TECHNICAL MEMORANDUM - PHASE I TREATABILITY STUDY OF BIOSLURRY TREATMENT TECHNOLOGY

PREPARED BY:

IT CORPORATION BIOTECHNOLOGY APPLICATIONS CENTER 312 DIRECTORS DRIVE KNOXVILLE, TENNESSEE 37923 (615) 690-3211

PREPARED FOR:

ROY F. WESTON, INC. THREE HAWTHORN PARKWAY, SUITE 400 VERNON HILLS, ILLINOIS 60061-1450

IT PROJECT NO. 408491

AUGUST 1993

weston/tmchp1

2.

Table of Contents_

				•
List	of Tab	les		
List	of Figu	ures		
List	of Acr	onyms .		
Exe	cutive S	Summary		· · · · · · · · · · · · · · · · · · ·
	Introdu	-	•	
•	1.1	Site Des	cription	
	1.2	Waste D	escription	
	1.3	Remedia	I Technology I	Description
				ocess and Scale
		1.3.2	Operating Fea	atures
				on of PAH
2.0	Conclu		-	tions
	•			
•				
3.0				
		•		tionale
				nd Procedures
	5.2	-	-	urement
		3.2.2	-	nent
		3.2.2		Testing
		3.2.3	•	actor Study
			-	Bottle Study
	2 2			•
				als
	3.4			
	·			Characterization
		3.4.2		Deess
			3.4.2.1	Batch Slurry Study
			3.4.2.2	Bioslurry Reactor Study 3-10
			3.4.2.3	Final Batch Study

.

Table of Contents (cont.)_____

	3.4.3	Analytical Methods
3.5 I	Data Ma	nagement
3.6 I	Deviatio	ns from the Test Plan
	3.6.1	Batch Slurry Study
	3.6.2	Bioslurry Reactor Study
4.0 Results a	and Dis	cussion
4.1 E	Data An	alysis and Interpretation
	4.1.1	Analysis of Waste Characteristics
•	4.1.2	Analysis of Treatability Study Data
		4.1.2.1 Batch Study
		4.1.2.2 Bioslurry Reactor Study
		4.1.2.3 Final Bottle Study
	4.1.3	Comparison to Test Objectives
-		4.1.3.1 Batch Bottle Study
		4.1.3.2 Bioslurry Reactor Study
4.2 Q	Quality A	Assurance/Quality Control 4-10
	4.2.1	Internal QC Checks
	4.2.2	Data Quality Checks 4-11
4.3 K	Key Con	ntacts
5.0 Reference	æs	
Appendix A	Initial	Characterization Data for Treatability Study Matrix
Appendix B		ing Documentation
Appendix C		Process Equipment Soil Evaluation Report
**		hnology Applications Center Standard Operating Procedures
Appendix E		acene Mineralization Study
Appendix F		onformance Reports
Appendix G		Bottle Study Oxygen Utilization Data
Appendix U Appendix H		tical Results
Appendix I Appendix I	•	Balance Spreadsheet
Appendix I Appendix J		al Audit Report and BAC Response
TANKIN T	411001110	a create valace and pure valabula

[`]ii

List of Tables_

Table	Title						
1-1	Physical/Chemical Properties of CPAH Constituents						
1-2	General Influent Feed Characteristics for Bioslurry						
	Treatment						
· 3-1	Change in Headspace Volume						
3-2	Batch Slurry Study Sampling and Analytical Schedule						
3-3	Bioslurry Reactor Study Sampling and Analytical Schedule						
3-4	Uniform Mixing						
3-5	Batch Study Modifications						
4-1	Batch Slurry Study Initial Analytical Results						
4-2	Batch Slurry Study Week 3 Analytical Results						
4-3	Batch Slurry Study Week 6 Analytical Results						
4-4	¹⁴ C-Anthracene Mineralization Initial Batch Study						
4-5	Overall Oxygen Utilization Data Initial Batch Study						
4-6	Batch Slurry Study Initial PAH Results						
4-7	Batch Slurry Study Week 3 PAH Results						
4-8	Batch Slurry Study Week 6 PAH Results						
4- 9	Batch Slurry Study PAH Percent Removal						
· 4-10	Substrate Utilization Rates (q)						
4-11	Analytical Data Weston Bioslurry Reactor						
4-12	Operational Data Weston Bioslurry Reactor						
4-13	Bioslurry Solids Data						
4-14	Influent PAH Concentration Weston Bioslurry Study						
4-15	Reactor PAH Concentrations Weston Bioslurry Study						
	Continuous-Flow Operations						
4-16	Reactor PAH Concentrations Weston Bioslurry Study Batch						
	Operation						
4-17	RAS PAH Concentrations Weston Bioslurry Study						
4-18	Average Bioslurry PAH Removal Based on Influent and						
	Effluent Concentrations Bioslurry Reactor Operation						
4-19	Headspace Analysis of Bioslurry Reactor						
4-20	PAH Analysis of Bioslurry Water Samples						
4-21	Metals and Sulfide Analysis						
4-22	PAH Analytical Results Final Batch Study						

weston/tmchp1

iii

List of Figures_

Title
Process Flow Diagram
Initial Batch Study PAH Removal 30 Percent Treatments
Initial Batch Study PAH Removal 40 Percent Treatments
Reactor PAH and CPAH Concentrations Weston Bioslurry Reactor

weston/tmchp1

iv

List of Acronyms_

Acronym

Title

•

ANSI	American National Standards Institute
ASTM	American Society for Testing and Materials
BAC	Biotechnology Applications Center
BSRT	biological solids retention time
BTX	Benzene, toluene, xylene
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act
CFR	Code of Federal Regulations
CFU/g	Colony forming unit per gram
CLP	Contract Laboratory Program
C:N:P	Carbon:Nitrogen:Phosphorous Ratio
cm ³ /min	cubic centimeter/minute
СРАН	carcinogenic polycyclic aromatic hydrocarbon
Eimco	Eimco Process Equipment Company
EPA	U.S. Environmental Protection Agency
FID	flame ionization detector
ft	foot
g	gram
GC/MS	Gas Chromatograph/Mass Spectrometry
GC	Gas Chromatograph
HPLC	high performance liquid chromatography
HRT	hydraulic retention time
IT	IT Corporation
ITAS	IT Analytical Services
KMCC	Kerr-McGee Chemical Corporation, Inc.
1	liter
l/day	liters per day
1 b	pound
mg/kg	milligrams per kilogram

List of Acronyms (continued)_

mg/lmilligrams per Litermg/l -hrmilligrams per Liter - hourmgmilligramml/minmilligramml/minmilliliter per minutemlmillilitermmmillimeterNNormalNIOSHNational Institute of Occupational Safety and HealthNPLNational Institute of Occupational Safety and HealthNPLNational Priorities ListnmnanometerPAHpolycyclic aromatic hydrocarbonsQAQuality AssuranceQCQuality ControlRASreturn activated sludgeRI/FSremedial investigation/feasibility studyrpmRevolutions Per MinuteRODRecord of Decisionscf/hrstandard cubic feet per hourSOPStatement of WorkTCtotal carbonTOCTotal Organic CarbonTStotal solidsUVUltravioletVOCvolatile organic compoundVSvolatile solidsWASwaste activated sludgeWestonRoy F. Weston, Inc.	Acronym	Title
mgmilligramml/minmilliliter per minutemlmillilitermmmillimeterNNormalNIOSHNational Institute of Occupational Safety and HealthNPLNational Institute of Occupational Safety and HealthNPLNational Priorities ListnmnanometerPAHpolycyclic aromatic hydrocarbonsQAQuality AssuranceQCQuality ControlRASreturn activated sludgeRI/FSremedial investigation/feasibility studyrpmRecord of Decisionscf/hrstandard cubic feet per hourSOPStatement of WorkTCtotal carbonTOCTotal Organic CarbonTStotal solidsUVUltravioletVOCvolatile organic compoundVSvolatile solidsWASwaste activated sludge	mg/l	milligrams per Liter
ml/minmilliliter per minutemlmillilitermmmillimeterNNormalNIOSHNational Institute of Occupational Safety and HealthNPLNational Priorities ListnmnanometerPAHpolycyclic aromatic hydrocarbonsQAQuality AssuranceQCQuality ControlRASreturn activated sludgeRL/FSremedial investigation/feasibility studyrpmRecord of Decisionscf/hrstandard cubic feet per hourSOPStandard Operating ProcedureSOWStatement of WorkTCtotal carbonTOCTotal Organic CarbonTStotal solidsUVUltravioletVOCvolatile organic compoundVSvolatile solidsWASwaste activated sludge	mg/l -hr	milligrams per Liter - hour
mlmillilitermmmillimeterNNormalNIOSHNational Institute of Occupational Safety and HealthNPLNational Priorities ListnmnanometerPAHpolycyclic aromatic hydrocarbonsQAQuality AssuranceQCQuality ControlRASreturn activated sludgeRI/FSremedial investigation/feasibility studyrpmRevolutions Per MinuteRODRecord of Decisionscf/hrstandard cubic feet per hourSOPStatement of WorkTCtotal carbonTStotal solidsUVUltravioletVOCvolatile organic compoundVSvolatile solidsWASwaste activated sludge	mg	milligram
mmmillimeterNNormalNIOSHNational Institute of Occupational Safety and HealthNPLNational Priorities ListnmnanometerPAHpolycyclic aromatic hydrocarbonsQAQuality AssuranceQCQuality ControlRASreturn activated sludgeRI/FSremedial investigation/feasibility studyrpmRevolutions Per MinuteRODRecord of Decisionscf/hrstandard cubic feet per hourSOPStatement of WorkTCtotal carbonTOCTotal Organic CarbonTStotal solidsUVUltravioletVOCvolatile organic compoundVSvolatile solidsWASwaste activated sludge	ml/min	milliliter per minute
NNormalNIOSHNational Institute of Occupational Safety and HealthNPLNational Priorities ListnmnanometerPAHpolycyclic aromatic hydrocarbonsQAQuality AssuranceQCQuality ControlRASreturn activated sludgeRI/FSremedial investigation/feasibility studyrpmRevolutions Per MinuteRODRecord of Decisionscf/hrstandard cubic feet per hourSOPStatement of WorkTCtotal carbonTOCTotal Organic CarbonTStotal solidsUVUltravioletVOCvolatile organic compoundVSvolatile solidsWASwaste activated sludge	ml	milliliter
NIOSHNational Institute of Occupational Safety and HealthNPLNational Priorities ListnmnanometerPAHpolycyclic aromatic hydrocarbonsQAQuality AssuranceQCQuality ControlRASreturn activated sludgeRI/FSremedial investigation/feasibility studyrpmRevolutions Per MinuteRODRecord of Decisionscf/hrstandard cubic feet per hourSOPStandard Operating ProcedureSOWStatement of WorkTCtotal carbonTOCTotal Organic CarbonTStotal solidsUVUltravioletVOCvolatile organic compoundVSvolatile solidsWASwaste activated sludge	mm	millimeter
NPLNational Priorities ListnmnanometerPAHpolycyclic aromatic hydrocarbonsQAQuality AssuranceQCQuality ControlRASreturn activated sludgeRI/FSremedial investigation/feasibility studyrpmRevolutions Per MinuteRODRecord of Decisionscf/hrstandard cubic feet per hourSOPStandard Operating ProcedureSOWStatement of WorkTCtotal carbonTOCTotal Organic CarbonTStotal solidsUVUltravioletVOCvolatile organic compoundVSvolatile solidsWASwaste activated sludge	Ν	Normal
nmnanometerPAHpolycyclic aromatic hydrocarbonsQAQuality AssuranceQCQuality ControlRASreturn activated sludgeRI/FSremedial investigation/feasibility studyrpmRevolutions Per MinuteRODRecord of Decisionscf/hrstandard cubic feet per hourSOPStandard Operating ProcedureSOWStatement of WorkTCtotal carbonTOCTotal Organic CarbonTStotal solidsUVUltravioletVOCvolatile organic compoundVSvolatile solidsWASwaste activated sludge	NIOSH	National Institute of Occupational Safety and Health
PAHpolycyclic aromatic hydrocarbonsQAQuality AssuranceQCQuality ControlRASreturn activated sludgeRI/FSremedial investigation/feasibility studyrpmRevolutions Per MinuteRODRecord of Decisionscf/hrstandard cubic feet per hourSOPStandard Operating ProcedureSOWStatement of WorkTCtotal carbonTStotal organic CarbonTStotal solidsUVUltravioletVOCvolatile organic compoundVSvolatile solidsWASwaste activated sludge	NPL	National Priorities List
QAQuality AssuranceQCQuality ControlRASreturn activated sludgeRI/FSremedial investigation/feasibility studyrpmRevolutions Per MinuteRODRecord of Decisionscf/hrstandard cubic feet per hourSOPStandard Operating ProcedureSOWStatement of WorkTCtotal carbonTOCTotal Organic CarbonTStotal solidsUVUltravioletVOCvolatile organic compoundVSvolatile solidsWASwaste activated sludge	nm	nanometer
QCQuality ControlRASreturn activated sludgeRI/FSremedial investigation/feasibility studyrpmRevolutions Per MinuteRODRecord of Decisionscf/hrstandard cubic feet per hourSOPStandard Operating ProcedureSOWStatement of WorkTCtotal carbonTOCTotal Organic CarbonTStotal solidsUVUltravioletVOCvolatile organic compoundVSvolatile solidsWASwaste activated sludge	PAH	polycyclic aromatic hydrocarbons
RASreturn activated sludgeRI/FSremedial investigation/feasibility studyrpmRevolutions Per MinuteRODRecord of Decisionscf/hrstandard cubic feet per hourSOPStandard Operating ProcedureSOWStatement of WorkTCtotal carbonTOCTotal Organic CarbonTStotal solidsUVUltravioletVOCvolatile organic compoundVSvolatile solidsWASwaste activated sludge	QA .	Quality Assurance
RI/FSremedial investigation/feasibility studyrpmRevolutions Per MinuteRODRecord of Decisionscf/hrstandard cubic feet per hourSOPStandard Operating ProcedureSOWStatement of WorkTCtotal carbonTOCTotal Organic CarbonTStotal solidsUVUltravioletVOCvolatile organic compoundVSvolatile solidsWASwaste activated sludge	QC	Quality Control
rpmRevolutions Per MinuteRODRecord of Decisionscf/hrstandard cubic feet per hourSOPStandard Operating ProcedureSOWStatement of WorkTCtotal carbonTOCTotal Organic CarbonTStotal solidsUVUltravioletVOCvolatile organic compoundVSvolatile solidsWASwaste activated sludge	RAS	return activated sludge
RODRecord of Decisionscf/hrstandard cubic feet per hourSOPStandard Operating ProcedureSOWStatement of WorkTCtotal carbonTOCTotal Organic CarbonTStotal solidsUVUltravioletVOCvolatile organic compoundVSvolatile solidsWASwaste activated sludge	RI/FS	remedial investigation/feasibility study
scf/hrstandard cubic feet per hourSOPStandard Operating ProcedureSOWStatement of WorkTCtotal carbonTOCTotal Organic CarbonTStotal solidsUVUltravioletVOCvolatile organic compoundVSvolatile solidsWASwaste activated sludge	rpm	Revolutions Per Minute
SOPStandard Operating ProcedureSOWStatement of WorkTCtotal carbonTOCTotal Organic CarbonTStotal solidsUVUltravioletVOCvolatile organic compoundVSvolatile solidsWASwaste activated sludge	ROD	Record of Decision
SOWStatement of WorkTCtotal carbonTOCTotal Organic CarbonTStotal solidsUVUltravioletVOCvolatile organic compoundVSvolatile solidsWASwaste activated sludge	scf/hr	standard cubic feet per hour
TCtotal carbonTOCTotal Organic CarbonTStotal solidsUVUltravioletVOCvolatile organic compoundVSvolatile solidsWASwaste activated sludge	SOP	Standard Operating Procedure
TOCTotal Organic CarbonTStotal solidsUVUltravioletVOCvolatile organic compoundVSvolatile solidsWASwaste activated sludge	SOW	Statement of Work
TStotal solidsUVUltravioletVOCvolatile organic compoundVSvolatile solidsWASwaste activated sludge	TC	total carbon
UVUltravioletVOCvolatile organic compoundVSvolatile solidsWASwaste activated sludge	TOC	Total Organic Carbon
VOCvolatile organic compoundVSvolatile solidsWASwaste activated sludge	TS	total solids
VS volatile solids WAS waste activated sludge	UV	Ultraviolet
WAS waste activated sludge	VOC	volatile organic compound
•	VS ·	volatile solids
Weston Roy F. Weston, Inc.	WAS	waste activated sludge
	Weston	Roy F. Weston, Inc.

weston/tmchp1

vi

Executive Summary

Roy F. Weston, Inc. (Weston), prime contractor to Kerr-McGee Chemical Corporation, Inc. (KMCC), contracted IT Corporation (IT) to conduct Phase I laboratory-scale treatability studies. The purpose of these studies was to evaluate the effectiveness of bioslurry treatment technology in treating creosote-impacted soils from the Moss-American site, located in Milwaukee, Wisconsin. The treatability studies were conducted as part of Predesign Task 16 of the U.S. Environmental Protection Agency's (EPA's) Statement of Work (SOW). The subject SOW requires treatment of the contaminants of concern (i.e., total carcinogenic polycyclic aromatic hydrocarbons [CPAH]) to 6.1 milligrams per kilogram (mg/kg).

The Phase I treatability studies for bioslurry treatment included a batch slurry study and a bioslurry reactor study. The batch slurry study produced supporting data for the enhanced operation of the laboratory-scale bioslurry reactor. Batch slurry testing was conducted in sealed, 1-liter (1) vessels at solids loadings of 30 and 40 percent. The duration of the batch study was 6 weeks with sample analysis during initiation, Week 3, and Week 6. The objectives of this study included:

- Providing support data for enhanced operation of bioslurry reactor
- Determining the impact of solids loading on operation
- Calculating preliminary substrate utilization rates.

Depending on the treatment vessel analyzed, the batch study demonstrated total polycyclic aromatic hydrocarbons (PAH) percent removals ranging from 83 to 87 percent; CPAH removals ranged from 71 to 79 percent. Maximum substrate removal occurred during the first 3 weeks of operation. Initial PAH concentrations in the six treatment vessels ranged from 1,100 to 1,600 mg/kg; CPAH concentrations ranged from 390 to 550 mg/kg. The average PAH concentrations following 3 weeks of operation was 320 mg/kg. The CPAH concentrations were reduced to 170 mg/kg at Week 3. No significant change in PAH or CPAH concentrations were measured during the following 3 weeks of operation.

Substrate utilization rates in the batch study during the first 3 weeks of operation averaged 0.041 mg PAH/gram (g) Total Solids (TS)/day in the 30 percent treatments and 0.052 mg PAH/g TS/day in the 40 percent treatments. CPAH removal rates averaged 0.012 mg

CPAH/g TS/day in the 30 percent treatments and 0.016 mg CPAH/g TS/day in the 40 percent treatments during the first 3 weeks of operation.

Although the CPAH substrate removals in the 30 and 40 percent treatments were similar, the physical nature of the 40 percent slurry would not allow for sufficient mixing. A maximum slurry density of 35 percent was determined to be appropriate for suspension in the bioslurry reactor during an initial slurry evaluation conducted by Eimco Process Equipment Company (Eimco). Therefore, a 30 percent solids loading was chosen for bioslurry reactor operation.

During the 3-month bioslurry study, a 60-1, stainless-steel, Eimco Biolift[™] slurry reactor was operated in continuous-flow and batch mode. Operation of this unit under the optimum solids loading determined during batch testing provided performance data to determine the feasibility of meeting the specified treatment standard. The objectives of the bioslurry investigation included:

- Estimation of hydraulic retention time (HRT) and biological solids retention time (BSRT) set points for operation
- Determination of the efficacy of meeting the specified treatment standard
- Identification of requirements for additional physical/chemical pretreatment
- Generation of performance data upon which pilot-scale design can be established.

Continuous-flow bioreactor operation was maintained for a 10-week period. Average PAH and CPAH percent removals based on concentration during the first 4 weeks of operation were 67 and 33 percent, respectively. Following the first 4 weeks of operation, analytical results suggest that bioreactor performance decreased. The last 6 weeks of continuous-flow operation demonstrated increasing PAH and CPAH concentrations in the effluent stream.

Batch operation was initiated and maintained for the remaining 5 weeks of operation. Reactor batch operation demonstrated average PAH and CPAH percent removals of 17 and 27 percent, respectively.

PAH and CPAH concentrations in the bioslurry averaged 320 and 180 mg/kg, respectively, during the first 4 weeks of operation. The PAH concentration increased during the following 6 weeks of operation. Batch operation of the reactor resulted in PAH and CPAH concentrations of 720 and 200 mg/kg, respectively.

Overall, neither batch nor bioslurry reactor studies produced final CPAH concentrations near the mandated treatment goal of 6.1 mg/kg.

weston/tmchp1

ix

1.0 Introduction

1.1 Site Description

U.S. Environmental Protection Agency (EPA), pursuant to Section 105 of the 1980 Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), placed the Moss-American site in Milwaukee, Wisconsin (the Facility) on the National Priorities List (NPL). The Facility is located in the northwestern section of the City of Milwaukee, County of Milwaukee, State of Wisconsin, at the southeast corner of the intersection of Brown Deer and Granville Roads, at 8716 Granville Road. The Facility, as defined by the Consent Decree (CD), includes the former Moss-American wood preserving plant property and approximately 5 miles of the Little Menomonee River. The Little Menomonee River flows through the eastern portion of the former wood preserving plant, continuing on through the Milwaukee County Parkway, to its confluence with the Menomonee River about 5 miles south. Portions of the Little Menomonee River's floodplain are included in the Facility boundary. Fifty-one acres of the former wood preserving plant is undeveloped Milwaukee County park land. Twenty-three acres is owned by the Chicago and North Western Transportation Company and used as a loading and storage area for automobile transport. The Facility is located in a moderately-populated suburban area of mixed industrial, commercial, residential, and recreational use. Population in the nearby area is estimated at 2,036 persons per square mile.

Prior Removal and Remediation Activities

EPA conducted a remedial investigation/feasibility study (RI/FS) for the Facility and issued the corresponding RI and FS reports on January 9, and May 24, 1990, respectively.

On May 29, 1990, EPA published a notice of completion for the RI/FS and issued the proposed Remedial Action Plan for the Facility. A public comment period began with issuance of the proposed plan and extended until August 6, 1990. On September 27, 1990, the EPA Regional Administrator signed the Record of Decision (ROD), which describes the Remedial Action Plan for the Facility. Public comments that were received and EPA response to the comments were included in the ROD, with which the State of Wisconsin has expressed concurrence.

A CD incorporating the Statement of Work (SOW) was signed by Kerr-McGee Chemical Corporation, Inc. (KMCC) on July 17, 1991. The CD was lodged by the U.S. Department of Justice on December 28, 1991. Under this CD, the Settling Defendant, KMCC, will lead in developing and implementing the Remedial Design and Remedial Action Plan for the Facility.

Roy F. Weston, Inc. (Weston) is the prime contractor to the Settling Defendant, KMCC, responsible for the CD implementation. Weston contracted IT Corporation (IT) to conduct Phase I laboratory-scale treatability studies to evaluate the effectiveness of the bioslurry treatment technology in treating creosote-impacted soils at the Facility. The treatability studies were conducted as part of Predesign Task 16 of the SOW. Initial characterization data for treatability study test matrix determined during Predesign Task 16 is included in Appendix A.

1.2 Waste Description

The polycyclic aromatic hydrocarbon (PAH) components of creosote; benzene, toluene, xylene (BTX); and carcinogenic polycyclic aromatic hydrocarbons (CPAH) were the site contaminants of concern. According to the RI, the maximum PAH concentration was 32,000 milligrams per kilogram (mg/kg). Maximum CPAH concentration was approximately 1,900 mg/kg. The CPAH concentrations averaged 300 to 400 mg/kg. The SOW requires treatment of contaminated site soils and sediments to 6.1 mg/kg of total CPAH.

Site soil samples employed during the continuous-flow bioslurry reactor study had average CPAH and PAH concentrations of approximately 250 and 1,000 mg/kg, respectively. PAH concentrations ranged from 720 to 1,200 mg/kg. The CPAH fraction ranged from 200 to 300 mg/kg.

1.3 Remedial Technology Description

The primary remedial treatment alternative chosen by EPA for implementation at the Facility is biological slurry treatment. The selection of a remedial treatment alternative was driven by compliance with the mandated cleanup criterion. The treatment standard for the soil and sediment was 6.1 mg/kg of the CPAH fraction of the creosote contamination, specifically, chrysene, benz(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(g-h-i)perylene, dibenz(a,h)-anthracene, and indeno(1,2,3-c,d)pyrene. These

compounds are characterized by high organic partition coefficients (K_{ow}), low aqueous solubility, and low vapor pressures (Table 1-1).

Bioremediation of the CPAH in soils and sediment may utilize bioslurry reactors. If implemented, the main objective of this technology will be to oxidize the contaminants of interest. Bioslurry reactors may provide rapid biodegradation of contaminants due to enhanced mass transfer rates and increased contaminant to microorganism contact¹.

Increased concentration of active biomass, improved oxygen delivery, and optimized environment in bioslurry reactors, may allow for treatment of high concentrations of organic contaminants in soils and sludges. Biodegradation of soils and sludges with selected contaminant concentrations ranging from 2,500 to 250,000 mg/kg in bioslurry reactors has been demonstrated¹.

Contaminant reduction in bioslurry reactors is improved through proper feed preparation. Preparation of the influent waste stream should produce the general characteristics presented in Table 1-2.

1.3.1 Treatment Process and Scale

Full-scale commercial bioslurry units are estimated to require approximately 0.5 to 1 acre per million gallons of reactor volume¹. Reactor size is determined based on the hydraulic and biological solids retention times required for treatment. Retention times are established based on the biodegradability of the waste, level of treatment required, influent contaminant concentration, and physical/chemical nature of the waste. Treatability studies are often required to estimate full-scale reactor size.

During the Phase I treatability study, approximately 750 pounds of soil was wet sieved and prepared for laboratory-scale batch and bioslurry reactor testing. Process scale for laboratory testing was approximately 60 liter (1). Influent slurry (approximately 30 percent) was introduced to the reactor to achieve a 30-day hydraulic retention time (HRT). The system employed solids recycle and maintained a biological solids retention time (BSRT) set point of 38 days.

Table 1-1 Physical/Chemical Properties of CPAH Constituents

Carcinogenic Polynuclear Aromatic Hydrocarbons	K _{ee} (log)	Aqueous Solubility (µg/l)	V.P at 20°C (torr)
benz(a)anthracene	5.61	14	5.0x10 ⁻⁹
benzo(a)pyrene	6.04	3.8	5.0x10 ⁻⁷
benzo(b)fluoranthene	6.57	1.2	5.0x10 ⁻⁷
benzo(k)fluoranthene	6.84	0.55	5.0x10 ⁻⁷
chrysene	5.61	2	6.3x10 ⁻⁷
dibenz(a,h)anthracene	5.97	.50	1.0x10 ¹⁰
benzo(g,h,i)perylene	7.23	0.26	1.0x10 ¹⁰
indeno(1,2,3-c,d)pyrene	7.66	62	1.0x10 ¹⁰

IT Project No. 408491

Sims, R. C. and M. R. Overcash "Fate of Polynuclear Aromatic Compounds (PNAs) in Soil - Plant Systems," Residue Reviews, 1983.

 $\mu g/l$ - micrograms per liter V.P. - vapor pressure

KLB/07-93/SMC/BIOSLURY

· ·

Table 1-2General Influent Feed Characteristicsfor Bioslurry Treatment

IT Project No. 408491

Target
0.025 - 25 percent by weight
10 - 40 percent by weight
60 - 90 percent by weight
Less than 1/4 inch
15 - 35°C
4.5 - 8.8

EPA, 1990, "Slurry Biodegradation," EPA/540/290/016.

1.3.2 Operating Features

Bioslurry reactor systems aerobically biodegrade aqueous slurries created through the mixing of soils or sludges with water. The most common mode of bioslurry treatment is batch; however, continuous-flow operation can be achieved. Aeration is provided through floating or submerged aerators or compressors and spargers. Mixing may be achieved through aeration alone or in conjunction with mechanical mixers. Nutrient addition and pH adjustment are accomplished through metered chemical addition to the reactor vessel. Following aeration, the treated slurry is dewatered via standard dewatering equipment, such as clarifiers or filtration¹.

The residual streams created during bioslurry remediation include treated solids, process water, and possible air emissions. The process water collected during the solids/liquid separation phase is usually recycled for influent waste stream slurrying or discharged under permit. Air emissions may be minimized through system design and air pollution control devices.

1.3.3 Biodegradation of PAH

Bioslurry treatment of PAH relies on the effective biological attack of the compounds by indigenous microbial populations. Environmental biotransformation and mineralization of several PAHs by indigenous populations in soils has been documented^{2,3,4} and an extensive database has been developed and reviewed on the biochemistry of PAH degradation by aerobic microorganisms⁵⁻¹¹. Mineralization or oxidation of phenanthrene and anthracene has been reported¹²⁻²³. Acenaphthene, acenaphthylene, fluorene, and fluoranthene have been reported to be oxidized or used as sole carbon sources^{13,24,25,26}. A Mycobacterium sp. has been isolated, which was capable of extensive degradation of pyrene^{77,28,29}. Benzo(a)pyrene (B[a]P) and benz(a)anthracene have been shown to be oxidized to dihydrodiols by a mutant strain of *Beijerinckia* sp.³⁰. More recently, *Beijerinckia* strain B1 was shown to oxidize benz(a)anthracene after induction with biphenyl, m-xylene, and salicylate³¹. Intermediates identified were 1-hydroxy-2-anthranoic acid, 2-hydroxy phenanthranoic acid, and 3-hydroxy phenanthranoic acid. Methyl-hydroxylated metabolites of 7,12-dimethyl-benz(a)anthracene were reportedly produced by cultures of *P. aeruginosa*³².

The use of bioslurry reactors for PAH degradation has been described by Mueller et al., (1991)³³ and Lewis (1992)³⁴. Mueller et al., (1991) treated a creosote-contaminated soil that

was washed with 0.05 percent Triton X-100. The resulting slurry and soil fines (<2 millimeter [mm]) were used to charge the bioreactor. Mueller reported that greater than 50 percent of the targeted PAH was degraded after 3 to 5 days. However, after approximately 10 days, no further biodegradation in the higher molecular weight PAH occurred. No rates of degradation were reported. No attempts to optimize the PAH-degrading bacterial population were made.

Lewis (1992) reported the use of Eimco BioliftTM reactors operated in batch mode to treat a PAH-contaminated soil over a 12-week period. All the reactors were bioaugmented with PAH-degrading bacteria previously isolated from the same soil. Inorganic nutrients were added to each reactor. After 9 weeks, four reactors were reseeded with the PAH-degrading culture and two of these reactors were amended with Tween 80, a commercially-available surfactant. After 2 weeks of operation, 95.9 ± 1.8 percent of the 2- and 3-ring PAH was degraded and 81.6 ± 3.9 percent of the 4-ring and higher PAH was degraded. Total PAH and CPAH degradation after 12 weeks of operation averaged 93.4 ± 3.2 and 89.1 ± 4.3 percent, respectively, for all five reactors.

Lewis (1992) acknowledged that the majority of degradation occurred within the first 2 to 3 weeks of operation and that semicontinuous mode is the preferred mode of operation as compared to prolonged batch operation. A CPAH removal of 81.6 percent was measured during the first 2 weeks of operation; CPAH concentrations decreased only by an additional 7.5 percent during the remaining 10-week period. Based on this observation, the author suggests that semicontinuous mode is preferable to prolonged batch treatment. Substrate removal kinetics and the bacterial population sizes of specific PAH-degrading microorganisms were not reported.

2.0 Conclusions and Recommendations

2.1 Conclusions

The bioslurry reactor, operating in continuous-flow and batch mode was unable to achieve the total carcinogenic polycyclic aromatic hydrocarbons (CPAH) target level of 6.1 milligrams per kilogram (mg/kg). Overall, optimal reactor performance resulted in final CPAH concentrations of 180 mg/kg. This concentration is approximately equivalent to the final soil CPAH concentrations achieved during the initial batch (170 mg/kg) and the final batch bottle studies (150 mg/kg).

Because of the observed decrease in oxygen uptake rates and specific degrader population densities during operation of the reactor system, it was postulated that either an inhibitory substance was accumulating in the bioslurry or soil-bound CPAH were not available for biological attack. Additional testing of the slurry for potential inhibitors (i.e., halogenated volatile organic compounds, metals, and sulfides) did not reveal the presence of inhibitory substances.

The similarity in final CPAH concentrations throughout all studies suggest that the CPAH constituents may not have been bioavailable or were present in concentrations below the level required to induce the microbial biodegradation pathway.

2.2 Recommendations

Several recommendations to enhance the rate and extent of CPAH removal in the bioslurry reactor are discussed in the following text.

- The similarity in final CPAH concentrations throughout all studies does suggest that CPAH species were not bioavailable and/or the necessary degradative microbial populations were not active in the treated slurries. In addition, the lack of CPAH concentrations measured in the aqueous phase also suggests decreased bioavailability.
- Results from this and other studies suggest that the concentration of available CPAH was not sufficient to induce the enzymatic pathway required for biodegradation³⁵. Analytical results indicate that naphthalene was not present above the analytical detection limit in the aqueous and solids phase. It has been shown that the naphthalene-degrading pathway can degrade phenanthrene

and anthracene³⁵ and possibly pyrene and benzo(a)pyrene (unpublished data). However, for the naphthalene-degrading pathway to be active, inducers must be present.

weston/tmchp2

2-2

3.0 Treatability Study Approach

3.1 Test Objectives and Rationale

The Phase I treatability studies for biological slurry treatment included a batch slurry study and a bioslurry reactor study. The batch slurry study produced supporting data for optimizing the operation of the laboratory-scale bioslurry reactor. Batch slurry testing was conducted in sealed, 1-liter (1) vessels at solids loadings of 30 and 40 percent. The duration of the batch study was 6 weeks with sample analysis during initiation, Week 3, and Week 6. The objectives of this study included:

- Providing support data for optimizing operation of the bioslurry reactor
- Determining the impact of solids loading on operation
- Calculating preliminary substrate utilization rates.

Following the collection of the batch slurry study Week-3 data, the bioslurry reactor study was initiated. During the 3-month bioslurry study, a 60-1, stainless steel, Eimco BioliftTM slurry reactor was operated initially in continuous-flow and, subsequently, in batch mode. Operation of this unit under the optimum solids loading determined during batch testing provided performance data to determine the efficacy of meeting the specified treatment standard of 6.1 milligrams per kilogram (mg/kg) total carcinogenic polycyclic aromatic hydrocarbons (CPAH). The objectives of the bioslurry investigation included:

- Estimation of hydraulic retention time (HRT) and biological solids retention time (BSRT) set points for operation
- Determination of the efficacy of meeting the specified treatment standard
- · Identification of requirements for additional physical/chemical pretreatment
- Generation of performance data upon which pilot-scale design can be established.

The dewatering of treated solids was not evaluated during this phase of the investigation.

3.2 Experimental Design and Procedures

The test material employed in the batch and bioslurry reactor studies was collected by Roy F. Weston, Inc. (Weston) from the Moss-American site. One composite soil sample was prepared to represent the anticipated average concentration of site contaminants.

3.2.1 Sample Procurement

Two shipments of site soil were delivered on October 28, 1992 and January 14, 1993 to IT

Corporation's (IT) Biotechnology Applications Center (BAC) via a certified, commercial carrier. The second soil shipment was required following initial evaluation of the soil pretreatment process. The prescreening process only generated 42 pounds (lb) of soil (dry weight) per 150 lb of soil sieved. Therefore, the total soil mass required for testing increased to approximately 750 lb from the previously estimated 150 lb. Appropriate shipping documentation (presented in Appendix B) accompanied all samples sent to the BAC.

Following the receipt of the soil, the containers were visually inspected and sample volumes recorded. All samples received at the BAC were automatically logged into a sample tracking system and given independent sample identification numbers. The sample identification number for the October 28, 1992 shipment of one 20-gallon drum was 09351192. The second shipment of four 20-gallon drums of soil on January 14, 1993 received sample identification numbers W01, W02, W03, and W04.

3.2.2 Soil Pretreatment

Soils from Sample Identification No. 09351192 were submitted to Eimco Process Equipment Company (Eimco) for initial testing to determine the appropriate slurry density and particle size required for bioslurry treatment. The Eimco final report is provided in Appendix C. Results of the Eimco study indicated that less than 28 mesh (0.589) particle size would allow effective treatment. Eimco also determined that a 35 percent slurry density was the maximum allowable for proper operation of the 60-1 bioslurry reactor.

Prior to treatability testing, the subject soils (i.e., Sample Identification No. 09351192, W01, W02, W03, and W04) were wet sieved to achieve uniform particle-size distribution, per Eimco's recommendation. The same soil pretreatment techniques were employed for all soils tested during both batch and bioslurry investigations. The system employed a 2-foot (ft) by 1-ft by 4-ft galvanized aluminum tank with a 18-inch (in) by 26-in No. 30 mesh sieve placed on the rim. The sieve was a U.S.A. Standard Testing Sieve, American Society for Testing and Materials (ASTM) E-11 Specification, No. 30 mesh manufactured by Gilson Company, Inc. (Worthington, Ohio).

For each soil batch prepared, the tank was partially filled with distilled water. Two Little Giant 2E Series submersible pumps (aluminum housing, epoxy coating, nylon pump head and impeller, and polypropylene screen) were placed on bricks inside the tank. These pumps

were used to recirculate the wash water and, thereby, increase the slurry density of the mixture. Evaporation of excess wash water allowed for the development of a 30 percent or greater slurry density for treatability testing. Evaporation was achieved through air drying of the slurry mixture over a 24-hour period at room temperature.

All slurries prepared for testing were stored at room temperature until used.

3.2.3 Batch Slurry Testing

The batch slurry study was maintained for 6 weeks. The objective of this study was to determine the impact of solids loading on operation, provide supporting data for bioslurry reactor operation, and establish preliminary substrate and oxygen utilization rates.

Six treatments were evaluated including:

• Treatment 1	30 percent solids, nutrient and oxygen amended
 Treatment 2 	30 percent solids, nutrient and oxygen amended
 Treatment 3 	40 percent solids, nutrient and oxygen amended
 Treatment 4 	40 percent solids, nutrient and oxygen amended
 Treatment 5 	30 percent solids, biologically-inhibited control
• Treatment 6	40 percent solids, biologically-inhibited control.

Treatments 5 and 6 served as the biologically-inhibited controls for the study. Analysis of these treatments was to be used to determine abiotic losses of target compounds from the biologically-active treatments. However, as discussed in Section 4.1.2.1, biological activity was not inhibited at mercuric chloride concentrations as high as 1,500 milligrams per liter (mg/l). Treatments 2 and 4 were duplicates of 1 and 3, respectively. All treatments were placed in amber bottles to minimize light exposure.

The batch study was conducted in sterile, amber-glass, sealed, 1-1 bottles. Soils were placed in the bottles at solids densities of approximately 30 and 40 weight percent. The total solids (TS) density of the prescreened slurry was determined to be 30 percent and used to establish Treatments 1, 2, and 5. A subsample of the 30 percent slurry was air dried at room temperature to a solids content of 44 percent and diluted with deionized water to a solids content of 40 percent. This material was used to establish Treatments 3, 4, and 6. An additional 400 milliliters (ml) of 30 and 40 percent slurries were generated for initial analysis. The density of each slurry was determined and used to calculate the mass required to fill each bottle with 900 ml of slurry.

The treatment containers were continuously mixed and the slurry remained in suspension during the collection of Week 3 and Week 6 samples. Table 3-1 illustrates the change in headspace volume resulting from intermittent sampling.

Initial determination of the slurry pH and macronutrient concentrations, i.e., ammoniacal nitrogen and ortho-phosphate, was completed once treatment slurries had been prepared. As described in the Test Plan, a 100:10:1 carbon:nitrogen:phosphorus (C:N:P) ratio was the target for the study. Background ortho-phosphate concentrations within the treatment slurries were sufficient and did not require modification. The low ammoniacal nitrogen concentration required amendment to 500 mg/l ammoniacal nitrogen. This requirement was met by adding 6.8 grams (g) of a 74,000 mg/l solution of ammonium chloride directly to the 30 percent treatments. The 40 percent treatments received 8.1 g of the 74,000 mg/l ammonium chloride solution. Week 3 analysis indicated that further ammonium chloride addition was not required. Slurry pH was neutral at Week 0 and was adjusted from 6.5 to 7.0 following Week 3 using sodium hydroxide.

Treatments were sparged daily with oxygen to maintain an aerobic environment. Headspace oxygen measurements were made five times per week during the first 3 weeks of operation and weekly thereafter using a modified, galvanic-cell, oxygen probe³⁶. Oxygen uptake rates were determined through analysis of oxygen depletion in the headspace over a 24-hour period.

Following preparation, the treatments were placed on a modified rotator, rotated at 6 revolutions per minute (rpm), and maintained at room temperature (19°C) throughout the course of the study. The modified rotator was constructed from a drill press. The drill press-driven rotisserie, holding six 1-1 bottles, was chosen over conventional sparging and agitation systems due to improved suspension of the treatment solids. Following study completion, all treatment vessels were rinsed and solvent extracted, using dichloromethane, to determine adsorptive losses of contaminants.

Table 3-1 Change in Headspace Volume

IT Project No. 408491

	Volume (ml)				
Sample Point	Initial thru Week 3	Week 3 thru Week 6			
Slurry	900	500			
Headspace	100	500			

KLB/07-93/SMC/table3-1

Preliminary specific substrate utilization rates (q) in the batch study, based on PAH and CPAH utilization per unit biomass were determined using the following equation:

$$q = \frac{(S_i - S_f)/\Delta t}{X}$$
 (Equation 1)

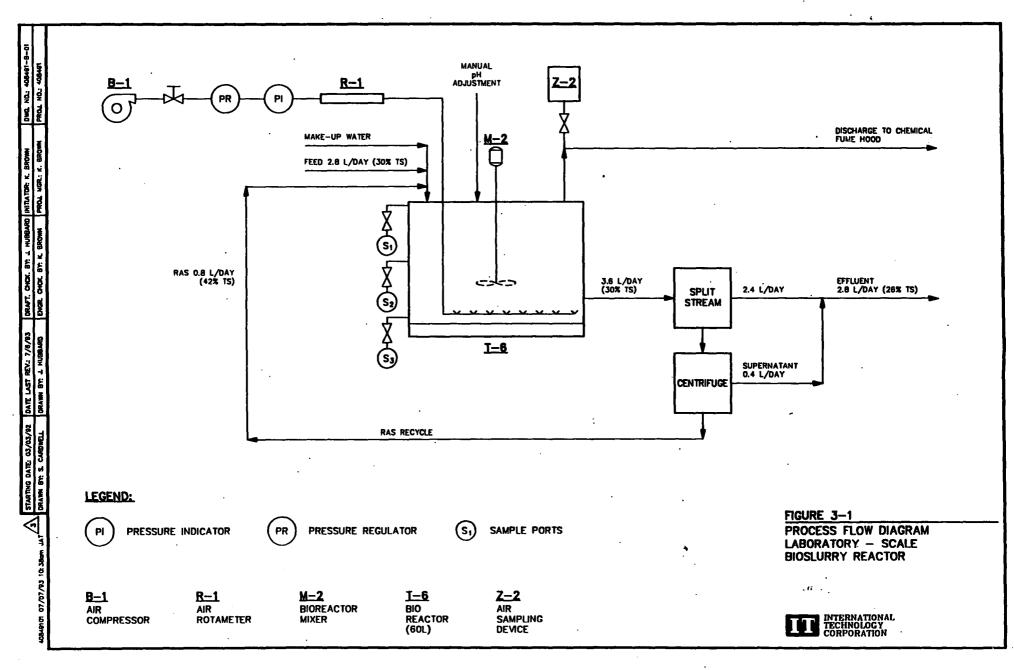
Where:

q = specific substrate utilization rate (hr⁻¹)

 S_i = Initial substrate concentration (mg)

 S_f = Final substrate concentration (mg)

 $\Delta t =$ Time elapsed (hours)


X = TS concentration in slurry (mg).

3.2.4 Bioslurry Reactor Study

Due to the similarity of activated sludge and bioslurry reactor systems, conventional acronyms such as waste activated sludge (WAS) and return activated sludge (RAS) are used to describe the slurry recycle system in the laboratory-scale bioslurry reactor.

A 60-1, stainless steel, Eimco Biolift slurry reactor was employed during this 3-month study and operated in both continuous-flow and batch mode. The process flow diagram (PFD) for the reactor system is presented in Figure 3-1. A 30 percent solids feed stream was introduced to the reaction vessel (Bioreactor T-6) at an average 5-day flow rate of 2.8 liters per day (I/day) resulting in a mathematical 7-day average flow of 2 I/day. At this daily influent flow rate, the bioslurry reactor HRT was maintained at 30 days. Reactor volume was monitored daily by measuring the reactor slurry column when mixing systems were stopped. Distilled water was added to compensate for any losses due to evaporation.

The system's BSRT was maintained through removal of 3.6 l/day of reactor slurry 5 days per week (Figure 3-1). The 3.6 l/day slurry could not be separated by settling; therefore, it was centrifuged. This stream was centrifuged to concentrate solids in the RAS stream. The 5-day average RAS flow rate was 0.8 l/day of approximately 42 percent solids. Following centrifugation, the supernatant was combined with the remainder of the extracted reactor slurry and analyzed as the effluent stream. BSRT was calculated based on the mass balance of solids in the reactor system. The system BSRT set point was approximately 38 days during continuous-flow operation. The operating set point was maintained for a period of 68 days prior to batch operation. Volumes removed for sample analysis were considered when calculating the WAS volume.

•

The Test Plan specified that the BSRT (day) of the laboratory-scale system would be approximated through mass balance of the system solids using the following equation:

Where:

 $BSRT = \frac{XV}{Q_w X_r + (Q_-Q_w) X_e}$

(Equation 2)

$$X = TS$$
 concentration in the aeration vessel (mg/l)

V = Volume of the aeration vessel (l)

 $Q_w = WAS$ flow rate (l/day)

 $X_{r} = TS$ concentration in RAS (mg/l)

Q = Influent flow rate (l/day)

 X_{e} = TS concentration in system effluent (mg/l).

Due to the problems associated with solids separation, the equation was modified and reflected the mass balance of system solids:

$$BSRT = \underbrace{XV}_{V_{x}}$$

(Equation 3)

Where:

X = TS concentration in the aeration vessel (mg/l)

V = Volume of reactor slurry (l)

 $V_e =$ Volume of effluent sample (l)

 $X_e = TS$ concentration in system effluent (mg/l).

Reactor operating conditions were maintained at approximately 22°C, 6.2 mg/l dissolved oxygen, and pH 6.3. Dissolved oxygen was supplied to the unit via the sparging of ambient air from a commercial, oil-free compressor. Influent air flow rates could not be adjusted to substantially reduce bioslurry dissolved oxygen concentrations because air flow from the compressor could not be regulated. System pH was initially maintained through manual additions of 5 Normal (N) sodium hydroxide to the reaction vessel. Although pH adjustment was made more than twice per day on occasion, the pH continued to shift toward acidity even during periods of reduced biological activity. The pH was allowed to equilibrate at an average of 6.3, as no effect on the biological activity of the system was noted during reduced pH episodes.

All operational set points are listed below:

Parameter	Set Point	Test Plan Objective		
Feed flow	2 1/day (7-day average)	2 1/day		
HRT	30 days	30 days		
Temperature	22°C	Room Temperature		
Dissolved Oxygen	6.2 mg/l	3 mg/l		
pH	6.3	7 - 8		
BSRT	38 days	<u>></u> 30 days		
Reactor Volume	60 1	60 1		
Return Activated Sludge	0.57 l/day (7-day average)	0.2 l/day		

Following continuous-flow operation, the bioslurry reactor was operated in batch mode for a period of approximately 5 weeks. Once RAS and influent feed addition was suspended for batch treatment, all other operational set points were maintained the same as during continuous-flow operation. Volume was corrected for evaporation losses daily.

Volatilization of influent constituents was quantified in the reactor system. Volatilization that occurred during reactor aeration and mixing was vented to a chemical fume hood. Bioslurry reactor headspace sampling for volatiles and semivolatiles was conducted weekly. These samples were analyzed to assist in the calculation of the system's material balance, however the majority of volatile constituents present were probably lost during soil pretreatment.

Following batch operation, the bioslurry reactor was drained, washed with distilled water, and solvent extracted, using dichloromethane. Polycyclic aromatic hydrocarbons (PAH), CPAH, TS, volatile solids (VS), volume, and slurry density were measured on all waste streams generated during reactor cleanup. The total mass of contaminant removed was calculated.

3.2.5 Final Batch Bottle Study

Because of the reduction in PAH removal experienced during continuous-flow operation of the bioslurry reactor, an additional batch bottle study was initiated. The study was established identically to the initial bottle study and maintained for a period of 6 weeks. Bioslurry reactor influent feed was employed in the study. Following the completion of the final bottle study, the treatment vessel was extracted and analyzed to account for any losses due to adsorption.

3.3 Equipment and Materials

The batch bottle and final bottle studies were conducted in sterile, glass, sealed, 1-1 bottles. The sample collection port on the containers consisted of a TeflonTM half-hole septum in the TeflonTM cap of the bottle. Headspace gas samples were collected through the septum using a Supelco Pressure-Lok Series A-2 syringe. Sample bottles were opened at 3 and 6 week sampling events to permit slurry collection.

The laboratory-scale bioslurry investigation was conducted in a continuous-flow, completely mixed, 60-1, stainless steel, Eimco Biolift slurry reactor. The system PFD is shown in Figure 3-1. Materials of construction were primarily stainless steel and Viton[™] tubing. During air sampling, the reactor headspace was in contact with Teflon probes and stainless steel tubing.

The bioreactor (T-6) was equipped with controllers to maintain agitation and air flow rate. Agitation was maintained using a mixing impeller (M-2), sparged air, and an airlift system to improve the system oxygen transfer efficiency. Hydrocarbon-free, ambient air from a commercial, oil-free compressor was used to supply air to the bioreactor through a sparger installed at the bottom of the reactor. Following 11 weeks of operation, the original compressor received from Eimco failed. The failed compressor was immediately changed and no significant loss of dissolved oxygen concentration was reported. During the 13th week of operation, the new compressor failed and was once again changed. Both compressor failures were attributed to blockage of the influent air flow line which could not be fixed during system operation. No adverse effects to operation were noted. The mixed liquor pH was maintained in the optimal range for biodegradation by the manual addition of sodium hydroxide.

Volatilization from the aerated slurry was vented to a chemical fume hood before discharge to the atmosphere. Headspace semivolatile and volatile constituents were measured through weekly air sampling at Z-2 (Figure 3-1). The semivolatile air sampling train consisted of

stainless steel tubing connected to an XAD-2 sorbent sampling tube. The air sampling system used to collect volatile off-gas samples consisted of a stainless steel Summa[™] polished canister, Milaflow pneumatic flow controller set at 10 cubic centimeters per minute (cm³/min), and stainless steel tubing.

Other major pieces of equipment utilized during this project are listed below:

- Gas chromatograph, Hewlett Packard 5890A
- High performance liquid chromatograph (HPLC), Dionex Liquid Chromatograph Model DX-300 and Dionex A1-450 Chromatograph computer software
- Total Organic Compounds (TOC) Analyzer, Dohrmann DC-80
- Oxygen detection device, IT patent pending
- Eimco Biolift Slurry Reactor
- Various incubators, shakers, pH electrodes, ion-selective electrodes, spectrophotometers
- IEC Centra-4B Centrifuge (International Equipment Company)
- YSI Dissolved Oxygen Meter, Model 50 and YSI Dissolved Oxygen Probe Model 5739
- Personal computers.

3.4 Sampling and Analysis

3.4.1 Initial Waste Characterization

Initial site material used for the batch bottle study was received on October 28, 1992. The shipment consisted of one 20-gallon drum of site soil. The second shipment of four 20-gallon drums of soil were received on January 14, 1993. In accordance with the project-specific Test Plan, soils were prescreened and analyzed for aqueous and solids phase PAH; TS/VS; microbial enumerations; nutrient concentrations; pH; benzene, toluene, xylenes (BTX); and total organic carbon (TOC)/total carbon (TC). TOC measurements were made to determine organic carbon concentrations in the aqueous phase. TC determinations to quantify the carbon concentration in solids samples differ from TOC measurements by including both organic and inorganic carbon concentrations.

3.4.2 Treatment Process

3.4.2.1 Batch Slurry Study

Approximately 400 ml of slurry was collected during each of the three sampling periods.

The analytical parameters monitored at study initiation, Week 3, and Week 6 in the aqueous phase of each treatment were PAH, BTX, pH, and TOC. The slurry phase was monitored for TS and VS concentrations, pH, microbial density of heterotrophic bacteria and anthracene degraders, and macronutrient concentrations. Due to difficulties in determining specific degrader populations, mineralization of radio-labeled anthracene was determined at Week 3 and Week 6. The soil fraction of each treatment was monitored for PAH, BTX, and TC concentrations. Following study completion, all treatment vessels were rinsed and solvent extracted, using dichloromethane, to determine adsorptive losses of contaminants.

•

The sampling schedule for the batch bottle study is presented in Table 3-2. The sampling schedule defined in the approved Test Plan was maintained throughout the batch study. In addition to the specifications of the Test Plan, anthracene mineralization experiments and TC analyses of the solids were conducted.

3.4.2.2 Bioslurry Reactor Study

The operating conditions for temperature, dissolved oxygen, and pH were monitored 5 times per week. For clarification of the following text, sample identifiers are labeled in Figure 3-1. All mixed liquor reactor samples were collected from the second sampling port located on the side of the bioslurry reactor (S2).

The sampling schedule for the bioslurry reactor study is presented in Table 3-3. In addition to the requirements of the Test Plan, several analyses including anthracene mineralization testing, oxygen uptake rates, slurry density analysis, VOC, metals, and sulfide determinations were conducted to facilitate the evaluation of system performance.

The influent waste stream was characterized for PAH concentrations in the aqueous and solids phase twice per week. The influent slurry was also analyzed for TS and VS concentrations twice per week.

The reactor slurry was collected from Sample Port S2. The reactor slurry particle size was monitored once a week to determine its impact on the release of soil-bound contaminants. The reactor slurry phase was also monitored twice weekly for TS and VS concentrations. Microbial enumerations of total heterotrophs and anthracene degraders were conducted once per week. Gene probe analysis for naphthalene degraders was initiated on February 15,

Table 3-2 **Batch Slurry Study Sampling and Analysis Schedule**

.

IT Project No. 408491

Treatment				Analysi	8				Volume Removed	Frequency
No. 1-6	РАН	BTX	тос	N&P	pН	TS	VS	Micro		
Aqueous	100 ml	50 ml	10 ml						370 ml	3/Treatment
Slurry				20 ml		20 ml		10 mt	30 ml	3/Treatment
Solids*	20 g	10 g					•			3/Treatment
Total .									400 mi	

PAH - Polycyclic aromatic hydrocarbons

BTX - Benzene-toluene-xylene

TOC - Total organic carbon

N&P - Ammoniacal nitrogen and ortho-phosphate

DO - Dissolved oxygen

- Total solids TS - milliliter

ml

- grams g

VS - Volatile solids Micro - Microbial enumerations

• - Solids samples were generated through centrifugation of slurry samples.

Table 3-3Bioslurry Reactor Study Sampling and Analysis Schedule

IT Project No. 408491

(Page 1 of 2)

. .

										<u></u>
Sample Point	Analysis									
	PAH	BTX	тос/тс	N&P	DO .	рH	TS	V8	Micro	Particie Size
Influent Weste Stream (8 ₁)										
Aqueous (8,)										
Volume	100 ml								-	
Frequency	2/wk		-	-	-	-			-	
Sluny (S1)										
Votume							20 ml			
Frequency							2/wk	2/wk	-	**
Solide (S ₁)										
Volume	20 g									8 8
Frequency	2/wk									••
Reactor Mixed Liquor (8 ₂)										
Aqueous (8 ₂)										
Volume	100 ml	50 ml	10 mł	20 mi				**	•••	
Frequency	2/wk	1/wk	2/wk	1/wk		••	**		·	• •
Slurry (S ₂)							_			
Volume					1 ml		20 ml		10 ml	500 ml
Frequency	-			-	2/wk	2/wk	2/wk	2/wk	1/wk	1/wk

.

Table 3-3 **Bioslurry Reactor Study Sampling and Analysis Schedule**

IT Project No. 408491

Page (2 of 2)

Sample Point	Analysia									
	PAH	втх	TOC/TC	N&P	DO	pH	TS	V8	Micro	Particle Size
Solids (S ₂)										
Volume	20 g	10 g	••				-			
Frequency	2/wk	_1/wk	2/wk				<u> </u>			-
RAS (8,)										
Aqueoùs (8,)										
Volume	100 ml			-	-		-			
Frequency	1/wk									
Slurry (8 ₅)		i								
Volume							20 ml			~
Frequency							2/wk	2/wk		
Solids (S ₃)										
Volume	20 g							58		
Frequency	1/wk				-	-	-			
Effluent Waste Stream (S ₄)										
Siurry (S ₄)										
Volume			-				20 ml			
Frequency							2/wk	2/wk		
Alr (Z2)	1/wk	1/wk								-

PAH - Polynuclear aromatic hydrocarbona BTX - Benzene, tobuene, xylene

TS - Total solids

- milliliter ml

- grams 8
- VS Volatile solids

Micro - Microbial enumerations

t - Initial characterization S1 - Influent sample port

wk - Week

S4 - Effluent sample port TC - Total carbon

S₃ - RAS sample port

S₂ - Mixed liquor sample port

RAS - Return Activated Sludge

TOC - Total organic carbon

DO - Dissolved oxygen

KLB/07-93/SMC/BIOSLURY

N&P - Ammoniacal nitrogen and ortho-phosphate

1993, following 3 weeks of operation. The analysis was conducted on slurry grab samples collected from Sample Port S2. To compare bioslurry reactor operation with the initial batch bottle study, anthracene mineralization testing was also conducted.

The reactor slurry-phase macronutrient concentrations were monitored once per week. The macronutrient concentrations were controlled to maintain a residual concentration of 100 mg/kg ammoniacal nitrogen in slurry phase. Ammonium chloride was directly added in batch to the reaction vessel; phosphate addition was not required.

Aqueous- and solid-phase PAH, TC, and TOC concentrations in the reaction vessel were monitored twice weekly (S2). The volatile organic compound (VOC) concentration of the aqueous and solids phase was determined once per week, beginning April 2, 1993. The PAH content of the aqueous and solids phase was measured in the RAS stream once per week.

To accurately determine the system BSRT, TS, and VS concentrations of the RAS and effluent were determined twice weekly in the slurry phase. Because of expected variability in the VS measurement, TS concentrations were used to calculate the BSRT value.

Volatilization of contaminants was monitored to complete the mass balance of carbon in the system. Air monitoring for volatiles and semivolatiles was conducted weekly. Headspace constituents were determined through the analysis of air sampled through Z-2 (Figure 3-1).

Complete mixing of the reactor solids was verified once prior to system start-up and twice during continuous-flow operation. Verification was accomplished through the analysis of sample TS concentrations collected from the three sample ports located on the side of the bioslurry reactor (Table 3-4). The three ports represented three potentially distinct zones of the slurry. The bottom sample port provided sample material from within the rake-mixing zone. The middle port provided sample material from within the well-mixed zone. Finally, the top sample port provided sample material of slurry or any oil phase that might have been present. As shown in Table 3-4, analysis of the samples for TS concentration illustrated uniform mixing throughout the reactor during the study period.

Table 3-4Uniform MixingBioslurry Reactor Study

IT Project No. 408491

	TS	(%)	VS (%)		
Sample Point	2/4/93	3/11/93	2/4/93	3/11/93	
S-1	33	31	8.7	9.5	
S-2	30	34	8.2	9.5	
S-3	30	32	8.4	9.0	

KLB/07-93/SMC/table3-1

L

During batch operation of the bioslurry reactor VOC analysis of the reactor slurry was initiated. Analysis of the influent, RAS, and effluent waste streams was halted. In addition, three samples collected from the reactor effluent during continuous-flow operation, reactor slurry, and final bottle study were analyzed for metals content, including arsenic, barium, cadmium, chromium, lead, and sulfide.

3.4.2.3 Final Batch Study

Due to the reduced PAH degradation observed in the bioslurry reactor, an addition bottle study employing the second delivery of influent feed and reactor slurry was undertaken. This study was completed to compliment the requirements of the Test Plan.

Slurry samples were collected at initiation and Week 6 and analyzed for PAH, CPAH, and metals concentrations. In addition, the headspace oxygen concentration and oxygen uptake rate were also monitored. Gene probe analysis was used to determine naphthalene degrading microbial population densities.

3.4.3 Analytical Methods

All treatability testing was completed in the BAC laboratory located in Knoxville, Tennessee. This facility holds a special exemption from the State of Tennessee that permits execution of treatability studies. The BAC laboratory operates in accordance with an approved Chemical Hygiene Plan (CHP). All activities at the BAC conform to the standards set forth in the CHP.

Target compound analyses used modified Environmental Protection Agency (EPA)-approved methods. PAH concentrations were determined using modified EPA Method 8310. EPA Method 8310 refers to several extraction techniques including Method 3540 for Soxhlet extraction.

For PAH analysis, 10 g of soil sample was mixed with anhydrous sodium sulfate, placed in an extraction thimble and extracted using 200 ml of methylene chloride in a Soxhlet extractor for 24 hours. (The dry weight of the solid phase was analyzed by weight loss in a 105°C drying oven.) The extract was then concentrated to 1 ml using a Snyder column and solvent exchanged to 100 ml acetonitrile. Following extraction, the sample was analyzed using a Dionex Liquid Chromatograph equipped with a UV detector at 254 nm. Contaminants in

aqueous-phase were quantified by direct injection into the HPLC and analyzed by a florescence detector. Data were collected using Dionex A1-450 chromatographic computer software.

Nanograde methylene chloride and acetonitrile and analytical reagent-grade anhydrous sodium sulfate were used in the extraction method. Supleco PAH standard 610-M Lot No. LA3393 and Chem Service PAH PP-HC6 high concentration Lot No. 99-59A were used for instrument calibration and the preparation of spiking standards, respectively. The HPLC was calibrated using a three-point calibration curve.

Matrix spikes and blanks were analyzed during analysis of 26 percent of the solids samples collected for PAH analysis. Data generated during matrix spike and blank analyses are discussed in Chapter 4.0. These samples were analyzed to determine the method recovery efficiency.

Method blanks were generated by placing anhydrous sodium sulfate in an extraction thimble and extracting with methylene chloride in a Soxhlet extractor. The method blank samples were concentrated, solvent exchanged, and analyzed in the same manner as soil samples.

Matrix spikes were prepared by the addition of concentrated CPAH solutions to soil samples contained in the extraction thimble and Soxhlet extracted. Extractions and analysis were performed using the same method as used for sample analysis. Percent recoveries based on spike solution analyses were determined.

The BTX concentration was determined using modified EPA Method 8020. BTX samples were extracted via solvent extraction and sonication. Samples were analyzed using capillary GC/flame ionization detector (FID).

Intermittent samples were also analyzed for semivolatiles, VOC, halogenated VOC, and metals using EPA Methods 8270, 8240, 8010, 6010, respectively.

TS and VS measurements were made in accordance with Standard Method 2540G³⁷. This method was applicable to determining TS and VS fractions in solid and semisolid samples.

Method 2540B was also used for TS and VS analyses to accommodate smaller sample volumes and achieve faster results.

Slurry-phase ammoniacal nitrogen was determined using an ion-selective electrode method [BAC Standard Operating Procedure (SOP) No. BAC022]. Analysis of ortho-phosphate was completed using the BAC SOP No. BAC015 derived from ascorbic acid Standard Method 4500-P E. All BAC SOPs are included in Appendix D.

TOC measurements in the aqueous phase were made using a Dohrmann DC-80 TOC Analyzer. The persulfate-UV oxidation Standard Method 5310-C was used for this determination. TC measurements of the solids phase was accomplished through pyrolyzation of solids, collection of off-gases in a Tedlar bag, and analysis of bag contents using colorimetric, chemical reactor tubes.

The total heterotrophic microbial enumeration analyses were performed using the BAC SOP No. BAC009 for plate count technique. To assess the activity of the PAH-degrading bacteria, activity against anthracene was determined by spraying selected plates with a 0.5 percent anthracene solution (acetone as the carrier). The carrier evaporates leaving a white anthracene film on the surface of the plate. As bacterial colonies metabolized the anthracene, clear zones were observed around the colonies. Anthracene was chosen because it is a general indicator of activity against PAH. The spray plate method is not useful for higher molecular weight PAH because the physical nature of the compounds precludes detection of clearing zones, and it is less likely that many bacteria can utilize them as sole carbon sources.

Gene probe analysis for the naphthalene pathway was conducted on agar plates. The naphthalene pathway was monitored because it has been shown that this model pathway can not only degrade naphthalene but phenanthrene and anthracene³⁵. Mineralization of spiked ¹⁴C anthracene was determined by measuring the quantity of ¹⁴C-carbon dioxide evolved during the incubation of slurry samples. The anthracene experimental method is included in Appendix E.

The slurry-phase pH was determined using BAC SOP No. BAC014 derived from EPA Method 150.1 and *Methods of Soil Analysis* Part 2, Second Edition, pages 206 - 207. The

oxygen concentration in the headspace and slurry samples was determined using a modified, galvanic-cell, oxygen probe³⁶ and YSI oxygen meter, respectively. BAC SOP No. BAC021 was used during oxygen measurements. The slurry phase particle size distribution was determined using ASTM Method D422.

Air sampling was conducted following guidelines of EPA Method 18 and National Institute of Occupational Safety and Health (NIOSH) Method 5506 for measurement of PAH. Sample volume was measured using a rotameter. The sample was collected at a constant rate of 250 cm³/min for 24 hours. Analyses were conducted by GC/MS in accordance with the procedures of Method 8270 of *Test Methods for Evaluating Solids Wastes*, *Physical/ Chemical Methods*, EPA SW 846.

An EPA Method TO-14 sampling system was used to measure the volatile organics in air. Canister samples were analyzed in a Finnigan Model OWA 1050 GC/MS system with a quadruple MS. This system was equipped with a Tekmar Model 5000 cryogenic concentrator and sample introduction system.

3.5 Data Management

Data collected during execution of the study was recorded in a bound, controlled laboratory notebook. Data generated from integrators and computerized instruments were printed with the resulting data sheets kept with the project file. Computer programs were documented in sufficient detail to satisfy requirements, needs, and intended use of the program. All data and computer programs were verified and checked by a BAC scientist.

3.6 Deviations from the Test Plan

3.6.1 Batch Slurry Study

Modifications to the Test Plan procedure for conducting the batch bottle study are listed in Table 3-5 and provided in Appendix F. These modifications were determined necessary to generate reliable data and successfully operate the batch study. All modifications were discussed and approved prior to implementation.

3.6.2 Bioslurry Reactor Study

The following text describes modifications made to the bioslurry reactor Test Plan. The soil

Table 3-5 Batch Study Modifications

IT Project No. 408491

ITEM	ORIGINAL TEST PLAN	PROPOSED MODIFICATION	RATIONALE
Maintenance of dissolved oxygen during batch testing	Hydrogen peroxide addition to slurry. Daily monitoring of slurry DO using IT oxygen probe.	Pure oxygen purging of headspace. Daily monitoring of DO in headspace. Headspace will be maintained saturated with O ₂ .	40% slurry density is too thick to be introduced into the oxygen probe and determine the concentration of H_2O_2 in slurry. Purging of the headspace with O_2 in combination with continued mixing, will maintain adequate dissolved oxygen in the slurry while maintaining the integrity of the treatments. The use of conventional membrane DO probes was considered, however, they are unreliable in slurries and would require opening the treatments daily.
Batch treatment sampling device	Teflon [™] tubing inserted through a Teflon cap. Samples withdrawn using gas-tight syringe.	Teflon septum and Teflon screw cap. Sample withdrawn through pipetting.	Slurry density too thick to be withdrawn by original system.
Initial batch treatment volume	1,000 ml or zero headspace	900 ml	The reduced volume does not affect the analytical regime and allows for improved aeration in the event that DO is maintained using O_2 purging.
Batch treatment slurry densities	20 and 30% or Eimco recommendation (page 4-3 of Test Plan)	30 and 40%	Recommended by Eimco during initial testing.
Stir bars in batch treatments	Each treatment contained a stir bar	No stir bars. Manual mixing prior to sample collection.	During rotation it was feared that the stir bars would break the treatment vessels.
Modified tube rotator speed	200 грт	б грт	Modified tube rotator cannot be safely operated at 200 rpm. 6 rpm provides more than adequate mixing, safely.

The third nonconformance reported concerned sample preservation. The composite sample of the 30 percent treatments at Week 6 sampling was sent to IT Analytical Services (ITAS) for sulfide and metals analysis and received at 9°C rather than 4°C. The sample was processed as received.

Standard BAC laboratory protocol for PAH and CPAH measurements in the solids-phase included the analysis of method blanks and matrix spikes. The Test Plan required the evaluation of 10 percent of PAH analyses as quality control samples. Approximately 26 percent of all soil samples analyzed were control samples. Surrogate addition analysis was not part of the BAC Standard laboratory protocol for PAH.

Using BAC standard laboratory protocol, a three-point curve was used to routinely calibrate the instrument. Following the completion of the bioslurry study, prior to analysis of the final batch study samples, a third-party laboratory check standard was obtained from ITAS and analyzed.

Following extraction, the solids samples were analyzed using a Dionex Liquid Chromatograph equipped with a UV detector at 254 nm. The aqueous-phase was directly injected into the HPLC and analyzed by a florescence detector. Further discussion of the BAC protocol for PAH analysis is provided in Section 4.2.2.

4.0 Results and Discussion

4.1 Data Analysis and Interpretation

4.1.1 Analysis of Waste Characteristics

Initial site material used for the batch bottle study was received on October 28, 1992. The shipment consisted of one 20-gallon drum of site soil. Following the prescreening process, the total polycyclic aromatic hydrocarbon (PAH) and carcinogenic PAH (CPAH) concentration in the soil averaged 1,300 and 460 milligrams per kilogram (mg/kg), respectively. The benzene, toluene, xylene (BTX) concentrations in this soil shipment following the pretreatment sieving were below the detection limit for the analysis.

The second shipment of four 20-gallon drums of soil was received on January 14, 1993. The first drum of these soils was prescreened on February 16, 1993 and used as influent feed for the bioslurry reactor system beginning on February 17, 1993. The remaining drums were prescreened on February 23 through 25, 1993. From February 17 through April 1, 1993, the influent average PAH and CPAH concentrations were 1,020 and 240 mg/kg, respectively. PAH concentrations ranged from 720 mg/kg to 1,200 mg/kg. The CPAH fraction ranged from 200 to 300 mg/kg. Analytical results indicate that the first and second soil shipments were generally similar in PAH and CPAH concentrations.

4.1.2 Analysis of Treatability Study Data

4.1.2.1 Batch Study

Six treatments were evaluated during the 6-week batch bottle study. These treatments included:

•	Treatment 1	30 percent solids, nutrient and oxygen amended
•	Treatment 2	30 percent solids, nutrient and oxygen amended
•	Treatment 3	40 percent solids, nutrient and oxygen amended
•	Treatment 4	40 percent solids, nutrient and oxygen amended
•	Treatment 5	30 percent solids, biologically-inhibited control
•	Treatment 6	40 percent solids, biologically-inhibited control.

Treatments were evaluated at study initiation, Week-3, and Week-6. Analytical results for the three sample points are presented in Tables 4-1 through 4-3. These Tables provide results from microbial enumeration, nutrient analysis, total solids (TS) and volatile solids (VS) determinations, pH and temperature measurements, BTX, total organic carbon (TOC) and total carbon (TC) concentrations.

Macronutrient concentrations, i.e., ammoniacal nitrogen and ortho-phosphate, were maintained in adequate concentrations for biological activity. The Test Plan specified the maintenance of a carbon:nitrogen:phosphorus ratio of 100:10:1. However, based on TC concentration in the solids, this would have required the addition of 4,900 mg/kg nitrogen and 490 mg/kg phosphate. This nitrogen concentration was considered excessive; therefore, nitrogen and phosphate concentrations were maintained at a residual concentration of at least 200 mg/kg. The initial slurry-phase ammoniacal nitrogen concentration was 460 mg/kg. During 6 weeks of operation, this concentration decreased to an average of 280 mg/kg nitrogen in all treatments. Initial slurry-phase phosphate concentrations averaged 640 mg/kg in all treatments. Phosphate concentrations decreased within 6 weeks to 200 mg/kg across all treatments.

Both aqueous- and slurry-phase pH measurements were made. Aqueous and slurry phase pH decreased to 6.6 and 5.7, respectively, during 3 weeks of operation. The pH was readjusted following Week 3 to 7. Continued aeration of the vessels for the remaining 3 weeks resulted in a slight decrease of aqueous- and slurry-phase pH to 6.6 and 6.2, respectively. The average room temperature maintained throughout the bottle study was 19°C.

Target TS concentrations for the batch bottle study were 30 and 40 percent. TS and VS concentrations in all treatments determined at initiation, Week 3 and Week 6 are presented in Tables 4-1 through 4-3. At initiation, the average TS and VS concentrations of Treatments 1, 2, and 5 were 31 and 9 percent, respectively. Treatments 3, 4, and 6 were established with average TS and VS concentrations of 39 and 10 percent, respectively. No significant reduction in TS/VS concentrations was noted during the 6-week study.

Total heterotrophic microbial populations in Treatments 1 through 4 averaged 10^8 colony forming units/gram (CFU/g) throughout the investigation. Biologically-inhibited Treatments 5 and 6 also demonstrated heterotrophic counts of 10^8 CFU/g despite continued addition of

Table 4-1 Batch Slurry Study Initial Analytical Results

			Treat	ments		
Analytical Parameter	1	2	3	4	5	6
Total Heterotrophs (CFU/g)	3.0 x 10 ⁸	TNC	3.2 x 10 ⁸	TNC	2.1 x 10 ⁸	4.5 x 10 ⁸
Specific Degraders (CFU/g)	S	S	S	S	S	S
Nitrogen (mg/kg)	460	460	ND	ND	460	ND
Phosphorus (mg/kg)	640	640	ND	ND	640	ND
Total Solids (%)	31	32	39	39	31	39
Volatile Solids (%)	9	9	10	11	8	10
pH Aqueous	7.2	7.2	7.3	7.3	7.3	7.2
pH Slurry	6.6	6.7	6.7	6.7	6.6	6.7
Temperature (°C)	19	19	19	19	19	19
BTX Solids (mg/kg)	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
BTX Aqueous (mg/l)	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
TC Slurry (mg/kg)	49,000	49,000	69,000	64,000	49,000	64,000
TOC Aqueous (mg/l)	58	61	66	58	44	67

IT Project No. 408491

TNC Too numerous to count

ND Not Determined

<DL Less than the detection limit for the analysis

Presence of spreading colonies prohibited enumeration

CFU/g Colony forming unit/gram

Nitrogen Reported as NH₃-N

Phosphorus Reported as ortho-phosphate.

KLB\07-93\SMC\BATCHSLU

Note:

S

Table 4-2 Batch Slurry Study Week 3 Analytical Results

IT Project No. 408491

			Treat	ments		
Analytical Parameter	1	2	3	4	5	6
Total Heterotrophs (CFU/g)	4.3 x 10 ⁸	4.1 x 10 ⁸	2.8 x 10 ⁸	7.2 x 10 ⁸	1.2 x 10 ⁸	TNC
Specific Degraders (CFU/g)	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Nitrogen (mg/kg)	410	410	390	390	410	450
Phosphorus (mg/kg)	230	170	270	280	210	270
Total Solids (%)	34	28	39	39	32	38
Volatile Solids (%)	8	7	10	9	9	10
pH Aqueous	6.5	6.5	6.7	6.8	6.5	6.3
pH Slurry	5.6	5.5	5.7	5.8	5.6	5.7
Temperature (°C)	19	19	19	19	19	19
BTX Solids (mg/kg)	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
BTX Aqueous (mg/l)	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
TC Slurry (mg/kg)	56,000	54,000	75,000	66,000	54,000	75,000
TOC Aqueous (mg/l)	· 67	56	71	63	60	65

Note: TNC

Too numerous to count

ND Not Determined

<DL Less than the detection limit for the analysis

CFU/g Colony forming unit/gram

Nitrogen Reported as NH₃-N

Phosphorus Reported as ortho-phosphate.

KLB\07-93\SMC\BATCHSLU

.

Table 4-3 Batch Slurry Study Week 6 Analytical Results

IT Project No. 408491

			Treat	ments		
Analytical Parameter	1	2	3	4	5	6
Total Heterotrophs (CFU/g)	8.8 x 10 ⁷	1.3 x 10 ⁸	1.1 x 10 ⁸	6.0 x 10 ⁷	2.8 x 10 ⁸	9.4 x 10 ⁷
Specific Degraders (CFU/g)	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Nitrogen (mg/kg)	340	270	280	270	240	270
Phosphorus (mg/kg)	160	200	190	240	180	250
Total Solids (%)	31	31	39	40	31	39
Volatile Solids (%)	9	9	10	11	8	10
pH Aqueous	6.6	6.8	6.5	6.3	6.8	6.5
pH Slurry	6.4	6.4	6	6	6.4	6
Temperature (^o C)	19	19	19	19	19	19
BTX Solids (mg/kg)	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
BTX Aqueous (mg/l)	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
TC Slurry (mg/kg)	38,000	35,000	64,000	62,000	42,000	64,000
TOC Aqueous (mg/l)	95	83	120	120	89	110

Note: TNC

ND

Too numerous to count

Not Determined

<DL Less than the detection limit for the analysis

CFU/g Colony forming unit/gram

Nitrogen Reported as NH₃-N

Phosphorus Reported as ortho-phosphate.

KLB\07-93\SMC\BATCHSLU

mercuric chloride. Approximately, 6.8 g of a 7.4 percent, saturated mercuric chloride solution was added to Treatment 5 at study initiation and Week 3. An 8.1 g quantity of the mercuric chloride solution was added to Treatment 6 at study initiation, Week 3, and again during the fourth week of operation. Each addition, resulted in mercuric chloride concentrations of 500 mg/kg in the treatment vessels. Total mercuric chloride concentrations in Treatments 5 and 6 were 1,000 and 1,500 mg/kg, respectively. Mercuric chloride addition did not appreciably affect the slurry volume. Reduced penetration of mercuric chloride throughout the slurry mixture could account for the decreased toxic effect. Experience with other studies suggests that mercuric chloride is the most aggressive sterilant, therefore, other agents would have shown similar results.

The determination of specific-degraders by anthracene spray-plate techniques produced mixed results. Initial determinations could not be made due to the presence of a spreading bacterial colony that interfered with the verification of colony clearing zones. Following initial determinations, Week 3, and Week 6 plates were prepared at higher dilutions to decrease the effect of spreading on the plates. However, due to increased dilution, the detection limit for specific degrader analysis was increased from 10^3 to 10^6 CFU/g. Specific degrader enumerations for Week 3 and Week 6 were less than this detection limit.

Because of the difficulties experienced in determining the specific degraders, radio-labelled anthracene mineralization tests were conducted at Week-3 and Week-6 (Table 4-4) to demonstrate the presence of biological activity. The mineralization study indicated biological activity toward anthracene as measured by ${}^{14}CO_2$ evolution, with biological activity increasing from Week-3 to Week-6. Details of the mineralization study are included in Appendix E.

Table 4-5 presents the oxygen utilization data for the batch study. The average oxygen uptake rate demonstrated during the study was 12.5 milligrams per liter-hour (mg/l-hr). During the first 3 weeks of operation, final oxygen concentrations in the headspace of biologically-active treatments prior to daily sparging ranged from 89 to 366 mg/l among treatments. Since ambient air is 298 mg/l, many of the treatments were not oxygen limited. In addition, the redox potential of treatment slurries did not indicate anaerobic conditions. Following collection of Week 3 samples, the oxygen concentration and rate of uptake in the biologically-active treatments increased. Redox potentials of slurry samples continued to indicate aerobic conditions were maintained. Aerobic microbial activities are often noted to

Table 4-4¹⁴C-Anthracene MineralizationInitial Batch Study

IT Project No. 408491

· .			Perce	nt ¹⁴ CO ₂ Produce	ed Per Treatme	ent	
	Sample Identification			Treatme	nts ¹		
· ·		1	2	3	4	5	6
	Week 3	13.8 <u>+</u> 1.3	16.5 <u>+</u> 3.6	12.0 <u>+</u> 0.8	12.0 <u>+</u> 0.3	16.6 <u>+</u> 1.9	11.5 <u>+</u> 0.2
	Week 6	23.7 <u>+</u> 1	22.9 <u>+</u> 1	23.3 <u>+</u> 6.1	ND	22.2 <u>+</u> 0.1	20.1 <u>+</u> 3.8

ND Not Determined

All data reported as percent ¹⁴CO₂ produced following a 2-week incubation. Samples analyzed were collected during Week-3 and Week-6 batch study sampling events.

Table 4-5 **Overall Oxygen Utilization Data** Initial Batch Study

Treatments	Average Redox Potential ¹ (millivolts)		Average Oxyge (mg/l	-
- 440 × 14 40 4	Initiation	Week 3	Initiation	Week 3
1.	202	254	5	27
2	227	266	5	23
3	143	52	6	25
4	145	22	7	24
5	152	276	5	21
6	141	147	6	26

IT Project No. 408491

¹The electrode used a platinum band with a silver/silver chloride reference cell.

KLB\07-93\SMC\BATCHSLU

occur most extensively over the transitional redox fringe from -50 to +150 millivolts³⁸. Appendix G presents all oxygen and redox measurements made during the batch study.

Analysis of aqueous- and solid-phase samples collected at study initiation, Week 3, and Week 6 showed BTX concentrations less than the detection limit for the analyses. The detection limits for benzene, toluene, and xylene soil analysis were 0.5, 1.2, and 1.5 mg/kg, respectively. The detection limits for benzene, toluene, and xylene aqueous analysis were 12, 23, and 32 micrograms per milliliter (ug/ml), respectively.

The results of TC and TOC analysis of solids and aqueous samples collected during the batch bottle study are presented in Tables 4-1 through 4-3. TC results indicate the organic and inorganic carbon content associated with slurry solids. Initial TC analysis of the 30 and 40 percent treatments averaged 49,000 and 66,000 mg/kg, respectively. Analysis of Week 3 and Week 6 samples collected from the 30 percent treatments indicated average TC concentrations in the solid phase of 55,000 and 38,000 mg/kg, respectively. Analysis of Week 3 and Week 6 samples collected from the 40 percent treatments indicated average TC concentrations in the solid phase of 72,000 and 63,000 mg/kg, respectively. Due to the variability of TC determinations (i.e., 10.6 percent), these data are not indicators of change over time. TC analytical variability was determined by analyzing three identical standards in triplicate.

Initially, aqueous TOC concentrations averaged 54 milligrams per milliliter (mg/l) in the 30 percent and 64 mg/l in the 40 percent treatments; however, these concentrations continued to increase throughout the study. Aqueous TOC concentrations in the 30 percent treatments at Week 3 and Week 6 averaged 61 and 89 mg/l, respectively. Aqueous TOC concentrations in the 40 percent treatments at Week 3 and Week 6 averaged 66 and 120 mg/l, respectively. These data indicate an increase in aqueous organic carbon concentrations (TOC) throughout the study period. This trend may have indicated increased solubilization of soil-bound carbon by biological activity or physical manipulation.

PAH and CPAH determinations are presented in Tables 4-6 through 4-8; overall percent removals are illustrated in Table 4-9. The overall substrate utilization rates for PAH and CPAH are presented in Table 4-10. PAH mass removal percentages ranging from 83 to 87 percent among treatments were demonstrated. CPAH mass removals among treatments

Table 4-6 Batch Slurry Study Initial PAH Results

IT Project No. 408491

		Treatments					
COMPOUND	1	2	3	4	5	6	Detection Limits ¹ (mg/kg)
Naphthalene	14U	14U	14U	14U	14U	14U	27
Acenaphthylene	15U	15U	15U	15U	15U	15U	29
Acenaphthene	100	96	120	120	96	130	86
Fluorene	19J	18J	23	23	21	28	6.8
Phenanthrene	34	31	45	41	39	53	1.5
Anthracene	22	18	26	24	22	31	0.059
Fluoranthene	320	300	390	360	320	420	7.4
Pyrene	240	220	290	280	240	320	11
Benz(a)anthracene	37	33	43	46	34	45	9.7
Chrysene	. 43	39	50	67	40	53	4.9
Benzo(b)fluoranthene	140	130	160	160	130	180	4.0
Benzo(k)fluoranthene	20	17	22	20	17	27	5.1
Benzo(a)pyrene	61	56	72	65	56	76	9.3
Dibenz(a,h)anthracene	43	41	49	52	42	59	25
Benzo(g,h,i)perylene	44	40	49	49	43	53	15
Indeno(1,2,3-cd)pyrene	41	37	47	46	40	52	4.5
Total PAH	1,200	1,100	1,400	1,400	1,200	1,600	NA
Total CPAH	430	390	490	510	400	550	NA

Note: All analytical results are presented in mg/kg

- ¹ Analytical detection limits were interpolated based on a response sufficient to produce at least a 3:1 signal to noise ratio.
- U Number preceding indicates half of the detection limit for the analysis
- J Number preceding indicates concentration is above the detection limit but below the quantitation limit

NA - Not Applicable.

Table 4-7Batch Slurry Study Week 3 PAH Results

IT Project No. 408491

				Treatme	ents		
COMPOUND	1	2	3	. 4	5	6	Detection Limits ¹ (mg/kg)
Naphthalene	14U	14U	14U	14U	14U	14U	27
Acenaphthylene	15U	15U	15U	15U	15U	15U	29
Acenaphthene	43U	43Ü	43U	43U	43U	43U	86
Fluorene	3.5U	3.5U	3.5U	3.5U	3.5U	3.5U	7
Phenanthrene		រ	6J	7J	7J	8J	1.5
Anthracene	5J	5J	5J	5J	5J	5J	0.059
Fluoranthene	30	27	67	50	33	55 .	7.4
Pyrene	20	19	22	22	19	22	11
Benz(a)anthracene	4.9U	4.9U	23	14	4.9U	4.9U	9.7
Chrysene	2.5U	2.5U	19	13	2.5U	14	5
Benzo(b)fluoranthene	43	42	51	52	45	50	4.0
Benzo(k)fluoranthene	11	11	19	19	14	19	5.1
Benzo(a)pyrene	31	30	31	31	31	31	9.3
Dibenz(a,h)anthracene	1 3 U	13U	1 3 U	13U	25	13U	25
Benzo(g,h,i)perylene	23	21	22	22	22	23	15
Indeno(1,2,3-cd)pyrene	21	19	19	19	20	19	4.5
Total PAH	290	290	370	340	300	340	NA
Total CPAH	150	140	210	180	160	170	NA

Note: All analytical results are presented in mg/kg.

- ¹ Analytical detection limits were interpolated based on a response sufficient to produce at least a 3:1 signal to noise ratio.
- U Number preceding indicates half of the detection limit for the analysis.
- J Number preceding indicates concentration is above the detection limit but below the quantitation limit.

NA - Not Applicable.

Table 4-8 Batch Slurry Study Week 6 PAH Results

IT Project No. 408491

	Treatments							
COMPOUND	1	2	3	4	5	6	Detection Limit ¹ (mg/kg)	
Naphthalene	14U	14U	14U	14U	14U	14U	27	
Acenaphthylene	15U	15U	_ 15U	15U	15U	15U	29	
Acenaphthene	43U	43U	43Ű	43U	43Ū	43U	86	
Fluorene	3.4U	ខ្ស	ន្ រ	3.4U	8J	3.4U	6.8	
Phenanthrene	ध	8 J	ខ្	9J	ध	ध	1.5	
Anthracene	2J	2J	2J	2J	2J	2J	0.059	
Fluoranthene	24	24	27	34	28	39	7.4	
Pyrene	21	20	21	24	23	28	11	
Benz(a)anthracene	4.9U	4.9U	4.9U	4.9U	4.9U	4.9U	9.7	
Chrysene	2.5U	2.5U	7J	9J	2.5U	6J	4.9	
Benzo(b)fluoranthene	36	36	54	59	41	52	4.0	
Benzo(k)fluoranthene	10	11	23	22	13	20	5.1	
Benzo(a)pyrene	29	28	36	35	36	39	9.3	
Dibenz(a,h)anthracene	26	28	29	30	31	13U	25	
Benzo(g,h,i)perylene	26	24	25	26	24	24	15	
Indeno(1,2,3-cd)pyrene	23	23	22	23	22	21	4.5	
Total PAH	290	290	340	350	320	330	NA	
Total CPAH	160	160	201	210	170	180	NA	

Note: All analytical results are presented in mg/kg.

¹ - Analytical detection limits were interpolated based on a response sufficient to produce at least a 3:1 signal to noise ratio.

U - Number preceding indicates half of the detection limit for the analysis.

J - Number preceding indicates concentration is above the detection limit but below the quantitation limit

NA - Not Applicable.

Table 4-9Batch Study PAH Percent Removal

IT Project No. 408491

			Treat	ments		•
COMPOUND	1	2	3	4	5	6
Naphthalene	NA	NA	NA	NA	NA	NA
Acenaphthylene	NA	NA	NA	NA	NA	NA
Acenaphthene	69	71	76	75	69	79
Fluorene	89	75	80	91	79	93
Phenanthrene	84	85	89	87	88	91
Anthracene	· 93	93	96	95	94	96
Fluoranthene	96	96	96	94	95	95
Pyrene	95	95	96	95	95	95
Benz(a)anthracene	92	92	92	93	92	94
Chrysene	97	97	91	92	97	93
Benzo(b)fluoranthene	83	83	79	75	79	81
Benzo(k)fluoranthene	61	54	9	NA	38	41
Benzo(a)pyrene	65	67	66	61	53	65
Dibenz(a,h)anthracene	60	51	63	63	45	87
Benzo(g,h,i)perylene	56	58	64	63	61	70
Indeno(1,2,3-cd)pyrene	58	59	68	65	60	73
Total PAH	85	84	85	84	83	87
Total CPAH	75	74	73	72	71	79

Note: NA - Not applicable.

TABLE 4-10Substrate Utilization Rates (q)

•

Initial Batch Treatments		q (mg Substra	ate/g TS/day)		
	Total	РАН	СРАН		
	q(TS) 1-3	q(TS) 1-6	q(TS) 1-3	q(TS) 1-6	
1	0.041	0.021	0.012	0.006	
2	0.040	0.020	0.012	0.006	
3	0.050	0.025	0.014	0.007	
4	0.049	0.024	0.015	0.007	
5	0.041	0.021	0.011	0.006	
6	0.058	0.029	0.018	0.009	
Average 30%	0.041	0.021	0.012	0.006	
Average 40%	0.052	0.026	0.016	0.008	
Bioslurry Reactor Study	q (TS)	g ("	rs)	
1/25 - 2/18	0.0)31	0.0	006	
2/19 - 4/1	0.023 0		0.0	0.004	
1/25 -4/1	0.0	027	0.0	05	
4/2 - 5/4	0.0	011	0.0	05	

Project No. 408491

• - Substrate utilization rates for the bioslurry reactor investigation are averages of daily removals.

ranged from 71 to 79 percent. Mass removal was determined by calculating the mg of PAH and CPAH loaded into the reactor, determining an adjusted initial loading by subtracting any abiotic losses due to sampling from the initial mass, subtracting the final mg of PAH and CPAH which included mass of adsorbed contaminant from the adjusted initial mass, dividing by the adjusted initial mass, and multiplying by 100 to determine the percent lost. No attributable difference in PAH or CPAH removal efficiencies was demonstrated between treatments.

CPAH constituents (i.e., benz(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, dibenz(a,h)anthracene, benzo(g,h,i)perylene, and indeno(1,2,3-cd)pyrene) were found to be the most recalcitrant to biodegradation. All other PAH were effectively degraded. Figures 4-1 and 4-2 illustrate the PAH and CPAH concentrations achieved during batch study treatment.

Substrate utilization rates prior to Week 3 averaged 0.041 mg PAH/g TS/day in the 30 percent treatments and 0.052 mg PAH/g TS/day in the 40 percent treatments. CPAH removal rates averaged 0.012 mg CPAH/g TS/day in the 30 percent treatments and 0.016 mg CPAH/g TS/day in the 40 percent treatments during the first 3 weeks. Substrate utilization of both PAH and CPAH decreased between Week 3 and Week 6. Table 4-10 displays PAH and CPAH substrate utilization from study initiation to Week 3 and the total treatment period. These data support the hypothesis that the majority of PAH biodegradation occurred during the first 3 weeks of operation. Substrate removal from Week 3 through Week 6 was negligible.

