECKED BY       SB-06S - DI	MPLE DEPTH	H NO 3770C	ROJECT ND 2173 720	POJECT USC	iE
<b>TESTS</b> <b>BY</b> <u><u><u><u></u></u><u><u><u></u></u><u><u><u></u></u><u><u></u><u><u></u></u><u><u></u></u><u><u></u></u><u></u><u></u><u></u><u></u></u></u></u></u></u>		- SAMPLE 22/ CHECKEI	CALC B	PA TESTED	AT TERBERG LIMITS
	58-065-01	D BY - RAL DATE 1-20	Y ROH DATE 2-24	BY LON DATE 7-25	TESTS

LIQUID LIMIT Matrical is sived -40

P

Determination No	-	2	J.	•	5
Container Na	52	R 10	11 %	1212	31 کم
Wt. of Container + Wet Soil, gm	20.86	15.51	12 95	15.16	2123
Wt. of Container+ Dry Soil, gm	18.01	15-29	15.43	13.05	12.20
Wt. of Water, Ww. gm					
Wt of Container, gm	2.22	2.25	2.26	2.25	1 6.6
Wt. of Dry Soil, Ws. gm					
Water Content, w, %	15.0	186	/9./	19.5	21.2
No. of Blows	30	25	25-	20	14

# PLASTIC LIMIT



PLASTICITY CHART

PLASTICITY INDEX LIMIT **b** 

רוסיום

FLOW CURVE

		Ē		THE REPORT OF	E
		Ħ	律		E
2120202000		Ħ		11211212011	E
2331111111				11111111 <b>111111111111111111</b>	
		-	1.41.41	B H H H H H H H	-
		-	1. 11.11.11.	ITTER LEAD	111
			30 BC - 2	10000000000000000000000000000000000000	1111
TO REFERENCE				DISTRICT OF DISTRICT	
		-	1000	1 11 12 11 11 11 11 12 11	
21111111111111	ľ	Γ	1 MINE	I PARTICIPALI	111
				STREET BERGE	
11111111111		ł	101101	11 FEET (54 44	
10000000	2		10-021	ALCONT DIS	
			. 10100 L		10
				a series a series de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la consta	i II
i ununun i			300100 T		1.11
			i mant	11111111111111111111111	
		-	ROOM :		H
		-			Η
		-	1. [3193]	11111111111	
			1.11111		111

PLASTIC LIMIT PLASTICITY INDEX LIQUID LIMIT NATURAL WATER CONTENT 44 370 R 2

<u>*</u>*

USCS SYMBOL

6

SUMMARY OF RESULTS

Ş OF BLOWS

( .....

ļ		P	ļ
Ì		٢.	J

6767	
えし	\$
ر ک	Ş
	ר ו

	19. H NO.	PROJECT	PROJECT.	:	
	Arné	NO 10 3 7 7 0 6	いろごどの		
	- SAMPLE			AT	
•	222			TERBERG L	
	CHECKED BY	CALC. BY _	TESTED BY_	IMITS TES	
	36	RDH	NON I	its	
	DATE -	DATE L.	DATE L.		
	7.28 8.4	-26-29	33-25	- 61.	
				ະດັ ເມ	)

SAMPLE DEPTH SOIL DESCRIPTION RE Þ Ê

513-115-02

LIQUID LIMIT ۱ 5 4 is r Mabial is signal uc

No of Blows	Water Content, w, %	Wt. of Dry Soil, Ws, gm	Wt of Container, gm	Wt. of Water, Ww, gm	Wt. of Container + Dry Soil, gm	Wt. of Container + Wet Soil, gm	Container Na	Determination No.
20	15.9		2.25		15.37	13.46	ð /	
2	161		2.23		6.3>	8.64	2 2	2
•	17.2		2.24		12.08	13.55	u u	<b>u</b>
2	17.4		2.26		9.66	10.95	3 4	4
۲. ۲	18.3		2.2.1		18.54	21.53	135	5

# PLASTIC LIMIT

	Water Content, w, 🛠	Wt of Dry Soil, Ws,gm	Wt of Container, gm	Wt of Water, Ww, gm	Wt. of Container + Dry Soil, gm	Wet Soil, gm	Container No.	Determination No.
	10.1		2.2.3		8.11	6.32	36	-
4 9	9.8		2.26		6.81	1,32	33	2
1	10.5		2.25		9.77	ic.56	<i>3</i> 8	J

WATER CONTENT

# PLASTICITY CHART



רוסיום

# 7 ç ŋ

	0	Ħ	Ŧ	E	Ξ	H		Ħ	Η	Ē	Ξ	Ξ	Η	Ξ	E	R	Ξ	Ē	H	-	Ê	-	2	Ξ	H	1
		E	#	E	3113	1		Ш	Ш	111		Ē	10	1	E	111	Ш		Ш	E	Ш	Э			H	k
	:	H				Ē	Ш		Ē	i H			111	111	1			1	Ē		111	11	111			M
					1111		1111	ШU			1913	113	1111	ШИ	1.1			Ш			111	Ш	191	115		k
				E	1111	15 10			Ē			11.					111		Ш		11.11	111	1111	11	111	Ķ
	=	÷		=	Ц	11	1	11	- 13 -	11	1	11 1	1.081	111	· 11	11.11	111	.Н.	1111	1111	HH	UTT I	The second second second second second second second second second second second second second second second se			Ş
	Q	Д		L		Ц			H				-										Ц			<b>ר</b>
X		H	╉	╀	Н	Н	Η	Η	Н	Н	Η	H	Н	Н	-	-	Η	H	Η	Н	Н	Н	Н	Н	Н	
9		日	1	T	Π	1		L	L										Π		.1		1	-		
Q		H	1	t	Н	Н	Η	Η	Н	h	H	h	Π	Н	Η	L	Η	Þ	h	Н	Η	Н	Н		Н	
		Ŀł		t	Ŀ											Ļ	h	D	Н	Н		-		-		
2	N	H	4	t	Ē				þ	Þ	Ľ	·	4		K		H	Ē	Η		Ħ	Ħ	Ξ		H	
3	0	Ε	E	E	E	B			Ē	E		E	K	Ĕ	Ä	Ľ	E				B		Ξ		H	
3		E		ł		1	Ш		Н	H	ŝ	E	H	÷			Н	-	Н	H	H	H	H		H	
		E	Ŧ	Ŧ	F		Ш		H	0	I VI		Ê	H.			:				1	FT	::			
	δ	ŝ		T	Ē	12.2.		11	E	1	111	1.1		Ц						i Li	111	11	111	101	. 11	
		IIII	H				111							ШU		E				Ш	818		111	1111	11.	
	ħ	Ε		Ŧ		F		E	F	Ē	F	F	E	-	F	F	F	F			11		Η	11	н	
	0	E	Ħ		Ē		E	E	1	E	-	E	F	E		ŀ	È	E		H	1					
	8	U			Ţ,													-		4	7,		-	-	-	
					-	•																				

# SUMMARY OF RESULTS

USCS SYMBOL	NATURAL WATER CONTENT	PLASTICITY INDEX	PLASTIC LINIT	LIQUID LIMIT	
cl-ml	13.6	3	10	1	



# ATTERBERG LIMITS TESTS

PROJECT <u>13 FPA</u> PROJECT NO25 3 5 0 F 8 H NO <u>3116</u> SAN SAMPLE DEPTH <u>SOIL DESCRIPTION</u>	APLE 223	TESTI CALC. CHECI CHECI 	ED BY BY (ED BY E St wed -40	DATE - DATE - 	<u>1-25-88</u> <u>7-28 69</u>
Determination No.	1	2	3	4	. 5
Container No.	50	51	52	53	54
Wt. of Container + Wet Soil, gm		N	0	N	
Wt. of Container+ Dry Soil, gm		PLAST	ic		
Wt. of Water, Ww, gm	L				
Wt of Container, gm Wt of Dry Soil, Ws, gm	2.24	2.2.2	2.24	3.24	3.22
Water Content, w, %					
No of Blows					

# PLASTIC LIMIT

Determination No.	1	2	3	
Container No.	55	56	53	
Wt. of Container + Wet Soil, gm	N	0	N	I
Wt. of Container + Dry Soil, gm	PL	15	ii	ĔNŎ
Wt. of Water, Ww, gm				2
Wt. of Container, gm	2.22	2.23	2.26	Ē
Wt of Dry Soil, W _s , gm				3
Water Content, w, %				

# FLOW CURVE

-



# PLASTICITY CHART



# SUMMARY OF RESULTS

5.3

# Ü124

Ş



Group M

0125

# WATER CONTENT TESTS

P		USEI	PA		TES	TED SY	RDH	DAT	re <u>7-13-</u>	58
PR	OJECT NO	3)70	2É		CAL			- DA	πε <u>-/-/-</u>	<u>. 22</u>
					CHE	CKED BY_	<u> </u>	DA	TE <u>-7-78</u>	-07
		NO. OF	BORINGS	DEPTH UNI	TS (b)		-			
						()) 0-	FEET			
		PHOJE	GTND	SORING	NO.	1-	METERS			
		L	*	·		¥	*		¥	*
						•		•	•	
<b>\+ +</b>		MBER	313 .	214	215	216	217 .	218	Q19 .	220
+ +	DEPTH ,	n or ft.	bred .	6-10	546	010	09-1	10-1		Grad
+ +	TARE NUM	NER	Nele .	cicl .	17	2	259	64	336	935
+ +	WT. TARE +	- WS, gm	90.48	76.47	165.96	183 61	152.27	83.01	K.c. 85	100.12
+ +	WT. TARE +	D8, gm	88.98	24.60	151.03	177.56	189.31	19.58	152.56	9208
	WT. WATER	l, gm		-	-	-	-	-		~
	WT. TARE,	<b>1</b> 1	72.89	3931	N3.90	118.60	105: 78	\$9.19	K5.95	40.72
	WT. DE,	ţm		-						
	W. %		33	5.3	14.6	18.2	7.8	8.5	13.8	16.8
	COMMENTS					<u> </u>			<u> </u>	
			New Y	علد						
		ł						•		•
+ +	SAMPLE N	UNCER	221	220	22.2					999
<b>*</b> + +	DEPTH. M	or 11.		11-2	-					0
<b>`+ +</b>	TARE NUE	NER	41	1001	257					0
+ +	WT. TARE+	W8, 90	175.76.	119.49	239.40	,				
+ +	WT TAREY		167.27	10.11	317.44	T				
	WT. WATER			-						
	WT. TARE,	910	106.02	43,27	106.63					
	WT. DE,	-	-		-					
	W. %		13.9	12.6	15.3					
	COMMENT	3	T		1					

* NOT STANDARD WLT FOR ASTA

sample was not enough For were

+ FOR COMPUTER USE ONLY

Astm Dazib-80 water Content Requires 100 gm mimim wet samples for we% Analysis

++COMPUTER INPUT

* 2 4 T GRAIN SIZE ANALYSIS * T T T

# AREFERERUCED RESULTSARLEADER

PROJECT NAME:	USEPA	58 -135 -01 11-12 '			
PROJECT NO:	SAS 3770E	BORING NU.:	3774E		
SAMPLE NO.1	223	DEPTH:	×		

ASSUMED SPECIFIC BRAVITY = 2.68

۹.

# ###SIEVE ANALYSIS###

SIEVE NU.	UIAMETER IN MM	PERCENT FINER
3.0 IN.	75.000	100.0
1.5 IN.	37.500	100.0
0.25 TN.	19.000	100.0
0.3751N.	9.500	96.0
NQ. 4	4.750	91.4
NC. 10	2.000	<b>66.0</b>
NU. 20	v.850	85.3
ND. 40	0.425	83.0
NU. 60	0.250	80.5
NO. 140	0.106	75.9
NU. 200	0.075	71.5

## ===HYDROMETER ANALYSIS===

DIAMETER IN MM	PERCENT FINER	CORRECTED	PERCEN
0.0723	72.8	20.4	
0.0547	64.4	62.3	
0.0412	55.4	53.6	
0.0312	44.3	42.9	
0.0202	31.7	30.6	
0.0124	19.0	18.4	
0.0090	14.8	14.5	
0.0064	12.1	11.7	
0.0046	10.0	9.7	
0.0033	7.9	7.7	
0.0013	5.8	5.6	

# CURRECTION FACTOR= 0.97

WT. OF SOIL FUR SIEVE ANALYSIS (GH)= 659.09 W1. OF SOIL FOR HYDROMETER ANALYSIS (GH)= 66.53 VISCUSITY OF WATER (HILLIPUISES)= 9.77

CU	× 10.5		C2-	1.6	
950= 0	.0508	D30=	0.0197	D10=	0.0048

DU41

PERCENT RETAINED BY WEIGHT 0.0001 100. 60. 30. **t**0. 90. . 0 20. 50. 70. 80. ġ : æ. 23 : 51 ZÉ. : ; : : ļ I ANAL YSIS i CLAY. 0.5 0.001 Ī S : ! SILT AND CLAY . 15.3 1 : KÜX ¥ į ţ ; i ÷ : • I HYDROME TI'R uscs : į ž : 1 10.0 . . ..... Ŧ i i GRAY SILT-SOME SAND-TRACE GRAV-LXC+3/4 • ; 5111 : 1 į PARTICLE DIAMETER IN MM. 1 1 ! į i 1 1 141 1 Į : 1 Ì 0.1 : . F 1 NE US STANDARD LEEN MARERS ┥ SAND **M**DIUN í ANAL YS15 9_ⁱ COARSE 3∕8 -{H++ }-DEPTH FINE SH VL i でん ļ CLIAR SHIVE IPENINGSTR.I GRAVEL ļ 3 11/2 3/4 ! : : : COARSE SAMPLE : : • 100.44444 ļ ÷ ł : 223 i 1 ; i HOR I NG COBBLES SE1. 52 31706 60. 50. 20. <u>.</u> 1 30. 30. **3**0. 70. 40. 0. ł PERCENT FINER BY WEIGHT ×

GRAIN SIZE ANALYSIS PROJECT NAME: USEPA PROJECT NO.: SAS 3770E

0040

b

# ( )

()

(Page 3 of 3)

. . .

# NOSS-AMERICAN SEDIMENT DIOXIN

.

.

-

.

Sample No.: TR No.:	NA-SD315-01 E72	MA-SD316-01 E75		
••••••••••••••••••••••••		**********		
Parameter				
tetachiere furen (tetal)	0.045.0	0.014.0		
Tetrachioro furan (Total)				
Pentachioro furan	0.043 0			
Herechiege funge	0.079 0			
Nextochlorg furan	0.030 0			
neptachtoro turan	0.067 0			
Uctachloro furan	0.40 U	U.27 U		
Tetrachloro dioxin (Total)	0.022 U	0.018 U		
Tetrachloro dioxin (2,3,7,8)	0.022 U	0.018 U		
Pentachloro dioxin	0.090 U	0.031 U		
Nexachloro dioxin	0.034 U	0.030 U		
Heptachloro dioxin	0.14 U	0.12 U		

HOSS-AMERICAN	
SEDIMENT	
DIOXIN	

Sample No.: TR No.:	MA-SD307-01 E48	MA-SD308-01 E51	MA-SD309-01 E54	MA-SD309-01FR E81 Replicate	MA-SD310-01 E57	MA-SD311-01 E60	MA-\$0312-01 E63	MA-SD313-01 E66	MA-50314-01 E69
Parameter									
Tetrachloro furan (Total)		0.045 U	0.094 U	0.040 U	0.015 U	0. <b>061</b> U			0.095.0
Tetrachloro furan (2,3,7,8)		0.045 U	0.094 U	0.040 U	0.015 U	0.081 1	Î		0.096 U
Pentachloro furan	Ĩ	0.052 U	0.12 U	0.059 U	0.046 U	0.091 U	Î	1	0.095 U
Nexachloro furan		0.033 U	0.040 U	0.048 U	0.032 U	0.036 U			0.066 U
Neptachloro furan	,	0.053 U	0.12 U	0.16 U	0.058 U	0.050 U			0.078 U
Octachloro furan	I	0.20 U	0.20 U	0.50 U	0.26 U	0.34 U			0.49 U
Tetrachloro dioxin (Total)	,	0.024 U	0.033 U	0.016 U	0.022 U	0.027 U	Î		0.035 U
Tetrachloro dioxin (2.3.7.8)	,	0.024 U	0.033 U	0.016 U	0.022 U	0.027 U			0.035 U
Pentachloro dioxin		0.056 U	0.14 U	0.069 U	0.045 U	0.073 U			0.13 U
Nexachloro dioxin		0.039 U	0.064 U	0.039 U	0.030 U	0.030 U		1	0.062 U
Heptachloro dioxin	, I	0.10 U	0.28 U	0.30 U	0.082 U	0,085 U	, i i i i i i i i i i i i i i i i i i i		0.15 U
							**********		

(Page 2 of 3)

(Page 3 of 3)

Ł

•

### NOSS-AMERICAN SEDIMENT VOLATILES

•

-

Sample N TR N	0.: MA-SD315-01 0.: EV825	MA-SD316-01 EV826	MA-SDFB01-01 EV829	NA-SDF802-01 EV830
			Field Blank	Field Blank
Parameter (ug/kg)				
Chloromethane	91 (	18 (	J 10 1	u to u
Iromomethane	91 (	J 18 (	J 10	U 10 U
/inyl chloride	91 (	J 18 I	J 10 1	U 10 U
hloroethane	91 (	J 18 (	J 10 1	U 10 U
lethylene chloride	330	1 72 (	B 5 1	U 22 B
leetone	450	<b>330</b>	4	B 14 B
arbon disulfide	46 1	U 91	J 5	บ 5บ
,1-Dichloroethene	46 1	J 91	J 5	U 5U
1,1-Dichloroethane	46 1	J 91	J 5	U 5.U
,2-Dichloroethene (total	) 46 (	J 91	J 5	V 5 U
hloroform	- 46 (	J 91	J 2	J 5 U
2-Dichloroethane	46 (	91	J 5	V 5U
-Butanone	150	87	4	<b>u</b> 10 u
1.1-Trichloroethane	46 (	J 91	9 5	บ 51
arbon tetrachloride	46 1	J 91	9 5	บ 51
/invl acetate	91 (	J 18 (	U 10 I	U 10 U
Iromodichloromethene	46 1	91	J 5	U 5U
.2-Dichloropropene	46 1	9	J 5	บ 5 ป
is-1.3-Dichloropropene	46	9	J 5	Ū 5 Ū
richloroethene	46	Ŭ 9(	J 5	Ū 5 U
ibramachloramethane	46	Ŭ 91	Ú 5	บ 5 บ
1.1.2-Trichloroethane	46	9	Ū Š	Ū 5 U
lenzene	46	U 9	Ū Š	U 5.U
trans-1.3-Dichloropropene	46	U 91	U Š	Ū 5ŭ
Ironoform	46	U 9	Ú Š	Ū ŠŪ
-Nethyl-2-pentanone	91	u 18 I	Ū 10	Ū 10 U
-llexanone	91	U 18 1	U 10	Ū 10 U
etrachloroethene	44	9	Ū 5	Ū ŠU
.1.2.2-Tetrachloroethane	44	u ý	Ū Š	U Šu
oluene		u 9	Ū Ś	
thiocobenzene			Ū Š	8 5 0
thylhentene	44	u 0	i ŝ	
Styrene	44	0	ŭ ŝ	Ū Š8
Iviene (total)	40	, , , , , , , , , , , , , , , , , , ,		

-

.

Sample No.: TR No.:	NA-SDFB01-01 E01 Field Blank	NA-SDFB02-01 E02 Field Blank	MA-SD301-01 E30	MA-SD302-01 E33	MA-SD303-01 E36	MA-SD304-01 E39	MA-SD305-01 E42	MA-SD306-01 E45	MA-SD306-01FR E78 Replicate
Parameter	Conc. (ng/g)								
Tetrachioro furan (Total)	0.0075 U	0.0054 U	0.065 U	0.020 U	0.013 U	0.020 U	0.0067 U	0.071 U	0.068 U
Tetrachloro furan (2,3,7,8)	0.0075 U	0.0054 U	0.065 U	0.020 U	0.013 U	0.020 U	0.0067 U	0.071 U	0.068 U
Pentachloro furan	0.018 U	0.016 U	1.0 U	0.086 U	0.55	0.064 U	0.022 U	0.099 U	0.085 U
Hexachtoro furan	0.013 U	0.0096 U	0.31 U	0.23	8.4	0.048 U	0.016 U	0.064 U	0.086 U
Neptachloro furan	0.024 U	0.027 U	0.48 U	0.75	22	0.11 U	0.099 U	0.13 U	0.18 U
Octachloro furan	0.10 U	0.053 U	2.2 U	1.7 U	8.8	0.46 U	0.14 U	0.29 U	0.56 U
Tetrachloro dioxin (Total)	0.0062 U	0.011 U	0.086 U	0.019 U	0.017 U	0.020 U	0.010 U	0.026 U	0.030 U
Tetrachloro dioxin (2,3,7,8)	0.0082 U	0.011 U	0.066 U	0.019 U	0.017 U	0.020 U	0.010 U	0.026 U	0.030 U
Pentachloro dioxin	0.017 U	0.014 U	0.28 U	0.068 U	0.45	0.061 U	0.037 U	0.072 U	0.087 U
Hexachtoro dioxin	0.016 U	0.0097 U	0.38 U	0.10 U	8.7	0.043 U	0.016 U	0.064 U	0.089 U
Neptachloro dioxin	0.026 U	0.016 U	0.46 U	1.2	11	0.14 U	0.042 U	0.14	0.31 U

(

.....

۰.

¥

NOSS-AMERICAN SEDIMENT SEMI-VOLATILES

.

