

Test Plan - Phase I Treatability Study of Soil Washing Treatment Technology

Moss-American Site Milwaukee, Wisconsin

7 August 1992

Vernon Hills, Illinois

THREE HAWTHORN PARKWAY, SUITE 400 VERNON HILLS, IL 60061-1450 708-918-4000 • FAX: 708-918-4055

Ms. Bonnie L. Eleder (HSRW-6J) Remedial Project Manager U.S. Environmental Protection Agency 77 W. Jackson Blvd. Chicago, Illinois 60604-3590

Re: Final Test Plan - Phase I Treatability Study of Soil Washing Treatment Technology Moss-American Site - Milwaukee, WI

Dear Ms. Eleder:

Roy F. Weston, Inc. (WESTON_®), on behalf of the settling defendant for the Moss-American Site, is hereby transmitting the final version of the above-referenced test plan.

This final version incorporates the revised pages that were approved in U.S. EPA's letter of 21 December 1992 and received by WESTON on 31 December 1992.

Please note that Section 6 of the test plan provides additional information related to anticipated goals of laboratory accuracy for the testing. This additional information addresses the remaining unresolved comment noted in your 21 December 1992 approval letter. By this transmittal, we are also providing our subcontractor, Bergmann USA, with authorization to begin the treatability study work. The work will then proceed per the schedule presented in Section 12 of the test plan.

Very truly yours,

ROY F. WESTON, INC.

Gary J. Deigan Senior Project Manager

Kurt S. Stimpson Project Director

GJD/KSS/slr Enclosure (2 copies)

CH01\PUBLIC:\WO\MOSSAMER\9438.LTR

Ms. Bonnie L. Eleder U.S. EPA -2-

22 January 1993

cc: Mr. Mark Krippel, Project Manager Kerr-McGee Chemical Corporation 798 Factory St.
P.O. Box 548
West Chicago, IL 60186

> Mr. George B. Rice Kerr-McGee Chemical Corporation P.O. Box 25861 Oklahoma City, Oklahoma 73125

Mr. Richard Meserve Covington & Burling 1201 Pennsylvania Avenue N.W. P.O. Box 7566 Washington, D.C. 20044

Regional Counsel (1 copy) Attn: Moss-American Site Coordinator (5CS) U.S. Environmental Protection Agency 77 West Jackson Boulevard Chicago, IL 60604

Assistant Attorney General (1 copy) Environment and Natural Resources Division U.S. Department of Justice P.O. Box 7611 Ben Franklin Station Washington, D.C. 20044 Ref. D.J. #90-11-2-590

Section Chief (3 copies) Environmental Response and Repair Section Bureau of Solid and Hazardous Waste Management Department of Natural Resources 101 S. Webster Street P.O. Box 7921 Madison, WI 53707-7921

ZUEN

Ms. Bonnie L. Eleder U.S. EPA -3-

22 January 1993

Mr. Jim Schmidt (2 copies) Department of Natural Resources Southeast District Office P.O. Box 12436 Milwaukee, WI 53212

Mr. Stevan Keith, P.E. CH2M Hill 310 W. Wisconsin Ave., Suite 700 P.O. Box 2090 Milwaukee, WI 53201

CH01\PUBLIC:\WO\MOSSAMER\9438.LTR

TEST PLAN PHASE I TREATABILITY STUDY OF SOIL WASHING TREATMENT TECHNOLOGY

1 .

h

Moss-American Site Milwaukee, Wisconsin

Prepared by

Bergmann USA Brookside Professional Centre 72-II West Stafford Road Stafford Springs, CT 06076-0535

and

Roy F. Weston, Inc. Weston Way West Chester, PA 19380

August 1992

TABLE OF CONTENTS

Section	Title	Page .
1	Project Description	1-1
2	Overview of the Bergmann Soil/Sediment Washing Process	2-1
3	Test Objectives	3-1
4	Experimental Design and Procedures 4.1 Sample Procurement and Initial Characterization (by WESTC 4.2 Characterization and Soil Washing Tests	4-1 DN) 4-1 4-1
5	Phase I Bench-Scale Screening Equipment	5-1
6	Sampling and Analysis	6-1
7	Data Management	7-1
8	Data Analysis and Interpretation	8-1
9	 Health and Safety 9.1 Hazard Analysis 9.2 Personal Protective Equipment 9.3 Respiratory Protection Program 9.4 General Work Practices 9.5 Personnel Training 9.6 Medical Surveillance 9.7 Spill Prevention and Containment 	9-1 9-2 9-3 9-5 9-6 9-7 9-7
10	Residuals Management	10-1
11	Reports	11-1
12	Schedule	12-1

i

LIST OF TABLES

<u>Table</u>	Title	Page
4-1	Physical/Chemical Analyses Plan	4-3
4-2	Soil Characterization Analytical Requirements	4-6
4-3	Soil Washing Analytical Requirements	4-8
11-1	Technical Memorandum Outline	<u>11-2</u>

ii

LIST OF FIGURES

<u>Figure</u>	Title	Page
2-1	Typical Soil Washing Process Flow Schematic	2-2
4-1	Soil Characterization Procedure	4-4
4-2	Test Protocol for Contaminated Soil Washing	4-5
12-1	Project Schedule - Treatability Study for Soil Washing Processes	12-2

į.

LIST OF APPENDICES

<u>Appendix</u>

Α	Protocol for Collection and Characterization of Treatability Study Test Matrix
В	Lancaster Laboratories, Inc. Quality Assurance Plan
С	MSDS Sheets for Chemicals of Concern

' iv

SECTION 1 PROJECT DESCRIPTION

Background

The United States Environmental Protection Agency (U.S. EPA), pursuant to Section 105 of 1980 Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), placed the Moss-American site in Milwaukee, Wisconsin (the Facility) on the National Priorities List (NPL). The U.S. EPA conducted a remedial investigation/feasibility study (RI/FS) for the Facility and issued the corresponding RI and FS reports on January 9, and May 24, 1990, respectively.

On May 29, 1990, U.S. EPA published a notice of completion of the RI/FS and issued the proposed remedial action plan for the Facility. A public comment period began with issuance of the proposed plan and extended until August 6, 1990. On September 27, 1990, the U.S. EPA Regional Administrator signed the Record of Decision (ROD), which describes the remedial action plan for the Facility. Public comments that were received, and the U.S. EPA response to the comments were included in the ROD with which the state of Wisconsin has expressed concurrence.

A Consent Decree (CD) incorporating the Statement of Work (SOW) was signed by Kerr-McGee Chemical Corporation, Inc. (KMCC) on July 17, 1991. The CD was lodged by the U.S. Department of Justice on December 28, 1991. Under this CD, the Settling Defendant, KMCC, will lead in developing and implementing the remedial design and remedial action plan for the Facility.

Facility Location

The Facility is located in the northwestern section of the city of Milwaukee, county of Milwaukee, state of Wisconsin, at the southeast corner of the intersection of Brown Deer and Granville Roads, at 8716 Granville Road. The Facility, as defined by the CD, includes the former Moss-American wood preserving plant property and approximately 5 miles of the Little Menomonee River. The Little Menomonee River, portions of which are defined as part of the Facility, flows through the eastern portion of the former wood preserving plant, continuing on through the Milwaukee County Parkway, to its confluence with the Menomonee River about 5 miles south. Portions of the Little Menomonee River's floodplain are included in the Facility boundary. Fifty-one acres of the former wood preserving plant are undeveloped Milwaukee County park land. Twenty-three acres are owned by the Chicago and North Western Transportation Company and used as a loading and storage area for automobile transport. The Facility is located in a moderately-populated suburban area of mixed industrial, commercial, residential, and recreational use. Population in the nearby area is estimated at 2,036 persons per square mile.

Purpose and Content of Test Plan

Excavated soils/sediments from the Moss American site which exceed the cleanup criterion will be treated by the bioslurry process. Soil washing may be used (at KMCC's option) as a adjunct to the bioslurry process. This option would be exercised if the use of soil washing will reduce subsequent treatment requirements.

Treatability testing to be conducted under this Test Plan will be used to evaluate the feasibility and implementability of soil washing as an adjunct to the bioslurry process.

Roy F. Weston, Inc. (WESTON[®]) is the prime contractor to the Settling Defendant, KMCC, responsible for the CD implementation. WESTON has contracted Bergmann USA of Stafford Springs, CT (Bergmann) to conduct laboratory-scale treatability studies to evaluate

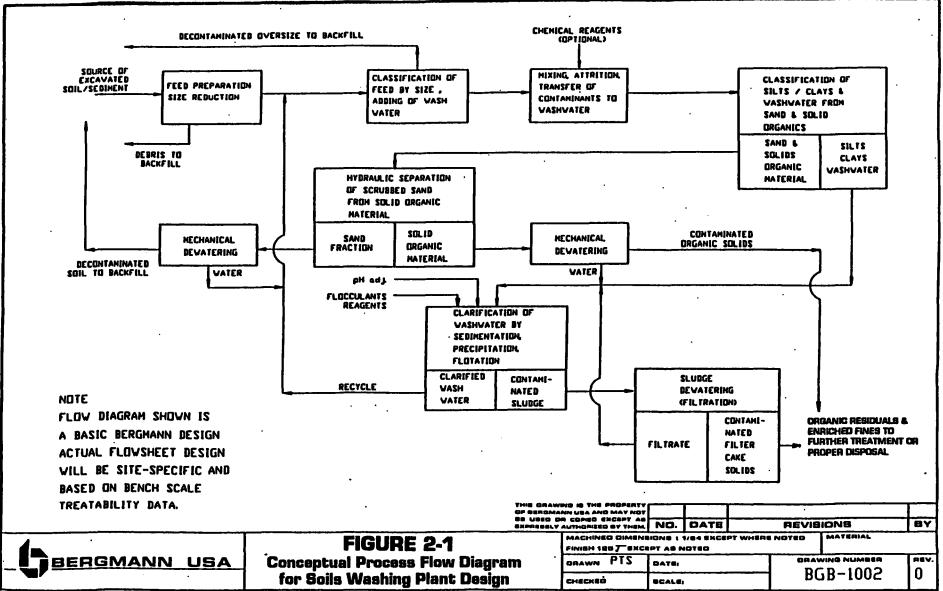
the effectiveness of the soil washing technology in treating creosote-impacted soils at the Moss-American site. The treatability studies will be conducted as part of Predesign Task 16 of the Statement of Work (SOW).

Bergmann will provide all services necessary to plan, implement, analyze and report the results of treatability testing of the soil washing treatment process. The intent of testing is to determine the ability of such processes to treat creosote-contaminated soils from the Moss-American site. The polycyclic aromatic hydrocarbon (PAH) components of creosote and carcinogenic polycyclic aromatic hydrocarbons (CPAH) are the site contaminants of concern. According to the RI, the maximum PAH concentration is 32,000 milligrams per kilogram (mg/kg); BTX concentrations range up to 17 mg/kg. The CPAH concentrations are 300 to 400 mg/kg. Maximum CPAH concentrations are approximately 1,900 mg/kg. The SOW requires treatment of contaminated site soils and sediments to 6.1 mg/kg of total CPAHs.

SECTION 2

OVERVIEW OF THE BERGMANN SOIL/SEDIMENT WASHING PROCESS

Soil and sediment washing is an aqueous (water based) volume reduction process whereby hazardous contaminants are extracted and concentrated into a smaller residual portion of the original volume using primarily physical separation methods. The process concept involves transfer of the contaminants from the soil or sediments to the wash water and their subsequent removal from the water via further treatment. Cleaned coarse sand and gravel portions of the treated soil/sediment may then be redeposited on site or otherwise beneficially used as construction fill material, concrete and asphalt aggregate, or daily landfill cover. The now smaller volume of contaminated residual concentrate is subsequently treated by other technologies.


The physical techniques that have been employed by the Bergmann technology have included crushing, screening, wet classification, attrition scrubbing, dense media separation, elutriation, dissolved air flotation, gravity separation and mechanical dewatering. Associated chemical additives may include detergents, surfactants, chelating agents, solvents, coagulants, flocculants and pH adjustment, as necessary. Figure 2-1 presents a typical process flow schematic of the soil washing technology.

Applications

The Bergmann soil washing technology may be an effective treatment involving volumetric reduction and feedstock preparation of land based soils, as well as river and harbor sediments.

The process can be an effective and economical remedial technology when the contaminated soil or sediment contains no more than 40 percent silt and clay material smaller than 63 micron (200 mesh). Solid organic material (leaves, roots, wood, etc.) should not exceed 20 percent by volume.

\WO\MOSSAMER\7267.S-2

We wanted a second

. . .

Typical hazardous contaminant groups which have been removed from coarse soil and sediment fractions may include:

- Petroleum and heavy fuel residuals.
- PCP.
- Radioactive contaminants.
- Pesticides.
- Heavy metals.
- Cyanides.
- PCBs.

Effectiveness

Contaminant extraction efficiencies of up to 99 percent or better have been achieved by employing Bergmann commercial soil washing systems on specific contaminants and site soils. Cleanup performance is, in all cases, site-specific, and dependent upon the particular physical and chemical properties of the contaminated soil and sediment. Although Bergmann European designed soils washing plants have been successfully applied to creosote contaminated sites, the effectiveness of full-scale soil washing on creosote-impacted soils in the United States has not yet been widely demonstrated. A laboratory treatability study is an essential first step. On occasion, on site tests are also conducted using mobile or transportable 250 kg/day Bergmann pilot plant equipment.

Waste Minimization

Soils and sediment washing can make an important contribution to waste minimization when used as a <u>pretreatment</u> in conjunction with other treatment processes. Normally this process results in the concentration of hazardous contaminants into a residual (<63 microns) product representing 10 to 30 percent of the original volume. The residual contaminant concentrates produced from the soil/sediment washing operations can provide an efficient feedstock for downstream treatment technologies.

The washed (decontaminated) coarse fractions (>63 microns) which may represent 70 percent to 90 percent of the original volume, can either be redeposited on site or otherwise beneficially used.

SECTION 3 TEST OBJECTIVES

The test objective of the Phase I laboratory-scale treatability test program is to demonstrate the ability of the aqueous soil washing process to produce a clean sand product that will pass the currently established "clean-up criterion" for the excavated site materials of 6.1 mg/kg of the carcinogenic polycyclic aromatic hydrocarbon (CPAHs) fraction. Feasibility will be determined on the basis of both achievement of the cleanup criterion and an evaluation of overall treatment efficacy.

This testing will emphasize the aqueous, size classification soil washing process (without added chemical reagents/surfactants). Initial screening evaluation of selected reagents will be included. The need for chemical reagents/surfactants to achieve contaminant separation may negatively affect feasibility and implementability of the soil washing option. Phase 1 testing will provide an assessment of whether purely aqueous soil washing will provide adequate separation.

Specific findings/data that are anticipated to be determined during this treatability study include:

- Particle Size Distribution of Site Soils.
- Identification of Process for Contaminant Removal.
- Contaminant Removal Efficiency.
- Pilot/Full Scale Plant Process Flow Diagrams.
- Identification of Unit Process Modules & Operational Sequences.
- Full-Scale Operational System Mass Balance Calculations.

There findings/data will be presented in a Technical Memorandum (TM). This TM will be transmitted to U.S. EPA and WDNR for review and comment. Section 12 shows the anticipated schedule for the TM transmittal.

SECTION 4 EXPERIMENTAL DESIGN AND PROCEDURES

4.1 SAMPLE PROCUREMENT AND INITIAL CHARACTERIZATION (BY WESTON)

The test material employed in the soil washing studies will be collected from the Moss-American site. Two representative, composite samples will be collected, with one composite soil sample containing carcinogenic polycyclic aromatic hydrocarbons (CPAH) in the range of 300 to 600 milligrams per kilogram (mg/kg) and one sample containing CPAH in the range of 1,000 to 1,500 mg/kg. Initial characterization of the samples will be conducted immediately following sample collection. Test parameters will include bulk density, particle size distribution, porosity, moisture, liquid/plastic limits, pH, total organic carbon (TOC), and total and specific polycyclic aromatic hydrocarbons (PAH)-degrading microbial populations. A detailed description of WESTON's Protocol for Collection and Characterization of Treatability Study Test Matrix can be found in Appendix A. WESTON will conduct a single combined sampling and analysis for the bioslurry and soil washing test matrix.

The two composite soil samples, collected and characterized by WESTON, will be shipped to Bergmann's testing laboratory via a licensed commercial carrier. Approximately 110 pounds of each sample composite will be shipped to the laboratory to conduct the soil washing treatability testing. Appropriate shipping documentation will accompany the sample shipment from the Moss-American site to the testing laboratory in Stafford Springs, Connecticut.

4.2 <u>CHARACTERIZATION AND SOIL WASHING TESTS</u>

The following protocol will be followed by Bergmann for each of the two soil sample composites.

Table 4-1 presents the anticipated chemical analysis of the soil. The soils will be characterized to determine the size range of the soil components and the distribution of PAH contamination.

Figure 4-1 provides a schematic diagram showing the characterization process. Each sample will be homogenized by blending, and a sample will be split out for feed soil assay. The remaining material will be screened at 1/4 inch; the undersize material will be sampled for screen analysis, and the remaining minus 1/4 inch material will be advanced to the treatment program.

Figure 4-2 illustrates the test procedure to be used on the minus 1/4 inch soils. Tests will be run on soil samples from two locations, resulting in a total of 20 tests. The soils will be screened at 200 mesh to produce a coarse and fine fraction. This "break" or size split at 200 mesh (74 micron) represents the typical minimum performance level of Bergmann's fullscale (± 15 TPH) commercial soils washing plants. Tests will be run on the coarse fraction using chemical formulations supplied by Bergmann USA. Each chemical formulation will be designed to remove the PAH compounds from the coarse sand fraction of the soil so that the clean product sand will pass the clean-up criterion concentration of 6.1 mg/kg of the CPAH fraction.

The fines fraction will be filtered to produce a filter cake. This cake will be returned to WESTON for storage pending potential future treatment tests which may be undertaken if the washing tests are successful.

Step 1.0 Characterization

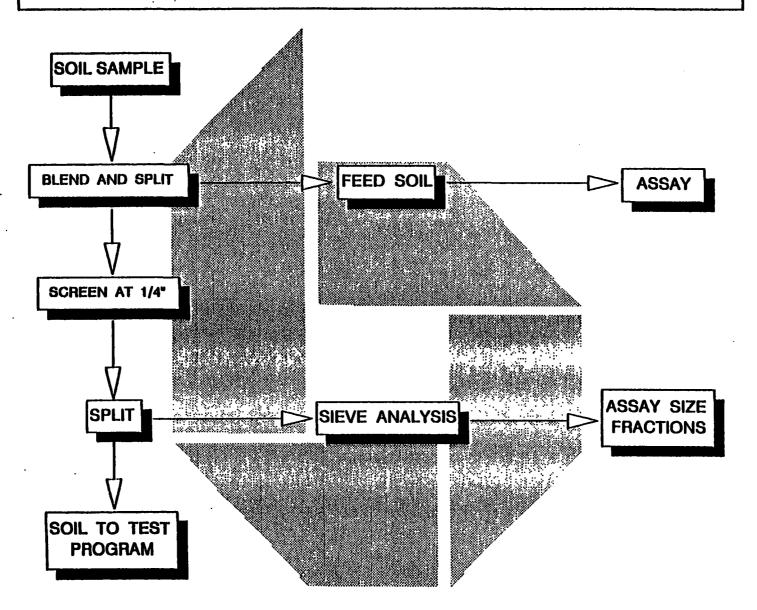
The soil characterization process is shown schematically in Figure 4-1. Sampling and analytical requirements are detailed in Table 4-2.

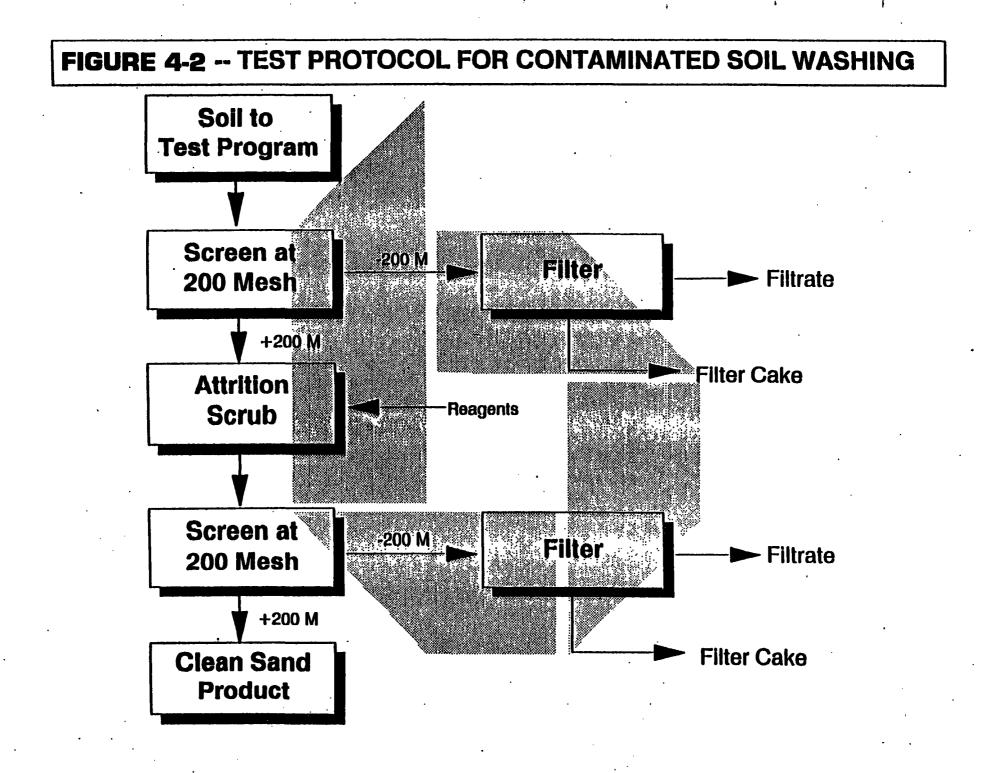
Step 1.1: Blend and split ("cone & quarter") a sample of feed soil for analysis.

\WO\MOSSAMER\7267.S-4

.

Table 4-1


Physical/Chemical Analyses Plan


۰.

Test Parameter	Analytical Method
Soil Grain Size Analyses	ASTM D4749-87 Standard Method for Performing Wet Sieve Analyses
pH analyses of both residual and filtrate fractions	EPA Method 9040
Polycyclic aromatic hydrocarbons (PAHs) analyses of both residual and filtrate fractions	EPA Method 8310
Benzene-toluene-xylene (BTX) analyses of both residual and filtrate fractions	EPA Method 8020
Oil and grease analyses of both residual and filtrate fractions	EPA Method 9071
Moisture analyses of residual fractions	ASTM D2216

\WO\MOSSAMER\7267T.4-1

FIGURE 4-1 -- SOIL CHARACTERIZATION PROCEDURE

Table 4-2

Soil Characterization Analytical Requirements

Material	Weight/Volume	Sample A	Sample B	Duplicates	
Feed Soil	Dry Weight				
Dry Screening					
-1/4 Inch	Dry Weight	1	1	0	
+1/4 Inch	Dry Weight	1	1	0	
Wet Screen Analysis (-1/4 Inch Soils)					
Size Fraction:			•		
+ 10 Mesh	Dry Weight	1	1	-0	
+50 Mesh	Dry Weight	1	· 1	0	
+100 Mesh	Dry Weight	1	1	0	
+200 Mesh	Dry Weight	1	1	0	
+325 Mesh	Dry Weight	1	1.	0	
-325 Mesh	Dry Weight	1	1	0	
TOTALS		8	8	0	

* ASTM D4749-87 - Standard Method for Performing Wet Sieve Analysis.

- Step 1.2: Dry screen the remaining material to remove 1/4-inch top size material. Weigh the +1/4 inch oversize, and the -1/4 inch undersize.
- Step 1.3: Cone and quarter the minus 1/4-inch undersize material. Blend two opposing quarters, and cone and quarter again. Repeat this procedure to generate sufficient sample for wet screening and chemical analysis.
- Step 1.4: If clay lumps form during dry screening, subject fractions to ultrasonic bath until lumps are broken up.

Step 2.0 Soil Washing Tests

The soil washing process is shown schematically in Figure 4-2. Sampling and analytical requirements are detailed in Table 4-3.

- Step 2.1: Sample the feed soil and analyze as shown in Table 4-3.
- Step 2.2: Wet screen the 1/4-inch material at 200 mesh to remove the fine fraction. Filter the -200 mesh slurry for sampling and analyses according to Table 4-3.
- Step 2.3: Blend and split the +200 mesh fraction into 10 samples of approximately equal weight. The samples will be tested according to the test program presented in Table 4-3.
- Step 2.3.1: Mix the samples with water and/or reagents to a pulp density of 75 percent solids.
- Step 2.3.2: Attrition scrub for 15 minutes.
- Step 2.3.3: Wet screen the pulp at 200 mesh. Measure the weight (wet and dry) of the +200 mesh clean sand product. Blend the wash water with -200 mesh fines fraction.
- Step 2.3.4: Filter the -200 mesh fines to form a filter cake for analyses. Record weights and volumes.

Table 4-3

Soil Washing Analytical Requirements

· ·	•		Analyses			Duplicates		
Test	Weight/Volume	Moisture	PAH	O&G	BTEX	PAH	O&G	BTEX
Feed ^a								
Soil to Test Program Solids	. Dry Weight	2	2	2	2			
Reject ^a								
-200 Mesh Screened Solids	Dry Weight	2	2	2	2			`
Filtrate	Volume	2	2	2	2			
Test Program Products ^b								
Sands	Dry Weight	30	30	30	30	3	3	3
Fines	Dry Weight	30	30	30	30	3	3	3
Filtrate	Volume		30	30	30	3	3	3
TOTALS		66	96	96	96	9	9	9

^a - Tests and analyses run on two samples, A and B.

^b - Test Program:

Test #1 - Water only, two attrition scrubs. Assay sand fraction of second scrub.

Test #2 - Citrikleen type surfactant, high concentration.

Test #3 - Citrikleen type surfactant, low concentration.

Test #4 - Dodacyl sulfate surfactant, high concentration.

Test #5 - Dodacyl sulfate surfactant, low concentration.

Step 2.4: Submit samples for assay according to Table 4-3. Samples are scheduled to be sent to:

Lancaster Laboratories, Inc. 2425 New Holland Pike Lancaster, Pennsylvania 17601-5994 (717) 656-2301 ATTN: Pat Downing

Step 2.5: Clean the equipment between runs using reagent grade tri-sodium phosphate.

Step 3.0 Sample Disposal

Step 3.1: Package the solid and liquid products separately for return to the Moss-American site for storage.

Dr. William Lowe, at (215) 344-3762, or Gary Deigan at (708) 918-4000, WESTON, will be notified when submission of samples to laboratory for analyses has been done.

SECTION 5

PHASE I BENCH-SCALE SCREENING EQUIPMENT

Each contaminated site offers specific and unique characteristics for that location. The quantification and qualification of contaminants of interest, and their inter-relationship with the specific mineralogy of the soil require each new site to be evaluated individually for the optimum combination of washwater additives necessary to solubilize, mobilize, precipitate, or complex the organic and/or inorganic chemical constituents in site soils.

The Phase I Treatability Study for the Moss-American Site will utilized the following bench/pilot scale equipment which simulates the principal unit process operations of full-scale modular systems of Bergmann's commercial-scale (+15 TPH) transportable plants:

- 1. <u>Precision Sample Splitter</u> for mixing and accurately dividing granular material.
- 2. <u>Vibratory Scalping Screen</u> for removal of +1/4" material fraction.
- 3. <u>Frietsh Wet Sieve Stack and Vibratory Table</u> for wet sieving of sample material.

4. <u>Elutriation Separation Column</u> for specific gravity separation of contaminated organic materials (i.e., decayed leaves, twigs, wood, roots, etc.).

- 5. <u>Sedimentation / flocculation cells</u> for separation and concentration of suspended clay, silt and colloidal material.
- 6. <u>Fines Dewatering Pressure Filter</u> for concentration of clay, silt and colloidal materials for subsequent treatment technologies.

SECTION 6

SAMPLING AND ANALYSIS

Sampling and analysis during the soil washing treatability testing will be conducted by Lancaster Laboratories, Inc. of Lancaster, Pennsylvania. Lancaster Laboratories, Inc. will work as a lower tier subcontractor to Bergmann. The laboratory quality assurance plan and analytical method Standard Operating Procedures (SOPs) are presented in Appendix B of this test plan. Tables 4-1, 4-2, and 4-3 in Section 4 define the analytical methods of the test program.

SECTION 7 DATA MANAGEMENT

All data regarding these bench scale studies will be recorded on a standard laboratory data sheet, and placed in the appropriate file. A chain-of-custody document will accompany all samples being released to Lancaster Laboratories. Appendix B presents Lancaster Laboratories quality assurance plan which also addresses data management/data reporting procedures.

SECTION 8 DATA ANALYSIS AND INTERPRETATION

The results of this test program will be used to assess the feasibility and applicability of soil washing as an adjunct to the bioslurry treatment process for the Moss American Site. The need for extreme operating conditions with respect to equipment and materials (such as chemicals) in order to achieve satisfactory performance will indicate that the soil washing process is not feasible or implementable for this application.

If a positive determination with respect to feasibility is made, the data obtained from these bench scale treatability studies can be used to proceed with the preliminary design of a pilot test and/or of a full scale (± 15 TPH) plant. The primary use of these data will be to identify the necessary unit process operations and their optimization required to meet the clean-up criterion and match these operations to both the mass flow rates and desired particle size separations.

Determination of the soil particle size distribution as a first order of business will allow for evaluation as to whether soils washing as a volumetric reduction/waste minimization step is economically practical. For example, should the contaminated soil contain a large amount of material finer than 74 microns (ie. 40% or more) then soils washing may not provide significant volume reduction to support associated costs. If however the size distribution appears appropriate, then the treatability tests can proceed with washing and attrition test work.

The washing and attrition studies will allow identification of the following:

- Required unit operations (for soils washing and washwater treatment).
- Sequence of unit operations.
- Residence times.
- Reagents.
- Materials of construction.

\WO\MOSSAMER\7267.S-8

Utilizing this information along with the particle size distribution will allow the preliminary design of a process flowsheet along with the mass balances. Computer programs, which have been developed by Bergmann and their sister company, Linatex, are used to simulate the performance of the various equipment employed in a full-scale plant operation. These design programs generate mass balances throughout the equipment configuration as well as track attributes of the size fractions (i.e., concentration of contaminant by size fractions). Simulation or modeling programs involving separations are based on classification or **partition** curves which can generally be represented by a logistic function. The shape and position of these curves are modified by the programs to simulate performance for both process conditions encountered and various equipment configurations.

SECTION 9 HEALTH AND SAFETY

9.1 HAZARD ANALYSIS

The creosote-impacted soils used in this study contain polycyclic aromatic hydrocarbons (PAH). Appendix C contains the Material Safety Data Sheets (MSDS) for the compounds of concern.

Creosote is a yellow to black liquid with a tarry odor. It is a combustible liquid with a flashpoint of approximately 160°F. Exposure to creosote vapors may cause moderate irritation of the nose and throat. Liquid contact may cause severe eye burns, and reddening and itching of skin. Prolonged contact with skin may cause second-degree burns.

The major potential routes of exposure to PAH are respiratory via inhalation of vapors and skin absorption via skin contact with the waste or waste-contaminated equipment.

The benzene soluble fraction of creosote is carcinogenic, and repeated exposure has been associated with an increased risk of developing cancer of the lungs, skin, bladder, and kidneys.

Pregnant women may be susceptible to exposure effects associated with creosote volatiles. The Occupational Safety and Health Administration (OSHA) permissible exposure limit (PEL) for creosote, benzene-soluble fraction, is 0.2 milligrams per cubic meter (mg/m^3) of air based on an 8-hour exposure.

The task involving the greatest potential exposure to PAH is handling and transferring the waste during the soil washing testing. Other tasks involving potential exposure to PAH are sample collection/handling and decontamination of equipment. Engineering controls will

be utilized to reduce or eliminate the potential for exposure to vapors. The engineering controls include use of laboratory exhaust hoods for all sample preparation.

Copies of the MSDS will be distributed to all personnel working on this project for review. Additionally, the MSDS will be posted near the soil washing test area where personnel have access to the hazard information before entering the project area.

9.2 PERSONAL PROTECTIVE EQUIPMENT

The level of personal protective equipment (PPE) used during the testing will be determined following an assessment of screening activities. If the exposure monitoring indicates that contaminants are present at one-half the PEL, then Level C PPE will be used. If the contaminant concentration is less than one-half the PEL or not detected, Level D PPE will be employed.

If Level C PPE is determined to be appropriate for handling and transferring waste, then it will be employed. Level C PPE will consist of:

- Full-face air-purifying respirator with organic vapor high-efficiency particulate air (HEPA) cartridges.
- Viton gloves outer; latex gloves inner.
- Rubber apron or polyethylene-coated Tyvek coveralls.
- Work uniforms.
- Steel-toed shoes.

Level D protection will be used for activities conducted within the laboratory exhaust hood. If Level D protection is shown to be appropriate for the treatability tasks, it will be employed. Level D PPE will include:

- Safety glasses with side shields (goggles when collecting liquid samples).
- Viton gloves outer; latex gloves inner (when collecting samples).
- Steel-toed shoes.
- Laboratory coat or polyethylene-coated Tyvek coveralls.

9.3 RESPIRATORY PROTECTION PROGRAM

A comprehensive respiratory protection program has been established by Bergmann. This program is mandated in all locations where use of such equipment is intended to lessen the potential for adverse health affects to an employee.

As part of the respiratory training program, each employee is instructed in the following elements:

- Nature of the respiratory hazard on the work site and the appraisal of potential consequences if the respiratory protection is not utilized.
- Use and proper fit of the respirator.
- Cleaning, disinfecting, inspecting, maintenance, and storing of the respirator.
- Proper selection, capabilities, and limitations of PPE.

Routinely used respiratory equipment will be inspected, cleaned, and disinfected daily to help ensure proper hygiene practices. An inspection of these breathing devices will include the following:

- Examination of the head straps for breaks, loss of elasticity, broken or malfunctioning buckles, and other attachments.
- Examination of the facepiece for excessive dirt, cracks, tears, distortion, holes, or inflexibility.

• Examination of the exhalation and inhalation valves for any foreign material, cracks, tears, or distortion in the valve. Additional checks will be made to inspect for proper insertion, defective valve covers, or improper installation.

Examination of air-purifying elements for incorrect cartridge, expired shelf-life of the cartridge, or cracks or dents in the cartridge or cartridge holder.

Examination of proper insertion of the cartridges into the facepiece and a check of the gaskets inside the cartridge holder.

When respiratory protection is required, respiratory cartridges will be changed daily. All respirators will be inspected prior to each day's use. If broken or malfunctioning parts are found during the cleaning process, these parts will be replaced or new respiratory equipment will be issued to the user.

The respiratory protective equipment will be stored in an area protected from any mechanical damage. The protection area will guard against dust, heat, excessive moisture, or damage by chemical contact. The storage area for the respirators will be in a readily accessible location.

The following guidelines apply to the use and storage of respirators.

- Only employees who have been trained to wear and maintain respirators properly will be allowed to use respiratory protection.
- Selection of respirators, as well as any decisions regarding upgrading or downgrading of respiratory protection, will be made by the health and safety officer or his designee.

Positive and negative pressure tests will be performed each time the respirator is donned.

Only employees who have been fit tested within the last 12 months will be allowed to work in atmospheres where respirators are required. Subcontractors will provide certificates of respirator fit tests completed within the last 12 months for each employee on site.

Respirator users will be instructed in the proper use and limitations of respirators.

- If an employee has difficulty in breathing during the fit test or during use, he will be evaluated medically to determine if he can wear a respirator safely while performing assigned tasks.
- No employee will be assigned to tasks requiring the use of respirators if, based upon the most recent examination, a physician determines that the health or safety of the employee will be impaired by respirator use.
- Contact lenses will not be worn while using any type of respiratory protection.
- Respirators will be cleaned and sanitized daily after use.
- Respirators will be stored in a convenient, clean, and sanitary location on site.
- Respirators will be inspected during cleaning. Worn or deteriorated parts will be replaced.
- Facial hair that might interfere with a good facepiece seal or proper operation of the respirator is prohibited.
 - The Bergmann USA project manager will review the respiratory protection program to ensure that employees are properly wearing and maintaining their respirators and that the respiratory protection is adequately protecting the employees.
 - The health and safety officer and the project manager will evaluate the respiratory protection program routinely to ensure the continuing effectiveness.
 - Respirators used for emergency response will be inspected weekly by the health and safety coordinator.

9.4 GENERAL WORK PRACTICES

The following work practices will be adhered to during the course of project activities. At least one copy of these procedures will be available at the treatability study work site.

Contaminated protective equipment, such as respirators, hoses, boots, etc., will not be removed from the regulated work area until it has been cleaned or properly packaged and labeled.

- Legible and understandable precautionary labels that display identity and appropriate hazard warning will be prominently affixed to containers of contaminated scrap, waste, debris, and clothing.
- Removal of PAH-contaminated material from protective clothing or equipment by flowing, shaking, or any other means that disperse contaminated material into the air is <u>prohibited</u>.
- No food or beverages will be present or consumed in the treatability study work area.
- No tobacco products will be present or used, and cosmetics will not be applied in the treatability study work area.
- Employees will wash their hands and face before eating, drinking, smoking or applying cosmetics.
- PAH-contaminated materials will be stored in tightly-closed containers in well-ventilated areas.
- Containers will be moved only with the proper equipment and will be secured to prevent dropping or loss of control during transport.
- Emergency equipment will be located outside storage areas in readily accessible locations that will remain minimally contaminated with PAH.
 - All areas that have been determined as uncontaminated inside the regulated area will be clearly marked as such. No personnel, equipment, etc. will be in these areas until they have been decontaminated.

9.5 <u>PERSONNEL TRAINING</u>

All personnel designated for treatability testing at the facility receive at least 40 hours of OSHA health and safety training. OSHA training includes a minimum of 24 hours of initial off-site training and a minimum of 8 hours annual refresher training. This includes instruction on exits, fire extinguishers, handwashing, safety showers, and eye wash stations. Supervisors receive an additional 8 hours of health and safety training. All personnel also receive 8 hours annual health and safety training, which meets the requirements of OSHA regulations included in 29 CFR 1910.120. Only personnel who have had qualitative fit tests

and annual fit tests thereafter will be allowed to work in areas where respirators are required.

Upon receipt of the creosote-impacted soils, a hazards communications meeting will be held to inform employees of project-specific contaminants and the project technical scope of work.

9.6 MEDICAL SURVEILLANCE

A pre-assigned health assessment will be required for all personnel working with toxic substances. This examination will include a previous work medical history. It will be followed by annual medical examinations, which will update and document any accidental exposures. All Bergmann employees participate in an annual medical surveillance program. This medical surveillance program meets the requirement of the OSHA regulations included in 29 CFR 1910.120.

9.7 SPILL PREVENTION AND CONTAINMENT

The primary spill prevention method that will be enforced throughout this project will minimize the quantity of toxic materials used for experimentation. Any visible quantity of spilled liquid (slurry) waste from the reactor operations must be cleaned up immediately with spill-absorbing pads located in the work area. These pads will be collected in sealable cans and stored for disposal. After the visible quantity is absorbed, the contaminated work surface will be wiped repeatedly with water-soaked rags and dried. Spills on concrete will be absorbed with a sweeping compound.

Major spills, fire, or explosions will necessitate response in accordance with laboratory emergency response. If an emergency situation arises, the first duty of project personnel is to alert all affected personnel and then contact the facility emergency coordinator.

At the end of the soil washing testing, any remaining liquids or solids will be poured into the waste container supplied by project personnel. The waste container will be properly identified as a satellite waste collection container and labeled for the type of waste it contains with an appropriate hazard warning. Questions on the proper disposal method should be directed to the appropriate project personnel.

٢.

SECTION 10 RESIDUALS MANAGEMENT

Following completion of treatability testing, all test residuals will be properly packaged and labeled and returned to the Moss-American site for storage with other predesign activity residuals pending final disposal.

The shipment of all wastes and treatment residuals will be done in compliance with applicable Department of Transportation (DOT) regulations.

\WO\MOSSAMER\7267.S10

SECTION 11 REPORTS

A Technical Memorandum (TM) will be prepared by Bergmann describing the Phase I soil washing treatability studies. Table 11-1 illustrates the tentative organization of the TM. The preparation of the TM will adhere to the standards described in United States Environmental Protection Agency (U.S. EPA), "Guide for Conducting Treatability Studies Under Comprehensive Environmental Response, Comprehensive and Liability Act (CERCLA)," EPA/540/2-89/058. The draft TM will be submitted to WESTON for review and comment. Following incorporation of and response to comments, Bergmann will prepare a draft TM suitable for submission (through WESTON) to the U.S. EPA and WDNR. All data generated in this study is subject to the confidentiality agreement between WESTON and Bergmann USA.

Table 11-1

Technical Memorandum Outline

- 1.0 Introduction
 - 1.1 Site Description
 - 1.1.1 Site Name and Location
 - 1.1.2 History of Operations
 - 1.1.3 Prior Removal and Remediation Activities
 - 1.2 Waste Description
 - 1.2.1 Waste Matrices
 - 1.2.2 Pollutants/Chemicals
 - 1.3 Remedial Technology Description
 - 1.3.1 Treatment Process and Scale
 - 1.3.2 Operating Features
- 2.0 Conclusions and Recommendations
 - 2.1 Conclusions
 - 2.2 Recommendations
- 3.0 Treatability Study Approach
 - 3.1 Test Objectives and Rationale
 - 3.2 Experimental Design and Procedures
 - 3.3 Equipment and Materials
 - 3.4 Sampling and Analysis
 - 3.4.1 Waste
 - 3.4.2 Treatment Process
 - 3.5 Data Management
 - 3.6 Deviations from the Test Plan
- 4.0 Results and Discussion
 - 4.1 Data Analysis and Interpretation
 - 4.1.1 Analysis of Waste Characteristics
 - 4.1.2 Analysis of Treatability Study Data
 - 4.1.3 Comparison to Test Objectives
 - 4.1 Quality Assurance/Quality Control
 - 4.2 Costs/Schedule for Performing the Treatability Study
 - 4.4 Key Contacts
- References

Appendices

- A Data Summaries
- **B** Standard Operating Procedures

SECTION 12 SCHEDULE

The project schedule for the Phase I soil washing treatability testing is presented in Figure 12-1.

FIGURE 12-1

· ___ i

>

A

,

>

.

Project Schedule for Phase I Soils Washing Treatability Studies Moss-American Site Milwaukee, WI

											Sc	hedule	n Wee	ks										-					
TASK	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
Test Plan Approved by U.S.EPA	•						 																	-					[]
Collection of Treatability Samples		-•-			· ·	- <u></u>	· ·									•													
Initial Characterization Data to Bergmann USA							•																						
Physical Soils Characterization Evaluation				-																									
Soils Washing Evaluation					<u> </u>																			·					\square
Laboratory Analytical Service																									<u>ŀ</u>				
Data Analysis & Interpretation				-			<u> </u>																					\square	\square
Draft Technical Memorandum (TM)				-																									
WESTON TM Review/Comment																													
EPA/WDNR TM Submittal				<u> </u>	 			—													-								
EPA/WDNR Review/Comment			-								— .						-											—	
Final TM													- <u></u>																

Deliverable to U.S.EPA

_ >

-

•

٠.

APPENDIX A

PROTOCOL FOR COLLECTION AND CHARACTERIZATION OF TREATABILITY STUDY TEST MATRIX

0

PROTOCOL FOR COLLECTION AND CHARACTERIZATION OF TREATABILITY STUDY TEST MATRIX

Soil samples for the Phase I laboratory-scale treatability study will be collected from the Moss-American site. One sampling event will be conducted. Sufficient quantities of soils for all planned Phase I bioslurry and soil washing treatability tests will be obtained during this sampling event and placed into drums for transport, and/or intermediate storage at the site awaiting transport to the testing laboratories.

SAMPLING OBJECTIVE

The objective of this sampling event is to collect sufficient quantities of CPAHcontaminated soils from the site to conduct the planned Phase I treatability studies on the bioslurry and soil washing technologies. These soil portions will be characterized prior to treatability testing, for parameters which are important in the treatability study program. Analytical data from this characterization will be used to support analyses and interpretation of treatability study results.

SOIL SAMPLE (TEST MATRIX) REQUIREMENTS

Two soil composites will be collected from the site. One composite is intended to provide soils exhibiting "average" CPAH concentrations in the range of 300-600 mg/kg. The second composite is intended to provide "high" CPAH concentrations in the range of 1,000-1,500 mg/kg. The selection of soil sampling locations to meet these criteria will be based upon existing RI/FS site characterization data and other predesign activities as these data may become available. The areas from which these samples will be taken include the former processing area and the former treated storage areas of the Moss-American site.

Due to possible RCRA restrictions on storage of soil quantities at the treatability test facility, soil quantities in excess of the permitted amount will be stored in tarp-covered

\WO\MOSSAMER\7082.RPT

drums and staged on the Moss-American site pending transport to the designated testing facilities.

SOIL SAMPLING PROCEDURE

The area selected for site sampling will be marked with pin flags by the field sampling team. Within this area, the required volume of soil will be excavated using hand tools. The excavated soils will be placed temporarily on plastic sheeting located adjacent to the excavated area. Large debris, rocks, and turf will be manually separated from the soils. The excavated soils will be manually mixed using hand tools to provide a relatively homogeneous mixture. Following mixing, the soils will be placed into drums and sample containers as appropriate, sealed, labeled, and moved to the temporary staging area while awaiting shipment. Large debris, rocks, and turf will be returned to the excavation. Additional borrow soil will be used as necessary to fill the excavated area. The "average" concentration soil composite will be collected first and the "high" concentration composite collected second in a similar manner.

Equipment and personnel decontamination procedures presented in the Interim Health and Safety Plan and the Predesign Phase Quality Assurance Project Plan will be followed.

SOIL SAMPLE (TEST MATRIX) CHARACTERIZATION

Soil composites collected from the site will be characterized in order to evaluate properties or conditions that may affect or determine the results of the treatability test. Properties or conditions that will be considered include the following:

- CPAH concentration, which could affect treatability performance and the statistical interpretation of treatability test results.
- Physical/chemical properties, such as particle size distribution, organic carbon content and the presence of other contaminants, that may interfere with the treatment processes.

Ó

Variables that may affect biological activity, such as macro- and micro-nutrient levels and pH.

Indigenous microbial activity levels in the soil samples/composites will be characterized to determine the potential need for microbial acclimation or stimulation. This effort will include an estimation of microbial population/viability and determination of PAH degradation capabilities, which will be accomplished by using aerobic plate counts or most probable number (MPN) methods.

At the time of the site sampling event, one portion (approximately 5 kg) of each composite will be shipped to WESTON's Environmental Technology Laboratory (ETL) in West Chester, PA for initial physical/chemical characterization. An additional portion will be aseptically transferred to sterile containers and transmitted to ETL for microbial enumeration. The initial characterization program is summarized in Table 2, while analytical methods and holding times are summarized in Table 3.

Soil composites and analytical samples will be shipped to the ETL and treatability testing laboratories by certified commercial carrier.

HEALTH AND SAFETY

The soil collection and compositing sampling event will be conducted in accordance with the Interim Predesign Health and Safety Plan, as amended by HASP Amendment No. 1.¹

\WO\MOSSAMER\7082.RPT

¹Roy F. Weston, Inc., Draft Predesign Work Plan, Moss-American Site, Milwaukee, Wisconsin, 28 April 1992.

Table 1

Soil Composite Quantities

	Bioslurry Treatability Test (lb.)	Soil Washing Test (lb.)	Total	
Average Soil Composite	· 100	110	210	
High Soil Composite	100	110	210	

°.

\WO\MOSSAMER\7082.RPT

Table 2

Initial Characterization Test Matrix

Parameter	Laboratory ¹	Average Soils	"High" Soils	Total
Microbial Enumeration	FE	1	1	2
Particle Size Distribution	ETL	1	1	2
Porosity (Bulk Density/Specific Gravity)	ETL	1	2	2
Moisture Content	ETL	1	1	2
Liquid/Plastic Limits	ETL .	1	1 .	2
Percent Solids	ETL	1	1	2
рН	WA	1	1	2
Total Organic Carbon (TOC)	WA	1.	· 1	2
СРАН	WA	1	1	2
BTX	WA .	1	1	2

FE - WESTON Fate and Effects Laboratory

ETL - WESTON Environmental Technology Laboratory

WA - WESTON Analytics (Lionville) Laboratory

\WO\MOSSAMER\7082.RPT

1

-5-

Table 3

Analytical Methods

Parameter	Method	Sample Requirements	Preservation
Microbial Enumeration	Plate Count	100 g./ Sterile glass	Cool, 4°C
Particle Size Distribution	ASTM D422	1 l.	
Porosity (Bulk Density/ Specific Gravity)	·	11	None
Moisture Content	ASTM D2216	11.	None
Atterberg Limits	ASTM D423/D424	11.	None
Percent Solids	CLP SOW	250 ML/amber glass	Cool, 4°C
pH	9040	250 ML/amber glass	Cool, 4°C
Total Organic Carbon (TOC)	Method 415.1	250 ML/amber glass	Cool, 4°C
СРАН	EPA Method 8310	250 ML/amber glass	Cool, 4°C
BTX	EPA Method 8020	2-125 ML/amber glass	Cool, 4°C

\WO\MOSSAMER\7082.RPT

APPENDIX B

LANCASTER LABORATORIES, INC. QUALITY ASSURANCE PLAN

a

Laboratory SOPs

Analyses #180, 516, 1211, 1213, 1399, 1400, 1463, 1829, 1837, 4262, 4264, 4271, 539, 913, 939, 940, 941, 1163, 1174, 1226, 1379, 1380, 1464, 3341, 4266, 418, 420 Initiated Date: 12/4/90 Effective Date: NOV 2,2 1991

Purgeable Aromatics in Water and Solid Samples

References:

- 1. 40 CFR Part 136, Method 602, Purgeable Aromatics
- SW-846 (Third Edition) Test Methods for Evaluating Solid Waste, Methods 5030, 8000, and 8020 (Purge and Trap/Aromatic Volatile Organics)

Scope:

This method is suitable for analyzing water and solid samples for the purgeable aromatic compounds listed in the table in Appendix A. The various LLI Scan numbers which are analyzed under this method are summarized in Appendix B for water samples and in Appendix C for solid samples. The corresponding limits of quantitation are also listed here. In addition to the aromatic compounds listed in Appendix A, two halogenated compounds, trichloroethene and tetrachloroethene, can also be determined by this method. The limit of quantitation for these compounds is 1. ug/l for water samples. The methods as written in the two references above are very similar with only minor differences. Generally, all statements in this method will apply to both references unless otherwise explicitly noted. If benzene, toluene, and ethylbenzene are the only aromatics being

Analyses #180, 516, 1211, 1213, 1399, 1400, 1463, 1829, 1837, 4262, 4264, 4271, 539, 913, 939, 940, 941, 1163, 1174, 1226, 1379, 1380, 1464, 3341, 4266, 418, 420 Initiated Date: 12/4/90 Effective Date: NOV 2 2 1991 Page 2 of 20

analyzed for, they may be simultaneously analyzed with the volatile halocarbons using a Hall electrolytic conductivity detector and photoionization detector in series. This analysis is described in detail in LLI Method Analysis of Purgeable Halocarbons in Water and Solid Samples.

Summary:

The method is based on the purge and trap/gas chromatography method where an inert gas is bubbled through 5 ml of the sample solution. The volatile aromatics are purged from the sample and trapped on a sorbent trap. After purging is complete, the sorbent trap is heated and backflushed with inert gas to desorb the trapped aromatics onto a suitable gas chromatographic column. The gas chromatograph is then temperature programmed to separate the aromatics which are then detected and quantified with a photoionization detector. Typical chromatograms and printouts are shown in Figures I and II.

Apparatus:

Purge and Trap Concentrator - A Tekmar LSC-2, Model 4000 LSC-2000, ALS or equivalent device equipped with a Tenax trap as specified in the above references can be used. Alternatively, a trap packed with Carbopack B and Carbosieve S-III may be used, but different desorption and bake temperatures, as stated in the purge and trap conditions in Table II, must be used.

Analyses #180, 516, 1211, 1213, 1399, 1400, 1463, 1829, 1837, 4262, 4264, 4271, 539, 913, 939, 940, 941, 1163, 1174, 1226, 1379, 1380, 1464, 3341, 4266, 418, 420 Initiated Date: 12/4/90 Effective Date: NOV 221991 Page 3 of 20

Gas Chromatograph - Any commercially available gas chromatograph capable of temperature programming and equipped with a photoionization detector that provides the proper sensitivity and linearity may be used. Although not necessary, a Hall electrolytic conductivity detector may be used in series with the photoionization detector to aid in the identification and confirmation of the halogenated compounds included in this method.

GC Columns -

- 8 ft or 10 ft x 2 mm ID glass or metal column packed with 5% SP1200/1.75% Bentone 34 on 100/200 mesh Supelcoport.
- 2. 30 M x 0.53 mm ID fused silica capillary with bonded phase specifically designed for purgeables (e.g., Supelco VOCOL or equivalent).
- 3. 60 M x 0.75 mm ID glass capillary column with bonded phase specifically designed for purgeables (e.g., Supelco VOCOL or equivalent).
- Stabilwax, 30 M x 0.53 mm ID, 1.5 um film thickness, fused silica capillary column.

Normal operations will use Column 1 or 4, however, Columns 2 and 3 may be used as either the primary analytical column or as a confirmation column. Other suitable columns as stated in the references may also be used as confirmation columns.

Analyses #180, 516, 1211, 1213, 1399, 1400, 1463, 1829, 1837, 4262, 4264, 4271, 539, 913, 939, 940, 941, 1163, 1174, 1226, 1379, 1380, 1464, 3341, 4266, 418, 420 Initiated Date: 12/4/90 Effective Date: NOV 221991 Page 4 of 20

Materials:

Reagent grade (or equivalent) methanol is used to prepare all calibration standards.

All standards are prepared as stated in the references from neat compounds obtained from suppliers which indicate the purity of the compound. No correction for purity is made if the purity if listed as >95%. Premade solutions can be used as standards if the concentrations of the solutions are documented by the supplier.

Safety Precautions:

The toxicity of all the compounds used in this method have not been established. However, several of the compounds are considered carcinogens. Each compound should be treated as a potential health hazard. The major route of exposure is inhalation during handling of the neat materials while preparing stock standards. These stocks must therefore be prepared in a hood to eliminate the risk of inhaling the vapors of the neat materials. After the neat materials are diluted with methanol or other solvents, the potential for exposure is reduced significantly. Nevertheless, care must be taken in the handling of any and all standards. Information concerning the known toxicity, properties, or special handling precautions for any compound can be found with the material safety data sheets available from the safety officer.

Analyses #180, 516, 1211, 1213, 1399, 1400, 1463, 1829, 1837, 4262, 4264, 4271, 539, 913, 939, 940, 941, 1163, 1174, 1226, 1379, 1380, 1464, 3341, 4266, 418, 420 Initiated Date: 12/4/90 Effective Date: NUV 2/2 1991 Page 5 of 20

Standards:

1. Surrogate/Internal Standard - Trifluorotoluene and n-propylbenzene are used as surrogate or internal standards. Stock surrogate standards are prepared in methanol from neat compounds at concentrations of approximately 6000 mg/l by adding about 60 mg of each compound to methanol in a 10 ml volumetric flask. These standards are stored in 16 ml vials with screw cap lids and teflon lined silicone septa at -10°C for up to six months. Secondary dilution standards in methanol at concentrations of approximately 120 mg/l are prepared monthly by diluting 0.5 ml of the stock standard with methanol in a 25 ml volumetric flask.

Secondary dilution standards are stored in 2 ml autoinjector vials with screw cap lids and teflon lined silicone septa at -10°C for one month. Secondary Dilution standards are held for no more than one day on the bench before being discarded. Other compounds may be substituted as surrogates or internal standards if they do not coelute with or interfere with the quantitation of analytes of interest.

2. Calibration Standards - Stock calibration standards are prepared in methanol from neat compounds at concentrations of approximately 5000 mg/l by adding about 50 mg of each compound to methanol in a 10 ml volumetric flask. These standards are stored in 16 ml

Analyses #180, 516, 1211, 1213, 1399, 1400, 1463, 1829, 1837, 4262, 4264, 4271, 539, 913, 939, 940, 941, 1163, 1174, 1226, 1379, 1380, 1464, 3341, 4266, 418, 420 Initiated Date: 12/4/90 Effective Date: NOV 221991 Page 6 of 20

vials with screw cap lids and teflon lined silicone septa at -10°C for up to six months. Secondary dilution standards, prepared by diluting 1.0 ml of stock standard with methanol in a 25 ml volumetric flask to give a final concentration of about 200 mg/l, are prepared monthly. Secondary dilution standards are stored in 2 ml autoinjector vials with screw cap lids and teflon lined septa at -10°C for one month. Secondary dilution standards are held for no more than one day on the bench before being discarded.

Quality Control Check Standards - Stock check 3. standards, containing all compounds which have been calibrated for, are prepared in methanol from neat compounds at concentrations of approximately 5000 mg/l by adding approximately 50 mg of each compounds to methanol in a 10 ml volumetric flask. The quality control check standard is prepared independently from the calibration standard. These standards are stored in 16 ml vials with screw cap lids and teflon lined silicone septa at -10°C for up to six months. Secondary dilution standards, prepared by diluting the 1.0 ml of the stock standard with methanol in a 25 ml volumetric flask to give a final concentration of about 200 mg/l, are prepared monthly. Secondary dilution standards are stored in 2 ml autoinjector vials with screw cap lids and teflon lined septa at -10°C for one month. Secondary dilution standards are held for no more than one day on the bench before being discarded.

Analyses #180, 516, 1211, 1213, 1399, 1400, 1463, 1829, 1837, 4262, 4264, 4271, 539, 913, 939, 940, 941, 1163, 1174, 1226, 1379, 1380, 1464, 3341, 4266, 418, 420 Initiated Date: 12/4/90 Effective Date: NUV 22 1991 Page 7 of 20

Spiking Standards - Stock spiking standards, which 4. contain all of the compounds which have been calibrated for, are prepared in methanol from neat compounds at concentrations of approximately 2000 mg/l by adding approximately 50 mg of each compound to methanol in a 25 ml volumetric flask. These standards are stored in 16 ml vials with screw cap lids and teflon lined silicone septa at -10°C for up to six Secondary dilution standards, prepared by months. diluting the appropriate volume of stock standard with methanol in a 50 ml volumetric flask to give a concentration of approximately 20 mg/l, are prepared monthly. Secondary dilution standards are stored in 2 ml autoinjector vials with screw cap lids and teflon lined septa at -10°C for one month. Secondary dilution standards are held for no more than one day on the bench before being discarded.

See Table I at the end of this method for a summary of concentrations, storage conditions, and shelf life for standards used with this method.

Calibration:

Five levels of calibration are required when calibrating according to SW-846, Method 5030/8020, Reference 2, and at least three levels are required when using EPA Method 602, Reference 1. For each method, the calibration range should be from approximately 5 to 200 ug/1. Working calibration

Analyses #180, 516, 1211, 1213, 1399, 1400, 1463, 1829, 1837, 4262, 4264, 4271, 539, 913, 939, 940, 941, 1163, 1174, 1226, 1379, 1380, 1464, 3341, 4266, 418, 420 Initiated Date: 12/4/90 Effective Date: NOV 2 2 1991 Page 8 of 20

standards are prepared by diluting the appropriate volume (3 to 25 ul) of the secondary dilution standard with reagent water into 50, 100, 200, or 500 ml volumetric flasks. The secondary dilution standards are allowed to come to room temperature before an aliquot is withdrawn. The working standards are mixed by inverting the volumetric exactly three times. Five ml of each working standard is analyzed according to the procedure described below.

Calibration can be performed using either the external or internal standard calibration. In either case, a point to point calibration curve is used. For the external calibration, the two surrogate standards described above are used. For the internal standard calibration, trifluorotoluene is used as the internal standard and n-propylbenzene is used as a surrogate. The response factor (RF) defined in Department 25 IOP #D-4, Calculating Response Factors, is calculated for each calibration level for each analyte. If the relative standard deviation (RSD) of the RF for any analyte is greater than 20%, the calibration for that analyte must be repeated. If the RSD of the RF is less than 20% (Reference 2) or 10% (Reference 1), the average RF may be used for quantitation. Alternatively, a linear least squares fit of the calibration data may be used.

Once the system is calibrated, the working calibration curve is verified by analyzing a quality control check standard. This standard is prepared by diluting 10 ul of the secondary dilution check standard with reagent water in a 100 ml volumetric flask to give a final concentration of approximately

Analyses #180, 516, 1211, 1213, 1399, 1400, 1463, 1829, 1837, 4262, 4264, 4271, 539, 913, 939, 940, 941, 1163, 1174, 1226, 1379, 1380, 1464, 3341, 4266, 418, 420 Initiated Date: 12/4/90 Effective Date: NUV 22 1991 Page 9 of 20

20 ug/l. If the recovery of any analyte is outside the 85 to 115% range, follow the Check Standard Protocol Flowchart found at the end of this method. The calibration curve is verified in this manner every 8 to 10 hours.

Sample Collection, Preservation, and Preparation:

The samples must be iced or refrigerated from the time of collection until analysis. All samples are to be preserved to pH <2 with 1+1 HCl. Samples should be collected in duplicate in 40 ml vials with Teflon lined silicone septa. All samples must be analyzed within 14 days of collection.

For water samples, no sample preparation is required except for dilutions which are described below in the procedure section. For soil samples, a low level (aqueous purge) method is described in LLI Analysis #377. Two methanolic extraction procedures are described in LLI Analysis #1401 (as per SW-846 exactly) and LLI Analysis #379 (a modification of SW-846).

Procedure:

Set the purge and trap and the GC conditions as described in Tables II and III for the particular trap and column being used. Calibrate the system as described above and perform the necessary QC analyses as described below. When sample analysis is to begin, allow the sample to come to room temperature. Remove the plunger from a 5 ml syringe and rinse both the syringe and the plunger with deionized water. Open the sample

Analyses #180, 516, 1211, 1213, 1399, 1400, 1463, 1829, 1837, 4262, 4264, 4271, 539, 913, 939, 940, 941, 1163, 1174, 1226, 1379, 1380, 1464, 3341, 4266, 418, 420 Initiated Date: 12/4/90 Effective Date: NOV 2.2 1991 Page 10 of 20

bottle (or standard) and carefully pour the sample into the 5 ml syringe to overflowing. Replace the plunger, vent any residual air, and adjust the volume to 5 ml. Add 5 ul of the secondary dilution surrogate/internal standard solution to the syringe. Attach the syringe to the sampling valve on the purge and trap concentrator and inject the sample into the purging vessel and begin the purging cycle.

- 1. Identification of Analytes Retention time windows of ± three times the standard deviation of the mean retention time for standards run over a three-day period are used to tentatively identify compounds. However, in many cases, the experience of the analyst should weigh heavily in the interpretation of the chromatogram. If the identification of a compound is in doubt due to the possibility of coelutors, the sample must be reanalyzed on a second confirmation column.
- 2. Dilutions Samples which contain levels of analytes above the dynamic range of the method (the highest level calibration standard) must be reanalyzed. Before continuing with the analysis of the diluted sample, the analyst must be assured that the high level of analyte present in the sample will not carry over into the next injection. This can be accomplished by analyzing a lab blank. If the analytes are all below the reporting limit, then the analysis of the diluted sample can begin. If not, the cleanup blank is repeated.

Analyses #180, 516, 1211, 1213, 1399, 1400, 1463, 1829, 1837, 4262, 4264, 4271, 539, 913, 939, 940, 941, 1163, 1174, 1226, 1379, 1380, 1464, 3341, 4266, 418, 420 Initiated Date: 12/4/90 Effective Date: NUV 22 1991 Page 11 of 20

To dilute a water sample, the sample is pulled into a 25, 100, 250, 500, or 1000 ul gas tight syringe. The exact volume is then added to 5 ml of reagent water in a glass syringe or to larger volumes of reagent water in volumetric flasks. If the sample is diluted in a volumetric flask, the contents of the flask are mixed by inverting the flask three times and then poured into the 5 ml glass syringe. Any residual air is vented, the volume is adjusted to 5 ml, and 5 ul of the surrogate/internal standard solution is added. The sample is loaded onto the purge and trap concentrator and the purge cycle is initiated.

Care should be taken to avoid carryover of high levels. The syringes used in diluting samples and the sparge vessel should be cleaned by rinsing with methanol and reagent water before analyzing further samples.

The dilution factor is calculated as follows:

When the sample is diluted directly into the 5 ml glass syringe:

DF = 5 / (ml of sample added to syringe)

When an intermediate dilution into a volumetric flask is used:

 $DF = (TV / Vs) \times (5 / VDS)$

Analyses #180, 516, 1211, 1213, 1399, 1400, 1463, 1829, 1837, 4262, 4264, 4271, 539, 913, 939, 940, 941, 1163, 1174, 1226, 1379, 1380, 1464, 3341, 4266, 418, 420 Initiated Date: 12/4/90 Effective Date: NOV 22 1991 Page 12 of 20

- Where Vs = The volume, in ml, of sample which is diluted in the intermediate dilution
 - TV = The total volume, in ml, of the intermediate dilution (i.e., volume of the volumetric flask)
 - VDS = The volume, in ml, of the diluted sample which is added to the 5 ml syringe
- NOTE: If more than one intermediate dilution is performed, the factor (TV / Vs) is calculated for each intermediate dilution.

Calculations:

Procedures and the necessary equations for manual and automatic (computer data reduction) calculations are found in SOP #D2, Manual Calculations for Volatiles by GC. Methods for calculating concentrations using average response factors and point to point calibration curves are presented there for both external and internal standard calibrations.

Quality Control:

In order to monitor both the performance or the analytical system and the effectiveness of the method in dealing with each sample matrix, each blank, standard, sample, and spiked sample are spiked with 5 ul of surrogate/internal working standard. Surrogate recoveries should be between 75 and 125%. If the internal standard method is used, the height of the internal standard for each injection is recorded. The acceptable window for the height is the average ± three standard deviations from those obtained during calibration. If the recoveries fall outside this range, the injection should be repeated.

Analyses #180, 516, 1211, 1213, 1399, 1400, 1463, 1829, 1837, 4262, 4264, 4271, 539, 913, 939, 940, 941, 1163, 1174, 1226, 1379, 1380, 1464, 3341, 4266, 418, 420 Initiated Date: 12/4/90 Effective Date: NOV 221991 Page 13 of 20

As stated above in the calibration section, the calibration curve is verified every 8 to 10 hours by analyzing a quality control check standard which contains every analyte of interest. If the recovery for any analyte falls outside the 85 to 115% range, follow the check standard protocol flow chart found at the end of this method.

A matrix spike (MS) and matrix spike duplicate (MSD) is performed on one sample in every batch of 20 samples. Five ul of the secondary dilution spiking standard, representing a concentration of approximately 20 ug/l in the sample, is added to 5 ml of the sample in a 5 ml glass syringe. The recovery for each analyte of interest should be between 75 to 125% for water samples, and 70 to 130% for soils. The maximum relative percent deviation (RPD) should be 15% for water samples, and 20% for soils. The RPD is calculated as follows:

 $RPD = [(2) (R1 - R2) / (R1 + R2)] \times 100$

If the recovery for any analyte falls outside the above ranges, follow the Batch QC Protocol Flowchart found at the end of this method.

The results from the unspiked (BKG), MS, and MSD samples are recorded in the LLI sample management/QA database referencing each appropriate batch of 20 samples in which it was

Analyses #180, 516, 1211, 1213, 1399, 1400, 1463, 1829, 1837, 4262, 4264, 4271, 539, 913, 939, 940, 941, 1163, 1174, 1226, 1379, 1380, 1464, 3341, 4266, 418, 420 Initiated Date: 12/4/90 Effective Date: NOV 2 2 1991 Page 14 of 20

performed. Surrogate standard recoveries, blank results, and sample replicate results for each batch are also entered into the data base.

180516 OR METHODS #2 102991

Prepared by:	Dering - Wined	Date:	11.14.91
Approved by:	Dur A. Colello	Date:	11/14/51
Approved by:	MARIN Will	Date:	1/21/91

Analyses #180, 516, 1211, 1213, 1399, 1400, 1463, 1829, 1837, 4262, 4264, 4271, 539, 913, 939, 940, 941, 1163, 1174, 1226, 1379, 1380, 1464, 3341, 4266, 418, 420 Page 15 of 20

Table I

Standards Used in the Purgeable Aromatics in Water Method

	Approximate		•
<u>Standard</u>	<u>Concentration</u>	Storage	<u>Shelf Life</u>
Surrogate/ Internal (Stock)	6000 mg/l in Methanol	-10°C, Vial Ambient, Vial	6 Months 12 Hours
Surrogate/ Internal (Secondary Dilution)	120 mg/l in Methanol	⁻ 10°C, Vials Ambient, Vial	30 Days 12 Hours
Calibration (Stock)	5000 mg/l in Methanol	-10°C, Vials	6 Months
Calibration (Secondary Dilution)	200 mg/l in Methanol	-10°C, Vials Ambient, Vial	30 Days 12 Hours
Calibration (Working)	5 to 100 ug/l in Water	Ambient, Flask	5 Minutes
QC Check (Stock)	5000 mg/l in Methanol	-10°C, Vials	6 Months
QC Check (Secondary Dilution)	200 mg/l in Methanol	-10°C, Vials Ambient, Vials	30 Days 12 Hours
QC Check (Working)	20 ug/l in Water	Ambient, Flask	5 Minutes
Spiking (Stock)	2000 mg/l in Methanol	-10°C, Vials	6 Months
Spiking (Secondary Dilution)	20 mg/l in Methanol	⁻ 10°C, Vials Ambient, Vial	30 Days 12 Hours

Analyses #180, 516, 1211, 1213, 1399, 1400, 1463, 1829, 1837, 4262, 4264, 4271, 539, 913, 939, 940, 941, 1163, 1174, 1226, 1379, 1380, 1464, 3341, 4266, 418, 420 Page 16 of 20

Table II

Purge and Trap Conditions

Trap*	<u> </u>	CPB/CSS
Purge Flow (ml/min)	40	40
Purge Time (min)	8	11
Dry Purge (min)	4	13
Desorb Preheat (°C)	170	245
Desorb Temp (°C)	180	250
Desorb Time (min)	4	4
Bake Temp (°C)	220	260
Bake Time (min) Heated Valve and	10	20
Line Temps (°C)	100 to 130	100 to 130

* T = Tenax, CBP = Carbopack B, CSS = Carbosieve S-III

Higher bake temperatures and times may be used to remove analytes which may carry over after the analysis of samples containing high levels of volatiles.

Analyses #180, 516, 1211, 1213, 1399, 1400, 1463, 1829, 1837, 4262, 4264, 4271, 539, 913, 939, 940, 941, 1163, 1174, 1226, 1379, 1380, 1464, 3341, 4266, 418, 420 Page 17 of 20

Table III

GC Conditions

-	Column 1	<u>Column 2 or 3</u>	<u>Column 4</u>
Detector Temp (°C)	250	250	250
Injector Temp (°C)	200	200	200
Carrier Flow (ml/min) Detector Makeup	35	7 to 10	7 - 10
Flow (ml/min)		20 to 25	20 - 25
Temperature Program			
Initial Temp (°C)	45	· 40	50
Initial Hold (min)	3	'5 .	6
lst Ramp (°C/min)	8	5	4
Second Temp (°C)			70
Second Hold (min)			0.1
Second Ramp (°C/min)			25 .
Final Temp (°C)	155	190	155
Final Hold (min)	.10	5	8

The PID detector sensitivity should be set so that 1. ug/l of benzene gives a S/N ratio of at least 10:1. If the sensitivity of the PID is not sufficient to reach this level, the lamp should be replaced or cleaned. Alternatively, the purge and trap concentrator should be checked for leaks and/or poor trap performance.