4.1.2.2 Bioslurry Reactor Study

During the 3-month bioslurry reactor investigation, the system was operated initially in continuous-flow and, subsequently, in batch mode. The reactor was inspected, charged with water, and operated to determine the working condition of the equipment. Following this initial inspection, the reactor was charged with 60 l of 30 percent slurry and operated in batch for 2 days prior to beginning continuous flow operation. Initial batch operation of the reactor was conducted upon the recommendation of the equipment distributor, Eimco Process Equipment Company (Eimco).

Figure 4-1 Initial Batch Study PAH Removal 30 Percent Treatments

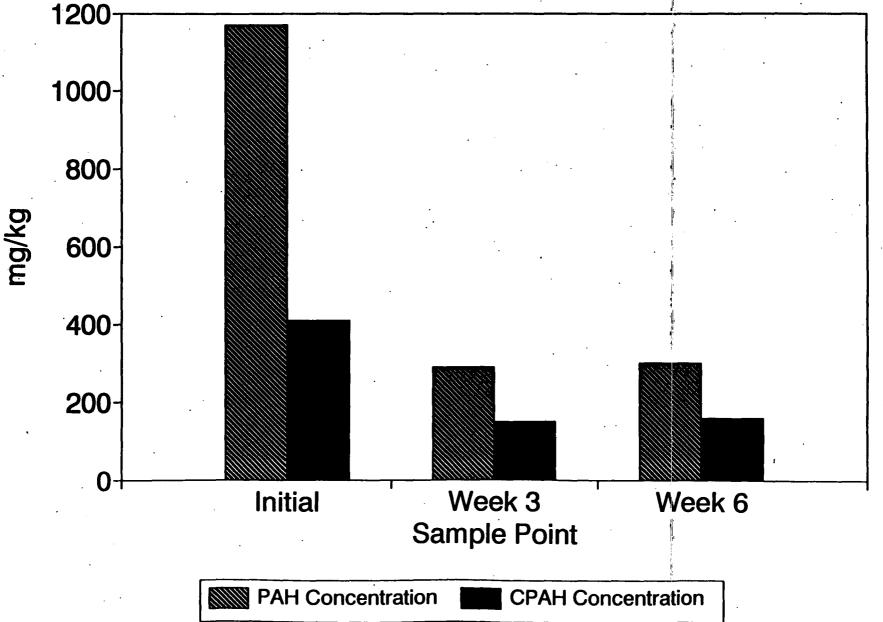
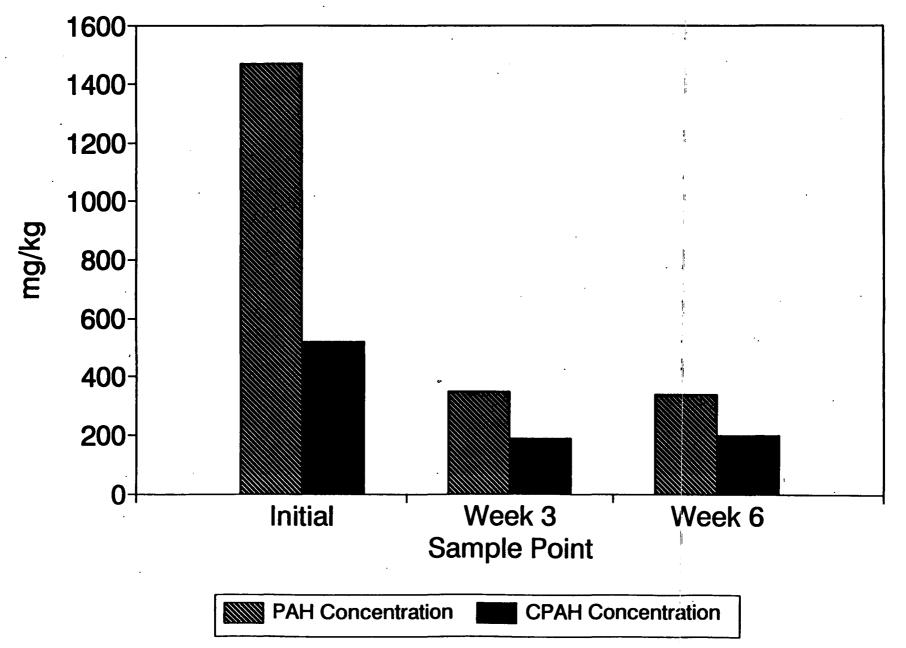



Figure 4-2

Initial Batch Study PAH Removal 40 Percent Treatments

System performance was determined primarily through reduction in solids-phase PAH concentrations, specifically the carcinogenic species. The sampling and analytical schedule and methods employed during bioslurry reactor testing are provided in Chapter 3.0.

Tables 4-11 through 4-13 provide all operational data generated during the bioslurry reactor study. The macronutrient concentrations were maintained at adequate levels for biological activity with average slurry-phase nitrogen and ortho-phosphate concentrations of 140 and 210 mg/kg, respectively. The system pH shifted toward acidity during operation of the reactor and was allowed to stabilize at 6.3. The system dissolved oxygen concentration increased to 6.6 mg/l, possibly due to reduced microbial demand.

Aeration was accomplished in the bioslurry reactor through a diffusor, air lift, and impeller. The daily and average set points for these items is provided in Table 4-12. The operating temperature for the system averaged 22°C during the course of the investigation.

TS/VS analysis of the influent, reactor, effluent, and return activated sludge (RAS) slurries is presented in Table 4-13. The average influent and reactor slurry TS concentrations for the continuous-flow period of operation were 30 and 32 percent, respectively. Effluent and RAS TS concentrations averaged 27 and 41 percent, respectively, allowing for the maintenance of a 38-day system biological solids retention time (BSRT). The VS:TS ratio in the reactor slurry averaged 26 percent during both continuous-flow and batch operation. This is within the range observed during the batch bottle study. The average VS:TS ratio for the initial batch bottle study ranged from 23 to 29 percent.

Geotechnical analysis was conducted to determine the impact of particle size distribution on the rate and extent of PAH removal in the reactor system. These analyses are included in Appendix H. Overall, the particle size distribution during continuous-flow operation did not significantly change. Particle size analysis was discontinued during batch operation.

Parameters used as indicators of the system's microbiological health are presented in Table 4-11. Although total heterotrophic populations remained high throughout the continuous-flow and batch periods of operation, the naphthalene degraders, as measured by gene-probe analysis, were less than the 10⁶ CFU/g detection limit. In addition, anthracene mineralization testing during batch operation of the reactor indicated 21.2 percent

Table 4-11Analytical DataWeston Bioslurry ReactorIT Project No. 408491

(Page 1 of 4)

Date	NH3-N mg/kg	oPO4 mg/kg	NH4Cl Added (gm)	KH4PO4 Added (mg/kg)	O2 UP mg/L-hr	Hetero. CFU/gm	Specific CFU/gm	TOC(aq) mg/L	TC(solids) mg/kg
1/25									50000.00
1/26					9.90				
1/27	0.60	193.00						200.30	43000.00
1/28		·				1.30e+09	<2.0e+07		
1/29									
1/31									
2/1	0.70	224.00	68.80	0.00	8.30	1.60c+08	. <2.0c+06	64.80	49500.00
2/2									
2/3									
2/4	204.00	151.00						61.10	43000.00
2/5									
2/7									
2/8	149.00	241.00				2.60e+08	<2.0e+06	59.80	43000.00
2/9					8.09				
2/10									
2/11	41.50	176.00						60.70	42500.00
2/12			68.80	0.00					
2/15	129.00	120.00					<2.0e+05	56.00	45000.00
2/16					8.60	6.70e+07			
2/17								•	

.

Table 4-11 (continued)Analytical DataWeston Bioslurry ReactorIT Project No. 408491

.

(Page 2 of 4)

Date	NH3-N mg/kg	oPO4 mg/kg	NH4Cl Added (gm)	KH4PO4 Added (mg/kg)	O2 UP mg/L-hr	Hetero. CFU/gm	Specific CFU/gm	TOC(aq) mg/L	TC(solids) mg/kg
2/18	5.86U	179.00	68.80					63.00	43000.00
2/19									
2/22	43.90	209.00	68.80		3.50	4.40c+07	<2.0c+05	71.20	40500.00
2/23									
2/24									
2/25	12.10	172.70	68.80					85.60	43000.00
2/26									
3/1	170.00	159.00				1.30e+08	<2.0e+06	97.10	38000.00
3/2					5.01				
3/3		217.00	68.80						
3/4	220.00							92.70	39000.00
3/5	137.00								
3/6									
3/8	35.60	183.00	68.80			3.80e+08	<2.0e+06	101.20	46000.00
3/9					6.11				
3/10									
3/11	318.00	188.00						92.00	47000.00
3/12									
3/15	13.80					2.20e+08	<2.0e+06	103.80	43000.00
3/16		241.00	68.80		4.41				

•

Table 4-11 (continued)Analytical DataWeston Bioslurry ReactorIT Project No. 408491

(Page 3 of 4)

Date	NH3-N mg/kg	oPO4 mg/kg	NH4Cl Added (gm)	KH4PO4 Added (mg/kg)	O2 UP mg/L-hr	Hetero. CFU/gm	Specific CFU/gm	TOC(eq) mg/L	TC(solids) mg/kg
3/17									
3/18	346.00	194.00						101.50	37500.00
3/19									
3/22	251.00	210.00			•	2.60e+08	<2.0c+06	84.89	47000.00
3/23					3.40				
3/24									
3/25	187.00	189.60						81.43	43000.00
3/26									•
3/29	0.70	213.00	68.80		6.74	3.60e+08	<2.0e+06	94.20	49000.00
3/30									
3/31									
4/1	155.00	215.00						66.10	51000.00
4/2						3.40e+08		76.00	49000.00
4/5	168.00	249.00	•		1.70	3.30e+08	<2.0e+06		51000.00
4/6									
4/7									
. 4/8	79.90	290.00			5.40			91.50	33000.00
4/9									
4/12	44.00	248.00	68.80		2.90	2.40c+08		104.60	
4/13									

Table 4-11 (continued)Analytical DataWeston Bioslurry ReactorIT Project No. 408491

(Page 4 of 4)

Date	NH3-N mg/kg	oPO4 mg/kg	NH4Cl Added (gm)	KH4PO4 Added (mg/kg)	O2 UP mg/L-hr	Hetero. CFU/gm	Specific CFU/gm	TOC(eq) mg/L	TC(solids) mg/kg
4/14									
4/15	277.00	267.00						108.60	
4/16									
4/19	279.00	246.00			3.71	1.20e+08		116.90	
4/20									
4/21									
4/22	187.00	258.00						179.00	
4/23									
4/24									
4/26	283.00	266.00			7.68	7.9c+8	<2.0e+06	114.70	58,000
4/27									
4/28								139.60	46,000
4/29	208.00								
4/30									
5/3									
5/4	200.00	215.00			4.96	2.00e+8	<2.0e+06	78.70	41,000

¢

IT Project No. 408491

(Page 1 of 5)

Date	pH Std. Units	Temp. oC	DO mg/l	Diffuser soft	Air Lift sofh	Impeller Set Point	Rakes Set Point	H2O 1 Added
1/25	NA	21.8	0.2	40	35	4.0	4.0	NA
1/26	NA	23.6	1.8	50	30	9.0	NA	NA
1/27	6.8	24.1	3.6	50	NA	9.0	NA	NA
1/28	7.0	22.4	5.1	50	35	9.0	4.0	NA
1/29	6.8	22	5.6	45	35	8.0	4.0	NA
1/31	NA	NA	NA	NA	NA	NA	NA	2.18
2/1	6.9	21.5	5.3	40	35	7.5	4.0	0.00
2/2	6.8	22	5.8	40	35	7.5	4.0	2.18
2/3	6.6	22	4.2	40	35	7.5	4.0	1.45
2/4	6.7	22.5	5.5	40	35	7.5	4.0	1.45
2/5	6.9	22	6.0	40	35	7.5	4.0	1.45
2/7	NA	NA	NA	NA	NA	NA	NA	2.18
2/8	6.8	23	5.6	40	35	7.5	4.0	1.45
2/9	6.6	22.1	5.8	40	35	7.5	4.0	0.73
2/10	6.6	23	5.4	40	35	7.5	4.0	0.73
2/11	6.7	23.6	6.7	40	35	7.5	4.0	0.73

KLB\07-93\SMC\OPERDATA

IT Project No. 408491

(Page 2 of 5)

Date	pH Std. Units	Temp. oC	DO mg/l	Diffuser soft	Air Lift sofh	Impeller Set Point	Rakes Set Point	H2O 1 Added
2/12	6.6	21.9	5.4	40	35	7.5	4.0	0.00
2/15	6.3	22.5	3.9	40	35	7.5	4.0	2.92
2/16	6.4	22	5.1	40	35	7.5	4.0	0.73
2/17	6.3	23.1	7.2	40	35	7.5	4.0	1.45
2/18	6.4	23.3	7.7	40	35	7.5	4.0	1.45
2/19	6.2	24	5.2	40	35	7.5	4.0	0.73
2/22	. 6.1	23	6.8	40	35	7.5	4.0	3.65
2/23	6.3	24.9	5.6	40	35	7.5	4.0	1.45
2/24	6.1	23.7	5.5	40	35	7.5	4.0	0.73
2/25	6.1	24.1	5.7	40	35	7.5	4.0	1.45
2/26	6.5	24.6	5.3	40	35	7.5	4.0	0.00
3/1	6.3	23.1	7.0	40	35	7.5	4.0	3.60
3/2	6.3	23.1	6.9	40	35	7.5	4.0	1.45
3/3	6.3	22.7	6.9	35	35	7.5	4.0	1.45
3/4	6.4	24	6.6	30	35	7.0	4.0	0.73
3/5	6.4	24	6.5	30	35	7.0	4.0	0.73

KLB\07-93\SMC\OPERDATA

•

.

• . •

.

.

IT Project No. 408491

(Page 3 of 5)

Date	pH Std. Units	Temp. oC	DO mg/l	Diffuser scfh	Air Lift sofh	Impeller Set Point	Rakes Set Point	H2O I Added
3/6	6.2	NA	NA	NA	NA	NA	NA	NA
3/8	6.2	23.9	6.3	25	35	7.0	4.0	2.90
3/9	6.5	26.5	6.3	25	35	7.0	4.0	1.45
3/10	6.6	24.8	6.8	20	35	6.5	4.0	0.73
3/11	6.5	24.1	6.6	20	35	6.5	4.0	1.45
3/12	6.4	22.2	7.0	20	35	6.5	4.0	0.32
3/15	6.5	23.1	7.3	20	35	6.5	4.0	0.73
3/16	6.5	24.9	6.7	20	35	6.5	4.0	1.45
3/17	6.4	22.7	7.6	20	35	6.5	4.0	0.00
3/18	6.5	22.3	7.2	20	35	6.5	4.0	1.45
3/19	6.4	22.5	7.3	20	35	6.5	4.0	0.73
3/22	6.5	22.3 ·	8.1	20	35	6.5	4.0	2.90
3/23	6.2	22.1	7.7	20	35	6.5	4.0	0.00
3/24	6.4	23	7.4	20	35	6.5	4.0	0.00
3/25	6.5	23.4	6.9	20	35	6.5	4.0	1.45
3/26	6.6	22.4	7.1	20	35	6.5	4.0	0.00

KLB\07-93\SMC\OPERDATA

•

.

.

• .

.

•

IT Project No. 408491

(Page 4 of 5)

Date	pH Std. Units	Temp. oC	DO mg/l	Diffuser sofh	Air Lift sofh	Impeller Set Point	Rakes Set Point	H2O 1 Added
3/29	6.4	23.2	6.4	20	35	6.5	4.0	0.00
3/30	6.4	22.9	6.5	20	35	6.5	4.0	0.00
3/31	6.4	23.7	6.0	16	32	6.5	4.0	1.45
4/1	6.4	22.1	6.0	18	28	6.5	4.0	0.72
4/2	6.2	23.2	6.0	18	30	6.5	4.0	0.00
4/5	6.6	22.2	7.0	18	30	6.5	4.0	2.18
4/6	6.3	22.1	6.9	20	30	6.5	4.0	0.72
4/7	6.3	23	7.0	20	30	6.5	4.0	0.00
4/8	6.4	21.5	7.0	20	-32	6.5	4.0	0.73
4/9	6.4	23	7.4	20	30	6.5	4.0	1.45
4/12	6.4	26	8.0	20	30	6.5	4.0	0.00
4/13	6.3	22.2	8.0	10	25	6.5	4.0	0.00
4/14	6.6	21.9	7.8	10	25	6.5	4.0	0.00
4/15	6.4	23.3	7.7	10	25	6.5	4.0	0.00
4/16	6.5	20.8	7.4	10	25	6.5	4.0	1.45
4/19	6.4	22.3	7.8	10	. 25	6.5	4.0	0.00

KLB\07-93\SMC\OPERDATA

.

IT Project No. 408491

(Page 5 of 5)

Date	pH Std. Units	Temp. oC	DO mg/l	Diffuser sofh	Air Lift sofh	Impeller Set Point	Rakes Set Point	H2O 1 Added
4/20	6.3	22.3	7.6	10	20	6.5	4.0	0.73
4/21	6.5	22.4	7.3	10	20	6.5	4.0	0.73
4/22								0.00
4/23	6.4	24.5	3.8	10	0	6.5	4.0	0.00
4/24	6.3	21.7	6.7	10	15	6.5	4.0	
4/26	6.3	22.1	6.2	10	15	6.5	4.0	2.18
4/27	6.3	22.5	6.1	10	15	6.5	4.0	0.00
4/28	6.2	23.2	7.6	10	15	6.5	4.0	
4/29	6.3	22.5	7.5	10	15	6.5	4.0	0.00
4/30	6.2	22.2	7.4	10	15	6.5	4.0	1.45
5/3	6.2	23	6.9	10	15	· 6.5	4.0	0.00
5/4	6.2	22.5	6.2	10	15	6.5	4.0	0.73
AVG	6.3	22.01	6.2	24.7	28.7	6.7	· 3.8	0.92

.

.

Note: DO - dissolved oxygen

SCOG - standard cubic feet per hour

NA - Not Analyzed

KLB\07-93\SMC\OPERDATA

Table 4-13Bioslurry Solids DataIT Project No. 408491

(Page 1 of 2)

Date	Reactor TS %	Reactor VS %	Influent TS %	Influent VS %	Effluent TS %	Effluent VS %	RAS TS %	RAS VS	VS:TS %
1/25	26.7	7.3	31.0	8.9	ND	ND	ND	ND	27
1/26	29.9	7.6	31.0	8.9	ND	ND	ND	ND	25
1/27	29.0 .	8.0	31.0	8.9	ND	ND	31.4	8.2	30
1/28	30.9	8.4	31.0	8.9	28.5	5.5	31.4	8.2	27
1/29	29.3	6.7	31.0	8.9	ND	ND	30.7	7.8	22
2/1	28.4	6.9	29.5	7.6	25.9	7.5	· 42.0	10.5	24
2/2	30.2	7.8	29.5	7.6	25.9	7.5	42.0	10.5	25
2/4	37.0	8.2	31.3	8.1	26.4	7.5	42.0	10.9	22
2/8	29.2	8.0	29.3	8.1	25.3	7.1	41.9	11.3	27
2/11	29.4	8.1	26.7	8.3	23.2	7.2	42.7	11.2	27
2/15	30.1	9.3	30.9	9.2	26.4	8.0	41.7	12.6	30
2/18	30.7	8.4	28.6	7.5	25.9	7.6	40.0	13.0	27
2/22	29.8	7.8	29.9	7.4	24.5	6.9	40.5	10.6	26
2/25	. 31.3	9.4	29.9	7.4	25.7	9.0	42.4	11.4	30
3/1	30.8	7.8	31.1	7.9	26.1	6.8	44.0	11.5	25
3/4	31.4	7.3	28.8	4.0	25.3	6.6	43.3	10.7	23
3/8	30.5	8.5	28.6	6.7	25.8	7.6	42.9	11.6	27

.

.

Table 4-13 (continued)Bioslurry Solids DataIT Project No. 408491

(Page 2 of 2)

Date	Reactor TS %	Reactor VS %	Influent TS %	Influent VS %	Effluent TS %	Effluent VS %	RAS TS %	RAS VS %	VS:TS %
· 3/11	33.2	9.8	29.1	6.6	25.4	8.1	44.5	11.5	31
3/15	31.7	8.7	28.6	6.9	28.3	7.8	44.8	11.3	27
3/18	32.4	7.5	28.8	5.7	26.7	7.0	44.8	10.4	23
3/22	32.7	9.2	29.6	6.8	26.4	7.9	45.0	11.4	28
3/25	32.9	8.4	28.7	6.4	29.6	7.6	40.7	96.0	25
3/29	35.4	8.0	32.2	5.3	32.5	7.9	41.1	90.0	22
4/1	34.5	9.2	33.6	8,5	32.0	8.7	· 40.1	10.3	26
4/2	33.4	8.4	0	0	33.4	8.4	0	0	25
4/5	33.6	8.2	0	0	33.6	8.2	0	0	24
4/8	32.8	8.2	0	0	32.8	8.2	0	0	25
4/12	35.5	8.8	0	0	35.5	8.8	0	0	24
4/15	33.5	8.0	0	0	33.5	8.0	0	0	23
4/19	33.1	7.9	0	0	33.1	7.9	0	0	23
4/22	34.0	8.7	0	0	34.0	8.7	0	0	25
4/26	33.5	8.8	0.	0	33.5	8.8	0	0	26
4/29	33.9	9.0	0	0	33.9	9.0	0	0	26
5/4	34.5	8.3	0	0	34.5	8.3	0	0	24

. •

mineralization of the spiked compound. This mineralization was comparable to Week 6 results of the initial batch bottle study.

Another important indicator of microbial activity is the oxygen uptake rate (Table 4-11). Oxygen uptake rates were determined by measuring the rate of oxygen depletion from subsamples of reactor slurry. During continuous-flow operation, the oxygen uptake rate averaged 8.7 mg/l-hr during the first 3 weeks of operation and decreased to an average of 4.9 mg/l-hr following this period. The oxygen uptake rate determined during batch operation mimicked the last weeks of continuous-flow operation averaging 4.4 mg/l-hr.

PAH and CPAH concentrations in the influent, reactor, and RAS streams are provided in Tables 4-14 through 4-17, respectively. Overall system performance decreased following the first 30 days of operation (Table 4-18). This time period corresponded with the completion of the first HRT and BSRT set points, as well as the introduction of a new feed batch on February 17, 1993. The influent feed batch was prepared identically to the first batch. As previously noted, PAH/CPAH levels were comparable in the two batches of feed soils. Figure 4-3 illustrates the increase in PAH and CPAH concentrations observed in the bioslurry reactor during continuous-flow and batch operation. PAH and CPAH percent removal during this period averaged 67 and 33 percent, respectively. Average PAH and CPAH concentrations in the treated slurry during this period of operation were 320 and 180 mg/kg, respectively.

Due to reduced PAH and CPAH removal efficiencies demonstrated from February 18 through April 1, 1993, the bioslurry reactor mode of operation was changed to batch. Batch operation was maintained from April 2 through May 4, 1993. PAH and CPAH removal efficiencies during batch treatment were reduced at 17 and 27 percent, respectively (Table 4-18). Average PAH and CPAH concentrations in the treated slurry during batch operation were 720 and 200 mg/kg, respectively.

Bioslurry reactor headspace sampling was conducted and quantified to assist in the calculation of the system's materials balance. Table 4-19 illustrates the reduced concentration of volatiles and semivolatiles identified in the reactor headspace. In addition, aqueous-phase PAH concentrations were determined to be insignificant (Table 4-20). Due to the low levels of both aqueous-phase and headspace PAH, these concentrations were not

Table 4-14Influent PAH ConcentrationsWeston Bioslurry Study

·

•

IT Project No. 408491

(Page 1 of 2)

Date	Naphthalene mg/kg	Acenaphthylene mg/kg	Acenaphthene mg/kg	Fluorene mg/kg	Phenanthrene mg/kg	Anthracene mg/kg	Fluoranthene mg/kg	Pyrene mg/kg	B(a)A mg/kg	Chrysene mg/kg	B(b)F mg/kg
1/27	9U	10U	26U	32	81	24	310	250	39	45	56
2/1	9U	10U	26 U	27	73	22	· 260	210	36	41	49
2/4	9U	10U	26 U	21	71	20	260	220	32	37	52
2/8	9U	10 ⁰ U	26U	29	77	23	290	240	42	39	57
2/11	9U	10U	26 U	· 31	67	22	260	220	33	44	46
2/15	9U	10U	26U	39	84	25	310	260	41	48	49
2/18	9U	10U	26U	21	76	17	320	390	32	39	49
2/22	34J	10U	26 U	40	85	24	280	250	41	40	65
2/25	45J	10U	26 U	23	50	15	180	150	27	28	45
3/1	55J	10U	26U	51	110	35	320	300	35	40	37
3/4	71J	17U	18U	48	110	34	310	300	37	40	33
3/8	13U	17U	18U	48	100	41	270	280	37	29	130
3/11	13U	17U	18U	39	98	35	250	230	29	36	50
3/15	13U	17U	18U	47	110	30	290	270	32	38	47
3/18	13U	17U	120	34	96	31	260	290	27	29	120
3/22	13U	17U	110	38	110	34	290	320	32	32	140
3/25	13U	17U	59J	44	100	31	300	320	37	48	32
3/29	13U	17U	18U	38	110	38	290	320	30	32	73
4/1	13U	17U	18U	22	56	21	200	200	31	31	86

.

.

• .

(Page	2	of	2)	
-------	---	----	----	--

•

Date	B(k)F mg/kg	B(a)P mg/kg	D(a,h)A mg/kg	B(g,h,i)P mg/kg	Indeno mg/kg	2,3 ring mg/kg	4,5,6, ring mg/kg	4 ring mg/kg	5,6 ring mg/kg	Total mg/kg	T.CPAH mg/kg
1/27	32	57	29	25	23	490	550	420	130	1000	300
2/1	28	51	19J	22	20	430	480	360	120	900	270
2/4	28	50	22	18J	19	420	480	370	110	890	260
2/8	29	54	22	21	20	460	520	410	110	990	280
2/11	26	48	25	20	19	420	480	370	110	910	260
2/15	20	45	22	21	21	500	530	420	110	1000	270
2/18	39	28	5.5U	16J	18	480	620	550	70	1100	230
2/22	28	35	20	19J	18	500	520	420	100	1000	270
2/25	25	40	19J	18J	19	350	370	280	90	720	220
3/1	16	34	21	18J	15	610	520	430	90	1100	220
3/4	14	32	15J	10J	15	610	500	420	80	1100	200
3/8	23	35	12J	20	15	510	580	500	80	1090	300
3/11	24	31	10J	16J	14	470	440	370	70	910	210
3/15	28	35	15J	18J	16	530	500	420	80	1000	230
3/18	11	24	12J	19J	14	570	550	480	70	1100	260
3/22	12	27	13J	22	15	610	610	540	70	1200	290
3/25	14	26	15J	22	17	560	530	450	80	1100	210
3/29	19	30	19J	21	15	520	560	470	90	1100	240
4/1	12	33	14J	22	16	350	450	360	90	790	250

U - Number preceeding indicates half of the detection limit for the analysis.J - Number preceeding indicated concentration is above the detection limit but below the quantitation limit.

Table 4-15Reactor PAH ConcentrationsWeston Bioslurry StudyContinuous-Flow Operation

IT Project No. 408491

(Page 1 of 2)

Date	Naphthalene mg/kg	Acenaphthylene mg/kg	Acenaphthene mg/kg	Fluorene mg/kg	Phenanthrene mg/kg	Anthracene mg/kg	Fluoranthene mg/kg	Pyrene mg/kg	B(a)A mg/kg	Chrysene mg/kg
1/27	9U	10U	26U	5J	11	6J	93	54	24	27
2/1	9U	10U	26U	5J	8J	4J	24	23	4J	4J
2/4	9U	10U	26U	2U	8J	3J	25	21	10	1U
2/8	9U	10U	26U	2U	8J	2J	29	21	11	1U
2/11	9U	10U	26U	2U	7J	3J	23	18	1U	3J
2/15	9U	10U	26 U	7J	11	4J	35	34	5J	8J
2/18	9U	10U	26U	5J	15	4J	64	76	9J	7 J
2/22	30J	10U	26U	12J	22	8J	73	66	13	12
2/25	34J	10U	26U	15J	24	11	110	93	13	17
3/1	44J	10U	26U	16J	23	15	140	120	19	22
3/4	49J	17U	18U	17J	31	5J	160	130	19	24
3/8	13U	17U	18U	19J	34	16	150	150	21	19
3 /11	13U	17U	18U	15J	35	13	140	120	17	18
3/15	13U	17U	18U	20	45	17	180	160	27	24
3/18	13U	17U	18U	22	51	18	180	200	26	32
· 3/22	13U	17U	53J	17J	51	20	180	200	22	21
3/25	13U	17U	48J	27	58	23	230	230	30	39
3/29	13U	17U	18U	21	57	28	220	230	23	27
4/1	13U	17U	18U	24	33	24	230	220	35	35

Date	B(b)F mg/kg	B(k)F mg/kg	B(a)P mg/kg	D(a,h)A mg/kg	B(g,h,i)P mg/kg	Indeno mg/kg	2,3 ring mg/kg	4,5,6, ring mg/kg	4 ring mg/kg	5,6 ring mg/kg	Totai mg/kg	T.CPAH mg/kg
1/27	50	29	51	1 7 J	22	20	160	290	180	110	450	240
2/1	54	29	50	21	23	22	86	230	120	110	320	210
2/4	48	21	44	18J	20	20	82	200	100	100	280	180
2/8	42	16	40	23	20	20	86	190	90	100	280	170
2/11	28	11	31	20	12J	15	79	140	61	79	220	120
2/15	39	16	40	31	1 8 J	20	100	210	100	110	310	180
2/18	45	27	27	13J	16J	20	130	240	160	80	370	160
2/22	51	18	36	16J	18J	19	180	250	160	90	430	180
2/25	42	15	34	23	1 7 J	19	230	270	180	90	500	180
3/1	40	15	39	1 8 J	14J	19	270	310	220	90	580	190
3/4	37	13	34	15J	13J	18	300	300	220	80	600	170
3/8	47	21	37	15J	23	19	270	350	260	90	620	200
3/11	39	19	28	11J	15J	15	250	280	210	70	530	160
3/15	44	18	30	10J	19J	18	310	350	270	80	660	190
3/18	85	15	32	5U	21	16	320	430	360	70	750	230
3/22	67	13	25	11J	16J	12	350	390	320	70	740	190
3/25	32	14	24	5U	16J	14	410	400	350	50	820	170
3/29	57	20	35	10J	21	17	370	440	360	80	810	210
4/1	92	14	37	23	28	18	360	500	400	100	860	280

U - Number preceeding indicates half of the detection limit for the analysis.

J - Number preceeding indicated concentration is above the detection limit but below the quantitation limit.

Table 4-16Reactor PAH ConcentrationsWeston Bioslurry StudyBatch Operation

IT Project No. 408491

(Page 1 of 2)

Date	Naphthalene mg/kg	Acenaphthylene mg/kg	Acenaphthene mg/kg	Fluorene mg/kg	Phenanthrene mg/kg	Anthracene mg/kg	Fluoranthene mg/kg	Pyrene mg/kg	B(a)A mg/kg	Chrysene mg/kg	B(b)F mg/kg	B(k)F mg/kg
. 4/2	13U	17U ⁻	47J	24	24	22	220	210	32	28	96	14
4/5	13U	17U	18U	20	19	19	170	120	35	46	100	21
4/8	13U	17U	18U	15J	19	17	. 140	110	27	33	81	19
4/12	13U	17U	18U .	19J	18	18	180	170	24	21	27	12
4/15	13U	17U	41J	17J	23	22	220	210	27	27	30	14
4/19	13U	17U	37J	24	21	22	220	220	23	26	31	14
4/22	13U	17U	48J	19J	21	21	210	240	30	24	69	· 21
4/26	13U	17U	39J	20	20	23	230	250	32	27	40	15
4/29	13U	17U	36J	16J	16	22	210	200	27	25	31	13
5/4	13U	1 7 U	39J	1 6J	14	22.	200	180	29	22	30	13

KLB/07-93/SMC/tablo4.16

.

Table 4-16 (Continued)

Date	B(a)P mg/kg	D(a,h)A mg/kg	B(g,h,i)P mg/kg	Indeno mg/kg	2,3 ring mg/kg	4,5,6, ring mg/kg	4 ring mg/kg	5,6 ring mg/kg	Total mg/kg	T.CPAH mg/kg
4/2	34	13J	26	17	370	470	380	90	840	260
4/5	26	10J	21	15	280	390	320	70	670	270
4/8	. 24	5U	20	14	240	330	270	60	570	220
4/12	28	20	18J	12	280	330	250	80	610	160
4/15	37	20	21	15	350	400	310	90	750	190
4/19	32	10J	17J	12	350	380	310	70	740	160
4/22	35	12J	1 7 J	16	350	460	380	80	810	220
4/26	39	13J	24	17	360	460	360	100	820	210
4/29	27	15J	20	16	330	370	300	70	700	170
5/4	29	14J	20 ·	. 16	320	350	270	80	670	170

(Page 2 of 2)

U - Number preceeding indicates half of the detection limit for the analysis.
 J - Number preceeding indicated concentration is above the detection limit but below the quantitation limit.

KLB/07-93/SMC/table4.16

Table 4-17RAS PAH ConcentrationsWeston Bioslurry StudyIT Project No. 408491

(Page 1 of 2)

Date	Naphthalene mg/kg	Acenaphthylene mg/kg	Acenaphthene mg/kg	Fluorene mg/kg	Phenanthrene mg/kg	Anthracene mg/kg	Fluoranthene mg/kg	Pyrene mg/kg	B(a)A mg/kg	Chrysene mg/kg	B(b)F mg/kg	B(k)F mg/kg
1/27	9U	10U	26U	5J	12	6J	110	67	26	33	57 ,	32
2/1	. 9U	10U	26U	6J	8J	4J	.26	24	5J	4J	55	29.
2/8	9U	- 10U	26U	2U	7J	21	27	19	10	1U	39	15
2/15	9U	10U	26U	7.8J	10J	4J	31	30	4J ·	8J	38	15
2/22	[`] 32J	10U	26U	12J	23	8J	75	68	13	12	45	18
3/1	45J	10U	26U	16J	23	15	140	120	19	23	39	15
3/8	13U	17U	18U	19J	34	17	150	150	22	20	45	20
3/15	13U	17Ŭ	18U	19J	46	19	180	160	26	26	45	18
3/18	13U	17U	18U	20J	55	19	190	200	27	31	81 -	14
3/25	13U	17U	40J	27	59	22	220	210	31	40	31	14
3/29	13U	17U	18U	22	57 .	28	220	220	20	28	59	20

(Page	2	of	2)
-------	---	----	----

Date	B(a)P mg/kg	D(a,h)A mg/kg	B(g,h,i)P mg/kg	Indeno mg/kg	2,3 ring mg/kg	4,5,6, ring mg/kg	4 ring mg/kg	5,6 ring mg/kg	Total mg/kg	T.CPAH mg/kg
1/27	58	30	25	23	180	350	220	130	530	280
2/1	50	23	22	21	88	230	120	110	320	210
2/8	37	25	19J	18	85	180	84	96	270	160
2/15	37	29	21	20	89	.200	95	100	290	170
2/22	35	14J	18J	19	190	240	160	80	430	170
3/1	38	16J	14J	18	270	300	210	90	570	180
3/8	38	17J	22	19	270	350	260	90	620	200
3/15	30	14J	18J	17	310	350	280	70	670	190
3/18	27	15J	19J	16	330	430	350	80	760	230
3/25	24	5U.	17J	14	400	390	330	60	780	180
3/29	35	13J	22	16	370	430	350	80	810	210

U - Number preceeding indicates half of the detection limit for the analysis.J - Number preceeding indicated concentration is above the detection limit but below the quantitation limit.

Table 4-18Average PAH Removal Based onInfluent and Effluent ConcentrationsBioslurry Reactor Operation

IT Project No. 408491

]	Percent Removal	
Compound	1/25 - 2/18	2/22 - 4/1	4/1 - 5/4
2,3 Ring	78	42	14
4,5,6 Ring	58	31	17
4 Ring	71	36	16
5,6 Ring	16	0	12
Total PAH	67	26	17
СРАН	33	17	27

Figure 4-3

Reactor PAH and CPAH Concentrations Weston Bioslurry Reactor

1600 1400-**Batch Operation** 1200-1000 mg/kg 800-600 400 200 0 4/5 2/11 2/25 3/11 3/25 5/4 4/19 1/25 Date

■ Reactor PAH → Reactor CPAH → Feed PAH → Feed CPAH

Table 4-19Headspace Analysis of Bioslurry Reactor

.

IT Project No. 408491

(Page 1 of 3)

Compound	Date Collected	Concentration (mg/l)
Naphthalene	3/18/93	2.78 x 10° J
	3/25/93	2.78 x 10° J
Acenaphthene	2/25/93	2.78 x 10° J *
	3/4/93	5.56 x 10° J
	3/11/93	5.56 x 10° J
	3/18/93	5.56 x 10 ⁻⁶ J
	3/25/93	1.39 x 10 ⁻³ J
	4/1/93	1.39 x 10 ⁻³ J
	4/8/93	2.21 x 10 ⁻³ J
	4/17/93	5.56 x 10° J
Dibenzofuran	4/8/93	8.3 x 10 ⁻⁶ J
Fluorene	4/8/93	8.3 x 10 ⁻⁶ J
	4/17/93	2.78 x 10° J
n-Pentane	2/12/93	1.1 x 10 ⁻³
	2/25/93	1.3 x 10 ⁻³
	4/9/93	3.8 x 10 ⁻³
Methylene Chloride	2/12/93	2.8 x 10 ⁻²
	2/18/93	1.8 x 10 ⁻¹
	2/25/93	9.3 x 10 ⁻²
	3/4/93	5.3 x 10 ⁻²
	3/11/93	1.9 x 10 ⁻²
	3/18/93	2.9
	3/25/93	9.4 x 10 ⁻² B
	4/1/93	4.0 x 10 ⁻² B
	4/9/93	9.0 x 10 ⁻²
	4/16/93	9.6 x 10 ⁻¹
Hexane	2/18/93	1.0 x 10 ⁻³ J
	2/25/93	5.0 x 10 ⁴ J
· ·	3/4/93	2.0 x 10 ⁻³ J
	3/25/93	1.0 x 10 ⁻³ J
	4/1/93	7.0 x 10 ⁻⁴ J
	4/9/93	1.8 x 10 ⁻³

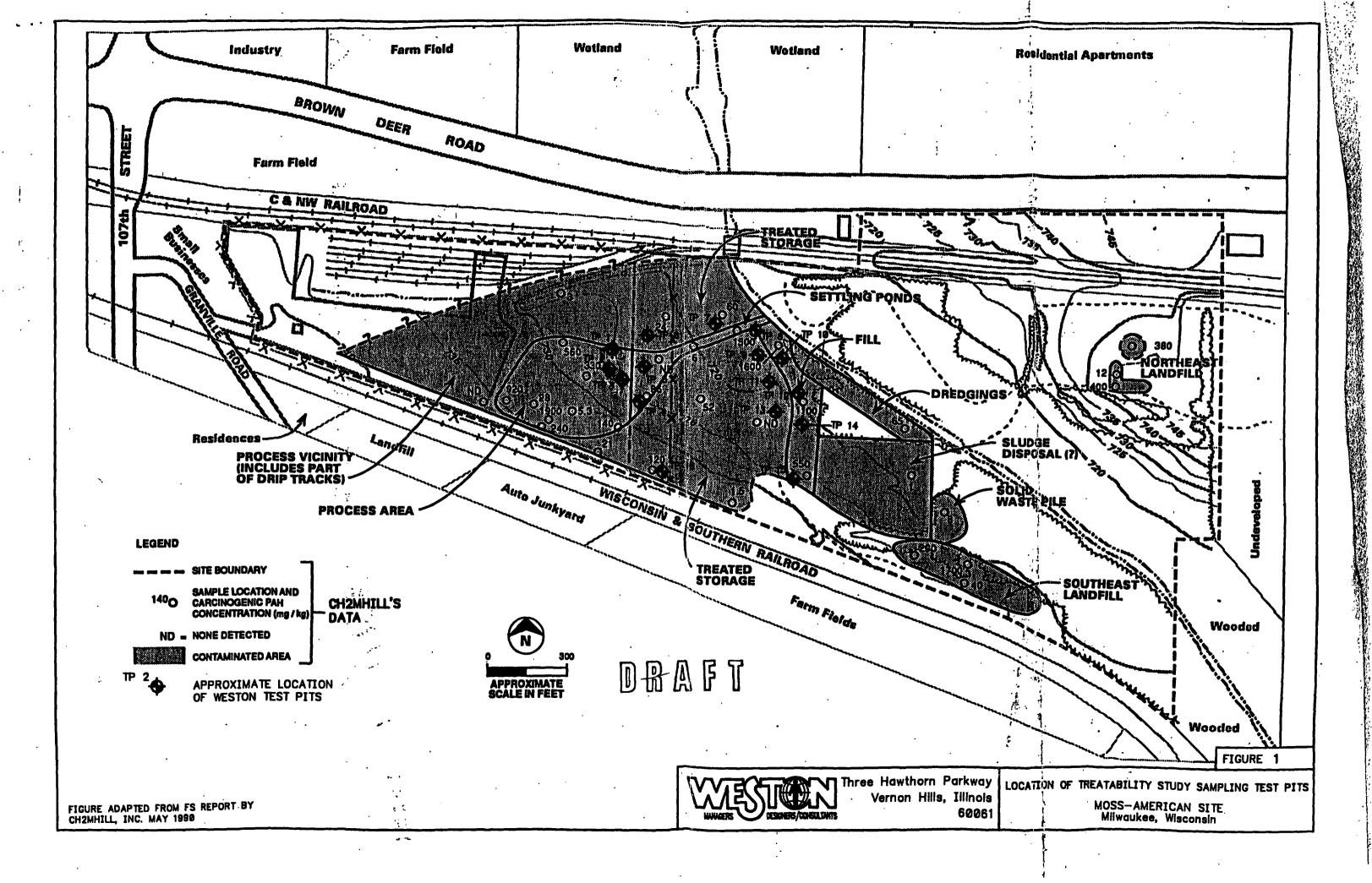
.

.

.

•

.


Table 4-19Headspace Analysis of Bioslurry Reactor

IT Project No. 408491

(Page 2 of 3)

Compound	Date Collected	Concentration (mg/l)
1,1,1-Trichloroethane	2/12/93	3.8×10^{-3}
	2/18/93	2.1×10^{-2}
	2/25/93	1.2 x 10 ⁻¹
	3/4/93	2.0 x 10 ⁻¹
	3/18/93	2.3 x 10 ⁻³
	3/25/93	5.5 x 10 ⁻³
	4/1/93	6.6 x 10 ⁻¹
	4/9/93	5.0 x 10 ⁻³
1,1,2-Trichloro-1,2,2- trifluoroethane	4/1/93	3.7 x 10 ⁻³
Benzene	2/12/93	8.0 x 10 ⁴ J
	2/18/93	8.0 x 10 ⁴ J
	2/25/93	7.0 x 10 ⁴ J
	3/25/93	9.0 x 10 ⁴ J
	4/1/93	6.0 x 10 ⁴ J
	4/9/93	1.5 x 10 ⁻³
n-Heptane	4/9/93	1.0 x 10 ⁻³
Toluene	2/12/93	1.6 x 10 ⁻³
	2/18/93	2.1 x 10 ⁻³
	2/25/93	2.4 x 10 ⁻³
	3/4/93	2.8 x 10 ⁻³ J
	3/18/93	3.1 x 10 ⁻³
	3/25/93	3.2 x 10 ³
	4/1/93	1.7 x 10 ⁻³
	4/9/93	3.8 x 10 ⁻³
n-Octane	2/12/93	4.0 x 10 ⁴ J
n-Pentane	3/25/93	1.2 x 10 ⁻³
	4/1/93	2.1 x 10 ⁻³
m/p-Xylene	2/25/93	5.0 x 10 ⁴ J
L	3/25/93	7.0 x 10 ⁴ J
Chlorodifluoromethane	3/25/93	2.3 x 10 ⁻³
n-Nonane	2/12/93	$4.0 \times 10^4 \text{ J}$
Decane	2/12/93	1.0 x 10 ⁻³
	2/18/93	9.0 x 10 ⁴ J
	2/25/93	5.0 x 10 ⁴ J

.

Table 4-19Headspace Analysis of Bioslurry Reactor

IT Project No. 408491

(Page 3 of 3)

Compound	Date Collected	Concentration (mg/l)
n-Undecane	2/12/93	1.3 x 10 ⁻³
	2/18/93	1.0 x 10 ⁻³ J
	2/25/93	6.0 x 10 ⁴ J
	3/25/93	1.1 x 10 ⁻³
	4/1/93	7.0 x 10 ⁴ J
n-Dodecane	2/12/93	1.0 x 10 ⁻³
	2/25/93	5.0 x 10 ⁴ J
	3/25/93	1.4 x 10 ⁻³
	4/1/93	9.0 x 10 ⁻⁴
1,2,4-Trimethylbenzene	2/12/93	4.0 x 10 ⁴ J

* - Assumed flow rate of 24 hours.

J - Estimated value

B - Compound present in sample blank.

Table 4-20PAH Analysis of Bioslurry Water Samples

IT Project No. 408491

			Sample Point	
Compound	Date	Influent (mg/l)	Reactor (mg/l)	RAS (mg/l)
Fluorene	3/11/93	0.03	<dl< td=""><td>ND</td></dl<>	ND
•	3/15/93	<dl< td=""><td>< DL</td><td>0.03</td></dl<>	< DL	0.03
	3/18/93	<dl< td=""><td>0.03</td><td>ND</td></dl<>	0.03	ND
	4/1/93	0.05	0.04	ND
Phenanthrene	2/1/93	<dl< td=""><td><dl< td=""><td>0.012</td></dl<></td></dl<>	<dl< td=""><td>0.012</td></dl<>	0.012
	2/8/93	<dl< td=""><td><dl< td=""><td>0.018</td></dl<></td></dl<>	<dl< td=""><td>0.018</td></dl<>	0.018
· . ·	2/11/93	0.016	·· <dl< td=""><td>ND</td></dl<>	ND
	2/15/93	0.015	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
· ·	2/18/93	0.015	<dl< td=""><td>ND</td></dl<>	ND
	2/22/93	0.014	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
	3/1/93	0.016	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
	3/8/93	0.01	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
	3/18/93	<dl< td=""><td>0.01</td><td>ND</td></dl<>	0.01	ND
	3/25/93	0.01	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>

ND - Not Determined

<DL - Less than the detection limit for analysis

KLB/07-93/SMC/BIOSLURY

Table 4-21Metals and Sulfide AnalysisBioslurry Reactor Study

Sample Identification	Arsenic (mg/kg)	Barium (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Lead (mg/kg)	Sulfide (mg/kg)
Reactor Effluent (1/25 - 2/15)	11.8	45.5	1.7	8.4	32.0	480
Final Bottle Study (Influent 3/26)	35.3	61.7	1.2	8.1	29.6	NA
Reactor Slurry 5/4	27.2	62.9	1.8	10.0	32.4	140
Week 6 30% Composite Initial Batch Study	20.0	64.5	3.2	10.0	43	520

IT Project No. 408491

NA - Not Analyzed

TABLE 4-22 PAH Analytical Results Final Batch Study

Project No. 408491

Parameter	Initial Analysis	Week 3	Week 6	Percent Removal
PAH (mg/kg)	1,100	490	390	65
CPAH (mg/kg)	210	170	150	29
Total Heterotrophs (CFU/gm)	2.2 x 10 ⁸	3.3 x 10 ⁸	5.0 x 10 ⁶	ND
Gene Probe (CFU/gm)	<2.0 x 10 ⁶	NA	<2.0 x 10 ⁴	ND
Oxygen Uptake (mg O ₂ /l-hr)	32.1	5.0	ND	ND

NA - Not Analyzed ND - Not Determined.

included in the system's material balance. Some of the constituents detected (e.g., methylene chloride, trichloroethane, and freon) may have been introduced via the reactor's aeration system.

PAH and CPAH mass removal during the first 4 weeks of continuous-flow operation averaged 1.5 and 1 g/day, respectively. This rate of removal decreased to a daily average of 0.5 and 0.3 g of PAH and CPAH, respectively, during the remaining period of continuousflow operation. PAH and CPAH mass removals during batch operation averaged 0.5 and 0.2 g/day, respectively. Appendix I provides the detailed mass removal and substrate utilization calculations.

Substrate utilization rates (q) based on mass of PAH and CPAH removed are provided in Table 4-10 and Appendix I. Substrate utilization determined during the first 4 weeks of operation (i.e., January 25 through February 18, 1993) averaged 0.031 mg PAH removed/g TS/day and 0.006 mg CPAH removed/g TS/day. In comparison to the batch bottle study, these rates are less than those determined for the first 3 weeks of operation in the 30 percent treatments. Following 4 weeks of continuous-flow operation, the PAH and CPAH utilization rates decreased to 0.023 and 0.004 mg removed/g TS/day, respectively. Batch operation resulted in a continuing decrease to 0.011 mg PAH removed/g TS/day; CPAH utilization remained unchanged at 0.005 mg/g TS/day.

Due to the reduction in system performance several additional analyses were conducted to help elucidate the nature of system stress. These analyses included determination of volatile organic compounds (VOC), metals and sulfide concentrations, and halogenated organics present (Appendix H). Table 4-21 presents the results of the metals and sulfide analyses. No problematic compounds or concentrations were detected during analysis.

4.1.2.3 Final Bottle Study

A final bottle study was conducted to generate data on the biological treatment of the second soil shipment which would be comparable to data generated on the first soil shipment. The results of the final bottle study are presented in Table 4-22. This study employed February 17, 1993 bioslurry reactor feed stock to determine the impact of this material on reactor operation. The influent sample was chosen for testing to determine if the second feed batch was inhibitory.

Results of the study indicated that PAH and CPAH percent removals based on concentration were 65 and 29, respectively. These results were less than those determined during the initial batch study.

4.1.3 Comparison to Test Objectives

4.1.3.1 Batch Bottle Study

The objectives of this study included:

- Providing support data for enhanced operation of the bioslurry reactor
- Determination of the impact of solids loading on operation
- Calculation of preliminary substrate utilization rates.

Data generated during the initial batch bottle study provided support for the start-up, operation, and evaluation of the bioslurry reactor system. The data generated allowed for the .determination of solids loading impact on reactor operation. Although the CPAH substrate removals in the 30 and 40 percent treatments were similar, the physical nature of the 40 percent slurry would not allow for sufficient mixing. A maximum slurry density of 35 percent was determined to be appropriate for suspension in the bioslurry reactor during an initial slurry evaluation conducted by Eimco. Therefore, a 30 percent solids loading was chosen for bioslurry reactor operation.

Substrate utilization rates were determined based on PAH and CPAH removal. These data are presented in Table 4-10. Maximum substrate removal occurred during the first 3 weeks of operation. The 30-day HRT for reactor operation encompassed this period of activity.

4.1.3.2 Bioslurry Reactor Study

The objectives of the bioslurry investigation included:

- Estimation of hydraulic retention time (HRT) and BSRT set points for operation
- Determination of the efficacy of meeting the specified treatment standard
- Identification of requirements for additional physical/chemical pretreatment
- Generation of performance data upon which pilot-scale design could be established.

The bioslurry reactor was maintained at a 30-day HRT and 38-day BSRT for 68 days of continuous-flow operation. Due to the reduced performance of the reactor during both

continuous-flow and batch operation, optimal HRT and BSRT set points could not be estimated.

CPAH removal efficiencies determined during both continuous-flow and batch operation did not result in final soil CPAH concentrations near the mandated target concentration of 6.1 mg/kg total CPAH.

4.2 Quality Assurance/Quality Control

The quality level for these investigations was Level III, as described in "Guide for Conducting Treatability Studies Under the Comprehensive Environmental Response, Comprehensive and Liability Act (CERCLA)" EPA/540/2-89/058³⁹. This level was selected to provide high quality analytical results without using Contract Laboratory Program (CLP) analyses.

Data collected during execution of the study were recorded in a bound, controlled laboratory notebook. Data generated from integrators and computerized instruments were printed with the resulting data sheets kept with the project file. All data were verified and checked by a Biotechnology Applications Center (BAC) scientist. Proof of verification is the dated signature of the checker at the bottom of each notebook page.

To provide evidence of work performance and the basis for information presented in the Technical Memorandum, numerical analyses and results were documented and filed in IT Corporation (IT)-Knoxville central files. Documentation included calculations, computer programs, and associated input/output logs, drawings, and tables. Analytical activities were performed in a planned and controlled manner. An U.S. Environmental Protection Agency (EPA)-approved Test Plan was employed.

Calculations were legible and in a form suitable for reproduction, filing, and retrieval. Calculations were performed on standard calculation paper or in laboratory notebooks. Computer programs were documented in sufficient detail to satisfy requirements, needs, and intended use of the program.

4.2.1 Internal QC Checks

QA audits and surveillances of the IT-Knoxville central files and BAC laboratory were

performed by an IT QA Officer. An IT audit report, issued on April 7, 1993, is presented in Appendix J. Following issuance of the report, a meeting of all BAC staff and ITAS auditors was held to discuss the audit's observations. The BAC response to these observations is also included in Appendix J.

4.2.2 Data Quality Checks

A total of 77 PAH soil analyses were conducted during the batch and bioslurry investigations. In addition, 27 matrix spikes and method blanks were analyzed.

The QC checks consisted of 12 method blanks and 15 matrix spike analyses. Method blanks were analyzed for both CPAH and total PAH; no compounds were detected. Matrix spikes analyses resulted in the recovery percentages provided in Appendix H.

A three-point rather than five-point calibration curve was used during PAH analysis. All PAH analyses that fell outside of the linear range of the three-point calibration curve were reported as estimated values.

A third party laboratory standards check was also analyzed at the end of the bioslurry reactor study prior to the analysis of final bottle study samples, to demonstrate the effectiveness of the analytical instrumentation. The results of the standard check are provided in Appendix H.

Surrogate additions were not conducted in BAC analysis of PAH samples. Surrogate addition analysis was conducted while employing EPA Methods 8240, 6010, 8010, and 8270 for sample analysis.

4.3 Key Contacts

Key technical contacts for the described project include:

- Kandi Brown, IT Project Manager, (615) 690-3211
- Bill Lowe, Weston Technical Manager, (215) 344-3762
- Gary Deigan, Weston Project Manager, (708) 918-4114.

5.0 References

- 1. U.S. EPA, 1990, "Slurry Biodegradation," EPA/540/290/016.
- 2. Sims, R.C. and M.R. Overcash, 1983, "Fate of Polynuclear Aromatic Hydrocarbons (PNAs) in Soil-Plant Systems," *Residue Review*, 88:1-68.
- 3. Herbes, S.E. and L.R. Schwall, 1978, "Microbial transformation of polycyclic aromatic hydrocarbons in pristine and petroleum-contaminated sediments," *Appl. Environ. Microbiol.*, 35:306-316.
- 4. Herbes, S.E, 1981, "Rates of microbial transformation of polycyclic aromatic hydrocarbons in water and sediments in the vicinity of a coal-coking wastewater discharge," *Appl. Environ. Microbiol.*, 41:20-28.
- 5. Gibson, D.T., Ed, 1984, Microbial Degradation of Organic Compounds, Marcel-Dekker, New York.
- 6. Rochkind, M.L., G.S. Sayler, and J.W. Blackburn, 1987, Microbiological Decomposition of Chlorinated Aromatic Compounds, Marcel-Dekker, New York, 1987.
- 7. Leisinger, T., 1983, "Microorganisms and xenobiotic compounds," *Experentia*, 39:1183-1191.
- 8. Leisinger, T., A.M. Cook, R. Hutter, and J. Nuesch, 1981, *Microbial degradation of xenobiotics and recalcitrant compounds*, Academic Press, London.
- 9. Cerniglia, C.E., 1981, "Aromatic hydrocarbons: metabolism by bacteria, fungi and algae," in *Reviews in Biochemical Toxicology*; E. Hodgson, J.R. Bend, and R.M. Philpot, Eds. Elsevier North Holland, Inc., 3:321-361.
- 10. Cerniglia, C.E., 1984, "Microbial metabolism of polycyclic aromatic hydrocarbons," *Advances in Applied Microbiology*, 30:31-71.
- 11. Cerniglia, C.E. and M.A. Heitkamp, 1989, "Microbial degradation of polycyclic aromatic hydrocarbons in the aquatic environment," in *Metabolism of Polycyclic Aromatic Hydrocarbons in the Aquatic Environment*; U. Varanasi, Ed. CRC Press, Boca Raton, Florida, p. 41-68.
- 12. Keuth, S. and H.J. Rehm, 1991, "Biodegradation of phenanthrene by Arthrobacter polychromogenes isolated from a contaminated soil," Appl. Environ. Microbiol., 34:804-808.

- 13. Weissenfels, W.D., M. Beyer, and J. Klein, 1990, "Degradation of phenanthrene, fluorene, and fluoranthene by pure bacterial cultures," *Appl. Environ. Microbiol.*, 32:479-484.
- 14. Guerin, W.F. and G.E. Jones, 1988, "Mineralization of phenanthrene by a Mycobacterium sp.," *Appl. Environ. Microbiol.*, 54:937-944.
- 15. Kiyohara, H., K. Nagao, K. Kuono, and K. Yano, 1982, "Phenanthrene-degrading phenotype of *Alcaligenes faecalis* AFK2," *Appl. Environ Microbiol.*, 43:458-461.
- 16. Ghosh, D.K. and A.K. Mishra, 1983, "Oxidation of phenanthrene by a strain of *Micrococcus*: evidence of protocatechuate pathway," *Current Microbiology*, 9:219-224.
- 17. Kiyohara, H., M. Sugiyama, F.J. Mondello, D.T. Gibson, and K. Yano, 1983, "Plasmid involvement in the degradation of polycyclic aromatic hydrocarbons by a Beijerinckia species," *Biochemical and Biophysics Research Communications*, 111:939-945.
- 18. Jerina, D.M., H. Selander, H. Yagi, M.C. Wells, J.F. Davey, V. Mahadevan and D.T. Gibson, 1976, "Dihydrodiols from anthracene and phenanthrene," *Journal of the American Chemical Society*, 98:5988-5996.
- 19. Peczynska-Czoch, W. and M. Mordarski, 1984, "Transformation of xenobiotics," in The Biology of Actinomycetes; M. Goodfellow, M. Mordarski and S.T. Williams, Eds. Academic Press, Inc., London, pp. 287-336.
- 20. Colla, C., A. Fiecchi, and V. Treccani, 1959, "Richerche sul metabolismo ossidativo microbico dell'antracene e del fenantrene," Annals of Microbiology, 9:87-91.
- 21. West, P.A., G.C. Okpokwasili, P.R. Brayton, D.J. Grimes, and R.R. Colwell, 1984, "Numerical taxonomy of phenanthrene-degrading bacteria isolated from the Chesapeake Bay," *Appl. Environ. Microbiol.*, 48:988-993.
- 22. Evans, W.C., H.N. Fernley, and E. Griffiths, 1965, "Oxidative metabolism of phenanthrene and anthracene by soil pseudomonads," *Biochemical Journal*, 95:819-831.
- 23. Fernley, H.N., E. Griffiths, and W.C. Evans, 1964, "Oxidative metabolism of phenanthrene and anthracene by soil bacteria: The initial ring fission step," *Biochemical Journal*, 91:15P-16P.
- 24. Kelley, I. and C.E. Cerniglia, 1991, "The metabolism of fluoranthene by a species of Mycobacterium," Journal of Industrial Microbiology, 7:19-26.

- 25. Kelley, I., J.P. Freeman, F.E. Evans, and C.E. Cerniglia, 1991, "Identification of a carboxylic acid metabolite from the catabolism of fluoranthene by a Mycobacterium sp.," Appl. Environ. Microbiol., 57:636-641.
- 26. Grifoll, M., M. Casellas, Bayona, J.M. and A.M. Solanas, 1992, "Isolation and characterization of a fluorene-degrading bacterium: Identification of ring oxidation and ring fission products," *Appl. Environ. Microbiol.*, 58:2910-2917.
- 27. Heitkamp, M.A., W. Franklin, and C.E. Cerniglia, 1988a, "Microbial metabolism of polycyclic aromatic hydrocarbons: Isolation and characterization of a pyrenedegrading bacterium," *Appl. Environ. Microbiol.*, 54:2549-2555.
- 28. Heitkamp, M.A., J.P. Freeman, D.W. Miller, and C.E. Cerniglia, 1988b, "Pyrene degradation by a Mycobacterium sp.: Identification of ring oxidation and ring fission products," *Appl. Environ. Microbiol.*, 54:2556-2565.
- 29. Grosser, R.J., D. Warshawsky, and J.R. Vestal, 1991 "Indigenous and enhanced mineralization of pyrene, benzo(a)pyrene, and carbazole in soils," *Appl. Environ. Microbiol.*, 57:3462-3469.
- 30. Gibson, D.T., V. Mahadevan, D.M. Jerina, H. Yagi, and H.J.C. Yeh, 1975,
 "Oxidation of the carcinogens benzo(a)pyrene and benzo(a)anthracene to dihydrodiols by a bacterium," Science, 189:295-297.
- 31. Mahaffey, W.R., D.T. Gibson, and C.E. Cerniglia, 1988, "Bacterial oxidation of chemical carcinogens: Formation of polycyclic aromatic acids from benz(a)anthracene," *Appl. Environ. Microbiol.*, 54:2415-2423.
- 32. Wu, J. and L.K. Wong, 1987, "Microbial transformations of 7,12dimethylbenz(a)anthracene," Appl. Environ. Microbiol., 41:843-845.
- 33. Mueller, J.G., S.E. Lantz, B.O. Blattmann, and P.J. Chapman, 1991, "Bench-scale evaluation of alternative biological treatment processes for the remediation of pentachlorophenol- and creosote contaminated materials: Slurry-phase bioremediation," *Environ. Sci. Technol.*, 25(6):1055-1061.
- 34. Lewis, R.F., 1992, "SITE demonstration of slurry-phase biodegradation of PAH contaminated soil," in Proceedings of the 85th Annual Meeting of the Air and Waste Management Association, Kansas City, Missouri.
- 35. Sanseverino, J., B. Applegate, J.H. King, and G.S. Sayler, 1993, "Plasmid-Mediated Mineralization of Naphthalene, Phenanthrene, and Anthracene," *Appl. Environ. Microbiol.*, 59(6):1931-1937.

- 36. Graves, D.A., C.A. Lang, M.E. Leavitt, 1992, "Quantitative Evaluation of Oxygen Delivery and Distribution in the Subsurface During In Situ Aquifer Remediation," Air and Waste Management Association, Pittsburgh, Pennsylvania.
- 37. Clesceri, L.S., A.E. Greenberg, and R. R. Trussell, 1989, Standard Methods for the Examination of Water and Wastewater, 17th Edition, Port City Press, Baltimore, Maryland.
- 38. Cullimore, D.R., 1993, *Practice Manual of Groundwater Microbiology*, Lewis Publishers, Chelsea, Michigan, p. 18.
- 39. U.S. EPA, "Guide for Conducting Treatability Studies Under CERCLA," EPA/540/2-89/058.

APPENDIX A INITIAL CHARACTERIZATION DATA FOR TREATABILITY STUDY MATRIX

Moss-American Site Milwaukee, Wisconsin

Initial Characterization Data for Treatability Study Test Matrix

(Predesign Task 16 - Bioslurry and Soil Washing Phase I Treatability Evaluation)

4 November 1992

(Amended January 1993)

Summary of Test Pit Composite Samples Evaluated for Selection of Treatability Test Matrix

Composite Sample	Test Pits Sampled to Form Composite	Total CPAH Concentration (mg/kg)
S01	TP12, TP13, TP14, and TP15	57.4
S02	TP8	506.7
S03	TP3	197.4
S04	TP12, TP13, TP14, TP15, TP8, TP3	122.8

Notes:

- Composite samples "S02" and "S03" were selected as the treatability study test matrix designated as "IT-TS01" (Bioslurry) and "BRG-TS01" (Soil Washing).
- A second soil washing treatability study test matrix was formulated by compositing samples from test pits designated as TP4, TP5, TP6, TP11, TP12, and TP15. This test matrix is designated as "BRG-TS02".

CH01\PUBLIC\WO\MOSSAMER\8712.TB1

Summary of Bioslurry and Soil Washing Treatability Study Sample Chemical Characterization Moss-American Site Milwaukee, Wisconsin

			Sample Designation	
Parameter	Units	IT-TS01	BRG-TS01	BRG-TS02
% Solids	%	65.4	58.8 .	85.1
Total Organic Carbon	%	6.1	6.6	6.2
pH	pH Units	6.9	7.1	NA
PURGEABLE AROMATICS				
Benzene	ug/kg	ND	ND	. ND
Ethylbenzene	ug/kg	.ND : , ·	···· ND	· ND
Toluene	ug/kg	ND	ND	ND
Xylene (total)	ug/kg	ND	, ND	ND

NA - Not applicable (parameter not analyzed).

ND - Analyzed-not detected.

Summary of Bioslurry and Soil Washing Treatability Study Sample Chemical Characterization Moss-American Site Milwaukee, Wisconsin (Continued)

			Sample Designation	
Parameter	Units	IT-TS01	BRG-TS01	BRG-TS02
РАН				
Naphthalene	ug/kg	23,000	30,000	57,000
Acenaphthylene	ug/kg	180,000	170,000	120,000
Acenaphthene	ug/kg	130,000	83,000	18,000
Fluorene	ug/kg	34,000	23,000	2,300(1)
Phenanthrene	ug/kg	120,000	87,000	16,000
Anthracene	ug/kg	220,000	220,000	5,800
Fluoranthene	ug/kg	320,000	210,000	38,000
Рутепе	ug/kg	180,000	160,000	24,000
Benzo(a)anthracene	ug/kg	30,000	27,000	3,700
Chrysene	ug/kg	96,000	100,000	12,000
Benzo(b)fluoranthrene	ug/kg	33,000	48,000	12,000
Benzo(k)fluoranthrene	ug/kg	9,000	4,100	3,600
Benzo(a)pyrene	ug/kg	34,000	36,000	8,300
Dibenzo(a,h)anthracene	ug/kg	8,900	8,600	610
Benzo(ghi)perylene	ug/kg	12,000	11,000	10,000
Indeno(1,2,3-cd)pyrene	ug/kg	11,000	10,000	9,100
Total PAH	mg/kg	1,440.9	1,227.7	340.41
Total CPAH	mg/kg	233.9	244.7	59.31

NA - Not applicable (parameter not analyzed)

(1) - Analyzed-not detected at the detection limit of 4,700 µg/kg. For purposes of calculating total PAH/CPAHs, one-half the detection limit has been reported.

CH01\PUBLIC\WO\MOSSAMER\8712.TB2

Geotechnical Tests Performed, Reference Methods and Test Numbers

Test Parameter		Method ¹
Grain Size by Sieve and Hydrometer		D 421/422
Liquid and Plastic Limits		D 4318
Total Porosity		D 854/2937
Natural Moisture Content	1	D 2216

-

.

.

: د

IN-NOT APPLICABLE

SELON

:

51	0.0011		
21	0.0014		
0'7	0.0026		
65	010036		
6'5	010001		
6'9	Z/00'0		
101	00100		
L'II	01100		
12,5	28100		
. 121	0.0262		
51.3	0960.0		
232	0.0502	HYDROMETER	
30.1	<u>\$40'0</u>	\$500	
34.4	OGI 'O	001#	
8.14	0'300	120	
0'99	058.0	150	
<u>L'19</u>	5.000	01#	
831	092.1	54	
92'4	009'6	3/8.	
1000	00'61	3/6	
0.001	05.76	2/11	
0.001	00%/	£	
% LIVEL	umu -	8ZIG eneig	
	Dismetar	brebner2.8.U	

.

MIA	BHECHIC GLW
r	521
	2 pÅ mejðju 101.VT 201102
1.72	L'IR
27.1 27.1	1.528 Simod ynd X Thefinoco
I	
	BIOM TV: AND
	AN TAPTURAL MOR
Andation Coefficient NA	Unitomity Coefficient NA UNIUTAL MOIS

VN

106'1

....

531

.

6'90	E'99	61
2, notisenute 8	Porosity,%	Vola Radio
		POROBITY

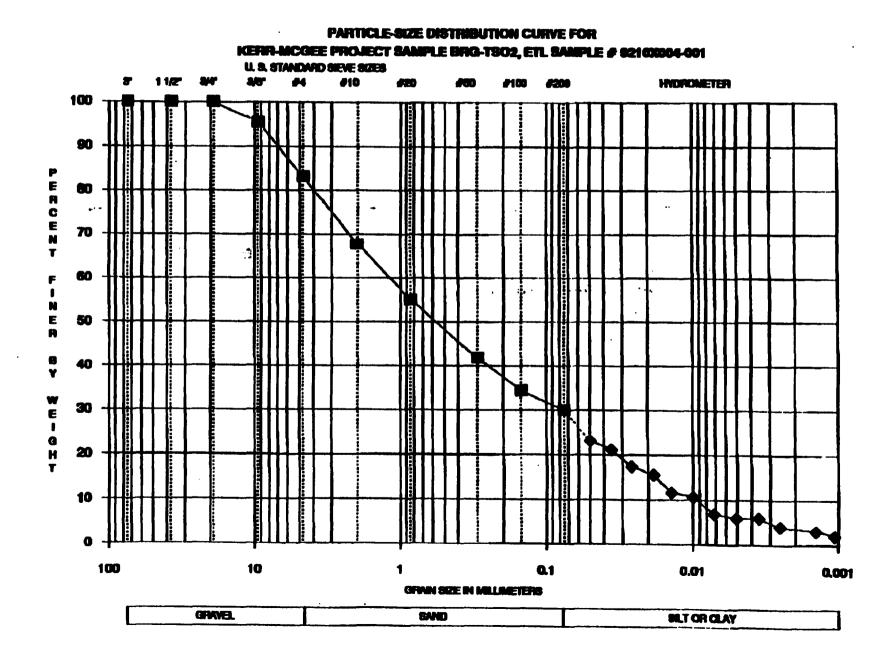
115	SOL	I. I
bq	ba	30/6
Ĺф		396
		nucoubucted
	,bedrudelb) THE	BULK UNIT WER

19	385	9.14
Judak	amil.	Simil.
Plantchy	ગાક્યત	ndriq
	siseq	y meleture dry
	SELLE	Edoud Xeigni

8]
lodiny8 quor	
nifed Soft Charallention System (USCS)	n
	1
Atometic and a state to the store by	
lavere 271 now OMAS yes plavere much	
	٦
WILLIED DESCHIELION	8

.

11/00/85	DATE COMPLETED		DATE RECEIVED	100-100-19920	W. O. NUMBER	
SME.	DAVOC ANALYST	1001	ETL SAMPLE NUMBER	10000126	108 MINIBEL	
Mds	FROJECT ANALYST	6HG-16O2	PROJECT SAMPLE LD.	IDENTIAL MODEE	PROJECT	
GBO RECT. [REEDENWORE [GBO RECT & VIND RET] GBO RECT VINW X81 [GBO RECT VINW X81 [GBO RECT VINW X81 [GBO RECT VINW X81]						


ELLECLINE BISER

30

09 60

MESTON ENVIRONMENTAL TECHNOLOGY LABORATORY

4

...

3:53PM

arikerox felecopier 7520 :11-17-92 ;

JEN

TARIF 4

SUMMARY OF TREATABILITY STUDY SAMPLE PHYSICAL CHARACTERIZATION

WESTON ENVIRONMENTAL TECHNOLOGY LABORATORY

GEOTECHNICAL TESTING DATA AND RESULTS					
PROJECT	Moss American-Kerr McGee	PROJECT SAMPLE LD.	Moss Amer-TS01	PROJECT ANALYST	SPM
JOB NUMBER	92060011	ETL SAMPLE NUMBER	001	GAVOC ANALYST	FWF
W. Ö. NUMBER	02007-007-001	DATE RECEIVED	9/21/92	DATE COMPLETED	10/18/82

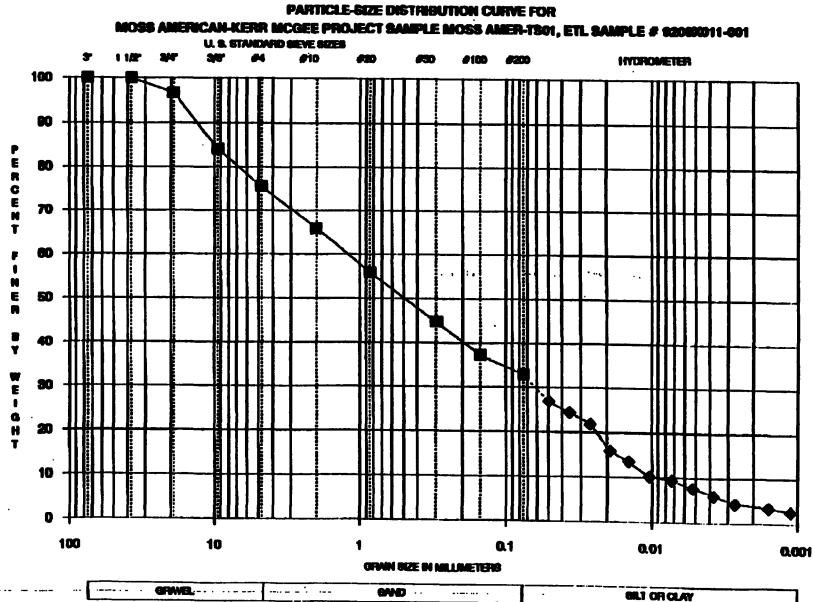
Contraction of the second

U.S. Standard	Diameter	
Sieve Size	<u> </u>	% Finer
3	75.00	100.0
1 1/2	37.50	100.0
3/4"	19.00	96.7
3/8*	9.500	84.2
#4	4.750	75.5
#10	2.000	65.8
#20	0.650	55.9
#50	0.300	44.7
#100	0.150	37.4
#200	0.075	32.9
HYDROMETER	0.0497	27.0
	0.0360	24.4
	0.0280	21.9
	0.0193	16.1
	0.0144	13.6
	0.0104	10.2
	0.0074	9.4
	0.0053	7.7
	0.0036	6.0
	0.0027	44
	0.0016	3.5
	0.0011	27

effective sizes		
	Diameter	
% Finer	mm	
60	1.325	
30	NA	
10	NA	
Uniformity	Gradation	
Coefficient	Coefficient	
NA	NA	

NAT	URAL MOISTURE
CON	TENT, % dry basis
	85.6

SPE	ЖK	GRA	MIY	
		2.2)	


SAMPLE DESCR	PTION
ierk brown graw pavel and 33% e ngenice(berk)	By sity SAND with 24% B, disp contained
Inified Soli Class Iroup Symbol	Ecition System (USC5)
	SM

INDEX PRK		
Liquid	Pleetic	Plasticity
	non-plastic, non	Index

BULK UNIT WEIGHT (disturbed,				
uncompacted	•			
wet	wet	drv		
gicc	pcf	oct		
0.96	50.6	82.1		

POROSITY		
Vold Platio	Porcetty,%	Seturation, %
3.350	77.1	57.2

NOTES	
NA-NOT APPLICABLE	

·. |

APPENDIX B SHIPPING DOCUMENTATION

WESTON	Analytics	Use Only	

Custody Transfer Record/Lab Work Request

۲.

L					-																Page	э	of _	
Client Mos	s-Ame	rican S	Site (KM	CC)			Refrige	erator #																
Est. Final Proj	. Sampl	ing Date	001 002	<u> </u>			#/Type	Container	Liquid Solid			<u> </u>										_		
Work Order # Project Conta					8-41	14	Volum	•	Liquid															
						<u> </u>	Preser		Solid			╉━━━╾	┠	<u>}</u>	<u> </u>	<u>}</u>	 	┟	<u> </u>	┝──┤		——		
AD Project Ma							Freser	V8(1V03		+	OBC	ANIC		<u> </u>		┠	- INC	DRG	i					
							ANALY	'SES			1	_			[the second se		1					
Date Rec'd Account #			Date Due _				REQUE	STED		VOA	BNA	Pest/ PCB	Herb				Metal	Ŋ						
MATRIX				-										WE	STON	I Anal	ytics	Use O	nly	1				
CODES:	Lab		lient ID/Desc	Intion	ļ	itrix IC Isen	Matrix	Date	Time									Γ						
S - Soil SE - Sediment	OI I	, v		inpuon		osen √)	MOUTA	Collected	Collected	1									i i			1		
SO - Solid						MSD					I													
SL - Sludge W - Water O - Oil	0135 1912	Sample	e 1 (TSO	1)			S	9/18/9	2 1300) <u>1</u> -	20	all	on s	tee	l dr	um								
A - Air	1112						•		• •	• •														
DS - Drum Solids					Τ		:			·										\square				
DL - Drum Liquids								· ·			2						2							
L- EP/TCLP Leachate							:	•••		K	1.	5,	DU	2	15		Ro	1						
WI - Wipe X - Other					1					<u> </u>	2			, <u> </u>			<u> </u>							
F- Fish								· · ·	,		A	10	Th		57	21	0		<u> </u>				┝───┦	
					+								·		F								┟╼╼╼┦	
									,	1—												┟╼╼╼┥		
				; .						1—				 	<u> </u>		┟──							
FIELD PERSO	NNEL: CO	MPLETE O	NLY SHADED	AREAS		<u>_</u>	DATE/REV	ISIONS: A	dditi	onal	Not	es:	<u> </u>	L	1	1,	Ē	WE	STON	Analy				
Special Instruc								1											3100			50 UI	л у	
Sample 1	l for	bioslu	rry trea	tabilii	ty nlar			2. <u>Samp</u>	le sta	aged	at	Moss	-Аш	eric	an			amples Shinor	were: ed	or		C Tape resent c		or
evaluat	lon,]	per LPA	-approve	u test	Prai			3. site	prio	r to	shi	pmen	it to	o IT			Н	and De	livered			kage Y		
								4. Corp	orati	on o	n 10	/28/	92.						ent or C			nbrokei kage Y		
						-		5				4							ved in (resent o		
						-													n Ya		•,		Y or	•
						-		6											s Indica Preser			nbrokei		
Relinquished	R	eceived	Date	Time	Relin	quish	ed	Received		Date	Tin	ne			ies Be		-	. opany		or N		iple \ CRecor		
by.	+	by	what	1574	Qual	by		by		nl-	16				abeis a rd? Y				ved Wil	hin		n Samp	ole Rec	c't
er figue			14892		Dered	1			<u> </u>	8/43	1/4			TES:			н	olding		or N		١	Yor	N
		dition or	vin la PIZ	10,303	L					<u> </u>			L			. <u> </u>								
RFW 21-21-001/A	-7/94			L37	<u>د</u>		L373	L3	/5	, L	311		_ L3	18	Heit	!		_ Coc	oler# _				38	1-596a

	and a start of the			
Sender's Federal Burnets Accord			ENDER'S	COPY
From Mar Name Plant		y imperiant)	Timore Print, and	Respirate Press Harrister (New Inspirate
Tere life to	SHIME LOND	1211 Contrap	L CIN	(IE) THE HEL
I T CORP		hie to		
312 DIRECT		and And With Address of	r Canal Baller & F.O. Januar R.O. 2000 7	Contract of the second s
JIE ULKELI Xy	Sam	Mag PROFED YEAR		C. Zif Required
	ICE INFORMATION (First 24 chanadras will assess as invoice 1	FIIN ANT	REFERENCE TIT	
	and a second sec	BUNNER CIT	non Managar Tanàn ang amin'ny fisiana	·····
VINENT 1 Bit Bender 2	Recipient's Feder Acct. No. 3 3 30 30 Fedry Feder Acct. No. 4		ի բատորություն է արդանում է է նաև իր տու է նաև է է է է է իր ուր է երան է է է է է է է է է է է է է է է է է է է	ZIP Required
SERVICES	DELIVERY AND SPECIAL HANDLING		SERVICE CONDITIONS, DECLAR	
(Check only one box) Priority Overnight Stender	Overnight		AND LIMIT OF LIABLIT of the difficulties yes opened to be a most finite Children yes opened to be a	Base Charges
(Delvery by next (Delve business moning) business			et the shift to internation. A ingétie caspanalite to any dates in angese d har the meak of tage, damage, dates, non-dathery	Declared Value Charge
Economy Two-Day Man	3 Ball And Ball Barland		incurrent your actual tess for a limity claim. Musi	n attilland charge. Inven general brille- Alle gegit: Your right
			astage, has of each, because beyond, profil, a	Conservation of Conservation o
	William - Congress Sanda Signer Basterite an angenet Sirie Sie		need Value for Figling Latter and Facilies Pala, packet In the Contemporary delivery. Facilies Pala, packet In the Contemporary delivery. Facilies Contemporary and	Total Charges
advery constituent may			in farfar blannalan.	APPENDICAL PARTE BYDD PARTE APPENDI POFMATEDAS 9900
INSTRUCTIONS (Check only of Dangerous Goods as per ellected		Read State State State State State	GNATURE RELEASE UNA	
Shipper's Declaration Desperave Goods Shipper's Declara not required				• 1980 difc.
 Cargo Alexanti artiy 	12 ann dags			
96414337	CNEC			(TYPE OR PRINT)
F, JV MI I AMINI	L. / The states and the second		S Die I	· .
		2.12.17	Company and	9.11
al stratt			JUN F	π
(X. 1. C)			- Helles	
• • • • •			55 Km	
	The second se		1918870 90 <u>00-</u> 7, 0. ⁵ :	
DITIONAL HANDLING INFOR		te:	·	
				• •
TRANSPORT DETAILS	THIS SHIPMENT IS WITHIN THE LIMITATIONS PRESCRIBED FOR	PASSENGER	ARCTARE A	(DELETE-NONAPPLICABLE)
PORT OF DEPARTURE	ARPORT OF DESTINATION	NON RADIOACTINE	RADIONOTIVE	(DELETE-NONAPPLICABLE)
IF ACCEPTABLE FOI TO, RESEARCH, MEDI	R PASSENGER AIRCRAFT, THIS SHIPMENT (CAL DIAGNOSIS OR THEATMENT: 115 TI VIC	CONTAINS RADIOACTIVE	MATERIAL INTENDED FO	DR USE IN, OR INCIDENT
NAME AND ARE CLA	THAT THE CONTENTS OF THIS CONSIGNME SSIFTED, PACKED, MARKED, AND LABELED, A APPLICABLE INTERNATIONAL AND NATIONAL	ND ARE IN ALL RESPECT	S IN PROPER CONDITION	
ME AND TITLE OF SHIPPE		PLACE AND DATE		÷
ERGENOT TELEPHONE N	MBER SIGNATURE OF SHI	PER		SEE WARNING
1 1: 1.41		and the second second		ON BACK

	1	10.50	TYPE OF PARKING	* #\\$1	IZAHUN		
Environmental Haze Substances Solid A (R.Q. (RESOTE)	ardonsi 9 205.	UN 3071	1 Steel Dru X 79kg	m III	A86	 	
ADDITIONAL HARDEN BEGING CONSIGNED		· · · · · · · · · · · · · · · · · · ·					
	are concelor concel	PASSENGER Aug haf t		IDELF TE-NONAPP			
ARPORT OF DEPARTURE AND SHE OF THE	CERTATION CONTRACTOR	Math Republic tive	114411	(DELETE NUNAPP	n (CAREE)		•.
TIF ACCEPTABLE FOR PASSENGER TO, PESTARCE MEDICAL DIAGEOGE	-	OTTAINS RADIOACTIV	E MATERIAL INTENDED	OR USE IN. OR	INCIDENT		

· ·

.

WESTON Analytics Uso Only	MOSAR NOIO		wooy i i i i i i	Pop
		and the second		
Doto Roce'd Account ()				
Constant and a second se				

÷., .

S) Recording Ca Concion V CT

t377 _____ L370

Description Economy Songles Labor and COC Record? Y. C. N NOTES:

4) Leters InCars Processly Presses 5) Received L. Helding Recoil

R=0_____0

Rollinguichcal by	ಗಿರಾಜನೇವರೆ ನ್ ಶಗ್ಗ		11 ,	hanna ann an Air ann an		िंद
111 Ca.30	C. Shap	ilit	1.0	The second	1 tenter og	
		lliches				

L972

· RFW 21-21-001/A-7/81 ς,

181

6070

WESTON Analytics Use Only

Custody Transfer Record/Lab-Wartz-Request-

WISSTOP

Q

i o

3 14

00°0°

6

		Pcgo
		a the second
	CONGANCO IN	INDECE .
Dato Roc'd		
Account 0		TTON ANOMEDICATION AND A STATE
Sector Management of the sector of the secto		A - March Barrow March 199
FIELD PERSON 74 OF FILMING V CHARGED AS 140		להבידע הבאונים לארביאלים להבידע הבאונים אלי
C	A Company and Company of Company of Company	
and the second se		
		AND 0
		a) Amitta is Canada and Cana
		3) Flooring in Grant and a second sec
		4) Literito Indiana III Provincia III Property Processor
	California Deco Traca	m Between
C. C. Shan Jiele In Jun	OOC Room	the Child S) Received the Received Control of the C
Andra Internet	MITER	
BFW 21.21.001/A.78	LS78 L878	

RFW 21-21-001/A-7/01

50. 1

L978 _____ L978

.

1

L377

WESTON Analytics Use Only	Custody Transfor Record/LabWorkEcquest
Clint	
Ed. Firel Professioners In	CON-CONTRACTOR
Project Contca/Energy	
AD Project Monch	
Date Rec'd	
PIELD PERSON: 3.1 COCPLETE Special Instrustory	
	2) Antitum or Dicase 3) Received in Good, 1) and 1 Concisent Y or N
Rolingulahod Reached	
JANAA CAVA	March 1997 And 1997 A

•

÷.,

.

RFW 21-21-001/A-7/81 :1979 **7**1 1979 Rcto 1977 L970 1.1.14

.

.

4 ¥7

CIPU BLET	Let The		6 467		10/1-1/1129 13-1
				Carly and	
			CONCERPTION	CMI CICO	Aq BCNCRC
			THE A	Mark - Pr Co	
		A. 200 0.0	0.0070	T OVER QUINNS AT	Dereowner Cochrenton

Constants

Custody Transfer Record

MEGTON Analytica USA Only

				1/1/62			RECIPIENT	'S COPY	
••		From (Your Name) Plases Print	10-10	Your Phone N	anther (Very Important) To (Recipient'	s Name) Please Print	Recipient's Phone Nur	mber (V
1		G. DEIGAN			918-4CC		I BROWN	(61 3) 65	
	N	RCY P. WEST	ON INC			IT C		APPLIC. CENT	
	N.	THREE HANTH	OPN PKWY ST				EXECUTIVE PARK DE)9)
	N	CAY VEFNON HILL	-	IL 60	061	-	TILLE	Sale ZIP Required	
		YOUR INTERNAL BILLING REFEREN		ters will appear on invoice.)		IF HOLD FOR PICK-UP, Print FEDEX A		ocation
			Il Recipiert's FedEx Acct. No. 3	Bill 3rd Party FedEx Accl. N		at Card		State Z/P Required	
	M	SERVICES	DE IVERY AND	SPECIAL HANDLING		1	Emp. No. Date		ni Eve
	N	(Check only one box) Prionty Overnight Standard	(Check so	rvices required)	171(CLUBES & A.L.A. Bit)		Cash Received	Base Ci	al Exp harges
	N	Callery by nut partial nanogy; Callery by nut a 11 31 51 7		ICK-UP (Fein Bank)			Third Party Crig To Dai	Chis To Hold Declare	o Valu
۲		Economy Two-Day Case, ty same lands ay!				5155		Other 1	
•		20 41 🗌	4 X AMERICUS 6 □ DITY ICE	i 60005 (Sex charge)	Total Total	23.50	Cry State	Zip Other 2	
•	N.	Freight Service		Shipper's Contersion not required		503	Received By	Total Ch	arges
:			- City Las, 1, Lin 1945 (1977	⊾ 	DINI SHIPMENT (C			mployee Number Nevision	DATE 2
	N	INSTRUCTIONS (Mark appropria			Rec	erved Al		FORMAT	#069
•		 Dangeroue Goode as per attached Shipper's Declaration Dangeroue Goode Shipper's Declaration 			2 D On-Call Stor	4DBSC	SIGNATURE RELEASE U	• 1991-91	FEC
•		e Cargo Aircraft only	INT 11	LIVERY (3 alwar)	FedEx Emp. No.		Date/Time	PRINTED	IN
	N¶⊨		TING NULE			DINO IN	THE OF PACKING		- 12/
	N		HATATIONE	1					
i	N	ENVIRONMENTAL SUBSTANCES 801 (R.Q.) (CRC 050	LIDS N.O.S.	*	3	3077	(1) STEEL DROM + 75 KG	<u>911</u>	
i :	N	SUBSTANCES SO	LIDS N.O.S.	69	-		+ 75 KG		
•	N	SUBSTANCES SO	LIDS N.O.S.	69	-		+ 75 KG		
•		SUBSTANCES SO	LIDS H.O.S. te)	*	-		+ 75 KG		
•		SUBSTANCES 80 (R.Q.) (GR/USJ	LIDS H.O.S. te)	IN THE			+ 75 EC		CABLE
•	N.L	SUBSTANCES SO (R.Q.) (CRCUSS	LIDS E.O.S. te)	IN THE ED FOR		PASSENGE	+ 75 KG	TTT	-
•	N.L	SUBSTANCES SO (R.Q.) (CR/05) ADDITIONAL HANDLING INFORM TRANSPORT DETAILS IRPORT OF DEPARTURE IF ACCEPTABLE FOR	ATION THIS SHIPMENT IS WITH UMITATIONS PRESCRIBE AIRPORT OF DESTINATION PASSENGER AIRCRA	IN THE ED FOR N SHIPMENT TYPE AFT, THIS SHIPN		PASSENGE AIRCRAFI NON-RADIOAC	+ 75 KG	(DELETE-NONAPPLIC	CABLE
•	N.L	SUBSTANCES SO (R.Q.) (CR/050 ADDITIONAL HANDLING INFORM TRANSPORT DETAILS IRPORT OF DEPARTURE IF ACCEPTABLE FOR TO, RESEARCH, MEDIC I HEREBY DECLARE NAME AND ARE CLAS	ATION THIS SHIPMENT IS WITH UMITATIONS PRESCRIBE AIRPORT OF DESTINATION PASSENGER AIRCRA CAL DIAGNOSIS OR TRE THAT THE CONTENTS SSIFIED, PACKED, MAE	IN THE D FOR N SHIPMENT TYPE NFT, THIS SHIPM EATMENT. OF THIS CONSI BKED, AND LABE		PASSENGE AIRCRAFI NON-RADIOAC NS RADIOAC E FULLY AND E IN ALL RES		(DELETE-NONAPPLIC (DELETE-NONAPPLIC (DELETE-NONAPPLIC FOR USE IN, OR , II NBOVE BY PROPER S	
•		SUBSTANCES SO (R.Q.) (CR/05) ADDITIONAL HANDLING INFORM TRANSPORT DETAILS IRPORT OF DEPARTURE IF ACCEPTABLE FOR TO, RESEARCH, MEDIC I HEREBY DECLARE	ATION THIS SHIPMENT IS WITH UMITATIONS PRESCRIBE AIRPORT OF DESTINATION PASSENGER AIRCRA CAL DIAGNOSIS OR TRE THAT THE CONTENTS SSIFIED, PACKED, MAE APPLICABLE INTERNAT	IN THE D FOR N SHIPMENT TYPE NFT, THIS SHIPM EATMENT. OF THIS CONSI BKED, AND LABE TONAL AND NATI		PASSENGE AIRCRAFI NON-RADIOAC NS RADIOAC E FULLY AND E IN ALL RES	R TIVE ACCURATELY DESCRIBED A SPECTS IN PROPER CONDIT JUATIONS D DATE	(DELETE-NONAPPLIC (DELETE-NONAPPLIC (DELETE-NONAPPLIC FOR USE IN, OR , II NBOVE BY PROPER S	
•		SUBSTANCES SO (R.Q.) (CR/05) ADDITIONAL HANDLING INFORM TRANSPORT DETAILS IRPORT OF DEPARTURE IF ACCEPTABLE FOR TO, RESEARCH, MEDIC I HEREBY DECLARE NAME AND ARE CLAS ACCORDING TO THE A	ATTON THIS SHIPMENT IS WITH LIMITATIONS PRESCRIBE AIRPORT OF DESTINATION PASSENGER AIRCRA CAL DIAGNOSIS OR THE THAT THE CONTENTS SSIFIED, PACKED, MAE APPLICABLE INTERNAT	IN THE DOFOR N SHIPMENT TYPE NFT, THIS SHIPM EATMENT. OF THIS CONSI RKED, AND LABE TONAL AND NATT IN 10 1 SIGNATURE		PASSENGE AIRCRAFI NON-RADIOAC NS RADIOAC E IN ALL RES NMENT REGE PLACE AN	R TIVE ACCURATELY DESCRIBED A SPECTS IN PROPER CONDITI LATIONS	(DELETE-NONAPPLIC (DELETE-NONAPPLIC (DELETE-NONAPPLIC FOR USE IN, OR JI NBOVE BY PROPER S ION FOR TRANSPOR	

-

· •

A subject of the local distance of the local

.