 $\smile$ 

TR No.:         BASIS         EMSIS         EMSIS         EMSIS         EMSIS         EMSIS         EMSIS           Persenter         Persenter         Stoco U         \$7000 U         28000 U         40000 U         27000 U           2-folorgebroil         Stoco U         \$7000 U         28000 U         40000 U         27000 U           1,3-5 Initrostheren         Stoco U         \$7000 U         28000 U         40000 U         27000 U           1,3-5 Initrostheren         Stoco U         \$7000 U         28000 U         40000 U         27000 U           1,3-5 Initrostheren         Stoco U         \$7000 U         28000 U         40000 U         27000 U           1,3-5 Initrostheren         Stoco U         \$7000 U         28000 U         40000 U         27000 U           1,3-5 Initrostheren         Stoco U         \$7000 U         28000 U         40000 U         27000 U           1,3-5 Initrostheren         Stoco U         \$7000 U         28000 U         40000 U         27000 U           1,3-1 Initrostheren         Stoco U         \$7000 U         28000 U         40000 U         27000 U           2,4-5 Initrostheren         Stoco U         \$7000 U         28000 U         40000 U         27000 U	Sample No.:	MA-SD308-01	01 NA-S0309-01		MA-SD309-01FR		NA-SD310-01		NA-SD311-01	
Persester           Persester           Processes           Processes           Phanol         SECC Chicrosofty (Jachaer         SECC OL         STODD U         ZECCOU         46000 U         ZTODD U           2-hisini constraine         SECCOU U         STODD U         ZECCOU U         46000 U         ZTODD U           1-bisini constraine         SECCOU U         STODD U         ZECCOU U         46000 U         ZTODD U           1-bisini constraine         SECCOU U         STODD U         ZECCOU U         46000 U         ZTODD U           2-bisini constraine         SECCOU U         STODD U         ZECCOU U         46000 U         ZTODD U           2-bisini constraine         SECCOU U         STODD U         ZECCOU U         46000 U         ZTODD U           2-bisini constraine         SECCOU U         STODD U         ZECOU U         46000 U         ZTODD U           2-bisini constraine         SECCOU U         STODD U         ZECOU U         46000 U         ZTODD U           2-bisini constraine         SECCOU U         STODD U         ZECOU U         46000 U         ZTODD U           2-bisini constraine         SECCOU U         STODD U         ZECOU U         460000 U         ZTODD U <t< th=""><th>TR No.:</th><th>EU818</th><th colspan="2">8 EV819</th><th>EW828</th><th></th><th>EN820</th><th></th><th colspan="2">EW821</th></t<>	TR No.:	EU818	8 EV819		EW828		EN820		EW821	
Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Paramator Parama						Replicate				
Parameter           Parameter           Desci         Status         Status         Status         Status         Status           Parameter         Status	***************************************				•••	••••••	•••	•••••		••••••
Parent         SECO U         \$7000 U         SECO U         40000 U         27000 U           bis(2-Chlorosthyl)sther         \$8000 U         \$7000 U         28000 U         40000 U         27000 U           1,3-5 ichlorosthylsther         \$8000 U         \$7000 U         28000 U         40000 U         27000 U           1,3-5 ichlorosthylsther         \$8000 U         \$7000 U         28000 U         40000 U         27000 U           1,3-5 ichlorosthylsther         \$8000 U         \$7000 U         28000 U         40000 U         27000 U           2-bisthylsthere         \$8000 U         \$7000 U         28000 U         40000 U         27000 U           2-bisthylsthere         \$8000 U         \$7000 U         28000 U         40000 U         27000 U           2-bisthylsthere         \$8000 U         \$7000 U         28000 U         40000 U         27000 U           4-bisthylsthere         \$8000 U         \$7000 U         28000 U         40000 U         27000 U           2-tisthylsthere         \$8000 U         \$7000 U         28000 U         40000 U         27000 U           2-tisthylsthere         \$8000 U         \$7000 U         28000 U         40000 U         27000 U           2-tisthylsthere         \$8000 U         <	Bonometer.									
Persol         S4000 U         S7000 U         S2000 U         S4000 U         S7000 U           2-Chiorophenol         S5000 U         S7000 U         S2000 U         60000 U         S7000 U           1,4-0 Echiorobersee         S5000 U         S7000 U         S2000 U         60000 U         S7000 U           1,4-0 Echiorobersee         S5000 U         S7000 U         S2000 U         60000 U         S7000 U           1,4-0 Echiorobersee         S5000 U         S7000 U         S2000 U         60000 U         S7000 U           1,2-0 Echiorobersee         S5000 U         S7000 U         S2000 U         60000 U         S7000 U           1,2-0 Echiorobersee         S5000 U         S7000 U         S2000 U         60000 U         S7000 U           1:12-12 Echiorobersee         S5000 U         S7000 U         S2000 U         60000 U         S7000 U           1:12-12 Echiorobersee         S5000 U         S7000 U         S2000 U         60000 U         S7000 U           1:11 crobersee         S5000 U         S7000 U         S2000 U         60000 U         S7000 U           1:11 crobersee         S5000 U         S7000 U         S2000 U         60000 U         S7000 U           2:4-11 crichiorobersei         S5000 U										
bird2-Chloresthylpschar         58000 U         57000 U         28000 U         60000 U         27000 U           1,4-51chloresbenzene         58000 U         57000 U         28000 U         60000 U         27000 U           1,4-51chloresbenzene         58000 U         57000 U         28000 U         60000 U         27000 U           ernzyl sicshol         58000 U         57000 U         28000 U         60000 U         27000 U           1/2-51chloresbenzene         58000 U         57000 U         28000 U         60000 U         27000 U           1/2-51chloresbenzene         58000 U         57000 U         28000 U         60000 U         27000 U           1/2-51chloresbenzene         58000 U         57000 U         28000 U         60000 U         27000 U           1/2-51chloresbenzene         58000 U         57000 U         28000 U         60000 U         27000 U           1/2-51chloresbenzene         58000 U         57000 U         28000 U         60000 U         27000 U           2/41 Erschloresbenzene         58000 U         57000 U         28000 U         60000 U         27000 U           2/4-51eschloresbenzene         58000 U         57000 U         28000 U         60000 U         27000 U           2/4-51rtichloresbenz	Phenol	58000		\$7000	11	20000		60000		27000 11
2-Chiorestenol         58000 U         57000 U         28000 U         66000 U         27000 U           1,4-5 ichiorebersene         58000 U         57000 U         28000 U         66000 U         27000 U           1,2-5 ichiorebersene         58000 U         57000 U         28000 U         66000 U         27000 U           1,2-5 ichioreisopreprijetter         58000 U         57000 U         28000 U         66000 U         27000 U           1,2-5 ichioreisopreprijetter         58000 U         57000 U         28000 U         66000 U         27000 U           1-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4	bis(2-Chloroethyl)ether	58000	ŭ	57000	ŭ	28000	ŭ	60000	ŭ	27000 1
1.3-0 ich jordbarzene         58000 U         57000 U         28000 U         60000 U         27000 U           Benzyl siechel         55000 U         57000 U         28000 U         60000 U         27000 U           2-bich invokanzene         55000 U         57000 U         28000 U         60000 U         27000 U           2-bich invokanzene         55000 U         57000 U         28000 U         60000 U         27000 U           2-bich invokanzene         55000 U         57000 U         28000 U         60000 U         27000 U           2-histrischighenel         55000 U         57000 U         28000 U         60000 U         27000 U           1:strass-d-invokanzene         55000 U         57000 U         28000 U         60000 U         27000 U           2-4 Tientsrijshenel         55000 U         57000 U         28000 U         60000 U         27000 U           2-4 Tientsrijshenel         58000 U         57000 U         28000 U         60000 U         27000 U           2-4 Tientsrijshenel         58000 U         57000 U         28000 U         60000 U         27000 U           2-4 Tientsrijshenel         58000 U         57000 U         28000 U         60000 U         27000 U           2-4 Tientsrijshenel <td< td=""><td>2-Chlorophenol</td><td>58000</td><td>ŭ</td><td>57000</td><td>ŭ</td><td>28000</td><td>Ŭ</td><td>60000</td><td>มั</td><td>27000 U</td></td<>	2-Chlorophenol	58000	ŭ	57000	ŭ	28000	Ŭ	60000	มั	27000 U
1.4-5/ch1ersbarzene         58000 U         57000 U         28000 U         60000 U         27000 U           1.2-5/ch1ersizene         58000 U         57000 U         28000 U         60000 U         27000 U           1.2-5/ch1ersizene         58000 U         57000 U         28000 U         60000 U         27000 U           1.2-5/ch1ersizene         58000 U         57000 U         28000 U         60000 U         27000 U           1.4-6/ch1ersizene         58000 U         57000 U         28000 U         60000 U         27000 U           1.4-6/ch1ersizene         58000 U         57000 U         28000 U         60000 U         27000 U           1.exphorae         58000 U         57000 U         28000 U         60000 U         27000 U           2.4-6/ch1ersetherybenol         58000 U         57000 U         28000 U         60000 U         27000 U           2.4-6/ch1ersetherybenol         58000 U         57000 U         28000 U         60000 U         27000 U           2.4-6/ch1ersetherybenol         58000 U         57000 U         28000 U         60000 U         27000 U           2.4-6/ch1ersethersether         58000 U         57000 U         28000 U         60000 U         27000 U           2.4-6/ch1ersethersethybenol	1,3-Dichlorobenzene	58000	Ũ	57000	Ū	28000	Ū	60000	Ū	27000 U
Serzyi alcshol         SB000 U         S7000 U         28000 U         60000 U         27000 U           2-Nethylphenol         SB000 U         S7000 U         28000 U         60000 U         27000 U           2-Nethylphenol         SB000 U         S7000 U         28000 U         60000 U         27000 U           4-Nethylphenol         SB000 U         S7000 U         28000 U         60000 U         27000 U           4-Nethylphenol         SB000 U         S7000 U         28000 U         60000 U         27000 U           1 argherome         SB000 U         S7000 U         28000 U         60000 U         27000 U           2-4 Tienstrylphenol         SB000 U         S7000 U         28000 U         60000 U         27000 U           2-4 Tienstrylphenol         SB000 U         S7000 U         28000 U         60000 U         27000 U           2-4 Tienstrylphenol         SB000 U         S7000 U         28000 U         60000 U         27000 U           2-4 Tienstrylphenol         SB000 U         S7000 U         28000 U         60000 U         27000 U           2-4 Tienstrylphenol         SB000 U         S7000 U         28000 U         60000 U         27000 U           2-4 Tienstrylphenol         SB000 U         S70	1,4-Dichlorobenzene	58000	U	57000	U	28000	U	60000	U	27000 U
1,2-Dichigendenzene         \$2000 U         \$7000 U         2000 U         6000 U         27000 U           Disd2-chigeneleproprigational         \$8000 U         \$7000 U         28000 U         6000 U         27000 U           Hethrytphenial         \$8000 U         \$7000 U         28000 U         6000 U         27000 U           Haitrese-di-n-proprigational         \$8000 U         \$7000 U         28000 U         6000 U         27000 U           Hitreberatere         \$8000 U         \$7000 U         28000 U         6000 U         27000 U           2-Hitrephenol         \$8000 U         \$7000 U         28000 U         6000 U         27000 U           2-Hitrephenol         \$8000 U         \$7000 U         28000 U         6000 U         27000 U           2-Hitrephenol         \$8000 U         \$7000 U         28000 U         60000 U         27000 U           2-A-Dichorphenol         \$8000 U         \$7000 U         28000 U         60000 U         27000 U           2-A-Dichorphenol         \$8000 U         \$7000 U         28000 U         60000 U         27000 U           2-A-Dichorphenol         \$8000 U         \$7000 U         28000 U         60000 U         27000 U           2-A-Dichorphenol         \$8000 U	Senzyl alcohol	58000	U	57000	U	28000	U	<b>6000</b> 0	U	27000 U
2-Metrytphenol 58000 U 57000 U 28000 U 40000 U 27000 U 4-Netrytphenol 58000 U 57000 U 28000 U 40000 U 27000 U 4-Netrytphenol 58000 U 57000 U 28000 U 40000 U 27000 U 4-Netrytphenol 58000 U 57000 U 28000 U 40000 U 27000 U 19000 To 4-Netrytphenol 58000 U 57000 U 28000 U 40000 U 27000 U 19000 To 4-Netrytphenol 58000 U 57000 U 28000 U 40000 U 27000 U 19000 To 4-Netrytphenol 58000 U 57000 U 28000 U 40000 U 27000 U 2.4-Distrytphenol 58000 U 57000 U 28000 U 40000 U 27000 U 2.4-Distrytphenol 58000 U 57000 U 28000 U 40000 U 27000 U 2.4-Distrytphenol 58000 U 57000 U 28000 U 40000 U 27000 U 2.4-Distrytphenol 58000 U 57000 U 28000 U 40000 U 27000 U 2.4-Distrytphenol 58000 U 57000 U 28000 U 40000 U 27000 U 2.4-Distrytphenol 58000 U 57000 U 28000 U 40000 U 27000 U 2.4-Distrytphenol 58000 U 57000 U 28000 U 40000 U 27000 U 2.4-Distrytphenol 58000 U 57000 U 28000 U 40000 U 27000 U 2.4-Distrytphenol 58000 U 57000 U 28000 U 40000 U 27000 U 2.4-Distrytphenol 58000 U 57000 U 28000 U 40000 U 27000 U 2.4-Distrytphenol 58000 U 57000 U 28000 U 40000 U 27000 U 2.4-Distrytphenol 58000 U 57000 U 28000 U 40000 U 27000 U 2.4-Distrytphenol 58000 U 57000 U 28000 U 40000 U 27000 U 2.4-Distrytphenol 58000 U 57000 U 28000 U 40000 U 27000 U 2.4-Distrytphenol 58000 U 57000 U 28000 U 40000 U 27000 U 2.4-STTCSI UPARAJENE 58000 U 57000 U 28000 U 40000 U 27000 U 2.4-STTCSI UPARAJENE 58000 U 57000 U 28000 U 40000 U 27000 U 2.4-STTCSI UPARAJENE 58000 U 57000 U 28000 U 40000 U 27000 U 2.4-STTCSI UPARAJENE 58000 U 57000 U 28000 U 40000 U 27000 U 2.4-Distrytphenol 28000 U 57000 U 28000 U 40000 U 27000 U 2.4-DISTRYTPHENE 58000 U 57000 U 28000 U 40000 U 27000 U 2.4-DISTRYTPHENE 58000 U 57000 U 28000 U 40000 U 27000 U 2.4-DISTRYTPHENE 58000 U 57000 U 28000 U 40000 U 27000 U 2.4-DISTRYTPHENE 58000 U 57000 U 28000 U 40000 U 27000 U 2.4-DISTRYTPHENE 58000 U 57000 U 28000 U 40000 U 27000 U 2.4-DISTRYTPHENE 58000 U 57000 U 28000 U 40000 U 27000 U 2.4-DISTRYTPHENE 58000 U 57000 U 28000 U 40000 U 27000 U 2.4-DISTRYTPHENE 58000 U 57000 U 28000 U 40000 U 27000 U 2.4-DI	1,2-Dichlorobenzene	58000	U	57000	U	28000	U	60000	U	27000 U
bial         SB000 U         S7000 U         2000 U         4000 U         27000 U           a Hitryshenol         SB000 U         S7000 U         2000 U         4000 U         27000 U           a Hitryse-din-propulatine         SB000 U         S7000 U         2000 U         40000 U         27000 U           a Hitryse-din-propulatine         SB000 U         S7000 U         2000 U         40000 U         27000 U           a Hitryse-din-propulatine         SB000 U         S7000 U         2000 U         40000 U         27000 U           2.4 Froghenol         SB000 U         S7000 U         2000 U         60000 U         27000 U           2.4 - Dichiorophenol         SB000 U         S7000 U         2000 U         60000 U         27000 U           2.4 - Dichiorophenol         SB000 U         S7000 U         2000 U         60000 U         27000 U           2.4 - Dichiorophenol         SB000 U         S7000 U         2000 U         60000 U         27000 U           2.4 - Dichiorophenol         SB000 U         S7000 U         28000 U         60000 U         27000 U           2.4 - Dichiorophenol         SB000 U         S7000 U         28000 U         60000 U         27000 U           2.4 - Dichiorophenol         SB000 U </td <td>Z-Nethylphenol</td> <td>58000</td> <td>U</td> <td>57000</td> <td>U</td> <td>28000</td> <td>U</td> <td>60000</td> <td>U</td> <td>27000 U</td>	Z-Nethylphenol	58000	U	57000	U	28000	U	60000	U	27000 U
metrylphenol         38000         0         2000         0         2000         0         2000         0         2000         0         2000         0         2000         0         2000         0         2000         0         2000         0         2000         0         20000         0         2000         0         2000         0         2000         0         2000         0         2000         0         2000         0         2000         0         2000         0         2000         0         2000         0         2000         0         2000         0         2000         0         2000         0         2000         0         2000         0         2000         0         2000         0         2000         0         2000         0         2000         0         2000         0         2000         0         2000         2000         2000         2000         2000         27000         27000         27000         27000         27000         27000         27000         27000         27000         27000         27000         27000         27000         27000         27000         27000         27000         27000         27000         27000 </td <td>Dis(2-Chloroisopropyl)ether</td> <td>58000</td> <td>0</td> <td>57000</td> <td>U.</td> <td>25000</td> <td>Ü</td> <td>60000</td> <td>U</td> <td>27000 0</td>	Dis(2-Chloroisopropyl)ether	58000	0	57000	U.	25000	Ü	60000	U	27000 0
assetter-of the program the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second	4-Wetnytphenot Nelitzazo di statomulanina	56000		57000		28000		40000		27000 0
Bit Schemen         SD00 U         ST00 U         SD00 U         ST00 U         ST	Nexachi ocosthene	58000	N.	57000	ŭ	28000	U II	40000		27000 0
isghores         5000         5700         28000         1         27000         1           2.41 traghmol         5000         5700         28000         40000         1         27000         1           2.4-5 imsthylphenol         5000         57000         1         28000         1         20000         1         20000         1         20000         1         20000         1         20000         1         20000         1         20000         1         20000         1         20000         1         20000         1         20000         1         20000         1         20000         1         20000         1         20000         1         20000         1         20000         1         20000         1         20000         1         20000         1         20000         1         20000         1         20000         1         20000         1         20000         1         20000         1         20000         1         20000         1         20000         1         20000         1         20000         1         20000         1         20000         1         20000         1         20000         1         20000         1	Nitrobenzene	58000	ŭ	57000	ŭ	28000	ŭ	60000	ŭ	27000 1
2-if trophenol         \$2000         \$7000         28000         0         \$6000         0         27000         0           Stall         2.4-Dimstrylphenol         \$20000         0         27000         0         27000         0         27000         0         27000         0         27000         0         27000         0         28000         0         60000         0         27000         0         28000         0         60000         0         27000         0         28000         0         60000         0         27000         0         28000         0         60000         0         27000         0         8000         57000         0         28000         0         60000         0         27000         0         28000         0         60000         0         27000         0         28000         0         60000         0         27000         0         28000         0         60000         0         27000         0         24.6         67000         0         28000         67000         28000         67000         28000         67000         28000         67000         28000         67000         28000         67000         28000         67000	Isochorone	58000	ŭ	57000	ū	28000	Ū	60000	ม	27000 U
2,4-Dimethylphenol 5000 U 57000 U 22000 U 40000 U 27000 U 23000 U 40000 U 27000 U 40000 U 27000 U 24000 U 40000 U 27000 U 24000 U 40000 U 27000 U 1,2,4-Trichforobarane 54000 U 57000 U 22000 U 40000 U 27000 U 1,2,4-Trichforobarane 54000 U 57000 U 23000 U 40000 U 27000 U 1,2,4-Trichforobarane 54000 U 57000 U 23000 U 40000 U 27000 U 4-0 1,2,4-Trichforobarane 54000 U 57000 U 23000 U 40000 U 27000 U 4-0 1,2,4-Trichforobarane 54000 U 57000 U 23000 U 40000 U 27000 U 4-0 1,2,4-Trichforobarane 54000 U 57000 U 23000 U 40000 U 27000 U 4-0 1,2,4-Trichforobarane 54000 U 57000 U 23000 U 40000 U 27000 U 4-0 1,2,4-Trichforobaratafiene 23000 U 57000 U 23000 U 40000 U 27000 U 24,6-Trichforophenol 54000 U 57000 U 23000 U 40000 U 27000 U 2,4,5-Trichforophenol 23000 U 27000 U 130000 U 230000 U 130000 U 27000 U 2,4,5-Trichforophenol 28000 U 27000 U 130000 U 230000 U 27000 U 2,4,5-Trichforophenol 28000 U 27000 U 130000 U 27000 U 2,4-5-Trichforophenol 28000 U 27000 U 130000 U 27000 U 2,4-5-Trichforophenol 28000 U 27000 U 130000 U 27000 U 2,4-5-Trichforophenol 28000 U 27000 U 13000 U 20000 U 27000 U 2,4-5-Trichforophenol 28000 U 27000 U 13000 U 220000 U 13000 U 27000 U 2,4-5-Trichforophenol 28000 U 27000 U 13000 U 22000 U 13000 U 27000 U 2,4-5-Trichforophenol 28000 U 27000 U 13000 U 220000 U 27000 U 13000 U 220000 U 13000 U 27000 U 13000 U 220000 U 13000 U 27000 U 13000 U 220000 U 13000 U 27000 U 13000 U 22000 U 13000 U 22000 U 13000 U 27000 U 13000 U 22000 U 13000 U 27000 U 13000 U 22000 U 13000 U 22000 U 13000 U 2700 U 22000 U 13000 U 2700 U 13000 U 22000 U 13000 U 2700 U 22000 U 13000 U 22000 U 13000 U 27000 U 13000 U 22000 U 13000 U 2700 U 22000 U 13000 U 22000 U 13000 U 27000 U 22000 U 13000 U 22000 U	2-Nitrophenol	58000	Ũ	57000	Ū	28000	Ŭ	60000	Ŭ	27000 U
Benzoic Acid         280000 U         270000 U         130000 U         280000 U         30000 U           2,4-01chiorophenol         58000 U         57000 U         28000 U         60000 U         27000 U           12,4-71chiorophenol         58000 U         57000 U         28000 U         60000 U         27000 U           Maphthalene         11000 J         57000 U         28000 U         60000 U         27000 U           Maxahlorobutadise         58000 U         57000 U         28000 U         60000 U         27000 U           Maxahlorobutadise         58000 U         57000 U         28000 U         60000 U         27000 U           2-Actronolicorephenol         58000 U         57000 U         28000 U         60000 U         27000 U           2.4,6-71chiorophenol         28000 U         28000 U         60000 U         27000 U         28000 U         60000 U         27000 U           2.4,6-71chiorophenol         28000 U         27000 U         28000 U         60000 U         130000 U         27000 U           2.4,6-71chiorophenol         28000 U         27000 U         28000 U         60000 U         130000 U         27000 U           2.4,6-11chiorophenol         28000 U         27000 U         130000 U         60000 U<	2,4-Dimethylphenol	58000	Ũ	57000	U	28000	U	60000	U	27000 U
bis(2-Chlorosthoxymethane \$2000 U \$7000 U 22000 U 60000 U 27000 U 2,4-Dichlorostrene \$2000 U \$7000 U 22000 U 60000 U 27000 U 1,2,4-Trichlorostrene \$2000 U \$7000 U 22000 U 60000 U 27000 U 4-Chlorosthadiene \$2000 U \$7000 U 22000 U 60000 U 27000 U 4-Chlorosthadiene \$2000 U \$7000 U 22000 U 60000 U 27000 U 4-Chlorosthadiene \$2000 U \$7000 U 22000 U 60000 U 27000 U 4-Chlorosthadiene \$2000 U \$7000 U 22000 U 60000 U 27000 U 2,4,5-Trichlorosthane \$2000 U \$7000 U 22000 U 60000 U 27000 U 2,4,5-Trichlorosthane \$2000 U \$7000 U 22000 U 60000 U 27000 U 2,4,5-Trichlorosthane \$2000 U \$7000 U 22000 U 60000 U 27000 U 2,4,5-Trichlorosthane \$2000 U \$7000 U 22000 U 60000 U 27000 U 2,4,5-Trichlorosthane \$2000 U \$7000 U 22000 U 60000 U 77000 U 2,4,5-Trichlorosthane \$2000 U \$7000 U 22000 U 60000 U 77000 U 2,4,5-Trichlorosthane \$2000 U \$7000 U 22000 U 60000 U 77000 U 2,4,5-Trichlorosthane \$2000 U \$7000 U 22000 U 60000 U 77000 U 2,4,5-Trichlorosthane \$2000 U \$7000 U 22000 U 60000 U 77000 U 2,4-5Trichlorosthane \$2000 U \$7000 U 22000 U 60000 U 77000 U 3-Witrastitine \$2000 U \$7000 U 22000 U 60000 U 77000 U 3-Witrastitine \$2000 U 27000 U 1000 U \$20000 U 15000 U 2,4-5Trichlorosthane \$2000 U 27000 U 10000 U \$20000 U 15000 U 2,4-5Trichlorosthane \$2000 U 27000 U 10000 U \$20000 U 15000 U 4-Witrastitine \$2000 U 27000 U 10000 U 220000 U 15000 U 27000 U 4-Witrastitine \$2000 U 27000 U 10000 U 220000 U 15000 U 27000 U 4-Witrastitine \$2000 U 27000 U 10000 U 220000 U 130000 U 2,4-5Trichloresteane \$2000 U 27000 U 10000 U 220000 U 130000 U 2,4-5Trichloresteane \$2000 U 27000 U 10000 U 22000 U 130000 U 27000 U 4-Witrastitine \$2000 U 27000 U 10000 U 22000 U 130000 U 27000 U 4-Witrastitine \$2000 U 27000 U 130000 U 22000 U 130000 U 2,4-5Trichloresteane \$2000 U 37000 U 22000 U 40000 U 27000 U 4-Witrastitine \$2000 U 37000 U 22000 U 40000 U 27000 U 4-Witrastitine \$2000 U 37000 U 22000 U 40000 U 27000 U 4-Witrastitine \$2000 U 37000 U 22000 U 40000 U 27000 U 3,57-5Trichlorosteane \$2000 U 37000 U 22000 U 40000 U 27000 U 4-Witrastitine	Senzoic Acid	280000	U	270000	U	130000	U	280000	U	130000 U
2,4-Dichlorophanol         38000 U         \$7000 U         28000 U         60000 U         27000 U           Nghthalene         11000 J         \$7000 U         1300 J         60000 U         27000 U           Maphthalene         11000 J         \$7000 U         1300 J         60000 U         27000 U           Mexachlorobutadiene         \$8000 U         \$7000 U         28000 U         60000 U         27000 U           2-Hitrophinalene         22000 J         \$7000 U         28000 U         60000 U         27000 U           2-Acthorobutadiene         58000 U         \$7000 U         28000 U         60000 U         27000 U           2-Actorobutadiene         58000 U         \$7000 U         28000 U         27000 U         24,6 - Frichlorophenol         28000 U         27000 U           2-Actorobutadiene         58000 U         \$7000 U         28000 U         28000 U         27000 U           2-Actorobutadiene         58000 U         \$7000 U         28000 U         28000 U         27000 U           2-Actorobutadiene         28000 U         \$7000 U         13000 U         28000 U         13000 U           2-Actiorophenol         28000 U         \$7000 U         13000 U         28000 U         1600 J           2-Ac	bis(2-Chloroethoxy)methane	58000	U	57000	U	28000	U	60000	U	27000 U
1,2,4-Trichlorobergene         38000 U         37000 U         28000 U         60000 U         27000 U           4-Chiorseniline         38000 U         37000 U         28000 U         60000 U         27000 U           4-Chiorseniline         38000 U         57000 U         28000 U         60000 U         27000 U           4-Chiorsenitatiene         58000 U         57000 U         28000 U         6000 U         27000 U           2-Kethylaphthelene         22000 J         57000 U         28000 U         60000 U         27000 U           2,4,6-Trichlorophenol         28000 U         57000 U         28000 U         28000 U         27000 U           2,4,6-Trichlorophenol         28000 U         57000 U         28000 U         28000 U         27000 U           2,4,6-Trichlorophenol         28000 U         57000 U         28000 U         28000 U         27000 U           2,4,6-Trichlorophenol         28000 U         57000 U         28000 U         28000 U         27000 U           2,4,6-Trichlorophenol         28000 U         57000 U         28000 U         28000 U         27000 U           2,4-Trichlorophenol         28000 U         57000 U         28000 U         40000 U         27000 U           2,4-Trichlorophenol	2,4-Dichlorophenol	58000	U	57000	U	28000	U	60000	U	27000 U
maprituaters         THOU J         57000 U         1500 J         60000 U         90000 U           Hexachlorobutadiene         \$8000 U         \$77000 U         28000 U         60000 U         27000 U           4-Chiorosimethylphenol         \$8000 U         \$77000 U         28000 U         60000 U         27000 U           2-Hethylnaphthelene         \$2000 U         \$7000 U         28000 U         60000 U         27000 U           2-A,6-Trichlorophenol         \$8000 U         \$77000 U         28000 U         60000 U         27000 U           2-A,6-Trichlorophenol         \$8000 U         \$77000 U         28000 U         60000 U         27000 U           2-A,6-Trichlorophenol         \$8000 U         \$77000 U         28000 U         28000 U         27000 U           2-Kitroanitine         \$8000 U         \$77000 U         28000 U         28000 U         27000 U           2-Kitroanitine         \$8000 U         \$77000 U         28000 U         27000 U         16000 U         17000 U           2-Kitroanitine         \$8000 U         \$7700 U         28000 U         28000 U         17000 U           2-Kitroanitine         \$8000 U         \$7700 U         28000 U         18000 U         18000 U           2-Kitroanitine<	1,2,4-Trichlorobenzene	58000	Ů.	57000	U.	28000	Ų	60000	U	27000 0
Schlobani Ling         Secol U         S7000 U         Secol U         S7000 U         Secol U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U         S7000 U	WaphInalene	11000	1	57000		1300	4	60000		37000
Acchioro-S-methylphenol         2000 U         5700 U         2000 U         6000 U         27000 U           2-Hethylnaphthalene         22000 J         57000 U         2000 U         60000 U         27000 U           2,4,5-Trichlorophenol         28000 U         57000 U         28000 U         60000 U         27000 U           2,4,5-Trichlorophenol         28000 U         27000 U         28000 U         60000 U         27000 U           2,4,5-Trichlorophenol         28000 U         27000 U         28000 U         60000 U         27000 U           2,4,5-Trichlorophenol         28000 U         27000 U         28000 U         60000 U         27000 U           2-Litoromaphthalene         58000 U         27000 U         28000 U         60000 U         27000 U           2,6-Dinitrosluene         58000 U         57000 U         28000 U         280000 U         130000 U           2,4-Dinitrosluene         220000 U         27000 U         130000 U         28000 U         130000 U           2,4-Dinitrosluene         58000 U         27000 U         130000 U         28000 U         130000 U           2,4-Dinitrosluene         58000 U         27000 U         130000 U         28000 U         130000 U           2,4-Dinitrosluene	4-Unitoroenitine Nevechiocobutediece	50000		57000	ŭ	28000	ň	40000	ŭ	27000 0
2-Hethylmaphthalane         22000 J         57000 U         800 J         60000 U         91000 U           2-A,6-Trichlorophenol         28000 U         57000 U         28000 U         60000 U         27000 U           2,4,6-Trichlorophenol         28000 U         57000 U         28000 U         26000 U         27000 U           2,4,6-Trichlorophenol         28000 U         57000 U         28000 U         28000 U         27000 U           2-thioromaphthalene         58000 U         57000 U         28000 U         28000 U         27000 U           2-thioromaphthalene         58000 U         57000 U         28000 U         28000 U         27000 U           2,6-Dinitrotaluane         58000 U         57000 U         28000 U         27000 U         28000 U         27000 U           2,6-Dinitrotaluane         58000 U         27000 U         130000 U         28000 U         130000 U         28000 U         130000 U           2,4-Dinitrophenol         280000 U         27000 U         130000 U         280000 U         130000 U         28000 U         130000 U           2,4-Dinitrophenol         280000 U         27000 U         130000 U         28000 U         130000 U         27000 U           2,4-Dinitrophenol         280000 U	4-Chioro-3-methylahenol	58000	ŭ	57000	ŭ	28000	ŭ	60000	ŭ	27000 L
Hexachiorocyclopentadiene         58000 U         57000 U         28000 U         60000 U         27000 U           2,4,5-Trichlorophenol         28000 U         57000 U         28000 U         28000 U         27000 U           2,4,5-Trichlorophenol         28000 U         27000 U         28000 U         280000 U         28000 U         28000 U         28000 U         28000 U         28000 U         28000 U         10000 U         28000 U         130000 U         28000 U         130000 U         28000 U         13000 U         24-binitraphenol         28000 U         27000 U         130000 U         28000 U         130000 U         28000 U         130000 U         27000 U         130000 U         28000 U         130000 U         27000 U         130000 U         28000 U         130000 U         27000 U         130000 U         27000 U	2-Nethylpaphthalene	22000	J	57000	ŭ	800	1	60000	ŭ	91000
2,4,6-Trichlorophenol         \$8000 U         \$7000 U         28000 U         \$20000 U         \$30000 U         \$20000 U         \$30000 U         \$20000 U         \$4000 U         \$4000 U         \$20000 U         \$30000 U         \$20000 U         \$4000 U         \$20000 U         \$4000 U         \$20000 U         \$20000 U         \$20000 U         \$20000 U         \$20000 U	Hexachlorocyclopentadiene	58000	ū	57000	Ŭ	28000	Ū	60000	Ū	27000 U
2,4,5-Trichiorophenol         280000 U         270000 U         130000 U         280000 U         77000 U           2-Chioronephthelene         58000 U         270000 U         28000 U         28000 U         27000 U           2-Hiroseniline         28000 U         57000 U         28000 U         28000 U         27000 U           2-eitroseniline         28000 U         57000 U         28000 U         60000 U         27000 U           2,6-Dinitrotoluene         58000 U         57000 U         28000 U         28000 U         27000 U           2,6-Dinitrophenol         28000 U         27000 U         130000 U         28000 U         130000 U         28000 U         130000 U           2,4-Dinitrophenol         28000 U         27000 U         130000 U         28000 U         130000 U         28000 U         130000 U           2,4-Dinitrophenol         28000 U         57000 U         28000 U         28000 U         130000 U         27000 U           2,4-Dinitrotoluene         58000 U         57000 U         28000 U         4000 U         27000 U           2,4-Dinitrotoluene         58000 U         57000 U         28000 U         4000 U         27000 U           2,4-Dinitrotoluene         58000 U         57000 U         28000 U<	2,4,6-Trichlorophenol	58000	Ū.	57000	Ū	28000	Ū	60000	U	27000 U
