

Roy F. Weston, Inc.
Suite 400
3 Hawthorn Parkway
Vernon Hills, Illinois 60061-1450
708-918-4000 • Fax 708-918-4055

From Janusch-WR/2 Comments? Lanks, Gany E

23 February 1994

Ms. Betty G. Lavis (HSRW-6J)
U.S. Environmental Protection Agency
Region V
77 W. Jackson Blvd.
Chicago, IL 60604-3590

Re: Response to Second Round of Comments on

Predesign Phase Quality Assurance Plan

Moss-American Superfund Site, Milwaukee, Wisconsin

Dear Ms. Lavis:

Roy F. Weston, Inc. (WESTON®) has prepared this transmittal on behalf of Kerr-McGee Chemical Corporation (KMCC). This transmittal is in response to U.S. EPA's letter dated 18 November 1993 and provides responses to outstanding review comments on the Predesign Phase Quality Assurance Project Plan (QAPP). Revised, highlighted pages are included where applicable.

By this letter, WESTON is also transmitting a laboratory QAPP for Lancaster Laboratories, Inc. This QAPP provides an addendum to the above-referenced QAPP. Lancaster Laboratories, Inc. has been selected by KMCC to provide analytical services during the 1994 predesign investigation tasks.

Please also note that WESTON has included a figure depicting the proposed temporary equipment decontamination pad for the site, as requested by WDNR. This is presented as Figure 5-1.

WESTON and KMCC look forward to U.S. EPA's timely review of these document revisions and addendum. QAPP approval will be essential to implementing the predesign investigative and extent of contamination studies planned for the spring and summer of 1994.

Ms. Betty G. Lavis U.S. EPA

-2-

23 February 1994

If we can provide any clarifications to this transmittal, please contact the undersigned at (708) 918-4000.

Very truly yours,

ROY F. WESTON, INC.

Gary J./Deigan/

Principal Project Manager

Kurt S. Stimpson/scr

Kurt S. Stimpson

Project Director
D:KSS/slr

GJD:KSS/slr Enclosures (2)

- (1) Response to Comments/Revised Pages
- (2) Lancaster Laboratories, Inc. QAPP

cc: Mr. A. Keith Watson (w/ enclosures)
Kerr-McGee Chemical Corporation
Kerr-McGee Center
P.O. Box 25861
Oklahoma City, OK 73125

Mr. Mark Krippel (w/o enclosures) Kerr-McGee Chemical Corporation 798 Factory St. P.O. Box 548 West Chicago, IL 60186

Mr. George B. Rice (w/o enclosures) Kerr-McGee Chemical Corporation P.O. Box 25861 Oklahoma City, Oklahoma 73125

Ms. Betty G. Lavis U.S. EPA

-3-

23 February 1994

cc: Mr. Richard Meserve (w/o enclosures)
Covington & Burling
1201 Pennsylvania Avenue N.W.
P.O. Box 7566
Washington, D.C. 20044

Regional Counsel (w/o enclosures)
Attn: Moss-American Site Coordinator (5CS)
U.S. Environmental Protection Agency
77 West Jackson Boulevard
Chicago, IL 60604

Assistant Attorney General (w/o enclosures)
Environment and Natural Resources Division
U.S. Department of Justice
P.O. Box 7611
Ben Franklin Station
Washington, D.C. 20044
Ref. D.J. #90-11-2-590

Section Chief (3 copies) (w/ enclosures)
Environmental Response and Repair Section
Bureau of Solid and Hazardous Waste Management
Department of Natural Resources
101 S. Webster Street
P.O. Box 7921
Madison, WI 53707-7921

Mr. Jim Schmidt (2 copies) (w/ enclosures)
Department of Natural Resources
Southeast District Office
P.O. Box 12436
Milwaukee, WI 53212

RESPONSE TO 18 NOVEMBER 1993 U.S. EPA COMMENTS DRAFT PREDESIGN PHASE QUALITY ASSURANCE PROJECT PLAN

U.S. EPA Comment

A-1 is acceptable.

U.S. EPA Comment

A-2 Generally acceptable response. However, it may be necessary for SMO to review existing documentation at WESTON's internal laboratory, Gulf Coast Laboratories, to determine if an audit is necessary. I should know for sure by 11/22. The possibility of audit could also apply to other laboratories, so QAPP information should be submitted as soon as possible for each laboratory.

Response/Clarification

Lancaster Laboratories, Inc. of Lancaster, Pennsylvania, has been selected by KMCC for the performance of laboratory analyses. Lancaster Laboratories' Laboratory Quality Assurance Plan is provided for U.S. EPA review as an addendum to the original draft QAPP.

U.S. EPA Comment

A-3 and A-4 are acceptable.

U.S. EPA Comment

B-1 Include field parameters in Level 1.

Response/Clarification

The text (Subsection 2.5.3) has been modified to indicate that field parameters are Level I analyses, as requested. The field parameters have also been added to Table 2-2.

U.S. EPA Comment

B-2 There should be a footnote that specifies the analysis included in "Analysis N."

There is not footnote referring to Appendix A. Correct the table number references.

Response/Clarification

As requested, the footnotes in Table 2-3 have been clarified to indicate the specific analytes (i.e., temperature, specific conductance, and pH) included in "Analysis N" and to indicate that the standard operating procedures (SOPs) for these analyses are provided in Appendix A. In addition, Analysis P "Atterberg Limits" was not included in the QAPP table and this oversight has been corrected.

U.S. EPA Comment

B-3, B-4, B-5, B-6, B-7, and B-8 are acceptable.

U.S. EPA Comment

B-9 Summarize activities that will use composite samples.

Response/Clarification

Activities that will use composite samples have been summarized in Section 5.1, as requested. These activities include sediment sampling in the river, soil borings on the former wood preserving property, and soil sampling in the floodplain. This information had been provided in Table 2-1 which presents an overview of sampling procedures (i.e., grab, composite, and discrete) for each predesign task.

U.S. EPA Comment

B-10 is acceptable.

U.S. EPA Comment

B-11 Provide supporting evidence.

Response/Clarification

The U.S. EPA-approved Predesign Work Plan dated October 1992 provided a description of the rationale and supporting evidence used in the selection of the location of the pilot-scale river diversion (Section 5.3.3.2). In brief, the location immediately downstream of the former plant was selected based on RI reports of "high" oily response, and cross-sectional characteristics suitable for construction of the proposed cofferdam.

U.S. EPA Comment

B-12, B-13, B-14, B-15, B-16, and B-17 are acceptable.

U.S. EPA Comment

B-18 Acceptable for the purposes of the QAPP. The Agency reserve the right to review the analytical method selection rationale when this decision is made.

Response/Clarification

The Agency may review the analytical method(s) selection rationale.

ADDITIONAL AGENCY COMMENTS

U.S. EPA Comment

1. Predesign Task 1 requires that a new field screening method and/or laboratory procedure be developed. The method should be described more fully.

Response/Clarification

The goal of Predesign Task 1, as presented in the Statement of Work, is to refine and/or develop a field screening procedure for quantifying the concentration of CPAHs with accuracy and detection limits that correlate to the cleanup standards. If, based on continued predesign work and site investigations, a new field screening procedure is deemed useful and/or necessary for subsequent remedial action (RA) phases, the procedure will be identified, evaluated, and tested as outlined in the U.S. EPA-approved Predesign Work Plan (October 1992). To date, useful field screening methods for CPAHs have not been widely accepted nor determined to be feasible for the Moss-American site. Therefore, at this time we do not propose to include additional discussion or description of field screening methods in the context of this QAPP.

However, as part of our continuing evaluation of appropriate analytical methods, we are currently examining automated extraction systems that can be coupled with an on-site GC or HPLC analyzer. If our examination appears promising, we may propose a field evaluation to be coordinated with sampling activities that are currently scheduled for 1994. We are also considering a field evaluation of the EnSys field screening method for PAHs. Any field evaluations to meet the goals of Predesign Task 1 would include split samples collected and analyzed using U.S. EPA-approved methods contained in the QAPP.

U.S. EPA Comment

2. Predesign Task 3 indicates the evaluation of alternative methods for determining or predicting the distribution of free-product residues. Please discuss alternative methods.

Response/Clarification

Please reference the U.S. EPA-approved Predesign Work Plan dated October 1992 for a description of the work to be conducted under Predesign Task 3.

U.S. EPA Comment

3. Predesign Task 12 indicates the evaluation of visual observation methods for location of sediment contaminants. There is no discussion of the visual observation method.

Response/Clarification

The visual observation methods for location of sediment contamination are described in detail in Section 5.4 of the U.S. EPA-approved Predesign Work Plan. Visual documentation (e.g., field notes, logs, photographs) will be compared to laboratory-determined CPAH concentrations to determine if a correlation can be made between visible observation and cleanup standards. If a reliable correlation exists, a protocol for using visual observations to identify sediments requiring removal and treatment will be documented in a Technical Memorandum.

U.S. EPA Comment

4. Table 4-1. Provide the accuracy, precision, and sensitivity goals for the field CPAH methodology.

Response/Clarification

The accuracy, precision, and sensitivity goals for the field screening CPAH methodology cannot be provided at this time since a methodology has not yet been identified. If a field screening methodology is deemed necessary, this information will be included in a Technical Memorandum prepared for Predesign Task 1 (also see response to Comment 1).

U.S. EPA Comment

5. Table 4-2 references using decafluorobiphenyl as a surrogate for CPAHs. This is OK if the Method 8310 is used, but Method 8270 does not use this constituent as a surrogate. Add the Method 8270 surrogate to the table.

Response/Clarification

The surrogate reference for CPAHs using Method 8270 has been added to Table 4-2. Lancaster Laboratories, Inc. utilizes nitrobenzene as a surrogate for CPAHs when conducting Method 8310 analyses and nitrobenzene-d5, 2-fluorobiphenyl, terphenyl-d14, phenol-d6, 2-fluorophenol, and 2,4,6-tribromophenol when conducting Method 8270 analyses.