	NY VF RNON HILLS NUR INTERNAL BILLING REFERENCE I DODO25026871	R*I PX w Y STE State III III III INFORMATION (First 24 characters with 00070010026 State State Dopperties FreeEn Acce. No. 3 State State	ZIP Required	exact Street Actives	POPATION DIOTHCH ECUTIVE PARK DRU	
	treet Address THREE HAWTHOM AV 'JERNON HILLS UNIR INTERNAL BILLING REPERENCE I CODO2502687(VMENT (C) Serder 2 BI R Creck only one box)	R*I PX w Y STE State III III III INFORMATION (First 24 characters with 00070010026 State State Dopperties FreeEn Acce. No. 3 State State	ZIP Required		ECUTIVE PARK DELL	
	AY YERNON HILLS NUR INTERMAL BILLING REFERENCE I OCCO2502687 VMENT (C) IS Surdar 2 BA Ru SERVICES (Check only one bax)	State INFONMATION (First 24 characturs wi 0070010026 mopumits FacEx Acct. No. 3 1 88 34 State of the State of the state State of the State of the State of the state State of the State of the State of the state State of the State of the State of the State of the State State of the State of the State of the State of the State of the State State of the State of	ZIP Required	1		₩ (\$₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩
	NUR INTERNAL BILLING REFERENCE I 00002502687(VINENT ()) Serder 2 84 M Concerner 2 84 M SERVICES (Check only one box)	0070010026				•
	VMENT 1 Sender 2 B4 Re Creat State 2 B4 Re Creat SERVICES (Check only one bax)	Ropent's FedEx Acct. No 3 8 88 3rd	<u></u>		IF HOLD FOR PICK-UP, Print FEDEX Add	A STORE AND A STOR
	SERVICES (Check only one bax)		I Party FedEx Acct. No. 4	Bill Credit Card	Address City Sta	Ite ZIP Required
	(Check only one box)				·	
	Priority Overnight Standard Ove	(Check services	IAL HANDLING MOMENT		Emp. No. Date	Federal Expre Base Charges
			(Fil n Baz H) LIVER WEBIDAY		Return Shapment Third Party Chg To Del	Che To Hold Declared Value
	51 51 Sconarhy Two-Day Government Ov Anny In score Summer of The Second				Street Address	Other 1
N . ³⁰		4 🔀 DUNESHOUS 60005 			City State	Zip Other 2
Nſ	Freight Service (n: Ein Lage if av promp of 19 ks) OVERWEHT FREIGHT ** 80	Ourgerous Goods Shaper's		175 23	Received By	Total Charges
70	ARSONT *** 80 ARSONT *** Contains reaction regards deny consider regards free n lane and ***Cal for ealing schede ***Cal for ealing schede		ча П	MSVT (Chargestie Weght)	Dale/Time Received FedEx Empl	oyee Number Revision Arte 2/1 PART # 137211
	INSTRUCTIONS (Mark appropriate b Dengerous Goode as per effectived Shipper's Declaration	comes) 7 🛄 OTMER SPECIAL SE	MCE 10 Ru	Received At	SIGNATURE RELEASE UN	
	Shipper's Declaration Cangarous Goods Shipper's Declaration not required			+Call Stop 5 C Station	te/Time	• 1991-91 F E C PRINTED IN USA
∖ i∟	Cargo Aircraft only	12 HOLIDAY DELIVERY	(trateen) Emp. No.			
	INVIRONNEUTAL HA SUBSTANCES BOLLE (REOSOTE)		*	UN 3077	(1) SYNEL DRIN + 75 EG	911
N						III
N						III
	DOMIONAL HANDLING INFORMATI	юл				III
	TRANSPORT DETAILS	THIS SHIPMENT IS WITHIN THI LIMITATIONS PRESCRIBED FO		PASSENGER		
	TRANSPORT	THIS SHIPMENT IS WITHIN TH				(DELETE-NONAPPLICABLE)

From (Your Name) Prese Pre		Dute	1/14/43			RECIPI	ENT'S C	OPY
From (Your Name) Please Pire		· · ·		nter (Very Importan S 1 8-40 (2	's Name) Please Print	· · · · · · · · · · · · · · · · · · ·	Recovert's Phone Number
Company	······			epertment/Floor	No. Company	andi brown		6422 / 690- Departm
RDY F. WES' Street Address	TUN INC'		-		Exact Street	CORPORATION 1	BIOTECH A	APPLIC. ED
THREE HAWTI	HOPN PKW	STE 4				041 EXECUTIVE H	PARK DEVI	R
VERNON HILL		State T h	ZIP Required	• • •	,	BXVILLE	TN	38923
YOUR INTERNAL BILLING REFERE		t 24 dwactus wil				IF HOLD FOR PICK-UP, Prim		
00002502687						Address	0	
	All Recipient's FacEs Acct		Party FodEx Acct. No.	IN STATES	idi Card	City	State	ZIP Required
SERVICES		VERY AND SPECI	AL HANDLING	ANDLAND WEIGH		To Emp. No.	Date	Federal E
(Check only one box	d Overnight	(Check services				Cash Received	_	Base Charg
· 11	••••••••••••••••••••••••••••••••••••••	HOLD FOR PICK-UP	(Film Bark) Aven Webigaly			Third Party C Cho	To Dal. 🖸 Cr	Declared Va
Economy Two-Day Governme	of Overnight 3 DB.A	ABR SATUROAT (Sales) MBR SATUROAT (Sales)				Street Address		Other 1
30 41 🗖	• 🛛	DANIGENOUS GOODS	(Gits charge)		1335	Cay	State	Zip Other 2
Freight Service	• 🖸	Dity ICE	- Un		く家野	Received By		
	D-QAY	ripectal Caldin Scipper 1 y Ion. 9. City 1015.		DIM SHIPMENT (C		X		Total Charge
Colori anna spata	e Lest Dill.		. w#	□		Date/Time Received bs.	Fedëx Employee Ni	PART # 1372 FORMAT SOL
INSTRUCTIONS (Mark appropries	inte boxes) 7	other special ser	MCE		osived Al ID Drop Box	SIGNATURE RELEA	ASE LINAVAIL	
Shipper's Declaration Origerous Goods Shipper's Declaration rol required		• · · •		2 C) On-Call Std	408SC 50Sm			• 1991-91 FE
Cargo Arcrait only		HOLICAY DELIVERY (FediEx Emp. No.		Date/Time		USA
DANG FROMER BA			5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CHECK ONE	•	AND ADDRESS AND ADDRESS ADDRESS	0	
	AL RAZARDO	US	5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					(TYPE OR I
ADDITIONAL HANGLING INFOR	AL RAZARDO BOLIDS J.O USOTE)	US .S.				C IATA/ICAO		(TYPE OR I
ADDITIONAL HANGLING INFOR	AL RAZARDO BOLIDS J.O USOTE)	T IS WITHIN THE RESCRIBED FOR	C SHIPMENT		AIRCRAF	FR CP IATA/ICAO R COMUNITY AN R COMUNITY AN (1) STERL P + 75 EG		
ADDITIONAL HANGLING INFOR TRANSPORT DETAILS AIRPORT OF DEPARTURE	MATION THIS SHIPMEN LIMITATIONS P	T IS WITHIN THE RESCRIBED FOR STINATION	SHIPMENT TYPE		PASSENGE AIRCRAFT	FR C2 IATA/ICAO R COMMUNITY/AN R COMMUNITY/AN (1) STERL B COMMUNITY/AN + 75 EG COMMUNITY/AN T COMMUNITY/AN CTIME COMMUNITY/AN		
ADDITIONAL HANGLING INFOR TRANSPORT DETAILS AIRPORT OF DEPARTURE	MATION THIS SHIPMEN LIMITATIONS P AIRPORT OF DE R PASSENGER	T IS WITHIN THE RESCRIBED FOR STINATION AIRCRAFT,			PASSENGE AIRCRAFT	FR CP IATA/ICAO R COMUNITY AN R COMUNITY AN (1) STERL P + 75 EG		(TYPE OR MCONE 47 911 III DELETE-NONAPPLICAE
ADOITIONAL HANGLING INFOR TRANSPORT DETAILS AIRPORT OF DEPARTURE IF ACCEPTABLE FOI TO, RESEARCH, MEDI I HEREBY DECLARE NAME AND ARE CLA	MATION THIS SHIPMEN LIMITATIONS P AIRPORT OF DE R PASSENGER CAL DIAGNOSIS THAT THE CON SSIFIED, PACKE	T IS WITHIN THE RESCRIED FOR STINATION AIRCRAFT, OR TREATM ITENTS OF ED, MARKED	SHIPMENT TYPE THIS SHIPME IENT. THIS CONSIG , AND LABEL		PASSENCE AIRCRAFT NON-RADIOAC INS RADIOAC	FR C IATA/ICAO GLIMITY/A CLIMITY/A CILMITY/A CLIMITY/A (1) STERL B C IATA/ICAO + 75 KG C IATA/ICAO R XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		(TYPE OR I MCONE 47 911 III DELETE-NONAPPLICAB DELETE-NONAPPLICAB DELETE-NONAPPLICAB DELETE-NONAPPLICAB DELETE-NONAPPLICAB DELETE-NONAPPLICAB
ADDITIONAL HANGLING INFOR TRANSPORT DETAILS AIRPORT OF DEPARTURE IF ACCEPTABLE FOI TO, RESEARCH, MEDI	MATION THIS SHIPMEN LIMITATIONS P AIRPORT OF DE R PASSENGER CAL DIAGNOSIS THAT THE COM SSIFIED, PACKE APPLICABLE IN R	T IS WITHIN THE RESCRIBED FOR STINATION AIRCRAFT, OR TREATM ITENTS OF ED, MARKED FERNATIONA	SHIPMENT TYPE THIS SHIPME IENT. THIS CONSIG , AND LABEL		PASSENCE AIRCRAFT NON-RADIOAC INS RADIOAC	FR IATA/ICAO IATA/ICAO IATA/ICAO		(TYPE OR I MCONE 47 911 III DELETE-NONAPPLICAB DELETE-NONAPPLICAB DELETE-NONAPPLICAB DELETE-NONAPPLICAB DELETE-NONAPPLICAB DELETE-NONAPPLICAB

•

.

הותיא שררי ארי		4/43			RECIPIENT	'S COPY	
From (Your Name) Place Print		Your Phone Num (7:)8-9	•••	t) To (Recipient's Nam	· 		Phone Number (
G. DEIGAN Company			periment/Roor	No. Company		(618	Departm
RCY F. WES' Street Address	TON INC	• ·		Exact Street Address	CATION BIOTECH	APPLIC. C	H.() U (
THREE MAWT	HCRN PKWY STE	400 Z/P Required		9041 EX	CUTIVE PARK DE	IVE (SUITE	<u>. 309)</u>
VERNON HTL			61	RICKYLL		r 379	
	ENCE INFORMATION (First 24 characters) \$870070010026	vill appear on invoice.) .•			F HOLD FOR PICK-UP, Print PEDEX A Street Address	(2766): Hare (Not evanis):	tie al al locale
AIWENT Carl Sandar 2		nd Party FedEx Acct. No.			ây	State ZIP Rec	qured
SERVICES	DELIVERY AND SPE	CIAL HANDLING			mp. No. Date		Federal Ex
(Check only one box Priority Overnight Standar	d Overnight				Cesh Recoved		Base Charge
51	2	ENER MERCAY			Third Party Chg To Dail. Street Address		Dectared Va
Economy 1980-Cary Deary by Access Barries Carts 0	ant Overnight 3 DE MER SATURDAY (set second and out 1 and 1	ι μ	· • • · · · · · · · · · · · · · · ·		City State	Zip	Other 1
Freight Service	6 🗍 OTT ICE	· Im. 1			Received By:		Other 2
	Marui Cangarous Goods Shipe NG-GAY C Dry Ios, 9, UN 1965.		DIN SHIPMENT (C	Targestile Weight)	x		Total Charge
Caluty canadrast may "Cactors Ve Caluty canadrast may "Cactors Ve In tar a stra may ""Cal to don		· · L	<u></u>	unved Ar	ete/Tinle Received FedEx En	1	PART #13721 PORMAT HOLD
INSTRUCTIONS (Mark appropri Despertus Goode as per elleched Steppera Declaration		EIVICE			SIGNATURE RELEASE U		069
Dangerous Goods Shipper's Decla not required Cargo Ancret only			2 (1) On-Call Sig edEx imp. No.		e/Time	P	• 1991-91 FE(PRINTED IN USA.
	1992 ARBEL NUMBER			· · _ ·	FOR RESTRICTED AR		
	HAZARDOUS LIDS H.O.S.			• 19 CFR		() Mean	
ADDITIONAL HANDLING INFO	HAZARDOUS LIDS H.O.S. DTE)	<i>(</i>)		49 CFR	(1) STERL DEDM + 75 KG		
DOITIONAL HANDLING INFOR	HAZARDOUS LIDS H.O.S. UTE)	<i>(</i>)		ASSENGER AIRCRAFT	E IATA/ICAO		
ADDITIONAL HANDLING INFOR TRANSPORT DETAILS ANPORT OF DEPARTURE	HAZARDOUS LIDS H.O.S. D.TE)	e B R Suranent Type		PASSENGER AIRCRAFT NON-RADIOACTIVE	E IATA/ICAO	(DELETE-NO	
ADDITIONAL HANDLING INFOR TRANSPORT DETAILS AJRPORT OF DEPARTURE	HAZARDOUS LIDS H.O.S. DTE)	E SHIPMENT TYPE THIS SHIPMEN		PASSENGER AIRCRAFT NON-RADIOACTIVE	E IATA/ICAO	(DELETE-NO	
ADDITIONAL HANDLING INFOR TRANSPORT DETAILS AIRPORT OF DEPARTURE IF ACCEPTABLE FO TO, RESEARCH, MED I HEREBY DECLARE NAME AND ARE CLU	HAZARDOUS LIDS H.O.S. DTE)	E SHIPMENT THIS SHIPMEN MENT. THIS CONSIGN D, AND LABELS		ASSENCER AIRCRAFT NON-RADIOACTIVE E FULLY AND ACC IE IN ALL RESPECT	(1) STEEL DEDM + 75 KG	(DELETE-NOI FOR USE IN, BOVE BY PROF	NAPPLICAB OR INC
ADDITIONAL HANDLING INFOR TRANSPORT DETAILS ARPORT OF DEPARTURE IF ACCEPTABLE FO TO, RESEARCH, MED I HEREBY DECLARE NAME AND ARE CLU	HAZARDOUS LIDS H.O.S. STE)	E SHIPMENT THIS SHIPMEN MENT. THIS CONSIGN D, AND LABELS		ASSENCER AIRCRAFT NON-RADIOACTIVE E FULLY AND ACC IE IN ALL RESPECT	(1) STEEL DEDM + 75 KG	(DELETE-NOI (DELETE-NOI (DELETE-NOI FOR USE IN, BOOVE BY PROFI	

.

· .

•

APPENDIX C EIMCO PROCESS EQUIPMENT SOIL EVALUATION REPORT

weston/tmchp1

November 19, 1992

Ms. Kandi L. Brown IT Corporation 312 Director's Drive Knoxville, Tennessee 37923

Re: Slurry Evaluation

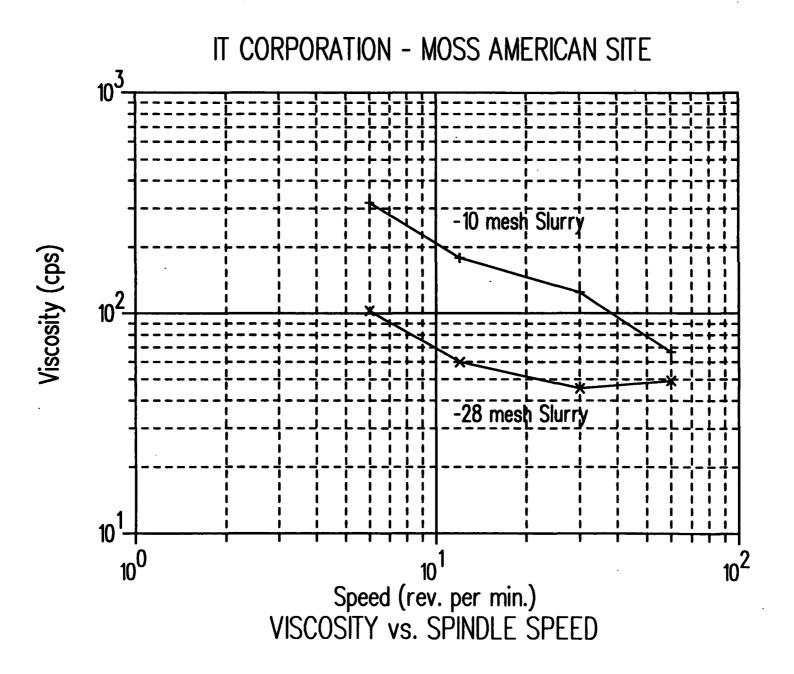
Dear Ms. Brown:

Per your request, EIMCO's T&D group has performed an evaluation of the soil sample from the Moss American site in order to recommend a slurry concentration (weight percent solids) for a given particle size cut for optimal operation of the Biolift® Reactor. The procedure for the evaluation is attached (this protocol was also forwarded to you prior to the test). In addition to the usual evaluation, a viscosity curve was generated for the respective concentrations.

In order to perform slurry phase bioremediation of contaminated soils, a solids classification and pretreatment system is usually employed. This allows you to minimize the volume of solids to be treated in the slurry phase. Frequently, this pretreatment consists of a series of wet screening devices combined with attrition and/or flotation steps. The screening and attrition steps allow the washing and removal of the larger (usually harder) particles while at the same time concentrating the contaminants in the aqueous phase with the fines. Attrition provides the energy to break the "clumps and clods". Flotation can be utilized to remove any light organic material like wood chips and plastic and/or to remove any free oil. If these particles are allowed to remain in the system they can adversely affect the clean-up results, besides, they are more amenable to incineration than to biodegradation.

Based on the particle size distribution (attached) we eliminate approximately 40% of the mass at the +10 mesh (2 mm) cut. Material passing 10 mesh would be the largest we would want to put into the reactor. Based on the large percentage of -200 mesh (75 μ m) material (38%), it was decided that the reactor could treat up to 10 mesh material based on the sample received. Therefore, a slurry evaluation of -10 mesh material was performed. Additionally, after reviewing the size distribution, it was decided that a -28 mesh (0.589 mm) slurry should be evaluated. By eliminating all material 28 mesh and larger, the volume of material to be treated would be reduced to 50% of the original. Plus 28 mesh material would be handled ideally by soil washing as described above.

It may be advantageous to analyze the contaminant concentration of the various size fractions to determine the target cut size. Additionally, evaluating whether the contaminants are more concentrated in the organic material (primarily wood chips) or in the clayey soil fraction will assist you in determining your treatment scheme.


The two slurry evaluations conducted indicate that the lower limit for solids concentration for the -10 mesh material should be 45% wt. If the cut is to be 28 mesh and smaller the slurry can be 35% wt.

SIEVE ANALYSIS

Media Description: American Moss Site Media Source: IT Corporation

Date: Nov. 16, 19 Investigator: D. Hanify

Sieve Number	Weight Retained	Percent · Retained	Percent Smaller than Stated Size
4	169.23	29.50	70.5
10	59:72	10.41	60.1
28	43.24	7.54	52.6
48	33.32	5.81	46.7
100	24.61	4.29	42.5
200	26.5	4.62	37.8
200-	217.1	37.84	
•	Sum =	100.00	• • • •

Soil Slurry Evaluation for use in the EIMCO Biolift Reactor

<u>Description</u> The following outlines a general procedure for the evaluation of soil slurries that are under consideration for biotreatment in the EIMCO Biolift Reactor. The purpose of this evaluation is to determine the largest particle size fraction to be suspended with a corresponding lower limit in slurry concentration.

Procedure

- 1. Wet screen approximately one kilogram of soil sample to pass a 200 mesh (75 μm) screen; this material comprises the fine fraction.
- 2. Thicken that "watery" slurry.
- 3. Decant the supernatant water from the fine slurry.
- 4. Dry the +200 mesh sample, this material is the coarse fraction. Vibrate the material on the shaker to make sure the fines have been removed. Add the -200 mesh material collected to the fine fraction.
- 5. Measure the solids concentration of the fine fraction.
- 6. Dry screen the +200 mesh portion to produce a sieve curve.
- 7. From the solids concentration of the fine fraction determine the mass of dry solids in the slurry.
- 8. Using available data relating contaminant concentration versus particle size, decide on the largest particle size fraction to be suspended.
- 9. Add up the total mass of coarse solids to be suspended.
- 10. Establish the ratio of mass of fine solids to coarse solids.
- 11. Using the solids concentration of the fine slurry, and adding the coarse solids to be suspended, produce a very thick slurry. This slurry does need to be pumpable.

Soil Slurry Concentration Evaluation

- 12. Pour the slurry into a cylinder and let it settle for approximately 10 minutes. Observe the sample for a water layer to break out and monitor if there is an obvious layer of coarse solids building up on the bottom.
- 13. After about 10 minutes, slowly pour the slurry into a beaker, tipping the cylinder to a maximum angle of 10^d above horizontal for 20 to 30 seconds, and observe how much, if any, sediment remains on the bottom of the cylinder.
- 14. If there is a small amount of sediment on the bottom of the cylinder, then add enough water to the slurry to decrease the solids concentration by approximately 5%.
- 15. Pour that diluted slurry back into the cylinder.
- 16. Continue to repeat steps 12 to 14 until a distinct sediment layer has formed on the bottom of the cylinder.
- 17. The concentration of solids that was the "thinnest" that did not allow coarse solids to settle out within the 10 minutes should be used as the target slurry concentration.
- <u>Note:</u> It is recommended that the above procedure be performed by EIMCO's Technology and Development staff prior to utilizing the Biolift^R Reactor in a soil remediation flowsheet.

APPENDIX D BIOTECHNOLOGY APPLICATIONS CENTER STANDARD OPERATING PROCEDURES

weston/tmchp1

\$

IT Biotechnology Applications Center Phosphate Analysis Standard Operating Procedure

NUMBER: BAC015

Approved By:

3/13/32

Duane Graves/ Ph.D. (Date) Process Development Supervisor

<u>3/13</u>/92 Jame Date)

General Manager/QA Officer

KLB/03-92/SMC/phosphat.sop

Regional Office 312 Directors Drive • Knoxville, Tennessee 37923 • 615-690-3211

IT Corporation is a wholly owned subsidiary of International Technology Corporation

SOP No. BAC015 Revision No. 0 Date: 3-9-92 Page 1 of 4

STANDARD OPERATING PROCEDURE

PHOSPHATE ANALYSIS

1.0 Principle

Ammonium molybdate and potassium tartrate react in an acid medium with dilute solutions of ortho-phosphate to form phosphomolybdic acid, which is reduced to the intensely-colored molybdenum blue by ascorbic acid. The phosphate analysis is utilized to determine the levels of phosphate present within the samples. Derived from U.S. EPA Method 365.1.

2.0 Equipment

- Bausch & Lomb Spectronic 1001 Spectrophotometer
- HACH PhosVer 3 powder pillows
- 20-milliliter (mL) vials
- 1-, 5-, and 10-mL pipettes
- Deionized (DI) water
- 2,000 parts per million (ppm) KH₂PO₄ standard
- 100-mL volumetric flasks.

3.0 Standards

Standards are generated from a potassium phosphate (KH_2PO_4) 2,000 ppm stock solution. This stock solution is prepared by dissolving 0.285 gram (g) of anhydrous KH_2PO_4 in 100-mL of DI water. This stock is then diluted as indicated in the table below to obtain the indicated concentrations.

KLB/03-92/SMC/phosphat.sop

KH₂P0₄	Stock DI	Water Conc. (ppm)
0.1 mL	100 mL	2.0
0.05 mL	100 mL	1.0
0.025 mL	100 mL	0.5

4.0 Procedure

- 1. Prepare a 0.5, 1.0, 2.0 ppm phosphate standards from the 2,000 ppm stock solution of KH₂PO₄.
- 2. Using a pipette, place 10 mL of each standard into a vial.
- 3. Add the contents of 1 PhosVer 3 powder pillow and swirl.
- 4. Allow color to develop for at least 10, but no longer than 30, minutes.
- 5. Measure the absorbance of a blank (10 mL of DI water with 1 PhosVer 3 powder pillow added) using the spectrophotometer at a wavelength of 700 nanometers (nm).
- 6. Measure the absorbance of the three standards on the spectrophotometer at a wavelength of 700 nm.
- 7. Calculate the linear regression curve of the standards and the blank using a programmed calculator.

- 8. If measuring a groundwater sample, take 10 mL of the sample and add the contents of 1 PhosVer powder pillow and swiri. If the absorbance is higher than the 2.0 ppm standard, then dilute as necessary with DI water. If the absorbance is lower than the 0.5 ppm standard, then the sample is below the detection limit, and it should be reported as such.
- 9. If the sample is soil, then weigh out one dry scoop of soil in a glass jar with cap. Add 25 mL DI water and add 1 soil extractant pillow. Shake and let stand to separate. When separated, withdraw 1 mL of liquid and add 9 mL of DI water in a separate vial. Sample can be at higher dilutions, but the amount of sample needs to be 10 mL to react with the reagents added. Add 1 PhosVer 3 powder pillow, swirl, and run on spectrophotometer at 700 nm. This gives absorbance.
- 10. Use the curve generated to determine the concentration of the sample which is reported as mg/kg.

5.0 <u>Calculations</u>

Calculation of the linear regression of the standards is required to determine concentrations of the samples. The curve generated from the standards is then used to determine sample concentrations.

6.0 Interferences

Interferences may be caused by chromium, nitrate, sulfide, and silicate. Interferences are determined by analyzing a 10-mL sample on the spectrophotometer that has been spiked with 0.01 mL of the 2,000 ppm phosphate stock solution. If a difference of greater than 10 percent is observed between the actual and calculated concentrations, interferences are present and dilution of the sample is required to obtain accurate data. Dilution ratios are as follows:

SOP No. BAC015 Revision No. 0 Date: 3-8-92 Page 4 of 4

Sample Volume	Water Volume	Dilution Factor
2	8	5
1	9	10
0.5	9.5	20
0.1	9.9	100

7.0 Quality Control Requirements

Quality control (QC) requirements are satisfied through the preparation of blanks (10-mL DI water and 1 PhosVer powder pillow). If a series of samples are to be run, one out of every ten samples are to be blanks. If significant concentration are noted in the blank sample, this concentration is subtracted from the sample concentrations obtained.

KLB/03-92/SMC/phoephat.sop

IT Biotechnology Applications Center Microbial Enumeration Analysis Standard Operating Procedure

NUMBER: BAC009

Approved By:

3/13/92

Duane Graves, Ph.D. (Date) Process Development Supervisor

13/92 James J. King (Date)

General Manager/QA Officer

KLB/03-92/SMC/enumer.sop

Regional Office 312 Directors Drive • Knoxville, Tennessee 37923 • 615-690-3211

IT Corporation is a wholly owned subsidiary of international Technology Corporation

SOP No. BAC009 Revision No. 0 Date: 3-9-92 Page 1 of 3

STANDARD OPERATING PROCEDURE

MICROBIAL ENUMERATION ANALYSIS

1.0 Principle

Viable bacterial cells of sufficient quantity are required for effective bioremediation. This test permits the quantification of bacteria from natural environments. Heterotrophs or specific contaminant degrading bacteria can be enumerated. Bacterial density is reported as colony-forming units (CFU) per milliliter (mL) of water or gram (g) of dry soil. A CFU is assumed to represent one bacteria. Derived from <u>Standard Methods for the Examination of Water and Wastewater</u>, 17th Edition.

2.0 Equipment

- Carbon-free mineral salts agar plates
- Dilute nutrient agar plates
- Sterile 1 percent sodium pyrophosphate and 0.1 percent polyvinylpyrrolidone-360 (PVP) in deionized (DI) water
- Sterile 10-mL dilution tubes
- 1-mL sterile disposable pipettes
- Waring blender with steel container
- Sterile 50-mL screw cap tubes
- Alcohol
- Glass plate spreader
- Petri dish turntable

KLB/03-92/SMC/enumer.sop

- Volatile hydrocarbon source (gasoline, diesel, benzene, toluene, and xylene [BTX])
- Quebec colony counter.

3.0 <u>Procedure</u>

- 1. Weigh 5 g of soil/sludge into the blender.
- 2. Add 45 mL of PVP.
- Homogenize by running the blender twice at high speed for 10 seconds with a 10-second rest interval between mixings. Decant mixture into 50-mL tube and seal.
- 4. Perform 10-fold serial dilutions on the homogenized mixture. Aqueous samples are not pretreated with PVP; they are plated as received. The dilution concentrations are determined by the anticipated concentration of bacterial concentrations within the sample. A five order of magnitude range of dilutions is plated.
- 5. The nutrient agar plates should be plated one order of magnitude higher than the corresponding mineral agar plates.
- 6. Using the glass plate spreader and turntable, 0.1 mL of the appropriate dilutions is plated on the two types of agar media .
- 7. Samples plated on the mineral salts agar are placed in the desiccators along with the appropriate hydrocarbon source. Samples plated on the nutrient agar are placed in a protected area away from hydrocarbon sources. Plates are incubated at 20°C.

SOP No. BAC009 Revision No. 0 Date: 3-9-92 Page 3 of 3

8. After the appropriate incubation time, the bacterial colonies are counted with the Quebec colony counter. Results are recorded as CFU per mL of groundwater or per gram of dry soil. The inoculated plates should be incubated the same number of days, approximately 3 to 7 days for nutrient agar and 7 to 14 days for mineral agar. The actual incubation time depends on the growth response of the bacteria.

4.0 Calculations

Water samples: Colony Count X Dilution Factor = CFU per mL Soil samples: (Colony Count X Dilution Factor) X (Wet Wt/Dry Wt) = CFU/gm dry soil.

5.0 Interferences

None.

6.0 <u>QC Requirements</u>

Sterility testing of agar medium.

IT Biotechnology Application Center Oxygen Analysis Standard Operating Procedure

NUMBER: BAC021

Approved By:

Duarie Graves, Ph.D. (Date) Process Development Supervisor

4/2/92 (Date) es King

General Manager/QA Officer

Regional Office 312 Directors Drive • Knoxville, Tennessee 37923 • 615-690-3211

IT Corporation is a wholly owned subsidiary of International Technology Corporation

SOP No. BAC021 Revision No. 0 Date: 4-11-92 Page 1 of 3

STANDARD OPERATING PROCEDURE

OXYGEN ANALYSIS

1.0 <u>Principle</u>

Procedure describes the operation of IT's proprietary oxygen detection system. The system is useful for quantifying gaseous and dissolved oxygen and oxygen chemically combined as hydrogen peroxide. IT Proprietary Method.

2.0 <u>Equipment</u>

- Proprietary oxygen detector (Described by Graves and Greenbaum, 1989, Plant Physiology 90:246-250; Graves, Lang, and Leavitt, 1992, Proceedings AWMA In Situ Waste Treatment Symposium (in press). Software copyrighted by duane Graves, IT Corporation.
- Deionized water
- Catalase enzyme (10,000 to 25,000 units/mL), if hydrogen peroxide is being measured (source is not critical, <u>Aspergillus niger</u> and bovine liver catalase has been used. Sigma Chemical is the supplier.)
- Gas tight syringes, 0-100 μ L and 0-500 μ L
- 1 mL tuberculin syringes with hypodermic needles (gauge 22, 1 inch works well for most applications

3.0 Standards

Standards for calibrating the detector may be any one of the following depending on the range of oxygen to be quantified:

DAG/04-92/SMC/OXYGEN.sop

SOP No. BAC021 Revision No. 0 Date: 4-11-92 Page 2 of 3

- Air
- Pure Oxygen
- Oxygenated Water
- 4.0 <u>Procedure</u>
- 1. Add water to insure that the septum in the injection port on the oxygen detection device is submerged. Add 0.2 mL of concentrated catalase enzyme to the water if oxygen content of hydrogen peroxide is to be quantified.
- 2. Start computer, load GWBasic, load and run oxygen program (02488lm), specify parameters as prompted. Select calibration option when it is presented.
- 3. Specify between 4 and 7 calibration points using either air, oxygen, or aerated water.
- 4. Inject calibration samples as prompted.
- 5. Record slope of the calibration line, save the data using an eight (8) character or less fill name.
- 6. Select "Collect Data" from computer menu.
- 7. Specify the amount of sample to be injected, follow computer prompts, and inject sample.
- 8. Save the data to either the computer's hard drive or a floppy disk.
- 9. Repeat steps 5 through 7 for each sample.
- 5.0 <u>Calculations</u>

None

SOP No. BAC021 Revision No. 0 Date: 4-11-92 Page 2 of 3

6.0 Interferences

1. Changes in flow rate of the purge gas.

2. Changes in temperature greater than 5°C.

7.0 **Ouality Control Requirements**

Aerated, deonized water at known temperature, air, or oxygen samples are routinely measured to verify accuracy of the calibration curve. Quality control samples are injected every two hours or in one of every ten samples. At STP the oxygen content of aerated water should be approximately 9 mg/L, 298 mg/L for air, and 1426 mg/L for oxygen. The precision of the instrument is 1 mg/L under normal operating condition.

DAG/04-92/SMC/OXYGEN.sop

IT Biotechnology Applications Center Electrometric Ammonia Analysis Standard Operating Procedure

NUMBER: BAC022

Approved By:

6/24/92

Duane Graves, Ph.D. (Date) Process Development Supervisor

King Jar Date

General Manager/QA Officer

KLB/03-92/SMC/electroma.sop

Regional Office 312 Directors Drive • Knoxville, Tennessee 37923 • 615-690-321 1

IT Corporation is a wholly owned subsidiary of International Technology Corporation

SOP No. BAC022 Revision No. 0 Date: 3-9-92 Page 1 of 4

STANDARD OPERATING PROCEDURE

ELECTROMETRIC AMMONIA ANALYSIS

1.0 Principle

The ammonia electrode has the capability of measuring dissolved ammonia in an aqueous solution. A 2M KCl solution is used to extract the ammonia from soil for analysis using the electrode.

2.0 Equipment

- Model 95-12 Orion Ammonia Electrode
- Orion pH/mV meter
- 2M KCI
- Ionic Strength Adjuster (ISA) Solution
- Stir Plate and Stir Bars
- Shaker Table
- 50 ml Centrifuge Tubes
- 30 ml Beakers
- Pipetter and Pipettes
- 1000 ppm NH₄C1 Standard Solution

3.0 Solutions and Standards

A 2M KCI solution is prepared by adding 74.55 gm KCI to 0.5 L DI water. Standards are produced from a 1000 ppm NH_4C1 stock solution. This solution is prepared by adding 3.82 gm NH_4CI into 1 L of deionized water. 2.5 ml of H_2SO_4 should be added to the stock solution to stabilize the ammonia in the water. Standards should then be diluted as follows:

NH₄ STOCK	2M KCI	CONCENTRATION (ppm)
0.1 mL	100 mL	1.0
1.0 mL	100 mL	10.0
2.0 mL	100 mL	20.0
5.0 mL	100 mL	50.0
10.0 mL	100 mL	100.0

4.0 <u>Procedure</u>

- 1. Prepare a 1.0, 10.0, 20.0, 50.0, and 100.0 ppm standard solution from the stock solution.
- 2. Using a pipette, measure 20 mL of each standard into a 30 mL beaker.
- 3. To each of the standards add 0.4 mL of ISA solution and a stir bar. Allow the standards to stir for a few seconds.
- 4. Measure the five standards using the pH/mV meter set on the mV mode and the model 95-12 Orion Ammonia Electrode.

- 5. Calculate the logarithmic curve of the standards using a calculator in the statistical mode.
- 6. For soils put 5.0 grams of dry, crushed soil into a 50 mL centrifuge tube and add 20 mL of 2M KCI. Seal the tube and place on a shaker table at 250 rpm for at least 1 hour.
- 7. Place the KCI-soil into a 30 mL beaker. Add a stir bar and place on a stir plate.
- 8. Add 0.4 mL of the ISA solution to the slurry and allow the slurry to mix for a few seconds.
- 9. Measure the slurry using the electrode.
- 10. For groundwater add 0.4 mL of the ISA solution and a stir bar to 20 mL of sample. Stir for a few seconds and read the sample with the electrode.
- 11. If the mV reading is out of the 1-100 ppm range, then dilute using the 2M KCI solution. If the mV reading is below the 1.0 ppm standard reading, then calculate the reading into a ppm amount. For soils multiply by 4 (1:4 is the soil to KCI ratio). If the final ppm is below 1 ppm, then the sample is reported as being below the detection limit.

5.0 <u>Calculations</u>

The curve generated by the calculation of the logarithmic regression of the standard is used to determine the sample concentrations.

SOP No. BAC022 Revision No. 0 Date: 3-9-92 Page 4 of 4

6.0 Interferences

Temperature may affect the mV reading, so it is recommended that both standards and samples be analyzed at room temperature. While ionic-species cannot cross the gas-permeable membrane, the level of ions in solution can change the solubility of ammonia. The standards and samples should have about the same level of ions in the solutions.

7.0 Quality Control Requirements

Follow Orion's specification for the model 95-12 Ammonia Electrode.

IT Biotechnology Applications Center pH Analysis Standard Operating Procedure

NUMBER: BAC014

Approved By:

13/82

Duane Graves, Ph.D. (Date) Process Development Supervisor

3/13/92 James J. King (Date)

General Manager/QA Officer

KLB/03-92/SMC/pH.sop

Regional Office

312 Directors Drive • Knoxville, Tennessee 37923 • 615-690-3211

IT Corporation is a wholly owned subsidiary of International Technology Corporation

SOP No. 014 Revision No. 0 Date: 3-9-92 Page 1 of 1

STANDARD OPERATING PROCEDURE

pH ANALYSIS

1.0 Equipment

- 40-milliliter (mL) glass vial
- pH meter with reference electrode
- pH 4, 7, and 10 standardization buffers
- 5-mL pipette
- Deionized (DI) water.

2.0 Procedure

- 1. Weigh 5 grams (g) of air-dried soil into the 40-mL vial or place 10 mL of aqueous sample into a vial.
- 2. With the pipette, add 5 mL of DI water.
- 3. Mix thoroughly for 10 seconds.
- 4. Let stand for 10 minutes.
- 5. Calibrate the pH meter with the standardization buffers.
- 6. Insert the pH electrode into the soil suspension and swirl gently.
- 7. Read the pH on the calibrated pH meter. Record as soil pH in water.

KLB/03-92/SMC/pH.sop

SOP No. 014 Revision No. 0 Date: 3-9-92 Page 1 of 1

8. Procedure derived from U.S. EPA Method 150.1 and <u>Methods of Soil</u> <u>Analysis</u> Part 2, Second Edition, pp 206-207.

KLB/03-92/SMC/pH.sop

APPENDIX E ANTHRACENE MINERALIZATION STUDY

weston/tmchp1

Memorandum

To:

K. Brown, Knoxville

Date:

February 16, 1993

From:

J. Sanseverino, Knoxville

Subject:

¹⁴C-ANTHRACENE MINERALIZATION FOR WESTON

Six Weston batch study samples from t = 3 weeks were analyzed for radiolabeled anthracene mineralization as a confirmation of bacterial activity. All samples were incubated with radiolabeled anthracene (209,000 dpm) for two weeks. Two ml of slurry (in a 25 ml Teflon-sealed vial) from each sample, including the mercuric chloride inhibited controls (#3 and #4), displayed mineralization activity against anthracene. This study will be repeated with t = 6 week samples to determine if there is any change in the activity level. The results indicate that carbon dioxide was produced from the radiolabeled anthracene which is a direct result of microbiological activity.

If you need more information, let me know. I will keep the raw data in my files for now.

Table 1								
Percent ¹⁴ C-carbon dioxide produced from	¹⁴ C-anthracene from $t = 3$ week							
samples.								

	Percent ¹⁴ C-Carbon Dioxide Produced							
Sample	#1	#1 DUP	#2	#2 DUP	#3	#4		
Average	13.8	16.5	12.0	12.0	16.6	11.5		
SD ¹	1.3	3.6	0.8	0.3	1.9	0.2		

¹SD - Standard Deviation

JS/2-93/js/Kandi29.was

To:

K. Brown, Knoxville

Date:

March 2, 1993

From:

J. Sanseverino, Knoxville

Subject:

¹⁴C-ANTHRACENE MINERALIZATION FOR WESTON

Six Weston batch study samples from t = 6 weeks were analyzed for radiolabeled anthracene mineralization as a confirmation of bacterial activity. All samples were incubated with radiolabeled anthracene (228,000 dpm) for two weeks. Two ml of slurry (in a 25 ml Teflon-sealed vial) from each sample, including the mercuric chloride inhibited controls (#3 and #4), displayed mineralization activity against anthracene (Table 1). The results indicate that radiolabeled carbon dioxide was produced from the radiolabeled anthracene which is a result of microbiological activity. The amount of radiolabeled carbon dioxide produce at t = 6 weeks is twice as high as the amount of radiolabeled carbon dioxide produced at t = 3 weeks.

Specific anthracene-degrading bacteria were below quantitation limits for the t = 6 week samples (Table 2).

Table 1	
Percent ¹⁴ C-carbon dioxide produced from ¹	¹⁴ C-anthracene from $t = 6$ week
samples.	

	Percent ¹⁴ C-Carbon Dioxide Produced							
Sample	#1	#1 DUP	#2	#2 DUP	#3	#4		
Average	23.7	22.9	23.3	NA ²	22.2	20.1		
SD ¹	1	1	6.1	NA	0.1	3.8		

¹SD - Standard Deviation ²NA - Not Available

JS/3-93/js/Kandi29.was

Memorandum

To:

K. Brown, Knoxville

Date:

May 26, 1993

From: J. Sanseverino, Knoxville

Subject:

¹⁴C-ANTHRACENE MINERALIZATION FOR WESTON

A sample from the final reactor slurry was received on May 10, 1993 for ¹⁴Canthracene mineralization assay as a confirmation of bacterial activity. Eight vials with 2 milliliters of slurry each were set-up; 3 were used as inhibited controls and 5 were used as test samples. All samples were incubated with radiolabeled anthracene (554,500 dpm) for two weeks. All five replicates displayed mineralization activity against anthracene. An average of 117,600 dpm was recovered as ¹⁴CO₂ which represents 21.2 percent of the added radiolabel. The results indicate that radiolabeled carbon dioxide was produced from the radiolabeled anthracene which is a result of microbiological activity.

If you need more information, let me know. I will keep the raw data in my files for now.

APPENDIX F NONCONFORMANCE REPORTS

weston/tmchpl

•		-
	NONCONFORMANCE REPOR	- 140
	PROJECT <u>Meston (Moss-American</u>) PROJECT NO. <u>408491</u>	PAC DAT
1. NONCONFORMANCE DE	SCRIPTION	
TC measurement (Injra Red method	by subject soils to use stan).	dard Method
TC measurement Han infrared. To	have but made using chunica his results as a constraint of s	L detection the instrum
	•	
	Crais Land IDENTIFIED BY: Mandi Bri	DADA
	E ACTION, INCLUDING INITIATION AND C	OMPLETION I
Not Applicable.		
	er is mailable. Realts are notect.	or quited
affect grality of ;	7	
TO BE PERFORMED BY:_		
TO BE PERFORMED BY:_		
TO BE PERFORMED BY: 3. APPROVAL FOR PROPARIA		The Courdheter
TO BE PERFORMED BY: 3. APPROVAL FOR PROPARIA	DED CORRECTIVE ACTION Kand, C	The Courdheter
TO BE PERFORMED BY: 3. APPROVAL FOR PROPARIA	DED CORRECTIVE ACTION Kand, C	anas Courdinetar
TO BE PERFORMED BY: 3. APPROVAL FOR PROPA NO 4. CORRECTIVE ACTION T	OSED CORRECTIVE ACTION Kandi, C The O Sealing Association Country Association AKEN (IF DIFFERENT FROM THAT PROP	The Courdhelar
TO BE PERFORMED BY: 3. APPROVAL FOR PROPARIA	OSED CORRECTIVE ACTION Kandi, C The O Sealing Association Country Association AKEN (IF DIFFERENT FROM THAT PROP	OSED)

•

.

. •

	NONCONFORMANCE REPORT	NR NO
	PROJECT _Weston (Moss-American) PROJECT NO <u>40K491</u>	PAGE
73/US maan 2540 G.	RMANCE DESCRIPTION memort originally proposed to addrese to standar but to an eversight, laboratory personnel mer	using Standar
volume (19 messure nunts	OB. Differences between the 2 methods is restrict rem us as grans). The standard deviation determining asono B mere 0.57 and 0.1590, respective with a strong dictated in 2540G may reduce the	ely. Using The
For the rime is	IDENTIFIED BY: Kandi Brown/Kim CORRECTIVE ACTION, INCLUDING INITIATION AND COMPLE nder of the study, both methods will be conducted somes and effects on worke gradity. The client is additioned analyses,	TION DATES
TO BE PERFOR	MED BY: fanet Bightmyer	
	FOR PROPOSED CORRECTIVE ACTION	
4. CORRECTIVE	ACTION TAKEN (IF DIFFERENT FROM THAT PROPOSED)	•
5. CORRECTIVE	ACTION COMPLETE PERFORMED BY: Janet Rightnye VERIFIED BY: Kand: Brow	DATE: JUS

.

•

.

.

•

SAMPLE RECEIPT ACKNOWLEDGEMENT/NONCONFORMANCE

Date: 05/19/93

IT-Biotechnology Applications Center 312 Directors Drive Knoxville, TN 37923 Attention: Kandi Brown

Project Code : ITDK54104 Client Number : 3083

Subject: Weston

On 05/14/93, one (1) soil sample arrived at the ITAS-Knoxville, Tennessee, laboratory from IT-Biotechnology Applications Center, Knoxville, Tennessee.

The following nonconformance(s) were noted at the time of receipt.

SAMPLE RECEIVED:

[] Broken/Leaking

[X] Without proper preservative

[] In improper container

[] With incomplete/unclear paperwork

[] Holding time exceeded at time of receipt

[] With custody seal missing or broken

[] Other

COMMENTS: The cooler was received at a temperature of 9 deg. C.

CORRECTIVE ACTION:

[] Client was verbally notified.

[] Client was informed in writing.

[X] Sample(s) processed as received.

[] Sample(s) on hold until notified by client.

COMMENTS:

We appreciate this opportunity to offer our services to you. If you have any qestions, please contact me at your earliest convenience.

Project Coordinator: John Baur **Enclosure(s): ARCOC**

5-19-93 Date:

CORPORA					DY REC	CORD*	Pag	e 1 of	ument No.	-
			oles Shipg	ent Date	<u>1_5/</u>	14/93	Bill to	5_5800	00.045	
mple Team Memb	ers 2 C. Lang		Lab De	estination	8 ITA	s Middlebro	ot		······································	
Profit Center	No. 3_3521	·	: Lat	Contact	<u>e itah</u>	n Baver	- 2666			
Project Mana	ager 4_K_Brown	Proje	ect Contac	t/Phone	12 Kan	di Browski 2	Hannet to	10 Kandi I	Brown	
Purchase Order	No. ⁶	· · ·	Carrièr/W	/aybill Ño.	13 1	. <u></u>		312 Dir	ector Dr.	
Required Report C)ate. ¹¹	·		CONT		PEP LINI	5		<u>.</u>	<u>_</u>
. Sample ¹⁴	Semple ¹⁵ Description/Type	Date/Time ¹⁶ Collected		7 Semple ¹⁸		Requested	Testing ²⁰	Condition, a	an ²¹ E	Disposal cord No.
Leston Batch 30% Tweek	slurry	5/14/83			7	ICAP 6010	st for	Read at 9" KANS. 14.	93 90	30
۴. The second se	Ô			·		A5, B4, CA,	Cr, 15			\$
				1 .	1			115	EOW	a P
	,,,,,,	+		<u></u>		┨────	··			
-0			i	<u>k</u>	<u> </u>	<u> </u>				
							: . *			3
ំរ ភា			1 .				1 1 1 1 1			J
	· ·			f					C UNL	
	·					<u> </u>	<u> </u>			
			<u>.</u> .		yin 1		<u>ب</u> ب	<u><u> </u></u>		
Special Instruction	ons: ²³			8 2		e in t	1 1 1 1	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u> </u>	
Pössible Hazard Non-hazard 🖵 F	Identification: 24 Iammable 🔔 Skin In	ritant 📕 Poi			n 🖵 🥙	Sample Dispo Return to Olient			Archive	(m
Turnaround Time Normal 🛄 🛛 Rush	Required: ^{26.}	• • •	G (ابل	C Level: ²	7 前子に 第1日 第1日	Project Specifi	0 / 0 0 / 0 ic (spli≥	8		
1. Relinquished by (Signature/Artiliation)	28 Jun / IT-	Bio Dat	e: <u>5/14/</u> 1e: 1 5	93 00	1. Rece (Signature/	Affiliation)	my	5-14-93	Date: <u>5 - 1</u> Time: 15	
2. Relinquished by (Signature/Affiliation)	7/0/	: Dat Tim	ie:	÷	2. Hects (Signature//	Affiliation)	Tran tT		Date: Time:	
Relinguished by		Dat Tim			3. Rece	eived by		•	Ödte: Time:	

·

·

MCA 3/15/01

SQP NO. ITC000 REVISION NO. 0 DATE: 04/16/92 PAGE 4 OF 7

٠.

RECORD OF TECHNICAL CHANGE

Technical Change No	Page of
Project/Job No. <u>40849</u>	Date <u>12/8/92</u>
Project/Job Name	
Phase/Task	
·	
The following technical changes (including justification) are requested by:	
Kandi Brown Project Mana (Nimo) (This)	ur
(Namo) (obit)	<u> </u>
O Maintain DO in batch vessels by projing pro Monitor 24 hr consumption of Os in headspool	Co into headypace. Le Maintein Baturated hiadypa
@ To resal volomes changed from zero head.	source to goo me.
@ use screw cap / tey lon lined lide. Pipette :	
@ Maintain slurry kinsties at 30 and 40	40
3 Prescreeneed soils using 30 much , but s	
@ Approxincitely 155) Sil needing for tes	tong,
to a chi- les in tratmate	0
1) The stir has in treatments	
O Tibe ofter seed orpn.	
The project time will be (increased)(Decreased)(Unchanged) by approximately	lays
·	
Applicable Project-Specific Document(s):	
EPH Approved Jest Plan - Final Res	S. M.
CC: G. Diegan, meston	1 D lich
C. Lan, Knowville	Cityper Manager)
3	mis A in Des 12/8/92
	(Quality Augurante Officer)
D. Grans, Know Me	at Notified Yes_/ No Date 63/1/92
	act Change Order Required Yes No

Contract Change Order No.

Figure ITC0008-1

ITEM	ORIGINAL TEST PLAN	PROPOSED MODIFICATION	RATIONALE
Maintenance of dissolved oxygen during batch testing	Hydrogen peroxide addition to slurry. Daily monitoring of slurry DO using IT oxygen probe.	Pure oxygen purging of headspace. Daily monitoring of DO in headspace. Headspace will be maintained saturated with O ₂ .	40% slurry density is too thick to be introduced into the oxygen probe. Purging of the headspace with O ₂ in combination with continued mixing, will maintain adequate dissolved oxygen in the slurry while maintaining the integrity of the treatments. The use of conventional membrane DO probes was considered, however, they are unreliable in slurries and would require opening the treatments daily.
Batch treatment sampling device	Teflon tubing inserted through a teflon cap. Samples withdrawn using gas-tight syringe.	Teflon septum and teflon screw cap. Sample withdrawn through pipetting.	Slurry density to thick to be withdrawn with original system.
Initial batch treatment volume	1,000 mL or zero headspace	900 mL	The reduced volume does not affect the analytical regime and allows for improved aeration in the event that DO is maintained using O_2 purging.
Batch treatment slurry densities	20 and 30% or Eimco recommendation (pg 4-3 of Test Plan)	30 and 40%	Recommended by Eimco during initial testing.
Stir bars in batch treatments	Each treatment contained a stir bar	No stir bars. Manual mixing prior to sample collection.	During rotation it was feared that the stir bars would break the treatment vessels.
Modified tube rotator speed	200 грт	б грт	Modified tube rotator cannot be safely operated at 200 rpm. 6 rpm provides more than adequate mixing, safely.
Soil quantity 150 lb		10 lb of sieved material for batch study. 165 lb of sieved material for reactor investigation. The estimate volume of unsieved material is approximately 740 lb.	Wet sieving process is producing approximately 42 lb of soil (dry weight)/150 lb sieved. Increased slurry density.

•

.

•

.

APPENDIX G BATCH BOTTLE STUDY OXYGEN UTILIZATION DATA

weston/tmchp1

Weston Batch Slurry Study; IT Project No. 408491

TO Oxyg	en Data						'n	
Date		Units	30%	30%-dup	40%	40%-dup	30-k	40-k
12/16	02	mg/l	174.00	242.00	13.00	52.00	255.00	17.00
	ORP	mV	+32	+15	-58	-70	+26	-58
•	Uptake	mg/l-hr	6.14	5.82	6.88	6.70	5.76	6.87
12/17	O2 ORP	mg/l mV	631.00	406.00	384.00	96.00	448.00	2.00
• •	Uptake	mg/l-hr	4.02	5.06	5.17	6.50	4.87	6.94
12/18	O2 ORP	mg/l mV	824.00	814.00	790.00	726.00	886.00	799.00
	Uptake	mg/l-hr	3.13	3.18	3.29	3,58	2.84	3.25
12/21	O2 ORP	mg/l mV	532.00	541.00	67.00	11.00	585.00	90.00
•	Uptake	mg/l-hr	4.48	4.44	6.63	6.89	4.24	6.53
12/22	02	mg/l	611.00	648.00	122.00	174.00	624.00	99.00
	ORP	mV	206.00	203.00	144.00	130.00	199.00	132.00
	Uptake	mg/l-hr	4.12	3.94	6.38	6.14	4.06	6.49
12/23	O2 . ORP	mg/l mV	336.00	355.00	17.00	80.00	396.00	27.00
	Uptake	mg/l-hr	5.39	5.30	6.87	6.57	5.11	6.82
12/28	O2	mg/l	291.00	550.00	NA .	NA	888.00	NA
	ORP	mV	198.00	250.00	141.00	160.00	104.00	150.00
	Uptake	mġ/l-hr	5.60	4.40	6.94	6.94	2.83	6.94
12/29	O2 ORP	mg/l mV	537.00	497.00	189.00	137.00	631.00	193.00
·	Uptake	mg/l-hr	4.46	4.64	6.07	6.31	4.02	6.05
12/30	O2 ORP	mg/l mV	174.00	233.00	2.00	3.00	457.00	5.00
	Uptake	mg/l-hr	6.14	5.87	6.94	6.93	4.83	6.92
12/31	O2 ORP	mg/l mV	150.00	184.00	4.00	3.00	443.00	4.00
	Uptake	mg/l-hr	6.25	6.09	6.93	6.93	4.89	6.93

,

Weston Batch Slurry Study; IT Project No. 408491

1/4	O2 ORP Uptake	mg/l mV mg/l-hr	182.00 6.10	203.00 6.00	3.00 6.93	32.00 6.80	361.00 5.27	3.00 6.93
1/5	O2 ORP	mg/l mV	88.00	105.00	4.00	6.00	296.00	9.00
	Uptake	mg/l-hr	6.54	6.46	6.93	6.92	5.57	6.90
1/6	O2 ORP	mg/l mV	148.00	179.00	4.00	4.00	360.00	326.00
	Uptake	mg/I-hr	6.26	6.12	6.93	6.93 .	5.28	5.44
1/7	O2 ORP	mg/l mV	129.00	153.00	19.00	7.00	343.00	314.00
	Uptake	mg/l-hr	6.35	6.24	6.86	6.91	5.36	5.49
1/8	O2 ORP	mg/l mV	688.00	159.00	60.00	7.00	318.00	398.00
	Uptake	mg/l-hr	3.76	6.21	6.67	6.91	5.47	5.10
AVG	O2 ORP Uptake	mg/l mV mg/l-hr	366.33 202.00 5.25	351.27 226.50 5.32	111.87 142.50 6.43	89.20 145.00 6.53	486.07 151.50 4.69	152.40 141.00 6.24

Weston Batch Slurry Study; IT Project No. 408491

c

en Data							
	Units	30%	30%-dup	40%	40%-dup	30-k	40-k
O2 ORP Uptake	mg/l mV mg/l-hr	254.00	266.00	52.00	22.00	276.00	147.00
O2 ORP	mg/l mV	371.00	782.00	820.00	772.00	939.00	879.00
Uptake	mg/l-hr	47.04	29.92	28.33	30.33	23.38	25.88
O2 ORP	mg/l mV	491.00	701.00	614.00	814.00	811.00	962.00
Uptake	mg/l-hr	42.04	33.29	36.92	28.58	28.71	22.42
O2 OBP	mg/l mV	903.00	858.00	779.00	707.00	877.00	1002.00
Uptake	mg/l-hr	24.88	26.75	30.04	33.04	25.96	20.75
O2 ORP	mg/i mV	992.00	957.00	813.00	793.00	848.00	NA
Uptake	mg/l-hr	21.17	22.63	28.63	29.46	27.17	62.50
O2 ORP Uptake	mg/l mV mg/l-hr	551.40 254.00 27.03	659.60 266.00 22.52	605.20 52.00 24.78	617.20 22.00 24.28	695.00 276.00 21.04	568.60 147.00 26.31
	O2 ORP Uptake O2 ORP Uptake O2 ORP Uptake O2 ORP Uptake O2 ORP Uptake	O2 ORP UptakeUnits mg/l mV mg/l-hrO2 ORP Uptakemg/l mV mg/l-hrO2 ORP Uptakemg/l mV mg/l-hrO2 ORP Uptakemg/l mV mg/l-hrO2 ORP Uptakemg/l mV mg/l-hrO2 ORP Uptakemg/l mV mg/l-hrO2 ORP Uptakemg/l mV mg/l-hrO2 ORP Uptakemg/l mV mg/l-hrO2 ORP Uptakemg/l mV mg/l-hr	Units mg/l mV mg/l mV mg/l-hr30%O2 ORP Uptakemg/l mg/l-hr254.00O2 ORP Uptakemg/l mV mg/l-hr371.00O2 ORP Uptakemg/l mg/l-hr47.04O2 	Units 30% 30%-dup O2 mg/l 254.00 266.00 O2 mg/l-hr 371.00 782.00 O2 mg/l 47.04 29.92 O2 mg/l 491.00 701.00 O2 mg/l 491.00 701.00 O2 mg/l 42.04 33.29 O2 mg/l 42.04 33.29 O2 mg/l 903.00 858.00 O3 mg/l 24.88 26.75 O2 mg/l 992.00 957.00 O2 mg/l 21.17 22.63 O2 mg/l 25.140 659.60 O2 mg/l 254.00 266.00	Units mg/l mV mg/l30%30%-dup40%O2 ORP Uptakemg/l mV mg/l-hr254.00266.0052.00O2 ORP Uptakemg/l mV mg/l-hr371.00782.00820.00O2 ORP Uptakemg/l mV mg/l-hr47.0429.9228.33O2 ORP Uptakemg/l mV mg/l-hr491.00701.00614.00O2 ORP Uptakemg/l mV mg/l-hr42.0433.2936.92O2 ORP Uptakemg/l mV mg/l-hr903.00858.00779.00O2 ORP Uptakemg/l mg/l-hr24.8826.7530.04O2 ORP Uptakemg/l my mg/l-hr992.00957.00813.00O2 ORP MV mg/l-hrmg/l 21.1722.6328.63O2 ORP MV mg/l-hr551.40 254.00659.60 266.00605.20 52.00	Units mg/l QRP Uptake 30% mV mV 30%-dup 40% 40%-dup O2 ORP Uptake mV mg/l-hr 254.00 266.00 52.00 22.00 O2 ORP Uptake mg/l mV 371.00 782.00 820.00 772.00 O2 ORP Uptake mg/l mV 47.04 29.92 28.33 30.33 O2 ORP Uptake mg/l mV 491.00 701.00 614.00 814.00 O2 ORP Uptake mg/l mV 903.00 858.00 779.00 707.00 O2 ORP Uptake mg/l mV 903.00 858.00 779.00 707.00 O2 ORP Uptake mg/l-hr 24.88 26.75 30.04 33.04 O2 ORP Uptake mg/l mV 992.00 957.00 813.00 793.00 O2 ORP Uptake mg/l-hr 21.17 22.63 28.63 29.46 O2 ORP mg/l mV 551.40 659.60 605.20 617.20 O2 ORP mg/l 551.40 266.00 52.00 22.00	Units 30% 30%-dup 40% 40%-dup 30-k O2 mg/l 254.00 266.00 52.00 22.00 276.00 O2 mg/l-hr 371.00 782.00 820.00 772.00 939.00 ORP mV 47.04 29.92 28.33 30.33 23.38 O2 mg/l 491.00 701.00 614.00 814.00 811.00 ORP mV 491.00 701.00 614.00 814.00 817.00 ORP mV 491.00 701.00 614.00 814.00 817.00 ORP mV 491.00 701.00 614.00 814.00 817.00 ORP mV 42.04 33.29 36.92 28.58 28.71 O2 mg/l 903.00 858.00 779.00 707.00 877.00 ORP mV 24.88 26.75 30.04 33.04 25.96 O2 mg/l 992.00 957.00

APPENDIX H ANALYTICAL RESULTS

weston/tmchp1

EPA Method 6010

weston/tmchp1

CERTIFICATE OF ANALYSIS

ANALYTICAL

SERVICES

IT Corporation 312 Directors Drive Knoxville, TN 37923 Attn: Kandi Brown

Job Number: ITDK 54005

This is the Certificate of Analysis for the following samples:

Client Project ID:WestonDate Received by Lab:05/04/93Number of Samples:Three (3)Sample Type:Solid

I. Introduction

On 05/04/93, three (3) solid samples arrived at the ITAS-Knoxville, Tennessee, laboratory from IT Biotechnology Applications Center, Knoxville, Tennessee, in support of the Weston project. The list of analytical tests performed, as well as date of receipt and analysis, can be found in the attached report.

II. Analytical Results/Methodology

The analytical results for this report are presented by analytical test. Each set of data will include sample identification information and the analytical results. Please note that the data are not blank corrected.

The samples were analyzed for volatile organic compounds by gas chromatography/mass spectroscopy (GC/MS) based on EPA SW-846 3rd edition, method 8240.

Reviewed and Approved:

K. Marse

Alyce R. Moore . Laboratory Manager

American Council of Independent Laboratories International Association of Environmental Testing Laboratories American Association for Laboratory Accreditation May 26, 1993

P.O. Number: 580000.045

Client Project ID: Weston

IT ANALYTICAL SERVICE 5815 MIDDLEBROOK PIKE KNOXVILLE, TN Job Number: ITDK 5400

The samples were analyzed for the requested metals by inductively coupled argon plasma spectroscopy (ICP) based on EPA method 6010.

The samples were analyzed for sulfide based on EPA method 9030.

III. **Quality Control**

Routine laboratory level I QC was followed.

The volatiles analyses were performed by purge and trap with a J & W DB-624 megabore column on a Finnigan OWA GC/MS/DS. The sample showed poor surrogate recoveries and was reanalyzed. The results of the second analysis were consistent with the first results, indicating that the matrix was responsible for the outliers. Both sets of data were submitted for comparison. There were no problems seen in final data review.

The samples were digested on 05/14/93 for ICP; the requested metals were analyzed by ICP on 05/20/93. All run QC was acceptable. No problems were encountered.

The samples were analyzed for sulfide by iodometric titration. Two grams of sample were added to 200 n of DI water; the solution was agitated with a magnetic stirrer and titrated according to the referenced method. The results are reported as water-leachable concentrations of the analyte. No problems were encountered.

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 54005

VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: RX Slurry Lab Sample ID: XX3102

Compound	Concentration	Compound	Concentration
chloromethane	29 U	1,2-dichloropropane	14 U
bromomethane	29 U	cis-1,3-dichloropropene	14 U
vinyl chloride	29 U	trichloroethene	14 U
chloroethane	29 U	dibromochloromethane	14 U
methylene chloride	12 BJ	1,1,2-trichloroethane	14 U
acetone	29 U	benzene	14 U
carbon disulfide	14 U	trans-1,3-dichloropropene	14 U
1,1-dichloroethene	14 U	bromoform	14 U .
1,1-dichloroethane	14 U	4-methyl-2-pentanone	29 U
1,2-dichloroethene (total)	14 U	2-hexanone	29 U
chloroform	, 14 U	tetrachloroethene	14 Ú
1,2-dichloroethane	14 U	1,1,2,2-tetrachloroethane	14 U
2-butanone	29 U	toluene	14 U
1,1,1-trichloroethane	14 U	chlorobenzene .	14 U
carbon tetrachloride	14 U	ethylbenzene	14 U
vinyl acetate	29 U	styrene	14 U
bromodichloromethane	14 . U	xylenes (total)	14 U

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

J - Indicates an estimated value less than the detection limit.

B - Analyte was found in the blank as well as the sample.

Date of Analysis: 05/18/93

• •

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN Job Number: ITDK 5400

ADDITIONAL VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: RX Slurry Lab Sample ID: XX3102

Tentative Identification (1)

Concentration (2)

None detected

Remarks:

,

(1) Identification is based on computer search of the NIST Library.
 (2) Concentration is based on a response factor of 1.00 relative to the internal standard.

VOLATILE TCL.FRM 4/13

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 54005

VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: RX Slurry RE Lab Sample ID: XX3102

Compound	Concentration	Compound	Concentration
chloromethane	29 U	1,2-dichloropropane	14 U
bromomethane	29 U	cis-1,3-dichloropropene	14 U
vinyl chloride	29 U	trichloroethene	14 U
chloroethane	29 U	dibromochloromethane	14 U
methylene chloride	50 B	1,1,2-trichloroethane	14 U
acetone	16 BJ	benzene	14 U
carbon disulfide	14 U	trans-1,3-dichloropropene	14 U
1,1-dichloroethene	14 U	bromoform .	14 U
1,1-dichloroethane	14 U	4-methyl-2-pentanone	29 U
1,2-dichloroethene (total)	14 U	2-hexanone	29 U
chloroform	14 U	tetrachloroethene	14 U
1,2-dichloroethane	14 U	1,1,2,2-tetrachloroethane	14 U
2-butanone	29 U	toluene	14 U
1,1,1-trichloroethane	14 U	chlorobenzene	14 U
carbon tetrachloride	14 U	ethylbenzene	. 14 U
vinyl acetate	29 U	styrene	14 U
bromodichloromethane	14 - U	xylenes (total)	14 U

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

B - Analyte was found in the blank as well as the sample.

J - Indicates an estimated value less than the detection limit.

Date of Analysis: 05/18/93

5

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 54005

ADDITIONAL VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: RX Slurry RE Lab Sample ID: XX3102

Tentative Identification (1)

Concentration (2)

None detected

Remarks:

Identification is based on computer search of the NIST Library.
 Concentration is based on a response factor of 1.00 relative to the internal standard.

WOLATILE TCL.FRM 4/1

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 54005

•

VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Method Blank Lab Sample ID: VB0518

Compound	Concentu	ation	Compound	Concen	<u>tration</u>
chloromethane	10	U	1,2-dichloropropane	5	U
bromomethane	10	U	cis-1,3-dichloropropene	5	U
vinyl chloride	10	U	trichloroethene	5	U
chloroethane	10	U	dibromochloromethane	5	U
methylene chloride	4	J	1,1,2-trichloroethane	5	U
acetone	7	J	benzene	5	U
carbon disulfide	5	U	trans-1,3-dichloropropene	5	U
1,1-dichloroethene	5	U	bromoform	5	U
1,1-dichloroethane	5	U	4-methyl-2-pentanone	10	U
1,2-dichloroethene (total)	5	บ _.	2-hexanone	10	U
chloroform	5	U	tetrachioroethene	· 5	U
1,2-dichloroethane	5	U.	1,1,2,2-tetrachloroethane	5	U
2-butanone	10	U	tolucne	5	U
1,1,1-trichloroethane	5	U	chlorobenzene	5	U
carbon tetrachloride	5	U	ethylbenzene	· 5	U
vinyl acetate	10	U	styrene	5	U
bromodichloromethane	5	U	xylenes (total)	5	U

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

J - Indicates an estimated value less than the detection limit.

Date of Analysis: 05/18/93

,

VOLATILE\TCL.FRM 4/13/92

Client Project ID: Weston

IT ANALYTICAL SERVICE: 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 5400_

ADDITIONAL VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Method Blank Lab Sample ID: VB0518

Tentative Identification (1)

Concentration (2)

None detected

Remarks:

àŤ.

Identification is based on computer search of the NIST Library.
 Concentration is based on a response factor of 1.00 relative to the internal standard.

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE. TN

Job Number: ITDK 54005

Client Project ID: Weston

SOIL SURROGATE PERCENT RECOVERY SUMMARY

	۰. ۲۰۰۰ می در ۲۰۰۰ م		- ·
· ·		VOLATILE	
Client Sample ID	Toluene-D8 (81-117%)*	BFB (74-121%)*	1,2 Dichloroethane-D4 (70-121%)*
RX Slurry	116	66 **	92
RX Slurry RE	126 **	64 **	98
Method Blank	100	93	97
		•	

Values in parenthesis represent QC limits.Values outside required QC limits.

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 54005

PRIORITY POLLUTANT METALS ANALYSIS

Results in mg/kg (ppm)

Sample Matrix: Soil

Client Sample ID: Effluent 1-3 Lab Sample ID: XX3103

Compound	Concentration
arsenic	11.8
barium	45.5
cadmium	1.7
chromium	8.4
lead .	32.0

Digestion Date:05/14/93Analysis Date:05/20/93

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

B - Value greater than instrument detection limit, but less than contract required quantitation limit.

10

WOLATILENTCL.FRM 4/1

682-1 89

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 54005

PRIORITY POLLUTANT METALS ANALYSIS

Results in mg/kg (ppm)

Sample Matrix: Soil

Client Sample ID: INF32693-02 Lab Sample ID: XX3104

Compound	Concentration
arsenic	35.3
barium	61.7
cadmium	1.2
chromium	8.1
lead	29.6

Digestion Date: Analysis Date: 05/14/93 05/20/93

11

WOLATILE TCL.FRM 41342

682-1 89

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 5400

PRIORITY POLLUTANT METALS ANALYSIS

Results in mg/kg (ppm)

Sample Matrix: Soil

Client Sample ID:RX SlurryLab Sample ID:XX3105

Compound	Concentration
arsenic	27.2
barium	62.9
cadmium	1.8
chromium	10.0
lead	32.4

Digestion Date: 05/14/93 Analysis Date: 05/20/93

WOLATILENTCL.FRM 4/13

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 54005

PRIORITY POLLUTANT METALS ANALYSIS

Results in mg/kg (ppm)

Sample Matrix: Soil

Client Sample ID: Method Blank Lab Sample ID: PBS-I2370

Compound	npound <u>Concentration</u>	
arsenic	4.000	U
barium	0.200	U
cadmium	0.500	U
chromium	1.000	U.
lead	4.000	U

Digestion Date: 05/14/93 Analysis Date: 05/20/93

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

VOLATILE TCL.FRM 4/13/92

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 5400_

SULFIDE ANALYSIS

Results in mg/kg (ppm)

Sample Matrix: Soil

Client Sample ID	Lab Sample ID	Result
Method Blank	P5050	40 U
Effluent 1-3	XX3106	480
Rx Slurry	XX3107	140

Date of Analysis: 05/11/93

,

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

VOLATILE TCL.FRM 4/13

682-1 89

.

· ·	INORGAN	IC ANALS	ises data sheet	TONEFFLUENT 1-3
Lab Name: ITAS_KNOXV			ontract: WESTON	EFFLUENT 1-3
Lab Code: ITSTU_	Case No.:	54005	SAS No.:	SDG No.: EFFLUE
Matrix (soil/water):	SOIL_		Lab Sa	mple ID: XX3103
Level (low/med):	low		Date R	eceived: 05/04/93
<pre>\$ Solids:</pre>	100.0			
Concentre	ation Units	(ug/L oi	mg/kg dry weigh	t): MG/KG

Color After:	YELLOW	Clari	ty After: CLE	AR_	-	Artif	acts:	
Color Before:	BROWN	Clari	ty Before:		_	Textu	re:	SLUDG
								•
	1440-00-0	Cyanide		-		NR		
	7440-62-2	Vanadium_ Zinc		_		NR NR		
	7440-28-0	Thallium				NR		
	7440-23-5	Sodium				NR		
	7440-22-4	Silver				NR		
	7782-49-2	Selenium		-		NR		
	7440-09-7	Potassium		-		NR		
	7440-02-0	Nickel		-		NR		
	7439-97-6	Manganese Mercury		-		NR		
	7439-95-4	Magnesium	·	-		NR NR		
	7439-92-1	Lead	32.0	_		P	•	
	7439-89-6	Iron				NR		
	7440-50-8	Copper				NR		
	7440-48-4	Cobalt		-		NR		
	7440-47-3	Chromium		-		P		
•	7440-70-2	Calcium	·*· /	-		NR		
	7440-43-9	Cadmium	1.7	-		P		
	7440-39-3	Barium Beryllium	45.5	-		NR		
	7440-38-2	Arsenic	11.8	_		P P		
	7440-36-0	Antimony_				NR		
	7429-90-5	Aluminum				NR		
	CAS No.	Analyte	Concentration	C	9	M		

FORM I - IN

•

3/90

5-21-93 ;12:04PM ;ITAS-KNOXVILLE/ MBRK→

615-531-7335;# 7/ 9

U.S. EPA - CLP

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

Lab Name: ITAS_KNOXVILLEContract: WESTONINF32693-02Lab Code: ITSTUCase No.: 54005SAS No.:SDG No.: EFFLUEMatrix (soil/water): SOILLab Sample ID: XX3104Lab Sample ID: XX3104Level (low/med):LOWDate Received: 05/04/93t Solids:100.0Lab Sample ID: XX3104

Concentration Units (ug/L or mg/kg dry weight): MG/KG

	After:	YELLOW		ty After: CLEA	NR.	-	Artifacts:	
olor	Before:	BROWN	Clari	ty Before:	-		Texture:	SLUDGI
			Cyanide		-		NR	
		7440-66-6	Zinc		_		NR	
		7440-62-2	Vanadium_				NR	
		7440-28-0	Thallium				NR	
		7440-23-5	Sodium				NR	
		7440-22-4	Silver				NR	
		7782-49-2	Selenium		-		NR	
		7440-09-7	Potassium		-		NR	
		7440-02-0	Nickel		-		NR	
		7439-97-6	Mercury		-		NR	
		7439-96-5	Magnesium Manganese		-	— —	NR	
		7439-92-1	Lead	29.6	-		P NR	
		7439-89-6	Iron				NR	
		7440-50-8					NR	
		7440-48-4	Cobalt		-		NR	
		7440-47-3	Chromium	8.1	-		[P]	
		7440-70-2	Calcium	*********************************	-		NR	
		7440-43-9	Cadmium		-		P	
		7440-41-7	Beryllium	01./	-		NR	
		7440-38-2	Arsenic Barium		-		p p	
		7440-36-0	Antimony		_		NR	
		7429-90-5	Aluminum		_		NR	
			Analyte		_		.	

FORM I - IN

3/90

. .

5-21-93 ;12:04PM ;ITAS-KNOXVILLE/ MBRK→

U.S. EPA - CLP

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

 Lab Name: ITAS_KNOXVILLE_____Contract: WESTON_____
 RX SLURRY

 Lab Code: ITSTU____Case No.: 54005
 SAS No.: ______SDG No.: EFFLUE

 Matrix (soil/water): SOIL_____
 Lab Sample ID: XX3105_____

 Level (low/med):
 LOW______

 100.0
 Date Received: 05/04/93

Concentration Units (ug/L or mg/kg dry weight): MG/KG

•	CAS No.	Analyte	Concentration	С	8	M	
·	7429-90-5 7440-36-0 7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-70-2 7440-47-3 7440-48-4 7440-50-8 7439-89-6 7439-92-1	Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead	27.2 27.2 62.9 1.8 10.0 23.6			NR NR P_ PT NR P NR P NR NR NR NR	
·	7439-95-4 7439-96-5 7439-97-6 7440-02-0 7440-09-7 7782-49-2 7440-22-4 7440-23-5	Magneslum Manganese Mercury Nickel Potassium Selenium Silver Sodium				P NR NR NR NR NR NR NR NR	
-1	7440-28-0 7440-62-2 7440-66-6	Thallium Vanadium Zinc Cyanide				NR NR NR NR	
color Before:	BROWN		ty Before:		-	Texture:	SLUDGE
olor After:	YELLOW	Clari	ty After: CLE	J.N.		Artifacts:	
omments:							

FORM I - IN

3/90

8/ 8	1010	inal yr									•			
615-531-7335;#_9,	d by: 200	Analysis Dete Dete	02/11/33										·	· . ·
615-53	Data ge'd by:	Bilant Qual.	, ,											
7		Blank Besults MD m1/Ke	By/m Of			<i>.</i>								
e/ MBR		Bleek I.D.	05054											
UNXVILL	, LUND	Result Qual.	•	•		·						-		• •
I-SATI:	J	Suple Treat to Aso working	CA/6m 011			-								
:12:05PM :ITAS-KNOXVILLE/ MBRK+	IF ANTITICLE SEVICE	3.0	•	•			•		,	•		•	•	
5-21-93		Client I.D.	he sutter		•	•	•	•			·			t detected. I for the samle for this analys
a,	5	Percenter		•							ı			ted for but not betection limit bet applicable
	17:4	Matrix Solution	·							•	•			ras analy ir is the blank is 1
SENT BY:	Data estaved by: <u>JF40</u> Corrected by: <u>JF40</u>	Project Code												U = Compound was analyzed for The mumber is the detect * = A method blank is not a

CERTIFICATE OF ANALYSIS

ANALYTICAL

SERVICES

IT Corporation 312 Directors Drive Knoxville, TN 37923 Attn: Kandi Brown

Job Number: ITDK 54104

This is the Certificate of Analysis for the following sample:

Client Project ID:WestonDate Received by Lab:05/14/93Number of Samples:One (1)Sample Type:Soil

I. <u>Introduction</u>

On 05/14/93, one (1) soil sample arrived at the ITAS-Knoxville, Tennessee, laboratory from IT-Biotechnology Applications Center, Knoxville, Tennessee, in support of the Weston project. The list of analytical tests performed, as well as date of receipt and analysis, can be found in the attached report.

II. Analytical Results/Methodology

The analytical results for this report are presented by analytical test. Each set of data will include sample identification information and the analytical results. Please note that the data are not blank corrected.

The sample was analyzed for the requested metals by inductively coupled argon plasma spectroscopy (ICP) based on EPA method by method 6010.

The sample was analyzed for sulfide based on EPA method 376.1.

Reviewed and Approved:

R. Moare

Alyce R. Moore Laboratory Manager

> American Council of Independent Laboratories International Association of Environmental Testing Laboratories American Association for Laboratory Accreditation

IT Analytical Services, 5815 Middlebrook Pike, Knoxville, TN 37921

June 18, 1993

P.O. Number: 580000.045

IT Corporation June 18, 1993

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 54104

682-1-89

III. <u>Quality Control</u>

Routine laboratory level I QC was followed.

The sample was digested on 06/04/93 for ICP; the requested metals were analyzed by ICP on 06/08/93. No problems were encountered.

The sample was analyzed for sulfide by iodometric titration. Two grams of sample were added to 200 ml of DI water; the solution was agitated with a magnetic stirrer and titrated according to the referenced method. The results are reported as water-leachable concentrations of the analyte. No major problems were encountered.

IT Corporation June 18, 1993

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 54104

METALS ANALYSIS

Results in mg/kg (ppm)

Sample Matrix: Soil

Method Blank PBS-12521		Weston Batch 30% T6 Week XX4226
4	U	20
0.2	U	64.5
0.5	U	3.2
1	U	10
4	U	43
	Bian <u>PBS-I</u> 4 0.2 0.5 1	Biank PBS-I2521 4 U 0.2 U 0.5 U 1 U

Digestion Date: Analysis Date:

06/04/93 06/08/93 (ICP)

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

IT Corporation June 18, 1993

ŧ,

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 54104

SULFIDE ANALYSIS

Results in mg/kg (ppm)

Sample Matrix: Soil

<u>Client Sample ID</u>	Lab Sample ID	<u>Result</u>	
Weston Batch 30% T6 Week	XX4226	520	
Method Blank	P5083	100 U	

Date of Analysis: 05/18/93

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

EPA Method 8270

weston/tmchp1

ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

IT Corporation 312 Directors Drive Knoxville, TN 37923 Attn: Kandi Brown

Job Number: ITDK 53741

April 30, 1993

P.O. Number: 580000.045

This is the Certificate of Analysis for the following samples:

Client Project ID:WestonDate Received by Lab:04/01/93Number of Samples:Two (2)Sample Type:Slurry

I. <u>Introduction</u>

On 04/01/93, two (2) slurry samples arrived at the ITAS-Knoxville, Tennessee, laboratory from IT Biotechnology Applications Center, Knoxville, Tennessee, in support of the Weston project. The list of analytical tests performed, as well as date of receipt and analysis, can be found in the attached report.

II. Analytical Results/Methodology

The analytical results for this report are presented by analytical test. Each set of data will include sample identification information and the analytical results. Please note that the data are not blank corrected.

The samples were analyzed for semivolatile organic compounds by gas chromatography/mass spectroscopy (GC/MS) based on EPA SW-846 3rd edition, method 8270.

The samples were analyzed for halogenated volatile organic compounds by gas chromatography based on EPA SW-846 method 8010.

Reviewed and Approved:

Many

Alyce[®]R. Moore Laboratory Manager

> American Council of Independent Laboratories International Association of Environmental Testing Laboratories American Association for Laboratory Accreditation

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53741

III. <u>Quality Control</u>

Routine laboratory level I QC was followed.

The semivolatiles analyses were performed by direct injection of sample extract on a Restek XTI-5 capillary column on a Fisons VG TRIO-1 GC/MS/DS unit. The sample analyses generally went well. The high levels of organic material in the sample matrix caused low surrogate recoveries in the original low level extractions of Rx 4/1/93 and Influent Feed. The reextractions of these samples were done at a medium level to lessen the effects of matrix. This was successful in providing compliant surrogate recoveries; however, the reextractions were eight days beyond sample holding times. The medium level reextractions typically detected the same target compounds, but at slightly higher levels. It was considered that the data from the medium reextractions more accurately reflects the target compound levels in the samples. Both sets of data were reported for comparison. There were no other problems seen in final data review.

The samples were analyzed for halogenated volatile organics by gas chromatography/photoionization and electrolytic conductivity (Hall) detection in series using an RTX 502.2 column on a Varian 3400 GC. No major problems were encountered.

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53741

SEMIVOLATILE ORGANIC COMPOUNDS Results in µg/kg (ppb) Sample Matrix: Soil

Client Sample ID: Rx 4/1/93 Lab Sample ID: VV9652

Compound	Concentration	Compound	Concentration
phenol	37,000 U	bis(2-chloroethoxy)methane	37,000 U
bis(2-chloroethyl)ether	37,000 U	2,4-dichlorophenol	37,000 U
2-chlorophenol	37,000 U	1,2,4-trichlorobenzene	37,000 U
1,3-dichlorobenzene	37,000 U	naphthalene	37,000 U
1,4-dichlorobenzene	37,000 U	4-chloroaniline	37,000 U
benzyl alcohol	37,000 U	hexachlorobutadiene	37,000 U
1,2-dichlorobenzene	37,000 U	4-chloro-3-methylphenol	37,000 U
2-methylphenol	37,000 U	2-methylnaphthalene	37,000 U
bis(2-chloroisopropyl)ether	37,000 U	hexachlorocyclopentadiene	· 37,000 U
4-methylphenol	37,000 U	2,4,6-trichlorophenol	37,000 U
n-nitroso-di-n-propylamine	37,000 U	2,4,5-trichlorophenol	180,000 U
hexachloroethane	37,000 U	2-chloronaphthalene	37,000 U
nitrobenzene	37,000 U	2-nitroaniline	180,000 U
isophorone	37,000 U	dimethyl phthalate	37,000 U
2-nitrophenol	37,000 U	acenaphthylene	37,000 U
2,4-dimethylphenol	37,000 U	2,6-dinitrotoluene	37,000 U
benzoic acid	1 80,000 U		

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

Date of Extraction: 04/14/93 Date of Analysis: 04/21/93

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

.

Job Number: ITDK 53741

SEMIVOLATILE ORGANIC COMPOUNDS (continued) Results in µg/kg (ppb) Sample Matrix: Soil

Client Sample ID: Rx 4/1/93 Lab Sample ID: VV9652

Compound	<u>Concent</u>	ration	Compound	Concent	<u>ration</u>
3-nitroaniline	180,000	U	anthracene	4,000	J
acenaphthene	37,000	U	di-n-butylphthalate	37,000	U
2,4-dinitrophenol	180,000	U	fluoranthene	15,000	J
4-nitrophenol	180,000	U	pyrene	12,000	J
dibenzofuran	37,000	U	butylbenzylphthalate	37,000	U
2,4-dinitrotoluene	37,000	U	3,3'-dichlorobenzidine	75,000	U
diethylphthalate	37,000	U	benzo(a)anthracene	37,000	U
4-chlorophenyl-phenylether	37,000	U	chrysene	37,000	U
fluorene	4,400	J	bis(2-ethylhexyl)phthalate	37,000	U
4-nitroaniline	1 80,000	U	di-n-octylphthalate	37,000	U
4,6-dinitro-2-methylphenol	180,000	U	benzo(b)fluoranthene	37,000	U
n-nitrosodiphenylamine ¹	37,000	U	benzo(k)fluoranthene	37,000	U
4-bromophenyl-phenylether	37,000	U	benzo(a)pyrene	37,000	U
hexachlorobenzene	37,000	U	indeno(1,2,3-cd)pyrene	37,000	U
pentachlorophenol	1 80,000	U	dibenzo(a,h)anthracene	37,000	U
phenanthrene	5,500	J	benzo(g,h,i)perylene	37,000	U

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

J - Indicates an estimated value less than the detection limit.

1 - Cannot be separated from diphenylamine.

Date of Extraction:04/14/93Date of Analysis:04/21/93

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53741

ADDITIONAL SEMIVOLATILE ORGANIC ANALYSIS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Rx 4/1/93 Lab Sample ID: VV9652

Tentative Identification (1)

Concentration (2)

2-pentanone, 4-hydroxy-4-met

35,000 A

Remarks:

(1) Identification is based on computer search of the NIST Library.
 (2) Concentration is based on a response factor of 1.00 relative to the internal standard.

A - Suspected aldol condensation product.

• • •

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53741

SEMIVOLATILE ORGANIC COMPOUNDS Results in µg/kg (ppb) Sample Matrix: Soil

Client Sample ID: Rx 4/1/93 RE Lab Sample ID: VV9652

Compound	Concentration	Compound	Concentration
phenol .	110,000 U	bis(2-chloroethoxy)methane	110,000 U
bis(2-chloroethyl)ether	110,000 U	2,4-dichlorophenol	11 0,000 U
2-chlorophenol	110,000 U	1,2,4-trichlorobenzene	11 0,000 U
1,3-dichlorobenzene	110,000 U	naphthalene	11 0,000 U
1,4-dichlorobenzene	110,000 U	4-chloroaniline	11 0,000 U
benzyl alcohol	11 0,000 U	hexachlorobutadiene	110,000 U
1,2-dichlorobenzene	110,000 U	4-chloro-3-methylphenol	11 0,000 U
2-methylphenol	11 0,000 U	2-methylnaphthalene	110,000 U
bis(2-chloroisopropyl)ether	11 0,000 U	hexachlorocyclopentadiene	11 0,000 U
4-methylphenol	11 0,000 U	2,4,6-trichlorophenol	11 0,000 U
n-nitroso-di-n-propylamine	11 0,000 U	2,4,5-trichlorophenol	550,000 U
hexachloroethane	110,000 U	2-chloronaphthalene	110,000 U
nitrobenzene	110,000 U	2-nitroaniline	550,000 U
isophorone	110,000 U	dimethyl phthalate	11 0,000 U
2-nitrophenol	110,000 U	acenaphthylene	11 0,000 U
2,4-dimethylphenol	110,000 U	2,6-dinitrotoluene	110,000 U
benzoic acid	550,000 U		

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

Date of Extraction:04/23/93Date of Analysis:04/27/93

. - . .

6

· _ , · . ,

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE. TN

Job Number: ITDK 53741

SEMIVOLATILE ORGANIC COMPOUNDS (continued)

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Rx 4/1/93 RE Lab Sample ID: VV9652

Compound	Concent	ration	Compound	Concent	ration
3-nitroaniline	550,000	U	anthracene	23,000	J
acenaphthene	110,000	U	di-n-butylphthalate	110,000	U
2,4-dinitrophenol	550,000	U	fluoranthene	83,000	J
4-nitrophenol	550,000	຺	pyrene	58,000	J
dibenzofuran	110,000	U	butylbenzylphthalate	110,000	U
2,4-dinitrotoluene	110,000	U	3,3'-dichlorobenzidine	230,000	U
diethylphthalate	110,000	U	benzo(a)anthracene	20,000	J
4-chlorophenyl-phenylether	110,000	U	chrysene	17,000	J
fluorene	1 8,000	J	bis(2-ethylhexyl)phthalate	110,000	U
4-nitroaniline	550,000	U	di-n-octylphthalate	1 10,000 °	U
4,6-dinitro-2-methylphenol	550,000	U	benzo(b)fluoranthene	110,000	U
n-nitrosodiphenylamine ¹	110,000	U	benzo(k)fluoranthene	13,000	J
4-bromophenyl-phenylether	110,000	U	benzo(a)pyrene	13,000	J
hexachlorobenzene	110,000	U	indeno(1,2,3-cd)pyrene	110,00Ò	U
pentachlorophenol	550,000	U	dibenzo(a,h)anthracene	110,000	U
phenanthrene	18,000	J	benzo(g,h,i)perylene	110,000	U

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

J - Indicates an estimated value less than the detection limit.

1 - Cannot be separated from diphenylamine.

Date of Extraction:04/23/93Date of Analysis:04/27/93

7

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE. TN

Job Number: ITDK 53741

ADDITIONAL SEMIVOLATILE ORGANIC ANALYSIS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Rx 4/1/93 RE Lab Sample ID: VV9652

Tentative Identification (1)

Concentration (2)

51,000 A

3-pentenoic acid, 4-methyl-

Remarks:

(1) Identification is based on computer search of the NIST Library.
 (2) Concentration is based on a response factor of 1.00 relative to the internal standard.

A - Suspected aldol condensation product.

APX9-SEM.FRM 2/7/92

· ...

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53741

SEMIVOLATILE ORGANIC COMPOUNDS Results in µg/kg (ppb) Sample Matrix: Soil

Client Sample ID: Influent Feed 3/26/93 Lab Sample ID: VV9653

Compound	Concentration	Compound	Concentration
phenol	13,000 U	bis(2-chloroethoxy)methane	13,000 U .
bis(2-chloroethyl)ether	13,000 U	2,4-dichlorophenol	13, 000 U
2-chlorophenol	13,000 U	1,2,4-trichlorobenzene	13,000 U
1,3-dichlorobenzene	13,000 U	naphthalene	2,700 J
1,4-dichlorobenzene	13,000 U	4-chloroaniline	1 3,000 U
benzyl alcohol	13, 000 U	hexachlorobutadiene	13,000 U
1,2-dichlorobenzene	13,000 U	4-chloro-3-methylphenol	13,000 U
2-methylphenol	13,000 U	2-methylnaphthalene	13,000 U
bis(2-chloroisopropyl)ether	13,000 U	hexachlorocyclopentadiene	13,000 U
4-methylphenol	13,000 U	2,4,6-trichlorophenol	13,000 U
n-nitroso-di-n-propylamine	13,000 U	2,4,5-trichlorophenol	61,000 ŧ U
hexachloroethane	13,000 U	2-chloronaphthalene	13,000 · U
nitrobenzene	13,000 U	2-nitroaniline	61, 000 U
isophorone	13, 000 U	dimethyl phthalate	13,000 U ·
2-nitrophenol	13,000 U	acenaphthylene	1,600 J
2,4-dimethylphenol	13, 000 U	2,6-dinitrotoluene	13,000 U
benzoic acid	61, 000 U		

J - Indicates an estimated value less than the detection limit.

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

Date of Extraction: 04/14/93 Date of Analysis: 04/21/93

9

.