2-Chicronaphtheire         SE000 U         S7000 U         22000 U         60000 U         27000 U           2-Hicroanfiline         28000 U         S7000 U         130000 U         28000 U         27000 U           Acenaphthylentate         S8000 U         S7000 U         28000 U         60000 U         27000 U           3-Hicroanline         S8000 U         S7000 U         28000 U         60000 U         27000 U           3-Hicroanline         S8000 U         S7000 U         28000 U         60000 U         130000 U           3-Hicroanline         28000 U         27000 U         130000 U         28000 U         130000 U         130000 U           2-initrophenol         28000 U         27000 U         130000 U         28000 U         130000 U         28000 U         130000 U           2-thicrophenol         28000 U         S7000 U         28000 U         60000 U         27000 U           1berxoturan         15000 U         S7000 U         28000 U         60000 U         27000 U           1chrophenyl-phenylether         S8000 U         S7000 U         28000 U         28000 U         27000 U           4-binitro-2-methylphenol         28000 U         27000 U         130000 U         28000 U         130000 U	2,4,5-Trichlorophenol	280000	U	270000	U	130000	U	280000	U	<b>13000</b> 0 U
2-Hitreaniline         280000 U         270000 U         130000 U         280000 U         130000 U           Acenaphthylene         \$8000 U         \$7000 U         28000 U         60000 U         27000 U           2,6-Dinitrotoluene         \$8000 U         \$7000 U         28000 U         60000 U         27000 U           Acenaphthene         28000 U         \$7000 U         130000 U         28000 U         27000 U           Acenaphthene         28000 U         \$7000 U         130000 U         28000 U         28000 U         180000 U           A-thitraphenol         28000 U         27000 U         130000 U         280000 U         130000 U           2,4-Dinitrotoluene         38000 U         27000 U         130000 U         280000 U         130000 U           2,4-Dinitrotoluene         38000 U         57000 U         28000 U         60000 U         27000 U           4-Chiorophenyl-phenylether         58000 U         57000 U         28000 U         4000 U         27000 U           4,6-Dinitro-z-methylphenol         28000 U         27000 U         130000 U         28000 U         130000 U         27000 U           4,6-Dinitro-z-methylphenol         28000 U         37000 U         28000 U         130000 U         280000 U	2-Chloronaphthalene	58000	U	57000	U	28000	U	60000	U	27000 U
Dimethylphthalate         S8000 U         S7000 U         S8000 U         S7000 U	2-Nitroaniline	280000	U	270000	U	130000	U	280000	U	130000 U
Accmapting         S8000 U         S7000 U         I200 J         6000 U         I200 J           2,6-Dinitrotoluene         S8000 U         S7000 U         28000 U         28000 U         18000 U           Acenaphthene         220000 140000 U         130000 U         28000 U         18000 U           2,4-Dinitrophenol         280000 U         270000 U         130000 U         280000 U         130000 U           2,4-Dinitrophenol         280000 U         270000 U         130000 U         280000 U         130000 U           0/dextrain         150000 E         85000 U         57000 U         28000 U         60000 U         27000 U           2,4-Dinitrophenyl-phenylether         58000 U         57000 U         28000 U         60000 U         27000 U           4-thitrophenyl-phenylether         58000 U         57000 U         28000 U         60000 U         27000 U           4-thitrophenyl-phenylether         58000 U         37000 U         28000 U         40000 U         27000 U           4-thitrophenylethenylether         58000 U         37000 U         130000 U         280000 U         130000 U           4-thitrophenol         28000 U         3100 J         28000 U         60000 U         27000 U           4-thitrophenol <td>Dimethylphthalate</td> <td>58000</td> <td>U.</td> <td>57000</td> <td>Ü</td> <td>25000</td> <td>Ų</td> <td>60000</td> <td>U</td> <td>27000 0</td>	Dimethylphthalate	58000	U.	57000	Ü	25000	Ų	60000	U	27000 0
2,000000000000000000000000000000000000	Acenaphthylene	58000	U.	57000		1200	1	60000		1400 J
Shiftenin         25000         14000         10000         35000         12000         130000         130000         130000         130000         130000         130000         130000         130000         130000         130000         130000         130000         130000         130000         130000         130000         130000         130000         130000         130000         130000         130000         130000         130000         130000         130000         130000         130000         130000         130000         130000         130000         130000         130000         130000         130000         130000         130000         130000         127000         140000         130000         127000         140000         130000         127000         140000         120000         127000         140000         120000         127000         127000         127000         127000         127000         120000         128000         130000         128000         130000         128000         130000         128000         130000         128000         130000         128000         130000         128000         130000         128000         130000         128000         130000         128000         130000         128000         130000 <td>2,5-Dinitrotoluene</td> <td>280000</td> <td>N.</td> <td>27000</td> <td>11</td> <td>130000</td> <td>ü</td> <td>280000</td> <td>U LI</td> <td>130000 11</td>	2,5-Dinitrotoluene	280000	N.	27000	11	130000	ü	280000	U LI	130000 11
2.4-Dinitrophenol         280000 U         270000 U         130000 U         280000 U         130000 U           4-Kitrophenol         280000 U         270000 U         130000 U         280000 U         130000 U           2.4-Dinitrotoluene         38000 U         57000 U         28000 U         60000 U         130000 U           2.4-Dinitrotoluene         58000 U         57000 U         28000 U         60000 U         27000 U           2.4-Dinitrotoluene         58000 U         57000 U         28000 U         60000 U         27000 U           4-Chlorophenyl-phenylether         58000 U         57000 U         28000 U         60000 U         27000 U           4-Kitroeniline         280000 U         27000 U         130000 U         280000 U         130000 U           4.6-Dinitro-2-methylphenol         280000 U         37000 U         130000 U         280000 U         27000 U           4.6-Dinitro-2-methylphenol         280000 U         57000 U         280000 U         60000 U         27000 U           4.6-Dinitro-2-methylphenol         280000 U         3100 J         28000 U         60000 U         27000 U           4.6-Dinitro-2-methylphenol         280000 U         3100 J         28000 U         60000 U         27000 U	Acenachthene	220000	•	140000	~	100000		35000	J	180000
4-Witrophenol       280000 U       270000 U       130000 U       280000 U       130000 U         0 Henzofuran       150000       83000       60000       1600 J       130000 U         2(-2) firtrotoluene       58000 U       57000 U       28000 U       60000 U       27000 U         0 Ethylphthalate       58000 U       57000 U       28000 U       60000 U       27000 U         4-Chiorophenyl-phenylether       58000 U       57000 U       28000 U       60000 U       27000 U         4-Kitroeniline       280000 U       270000 U       130000 U       28000 U       28000 U       170000         4-Kitroeniline       280000 U       270000 U       130000 U       28000 U       28000 U       130000 U         4-Kitroeniline       28000 U       37000 U       130000 U       28000 U       28000 U       27000 U         4-Scomphenyl-phenylether       58000 U       57000 U       28000 U       60000 U       27000 U         4-Scomphenyl-phenylether       58000 U       270000 U       130000 U       28000 U       20000 U       27000 U         Pentachlorophenol       28000 U       27000 U       130000 U       28000 U       20000 U       130000 U         Phenanthrene       660000	2.4-Dinitrophenol	280000	U	270000	IJ	130000	U	280000	มั	130000 U
Dibenzofuran         150000         83000         60000         1600 J         130000           2,4-Dinitrotoluene         58000 U         57000 U         28000 U         60000 U         27000 U           0iethylphthalate         58000 U         57000 U         28000 U         60000 U         27000 U           4-Chlorophenyl-phenylether         58000 U         57000 U         28000 U         60000 U         27000 U           4-Witroeniline         280000 U         270000 U         130000 U         280000 U         280000 U         130000 U           4,6-Dinitro-2-methylphenol         280000 U         270000 U         130000 U         280000 U         280000 U         130000 U           4,6-Dinitro-2-methylphenol         28000 U         37000 U         28000 U         280000 U         27000 U           4,6-Dinitro-2-methylphenol         28000 U         57000 U         28000 U         60000 U         27000 U           4,6-Dinitro-2-methylphenol         28000 U         57000 U         28000 U         60000 U         27000 U           4,6-Dinitro-2-methylphenol         28000 U         57000 U         28000 U         60000 U         27000 U           4-Bromphenyl-phenylether         58000 U         57000 U         28000 U         60000 U	4-Nitrophenol	280000	Ū	270000	Ū	130000	Ū	280000	Ū	130000 U
2,4-Dinitrotoluene         58000 U         57000 U         28000 U         60000 U         27000 U           Diethylphthalate         58000 U         57000 U         28000 U         60000 U         27000 U           4-Chlorophenyl-phenylether         58000 U         57000 U         28000 U         60000 U         27000 U           Fluorene         200000         130000 U         28000 U         28000 U         170000 U           4-kitroemiline         280000 U         270000 U         130000 U         280000 U         130000 U           4-kitroemiline         28000 U         270000 U         130000 U         280000 U         130000 U           4-kitroemiline         58000 U         27000 U         28000 U         60000 U         27000 U           4-kitroesentere         58000 U         57000 U         28000 U         60000 U         27000 U           Pentachlorophenol         28000 U         57000 U         28000 U         280000 U         27000 U           Pentachlorophenol         28000 U         57000 U         28000 U         28000 U         27000 U           Pentachlorophenol         28000 U         57000 U         28000 U         28000 U         28000 U         28000 U         28000 U         27000 U	Dibenzofuran	150000		83000		60000		1600	J	130000
Diethylphthalate         \$8000 U         \$7000 U         28000 U         60000 U         27000 U           4-Chlorophenyl-phenylether         \$8000 U         \$7000 U         28000 U         60000 U         27000 U           Fluorene         20000 U         \$7000 U         \$1000 U         28000 U         \$1000 U         170000           4-Hitroeniline         280000 U         270000 U         \$1000 U         280000 U         330000 U         280000 U         330000 U           4-Hitroeniline         \$8000 U         270000 U         \$1000 U         280000 U         330000 U         27000 U           4-Hitroeniline         \$8000 U         \$7000 U         28000 U         60000 U         27000 U           4-Formophenyl-phenylether         \$8000 U         \$7000 U         28000 U         60000 U         27000 U           Pentachlorophenol         280000 U         \$7000 U         280000 U         30000 U         320000         320000         320000         320000         320000 U         320000 U         280000 U         320000 U         320000         40000 U         27000 U         280000 U         40000 U         27000 U         3,35000 U         25000 J         190000         3,35000 U         25000 J         190000         3,35000 U <t< td=""><td>2,4-Dinitrotoluene</td><td>58000</td><td>U</td><td>57000</td><td>U</td><td>28000</td><td>U</td><td>60000</td><td>U</td><td>27000 U</td></t<>	2,4-Dinitrotoluene	58000	U	57000	U	28000	U	60000	U	27000 U
4-Chlorophenyl-phenylether         58000 U         57000 U         28000 U         60000 U         27000 U           Fluorene         200000         130000         95000         4100 J         170000           4-Hitrosofiphenylamine         280000 U         270000 U         130000 U         280000 U         130000 U         280000 U         130000 U           4-Bromophenyl-phenylamine         58000 U         3100 J         28000 U         60000 U         27000 U           4-Bromophenyl-phenylamine         58000 U         37000 U         28000 U         60000 U         27000 U           4-Bromophenyl-phenylamine         58000 U         57000 U         28000 U         60000 U         27000 U           Arsachlorophenol         28000 U         57000 U         28000 U         60000 U         27000 U           Pentachlorophenol         28000 U         27000 U         130000 U         28000 U         130000 U         28000 U         130000 U           Phenanthrene         66000         43000 J         35000 Z         23000 J         190000 U         10000 U         28000 U         27000 U         10000 U         27000	Diethylphthalate	58000	U	57000	U	28000	U	60000	U	27000 U
Fluorene       20000       13000       99000       4100 J       170000         4-Nitroeniline       280000 U       270000 U       130000 U       280000 U       130000 U         4-Bitroeniline       28000 U       270000 U       130000 U       280000 U       130000 U         4-Bitroeniline       58000 U       3100 J       28000 U       60000 U       27000 U         4-Bitroeniene       58000 U       57000 U       28000 U       60000 U       27000 U         4-Bitroeniene       58000 U       57000 U       28000 U       60000 U       27000 U         Pertachlorophenol       280000 U       270000 U       130000 U       280000 U       320000 U       320000 U         Pentachlorophenol       280000 U       27000 U       130000 U       28000 U       320000	4-Chlorophenyl-phenylether	58000	U	57000	U	<b>Z300</b> 0	U	60000	Ů	27000 U
a-mitroenitine         28000 U         27000 U         15000 U         28000 U         15000 U           4,6-Dinitro-2-methylphenol         28000 U         27000 U         130000 U         28000 U         130000 U           4-Biromophenyl-phenylather         58000 U         57000 U         28000 U         60000 U         27000 U           4-Biromophenyl-phenylather         58000 U         57000 U         28000 U         60000 U         27000 U           Pentachlorophenol         28000 U         270000 U         130000 U         28000 U         27000 U           Phenathrene         66000 G         320000 Z20000         28000 U         320000 U         28000 U         27000 U           Anthracene         66000 G         33000 U         27000 U         28000 U         27000 U         27000 U           Di-n-butylphthalate         58000 U         57000 U         210000 G         40000 U         27000 U           Surgentee         290000 300000         270000 U         28000 U         20000 U         27000 U           Surgentee         58000 U         57000 U         28000 U         60000 U         27000 U           Surgentee         58000 U         57000 U         28000 U         60000 U         27000 U	Fluorene	200000		150000		95000		4100	J	170000
a, b Thill be set of the second of a second of a second of the second phenyl tenine         S8000 U         S100 J         Z8000 U         60000 U         Z7000 U           4-Bromophenyl-phenylether         S8000 U         S7000 U         Z8000 U         60000 U         Z7000 U           Mexachlorobenzene         S8000 U         S7000 U         Z8000 U         60000 U         Z7000 U           Pentachlorophenol         Z8000 U         S7000 U         Z8000 U         60000 U         Z7000 U           Phenanthrane         460000         S20000 U         28000 U         28000 U         S20000 U         28000 U         S20000 U           Anthracene         66000         43000 J         S5000 U         27000 U         Z7000 U         Z7000 U           Pin-butylphthalate         S8000 U         S7000 U         Z10000         40000 U         Z7000 U           Pyrene         S0000 U         S7000 U         Z8000 U         40000 U         Z7000 U           S,3'-Dichlorobenzidine         120000 U         110000 U         S6000 U         27000 U         S6000 U         Z7000 U           Senzo(a)anthracene         S6000 U         S7000 U         Z8000 U         60000 U         Z7000 U           Senzo(a)anthracene         S6000 U         S7000 U	4-Nitroeniline 4 4-Dinisaa 2-methylahanal	280000		270000		130000		280000		130000 0
A-Bromophenyl-phenylether         S8000 U         S7000 U         28000 U         60000 U         27000 U           Nexachlorobenzene         S8000 U         S7000 U         28000 U         60000 U         27000 U           Pentachlorobenzene         S8000 U         27000 U         130000 U         28000 U         27000 U           Pentachlorobenzene         460000         320000 U         270000 U         130000 U         28000 U         320000 U           Anthracene         66000         43000 J         35000         23000 U         27000 U           Di-n-butylphthalate         S8000 U         S7000 U         210000         60000 U         27000 U           Pyrene         300000         270000 U         210000 U         60000 U         27000 U           Syrone         290000         300000 Z7000 U         28000 U         60000 U         27000 U           Butylbenzylphthalate         S8000 U         57000 U         28000 U         60000 U         27000 U           Syrone         290000 J         54000 J         42000 S8000 J         34000 U         54000 U           Syrone         S4000 J         52000 J         44000 7000 J         39000 U         54000 J         22000 U         60000 U         27000 U	wywww.comenytphenot Newitropodiobenytemine	58000	U U	3100	ں ر	28000	ŭ	60000	u U	27000 H
Nexachloroberzene         58000 U         57000 U         28000 U         60000 U         27000 U           Pentachlorophenol         280000 U         270000 U         130000 U         280000 U         130000 U         280000 U         130000 U           Phenanthrene         460000         320000         220000         15000 J         320000         320000         280000 U         130000 U         280000 U         130000 U         320000         320000         320000         320000         320000 J         320000 U         28000 U         320000 U         28000 U         28000 U         27000 U         28000 U         27000 U         28000 U         37000 U         28000 U         37000 U         28000 U         27000 U         27000 U         34000 U         27000 U         39000 U         34000 U         27000 U         28000 U         36000 U         27000 U         27000 U         27000 U         27000 U         27000 U         27000	A-Bromochenvi-phenviether	58000	ŭ	57000	Ū	28000	ŭ	60000	ŭ	27000 U
Pentachlorophenol         280000 U         270000 U         130000 U         280000 U         130000 U           Phenanthrene         460000         320000         220000         15000 J         320000           Anthracene         66000         43000 J         35000         220000 U         190000           Di-n-butylphthalate         58000 U         57000 U         210000         60000 U         270000 U           Fluoranthene         300000         270000         28000 U         60000 U         27000 U           Pyrene         290000         300000         270000 U         28000 U         60000 U         27000 U           Surylphthalate         58000 U         57000 U         28000 U         60000 U         27000 U           3.3'-Dichlorobenzidine         120000 U         110000 U         56000 U         120000 U         54000 U           Senzo(a)anthracene         58000 J         52000 J         42000         58000 J         39000 U           Dis(2-Ethylchexyl)phthalate         58000 U         57000 U         28000 U         60000 U         27000 U           Benzo(b)fluoranthene         26000 J         22000 J         46000 J         16000 J         16000 J           Benzo(k)fluoranthene         25000	Nexachiorobenzene	58000	Ŭ	57000	Ŭ	28000	Ū	60000	Ū	27000 U
Phenanthrene         460000         320000         220000         15000 J         320000           Anthracene         66000         43000 J         35000         23000 J         190000           Di-n-butylphthalate         58000 U         57000 U         210000         60000 U         27000 U           Fluoranthene         300000         270000         28000 U         60000 U         200000           Pyrene         290000         300000         27000 U         28000 U         60000 U         27000 U           Satylbenzylphthalate         58000 U         57000 U         28000 U         60000 U         27000 U           3,3'-Dichlorobenzidine         120000 U         110000 U         56000 U         120000 U         54000 U           Senzo(a)anthracene         58000 U         52000 J         42000         58000 J         39000           bis(2-Ethylehexyl)phthalate         58000 U         57000 U         28000 U         60000 U         27000 U           Benzo(b)fluoranthene         26000 J         22000 J         44000 J         800 J         16000 J           Benzo(k)fluoranthene         23000 J         4200 J         3900 J         16000 J         16000 J           Benzo(k)fluoranthene         25000 J	Pentachlorophenol	280000	Ŭ	270000	U	130000	Ū	280000	Ū	130000 U
Anthracene       66000       43000 J       35000       23000 J       190000         Di-n-butylphthalate       58000 U       57000 U       210000       60000 U       27000 U         Fluoranthene       300000       270000       28000 U       60000 U       200000         Pyrene       290000       300000       200000       25000 J       190000         Butylbenzylphthalate       58000 U       57000 U       28000 U       60000 U       27000 U         Softhorobenzidine       120000 U       110000 U       56000 U       120000 U       54000 U         Senzo(a)anthracene       58000 U       52000 J       44000       7000 J       39000         bis(2-Ethylehexyl)phthalate       58000 U       57000 U       28000 U       60000 U       27000 U         Di-n-octylphthalate       58000 U       57000 U       28000 U       60000 U       27000 U         Benzo(b)fluoranthene       26000 J       22000 J       28000 U       60000 U       27000 U         Benzo(k)fluoranthene       25000 J       4200 J       3800 J       16000 J       16000 J         Benzo(k)fluoranthene       25000 J       18000 J       20000 J       3900 J       16000 J         Benzo(a)pyrene	Phenanthrene	460000		320000		220000		15000	J	320000
Di-n-butylphthalate         58000 U         57000 U         210000         60000 U         27000 U           Fluoranthene         300000         270000         28000 U         60000 U         200000           Pyrene         290000         300000         200000         25000 J         190000           Butylbenzylphthalate         58000 U         57000 U         28000 U         60000 U         27000 U           Softlorobenzidine         120000 U         110000 U         56000 U         120000 U         54000 U           Senzo(a)anthracene         58000 J         52000 J         44000         7000 J         39000           bis(2-Ethylehexyl)phthalate         58000 U         57000 U         28000 U         60000 U         27000 U           Di-n-octylphthalate         58000 U         57000 U         28000 U         60000 U         27000 U           Di-n-octylphthalate         58000 U         57000 U         28000 U         60000 U         27000 U           Benzo(b)fluoranthene         25000 J         22000 J         22000 J         4600 J         16000 J           Benzo(k)fluoranthene         25000 J         18000 J         20000 J         3900 J         16000 J           Benzo(a)pyrene         25000 J <td< td=""><td>Anthracene</td><td>66000</td><td></td><td>43000</td><td>J</td><td>35000</td><td></td><td>23000</td><td>J</td><td>190000</td></td<>	Anthracene	66000		43000	J	35000		23000	J	190000
Fluoranthene         300000         270000         28000 U         40000 U         200000           Pyrene         290000         300000         200000         25000 J         190000           Butylbenzylphthalate         \$8000 U         \$7000 U         28000 U         60000 U         270000 U           Satylbenzylphthalate         \$8000 U         \$7000 U         28000 U         60000 U         270000 U           Satylbenzylphthalate         \$8000 U         \$10000 U         \$6000 U         120000 U         \$54000 U           Senzo(a)anthracene         \$6000 J         \$2000 J         44000         7000 J         39000           bis(2-Ethylehexyl)phthalate         \$8000 U         \$7000 U         28000 U         60000 U         27000 U           Di-n-octylphthalate         \$8000 U         \$7000 U         28000 U         60000 U         27000 U           Benzo(b)fluoranthene         26000 J         22000 J         28000 U         60000 U         27000 U           Benzo(k)fluoranthene         25000 J         4200 J         4600 J         16000 J           Benzo(k)fluoranthene         25000 J         18000 J         20000 J         3900 J         16000 J           Benzo(a)pyrene         25000 J         18000 J	Di-n-butylphthalate	58000	U	57000	U	210000		60000	U	27000 U
Pyrene         290000         300000         20000         20000         20000         20000         20000         300000           Butylbenzylphthalate         \$8000 U         \$7000 U         28000 U         60000 U         27000 U           3,3'-Dichlorobenzidine         120000 U         110000 U         \$6000 U         120000 U         \$4000 U           Benzo(a)anthracene         \$8000 J         \$2000 J         42000         \$8000 J         34000           Chrysene         \$4000 J         \$2000 U         \$6000 U         28000 U         60000 U         27000 U           Dis(2-Ethylehexyl)phthalate         \$8000 U         \$7000 U         28000 U         60000 U         27000 U           Di-n-octylphthalate         \$8000 U         \$7000 U         28000 U         60000 U         27000 U           Benzo(b)fluoranthene         26000 J         22000 J         22000 J         4600 J         16000 J           Benzo(k)fluoranthene         25000 J         4200 J         3900 J         15000 J         3900 J         16000 J           Benzo(a)pyrene         25000 J         18000 J         20000 J         3900 J         16000 J         3900 J         16000 J           Jindeno(1,2,3-cd)pyrene         8800 J         4500 J <td>Fluoranthene</td> <td>300000</td> <td></td> <td>270000</td> <td></td> <td>25000</td> <td>U</td> <td>60000</td> <td>U</td> <td>200000</td>	Fluoranthene	300000		270000		25000	U	60000	U	200000
Surviserzyterinalize       58000 U       57000 U       22000 U       120000 U       57000 U         3,3'-Dichlorobenzidine       120000 U       110000 U       56000 U       120000 U       54000 U         Senzo(a)anthracene       58000       54000 J       42000       58000 J       34000         Chrysene       54000 U       52000 J       44000       7000 J       39000         Dis(2-Ethylehexyl)phthalate       58000 U       57000 U       28000 U       60000 U       27000 U         Di-n-octylphthalate       58000 U       57000 U       28000 U       60000 U       27000 U         Benzo(b)fluoranthene       26000 J       22000 J       4600 J       16000 J       16000 J         Benzo(k)fluoranthene       25000 J       4200 J       4400 J       800 J       15000 J         Benzo(a)pyrene       25000 J       18000 J       20000 J       3900 J       16000 J         Jindeno(1,2,3-cd)pyrene       8800 J       4500 J       7400 J       60000 U       5800 J         Jibenz(a,h)anthracene       2400 J       57000 U       2000 J       60000 U       1600 J         Benzo(s,h,i)perylene       7000 J       57000 U       6100 J       60000 U       4900 J	Pyrene .	290000		500000		200000		2000	J	37000 11
3,5-01entorobenzione       12000 0       11000 0       2000 0       12000 0       34000         Benzo(a)anthracene       58000 J       52000 J       44000       7000 J       39000         Chrysene       54000 J       52000 U       42000       7000 U       27000 U         Di-n-octylphthalate       58000 U       57000 U       28000 U       60000 U       27000 U         Di-n-octylphthalate       58000 U       57000 U       28000 U       60000 U       27000 U         Benzo(b)fluoranthene       26000 J       22000 J       4600 J       16000 J       16000 J         Benzo(k)fluoranthene       23000 J       4200 J       4400 J       800 J       15000 J         Benzo(a)pyrene       25000 J       18000 J       20000 J       3900 J       16000 J         Jindeno(1,2,3-cd)pyrene       8800 J       4500 J       7400 J       60000 U       5800 J         Jibenz(a,h)anthracene       2400 J       57000 U       2000 J       60000 U       1600 J         Benzo(s,h,i)perviene       7000 J       57000 U       6000 U       4900 J	Survisenzy(prinelate	120000		57000	ň	56000		120000	U 11	54000 11
Chrysene         54000 J         52000 J         44000         7000 J         39000           bis(2-Ethylehexyl)phthalate         58000 U         57000 U         28000 U         60000 U         27000 U           bin-roctylphthalate         58000 U         57000 U         28000 U         60000 U         27000 U           Benzo(b)fluoranthene         26000 J         22000 J         22000 J         4600 J         16000 J           Benzo(k)fluoranthene         23000 J         4200 J         4400 J         800 J         15000 J           Benzo(k)fluoranthene         25000 J         4200 J         4400 J         800 J         15000 J           Benzo(a)pyrene         25000 J         18000 J         20000 J         3900 J         16000 J           Joheno(1,2,3-cd)pyrene         8800 J         4500 J         7400 J         60000 U         5800 J           Jibenz(a,h)anthracene         2400 J         57000 U         2000 J         60000 U         1600 J           Benzo(s,h,i)perylene         7000 J         57000 U         6100 J         60000 U         4900 J	era a contra coma terme	58000	v	54000	ŭ	42000		58000	ĩ	34000
bis(2-Ethylehexyl)phthalate         58000 U         57000 U         28000 U         60000 U         27000 U           bin-roctylphthalate         58000 U         57000 U         28000 U         60000 U         27000 U           Benzo(b)fluoranthene         26000 J         22000 J         22000 J         46000 J         16000 J           Benzo(k)fluoranthene         23000 J         4200 J         4400 J         800 J         15000 J           Benzo(k)fluoranthene         25000 J         4200 J         4400 J         800 J         15000 J           Benzo(a)pyrene         25000 J         18000 J         20000 J         3900 J         16000 J           Joheno(1,2,3-cd)pyrene         8800 J         4500 J         7400 J         60000 U         5800 J           Jibenz(a,h)anthracene         2400 J         57000 U         2000 J         60000 U         1600 J           Benzo(s,h,i)perylene         7000 J         57000 U         6100 J         60000 U         4900 J	Chrysene	54000	L,	52000	J	44000		7000	J	39000
Din-noctylphthalate         58000 U         57000 U         28000 U         60000 U         27000 U           Benzo(b)fluoranthene         26000 J         22000 J         22000 J         4600 J         16000 J           Benzo(b)fluoranthene         23000 J         4200 J         4400 J         800 J         15000 J           Benzo(a)pyrene         25000 J         18000 J         20000 J         3900 J         16000 J           Indeno(1,2,3-cd)pyrene         8800 J         4500 J         7400 J         60000 U         5800 J           Dibenz(a,h)anthracene         2400 J         57000 U         2000 J         60000 U         1600 J           Benzo(s,h,i)perviene         7000 J         57000 U         2000 J         60000 U         1600 J	bis(2-Ethylehexvl)phthalate	58000	Ŭ	57000	Ű	28000	U	60000	Ū	27000 U
Benzo(b)fluoranthene         26000 J         22000 J         22000 J         4600 J         16000 J           Benzo(k)fluoranthene         23000 J         4200 J         4400 J         800 J         15000 J           Benzo(k)fluoranthene         23000 J         4200 J         4400 J         800 J         15000 J           Benzo(a)pyrene         25000 J         18000 J         20000 J         3900 J         16000 J           Indeno(1,2,3-cd)pyrene         8800 J         4500 J         7400 J         60000 U         5800 J           Dibenz(a,h)anthracene         2400 J         57000 U         2000 J         60000 U         1600 J           Benzo(s,h,i)perylene         7000 J         57000 U         6100 J         60000 U         4900 J	Di-n-octylphthalate	58000	Ű	57000	Ű	28000	Ū	60000	U	27000 U
Benzo(k)fluoranthene         23000 J         4200 J         4400 J         800 J         15000 J         3900 J         16000 J         3800	Benzo(b)fluoranthene	26000	J	22000	J	22000	J	4600	J	16000 J
Benzo(a)pyrene         25000 J         18000 J         20000 J         3900 J         16000 J           Indeno(1,2,3-cd)pyrene         8800 J         4500 J         7400 J         60000 U         5800 J           Dibenz(a,h)anthracene         2400 J         57000 U         2000 J         60000 U         1600 J           Benzo(g,h,i)perviene         7000 J         57000 U         6100 J         60000 U         4900 J	Benzo(k)fluoranthene	23000	J	4200	J	4400	J	800	J	15000 J
Indeno(1,2,3-cd)pyrene         8800 J         4500 J         7400 J         60000 U         5800 J           Dibenz(a,h)anthracene         2400 J         57000 U         2000 J         60000 U         1600 J           Benzo(g,h,i)perylene         7000 J         57000 U         6100 J         60000 U         4900 J	Benzo(a)pyrene	25000	J	18000	J	20000	J	3900	J	16000 J
Dibenz(a,h)anthracene         Z400 J         57000 U         Z000 J         60000 U         1600 J           Benzo(g,h,i)perylene         7000 J         57000 U         6100 J         60000 U         4900 J	Indeno(1,2,3-cd)pyrene	8800	J	4500	J	7400	j	60000	U	5800 J
	Dibenz(a,h)anthracene	2400	J.	57000	U.	2000	1	<b>50000</b>	U	1000 J
	penzo(g,n,1)perylene		يو - ب -	UUU16		UUU				47VV 4