Analyses #180, 516, 1211, 1213, 1399, 1400, 1463, 1829, 1837, 4262, 4264, 4271, 539, 913, 939, 940, 941, 1163, 1174, 1226, 1379, 1380, 1464, 3341, 4266, 418, 420 Page 18 of 20

Appendix A

Individual Compounds Analyzed as Part of the Purgeable Aromatic Scan

Compound	<u>LLI Analysis #</u>
Benzene	539
p-Dichlorobenzene	913
o-Xylene	939
m-Xylene	940
p-Xylene	941
Toluene	1163
Cumene	1174
Ethylbenzene	1226
m-Dichlorobenzene	1379
p-Dichlorobenzene	1380
Methyl tertiary-butyl ether	1464
Styrene	3341
Trichloroethene	418
Tetrachloroethene	420
Naphthalene	4266

Analyses #180, 516, 1211, 1213, 1399, 1400, 1463, 1829, 1837, 4262, 4264, 4271, 539, 913, 939, 940, 941, 1163, 1174, 1226, 1379, 1380, 1464, 3341, 4266, 418, 420 Page 19 of 20

Appendix B

Various Scans Which Can Be Analyzed as Purgeable Aromatics in Water

Reference	1 ^a	1 ^a	2 ^b	2 ^b	2 ^b	la	la
LLI Scan #	180 <u>LOQ</u>	516 LOQ	1399 <u>LOQ</u>	1463 <u>LOQ</u>	1829 <u>LOQ</u>	4264 LOQ	4271 <u>LOQ</u>
Compound							
Benzene m-Dichlorobenzene o-Dichlorobenzene	1. 1. 1.	1.	0.5	1.	1.	1.	1.
p-Dichlorobenzene Ethylbenzene	1. 1.	1.	0.5	1	1.	1. 1.	1. 1.
Toluene m-Xylene o-Xylene p-Xylene Methyl t-butylether	1.	1. 1. 1. 1. 1.	0.5 0.5 0.5 0.5	1. 1. 1. 1. 1.	1. 1. 1. 1. 1.	1. 1. 1. 1.	1. 1. 1. 1. 1.
Naphthalene						5.	5.

a - 40 CFR Part 136, Method 602, Purgeable Aromatics

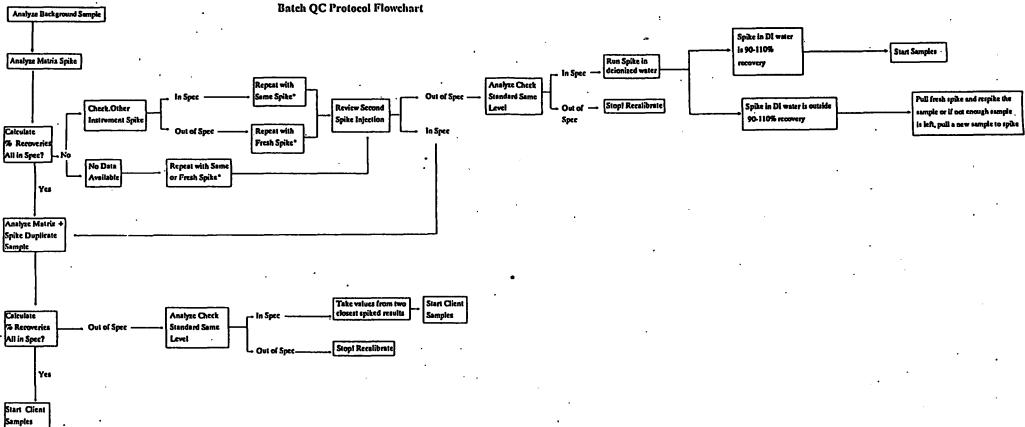
b - SW-846, Third Edition, Test Methods for Evaluating Solid
 Waste, Methods 5030, 8000, and 8020 (Purge and
 Trap/Aromatic Volatile Organics)

The limit of quantitation is 1 ug/l for all compounds. For analysis #1399, limits of quantitation of 0.5 ug/l are provided for the BTEX compounds.

Analyses #180, 516, 1211, 1213, 1399, 1400, 1463, 1829, 1837, 4262, 4264, 4271, 539, 913, 939, 940, 941, 1163, 1174, 1226, 1379, 1380, 1464, 3341, 4266, 418, 420 Page 20 of 20

Appendix C

Various Scans Which Can Be Analyzed as Purgeable Aromatics in Solids


Reference	2a	2 ^a	2a	2 ^a	2 ^a
LLI Scan #	1211 ^b _LOQ	1213 ^b _LOQ	1400 ^C LOQ	1837b LOQ	4262 ^b LOQ
Compound					
Benzene m-Dichlorobenzene o-Dichlorobenzene p-Dichlorobenzene	20.	20.	1.	20.	20.
Ethylbenzene	20.	20.	1.	20.	20.
Toluene	20.	20.	1.	20.	20.
m-Xylene		20.	1.	20.	20.
o-Xylene		20.	1.	20.	20.
p-Xylene Methyl t-butylether		20.	1.	20. 20.	20.
Naphthalene					100.

- a SW-846, Third Edition, Test Methods for Evaluating Solid
 Waste, Methods 5030, 8000, and 8020 (Purge and Trap/
 Aromatic Volatile Organics)
- b This analysis is performed using a modification of SW-846, methanolic extraction, described in LLI Analysis #379.
- c This analysis follows the SW-846 methanolic extraction procedures exactly. Low or midlevel analysis can apply.
 For the LOQ, the low level quantitation limit is referenced.

Check Std. Analysis Protocol Flowchart

.

For data package groups with the background, spike, and spike dup, as independent LLI numbers, the 2nd injection of the spiked sample (*) should be from the matrix spike dup. vial. If the results of the 2 spikes match but are both out of spec. (values), run a check std. and a spike in deionized water. If the check std. is in spec., samples can be started. If the check std. is out of spec. STOP! and recalibrate. The spike in deionized water purpose is to help us evaluate the bkg/sp/sp. dup, results. Being in spec is not required to continue with samples. The critical determinate is the check std., this must be in spec. for all compounds being reported before continuing with samples. When one spike result is in spec, and the other out of spec., run a 3rd injection of a spiked sample using either the spike or spike dup, vial. This will be decided through analyst experience. Then follow protocol (+) from the point of the spike dup, injection.

Figure I: Pac <u>BTX Volatiles Analysi</u>	ked Column <u>s by Purge & Trap GC</u>
	T FILE: /V2/RESULT/P04_275_048.RES ted on Thu Oct 3, 1991 1:57:30 am
5% SP-1200/1.75% Bentone 34 on 100/ Trap - Tenax and OV-1 GC Conditions - 45C for 3 min, ramp	
METHOD: /V2/METHOD/P04_275N.MTH Quantitation: HeightUnits Flot Fields: 1600 - 2600	Employee #634 Calculation: InternalSTD Dilution Factor: 1.00E+00
.855	RT IDTime Height Code *ug/L Name .85 .86 1080 PV 19.42 METHYL T-BUTYL ETHER 2.17 2.16 3014 PV 18.65 BENZENE 2.63 2.63 1314 VV 18.67 TRICHLOROETHENE 3.51 #3.52 6022 VB ISTD - TFT 4.84 4.84 1836 BV 19.82 TOLUENE 5.28 5.29 843 VV 17.37 TETRACHLOROETHENE
3.514 4.836	7.86 7.86 1759 VV 18.20 ETHYLBENZENE 8.42 8.42 1998 VV 18.52 P-XYLENE 8.77 8.77 2128 VV 18.81 M-XYLENE 9.36 9.37 1722 VV 18.82 O-XYLENE
5.929 6.667 7.032 7.855	9.71 9.72 1417 VV. 18.16 CUMENE 10.30 10.31 2374 VV 19.82 STYRENE 10.89 #10.89 13973 VV 100.43- SURROGATE - NPRBENZENE 13.62 13.63 1607 VV 20.48 P-DICHLOROBENZENE 14.02 14.04 1938 VV 21.55 M-DICHLOROBENZENE
8.415 8.765 9.362 9.712 10.304	15.90 15.91 1582 VV 22.33 O-DICHLOROBENZENE 20.90 20.91 755 VV 20.55 NAPHTHALENE Internal Standard Range: 4219 - 6328 (Midpoint - 5273) Using check standard file.
10.888	/V2/RESULT/P04_275_025.RES *Results are reported in ug/L for mater samples and ug/kg for soil samples. Integration Parameters: Run Time - 22.02
13.617 14.025	Threshold - 1.0 Minimum Area - 1.000E+02 Format File: /DATA/FORMAT/BTXONE.FMT Reported on Thu Oct 3, 1991 2:26:36 am Corrected Values From Above:
15.900 18:551 17:349	Amount DF Surrogate Benzene -
18.139 18.921	p-Xylene -
20.897	m-Dichlorobenzene
	Read by on

۰.

I

Figure II: Cap RTY Volatiles Analysi	s by Purge & Trap GC
VO[at]]es Alig(vs)	<u>S hy ruige a fran oc</u>
	T FILE: /V2/RESULT/P07_269_100.RES ted on Fri Sep 27, 1991 9:52:20 am
0.53 mm ID, 1.0 um STABILWAX COLUMN Trap - Tenax and GU-1 GC Conditions - 50C for ó min, ramp	
METHOD: //V2/METHOD/P07_269N.MTH Quantitation: HeightUnits Plot Fields: 2800 - 5000	Employee #161 Calculation: InternalSTD Dilution Factor: 1.00E+00
1.499 2:958	RT IDTime Height Code *ug/L Name 1.50 1.48 962 BV 16.85 METHYL T-BUTYL ETHER 3.87 3.85 4014 BB 16.82 BENZENE 4.67 #4.65 9711 BV ISTD - TFT 5.09 5.06 2046 VV 16.92 TRICHLOROETHENE 5.97 5.94 1264 PV 16.74 TETRACHLOROETHENE 6.72 6.69 2874 VV 16.75 TOLUENE
3.869 3.869 4.673 5.966 6.721	10.18 10.16 2869 BV 16.56 ETHYLBENZENE 10.51 10.48 3302 VV 17.17 P-XYLENE 10.78 10.75 3382 VV 17.47 M-XYLENE 11.89 11.87 3538 VV 17.47 M-XYLENE 12.19 12.19 5229 VV 17.66 O-XYLENE 12.68 #12.67 50859 VV 101.00 SURROGATE - NPRBENZE 13.49 13.48- 13683 VV 17.85 STYRENE
	15.18 15.20 13850 BV 19.35 M-DICHLOROBENZENE 15.47 15.48 11722 VV 17.89 P-DICHLOROBENZENE 15.98 15.97 9048 VV 19.25 O-DICHLOROBENZENE 20.06 20.09 3034 PV 18.35 NAPHTHALENE Internal Standard Range: 8113 - 12169 (Midpoint - 10141)
<u>10.179</u> <u>10.179</u> <u>10.510</u> <u>10.778</u> <u>10.778</u> <u>11.890</u> <u>12.191</u>	Using check standard file. /V2/RESULT/PO7_267_081.RES *Results are reported in ug/L for water samples and ug/kg for soil samples.
$ \begin{array}{c} \hline 13.256 \\ \hline 13.489 \\ \hline 1442924 \\ \hline 13.489 \\ \hline 1442924 \\ \hline 13.489 \\ \hline 1442924 \\ \hline 13.489 \\ \hline 13.489 \\ \hline 13.489 \\ \hline 1442924 \\ \hline 13.489 \\ \hline 13.489 \\ \hline 1442924 \\ \hline 14429244 \\ \hline 1442924 \\ \hline 1442924 \\ \hline 1442924 \\ \hline 1442924 \\ \hline 1442$	Integration Parameters: Run Time - 22.00 Threshold - 1.0 Minimum Area - 1.000E+02 Format File: /DATA/FORMAT/BTXONE.FMT Reported on Fri Sep 27, 1991 10:15:30 am
15:471 15:975	Corrected Values From Above: Amount DF Surrogate Benzene
17.138	Toluene
20.058	m-Xylene o-Xylene Methyl t-butyl ether p-Dichlorobenzene m-Dichlorobenzene o-Dichlorobenzene
	Report No Read by on

.

•.

•

.

٦.

Analysis #379 Initiated Date: 12/18/87 Effective Date: JUL 2 4 1992

Methanolic Extraction of Soils and Solid Waste

Reference:

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods (SW-846), Third Edition, Method 5030, Purge and Trap.

Scope:

This method is used to extract solid samples for the determination of purgeable halocarbons and aromatics. This includes Lancaster Laboratories, Inc. analysis scan numbers 1211, 1214, 1213, 4262, 1837, and single analytes that are part of these scans.

Summary:

This method is based on the midlevel method from EPA method SW-846 5030. A solid sample is shaken with methanol, the methanol decanted, diluted as needed and the diluent analyzed by purge and trap gas chromatography. See individual methods for specific analysis instructions.

Definitions:

- Reagent grade methanol Methanol which is free of volatile organics for which the sample is being analyzed.
- Reagent water Deionized water which is free of volatile organics for which the sample is being analyzed.

Analysis #379 Initiated Date: 12/18/87 Effective Date: Page 2 of 5 JUL 2 4 1992

3. DF - Dilution factor.

Apparatus:

- 1. 40 ml vials
- 2. Spatula
- 3. Top loading balance capable of weighing to 0.01 g with 100 g capacity.

Procedure:

- 1. Mixing and weighing should be done in the hood. Mix soil samples in their original container. If this is not possible, sample from various places in the container.
- 2. After mixing the sample, weigh 20 g (± 0.1 g) into a tared 40 ml vial and record the sample weight on the vial in permanent marker. Also record date, sample number, sample weight and analyst's initials and employee number in the solid waste weigh out notebook. If there is sufficient sample, repeat the process. When not able to weigh out 20 g, smaller amounts may be used, however, a minimum of 5 g must be used.
- 3. Add 20 ml of reagent grade methanol to the vial containing the sample and seal with an open ended teflon septa lined cap. If 10 g of sample have been added to the vial, then add only 10 ml of reagent water. The ratio of methanol to soil is to be 1:1 unless not possible because of sample matrix. If the sample is not dense enough so that 20 ml will cover the whole sample,

Analysis #379 Initiated Date: 12/18/87 Effective Date: JUL 2 4 1992 Page 3 of 5

or if the sample absorbs the full 20 ml, then add more methanol. Record the volume of methanol added on the container and both grams of sample and the volume of methanol on the run log sheet at the instrument of analysis if these parameters deviate from the 1:1 ratio.

- 4. Shake the sample vigorously for two minutes. Let the sample settle for one hour. Centrifuging may be necessary to remove suspended particles after the hour extraction. See manufacturer instructions for speed and length of centrifuging. After the hour extraction, decant off methanol extract and seal this in a 10 to 18 ml screw capped vial (dependent on availability). Record the sample number on the side of the vial in permanent marker.
- 5. The lowest dilution used for analysis 1211 and 1214 (for analysis 1213, 4262, 1837 see step #6) is a DF 20. Using a 0.5 or 1.0 ml gas tight syringe pull more than 0.25 ml of the methanol extract into the barrel. Expel all air and level the plunger to the 0.25 ml mark. Fill a 5 ml analysis syringe with a 4.75 ml of reagent water. Inject the 0.25 ml of extract into the 4.75 ml reagent water allowing the plunger of the 5 ml syringe to move to the 5^{ml} mark. If leaking occurs at the connection of the two syringes, empty the syringes and start again. A tight seal must be formed between the two syringes to insure a leak-free transfer of extract to reagent water. There also must not be air bubbles in the 5 ml syringe after the extract transfer. If this occurs, empty the syringes and start again. If further dilutions are made, care should be taken to wash all syringes used in the analysis before attempting analysis at a greater dilution.

Analysis #379 Initiated Date: 12/18/87 Effective Date: JUL 241992 Page 4 of 5

- The lowest dilution used for analysis 1213, 4262, 1837, 6. is a DF 25. Using a 1.0 ml gas tight syringe pull more than 1.0 ml of methanol extract into the barrel. Expel all air and level the plunger to the 1.0 ml mark. Fill a 25 ml analysis syringe with 24 ml of reagent, water. Inject the 1.0 ml of extract into the 24 ml reagent water allowing the plunger of the 25 ml syringe to move to the 25 ml mark. If leaking occurs at the connection of the two syringes, empty the syringes and start again. A tight seal must be formed between the two syringes to insure a leak-free transfer of extract to reagent water. There also must not be air bubbles in the 25 ml syringe after the extract transfer. If this occurs, empty the syringes and start again. If further dilutions are made, care should be taken to wash all syringes used in the analysis before attempting analysis at a greater dilution.
- Add 5 ul surrogate/internal standard to the 5 ml or
 25 ml of sample in the analysis syringe.
- 8. Calculate the dilution factor as follows using 5 ml total sample:
- DF = <u>(ml methanol extract)</u> x <u>(5 ml)</u> (g of sample extracted) (volume of extract injected in ml)
 - 9. Calculate the dilution factor as follows using 25 ml total sample:
- DF = (ml methanol extract) x (25 ml)(g of sample extracted) (volume of extract injected in ml)

Analysis #379 Initiated Date: 12/18/87 Effective Date: Page 5 of 5 JUL 2 4 1992

10. The dilution factor is entered into the integrator/data system and is used to set the detection limit. Record the dilution factor on the run log sheet of the instrument used for analysis.

NO379.W51 OR METHODS **#1** 072292

atilo Prepared by:

Approved by:

Approved by:

Date: 7/27/92 Date: 7-23 12 Date: <u>7</u>

siD

Where quality is a science.

Analysis #182, 296, 297, 418, 419, 420, 463, 515, 537, 538, 539, 912, 1163, 1165, 1170, 1211, 1214, 1226, 1227, 1228, 1462, 1564, 4146, 4267, 4268, 4269, 4717 Initiated Date: 12/18/87 Effective Date: |||| 9 1992

Purgeable Halocarbons/Aromatics in Water and Solid Samples

References:

- 1. 40 CFR Part 136: Methods 601 (Purgeable Halocarbons) and 602 (Purgeable Aromatics).
- SW-846 (Third Edition) Test Methods for Evaluating Solid Waste, Methods 5030 (Purge-and-Trap), 8000 (Gas Chromatography), 8010 (Purgeable Halocarbons), and 8020 (Purgeable Aromatics).

Scope:

This method is suitable for analyzing water and solid samples for the purgeable halocarbon and aromatic compounds listed in Appendix A. The various LLI scan numbers which are analyzed under this method are summarized in Appendix B. The corresponding limits of quantitation are also listed in these In addition to the halocarbon compounds listed in Appendices. Appendix A, three aromatic compounds, benzene, toluene, and ethylbenzene, can also be determined by this method when analyzed in conjunction with halocarbon analyses. If trichloroethene and tetrachloroethene are the only halocarbons being analyzed for, they may be simultaneously analyzed with the volatile aromatics using a photoionization detector and a Hall electrolytic conductivity detector in series.

Analysis #182, 296, 297, 418, 419, 420, 463, 515, 537, 538, 539, 912, 1163, 1165, 1170, 1211, 1214, 1226, 1227, 1228, 1462, 1564, 4146, 4267, 4268, 4269, 4717 Initiated Date: 12/18/87 Effective Date: JUL 9 1992 Page 2 of 34

The methods as written in the references above are very similar with only minor differences. Generally, all statements in this method will apply to the references unless otherwise explicitly noted.

Summary:

The method is based on the purge-and-trap gas chromatography method where an inert gas is bubbled through 5 ml of the sample solution. The volatile halocarbons and aromatics are purged from the sample and trapped on a sorbent trap. After purging is complete, the sorbent trap is heated and backflushed with inert gas to desorb the trapped compounds onto a suitable gas chromatographic column. The gas chromatograph is then temperature-programmed to separate the compounds which are then detected and quantified with a photoionization detector and an electrolytic conductivity detector in series. Typical chromatograms and printouts are shown in Figures 1 and 2.

Apparatus:

Purge-and-Trap Concentrator - Tekmar LSC-2, LSC-2000, Model 4000, ALS or equivalent device equipped with the Tenax/silica gel/charcoal trap as specified in the references. If none of the CFC's (dichlorodifluoromethane, trichlorofluoromethane, or trichlorotrifluoroethane) are being analyzed for, the charcoal can be eliminated and replaced with more Tenax. If none of the gaseous compounds (chloromethane, bromomethane, vinyl chloride, or chloroethane) are being analyzed for, an all-Tenax trap can be Analysis #182, 296, 297, 418, 419, 420, 463, 515, 537, 538, 539, 912, 1163, 1165, 1170, 1211, 1214, 1226, 1227, 1228, 1462, 1564, 4146, 4267, 4268, 4269, 4717 Initiated Date: 12/18/87 Effective Date: JUL 9 1992 Page 3 of 34

used. A trap packed with Carbopack B and Carbosieve S-III may be used, but different desorption and bake temperatures must be used. The purge-and-trap conditions are summarized in Table I.

Gas Chromatograph - Any commercially-available gas chromatograph capable of temperature-programming and equipped with a Hall electrolytic conductivity detector and a photoionization detector that provide the proper sensitivity and linearity may be used. Although not necessary if not analyzing for benzene, toluene, or ethylbenzene, the photoionization detector may be used to aid in the identification and confirmation of the multiply-bonded compounds included in this method.

GC Columns:

- 8 ft. or 10 ft. by 2 mm ID glass or metal column packed with 1% SP-1000 on Carbopack B 60/80 mesh or equivalent.
- 30 m x 0.53 mm ID fused silica capillary column with bonded phase specifically designed for purgeables (e.g., Supelco VOCOL or equivalent).
- 3. 60 m x 0.75 mm ID glass capillary column with bonded phase specifically designed for purgeables (e.g., Supelco VOCOL or equivalent).
- 4. 105 m x 0.53 mm ID glass capillary column with bonded phase specifically designed for purgeables (e.g. Supelco VOCOL or equivalent).

Analysis #182, 296, 297, 418, 419, 420, 463, 515, 537, 538, 539, 912, 1163, 1165, 1170, 1211, 1214, 1226, 1227, 1228, 1462, 1564, 4146, 4267, 4268, 4269, 4717 Initiated Date: 12/18/87 Effective Date: JUL 9 1992 Page 4 of 34

Normal operations will use column 1, however, column 2, 3, or 4 may be used as either the primary analytical column or as a confirmation column. Other suitable columns as stated in the references may also be used as confirmation columns. The GC conditions are summarized in Table II.

Materials:

Laboratory deionized water is used to prepare all sample dilutions and working standards. Reagent grade (or equivalent) methanol is used to prepare all other calibration and QC standards. Standards not containing gaseous compounds are prepared as stated in the references from neat compounds obtained from suppliers which indicate the purity of the compound. No correction for purity is made if the purity is listed as >96%. Premade solutions are used for the gaseous compounds and can be used for other compounds if the concentrations of the solutions are documented by the supplier.

Safety Precautions:

The toxicities of all compounds used in this method have not been established. However, several of the compounds are considered carcinogens. Each compound should be treated as a potential health hazard. The major route of exposure is inhalation during handling of the neat materials while preparing stock standards. These stocks must therefore be prepared in a hood to eliminate the risk of inhaling the vapors of the neat materials. After the neat materials are diluted with methanol or other solvents, the potential for exposure is reduced significantly. Nevertheless, Analysis #182, 296, 297, 418, 419, 420, 463, 515, 537, 538, 539, 912, 1163, 1165, 1170, 1211, 1214, 1226, 1227, 1228, 1462, 1564, 4146, 4267, 4268, 4269, 4717 Initiated Date: 12/18/87 Effective Date: JUJ 9 1992 Page 5 of 34

care must be taken in the handling of any and all standards. Information concerning the known toxicity, properties, or special handling precautions for any compound can be found with the material safety data sheets available from the safety officer.

Standards:

1. Surrogate/Internal Standard - Bromochloromethane and 1-chloro-3-fluorobenzene are used as surrogates and trifluorotoluene is used as an internal standard. Stock surrogate/internal standards are prepared in methanol from neat compounds at concentrations of approximately 5000 mg/l by adding about 50 mg of each compound to methanol in a 10 ml volumetric flask. These standards are stored in 16 ml vials with screw-cap lids and teflon-lined silicone septa (may vary based on availability) at -10°C to -20°C (14°F to -4°F) for up to six months.

Secondary dilution standards in methanol at concentrations of approximately 60 mg/l are prepared monthly by diluting 0.3 ml of the stock standard with methanol in a 25 ml volumetric flask. Secondary dilution standards are stored in 1.5 ml autoinjector vials with screw-cap lids and teflon-lined silicone septa (may vary based on availability) at -10°C to -20°C (14°F to -4°F) for no longer than one month. Secondary dilution standards are held for no more than one day on the bench before being discarded. Analysis #182, 296, 297, 418, 419, 420, 463, 515, 537, 538, 539, 912, 1163, 1165, 1170, 1211, 1214, 1226, 1227, 1228, 1462, 1564, 4146, 4267, 4268, 4269, 4717 Initiated Date: 12/18/87 Effective Date: JUL 9 1992 Page 6 of 34

Other compounds may be substituted as surrogates or internal standards if they do not coelute with or interfere with the quantitation of analytes of interest.

 Calibration Standards - Three different standards are used as calibration standards:

> a. Gaseous Compounds - Premade solutions of chloromethane, bromomethane, vinyl chloride, and chloroethane each at concentrations of 2000 mg/l are purchased from a supplier and used as stock standards. These ampulized standards are stored indefinitely at -10°C to -20°C (14°F to -4°F).

Secondary dilution standards are prepared by diluting 0.5 ml of the stock standard with methanol in a 5 ml volumetric flask at -10° C to -20° C (14°F to -4° F) to give a final concentration of 200 mg/l. Secondary dilution standards are stored in 1.5 ml autoinjector vials with screw-cap lids and teflon-lined septa (may vary based on availability) at -10° C to -20° C (14°F to -4° F). Secondary dilution standards are kept at -10° C to -20° C (14°F to -4° F) at all times and are held for no more than one week before being discarded.

Care must be taken with the gaseous compound secondary dilution standards to ensure that they are kept at -10° C to -20° C (14°F to -4° F) at all times, due to the high volatility of the compounds. Analysis #182, 296, 297, 418, 419, 420, 463, 515, 537, 538, 539, 912, 1163, 1165, 1170, 1211, 1214, 1226, 1227, 1228, 1462, 1564, 4146, 4267, 4268, 4269, 4717 Initiated Date: 12/18/87 Effective Date: JUL 9 1992 Page 7 of 34

b. 2-Chloroethyl Vinyl Ether (2-cleve) - No stock standards of 2-chloroethyl vinyl ether are prepared. The dilution standards of this compound are prepared weekly in methanol from the neat compound at concentrations of approximately 800 mg/l by adding about 20 mg of the compound to methanol in a 25 ml volumetric flask. The dilution standards are stored in 1.5 ml autoinjector vials with screw-cap lids and teflon-lined silicone septa (may vary based on availability) at -10°C to -20°C (14°F to -4°F) for one week. Dilution standards are held for no more than one day on the bench before being discarded.

2-Chloroethyl vinyl ether dilution standards must be prepared weekly due to the instability of the compound over longer periods of time.

C.

Primary Compounds - Stock calibration standards are prepared in methanol from neat compounds at concentrations of approximately 10,000 mg/l by adding about 100 mg of each compound to methanol in a 10 ml volumetric flask. These standards are stored in 16 ml vials with screw-cap lids and teflon-lined silicone septa (may vary based on availability) at -10°C to -20°C (14°F to -4°F) for up to six months.

Secondary dilution standards, prepared by diluting 1.0 ml of stock standard with methanol in a 25 ml volumetric flask to give a final concentration of Analysis #182, 296, 297, 418, 419, 420, 463, 515, 537, 538, 539, 912, 1163, 1165, 1170, 1211, 1214, 1226, 1227, 1228, 1462, 1564, 4146, 4267, 4268, 4269, 4717 Initiated Date: 12/18/87 Effective Date: JUL 9 1992 Page 8 of 34

approximately 400 mg/l, are prepared monthly. Secondary dilution standards are stored in 1.5 ml autoinjector vials with screw-cap lids and teflon-lined septa (may vary based on availability) at -10°C to -20°C (14°F to -4°F) for one month. Secondary dilution standards are held for no more than one day on the bench before being discarded.

The primary compound standards contain all compounds listed in Appendix B, except for the gaseous compounds, 2-chloroethyl vinyl ether, and the six coelutor compounds listed in Appendix C.

- 3. Quality Control Check Standards Three different standards are used as QC check standards:
 - Gaseous Compounds The same standard used as the gaseous compounds calibration standard is also used as the gaseous compounds QC check standard.
 - b. 2-Chloroethyl Vinyl Ether The same standard used as the 2-chloroethyl vinyl ether calibration standard is also used as the 2-chloroethyl vinyl ether QC check standard.
 - c. Primary Compounds Stock QC check standards, containing all compounds in the primary compound calibration standards, are prepared independently from the calibration standards. Stock QC check standards are prepared in methanol from neat

Analysis #182, 296, 297, 418, 419, 420, 463, 515, 537, 538, 539, 912, 1163, 1165, 1170, 1211, 1214, 1226, 1227, 1228, 1462, 1564, 4146, 4267, 4268, 4269, 4717 Initiated Date: 12/18/87 Effective Date: JUL 9 1992 Page 9 of 34

compounds at concentrations of approximately 10,000 mg/l by adding about 100 mg of each compound to methanol in a 10 ml volumetric flask. These standards are stored in 16 ml vials with screw-cap lids and teflon-lined silicone septa (may vary based on availability) at -10°C to -20°C (14°F to -4°F) for up to six months.

Secondary dilution standards, prepared by diluting 1.0 ml of stock standard with methanol in a 25 ml volumetric flask to give a final concentration of approximately 400 mg/l, are prepared monthly. Secondary dilution standards are stored in 1.5 ml autoinjector vials with screw-cap lids and teflon-lined septa (may vary based on availability) at -10°C to -20°C (14°F to -4°F) for one month. Secondary dilution standards are held for no more than one day on the bench before being discarded.

The primary compound standards contain all compounds listed in Appendix B, except for the gaseous compounds, 2-chloroethyl vinyl ether, and the six coelutor compounds listed in Appendix C.

- 4. Spiking Standards Two different standards are used as spiking standards:
 - Gaseous Compounds Gaseous compounds spiking standards are prepared by diluting 0.5 ml of the gaseous compounds secondary dilution calibration/QC check standard with methanol in a 5 ml volumetric

Analysis #182, 296, 297, 418, 419, 420, 463, 515, 537, 538, 539, 912, 1163, 1165, 1170, 1211, 1214, 1226, 1227, 1228, 1462, 1564, 4146, 4267, 4268, 4269, 4717 Initiated Date: 12/18/87 Effective Date: JUL 9 1992 Page 10 of 34

flask at -10°C to -20°C (14°F to -4°F) to give a final concentration of 20 mg/l. Spiking standards are stored in 0.3 ml conically-shaped autoinjector vials with screw-cap lids and teflon-lined septa (may vary based on availability) at -10°C to -20°C (14°F to -4°F). Spiking standards are kept at -10°C to -20°C (14°F to -4°F) at all times and are held for no more than one week before being discarded.

Care must be taken with the gaseous compounds spiking standards to ensure that they are kept at -10°C to -20°C (14°F to -4°F) at all times, due to the high volatility of the compounds.

b. Primary Compounds - Stock primary compound spiking standards, containing all compounds in the primary compound calibration and QC check standards, are prepared independently from the calibration and QC check standards. Stock spiking standards are prepared in methanol from neat compounds at concentrations of approximately 2,000 mg/l by adding about 50 mg of each compound to methanol in a 25 ml volumetric flask. These standards are stored in 16 ml vials with screw-cap lids and teflon-lined silicone septa (may vary based on availability) at -10°C to -20°C (14°F to -4°F) for up to six months.

Analysis #182, 296, 297, 418, 419, 420, 463, 515, 537, 538, 539, 912, 1163, 1165, 1170, 1211, 1214, 1226, 1227, 1228, 1462, 1564, 4146, 4267, 4268, 4269, 4717 Initiated Date: 12/18/87 Effective Date: JUL 9 1992. Page 11 of 34

Secondary dilution standards, prepared by diluting 0.5 ml of stock standard with methanol in a 50 ml volumetric flask to give a final concentration of approximately 20 mg/l, are prepared monthly. Secondary dilution standards are stored in 1.5 ml autoinjector vials with screw-cap lids and teflon-lined septa (may vary based on availability) at 10°C to -20°C (14°F to -4°F) for one month. Secondary dilution standards are held for no more than one day on the bench before being discarded.

The primary compound standards contain all compounds listed in Appendix B, except for the gaseous compounds, 2-chloroethyl vinyl ether, and the six coelutor compounds listed in Appendix C.

NOTE: 2-Chloroethyl vinyl ether is not routinely used as a spike compound. No spiking standards for this compound are regularly prepared.

See Table III at the end of this method for a summary of concentrations, storage conditions, and shelf life for standards used with this method.

Calibration:

Five levels of calibration are required when calibrating according to SW-846, Methods 5030/8010 and 5030/8020 (Reference 2), and at least three levels are required when using EPA Methods 601 and 602 (Reference 1). For each method, the Analysis #182, 296, 297, 418, 419, 420, 463, 515, 537, 538, 539, 912, 1163, 1165, 1170, 1211, 1214, 1226, 1227, 1228, 1462, 1564, 4146, 4267, 4268, 4269, 4717 Initiated Date: 12/18/87 Effective Date: JUL 9 1992 Page 12 of 34

~

calibration range should be from approximately 5 to 200 ug/l. Working calibration standards are prepared by diluting the appropriate volumes (3 to 25 ul) of the gaseous compounds secondary dilution standard, the 2-chloroethyl vinyl ether dilution standard, and the primary compounds secondary dilution standard with reagent water into 50, 100, 200, or 500 ml volumetric flasks. The 2-chloroethyl vinyl ether and primary compounds standards are allowed to come to room temperature before an aliquot is withdrawn. The working standards are mixed by inverting the volumetric once after the primary standards compounds have been added, once after the 2-chloroethyl vinyl ether has been added, and a final time after the gaseous compounds standard has been added. (Due to the high volatility of the gaseous compounds, standards should be added to the deionized water in this order.) Five ml of each working standard is analyzed as described below in the "Procedure" section.

Calibration can be performed using either the external or internal standard calibration. In either case, a point-to-point calibration curve is used. For the external calibration, two of the three surrogate standards described above are used (normally bromochloromethane and 1-chloro-3-fluorobenzene). For the internal standard calibration, one of the three surrogate standards described above is used as the internal standard (normally trifluorotoluene), and another is used as a surrogate (normally 1-chloro-3-fluorobenzene). The response factor (RF; as defined in Department 25 SOP-OR-020, Manual Calculation of the Analyte Response Factors and the Relative Standard Deviation for Analyte Response Factors, is calculated for each analyte in each calibration level. If the relative standard deviation (RSD) Analysis #182, 296, 297, 418, 419, 420, 463, 515, 537, 538, 539, 912, 1163, 1165, 1170, 1211, 1214, 1226, 1227, 1228, 1462, 1564, 4146, 4267, 4268, 4269, 4717 Initiated Date: 12/18/87 Effective Date: JUL 9 1992 Page 13 of 34

of the RF's for any analyte is less than 20% (Reference 2) or 10% (Reference 1), the average RF may be used for the quantitation. Alternately, a linear least squares fit to the calibration data may be used.

Once the system is calibrated, the working calibration curve is verified by analyzing a QC check standard. This standard is prepared by diluting 10 ul of the primary compounds secondary dilution standard, 7 ul of the 2-chloroethyl vinyl ether dilution standard, and 20 ul of the gaseous compounds secondary dilution standard with reagent water in a 200 ml volumetric flask to give a final concentration of approximately 20 ug/l (30 ug/l of 2-chloroethyl vinyl ether). If the recovery of any analyte is outside the 85 to 115% range, the Check Standard Protocol Flowchart in Figure 3 at the end of this method is followed. The calibration curve is verified in this manner approximately every 8 to 10 hours.

Sample Collection, Preservation, and Preparation:

Samples should be adjusted to pH <2 with approximately 0.2 ml of 1:1 hydrochloric acid (HCL). If residual chlorine is present, the sample should also be preserved with sodium thiosulfate, (approximately 10 mg to 40 ml of sample) or ascorbic acid, (approximately 25 mg to 40 ml of sample). If 2-chloroethyl vinyl ether is to be analyzed for, the sample should not be acidified. All samples must be cooled to 2°C to 6°C (36°F to 43°F) at the time of collection until analysis. Samples should be collected in duplicate in 40 ml vials with teflon-lined silicone septa. All samples must be analyzed within 14 days of collection. Analysis #182, 296, 297, 418, 419, 420, 463, 515, 537, 538, 539, 912, 1163, 1165, 1170, 1211, 1214, 1226, 1227, 1228, 1462, 1564, 4146, 4267, 4268, 4269, 4717 Initiated Date: 12/18/87 Effective Date: JUL 9 1992 Page 14 of 34

For water samples, no sample preparation is required except possibly for dilutions which are described below in the Procedure section. For solid samples, a low-level (aqueous purge) method is described in LLI Analysis #377. Two methanolic extraction procedures are described in LLI Analysis #1401 (as per SW-846 exactly) and LLI Analysis #379 (a modification of SW-846).

Procedure:

Set the purge-and-trap and GC conditions as described in Tables I and II for the particular trap and column being used. Calibrate the system as described above and perform the necessary QC analyses as described below. When sample analysis is to begin, allow the sample to come to room temperature. Remove the plunger from a 5 ml syringe and rinse both the syringe and the plunger with deionized water. Open the sample bottle (or standard) and carefully pour the sample into the 5 ml syringe to overflowing. Replace the plunger, vent any residual air, and adjust the volume to 5 ml. Add 5 ul of the secondary dilution surrogate/internal standard solution to the syringe. Attach the syringe to the sampling valve on the purge-and-trap concentrator, inject the sample into the purging vessel, and begin the purging cycle.

 Identification of Analytes - Comparison of sample peak retention times to standard peak retention times is used to tentatively identify compounds. Further considerations include normal vs. abnormal peak shape and comparison of the chromatograms obtained from each detector (when a PID is being used). In many cases, the

7

Analysis #182, 296, 297, 418, 419, 420, 463, 515, 537, 538, 539, 912, 1163, 1165, 1170, 1211, 1214, 1226, 1227, 1228, 1462, 1564, 4146, 4267, 4268, 4269, 4717 Initiated Date: 12/18/87 Effective Date: JUL 9 1992 Page 15 of 34

> ionici Mutica

< e

ر ... ا مان میں فر

• • •

3 · C.-

experience and discretion of the analyst should weigh heavily in the interpretation of the chromatogram. If the identification of a compound is in doubt due to the possible presence of one of the coelutor compounds listed in Appendix C, the sample is reanalyzed on a second confirmation column.

2. Dilutions - Samples which contain levels of analytes above the dynamic range of the method (the highest-level calibration standard) must be reanalyzed. Before continuing with the analysis of the diluted sample, the analyst must be assured that the high level of the analyte present will not carry over into the next injection. This can be accomplished by analyzing a reagent water blank (cleanup blank). If the analytes are all below the limit of quantitation, then the analysis of the diluted sample can begin. If not, the cleanup blank is repeated until analyte levels are below the quantitation limit.

To dilute a water sample or solid extract sample, the sample is pulled into a 25, 100, 250, 500, or 1000 ul gas-tight syringe. The exact volume is then added to 5 ml of reagent water in a glass syringe or to larger volumes of reagent water in volumetric flasks. If the sample is diluted in a volumetric flask, the contents of the flask are mixed by inverting the flask three times and then poured into the 5-ml glass syringe. Any residual air is vented, the volume is adjusted to 5 ml, and 5 ul of the surrogate/internal standard solution is Analysis #182, 296, 297, 418, 419, 420, 463, 515, 537, 538, 539, 912, 1163, 1165, 1170, 1211, 1214, 1226, 1227, 1228, 1462, 1564, 4146, 4267, 4268, 4269, 4717 Initiated Date: 12/18/87 Effective Date: JUL 9 1992 Page 16 of 34

added. The sample is loaded into the purge-and-trap concentrator and the purge cycle is initiated.

Care should be taken to avoid carryover of high levels. The syringes and flasks used in diluting samples and the sparge vessel should be cleaned by rinsing with methanol and reagent water before analyzing further samples.

The dilution factor is calculated as follows:

When the sample is diluted directly into the 5 ml syringe:

DF = 5 / (ml of sample added to syringe)

When an intermediate dilution into a volumetric flask is used:

 $DF = (TV / VS) \times (5 / VDS)$

where VS = the volume, in ml, of sample which is diluted in the intermediate dilution

> TV = the total volume, in ml, of the intermediate dilution (i.e., the volume of the volumetric flask)

VDS = the volume, in ml, of the diluted sample which is added to the 5-ml syringe Analysis #182, 296, 297, 418, 419, 420, 463, 515, 537, 538, 539, 912, 1163, 1165, 1170, 1211, 1214, 1226, 1227, 1228, 1462, 1564, 4146, 4267, 4268, 4269, 4717 Initiated Date: 12/18/87 Effective Date: JUL 9 1992 Page 17 of 34

12

19.5 949 (Mr. 19 4449 (Mr.

- 21

NOTE: If more than one intermediate dilution is performed, the factor (TV / VS) is calculated for each intermediate dilution.

Calculations:

Procedures and the necessary equations for manual and automatic (computer data reduction) calculations are found in Department 25 SOP-OR-004, Manual Calculations of Analyte Concentrations for Volatiles by GC. Methods for calculating concentrations using average response factors and point-to-point calibration curves are presented there for both external and internal standard calibrations.

Quality Control:

In order to monitor both the performance of the analytical system and the effectiveness of the method in dealing with each sample matrix, each blank, standard, sample, and spiked sample is spiked with 5 ul of secondary dilution surrogate/internal standard solution. Surrogate recoveries should be within the 75 to 125% If the internal standard method is used, the height of range. the internal standard for each injection is recorded. The acceptable range for the height is 80 to 120% of the average of those obtained during calibration, or 80 to 120% of the height obtained in a recently-analyzed acceptable QC check standard. If the recoveries fall outside of these ranges, the injection should be repeated.

Analysis #182, 296, 297, 418, 419, 420, 463, 515, 537, 538, 539, 912, 1163, 1165, 1170, 1211, 1214, 1226, 1227, 1228, 1462, 1564, 4146, 4267, 4268, 4269, 4717 Initiated Date: 12/18/87 Effective Date: JUL 9 1992 Page 18 of 34

As stated above in the calibration section, the calibration curve is verified approximately every 8 to 10 hours by analyzing a QC check standard which contains every analyte of interest. If the recovery of any analyte is outside of the 85 to 115% range, the Check Standard Analysis Protocol Flowchart in Figure 3 at the end of this method is followed.

A matrix spike (MS) and matrix spike duplicate (MSD) are performed on one sample in each batch of up to 20 samples. 5 ul of the primary compounds secondary dilution spiking standard and 5 ul of the gaseous compounds spiking standard, representing concentrations of approximately 20 ug/l in the sample, are added to 5 ml of the sample (prepared as described above in the Procedure section) in a 5 ml glass syringe. The acceptable recoveries for each compound in water and solid matrices are listed in Appendix D at the end of this method. This appendix also lists the maximum allowable relative percent deviation (RPD) of the spike recoveries for each compound. The RPD is calculated as follows:

RPD = [2 x (R1 - R2) / (R1 + R2)] x 100

If the recovery for any analyte falls outside the ranges listed in Appendix D, the Batch QC Protocol Flowchart in Figure 4 at the end of this method is followed.

The results from the unspiked (BKGD), MS, and MSD samples are recorded in the LLI sample management/QA database referencing each appropriate batch of up to 20 samples in which it was performed. Surrogate standard recoveries, blank results, and Analysis #182, 296, 297, 418, 419, 420, 463, 515, 537, 538, 539, 912, 1163, 1165, 1170, 1211, 1214, 1226, 1227, 1228, 1462, 1564, 4146, 4267, 4268, 4269, 4717 Initiated Date: 12/18/87 Effective Date: JUL 9 1992 Page 19 of 34

sample replicate results for each batch are also entered into the database.

NO182296.W51 OR METHODS #3 070192

Prepared by:	Jellin IV & Stephill	_ Date:	7-7-92	-
Approved by:	Juch A Cilello	_ Date:	21/1/52	-
Approved by:	Katty J. Denjungo	_ Date:	7/8/92	•

Analysis #182, 296, 297, 418, 419, 420, 463, 515, 537, 538, 539, 912, 1163, 1165, 1170, 1211, 1214, 1226, 1227, 1228, 1462, 1564, 4146, 4267, 4268, 4269, 4717 Initiated Date: 12/18/87 Effective Date: JUL § 1992 Page 20 of 34

Table I

Purge-and-Trap Conditions

<u>Trap Type *</u>	T/SG/C	CPB/CSS
Purge Ready Temp (°C)	30	30
Purge Flow (ml/min)	40**	40**
Purge Time (min)	11	11
Dry Purge Time (min)	0	13 ·
Desorb Preheat Temp (°C)	175	245
Desorb Temp (°C)	180	250
Desorb Time (min)	1	4
Bake Temp (°C)	220	260
Bake Time (min)	. 10	20
Heated Valve and Line Temps (°C)	100 to 130	100 to 130

* T/SG/C = Tenax/Silica Gel/Charcoal CPB/CSS = Carbopack B/Carbosieve S-III

** can be set lower for optimum gases response (25-30 ml/min)

Higher bake temperatures and times may be used to remove analytes which may carry over after the analysis of samples containing high levels of volatiles.

The Purge and Trap conditions may be modified to achieve optimum instrument performance based on the manufacturer's specifications without adversely effecting the method performance. Analysis #182, 296, 297, 418, 419, 420, 463, 515, 537, 538, 539, 912, 1163, 1165, 1170, 1211, 1214, 1226, 1227, 1228, 1462, 1564, 4146, 4267, 4268, 4269, 4717 Initiated Date: 12/18/87 Effective Date: Page 21 of 34 JUL 9 1992

Table II

GC Conditions

<u>Column Number</u>	1	<u>2 or 3 or 4</u>
Detector Temp - Hall (°C)	250	250
Detector Temp - PID (°C)	200	200
Injector Temp (°C)	150	200
Carrier Flow (ml/min) Detector Makeup Flow (ml/min)	30 to 40	7 to 10 20 to 25 .
Initial Temp (°C)	45	40
Initial Hold Time (min)	3	5
Ramp Rate (°C/min)	8	5
Final Temp (°C)	220	190
Final Hold Time (min)	15	5

Hall Electrolytic Conductivity Detector

Mode · · · · · · · · · · · · · · · · · · ·	Halogen Nickel 1/16 inch OD
Reactor Temp (°C)	800 to 900
Electrolyte	1-Propanol
Electrolyte Flow (ml/min)	0.4 to 0.8
Reaction Gas	Hydrogen, 25-30 ml/min

O-I Electrolytic Conductivity Detector

Mode	Halogen
Reactor Tube	Nickel 1/16 inch OD
Reactor Temp (°C)	800 to 900
Electrolyte	1-Propanol
Electrolyte Flow (ml/min)	0.03 to 0.05
Reaction Gas	Hydrogen, 90-110 ml/min

The HECD sensitivity should be set so that 0.5 ug/l of chloroform gives a S/N ratio of at least 10:1. If the sensitivity of the HECD is not sufficient to reach this level, the electrolyte, the conductivity cell, the reactor tube, and other components should be cleaned or replaced. Analysis #182, 296, 297, 418, 419, 420, 463, 515, 537, 538, 539, 912, 1163, 1165, 1170, 1211, 1214, 1226, 1227, 1228, 1462, 1564, 4146, 4267, 4268, 4269, 4717 Initiated Date: 12/18/87 Effective Date: JUL 9 1992 Page 22 of 34

Table II

GC Conditions (Continued)

The PID sensitivity should be set so that 1 ug/l of benzene gives a S/N ratio of at least 10:1. If the sensitivity of the PID is not sufficient to reach this level, the lamp should be cleaned or replaced.

Alternatively, the purge-and-trap concentrator should be checked for leaks and/or poor trap performance.

The GC conditions may be modified to achieve optimum instrument performance based on the manufacturer's specifications without adversely effecting the method performance. Analysis #182, 296, 297, 418, 419, 420, 463, 515, 537, 538, 539, 912, 1163, 1165, 1170, 1211, 1214, 1226, 1227, 1228, 1462, 1564, 4146, 4267, 4268, 4269, 4717 Initiated Date: 12/18/87 Effective Date: JUL 9 1992 Page 23 of 34

 $\mathcal{C}_{\lambda}^{+}$

Table III

Standards Used in the Purgeable Halocarbons/Aromatics Method

Standard	Approximate Concentration	Storage	Shelf Life
Surrogate/ Internal (stock)	5,000 mg/l in methanol	-10°C to -20°C, vial	6 months
Surrogate/ Internal (sec. dil.)	60 mg/l in methanol	-10°C to -20°C, ambient, vial	30 days 1 day
Gas. Cmpds. Cal./QC Check (stock)	2,000 mg/l in methanol	-10°C to -20°C, ampule	indefinite
Gas. Cmpds. Cal./QC Check (sec. dil.)	200 mg/l in methanol	-10°C to -20°C, vial	1 week
Gas. Cmpds. Cal. (working)	5 to 80 ug/l in water	ambient, flask	5 minutes
Gas. Cmpds. QC Check (working)	20 ug/l in water	ambient, flask	5 minutes
2-Cleve Cal./QC Check (dilution)	800 mg/l in methanol	-10°C to -20°C, ambient, vial	l week l day
2-Cleve Cal. (working)	10 to 400 ug/l in water	ambient, flask	5 minutes
2-Cleve QC Check (working)	30 ug/l in water	ambient, flask	5 minutes
Primary Cmpds. Cal. (stock)	10,000 mg/l in methanol	-10°C to -20°C, vial	6 months
Primary Cmpds. Cal. (sec. dil.)	400 mg/l in methanol	-10°C to -20°C, ambient, vial	30 days 1 day

Analysis #182, 296, 297, 418, 419, 420, 463, 515, 537, 538, 539, 912, 1163, 1165, 1170, 1211, 1214, 1226, 1227, 1228, 1462, 1564, 4146, 4267, 4268, 4269, 4717 Initiated Date: 12/18/87 Effective Date: JUL 9 1992 Page 24 of 34

Table III (Continued)

Standards Used in the Purgeable Halocarbons/Aromatics Method

Standard	Approximate <u>Concentration</u>	Storage	<u>Shelf Life</u>
Primary Cmpds. Cal. (working)	5 to 200 ug/l in water	ambient, flask	5 minutes
Primary Cmpds. QC Check (stock)	10,000 mg/l in methanol	-10°C to -20°C, vial	6 months
Primary Cmpds. QC Check (sec. dil.)	400 mg/l in methanol	-10°C to -20°C, ambient, vial	30 days 1 day
Primary Cmpds. QC Check (working)	20 ug/l in water	ambient, flask	5 minutes
Gas. Cmpds. Spiking	20 mg/l in methanol	-10°C to -20°C, vial	l week
Primary Cmpds. Spiking (stock)	2,000 mg/l in methanol	-10°C to -20°C, vial	6 months
Primary Cmpds. Spiking (sec. dil.)	20 mg/l in methanol	-10°C to -20°C, ambient, vial	30 days 1 day

Analysis #182, 296, 297, 418, 419, 420, 463, 515, 537, 538, 539, 912, 1163, 1165, 1170, 1211, 1214, 1226, 1227, 1228, 1462, 1564, 4146, 4267, 4268, 4269, 4717 Initiated Date: 12/18/87 Effective Date: JUL 91992 Page 25 of 34

Appendix A

Individual Compounds Analyzed as Part of the Purgeable Halocarbons/Aromatics Scan

Compound	LLI A	<u> nalysis #</u>	LOO
Chloroform		296	0.5
Carbon Tetrachloride		297 ·	0.5
Trichloroethene (TCE)		418	0.5
1,1,1-Trichloroethane		419	. 0.5
Tetrachloroethene (PCE)		420	0.5
Methylene Chloride		463	1.
1,2-Dichloroethane		537	1.
1,1-Dichloroethene	•	538	1.
Benzene		539	1.
Vinyl Chloride		912	1.
Toluene		1163	1.
1,1-Dichloroethane		1170	· 1.
Ethylbenzene		1226	1.
Chloromethane		1564	5.
Trichlorofluoromethane (Freon 11)		4267	1.
Dichlorodifluoromethane (Freon 12)		4268	2.
Trichlorotrifluoroethane (Freon 113	3)	4269 .	1.
1,2-Dichloroethene (cis- and trans-	-) *	4717	1.

* The results of both isomers are reported as a total.

All LOQ values are in ug/l for water samples and ug/kg for solid samples.

Analysis #182, 296, 297, 418, 419, 420, 463, 515, 537, 538, 539, 912, 1163, 1165, 1170, 1211, 1214, 1226, 1227, 1228, 1462, 1564, 4146, 4267, 4268, 4269, 4717 Initiated Date: 12/18/87 Effective Date: JUL 9 1992 Page 26 of 34

Appendix B

Various Scans which can be Analyzed as Purgeable Halocarbons/Aromatics

Part 1 - Water Scans

LLI Scan # EPA Method Reference	182 1	515 2	1462 3	4146 3
Compound	<u>100</u>	100	<u>100</u>	<u>100</u>
Chloromethane	5.	5.	5.	5.
Bromomethane	5.	5.	5.	_
Vinyl Chloride	1.	1.	1.	1.
Dichlorodifluoromethane	2.	_	_	
Chloroethane	1.	1.	1.	
Methylene Chloride	1.	1.	1.	1.
Trichlorofluoromethane	1.	_	1.	1.
1,1-Dichloroethene	1.	1.	1.	1.
1,1-Dichloroethane	1.	1.	1.	1.
1,2-Dichloroethene (cis + trans)	1.	1.	1.	. 1.
Chloroform	1.	1.	1.	0.5
Trichlorotrifluoroethane				
1,2-Dichloroethane	1.	1.	1.	1.
1,1,1-Trichloroethane	1.	1.	1.	0.5
Carbon Tetrachloride	1.	1.	1.	
Bromodichloromethane	1.	1.	1.	
1,2-Dichloropropane	1.	1.	1.	
cis-1,3-Dichloropropene	1.	1.	1.	
Trichloroethene	1.	1.	1.	0.5
Dibromochloromethane	1.	1.	1.	
1,1,2-Trichloroethane	1.	1.	1.	
trans-1,3-Dichloropropene	1.	1.	1.	
2-Chloroethyl Vinyl Ether	10.			
Bromoform	2.	2.	2.	
Tetrachloroethene	1.	1.	1.	0.5
1,1,2,2-Tetrachloroethane	2.	2.	2.	
Chlorobenzene	1.	1.	1.	
Benzene		1.		
Toluene		1.		
Ethylbenzene		1.		

All LOQ values are in ug/l.

Analysis #182, 296, 297, 418, 419, 420, 463, 515, 537, 538, 539, 912, 1163, 1165, 1170, 1211, 1214, 1226, 1227, 1228, 1462, 1564, 4146, 4267, 4268, 4269, 4717 Initiated Date: 12/18/87 Effective Date: Page 27 of 34 UL 9 1992

Appendix B

Various Scans which can be Analyzed as Purgeable Halocarbons/Aromatics

Part 2 - Solid Scans

LLI Scan # EPA Method Reference	1211 4a	1214 3a	1227 4b	1228 3b
Compound	<u>100</u>		<u>LOO</u>	<u>100</u>
Chloromethane		100.		5.
Bromomethane		100.		5.
Vinyl Chloride		20.		1.
Dichlorodifluoromethane		•		
Chloroethane		20.		1.
Methylene Chloride		20.		1.
Trichlorofluoromethane				· 1.
1,1-Dichloroethene		20.		1.
1,1-Dichloroethane	. •	20.	•	1.
1,2-Dichloroethene (cis + t	rans)	20.		1.
Chloroform		20.		1.
Trichlorotrifluoroethane	•			
1,2-Dichloroethane		20.		1.
1,1,1-Trichloroethane		20.		1.
Carbon Tetrachloride		20.		1.
Bromodichloromethane		20.		1.
1,2-Dichloropropane		20.		1.
cis-1,3-Dichloropropene		20.		1.
Trichloroethene		20.		1.
Dibromochloromethane		20.		1.
1,1,2-Trichloroethane		20.		1.
trans-1,3-Dichloropropene		20.	•	· 1.
2-Chloroethyl Vinyl Ether		200.		10.
Bromoform		40.		2.
Tetrachloroethene		20.		. 1.
1,1,2,2-Tetrachloroethane		40.		2.
Chlorobenzene		. 20.		1.
Benzene	20.		1.	
Toluene	20.	•	1.	
Ethylbenzene	20.		1.	

All LOQ values are in ug/kg.

Analysis #182, 296, 297, 418, 419, 420, 463, 515, 537, 538, 539, 912, 1163, 1165, 1170, 1211, 1214, 1226, 1227, 1228, 1462, 1564, 4146, 4267, 4268, 4269, 4717 Initiated Date: 12/18/87 Effective Date: JUL 91992 Page 28 of 34

Appendix B

Various Scans which can be Analyzed as Purgeable Halocarbons/Aromatics

Part 3 - References

- 1. 40 CFR Part 136: Method 601 (Purgeable Halocarbons).
- SW-846 (Third Edition) Test Methods for Evaluating Solid Waste, Methods 5030 (Purge-and-Trap), 8000 (Gas Chromatography), 8010 (Purgeable Halocarbons), and 8020 (Purgeable Aromatics).
- 3. SW-846 (Third Edition) Test Methods for Evaluating Solid Waste, Methods 5030 (Purge-and-Trap), 8000 (Gas Chromatography), and 8010 (Purgeable Halocarbons).
 - a. This analysis is performed using a modification of SW-846, methanolic extraction, described in LLI Analysis #379.
 - b. This analysis follows the SW-846 methanolic extraction procedures exactly. Low- or mid-level analysis can apply. For the LOQ, the low-level quantitation limit is referenced.
- 4. SW-846 (Third Edition) Test Methods for Evaluating Solid Waste, Methods 5030 (Purge-and-Trap), 8000 (Gas Chromatography), and 8020 (Purgeable Aromatics).
 - a. This analysis is performed using a modification of SW-846, methanolic extraction, described in LLI Analysis #379.
 - b. This analysis follows the SW-846 methanolic extraction procedures exactly. Low- or mid-level analysis can apply. For the LOQ, the low-level quantitation limit is referenced.

Analysis #182, 296, 297, 418, 419, 420, 463, 515, 537, 538, 539, 912, 1163, 1165, 1170, 1211, 1214, 1226, 1227, 1228, 1462, 1564, 4146, 4267, 4268, 4269, 4717 Initiated Date: 12/18/87 Effective Date: JUL 9 1992 Page 29 of 34

Appendix C

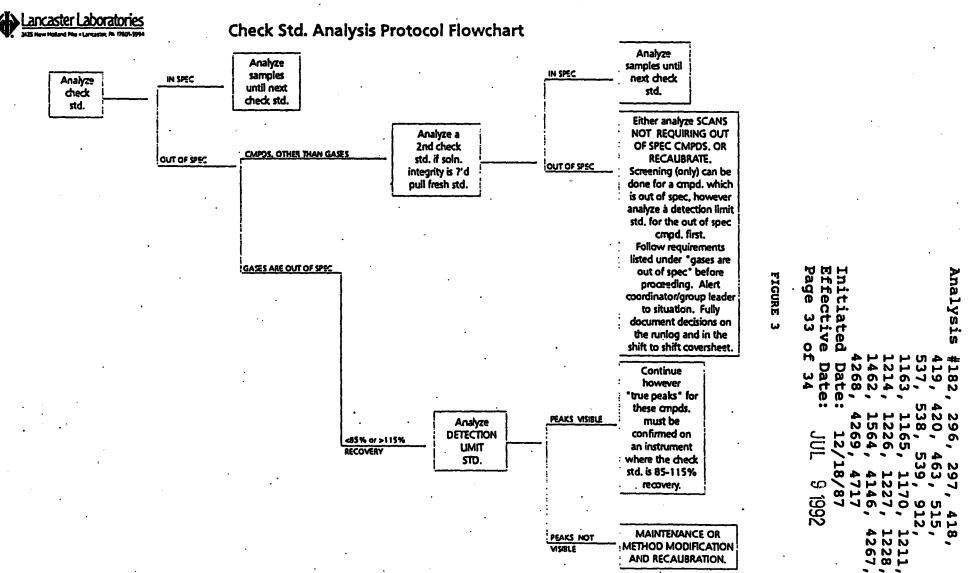
Coelutor Compounds in the Purgeable Halocarbons/Aromatics Method

The following six compounds are coelutor compounds under the conditions described in this method and using column 1 listed in the Apparatus section of this method. These compounds are not contained in any of the standard solutions described in Table III, and therefore, are not routinely calibrated for:

Coelutor Compound not <u>Contained in Standards</u>	Compound Contained in Standards
Dichlorodifluoromethane	Vinyl Chloride
trans-1,2-Dichloroethene	cis-1,2-Dichloroethene
cis-1,3-Dichloropropene	1,2-Dichloropropane
trans-1,3-Dichloropropene	Dibromochloromethane
1,1,2-Trichloroethane	Dibromochloromethane
1,1,2,2-Tetrachloroethane	Tetrachloroethene

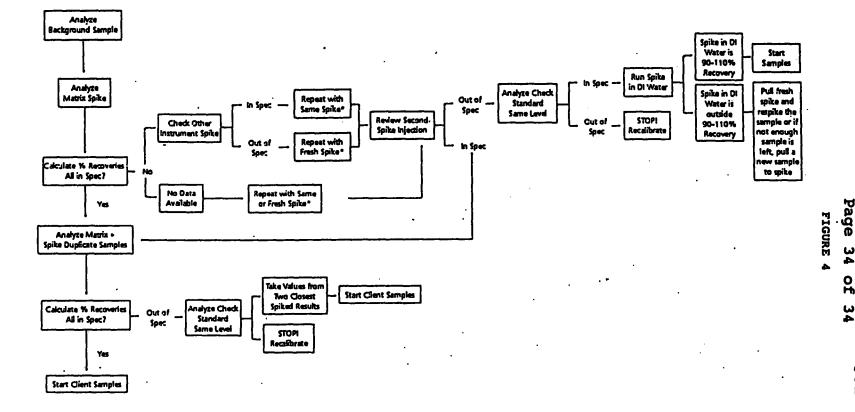
Analytes in the second column which have amounts above the LOQ are examined closely for the possible presence of a coelutor compound. If a coelutor is suspected, the sample is reanalyzed on one of either columns 2, 3, or 4 listed in the Apparatus section of this method as a confirmation.

Criteria used to determine the possible presence of a coelutor include analysis of the peak shape, comparison of Hall electrolytic conductivity detector and PID chromatograms, the retention time of the peak, and the pattern of other compounds present in the sample. Analysis #182, 296, 297, 418, 419, 420, 463, 515, 537, 538, 539, 912, 1163, 1165, 1170, 1211, 1214, 1226, 1227, 1228, 1462, 1564, 4146, 4267, 4268, 4269, 4717 Initiated Date: 12/18/87 Effective Date: Page 30 of 34 JUL 9 1992


Appendix D

Maximum Allowable Spike Recovery and RPD Ranges in the Halocarbons/Aromatics Method

Matrix <u>Type</u>	Compound <u>Type(s)</u>	Maximum Spike <u>Recovery Range</u>	Maximum <u>RPD_Range</u>
water	gases + freons **	65-130 %	20 %
water	all other compounds	75-125 %	15 %
solid	gases + freons **	65-135 %	25 %
solid	all other compounds	70-130 % [.]	20 %


Analysis #182, 296, 297, 418, 419, 420, 463, 515, 537, 538, 539, 912, 1163, 1165, 1170, 1211, 1214, 1226, 1227, 1228, 1462, 1564, 4146, 4267, 4268, 4269, 4717 Initiated Date: 12/18/87 JUL 9 1992 Effective Date: Page 31 of 34 FIGURE 1 - Hall Detector VUA Analysis by Purge & Trap GC 10-200 + 20 GASES SAMPLE NAME: CHKSTD RESULTFILE: /VI/RESULT/HI2_113_405.RES Batch Number: 92113/012 Injected on Fri Apr 24, 1992 8:15:23 pm Instrument: TRAC9000#12HALL EPA HETHOD 5030/8010 CONDITIONS TRAP #1 (EPA 601) 1% SP-1000 on Carbopack B column - Hall Detector INSTRUMENT 104 03019 HP 3350A LAS v. D.00.01 METHOD: /VI/METHOD/H12_II3NT.NTH Employee (330 Quantitation: HeightUnits Calculation: ExternalSTD Plot Fields: 2900 - 6900 Dilution Factor: 1.00E+00 **RI IDTime Height Code** +ug/L Name .825 2.27 2.27 13529 VV 18.63 CHLOPOHETHANE 24.17 BROMOMETHANE 23504 VV 3.92 3.95 2.275 4.94 4.94 42984 VV 25.94 VINYL CHLORIDE 3.281 22.39 CHLOROETHANE 6.16 6.16 43131 VV 3.916 17.81 METHYLENE CHLOPIDE 8.34 #8.34 53404 . VV 10.35 #10.35 47955 PV 17.57 TRICHLOROFLUOROMETHANE 4.937 46936 VV 16.81 1.1-DICKLORDETHENE 10.99 #10.99 6.159 106.90 SURR-BRCLMETHANE 11.30 #15.30 340520 VB 12.14 #12.14 46575 BV 15.89 1.1-DICHLOROETHANE 17.76 CIS-1.2-DICHLOROLINENE 12.87 #12.87 48393 PV 8.001 13.30 #13.30 67754 VV 17.91 CHLORDFORM 8.344 16.92 TRICHLOROTRIFLUDROETHANE 13.78 #13.78 38346 VV-53295 VB 19.03 1.2-DICHLOROETHANE 14.04 #14.04 10.353 15.33 #15.33 52922 BV 16.96 1.1.1-TRICKLOROFTHANE 19:238 15.71 #15.71 58777 VV 17.89 CARBON TETRACHLORIDE 16.09 #16.09 46271 VB 18.64 BROMODICHLOROMETHANE 12.143 40810 BV 17.49 #17.49 17.46 1.2-DICHLOROPROPANE 12.873 18.26 #18.26 53152 VV 16.45 TRICHLOROETHENE 18.78 #18.78 31262 VB 18.59 DIRROMOCHLOROMETHANE 20.00 19.99 24872 BV 28.15 Z-CHLOROETHYL VINYL ETHER 21.39 #21.39 17604 PV 20.28 BROMOFORM 23.75 #23.75 59262 PV 18.49 TETRACHLOROETHENE 26.28 #26.28 19327 VV 21.59 CHLOBOBENZENE 27.31 #27.31 62610 VV 117.48 SURR-ICLIFBENZENE - HALL 17.489 sResults are reported in ug/L for mater samples and ug/kg for 18.264 soil samples. Coelutors 19.996 VINYL CHLORIDE [dichlorodifluoromethane] CIS-1,2-DICHLOROETHENE (trans-1,2-dichloroethene) 21.394 1.2-DICHLOROPROPANE (cis-1.3-dichloropropene) DIBROHOCHLOROHETHANE [1.1.2-trichtoroethane] DIBROMOCHLOROMETHANE [trans-1,3-dichloropropene) 2-CHLOROETHYL VINYL EINER (ethylene dibromide) 23.747 24-241 TETRACHLORDETHENE [1.1.2.2-Letrach]orgethene] 1 ine Timed Events Event 26.282 1 11.35 ResetBLAtValley 14.90 ResetELAtValley 2 27.305 3 17.14 **ResetELALValley** 19.70 "Resetal AtValley 4 28.728 Run Time - 31.00 Integration Parameters: 29.271 threshold - 2.0 Minimum Ares - 1.000E+03 29.931 Formatfile: /DATA/FORMAT/VOADME.FMT Reported on Sat Apr 25, 1992 1:53:33 pm

Analysis #182, 296, 297, 418, 419, 420, 463, 515, 537, 538, 539, 912, 1163, 1165, 1170, 1211, 1214, 1226, 1227, 1228, 1462, 1564, 4146, 4267, 4268, 4269, 4717 Initiated Date: 12/18/87 JUL 9 1992 Effective Date: Page 32 of 34 FIGURE 2 - PID Detector VUA Analysis by Purge & Trap GC SAMPLE NAME: CHKSTD 10-200 + 20 GASES Satch Number: 92113/A12 RESULTFILE: /VI/RESULT/PI2_113_405.RES Instrument: TRAC9000#12PID 'Injected on Fri Apr 24, 1992 8:15:23 pm ------TRAF #1 (EFA 601) EPA METHOD 5030/8010 CONDITIONS 1% SP-1000 on Carbopack B column - PID Detector HP 3350A LAS U. D.00.01 INSTRUMENT ID# 03819 ------METROD: /VI/METHOD/P12_113N111.MTH Employee #330 Quantitation + HeightUnits Calculation: InternalSTD Plot Fields: 3000 - 6000 Dilution Factor: 1.00E+00 RT IDTime Height Code wug/L Name . .799 4.91 .4.91 1479 VV 21.90 VINYL CHLORIDE 1.815 3445 PV 10.95 #10.96 15.94 1.1-DICHLOROETHENE 12.85 #12.85 8252 VV 17.05 C15-1.2-DICHLOROLTHENE 18.24 #18.24 5278 PV 16.77 TRICHLORDETHENE 3.897 18.81 #18.81 10719 VV 17.51 BENZENE 6414 VV 4.908 19.97 .19.96 27.46 2-CHLOROETHYL VINYL ETHER 23.72 823.72 4688 BV 18.17 TETRACHLORDETHENE 6.118 24.28 024.28 12554 VB 1510 - TFT 25.08 #25.08 9383 BV 16.73 TOLUENE 9220 VB 19.36 CHLOROPENZENE 26.25 #26.25 8.319 27.27 #27.27 19683 BV 102.98 SURR-ICLIFFENZENE - PID 8.996 28.76 #28.76 4773 VB · 16.73 ETHYLBENZENE CIS-1.2-DICHLOROETHENE and TRANS-1.2-DICHLOROETHENE coefule. Internal Standard Range: 10405 - 15607 (Midpoint - 13006) 10.964 Using check standard file. 12.131 . /V1/RESUL1/P12_113_395.RES 12.848 eResults are reported in ug/L for mater samples and ug/kg for 13.975 soil samples. 14.641 15.245 **limed** Events Time Event 23.00 ResettL 1 2 24.30 ResetBLALValley 26.30 ResetBLALValley 3 _____ 18.239 Integration Parameters: Bun Time - 31.00 .18,807 Threshold - 0,0 Minimum Ares - 1.0002+02 19.969 Formalfile: /DATA/FORMAT/PVOADNE.FHT Reported on Sat Apr 25, 1992 1:54:30 pm 21.985 23.720 _ 24.278 _ 25.079 26.249 _____ 27.272 28.759

2398 6/17/92

ы H

H

H ، سۇ O rt

Ω

Da

 $\overline{\mathbf{C}}$ N 0

CO

1992

۵Ö سر 4

Û

õ

rt Ø

Ν.

δ G

L.J

4

0 Õ

H

w

~

Analysis

=#=

μ

ò ŝ

N

ö

σ

2

ò

N N

N S

00 Ο

10 ш

N ຫ ч

G

Õ

N N õ 28

ŝ 11

ŝ

N

For data package groups with the background, spike, and spike dup, as independent UI numbers, the 2nd injection of the spiked sample (*) should be from the matrix spike dup. vial. If the result of the 2 spikes match but are both out of spec. (values), run a check std. and a spike in deionized water. If the check std. is in spec.. samples can be started. If the check std. is out of spec. STOPI and recalibrate. The spike in deionized water purpose is to help us evaluate the bkg./sp./sp. dup. results. Being in spec. is not required to continue with samples. The critical determinate is the check std., this must be in spec, for all compounds being reported before continuing with samples. When one spike result is in spec. and the other out of spec., run a 3rd injection of a spiked sample using either the spike or spike dup. vial. This will be decided through analyst experience. Then follow protocol (+) from the point of the spike dup. injection.

2397 6/17/92

ancaster Laboratories

Analysis #1861, 3337 Initiated Date: 10/29/90 Effective Date; NOV <u>2</u> <u>1</u> 1991

Polynuclear Aromatic Hydrocarbons in Water and Wastewater

Reference:

Test Methods for Evaluating Solid Waste, EPA SW-846, Method 3510/3630/8310, September 1986.

Scope:

This method is applicable to the measurement of the following polynuclear aromatic hydrocarbons (PAH's) in water and wastewater.

Quantitation Limit (ug/l)

Analyte

Naphthalene	10.
Acenaphthylene	20.
Acenaphthene	20.
Fluorene	2.
Phenanthrene	2.
Anthracene	1.
Fluoranthene	0.5
Pyrene	2.
Benzo(a)anthracene	0.1
Chrysene	1.
Benzo(b)fluoranthene	0.2
Benzo(k)fluoranthene	. 0.1
Benzo(a)pyrene	0.2
Dibenzo(a,h)anthracene	0.2
Benzo(g,h,i)perylene	0.5
Indeno(1,2,3-cd)pyrene	0.5

Analysis #1861, 3337 Initiated Date: 10/29/90 Effective Date: NOV 21 1991 Page 2 of 16

The extraction phase of this method requires approximately one hour per sample with 12 to 15 samples prepared in an eight-hour day by one technician. Each extract requires 25 minutes to chromatograph and may require further dilution.

This method is used for analyzing water and wastewater samples scheduled for LLI analysis #1861.

Basic Principles:

A one liter sample of water or wastewater is extracted with 100% methylene chloride. The volume of the sample must not be altered unless it has a strong fuel odor and/or has a dark, oily appearance. The extract is dried, concentrated by evaporation and diluted into ACN. Silica gel clean-up may be used if unresolvable chromatographic interferences are present.

The acetonitrile extract is analyzed by reverse phase HPLC using both UV and fluorescence detectors for optimum sensitivity.

Apparatus and Materials:

- 1. Graduated cylinders 1 liter capacity.
- Separatory funnels 1 liter capacity with teflon stopcocks.
- 3. Kuderna-Danish concentrator flasks 500 ml with 10 ml graduated concentrator tubes.
- 4. Beakers 1 liter capacity (glass or stainless steel).