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53741

SEMIVOLATILE ORGANIC COMPOUNDS (continued)

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Influent Feed 3/26/93 Lab Sample ID: VV9653

Compound	Concentration	Compound	Concentration
3-nitroaniline	61,000 U	anthracene	16 ,000
acenaphthene	10,000 J	di-n-butylphthalate	13,000 U
2,4-dinitrophenol	61, 00 0 U	fluoranthene	52,000
4-nitrophenol	61,000 U	pyrene	33,000
dibenzofuran	6,300 J	butylbenzylphthalate	13,000 U
2,4-dinitrotoluene	13,000 U	3,3'-dichlorobenzidine	25,000 U
diethylphthalate	13,000 U	benzo(a)anthracene	10,000 J
4-chlorophenyl-phenylether	13,000 U	chrysene	13,000
fluorene	13,000	bis(2-ethylhexyl)phthalate	13,000 U
4-nitroaniline	61, 000 U	di-n-octylphthalate	13,000 U
4,6-dinitro-2-methylphenol	61 ,00 0 U	benzo(b)fluoranthene	7,600 J
n-nitrosodiphenylamine ¹	13,000 U	benzo(k)fluoranthene	13 ,000 U
4-bromophenyl-phenylether	13, 00 0 U	benzo(a)pyrene	6, 400 J
hexachlorobenzene	13,000 U	indeno(1,2,3-cd)pyrene	1, 600 J
pentachlorophenol	61, 00 0 U	dibenzo(a,h)anthracene	13,000 U
phenanthrene	43,000	benzo(g,h,i)perylene	13,000 U

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

J - Indicates an estimated value less than the detection limit.

1 - Detected as diphenylamine.

Date of Extraction:04/14/93Date of Analysis:04/21/93

A get a

e +

· 10

. . .

APX9-SEM.FRM 2/7/92

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53741

ADDITIONAL SEMIVOLATILE ORGANIC ANALYSIS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Influent Feed 3/26/93 Lab Sample ID: VV9653

Tentative Identification (1)	Concentration (2)
2-pentanone, 4-hydroxy-4-met	29,000 A
4H-cyclopenta def phenanthre	15,000
hexanedioic acid, dioctyl es	6,000
11H-benzo a fluorene	6,000
1H-indene, 1-phenyl-	5,700

Remarks:

(1) Identification is based on computer search of the NIST Library.
 (2) Concentration is based on a response factor of 1.00 relative to the internal standard.

A - Suspected aldol condensation product.

APX9-SEM.FRM 2/7/92

1.821.89

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53741

SEMIVOLATILE ORGANIC COMPOUNDS Results in µg/kg (ppb) Sample Matrix: Soil

Client Sample ID: Influent Feed 3/26/93 R Lab Sample ID: VV9653

Compound	<u>Concentration</u>		Compound	Concent	ration
phenol	87,000	U	bis(2-chloroethoxy)methane	87,000	U
bis(2-chloroethyl)ether	87,000	U .	2,4-dichlorophenol	87,000	U
2-chlorophenol	87,000	U	1,2,4-trichlorobenzene	87,000	U
1,3-dichlorobenzene	87,000	U	naphthalene	87,000	U
1,4-dichlorobenzene	87,000	U .	4-chloroaniline	87,000	U
benzyl alcohol	87,000	U	hexachlorobutadiene	87,000	U
1,2-dichlorobenzene	87,000	U	4-chloro-3-methylphenol	87,000	U
2-methylphenol	87,000	U	2-methylnaphthalene	87,000	U
bis(2-chloroisopropyl)ether	87,00 0	U	hexachlorocyclopentadiene	87,000	ับ
4-methylphenol	87 ,00 0	U	2,4,6-trichlorophenol	87,000	U
n-nitroso-di-n-propylamine	87,000	U	2,4,5-trichlorophenol	420,000	U
hexachloroethane	87,000	U	2-chloronaphthalene	87,000	U
nitrobenzene	87,000	U	2-nitroaniline	420,000	U
isophorone	87,00 0	·U	dimethyl phthalate	87,000	U
2-nitrophenol	87,000	U	acenaphthylene	9,500	J
2,4-dimethylphenol	87,000	Ų	2,6-dinitrotoluene	87,000	U
benzoic acid	420,000	U			

J - Indicates an estimated value less than the detection limit.

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

Date of Extraction:04/23/93Date of Analysis:04/27/93

⁴12

._; ..

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53741

SEMIVOLATILE ORGANIC COMPOUNDS (continued)

Results in $\mu g/kg$ (ppb).

Sample Matrix: Soil

•

Client Sample ID: Influent Feed 3/26/93 R Lab Sample ID: VV9653

Compound	Concentration		Compound	Concent	ration
3-nitroaniline	420,000	U	anthracene	33,000	J
acenaphthene	25,000	J	di-n-butylphthalate	87,000	U
2,4-dinitrophenol	420,000	U	fluoranthene	1 40,000	
4-nitrophenol	420,000	U	pyrene	100,000	
dibenzofuran	13,000	J	butylbenzylphthalate	87,000	U.
2,4-dinitrotoluene	87,000	U	3,3'-dichlorobenzidine	170,000	U
diethylphthalate	87,000	ับ	benzo(a)anthracene	32,000	J
4-chlorophenyl-phenylether	87,000	U	chrysene	28,000	J
fluorene	32,000	J	bis(2-ethylhexyl)phthalate	87,000	U
4-nitroaniline	420,000	U	di-n-octylphthalate	87,000]	U
4,6-dinitro-2-methylphenol	420,000	U	benzo(b)fluoranthene	13,000	J
n-nitrosodiphenylamine ¹	87,000	U	benzo(k)fluoranthene	22,000	J
4-bromophenyl-phenylether	87,000	[.] U	benzo(a)pyrene	19,000	J
hexachlorobenzene	87,000	U	indeno(1,2,3-cd)pyrene	87,000	U
pentachlorophenol	420,000	U	dibenzo(a,h)anthracene	87,000	U
phenanthrene	64,000	J	benzo(g,h,i)perylene	87,000	U

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

J - Indicates an estimated value less than the detection limit.

1 - Cannot be separated from diphenylamine.

Date of Extraction:04/23/93Date of Analysis:04/27/93

13

APX9-SEM.FRM 2/7/92

•• H 2 ** +**

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53741

ADDITIONAL SEMIVOLATILE ORGANIC ANALYSIS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Influent Feed 3/26/93 RE Lab Sample ID: VV9653

Tentative Identification (1)

Concentration (2)

None detected

.

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53741

SEMIVOLATILE ORGANIC COMPOUNDS Results in µg/kg (ppb)

- Sample Matrix: Soil

Client Sample ID: Method Blank 1 Lab Sample ID: H3692

Compound	Concentration		Compound	<u>Concent</u>	ation
phenol	330	U	bis(2-chloroethoxy)methane	330	U
bis(2-chloroethyl)ether	330	U	2,4-dichlorophenol	330	U
2-chlorophenol	330	U	1,2,4-trichlorobenzene	330	Ū
1,3-dichlorobenzene	330	Ŭ	naphthalene	330	U
1,4-dichlorobenzene	330	U	4-chloroaniline	330	U
benzyl alcohol	330	U	hexachlorobutadiene	330	U
1,2-dichlorobenzene	330	U	4-chloro-3-methylphenol	330	U
2-methylphenol	330	U	2-methylnaphthalene	330	U
bis(2-chloroisopropyl)ether	330	U	hexachlorocyclopentadiene	330	U
4-methylphenol	330	ับ	2,4,6-trichlorophenol	330	U
n-nitroso-di-n-propylamine	330	U	2,4,5-trichlorophenol	1,600	U.
hexachloroethane	330	U	2-chloronaphthalene	330	U
nitrobenzene	330	U	2-nitroaniline	1 ,600	U
isophorone	330	U	dimethyl phthalate	330	U
2-nitrophenol	330	U	acenaphthylene	330	U
2,4-dimethylphenol	330	U	2,6-dinitrotoluene	330	U
benzoic acid	1,600	U			

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

Date of Extraction:04/14/93Date of Analysis:04/21/93

APX9-SEM.FRM 2/7/92

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53741

SEMIVOLATILE ORGANIC COMPOUNDS (continued)

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Method Blank 1 Lab Sample ID: H3692

Compound	Concentra	tion	Compound	Concent	ration
3-nitroaniline	1,600	U	anthracene	330	U
acenaphthene	330	U	di-n-butylphthalate	330	U
2,4-dinitrophenol	1,600	U	fluoranthene	330	U
4-nitrophenol	1,600	U	pyrene	330	U
dibenzofuran	330	U	butylbenzylphthalate	330	U
2,4-dinitrotoluene	330	U	3,3'-dichlorobenzidine	. 660	U
diethylphthalate	330	U	benzo(a)anthracene	330	U
4-chlorophenyl-phenylether	330	U	chrysene	330	U
fluorene	330	U	bis(2-ethylhexyl)phthalate	330	U
4-nitroaniline	1,600	U	di-n-octylphthalate	330	U
4,6-dinitro-2-methylphenol	1,600	U	benzo(b)fluoranthene	330	U
n-nitrosodiphenylamine ¹	330	U	benzo(k)fluoranthene	330	U
4-bromophenyl-phenylether	330	U	benzo(a)pyrene	330	U
hexachlorobenzene	330	U	indeno(1,2,3-cd)pyrene	330	U
pentachlorophenol	1,600	U	dibenzo(a,h)anthracene	330	U
phenanthrene	330	U	benzo(g,h,i)perylene	330	U

This method blank applies to samples Influent Feed 3/26/93 and Rx 4/1/93.

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

J - Indicates an estimated value less than the detection limit.

1 - Cannot be separated from diphenylamine.

Date of Extraction:04/14/93Date of Analysis:04/21/93

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53741

ADDITIONAL SEMIVOLATILE ORGANIC ANALYSIS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Method Blank 1 Lab Sample ID: H3692

Tentative Identification (1)	Concentration (2)		
2-propanol, 2-nitroso-, acet	2,500 A		
butanoic acid, 4-chloro-	160		
2-pentanone, 5-(acetyloxy)-	140 A		

Remarks:

Identification is based on computer search of the NIST Library.
 Concentration is based on a response factor of 1.00 relative to the internal standard.

A - Suspected aldol condensation product.

APX9-SEM.FRM 2/7/92

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53741

SEMIVOLATILE ORGANIC COMPOUNDS Results in µg/kg (ppb) Sample Matrix: Soil

.

Client Sample ID: Method Blank 2 Lab Sample ID: H3834

Compound	Concentration	Compound	<u>Concent</u>	ration
phenol	5,000 U	bis(2-chloroethoxy)methane	5,000	U
bis(2-chloroethyl)ether	5,000 U	2,4-dichlorophenol	5,000	U
2-chlorophenol	5,000 U	1,2,4-trichlorobenzene	5,000	U
1,3-dichlorobenzene	5,000 U	naphthalene	5,000	U
1,4-dichlorobenzene	5,000 U	4-chloroaniline	5,000	U
benzyl alcohol	5,000 U	hexachlorobutadiene	5,000	U
1,2-dichlorobenzene	5,000 U	4-chloro-3-methylphenol	5,000	U
2-methylphenol	5,000 U	2-methylnaphthalene	5,000	U
bis(2-chloroisopropyl)ether	5,000 U	hexachlorocyclopentadiene	5,000	U
4-methylphenol	5,000 U	2,4,6-trichlorophenol	5,000	U
n-nitroso-di-n-propylamine	5,000 U	2,4,5-trichlorophenol	24,000	U
hexachloroethane	5,000 U	2-chloronaphthalene	5,000	U
nitrobenzene	5,000 U	2-nitroaniline	24,000	U
isophorone	5,000 U	dimethyl phthalate	5,000	U
2-nitrophenol	5,000 U	acenaphthylene	5,000	U
2,4-dimethylphenol	5,000 U	2,6-dinitrotoluene	5,000	U
benzoic acid	24,000 U			

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

Date of Extraction:04/23/93Date of Analysis:04/27/93

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53741

SEMIVOLATILE ORGANIC COMPOUNDS (continued)

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Method Blank 2 Lab Sample ID: H3834

Compound	<u>Concentration</u>		Compound	Concent	ration
3-nitroaniline	24,000	U	anthracene	5,000	U
acenaphthene	5,000	U	di-n-butylphthalate	5,000	U
2,4-dinitrophenol	24,000	U	fluoranthene	5, 00 0	U
4-nitrophenol	24,000	U	pyrene	5,000	U
dibenzofuran	5,000	U	butylbenzylphthalate	5, 00 0	U
2,4-dinitrotoluene	5,000	บ	3,3'-dichlorobenzidine	9, 90 0	U
diethylphthalate	5,000 1	U	benzo(a)anthracene	5,000	U
4-chlorophenyl-phenylether	5,000	U	chrysene	5,000	U
fluorene	5,000 1	U	bis(2-ethylhexyl)phthalate	5,000	U
4-nitroaniline	24,000 .1	U	di-n-octylphthalate	5,000 ±	U
4,6-dinitro-2-methylphenol	24,000	U	benzo(b)fluoranthene	5,000	U
n-nitrosodiphenylamine ¹	5,000 1	U	benzo(k)fluoranthene	5,000	U
4-bromophenyl-phenylether	5,000	U	benzo(a)pyrene	5,000	U
hexachlorobenzene	5,000	ບ່	indeno(1,2,3-cd)pyrene	5,000	U
pentachlorophenol	24,000	U	dibenzo(a,h)anthracene	5, 00 0	U
phenanthrene	5,000	U	benzo(g,h,i)perylene	5,000	U

This method blank applies to samples Influent Feed 3/24/93 R and Rx 4/1/93 RE.

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

1 - Cannot be separated from diphenylamine.

Date of Extraction:04/23/93Date of Analysis:04/27/93

6821.99

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53741

ADDITIONAL SEMIVOLATILE ORGANIC ANALYSIS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Method Blank 2 Lab Sample ID: H3834

Tentative Identification (1)

butanoic acid, 4-chloro-

Concentration (2)

2,400

Remarks:

Identification is based on computer search of the NIST Library.
 Concentration is based on a memory factor of 1 00 minipage to the internal star

(2) Concentration is based on a response factor of 1.00 relative to the internal standard.

......

Client Project ID: Weston

.

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53741

SOIL SURROGATE PERCENT RECOVERY SUMMARY

SEMIVOLATILE

<u>Client Sample ID</u>	Nitro- Benzene-D5 (23-120%)*	2-Fluoro- Biphenyl (30-115%)*	Terphenyl- D14 <u>(18-137%)*</u>	Phenol-D5 (24-113%)*	2-Fluoro- Phenol (25-121%)*	2,4,6- Tribromo- Phenol <u>(19-122%)*</u>
Influent Feed 3/26/93	0**	0**	0** .	35	28	0**
Rx 4/1/93	0**	0**	0**	0**	0**	0**
Method Blank 1	80	65	85	76	70	45

*Values in parenthesis represent contract required QC limits. **Values are outside of contract required QC limits.

. •

HRA THY

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE. TN

٠,

Job Number: ITDK 53741

SOIL SURROGATE PERCENT RECOVERY SUMMARY

SEMIVOLATILE

<u>Client Sample ID</u>	Nitro- Benzene-D5 (23-120%)*	2-Fluoro- Biphenyl (30-115%)*	Terphenyl- D14 (18-137%)*	Phenol-D5 (24-113%)*	2-Fluoro- Phenol (25-121%)*	2,4,6- Tribromo- Phenol (19-122%)*
Influent Feed 3/26/93 R	40 ·	56	54	48	42	32
Rx 4/1/93RE	34	49	46	44	36	22
Method Blank 2	56	. 60	83	60	48	51

*Values in parenthesis represent contract required QC limits.

APX9-SEM.FRM 2/7/92

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53741

HALOGENATED VOLATILE ORGANIC ANALYSIS Results in µg/kg (ppb) Sample Matrix: Soil

Client Sample ID: Rx 4/1/93 Lab Sample ID: VV9652

Compound	Concentration	Compound	<u>Concentration</u>
dichlorodifluoromethane	1.8 U	2-chloroethylvinyl ether	1.3 U
chloromethane	0.8 U	cis-1,3-dichloropropene	3.4 U
vinyl chloride	1.8 U	trans-1,3-dichloropropene	3.4 U
bromomethane	1.2 U	1,1,2-trichloroethane	0.2 U
chloroethane	5.2 U	tetrachloroethene	. 0.3 U
trichlorofluoromethane	2.0 U	dibromochloromethane	0.9 U
1,1-dichloroethene	1.3 U	n-hexyl chloride	1.0 U
methylene chloride	15 U	chlorobenzene	2.0 U
trans-1,2-dichloroethene	1.0 U	1,1,1,2-tetrachloroethane	0.3 U
1,1-dichloroethane	0.7 U	bromoform	2.0 U
cis-1,2-dichloroethene	1.0 U	1,1,2,2-tetrachloroethane	0.3 U
trichloromethane (chloroform)	0.5 U	1,2,3-trichloropropane	1.0 U
1,1,1-trichloroethane	0.3 U	phenyl bromide (bromobenzene)	2.0 U
carbon tetrachloride	1.2 U	2-chlorotoluene	1.0 U
1,2-dichloroethane	0.3 U	1,3-dichlorobenzene	3.2 U
trichloroethene	1.2 U	1,4-dichlorobenzene	2.4 U
1,2-dichloropropane	0.4 U	1,2-dichlorobenzene	1.5 U
bromodichloromethane	1.0 U	bis (2-chloroisopropyl) ether	20 U
dibromomethane	2.0 U		

Date of Analysis: 04/12/93

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

nn_ • • • •

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53741

HALOGENATED VOLATILE ORGANIC ANALYSIS Results in µg/kg (ppb) Sample Matrix: Soil

Client Sample ID: Influent Feed 3/26/93 Lab Sample ID: VV9653

Compound	Concentration	Compound	<u>Concentration</u>
dichlorodifluoromethane	1.8 U	2-chloroethylvinyl ether	1.3 U
chloromethane	0.8 U	cis-1,3-dichloropropene	3.4 U
vinyl chloride	1.8 U	trans-1,3-dichloropropene	3.4 U
bromomethane	1.2 U	1,1,2-trichloroethane	0.2 U
chloroethane	5.2 U	tetrachloroethene	0.3 U
trichlorofluoromethane	2.0 U	dibromochloromethane	. 0.9 U
1,1-dichloroethene	1.3 U	n-hexyl chloride	1.0 U
methylene chloride	15 U	chlorobenzene	2.0 U
trans-1,2-dichloroethene	1.0 U	1,1,1,2-tetrachloroethane	0.3 U
1,1-dichloroethane	0.7 U	bromoform	2.0 U
cis-1,2-dichloroethene	1.0 U	1,1,2,2-tetrachloroethane	0.3 U
trichloromethane (chloroform)	0.5 U	1,2,3-trichloropropane	1.0 U
1,1,1-trichloroethane	. 0.3 U	phenyl bromide (bromobenzene)	2.0 U
carbon tetrachloride	1.2 U	2-chlorotoluene	1.0 U
1,2-dichloroethane	0.3 U	1,3-dichlorobenzene	3.2 U
trichloroethene	1.2 U	1,4-dichlorobenzene	2.4 U
l,2-dichloropropane	0.4 U	1,2-dichlorobenzene	1.5 U
bromodichloromethane	1.0 U	bis (2-chloroisopropyl) ether	20 U
dibromomethane	2.0 U		

Date of Analysis: 04/15/93

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

APX9-SEM.FRM 2/7/92

1.42 - 44

Client Project ID: Weston

IT ANALYTICAL SERVICES - 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53741

HALOGENATED VOLATILE ORGANIC ANALYSIS Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Method Blank 1 Lab Sample ID: B2954

Compound	Concentration	Compound	Concentration
dichlorodifluoromethane	1.8 U	2-chloroethylvinyl ether	1.3 U
chloromethane	0.8 U	cis-1,3-dichloropropene	3.4 U
vinyl chloride	1.8 U	toluene	2.0 U
bromomethane	1.2 U	trans-1,3-dichloropropene	3.4 U
chloroethane	5.2 U	1,1,2-trichloroethane	0.2 U
trichlorofluoromethane	2.0 U	tetrachloroethene	0.3 U
1,1-dichloroethene	1.3 U	dibromochloromethane	0.9 [`] U
methylene chloride	15 U	n-hexyl chloride	1.0 U
trans-1,2-dichloroethene	1.0 U	chlorobenzene	2.0 U
1,1-dichloroethane	0.7 U	ethyl benzene	2.0 U
cis-1,2-dichloroethene	1. 0 U	1,1,1,2-tetrachloroethane	0.3 U
trichloromethane (chloroform)	0.5 U	xylenes (total)	1.0 U
1,1,1-trichloroethane	0.9	bromoform	2.0 ૣU
carbon tetrachloride	1.2 U	1,1,2,2-tetrachloroethane	0.3 U
benzene	2.0 U	1,2,3-trichloropropane	1.0 U
1,2-dichloroethane	0.3 U	phenyl bromide (bromobenzene)	2.0 U
trichloroethene	1.2 U	2-chlorotoluene	1.0 U
1,2-dichloropropane	0.4 U	1,3-dichlorobenzene	3.2 U
bromodichloromethane	1.0 U	1,4-dichlorobenzene	2.4 U
dibromomethane	2.0 U	1,2-dichlorobenzene	1.5 U
		bis (2-chloroisopropyl) ether	20 U

Date of Analysis: 04/11/93

- Compound was analyzed for but not detected. The number is the detection limit for the sample. U

This method blank applies to the following sample: Rx 4/1/93.

6H2 1 HU

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53741

HALOGENATED AND AROMATIC VOLATILE ORGANIC ANALYSIS Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Method Blank 2 Lab Sample ID: B2965

Compound	Concentration		Compound	Concentration	
dichlorodifluoromethane	1.8	U	2-chloroethylvinyl ether	1.3	U
chloromethane	0.8	U	cis-1,3-dichloropropene	3.4	U
vinyl chloride	1 .8	U	toluene	2.0	U
bromomethane	1.2	U	trans-1,3-dichloropropene	3.4	U
chloroethane	5.2	U	1,1,2-trichloroethane	0.2	U
trichlorofluoromethane	2.0	U	tetrachloroethene	0.3	U
1,1-dichloroethene	1.3	U	dibromochloromethane	0.9	U
methylene chloride	15	U	n-hexyl chloride	1.0	U
trans-1,2-dichloroethene	1.0	U	chlorobenzene	2.0	U
1,1-dichloroethane	0.7	U	ethyl benzene	2.0	U
cis-1,2-dichloroethene	1.0	U	1,1,1,2-tetrachloroethane	0.3	U
trichloromethane (chloroform)	0.5	U	xylenes (total)	1.0	U
1,1,1-trichloroethane	0.3	U	bromoform	2.0	U.
carbon tetrachloride	1.2	U	1,1,2,2-tetrachloroethane	0.3	U
benzene	2.0	U	1,2,3-trichloropropane	1.0	U
1,2-dichloroethane	0.3	U	phenyl bromide (bromobenzene)	2.0	U
trichloroethene	1.2	U	2-chlorotoluene	1.0	U
1,2-dichloropropane	0.4	U	1,3-dichlorobenzene	3.2	U
bromodichloromethane	1.0	U	1,4-dichlorobenzene	2.4	U
dibromomethane	2.0	U	1,2-dichlorobenzene	1.5	U
			bis (2-chloroisopropyl) ether	. 20	U

Date of Analysis: 04/15/93

. •

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

This method blank applies to the following sample: Influent Feed 3/26/93.

682 ° 89

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53741

SOIL SURROGATE PERCENT RECOVERY SUMMARY

		VOLA	TILE
<u>Client Sample ID</u>	Lab Sample ID	<u>BCM</u>	<u>OCFB</u>
Rx 4/1/93	VV9652	48	19 *
Influent Feed 3/26/93	VV9653	48	22 *
Method Blank 1	B2954	113 *	94
Method Blank 2	B2965	68	82

	<u>OC LIMITS</u>
BCM - bromochloromethane	(31-112%)
OCFB - ortho-chlorofluorobenzene	(31-113%)

*Value is outside QC limits.

APX9-SEM.FRM 2/7/92

NRZ, HU

EPA Method 8240

weston/tmchp1

ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

IT Corporation 312 Directors Drive Knoxville, TN 37923 Attn: Kandi Brown

Job Number: ITDK 53813

April 29, 1993

P.O. Number: 580000.045

This is the Certificate of Analysis for the following samples:

Client Project ID:WestonDate Received by Lab:04/09/93Number of Samples:Three (3)Sample Type:Slurry

I. <u>Introduction</u>

On 04/09/93, three (3) slurry samples arrived at the ITAS-Knoxville, Tennessee, laboratory from IT Biotechnology Applications Center, Knoxville, Tennessee, in support of the Weston project. The list of analytical tests performed, as well as date of receipt and analysis, can be found in the attached report.

II. <u>Analytical Results/Methodology</u>

The analytical results for this report are presented by analytical test. Each set of data will include sample identification information and the analytical results. Please note that the data are not blank corrected.

The samples were analyzed for volatile organic compounds by gas chromatography/mass spectroscopy (GC/MS) based on EPA SW-846 3rd edition, method 8240.

Reviewed and Approved:

more,

Alyce R. Moore Laboratory Manager

American Council of Independent Laboratories International Association of Environmental Testing Laboratories American Association for Laboratory Accreditation

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53813

.

III. <u>Quality Control</u>

Routine laboratory level I QC was followed.

The volatiles analyses were performed by purge and trap with a J&W DB-624 megabore column on a Finnigan OWA GC/MS/DS unit. The sample analyses generally went well. The initially requested analysis was 8270. Analysis was changed to 8240 per Kandi Brown on 04/16/93. The samples were analyzed as soils. There were variant surrogate recoveries for the analyses of DRUM #3. This was attributed to the matrix of this sample. The continuing calibration standard was noncompliant for ethyl benzene; however, this parameter was not seen in any of the samples. There were no other problems seen in final data review.

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53813

VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Drum 1 Lab Sample ID: XX1004

Compound	Concen	tration	Compound	Concen	tration
chloromethane	18	U	1,2-dichloropropane	9	U
bromomethane	18	U.	cis-1,3-dichloropropene	9	U
vinyl chloride	18	U	trichloroethene	9	U
chloroethane	18	U	dibromochloromethane	9	U
methylene chloride	27	B	1,1,2-trichloroethane	9	U
acetone	14	J	benzene	9	U
carbon disulfide	9	U	trans-1,3-dichloropropene	9	U.
1,1-dichloroethene	9	Ū	bromoform	. 9	U
1,1-dichloroethane	9	U	4-methyl-2-pentanone	18	U
1,2-dichloroethene (total)	9	U	2-hexanone	18	U
chloroform	9	U	tetrachloroethene	9	U
1,2-dichloroethane	9	U	1,1,2,2-tetrachloroethane	9	U
2-butanone	18	U	toluene	9	U
1,1,1-trichloroethane	9	U.	chlorobenzene	9	U
carbon tetrachloride	9	U	ethylbenzene	9	U
vinyl acetate	18	U	styrene	9	U
bromodichloromethane	9	U	xylenes (total)	9	U

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

J - Indicates an estimated value less than the detection limit.

B - Analyte was found in the blank as well as the sample.

Date of Analysis: 04/22/93

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53813

ADDITIONAL VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Drum 1 Lab Sample ID: XX1004

Tentative Identification (1)

Concentration (2)

None detected

Remarks:

(1) Identification is based on computer search of the NIST Library.
 (2) Concentration is based on a response factor of 1.00 relative to the internal standard.

WOLATILE/TCL.FRM 4/13/92

NR4 1 81

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53813

VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Drum 3 Lab Sample ID: XX1005

Compound	Concen	tration	Compound	<u>Concen</u>	tration
chloromethane	18	U	1,2-dichloropropane	9	U
bromomethane	18	U	cis-1,3-dichloropropene	9	U
vinyl chloride	18	U	trichloroethene	9	U
chloroethane	· 18	U	dibromochloromethane	9	U
methylene chloride	26	B	1,1,2-trichloroethane	9	U
acetone	25		benzene	9	U
carbon disulfide	. 9	U	trans-1,3-dichloropropene	9	U·
1,1-dichloroethene	9	U	bromoform	9	U
1,1-dichloroethane	9	U	4-methyl-2-pentanone	18	U
1,2-dichloroethene (total)	9	U	2-hexanone	18	U.
chloroform	9	U	tetrachloroethene	9	U
1,2-dichloroethane	9	U	1,1,2,2-tetrachloroethane	9	U
2-butanone	18	U	toluene	`9	U
1,1,1-trichloroethane	9	U	chlorobenzene	9	U
carbon tetrachloride	. 9	U	ethylbenzene	9	U
vinyl acetate	18	U	styrene	9	U
bromodichloromethane	. 9	U	xylenes (total)	9	U
•					

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

B - Analyte was found in the blank as well as the sample.

Date of Analysis: 04/22/93

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

.

Job Number: ITDK 53813

ADDITIONAL VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID:Drum 3Lab Sample ID:XX1005

Tentative Identification (1)

Concentration (2)

None detected

Remarks:

(1) Identification is based on computer search of the NIST Library.
 (2) Concentration is based on a response factor of 1.00 relative to the internal standard.

VOLATILE TCL.FRM 4/13/92

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE. TN

Job Number: ITDK 53813

VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Drum 6 Lab Sample ID: XX1006

Concentration	Compound	Concentration
17 U	1,2-dichloropropane	8 U
17 U	cis-1,3-dichloropropene	8 U
17 U	trichloroethene	8 U
17 U	dibromochloromethane	8 U
20 B	1,1,2-trichloroethane	8 U -
26	benzene	8 U
8 U	trans-1,3-dichloropropene	8 U
8 U	bromoform	8. U
. 8 U	4-methyl-2-pentanone	17 U
8 U	2-hexanone	17 U
8 U	tetrachloroethene	8 U
8 U	1,1,2,2-tetrachloroethane	8 U
17 U	toluene	8 U
8 U	chlorobenzene	8 U
8 U	ethylbenzene	8 U
17 U	styrene	8 U
8 U [`]	xylenes (total)	8 U
	17 U 17 U 17 U 17 U 20 B 26 U 8 U 8 U 8 U 8 U 17 U 8 U 8 U 8 U 8 U 8 U 8 U 8 U 8 U 17 U 8 U 17 U 8 U 17 U 17 U	17U1,2-dichloropropane17Ucis-1,3-dichloropropene17Utrichloroethene17Udibromochloromethane20B1,1,2-trichloroethane20B1,1,2-trichloroethane26benzene8Utrans-1,3-dichloropropene8Ubromoform8U2-hexanone8U2-hexanone8Utetrachloroethene17Utoluene8Uchlorobenzene8Uchlorobenzene17Ustyrene17Ustyrene

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

B - Analyte was found in the blank as well as the sample.

Date of Analysis: 04/22/93

7

.

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Concentration (2)

Job Number: ITDK 53813

ADDITIONAL VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Drum 6 Lab Sample ID: XX1006

Tentative Identification (1)

None detected

Remarks:

(1) Identification is based on computer search of the NIST Library.
 (2) Concentration is based on a response factor of 1.00 relative to the internal standard.

VOLATILE/TCL.FRM 4/13/92

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53813

VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Method Blank Lab Sample ID: VB04223

Compound	<u>Concen</u>	tration	Compound	Concen	<u>tration</u>
chloromethane	10	U	1,2-dichloropropane	5	U
bromomethane	10	U	cis-1,3-dichloropropene	5	U
vinyl chloride	10	U	trichloroethene	5	U
chloroethane	10	ບ່	dibromochloromethane	5	U
methylene chloride	3	J	1,1,2-trichloroethane	5	U
acetone	10	U	benzene	5	U
carbon disulfide	- 5	U	trans-1,3-dichloropropene	5	U
1,1-dichloroethene	5	U	bromoform	5 .	U
1,1-dichloroethane	5	U	4-methyl-2-pentanone	10	U
1,2-dichloroethene (total)	5	U	2-hexanone	10	U
chloroform	5	U	tetrachloroethene	5	U
1,2-dichloroethane	5	U	1,1,2,2-tetrachloroethane	5	U
2-butanone	10	U	toluene	. 5	U
1,1,1-trichloroethane	5	U	chlorobenzene	5	U
carbon tetrachloride	5	U	ethylbenzene	5	U
vinyl acetate	10	U	styrene	5	U
bromodichloromethane	5	U	xylenes (total)	., 5	U
		•			

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

۰.

J - Indicates an estimated value less than the detection limit.

Date of Analysis: 04/22/93

VOLATILE/TENT-ID.FRM

1.H. . H.

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53813

ADDITIONAL VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Method Blank Lab Sample ID: VB04223

Tentative Identification (1)

Concentration (2)

None detected

Remarks:

(1) Identification is based on computer search of the NIST Library.
 (2) Concentration is based on a response factor of 1.00 relative to the internal standard.

.

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53813

SOIL SURROGATE PERCENT RECOVERY SUMMARY

		VOLATILI	2
<u>Client Sample ID</u>	Toluene-D8 <u>(81-117%)*</u>	BFB <u>(74-121%)</u> *	1,2 Dichloroethane-D4 (70-121%)*
Drum 1	116 ·	76	95 -
Drum 3	125 **	74	97
Drum 6	112	74	92
Method Blank	97	95	96

- Values in parenthesis represent QC limits.

+ - Values are outside QC limits.

VOLATILE TENT-ID.FRM

ANALYTICAL SERVICES

---- CERTIFICATE OF ANALYSIS

IT Corporation 312 Directors Drive Knoxville, TN 37923 Attn: Kandi Brown

Job Number: ITDK 53867

This is the Certificate of Analysis for the following sample:

Client Project ID:WestonDate Received by Lab:04/16/93Number of Samples:One (1)Sample Type:Slurry

I. <u>Introduction</u>

On 04/16/93, one (1) slurry sample arrived at the ITAS-Knoxville, Tennessee, laboratory from IT-Biotechnology Applications Center, Knoxville, Tennessee, in support of the Weston project. The list of analytical tests performed, as well as date of receipt and analysis, can be found in the attached report.

II. Analytical Results/Methodology

The analytical results for this report are presented by analytical test. Each set of data will include sample identification information and the analytical results. Please note that the data are not blank corrected.

The sample was analyzed for volatile organic compounds by gas chromatography/mass spectroscopy (GC/MS) based on EPA SW-846 3rd edition, method 8240.

Reviewed and Approved:

Those

Alyce R. Moore Laboratory Manager

American Council of Independent Laboratories International Association of Environmental Testing Laboratories American Association for Laboratory Accreditation

P.O. Number: 580000.045

May 3, 1993

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53867

r.H.Z. * H

III. Quality Control

Routine laboratory level I QC was followed.

The volatiles analyses were performed by purge and trap with a J&W DB-624 megabore column on a Finnigan OWA GC/MS/DS unit. The sample analyses generally went well, although some difficulties were encountered related to sample matrix. Toluene-d8 and bromofluorobenzene surrogate recoveries were outside method limits in the sample analyses. This was confirmed as a matrix phenomenon by reanalysis. The two analyses were in good agreement. There were no other problems seen in final data review.

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53867

1.m2 * m3

VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Rx SLURRY Lab Sample ID: XX1784

Compound	Concentration	Compound	Concentration
chloromethane	37 U	1,2-dichloropropane	19 U
bromomethane	37 U	cis-1,3-dichloropropene	19 U
vinyl chloride	37 U	trichloroethene	19 U
chloroethane	37 U	dibromochloromethane	19 U
methylene chloride	23 B	1,1,2-trichloroethane	19 U
acetone	110	benzene	19 U
carbon disulfide	7 J	trans-1,3-dichloropropene	19 U
1,1-dichloroethene	19 U	bromoform	19 U
1,1-dichloroethane	19 U	4-methyl-2-pentanone	37 U
1,2-dichloroethene (total)	19 U	2-hexanone	37 Ŭ
chloroform	19 U	tetrachloroethene	19 U
1,2-dichloroethane	19 U	1,1,2,2-tetrachloroethane	19 U
2-butanone	14 J	toluene	19 U
1,1,1-trichloroethane	. 19 U	chlorobenzene	19 U
carbon tetrachloride	19 U	ethylbenzene	19 U
vinyl acetate	37 U	styrene	19 U
bromodichloromethane	19 U	xylenes (total)	19 U

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

J - Indicates an estimated value less than the detection limit.

B - Analyte was found in the blank as well as the sample.

Date of Analysis: 04/23/93

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53867

NH2 HU

ADDITIONAL VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Rx SLURRY Lab Sample ID: XX1784

<u>Tentative Identification (1)</u>

cyclohexanone (ACN)

Concentration (2)

54

Remarks:

(1) Identification is based on computer search of the NIST Library.

(2) Concentration is based on a response factor of 1.00 relative to the internal standard.

4

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

.

Job Number: ITDK 53867

VOLATILE ORGANIC COMPOUNDS

Results in µg/kg (ppb)

Sample Matrix: Soil

Client Sample ID: Rx SLURRY RE Lab Sample ID: XX1784

Concentration	Compound	Concentration
37 U	1,2-dichloropropane	19 U
37 U	cis-1,3-dichloropropene	19 U
37 U	trichloroethene	19 U
37 U	dibromochloromethane	19 U
21 B	1,1,2-trichloroethane	19 U
110	benzene	19 U
6 J	trans-1,3-dichloropropene	19 U
19 U ·	bromoform	19 U
19 U	4-methyl-2-pentanone	37 U
19 U	2-hexanone	37 U
19 U	tetrachloroethene	19 U -
19 U	1,1,2,2-tetrachloroethane	19 U
19 J	toluene	19 U
19 U	chlorobenzene	19 U
19 U	ethylbenzene	19 U
37 U	styrene	19 U
19 U	xylenes (total)	19 U
	37 U 10 U 19 U 19 <td< td=""><td>37U1,2-dichloropropane37Ucis-1,3-dichloropropene37Utrichloroethene37Udibromochloromethane37Udibromochloromethane37Udibromochloromethane10benzene6Jtrans-1,3-dichloropropene19Ubromoform19U4-methyl-2-pentanone19U2-hexanone19Utetrachloroethene19U1,1,2,2-tetrachloroethane19Jtoluene19Uchlorobenzene19Uchlorobenzene19Uchlorobenzene37Ustyrene</td></td<>	37U1,2-dichloropropane37Ucis-1,3-dichloropropene37Utrichloroethene37Udibromochloromethane37Udibromochloromethane37Udibromochloromethane10benzene6Jtrans-1,3-dichloropropene19Ubromoform19U4-methyl-2-pentanone19U2-hexanone19Utetrachloroethene19U1,1,2,2-tetrachloroethane19Jtoluene19Uchlorobenzene19Uchlorobenzene19Uchlorobenzene37Ustyrene

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

J - Indicates an estimated value less than the detection limit.

B - Analyte was found in the blank as well as the sample.

Date of Analysis: 04/24/93

5

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53867

nn. * * j

ADDITIONAL VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Rx SLURRY RE Lab Sample ID: XX1784

Tentative Identification (1)

cyclohexanone (ACN)

Concentration (2)

73

Remarks:

(1) Identification is based on computer search of the NIST Library.

(2) Concentration is based on a response factor of 1.00 relative to the internal standard.

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53867

VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Method Blank Lab Sample ID: VB04232

Compound	Concent	tration	Compound	Concen	<u>tration</u>
chloromethane	10	U	1,2-dichloropropane	5	U
bromomethane	10	U	cis-1,3-dichloropropene	5	U
vinyl chloride	10	U	trichloroethene	5	ับ
chloroethane ·	10	U	dibromochloromethane	5	U
methylene chloride	2	J	1,1,2-trichloroethane	5	U
acetone	10	U	benzene	5	U
carbon disulfide	5	U·	trans-1,3-dichloropropene	5	·U
1,1-dichloroethene	5	U	bromoform	5	U
1,1-dichloroethane	5	U	4-methyl-2-pentanone	10	U
1,2-dichloroethene (total)	5	U	2-hexanone	10	U
chloroform	5	U	tetrachloroethene	. 5	U
1,2-dichloroethane	5	U	1,1,2,2-tetrachloroethane	5	U
2-butanone	10	U	toluene	5	U
1,1,1-trichloroethane	5	U	chlorobenzene	5	U
carbon tetrachloride	5	U	ethylbenzene	5	U
vinyl acetate	10	U	styrene	· 5	U
bromodichloromethane	5	Ū	xylenes (total)	5	U

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

J - Indicates an estimated value less than the detection limit.

Date of Analysis: 04/23/93

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53867

ADDITIONAL VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Method Blank Lab Sample ID: VB04232

Tentative Identification (1)

Concentration (2)

None detected

Remarks:

Identification is based on computer search of the NIST Library.
 Concentration is based on a response factor of 1.00 relative to the internal standard.

÷

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53867

SOIL SURROGATE PERCENT RECOVERY SUMMARY

Client Sample ID	Toluene-D8 (81-117%)*	BFB. (74-121%)*	1,2 Dichloroethane-D4 (70-121%)*
Rx SLURRY	139 **	60 **	90
Rx SLURRY RE	130 **	64 **	. 86
Method Blank	94	93	90

VOLATILE

* - Values in parentheses represent QC limits.

** - Values are outside QC limits.

1482143

CERTIFICATE OF ANALYSIS

ANALYTICAL

SERVICES

IT Corporation **312 Directors Drive** Knoxville, TN 37923 Attn: Kandi Brown

Job Number: ITDK 53880

This is the Certificate of Analysis for the following sample:

Weston **Client Project ID:** Date Received by Lab: 04/19/93 Number of Samples: One (1)Sample Type: Slurry

I. Introduction

On 04/19/93, one (1) slurry sample arrived at the ITAS-Knoxville, Tennessee, laboratory from IT-Biotechnology Applications Center, Knoxville, Tennessee, in support of the Weston project. The list of analytical tests performed, as well as date of receipt and analysis, can be found in the attached report.

Π. Analytical Results/Methodology

The analytical results for this report are presented by analytical test. Each set of data will include sample identification information and the analytical results. Please note that the data are not blank corrected.

The sample was analyzed for volatile organic compounds by gas chromatography/mass spectroscopy (GC/MS) based on EPA SW-846 3rd edition, method 8240.

Reviewed and Approved:

marge /

Alyce R. Moore Laboratory Manager

May 3, 1993

. . . .

P.O. Number: 580000.045

American Council of Independent Laboratories International Association of Environmental Testing Laboratories American Association for Laboratory Accreditation

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53880

III. <u>Quality Control</u>

Routine laboratory level I QC was followed.

The volatiles analyses were performed by purge and trap with a J&W DB-624 megabore column on a Finnigan OWA GC/MS/DS unit. The sample analyses generally went well, although some difficulties were encountered related to sample matrix. Toluene-d8 and bromofluorobenzene surrogate recoveries were outside method limits in the original sample analysis. Analysis of a dilution exhibited compliant surrogate recoveries. The original analysis was included for comparison. There were no other problems seen in final data review.

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53880

VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: 4/19/93 Rx Lab Sample ID: XX1952

Compound	Concentration	Compound	Concentration
chloromethane	31 U	1,2-dichloropropane	16 U
bromomethane	31 U.	cis-1,3-dichloropropene	16 U
vinyl chloride	31 U	trichloroethene	16 U
chloroethane	31 U	dibromochloromethane	16 U
methylene chloride	15 BJ	1,1,2-trichloroethane	16 U
acetone	97 B .	benzene	16 U
carbon disulfide	16 U	trans-1,3-dichloropropene	16 U
1,1-dichloroethene	16 U	bromoform	16 U
1,1-dichloroethane	16 U	4-methyl-2-pentanone	31 U
1,2-dichloroethene (total)	16 U	2-hexanone	31 U
chloroform	16 U	tetrachloroethene	16 U
1,2-dichloroethane	16 U	1,1,2,2-tetrachloroethane	16 U
2-butanone	14 J	toluene	16 U
1,1,1-trichloroethane	16 U	chlorobenzene	16 U
carbon tetrachloride	16 U	ethylbenzene	16 U
vinyl acetate	31 U.	styrene	16 U
bromodichloromethane	16 U	xylenes (total)	16 U

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

J - Indicates an estimated value less than the detection limit.

B - Analyte was found in the blank as well as the sample.

Date of Analysis: 04/22/93

3

WOLATILE TCL.FRM 4/13/92

. • • • •

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53880

ADDITIONAL VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: 4/19/93 Rx Lab Sample ID: XX1952

Tentative Identification (1)

cyclohexanone (ACN)

Concentration (2)

26

Remarks:

(1) Identification is based on computer search of the NIST Library.

(2) Concentration is based on a response factor of 1.00 relative to the internal standard.

.

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE. TN

Job Number: ITDK 53880

VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: 4/19/93 Rx DL Lab Sample ID: XX1952

Compound	<u>Concentration</u>	Compound	Concentration
chloromethane	160 U	1,2-dichloropropane	- 78 U
bromomethane	160 U	cis-1,3-dichloropropene	78 U
vinyl chloride	160 U `	trichloroethene	78 [·] U
chloroethane	160 U	dibromochloromethane	. 78 U
methylene chloride	67 BDJ	1,1,2-trichloroethane	78 U
acetone	120 BDJ	benzene	78 U
carbon disulfide	78 [·] U	trans-1,3-dichloropropene	78 U
1,1-dichloroethene	78 U	bromoform	78 U
1,1-dichloroethane	78 U	4-methyl-2-pentanone	160 U
1,2-dichloroethene (total)	78 U	2-hexanone	160 U
chloroform	78 U	tetrachloroethene	78 U
1,2-dichloroethane	78 U	1,1,2,2-tetrachloroethane	78 U
2-butanone	160 U	toluene	78 U
1,1,1-trichloroethane	78 U	chlorobenzene	78 U
carbon tetrachloride	78 U	ethylbenzene	78 U
vinyl acetate	1 60 U	styrene	78 U
bromodichloromethane	78 U	xylenes (total)	78 U

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

J - Indicates an estimated value less than the detection limit.

B - Analyte was found in the blank as well as the sample.

D - Compound analyzed at a secondary dilution factor.

Date of Analysis: 04/22/93

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53880

ADDITIONAL VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: 4/19/93 Rx DL Lab Sample ID: XX1952

> <u>Tentative Identification (1)</u> None Detected

Concentration (2)

Remarks:

(1) Identification is based on computer search of the NIST Library.

(2) Concentration is based on a response factor of 1.00 relative to the internal standard.

VOLATILE\TCL.FRM 4/13/92

• - ,

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53880

VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Method Blank Lab Sample ID: VB04212

Compound	Concentration	on <u>Compound</u>	Concentration
chloromethane	10 U	1,2-dichloropropane	. 5 U
bromomethane	10 U	cis-1,3-dichloropropene	5 U
vinyl chloride	10 U	trichloroethene	5 U
chloroethane	· 10 U	dibromochloromethane	· 5 U
methylene chloride	2 J	1,1,2-trichloroethane	5 U ¹
acetone	3 J	benzene	5 U
carbon disulfide	5 U	trans-1,3-dichloropropene	5 U
1,1-dichloroethene	5 U	bromoform	5 U
1,1-dichloroethane	5 U	4-methyl-2-pentanone	10 U
1,2-dichloroethene (total)	5 U	2-hexanone	10 U
chloroform	5 U	tetrachloroethene	5 U
1,2-dichloroethane	5 U	1,1,2,2-tetrachloroethane	5 U
2-butanone	10 U	toluene	5 U
1,1,1-trichloroethane	5 U	chlorobenzene	5 U
carbon tetrachloride	5 U	ethylbenzene	5 U
vinyl acetate	10 U	styrenc	5 U
bromodichloromethane	5 U	xylenes (total)	5 U

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

J - Indicates an estimated value less than the detection limit.

Date of Analysis: 04/21/93

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53880

ADDITIONAL VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Method Blank Lab Sample ID: VB04212

> Tentative Identification (1) None detected

Concentration (2)

Remarks:

(1) Identification is based on computer search of the NIST Library.

(2) Concentration is based on a response factor of 1.00 relative to the internal standard.

. .

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53880

SOIL SURROGATE PERCENT RECOVERY SUMMARY

VOLATILE

<u>Client Sample ID</u>	Toluene-D8 <u>(81-117%)</u> *	BFB (74-121%)*	1,2 Dichloroethane-D4 (70-121%)*
4/19/93 R x	. 123 **	61 **	86
4/19/93 Rx DL	109	91	97
Method Blank	102	102	96

* - Values in parentheses represent QC limits.

****** - Values are outside QC limits.

VOLATILE/TCL.FRM 4/13/92

ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

IT Corporation 312 Directors Drive Knoxville, TN 37923 Attn: Kandi Brown

Job Number: ITDK 53802

P.O. Number: 4084900.330

May 3, 1993

This is the Certificate of Analysis for the following sample:

Client Project ID:WestonDate Received by Lab:04/08/93Number of Samples:One (1)Sample Type:Slurry

I. <u>Introduction</u>

On 04/08/93, one (1) slurry sample arrived at the ITAS-Knoxville, Tennessee, laboratory from IT Biotechnology Applications Center, Knoxville, Tennessee, in support of the Weston project. The list of analytical tests performed, as well as date of receipt and analysis, can be found in the attached report.

II. Analytical Results/Methodology

The analytical results for this report are presented by analytical test. Each set of data will include sample identification information and the analytical results. Please note that the data are not blank corrected.

The sample was analyzed for volatile organic compounds by gas chromatography/mass spectroscopy (GC/MS) based on EPA SW-846 3rd edition, method 8240.

Reviewed and Approved:

Thean

Alyce R. Moore Laboratory Manager

American Council of Independent Laboratories International Association of Environmental Testing Laboratories American Association for Laboratory Accreditation

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53802

III. Quality Control

Routine laboratory level I QC was followed.

The volatiles analyses were performed by purge and trap with a J&W DB-624 megabore column on a Finnigan OWA GC/MS/DS. Analysis was originally requested as 8270. This was changed to 8240 per Kandi Brown on 04/16/93. The sample analyses went well. Two surrogate spikes, toluene-d8 and bromofluorobenzene, were outside method limits in the original analysis of Rx 4/8/93. This was confirmed as an effect of matrix by reanalysis. This result was consistent with the appearance of the slurry. Both sets of samples were submitted for comparison. There were no problems seen in final data review.

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53802

VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Rx 4/8/93 Lab Sample ID: XX0876

Compound	Concentrat	tion <u>Compound</u>	Concentra	<u>tion</u>
chloromethane	43 U	1,2-dichloropropane	22 1	U
bromomethane	43 U	cis-1,3-dichloropropene	22 0	IJ
vinyl chloride	· 43 U	trichloroethene	22 0	IJ
chloroethane	43 U	dibromochloromethane	22 0	IJ
methylene chloride	51 B	1,1,2-trichloroethane	ຸ 22 ເ	U
acetone	140	benzene	22 0	J
carbon disulfide	10 J	trans-1,3-dichloropropene	22 (J.
1,1-dichloroethene	22 U	bromoform	22 T	J
1,1-dichloroethane	22 U	4-methyl-2-pentanone	4 3 (J
1,2-dichloroethene (total)	22 U	2-hexanone	43 U	J
chloroform	22 U	tetrachloroethene	22 (J
1,2-dichloroethane	22 U	1,1,2,2-tetrachloroethane	22 0	J
2-butanone	7 J	toluene	22 (J
1,1,1-trichloroethane	22 U	chlorobenzene	22 T	J
carbon tetrachloride	22 U	ethylbenzene	22 U	J
vinyl acetate	43 U	styrene	22 (J
bromodichloromethane	22 U	xylenes (total)	22 (J

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

J - Indicates an estimated value less than the detection limit.

B - Analyte was found in the blank as well as the sample.

Date of Analysis: 04/23/93

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53802

ADDITIONAL VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Rx 4/8/93 Lab Sample ID: XX0876

Tentative Identification (1)

Concentration (2)

None detected

Remarks

(1) Identification is based on computer search of the NIST Library.
 (2) Concentration is based on a response factor of 1.00 relative to the internal standard.

WOLATILE\TCL.FRM 4/13/92

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53802

VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Rx 4/8/93RE Lab Sample ID: XX0876

Compound	Concentration	Compound	Concentration
chloromethane	43 U	1,2-dichloropropane	22 U
bromomethane	43 U	cis-1,3-dichloropropene	22 U
vinyl chloride	43 U	trichloroethene	22 U
chloroethane	43 U	dibromochloromethane	22 U
methylene chloride	54 B	1,1,2-trichloroethane	22 U
acetone	120	benzene	22 U
carbon disulfide	10 J	trans-1,3-dichloropropene	22 U
1,1-dichloroethene	22 U	bromoform	22 U
1,1-dichloroethane	22 U	4-methyl-2-pentanone	43 U
1,2-dichloroethene (total)	22 U	2-hexanone	43 U
chloroform	22 U	tetrachloroethene	22 U
1,2-dichloroethane	22 U	1,1,2,2-tetrachloroethane	22 U
2-butanone	7 J	toluene	22 U
1,1,1-trichloroethane	22 U	chlorobenzene	22 U
carbon tetrachloride	22 U	ethylbenzene	22 U
vinyl acetate	43 U	styrene	22 U
bromodichloromethane	22 U	xylenes (total)	22 U

J - Indicates an estimated value less than the detection limit.

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

B - Analyte was found in the blank as well as the sample.

Date of Analysis: 04/23/93

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53802

ADDITIONAL VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Rx 4/8/93RE Lab Sample ID: XX0876

Tentative Identification (1)

Concentration (2)

None detected

Remarks

(1) Identification is based on computer search of the NIST Library.

(2) Concentration is based on a response factor of 1.00 relative to the internal standard.

- 6

WOLATILENTCL.FRM 4/13/92

1

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53802

VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Method Blank Lab Sample ID: VB04223

Compound	Concentration	Compound	Concentration
chloromethane	10 U	1,2-dichloropropane	5 U
bromomethane	10 U	cis-1,3-dichloropropene	5 U
vinyl chloride	10 U	trichloroethene	5 U
chloroethane	10 .U	dibromochloromethane	5 U
methylene chloride	3 J	1,1,2-trichloroethane	5 U
acetone	10 U	benzene	5 U
carbon disulfide	5 U	trans-1,3-dichloropropene	5 U
1,1-dichloroethene	5 U	bromoform	5 U
1,1-dichloroethane	5 U	4-methyl-2-pentanone	10 U
1,2-dichloroethene (total)	5 U	2-hexanone	10 U
chloroform	5 U	tetrachloroethene	5 U
1,2-dichloroethane	5 U	1,1,2,2-tetrachloroethane	5 U
2-butanone	10 U	toluene	5 U
1,1,1-trichloroethane	5 U·	chlorobenzene	5 U
carbon tetrachloride	5 U	ethylbenzene	5 U
vinyl acetate	10 U	styrene	. 5 U
bromodichloromethane	5 U	xylenes (total)	5 U

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

J - Indicates an estimated value less than the detection limit.

Date of Analysis: 04/22/93

.....

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53802

ADDITIONAL VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Method Blank Lab Sample ID: VB04223

Tentative Identification (1)

Concentration (2)

None detected

Remarks

(1) Identification is based on computer search of the NIST Library.

(2) Concentration is based on a response factor of 1.00 relative to the internal standard.

.

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53802

SOIL SURROGATE PERCENT RECOVERY SUMMARY

		<u>VOLATILE</u>	
<u>Client Sample ID</u>	Toluene-D8 (81-117%)*	BFB (74-121%)*	1,2 Dichloroethane-D4 (70-121%)*
Rx 4/8/93	123 **	58 **	92
Rx 4/8/93RE	114	60 **	89
Method Blank	97	95	96

* - Values in parenthesis represent QC limits.

** - Values are outside QC limits.

VOLATILE TCL.FRM 4/13/92

. - , . . ,

I. <u>Introduction</u>

On 04/05/93, two (2) slurry samples arrived at the ITAS-Knoxville, Tennessee, laboratory from IT-Biotechnology Applications Center, Knoxville, Tennessee, in support of the Weston project. The list of analytical tests performed, as well as date of receipt and analysis, can be found in the attached report.

II. Analytical Results/Methodology

The analytical results for this report are presented by analytical test. Each set of data will include sample identification information and the analytical results. Please note that the data are not blank corrected.

The samples were analyzed for volatile organic compounds by gas chromatography/mass spectroscopy (GC/MS) based on EPA SW-846 3rd edition, method 8240.

Reviewed and Approved:

Chyce R. Moore

Alyce R. Moore Laboratory Manager

International Association of Environmental Testing Laboratories American Association for Laboratory Accreditation

American Council of Independent Laboratories

ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

IT Corporation 312 Directors Drive Knoxville, TN 37923 Attn: Kandi Brown

Job Number: ITDK 53775

Client Project ID:

Sample Type:

Number of Samples:

Date Received by Lab: 04/05/93

This is the Certificate of Analysis for the following samples:

Weston

Two (2)

Slurry

P.O. Number: 580000.045

INTERNATIONAL TECHNOLOGY ORPORATION

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53775

.

III. **Ouality Control**

Routine laboratory level I QC was followed.

The volatiles analyses were performed by purge and trap with a J&W DB-624 megabore column on a Finnigan OWA GC/MS/DS unit. The sample analyses went well. The samples were originally coded for 8270 and were extracted. The analysis was changed to 8240 per Kandi Brown on 04/16/93. This resulted in a shortage of sample, hence, only one gram portions of Rx 4/2/93 and Rx 4/5/93 were analyzed. There were no problems seen in final data review.

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53775

VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Rx 4/2/93 Lab Sample ID: XX0337

<u>Compound</u>	Concentration	Compound	<u>Concentration</u>
chloromethane	110 U	1,2-dichloropropane	54 U
bromomethane	110 U	cis-1,3-dichloropropene	54 U
vinyl chloride	110 U	trichloroethene	54 U
chloroethane	110 ⁻ U	dibromochloromethane	54 U
methylene chloride	520 B	1,1,2-trichloroethane	54 U
acetone	330	benzene	54 U
carbon disulfide	54 U	trans-1,3-dichloropropene	54 U
1,1-dichloroethene	54 U	bromoform	54 U
1,1-dichloroethane	54 U	4-methyl-2-pentanone	110 U
1,2-dichloroethene (total)	54 U	2-hexanone	110 U
chloroform	54 U ·	tetrachloroethene	54 U
1,2-dichloroethane	54 U	1,1,2,2-tetrachloroethane	<u>.</u> 54 U
2-butanone	110 U	toluene	54 U
1,1,1-trichloroethane	54 U	chlorobenzene	54 U
carbon tetrachloride	54 U	ethylbenzene	54 U
vinyl acetate	110 U	styrene	54 U
bromodichloromethane	54 U	xylenes (total)	54 U

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

J - Indicates an estimated value less than the detection limit.

B. - Analyte was found in the blank as well as the sample.

Date of Analysis: 04/16/93

3

د. رم و _مم و

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53775

ADDITIONAL VOLATILE ORGANIC COMPOUNDS

Results in $\mu \dot{g}/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Rx 4/2/93 Lab Sample ID: XX0337

Tentative Identification (1)

Concentration (2)

None detected

Remarks:

(1) Identification is based on computer search of the NIST Library.

(2) Concentration is based on a response factor of 1.00 relative to the internal standard.

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53775

VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID:	Rx 4/5/93
Lab Sample ID:	XX0338

	-					
•	Compound	<u>Concen</u>	tration	Compound	Concen	tration
	chloromethane	110	U	1,2-dichloropropane	56	U
	bromomethane	110	U	cis-1,3-dichloropropene	. 56	U
	vinyl chloride	110	U	trichloroethene	. 56	U
	chloroethane	110	U	dibromochloromethane	56	U
	methylene chloride	460	B	1,1,2-trichloroethane	56	U .
	acetone	750		benzene	56	U
	carbon disulfide	56	U	trans-1,3-dichloropropene	56	U
	1,1-dichloroethene	56	U	bromoform	56	U
	1,1-dichloroethane	56	U	4-methyl-2-pentanone	110	U
	1,2-dichloroethene (total)	56	U ·	2-hexanone	110	U
	chloroform	56	U.	tetrachloroethene	56	U
	1,2-dichloroethane	56	. U	1,1,2,2-tetrachloroethane	56	U
	2-butanone	15	J	toluene	56	U
	1,1,1-trichloroethane	56	U	chlorobenzene	56	U
	carbon tetrachloride	. 56	U	ethylbenzene	56	U
	vinyl acetate	110	U	styrene	56	U
	bromodichloromethane	56	U	xylenes (total)	56	U
	•					

J - Indicates an estimated value less than the detection limit.

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

B - Analyte was found in the blank as well as the sample.

Date of Analysis: 04/16/93

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53775

ADDITIONAL VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Rx 4/5/93 Lab Sample ID: XX0338

> Tentative Identification (1) None detected

Concentration (2)

Remarks:

(1) Identification is based on computer search of the NIST Library.

(2) Concentration is based on a response factor of 1.00 relative to the internal standard.

VOLATILE\TCL.FRM 4/13/92

.

- Client Project ID: Weston

÷

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53775

• • • • • • • • •

VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Method Blank Lab Sample ID: EB0416

Compound	Concentration	Compound	<u>Concentration</u>
chloromethane	10 U	1,2-dichloropropane	5 U
bromomethane	10 U	cis-1,3-dichloropropene	5 U
vinyl chloride	10 U	trichloroethene	5 U
chloroethane	10 U	dibromochloromethane	5 U
methylene chloride	4 J	1,1,2-trichloroethane	5 U i
acetone	10 U	benzene	5 U
carbon disulfide	5 U	trans-1,3-dichloropropene	5 U
1,1-dichloroethene	5 U	bromoform	5 U
1,1-dichloroethane	5 .U	4-methyl-2-pentanone	10 U
1,2-dichloroethene (total)	5 U·	2-hexanone	10 U [.]
chloroform	5 U .	tetrachloroethene	5 U
1,2-dichloroethane	5 U	1,1,2,2-tetrachloroethane	5 U
2-butanone	10 U	toluene	· 5 U
1,1,1-trichloroethane	5 U	chlorobenzene	5 U
carbon tetrachloride	5 U	ethylbenzene	5 U
vinyl acetate	10 U	styrene	"5U
bromodichloromethane	5 U	xylenes (total)	5 U

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

J - Indicates an estimated value less than the detection limit.

Date of Analysis: 04/16/93

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53775

ADDITIONAL VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Method Blank Lab Sample ID: EB0416

Tentative Identification (1)

Concentration (2)

None detected

Remarks:

(1) Identification is based on computer search of the NIST Library.

(2) Concentration is based on a response factor of 1.00 relative to the internal standard.

NHL 1 HY

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53775

SOIL SURROGATE PERCENT RECOVERY SUMMARY

		VOLATILI	<u>.</u>
<u>Client Sample ID</u>	Toluene-D8 <u>(81-117%)*</u>	BFB (74-121%)*	1,2 Dichloroethane-D4 (70-121%)*
Rx 4/2/93	102	92	71
Rx 4/5/93	108	87	71
Method Blank	94	97	81

* - Values in parentheses represent QC limits.

WOLATELENTCL.FRM 4/13/92

NRE THE

ANALYTICAL SERVICES

· CERTIFICATE OF ANALYSIS

IT Corporation 312 Directors Drive Knoxville, TN 37923 Attn: Kandi Brown

Job Number: ITDK 53839

This is the Certificate of Analysis for the following sample:

Client Project ID:WestonDate Received by Lab:04/13/93Number of Samples:One (1)Sample Type:Slurry

I. <u>Introduction</u>

On 04/13/93, one (1) slurry sample arrived at the ITAS-Knoxville, Tennessee, laboratory from IT-Biotechnology Applications Center, Knoxville, Tennessee, in support of the Weston project. The list of analytical tests performed, as well as date of receipt and analysis, can be found in the attached report.

II. Analytical Results/Methodology

The analytical results for this report are presented by analytical test. Each set of data will include sample identification information and the analytical results. Please note that the data are not blank corrected.

The sample was analyzed for volatile organic compounds by gas chromatography/mass spectroscopy (GC/MS) based on EPA SW-846 3rd edition, method 8240.

Reviewed and Approved:

Those

Alyce R. Moore Laboratory Manager

American Council of Independent Laboratories International Association of Environmental Testing Laboratories American Association for Laboratory Accreditation May 5, 1993

P.O. Number: 580000.045

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53839

III. <u>Quality Control</u>

Routine laboratory level I QC was followed.

The volatiles analyses were performed by purge and trap with a J&W DB-624 megabore column on a Finnigan OWA GC/MS/DS unit. The original analysis requested was 8270. This was changed to 8240 per Kandi Brown on 04/16/93. The sample analyses generally went well, although some difficulties were encountered related to sample matrix. Toluene-d8 and bromofluorobenzene surrogate recoveries were outside method limits in the sample analyses. This was confirmed as a matrix phenomenon by reanalysis. The two analyses were in good agreement. There were no other problems seen in final data review.

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53839

. . .

VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Rx SLURRY Lab Sample ID: XX1528

Compound	Concentration	Compound	Concentration
chloromethane	29 U	1,2-dichloropropane	15 U
bromomethane	29 U	cis-1,3-dichloropropene	15 U
vinyl chloride	29 U	trichloroethene	15 U
chloroethane	29 U	dibromochloromethane	15 U
methylene chloride	32 B	1,1,2-trichloroethane	15 U
acetone	79	benzene	15 U
carbon disulfide	6 J	trans-1,3-dichloropropene	15 U ·
1,1-dichloroethene	15 U	bromoform	15 U
1,1-dichloroethane	15 U	4-methyl-2-pentanone	29 U
1,2-dichloroethene (total)	15 U	2-hexanone	29 U
chloroform	15 U	tetrachloroethene	15 U
1,2-dichloroethane	15 U	1,1,2,2-tetrachloroethane	15 U
2-butanone	29 U	toluene	15 · U
1,1,1-trichloroethane	15 U	chlorobenzene	15 U
carbon tetrachloride	15 U	ethylbenzene	15 U
vinyl acetate	29 U	styrene	15 U
bromodichloromethane	15 U	xylenes (total)	15 U

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

J - Indicates an estimated value less than the detection limit.

B - Analyte was found in the blank as well as the sample.

Date of Analysis: 04/23/93

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53839

ADDITIONAL VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Rx SLURRY Lab Sample ID: XX1528

Tentative Identification (1)

cyclohexanone (ACN)

Concentration (2)

22

Remarks:

(1) Identification is based on computer search of the NIST Library.

(2) Concentration is based on a response factor of 1.00 relative to the internal standard.

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53839

.

VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Rx SLURRY RE Lab Sample ID: XX1528

Concentration	Compound	Concentration
29 U	1,2-dichloropropane	15 U
29 U	cis-1,3-dichloropropene	15 U
29 U.	trichloroethene	15 U
29 U	dibromochloromethane	15 U
29 B	1,1,2-trichloroethane	15 U
76	benzene	15 U
. 5 J	trans-1,3-dichloropropene	15 U
15 U	bromoform	15 U
15 U	4-methyl-2-pentanone	29 U
15 U	2-hexanone	29 U
15 U	tetrachloroethene	15 U
15 U	1,1,2,2-tetrachloroethane	15 U
5 J	toluene	15 U
15 U	chlorobenzene	15 U
15 U	ethylbenzene	15 U
29 U	styrene	15 U
15 U.	xylenes (total)	15 U
	29 U 29 U 29 U 29 U 29 B 76 J 5 J 15 U 29 U	29U1,2-dichloropropane29Ucis-1,3-dichloropropene29Utrichloroethene29Udibromochloromethane29B1,1,2-trichloroethane29B1,1,2-trichloroethane76benzene5Jtrans-1,3-dichloropropene15Ubromoform15U2-hexanone15U2-hexanone15Utetrachloroethene15U1,1,2,2-tetrachloroethane5Jtoluene15Uchlorobenzene15Uchlorobenzene15Uethylbenzene29Ustyrene

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

J - Indicates an estimated value less than the detection limit.

B - Analyte was found in the blank as well as the sample.

Date of Analysis: 04/23/93

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53839

ſ

ADDITIONAL VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Rx SLURRY RE Lab Sample ID: XX1528

Tentative Identification (1)

cyclohexanone (ACN)

Concentration (2)

31

Remarks:

Identification is based on computer search of the NIST Library.
 Concentration is based on a response factor of 1.00 relative to the internal standard.

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53839

VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Method Blank Lab Sample ID: VB04223

Compound	Concentration		Compound	<u>Concentration</u>	
chloromethane	10	U	1,2-dichloropropane	5	U.
bromomethane	10	U	cis-1,3-dichloropropene	5	U
vinyl chloride	10	U	trichloroethene	5	U
chloroethane	10	U	dibromochloromethane	5	U
methylene chloride	3	J	1,1,2-trichloroethane	5	U
acetone	10	U	benzene	5	U
carbon disulfide	5	U	trans-1,3-dichloropropene	5	U
1,1-dichloroethene	5	U	bromoform	5	U
1,1-dichloroethane	5	U	4-methyi-2-pentanone	10	U
1,2-dichloroethene (total)	5	U	2-hexanone	10	U
chloroform	5	U	tetrachloroethene	5	U
1,2-dichloroethane	5	U	1,1,2,2-tetrachloroethane	5	U
2-butanone	10	U	toluene	5	U
1,1,1-trichloroethane	5.	U	chlorobenzene	5	U
carbon tetrachloride	5	U	ethylbenzene	5	U
vinyl acetate	10	U .	styrene	5	U
bromodichloromethane	5	U	xylenes (total)	5	U

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

J - Indicates an estimated value less than the detection limit.

Date of Analysis: 04/22/93

1-2-1-1

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53839

ADDITIONAL VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Method Blank Lab Sample ID: VB04223

Tentative Identification (1)

Concentration (2)

None detected

Remarks:

Identification is based on computer search of the NIST Library.
 Concentration is based on a response factor of 1.00 relative to the internal standard.

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53839

SOIL SURROGATE PERCENT RECOVERY SUMMARY

		VOLATILE	
<u>Client Sample ID</u>	Toluene-D8 (81-117%)*	BFB (74-121%)*	1,2 Dichloroethane-D4 (70-121%)*
Rx SLURRY	120 **	58 **	88
Rx SLURRY RE	109	57 **	87
Method Blank	· 97	95	96

• - Values in parentheses represent QC limits.

** - Values outside QC limits.

VOLATILE TENT-ID.FRM

.

INTERNATIONAL TECHNOLOGY CORPORATION

ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

IT Corporation 312 Directors Drive Knoxville, TN 37923 Attn: Kandi Brown

Job Number: ITDK 53911

This is the Certificate of Analysis for the following sample:

Client Project ID:WestonDate Received by Lab:04/22/93Number of Samples:One (1)Sample Type:Slurry

I. <u>Introduction</u>

On 04/22/93, one (1) slurry sample arrived at the ITAS-Knoxville, Tennessee, laboratory from IT-Biotechnology Applications Center, Knoxville, Tennessee, in support of the Weston project. The list of analytical tests performed, as well as date of receipt and analysis, can be found in the attached report.

II. Analytical Results/Methodology

The analytical results for this report are presented by analytical test. Each set of data will include sample identification information and the analytical results. Please note that the data are not blank corrected.

The sample was analyzed for volatile organic compounds by gas chromatography/mass spectroscopy (GC/MS) based on EPA SW-846 3rd edition, method 8240.

Reviewed and Approved:

Thoose

Alyce[®]R. Moore Laboratory Manager

American Council of Independent Laboratories International Association of Environmental Testing Laboratories American Association for Laboratory Accreditation May 18, 1993

P.O. Number: 580000.045

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53911

III. **Quality Control**

Routine laboratory level I QC was followed.

The volatiles analyses were performed by purge and trap with a J&W DB-624 megabore column on a Finnigan OWA GC/MS/DS unit. The sample analysis went well. The sample exhibited the usual matrix interference resulting in low recoveries of two surrogate spikes. A dilution of the sample lessened the effects of matrix yielding a method compliant analysis, but with elevated detection limits. Both sets of data were included for comparison. There were no problems seen in final data review.

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53911

VOLATILE ORGANIC COMPOUNDS

10.00

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Rx SLURRY Lab Sample ID: XX2233

Compound	Concentration	Compound	Concentration
chloromethane	33 U	1,2-dichloropropane	17 U
bromomethane	33 U	cis-1,3-dichloropropene	17 U
vinyl chloride	33 U	trichloroethene	17 U
chloroethane	· 33 U	dibromochloromethane	17 U
methylene chloride	14 BJ	1,1,2-trichloroethane	17 U
acetone	170 B	benzene	17 U
carbon disulfide	5 J	trans-1,3-dichloropropene	17 U
1,1-dichloroethene	17 U	bromoform	17 U
1,1-dichloroethane	17 U	4-methyl-2-pentanone	33 U
1,2-dichloroethene (total)	17 U	2-hexanone	33 U
chloroform	17 U	tetrachloroethene	17 U
1,2-dichloroethane	17 U	1,1,2,2-tetrachloroethane	17 U
2-butanone	3 J	toluene .	17 U
1,1,1-trichloroethane	17 U	chlorobenzene	17 U
carbon tetrachloride	17 U	ethylbenzene	17 U
vinyl acetate	33 U	styrene	17 U
bromodichloromethane	17 U	xylenes (total)	17 U

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

J - Indicates an estimated value less than the detection limit.

B - Analyte was found in the blank as well as the sample.

Date of Analysis: 05/04/93

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53911

ADDITIONAL VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Rx SLURRY Lab Sample ID: XX2233

> <u>Tentative Identification (1)</u> None detected

Concentration (2)

Remarks:

.

(1) Identification is based on computer search of the NIST Library.

(2) Concentration is based on a response factor of 1.00 relative to the internal standard.

- 4

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53911

VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Rx SLURRY DL Lab Sample ID: XX2233

Compound	Concentration	Compound	<u>Concentration</u>	on
chloromethane	170 U	1,2-dichloropropane	83 U	
bromomethane	170 U	cis-1,3-dichloropropene	83 U	•
vinyl chloride	170 U	trichloroethene	83 U	
chloroethane	170 U	dibromochloromethane	83 U	,
methylene chloride	52 BDJ	1,1,2-trichloroethane	83 U	ŧ
acetone	300 BD	benzene	83 U	, ,
carbon disulfide	83 U	trans-1,3-dichloropropene	83 U	
1,1-dichloroethene	83 U	bromoform	. 83 U	:
1,1-dichloroethane	83 U	4-methyl-2-pentanone	1 70 U	
1,2-dichloroethene (total)	83 U	2-hexanone	170 U	
chloroform	83 U	tetrachloroethene	83 U	•
1,2-dichloroethane	83 U	1,1,2,2-tetrachloroethane	83 U	
2-butanone	170 U	toluene	8 3 U	
1,1,1-trichloroethane	83 U	chlorobenzene	. 83 U	L
carbon tetrachloride	83 U	ethylbenzene	83 U	
vinyl acetate	170 U	styrene	· 83 U	
bromodichloromethane	83 U	xylenes (total)	83 U	

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

J - Indicates an estimated value less than the detection limit.

B - Analyte was found in the blank as well as the sample.

D - Surrogates diluted out.

Date of Analysis: 05/04/93

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53911

ADDITIONAL VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Rx SLURRY DL Lab Sample ID: XX2233

Tentative Identification (1)

Concentration (2)

None Detected

Remarks:

(1) Identification is based on computer search of the NIST Library.

(2) Concentration is based on a response factor of 1.00 relative to the internal standard.

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53911

VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Method Blank Lab Sample ID: VB05042

Compound	Concen	<u>tration</u>	Compound	Concen	Concentration	
chloromethane	10	U	1,2-dichloropropane	5	U	
bromomethane	· 10	U	cis-1,3-dichloropropene	5	U	
vinyl chloride	· 10	U	trichloroethene	5	U	
chloroethane	10	U	dibromochloromethane	5	U	
methylene chloride	5		1,1,2-trichloroethane	5	U	
acetone	8	J	benzene	5	U	
carbon disulfide	5	U	trans-1,3-dichloropropene	5	U	
1,1-dichloroethene	5	U	bromoform	. 5	U	
1,1-dichloroethane	5	U	4-methyl-2-pentanone	10	U	
1,2-dichloroethene (total)	5	U	2-hexanone	10	U	
chloroform	5	U	tetrachloroethene	5	U	
1,2-dichloroethane	5	U	1,1,2,2-tetrachloroethane	5	U	
2-butanone	10	U	toluene	5	U.	
1,1,1-trichloroethane	5	U	chlorobenzene	5	U	
carbon tetrachloride	5	U	ethylbenzene	5	ປ່	
vinyl acetate	10	U	styrene	5	U	
bromodichloromethane	5	U .	xylenes (total)	5	U	

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

J - Indicates an estimated value less than the detection limit.

Date of Analysis: 05/04/93

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53911

ADDITIONAL VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Method Blank Lab Sample ID: VB05042

Tentative Identification (1)

Concentration (2)

None detected

tected

Remarks:

(1) Identification is based on computer search of the NIST Library.

(2) Concentration is based on a response factor of 1.00 relative to the internal standard.

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53911

SOIL SURROGATE PERCENT RECOVERY SUMMARY

		VOLATILE	<u>.</u>
Client Sample ID	Toluene-D8 (81-117%)*	BFB (74-121%)*	1,2 Dichloroethane-D4 (70-121%)*
Rx SLURRY	125 **	67 **	· 83
Rx SLURRY DL	106	91	87
Method Blank	100	98	90

Values in parentheses represent QC limits. Values outside QC limits.

VOLATILE TENT-ID.FRM

682 1 89

CERTIFICATE OF ANALYSIS

ANALYTICAL

SERVICES

IT Corporation 312 Directors Drive Knoxville, TN 37923 Attn: Kandi Brown

Job Number: ITDK 53933

This is the Certificate of Analysis for the following sample:

Client Project ID:WestonDate Received by Lab:04/26/93Number of Samples:One (1)Sample Type:Slurry

I. <u>Introduction</u>

On 04/26/93, one (1) slurry sample arrived at the ITAS-Knoxville, Tennessee, laboratory from IT-Biotechnology Applications Center, Knoxville, Tennessee, in support of the Weston project. The list of analytical tests performed, as well as date of receipt and analysis, can be found in the attached report.

II. Analytical Results/Methodology

The analytical results for this report are presented by analytical test. Each set of data will include sample identification information and the analytical results. Please note that the data are not blank corrected.

The sample was analyzed for volatile organic compounds by gas chromatography/mass spectroscopy (GC/MS) based on EPA SW-846 3rd edition, method 8240.

Reviewed and Approved:

Vesin & Maan

Alyce R. Moore Laboratory Manager

American Council of Independent Laboratories International Association of Environmental Testing Laboratories American Association for Laboratory Accreditation

May 25, 1993

P.O. Number: 580000.045

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN Job Number: ITDK 53933

III. <u>Quality Control</u>

Routine laboratory level I QC was followed.

The volatiles analyses were performed by purge and trap with a J&W DB-624 megabore column on a Finnigan OWA GC/MS/DS unit. The sample analysis generally went well. Two surrogates, toluene-d8 and bromofluorobenzene, yielded low recoveries due to matrix interference. The effects of matrix were lessened by diluting the sample five-fold. This resulted in a compliant analysis, but with elevated detection limits. Both sets of data were submitted for comparison. There were no problems seen in final data review.

ì

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN Job Number: ITDK 53933

682 1 89

VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Reactor S-2 Lab Sample ID: XX2382

Compound	Concentration	Compound	Concentration	
chloromethane	83 U	1,2-dichloropropane	42 U	
bromomethane	83 U	cis-1,3-dichloropropene	42 U	
vinyl chloride	83 U	trichloroethene	42 U	
chloroethane	83 U	dibromochloromethane	42 U	
methylene chloride	170 B	1,1,2-trichloroethane	42 U	
acetone	350 B	benzene	42 U	
carbon disulfide	42 U	trans-1,3-dichloropropene	42 U	
1,1-dichloroethene	42 U	bromoform	42 U	
1,1-dichloroethane	42 U	4-methyl-2-pentanone	83 U	
1,2-dichloroethene (total)	42 U	2-hexanone	83 U	
chloroform	42 U	tetrachloroethene	42 U	
1,2-dichloroethane	42 U	1,1,2,2-tetrachloroethane	42 U	
2-butanone	83 U	toluene	42 U	
1,1,1-trichloroethane	42 U	chlorobenzene	42 U	
carbon tetrachloride	42 U	ethylbenzene	42 U	
vinyl acetate	83 U	styrene	42 U	
bromodichloromethane	42 U	xylenes (total)	42 U	

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

B - Analyte was found in the blank as well as the sample.

J - Indicates an estimated value.

Date of Analysis: 05/07/93

. 3

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN Job Number: ITDK 53933

682 1 89

ADDITIONAL VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Reactor S-2 Lab Sample ID: XX2382

> <u>Tentative Identification (1)</u> None detected

Concentration (2)

Remarks:

(1) Identification is based on computer search of the NIST Library.

(2) Concentration is based on a response factor of 1.00 relative to the internal standard.

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53933

VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Reactor S-2 DL Lab Sample ID: XX2382

Compound	Concentration	Compound	Concentration	
chloromethane	420 U	1,2-dichloropropane	. 210 U	
bromomethane	420 U	cis-1,3-dichloropropene	210 U	
vinyl chloride	420 U	trichloroethene	210 U	
chloroethane	420 U	dibromochloromethane	210 U	
methylene chloride	640 BD	1,1,2-trichloroethane	210 U	
acetone	710 BD	benzene	210 U	
carbon disulfide	210 U	trans-1,3-dichloropropene	210 U	
1,1-dichloroethene	210 U	bromoform	210 U	
1,1-dichloroethane	210 U	4-methyl-2-pentanone	420 U	
1,2-dichloroethene (total)	210 U	2-hexanone	420 U	
chloroform	210 U	tetrachloroethene	210 U	
1,2-dichloroethane	210 U	1,1,2,2-tetrachloroethane	210 U	
2-butanone	420 U	toluene	210 U	
1,1,1-trichloroethane	210 U	chlorobenzene	210 U	
carbon tetrachloride	210 U	ethylbenzene	210 U	
vinyl acetate	420 U	styrene	210 U	
bromodichloromethane	210 U	xylenes (total)	210 U	

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

B - Analyte was found in the blank as well as the sample.

D - Surrogates diluted out.

J - Indicates an estimated value.

Date of Analysis: 05/07/93

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN Job Number: ITDK 53933

682 1 69

ADDITIONAL VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Reactor S-2 DL Lab Sample ID: XX2382

Tentative Identification (1)

Concentration (2)

None Detected

Remarks:

(1) Identification is based on computer search of the NIST Library.

(2) Concentration is based on a response factor of 1.00 relative to the internal standard.

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN Job Number: ITDK 53933

• •

VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Method Blank Lab Sample ID: VB0507

Compound	Concent	tration	Compound	Concentration	
chloromethane	10	U	1,2-dichloropropane	5	·U
bromomethane	10	U	cis-1,3-dichloropropene	5	U
vinyl chloride	10	U	trichloroethene	5	U
chloroethane	10	U	dibromochloromethane	5	U
methylene chloride	18	•	1,1,2-trichloroethane	5	U
acetone	13		benzene	5	U
carbon disulfide	5	U	trans-1,3-dichloropropene	5	U
1,1-dichloroethene	5	U	bromoform	5	U
1,1-dichloroethane	5	U ·	4-methyl-2-pentanone	10	U
1,2-dichloroethene (total)	5	U	2-hexanone	10	บ่
chloroform	5	U	tetrachloroethene	5	U
1,2-dichloroethane	5	U .	1,1,2,2-tetrachloroethane	5	U
2-butanone	10	U	toluene	5	U
1,1,1-trichloroethane	5	U	chlorobenzene	5	U
carbon tetrachloride	5	U	ethylbenzene	5	U
vinyl acetate	10	U	styrene	5	U
bromodichloromethane	5	U	xylenes (total)	5	U

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

Date of Analysis: 05/07/93

VOLATILE TENT-ID.FRM

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN Job Number: ITDK 53933

ADDITIONAL VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Method Blank Lab Sample ID: VB0507

Tentative Identification (1)

Concentration (2)

None detected

Remarks:

(1) Identification is based on computer search of the NIST Library.

(2) Concentration is based on a response factor of 1.00 relative to the internal standard.

· 8

VOLATILE\TENT-ID.FRM

4

ť

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN Job Number: ITDK 53933

SOIL SURROGATE PERCENT RECOVERY SUMMARY

1,2 Dichloroethane-D4 (70-121%)*
92
97
92

• - Values in parentheses represent QC limits.

+ - Values outside of contract required QC limits.

VOLATILE TENT-ID.FRM

ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

IT Corporation 312 Directors Drive Knoxville, TN 37923 Attn: Kandi Brown

Job Number: ITDK 54005

This is the Certificate of Analysis for the following samples:

Client Project ID:WestonDate Received by Lab:05/04/93Number of Samples:Three (3)Sample Type:Solid

I. <u>Introduction</u>

On 05/04/93, three (3) solid samples arrived at the ITAS-Knoxville, Tennessee, laboratory from IT Biotechnology Applications Center, Knoxville, Tennessee, in support of the Weston project. The list of analytical tests performed, as well as date of receipt and analysis, can be found in the attached report.

II. <u>Analytical Results/Methodology</u>

The analytical results for this report are presented by analytical test. Each set of data will include sample identification information and the analytical results. Please note that the data are not blank corrected.

The samples were analyzed for volatile organic compounds by gas chromatography/mass spectroscopy (GC/MS) based on EPA SW-846 3rd edition, method 8240.

Reviewed and Approved:

K. Moore

Alyce R. Moore Laboratory Manager

American Council of Independent Laboratories International Association of Environmental Testing Laboratories American Association for Laboratory Accreditation

May 26, 1993

P.O. Number: 580000.045

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 54005

682 1 89

The samples were analyzed for the requested metals by inductively coupled argon plasma spectroscopy (ICP) based on EPA method 6010.

The samples were analyzed for sulfide based on EPA method 9030.

III. <u>Quality Control</u>

Routine laboratory level I QC was followed.

The volatiles analyses were performed by purge and trap with a J & W DB-624 megabore column on a Finnigan OWA GC/MS/DS. The sample showed poor surrogate recoveries and was reanalyzed. The results of the second analysis were consistent with the first results, indicating that the matrix was responsible for the outliers. Both sets of data were submitted for comparison. There were no problems seen in final data review.

The samples were digested on 05/14/93 for ICP; the requested metals were analyzed by ICP on 05/20/93. All run QC was acceptable. No problems were encountered.

The samples were analyzed for sulfide by iodometric titration. Two grams of sample were added to 200 ml of DI water; the solution was agitated with a magnetic stirrer and titrated according to the referenced method. The results are reported as water-leachable concentrations of the analyte. No problems were encountered.

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 54005

VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: RX Slurry Lab Sample ID: XX3102

Compound	Concentration	Compound	<u>Concentration</u>
chloromethane	29 U	1,2-dichloropropane	14 U
bromomethane	29 U	cis-1,3-dichloropropene	14 U
vinyl chloride	29 U	trichloroethene	14 U
chloroethane	29 U	dibromochloromethane	14 U .
methylene chloride	12 BJ	1,1,2-trichloroethane	14 U
acetone	29 U	benzene	14 U
carbon disulfide	14 U	trans-1,3-dichloropropene	14 U ,
1,1-dichloroethene	14 U	bromoform	14 U
1,1-dichloroethane	14 U	4-methyl-2-pentanone	29 U
1,2-dichloroethene (total)	14 U	2-hexanone	29 U
chloroform	14 U	tetrachloroethene	14 U
1,2-dichloroethane	14 U	1,1,2,2-tetrachloroethane	14 U
2-butanone	29 U	toluene .	14 U
1,1,1-trichloroethane	14 U	chlorobenzene	14 U
carbon tetrachloride	14 U	ethylbenzene	14 U
vinyl acetate	29 U	styrene	14 U
bromodichloromethane	14 U	xylenes (total)	14 U

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

J - Indicates an estimated value less than the detection limit.

B - Analyte was found in the blank as well as the sample.

Date of Analysis: 05/18/93

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 54005

ADDITIONAL VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: RX Slurry Lab Sample ID: XX3102

> Tentative Identification (1) None detected

Concentration (2)

Remarks:

(1) Identification is based on computer search of the NIST Library.
 (2) Concentration is based on a response factor of 1.00 relative to the internal standard.

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 54005

VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: RX Slurry RE Lab Sample ID: XX3102

Compound	Concentration	Compound	Concentration
chloromethane	29 U	1,2-dichloropropane	14 U
bromomethane	29 U	cis-1,3-dichloropropene	14 U
vinyl chloride	29 U	trichloroethene	14 U
chloroethane	· 29 U	dibromochloromethane	14 U
methylene chloride	50 B	1,1,2-trichloroethane	14 Ú
acetone	16 BJ	benzene	14 U
carbon disulfide	14 U	trans-1,3-dichloropropene	14 U
1,1-dichloroethene	14 U	bromoform	14 U
1,1-dichloroethane	14 U	4-methyl-2-pentanone	29 U
1,2-dichloroethene (total)	14 U	2-hexanone	29 U
chloroform	14 U	tetrachloroethene	14 U
1,2-dichloroethane	14 U	1,1,2,2-tetrachloroethane	14 U
2-butanone	29 U	toluene	14 U
1,1,1-trichloroethane	14 U	. chlorobenzene	14 U
carbon tetrachloride	14 U	ethylbenzene	14 U
vinyl acetate	29 U	styrene	14 U
bromodichloromethane	14 U	xylenes (total)	14 U

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

B - Analyte was found in the blank as well as the sample.

J - Indicates an estimated value less than the detection limit.

Date of Analysis: 05/18/93

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 54005

ADDITIONAL VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: RX Slurry RE Lab Sample ID: XX3102

Tentative Identification (1)

Concentration (2)

None detected

Remarks:

(1) Identification is based on computer search of the NIST Library.
 (2) Concentration is based on a response factor of 1.00 relative to the internal standard.

WOLATILE\TCL.FRM 4/13/92

682 1 89

•

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 54005

· VOLATILE ORGANIC COMPOUNDS

•• ,

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Method Blank Lab Sample ID: VB0518

Compound	Concentration		Compound	Concen	tration	•
chloromethane	10	U	1,2-dichloropropane	. 5	U	
bromomethane	10	U	cis-1,3-dichloropropene	5	U	
vinyl chloride	10	U	trichloroethene	5	U	
chloroethane	10	U	dibromochloromethane	5	U	
methylene chloride	4	1	1,1,2-trichloroethane	5	U	.4
acetone	7	1	benzene	5	U	
carbon disulfide	5	U	trans-1,3-dichloropropene	5	U	
1,1-dichloroethene	5	U	bromoform	5	ับ	
1,1-dichloroethane	5	U	4-methyl-2-pentanone	10	U	۰.
1,2-dichloroethene (total)	5	U	2-hexanone	10	U	
chloroform	5	U	tetrachloroethene	. 5	U	
1,2-dichloroethane	5	U	1,1,2,2-tetrachloroethane	5	U	
2-butanone	10	U	toluene	5	U	
1,1,1-trichloroethane	5	U	chlorobenzene	5	U	
carbon tetrachloride	5	U	ethylbenzene	5	U	
vinyl acetate	10	U	styrene	5	U	
bromodichloromethane	5	U	xylenes (total)	5	U	

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

J - Indicates an estimated value less than the detection limit.

.

Date of Analysis: 05/18/93

÷ 7

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 54005

ADDITIONAL VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Method Blank Lab Sample ID: VB0518

Tentative Identification (1)

Concentration (2)

None detected

Remarks:

(1) Identification is based on computer search of the NIST Library.
 (2) Concentration is based on a response factor of 1.00 relative to the internal standard.

.

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 54005

SOIL SURROGATE PERCENT RECOVERY SUMMARY

		<u>VOLATILE</u>	
<u>Client Sample ID</u>	Toluene-D8 (81-117%)*	BFB (74-121%)*	1,2 Dichloroethane-D4 (70-121%)*
RX Slurry	116	66 **	92
RX Slurry RE	126 ++	64 **	98
Method Blank	100	93	97

- Values in parenthesis represent QC limits.

** - Values outside required QC limits.

VOLATILE/TCL.FRM 4/13/92

9

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 54005

PRIORITY POLLUTANT METALS ANALYSIS

Results in mg/kg (ppm)

Sample Matrix: Soil

Client Sample ID: Effluent 1-3 Lab Sample ID: XX3103

Concentration
11.8
45.5
1.7
8.4
32.0

Digestion Date:05/14/93Analysis Date:05/20/93

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

B - Value greater than instrument detection limit, but less than contract required quantitation limit.