U.S. EPA Comment

6. The method references for nitrite in Table 4-1, Table 2-3 (footnote), and Section 8.1 are not the same. Which is correct?

Response/Clarification

The method references for nitrite in Table 4-1, Table 2-3, Section 8.1, and Table 5.3 have been changed, as appropriate, to consistently indicate that the method used for nitrite analysis is Method 354.1 and the method used for nitrate-nitrogen analysis Method 353.2. The QAPP addendum for Lancaster Laboratories, Inc. indicates that nitrogen-nitrate analysis will be conducted by Method 300.0.

U.S. EPA Comment

7. Include SOPs for BOD and the ASTM method for grain size.

Response/Clarification

The ASTM method for grain size was provided in the QAPP; however, it may have been overlooked. Colored breaker pages will be used to eliminate this problem in the future. The SOP for BOD has changed due to the change in the laboratory, and the SOP is presented in the Lancaster Laboratories, Inc.'s Quality Assurance Plan addendum.

Revised/Highlighted Pages of Predesign Phase QAPP

Page: 2-17

- <u>LEVEL III</u> This level provides an intermediate level of data quality and is used for site characterization and in support of engineering studies using standard U.S. EPA-approved procedures. Engineering analyses may include mobile laboratory generated data and some analytical laboratory methods (e.g., laboratory data with quick turnaround used for screening purposes but without full quality control documentation).
- <u>LEVEL IV</u> This level provides the highest level of data quality and is characterized by rigorous QA/QC protocols and documentation and provides qualitative and quantitative analytical data. Some regions have obtained similar support via their own regional laboratories, university laboratories, or other commercial laboratories.
- <u>LEVEL V</u> Non-standard methods. Analyses which may require method modification and/or development.

Analytical Level I will apply to readings generated during health and safety monitoring and to field parameters (i.e., temperature, specific conductance, and pH) generated during groundwater sampling. Analytical Level II will apply to data generated by the field analytical method developed for rapid turnaround analysis (Predesign Task 1). Analytical Level III will apply to all analytical data generated from sample analyses by off-site laboratories. The data quality objectives for all associated data collection activities, data types, data uses, and other data quality control factors are summarized in Table 2-1 2.3. Table 8-1 presents contaminants of concern and associated method detection limits for the Moss-American Site Predesign activities. All health and safety issues associated with the field program for the Site will be addressed in the Site Health and Safety Plan.

2.6 SAMPLE NETWORK AND RATIONALE

The sampling network and rationale is addressed in the Predesign Work Plan and the sampling procedures are described in the Section 5 of this QAPP.

Moss-American Site Predesign QAPP Revision: 2 Date: 14 January 1994 Page: 2-1

Table 2-2

Target Compounds for Moss-American Site Media

Target Compound	Groundwater	Surface Water	Soils/Sediment
Benzene	х	х	
Ethylbenzene	х	х	
Toluene	X	х	
Xylene	x	X	
Naphthalene	X	X	
Acenaphthylene	X	X	
Acenaphthene	х	X	
Fluorene	х	х	
Phenanthrene	х	X	
Anthracene	х	X	
Fluoranthene	X	х	
Pyrene	Х	x	
Benzo(a)anthracene	х	Х	x
Chrysene	Х	X	X
Benzo(b)fluoranthene	Х.	х	X
Benzo(k)fluoranthene	Х	Х .	x
Benzo(a)pyrene	х	· X	x
Indeno(1,2,3-cd)pyrene	х	х	x
Dibenz(a,h)anthracene	х	X	х
Benzo(g,h,i)perylene	х	X	x
BOD ₅	х		
COD	X		
Oil and Grease	х		
Nitrogen	X		
Phosphorous	X		
Total Suspended Solids	х		
pH	×		
Specific Conductance	×		
Temperature	×		

Moss-American Site Predesign QAPP Revision: 2 Date: 14 January 1994

Page: 2-1

Table 2-3

Data Quality Objective Summary Moss-American Site

Activity	Matrix	Analytical Parameter	Data Use	Analytical Level
Soil Sampling	Soil	A	SC, EE	п, ш
		В	EE	Ш
		С	EE	11, 111
		D	EE	Ш
		0	SC, EE	п
·	<u> </u>	**	EE	III
Sediment Sampling	Sediment	Α	SC, EE	Ш
Surface Water Sampling	Water	E	EC	Ш
		F	EC	Ш
Groundwater Sampling	Water	E, G	SC, EE	III
	,	Н	SC, EE	ш
		I	SC, EE	Ш
		J	SC, EE	III
		K	SC, EE	m
·		L	SC, EE	III
		M	SC, EE	Ш
		N	SP	I

- Analysis A: CPAHs analysis by Method 8270 or 8310, and field rapid turnaround method (Appendix B).
- Analysis B: Permeability testing by U.S. Army Corps of Engineers Method EM1110-2-1906 (Appendix C).
- Analysis C: Grain size distribution by ASTM D22216-80 (Appendix C).
- Analysis D: Moisture content by ASTM D423-63 (Appendix C).
- Analysis E: PAHs by EPA Method 8270 or 8310 (Appendix B).
- Analysis F: TSS by EPA Method 1602 (Appendix B).
- Analysis G: BETX by EPA Method 8020 (Appendix B).
- Analysis H: COD by Method 508C, 410.4 and HACH 8000 (Appendix B).
- Analysis I: BOD, by Method 405.1 (Appendix B).
- Analysis J: TOC by Method 415.1 (Appendix B).
- Analysis K: Nitrate/nitrogen by Method 3532, natrite by Method 3541 (Appendix B).
- Analysis L: Phosphorous by Method 365.2 (Appendix B).
- Analysis M: Oil and grease by Method 413.1 (Appendix B).
- Analysis N: Field parameters (i.e., temperature, specific conductance, and pH) for groundwater sampling. See Appendix A for SOPs.
- Analysis O: Geophysical analysis.
- Analysis P: Atterberg Limits testing by ASTM D4318-84.

Data usage symbols:

- EE Engineering evaluation.
- EC Environmental control. SP - Sampling protocols.
- SC Site characterization.

Analytical levels:

- I Qualitative screening with field equipment.
- II Field analysis with sophisticated equipment.
- III Off-site analysis by analytical laboratory.
- IV Analysis by CLP laboratory.
- V Analysis by laboratory using nonstandard method.

Moss-American Site Predesign QAPP Revision: 2

Date: 14 January 1994

Page: 5-1

SECTION 5

SAMPLING PROCEDURES

The rationale for sampling is provided in the 28 April 1992 Draft Predesign Work Plan;

hence, it is not discussed herein.

5.1 <u>SAMPLING PROCEDURES</u>

The following subsections outline the protocols of sample collection that will be

implemented under this Predesign QAPP. In this section where composite sample collection

is designated in lieu of grab samples, this determination is based on the fact that the

associated data will be used for engineering design (i.e., the design of treatment systems and

in the generalized determination of extent of contamination and contaminated media

volume estimates).

Sampling activities that will use composite samples include sediment sampling in the Lutte

Menomonee River, soil borings on the former wood preserving facility property, and soil

sampling in the floodplain along the new river alignment. Table 2-1 presents an overview

of sampling procedures (i.e., composite, grab, or discrete) used for each predesign task.

With respect to actual sampling procedures, the following sequence will be followed when

filling sample containers from each matrix: first, the VOC sample containers will be filled,

secondly, the PAH containers, and finally the nonorganic analyses containers (e.g., oil and

grease, TOC/phosphorous/COD/nitrate, TSS, nitrite, BOD, pH), respectively. Only those

analyses applicable to each sample matrix will be collected. All wastes and residues

generated during field sampling will be managed in accordance with Section 5.1.9.

CH01\PUBLIC\WO\MOSSAMER\12481.S-5

Moss-American Site Predesign QAPP Revision: 2 Date: 14 January 1994 Page: 4-6

- --**-----**

Table 4-2

Quality Assurance Objective for Accuracy
For Organic Surrogate Analysis

			<u> </u>
·	Fraction	Surrogate Compound	% Recovery
	CPAH	Decafluorobiphenyl	40 - 120
•	BTEX	a,a,a-Trifluorotoluene	55 - 135
	CPAH Method 8310	Nitrobenzene	50 - 120
	CPAH Method 8270	Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 Phenol-d6 2-Fluorophenol 2,4,6-Tribromophenol	23 - 120 30 - 115 18 - 137 24 - 113 25 - 121 19 - 122

Moss-American Site Predesign QAPP Revision: 2

Date: 14 January 1994

Page: 5-8

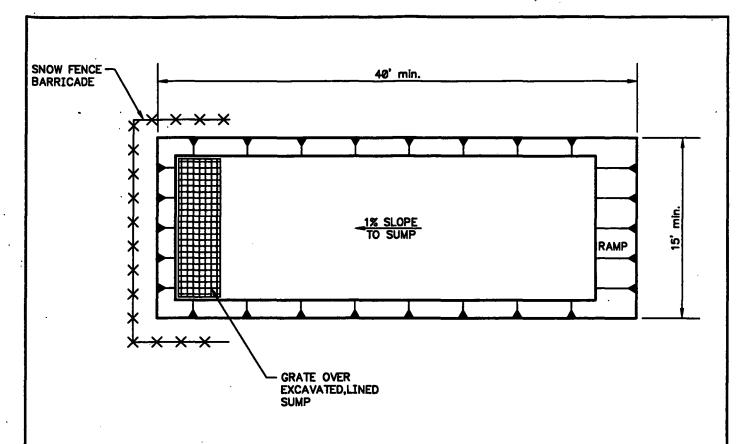
Table 5-3 Summary of Sampling Effort Moss-American Site