5. Three ball Snyder columns.

Analysis #1861, 3337 Initiated Date: 10/29/90 Effective Date: NOV 211991 Page 3 of 16

6. Na₂SO₄ drying columns - 29 mm x 200 mm.

7. Glass wool.

8. Steam bath.

9. Glass beads.

10. N-evap.

11. 8 ml glass screw cap vials with teflon lined lids.

12. 1.0 ml gas tight injection syringe (Hamilton P/N or equivalent).

13. 20 ul injection loop.

14. Rheodyne 7125 injection valve or equivalent.

15. HPLC System:

a. Shimadzu LC-6A Gradient pumping system or equivalent.

b. Shimadzu SCL-6A system controller or equivalent.

c. HPLC Column: Supelco LC-PAH, 15 mm x 4.6 mm 5 um column or equivalent.

16. Detectors:

a. Kratos spectroflow 980 fluorescence detector or equivalent.

b. Shimadzu SPD-6A UV detector or equivalent.

Analysis #1861, 3337 Initiated Date: 10/29/90 Effective Date: NOV 21991 Page 4 of 16

17. Dual channel integrating system.

18. Volumetric glassware.

Reagents and Standards:

- 1. HPLC grade water or filtered, degassed, deionized tap water. (if no contaminant peaks are present upon use.)
- 2. Acetonitrile, HPLC grade.
- 3. Methylene chloride, HPLC grade.
- Sodium sulfate baked for four hours in a muffle furnace at 400°C.
- 5. Neat standards.
- Stock standards and intermediate standard solutions as outlined in Table 1. Store in amber glass in the freezer. Stable for one year.
- 7. A spiking solution containing each analyte prepared as follows: 1 ml of each stock (or intermediate where applicable--See Table 1) is diluted to volume with acetonitrile in a 25 ml volumetric flask. The solution must be transferred to an amber glass screw cap vial with a teflon lined lid and stored in the freezer for no more than one year.
- Working standard mixes at five concentrations prepared as follows:

Analysis #1861, 3337 Initiated Date: 10/29/90 Effective Date: NOV 21 1991 Page 5 of 16

Level 1 - 1 ml of each stock (or intermediate where applicable-See Table 1) diluted in acetonitrile to a final volume of 100 mls.

Level 2 - 20 mls of Level 1 to 50 mls ACN.

Level 3 - 15 mls of Level 1 to 50 mls ACN.

Level 4 - 10 mls of Level 1 to 50 mls ACN.

Level 5 - 5 mls of Level 1 to 50 mls ACN.

Store all working mixes in glass screw cap vials in the freezer. The mixes are stable for one year when stored in the freezer.

9. A spiking solution of nitrobenzene is prepared in ACN at a concentration of 400 ug/ml (± 50 ug/ml). This surrogate spiking solution must be stored in the freezer and is stable for one year.

Safety Precautions:

Avoid inhaling the solvents and getting them on the skin. Wear gloves when handling methylene chloride. To avoid a buildup of pressure in the separatory funnels during extraction, vent the funnel into a hood by inverting and opening the stopcock.

Avoid contact with the standards. While handling the neat materials, wear gloves, a laboratory coat, and safety glasses.

Analysis #1861, 3337 Initiated Date: 10/29/90 Effective Date: NOV 211991 Page 6 of 16

Sample Collection, Preservation, and Handling:

Samples must be collected in amber glass with teflon lined lids (LLI bottle code #030). Sodium thiosulfate preservation may be used for chlorinated samples, but is not mandatory for nonchlorinated samples. The samples must be maintained cool, 4°C. Samples must not be collected in plastic due to the possibility of sample contamination from hydrocarbons within the plastic. Samples should not be collected in the presence of exhaust fumes. Samples must be extracted within seven days of collection and analyzed within 40 days of extraction.

A. Extraction Procedure:

- 1. Shake the sample well. If the sample has no strong odor, dark color, or any other indication of high organic content, then pour the entire sample aliquot into a graduated cylinder. Record the volume and then bring the total volume in the graduated cylinder up to 1 liter as needed. Transfer the sample to a 2 liter separatory funnel. (If the sample has a strong odor or color, then less sample volume may be used accordingly. The sample volume must be brought to 1 liter by adding deionized water. The bottle rinsing listed in Step 4 is not necessary in this case.)
- 2. Add one ml of spiking solution to the spike, spike duplicate, and laboratory control spike.
- 3. Add one half ml of surrogate standard spiking solution to each sample as well as the blank and QC samples.

Analysis #1861, 3337 Initiated Date: 10/29/90 Effective Date: NOV 211991 Page 7 of 16

- 4. Pour 60 ml of methylene chloride into the sample bottle, shake well, and then pour it into the separatory funnel and insert stopper. Invert funnel and vent to relieve pressure, then shake vigorously for two minutes, venting frequently. Allow phases to separate for at least ten minutes.
- 5. Assemble the Kuderna-Danish (K-D) apparatus by securing the concentrator tube to the 500 ml flask with teflon tape and a plastic clip. Place a boiling bead in the apparatus.
- Place a small piece of glass wool at the bottom of a 29 mm x 200 mm chromatography column and fill with three inches of sodium sulfate. Place the column on top of the K-D.
- 7. Drain the methylene chloride phase (lower) into a 150 ml beaker and transfer through the sodium sulfate column into the K-D. If an emulsion has formed in the separatory funnel, add a small amount of saturated NaCl solution or centrifuge the methylene chloride layer with a small portion of the aqueous phase. Document the formation of any emulsions in the data notebook. Also document whether or not they were broken.
- 8. Repeat the extraction two more times, rinsing the empty beaker with 60 ml of methylene chloride before putting the solvent into the separatory funnel. Drain the methylene chloride through the sodium sulfate column into the K-D after each extraction. Discard the water phase after the final extraction. Rinse the beaker after extraction with methylene chloride and pour through a sodium sulfate column.

Analysis #1861, 3337 Initiated Date: 10/29/90 Effective Date: NOV 211991 Page 8 of 16

- 9. Rinse the sodium sulfate column with 20 ml of methylene chloride and let drain well.
- 10. Remove the sodium sulfate column, attach a three-ball Snyder column to the K-D flask, and prewet the column with about 5 ml of methylene chloride to keep pressure from building up in the K-D while concentrating.
- 11. Place the K-D on a steam bath which is at 90°C to 100°C. Position the flask so that the concentrator tube is partially immersed in the hot water and the bottom of the flask is bathed with hot vapor. The chambers of the Snyder column should not flood with solvent, but the balls should actively chatter. Concentrate to apparent dryness.
- 12. Remove from the steam bath. Allow the apparatus to cool and drain for ten minutes.
- 13. Adjust the final volume to 3.0 ml with methylene chloride.
- 14. Prepare a five-fold dilution of the extract in ACN.
- 15. Transfer the extract to a glass screw cap vial and store in the freezer.
- B. Chromatographic Procedure:
 - 1. HPLC Set-up:
 - Column Supelco LC-PAH, 5 um 15 mm x 4.6 mm or equivalent

Mobile Phase - $A = H_2O$

B = Acetonitrile

Analysis #1861, 3337 Initiated Date: 10/29/90 Effective Date: NOV 21 1991 Page 9 of 16

Gradient - 35% B hold 2 minutes from 2 to 16 minutes increase %B to 100%.

Flow - 1.5 ml/minute

Temperature - ambient

Injection loop size - 20 ul

UV - 254 nm Fluorescence - 280 nm excitation 370 nm emmision 0.01 uA PMT signal

- Both mobile phases must be degassed prior to use. A second degassing before seven days is usually not necessary.
- 3. If deionized tap water is being used it must be filtered prior to degassing.
- 4. The system should be set up and checked as described below:
 - a. Set all HPLC parameters to those listed in Sections B1-3 of the method.
 - b. Pump mobile phase at the initial gradient conditions for ten minutes. After ten minutes, check the entire system for leaks (i.e. all connections, injection loop, Shimadzu pump heads, detector inlets and outlets, etc.).

Analysis #1861, 3337 Initiated Date: 10/29/90 Effective Date: NOV 21 1991 Page 10 of 16

- c. Inject an acetonitrile blank to confirm the absence of system contamination. If no peaks are seen (there is a 2 cm "peak" around 22 minutes which represents the sudden mobile phase change from 100% B back to the initial gradient conditions--disregard this), then the calibration may proceed.
- d. If contamination peaks are seen, then plot a gradient only run without making an injection. If the peak remains, one or both of the mobile phases are suspect. Try new lots of acetonitrile and/or water if necessary.
- e. Once the system is free of contamination, proceed to Section B5 (calibration).
- 5. External calibration is performed by injecting working mixes at five concentration levels. In order for each working mix to contain 16 peaks showing similar peak heights, the mixes must be prepared as described in the Reagent section of this method. Sample chromatograms are presented in Figures 1 and 2.
- 6. Calculate response factors (RF) for the first six compounds listed in this method from the UV data (RF = concentration [ug/ml] divided by peak height [or area]). Calculate RFs for the last ten compounds from the fluorescence data in the same fashion. RFs for the last ten compounds on UV and first six compounds on fluorescence need not be calculated unless 2nd

Analysis #1861, 3337 Initiated Date: 10/29/90 Effective Date: NOV 211991 Page 11 of 16

detector confirmation is required. If the RF value over the five working levels is constant (<20% RSD), then the average RF can be used in all subsequent calculations. If the RFs are to be used for confirmation only and sensitivity of the lower levels is a problem, then a minimum of three working levels may be used. If the %RSD for any or all of the compounds exceeds 20% then a least squares calibration curve (include zero) must be generated for the affected compounds.

- 7. The working calibration curve or RF must be verified at least once per day (after every ten injections is recommended) by injecting one of the calibration mixes. The peak height (or area) response for each analyte must show <15.0% RPD as compared to the initial injection of the calibration standard. RFs to be used for confirmation only must show <20% RPD.</p>
- 8. If any or all of the RPDs are >15.0%, then the system. is out of control. Every effort must be made to correct the problem. If any or all of the RFs used for confirmation only show >20% RPD then the analyst may choose to perform single point confirmation calculation or start a new calibration curve.
- 9. If the problem is corrected, it must be verified by showing all RPDs ≤15.0% (this applies to RFs to be used for primary quantitation only) and sample analysis may proceed. If the problem can not be corrected, then the system must be recalibrated. If no samples were injected after the system was deemed out of control then no sample reanalysis is necessary.

Analysis #1861, 3337 Initiated Date: 10/29/90 Effective Date: NOV 21 1991 Page 12 of 16

- 10. Retention time windows (for a given column) are generated by making three mid-level standard injections over a 72-hour period. Calculate the average retention time for each analyte. Each subsequent window is calculated as the average ± three times the standard deviation. Retention time windows may by updated as needed by modifying the midpoint retention times.
- 11. For any analyte to be reported, the following must occur:
 - a. The retention times must be within the specified windows on both the fluorescence and the UV runs.
 - b. The peak must be clearly resolved on both runs.
 - c. The primary and confirmation values must agree within a factor of two.
- 12. UV detection is the primary mode of detection for the first six analytes listed in Table 1. Fluorescence detection is the primary mode of detection for the last ten analytes listed in Table 1.
- 13. Any analyte concentration above the working range of the standards must be diluted to within the range.
- 14. Silica gel cleanup (as per Method 3630 SW-846) may be used for messy samples.

Analysis #1861, 3337 Initiated Date: 10/29/90 Effective Date: NOV 21 1991 Page 13 of 16

- 15. Any time the injection sequence is discontinued for more than eight hours, the midlevel calibration mix must be injected just before and right after the break in the injection sequence. Before sample analysis proceeds, the requirements listed in Steps 8 to 9 must be met.
- 16. All standards and samples must be warmed to room temperature prior to being injected.

Calculations:

 $\frac{PK \text{ HT } x \text{ RF } x \text{ FV } x \text{ DF } x \text{ AF} = \text{Concentration (ug/l)}}{IV}$

Where: Pk Ht = Peak height found in sample.

- RF = Response factor (ppm/peak height) of analyte in
 standard.
- FV = Final volume of sample extract* (ml).

DF = Dilution factor (where applicable).

IV = Initial volume of sample extracted (liters).

**AF = Additional factor.

*Please note that the final volume of the extract is 3 ml.

**Additional factor is 5 to compensate for the dilution into ACN.

Quality Assurance:

 A reagent blank (using deionized water) is extracted with every batch of 20 samples or less.

Analysis #1861, 3337 Initiated Date: 10/29/90 Effective Date: NOV 211991 Page 14 of 16

- 2. A laboratory control sample (a spiked reagent blank) and a laboratory control duplicate are extracted for every 20 samples or every 14 days whichever comes first.
- 3. Recovery and RPD data from >30 LCS/LCSD pairs is used to calculate 95% CIs for recoveries and RPDs. The data is deemed acceptable if all recoveries are within the 95% CIs (the 95% CIs are monitored on a monthly basis and updated when the upper and/or lower limit have changed by more than 15%. If the LCS and/or the LCSD recoveries fall outside the 95% CIs, then the data must be reviewed for errors in calculations etc. and the extract must be reanalyzed. If no correctable errors or problems can be found, then the entire batch must be re-extracted (even if the holding time has been exceeded). If the repeat LCS/LCSD data is prepped within the holding time, then the repeat data must be reported. If the repeat LCS/LCSD data is prepped beyond the holding time, then the original data must be reported and a comment must appear on the report. When all recovery data is in spec but the RPD values fall outside the 95% CIs, then the data is acceptable pending follow-up on potential system problems.
- 4. Surrogate standard recovery data from ≥30 data points is used to calculate a 99% CI. All sample data is deemed acceptable if it falls within these limits. The action steps taken for surrogates outside the 99% CI are as listed above with one exception. If the repeat extraction confirms the low recovery, then the recovery problem is attributed to the sample matrix.

Analysis #1861, 3337 Initiated Date: 10/29/90 Effective Date: NOV 211991 Page 15 of 16

NO1816 PP Methods #2 111391

Prepared b	_ oy:	Janna In Seluma dun	Date:	11/14/91
Approved b	o y: _	mt s/ks	Date:	1/1/191
Approved h	р у: _	molanisekas	Date:	11/18/91

Analysis #1861, 3337 Page 16 of 16

.

Table 1

Stock/Intermediate Standard Solution Preparation

Analyte	Stock ug/ml (± 10%)	Solvent for Stock <u>Solutions</u>	Intermediate <u>ug/ml</u>	Solvent for Immediate
Naphthalene	4000.	ACN		———
Acenaphthylene	4000.	ACN		
Acenaphthene	6000.	ACN	'	
Fluorene	600.	ACN		
Phenanthrene	200.	ACN	— —	
Anthracene	1000.	ACN	100.	ACN
Fluoranthene	8000.	ACN	80.	ACN
Pyrene	400.	ACN	.	
Benzo(a)anthracene	400.	ACN	40.	ACN
Chrysene	200.	ACN		.
Benzo(b)fluoranthene	400.	ACN	40.	ACN
Benzo(k)fluoranthene	1500.	MeCl ₂	15.	ACN
Benzo(a)pyrene	400.	ACN	40.	ACN
Dibenza(a,h)anthracene	800.	ACN	80.	ACN
Benzo(g,h,i)perylene	3000.	ACN	30.	ACN
Indeno(1,2,3-cd)pyrene	150.	ACN		

Data File = 5:A357-1.PTS Printed on 09-15-1990 at 14:23:22 0.00 min. Stop time: Offset: 24.85 min. 8 mv. Start time: Full Range: 7 millivolts

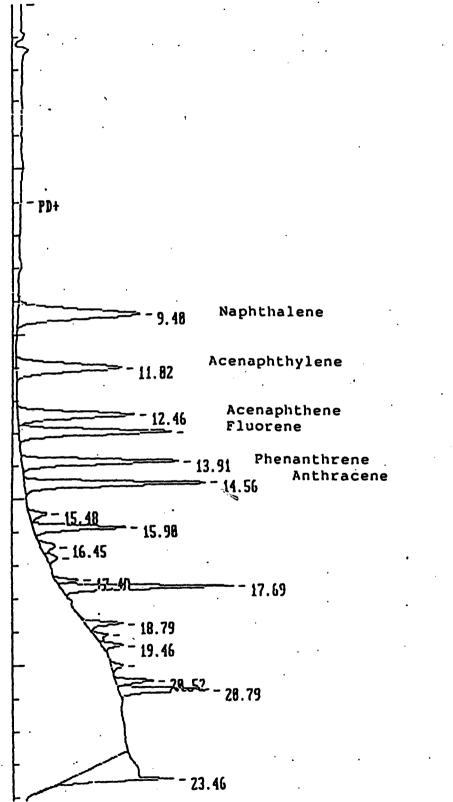


FIGURE 1: PAH's which are determined using UV detection as the primary mode of detection.

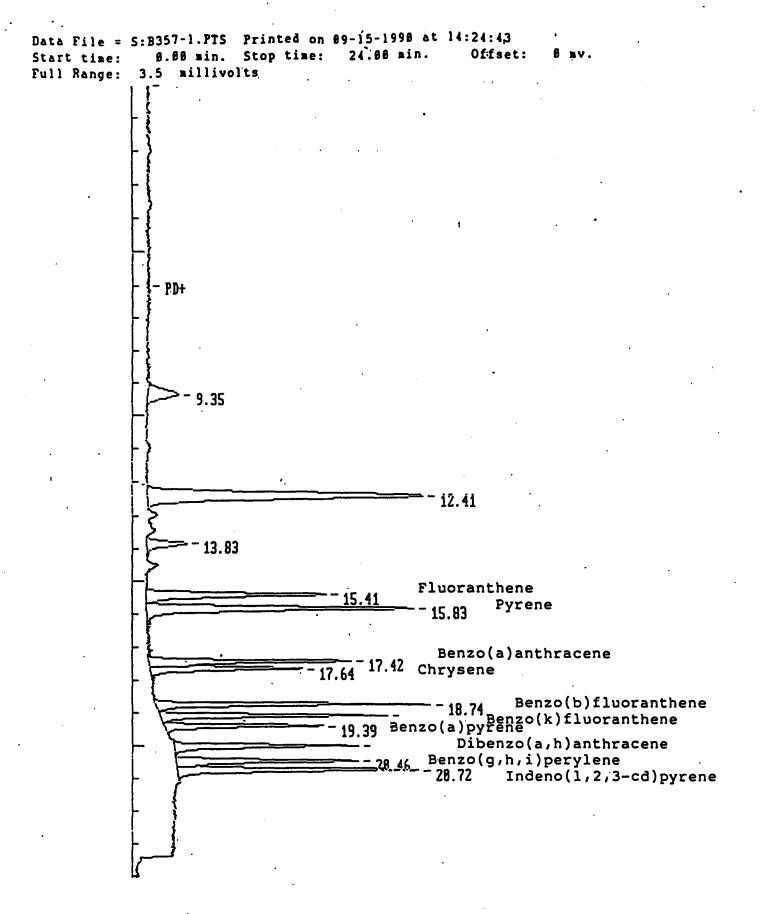


FIGURE 2: PAH's which are determined using Fluorescence detection as the primary mode of detection.

.

Analysis #1862, 3338 Initiated Date: 10/26/90 Effective Date: NOV 21 1991

Polynuclear Aromatic Hydrocarbons in Soils and Sludges

Reference:

Test Methods for Evaluating Solid Waste, EPA SW-846, Method 3510/3630/8310, September 1986.

Scope:

This method is applicable to the measurement of the following polynuclear aromatic hydrocarbons (PAHs) in soils and sludges.

Analyte	Quantitation Limit (mg/kg)
Naphthalene	2.
Acenaphthylene	2.
Acenaphthene	2.
Fluorene	2.
Phenanthrene	0.5
Anthracene	0.5
Fluoranthene	0.2
Pyrene ·	0.2
Benzo(a)anthracene	0.01
Chrysene	0.1
Benzo(b)fluoranthene	0.02
Benzo(k)fluoranthene	0.02
Benzo(a)pyrene	0.02
Dibenzo(a,h)anthracene	0.02
Benzo(g,h,i)perylene	0.05
Indeno(1,2,3-cd)pyrene	0.05

Analysis #1862, 3338 Initiated Date: 10/26/90 Effective Date: NOV 21 1991 Page 2 of 14

The extraction procedure requires 1-2 hours per sample. One technician can prepare eight samples in an 8-hour day. Silica gel cleanup is optional (see Appendix V of Dept. 24 Methods Manual) and can be used when on resoluable matrix interference occurs. One technician can perform silica gel cleanup on 20 extracts in an 8-hour day.

This method is used for analyzing soil and sludge samples scheduled for analysis #1862.

This method is not useful for analyzing nonsoil solid samples.

Basic Principles:

A 30 g portion of homogenized sample is dried with sodium sulfate and extracted with 50% methylene chloride in acetone. The extract is filtered, dried, concentrated by evaporation, diluted into ACN and put through silica gel, if necessary. The PAHs are identified and quantitated using reverse phase HPLC with both UV and Fluorescence detection.

Apparatus:

1. Beakers - 250 ml (glass or stainless steel).

2. Glass stirring rods.

3. Buchner funnel.

4. Erlenmeyer filter flask - 500 ml.

5. Kuderna-Danish concentrator flasks - 500 ml with 10 ml graduated concentrator tubes.

6. Three-ball Snyder columns.

Analysis #1862, 3338 Initiated Date: 10/26/90 Effective Date: NOV 211991 Page 3 of 14

7. Na₂SO₄ drying columns - 29 mm x 200 mm.

8. Glass wool.

9. Steam bath.

10. Glass beads.

11. Amber glass screw cap vial - 12 ml capacity.

12. Ultrasonic cell disruptor, Heat Systems - Ultrasonics, Inc. Model #W-385, or equivalent.

13. HPLC Gradient pumping system.

14. Rheodyne 7125 injection valve or equivalent.

15. 20 ul injection loop.

16. UV spectrophotometric detector.

17. Fluorescence detector.

18. Dual channel integration system.

19. Supelco LC-PAH, 15 mm x 4.6 mm, 5 um or equivalent.

Reagents and Standards:

1. Hexane, HPLC grade.

2. Methylene chloride, HPLC grade.

3. Acetone, HPLC grade.

Analysis #1862, 3338 Initiated Date: 10/26/90 Effective Date: NOV 21 1991 Page 4 of 14

- 4. Acetonitrile, HPLC grade.
- 5. Sodium sulfate, baked in a muffle furnace for 4 hours at 400°C.
- 6. Standards (prepared as listed in LLI Analysis #1861) are stored in glass at 4°C and are stable for one year.
- 7. A spiking solution (prepared as listed in LLI Analysis #1861) is stored in glass at 4°C and is stable for one year.

Safety Precautions:

Avoid inhaling the solvents or getting them on the skin. Wear gloves when handling methylene chloride as well as the samples. Avoid contact with the standards. Wear gloves, a laboratory coat, and safety glasses while handling neat materials.

Sample Collection, Preservation, and Handling:

Samples must be collected in glass with teflon lined lids. The samples must be maintained cool, 4°C. Samples must not be collected in plastic due to the possibility of sample contamination from hydrocarbons within the plastic. Samples should not be collected in the presence of exhaust fumes. Samples must be extracted within 14 days of collection and analyzed within 40 days of extraction.

A. Sonic Probe Extraction:

- 1. Weigh out 30 g of sample into a 250 ml beaker.
- Add 60 g of anhydrous powdered sodium sulfate and mix well.

Analysis #1862, 3338 Initiated Date: 10/26/90 Effective Date: NOV 21 1991 Page 5 of 14

- 3. Add 100 ml of methylene chloride in acetone (50% solution) to the sample.
- 4. Add 2 ml of matrix spiking solution where applicable.
- 5. Place the beaker with the sample under the disruptor horn of the sonicator so that the tip of the horn is 1/2 inch below the surface of the solvent, but above the sediment layer.
- Sonicate for 3 minutes with the percent duty cycle at 50% and the cycle at 1 second pulse.
- 7. Decant and filter extract into a Buchner funnel through Whatman #3 filter paper using vacuum filtration by thoroughly wetting the filter paper with a portion of the 50% solution, then decanting the extract onto the center of the paper to keep small particulates from going under the edge of the paper. Then rinse the filter paper with a small amount of 50% solution.
- 8. Repeat extraction 2 more times with 2 additional 100 ml portions of 50% solution. Before each sonication, make sure sodium sulfate is free flowing. If not, kreak up any lumps with a glass stirring rod. Decant and filter the solvent after each sonication. After the final sonication, pour off all the liquid portion, including any suspended particulate matter.
- 9. Add 50-100 ml of 50% solution to the beaker and rinse the soil and beaker. Add this to the funnel. Rinse the Buchner funnel one more time.

Analysis #1862, 3338 Initiated Date: 10/26/90 Effective Date: NOV 21 1991 Page 6 of 14

- 10. If at this point the filtrate still contains particulate matter, refilter through a clean piece of #3 paper. Be sure to rinse the Erlenmeyer after transferring the filtrate.
- Transfer the final filtrate through a Na₂SO₄ drying column into a K-D flask with a 10 ml concentrator tube. Rinse Erlenmeyer and put rinse into the K-D.
- 12. Add a boiling bead. Prewet Snyder with methylene chloride and concentrate to approximately 1 ml.
- 13. Bring the extract to a final volume of 10 ml with methylene chloride.
- 14. Prepare a five-fold dilution in ACN to run on the HPLC.
- 15. Transfer the extract to a glass screw cap vial and store in the freezer if the analysis cannot be performed immediately.
- 16. Proceed with the silica gel cleanup (if necessary), as listed in Appendix V of the departmental methods manual.
- B. Chromatographic Procedure:
 - 1. HPLC Setup:

Column - Supelco LC-PAH, 5 um 15 mm x 4.6 mm or equivalent

Mobile Phase - $A = H_2O$ B = Acetonitrile

Analysis #1862, 3338 Initiated Date: 10/26/90 Effective Date: NOV 211991 Page 7 of 14

Gradient - 35% B hold 2 minutes from 2 to 16 minutes increase %B to 100%.

Flow - 1.5 ml/minute

Temperature - ambient

Injection loop size - 20 ul

UV - 254 nm

Fluorescence - 280 nm excitation 370 nm emission 0.01 uA PMT signal

- 2. Both mobile phases must be degassed prior to use. A second redegassing before seven days is usually not necessary.
- 3. If deionized tap water is being used it must be filtered prior to degassing.
- 4. The system should be set up and checked as described below:
 - a. Set all HPLC parameters to those listed in Sections B1-3 of the method.
 - b. Pump mobile phase at the initial gradient conditions for ten minutes. After ten minutes, check the entire system for leaks (i.e. all connections, injection loop, Shimadzu pump heads, detector inlets and outlets, etc.).

Analysis #1862, 3338 Initiated Date: 10/26/90 Effective Date: NOV 21 1991 Page 8 of 14

- c. Inject an acetonitrile blank to confirm the absence of system contamination. If no peaks are seen (there is a 2 cm "peak" around 22 minutes which represents the sudden mobile phase change from 100% B back to the initial gradient conditions--disregard this), then the calibration may proceed.
- d. If contamination peaks are seen, then plot a gradient only run without making an injection. If the peak remains, one or both of the mobile phases are suspect. Try new lots of acetonitrile and/or water if necessary.
- e. Once the system is free of contamination, proceed to Section B5 (calibration).
- 5. External calibration is performed by injecting working mixes at five concentration levels. In order for each working mix to contain 16 peaks showing similar peak heights, the mixes must be prepared as described in the Reagent section of this method. Sample chromatograms are presented in Figures 1 and 2.
- 6. Calculate response factors (RF) for the first six compounds listed in this method from the UV data (RF = concentration [ug/ml] divided by peak height [or area]). Calculate RFs for the last ten compounds from the fluorescence data in the same fashion. RFs for the last ten compounds on UV and first six compounds on fluorescence need not be calculated unless 2nd detector confirmation is required. If the RF value over the five working levels is constant (<20% RSD), then the average RF can be used in all subsequent</p>

Analysis #1862, 3338 Initiated Date: 10/26/90 Effective Date: NOV 211991 Page 9 of 14

calculations. If the RFs are to be used for confirmation only and sensitivity of the lower levels is a problem, then a minimum of three working levels may be used. If the %RSD for any or all of the compounds exceeds 20% then a least squares calibration curve (include zero) must be generated for the affected compounds.

- 7. The working calibration curve or RF must be verified at least once per day (after every ten injections is recommended) by injecting one of the calibration mixes. The peak height (or area) response for each analyte must show <15.0% RPD as compared to the initial injection of the calibration standard. RFs to be used for confirmation only must show <20% RPD.</p>
- 8. If any or all of the RPDs are >15.0%, then the system is out of control. Every effort must be made to correct the problem. If any or all of the RFs used for confirmation only show >20% RPD then the analyst may choose to perform single point confirmation calculation or start a new calibration curve.
- 9. If the problem is corrected, it must be verified by showing all RPDs ≤15.0% (this applies to RFs to be used for primary quantitation only) and sample analysis may proceed. If the problem can not be corrected, then the system must be recalibrated. If no samples were injected after the system was deemed out of control then no sample reanalysis is necessary.
- Retention time windows (for a given column) are generated by making three midlevel standard injections over a 72-hour period. Calculate the average retention

Analysis #1862, 3338 Initiated Date: 10/26/90 Effective Date: NOV 211991 Page 10 of 14

4

5.

υ,

time for each analyte. Each subsequent window is calculated as the average ± three times the standard deviation. Retention time windows may by updated as needed by modifying the midpoint retention times.

- 11. For any analyte to be reported, the following must occur:
 - a. The retention times must be within the specified windows on both the fluorescence and the UV runs.
 - b. The peak must be clearly resolved on both runs.
 - c. The primary and confirmation values must agree within a factor of two.
- 12. UV detection is the primary mode of detection for the first six analytes listed in Table 1. Fluorescence detection is the primary mode of detection for the last ten analytes listed in Table 1.
- 13. Any analyte concentration above the working range of the standards must be diluted to within the range.
- 14. Silica gel cleanup (as per Method 3630 SW-846) may be used for messy samples.
- 15. Any time the injection sequence is discontinued for more than eight hours, the midlevel calibration mix must be injected just before and right after the break in the injection sequence. Before sample analysis proceeds, the requirements listed in Steps 8 to 9 must be met.

Analysis #1862, 3338 Initiated Date: 10/26/90 Effective Date: NOV 211991 Page 11 of 14

16. All standards and samples must be warmed to room temperature prior to being injected.

Calculations:

$$\frac{PK HT \times RF \times FV \times DF \times AF}{IW} = Concentration (mg/kg)$$

Where: Pk Ht = Peak height found in the sample

- RF = Response factor (ppm/peak height) of the analyte in the standard
- FV = Final volume of the sample extract (ml)*
- AF = Additional factor**
- DF = Dilution factor (where applicable)
- IW = Initial weight of the sample extracted (gm)

*This value refers to the 10 ml of methylene chloride extract.

**This value is recorded as 5 to account for the dilution of the methylene chloride extract into ACN.

Quality Assurance:

- A reagent blank (using sodium sulfate) is extracted with every batch of 20 samples or less.
- 2. A laboratory control sample (a spiked reagent blank) is extracted with every batch of 20 samples or less.
- 3. A matrix spike (MS) and a matrix spike duplicate (MSD) is extracted for every 20 samples or every 14 days, whichever comes first.

Analysis #1862, 3338 Initiated Date: 10/26/90 Effective Date: NOV 211991 Page 12 of 14

٦.

- 4. 95% CIs for LCS recoveries and 99% CIs for MS/MSD and RPD are generated using ≥30 data points. These limits are monitored and updated when the upper and/or lower limit has changed by more than 15%.
- Sample data is deemed acceptable if the MS/MSD data 5. and/or the LCS data is within the CI specified above. If the MS and/or MSD recoveries fall outside the 99% CIs and the LCS falls within the 95% CI, then the MS/MSD problems are assumed to be matrix related and the only action required is to review all MS/MSD data for errors and reanalyze the extracts if necessary. If the MS and/or MSD and the LCS are out of specification, then all data must be reviewed for errors and the extracts must be reanalyzed (at least If no correctable errors are found, then the LCS). the batch must be re-extracted (even if the holding time is exceeded). If the repeat MS/MSD and/or LCS data is within the specified CI and prepped within the holding time, then the repeat data must be reported. If the repeat MS/MSD and/or LCS is in specification but prepped beyond the holding time, then the original data is reported and a comment explaining that the original data was reported (and why) must appear on the sample report.
- 6. 99% CIs for surrogate standard recoveries are generated using ≥30 data points. These limits are monitored and updated quarterly. Samples outside the 99% CI must be re-extracted. If the re-extraction is within the holding time and within the 99% CI, then the repeat data is reported. If both extractions are

Analysis #1862, 3338 Initiated Date: 10/26/90 Effective Date: NOV 21 1991 Page 13 of 14

> > \sim

outside the 99% CI, then the problem is matrix related and a comment is included on the report. If the re-extraction is in spec but outside holding time, then the original data is reported and a comment is included on the report.

NO1862 PP METHODS #2 111391

ed by:	Janna J. Schumacher D	ate:	11/14/91
ed by:	2n: 7 4/m D	ate:	11/15/51
ed by:	Withduise Cless Di	ate:	1/18/91

Prepared by:

24

Approved by:

Approved by:

Analysis #1862, 3338 Page 14 of 14

Table 1

Stock/Intermediate Standard Solution Preparation

Analyte	Stock ug/ml (±_10%)	Solvent for Stock <u>Solutions</u>	Intermediate <u>ug/ml</u>	Solvent for Immediate
Naphthalene	4000.	ACN		
Acenaphthylene	4000.	ACN		
Acenaphthene	6000.	ACN		در
Fluorene	600.	ACN		
Phenanthrene	200.	ACN		— —
Anthracene	1000.	ACN	100.	ACN
Fluoranthene	8000.	ACN	80.	ACN .
Pyrene	400.	ACN		
Benzo(a)anthracene	400.	ACN	40.	ACN
Chrysene	200.	ACN		
Benzo(b)fluoranthene	400.	ACN	40.	ACN
Benzo(k)fluoranthene	1500.	MeCl ₂	15.	ACN
Benzo(a)pyrene	400.	ACN	40.	ACN
Dibenza(a,h)anthracene	800.	ACN	80.	ACN 💛
Benzo(g,h,i)perylene	Зооо.	ACN	30.	ACN
Indeno(1,2,3-cd)pyrene	150.	ACN		

Λ

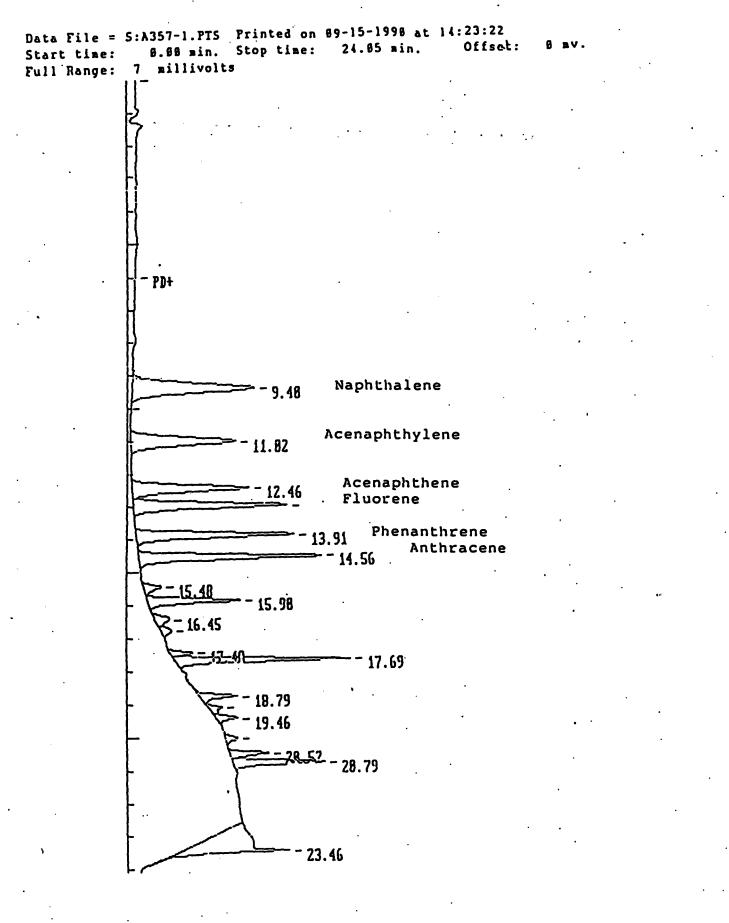


FIGURE 1: PAH's which are determined using UV detection as the primary mode of detection.

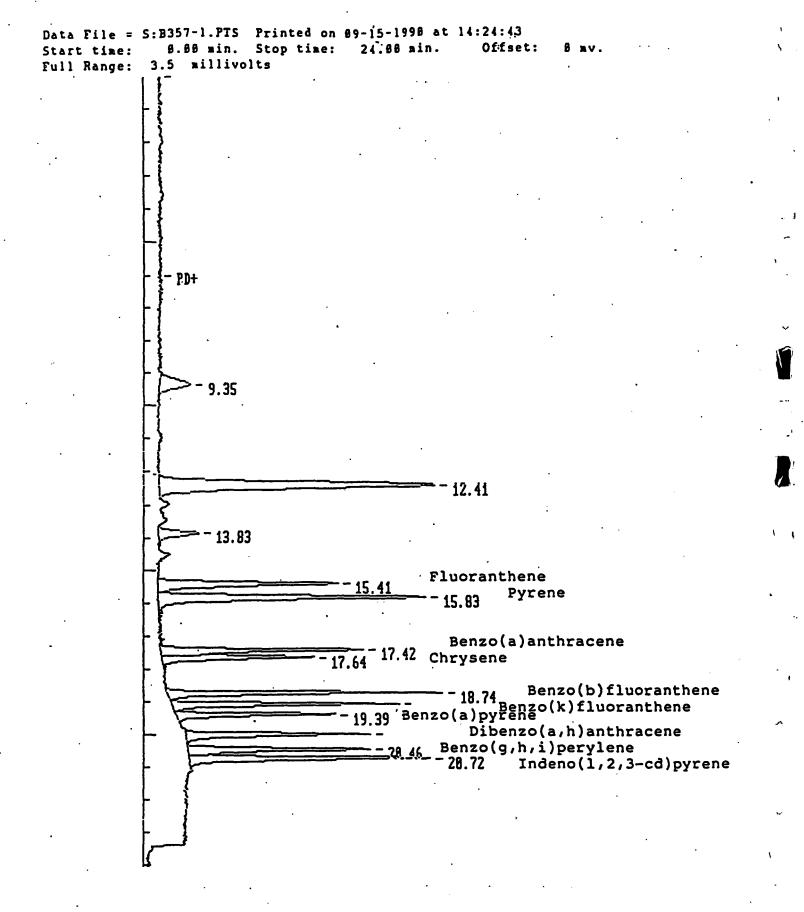


FIGURE 2: PAH's which are determined using Fluorescence detection - as the primary mode of detection.

Analysis #111 Initiated Date: 11/11/88 Effective Date: JAN 24 1992

Moisture

References:

- EPA Methods for Chemical Analysis of Water and Wastes,
 EPA-600.4 79 020, p. 160.3.
- Standard Methods for the Examination of Water and Wastewater, 17th edition, 1989, Method 2540G, p. 2-78 - 2-79.
- 3. LLENS SOP-WQ-014.

Scope:

This method is applicable to all routine samples for moisture analysis. The determination of moisture in solid and semisolid materials is subject to error due to loss of ammonium carbonate and volatile organic matter during drying.

Basic Principles:

A well mixed sample in a tared container is dried to constant weight in an oven at 103°C to 105°C. The decrease in weight after drying is calculated as the moisture content.

Apparatus and Reagents:

1. Crucibles or disposable aluminum pans.

2. Oven maintained at 103°C to 105°C.

3. Balance.

Analysis #111 Initiated Date: 11/11/88 Effective Date: JAN 24 1992 Page 2 of 5

Standard solution of 10.5% NaCl: Thoroughly mix 105 g
 NaCl and 895 g deionized water. Store at 4°C. (This solution is used as prepared.) stable six months.

Safety Precautions:

There are no special safety precautions for this procedure. Follow routine laboratory safety steps.

Procedure:

- 1. Download a batch of samples to be performed using the LLENS system (consult SOP-WQ-014).
 - a. "Downloading a Sample List" for analysis 111
 - (1) When downloading samples for analysis 111, you must download the sample list for analysis 8200. All incomplete samples for analyses 111 and 1353 will appear in the sample table. Choose the appropriate samples using the "insert" key and press PF10 to save.
 - (2) A table will appear labeled Sample Table Editing.
 - (3) If the batch chosen above contains data package samples with client submitted Q.C. (the matrix spike sample will have moisture analysis 118, and the matrix spike duplicate samples will be entered for moisture analyses 118 and 121), type the following exactly as it appears next to the Q.C. samples:

Analysis #111 Initiated Date: 11/11/88 Effective Date: JAN 24 1992 Page 3 of 5

1. 1.2.5

N. 12.

1941 - 1959 - 1944 -

-

e de la composition de la comp

46,5

BK1 Next to the background sample numberMS1 Next to the matrix spike sample numberMD1 Next to the duplicate sample number

Press PF10 to save

If the batch chosen above does not contain client submitted Q.C. refer to the LLENS SOP section A.2.

b. "Hand Entering a Sample Table" for analysis 111.

- (1) Using the master P.C., hand enter a sample table for incomplete 111 moisture samples using analysis 8200 (See LLENS SOP-WQ-014 section A.1.). If the batch does not contain client submitted Q.C., choose the duplicate at this time.
- (2) Move to the moisture P.C. and from the main menu execute "Balance Data Collection".
- (3) Type in analysis "8200" and press "enter".
- (4) Pick the batch which has the incomplete samples hand entered (using the "insert" key and pressing "enter).

(5) Execute "Analysis Scheduled".

Analysis #111 Initiated Date: 11/11/88 Effective Date: JAN 24 1992 Page 4 of 5

- (6) A table will appear with the incomplete sample on the left and the analyses (111, 118, 121, and 1353) on the right. Choose the appropriate analysis in the table by typing a "1" in the corresponding column. Note: If the batch contains client submitted Q.C., choose analysis 118 for the matrix spike sample and analyses 118 and 121 for the matrix spike duplicate sample.
- (7) Press PF10 to save.
- 2. Check to see that the balance has been calibrated for the day and record this in the data book or on the LLENS cover sheet.
- 3. Number aluminum drying pans. Place aluminum pan on the tared balance and record its weight.
- 4. If using pre-tared crucibles:

Record the permanent ID assigned to the crucible and its tared weight from the tare weight notebook.

- 5. Zero the balance. Weigh 5 to 10 grams of sample into the container, and record the weight.
- Record the oven temperature in the lab notebook or LLENS cover sheet, then place the samples in the oven. Dry the samples overnight at 103° to 105°C.
- 7. Record the oven temperature and remove samples from the oven.

Analysis #111 JAN 24 1992 Initiated Date: Effective Date: Page 5 of 5

- Cool the samples in a desiccator for one hour. (Check 8. desiccant to be sure indicator crystals are still blue, not pink.)
- Check to see that the balance has been calibrated for 9. the day. Record this in the data book.
- Weigh the dried samples and record this oven dried 10. weight in the databook or using the LLENS system.
- The percent moisture is calculated as follows: 11.

$$* moisture = \frac{A - B}{C} \times 100$$

A = wt of sample and container before drying B = wt of sample and container after drying C - wt of sample before drying

Quality Assurance:

A duplicate and standard should be run with every batch of 20 samples.

NO111 WQ METHODS #3 012092

Prepared by: Juny Lunul

Beth ESI

Approved by:

Approved by:

Date: 1/22/92 Date: 1/23/92

Date: 1/24/92

Lancaster Laboratories

Where quality is a science.

Analysis #236 Initiated Date: A3686 9 1991 Effective Date: AUG 2 9 1991

Oil and Grease

References:

- USEPA SW846 Test Methods for Evaluating Solid Wastes, 1986, Method 9071.
- 2. Standard Methods for the Examination of Water and Wastewater, 17th Edition, 1989, 5520, D&E.

Scope:

This method is applicable to sludges and solids. The limit of quanitation is 0.01%.

Basic Principles:

Oil and grease is any material recovered as a substance soluble in trichlorotrifluoroethane. Drying acidified sludge or solids by heating leads to low oil and grease results. Magnesium sulfate is capable of combining with water to form $MgSO_4 \cdot 7H_2O$ and is used to dry sludge and solids. After drying, the oil and grease can be extracted with trichlorotrifluoroethane using a soxhlet apparatus.

Apparatus and Reagents:

Reagents must be ordered when there is only enough to last two weeks. Check ahead on glassware. Be sure what is needed for the next day is in the baths the night before.

Analysis #236 Initiated Date: 3/86 Effective Date: AUG 2 9 1991 Page 2 of 5

- 1. Soxhlet extraction apparatus
- 2. Extraction thimble (cellulose)
- 3. Glass-wool
- 4. Filter paper
- 5. Concentrated hydrochloric acid, HCl
- 6. Vacuum pump
- 7. Magnesium sulfate, MgSO₄, anhydrous
- 8. Water bath
- 9. 1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon)
 (Each bottle FTIR checked at <0.01 absorbance)</pre>
- 10. 250 ml beakers (heavy duty)
- 11. Spoons and spatulas
- 12. 8 in. glass stir-rods
- 13. Electric Heating Mantle
- 14. Analytical Balance
- 15. Funnels, 7 cm, long stemmed

Analysis #236 Initiated Date: 3/86 Effective Date: AUG 2 9 1991 Page 3 of 5

Safety Precautions:

Trichlorotrifluoroethane, or freon, is heavier than air and reduces the oxygen available for breathing. It should be used only in a well ventilated area.

Procedures:

- 1. Tare a 250 ml flask containing three boiling chips to be used as the extraction flask.
- 2. Weigh 20 \pm .5 g of sample, into a 250 ml beaker.
- Acidify the sample to a pH <2.0 with concentrated HCl,
 0.5 ml is usually sufficient.
- Add 25 g MgSO₄ and stir until a free-flowing, homogeneous mixture is achieved. Be sure to crush and mix all earthen lumps. Allow hot samples to cool.
- 5. Add the powder to the extraction thimble. Be careful to scrape the 250 ml beaker for dried sample adhering to the sides and bottom. Use small thimbles/ extractors as much as possible.
- 6. Cover the sample in the thimble with glass wool.
- 7. Extract in a soxhlet apparatus at 20 cycles per hour for 4 hours. (Time from first cycle.) 250 ml florence flasks should be filled with freon to the neck if a large extractor is used or to the 250 ml mark on the flask (160-170 mls) if a small extractor is used.

Analysis #236 Initiated Date: 3/86 Effective Date: AUG 2 9 1991 Page 4 of 5

- 8. If the extract is turbid, filter the extract through pleated filter paper into another tared flask. Rinse flask and filter paper with trichlorotrifluoroethane.
- 9. Place flask in water bath set at 60°C. When the solvent level in the flask has reduced by approximately two thirds, turn bath up to 70°C. Draw air through it using an applied vacuum to remove any solvent vapor from the flask. Reheat on top of the water bath for at least 30 minutes, aspirate as before, then wipe outside of flask clean of water and fingerprints. Cool in a desiccator for 60 minutes and weigh.
- Return to desiccator for 15 minutes, reweigh. If flask loses more than 1 mg in weight, redesiccate and reweigh. Continue in this way until constant weight is achieved.

Spiking Solution Preparation:

Weigh 2.5 \pm .0010 g 10W-30 motor oil into a 25 ml volumetric flask. Dilute to volume with freon. This will yield a 100,000 mg/l standard. Store at 4°C. Hold time is one month.

Calculations:

<u>Gain in wt. of flask</u> x 100 = % Oil and Grease in sample wt. of sample (as received)

Statistical Information:

The examination of 6 replicate samples of sludge yielded a standard deviation of 4.6%.

Analysis #236 Initiated Date: 3,86 Effective Date: AUG 2 9 1991 Page 5 of 5

Quality Assurance:

A background soil (10 g) spiked with a 2 ml of 100,000 mg/l standard should be analyzed every 20 samples. Duplicate, blank and spike (2 ml of 100,000 mg/l standard added to a 20 g sample) should be run every 20 samples. One batch of 20 samples is not to extend for a period of more than five working days. Be sure the sample selected for the QC duplicate contains some of the analyte to be determined. This increases client confidence in the reproducibility of the method.

NO236 WQ Methods #2 082291

Prepared by: Date: Approved by: Date:

Date:

Approved by:

Laboratory QAPP

4 8

i

Ø

1

Section No. 1 Revision No. Date: 10/09/90 Page 1 of 1

1. Laboratory Quality Assurance Plan

This document provides the laboratory portion of the response to EPA's "Interim Guidelines and Specifications for Preparing Quality Assurance Project Plans" QAMS-005/80, Sections 5.1 - 5.16 as revised December 29, 1980.

As much as possible, the procedures in this document have been standardized to make them applicable to all types of environmental monitoring and measurement projects. However, under certain site specific conditions, all of the procedures discussed in this document may not be appropriate. In such cases it will be necessary to adapt the procedures to the specific conditions of the investigation.

M Jamise Hes

Director of Quality Assurance

....

Section No. 2 Revision No. Date: 10/09/90 Page 1 of 1

Pages	Revision	Date
1		•
1		
1		
4		
2		
2	· .	
9		
5	• · · ·	
28		
8		
15		
12		
3		
3	· .	
3		
1		•
. 74		
	1 1 4 2 9 5 28 8 15 12 3 3 3 1	$ \begin{bmatrix} 1 \\ 1 \\ 1 \\ 4 \\ 2 $

Section No. 3 Revision No. Date: 10/09/90 Page 1 of 1

3. Project Description

Tests will be performed according to the analytical methodology set forth in the USEPA SW846 3rd Edition, 1986*. SW846 provides specific analytical procedures to be used and defines the specific application of these procedures. Proven instruments and techniques will be used to identify and measure the concentrations of volatiles, semivolatiles and pesticide compounds and/or the inorganic elements. The laboratory will employ state-of-the-art GC/MS and/or GC procedures to perform all organic analyses, including all necessary preparation for Inorganic analyses will be performed using analvsis. graphite furnace atomic absorption spectrophotometry (AA), inductively coupled plasma spectroscopy, cold vapor AA, flame AA, or hydride generation AA. Wet Chemical analyses will use appropriate instrumentation. The client is responsible for providing specifics on the project site.

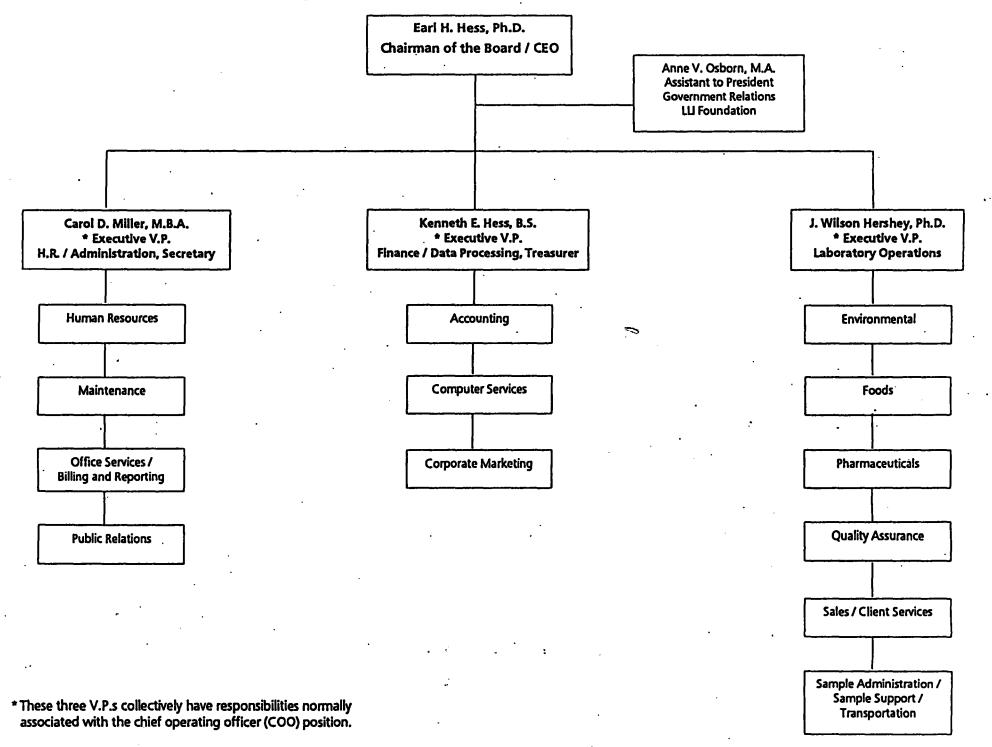
 Test Methods for Evaluating Solid Waste -Physical/Chemical Methods. SW846 (3rd Edition, 1986), or most recent revision unless otherwise requested by the client.

Section No. 4 Revision No. Date: 10/09/90 Page 1 of 4

4. Project Organization

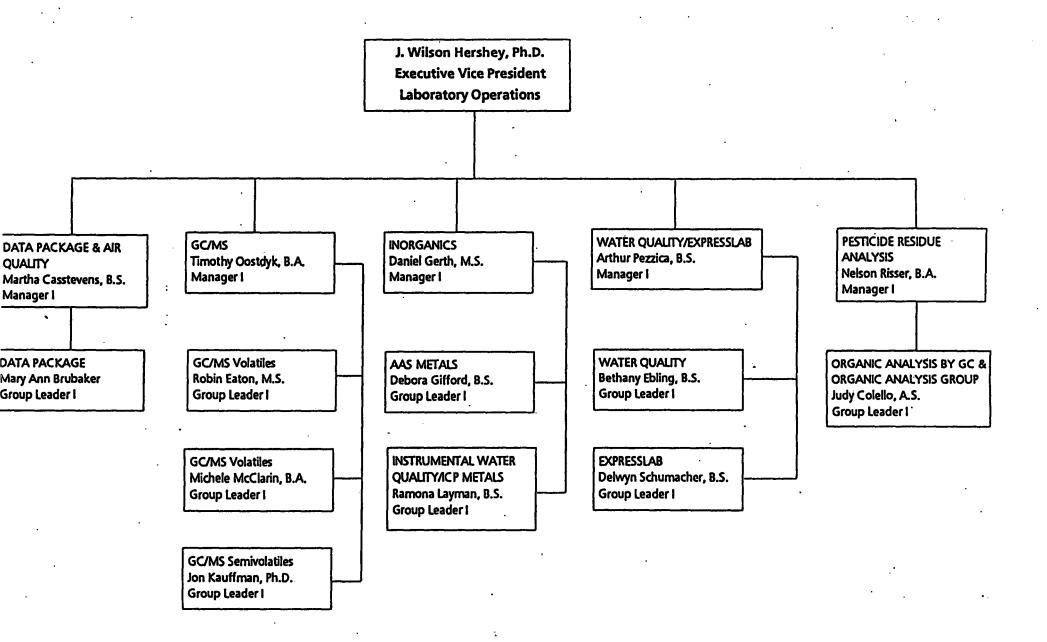
The objectives of the laboratory Quality Assurance Program are to establish procedures which will ensure that data generated in the laboratory are within acceptable limits of accuracy and precision, to ensure that quality control measures are being carried out, and to ensure accountability of the data through sample and data management procedures. To this end, a Quality Assurance Department has been established. The Director of Quality Assurance reports directly to the President of the Laboratory and has no direct responsibilities for data production, thus avoiding any conflict of interest.

The attached organizational charts show the key personnel in both Corporate Services and the Environmental Sciences Division. Resumes of key individuals may be found in the enclosed Qualification Manual.


The Sample Administration Group will be responsible for receiving samples, signing the external chain-of-custody, checking sample condition, assigning unique laboratory sample identification numbers, assigning storage locations, checking and adjusting preservation, and homogenizing the sample as needed.

Group Leaders listed in each technical area are responsible for performing laboratory analyses, quality control as specified in the methods, instrument calibration, and technical data review. Data is reported using a computerized sample management system, which tracks sample progress through the laboratory and generates client reports when all analyses are complete. Quality control data is entered onto the same system for purposes of charting and monitoring data quality.

Section No. 4 Revision No. Date: 10/09/90 Page 2 of 4


The Quality Assurance Department is responsible for reviewing quality control data, conducting audits in the laboratory and reporting findings to management, maintaining current copies of all analytical methods, maintaining copies of computer code used to calculate and report results, submitting blind samples to the laboratory and ensuring that appropriate corrective action is taken when quality problems are observed.

Data package deliverables are available upon request. The Quality Assurance Department reviews the contents of the deliverables for completeness and to be sure that all quality control checks were performed and met specifications. This step includes review of holding times, calibrations, instrument tuning, blank results, duplicate results, matrix spike results, and surrogate results. Every attempt to meet specifications will be made and any item outside of the specifications will be noted in the narrative. The laboratory will not validate data with regard to useability since this generally requires specific knowledge about the site.

- 1

. .

Section No. 5 Revision No. Date: 10/09/90 Page 1 of 2

5. QA Objectives For Measurement Data

Quality Assurance is the overall program for assuring reliability of monitoring and measurement data. Quality control is the routine application of procedures for obtaining set standards of performance in the monitoring and measurement process. Data quality requirements are based on the intended use of the data, the measurement process, and the availability of resources. The quality of all data generated and processed during this investigation will be assessed for Precision, Accuracy, Representativeness, Comparability, and Completeness.

<u>Precision</u> - Precision is determined by measuring the agreement among individual measurements of the same property, under similar conditions. The laboratory objective is to equal or exceed the precision demonstrated for the applied analytical method on comparable samples. The degree of agreement is expressed as the relative percent difference (RPD%). Evaluation of the RPD% is based on statistical evaluation of past lab data for organic and inorganic analyses. External evaluation of precision is accomplished by analysis of Standard Reference Material and interlaboratory performance data.

<u>Accuracy</u> - Accuracy is a measure of the closeness of an individual measurement to the true or expected value. Analyzing a reference material of known concentration or reanalyzing a sample which has been spiked with a known concentration/amount is a way to determine accuracy. Accuracy is expressed as a percent recovery (%R). Evaluation of the %R is based on statistical evaluation of past lab data or guidelines within the methods for organic and inorganic analyses.

Section No. 5 Revision No. Date: 10/09/90 Page 2 of 2

<u>Representativeness</u> - Representativeness expresses the degree to which data accurately represents the media and conditions being measured. The representativeness of the data from the sampling site will depend on the sampling procedure. Sample collection is the responsibility of the client. Samples will be homogenized, if required, as part of the laboratory sample preparation. By comparing the quality control data for the samples against other data for similar samples analyzed at the same time, representativeness can be determined for this objective.

<u>Comparability</u> - Comparability conveys the confidence with which one set of data can be compared to another. The analytical results can be compared to other laboratories by using traceable standards and standard methodology and consistent reporting units. The Laboratory Quality Assurance Program documents internal performance, and the interlaboratory studies document performance compared to other laboratories.

<u>Completeness</u> - Completeness is a measure of the quantity of valid data acquired from a measurement process compared to the amount that was expected to be acquired under the measurement conditions. The completeness of an analysis can be documented by including in the data deliverables sufficient information to allow the data user to assess the quality of the results. Additional information will be stored in the laboratories archives, both hard copy and magnetic tape. Quality Assurance Standard Operating Procedures (SOP's) are in place to provide traceabilty of all reported results.

...

Section No. 6 Revision No. Date: 10/09/90 Page 1 of 2

6. <u>Sampling Procedures</u>

In order for meaningful analytical data to be produced, the sample analyzed must be representative of the system from which they are drawn. It is the responsibility of the client to ensure that the samples are collected according to accepted or standard sampling methods.

If requested, the laboratory will provide sample containers and preservative. The majority of sample containers are precleaned by the supplier. Any reused bottles are cleaned in-house following Laboratory Standard Operating Procedures. Special containers with traceability documentation are available upon request. Because the laboratory does not stock this type of container, one month prior notice is required.

A list of containers, preservatives and holding times follows:

Section No. 6 Revision No. Date: 10/09/90 Page 2 of 2

A List of Sample Containers, Preservatives and Holding Times for Aqueous Samples

	Vol. Req. (ml)	Container Plastic/ Glass	Preservation	Holding Time From Date of Collection <u>Waters Soils</u>
Volatiles	3 x 40	G	Cool, 4C* pH < 2 w/HCl	14 days 14 days
Pesticides	2 x 1000	G	Cool, 4C*	7 days 14 days
Acid/Base Neutrals	2 x 1000	G	Cool, 4C*	7 days 14 days
Metals	500	P,G	HNO_3 to pH < 2	6 months 6 months (except mercury = 28 days <u>)</u>
Cyanide	1000	P,G	Cool, 4C NaOH to pH > 12	14 days 14 days
Sulfide	500	G	Cool, 4C NaOH, ZnAC	7 days .7 days
Phenol	500	G	Cool, 4C H ₂ SO ₄ to pH <2	28 days 28 days
TOX	3 x 250	G	Cool, 4C HNO ₃ to pH <2	14 days 14 days
тос	125 ml	G	Cool, 4C H ₂ SO ₄ to pH <2	28 days 28 days

* Thiosulfate needed for chlorinated samples.

NOTE: Solid Samples for any or all of the above analyses require a 500 ml glass container with a Teflon-lined cap. For volatiles analysis, the container should be filled completely, with no headspace. All sample containers, preservatives, and mailers will be supplied at no additional charge upon request, except for the special containers with traceability documentation. There is an additional charge for this type of container.

Section No. 7 Revision No. Date: 10/09/90 Page 1 of 9

7. Sample Custody

A member of our Sample Administration Group will act as sample custodian for the project. To ensure accountability of our results, a unique identification number is assigned to each sample as soon as possible after receipt at the laboratory. When samples requiring preservation by either acid or base are received at the laboratory, the pH will be measured and documented. Samples requiring refrigeration will be stored in our walk-in cooler which is maintained at 4°C. The use of our computer system in tracking samples (by the LLI sample # assignment) will control custody of the sample from receipt until the time of its disposal. The security system on our laboratory building allows us to designate the entire facility as a secure area since all exterior doors are either locked or attended. Therefore, hand-to-hand chain of custody is not part of our routine procedure but, is available upon request. The procedures for sample log-in and chain-of-custody documentation are detailed in the QA Standard Operating Procedures included in Section No. 7 (QA102 and QA104).

Section No. 7 Page 2 of 9

Lancaster Laboratories

Where quality is a science

<u>Initiated Date: 3/87</u> Revised Date: 5/16/90

QUALITY ASSURANCE OPERATIONS MANUAL STANDARD OPERATING PROCEDURE QA-102

Title: Sample Log-in

Purpose:

In order to provide accountability of our results and to prevent sample loss or mix-up, a unique identification number is assigned to each sample.

Scope:

This SOP will cover the procedure used to log-in samples received for analysis.

Procedures:

- 1. All samples received by laboratory personnel shall be delivered to the Sample Administration Group immediately upon arrival at the laboratory.
- All client correspondence relating to samples shall also be transferred to the Sample Administration Group. This includes purchase orders, quotes, letters and completed entry request forms.
- 3. Personnel of the Sample Administration Group shall log the samples into the computer as soon as practical after receipt. The computer will assign a unique identification number to each sample. Samples shall be logged in on the same day they are received with the following exceptions:
 - a. Samples received during a holiday or between
 6 p.m. on Friday and 6 p.m. on Sunday. These
 samples shall be logged-in on the next normal work
 day.
 - b. Samples submitted by clients without any indication of the tests to be performed or with unclear or incomplete information. Every effort shall be made to contact the client on the same day as sample receipt.

If same day entry is not possible, any special storage requirements (e.g., refrigeration) should be observed.

Section No. 7 Page 3 of 9

SOP-QA-102 Initiated Date: 3/87 Revised Date: 5/16/90 Page 2 of 2

- 4. Upon assignment of a sample number, the computer will generate a label which shall be attached to the sample container. The information on the label will include the LLI sample number, the client name, the storage location, a list of analyses requested (by analytical method number), a bottle code indicating container and preservative type, and a unique bar code.
- 5. Addition of preservatives to unpreserved samples will be the responsiblity of the Sample Administration Group. Preservation should be performed immediately after log-in. A list of preservatives required for routine analyses may be found in the Fee Schedule.
- 6. All entries in preservation notebooks and on client paperwork shall be made in ink. The error correction procedure given in SOP-QA-109 shall be followed for any changes made in this documentation.
- 7. After samples are logged-in (or preserved, if required) they shall be stored in the computerassigned location. If the computer-assigned location is inappropriate for the samples, the location code may be changed by manually overriding the computer.

QA102 SOP QA #1

Date: Date:

Prepared by:

Approved by:

Read and understood by:

Date:

Initiated Date: 3/87 Revised Date: 9/28/90

QUALITY ASSURANCE OPERATIONS MANUAL STANDARD OPERATING PROCEDURE QA-104

Title: Chain-of-Custody Documentation

Purpose:

In order to demonstrate reliability of data which may be used as evidence in a legal case or required by a regulatory agency, an accurate written record tracing the possession of the sample from its receipt at the laboratory to the time of its disposal must be maintained.

Scope:

Procedures for initiating and maintaining chain-of-custody documentation are described in this document.

Definition:

A sample is in custody if it is in any one of the following states:

- 1. In actual physical possession.
- 2. In view after being in physical possession.
- 3. In physical possession and locked up so that no one can tamper with it.
- 4. In a secured area, restricted to authorized personnel.

Procedures:

 Chain-of-custody documentation shall be kept upon request of the client or for any samples which are known to be involved in a legal dispute. As with all analytical data, it is extremely important that documentation be filled out completely and accurately with every transfer. If changes to the form need to be made, the error correction procedure given in SOP-QA-109 shall be followed.

Section No. 7 Page 5 of 9

SOP-QA-104 Initiated Date: 3/87 Revised Date: 9/28/90 Page 2 of 4

- 2. If requested by the client, the chain-of-custody documentation will begin with the preparation of bottles. A form (see Attachment 1) will be initiated by the person packing the sample bottles for shipment to the client. If the delivery of bottles is via our Transportation Department, the driver shall sign the form when relinquishing the bottles. Drivers must also sign chain-of-custody forms when picking up samples which require such documentation.
- 3. When samples arrive at the laboratory, a member of the Sample Administration Group will receive them and sign the chain-of-custody form, if one is provided with samples. If the sample was picked up by our Transportation Department, the driver must sign to indicate relinquishing the sample.
- 4. Samples will be logged into the computer as described in QA-102. Sample Administration personnel shall indicate locked storage, enter a lab note to inform analysts of the need for chain-of-custody documentation, and enter the analysis number for "laboratory chain-of-custody".
- 5. Sample Administration personnel shall initiate a "Laboratory Chain-of-Custody" form (Attachment 2) for each type of container in the sample, and relinquish the samples to a sample custodian or designated key holder, who will store the sample in the assigned locked location. At this point, external chain-of-custody forms will be filed with the Accounts Receivable Department to be returned with the invoice, and the internal forms will accompany the samples.
- 6. Sample handling should be kept to a minimum. Analysts requiring use of a sample will requisition it through the computer requisition program. During the hours where sample support is manned by sample custodians, the custodian will receive the computerized requisition, remove the sample from storage and sign the "released by" column to indicate the sample has been relinquished. The analyst shall sign the "received by" column and note the reason for change of custody <u>before</u> taking the samples to their work area. It will be a shared responsibility of technicians and sample custodians to ensure that forms are signed with each transfer.

SOP-QA-104 Initiated Date: 3/87 Revised Date: 9/28/90 Page 3 of 4

All changes of custody must be documented on the form. The following changes of custody shall be handled as follows:

- a. Signatures involving transfers from one shift to another shall be the responsibility of the technician who originally acquired the sample from sample support. When samples are then returned to storage, the person returning the samples shall be responsible to sign the "released by" column, and to ensure that samples were properly received by the custodian with his/her signature in the "received by" column.
- b. Occasionally a sample will be needed for analysis by a technician in a department while it has been signed out to a technician in another department. It will be the responsibility of the first technician who received the sample to see that the second technician needing the sample signs for receipt and return of the sample to them.
- c. Weekend work hours do not always have a sample custodian available. During these times the Lancaster Labs security personnel function as key holders to the storage areas. Technicians requiring use of samples over these times <u>must</u> obtain signatures from security personnel, in place of regular sample custodians. It may be necessary to page the security staff on weekends to acquire their signatures and assistance.
- d. Some samples are released by sample support and stored temporarily in other areas of the laboratory e.g. GC/MS Volatiles. During this time they may be worked on by several people in that department. Each of these people must sign for change of custody. These samples when completed are then returned to sample support. It will be the responsibility of the department who held temporary storage to see that all necessary signatures are on the chain of custody form before returning samples and forms, at the same time, to sample support. It is also important to return these sample groups as soon as possible after verification of data, because the chains may be required for data packages.

Section No. 7 Page 7 of 9

SOP-QA-104 Initiated Date: 3/87 Revised Date: 9/28/90 Page 4 of 4

- 7. Analysts in possession of samples shall remove the aliquot required for analysis and return the sample to storage as described in #8 below with a minimum of delay. During the time of possession, samples must remain in the analyst's view or be locked-up. If additional containers of the sample are created (e.g., an extract container from preparation for organic analysis), an additional form marked with the container type shall be created to accompany the new container.
- 8. After analysis, samples shall be relinquished to a key holder or sample custodian who will return the samples to locked storage. The forms which remain with the samples shall be signed again to indicate storage, and the sample custodian shall review the forms to ensure that all transfers are completely documented. Sample custodians shall not return a sample to its storage location without signing an accompanying chain.
- 9. After completion of analysis, these forms are given to the Data Package Group for inclusion in extended reports.

QA104 SOP QA #1

Prepared by:

Approved by:

Read and understood by:

M. Lauise Heas Ellandy

Date:

Date:

Date:

ATS Lancas	ster Laboratori	es	Section No. 7 Page 8 of 9				
Where qu	ster Laboratori ality is a science	Locked St	Decked Storage Internal Chain of Custody ORIGINAL SAMPLE				
Client/Projec	:t:		·		<u>,</u>		
Preservative:			Matrix: Analyses:				
Sample # Rang Storage Locat							
Sample Released Number(s) by		- Received by Date		e Time	Reason for Change of Custody		
	· · · · · · · · · · · · · · · · · · ·						
					·		
		·					
•		·	. 				
•							
· ·							
	·			 			
					· · · · · · · · · · · · · · · · · · ·		
<u>_</u> · · ·, · · · -				 			
				ļ	·		
							
•		·					

This form has been designed to accompany the sample from the moment it is originally entered into the computer until the last test is verified.

2016 Rev. 12/19/89

2425 New Holland Pike, Lancaster, PA 17601-5994 / 717-656-2301

2425 New Holland Pike, Lancaster, P	~ 17001 • 717/	000-2001			La	ncaste	r Lat	ooratorie:	s Sam	ple Numb	9r	<u> </u>			Sample Type:	
Client:	lient: P.O. No.:										HZ SO	Hazardous Soil				
Vork Order No.: Project Name:										PW	Potable Water					
ubmit Report to: FSC:								GW SW	Ground Water Surface Water							
Sampler:		Project L	ocati	on:			Analyses				WW Waste Water SL Sludge					
Field sample number / sample identification	Date	Time	C O M P	G R A B	Number of Containe (Total)	rs /	5ample	TYPE CON	/					Remai	rks:	
······································			+				<u> </u>		<i>.</i>	<u> </u>		<u></u>	<u></u>	<u> </u>		
· · ·		· ·													· · · · · · · · · · · · · · · · · · ·	
	1								<u>.</u>				 	<u> </u>		
· · ·		<u> </u>												<u> </u>		
													<u> </u>	<u> </u>	<u></u>	
														<u> </u>		
										+		<u> </u>		<u> </u>		<u></u>
<u></u>				- <u>-</u>		<u> </u>								<u> </u>		<u>.</u>
· ····································					·		.								<u></u>	
									<u> </u>	-				<u> </u>		Pag
Sample Relinquished by:	Date	Time			Sa Recei	mple ved b	y:	·····		Date	ТІ	me		Rea	ason for Transfer	ge 9 of 9
								•			_					; ۲. م
•			•	t,												•

.

-

4/89 2102

Copies; -

.

2

-

.

White and Yellow copies accompany samples to Lab.

Pink copy retained by Sampler.

Section No. 8 Revision No. Date: 10/09/90 Page 1 of 5

8. Calibration Procedures

Procedures for initial calibration and continuing calibration verification are in place for all instruments within the laboratory. The calibrations generally involve checking instrument response to standards for each target compound to be analyzed. The source and accuracy of standards used for this purpose are integral to obtaining the best quality data. Standards used at Lancaster Laboratories, Inc. (LLI) are from two general sources. Many of the standards are purchased from commercial supply houses either as neat compounds or as solutions with certified concentrations. The accuracy of these purchased standards is checked by comparing to solutions obtained from USEPA, when available. The other source of neat materials used in standard preparation is the USEPA Repository. Most solutions and all neat materials require subsequent dilution to an appropriate working range. A11 dilutions performed are documented and the resulting solution is checked by obtaining the instrument response of the new solution and comparing with the response to the solution currently in use. Any discrepancies between the responses are investigated and resolved before the new . solution is used. Each standard is assigned a code which allows traceability to the original components. The standard container is marked with the code, date prepared and the initials of the preparer. Shelf-life for standards are included in the calibration procedures and new standards are prepared before the expiration date.