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 54005

PRIORITY POLLUTANT METALS ANALYSIS

· Results in mg/kg (ppm)

Sample Matrix: Soil

Client Sample ID: INF32693-02 Lab Sample ID: XX3104

Compound	Concentration
arsenic	35.3
barium	61.7
cadmium	1.2
chromium	8.1
lead	29.6

Digestion Date: 05/14/93 Analysis Date: 05/20/93

\VOLATILE\TCL.FRM 4/13/92

682 I A9

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 54005

PRIORITY POLLUTANT METALS ANALYSIS

Results in mg/kg (ppm)

Sample Matrix: Soil

Client Sample ID: RX Slurry Lab Sample ID: XX3105

Concentration
27.2
62.9
1.8
10.0
32.4

Digestion Date:05/14/93Analysis Date:05/20/93

VOLATILE TCL.FRM 4/13/92

687 1 89

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 54005

PRIORITY POLLUTANT METALS ANALYSIS

Results in mg/kg (ppm)

Sample Matrix: Soil

Client Sample ID: Method Blank Lab Sample ID: PBS-I2370

Compound	Concentration				
arsenic	4.000 U				
barium	0.200 U				
cadmium	0.500 U				
chromium	1.000 U				
lead	4.000 U				

Digestion Date:05/14/93Analysis Date:05/20/93

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

VOLATILE\TCL.FRM 4/13/92

682 - 89

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 54005

SULFIDE ANALYSIS

Results in mg/kg (ppm)

Sample Matrix: Soil

Client Sample ID	Lab Sample ID	<u>Result</u>
Method Blank	P5050	40 U
Effluent 1-3	XX3106	480
Rx Slurry	XX3107	140

Date of Analysis: 05/11/93

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

VOLATILE/TCL.FRM 4/13/92

682 1 89

ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

IT Corporation 312 Directors Drive Knoxville, TN 37923 Attn: Kandi Brown

Job Number: ITDK 53963

May 29, 1993

P.O. Number: 580000.045

This is the Certificate of Analysis for the following sample:

Client Project ID:WestonDate Received by Lab:04/29/93Number of Samples:One (1)Sample Type:Slurry

I. <u>Introduction</u>

On 04/29/93, one (1) slurry sample arrived at the ITAS-Knoxville, Tennessee, laboratory from IT-Biotechnology Applications Center, Knoxville, Tennessee, in support of the Weston project. The list of analytical tests performed, as well as date of receipt and analysis, can be found in the attached report.

II. Analytical Results/Methodology

The analytical results for this report are presented by analytical test. Each set of data will include sample identification information and the analytical results. Please note that the data are not blank corrected.

The sample was analyzed for volatile organic compounds by gas chromatography/mass spectroscopy (GC/MS) based on EPA SW-846 3rd edition, method 8240.

Reviewed and Approved:

Those

Alyce R. Moore Laboratory Manager

American Council of Independent Laboratories International Association of Environmental Testing Laboratories American Association for Laboratory Accreditation

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53963

III. <u>Quality Control</u>

The volatiles analyses were performed by purge and trap with a J&W DB-624 megabore column on a Finnigan OWA GC/MS/DS unit. The sample analyses generally went well. The sample matrix interfered with recovery of surrogate standards and internal standards. A second analysis at five-fold dilution proved compliant, but had an elevated detection limit. Both sets of data were provided for comparison. There were no other problems seen in final data review.

2

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53963

VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Rx SLURRY Lab Sample ID: XX2676

Compound	Concentration		Compound	Concen	<u>tration</u>
chloromethane	33	U	1,2-dichloropropane	17	U
bromomethane	33	U	cis-1,3-dichloropropene	17	U
vinyl chloride	33	U	trichloroethene	17	U
chloroethane	33	U	dibromochloromethane	17	U
methylene chloride	34	B	1,1,2-trichloroethane	17	U
acetone	110	B	benzene	17	U
carbon disulfide	17	U	trans-1,3-dichloropropene	17	U
1,1-dichloroethene	17	U	bromoform	17	U.
1, 1-dichloroethane	17	U	4-methyl-2-pentanone	33	U
1,2-dichloroethene (total)	17	U	2-hexanone	33	U
chloroform	17	·U	tetrachloroethene	17	U
1,2-dichloroethane	17	U	1,1,2,2-tetrachloroethane	· 17	U
2-butanone	33	U	toluene	17	U
1,1,1-trichloroethane	17	U	chlorobenzene	17	U
carbon tetrachloride	17	U	ethylbenzene	17	U
vinyl acetate	33	U	styrene	17	U
bromodichloromethane	17	Ū	xylenes (total)	17	U

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

J - Indicates an estimated value less than the detection limit.

B - Analyte was found in the blank as well as the sample.

Date of Analysis: 05/13/93

3

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Client Project ID: Weston

Job Number: ITDK 5396

ADDITIONAL VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Rx SLURRY Lab Sample ID: XX2676

Tentative Identification (1)

cyclohexanone (ACN)

Concentration (2)

74

Remarks:

(1) Identification is based on computer search of the NIST Library.

(2) Concentration is based on a response factor of 1.00 relative to the internal standard.

Client Project ID: Weston

.

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53963

VOLATILE ORGANIC COMPOUNDS

 and the seal groups of a table

۰.

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Rx SLURRY DL Lab Sample ID: XX2676

Compound	Concentration		Compound	Concen	tration	
chloromethane	170	U	1,2-dichloropropane	83	U	
bromomethane	1 70	U	cis-1,3-dichloropropene	83	U	
vinyl chloride	170	U	trichloroethene	83	U	
chloroethane	170	U	dibromochloromethane	83	U	
methylene chloride	250	BD	1,1,2-trichloroethane	83	U	
acetone	200	BD	benzene	83	U	
carbon disulfide	83	. U .	trans-1,3-dichloropropene	83	U	
1,1-dichloroethene	83	U	bromoform	83	U	
1,1-dichloroethane	83	U	4-methyl-2-pentanone	170	U	
1,2-dichloroethene (total)	83	U	2-hexanone	170	U	
chloroform	83	U	tetrachloroethene	83	U	•
1,2-dichloroethane	83	U	1,1,2,2-tetrachloroethane	. 83	U.	
2-butanone	170	U	toluene	83	U	
1,1,1-trichloroethane	83	U	chlorobenzene	83	U	
carbon tetrachloride	83	U	ethylbenzene	83	U	
vinyl acetate	170	U	styrene	83	U	
bromodichloromethane	83	U	xylenes (total)	83	U	

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

J - Indicates an estimated value less than the detection limit.

B - Analyte was found in the blank as well as the sample.

D - Compound analyzed at a secondary dilution factor.

Date of Analysis: 05/13/93

5

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 5396

* een + eo

ADDITIONAL VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Rx SLURRY DL Lab Sample ID: XX2676

Tentative Identification (1)

cyclohexanone (ACN)

Concentration (2)

210

Remarks:

(1) Identification is based on computer search of the NIST Library.

(2) Concentration is based on a response factor of 1.00 relative to the internal standard.

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53963

÷ ;

VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Method Blank Lab Sample ID: VB0513

Compound	Concent	tration	Compound	Concen	<u>tration</u>
chloromethane	10	U	1,2-dichloropropane	5	U
bromomethane	10	U	cis-1,3-dichloropropene	5	Ŭ
vinyl chloride	10	U	trichloroethene	5	U
chloroethane	10	U	dibromochloromethane	5	U
methylene chloride	2	J	1,1,2-trichloroethane	5	U
acetone	5	J	benzene	5	U
carbon disulfide	5	U	trans-1,3-dichloropropene	5	U
1,1-dichloroethene	5	U	bromoform	5	U
1,1-dichloroethane	5	U	4-methyl-2-pentanone	10	U
1,2-dichloroethene (total)	5	U	2-hexanone	10	U
chloroform	5	U	tetrachloroethene	5	U
1,2-dichloroethane	5	U	1,1,2,2-tetrachloroethane	5	U
2-butanone	10	U .	toluene	5	U
1,1,1-trichloroethane	5	U	chlorobenzene	5	U
carbon tetrachloride	5	U	ethylbenzene	5	U
vinyl acetate	10	U	styrene	5	U
bromodichloromethane	5	U	xylenes (total)	5	U

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

J - Indicates an estimated value less than the detection limit.

Date of Analysis: 05/13/93

.

Client Project ID: Weston

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Job Number: ITDK 53963

ADDITIONAL VOLATILE ORGANIC COMPOUNDS

Results in $\mu g/kg$ (ppb)

Sample Matrix: Soil

Client Sample ID: Method Blank Lab Sample ID: VB0513

> Tentative Identification (1) None detected

Concentration (2)

Remarks:

(1) Identification is based on computer search of the NIST Library.

(2) Concentration is based on a response factor of 1.00 relative to the internal standard.

VOLATILE TENT-ID.FRM

IT ANALYTICAL SERVICES 5815 MIDDLEBROOK PIKE KNOXVILLE, TN

Client Project ID: Weston

Job Number: ITDK 53963

SOIL SURROGATE PERCENT RECOVERY SUMMARY

•	VOLATILE						
<u>Client Sample ID</u>	Toluene-D8 (81-117%)*	BFB <u>(74-121%)</u> *	1,2 Dichloroethane-D4 (70-121%)*				
Rx SLURRY	141 **	65 .**	87				
Rx SLURRY DL	112	86	93				
Method Blank	100	98	86				

• - Values in parentheses' represent QC limits.

****** - Values outside QC limits.

9

VOLATILE TENT-ID.FRM

682 1 89

EPA Method TO-14

weston/tmchp1

ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

IT Corporation 9041 Executive Park Drive Knoxville, TN 37923 Date: March 2, 1993

Attn: Ms. Kandi Brown

Job Number 22010

This is the Certificate of Analysis for the following samples:

Client Project ID:	Weston Bioreactor Treatability Study
Date Received:	February 9, 1993
Work Order:	X3-02-068
Number of Samples:	4
Sample Type:	Canister/Tube

I. Introduction

Four samples arrived at ITAS Cincinnati on February 9, 1993. The samples were collected on January 28, 1993 and February 3, 1993 and were labeled as follows:

Can # 12893C (1) Can # 2393Ç (1) Tube # 12993 Tube # 20493

(1) Samples voided per the client's request.

II. Analytical Results/Methodology

The analytical results for this report are presented by analytical test. The data will include sample identification information, the analytical results, and the appropriate detection limits.

The analysis requested was PAH Semi-Volatile Organics by Gas Chromatography/Mass Spectrometry; EPA Method 8270.

Reviewed and Approved by:

Laurel Fomassoni Project Manager 302068

Robert P. Di Rienzo Laboratory Director

American Council of Independent Laboratories International Association of Environmental Testing Laboratories American Association for Laboratory Accreditation Client: Weston Work Order: X3-02-068 · 30206801

IT ANALYTICAL SERVICE CINCINNATI, OH

III. Quality Control

Immediately following the analytical data for the samples can be found the QA/QC information that pertains to these samples. The purpose of this information is to demonstrate that the data enclosed is scientifically valid and defensible. The QA/QC data is used to assess the laboratory's performance during the analysis of the samples it accompanies. All quantitations were performed within the calibrated range of the analytical instrument.

IV. Data Report Qualifiers

Following are descriptions of data report qualifiers which may have been used in this analytical report.

U The analyte was not detected in the sample or extract. The value reported with the "U" is the detection limit for that compound in that sample.

VALUE The result is a value equal to or greater than the detection limit for that compound.

J Indicates an estimated value. This flag is used when mass spectral data indicates the presence of the compound, but the result is less than the specified detection limit.

Client: Weston Work Order: X3-02-068 30206802

i

IT ANALYTICAL SERVICES CINCINNATI, OH

PAH Semi-Volatile Organics

Client Sample ID:	Tube # 12993
Lab Sample ID:	X2-02-068-03
Analysis Date:	March 1, 1993
Dilution Factor:	

CAS Number

ug/Tube

1

********			•
91-20-3	Naphthalene	10	U
91-57-6	2-Methylnaphthalene	10	U
83-32-9	Acenaphthene	10	U
132-64-9	Dibenzofuran	10	U
86-73-7	Fluorene	10	U
53-70-3	Dibenzo(a,h)anthracene-	10	U
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U

Client: Weston Work Order: X3-02-068 30206803

IT ANALYTICAL SERVICI CINCINNATI, OH

1

÷

N

5

PAH Semi-Volatile Organics

Client Sample ID:	Tube # 20493
Lab Sample ID:	X2-02-068-04
Analysis Date:	March 1, 1993
Dilution Factor:	

CAS Number

ug/Tube

1

..

228522982	***************************************		=
91-20-3	Naphthalene	10	U
91-57-6	2-Methylnaphthalene	10	U
83-32-9	Acenaphthene	10	U
132-64-9	Dibenzofuran	10	U
86-73-7	Fluorene	10	U
53-70-3	Dibenzo(a,h)anthracene-	10	U
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U

Client: Weston Work Order: X3-02-068 30206804

IT ANALYTICAL SERVICES CINCINNATI, OH

PAH Semi-Volatile Organics

Client Sample ID:

Lab Sample ID: Solvent Check (Methylene Chloride)

Analysis Date: January 12, 1993

Dilution Factor:

1

CAS Number	r (Total	ug	
	문장된정도도우구유원방법도중부유율방공유율법()	======		2
91-20-3	Naphthalene		10	U
91-57-6	2-Methylnaphthalene		10	υ
83-32-9	Acenaphthene		10	U
132-64-9	Dibenzofuran		10	U
86-73-7	Fluorene		10	U
53-70-3	Dibenzo(a,h)anthracene-		10	U
85-01-8	Phenanthrene		10	U
120-12-7	Anthracene		10	U

INTERNAT TECHNOLO CORPORA	DGY	_	NALYSI IN OF C			ND CORD *	Retere	143354315 ence Ducument 1 of	: No. 425
	No. 1 WESTER/SELLCC.						Bill to: ⁵		
	ers 2 J Rochersonaut	Scholk				CINCINNAIT			
	No. 3 3/178				9 DAVID			•	
	ager ⁴ Kaus, Barras	Proje	ect Contac	/Phone	12 K.B.2.		ort to: ¹⁰	K. Biznev	
Purchase Order		(Carrier/W	aybill No.	13	. .			
Required Report C	late 11		ONE	CONT	AINER	PER LINE		····	•
Sample ¹⁴ Number	Sample ¹⁵ Description/Type	Collected		Sample ¹⁸ Volume	Pre- ¹⁹ servative	Program		Condition on ²¹	Disposal Record No
128930	HERRI CALLER	7/21/93 14e0	Mr 1111 (1-315:2-	1 (.7455EB	Nove	VOC ENA METHON VOC TO-14-	212	CV Inckind	0001126
2.3430	\checkmark	2/5/035 1400-	1				SICH	nditro IV	
12893-12.19	BAIR SIMPLE	1/29/193	3890-43 JUBE	TUBE		PAH NICH METHO		ustofy Seal in	tat.
2373 -,204	¥.3 V	1965 213/43 1445	.)	\downarrow		1V	Ь	(usth 2/9	/43
						8270		0900.	
Tim SCA	alk		1			Kendi Bro		2/10/43	• ;•
P									
Fither	Dei GA Su	IL MAK		nen	1. ill	uls bar	ente	ne crielick	K In Vie
Special Instruction	ONS: 23 CIRA TUNE,		Be Lines	•					i i
Possible Hazard	Identification: 24		ison B			Sample Disposal: ² Return to Client _		al by Lab Arch	ive (n
Turnaround Time Normal 🗹 Rush	e Required: 26		Q	C Level: 2	7	Project Specific (spe		·	
1. Relinguished by		Dat Tin	te: <u>c;/e4/</u> e			eived by 28 ()	^	TAB à Date	
2. Relinquished by (Signature/Affiliation)		Da Tin	te:		2. Rece (Signature/		Ň	Data Tim	
3. Relinguished by	/	Da	te:		3. Rece	eived by		Date	e:

)

.

Project Name	100. 1 Vesicy/56000.		IN OF C				e 1 of	
	bers 2 J. Rightwiter/					CINCINNATI		
•	No. 3 3178					NEAL		
Project Man	Hader ⁴ Kanal Brand	- · Proi	ect Contacl	t/Phone	12 K.Ben	~~ / 615-666. 3211 Report to	 	
Purchase Order	r No. ⁶	-•	Carrier/W	avbill No.	13			
lequired Report	Date ¹¹			-		PER LINE	l	
Sample ¹⁴ Number	Sampia ¹⁵ Description/Type	Date/Time ¹⁶ Collected		Sample ¹⁸			Condition on ²¹ Receipt	Disposal ²² Record No.
128930	HENR Canter		NEDU	1 CAHISTEE	Nove	VOC ENA METHON TO - 14-	Revel in yord	
23136	↓	2/3/63					indition. NO	
12813	Aie SIMPLE	1/2 8.103	02.80.43 JU3E	TUBE		PAH NIOLA METHOD 5506	Custofy Seal inte	d.
2393		1400 213/43 1400	\downarrow	1			Q (ust h 2/9/1	3
							6900	
		1					5, 28° 4.000 -	
 Special Instruct	ions: 23 ORR, Tubes	54M0 5	3/0 4.550	S OF A		· · · · · · · · · · · · · · · · · · ·		L
Possible Hazard	I Identification: 24 Flammable '					Sample Disposal: ²⁵ Return to Client Disp	oosal by Lab 📕 🛛 Archive	e. (m
urnaround Tim Normal 🔟 Rust	ne Required: ²⁶		Q(HALL N	Project Specific (specify):	······································	, ,
. Relinguished b		Date: 0: /04/93 . Time: 1445			1. Rece (Signature//	ived by 28 Alfdiation)	ALL TIPS à Date: Time:	31993
2. Relinquished b Signature/Affiliation}	· · · · · · · · · · · · · · · · · · ·		te: ne:	<u>-</u> .	2. Rece (Signature//	ived by	Date: Time:	
3. Relinquished b)y		ne:		3. Rece		Date: Time:	

ANALYTICAL SERVICES

IT Corporation 304 Directors Drive Knoxville, TN 37923 Date: March 29, 1993

Attn: Mr. Tim Schalk

Project Number 226

This is the Certificate of Analysis for the following samples:

Client Project ID:	Weston
Date Received:	March 8, 1993
Work Order:	234
Number of Samples:	8
Sample Type:	Air

I. Introduction

Eight samples arrived at ITAS Cincinnati on March 8, 1993. The samples were collected between February 11, 1993 through March 4, 1993 and were labeled as follows:

Tube 🖸 21193	Canister # 21293C
Tube 🖸 21793	Canister # 21893C
Tube 🖸 22593	Canister # 22593C
Tube # 3493	Canister 🖸 3493C

II. Analytical Results/Methodology

The analytical results for this report are presented by analytical test. The data will include sample identification information, the analytical results, and the appropriate detection limits.

The analyses requested included Volatile Organic Compounds by Gas Chromatography/ Mass Spectrometry; NIOSH Method 5506 and Semi-Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry; Method TO-14.

Reviewed and Approved by:

Laurel Tomassoni Project Manager 03234

Systems Manager

American Council of Independent Laboratories International Association of Environmental Testing Laboratories American Association for Laboratory Accreditation Client: Weston Work Order: 234 0323401

IT ANALYTICAL SERVICES CINCINNATI, OH

III. Quality Control

Immediately following the analytical data for the samples can be found the QA/QC information that pertains to these samples. The purpose of this information is to demonstrate that the data enclosed is scientifically valid and defensible. This QA/QC data is used to assess the laboratory's performance during the analysis of the samples it accompanies. All quantitations were performed within the calibrated range of the analytical instrument.

IV. Data Report Qualifiers

Following are descriptions of data report qualifiers which may have been used in this analytical report.

J Indicates an estimated value. This flag is used when mass spectral data indicates the presence of the compound, but the result is less than the specified detection limit.

V. Comments

A interference with 1,3,5-trimethylbenzene made it difficult to confirm the the presence of the compound. Therefore, the detection limit has been elevated for samples 21293C and 22593C.

Client: Weston Work Order: 234 0323408

IT ANALYTICAL SERVICE CINCINNATI, OH

Semi-Volatile Organic Compounds

Client Sample ID: Tube # 21193 2/11/93

1

Lab Sample ID: AA1600

Analysis Date: March 23, 1993

Dilution Factor:

COMPOUND			Detection Limit
	ug/Tube	Q	
			2020222222202
Naphthalene	ND		10
Acenaphthylene	ND		10
Acenaphthene	ND		10
Fluorene	ND		10
Phenanthrene	ND		10
Anthracene	ND		10
Fluoranthene	ND		10
Pyrene	ND		10
Benzo(a)anthracene	ND		10
Chrysene	ND		10
Benzo(b)fluoranthene	ND		10
Benzo(k)fluoranthene	ND		10
Benzo(a)pyrene	ND		10
Indeno(1,2,3-cd)pyrene	ND		10
Dibenz(a,h)anthracene	NĎ		10
Benzo(g,h,i)perylene	ND		10

ND = Not detected at or above the reported detection limit

IT ANALYTICAL SERVICES CINCINNATI, OH

Semi-Volatile Organic Compounds

Client Sample ID: Tube # 21793 2//7/93

1

Lab Sample ID: AA1601

Analysis Date: March 23, 1993

Dilution Factor:

COMPOUND	ug/Tube	Q	Detection Limit
Naphthalene	ND		10
Acenaphthylene	ND		10
Acenaphthene	ND		10
Fluorene	ND		10
Phenanthrene	ND		10
Anthracene	ND		10
Fluoranthene	ND		10
Pyrene	ND		10
Benzo(a)anthracene	ND	•	10
Chrysene	ND		10
Benzo(b)fluoranthene	ND		10
Benzo(k)fluoranthene	ND		10
Benzo(a)pyrene	ND		10
Indeno(1,2,3-cd)pyrene	ND		10
Dibenz(a,h)anthracene	ND		10
Benzo(g,h,i)perylene	ND		10

IT ANALYTICAL SERVICE CINCINNATI, OH

 \boldsymbol{h}

Semi-Volatile Organic Compounds

Client Sample ID: Tube # 22593 2/25/3

1

Lab Sample ID: AA1602

Analysis Date: March 23, 1993

Dilution Factor:

			Detection
COMPOUND	ug/Tube	Q	Limit
		e=====	:0200000000000
Naphthalene	ND		10
Acenaphthylene	ND		10
Acenaphthene	1	J	10
Fluorene	ND		10
Phenanthrene	ND		10
Anthracene	ND		10
Fluoranthene	ND		10
Pyrene	, ND		10
Benzo(a)anthracene	ND		10
Chrysene	ND		10
Benzo(b)fluoranthene	ND		10
Benzo(k)fluoranthene	ND		10
Benzo(a)pyrene	ND		10
Indeno(1,2,3-cd)pyrene	ND		10
Dibenz(a,h)anthracene	ND		10
Benzo(g,h,i)perylene	ND		10

IT ANALYTICAL SERVICES CINCINNATI, OH

Client Sample ID: Canister # 3493C 3/4/53

1

Lab Sample ID: AA1607

Analysis Date: March 23, 1993

Dilution Factor:

			Detection
COMPOUND	ug/Tube	Q	Limit
886688888888888888888888888888888888888		N #5222	
Naphthalene	ND		10
Acenaphthylene	ND		10
Acenaphthene	2	J	10
Fluorene	ND		10
Phenanthrene	ND		10
Anthracene	ND		10
Fluoranthene	ND		10
Pyrene	ND		10
Benzo(a)anthracene	ND	• ;	10
Chrysene	ND		10
Benzo(b)fluoranthene	ND		10
Benzo(k)fluoranthene	ND		10
Benzo(a)pyrene	ND		10
Indeno(1,2,3-cd)pyrene	ND		10
Dibenz(a,h)anthracene	ND		10
Benzo(g,h,i)perylene	ND		10

IT ANALYTICAL SERVICE CINCINNATI, OH

Semi-Volatile Organic Compounds

Client Sample ID:

Lab Sample ID: Method Blank

Analysis Date: March 23, 1993

Dilution Factor:

			Detection
COMPOUND	ug/Tube	Q	Limit
			88263886888
Naphthalene	ND		10
Acenaphthylene	ND		10
Acenaphthene	ND	•	10
Fluorene	ND		10
Phenanthrene	ND		· 10
Anthracene	ND		10
Fluoranthene	ND		10
Pyrene	ND		10
Benzo(a)anthracene	ND		· 10
Chrysene	ND		10
Benzo(b)fluoranthene	• ND		10
Benzo(k)fluoranthene	ND		10
Benzo(a)pyrene	ND		10
Indeno(1,2,3-cd)pyrene	ND		10
Dibenz(a,h)anthracene	ND		10
Benzo(g,h,i)perylene	ND		10

- 1

ND = Not detected at or above the reported detection limit

• •

·

1

IT ANALYTICAL SERVICES CINCINNATI, OH

Quality Assurance Data

Volatile Surrogate Recovery, Percent

Client Sample ID	Lab No.	d4-1,2- Dichloro- ethane	d8- Toluene	p-Bromo- fluoro- benzene
Canister # 21293C	AA1604	101	98	96
Canister # 21893C	AA1605 AA1605 DL	100 103	101 100	93 99
Canister # 22593C	AA1606 AA1606 DL	98 106	.100 98	94 100
Canister # 3493C	AA1607 AA1607 DL	99 105	101 100	91 101-
Method Blank	ABLK01	99	. 100	98
Method Blank	ABLKO2	100	100	99

IT ANALYTICAL SERVICE CINCINNATI, OH

Volatile Organic Compounds

Client Sample ID: Canister # 21293c 2/2/3

Lab Sample ID: AA1604

Analysis Date: March 16, 1993

Dilution Factor: 4.4

			Detection
COMPOUND	ppb	Q	Limit
₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	96288282	8622288	
Chlorodifluoromethane	ND		0.9
n-Pentane	1.1		2.2
	ND		· 1.3
Methylene Chloride	28		0.9
Hexane	ND		1.8
1,1,1-Trichloroethane	3.8		1.3
Benzene	0.8	J	0.9
Toluene	1.6		0.9
n-Octane	0.4	J	0.9
Ethylbenzene	ND		0.9
m/p-Xylene	ND		0.9
o-Xylene	ND		0.9
n-Nonane	0.4	J	0.9
Styrene	ND		0.9
Cumene	ND		0.9
Decane	1.0		0.9
n-Undecane	1.3		0.9
n-Dodecane	1.0		0.9
1,3,5-Trimethylbenzene	ND		3
1,2,4-Trimethylbenzene	- 0.4	J -	0.9
N-Heptane	ND	•	0.9

.

IT ANALYTICAL SERVICES CINCINNATI, OH

Volatile Organic Compounds

Client	Sample	ID:	Canister	ŧ	21893C
--------	--------	-----	----------	---	--------

Lab Sample ID: AA1605

Analysis Date: March 16, 1993 & March 17, 1993 2/13 /3

Dilution Factor: 7.3

			Detection
COMPOUND	ppb	Q	Limit
Chlorodifluoromethane	ND		1.5
n-Pentane	ND		3.7
1,1,2-Trichlorotrifluoroethane	ND		2.2
Methylene Chloride	180	(1)	8
Hexane	1.0	J	2.9
1,1,1-Trichloroethane	21		2.2
Benzene	0.8	J	1.5
Toluene	2.1		1.5
n-Octane	ND		1.5
Ethylbenzene	ND		1.5
m/p-Xylene	ND		1.5
o-Xylene	ND		1.5
n-Nonane	ND		1.5
Styrene	ND		1.5
Cumene	ND		1.5
Decane	0.9	J	1.5
n-Undecane	1.0	J	1.5
n-Dodecane	ND		1.5
1,3,5-Trimethylbenzene	ND		1.5
1,2,4-Trimethylbenzene	ND		1.5
N-Heptane	ND		1.5

ND = Not detected at or above the reported detection limit

IT ANALYTICAL SERVICES CINCINNATI, OH

Volatile Organic Compounds

Client Sample ID: Canister # 22593C 245/93

Lab Sample ID: AA1606

Analysis Date:

March 16, 1993 & March 17, 1993

Dilution Factor: 4.1

			Detection
COMPOUND	ppb	Q	Limit
Chlorodifluoromethane		1929999281	0.8
n-Pentane	1.3		2.1
1,1,2-Trichlorotrifluoroethane	ND		1.2
Methylene Chloride	93	(1)	4
Hexane	0.5	J	1.6
1,1,1-Trichloroethane	120	(1)	6
Benzene	0.7	J	0.8
Toluene	2.4		0.8
n-Octane	ND		0.8
Ethylbenzene	ND		0.8
m/p-Xylene	0.5	J	0.8
o-Xylene	ND		0.8
n-Nonane	ND		0.8
Styrene	ND		0.8
Cumene	ND		0.8
Decane	0.5	J	0.8
n-Undecane	0.6	J	0.8
n-Dodecane	0.5	J	0.8
1,3,5-Trimethylbenzene	ND		2
1,2,4-Trimethylbenzene	ND		0.8
N-Heptane	ND		0.8

ND = Not detected at or above the reported detection limit

IT ANALYTICAL SERVICES CINCINNATI, OH

Volatile Organic Compounds

Client	Sample	ID:	Canister	ŧ	3493C	3/4/93
Client	Sample	ID:	Canister		34330	JI719.

March 16, 1993 & March 17, 1993

Lab Sample ID: AA1607

Analysis Date:

Dilution Factor: 17.8

			Detection
COMPOUND	ppb	Q	Limit
Chlorodifluoromethane	======== ND	8832923	3.6
n-Pentane	ND		8.9
1,1,2-Trichlorotrifluoroethane	ND		5.3
Methylene Chloride	53		3.6
Hexane	2.0	J	7.1
1,1,1-Trichloroethane	.200	(1)	50
Benzene	ND		3.6
Toluene	2.8	J	3.6
n-Octane	ND		3.6
Ethylbenzene	ND		3.6
m/p-Xylene	ND		3.6
o-Xylene	ND		3.6
n-Nonane	ND		3.6
Styrene	ND		3.6
Cumene	ND		3.6
Decane	ND		3.6
n-Undecane	ND		3.6
n-Dodecane	ND		3.6
1,3,5-Trimethylbenzene	ND		3.6
1,2,4-Trimethylbenzene	ND		3.6
N-Heptane	ND		3.6

ND = Not detected at or above the reported detection limit

Volatile Organic Compounds

Client Sample ID:

Lab Sample ID: Method Blank - ABLK01

1

Analysis Date: March 16, 1993

Dilution Factor:

			Detection
COMPOUND	ppb	Q	Limit
Chlorodifluoromethane	ND	1708±63	0.2
	ND		0.5
n-Pentane	ND		0.3
Yothylopo Chlorido	ND		0.2
Methylene Chloride	ND		0.4
			0.3
1,1,1-Trichloroethane	ND		•••
Benzene	ND		0.2
Toluene	ND		0.2
n-Octane	ND		0.2
Ethylbenzene	ND		0.2
m/p-Xylene	ND		0.2
o-Xylene	ND		0.2
n-Nonane	ND		0.2
Styrene	ND		0.2
Cumene	ND		0.2
Decane	ND		0.2
n-Undecane	ND		0.2
n-Dodecane	ND		0.2
1,3,5-Trimethylbenzene	ND		0.2
1,2,4-Trimethylbenzene	ND		0.2
N-Heptane	ND		0.2

IT ANALYTICAL SERVICES CINCINNATI, OH

Volatile Organic Compounds

Client Sample ID:

Lab Sample ID: Method Blank - ABLK02

Analysis Date: March 17, 1993

Dilution Factor: 1

			Detection
COMPOUND	ppb	Q	Limit
Chlorodifluoromethane	ND		0.2
n-Pentane	ND		0.5
1,1,2-Trichlorotrifluoroethane	ND		0.3
Methylene Chloride	ND		0.2
Hexane	ND		. 0.4
1,1,1-Trichloroethane	ND		0.3
Benzene	ND		0.2
Toluene	ND		0.2
n-Octane	ND		0.2
Fruiling Theusene	ND		0.2
m/p-Xylene	ND		0.2
o-Xylene	ND		0.2
n-Nonane	ND		0.2
Styrene	ND		0.2
Cumene	ND		0.2
Decane	ND		0.2
n-Undecane	ND		0.2
n-Dodecane	ND		0.2
1,3,5-Trimethylbenzene	ND		0.2
1,2,4-Trimethylbenzene	ND		0.2
N-Heptane	ND		0.2

INTERNA TECHNOI CORPORA	.ogy			NALYSI NN OF C	S REQ				erence Document Je 1 of	No. 311492
Project Name,	No. 1 WEST	Ex/55000	015 Samp	oles Shipme	ent Date	7 <u>03/</u> 2	2/13	Bill t	0:5. <u>580000.445</u>	
Sample Team Mem	bers <u>27.S</u> ca	ALK LJ RIGHT	MAER	Lab De	stination	8 1 215 (~		
Profit Center										
Project Mar	nager ⁴ Kaur	D. Basery	Proje	ect Contact	:/Phone	12 K. Bur.		eport to	<u>ن. 10 <u>الا. گان</u>ان. 10 <u>ا</u></u>	
Purchase Order	r No. <u>6</u>		(Carrier/Wa	aybill No.	13				<u> </u>
Required Report	Date_11			ONE	CONT	AINER	PER LINE			•
Sample ¹⁴ Number	Sa Descript	mple ¹⁵ tion/Type	Date/Time ¹⁶ Collected	Container ¹⁷	Sample ¹⁸		Requested Tes Program		Condition on ²¹ Receipt	Disposal ²² Record No.
21193	REACTOR	AIRSAMPLE	2/11/93	ORBN .43 TUBE	36.L AIR	None	Part NICH MET		Sander record	
21793			2/17/93						mood	
22543			2/25/13						constation NS.	W.L.Y
. 3493		/	314/93						ax reals prent	
21293C	AizSA	MPLE	2/12/43	MIENAL	i (q~ster		YUC EPA NETH	er> (AMon	
121893C			2/18/93						3/4/55	
225430			4/25743 1700						C.D. Vall Sens Thes	Eis hieu h
34930			5/4/93				ļ			
Special Instructions: 23 Possible Hazard Identification: 24 Sample Disposal: 25										
Non-hazard Image: Second s										
1 Polinguished b		00	Dat Tim	te: 3/5/93				-71	Minds R. Date	31 193 : 0505
2. Relinquished b (Signature/Affiliation)			Dat Tirr			2. Rece (Signature//	ived by		Date: Time:	
3. Relinquished b (Signature/Affiliation)	у		Dal Tim			3. Rece			Date: Time:	
Comments: 29										

•

}

ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

IT Corporation **304 Directors Drive** Knoxville, TN 37923

March 30, 1993 Date:

Attn: Kandi Brown

Project Number 226

This is the Certificate of Analysis for the following samples:

Client Project ID:	Weston - Desorption Study
Date Received:	March 9, 1993
Work Order:	246
Number of Samples:	2
Sample Type:	Air

I. Introduction

Two samples arrived at ITAS Cincinnati on March 9, 1993. The samples were collected on March 8, 1993 and were labeled as follows:

BLANK A BLANK B

Analytical Results/Methodology II.

The analytical results for this report are presented by analytical test. The data will include sample identification information, the analytical results, and the appropriate detection limits.

The analysis requested was PAH Semi-Volatile Organics by NIOSH 5506 modified for Gas Chromatography/Mass Spectrometry; EPA Method 8270. Two concentration levels were examined for the recovery of client specific compounds.

Reviewed and Approved by:

Toma

Project Manager 03246

Systems Manager

American Council of Independent Laboratories International Association of Environmental Testing Laboratories American Association for Laboratory Accreditation

IT ANALYTICAL SERVICES CINCINNATI, OH

III. Quality Control

Immediately following the analytical data for the samples can be found the QA/QC information that pertains to these samples. The purpose of this information is to demonstrate that the data enclosed is scientifically valid and defensible. This QA/QC data is used to assess the laboratory's performance during the analysis of the samples it accompanies. All quantitations were performed within the calibrated range of the analytical instrument.

IT ANALYTICAL SERVICES CINCINNATI, OH

Semi-Volatile Organic Compounds

Client	Sample) ID:	BLANK A	
--------	--------	-------	---------	--

Lab Sample ID: AA1686

Analysis Date: March 25, 1993

Dilution Factor: 1

CAS Number		Theoretical	Actual	Percent Recovery
91-20-3	Naphthalene	15	13	118
208-96-8	Acenaphthylene	 13	13	104
83-32 - 9	Acenaphthene	14	13	115
86-73-7	Fluorene	12	13	96
85-01-8	Phenanthrene	13	13	105
120-12-7	Anthracene	12 [·]	13	95
206-44-0	Fluoranthene	13	13	104
129-00-0	Pyrene	12	13	95
56-55-3	Benzo(a)anthracene	12	13	99
218-01 - 9	Chrysene	13	13	100
205 -99- 2	Benzo(b)fluoranthene	13	13	100
207-08-9	Benzo(k)fluoranthene		13	91
50-32-8	Benzo(a)pyrene	12	13	98
193-39-5	Indeno(1,2,3-cd)pyrene		13	87
53-70-3	Dibenz(a,h)anthracene	11	13	86
191-24-2	Benzo(g,h,i)perylene	11	13	87

...

IT ANALYTICAL SERVICE CINCINNATI, OH

Semi-Volatile Organic Compounds

:

Client	Sample	ID:	BLANK B
--------	--------	-----	---------

Lab Sample ID: AA1687

Analysis Date: March 25, 1993

Dilution Factor: 1

CAS Number	COMPOUND	Theoretical	Actual	Percent Recovery
91-20-3	Naphthalene	42	50	83
208-96-8	Acenaphthylene	45	. 50	89
83-32-9	Acenaphthene	41	50	82
86-73-7	Fluorene	<u> </u>	50	91
85-01-8	Phenanthrene	46	50	93
120-12-7	Anthracene	53	50	106
206-44-0	Fluoranthene	52	50	104
129-00-0	Pyrene	43	50	85
56-55-3	Benzo(a)anthracene	44	50	89
218-01-9	Chrysene	43	50	86
205-99-2	Benzo(b)fluoranthene	52	50	105
207-08-9	Benzo(k)fluoranthene	51	50	101
50-32-8	Benzo(a)pyrene	53	50	106
193-39-5	Indeno(1,2,3-cd)pyrene	49	50	98
53-70-3	Dibenz(a,h)anthracene	49	50	98
191-24-2	Benzo(g,h,i)perylene	. 48	50	96

IT ANALYTICAL SERVICES CINCINNATI, OH

Semi-Volatile Organic Compounds

Client Sample ID:

Lab Sample ID: CH2CL2 Blank

Analysis Date: March 25, 1993

Dilution Factor: 1

			Detection
CAS Number	COMPOUND	ug/Tube	Limit
*********	***********************************		
91-20-3	Naphthalene	ND	10
208-96-8	Acenaphthylene	ND	10
83-32-9	Acenaphthene	ND	10
86-73-7	Fluorene	ND	10
85-01-8	Phenanthrene	ND	10
120-12-7	Anthracene	ND	10
206-44-0	Fluoranthene	ND	10
129-00-0	Pyrene	ND	10
56-55-3	Benzo(a)anthracene	ND	10
218-01-9	Chrysene	ND	10
205-99-2	Benzo(b)fluoranthene	ND	10
207-08-9	Benzo(k)fluoranthene	ND	10
50-32-8	Benzo(a)pyrene	ND	10
193-39-5	Indeno(1,2,3-cd)pyrene	ND	10
53-70-3	Dibenz(a,h)anthracene	ND	10
191-24-2	Benzo(g,h,i)perylene	ND	10

INTERNA TECHNO CORPOR	LOGY		NALYSI IN OF C		UEST A		Reference Documer Page 1 of	nt No. 311426
Project Name/No. 1NestonSamples Shipment Date 7_3/8/93Bill to:5_580000.045						245		
Sample Team Members 2 J. Rightmyer Lab Destination 8 ITAS - Cincinneti								
Profit Cente	r No. 3 3978	-	Lab	Contact	9 Juli	e Moore		
Project Ma	nager ⁴ K. Brown		ect Contact	t/Phone	12K. BI	rown) 26666 Repo	rt to: 10 K. Browr)
Purchase Orde	er No. 6		Carrier/W	aybill No.	13			
Required Report	Date 11	·				PER LINE	· · · · · · · · · · · · · · · · · · ·	······································
Sample ¹⁴ Number	Sample ¹⁵ Description/Type	Date/Time ¹⁶ Collected	Container ¹⁷ Type	Sample ¹⁸ Volume	Pre. 19 servative	Requested Testing	20 Condition on ²¹ Receipt	Disposal ²² Record No.
BIANKA	Blank	318193	: -			Contact Kan	di Rud bunde	
BLANKB	Blank	318193		— <u>;</u> .	an an an	Brown	at +119-10-	LAG
· · ·				. :			· walnut	
·				E E			@ 0845 or	
·····		· · · · · · · · · · · · · · · · · · ·		n.			3/192-01/1020	0
				<u> </u>				
			ļ			i		
Special Instruct	tions: ²³	· ·	·					
Possible Hazar Non-hazard	d Identification: ²⁴ Flammable Skin Ir	ritant 💾 Po	ison B I _1	Unknow	¥(### n l_] ↔	Sample Disposal: ²⁵ Return to Client		hive (mos.)
Turnaround Tin Normal J Rus	ne Required: ²⁶	: :	G() Level: ²	7 III.Q	Project Specific (spec	sify);	· · · · · · · · · · · · · · · · · · ·
1. Relinquished by ²⁸ 1. Received by ²⁸ (Signature/Affiliation) anot Induction JT-BACTIME: 9:45 a.m. (Signature/Affiliation) (Signature/Affiliat								
2. Relinquished (Signature/Affiliation)		Ź Dai Tin			2. Rece (Signature/	Affiliation)	Dat Tin	
3. Relinquished (Signature/Affiliation)	by	Da Tin			3. Rece (Signature//		Dat Tin	te:
Comments: 29								

ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

Date: April 14, 1993

IT Corporation 304 Directors Drive Knoxville, TN 37923 Attn: K. Brown

Project Number 226

This is the Certificate of Analysis for the following samples:

Client Project ID:WeDate Received:MaWork Order:37Number of Samples:4Sample Type:Ad

Weston Air Project March 24, 1993 370 4 Air

I. Introduction

Four samples arrived at ITAS Cincinnati on March 24, 1993. The samples were collected on March 11, 1993 and March 18, 1993 and were labeled as follows:

Tube 🖸	31893	Can	ŧ	31193	С
Tube 🖸	31193	Can	ŧ	31893	С

II. Analytical Results/Methodology

The analytical results for this report are presented by analytical test. The data will include sample identification information, the analytical results, and the appropriate detection limits.

The analyses requested and the methods used are listed on the following page.

Reviewed and Approved by:

m

Jon Sonderman Project Manager 03370

Kevin Michlewicz, Ph.D Laboratory Director

American Council of Independent Laboratories International Association of Environmental Testing Laboratories American Association for Laboratory Accreditation

IT ANALYTICAL SERVICE CINCINNATI, OH

II. Analytical Results/Methodology (cont.)

- * Semi-Volatile by Gas Chromatography/Mass Spectrometry; EPA Method 8270
- Volatiles by Gas Chromatography/Mass Spectrometry; Method TO-14 These samples were analyzed by Air Toxics, LTD. under an ITAS subcontract.

III. Quality Control

Immediately following the analytical data for the samples can be found the QA/QC information that pertains to these samples. The purpose of this information is to demonstrate that the data enclosed is scientifically valid and defensible. This QA/QC data is used to assess the laboratory's performance during the analysis of the samples it accompanies. All quantitations were performed within the calibrated range of the analytical instrument.

IV. Data Report Qualifiers

Following are descriptions of data report qualifiers which may have been used in this analytical report.

U The analyte was not detected in the sample or extract. The value reported with the "U" is the detection limit for that compound in that sample.

VALUE The result is a value equal to or greater than the detection limit for that compound.

J Indicates an estimated value. This flag is used when mass spectral data indicates the presence of the compound, but the result is less than the specified detection limit.

B This flag is used whenever the analyte is found in the blank as well as in the sample.

E This flag indicates that the quantity of this compound detected in this sample is above the linear range of the instrument. Results are probably lower than actual.

. •

IT ANALYTICAL SERVICES CINCINNATI, OH

.

Semi-Volatile Organic	Compounds
Client Sample ID:	Tube # 31893
Lab Sample ID:	AA2480
Analysis Date:	March 31, 1993
Dilution Factor:	1

	ug/t		Detection Limit
Naphthalene		J	10
2-Methylnaphthalene	ND		10
Acenaphthene	2	J	10
Dibenzofuran	ND		10
Fluorene	ND		10
Phenanthrene	ND		10
Anthracene	ND		10
Dibenz(a,h)anthracene	ND		10

Dilution Factor:

IT ANALYTICAL SERVICE CINCINNATI, OH

Semi-Volatile	Organic	Compounds
---------------	---------	-----------

Client Sample ID:	Tube # 31193
Lab Sample ID:	AA2481
Analysis Date:	March 31, 1993

1

Detection COMPOUND ug/tube Limit 242999999882200289828288282888888222888888822888 Naphthalene-----10 ND 2-Methylnaphthalene-----ND 10 Acenaphthene-----10 2 J Dibenzofuran-----10 ND Fluorene-----ND 10 Phenanthrene-----ND 10 Anthracene-----ND · 10 Dibenz(a,h)anthracene-----ND 10

. .

ND = Not detected at or above the reported detection limit

٠.

IT ANALYTICAL SERVICES CINCINNATI, OH

Semi-Volatile Organic	Compounds
Client Sample ID:	
Lab Sample ID:	Method Blank
Analysis Date:	March 31, 1993
Dilution Factor:	1

		Detection
COMPOUND	ug/tube	Limit
Naphthalene	• ND	10
2-Methylnaphthalene	ND	10
Acenaphthene	ND	10
Dibenzofuran	ND	10
Fluorene	ND	10
Phenanthrene	ND	10
Anthracene	ND	10
Dibenz(a,h)anthracene	ND	10

IT ANALYTICAL SERVICE CINCINNATI, OH

Client: Weston Work Order: 370 0337005

Volatile Organic Compounds

Client Sample ID:	.Can 🖸 31193 C
Lab Sample ID:	AA2482
Analysis Date:	April 13, 1993
Dilution Factor:	4.7

Compound	ppbv	Detection Limit
**=====		
Chlorodifluoromethane	ND	0.5
n-Pentane	ND	0.5
Freon 113	ND	0.5
Methylene Chloride	19	0.5
Hexane	ND	0.5
1,1,1-Trichloroethane	ND	0.5
Benzene	ND	0.5
Toluene	ND	0.5
n-Octane	ND	0.5
Ethyl Benzene	ND	0.5
Total Xylenes	ND	0.5
n-Nonane	ND	0.5
Styrene	ND	0.5
Cumene	ND	0.5
Decane	ND	0.5
n-Undecane	ND	0.5
n-Dodecane	ND	0.5
1,3,5-Trimethylbenzene	ND	0.5
1,2,4-Trimethylbenzene	ND	0.5
n-Heptane	ND	0.5

IT ANALYTICAL SERVICES CINCINNATI, OH

Client: Weston Work Order: 370 0337006

Volatile Organic Compounds

Client Sample ID:	Can 🖸 31893 C
Lab Sample ID:	AA2483
Analysis Date:	April 13, 1993
Dilution Factor:	4.3

COMPOUND	ppbv	Detection Limit
Chlorodifluoromethane	ND	0.5
n-Pentane	ND	0.5
Freon 113	ND	0.5
Methylene Chloride		17
Hexane	ND	0.5
1,1,1-Trichloroethane	2.3	0.5
Benzene	ND	0.5
Toluene	3.1	0.5
n-Octane	ND	0.5
Ethyl Benzene	ND	0.5
Total Xylenes	ND	0.5
n-Nonane	ND	0.5
Styrene	·ND	0.5
Cumene	ND	0.5
Decane	ND	0.5
n-Undecane	ND	0.5
n-Dodecane	ND	0.5
1,3,5-Trimethylbenzene	ND	0.5
1,2,4-Trimethylbenzene	ND	0.5
n-Heptane	ND	0.5

* Reported from a dilution of 17

Client: Weston Work Order: 370 0337007

IT ANALYTICAL SERVICI CINCINNATI, OH

Volatile Organic Compounds

Client Sample ID:

Lab Sample ID:	Method Blank
----------------	--------------

Analysis Date: April 13, 1993

Dilution Factor: 1

		Detection
COMPOUND	ppbv	Limit

Chlorodifluoromethane	ND	0.5
n-Pentane	ND	0.5
Freon 113	ND	0.5
Methylene Chloride	ND	0.5
Hexane	ND	0.5
1,1,1-Trichloroethane	ND	0.5
Benzene	ND	0.5
Toluene	ND	0.5
n-Octane	ND	0.5
Ethyl Benzene	ND	0.5
Total Xylenes	ND	0.5
n-Nonane	ND	0.5
Styrene	ND	0.5
Cumene	ND	0.5
Decane	ND	0.5
n-Undecane	ND	0.5
n-Dodecane	ND	0.5
1,3,5-Trimethylbenzene	ND	0.5
1,2,4-Trimethylbenzene	ND	0.5
n-Heptane	ND	0.5

.

IT ANALYTICAL SERVICES CINCINNATI, OH

Quality Assurance Data

Volatile Surrogate Recovery, Percent

Client Sample ID Can # 31193 C	Lab ID AA2482 ,	Octafluoro- toluene 125	d8- Toluene 98	p-Bromo- fluoro- benzene 84
Can # 31893 C	AA2483	127	96	87
Method Blank		100	101	105

Reference Document No. 311316 INTERNATIONAL ANALYSIS REQUEST AND TECHNOLOGY Page 1 of **CHAIN OF CUSTODY RECORD*** CORPORATION Bill to: 5 58ccc 0.045 Project Name/No. 1 Wis foul/Scaro.045 Samples Shipment Date 7 3/33/93 Sample Team Members 2 T. sehalk /T. R. himyriz Lab Destination 8 ITAS CINCINNAM 1 34 78 Lab Contact 9 Juli 11/00RE Profit Center No.³ Project Contact/Phone 12 N. Brown 690-3111. Report to: 10 K1 BRown Project Manager⁴ Kausi Bran Carrier/Waybill No. 13 Purchase Order No.⁶ Required Report Date ¹¹ ONE CONTAINER PER LINE Date/Time¹⁶Container¹⁷Sample¹⁸ Pre. 19 Disposal 22 Requested Testing ²⁰ Condition on ²¹ Sample 14 Sample ¹⁵ Volume servative Record No. Number Description/Type Collected Type Program Receipt 0 A 80 -43 36 L PAH NIUSI, Mathod 3/12/93 31893 SEALAST AR SANSI NONE 5506 hining size TUSE AIK OR 60-43 364 PAH NINSA MEHICO 3/11/43 Nove â1143 Tube 5506 AIR NUC DC Neal_ EPA NELWD METAL CAUSTON NONE 31193C 8270 HIRSAMULE VOC anorita CHNISter VUC EPA Mighins Mittel 31893 C ANNISTER CHAISTER NUNE B2 70 Special Instructions: 23 Sample Disposal: 25 Possible Hazard Identification: 24 Non-hazard Return to Client Skin Irritant Poison B 📑 Unknown 🛄 Disposal by Lab Archive (mus.) Turnaround Time Required: 26 QC Level: 27 W.Ü Normal _ Rush _ Project Specific (specify): 1. Relinquished by 28 3/23/43 Date: 3/ 24/4,5 Date: 1. Received by 28 pore ITIS (i (Signature/Affiliation) (Signature/Affiliation) Time: 3: CU PIN Time: 0715 2. Relinquished by Date: 2. Received by Date: (Signature/Affiliation) (Signature/Affiliation) Time: Time: 3. Relinquished by Date: 3. Received by Date: (Signature/Affiliation) (Signature/Affiliation) Time: Time: Comments: 29

ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

IT Corporation 304 Directors Drive Knoxville, TN 37923 Date: April 30, 1993

Attn: Tim Schalk

Project Number 226

This is the Certificate of Analysis for the following samples:

Client Project ID: Weston Date Received: April 6, 1993 Work Order: 477 Number of Samples: 4 Sample Type: Air

I. Introduction

Four samples arrived at ITAS Cincinnati on April 6, 1993. The samples were collected on March 25, 1993 and April 1, 1993 and were labeled as follows:

040193		04193C
032593	•	032593C

II. Analytical Results/Methodology

The analytical results for this report are presented by analytical test. The data will include sample identification information, the analytical results, and the appropriate detection limits.

The analyses requested and methods used are listed on the following page.

Reviewed and Approved by:

Jon Sonderman Project Manager 04477

Kevin Michlewicz Laboratory Direct

American Council of Independent Laboratories International Association of Environmental Testing Laboratories American Association for Laboratory Accreditation

IT ANALYTICAL SERVICE CINCINNATI, OH

II. Analytical Results/Methodology (cont.)

- * PAH Semivolatile Organics by Gas Chromatography/ Mass Spectrometry; Modified NIOSH 5506
- * Volatile Organics by Gas Chromatography/ Mass Spectrometry; EPA Method TO-14.

III. Quality Control

Immediately following the analytical data for the samples can be found the QA/QC information that pertains to these samples. The purpose of this information is to demonstrate that the data enclosed is scientifically valid and defensible. This QA/QC data is used to assess the laboratory's performance during the analysis of the samples it accompanies. All quantitations were performed within the calibrated range of the analytical instrument.

IV. Data Report Qualifiers

Following are descriptions of data report qualifiers which may have been used in this analytical report.

U The analyte was not detected in the sample or extract. The value reported with the "U" is the detection limit for that compound in that sample.

VALUE The result is a value equal to or greater than the detection limit for that compound.

J Indicates an estimated value. This flag is used when mass spectral data indicates the presence of the compound, but the result is less than the specified detection limit.

B This flag is used whenever the analyte is found in the blank as well as in the sample.

E This flag indicates that the quantity of this compound detected in this sample is above the linear range of the instrument. Results are probably lower than actual.

IT ANALYTICAL SERVICES CINCINNATI, OH

ź

.

Volatile	Organic	Compound	ls

Client Sample ID:	04193C
Lab Sample ID:	AA3231
Analysis Date:	4/24/93, 4/26/93, 4/28/93

Dilution Factor: 3,8

CONDOLUTE	770	Detection Limit
	PPB	
Ethylbenzene	ND	0.8
Styrene	ND	0.8
1,3,5-Trimethylbenzene	ND	0.8
Toluene	1.7	0.8
Nonane	ND	
Benzene	0.6 J	0.8 0.8
Methylene Chloride	40 B (1)	11
1,1,1-Trichloroethane	660 (2)	42
1,1,2-Trichloro-1,2,2-trifluoroethane	3.7	1.1
o-Xylene	ND	0.8
1,2,4-Trimethylbenzene	ND	0.8
m/p-Xylene	ND	0.8
Chlorodifluoromethane	ND	0.8
n-Pentane	2.1	1.9
n-Hexane	0.7 J	1.5
n-Octane	ND	0.8
Cumene	ND	0.8
n-Decane	ND	0.8
n-Undecane	0.7 J	0.8
n-Dodecane	0.9	0.8
n-Heptane	ND	0.8
······································		

ND = Not detected at or above the reported detection limit

(1) Dilution Factor = 38(2) Dilution Factor = 141

.

IT ANALYTICAL SERVICE CINCINNATI, OH

Volatile Organic Compounds

Client Sample ID:	032593C
Lab Sample ID:	AA3232
Analysis Date:	4/24/93, 4/26/93
Dilution Factor:	4.6

		Detection
COMPOUND	PPB	Limit
Ethylbenzene	ND	0.9
Styrene	ND .	0.9
1,3,5-Trimethylbenzene	ND	0.9
Toluene	3.2	0.9
Nonane	ND	0.9
Benzene	0.9 J	0.9
Methylene Chloride	94 B (1)	14
1,1,1-Trichloroethane	5.5	1.4
1,1,2-Trichloro-1,2,2-trifluoroethane	ND ·	1.4
o-Xylene	ND	0.9
1,2,4-Trimethylbenzene	ND	0.9
m/p-Xylene	0.7 J	0.9
Chlorodifluoromethane	2.3	0.9
n-Pentane	1.2	2.3
n-Hexane	1.0 J	1.8
n-Octane	ND	0.9
Cumene	ND	0.9
n-Decane	ND	0.9
n-Undecane	1.1	0.9
n-Dodecane	1.4	0.9
n-Heptane	ND	0.9

ND = Not detected at or above the reported detection limit

IT ANALYTICAL SERVICES CINCINNATI, OH

Volatile Organic Compounds

Client Sample ID:

Lab Sample ID: Method Blank - ABLKU5

.

Analysis Date: 4/24/93

Dilution Factor: 1

		Detection
Compound	PPB	Limit
Ethylbenzene	ND	0.2
Styrene	ND	0.2
1,3,5-Trimethylbenzene	ND	0.2
Toluene	ND ·	0.2
Nonane	ND	0.2
Benzene	0.2 J	0.2
Methylene Chloride	ND	0.3
1,1,1-Trichloroethane	ND	0.3
1,1,2-Trichloro-1,2,2-trifluoroethane	ND ·	0.3
o-Xylene	ND	0.2
1,2,4-Trimethylbenzene	ND	0.2
m/p-Xylene	ND	0.2
Chlorodifluoromethane	ND	0.2
n-Pentane	ND	0.5
n-Hexane	ND	0.4
n-Octane	ND	0.2
Cumene	ND	0.2
n-Decane	ND	0.2
n-Undecane	ND	0.2
n-Dodecane	ND	0.2
n-Heptane	ND	0.2

IT ANALYTICAL SERVICE CINCINNATI, OH

Volatile Organic Compounds

Client Sample ID:

Lab Sample ID: Method Blank - ABLKU8

Analysis Date: 4/26/93

Dilution Factor: 1

		Detection
COMPOUND	PPB	Limit
Ethylbenzene	ND	0.2
Styrene	ND	0.2
1,3,5-Trimethylbenzene	ND	0.2
Toluene	ND	0.2
Nonane	ND	0.2
Benzene	ND	0.2
Methylene Chloride	0.2 J	0.3
1,1,1-Trichloroethane	ND	0.3
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.3
o-Xylene	ND	0.2
1,2,4-Trimethylbenzene	ND	0.2
m/p-Xylene	ND	0.2
Chlorodifluoromethane	ND	0.2
n-Pentane	ND	0.5
n-Hexane	ND	0.4
n-Octane	ND	0.2
Cumene .	ND	0.2
n-Decane	ND	0.2
n-Undecane	ND	0.2
n-Dodecane	ND	0.2
n-Heptane	ND	0.2

÷

Client: Weston Work Order: 477 0447706

Volatile Organic Compounds

Client Sample ID:

Lab Sample ID: Method Blank - ABLKV2

Analysis Date: 4/28/93

Dilution Factor: 1

		Detection
COMPOUND	PPB	Limit
Ethylbenzene	ND	0.2
Styrene	ND.	0.2
1,3,5-Trimethylbenzene	ND	0.2
Toluene	ND	0.2
Nonane	ND	0.2
Benzene	ND	0.2
Methylene Chloride	0.3 J	0.3
1,1,1-Trichloroethane	ND	0.3
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.3
o-Xylene	ND	0.2
1,2,4-Trimethylbenzene	ND	0.2
m/p-Xylene	ND	0.2
Chlorodifluoromethane	ND	0.2
n-Pentane	ND	0.5
n-Hexane	ND	0.4
n-Octane	ND	0.2
Cumene	ND	0.2
n-Decane	ND	0.2
n-Undecane	ND	0.2
n-Dodecane	ND	0.2
n-Heptane	ND	0.2

IT ANALYTICAL SERVICE CINCINNATI, OH

PAH Semivolatile Organic Compounds

•

1

•

Client Sample ID: 040193 Lab Sample ID: AA3229

Analysis Date: 4/22/93

Dilution Factor:

COMPOUND	ug/Tube	Detection Limit
Naphthalene	ND	10
2-Methylnaphthalene	ND	10
Acenaphthene	5 J	10
Dibenzofuran	ND	10
Fluorene	ND	10
Phenanthrene	ND	10
Anthracene	ND	10
Dibenzo(a,h)anthracene	ND	10

-

.....

• • • •

IT ANALYTICAL SERVICES CINCINNATI, OH

Client: Weston Work Order: 477 0447708

PAH Semivolatile Organic Compounds

Client Sample ID:	032593
Lab Sample ID:	AA3230
Analysis Date:	4/22/93
Dilution Factor:	1

Detection COMPOUND ug/Tube Limit _____ 1 J Naphthalene 10 2-Methylnaphthalene ND 10 Acenaphthene 5 J 10 Dibenzofuran ND 10 Fluorene ND 10 Phenanthrene ND 10 Anthracene ND 10 Dibenzo(a,h)anthracene ND . 10

IT ANALYTICAL SERVICE CINCINNATI, OH

PAH Semivolatile Organic Compounds

Client Sample ID:

Lab Sample ID: Method Blank

Analysis Date: 4/22/93

Dilution Factor: 1

COMPOUND	ug/Tube	Detection Limit
Naphthalene	ND	10
2-Methylnaphthalene	ND	10
Acenaphthene	ND	10
Dibenzofuran	ND	10
Fluorene	ND	10
Phenanthrene	· ND	10
Anthracene	ND	10
Dibenzo(a,h)anthracene	ND	10

IT ANALYTICAL SERVICES CINCINNATI, OH

Quality Assurance Data

.

Volatile Surrogate Recovery, Percent

Client Sample ID	Lab No.	d4-1,2- Dichloro- ethane	d8- Toluene	p-Bromo- fluoro- benzene
04193C	AA3231	100	96	96
	AA3231 DL	96	100	93
	AA3231 D2	100	100	95
032593C	AA3232	104	98	98
•	AA3232 DL	98	101	93 .
Method Blank	ABLKU5	100	99	93
	ABLKU8	97	101	93 🗠
,	ABLKV2	102	101	93 1
•				

INTERNATI TECHNOLO CORPORAT	GY TON	CHA	NALYSI IN OF C	s req Ustoi	DY REC	ND ORD *	Refe Page	rence Document I e 1 of _/_	_{No.} 31139
Project Name/N	No. 1 Westow 58	<i>045 _045</i> 2400- Samp	oles Shipmi	ent Date	7 4-5	·. <u>53</u>	Bill to	5 580000,04	<u> </u>
	ers 27.30/ 1/K / J.R.								
Profit Center N	No. 3 352/		Lab	Contact	9 Juli	MUDR C		· · · · · · · · · · · · · · · · · · ·	
Project Mana	ger ⁴ <i>KA</i> .udi BRou	レル Proje	ect Contact	t/Phone	12 KANd	BRUWN 650-3211	ort to	10 K. BROWN	
Purchase Order I	No. <u>6</u>	(Carrier/W	aybill No.	13				
Required Report D	ate_ ¹¹			-		PER LINE			
Sample ¹⁴ Number	Sample ¹⁵ Description/Type	Date/Time ¹⁶ Collected	Туре	Volume	Pre- ¹⁹ servative	Program	-	Condition on ²¹ Receipt	Disposal ²² Record No.
040193	Reactor sample	4-1-93	orbo Tube	36 C 1/ C	None	PAH Niesh Metal 550	s e (j 06 mi	4076 AA3229	· • •• •
032593	())]	3-25-93	11	36,2 1.R	11	1 (3215	4077 M3230-	
4/936	Sin 12324 Air Sample	4-1-93	MET41 (Anisten		NUNE	EPA MC+ VOC 8270	hiel		No K., T
0 32 593 C	SN'12406 / /	3-25-93		I CAN.				4079 AA3232	· <u>· · · · · · · · · · · · · · · · · · </u>
· · · ·				· ·					14 Fr 4
2			· · · · · · · · · · · · ·						
	· · · · · · · · · · · · · · · · · · ·		<u> </u>		<u> </u>			B B Gran Gara An A.	৬ দে দে জন্দ দা
		· · · · · · · · · · · · · · · · · · ·		<u> </u>	 				
Special Instructio	ns: ²³								
Possible Hazard I Non-hazard I		itant 🛄 Poi	ison B 🛄	Unknow	n 🛄	Sample Disposal: Return to Client	25 Disp	osal by Lab	
Turnaround Time Normal 🛄 🕆 Rush				C Level: ²	?7 [Project Specific (sp	ecify):		
1. Relinquished by (Signature/Affiliation)	28 Tom Hendley		te: <u>4-5-</u> 1e: <u>1500</u>		1. Rece (Signature//	ived by 28	e	Time:	4(i, 193 9380
2. Relinquished by (Signature/Affiliation)	0	Dat Tim			2. Rece (Signature//	ived by		Date:_ Time:	
3. Relinquished by (Signature/Affiliation)		Dat Tirr	te:		3. Rece			Date: Time:	

.

INTERNATI TECHNOLO CORPORAT	ŊGY	ANALY CHAIN O	/SIS REQ F CUSTO			Refer Page	ence Documer 1 of _/_	nt No. 311399
Sample Team Memb Profit Center I	No. 1 Wester / 58 ers 27.30/ 1/ 5. R. No. 3_352 /	stayer Lat	Destination	8/1/15 9 Julie	Cincinnati MOORe		530000,0	
Purchase Order	nger ⁴ /(Aivdi Bevu No. ⁶ ate ¹¹	Carrier	/Waybill No	13 '		ort to: ¹	K. Brown	
Sample ¹⁴ Number	Sample ¹⁵ Description/Type	Date/Time ¹⁶ Contain Collected Type	ner ¹⁷ Sample ¹¹		PER LINE Requested Testin Program	9 ²⁰	Condition on ²¹ Receipt	Disposal ²² Record No.
040193	Reactor sample	5.50	Tube 36 C Air	None	PAH Niosh Metal 550		happy und in prof	
032593 04/936	Air SAmple	13-23-13	A.R	II NUNG	I 1 EPA M2+ VOC 8270	hiel -	contra of and the	
0325930	11 1/	3.25-93 11		NUNE			Merent on chyper contra	йи ·
· ·							4/6/13	
							Ny dia Gradi Anno - N	k - ि€41 स्टेंटर स
Special Instruction	ons: ²³	<u> </u>	<u>1</u>	1	· · · · · · · · · · · · · · · · · · ·	l		<u> </u>
Possible Hazard	lammable 🛄 🛛 Skin Irri	itant 1 Poi son B		n 🛄	Sample Disposal: Return to Client		al by Lab 📕 Arc	hive (mos.)
Turnaround Time Normal 🔄 Rush	Required: 20				Project Specific (sp	<u>ecify);</u>		
1. Relinquished by (Signature/Affiliation)	28 Tom Hendley	Date: <u>4</u> - Time: <u>1</u> 3	00	(Signature/A	Wed by 28	e l'	<u>26(人 Tin</u>	te: <u>4(i, /93</u> ne: <u>993()</u>
2. Relinquished by (Signature/Affiliation)	0	Date: Time:		2. Recei (Signature/A	ved by /		Da Tin	te:
3. Relinquished by (Signature/Affiliation)	<u> </u>	Date: Time:		3. Recei (Signature/A			Da Tin	
Comments: ²⁹								· · · · · · · · · · · · · · · · · · ·

.

•

•

.

ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

304 Directors Drive

April 28, 1993 Date:

Knoxville, TN 37923 Attn: Mr. Tim Schalk

IT Corporation

Project Number 226

This is the Certificate of Analysis for the following samples:

Client Project ID: Weston Date Received: March 8, 1993 Work Order: 234 (Re-issue) Number of Samples: 8 Sample Type: Air

Introduction Ι.

Eight samples arrived at ITAS Cincinnati on March 8, 1993. The samples were collected between February 11, 1993 through March 4, 1993 and were labeled as follows:

Tube	ŧ	21193	Canister #	21293C
Tube	ŧ	21793	Canister 🖸	21893C
Tube	ŧ	22593	Canister #	22593C
Tube	#	3493	Canister #	3493C

II. Analytical Results/Methodology

The analytical results for this report are presented by analytical test. The data will include sample identification information, the analytical results, and the appropriate detection limits.

The analyses requested included Volatile Organic Compounds by Gas Chromatography/ Mass Spectrometry; EPA Method 8240 and Semi-Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry; EPA Method 8270.

Reviewed and Approved by:

ul (mon

Laurel Tomassoni **Project Manager** 03234

Systems Manager

American Council of Independent Laboratories International Association of Environmental Testing Laboratories American Association for Laboratory Accreditation

IT ANALYTICAL SERVICES CINCINNATI, OH

III. Quality Control

Immediately following the analytical data for the samples can be found the QA/QC information that pertains to these samples. The purpose of this information is to demonstrate that the data enclosed is scientifically valid and defensible. This QA/QC data is used to assess the laboratory's performance during the analysis of the samples it accompanies. All quantitations were performed within the calibrated range of the analytical instrument.

IV. Data Report Qualifiers

Following are descriptions of data report qualifiers which may have been used in this analytical report.

J Indicates an estimated value. This flag is used when mass spectral data indicates the presence of the compound, but the result is less than the specified detection limit.

V. Comments

A interference with 1,3,5-trimethylbenzene made it difficult to confirm the the presence of the compound. Therefore, the detection limit has been elevated for samples 21293C and 22593C.

This report is being re-issued add two compounds.

IT ANALYTICAL SERVICE CINCINNATI, OH

Volatile Organic Compounds

Client Sample ID:	Canister # 21293C
Lab Sample ID:	AA1604
Analysis Date:	March 16, 1993

Dilution Factor: 4.4

COMPOUND ppb Q Limit Chlorodifluoromethane ND 0.9 n-Pentane 1.1 2.2 1,1,2-Trichlorotrifluoroethane ND 1.3 Methylene Chloride 28 0.9 Hexane ND 1.8 1,1,1-Trichloroethane 3.8 1.3 Benzene 0.8 J 0.9 Toluene 1.6 0.9 n-Octane 0.4 J 0.9 m/p-Xylene ND 0.9 m/p-Xylene ND 0.9 o-Xylene ND 0.9 n-Nonane 0.4 J 0.9 styrene ND 0.9 0.9 cumene ND 0.9 0.9 n-Undecane 1.0 0.9 0.9 n-Dodecane 1.0 0.9 0.9 n-Dodecane 1.0 0.9 0.9 n-Actane 1.0 0.9 0.9 n-Dodecane <t< th=""><th></th><th></th><th></th><th>Detection</th></t<>				Detection
Chlorodifluoromethane ND 0.9 n-Pentane 1.1 2.2 1,1,2-Trichlorotrifluoroethane ND 1.3 Methylene Chloride 28 0.9 Hexane ND 1.8 1,1,1-Trichloroethane 3.8 1.3 Benzene 0.8 J 0.9 Toluene 1.6 0.9 n-Octane 0.4 J 0.9 m/p-Xylene ND 0.9 m/p-Xylene ND 0.9 n-Nonane 0.4 J 0.9 styrene ND 0.9 n-Nonane 0.4 J 0.9 n-Nonane 0.4 J 0.9 n-Nonane 0.4 J 0.9 Decane ND 0.9 0.9 n-Undecane 1.3 0.9 0.9 n-Dodecane 1.0 0.9 1.3, 5-Trimethylbenzene ND 3 1,2,4-Trimethylbenzene 0.4 J 0.9 9	COMPOUND	ppb	Q	Limit
n-Pentane 1.1 2.2 1,1,2-Trichlorotrifluoroethane ND 1.3 Methylene Chloride 28 0.9 Hexane ND 1.8 1,1,1-Trichloroethane 3.8 1.3 Benzene 0.8 J 0.9 Toluene 1.6 0.9 n-Octane 0.4 J 0.9 Ethylbenzene ND 0.9 m/p-Xylene ND 0.9 o-Xylene ND 0.9 n-Nonane 0.4 J 0.9 Styrene ND 0.9 n-Undecane 1.0 0.9 n-Undecane 1.3 0.9 n-Dodecane 1.0 0.9 1,2,4-Trimethylbenzene ND 3				**********
1,1,2-Trichlorotrifluoroethane ND 1.3 Methylene Chloride 28 0.9 Hexane ND 1.8 1,1,1-Trichloroethane 3.8 1.3 Benzene 0.8 J 0.9 Toluene 0.4 J 0.9 n-Octane 0.4 J 0.9 m/p-Xylene ND 0.9 m/p-Xylene ND 0.9 o-Xylene ND 0.9 n-Nonane 0.4 J 0.9 Styrene ND 0.9 Cumene ND 0.9 n-Undecane 1.3 0.9 n-Dodecane 1.0 0.9 1,3,5-Trimethylbenzene ND 3 1,2,4-Trimethylbenzene 0.4 J 0.9	Chlorodifluoromethane	ND		0.9
Methylene Chloride 28 0.9 Hexane ND 1.8 1,1,1-Trichloroethane 3.8 1.3 Benzene 0.8 J 0.9 Toluene 1.6 0.9 n-Octane 0.4 J 0.9 productane 0.4 J 0.9 m/p-Xylene ND 0.9 m/p-Xylene ND 0.9 o-Xylene ND 0.9 n-Nonane 0.4 J 0.9 Styrene ND 0.9 Cumene ND 0.9 n-Undecane 1.0 0.9 n-Dodecane 1.0 0.9 1,3,5-Trimethylbenzene ND 3 1,2,4-Trimethylbenzene 0.4 J 0.9	n-Pentane	1.1		2.2
Hexane ND 1.8 1,1,1-Trichloroethane 3.8 1.3 Benzene 0.8 J 0.9 Toluene 1.6 0.9 n-Octane 0.4 J 0.9 Ethylbenzene ND 0.9 m/p-Xylene ND 0.9 c-Xylene ND 0.9 n-Nonane 0.4 J 0.9 styrene ND 0.9 Cumene ND 0.9 Decane 1.0 0.9 n-Undecane 1.3 0.9 n-Dodecane 1.0 0.9 1,2,4-Trimethylbenzene ND 3	1,1,2-Trichlorotrifluoroethane	ND		1.3
Hexane ND 1.8 1,1,1-Trichloroethane 3.8 1.3 Benzene 0.8 J 0.9 Toluene 1.6 0.9 n-Octane 0.4 J 0.9 Ethylbenzene ND 0.9 m/p-Xylene ND 0.9 c-Xylene ND 0.9 n-Nonane 0.4 J 0.9 styrene ND 0.9 Cumene ND 0.9 Decane 1.0 0.9 n-Undecane 1.3 0.9 n-Dodecane 1.0 0.9 1,2,4-Trimethylbenzene ND 3	Methylene Chloride	28		0.9
1,1,1-Trichloroethane 3.8 1.3 Benzene 0.8 J 0.9 Toluene 1.6 0.9 n-Octane 0.4 J 0.9 m/p-Xylene ND 0.9 m/p-Xylene ND 0.9 o-Xylene ND 0.9 n-Nonane 0.4 J 0.9 styrene ND 0.9 Cumene ND 0.9 Decane 1.0 0.9 n-Undecane 1.3 0.9 1,3,5-Trimethylbenzene ND 3 1,2,4-Trimethylbenzene 0.4 J 0.9	Hexane	ND		1.8
Toluene 1.6 0.9 n-Octane 0.4 J 0.9 Ethylbenzene ND 0.9 m/p-Xylene ND 0.9 o-Xylene ND 0.9 o-Xylene ND 0.9 n-Nonane 0.4 J 0.9 styrene ND 0.9 Cumene ND 0.9 Decane 1.0 0.9 n-Undecane 1.3 0.9 n-Dodecane 1.0 0.9 1,3,5-Trimethylbenzene ND 3 1,2,4-Trimethylbenzene 0.4 J 0.9	1,1,1-Trichloroethane	3.8		1.3
Toluene 1.6 0.9 n-Octane 0.4 J 0.9 Ethylbenzene ND 0.9 m/p-Xylene ND 0.9 o-Xylene ND 0.9 o-Xylene ND 0.9 n-Nonane 0.4 J 0.9 styrene ND 0.9 Cumene ND 0.9 Decane 1.0 0.9 n-Undecane 1.3 0.9 n-Dodecane 1.0 0.9 1,3,5-Trimethylbenzene ND 3 1,2,4-Trimethylbenzene 0.4 J 0.9	Benzene	0.8	J	0.9
n-Octane 0.4 J 0.9 Ethylbenzene ND 0.9 m/p-Xylene ND 0.9 c-Xylene ND 0.9 n-Nonane 0.4 J 0.9 n-Nonane 0.4 J 0.9 styrene ND 0.9 Cumene ND 0.9 Decane 1.0 0.9 n-Undecane 1.3 0.9 n-Dodecane 1.0 0.9 1,3,5-Trimethylbenzene ND 3 1,2,4-Trimethylbenzene 0.4 J 0.9	Toluene	1.6		0.9
Ethylbenzene ND 0.9 m/p-Xylene ND 0.9 o-Xylene ND 0.9 n-Nonane 0.4 J 0.9 styrene ND 0.9 Cumene ND 0.9 Decane 1.0 0.9 n-Undecane 1.3 0.9 n-Dodecane 1.0 0.9 1,3,5-Trimethylbenzene ND 3 1,2,4-Trimethylbenzene 0.4 J 0.9		0.4	J	0.9
m/p-Xylene ND 0.9 o-Xylene ND 0.9 n-Nonane 0.4 J 0.9 styrene ND 0.9 Cumene ND 0.9 Decane 1.0 0.9 n-Undecane 1.3 0.9 n-Dodecane 1.0 0.9 1,3,5-Trimethylbenzene ND 3 1,2,4-Trimethylbenzene 0.4 J 0.9	Ethylbenzene	ND		0.9
o-Xylene ND 0.9 n-Nonane 0.4 J 0.9 Styrene ND 0.9 Cumene ND 0.9 Decane 1.0 0.9 n-Undecane 1.3 0.9 n-Dodecane 1.0 0.9 1,3,5-Trimethylbenzene ND 3 1,2,4-Trimethylbenzene 0.4 J 0.9	m/p-Xylene	ND		0.9
n-Nonane 0.4 J 0.9 Styrene ND 0.9 Cumene ND 0.9 Decane 1.0 0.9 n-Undecane 1.3 0.9 n-Dodecane 1.0 0.9 1,3,5-Trimethylbenzene ND 3 1,2,4-Trimethylbenzene 0.4 J 0.9	o-Xylene	ND		0.9
Styrene ND 0.9 Cumene ND 0.9 Decane 1.0 0.9 n-Undecane 1.3 0.9 n-Dodecane 1.0 0.9 1,3,5-Trimethylbenzene ND 3 1,2,4-Trimethylbenzene 0.4 J 0.9	n-Nonane	0.4	J.	0.9
Cumene ND 0.9 Decane 1.0 0.9 n-Undecane 1.3 0.9 n-Dodecane 1.0 0.9 1,3,5-Trimethylbenzene ND 3 1,2,4-Trimethylbenzene 0.4 J 0.9	Styrene	ND	•	0.9
Decane 1.0 0.9 n-Undecane 1.3 0.9 n-Dodecane 1.0 0.9 1,3,5-Trimethylbenzene ND 3 1,2,4-Trimethylbenzene 0.4 J 0.9	Cumene	ND		0.9
n-Undecane 1.3 0.9 n-Dodecane 1.0 0.9 1,3,5-Trimethylbenzene ND 3 1,2,4-Trimethylbenzene 0.4 J 0.9	Decane	1.0		0.9
n-Dodecane 1.0 0.9 1,3,5-Trimethylbenzene ND 3 1,2,4-Trimethylbenzene 0.4 J 0.9		1.3		0.9
1,3,5-TrimethylbenzeneND31,2,4-Trimethylbenzene0.4J0.9	n-Dodocane	1.0		0.9
1,2,4-Trimethylbenzene 0.4 J 0.9	1,3,5-Trimethylbenzene	ND		3
N-Heptane ND 0.9	1,2,4-Trimethylbenzene	0.4	J	0.9
	N-Heptane	ND		0.9

ND = Not detected at or above the reported detection limit

.

IT ANALYTICAL SERVICES CINCINNATI, OH

Volati	lle Org	ganic	Compo	unds
--------	---------	-------	-------	------

Client Sample ID: Canister # 21893C

Lab Sample ID: AA1605

Analysis Date: March 16, 1993 & March 17, 1993

Dilution Factor: 7.3

			Detection
COMPOUND	ppb	Q	Limit
Chlorodifluoromethane	esseess ND	12002222	
n-Pentane	ND		3.7
1,1,2-Trichlorotrifluoroethane	ND		2.2
Methylene Chloride	180	(1)	8
Hexane	1.0	J	. 2.9
1,1,1-Trichloroethane	21	-	2.2
Benzene	0.8	J	1.5
Toluene	2.1		1.5
n-Octane	ND		1.5
Ethylbenzene	ND		1.5
m/p-Xylene	ND		1.5
o-Xylene	ND		1.5
n-Nonane	ND		1.5
Styrene	ND		1.5
Cumene	ND		1.5
Decane	0.9	J	1.5
n-Undecane	1.0	J	1.5
n-Dodecane	ND	•	1.5
1,3,5-Trimethylbenzene	ND	\$. 1.5
1,2,4-Trimethylbenzene	ND		1.5
N-Heptane	ND	*	1.5

ND = Not detected at or above the reported detection limit

(1) Dilution Factor = 40

.

IT ANALYTICAL SERVICI CINCINNATI, OH

Volatile Organic Compounds

Client	Sample	ID:	Canister	ŧ	22593C
--------	--------	-----	----------	---	--------

Lab Sample ID: AA1606

Analysis Date: March 16, 1993 & March 17, 1993

Dilution Factor: 4.1

			Detection
Compound	ppb	Q .	Limit
\$			
Chlorodifluoromethane	ND		0.8
n-Pentane	1.3		2.1
1,1,2-Trichlorotrifluoroethane	ND		1.2
Methylene Chloride	93	(1)	4
Hexane	0.5	J	1.6
1,1,1-Trichloroethane	120	(1)	6
Benzene	0.7	J	0.8
Toluene	2.4		0.8
n-Octane	ND		0.8
Ethylbenzene	ND		0.8
m/p-Xylene	0.5	J	0.8
o-Xylene	ND		0.8
n-Nonane	ND		0.8
Styrene	ND		0.8
Cumene	ND		0.8
Decane	0.5	J	0.8
n-Undecane	0.6	J	0.8
n-Dodecane	0.5	J	0.8
1,3,5-Trimethylbenzene	ND		2
1,2,4-Trimethylbenzene	ND		0.8
N-Heptane	ND		0.8

ND = Not detected at or above the reported detection limit

(1) Dilution Factor = 20

.

IT ANALYTICAL SERVICES CINCINNATI, OH

÷.,

Volatile Organic Compounds

Client	Sample	ID:	Canister	ŧ	3493C
--------	--------	-----	----------	---	-------

Lab Sample ID: AA1607

Analysis Date: March 16, 1993 & March 17, 1993

Dilution Factor: 17.8

			Detection
COMPOUND	ppb	Q	Limit
Chlorodifluoromethane	ND		3.6
n-Pentane	ND		8.9
1,1,2-Trichlorotrifluoroethane	ND		5.3
Methylene Chloride	53		3.6
Hexane	2.0	J	7,1
1,1,1-Trichloroethane	200	(1)	50
Benzene	ND		· 3.6
Toluene	2.8	` J	3.6
n-Octane	ND		3.6
Ethylbenzene	ND		3.6
m/p-Xylene	ND		3.6
o-Xylene	ND		3.6
n-Nonane	ND		3.6
Styrene	ND		· 3.6
Cumene	ND		3.6
Decane	ND		3.6
n-Undecane	ND		3.6
n-Dodecane	ND		3.6
1,3,5-Trimethylbenzene	ND		3.6
1,2,4-Trimethylbenzene	ND		3.6
N-Heptane	ND	•	3.6

ND = Not detected at or above the reported detection limit

(1) Dilution Factor = 168

IT ANALYTICAL SERVICES CINCINNATI, OH

Volatile	Organic	Compounds
----------	---------	-----------

Client Sample ID:

Lab Sample ID: Method Blank - ABLK01 .

÷

.

Analysis Date: March 16, 1993

Dilution Factor: 1

			Detection
COMPOUND	ppb	Q	Limit
202565662299868666666666666666666666666666	20262382		
Chlorodifluoromethane	ND		0.2
n-Pentane	ND		0.5
1,1,2-Trichlorotrifluoroethane	ND		• 0.3
Methylene Chloride	ND		0.2
Hexane	ND		0.4
1,1,1-Trichloroethane	ND		0.3
Benzene	ND		0.2
Toluene	ND		0.2
n-Octane	ND		0.2
Ethylbenzene	ND		0.2
m/p-Xylene	ND		0.2
o-Xylene	ND		0.2
n-Nonane	ND		0.2
Styrene	ND		0.2
Cumene	ND		0.2
Decane	ND		0.2
n-Undecane	ND		0.2
n-Dodecane	ND		0.2
1,3,5-Trimethylbenzene	ND		0.2
1,2,4-Trimethylbenzene	ND		0.2
N-Heptane	ND		0.2

÷

IT ANALYTICAL SERVICES CINCINNATI, OH

Volatile Organic Compounds

Client Sample ID:

Lab Sample ID: Method Blank - ABLK02

Analysis Date: March 17, 1993

Dilution Factor: 1

			Detection
	ppb	Q	Limit
Chlorodifluoromethane	ND .		0.2
n-Pentane	ND		0.5
n-Pentane 1,1,2-Trichlorotrifluoroethane	ND		0.3
Methylene Chloride	ND		0.2
Hexane	ND		0.4
1,1,1-Trichloroethane	ND		0.3
Benzene	ND		0.2
Toluene	ND	•	0.2
n-Octane	ND	• •	0.2
Ethylbenzene	ND		0.2
m/p-Xylene	ND		0.2
o-Xylene	ND		0.2
n-Nonane	ND		0.2
Styrene	ND		0.2
Cumene	ND		0.2
Decane	ND		0.2
n-Undecane	ND		0.2
n-Dodecane	ND		0.2
1,3,5-Trimethylbenzene	ND		0.2
1,2,4-Trimethylbenzene	ND		0.2
N-Heptane	ND		0.2

ND = Not detected at or above the reported detection limit

ť

IT ANALYTICAL SERVICE CINCINNATI, ÖH

Client: Weston Work Order: 234 0323408

• •

Semi-Volatile Organic Compounds

Client Sample ID:	Tube # 21193
Lab Sample ID:	AA1600
Analysis Date:	March 23, 1993

Dilution Factor: 1

COMPOUND	ug/Tube	0	Detection Limit
***************************************		¥ 20222	
Naphthalene	ND		10
2-Methylnaphthalene	ND .		10
Acenaphthene	ND		10
Dibenzofuran	ND		10
Fluorene	ND		10
Dibenzo(a,h)anthracene	ND		10
Phenanthrene	ND		10
Anthracene	ND		10

9

a,

Client: Weston Work Order: 234 0323409

Semi-Volatile Organic Compounds

Client Sample ID:	Tube # 21793
Lab Sample ID:	AA1601
Analysis Date:	March 23, 1993

Dilution Factor: 1

COMPOUND	ug/Tube	0	Detection Limit
		. ¥ 22222	2000282003#
Naphthalene	ND		10
2-Methylnaphthalene	ND		. 10
Acenaphthene	ND .	•	10
Dibenzofuran	ND		10
Fluorene	ND		10
Dibenzo(a,h)anthracene	ND .	•	10
Phenanthrene	ND		10
Anthracene	ND ·	٠	·· 10

IT ANALYTICAL SERVICE CINCINNATI, OH

S + +.

Semi-Volatile Organ	ic Compounds
Client Sample ID:	Tube # 22593
Lab Sample ID:	AA1602
Analysis Date:	March 23, 1993
Dilution Factor:	1

COMPOUND	ug/Tube	Q	Detection Limit
804#282#22#2@2282#428####21			
Naphthalene	ND		10
2-Methylnaphthalene	. ND ·		10
Acenaphthene	1	J	10
Dibenzofuran	ND		10
Fluorene	ND		. 10
Dibenzo(a,h)anthracene	ND		10
Phenanthrene	ND		10
Anthracene	ND		10

IT ANALYTICAL SERVICES CINCINNATI, OH

Client: Weston Work Order: 234 0323411

Semi-Volatile Organic Compounds

Client Sample ID:	Canister # 3493C
Lab Sample ID:	AA1607
Analysis Date:	March 23, 1993
Dilution Factor:	1

COMPOUND ·	ug/Tube	Q	Detection Limit
68889238899923888888229889			**********
Naphthalene	ND		10
2-Methylnaphthalene	ND .		10
Acenaphthene	2	ສ່	10
Dibenzofuran	ND		10
Fluorene	ND		10
Dibenzo(a,h)anthracene	ND		10
Phenanthrene	ND ·		10
Anthracene	ND ·	•	· 10

IT ANALYTICAL SERVICE CINCINNATI, OH

Client: Weston Work Order: 234 0323412

Semi-Volatile Organic Compounds

Client Sample ID:

Lab Sample ID: Method Blank

Analysis Date: March 23, 1993

1

Dilution Factor:

COMPOUND	ug/Tube	Q	Detection Limit
Naphthalene	ND		10
2-Methylnaphthalene	ND .		10
Acenaphthene	ND		10
Dibenzofuran	ND		10
Fluorene	ND		10
Dibenzo(a,h)anthracene	ND		10
Phenanthrene	ND		10
Anthracene	ND		10

IT ANALYTICAL SERVICES CINCINNATI, OH

.

Quality Assurance Data

Volatile Surrogate Recovery, Percent

Client Sample ID	Lab No.	d4-1,2- Dichloro- ethane	d8- Toluene	p-Bromo- fluoro- benzene
Canister # 21293C	AA1604	101	98 ·	96
Canister # 21893C	AA1605	100	101	. 93
· ·	AA1605 DL	103	- 100	99
Canister # 22593C	AA1606	98	100	· 94
• "	AA1606 DL	106	98	100
Canister # 3493C	AA1607	. 99	101	91
	AA1607 DL	105	100	101
Method Blank	ABLKO1 .	99	100	98
Method Blank	ABLK02	100	100	99

ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

IT Corporation 304 Directors Drive Knoxville, TN 37923 Date: May 14, 1993

Attn: K. Brown

Project Number 226

This is the Certificate of Analysis for the following samples:

Client Project ID:Weston Air ProjectDate Received:April 23, 1993Work Order:628Number of Samples:5Sample Type:Air

I. Introduction

Five samples arrived at ITAS Cincinnati on April 23, 1993. The samples were collected between April 8, 1993 through April 21, 1993 and were labeled as follows:

Tube # 04893 Tube # 041793 Tube # 042193 Canister # 040993 C Canister # 041693 C

II. Analytical Results/Methodology

The analytical results for this report are presented by analytical test. The data will include sample identification information, the analytical results, and the appropriate detection limits.

The analyses requested and the methods used are listed on the following page.

Reviewed and Approved by:

Jon Sonderman Project Manager 04628

American Council of Independent Laboratories International Association of Environmental Testing Laboratories American Association for Laboratory Accreditation

IT ANALYTICAL SERVICES CINCINNATI, OH

II. Analytical Results/Methodology (cont.)

- * PAH Semi-Volatile by Gas Chromatography/Mass Spectrometry; Modified NIOSH Method 5506
- Volatiles by Gas Chromatography/Mass Spectrometry; Method TO-14

III. Quality Control

Immediately following the analytical data for the samples can be found the QA/QC information that pertains to these samples. The purpose of this information is to demonstrate that the data enclosed is scientifically valid and defensible. This QA/QC data is used to assess the laboratory's performance during the analysis of the samples it accompanies. All quantitations were performed within the calibrated range of the analytical instrument.

IV. Data Report Qualifiers

Following are descriptions of data report qualifiers which may have been used in this analytical report.

J Indicates an estimated value. This flag is used when mass spectral data indicates the presence of the compound, but the result is less than the specified detection limit.

B This flag is used whenever the analyte is found in the blank as well as in the sample.

. • •

IT ANALYTICAL SERVICI CINCINNATI, OH

Semi-Volatile Organic	Compounds
Client Sample ID:	Tube # 04893
Lab Sample ID:	AA4482
Analysis Date:	April 12, 1993
Dilution Factor:	1

		I	Detection
Compound	ug/Tube		Limit
Naphthalene	ND		10 ·
2-Methylnaphthalene	ND		10
Acenaphthene	· 8	J	10
Dibenzofuran	3	J	10
Fluorene	3	J	10
Phenanthrene	ND		10
Anthracene	ND		10
Dibenz(a,h)anthracene	ND		10

IT ANALYTICAL SERVICES CINCINNATI, OH

.

Semi-Volatile Organic	Compounde
Client Sample ID:	Tube 🖸 041793
Lab Sample ID:	AA4483
Analysis Date:	April 12, 1993
Dilution Factor:	1

		Į	Detection
COMPOUND	ug/Tube		Limit
***************************************	80088882	===	
Naphthalene	ND		10
2-Methylnaphthalene	ND		10
Acenaphthene	2	J	10
Dibenzofuran	ND		10
Fluorene	1	J	10
Phenanthrene	ND		10
Anthracene	- ND		10
Dibenz(a,h)anthracene	ND		10

.

IT ANALYTICAL SERVICI CINCINNATI, OH

Semi-Volatile Organic	Compounds
Client Sample ID:	Tube 🖸 042193
Lab Sample ID:	AA4484
Analysis Date:	April 12, 1993
Dilution Factor:	1 ·

· .