Sample Matrix	Laboratory Parameters		nvestig	ative	Fie	eld Dup	licate	F	eld Blar	nk		Spike/I		Matrix Total
·		No.	Freq	Total	No.	Freq	Total	No.	Freq	Total	No.	Freq		
SOILS	CPAHs - U.S. EPA Method 8270 or Method 8310	70	1	70	. 7	1	7	0	0	0	4	1	4	77
SEDIMENTS	CPAHs - U.S. EPA Method 8270 or Method 8310	136	1	136	14	1	14	o	0	0	7	1	7	150
GROUNDWATER	BETX - U.S. EPA Method 8020	17	1	17	2	1	2	2	1	2	1	1	1	2
	COD - HACH 8000 (4)	17	1	17	2	1	2	2	1	2				2
•	BOD(5) - Method - 405.1 (4)	17	1	17	2	1	· 2	2	1	2				2
	TOC - Method 415.1 (4)	17	1	17	2	1	2	2	1	2				2
	Nitrate - Method 353.2 (4)	17	1	17	2	`1	2	2	1	2				2
	Nitrite — Method 354.1 (4)	17	1	17	2	1	2	2	1	2				2
	Phosphorous - Method 365.2 (4)	17	1	17	2	1	2	2	1	2				2
	Oil & Grease - Method 413.1 (4)	17	1	17	2	1	2	2	1	2				2
	pH - Method 150.1 (4)	17	1	17	2	1	2	2	1	2				2
	Conductivity - Field Instrument	17	1	17	2	1	2	2	1	2				2
	Temperature - Field Instrument	17	1	17	2	1	2	2	1	2	\			2
	PAHs – U.S. EPA Method 8270 or 8310	17	1	17	2	1	2	2	1	2	1	1	1	2
SURFACE WATER	PAHs - U.S. EPA Method 8270 or 8310	10	1	10	1	1	1	1	1	1	1	. 1	1	1:
•	TSS - Method 160.2 (4)	10	1	10	1	1	1	1	1	1				1:
SOIL AND SEDIMENT	Geotechnical Property Testing			•										
	Moisture Content - ASTM D22216-80	12	1	12										1:
	Particle Size Distribution - ASTM D422-63	12	1	12										1:
	Permeability - EM1110-2-1906	12	1	12										1:
	Atterberg Limits - ASTM D4318-84	12	1	12					·_ ·					1:

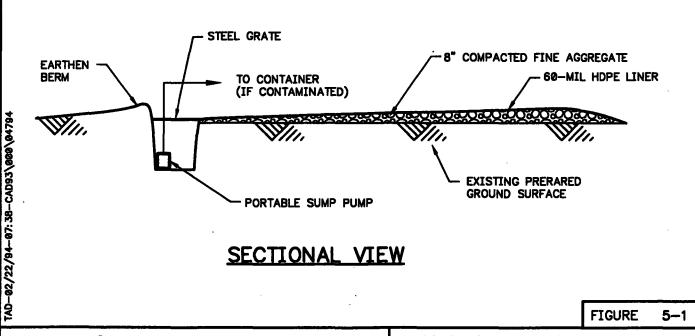
Notes:

- 1. Matrix total does not include trip blank samples, or matrix spike/matrix spike duplicate (MS/MSD) samples.
- 2. Although not shown in this table, trip blank samples will be shipped at a frequency of one per shipping container of aqueous VOA samples.
- 3. MS/MSD are not additional samples, but are instead investigative samples with extra volume collected for organic analysis.
- 4. Laboratory duplicates and spikes will be analyzed for on all nonorganic compounds (excluding geotechnical compounds). Frequency of analysis will be on 1 per 20 investigative samples or less basis.

WO\MOSSAMER\12481T53.WK3


Moss-American Site Predesign QAPP Revision: 2 Date: 25 February 1994 Page: 5-4

investigation at the Moss-American site. The protocols for drilling, well installation, sample collection, and field testing are herein specified.


Soil Boring Drilling Procedures

The following procedures will be used during the drilling of all soil borings:

- The working end of the drill rig and all drilling equipment, tools, and materials will be decontaminated prior to drilling at each location in accordance with protocol presented in Table 5-1. A diagram of the temporary decontamination pad is presented in Figure S-1. Provisions will be made to keep equipment, tools, and materials from coming into contact with surface soils during drilling and well installation.
- The soil borings will be advanced to a maximum depth up to the water table.
- Continuous sampling will be conducted at each boring location using standard split-spoon sampling techniques. Split-spoon samplers will be advanced ahead of the lead auger for a continuous, undisturbed soil profile.
- Samples will be collected for analyses immediately upon opening the split spoon.
- Following sample collection, each split-spoon soil core will be logged by a qualified WESTON geologist, using a combination of the United States Department of Agriculture (USDA) textural classification system and the unified soil classification system (USCS). Sample grain size will be determined using the modified Wentworth grain-size scale. Sample color will be determined using the Munsell Soil Color Charts. Use of these systems will reduce subjectivity of soil descriptions. Samples will be retained from each sample interval for future reference. All soil descriptions will be recorded on a WESTON boring log.
- Each split spoon will be decontaminated in accordance with the standard decontamination protocol for sampling equipment outlined in Table 5-2.
- Upon completion of sample collection, each soil boring will be backfilled with cement bentonite grout to the surface to seal the borings. All drill cuttings will be collected and placed in 55-gallon drums which will be stored at the site

PLAN VIEW

MANAGERS DESIGNERS/CONSULTANTS

Three Hawthorn Parkway Vernon Hills, Illinois 60061 PROPOSED DESIGN FOR TEMPORARY EQUIPMENT DECONTAMINATION PAD MOSS-AMERICAN SITE Milwaukee, Wisconsin

LABORATORY QUALITY ASSURANCE PLAN

Kerr-McGee Chemical Corp. Móss-American Site Milwaukee, Wisconsin

August 26, 1993

Revised: February 1994

WARNING: The information contained herein is of a highly confidential and proprietary nature. Lancaster Laboratories, Inc. specifically prohibits the dissemination or transfer of this information to any person or organization not directly affiliated with the project for which it was prepared.

Section No. 1 Revision No. Date: 08/26/93 Page 1 of 1

Laboratory Quality Assurance Plan

This document provides the laboratory portion of the response to EPA's "Interim Guidelines and Specifications for Preparing Quality Assurance Project Plans" QAMS-005/80, Sections 5.1 - 5.16 as revised December 29, 1980, and EPA-600/4-83-004, February 1983. Guidance was also obtained from "Preparation Aids for the Development of Category 1 Quality Assurance Project Plans," Office of Research and Development, USEPA, EPA/600/8-91/003, February 1991.

As much as possible, the procedures in this document have been standardized to make them applicable to all types of environmental monitoring and measurement projects. under certain site-specific conditions, all of the procedures discussed in this document may not be appropriate. In such cases it will be necessary to adapt the procedures to the specific conditions of the investigation.

Director of Quality Assurance: Just / Jouise / Just / Star Strik

Section No. 2 Revision No. 1 Date: 02/17/94 Page 1 of 1

Sect	ion.	<u>Pages</u>	Revision	<u>Date</u>
1.	Title Page	1	·	٠
2.	Table of Contents	1 .	1	02/17/94
3 .	Project Description	1		
4.	Project Organization and Responsibility	4		
5.,	QA Objectives for Measurement Data, in terms of precision, accuracy, completeness representativeness and comparability	4		•
6.	Sampling Procedures	3	1	02/17/94
7.	Sample Custody	20		
8.	Calibration Procedures and Frequency	5		
9.	Analytical Procedures	10		
10.	Data Reduction, Validation and Reporting	9	·	
11.	Internal Quality Control Checks	14 ·		•
12.	Performance and Systems Audits	22		
13.	Preventive Maintenance	4		
14.	Specific Routine Procedures Used to Access Data Precision, Accuracy and Completeness	5		
15.	Corrective Action	4	·	
16.	Quality Assurance Reports to Management	1		
Appe	ndix A - Reporting Forms	44		

Section No. 3
Revision No.
Date: 08/26/93
Page 1 of 1

3. Project Description

This quality assurance project plan provides specific quality assurance and quality control procedures involved in the generation of data of acceptable quality and completeness. Tests will be performed according to the analytical methodology set forth in the USEPA SW-846 3rd Edition, 1986*. SW-846 provides specific analytical procedures to be used and defines the specific application of these procedures. Proven instruments and techniques will be used to identify and measure the concentrations of volatiles and PAH compounds. The laboratory will employ state-of-the-art GC/MS, HPLC, and/or GC procedures to perform all organic analyses, including all necessary preparation for analysis. Wet Chemical analyses will be performed according to Methods for the Chemical Analysis of Water and Wastes, USEPA 600/4-79-020 and will use appropriate instrumentation. The client is responsible for providing specifics on the project site.

* Test Methods for Evaluating Solid Waste - Physical/Chemical Methods. SW-846 (3rd Edition, 1986).