Section No. 8 Revision No. Date: 10/09/90 Page 2 of 5

Each instrument is calibrated with a given frequency using one or more concentrations of the standard solution. As analysis proceeds, the calibration is checked for any change in instrument response. If the calibration check verifies the initial response, the analysis proceeds. If the calibration check indicates that a significant change in instrument response has occurred, then a new calibration is initiated. If necessary, maintenance may be performed prior to the recalibration.

Calibration records are usually kept in the form of raw data with the other instrument print-outs. In cases where no data system is used, calibration data is manually recorded in notebooks. Any maintenance or repair is also recorded in a notebook. The information recorded either in the notebooks or on the instrument print-out includes the date, employee name and/or identification number, and concentration or code number of standard.

The frequency of calibration and calibration verification, number of concentrations used, and acceptance criteria for each of the instruments to be used are listed on Table 8-1. In addition, to checking the instrument response to target compounds, the GC/MS units are checked to ensure that standard mass spectral abundance criteria are met. Prior to each calibration, instruments being used for volatile compound analysis are tuned using bromofluorobenzene (BFB) and instruments being used for semivolatile analysis are tuned using decafluorotriphenylphosphine (DFTPP). The key ions and their abundance criteria are listed in Table 8-2.

Section No. 8 Revision No. Date: 10/09/90 Page 3 of 5

.

Table 8-1

	0	Initial C	alibration	Continuing Calibration Verification			
Instrument	Frequency	# of Standard Concentrations	Acceptance Criteria	Frequency	# of Standard Concentrations	Acceptance Criteria	
GC/MS Volatiles	After continuing calibration fails	5	RF for SPCC's ≥ 0.300 except for bromoform ≥ 0.25. Max %RSD for CCC's ≤ 30%	Every 12 hours	1	RF for SPCC's ≥ 0.300 except for bromoform ≥ 0.25. Max XD for CCC's ≤ 25X	
GC/MS Semivolatiles	After continuing calibration fails	5	RF for SPCC's ≥ 0.050. Max %RSD for CCC's ≤ 30%	Every 12 hours	1	RF for SPCC's ≥ 0.050. Max XD for CCC's <u><</u> 25X	
Gas Chromatograph (Volatiles)	After continuing calibration fails	5	% RSD for RF's <20% Except Brominated compounds, <40%	Every 8-10 hours	1	X0 <u>≤</u> 15X	
Gas Chromatograph (pesticides)	Each new run After continuing calibration fails	5	<20% RSD of calibration factors of initial calibration Degradation for DDT, endrin <20% initially (for Organochlorines).	Every 10 samples	1	≤15% difference from initial response	
Flame Atomic Absorption Spectrophotometer	Each new run	5	Independent calibration verification within ± 10% except mercury ± 20%.	Every 10 samples	1	Same as initial	
Inductively Coupled Plasma Spectrophotometer	Each new run (Max. of 86	1	Independent calibration verification within ± 10%	Every 10 samples	1	Same as initial	

:

samples/run)

.

. 1

Section No. 8 Revision No. Date: 10/09/90 Page 4 of 5

Table 8-1 (continued)

(6010)

1	Init	ial	Cali	brat	:ion)

Continuing Calibration Verification

						•
Instrument	Frequency	# of Standard Concentrations	Acceptance Criteria	Frequency	# of Standard Concentrations	Acceptance Criteria
Hydride	Each new run	3	Independent calibration	Every 10	1 .	Same as initial
Generation	(Max. 1 hour)		verification within ± 10%	samples		• .
Graphite	Each	5	Independent calibration	Every 10	1	Same as initial
Furnace Atomic Absorption	new run		verification within \pm 10%	samples		
Spectrophotometer						
Technicon	Daily	5	Correlation coefficient	Every 10	1	± 10% of original response
lutoanalyzer	•		> 0.995	samples		
TOC Analyzer	Daily	5	± 10% a STD	Every 10	1	± 10% of true value
				samples		
TOX Analyzer	Daily	4.	± 5% a std	Every 8	1	± 5% of true value
-			· · ·	samples		

Abbreviations

SPCC's are system performance check compounds.

CCC's are calibration check compounds.

RF is response factor.

XRSD is percent relative standard deviation.

%D is percent difference.

Section No. 8 Revision No. Date: 10/09/90 Page 5 of 5

Table 8-2

BFB Key Ion Abundance Criteria

Mass	<u>Ion Abundance Criteria</u>
50 ·	15 to 40% of mass 95
75	30 to 60% of mass 95
95	base peak, 100% relative abundance
96	5 to 9% of mass 95
173	less than 2% of mass 174
174	greater than 50% of mass 95
175	5 to 9% of mass 174
176	greater than 95% but less than 101% of mass 174
177	5 to 9% of mass 176

ß

DFTPP Key Ions and Ion Abundance Criteria

Mass	Ion Abundance Criteria
51	30 to 60% of mass 198
68	less than 2% of mass 69
69	mass 69 relative abundance
70	less than 2% of mass 69
127	40 to 60% of mass 198
197	less than 1% of mass 198
198	Base peak, 100% relative abundance
199	5 to 9% of mass 198
275	10 to 30% of mass 198
365	greater than 1% of mass 198
441	Present but less than mass 443
442	greater than 40% of mass 198
443	17 to 23% of mass 442

Section No. 9 Revision No. Date: 10/09/90 Page 1 of 28

9. Analytical Procedures

The analytical procedures to be used for organics and inorganics are those described in the USEPA SW846 3rd Edition, 1986, for the preparation and analysis of water, sediment, and soil for the client specified compounds. Copies of the analytical procedures are located in the laboratory and available for use by analysts. Copies of analytical methods are available upon request.

<u>Volatiles by GC/MS</u> - This method determines the concentration of volatile (purgeable) organics. The analysis is based on purging the volatiles onto a Tenax/silica gel trap, desorbing the volatiles onto a gas chromatographic column which separates them and identifying the separated components with a mass spectrometer. Method 8240.

<u>Semivolatiles</u> - This method determines the concentration of semivolatile organic compounds that are separated into an organic solvent and are amenable to gas chromatography. The method involves solvent extraction of the sample to isolate analytes and GC/MS analysis to determine semivolatile (BNA) compounds present in the sample. Method 8270.

<u>Volatiles by GC</u> - This method determines the concentration of volatile (purgeable) organic compounds. The analysis is based on purging the volatiles from the sample onto an appropriate sorbent trap and desorbing the volatiles onto a gas chromatographic column. Using an appropriate temperature program, the compounds are separated by the column and both qualitative and quantitative detection is achieved with a Photoionization or Electrolytic Conductivity detector. Methods 8010/8020.

Section No. 9 Revision No. Date: 10/09/90 Page 2 of 28

<u>Pesticides & Herbicides</u> - These methods determine the concentration of organochloride pesticides, polychlorinated biphenyls, herbicides, and organophosphate pesticides. The procedure includes solvent extraction of the sample, analysis of the extract on a gas chromatograph/electron capture detector (GC/EC) using a packed column, and confirmation on a GC/EC using a second packed column. If the compound concentration is sufficient, confirmation may be done on GC/MS upon request. Pesticide Method 8080. Herbicide Method 8150.

<u>Inductively Coupled Plasma (ICP)</u> - This is a technique for the simultaneous determination of elements in solution after acid digestion. The basis of the method is the measurement of atomic emission by an optical spectroscopic technique. Characteristic atomic line emission spectra are produced by excitation of the sample in a radio frequency inductively coupled plasma. Because the temperature of the plasma is considerably higher, it is especially useful for refractory metals. Method 6010.

<u>Graphite Furnace Atomic Absorption (GFAA)</u> - This is a method of analysis designed to detect trace amounts of the analyte through electrothermal atomization. Samples are digested before analysis. The Graphite Furnace is an AA Spectrophotometer that heats the sample within a graphite tube using an electrical current (ie flameless furnace) and measures the absorption of specific metallic elements at discrete wavelengths. (See attached list for method number.)

Section No. 9 Revision No. Date: 10/09/90 Page 3 of 28

<u>Flame Atomic Absorption</u> - This method is also suited to metals analysis. A solution of the sample to be analyzed is sprayed into a flame which generates sufficient heat to decompose the sample into its constituent atoms directly in the optical path of the light. The intensity and frequency of the radiation are measured photoelectrically, using a spectrometer. (See attached list for method number.)

<u>Cold Vapor Atomic Absorption</u> - Organic mercury compounds are oxidized and the mercury is reduced to the elemental state and aerated from solution in a closed system. The mercury vapor passes through a cell positioned in the light path of an AA spectrophotometer and absorbance (peak height) is measured. Method 7470/7471.

Hydride Generation Atomic Absorption - Arsenic and selenium compounds are oxidized, then reduced to arsenic (3+) and selenium (4+). The arsenic (3+) and selenium (4+) are then converted to a volatile hydride with hydrogen produced from a sodium borohydride/HCl reaction. The volatile hydride is swept into a heated quartz flow cell located in the optical path of an atomic absorption spectrophotometer. The resulting absorbance is proportional to the arsenic or selenium concentration. Arsenic Method 7061. Selenium Method 7741.

<u>Total Cyanide Analysis</u> - Digestion and flash distillation of the sample aid in breaking down the complex cyanides to HCN. Simple cyanides are converted to cyanogen chloride by reaction with Chloramine T. This reacts with pyridine and barbituric acid reagent to give a red colored complex. The absorbance is read at 570 nm and is compared to a standard curve. A Technicon Autoanalyzer II is used. Method 9012.

Section No. 9 Revision No. Date: 10/09/90 Page 4 of 28

<u>Moisture</u> - A known sample weight is placed in a drying oven maintained at 103°-105°C for 12-24 hours. The sample is reweighed after drying and this value is divided by the original weight. The result is used to calculate analytical concentration on a dry weight basis.

<u>Sulfide Analysis</u> - The sample is acidified and a known excess of iodine is added. The iodine reacts with sulfide in acid solution, oxidizing sulfide to sulfur. The excess iodine is back-titrated with sodium thiosulfate. Method 9030.

<u>Phenols</u> - This method is based on automated distillation of phenol and the subsequent reaction with 4-aminoantipyrine in basic buffer to produce a red colored complex. The absorbance is read at 505 nm and is compared to a standard curve. A Technicon Autoanalyzer II is used. Method 9066.

<u>Total Organic Carbon (TOC)</u> - Following acidification, the sample is purged with nitrogen to remove inorganic carbon. Persulfate is injected to oxidize organic carbon to carbon dioxide which is detected by IR. An OI Model 700 TOC Analyzer is used. Method 9060.

<u>Total Organic Halogen (TOX)</u> - Organic Halogen is adsorbed onto an activated carbon column and combusted in an oxygen furnace. The resulting hydrogen halide gases are collected in an acetic acid buffer. The halides are titrated microcolormetrically through the generation of Ag+ ions. A Mitsubishi Model TOX-10 TOX analyzer is used. Method 9020.

Section No. 9 Revision No. Date: 10/09/90 Page 5 of 28

Inorganic Method Numbers

	ICP	<u>GFAA</u>	Flame AA	<u>Hydride AA</u>	Cold Vapor
Aluminum	6010		7020		
Antimony	6010		7040		
Arsenic		7060		7061	
Barium	6010		7080		
Beryllium	6010		7090		
Cadmium	6010		7130		
Calcium	6010		7140		
Chromium	6010		7190	· *	
Cobalt	6010		7200		
Copper	6010		7210		
Iron	6010		7380		
Lead		7421	7420	ι,	
Magnesium	6010	:	7450	•	
Manganese	6010		7460		
Mercury	•				7470/7471
Molybdenum	6010		7480		
Nickel	6010		7520		
Potassium	6010		7610		
Selenium		7740		7741	
Silver	6010	·	7760		
Sodium	6010	·	7770		х.
Thallium	6010	7841	7840		
Tin	6010				
Vanadium	6010		7910	•	
Zinc	6010	0	7950	*	

The number of parameters analyzed and the methods used will be determined by the site specific requirements.

-

Section No. 9 Revision No. Date: 10/09/90 Page 6 of 28

Appendix IX Volatile Compounds

	<u>Limits of</u> Waters	Quantitation* Soils**
Compounds	(ug/1)	<u>(ug/kg)</u>
Chloromethane	10.	10.
Bromomethane	10.	10.
Vinyl chloride	10.	10.
Dichlorodifluoromethane	5.	5.
Chloroethane	10.	10.
Methyl iodide	5.	5.
Acrolein	100.	100.
Acrylonitrile	100.	100.
Acetonitrile	100.	100.
Methylene chloride	5.	5.
Acetone	100.	100.
Trichlorofluoromethane	5.	5.
Carbon disulfide	100.	100.
Propionitrile	100.	100.
1,1-Dichloroethene	5.	5.
Allyl chloride	· 5.	5.
1,1-Dichloroethane	5.	5.
trans-1,2-Dichloroethene	5.	5.
Chloroform	5.	5.
1,2-Dichloroethane	· 5.	· 5.
Methacrylonitrile	100.	100.
2-Butanone	100.	100.
Dibromomethane	5.	5.
1,1,1-Trichloroethane	5.	5.
1,4-Dioxane	100.	100.

- * Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.
- ** Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry weight basis will be higher.

Section No. 9 Revision No. Date: 10/09/90 Page 7 of 28

Appendix IX Volatile Compounds (continued)

		f Quantitation*
	Waters	Soils**
Compounds	<u>(ug/l)</u>	<u>(ug/kg)</u>
Carbon tetrachloride	5.	5.
Isobutyl alcohol	100.	100.
Vinyl acetate	50.	50.
Bromodichloromethane	5.	5.
2-Chloro-1,3-butadiene	5.	5.
1,2-Dichloropropane	5.	5.
trans-1,3-Dichloropropene	`5 .	5.
Trichloroethene	5.	5.
Dibromochloromethane	5.	5.
1,1,2-Trichloroethane	5.	5.
1,2-Dibromoethane	5.	5.
Benzene	5.	5.
cis-1,3-Dichloropropene	5.	.5.
Methyl methacrylate	5.	5.
1,1,1,2-Tetrachloroethane	5.	5.
Bromoform	5.	5.
trans-1,4-Dichloro-2-buten	e 100.	. 100.
1,2,3-Trichloropropane	5.	5.
2-Hexanone	50.	50.
4-Methyl-2-pentanone	50.	50.
Tetrachloroethene	5.	5.
1,1,2,2-Tetrachloroethane	5. ·	. 5.
Toluene	5.	5.

* Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

** Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry weight basis will be higher.

Section No. 9 Revision No. Date: 10/09/90 Page 8 of 28

Appendix IX Volatile Compounds (continued)

	Limits of	<u>Quantitation</u> *
	Waters	Soils**
Compounds	<u>(ug/l)</u>	<u>(ug/kg)</u>
Ethyl methacrylate	5.	5.
Chlorobenzene	5.	5
Pentachloroethane 1	10.	10.
Ethylbenzene	5.	5.
1,2-Dibromo-3-chloropropan	e 100.	100.
Styrene	5.	5.
Xylenes (total)	5.	5.

¹ Since this is either a highly reactive compound or because uncontaminated neat material is unavailable, semiquantitative data only is reported.

For samples preserved with 1 + 1 HCl to pH <2, low recovery of acid labile compounds, such as 2-chloroethyl vinyl ether, is likely to occur.

- * Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.
- ** Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry weight basis will be higher.

Section No. 9 Revision No. Date: 10/09/90 Page 9 of 28

Appendix IX Semivolatile Compounds

	Limits of Quar Waters	Soils**
Compounds	<u>(ug/1)</u>	<u>(ug/kg)</u>
Acenaphthene	10.	330.
Acenaphthylene	10.	330.
Acetophenone	10.	330.
2-Acetylaminofluorene	10.	330.
4-Aminobiphenyl	10.	330.
Aniline	10.	330.
Anthracene	10.	330.
Benzo (a) anthracene	10.	330.
Benzo (b) fluoranthene	10.	330.
Benzo (K) fluoranthene	10.	330.
Benzo (ghi) perylene	10.	330.
Benzo (a) pyrene	10.	330.
Benzyl alcohol	10.	330
bis (2-Chloroethoxy) methane	10.	330.
bis (2-Chloroethyl) ether	10.	330.
bis(2-Chloro-1-methylethyl)eth	er 10.	330.
bis (2-Ethylhexyl) phthalate	10.	330.
4-Bromophenyl phenyl ether	10.	330.
Butyl benzyl phthalate	10.	330.
4-Chloroaniline	· 10.	330.
Chlorobenzilate	10.	330.
4-Chloro-3-methylphenol	10.	330.
2-Chloronaphthalene	10.	330.
2-Chlorophenol	10.	330.

- * Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.
- ** Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry weight basis will be higher.

Section No. 9 Revision No. Date: 10/09/90 Page 10 of 28

Appendix IX Semivolatile Compounds (continued)

	<u>Limits of</u> Waters	<u>Quantitation</u> * Soils**
Compounds	waters (ug/l)	<u>(ug/kg)</u>
4-Chlorophenyl phenyl ether	10.	330.
Chrysene	10.	330.
o-Cresol	10.	330.
m-Cresol and p-Cresol	10.	330.
Diallate	10.	330.
Dibenzofuran	10.	330.
Di-n-butyl phthalate	10.	330.
Dibenz (a,h) anthracene	10.	330.
1,2-Dichlorobenzene	10.	330.
1,3-Dichlorobenzene	10.	330.
1,4-Dichlorobenzene	10.	330.
3,3'-Dichlorobenzidine	20.	670.
2,4-Dichlorophenol	10.	330.
2,6-Dichlorophenol	10.	330.
Diethyl phthalate	10.	330.
Dimethoate 1	10.	330.
p-(Dimethylamino)azobenzene	10.	330.
7,12-Dimethylbenz(a)anthracene	e ¹ 10.	330.
3,3'-Dimethylbenzidine	10.	330.
2,4-Dimethylphenol	10.	330.
Dimethyl phthalate	10.	330.
m-Dinitrobenzene	10.	330.
2-Methyl-4,6-dinitrophenol	25.	830.

- ¹ Since this is either a highly reactive compound or because uncontaminated neat material is unavailable, semiquantitative data only is reported.
- * Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.
- ** Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry weight basis will be higher.

Section No. 9 Revision No. Date: 10/09/90 Page 11 of 28

Appendix	IX	Semivolatile	Compounds
	((continued)	

	Limits of Quantitation*	
_	Waters	Soils**
Compounds	<u>(ug/l)</u>	<u>(ug/kg)</u>
2,4-Dinitrophenol	25.	830.
2,4-Dinitrotoluene	10.	330.
2,6-Dinitrotoluene	10.	330.
Di-n-octyl phthalate	10.	330.
Diphenylamine	10.	330.
Ethyl methanesulfonate	10.	330.
Fluoranthene	10.	330.
Fluorene	10.	·330.
Hexachlorobenzene	10.	330.
Hexachlorobutadiene	10.	330.
Hexachlorocyclopentadiene	10.	330.
Hexachloroethane	10.	330.
Hexachloropropene ¹	10.	330.
Indeno (1,2,3-cd) pyrene	10.	330.
Isodrin	10.	330.
Isophorone	10.	330.
Isosafrole	10.	330.
3-Methylchloranthrene	10.	330.
Methyl methanesulfonate	10.	330.
2-Methylnaphthalene	10.	330.
Naphthalene	10.	330.
1,4-Naphthoquinone 1	10.	330.

- ¹ Since this is either a highly reactive compound or because uncontaminated neat material is unavailable, semiguantitative data only is reported.
- * Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.
- ** Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry weight basis will be higher.

Section No. 9 Revision No. Date: 10/09/90 Page 12 of 28

١

1.

ł.

· · ·		uantitation*
· _ ·	Waters	Soils**
Compounds	<u>(ug/1)</u>	<u>(ug/kg)</u>
1-Naphthylamine	10.	330.
2-Naphthylamine	20.	670.
2-Nitroaniline	50.	1,700.
3-Nitroaniline	50.	1,700.
4-Nitroaniline	50.	1,700.
Nitrobenzene	10.	330.
2-Nitrophenol	10.	330.
4-Nitrophenol	50.	1,700.
4-Nitroquinoline 1-oxide ¹	10.	330.
N-Nitrosodi-n-butylamine	10.	330.
N-Nitrosodiethylamine	10.	330.
N-Nitrosodimethylamine	10.	· 330.
N-Nitrosodiphenylamine	10.	330.
N-Nitrosodi-n-propylamine	10.	330.
N-Nitrosomethylethylamine	10.	330.
N-Nitrosomorpholine	20.	670.
N-Nitrosopiperidine	10.	330.
N-Nitrosopyrrolidine	10.	330.
5-Nitro-o-toluidine	10.	330.
Pentachlorobenzene	10.	330.
Pentachloronitrobenzene	10.	330.
Pentachlorophenol	50.	1,700.

Appendix IX Semivolatile Compounds (continued)

- ¹ Since this is either a highly reactive compound or because uncontaminated neat material is unavailable, semiquantitative data only is reported.
- * Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.
- ** Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry weight basis will be higher.

Section No. 9 Revision No. Date: 10/09/90 Page 13 of 28

Appendix	IX	Semivolatile	Compounds
		(continued)	

		<u>Quantitation</u> * Soils**
Compounds	Waters (ug/l)	<u>(ug/kg)</u>
Phenacetin	10.	330.
Phenanthrene	10.	330.
Phenol	10.	330.
p-Phenylenediamine ¹	10.	330.
2-Picoline	10.	330. ·
Pronamide	10.	330.
Pyrene	10.	330.
Pyridine	10.	330.
Safrole	10.	330.
1,2,4,5-Tetrachlorobenzene	10.	330.
2,3,4,6-Tetrachlorophenol	10.	330.
Tetraethyl dithiopyrophosphate	10.	330.
o-Toluidine	10.	330.
1,2,4-Trichlorobenzene	10.	330.
2,4,5-Trichlorophenol	25.	830.
2,4,6-Trichlorophenol	10.	330.
0,0,0-Triethylphosphorothioate	10.	330.
sym-Trinitrobenzene	20.	670.

- ¹ Since this is either a highly reactive compound or because uncontaminated neat material is unavailable, semiquantitative data only is reported.
- * Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.
- ** Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry weight basis will be higher.

Section No. 9 Revision No. Date: 10/09/90 Page 14 of 28

Appendix IX Herbicide Compounds

	Limits of Quantitation*	
	Waters	Soils**
Compounds	<u>(ug/1)</u>	(mg/kg)
2,4-D	1.	1.
Dinoseb	1.	1.
2,4,5-TP	1.	1.
2,4,5-T	1.	1.

* Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

** Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry weight basis will be higher.

 b_{-}

P)

Ĩł

Section No. 9 Revision No. Date: 10/09/90 Page 15 of 28

Appendix IX Organophosphates

	Limits of Quantitation	
	Waters	Soils**
Compounds	<u>(ug/1)</u>	(mg/kg)
Disulfoton	0.05	0.05
Methyl parathion	0.02	0.02
Ethyl parathion	0.02	0.02
Famphur	2.	2.
Phorate	0.1	0.1

* Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

** Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry weight basis will be higher.

3

Section No. 9 Revision No. Date: 10/09/90 Page 16 of 28

12

P

Ł

Appendix IX Organochlorines

	Limits of Qu	
Compounds	Waters (ug/l)	Soils** (mg/kg)
······································		0.01
Aldrin	0.01	
alpha-BHC	0.01	0.01
beta-BHC	0.01	0.01
delta-BHC	0.01	0.01
gamma-BHC (Lindane)	0.01	0.01
Chlordane	0.05	0.05
4,4-DDT	0.01	0.01
4,4-DDE	0.01	0.01
4,4-DDD	0.01	0.01
Dieldrin	0.01	0.01
Endosulfan I	0.01	0.01
Endosulfan II	0.01	0.01
Endosulfan sulfate	0.03	0.03
Endrin	0.01	0.01
Endrin aldehyde	0.1	0.1
Heptachlor	0.01	0.01
Heptachlor epoxide	0.01	0.01
Kepone	0.05	0.05
Methoxychlor	0.05	0.05
PCB-1016	1.	0.2
PCB-1221	1.	0.2
PCB-1232	1.	0.2
PCB-1242	1.	0.2

* Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

** Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry weight basis will be higher.

Section No. 9 Revision No. Date: 10/09/90 Page 17 of 28

Appendix IX Organochlorines (continued)

· · · ·	Limits of Quantitation*	
	Waters	Soils**
Compounds	<u>(ug/1)</u>	<u>(mg/kg)</u>
PCB-1248	1.	0.2
PCB-1254	1.	0.2
PCB-1260	1.	0.2
Toxaphene	2.	0.1

* Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

** Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry weight basis will be higher.

Section No. 9 Revision No. Date: 10/09/90 Page 18 of 28 ١

2

•

~

Inorganic Appendix IX Analyte List

	<u>Limits of Qua</u> Waters	ntitation* Soils**
Analyte	<u>(mg/1)</u>	(mg/kg)
Antimony	0.05	5
Arsenic (GFAA) ^{1,2}	0.01	1
Barium	0.2	20
Beryllium	0.005	0.5
Cadmium	0.005	0.5
Chromium	0.05	5
Cobalt	0.05	5
Copper	0.02	2
Lead (GFAA)	0.005	0.5
Mercury	0.0005	0.1
Selenium (GFAA) ^{1,2}	0.005	0.5
Silver	0.01	1
Thallium	0.1	10
Tin	0.5	100
Vanadium	0.05	5
Zinc	0.02	2
Cyanide	0.005	0.1
Sulfide	0.1	5.0
¹ Arsenic (hydride gener Selenium (hydride gener		1 0.5
² Arsenic (ICP-EP Tox. & Leachates only		
Selenium (ICP-EP Tox. & Leachates only	TCLP) 0.05	

* Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

** Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry weight basis will be higher.

Section No. 9 Revision No. Date: 10/09/90 Page 19 of 28

Volatile Priority Pollutant Compound List (GC/MS)

	<u>Limits of Qu</u> Waters	antitation* Soils**
Compound	<u>(ug/1)</u>	<u>(ug/kg)</u>
Chloromethane	10.	10.
Bromomethane	10.	10.
Vinyl chloride	10.	10.
Chloroethane	10.	10.
Acrolein	100.	100.
Acrylonitrile	100.	100.
Methylene chloride	5.	5.
Trichlorofluoromethane	5.	5.
1,1-Dichloroethene	5.	5.
1,1-Dichloroethane	5.	5.
trans-1,2-Dichloroethene	5.	5.
Chloroform	5.	5.
1,2-Dichloroethane	5.	5.
1,1,1-Trichloroethane	5.	5.
Carbon tetrachloride	5.	5.
Bromodichloromethane	5.	5.
1,1,2,2-Tetrachloroethane	5.	5.
1,2-Dichloropropane	5.	5.
trans-1,3-Dichloropropene	5.	5.
Trichloroethene	· 5.	5.
Dibromochloromethane	5.	· 5.
1,1,2-Trichloroethane	5.	5.
Benzene	5.	5.
cis-1,3-Dichloropropene	5.	5.
2-Chloroethylvinyl ether	· 10.	10.

- * Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.
- ** Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry weight basis will be higher.

Section No. 9 Revision No. Date: 10/09/90 Page 20 of 28

1

2

¥.

Volatile Priority Pollutant Compound List (GC/MS) (continued)

	Limits of Quantitation*	
	Waters	Soils**
Compound	<u>(ug/1)</u>	<u>(ug/kg)</u>
Bromoform	5.	5.
Tetrachloroethene	5.	5.
Toluene	5.	5.
Chlorobenzene	5.	. 5.
Ethylbenzene	. 5.	5.

* Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

** Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry weight basis will be higher.

Section No. 9 Revision No. Date: 10/09/90 Page 21 of 28

	<u>Limits o</u> Waters	f Quantitation* Soils**
Compound	<u>(ug/1)</u>	<u>(ug/kg)</u>
2-Chlorophenol	10	330
Phenol	10	330
2-Nitrophenol	10	. 330
2,4-Dimethylphenol	10	330
2,4-Dichlorophenol	10	330
4-Chloro-3-methylphenol	10	330
2,4,6-Trichlorophenol	10	330
2,4-Dinitrophenol	25	830
4-Nitrophenol	25	830
2-Methyl-4,6-dinitrophenol	25	. 830
Pentachlorophenol	50	830

Semivolatile Priority Pollutant Compound List

- * Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.
- ** Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry weight basis will be higher.

Section No. 9 Revision No. Date: 10/09/90 Page 22 of 28 ١

1

1

۰.

3

Semivolatile Priority Pollutant Compound List

	<u>Limits of Q</u> Waters	uantitation* Soils**
Compound	<u>(ug/1)</u>	<u>(ug/kg)</u>
N-nitrosodimethylamine	10.	330.
bis (2-Chloroethyl) ether	10.	330.
1,3-Dichlorobenzene	10.	· 330.
1,4-Dichlorobenzene	10.	330.
1,2-Dichlorobenzene	. 10.	330.
bis (2-Chloroisopropyl) ether	10.	330.
Hexachloroethane	10.	330.
N-nitrosodi-n-propylamine	10.	330.
Nitrobenzene	10.	330.
Isophorone	10.	330.
bis (2-Chloroethoxy) methane	10.	330.
1,2,4-trichlorobenzene	10.	330.
Naphthalene	10.	330.
Hexachlorobutadiene	10.	330.
Hexachlorocyclopentadiene	10.	330.
2-Chloronaphthalene	10.	330.
Acenaphthylene	10.	330.
Dimethyl phthalate	10.	330.
2,6-Dinitrotoluene	10.	330.
Acenaphthene	10.	330.
2,4-Dinitrotoluene	10.	330.
Fluorene	10.	330.
4-Chlorophenyl phenyl ether	10.	330.

* Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

** Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry weight basis will be higher.

Section No. 9 Revision No. Date: 10/09/90 Page 23 of 28

Semivolatile Priority Pollutant Compound List (continued)

· ·	Waters	<u>antitation</u> * Soils**
Compound	<u>(ug/1)</u>	<u>(ug/kg)</u>
Diethyl phthalate	10.	330.
1,2-Diphenylhydrazine	10.	330.
N-nitrosodiphenylamine	10.	330.
4-Bromophenyl phenyl ether	10.	330.
Hexachlorobenzene	10.	330.
Phenanthrene	10.	330.
Anthracene	10.	330.
Di-n-butyl phthalate	10.	330.
Fluoranthene	10.	330.
Pyrene	10.	330.
Benzidine	25.	830.
Butyl benzyl phthalate	10.	330.
Benzo (a) anthracene	10.	330.
Chrysene	10.	330.
3,3'-Dichlorobenzidine	25.	830.
bis (2-Ethylhexyl) phthalate	10.	330.
Di-n-octyl phthalate	10.	330.
Benzo (b) fluoranthene	10.	330.
Benzo (K) fluoranthene	10.	330.
Benzo (a) pyrène	10.	330.
Ideno (1,2,3-cd) pyrene	10.	330.
Dibenz (a,h) anthracene	10.	330.
Benzo (ghi) perylene	10.	330.

- * Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.
- ** Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry weight basis will be higher.

Section No. 9 Revision No. Date: 10/09/90 Page 24 of 28

Pesticide/PCB Priority Pollutant Compound List

,	<u>Limits of Qua</u> Waters	antitation* Soils**
Compound	<u>(ug/1)</u>	(mg/kg)
alpha-BHC	0.01	0.01
beta-BHC	0.01	0.01
gamma-BHC (Lindane)	0.01	0.01
delta-BHC	0.01	0.01
Heptachlor	0.01	0.01
Aldrin	0.01	0.01
Heptachlor epoxide	0.01	0.01
4,4-DDE	0.01	0.01
4,4-DDD	0.01	0.01
4,4-DDT	0.01	0.01
Dieldrin	0.01	0.01
Endrin	0.01	0.01
Chlordane	0.05	0.05
Toxaphene	1.	0.1
Endosulfan I	0.01	0.01
Endosulfan II	0.01	0.01
Endosulfan sulfate	0.03	0.03
Endrin aldehyde	0.1	0.1
PCB-1016	1.	0.2
PCB-1221	1.	0.2

* Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

19

~~,

20

.7 _

ł

** Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry weight basis will be higher.

Section No. 9 Revision No. Date: 10/09/90 Page 25 of 28

Inorganic Priority Pollutants List (PPL)

•	Limits of Qu	<u>antitation</u> *
	Waters	Soils**
Analyte	<u>(mg/l)</u>	(mg/kg)
Antimony	0.05	5
Arsenic ³	0.01	1
Beryllium	0.005	0.5
Cadmium	0005	0.5
Chromium	0.05	5
Copper	0.02	2
Lead 1	0.005	0.5
Mercury ²	0.0005	0.1
Nickel	0.04	4
Selenium ³	0.005	0.5
Silver	0.01	1
Thallium	0.1	10
Zinc	0.02	· 2
Cyanide	0.005	0.1

¹ Graphite Furnace

² Cold Vapor

Z

³ Hydride Generation

- * Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.
- ** Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry weight basis will be higher.

Section No. 9 Revision No. Date: 10/09/90 Page 26 of 28

Volatiles by GC Volatile Organics List

		Quantitation*
	Waters	Soils**
Analyte	<u>(ug/1)</u>	<u>(ug/kg)</u>
Chloromethane	5	5
Bromomethane	5	.5
Dichlorodifluoromethane	2	2
Vinyl chloride	1.	1
Chloroethane	1	1
Methylene chloride	1	1
Trichlorofluoromethane	1	1
1,1-Dichloroethene	1	1
1,1-Dichloroethane	1	1
trans-1,2-Dichloroethene	1 '	1
Chloroform	1	1
1,2-Dichloroethane	1	1
1,1,1-Trichloroethane	1	1
Carbon tetrachloride	1	1 .
Dichlorobromomethane	1	1
1,2-Dichloropropane	1	1 ·
trans-1,3-Dichloropropene	1	1
Trichloroethene	1	1
Dibromochloromethane	1	1
1,1,2-Trichloroethane	1	1
cis-1,3-Dichloropropene	1	1
2-Chloroethylvinyl ether	10	10
Bromoform	2	2

* Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

1

125

** Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry weight basis will be higher.

Section No. 9 Revision No. Date: 10/09/90 Page 27 of 28

Volatiles by GC Volatile Organics List (continued)

	<u>Limits of</u> Waters	<u>Quantitation</u> * Soils**
Analyte	<u>(ug/l)</u>	<u>(ug/kg)</u>
1,1,2,2-Tetrachloroethane	2	2
Tetrachloroethene	1	1
Chlorobenzene	1	1
Benzene	1	1
Toluene	1	1
Ethylbenzene	1	1
o-Dichlorobenzene	. 1	1
m-Dichlorobenzene	1	1
p-Dichlorobenzene	1.	1
		•

- * Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.
- ** Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry weight basis will be higher.

Section No. 9 Revision No. Date: 10/09/90 Page 28 of 28

	Limits_of Qu	<u>antitation*</u>
	Waters	Soils**
Parameter	<u>(mg/1)</u>	(mg/kg)
Phenols	0.01	0.2
TOC	0.5	. 50
TOX	5	100

* Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

** Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry weight basis will be higher.

Section No. 10 Revision No. Date: 10/09/90 Page 1 of 8

10. Data Reduction, Validation and Reporting

Raw analytical data generated in the laboratories is collected on printouts from the instruments and associated data system or manually in bound notebooks. Analysts review data as it is generated to determine that the instruments are performing within specifications. This review includes calibration checks, surrogate recoveries, blank checks, retention time reproducibility, and other QC checks described in Section No. 11. If any problems are noted during the analytical run, corrective action is taken and documented.

Each analytical run is reviewed by a chemist for completeness prior to interpretation and data reduction. The following calculations are used to reduce raw data to reportable results.

GC/MS calculation used by the data system to determine concentration in extract for semivolatiles or in the sample itself for volatiles:

Q = (Ax) (Is) / (AIs) (RRF) (Vi)

Where Ax = peak area

- AIs = internal standard peak area
- Is = amount of internal standard injected (ng)
- RRF = relative response factor
- Vi = volume of extract injected (ul) or volume sample purged (ml)

Section No. 10 Revision No. Date: 10/09/90 Page 2 of 8

The extract concentration is further reduced by considering the initial sample weight or volume and the final extract volume:

Concentration = (Q) (D) (F) (1000) / (I)

- Where Q = concentration determined by the data system (mg/l)
 - D = dilution factor if needed
 - F = final extract volume (ml)
 - I = initial sample weight (grams) or volume (ml)

Results are reported in ug/l for water samples and ug/kg for solid samples. Soil samples are reported on a dry weight basis as well as an as received basis. The results are reported on LLI Analysis Report Forms shown in Appendix A.

For Volatiles by GC, a five-point external calibration procedure is used. The resulting point-to-point calibration curve is used by the data system to calculate analyte concentrations. The equations that the data system uses for calculating analyte concentrations are shown below.

A. When analyte peak height, Hx, falls between the peak heights of two calibration points, Hn and Hn+1, the analyte concentration is calculated as follows:

Concentration = {[(Hx -Hn) / S] + An} x (DF) S = (Hn+1 - Hn) / (An+1 - An)

Section No. 10 Revision No. Date: 10/09/90 Page 3 of 8

Where Hx = analyte peak height

- Hn = analyte peak height in the nth calibration level
- Hn+1 = analyte peak height in the n+1 calibration
 level
- S = slope between the n and n+1 calibration
 points for the analyte
- An = the concentration of the analyte in the nth calibration level
- An+1 = the concentration of the analyte in the n+1 calibration level

а. В. А.

.a. 2

- DF = dilution factor
- B. When the analyte peak height is below the peak height for the lowest calibration standard, the analyte concentration is calculated as follows:

Concentration = $[(Hx) \times (A1 / H1)] \times (DF)$

Where Hx = analyte peak height

- Al = concentration of analyte in the first calibration level
- H1 = analyte peak height in first calibration level

DF = dilution factor

Results are reported in ug/l for water samples and in ug/kg for solid samples. Soil samples are reported on an as received and on a dry weight basis.

Section No. 10 Revision No. Date: 10/09/90 Page 4 of 8

The results for the Pesticides/PCB's analysis are calculated using the following equation:

Concentration = (Ax) (Is) (Vt) (DF) / (As) (Vi) (Vs)

Where Ax = peak height for the parameter being measured Is = amount of standard injected (ng) Vt = volume of total extract (ul) DF = dilution factor, if needed As = peak height for the external standard Vi = volume of extract injected (ul) Vs = volume (ml) or weight (gm) of sample extracted

Results are reported as ug/l for water samples and mg/kg for solid samples. Soil samples are reported on a dry weight basis. Results are reported on LLI Analysis Report Forms shown in Appendix A.

The results for inorganic analyses are calculated using the following equation:

Concentration = (A) (D) (E) / (F)

Where A = the concentration determined by AA or ICP using calibration data programmed into the instrument (mg/l)

D = dilution factor if needed

E = final extract volume (ml)

F = initial sample volume (ml) or weight (gm)

Section No. 10 Revision No. Date: 10/09/90 Page 5 of 8

Results are usually reported in mg/l for water samples and in mg/kg for solid samples. Alternate units are available upon request. Soil samples are reported on a dry weight basis. The results are reported on LLI Analysis Report Forms shown in Appendix A.

The principle criteria used to validate data will be the acceptance criteria described in Section No. 11. Following interpretation and data reduction by an analyst, data is transferred to the laboratory sample management system either by direct data upload from the analytical data system or manually. The data is reviewed by the Group Leader or another analyst and verified on the sample The person performing the verification management system. step reviews all data including quality control information prior to verifying the data. If data package deliverables have been requested, the laboratory will complete the appropriate forms (see Appendix A) summarizing the quality control information, and transfer copies of all raw data (instrument print-outs, spectra, chromatograms, laboratory notebooks, etc.) to the Data Packages Group. This group will combine the information from the various analytical groups and the analytical reports from the laboratory sample management system into This package is reviewed by the Quality one package. Assurance Department for conformance with SOP's and to ensure that all QC goals have been met. Any analytical problems are discussed in the case narrative, which is also included with the data package deliverables.

Section No. 10 Revision No. Date: 10/09/90 Page 6 of 8

The validation of the data by the Quality Assurance Department includes spot checking raw data versus the final report, checking that all pertinent raw data is included and does refer to the samples analyzed, review of all QC results for conformance with the method, and review of the case narrative for description of any unusual occurrences during analysis. This validation is performed using techniques similar to those used by the Sample Management Office for the USEPA's Contract Laboratory Program. The validation performed by the laboratory does not address useability of the data, which usually requires some knowledge of the site. The laboratory will make every attempt to meet the requirements of this QAPP, thus reducing the need to assess useability of the data.

The laboratory sample management system is programmed to accept and track the results of quality control samples including blanks, surrogates, recoveries, duplicates, controls, and reference materials. The computer is programmed with the acceptance criteria for each type of QC sample and will display an out-of-spec message if the data is not within specifications. All data outside of specifications appears on a report to the Quality Assurance Department on the next working day. These are reviewed by the Quality Assurance Department for severity of the problems and trends in the data. The reports are then sent to the analytical groups for the purpose of documenting the corrective action taken. The sample management system also produces control charts and has searching capabilities to aid in data review. The flow of data from the time the samples enter the laboratory until the data is reported are summarized in Table 10-1. Any data recorded manually will be collected in bound notebooks. All entries will be in ink, with no erasures

Section No. 10 Revision No. Date: 10/09/90 Page 7 of 8

or white-out being permitted. Any changes in data will be made using a single line to avoid obliteration of the original entry and will be dated and signed. Any data resulting from instrument printouts will be dated and will contain the signature and/or identification of the analyst responsible for its generation. After copies of the data are incorporated into the data package deliverables, the originals will be stored in locked archives at the laboratory for a period of ten years.

Section No. 10 Revision No. Date: 10/09/90 Page 8 of 8

Table 10-1

SAMPLE AND DATA ROUTING AT LANCASTER LABORATORIES, INC.

Action

Sample received at LLI

Sample is entered onto sample management system (lab ID number assigned, analyses scheduled, chain-of-custody started, storage location assigned)

Sample stored in assigned location (refrigerator, freezer, etc.)

Acknowledgement sent to client

Removed from storage for analysis; necessary aliquot taken and sample returned to storage

Analysis is performed according to selected analytical method; raw data recorded in notebook and transferred to computer by chemist or technician*

Computer performs calculations as programmed according to methods

Chemist or supervisor verifies raw data

Data package deliverables are assembled

Data packages are reviewed prior to mailing

Personnel Involved

Sample Administration

Sample Administration

Sample Administration

Sample Administration

Technical Personnel

Technical Personnel

Data Processing

Technical Personnel

Data Package Group

Quality Assurance Dept. Laboratory Management

*Analyses requiring the chemist's interpretation may involve manual data reduction prior to entry onto the computer.

Section No. 11 Revision No. Date: 10/09/90 Page 1 of 15

11. Internal Quality Control Checks

The particular types and frequencies of quality control checks analyzed with each sample are defined in USEPA SW846 3rd Edition, 1986. The quality control checks routinely performed during sample analysis include surrogates, matrix spikes, duplicates, blanks, internal standards, and laboratory control samples. In addition to these checks, some inorganic analyses employ serial dilutions and interference check samples.

<u>Surrogates</u> (used for organic analysis only) - Each sample, matrix spike, matrix spike duplicate, and blank are spiked with surrogate compounds prior to purging and extraction in order to monitor preparation and analysis. Surrogates are used to evaluate analytical efficiency by measuring recovery.

<u>Matrix Spikes</u> - A matrix (soil or water) is spiked with known quantities of specific compounds and subjected to the entire analytical procedure in order to indicate the appropriateness of the method for the matrix by measuring recovery.

<u>Duplicates</u> (matrix spike duplicate - organics and inorganic hydride generation; duplicate - inorganics) - A second aliquot of a matrix/sample is analyzed at the same time as the original sample in order to determine the precision of the method. Recovery of the original compared to the duplicate is expressed as relative percent differences (RPD).

Section No. 11 Revision No. Date: 10/09/90 Page 2 of 15

<u>Blanks</u> (Method, Preparation) - Blanks are an analytical control consisting of a volume of deionized, distilled laboratory water for water samples, or a purified solid matrix for soil/sediment samples. (Metals use a digested reagent blank with soils.) They are treated with the same reagents, internal standards, and surrogate standards and carried through the entire analytical procedure. The blank is used to define the level of laboratory background contamination.

<u>Internal Standards</u> (used for GC/MS analysis) - Internal standards are compounds added to every standard, blank matrix, spike, matrix spike duplicate, and sample at a know concentration, prior to analysis. Comparison of the peak areas of the internal standards are used for internal standard quantitation as well as to determine when changes in the instrument response will adversely affect quantification of target compounds.

<u>Serial Dilutions</u> (used for inorganics ICP only) - If the analyte concentration is sufficiently high (\geq 50 x IDL) an analysis of a 5 fold dilution must agree within 10% of the original determination. If the dilution analysis is not within 10%, a chemical or physical interference effect should be suspected.

<u>Interference Check Sample</u> (ICP) - To verify interelement and background correction factors a solution containing both interfering and analyte elements of known concentration is analyzed at the beginning and end of each analysis run or a minimum of twice per 8 hours.

9

Section No. 11 Revision No. Date: 10/09/90 Page 3 of 15

Laboratory Control Samples - Aqueous and solid control samples of known composition are analyzed using the same sample preparation, reagents, and analytical methods employed for the sample. For inorganics LCS recovery must fall within established control limits (± 20%). For organics, an LCS is run when MS/MSD recovery falls outside established limits. The LCS recovery must fall within acceptance limits based on statistical evaluation of past lab data.

The results of all quality control samples are entered into the computer along with sample results. The computer is programmed to compare the individual values with the acceptance limits. If the results are not within the acceptance criteria, appropriate corrective action is taken where necessary. Management is kept informed by daily reports of QC outliers generated by the computerized system. Monthly reports on results of all QC analyses showing mean and standard deviation will indicate trends or method bias. Control Charts are plotted via computer and may be accessed at any time by all analysts.

The charts that follow show the types and frequency of QC performed, along with the acceptance limits.

Section No. 11 Revision No. Date: 10/09/90 Page 4 of 15

QC Charts

Organics

<u>_'ype</u>	Acceptance <u>Water</u>	Limits (%) <u>Soil</u>	Frequency
surrogates:			
Volatiles (GC/MS) Toluene-d8 Bromofluorobenzene 1,2 Dichloroethane-d4	88-110 86-115 76-114	81-117 74-121 70-121	Each sample, MS, MSD, and Blank
Semivolatiles Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 Phenol-d6 2-Fluorophenol 2,4,6-Tribromophenol	35-114 43-116 33-141 10- 94 21-100 10-123	23-120 30-115 18-137 24-113 25-121 19-122	Each sample, MS, MSD, and Blank
Volatiles (GC) Bromochloromethane Fluorochlorobenzene Trifluorotoluene n-Propylbenzene	70-125 70-125 70-125 70-125	70-125 70-125 70-125 70-125	Each sample, MS, MSD, and Blank
Organochlorine Pesticides Dibutylchlorendate	47-138	52-142	Each sample, MS, MSD, and Blank
Herbicides 2,4-DB	59-95	Not estab.	Each sample, MS, MSD, and Blank
Organophosphate Pesticides Chorpyrifos	80-115	80-115	Each sample, MS, MSD, and Blank
Matrix Spikes:			,
/olatiles (GC/MS) Spike all compounds	See Table	6 (p. 13)	Each group (<u><</u> 20) of samples per matrix/level
Semivolatiles Spike all compounds	See Table	6 (p.14-15)	Each group (<20) of samples per matrix/level

Section No. 11 Revision No. Date: 10/09/90 Page 5 of 15

Organics (continued)

· · ·			
	-	Limits (%)	_
уре	Water	<u>Soil</u>	Frequency
Matrix Spikes:			
olatiles (GC)			
Chloromethane	65-130	D-193	Each group (<20)
Bromomethane	65-130	D-144	of samples per
Vinyl chloride	65-130	28-163	matrix/level
Chloroethane	65-130	46-137	•
Methylene chloride	75-125	25-163	
1,1-Dichloroethene	61-145	28-167	· ·
1,1-Dichloroethane	75-125	47-132	
trans-1,2-Dichloroethene	75-125	38-155	
Chloroform	75-125	49-133	
1,2-Dichloroethane	75-125	51-147	
1,1,1-Trichloroethane	75-125	41-138	
Carbon Tetrachloride	75-125	43-143	,
Bromodichloromethane	75-125	42-172	
1,2-Dichloropropane	75-125	44-156	
Trichloroethene	71-120	35-146	
Chlorodibromomethane	75-125	24-191	
Bromoform	75-125	13-159	
Tetrachloroethene	75-125	26-162	
Chlorobenzene	75-130	38-150	
Benzene	76-127	39-150	
Toluene	76-125	46-148	
Ethylbenzene	75-125	40-148	•
o-Dichlorobenzene	75-125	37-154	
m-Dichlorobenzene	75-125	50-141	
p-Dichlorobenzene	75-125	42-143	
• • • • • • • • •			
Benzene	76-127	39-150	
Toluene	76-125	46-148	
Ethylbenzene	75-125	32-160	
o-Xylene	75-125	50-150	
m-Xylene	75-125	50-150	. •
p-Xylene	75-125	50-150	
			•
Jrganochlorine Pesticides			×
gamma-BHC (Lindane)	66-103	74-114	Each group (<20)
Heptachlor	60-104	52-120	of samples per
Aldrin	40-107	73-128	matrix/level
Dieldrin	75-109	71 -122 ·	
Endrin	72-121	61-135	
4,4'-DDT	79-119	56-144	

...

Section No. 11 Revision No. Date: 10/09/90 Page 6 of 15 Organics (continued) Acceptance Limits (%) Water Soil Frequency 'ype Matrix Spikes: [erbicides Not Each group (<20) 71-113 2,4-D estab. of samples per 2, 4, 5 - TP69-107 matrix/level 2,4,5-T 72-107 Dinoseb 40-98)rganophosphate Pesticides Phorate 36-89 Each group (≤ 20) Disulfoton of samples per 55-109 Famphur Not Established matrix/level Methyl Parathion 80-112 Ethyl Parathion 80-112 .aboratory Control Sample: Volatiles & Semivolatiles See Table 6 (p.13-15) Each group (≤ 20) When MS/MSD falls outside established limits. check Standard (GC Volatiles) %D <u><</u>15% Each group (≤ 20) When MS/MSD falls outside established limits. Pesticides 95% Confidence Each group (≤ 20) Interval When MS/MSD falls outside established limits. latrix Spike Duplicates (RPD): Volatiles Spike all compounds 30 Each group (≤ 20) of samples per matrix/level Semivolatiles Spike all compounds Not Established Each group (<20) of samples per matrix/level

Section No. 11 Revision No. Date: 10/09/90 Page 7 of 15

Organics (continued)

уре	Acceptance <u>Water</u>	Limits (%) <u>Soil</u>	Frequency
Matrix Spike Duplicates (RPD):			
olatiles (GC)			
Chloromethane	20	22	Each group (<20)
Bromomethane	20	22	of samples per
Vinyl chloride	20	22	matrix/level
Chloroethane	20	22	•
Methylene chloride	15	20	
1,1-Dichloroethene	14	22	
1,1-Dichloroethane	15	22	
trans-1,2-Dichloroethene	15	20	
Chloroform	15	20	
1,2-Dichloroethane	15	20	
1,1,1-Trichloroethane	15	22	
Carbon Tetrachloride	15	22	
• •	15	22	
Bromodichloromethane			
1,2-Dichloropropane	15	22	
Trichloroethene	14	24	
Chlorodibromomethane	15	22	
Bromoform	15	22	
Tetrachloroethene	15	20	
Chlorobenzene	13	21	
Benzene	11	21	
Toluene	13	21	
	15	22	
o-Dichlorobenzene	15	21	·
m-Dichlorobenzene	15	21	
p-Dichlorobenzene	15	21	
Benzene	14	21	
Toluene	14	21	
Ethylbenzene	14	20	
o-Xylene	14	20	
m-Xylene	14	20	
p-Xylene	14	20	·
Jrganochlorine Pesticides			,
gamma-BHC (Lindane)	15	50	Each group (<u><</u> 20)
Heptachlor	20	31	of samples per
Aldrin	22	43	matrix/level
Dieldrin	18	38	*
Endrin	21	45	20
4,4'-DDT	27	50	
•	-		

Section No. 11 Revision No. Date: 10/09/90 Page 8 of 15

Organics (continued)

(3	/	- '
<u>'ype</u>	Acceptance Limits (%) <u>Water Soil</u>	Frequency
Herbicides 2,4-D 2,4,5-TP 2,4,5-T Dinoseb	25 Not 25 estab. 25 25	Each group (<u><</u> 20) of samples per matrix/level
Organophosphate Pesticides Phorate Disulfoton Famphur Methyl Parathion Ethyl Parathion	30 30 Not established 30 30	Each group (<20) of samples per matrix/level
Blanks:		
'olatiles (GC/MS)	<pre>< (5x) LOQ For: methylene chloride acetone toluene 2-butanone</pre>	Once for each 12-hr. time period
	<u>LOQ</u> For all other TCL compounds	·
Semivolatiles	\leq (5x) LOQ for the phthalate esters	Once per case or group (< 20) of samples, each matrix, level,
· · · · ·	<u>LOQ</u> for all other compounds	instrument
7olatiles (GC)	< LOQ for all compounds	Every 8-10 hours
Pesticides	≤ LOQ for all compound	Once per case or group (<20) of samples each matrix, level, instrument

Section No. 11 Revision No. Date: 10/09/90 Page 9 of 15

Organics (continued)

> Acceptance Limits (%) Soil Frequency Water

ype

Internal Standards:

'olatiles Bromochloromethane 1,4-Difluorobenzene Chlorobenzene-d5

-50% to +100% of internal standard area of 12 Hr. STD

Each sample, MS, MSD, and Blank

RT change ≤ 30 seconds

_emivolatiles 1,4-Dichlorobenzene-d4 Naphthalene-d8 Acenaphthene-d10 Phenanthrene-d10 Chrysene-d12 Perylene-d12

-50% to +100% of Each sample, MS, internal standard MSD, and Blank area of 12 Hr. STD

RT change ≤ 30 seconds

Section No. 11 Revision No. Date: 10/09/90 Page 10 of 15

QC Charts

Inorganics

Acceptance Limits

75 - 125% Except where sample conc. exceeds spike conc. by $\geq 4 \times 10^{-10}$

± 20% RPD for sample values ≥5 x LOQ

<LOQ

<LOQ

>LOQ then lowest conc. in sample must be 10x blk. conc.

Within ± 10% of the original determination

± 20% of the true value for the analytes

Aqueous 80 - 120% (except Ag and Sb)

Solids 80 - 120%

Frequency Each group of

samples of similar matrix/level (≤ 20) each method

Exception: As/Se by Hydride Generation (<10)

Each group of samples of similar matrix/level (≤ 20) each method

Each wavelength immediately after calibration verification at 10% frequency or every 2 hrs. (beginning and end of run min.

Each SDG or batch (<20 samples)

Exception: As/Se by Hydride Generation <10 samples

Each group of samples (<20) of similar matrix/leve

Each wavelength after Initial Calibration Verification at beginning and end of the run or min. of 2X per 8 hour

Each SDG or batch (<20 samples), each method

'ype

Spikes

Juplicates (RPD)

Blanks

Initial Calibration (ICB) Continuing Calibration (CCB)

Preparation Blank

Serial Dilutions

Interference Check Sample

Laboratory Control Sample

Section No. 11 Revision No. Date: 10/09/90 Page 11 of 15

Inorganics (continued)

Acceptance Limits

± 20 % RPD

Frequency

Each group of samples of similar matrix/level (<10) for As/Se by Hydride Generation

...atrix Spike Duplicate (RPD)

Г<u>уре</u>

Section No. 11 Revision No. Date: 10/09/90 Page 12 of 15

Quality Control Acceptance Criteria

Parameter	Blank	Spike <u>Recovery</u>	Duplicate RPD (%)	Lab Control Recovery (%)
Phenols	<loq< td=""><td>75-125</td><td><u><</u>20</td><td>80-120</td></loq<>	75-125	<u><</u> 20	80-120
TOC	<loq< td=""><td>75-125</td><td><u><</u>20</td><td>80-120</td></loq<>	75-125	<u><</u> 20	80-120
TOX	<loq< td=""><td>75-125</td><td><u><</u>20</td><td>80-120</td></loq<>	75-125	<u><</u> 20	80-120
Sulfide	<loq< td=""><td>75-125</td><td><u><</u>20</td><td>80-120</td></loq<>	75-125	<u><</u> 20	80-120

Unless marked NA (not applicable), each type of QC is performed at least once with each batch of samples.

Maximum batch size is 20 field samples.

Section No. 11 Page 13 of 15

•				
CALIBRATION	AND	QC	ACCEPTANCE	CRITERIAª

Parameter	Range for Q (ug/L)	Limit for s (ug/L)	Range for x (ug/L)	Range P,Ps (%)
Benzene Bromodichloromethane	12.8-27.2	6.9 6.4	15.2-26.0 10.1-28.0	37-151 35-155
Bromoform	14.2-25.8	5.4	11.4-31.1	45-169
Bromomethane	2.8-37.2	17.9	D-41.2	D-242
Carbon tetrachloride	14.6-25.4	5.2	17.2-23.5	70-140
Chlorobenzene	13.2-26.8	6.3	16.4-27.4	37-160
2-Chloroethylvinyl ether	D-44.8	25.9	D-50.4	D-305
Chloroform	13.5-26.5	6.1	13.7-24.2	51-138
Chloromethane	D-40.8	19.8	D-45.9	D-273
Dibromochloromethane	13.5-26.5	6.1	13.8-26.6	53-149
1,2-Dichlorobenzene	12.6-27.4	7.1	11.8-34.7	18-190
1,3-Dichlorobenzene	14.6-25.4	5.5	17.0-28.8	59-156
1,4-Dichlorobenzene	12.6-27.4	7.1	11.8-34.7	18-190
1,1-Dichloroethane	14.5-25.5	5.1	14.2-28.4	59-15
1,2-Dichloroethane	13.6-26.4	6.0	14.3-27.4	49-15
1,1-Dichloroethene	10.1-29.9	9.1	3.7-42.3	D-23
trans-1,2-Dichloroethene	13.9-26.1	5.7	13.6-28.4	54-15
1,2-Dichloropropane	6.8-33.2	13.8	3.8-36.2	D-210 D-22
cis-1,3-Dichloropropene trans-1,3-Dichloropropene	4.8-35.2	15.8	1.0-39.0	17-18
Ethyl benzene	10.0-30.0	10.4	17.4-26.7	37-16
Methylene chloride	11.8-28.2 12.1-27.9	7.5 7.4	D-41.0	D-22
1,1,2,2-Tetrachloroethane	12.1-27.9	7.4	13.5-27.2	46-15
Tetrachloroethene	14.7-25.3	7.4 5.0	17.0-26.6	64-14
Toluene	14.9-25.1	4.8	16.6-26.7	47-15
1,1,1-Trichloroethane	15.0-25.0	4.6	13.7-30.1	52-16
1,1,2-Trichloroethane	14.2-25.8	4.0	14.3-27.1	52-10
Trichloroethene	13.3-26.7	5.5	18.5-27.6	71-15
Trichlorofluoromethane	9.6-30.4	10.0	8.9-31.5	17-18
Vinyl chloride	0.8-39.2	20.0	D-43.5	D-25

Q = Concentration measured in QC check sample, in ug/L.

s = Standard deviation of four recovery measurements, in ug/L.

x = Average recovery for four recovery measurements, in ug/L.

 $P, P_S = Percent recovery measured.$

D = Detected; result must be greater than zero.

^aCriteria from 40 CFR Part 136 for Method 624 and were calculated assuming a QC check sample concentration of 20 ug/L. These criteria are based directly upon the method performance data in Table 7. Where necessary, the limits for recovery have been broadened to assure applicability of the limits to concentrations below those used to develop Table 7.

8240 - 36

Revision 1 December 1987

Section No. 11 Page 14 of 15

TABLE 6. QC ACCEPTANCE CRITERIAª

Parameter	Test conc. (ug/L)	Limit for s (ug/L)	Range for x (ug/L)	Range P, Ps (%)
Acenaphthene	100	27.6	60.1-132.3	47-145
Acenaphthylene	100	40.2	53.5-126.0	33-145
Aldrin	100	39.0	7.2-152.2	D-166
Anthracene	100	32.0	43.4-118.0	27.133
Benz(a)anthracene	100	27.6	41.8-133.0	33-143
Benzo(b)fluoranthene	100	38.8	42.0-140.4	24-159
Benzo(k)fluoranthene	100	32.3	25.2-145.7	11-162
Benzo(a)pyrene	100	39.0	31.7-148.0	17-163
Benzo(ghi)perylene	100	58.9	D-195.0	D-219
Benzyl butyl phthalate	100	23.4	D-139.9	D-152
β-BHC	100	31.5	41.5-130.6	24-149
6-BHC	100	21.6	D-100.0	D-110
Bis(2-chloroethyl)ether	100	55.0	42.9-125.0	12-158
Bis(2-chloroethoxy)methane	100 .	34.5	49.2-164.7	33-184
Bis(2-chloroisopropyl)ether	100	46.3	62.8-138.6	36-166
Bis(2-ethylhexyl)phthalate	100	41.1	28.9-136.8	8-158
4-Bromophenyl phenyl ether 2-Chloronaphthalene	100	23.0	64.9-114.4	53-127
4-Chlorophonyl phonyl attac	100	13.0	64.5-113.5	60-118
4-Chlorophenyl phenyl ether Chrysene	100	33.4	38.4-144.7	25-158
4,4'-DDD	100	48.3	44.1-139.9	17-168
4,4'-DDE	100	31.0	D-134:5	D-145
4,4'-DDT	100	, 32.0	19.2-119.7	4-136
Dibenzo(a, h) anthracene	100	61.6	D-170.6	D-203
Di-n-butyl phthalate	100	70.0	D-199.7	D-227
1,2-Dichlorobenzene	100 . 100	15.7	8.4-111.0	1-118
1,3-Dichlorobenzene	100	30.9	48.6-112.0	32-129
1,4-Dichlorobenzene	100	41.7	16.7-153.9	D-172
3,3'-Dichlorobenzidine	100	32.1	37.3-105.7	20-124
Dieldrin	100	71.4	8.2-212.5	D-262
Diethyl phthalate	100	· 30.7 26.5	44.3-119.3	29-136
Dimethyl phthalate	100	23.2	D-100.0	D-114
2,4-Dinitrotoluene	100	21.8	D-100.0 47.5-126.9	D-112
2,6-Dinitrotoluene	100	29.6	68.1-136.7	39-139
Di-n-octylphthalate	100	31.4	18.6-131.8	50-158
Endosulfan sulfate	100	I6.7	D-103.5	4-146
Endrin aldehyde	100	32.5	D-188.8	D-107
Fluoranthene	100	- 32.8	42.9-121.3	D-209
Fluorene	100	20.7	71.6-108.4	26-137 59-121
Heptachlor	100	37.2	D-172.2	D-192
Heptachlor epoxide	100	54.7	70.9-109.4	26.155

1-

.

8270 - 38

Revision 1 December 1987

Parameter	Test conc. (ug/L)	Limit for s (ug/L)	Range for x (ug/L)	Range p, ps (%)
Hexachlorobenzene	100	24.9	7.8-141.5	D-15
Hexachlorobutadiene	100 ·	26.3	37.8-102.2	24-11
lexachloroethane	100	24.5	55.2-100.0	40-11
Indeno(1,2,3-cd)pyrene	100	44.6	D-150.9	D-17
Isophorone	100	63.3	46.6-180.2	21-19
Naphthalene	100	30.1	35.6-119.6	21-13
Nitrobenzene [.]	100	39.3	54.3-157.6	35-18
N-Nitrosodi-n-propylamine	100	55.4	13.6-197.9	D-23
PCB-1260	100	54.2	19.3-121.0	D-16
Phenanthrene	100	20.6	65.2- <u>1</u> 08.7	54-12
Pyrene	100	25.2	69.6-100.0	52-11
1,2,4-Trichlorobenzene	100	28.1	57.3-129.2	44-14
4-Chloro-3-methylphenol	100	37.2	40.8-127.9	22-14
2-Chlorophenol	100	28.7	36.2-120.4	23-13
2,4-Chlorophenol	100	26.4	52.5-121.7	39-13
2,4-Dimethylphenol	100	26.1	41.8-109.0	32-13
2,4-Dinitrophenol	100	49.8	D-172.9	D-19
2-Methyl-4,6-dinitrophenol	100	93.2	53.0-100.0	D-1
2-Nitrophenol	100	35.2	45.0-166.7	29-18
4-Nitrophenol	100	47.2	13.0-106.5	D-1
Pentachlorophenol	100	48.9	38.1-151.8	14-1
Phenol	100	22.5	16.6-100.0	5-1
2,4,6-Trichlorophenol	100	31.7	52.4-129.2	37-1

TABLE 6. (Continued) Section No. 11 Page 15 of 15

s = Standard deviation of four recovery measurements, in ug/L.

x = Average recovery for four recovery measurements, in ug/L.

 $p, p_S = Percent recovery measured.$

1-

D = Detected; result must be greater than zero.

^aCriteria from 40 CFR Part 136 for Method 625. These criteria are based directly on the method performance data in Table 7. Where necessary, the limits for recovery have been broadened to assure applicability of the limits to concentrations below those used to develop Table 7.

Revision 1 December 1987

Section No. 12 Revision No. Date: 10/09/90 Page 1 of 12

12. Performance and System Audits

System audits are conducted on each department at Lancaster Laboratories, Inc. (LLI) by members of the Quality Assurance Department. The audits include checks on methodology, reagent preparation, equipment calibration and maintenance, quality control results, and training of personnel. The results of the audits and corrective action, where necessary are communicated to laboratory personnel and management by means of a written report. Audits by outside organizations including clients, regulatory personnel and the USEPA are permitted by arrangement with the Quality Assurance Department.

On a monthly basis, the Quality Assurance Department reviews summaries of the quality control data entered onto the computerized sample management system by analysts. Control charts and statistics are reviewed for trends which may indicate problems with the analytical data. In this way, small problems are identified before they have any significant impact on laboratory results.

Performance audits consist of both intralaboratory and interlaboratory check samples. Blind samples containing known amounts of target analytes are prepared by the Quality Assurance Department and submitted to the laboratories under fictitious client names. In addition, QC samples from EMSL-Cinncinnati are analyzed quarterly to assess laboratory accuracy. LLI also participates in a number of interlaboratory performance evaluation studies which involve analysis of samples with concentrations of analytes that are known to the sponsoring organization, but unknown to the laboratory. Inorganics, Section No. 12 Revision No. Date: 10/09/90 Page 2 of 12

pesticide/herbicides, trihalomethanes; volatile organic compounds, semivolatile organic compounds and traditional wet chemistry analyses are analyzed by LLI for studies conducted by the USEPA and the New York Department of Health. LLI is a contractor to the USEPA under the Contract Laboratory Program which provides laboratory analysis in support of the Superfund program. Part of maintaining this contract includes analysis of quarterly blind samples. Representative results from some of these studies are attached to this section.

Section No. 12 Page 3 of 12

PERFORMANCE EVALUATION REPORT

DATE: 12/26/89

WATER POLLUTION STUDY NUMBER WP023

NALYTES	SAMP LE Number	REPORT	TRUE VALUE≑	ACCEP TANCE	WARNING LIMITS	PERFORMANCE EVALUATION
TRACE N	ETALS IN MICH	ROGRAMS	PER LIT	ER:		,
LUMINUM	1		<		1330- 1750	ACCEPTABL
FAUTUA	2		51.9	20.2- 107		ACCEPTABL
RSENIC	1					ACCEPTABL
	2					CHECK FOR ERR
ERILLIUN	=					ACCEPTA B
	2	9.24	13.9	8.15- 20.0	9.68- 18.5	CHECK FOR ERR
ADMIUM	1	131				ACCEPTABL
	2	3.59	3.55	1.42- 5.43	1.92- 4.93	ACCEPTABL
OBALT			9.48	2.73- 14.9	4.30-13.3	ACCEPTABI
	2	148	•	121- 175		
HRONIUM	· 1		834	696- 974	731- 940	ACCEPTABI
	2	7.16	6.65	2.17- 10.5	3.21- 9.43	ACCEPTABI
COPPER	1.		578	497- 533 11.6- 20.5	514- 616	ACCEPTA BI
	2	15.1				
ERON	1		1704	1500- 1890	1550- 1840	ACCEPTAB
	2	14.3	14.0	2.75- 25.8	5.63- 22.9	ACCZPT A B
Mercury	1		39.0	21.5- 39.8	23.8- 37.5	
	2	3.56	3.59	2.56- 4.66	2.83- 4.40	ACCEPTAB
MANGANESE			700	630-, 752	645- 737	
	2	17.0	16.3	9.09-22.2	10.7- 20.6	ACC EPTAB
NICKEL	1	612	505	532- 675 3.83- 21.5	550 - 657	ACCEPTAB
	2	12.2	12.4	3.83- 21.5	5.04- 19.3	ACCEPTAB
LEAD	1	1100	1108	942- 1270	983- 1230	АССЕРТАВ
	_ 2	16.7	16.3	10.6- 23.7	12.2- 22.1	A ÇC EP TA B

PAGE 1

•

Section No. 12 Page 4 of 12

PERFORMANCE EVALUATION REPORT

DATE: 12/26/31

WATER POLLUTION STUDY NUMBER WP023

	SAMPLE	REPORT	TRUE	ACCEPT	TANCE	WARNI	ENG	PERFORMANCE
NALYTES	NUMBER 	VALUE	♥ & LUE ⇒	LIN]		LIMI		EVALUATION
TRACE METAL	S IN MICRO	OGRAMS	PER LIT	ER:				
SELENIUM		141	140	99.4-	160	107-	152	
	2.	11.8	11.1	5.81-	15.2	6.99-	14.0	ACCEPTABL
ANADIUM	1	22.6	22.4	13.6-	31.0	15.9-	28.7	ACCEPTABL
	2	1440	1459	1270-	1650	1320-	1600	ACCEPTABL
XI NC	1	1210	1267	1110-	1420	1150-	1380	ACCEPTABL ACCEPTABL
•	. 2	9.37	12.6	7.71-	15.8	8.84-	15.7	ACCEPTABL
NTISONY .	3	131	135	83.5-	169	94.6-	158	A CC EP TA BL ACCE PTA BL
	4	14.0	15.0	7.57-	20.4	9•24-	18.7	ACCEPTABL
ILVER -								UNUSABLE DATA
	4	8.2	8.12	6.16-"	10.0	6.65-	9.55	ACCEPTABL
MALLIUM	3	16.1	13.8	9.25-	19.5	10.6-	18.1	A CCEPT A BL ACCEPT A BL
·	4	40.5	40.0	30.1-	51.7	32.9-	48.9	ACCEPTABL
OLYBDENUM	3	28.1	23.2	15.5-	38.4	18.6-	3.5 • 3	ACCEPTABL
	4 ·	5.7	5.79	2.12-	9.19	3.09-	8.22	ACCEPTABL
STRONTIUM	3	5.09	5.14	2.40-	7.83	3.13-	7.09	ACCEPTABL ACCEPTABL
	4 :	29.7	30.4	22.7-	37.8	24.7-	35.8	A CCEPTA BL
TITANIUM	[,] 3		175	136-	215	146-	204	A CCEPTA BL
	4	46.7	45.7	30.7-	60.5	34.7-	56.4	ACCEPTABL
MINERALS IN	MILLIGRA	NS PER	LITER:	(EXCEP:	TASN	OTED)		
PH-UNITS	3	7.79	7.9	7.62-	8.12	7.68-	8.06	k ccep tr bl
	4	4.23	4.2	4.12-	4.28	4.14-	4.26	ACCEPTABL
SPEC. COND. (UNHOS/CM AT 25 C)	1	235	234	214-	257	220-	252	ACCEPTABL
(UNHOS/CM AT 25 C)	2	1030	1030	922-	1140	949-	1110	ACCEPTABL

PAGE

2

Section No. 12 Page 5 of 12

DATE: 12/26/89

PERFORMANCE EVALUATION REPORT

WATER POLLUTION STUDY NUMBER WP023

ANALITES	SAMP LE NUMBER	REPOR' VALUE	T TRUE VALUZS	ACCEPTANCE LIMITS	WARNING LIMITS	PERFORMANCE EVALUATION
MINERALS I	N MILLIGR	AMS PER	LITER:	(EXCEPT AS N	OT ED)	
TDS AT 130 C	1 2	130 620			101- 168 453- 894	ACCEPTABLE ACCEPTABLE
TOTAL HARDNESS (AS CACO3)	<u>1</u> 2	52°•0 335	50.6 342	43.4- 59.0 312- 368	45.2- 56.2 319- 361	ACCEPTABLE ACCEPTABLE
CALCIUN	1 2	20.4 98.0		16.5- 22.2 80.9- 108	17.2- 21.5 84.2- 104	ACCEPTABLE ACCEPTABLE
MAGNESIUM	1 2	0.819 25.8		0.599-0.934 22.5-: 30.5		ACCEPTABLE ACCEPTABLE
SODIUM	1 2	15.0 34.8	14.9 35.2	12.9-1 16.9 31.3- 39.2	13.4- 16.4 32.3- 38.2	ACCEPTABLE ACCEPTABLE
POTASSIUM	1 2	13.8 33.8			12.2- 15.3 32.2- 40.3	ACC EPTABLE ACC EPTABLE
TOTAL ALKALINITY (AS CACO3)	1 2	24.0 70.0			21.3- 27.0 65.1- 75.4	ACCEPTABLE ACCEPTABLE
C H LOR I D Z	1 2	37.6 240	38.5 244		34.9- 43.3 226- 261	ACCEPT ABLE ACCEPTABLE
FLUORIDE	1 2	3.56 0.210		2.92- 3.91 0.149-0.304	3.94- 3.79 0.168-0.285	ACCEPTABLE ACCEPTABLE
SULFATE	1 2				10.8- 15.7 42.8- 55.6	ACCEPTABLE ACCEPTABLE
NUTRIENTS	IN MILLIG	RAMS PE	R LITER	:		
AMMONIA-NITROGEN	1 2	0.690 2.981	0.592 3.50	0.446-0.975 2.65- 4.33	0.510-0.911 2.85- 4.13	ACC EPTABLE ACCEPTABLE

PAGE 3

4

BASED UPON THEORETICAL CALCULATIONS, OR A REFERENCE VALUE WHEN NECESSARY.