COMPOUND	ug/Tube	Detection Limit
		*======
Naphthalene	ND	10
2-Methylnaphthalene	ND	10
Acenaphthene	ND	10
Dibenzofuran	ND	10
Fluorene	ND	10
Phenanthrene	ND	10
Anthracene	ND	10 `
Dibenz(a,h)anthracene	ND	10

•

. ۰

IT ANALYTICAL SERVICES CINCINNATI, OH

Semi-Volatile Organic Compounds

Client Sample ID:

Lab Sample ID: Method Blank - 477-CH2CL2

Analysis Date: April 12, 1993

Dilution Factor: 1

		Detection
COMPOUND	ug/Tube.	Limit
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		*********
Naphthalene	ND	10
2-Methylnaphthalene	ND	10
Acenaphthene	ND	10
Dibenzofuran	ND	10
Fluorene	ND	10
Phenanthrene	ND	10
Anthracene	ND	10
Dibenz(a,h)anthracene	ND	10

### IT ANALYTICAL SERVICI CINCINNATI, OH

Client Sample ID: Can # 040993 C

Lab Sample ID: AA4485

Analysis Date: April 11, 1993 & April 13, 1993

Dilution Factor: 6.503

		Detection
COMPOUND	ppbv	Limit
<b>&amp; 2222776822</b> 88002222288888888888888888888888888	********	
Pentane	3.8	· 3.3
1,1,2-Trichlorotrifluoroethane-	ND	2.0
Methylene Chloride	90	(1) 13
Hexane	1.8	1.3
Chlorodifluoromethane	ND	1.3
1,1,1-Trichloroethane	5.0	2.0
Benzene	1.5	1.3
n-Heptane	1.0	1.3
Toluene	3.8	1.3
n-Octane	ND	1.3
Ethyl Benzene	ND	1.3
m/p-Xylene	ND	1.3
Nonane	ND	1.3
o-Xylene	ND	1.3
Styrene	ND	1.3
Cumene	ND	1.3
1,3,5-Trimethylbenzene	ND	1.3
Decane	ND	1.3
1,2,4-Trimethylbenzene	ND	1.3
n-Undecane	ND	1.3
n-Dodecane	ND	1.3

ND = Not detected at or above the reported detection limit

(1) Dilution Factor = 65.03

SURROGATE RECOVERY	Percent Recovery	Dilution Percent Recovery
1,2-Dichloroethane-d4	- 100	98
Toluene-d8	- 100	102
4-Bromofluorobenzene	- 95	85

# IT ANALYTICAL SERVICES CINCINNATI, OH

Volatile Organic Compounds						
Client Sample ID:	Can # 041693 C					
Lab Sample ID:	AA4486					
Analysis Date:	April 11, 1993 & April 13, 1993					
Dilution Factor:	39.59					

	Detection
ppbv	Limit
	**********
ND	20
ND	12
960	(1) 117
ND	7.9
ND	7.9
ND	12
ND	7.9
	ND ND 960 ND ND ND ND ND ND ND ND ND ND ND ND ND

ND = Not detected at or above the reported detection limit

(1) Dilution Factor = 583.778

	Percent Recovery	Dilution Percent Recovery
1,2-Dichloroethane-d4	96	100
Toluene-d8	103	103
4-Bromofluorobenzene	90	86

IT ANALYTICAL SERVICE CINCINNATI, OH

Volatile	Organic	Compounds
----------	---------	-----------

Client Sample ID:

Lab Sample ID: Method Blank - ABLKX7

Analysis Date: April 11, 1993

Dilution Factor: 1

	ppbv	Detection Limit
Pentane	ND	0.5
1,1,2-Trichlorotrifluoroethane-	ND	0.3
Methylene Chloride	ND	0.2
Hexane	ND	0.2
Chlorodifluoromethane	ND	0.2
1,1,1-Trichloroethane	ND	0.3
Benzene	ND	0.2
n-Heptane	ND	0.2
Toluene	ND	0.2
n-Octane	ND	0.2
Ethyl Benzene	ND	0.2
m/p-Xylene	ND	0.2
Nonane	ND	0.2
o-Xylene	ND	0.2
Styrene	ND	0.2
Cumene	ND	0.2
1,3,5-Trimethylbenzene	ND	· 0.2
Decane	ND	0.2
1,2,4-Trimethylbenzene	ND	0.2
n-Undecane	ND	0.2
n-Dodecane	ND	0.2

	Percent
SURROGATE RECOVERY	Recovery
1,2-Dichloroethane-d4	- 100
Toluene-d8	- 100
4-Bromofluorobenzene	· 95

IT ANALYTICAL SERVICES CINCINNATI, OH

٧o	lat	ile	Organic	Compou	inds
----	-----	-----	---------	--------	------

Client Sample ID:

Lab Sample ID: Method Blank - ABLKY3

Analysis Date: April 13, 1993

Dilution Factor: 1

		Detection
Compound	ppbv	Limit
323393888888888888888888888888888888888		***********
Pentane	ND	0.5
1,1,2-Trichlorotrifluoroethane-	ND	0.3
Methylene Chloride	ND	0.2
Hexane	ND	0.2
Chlorodifluoromethane	ND	0.2
1,1,1-Trichloroethane	ND	0.3
Benzene	ND	0.2
n-Heptane	ND	0.2
Toluene	ND	0.2
n-Octane	ND	0.2
Ethyl Benzene	ND	0.2
m/p-Xylene	ND	0.2
Nonane	ND	0.2
o-Xylene	ND	0.2
Styrene	ND	0.2
Cumene	ND	0.2
1,3,5-Trimethylbenzene	ND	0.2
Decane	ND	0.2
1,2,4-Trimethylbenzene	ND	0.2
n-Undecane	ND	0.2
n-Dodecane	ND	0.2

	Percent
SURROGATE RECOVERY	Recovery
=======================================	
1,2-Dichloroethane-d4	- 100
Toluene-d8	- 100
4-Bromofluorobenzene	- 92 [·]

INTERNATIONAL ANALYSIS REQUEST AND TECHNOLOGY CORPORATION CHAIN OF CUSTODY RECORD*					Reference Document No. 311325 Page 1 of				
ample Team Memb	No. 1. Neston 15800 Ders 2J. Rightmyer	100 CHSamp T. Schall	K Lab De	stination	8 ITA	s Cincinnetti	Bill to	5 580000.0	<i>4</i> s [.]
	No. 3 3521					e Moure		· · · · ·	. `
	ager ¹ Kandi Brow					Ber Rep	oort to:	10 K Brown	
Purchase Order			Carrier/W	aybill No.	13				
Required Report [	Date ¹¹		ONE	CONT	AINER	PER LINE			
Sample ¹⁴ Number	· Sample ¹⁵ Description/Type	Date/Time ¹⁶ Collected	Туре	Volume	Pro- ¹⁹ servative	Program		Condition on ²¹ Receipt	Disposal ²² Record No.
04893	Reactor uir sample from 4/7 to 418	4/8/93	6rbo-43 tuble	3660	None	PAH. NIOSH Hetr	nod .	Jamely seil in good	
041793 64199338	Reactor air sainple frain 4/16 to 4/17	4/19193	orbo-43 tube		None	PAH NIDSH ME-	<u> 26</u>	contain at dansen	
642193	Reactor air sample from 4/20 to 4/21	4121193	orbo-48 tube	36L of air	None	PAH NIDSH Met	nod ble	tong . Ar to field	
040993C	Healtor an sumple	4/9/93	metal Canisler	Canister.	None	YUC EFA Meth		Alfred on thinging care. - SN 128152 - 4-28/93	
041693C	Reactor air sa rude	4/16/93	cunister	canister	Nome	VOC EPA met		-SN 12326 E CHARGE V	
Special Instructi	ons: ²³ Identification: ²⁴			<u></u>		Sample Disposal:	25		
Non-hazard	Flammable 📕 Skin Irri	tant 📕 Poi	ison B I 📕	Unknow C Level: ²		Return to Client		osal by Lab 🔔 Archiv	e. (mos.
Normal _ Rush			<u></u>			Project Specific (sp	ecify):	· · · · · · · · · · · · · · · · · · ·	
1. Relinquished by (Signature/Alfiliation)	y 28 anot Rigetonia	Date: <u>4/22/93</u> 1. + Rightman I I I I I I I I I I I I I I I I I I I			1. Rece (Signature/	Affiliation)	Wil	Date: WMM/L MAS-(; Time:	
2. Relinquished b (Signeture/Affiliation)		Date:] 2. Re			2. Rece (Signature/	eived by		Date: Time:	·
3. Relinquished b (Signature/Affiliation)	У	Da Tin		·	3. Rece (Signature/	eived by Affiliation)		Date: Time:	
Comments: 29					•	······································	•	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·



# ANALYTICAL SERVICES

# CERTIFICATE OF ANALYSIS

IT Corporation 312 Directors Drive Knoxville, TN 37923 Date: June 2, 1993

Attn: Kandi Brown

Project Number 226

This is the Certificate of Analysis for the following samples:

Client Project ID:Weston Air ProjectDate Received:May 6, 1993Work Order:733Number of Samples:3Sample Type:Air

I. Introduction

Three samples arrived at ITAS Cincinnati on May 6, 1993. The samples were collected on May 22, 1993 and May 29, 1993 and were labeled as follows:

Tube # 042893 * Canister # 042293C * Canister # 042993C

* These samples were analyzed by Air Toxics LTD. under ITAS Subcontract.

II. Analytical Results/Methodology

The analytical results for this report are presented by analytical test. The data will include sample identification information, the analytical results, and the appropriate detection limits.

The analyses requested and the methods used are listed on the following page.

Reviewed and Approved by:

Jon Sonderman Project Manager 05733

> American Council of Independent Laboratories International Association of Environmental Testing Laboratories American Association for Laboratory Accreditation

IT ANALYTICAL SERVICI CINCINNATI, OH

II. Analytical Results/Methodology (cont.)

- * PAH Semi-Volatile by Gas Chromatography/Mass Spectrometry; Modified NIOSH Method 5506
- Volatiles by Gas Chromatography/Mass Spectrometry; Method TO-14

#### III. Quality Control

Immediately following the analytical data for the samples can be found the QA/QC information that pertains to these samples. The purpose of this information is to demonstrate that the data enclosed is scientifically valid and defensible. This QA/QC data is used to assess the laboratory's performance during the analysis of the samples it accompanies. All quantitations were performed within the calibrated range of the analytical instrument.

IV. Data Report Qualifiers

Following are descriptions of data report qualifiers which may have been used in this analytical report.

J Indicates an estimated value. This flag is used when mass spectral data indicates the presence of the compound, but the result is less than the specified detection limit.

B This flag is used whenever the analyte is found in the blank as well as in the sample.

IT ANALYTICAL SERVICES CINCINNATI, OH

Client: Weston Work Order: 733 0573305

PAH Semivolatile Organic Compounds

Client Sample ID:	042893
Lab Sample ID:	AA5340
Analysis Date:	May 12, 1993
Dilution Factor:	1

COMPOUND	ug/Tube	Detection Limit
	1885822298888559752	
Naphthalene	ND	10
2-Methylnaphthalene	ND	10
Acenaphthene	ND	10
Dibenzofuran	ND	10
Fluorene	ND	10
Phenanthrene	ND	10
Anthracene	ND	10
Dibenzo(a,h)anthracene	. <b>ND</b>	10

1

IT ANALYTICAL SERVICI CINCINNATI, OH

Client: Weston Work Order: 733 0573306

PAH Semivolatile Organic Compounds

Client Sample ID:

Lab Sample ID: Method Blank - CH2CL2 BLK

Analysis Date: May 12, 1993

Dilution Factor: 1

COMPOUND		Detection Limit
	ug/Tube	
99±=1=902±=522±=22206±2222222		
Naphthalene	ND	10
2-Methylnaphthalene	ND	10
Acenaphthene	ND	10
Dibenzofuran	ND	10
Fluorene	ND	10
Phenanthrene	ND	10
Anthracene	ND	10
Dibenzo(a,h)anthracene	ND	10

Dilution Factor:

IT ANALYTICAL SERVICES CINCINNATI, OH

Volatile Organic Con	pounds
----------------------	--------

Client Sample ID:	042293C
Lab Sample ID:	AA5341
Analysis Date:	May 28, 1993

3.9

Detection COMPOUND Limit ppbv Ethylbenzene 2.0 ND 2.0 Styrene ND 1,3,5-Trimethylbenzene ND 2.0 4.2 Toluene 2.0 Nonane ND 2.0 Benzene ND 2.0 Methylene Chloride 24 2.0 1,1,1-Trichloroethane 7.4 2.0 1,1,2-Trichloro-1,2,2-trifluoroethane 2.0 ND o-Xylene ND 2.0 1,2,4-Trimethylbenzene ND 2.0 m/p-Xylene ND 2.0 Chlorodifluoromethane ND 2.0 n-Pentane 2.0 2.0 n-Hexane ND 2.0 n-Octane ND 2.0 Cumene ND 2.0 n-Decane ND 2.0 n-Undecane ND 2.0 n-Dodecane ND 2.0 n-Heptané ND 2.0

ND = Not detected at or above the reported detection limit

& Recovery

Octafluorotoluene127Toluene-d8994-Bromofluorobenzene89

## IT ANALYTICAL SERVICI CINCINNATI, OH

Volatile Organic Compounds		
Client Sample ID:	042993C	
Lab Sample ID:	AA5342	
Analysis Date:	May 28, 1993	
Dilution Factor:	4.0	

		Detection
Compound	ppbv	Limit
220#2022222###########################	***********	2222222222222
Ethylbenzene	ND	2.0
Styrene	ND	2.0
1,3,5-Trimethylbenzene	ND	2.0
Toluene	4.1	2.0
Nonane	ND	2.0
Benzene	ND	2.0
Methylene Chloride	14	2.0
1,1,1-Trichloroethane	13	2.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	2.0
o-Xylene	ND	2.0
1,2,4-Trimethylbenzene	ND	2.0
m/p-Xylene	ND	2.0
Chlorodifluoromethane	ND	2.0
n-Pentane	2.0	2.0
n-Hexane	ND	2.0
n-Octane	ND	2.0
Cumene	ND	2.0
n-Decane	ND	2.0
n-Undecane	ND	2.0
n-Dodecane	ND	2.0
n-Heptane	ND	2.0

....

ND = Not detected at or above the reported detection limit

% RecoveryOctafluorotoluene126Toluene-d8974-Bromofluorobenzene86

.

Client: Weston Work Order: 733 0573304 IT ANALYTICAL SERVICES CINCINNATI, OH

Volatile Organic Compounds

Client Sample ID:

Lab Sample ID: Method Blank Analysis Date: May 28, 1993

Dilution Factor: 1

		Detection
COMPOUND	ppbv	Limit
Ethylbenzene	ND	0.5
Styrene	ND	0.5
1,3,5-Trimethylbenzene	ND	0.5
Toluene	ND	0.5
Nonane	ND	0.5
Benzene	ND	0.5
Methylene Chloride	ND	· 0.5
1,1,1-Trichloroethane	ND	0.5
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.5
o-Xylene	ND	0.5
1,2,4-Trimethylbenzene	ND	0.5
m/p-Xylene	ND	0.5
Chlorodifluoromethane	ND	· 0.5
n-Pentane	ND	0.5
n-Hexane	ND	0.5
n-Octane	ND	0.5
Cumene	ND	0.5
n-Decane	ND	0.5
n-Undecane	ND	0.5
n-Dodecane	ND	0.5
.n-Heptane	ND	0.5

ND = Not detected at or above the reported detection limit

% RecoveryOctafluorotoluene108Toluene-d81164-Bromofluorobenzene73

INTERNA TECHNOI	LOGY		NALYSI			W733	eference Document age 1 of	No. 311336
Broject Name	No. 1 Weston 158		-			-	age 101 اll to:5580000	<i>∩ \/</i> =
	bers 2 J. Right my					<u>s Qincinneti</u>		. C 7
	No. 3 3521					ie Moore		
Project Mar	nager ⁴ K. Brown	Proje	ect Contaci		12 Kand	1 D 1690-32		
Purchase Orda			Carrier/W			Repor	to: 10 K. Brown 312 Dice Lin	7-
Required Report						PER LINE	Kinoxville ; 10	
Sample ¹⁴ Number	Sample ¹⁵ Description/Type	Date/Time ¹⁶ Collected	Container ¹⁷ Type	Sample ¹ Volume	Pre- ¹⁹ servative	Requested Testing ² Program	20 Condition on ²¹ Receipt	Disposal ²² Record No.
641.873	Reactor wir somple		ひr 6013 セッシ	3bL of	None	PAH NICSH Hettin 5501c		
				·			INAddiction	168 :-
0422930	Realter air Sumple	716616	metal Canister		None	this sample was co for 24 hrs. voe FPA the	Hecked 22 COCSCA	\$
042973C	Rear or air simple	8-hour 11/29/93	metal Cunisler	8 nour canistri	None	VOC EPA METHOD 82	20 were not a think	R
							Werela.	:
							1 1 0 T	1 3
								·
	· · · · · · · · · · · · · · · · · · ·							
Special Instruct	ions: ²³		-				R	L720
Possible Hazare Non-hazard	ldentification: 24 Flammable 🔟 Skin Irri	itant 📕 Po	ison B 📕	Unknow	m ()	Sample Disposal: ²⁵ Return to Client 🔟	Disposal by Lab 🔟 Archiv	ve (11105.)
Turnaround Tim Normal _1 Rus			GC I. ¹	C Level:	·	Project Specific (speci	fy):	- 1
1. Relinquished to (Signature/Affiliation)	y 28 Janet Rightman		te: <u>5/5</u> ne: <u>11,</u> 00		1. Rece (Signature/	eived by 28 (ON)	La (TASCI Date Time	5693
2. Relinquished t (Signature/Affiliation)		O ∴ Da Tin		·	2. Rece	eived by	Date Time	
3. Relinquished to (Signature/Allikation)	ру	Da Tin			3. Rece (Signature/		Date Time	
Comments: 29		· .'						

•

1

Flow Controller Calibration Sheet $SD_{V} - COTZ3$				
Client: 17 - Knax ville	SDV — W.O. #_		Date: <u>4/16/93</u>	
Total Fill Time:	T HRS.	Fill R	ate: 12.5 ± 0.5 cc/min'	
# <u>45</u> ;2.89 # <u>12.81</u> 12.79		:	<b>/:</b>	
#:	<b>#</b>	<b>i</b>	f:	
#:	#	<b>:</b>	ŧ:	
#:	ŧ	:	ŧ:	
#:	t	<b>:</b>	#:	
#:	#	<b>:</b>	ŧ:	
#:	#	<b>:</b>	#:	
# <b>:</b>	#	<b>:</b>	#:	
# <b>:</b>	#		#:	
·	#	<u>:</u>	#:	

· ·

W 733

٠

# ASTM Method D 422

:

weston/tmchp1



# ANALYTICAL SERVICES

# CERTIFICATE OF ANALYSIS

May 10, 1993

Kandi Brown IT Corporation 312 Directors Drive Knoxville, TN 37931

ETDC Project Number: 483500.068.01 P.O. Number: BAC02 Job Number: 580000.045

This is the Certificate of Analysis for the following samples:

Client Project ID: Date Received by Lab: Number of Samples: Sample Type:

WESTON 2/1/93 THROUGH 4/5/93 Ten (10) SOIL

## I. <u>Introduction/Case Narrative</u>

Ten soil samples were received by IT/ETDC from February through April of 1993 for analysis of particle size distribution.

Please see Appendix A, the Sample Number Cross Reference List; Appendix B, the Analysis Results; and Appendix C, the Chain of Custody and Request for Analysis Records.

**Reviewed and Approved:** 

Beverly L. Leamon Project Manager, Geotechnical Services

American Council of Independent Laboratories International Association of Environmental Testing Laboratories American Association for Laboratory Accreditation

### II. Analytical Results/Methodology

**REFERENCES:** Annual Book of ASTM Standards, Section 4, Construction, Volume 04.08, Soil and Rock; Dimension Stone; Geosynthetics.

Particle Size Distribution

ASTM D 422

# III. <u>Quality Control</u>

Quality control checks such as duplicates and spikes (QC samples), are not normally applicable to geotechnical testing. This is due to the inability of obtaining samples with known characteristics, the heterogenous nature of the samples, and Quality Control procedures built-in to the analytical method.

QC measures to ensure accuracy and precision of test results include the following:

- 100% verification on all numerical results all raw data entries, transcriptions and calculations entered by lab technicians are checked, recalculated and verified. Most data calculations are performed by computer programs.
- Data validation through test reasonableness summaries of all test results for individual reports are reviewed to determine the overall reasonableness of data and to determine the presence of any data that may be considered outliers.
- Quality control procedures are built into most standardized geotechnical procedures. For example, many analyses routinely call for a re-analysis, specifying an acceptance criteria.
- Routine instrument calibration all instruments, gauges and equipment used in testing are calibrated on a routine basis. All instrument calibration follows ASTM or manufacturer guidelines.
- Maintenance of all past calibration records records and certification documents of all instruments, gauges and equipment are updated routinely and maintained in the Quality Control Coordinators Quality/Operations files.

Page 3 of 24 Kandi Brown IT Corporation May 10, 1993 Client Project ID: WESTON ETDC Project No.: 483500.068.01

IT ANALYTICAL SERVICES KINGSTON, TN (615) 482-6497

• Use of trained personnel for conducting tests - all technicians are trained in the application of standard laboratory procedures for geotechnical analyses as well as the quality assurance measures implemented by IT.

### IV. Data Qualification

Fine sieve and hydrometer results occasionally overlap due to organic debris, soluble salts or other contaminants contained in the sample. Data points are plotted as calculated. No attempt has been made to curve-fit the grainsize data points.

# Åppendix A

.

.

•

• • •

.

Page 4 of 24 Kandi Brown IT Corporation May 10, 1993 Client Project ID: ETDC Project No.:

WESTON 483500.068.01 IT ANALYTICAL SERVICES KINGSTON, TN (615) 482-6497

CROSS-REFERENCE LIST

ETDC SAMPLE NO.

CLIENT SAMPLE NO.

Appendix B

•

.

Page 5 of 24 Kandi Brown IT Corporation May 10, 1993 Client Project ID: ETDC Project No.:

# WESTON 483500.068.01

IT ANALYTICAL SERVICES KINGSTON, TN (615) 482-6497

# PARTICLE SIZE ANALYSIS ASTM D 422

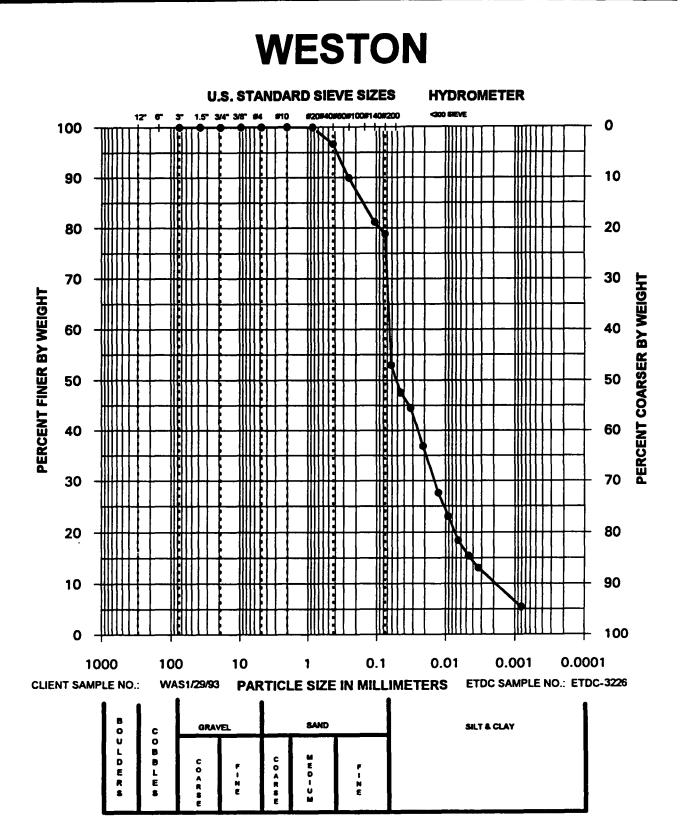
Project Number: 483500.068.01	ETDC Number: ETDC- 3226
Specific Gravity = 2.6500 Assumed	Moisture Content = 121.4%

# SIEVE ANALYSIS

с	Sieve No.	Diameter mm	Percent Finer
O A	3*	75.000	100.0%
R	1.5"	37.500	100.0%
S	0.75"	19.000	100.0%
E	0.375*	9.500	100.0%
	#4	4.750	100.0%
	#10	2.000	100.0%

	Sieve No.	Diameter mm	Percent Finer
F	#20	0.850	99.8%
I N	#40	0.425	96.6%
E	#60	0.250	89.9%
	#100	0.149	
	#140	0.106	81.1%
	#200	0.075	78.8%

.


	Diameter mm	Percent Finer
н	0.06118	52.9%
Y	0.04457	47.6%
D	0.03197	44.5%
R	0.02096	36.8%
0 M	0.01262	27.6%
E	0.00910	23.0%
Т	0.00656	18.4%
E	0.00463	15.3%
R	0.00331	13.0%
	0.00081	5.4%

Page 6 of 24 Kandi Brown IT Corporation May 10, 1993 Client Project ID: ETDC Project No.:

WESTON

483500.068.01

IT ANALYTICAL SERVICE KINGSTON, TN (615) 482-6497



682-11-9

.

Page 7 of 24 Kandi Brown IT Corporation May 10, 1993 Client Project ID: ETDC Project No.:

IT ANALYTICAL SERVICES KINGSTON, TN (615) 482-6497

# PARTICLE SIZE ANALYSIS ASTM D 422

WESTON

483500.068.01

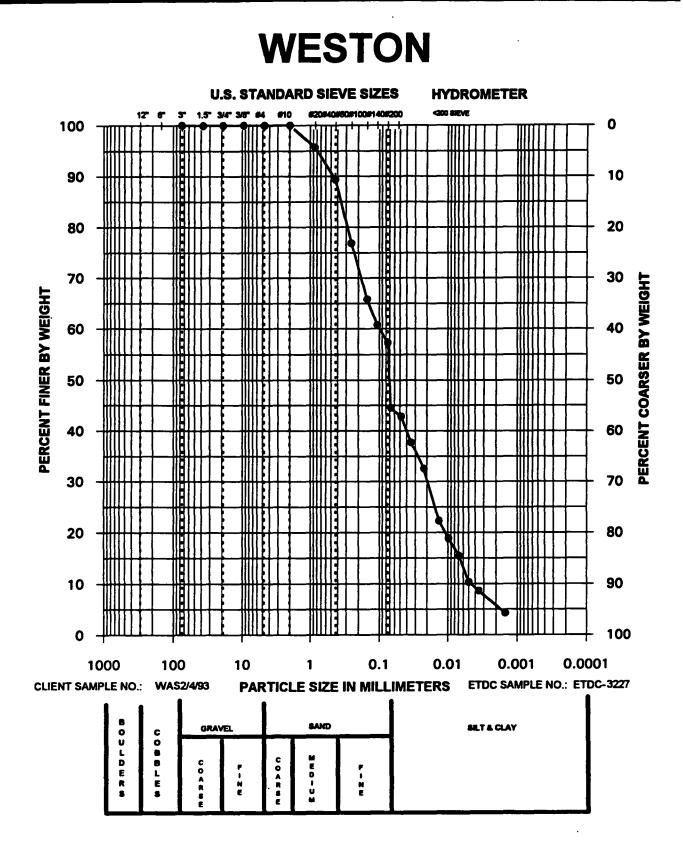
Project Name:	WESTON		
Project Number:	483500.068.01		
Specific Gravity =	2.6500 Assumed		

Client Number: WAS2/4/93 ETDC Number: ETDC- 3227 Moisture Content = 175.0%

# SIEVE ANALYSIS

с	Sieve No.	Diameter mm	Percent Finer
0	3"	75.000	100.0%
A R	1.5"	37.500	100.0%
S	0.75*	19.000	100.0%
E	0.375"	9.500	100.0%
	#4	4.750	100.0%
	#10	2.000	100.0%

Sieve No.	Diameter mm	Percent Finer
#20	0.850	95.6%
#40	0.425	89.3%
#60	0.250	76.9%
#100	0.149	65.8%
#140	0.106	60.7%
#200	0.075	57.3%


H Y D R O M E T	Diameter mm 0.06761 0.04802 0.03471 0.02242 0.01346 0.00963 0.00688	Percent Finer 44.6% 42.8% 37.7% 32.6% 22.3% 18.8% 15.4%
E R	0.00495	10.3%
	0.00146	4.3%

IT ANALYTICAL SERVICE KINGSTON, TN (615) 482-6497

Page 8 of 24 Kandi Brown IT Corporation May 10, 1993 Client Project ID: ETDC Project No.:

WESTON

483500.068.01



682-11-91

Page 9 of 24 Kandi Brown IT Corporation May 10, 1993 Client Project ID: WESTON ETDC Project No.: 483500.068.01

IT ANALYTICAL SERVICES KINGSTON, TN (615) 482-6497

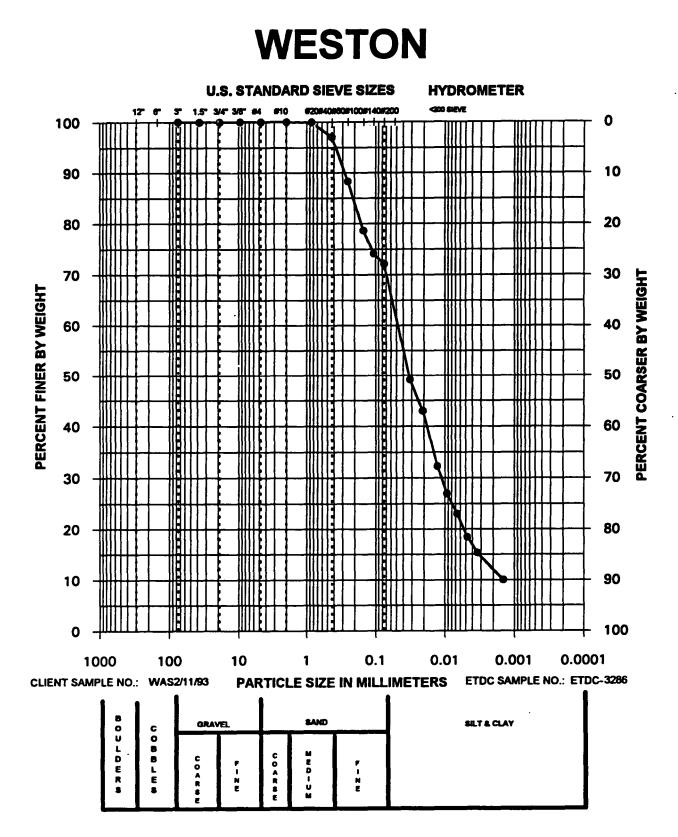
# PARTICLE SIZE ANALYSIS ASTM D 422

Project Name:WESTONClient Number:WAS2/11/93Project Number:483500.068.01ETDC Number:ETDC- 3286Specific Gravity =2.6500<br/>AssumedMoisture Content =150.9%

# SIEVE ANALYSIS

c	Sieve No.	Diameter mm	Percent Finer
O A	3"	75.000	100.0%
R	1.5"	37.500	100.0%
. <b>S</b>	0.75"	19.000	100.0%
E	0.375*	9.500	100.0%
	#4	4.750	100.0%
	#10	2.000	100.0%

	Sieve No.	Diameter mm	Percent Finer
F	#20	0.850	99.9%
I N	#40	0.425	97.1%
E	#60	0.250	88.3%
	#100	0.149	78.6%
	#140	0.106	74.2%
	#200	0.075	72.1%


Н	Diameter mm	Percent Finer
Y D	0.03184	49.1%
R	0.02073	43.0%
м	0.01278 0.00924	<u> </u>
E T	0.00665	23.0%
E	0.00472	18.4%
R	0.00339	15.4%
	0.00143	10.0%

Page 10 of 24 Kandi Brown IT Corporation May 10, 1993 Client Project ID: ETDC Project No.:

WESTON

483500.068.01

IT ANALYTICAL SERVICE KINGSTON, TN (615) 482-6497



Page 11 of 24 Kandi Brown IT Corporation May 10, 1993 Client Project ID: ETDC Project No.:

WESTON 483500.068.01 IT ANALYTICAL SERVICES KINGSTON, TN (615) 482-6497

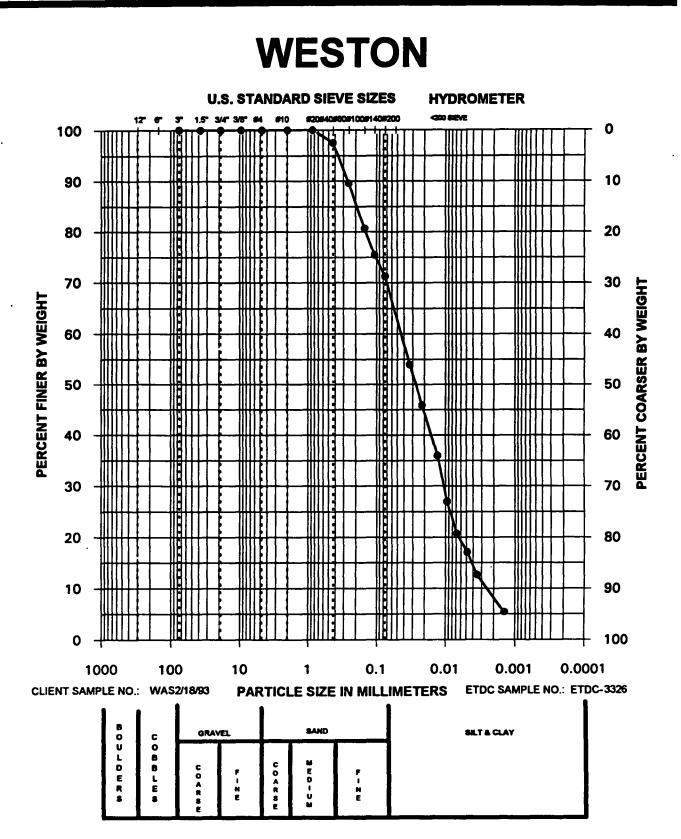
# PARTICLE SIZE ANALYSIS ASTM D 422

Specific Gravity =	2.6500 Assumed	Moisture Content = 174.4%
Project Number:	483500.068.01	ETDC Number: ETDC- 3326
Project Name:	WESTON	Client Number: WAS2/18/93

# SIEVE ANALYSIS

С	Sieve No.	Diameter mm	Percent Finer
O A	3"	75.000	100.0%
R	1.5"	37.500	100.0%
S	0.75*	19.000	100.0%
E	0.375*	9.500	100.0%
	#4	4.750	100.0%
	#10	2.000	100.0%

	Sieve No.	Diameter mm	Percent Finer
F	#20	0.850	100.0%
I N	#40	0.425	97.5%
E	#60	0.250	89.6%
	#100	0.149	80.6%
	#140	0.106	75.4%
	#200	0.075	71.3%


н	Diameter mm	Percent Finer
Y D	0.03295	54.0%
R O	0.02158 0.01292	<u> </u>
M E	0.00948	27.0%
T	0.00683	20.7%
E R	0.00486	17.1%
n	0.00349	12.6%
	0.00142	5.4%

Page 12 of 24 Kandi Brown IT Corporation May 10, 1993 Client Project ID: ETDC Project No.:

WESTON

483500.068.01

IT ANALYTICAL SERVICI KINGSTON, TN (615) 482-6497



### 682-11-9

Page 13 of 24 Kandi Brown IT Corporation May 10, 1993 Client Project ID: ETDC Project No .:

WESTON 483500.068.01 IT ANALYTICAL SERVICES KINGSTON, TN (615) 482-6497

# PARTICLE SIZE ANALYSIS **ASTM D 422**

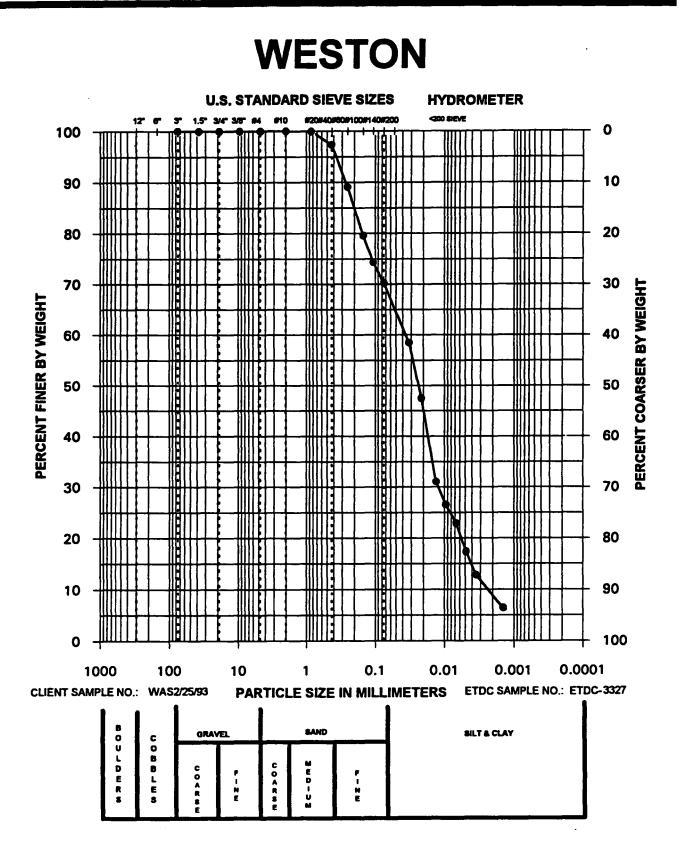
Project Name:	WESTON
Project Number:	483500.068.01
Specific Gravity =	2.6500 Assumed

Client Number:		WAS2/25/93	
ETDC Number:	ETDC-	3327	
Moisture Content	=	177.3%	

# SIEVE ANALYSIS

с	Sieve No.	Diameter mm	Percent Finer
O A	3"	75.000	100.0%
R	1.5"	37.500	100.0%
S	0.75*	19.000	100.0%
E	0.375"	9.500	100.0%
	#4	4.750	100.0%
	#10	2.000	100.0%

	Sieve No.	Diameter mm	Percent Finer
F	#20	0.850	100.0%
N N	#40	0.425	97.4%
E	#60	0.250	89.1%
	#100	0.149	79.6%
	#140	0.106	74.3%
	#200	0.075	70.3%


н	Diameter mm	Percent Finer
H Y D R O M	0.03247	58.5%
	0.02153	47.5%
	0.01319	31.1%
E	0.00949	26.5%
T	0.00674	22.8%
E E	0.00486	17.4%
R	0.00349	12.8%
	0.00142	6.4%

Page 14 of 24 Kandi Brown IT Corporation May 10, 1993 Client Project ID: ETDC Project No.:

WESTON

483500.068.01

IT ANALYTICAL SERVICE KINGSTON, TN (615) 482-6497



### 682-11-9

Page 15 of 24 Kandi Brown IT Corporation May 10, 1993 Client Project ID: ETDC Project No.:

WESTON 483500.068.01 IT ANALYTICAL SERVICES KINGSTON, TN (615) 482-6497

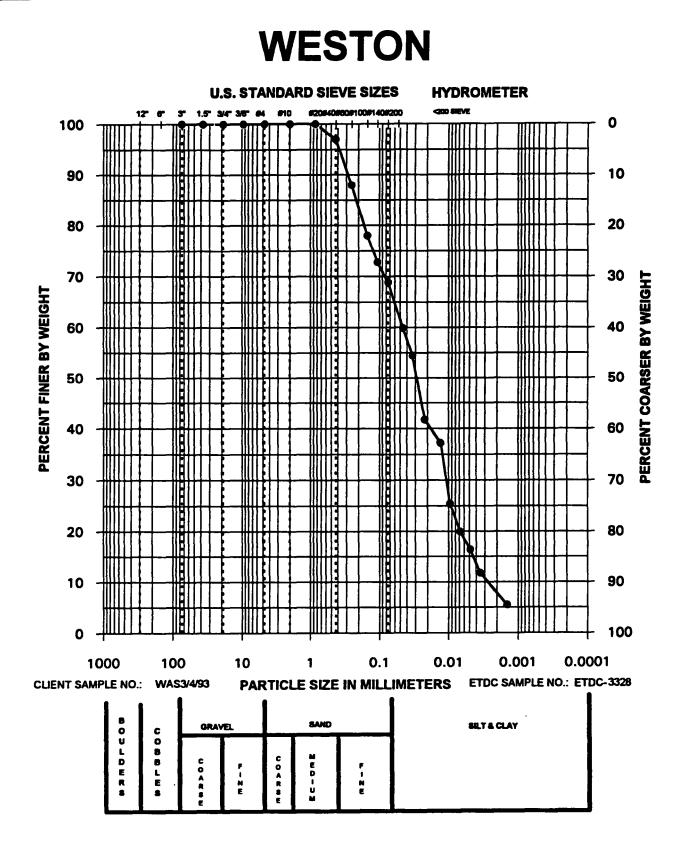
# PARTICLE SIZE ANALYSIS ASTM D 422

Project Name:	WESTON	Client Number: WAS3/4/93	3
Project Number:	483500.068.01	ETDC Number: ETDC- 3328	
Specific Gravity =	2.6500 Assumed	Moisture Content = 168.8%	

# SIEVE ANALYSIS

с	Sieve No.	Diameter mm	Percent Finer
O A	3*	75.000	100.0%
R	1.5"	37.500	100.0%
S	0.75"	19.000	100.0%
E	0.375"	9.500	100.0%
	#4	4.750	100.0%
	#10	2.000	100.0%

Sieve No.	Diameter mm	Percent Finer
#20	0.850	100.0%
#40	0.425	97.0%
#60	0.250	87.9%
#100	0.149	77.9%
#140	0.106	72.8%
#200	0.075	68.9%


	Diameter mm	Percent Finer
н Y	0.04547	59.9%
D	0.03295	54.4%
R	0.02191	41.7%
O M	0.01290	37.2%
E	0.00951	25.4%
т	0.00681	20.0%
E	0.00487	16.3%
R	0.00348	11.8%
	0.00143	5.4%

Page 16 of 24 Kandi Brown IT Corporation May 10, 1993 Client Project ID: ETDC Project No.:

WESTON 483500.068.01

..

IT ANALYTICAL SERVIC⁻⁻⁻ KINGSTON, TN (615) 482-6497



### 682-11-

Page 17 of 24 Kandi Brown IT Corporation May 10, 1993 Client Project ID: ETDC Project No.:

# IT ANALYTICAL SERVICES KINGSTON, TN (615) 482-6497

# PARTICLE SIZE ANALYSIS ASTM D 422

WESTON

483500.068.01

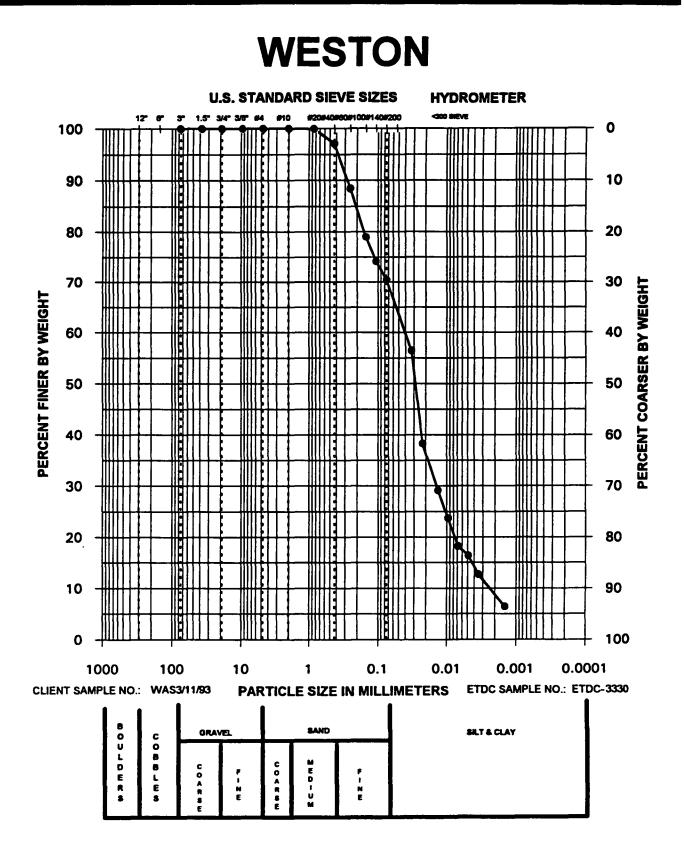
Project Name:	WESTON
Project Number:	483500.068.01
Specific Gravity =	2.6500 Assumed

Client Number:		WAS3/11/9
ETDC Number:	ETDC-	3330
Moisture Conten	 t =	156.3%

# SIEVE ANALYSIS

С	Sieve No.	Diameter mm	Percent Finer
0	3"	75.000	100.0%
A R	1.5"	37.500	100.0%
S	0.75"	19.000	100.0%
E	0.375*	9.500	100.0%
	#4	4.750	100.0%
	#10	2.000	100.0%

	ieve No.	Diameter mm	Percent Finer
	20	0.850	99.9%
	40	0.425	97.0%
	/60	0.250	88.4%
#	100	0.149	79.0%
#	140	0.106	74.2%
#	200	0.075	70.4%


н	Diameter mm	Percent Finer
Y D	0.03263	56.5%
R	0.02229	38.3%
O M	0.01330	29.1%
E	0.00959	23.7%
т	0.00686	18.2%
E	0.00487	16.4%
R	0.00349	12.8%
	0.00143	6.4%

Page 18 of 24 Kandi Brown IT Corporation May 10, 1993 Client Project ID: ETDC Project No.:

WESTON

483500.068.01

IT ANALYTICAL SERVICE KINGSTON, TN (615) 482-6497



### 682-11-91

Page 19 of 24 Kandi Brown IT Corporation May 10, 1993 Client Project ID: ETDC Project No.:

WESTON 483500.068.01 IT ANALYTICAL SERVICES KINGSTON, TN (615) 482-6497

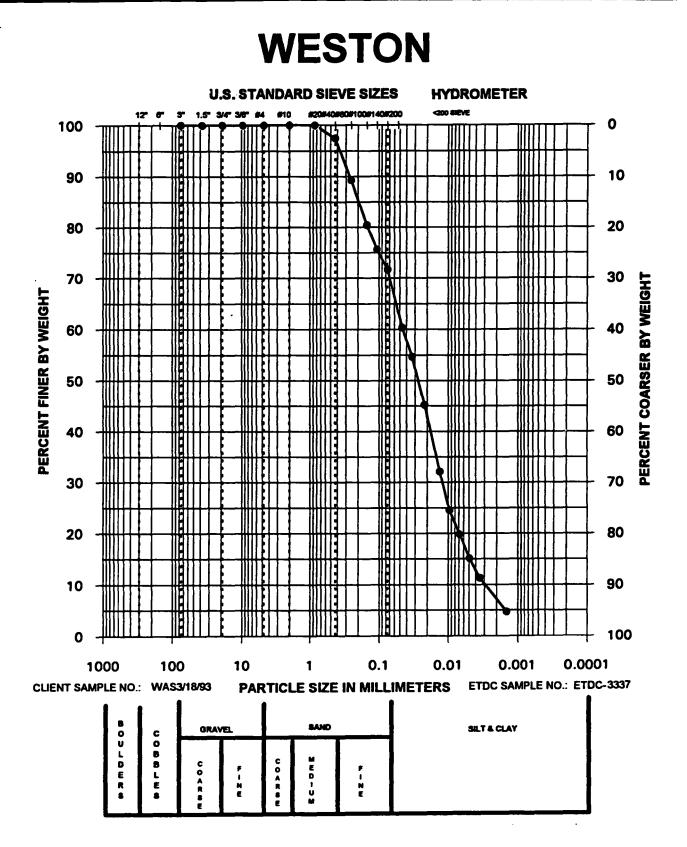
# PARTICLE SIZE ANALYSIS ASTM D 422

Project Name:	WESTON	Client Number: WAS3/18/93
Project Number:	483500.068.01	ETDC Number: ETDC- 3337
Specific Gravity =	2.6500 Assumed	Moisture Content = 155.9%

# SIEVE ANALYSIS

C	Sieve No.	Diameter mm	Percent Finer
0	3"	75.000	100.0%
A R	1.5	37.500	100.0%
S	_0.75	19.000	100.0%
΄ Ε	0.375*	9.500	100.0%
	#4	4.750	100.0%
	#10	2.000	100.0%

	Sieve No.	Diameter mm	Percent Finer
F	#20	0.850	100.0%
N	#40	0.425	97.4%
E	#60	0.250	89.3%
	#100	0.149	80.4%
	#140	0.106	75.6%
	#200	0.075	71.7%


	Diameter mm	Percent Finer
H Y	0.04592	60.3%
D	0.03327	54.7%
R	0.02182	45.3%
O M	0.01319	32.1%
E	0.00959	24.5%
Ť	0.00683	19.8%
E	0.00490	15.1%
R	0.00350	11.3%
ŀ	0.00144	4.7%

Page 20 of 24 Kandi Brown IT Corporation May 10, 1993 Client Project ID: ETDC Project No.:

WESTON

483500.068.01

IT ANALYTICAL SERVIC KINGSTON, TN (615) 482-6497



682-11-9:

Page 21 of 24 Kandi Brown IT Corporation May 10, 1993 Client Project ID: WESTON ETDC Project No.: 483500.068.01

IT ANALYTICAL SERVICES KINGSTON, TN (615) 482-6497

# PARTICLE SIZE ANALYSIS ASTM D 422

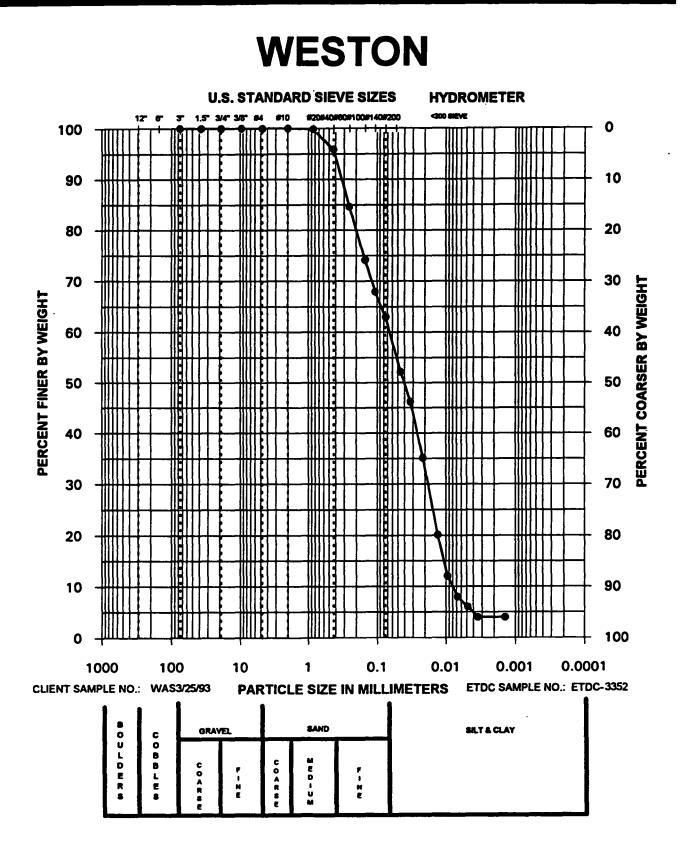
Project Name: WESTON Project Number: 483500.068.01 Specific Gravity = 2.6500 Assumed Client Number: WAS3/25/93 ETDC Number: ETDC- 3352

Moisture Content = 160.0%

SIEVE ANALYSIS

С	Sieve No.	Diameter mm	Percent Finer
0	3"	75.000	100.0%
A R	1.5"	37.500	100.0%
S	0.75*	19.000	100.0%
E	0.375	9.500	100.0%
	#4	4.750	100.0%
	#10	2.000	100.0%

Sieve No.	Diameter mm	Percent Finer
#20	0.850	99.8%
#40	0.425	95.8%
#60	0.250	84.6%
#100	0.149	74.2%
#140	0.106	68.0%
#200	0.075	63.0%


	Diameter mm	Percent Finer
H Y	0.04548	52.1%
D	0.03273	46.1%
R.	0.02154	35.1%
0 M	0.01305	20.1%
E	0.00942	12.0%
T	0.00676	8.0%
E	0.00479	6.0%
R	0.00341	4.0%
	0.00141	4.0%

Page 22 of 24 Kandi Brown IT Corporation May 10, 1993 Client Project ID: ETDC Project No.:

WESTON

483500.068.01

IT ANALYTICAL SERVICE KINGSTON, TN (615) 482-6497



### 682-11-9

Page 23 of 24 Kandi Brown IT Corporation May 10, 1993 Client Project ID: WESTON ETDC Project No.: 483500.068.01

IT ANALYTICAL SERVICES KINGSTON, TN (615) 482-6497

# PARTICLE SIZE ANALYSIS ASTM D 422

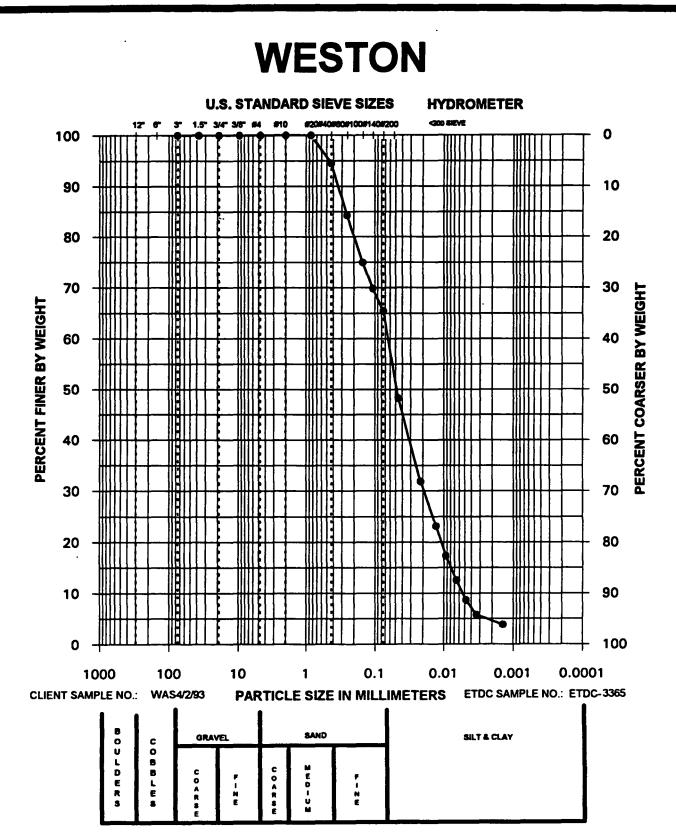
Project Name:	WESTON	Client Number: WAS4	4/2/93
Project Number:	483500.068.01	ETDC Number: ETDC- 3365	
Specific Gravity =	2.6500 Assumed	Moisture Content = 158.8	\$%

# SIEVE ANALYSIS

с	Sieve No.	Diameter mm	Percent Finer
0	3"	75.000	100.0%
R	1.5"	37.500	100.0%
S	0.75*	19.000	100.0%
E	0.375*	9.500	100.0%
	#4	4.750	100.0%
	#10	2.000	100.0%

-	Sieve No.	Diameter mm	Percent Finer
F	#20	0.850	100.0%
I N	#40	0.425	94.5%
E	#60	0.250	84.3%
	#100	0.149	74.9%
	#140	0.106	69.8%
_	#200	0.075	65.5%

.


	Diameter mm	Percent Finer
H Y	0.04568	48.2%
D	0.02167	31.8%
R	0.01285	23.1%
0 M	0.00926	17.3%
E	0.00662	12.5%
T	0.00476	8.7%
E	0.00339	5.8%
R	0.00141	3.9%

Page 24 of 24 Kandi Brown IT Corporation May 10, 1993 Client Project ID: ETDC Project No.:

WESTON

483500.068.01

IT ANALYTICAL SERVICE KINGSTON, TN (615) 482-6497



### --- -

682-11-9

- - - -

# Appendix C

.

·

CORPORAT	<b>FION</b>		IN OF C				je i	UI	
Project Name/I	No. <u>1 Weston/580</u> ers <u>2J. Rightmye</u>	000.045 Samp	oles Shipme	ent Date	7 1-2	<u>-93</u> Bill t	:0: <u>5</u> .	580000.04	5
ample Team Memb	ers 2J. Rightmye	r/T. Scha	Lab De	stination	8 IT-	ETDC			
Profit Center	No. 3 L3978		Lab	Contact	9 Ber	erly Leamon		·	·
Project Mana	ger <u>⁴ Kandi Bra</u>	<u>piùn</u> Proje	ect Contact	c/Phone	12 Kan	di Brown / 26666 Report to	<b>10</b>	Kandi Brown	
Purchase Order	•		Carrier/W	aybill No.	13		U	312 DIRECTORS	5 Drive
Required Report D	-					PER LINE	I —	knoxville, Tr	<u>13793/</u>
		16	Container ¹⁷					Condition on ²¹	Disposal 22
Sample ¹⁴ Number	Sample ¹⁵ Description/Type	Collected	Container .: Type	Volume	servative	Requested Testing ²⁰ Program		Receipt	Record No.
WAS 1/29/93	WAS Neek of 1501	01/29/93	Glass	NIL	NONE	Particle size Andly ASTM Hermod D422	ss	•	
C				<u></u>		ASTIM HEIRE D422	•	FORL	AB
	ETDC -			<b> </b>	· · · · ·			USE O	NLY
	3226	<del></del>		ļ	· · · · ·				
		· · ·				- +			
				• •					
		· · · · ·		<u> </u>			1.	TUKL	AB
	<u>,</u>	, .		· · ·				-USE-O	
				· •: •		C			
				• •		· · ·		· · ·	
Special Instruction	ns: 23	· · ·	· · ·		· · · · · ·				.:
Possible Hazard Non-hazard 🖵 🛛 F	Identification: 24 Pa Iammable 🛄 Skin Irr	AHL) itent 🛄 Poi	son B 🖵	Unknow		Sample Disposal: ²⁵ Return to Client 🗹 😕 Dis	posal	by Lab 🖵 🛛 Archive	a (mos.)
Turnaround Time Normal 🖄 🔆 Rush	Required: ²⁶			CLevel: 2	7 Ⅲ.❑	Project Specific (specify):		· · · · · · · · · · · · · · · · · · ·	
1. Relinquished by (Signature/Affiliation	28 not Richtman	Dat TopTim	ie: 1 29 1e: 3.0	193 0pm	1. Rece (Signature/	tived by 28 Rene		Date: Time:	2-1-93 07:30
2. Relinquished by (Signature/Affiliation)		ン・、'Dat			2. Rece (Signature/			Date: Time:	
3. Relinquished by (Signature/Affiliation)		Dat Tim	ie:	. <u>.</u>	3. Rece (Signature/	eived by Affiliation)	•••	Date: Time:	
Comments: 29		;	•		• <u>···</u> ····			71	:
									MCA 3/15/91

•

1

::÷

		- · ·			· ·	67 67- - 19- - 19- - 19- - 19- - 19	
mple Team Memb	OGY	CHAIN OF ( مصنعة Samples Shipm Lab De Lab	estination <u>9</u> b Contact <u>9 Bév</u> é	ECORD * 14-143 F-ETDC ERLY LEAMON	Page 1		nt No. 311480
-	ager <u>⁴ Kawa Berray</u>		t/Phone ¹ <u>12 K R</u> /aybill No. <u>13</u>	<u>800-3211</u> R	eport to: <u>10</u>		· · · · · · · · · · · · · · · · · · ·
Purchase Order Required Report (			1 1 1 1 4 4 4 4 4	R PER LINE			Ļ Ģ
Sample ¹⁴	Bernple 15 Description/Type		7 Sample 18 5 Pré-	19 Requested Test	ing 20:	Condition on ²¹ Receipt	Disposal 22 Record No.
WAS 2/4/93	Soil Sluger	2/4/93 GLASS	NONE	PARTICLE SIZE AN ASTM METHOD DA	ALYSIS		
· · · ·						ETDC 3227	LAB
• • •		2 P					JNLY
		3					· · · · · · · · · · · · · · · · · · ·
						EOD	
· · ·			9 . D	· · · ·	· · · · · · · · · · · · · · · · · · ·	lice	
:			3 S S				
•				9 1			
Special Instructi							:
	Identification: 24 Flammable 🖵 Skin Irr	itant 🛄 🛛 Poison B 🛄	 Unknown 🖵	Sample Disposa Return to Client 🗹	: ²⁵ Disposa	l by Lab 🖵 🛛 Arci	hive <u>.</u>
Turnaround Time Normal 🏹 🛛 Rush	e Required: ²⁶	Q I.[	C Level: ²⁷	Project Specific (s	1		
I. Relinquished by Signature/Affiliation)	28	Date: <u>ماما</u> Time: مرکز	3 1. Re	ceived by 28			te: 2-1-13 ne: ()9'30
2. Relinquished by Signature / Affiliation)		Date: Time:	2. Re	ceived by v/Affiliation)	,	Dat Dat Tim	te:
3. Relinquished by Signature / Affiliation	y	Date: Time:	3. Re	ceived by	 ., <b>*</b>	Dat Tin	te:
Comments: 29			~ <u>~</u>			<u> </u>	

TECHNOL CORPORA	ogy Tion	CHAIL	N OF C	USTO	DY REC	ORD*	Page	1 of	
Sample Team Memb Profit Center	No. <u>1WESTON/580000</u> Ders <u>2 J. Rushtmier/T. Sc</u> No. <u>3 L3978</u>		Lab Des Lab	stination Contact	8 IT-ET 9 BEVERLY	LEAMON	-	58000.045	
Purchase Order	ager <u>⁴ Kaios Benest</u> No. <u>6</u> Date <u>11</u>	Ca	nrier/Wa	aybill No.	13	PER LINE	, .,	<b>)</b>	ý
Sample;14: Number	Sample 15 Description/Type	Date/Time ¹⁶ Collected	ontainer ¹⁷ Type	Sample 18 Volume	Pro- 19 servative	Requested T	esting ^{20;} m	Condition on ²¹	Disposal ²² Record No.
WAS 2/11/93	Soil SLUERY	z/11/93 ( 1400	GLASS " "JAR	NIL	Nove	PARTURE SILE ASTM MENUD	ANALNSIS Dfzz	ETDC 3286	:
		,	7					TUR L	AB
				35.1	9		2 <b>.</b>	USE O	NLY
ЯC	2			Jest			2 5		
			•	#				FOR L	Δ
		·	•		4			USE O	
N.C.	· · · · · · · · · · · · · · · · · · ·	-	<u> </u>	: ;			<u>.</u>		
1	· · · · · · · · · · · · · · · · · · ·		• •	11 ¹ 11			· · ·		 
Special Instruction	the second s			 i,			- 05		
	Flammable 🛄 🛛 Skin Irri		on B 🛄	Unknowr		Sample Dispo Return to Client	sal: ²⁵ Disposi	al by Lab 🖵 🛛 Archive	(mos.)
Turnaround Time Normal 🕁 🗟 Rush	e Required: ^{26:}	· · ·		: Level::2 11.0	tu 🗔 🖬 🐂	Project Specific	; (specify);	· · ·	
1. Relinquished by (Signature/Affiliation)	128 moth S. S. Jalk	Date Time	: 2/12/9 : 1500	3	1. Recei (Signature/A	wed by 28	11 the	_ It etpc Date:_ Time:	<u>2-((-93</u> Ə /000
2. Relinquished by (Signature/Affiliation)		Date Time	: <u></u>	,	2. Recei (Signature/A	ved by		Date:_ Time:	
3. Relinquished by (Signature/Affiliation)	<u>,</u>	Date Time			3. Recei (Signature/A			Date: Time:	· · ·
Comments: ²⁹		·	-	• •					·

2

......

· · · · - - ---

MCA 3/15/91

-- . ....

۰.

483500:0	06 8.	0/
----------	-------	----

INTERNATI TECHNOLO CORPORAT	IONAL XGY TION	_	NALYSI IN OF C				Reference Reference Page		ent No. 311424
ample Team Memb Profit Center I	No. 1. Weston ers 2. T. Scholk, J. F No. 3 L. 3978	johtmyer	Lab De	ștination Contact	8 ET 9 Beve	DC rly leam	- - 201	5 .5800000 	
Purchase Order	iğer <u>4 K Brown</u> No. <u>6</u> ate <u>11</u>	<u> </u>	Carrier/W	eybill No.		<u> </u>	2015 2015 2015 2015 2015 2015 2015 2015	Randi ar	
Sample 14 Number	Bample ¹⁵ Description/Type	Date/Time ¹⁶ Collected	Container 7	Sample ¹⁸ Volume 2	pré. 19 servative	Requested		Condition on 2	Disposal 22
WAS2/18/93	WAS Slurry	2/18 B3 2:300		15	5.3.4 5.3.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.4 8.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	Particle sin ASTM Het	e analysis	ETDC 332	
1	· · · · · · · · · · · · · · · · · · ·		1917 6. 1917 6.		0 P				
	· · · ·						- 4 - 2		
2		e			100 III 100 III 100 III				2 2
×								FOR	LAB
<u>.                                    </u>		Lu Lu	<u> </u>					USE	ONLY
•		ан с 1964р По 1974 г.							l) ë
Special Instruction				<b>li</b>		<u> </u>			· · · · · · · · · · · · · · · · · · ·
Possible Hazard Non-hazard 🖵 F	Identification: 24 Iammable 🔔 Skin Irr	itant 🛄 🛛 Poil				Sample Disp Return to Clien			rchive
Turnaround Time Normal	Required: ²⁶			Level: 2 	III. 🖸 🗉 .	Project Speci	fic (specify):	1# •	
1. Relinquished by (Signature/Affiliation)	28 28 Reducerous !	Dat T T-BAC Tim	e: <u>ఎ/18</u> e: ఎ:4	193 5 pm	1. Rece (Signature/	Affiliation)	Bricon	FTDL F	Date: $(2 - 14 - 13)$ ime: $(1 + 3)$
2. Relinquished by (Signature/Affiliation)		• Dat Tim	e:		I 2. Rece	lived by Affiliation)		C	Date:
3. Relinquished by (Signature/Affiliation)		Dat Tim	e:		3. Rece (Signature/				ate: : ime:

狲

. . . . . . . . . . . . .

...........

din.

...

2

lon nts: T

TECHNOLO CORPORAT				표외 김 영	9 F * 3	, i i i i i i i i i i i i i i i i i i i		ge 1 of _ to:⁵ ک	30000	
Project Name/N	no <u>1. Weston</u> irs <u>2 T. SchallK</u>	j Disjur			8' 7	105/93 FETTS	Bill	w: <u>*0</u> 2		
ample leam iviempe	No. 3. 3978					erly Lea	 m m		C	<u>, "</u>
	ger <u>4 Ki Brown</u>			·	13 5 8 3	Brown lai	ninlo	خات م	<u> </u>	
Project Mana Purchase Order I			ect Contact		13 4	<u> </u>	Report t	<u>ר יי</u> ו:ס: סו <del>צ</del> יס	Brown	Drive
Required Report Di		in di = e				e 1 0 e			MT Slive	
						PER LI		<u> </u>	<u> </u>	<u>~~</u>
- Sample ¹⁴	Semple ¹⁵ Description/Type	Date/Time ¹⁶ Collected	Container'' Type	Sample ' a Volume' .	servative	Request Pro	ed Testing ²⁰ gram	Condi	tion on 21	Disposal ² A Record No.
WAS @/@5/93	week solid	2 K5/93	9/955	12	A Contraction of the second	Particle Aralysis	size	ETDC	3327	
			er an		31 7. (2115) (2117)	Method	<u>J422</u>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FUR	LAB
					bnet bnet ab		÷		JSE L	NLY
				,						-14
		5 6 7						1 1 1	Ϋ́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́	
		14 4 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4	1940 1940	94.5						
900 H 10 H	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		641 0 641 0	1.445.1				10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.010		i sel lin I
	0 W C 15695 7774 7774 7774 7774 7774 7774 7774 77		- 54-1 254-1		11 - 11 - 11 - 11 - 11 - 11 - 11 - 11	Grime (e)te niter	2	68 69 C		1
Special Instruction	ns: 23 5		5 C 1 -	- 1 a						
Possible Hazard I		itant 🖵 💈 Poi	son B 🖸	°Unknowr		Sample Dis Return to Cli	posal; 25	posel by La	6	ive
Turnaround Time	Required: 26	ສະຫຼືອເຊ ສະຫຼືສ¢ 3(.3.7		Level: 2	7 2 : !	Project Spe		تې ت	2 5	
1. Relinquished by (Signature/Affiliation)		Dat	e: <u>2/25</u>			eived by 28	Base			B: 2-26-97 B: 1170
2. Relinquished by (Signature/Affiliation)	$\sim$	Dat Tim	æ:		2. Rece	Affiliation)		<u> </u>	Dat Tim	9: É
3. Relinguished by	<u></u>	Dat			3. Rece				Date	

ereganaan, .

INTERNATIONAL				ofononco Doc	ument No. 31149
TECHNOLOGY, CORPORATION		S REQUEST A		age 1 of	
Project Name/No. 14 WESTON/5800	Samples Shipm	ent Date 7. 3/4/		1 to:5 = 5800	2 김 김 국 한 별 문
Sample Team Members 21 R. Strikez T. St		estination 8 ETDC			
Profit Genter No. <u>3- 13978 - 2 - 4</u> Project Manager <u>4 Kaipa کورمینی</u>		Contact <u>9 Bevenu</u> t/Phone <u>12 K. Beve</u>			
Purchase Order No.	이 이 것 같아? 동안 동안 것	avbill No. 🗿 🖉			
Required Report Date 11	ONE	CONTAINER	PER LINE		
Sample 14 Bemple 15	Date/Time ¹⁶ Container ¹ Collected	78emple 16 Pre- 19 Volume servative	Requested Testing 2	Condition	n, 21 to 2 Disposel 22 Record No.
WAS 3/4/93 WAS SLURRY	3/4/43 Gurss	IL	PARINE SIZE ANALYSIS ASTNÍ MEMBO DAZZ		
		ns fr ns fr sd fr fr fr fr fr fr fr fr fr fr fr fr fr f			
	1000	10. 10. 10. 10. 10. 10. 10. 10. 10. 10.	ar ar ar ar ar ar ar ar ar ar ar ar ar ar ar ar ar ar ar ar a		
○ 55	10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-			0.0	
		5 10 5 10 5 10 5 10 5 10 10 10 10 10 10 10 10 10 10 10 10 10 1		28	
	Athen and a state of the state	and a second secon		US	EONLY
	an chuidh an chu	1 33 1 33 1 33 1 33 1 33 1 33 1 33 1 33		num but but	
	a 114 25 signa f gmbs	100 H			
Special Instructions: 23 5 E	cub vo benc catego catego star	noite r Lincer Same Same Same Same	Rid sider Stars Criss Criss Criss Criss		
Possible Hazard Identification 24 Non-hažard 🖵 Flammable 🗐 Skin Irrit			Sample Disposal: 25 Return to Client 🖉 🗄 D	lisposal by Lab 🖵	Archive (mos.
Turnaround Time Required: 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 13 26 1		<b>C'Level ²⁷</b>	Project Specific (specifi		
1. Relinquished by 28 (Signeture / Affiliation) Turnitor 5. S. C. C.	Date: 3/+/93	1. Rece	ived by 28	TTETOC	Date: :3/5/93 Time: :////
2. Relinquished by (Signature/Affiliation)		2. Rece	ived by		
3. Relinquished by (Signature / Affiliation)	Date:	3. Rece	ived by		Date: ::
Lomments: 29		<u> </u>		<u></u>	<u> </u>

.

......

. .....

		11C2 Cm	06801				- <b></b>	
2	INTERNATIO			SIS REQUE	ST AND	: Refere	nce Document l	No. 311494
	TECHNOLOG CORPORATIO	ON -	CRAIN U	F CUSTODY	RECORD*	Page 1	of	
	Project Name/No	1 Weston / 580	DOD OLS Samples Sh	ipment Date <u>7</u>	3/11/93	Bill to:5	= 5 800 00. O	45
Sa	ample Team Member	s2 Tischalk		Destination <u>8</u>	ÉTOC-	• • • • • • • •		<b>5</b> 1
	Profit Center No	3978		Lab Contact 9	Beverly Lea	mon		
	Project Manag	er <u>t kand Br</u>	OWN Project Cor	tact/Phone $\frac{12}{2}$	Kandi Browny	2666 Report to: 10		
	Purchase Order N		Carrier	Waybill No. 13		; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	· · · · · · · · · · · · · · · · · · ·	
•	Required Report Dat	te <u>11/55255</u>		E CONTAI	NER PER LI	VE +		
ſ	Sample 14	Bample ¹⁵ Description/Type	Date/Time ¹⁶ Contain Collected 5	ner ¹⁷ Bample ¹⁸ Volume ser	Pro 19 Request	d Testing 20	Condition on 21	Disposal 22 Record No.
		No. 1 2 10 3 12 0 4 -			PA ASTMEM	oth od: D422-1 Size Analysis	ETDC 3330	Yellov
					ney Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstra Arstr			AB,
		λ <b>ο</b>		a Arros Arros Arros	under 1 (en 1 (en)1 (en 1 (en)1 (en)			
	AC Lines	hrist Arrist Arrist Martin			na translation rectained rectained rectained rectained	1979 1970 1970 1970 1970 1970 1970 1970	106 1111 1111 1111 1111 1111 1111 1111	. <del>7</del> . 1
	intege intege	tho: tho: the the the the	9 E 2 Y					
· · ]		ະສຸ ການ ການ		bet. Per a	triuci dt to otritt dt to tritt tritt tritt tritt dt	Fillen Fillen Officier Picere Beime	USEO	
	DWT scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti scienti sc	r en co en co en co en co en co en co en co		U39 105, 1 105, 105, 105, 105, 105, 105, 105, 105,	the second secon	Analy Naga Naga Naga Naga Naga Naga Naga Nag	100- 10- 10- 10- 10- 10- 10- 10- 10- 10-	
	THIS THIS THIS THIS	01061 6431 70 0 70 0	: 10 94 :: 1 5: -: 1 5	24-1 dicar dicar	Le 1, 3 Le 1, 5 Le	i ko. Jne Jr tuc si di	anur a fra orie orie a fra	i. C
	Special Instruction	S: 23	Der stede	ur ch -1 gr the v the v	aeitr Agmis becu a sid o'u'r o'u'r o'bis	veis. iy dur dur		le la
1	Possible Hazard Id Non-hazard	entifiçation:24 mmable 🖵 8 Skinjrri			Sample Dis	posal, 25 <u>ii</u> ant <b>L</b> 2 Disposal	by Lap La	g 
	Turnaround Time Normal D Rush	Required: 26 = 5	eçisi iç Ni Cyc 167 % Yesh				ers en leg	
	1. Relinquished by 2 (Signature / Affiliation)				Received by 28	Le Adh		
	2. Relinquished by S (Signature/Affiliation)				Heceived by 8			•••
	3. Relinquished by si (Signature Affiliation)		Deter	5 <u>5</u> 3	Received by	therease interaction interaction interaction interaction interaction interaction	Date:	đi
	Comments: 29				oo an f Anno ann			1;
	31.7 ·	11. OH 11. SOLOSO 10. SOLOSO	n drama vice co	Hũ mì hìc (- acia)	Source States	picate, " utrajo" utrajo" - utrajo" -		; ;

483500.000--

ample Tëam Memb Profit Čenter Project Mana Purchase Order	GY	BU9 Samples S Samples S Project Co	b Destinațion Lab Contact ontact/Phone r/Waybill No.	DY REC 7. 3/18 8. T.T 9. Beven 12 kand 13	Brown 126 66	Page 1 Bill to:5	nce Docum of 580000. 580000. 580000. 580000. 580000. 580000. 5800000. 5800000. 5800000. 5800000. 5800000. 5800000. 5800000. 5800000. 5800000. 5800000. 5800000. 5800000. 5800000. 5800000. 5800000. 5800000. 5800000. 5800000. 5800000. 5800000. 5800000. 5800000. 5800000. 5800000. 5800000. 5800000. 5800000. 5800000. 5800000. 5800000. 5800000. 5800000. 5800000. 5800000. 5800000. 5800000. 5800000. 5800000. 5800000. 5800000. 5800000. 5800000. 5800000. 5800000. 5800000. 5800000. 5800000. 5800000. 5800000. 5800000. 5800000. 5800000. 5800000. 5800000. 5800000. 5800000. 5800000. 5800000. 5800000. 58000000. 58000000. 58000000. 58000000. 580000000000	wy tors Driv	White: To accompany s
Sample ¹⁴ Number	Bample 15 Description/Type 5	Date/Time ¹⁶ Collected	hiner ¹⁷ Sample ¹⁸ Volume	Pro- 19 servative	Requested Testing Program	20	Condition on ²		sposal ²² ord No.
WAS 3/18	RX Slutry	2:15pm 3/18/11 9			ASTM Method DH Particle Size A		ETDC 3	· · · · · · · · · · · · · · · · · · ·	Yellov
			. :	23 23		19. 19. 19.	TUN	LAB	
:,,				1. 1. 1. 1.			USE	UNL	
			4 T 44		а 				
				· · ·					
			r	ت بين ^{ي.} ت جو د				<b>N</b> III	di di
			- 191 - 191			*			
۶ <u>.</u>			0 UT:			· .	<i>u</i> *		<u>S</u>
Special Instruction	and the second		÷ į.	: :					form
Non-hazard 🖵 🛛 F		H(S) itant 📑 / Poison B			Sample Disposal: ²⁵ Return to Client <b>M</b>		by Lab 🖵 🕺 Å	rchive	ថ្ម (mos.) ខ្ល
Turnaround Time	Required: ²⁶			7 III.Q	Project Specific (spec	ify):	······································	· ·	cial In:
1. Relinquished by (Signature/Affiliation)		Date: <u>3</u> TBAC Time: 3	118   93 2:20pm	1. Recei (Signature/A	red by 28	'han		Date: 3 - / ime: ///	
2. Relinquished by (Signature/Affiliation)	0 3 '	•Date: Time:		2. Recei (Signature/A	ved by	_		)ate: ime:	
3. Relinquished by (Signature/Affiliation)		Date: Time:		3. Recei (Signature/A	ved by filiation)		(	Date: ime:	
29 וחזר		<u> </u>							

.....

....

TE	TERNATI CHNOLO DRPORAT	IONAL '	000-0		NALYSI IN OF C				Refer			<b> 0. 3     4</b> UU  消	) i - 1
Project	Name/I	No Lest	an 408491	Sam	oles Shipm	ent Date	7 3/2	5/93	Bill to:5	58000	5.045	· ·	Mhite I
			shTmysz.	_				ETDG		# # 0.202			5
			978			• • •		Ly LEAMUN					8000
Proje	ct Mana	ĝer <u>4</u> Ka	INDI BRO	roje	ict Contac	t/Phone	12 KANI	DI BROWN ALG	Report to-	KANDI B	ROWN	8 ⁻	
Purchase					Carrier/W					319 DIRECT	<del>IZ DR</del>	······································	77 52
equired R	leport D				ONE		AINER	PER LINE		SNOL SIN	<u>2 [78</u>		Imple
Sample Numbe	14	Ber Descript	mple ¹⁵ ion/Type 3	Dats/Time ¹⁶ Collected				Requested	Testing 20	Condition o		Disposal ²² Record No.	6
WAS 3/L	z 5 2193	RISL	URRI	- 3/25FB	GLASS	16		AST in Methow Pachicle Size		ETDC 3	352		Yellow
. ŭ	64 3130	cid vi int or ints		310.00 1.110 1.110 1.110 1.110	ndour BD IGO DRei Gr	પ છ. કેર કોર્ડ તેલ્દ કો	et c 10 1 11 1 11 1 11	A ch	nor autor Stice Stice Stice Trent	й. Э		AB.	N N N
, <i>ī</i>	т	and Solor Solor Solor Solor Solor Solor	20		1	1112 1 1	ichter Strict Strict	tri ferri evidet evidet etri ale	a de la compara de compara de la compara de			<b>NLY</b>	
	1. 1. 1.	50. 1000 1000 1000 1000 1000		1, 25 1, 25 1, 310 2, 131 2, 1	neru io nu malu	0800	1 26.1 2 A 20 2	struction Lubbu Lobbu Lobbu	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	uldste xitten viten voe	0 6 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1	2	
		10 10 10 10 10 10 10 10 10 10 10 10 10 1		5 3 4 7 71 - 1 - 1 7 - 1 - 1	11 S	: ب: بـ ا			e Fride	a g a a a			
			, c, ., ., ., ., ., ., ., ., ., ., ., ., .,	14 15 · · · · · · · · · · · · · · · · · ·		5. 11.51 1.52			Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Suppor				
· ·		, v	· ·			5							
	-	10 W		iC 9.	્વે ખ્	9 i 1				201uf 201uf 201b 201b	3 0 6 C 1 8 C	· ·	ç Ş
vecial In:	structio	ns: 23		. <u>.</u>	· · ·	· · ·		÷	etos. 14	elique cCC CCC	1.51	,	đ
ssible H	lazard l	dentificati	on: 24 <i>PA</i> J. Skin In	H(s) Nant 📮 ê Poi	son B 🖵	Unknown		Sample Dispo Return to Client	<b>isal: ²⁵ ຊູລັ</b> ເ <b>ມ</b> ີ 5 Dispos		Archive	(mos.)	for spe
	nd Time	Required				<b>C Level:</b> ²⁷	7	S Projéct Specifi	20. 30	י אוסוג ההכקר גי ונ	in ier Stervo		icial in
Relinquis	shed by		1.	<b>Dat</b> Tim	e: <u>3/A5/</u> e: :/0.'00	93	1. Rece	ived by 28 #	1 A Akar	TO	Date: Time: s	3.24.73	structions
Relinquis	shed by -		5.1	<b>Dat</b>	e:		2. Recei (Signature//	ived by s	1,102 e	Mec. Mrot implu	Date:		JNS.
Relinquis	shed by ;		3.18	· · · · Dat		·	3. Recei (Signature/A	ved by.		ia borta Siqqis Caesi Sesi Sesi	Date: Time:		
omment	s: ²⁹ ,			· · · · · ·	<u>.</u>	÷ č	<u> </u>	<u>ພ</u> ຸດ ກ	U J	A No.	9 co		
.!	i					74		in the	ុ (ទម្រប់ ភ្លោក លោក ភ្លោក ទោះទំនាំ	3 20% 1 5.5.3 5.5.5	icr' bna s it lo yba: silonnos		526
		·····		······								MCA 3/15/91	12 1

# 4 83500.068.01

1

.......

mple Team Memb Profit Center	No. 7 Weston / 58 No. 7 Weston / 58 No. 3 3978 No. 3 3978 No. 6 No. 6	CHAIN OOOO Samples	Lab Destination Lab Contact Contact/Phone ier/Waybill No	DY REC 7. 4 / 8 1. T - 9 Bever 12 Kan 13	2 93 ETDC	Page Bill to:	rence Documen 1 of 5 580000 c 10 Kondi B	<u>5</u> <u>7</u> <u>7</u>
Sample ¹⁴ Number	Sample ¹⁵ - Description/Type	Date/Time ¹⁶ Con Collected T	tainer ¹⁷ Sample ¹⁰ ype Volume	ervative	Requested Testi Program	ng 20	Condition on 21	Disposal 22 Record No.
	Rx slurry 4/2/93			NA	Particle Sil Analysis Ast		ETDC 3365	
					Method		TUK	LAB
si							USEL	JULY
•					·		, 4 Č	
		1 221						
r.			·					
:			A					
	1					-!		5 
<b>Špecial Instruction</b>			· · · ·			:		2
Possible Hazard	Identification: 24 C	reosote - C	BU: Unknow	#s)   n ⊡	Sample Disposal: Return to Client	25 Dispo	sal by Lab 🖵 🛛 Arch	nive (mos.)
Turnaround Time	e Required: ²⁶				Project Specific (sp			
1. Relinquished by (Signeture/Affiliation)	28	••••••	412193	the second s	ived by 28		China Dat	e: 4.5.13
2. Relinquished by (Signeture/Affiliation)	at bit the	Date:	11:45am	2. Rece	ived by		- Dat	e:
3. Relinquished by (Signature/Affiliation)	/	, Date: Time:			eived by		Tim Dat	e:
Comments: 29	<u></u>	· · · · · · · · · · · · · · · · · · ·	<u></u>			<u>-</u> <u>-</u>	, <u>.</u> , . <b>um</b>	

2

.

BAC PAH Data Package

weston/tmchp1

### BAC DATA PACKAGE

#### A. Initial Calibrations

The HPLC was recalibrated with each batch of samples. A three-point calibration was performed automatically based on data generated from serial dilutions of a certified standard (Supelco 610-PAH Mix). With each recalibration, a calibration summary was printed depicting the linear regression, linear equation, and correlation coefficient for each of the 16 PAH analytes.

Analyte concentrations within a sample were interpolated automatically based upon the above linear regressions and subsequent dilution factors. A representative series of calibration standards, a calibration summary, results of a sample analysis, and results of a method blank analysis are included. The coefficient of variation was 0.99. These examples are from actual analyses performed on 4/16/93.

B. HPLC Run Log

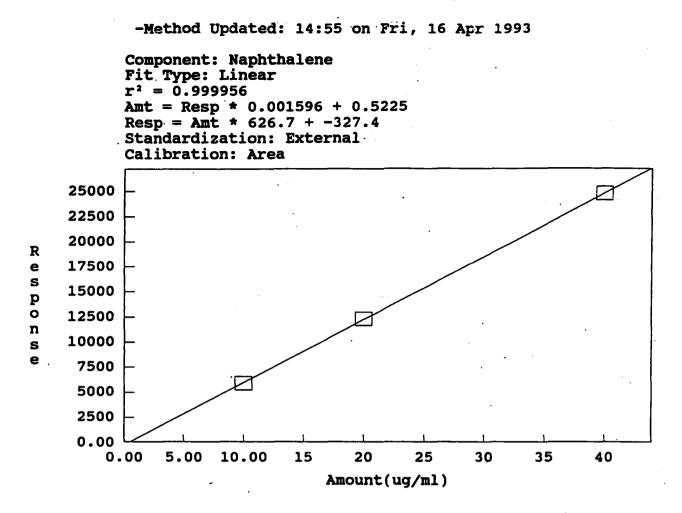
The HPLC run log for the project is included.