Section No. 4
Revision No.
Date: 08/26/93
Page 1 of 4

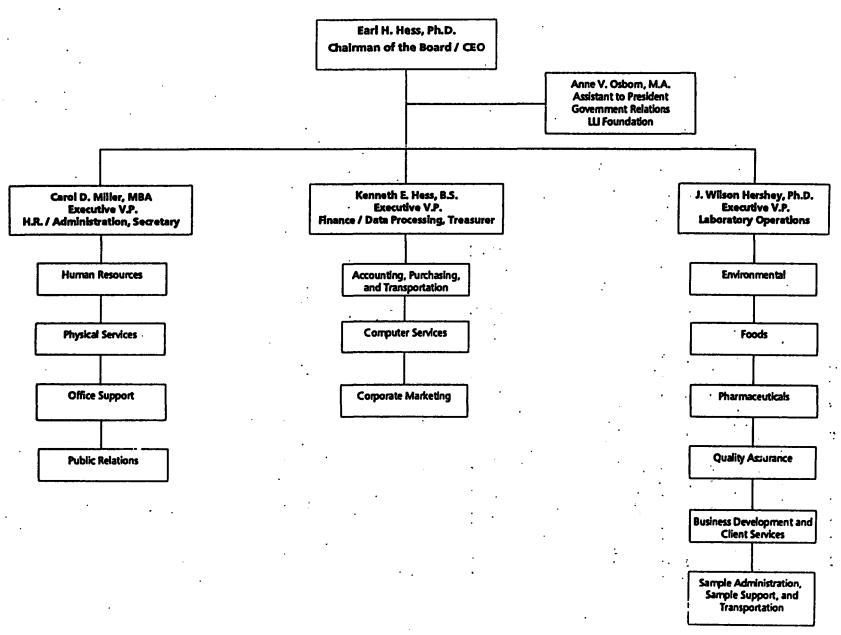
4. Project Organization

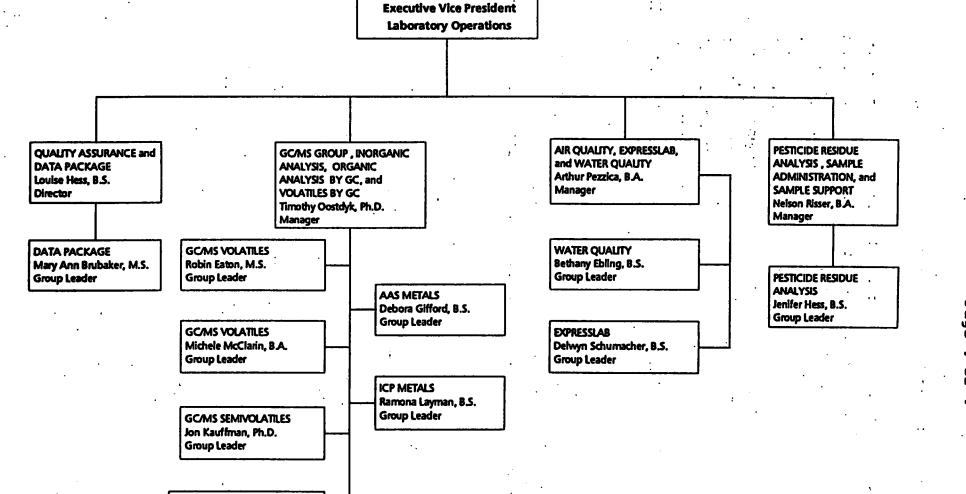
The objectives of the laboratory Quality Assurance Program are to establish procedures which will ensure that data generated in the laboratory are within acceptable limits of accuracy and precision, to ensure that quality control measures are being carried out, and to ensure accountability of the data through sample and data management procedures. To this end, a Quality Assurance Department has been established. The Director of Quality Assurance reports directly to the Executive Vice President of Laboratory Operations and has no direct responsibilities for data production, thus avoiding any conflict of interest.

The attached organizational charts show the key personnel in both Corporate Services and Environmental Sciences. Resumes of key individuals may be found in the enclosed Oualification Manual.

The Sample Administration Group will be responsible for receiving samples, signing the external chain-of-custody, checking sample condition, assigning unique laboratory sample identification numbers, and initiating internal chain-of-custody forms. Sample Support personnel will be responsible for assigning storage locations, checking and adjusting preservation, homogenizing the sample as needed, and sample discard.

Group Leaders listed in each technical area are responsible for performing laboratory analyses, quality control as specified in the methods, instrument calibration, and technical data review. Data is reported using a computerized sample management system, which tracks sample progress through the laboratory and generates client reports


Revision No. 4
Revision No.
Date: 08/26/93
Page 2 of 4


when all analyses are complete. Quality control data is entered onto the same system for purposes of charting and monitoring data quality.

Same Carlotter

The Quality Assurance Department is responsible for reviewing quality control data, conducting audits in the laboratory and reporting findings to management, maintaining current copies of all analytical methods, maintaining copies of computer code used to calculate and report results, submitting blind samples to the laboratory, and ensuring that appropriate corrective action is taken when quality problems are observed.

Data package deliverables are available upon request. The Quality Assurance Department reviews the contents of the deliverables for completeness and to be sure that all quality control checks were performed and met specifications. This step includes review of holding times, calibrations, instrument tuning, blank results, duplicate results, matrix spike results, surrogate results, and laboratory control samples (where applicable). Every attempt to meet specifications will be made, and any item outside of the specifications will be noted in the narrative. The laboratory will not validate data with regard to useability since this generally requires specific knowledge about the site.

J. Wilson Hershey, Ph.D.

06/04/93

ORGANIC ANALYSIS BY GC and

VOLATILES BY GC Judy Colello, B.S. Group Leader Revision No. 4
Date: 08/26/9

Section No. 5
Revision No.
Date: 08/26/93
Page 1 of 4

5. OA Objectives For Measurement Data

Quality Assurance is the overall program for assuring reliability of monitoring and measurement data. Quality control is the routine application of procedures for obtaining set standards of performance in the monitoring and measurement process. Data quality requirements are based on the intended use of the data, the measurement process, and the availability of resources. The quality of all data generated and processed during this investigation will be assessed for Precision, Accuracy, Representativeness, Comparability, and Completeness. These specifications will be met through precision and accuracy criteria as specified in Section 11. Detection limits are presented in Section 9.

<u>Precision</u> - Precision is determined by measuring the agreement among individual measurements of the same property, under similar conditions. The laboratory objective is to equal or exceed the precision demonstrated for the applied analytical method on comparable samples. The degree of agreement is expressed as the relative percent difference (RPD%). Evaluation of the RPD% is based on statistical evaluation of past lab data or guidelines within the methods for organic and inorganic analyses. External evaluation of precision is accomplished by analysis of Standard Reference Material and interlaboratory performance data.

Accuracy - Accuracy is a measure of the closeness of an individual measurement to the true or expected value. Analyzing a reference material of known concentration or reanalyzing a sample which has been spiked with a known concentration/amount is a way to determine accuracy. Accuracy is expressed as a percent recovery (%R). Evaluation of the %R is based on statistical evaluation of past lab data or guidelines within the methods for organic and inorganic analyses.

Section No. 5
Revision No.
Date: 08/26/93
Page 2 of 4

Representativeness - Representativeness expresses the degree to which data accurately represents the media and conditions being measured. The representativeness of the data from the sampling site will depend on the sampling procedure. Sample collection is the responsibility of the client. Samples will be homogenized, if required, as part of the laboratory sample preparation. By comparing the quality control data for the samples against other data for similar samples analyzed at the same time, representativeness can be determined for this objective.

Comparability - Comparability conveys the confidence with which one set of data can be compared to another. The analytical results can be compared to other laboratories by using traceable standards and standard methodology and consistent reporting units. The Laboratory Quality Assurance Program documents internal performance, and the interlaboratory studies document performance compared to other laboratories.

Completeness - Completeness is a measure of the quantity of valid data acquired from a measurement process compared to the amount that was expected to be acquired under the measurement conditions. The completeness of an analysis can be documented by including in the data deliverables sufficient information to allow the data user to assess the quality of the results. Additional information will be stored in the laboratories archives, both hard copy and magnetic tape. Quality Assurance Standard Operating Procedures (SOPs) are in place to provide traceability of all reported results.

Section No. 5
Revision No.
Date: 08/26/93
Page 3 of 4

To ensure attainment of the quality assurance objectives, Standard Operating Procedures (SOPs) are in place detailing the requirements for the correct performance of laboratory procedures. The laboratory SOPs fall under five general categories:

- 1. Corporate Policy
- 2. Quality Assurance
- 3. Sample Administration
- 4. General Laboratory Procedures
- 5. Analytical (i.e., methods, standard preps., instrumentation)

All SOPs are approved by the QA Department prior to implementation. The distribution of current SOPs and archiving of outdated ones are controlled through a master file. Table 5-1 provides an index of QA SOPs in place in support of the Quality Assurance Objectives. These requirements are supplemented by the procedures in the laboratory and analytical SOPs.

Section No. 5
Revision No.
Date: 08/26/93
Page 4 of 4

Table 5-1							
Document #	Document Title						
QA-101	Sample Collection						
QA-102	Sample Log-in						
QA-103	Sample Storage and Disposal						
QA-104	Chain-of-Custody Documentation						
QA-105	Analytical Methods Manual						
QA-106	Validation and Authorization of Analytical Methods						
QA-107	Analytical Methods for Nonstandard Analyses						
QA-108	Subcontracting to Other Laboratories						
QA-109	Laboratory Notebooks and Documentation						
QA-110	Reagents						
QA-111	Instrument and Equipment Calibration						
QA-112	Instrument and Equipment Maintenance						
QA-113	Data Entry and Verification						
QA-114	Data Storage and Security						
QA-115	Quality Control Records						
QA-116	Investigation and Corrective Action of Unacceptable Quality Control Data						
QA-117	Personnel Training Records						
QA-118	Quality Assurance Audits						
QA-119	Proficiency Samples						
QA-120	Documentation of Programming for the Sample Management System						
QA-121	Guidelines for the Development, Validation, Implementation, and Maintenance of Computer Systems Used with CLP, GLP, and GMP Data						

Section No. 6
Revision No. 1
Date: 02/17/94
Page 1 of 3

6. Sampling Procedures

In order for meaningful analytical data to be produced, the samples analyzed must be representative of the system from which they are drawn. It is the responsibility of the client to ensure that the samples are collected according to accepted or standard sampling methods.

The laboratory will provide the appropriate sample containers, required preservative, chain-of-custody forms, shipping containers, labels, and seals. The majority of sample containers are purchased precleaned by the supplier. Any reused bottles are cleaned in-house following laboratory Standard Operating Procedures. Special containers with traceability documentation are available upon request. Because the laboratory does not stock this type of container, one month prior notice is required.