\$

١

NOSS-AMERICAN SEDIMENT SEMI-VOLATILES

.

-----

	Sample	No.:	MA-SD312-01		HA-SD313-01		NA-50314-01	D314-D1 NA-SD315-D1 NA-SD3		NA-SD316-01	
	TR	No.:	EU822		EV823		E4824		EW825		EV826
			***********	•••	***********	•••	************			•••	
Parameter											
				•••		•••		••		••	••••••••••••••••••••••••••••••••••••••
Phenoi bie/2-Chieseethyl	\athan		200000	U	140000		170000	U 11	33000	U 11	33000 U
2-Chlorachenol			200000	ŭ	140000	ŭ	170000	Ū	33000	Ū	33000 U
1,3-Dichlorobenze	ne		200000	Ū	140000	Ŭ	170000	Ū	33000	U	33000 U
1,4-Dichlorobenze	ne		200000	U	140000	U	170000	U	33000	U	33000 U
Senzyl alcohol			200000	Ü	140000	U	170000	U.	33000	U 11	33000 0
2-Nethyl nhenol			200000	0	140000	U	170000	U U	33000	ŭ	33000 U
bis(2-Chloroisopr	opyl)e	ther	200000	Ū	140000	Ū	170000	Ŭ	33000	Ū	33000 U
4-Methylphenol	•••		200000	U	140000	U	170000	U	33000	U	33000 U
N-Nitroso-di-n-pr	opylam	ine	200000	U	140000	IJ	170000	U .	33000	U 	33000 U
Nexachiorcethane			200000	0	140000		170000	U U	33000	U	33000 U
Isochorone			200000	ŭ	140000	ŭ	170000	8	33000	ū	33000 U
2-Nitrophenol			200000	U	140000	Ű	170000	U	33000	U	33000 U
2,4-Dimethylpheno	o <b>L</b>		200000	U	140000	U	170000	U	33000	U	33000 U
Senzoic Acid			950000	U	680000	N.	510000		160000	U	160000 U
Dis(2-Chloroethox	y)metn i	ne	200000	U	140000	ň	170000	U U	33000	U L	33000 U
1.2.4-Trichlorobe	nzene		200000	Ŭ	140000	Ŭ	170000	Ŭ	33000	Ŭ.	33000 U
Naphthalene			350000	-	210000	-	78000	J	33000	U	33000 U
4-Chloroaniline			200000	U	140000	U	60000	1	33000	U	33000 U
Hexachiorobutadie	ne		200000	Ü	140000	U.	170000	U.	33000	U.	33000 U
4-Chloro-S-methyl	prenol		20000	U	200000	U	170000	U 11	33000	บ 11	33000 U
Nexachlorocyclope	ntadie	ne	200000	IJ	140000	U	170000	Ū	33000	U	33000 U
2.4.6-Trichloroph	enol		200000	Ū	140000	Ŭ	170000	Ū	33000	Ū	33000 U
2,4,5-Trichloroph	enol		950000	U	680000	U	810000	U	160000	U	160000 U
2-Chloronephthale	ne		200000	U	140000	U	170000	U	33000	U	33000 U
2-Nitroaniline			950000	U	650000		510000	U 11	10000	U 11	33000 U
DimetnyLphthalate	2		200000	U D	140000	U	170000	ŭ	33000	ŭ	33000 U
2.6-Dinitrotoluen	e		200000	ŭ	140000	Ū	170000	ū	33000	Ū	33000 U
3-Nitroaniline			950000	Ū	680000	U	810000	U	160000	U	160000 U
Acenaphthene			800000		460000		280000		8000	J	78000
2,4-Dinitrophenol			950000	IJ	680000	U.	510000	U 	160000	U	160000 0
4-Nitrophenol			520000	U	300000	U	180000	v	4800	1	49000
2.4-Dinitrotoluer			200000	u	140000	บ	170000	U	33000	Ū	33000 U
Diethylphthalate			200000	Ū	140000	Ū	170000	U	33000	U	33000 U
4-Chlorophenyl-ph	enylet	her	200000	U	140000	U	170000	U	33000	U	33000 U
Fluorene			630000	••	350000		220000		7400	1	71000
4-Nitroaniline	had ab a		950000	U	650000		810000	U 11	160000	U 11	160000 0
A, 0-0 Initro-2-met	ny upne emine		200000	U U	140000	Ŭ	170000	ŭ	33000	ŭ	33000 U
4-Bromochenyl-phe	nyleth	er	200000	Ū	140000	Ū	170000	Ū	33000	Ū	33000 U
Hexachlorobenzene	2	-	200000	U	140000	U	170000	U	33000	U	33000 U
Pentachlorophenol			950000	U	680000	U	810000	U	160000	Ų	160000 U
Phenanthrene			1500000		850000		520000		24000		160000
Anthracene	**		2/0000		140000		170000	u.	33000	4 11	33000 U
Fluorenthene			830000	•	470000		300000	•	23000	•	140000
Pyrene			800000		470000		300000		220000		130000
Butylbenzylphthal	ste		200000	U	140000	U	170000	U	33000	Ų	33000 U
3,3'-Dichlorobenz	idine		400000	Ņ	280000	Ų	340000	Ů.	66000	Ů	66000 U
Senzo(a)anthracen			140000	3	79000	1	51000	اله ا	5100	لو ار	25000 J 24000 J
LINEYSENE	)nh+h-	i ata	20000	1 1	140000	μ	170000	ŭ	33000	ŭ	33000 U
Di-n-octvichthals	i yper cind ite		200000	Ű	140000	Ū	170000	Ũ	33000	Ū	33000 U
Senzo(b)fluoranth	ene		64000	Ĵ	33000	1	20000	đ	4200	J	11000 J
Senzo(k)fluoranth	ene		12000	J	26000	J	5000	4	890	J	2600 J
Benzo(a)pyrene			54000	j	30000	1	21000	J.	3400	U	11000 J
Indeno(1,2,3-cd)p	yrene		15000	1	5200 140000	а 11	170000	ม ม	33000	а Ц	1100 J
Benzo(a h i hervi			13000	2	7100	ž	5600	J	1700	J	3000 J
merres Aluti I Mac. Ar			•••••				******			••	•••••

,

•

١

MOSS-AMERICAN SEDIMENT SEMI-VOLATILES

. . .

Sample No.:	MA-SDF801-01	MA-SDF802-01	MA-S0301+01	MA-SD302-01	MA-SD303-01
TR No.:	EW829	EN830	EW811	EU812	EW813
	Field Blank	Field Blank			
	***********		Feer		
Parameter			(up/kp)		
Phenol	330 U	330 L	J 3000 I	J <b>260</b> 0	U 2700 U
bis(2-Chloroethyl)ether	330 U	330 L	J <b>300</b> 0 I	J <b>260</b> 0	ບ 2700 ບ
2-Chlorophenol	330 U	330 L	J <b>300</b> 0 I	J 2600	U 2700 U
1,3-Dichlorobenzene	330 U	330 L	J <b>300</b> 0	J <b>26</b> 00	U 2700 U
1,4-Disniorobenzene	330 U	330 L	5000	J <u>200</u> 0	U 2700 U
1 2-Dichlorobenzene	330 0	330 L	1 <b>3000</b> 1	2600	H 2700 U
2-Nethylphenol	330 0	330 L	3000	2600	U 2700 U
bis(2-Chloroisopropyl)ether	330 U	330 U	J 3000 I	2600	U 2700 U
4-Nethylphenol	330 U	330 U	3000 1	J 2600	U 2700 U
N-Nitroso-di-n-propylamine	330 U	330 U	3000 I	J <b>260</b> 0	U 2700 U
Hexachloroethane	330 U	330 U	3 <b>00</b> 0 I	J <b>260</b> 0	U 2700 U
Nitrobenzene	330 U	330 L	3000 1	J 2600	U 2700 U
Isophorone D. Historychanol	330 U	330 L	3000	J 2600	0 2700 0
2-Nitrophenol	330 0	350 L 770 J	3000	1 2600	U 2700 U
	1600 11	1600 1	1800	3 2300	L 060 L
bis(2-Chioroethoxy)methane	330 U	330 L	3000 I	1 2600	U 2700 U
2.4-Dichlorophenol	330 U	330 L	3000	2600	U 2700 U
1,2,4-Trichlorobenzene	330 U	330 L	3000 1	J 2600	U 2700 U
Naphthalene	330 U	330 L	J <b>300</b> 0 (	J 2600	U 2700 U
4-Chloroaniline	330 U	330 L	J <b>300</b> 0 I	J 2600	U 2700 U
Nexachlorobutadiene	330 U	330 L	<b>300</b> 0 I	J 2600	U 2700 U
4-Chloro-3-methylphenol	330 U	330 L	3000	J 2600	0 2700 0
2-Methylnaphthalene	330 U	330 L	50001	J 2000	U 120 J
A A Trichlorophonol	330 0	330 1	1 <b>300</b> 0 1	2600	U 2700 U
2 4 5-Trichlorophenol	1600 U	1600 L	15000	13000	u 13000 u
2-Chioronaphthalene	330 U	330 L	3000	2600	U 2700 U
2-Nitroaniline	1600 U	1600 L	15000	13000	U 13000 U
Dimethylphthalate	330 U	330 L	J <b>300</b> 0 (	J <b>260</b> 0	U 2700 U
Acenaphthylene	330 U	330 L	J <b>300</b> 0 I	J 140	J 97 J
2,6-Dinitrotoluene	330 U	330 L	3000	J 2600	U 2700 U
3-Nitroaniline	1600 U	1600 L	15000	J 13000	U 13000 U
Acenaphthene	330 U	330 L	100	3 220	J 510 J
2,4-Dinitrophenol	1600 0	1600 0	15000	13000	U 13000 U
Dibenzofuran	330 U	330 L	3000	130	J 380 J
2.4-Dinitrotoluene	330 U	330 L	<b>300</b> 0 i	2600	U 2700 U
Diethylphthalate	25 J	330 L	J <b>300</b> 0 (	J 2600	U 2700 U
4-Chlorophenyl-phenylether	330 U	330 L	J <b>300</b> 0 (	J <b>260</b> 0	U 2700 U
Fluorene	330 U	330 L	200	<b>260</b>	J 690 J
4-Witroaniline	1600 U	1600 L	15000	J 13000	U 13000 U
4,6-Dinitro-2-metnylphenol	1600 0	1600 1		3400	U 13000 U
A-Representative strategy (and the second strategy)	330 0	330 0	1 <b>3000</b> 1	2600	11 2700 U
4°Brokophenyt °phenytether	330 0	330 1	<b>300</b> 0 /	2600	U 2700 U
Pentachiorochenol	1600 U	1600 L	15000	13000	U 13000 U
Phenanthrene	29 J	12 .	360	3000	2900
Anthracene	330 U	330 L	J <b>300</b> 0 (	J 690	J 700 J
Di-n-butylphthalate	26 J	42 .	3000	J 150	B 53 B
Fluoranthene	16 J	330 L	J <b>4000</b>	6700	8400
Pyrene	15 J	330 L	3600	6400	8500
Sutyibenzyiphthalate	330 U	02 v 440 i	<b>3000</b>	J 720	J 2700 U
a, a - y ich loropenzioine Benzo(a)anthracene	1000 U		1300 I	3200	J 2400 J
	330 1	330 L	J 1900	3100	3200
bis(2-Ethylehexvi)phthalate	330 U	310	2200	2800	B 1700 B
Di-n-octylphthalate	330 U	330 L	J 74	J 90	J 2700 U
Benzo(b)fluoranthene	330 U	330 L	J 2000 -	J <b>3</b> 300	1700 J
Benzo(k)fluoranthene	330 U	<b>33</b> 0 L	J <b>25</b> 0	J 560	J 380 J
Benzo(a)pyrene	330 U	330 L	1500	2800	2100 J
Indeno(1,2,3-cd)pyrene	330 U	330 L	, <b>1000</b> .	1400	L 0001
Dibenz(a,h)anthracene	330 U	330 L	J 200 (	200 v v v v v v v v v v v v v v v v v v	ע 150 J ו 177∩ ו
senzo(g,n,1)perviene		230 L	, FQU (		u 11V U

-----

.

· ; 1

٠

¥.

NOSS-AMERICAN SEDIMENT SEMI-VOLATILES

•

Sample No. TR No.	: MA-SD304-01 : EUB14	MA-SD305-01 EVB15	NA-80306-01 EU816	NA-SD306-01FR EV827 Replicate	NA-SD307-01 EV817
Parameter					
Phenol	28000 U	880	u 30000	u 150000	บ 160000 บ
bis(2-Chloroethyl)ether	28000 U	880	U 30000	U 150000	U 160000 U
2-Chlorophenol	28000 U	880	U 30000	U 150000	U 160000 U
1,3-Dichlorobenzene	28000 0	850	U 30000	U 150000	
Senzyl alcohol	28000 0	880	u 30000	u 150000	U 160000 U
1,2-Dichlorobenzene	28000 U	880	u 30000	U 150000	U 160000 U
2-Methylphenol	28000 U	880	U 30000	U 150000	U 160000 U
bis(2-Chloroisopropyl)ether	25000 U	850	U 30000	U 150000	U 160000 U
-wetnylphenol N-Nitroeo-di-p-propylemine	28000 0	880	U 30000	U 150000	U 160000 U
Hexachloroethane	28000 U	880	U 30000	U 150000	U 160000 U
Nitrobenzene	28000 U	880	U 30000	U 150000	U 160000 U
Isophorone	28000 U	880	U 30000	U 150000	U 160000 U
2-Nitrophenol	28000 U	550	U 30000	U 150000	U 160000 U
2,4"Dimetny(phenol Reozoic Acid	104000 0	370	3 140000	U 710000	U 750000 U
bis(2-Chloroethoxy)methane	28000 U	880	u 30000	U 150000	U 160000 U
2,4-Dichlorophenol	28000 U	880	U 30000	U 150000	U 160000 U
1,2,4-Trichlorobenzene	28000 U	880	U 30000	U 150000	U 160000 U
Naphthalene 4-Chlosoppiline	25000 U	660	U 21000	J 29000	310000
A-chtoroenitine Nexachtorobutadiene	28000 0	880	u 30000	U 150000	U 160000 U
4-Chloro-3-methylphenol	28000 U	880	U 30000	U 150000	U 160000 U
2-Nethylnaphthalene	4500 J	880	U 51000	72000	300000
Hexachlorocyclopentadiene	28000 U	880	U 30000	U 150000	U 160000 U
2,4,6-Trichlorophenol	25000 U	<b>35</b> 0 (300	U 30000	U 150000	U 160000 U
2,4,5-irichlorophenol	28000 0	4300	U 140000	1 150000	140000 U
2-Nitroaniline	104000 U	4300	U 140000	U 710000	ປ 750000 ປ
Dimethylphthalate	28000 U	880	U 30000	U 150000	U 160000 U
Acenaphthylene	28000 U	880	U 30000	U 150000	U 160000 U
2,6-Dinitrotoluene	25000 U	<b>55</b> 0	U 30000	U 150000	U 160000 U
3-WITCOUNTINE	20000 0	880	170000	310000	670000
2.4-Dinitrophenol	104000 U	4300	U 140000	U 710000	U 750000 U
4-Nitrophenol	104000 U	4300	U 140000	U 710000	ປ <b>75000</b> 0 ປ
Dibenzofuran	14000 J	880	U 105000	180000	450000
2,4-Dinitrotoluene	28000 U	850	U 30000	U 150000	U 160000 U
Dietnylphthalate	25000 U 28000 U	880	U 30000	150000	U 160000 U
A-Untorophenyt-phenytether Fillorene	16000 J	880	U 130000	240000	560000
4-Nitroeniline	104000 U	4300	U 140000	ປ 710000	U 750000 U
4,6-Dinitro-2-methylphenol	104000 U	4300	U 140000	U 710000	U 750000 U
N-Nitrosodiphenylamine	28000 U	880	U 30000	U 150000	U 160000 U
4-Bromophenyl-phenylether	28000 0	880	U 30000	U 150000	U 160000 U
Restachi scontane	104000 U	4300	U 140000	U 710000	U 750000 U
Phenanthrene	44000	280	J 320000	670000	1400000
Anthracene	4400 J	71	J 39000	710000	J 150000
Di-n-butylphthalate	28000 U	880	U 30000	U 150000	U 160000 U
Fluoranthene	25000 J	750	J 210000	400000	690000
Pyrene Butyl bestyl obthol ste	28000 11	880	a 200000 ₩ <b>30000</b>	11 150000	160000 U
3.3/-Dichlorobenzidine	57000 U	1800	U 60000	u 300000	U 310000 U
Benzo(a)anthracene	56000	260	J 38000	71000	J 110000 J
Chrysene	6200 J	390	J 42000	76000	J 110000 J
bis(2-Ethylehexyl)phthalate	470 8	270	<b>S</b> 30000	U 150000	U 160000 U
Di-n-octylphthalate	25000 U	20 140	J 30000	U 150000	
Benzo(k)fluoranthana	28000 U	66	J 13000	3 5000	J 35000 J
Benzo(a)pyrene	2700 J	320	J 15000	J 24000	J 32000 J
Indeno(1,2,3-cd)pyrene	<b>28000</b> U	180	J 4600	J 150000	U 160000 U
Dibenz(a,h)enthracene	28000 U	880	U 1400	J 150000	U 160000 U
<pre>Benzo(g,h,i)perylene</pre>	25000 U		J 4000	J 150000	U 100000 U

SEDIMENT DATA

2.94

۰.

.

ŧ

Ň

۱

# (Page 1 of 1)

.

.....

### NOSS-AMERICAN SURFACE WATER CONVENTIONAL PARAMETERS

.

.