Section No. 12 Page 6 of 12

PERFORMANCE EVALUATION REPORT

DATE: 12/26/89

WATER POLLUTION STUDY NUMBER WP023

			· · · · ·	***********	WARNING	
ANAL VTES	SAMPLE	REPORT	r true Value≎	ACCEPTANCE LIMITS	WARNING LINITS	PERFORMANCE EVALUATION
NALYTES						
NUTRIENTS I	N MILLIG	RAMS PEI	R LITER:			
ITRATE-NITROGEN	1	0.419	0.451	0.320-0.573	0.350-0.542 1.96- 2.79	ACCEPTABLE
	2	2.203	2.41	1.93- 2.92	1.96- 2.79	A CCEPTABL
R THO PHOS PHATE	1	0.294	0.299	0.244-0.356	0.257-0.342	ACCEPTABL
	2	1.09	1.11	0.932- 1.28	0.973- 1.24	
JELDAHL-NITROJEN	3	0.230	0.451	D.L: 1.05	0.121-0.927	ACCEPTABL
	4	3.20	3.50	2.35- 4.60	2.62- 4.33	ACCEPTABL
OTAL - PHOSPHORUS	3	0.366	0.351	0.273-0.455	0.294-0.433	ACC EPTABL
	4	2.965	2.75	2.23- 3.41	2.37- 3.27	ACCEPTABL
DEMANDS IN	MILLIGRA	MS PER I	ITER:			
00	1	190	201	161- 221	168- 213 17.5- 31.2	ACCEPTABL
	2	33.7	26.3	15.3- 33.5	.17.5- 31.2	OT ACCEPTABLE
100	1	78.1	79.6	65.7- 91.0	69.C- 87.6 8.90- 12.6	ACCEPTABL
	2	10.2	19.4	8.24- 13.3	8.90- 12.6	ACCEPTABL
-DAY BOD	1	141	127	78.9- 176	91.0- 154	ACCEPTABL
	2	21.9	19.0	9.42- 26.5	11.5- 24.4	ACC EP TABL
ARBONACEOUS BOD	3	131	110	48.7- 171	63.8- 156	ACCÉPTABL
•	4	18.1	14.2	4.92- 23.4	7.20- 21.1	ACCEPTABL
PCB'S IN MI	CROGRAMS	PER LIS	CER:			
CB-AROCLOR 1016/12	42 2	11.7	12.7	5.89- 17.2	7.35- 15.8	ACCEPTABL
CB-AROCLOR 1260	1	1.18	1.20	0.558- 1.79	0.716- 1.63	ACCEPTABL

PAGE 4

Section No. 12 Page 7 of 12

PERFORMANCE EVALUATION REPORT

DATE: 12/26/89

WATER POLLUTION STUDY NUMBER WP023

ANALYTES	SAMPLE NUMBER	REPORT VALUE	I TRUE VALUE≎			PERFORMANCE EVALUATION
PCB'S IN OI	L IN MIL	LIGRAMS	PER KIL	OG RAM :		
PCB IN OIL- 1016/12	42 2	18.0	21.2	1.80- 30.8	5.53- 27.1	ACCEPTABLE
PCB IN OIL- 1259	1	8.13	3.20	0.727- 12.2	2.20- 10.7	ACCEPTABLE
Pestici des	IN MICRO	GRAMS PE	ER LITER	:		
CHLORDANE	3	2-68	2.83	1.38- 3.74	1.68- 3.44	ACCEPTABLE
		12.3	13.7	6.07- 18.5	7.66- 16.9	ACCEPTABLE
ALDRIN	· 1	0.074	0.100	.0171-0.155	.0347-0.137	ACCEPTABL
	2	0.368	0.450	0.132-0.621	0.194-0.558	ACCEPTABL
DIELDRIN	1	0.080	0.117	.0531-0.187	.0702-9.170	ACCEPTABL
	2	9.284			0.236-0.575	ACCEPTABL
000	1	0.240	0.250	0-100-0-396	0.138-0.358	ACCEPTABL
		C.649		0.285-0.875		ACCEPTABL
DDE	1	0.110		.0501-0.223	.0720-0.201	ACCEPTABL
	2			0.232-0.678		ACCEPTABL
DDT	1	0.126	0.133	.0349-0.237	.0607-0.211	ACCEPTABL
	2	0.597	0.533	0.279-0.915	0.360-0.834	ACCEPTABL
HEP TACH LOR	1	0.191	0.233		0.108-0.295	
	2	0.441	0.517	0.149-0.747	0.226-0.670	ACCEPTABL
HEPTACHLOR EPOXIDE	1	0.168	0.175	.0916-0.241	0.111-0.222	ACCEPTABL
·	2	0.665	0.625	0.360-0.825	0.420-0.766	ACCEPTABL

PAGE 5

PERFORMANCE EVALUATION REPORT

DATE: 12/26/89

• -

WATER POLLUTION STUDY NUMBER WP023

	NUMBER	VALUE	VALUE*	ACCEPTANCE LINITS	WARNING LIMITS	PERFORMANCE EVALUATION
VOLATILE HAL	O CA RBON S	IN MIC	ROGRAMS	PER LITER:		
1,2 DICHLOROETHANE	1	13.2	10.3	6.01- 15.2	7.18- 14.0	ACCEPTABLE
	2	52.9	47.9	29.8- 68.5	34.8- 63.5	ACCEPTABLE
CHLOROFORM	<u>1</u> · ·	17.7.	15.9	10.1- 22.1	11.6- 20.6	ACCEPTABLE
	2	56.7	52.0	35.8- 68.1	39.9- 64.0	ACCEPTABLE
1,1,1 TRICHLORDETHAN	E 1	8.15	6.74	3.59-10.6	4.49- 9.72	ACCEPTABLE
	2	46.4	42.0	24.4- 57.4	28.6- 53.2	ACCEPTABLE
TRICHLOROETHENE	1	8.40	7.55	4.24- 10.8	5.07- 9.94	ACC EPTABLE
	2	29.2	23.1	17.2- 38.8	20.0- 36.1	ACCEPTABLE
CAREONTETRACHLORIDE	1 2	5.79 57.6	4.89 52.1	2.33- 7.53 30.3- 76.6	3.00- 6.87 36.2- 70.7	ACCEPTABLE ACCEPTABLE
TETRACHLOROETHENE	1 2	13.3 43.2	10.2 39.1	5.68-14.6 21.7- 51.7		A CCEPTABLE A CCEPTABLE
BROMODICHLOROM ET HANE	1	10.2	8.43	5.29- 11.1	6.02- 10.3	ACCEPTABLE
	2	39.8	37.2	24.3- 45.3	27.1- 43.6	ACCEPTABLE
DIBROMOCHLOROMETHAN E	: 1	6.20	5.30	2.68- 8.10	3.37- 7.41	ACCEPTABLE
	2	41.3	42.3	27.3- 58.0	31.2- 54.1	ACCEPTABLE
BROMOFORM	1	10.2	8.63	4.16- 12.9	5.28- 11.8	A CC EPT A BLE
	2	56.1	59.0	31.0- 56.4	38.0- 79.4	A CC EPT A BL E
METHYLENE CHLORIDE	1	9.47	9.24	4.29- 15.3	5.70- 13.9	ACC EPTABLE
	2	68.6	64.0	36.9- 92.5	44.0- 85.4	ACC EPTABLE
CHLOROBENZENE	1	8.29	6.95	4.12- 9.70	4.83- 8.98	ACCEPTABLE
	2	38.8	36.0	21.8- 48.7	25.2- 45.3	ACCEPTABLE

 B3NZENE
 1
 61.8
 66.1
 42.9-97.5
 48.6-81.9
 ACCEPTABLE

 2
 4.35
 4.27
 2.31-6.48
 2.94-5.94
 ACCEPTABLE

 ⇒
 BASED UPON THEORETICAL CALCULATIONS, OR A REFERENCE VALUE WHEN NECESSARY.

PAGE 6

.

.

.

Section No. 12 Page 9 of 12

DATE: 12/26/89

PERFORMANCE EVALUATION REPORT

WATER POLLUTION STUDY NUMBER WP023

ANALYTES NU!	MBER		VALUE¢	LINITS	WARNING LIMITS	
VOLATILE AROMAT		•				
ET HY LB EN Z EN E	1		87.0		62.0- 107	
	2	15.9	16.0	8.41- 23.7	10.4- 21.8	ACCEPTABLE
TOLUENE			85.1	60.8- 107	66 . 7- 101	ACCEPTABLE
		9.86	19.1		7.19- 13.0	ACCEPTABLE
1,2-DICHLOROBENZENE	1	81.2	A4-0	49-2- 115	57.6- 107	A CCEPTA BL
1,6-010nm01000m65	2	21.6	22.2		15.7- 28.4	
1,3-DICHLOROBENZENE	1	61.2	63.2	· • • • • • • • • •	43.3- 81.4	ACCEPTABL
1, 3-DICALOKUCENSINE	2	61.2 14.9	15.0		43.3 - 81.4 10.2 - 18.7	ACCEPTABL
·····	-			-		
1,4-dichlorobenzene					55.0- 101 12.8- 24.2	
	-		£ v y -			A 44 84 5
MISCELLANEOUS H	PARAM	ETER5:				
TOTAL CYANIDE (IN M3/L)	1	0.260			0.187-0.324	
(IN MG/L)	· 2	0.770	0.800	0.561- 1.01	0.618-0.955	ACCEPTABL
NON-FILTERABLE RESIDUE	1	93.8	90.7	P3-1- 95.6	94.7- 94.1	ACCEPTABL
(IN MG/L)	2	31.2			25.1- 31.4	ACCEPTABL
OIL AND GREASE	1	39.8	43.9	20 2- 5U-5	25.1- 50.3	ACCEPTABL
(IN MG/L)	2				8.79-19.7	ACCEPTABL
	٩					
TOTAL PHENOLICS (IN MG/L)					0.257-0.556 1.30- 2.63	
		. –				
TOTAL RESIDUAL CHLORINI (IN MG/L)	E 1 2	0.540	0.602	0.374 - 0.788	0.429-0.733 0.961- 1.69	ACCEPTABL

PAGE 7 (LAST PAGE)

Section No. 12 Page 10 of 12

ORGANIC PERFORMANCE EVALUATION SAMPLE INDIVIDUAL LABORATORY SUMMARY REPORT FOR QB 3 FY 90

.

.

LABORATORY: Lancaster Laboratories (PA) PERFORMANCE: ACCEPTABLE - Response Explaining Deficiency(ies) Required RANK: Above = 18 Same = 1 Below = 26

X SCORE: 88.6 REPORT DATE: 07/03/9(MATRIX: WATER

	CONFIDENCE INTERVALS WARNING ACTION			I	LABORAT DATA		#LABS	PROGRAM #LABS	DATA #LABS	S TOTAL i	
CONPOUND	LOWER	UPPER	LOWER	UPPER		CONC	a	MIS-QNT	NOT-ID	ID-CPD	#LABS
TCL VOLATILE											•
VINYL CHLORIDE	22	36	20	38		25		6	· 0	46	46
CHLOROETHANE	23	35	21	37		26		2	0	46	46
ACETONE CARBON DISULFIDE	52 35	133 55	40 32	145 58		130 33	\$	3	1	45 46	46
1,2-DICHLOROETHENE (TOTAL)		102	52 69	106		33 88	3	6	0	40 46	46 46
BROMODICHLOROMETHANE	47	58	45	60		43	x	6	ŏ	40	46
DIBROMOCHLOROMETHANE	61	78	58	80		56	Ŷ	8	õ	46	46
BROMOFORM	43	58	40	60		42	ŝ	ī	ŏ	46	46 .
1,1,2,2-TETRACHLOROETHANE	16	22	15	23		15	S	6	ŏ	46	46
STYRENE	67	96	62	100		78		4	Ō	46	46
TCL SEMIVOLATILE											
BIS(2-CHLOROETHYL)ETHER	29	50	26	53		36	•	1	1	45	46
2-CHLOROPHENOL	80	128	73	154		100		0	0	46	46
1,2-DICHLOROBENZENE	46	84	41	104		46		2	0	46	46
BIS(2-CHLOROISOPROPYL)ETHER 4-METHYLPHENOL	38	67	34	71		41		· 1	0	46.	46
N-NITROSO-DI-N-PROPYLAMINE	43 49	64 78	40 44	76 82		53		2	0	46	46
2,4-DIMETHYLPHENOL	45	74	40	90		58 42	\$	2	0	46 . 46	46 46
BIS(2-CHLOROETHOXY)METHANE	30	50	28	52		36	•	3	0	46	40
2-METHYLNAPHTHALENE	. 30	56	26	60		31		3	ů č	46	46
HEXACHLOROCYCLOPENTAD I ENE	11	54	10	78		10 U	\$	ŏ	7	39	46
2,4,6-TRICHLOROPHENOL	50	74	47	86		59	•	ŏ	ò	46	46
2,6-DINITROTOLUENE	31	46	29	54		34		2	Ō	46	46
ACENAPHTHENE	44	67	41	70		43 ·	\$	4	0	46	46
2,4-DINITROPHENOL	50	95	50	102		24		0	2	44	46
DIBENZOFURAN	65	97	60	101		61	\$	4	0	46	46
DIETHYLPHTHALATE	27	103	15	115		70	•	10	3	43	46
4-NITROANILINE	55 56	80 115	51 50	83		54	\$	3	0	46	46
PHENANTHRENE	. 20 68	115	50 63	123 107		56 71		3	1	45	46
FLUORANTHENE	68	102	62	111		75		3 1	0	46 46	46 46
BUTYL BENZYL PHTHALATE	22	83	13	92		54		9	3	40	40
3,3'-DICHLOROBENZIDINE	47	125	35	136		55		6	õ	46	46
BIS(2-ETHYLHEXYL)PHTHALATE	52	90	46	96		67		4	· ŏ	46	46
DI-N-OCTYL PHTHALATE	52	88	47	94		66		. 3	ŏ	46	46
INDENO(1,2,3-CD)PYRENE	63	99	58	104		75		[*] 7	Ō.	46	46
DIBENZ(A, H)ANTHRACENE	64	102	58	108		77		6	0	46	46
BENZO(G,H,I)PERYLENE	65	101	60	106		76		5	0	46	46
TCL PESTICIDES											
ALPHA-BHC	0.38	0.72	0.33	0.77		0.49		5	0	46	46
BETA-BHC	0.3	0.56	0.26	0.6		0.38		4	Ō	46	46
DELTA-BHC	0.25	0.5	0.21	0.54		0.3		3	0	46	46
GAMMA-BHC (LINDANE)	0.34	0.64	0.29	0.69	•	0.44		4	0	46	46
ENDOSULFAN I	0.34	0.59	0.3	0.62		0.43		1	1	45	46

ORGANIC PERFORMANCE EVALUATION SAMPLE INDIVIDUAL LABORATORY SUMMARY REPORT FOR QB 3 FY 90

LABORATORY: Lancaster Laboratories (PA) PERFORMANCE: ACCEPTABLE - Response Explaining Deficiency(ies) Required RANK: Above = 18 Same = 1 Below = 26

X SCORE: 88.6 REPORT DATE: 07/03/90 MATRIX: WATER

COMPOUND.		CONFIDEN NING UPPER	CE INTER ACT LOVER		Ì	LABORA DAT CONC		#LABS MIS-ONT	PROGRAM #LABS NOT-ID	DATA #LABS ID-CPD	TOTAL #LABS
AROCLOR-1260	3.3	5.2	3	5.5	1	3.8	- 1	5	•••••••• •	46	46
NON-TCL VOLATILE											
PROPANE, 1, 2-DIBROMO-3-CHLORO- METHANE, 1000-						12 77			14 3	32 43	46 46
NON-TEL SEMIVOLATILE							•				
BENZOPHENONE BENZILATE, CHLORO- PYRENE, BENZO(E)- PYRIDINE GUINONE, 1,4-NAPHTHO-						58 14 110 30 0			3 24 40 35 37	43 22 6 11 9	46 46 46 46 46
TCL SEHIVOLATILE (Contaminants)									·		
BENZYL ALCOHOL						3			22	.24	46
NON-TCL SEMIVOLATILE (Contaminants)		a .		•.			•				
UNKNOWN				5 • •		18 • 14	C C		38 42	8 4	46 46

OF TCL COMPOUNDS NOT-IDENTIFIED: 0 # OF TCL COMPOUNDS MIS-QUANTIFIED: 2 # OF TCL CONTAMINANTS: 0

OF NON-TCL COMPOUNDS NOT-IDENTIFIED: 0 # OF NON-TCL CONTAMINANTS: 2

Section No. 12 Page 12 of 12

Program Summary Data (cont.):

<u>Header</u> <u>Definition</u>

LABS NOT-ID: The number of CLP contractors who did not identify a TCL or non-TCL compound added to the PEM.

- # LABS ID-CPD: The number of CLP contractors who identified a TCL or non-TCL compound in the PEM.
- TOTAL # LABS: The number of CLP contractors who analyzed the PEM.

ILSR CODES: The following codes are used on the ILSR.

- U -- Compound analyzed for but not detected.
- & -- Compound not identified -- points deducted for identification.
- X -- Compound correctly identified but the reported value is not within the action limit -- points deducted for quantification.
- \$ -- The reported value for the compound is not within the warning limit but is within the action limit -- points not deducted.

C -- Contaminant -- points deducted.

- CO -- Contaminant which may have been introduced during preparation of the PEM or during shipment -- points not deducted.
- NS -- Data required but not submitted -points deducted.
- NR -- Data not required.
- NU -- Data not used; insufficient amount of usable data for scoring submitted by the contractors.

Section No. 13 Revision No. Date: 10/09/90 Page 1 of 3

13. Preventive Maintenance

In order to ensure timely production of data, Lancaster Laboratories, Inc. (LLI) schedules routine preventive maintenance of instruments based on manufacturer's recommendations. Maintenance of the laboratory instruments is the responsibility of the technical group using the equipment in conjunction with our in-house equipment maintenance group. A schedule of routinely performed instrument maintenance tasks is attached as Table 13-1. All preventive maintenance, as well as maintenance performed as corrective action, is recorded in instrument logs.

Critical spare parts are kept in supply at the laboratory by the equipment maintenance group. Most items not kept in stock at the laboratory are available through overnight delivery from the manufacturer. In addition, LLI maintains multiple numbers of most of the critical instruments used in our laboratory operations. A recent equipment inventory may be found in the Qualification Manual. Because we are a large laboratory with redundant capacity, the problems of instrument downtime are minimized.

...

Section No. 13 Revision No. Date: 10/09/90 Page 2 of 3

٠

Table 13-1 Preventive Maintenance Schedule

Instrument	Preventive Maintenance	Frequency
GC/MS	Change septum Check fans Check cool flow Clean source Change oil in vacuum pump Change oil in turbo pump Column maintenance	Weekly or AN* Monthly Monthly Bimonthly or AN Semiannually Semiannually AN
GC/Volatiles	Check propanol level Check all flows Conductivity Detector Maint. Clean cell Change reaction tube Change Teflon line Change resin Replace trap Column Maintenance Change PID Lamp	Semiweekly Semiweekly Bimonthly Bimonthly Bimonthly Semiannually Semiannually AN AN
GC	Septum change Column maintenance Clean detector Vacuum filters Leak check ECD's	Each run AN AN Semiannually Semiannually
Flame AA	Rinse burner head, chamber & trap Clean nebulizer Inspect tubing and O-rings	AN: Minimum Weekly Weekly Monthly
GFAA	Replace lamp Rinse workhead assembly Clean windows Replace probe tubing Check rinse bottle and drain	AN Weekly Weekly AN Daily
ICP	Clean torch Clean nebulizer & spray chamber Replace pump winding Lubricate autosampler Check mirror Check tubing to torch Check fan filters, clean if needed Check cool flow, clean if needed Check water filter, replace if needed	Every other day Every other day After 4 runs After 4 runs After 4 runs After 4 runs Biweekly Biweekly Quarterly

•••

Section No. 13 Revision No. Date: 10/09/90 Page 3 of 3

Table 13-1 Preventive Maintenance Schedule

Instrument	Preventive Maintenance	Frequency	
Technicon Autoanalyzer	Clean sample probe Clean proportioning pump Inspect pump tubing, replace if worn Oil proportioning pump Inspect silicone tubing, replace if worn Clean optical system Clean wash receptacles Inspect condition of distillation head Oil distillation head Oil chain and bearings	Weekly Weekly AN Monthly Monthly Monthly Monthly Bimonthly Quarterly	
Total Organic Carbon Analyzer	Check IR zero Check for leaks Check acid pump calibration Check persulfate pump calibration Inspect 6-port rotary valve Inspect sample pump head Wash molecular sieve Check sample loop calibration Clean gas permeation tube Inspect digestion vessel o-rings Check activated carbon scrubber Dust back and clean circuit boards Check IR cell	Weekly Weekly Bimonthly Bimonthly Monthly Quarterly Monthly Quarterly 6 Months 6 Months 6 Months 6 Months Annually	-
Total Organic Halogon	Polish counter electrode Polish sensor electrode	Daily Biweekly	÷

HalogenClean loaders and pistonsANAnalyzerReplace agar bridgeMonthly

* AN means as needed. Any of these items may be performed more frequently if response during operation indicates this is necessary.

Section No. 14 Revision No. Date: 10/09/90 Page 1 of 3

14. <u>Specific Routine Procedures Used to Assess Data Precision</u>, Accuracy and Completeness

<u>Precision</u> - Precision refers to the reproducibility of a method when it is repeated on a second aliquot of the same sample. The degree of agreement is expressed as the Relative Percent Difference (RPD). The RPD will be calculated according to the following equation:

 $RPD = \frac{D_2 - D_1}{(D_1 + D_2)/2} \times 100$

D₁ = First sample value D₂ = Second sample value (Duplicate)

Duplicates will be run on at least 5% of the samples. Acceptance criteria shall be based on statistical evaluation of past lab data. (See Section No. 11.) All Quality Control sample results are entered into the computer and compared with acceptance limits. In addition, there is a monthly review of values on the computer QC system. Data obtained from quality control samples is entered onto our computer system which charts the data, and calculates a mean and standard deviation on a monthly basis. The Quality Assurance Department then reviews this data for trends which may indicate analytical problems. The control charts are graphical methods for monitoring precision and bias over time.

<u>Accuracy</u> - Accuracy refers to the agreement between the amount of a compound measured by the test method and the amount actually present. Accuracy is usually expressed as a percent Recovery (R). Recoveries will be calculated according to the following equations:

Section No. 14 Revision No. Date: 10/09/90 Page 2 of 3

Surrogate Recovery = $\frac{Qd}{Qa} \times 100$ Qd = quantity determined by analysis Qa = quantity added to sample Matrix Spike Recovery = $\frac{SSR - SR}{Sa} \times 100$

SSR = Spiked Sample Results SR = Sample Results

SA = Spike added

Laboratory Control Sample Recovery = $\frac{\text{LCS Found}}{\text{LCS True}} \times 100$

Surrogate standards are added to each sample analyzed for Spikes and Laboratory Control Samples will be organics. run on at least 5% of the samples (each batch or SDG, ≤ 20 samples). Acceptance criteria for the accuracy recoveries shall be based on statistical evaluation of past lab (See Section No. 11.) The computer is programmed data. to compare the individual values with the acceptance limits and inform the analyst if the results meet specification. If the results are not within the acceptance criteria, corrective action suitable to the situation will be taken. This may include, but is not limited to, checking calculations and instrument performance, reanalysis of the associated samples, examining other QC analyzed with the same batch of samples, and qualifying results with documentation of any QC problems in the Case Narrative.

Where available, EPA Quality Control materials are run at least quarterly to ensure accuracy of the analytical procedure. Repetitive analysis of a reference material will also yield precision data. Accuracy information determined from reference materials is valuable because variables specific to sample matrix are eliminated.

Section No. 14 Revision No. Date: 10/09/90 Page 3 of 3

The QC program is capable of charting data for surrogates, spikes, control materials and reference materials. The Quality Assurance Department reviews these charts for any indication of possible problems (ie shift in the mean and standard deviation).

Completeness - Completeness is the percentage of valid data acquired from a measurement system compared to the amount of valid measurements that were planned to be collected. The objective is analysis of all samples submitted intact, and to ensure that sufficient sample weight/volume is available should the initial analysis not meet acceptance criteria. The laboratory's Sample Management System will assign a unique identification number to the sample which tracks and controls movement of samples from the time of receipt until disposal. All data generated will be recorded referencing the corresponding sample identification number. The completeness of an analysis can be documented by including in the data deliverables sufficient information to allow the data user to assess the quality of the results. This information will include, but is not limited to, summaries of QC data and sample results, chromatograms, spectra, and instrument tune and calibration data. Additional information will be stored in the laboratory's archives, both hard copy and magnetic tape.

Section No. 15 Revision No. Date: 10/09/90 Page 1 of 3

15. <u>Corrective Action</u>

Whenever any of the data generated falls outside of the established acceptance criteria outlined for instrument tune and calibration (Section No. 8) and Internal QC (Section No. 11), the cause of this irregularity must be investigated, corrected and documented. The documentation will be used to prevent a recurrence of the problem and to inform management of the situation.

If the results are not within acceptance criteria, the appropriate corrective action will be initiated. This may include, but is not limited to, checking calculation and instrument performance, reanalysis of the associated samples, examining other QC analyzed with the same batch of samples, and qualifying results with a comment stating the observed deviation.

A Standard Operating Procedure is in place which outlines the procedures to be followed when quality control data for an analysis falls outside of previously established acceptance limits. All QC data must be entered onto the computerized QC system promptly after its generation and daily "out-of-spec" data is reported via this system. Any data outside the acceptance criteria will be reviewed by the Quality Assurance Department. Where appropriate, the Quality Assurance Department will place outliers in one of three categories:

A. Marginal Outlier

Data that are outside the 95% confidence interval but within the 99% confidence interval. This category may also be used for QC samples subject to matrix interferences or sample inhomogeneity.

Section No. 15 Revision No. Date: 10/09/90 Page 2 of 3

B. Outlier

Data outside the 99% confidence interval and/or observable trends such as a shift in mean and standard deviation.

C. Extreme Outlier

Such data would indicate the system is out of control and no results should be reported to clients; an example would be more than one reference or control falling outside the 99% confidence interval.

The daily out-of-spec reports are then distributed to Group Leaders or their QC Coordinator who will check all supporting data and document their findings and any corrective action taken. Documentation of QC Data will be filed in the departmental QC notebook. In the case of Outliers or Extreme Outliers the Quality Assurance Department may issue a formal request for investigation and corrective action (see sample form that follows). The Quality Assurance Department is responsible for initiating the corrective actions, insuring that the actions are taken in a timely manner, and that the desired results are produced.

~ Y

The Quality Assurance Department is also responsible for conducting periodic audits which ensure compliance with laboratory SOP's and assist in identifying and correcting any deficiencies. These audits may entail observation as procedures are carried out or a review of records to demonstrate traceability and compliance with all documented record keeping procedures. Follow-up audits verify that proper corrective action has been taken for the identified discrepancy.

Section No. 15 Revision No. Date: 10/09/90 Page 3 of 3

No.

INVESTIGATION AND CORRECTIVE ACTION FOR QC OUTLIERS

Part I (to be filled out by QA Director)

- 1. Date
- 2. LLI sample number(s) involved
- 3. Nature of QC outlier

Check if investigation must be complete before reporting further data to clients.

Signed

Quality Assurance Director

Part II

1. Steps taken to investigate outlier:

2. Explanation of probable cause of outlier:

3. Steps taken to prevent future occurrence:

4. Name of analyst who performed work:

5.	Signed			•		Date	
						•	
	Return	by	·	•	•••		

2064

Section No. 16 Revision No. Date: 10/09/90 Page 1 of 1

16. Quality Assurance Reports to Management

Reports of quality status from the Quality Assurance Department to management are made frequently and in various forms. All results from internal or external performance evaluation samples are circulated to management. A report of each audit performed is prepared and copied to management. Monthly summaries of data obtained from analysis of quality control check samples are generated via the computerized sample management These summaries include mean and standard system. deviation to aid in assessment of data accuracy and precision. Forms summarizing problems which require investigation and corrective action are completed by Group Leaders and circulated to management. Through these channels, laboratory management is kept apprised of QA/QC activities.

Any problems or unusual observations that occur during the analysis of samples for a specific project will be listed on the laboratory report and/or in the case narrative delivered with the data package. The items often discussed in this manner include samples with surrogate recovery outside of the acceptance criteria and samples with matrix problems requiring dilution and causing increased detection limits. Where applicable, any corrective action attempted or performed to address the problem will also be presented.

The laboratory will contact the client for direction regarding major problems such as samples listed on the chain of custody but missing form the shipping container, samples which arrive broken or are accidentally broken in the laboratory, and samples with severe matrix problems. The client will be contacted if it is necessary to change any item in the original project plan.

Appendix A

Example Reporting Forms

\$

Tier I Data Package

Title Page

Table of Contents

Sample Analysis Request Form, Field Chain of Custody

Internal Chain of Custody

Laboratory Chronicle

Method Summary/References

Analytical Reports for Samples and QC Samples

Case Narrative

QC Summary

GC/MS tuning summary

Surrogate recovery summary

Blank results

Matrix spike/matrix spike duplicate/duplicate results LCS results (if applicable)

Internal standard area summary (GC/MS)

Sample Data

All raw sample data including instrument printouts (i.e., chromatograms, quant. reports, spectra, etc.)

Standards Data

Initial calibration summary and supporting raw data Continuing calibration summary and supporting raw data Standardization data

Raw QC Data

Raw tune data (GC/MS)

Blank raw data

Matrix spike/matrix spike duplicate/duplicate raw data LCS raw data (if applicable)

Extraction/Digestion Logs

Tier II Data Package

Title Page

Table of Contents

Sample Analysis Request Form, Field Chain of Custody

Internal Chain of Custody

Laboratory Chronicle

Method Summary/References

Analytical Reports for Samples and QC Samples

Case Narrative

QC Summary

GC/MS tuning summary

Surrogate recovery summary

Blank results

Matrix spike/matrix spike duplicate/duplicate results

LCS results (if applicable)

Internal standard area summary (GC/MS)

Sample Data

All raw sample data including instrument printouts (i.e., chromatograms, quant. reports, spectra, etc.)

Raw QC Data

Blank raw data

WLK1586 D 1 4

LLI Sample No. WW 1335799

Date Reported 12/16/89 Smith Engineering, Inc. Date Submitted 12/08/89 1000 Any Street Lancaster, PA 17601-5994 Discard Date 01/16/90 Water Sample from Monitoring Well #5 Collected by MLH Collected on 12/8/89 at 1547 by MLH P.O. Rel.

•	RESU	LT	LIMIT OF	
ANALYSIS	AS RECE	IVED	QUANTITATION	LAB CODE
Total Coliform	< 2.2	/100ml	2.2	030301500
Nitrite Nitrogen	< 0.05	mg/l	0.05	021900800
Nitrate Nitrogen	11.	mg/1 ·	0.5	022000700
Ammonia Nitrogen	4.1	mg/l	0.1	022202600
Ortho-Phosphate as P	2.1	mg/l	0.25	022601100
Total Organic Carbon	8.5	mg/l	0.5	027302500
The Total Organic Carbon (T	OC) resul	t reporte	d above was det	ermined by
measuring total carbon by a				
on an acidified sample which	h has bee	n purged o	of inorganic ca	rbon using 👘 🔬
nitrogen. It represents "no	onpurgeab	le TOC."		

Pesticides/PCB's	•	•	. 0	attac	hed	017819500
Lead			0.25	mg/l	0.05	025501200
Trichloroethene			12.	mg/l	1.	041800500

1 COPY TO

Smith Engineering, Inc.

John Smith ATTN:

Questions? Contact Environmental Technical Services at (717) 656-2301 00649 10.00 2700

Respectfully Submitted Lancaster Laboratories, Inc. Reviewed and Approved by:

Marty Casstevens Manager, Water Quality

Lancaster Laboratories, Inc. 2425 New Holland Pike Lancaster, PA 17601-5994 717-656-2301

See reverse side for explanation of symbols and abbreviations.

AS

07:46:19 269394 015000 T 00649 0

LLI Sample No. WW 1562477

8/20/90

8/17/90

Lancaster Laboratories, Inc: 2425 Nev Bolland Pike Lancaster. PA 17601-5994

Example Report - Aqueous Sample

ANALYSIS

Appendix IX Volatile Compounds AppendixIX Vol.Compounds con't Appendix IX Semi-volatiles App. IX Semi-volatiles con't App. IX Semi-volatiles con't App. IX Semi-volatiles con't AppendixIX Herbicide Compounds Appendix IX Organophosphates Appendix IX Organochlorines

1 COPY TO Louise Hess

•		
	Discard Date	8/17/90
	Collected 8/16/9	90 by MLH
	Time Collected O	
		500
	P.O.	
	Rel.	
RESULT	LIMIT OF	
S RECEIVED	QUANTITATION	LAB CODE
attached		126541500
attached		126600000
attached		130980000
attached		131000000
attached		131100000
attached		131200000
attached		131619000
attached		132016500
attached		132225000

Date Reported

Date Submitted

Questions? Contact Environmental Client Services at (717) 656-2301 135,00649,000 182000

Respectfully Submitted Lancaster Laboratories, Inc. Reviewed and Approved by:

Timothy S. Oostdyk, B.A. See reverse side for explanace synchols abbreviations.

2425 New Holland Pike Lancaster, PA 17601-5994 717-656-2301

Lancaster Laboratories Where quality is a science. 07:46:20 269394 DIS000 D 1 2 00649 D LLI Sample No. WW 1562477 Lancaster Laboratories, Inc. Date Reported 8/20/90 2425 New Bolland Pike Date Submitted 8/17/90 17601-5994 Lancaster, PA Discard Date 8/17/90 Collected 8/16/90 by MLB Example Report - Aqueous Sample Time Collected 0800 P.O. Rel. RESULT LIMIT OF Appendix IX Volatile Compounds AS RECEIVED QUANTITATION LAB CODE Chloromethane < 10. 10. 12580000N υg/1 Bromomethane < 10. 10. 12570000N ug/1 Vinyl Chloride < 10. 10. 08290000N ug/1 Dichlorodifluoromethane < 5. 5. 049800000N ug/l Chloroethane < 10. 10. ug/1 08300000N Methyl iodide < 5. ug/l 5. 12600000N Acrolein < 100. 100. ug/1 082400000N Acrylonitrile < 100. 100. 08250000N υg/1 < 100. 100. 12490000N ug/1

Acetonitrile Methylene Chloride < 5. 5. 083100000N ug/1 Acetone < 100. 100. ug/1 09140000N Trichlorofluoromethane < 5. 5. 12640000N ug/1 Carbon Disulfide < 100. 100. 09150000N ug/1 Propionitrile < 100. 100. ug/1 12630000N 1,1-Dichloroethene < 5. 5. 083200000N ug/1 Allyl chloride 5. < 5. 12500000N ug/1 1,1-Dichloroethane < 5. 5. ug/1 083300000N trans-1,2-Dichloroethene < 5. υg/1 5. 083400000N Chloroform < 5. 5. 083500000N ug/l 1,2-Dichloroethane < 5. 5. 08360000N ug/1 Methacrylonitrile < 100. 100. υg/1 125600000N 2-Butanone < 100. 100. ug/1 03160000N Dibromomethane < 5. 5. ug/l 12590000N 1,1,1-Trichloroethane < 5. 5. 083700000N ug/1 1,4-dioxane < 100. 100. ug/1 125300000N * Since this is either a highly reactive compound or because uncontaminated neat material is unavailable, semi-quantitative data only is reported.

The sample was preserved with 1 + 1 BCl to pB < 2. Low recovery of acid labile compounds, such as 2-chloroethyl vinyl ether, is likely to occur.

1 COPY TO Louise Hess

Ouestions? Contact Environmental Client Services at (717) 656-2301

Respectfully Submitted Lancaster Laboratories, Inc. Reviewed and Approved by:

Timothy S. Oostdyk, B.A. See reverse side for Halbace of Symbol Shd abbreviations.

Lancaster Laboratories, Inc. 2425 New Holland Pike Lancaster, PA 17601-5994 717-656-2301

Lancaster Laboratories Where quality is a science.

07:46:26 269394 DIS000 D 1 2 00649 Ð

Lancaster Laboratories, Inc. 2425 New Bolland Pike Lancaster, PA 17601-5994 Example Report - Aqueous Sample			Date Submitted	8/20/90 8/17/90 8/17/90 0 by MLH
	RESULT		LIMIT OF	
AppendixIX Vol.Compounds con't	AS RECEI		QUANTITATION	LAB CODE
Carbon Tetrachloride	< 5.	ug/1	5.	083800000N
Isobutyl alcohol	< 100.	ug/1	100.	125500000N
Vinyl Acetate	< 50.	ug/1	50.	091700000N
Bromodichloromethane	< 5.	ug/1	5.	083900000N
2-Chloro-1, 3-Butadiene	< 5.	ug/1	5.	12510000N
1,2-Dichloropropane	< 5.	ug/1	5.	08400000N
trans-1,3-Dichloropropene	< 5.	ug/1	5.	084100000N
Trichloroethene	< 5.	ug/1	5.	08420000N
Dibromochloromethane	< 5.	ug/1	5.	084600000N
1,1,2-Trichloroethane	< 5.	ug/1	5.	084500000N
1,2-Dibromoethane	< 5.	ug/1	5.	11300000N
Benzene	< 5.	ug/l	· 5.	084300000N
cis-1,3-Dichloropropene	< 5.	ug/1	5.	084400000N
Methyl methacrylate	< 5.	ug/1	5.	126100000N
1,1,1,2-Tetrachloroethane	< 5.	ug/1	5.	032800000N
Bromoform	< 5.	ug/l	5.	084700000N
trans-1,4-dichloro-2-butene	< 100.	ug/l	100.	125200000N
1,2,3-Trichloropropane	< 5.	ug/1	5.	098800000N
2-Bexanone	< 50.	ug/1	50.	091800000N
4-Methyl-2-Pentanone	< 50.	ug/1	50.	091900000
Tetrachloroethene	< 5.	ug/1	5.	084800000N
1,1,2,2-Tetrachloroethane	< 5.	ug/1	5.	084900000N
Toluene	< 5.	ug/l	5.	08500000N
Ethyl methacrylate	< 5.	ug/l	5.	125400000N
Chlorobenzene	< 5.	ug/1	5.	085100000N
Pentachloroethane *	< 10.	ug/l	10.	126200000N
Ethylbenzene	< 5.	ug/l	5.	085200000N
1,2-Dibromo-3-chloropropane	< 100.	ug/1	100.	10010000N
Styrene	< 5.	ug/l	5.	09200000N
Xylenes (total)	< 5.	ug/l	5. .	092100000N

1 COPY TO Louise Bess

Questions? Contact Environmental Client Services at (717) 656-2301

Lancaster Laboratories, Inc. 2425 New Holland Pike Lancaster, PA 17601-5994 717-656-2301

Respectfully Submitted. Lancaster Laboratories, Inc. Reviewed and Approved by:

Timothy S. Oostdyk, B.A. See reverse side for exchanges synthics the abbreviations.

07:46:31 269394 DISOOO D 1 2

8/20/90

8/17/90

8/17/90

LLI Sample No. WW 1562477

Collected 8/16/90 by MLB

Time Collected 0800

Date Reported

Date Submitted

Discard Date

P.O.

) **6** (6

Where quality is a science.

Lancaster Laboratories, Inc. 2425 New Holland Pike Lancaster, PA 17601-5994

Example Report - Aqueous Sample

-0	Rel.				
	RESULT		LIMIT OF		
Appendix IX Semi-volatiles	AS RECEIV	VED	QUANTITATION	LAB CODE	
acenaphthene	< 10.	ug/l	10.	065700000N	
acenaphthylene	< 10.	ug/1	10.	065800000N	
acetophenone	< 10.	ug/1	10.	126700000N	
2-acetylaminofluorene	< 10.	ug/1	10.	126800000N	
4-aminobiphenyl	< 10.	ug/l	10.	12690000N	
aniline	< 10.	ug/l	10.	092500000N	
anthracene	< 10.	ug/l	10.	06590000N	
benzo (a) anthracene	< 10.	ug/1	10.	06610000N	
benzo (b) fluoranthene	< 10.	ug/l	10.	066300000N	
benzo (K) fluoranthene	< 10.	ug/l	10.	066500000N	
benzo (ghi) perylene	< 10.	ug/1	10.	066400000N	
benzo (a) pyrene	< 10.	ug/l	10.	066200000	
benzyl alcohol	< 10.	ug/l	10.	09260000N	
bis (2-chloroethoxy) methane	< 10.	ug/l	10.	066600000N	
bis (2-chloroethyl) ether	< 10.	ug/l	10.	066700000N	
bis(2chlorolmethylethyl)ether	< 10.	ug/1	10.	12710000N	
bis (2-ethylhexyl) phthalate	·< 10.	ug/1	10.	06690000N	
4-bromophenyl phenyl ether	< 10.	ug/1 .	10.	06700000N	
butyl benzyl phthalate	< 10.	ug/1	10.	067100000N	
4-chloroaniline	< 10.	ug/l	10.	09300000N	
chlorobenzilate	< 10.	ug/1	.10.	12720000N	
4-chloro-3-methylphenol	< 10.	ug/l	10.	065300000N	
2-chloronaphthalene	< 10.	ug/1	10.	06720000N	
2-chlorophenol	< 10.	ug/l	10.	06460000N	
4-chlorophenyl phenyl ether	< 10.	ug/l	10.	067300000N	
chrysene	< 10.	ug/l	10.	067400000N	
o-cresol	< 10.	ug/1	10.	03290000N	
m-cresol and p-cresol	< 10.	ug/l	10.	03300000N	

1 COPY TO Louise Bess

Questions? Contact Environmental Client Services at (717) 656-2301 Respectfully Submitted Lancaster Laboratories, Inc. Revieved and Approved by:

Lancaster Laboratories, Inc. 2425 New Holland Pike Lancaster, PA 17601-5994 717-656-2301

Timothy S. Oostdyk, B.A. See reverse side for explanations for the set of the

07:46:37 269394 DISOOO D 1 2 00649 0

LLI Sample No. WW 1562477

Lancaster Laboratories, Inc. 2425 New Holland Pike Lancaster, PA 17601-5994			Date Reported Date Submitted Discard Date Collected 8/16/9	8/20/90 8/17/90 8/17/90 90 by MLH
Example Report - Aqueous Sample			Time Collected O P.O. Rel.	300
· · · · ·	RESULT		LIMIT OF	
App. IX Semi-volatiles con't	AS RECEI	VED	QUANTITATION	LAB CODE
diallate	< 10.	ug/l	10.	131300000N
dibenzofuran	< 10.	ug/l	10.	093500000N
di-n-butyl phthalate	< 10.	ug/l	10.	068200000N
dibenz (a,h) anthracene	< 10.	ug/l	10.	067500000N
1,2-dichlorobenzene	< 10.	ug/l	10.	06760000N
1,3-dichlorobenzene	< 10.	ug/l	10.	067700000N
1,4-dichlorobenzene	< 10.	ug/1	10.	067800000N
3,3'-dichlorobenzidine	< 20.	ug/l	20.	067900000N
2,4-dichlorophenol	< 10.	ug/l	10.	064700000N
2,6-dichlorophenol	< 10.	ug/l	10.	127300000N
diethyl phthalate	< 10.	ug/l	10.	06800000N
dimethoate *	< 10.	ug/l	10.	127400000N
p-(dimethylamino)azobenzene	< 10.	ug/l	10.	12750000N
7,12-dimethlbenz(a)anthracene*	< 10.	ug/l	10.	12760000N
3,3'-dimethylbenzidine	< 10.	ug/1	10.	127700000N
2,4-dimethylphenol	< 10.	ug/l	10.	064800000N
dimethyl phthalate	< 10.	ug/l	10.	068100000N
m-dinitrobenzene	< 10.	ug/l	10.	127800000N
2-methyl-4,6-dinitrophenol	< 25.	ug/l	25.	064900000N
2,4-dinitrophenol	< 25.	ug/l	25.	06500000N
2,4-dinitrotoluene	< 10.	ug/1	10.	068300000N
2,6-dinitrotoluene	< 10.	ug/1	10.	068400000N
di-n-octyl phthalate	< 10.	ug/l	10.	068500000N
diphenylamine	< 10.	ug/l	10.	132700000N
ethyl methanesulfonate	< 10.	ug/l	10.	127900000N
fluoranthene	< 10.	ug/1	10.	068700000N
fluorene	< 10.	ug/l	10.	068800000N

1 COPY TO Louise Bess

Questions? Contact Environmental Client Services at (717) 656-2301

Lancaster Laboratories, Inc. 2425 New Holland Pike Lancaster, PA 17601-5994 717-656-2301 Respectfully Submitted Lancaster Laboratories, Inc. Reviewed and Approved by:

Timothy S. Oostdyk, B.A. See reverse side for examerations.

8/20/90

8/17/90

8/17/90

07:46:42	2	693	94
DIS000	D	1	2
00649	0		

LLI Sample No. WW 1562477

Collected 8/16/90 by MLH

Time Collected 0800

Date Reported

Date Submitted

Discard Date

P.O.

Lancaster Laboratories, Inc. 2425 New Holland Pike Lancaster, PA 17601-5994

Example Report - Aqueous Sample

			Rel.	
	RESULT		LIMIT OF	
App. IX Semi-volatiles con't	AS RECEIV	ved	QUANTITATION	LAB CODE
hexachlorobenzene	. < 10.	ug/1	10.	068900000N
hexachlorobutadiene	< 10.	ug/l	10.	069000000
hexachlorocyclopentadiene	< 10.	ug/1	10.	06910000N
hexachloroethane	< 10.	ug/1	10.	06920000N
hexachloropropene *	< 10.	ug/l	10.	128100000N
indeno (1,2,3-cd) pyrene	< 10.	ug/l	10.	069300000N
isodrin	< 10.	ug/l	10.	128200000N
isophorone	< 10.	ug/1	10.	069400000N
isosafrole	< 10.	ug/1	10. ·	128300000N
3-methylcholanthrene	< 10.	ug/1	· 10.	128400000N
methyl methanesulfonate	< 10.	ug/1	10.	128500000N
2-methylnaphthalene	< 10.	ug/l	10.	093100000N
naphthalene	< 10.	ug/l	10.	069500000N
1,4-naphthoquinone *	< 10.	ug/l	10.	128600000N
l-naphthylamine	< 10.	ug/l	10.	128700000N
2-naphthylamine	< 20.	ug/l	20.	128800000N
2-nitroaniline :	< 50.	ug/l	50.	093300000N
3-nitroaniline	< 50.	ug/1	50.	093400000N
4-nitroaniline	< 50.	ug/l	50.	093600000N
nitrobenzeñe	< 10.	ug/l	10.	069600000
2-nitrophenol	< 10.	ug/1	10.	065100000N ·
4-nitrophenol	< 50.	ug/l	50.	065200000N
4-nitroquinoline 1-oxide *	< 10.	ug/l	10.	128900000N
N-nitrosodi-n-butylamine	< 10.	ug/l	10.	12900000N
N-nitrosodiethylamine	< 10.	ug/l	10.	12910000N
N-nitrosodimethylamine	< 10.	ug/l	10.	069700000N

1 COPY TO Louise Eess

Questions? Contact Environmental Client Services at (717) 656-2301

Lancaster Laboratories, Inc. 2425 New Holland Pike Lancaster, PA 17601-5994 717-656-2301 Respectfully Submitted Lancaster Laboratories, Inc. Reviewed and Approved by:

Timothy S. Oostdyk, B.A. See reverse side for explanations.

07:46:47 269394 DISOOO D 1 2

DIS000 D

LLI Sample No. WW 1562477

8/20/90 Date Reported Lancaster Laboratories, Inc. Date Submitted 8/17/90 2425 Nev Holland Pike 8/17/90 Discard Date 17601-5994 Lancaster, PA Collected 8/16/90 by MLB Time Collected 0800 Example Report - Aqueous Sample P.O. Rel. LIMIT OF RESULT LAB CODE OUANTITATION App. IX Semi-volatiles con't AS RECEIVED 06990000N 10. < 10. N-nitrosodiphenylamine ug/1 10. 069800000N < 10. ug/1 N-nitrosodi-n-propylamine 12920000N 10. < 10. N-nitrosomethylethylamine ug/l 20. 12930000N < 20. N-nitrosomorpholine ug/1 10. 12940000N < 10. N-nitrosopiperidine ug/1 12950000N 10. N-nitrosopyrrolidine < 10. ug/1 10. 12960000N < 10. ug/1 5-nitro-o-toluidine 10. 12970000N < 10. pentachlorobenzene ug/l 12980000N 10. < 10. pentachloronitrobenzene ug/1 50. 06540000N < 50. pentachlorophenol ug/1 10. 12990000N < 10. ug/1 phenacetin 07000000N 10. < 10. phenanthrene ug/l < 10. 10. 065500000N ug/1 phenol 10. 13000000N < 10. ug/1 p-phenylenediamine * 10. 13010000N < 10. 2-picoline ug/1 10. 13020000N pronamide < 10. υg/1 10. 07010000N < 10. ug/l pyrene < 10. 10. 033100000N pyridine ug/1 10. 13030000N safrole < 10. υg/l 10. 13040000N < 10. 1,2,4,5-tetrachlorobenzene ug/l 10. 043800000N . 2,3,4,6-Tetrachlorophenol < 10. ug/1 10. 13050000N tetraethyl dithiopyrophosphate < 10. ug/l 13060000N < 10. 10. o-toluidine ug/1 10. 07020000N < 10. 1,2,4-trichlorobenzene ug/1 25. 093200000N < 25. 2,4,5-trichlorophenol ug/1 10. 06560000N < 10. 2,4,6-trichlorophenol ug/1 10. 13070000N < 10. 0.0.0-triethylphosphorothioate ug/1 20. 13080000N sym-trinitrobenzene < 20. ug/1

Lancaster Laboratories Where quality is a science.

* Since this is either a highly reactive compound or because uncontaminated neat material is unavailable, semi-quantitative data only is reported.

1 COPY TO Louise Bess

Questions? Contact Environmental Client Services at (717) 656-2301

Lancaster Laboratories, Inc. 2425 New Holland Pike Lancaster, PA 17601-5994 717-656-2301 Respectfully Submitted Lancaster Laboratories, Inc. Reviewed and Approved by:

Timothy S. Oostdyk, B.A. See reverse side for expandition of symbols and abbreviations.

07:46:55	2	693	94	
DISO00	D	1	2	
00649	0			

Lancaster Laboratories, Inc. 2425 New Holland Pike Lancaster, PA 17601-5994

Example Report - Aqueous Sample

LLI Sample No. WW 1562477 Date Reported 8/20/90 Date Submitted 8/17/90 Discard Date 8/17/90 Collected 8/16/90 by MLH Time Collected 0800 P.O. Rel.

AppendixIX 2,4-D	Berbicide	Compounds
Dinoseb		
2,4,5-TP		
2,4,5-T	л .	

 RESULT

 AS RECEIVED

 < 1.</td>
 ug/l

 < 1.</td>
 ug/l

 < 1.</td>
 ug/l

 < 1.</td>
 ug/l

LIMIT OF	•
QUANTITATION	LAB CODE
1.	028800000N
1.	13140000N
1.	028900000N
1.	131500000N

1 COPY TO Louise Hess

Ouestions? Contact Environmental Client Services at (717) 656-2301

Lancaster Laboratories, Inc. 2425 New Holland Pike Lancaster, PA 17601-5994 717-656-2301 Respectfully Submitted Lancaster Laboratories, Inc. Reviewed and Approved by:

Charles J. Neslund, B.S. See reverse side for extra tion destand Bestingides/PC

2216 9/13/90

45		Laboratories
	Where quality is	a science.

07:46:56	2	693	94
DISOOO	D	1	2
00649	0		

Lancaster Laboratories, Inc. 2425 New Holland Pike 17601-5994 Lancaster, PA

Example Report - Aqueous Sample

Date Reported -8/20/90 Date Submitted 8/17/90 8/17/90 Discard Date Collected 8/16/90 by MLB Time Collected 0800 P.O. Rel. T OF TATION LAB CODE 13170000N 0.05 0.02 063400000N

0.02

2.

0.1

063500000N

131800000N

13190000N

LLI Sample No. WW 1562477

	RESULT		
Appendix IX Organophosphates	AS RECEIVED	QUANTIT	
Disulfoton	< 0.05 ug/l	•	
Methyl Parathion	< 0.02 ug/l		
Ethyl Parathion	< 0.02 ug/l	•	
Famphur	< 2. ug/l		
Phorate.	' < 0.1 ug/l		

1 COPY TO

Louise Hess

Questions? Contact Environmental Client Services at (717) 656-2301

Lancaster Laboratories, Inc. 2425 New Holland Pike Lancaster, PA 17601-5994 717-656-2301

Respectfully Submitted Lancaster Laboratories, Inc. Reviewed and Approved by:

3/90

Charles J. Neslund, B.S. See reverse side for explanation of symbols and abbreviations.

07:46:59 269394 DIS000 D 1 2

00649

	· · ·
1 and actor	Laboratories
Lancasici	Laburatories
Where quality is	a science.

Lancaster Laboratories, Inc. 2425 New Bolland Pike Lancaster, PA 17601-5994 Example Report - Aqueous Sample			Date Submitted Discard Date Collected 8/16/9 Time Collected 08 P.O. Rel.	8/20/90 8/17/90 8/17/90 0 by KLB
	RESULT		LIMIT OF	
Appendix IX Organochlorines	AS RECEIV	ed	QUANTITATION	LAB CODE
Aldrin	< 0.01	ug/l	0.01	04550000N
Alpha BEC	< 0.01	ug/1	0.01	06090000N
Beta BEC	< 0.01	ug/1	0.01	06100000N
Delta BBC	< 0.01	ug/1	0.01	06120000N
Gamma BBC - Lindane	< 0.01	ug/l	0.01	061100000N
Chlordane	< 0.05	ug/l	0.05	062500000N
DDT	< 0.01	ug/l	0.01	047800000N
DDE	< 0.01	ug/l	0.01	06160000N
DDD	< 0.01	ug/l	0.01	06170000N
Dieldrin	< 0.01	ug/1	0.01	046900000N
Endosulfan I	< 0.01	ug/1	0.01	062700000N
Endosulfan II	< 0.01	ug/1	. 0.01	062800000N
Endosulfan Sulfate	< 0.03	ug/l	0.03	06290000N
<i>,</i>	< 0.01	ug/l	0.01	047700000N
Endrin Endrin Aldehyde	< 0.1	ug/l	0.1	063800000N
	< 0.01	ug/1	0.01	045400000N
Beptachlor Restachlor Restide	< 0.01	ug/1	0.01	061500000N
Heptachlor Epoxide	< 0.05	ug/l	0.05	132100000N
Kepone	< 0.05	ug/1	0.05	062100000N
Hethoxychlor	< 1.	ug/1	1.	063900000N
PCB-1016	< 1.	ug/l	1.	06400000N
PCB-1221	< 1.	ug/l	· 1.	064100000N
PCB-1232	< 1.	ug/l	1.	064200000N
PCB-1242	< 1.		1.	064300000N
PCB-1248	< 1.	ug/l ug/l	1.	064400000N
PCB-1254	< 1.		1.	064500000N
PCB-1260	< 2.	ug/l	2.	062600000N
Toxaphene	× 2.	ug/l	2.	~~~~~~~

1 COPY TO

Louise Eess

Questions? Contact Environmental Client Services at (717) 656-2301

Lancaster Laboratories, Inc. 2425 New Holland Pike Lancaster, PA 17601-5994 717-656-2301

Respectfully Submitted Lancaster Laboratories, Inc. Reviewed and Approved by:

> 2216 9/13/90

Charles J. Neslund, B.S. Group Leader, Pesticides/ See reverse side for explanation of symbols and abbreviations.

IIC/DDIAE9

8/20/90

8/17/90[.]

8/17/90

LAB CODE

126541500

126600000

130980000

13100000

131100000

131200000

131619000

132016500

132225000

07:47:07 269394 DISOOO D 1 2

00649 0

LLI Sample No. SW 1562478

Collected 8/16/90 by MLE

Time Collected 0800

LIMIT OF

QUANTITATION

Date Reported

Date Submitted

Discard Date

P.O. Rel.

attached

attached

attached

attached

attached

attached

attached

attached

attached

RESULT

AS RECEIVED

Lancaster Laboratories, Inc. 2425 Nev Bolland Pike Lancaster, PA 17601-5994

Example Report - Solid Sample

ANALYSIS

Appendix IX Volatile Compounds AppendixIX Vol.Compounds con't Appendix IX Semi-volatiles App. IX Semi-volatiles con't App. IX Semi-volatiles con't App. IX Semi-volatiles con't AppendixIX Herbicide Compounds Appendix IX Organophosphates Appendix IX Organochlorines

1 COPY TO Louise Hess

Questions? Contact Environmental Client Services at (717) 656-2301 135 00649 00 182000

2425 New Holland Pike Lancaster, PA 17601-5994 717-656-2301 Respectfully Submitted Lancaster Laboratories, Inc. Reviewed and Approved by:

Timothy S. Oostdyk, B.A. See reverse side for exbanace efsymbol abbreviations.

I I I I E

07:47:09 269394 DISOOO D 1 2

00649

Lancaster Laboratories, Inc. 2425 Nev Bolland Pike Lancaster, PA 17601-5994		· ·	Date Reported Date Submitted Discard Date Collected 8/16/9	
Example Report - Solid Sample			Time Collected 08	00
			P.O. Rel.	
	RESULT	•	LIMIT OF	
Appendix IX Volatile Compounds	AS RECEI		QUANTITATION	LAB CODE
Chloromethane	< 10.	ug/kg	10.	125800000N
Bromomethane	< 10.	ug/kg	10.	125700000N
Vinyl Chloride	< 10.	ug/kg	10.	082900000N
Dichlorodifluoromethane	< 5.	ug/kg	5.	049800000N
Chloroethane	< 10.	ug/kg	10.	083000000N
Methyl iodide	< 5.	ug/kg	5.	12600000N
Acrolein	< 100.	ug/kg	100.	082400000N
Acrylonitrile	< 100.	ug/kg	100.	082500000N
Acetonitrile	< 100.	ug/kg	100.	124900000N
Methylene Chloride	< 5.	ug/kg	· 5.	083100000N
Acetone	< 100.	ug/kg	100.	091400000N
Trichlorofluoromethane	< 5.	ug/kg	. 5.	126400000N
Carbon Disulfide	< 100.	ug/kg	100.	091500000N
Propionitrile	< 100.	ug/kg	100.	126300000N
1,1-Dichloroethene	< 5.	ug/kg	5.	083200000N
Allyl chloride	< 5.	ug/kg	5.	125000000N
1,1-Dichloroethane	< 5.	ug/kg	. 5.	083300000N
trans-1,2-Dichloroethene	< 5.	ug/kg	. 5.	083400000N
Chloroform	< 5.	ug/kg	5.	083500000N
1,2-Dichloroethane	< 5. ·	ug/kg	5.	083600000N
Methacrylonitrile	< 100.	ug/kg	100.	125600000N
2-Butanone	< 100.	ug/kg	100.	03160000N
Dibromomethane	< 5.	ug/kg	5.	125900000N
1,1,1-Trichloroethane	< 5.	ug/kg	5.	083700000N
1,4-dioxane	< 100.	ug/kg	100.	125300000N
* Since this is either a highly	reactive co	spound or t	ecause uncontaminat	ed

* Since this is either a highly reactive compound or because uncontaminate neat material is unavailable, semi-quantitative data only is reported. The sample was preserved with 1 + 1 ECl to pH < 2. Low recovery of acid labile compounds, such as 2-chloroethyl vinyl ether, is likely to occur.

1 COPY TO Louise Bess

Ouestions? Contact Environmental Client Services at (717) 656-2301 Respectfully Submitted Lancaster Laboratories, Inc. Reviewed and Approved by:

Lancaster Laboratories, Inc. 2425 New Holland Pike Lancaster, PA 17601-5994 717-656-2301

Timothy S. Oostdyk, B.A. Manager GC/MS See reverse side for explanation of symbols and abbreviations.

07.47.17 26939

LLI Sample No. SW 1562478

07:47:17 269394 DISOOO D 1 2 00649 0

Lancaster Laboratories, Inc.			Date Reported	8/20/90
			Date Submitted	8/17/90
2425 Nev Holland Pike Lancaster, PA 17601-5994			Discard Date	8/17/90
Lancaster, PA 17601-5994			Collected 8/16/9	
			Time Collected 08	00
Example Report - Solid Sample			P.O.	
			Rel.	
	NDCUI M		LIMIT OF	
	RESULT	m b	QUANTITATION	LAB CODE
AppendixIX Vol.Compounds con't	AS RECEIV		5.	0838000000
Carbon Tetrachloride	< 5.	ug/kg	100:	125500000N
Isobutyl alcohol	< 100.	ug/kg	50.	091700000N
Vinyl Acetate	< 50.	ug/kg	5.	083900000N
Bromodichloromethane	< 5.	ug/kg		
2-Chloro-1,3-Butadiene	< 5.	ug/kg	5.	125100000N
1,2-Dichloropropane	< 5.	ug/kg	5.	08400000N
trans-1, 3-Dichloropropene	< 5.	ug/kg	5.	084100000N
Trichloroethene	< 5.	ug/kg	5.	08420000N
Dibromochloromethane	< 5.	ug/kg	5.	08460000N
1,1,2-Trichloroethane	< 5.	ug/kg	5.	084500000N
1,2-Dibromoethane	< 5.	ug/kg	5.	11300000N
Benzene	< 5.	ug/kg	5.	084300000N
cis-1,3-Dichloropropene	< 5.	ug/kg	· 5.	084400000N
Methyl methacrylate	< 5.	ug/kg	5.	12610000N
1,1,1,2-Tetrachloroethane	< 5.	ug/kg	5.	032800000N
Bromoform	< 5.	ug/kg	5.	084700000N
trans-1,4-dichloro-2-butene	< 100.	ug/kg	100.	12520000N
1,2,3-Trichloropropane	< 5.	ug/kg	5.	098800000N
2-Bexanone	< 50.	ug/kg	50.	091800000N
4-Methyl-2-Pentanone	< 50.	ug/kg	50.	09190000N
•	< 5.		5.	084800000N
Tetrachloroethene	< 5.	ug/kg	5.	084900000N
1,1,2,2-Tetrachloroethane	< 5.	ug/kg	5.	08500000N
Toluene		ug/kg	5.	125400000N
Ethyl methacrylate	< 5.	ug/kg	5.	085100000N
Chlorobenzene	< 5.	ug/kg		126200000N
Pentachloroethane *	< 10.	ug/kg	10.	
Ethylbenzene	< 5.	ug/kg	5.	085200000N
1,2-Dibromo-3-chloropropane	< 100.	ug/kg	100.	10010000N
Styrene	< 5.	ug/kg	5.	09200000N
Xylenes (total)	< 5.	ug/kg	5.	092100000N

1 COPY TO Louise Bess

Questions? Contact Environmental Client Services at (717) 656-2301 Respectfully Submitted Lancaster Laboratories, Inc. Reviewed and Approved by:

Timothy S. Oostdyk, B.A. Manager GC/MS See reverse side for explanation of symbols and abbreviations.

Lancaster Laboratories, Inc. 2425 New Holland Pike Lancaster, PA 17601-5994 717-656-2301

3

• جد ، بن 1/13/90

Analysis Repar

43	Lancaster Laboratories
	Where quality is a science.

07:47:32	2693	94
DISOOO	D.1	2
00649	0	

Lancaster Laboratories, Inc. 2425 Nev Holland Pike Lancaster, PA 17601-5994 Example Report - Solid Sample			Date Submitted Discard Date Collected 8/16/9 Time Collected 08 P.O. Rel.	8/20/90 8/17/90 8/17/90 0 by HLH
t and the TV Cont welcotile	RESULT		LIMIT OF	
Appendix IX Semi-volatiles	AS RECEI		QUANTITATION	LAB CODE
acenaphthene	< 330.	ug/kg	330.	06570000N
acenaphthylene	< 330.	ug/kg	330.	065800000N
acetophenone	< 330.	ug/kg	330.	12670000N
2-acetylaminofluorene	< 330.	ug/kg	330.	126800000N
4-aminobiphenyl	< 330.	ug/kg	330.	12690000N
aniline	< 330.	ug/kg	330.	09250000N
anthracene	< <u>3</u> 30.	ug/kg	330.	06590000N
benzo (a) anthracene	< 330.	ug/kg	330.	06610000N
benzo (b) fluoranthene	< 330.	ug/kg	330.	066300000N
benzo (K) fluoranthene	< 330.	· ug/kg	330.	066500000N
benzo (ghi) perylene	< 330.	ug/kg	330.	066400000N
benzo (a) pyrene	< 330.	ug/kg	. 330.	066200000N
benzyl alcohol	< 330.	ug/kg	330.	092600000N
bis (2-chloroethoxy) methane	< 330.	ug/kg	330.	066600000N
bis (2-chloroethyl) ether	< 330.	ug/kg	330.	066700000N
bis(2chlorolmethylethyl)ether	< 330.	ug/kg	330.	127100000N
bis (2-ethylhexyl) phthalate	< 330.	ug/kg	330.	066900000N
4-bromophenyl phenyl ether	< 330.	ug/kg	330.	06700000N
butyl benzyl phthalate	< 330.	ug/kg	330.	067100000N
4-chloroaniline	< 330.	ug/kg	330.	09300000N
chlorobenzilate	< 330.	ug/kg	330.	127200000N .
4-chloro-3-methylphenol	< 330.	ug/kg	330.	065300000N
2-chloronaphthalene	< 330.	ug/kg	330.	06720000N
2-chlorophenol	< 330.	ug/kg	330.	064600000N
4-chlorophenyl phenyl ether	< 330.	ug/kg	330.	067300000N
chrysene	< 330.	ug/kg	330.	067400000N
o-cresol	< 330.	ug/kg	330.	032900000N
m-cresol and p-cresol	< 330.	ug/kg	330.	033000000N
-		-00		

1 COPY TO Louise Bess

Questions? Contact Environmental Client Services at (717) 656-2301

Ô

Lancaster Laboratories, Inc. 2425 New Holland Pike Lancaster, PA 17601-5994 717-656-2301 Respectfully Submitted Lancaster Laboratories, Inc. Revieved and Approved by:

Timothy S. Oostdyk, B.A. See reverse side for expandion of symbols and abbreviations.

07:47:45 269394 DISOOO D 1 2 00649 0

LLI Sample No. SW 1562478

4b	Lancaster	Laboratories
	Where quality is	a science.

1.7

Lancaster Laboratories, Inc.			Date Reported	8/20/90
2425 New Bolland Pike			Date Submitted	8/17/90
Lancaster, PA 17601-5994			Discard Date	8/17/90
			Collected 8/16/	
Example Report - Solid Sample			Time Collected 0	
Example Acport Dolld Du-pro			P.O.	
			Rel.	•
	RESULT		LIMIT OF	
App. IX Semi-volatiles con't	AS RECEIV	היא	QUANTITATION	LAB CODE
diallate	< 330.	ug/kg	330.	131300000м
dibenzofuran	< 330.		330.	093500000N
	< 330.	ug/kg	330.	068200000N
di-n-butyl phthalate	< 330.	ug/kg	330.	067500000N
dibenz (a,h) anthracene		ug/kg	330.	· 067600000N
1,2-dichlorobenzene	< 330.	ug/kg	330.	067700000N
1,3-dichlorobenzene	< 330.	ug/kg	330.	067800000N
1,4-dichlorobenzene	< 330.	ug/kg		
3,3'-dichlorobenzidine	< 670.	ug/kg	670.	06790000N
2,4-dichlorophenol	< 330.	ug/kg	330.	064700000N
2,6-dichlorophenol	< 330.	ug/kg	330.	12730000N
diethyl phthalate	< 330.	ug/kg	330.	06800000N
dimethoate *	< 330.	ug/kg	330.	12740000N
p-(dimethylamino)azobenzene	< 330.	ug/kg	330.	127500000N
7,12-dimethlbenz(a)anthracene*	< 330.	ug/kg	330.	12760000N
3,3'-dimethylbenzidine	< 330.	ug/kg	330.	127700000
2,4-dimethylphenol	< 330.	ug/kg	330.	064800000N
dimethyl phthalate	< 330.	ug/kg	330.	06810000N
m-dinitrobenzene	< 330.	ug/kg	330.	12780000N
2-methyl-4,6-dinitrophenol	< 830.	ug/kg	830.	06490000N
2,4-dinitrophenol	< 830.	ug/kg	830.	06500000N
2,4-dinitrotoluene	< 330.	ug/kg	330.	068300000N.
2,6-dinitrotoluene	< 330.	ug/kg	330.	068400000N
di-n-octyl phthalate	< 330.	ug/kg	330,	068500000N
diphenylamine	< 330.	ug/kg	330.	132700000N
ethyl methanesulfonate	< 330.	ug/kg	330.	127900000N
fluoranthene	< 330.	ug/kg	330.	068700000N
fluorene	< 330.	ug/kg	330.	068800000N

1 COPY TO Louise Bess

Questions? Contact Environmental Client Services at (717) 656-2301 Respectfully Submitted Lancaster Laboratories, Inc. Reviewed and Approved by:

Lancaster Laboratories, Inc. 2425 New Holland Pike Lancaster, PA 17601-5994 717-656-2301

Timothy S. Oostdyk, B.A. Hanager GC/HS See reverse side for explanation of symbols and abbreviations.

07:47:55	20	593	94
DISOOO	D	1	2
00649	0		

8/20/90

8/17/90

8/17/90

LAB CODE

068900000N

06900000N

06910000N

06920000N

12810000N

069300000N

12820000N

06940000N

128300000N

128400000N

12850000N

093100000N

06950000N

12860000N

12870000N

128800000N

093300000N

093400000N

093600000N

06960000N

065100000N

065200000N

12890000N

12900000N

12910000N

069700000N

LLI Sample No. SW 1562478

Collected 8/16/90 by MLB

Time Collected 0800

LIMIT OF

QUANTITATION

330.

330.

330.

330.

330.

330.

330.

330.

330.

330.

330.

330.

330.

330.

330.

670.

1,700.

1,700.

1,700.

1.700.

330.

330.

330.

330.

330.

330.

Date Reported

Discard Date

P.O. Rel.

RESULT

< 330.

< 330.

< 330.

< 330.

< 330.

< 330.

< 330.

< 330.

< 330.

< 330.

< 330.

< 330.

< 330.

< 330.

< 330.

< 670.

< 1,700.

< 1,700.

< 1,700.

< 1,700.

< 330.

<-330.

< 330.

< 330.

< 330.

< 330.