Each lot of preservative will be documented and checked for contaminants before use. The appropriate bottle will be preserved with the new preservative and filled with deionized water to represent a sample. A similar container (that does not contain preservative) will be filled with deionized water to be used as a blank check. Analysis results are documented for each preservative lot number.

Trip blanks will be prepared by the laboratory and accompany sample containers at the project required frequency.

Analyte-free water will also be provided for field blanks.

A list of containers, preservatives, and holding times follows in Table 6-1.

Section No. 6
Revision No. 1
Date: 02/17/94
Page 2 of 3

Table 6-1

Sample Containers, Preservatives, and
Holding Times for Aqueous and Solid Samples

H	olding Times	for Aqueous	and Solid Samp	oles
Fraction	Vol. Req. (ml) Wt. Req. (g)	Container P=Plastic G=Glass	Preservation ^a	Holding Time ^c From Date of Collection Water Soil
Volatiles BTEX	2 x 40 ml	G	Cool, 4°Cb pH <2 w/HCl	14 14 Days
PAHs (8310)	2 x 1000 ml	G (amber)	Cool, 4°Cb Na ₂ S ₂ O ₃	7 14 Days to extraction ^d
PAHs (8270)	3 x 1000 ml 100 g	G	Cool, 4°Cb Na ₂ S ₂ O ₃	7 14 Days to extraction ^d
рН	50 ml	G	Cool, 4°C	Imme- 14 diately Days
BOD	1000 ml	G	Cool, 4°C	48 NA Hours
COD	100 ml 100 g	G	Cool, 4°C pH <2 w/H ₂ SO ₄	28 28 Days
Oil and Grease	2 x 1000 ml 50 g	G	Cool, 4°C Preserved upon receipt	28 28 Days
Ammonia Nitrogen	1000 ml 100 g	P,G	Cool, 4°C pH <2 with H ₂ SO ₄	28 28 Days
Nitrate	50 ml 20 g	P,G	Cool, 4°C	14 14 Days
TKN	500 ml 10 g	G	Cool, 4°C pH <2 with H ₂ SO ₄	28 28 Days
Phosphorus	50 ml 10 g	P,G	Cool, 4°C pH <2 with H ₂ SO ₄	28 28 Days
TSS	500 ml	P,G	Cool, 4°C	7 NA Days

Section No. 6
Revision No. 1
Date: 02/17/94
Page 3 of 3

Table 6-1

Sample Containers, Preservatives, and
Holding Times for Aqueous and Solid Samples

Fraction	Vol. Req. (ml) Wt. Req. (g)	Container P=Plastic G=Glass	Preservation ^a	Holding Time' From Date of Collection Water Soil
TOC	125 ml 20 g	G	Cool, 4°C pH <2 with H ₂ SO ₄	28 28 Days

- ^a pH Adjustment with acid/base is performed on water samples only.
- b Sodium thiosulfate needed for chlorinated water samples
- Samples will be analyzed as soon as possible after collection. The times listed are the maximum times that samples will be held before analysis and still be considered valid.
- ^d Analysis 40 days from extraction.

NOTE: For volatiles analysis, the container should be filled completely, with no headspace. All sample containers, preservatives, and mailers will be supplied at no additional charge upon request, except for the special containers with traceability documentation. There is an additional charge for this type of container.

Section No. 7
Revision No.
Date: 08/26/93
Page 1 of 20

7. Sample Custody

samples are unpacked and inspected in the sample receipt area. At this time, the samples are examined for breakage and agreement with the associated client paperwork. The cooler temperatures will be checked upon receipt and recorded. As the samples are unpacked, the sample label information will be compared to the chain-of-custody record and any discrepancies or missing information will be documented. If necessary, the cooler will be closed and placed in cold storage until instructions and resolution of any discrepancies are received from the client.

A member of our Sample Administration Group will act as sample custodian for the project. To ensure accountability of our results, a unique identification number is assigned to each sample as soon as possible after receipt at the laboratory. When samples requiring preservation by either acid or base are received at the laboratory, the pH will be measured and documented, with the exception of samples designated for volatile analysis. Samples requiring refrigeration will be stored in our walk-in cooler which is maintained at 4° ± 2°C. The use of our computer system in tracking samples (by the LLI sample # assignment) will control custody of the sample from receipt until the time of its disposal. The security system on our laboratory building allows us to designate the entire facility as a secure area since all exterior doors are either locked or attended. Therefore, hand-to-hand chain of custody is not part of our routine procedure, but is available upon request. If requested, hand-to-hand chain of custody will be provided as per attached SOP-QA-104. The laboratory chain of custody will begin with the preparation of bottles. The procedures for sample log-in, storage, and

Section No. 7
Revision No.
Date: 08/26/93
Page 2 of 20

chain-of-custody documentation are detailed in the QA Standard Operating Procedures included in Section No. 7 (QA102, QA103, and QA104). Examples of sample labels and a custody seal are shown in Figure 7.1.

Section No. 7
Revision No.
Date: 08/26/93
Page 3 of 20

Figure 7.1

CLIENT	CLIENT If you do not have an account with us, results will not be released until payment is received.					
SAMPLE INDENT	TFICATION / LOCAT	ION	CL. RES:			
COLLECTION INFO	RMATION		□ COMPOSITE			
DATE	TIME	BY:	U GIAS			
TESTING REQUIRE			PRESERVATIVE(S) ADDED			

LLIS

Sample Label (Field)

₩ 1869683 DIS-000 26A 10/16/92

GRP-353016

00649-ABC MANUFACTURING, INC. MI-4 GRAB MATER SAMPLE SEMI-ANNUAL MONITORING PROTECT COLLECTED ON 10/17/92 AT 1525 BY FRB 0219 0220 0516 1126

Sample Label (Laboratory)

CUSTODY SEAL

DATE:

2425 New Holland Pike, Lancaster, PA 17801-5994 (717) 656-2301

Section No. 7
Revision No.
Date: 08/26/93
Page 4 of 20

Initiated Date: 03/87

Effective Date:

APR 1 4 1993

QUALITY ASSURANCE OPERATIONS MANUAL SOP-QA-102

Title: Sample Log-in

Purpose:

In order to provide accountability of our results and to prevent sample loss or mix-up, a unique identification number is assigned to each sample.

Scope:

This SOP will cover the procedure used to log-in samples received for analysis.

Procedures:

1. All samples received by laboratory personnel shall be delivered to the Sample Administration Group immediately upon arrival at the laboratory. The only exception to this requirement will be samples which are not tracked using the computerized Sample Management System (SMS). There are only a few cases where samples will be not be tracked using the SMS. These include samples which will be stored for a long period of time prior to analysis, (e.g., stability storage) and samples for special projects that will be reported in a narrative R&D report instead of on the usual computerized analytical reports.

Section No. 7
Revision No.
Date: 08/26/93
Page 5 of 20

SOP-QA-102

Initiated Date: 03/87 Effective Date: APR 14 1993

The procedures for sample log-in described in this SOP apply only to samples which are logged into the SMS. However, a written procedure for tracking any samples not entered into the SMS must be developed by the technical department responsible for the project or analysis of those samples.

- 2. All client correspondence relating to samples shall also be transferred to the Sample Administration Group. This includes purchase orders, quotes, letters and completed entry request forms.
- 3. Personnel of the Sample Support Group shall log the samples into the computer as soon as practical after receipt. The computer will assign a unique identification number to each sample. Samples shall be logged in on the same day they are received with the following exceptions:
 - a. Samples received during a holiday or between 6 p.m. on Friday and 6 p.m. on Sunday. These samples shall be logged-in on the next normal work day.
 - b. Samples submitted by clients without any indication of the tests to be performed or with unclear or incomplete information. Every effort shall be made to contact the client on the same day as sample receipt.

If same day entry is not possible, any special storage requirements (e.g., refrigeration) should be observed.

Section No. 7
Revision No.
Date: 08/26/93
Page 6 of 20

SOP-QA-102
Initiated Date: 03/87
Effective Date: APR 14 1993
Page 3 of 4

- 4. Upon assignment of a sample number, the computer will generate a label which shall be attached to the sample container. The information on the label will include the LLI sample number, the client name, the storage location, a list of analyses requested (by analytical method number), a bottle code indicating container and preservative type, and a unique bar code.
- 5. Addition of preservatives to unpreserved samples will be the responsibility of the Sample Administration Group.

 Preservation should be performed immediately after log-in. A list of preservatives required for routine analyses may be found in the Fee Schedule.
- 6. All entries in preservation notebooks and on client paperwork shall be made in ink. The error correction procedure given in SOP-QA-109 shall be followed for any changes made in this documentation.
- 7. After samples are logged-in (or preserved, if required) they shall be stored in the computer-assigned location. If the computer-assigned location is inappropriate for the samples, the location code may be changed by manually overriding the computer.
- 8. The LLI sample number assigned to each sample shall be used to identify the sample in all records, including laboratory notebooks, instrument printouts, and

Section No. 7
Revision No.
Date: 08/26/93
Page 7 of 20

SOP-QA-102
Initiated Date: 03/87
Effective Date: APR 1 4 1993

laboratory reports. The sample number shall be used to identify all additional containers of the sample which may be created during the sample preparation and analysis. This includes subsamples, extracts, and digestates.