Sample No.: TR No.:	MA-SW001-01 E01	MA-SW002-01 E02	MA-SW003-01 E03	MA- <b>S4004-01</b> E04	MA-SW005-01 E05	MA-SW006-01 E10	MA-SV007-01 E09	MA-SW008-01 E08	NA-SW009-01 E06	MA-SWFB10-01 E07 Field Blank
Perameter	Conc. (mg/l)						••••••			
pH (pH units)	8.39	8.27	8.25	8.32	8.27	8.12	8.25	8.46	8.22	6.12
Alkalinity	302	317	307	310	310	310	332	305	310	-7.5
Phenol (ug/l)	2.0 (	2.01	U 2.0 L	) 2.0	J 4.3	2.0	U 2.0 U	ן 2.0 נ	ງ 2.0 ເ	) 2.0 U
800	4.1 (	8 3.8 (	2.9 t	3.5	B 3.2	8 2.9	8 3.1 6	2.7 1	3.3 (	2.0 8
10C	16.4	J 32.7 (	J 16.3 .	18.5	j 18.8	J 16.6	J 12.3 J	12.8 .	) 17.2 J	1.0 U
COD	35 .	J 38.	J 38.	0.6	ປ 35	J 36	J 20 J	i 21 J	J 38 J	1.6 8
Sulfate	80	74	65	73	79	71	109	77	80	5.0 U
TSS	20	20	24	24	18	16	20	60	16	0.0 U
TDS	432	443	544	412	400	530	730	448	432	0.0 U

Ć

# (Page 1 of 2)

æ

# NOSS-AMERICAN SURFACE WATER INORGANICS

.

-

Sample ID: TR No.:	MA-SV001-01 MEV480	NA-54001-01 MEV765	MA-SW002-01 MEV481	MA-SV002-01 MEV766	MA-SW003-01 MEW482	MA-SU003-01 MEW767	HA-SV004-01 HEV483	NA-SV004-01 NEV768	NA-SV005-01 HEV484	MA-SH005-01 MEV785
	Filtered	Unfiltered								
•	Conc.									
Parameter	(Ug/()	•••••								
Aluminum	54.4 U	141 J	54.4 U	192 J	54.1 U	218	54.1 U	247 U	54.1 U	208
Antimony	35.5 U	54.1 U	35.5 U	35.5 U	35.5 U	35.5 U	35.5 U	35.5 U	35.5 U	35.5 U
Arsenic	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 J	5 U	5 U
Barium	54.8 J	59.7 J	56.6 J	61.5 J	59.4 J	62.9 J	57.6 J	59.6 U	60.6 J	63.9 J
Beryllium	1.8 U									
Cadinium	3.1 U	3.1 U	r 3.1 U	3.1 U	3.1 U	3.1 U	3.t U	3.1	3.1 U	3.1 U
Catcium	102000	107000	104000	108000	102000	107000	105000	103000 U	108000	108000
Chromium	8.7 U	8.7 U	) <b>8.7 U</b>	8.7 U						
Cobelt	13.4 U	13.4 B	13.4 U	13.4 U						
Copper	14.1 B	20.8 B	9.2 8	14.1 B	15.8 B	19 <b>.</b> 9 B	5.8 8	5 J	4.7 U	58
Iron	123 8	636 J	118 8	715 J	253 B	891 J	244 B	952 U	194 B	843 J
Lead	2 U	2 U	i 2 U	2 U	2 U	2 U	2 U	2	2 U	2 U
Nøgnestum	43100	45300	44000	45700	42900	45100	44200	43100	45400	45600
Nanganese	90.4	106	95.1	111	124	129	110	116 U	94.4	104
Hercury	0.2 U	U 5.0	U 5.0	0.2 U	U 5.0	0.2 U				
Nickel	34.5 U	34.5 U	i 34.5 U	34.5 U	34.5 U	34.5 U	31.5 U	34.5 J	34.5 U	34.5 U
Potessium	3160 J	3260 J	3010 J	3120 J	2860 J	3430 J	3270 J	3690 U	2960 J	3240 J
Selenium	4 U	4 U	1 <b>4</b> U	4 U	4 U	4 U	4 U	4 U	4 U	4 U
Silver	5.5 U	5.5 ป	) <b>5.5</b> U	5.5 U	5.5 U	5.5 U	5.5 U	5.5	5.5 U	5.5 U
Sodium	48100	50400	49000	51200	27200	28300	24000	23400 U	23100	23100
Thallium	3 U	3 U	) <u> </u>	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Vanadium	7.4 U	7.4 U	) 7 <b>.4</b> U	7.4 U	7.4 U	7.4 U	7.4 U	7.4 J	7.4 U	7.4 U
Zinc	10.7 J	16.6 J	10.5 U	15.7 J	20.9	18.9 J	10.5 U	14.2 U	10.5 U	13.4 J
Cyanide		10 U	I	10 U		10 U		10		10 U

<

# HOSS-AMERICAN

SURFACE WATER

-

.

Sample ID: TR No.:	MA-SW005-01FR MEW485 Replicate Filtered	MA-SW005-01FR MEW786 Replicate Unfiltered	MA-SW006-01 MEW487 Filtered	NA-SW006-01 MEW788 Unfiltered	MA-SW007-01 MEW486 Filtered	MA-SW007-01 MEW787 Unfiltered	
Parameter							

			**************			**************				
Al	E7 4 11	224			EE 4 1					<b>.</b>
ALUMINUM	34.1 U		/3.0 J	192 J	55.4 J	1/0 J	54.1 0	222	54.1 U	54.1 U
ANTE HIGHY	35.5 U	35.5 U	32.2 0	33.3 U	35.5 U	35.5 U	35.5 U	35.5 U	35.5 U	35.5 0
Arsenic	5 0	5 0	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Berium	60.3 J	64 J	60.8 J	66.1 J	95.9 J	96.6 J	41.1 J	44.6 J	13.1 U	13.1 V
Beryllium	1.8 U	1.8 U	1.8 U	1.8 U	1.8 U	1.8 U	1.8 U	1.8 U	1.8 U	1.8 U
Cadmium	3.1 U	3.1 U	3.1 U	3.1 U	3.1 U	3.1 U	3.1 U	3.1 U	3.1 U	3.1 U
Calcium	108000	109000	106000	115000	135000	134000	95900	101000	129 U	129 U
Chromium	8.7 U	8.7 U	8.7 U	8.7 U	8.7 U	8.7 U	8.7 U	8.7 U	8.7 U	8.7 U
Cobelt	13.4 U	13.4 U	13.4 U	13.4 U	13.4 U	13.4 U	13.4 U	13.4 U	13.4 U	13.4 U
Copper	5.8 8	8.3 8	8.3 8	4.7 U	15.7 B	10.7 8	12.5 8	4.7 U	4.7 ป	4.7 U
Iron	219 8	881 J	632	819 J	465	774 J	205 B	959 J	51.7 J	41.3 J
Lead	2 U	2 U	2 11	2 0	2 11	2 U	2 U	2 U	2 U	2 U
Nagnesium	45300	45500	44700	48300	43500	43500	42900	44600	160 Ŭ	160 Ŭ
Nanganese	93.7	104	99.7	104	53.5	52.8	112	185	3.4 U	3.4 U
Hercury	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Nickel	34.5 U	34.5 U	34.5 U	34.5 U	34.5 U	34.5 U	34.5 U	34.5 0	34.5 1	34.5 U
Potessium	3100 4	3380 J	3100 J	3140 J	4580 J	6210 J	1520 4	1490 1	1490 1	1490 U
Selenium	4 U	4 U	4 U	4 U	4 U	4 U	4 U	4 U	4 U	4 U
Silver	5.5.0	5.5 1	550	5.5 0	5.5.0	550	551	5.5 0	5.5 0	5.5 0
Sodium	23200	22900	20100	21400	62000	63100	7016	7280	102 1	102 11
Thall im	3.0	3.11	<b>T</b> 11	8 11	3 11	31100	1010	T II	3.0	3 11
Venedium	7 4 11	7 4 11	7 4 11	7 4 11	7 4 11	7 4 11	7 4 11	7 4 11	7 4 11	7 4 4
	10 5 11	12 0 1	20	12 4 4	44.0	40 3	12 6 1	05.0	10 5 11	10 5 11
£ 1116 Cumplide	10.5 0	13.9 3	20	12.0 J	40.Y	TV.3	12.7 8	77.9	IA'' A	10.3 0
Cyanice:		10 0		10 0		10 U		10 U		10 0
										•

G

MA-SU008-01

(

HEU489

Filtered

. . . . . . . . . . . .

MA-SH008-01

Unfiltered

. . . . . . . . . . . .

**HEW790** 

MA-SUFE10-01

Field Blank

HEV488

Filtered

. . . . . . . . . . .

(Page 2 of 2)

MA-SWF810-01

Field Blank

Unfiltered

**MEW789** 

.............

.

,

Ę

æ

# NOSS-AMERICAN SURFACE WATER VOLATILES

-

-

	Sample ID: TR No.:	NA-SW001-01 ES612	NA-SW002-01 ES613	MA-SH003-01 ES614	MA-SW004-01 ES615	MA-SW005-01 ES616	MA-SW005-01FR ES617 Replicate	MA-SW006-01 ES619	MA-SU007-01 ES621
Parameter		Conc. (ug/l)							•••••
<b></b>		40.55			4			<b>40</b>	
Chloromethane		10 0	10 0	10 0	10 0	10 0	10 0	10 0	
Visui oblocido		10 0	10 0	10 0	10 0	10 0	10 0	10 0	10 0
Chiocoethene		10 0	10 0	10 0	10 0	10 0	10 0	10 0	50 11
Nethylene chieride		1.1	5 11	5 11	5 11	5 11	5 11	5 11	5 11
Acetone		10 1	10 11	10 1	10 1	10 0	10 1	10 1	10 0
Carbon disulfide		5 11	5 11	5 11	5 11	5 11	5 1	5.0	5 11
1.1-Dichiocoethene		5 U	5 U	5.0	5 1	5 U	5 U	5 0	Ś U
1.1-Dichloroethane		5 Ŭ	5 0	5 0	5 U	5 0	5 0	5 Ŭ	5 U
1.2-Dichloroethene	(total)	5 0	50	5 0	5 Ŭ	5 Ŭ	5 V	5 0	5 0
Chloroform		5 Ŭ	5 Ŭ	5 0	5 Ŭ	ŠŬ	Ś Ū	5 Ū	5 Ŭ
1.2-Dichloroethane		5 Ū	5 U	5 0	5 Ŭ	5 0	5 U	5 Ú	5 Ú
2-Butanone		10 U	10 U	10 Ū					
1,1,1-Trichloroethe	me	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Carbon tetrachlorid	le 🛛	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Vinyl acetate		10 U	10 U	10 U					
Bromodichloromether	18	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
1,2-Dichloropropent	•	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U .
cis-1,3-Dichtoropro	pene	5 U	5 U	5 U	5 U	5 บ	5 U	5 U	5 U
Trichloroethene		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Dibromochloromether	18	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
1,1,2-Trichloroethe	ine .	5 U	5 U	5 0	5 U	5 U	5 U	5 U	5 U
Benzene		5 U	5 U	50	5 U	5 U	5 U	5 U	5 U
trens-1,3-Dichlorop	propene	5 U	50	5 U	5 0	5 U	5 0	5 U	5 U
Bromoform	_	50	50	28	5 U	50	5 U	50	50
4-Methyl-2-pentanor	12 N	10 U	10 U	10 0	10 0	10 U	10 U	10 0	10 U
2-Nexanone		10 0	10 0	10 0	10 0	10 0	10 0	10 0	10 0
Tetrachloroethene		50	50	50	50	50	5 U	5 U	50
1,1,2,2-letrachlort	petname	50	50	50	50	5 U	<b>5</b> 0	50	50
Totuene		20	) U	5 U	20	5 U	2 U	2 U	2 V E 11
Childrobenzene		20	5 U <del>-</del>	<b>7</b> U	2 U E		5 U E 11	<b>7</b> U	
c uny l Denzene		20	5 U E 44	5 U E 11	5 U E 11	) U E 11	2 U E 11	2 U E 11	7 U 8 H
Styrene Vylana (tatal)		<b>7</b> U E H		5 U 8 H	) U E II	) U E 11	5 U E 11	5 U E 11	7 U E 11
Aylene (total)		50	50	50	50	50	50	50	<b>3</b> U

Ł

# MOSS-AMERICAN

SURFACE WATER VOLATILES

Parameter Chloromethane Bromomethane Vinyi chloride	TR No.:	ES618	••••	ES620 Field Blank
Parameter Chloromethane Bromomethane Vinyl chloride				field Blank
Parameter Chloromethane Bromomethane Vinyl chloride		10		
Parameter Chloromethane Bromomethane Vinyl chloride		10		
Chloromethane Bromomethane Vinyl chloride		10		
Bromomethane Vinyl chloride			U	10 U
Vinyl chloride		10	Ŭ	10 U
		10	Û	10 U
Chloroethane		10	U	10 U
Hethylene chloride		5	U	5 U
Acetone		10	U	10 U
Carbon disulfide		5	U	5 Ū
1,1-Dichloroethene		5	U	5 U
1,1-Dichloroethane		5	U	5 U
1,2-Dichloroethene	(total)	5	U	5 U
Chloroform		5	U	18 8
1,2-Dichloroethene		5	U	5 U
2-Butanone		10	U	10 U
1,1,1-Trichloroeth	nne -	5	U	5 U
Carbon tetrachlorid	de	5	U	5 U
Vinyl acetate		10	U	10 U
Browdichloromethe	18	5	U	5 U
1,2-Dichloropropen	•	5	U	5 U
cis-1,3-Dickloropro	opene	5	U	5 U
Trichloroethene		5	U	5 U
Dibramochloromethe	198	5	U	5 U
1,1,2-Trichloroeth	ene	5	U	5 U
Benzene		5	U	5 U
trans-1,3-Dichloro	propene	5	U	5 U
Bromoform		. 5	U	5 U
4-Methyl-2-pentano	ne	10	U	10 U
2-Nexanone		10	U	10 U
Tetrachloroethene		5	U	5 U
1,1,2,2-Tetrachlor	oethane	5	U	5 U
Toluene		5	U	5 U
Chiorobenzene		5	U	5 U
Ethylbenzene		5	U	5 U
Styrene		5	U	5 U
Xylene (total)		5	U	5 U

•

.

- 1

.

.

.

٠

•

.

MOSS-AMERICAN SURFACE WATER SEMI-VOLATILES

9

ا~ر∖

Sample No.: TR No.:	MA-SW001-01 ES612	MA-SU002-01 ES613	MA-SU003-01 ES614	MA-SU004-01 ES615	MA-SH005-01 ES616
*****					
Basebatas	Conc.		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
	(Ug/l)				
Phenol	10 L	J 10	ບ 10 ປ	10 U	10 U
bis(2-Chloroethyl)ether	10 L	J 10 I	U 10 U	10 U	10 U
2-Chlorophenol	10 L	10	U 10 U	10 U	10 U
1,4-Dichlorobenzene	10 1	i 10	100 11 101	10 0	10 0
Benzyl alcohol	10 1	10	u 10 u	10 U	10 U
1,2-Dichlorobenzene	10 L	10	Ŭ 10 Ŭ	10 U	10 U
2-Hethylphenol	10 L	10	บ 10 ม	10 U	10 U
Dis(2-Chloroisopropyl)ether	10 L	) 10   10	U 10 U	10 U	10 U
N-Nitroso-di-n-propylamine	10 1	J 10	u 10 u	10 U	10 U
Hexachloroethane	10 1	10	u 10 u	10 U	10 U
Nitrobenzene	10 ເ	J 10	ບ 10 ບ	10 U	10 U
Isophorone	10 L	10	U 10 U	10 U	10 U
2-Nitrophenol 2 (abimethylphenol	10 1	10	U 10 U U 10 U	10 0	10 U 10 U
Benzoic Acid	50 1	1 50	U 50 U	50 U	50 U
bis(2-Chloroethoxy)methane	10 i	i 10	Ū 10 U	10 U	10 U
2,4-Dichlorophenol	10 L	J 10	U 10 Ū	10 U	10 U
1,2,4-Trichlorobenzene	10 L	10	U 10 U	10 U	10 U
Naphthalene (cChiesenniiine	10 1	10	U 10 U	10 0	10 0
4-untoroenitine Nexachlocobutadiene	10 1	/ 10 / 10	U 10 U	10 0	10 0
4-Chloro-3-methylphenol	10 0	10	มี 10 มี	10 ม	10 0
2-Methyinaphthalene	10 נ	10	Ū 10 Ū	10 U	10 U
Hexachlorocyclopentadiene	10 L	J 10	ບ 10 ບ	10 U	10 U
2,4,6-Trichlorophenol	10 L	10	U 10 U	10 U	10 U
2,4,5-Trichlorophenol	50 L 10 L	J 50	U 500	50 U 10 H	50 U 10 H
2-Witreaniline	50 L	J 50	U 100	50 U	50 U
Dimethylphthalate	10 1	10	u 10 u	10 U	10 U
Acenaphthylene	10 L	10	ບ 10 ບ	10 U	10 U
2,6-Dinitrotoluene	10 L	10	U 10 U	10 U	10 U
3-Nitroaniline	50 L	50	U 50 U	50 U 10 U	50 U 10 U
2.4-Dinitrophenol	50 L	, 10 . J 50 i	U 50 U	50 U	50 U
4-Nitrophenol	50 L	50	ບ 50 ບ	50 U	50 U
Dibenzofuran	10 L	) 10 :	บ 10 บ	10 U	10 U
2,4-Dinitrotoluene	10 L	10	ບ 10 ບ	10 U	10 U
Dietnylphthalate	10 L	/ 104 / 104	U 100	10 0	10 0
Fluorene	10 1	10	u 10 U	10 U	10 U
4-Nitroaniline	50 L	50 (	U 50 U	50 U	50 U
4,6-Dinitro-2-methylphenol	10 L	J 10 I	ບ 10 ບ	10 U	10 U
N-Nitrosodiphenylamine	50 L	50	U 50 U	50 U	50 U
4-Bromopnenyl-pnenyleiner	10 1	J 101	U 100 11 101	10 0	10 0
Pentachiorophenoi	50 L	50	u 50 u	50 U	50 U
Phenanthrane	10 L	10	บ 10 ม	10 U	10 U
Anthracene	10 L	J 10 I	บ 10 ย	10 U	10 U
Di-n-butylphthalate	10 L	4	J 10 U	10 U	10 U
Fluoranthene	10 L	J 10   I 50	U 100 U 500	10 U 50 U	10 U \$0 II
Butvibenzvichthalate	10 1	10	U 10 U	10 U	10 U
3.3'-Dichlorobenzidine	20 1	20	ບ 20 ບ	20 U	20 U
Benzo(a)anthracene	10 L	J 10 I	U 10 Ŭ	10 U	10 U
Chrysene	10 L	10	U 10 U	10 U	10 U
bis(2-Ethylehexyl)phthalate	34 6	150	B 10 U	6 B	10 U
Di-n-octylphthalate	10 1	/ 10  1 10	טטי ט וו 10 וו	10 0	10 U 10 H
Benzo(k)fluoranthene	10 1	, 10 i	U 10 U	10 U	10 U
Benzo(a)pyrene	10 เ	10	มี 10 มี	10 U	10 U
Indeno(1,2,3-cd)pyrene	10 L	J 10	U 10 U	10 U	10 U
Dibenz(a,h)anthracene	10 L	10	U 10 U	10 U	10 U
<pre>Benzo(g,h,1)perylene</pre>	10 L	, 10   	U U U	U U U	10 0

1

1

۱.

NOSS-AMERICAN SURFACE WATER SENI-VOLATILES

7

٠

Sample No.:	NA-\$4005-01FR	MA-SU006-01	MA-SU007-01	MA-SH008-01	MA-SUFB10-01
TR NO.:	ES617 Replicate	E5619	ESCZI	E2018	ESO2U Field Blank
***************************				**********	
Parameter					
Phenol	10 u	ייייייייייייייייייייייייייייייייייייי	10 U	10 U	10 U
bis(2-Chloroethyl)ether	10 U	10 0	i 10 U	10 U	10 U
2-Chlorophenol	10 U	10 U	I 10 U	10 U	10 U
1,3-Dichlorobenzene	10 U	10 U	10 U	10 U	10 U
1,4-Dichloropenzene Repryl picchol	10 U 10 U	10 U 10 U	I 100 I 101	10 0	10 0
1.2-Dichlorobenzene	10 0	10 1	10 U	10 U	10 U
2-Nethylphenol	10 U	10 U	10 U	10 U	10 U
bis(2-Chloroisopropyl)ether	10 U	10 U	10 U	10 U	10 U
<pre>A-Wetnytphenot N-Witcoso-di-n-propylamine</pre>	10 0	10 0	10 U	10 U	10 U
HexachLoroethane	10 U	10 u	i 10 U	10 U	10 U
Nitrobenzene	10 U	10 U	10 U	10 U	10 U
Isophorone 2-Nitocombonol	10 U	10 U	10 U	10 0	10 U
2.4-Dimethylchenol	10 0	10 0	10 U	10 0	10 U
Benzoic Acid	50 U	50 U	50 U	50 U	50 U
bis(2-Chloroethoxy)methane	10 U	10 U	10 U	10 U	10 U
2,4-Dichlorophenol	10 U	10 U	100	10 U	10 U 10 U
Nachthalene	10 U 10 U	10 0	11	10 U	10 U
4-Chlorosniline	10 U	10 0	i 10 U	10 U	10 U
Hexachlorobutadiene	10 U	10 U	10 U	10 บ	10 U
4-Chloro-3-methylphenol	10 U	10 U 10 U	100	10 U	10 U 10 U
Hexachlorocyclopentadiene	10 U	10 0	10 U	10 0	10 U
2,4,6-Trichlorophenol	10 U	10 U	10 U	10 U	10 U
2,4,5-Trichlorophenol	50 U	50 U	50 U	50 U	50 U
2-Chloronaphthalene	10 U 50 u	10 U 50 II	100 1 501	10 U 50 H	10 U 50 U
Dimethylphthalate	50 U 10 U	10 0	10 U	10 U	10 U
Acenaphthylene	10 U	10 U	10 U	10 U	10 U
2,6-Dinitrotoluene	10 U	10 U	10 U	10 U	10 U
3-NITroeniline	50 U 10 II	50 U 10 U	1 11	50 0 10 II	10 U
2.4-Dinitrophenol	50 U	50 0	50 บ	50 U	50 U
4-Nitrophenol	50 U	50 U	50 U	50 U	50 U
Dibenzofuran	10 U	10 U	1 6 J	10 U	10 U
Z,4-Dinitrotoluene	10 U 10 U	10 0	טיטר 10 ט ו 10 ט	10 U 10 U	10 0
4-Chlorophenvi-phenviether	10 0	10 U	10 U	10 U	10 U
Fluorene	10 U	10 U	) <u>5</u> J	10 U	10 U
4-Nitroeniline	50 U	50 U	50 U	50 U	50 U
4,6-91h1tro-2-methylphenol	50 1	50 0	50 U	50 U	50 U
4-Bromophenyl-phenylether	10 U	10 U	10 U	10 U	10 U
HexachLorobenzene	10 U	10 U	10 U	10 U	10 U
Pentachiorophenol	50 U	50 U	50 U	50 U	50 U
Anthracene	10 U 10 U	10 0	10 ม	10 U	10 U
Di-n-butyiphthalate	2 J	10 U	10 U	10 U	10 U
Fluoranthene	10 U	10 U	10 U	10 U	10 U
Pyrene	50 U	50 U	50 U	50 U	50 U
Survicenzylphthalate	10 U 20 U	20 U	i 20 U	20 U	20 1
Senzo(a)anthracene	10 U	10 0	i 10 U	10 U	10 U
Chrysene	10 0	10 U	10 Ŭ	10 U	10 U
bis(2-Ethylehexyl)phthalate	96 B	10 U	28	18	28
Di-n-octylphthalate Reprochifluoranthene	10 U 10 u	10 0	100	10 U 10 II	10 U 10 U
Senzo(k)fluoranthene	10 U	10 u	10 U	10 U	10 0
Senzo(a)pyrene	10 U	10 U	10 U	10 U	10 U
Indeno(1,2,3-cd)pyrene	10 U	10 U	10 U	10 U	10 U
Pipenz(a,n)anthracene	10 U 10 u	10 0	100 101	10 U 10 II	10 0
erico(g,n, i)perviene	UU U	U U	· · · · · · · · · · · · · · · · · · ·	IV U	1V U

-

SURFACE WATER DATA

۱

GLT799/079.50-3

-

J.

### NOSS-AMERICAN GROUNDWATER

•

-

CONVENTIONAL PARAMET

Sample No.: TR No.:	MA-MWFB05-01 E229 Field Blank	MA-MW05\$-01 E230	NA-NUFB06-01 E250RE Field Blank	MA-HWF806-01 E250 Field Blank	MA-NU06S-01 E231	NA-NJ071-01 E241	NA-NN078-01 E238	MA-MM075-01FR E239 Replicate	NA-IM081-01 E242
Pørameter			•••••••						
Alkalinity	-50	365 J	-40	-36	321 J	178	550 J	516	110
Phenol (ug/l)	2.6 B	58		2 U	2 U	20		44	2 U
BCD	2 U	2 U		2 U	11 J	2 U	16 J	91	3 J
TOC	1 U	90 J		1 J	19 J	86 J	23 J	22 J	22 J
COD	5 U	25.3 J		5 U	8.77 J	104.8 J	78 J	74.8 J	22.2
Sul fate	3 U	64		3.6 J	78	55	3 U	3.2 8	41 J
155	0 U	12020		U U	204	89270	1402	922	1370
TDS	0 U	599		0 U	490	262	714	698	188

### MOSS-AMERICAN GROUNDWATER CONVENTIONAL PARAMET

-

--

Sample No.: TR No.:	MA-NW08S-01 E248	NA-HU091-01 E237	NA-111095-01 E232	MA-NW111-01 E240	MA-HV115-01 E246	NA-NW125-01 E234	NA-NW148-01 E243	NA-NU205-01 E245
Parameter							••••••	
Alkelinity	620	182 J	440 J	590	660	430 J	354	320
Phenol (ug/l)	510	2 U	58	2 8	2 U	2 U	) 20	2 U
800		2 U	2 U	2 U	2 U	4 J	2 U	2.6 J
TOC		20 J	334 J	29 J	8 J	31 J	67 J	11 J
COD	196	25.3 J	57.8 J	64.5 J	67.1	55.2 J	63.5	137
Sulfate		39	80	113	47 1	64	72 J	36 J
T\$ <b>\$</b>	170	774	19740	12605	6355	1036	2014	5360
TDS	819	264	663	543	753	621	492	1369

ſ

.