AS RECEIVED

ug/kg

Date Submitted

Lancaster Laboratories, Inc. 2425 Nev Holland Pike Lancaster, PA 17601-5994

Example Report - Solid Sample

App. IX Semi-volatiles con't hexachlorobenzene hexachlorobutadiene hexachlorocyclopentadiene hexachloroethane hexachloropropene * indeno (1,2,3-cd) pyrene isodrin isophorone isosafrole 3-methylcholanthrene methyl methanesulfonate 2-methylnaphthalene naphthalene 1,4-naphthoquinone * 1-naphthylamine 2-naphthylamine 2-nitroaniline 3-nitroaniline 4-nitroaniline nitrobenzene 2-nitrophenol 4-nitrophenol 4-nitroquinoline 1-oxide * N-nitrosodi-n-butylamine N-nitrosodiethylamine N-nitrosodimethylamine

1 COPY TO Louise Eess

Ouestions? Contact Environmental Client Services at (717) 656-2301 Respectfully Submitted Lancaster Laboratories, Inc. Reviewed and Approved by:

Lancaster Laboratories, Inc. 2425 New Holland Pike Lancaster, PA 17601-5994 717-656-2301

Timothy S. Oostdyk, B.A. Hanager GC/MS See reverse side for explanation of symbols and abpreviations

2216 9:13/90

Anerasis

26

07:48:04	259394				
DISOOO	D	1	2		
00649	0				

Lancaster Laboratories, Inc. 2425 New Bolland Pike Lancaster, PA 17601-5994			Date Submitted Discard Date Collected 8/16/9	8/20/90 8/17/90 8/17/90 0 by MLH
Example Report - Solid Sample			Time Collected 08 P.O. Rel.	00
	RESULT		LIMIT OF	
App. IX Semi-volatiles con't	AS RECEI	VED	QUANTITATION	LAB CODE
N-nitrosodiphenylamine	< 330.	ug/kg	330.	069900000N
N-nitrosodi-n-propylamine	< 330.	ug/kg	330.	069800000N
N-nitrosomethylethylamine	< 330.	ug/kg	330.	129200000N
N-nitrosomorpholine	< 670.	ug/kg	670.	129300000N
N-nitrosopiperidine	< 330.	ug/kg	330.	129400000N
N-nitrosopyrrolidine	< 330.	ug/kg	330.	129500000N
5-nitro-o-toluidine	< 330.	ug/kg	330.	129600000N
pentachlorobenzene	< 330.	ug/kg	330.	129700000N
pentachloronitrobenzene	< 330.	ug/kg	330.	129800000N
pentachlorophenol	< 1,700.	ug/kg	1,700.	065400000N
phenacetin	< 330.	ug/kg	330.	129900000N
phenanthrene	< 330.	ug/kg	330.	07000000N
phenol	< 330.	ug/kg	330.	065500000N
p-phenylenediamine *	< 330.	ug/kg	330.	13000000N
2-picoline	< 330.	ug/kg	330.	13010000N
pronamide	< 330.	ug/kg	330.	13020000N
pyrene :	< 330.	ug/kg	330.	07010000N
pyridine	< 330.	ug/kg	330.	033100000N
safrole	< 330.	ug/kg	330.	130300000N
1,2,4,5-tetrachlorobenzene	< 330.	ug/kg	· 330.	13040000N
2,3,4,6-Tetrachlorophenol	< <u>3</u> 30.	ug/kg	330.	043800000N .
tetraethyl dithiopyrophosphate.	< 330.	ug/kg	330.	13050000N
o-toluidine	< 330.	ug/kg	330.	13060000N
1,2,4-trichlorobenzene	< 330.	ug/kg	330.	07020000N
2,4,5-trichlorophenol	< 830.	ug/kg	830.	093200000N
2,4,6-trichlorophenol	< 330.	ug/kg	330.	06560000N
0,0,0-triethylphosphorothioate	< 330.	ug/kg	330.	13070000N
sym-trinitrobenzene	< 670.	ug/kg	670.	130800000N
* Since this is either a highly	reactive com	pound or b	ecause uncontaminat	ed

neat material is unavailable, semi-quantitative data only is reported.

.

1 COPY TO Louise Bess

۰.

Questions? Contact Environmental Client Services at (717) 656-2301

Lancaster Laboratories, inc. 2425 New Holland Pike Lancaster, PA 17601-5994 717-656-2301 Respectfully Submitted Lancaster Laboratories, Inc. Reviewed and Approved by:

Timothy S. Oostdyk, B.A. See reverse side for exclanation of symposis and abbreviations.

PZYLY CO.

07:48:12 269394 DISOOO D 1 2 00649 0

Lancaster Laboratories, Inc. 2425 New Holland Pike Lancaster, PA 17601-5994

Example Report - Solid Sample

Date Reported 8/20/90 Date Submitted 8/17/90 Discard Date 8/17/90 Collected 8/16/90 by MLE Time Collected 0800 P.O. Rel.

LLI Sample No. SW 1562478

	RESULT AS RECEIVED			LIMIT OF	LAB CODE	
AppendixIX Herbicide Compounds				QUANTITATION		
2,4-D	<	1.	mg/kg	1.	028800000N	
Dinoseb	<	1.	mg/kg	1.	131400000N	
2,4,5-TP	<	1.	mg/kg	1.	028900000N	
2,4,5-T	<	1.	mg/kg	1.	131500000N	
•						

1 COPY TO Louise Hess

Questions? Contact Environmental. Client Services at (717) 656-2301

Lancaster Laboratories, Inc. 2425 New Holland Pike Lancaster, PA 17601-5994 717-656-2301 Respectfully Submitted Lancaster Laboratories, Inc. Reviewed and Approved by:

Charles J. Neslund, B.S. Group Leader, Pesticides/PC

07:48:13 269394 2

41>	Lancaster	Labora	tories
V	Where quality is	a science.	

DISO00	D	1
00649	0	_

Lancaster Laboratories, Inc. 2425 Nev Bolland Pike Lancaster, PA 17601-5994

Example Report - Solid Sample

JT.

Appendix IX Organophosphates Disulfoton Methyl Parathion Ethyl Parathion Famphur Phorate.

RESULT AS RECEIVED ·< 0.05 mg/kg < 0.02 mg/kg < 0.02 mg/kg < 2. mg/kg < 0.1 mg/kg LLI Sample No. SW 1562478 Date Reported 8/20/90 Date Submitted. 8/17/90 8/17/90 Discard Date Collected 8/16/90 by MLE Time Collected 0800 P.O.

Rel. ·	
LIMIT OF	
QUANTITATION	LAB CODE
0.05	131700000N
0.02	063400000N -
0.02	063500000N
2.	131800000N
0.1	131900000N

1 COPY TO Louise Hess

> Questions? Contact Environmental Client Services at (717) 656-2301

Lancaster Laboratories, Inc. 2425 New Holland Pike Lancaster, PA 17601-5994 717-656-2301

Respectfully Submitted Lancaster Laboratories, Inc. Reviewed and Approved by:

Charles J. Neslund, B.S. See reverse side for Expandition of Bythe Fistan Babereviations

Where quality is a	aboratori	ės		269394
Where quality is a	DIS000D 00649	0		
			• •	
Tonor Tohonoton Too			LLI Sample No. SW	1562478 8/20/90
Lancaster Laboratories, Inc.				8/17/90
2425 New Holland Pike Lancaster, PA 17601-5994				8/17/90
Lancaster, PA 17601-5994			Collected 8/16/9	
Example Report - Solid Sample			Time Collected 08	
• •			P.O.	
			Rel.	
	RESULT		LIMIT OF	•
Appendix IX Organochlorines	AS RECEIV	ED	QUANTITATION	LAB CODE
Aldrin	< 0.01	mg/kg	0.01	045500000N
Alpha BEC	< 0.01	mg/kg	0.01	06090000N
Beta BBC	< 0.01	mg/kg	0.01	06100000N
Delta BEC	< 0.01	mg/kg	. 0.01	06120000N
Gamma BHC - Lindane	< 0.01	mg/kg	0.01	061100000
Chlordane	< 0.05	mg/kg	0.05	06250000N
DDT	< 0.01	mg/kg	0.01	04780000N
DDE	< 0.01	mg/kg	0.01	061600000N
סמס	< 0.01	mg/kg	0.01	061700000N
Dieldrin	< 0.01	mg/kg	0.01	04690000N
Endosulfan I	< 0.01	mg/kg	0.01	062700000N
Endosulfan II	< 0.01	mg/kg	0.01	06280000N
Endosulfan Sulfate	< 0.03	mg/kg	0.03	06290000N
Endrin	< 0.01	mg/kg	0.01	047700000N
Endrin Aldehyde	< 0.1	mg/kg	0.1	063800000N
Beptachlor	< 0.01	mg/kg	0.01	045400000N
Beptachlor Bpoxide :	< 0.01	ng/kg	0.01	06150000N
Kepone	< 0.05	mg/kg	0.05	132100000N
Methoxychlor PCB-1016	< 0.05	mg/kg	0.05 🖘 0.2	062100000N
PCB-1221	< 0.2	mg/kg		063900000N
PCB-1221	< 0.2	mg/kg	0.2	06400000N.
PCB-1232 PCB-1242	< 0.2	mg/kg	0.2	064100000N
PCB-1242	< 0.2 < 0.2	mg/kg	0.2	064200000N
PCB-1254	< 0.2	mg/kg	0.2	064300000N 064400000N
PCB-1260	< 0.2	mg/kg	0.2	064500000N
Toxaphene	< 0.1	mg/kg mg/kg	0.1	062600000N
	× V.1	mg/kg	0.1	~~~~~~~~~~

1 COPY TO

Louise Hess

Questions? Contact Environmental Client Services at (717) 656-2301

Lancaster Laboratories, Inc. 2425 New Holiand Pike Lancaster, PA 17601-5994 717-656-2301

Respectfully Submitted Lancaster Laboratories, Inc. Reviewed and Approved by:

> 12216 9/13/90

Angl

Charles J. Neslund, B.S. See reverse side for explanation by Leader Pesticides/P

.

5A VOLATILE ORGANIC GC/MS TUNING AND MASS CALIBRATION - BROMOFLUOROBENZENE (BFB)

∟ Ъ	Name:	LANCASTER	Labs		Contr	act:	·			
Ъ	Code:	LANCAS	Case	No.:	SAS	No.:	<u> </u>	SDG No.	:	
Lab	File]	[D: >G131T				BFB	Injection	Date:	08/13/90	
st	trument	L ID: 03459	•			BFB	Injection	Time:	0 7:18	

intrix:(soil/water) WATER Level:(low/med) LOW Column:(pack/cap) PACK

F	l	I & RELATIVE I
ł	m/e I ION ABUNDANCE CRITERIA	I ABUNDANCE I
	50 15.0 - 40.0% of mass 95	I 21.3 I
I	75 30.0 - 60.0% of mass 95	1 50.4 1
	95 Base peak, 100% relative abundance	1100. I
	96 5.0 - 9.0% of mass 95	1 6.2 1
1	173 Less than 2.0% of mass 174	I 0.0 (0.0)11
•	174 Greater than 50.0% of mass 95	1 76.2
		1 5.5 (7.2)11
I.	176 Greater than 95.0%, but less than 101.0% of mass 174	1 75.7 (99.4)11
ł	177 5.0 - 9.0% of mass 176	1 5.4 (7.1)21
	, I	۱ <u> </u>

1-Value is % mass 174

2-Value is.% mass 176

"IS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

-							
1	EPA	LAB	1	LAB	t	DATE	I TIME
I	SAMPLE NO.	I SAMPLE ID	1	FILE ID	I AN	ALYZED	I ANALYZED
1			== = :				
11	CC	120PPB CHK	1	>G1315	I 08	/13/90	1 07:55
21	METHODBLK	IMETHOD BLK	1	>G132B	1 08	/13/90	1 09:22
31	WT107DL	1557718	ł	>G1301	1 08	/13/90	1 10:21
41	WTPTB	11558026	1	>G1302	1 08	/13/90	1 11:03
5 I	WTPFB	11557722	•1	>G1303	1 08	/13/90	11:41
61	WT201	11557719	1	>G1304	1 08	/13/90	1 12:18
71	WT014	11557720	I	>G1305	1 08	/13/90	1 13:25
81	WT106	11557721	1	>G1307	1 08	/13/90	I 14:31 ·
9 I	GGSCN	11557937	E E	>G1308	1 08	/13/90	1 15:38
01	WTP13DL	11558025	L.	>G1319	1 08	/13/90	17:37
11	WT201	11557719	t	>G1314	1 08	/13/90	1 18:55
21.		l	!_	•	!		l
31.		l	_I_		!	<u> </u>	1
41		1	!_	•	i	•	۱
51,		I	!		!		1
61		! <u></u>	I	,	!		1
71,	<u> </u>	I			I		I
81		I	!_		I		I
91.		1		·	I	•	۱
01		1			I		I

page 1"of 1

Lancaster Laboratories

Where quality is a science.

Lab Code:

2A

Case No:

Lab Name: LANCASTER LABS

Contract:

SAS No:

.

SDG No:

	LLI SAMPLE NO.	S1 (DCE) #	S2 (TOL) #	S3 (BFB) #	OTHER	TOT OUT	COMMENTS			
01	1559905	108	103	107						
02 03 04	LAB QC									
05 06	1559906	105	103	103			METHOD BLANK			
07	1559899 1559900	106 109	104 101	108 104			UNSPIKED MATRIX SPIKE			
08	1559901	113	106	107		-	MATRIX SPIKE DUP			
09 10										
11										
12 13										
14						·				
15 16										
17										
18 19										
20										
21 22		· ·								
23					· .					
24 25										
23	1			l I	ſ		,			
S 1	(DCE) =	= 1.2-1	Dichloroe	thana-de		QC LI	[MITS - 114			
. S2	(TOL) =	= Tolue	ene-d8		E ¹		- 110			
S3	(BFB) =	= Bromo	ofluorobe	enzene		86 -	- 115			
#	Column to)	be used t	to flag n	recovery	values					
*	 Values outside of contract required QC limits 									

D Surrogates diluted out

page 1 of 1

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

;

		•	
Lad Name: LANCASTER	LABS	Contract:	METHODBLK I
5 Code: LANCAS	Case No.:	SAS No.: SDG No.:	1
Matrix: (soil/water) WATER	Lab Sample ID: METH	OD BLK
- mple wt/vol:	5.0(g/mL) mL	Lab File ID: >G132B	
vel: (low/med)	LOW	Date Received: 08/1	3/90
% Moisture: not dec	·	Date Analyzed: 08/1	3/90
lumn: (pack/cap)	Pack	Dilution Factor:	1.000
CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	Q ·

_					•
ī	······································	t		1	I
I	74-87-3	CHLOROMETHANEI BROMOMETHANEI	10	IU	I.
1	74-83-9	BROMOMETHANEI	10	IU	1
1	75-01-4	UINYL CHLORIDE	10	10	L
I		CHLOROETHANEI	· 10	U	I .
1	107-08-8		100	IU	1
-1		ACRYLONITRILEI	100	IU +	L
1	75-09-2	METHYLENE CHLORIDE	1	IJ	ł
	75-69-4	TRICHLOROFLUOROMETHANEI	5	IU	l
1	75-35-4	1,1-DICHLOROETHENEI 1,1-DICHLOROETHANEI	5	IU-	ł
I	75-34-3	1,1-DICHLOROETHANEI	5	IU	ŀ.
ł	540-59-0	TRANS-1,2-DICHLOROETHENE	. 5	ប ្	I
1	67-66-3	TRANS-1,2-DICHLOROETHENE	5	IU	I
1	107-06-2	1,2-DICHLOROETHANE	5	ו ט :	Ł
l	71-55-6	1,1,1-TRICHLOROETHANE	. 5	IU	1
1	56-23-5	CARBON TETRACHLORIDE	5	ប	L
ł	75-27-4	BROMODICHLOROMETHANE	5	וט	1
l	78-87-5	1.2-DICHLOROPROPÂNE	5	IU	L
I	10061-02-6	TRANS-1,3-DICHLOROPROPENE	. 5	UU	Ł
1	79-01-6	TRICHLOROETHENE	5	זו	L
ŀ	124-48-1	DIBROMOCHLOROMETHANE	· 5	IU	I
l	79-00-5	1,1,2-TRICHLOROETHANE	i 5 [°]	IU	I
1	10061-01-5	CIS-1,3-DICHLOROPROPENE	5	וט	L
1	71-43-2	BENZENE	5	IU	I.
1	100-75-8	2-CHLOROETHYLUINYLETHER	10	וט	I
ł	75-25-2	BROMOFORM	5	IU	I
I	79-34-5	1,1,2,2-TETRACHLOROETHANE	· 5	ប	1
I	127-18-4	TETRACHLOROETHENE	I 5	IU	1
l	108-88-3	TOLUENE	5	ប	1
I	108-90-7	CHLOROBENZENE	I	IU	I.
1	100-41-4	ETHYLBENZENE	5	បេ	I
ł	·		•		I

FORM I VOA

1/87 Rev.

WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE RECOVERY

Lou Name: LANCASTER L	ABS Lab Code:	LANCAS	
E46 METHOD E240	SFIKE LEVEL: 20 US/L	ATT USED:	5.0

SAMPLE SPIKE LEVEL: 20.UG/L & MOISTURE 0. DILUTION: 1

SAMPLE: 1572095 A2K11 MS SAMPLE: 1572057 R2K11MS MSD SAMPLE: 1572099 R2K11MSD

THEOUND NAME	US CONC	MS CONC	risd conc	MS REC	MSD REC	RPD	RANGE	IN SPE
	UG/L	UG/L	UG/L	2	ž	2	LOVER-UPPER	
CHLOROTETHANE	0.	. 24.	22.	118	108	9.00	1.0-273.0	YES
SKONETHENE	0.	7.	6.	35	28	22.00	1.0-242.0	YES
NYL CHLORIDE	0.	20.	18.	98	92	6.00	1.0-251.0	YES
CHLORDETHANE	0.	19.	18.	96	91	5.00	NOT GIVEN	
ROLEIN	0.	78.	93.	29	35	-19.00	NOT SIVEN	
RYLOHITRILE	0.	199.	210.	75	80	-6.00	NOT GIVEN	
METHYLENE CHLORIDE	0.	21.	21.	103	107	-4.00	1.0-221.0	YES
TOICHLOROFLUOROMETHANE	0.	19.	20.	56	98	-2.00	17.0-181.0	YES
1-DICHLOROETHENE	0.	19.	20.	93	78	-5.00	1.0-234.0	YES
, 1-DICHLORDETHANE	2.	22.	23.	103	106	-3.00	59.0-155.0	YES
TRANS-1,2-DICHLORDETHENE	٥.	19.	19.	94	95	-1.00	54.0-156.0	YES
LOROFORM	11.	31.	32.	9 8	103	-5.00	51.0-138.0	YES
,2-DICHLORDETHANE	0.	21.	22.	105	112	-6.00	49.0-155.0	YES
1,1,1-TRICHLORDETHRME	15.	33.	35.	90	100	-10.00	52.0-162.0	YES
1230N TETRACHLORIDE	0.	20.	21.	100	105	-5.00	70.0-140.0	YES
ICHOGICHLOROMETHANE	0.	20.	21.	102	104	-2.00	35.0-155.0	YES
1,2-DICHLOROPROPANE	0.	22.	23.	109	113	-4.00	1.0-210.0	YES
^{TP} ANS-1, 3-DICHLOROPROFENE	0.	8.	· 8.	76	71	7.00	17.0-183.0	YES
.ICH: DROETHENE	0.	20.	21.	102	107	-5.00	71.0-157.0	YES
#IBROMOCHLOROMETHANE	0.	19.	19.	9 7	96	1.00	53.0-149.0	YES
1,1,2-TRICHLORDETHANE	0.	21.	22.	106	108	-2.00	52.0-150.0	YES
S-1,3-DICHLOROPROPENE	0.	10.	9.	52	44	17.00	1.0-227.0	YES
NZENE	0.	21.	21.	104	107	-3.00	37.0-151.0	YES
2-CHLORDETHYLVINYLETKER	0.	26.	28.	128	138	-8.00	1.0-305.0	YES
TOMOFORM	0.	19.	19.	94	97	-3.00	45.0-169.0	YES
.1,2,2-TETRACHLORDETHANE	0.	21.	21.	106	107	-1.00	46.0-157.0	YES
TETRACHLORDETHENE	0.	21.	21.	104	107	-3.00	64.0-148.0	YES
TALUENE	0.	23.	24.	115	120	-4.00	47.0-150.0	YES
LORCBENZENE	0.	22.	22.	110	112	-2.00	37.0-160.0	YES
L THYLBENZENE	0.	24.	24.	120	119	1.00	37.0-162.0	YES

NATER VOLATILE QUBLITY CONTROL REFERENCE SUPPLE RECOVERY

LAB NAME: LANCASTER LABS

÷

LAB CODE+ LANCAS

SY846 METHOD 8740 SPIKE LEVEL: 100 UG/L AMALYSIS 1508 + XYLEWE

LES SAMPLE NO: LES 081790 LES 08/17/90 BATEN 90223-413-12-83460-4

COMPBUKO NAME	QCREF CONC UE/L	QCREF REC T	RANGE LOVER-WPPER	IN SPEC	
CHLOKUPE THANE	25.34	127	1.8- 273.0	YES	
BEOMORE THANE	17.67	78	1.0- 242.0	YES	
VINYL CHLOKIDE	24.52	123	1.0- 251.0	YES	
CHLORDETHANE	23.35	117	NDT SIVEN		
ACROLEIN	153.37	58	NOT GIVEN		
ACRYLONITRILE	252.11	15	NOT GIVEN		
NETHYLLINE CHLORIDE	16.46	82 .	1.0- 221.0	YES	
TRICHLOBOFLUOROMETHANE	20.77	14	17.0- 181.0	YES	
1,1-DICHLOEDETHENE	20.99	105	1.0-234.0	YES	
1,1-DICHLOYDETHRKE	22.43	112	59.4- 155.4	YES	
TRANS-1, 2-DICHLOROETHENE	21.25	106	54.0- 154.0	TES	
CHLOROFORM	22.31	112	51.4- 138.4	YES	
1,2-DICHLORDETKANE	22.60	113	47.0- 155.0	YES	
1,1,1-TRICHLORDETHANE	17.58	78	52.4- 142.4	TES	
CARBON TETRACHLORIDE	20.71	104	70.0- 140.0	TES	
BROMODICHLOROME THANE	20.48	102	35.0- 155.0	YES	
1,2-DICHLOROPROPANE	21.31	107	1.0-210.0	TES	
TRANS-1, 3-DICHLOROPROPENE	10.35	94	17.4- 183.0	YES	
TRICHLORDE THENE	20.53	- 103	71.0- 157.0	YES	
DIBROMOCHI OROMETHANE	18.56	. 93	53.0- 149.0	TES	
1,1,2-TRICHLORGETHANE	20.28	101	52.4- 150.0	YES	
CIS-1, 3-DICHLOKOPKOPENE	. 19.10	95	1.0-227.0	YES	
BEHZENE	28.93 .	105	37.0- 151.0	YES	
2-CHLOROETHYLVINYLETHER	19.20	96	1.0- 345.0	YES	
Bronof Orn	16.73	84	45.0- 169.0	YES	
1,1,2,2-TETRACHLORDETHANE	19.05	95	44.0- 157.0	YES	· .
TETRACHLORDETHENE	20.76	104	64.9- 142.8	YES	
TOLUENE	22.57	113	47.8- 150.0	TES	
CHLOROBENZENE	21.62	108	37.0- 148.8	YES	•
& THYLBENZENE	21.71	107	37.0- 142.0	YES	•
AYLENE (TOTAL)	20.62	103	NOT SIVEN		

8A

VOLATILE INTERNAL STANDARD AREA SUMMARY

Jab Name: LANCASTER LAES Contract: ____. Lab Code: LANCAS Case No.: _____. SAS No.: _____. SDG No.: ____ Date Analyzed: 08/22/90 .ab File ID (Standard): >G2251 Time Analyzed: 11:23 Instrument ID: 03460 iatrix:(soil/water) WATER Level:(low/med) LOW Column:(pack/cap) PACK | IS3(CBZ) | IS1(BCM) | | IS2(DFB) | | AREA #| RT | AREA #| RT AREA #| RT 1 | 12 HOUR STD| 39197 | 6.67| 131292 | 14.81| 103937 | 18.70| UPPER LIMIT | 78394 | 262584 | | 207874 | | LOWER LIMIT! 19598 | | 65645 | | 51968 | 1 I EPA SAMPLE | 1 1 ł NO. I 1 1 1. 1 31634 | 6.71| 106727 | 14.84| 86566 | 18.73| 01; MDELK 1 30625 | 6.70| 104964 | 14.83 02| 00040 84823 | 18.72; 1 03; 040MS 82060 | 18.71 1 28505 | 6.68 99552 | 14.81 04; 40MSD 28284 | 6.66 | 104799 | 14.84 80612 | 18.69| 97601 | 14.84¦ 36445 | 14.85¦ 05| 0415W 28229 | 6.70 79476 | 18.69| 78180 | 18.71| 051 041FB 1 26954 | 6.72| 26904 | 6.68; 96135 | 14.85; 27683 | 6.71; 98072 | 14.85; 07| CHDTB 77409 | 18.71 ł 081 W2GGS 80456 | 18.74 | 1 27139 | 6.63 78687 | 18.71 09 W3GGS L 96426 | 14.82| 10 ASEWS 26230 | 6.70| 91816 | 14.84| 75534 | 18.691 1 11: OTWG5 94747 | 14.83| 80840 | 18.681 1 27084 ! 6.701 12: 13; 141___ 151 16|_ 171 181_ 191_ 201 IS1 (BCM) = Bromochloromethane UPPER LIMIT = +100% IS2 (DF3) = 1,4-Difluorobenzene of internal standard area. IS3 (CB2) = Chlorobenzene-d5 LOWER LIMIT = - 50% of internal standard area.

Column used to flag internal standard area values with an asterisk

page 1 of 1

÷

6A VOLATILE ORGANICS INITIAL CALIBRATION DATA

.

ab Name: LANCASTER LAB	S	Contr	act:	·			
b Code: LANCAS Case	No.:	SAS	No.:	9	DG No.:		
nstrument ID: 03459	Calibra	tion Dat	e(s): 01	8/20/90	08/	20/90	
	T		100	7-1			
trix:(soil/water) WATER	Level:()	low/med)		COlumnic	раскиса	p) PHC	-
n \overline{RRF} for $SFCC(#) = 0.3$	00 (0.250	for Bro	moform)	Max %R9	SD for C	:CC(*) =	= 30.0
AE FILE ID: RR	F20 = >G2	055	RRF	50 = >G2	2045	•••••••	, 1
RF100= >G203S RR			RRF	200= >G2	015	. 1	
	1	1		i i	1	I	- %
COMPOUND	IRRF20	IRRF50	IRRF100	IRRF150	RRF2001	RRF	RSD
HLOROMETHANE	W .33	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 755	1 .7371		. 903	18 9
INYL CHLORIDE	; 1.10/ ; 83	21 .610	1 .609	1 .5251	.5671	.608	2.5
HLOROETHANE	1 430	51 .393	1 396	1 .3931	. 4001	. 4041	4.6
CROLEINCRYLONITRILE	1 .08	01 .075	1.074	1 .092	. 0981	. 084	12.6
CRYLONITRILE		11 .179	1.200	1.2001	.1741	. 193	8.(
ETHYLENE CHLORIDE RICHLOROFLUOROMETHANE		51 .566	1.608	1 .614	.5941	.615	7.8
RICHLOROFLUOROMETHANE	1 2.413	21 2.229	1 2.477	1 2.4911	2.3801	2.3981	4.4
,1-DICHLOROETHENE	* .85	BI .790	I .863	1.873	.8351	. 844	I 3.9
,1-DICHLOROETHANE		0 1.494	1 1.656	1 1.662	1.6071	1.626	5.1
,1-DICHLOROETHENE ,1-DICHLOROETHANE RANS-1,2-DICHLOROETHENE	I.00	61 .893	1 .994	1 .994	.9801	. 973 (1 4.3
HLOROFORM	* 2.43	21 2.125	1 2.308	1 2.355	2.3001	2.304	4.9
, 2-DICHLOROETHANE	1 1.64	01 1.449	1 1.583	1 1.596		1.560	4.7
,1,1-TRICHLOROETHANE	1 .56	91 .525	1.573	1.594	.5991	.5721	5.1
POMODICHI ODOMETHONE	1 .55	01 .522	1 .578	1 .6001	1 .5001 	.5/01	5.5
ARBON TETRACHLORIDE ROMODICHLOROMETHANE ,2-DICHLOROPROPANE	I .540	51 (5U2 21 (5U2	1 .652	1 10/21	1 .00/1 1 .0071	. 6521	4.9
,2-DICHLOROPROPANE RANS-1,3-DICHLOROPROPEN	~ .28	21 .231 71 200	1 .2/1	1 474	.4421	. 4291	5.3
RICHLOROETHENE	EI 132	71 .309 51 249	1 .425	1 274	2741	.367	
I BROMOCHLOROMETHANE	1 .64						
,1,2-TRICHLOROETHANE	1 .33						
IS-1,3-DICHLOROPROPENE	1 .45						
ENZENE							
-CHLOROETHYLUINYLETHER	1 .10						
ROMOFORM	.43						
,1,2,2-TETRACHLOROETHAN	E# .65					•	
ETRACHLOROETHENE	1 .39						
OLUENE							
HLOROBENZENE							
THYLBENZENE	* .42						
		_					

FORM VI VOA

.

PAGE 1 OF 2

1/87 Rev.

•

6A UOLATILE ORGANICS INITIAL CALIBRATION DATA

		•					
Lab Name: LANCASTER LABS		Contra	act:	•			
Lab Code: LANCAS Case No.	:	. SAS I	No.:		SDG No.	:	
Instrument ID: 03459	alibrat:	ion Date	e(s): 08	3/20/90	08/	/20/90	
Matrix:(soil/water) WATER L				7 - 1			
HATTIX (SUIT WALLET WHILK L	everiti	JW/med)	LOU (-010mn.	Граскиса	ар) гнс	κ.
Min \overline{RRF} for SPCC(#) = 0.300	(0.250	for Brow	noform)	Max %R	SD for (CCC(*) =	= 30.0%
······································						· ·	•
	= >G20			$50 = G_{2}$			l
RRF100= >G203S RRF15	0= >G203	25	RRF2	200= >G2	2015		l
	I					1	·
I COMPOUND	IRRF20	IRRESO	IRRF100	IRRE150	IRRF200		
	======		======	======	======	======	
METHYL-T-BUTYL ETHER							
IT-BUTYL ALCOHOL					.069		
IDICHLORODIFLUOROMETHANE							
I3-CHLORO-1-PROPENE							
I 2-BUTANONE							
11,4-DIOXANE	1 .003	.003	1.003	1 .003	1.002	1 .003	2.91
11,2-DIBROMOETHANE	1 .575	1 .477	1.554	1.562	.541	1.542	1 7.01
IDI-ISOPROPYL ETHER	I .750	.607	1.705	רל 6.67	.684	1 .6851	7.61
11,1,1,2-TETRACHLOROETHANE	1.428	1.351	1.409	.429	.440	1.410	1 8.51
11,2,3-TRICHLOROPROPANE		.338	I .368	.375	.338	1.365	2.81
14-METHYL-2-PENTANONE			1.290	1.298	1.259	1 .274	1 8.11
11,2-DIBROMO-3-CHLOROPROFANE							
I CUMENE	1 1.647	1.379	1.534	1.601	1.620	1 1.556	6.91
IXYLENE(TOTAL)	1.499	.410	.471	I .480	.491	.470	
11,3-DICHLOROBENZENE	1.958	1.787	.929	1.920	1 .958	1.910	1 2.81
11,2-DICHLOROBENZENE	i .918	.749	I .917	1887	1.895		8.11
11,4-DICHLOROBENZENE	1 .990	I .795	1.893	1.936	1.962	I .915	8.31
11,2-DICHLOROETHANE-D4							
I TOLUENE-DS	1.158	1 1.094	1.081	1.097	1.075		
4-EROMOFLUOROBENZENE			1.729	1.725	.729	.747	4.4
٦١ <u></u>	I		!	l	۱ <u></u>	اا	اا
	FOR	M UI UO	R				37 Rev.
				PAC	GE 2 OF	2	

78

VOLATILE CONTINUING CALIBRATION CHECK

b Name: LANCASTER LABS Contract: _____.
' ab Code: LANCAS Case No.: _____. SAS No.: _____. SDG No.: _____.
' strument ID: 03459 Calibration Date: 09/18/90 Time: 09:13
b File ID: >S181S Init. Calib. Date(s): 08/20/90 08/20/90
Matrix:(soil/water) WATER Level:(low/med) LOW Column:(pack/cap) PACK

n RRF100 for SPCC(#) = 0.300 (0.250 for Bromoform) Mx %D for CCC(*) = 25.0%

·	1	1	
	RRF	•	•
I COMPOUND			
ICHLOROMETHANE	# .469	I .443	5.6
I BROMOMETHANE		1.948	1-12.7
UINYL CHLORIDE	* .608	1.584	4.0
ICHLOROETHANE	1.404	I .381	ļ 5.7
ACROLEIN	1 . 084		22.6
ACRYLONITRILE	1 .193	1.185	1.4.1
METHYLENE CHLORIDE	I .615	1.556	9.6
TRICHLOROFLUOROMETHANE	1 2.398	1 2.677	1-11.7
1,1-DICHLOROETHENE	* .844	1.924	-9.6 :
1,1-DICHLOROETHANE	# 1.626	1 1.620	
TRANS-1,2-DICHLOROETHENE	1 .973	1 1.010	1 -3.8
	* 2.304		: -3.5
1,2-DICHLOROETHANE	1 1.560	1.477	i 5.3
1,1,1-TRICHLOROETHANE	1.572	1 .652	i-14.0
CARBON TETRACHLORIDE	1.570	I .614	1 -7.7
BROMODICHLOROMETHANE	1.652	1.678	I -3.9
1,2-DICHLOROPROPANE	* .269	1.285	I -5.9 °
ITRANS-1,3-DICHLOROPROPENE	1 .429	1.425	1.9
ITRICHLOROETHENE	1 .367	1,416	1-13.5
DIBROMOCHLOROMETHANE	1 .659	1.726	1-10.1
1,1,2-TRICHLOROETHANE	I .318	1.343	1 -7.9
11,1,2-TRICHLOROETHANE	.461	1 .475	1 -3.1
I BENZENE	1 .640	1.673	1 -5.1
2-CHLOROETHYLUINYLETHER	I .129	1 .178	1-37.4
I BROMOFORM	* .458		1-11.1
1,1,2,2-TETRACHLOROETHANE	.609	1 .659	1 -8.2
ITETRACHLOROETHENE	1.378	I .452	1-19.7
I TOLUENE	* .581	1.627	1 -7.8
I CHLOROBENZENE	.889	I .939	1 -5.7
IETHYLBENZENE	÷ .410	1.426	1 -4.0
*======================================		********	
11,2-DICHLOROETHANE-D4	1.487	1.429	I 3.9
TOLUENE-DB	1.101	1 1.130	1 -2.6
I TOLUENE-DB	.747	1.820	1 -9.7
l	1	.1	l

FORM UII UOA

5B SEMIVOLATILE ORGANIC GC/MS TUNING AND MASS CALIBRATION - DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: LANCASTER LABS	Contract:
Lab Code: LANCAS Case No.:	SAS No.: SDG No.:
Lab File ID: >U8400	DFTPP Injection Date: 06/22/90
Instrument ID: 02861	DFTPP Injection Time: 13:36

m/e	ION ABUNDANCE CRITERIA	<pre>% RELATIVE ABUNDANCE</pre>
51 68 69 70 127 197	30.0 - 60.0% of mass 198 Less than 2.0% of mass 69 Mass 69 relative abundance Less than 2.0% of mass 69 40.0 - 60.0% of mass 198 Less than 1.0% of mass 198	43.0 0.0 (0.0)1 62.5 0.0 (0.0)1 41.4 0.0
198 199 275 365 441 442	Base Peak, 100% relative abundance 5.0 to 9.0% of mass 198 10.0 - 30.0% of mass 198 Greater than 1.00% of mass 198 Present, but less than mass 443 Greater than 40.0% of mass 198	100. <u>6.4</u> 23.6 1.96 6.0 41.8
443	17.0 - 23.0% of mass 442	7.9 (19.0)2

1-Value is % mass 69

2-Value is % mass 442

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

EPA SAMPLE NO	LAB SAMPLE TO	LAB FILE ID	DATE	TIME ANALYZED
SSTD160	APP9	>U8401	06/22/90	14:01
SSTD120	APP9	>U8402	06/22/90	14:59
SSTD80	APP9	>U8403	06/22/90	15:57
	APP9	>U8404		16:55
	APP9	>U8405		17:53
	SBLKWC173	>F8400		18:52
				19:50
				20:48
				21:46
				22:44
				23:42
2886-103	153/91/	>F8406	06/23/90	00:41
		·		
]	
	}			
]			
				}
	SAMPLE NO. SSTD160 SSTD120	SAMPLE NO. SAMPLE ID SSTD160 APP9 SSTD120 APP9 SSTD20 APP9 SSTD50 APP9 SBLKWC1736 SBLKWC173 173WACLCS 173WACLCS 173WACMS 173WACMS 173WACMSD 173WACMSD WE13A 1536723 2886-103 1537917	SAMPLE NO. SAMPLE ID FILE ID SSTD160 APP9 >U8401 SSTD120 APP9 >U8402 SSTD20 APP9 >U8403 SSTD50 APP9 >U8405 SBLKWC1736 SBLKWC173 >F8400 173WACLCS 173WACLCS >F8401 173WACUS 173WACMS >F8402 173WACMS 173WACMS >F8403 173WACMS 173WACMS >F8404 WE13A 1536723 >F8405 2886-103 1537917 >F8406	SAMPLE NO. SAMPLE ID FILE ID ANALYZED SSTD160 APP9 >U8401 06/22/90 SSTD120 APP9 >U8402 06/22/90 SSTD20 APP9 >U8403 06/22/90 SSTD20 APP9 >U8404 06/22/90 SSTD20 APP9 >U8405 06/22/90 SSTD50 APP9 >U8405 06/22/90 SBLKWC1736 SBLKWC173 >F8400 06/22/90 173WACLCS 173WACLCS >F8401 06/22/90 173WACMS 173WACMS >F8402 06/22/90 173WACMS 173WACMS >F8403 06/22/90 173WACMSD 173WACMSD >F8404 06/22/90 173WACMSD 173WACMSD >F8404 06/22/90 173WACMSD 1536723 >F8405 06/22/90 2886-103 1537917 >F8406 06/23/90

page

2C WATER SEMIVOLATILE SURROGATE RECOVERY

.ab	Name:	LANCASTER	LABS	-	Contract:	•		
.ē	Code:	LANCAS	Case No.:	•	SAS No.:	·	SDG No.:	<u> </u>

•	EPA .	S1	S2	S3	54	S5	S 6	OTHER	TOT
	SAMPLE NO.	(NBZ)#	(FBP)#	(TPH) #	(PHL) #	(2FP)#	(TBP) #	======	OUT
01	SBLKWC2561	85	65	109	39	60	102		0
02	R2N11	93	87	109	41	63	108		0
03	R2N11MS	95	93	113	36	58	122		0
04 05	R2N11MSD 777A	91 93	92 86	114 105	36 38	58 60	118 83		0
06	1116	33	00	105	20	00	60		Ň
07									
08 09 10 11 12 13 14 15 16 17									
09									
11	· ·	·							
12									
13						·			
15									
16									·
17									
18			·						
20						·			
21									
22									
18 19 20 21 22 23 24 25 26 27	<u> </u>				·				
25									j
26									
27									
28 29									
30									
	· · · · · · · · · · · · · · · · · · ·					·		·	1

		QC LIMITS
S1 (NBZ)	= Nitrobenzene-d5	(35-114)
S2 (FBP)	= 2-Fluorobiphenyl	(43-116)
	= Terphenyl-d14	(33-141)
	= Phenol-d6	(10-94)
S5 (2FP)	= 2-Fluorophenol	(21-100)
	= 2,4,6-Tribromophenol	(10-123)
# Column	to be used to flag recov	very values

Column to be used to flag recovery values
* Values outside of contract required QC limits
D Surrogates diluted out

ge 1 of 1

1/87 Rev.

EPA SAMPLE NO.

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: LANCASTER LABS	Contract:	SBLKWC2265
		· · · · ·
Lab Code: LANCAS Case No.:	SAS No.:	SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID	: 1559886
Sample wt/vol: 1000.(g/mL) ML	Lab File ID:	>E2600
Level: (low/med). LOW	Date Received	: 08/10/90
% Moisture: not dec dec	Date Extracte	d: 08/14/90
Extraction: (SepF/Cont/Sonc)	SEPF Date Analyzed	: 08/15/90
GPC Cleanup: (Y/N) N pH	H: Dilution Fact	or: 1.000
	CONCENTRATION UNTERS	•

CAS NO. COMPOUND

• • •

(ug/L or ug/Kg) UG/L

Q

110-86-1	Pyridine	10	U
109-06-8	2-Picoline N-Nitrosomethylethylamine	10	U
10595-95-6	N-Nitrosomethylethylamine	10	U
66-27-3	Methvlmethanesulfonate	10	υ.
55-18-5	N-Nitrosodiethylamine	10	U
62-50-0	Ethyl methanesulfonate	10	U
62-53-3	Aniline	· 10	U
95-53-4	o-Toluidine	10	Ū
930-55-2	N-Nitrosopyrolidine	10	Ū
59-89-2	N-Nitrosomorpholine	20	Ū
98-86-2	Acetophenone	10	Ū
100-75-4	N-Nitrosoninerdine	10	Ū
126-68-1	0.0.0-triethylphosphorothioa	10	Ū
1888-71-7	Hexachloropropene	10	Ū
106-50-3	0,0,0-triethylphosphorothioa Hexachloropropene 1,4-Phenylenediamine N-Nitrosodi-n-butylamine	10	Ū
924-16-3	N-Nitrosodi-n-butylamine	10	Ŭ
94-59-7	Safrole	10	Ū
95-94-3	1,2,4,5-Tetrachlorobenzene	10	Ū
62-44-2	Phenacetin	10	Ū
120-58-1	Isosafrole	10	υŬ
130-15-4	1,4-Naphthaguinone	10	Ū
608-93-5	Pentachlorobenzene	10	Ū
134-32-7	1-Naphthylamine	10	Ū
91-59-8	2-Naphthylamine	20	υŪ
58-90-2	2.3.4.6-Tetrachlorophenol	10	Ū
99-55-8	5-Nitro-o-toluidine	10	Ŭ
122-39-4	Diphenvlamine	10	Ū
3689-24-5	Tetraethyldithiopyrophosphat	10	υŬ
2303-16-4	Diallate TRANS/CIS	10	Ŭ
99-35-4	1.3.5-Trinitrobenzene	20	Ŭ
60-51-5	Dimethoate	10	υŬ
92-67-1	4-Aminobiphenvl	10	Ŭ
56-57-5	4-Nitroquinoline 1-oxide	20	υŬ

1C

EPA SAMPLE NO.

· 1

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: LANCASTER LABS Contract:	SBLKWC2265
Lab Code: LANCAS Case No.: SAS No.:	_
Matrix: (soil/water) WATER Lab S	ample ID: 1559886
Sample wt/vol: 1000.(g/mL) ML Lab F	ile ID: >E2600
Level: (low/med) LOW Date	Received: 08/10/90
% Moisture: not dec dec Date	Extracted: 08/14/90
Extraction: (SepF/Cont/Sonc) SEPF Date	Analyzed: 08/15/90
GPC Cleanup: (Y/N) N pH: Dilut	ion Factor: 1.000
CONCENTRATI	ON UNITS: //Kg) UG/L Q
82-63-8 Pentachloronitrobenzene 23950-58-5 Pronamide 465-73-6 Isodrin 510-15-6 Chlorobenzilate 53-96-3 2-Acetylaminofluorene 57-97-6 7,12-Dimethylbenz[a]anthrace	10 U 10 U 10 U 10 U 10 U 10 U 10 U

53-96-3----- 2-Acetylaminofluorene 57-97-6----- 7,12-Dimethylbenz[a]anthrace 56-49-5----- 3-Methylcholanthrene - Cannot be separated from Diphenylamine (1)

FORM I SV-2

1/87 Rev

U

Ξ.

10

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

· · SBLKWC2261 Lab Name: LANCASTER LABS Contract: . SAS No.: ____. SDG No.: ____ Case No.: _____. Lab Code: LANCAS Lab Sample ID: 1559886 Matrix: (soil/water) WATER Sample wt/vol: 1000.(g/mL) ML Lab File ID: >A5750 Date Received: 08/10/90 Level: (low/med) LOW % Moisture: not dec. ____. dec. ____. Date Extracted: 08/14/90 Extraction: (SepF/Cont/Sonc) SEPF Date Analyzed: 08/14/90 Dilution Factor: GPC Cleanup: (Y/N) N pH: . 1.000

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

Q

EPA SAMPLE NO.

62-75-9 1	N-Nitrosodimethylamine	10	U
108-95-2 I	Phenol	10	U
111-44-4 }	ois(2-Chloroethyl)ether	. 10	U
95-57-8 2	2-Chlorophenol	10	U
541-73-1	1.3-Dichlorobenzene	10	U
106-46-7	1,4-Dichlorobenzene	10	U
100-51-6 1	Benzyl alcohol	10	υ
95-50-1 :	1,2-Dichlorobenzene	10	U
95-48-7 2	2-Methylphenol	10	U
108-60-1 }	bis(2-Chloroisopropyl)ether	10	υ
106-44-5	Benzyl alcohol 1,2-Dichlorobenzene 2-Methylphenol bis(2-Chloroisopropyl)ether 4-Methylphenol N-Nitroso-di-n-propylamine	10	υ
621-64-7'1	N-Nitroso-di-n-propylamine	10	Ū
0/-/2-1	nexachioroethane i	10	υ
98-95-3	Nitrobenzene	10	Ū
78-59-1	Isophorone	10	U
88-75-5	2-Nitrophenol	10	υ
105-67-9 :	2-Nitrophenol 2,4-Dimethylphenol	10	Ū
65-85-0	Benzoic acid	50	Ū
111-01-1	his (2-Chlorestheury) - sthere	10	Ū
120-83-2	2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chlorcaniline Hexachlorobutadiene	10	Ū
120-82-1	1,2,4-Trichlorobenzene	10	Ū
91-20-3 1	Naphthalene	10	Ū
106-47-8	4-Chlorcaniline	10	Ū
87-68-3	Hexachlorobutadiene	10	Ū
59-50-7	4-Chloro-3-methylphenol	10	Ū
91-57-6	2-Methylnaphthalene	10	Ū
77-47-4	4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene	10	Ū
88-06-2	2,4,6-Trichlorophenol	10	Ū
95-95-4	2,4,6-Trichlorophenol	25	Ū
71-20-/	2-Chioronaphthalene	10	Ū
88-/4-4	2-Nitroaniline	50	Ū
131-11-3	Dimethylphthalate	10	υ.
208-96-8	Acenaphthylene	10	Ŭ

FORM I SV-1

1/87 4

1C

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

SBLKWC2261 Lab Name: LANCASTER LABS Contract: Lab Code: LANCAS Case No.: ____. SAS No.: ____. SDG No.: Lab Sample ID: 1559886 Matrix: (soil/water) WATER . Sample wt/vol: 1000.(g/mL) ML Lab File ID: >A5750 Level: (low/med) LOW Date Received: 08/10/90 % Moisture: not dec. ____. dec. ____. Date Extracted: 08/14/90 Date Analyzed: 08/14/90 Extraction: (SepF/Cont/Sonc) SEPF Dilution Factor: 1.000 GPC Cleanup: (Y/N) N pH: ____. CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

606-20-2	2,6-Dinitrotoluene	10	υ
99-09-2	3-Nitroaniline	50	U
83-32-9	Acenaphthene	10	U
51-28-5	2,4-Dinitrophenol	25	บ
100-02-7	4-Nitrophenol	25	U
132-64-9	Dibenzofuran	10	័ប
121-14-2	2,4-Dinitrotoluene	10	U
84-66-2	Diethylphthalate	10	U
7005-72-3	4-Chlorophenyl-phenylether	10	ប
86-73-7	Fluorene	10	· U
100-01-6	4-Nitroaniline	50	Ū
534-52-1	4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine (1)	25	ិ បី 👘
86-30-6	N-Nitrosodiphenvlamine (1)	10	Ū
101-55-3	4-Bromophenvl-phenvlether	10	Ū
118-/4-1	Hexachlorobenzene	10	Ū
87-86-5	Pentachlorophenol	25	Ū
85-01-8	Phenanthrene	10	Ū
120-12-7	Anthracene	10	Ŭ
84-74-2	Di-n-butylphthalate	10	Ŭ
206-11-0		10	Ŭ
129-00-0	Pvréne	10	Ŭ
85-68-7	Butylbenzylphthalate	10	Ŭ
91-94-1	3.3'-Dichlorobenziding	20	Ŭ
56-55-3	Benzo(a) anthracone	10	Ŭ
218-01-9	Chrysene	10	Ŭ
117-81-7	Pyrene Pyrene Butylbenzylphthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene bis(2-Ethylhexyl)phthalate Dispectylphthalate	10	Ŭ
117-84-0	Di-n-octylphthalate	10	Ŭ
205-99-2	Benzo(b) fluoranthene	10	UUU
207-08-9	Benzo(k) fluoranthene	10	Ŭ
50-32-8	Benzo(a) pyrene	10	ប
193-39-5	Indeno(1,2,3-cd)pyrene	10	υ
53-70-3	Dibenz(a, h) anthracene		-
191-24-2	Benzo(g,h,i)perylene	10	U U
±/±~64~6===	Benzo (g, n, 1) peryiene	10	

(1) - Cannot be separated from Diphenylamine

1/87 R

EPA SAMPLE NO.

WATER SENIVOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE RECOVERY

Lab Name: LANCASTER LABS

Lab Code: LANCAS

SW846 METHOD 8270

SPIKE LEVEL: 100 UG/ML ANT USED: 1000.

SAMPLE SPIKE LEVEL: 100.UG/L X NOISTURE 0. DILUTION: 1

US SAMPLE: 173WCUS 173WCUS NS SAMPLE: 173WCHS 173WCHS HSD SAMPLE: 173WCHSD

.

173WCHSD

COMPOUND NAME	US CONC UG/L	MS CONC UG/L	HSD CONC UG/L	MS REC	NSD REC	RPD	RANGE LOVER-UPPER	IN SPEC
N-Nitrosodimethylamine	0.	· 56.	44.	56	44	24.00	NOT GIVEN	
Phenol	0.	37.	32.	37	32	14.00	5.0-112.0	YES
bis(2-Chloroethyl)ether	0.	71.	65.	71	65	9.00	12.0-158.0	YES
2-Chiorophenol	0.	73.	64.	73	64	13.00	23.0-134.0	YES
1,3-Dichlorobenzene	0.	67.	54.	67	54	21.00	1.0-172.0	YES
1,4-Dichlorobenzene	0.	66.	56.	66	56	16.00	20.0-124.0	YES
1,2-Dichlorobenzene	0.	69.	57.	69	57	19.00	32.0-129.0	YES
2-Hethylphenol	0.	48.	66.	48	66	-32.00	NOT GIVEN	
bis(2-Chloroisopropyl)ether	0.	72.	63.	72	63	13.00	36.0-166.0	YES
N-Nitroso-di-n-propylamine	0.	69.	63.	69	63	9.00	1.0-230.0	YES
Hexachloroethane	0.	54.	44.	54	44	20.00	40.0-113.0	YES
Nitrobenzene	0.	83.	74.	83	74	11.00	35.0-180.0	YES
Isophorone .	0.	84.	80.	84	80	5.00	21.0-196.0	YES
2-Witrophenol	0.	79.	70.	79	70	12.00	29.0-182.0	YES
2,4-Dimethylphenol	0.	64.	60.	64	60	6.00	32.0-119.0	YES
bis(2-Chloroethoxy)methane	0.	84.	81.	84	81	4.00	33.0-184.0	YES
2,4-Dichlorophenol	0.	77.	69.	77	69	11.00	39.0-135.0	YES
1,2,4-Trichlorobenzene	0.	. 74.	65.	74	65	13.00	44.0-142.0	YES
Naphthalene	0.	82.	74.	82	74	10.00	21.0-133.0	YES
Hexachlorobutadiene	0.	· 58.	48.	58	48	19.00	24.0-116.0	YES
4-Chioro-3-methylphenol	0.	81.	77.	81	77	5.00	22.0-147.0	YES
Hexachlorocyclopentadiene	0.	39.	37.	39	37	5.00	NOT GIVEN	
2,4,6-Trichlorophenol	0.	83.	79.	83	79	5.00	37.0-144.0	YES
2,4,5-Trichlorophenol	0.	75.	84.	75	84	-11.00	NOT GIVEN	
2-Chloronaphthalene	0.	100.	105.	100	105	-5.00	60.0-118.0	YES
2-Nitroaniline	D.	81.	92.	81	92	-13.00	NOT GIVEN	169
Dimethylphthalate	0.	71.	73.	71	73	-3.00	1.0-112.0	TES
Acenaphthylene	0.	83.	84.	83	73 84	-1.00	33.0-145.0	YES
2,6-Dinitrotoluene	0.	90.	92.	25 90	92	-2.00	50.0-158.0	YES
3-Nitroaniline	0.	83.	94.	83	72 94	-12.00	NOT GIVEN	123
Acenaphthene	0.	84.	56.	84	86		47.0-145.0	
2,4-Dinitrophenol	0.	143.	140.	143	140	+2.00 2.00	1.0-191.0	YES
4-Nitrophenol	0.	47.	40.	47	40		1.0-132.0	TES
2,4-Dinitrotoluene	0.	89.	91.	47 89		16.00 -2.00	1.0-132.0 39.0-139.0	YES
Diethylphthalate	0.	81.	86.	89 81	91			YES
4-Chlorophenyl-phenylether	0.	77.	~~. 78.	81 77	86	-6.00	1.0-114.0	YES
Fluorene	0.	86.	/8. /87.	• •	78	-1.00	25.0-158.0	YES
4-Nitroaniline	0.	106.		86	87	-1.00	59.0-121.0	YES
4,6-Dinitro-2-methylphenol	0.	118.	125. 108.	106 . 118	125 108	-16.00 9.00	NOT GIVEN 1.0-181.0	YES

WATER SEMIVOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE RECOVERY

Lab Name: LANCASTER LABS	Lab Code: LANCAS	
SV846 NETHOD 8270	SPIKE LEVEL: 100 UG/ML	ANT USED: 1000.
SANPLE SPIKE LEVEL: 100.UG/L	% HOISTURE 0. DILUTION: 1	÷
US SAMPLE: 173WCUS 173WCUS	HS SAMPLE: 173VCHS 173VCHS	MSD SAMPLE: 173VCMSD 173VCMSD

COMPOUND NAME	US CONC UG/L	MS CONC UG/L	MSD CONC UG'L	MS REC	MSD REC	RPD X	RANGE LOWER-UPPER	IN SPEC
N-Nitrosodiphenylamine	0.	152.	156.	152	156	-3.00	NOT GIVEN	
4-Bromophenyl-phenylether	0.	86.	83.	86	83	4.00	53.0-127.0	YES
Kexach lorobenzene	0.	85.	80.	85	80	·6.00	1.0-152.0	YES
Pentachlorophenol	0.	108.	104.	108	104	4.00	14.0-176.0	YES .
Phenanthrene	. 0.	90.	86.	90	86	5.00	.54.0-120.0	YES
Anthracene	0.	85.	83.	85	83	2.00	27.0-133.0	YES
Di-n-butylphthalate	0.	87.	85.	87	85	2.00	1.0-118.0	YES
Fluoranthene	0.	96.	97.	96	97	-1.00	26.0-137.0	YES
Pyrene	0.	85.	75.	85	75	13.00	52.0-115.0	YES
Butylbenzylphthalate	0.	79.	72.	79.	72	9.00	1.0-152.0	YES
3,3'-Dichlorobenzidine	0.	105.	107.	105	107	-2.00	1.0-262.0	YES
Benzo(a)anthracene	0.	97.	90.	97	90	7.00	33.0-143.0	YES
Chrysene	0.	89.	86.	89	86	3.00	17.0-168.0	YES
bis(2-Ethylhexyl)phthalate	0.	87.	81.	87	81	7.00	8.0-158.0	YES
Di-n-octylphthalate	0.	100.	91.	100	91	9.00	4.0-146.0	YES
Benzo(b)fluoranthene	0.	98.	95.	98	95	3.00	24.0-159.0	YES
Benzo(k)fluoranthene	0.	94.	87.	94	87	8.00	11.0-163.0	YES
Benzo(a)pyrene	0.	96.	93.	96	93	3.00	17.0-163.0	YES
Indeno(1,2,3-cd)pyrene	0.	94.	93.	94	93	1.00	1.0-171.0	YES
Dibenz(a,h)anthracene	0.	100.	. 99.	100	99	1.00	1.0-227.0	YES
Benzo(g,h,i)perylene	0.	• 92.	92.	92	92	0.00	1.0-219.0	YES

COMMENTS:_

WATER SEMIVOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE RECOVERY

.

.....

.....

Lab Name: LANCASTER LABS	Lab Code: LANCAS	
SV846 NETHOD 8270	SPIKE LEVEL: 100 UG/ML	ANT USED: 1000.
SAMPLE SPIKE LEVEL: 100.UG/L	X MOISTURE 0. DILUTION: 1	
US SAMPLE: 173WACUS 173WACUS	NS SAMPLE: 173WACHS 173WACHS	NSO SAMPLE: 173WACHSD 173WACHSD

CONPOUND NAME	US CONC	NS CONC	KSD CONC	NS REC	MSD REC	RPD	RANGE	IN SPEC
	UG/L	UG/L	UG/L	X	X	x	LOWER-UPPER	
Pyridine	0.	43.	35.	43	35	21.00	NOT GIVEN	
2-Picoline	0.	52.	47.	52	47	10.00	NOT GIVEN	
N-Nitrosomethylethylamine	0.	65.	59.	65	59	10.00	NOT GIVEN	
Hethylmethanesulfonate	0.	63.	57.	63	57	10.00	NOT GIVEN	
N-Nitrosodiethylamine	0.	67.	69.	67	69	-3.00	NOT GIVEN	
Ethyl methanesulfonate	0.	71.	69.	71	69	3.00	NOT GIVEN	
Aniline	0.	105.	98.	105	98	7.00	NOT GIVEN	
N-Nitrosopyrolidine	0.	71.	69.	71	69	3.00	NOT GIVEN	
N-Nitrosomorpholine	0.	77.	72.	77	72	7.00	NOT GIVEN	
Acetophenone	0.	64.	66.	64	66	-3.00	NOT GIVEN	
N-Nitrosopiperdine	0.	83.	92.	83	92	-10.00	NOT GIVEN	
0,0,0-triethylphosphorothioate	. 0.	54.	61.	54	61	-12.00	NOT GIVEN	
2,6-Dichlorophenol	0.	76.	76.	76	76	0.00	NOT GIVEN	
Hexachloropropene	0.	41.	38.	41	38	8.00	NOT GIVEN	
1,4-Phenylenediamine	0.	0.	0.	0	0	32767.0	NOT GIVEN	
N-Nitrosodi-n-butylamine	0.	70.	82.	70	82	-16.00	NOT GIVEN	
Safrole	0.	60.	72.	60	72	-18.00	NOT GIVEN	
1,2,4,5-Tetrachlorobenzene	0.	49.	55.	49	55	-12.00	NOT GIVEN	
Phenacetin	0.	92.	104.	92	104	.12.00	NOT GIVEN	
Isosafrole	0.	61.	72.	61	72	-17.00	NOT GIVEN	
1,4-Naphthaquinone	0.	37.	45.	37	45	-20.00	NOT GIVEN	
1,3-Dinitrobenzene	0.	. 90.	99.	90	99	-10.00	NOT GIVEN	
Pentachlorobenzene	0.	62.	74.	62	74	-18.00	NOT GIVEN	
1-Naphthylamine	0.	47.	58.	47	58	-21.00	NOT GIVEN	
2-Naphthylamine	0.	71.	85.	71	85	-18.00	NOT GIVEN	
2,3,4,6-Tetrachiorophenol	· · 0.	101.	101.	101	101	0.00	NOT GIVEN	
5-Nitro-o-toluidine	0.	97.	107.	97	107	-10.00	NOT GIVEN	
Diphenylamine	0.	130.	135.	130	135	-4.00	NOT GIVEN	
Tetraethyldithiopyrophosphate		70.	81.	70	81	-15.00	NOT GIVEN	
Diallate TRANS/CIS	0.	157.	175.	157	175	-11.00	NOT GIVEN	
1,3,5-Trinitrobenzene	0.	58.	69.	58	69	-17.00	NOT GIVEN	
Dimethoate	0.	61.	66.	61	66	- 17.00	NOT GIVEN	
4-Aminobiphenyl	0.	97.	106.	97	106		NOT GIVEN	
4-Nitroquinoline 1-oxide	0.	143.	100.	143		-9.00	NOT GIVEN	
Pentachioronitrobenzene	0.	63.	73.	63	174	-20.00	_	
Pronamide	0.	73.	73. 80.	63 73	73	-15.00	NOT GIVEN	
Isodrin	0.	73.	80. 78.	73 73	80 78	-9.00	NOT GIVEN	
p-Dimethylaminoazobenzene	0.	103.			78	•7.00	NOT GIVEN	
Chlorobenzilate	0.	89.	107. 87.	103	107	-4.00	NOT GIVEN	
	۷.	07.	6/.	89	87	2.00	NOT GIVEN	

WATER SEMIVOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE RECOVERY

Lab Name: LANCASTER LABS	Lab	Code: LANC	AS					
SU846 NETHOD 8270 /	SPI	KE LEVEL: 1	00 UG/HL		ANT USED:	1000.		
SAMPLE SPIKE LEVEL: 100.UG/L	XH	OISTURE 0	. DILUTION	: 1				
US SAMPLE: 173WACUS 173WACUS	MS	SAMPLE: 173	VACHS 173	VACHS	NSO SAMPLI	E: 173WAC	nsd 173wachsd	
COMPOUND NAME	US CONC	· KS CONC	NSD CONC	MS REC	NSD REC	RPD	RANGE	IN SPEC
	UG/L	UG/L	UG/L	X	X	X	LOWER-UPPER	_
3,3'-Dimethylbenzidine	0.	39.	43.	39	43	-10.00	NOT GIVEN	
2-Acetylaminofluorene	0.	90.	96.	90	96	-6,00	NOT GIVEN	
7,12-Dimethylbenz[a]anthracene	ΰ.	43.	46.	43	46	-7.00	NOT GIVEN	
3-Nethylcholanthrene	0.	73.	81.	73	81	-10.00	NOT GIVEN	

LECONON OP	1.4 - PHONYLONG DIAME AT ZERD.	
	OF COMPUTED SUSPECTED TURING	•
Etmaia Proced		

..

LAB NAME: LANCASTER LABS LAB CODE: LANCAS

SW846 METHOD 8270 SPIKE LEVEL: 100 UG/L

LCS SAMPLE NO: 173VCLCS 173VCLCS

COMPOUND NAME	QCREF CONC	OCREF REC	RANGE	IN SPEC	
	UG/L	x	LOWER-UPPER		
N-Nitrosodimethylamine	59.43	59	NOT GIVEN		•.
Phenol	35.68	36	5.0- 112.0	YES	
bis(2-Chloroethyl)ether	75.45	75	12.0- 158.0	YES	
2-Chlorophenol	72.63	73	23.0- 134.0	YES	
1,3-Dichlorobenzene	· 66.16	66	1.0- 172.0	YES	
1,4-Dichlorobenzene	66.07	66	20.0- 124.0	YES	
1,2-Dichlorobenzene	69.92	70	32.0- 129.0	YES	
2-Methylphenol	57.15 ·	57	NOT GIVEN		
bis(2-Chloroisopropyl)ether	75.49	75	36.0- 166.0	YES	
N-Nitroso-di-n-propylamine	71.56	72	1.0- 230.0	YES	
Hexachloroethane	51.44	51	40.0- 113.0	YES	
Nitrobenzene	84.20	84	35.0- 180.0	YES	
Isophorone	85.90	86	21.0- 196.0	YES	
2-Nitrophenol	79.18	79	29.0- 182.0	YES	
2,4-Dimethylphenol	69.24	69	32.0- 119.0	YES	
bis(2-Chloroethoxy)methane	88.63	89	33.0- 184.0	YES	
2,4-Dichlorophenol	76.69	77	39.0- 135.0	YES	
1,2,4-Trichlorobenzene	73.64	74	44.0- 142.0	YES	
Naphthalene	83.33	83	21.0- 133.0	YES	
Nexachlorobutadien e	53.59	54	24.0- 116.0	YES	
4-Chloro-3-methylphenol	80.30	80	22.0- 147.0	YES	
Hexachlorocyclopentadiene	. 37.39	37	NOT GIVEN		
2,4,6-Trichlorophenol	83.18	83	37.0- 144.0	YES	
2,4,5-Trichlorophenol	84.99	85	NOT GIVEN		
2-Chloronaphthalene	110.96	111	60.0- 118.0	YES	
2-Nitroaniline	92.31	9 2	NOT GIVEN		
Dimethylphthalate	55.37	55	1.0- 112.0	YES	
Acenaphthylene	87.77	· 88	33.0- 145.0	YES	
2,6-Dinitrotoluene	93.58	94	50.0- 158.0	YES	
3-Nitroaniline	89.28	89	NOT GIVEN		
Acenaphthene	88.64	. 89	47.0- 145.0	YES	
2,4-Dinitrophenol	154.80	155	1.0- 191.0	YES	
4-Nitrophenol	40.54	41	1.0- 132.0	YES	
2,4-Dinitrotoluene	91.87	92	39.0- 139.0	YES	
Diethylphthalate	78.27	78	1.0- 114.0	YES	
4-Chlorophenyl-phenylether	82.63	83	25.0- 158.0	YES	
fluorene	89.72	90	59.0- 121.0	-	
4-Nitroaniline	113.38	113	NOT GIVEN		
4,6-Dinitro-2-methylphenol	118.08	118	1.0- 181.0	YES	
•••					

LAB NAME: LANCASTER LABS

LAB CODE: LANCAS

SW846 METHOD 8270 SPIKE LEVEL: 100 UG/L

LCS SAMPLE NO: 173WCLCS 173WCLCS

CONPOUND NAME	QCREF CONC	OCREF REC	RANGE	IN SPEC	
	UG/L	x	LOVER-UPPER		
N-Nitrosodiphenylamine	, 163.78	164	NOT GIVEN		
4-Bromophenyl-phenylether	91.11	91	53.0- 127.0	YES	
Hexachlorobenzene	86.44	86	1.0- 152.0	YES	
Pentachlorophenol	111.23	111	14.0- 176.0	YES	
Phenanthrene	92.50	92	54.0- 120.0	YES	
Anthracene	88.92	89	27.0- 133.0	YES	
Di-n-butylphthalate	87.27	87	1.0- 118.0	YES	
Fluoranthene	97.76	98	26.0- 137.0	YES	
Pyrene	86.83	87	52.0- 115.0	YES	
Butylbenzylphthalate	75.29	75	1.0- 152.0	YES	κ.
3,3'-Dichlorobenzidine	108.24	108	1.0- 262.0	YES	
Benzo(a)anthracene	98.24	98	33.0- 143.0	YES	
Chrysene	91.07	91	17.0- 168.0	YES	•
bis(2-Ethylhexyl)phthalate	83.70	84	8.0- 158.0	YES	
Di-n-octylphthalate	92.62	93	4.0- 146.0	YES	
Benzo(b)fluoranthene	103.27	103	24.0- 159.0	YES	
Benzo(k)fluoranthene	87.94	88.	11.0- 163.0	YES	
Benzo(a)pyrene	98.15	98	17.0- 163.0	YES	
Indeno(1,2,3-cd)pyrene	100.69	101	1.0- 171.0	YES	
Dibenz(a,h)anthracene	106.16	106	1.0- 227.0	YES	
Benzo(g,h,i)perylene	98.84	99	1.0- 219.0	YES	

COMMENTS:_

.

LAB NAME: LANCASTER LABS LAB CODE: LANCAS

.

SW846 METHOD 8270 SPIKE LEVEL: 100 UG/L

LCS SAMPLE NO: 173WACLCS 173WACLCS

COMPOUND NAME	QCREF CONC	OCREF REC	RANGE	IN SPEC
	UG/L	x	LOWER-UPPER	5
Pyridine	48.12	48	NOT GIVEN	
2-Picoline	62.74	· 63	NOT GIVEN	
N-Nitrosomethylethylamine	67.44	67	NOT GIVEN	
Nethylmethanesulfonate	62.54	63	NOT GIVEN	
N-Nitrosodiethylamine	72.93	73	NOT GIVEN	
Ethyl methanesulfonate	72.41	72	NOT GIVEN	
Aniline	112.89	113	NOT GIVEN	
N-Nitrosopyrolidine	78.75	79	NOT GIVEN	
N-Nitrosomorpholine	85.72	86	NOT GIVEN	
Acetophenone	74.93	75	NOT GIVEN	
N-Mitrosopiperdine	99.02	99	NOT GIVEN	
0,0,0-triethylphosphorothioate	68.97	69	NOT GIVEN	
2,6-Dichlorophenol	80.37	80	NOT GIVEN	
Hexachloropropene	47.54	48	NOT GIVEN	
N-Nitrosodi-n-butylamine	86.85	. 87	NOT GIVEN	
Safrole	80.25	80	NOT GIVEN	
1,2,4,5-Tetrachlorobenzene	62.32	62 .	NOT GIVEN	·
Phenacetin	107.49	107	NOT GIVEN	
Isosafrole	76.19	76	NOT GIVEN	
1,4-Naphthaquinone	5.84	6	NOT GIVEN	
1,3-Dinitrobenzene	102.47	102	NOT GIVEN	
Pentachlorobenzene	76.27	76	NOT GIVEN	
1-Naphthylamine	56.65	57	NOT GIVEN	
2-Naphthylamine	80.38	80	NOT GIVEN	
2,3,4,6-Tetrachlorophenol	108.32	108	NOT GIVEN	
5-Nitro-o-toluidine	112.31	112	NOT GIVEN	
Diphenylamine	142.39	142	NOT GIVEN	
Tetraethyldithiopyrophosphate	78.62	79	NOT GIVEN	
Diallate TRANS/CIS	170.60	171	NOT GIVEN	
1,3,5-Trinitrobenzene	60.15	60	NOT GIVEN	
Dimethoate	30.02	30	NOT GIVEN	
4-Aminobiphenyl	106.28	106	NOT GIVEN	
4-Nitroquinoline 1-exide	156.61	157	NOT GIVEN	
Pentachloronitrobenzene	70.69	71	NOT GIVEN	
Pronamide	80.31	80	NOT GIVEN	
Isodrin	78.24	78	NOT GIVEN	
p-Dimethylaminoazobenzene	105.49	105	NOT GIVEN	
Chlorobenzilate	67.83	68	NOT GIVEN	
3,3'-Dimethylbenzidine	41.50	41	NOT GIVEN	

LAB NAME: LANCASTER LABS

LAB CODE: LANCAS

SW846 METHOD 8270 SPIKE LEVEL: 100 UG/L

LCS SAMPLE NO: 173WACLCS 173WACLCS

CONPOUND NAME	GCREF CONC UG/L	OCREF REC X	RANGE LOWER-UPPER	IN SPEC
2-Acetylaminofluorene	, 102.00	102	NOT GIVEN	
7,12-Dimethylbenz (a) anthracene	53.13	53	NOT GIVEN	
3-Methylcholanthrene	85.26	85	NOT GIVEN	

14-PACNYLESEDIAMINE NOT DETECTED COMMENTS: DURINE SUSPECTOD. EXTANC ກຄ ProLEDUAL

8B SEMIVOLATILE INTERNAL STANDARD AREA SUMMARY

LaName: LANCASTER LABSContract: _____.LabCode: LANCASCase No.: ____.SAS No.: ____.SDG No.: ____.LaFile ID (Standard): >X8001Date Analyzed: 09/13/90In-trument ID: 01597Time Analyzed: 10:41

1		IS1(DCB)		IS2(NPT)		IS3 (ANT)	i
		AREA #	RT ======	AREA #	RT ======	AREA #	RT
	12 HOUR STD	38076	8.55	137790	12.23	75515	17.63
	UPPER LIMIT	76152		275580		151030	======
	LOWER LIMIT	19038 =========		68895 ========		37758 ========	
	EPA SAMPLE NO.		•			•	
01	SBLKWC2561	======================================	====== 8.55		======	84900	====== 17.63
02	R2N11	32611	8.55	152290 132744	12.22	75310	17.64
03	R2N11MS	27574	8.55	99984	12.23	51404	17.64
04 05	R2N11MSD	31178	8.55	113624	12.23	56009	17.64
06							
07							
08 09			<u> </u>				
10							
11							
12							
13							
14 15 16							———
16							
17							
18 19	·	<u> </u>			 		
20							
21							
22							

IS1 (DCB) = 1,4-Dichlorobenzene-d4
IS2 (NPT) = Naphthalene-d8
IS3 (ANT) = Acenaphthene-d10

UPPER LIMIT = + 100% of internal standard area. LOWER LIMIT = - 50% of internal standard area.

Column used to flag internal standard area values with an asterisk

page 1 of 1

FORM VIII SV-1

1/87 Rev.

•••

8C SEMIVOLATILE INTERNAL STANDARD AREA SUMMARY

 Name: LANCASTER LABS
 Contract: _____.

 Code: LANCAS
 Case No.: _____. SAS No.: _____. SDG No.: _____.