SOPQA102.W51 SOP QA #1 032493

Prepared by:	m Lacu	is Dear	Date:	4/8/43
Approved by:	g Walan	Hersley	Date:	4/8/93
Read and unde	erstood by: _		Date:	

Section No. 7
Revision No.
Date: 08/26/93
Page 8 of 20

Initiated Date: 3/87
Effective Date: FEB 1 2 1992

QUALITY ASSURANCE OPERATIONS MANUAL STANDARD OPERATING PROCEDURE QA-103

Title: Sample Storage and Disposal

Purpose:

Sample integrity can be compromised by improper storage conditions. The objective of these procedures is to prevent samples from deteriorating prior to analysis. The computerized sample management system (CSMS) is used to assign storage locations and to monitor the orderly storage of samples in locations from which they are easily retrieved for analysis or discard at the appropriate date.

Scope:

This SOP will outline procedures used in storing samples, retrieving and returning samples for analysis, and discarding samples when their holding time expires.

Procedures:

- Personnel of the Sample Administration Group will designate the approximate size and type (e.g., refrigerator, freezer or room temperature) of sample storage required for each group of samples as they are logged onto the CSMS. The computer will assign the storage location and record the length of time the sample must be retained after the analysis report has been issued. Samples will be stored in the assigned location. If the location is not suitable (e.g., insufficient space), the storage location may be changed using the manual override on the computer. refrigerated space has been requested and all the computerized refrigerator locations are occupied, the sample will be assigned a WLK000 location. Storage of samples with this designation will be assigned locations in overflow refrigerators and will be tracked using a manual system until computerized locations are available.
- 2. Analysts requiring the use of a sample may determine its location by referring to the daily sample status sheet. There are varying degrees of security on sample storage locations. The procedures for removal of samples from these locations are as follows:

Section No. 7
Revision No.
Date: 08/26/93
Page 9 of 20

SOP-QA-103

Initiated Date: 3/87

Effective Date: FEB 1 2 1992

Page 2 of 3

a. Free access locations are those which are neither locked nor attended by a sample custodian. These areas are usually located within an individual group's laboratory and samples may be removed from and returned to these locations without documentation. However, if the sample must be taken out of the laboratory, documentation may be requested. Care shall be exercised in returning the sample to its appropriate location.

- Controlled access areas are attended by a sample custodian and are usually large areas used by more than one group. Samples stored in controlled access areas can be removed only after requisitioning the sample via the CSMS. The sample custodian will retrieve the requisitioned samples from the storage locations and scan the barcode label. This process documents the sample transfer from the sample custodian to laboratory personnel. After use, the samples are returned to the sample storage center, scanned by the sample custodian and returned to the designated storage location. Only Sample Administration personnel shall be admitted to controlled access areas. The only exception to this rule will be during weekend hours when no sample custodians are on duty. During these hours, samples must be requisitioned as above, but analysts must retrieve the samples themselves, by obtaining a key to the controlled access area from the security desk. Samples must be scanned out as above. After use, samples must be scanned in and placed on the return cart inside WK. Sample custodians will return these samples to their location when they come on duty.
- c. Forensic storage areas are locked and admission to these areas is only permitted to sample custodians. Most of the samples stored in these areas require strict chain-of-custody documentation as outlined in SOP QA-104, and should be requisitioned as described in (b) above. Samples may not be removed or returned to these areas without signing chain-of-custody forms.
- To prevent unnecessary deterioration of the samples, the aliquots needed for analysis shall be removed and the sample returned to storage with a minimum of delay.

Section No. 7
Revision No.
Date: 08/26/93
Page 10 of 20

SOP-QA-103

Initiated Date: 3/87

Effective Date: FEB 1 2 1992

Page 3 of 3

4. The Sample Administration Group will generate a discard list of samples with retention dates that have expired. The retention dates are based upon client requirements or defaulted to a given number of days past the date when the report is generated, if no client requirements were given. These samples will be removed from storage by a member of the Sample Support Group or a member of the department responsible for the given storage location. Hazardous samples shall either be returned to clients, decontaminated or disposed of at the direction of supervisory personnel. Prior to discarding each sample, the barcode will be scanned to prevent discard of the wrong sample.

5. The temperature of each refrigerator or freezer used for storing samples or reagents requiring temperature control should be checked during each normal working day by an assigned member of the group responsible for the samples stored within and recorded on a log posted on the outside of the unit. Refrigerator temperatures should be maintained at 4°C ± 2°C and freezer temperatures should be maintained at -15°C ± 5°C. If the temperature recorded does not fall within these ranges, the Maintenance Department should be contacted. Any repairs should be recorded and filed with the temperature log. All documentation of temperature checks and maintenance shall be kept in ink and any changes made shall follow the error correction procedure given in SOP-QA-109.

QA103 SOP QA #1 021092

Read and unde	rstood by:	Date:	
Approved by:	& mlum Hersberg	Date:	<u> </u>
Prepared by:	m. Louis Olso	Date:	0/12/92

Section No. 7
Revision No.
Date: 08/26/93
Page 11 of 20

Initiated Date: 3/87 Effective Date: 001231992

QUALITY ASSURANCE OPERATIONS MANUAL SOP-QA-104

Title: Chain-of-Custody Documentation

Purpose:

In order to demonstrate reliability of data which may be used as evidence in a legal case or required by a regulatory agency, an accurate written record tracing the possession of the sample must be maintained from the time it is entered into the computer system until the last analysis is verified.

Scope:

Procedures for initiating and maintaining chain-of-custody (COC) documentation are described in this document.

Definition:

A sample is in custody if it is in any one of the following states:

- 1. In actual physical possession.
- 2. In view after being in physical possession.
- In physical possession and locked up so that no one can tamper with it.
- 4. In a secured area, restricted to authorized personnel. (e.g., any one of the individual laboratories in the building)

Section No. 7
Revision No.
Date: 08/26/93
Page 12 of 20

SOP-QA-104
Initiated Date: 3/87
Effective Date: OCT 2 3 1992
Page 2 of 10

Procedures:

1. Chain-of-custody documentation shall be kept upon request of the client or for any samples which are known to be involved in a legal dispute. As with all analytical data, it is extremely important that documentation be filled out completely and accurately with every transfer. If changes to the form need to be made, the error correction procedure given in SOP-QA-109 shall be followed.

Long the Contract

- 2. If requested by the client, the chain-of-custody documentation will begin with the preparation of bottles. A form (see Attachment 1) will be initiated by the person packing the sample bottles for shipment to the client. If the delivery of bottles is via our Transportation Department, the driver shall sign the form when relinquishing the bottles. Drivers must also sign chain-of-custody forms when picking up samples which require such documentation.
- 3. When samples arrive at the laboratory, a member of the Sample Administration Group will receive them and sign the chain-of-custody form, if one is provided with samples. If the sample was picked up by our Transportation Department, the driver must sign to indicate relinquishing the sample to Sample Receipt.
- 4. Samples will be logged into the computer as described in SOP-QA-102. Sample Administration personnel shall enter the analysis number for "laboratory chain-of-custody." A lab note to inform analysts of the need for chain of custody will be automatically added to sample labels.

Section No. 7
Revision No.
Date: 08/26/93
Page 13 of 20

SOP-QA-104

Initiated Date: 3/87

Effective Date:

OCT 2 3 1992

Page 3 of 10

5. Sample Administration personnel shall initiate an internal "Laboratory Chain-of-Custody" form (Attachment 2) for each type of container in the sample group, and relinquish the samples to a sample custodian or designated key holder, who will store the samples in the assigned locked location. This change of custody from sample entry to storage shall be documented on the chain, as well as any interim exchanges for preservation, homogenization, or temporary hold storage. The internal chain-of-custody forms will then accompany the samples throughout the lab. A master list of chains started for each sample group should also be initiated at this time.

- 6. At this point, the original copy of the external client chain-of-custody will be filed with Accounts Receivable, to be returned to the client with the invoice. Other copies of the external COC (pink or yellow) will stay with the client's paperwork file.
- 7. All signatures documenting changes of custody will use the following format: first initial, full last name, and employee number. Dates will include month/day/year, and all time will be in military time. Black ink is preferred. Pencil or red ink is not acceptable. Attachment 2 shows examples of chain-of-custody documentation.
- 8. Sample handling should be kept to a minimum. Analysts requiring use of a sample will requisition it through the computer requisition program. During the hours where Sample Support is manned by sample custodians, the custodian will receive the computerized requisition, and remove the sample from storage. The custodian will ensure that the bottle type listed on

Section No. 7
Revision No.
Date: 08/26/93
Page 14 of 20

SOP-QA-104

market and the second

Initiated Date:

3/87

Effective Date: Page 4 of 10

OCT 2 3 1992

the chain of custody matches the bottle type being relinquished, then sign the "released by" column to indicate the sample has been relinquished, and fill in the date and time. The analyst shall sign the "received by" column and note the reason for change of custody before taking the samples to their work area. It will be a shared responsibility of technicians and sample custodians to ensure that forms are signed with each transfer.

- 9. All changes of custody must be documented on the form. The following changes of custody shall be handled as follows:
 - a. Signatures involving transfers from one shift to another shall be the responsibility of the technician who originally acquired the sample from Sample Support. When samples are then returned to storage, the person returning the samples shall be responsible to sign the "released by" column, and to ensure that samples were properly received by the custodian with his/her signature in the "received by" column.
 - b. Occasionally a sample container will be needed for analysis by a technician in a department while it has been signed out to a technician in another department. It will be the responsibility of the first technician who received the sample to see that the second technician needing the sample signs the COC for receipt and return of the sample to the first technician.

Section No. 7
Revision No.
Date: 08/26/93
Page 15 of 20

SOP-QA-104

Initiated Date:

3/8/

Effective Date:

OCT 2 3 1992

Page 5 of 10

In situations where a sample group must be split between departments working on different analyses, . . a supplemental chain of custody may be initiated by Sample Support. This supplemental chain will be used to accompany that portion of the group which is needed by a second department, when another department has part of the group and the chains of custody for the whole group. Initiating supplemental chains of custody may only be done by Sample Support and ExpressLAB, and should be used only when necessary to minimize paperwork and confusion. Sample Support will also document on a Masterlist, all chains and supplemental chains initiated for any sample group. This Masterlist of chains will be made available to Data Packages who collect all chains for packages.