(Page 3 of 3)

.

(Page 6 of 6)

• .

Ľ

.

# HOSS-AMERICAN GROUNDWATER INORGANICS

-

.

Sample ID: TR No.: Comments:	MA-HW04D-01FR NEW467 Filtered Replicate	MA-HUO4D-01FR NEW468 Unfiltered Replicate	     	MA-MWF805-01 ME1967 Filtered Field Blank		MA-HWF805-01 NET968 Unfiltered Field Blank		MA-MUFB06-01 NET969 Filtered Field Blank		MA-MWF806-01 HET970 Unfiltered Field Blank	
Parameter (ug/	)			• • • • • • • • • • • • • • • • • • • •	• • • •				••••		
Aluminum	333	8 1940	) J	35	IJJ	51.2	J	66.9	J	42.4 (	,
Antimony	29	U 29	U	29	U	29	U	29	UJ	29 (	UJ
Arsenic	2.3	J 3		2	UJ	2	IJJ	1	IJ	1 t	IJĮ
Barium	71.7	J 74.2	: J	2.5	J	10.3	J	3	U	3.9 4	J
Beryltium	1	U 1	U	1	U	1	U	1	U	1 U	J
Cadmium	5	U 5	U	5	U	5	U	5	IJ	51	H
Calcium	24500	85400	)	1060	3	680	3	697	J	461 J	J
Chromium	6	UJ 25.4	- <b>J</b>	6	U	6	U	5	U	5 L	J
Cobelt	6	U 7	' J	6	U	6	U	5	U	5 t	J
Copper	16	8 15.5	i 8 -	6.9	8	6	U	5	U	51	U
Iron	362	3350	)	56	U	74.2		55.8		30.4 1	ß
Lead	2	UJ 2.4		3.8	J.	3	J	6.8	J.	2.4 4	1
Nagnes i un	18400	44400	)	70	U	70	U	162	J	104 J	ł
Nanganese	33.3	J 264	<b>.</b>	7	U	7	U	5	U	51	U
Nercury	0.2	U 0.2	2 U -	0.2	U	0.2	U	0.2	U	0.2 L	J
Nickel	8	UJ 8.8		10.3	J	15	J.	9	U	91	J
Potassium	1890	J 2210	) J	126	U	126	U	151	U	151 1	Ø
Selenium		R	R		R		R		R		R
Silver	4	U 4	U	4	U	- 4	U	4	U	4 1	J
Sodium	28400	26500	)	2000	U	2000	U	2490	J.	1520 1	U
Thellium	2	UJ 2	i ni	2.4	B	2.3		2	U	2 (	U.
Vanadium	5	UJ 6	5 J -	5	U	5	U	4	U	4 1	U
Zinc	12.7	8 20.8		9	J	4.8	J.	18.3	J	10.5	J
Cyanide		10	) U (			10	U			10 1	U

(

### NOSS-AMERICAN GROUNDWATER CONVENTIONAL PARAMETERS

-

Sample No.: TR No.:	MA-HN01D-01 E224	MA-MU018-01 E249	NA-NM02S-01 E226	NA-NW031-01 E228	MA-HW03S-01 E-227	HA-HM04D-01 E235	NA-NW04D-01FR E236 Replicate	MA-MM041-01 E233	MA-HW045-01 E244
Parameter	Conc. (mg/l)								
Alkalinity	154		183	85	330	146 J	145 J	52 J	520
Phenot (ug/l)	2 U	2 U	2 U	2 ป	38	2 U	2 U	2 U	146
800	2 U		Z U	2 0	2 J	2 0	2 Ū	2 Ū	53 J
TOC	186 J		210 J	55 J	213 J	17 J	16 J	52 J	15 J
COD	39.7 J		83.6 J	35.1 J	43.9 J	54.2 J	11.4 J	24.3 J	656
Sulfate	105 J		88	100 J	86	32	30	10 8	78 J
TSS	29420		11940	3945	6800	1796	1070	1252	9800
TDS	435		441	278	7480	217	2150	756	807
									************

•

v

(Page 1 of 3)

ð

...

# NDSS-AMERICAN GROUNDWATER VOLATILES

.

.

	Sample 10: TR No.: Comments:	NA-NW111-01 EV893	NA-NV115-01 EV892	NA-NW125-01 EV894	NA-NW135-01 EV895	MA-1145-01 EV896	MA-MW205-01 EV900	MA-HWF805-01 EV897 Field Blank	NA-INIF806-01 EV898 Field Blank
Parameter (ug/l)	******		*******	••••••					
Chloromethane		10 1	10 1	J 10 (	U 10 I	J 10 1	) 10 (	U 10 U	) 10 U
Bromomethane		10 U	10 (	J 10 I	U 10 (	J 10 I	J 10 (	V 10 U	i 10 U
Vinyl chloride		10 U	10 (	J 10 1	U 10 I	J 10 I	10 (	V 10 U	i 10 U
Chloroethane		10 t	10 1	J 10 1	U 10 I	J 10 I	) 10 (	U 10 U	10 บ
Methylene chloride		4 E	: 51	J 4	8 5 1	B 5 (	J 5 (	ย 5 ย	I 5 U
Acetone		10 L	) 10 (	J 10 I	U 10 I	J 10 I	) 10 (	U 10 U	i 10 U
Carbon disulfide		5 t	) 51	J 51	0 51	J 51	3 51	V 5U	5 U
1,1-Dichloroethene		5ι	1 51	J 5	U 5 (	J 5 (	J 51	U 5 U	) 5 U
1,1-Dichloroethane		5 L	) 5(	J 5	U 51	J 51	) <u>5</u> (	บ 5 เ	I 5 U
1,2-Dichloroethene	(total)	51	) 51	0 51	U 51	J 51	) 51	U 5 U	5 0
Chloroform		5 L	1 51	J 5	U 5 (	U <u>5</u> (	J 5 (	U 7.	) 15 J
1,2-Dichloroethane		5 U	1 51	5	U 5 (	J 51	) 5(	U 5 U	5 U
2-Butanone		10 1	10 1	J 10 1	U 10 I	J 10 I	10 1	U 10 U	10 U
1,1,1-Trichloroeth	ane	5 L	) 50	9 5	U 51	9 51	J 5(	V 54	I 5 U
Carbon tetrachlori	de	ຸ5 ເ	J <u>5</u>	J 5	U 5 (	J 51	J 50	U 5 U	5 U
Vinyl acetate		10 (	10 1	U 10 I	U 10 1	J 10 I	10 1	U 10 U	10 U
Bromodichioromethe	ne	5 L	1 5 (	U 51	V 51	U 51	J <u>5</u> (	V 54	5 U
1,2-Dichloropropen	•	5 L	) 5(	U 5 (	U 5.	J 5 (	3 5 (	V 5U	I 5 U
cis-1,3-Dichloropr	opene	5 ι	5	U 51	U 51	U 51	J <u>5</u> (	U 5 U	) <u>5</u> U
Trichloroethene		5 เ	1 5	U 51	U 51	J 5 (	) 50	V 51	1 50
Dibromochlorometha	ne	5 ι	1 50	U 5	U 51	U 51	J <u>5</u> (	V 5 U	) <u>5</u> U
1,1,2-Trichloroeth	ane	5 ι	5	0 S	U 54	J 51	J 51	U 51	5 0
Benzene		5 L	1 51	U 5	U 5	J 51	J 51	U 51	5 0
trans-1,3-Dichloro	propene	5 เ	1 51	י ט	U 5 (	U 5 (	J 5 (	V 5 L	i 5 U
Bromoform		5 เ	) 51	9 5	V 51	U 51	J 51	U 5 U	) <u>5</u> U
4-Methyl-2-pentano	ne	10 L	10 (	U 10	U 10 I	U 10 I	J 10 (	ษ 10 เ	r 10 U
2-Nexanone		10 (	10 10	U 10	V 10 (	ປ 10 ເ	J 10 (	U 10 U	/ 10 U
Tetrachloroethene		5 (	) 51	ม 51	ย 51	U 51	J 51	บ 5เ	) 51
1,1,2,2-Tetrachlor	oethane	5 เ	1 5	V 5'	U 5 (	U 51	J 5	U 5 L	J 5 U
Toluene		5 t	5 (	U 5.	U 5 (	U 51	J 51	U 5 L	J 8.J
Chlorobenzene		5 1	) 51	U 5'	U 50	U 51	J 51	V 51	) 5 U
Ethylbenzene		5 t	5	V 5	U 5 (	U 5 (	U 5.	U 51	J 4 J
Styrene		5 เ	5	U 5'	U 5 I	U 5 (	J 5 (	U 5 L	J 5 U
Xylene (total)		51	3 51	ע 5	U 51	U 51	J 51	บ 5เ	) SJ

C.

ľ

•

MOSS-AMERICAN GROUNDWATER INORGANICS

.

.

.

SAMPLE DATES: 7/11/88 to 7/13/88

Sample 1D: TR No.: Comments:	MA-MW01D-01 NEW455 Filtered	MA-MU01D-01 MEW456 Unfiltered	NA-NW01S-01 NEW453 Filtered	MA-MW018-01 NEW454 Unfiltered	NA-NU02S-01 NEW457 Filtered	NA-NW02S-01 NEW458 Unfiltered	NA-HND3S-01 NEW459 Filtered	MA-MW03S-01 MEW460 Unfiltered	MA-MW031-01 MEW661 Filtered
Parameter (ug/l)									
Aluminum	55.8	8 211000	J 134	■ 276	J 2620	J 84200	<b>J</b> 974	J 30900	J 2160 J
Antimony	29	U 145	U 29	U 29	U 29	U 145	U 29 (	J 145 (	J 29 U
Arsenic	4.8	J 2	ŬJ 2	U 2.8	J 2	UJ 29.2	2 J	UJ 10.6	J 3 J
Barium	120	J 1560	52.1	J 51.1	8 137	J 821	J 220	528	j 45.1 j
Beryllium	1	U 7.2	J 1	U 1	Ū 1	U 5	U 11	U 5 (	J 1 Ú
Cadmium	5	U 25	Ū Š	U 5	U 5	U 25	U 51	J 25 (	J 5 U
Calcium	54500	2840000	94900	100000	102000	1270000	138000	1260000	25000
Chromium	6	U 383	6	UJ 6	UJ 6	U 196	61	J 78.2	7.8 J
Cobelt	6	U 175	J 6	U 6	U 6	U 86	5 <b>J 6</b> 1	u 44.6	J 6 U
Copper	6	U 462	16.8	8 20	8 6	U 209	6 (	U 78.8	I 14.7 B
Iron	69.6	8 317000	156	395	4810	134000	1660	61400	2640
Lead	2.3	B 10	ປມ 2	UJ 2	: UJ 2	UJ 66.5	i <b>j</b> 21	UJ 30.7	J 2 W
Hegnesium	32500	1280000	76500	81500	41700	540000	62400	519000	10100
Nanganese	139	10500	102	J 110	J 298	4810	309	4750	74.9
Hercury	0.2	U 0.3	0.2	V 1.2	U 0.2	U 0.2	U 0.2	U 0.2 (	U 0.2 U
Nickel	16.8	8 397	8	UJ 10.4	<b>B</b> 11.2	8 164	J 80	U 44 I	
Potassium	2460	J 38400	5960	5820	2590	J 17100	J 3020	J 8640	J 1850 J
Selenium		R	R	R	R	R	R	R	R R
Silver	- 4	U 20	U 4	U 4	U 4	U 20	)U 4(	U 20 I	u 4 u
Sodium	45100	44200	97100	96000	40700	41600	18000	48100	56500
Thellium	2.3	8 20	UJ 20	UJ 20	UJ 2.8	8 2.9	8 2.5	8 2	UJ 2 UJ
Vanadium	6.3	J 484	5	UJ 5	UJ 5	U 207	'J 5(	U 89.1	J 6.9 J
Zinc	6.2	8 1050	6.4	8 21.1	8 62.8	8 670	29.7	8 396	24 8
Cvanide		10	11		MA	10	1.11	10	10

<

1

1

ð

•

## NOSS-AMERICAN GROUNDWATER INORGANICS

~

-

01 70 eđ	MA-HU058- HEVA Unfilter	, ]	MA-NU055-01 NEV469 Filtered	MA-MM045-01 MET976 Unfiltered	MA-MW04S-01 ME1975 Filtered	N	MA-MUD41-01 MEU464 Unfiltered	P	MA-MW041-01 MEW463 Filtered	ł	MA-MW04D-01 MEV466 Unfiltered	I	MA-MUD4D-01 MEV465 Filtered	ł	MA-MW031-01 NEW462 Unfiltered	Sample ID: IR No.: Comments:	S
				••••••	••••••	••••	••••••	• • • •	••••••••••••••••••••••••••••••••••••••					•••	)	eter (ug/l	Perame
L 00	506	: J	572	R	R	J	10900		222	J	7090		306		16200	11.00	Alumir
(5 U	1	U I	29	R	R	U	29	U	29	U	29	U	29	U	29	iony	Antim
.3 J	11	, <b>.</b>	7.8	R	R	J	11.7	J	2.4	J	5.4	J	2.3	J.	10.6	nic	Arseni
D1 J	8	) <b>J</b>	150	R	R		226	J	124	J	130	J	54.3	1	156	<b>m</b>	Berium
5 U		U	1	R	R	U	1	U	1	U	1	U	1	U	1	tium	Beryll
25 U		U I	5	R	R	U	5	U	5	U	5	U	5	U	5	1.00	Cadmit
00	22600	1	80100	R	R		271000		51100		234000		25500	)	297000	um .	Calciu
19	1	, U	6	R	R		72 <b>.2</b>	U	6	J	1 49	UJ	6		59.1	nium	Chromi
54 J		, U	6	R	R	J.	10.1	U	6	J	6.3	U	6	i J	16.5	t	Cobelt
56	1	i 🖪 -	8	R	R	8	28.3	U	6		30		14.4		45.8	<u>۲</u>	Copper
00	1060	į.	710	R	R		17300	8	305		11300		315	)	23800		Iron
56 J		18	7.7	R	R		11.2	IJJ	2		/ 10.5	IJ	2		10.6		Leed
00	7860	1	38400	R	R		121000		26700		109000		18300	)	133000	nsium 🛛 👘	Hegnes
10	74		101	R	R		809		31.7	3	814	J	41.7	•	916	nese	Henger
U S.	C	U	0.2	R	R	V	0.2	U	0.2	U	0.2	U	0.2	U	0.2	гу	Hercur
04 J	1	i U	8	R	R		66.6		25.6		1 28	UJ	8	1	41.7	et 👘	Hickel
L 00	153	j –	6260	R	R		5780		5100	J	4290	J	2400	)	5210	sium	Potess
R		R		R	R	R		R		R		R		R		nium	Seleni
20 U		U		R	R	U	4	U	- 4	U	4	U	4	U	4	H <b>r</b>	Silver
00	817	1	75800	R	R		71600		71000		28000		27300	)	55000	m	Sodium
S N1	)	; UJ	2	R	R	IJJ	2	IJJ	2	J	J 3.6	IJ	2	: U.	2	lium	Thatlf
36 J	1	U I	5	R	R	J	27.8	U	5	J	1 17.4	IJ	5		39.5	fium	Vanadi
61	6		7.3	R	R		72		3	J	81.6	8	3.1	,	88.7		Zinc
10 U				R		U	10			U	10			U (	10	ide	Cyanic
	817 ) (		75800 2 5 7.3	R R R R	R R R	U U U	71600 2 27.8 72 10	UJ U 1	71000 2 5 3	L L U U	28000 1 3.6 1 17.4 81.6 10	8 UJ UJ	27300 2 5 3.1	0 1	55000 2 39.5 88.7 10	r m lium fium ide	Sodium Sodium Thalli Vanadi Zinc Cyanic

Ł

14 - 14 - 1

•

-

-

TR No.: Comments:	MA-HUUDS-UI MEW671 Filtered	MC-MU05-01 MEW672 Unfiltered	NEW473 Filtered	HEW676 Unfiltered	MEW475 Filtered Replicate	NE-NHO7S-OTTR NEW676 Unfiltered	HK-HK071-01 HEV477 Filtered	MC-MND71-01 MEW478 Unfiltered	MA-MUDI-UI MET951 Filtered
Parameter (ug/l)	)		••••••						
Atuminum	122 (	s 5250	J 341	J 28800	J 361	J 46100	J 742	J 174000	1270 J
Antimony	29 (	J 29	U 29	U 29	U 29	U 29	U 29	U 392 (	I 29 U
Arsenic	2 (	JJ 2.4	JZ	U 9	J 2	U 21.4	6.6	J 21	J 2.6 J
Barium	98.4	J 140	J 290	J 495	J 294	J 607	J 75.3	J 2170 .	I 40.3 J
Beryllium	1	U 1	U 1	U 1.2	• 1	U 1.1	8 1	U 12.7	1 1 1
Cadaium	5 (	J 5	U, 5	U 5	U 5	U 5	U 5	V 50 (	I <u>5</u> U
Celeium	91300	147000	128000	444000	126000	644000	36200	8240000	21600
Chromium	6 1	J 62.1	6	UJ 72.5	J 6	UJ 100	J 61	UJ 387 (	6 W
Cobelt	6	6	U 6	U 27.9	1 6	U 45.8	J 6	U 197 a	60
Copper	6.4	16.5	• 11.1	106	9.8	<b>B</b> 161	10.5	<b>560</b>	37.3
Iron	240	<b>5 8690</b>	5210	50990	2530	76500	920	394000	1240
Leed	2	U 12.5	5 7	U 28.2	2	U 55.9	5.9		N 2 W
Tiegnes I Lin	57000	61/00	41400	18/000	41200	201000	2/500	302000	11000
Hangamese	140	357	000	J 2210	J 843	J 30/0	J 41.3		I 05.2 J
Nercury	V.2		0 0.2	U U.Z	U U.Z	U U.Z	U U.Z	U V.3	V.2 U
Rickel	1770	U 49.9	1 7860	B 01	J 12.7	E 130	d 0'	UJ 933 ( 1 97400	
tolopium			8 3000	a 7430		a 13000	2 I U U		
	4		к Н 4	к 11 – Д		ж 18 Д	K (		
Radium	14400	12500	74100	74500	75200	75000	26100	15400	20000
The I i ism	2	12,00	41 2	111 28	11 2	111 20	11 2	11.1 <b>20</b> 1	1 2 11
Venedium	5	12 7			j E		j <b>K</b> 1	1 137 20 20 20 20 20 20 20 20 20 20 20 20 20 2	
Zinc	11.6	t 100	13.5	a 344	J 15.3	R 531	J 8.7	1830	18.6 8
Cvanide	11.0	10	U	10	U (2.5	- ,,,,	u	10	1

£

<

•

(Page 3 of 6)

.

....

### MOSS-AMERICAN GROUNDWATER INORGANICS

.

Sa C	mple ID: TR No.: comments:	MA-NUOBI-01 MET952 Unfiltered	!	NA-NUOBS-FP 101 Unfiltered Free Product	MA-MM095-01 MET953 Filtered		MA-MU09S-01 ME1954 Unfiltered		MA-MU091-01 HE1971 Filtered		NA-NUO9I-01 HE1972 Unfiltered		MA-MUTTI-OT ME1959 Filtered	)	MA-HW111-01 ME1960 Unfiltered	l	NA-HW115-01 NE1957 Filtered	, )	
Paramet	er (ug/l	)	•••												••••••		••••••••		•
Aluminu		18100		476000 J	71.5		56500	3	3190	J	12600	J	234		122000	J	92.9		
Ant imon	Y	29	U	20000 U	29	U	145	U	29	U	29	U	29	U	145	U	29	U	J
Arsenic		10.6		20000 U	3.9	J.	2	UJ	2	U	7.4	J.	3.7	' <b>J</b>	2	IJ	4.8	J	
Berium		171	1	119000 U	227		834	J	93.4	J	153	J	113	J	1210	3	201		
Berylli		1	U	40000 U	1	U	5	U	1	U	1	U	1	U	6.2	J	1	U	
Cadmium		5	U	9900 U	5	U	25	U	5	U	5	U	5	U	25	U	5	U	J
Calcium		249000	1	794000 U	151000		2190000		45300		197000		80600	}	2790000		120000	)	
Chromiu		60.6	1	28000 U	6	U	132		6.7	1	89.8	J	6	, U,	J 246	J	5	U	
Cobelt		13.3	J	198000 U	6	U	98.8	1	6	U	11.4	1	6	U	102	J	5	U	
Copper		75.8		40000 U	6	U	250		27.9	B	45.1	8	33.2		282		6.5		
Iron		26400		196000 U	533		181000		3250		17400		264	•	210000		533	5	
Leed		13.4		127000 U	2	U	46	J	2	U	7.4	8	2	U	J 37		2	U	J
Hognesi		111000	)	794000 U	45300		836000		27700		102000		48200	)	1340000		86400	}	
Hengene	5 <b>¢</b>	906		40000 U	1440		8710		157	1	737	1	108		9930		417		
Hercury		0.2	U	300 U	0.2	U	0.2		0.2	U	0.2	U	U.2	Ű	5.0	U	0.Z	U	
Hickel		44.1		40000 U	17.7		168	4	8	ų	51.3	8	8	U.	245		9	U	
Potassi		5480	-	40000 U	220	1	11500	1	4270	1	5990	_	2010	1	23500		2930		
Seleniu			R	20000 0		ĸ		ĸ		R		R	•	R				R	
Silver		4	U	794000 0	4	U	20	U	4	U	•	U	4	U	5	U	4	U	
Sodium		27700		K	9190		10000	U	25500		20400		20000		25900		26800		
Thelliu		3.2		11600000 J	2.4	B	3.6		Z	U.		1	2	U	J 20	UJ	2	U	J
Venediu		39.1	1	397000 U	5	U	162	1	5.1	1	<b>7.5</b>	J	5	U	J 296		4.7		
Zinc		120		397000 U	42.7		3360		15.4		86.9	J	6.3		514	1	23.4		
Cyanide		10	U	198000 U			10	U			10	U			10	U			

J
-

Sample ID: TR No.: Comments:	MA-MW11S-01 NET958 Unfiltered	I	M-HV12S-01 NET961 Filtered	NA-NW125-01 NET962 Unfiltered	) 2 1	MA-MJ13S-01 HET963 Filtered	P	M-M/13S-01 NET964 Unfiltered		MA-MH14S-01 NET965 Filtered	1	NA-HW145-01 NET966 Unfiltered	1	M-HU208-01 NET973 Filtered		NA-NJ205-01 NET974 Unfiltered	1 6 d
Parameter (ug/		• • • •					•••		•••		••••				•••		••••
Aluminum	25600		764	J 14300		474	L	5140	J	321		40600		173		41300	0
Antimony	29	IJJ	29 (	U 29	Ū	29 (	Ũ	29	Ū	29	ŪJ	29	w	29	ū	33.6	È J -
Arsenic	3.9	Ĵ	2 (	Ū 9.2	2 J.	2 (	ŪJ	6.8	Ĵ	4.1	J.	9.6	Ĩ	1.3	J	15.9	Ĵ
Berium	404	-	144	J 275	5	179	1	232	-	128	3	634	-	181	Ĵ	755	5
Beryllium	1	U	1	Ū 1	Ū	1 (	Ū	1	U	1	Ū	1.1	3	1	Ū	1.1	ĴJ.
Cedatium	Ś	IJ	5 (	Ú 5.9	3	5 (	U	5	U	5	ŬJ	5.5	Ĵ.	5	Ū.	1	Ś ŪJ
Calcium	441000		131000	257000	)	222000		285000		81500		924000		250000		842000	D
Chromium	48.4		6 1	UJ 50.8	5.3	6 1	U	70.5		5	U	191		5	U	104	6
Cobelt	25.9	J	6 (	U 14.5	i .]	6 1	U	6	U	5	U	36.8	3	5	Ű	40.2	2 J
Copper	109		41.3	84.8		11 1	1	35		5.6	8	111		9.3		143	3
Iron	58000		955	20800		1610		11400		431		76500		234		63700	D .
Leed	44.5	J	2 (	UJ 15.9	)	2 (	IJ	17.8	J	2.7		39.5	J	2.4		56.1	1 J
Negnesium	239000		49400	110000		90200		120000		47100		376000		75500		356000	Ď
Nengenese	1880		417	J 1030	) ]	374		708		242		3360		1050		3810	0
Hercury	9.2	U	0.2	Ú 0.2	2.6	0.2	ť	0.2	U	0.2	U	0.2	U	0.2	U	0.3	2 8
Nickel	81.8		16.8	8 64.1		25.3	8	50.6		9	U	130		9	U	110	6
Potessium	8610	)	2290	J 5190	)	2510	J	3950	J	5350		14000		3390	3	11600	0
Selanium		R	1	R ,	R		R		R		R		R		R		R
Silver	4	U	4 (	U 4	U I	4 (	U	4	U	4	U	4	U	4	U		4 Ü
Sodium	27800		8630	8 6940		19200		16300		11000	8	9520		42200		41400	0
Thellium	2	IJ	2 1	UJ 3.4	5.3	2.5	8	2.5		2	Ŵ	2	IJ	2	W		ŻIJ
Vanadium	69.5		51	UJ 37.9	3	5	U	12.7	3	4	U	109		4	U	110	0
Zinc	535		18.9	8 139	) J	75.1	Ē	182		18.4	Ť.	450		25.7		40	7
Cvanide	10	U	•	10	1 11			10	11			10				11	0.11

٢

.

ð

### MOSS-AMERICAN GROUNDWATER VOLATILES

.