 File ID (Standard): >X8001
 Date Analyzed: 09/13/90

 trument ID: 01597
 Time Analyzed: 10:41

		IS4 (PHN) AREA #	RT	IS5(CRY) AREA #	RT	IS6(PRY) AREA #	RT
	12 HOUR STD	126545	22.25	92137	30.56	81168	34.70
	UPPER LIMIT	253090		184274		162336	======
	LOWER LIMIT	63273	======	<u>4</u> 6069	******	40584	======
	EPA SAMPLE NO.						
01 02 03 04 05	SBLKWC2561 R2N11 R2N11MS R2N11MSD	143333 133444 85774 98414	22.25 22.26 22.27 22.26	102139 92531 63341 67595	30.56 30.56 30.56 30.56	95303 82316 59840 70108	34.70 34.70 34.71 34.70
06 07 08							*
09						······	
10 11 12						<u> </u>	
13 14 15	· · · · · · · · · · · · · · · · · · ·	·					
16 17							
18 19							
20 21 22							

IS4 (PHN) = Phenanthrene-d10
IS5 (CRY) = Chrysene-d12
IS6 (PRY) = Perylene-d12

UPPER LIMIT = + 100% of internal standard area. LOWER LIMIT = - 50% of internal standard area.

Column used to flag internal standard area values with an asterisk

bage 1 of 1

FORM VIII SV-2

1/87 Rev.

•••

Initial Calibration Data HSL Compounds

Case No:		Instr	ument 1D	: 03189					
Contractor: Lancaster Labs, Ir	ю.	Calib	ration D	ate: 06/3	 22/90				
Contract No:	•			• • •	* • • • • • • • • •	•••••			
Minimum RF for SPCC is	0.05	Max im	um X RSD	for CCC	is 30.X				
Laboratory 1D:	>U8404	>U8405	>U8403	>U8402	>08401				
	RF	RF	RF	RF	RF				
Corpound	20.00	50.00	80.00	120.00	160.00	RRT	RF	X RSD	ĊCC SPCC
Pyridine	.86262	.85126	.83032	.87415	.77815		.83930	4.506	•••
2-Picoline	.94397	.91665		-		.541	.89286	5.377	
N-Nitrosomethylethylemine	.37694	.39611	.41385			.585		• 5.921	
Hethylmethanesulfonate	.68878	.62850	.69101			.665	.66791	5.634	
2-Fluorophenol	.76676	.71556				.688	.71992	6.989	
N-Nitrosodiethylemine	.54608	.49101	.54451	.63699		.751	.53899	11.700	
Ethyl methanesulfonate	.95655	.86408	. 89984	.95664		.833	.90291	5.956	
Aniline	1.50255	1.43376	1.34841	1.35887	1.23127		1.37497	7.394	
Phenol-d6		1.06793					1.01156	7.890	:
o-Toluidine	1.48169	1.40545	1.25907	1.24374	1.10012		1.29802	11.485	
N-Nitrosopyrolidine	.55850		.56507	. 60008	.49407	1.129	.55336	6.928	
N-Nitrosomorpholine	.71382		.65108			1.135	.66218	9.911	
Acetophenone		1.25423			1.05415	1.122	1.20122	8.512	
Nitrobenzene-d5	.38618			.43533	.39310	.859	.41577	5.898	
N-Nitrosopiperdine	.35578			.41952	.36761	. 895	.36797	8.115	
0,0,0-triethylphosphorothioate					.12651	.962	. 15016	11.979	
2,6-Dichlorophenol	.30257			-	.24808	1.024	.28047	7.206	
Hexachloropropene	.29246					1.029	.23560	16.573	
1,4-Phenylenediamine N-Kitrosodi-n-butylamine	.22818					1.101	.23258	9.528	
Safrole	.32263			_		1.103	.29999	5.564	
1,2,4,5-Tetrachlorobenzene	.04454	· · •			.04882	1.203	.04793	4.295	
Phenacetin	.40100			-		1.198	.35000	15.024	
Isosafrole	.36400					1.166	.44117	11.140	
2-fluorobiphenyl	.47725					.903	.45218	8.116	
1,4-Naphthequinone	- 44802	1.24543					1.10701	12.929	
1,3-Dinitrobenzene						.941	.41471	11.416	
Pentachlorobenzene	.28872		.40088			.973	.34667	12.317	
1-Naphthylamine	.67174		.66084				.59401	14.471	
2-Naphthylamine	#2159	1.03795	1.08612	1.08289	.95654		1.05615	5.913	
*****		./ ////			.73615		.79192	7.807	
RF - Response Factor (Subs RRT - Average Relative Rete	ntion II		in NG/L)		•••••	•••••			···· ····
RE - Average Response Last									

Kr - Average Response Factor

XRSD - Percent Relative Standard Deviation

CCC - Calibration Check Compounds (*) SPCC - System Performance Check Compounds (**)

Form VI Page 1 of 2

Initial Calibration Data HSL Compounds

Case No:		Instru	ment 10:	03189							
******************				•••••	*******						
Contractor: Lancaster Labs, Inc	•	Calibr	ation Da	ste: 06/2	22/90						

Contract No:											

Ninimum RF for SPCC. is 0	.05	Maxim	m X RSD	for CCC	is 30.X						
Laboratory ID:	>U8404	>U8405	>U8403	>U8402	>U8401						
	RF	RF	RF	RF	RF						
Compound	20.00	50.00	80.00	120.00	160.00	RRT	RF	X RSD	CCC SPCC		
	•••••	•••••	•••••	••••••	·····	••••••			•••		
2,3,4,6-Tetrachlorophenol	.17844	.19690	.21832	. 18454	.16594	1.058	. 18883	10.542			
5-Nitro-o-toluidine	.21271	.26044	.28509	.27903	.28002	1.096	.26346	11.338			
Diphenylamine	.85166	.91170	.92264	.80027	.74625	1.108	.84651	8.813			
2,4,6-Tribramophenol	.17097	.15121	.15130	. 15659	13766	.913	. 15355	7.812			
Tetraethyldithiopyrophosphate	.23172	.20202	.19510	. 17692	.16120	.934	. 19339	13.814			
Diallate TRANS/CIS	.22645	.19484	.19884	. 19269	.18536	.951	. 19964	7.898		(Conc=40.0,100.0,	
1,3,5-Trinitrobenzene	.04416	.06404	.06851	.07125	.06108	.942	.06181	17.181		(Conc=40.0,100.0,	
Dimethoate	.46620	.29755	.31802	.34412	.31422	.967	.34802	19.579			
4-Aminobiphenyl	.51897	.51050	.54617	. 57090	.54435	.979	.53818	4.464	:		
4-Nitroquinoline 1-oxide	.01767	.04006	.04267	.04851	.05493	1.110	.04077	34.649		(Conc=40.0,100.0,	ł
Pentachloronitrobenzene	.06423	.06714	.06849	.05623	.05268	.995	.06176	11.257			
Pronamide	.40418		.36082	.33557	.30921	.991	.35712	10.228			
Isodrin	.17807					1.139	.14394	16.931			
Terphenyl-d14					1.05438		1.19661	7.338			
p-Dimethylaminoszobenzene	.47540	-				.916	.51645	10.419			
Chlorobenzilate					1.32113		1.57386				
3,3'-Dimethylbenzidinë	.46063					.948	. 53362	7.834			
2-Acetylaminofluorene	.27258					.973	.30854				
7,12-Dimethylbenz[a]anthracene		•				.961	.67648				
3-Methylcholanthrene	.49064	.51429	.52326	.56124	.54331	1.039	.52655	5.145			

.....

RF - Response Factor (Subscript is amount in KG/L)

RRT - Average Relative Retention Time (RT Std/RT 1std)

. .

RF - Average Response Factor

..............................

XRSD - Percent Relative Standard Deviation

CCC - Calibration Check Compounds (*) SPCC - System Performance Check Compounds (**)

.

Form VI Page 2 of 2

Initial Celibration Data HSL Compounds

,

.

••

۰.

Lase No:		Instr	ument ID	: 01578						
Cuntractor: LANCASIER LABS		Calib	ration D							
Contract No:				. •••	•••••••					
······································	••••									
Minimum RF for SFCC is	0.050	Maxim	um 2 RSD	for [[[is 30.0X					
Laboratory 10:	>Y6805 KF	>Y6603 RF	>¥6804 RF	>ï6802 RF	>ïöbol Rf					
Compound	20.00	50.00	80.00	170.00	160.00	FRT	RF ·	z RSD	נננ	51 CC
K-Nitrosodimethylamine	.65115	. 60617	.620B1		66379	.307	.63601	 5.624		••••
Flienol			1.50355				1.48646	5.801		
his(2-Chloroethyl)ether	1.25440	1.08225	1.05840	1.05160	1.04037		1.10139	7.836		
2-Chlorophenol	1.29375	1.21976	1.15324	1 05584	1 10473		1.16607	7.953		
1,3-Dicklorobenzene	1.48068	1.45001	1.41365	1.36915	1.38744		1.42918	3.368		
1,4-Dichlorobenzene	1.50371	1.50466	1.42287	1.39357	1 40150		1.44527	3.755		
Benzyl alcohol	.58801	.61775				1.064	.60974	3.258		
1,2-Dichlorobenzene			1.31085	1 77490	1 70054		1.33671	4.452		
2-Methylphenol	1.09074	1.10797	1.05877	1 04766	1 07957		1.06554	3.075		
bis(2-Chloroisopropyl)ether			3.08147				3.12633	4.035		•
4-flethylphenol			1.03210				1.06593	3.717		•
N-Nitroso-di-n-propylamine	1.29036	1.15469	1.16164	1.70549	1 77074		1.20663	4.523		6E .
Hexachilor oethene	.66493					1.152	. 66243	1.821		•••
2-Fluorophenol			1.07903				1.05214	3.575		
Fhenol-d6	1.47278	1.58143	1.46324	1.41502	1 86874		1.47626	4.249		
Nitrobenzene	.38760					.850	.36421	1.668		
I soptior one	.76522					.904	.74764	1.656		
2-Nitrophenol	.22057				.21825	.921	.21813	2.242	ſ	
2.4-Dimethylphenol	.38748				.36972	.941	.37744	3.598		
Eenzoic acid	.13320	· .17351				.962	.15200	32.761		
bis[2-Chleroethexy]methene	.52653				.46526	.966	.48054	5.459		
2.4-Dichlorophenol	.35414	.35274			.33036	. 976	.34137	4.083		
1.2.4-Trichlerobenzene	.40934	.37545			.36195	.972	.38716	4.705		
liaphthalene	1.07839	1.00275		. 90713	.87754	1.005	.97048	7.759		
4-fhloreaniline	.42364	.43143		.40766	.41190	1.033	.41560	2.865		
Hexachlorobutadiene	. 29236	.29446			.26175	1.047	.26073	4.767		
4-Chloro-3-methylphenol	. 35683	.37338	.36117	. 34632		1.154	.35769	2.875		
2-Nethy Inaphthalene	.74200	.66654	. 63608		.57070	1.169	.64458	F.868		
Nitrobenzene-d5	. 37 6 6 9	.39610	.38627	.39085		.845	.38811	1.874		
Kexachlorocyclopentadiene	.37872	.41931	. 43074		.43687	.85?	.41943	5.665		• •
RF - Response Fector (Subs										
KRI - Average Relative Rete	ntion Ti	me (RT	Std/RT 1	std)						
RF - Average Response Fact	or									
2RSD - Fercent Relative Stan	dard Dev	iation			•					
[[[- Calibration Check Com	pounds (•} SF	CC - 54	vsten fei	formance	Check C	ompounds	{ • •}		
Form V		1 of					-			

Initial Calibration Bala HSL Compounds

Case No:		Instru	ument 10	: 01558						
Contractor: LANCASTER LABS		Calib	ration D	ate: 067	12/70					
Contract No:	•••••		•	•••						
Ninimum kF for SPCC is	0.050	Maxim	um Z RSD	for CEC	is 30.02					
Lahoratory 10	* >76805 RF	>Y6803 RF	> 46804 FF	;;;6002 FF	>16801 KF					
Compound	20.00	50.00	80.00	120.00	160.00	RRT	RF	z RSD	נננ	SPCO
2,4,6-Trichlorophenol	.44613	.45118	.43903	.41326	.45514	. 877	. 43655	3.370		
2,4,5-Trichlorophenol	.42669	.44997	.43938			.882	.44210	2.164		
2-Chloronaphthalene	1.16316	1.14116			1.02878		1.08597	5.442		
Z-Nitroaniline	.41414		.45316			.934	.43166	3.197		
Dimethylphthalate		1.31505					1.34552	9.671		
Acenaphthylene		1.74930					1.65630	15.051		
3-Nitreaniline	.22552		. 23241	.21285	. 23640	1.006	.22939	4.647		
kcenaphthene					1.02800		1.14429	11.956		
2.4-Dinitrophenol	.15488	.08785	.10572		.13554	1.023	.11419	18.064	•	**
4-Hitrophenol	.15034		.11237		.14152	1.040	.13149	27.693		
Dibenzofuran		1.59915					1.58160			••.
2,4-Dinitrotoluene	.40970		.43542		.47882	1.050	.44476	6.768		
2,6-Dinitrotoluene	.31967		.32715		.34527	.986		5.664		
Viethylphthalate		1.48727			1 31000		.55212	2.925		
4-Chlorophenyl-phenylether	.63337	.57787	.53576	.45492	.46310		1.47450	13.047		
Fluorene		1.27945			.40710	1.077	.54071	12.442		
4-Nitroaniling	. 15346	.17407	.20532				1.22347	9.264		
2-Fluorobiptienyl		1.27388			.2603B	1.112	.20079	20.265		
2,4,6-Tribromophenoi	.30575	.34483	.34443				1.72045	5.795		
4. ó-Dinitro-2-methylphenol		10580	.11874		.33760	1.157	.35295	4.60.		
R-Nitrosodiphenylamine	.50805		.43334		.12800	.893	.13849	34.940		
4-Browsphenyl-phenylether	. 29614				.36414	. 877	.43675	10.738	•	
Herach lor obenzene	.35853		.25505	-	.74087	.543	.26048	8.017		
fentechlorophenol	.32113		.36685		.32852	. 758	.35464	7.220		
There there	1 02147		.15376	.15556	.20187	.786			•	
finthranese	1.00147	1.02727 CZ2-1	.782/2	.90326	. 51268	1.003				
Vi-n-butylphthelete	1 201244	1 47211	.7210/	0:1:6	.85254	1.009		7.443		
fluoranthene	1.02122	1.4.212	1.41067	1.2.477			1.40151			
fureie	7 76772	.78768	.77.11		75744	1.167	.78385	5.726	٠	
Butylbenzylphthalate	1.1V007 07E71	1.7/78V 87910	1.00/20	1.77898	1.59570					
	. 7 / 7 / 0	. 83858	-14282	. 83731	.76545	. 955	.64926	9.305		

. KRT - Average Relative Retention Time (RT Std/RT 1std)

KF - Average Response Factor

1850 - Fercent Relative Standard Deviation

(IC - Calibration Check Compounds (*) SfCC - System Ferformance Check Compounds (**)

Form VI Page 2 of 5.

•••

Initial Laturation Vala HSL Compounds

Case No:		Instr	ument ID	: 01578					•
Contractor: LANCASTER LABS		Calib	ration D	ale: 06/	22/50				
Contract No:									
Ninimum RF for SFCC	is 0.050	Naxim	um 2 RSD	for CCC	is 30.02			•	
Laboratory		>Y6803	>16804		>ï680]				
Compound	RF 20.00		RF 80.00	KF 120.00	RF 160.00	RRT	RF	z RSD	CCC SFCC
3,3'-Dichlorobenzidine	.29844	.30786	.32056	.34539	.40716	1.007	.33488	12.403	•••
Benzo(a)anthracene			1.15726				1.16817	3.676	
bis(2-Ethylheryl)phthalate		1.03080			1.00380		1.04514	B.516	
Chrysene	1.13144	1.07688	1.06560				1.06563	4.07?	
Terphenyl-d14			1.06138				1.15410	8.470	
Di-n-octylphthalate	1.86457	1.76806	1.76407	1.51729	1.85907		1.83462	3.629	ι
Benzo(b)fluoranthene			1.30058				1.32292	3.112	
Benzo(k)fluoranthene			1.20100				1.16864	6.194	
Senzo(a)pyrene			1.10324				1.06554	1.106	
Indenc(1,2,3-cd)pyrene	1.04950	1.12189	1.15432	1.17821	1.16114		1.12301	3.949	
Dibenz(a,h)anthracene	.74785					1.114	.83641	6.479	
Eenzo(g.h.i)perylene	.85744	.86827			\$1535	1 143		7 944	

ħF	•	Response Factor (Subscript is amount in MG/L)
FRT	•	Average Relative Retention Time (RT Std/RT 1std)
1 7		Average Response Factor
285D	•	Fercent Relative Standard Deviation
ננ	•	Calibration Check Compounds {+} SFCC - System Ferformance Check Compounds {++}
		Form VI Fage 3 of 3

• -

Quality Control Summary

Surrogate Recovery Pesticide -WATER

Pesticide Batch Number:90241 572 112

LLI		s1		S3	OTHER
	Designation				=======
566349	1	94	86		
	i	i i			i
·					
	1				
	1	i			İ
	1				
	1				
	l	i i			i . i
	•				c
	1 1				
	l				
		!		ļ	
	1				
·	1			r I	
	l		i i		
	l l			•	
					·
	l .				
	. 				
				QC REC I	.imits
				Low	High
	 			Low 47	High 138
	 	chlordan		Low	High
	<pre>S2 (OXY) Oxyd S3 (245T) 2,4 * = Surrogate</pre>	chlordane 4,5-T e Recover	ry outsid	Low 47 70	High 138 119
	<pre>S2 (OXY) OXy(S3 (245T) 2,4 * = Surrogate # = No establ</pre>	chlordann 4,5-T e Recover lished li	y outsid	Low 47 70	High 138 119
	<pre>S2 (OXY) Oxyd S3 (245T) 2,4 * = Surrogate</pre>	chlordann 6,5-T e Recover lished li es diluto	ry outsid imits ed out are advi	Low 47 70 de advise	High 138 119 bry QC Li

presser i sin staring for a DADE New Holland Dile Lange of M 17001 5004 a 717 555 0001 a Saw 717 555 0001

Lancaster Laboratories Where quality is a science.

Quality Control Summary

Method Blank Pesticides

Pesticide Batch No....:90241 572 112

Matrix.....: WATER

. ..

		•	Met	thod Reference	: A		
Sample Infor	mation		mination Information	10228000022228:		1922222222	******
		= ===========	***************************************				
LLI Sample No.	Client Designation	 CAS Number	Compound	Analysis Date	Blank Result	 Units	LOQ
	***********************						2222222
1566349	1	319-84-6	alpha-BHC	08/29/90	ND	ug/l	0.01
	1	319-85-7	beta-BHC	08/29/90	ND	ug/l	0.01
	1	319-86-8	delta-BHC	08/29/90	ND	ug/l	0.01
		58-89-9	gamma-BHC (Lindane)	08/29/90	ND	ug/l	0.01
	1	76-44-8	Heptachlor	08/29/90	ND	ug/l	0.01
	1	309-00-2	Aldrin	08/29/90	ND	ug/l	0.01
	1	1024-57-3	Heptachlor epoxide	08/29/90	ND	ug/t	0.01
	1	959-98-8	Endosulfan I	08/29/90	ND	ug/l	0.01
	1	60-57-1	Dieldrin	08/29/90	ND	ug/l	0.01
	I	72-55-9	4,4'-DDE	08/29/90	ND	ug/l	0.01
	1	72-20-8	Endrin	08/29/90	. ND	ug/l	0.01
	1	33213-65-9	Endosulfan II	08/29/90	ND	ug/l	0.01
	l	72-54-8	4,4'-DDD	08/29/90	ND	ug/t	0.01
	1	1031-07-8	Endosulfan sulfate	08/29/90	ND	ug/l	0.03
	l	50-29-3	4,4'-DDT	08/29/90	· ND	ug/i j	0.01
	1	72-43-5	Methoxychlor	i i	•••	1	
	1	7421-93-4	Endrin aldehyde	08/29/90	ND	ug/t	0.1
		53494-70-5	Endrin ketone	i i	•••	i i	
	1	12789-03-6	Chlordane-Technical	08/29/90	ND	ug/l	0.05
	1	5103-71-9	alpha-Chlordane	1 1	•••	1 1	
	!	5103-74-2	gamma-Chlordane	i i	•••	-i i	
		8001-35-2	Toxaphene	08/29/90	ND	ug/l	1
	1	12674-11-2	PCB-1016	08/29/90	ND	ug/l	1
	1	11104-28-2	PCB-1221	08/29/90	ND	ug/t	1
	1	11141-16-5	PCB-1232	08/29/90	ND	ug/l	1
•	1	53469-21-9	PCB-1242	08/29/90	ND	ug/l	1
	1	12672-29-6	PCB-1248	08/29/90	ND	ug/l	1
	1	11097-69-1	PCB-1254	08/29/90	ND	ug/l	1
	!	11096-82-5	PCB-1260	08/29/90	ND	ug/l	1
	1	94-75-7	2,4-D	i i			
	1	93-72-1	2,4,5-TP	i i	•••	1	
	l	11		i i		i i	
	*================		**************************************	466	1	========	
		Method			viation key		
		A - EPA 60			ysis not red	juested	
		8 - SW846 3 C - SW846 3	-	ND = None (
		D - SW846	•		ted value be	• •	
		•			t of Quantit	ation	
		E - SW846	•	- = OUTSIG	e QC Limits		
			rd Methods 509A			1	
		••••	rd Methods 5098	•		ļ	
		•	P Statement of Work, 2/88				
		-	3550/8080/8140				
		J K - EPA 600	0/4-81-045, 9/82	**********			

Quality Control Summary

ς.

Matrix Spike\Matrix Spike Duplicate Pesticides

Unspiked Sample Number :BLK 8/29/90 Spiked Sample Number :SPK 8/29/90 Spiked Dup Sample Number: SPK DUP 8/29/90

Matrix: WATER

Pesticide Batch Number:90241 572 112

This MS/MSD applies to the following samples	 Compound	Spike Added (ug/l)	Sample Concentration (ug/l)	HS Concentration (ug/l) ====================================	MS X REC	QC Limits (% REC)		
566349	gamma-BHC (Lindane)	0.340	•	0.330		66 - 103	P	
	Heptachlor	0.310	•	0.220	71	60 - 104		
	Aldrin	0.280	•	0.200	71	40 -107		
	4,4'-DDT	0.640	•	0.640		1		
	Dieldrin	0.620		0.560		75 -109		
•	Endrin	0.620	ND	0.580	94	72 -121		
	• 1							
	 ====================================	Spike Added		MSD	MSD X	QC Limits	×	•
	====================================		•			1 1	**************************************	00 Limi RP
		Added	Concentration (ug/l)	Concentration	X REC	Limits	RPD	Limi Rf
		Added (ug/l)	Concentration (ug/l) 0.330	Concentration (ug/l)	X REC 103	Limits (%REC)	RPD 6	Limi Rf ====== 1
	gamma-BHC (Lindane) gamma-BHC (Lindane) Heptachlor Aldrin	Added (ug/l) 0.340	Concentration (ug/l) 0.330	Concentration (ug/l) 0.350	X REC 103	Limits (%REC) 66 -103	RPD -6 0	Limi RF 1 2
	gamma-BHC (Lindane) Heptachlor	Added (ug/l) 0.340 0.310	Concentration (ug/l) 0.330 0.220 0.200 0.640	Concentration (ug/l) 0.350 0.220 0.200 0.660	X REC 103 71	Limits (%REC) 66 -103 60 -104	RPD -6 0 0	Limi Ri 1 2
	gamma-BHC (Lindane) gamma-BHC (Lindane) Heptachlor Aldrin	Added (ug/l) 0.340 0.310 0.250	Concentration (ug/l) 0.330 0.220 0.200	Concentration (ug/l) 0.350 0.220 0.200 0.660	X REC 103 71 71	Limits (%REC) 66 -103 60 -104 40 -107	RPD -6 0 0 -3	Limi Rf 2 2
	gamma-BHC (Lindane) Heptachlor Aldrin 4,4'-DDT	Added (ug/l) 0.340 0.310 0.280 0.640	Concentration (ug/l) 0.330 0.220 0.200 0.640	Concentration (ug/l) 0.350 0.220 0.200 0.660	X REC 103 71 71 103	Limits (%REC) 66 -103 60 -104 40 -107 79 -119	RPD -6 0 0 -3	Lim Ri
· ·	gamma-BHC (Lindane) Heptachlor Aldrin 4,4'-DDT Dieldrin	Added (ug/l) 0.340 0.310 0.280 0.640 0.620	Concentration (ug/l) 0.330 0.220 0.200 0.640 0.560	Concentration (ug/l) 0.350 0.220 0.200 0.660 0.580	X REC 103 71 71 103 94	Limits (%REC) 66 -103 60 -104 40 -107 79 -119 75 -109	RPD -6 0 -3 -4	Limi R;
· .	gamma-BHC (Lindane) Heptachlor Aldrin 4,4'-DDT Dieldrin	Added (ug/l) 0.340 0.310 0.280 0.640 0.620	Concentration (ug/l) 0.330 0.220 0.200 0.640 0.560	Concentration (ug/l) 0.350 0.220 0.200 0.660 0.580	X REC 103 71 71 103 94	Limits (%REC) 66 -103 60 -104 40 -107 79 -119 75 -109	RPD -6 0 -3 -4	Limi R;
· ·	gamma-BHC (Lindane) Heptachlor Aldrin 4,4'-DDT Dieldrin Endrin Endrin Endrin	Added (ug/l) 0.340 0.310 0.280 0.640 0.620	Concentration (ug/l) 0.330 0.220 0.200 0.640 0.560	Concentration (ug/l) 0.350 0.220 0.200 0.660 0.580	X REC 103 71 71 103 94	Limits (%REC) 66 -103 60 -104 40 -107 79 -119 75 -109	RPD -6 0 -3 -4	Limi R;
	gamma-BHC (Lindane) Heptachlor Aldrin 4,4'-DDT Dieldrin Endrin ====================================	Added (ug/l) 0.340 0.310 0.280 0.640 0.620	Concentration (ug/l) 0.330 0.220 0.200 0.640 0.560	Concentration (ug/l) 0.350 0.220 0.200 0.660 0.580 0.610	X REC 103 71 71 103 94	Limits (%REC) 66 -103 60 -104 40 -107 79 -119 75 -109	RPD -6 0 -3 -4	Limi RF 1 2 2
· · ·	gamma-BHC (Lindane) Heptachlor Aldrin 4,4'-DDT Dieldrin Endrin Endrin Endrin	Added (ug/l) 0.340 0.310 0.280 0.640 0.620 0.620	Concentration (ug/l) 0.330 0.220 0.200 0.640 0.560 0.580	Concentration (ug/l) 0.350 0.220 0.200 0.660 0.580 0.580 0.610	X REC 103 71 71 103 94	Limits (%REC) 66 -103 60 -104 40 -107 79 -119 75 -109	RPD -6 0 -3 -4	Limi RF 1 2 2 2
· · ·	<pre> gamma-BHC (Lindane) Heptachlor Aldrin 4,4'-DDT Dieldrin Endrin Endrin ABBREVIATION KEY MS = Matrix Spike MSD = Matrix Spike Dupl RPD = Relative Percent</pre>	Added (ug/l) 0.340 0.310 0.280 0.640 0.620 0.620 0.620	Concentration Concentration (ug/l) 0.330 0.220 0.200 0.200 0.640 0.560 0.580 4 # = No establ	Concentration (ug/l) 0.350 0.220 0.200 0.660 0.580 0.610 0.610	X REC 103 71 71 103 94	Limits (%REC) 66 -103 60 -104 40 -107 79 -119 75 -109	RPD -6 0 -3 -4	Limi RF 1 2 2 2
· · · · · · · · · · · · · · · · · · ·	<pre>gamma-BHC (Lindane) Heptachlor Aldrin Aldrin L 4,4'-DDT Dieldrin L Endrin L ABBREVIATION KEY ABBREVIATION KEY MS = Matrix Spike MSD = Matrix Spike Dupl RPD = Relative Percent L * = Dutside advisory Q0</pre>	Added (ug/l) 0.340 0.310 0.280 0.640 0.620 0.620 0.620 0.620 0.620 0.620	Concentration Concentration (ug/l) 0.330 0.220 0.200 0.640 0.560 0.580 0.580 # = No establ N/A = Not App ND = None Det REC = Recover	Concentration (ug/l) 0.350 0.220 0.200 0.660 0.580 0.610 0.610 0.610 1 0.610 0.610 1 0.610	2 REC 103 71 71 103 94 98	Limits (%REC) 66 -103 60 -104 40 -107 79 -119 75 -109	RPD -6 0 -3 -4	Limi RF 2 2 2
	<pre> gamma-BHC (Lindane) Heptachlor Aldrin 4,4'-DDT Dieldrin Endrin Endrin ABBREVIATION KEY MS = Matrix Spike MSD = Matrix Spike Dupl RPD = Relative Percent</pre>	Added (ug/l) 0.340 0.310 0.280 0.640 0.620 0.620 0.620 0.620 0.620 0.620	Concentration Concentration (ug/l) 0.330 0.220 0.200 0.640 0.560 0.580 0.580 # = No establ N/A = Not App ND = None Det REC = Recover	Concentration (ug/l) 0.350 0.220 0.200 0.660 0.580 0.610 0.610 0.610 1 0.610 0.610 1 0.610	2 REC 103 71 71 103 94 98	Limits (%REC) 66 -103 60 -104 40 -107 79 -119 75 -109	RPD -6 0 -3 -4	Limi RF 2 2 2

COMMENTS:

Where quality is a science. PESTICIDE RESIDUE ANALYSIS

A90227

un umber:

••

HERE QUAITY IS A SCIENCE. PESTICIDE RESIDUE ANALYSIS RETENTION TIME WINDOWS AND INITIAL CALIBRATION

.....

١

יי ו

.olumn:	LL1#466	(2401/22	250)							
				1	Response Fact	tors (Concent	tration/Resp	onse)		,
	Ret	t Time Wi	indows							
				DF250	DF200	DF100	DF50	DF25		Average
Compound	RT	RT-3*SD	RT+3*SD	RF	RF	RF	RF	RF	% RSD	RF
	••		•••••		• • • • •	•••••				•••••
iCB	1.91	1.91	1.91	2.795E-08	3.068E-08	2.889E-08	3.0962-08	3.203E-08		3.010E-08
lpha - BHC	2.07	2.02	2.12	4.300E-08	4.292E-08	3.928E-08	4.0222-08	3.826E-08		4.073E-08
.ir ne (Gamma - BHC		2.56	2.68	5.130E-08	5.125E-08	5.052E-08	4.990E-08	4.960E-08		5.051E-08
et - BHC	2.98	2.92	3.04	1.331E-07	1.351E-07	1.321E-07	1.439E-07	1.4738-07		1.383E-07
eptachior	3.22	3.14	3.30	7.054E-08	7.0325-08	5.889E-08	6.852E-08	6.819E-08		6.929E-08
elta - BHC	3.48	3.40	3.56	7.864E-08	7.870E-08	7.315E-08	7.387E-08	7.007E-08		7.489E-08
lc n	3.90	3.81	3.99	8.260E-08	8.284E-08	8.199E-08	8.120E-08	8.083E-08		8.189E-08
tor il	4.10	4.02	4.18	8.262E-08	8.939E-08	8.757E-08	9.406E-08	9.8242-08		9.037E-08
elodrin	4.35	4.26	4.44	9.2892-08	9.576E-08	9.438E-08	9.875E-08	9.503E-08		9.536E-08
)xy-hlordane	5.32		5.42	1.210E-07	1.229E-07	1.190E-07	1.273E-07	1.254E-07		1.231E-07
ier ichlor Epoxide	5.87		5.99	1.210E-07	1.208E-07	1.225E-07	1.238E-07	1.240E-07		1.224E-07
אָר - DDE	6.93		7.04	2.012E-07	2.195E-07	2.134E-07	2.259E-07	2.3225-07		2.184E-07
Jamma – Chlordane	6.49		6.60	1.482E-07	1.501E-07	1.420E-07	1.518E-07	1.456E-07		1.475E-07
ii - Chlordane	7.09	6.98	7.20	1.598E-07	1.610E-07	1.526E-07	1.652E-07	1.603E-07	2.8%	1.598E-07
⊃,ţ · DDE	8.46		8.60	1.760E-07	1.7902-07	1.693E-07	1.811E-07	1.755E-07		1.762E-07
э,р - DDD	9.97		10.15	3.505E-07	3.597E-07	3.478E-07	3.783E-07	3.705E-07	3.6%	3.614E-07
o,p • DDT 💡	11.89		12.07	3.769E-07	3.9285-07	3.328E-07	3.537E-07	3.649E-07	6.3%	3.642E-07
s,; · DDD	12.99		13.19	3.127E-07	3.148E-07	3.211E-07	3.398E-07	3.286E-07	3.4%	3.234E-07
⊃,ç · DDT	15.64	15.35	15.93	4.697E-07	4.5232-07	4.714E-07	4.612E-07	4.523E-07	2.0%	4.614E-07
Ethion	16.03	15.77	16.29	7.306E-07	7.1932-07	8.4462-07	8.7982-07	9.154E-07	10.8%	8.179E-07
Inithion	17.06		17 .31 -	5.451E-07	5.761E-07	6.513E-07	6.621E-07	6.872E-07	9.7%	6.244E-07
41 × 6	23.50		23.92	5.593E-07	5.839E-07	5.905E-07	6.411E-07	6.548E-07	6.7%	6.059E-07
ie:xychlor	29.84	29.34	30.34	1.531E-06	1.493E-06	1.379E-06	1.3825-06	1.403E-06	4.8%	1.438E-06
(50% Florisil Fract					•					
Dii inon 🗠 🥂	2.50	2.44	2.56	1.391E-06	1.462E-06	1.413E-06	1.472E-06	1.439E-06	2.3%	1.435E-06
He /l Parathion	5.30	5.22	5.38	3.017E-07	3.161E-07	3.227E-07	3.441E-07	3.456E-07	5.8%	3.261E-07
Malathion	6.04	5.98	6.10	1.7982-06	2.1112-06	1.760E-06	2.0592-06	1.988E-06	8.1%	1.943E-06
Ethyl Parathion	6.79	6.68	6.90	4.288E-07	4.535E-07	4.581E-07	4.888E-07	4.942E-07	5.8%	4.6472-07
Env sulfan I	7.39	7.24	7.54	1.554E-07	1.550E-07	1.586E-07	1.593E-07	1.610E-07	1.6%	1.579E-07
Di- drin	9.02	8:85	9.19	1.844E-07	1.860E-07	1.813E-07	1.8352-07	1.814E-07	1.1%	1.833E-07
Endrin	10.97	10.79	11.15	3.682E-07	3.715E-07	3.568E-07	3.661E-07	3.482E-07	2.6%	3.621E-07
End-sulfan II	13.27	13.02	13.52	2.578E-07	2.536E-07	2.912E-07	2.909E-07	2.993E-07		2.7862-07
En Bulfan Sulfate	21.25	21.02	21.48	9.490E-07	9.684E-07	9.135E-07	9.7272-07	9.4782-07		9.503E-07
En. in Aldehyde	17.42		17.52	7.1455-07	7.235E-07	7.533E-07	7.427E-07	7.620E-07		7.3922-07
Endrin Ketone					· · ·					
)i' tylchlorendate	27.82	27.36	28.28	7.133E-07	7.253E-07	7.364E-07	7.405E-07	7.430E-07	1.7%	7.317E-07

- 47. .

	nere quality is a sciel	nce.		RESIDUE ANALY				
,	A90227				•			
unmber: Column:	LL1#466 (2401/2250	••						
		,, Injectio	o# 73	Inierti	on # 85	Injectio	n #	
			· · · · · · · · · · · · · · · · · · ·	mjecti				
- ₂ .		DF100	+/-15%	DF100	+/-15%	DF100	+/-15%	
Ci ound	•	RF	RPD Flag	RF	RPD Flag	RF	RPD Flag	
1CB								
A a - BKC				3.691E-08	6.4%			
- ne (Gamma - 1	BHC) 4.	748E-08	6.4%		•		•	
Set BHC	- •			1.283E-07	2.9%			
dtachlor	6.	307E-08	9.2%		_			
Э - ВИС				6.678E-08	9.5%			•
A n	7.	.585E-08	8.1%	7.660E-08	7.0%			
Ronnel								
Teledrin						•		
C lordane				1.159E-07	2.6%			
🕷 🚬 Ichlor Epoxide	e 1.	105E-07	10.9%					
o,p - DDE								
G na - Chlordane				1.356E-07	4.7%			
A i - Chlordane				1.4732-07	3.6%		•	
P,; · DDE				1.668E-07	1.5%	•		
0 D - DDD					•			
· · DDT						·		•
- DDD			•	3.020E-07	6.3%			
р,р - DDT	5.	.049E-07	6.6%					
F+hion	n							
nion			•					
1 x								
Methoxychlor	1.	.357E-06	1.6%					
1% Florisil Fra	ction)							
inon			•					
ne yl Parathion						•		
Malathion								
··· l Parathion		_						
sulfan I		.419E-07	11.7%					
Bi .drin	1.	.656E-07	9.5%			-		
ândrin	-			2.927E-07	21.9% **		•	
sulfan II		.608E-07	11.7%					
sulfan Sulfat				8.135E-07	12.3%			
Endrin Aldehyde	-7	.701E-07	2.2%					
⁻ irin Ketone					-			•
' itylchlorendat	ie 6	.834E-07	7.7%	5.965E-07	23.4% **	•		

Lancaster Laboratories Where quality is a science

.

.

Quality Control Summary

Ņ

.

J

Hethod Blank

Hetals

	ample infor		 Blank Conta				**********			******		:= í 1
22	*********	===============[=================	**********	52222	*********		*****************		*******	.========	•
I	LLI	Client	I	1	1	Analysis	Heth Blank	Blank	Blank	1 1	•	1
1	Sample No.	Designation	CAS Number	Metal	Heth	Date	Desig.	Batch Number	Result	Units	109	i ~
==	**==========	================	===================			********		****************	27892822222837			=
1		1 1	7429-90-5	Aluminum	1	I 1				mg/l	0.1	t c
1			7440-36-0	Antimony	1	[•			mg/l	0.05	i
1			7440-38-2	Arsenic	Ì	1	1	•		mg/l	0.01	i
I		1 1	7440-39-3	Barium	Í.	Ì			i	mg/l	0.1	i
ł		1 1	7440-41-7	Beryllium	Ì	l i			····	mg/l	0.005	
1	•	1 1	7440-42-8	Boron	Ì	i i				mg/t	0.05	i ·
1	•	1 1	7440-43-9	Cadmium	i	i	i i			mg/l	0.005	•
ł		1 1	7440-70-2	Calcium	i	1	i			mg/ll	0.05	• •
1		1	7440-47-3	Chromium	i	i i				mg/l	0.05	1
1		•	7440-48-4		i	1				mg/l	0.05	۰ ۱
1		•	7440-50-8		i	• •				mg/l	0.02	1 1
Ì		-	7439-89-6		i	• • •		•	1 (mg/l	0.05	1 5
Ì			7439-92-1	•	i	. 1			1 I	-		1
i			7439-93-2		1	l 				mg/l	0.05	
i			7439-95-4	•	•	1 1				mg/l	0.05	1
i			7439-96-5	-	1	1 1				mg/l	0.05	•
i	·	•	7439-97-6		1	i (mg/l	0.01	. 🗢
i		-	7439-98-7	•	1	1 1					0.0005	
İ			7440-02-0			ι Ι.			l (mg/lļ mg/lļ	0.1	
Ì			7440-09-7		i	1 · · · ·		ł	1 I	mg/li	0.04 0.5	•
1			7782-49-2		i	• •	:		1 1	mg/l	0.005	1
Ì		•	7440-22-4	•	i	• (•)			1 1	mg/li	0.009	1
ł			7440-23-5		1					™9/ (mg/ (
ł		-	7440-24-6		:			•	1		0.5 0.05	•
Ì	•		7440-28-0		1	t i			1 •••	mg/l		
ł			7440-31-5		i	1		•	1 1 1 1	mg/l	0.1	•
İ		•	7440-32-6		r I				1 '	mg/l	0.5	• I
I			7440-62-2		ì	1			i i	mg/l	0.5	1
Ì		•	7440-66-6		i	1			 	mg/l[0.05	
I		i i	1		i	1 1			1 1	mg/lļ	0.02	123 - L
Ì		i i	,		1					1		ľ
Ì		i i			: :	1 1				1		i •
Ì		i i	i	•	i							1
1		i i		•	i ·	1				1		1 J.
Ì		i i	, 1 .		1	• •			1 i	ŀ		
Ì		i i	1		1	l 1 1 1				1		
=	***********	22855825555555	I , . 22592222222	28222222222	1 =====:							
	•	•			1			ABBREVIATI				
	Comments:				IA=FL	ame Atomic	: Absorption		=Analysis no		ctod	1
		•					Coupled Pla		ND=Not Detected		3160	ł
						ydride Ger			J=Estimated Val			
						aphite Fur			J=Estimated val LOQ=Limit of Ou			
					-	old Vapor	1.962		LOW-LIMIT OT UU	ant 1181		p
		-			*****	·····					•••••••	

Cancaster Laboratories

۲

<u>Quality Control Summary</u> Matrix Spike Analysis Metals

Sample In	formation	Hatrix Spik			202221. A¥=	2922222222	222222222		: WATER		2852222	
LLI Sample No	Client Designation	 Metal	 Heth	Analysis Date	Unspiked Desig.	Unspiked Result	 L09	Spiked Desig.	Spike Added	Spike Result	 Units	
=======================================	=======================================	=====================================	====== 	:======= 	2265292828	========== 				======== 	=======]mg/l	1228221
i	•	Antimony	1			· 	0.05	1		· 	mg/l	
i	• •	Arsenic				۱ ۱ ۰۰۰	0.01	1 	i	, t	mg/l	
i	i	Barium			•		0.1		i	, 	[mg/l]	
i.	i i	Beryllium	1			· · · · ·	0.005		r.		mg/l	
1	i i	Boron	i				0.05	, ,	i		mg/l	
İ	1	Cadmium	1			· · · · ·	0.005	ĺ	i		[mg/l]	
İ	i	Calcium	i	i i			0.05	1	1		mg/l	· .
Ì	i	Chromium	i	i i			0.05		i		[mg/l	
Ì	i	Cobalt	i	1			0.05	1	i		mg/l	
i	i i	Copper	i	[1			0.02				mg/l]	
İ	i i	Iron	i	t i			0.05			 	jmg/l	
i	i . 1	i Lead	i.	[4	1	0.05	, 	1	1 	img/l	
i	i	Lithium	i	• I I I		1	0.05	(1	img/l	
i	1	Magnesium	i	1		 	0.05	1 6	1	1 1	mg/l	l l
i	· ·	Manganese	i	1		 •••	0.01	1 f ·		1 1	mg/t	
i	1	Hercury	i	• 1			0.0005	1	ì	1	mg/l	
i	i i	Holybdenum	i	i i			1 0.1	1	1		[mg/l]	
1	i -	Nickel	i	i		· ·	0.04	1	i		mg/l	
1	1	Potassium	i	i i			0.5	i.	i		img/l	
I		Selenium	Ì	1		i	0.005	i	i		mg/l	
l	i .	Silver	1	1			0.01	i	i		mg/l	
1	1	Sodium	1			•	0.5	i	i		mg/l	
1.	1	Strontium	1	1			0.05	i	i		mg/l	
1	1	Thallium	1	! 1	l		0.1	Ì	Í		mg/l	
1	1	Tin	1	1			0.5	İ	i		mg/l	ĺ
1	1	Titanium	1	1 1	l		0.5	Ì	Ì		lmg/l	
1	1	Vanadium	1	1			0.05	Ì	1		mg/l	
1	I	Zinc	I	1			0.02	ĺ	Ì		jmg/t j	
1	1 •1	11	1	1		1	!	ļ	1	1	1	
1	1		1	1		1	1	 	1	1		
1	1	11	Ì	İ.	İ	i	i	i	i	i	ii	
1	1	11 .	1	Ì	Ì	İ	i	i	i	i	i i	
1	1	11	1	Ì	Ì	İ	i	i	i	i	i i	
	 ====================================	 	1	1	I	l _.	1	ĺ	Ì	İ	i i	
·						.203255883385		×======== X F	recovery Co	======================================	======== t (LOW)	;=====; 7!
Connents	5							X F	Recovery Co	ntrol Limi	t (HIGH)	12
					I			VIATION KE	Y			1
					-	omic Absorp				sis Not Re		
	•				-	ely Coupled			J=Estimat			1
					•	Generation	1		LOQ=Limit	of Quanti	tation	1
			•		F=Graphite				ND=Not De			I
					CV=Cold Va	•			* = Out o	f specific	ation	i
	*				OK=Sample		ar than	L times Sr				í

• •

Quality Control Summary

١

١

Duplicate Analysis Metals

ample Infor	•	Duplicate Ar	-		, 	·		Matrix:	•			
-	Client Designation	 Hetal	1	Analysis · Date		1st Dup Result	 L09	2nd Dup Desig.	2nd Dup Result	 Units	RPD	Control Limit
:2862#29623	=======[1 1	=====================================	:=====: }	============= \ 1		*************		================= }	======================================	======== mg/l	ERR	======= 20
		Antimony	1	1 I t I			0.05] 	1	mg/l	ERR	1 20
	• •	Arsenic	1	1 1 5 1		1	0.01	1	 	img/l	ERR	1 20
	1 1	Barium	i i	1 I 1 I	· •	1	0.1	1	1	mg/l	ERR	20
		Beryllium	1	1 I 1 1	• •		0.005	1	1	mg/t	ERR	20
		Boron	1	1.1 1.1		1	0.05	1 1	1	[mg/l]	ERR	1 20
•		Cadmium	1 .			1	0.005	•	1	mg/l	ERR	20 20
		Calcium	1				0.05	•	1	-	ERR	1 20
	• •	Chromium	1			•••	0.05	•	1	mg/l		•
	• •	Cobalt	1	i 1 f 1		1	0.05	•	1	mg/l	ERR	20
	1	Copper	1	i l i 'i		1		•	1	mg/l	ERR	20
		I Iron	1	1 l		1	0.02	•	!	mg/l	ERR	20
		Lead	1.	1 1			0.05				ERR	20
		l Lithium	1	1 I		· · · ·	0.05	•		mg/l	ERR	20
	t t	Lithium Magnesium	1	1 1		1	0.05	•	•••	mg/l	ERR	20
		i Manganese	1			•••	0.05	t .	••••	mg/l	ERR	20
	1 1 1 1	Mercury	1	i 1 1 1		 	0.01			mg/l	ERR	20
		Molybdenum	1	i 1		1	0.0005	1 ' 1	 	mg/l	ERR	20
		Nickel	1	1 1 1 1		1	0.1	1	1		ERR	20
		Potassium	1	1 1 1 1		1	0.04	! <u>.</u>	1	mg/l	ERR	20
		Selenium				1		•	1 -	mg/l	ERR	20
		Silver				1	0.005	!		mg/l	ERR	20
		Sodium	1				0.01	1		mg/l	ERR	20
		Strontium	-		•		0.5	1		img/l	ERR	20
		Thallium	1				0.05	1 ·		mg/l	ERR	20
	· · ·	Tin	-			1	0.1	•		[mg/l]	ERR	20
		Titanium	1				0.5	•		mg/l	ERR	20
		Vanadium	-				0.5		•••	mg/l	ERR	20
		Zinc	1				0.05	•		mg/l	ERR	20
			1				0.02	1		mg/l	ERR	20
		, ,	-				1	1	1			
	i i	1	1			1	8	1				
	i i	1	r T			1	l 1	} 		· · · ·		
			i			1	1 8	} I	1			
•			1			1	1	l l	1			
		i	1	1 1 1		1	1	1	1			
=========	; ;===================================	, =================		••••••		l •••••	1	l	I			1
		C				••••••••••						
omments:						1		ABBREVIATI				
		•				 A=Flame At	omic Abco		=Analy:	ie Nat I	D	i hod
						P=Inductiv		•	J=Estimate			
						HY=Hydride			J=ESTIMAT LOQ=Limit			
•						F=Graphite			ND=Not De			ריק אוג ו
			•			CV=Cold Va					last.	
						Int-rora A8	por		* = Out of	r specif	1011831	ן ר

Cancaster Laboratories Quality Control Summary Initial and Continuing Calibration Metals (Å.) Where quality is a science .

1

....

.....

2

Matrix: Water

Page: 2										atory Sam									38828388225	200 ⁰ 0000000	
Initial Cal	ibr	etion		Units:	mg∕l		1	Calibra	tion Ver	ification	n	Units:	mg/l				- 11	[Calibra	ation Blan	k Units	s: mg/l
 Metal	M	Calib Date	Std 1 Concen	Std 2 Concen	Std 3 Concen	Std 4 Concen		True	Result	XREC 1	True	Result	 XREC 2	Result	XREC 3	Limi LOV X	ts IGH	1.00	Blnk 1	 Blnk 2	8lnk 3
Aluminum Antimony Arsenic Barium Beryllium Boron Cadmium Calcium Chromium Cobalt Cobalt Copper Iron Lead Lithium Magnesium Magnesium Magnesium Nickel Potassium Selenium Silver Sodium Strontium Thallium Tin Titanium Zinc		08/29/90	0.005	0.020	0.040					103		0.0254	102	0.0264	106			0.005	<0.0008	<0.0008	<0.0008
AA=Atomic A ICP=Inducti HY=Hydride GFAA=Graphi CV=Cold Vap IDL=Instrum	ively Geni ite i Ior	rption y Coupled eration Furnace	Plasma	J=Estima and al LOQ=Lima ND=Not [lysis Not ated Valu bove IDL it of Qui Detected	antitatio	00 0	Connent:	3:												

A 2 4 4

· · · ·

Cancaster Laboratories Where quality is a science

.

<u>Quality Control Summary</u> ICP Interference Check Sample Metals

Lancaster Laboratory Sample ID: 1565012

Date: 08/27/90, 08/28/90 Units: mg/L

Metal	Sol A	Sol AB	Init Sol λ	al Found Sol AB	%REC	F Sol A	inal Found Sol AB	%REC
Aluminum Antimony	0	0.5	-0.01750	0.45825	91.6	0.00044	0.45142	90.3
Arsenic Barium Beryllium	0	0.5	-0.00560 0.00378	0.47835	95.7 94.0	-0.00570	0.47918 0.47597	95.8 95.2
Boron Cadmium	0	1	0.00144	0.90859	9 4.0	0.00291	0.92139	92.1
Calcium Chromium Cobalt	0	0.5	-0.02960	0.42206	84.4	-0.02780	0.42856	85.7
Copper Iron	0	0.5	0.01817	0.49596	99.2	0.01844	0.49188 '	98.4
Lead Lithium Magnesium Manganese		· .		·				
Molybdenum Nickel Potassium Silver Sodium Strontium	0	0.5	0.00570	0.45758	91.5	0.00641	0.46146	, 92 . 3
Thallium Tin Titanium Vanadium Zinc	.0 0	0.5	0.02248 0.05247	0.47550 0.94397	95.1 94.4	0.02015 0.05468	0.48150 0.95853	96.3 95.9

一り、

5

Cancaster Laboratories Where quality is a science

Quality Control Summary

Surrogate Recovery Volatiles by GC - Water

0

91.J

LLI			S1 .			\$4	S5		==== TOT	• •
Sample No.	Designation	Factor			-	•	•	•	JOUT	
1234567	Vell 2a	1	======== 55 *:	78	133 •	22 *	======= 98	##35255 }		======== =
					1	66 - 	1 70 1	{ 	2	18 I
i			•		1	t I	1 1	1	 ·	
1		Í			İ	i	•	1	i	i i
1	i			l j	I	1	ĺ	İ	Í	i i
					l	I	l ·			· •
ļ	·				ļ	1	1	1	I	
	1					ł		1		
	1 1				l t	1	5		1,	
i]				1 1	1	1		1	
Ì	l			i	i		1			
1	1		·		i	i	1		i	, ,
1	1				l	l	1		1	
					ł	l	l · 1	l	I .	
]	1				•
	1·.					I		l		
	1				[1			·		
	1				1 1	1				
İ	Ì	j '			!	, ,				
1		i •	l i		ĺ	İ				
1	1			ĺ	1	l .				4× 1
1	1				1					. 1
	1			•	l					1
	1]	1			1					
i	1				1	l :				
82822322222	, 52#22222222000;	2228852232:	:222225555;	, 128882825:	, 22222222288;			; ;22255852;		 2=00=================================
			•				OC Lin			•
51 (Materi) = Bromochle							HIGH		
	Fluorochle				•	•	70 70	125		
S3 (FCLBn)	= Fluorochle	orobenzen	e (PID Del	···/ ()			70 70	125 125		
S4 (F3Tol)	= Trifluoro	toluene (1	PID Det) -				70	125		
	= n-Propylb				-		70	125		
* Values o	utside OC li	nits		" a						
D Surrogat	es diluted o	Jt								
Commente	a) The even					•				
Jan 1999 - 1	a) The surro due to the	e high lev	vel of com	rery Was (IDONents (putside () present in	ne accepta n the same	ple range ble	2		

b) This surrogate standard recovery for CHANGEABLE NAME was outside the acceptable range due to the nature of the sample matrix. The analysis was repeated giving the same response.

· [.] ?

. .

Whei	ncaster L	a science		·····	Ouslity Control Summary Method Blank		
	•,		• .	•	Volatiles by GC		
					*** BLANK INFORMATION ***		
			·		Natrix(Water/Solid)	: Vater	
					Batch Number	•	
					Injection number		
		·			Analysis date		
12853883388	20022222222222222	220289900022 <u>2</u> 7	.222227227222	=[]===============			
Sample Info				Blank Cont	tamination Information		1
	Client [Analys		*]] <u>**********************************</u>	 	Blank	
•	Designation	Date	Time	II CAS Number		Result	1.00
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		/#B2282200000			Benzene	ND	
- : Í	, t	İ			Toluene	ND	1 1
· · · ·					Chlorobenzene	ND	1 1
1		ļ			Ethylbenzene	ND	1 1
	. 1	1			Chloromethane Bromomethane	ND ND	
. 1				• •	•	-ND -ND	5 10
i		•	•		Vinyl chloride	ND	
Ĭ	i	i			Chloroethane	ND	
1		1		75-09-2 ·	Hethylene chloride -	ND	1 1
!		!	• •		1,1-Dichloroethene	ND	
1		1			1,1-Dichloroethane	ND	1 1
1		.			trans-1,2-Dichloroethene Chloroform	ND	
ì		1			Chloroform	ND ND	
Ì	i	i		••	1,1,1-Trichloroethane	ND	
1	. 1	Į.		56-23-5	Carbon tetrachloride	ND	1 1
ļ		Į			Dichlorobromoethane	ND	1 1
		l			····	ND	
	1	f^ 1		••	<pre>itrans-1,3-Dichloropropene iTrichloroethene</pre>	ND ND	
i	i i i	i			Dibromochloromethane	ND	
İ	, • Ī	· i	•		1,1,2-Trichloroethane	ND	1 1
·	Ī	1		••	cis-1,3-Dichloropropene	ND	i 1
1		· !		75-25-2		ND	2
1		ł			1,1,2,2-Tetrachloroethane	ND	2
1	i . I	ł			Tetrachloroethene Trichlorofluoromethane	ND ND	
i		ł		<i>13-07-</i> 4 		RV	
i	i i	i		ii	iiiii		
1	l I	i		ii	i i		i i
İ		, !	•	11	İ İ		i i
Į				11	<u> </u>		
ł					1		1
1	1	1		11	1 1	•	1 1

- ND = None Detected NR = Not Reported

٩ ١

ī

Comments:

:

1

Luruusu	er Laboratories			Quality Control					
Where aug	lity is a science			Matrix Spike\Ma	trix	Spike Dupl	icate		
	······································			Volatiles by GC	: - Va	ter	٣		
	Unspiked Sample Number :			Inj.:	ł				
	Spiked Sample Number :			lnj.:	:				
	Spiked Dup Sample Number:			lnj.:					
	Batch Number:			Date :	•				
********************	*************************		######################################	======================================	*****	*********		******	
This MS/MSD		Spike	Sample	KS	MS	ec	1		
applies to the .				Concentration		Limits	1	Commen	ts
ollowing samples	Compound	(ug/l)	(ug/l)	(ug/l)	REC	REC	l		
***************************************							: 206285	*****	=
1	Benzene	50	· . 50	100	100	76 -127	•		
	Toluene					76 -125 75 -130	•		1
1	Chlorobenzene					175 - 125	•		
	Hethylene Chloride 1,1-Dichloroethene				ł	61 -145	•	•	
	trans-1,2-Dichloroethene					175 -125	•		
1	Chloroform					75 -125	•		
	1,2-Dichloroethane					175 -125	•		
· •	Trichloroethene					171 -120	•		
1	Tetrachloroethene					175 -125	•		
	, 80553255568282855223692533		• • •	2282528525285251	Igeç 25			******	
1									
1				· •					
1	•								
· ·									
، ا	1 · 1	Spike	MSD		MSD	i ec	1	90	1
1	1 1	Added	Concentration		X	Limits	1	Limit	1
l	Compound	(ug/l)	(ug/l)		REC	REC	X RPD	RPD	1
	jBenzene	50	95.00		90	76 -127	110.5	11	-
1	Toluene	0	1		İ	76 -125	•	13	•
	Chlorobenzene	0	i		i	175 - 130	i	13	•
i	Hethylene Chloride	0	1		i	175 -125	i	•	•
· •	1,1-Dichloroethene	0	i		Í	61 -145	i	1 14	•
i	trans-1,2-Dichloroethene	j 0	1		ĺ	75 -125		15	•
i	Chloroform	0	i		İ	75 -125	•	•	•
i	1,2-Dichloroethane		i		ĺ	75 -125	•	15	•
i	Trichloroethene		1		Ì		•	14	
	-		-		-	-		-	٠

- a) Analysis of background MS and MSD samples showed levels which differed for unspiked aliquots. This is the source in the variability in the recovery or reproducibility.
- b) CHANGEABLE NAME is not part of the routine spiking standard, and no acceptance criteria have been developed.

..

1.

i,

] !

. · . c) The MS and MSD results are outside the acceptance criteria, A QC reference sample was analyzed, and the responses are within the QC acceptance criteria.

Lancaster Laboratories Where quality is a science

Calibration Date.....:

Instrument Identification..:

				Laborato	ry Standa	rd ID			1
This IC applies	1	2212235323C: 1		2228822821	, 122 242872	:p2223335555		-41227225	
to samples:	Compound	 24 FTD 1					 AVE DE	i vece	2RSD
		KT 510 1	187 510 C	RT SIU J	RT SIU +	RE STD 5	AVE Kr		loc rumi l
1	Chloromethane	0.663	0.541	1 0.750	0.594	1 0.437	1 0.597	l 19.9	1 20 1
i i	Bromomethane	1	1	1	1	1	1	1	20
i i	Vinyl chloride	, 1		1	1	ł	, , 1	í	2011
i i	Chloroethane	i	1.	ł	i ·	i		i	
i i	Methylene chloride	i	i	1	i	i		i	1 2(1)
i i	11,1-Dichlorgethene	i	i	1		i 7		í	1 201
i i	11,1-Dichloroethane	i	1	i		i	t i	Í	1 20 1
i i	trans-1,2-Dichloroethene	i	1	i	i	•	Í	İ	20
i i	Chloroform	i	l.	1	i	i i	Í	i	2
i i	11,2-Dichloroethane	i	1	i	1	i	ĺ	i	
i i	[1,1,1-Trichloroethane	i	1	1.	i	1	•	i	1 20
i i	Carbon tetrachloride	1	i	r r	1	· · ·		i	
i i	Dichlorobromoethane	i	1	Ì		1	i	Í	
i i	11,2-Dichloropropane	1	1	1	· ·	i 7	· . 1	l l	20
i j	trans-1,3-Dichloropropene	1	1		l L	i i	1 1 1	1	
i i	Trichloroethene	1	1	1	l t	1	1 1	1	
i i	Dibromochloromethane	1	I	l j	t t	t ,	i	1	20
i i	11,1,2-Trichloroethane	1	1	i ()	1	1	i	1	
i i	cis-1,3-Dichloropropene	1	· ·	1	1	1	i	t .	2 1
i i	2-Chloroethylvinyl ether	•	i i	1	1. 1	1	i	ł	
i i	Bromoform	1	i	1	1		i	, 1	
i i	11,1,2,2-Tetrachloroethane	• 1.	1	1	1	i i	i i	Í	1 2 1
1	Tetrachloroethene	i	1	1	i	i	i i	Ĺ	2.1
i · 1	Chlorobenzene	1	i	i	1	1	i i	Í	20
i i	Trichlorofluoromethane	i	i	Ì	• •	i	i i	, 1	
1	II · · · · ·	i .	i	1	i	i	i i	t	
1	ii	I ·	i.	i	i	i	i	i	i i
1	ii	i	1	1	i	i	i i	ĺ	i ~i
1	ii	i	1	i		i i	i i	Í	, . .
1	11	i		i	i	1	i i	i	1 1
1 1	ii	i	i	i	i	i	i - i	í	
1	11 .	i	i	i	i.	i i	i i	ł	i i
1	11	İ	i ·	1	i	i i	ı i	Í	i , i
1	ii	i	i	i		i i	i	4	i i
1	11 ·	i	i	i	I	i <i>i</i>	i i	i.	i i
1	11	İ	i	1	İ	i i	í i	Ĺ	i i
21222222222222222222222			222232222	*	222822233				

Quality Control Summary Initial Calibration

Volatiles by GC - Halocarbons

Lancaster Laboratories

Where quality is a science

Dual	ity	Control	ไ วิเภท	nary_
------	-----	---------	---------	-------

Continuing Calibration

Volatiles by GC - Halocarbons

Calibration Date.....

Instrument Identification..:

Continuing Calibration Date:

Inj #..:

Units:

Concentration 20.0 20.0 20.0 20.0		85%- 17.0 17.0	23.0	ut of Range
20.0 20.0 20.0 20.0		17.0	23.0	
20.0 20.0		17.0	97 6 1	
20.0	i i		23.0	
		17.0	23.0	
	i i	17.0	23.0	
20.0	i i	17.0	23.0	
20.0	i i	17.0	23.0	
20.0	i i	17.0	23.0 j	
20.0	i i	17.0	23.0	
20.0	i i	17.0	23.0	
20.0	i	17.0	23.0 j	
20.0	i i	17.0 1	23.0 j	
20.0	i i	17.0	•	
20.0	i i			
		•	•	
	• •			
		•		
	• •			
	•			
	, , 1 ,			
	• •			
	• •			
-	• •	•		
	• •		•	
			•.	
	· · ·		23.0	
	i i	i	i	
		1	1	
		1	1	
		· · ·	1	
•			1	
			l 1	
			1	
			·	
		1	1	
	I . I	1	1	
	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	20.0 17.0 20.0 17.0	20.0 17.0 23.0 20.0 17.0

Quality Control Summary

Method Blank . Instrumental Analysis Data ١

١

mple inform	nation	=====================================	Analysis		1	Natrix:	WATER			
LLI ample No.	Client Designation	 Parameter	 Hethod	Analysis Date	Heth Blank Desig.	Batch	Number	Blank Result	Units	٢04
***************************************		DESERVATE	≠========]]]			2959625	CSZERZZŻZŻ	1222723242233	2222222222 1	;s101033
	i i	j. Fluoride	i ıc i				1		mg/L	0.1
	i	Chloride	1 10				1		mg/L	0.2
	•	Nitrito-N	10	i	i			•••	mg/L	0.1
ĺ	Í	Bronide	j ıc j	· i	· i		ĺ	•	I ma/L	0.5
[Nitrate-N	j 1C j	j	i i		i		mg/L	0.1
1	l '	Phosphate	10.	' i	i		Ĩ		mg/L	1
		Sulfate	1 10	ĺ	ļ		I	***	mg/L"	0.5
		Amonia-N	TAA	1			1	•••	mg/L	0.1
- (l . I	[Chloride	[IC]	j	j		j	•••	I mg/L	1
	• 1	Chlorina	10	1	i i		I	•••	X	0.2
		Cyanide Cyanide	TA	l	l		İ		mg/L	0.005
		Reactivity	TA	1			1		 ====	100
		Nitrite - N	TA I	• i	. i				mg/L	0.02
1		Nitrate - N	TAA į	j	i	•	i		mg/L	0.05
	•	Phenol	TM	Ì	i		·	***	mg/L	0.01
		Phosphorus	TA	j	i		j	• •• •••••••••••••••••••••••••••••••••	mg/L	0.1
		Sulfate	10	1	l		Í	•	mg/L	0.5
		TOC	TOC	1	· 1	,	1		mg/L	0.5
		TOX	TOX]	•		•••	Ug/L	5
		Kjeldahl			• 1		1		1 1	
		Nitregen	TAA 	1			l	•••	mg/L	0.2
			i i	i	Í		i	•	i	
				1						
	i i	i	i i				1			
	1	İ	i i	i						
	1	1		i	i		i		i i	
		1 1		1	· [I			
	i i	i		1						
	l i	İ	i i	1	1		1			
		t	i, i		i		ļ		i i	
***************************************		32292291 <i>252222</i>	182224220 (853555555555555555555555555555555555555		ABBREV	LATION KEY	*************		-188-23 -1
comments:				on Chromat				nalysis not	requested	}
		•			utoAnalyzer			ot Detected		
5				istillatic				stimated Val		LOG
					nic Carbon		L09 = L	imit of Quan	titation	
			TOX = T	otal Organ	ic Halogens		NA = N	ot Applicable	•	

Lancaster Laboratories Where quality is a science

1

•••

Quality Control Summary

,

Matrix Spike Analysis Instrumental Analysis Data -

mple Infor		Matrix Spike ====================================					.222392:		Xatrix:			
LLI Sample No.	Client Designation	ĺ	 Heth	Analysis Date	Unspiked Desig.	Unspiked Result	LOG	Spiked Desig.	Spike Added	Spiked Result	1 1	
	1 i	Anion Scan	1			 1		 			1 1	
	1 1		110	l i		·	0.1		İ	j		
		•	1C	I. 1			0.2	ĺ	Í	•••	mg/L	
		Nitrite-N	10	I. I			0.1		1		mg/L	
		Branide	110			I	0.5	1	I	1	mg/L	
	!!!	Nitrate-N	110			••••	0.1	1	1		mg/L	
			10			••••	1			•	mg/L	
		Sulfate	1C				0.5				¤g/L	
	i i	•	TM				0.1		1		 mg/L	
	<u> </u>	Chloride	110			····	1	l	l		mg/L	
		Chlorine	10			•	0.2		1		[x]	
		Cyanide Cyanide	[TAA 		· ·	 	0.005		 1		mg/L 	
	i . i	Reactivity	TM .	i i		· · · ·	100		1	 	i ing/Kg	
	1 1	• •	TM	i i		i i	0.02		i		ן צר /כייין mg/L	
	1 1		TM	l İ		i `	0.05		i	:	mg/L	
		Phenol	TM			i i	0.01	·	Ì	1	mg/L	
	1 1		TAA			i i	0.1	l i	1	-	mg/L	
		•	110	,		···· /	0.5		1	2	mg/L	
•		TOC TOX	TOC				0.5	4	I	1	mg/L	-
		Kjeldahi				•-•	5			- <u>-</u> -	US/L	
		i Nitrogen	TM			 •••	0.2			 		
	i i	1					v • £		ł	1, 1	ng/L 	. •
	ļ i	1	1	i i		i i			i	i		
	! !	1	1	i i		i i			i	i	i i	
	i . i	1			l	I 'İ			1	İ	i i	
	1.	I	!			i i	•		1	1	i i	
		1	!			I I	!		1	1	ı i	
		1				ļ ·		+	!	ļ		
			1						l	1	<u> </u>	
	i i	l	1				•		1	8	ļĮ	
	i i	i	i		•				ł	l t		
	l i	· ·	i .	i i		i i			i	i		
its 200-50 and	, 22666666666666	39422422556899		162884291			1322221	1222222222		22232873971	- 1 	
coments:									X Recover	y Control y Control	Limit Limit	75 125
	•	•	1			ABBREVIA		· · · · · · · · · · · · · · · · · · ·			••••••	
					matography		A	= Anal	ysis Not (Requested	1	
			TM :	Technico	AutoAnal			ND = Not	Detected		i	
			0	• Distille	ntion				mated Valu		roa, l	
		',			ganic Carb		•	LOQ = Limit			i	•
			TOX	= Total Or	ganic Halo	gens		NA = Not			ļ	
			1					* * Out (Of Specif	Cation		

Cancaster Laboratories Where quality is a science

Quality Control Summary

Duplicate Analysis Instrumental Analysis Data

٨

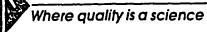
۱

-.