- d. Weekend work hours do not always have a sample custodian available. During these times the Lancaster Labs security personnel function as key holders to the storage areas. Technicians requiring use of samples over these times must requisition samples the previous day. These samples will be placed in the sample support hold walkin by a sample custodian. It will be necessary to page the security staff on weekends to acquire access to the hold walkin. Technicians will sign the COC for their own sample release by recording "SSG Storage" in the "Released By" column, and again in the "Received By" column when the sample is returned to the hold walkin.
- e. Some samples are released by Sample Support and stored temporarily in other areas of the laboratory e.g. GC/MS Volatiles. During this time they may be

Section No. 7 Revision No. Date: 08/26/93 Page 16 of 20

SOP-QA-104

Initiated Date: 3/87

Effective Date: OCT 23 1992

Page 6 of 10

" worked on by several people in that department. Each of these people must sign for change of custody. These samples when completed are then returned to Sample Support. It will be the responsibility of the department who held temporary storage to see that all necessary signatures are on the chain of custody form before returning samples and forms, at the same time, to Sample Support. It is also important to return these sample groups as soon as possible after verification of data, because the chains may be required for data packages.

- 10. Analysts in possession of samples shall remove the aliquot required for analysis and return the sample to storage, as described in #12 below, with a minimum of delay. During the time of possession, samples must remain in the analyst's view or be in a designated storage area within a secure lab restricted to authorized personnel.
- If additional containers of the sample are created 11. (e.g., subsamples, extracts, distillates, leachates, etc.) an additional chain-of-custody form marked with container type shall be initiated to accompany the new sample container. Each department in the lab has specifically designed chain-of-custody forms which shall be used for the new containers they create. All changes of custody involving handling of new containers within the department (e.g, analysis, storage, vials on instruments, etc.) shall be documented on the department specific chain. Any special handling or documentation requirements for department chains that are specific to any one department, should be described in a department SOP.

Section No. 7
Revision No.
Date: 08/26/93
Page 17 of 20

SOP-QA-104

Initiated Date: 3/87

Effective Date:

OCT 2 3 1992

Page 7 of 10

The only exception to the additional container form requirement will be for clients who specify chain of custody for the original sample only. In this case, no forms for sample preparation will be required.

After completion of new container sample analyses for department chains, the completed forms will be collected by the department's Data Package coordinator to be given to the Data Package department with the package data.

- 12. After analysis, samples shall be relinquished to a sample custodian who will return the samples to locked storage. The forms which remain in Sample Support shall be signed again to indicate storage, and the sample custodian will review the forms to ensure that all transfers are completely documented before filing the forms. Sample custodians will not return a sample to its storage location without signing an accompanying chain.
- 13. All completed forms for the original sample containers will be retained in files in Sample Support. The Data Package group will retrieve these forms to be copied for inclusion in the data packages. All original forms are either returned to the client or retained here, depending on the client's wishes.
- 14. All sample handlers in Sample Administration, Sample Support, and technical centers will make every attempt to ensure that all changes of custody are properly documented. Disciplinary action may be taken for employees who fail to comply with this important requirement.

Section No. 7
Revision No.
Date: 08/26/93
Page 18 of 20

SOP-QA-104

Initiated Date:

3/87

Effective Date: Page 8 of 10

OCT 2 3 1992

15. In the event that a signature or other information is not recorded on the chain of custody, the Sample Support and Data Package groups shall determine what information is missing by checking computer requisition records, raw data, or Sample Support work schedules. The corrected information shall be added to the chain of custody and signed and dated with the current date of information entry.

SOPQA104.W51 SOP QA #1 102392

Prepared by: <u>Conttan adult</u>	Date:	10/23/92
Approved by:	Date:	2/8/42
Approved by: Lothfun M. Laurn	Date:	10/8.5/92
Read and understood by:	Date:	

Analysis Request/Environmental Services

Lancaster Laboratories
Where quality is a science.

Chain of Custody

Plea	se print. Instruc	lions or	1 FYC	erse :	ide c	corre	espon											
Client:			_【	Ŋij.	经			③ <i>A</i>	避		. Ú	lyse	Rec	us(SEAL C		For LL1 u	se anly
Project Name/#:		_	_ 🖁	Č	黄	黑			7	$\overline{}$	7	7		7	$\overline{}$	FSC	_	
Project Manager:	P.O. # :	-	_ 🖺					/ .							/ /	/ PSC:		—
Sampler:	Quote # :		_				١,	/. /	/	/ /	/ /	/ /	/ /	/ ,	/ /	SCR	#:	
Project Manager: Sampler: Sample Identification		Q:			18 C	1011 (E)	/	/	/	/	/	/				G Grand	narks i	
	<u> </u>	1		Ţ	!					Ī	i	!	:	:				
		\sqcap		T					Ī			i	İ	Ī				
·	.	II	Т	T								1			•	•		
		П																
			T											1				
	•																	
																		•
·	1	П	7	Τ						П								
				Γ	П													
Turnaround time requested tokate circles. Norm	al Rush	Reli	ories inquis	hed hed	37.5				7	314	714.	1.00	ijy;	指				温度
(Rush TAT is subject to LLI approval and surcharge.)							_		Ī			Ι.					1	
Rush results requested by splease circles:		Reli	nguis	hed	100	<u> </u>				ДĊ	ŢŢ.	Rec	άŊ	74.1			II COUR	Trees
Fax Fax #:	_	276	*====	707	rece.	L G	4 · No.	ברנות	STE 1	Size	200	 	3.34 T	17355	n in the	.स.स्या <u>स्य</u>		122-7-27
Phone Phone #:		Keli	nguu	neo	y <u>.</u> E		<u> </u>	37.Ki		vale	il line	Keç	il (C)	?/c~		2431	TAX PAGE	11 me >
Data package options (please circle if requested):		Dáli	DOU!			2075	3.64	55	231 231	Na F	Time	Reci	1766		4	545/21	Daie	i Thanks
QC Summary Tier 1 (NJ) Site-specific QC required (If yes, indicate QC samp	? Yes No le and submit	File	,		-C(h	و من آمو	جدا السنة		228						4.50/	11.76		
Tier II (NJ) triplicate volume.)		. Reli	nguis	bed	77.	-332	36.00	34	egi.	0.E	Time	Rec	J. (2. 1	æ m	Police		SA DIE	The
EPA CLP Data Package Chain of Co	ustody required?	1000	-1-02			, eng		J. S. J. J. S. J.			<u> </u>		آخ کاف			-14-50-21		

Revision No.
Date: 08/26/93
Page 19 of 20

Copies: Where and Yellow croics accompany samples to lab. Pink is received by elic

4/34/71 #2102

Section No. 7 Revision No. Date: 08/26/93 Page 20 of 20

SOP-QA-104

Initiated Date: 3/87
Effective Date: OCT 23 1992
Page 10 of 10

Attachment 2 Locked Storage Chain of Custody

ORIGINAL SAMPLE

Client/Project:	13.C E	ngineeri	19		
Preservative:			Matrix:	<u> </u>	<u>w</u>
Sample # Range of Entry Group: / [7]	16402-	416	Bottle 1		lastic
SDG: ABCI	gallo	n plastic			
Sample Number(s)	Released by	Received by	Date	Time	Reason for Change of Custody
1716402 -416.	A.Huthisa 210	cadutl 266	slacks	1115 -	from entry to strong
		•			
		<u>- ·.</u>			
				•	
	,		•		
		. • -			

Page | of |

Section No. 8
Revision No.
Date: 08/26/93
Page 1 of 5

8. Calibration Procedures

Procedures for initial calibration and continuing calibration verification are in place for all instruments within the laboratory. The calibrations generally involve checking instrument response to standards for each target compound to be analyzed. The source and accuracy of standards used for this purpose are integral to obtaining the best quality data. Standards used at Lancaster Laboratories, Inc. (LLI) are purchased from commercial supply houses either as neat compounds or as solutions with certified concentrations. The accuracy and quality of these purchased standards is verified through documentation provided by these commercial sources. Most solutions and all neat materials require subsequent dilution to an appropriate working range. All dilutions performed are documented and the resulting solution is checked by obtaining the instrument response of the new solution and comparing with the response to the solution currently in Any discrepancies between the responses are investigated and resolved before the new solution is used. Each standard is assigned a code which allows traceability to the original components. The standard container is marked with the code, name of solution, concentration, date prepared, expiration date, and the initials of the preparer. Shelf-life and storage conditions for standards are included in the standard operating procedures and old standards are replaced before their expiration date.

Each instrument is calibrated with a given frequency using one or more concentrations of the standard solution. As analysis proceeds, the calibration is checked for any unacceptable change in instrument response. If the calibration check verifies the initial response, the analysis proceeds. If the calibration check indicates that

Section No. 8
Revision No.
Date: 08/26/93
Page 2 of 5

a significant change in instrument response has occurred, then a new calibration is initiated. If necessary, maintenance may be performed prior to the recalibration.

Calibration records are usually kept in the form of raw data with the other instrument print-outs. In cases where no data system is used, calibration data is manually recorded in notebooks. Any maintenance or repair is also recorded in a notebook. The information recorded either in the notebooks or on the instrument print-out includes the date, instrument ID, employee name and/or identification number, and concentration or code number of standard.

The frequency of calibration and calibration verification, number of concentrations used, and acceptance criteria for each of the instruments to be used are listed on Table 8-1. In addition to checking the instrument response to target compounds, the GC/MS units are checked to ensure that standard mass spectral abundance criteria are met. Prior to each calibration, instruments being used for semivolatile analysis are tuned using decafluorotriphenylphosphine (DFTPP). The key ions and their abundance criteria are listed in Table 8-2.