## **DIONEX METHOD PARAMETERS - RX412.MET**

Method Comment: RX412.MET Column ID: Perkin Elmer PAH C18 Analyst ID: J. Rightmyer

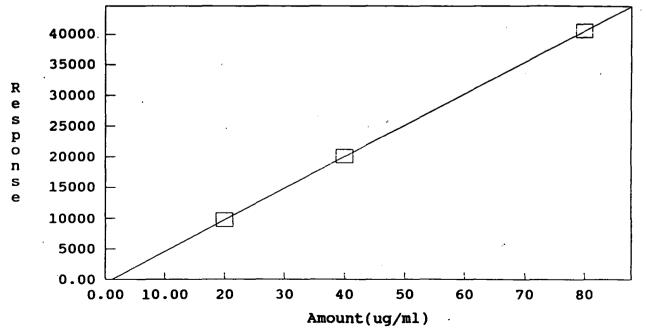
System Parameters

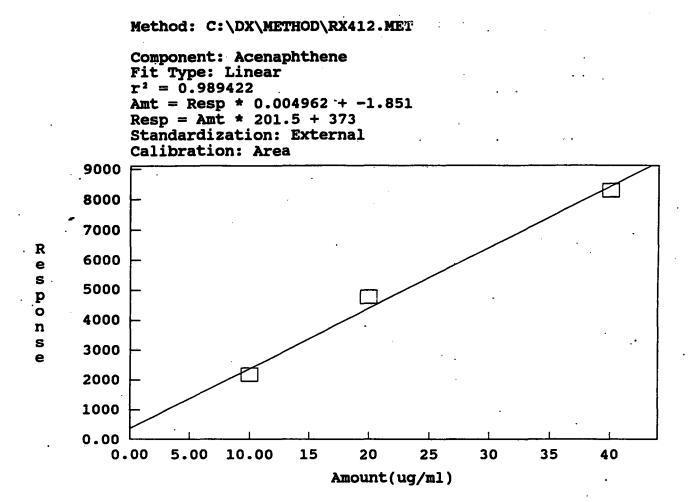
System Name: pah/anlons	
Number of Detectors	1
Run Time (minutes)	30.00
Sampling Rate (seconds)	0.20
Detector 1 Type	VDM-2
Detector 1 real time plot scale maximum (AU ) minimum	
Save Data FileDX\DATA\RX412001.D04	
Dala File Name: C:\DX\DATA\KX412UUI.DU4	


#### -- DETECTOR 1 PARAMETERS --

#### Report Options

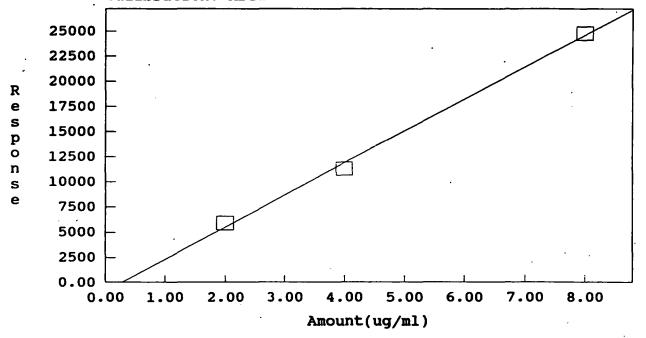
Create ASCII Report File	No
Print Report	Yes
Print All Components	Yes
Print Components Found	No
Print Missing Components	No
Print All Peaks	Yes
Print Unknown Peaks	Yes
Print Chromatogram	Yes
Autoscale Chromatogram Maximum	No
Autoscale Chromatogram Minimum	No
Fill Peaks with Color	Yes
Draw Grid Lines on Chromatogram	No
Show Component Fraction Numbers	No
Label with Peak Number	Yes
Label with Retention Times on Chromatogram	No
Label with Component Name	No
Format File Name: C:\DX\METHOD\default.prf	


#### **Integration Parameters**

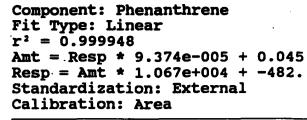

Starting Peak Width (seconds)	10.0
Peak Threshold	1.200
Peak Area Reject	50
Area Reject for Reference Peaks	5

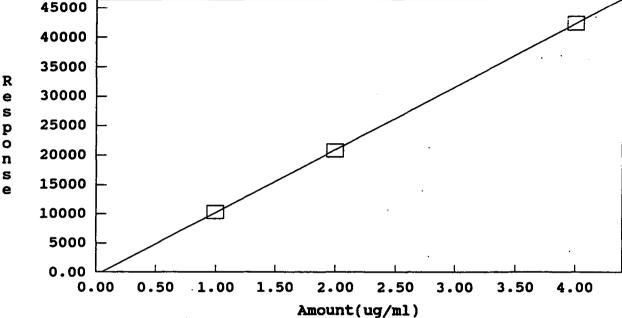





Component: Acenaphthylene Fit Type: Linear r² = 0.999996 Amt = Resp * 0.001947 + 1.087 Resp = Amt * 513.5 + -558.3 Standardization: External Calibration: Area

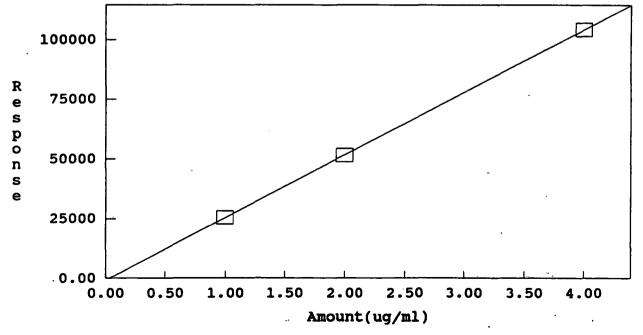


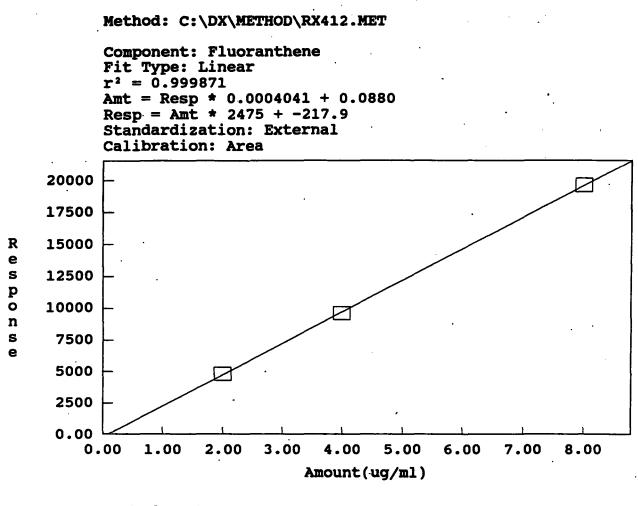




Method: C:\DX\METHOD\RX412.MET

Component: Fluorene Fit Type: Linear r² = 0.997092 Amt = Resp * 0.0003143 + 0.2789 Resp = Amt * 3182 + -887.4 Standardization: External Calibration: Area

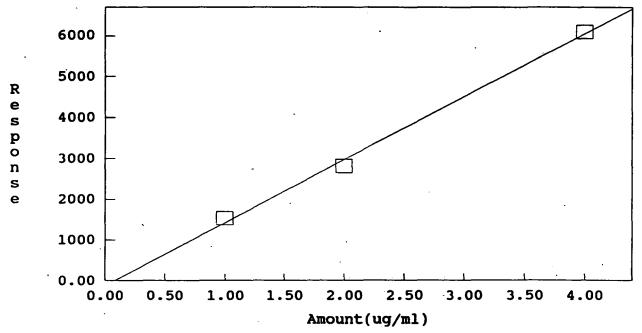




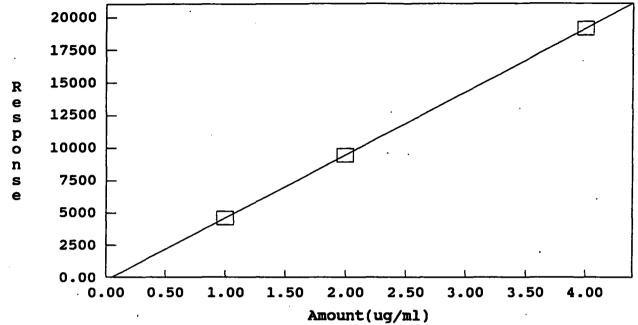



Method: C:\DX\METHOD\RX412.MET


Component: Anthracene Fit Type: Linear r² = 0.9999991 Amt = Resp * 3.809e-005 + 0.03323 Resp = Amt * 2.626e+004 + -872.5 Standardization: External Calibration: Area

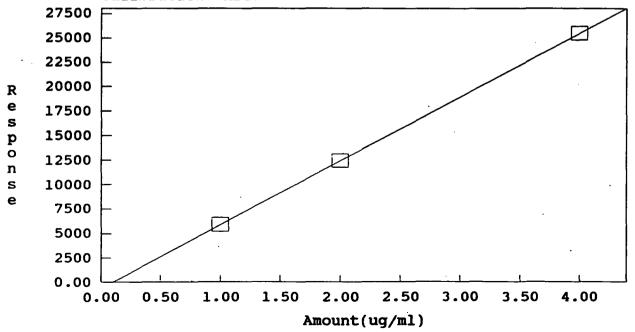


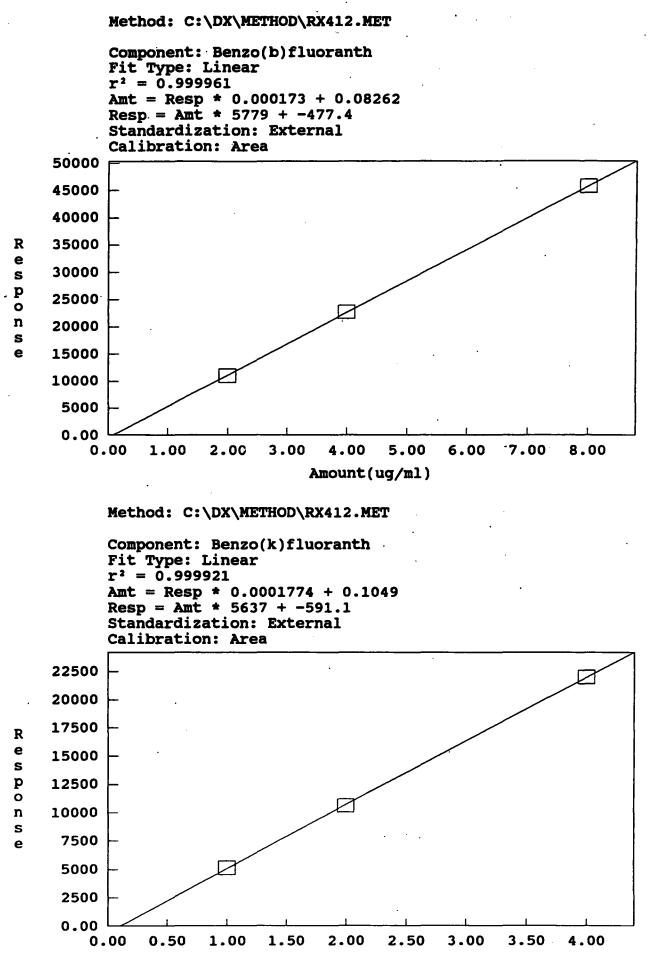





Component: Pyrene Fit Type: Linear r² = 0.996453 Amt = Resp * 0.0006487 + 0.0819 Resp = Amt * 1542 + -126.4 Standardization: External Calibration: Area



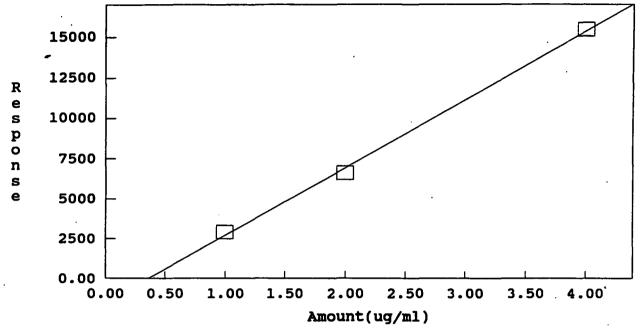




```
Component: Benzo(a)anthracen
Fit Type: Linear
r^2 = 1.000000
Amt = Resp * 0.0002066 + 0.0507
Resp = Amt * 4840 + -245.7
Standardization: External
Calibration: Area
```



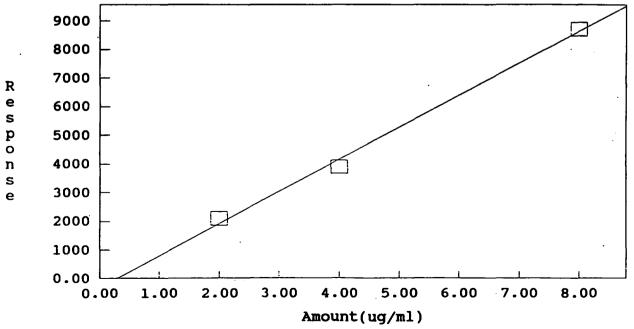
Method: C:\DX\METHOD\RX412.MET

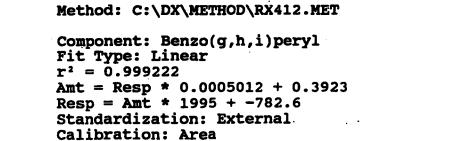
Component: Chrysene Fit Type: Linear  $r^2 = 1.000000$ Amt = Resp * 0.0001533 + 0.0968 Resp = Amt * 6524 + -632.1 Standardization: External Calibration: Area

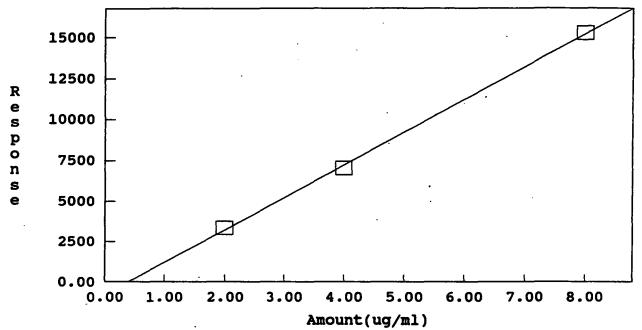





Amount(ug/ml)

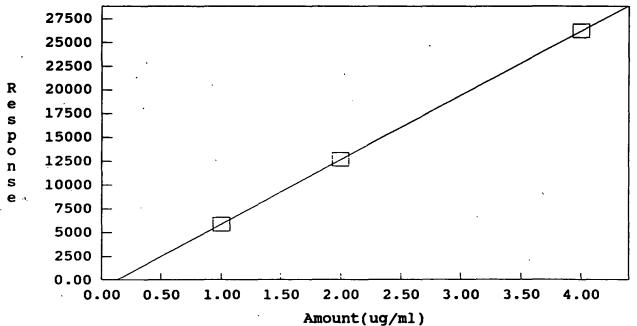




```
Component: Benzo(a)pyrene
Fit Type: Linear
r<sup>2</sup> = 0.998247
Amt = Resp * 0.0002368 + 0.3606
Resp = Amt * 4222 + -1522
Standardization: External
Calibration: Area
```




Method: C:\DX\METHOD\RX412.MET

Component: Dibenzo(a,h)anthr Fit Type: Linear r² = 0.995547 Amt = Resp * 0.000892 + 0.2979 Resp = Amt * 1121 + -334 Standardization: External Calibration: Area










Component: Indenoperylene Fit Type: Linear r² = 0.999990 Amt = Resp * 0.0001477 + 0.131 Resp = Amt * 6770 + -886.6 Standardization: External Calibration: Area



### Calibration Parameters

,

Number Of Levels for Calibration	3
Force Calibration Curve Through Origin	
Calibration Fit Type	
Replace Or Average Calibrations	Replace
External or Internal Calibration	
Calculate Unknowns by Area or Height	
Défault Sample Volume	
Default Dilution Factor	
Default Response Factor for Unknown Peaks	
Calibration Standard Volume	
Internal Standard Amount in Samples	1.0
Amount Units	ug/ml

Component 1	able -	- Last Modified	: 09:43 on	Sun, 08 Aug 1	993
Referen Amount K0 =	ice Com = K0 + 5.225	1 Naphthalen p. Naphthalen K1*Area 39E-001 79E-003	ne R e Wi	etention Time ndow Size	5.52 0.10 min.
	Level	Amount	Area	Height	
		4.00000E+001 2.00000E+001 1.00000E+001	12278	1613	
Amount K0 =	= K0 + 1.087	2 Acenaphthy p. Acenaphthy] K1*Area 18E+000 29E-003	ylene R lene Wi	etention Time ndow Size	6.23 0.10 min.
	Level	Amount	Area	Height	
	2	8.00000E+001 4.00000E+001 2.00000E+001	20020	2502	
Referen Amount K0 =	ce Com = K0 + -1.85	3 Acenaphther p. Acenaphther K1*Area 069E+000 81E-003	ene R ne Wi	etention Time ndow Size	7.13 0.10 min.
	Level	Amount	Area	Height	
	1 2 3	4.00000E+001 2.00000E+001 1.00000E+001	8280 4768 2179		
Referen Amount K0 =	ce Com = K0 + 2.788	4 Fluorene p. Fluorene Kl*Area 99E-001 00E-004		etention Time ndow Size	7.32 0.10 min.
	Level	Amount	Area	Height	
	1 2 3	8.00000E+000 4.00000E+000 2.00000E+000	24733 11252 5896	2939 1510 722	

1

٦,

Refere	nce Com	5 Phenanthre p. Phenanthren K1*Area		etention Time ndow Size	
K0 =	4.519	95E-002 68E-005		•	
	Level	Amount	Area	Height	·
• •	1 2 3	4.00000E+000 2.00000E+000 1.00000E+000	42234 20721 10276	5101 2522 1222	
Refere Amount	nce Com = K0 +	6 Anthracene p. Anthracene K1*Area 80E-002		etention Time ndow Size	
		57E-005			
	Level	Amount	Area	Height	
	1 2 3	4.00000E+000 2.00000E+000 1.00000E+000	104199 51504 25476	12017 6032 3031	
Amount K0 =	= K0 + 8.804	p. Fluoranthen K1*Area 54E-002 72E-004 Amount	Area	ndow Size Height	0.10 min
ι.	1 2	8.00000E+000 4.00000E+000	19612 9584 4798	2224. 1085	
	3	2.00000E+000	4/30	548	
Refere Amount K0 =	nent # nce Com = K0 + 8.196	2.00000E+000 8 Pyrene p. Pyrene K1*Area 38E-002 60E-004	Re	548 etention Time ndow Size	9.57 0.10 min
Refere Amount K0 =	nent # nce Com = K0 + 8.196	8 Pyrene p. Pyrene K1*Area 38E-002	Re	etention Time	
Refere Amount K0 =	nent # nce Com = K0 + 8.196 6.486	8 Pyrene p. Pyrene K1*Area 38E-002 60E-004	Re Win	etention Time ndow Size	
Refere Amount K0 =	nent # nce Com = K0 + 8.196 6.486 Level  1 2	8 Pyrene p. Pyrene K1*Area 38E-002 60E-004 Amount 4.00000E+000 2.00000E+000	Re Win Area 6084 2800	etention Time ndow Size Height 719 351	
Refere Amount K0 =	nent # nce Com = K0 + 8.196 6.486 Level  1 2	8 Pyrene p. Pyrene K1*Area 38E-002 60E-004 Amount 4.00000E+000 2.00000E+000	Re Win Area 6084 2800	etention Time ndow Size Height 719 351	9.57 0.10 min

Component # 9 Benzo(a)anthracen Retention Time 11.17 Reference Comp. Benzo(a)anthracen Window Size 0.10 min. Amount = K0 + K1*Area K0 = 5.07640E-002

K1 = 2.06609E-004

	Amount	Area	Height
1	4.00000E+000	19113	2088
2	2.00000E+000	9439	1040
3	1.00000E+000	4591	511

Retention Time 11.42

Window Size 0.10 min.

ł

Component # 10 Chrysene Reference Comp. Chrysene Amount = K0 + K1*Area K0 = 9.68850E-002 K1 = 1.53280E-004

Level	Amount	Area	Height
1	4.00000E+000	25464	2487
2 3	2.00000E+000 1.00000E+000	12416 5892	1247 613

Component # 11 Benzo(b)fluoranth Retention Time 12.83 Reference Comp. Benzo(b)fluoranth Window Size 0.10 min. Amount = K0 + K1*Area K0 = 8.26201E-002 K1 = 1.73045E-004

Level	Amount	Area	Height
1	8.00000E+000	45711	4459
2	4.00000E+000	22763	2224
3	2.00000E+000	10998	1090

Component # 12 Benzo(k)fluoranth Retention Time 13.40 Reference Comp. Benzo(k)fluoranth Window Size 0.10 min. Amount = K0 + K1*Area K0 = 1.04862E-001 K1 = 1.77391E-004

Level	Amount	Area	Height	
1	4.00000E+000	21986	2140	
2	2.00000E+000	10597	1059	
3	1.00000E+000	5104	509	

		p. Benzo(a)py	rene Wi	ndow Size	0.10 min
		· K1*Area			
		64E-001			•
K1 =	2.368	29E-004			
	Level	Amount	Area	Height	
	1	4.00000E+000	15457	1483	
	2	2.00000E+000	6619	654	•
	3	1.00000E+000			
Compoi	nent #	14 Dibenzo(a p. Dibenzo(a,	,h)anthr Re	etention Time	14.91
Referen	nce Com	p. Dibenzo(a,	h)anthr Wi	ndow Size	0.10 min
		Kl*Area			1
		28E-001			
K1 =	8.920	16E-004			
	Level	Amount	Area	Height	
		8.00000E+000			
		4.00000E+000			
	3	2.00000E+000	2094	. 213	
Amount K0 =	= K0 + 3.922	p. Benzo(g,h, K1*Area 86E-001 35E-004	i)peryl Win	ndow Size	0.10 min
Amount K0 =	= K0 + 3.922 5.012	K1*Area 86E-001		ndow Size Height	0.10 min
Amount K0 =	= K0 + 3.922 5.012 Level	K1*Area 86E-001 35E-004 Amount 8.00000E+000	Area 15237	Height 1460	0.10 min
Amount K0 =	= K0 + 3.922 5.012 Level	K1*Area 86E-001 35E-004 Amount 8.00000E+000	Area 15237	Height 1460	0.10 min
Amount K0 =	= K0 + 3.922 5.012 Level 1 2	K1*Area 86E-001 35E-004 Amount	Area 15237 7006	Height 1460 681	0.10 min
Amount K0 = K1 = Compor Referen Amount	= K0 + 3.922 5.012 Level  1 2 3 ment # mce Com = K0 +	K1*Area 86E-001 35E-004 Amount 8.00000E+000 4.00000E+000 2.00000E+000 16 Indenoper p. Indenopery K1*Area	Area 15237 7006 3340 ylene Re	Height 1460 681 334 etention Time	 15.67
Amount K0 = K1 = Compor Referen Amount K0 =	= K0 + 3.922 5.012 Level  1 2 3 ment # mce Com = K0 + 1.309	K1*Area 86E-001 35E-004 Amount 8.00000E+000 4.00000E+000 2.00000E+000 16 Indenoper p. Indenopery	Area 15237 7006 3340 ylene Re	Height 1460 681 334 etention Time	 15.67
Amount K0 = K1 = Compor Referen Amount K0 =	= K0 + 3.922 5.012 Level  1 2 3 ment # mce Com = K0 + 1.309	K1*Area 86E-001 35E-004 Amount 8.00000E+000 4.00000E+000 2.00000E+000 16 Indenopery K1*Area 67E-001 20E-004	Area 15237 7006 3340 ylene Re	Height 1460 681 334 etention Time	 15.67
Amount K0 = K1 = Compor Referen Amount K0 =	= K0 + 3.922 5.012 Level  1 2 3 ment # mce Com = K0 + 1.309 1.477	K1*Area 86E-001 35E-004 Amount 8.00000E+000 4.00000E+000 2.00000E+000 16 Indenopery K1*Area 67E-001 20E-004 Amount 4.00000E+000	Area 15237 7006 3340 ylene Re lene Wir	Height 1460 681 334 etention Time ndow Size Height	 15.67
Amount K0 = K1 = Compor Referen Amount K0 =	= K0 + 3.922 5.012 Level  1 2 3 ment # mce Com = K0 + 1.309 1.477 Level	K1*Area 86E-001 35E-004 Amount 8.00000E+000 4.00000E+000 2.00000E+000 16 Indenopery K1*Area 67E-001 20E-004 Amount	Area 15237 7006 3340 ylene Re lene Win	Height 1460 681 334 etention Time ndow Size Height 2478 1204	 15.67
Amount K0 = K1 = Compor Referen Amount K0 =	= K0 + 3.922 5.012 Level  1 2 3 ment # mce Com = K0 + 1.309 1.477 Level  1	K1*Area 86E-001 35E-004 Amount 8.00000E+000 4.00000E+000 2.00000E+000 16 Indenopery K1*Area 67E-001 20E-004 Amount 4.00000E+000	Area 15237 7006 3340 ylene Re lene Win Area 26179	Height 1460 681 334 etention Time ndow Size Height 2478	 15.67
Amount K0 = K1 = Compor Referen Amount K0 =	= K0 + 3.922 5.012 Level  1 2 3 ment # nce Com = K0 + 1.309 1.477 Level  1 2 3	K1*Area 86E-001 35E-004 Amount 8.00000E+000 4.00000E+000 2.00000E+000 16 Indenopery K1*Area 67E-001 20E-004 Amount 4.00000E+000 2.0000E+000	Area 15237 7006 3340 ylene Re lene Win Area 26179 12690	Height 1460 681 334 etention Time ndow Size Height 2478 1204	 15.67
Amount K0 = K1 = Compor Referen Amount K0 = K1 =	= K0 + 3.922 5.012 Level  1 2 3 ment # nce Com = K0 + 1.309 1.477 Level  1 2 3	K1*Area 86E-001 35E-004 Amount 8.00000E+000 4.00000E+000 2.00000E+000 16 Indenopery K1*Area 67E-001 20E-004 Amount 4.00000E+000 2.0000E+000	Area 15237 7006 3340 ylene Re lene Win Area 26179 12690	Height 1460 681 334 etention Time ndow Size Height 2478 1204	 15.67
Amount K0 = K1 = Compor Referen Amount K0 = K1 =	= K0 + 3.922 5.012 Level  1 2 3 hent # hce Com = K0 + 1.309 1.477 Level  1 2 3 le 1 -	K1*Area 86E-001 35E-004 Amount 8.00000E+000 4.00000E+000 2.00000E+000 16 Indenopery K1*Area 67E-001 20E-004 Amount 4.00000E+000 2.0000E+000	Area 15237 7006 3340 ylene Re lene Win Area 26179 12690	Height 1460 681 334 etention Time ndow Size Height 2478 1204 587	15.67 0.10 min
Amount K0 = K1 = Compor Referen Amount K0 = K1 = K1 = Group Group	= K0 + 3.922 5.012 Level 1 2 3 ment # nce Com = K0 + 1.309 1.477 Level 1 2 3 le 1 - 2 -	K1*Area 86E-001 35E-004 Amount 8.00000E+000 4.00000E+000 2.00000E+000 16 Indenopery K1*Area 67E-001 20E-004 Amount 4.00000E+000 2.0000E+000	Area 15237 7006 3340 ylene Re lene Win Area 26179 12690	Height 1460 681 334 etention Time ndow Size Height 2478 1204	15.67 0.10 min

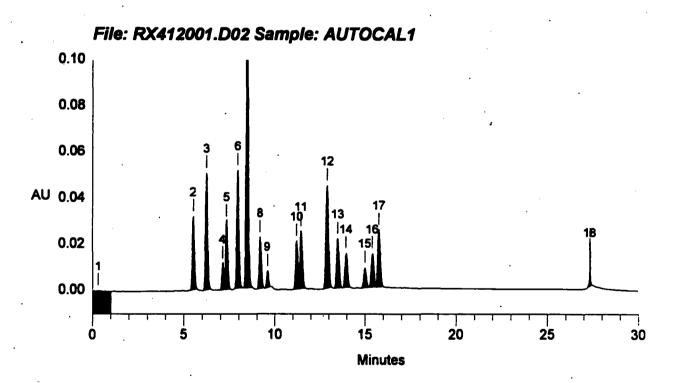
Group 4 -

Group 5 -

Group 6 -

Timed Events File: C:\DX\METHOD\PAH.TE

St	ер	Time	Des	scripti	on		•		
	-nitttttttttttt niittttttttttttt niitttttttt	0.3 0.3 0.3	ACI Autosmp OFF ACI RLY 2 OFF ACI RLY 3 OFF ACI RLY 4 OFF ACI TTL 1 OFF ACI TTL 2 OFF ACI TTL 2 OFF ACI TTL 4 OFF ACI TTL 4 OFF ACI AC2 OFF VDM-2 AutoOffset OFF VDM-2 Recorder Mark OFF VDM-2 Recorder Range = 0.010 AU VDM-2 Recorder Range = 0.010 AU VDM-2 Wavelength = 254 nm GPM Start GPM Hold Gradient Clock GPM Reset OFF ACI Autosmp ON Start Sampling VDM-2 AutoOffset ON GPM Run Gradient Clock						
Hi Pro Eluen Eluen Eluen V5 Of V5 On V6 Of	Lo Pressure Limit = 0 Hi Pressure Limit = 4500 Eluent 1 - ACN Eluent 2 - DI Eluent 3 - Eluent 4 - V5 Off - pah V5 On - V6 V6 Off - Off V6 On - on								
Time	Flo	w %1	\$2	- %3	84	V5	V6	Comment	
14.0	1.5 1.5 1.5	5 100 5 100		0	0 0 0 0	-			


Data Reprocessed On 07/31/1993 13:24:32									
Dat	a File	me: AUTOCAL1 : C:\DX\DATA\RX41			Date	: 04/10	6/1993 11:	:04:0	5
ACI	hod Addres lyst		x412.met Inject#: Column:		'ial:	بوي عام مرور	Detector	::VDM-	-2
Calib	ration	Volume Dilution	n Points	Rate	Start	Stop	Area Reje	ect	
Exter	nal	1 1	1 9000	5Hz	0.00	30.00		50	
*****	**************************************								
Pk. Num		Component Name	Concenti	ration ug/ml		eight		Bl. Code	%Delta
2		Naphthalene		40.000		3183	24714	_	-0.06
3		Acenaphthylene		80.000		5071	40512		0.05
4		Acenaphthene		40.000		1132	8280		-0.05
5	-	Fluorene		8.000		2939	24733	_	0.00
6		Phenanthrene		4.000		5101	42234	_	0.09
7		Anthracene		4.000	_	2017	104199	_	0.00
8		Fluoranthene		8.000		2224	19612	1	0.00
9		Pyrene Porce (a) orthrogen		4.000		719	6084		0.00
10		Benzo(a)anthracen		4.000		2088	19113	2	0.00
11 12		Chrysene Benzo(b)fluoranth		4.000 8.000		2487 4459	25464 45711	2 1	0.00
12		Benzo(k)fluoranth		4.000		4459 2140	45/11 21986	1 1	0.00
14		Benzo(a)pyrene		4.000		1483	15457	_	0.00 0.00
15		Dibenzo(a,h)anthr	•	8.000		865	8704	-	
16		Benzo(g,h,i)peryl		8.000		1460	15237		0.02
17		Indenoperylene		4.000		2478	26179	2	0.00
		Totals	23	32.000	4	9845	448219		

Pk. Num		Component Name	Concentration ug/ml	Height	Area	Bl. Code	%Delta
1	0.32		0.000	46153	1942243	1	
2	5.52	Naphthalene	40.000	3183	24714	1	-0.06
3	6.23	Acenaphthylene	80.000	5071	40512	1	0.05
4	7.12	Acenaphthene	40.000	1132	8280	2	-0.05
5	7.32	Fluorene	8.000	2939	24733	2	0.00
6	7.93	Phenanthrene	4.000	5101	42234	1	0.09
7	8.43	Anthracene	4.000	12017	104199	1	0.00
8	9.17	Fluoranthene	8.000	2224	19612	1	0.00
9	9.58	Pyrene	4.000	719	6084	1	0.00
10	11.20	Benzo(a)anthracen	4.000	2088	19113	2	0.00
11	11.45	Chrysene	4.000	2487	25464	2	0.00
12	12.90	Benzo(b)fluoranth	8.000	4459	45711	1	0.00
13	13.48	Benzo(k)fluoranth	4.000	2140	21986	1	0.00
14	13.95	Benzo(a)pyrene	4.000	1483	15457	1	0.00
15	14.98	Dibenzo(a,h)anthr	8.000	865	8704	2	0.02
16	15.40	<pre>Benzo(g,h,i)peryl</pre>	8.000	1460	15237	2	0.00
17	15.75	Indenoperylene	4.000	2478	26179	2	0.00

18	27.32		0.000	1269	5445	1	
	-	Totals :	232.000	97266	2395908		

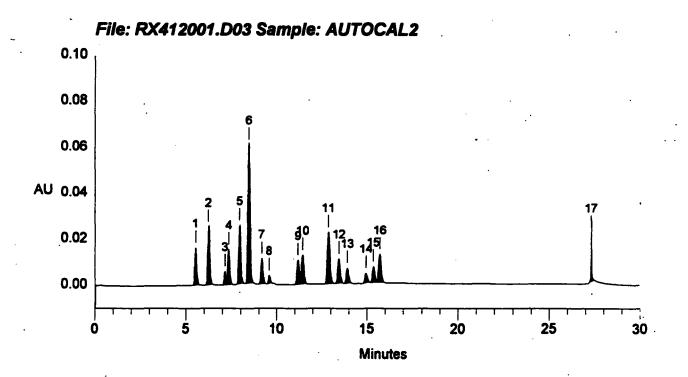
Pk. Num		Component Name	Cond	centration ug/ml	Height		Bl. %Delt: Code
1 18	0.32 27.32			0.000	46153 1269	1942243 5445	1
			Totals	0.000	47421	1947688	

#	Group Name	Amount	Area	Areat
1		0.0000	0	• \$00.0
-	2	0.0000	0	0.00%
-	3 .	0.0000	0	0.00%
4		0.0000	0	0.00%
5	5 ·	0.0000	0	0.00%
e	5	0.0000	0	0.00%



		Data Reproc	essed On	07/31,	/1993 1	3:23:3	9		
Dat	ple Na a File hod			3	Date	: 04/1	6/1993 11:	:34:4	4
ACI	Addre: lyst		Inject#: Column:	3 V:	ial:	<u>:::::::::::::::::::::::::::::::::::::</u>	Detector	: VDM	-2
Calib	ration	Volume Dilutio	n Points	Rate	Start	Stop	Area Reje	ect	
Exter	nal	1	1 9000	5Hz	0.00	30.00		50	
****	*****	*********** Compon	ent Repo	rt: All	L Compos	nents	*******	****	******
Pk. Num		Component Name	Concenti	ration ug/ml	He	ight	Area	Bl. Code	<b>%Delta</b>
		Naphthalene		20.000		 L613	12278		0.06
2		Acenaphthylene		10.000		2502	20020	_	
3		Acenaphthene		20.000		586	4768	2	0.05.
4	7.33	Fluorene		4.000	-	1510	11252	2	0.00
5	7.93	Phenanthrene		2.000	2	2522	20721	1	-0.00
6		Anthracene		2.000	(	5032	51504	1	0.00
7		Fluoranthene		4.000		L085	9584	1	0.00
8		Pyrene		2.000		351	2800	1	0.00
9		Benzo(a)anthracen		2.000		L040	9439	2	0.00
10		Chrysene		2.000	-	1247	12416	2	0.00
11		Benzo(b)fluoranth		4.000		2224	22763	1	0.00
12		Benzo(k)fluoranth		2.000		1059	10597	1	0.00
13		Benzo(a)pyrene		2.000		654	6619	1	0.00
14 15		Dibenzo(a,h)anthr Bonzo(a,h,i)porul		4.000		413	3895	1	0.00
15		Benzo(g,h,i)peryl Indenoperylene		4.000	-	681 1204	7006 12690	2 2	0.00 0.00
TO	13.70	Tugenober à rene					12030	2	. 0.00
		Totals	11	6.000	24	724	218350		

*


· ·

Pk. Num		Component Name	Concentration ug/ml	Height	Area	Bl. Code	<b>%Delta</b>
1	5.53	Naphthalene	20.000	1613	12278	1	0.06
2	6.23	Acenaphthylene	40.000	2502	20020	1	0.05
3	7.13	Acenaphthene	20.000	586	4768	2	0.05
4	7.33	Fluorene	4.000	1510	11252	2	0.00
5	7.93	Phenanthrene	2.000	2522	20721	1	-0.00
6	8.43	Anthracene	2.000	6032	51504	1	0.00
7	9.15	Fluoranthene	4.000	1085	9584	1	0.00
8	9.58	Pyrene	2.000	351	2800	1	0.00
9	11.18	Benzo(a)anthracen	2.000	1040	9439	2	0.00
10	11.43	Chrysene	2.000	1247	12416	2	0.00
11	12.87	Benzo(b)fluoranth	4.000	2224	22763	1	0.00
12	13.45	Benzo(k)fluoranth	2.000	1059	10597	1	0.00
13	13.92	Benzo(a)pyrene	2.000	654	6619	1	0.00
14	14.95	Dibenzo(a,h)anthr	4.000	413	3895	1	0.00
15		<pre>Benzo(g,h,i)peryl</pre>	4.000	681	7006	2	0.00
16		Indenoperylene	2.000	1204	12690	2	0.00
17	27.32		0.000	2110	5329	1	

Totals	116.000	26833	223679				

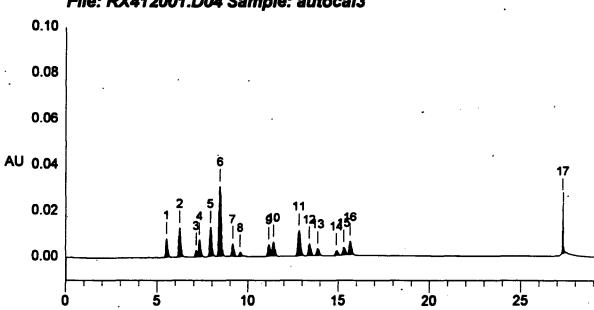
Pk. Num	Ret Time	Component Name	C	concentration ug/ml	Height	Area	Bl. a Code	Delt-
17	27.32			0.000	2110	5329	1	
		•••	Totals	0.000	2110	5329		•

# Group Name	Amount	Area	Areat
1	0.0000	0	0.00%
2	0.0000	0	0.00%
3	0.0000	0	0.00%
4	0.0000	0	0.00%
5	0.0000	0	0.00%
6	0.0000	0	0.00%



	Data Reprocessed On 07/31/1993 13:22:57								
Dat Met ACI	Sample Name: autocal3       Date: 04/16/1993 12:05:22         Data File : C:\DX\DATA\RX412001.D04         Method : C:\DX\METHOD\rx412.met         ACI Address: 1 System: 1 Inject#: 4 Vial:       Detector:VDM-2         Analyst :       Column:								
Calib	ration	Volume Dilutio	n Points	Rate	Start	Stop	Area Reje	ect	
Exter	nal	1	1 9000	5Hz	0.00	30.00		50	
****	**************************************								
Pk. Num		Component Name	Concenti	ration ug/ml		ight	Area	Bl. Code	<b>%Delta</b>
1		Naphthalene		10.000		774	5891		0.00
2		Acenaphthylene		20.000		1254	9688		0.00
3		Acenaphthene		10.000		291	2179		0.00
4		Fluorene		2.000		722	5896		
5		Phenanthrene		1.000		1222	10276	_	
6		Anthracene		1.000		3031	25476		
7		Fluoranthene		2.000		548	4798		0.00
8		Pyrene		1.000		183	1528		0.00
9		Benzo(a)anthracen	Ļ	1.000		511	4591		0.00
10		Chrysene		1.000		613	5892	_	0.00
11		Benzo(b)fluoranth		2.000		1090	10998		0.00
12		Benzo(k)fluoranth	,	1.000		509	5104		0.00
13		Benzo(a)pyrene		1.000		299	2914		0.00
14		Dibenzo(a,h)anthr Benzo(a,h,i)normal		2.000		213	2094		0.00
15 16		Benzo(g,h,i)peryl Indenoperylene		2.000		334 587	3340 5858	2 2	0.00 0.00
10	12.07	Indenoher à rene			ی من خه هه هه می بر	)0/ 		2	0.00
		Totals	5	58.000	1	2183	106522		

.


Pk. Num		Component Name	Concentration ug/ml	Height	Area	Bl. Code	%Delta
1	5.52	Naphthalene	10.000	774	5891	1	0.00
2	6.23	Acenaphthylene	20.000	1254	9688	1	0.00
3	7.13	Acenaphthene	10.000	291	2179	2	0.00
4	7.32	Fluorene	2.000	722	5896	2	0.00
5	7.92	Phenanthrene	1.000	1222	10276	1	0.00
6	8.43	Anthracene	1.000	3031	25476	1	0.00
7	9.15	Fluoranthene	2.000	548	4798	1	0.00
8	9.57	Pyrene	1.000	183	1528	1	0.00
9		Benzo(a)anthracen	1.000	511	4591	2	0.00
10	11.42	Chrysene	1.000	613	5892	2	0.00
11		Benzo(b)fluoranth	2.000	1090	10998	1	0.00
12	13.40	Benzo(k)fluoranth	1.000	50 <del>9</del>	5104	1	0.00
13	13.88	Benzo(a)pyrene	1.000	299	2914	1	0.00
14	14.91	Dibenzo(a,h)anthr	2.000	213	2094	2	0.00
15	15.32	<pre>Benzo(g,h,i)peryl</pre>	2.000	334	3340	2	0.00
16		Indenoperylene	1.000	587	5858	2	0.00
17	27.32		0.000	2516	5424	1	

	7 میں میں میں بار البرعا ہوا جو مال کا		
Totals	58.000	14699	111946

Pk. Num		Component Name	Concentration ug/ml		Area Bl Cod	
17	27.32		0.000	2516	5424	1
		Totals	5 0.000	2516	5424	<b>.</b> .
# 0	our No		unt area	12028		

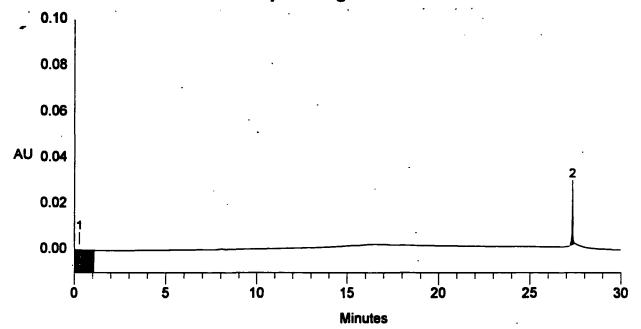
Peak Report: Unknown Peaks **

# Group Name	Amount	Area	Areat	•
.1	0.0000	0	0.00%	•
2	0.0000	0	0.00%	
<b>3</b> .	0.000	0	0.00%	
4	0.0000	0	0.00%	
5	0.0000	0	0.00%	
6	0.0000	· O	0.00%	



File: RX412001.D04 Sample: autocal3

Minutes


Data Meth	A File Nod	me: Reagent Bla : C:\DX\DATA\ : C:\DX\METHO	RX41 D\rx	2001.D0 412.met	6			5/1993 13		
	Addre: lyst	ss:1System: : :	1 · I (	nject#: Column:	6 ~~V	ial:~		[~] Detecto	r:VDM	-2
alibi	ation	Volume Dilu	tion	Points	Rate	Start	Stop	Area Rej	ect	
Exterr	al	1	10	9000	5Hz	0.00	30.00		 50	
*****	*****	***** Com	pone	nt Repoi	rt: Al	l Compo	nents *	******	*****	*****
Pk. Num		Component Name	(	Concenti	ration ug/ml	He	ight	Area	Bl. Code	*Delt
0	0.00	Naphthalene			0.000		0	0	0	0.0
0		Acenaphthylene			0.000		0	0	0	0.0
0		Acenaphthene			0.000		0	0	0	0.0
0	+ -	Fluorene			0.000		0	0	0	
0		Phenanthrene			0.000		0	0	0	
0		Anthracene			0.000		0	0	-	
0		Fluoranthene			0.000		0	0		
0 0		Pyrene Benzo(a)anthra			0.000		0 0	0	0	0.0
ŏ		Chrysene	Jen		0.000		0	. 0	0	0.0
ŏ		Benzo(b)fluora	oth		0.000		ŏ	0	Ö	0.0
ŏ		Benzo(k)fluora			0.000		ŏ	0	ŏ	0.0
ŏ		Benzo(a)pyrene			0.000		ŏ	0 0	ŏ	
Ō		Dibenzo(a,h)an	thr		0.000		Ō	Ō	Õ	
Ō		Benzo(g,h,i)pe			0.000		Ō	Õ	Ō	0.0
0		Indenoperylene	-		0.000		0	0	0	0.0
0	0.00	Indenoperylene			0.000		0 	0	0	

Pk. Num		Component Name	Concen	tration ug/ml	Height		31. %Delta Dde
1 2	0.28			0.000	49586 2011	2084570 5398	1 1
		נ	 Iotals	0.000	51597	2089968	

Pk. Num		Component Name	Conce	entration ug/ml	Height		Bl. %Delta Code
	0.28			0.000	49586	2084570	1
2	27.32			0.000	2011	5398	ī
		2	 Totals	0.000	51597	2089968	

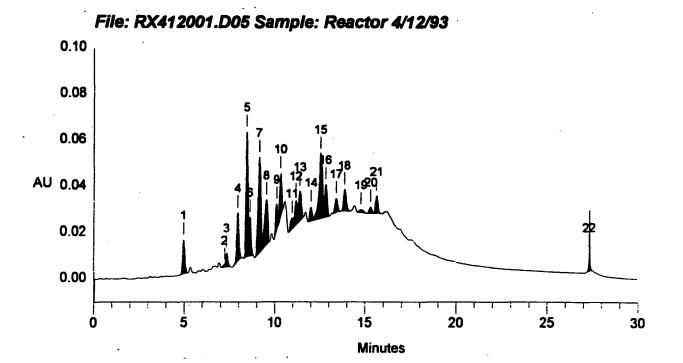
# -	Group Name	Amount	Area	Area*		
1		0.0000	0	0.00%		
2		0.0000	· · O	0.00%		
3		0.0000	0	0.00%		
4		0.0000	0	0.00%		
5					an a	
6		0.000	0	0.00%		

File: RX412001.D06 Sample: Reagent Blank A 4/15/93



		Data Reproce	essed On	07/31	/1993 1	3:36:4	6		ر بر المراجع الله الم
Dat		me: Reactor 4/12/93 : C:\DX\DATA\RX41 : C:\DX\METHOD\rx	L2001.D05	; ;	Date	: 04/1	6/1993 12:	:36:0	1
ACI		ss: 1 System: 1 ]		5 V:	ial: 		Detecto:	r:VDM-	-2
Calib	ration	Volume Dilution	n Points	Rate	Start	Stop	Area Reje	ect	
Extern	nal	1 10	9000	5Hz	0.00	30.00		50	
****	*****	**************** Compone	ent Repor	t: Al	l Compo	nents '	******	*****	******
Pk.	Ret	Component	Concentr	ation	He	ight	Area	B1.	*Delta
Num		Name		ug/ml		- 7		Code	
0	0.00	Naphthalene		0.000		 0	0	0	0.00
0		Acenaphthylene		0.000		0	0	•	0.00
2		Acenaphthene		8.683		104	750	_	1.21
3		Fluorene		8.605		609	5032	_	
4		Phenanthrene		7.682		2119	18381		
5		Anthracene		7.602		5430	45345	_	
7		Fluoranthene		1.333		4145	44658	2	
8 12		Pyrene		6.096		1953	25480	_	
		Benzo(a)anthracen		4.219		1061	11477		
13		Chrysene		1.354		1284	13300	2	
16		Benzo(b)fluoranth		6.959		1423	15102	2	
17		Benzo(k)fluoranth		1.727		606	6020	1	
18		Benzo(a)pyrene		7.527		920	10101	1	
19		Dibenzo(a,h)anthr		9.910		126	1898	1	
20		Benzo(g,h,i)peryl		7.566		291 750	2722	2	0.00
21	12.02	Indenoperylene	.+	2.172		750	7353	· 2	0.00
		Totals	58	1.437	2	0820	207618		

•


:

Pk. Num		Component Name	Concentration ug/ml	Height	Area	Bl. Code	%Delta
1	4.97		0.000	1484	11924	1	
2	7.22	Acenaphthene	18.683	104	750	2	1.21
3	7.33	Fluorene	18.605	609	5032	2	0.00
4	7.93	Phenanthrene	17.682	2119	18381	1	-0.99
5	8.43	Anthracene	17.602	5430	45345	2	0.00
6	8.61		0.000	1678	11841	2	
7	9.13	Fluoranthene	181.333	4145	44658	2	0.00
8	9.52	Pyrene	166.096	1953	25480	2	0.00
9	10.10	-	0.000	1163	9051	2	
10	10.33		0.000	1833	16217	2	
11	10.95		0.000	494	5804	2	
12	11.17	Benzo(a)anthracen	24.219	1061	11477	2	0.00
13	11.38	Chrysene	21.354	1284	13300	2	0.00
14	12.00		0.000	602	5983	2	
15	12.53		0.000	2805	39097	2	
16	12.82	Benzo(b)fluoranth	26.959	1423	15102	2	0.00
17	13.40	Benzo(k)fluoranth	11.727	606	6020	1	0.00

18	13.85 Benzo(a)pyrene	27.527	920	10101	1	0.01
	14.76 Dibenzo(a,h)anthr	19.910	126	1898	1	0.00
	15.30 Benzo(g,h,i)peryl	17.566	291	2722	2	0.00
21		12.172	750	7353	2	0.0
22	27.32	0.000	816	5700	1	
		ہ خہ ہے چن بڑے وہ جب حد حل حذ جب حد حد خت حد حد خا				
	Totals	581.437	- 31697	313235	•• ••	

Pk. Num		Component Name	Conc	entration ug/ml	Height	Area	Bl. Code	<pre>%Delti</pre>
1	4.97			0.000	1484	11924	1	
6	8.61		•	0.000	1678	11841	2	
9	10.10			0.000	1163	9051	2	
10	10.33			0.000	1833	16217	2	
11	10.95			0.000	494	5804	2	
14	12.00			0.000	602	5983	2	
15	12.53	•		0.000	2805	39097	2	
22	27.32			0.000	. 816	5700	1	
		T	otals	0.000	10877	105617		

#	Group Name	Amount	Area	Areat
1		0.0000	0	0.00%
2		0.0000	0	0.00%
3	-	0.0000	0	0.00%
4		0.0000	0	0.00%
5		0.0000	0	0.00%
6		0.0000	0	0.00%



Date Assayed	Time	Semple ID	Semple Description	File Name	Method Name	Operator	Comments	File Reference
1/5 <b>/93</b>	4:58	Autocal 1	STD/25	Weat0041.D01	ран	Л	Supelco Mix 610-M Lot No. LA 33993	•
1/5 <b>/93</b>	5:29	Autocal 2	STD/50	West0021.D02	ран	JR	Supelco Mix 610-M Lot No. LA 33993	•
1/ <b>5/93</b>	5:59	Autocal 3	STD/100	West0021.D03	ран	JR	Supelco Mix 610-M Lot No. LA 33993	•
1/5 <b>/93</b>	6:30	Weston #1	TO Bottel 1	West0021.D04	ран	ЛR	Notebook 92-18; pg. 40-41	•
1/5 <b>/93</b>	7:00	Weston #1 dup	T0 bottle 1 Dup	West0021.D05	ран	ЛR	Notebook 92-18; pg. 40-41	•
1/5/93	7:31	Weston #2	TO bottle 2	West0021.D06	РАН	JR	Notebook 92-18; pg. 40-41	•
1/5/93	8:02	Weston #2 dup	T0 bottle 2 Dup	West0021.D07	ран	JR	Notebook 92-18; pg. 40-41	•
1/5/93	8:32	Weston #3	T0 bottle 3	West0011.D08	ран	JR	Notebook 92-18; pg. 40-41	•
1/5/93	9:03	Weston #4	TO bottle 4	West011.D09	ран	JR	Notebook 92-18; pg. 40-41	^
1/19 <b>/</b> 93	3:27	Autocal 1	STD/25	WestT301.D01	ран	TS	Supelco Mix 610-M Lot No. LA 33993	B
1/19 <b>/</b> 93	3:57	Autocal 2	STD/50	WestT301.D02	ран	TS	Supelco Mix 610-M Lot No. LA 33993	B
1/19/93	4:28	Autocal 3	STD/100	WestT301.D03	РАН	ŤS	Supelco Mix 610-M Lot No. LA 33993	B
1/19/93	4:59	Weston #1	3 week bottle 1	WestT301.D04	РАН	TS	Notebook 92-18; pg. 40-41	B
1/19 <b>/</b> 93	5:29	Weston #1 dup	3 week bottle 1 Dup	WestT301.D05	ран	TS	Notebook 92-18; pg. 40-41	B
1/19/93	6:00	Weston #2	3 week bottle 2	WestT301.D06	РАН	TS	Notebook 92-18; pg. 40-41	B
1/19 <b>/</b> 93	6:30	Weston #2 dup	3 week bottle 2 Dup	WestT301.D07	РАН	TS	Notebook 92-18; pg. 40-41	B

Date Assayed	Time	Sample 1D	Sample Description	File Name	Method Name	Operator	Comments	File Reference
1/19/93	7:01	Weston #3	3 week bottle 3	WestT301.D08	ран	TS	Notebook 92–18; pg. 40–41	B
1/19 <b>/93</b>	7:32	Weston #4	3 week bottle 4	WestT301.D09	ран	TS	Notebook 92-18; pg. 40-41	B
\$ <b>.</b> `								
2/3/93	2:42	Autocal 1	STD/25	WestRxT1.D01	ран	TS	Supelco Mix 610-M; Lot No. LA 33993	F
2/3/93	3:12	Autocal 2	STD/50	WestRxT1.D02	ран	TS	Supelco Mix 610-M; Lot No. LA 33993	P
2/3/93	3:43	Autocal 3	STD/100	WestRxT1.D03	РАН	TS	Supelco Mix 610-M; Lot No. LA 33993	F
2/3/93	4:14	RAS/TO	1/27 RAS	WestRxT1.D04	ран	TS	Chromatogram misnamed as influent/T0	F
2/3/93	4:44	Reactor/T0	1/27 Rx	WestRxT1.D05	ран	TS	Chromatogram misnamed as influent/TO	F
2/3/93	5:15	in(/T0	1/27 inf	WestRxT1.D06	ран	TS	Chromatogram misnamed as RAS/T0	F
2/3/93	5:46	ACN	instrument blank	WestRxT1.D07	РАН	TS	Chromatogram misnamed as RAS/TO	F
		and the second						
2/4/93	3:12	Autocal I	STD/25	WestRx01.D01	ран	JR	Supelco Mix 610-M; Lot No. LA 33993	G
2/4/93	3:43	Autocal 2	STD/50	WestRx01.D02	ран	JR	Supelco Mix 610-M; Lot No. LA 33993	G
2/4/93	4:14	Autocal 3	STD/100	WestRx01.D03	ран	R	Supelco Mix 610-M; Lot No. LA 33993	G
2/4/93	4:44	Influent/T1	2/1 Inf	WestRx01.D04	ран	JR	Notebook 93-01; pg 27	G
2/4/93	5:15	Reactor/T1	2/1 Rx	WestRx01.D05	РАН	JR	Notebook 93-01; pg 27	G
2/4/93	5:45	RAS/TI	2/1 RAS	WestRx01.D06	ран	Л	Notebook 93-01; pg 27	G
2/4/93	6:16	ACN	instrument blank	WestRx01.D07	ран	JR	Notebook 93-01; pg 27	G

.

.

.

•

Date		Sample	Sample	File	Method			File
Assayed	Time	ID	Description	Name	Name	Operator	Comments	Reference
2/5/93	5:05	Atuocal 1	STD/25	Westbat1.D01	РАН	JR	Supelco Mix 610-M; Lot No. LA 33993	с
2/5/93	5:35	Autocal 2	STD/50	Westbat1.D02	РАН	R	Supelco Mix 610-M; Lot No. LA 33993	С
2/5/93	6:06	Autocal 3	STD/100	Wentbati.D03	batch	JR	Supelco Mix 610-M; Lot No. LA 33993	С
2/5/93	6:37	Weston #1/T6	6 week bottle 1	Westbat1.D04	batch	JR	Notebook 92-18; pg 73	С
2/5/93	7:07	Weston #1 dup/T6	6 week bottle 1 dup	Westbat1.D05	batch	R	Notebook 92-18; pg 73	с
2/5/93	7:38	Weston #2/T6	6 week bottle 2	Westbat1.D06	batch	JR	Notebook 92-18; pg 73	С
2/5/93	8:08	Weston #2 dup/T6	6 week bottle 2 dup	Westbat1.D07	batch	ЛR	Notebook 92-18; pg 73	С
2/5/93	8:39	Weston #3/T6	6 week bottle 3	Westbat1.D08	batch	JR	Notebook 92-18; pg 73	С
2/5/93	9:10	Weston #4/T6	6 week bottle 4	Westbat1.D09	batch	JR	Notebook 92-18; pg 73	с
2/5/93	9:40	ACN	instrument blank	Westbat1.D10	РАН	JR	Notebook 92-18; pg 73	С
			· · · ·			in the second		
2/10/93	22:40	Autocal 1	STD/25	QASPIKJ1.D01	West	TS	Supelco Mix 610-M; Lot No. LA 33993	н
2/10/93	23:11	Autocal 2	STD/50	QASPIKH1.D02	West	TS	Supelco Mix 610-M; Lot No. LA 33993	н
2/11/93	6:29	Autocal 3	STD/100	QASPIKE1.D03	West	TS	Supelco Mix 610-M; Lot No. LA 33993	H
2/11/93	6:59	#1 T3 Spike A	matrix spike	QASPIKE1.D04	West	TS	Notebook 92-18; pg 69	н
2/11/93	7:30	#1 T3 Spike B	matrix spike	QASPIKE1.D05	West	TS	Notebook 92-18; pg 69	н
2/11/93	8:01	#1 T3 Spike C	metrix spike	QASPIKE1.D06	West	TS	Notebook 92-18; pg 69	н
2/11/93	8:31	#1 T3 A	unspiked sample	QASPIKE1.D07	West	TS	Notebook 92-18; pg 69	н
2/11/93	9:02	#1 T3 B	unsiked sample	QASPIKE1.D08	West	TS	Notebook 92-18; pg 69	н
2/11/93	10:03	Influent 2/4/93		WestRx01.D10	West	TS	Notebook 93-01; pg 32	н
2/11/93	10:34	Reactor 2/4/93		WestRx01.D11	West	TS	Notebook 93-01; pg 32	н
2/11/93	11:04	Influent 2/8/93		WestRx01.D12	West	TS	Notebook 93-01; pg 32	н

Date Assayed	Time	Sample ID	Sample Description	File Name	Method Name	Operator	Comments	File Reference
2/11/93	11:35	Reactor 2/8/93		WestRx01.D13	West	TS	Notebook 93-01; pg 32	н
2/11/93	12:06	RAS 2/8/93		WestRx01.D14	Weat	TS	Notebook 93-01; pg 32	н
2/11/93	12:36	ACN	instrument blank	WestRx01.D15	West	TS	Notebook 93-01; pg 32	н
		an a						
2/16/93	21:36	Autocal 1	STD/25	Spike011.D01	Spike	JR	Supleco Mix 610-M; Lot No. LA 33993	B
2/16/93	22:07	Autocal 2	STD/50	Spike011.D02	Spike	JR	Supelco Mix 610-M; Lot No. LA 33993	B
2/16/93	22:38	Autocal 3	STD/100	Spike011.D03	Spike	JR	Supelco Mix 610-M; Lot No. LA 33993	E
2/16/93	23:08	PAH spike std/1000A	spike std	Spike011.D04	Spike	JR	Notebook 92-18; pg 69	B
2/16/93	23:39	PAH spike std/1000B	spike std	Spike011.D05	Spike	ЛR	Notebook 92-18; pg 69	B
2/17/93	00:10	PAH spike std/1000C	spike std	Spike011.D06	Spike	JR	Notebook 92-18; pg 69	Е
2/17/93	5:19	Autocal I	STD/25	Rx211001.001	Rx211	JR ·	Supelco Mix 610-M; Lot No. LA 33993	I
2/17/93	5:50	Autocal 2	STD/50	Rx211001.002	Rx211	ЛR	Supelco Mix 610-M; Lot No. LA 33993	I
2/17/93	6:20	Autocal 3	STD/100	Rx211001.003 · .	Rx211	JR	Supelco Mix 610-M; Lot No. LA 33993	I
2/17/93	6:51	Influent/2/11		Rx211001.004	<b>Rx211</b>	JR	Notebook 93-01; pg 37	I
2/17/93	7:22	Reactor/2/11		Rx211001.005	· Rx211	Л	Notebook 93-01; pg 37	I
2/17/93	7:52	ACN	instrument blank	Rx211001.006	Rx211	· JR	Notebook 93-01; pg 37	Т
3								
2/18/93	1:53	Autocal I	STD/25	Rx215001.D01	Rx215	TS	Supelco Mix 610-M; Lot No. LA 33993	1
2/18/93	2:24	Autocal 2	STD/50	Rx215001.D02	Rx215	TS	Supelco Mix 610-M; Lot No. LA 33993	. 1

Date Assayed	Time	Sample ID	Sample Description	File Name	Method Name	Operator	Comments	File Reference
2/18/93	2:55	Autocal 3	STD/100	Rx215001.D03	Rx215	TS	Supelco Mix 610-M; Lot No. LA 33993	1
2/18/93	3:25	Influent/2/15		Rx215001.D04	Rx215	TS	Notebook 93-01; pg 38 Chromatogram misnamed Reactor 2/11	1
2/18/93	3:56	Reactor/2/15		Rx215001.D05	Rx215	TS	Notebook 93-01; pg 38 Chromatogram misnamed Reactor 2/11	1
2/18/93	4:27	RAS/2/15		Rx215001.D06	Rx215	TS	Notebook 93-01; pg 38 Chromatogram misnamed Reactor 2/11	1
2/18/93	4:57	ACN	, instrument blank	Rx215001.D07	Rx215	TS	Notebook 93-01; pg 38 Chromatogram misnamed Reactor 2/11	J
								W
2/19 <b>/9</b> 3	16:41	Autocal 1	STD/25	Extract1.D01	Extract	TS	Supelco Mix 610-M; Lot No. LA 33993	D
2/19/93	17:12	Autocal 2	STD/50	Extract1.D02	Extract	TS	Supelco Mix 610-M; Lot No. LA 33993	D
2/19 <b>/</b> 93	17:42	Autocal 3	STD/100	Extract1.D03	Extract	TS	Supelco Mix 610-M; Lot No. LA 33993	D
2/19/93	18:13	#1 glass extract	bottle extract 1	Extract1.D04	Extract	TS	Notebook 92-18; pg 75	D
2/19/93	18:43	#1 dup glass extract	bottle extract 1 dup	Extract1.D05	Extract	TS	Notebook 92-18; pg 75	D
2/19/93	19:14	#2 glass extract	bottle extract 2	Extract1.D06	Extract	TS	Notebook 92-18; pg 75	D
2/19/93	19:45	#2 dup glass extract	bottle extract 2 dup	Extract1.D07	Extract	TS	Notebook 92-18; pg 75	D
2/19/93	20:15	#3 glass extract	bottle extract 3	Extract1.D08	Extract	TS	Notebook 92-18; pg 75	D
2/19/93	20:46	#4 glass extract	bottle extract 4	Extract1.D09	Extract	TS	Notebook 92-18; pg 75	D
2/19/93	21:16	ACN	instrument blank	Extract1.D10	Extract	TS	Notebook 92-18; pg 75	D
2/25/93	14:52	Autocal I	STD/25	Rx218041.D01	Rx218	JR	Supelco Mix 610-M; Lot No. LA 33993	к

Date		Sample	Sample	File	Method		_	File
Asseyed	Time	ID	Description	Name	Name	Operator	Comments	Reference
2/25/93	15:22	Autocal 2	STD/50	Rx218041.D02	Rx218	JR	Supelco Mix 610-M; Lot No. LA 33993	K
2/25/93	15:53	Autocal 3	STD/100	Rx218041.D03	Rx218	JR	Supelco Mix 610-M; Lot No. LA 33993	K
2/25/93	18:24	Influent/2/18		Rx218001.D04	Rx218	JR	Notebook 93-01; pg 45	K
2/25/93	18:55	Reactor/2/18		Rx218001.D05	Rx218	JR	Notebook 93-01; pg 45	ĸ
2/25/93	19:25	ACN	instrument blank	Rx218001.D06	Rx218	JR	Notebook 93-01; pg 45	к
				2494		».		<u></u>
3/12/93	17:15	Autocal 1	STD/25	Rx340001.D01	Rx34	TSS	Supelco Mix 610-M; Lot No. LA 33993	L
3/12/93	17:45	Autocal 2	STD/50	Rx340001.D02	Rx34	TSS	Supelco Mix 610-M; Lot No. LA 33993	L
3/12/93	18:16	Autocal 3	STD/100	Rx340001.D03	Rx34	TSS	Supelco Mix 610-M; Lot No. LA 33993	L
3/12/93	18:47	Influent 2/22		Rx340001.D04	Rx34	TSS	Notebook 93-01: pg 56	L
3/12/93	19:17	Reactor 2/22		Rx340001.D05	Rx34	TSS	Notebook 93-01: pg 56	L
3/12/93	19:48	RAS 2/22		Rx340001.D06	Rx34	TSS	Notebook 93-01: pg 56	L
3/12/93	20:19	Influent 2/25		Rx340001.D07	Rx34	TSS	Notebook 93-01: pg 57	L
3/12/93	20:49	Reactor 2/25		Rx340001.D08	Rx34	TSS	Notebook 93-01: pg 57	L
3/12/93	21:20	Influent 3/1		Rx340001.D09	Rx34	TSS	Notebook 93-01: pg 57	L
3/12/93	21:50	Reactor 3/1		Rx340001.D10	Rx34	TSS	Notebook 93-01: pg 57	L
3/12/93	22:21	RAS 3/1	•	Rx340001.D11	Rx34	TSS	Notebook 93-01: pg 57	L
3/12/93	22:52	Influent 3/4		Rx340001.D12	Rx34	TSS	Notebook 93-01: pg 58	L
3/12/93	23:22	Reactor 3/4		Rx340001.D13	Rx34	TSS	Notebook 93-01: pg 58	L
3/12 <b>/9</b> 3	23:53	ACN	instrument blank	Rx340001.D14	Rx34	TSS	Notebook 93-01: pg 58	L
								<b></b>
3/17/93	18:01	Autocal 1	STD/25	RX317001.D01	RX317	JR	Supelco 610-N PAH Mix Lot No. LA33993	м

.

.

· .

•

Date	Time	Sample ' 1D	Sample Description	File Name	Method Name	Operator	Comments	File Reference
Assayed			· Pescripoon		Nane	Operator		Addresce
3/17/93	18:31	Autocal 2	STD/50	RX317001.D02	RX317	R	Supelco 610-N PAH Mix Lot No. LA33993	M
3/17/93	19:02	Autocal 3	STD/100	RX317001.D03	RX317	JR	Supelco 610-N PAH Mix Lot No. LA33993	м
3/17/93	19:33	Influent 3/8		RX317001.D04	RX317	JR	Notebook 93-01; pg. 61	M
3/17/93	20:03	Reactor 3/8/10		RX317001.D05	RX317	R	Notebook 93-01; pg. 61	м
3/17/93	21.05	RAS 3/8		RX317001.D06	RX317	JR	Notebook 93-01; pg. 61	M
							· · · · · · · · · · · · · · · · · · ·	
3/18/93	16:59	Autocal 1	STD/25	Spiker X1.D01	Spiker X	JR	Supelco Mix 610-M Lot No. LA33993	R
3/18/93	17:30	Autocal 2	STD/50	Spiker X1.D02	Spiker X	JR	Supelco Mix 610-M Lot No. LA33993	R
3/18/93	18:00	Autocal 3	STD/100	Spiker X1.D03	Spiker X	ЛR	Supelco Mix 610-M Lot No. LA33993	R
3/18/93	18:31	Spike A 3/8	matrix spike	Spiker X1.D04	Spiker X	ЛR	Notebook 93-01; pg. 62	R
3/18/93	19:01	Spike B 3/8	matrix spike	Spiker X1.D05	Spiker X	ЛR	Notebook 93-01; pg. 62	R
3/18/93	19:32	Spike C 3/8	matrix spike	Spiker X1.D06	Spiker X	ЛR	Notebook 93-01; pg. 62	R
3/18/93	20:03	PAH Spike/200A	spike STD	Spiker X1.D07	Spiker X	JR	Notebook 93-01; pg. 62	R
3/18/93	20:33	PAH Spike/200B	spike STD	Spiker X1.D08	Spiker X	JR	Notebook 93-01; pg. 62	R
3/18/93	21:04	PAH Spike/200C	spike STD	Spiker X1.D09	Spiker X	JR	Notebook 93-01; pg. 62	R
3/18/93	21:34	Reactor 3/8/100	unspiked sample	Spiker X1.D010	Spiker X	ЛR	Notebook 93-01; pg. 62	R
3/18/93	22:05	ACN	instrument blank	Spiker X1.D011	Spiker X	JR	Notebook 93-01; pg. 62	R
3/20/93	15:08	Autocal 1	STD/25	RX311001.D01	Rx311	JR	Supelco Mix 610-17 Lot No. LA33993	S
3/20/93	15:39	Autocal 2	STD/50	RX311001.D02	Rx311	JR	Supelco Mix 610-17 Lot No. LA33993	S
3/20/93	16:09	Autocal 3	STD/100	RX311001.D03	Rx311	JR	Supelco Mix 610-17 Lot No. LA33993	S

.

.

7

٩

Dete			n <u></u>		Method			TTD-
Date Assayed	Time	Sample ID	Sample Description	File Name	Name	Operator	Comments	File Reference
3/20/93	16:40	Influent 3/11		Rx311001.D04	Rx311	JR	Notebook 93-01; pg. 64	S
3/20/93	17:11	Reactor 3/11		Rx311001.D05	Rx311	JR	Notebook 93-01; pg. 64	S
3/20/93	17:41	Influent 3/15		Rx311001.D06	Rx311	JR	Notebook 93-01; pg. 64	S
3/20/93	18:12	Reactor 3/15		Rx311001.D07	Rx311	JR	Notebook 93-01; pg. 64	S
3/20/93	18:43	RAS 3/15		Rx311001.D08	Rx311	JR	Natebook 93-01; pg. 64	S
3/20/93	19:13	ACN	instrument blank	Rx311001.D09	Rx311	JR	Notebook 93-01; pg. 64	S
3/30/93	10:44	Autocal 1	STD/25	Rx318011.D01	Rx318	TS	Supelco Mix 610-M Lot LA33993	т
3/30/93	11:15	Autocal 2	STD/50	Rx318011.D02	Rx318	TS	Supelco Mix 610-M Lot LA33993	T
3/30/93	11:45	Autocal 3	STD/100	Rx318011.D03	Rx318	TS	Supelco Mix 610-M Lot LA33993	T
3/30/93	12:16	Rx318	Reactor 3/18	Rx318011.D04	Rx318	TS	Notebook 93-01; pg. 75	Т
3/30/93	12:47	RAS 318		Rx318011.D05	Rx318	TS	Notebook 93-01; pg. 75	т
3/30/93	13:48	ACN	instrument blank	Rx318011.D06	Rx318	TS	Notebook 93-01; pg. 75	T
3/30/93	15:37	Autocal 1	STD/25	RX322001.D01	RX322	TS	Supelco 610-M PAH Mix Lot Not LA33993	N
3/30/93	16:08	Autocal 2	STD/50	RX322001.D02	RX322	TS	Supelco 610-M PAH Mix Lot Not LA33993	N
3/30/93	16:39	Autocal 3	STD/100	RX322001.D03	RX322	TS	Supelco 610-M PAH Mix Lot Not LA33993	N
3/30/93	17:09	RX322	Reactor 3/22	RX322001.D04	RX322	TS	Notebook 93-01; pg. 75	N
3/30/93	17:40	Influent 322		RX322001.D05	RX322	TS	Notebook 93-01; pg. 75	N
3/30/93	18:11	Influent 318		RX322001.D06	RX322	TS	Notebook 93-01; pg. 75	N
3/30/93	18:41	ACN	instrument blank	RX322001.D07	RX322	TS	Notebook 93-01; pg. 75	N
					l	I		I

•

Date		Sample	Sample	File	Method			File
Assayed	Time	1D	Description	Name	Name	Operator	Comments	Reference
3/31/93	9:00	Autocal 1	STD/25	Respike 1.D01	Respike	TS	Supelco Mix 610-M Lat #LA33993	U
3/31/93	9:31	Autocal 2	STD/50	Respike 1.D02	Respiko	T3	Supelco Mix 610-M Lot #LA33993	U
3/31/93	10:02	Autocal 3	STD/100	Respike 1.D03	Respike	TS	Supelco Mix 610-M Lot #LA33993	U
3/31/93	10:32	Rx 3/19 Spike A	Matrix Spike	Respike 1.D04	Respike	TS	Notebook 93-01; pz. 78	U
3/31/93	11:03	Rx 3/19 spike B	Matrix Spike	Respike 1.D05	Respike	TS	Notebook 93-01; pg. 78	U
3/31/93	11:34	Rx 3/19 Spike C	Matrix Spike	Respike 1.D06	Respike	TS	Notebook 93-01; pg. 78	U
3/31/93	12:04	Rx 3/19	Unspiked Sample	Respike 1.D07	Respike	TS	Notebook 93-01; pg. 78	U
3/31/93	12:35	PAH Spike STD/200	Spike STD	Respike 1.D08	Respike	TS	Notebook 93-01; pg. 78	U
3/31/93	13:06	PAH Spike STD/200	Spike STD	Respike 1.D09	Respike	TS	Notebook 93-01; pg. 78	U
3/31/93	13:36	PAH Spike STD/200	Spike STD	Respike 1.D010	Respike	TS	Notebook 93-01; pg. 78	υ
3/31/93	14:07	ACN	instrument blank	Respike 1.D011	Respike	TS	Notebook 93-01; pg. 78	U
4/1/93	16:00	Autocal I	STD/25	RX329001.D01	RX329	JR	Supelco 610-N PAH Mix Lot No. LA33993	Р
4/1/93	16:30	Autocal 2	STD/50	RX329001.D02	RX329	JR	Supelco 610-N PAH Mix Lot No. LA33993	P
4/1/93	17:01	Autocal 3	STD/100	RX329001.D03	RX329	JR	Supelco 610-N PAH Mix Lot No. LA33993	P
4/1/93	17:32	Influent 3/29/93		RX329001.D04	RX329	JR	Notebook 93-01; pg. 80	P
4/1/93	18:02	Reactor 3/29/93		RX329001.D05	RX329	JR	Notebook 93-01; pg. 80	Р
4/1/93	18:33	RAS 3/29/93		RX329001.D06	RX329	JR	Notebook 93-01; pg. 80	Р
4/1/93	19:04	ACN		RX329001.D07	RX329	JR	Notebook 93-01; pg. 80	P
4/3/93	12:12	Autocal 1	STD/25	RX325B01.D02	RX325B	TS	Supelco Mix 610-M Lot No. LA 33993	0

.

Date Assayed	Time	Semple ID	Sample Description	File Name	Method Name	Operator	Comments	File Reference
4/3/93	12:43	Autocal 2	STD/50	RX325B01.D03	RX325B	TS	Supeko Mix 610-M Lot No. LA 33993	0
4/3/93	13:15	Autocal 3	STD/100	RX325B01.D04	RX325B	TS	Supelco Mix 610-M Lot No. LA 33993	0
4/3/93	13:48	Influent 3/25/93		RX325B01.D05	RX325B	TS	Notebook 93-01; pg. 80	0
4/3/93	14:20	Reactor 3/25/93		RX325B01.D06	RX325B	TS	Notebook 93-01; pg. 80	0
4/3/93	14:52	RAS 3/25/93		RX325B01.D07	RX325B	TS	Notebook 93-01; pg. 80	0
4/5/93	15:57	Autocal 1	STD/25	Rx420001.D01	Rx42	TS	Supelco 610-M Lot No. LA33993	v
4/5/93	16:28	Autocal 2	STD/50	Rx420001.D02	Rx42	TS	Supelco 610-M Lot No. LA33993	v
4/5/93	16:58	Autocal 3	STD/100	Rx420001.D03	Rx42	TS	Supelco 610-M Lot No. LA33993	v
4/5/93	17:29	Influent 4/1		Rx420001.D04	Rx42	TS	Notebook 93-01; pg. 83	v
4/5/93	18:00	Reactor 4/1		Rx420001.D05	Rx42	TS	Notebook 93-01; pg. 83	v
4/5/93	18:30	Reactor 4/2		Rx420001.D06	Rx42	TS	Notebook 93-01; pg. 83	v
4/5/93	19:01	Reagent blank A 4/2		Rx420001.D07	Rx42	TS	Notebook 93-01; pg. 84	v
4/5/93	19:31	Reagent blank B 4/2		Rx420001.D08	Rx42	TS	Notebook 93-01; pg. 84	v
4/5/93	20:02	Reagent blank C 4/2		Rx420001.D09	Rx42	TS	Notebook 93-01; pg. 84	v
4/5/93	20:33	ACN	instrument blank	Rx420001.D010	Rx42	TS	Notebook 93-01; pg. 84	v
4/6/93	10:36	Autocat 1	STD/25	Rx460001.D01	Rx46	JR	Supelco 610-M Lot No. LA33993	w
4/6/93	11:07	Autocal 2	STD/50	Rx460001.D02	Rx46	JR	Supelco 610-M Lot No. LA33993	w
4/6/93	11:37	Autocal 3	STD/100	Rx460001.D03	Rx46	JR	Supelco 610-M Lot No. LA33993	w
4/6/93	12:08	Blank A 4/6		Rx460001.D04	Rx46	JR	Notebook 93-01; pg. 92	w

Date Assayed	Time	Sam ple ID	Sample Description	File Name	Method Name	Operator	Comments	File Reference
4/6/93	12:38	Blank B 4/6		Rx460001.D05	Rx46	JR	Notebook 93-01; pg. 92	w
4/6/93	13:14	Blank C 4/6		Rx460001.D06	Rx46	JR	Notebook 93-01; pg. 92	W
4/6/93	13:45	ACN	instrument blank	Rx460001.D07	Rx46	R	Notebook 93-01; pg. 92	w
4/7/93	14:35	Autocal 1	STD/25	Rx470001.D01	Rx47	R	Supelco 610-M Lot No. LA-33993	x
4/7/93	15:06	Autocal 2	STD/50	Rx470001.D02	Rx47	JR	Supelco 610-M Lot No. LA-33993	x
4/7/93	15:36	Autocal 3	STD/100	Rx470001.D03	Rx47	JR	Supelco 610-M Lot No. LA-33993	x
4/7/93	16:07	Blank A 4/7		Rx470001.D04	Rx47	JR	Natebaok 93-01; pg. 92	x
4/7/93	16:37	Blank B 4/7		Rx470001.D05	Rx47	JR	Notebook 93-01; pg. 92	x
4/7/93	17:08	Blank C 4/7		Rx470001.D06	Rx47	JR	Notebook 93-01; pg. 92	x
4/13/93	12:52	Autocal 1	STD/25	RX480001.D01	RX48	JR ·	Supelco Mix 610-M Lot No. LA33993	Q
4/13/93	13:22	Autocal 2	STD/50	RX480001.D02	RX48	JR	Supelco Mix 610-M Lot No. LA33993	Q
4/13/93	13:53	Autocal 3	STD/100	RX480001.D03	RX48	R	Supelco Mix 610-M Lot No. LA33993	Q
4/13/93	14:24	Reactor 4/1/93	unspiked sample	RX480001.D04	RX48	JR	Notebook 93-01; pg. 83	Q
4/13/93	14:54	Reactor 4/5/93		RX480001.D05	RX48	Л	Notebook 93-01; pg. 2	Q
4/13/93	15:25	Reactor 4/8/93		RX480001.D06	RX48	R	Notebook 93-01; pg. 2	Q
4/13/93	15:56	Spike STD	spike std	RX480001.D07	RX48	JR	Notebook 93-01; pg. 2	Q
4/13/93	16:26	Spike STD	spike std	RX480001.D08	RX48	JR	See pg. 3 Book 93-04	Q
4/13/93	16:57	Spike STD	spike std	RX480001.D09	RX48	JR	See pg. 3 Book 93-04	Q
4/13/93	17:5	Spike A 4/1/93	matrix spike	RX480001.D010	RX48	JR.	See pg. 3 Book 93-04	Q
4/13/93	17:58	Spike <b>B</b> 4/1/93	matrix spike	RX480001.D011	RX48	JR	See pg. 3 Book 93-04	Q

Date	-	Sample	Sample	File	Method	0	2	File
Assayed	Time	ID	Description	Name	Name	Operator	Comments	Reference
4/13/93	18:29	Spike C 4/1/93	matrix spike	RX480001.D012	RX48	JR .	See pg. 3 Book 93-04	Q
4/13/93	19:00	ACN	instrument blank	RX48001.D013	RX48	JR	See pg. 3 Book 93-04	Q
4/16/93	11:00	Autocal 1	STD/25	Rx412001.D02	Rx412	Л	Supeko 610-Mix Lot No. LA33993	
4/16/93	11:34	Autocaj 2	STD/50	Rx412001.D03	Rx412	JR	Supelco 610-Mix Lot No. LA33993	
4/16 <b>/</b> 93	12:05	Autocal 3	STD/100	Rx412001.D04	Rx412	JR	Supelco 610-Mix Lot No. LA33993	
4/16/93	12:36	Rx 4/12		Rx412001.D05	Rx412	JR	Natebook 93-04; pg. 2	
4/16/93	13:06	Reagent blank A 4/15		Rx412001.D06	Rx412	JR	Notebook 93-04; pg. 6	
4/16/93	13:37	Reagent blank B 4/15		Rx412001.D07	Rx412	JR	Notebook 93-04; pg. 2	·
4/16/93	14:07	Reagent Blank C 4/15		Rx412001.D08	Rx412	JR	Natebook 93-04; pg. 6	
4/19 <b>/</b> 93	15:27	Autocal 1	STD/25	Rx415001.D01	Rx415	JR	Supelco PAH Mix Lot No. LA 33993	
4/19 <b>/9</b> 3	15:57	Autocal 2	STD/50	Rx415001.D02	Rx415	JR	Supelco PAH Mix Lot No. LA 33993	
4/19 <b>/</b> 93	16:28	Autocal 3	STD/100	Rx415001.D03	Rx415	JR	Supeko PAH Mix Lot No. LA 33993	
4/19/93	16:59	Rx 4/15		Rx415001.D04	Rx415	R	Notebook 93-04; pg. 10	
4/19/93	17:29	Spike A 4/8	Matrix spike 4/8	Rx415001.D05	Rx415	JR	Notebook 93-04; pg. 11	
4/19/93	18:00	Spike B 4/8	Matrix spike 4/8	Rx415001.D06	Rx415	R	Natebook 93-04; pg. 11	
4/19/93	18:31	Spike C 4/8	Matrix spike 4/8	Rx415001.D07	Rx415	JR .	Notebook 93-04; pg. 11	Î
4/19/93	19:01	Rx4/8	Unspiked sample	Rx415001.D08	Rx415	JR	Notebook 93-04; pg. 11	1
4/19/93	19:32	Spike STD A	Spike std	Rx415001.D09	Rx415	JR	Notebook 93-04; pg. 11	1
4/19/93	20:03	Spike STD B	Spike STD	Rx415001.D010	Rx415	JR	Notebook 93-04; pg. 11	1
4/19/93	20:33	Spike STD C	Spike STD	Rx415001.D011	Rx415	JR	Notebook 93-04; pg. 11	1

Date Assayed	Time	Sample 1D	Sample Description	File Name	Method Name	Operator	Comments	File Reference
4/19/93	21:04	ACN	Spike STD	Rx415001.D012	Rx415	JR	Notebook 93-04; pg. 11	
				<u> </u>				
4/21/93	10:26	Autocal 1	STD/25	Rx419001.D01	<b>R</b> x419	TS	Supelco PAH Mix Lot No. LA 33993	
4/21/93	10:57	Autocal 2	STD/50	Rx419001.D02	Rx419	TS	Supelco PAH Mix Lot No. LA 33993	
4/21/93	11:28	Autocal 3	STD/100	Rx419001.D03	Rx419	TS	Supelco PAH Mix Lot No. LA 33993	
4/21/93	11:58	Rx 4/19/93	Reactor 4/19	Rx419001.D04	Rx419	TS	Notebook 93-04; pg. 10	
4/21/93	12:29	ACN		Rx419001.D05	Rx419	TS	Notebook 93-04; pg. 10	
4/26/93	14:41	Autocal 1	STD/25	Rx422001.D01	Rx422	JR	Supelco PAH Mix Lot No. LA 33993	
4/26/93	15:11	Autocal 2	STD/50	Rx422001.D02	Rx422	JR.	Supelco PAH Mix Lot No. LA 33993	
4/26/93	15:42	Autocal 3	STD/100	Rx422001.D03	Rx422	JŖ	Supelco PAH Mix Lot No. LA 33993	
4/26/93	16:13	Rx A 4/22	Reactor 4/22/93	Rx422001.D04	Rx422	JR	Notebook 93-04; pg. 19	
4/26/93	16:43	Rx B 4/22		Rx422001.D05	Rx422	JR	Notebook 93-04; pg. 19	
4/26/93	17:14	Rx C 4/22		Rx422001.D06	Rx422	JR	Notebook 93-04; pg. 19	
4/26/93	17:45	ACN	Instrument blank	Rx422001.D07	Rx422	JR	Notebook 93-04; pg. 19	
4/28/93	12:25	Autocal I	STD/25	Rx427001.D01		JR	Supelco PAH Mix 610 Lot No. LA 33993	
4/28/93	13:05	Autocal 2	STD/50	Rx427001.D01		ЛR	Supelco PAH Mix 610 Lot No. LA 33993	
4/28/93	13:36	Autocal 3	STD/100	Rx427001.D01		JR	Supelco PAH Mix 610 Lot No. LA 33993	
4/28/93	14:06	Rx 4/26		Rx427001.D01		JR	Notebook 93-04; pg. 29	

Date Assayed	Time	Sample ID	Sample Description	File Name	Method Name	Operator	Comments	File Reference
5/7/93	2:30	Autocal I	STD/25	Rx540001.D01	Rx54	JR	Supelco PAH Mix Lot No. LA 33993	
5/7/93	2:30	Autocal 2	STD/50	Rx540001.D02	Rx54	R	Supelco PAH Mix Lot No. LA 33993	
5/7/93	2:30	Autocal 3	STD/100	Rx540001.D03	Rx54	JR	Supelco PAH Mix Lot No. LA 33993	
5/7/93	2:30	Reactor 5/4/93		Rx540001.D04	Rx54	JR	Natebook 93-04; pg. 29	
5/7/93	2:30	Reactor 5/4/93		Rx540001.D05	Rx54	JR.	Notebook 93-04; pg. 29	
5/7/93	2:30	Bottle Study 5/4/93		Rx540001.D06	Rx54	JR	Natebook 93-04; pg. 29	
5/11/93	11:45	Extract glass wood	Rx solvent rinse	Rx540001.D07	Rx54	TSS	QA check	
5/11/93	11:45	Extract nalgene	Rx solvent rinse	Rx540021.D06	Rx54	TSS	QA check	
5/12/93	11:18	Autocal 1	STD/25	Rx510001.D01	Rx56	TSS		· ·
5/12/93	11:49	Autocal 2	STD/50	Rx510001.D02	Rx56	TSS		1
5/12/93	12:20	Autocal 3	STD/100	Rx510001.D03	Rx56	TSS		
5/12/93	12:50	Final Rx A 5/6/93	[	Rx510001.D04	Rx56	TSS	Notebook 93-04; pg. 36	
5/12/93	13:21	Final Rx B 5/6/93		Rx510001.D05	Rx56	TSS	Notebook 93-04; pg. 36	
5/12/93	13:52	Final Rx C 5/6/93		Rx510001.D06	Rx56	TSS	Notebook 93-04; pg. 36	
5/12/93	14:25	Wash sludge A		Rx510001.D07	Rx56	TSS	Notebook 93-04; pg. 36	1
5/12/93	14:55	Wash sludge B		Rx510001.D08	<b>Rx56</b>	TSS	Notebook 93-04; pg. 36	1
5/12/93	16:40	Wash sludge C		Rx510001.D09	Rx56	TSS	Notebook 93-04; pg. 36	
5/12/93	17:11	Glass wool extract		Rx510001.D010	Rx56	TSS	Notebook 93-04; pg. 37	
5/12/93	17:41	Rx extract		Rx510001.D011	Rx56	TSS	Notebook 93-04; pg. 37	
		· · · · · · · · · · · · · · · · · · ·			]			

Date Assayed	Time	Sample ID	Sample Description	File Name	Method Name	Operator	Continuents	File Reference
5/20/93	20:47	Autocal 1	PAHCHK001.D01	3RD party check standard	ранснк	JR	Supelco PAH Mix 610 Lot No. LA 33993	•
5/20/93	21:18	Autocal 2	PAHCHK001.D02	3RD party check standard	ранснк	JR	Supelco PAH Mix 610 Lot No. LA 33993	
5/20/93	21:49	Autocal 3	PAHCHK001.D03	3RD party check standard	ранснк	R	Supelco PAH Mix 610 Lot No. LA 33993	
5/20/93	22:19	100 ng/ul ITAS PAH STD	PAHCHK001.D04	3RD party check standard	РАНСНІК	JR	Notebook 93-04: pg 49	
5/20/93	22:50	80 ng/ul ITAS PAH STD, 3RD party check	PAHCHK001.D05	3RD party check standard	РАНСНК	JR	Notebook 93-04: pg 49	1
5/20/93	23:21	50 ng/ul ITAS PAH STD, 3RD party check	PAHCHK001.D06	3RD party check standard	ранснік	JR	Notebook 93-04: pg 49	
5/20/93	23:51	25 ng/ul ITAS PAH STD, 3RD party check	PAHCHK001.D07	3RD party check standard	ранснк	JR	Notebook 93-04: pg 49	
5/21/93	00:22	1 ng/u1 ITAS PAH STD, 3RD party check	PAHCHK001.D08	3RD party check standard	РАНСНК	JR	Notebook 93-04: pg 49	

•

#### C. Method Blanks

The frequency of method blank analysis is shown on the HPLC run log. These blanks were run with each sample batch as shown on the HPLC run log. The QC acceptance criteria for all blanks was non-detect. Results of the matrix blank analyses did not indicate the presence of any compounds. Preparation of samples was documented in the laboratory notebook.

#### D. Matrix Spike/Matrix Spike Duplicates

The frequency of matrix spikes analysis is shown on the HPLC run log. Spikes were run with each sample batch. QC acceptance criteria for recoveries was from 50 to 120 percent. Results of the analyses are included. Preparation of samples was documented in the laboratory notebook.

#### E. Laboratory Control Standards

.

The HPLC was calibrated prior to each sample batch analyzed. In addition, analysis of a third-party laboratory check standard was conducted.

#### Matrix Spike Recoveries and Laboratory Standards Check Batch T₃ Sample 1 of 3 Weston Batch and Bioslurry Investigations IT Project No. 408491

Sample Identification	Standard Spike Concentration (ug)	Standard Spike Concentration Measured (ug)	Soil Spike Recoveries (ug)	Soil Spike Recoveries (%)
B(a)A	1,940*	1,950 ⁶	1,870	96
Chrysene	4,130	4,085	4,070	99
B(b)F	7,155	7,075	6,790	95
B(k)F	3,545	3,530	3,105	88
B(a)P	5,515	5,495	5,190	94
D(a,h)A	11,840	11,780	10,180	86
B(g,h,i)P	6,325	6,270	5,280	83
Indeno	2,980	2,955	2,770	93

 Measured concentration immediately following preparation. Concentrations were analyzed against a certified standard compared to a third-party laboratory check standard. Laboratory spike standards were manually prepared to increase concentrations substantially above background sample levels.

^b Standard spike concentration determined prior to soil spike analysis.

.

#### Matrix Spike Recoveries and Laboratory Standards Check Batch T₃ Sample 2 of 3 Weston Batch and Bioslurry Investigations IT Project No. 408491

Sample Identification	Standard Spike Concentration (ug)	Standard Spike Concentration Measured (ug)	Soil Spike Recoveries (ug)	Soil Spike Recoveries (%)
B(a)A	1,940*	1,995 ⁶	1,871	96
Chrysene	4,130	4,070	4,135	100
B(b)F	7,155	7,100	6,900	96
B(k)F	3,545	3,545	3,160	89
B(a)P	5,515	5,430	5,325	97
D(a,h)A	11,840	11,750	10,270	87
B(g,h,i)P	6,325	6,395	5,440	86
Indeno	2,980	2,975	2,790	94

- Measured concentration immediately following preparation. Concentrations were analyzed against a certified standard compared to a third-party laboratory check standard. Laboratory spike standards were manually prepared to increase concentrations substantially above background sample levels.
- ^b Standard spike concentration determined prior to soil spike analysis.

#### Matrix Spike Recoveries and Laboratory Standards Check Batch T₃ Sample 3 of 3 Weston Batch and Bioslurry Investigations IT Project No. 408491

Sample Identification	Standard Spike Concentration (ug)	Standard Spike Concentration Measured (ug)	Soil Spike Recoveries (ug)	Soil Spike Recoveries (%)
B(a)A	1,940ª	1,875 ⁶	1,885	97
Chrysene	4,130	4,240	4,005	97
B(b)F	7,155	7,285	6,770	95
B(k)F	3,545	3,565	3,090	87
B(a)P	5,515	5,625	5,155	93
D(a,h)A	11,840	11,990	10,170	86
B(g,h,i)P	6,325	6,315	5,280	83
Indeno	2,980	3,005	2,760	93

- Measured concentration immediately following preparation. Concentrations were analyzed against a certified standard compared to a third-party laboratory check standard. Laboratory spike standards were manually prepared to increase concentrations substantially above background sample levels.
- ^b Standard spike concentration determined prior to soil spike analysis.

#### Matrix Spike Recoveries and Laboratory Standards Check Reactor 3/8 Sample 1 of 3 Weston Batch and Bioslurry Investigations IT Project No. 408491

Sample Identification	Standard Spike Concentration (ug)	Standard Spike Concentration Measured (ug)	Soil Spike Recoveries (ug)	Soil Spike Recoveries (%)
B(a)A	1,940*	1,705	1,765	91
Chrysene	4,130	4,195	4,290	104
B(b)F	7,155	7,075	7,445	104
B(k)F	3,545	3,235	3,330	94
B(a)P	5,515	4,710	4,890	89
D(a,h)A	11,840	10,430	10,355	87
B(g,h,i)P	6,325	5,230	5,275	83
Indeno	2,980	2,655	2,790	94

- Measured concentration immediately following preparation. Concentrations were analyzed against a certified standard compared to a third-party laboratory check standard. Laboratory spike standards were manually prepared to increase concentrations substantially above background sample levels.
  - ^b Standard spike concentration determined prior to soil spike analysis.

#### Matrix Spike Recoveries and Laboratory Standards Check Reactor 3/8 Sample 2 of 3 Weston Batch and Bioslurry Investigations IT Project No. 408491

Sample Identification	Standard Spike Concentration (ug)	Standard Spike Concentration Measured (ug)	Soil Spike Recoveries (ug)	Soil Spike Recoveries (%)
B(a)A	1,940*	1,735	1,805	93
Chrysene	4,130	4,175	4,265	103
B(b)F	7,155	7,050	7,370	103
B(k)F	3,545	3,245	3,275	92
B(a)P	5,515	4,720	4,955	90
D(a,h)A	11,840	10,515	10,190	86
B(g,h,i)P	6,325	5,275	5,315	84
Indeno	2,980	2,665	2,770	93

- Measured concentration immediately following preparation. Concentrations were analyzed against a certified standard compared to a third-party laboratory check standard. Laboratory spike standards were manually prepared to increase concentrations substantially above background sample levels.
- ^b Standard spike concentration determined prior to soil spike analysis.

#### Matrix Spike Recoveries and Laboratory Standards Check Reactor 3/8 Sample 3 of 3 Weston Batch and Bioslurry Investigations IT Project No. 408491

Sample Identification	Standard Spike Concentration (ug)	Standard Spike Concentration Measured (ug)	Soil Spike Recoveries (ug)	Soil Spike Recoveries (%)
B(a)A	1,940*	1,735 ^b	1,810	93
Chrysene	4,130	4,180	4,375	106
B(b)F	7,155	7,055	7,520	105
B(k)F	3,545	3,245	3,380	95
B(a)P	5,515	4,675	5,035	91
D(a,h)A	11,840	10,670	10,405	88
B(g,h,i)P	6,325	5,320	5,390	85 `
Indeno	2,980	2,700	2,815	94

- Measured concentration immediately following preparation. Concentrations were analyzed against a certified standard compared to a third-party laboratory check standard. Laboratory spike standards were manually prepared to increase concentrations substantially above background sample levels.
- Standard spike concentration determined prior to soil spike analysis.

ь

#### Matrix Spike Recoveries and Laboratory Standards Check Reactor 3/19 Sample 1 of 3 Weston Batch and Bioslurry Investigations IT Project No. 408491

Sample Identification	Standard Spike Concentration (ug)	Standard Spike Concentration Measured (ug)	Soil Spike Recoveries (ug)	Soil Spike Recoveries (%)
B(a)A	1,164*	951 ^b	855	73
Chrysene	2,478	2,601	2,991	121
B(b)F	4,293	4,191	4,470	104
B(k)F	2,127	1,938	2,079	98
B(a)P	3,309	2,853	3,081	93
D(a,h)A	7,104	6,876	7,656	108
B(g,h,i)P	3,795	3,282	3,568	94
Indeno	1,788	1,650	1,873	105

- Measured concentration immediately following preparation. Concentrations were analyzed against a certified standard compared to a third-party laboratory check standard. Laboratory spike standards were manually prepared to increase concentrations substantially above background sample levels.
- ^b Standard spike concentration determined prior to soil spike analysis.

#### Matrix Spike Recoveries and Laboratory Standards Check Reactor 3/19 Sample 2 of 3 Weston Batch and Bioslurry Investigations IT Project No. 408491

Sample Identification	Standard Spike Concentration (ug)	Standard Spike Concentration Measured (ug)	Soil Spike Recoveries (ug)	Soil Spike Recoveries (%)
B(a)A	1,164ª	· 957°	861	74
Chrysene	2,478	2,544	2,976	120
B(b)F	4,293	4,203	4,515	105
B(k)F	2,127	1,935	2,106	99
B(a)P	3,309	2,856	3,111	94
D(a,h)A	7,104	6,933	7,710	109
B(g,h,i)P	3,795	3,189	3,592	95
Indeno	1,788	1,650	1,867	104

- Measured concentration immediately following preparation. Concentrations were analyzed against a certified standard compared to a third-party laboratory check standard. Laboratory spike standards were manually prepared to increase concentrations substantially above background sample levels.
- ^b Standard spike concentration determined prior to soil spike analysis.

#### Matrix Spike Recoveries and Laboratory Standards Check Reactor 3/19 Sample 3 of 3 Weston Batch and Bioslurry Investigations IT Project No. 408491

Sample Identification	Standard Spike Concentration (ug)	Standard Spike Concentration Measured (ug)	Soil Spike Recoveries (ug)	Soil Spike Recoveries (%)
B(a)A	1,164"	· 960 ^b	600	52
Chrysene	2,478	2,586	1,998	81
B(b)F	4,293	4,212	2,889	67
B(k)F	2,127	1,926	1,431	67
B(a)P	3,309	2,862	1,953	59
D(a,h)A	7,104	6,879	5,211	73
B(g,h,i)P	3,795	3,168	2,479	65
Indeno	1,788	1,662	1,303	73

Measured concentration immediately following preparation. Concentrations were analyzed against a certified standard compared to a third-party laboratory check standard. Laboratory spike standards were manually prepared to increase concentrations substantially above background sample levels.

^b Standard spike concentration determined prior to soil spike analysis.