-

SAMPLING DATES: 7/11/88 to 7/13/88

2

	Sample ID: TR No.: Comments:	NA-HW01D-01 EW877	NA-NW01S-01 EV876	NA-NW02S-01 EW878	NA-NN035-01 EV879	NA-NW031-01 EW880	NA-NN040-01 EV882	NA-NWO4D-01FR EV683 Replicate	MA-MU041-01 EV881	NA-NU045-01 EV864
Parameter (ug/l)	)									
Chloromethane		10 U	10 U	10	u 10 u	10 U	i 10 u	10 נ	10 (	i 10 U
Bromomethane		10 U	) 10 U	J 10 1	V 10 U	10 U	10 U	) 10 L	) 10 L	I 10 U
Vinyl chloride		10 U	10 U	i 10 i	บ 10 เ	10 U	i 10 U	10 U	i 10 t	I 10 U
Chloroethane		10 U	i 10 L	/ 10	ย 10 ย	10 U	i 10 U	i 10 u	) 10 l	) 10 U
Methylene chlorid	de	5 U	) 5 L	1 5	ช 5 น	5 U	) 51	) Su	) 51	I 5U
Acetone ·		10 U	) 10 U	) 10	บ 10 บ	10 U	10 U	) 10 U	i 10 l	i 10 U
Carbon disulfide		5 U	) 5 ເ	1 5	บ 5 เ	5 U	) 5 U	) 5 L	i 5 t	I 5U
1,1-Dichloroethe		5 U	50	1 5	ป 5 ป	5 U	i 5 U	i 5u	i 5.	I 5U
1,1-Dichloroetha	ne	5 U	) 5L	1 5	U 5 U	5 U	; 5u	) <u>5</u> u	ן 5 נ	I 5V
1,2-Dichloroethe	ne (total)	5 ป	ן 5 נ	) 5	U 5 U	5 U	i 5 U	1 <u>5</u> U	) <u>5</u> t	I 5U
Chloroform		5 U	ן 5 נ	) 5	U 5 U	5 U	i 5 U	50	) <u>5</u> 1	I 5U
1,2-Dichloroetha	<b>12</b>	5 U	) 5i	1 5	V 5 U	5 U	) 5 U	1 50	) 5เ	1 <u>5</u> U
2-Butanone		10 U	) 10 L	J 10	U 10 L	10 U	i 10 u	i 10 u	10 1	10 U
1,1,1-Trichloroe	thene	5 U	i 5 l	) 5	V 5 U	5 U	) <u>5</u> u	1 51	) 51	50
Carbon tetrachlo	ride	5 U	ו 51	) 5	U 5 U	5 U	) <u>5</u> U	1 51	1 51	1 <u>5</u> U
Vinyl acetate		10 U	i 10 l	J 10	U 10 U	10 U	) <u>10</u> U	10 U	10 0	10 U
Bromodichloromet	hene	5 ป	1 51	J 5	U 51	5 U	5 U	50	51	50
1,2-Dichloroprop	ene	5 U	1 51	) 5	U 5 L	5 U	5 U	51	5 (	50
cis-1,3-Dichloro	propene	5 U	51	J 5	U 51	5 U	50	51	5	5 U
Trichloroethene		5 U	1 51	) 5	U 51	5 U	50	51	51	5 U
Dibromochloromet	hane	5 U	ן <u>5</u> ו	J 5	U 5 L	50	5 U	5 5 1	51	J 5U
1,1,2-Trichloroe	thane	5 U	1 51	J 5	U 51	51	1 50	5 51	5	50
Benzene		5 U	1 51	J 5	U 5 t	50	) <u>5</u> u	) 51	5	J 5 U
trans-1,3-Dichlo	ropropene	5 U	1 51	J 5	<b>υ 5</b> ι	50	50	5 5 1	5	J 5 U
Bromoform		5 U	1 51	J 5	V 5 t	) <u>5</u> u	50	51	5	J 5 U
4-Methyl-2-penta	none	10 U	10 (	J 10	U 10 (	10 U	10 0	10 L	10 1	J 10 U
2-Nexanone		10 U	) 10 (	J 10	U 10 L	) 10 L	10 U	) 10 L	10 10 1	J 10 U
Tetrachioroethen	e	5 U	5 5 1	J 5	ט 5ו	1 <u>5</u> 1	1 50	5 1	5	J 50
1,1,2,2-Tetrachl	orcethane	5 U	5 1	J 5	U 5 L	) <u>5</u> l	51	5 (	J 5 (	50
Toluene		5 U	) 51	J 5	บ 5เ	i 5t	1 51	) 51	1 51	J 41 B
Chlorobenzene		5 U	) 51	J 5	ี่ บี 5 เ	51	) 51	1 51	J 50	J 5 U
Ethylbenzene		5 U	) 5(	J 5	บ 5เ	i 5 L	1 5 L	J <u>5</u> 1	J 50	J 27 J
Styrene		5 U	J 5(	J 5	V 5 เ	) 5เ	) 5 L	) 51	J 51	J 9 J
Xylene (total)		5 U	1 51	J 5	บ 5เ	) 5 L	) 5 L	1 51	J 5 (	J 45 J

Ľ

### MOSS-AMERICAN GROUNDWATER VOLATILES

-

	Semple ID: TR No.: Comments:	MA-MM05S-01 EV884	MA-MW06S-01 EW885	HA-HW07S-01 EW886	NA-NW07S-01FR EW887 Replicate	MA-MM071-01 EM888	MA-MW081-01 EW889	MA-MM085-01 101	NA-NM091-01 EM899	MA-HW095-01 EW890
Parameter (ug/l;	)				**************	***********				
Chloromethane		10 U	J 10 L	10 (	u 10 (	J 10 (	J 10 L	5000 (	10 1	J 10 U
Bromomethane		10 u	) 10 ເ	/ 10 (	U 10 I	J 10 I	J 10 U	i 5000 L	10 (	J 10 U
Vinyl chloride		10 u	J 10 L	J 10 1	U 10 (	U 10 I	J 10 U	F 5000 L	10 1	J 10 U
Chloroethane		10 U	ງ 10 ເ	3 10 1	U 10 I	J 10 I	J 10 U	1 5000 t	; 10 1	J 10 U
Nethylene chlorid	de	4 1	61	6	U 61	J 5 (	J 5 U	) 2500 L	1 61	5 #
Acetone		<b>10</b> U	J 10 L	J 10 I	U 10 I	J 10 I	J 10 U	5500 8	i 10 i	J 10 U
<b>Carbon disulfide</b>	•	5 L	J 5 L	J 5	U 5 (	U 5 (	U 51	1 2500 U	J 5 (	J 5 U
1,1-Dichloroethe	ne	5ι	ງ 5ເ	J 5	U 5 (	U 51	J 5 L	) 2500 L	J 5 (	J 5 V
1,1-Dichloroetha	ne	5 เ	ງ 5ເ	) 5	U 5 (	ม 5 (	J 5 L	I 2500 L	1 51	J 5 U
1,2-Dichloroethe	ne (total)	5 L	ງ 5ເ	J · 5	U 5 (	U 5 (	U 5 L	/ 2500 L	J 51	J 5 U
Chloroform		5 L	) 5เ	J 5	U 5 I	U 5 (	U 5 L	) 2500 L	J 5 (	J 5 U
1,2-Dichloroethe	ne	5 L	ງ 5 ເ	J 5	U 5 (	U 51	U 5 L	) 2500 L	) 5(	J 5 U
2-Butanone		. 10 L	J 10 L	) 10 (	U 10 (	V 10 I	ມ 10 ເ	) (	10 (	J 10 U
1,1,1-Trichloroe	thane	5 (	ງ 5ເ	) 51	U 5 (	U 5 (	U 5 L	/ 2500 L	) 51	J 5 U
Carbon tetrachio	ride	5 เ	ม 5เ	J 5	U 5 (	U 5 I	U 5 L	) 2500 L	) 5(	J 5 U
Vinyl acetate		<b>10</b> U	) 10 ເ	J 10 1	U 10 I	U 10 I	ປ 10 ເ	) 5000 L	J 10 (	J 10 U
Bromodichioromet	hane	5 ι	ງ 5ເ	J 5	U 5 (	V 5 I	J 5 L	J 2500 V	) 5(	U 5 U
1,2-Dichloroprop	<b>ene</b>	5 (	J 5 L	J 5	U 5 I	U 5 (	U 5 L	) 2500 L	) 5(	J 5 U
cis-1,3-Dichlorg	propene	5 L	ม 5เ	J 5	U 51	U 5 I	U 5L	J 2500 L	J 51	u 5 U
Trichloroethene	•••	5 เ	J 5 L	J 5	U 51	U 5 (	U 5 L	) 2500 l	) 5(	J 5 U
Dibromochloromet	hane	5 เ	J 5 L	J 5	U 5 (	U 5 (	U 51	) 2500 l	) 50	J 5 U
1,1,2-Trichloroe	thene	5 เ	J 5 L	J 5	U 5 (	U 51	υ <b>5</b> ι	) 2500 V	J 5 (	J 5 U
Senzene		5 ເ	J 5 เ	J 7	J 5.	J 5 (	U 51	/ 2500 1	J 5 (	U 5U
trans-1,3-Dichlo	ropropene	5 เ	J 5 (	J 5	U 5 (	U 5 (	U 5 L	J 2500 (	1 51	J 5 U
Bromoform		5 เ	J 51	J 5	U 5.	U 51	U 5 L	) 2500 (	J 5 (	U 5U
4-Methyl-2-penta	none	10 נ	J 10 I	J 10	U 10 I	U 10 (	ມ 10 ເ	J 5000 I	J - 10 (	U 10 U
2-Nexanone		10 (	J 10 I	J 10	V 10 I	U 10 (	U 10 L	J 5000 (	J 10 I	ມ 10 ປ
Tetrachloroethen	e	5 (	J 5 I	J 5	U 5.	U 5 (	บ 5เ	J 2500 (	J 5 (	U 5 U
1,1,2,2-Tetrachl	oroethane	5 (	J 5 I	J 5	U 5	U 5 (	ม 5เ	) 2500 (	J 5 (	U 5U
Toluene		5 (	51	J 5	U 5 (	U 5 (	U 5 i	2500	J 5 (	U 5 U
Chlorobenzene		5 (	J 5 I	J 5	U 5 (	U 5	U 5 i	2500	J 51	U 5 U
Ethylbenzene		5 (	J 51	J 18	<b>B</b> 18 1	B 5	v Ši	2500	J 5	U 5 U
Styrene		5 (	J 5 1	J 5	U 5	U 5	U 51	J 2500	J	U 5 U
Xylene (total)		5 (	J 5 (	J 30	J 30	J	U 5 i	2500	U 5	U 5Ū

.

.

۱

1

NOSS-AMERICAN GROUNDWATER SENI-VOLATILES

•

Sample	No.:	MA-MU01D-01		MA-HM015-01		MA-MU025-01	MA-MM031-01	MA-MU03S-01
IK	MO.:	EMD//		5W0/0		EMD/D	ENCOU	EWD/Y
***********************		•••••••			• • •			•••••
Parameter		Conc. (ug/l)						
Bhanal		10		•••••••••••		•••••••••••••••••••••••••••••••••••••••	••••••••••••••••••••••••••••••••••••••	10 11
bis(2-Chloroethyl)ether		10	Ŭ	10	Ŭ	10 0	10 U	10 Ŭ
2-Chlorophenol		10	U	10	U	10 U	10 U	10 U
1,3-Dichlorobenzene		10	U	10	U	10 U	10 U	10 U
Benzyl alcohol		10	U	10	U U	10 0	10 0	10 U
1,2-Dichlorobenzene		10	Ū	10	Ŭ	10 U	10 U	10 U
2-Nethylphenol		10	U	10	U	10 U	10 U	10 U
Dis(2-Chioroisopropyi)e: 4-Methylphenol	ther	10	U	10	U	10 U 10 J	10 U 10 U	10 U 10 U
N-Hitroso-di-n-propylam	ine	10	Ŭ	10	Ū	10 U	10 U	10 U
Nexachloroethane		10	U	10	U	10 U	10 U	10 U
Nitrobenzene		10	U	10	U	10 U	10 U	10 0
2-Nitrophenol		10	ŭ	10	U U	10 0	10 U	10 U
2,4-Dimethylphenol		10	Ũ	10	Ū	10 0	10 U	10 U
Senzoic Acid		50	U	50	U	50 U	50 U	50 U
2 4-Dichlorophenol	ane	10.	. U 	10	U	10 0	100	10 0
1.2.4-Trichlorobenzene		10	Ŭ	10	Ŭ	10 1	10 0	10 U
Naphthalene		10	Ū	10	Ū	10 U	10 U	10 U
4-Chloroeniline		10	U	10	U	10 L	10 U	10 U
HexachLorobutadiene		10	U	10	U	10 0	10 U 10 U	10 0
2-Methylnaphthalene		10	Ŭ	10	Ū	10 0	10 U	10 U
HexachLorocyclopentadie	ne	10	Ŭ	10	U	10 U	10 U	10 U
2,4,6-Trichlorophenol		10	U	10	U	10 U	10 U	10 U
2,4,5-irichlorophenol		50	บ ย	50	U	10 1	10 U	10 U
2-Nitroaniline		50	Ũ	50	Ŭ	50 U	50 U	50 U
Dimethylphthalate		10	U	10	U	10 U	10 U	10 U
Acenaphthylene		10	U	10	U	10 U	10 U	10 U
2,0-Dinitrotoluene		10	U U	. 50	U	50 ม	50 U	50 U
Acenaphthene		10	Ū	10	Ū	11 J	10 U	10 U
2,4-Dinitrophenol		50	U	50	U	50 U	50 U	50 U
4-Nitrophenol		50	U	50	U	50 U 10 U	50 U	50 U 10 U
2.4-Dinitrotoluene		10	Ŭ	10	Ŭ	10 0	10 U	10 U
Diethylphthalate		10	Ŭ	10	Ŭ	10 U	10 U	10 U
4-Chlorophenyl-phenyleti	her	10	U	10	U	10 U	10 U	10 U
Fluorene A-Nitrospiline		10	U 11	10	U	50 1	50 U	50 U
4,6-Dinitro-2-methylphe	nol	50	Ŭ	50	Ŭ	50 U	50 U	50 U
N-Nitrosodiphenylamine		50	U	50	U	50 U	50 U	50 U
4-Bromophenyl-phenyleth	er	10	U	10	U	10 U	10 U	10 0
Pentachiorobenzene		50	U U	50	Ŭ	50 U	50 U	50 U
Phenanthrene		10	Ū	10	Ŭ	10 U	10 U	10 U
Anthracene		10	IJ	10	U	10 U	10 U	10 U
Di-n-butyiphthalate		10	U	10	U	10 0	10 0	10 0
Pyrene		10	U	10	ŭ	11 1	10 0	10 U
Butylbenzylphthalate		10	Ŭ	10	Ū	10 U	10 U	10 U
3,3'-Dichlorobenzidine		20	U	20	U	20 U	20 U	20 U
Senzo(a)anthracene		10	U	10	U	10 1	100	10 0
bis(2-Ethylehexvl)ohtha	late	10	U	11	5	5 C	10 U	10 U
Di-n-octylphthalate		10	Ű	10	U	10 0	10 U	10 U
Benzo(b)fluoranthene		10	U	10	U	10 U	10 U	10 U
Benzo(k)fluoranthene		10	U	10	U	10 U 10 I	10 0	10 U 10 LI
Indeno(1.2.3-cd)ovrene		10	IJ	10	Ŭ	10 1	10 ม	10 U
Dibenz(a,h)anthracene		10	Ũ	10	U	10 L	10 U	10 U
Senzo(g,h,i)perylene		10	U	10	U	10 L	10 U	10 U
*****************************								

•

9
2
2
(Page

MOSS-ANER I CAN GROUNDHATER SENI - VOLATILES

e

Sample No.: Tr No.:	MA-MJ04D-D1 EN <b>BB</b> 2	NA-MJ04D-01FR EN863	NA-NUO41-01 EMB61	10-570FW-VN 799FB	MA-MUFBO5-01 EUB97
, , , , , , , , , , , , , , , , , , , ,		Replicate			Field Blank
Parameter					
			10 L		10 U
bis(2-Chloroethyl)ether	2 2 2 2			20 0	10 C
2-Chlorophenol	10 U	10 0	10	⊃ 82	
1,3-Dichlorobenzene	2:	5 C	□ 0 0 0 1 0	⊃: 82	
1,4-Dichloroomizene Reesti alrekol				38	
1.2-Dichlorobenzene					
2-Hethylphenol	10 0	101	10 0	28	10 0
bis(2-Chioroisopropyl)ether	10 C	26	10 1	2	10 C
4-Nethylphenol	29			⇒: R\$	
N-H1troso-d1-n-propylamine				= = R	
	29			28	
i subhorone	5 5 7				
2-Nitrophenol	100	100	10	2	10
2.4-Dimethylphenol	101	10 U	10 U	「 <u> </u>	10 U
Benzoic Acid	50 U	20 U	50 U	100 U	20 C
bis(2-Chloroethoxy)methane	10 U	10 U	10 U	⊃ <b>8</b>	10 U
2,4-Dichlorophenol	10 C	2 C	2 0 C	2:20	205
1,2,4-Trichlorobenzene					
Naprtna Lene 2 - chi preseti fas			25		2
4-Concernations second and second and	2				2
nexect torouted tene 4 - Philosofia - S-mathyli nhanni					25
2-Methylnachthaiane				520	
Hexach lorocyclopentadiene	10 U		10 0	20 1	
2.4.6-Trichlorophenol	10 U	10 0	101	20 0	101
2,4,5-Trichtorophenol	50 C	50 0	50 U	100 U	50 U
2-Chloronaphthalane	10 U	10 U	10 U	20 ∩ 20 ∩	- 0 - 0
2-Nitroaniline	202	20 C	20 5	100 U	202
Dimethylphthalate	⇒ 05 ⇒ 5		2 C		) 
Acenaphthylene				: 88	
Z, 6-01n1 trotolume Z_viteronii i.e.					
3-RICTORNICITY					2
Activities 2.4-Dinitrochenol		20 1	20 05		20 C
4-Mitrophenol	202	20 1	20 C	1001	50 U
Díbenzofuren	100	10 0	0	260	10 0
2,4-Dini trotoluene	<b>1</b> 0 ∪	- 0 -	1 C	20 U	10 U
Diethylphthelate	2 2 2	5	0 C	2	2 C
4-Chiorophenyl-phenylether	> : 2 :	2 : 2 :			2:
r Luor <b>ene</b> 4 - Mésocond 1 éne					
4 - Mittouri Line 4 - K-A (mittour) - mathui ahaaal					
4,0-0111110-2-mstriytpranot K-kitereodinhavvi anine					
4-Branchenvi-chenviether	1 1 1 1 1	10 0	10 0		0
Hexach lorobenzene	10 U	10 0	10 U		100
Pentach i orophenol	50 U	50 U	50 U	100 U	50 U
Phenenthrene	10 U	10 U	10 U	2000 D	10 U
Anthracene	10 U	10 C	10 U	110	10 C
Di-n-butyl phthalate	5 5 2 2	10 U		50 n	5 2 5
Fluorenthene					
Pyr <b>ene</b> Bravi herevi akehol oco		29			9 <b>2</b>
autytomizytprimetete 2 2/2014/1000000014170			28		28
2,2° - Vicinty weight 10112 Benzo(a)anthracene			22		2
Chrysene	101	10 0	10 U	\$	10 U
bis(2-Ethylehexyl)phthalate	10 L	7	10 U	1 51 1	10 L
Di-n-octylphthalate	10 U	10 U	10 U	20 n 20	10 U
Benzo(b)fluoranthene	10 C	- 0 - 0	1 01 U	ន	15
Benzo(k)fluoranthene	10 C	0 00 0 00 0 00		8	
Benzo(a)pyrene				: 3 8	
Indeno(1,2,3-cd)pyrene	2				
Vloenzia,njentnraceme Baatoia h iltarviane	)       	10 10	) 01 10	22	

]

1,7

-

-

NOSS-ANERICAN BROUNDHATER SEMI-VOLATILES

.

Sample Ho.: TR Ho.:	NA-NU058-01 EU884	NA-MAFBO6-D1 EU898 Field Blank	MA-MUD65-01 END05	944-194071-01 I EV688	NA-NH075-01 EU886
henol herol	10 U	10 U	10 L	10 u	10 c
-Chlorophenol	10 -	10	10	10 -	10 0
,3-Dichlorobenzene  .4-Dichlorobenzene	10 C	10 U		10 L L	10 L L
enzyl elcohol	55	55	55		56
-Nethylphenol	5	50	55	50	50
bis(2-Chloroisopropyl)ether i-Nethylphenol	10 U	10 U	10 L L	10 c	5 5 C C
i-Nitroso-di-n-propylamine Invechiorenthane	10 C	10 L	10 u		5 <b>6</b> - C
litrobenzene		10 0	10 0		10 0
lsophorone ?-Nítraphenol	10 0	10 L	10 0	10 L L	10 L
2,4-Dimethylphenol		10 L	10 u		10 u
sis(2-Chloroethoxy)methane	10 0		10 u		
2,4-Dichlorophenol 1,2,4-Trichlorobenzene	10 U	10 U	10 U	10 U	10 0
laphthelene G-Chloroaniline	10 U	10 L	10 C	10 0 0 0 0	n 01 10 n
lexach lorobutadi ene k-Chiano-3-aethyinhanoi	10 0	50 c	10 U		10 U
2-Nethylnephthalene	10	10 c	50	55	56 - c
2,4,6-Trichlorophenol		10	10 0		10 0
2-Chloronaphthalene	10 0				50
(methylphthalate		10	10 C	36	352
kenaphtnylene 2,6-Dinitrotoluene	10 0	10 0	10 L 10 L	10 0	<b>5</b> 6 c (
3-Nitroaniline Icenaphthene	10 C	10 U	10 C	10 L 20 L	10 U
2,4-Dinitrophenol	50	50 C	50 U	50 C	50
ibenzofuran					100
iethylphthalate	100				55
s-Chiorophenyl-phenylether fluorene		0 01 0 01	10 U		10 C
i-Nitroeniline i.6-Dinitro-2-methvinhenol	5 C C	50 c	20 C 20 C	200 200 200	
i-Nitrosodiphenylamine	50 -	50 c	10 L	50 20 20	50 C
iexachlorobenzene	10		10 0	10	
rentach Loropheno L Phenanthrene	202	10 4			; c c
) ( - n-butyl phthelete	55	55	555	55	55
yrene				10 C C	500
lutylbenzylphthalate 5,3′-Díchlorobenzidine	200	10 U 20 U	10 U	20 c	20 U
lenzo(a)anthracene Shrvaene	10 C			10 L	10 L
ois(2-Ethylehexyl)phthalate					56
henzo(b)fluoranthene				500	100
lenzo(k)fluoranthene lenzo(a)myrane	10 1	10 C	10 L	10 C	10 U
Indeno(1,2,3-cd)pyrene	55	55	55	550	55
ioenz(g,h, i)perylene	10 0	10 0	10 0	10 c	10 U
	***********				

ć.,

Ç,

-

٠

¥

NOSS-AMERICAN GROUNDWATER SEMI-VOLATILES

.

.

Sample No.:	NA-NHO7S-01FR	MA-MW081-01	NA-HUOBS-FP	NA-NJO8S-01	MA-MH091-01
TR No.:	EV657	EW087	IO1	101	EV699
	Kepilcete		Free Product		
Parameter					
	**************	*************			
Phenol	10 U	10 U	2500000 U	20000 0	10 U
2-Chiocophenol	10 0	10 0	- 2500000 U	20000 0	10 U
1.3-Dichlorobenzene	10 U	10 U	2500000 U	20000 U	10 U
1,4-Dichlorobenzene	10 U	10 U	2500000 U	20000 U	10 U
Senzyl elcohol	10 U	10 U	2500000 U	20000 U	10 U
1,2-Dichlorobenzene	10 U	10 U	2500000 U	20000 U	10 U
Z-Rethylphenol bio(2-Chiosoineseevillether	10 U 10 u	10 0	2500000 0	20000 0	10 U 10 H
A-Methylphenol	10 1	10 1	2500000 U	20000 U	10 ม
N-Nitroso-di-n-propylamine	10 U	10 U	2500000 U	20000 U	10 U
NexachLoroethane	10 U	10 U	2500000 U	20000 U	10 U
Nitrobenzene	10 U	10 U	2500000 U	20000 U	10 U
Isophorone	10 U	10 U	2500000 U	20000 U	10 0
2-Nitrophenol 2 4-Dimethylohenol	10 0	10 0	2500000 0	20000 0	10 0
	50 U	50 u	12000000 U	100000 U	50 U
bis(2-Chloroethoxy)methane	10 U	10 U	2500000 U	20000 U	10 U
2,4-Dichlorophenol	10 U	10 U	2500000 U	20000 U	10 U
1,2,4-Trichlorobenzene	10 U	10 U	2500000 U	20000 U	10 U
Naphthalene	3100 D	10 U	25000000	20000 U	10 0
4-Unioroaniline Nexachiorobutediene	10 0	10 0	2500000 U	20000 0	10 U
4-Chloro-3-methylphenol	10 U	10 0	2500000 U	20000 U	10 U
2-Methylnaphthalene	10 U	10 U	25000000	20000 U	10 U
Nexachiorocyclopentadiene	10 U	10 U	2500000 U	20000 U	10 U
2,4,6-Trichlorophenol	10 U	10 U	2500000 U	20000 U	10 U
2,4,5-Trichlorophenol	50 U	50 0	2500000 0	20000 U	50 U 10 U
2-Nitroaniline	50 1	50 1	12000000 U	100000 U	50 U
Dimethylphthalate	10 ป	10 U	2500000 U	20000 U	10 U
Acenaphthylene	10 U	10 U	2500000 U	20000 U	10 U
2,6-Dinitrotoluene	10 U	10 U	2500000 U	20000 U	10 U
3-Nitroaniline	50 U	50 U	12000000 U	100000 U	50 U
Acenaphthene	10 U 50 U	50 1	12000000	100000 0	501
2,4°Dinitrophenol	50 U	50 U	12000000 U	100000 U	50 U
Dibenzofuran	10 U	10 U	2000000	20000 U	10 U
2,4-Dinitrotoluene	10 U	10 U	2500000 U	20000 U	10 U
Diethylphthalate	10 U	10 U	2500000 U	20000 U	10 U
4-Chlorophenyl-phenylether	10 U	10 U	2500000 U	20000 U	10 U
Fluorene	10 U 50 u	100	12000000 11	20000 0	10 U 60 U
4-#itroenitine 4 4-Dipitro-2-methylohenol	50 U 50 U	50 U	12000000 U	100000 U	50 U
N-Nitrosodiphenylamine	50 U	50 U	2500000 U	20000 U	50 U
4-Bromophenyl-phenylether	10 U	10 U	2500000 U	20000 U	10 U
Hexach Lorobenzene	10 U	10 U	2500000 U	20000 U	10 U
Pentachlorophenol	50 U	50 U	12000000 U	100000 U 20000 U	50 U
Phenanthrene	10 0	10 0	7200000	20000 0	100
Di-n-butvichthalate	10 0	10 U	2500000 U	20000 U	10 U
Fluoranthene	10 U	10 U	35000000	20000 U	10 U
Pyrene	10 U	10 U	29000000	20000 U	10 U
Butylbenzylphthalate	10 U	10 U	2500000 U	20000 U	10 U
3,3'-Dichlorobenzidine	20 U	20 U	6800000	20000 U	20 U
Senzo(a)anthracene	10 U	10 U 10 u	5000000	2000 0	10 0
unr <b>ysene</b> his/2-Sthulshavullahthalata	10 0	10 0	2500000 H	20000 1	10 U
Dienectvichthalate	10 U	10 U	2500000 U	20000 1	10 U
Benzo(b)fluoranthene	10 U	10 0	1800000 J	20000 U	10 U
Senzo(k)fluoranthene	10 U	10 U	2900000	20000 U	10 U
Benzo(a)pyrene	10 U	10 U	2000000 J	20000 U	10 U
Indeno(1,2,3-cd)pyrene	10 U	10 U	2500000 U	20000 U	10 U 10 II
Didenz(B,n)anthracene	10 0	10 0	2500000 11	20000 0	10 U
		•••••	•••••••••••••••	••••••	•••••

• ••.