Client esignation	1						Matrix: W	VATER #22565555555555555555555555555555555555				
	Parameter sessessesses	An Heth	nalysis Date	1st Dup Desig.	1st Dup Result	109	Znd Dup Desig.	2nd Dup Result	Units	RPD	Cont Limi	
Í	Anion Scan		1	1	1 1		I	1	1 1		1	
1	••	110	1	l	1 1	0.1	•		mg/L		1 2	
1		• •	1	l			•		mg/L	Ì	j 20	
Į		• •	.!	l	····				mg/L	l	1 2	
ļ			1						mg/L		1 2	
1	••	• . •	!	!	····			·	mg/L		1 i	
}					· · · ·	1			mg/L		2	
1	Sulfate	1 31	ļ	1		0.5			mg/L			
i		TA	ļ	Í	·	0.1			 mg/L			
ļ	••	• •	1	ł	•••	1	ĺ				i z	
ļ			1			0.2	l		*	ļ		
	Cyanide Cyanide		ļ	1	l i	0.005		•-•			jf	
Í	Reactivity	ITM I	i	Í		100			lma/Kai		1 ;	
· i		TA	i	Í								
4	••	TAN	i	Í			l					
. 1	••	jtm j	ŕ	i			1			i	1 2	
Í		TA	i	i		0.1	1	1				
· 1		10	i	ĺ	· ··-	0.5					1 1	
1		TOC	i	Í				:			1 2	
		TOX	i	l		5		1				
	Kjeldahl	11	Î	i	i · j			i	=ər = 			
1	Witrogen		ļ	l	i i	0.2			mg/L			
ļ		i i	ļ	!							ŀ -	
1			ł	ł . 1				1				
	a i	1 1	ſ	i	i i			İ.	i i		1 -	
1	4	1 1	ſ	i	i i	•		i	i i		1	
	4	1 1	1	i	i i			i	i i		i	
ļ	<u>.</u>	1 1	1		i i			i	i i		i	
ļ	4 -		1	1	1 1			İ	i i		i í	
ļ	<u>, I</u>	Į Į		Į.	1 1	2		Í	i 1	•	i	
· •	<u>.</u>	ļļ	1	ļ	1 1			1	İ 1		İ	
	1		,	1	1 1	·		1			İ,	
		Nitrite-N Bromide Nitrate-N Phosphate Sulfate Chlorine Cyanide Cyanide Cyanide Reactivity Nitrite - N Nitrate - N Phenol Phosphorus Sulfate TOC TOX Kjeldahl	Nitrite-NICBromideICWitrate-NICPhosphateICSulfateICAmmonia-NTAAChlorineICCyanideTAACyanideIAACyanideIAANitrite - NTAANitrite - NTAAPhenolIAAPhosphortsTAASulfateICTOCTOCTOXTOXKjeldahlI	Nitrite-N1CBromide1CNitrate-N1CNitrate-N1CPhosphate1CSulfate1CArmonia-NTAAChlorine1CCyanideTAACyanideTAAReactivityTAANitrite - NTAANitrate - NTAAPhosphorusTAAPhenolTAASulfate1CTOCTOCTOXTOXKjeldahl1	Nitrite-N IC Bromide IC Nitrate-N IC Phosphate IC Sulfate IC Ammonia-N TAA Chlorine IC Cyanide TAA Reactivity TAA Nitrate - N TAA Nitrate - N TAA Nitrate - N TAA Phenol TAA Phosphorus TAA Sulfate IC TOC TOC TOX TOX	Nitrite-N IC Bromide IC Nitrate-N IC Phosphate IC Sulfate IC Mitrate-N IC Sulfate IC Anmonia-N TAA Chlorine IC Cyanide TAA Cyanide TAA Nitrite - N TAA Nitrate - N TAA Phenol TAA Phosphorus TAA TOC TOC TOX TOX	Nitrite-N: IC 0.1 Bromide IC 0.5 Nitrate-N IC 0.1 Phosphate IC 0.1 Phosphate IC 0.1 Sulfate IC 0.1 Namonia-N: TAA 0.5 Anmonia-N: TAA 0.1 Chlorine IC 0.1 Chlorine IC 0.2 Cyanide TAA 0.005 Cyanide TAA 0.02 Nitrate - N TAA 0.05 Nitrate - N TAA 0.05 Phenol TAA 0.01 Phosphorus TAA 0.1 Sulfate IC 0.5 TOC TOC 0.5 TOX TOX TOX 5	Nitrite-N IC 0.1 Bremide IC 0.5 Nitrate-N IC 0.1 Phosphate IC 0.1 Sulfate IC 0.1 Mitrate-N IC 0.1 Notate IC 0.1 Mosphate IC 0.5 Amonia-N TAA 0.5 I IC 0.1 I Chlorine IC I Chlorine IC I Chlorine IC I Chlorine IC I Chlorine IC I Chlorine IC I Reactivity TAA 0.005 I Reactivity TAA 0.02 Nitrate - N TAA 0.05 I Phenol TAA 0.5	Nitrite-N IC 0.1 Bromide IC 0.5 Nitrate-N IC 0.1 Phosphate IC 0.1 Sulfate IC 0.1 Namonia-N TAA 0.1 Anmonia-N TAA 0.1 Chlorine IC 0.1 Chlorine IC 0.2 Cyanide TAA 0.005 Reactivity TAA 0.02 Nitrite - N TAA 0.05 Nitrate - N TAA 0.01 Phenol TAA 0.1 Sulfate IC 0.5 TOC TOC 0.5 Itale IC 5 <td< td=""><td>I Chloride IC 0.2 mg/L Nitrite-N IC 0.1 mg/L Sromide IC 0.1 mg/L Nitrite-N IC 0.1 mg/L Nitrite-N IC 0.1 mg/L Phosphate IC 0.1 mg/L I Phosphate IC 0.1 mg/L I Sulfate IC 0.5 mg/L I Sulfate IC 0.5 mg/L I IC 0.1 mg/L I IC 0.1 mg/L I IC 0.2 X I IC 0.005 mg/L I Resctivity TAA 0.02 mg/L</td><td>Chloride IC 0.2 mg/L Nitrite-N IC 0.1 mg/L Bromide IC 0.5 mg/L Nitrate-N IC 0.1 mg/L Phosphate IC 0.1 mg/L Sulfate IC 0.5 mg/L Ammonia-W TAA 0.1 mg/L IAmmonia-W TAA 0.1 mg/L IC 0.1 mg/L IC 0.1 mg/L IC 0.1 mg/L IC 0.1 mg/L IC 0.2 X IC 0.005 mg/L IR Reactivity TAA 0.02 INitrate - N TAA</td></td<>	I Chloride IC 0.2 mg/L Nitrite-N IC 0.1 mg/L Sromide IC 0.1 mg/L Nitrite-N IC 0.1 mg/L Nitrite-N IC 0.1 mg/L Phosphate IC 0.1 mg/L I Phosphate IC 0.1 mg/L I Sulfate IC 0.5 mg/L I Sulfate IC 0.5 mg/L I IC 0.1 mg/L I IC 0.1 mg/L I IC 0.2 X I IC 0.005 mg/L I Resctivity TAA 0.02 mg/L	Chloride IC 0.2 mg/L Nitrite-N IC 0.1 mg/L Bromide IC 0.5 mg/L Nitrate-N IC 0.1 mg/L Phosphate IC 0.1 mg/L Sulfate IC 0.5 mg/L Ammonia-W TAA 0.1 mg/L IAmmonia-W TAA 0.1 mg/L IC 0.1 mg/L IC 0.1 mg/L IC 0.1 mg/L IC 0.1 mg/L IC 0.2 X IC 0.005 mg/L IR Reactivity TAA 0.02 INitrate - N TAA	

Cancaster Laboratories

Where quality is a science

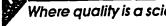

Quality Control Summary

Method Blank Hiscellaneous Wet Chemistry

	Sample Inform	mation	 Method Blank Ana 	alysis			Matrix: WATER				I
•	LLI Sample No.	Client Designation	Parameter	Hethod	Analysis Date	Neth Blank Desig.	Batch Number	Blank Result	 Units		-
	######################################		Alkalinity	*=========	:2552222225 	1886955682553 	195022252582822583; 	=======================================	1 1	:2522222 	:= 1
	1							•			1.
		! !	to pH 8.3	H I					mg/L		1
			`. to pH 4.5 Ammonia	н				•••	mg/L	1	!
			•						1		!
		!!!	Nitrogen	1 11					mg/L	0.5	!
	1	!!!	BOD	N I					mg/L	6	ļ.
	1 · .	!!!	C00	T1					mg/L	50	1
•	1		Free Cyanide	CO					mg/L	0.005	Į.
ł	1	ļ. ļ	Hexavalent								1
	1		Chromium	CO				•••	mg/L	0.01	I
			HBAS	CO			1		mg/L	0.02	1
	1		Oil and Grease	•					mg/L	2	
	1		Orthophosphate						mg/L	0.05	1
		1 1	рн	N N					1 1	0.01	
	1	1 1	Petroleum	1	l			ł			1
	1	1 1	Hydrocarbons	IR	1	ĺ			mg/L	0.2	ł
	ł	1 1	Total Solids	00	1	l	i		mg/L	10	Ì
	1	1 1	Total ·		I	i	1	1	ŀ		İ
	1 <u>.</u>	1.1	Dissolved		ł	· ·	· ·	1	1		İ
	1	1 1	Solids	00	1	I			mg/L	10	İ
	1	1 1	1 Total	1	ĺ	l	I	i ·	i i	ĺ	i
	I		Suspended	1	į –	ĺ	i . •	ĺ	i i		i :
	1	1 1	Solid<	00	ĺ	l	i '		mg/L	4	i
	1	1 1	Sulfide	1 11	I	i ·	ĺ	1	mg/L	0.1	i
	· ·	1 1	Total Hardness	11	· ·	l	1		mg/L	1	i
	1	1 1		1	Ì	Ì	Ì	ĺ	i		i
		1	11	i .	ĺ	İ	İ	İ	i		i
	1	1		1	ĺ	İ.	i	İ	i i		i
	1	1	1	1	1	i i	ĺ	ĺ	İ		i
	1	1	11	Í	İ	Í	i .	Í	i		i
	1	1 1	li i	Ì	İ	Ì	İ	İ	i		i
	1	1 1	ÍÍ	Í	İ	i	İ	i	i		i
	1	1	11	1	Í	İ	İ	ĺ	i		i
	1		ii ii	Í	İ		ĺ	· ·	i	İ	i
	1	1		1	İ	İ	i	İ	i	ĺ	i
	1	1	11	Í	Ì	i	İ	İ	ii		i
	32865952858661	******************	33468828888 6 86666888888888888888888888888		2272353822	23853555555555	, 85522222225253#8%8	6#20#668#8888		, 18552252	
			•	1.			ABBREVIATION KE				I
	Comments:	,			Titration			Analysis not	requested	ł	i
					Turbidimet			Not Detected	-		i
				CO =	Colorimetr	ic	j =	Estimated Val	ue below	LOQ	i
	•		•	IR =	Infrared S	pectrophotom	etry LOQ =	Limit of Quar	titation		i
					Gravimetri			Not Applicabl	e		i
					Distillati	on	M =	Meter			i
	·			00 =	Oven Dried	-					i
				•••••	•••••	•••••	••••••	•••••			-

.

ancaster Laboratories



Quality Control Summary Matrix Spike Analysis Miscellaneous Wet Chemistry -

۱

mple Infor		Matrix Spike A ===================================	•		*******		.=======	.#59222225	Matrix:	WATER		
LLI mole No.	Client Designation	Parameter				Unspiked Result			Spike Added	Spiked Result	•	TREC
-	2222222222222				• -				•	•	=======	
	1 1	Alkalinity	1	1	1	1	'		1	1	! !	 -
	i		н	1 [) 		1		1	r I	[mg/L]	
•			М	i i	ł	1 1					mg/L	
	i	Ammonia	1	, 	1	1	•			1 1	1	
		•	TI	1	1		0.5			 	 mg/L	
	i	-	H I	İ	1. 1		6		i	l]mg/L	
	1		TI I	1	1		50		i i		mg/L	
			co	i	i		0.005		ł			
•	i	Hexavalent	i	İ	i	i			i	r 1	1	
	i		со	· .	i .		0.01		i	! 	mg/L	
	i		co	i	i	· · · · ·	0.02		i		mg/L	
	i	Oil and Grease		1	ł		2		i		1 X 1	
	i	Orthophosphate	•	i	i	1 1	0.05				~ mg/L	
	i	pH	<u>ім</u> і	i	•	1	0.01		1	1	1	
	i	Petroleum	1	1	1	1 I 1 I	v.vI		1	1		
	1	Hydrocarbons		l l	1	• • • • •	0.2		l l		i mg/L	1
		Total Solids	•	l	1	1 I	10	l.	1		mg/L	
	i	Total		1	1				i	1 1	10975 (1 1	
	i .	Dissolved		i ·	1		•		1	1		
	i		loo	•	i İ		10		i	l	img/L [
	i '	Total		1	i				1	1	1 1	
	1	Suspended	i	ĺ	i	i			1	1		•
	i		00	Ì	i		L		ł		mg/L	
	1	••	İTI	i ·	i	· · · · ·	0.1		i	•	mg/L	
	1	Total Hardness	İTI 🛛	i	i		1		i	-	mg/L	
			i	i	i	i			1		3/ -	·
	1	ii	i	· ·	i	i i			i	Ì		•
	1	ÍÍ	i	i	i	i			i	i		
	1 .	ii	i	i	i	i			i	ľ	1 1	
•	1		i	i	i				· ·		i i	
	İ	ii	i .	i.	i	i i			1	i		
	i	ii ii	i	, i	i	i i			i .			
	1.		i	İ	i	i i				I		
	1		i	İ	i	i i			i		: :	
	Í.	ii ii	i	i	i	i i			i		: :	
		ii ii	i i	i	i				1	1		
.29238#281	1828228222222222		545622	285222222	2020530202		6822821	, I E E E E E E E E E E E	, 6035#203#;	, #52223232	, , 9622233	T228228:
mments:		•							X Recovery X Recovery			75 125
			•••••						•••••••			123
				_		ABBREVI <i>A</i>	TION K				1	
• •			•	= Titrati				= Ana	lysis Not	Requeste	a j	
				= Turbidi					Detected		i	
•			•	= Colorin					imated Val			
						hotometry		LOQ = Lim	it of Quar	ntitation	i	
			•	= Gravime			-	NA = Not	Applicabl	le	i	
				= Distill			,	H = Het			i	
			00	= Oven Dr	ied			* = Out	Of Specif	fication	i	,

Cancaster Laboratories Where quality is a science

Quality Control Summary Duplicate Analysis Miscellaneous Wet Chemistry

mple Infor		Duplicate Anal		12222222==	255555555	222222222	; ; # 2 ; : : : : : : : : : : : : : : : : : :	Matrix:				
LLI ample No.	Client Designation	Parameter	 Heth	Analysis Date	ist Dup Desig.	ist Dup Result	L02	2nd Dup Desig.	2nd Dup Result	1	RPD (%)	Contro Limit
		 Alkalinity		1822228222 	8998888888	#28822223 1	200022220: 	2862222233 1	242222222 1		******	1 22222 0
•	1		і]М					1	!			!
	1		10 H			·	1			mg/L		20
	1	Ammonia	10				1			mg/L		20
	1		ן דד					1	!			
		•	1 H	·			0.5			mg/L		20
			171			····	6			mg/L		20
	1						50			mg/L		20
							0.005			mg/L	·	20
	1	Hexavalent						ļ	1			1
							0.01			mg/L		20
• .	1		CO				0.02	ļ	I	mg/L	•	20
		Oil and Grease				····	2	. .		×		20
	!	Orthophosphate	CO			I	0.05	1		mg/L		20
	1	H PH	H	.		I	0.01	I		1 1		20
	1	Petroleum		[I [1	1	1 1		È
		Hydrocarbons	IR			I	0.2	l		mg/L		20
			00				10	İ		mg/L		1 20
	1.	Total	1	l ·		i i		İ	i	i i		i -
		Dissolved		l i		i i		i ·	İ.	i i		i
	1 ·	Solids	00	İ		j j	10	i	i	mg/L		1 20
	1	Total	1			i ì			i	i i		i
	1	Suspended	1 1	i i		i i		i	i	i i		i
		Solids	00	•		i i	• 4		j	mg/L -		i 20
		Sulfide	111	i i		j j	0.1	•		mg/L	•	20
	1	Total Hardness	TI I	i i		i i	1	· ·		mg/L		20
	1	11	i i	i i		i i		•	i			1
	1 .	11	i	i · i		i i			i	i i		ł
	I .	li i	i	i i		i i			i	i . i		
•	1	11 - 1	i i	i i		i			1	i i		-
	Í		i	i i		i i			i	1 1		!
	1	ii	i.	i i		i	•					-
	İ		i			1	•		¦.			
	Ì	ii	i	i i		1			1			
	İ		i	i i		1			1 }			
	Ì	ii	i i	i. i	•							1
	1	ii							1 1			!
	************	 : : : : : : : : : : : : : : : : : :		: 52222229999	********	 	 	 :================	 			
			•	-		•••••						
omments:								ABBREVIA				
					TI = Tit				= Ana	lysis N	ot Requ	ested
				•		bidimetric	;		ND = Not	Detect	ed	•
. •		•			-	orimetric			J = Est	imated	Value b	elow LO
				1		rared Spec	trophotom	netry	LOQ= Lim	it of Q	uantita	tion
	•			1	G = Gra	vimetric			NA = Not	Applic	able	· _ · •
						tillation			N = Het		-	
				· · j	00 = Ove	n Dried	-			Of Spe	cificat	ion [.]
				•			-					

APPENDIX C

MSDS SHEETS FOR CHEMICALS OF CONCERN

t

CREOSOTE, COAL TAR

ССТ

Comment Syns		Yellow to black Tarry odge	& THE NALARDS	H. NAZARD ASSESSMENT CODE
Comments of Design of	1 May 9 May 9	ant at water.	6.1 Place Paints > 1877 C.C. 6.2 Placements Limits to Ain Nat partners 6.3 Pive Estimation Agents Dry channel. earlier Acads of Isan 6.4 Pive Estimation Agents Nat to be	(Boo Hallord Assessment Handbook) A-T-U-X-Y
Call tre des	nemone decherune meteri heen and politicath commo	egendes.	Land Wear may to restriction 4.5 Synaptic Hearts of Cambuston Products Data and seconds 4.6 Seconds in Star Heart, containing Start, antike a tyrined. 4.7 Synthes Temperature SITP 4.4 Described Hearts Heartsonal	II. HAZARD CLASSIFICATIONS IL: Code of Podent Republicate Combuston lead IL: NAS Haund Rating for Bulk Water Transportance Codepary Reting
Fire	Contoursess. Emigrand with this does not con- water may be instruction	NGAN, TOSTI OF CARBON GLONDS) on lang	A.S. Burning Robe Data rati ordinatio Advantatio Phane Temperature Data rati ordinatio Advantatio Phane Temperature Data rati ordinatio Alt Statisticaments Altre Shad Rober Data rati ordinatio Alt Phane Temperature Data rationality	Pre. 1 Neadle 2 Vaper Intent. 2 Lature or Schel Intent
Exposure	# SWALLOWED and w	•	 CHEMICAL REACTIVITY Associaty With Walker No reaction Reactivity with Common Mathematic No reaction Standardy Order Common Mathematic No reaction Standardy Organization for Autom and Countering Agents for Autom and Countering Protymerations Not performer Inductivity Performance Protymerations Not performer Inductivity ResourceMatter National Performance Protymerations Resource of Performance Not performer Inductivity ResourceMatter Protymerations Resource of Performance Protymerations Resource of Performance Resource of Performance 	Accorde Elhell
Water Pollution	Enast of tow concentration Fouring to shoreans, May be derived of a Mony local needs and in neither Mony local neets and in neither			12. PRYSICAL AND CHEMICAL PROPERTIES 12.1 Physical State at 15°C and 1 parts Local 12.3 Mathemat Wagnet Michael 12.5 Beating Parts at 1 parts >366°P = >160°C = >365°K
(See Assperate Linus universit Magnetation co Statut to ret	SE TO DISCHARCE Mathematic Humathanaki Humathanaki Humathanaki Humathanaki Humathanaki Humathanaki	2. LABEL 3.1 Conserv: Nore 2.5 Class Not perman	K. WATER FOLLUTION A.1 Aquate Towards Gues not evolutio A.2 Winardow Towards Gues not evolutio A.5 Estaged Graphs Consult (BOOp Case not evolutio A.4 Found Chain Communication Paramitic Name	12.4 Preating Patie Net partners 12.5 Critical Temperature: Net partners 12.5 Critical Presence Net partners 12.7 Specific Growny: 1.55-1.00 at 19°C (specific 12.8 Uspect Survive: Instance (set.) 15 Synaurom = 0.019 Num at 20°C 12.9 Uspect Gas Specific Growny: 20 Synaurom = 0.020 Num at 20°C
)	4. GESERVALLE CHARACTERISTICS 4.1 Physicael Diato (an addpoint): Logad 4.2 Caterr Yollow in Brown to Baga 4.3 Other Crosses or sury; anomalic		Has portness 12.11 Rate of Security Heats of Vapor (Gas): Has portness 12.12 Latent Heat of Vaportastanc Hot pertrurt 12.13 Heat of Combustion: Lost,) —12.500 Blacks = ~4.000 cally = ~200 X 10 ² Jag 13.14 Heat of Decemponities Hot pertrurt
gogyes ord/a 5.2 Symptoms feato cause terror cause terror cause terror cause terror cause terror cause terror cause terror physical, terr side age with watter dra way watter dra way to the terror f. Theorement Link Li Sheri Terro Inter Li Tassetty by terror	pro Epolyment: Alexan recor anote consults or a using Economic Yutanis of turns of open and median generic context and median generic and tradition generic and the second and the second and the second to report and the second and tradem of tradem of the second tradem of tradem of the second and tradem of tradem of tradem of the second tradem of tradem of tradem of tradem tradem of tradem of tradem of tradem of tradem tradem of tradem of tradem of tradem of tradem of tradem tradem of tradem of tradem of tradem of tradem of tradem tradem of tradem of tradem of tradem of tradem of tradem tradem of tradem	ματο το 5 φ/τη και αυταλή of shile.	SUMPPING DEFORMATION L1 Gruppes of Purity Whos process of verses factors, expanding on Soling part, Al have since yrearies. L2 Sharep Temperiture Arabit L3 Inst Amenathers in the resument L4 Versage Open (Rene arress)	12.15 Meet of Solution Net Sorvien 12.25 Meet of Paristic Data net overlage 12.35 Meet of Paristic Data net overlage 12.35 Limiting Yahan Cate net overlage 12.37 Anid Yapar Processes Line
And high space	neuture orgineeant, The (nitest Charosteristics: Fe ter a low norshee' contag: Date not available	i cause matteriale militalen such frat personnel wil Reat a turneentiy. Iy peners stat milital. May cause pain and essend-	NOT	13

ССТ

CREOSOTE, COAL TAR

12.17 SATURATED LIQUID DENSITY		12.18 LIQUID HEAT CAPACITY		12.19 LIQUID THERMAL CONDUCTIVITY		12.20 LIQUID VISCOSITY	
Temperature (degrees F)	Pounds per cubic foot (estimate)	Temperature (degrees F)	British thermal unit per pound-F (estimate)	Temperature (degrees F)	British thermal unit-inch per hour- square foot-F	Temperature (degrees F)	Centipoise
51	67.379	51	,400		N	67.73	12.000
52	67.349	52	,400		0	ľ	
53 54	67.309	53	,400		I T I		
54	67.260	54	.400	. '		1	
55 56 57	67.240 67.209	55 56	.400		E P		
30	67.169	50 57	.400				
57 58	67.139	58 '	.400		1 7 1		
59	67.099	59	.400				
60	67.070	60	.400		N I		
61	67.030	61	.400		Ē		
62	67.000	62	.400		N N		
63	66.969	63	.400		Ι Τ Ι		
64	66.929	64	400		1		
65	66.900	65	.400				
66	66.860	66	.400		1 1	1	
67	66.830	67	.400				
68	66.790	68	.400			1	
69	66.759	69	,400				
70	65.719	70	.400			[
71	66.690 66.650	71	.400				
72	66.620	72 73	.400 .400				
73 74	68.580	73	.400		•		
75	68.549	75	.400			1	
75	66.509	78	400	•			

12.24 IDEAL GAS HEAT CAPACITY		12.23 SATURATED VAPOR DENSITY		12.22 SATURATED VAPOR PRESSURE		12.21 SOLUBILITY IN WATER	
re British thermal un F) per pound-F	Temperature (degrees F)	Pounds per cubic foot	Temperature (degrees F)	Pounds per square inch	Temperature (degrees F)	Pounds per 100 pounds of water	Temperature (degrees F)
NO		NO		N O		i N	
T P		P T		T P		5 0	
E		ER	•	E		U B	
I N				I N		E	
EN		EN		E N T	,	•	
					·		
	-	E R T I N E N T		E A T I N E N T	•	U 8 L E	

۰.

Occupational Health Guideline for Coal Tar Pitch Volatiles

INTRODUCTION

This guideline is intended as a source of information for employees, employers, physicians, industrial hygienists, and other occupational health professionals who may have a need for such information. It does not attempt to present all data; rather, it presents pertinent information and data in summary form.

SUBSTANCE IDENTIFICATION

Anthracene

- Formula: C10H10
- Synonyms: None

• Appearance and odor: Pale green solid with a faint aromatic odor.

Phenanthrene

- Formula: C14H10
- Synonyms: None
- Appearance and odor: Colorless solid with a faint aromatic odor.

Pyrene

- Formula: C10H10
- Synonyms: None
- Appearance: Bright yellow solid

Carbazole

- Formula: C₁₂H₉N
- Synonyms: None

• Appearance and odor: Colorless solid with a faint aromatic odor.

Benzo(a)pyrene

- Formula: C₁₀H₁₂
- Synonyms: BaP, 3,4-benzopyrene

• Appearance and odor: Colorless solid with a faint aromatic odor.

PERMISSIBLE EXPOSURE LIMIT (PEL)

The current OSHA standard for coal tar pitch volatiles is 0.2 milligram of coal tar pitch volatiles per cubic meter of air (mg/m³) averaged over an eight-hour work shift. NIOSH has recommended that the permissible exposure limit for coal tar products be reduced to 0.1 mg/m³ (cyclohexane-extractable fraction) averaged over a work shift of up to 10 hours per day, 40 hours per week, and that coal tar products be regulated as occupational carcinogens. The NIOSH Criteria Document for Coal Tar Products and NIOSH Criteria Document for Coke Oven Emissions should be consulted for more detailed information.

HEALTH HAZARD INFORMATION

• Routes of exposure

Coal tar pitch volatiles can affect the body if they are inhaled or if they come in contact with the eyes or skin.

• Effects of overexposure

Repeated exposure to coal tar pitch volatiles has been associated with an increased risk of developing bronchitis and cancer of the lungs, skin, bladder, and kidneys. Pregnant women may be especially susceptible to exposure effects associated with coal tar pitch volatiles. Repeated exposure to these materials may also cause sunlight to have a more severe effect on a person's skin. In addition, this type of exposure may cause an allergic skin rash.

Reporting signs and symptoms

A physician should be contacted if anyone develops any signs or symptoms and suspects that they are caused by exposure to coal tar pitch volatiles.

Recommended medical surveillance

The following medical procedures should be made available to each employee who is exposed to coal tar pitch volatiles at potentially hazardous levels:

These recommendations reflect good industrial hygiene and medical surveillance practices and their implementation will assist in achieving an effective occupational health program. However, they may not be sufficient to achieve compliance with all requirements of OSHA regulations.

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Centers for Disease Control National Institute for Occupational Safety and Health U.S. DEPARTMENT OF LABOR

Occupational Safety and Health Administration

1. Іпінаі мешсаї Елатіпаноп:

-A complete history and physical examination: The purpose is to detect pre-existing conditions that might place the exposed employee at increased risk, and to establish a baseline for future health monitoring. Examination of the oral cavity, respiratory tract, bladder, and kidneys should be stressed. The skin should be examined for evidence of chronic disorders, for premalignant and malignant lesions, and evidence of hyperpigmentation or photosensitivity.

-Urinary cytology: Coal tar pitch volatiles are associated with an excess of kidney and bladder cancer. Employees having 5 or more years of exposure or who are 45 years of age or older should have a urinary cytology examination.

-Sputum cytology: Coal tar pitch volatiles are associated with an excess of lung cancer. Employees having 10 or more years of exposure or who are 45 years of age or older should have a sputum cytology examination.

 $-14^{"}$ x 17" chest roentgenogram: Coal tar pitch volatiles are associated with an excess of lung cancer. Surveillance of the lungs is indicated.

-FVC and FEV (1 sec): Coal tar pitch volatiles are reported to cause an excess of bronchitis. Periodic surveillance is indicated.

—A complete blood count: Due to the possibility of benzene exposure associated with coal tar pitch volatiles, a complete blood count is considered necessary to search for leukemia and aplastic anemia.

-Skin disease: Coal tar pitch volatiles are defatting agents and can cause dermatitis on prolonged exposure. Persons with pre-existing skin disorders may be more susceptible to the effects of these agents.

2. Periodic Medical Examination: The aforementioned medical examinations should be repeated on an annual basis, and semi-annually for employees 45 years of age or older or with 10 or more years' exposure to coal tar pitch volatiles.

Summary of toxicology

Coal tar pitch volatiles (CTPV) are products of the destructive distillation of bituminous coal and contain polynuclear aromatic hydrocarbons (PNA's). These hydrocarbons sublime readily, thereby increasing the amounts of carcinogenic compounds in working areas. Epidemiologic evidence suggests that workers intimately exposed to the products of combustion or distillation of bituminous coal are at increased risk of cancer at many sites. These include cancer of the respiratory tract, kidney, bladder, and skin. In a study of coke oven workers, the level of exposure to CTPV and the length of time exposed were related to the development of cancer. Coke oven workers with the highest risk of cancer were those employed exclusively at topside jobs for 5 or more years, for whom the increased risk of

aying from lung cancer was 10-fold; all coke oven workers had a 7-1/2-fold increase in risk of dying from kidney cancer. Although the causative agent or agents of the cancer in coke oven workers is unidentified, it is suspected that several PNA's in the CTPV generated during the coking process are involved. Certain industrial populations exposed to coal tar products have a demonstrated risk of skin cancer. Substances containing PNA's which may produce skin cancer also produce contact dermatitis; examples are coal tar, pitch, and cutting oils. Although allergic dermatitis is readily induced by PNA's in guinea pigs, it is only rarely reported in humans from occupational contact with PNA's; these have resulted largely from the therapeutic use of coal tar preparations. Components of pitch and coal tar produce cutaneous photosensitization; skin eruptions are usually limited to areas exposed to the sun or ultraviolet light. Most of the phototoxic agents will induce hypermelanosis of the skin; if chronic photodermatitis is severe and prolonged, leukoderma may occur. Some oils containing PNA's have been associated with changes of follicular and sebaceous glands which commonly take the form of acne. There is evidence that exposures to emissions at coke ovens and gas retorts may be associated with an increased occurrence of chronic bronchitis. Coal tar pitch volatiles may be associated with benzene, an agent suspected of causing leukemia and known to cause aplastic anemia.

CHEMICAL AND PHYSICAL PROPERTIES

Physical data—Anthracene

1. Molecular weight: 178.2

2. Boiling point (760 mm Hg): 340 C (644 F)

3. Specific gravity (water = 1): 1.24

4. Vapor density (air = 1 at boiling point of anthracene): 6.15

5. Melting point: 217 C (423 F)

6. Vapor pressure at 20 C (68 F): Less than 1 mm Hg

7. Solubility in water, g/100 g water at 20 C (68 F): Insoluble

8. Evaporation rate (butyl acetate = 1): Not applicable

Physical data—Phenanthrene

1. Molecular weight: 178.2

2. Boiling point (760 mm Hg): 340 C (644 F)

3. Specific gravity (water = 1): 1.18

4. Vapor density (air = 1 at boiling point of phenanthrene): 6.15

5. Melting point: 100.5 C (213 F)

6. Vapor pressure at 20 C (68 F): Less than 1 mm Hg

7. Solubility in water, g/100 g water at 20 C (68 F): Insoluble

8. Evaporation rate (butyl acetate = 1): Not applicable

• Physical data—Pyrene

1. Molecular weight: 202.3

2. Boiling point (760 mm Hg): Greater than 360 C (greater than 680 F)

3. Specific gravity (water = 1): 1.28

4. Vapor density (air = 1 at boiling point of pyrene):
6.9

5. Melting point: 150.4 C (303 F)

6. Vapor pressure at 20 C (68 F): Less than 1 mm Hg 7. Solubility in water, g/100 g water at 20 C (68 F): Insoluble

8. Evaporation rate (butyl acetate = 1): Not applicable

• Physical data-Carbazole

1. Molecular weight: 167.2

2. Boiling point (760 mm Hg): 355 C (671 F)

3. Specific gravity (water = 1): Greater than 1 4. Vapor density (air = 1 at boiling point of carbazole): 5.8

5. Melting point: 246 C (475 F)

6. Vapor pressure at 20 C (68 F): Less than 1 mm Hg

7. Solubility in water, g/100 g water at 20 C (68 F): Insoluble

8. Evaporation rate (butyl acetate = 1): Not applicable

Physical data—Benzo(a)pyrene

1. Molecular weight: 252.3

2. Boiling point (760 mm Hg): Greater than 360 C (greater than 680 F)

3. Specific gravity (water = 1): Greater than 1 4. Vapor density (air = 1 at boiling point of benzo(a)pyrene): 8.7

5. Melting point: 179 C (354 F)

6. Vapor pressure at 20 C (68 F): Less than 1 mm Hg

7. Solubility in water, g/100 g water at 20 C (68 F): Insoluble

8. Evaporation rate (butyl acetate = 1): Not applicable

Reactivity

1. Conditions contributing to instability: None hazardous

2. Incompatibilities: Contact with strong oxidizers may cause fires and explosions.

3. Hazardous decomposition products: None

4. Special precautions: None

Flammability

1. Flash point: Anthracene: 121 C (250 F) (closed cup); Others: Data not available

2. Autoignition temperature: Anthracene: 540 C (1004 F); Others: Data not available

3. Flammable limits in air, % by volume: Anthracene: Lower: 0.6; Others: Data not available

4. Extinguishant: Foam, dry chemical, and carbon dioxide

Warning properties

Grant states that "coal tar and its various crude fractions appear principally to cause reddening and squamous eczema of the lid margins, with only small erosions of the corneal epithelium and superficial changes in the stroma, which disappear in a month following exposure. Chronic exposure of workmen to tar fumes and dust has been reported to cause conjunctivitis and discoloration of the cornea in the palpebral fissure, either near the limbus or, in extreme cases, across the whole cornea. Occasionally, epithelioma of the lid margin has been attributed to contact with coal tar."

MONITORING AND MEASUREMENT PROCEDURES

General

Measurements to determine employee exposure are best taken so that the average eight-hour exposure is based on a single eight-hour sample or on two four-hour samples. Several short-time interval samples (up to 30 minutes) may also be used to determine the average exposure level. Air samples should be taken in the employee's breathing zone (air that would most nearly represent that inhaled by the employee).

Method

Coal tar products may be sampled by collection on a glass fiber filter with subsequent ultrasonic extraction and weighing. An analytical method for coal tar pitch volatiles is in the *NIOSH Manual of Analytical Methods*, 2nd Ed., Vol. 1, 1977, available from the Government Printing Office, Washington, D.C. 20402 (GPO No. 017-033-00267-3).

RESPIRATORS

· Good industrial hygiene practices recommend that engineering controls be used to reduce environmental concentrations to the permissible exposure level. However, there are some exceptions where respirators may be used to control exposure. Respirators may be used when engineering and work practice controls are not technically feasible, when such controls are in the process of being installed, or when they fail and need to be supplemented. Respirators may also be used for operations which require entry into tanks or closed vessels, and in emergency situations. If the use of respirators is necessary, the only respirators permitted are those that have been approved by the Mine Safety and Health Administration (formerly Mining Enforcement and Safety Administration) or by the National Institute for Occupational Safety and Health.

• In addition to respirator selection, a complete respiratory protection program should be instituted which includes regular training, maintenance, inspection, cleaning, and evaluation.

PERSONAL PROTECTIVE EQUIPMENT

• Employees should be provided with and required to use impervious clothing, gloves, face shields (eight-inch minimum), and other appropriate protective clothing necessary to prevent skin contact with condensed coal tar pitch volatiles, where skin contact may occur. • If employees' clothing may have become contaminated with coal tar pitch volatiles, employees should change into uncontaminated clothing before leaving the work premises.

Clothing contaminated with coal tar pitch volatiles

should be placed in closed containers for storage until it can be discarded or until provision is made for the removal of coal tar pitch volatiles from the clothing. If the clothing is to be laundered or otherwise cleaned to remove the coal tar pitch volatiles, the person performing the operation should be informed of coal tar pitch volatiles's hazardous properties.

• Employees should be provided with and required to use splash-proof safety goggles where condensed coal tar pitch volatiles may contact the eyes.

SANITATION

Workers subject to skin contact with coal tar pitch volatiles should wash with soap or mild detergent and water any areas of the body which may have contacted coal tar pitch volatiles at the end of each work day.
Employees who handle coal tar pitch volatiles should wash their hands thoroughly with soap or mild detergent and water before eating, smoking, or using toilet facilities.

• Areas in which exposure to coal tar pitch volatiles may occur should be identified by signs or other appropriate means, and access to these areas should be limited to authorized persons.

COMMON OPERATIONS AND CONTROLS

The following list includes some common operations in which exposure to coal tar pitch volatiles may occur and control methods which may be effective in each case:

Operation

Liberation from extraction and packaging from coal tar fraction of coking

Use as a binding agent in manufacture of coal briquettes used for fuel; use as a dielectric in the manufacture of battery electrodes, electric-arc furnace electrodes, and electrodes for alumina reduction

Use in manufacture of roofing felts and papers and roofing

Process enclosure; local exhaust ventilation; general dilution ventilation; personal protective equipment

Controls

Process enclosure; local exhaust ventilation; general dilution ventilation; personal protective equipment

Process enclosure; local exhaust ventilation; general dilution ventilation; personal protective equipment

Operation

Use for protective coatings for pipes for underground conduits and drainage; use as a coating on concrete as waterproofing and corrosion-resistant material; use in road paving and sealing

Use in manufacture and repair of refractory brick; use in production of foundry cores; use in manufacture of carbon ceramic items Process enclosure; local exhaust ventilation; general dilution ventilation; personal protective

equipment

Controls

Process enclosure; local exhaust ventilation; general dilution ventilation; personal protective equipment

3

EMERGENCY FIRST AID PROCEDURES

In the event of an emergency, institute first aid procedures and send for first aid or medical assistance.

Eye Exposure

If condensed coal tar pitch volatiles get into the eyes, wash eyes immediately with large amounts of water, lifting the lower and upper lids occasionally. If irritation is present after washing, get medical attention. Contact lenses should not be worn when working with these chemicals.

Skin Exposure

If condensed coal tar pitch volatiles get on the skin, wash the contaminated skin using soap or mild detergent and water. Be sure to wash the hands before eating or smoking and to wash thoroughly at the close of work.

Breathing

If a person breathes in large amounts of coal tar pitch volatiles, move the exposed person to fresh air at once. If breathing has stopped, perform artificial respiration. Keep the affected person warm and at rest. Get medical attention as soon as possible.

Rescue

Move the affected person from the hazardous exposure. If the exposed person has been overcome, notify someone else and put into effect the established emergency rescue procedures. Do not become a casualty. Understand the facility's emergency rescue procedures and know the locations of rescue equipment before the need arises.

SPILL AND DISPOSAL PROCEDURES

• Persons not wearing protective equipment and clothing should be restricted from areas of releases until cleanup has been completed.

• If coal tar pitch volatiles are released in hazardous concentrations, the following steps should be taken: 1. Ventilate area of spill.

RESPIRATORY PROTECTION FOR COAL TAR PITCH VOLATILES

Condition	Minimum Respiratory Protection* Required Above 0.2 mg/m*		
Particulate and Vapor Concentration			
2 mg/m³ or less	A chemical cartridge respirator with an organic vapor cartridge(s) and with a fume or high-efficiency filter.		
	Any supplied-air respirator.		
	Any self-contained breathing apparatus.		
10 mg/m³ or less	A chemical cartridge respirator with a full facepiece and an organic vapor cartridge(s) and with a fume or high-efficiency filter.		
	A gas mask with a chin-style or a front- or back-mounted organic vapor canister and with a full facepiece and a fume or high-efficiency filter.		
	Any supplied-air respirator with a full facepiece, helmet, or hood.		
	Any self-contained breathing apparatus with a full facepiece.		
200 mg/m² or iess	• A Type C supplied-air respirator operated in pressure-demand or other positive pressure or continuous-flow mode.		
	A powered air-purifying respirator with an organic vapor cartridge and a high- efficiency particulate filter.		
400 mg/m³ or less	A Type C supplied-air respirator with a full facepiece operated in pressure- demand or other positive pressure mode or with a full facepiece, helmet, or hood operated in continuous-flow mode.		
Greater than 400 mg/m³ or entry and escape from Inknown concentrations	Self-contained breathing apparatus with a full facepiece operated in pressure- demand or other positive pressure mode.		
	A combination respirator which includes a Type C supplied-air respirator with a full facepiece operated in pressure-demand or other positive pressure or continu- ous-flow mode and an auxiliary self-contained breathing apparatus operated in pressure-demand or other positive pressure mode.		
ire Fighting	Self-contained breathing apparatus with a full facepiece operated in pressure- demand or other positive pressure mode.		
scape	Any gas mask providing protection against organic vapors and particulates, including pesticide respirators which meet the requirements of this class.		
	Any escape self-contained breathing apparatus.		

1

*Only NIOSH-approved or MSHA-approved equipment should be used.

safe manner for reclamation or for disposal in sealed containers in a secured sanitary landfill.

• Waste disposal method:

Coal tar pitch volatiles may be disposed of in sealed containers in a secured sanitary landfill.

REFERENCES

American Conference of Governmental Industrial Hygienists: "Coal Tar Pitch Volatiles," Documentation of the Threshold Limit Values for Substances in Workroom Air (3rd ed., 2nd printing), Cincinnati, 1974.
Bingham, E.: "Environmental Carcinogens," Archives of Environmental Health, 19:779-85, DES 1969.

Bingham, E.: "Thresholds in Cancer Inductions," Archives of Environmental Health, 22:692-95, June 1971.
'Coke Oven Emissions," Federal Register, 40:32268-32282, July 31, 1975.

• Committee on Biologic Effects of Atmospheric Pollutants, Division of Medical Sciences, National Research Council: *Particulate Polycyclic Organic Matter*, National Academy of Sciences, Washington, D.C., 1972.

• Fannick, N., et al.: "Exposure to Coal Tar Pitch Volatiles at Coke Ovens," American Industrial Hygiene Association Journal, 33:461-468, 1972.

• Grant, W. M.: Toxicology of the Eye (2nd ed.), C. C. Thomas, Springfield, Illinois, 1974.

• Hittle, D. C., and Stukel, J. J.: "Particle Size Distribution and Chemical Composition of Coal-Tar Fumes," *American Industrial Hygiene Association Journal*, 37:199-204, 1976.

• Hygienic Information Guide No. 89 - Coal Tar Pitch Volatiles, Commonwealth of Pennsylvania, Department of Environmental Resources, Bureau of Occupational Health, 1972.

tional Health and Safety, McGraw-Hill, New York, 1971.

Lloyd, J. W.: "Long-Term Mortality Study of Steelworkers. V. Respiratory Cancer in Coke Plant Workers," Journal of Occupational Medicine, 13:53-68, 1971.
Mazumdar, S., et al.: "An Epidemiological Study of Exposure to Coal Tar Pitch Volatiles among Coke Oven Workers," Journal of the Air Pollution Control Association, 25:382-389, 1975.

• National Institute for Occupational Safety and Health, U.S. Department of Health, Education, and Welfare: Criteria for a Recommended Standard Occupational Exposure to Coal Tar Products. HEW Publication No. (NIOSH) 78-107, U.S. Government Printing Office, Washington, D.C., 1977.

• National Institute for Occupational Safety and Health, U.S. Department of Health, Education, and Welfare: Criteria for a Recommended Standard Occupational Exposure to Coke Oven Emissions, HEW Publication No. HSM 73-11016, GPO No. 017-033-00015, U.S. Government Printing Office, Washington, D.C., 1973.

• Redmond, C. K., et al.: "Long-Term Mortality Study of Steelworkers. VI. Mortality from Malignant Neoplasms Among Coke Oven Workers," *Journal of Occupational Medicine*, 14:621-629, 1972.

• Scala, R. A.: "Toxicology of PPOM," Journal of Occupational Medicine, 17:784-788, 1975.

• Tye, R., and Stemmer, K. L.: "Experimental Carcinogenesis of the Lung. II. Influence of Phenols in the Production of Carcinoma," *Journal of the National Cancer Institute*, 39:175-179, 1967. INDCO, Inc.

TEL No. 609 456 1904 May 24,91 16:30 P.02

Material Safety Data Sheet

Identity: MONCOSOLVE 210 INDCO MONCOSOLVE 210 Page 1 Section I - Manufacturer's Information Emergency Phone Number: (609) 456-6100 Information Phone Number: (609) 456-6100 INDCO Inc. N, Railroad & Essex Sts. Gloucester City, N.J. 08030 Updated: 08/14/1988 Section II - Hazardous Ingredients/Identity Information CAS Number OSHA PEL Hazardous Components ACGIH TLV Section IIa - Regulatory Information DOT Proper Shipping Name: NA DOT Class: NONE DOT Number: NA RCLA Status: NA CERLA Status: NA SARA/Title III - CERLA List: Mild Cleaning Comp Material Name CAS Number 8. Reportable Quantity SARA/Title III - Toxic Chemical List: NA Material Name CAS Number & Reportable Quantity TSCA Inventory Status: All components listed on TSCA Inventory. ╡⋸⋶⋠⋽⋧⋧⋶⋺⋧⋳⋼⋵⋧⋳⋺⋳⋳∊⋼⋇⋵⋏∊⋼⋹⋐⋬⋬⋑⋑⋬⋐⋧⋐⋸⋧⋧⋹⋸⋧⋺⋹⋺⋹⋺⋹⋺⋹⋺⋹⋺⋬⋬⋨⋬⋧⋧⋧⋧⋧⋨⋎⋼∊∊∊⋺⋺⋍⋵⋰ Section III - Physical/Chemical Characteristics Specific Gravity (H2O=1): Boiling Point: > 212.0 F 0.8650 Melting Point: NA Vapor Pressure (mm Hg): NA Vapor Density (air=1): NA Evaporation Rate (water=1):> 1.00 Solubility in Water: OH: 7.00 Complete Appearance and Odor: Yellow - Orange clear liquid Citrus blend odor, orange predominates. 222289228939797939779397744446668¥\$\$\$**2**522257777444434\$\$ Section IV - Fire and Explosion Hazard Data Flash Point: > 140.0 F Flammable Limits LEL: NA UEL: NA Method Used:

TEL No. INDCO, Inc. 609 456 1904 May 24,91 16:31 P.03 Identity: MONCOSOLVE 210 INDCO MONCOSOLVE 210 Page 2 <u>∊⋼⋼⋼⋼⋼⋼⋼⋴∊∊∊∊∊⋼⋼⋼</u>⋧⋼⋼⋷⋧⋼⋼⋼∊∊∊⋼⋼⋑₽⋜⋒⋸⋷⋵∊⋼⋳⋨⋨⋣⋐⋻⋸⋟⋓⋳⋸⋹⋹⋺⋫⋫⋹⋳⋼⋒⋓⋼⋫⋺⋼⋫⋬⋸⋬⋶∊∊∊ TOC Extinguishing Media: CO2, Water, Foam, Dry Chemical Special Fire Fighting Procedures: Protective clothing and pressure-demand, self-contained breathing apparatus should be worn by firefighters in areas where these products are stored, especially in a confined area. Unusual Fire and Explosion Hazards: NONE SPECIAL <u>▲⋳⋳⋺⋾⋷⋍⋷⋷∊⋼⋼⋼⋼⋼⋵</u>⋧⋐⋕⋣⋧⋣⋸⋳⋵⋶⋡⋧⋥⋩⋧⋠⋧⋧⋐⋧⋹⋧⋧⋧⋧⋧⋧⋧⋧⋧⋧⋧⋧⋧⋧⋧⋧⋧⋧⋧⋧⋧⋧⋧⋧⋧⋧⋧⋧⋧⋧∊∊⋼⋼⋼⋧⋧⋡⋕⋣⋳⋼⋼∊∊ Section V - Reactivity Data . Stability: Stable Conditions to Avoid: NA Incompatibility (Materials to Avoid): Strong acids and oxidizing agents Hazardous Decomposition or Byproducts: CO, CO2, plus misc. unknowns in small amounts. Hazardous Polymerization: May Not Occur Conditions to Avoid: NA Section VI - Health Hazard Data Route(s) of Entry: Inhalation? Moderate Skin? Moderate Ingestion? Moderate Health Hazards (Acute and Chronic): Acute and chronic health hazards are difficult to accurately assess for mixtures. In general see the first aid section for acute effects and long term effects would have to be derived from these immediate results. Specific chronic effects can be studied from the individual hazardous chemicals as indicated under Section II as the best guess without extensive laboratory studies. Carcinogenicity: NTP? None known IARC Monographs? None known OSHA Regulated? None known Signs and Symptoms of Exposure: Skin contact will cause itching and redness. Eyes will start to feel a strong burning sensation, as will mucous membranes. Medical Conditions Generally Aggravated by Exposure: A knowledge of the available toxicology information and of the physical properties of the material suggests that exposure is unlikely to aggravate existing medical conditions. However, due to the widely varying uses and personal exposures possible, an individual will have to evaluate his/her particular situation. Emergency and First Aid Procedures: EYES: Wash with water for 15 minutes, see a doctor. SKIN: Wash with water, apply skin lotion if redness persists. OTHER: Wash mouth and other areas with water. See a doctor if ingested. INGESTION: Wash out mouth and other contacted parts with water. Never give anything to an unconscious person. If conscious give one or two glasses of water and..... INDUCE VOMITING BY: -Place finger at back of victim's throat, or

Identity: MONCOSOLVE 210 INDCO MONCOSOLVE 210 Page 3 -Use 2 teaspoons of salt in a glass of warm water, or

(10 gms salt in 200 ml warm water) -use one ounce of syrup of ipecac

When retching and vomiting begin, place the victim's face down with head lower than hips. This prevents vomitus from entering the lungs and causing further damage.

SEE A DOCTOR !

Section VII - Precautions for Safe Handling and Use

Steps to Be Taken in Case Material is Released or Spilled:

Wash small spills with water to local sanitary sewer as permitted.

ALTERNATIVE METHOD

Asborb small spills with suitable material (sand, clays, sawdust, earth) and place into leak-proof container for later disposal. Flush balance of area with water to remove residues. Dispose of all material in accordance with Federal, State, and Local laws. Confine all spilled material with diking material. Suck up all material as quickly as possible with a vacuum truck. Smaller spills can be absorbed directly with clays, sand or other suitable materials. Place all collected materials into appropriate drums for transportation to an approved landfill or waste disposal site. Follow all Federal, State, and local laws when disposing.

Waste Disposal Method:

This material is biodegradable, therefore small amounts when flushed with water are not anticipated to harm the environment, when sent to a sanitary sewer and properly processed.

Since Federal, State, and local laws vary greatly from situation to situation, and since these materials are mixtures, no one preferred waste disposal method can be given. However one must keep in mind that all of these type products are ultimately destined to go " down the drain " since they are cleaning compounds of one sort or another. Generally, in a highly diluted or completely neutralized state they present no particular environmental hazard, they can be treated as ordinary waste, which is piped to a sanitary sewer for proper waste treatment.

Neither the product nor its effluent should be discharged into any river, lake, stream, creek, or watershed that might contaminate drinking water or well water. Any discharge must be specifically permitted by the proper authority like the DEP or DER depending on your state laws. Re-evaluation of the product may be required by the user at the time of disposal, since the product uses, tranformations, mixtures, and processes may change classification. Consult your hazardous waste consultant to be sure that the method chosen addresses the applicable problems. Precautions to Be Taken in Handling and Storing:

Do not freeze product. Do not subject product to excessive heat. Keep out of the reach of children. Do not contaminate food stuffs. Do not mix with any other chemicals except under direct supervision of a chemist, or technically trained supervisior. Mix only with water. During storage and transport of the product keep dry at all times, and do not exceed container integrity (i.e. improperly double or triple decking of pallitized goods).

If sensitivity or aggravation of allergy, or unanticipated personal health problems become evident, stop use and see your supervisor.

TEL No. INDCO, Inc. 609 456 1904 May 24,91 16:33 P.06 INDCO MONCOSOLVE 210 Page 4 Identity: MONCOSOLVE 210 Keep in mind that often the use solution and the concentrate will have different safety precautions. Other Precautions: Launder contaminated clothing before re-use. Discard all contaminated gloves, boots, and other articles that can not be properly cleaned. ⋋⋳⋺⋨⋵⋭⋵⋭⋧⋳⋭⋸⋵⋵⋵⋵⋵∊∊⋼⋼∊⋼⋵∊⋼∊∊⋫⋐⋧⋨⋦⋳⋽⋨⋭⋳∊⋼⋹⋶⋇⋭⋇⋓⋬⋎⋹⋫⋇⋇⋭⋫⋒⋹⋕⋸⋓⋬⋳⋷⋳∊∊⋼⋧⋇⋼∊⋞⋭⋵⋵∊∊∊ Section VIII - Control Measures Respiratory Protection (Specific Type): Usually none needed. Ventilation: Local Exhaust: Recommended Mechanical (General): Recommended Special: Recommended Other: None known Protective Gloves: Light rubber gloves for long use are recommended, i.e. Playtex type. Eye Protection: Safety glasses or chemical splash goggles are always recommended, as are eyewash fountains in all industrial processing areas. Other Protective Clothing or Equipment: Wear long sleeve shirts and pants. Launder dirty uniforms regularly. Wash or shower daily to maintain good cleanliness when in contact with various cleaning or water treating chemicals. Work/Hygienic Practices: Non-slip safety shoes with a splash apron are good practices to follow. ---Start Clean----Stay Clean----End Clean = Work Safely. Section IX - Documentary Information Comments: Section II Hazardous Material Section Percentage Key. If no hazardous chemicals are present then this section is not applicable. Nil -> 0.0% to 0.1% -> 0.1% to 1.0% Trace -> 1.0% to 5.0% Some Minor Comp -> 5.0% to 25.0% Substantial->25.0% to 50.0% Major Comp ->50.0% to 100.0% Substances listed in Section II are those identified as being present at a concentration of 1% or greater, or 0.1% if the substance is on the list of potential carcinogens cited in OSHA Hazard Communication Std. If Section II does not contain any hazardous chemicals as presently defined in our applicable tables the message will appear in this section above. NOTE: For solid products, pH is taken of a 2% solution. The information presented herein has been compiled from sources considered to be dependable and is accurate to the best of seller's knowledge, or has been generated to the best of our ability without extensive research beyond our understanding or economical feasibility.

Seller makes no warranty whatsoever, expressed, implied or of merchantability of the product or of results obtained from this report.

If you determine that the data does not meet your needs or that

INDCO, Inc.

9

Identity: MONCOSOLVE 210 INDCO MONCOSOLVE 210 Page 5 questions remain, consult your supplier before you purchase, store, transport or use this product. Consult a technically trained service-person or salesman for use

of this product as it specifically pertains to your situation. Seller assumes no responsibility for injury to buyer or to third persons or for any damage to any property and buyer assumes all such risks.

PREPARED BY: Frederick Binter Jr., President, BSCHE, BSEAdm. and David Telefus Ph.D., Organic Chemistry, Administrative Assistant for Regulatory Affairs

INDCO, Inc.

MARINE & INDUSTRIAL CHEMICALS

PRODUCT INFORMATION SHEET MONCOSOLVE 210

Specifications: THIS PRODUCT IS UNIQUE

Odor: Emulsitors: Wator Content (as is): Free Caustic Free acid: Enzymes: Solvent type: To

Pleasant citrus odor Yes s]: NONE None None Terpenes (Alpha Plnene, Sabinene, Myrcene, Limonene, Octana and some high & low boilers > 2.5%)

Effect on Beneficial Digestive Bacteria In Sewage Systems None Boldegradable solvent: Yes Flash point Moncosolve 210 FACTS THAT FAVOR No petroleum as

MONCOSOLVE 210

None Yes Moncosolve 210, 145 F No petroleum solvents, food or medical type solvent used No chlorinated solvents No actio No actio No actio No caustio Non-corrosive to metal pipes, not for most plastic pipes

Major use is for degreasing with improved safety and to be environmentally non-polluting Major areas of use are food plants, sewage plants, industrial cleaning, drain maintance, oil refineries and commercial cleaning soil remedition, silicone and adhesive removal.

WARNINGS

USE IN A WELL VENTILATED AREA. HARMFUL IF SWALLOWEDI CONTACT WITH SKIN OR EYES CAN CAUSE IRRITATION I KEEP OUT OF THE REACH OF CHILDREN I Do not store or use near open flame or high heat. If allergic reaction should occur consult a physician at once. FIRST AID: EYES: Immediately wash eyes with water for at least 15 minutes. Seek medical attention as soon as possible. SKIN: Wash with soap and water, apply lotion if irritation continues. INHALATION: Remove to Iresh air, give oxygen if needed, or artificial respiration to maintain breathing. INGESTION: Wash out mouth and other contacted parts with water. Never give anything to an unconscious person. If conscious give one or two glasses of water and induce vomiting. If vomiting occurs spontaneously, keep head below hips to pravent aspiration of liquid into the lungs. Place head below hips to pravent aspiration of liquid into the lungs. Place head below the knees before beginning of self inducement and inducement should be supervised. Get medical attention at once. Moncosolve 210 is based on a 100% natural organic solvent that is formulated in a very different way then other products for one-step degreasing and deodorizing. The unique part of this is that it is not a petroleum distillate and has special additives to greatly improve performance! The major problem of petroleum solvent use is that of environmental impact of waste disposal. This new approach is the first effective formulation alternative to effectively replace the older solvent systems. This product replaces a very large number of solvent cleaners used by industry, and in perficular makes possible the cleaning of many oils not previously considered possible.

APPLICATION, DOSAGE AND CONTROL

For Road and Root Equipment: Oil, Tar & Asphalt; For asphalt, bituminous asphalt and plastic cement apply undiluted to surface by spray, foam or mop. Allow 3 to 5 minutes for penetration, egitate as needed and rinse off with high pressure. Use in parts washers and reclaim oil and good solvent is used again and again, just let the solvent sit and decant oils off and use again and again. Dispose of oil in an approved manner.

Commercial Spotting: Fabric, Rug & Uphotstery Degreasing; Apply with a cloth or sponge to soiled area, let stand for 2 minutee and blot off, wash in normal manner. For use in commercial washers use 10 oz per each 75 ibs of fabric in the first wash for 5 min. at 90 degrees and follow with a regular detergent in hot water. Prespotter for extraction cleaning.

Commercial Food Plants: USDA APPROVED FOR FOOD PLANT USE: Use on kitchen vents, greasefilter and adhesive box sealers, for degreasing of bearings on high temperature ovens, kettles and vats,food elevators and transport equipment. Spray all of the surface or dip in tank and soak for 5 min, remove and flush off, steam or pressure rinse.

The Mark Remover: Soak area with diluted solution and agitale, let stand for 2 minutes and flush to drain cr vacuum up. Will also remove rubber and plastic burns and food varnish from common grills and pans.

Tankwagons and Piplines: (Roplex Emulsion type) Spray on and let stand for 2 minutes then pressure hose off. Circulate rinse water under pressure in any pipe for at least 5 minutes before using to effectively rinse.

Soil Remediation: Wash soil in a 100% solution, agitate for 10 minutes and flood to over flow the container removing the fight oils and drain vessel to remove the real heavy oils. Then wash with water and drain to tank for bio degradition. Reuse solution after decanting. Dispose of oils in an approved manner only. Soil is then sun dried and returned after inspection. This is also effective on metal parts and chips contaminated with silcone, oils and many DDT type pesticides which use special oils as binders.

Montgomery Chemical Co Moncosolve 210

Moncosolve 210 is based on a 100% natural organic solvent for one-step degreasing and deodonizing. The unique part of this is that it is not a petroleum distillate! The major problem of petroleum solvent use is that of environmental impact of waste disposal. This new approach is the first effective formulation alternitive to effectively replace the older solvent systems. This one product group replaces a very large number of solvent cleaners used by industry, natural solvent systems for commercial cleaning.

Use Instructions:

Tar & Asphalt; For asphalt, bitman asphalt/plastic cement apply undicated to surface by spray, loarn or mop. Allow 3 to 5 minutes for penetration, agitate as needed and rinse off with high pressure.

Fabric, Rug & Upholstery Degreesing; Apply with a cloth or sponge to solled area, let stand for 2 minutes and blot off, wash in normal manner. For use in commercial washers use 10 oz per each 75 fbs of fabric in the first wash for 5 min. at 90 degrees and follow with a regular delergent in hot water. Always pretest fabric. To remove chewing gum, soak area and letstand for 3 min. and scrap up gum and repeat for final details of gum.

- Kitchen Vent Grease Fitters; Spray all of the surface or dip in tank and soak for 5 min. remove and flush off, steam or pressure rinse.
- Tire Mark Remover: Soak area with divised solution and agitate, let stand for 2 minutes and lush to drain or vacuum up.

Garbage Truck and Dumpster Cleaning; Mix one to two gallons with 20 gallons of water and spray or loant on surface, let stand or agitate as needed for 2 to 5 minutes and pressure rinse off.

Paint: For use with lesh paint clean up of brushes, put 8 oz in a quart bottle with the paint brush to be cleaned, work concentrate into brush and wash brush out in warm water, repeat if paint has dryed on in some areas extending soak time. Save solution in the bottle. Works on oil and laytex paints.

Gloucester City NJ 08030

5 gal

Occupational Health Guideline for Naphthalene

INTRODUCTION

This guideline is intended as a source of information for employees, employers, physicians, industrial hygienists, and other occupational health professionals who may have a need for such information. It does not attempt to present all data; rather, it presents pertinent information and data in summary form.

SUBSTANCE IDENTIFICATION

- Formula: C10He
- Synonyms: White tar; naphthalin

• Appearance and odor: Colorless to brown solid with the odor of mothballs.

PERMISSIBLE EXPOSURE LIMIT (PEL)

The current OSHA standard for naphthalene is 10 parts of naphthalene per million parts of air (ppm) averaged over an eight-hour work shift. This may also be expressed as 50 milligrams of naphthalene per cubic meter of air (mg/m³).

HEALTH HAZARD INFORMATION

• Routes of exposure

Naphthalene can affect the body if it is inhaled, if it comes in contact with the eyes or skin, or if it is swallowed. It may enter the body through the skin. • Effects of overexposure

1. Short-term Exposure: Inhalation or ingestion of naphthalene may cause abdominal cramps, nausea, vomiting, diarrhea, headache, tiredness, confusion, painful urination, and bloody or dark urine. Swallowing large amounts may cause convulsions or coma. Inhalation, ingestion, and possibly skin absorption of naphthalene may cause destruction of red blood cells with anemia, fever, yellow jaundice, bloody urine, kidney and liver damage. Naphthalene, on contact with the eyes, has produced irritation. Naphthalene, on contact with the skin, has produced skin irritation. 2. Long-term Exposure: Repeated skin exposure to naphthalene may cause an allergic rash. Repeated exposure may cause cataracts.

3. Reporting Signs and Symptoms: A physician should be contacted if anyone develops any signs or symptoms and suspects that they are caused by exposure to naphthalene.

• Recommended medical surveillance

The following medical procedures should be made available to each employee who is exposed to naphthalene at potentially hazardous levels:

1. Initial Medical Examination:

—A complete history and physical examination: The purpose is to detect pre-existing conditions that might place the exposed employee at increased risk, and to establish a baseline for future health monitoring. Persons with a deficiency of glucose-6-phosphate dehydrogenase in erythrocytes may be at increased risk from exposure. Examination of the eyes, blood, liver and kidneys should be stressed. The skin should be examined for evidence of chronic disorders.

—A complete blood count: Naphthalene has been shown to cause red blood cell hemolysis. A complete blood count should be performed, including a red cell count, a white cell count, and a differential count of a stained smear, as well as hemoglobin and hematocrit.

-Urinalysis: Since kidney damage may also occur from exposure to naphthalene, a urinalysis should be performed, including at a minimum specific gravity, albumin, glucose, and a microscopic on centrifuged sediment.

2. Periodic Medical Examination: The aforementioned medical examinations should be repeated on an annual basis.

Summary of toxicology

Naphthalene vapor causes hemolysis and eye irritation; it may cause cataracts. Severe intoxication from ingestion of the solid results in characteristic manifestations of marked intravascular hemolysis and its consequences, including potentially fatal hyperkalemia. Initial symptoms include eye irritation, headache, confu-

These recommendations reflect good industrial hygiene and medical surveillance practices and their implementation will assist in achieving an effective occupational health program. However, they may not be sufficient to achieve compliance with all requirements of OSHA regulations.

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Centers for Disease Control National Institute for Occupational Safety and Health

U.S. DEPARTMENT OF LABOR

Occupational Safety and Health Administration

sion, excitement, malaise, profuse sweating, nausea, vomiting, abdominal pain, and irritation of the bladder; there may be progression to jaundice, hematuria, hemoglobinuria, renal tubular blockage, and acute renal shutdown. Hematologic features include red cell fragmentation, icterus, severe anemia with nucleated red cells, leukocytosis, and dramatic decreases in hemoglobin, hematocrit, and red cell count; sometimes there is formation of Heinz bodies and methemoglobin. Individuals with a deficiency of glucose-6-phosphate dehydrogenase in erythrocytes may be more susceptible to hemolysis by naphthalene. Cataracts and ocular irritation have been produced experimentally in animals and have been described in humans; of 21 workers exposed to high concentrations of fume or vapor for 5 years, 8 had peripheral lens opacities; in other studies no abnormalities of the eyes have been detected in workers exposed to naphthalene for several years. The vapor causes eye irritation at 15 ppm; eye contact with the solid may result in conjunctivitis, superficial injury to the cornea, chorioretinitis, scotoma, and diminished visual acuity. Naphthalene on the skin may cause hypersensitivity dermatitis; chronic dermatitis is rare.

CHEMICAL AND PHYSICAL PROPERTIES

• Physical data

1. Molecular weight: 128.2

2. Boiling point (760 mm Hg): 218 C (424 F)

3. Specific gravity (water = 1): 1.14

4. Vapor density (air = 1 at boiling point of naphthalene): 4.4

5. Melting point: 74 - 80 C (165 - 176 F)

6. Vapor pressure at 20 C (68 F): 0.05 mm Hg

7. Solubility in water, g/100 g water at 20 C (68 F):

0.003

8. Evaporation rate (butyl acetate = 1): Much less than 1

Reactivity

1. Conditions contributing to instability: None.

2. Incompatibilities: Contact with strong oxidizers may cause fires and explosions.

3. Hazardous decomposition products: Toxic gases and vapors (such as dense acrid smoke and carbon monoxide) may be released in a fire involving naphthalene.

4. Special precautions: Melted naphthalene will attack some forms of plastics, rubber, and coatings.
Flammability

1. Flash point: 79 C (174 F) (closed cup)

2. Autoignition temperature: 526 C (979 F)

3. Flammable limits in air, % by volume: Lower: 0.9; Upper: 5.9

4. Extinguishant: Carbon dioxide, dry chemical, foam

• Warning properties

1. Odor Threshold: The AIHA Hygienic Guide reports that the odor threshold of naphthalene is "at least as low as 0.3 ppm."

2. Eye Irritation Level: The Hygienic Guide states that "naphthalene vapor is reported to cause eye irritation at 15 ppm or above in air."

3. Evaluation of Warning Properties: Through its odor and irritant effects, naphthalene can be detected at or below the permissible exposure limit. Naphthalene, therefore, is treated as a material with good warning properties.

MONITORING AND MEASUREMENT PROCEDURES

• General

Measurements to determine employee exposure are best taken so that the average eight-hour exposure is based on a single eight-hour sample or on two four-hour samples. Several short-time interval samples (up to 30 minutes) may also be used to determine the average exposure level. Air samples should be taken in the employee's breathing zone (air that would most nearly represent that inhaled by the employee).

Method

Sampling and analyses may be performed by collection of vapors using an adsorption tube with subsequent desorption with carbon disulfide and gas chromatographic analysis. Also, detector tubes certified by NIOSH under 42 CFR Part 84 or other direct-reading devices calibrated to measure naphthalene may be used. An analytical method for naphthalene is in the *NIOSH Manual of Analytical Methods*, 2nd Ed., Vol. 4, 1978, available from the Government Printing Office, Washington, D.C. 20402 (GPO No. 017-033-00317-3).

RESPIRATORS

• Good industrial hygiene practices recommend that engineering controls be used to reduce environmental concentrations to the permissible exposure level. However, there are some exceptions where respirators may be used to control exposure. Respirators may be used when engineering and work practice controls are not technically feasible, when such controls are in the process of being installed, or when they fail and need to be supplemented. Respirators may also be used for operations which require entry into tanks or closed vessels, and in emergency situations. If the use of respirators is necessary, the only respirators permitted are those that have been approved by the Mine Safety and Health Administration (formerly Mining Enforcement and Safety Administration) or by the National Institute for Occupational Safety and Health.

• In addition to respirator selection, a complete respiratory protection program should be instituted which includes regular training, maintenance, inspection, cleaning, and evaluation.

PERSONAL PROTECTIVE EQUIPMENT

• Employees should be provided with and required to use impervious clothing, gloves, face shields (eight-inch minimum), and other appropriate protective clothing necessary to prevent repeated or prolonged skin contact with naphthalene or liquids containing naphthalene.

• If employees' clothing may have become contaminated with solid naphthalene, employees should change into uncontaminated clothing before leaving the work premises.

• Clothing contaminated with naphthalene should be placed in closed containers for storage until it can be discarded or until provision is made for the removal of naphthalene from the clothing. If the clothing is to be laundered or otherwise cleaned to remove the naphthalene, the person performing the operation should be informed of naphthalene's hazardous properties.

• Non-impervious clothing which becomes contaminated with naphthalene should be removed promptly and not reworn until the naphthalene is removed from the clothing.

• Employees should be provided with and required to use dust- and splash-proof safety goggles where solid naphthalene or liquids containing naphthalene may contact the eyes.

SANITATION

• Skin that becomes contaminated with naphthalene should be promptly washed or showered with soap or mild detergent and water to remove any naphthalene.

• Eating and smoking should not be permitted in areas where solid naphthalene is handled, processed, or stored.

• Employees who handle naphthalene or liquids containing naphthalene should wash their hands thoroughly with soap or mild detergent and water before eating, smoking, or using toilet facilities.

COMMON OPERATIONS AND CONTROLS

The following list includes some common operations in which exposure to naphthalene may occur and control methods which may be effective in each case:

Operation

Controls

Formulation of insecticide and moth repellant as flakes, powder, balls, or cakes

Use as a fumigant for moth repellant and insecticide Local exhaust ventilation; general dilution ventilation; personal protective equipment

General dilution ventilation; personal protective equipment

Operation

Use in manufacture of chemical intermediates for production of pharmaceuticals, resins, dyes, plasticizers, solvents, coatings, insecticides, pigments, rubber chemicals, tanning agents, surfactants, waxes, cable coatings, textile spinning lubricants, rodenticides, and in storage batteries

Manufacture of naphthalene Local exhaust ventilation; process enclosure; general dilution ventilation; personal protective equipment

EMERGENCY FIRST AID PROCEDURES

In the event of an emergency, institute first aid procedures and send for first aid or medical assistance. • Eye Exposure

If naphthalene or liquids containing naphthalene get into the eyes, wash eyes immediately with large amounts of water, lifting the lower and upper lids occasionally. If irritation is present after washing, get medical attention. Contact lenses should not be worn when working with this chemical.

• Skin Exposure

If molten naphthalene gets on the skin, immediately flush the skin with large amounts of water. Get medical attention immediately. If naphthalene or liquids containing naphthalene get on the skin, promptly wash the contaminated skin using soap or mild detergent and water. If naphthalene or liquids containing naphthalene penetrate through the clothing, remove the clothing immediately and wash the skin using soap or mild detergent and water. If irritation persists after washing, get medical attention.

• Breathing

If a person breathes in large amounts of naphthalene, move the exposed person to fresh air at once.

Swallowing

When naphthalene has been swallowed and the person is conscious, give the person large quantities of water immediately. After the water has been swallowed, try to get the person to vomit by having him touch the back of his throat with his finger. Do not make an unconscious person vomit. Get medical attention immediately.

• Rescue

Move the affected person from the hazardous exposure. If the exposed person has been overcome, notify some-

Controls

Local exhaust ventilation; general dilution ventilation; personal protective equipment one else and put into effect the established emergency rescue procedures. Do not become a casualty. Understand the facility's emergency rescue procedures and know the locations of rescue equipment before the need arises.

SPILL AND DISPOSAL PROCEDURES

• Persons not wearing protective equipment and clothing should be restricted from areas of spills until cleanup has been completed.

• If naphthalene is spilled, the following steps should be taken:

1. Ventilate area of spill.

 For small quantities, sweep onto paper or other suitable material, place in an appropriate container and burn in a safe place (such as a fume hood). Large quantities may be reclaimed; however, if this is not practical, dissolve in a flammable solvent (such as alcohol) and atomize in a suitable combustion chamber.
 Waste disposal methods:

Naphthalene may be disposed of:

1. By making packages of naphthalene in paper or other flammable material and burning in a suitable combustion chamber.

2. By dissolving naphthalene in a flammable solvent (such as alcohol) and atomizing in a suitable combustion chamber.

ADDITIONAL INFORMATION

To find additional information on naphthalene, look up naphthalene in the following documents:

• Medical Surveillance for Chemical Hazards

• Respiratory Protection for Chemical Hazards

• Personal Protection and Sanitation for Chemical Hazards

These documents are available through the NIOSH Division of Technical Services, 4676 Columbia Parkway, Cincinnati, Ohio 45226.

REFERENCES

• American Conference of Governmental Industrial Hygienists: "Naphthalene," *Documentation of the Threshold Limit Values for Substances in Workroom Air* (3rd ed., 2nd printing), Cincinnati, 1974.

American Industrial Hygiene Association: "Naphthalene," Hygienic Guide Series, Detroit, Michigan, 1967.
American Petroleum Institute: "Naphthalene," API Toxicological Reviews, New York, 1959.

• Christensen, H. E., and Luginbyhl, T. L. (eds.): NIOSH Toxic Substances List, 1974 Edition, HEW Publication No. 74-134, 1974.

• Deichmann, W. B., and Gerarde, H. W.: Toxicology of Drugs and Chemicals, Academic Press, New York, 1969.

• Gleason, M. N., Gosselin, R. E., Hodge, H. C., and Smith, R. P.: *Clinical Toxicology of Commercial Products*(3rd ed.), Williams and Wilkins, Baltimore, 1969.

• Grant, W. M.: Toxicology of the Eye (2nd ed.), C. C. Thomas, Springfield, Illinois, 1974.

• International Labour Office: Encyclopedia of Occupational Health and Safety, McGraw-Hill, New York, 1971.

• Manufacturing Chemists Association, Inc.: Chemical Safety Data Sheet SD-58, Naphthalene, Washington, D.C.

• Patty, F. A. (ed.): *Toxicology*, Vol. II of *Industrial Hygiene and Toxicology* (2nd ed. rev.), Interscience, New York, 1963.

• Spector, W. S. (Vols. I, II), Negherbon, W. O. (Vol. III), Grebe, R. M. (Vol. IV), and Dittmer, D. S. (Vol. V) (eds.): *Handbook of Toxicology*, Saunders, Philadelphia, 1956-1959.

• Stecher, P. G. (ed.): *The Merck Index* (8th ed.), Merck Co., Inc., Rahway, New Jersey, 1968.

• Stolman, A. (ed.): Progress in Chemical Toxicology, Academic Press, New York, 1965-1969.

• Union Carbide Corporation Industrial Medicine and Toxicology Department: *Toxicology Studies - Naphthalene*, New York, 1968.

• Zinkham, W. H., and Childs, B.: "A Defect of Glutathione Metabolism in Erythrocytes from Patients with a Naphthalene-Induced Hemolytic Anemia," *Pediatrics*, 22:461-471, 1958.

RESPIRATORY PROTECTION FOR NAPHTHALENE

Condition	Minimum Respiratory Protection* Required Above 10 ppm		
Particulate and Vapor Concentration			
500 ppm or less	A chemical cartridge respirator with a full facepiece, organic vapor cartridge(s) and dust filter.		
	A gas mask with a chin-style or a front- or back-mounted organic vapor canister and dust filter.		
	Any supplied-air respirator with a full facepiece, helmet, or hood.		
	Any self-contained breathing apparatus with a full facepiece.		
Greater than 500 ppm or entry and escape from unknown concentrations	Self-contained breathing apparatus with a full facepiece operated in pressure- demand or other positive pressure mode.		
•	A combination respirator which includes a Type C supplied-air respirator with a full facepiece operated in pressure-demand or other positive pressure or continu- ous-flow mode and an auxiliary self-contained breathing apparatus operated in pressure-demand or other positive pressure mode.		
Fire Fighting	Self-contained breathing apparatus with a full facepiece operated in pressure- demand or other positive pressure mode.		
Escape	Any gas mask providing protection against organic vapors and particulates.		
	Any escape self-contained breathing apparatus.		

11.

5

*Only NIOSH-approved or MSHA-approved equipment should be used.