### Matrix Spike Recoveries and Laboratory Standards Check Reactor 4/1 Sample 1 of 3 Weston Batch and Bioslurry Investigations IT Project No. 408491

Sample Identification	Standard Spike Concentration (ug)	Standard Spike Concentration Measured (ug)	Soil Spike Recoveries (ug)	Soil Spike Recoveries (%)
B(a)A	3,600	3,433	3,008	84
Chrysene	3,600	3,533	2,777	77
B(b)F	3,600	3,243	2,425	67
B(k)F	3,600	3,483	2,896	80
B(a)P	3,600	3,453	3,150	88
D(a,h)A	3,600	3,433	2,853	79
B(g,h,i)P	3,600	3,543	2,984	. 83
Indeno	3,600	3,473	2,920	81

### Matrix Spike Recoveries and Laboratory Standards Check Reactor 4/1 Sample 2 of 3 Weston Batch and Bioslurry Investigations IT Project No. 408491

Sample Identification	Standard Spike Concentration (ug)	Standard Spike Concentration Measured (ug)	Soil Spike Recoveries (ug)	Soil Spike Recoveries (%)
B(a)A	3,600	3,403	3,267	91
Chrysene	3,600	3,563	3,355	93
B(b)F	3,600	3,253	2,869	80
B(k)F	3,600	3,493	3,276	91
B(a)P	3,600	3,493	3,634	101
D(a,h)A	3,600	3,433	3,256	90
B(g,h,i)P	3,600	3,543	3,400	94
Indeno	3,600	3,483	3,305	92

### Matrix Spike Recoveries and Laboratory Standards Check Reactor 4/1 Sample 3 of 3 Weston Batch and Bioslurry Investigations IT Project No. 408491

١.

Sample Identification	Standard Spike Concentration (ug)	Standard Spike Concentration Measured (ug)	Soil Spike Recoveries (ug)	Soil Spike Recoveries (%)
B(a)A	3,600	3,313	2,918	81
Chrysene	3,600	3,703	2,653	74
B(b)F	3,600	3,263	2,387	66
B(k)F	3,600	3,493	2,803	78
B(a)P	3,600	3,403	3,013	84
D(a,h)A	3,600	3,533	2,817	78
B(g,h,i)P	3,600	3,493	2,929	81
Indeno	3,600	3,493	2,830	79

### Matrix Spike Recoveries and Laboratory Standards Check Reactor 4/8 Sample 1 of 3 Weston Batch and Bioslurry Investigations IT Project No. 408491

Sample Identification	Standard Spike Concentration (ug)	Standard Spike Concentration Measured (ug)	Soil Spike Recoveries (ug)	Soil Spike Recoveries (%)
B(a)A	3,600	3,313	1,989	55
Chrysene	3,600	3,503	1,962	55
B(b)F	3,600	3,183	1,784	50
B(k)F	3,600	3,383	1,944	54
B(a)P	3,600	4,013	2,412	67
D(a,h)A	3,600	3,403	1,924	53
B(g,h,i)P	3,600	3,643	2,122	59
Indeno	3,600	3,393	1,978	55

## Matrix Spike Recoveries and Laboratory Standards Check Reactor 4/8 Sample 2 of 3 Weston Batch and Bioslurry Investigations IT Project No. 408491

Sample Identification	Standard Spike Concentration (ug)	Standard Spike Concentration Measured (ug)	Soil Spike Recoveries (ug)	Soil Spike Recoveries (%)
B(a)A	3,600	3,353	3,100	86
Chrysene	3,600	3,453	3,145	87
B(b)F	3,600	3,173	2,983	- 83
B(k)F	3,600	3,373	3,109	86
B(a)P	3,600	. 3,933	4,039	112
D(a,h)A	3,600	3,423	3,082	86
B(g,h,i)P	3,600	3,623	3,424	95
Indeno	3,600	3,413	3,179	88

## Matrix Spike Recoveries and Laboratory Standards Check Reactor 4/8 Sample 3 of 3 Weston Batch and Bioslurry Investigations IT Project No. 408491

Sample Identification	Standard Spike Concentration (ug)	Standard Spike Concentration Measured (ug)	Soil Spike Recoveries (ug)	Soil Spike Recoveries (%)
B(a)A	3,600	3,413	3,166	88
Chrysene	3,600	3,403	3,213	89
B(b)F	3,600	3,163	2,979	83
B(k)F	3,600	3,373	3,177	88
B(a)P	3,600	3,943	4,145	115
D(a,h)A	3,600	3,413	3,218	89
B(g,h,i)P	3,600	3,593	3,550	99
Indeno	3,600	3,413	3,244	90

		Concentra	tion of Restek Stand	lards	
Compounds	100 ug/ml	80 ug/ml	50 ug/ml	25 ug/ml	1 ug/ml
Naphthalene (ug/ml)	98.96	80.87	50.73	25.21	1.24
Acenaphthylene (ug/ml)	89.02	71.88	44.95	22.51	1.26
Acenaphthene (ug/ml)	77.48	76.94	41.19	19.95	2.76
Fluorene (ug/ml)	93.91	74.95	48.29	24.57	1.02
Phenanthrene (ug/ml)	90.58	73.78	47.53	24.46	1.03
Anthracene (ug/ml)	67.91	58.32	41.11	22.55	0.95
Fluoranthene (ug/ml)	91.24	74.54	47.69	24.31	1.04
Pyrene (ug/ml)	100.6	79.44	46.19	25.21	1.09
B(a)A (ug/ml)	87.34	72.21	46.48	23.73	1.00
Chrysene (ug/ml)	97.34	78.02	49.91	25.46	1.04
B(b)F (ug/ml)	91.34	73.93	47.26	24.10	0.98
B(k)F (ug/ml)	89.51	73.06	46.89	24.03	1.00
B(a)P (ug/ml)	105.0	83.67	52.23	25.69	0.94
D(a,h)A (ug/ml)	94.04	76.13	48.18	24.41	1.35
B(g,h,i)P (ug/ml)	100.7	81.86	50.97	25.56	1.03
Indeno(1,2,3-cd)pyrene (ug/ml)	95.06	76.76	48.89	24.98	1.10

#### Third-Party Laboratory Check Standard Results IT Project No. 408491

Note:

A 100-ug/ml Restek PAH standard was received from IT Analytical Services (ITAS). Serial dilutions of the stock standard were prepared by the BAC. The table illustrates the compound concentrations based on Supelco standards used for all BAC PAH analyses. A description of BAC calibration standards are provided in the project laboratory notebook, page 5, Book 93-04.

			ntion of Restek Stand	lards	•
Compounds	100 ug/ml	80 ug/ml	50 ug/ml	25 ug/ml	1 ug/ml
Naphthalene (ug/ml)	98.96	80.87	50.73	25.21	1.24
Acenaphthylene (ug/ml)	89.02	71.88	44.95	22.51	1.26
Acenaphthene (ug/ml)	77.48	76.94	41.19	19.95	2.76
Fluorene (ug/ml)	93.91	74.95	48.29	24.57	1.02
Phenanthrene (ug/ml)	90.58	73.78	47.53	24.46	1.03
Anthracene (ug/ml)	67.91	58.32	41.11	22.55	0.95
Fluoranthene (ug/ml)	91.24	74.54	47.69	24.31	1.04
Pyrene (ug/ml)	100.6	79.44	46.19	25.21	1.09
B(a)A (ug/ml)	87.34	72.21	46.48	23.73	1.00
Chrysene (ug/ml)	97.34	78.02	49.91	25.46	1.04
B(b)F (ug/ml)	91.34	73.93	47.26	24.10	0.98
B(k)F (ug/ml)	89.51	73.06	46.89	24.03	1.00
B(a)P (ug/ml)	105.0	83.67	52.23	25.69	0.94
D(a,h)A (ug/ml)	94.04	76.13	48.18	24.41	1.35
B(g,h,i)P (ug/ml)	100.7	81.86	50.97	25.56	1.03
Indeno(1,2,3-cd)pyrene (ug/ml)	95.06	76.76	48.89	24.98	1.10

#### Third-Party Laboratory Check Standard Results IT Project No. 408491

Note:

A 100-ug/ml Restek PAH standard was received from IT Analytical Services (ITAS). Serial dilutions of the stock standard were prepared by the BAC. The table illustrates the compound concentrations based on Supelco standards used for all BAC PAH analyses. A description of BAC calibration standards are provided in the project laboratory notebook, page 5, Book 93-04.

#### F. Preparation Logs

Sample collection dates, locations, and collector identification were documented in the daily log section of the project-specific laboratory notebook. Copies of all laboratory notebook pages referring to the preparation of project samples, standards, blanks, and spikes were provided to Weston.

#### G. Calculations

Analyte concentrations were determined automatically by the HPLC. The basis of this determination was interpolation from linear regressed, three-point calibration (See example provided). Copies of all chromatograms and HPLC methods were supplied to Weston.

# APPENDIX I MASS BALANCE SPREADSHEET

weston/tmchp1

•

.

Weston Project: 408491-003-20 rewes5-KJ 8/09/93 ac: _______

											_ه_		
DATE 1993	REACTOR VOLUME V (L)	REACTOR SOLIDS CONC. X (gr/kg)	REACTOR DRY SOLID WEIGHT M (kg)	REACTOR SLURRY SAMPLE (L/day)	FEED FLOW Qo (L/day)	FEED SOLIDS CONC. Xo (gr/kg)	EFFLUENT FLOW Ge (L/day)	EFFLUENT SOLIDS CONC. Xe (gr/kg)	RECYCLE FLOW Or (L/day)	RECYCLE SOLIDS CONC. Xr (mg/kg)	RECYCLE SLURRY SAMPLE (L/day)	BSRT M*7/5/(M +Sra+Sr) (days)	HR e V/Q *7/ (day
1/25 1/26 1/27	60 56 56	267 299 290	19.112 20.383 19.650	0.1 0.4 0.1	60 0 0	310 310 310	0.00 0.00 0.00						1
1/28 1/29 2/01 2/03 2/04 2/05 2/07 2/08 2/10 2/10 2/11 2/12 2/15 2/16 2/17 2/18	54 60 60 60 60 60 60 60 60 60 60	309 293 284 302 370 370 370 292 292 294 294 294 294 301 301 301 307	21.408 21.307 20.533 22.070 28.105 28.105 28.105 28.105 21.217 21.217 21.217 21.217 21.401 21.979 21.979 21.979 22.509	0.1 0.4 0 0.1 0.1 0.3 0.1 0.3 0.1 0.1 0.3 0.1 0.1 0.3	8.60 2.80 2.80 2.80 2.80 2.80 2.80 2.80 2.8	310 310 295 295 295 313 313 313 293 293 293 293 267 267 267 309 309 309 286	2.70 2.73 2.80 2.80 2.77 2.80 2.67 2.50 2.67 2.80 2.67 2.80 2.67 2.80 2.67 2.80 2.67 2.80 2.67 2.80	285 285 259 259 264 264 264 264 253 253 253 253 253 253 253 253 253 253	0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	314 307 420 420 420 420 419 419 419 419 427 417 417 417 417 400	0 0.067 0 0 0.033 0 0.033 0 0.033 0 0.033 0 0.033 0 0 0.033 0 0 0.033	32.8 32.8 33.9 38.1 46.6 47.0 47.5 36.9 36.7 37.7 40.9 42.1 36.5 36.2 37.2 38.1 38.9	8
VERAGE	60	310	22.7		3.1	298	2.7	260	0.8	406		38.8	28
2/22 2/23 2/24 2/25 3/01 3/02 3/03 3/04 3/05 3/04 3/05 3/04 3/10 3/11 3/12 3/15 3/16 3/17 3/18 3/22 3/24 3/25 3/24 3/25 3/26 3/20 3/21	60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60	298 298 298 313 308 308 308 308 308 308 308 305 305 305 305 305 305 305 305 305 305	21.724 21.724 23.024 23.024 22.601 22.601 22.601 22.61 23.117 23.117 23.3117 22.344 24.442 24.442 23.376 23.376 23.376 23.376 23.989 24.250 24.250 24.250 24.438 24.438 26.656 26.656 26.656 25.502	0.75 0 0.1 0.3 0.1 0.3 0.1 0.3 0.1 0.45 0.15 0.45 0.15 0.15	2.80 2.80 2.80 2.80 2.80 2.80 2.80 2.80	299 299 299 299 299 299 299 299 288 288	2.02 2.80 2.67 2.67 2.67 2.80 2.80 2.80 2.80 2.80 2.63 2.63 2.63 2.63 2.67 2.80 2.67 2.80 2.67 2.80 2.67 2.80 2.67 2.80 2.67 2.80 2.67 2.80 2.57 2.80 2.57 2.80 2.57 2.80 2.57 2.80 2.57 2.80 2.57 2.80 2.57 2.80 2.57 2.80 2.57 2.80 2.57 2.80 2.57 2.80 2.57 2.80 2.57 2.80 2.80 2.57 2.80 2.80 2.80 2.80 2.80 2.80 2.80 2.80	245 245 257 257 261 261 261 261 253 258 258 258 258 258 258 258 258 258 258		405 405 424 440 440 440 440 440 440 440 440 440	0.033 0 0.033 0 0.033 0 0 0.047 0 0.047 0 0.033 0 0.033 0 0.033 0 0.033 0 0.033 0 0.033 0 0.033 0 0.033 0 0.033 0 0.033 0 0.033 0 0.033 0 0.033 0 0 0.033 0 0 0 0	$\begin{array}{c} 36.4\\ 40.1\\ 40.1\\ 39.2\\ 40.1\\ 37.9\\ 37.6\\ 38.7\\ 39.2\\ 37.6\\ 38.8\\ 39.2\\ 35.8\\ 35.2\\ 35.8\\ 35.2\\ 35.8\\ 35.2\\ 35.4\\ 40.1\\ 40.5\\ 41.0\\ 39.5\\ 41.0\\ 35.2\\ 36.1\\ 33.1\\ 35.2\\ 36.1\\ 33.1\\ 35.2\\ 33.7\\ \end{array}$	•
4/01 4/02 4/05 4/08 4/12 4/15 4/19 4/22 4/26 4/29 5/4 5/6	60 59.85 59.71 59.21 58.82 58.32 58.08 57.58 57.08 56.58 56.08 56.88 56.08 58.84	345 334 336 328 328 355 331 340 340 340 340 345 339 345 363	25.502 24.807 24.918 24.924 26.206 24.265 23.798 23.798 24.371 23.747 23.878 24.182 25.632	0.15 0.14 0.50 0.39 0.50 0.245 0.5 0.5 0.5 0.5 0.5 0.5 0.5	2.80 0 0 0 0 0 0 0 0 0 0 0	336	2.57 0 0 0 0 0 0 0 0 0 0 0 0 0	320	0.8 0 0 0 0 0 0 0 0 0 0 0	401	0.08 0 0 0 0 0 0 0 0 0 0 0	33.7	

•

.

.

Weston Project : 408491 rewes5-KT- 8/09/93 QC : 23 •

	· · ·		_						27		•	
DATE 1993	REACTOR DRY S M (kg)	EFFLUENT DRY S Me (kg/day)	REAC SP DRY S Sra (kg/day)	RECYC SP DRY S Sr (kg/day)	DRY SOLID REMAINED (DS1) M-Me-Sra-S (kg/day)	FEED DRY S (kg/day)	DRY SOLID REMAINED DS1+Mo (kg/day)	FEED Dry solid (A)	LOSS DRY S A-M (kg/day)	X LOSS Dry S (A-N)/A (X)	EFF+SPL WASTED Me+Sra+Sr /A (%)	TOTAL LC Me+S r +A- (Z)
1/25 1/26 1/27	19.112 20.383 19.650	0000	0.032 0.146 0.035	0 0 0	19.080 20.238 19.615	22.7478 0 0	19.080 20.238 19.615	22.748 19.080 20.238	3.636 -1.303 0.587	16.0 -6.8 2.9	0.1 0.8 0.2	1 ' - -
1/28 1/29 2/01 2/02 2/03 2/04 2/05 2/07 2/08 2/09 2/10 2/11 2/12 2/15 2/15 2/16 2/17 2/18 2/19	21.408 21.307 20.533 22.070 28.105 28.105 28.105 21.217 21.217 21.217 21.217 21.401 21.979 21.979 22.509	0.874 0.874 0.674 0.810 0.810 0.810 0.828 0.752 0.704 0.752 0.704 0.752 0.712 0.789 0.712 0.789 0.828 0.772 0.810	0.040 0.036 0.137 0 0.047 0 0.035 0.106 0 0.036 0 0.037 0.110 0 0.037 0.110 0 0.038 0 0.038	0 0.037 0 0.018 0 0.018 0 0.018 0 0.018 0 0.018 0 0.017 0	20.494 20.397 19.686 21.260 27.260 27.268 27.268 27.277 20.412 20.407 20.428 20.669 20.690 21.135 21.130 21.151 21.682 21.699	3.261 1.062 1.004 1.004 1.074 1.074 1.074 1.074 0.994 0.994 0.994 0.994 0.893 1.058 1.058 1.058 1.058	23.755 21.459 20.690 22.265 28.334 28.342 28.351 21.406 21.401 21.403 21.561 21.582 22.193 22.188 22.209 22.647 22.664	19.615 23.755 21.459 20.690 22.265 22.265 28.334 28.351 21.406 21.401 21.423 21.561 21.582 22.188 22.209 22.647	-1.793 2.448 0.926 -1.380 0.194 -5.841 0.228 0.236 7.134 0.189 0.184 0.021 0.160 -0.397 0.214 0.209 -0.300 0.138	-9.1 10.3 4.3 -6.7 0.9 -26.2 0.8 25.2 0.9 0.9 0.9 0.1 0.7 -1.8 1.0 0.9 -1.4 0.6	4.7 3.8 4.09 3.6 3.80 2.8 3.87 3.8 3.7 3.8 3.7 3.8 3.7 3.7 3.6	1 4.5 -22.4 21 4.7 4.5 4.8 4.8 4.8
AVERAGE	21.724 21.724	0.547	0.272	0.017	20.888	1.018	21.906	22.664	0.940	4.1 0.8	3.7 3.5	   ?°
2/23 2/24 2/25 3/02 3/02 3/05 3/05 3/05 3/05 3/05 3/05 3/05 3/11 3/12 3/12 3/12 3/23 3/25 3/25 3/25 3/25 3/25 3/25 3/2	21.724 21.724 23.024 23.024 22.601 22.601 22.601 23.117 23.117 23.117 22.344 24.442 24.442 24.442 23.376 23.376 23.376 23.989 24.250 24.250 24.250 24.438 26.656 26.656 26.656 26.656 25.502	0.759 0.766 0.803 0.779 0.729 0.729 0.788 0.788 0.788 0.788 0.757 0.750 0.806 0.613 0.792 0.806 0.613 0.792 0.806 0.613 0.799 0.806 0.859 0.739 0.828 0.779 0.828 0.779 0.828 0.789 0.859 1.034 1.060 0.956	0 0.038 0.038 0.113 0 0.039 0.039 0.039 0.017 0.017 0.0244 0 0.0240 0.0240 0.0240 0.0240 0.0240 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.0400 0.0400000000	0.018 0.019 0 0.038 0 0.038 0 0.020 0 0.020 0 0.020 0 0.020 0 0.020 0 0.020 0 0.020 0 0.020 0 0 0.020 0 0 0.020 0 0 0.019	20.965 22.202 22.221 21.765 21.759 21.784 22.290 22.328 21.512 21.513 21.538 23.565 23.650 22.460 22.460 22.440 22.4477 23.130 23.151 23.401 23.401 23.422	1.018 1.018 1.018 1.018 1.066 1.066 1.066 1.066 0.974 0.975 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.970 0.1111 1.111 1.116 0.66 0.970 0.970 0.1111 0.168 0.955 0.955 0.955 0.955 0.957 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0	21.984 21.984 21.986 23.220 23.239 22.831 22.850 23.264 23.264 23.264 23.264 23.264 22.503 24.549 24.635 23.411 23.442 24.104 24.125 24.407 24.396 24.429 24.435 24.461 26.665 26.733 26.707 25.610 kg	21.908 21.984 21.984 23.220 23.239 22.831 22.831 22.850 23.264 23.302 22.477 22.478 22.503 24.549 24.635 23.425 23.411 23.442 24.125 24.407 24.396 24.429 24.435 24.461 26.665 26.707 kg	0.182 0.259 -1.041 0.196 0.638 0.230 0.223 -0.267 0.147 0.958 0.133 0.133 -1.939 0.107 1.259 0.050 0.035 -0.547 0.157 0.146 -0.010 -0.003 -2.195 0.009 0.077 1.204	0.8 1.27 -0.8 2.7 1.0 -1.2 0.6 -1.2 0.6 -1.2 0.6 -1.2 0.6 -1.2 0.6 -1.2 0.6 -1.2 0.6 -1.2 0.6 -1.2 0.6 -1.2 0.6 -1.2 0.6 -1.2 0.6 -1.2 0.6 -1.2 0.6 -1.2 0.6 -0.3 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5	3.577567664467692708755554095900 3.537557567664467692708755554095900 3.5375554095900	4 -1.3 63 4 2.0 7.7 4 -4.7 8.8 4 -4.7 8.8 4 1 4.0 3.0 4 3  4 3  4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
4/01	25.502	0.956	0.064	0.041	24.442	1.168	25.610	26.707	1.204	4.5	4.0	(Sra)/M1
4/02 4/05 4/08 4/12 4/15 4/19 4/22 4/22 4/20 5/4 5/6	24.807 24.918 24.024 26.206 24.265 23.798 24.371 23.747 23.878 24.182 25.632	0.936 0 0 0 0 0 0 0 0 0 0 0	0.058 0.209 0.158 0.223 0.207 0.207 0.206 0.211 0.209 0.212 0.209		24.749 24.709 23.865 25.983 24.163 23.590 24.165 23.536 23.669 23.970 23.970 23.632		24.749 24.709 23.865 25.983 24.163 23.590 24.165 23.536 23.690 23.6970 23.6970 25.632	25.610 24.749 24.709 23.865 25.983 24.163 23.590 24.165 23.536 23.669 23.669 23.970	0.803 -0.168 0.685 -2.340 1.718 0.365 -0.781 0.418 -0.342 -0.513 -1.662	-0.7 2.8 -9.8 6.6 1.5 -3.3 1.7 -1.5 -2.2 -6.9	0.2 0.8 0.6 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	8 3 2 -0.7 7 10 8 11.c 12.1 11 6

∽.

•

.

Weston Project : rewes5-KI-QC : 2

408491 8/09/93

MASS BALANCE OF 3.6 L, RECYCLE AND EFFLUENT

DATE 1993	REACTOR SLURRY Rait (3.6L/day) 3.6 (kg/day)	DRY SOLID (3.6L/day) MS1 (kg/day)	RECYCLE SLURRY SAMPLE Src (kg/day)	RECYCLE SAMPLE Dry S Sr (kg/day)	SLURRY (Sout) Qrt+Qet+ +Src+Sra (kg/day)	SLURRY (Wet) Rait /Sout	DRY SOLID (Mout) Mr+Me+ +Sr+Sra (kg/day)	DRY SOLID MS1/Mout
1/25 1/26 1/27								
1/28	4.619	1.427	1 0		4.177	1.11	1.222	1.17
1/29	4.363	1.278	( Ö	Ō	4,166	1.05	1.210	1.06
2/01	4.338	1.232	0.087	0.037	4.214	1.03	1.285	0.96
2/02 2/03	4.385	1.324		0	4.170 4.170	1.05	1.248	1.06
2/05 2/04	4.558	1.686	l ŏ	ŏ	4.193	1.09	1.283	1.31
2/05	4.558	1.686	0.043	0.018	4.188	1.09	1.275	1.32
2/07	4.558	1.686	0	0	4.178	1.09	1.266	1.33
2/08	4.360	1.273	0.043	0.018	4.177 4.187	1.04	1.241	1.03
2/09 2/10	4.360 4.360	1.273			4.107	1.05	1.225	1.02
2/10	4.363	1.284	0.043	0.018	4.136	1.05	1.179	1.09
2/12	4.363	1.284	0	Ó	4.114	1.06	1.158	1.11
2/15	4.381	1.319	0.043	0.018	4.195	1.04	1.278	1.03
2/16	4.381	1.319 1.319			4.205	1.04	1.283	1.03
2/17 2/18	4.381 4.399	1.319	0.043	0.017	4.177	1.05	1.239	1.09
2/10 2/19	4.399	1.351	0.043	0.017	4.158	1.06	1.222	1.11
VERAGE	•							<u></u>
2/22	4.374	1.303	0.043	0.017	4.221	1.04	1.254	1.04
2/23	4.374	1.303	0	. 0	4.130	1.06	1.177	1.11
2/23 2/24	4.374	1.303		0	4.130	1.06	1.177	1.11
2/25	4.414	1.381	0.043	0.018	4.189	1.05	1.265	1.09 1.11
2/26 3/01	4.414	1.381 1.356	0.043	0.019	4.204	1.05	1.299	1.04
3/02	4.403	1.356		Ó	4.215	1.04	1.306	1.04
3/03	4.403	1.356	Ō	Ō	4.183	1.05	1.280	1.06
3/04	4.417	1.387	1 0		4.285	1.03	1.280	1.08
3/05	4.417	1.387	0.085	0.038	4.162	1.06	1.241	1.12
3/08 3/09	4.396	1.341			4.192	1.05	1.281	1.05
3/10 ·	4.396	1.341	Ŏ	ŏ	4.172	1.05	1.255	1.07
3/11	4.417	1.467	0.044	0.019	4.251	1.04	1.347	1.09
3/12	4.417	1.467	0	0	4.172	1.06	1,261	1.16
3/15	4.424	1.403	0.044	0.020	4.252 4.276	1.04	1.389	1.01
3/16 3/17	4.424	1.403	Ö		4.233	1.05	1.372	1.02
3/17 3/18	4.442	1.439	0.044	0.020	4.218	1.05	1.332	1.08
3/19	4.442	1.439	0	0	4.196	1.06	1.312	1.10
3/22	4.450	1.455	0.044	0.020	4.216	1.06	1.326	1.10
3/23	4.450	1.455			4.229	1.05	1.337	1.09 1.12
3/24	4.450 4.457	1.455	0.103	0.042	4.194 4.260	1.05	1.304	1.05
3/25 3/26	4.457	1.466	0.103	0.000	4.234	1.05	1.368	1.07
3/29	4.518	1.599	0.104	0.043	4.349	1.04	1.528	1.05
3/30	4.518	1.599	0	0	4.216	1.07	1.459	1.10
3/31	4.518	1.599	0.103	0.041	4.298 4.305	1.05	1.4 <b>86</b> 1.474	1.08
4/01	4.435			1 0.041			· · · · · · · · ·	· ·····
4/01	4,435	1.530	1 0.103	0.041	4.305	j 1. <b>03</b>	1.474	1.04
4/02	0	0	0	0	0.174	ł	0.058	l
4/05	0	0	0	0	0.621	]	0.209	
4/08	0	0	0	0	0.482 0.628	ļ	0.158	
4/12 4/15	0	U O	ŏ	Ö	0.304	1	0.102	İ
4/15 4/19	0	ŏ	l ŏ	ŏ	0.619		0.207	1
4/22	ŏ	0	0	0	0.623		0.206	
4/26	0	0	0	0	0.621	1	0.211	]
4/29	0	0		0	0.623	1	0.209	4
5/4	0	0	0	0	0.625	1	0.212	
5/6	0			1 U	U.UUU	1	1 0.000	

.

.

.

MASS BALANCE OF ORGANICS IN INFLUENT

.

.

~

MASS BALANCE OF ORGANICS IN RE	EACTOR
--------------------------------	--------

										_				_
DATE 1993	Ti Air dry (mg/kgAD	Ti Oven dry 0.9684 )(mg/kg0D)	Tin Ti*Mo (gr/day)	Ti.CPAH Air dry (mg/kgAD	Ti.CPAH Oven dry 0.9684 )(mg/kgOD	Tin CPAN (gr/day)	T Air dry (mg/kgAD	T Oven dry 0.9634 )(mg/kg00		T.CPAH Air dry (mg/kgAD	T.CPAH Oven dry 0.9634 )(mg/kg00	Tx CPAH (gr)	FEED/REA %(mg/kg) TOTAL (Ti-T) /Ti	ACTOF 2 CP/ Ti /T
1/25 1/26 1/27	1,000	1,033	23.49 0 0	300.0	309.8	7.05 0 0	1,000 450	1,033 467.1	19.74 21.05 20.29	300.0 240.0	<b>309.8</b> 249.1	5.92 6.31 6.09	0.0 54.8	, 15
1/28 1/29 2/01 2/02	900.0	929.4	1.10 0.93	270.0	278.8	0.33 0.28	320.0	332.2	22.00 6.82	210.0	218.0	6.60 4.48	64.3	21
2/03 2/04 2/05	890.0	919.0	0.93 0.99	260.0	268.5	0.28 0.29	280.0	290.6	7.33 8.17	180.0	186.8	4.81 5.25	68.4	30
2/07 2/08 2/09	990.0	1022.3	0.99	280.0	<b>289.</b> 1	0.29	280.0	290.6	8.17 6.17	170.0	176.5 [°]	5.25	71.6	39
2/10 2/11 2/12	910.0	939.7	1.02 0.84 0.84	260.0	268.5	0.29 0.24 0.24 0.30	220.0	228.4	6.17 4.89 4.89	120.0	124.6	3.74 2.67 2.67	75.7	53
2/15 2/16 2/17 2/18 2/19	1,000	1032.6 1135.9	1.09 1.09 1.10 1.10	270.0	278.8 237.5	0.30 0.23 0.23	310.0 370.0	321.8 384.1	7.07 7.07 8.64 8.64	180.0	186.8 166.1	4.11 4.11 3.74 3.74	68.8 66.2	33 30
AVERÁGE 2/22 2/23	1,000	1032.6	1.05	270.0	278.8	0.28	430.0	446.3	9.70	180.0	186.8	4.06	56.8	
2/24 2/25 2/26	720	743.5	1.05 0.76 0.76	220.0	227.2	0.28 0.23 0.23	500.0	519.0	9.70 11.95 11.95	180.0	186.8	4.06 4.30 4.30	30.2	17
3/01 3/02 3/03 3/04	1,100	1135.9 1135.9	1.21 1.21 1.11	220.0	227.2	0.24 0.24 0.20	580.0	602.0 622.8	13.61 13.61 14.40	190.0	197.2 176.5	4.46 4.46 4.08	47.0	13.
3/05 3/08 3/09	1,090	1125.6	1.11 1.09	300.0	309.8	0.20 0.30	620.0	643.6	14.40 14.38	200.0	207.6	4.08	42.8	33
3/10 3/11 3/12	910	939.7	1.09 0.92 0.92	210.0	216.9	0.30 0.21 0.21	530.0	550.1	14. <b>38</b> 13.45 13.45	160.0	166.1	4.64 4.06 4.06	41.5	!3
3/15 3/16 3/17	1,000	1032.6	1.00	230.0	237.5	0.23	660.0	685.1	16.01 16.01	190.0	197.2	4.61 4. <u>61</u>	33.7	17.
3/18 3/19 3/22 3/23	1,100 1,200	1135.9 1239.2	1.11 1.11 1.25	260.0 290.0	· 268.5 299.5	0.26 0.26 0.30	750.0 740.0	778.5 768.1	18.68 18.68 18.63	230.0 190.0	238.7 197.2	5.73 5.73 4.78	31.5 38.0	1 4د
3/24 3/25 3/26	1,100	1135.9	1.25 1.10 1.10	210.0	216.9	0. <b>30</b> 0.21 0.21	820.0	851.2	18.63 20.80 20.80	170.0	176.5	4.78 4.31 4.31	25.1	8
3/29 3/30 3/31	1,100	1135.9	1.26	240.0	247.8	0.28 0.28 0.30	810.0	840.8 884.9	22.41	210.0	218.0	5.81 5.81	26.0	12
4/01	790	815.8	1.26 0.95	250.0	258.2	0.30	860.0			280.0	288.1	7.35	8.5	1
	BATCH SY		•					Moist va			Moist var		(11-11)	- %
4/01 4/02 4/05 4/08 4/12 4/15 4/19 4/22 4/26 4/29	790.0	815.8 0 0 0 0 0 0 0 0 0 0 0	0.95 0 0 0 0 0 0 0 0 0 0 0	250.0	258.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.30 0 0 0 0 0 0 0 0 0 0 0 0 0	860.0 840.0 670.0 570.0 750.0 740.0 810.0 820.0 700.0 670.0	884.9 856.3 686.4 589.5 643.7 791.4 786.8 861.2 864.0 737.5 706.4	22.57 21.24 17.10 14.16 16.87 19.20 18.72 20.99 20.52 17.61 17.08	280.0 260.0 270.0 220.0 160.0 190.0 160.0 220.0 210.0 170.0 170.0	288.1 265.0 276.6 227.5 168.8 200.5 170.1 233.9 221.3 179.1 179.2	7.35 6.57 6.89 5.47 4.42 4.86 4.05 5.70 5.25 4.28 4.33	3.0 3.2 22.4 33.4 27.3 * 3.6 * 1.1 2.7 2.4 5.6	0 8 4 1 30 3 3 37 37 37 37
5/4 5/6		0	0		0	0	670.0 560.0	706.4 587.4	17.08	170.0	178.3	4.55	33.6	

•

Weston Project : 408491-003-20 rewes5-KT- 8/09/93 GC : (( )

#### MASS BALANCE OF ORGANICS IN REACTOR

-

.

.

	· · · ·			•						·····		
	т	т	Tx	T.CPAH	T.CPAH	Tx	FEED/RE/ %(mg/kg)	*	Te	Te	q Q(So-Se	)/VX
DATE	Air dry		T*N	Air dry	Oven dry 0.9634	CPAH	TOTAL (Ti-T)	CPAH (Ti-T)	T*Me	CPAH	mg PAH/g Total	CPAH
1993	(mg/kgAD	)(mg/kgOD)	) (gr)	(mg/kgAD		(gr)	////		(gr/day)	(gr/day)		
1/25	1,000	1,033	19.74	300.0	309.8	5.92	0.0	0.0	0.00	0.00	1.229	0.369
1/26 1/27	450	467.1	21.05 20.29	240.0	249.1	6.31 6.09	54.8	19.6	0.00	0.00		
	<u> </u>			·				<u> </u>				
1/28 1/29 2/01	320.0	332.2	22.00 6.82	210.0	218.0	6.60 4.48	64.3	21.8	0.90	0.27 0.15	0.009	0.003
2/02	320.0	336.6	7.33		2.0.0	4.81		2	0.27	0.18	0.030	0.005
2/03 2/04	280.0	290.6	8.17	-180.0	186.8	5.25	68.4	30.4	0.23	0.15	0.027	0.005
2/05 2/07			8.17			5.25 3.74			0.24	0.15	0.027	0.005
2/08 2/09	280.0	290.6	6.17	170.0	176.5		71.6	39.0	0.22	0.13	0.038	0.007
2/10 2/11	220.0	228.4	6.17 4.89	120.0	124.6	3.74 2.67	75.7	53.6	0.23	0.14 0.08	0.037	0.007
2/12 2/15	310.0	321.8	4.89	180.0	186.8	2.67 4.11	68.8	33.0	0.16	0.09 0.15	0.032	0.007 0.007
2/16	51010	22	7.07			4.11						
2/17	370.0	384.1	8.64	160.0	166.1	3.74 3.74	66.2	30.1	0.30	0.13	0.036	0.004
2/19	l 		0.04	1		3./4	l 			D VALUE:	0.031	0.006
AVERAGE												
2/22 2/23 2/24	430.0	446.3	9.70	180.0	186.8	4.06	56.8	33.0	0.24	0.10	0.037	0.008
2/25	500.0	519.0	9.70 11.95	180.0	186.8	4.06	30.2	17.8	0.40	0.14	0.016	0.004
2/26 3/01	580.0	602.0	11.95 13.61	190.0	197.2	4.30	47.0	13.2	0.47	0.15	0.033	0.004
3/02 3/03			13.61			4.46						
3/04	600.0	622.8	14.40	170.0	176.5	4.08	45.2	14.6	0.49	0.14	0.027	0.003
3/08	620.0	643.6	14.38	200.0	207.6	4.64	42.8	33.0	0.49	0.16	0.027	0.006
3/09 3/10			14.38			4.64						
3/11 3/12	530.0	550.1	13.45 13.45	160.0	166.1	4.06	41.5	23.4	0.34	0.10	0.024	0.005
3/15 3/16	660.0	685.1	16.01	190.0	197.2	4.61	33.7	17.0	0.59	0.17	0.018	0.003
3/17 3/18	750.0	778.5	16.01 18.68	230.0	238.7	4.61 5.73	31.5	11.1	0.62	0.19	0.020	0.003
3/19 3/22	740.0	768.1	18.68	190.0	197.2	5.73	38.0	34.1	0.61	0.16	0.026	0.006
3/23			18.63			4.78						
3/24 3/25	820.0	851.2	20.80	170.0	176.5	4.31	25.1	18.6	0.74	0.15	0.015	0.002
3/26 3/29 3/30	810.0	840.8	20.80 22.41	210.0	218.0	4.31 5.81	26.0	12.0	0.72	0.19	0.020	0.003
3/31			22.41			5.81		•• •	0.85	0.38	0.00/	0.001
4/01	860.0		22.57	280.0	288.1	7.35	-8.5	-11.6	0.85	0.28	0.004	0.001
		Moist va			Moist var			*		D VALUE: 2 data)	0.022	0.004
4/01 4/02	860.0 840.0	884.9 856.3	22.57 21.24	280.0 260.0	288.1 265.0	7.35 6.57	0.0 3.2	0.0 8.0			0.052	0.030
4/05	670.0 570.0	686.4 589.5	17.10	270.0	276.6 227.5	6.89 5.47	22.4	4.0 21.0	ł		0.055	0.005
4/12	610.0	643.7 791.4	16.87	160.0	168.8	4.42	27.3	41.4			0.022	0.011
4/15 4/19	750.0	791.4 786.8	18.72	190.0	200.5 170.1	4.86	10.6	30.4 40.9	1		0.009	0.007
4/22	810.0	861.2	20.99	160.0	233.9	5.70	2.7	18.8 23.2	l		0.009 0.003 0.003	0.003
4/26 4/29	820.0 700.0	864.0 737.5	20.52	210.0	221.3 179.1	4.28	16.6	37.8	1		0.008	0.005
5/4	670.0 560.0	706.4	17.08	170.0	179.2 178.3	4.33 4.57	20.2	37.8 38.1	}		0.007	0.004
							-		AVERAGE	D VALUE:	0.022	0.009
	<u> </u>								AVERAGE	D VALUE:	0.022	0.009

## WESTON BIOSLURRY REACTOR DATA

·

.

.

.

Weston Project : 408491-003-20 rewes5-KT- 8/09/93 QC : \$

#### MASS BALANCE OF ORGANICS IN REACTOR

.

~

•

						_	<u> </u>			·		
DATE 1993	T Air dry (mg/kgAD	T Oven dry 0.9634 )(mg/kg00)	Tx T*N ) (gr)	T.CPAH Air dry (mg/kgAD	T.CPAH Oven dry 0.9634 )(mg/kg00	Tx CPAH (gr)	FEED/REA %(mg/kg) TOTAL (Ti-T) /Ti	X CPAH (Ti-T)	Te T*Ne (gr/day)	Te CPAH (gr/day)	q Q(So-Se mg PAH/g TOTAL	)/VX Ir TSS CPAH
1/25	1,000	1,033	19.74	300.0	309.8	5.92 6.31	0.0	0.0	0.00	0.00	1.229	0.369
1/26 1/27	450	467.1	21.05 20.29	240.0	249.1	6.09	54.8	19.6	0.00	0.00	l	
1/28 1/29 2/01 2/02	320.0	332.2	22.00 6.82	210.0	218.0	6.60 4.48	64.3	21.8	0.90 0.22	0.27 0.15	0.009 0.035	0.003 0.006
2/03 2/04	280.0	290.6	7.33 8.17	180.0	186.8	4.81 5.25	68.4	30.4	0.27 0.23	0.18 0.15	0.030 0.027	0.005 0.005
2/05 2/07 2/08	280.0	290.6	8.17 6.17	170.0	176.5	5.25 3.74	71.6	39.0	0.24 0.22	0.15 0.13	0.027 0.038	0.005 0.007
2/09 2/10 2/11	220.0	228.4	6.17	120.0	124.6	3.74 2.67 2.67	75.7	53.6	0.23 0.16 0.16	0.14 0.08 0.09	0.037	0.007
2/12 2/15 2/16	310.0	321.8	4.89 7.07	180.0	186.8	4.11	68.8	33.0	0.25	0.15	0.032	0.007 0.007
2/17 2/18 2/19	370.0	384.1	7.07 8.64 8.64	160.0	166.1	4.11 3.74 3.74	66.2	30.1	0.30	0.13	0.036	0.004
AVERAGE										······		
2/22 2/23 2/24	430.0	446.3	9.70	180.0	186.8	4.06	56.8	33.0	0.24	0.10	0.037	0.008
2/25	500.0	519.0	9.70 11.95 11.95	180.0	186.8	4.06 4.30 4.30	30.2	17.8	0.40	0.14	0.016	0.004
2/26 3/01 3/02	580.0	602.0	13.61	190.0	197.2	4.46	47.0	13.2	0.47	0.15	0.033	0.004
3/03 3/04 3/05	600.0	622.8	13.61 14.40 14.40	170.0	176.5	4.46 4.08 4.08	45.2	14.6	0.49	0.14	0.027	0.003
3/08 3/09	620.0	643.6	14.38	200.0	207.6	4.64	42.8	33.0	0.49	0.16	0.027	0.006
3/10 3/11 3/12	530.0	550.1	14.38 13.45 13.45	160.0	166.1	4.64 4.06 4.06	41.5	23.4	0.34	0.10	0.024	0.005
3/15 3/16	660.0	685.1	16.01	190.0	197.2	4.61	33.7	17.0	0.59	0.17	0.018	0.003
3/17 3/18 3/19	750.0	778.5	16.01 18.68 18.68	230.0	238.7	4.61 5.73 5.73	31.5	11.1	0.62	0.19	0,020	0.003
3/22 3/23	740.0	768.1	18.63	190.0	197.2	4.78	38.0	34.1	0.61	<b>0.16</b>	0.026	0.006
3/24 3/25 3/26	820.0	851.2	18.63 20.80 20.80	170.0	176.5	4.78 4.31 4.31	25.1	18.6	0.74	0.15	0.015	0.002
3/29 3/30	810.0	840.8	22.41	210.0	218.0	5.81	26.0	12.0	0.72	0.19	0.020	0.003
3/31 4/01	860.0	884.9	22.41 22.57	280.0	288.1	5.81 7.35	-8.5	-11.6	0.85	0.28	0.004	0.001
		Hoist va	ri		Noist var	i	(11-11) X	)/T1 %		D VALUE: 3 data)	0.026	0.005
4/01 4/02 4/05 4/08 4/12 4/15 4/19 4/22 4/26 4/29 5/4 5/6	860.0 840.0 570.0 570.0 750.0 750.0 810.0 820.0 700.0 670.0 560.0	884.9 856.3 686.4 589.5 643.7 791.4 786.8 861.2 864.0 737.5 706.4 587.4	22.57 21.24 17.10 14.16 16.87 19.20 18.72 20.99 20.52 17.61 17.08 15.06	280.0 260.0 270.0 220.0 160.0 190.0 220.0 210.0 170.0 170.0	288.1 265.0 276.6 227.5 168.8 200.5 170.1 233.9 221.3 179.1 179.2 178.3	7.35 6.57 6.89 5.47 4.42 4.86 4.05 5.70 5.25 4.28 4.33 4.57	0.0 3.2 22.4 33.4 27.3 10.6 11.1 2.7 2.4 16.6 20.2 33.6	0.0 8.0 4.0 21.0 41.4 30.4 40.9 18.8 23.2 37.8 37.8 37.8 38.1			0 0.052 0.055 0.049 0.022 0.009 0.009 0.003 0.003 0.003 0.008	0.030 0.005 0.011 0.011 0.007 0.008 0.003 0.003 0.005 0.004
	<u></u>			-	<u> </u>		-		AVERAGE	D VALUE:	0.022	0.009

## WESTON BIOSLURRY REACTOR DATA

.

.

Weston Project : 408491-003-20 rewes5-KT- 8/09/93 QC : //_____

MASS BALANCE OF TOTAL PAN

~

.

.

•

MASS BALANCE OF CPAH

DATE 1993	FEED Tin (gr/day)	REACTOR Tx (gr)	Tx+Tin -NS1C+Trc REMAINED (gr/day)	ACTUAL FEED IN REACTOR (Ao) (gr)	T ORGAN LOSS Ao-Tx (gr)	. X LOSS (Ac-Tx)/Ac (X)	FEED Ti.CPAH (gr/day)	REACTOR Tx.CPAH (gr)	CPAH Tx+Ti -S1+Trc REMAINED (gr/day)	ACTUAL FEED IN REACTOR (A1) (gr)	T CPAH LOSS A1-Tx (gr)	X LOSS (A1-Tx)// (X)
1/25 1/26 1/27	23.49	19.74 21.05	19.74 21.05	23.49 19.74	3.75 -1.31	16.0 -6.7	7.05 0	5.92 6.31	12.97 6.31	7.05 12.97	1.13 6.65	15.98 51.31
1/28 1/29 2/01	1.10	22.00 6.82	21. <b>95</b> 7.49	21.95	15.13	68.9	0.33 0.28	6.60 4.48	6.62 4.58	6.62	2.15	32.41
2/02 2/03 2/04 2/05	0.93	7.33 8.17	7.97 8.81	7.97	-0.20	-2.5	0.28 0.29	4.81 5.25	4.90 5.32	4.90	-0.35	-7.22
2/07 2/08 2/09	0.99	8.17 6.17	8.81 6.94	8.81	2.65	30.0	0.29 0.29	5.25 3.74	5.32 3.88	5.32	1.58	29.62
2/10 2/11 2/12 2/15	1.02 0.84 0.84 1.09	6.17 4.89 4.89 7.07	6.94 5.56 5.56 7.87	6.94 5.56 5.56	2.05 0.67 -1.51	29.5 12.1 -27.2	0.29 0.24 0.24 0.30	3.74 2.67 2.67 4.11	3.88 2.82 2.82 4.23	3.88 2.82 2.82	1.22 0.16 -1.28	31.31 5.52 -45.54
2/16 2/17 2/18 2/19	1.09 1.10 1.10	7.07 8.64 8.64	7.87 9.35 9.35	7.87 9.35	-0.77 0.70	-9.8 7.5	0.30 0.23 0.23	4.11 3.74 3.74	4.23 3.82 3.82	4.23 3.82	0.49 0.08	11.67 2.04
AVERAGE	-											
2/22 2/23	1.05	9.70	10.35	9.35	-0.35	-3.7	0.28	4.06	4.17	3.82	-0.24	-6.36
2/22 2/23 2/24 2/25 2/26 3/01 3/02	1.05 0.76 0.76 1.21	9.70 11.95 11.95 13.61	10.35 12.19 12.19 14.28	10.35 12.19 12.19	-1.60 0.24 -1.42	-15.4 1.9 -11.6	0.28 0.23 0.23 0.24	4.06 4.30 4.30 4.46	4.17 4.35 4.35 4.52	4.17 4.35 4.35	-0.13 0.05 -0.10	-3.05 1.21 -2.36
3/03 3/04 3/05 3/08	1.21 1.11 1.11 1.09	13.61 14.40 14.40 14.38	14.28 14.91 14.91 14.89	14.28 14.91 14.91	-0.12 0.52 0.53	-0.8 3.5 3.6	0.24 0.20 0.20 0.30	4.46 4.08 4.08 4.64	4.52 4.12 4.12 4.75	4.52 4.12 4.12	0.44 0.04 -0.52	9.73 1.00 -12.58
3/09 3/10 3/11 3/12 3/15	1.09 0.92 0.92 1.00	14. <b>38</b> 13.45 13.45 16.01	14.89 13.87 13.87 16.38	14.89 13.87 13.87	1.45 0.42 -2.15	9.7 3.0 -15.5	0.30 0.21 0.21 0.23	4.64 4.06 4.06 4.61	4.75 4.13 4.13 4.66	4.75 4.13 4.13	0.69 0.07 -0.48	14.62 1.68 -11.67
3/16 3/17 3/18 3/19 3/22	1.00 1.11 1.11 1.25	16.01 18.68 18.68 18.63	16. <b>38</b> 19.04 19.04 19.13	16. <b>38</b> 19.04 19.04	-2.29 0.36 0.41	-14.0 1.9 2.2	0.23 0.26 0.26 0.30	4.61 5.73 5.73 4.78	4.66 5.76 5.76 4.91	4.66 5.76 5.76	-1.07 0.03 0.97	-22.94 0.52 16.93
3/23 3/24 3/25 3/26 3/29 3/30	1.25 1.10 1.10 1.26	18.63 20.80 20.80 22.41	19.13 21.00 21.00 22.69	19.13 21.00 21.00	-1.67 0.20 -1.41	-8.7 0.9 -6.7	0.30 0.21 0.21 0.28	4.78 4.31 4.31 5.81	4.91 4.34 4.34 5.83	4.91 4.34 4.34	0.60 0.03 -1.47	12.17 0.65 -33.87
3/31 4/01	1.26 0.95	22.41 22.57	22.69 22.52	22.69	0.12	0.6	0.28 0.30	5.81 7.35	5.83 7.30	5.83	-1.52	-26.01
4/01 4/02 4/05 4/08 4/12 4/15 4/19 4/22 4/26 5/4 5/6	0.95 0 0 0 0 0 0 0 0 0 0 0 0	Tx 22.57 21.24 17.10 14.16 16.87 19.20 18.72 20.59 20.52 17.61 17.08 15.06	Txs Tx+TSra 22.52 21.24 17.15 14.35 17.15 19.63 21.66 21.37 18.64 18.27 16.39	22.69 22.52	0.12	X REMOVAL Txs1-Txsi. 0.6 5.7 23.8 36.3 23.8 12.8 14.6 3.8 5.1 17.2 18.9 27.2	0.30	7.35 6.57 6.89 5.47 4.42 4.86 4.05 5.70 5.25 4.28 4.33 4.57	Txs Tx+TSra 7.30 6.57 6.91 5.54 4.53 5.01 4.52 5.90 5.50 4.57 4.67 4.94	5.83 7.30	-1.52	% REMOVAL Txs1-Txs. -26.01 9.9 5.4 24.1 37.9 31.3 42.2 19.1 24.6 37.3 36.0 32.3

## WESTON BIOSLURRY REACTOR DATA

• .

Weston Project : 408491-003-20 rewes5-KT- 8/09/93 QC : /(______ •

MASS BALANCE OF TOTAL PAH

.

:

MASS BALANCE OF CPAH

DATE 1993	FEED Tin (gr/day)	REACTOR Tx (gr)	Tx+Tin -MS1C+Trc REMAINED (gr/day)	ACTUAL FEED IN REACTOR (A0) (gr)	T ORGAN LOSS Ao-Tx (gr)	T ORGAN. REMOVAL Ao-Tx (gr/day)	FEED Ti.CPAH (gr/day)	REACTOR Tx.CPAH (gr)	CPAH Tx+Ti -S1+Trc REMAINED (gr/day)	ACTUAL FEED IN REACTOR (A1) (gr)	T CPAH LOSS A1-Tx (gr)	T CP REMOVAL A1-T (gr/d
1/25 1/26 1/27	23.49	19.74 21.05	19.74 21.05	23.49 19.74	3.75 -1.31		7.05	5.92 6.31	12.97 6.31	7.05 12.97	1.13 6.65	
1/28 1/29 2/01 2/02	1.10 0.93	22.00 6.82	21.95 7.49	21.95	15.13	15.13	0.33 0.28	6.60 4.48	6.62 4.58	6.62	2.15	2,
2/01 2/02 2/03 2/04 2/05 2/07	0.93 0.99	7.33 8.17	7.97 8.81	7.97	-0.20	0.00	0.28	4.81 5.25	4.90 5.32	4.90	-0.35	0.00
2/07 2/08 2/09	0.99 1.02	8.17 6.17	8.81 6.94	8.81	2.65	2.65	0.29 0.29	5.25 3.74	5.32 3.88	5.32	1.58	1.
2/10 2/11 2/12 2/15	1.02 0.84 0.84 1.09	6.17 4.89 4.89 7.07	6.94 5.56 5.56 7.87	6.94 5.56 5.56	2.05 0.67 -1.51	2.05 0.67 0.00	0.29 0.24 0.24 0.30	3.74 2.67 2.67 4.11	3.88 2.82 2.82 4.23	3.88 2.82 2.82	1.22 0.16 -1.28	1.22 0.16 0.
2/16 2/17 2/18 2/19	1.09 1.10 1.10	7.07 8.64 8.64	7.87 9.35 9.35	7.87 9.35	-0.77 0.70	0.00 0.70	0.30 0.23 0.23	4.11 3.74 3.74	4.23 3.82 3.82	4.23 3.82	0.49 0.08	0.49 0.08
AVERAGE				AVERAGED	VALUE :	1.52				AVERAGED V	ALUE :	0.
2/22 2/23	1.05	9.70	10.35	9.35	-0.35	0.00	0.28	4.06	4.17	3.82	-0.24	0.00
2/24 2/25 2/26 3/01 3/02	1.05 0.76 0.76 1.21	9.70 11.95 11.95 13.61	10.35 12.19 12.19 14.28	10.35 12.19 12.19	-1.60 0.24 -1.42	0.00 0.24 0.00	0.28 0.23 0.23 0.24	4.06 4.30 4.30 4.46	4.17 4.35 4.35 4.52	4.17 4.35 4.35	-0.13 0.05 -0.10	0. 0.uu
3/03 3/04 3/05 3/08	1.21 1.11 1.11 1.09	13.61 14.40 14.40 14.38	14.28 14.91 14.91 14.89	14.28 14.91 14.91	-0.12 0.52 0.53	0.00 0.52 0.53	0.24 0.20 0.20 0.30	4.46 4.08 4.08 4.64	4.52 4.12 4.12 4.75	4.52 4.12 4.12	0.44 0.04 -0.52	0. 0. 0
3/09 3/10 3/11 3/12 3/15	1.09 0.92 0.92 1.00	14.38 13.45 13.45 16.01	14.89 13.87 13.87 16.38	14.89 13.87 13.87	1.45 0.42 -2.15	1.45 0.42 0.00	0.30 0.21 0.21 0.23	4.64 4.06 4.06 4.61	4.75 4.13 4.13 4.66	4.75 4.13 4.13	0.69 0.07 -0.48	0. 0. 0.
3/16 3/17 3/18 3/19 3/22	1.00 1.11 1.11 1.25	16.01 18.68 18.68 18.63	16.38 19.04 19.04 19.13	16.38 19.04 19.04	-2.29 0.36 0.41	0.00 0.36 0.41	0.23 0.26 0.26 0.30	4.61 5.73 5.73 4.78	4.66 5.76 5.76 4.91	4.66 5.76 5.76	-1.07 0.03 0.97	0. 0. 0.
3/23 3/24 3/25 3/26 3/29	1.25 1.10 1.10 1.26	18.63 20.80 20.80 22.41	19.13 21.00 21.00 22.69	19.13 21.00 21.00	-1.67 0.20 -1.41	0.00 0.20 0.00	0.30 0.21 0.21 0.28	4.78 4.31 4.31 5.81	4.91 4.34 4.34 5.83	4.91 4.34 4.34	0.60 0.03 -1.47	0. 0. 0.
3/30 3/31 4/01	1.26 0.95	22.41 22.57	22.69 22.52	22.69	0.12	0.12	0.28 0.30	5.81 7.35	5.83 7.30	5.83	-1.52	0.00
	[	Ĭx		AVERAGED	ALUE :	0.47		Ta	TXS	AVERAGED V	ALUE :	0.
4/01 4/02 4/05 4/12 4/15 4/15 4/19 4/22 4/26 4/29 5/4 5/6	0.95 0 0 0 0 0 0 0 0 0 0 0 0 0	22.57 21.24 17.10 16.87 19.20 18.72 20.99 20.52 17.61 17.08 15.06	Tx+TSr8 22.52 21.24 17.15 14.35 17.15 19.63 19.23 21.66 21.37 18.64 18.27 16.39	22.69 22.52	0.12	gr/day 1.28 1.34 1.17 0.49 0.21 0.18 0.04 0.05 0.14 0.13 0.17	0.30	7.35 6.57 6.89 5.47 4.42 4.86 4.05 5.70 5.25 4.28 4.33 4.57	Tx+TSra 7.30 6.57 6.91 5.54 4.53 5.01 4.22 5.90 5.50 4.57 4.67 4.94	5.83 7.30	-1.52	gr/da 0.72 0. 0. 0.16 0.17 0. 0. 0. 0. 0. 0.08 0.07

# APPENDIX J INTERNAL AUDIT REPORT AND BAC RESPONSE

weston/tmchp1

Konsi Beau

# IT CORPORATION LIMITED SCOPE SURVEILLANCE CHECKLIST

•

Proposal/Project Name: C.F. WESTON
Proposal/Project Number: 408491 Proposal/Project Manager: K. BROWN
Proposal Survey       Quality Level Selection         Completed Go/No-Go Form       Quality Level Selection         Request for Proposal       Cost Calculations Verified         Document Review       Proposal Issuance Checklist
Project File Survey (identify only those categories reviewed)         A. Correspondence       J. Miscellaneous:         B. "Blank":       K. Lab Data/Chkprints         A. C. Typed Originals       L. Regulatory Submittals         A. D. Copies of Contracts/Proposal       M. Reference Materials         E. Field Data/Chkprints       N. Site IH Monitoring         A. F. Calculations/Chkprints       A. O. Drawing/Table Chkprints         A. G. Reports from Others       P. Project Mgt. Records         H. Copies of IT Deliverables       A. Q. QA Documentation         I. Photographs/Negatives       Other:         A= Acceptable, U=Unacceptable, I=Incomplete       Findings         1. All Heuren Acceptable       Findings
3. <u>Corrective Actions</u> Responsible Person Action to be Taken SCD ACD OAValid
1.       /       /       /         2.       /       /       /       /         3.       /       /       /       /         SCD=Scheduled Completion Date, ACD=Actual Completion Date       Comments
Surveillance Performed By: Ames J. Kirk Mukerig-5-93 Print/Signature Date cc: Proposal/Project Manager: S. Alvanas Central Files: Q Other:
OH-F42-R4

Rev. DRAFT





To: K. Brown, Knoxville

Date:

February 8, 1993

From:

٢

J. King, Knoxville

Subject:

#### **R.F. WESTON PROJECT FILE SURVEILLANCE 2/5/93**

On February 5, 1993 I performed a project file surveillance on R.F. Weston (Project No. 408491). The purpose of this surveillance is to verify that the IT QA program requirements as well as the project specific requirements have been met.

File A - Correspondence: Incoming

- Page 2 of letter form Douglas Hanify, EIMCO Process Equipment Company, November 20, 1992 does not appear to have page 1.
- Fax from Kerr-McGee Corporation has portions which are blackened out by fax transmission.

File A - Correspondence: Outgoing

All out going correspondence appears to be in order.

File C - Test Plan Revision (2)

Both documents are originals and not marked up drafts.

File C - Contract

• This file is in order.

File D - Bids, Contracts and Specifications: Proposal

• This file is in order.

### File F - Calculations and Calculation Checkprints

• This file is in order.

JJK/02-83/SMC/JJK180

#### K. Brown

ć

...

• • •

#### File G - Reports from Others

• This file is in order.

#### File H - IT Reports

• This file contained two final reports.

#### File O - Drawings and Table Checkprints

• This file is in order.

### File Q - Quality Records

• This file is in order.

After performing this project surveillance for the R.F. Weston job, it appears the file is complete and in compliance with IT QA procedures.





Kandi Brown

To:

From:

Patti Carswell

Date: April 7, 1993 Corrected Report Date: April 16, 1993

#### Subject: Weston Project Audit Report

An audit was performed by Merle Keever and myself on April 1 and 2, 1993 of the IT Corporation Biotechnology Application Center (BAC) in Knoxville. The scope of the audit was to determine compliance of work being performed on the above named project with the project work plan ("Test Plan-Phase I Treatability Study of Bioslurry Treatment Technology", final version September 1992). The bioslurry reactor study was in progress at the time of the audit and sampling was observed on Thursday, April 1. In addition to the project audit, a limited quality system audit was also performed. The project audit was based on a checklist generated from a review of the Work Plan. The system audit was based on the ITAS FY92 audit checklist and covered only the areas that were applicable to the BAC. The documentation looked at during the audit included analytical raw data and laboratory notebooks from both the reactor study and the batch slurry testing and the project files at both the BAC and IT Central Files.

The IT associates interviewed during the audit were Janet Rightmyer, Craig Lang, Keith Hague, and Randy Dameron. The project work appeared to be very well managed and performed by technically competent and well trained individuals. All associates were open and helpful in supplying answers to our questions and in providing explanations. The BAC facility is in excellent condition, well-equipped and maintained.

In summary, the Biotechnical Applications Center appears to be an excellent laboratory based on the technical expertise of its personnel, on the condition of the facility and instrumentation/equipment, and on the technical degree of the work being performed there. The main areas that need strengthening from a quality standpoint are documentation, generation of paper trails, and equipment calibrations (pipetters, balances, and thermometers).

All recommendations and suggestions for quality improvement are meant to be constructive in nature and should be evaluated as such. All recommendations for improving documentation, paper trails, and equipment calibrations should be implemented as soon as possible. Merle and I would be happy to help out with implementation of the recommended changes to the existing quality program at the BAC if you should request our services.

Attached is an Audit Observation/Recommendation Report (Attachment A). Also attached is the Test Plan Checklist. Please call me at 690-3211 (ext. 5610) if you have any guestions.

# **ATTACHMENT A**

# **AUDIT OBSERVATION/RECOMMENDATION REPORT**

#### PBC\WESTON.AUD

.

	AUDIT OBSERVATION/RECOMMENDATION REPORT IT BIOTECHNOLOGY APPLICATION CENTER PROJECT: WESTON AUDIT DATES: April 1-2, 1993					
No.	Observation	<b>Recommended Corrective Action</b>				
1.	All daily project data/information was being recorded in a single laboratory notebook.	Dedicate separate notebooks for the reactor log and analytical information/data.				
		In addition, it is highly recommended that an instrument logbook (run log) be assigned to each analytical instrument (GCs, etcs.) This log would document each injection (standard, QC sample, sample, solvent blank, etc.) and would include information such as date, operator, sample ID number, and filename at a minimum. Run logs provide evidence of when analyses were performed and on what particular instrument. Instrument run logs are instrument-specific, not project-specific and should also include documentation of preventive maintenance.				
		It is also recommended that a notebook be dedicated and assigned as a Master Sample Logbook. All samples received at and all samples generated at the BAC should be logged into this logbook and assigned a unique sample ID number.				
	·.	Other suggestions for using laboratory notebooks are suggested throughout this report.				
2.	Reactor sample ports were not identified.	Even though the scientists maintaining the reactor (and sampling) were aware of what port was S1, S2, and S3, these ports should be labeled.				
3.	There was no evidence that the thermocouple on the reaction vessel had been calibrated.	If not already done, calibrate thermocouple.				

	AUDIT OBSERVATION/RECOMMENDATION REPORT IT BIOTECHNOLOGY APPLICATION CENTER PROJECT: WESTON AUDIT DATES: April 1-2, 1993					
No.	Observation	<b>Recommended Corrective Action</b>				
4.	It was possible, but difficult to trace sample concentrations from the reactor logbook to the analytical raw data (chromatograms) for both the batch slurry testing and the reactor study. The only way to do this was to match up "hits" (or positive sample concentrations).	Generate a new sample numbering system that includes (for example): (Notebook No.)-(Page No.)-(then the existing sample identification). This would provide easy traceability of sample numbers. Rolls of pre-numbered sample numbering tape are available commercially.				
5.	Dissolved oxygen calibrations had been performed but had not been documented.	Record DO calibrations in a laboratory notebook.				

. . . .

	AUDIT OBSERVATION/RECOMMENDATION REPORT IT BIOTECHNOLOGY APPLICATION CENTER PROJECT: WESTON AUDIT DATES: April 1-2, 1993					
No.	Observation	Recommended Corrective Action				
6.	Equipment calibrations for balances, thermometers, and pipetters had not been performed.	All equipment that is being used during bench scale testing and analytical analysis should be assigned a calibration schedule. The balance being used had been calibrated externally in 6/92. This is due again in 6/93. The certificate of the 6/92 calibration should be located and filed in an appropriate place.				
•		Following are ITAS requirements:				
		Pipetters must be calibrated annually.				
		Thermometers must be calibrated against a certified reference = thermometer (that can probably be borrowed from a local ITAS laboratory) annually. The certified reference thermometer must be recertified every three years.				
		Balances must be calibrated quarterly and undergo external calibration and servicing annually				
•		In order to perform balance calibrations, Class S weights must be obtained. Class weights must be calibrated annually.				
		It is recommended that Standard Operating Procedures (SOPs) be generated for these equipment calibrations. SOPs can be easily generated through modification of existing ITAS laboratory SOPs.				
7.	Refrigerator temperatures have not been monitored.	All refrigerators and ovens that are designated for samples or standards should contain calibrated thermometers immersed in a liquid. The temperature should be checked and recorded on a daily log with acceptance criteria clearly posted.				

	AUDIT OBSERVATION/RECOMMENDATION REPORT IT BIOTECHNOLOGY APPLICATION CENTER PROJECT: WESTON AUDIT DATES: April 1-2, 1993					
No.	Observation	<b>Recommended Corrective Action</b>				
8.	The requirement for QC samples for the PAH analysis (Matrix Spikes (MS) and Blanks) is not being fully met. Matrix Spikes were being analyzed, but Method Blanks were not. These are required for at least 10% of the samples analyzed.	Begin analyzing Method Blanks (MB) in the PAH analysis immediately. The MB must go through the entire sample preparation and any cleanup procedures and the analysis along with the samples. Since the reactor samples contained numerous hits, a "clean" MB is required in order to rule out laboratory contamination. This observation was conveyed to laboratory personnel during the audit.				
9.	BTX analysis was required for both the batch slurry testing and the reactor study. Due to the results from the batch slurry testing (non-detects), BTX analysis was not being performed internally. (A sample(s) was being sent out for BTX analysis at the time of the audit.)	Ensure that a change order has been filed for this procedural change.				
10.	The sample waste area was located out in the open in the lab area. The backlog of sample/laboratory chemical waste was significant.	Isolate the waste disposal area to prevent personal exposure and laboratory contamination of samples/standards. The laboratory personnel need instruction on how to dispose of waste.				
11.	Samples and standards were stored in the same refrigerator.	Dedicate two refrigerators for samples and standards. These should not be stored together due to the possibility of contamination of the samples or the standards.				
12.	Spreadsheets that are internally generated to perform data manipulations are required to undergo validation/verification procedures.	Spreadsheets (if used) should undergo some type of verification procedure if this has not already been done.				

	AUDIT OBSERVATION/RECOMMENDATION REPORT IT BIOTECHNOLOGY APPLICATION CENTER PROJECT: WESTON AUDIT DATES: April 1-2, 1993					
No.	Observation	<b>Recommended Corrective Action</b>				
13.	There was no evidence that spike concentrations (for MS samples) had been recorded. Also, analytical standards information was not available.	All standards information should be documented in a laboratory notebook. This would include information such as the manufacturer, the concentration, and any dilutions made by the lab.				
		It is recommended that either a Sample Tracking Sheet or the instrument run log be used for recording sample information such as spike solution identification and spike volume. Spike concentrations (or weights) must be traceable.				
14.	The HPLC conditions being used for the PAH analysis and the GC conditions used for the BTX analysis were not available.	Record all HPLC conditions in the project records (preferably the run log). Also record the GC conditions used for the BTX analysis during the batch slurry testing. This information includes at a minimum: the temperature program: initial temperature, initial hold time, temperature ramp, final temperature, final hold time, injector temperature,				
		detector temperature, gases used as carrier and auxiliary with flow rates, column identification, total run time *The documentation of the HPLC and GC conditions along with an instrument run log will help provide traceability of				
		analytical results and will allow for the analysis to be duplicated in the future if necessary.				

	AUDIT OBSERVATION/RECOMMENDATION REPORT IT BIOTECHNOLOGY APPLICATION CENTER PROJECT: WESTON AUDIT DATES: April 1-2, 1993					
No.	Observation	<b>Recommended Corrective Action</b>				
	The methods cited in the Test Plan are modified SW-846 Method 8020 and Method 8310. There was no record of the modifications and personnel did not have access to these methods.	Obtain copies of these methods and keep them in the laboratory for reference. The HPLC/GC scientists/operators should become familiar with these methods and should be aware of all modifications being employed (example: Five initial calibration standards are required for PAH analysis, but only three are being used). Also become aware of sample holding time requirements of the methods. With the rapid turn-around- time being achieved, this may not be a problem. However, if any holding times were missed, this should be documented with a nonconformance form that should end up in the project file.				
16.	Detection Limits were not yet established.	Detection Limits (PAHs) had already been discussed in detail prior to the audit. These (when determined) should be traceable to all analytical results and should be reported with the data.				
17.	One set of Matrix Spike samples had low recoveries (PAH analysis).	Check QC recovery criteria for MS samples. If recoveries were out of acceptance range, this should be documented on a nonconformance form that should end up in the project file.				
18.	SPEC and TOC computer printouts had not been saved.	Retain all instrument computer printouts even when data has been transcribed to another document. This is a Test Plan requirement. A folder for each analysis could be used to store these temporarily, before they were placed in the project file.				

	AUDIT OBSERVATION/RECOMMENDATION REPORT IT BIOTECHNOLOGY APPLICATION CENTER PROJECT: WESTON AUDIT DATES: April 1-2, 1993					
No.	Observation	<b>Recommended Corrective Action</b>				
19.	The Chain-of-Custody for the original sample to be treated was not documented with condition upon receipt.	In the future, the condition upon receipt of the sample(s) should be documented on the original COC along with the inside temperature of the cooler. If the condition is satisfactory, a note such as "Samples intact or OK" should be written on the COC.				
20.	Chapter 6 (page 1) states that precision and accuracy determinations, (and detection limits) would be performed prior to study initiation. This has not been done.	Document precision and accuracy requirements (and detection limits as addressed above).				
21.	The notebook used as the reactor log had some entries that were not complete. Example: on page 50, there were dates with no entries. Also, on March 29, the volumes removed from and added to the reactor were not documented.	Document all matrices and volumes removed from or added to the reactor.				

	AUDIT OBSERVATION/RECOMMENDATION REPORT IT BIOTECHNOLOGY APPLICATION CENTER PROJECT: WESTON AUDIT DATES: April 1-2, 1993					
No.	Observation	Recommended Corrective Action				
<b>22.</b>	Notebook recording practices were good, however the following are recommended:	Corrections were made with a single line through the incorrect entry, and initialling the correction. The correction also needs to be dated.				
		Entries that are taped into the notebook need to be signed and dated across the edge of the tape. This is so that if the entry ever falls out of the notebook, half of a signature and date will remain thus proving that an entry was originally present.				
		Not all pages were signed at the bottom as completed. All pages should be signed.				
		Some entries appeared not to have been QC'd. If transcription or calculations have been performed, these need to be QC'd.				
		Units were not always documented and must be.				
23.	The DI water purification system is checked every day, but the check is not documented.	Start using a DI water log (notebook) to record daily checks of specific conductance. Clearly post the acceptance limits on or in the notebook.				
24.	The percent solids in the six treatments (three duplicate studies) in the batch slurry study were changed from 20% and 30% to 30% and 40% (plus two "killed" studies).	If a variance or change order has not been filed, this documentation should be generated.				
25.	The Test Plan states that the treated slurry (bioslurry reactor study) be pumped to a clarifier. This was changed to a centrifuge.	While changes from Test Plans sometimes need to be made (due to improvement of the process, discovering that something determined on paper doesn't actually work, or for whatever reason) the change should be documented on the appropriate form (variance, change order, etc.). This should be done if not already done.				

•

•

.

.

.

	AUDIT OBSERVATION/RECOM IT BIOTECHNOLOGY APP PROJECT: W AUDIT DATES: Ap	LICATION CENTER ESTON
No.	Observation	Recommended Corrective Action
26	The reactor operating conditions were to be maintained at room temperature, 3 mg/L dissolved oxygen (DO), and pH 7. The actual conditions are room temperature, 5-7 mg/L DO, and a pH of 6.4.	These differences may or may not be significant, however, the reason for the changes should be documented in the reactor log.
27.	Several sampling days were tracked in the reactor log and all contained documentation on the influent waste stream (S1) being characterized for PAH concentrations in the aqueous and solids phase except for the March 29 entry.	Document all sampling events fully in the reactor log.
28.	The operational set points listed on page 5-8 of the Test Plan were being followed with the exception of the agitation rate of 500 rpm. Upon visual inspection, the actual rate appeared to be significantly slower.	Document this change appropriately (nonconformance memo, variance form, or reactor log).
29.	The BAC QA Officer is required to perform monthly surveillances of the IT Knoxville central files. The surveillance and audit requirements stated in the Test Plan are those described in the IT Engineering Operations QA Manual, Rev. 1, July 6, 1990, Chapter 11.0 and the ITAS QA Manual, Rev. 1, Feb. 1, 1988, Chapter 14.0.	These programs were not checked for compliance but should be reviewed by the BAC QA Officer.
30.	MSDSs are required by the Test Plan to be posted near the bioslurry reactor where personnel have access to the hazard information before entering the project area. These MSDSs were not available.	Post MSDSs as required.
31.	According to the Test Plan (and possibly the BAC Chemical Hygiene Plan), satellite waste collection containers are to be used and properly labeled. None were located at the time of the audit.	Begin using properly labeled satellite waste collection containers.

---

• •

•

-	AUDIT OBSERVATION/RECOM IT BIOTECHNOLOGY APP PROJECT: W AUDIT DATES: Ap	LICATION CENTER ESTON
No.	Observation	<b>Recommended Corrective Action</b>
<b>32.</b>	No QA/QC documentation was in hand that could demonstrate cleanliness of sample containers.	Sample bottles shipped with certificates of cleanliness should be used when possible. The certificates should be kept on file for documentation purposes.
<b>33.</b>	The speed control dials for the Rotating Air Lift had no marks indicating what the setting was.	Mark dial settings.

+16

# ATTACHMENT B

# TEST PLAN AUDIT CHECKLIST

المحاطر والمحارثة والمعارك

WESTON PROJECT TEST PLAN Audit Dates: April 1			ECKLIST
ltem	Y	N	Comments
SECTION 4:			
Were (2) 75 lb composite soil samples shipped to BAC?			1
Were the containers visually inspected and sample volumes recorded?			1
Were the samples automatically logged into a sample tracking system and given independent sample ID numbers?			1
Were the samples refrigerated at 4°C?			1
Is the temperature (4°C) verified biweekly?			1
Once the sample receipt was properly documented was a representative composite of the two samples prepared?			1
Prepared as follows:			
Equal volumes (by weight) composited in ventilated hoods and thoroughly mixed?			1
500 grams of the composite submitted to the laboratory and analyzed for: bulk density, particle size distribution, porosity, moisture liquid/plastic limits, pH, TOC, total heterotrophies and anthracene - degrading microbial populations?			1
Were all volumes of soil removed from the composited fraction logged on "Sample Collection Los" (Appendix B).			1
Was the remaining volume of composited soil stored at 4°C?			1 (All composited test soil was consumed.)
Batch Slurry Testing			
Were the six treatments in Table 3 being evaluated during the six weeks study? (three duplicate studies)		x	See Observation No. 24 of the audit report.
Were Treatments five and 6 used to serve as biologically inhibited controls for the study? (Were these established through the addition of 250 to 500 milligrams per liter of mercuric chloride?)			1

WESTON PROJECT TEST PLAN Audit Dates: April 1			
Item	Y	N	Comments
Have all Treatments covered with aluminum foil to protect from light exposure?			1
Were the batch studies conducted in sterile, glass, sealed, 1-liter (L) bottles?			1
Did the sample collection port on the containers consist of a Teflon screw cap with a Teflon septum?			1
Were samples withdrawn through pipetting?			1
Was hydrocarbon free air introduced into the Treatments following sample collection in order to prevent the creation of a vacuum.			1
Were soils submitted to Eimco, from initial BAC composite, for initial testing to determine the appropriate slurry density and particle size required for bioslurry treatment?			1
Following the determination of optimal slurry density and particle size (above), were site soils prepared for treatment as fo!lows:			1
Soils were slurried and screened to the recommended particle size prior to batch or bioslurry testing?			1
Did the PAH analytical testing prior and following sieving employ the same analytical method for uniformity?			1
Were composited soils placed in bottles at solid densities of 30 and 40 weight percent using the following procedure:			1
Three 280 gram and three 420 gram aliquots of soil (dry weight) are weighed and placed into six, 2-liter glass containers. Sterile distilled DI water is then used to fluidize the samples and bring the volume to 1:4 liter. Approximately 400 ml of this volume is then submitted for initial analysis. The remaining portion is then placed in 1-liter vessels (900 mL sample). (The headspace will allow for oxygen purging)			1
Were the Treatment containers mixed (manual stirring) during the collection of week 3 and week 6 samples?			1

.

.

PBC\WESTON.AUD

.

.

•

•

WESTON PROJECT TEST PLAN Audit Dates: April 1			ECKLIST
Item	Y	N	Comments
Were initial determination of the slurry pH and macronutrient (i.e. ammoniacal nitrogen and orthophosphate concentrations completed?			1
Was the slurry pH adjusted to 7.0 using either 1 N HCI or 1N NaOH?			1
Were the Treatment macronutrient and dissolved oxygen concentrations maintained at the operating conditions in Table 4?			1
Were the macronutrient concentrations controlled through the addition of ammonium chloride and potassium phosphate to each treatment during the changing of the treatment vessels? (The target C:N:P ratio was 100:10:1.)			1
Were dissolved oxygen measurements made weekly during the course of investigation using a modified, galvanic-cell oxygen probe?			1
Were 1 ml samples collected from each treatment and submitted for this analysis?			1
Was the dissolved oxygen concentration in the treatment vessel maintained between 1 and 3 mg/L?			1
Was this concentration confirmed through daily analysis during the first two weeks of the study?			1
Was the monitoring of dissolved concentration modified to weekly following the first two weeks of the batch testing?			1
Was the maintenance of dissolved oxygen (DO) during batch testing performed through purging of headspace with pure oxygen?			1
Following the preparation, were the treatments placed on the modified-tube rotator, rotated at 6 revolutions per minute, and maintained at room temperature throughout the course of the study?			1
Was the room temperature monitored and recorded weekly in a laboratory notebook dedicated solely to the investigation?			1

.

.

PBC\WESTON.AUD

:

WESTON PROJECT TEST PLAN Audit Dates: April 1			ECKLIST
ltem	Y	N	Comments
Was approximately 400 mL of the slurry collected during each of the three sampling periods and divided as follows: (or, Was Table 5 followed?)			1
Approx. 30 mL of the slurry submitted for analysis,			1
The remaining approx. 370 mL of the sample separated and analyzed for contaminants in the aqueous and solid phases. (Aqueous and solids phases should be gravimetrically separated with the aqueous phase separated by decanting.)			1
Were PAH, benzene, toluene, xylenes (BTX), macronutrients, pH, oxygen, and TOC monitored at study initiation, Week 3, and Week 6 in the aqueous phase?			1
Were Total solids (TS) and VS concentrations and microbial density of heterotrophic bacteria and anthracene degraders monitored in the slurry phase?	4		1
Was the soil fraction of each treatment monitored for PAH and BTX concentrations?			1
4.3 BIOSLURRY REACTOR STUDY			
Was feed introduced into the reaction vessel at an average daily flow rate of 2 liters per day?	x		
Following aeration, the treated slurry is pumped to the system clarifier. Was the clarifier covered to reduce the emission of volatile compounds?	x	x	See Observation No. 25.
Before charging the reactor, was the creosote- impacted soil composite (nonfluidized) screened to a particle size of less than 1.0 mm in diameter?	x		
Was the influent slurry prepared in 20-L portions and placed in a closed container?	x		
Was the slurry then continuously stirred to reduce the separation of solids?	x		

·

.

WESTON PROJECT TEST PLAN Audit Dates: April 1			ECKLIST
Item	Y	N	Comments
Was a percent solids concentration of the feed determined based on Week-3 data from the batch slurry study?	×		
Are reactor operating conditions maintained at room temperature, 3 mg/L dissolved oxygen, and pH 7?	<b>X</b>	x	See Observation No. 26.
Were the operational set points listed on page 4-8 of the Test Plan used/followed?		х	See Observation No. 28.
Are the operating conditions for temperature, dissolved oxygen, and pH monitored daily?	x		Monday through Friday.
Is the influent waste stream (S1) characterized for PAH concentrations in the aqueous and solids phase twice per week?	x	x	See Observation No. 27.
Is it analyzed for TS and VS concentrations twice per week?	x		
The reactor slurry will be collected form Sample Port S2. Is the reactor slurry particle size being monitored once a week?	x		
Is the reactor slurry phase monitored twice weekly for TS and VS concentrations?	x		
Are microbial enumerations of total heterotrophs and anthracene degraders conducted once per week? (The analysis will be conducted on slurry grab samples collected form sample Port S2.	×		
Are the reactor aqueous-phase macronutrient concentrations monitored once per week to maintain a C:N:P ratio of 100:10:1?			This is not being checked in the lab, but may be monitored by K. Brown.
Is the PAH content of the aqueous and solids phase measured in the RAS (return activated sludge) once per week?	×		
Are TS (total solids) and VS (volatile solids) concentrations of the RAS determined twice weekly in the slurry phase (collected through Sample Port S3)?	×	×	Sampled from centrifuge, not from sample port S3.
Are TS and VS concentrations in the clarified effluent monitored twice weekly (S4)?	×	x	These are monitored from centrifuge samples.

٠.

.

.

•

lå	Y		Commente
Item Is air monitoring for volatiles and semivolatiles conducted weekly?	X	N	Comments
Is complete mixing of the reactor solids verified periodically during the 40-day BSRT (biological solids retention time) set point? Is this verified through the analysis of sample TS concentrations? Were the samples extracted from the three sample ports located on the side of the bioslurry reactor (to obtain sample material representative of sample material from within the rake-mixing zone, the most well-mixed zone, and any oil phase that may be present)?	X		No oil phase had been seen yet.
Are sample logs maintained in a bound laboratory notebook, solely dedicated for this project?	×		Need to use separate notebook for different information recording. See Observation No. 1.
Section 7.0 DATA MANAGEMENT/QUALITY ASSURANCE			
Are records of all analyses recorded in a bound laboratory notebook dedicated solely to this investigation?	x		See Observation No. 1.
7.1 Data Acquisition			
Are calibration of field and laboratory equipment documented on the appropriate equipment calibration records?		X	
Are equipment that fail calibration taken out of service, and a Notice of Equipment Calibration Failure record completed and maintained in the project file (in Knoxville)?		x	
Is all sampling of experiments and test performed by IT personnel?	x		
Are all variances approved by the project manager and documented on a Variance Log?	x		
7.2 Data Collection Sheets			
Are all data collected during execution of the study recorded in a bound, controlled laboratory notebook?	x		

.

.

PBC\WESTON.AUD

.

.

WESTON PROJECT TEST PLAN Audit Dates: April 1			ECKLIST
Item	Y	N	Comments
Are all data generated from integrators and computerized instruments printed with the resulting data sheets kept with the project file?	x	x	See Observation No. 18.
Are all data verified and checked by a Biotechnology Applications Center scientist? Is this verification documented with a dated signature of the checker at the bottom of each notebook page?	x		See Observation No. 22.
7.3 Data Reduction, Validation, and Reporting			
Are all numerical analyses and results completely documented (calculations, computer programs and associated input/output logs, drawings, and tables)?	×		
Are all calculations legible and in a form suitable for reproduction, filing, and retrieval?	<b>X</b> :		
Are calculations performed on standard calculation paper or laboratory notebooks?	x		Notebook.
SECTION 9.0 HEALTH AND SAFETY			
Are all sample preparation and use of carbon adsorption on the exhaust of the sealed bioslurry reactor been performed in a fume hood?	×		· ·
Have all personnel working on the project reviewed the MSDSs and, in addition, are MSDSs posted near the bioslurry reactor where personnel have access to the hazard information before entering the project area?		X	•.
Are satellite waste collection containers used and are they properly labelled?		х	
¹ The batch slurry testing had already been completed looked for in the notebook used for that testing but		-	

•

.

.

PBC\WESTON.AUD





Bob Allan, Knoxville

Date:

August 7, 1993

From: Kandi Brown, Knoxville

Project No. 408491

# Subject: WESTON AUDIT

To:

IT Corporation's (IT) Biotechnology Applications Center (BAC) was audited by IT Analytical Services (ITAS) auditors, Patti Carswell and Merle Keever, on April 1 and 2, 1993. In summary, the auditors found the BAC to be an "excellent laboratory based on the technical expertise of its personnel, on the condition of the facility and instrumentation/equipment, and on the technical degree of the work being performed there". Thirty-three observations/recommendations were identified during the course of the audit. The following text details the BAC response to these observations.

cc: J. Hall, ITAS M. Leavitt, Knoxville

44-8-85

	Analytical run logs were established for each
1	laboratory instrument. A laboratory SOP was created for sample tracking.
5	BAC personnel were intimately familiar with all sampling locations. Reactor sample ports were labelled immediately.
on the reaction vessel had been calibrated.	The thermocouple was calibrated by BAC staff on April 16, 1993. Prior to calibration, reference thermometer measured 24.4°C; instrument display read 24°C.
concentrations from the reactor logbook to the	The HPLC run log was generated to clearly identify each sample analyzed. Chromatographs were organized by date and maintained in the project file.

:

NO.	OBSERVATION	BAC RESPONSE/CORRECTIVE ACTION
5	Dissolved oxygen calibrations had been performed but had not been documented.	A run log notebook was created for each laboratory instrument, including the DO probe. All calibrations were routinely recorded.
6	Equipment calibrations for balances, thermometers, and pipetters had not been performed.	The analytical balance used in the project was within the yearly-calibration schedule. The BAC is working with ITAS to generate SOP for equipment calibration.
7	Refrigerator temperatures have not been monitored.	Refrigerator temperatures had been recorded but were maintained in a general laboratory file. Monitoring forms were copied to the project laboratory notebook. Posting of acceptance is in progress.
8	The requirement for QC samples for the PAH analysis (Matrix Spikes (MS) and Blanks) is not being fully met. Matrix Spikes were being analyzed, but Method Blanks were not. These are required for at least 10% of the samples analyzed.	The Test Plan specified that Matrix Spikes and Blanks would be analyzed in at least 10 percent of the samples collected for PAH analysis. The requirements of the Test Plan were fully met with 26 percent of the samples collected analyzed as QC checks. No compounds were detected in the 12

Method Blanks analyzed.

2

NO.	OBSERVATION	<b>BAC RESPONSE/CORRECTIVE ACTION</b>
9	BTX analysis was required for both the batch slurry testing and the reactor study. Due to the results from the batch slurry testing (non- detects), BTX analysis was not being performed internally. (A samples(s) was being sent out for BTX analysis at the time of the audit.)	A change order documenting this client-requested change was in the project file.
10	The sample waste area was located out in the open in the lab area. The backlog of sample/laboratory chemical waste was significant.	The waste disposal area was isolated and all wastes disposed. No laboratory contamination was evident in the Method Blanks analyzed.
11	Samples and standards were stored in the same refrigerator.	Separate refrigerators were dedicated for sample and standards storage.
12	Spreadsheets that are internally generated to perform data manipulations are required to undergo validation/verification procedures.	All data manipulations spreadsheets had been internally reviewed and were filed in IT Central Files, main office building.
13	There was no evidence that spike concentrations (for MS samples) had been recorded. Also, analytical standards information was not available.	This information was recorded in the HPLC sample method and laboratory notebook.

.

3

NO.	OBSERVATION	<b>BAC RESPONSE/CORRECTIVE ACTION</b>
14	The HPLC conditions being used for the PAH analysis and the GC conditions used for BTX analysis were not available.	This information was recorded in the HPLC sample method and project notebook following the audit. HPLC methods had been routinely documented on instrument software.
15	The methods cited in the Test Plan are modified SW-846 Method 8020 and Method 8310. There was no record of the modifications and personnel did not have access to these methods.	Methods were available from several sources, including ITAS and IT central library. The SW-846 series was ordered for the laboratory. Modifications of Method 8310 included 3-point calibration and reduced sample volume. No holding times were exceeded.
16	Detection Limits were not yet established.	An MDL study was not performed. Analytical detection limits were interpolated based upon a response sufficient to produce at least a 3:1 signal to noise ratio, with respect to sample dilution.
17	One set of Matrix Spike samples had low recoveries (PAH analysis).	The Matrix Spike sample (3/19/93) recovery of 52 percent was within the procedure data quality objectives of 50 to 120 percent.
18	SPEC and TOC computer printouts had not been saved.	From April through project completion, copies of all SPEC and TOC computer printouts were saved and filed in the project file.

NO.	OBSERVATION	BAC RESPONSE/CORRECTIVE ACTION
19	The Chain-of-Custody for the original sample to be treated was not documented with condition upon receipt.	In the future, the condition of all samples will be documented on the original COC along with the inside temperature of the cooler (when applicable). The original sample received was intact and ok.
20	Chapter 6 (page 1) states that precision and accuracy determinations, (and detection limits) would be performed prior to study initiation. This has not been done.	The precision and accuracy requirements and DL were not determined prior to project initiation.
21	The notebook used as the reactor log had some entries that were not complete. Example: on page 50, there were dates with no entries. Also, on March 29, the volumes removed were not documented.	All notebook entries were completed following the audit. All matrices and volumes removed or added to the reactor was routinely recorded in the project notebook and maintained on an internally-reviewed, project spreadsheet.
22	Notebook recording practices were good, however the following are recommended: (See Audit Report Attached)	All notebook corrections were dated. All entries that were taped into the notebook were signed and dated across the edge of the tape. All notebook pages were

signed at the bottom, following proper quality checks. Units were documented where missing.

NO.	OBSERVATION	BAC RESPONSE/CORRECTIVE ACTION
23	The DI water purification system is checked every day, but the check is not documented.	A DI water log (notebook) to record daily checks of specific conductance was started and maintained throughout remainder of the project.
24	The percent solids in the six treatments (three duplicate studies) in the batch slurry study were changed from 20% and 30% to 30% and 40% (plus two "killed" studies).	A variance was filed. This variance was approved by the client prior to study initiation.
25	The Test Plan states that the treated slurry (bioslurry reactor study) be pumped to a clarifier. This was changed to a centrifuge.	Due to problems in solids/liquid separation, a system clarifier could not be employed. Solids were separated by centrifugation. This variance was communicated to the client when evident.
26	The reactor operating conditions were to be maintained at room temperature, 3 mg/L dissolved oxygen (DO), and pH 7. The actual conditions are room temperature, 5-7 mg/L DO, and a pH of 6.4.	These variances were insignificant, could not be corrected, did not impact biological treatment, and were communicated to the client once evident.

NO.	OBSERVATION	BAC RESPONSE/CORRECTIVE ACTION
27	Several sampling days were tracked in the reactor log and all contained documentation on the influent was stream (S1) being characterized for PAH concentrations in the aqueous and solids phase except for the March 29 entry.	March 29 entry was corrected. It should be noted that the facility lost power and staff was limited on this date due to inclement weather.
28	The operational set points listed on page 5-8 of the Test Plan were being followed with the exception of the agitation rate of 500 rpm. Upon visual inspection, the actual rate appeared to be significantly slower.	A variance in the reactor agitation was noted. This variance had not been communicated to the client since it did not impact operations. Although the agitation rate was $< 500$ rpm, TS mixing was uniform throughout the reactor and the DO was $> 3$ mg/L.
29	The BAC QA Officer is required to perform monthly surveillances of the IT Knoxville central files. The surveillance and audit requirements stated in the Test Plan are those described in the IT Engineering Operations QA Manual, Rev. 1, July 6, 1990, Chapter 11.0 and the ITAS QA Manual, Rev. 1, Feb. 1, 1988, Chapter 14.0.	One audit of the project file were conducted by BAC personnel. ITAS also conducted an audit of the BAC laboratory and limited audit of the project file. The study duration was 3-4 months. Also during this period, routine maintenance of project files was supervised by the project QAO and manager.

.

.

.

7

·

<u> </u>			
NO.	OBSERVATION	BAC RESPONSE/CORRECTIVE A	
30	MSDSs are required by the Test Plan to be posted near the bioslurry reactor where personnel have access to the hazard information before entering the project area. These MSDSs were not available.	MSDSs were provided to all BAC person study initiation. In addition, MSDSs were the reactor area. (The MSDSs had been cleaning purposes during the audit; they we replaced immediately.)	e posted in noved for
31	According to the Test Plan (and possibly the BAC Chemical Hygiene Plan), satellite waste collection containers are to be used and properly labeled. None were located at the time of the audit.	All project wastes had been separated. Fe audit, all satellite containers were labelled	1 -
32	No QA/QC documentation was in hand that could demonstrate cleanliness of sample containers.	Sample bottles had been shipped with cert cleanliness. These had not been filed. For audit, certificates were kept on file for do purposes.	blowing the
33	The speed control dials for the Rotating Air Lift had no marks indicating what the setting was.	The Eimco O&M Manual indicated all sp dial settings. This manual was available to staff. Records of daily settings were main an internally-reviewed, project spreadshee	o all BAC ntained on

· .