# NOSS-ANERICAN ORCUNDHATER SENI-VOLATILES

...

æ

Sample No.: TR No.:	HA-HU095-01 EU890	NA-HU111-01 EU893	4A-H1115-01 EU892	NA-NJ125-01 EU094	NA-NU135-01 EU895
Parameter		* * * * * * * * * * * * * * * * * * *			
Phenol	10 U	10 U	u 01	u 01	10 U
bis(2-Chloraethyl)ether	10 0	50	50	10 -	56.
ar unior opneno i 1.3-Dích l probenzene	100	52		10 0	10 2
1,4-Dichlorabenzene	101	10 0	10 -	10 0	10
Benzyl alcohol 4 3-hinkinnahanyana	10	50		50 50	50
2-Nethylphenol			10		
bis(2-Chloroisopropyljether 4-Nethylphenol	<b>10</b> 10 10	10 L 10 L	10 L L	10 L L	10 C C C
N-Nitroso-di-n-propylamine	50	55	10 -	56	10 c
Nitrobenzene		10 0		50	100
<b>1sophorane</b> 2-Mitmohenol			10 u		5 C
2,4-Dimethylphenol		10 0	10 0	10 0	10
Denzoic Acid bis(2-Chloroethoxy)methane	10 U	10 0	10 U	10 U	10 0
2,4-Dichlorophenol 1.2.4-Trichlorobenzene	10 U	10 U	10 U	10 L	10 u
Nephthalene		55		50 L	10 -
4 - union centra neme	10 0	10 0		10 0	10 0
e-Entoro-J-metnytpnenot 2-Methylnaphthalene	10 U	10 U	10 U	10 U	10 c
sexachiorocyciopentaciene 2.4.6-Trichiorochenol					
2,4,5-Trichlorophenol	50 U	50 C	50 c	50 c	50 c
e-Unterentepritnetere 2-Nítroaniline	50 c	500	50 u	50 0	202
Dimethylphthalate Acenachthylene	10 U	10 U		10 U	10 U
2,6-Dinitrotoluene	10 0		50		50
Acenaphthene	10 0	10 c	2	10 0	10
2,4-Dinitrophenol 4-Nitrophenol	50 C	50 C	20 C	50 U 50 U	
Dibenzofuran	55		4 9 -	10 U	50 c
Diethylphthalate		100		100	55
4-Chlorophenyl-phenylether Fluorene	10 0		20 20		
4-Nitroaniline	50 0	50 -	50 L	50 L	50 : C
4,0-Dinitro-2-metnyiphenoi N-Nitrosodiphenyiamine	50 C	20 C	20 0		20 C C
4-Bromophenyt-phenytether Hexach Lorobenzene					
Pentachlorophenol	50 0	50 50		50 c	50 c
Anthracene		10 0	<b>.</b>	1 2 2	55
Di-n-butylphthalate	10 0	5 TO	3 <b>1</b> 2	10 u	
Pyrene			=		10 0
Butylbenzylphthelate 3.3'-Dichlorobenzidine	20 U	10 U	10 U 20 U	10 U	
Benzo(a)anthracene		10 c		10 u	10 c
bis(2-Ethylehexyl)phthalate	10 0	10 0	10 0	10 2	100
Di-n-octylphthalate	10 0	10 c	10 -		50
Benzo(k)fiuoranthene	10 0		10 0	10 0	10 0
Benzo(a)pyrene	10 0	10 U	50 	10 U	5 <b>6</b>
Dibenz(a,h)anthracene	10 0	10 0	10 0	10 0	100
Benzo(g,h,i)perylene	10 U	10 U	10 U	10 U	י 10
**********************					

.

.

 $\leq$ 

٠

.

٠

.

HOSS-AMERICAN GROUNDWATER

.

SENI-VOLATILES		
Sample No.: TR No.:	MA-MW148-01 EW896	NA-NU205-01 EV900
•••••		•••••
Parameter		
Phenol	10 U	10 U
bis(2-Chloroethyl)ether	10 U	10 U
Z-Chlorophenol 1.3-Dichlorophenzene	10 U 10 H	10 U 10 U
1,4-Dichlorobenzene	10 U	10 U
Benzyl alcohol	10 U	10 U
1,2-Dichlorobenzene 2-Nethvishenol	10 U 10 U	10 U 10 U
bis(2-Chloroisopropyl)ether	10 U	10 U
4-Nethylphenol	10 U	10 U
N-Nitroso-di-n-propylasine Nexachioroethane	10 U 10 U	10 U 10 U
Nitrobenzene	10 U	10 U
Isophorone	10 U	10 U
Z-Nitrophenol 2 4-Dimethylahanol	10 U	10 U 10 II
Senzoic Acid	50 U	50 U
bis(2-Chloroethoxy)methene	10 U	10 U
2,4-Dichlorophenol	10 U 10 U	10 U 10 U
Naphthalene	10 U	10 U
4-Chloroeniline	10 U	10 U
Nexachiorobutadiene	10 U	10 0
2-Methylasphthelene	10 U	10 0
Hexachlorocyclopentadiene	10 U	10 U
2,4,6-Trichlorophenol	10 U	10 U
2-Chioronachthaiene	10 U	10 U
2-Nitroeniline	50 U	50 U
Dimethylphthalate	10 U	10 U
Acenaphthylene 2.6-Dinitrotoluene	10 0	10 0
3-Nitroeniline	50 U	50 U
Acenaphthene	10 U	10 U
2,4-Dinitrophenol 4-Mitrophenol	50 U 50 U	50 U 50 U
Dibenzofuran	10 U	10 U
2,4-Dinitrotoluene	10 U	10 U
Diethylphthalate A-Chlorophenyl-phenylether	10 U 10 U	10 U 10 U
Fluorene	10 U	10 U
4-Nitroeniline	50 U	50 U
4,0-Dinitro-Z-methylphenol N-Nitroeodinherwienine	50 U 80 II	50 U 50 H
4-Bromophenyl-phenylether	10 U	10 U
Hexachlorobenzene	10 U	10 U
Pentachlorophenol	50 U	50 U 10 #
Anthracene	10 U	10 U
Di-n-butylphthalate	10 U	10 U
Fluoranthene	10 U	10 U
ryrene Sutvibenzvichthalate	10 U	10 U
3,3'-Dichlorobenzidine	20 U	20 U
Benzo(a)anthracene	10 U	10 U
unr <b>ysene</b> bis(2-Ethvlehexvl)mhthalata	10 U 10 U	10 U 10 U
Di-n-octylphthelate	10 0	10 U
Benzo(b)fluoranthene	10 U	10 U
Senzo(k)fluoranthene Renzo(a)mytene	10 U 10 U	10 U 10 U
Indeno(1,2,3-cd)pyrene	10 U	10 0
Dibenz(a,h)anthracene	10 U	10 U
Benzo(g,h,i)perylene	10 U	10 U

# Appendix Q BIBLIOGRAPHY

١.

:

GLT799/079.50-9

-

(

1

C

## Appendix Q BIBLIOGRAPHY

# Chapter 1

Crandall, Clifford J. June 5, 1984. Preliminary Sampling for Creosote of the Moss-American Site (correspondence to Penny Podell, Milwaukee County).

Envirex, Inc. (Rexnord Report) n.d. Demonstration of Removal and Treatment of Contaminated River Bottom Muds, Phase II, Draft Report. Prepared for Office of Research and Monitoring, Environmental Protection Agency.

Helvig, J. R. September 3, 1975. Stream Segment Survey of the Little Menomonee River. Internal Report of the Environmental Protection Agency.

Hussa, Robert O., Harvey B. Hopps, Joseph W. McCarthy, and Terrence L. Rinehart. 1973. The Creosote Problem in the Little Menomonee River. Scientific Committee, Citizens for Menomonee River Restoration, Inc.

National Enforcement Investigations Center (NEIC). June 1977. Impact of Creosote Deposits in the Little Menomonee River, Wisconsin. U. S. Environmental Protection Agency, EPA-330/2-77-016.

National Enforcement Investigations Center (NEIC). November 1977. The Potential for Pollution of the Little Menomonee River from the Kerr-McGee/Moss-American Plant Site, Milwaukee, Wisconsin. U.S. Environmental Protection Agency, EPA-330/2-77-022.

Sanders, Robert G., Stanley R. Rich and Thomas G. Pantazelos (Bio-Test Laboratories, Inc.). January 1973. Methods of Physically Remove Hazardous Material from Bottoms of Watercourses, for the Office of Research and Monitoring, U. S. Environmental Protection Agency, Contract 68-03-0181.

United Stated Army Corps of Engineers. 1971. Sampling of Little Menomonee River. Prepared by S. E. Miller.

### Chapter 2

CH2M HILL, Inc. 1982. Inline Storage Facilities Plan, Vol. 1. Program Management Office. Milwaukee Water Pollution Abatement Program. Prepared for Milwaukee Metropolitan Sewerage District.

Federal Emergency Management Agency (FEMA). Flood Insurance Study, City of Milwaukee, WIsconsin, Community Number 550278. Revised November 19, 1987.

Foley, F. C., W. C. Walton, and W. J. Drescher. 1953. Groundwater Conditions in the Milwaukee-Waukesha Area, Wisconsin. U. S. Geological Survey.

Southeastern Wisconsin Regional Planning Commission (SEWRPC). October 1976. A Comprehensive Plan for the Menomonee River Watershed, Volume 1: Inventory Findings and Forecasts. Planning Report No. 26, Waukesha, Wisconsin.

Southeastern Wisconsin Regional Planning Commission (SEWRPC). October 1976. A Comprehensive Plan for the Menomonee River Watershed, Volume 2: Alternative Plans and Recommended Plan. Planning Report No. 26, Waukesha, Wisconsin.

United States Department of Agriculture, Soil Conservation Service. 1971. Soil Survey of Milwaukee and Waukesha Counties, Wisconsin.

### Chapter 3

Callahan, Michael A., et al. December 1979. Water-Related Fate of 129 Priority Pollutants. Office of Water and Waste Management, U. S. EPA, EPA-440/4-79-029a.

Dragun, James. The Soil Chemistry of Hazardous Materials, Hazardous Materials Control Research Institute. Silver Spring, Maryland.

Jenkins, Cate. Alternate Concentration Limits for Dioxin Groundwater Contamination at Wood Preserving Sites. EPA memorandum dated May 8, 1986, to Bob Stewart. [Copied and distributed by Eileen Claussen, Characterization and Assessment Division (WH 562B), Office of Solid Waste and Emergency Response, in a memo titled "Technical Review Memorandum Concerning Analytical Strategies to Characterize Exposure Scenarios at Wood Preserving Sites" dated July 21, 1986.]

### Chapter 4

Southeastern Wisconsin Regional Planning Commission (SEWRPC). October 1976. A Comprehensive Plan for the Menomonee River Watershed, Volume 1: Inventory Findings and Forecasts. Planning Report No. 26, Waukesha, Wisconsin.

Southeastern Wisconsin Regional Planning Commission (SEWRPC). October 1976. A Comprehensive Plan for the Menomonee River Watershed, Volume 2: Alternative Plans and Recommended Plan. Planning Report No. 26, Waukesha, Wisconsin.

United States Environmental Protection Agency. October 1, 1986. Superfund Public Health Evaluation Manual. Office of Solid Waste and Emergency Response (OSWER) Directive 9285.4-1.

Wisconsin Department of Natural Resources. January 1985. Stream Classification for the Little Menomonee River, Menomonee Watershed by W. Wawrzyn.

U. S. Environmental Protection Agency (1988d). Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA - Interim Final. OSWER Directive 9355.3-01. October 1988.

### Appendix G

Bower, Herman, R. C. Rice. June 1976. A Slug Test for Determining Conductivity of Unconfined Aquifers with Completely of Partially Penetrating Wells. *Water Resource Research*. 12:423-5.

Todd, David K. 1980. Groundwater Hydrology. New York: John Wiley and Sons.

### Appendix I

Freeze, R. Allan, and John A. Cherry. 1979. Groundwater. Englewood Cliffs, New Jersey: Prentice-Hall.

### Appendix J

Griffen, R. A. June 1985. Preliminary Report of Soil Contamination Investigation, Seymour RI/FS.

Karickhoff, S. W., Sorption of Hydrophobic Pollutants on Natural Sediments. 1979.

# Appendix K

ŧ

Abrams, R., and G. Chesters. 1976. The Benthic Macroinvertebrates of the Menomonee River.

Bannerman, R., M. F. Bonn, and J. G. Konrad. 1984. The IJC Menomonee River Watershed Study: Surface Water Quality, 1975-1979. Volume 12 U. S. EPA Region 5. EPA-905/4-79-029-C.

Bauman, P. C., and J. J. Lech. In press. PAH's, Metabolites, and Neoplasia in Feral Fish Populations. *PAH Metabolism in the Aquatic Environment*. U. Varanasi, ed. Boca Raton, Fla: CRC Press.

Binder, S., W. Kay, D. Forney, and D. Paschal. 1985. Arsenic Exposure in Children Living Near the Former Copper Smelter at Anaconda, Montana.

Proceedings of the 6th National Conference on the Management of Uncontrolled Hazardous Waste Sites. Washington, DC. 1985.

Bos, R. P., et al. 1987. Fluoranthene, a Volatile Mutagenic Compound Present in Creosote and Coal Tar. *Mutagen Research* (3):119-25.

Boyle, T. P., et al. 1984. Distribution and rate of Disappearance of Fluorene in Pond Ecosystems. *Chemosphere* 13: 997-1,008.

Casarett and Doull. 1986 Toxicology. Ed. C. D. Klaasen, M. O. Amdur, and J. Doull. 3rd edition. New York: Macmillan Publishing Company.

Clayton, G. D., and F. E. Clayton. 1981. Patty's Industrial Hygiene and Toxicology Vol. 2A-2C Toxicology. New York: John Wiley and Sons.

Edwards, N. T. 1983. Polycyclic Aromatic Hydrocarbons (PAH's) in the Terrestrial Environment-A Review. J. Environ. Qual. 12:427-41.

Eisler, R. 1987. Polycyclic Aromatic Hydrocarbon Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. U. S. Fish Wildl. Serv. Biol. Report. 85 (1.11) 81 pp.

Finger, S. E., et al. 1985. Comparison of Laboratory and Field Assessment of Fluorene--Part I: Effects of Fluorene on the Survival, Growth, Reproduction and Behavior of Aquatic Organisms in Laboratory Tests. pp. 120-33. Validation and predictability of laboratory methods for assessing the fate and effects of contaminations in aquatic ecosystems. T. P. Boyle, ed. ASTM STP 865. American Society for Testing and Materials, Philadelphia.

Gosselin, R. E., R. D. Smith, and H. C. Hodge. 1984. Clinical toxicology of Commercial Products. 5th edition, Baltimore: Williams & Wilkins.

Hilsenhoff, W. L. 1982. Using a Biotic Index to Evaluate Water Quality in Streams. Wisconsin Department of Natural Resources Technical Bulletin No. 132.

ICF-Clement. April 23, 1986. Endangerment Assessment: Mill Creek, Montana Anaconda Smelter Side. Revised Final Report. Prepared by Clement Associates for U. S. EPA Region 8.

International Agency for Research in Cancer (IARC). 1985. Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. Vol. 35.

Landrum, P., F., et al. 1984. Role of Sediment in the bioaccumulation of Benzo(a)pyrene by the Amphipod, *Pontoporeia hoyi*. Pp. 799-812. *Polynuclear Aromatic Hydrocarbons: Mechanisms, Methods, and Metabolism*. M. Cooke and A. J. Dennis, ed. Columbus, Ohio: Battelle Press. Landrum, P. F., and D. Scavia. 1983. Influence of Sediment on Anthracene Uptake, Depuration, and Biotransformation by the Amphipod Hyalella azteca. Canada J. Fish Aquatic Sci. 40:298-305.

Lee, S. E., and L. Grand ed. 1981. Health and Ecological Assessment of Polynuclear Aromatic Hydrocarbons. Park Forest South, Illinois: Pathotex. 364 pp.

Lorenz, L. F., and L. R. Gjovick. 1982. Analyzing Creosote by Gas Chromatography: Relationship to Creosote Specifications. *Proceedings American Wood Preservation Association*. 68:32-42.

National Cancer Institute (NCI). 1985. Creosote: Monograph of Human Exposure to Chemicals in the Workplace. No. 1-CP-26002-03.

Neff, J. M. 1982. Polycyclic Aromatic hydrocarbons in the Aquatic Environment and Cancer Risk to Aquatic Organisms and Man. Pages 385-409. Symposium: Carcinogenic Polynuclear Aromatic Hydrocarbons in the Marine Environment. N. L. Richards and B. L. Jackson, ed. U. S. EPA Report 60/9-82-013.

Sims, R. C, and R. Overcash. 1983. Fate of Polynuclear Aromatic Compounds (PNAs or PACs) in Soil-Plant Systems. Residue Rev. 88: 1-68.

Sittig, M. 1985. Handbook of Toxic and Hazardous Chemicals and Carcinogens. 2nd edition. Park Ridge: Noyes.

Southeastern Wisconsin Regional Planning Commission (SEWRPC). October 1976. A Comprehensive Plan for the Menomonee River Watershed.

Sullivan, B. November 15, 1988. Personal Communication between A. M. Stumpf, CH2M HILL and B. Sullivan, Wisconsin County Park District.

U. S. Department of Energy. 1986. Draft Environmental Impact Statement: Disposal of Hanford Defense High-Level, Transuranic and Tank Wastes. DOE/EIS-0113. Washington, DC.

U. S. Environmental Protection Agency (1980a). Ambient Water Quality Criteria for Polycyclic Aromatic Hydrocarbons. 1980.

U. S. Environmental Protection Agency (1980b). Ambient Water Quality Criteria for Fluoranthene. EPA 440/5-80-049. 1980.

U. S. Environmental Protection Agency (1984a). Health Assessment Document for Inorganic Arsenic: Final Report. EPA-600/8-83-021F, Office of Health and Environmental Assessment. March 1984.

U. S. Environmental Protection Agency (1984b). Health Effects Assessment for Polycyclic Aromatic Hydrocarbons (PAH's). EPA/540/1-86/013, Office of Research and Development. September 1984.

U. S. Environmental Protection Agency (1985a). Mutagenicity and Carcinogenicity Assessment of 1,2-Butadiene: Final Report. EPA/600/8-85/004F, Office of Health and Environmental Assessment, September 1985.

U. S. Environmental Protection Agency (1985b). EPA Proposal to Set Recommended Drinking Water Limits for Inorganic, Synthetic Organic Chemicals, Microorganisms. *Federal Register* 50: 46936. November 13, 1985.

U. S. Environmental Protection Agency (1985c). Revised National Oil and Hazardous Substances Pollution Contingency Plan Under the Comprehensive Environmental Response, Compensation and Liability Act of 1980. Federal Register 50: 47950. November 20, 1985.

U. S. Environmental Protection Agency (1986a). Guidelines for Estimating Exposure. Federal Register 51:34042-45. September 24, 1986.

U. S. Environmental Protection Agency (1986b). Guidelines for Mutagenicity Risk Assessment. Federal Register 51: 34006-25. September 24, 1986.

U. S. Environmental Protection Agency (1986c). Guidelines for the Health Risk Assessment of Chemical Mixtures. *Federal Register* 51: 34014-41. September 24, 1986.

U. S. Environmental Protection Agency (1986d). Guidelines for Carcinogen Risk Assessment. Federal Register 51: 33992-34013. September 24, 1986.

)

)

U. S. Environmental Protection Agency (1986e). Superfund Public Health Evaluation Manual. EPA 540/1-86-060. October 1986.

U. S. Environmental Protection Agency (1987). Health Effects Assessment for Creosote. EPA/600/8-88/025, Office of Research and Development. July 1987.

U. S. Environmental Protection Agency (1988a). Superfund Exposure Assessment Manual. OSWER Directive 9285.5-1, Office of Emergency and Remedial Response. April 1988.

U. S. Environmental Protection Agency (1988b). Memorandum from Lee Thomas to Assistant Administrators. Subject: Recommended Agency Policy on the Carcinogenicity Risk Associated with the Ingestion of Inorganic Arsenic. June 21, 1988.

U. S. Environmental Protection Agency (1988c). Proposed Revisions to the National Oil and Hazardous Substances Pollution Contingency Plan Under the Comprehensive Environmental Response, Compensation and Liability Act of 1980. Federal Register 53: 15394. December 21, 1988.

U. S. Environmental Protection Agency (1989a). Integrated Risk Information System. Chemical Files. U. S. EPA Integrated Risk Information System Data Base, Office of Research and Development, Cincinnati, Ohio. 1989.

Q-6

U. S. Environmental Protection Agency (1989b). Integrated Risk Information System. Background Information. U. S. EPA Integrated Risk Information System Data Base, Office of Research and Development, Cincinnati, Ohio. 1989.

U.S. Environmental Protection Agency (1989c). Interim Final Guidance for Soil Ingestion Rates. OSWER Directive 9850.4. January 27, 1989.

U. S. Environmental Protection Agency (1989d). Exposure Factors Handbook -Final Report. EPA/600/8-89/043, Office of Health and Environmental Assessment. March 1989.

U.S. Environmental Protection Agency (1989e). Risk Assessment Guidance for Superfund-Environmental Evaluation Manual. Interim Final. EPA/540/1-89-001A OSWER Directive 9285.701. March 1989.

U. S. Environmental Protection Agency (1989f). Risk Assessment Guidance for Superfund--Human Health Evaluation Manual. Part A. Interim Final. OSWER Directive 9285.701A. October 1989.

U. S. Environmental Protection Agency (1989g). Health Effects Assessment Summary Tables - Third Quarter FY 1989. OERR 9200.6-303-(89-3), Office of Research and Development. 1989.

Verschueren, K. 1983. Handbook of Environmental Data on Organic Chemicals. Second edition, Van Nostgrand Reinhold Company.

Wisconsin Department of Natural Resources. 1984. Water Quality Standards Review for the Milwaukee Metropolitan Area. Bureau of Water Resource Management, Madison. May 16 correspondence to U. S. EPA.

Wisconsin Department of Natural Resources. January 1985. Stream Classification for the Little Menomonee River, Menomonee Water Shed by W. Wawrzyn.

### Appendix L

.*

Anderson, E., et al. Development of Statistical Distributions or Ranges of Standard Factors Used in Exposure Assessments. EPA-600/8-85-010. August 1985.

Cawsarett and Doull. Toxicology. 3rd edition. ed. C. D. Klaasen, M. O. Amdur, and J. Duoll. New York: Macmillan Publishing Company. 1986.

Dutkiewicz, T., and H. Tyras. 1967. A Study of Skin Absorption of Ethylbenzene in Man. British Journal of Industrial Medicine 24: 330-2.

Dutkiewicz, T., and H. Tyras. 1968. Skin Absorption of Toluene, Styrene, and Xylene by Man. British Journal of Industrial Medicine 25:243.

Healy, J. W. 1980. Review of Resuspension Models. Transuranic Elements in the Environment. DOE-TIC-2280. Springfield, VA: Technical Information Center.

)

1

)

International Commission on Radiological Protection. 1974. Report of the Task Group on Reference Man. International Commission on Radiological Protection Publication No. 23, W. S. Snyder, ed. Oxford: Pergamon Press.

Schaum, J. November 1984. Risk Analysis of TCDD Contaminated Soil. U. S. EPA Office of Health and Environmental Assessment. EPA 600/8-84-031.

Scheuplein, R. J., and I. H. Blank. 1971. Permeability of the Skin. *Physiological Review* 51(4): 702-47.

Scheuplein, R. J., and L. W. Ross. 1974. Mechanism of Percutaneous Absorption V. Percutaneous Absorption of Solvent Deposited Solids. The Journal of Investigative Dermatology 62: 353-60.

U.S. Department of Energy. 1986. Draft Environmental Impact Statement: Disposal of Hanford Defense High-Level, Transuranic and Tank Wastes. DOE/EIS-0113. Washington, DC.

U. S. Environmental Protection Agency (1986a). Guidelines for the Health Risk Assessment of Chemical Mixtures. *Federal Register* 51: 34014-41. September 24, 1986.

U. S. Environmental Protection Agency (1986b). Guidelines for Carcinogen Risk Assessment. Federal Register 51: 33992-34013. September 24, 1986.

U. S. Environmental Protection Agency (1986c). Development of Advisory Levels for Polychlorinated Biphenyls (PCBs) Cleanup. U. S. EPA Exposure Assessment Group, EPA/600/6-86/002. May 1986.

U. S. Environmental Protection Agency (1988). Superfund Exposure Assessment Manual. OSWER Directive 9285.5-1, Office of Emergency and Remedial Response. April 1988.

U. S. Nuclear Regulatory Commission (NRC). 1986. Update of Part 61 Impacts Analysis Methodology. NUREG; CR-4370, Vol. 1 and 2, Washington, DC.

GLT864/101.50

٩,