· Table 8-1

Initial Calibration	Continuing Calibration Verification

Instrument	Frequency	Number of Standard Concentration	Acceptance Criteria	Frequency	# Std Conc	Acceptance Criteria
GC VOA BTEX	After C-cal fails	5	RSD of <20% Otherwise use calibration curve	Every 8-10 hours, or every 10 samples	1	%D ± 15%
HPLC	Each new run, or After C-cal fails	5	≥ 20% RSD of RF's of initial calibration to use ave. RF, otherwise use curve fit.	Every 10 samples	1 .	<pre>≤ 15% difference from initial response for quantitation, ≤ 20% difference for confirmation</pre>
GC/MS PAHs	After C-cal fails	· 5	RF for SPCC's ≥ 0.050. Max %RSD for CCC's ≤ 30%	Every 12 hours	1	RF for SPCC's ≥ 0.050. Max &D for CCC's ≤ 30%
Technicon Autoanalyzer	Daily	5	Correlation coefficient > 0.995	Every 10 samples	1	± 10% of true value
Alpkem Autoanalyzer	Daily	6	Correlation Coefficient >0.995	Every 10 samples	1	± 10% of true value
Ion Chromatograph	Daily (Every 194 injections)	6	Correlation Coefficient >0.995 ICV ± 10%	Every 10 samples	1 .	± 10% of true value
Spectrophoto- meter (Colorimetric)	Quarterly	6 .	Correlation coefficient > 0.995	Daily or every 10 samples	1	± 20% of EPA std.
TOC Analyzer	Daily	5	± 10% @ STD	Every 10 samples	1	1 10% of true value
Oxygen Heter	Daily	Calibration Against Winkler Titration	NA	МА	NA	NA

Revision No. 8

Revision No.

Date: 08/26/93

			Table 8-1			
1	nitial Calibr	ation	Continuing	Calibration	Verifi	cation
Instrument	Frequency	Number of Standard Concentration	Acceptance Criteria	Frequency	# std Conc	Acceptance Criteria
pH Meter	Daily	Slope 2 Buffers	Independent calibration verification ± 3%	Every 10 samples	1	± 3%
Balance	Daily	4	± .5%	NA ·	NA	NA

Abbreviations

Std Conc is the number of standard concentrations used.

SPCCs are system performance check compounds.

CCCs are calibration check compounds.

RF is response factor.

RSD is percent relative standard deviation.

***D** is percent difference.

C-cal is continuing calibration.

Section No. 8
Revision No.
Date: 08/26/93
Page 5 of 5

·	Table 8-2						
Mass Ion Abundance Criteria							
DTFPP Key Ions an	d Ion Abundance Criteria:						
51	30 to 60% of mass 198						
68	less than 2% of mass 69						
69	mass 69 relative abundance						
70	less than 2% of mass 69						
127	40 to 60% of mass 198						
197	less than 1% of mass 198						
198	Base peak, 100% relative abundance						
199	5 to 9% of mass 198						
275	10 to 30% of mass 198						
365	greater than 1% of mass 198						
441	Present but less than mass 443.						
442	greater than 40% of mass 198						
443	17 to 23% of mass 442						

Section No. 9
Revision No.
Date: 08/26/93
Page 1 of 10

9. Analytical Procedures

The analytical procedures to be used are those described in USEPA 600/4-79-020 and in the USEPA SW-846 3rd Edition, 1986, for the preparation and analysis of water, sediment, and soil for the client specified compounds. Copies of the analytical procedures are located in the laboratory and available for use by analysts. Copies of analytical methods are available upon request.

<u>PAHs by GC/MS</u> - This method determines the concentration of semivolatile organic compounds that are separated into an organic solvent and are amenable to gas chromatography. The method involves solvent extraction of the sample to isolate analytes and GC/MS analysis to determine semivolatile compounds present in the sample. Method 8270.

<u>Volatiles by GC</u> - This method determines the concentration of volatile (purgeable) organic compounds. The analysis is based on purging the volatiles from the sample onto an appropriate sorbent trap and desorbing the volatiles onto a gas chromatographic column. Using an appropriate temperature program, the compounds are separated by the column and both qualitative and quantitative detection is achieved with a Photoionization and/or Electrolytic Conductivity detector. Method 5030/8010/8020.

<u>PAHs by HPLC</u> - The sample aliquot is extracted with methylene chloride. The extract is filtered (soils), dried, concentrated by evaporation and exchanged into acetonitrile. Silica gel cleanup is used if necessary. The extract is analyzed by reverse phase HPLC with both UV and Fluorescence detectors. Methods 3550/3630/8310.

Section No. 9
Revision No.
Date: 08/26/93
Page 2 of 10

Biochemical Oxygen Demand - A seeded sample of the waste is incubated with nutrients for five days at 20°C. The reduction of dissolved oxygen (DO) concentration during the incubation yields a measure of the BOD. The DO is used by microorganisms as they breakdown carbonaceous organic material. If nitrifying bacteria are present, nitrogenous compounds can add to the BOD. Complex organic compounds may not show a BOD if they cannot be assimilated by the seed bacteria.

Methods for the Chemical Analysis of Water and Wastes, USEPA 600/4-790-020. Method 405.1.

Chemical Oxygen Demand - This method is appropriate for midlevel water samples. Chemical oxygen demand is a measure of the total amount of oxygen required for oxidation of waste to carbon and water. The sample is heated for two hours in an acidic solution with a strong oxidizing agent, potassium dichromate. The sample is analyzed colorimetrically at 600 nm.

Methods for the Chemical Analysis of Water and Wastes, USEPA 600/4-79-020. Method 410.4.

Oil and Grease - This is the gravimetric method for liquid samples. Two containers should be submitted for each sample. The sample is acidified to a low pH (<2). A one liter aliquot is extracted with 3 - 30 ml portions of freon. The extracts are passed through sodium sulfate to remove any water and are combined in a tared vessel. The freon is evaporated and the residue is weighed to a constant weight.

Methods for the Chemical Analysis of Water and Wastes, USEPA 600/4-79-020, Method 413.1.

Section No. 9
Revision No.
Date: 08/26/93
Page 3 of 10

<u>Ammonia Nitrogen</u> - The sample is buffered to a pH of 9.5 with borate buffer and is then distilled into a solution of boric acid. The ammonia in the distillate is titrated with standard sulfuric acid using a mixed indicator.

Methods for Chemical Analysis of Water and Wastes, USEPA 600/4-79-020. Method 350.2.

<u>pH</u> - The activity of hydrogen ions in the sample is measured using a glass electrode and a reference electrode.

Methods for the Chemical Analysis of Water and Wastes, USEPA 600/4-79-020, Method 150.1.

<u>Nitrate Nitrogen</u> - A small volume of sample is introduced into an ion chromatograph. The anions are then separated and measured by a system consisting of a guard column, separator column, suppressor, and conductivity detector. A Dionex Model 2010 Ion Chromatograph is used.

Methods for Chemical Analysis of Water and Wastes, USEPA 600/4-79-020. Method 300.0.

Kjeldahl Nitrogen - The sample is digested with sulfuric acid, potassium sulfate, and mercuric sulfate. This solution is then analyzed for the converted ammonia nitrogen using the reaction of the ammonia and sodium salicylate, sodium nitroprusside, and sodium hypochlorite in a buffered alkaline medium to form an ammonia salicylate complex. The absorbance is read at 660 nm and is compared to a standard curve. A Technicon Autoanalyzer II is used.

Methods for Chemical Analysis of Water and Wastes, USEPA 600/4-79-020. Method 351.2.

Section No. 9
Revision No.
Date: 08/26/93
Page 4 of 10

Phosphorus - All forms of phosphorus are converted to orthophosphate by an acid-persulfate digestion. The orthophosphate ion reacts with ammonium molybdate in acidic solution to form an antimony-phosphomolybdate complex. On reduction with ascorbic acid, this complex turns blue. The absorbance is read at 660 nm and is compared to a standard curve. An Alpkem Autoanalyzer is used.

Methods for Chemical Analysis of Water and Wastes, USEPA 600/4-79-020. Method 365.1.

Total Suspended Solids - A well-mixed sample is filtered through a tared gooch crucible. The residue on the filter is dried to a constant weight at 103 to 105°C. The increase in weight is the Total Suspended Solids.

Methods for Chemical Analysis of Water and Wastes, USEPA 600/4-79-020. Method 160.2.

Moisture - A known sample weight is placed in a drying oven maintained at 103 to 105° for 12 to 24 hours. The sample is reweighed after drying and this value is divided by the original weight. The result is used to calculate analytical concentration on a dry weight basis.

Methods for Chemical Analysis of Water and Wastes, USEPA 600/4-79-020. Method 160.3.

Total Organic Carbon (TOC) - Following acidification, the sample is purged with nitrogen to remove inorganic carbon. Persulfate is injected to oxidize organic carbon to carbon dioxide which is detected by IR. An OI Model 700 TOC Analyzer is used. Method 9060.

Section No. 9 Revision No. Date: 08/26/93 Page 5 of 10

PAHs by GC/MS 8270							
	Wat	ers	Soi	ls**			
Compound	LOQ* (ug/1)	J-Value (ug/l)	LOQ* (ug/kg)	J-Value (ug/kg)			
Naphthalene	10.	1.	330.	30.			
Acenaphthylene	10.	1.	330.	30.			
Acenaphthene	10.	1.	330.	30.			
Fluorene	10.	1.	330.	. 30.			
Phenanthrene	10.	1.	330.	30.			
Anthracene	10.	1.	330.	30.			
Fluoranthene	10.	1.	330.	30.			
Pyrene	10.	1.	330.	30.			
Benzo(a)anthracene	10.	1.	330.	30.			
Chrysene	10.	1.	. 330.	30.			
Benzo(b)fluoranthene	10.	1.	330.	30.			
Benzo(K)fluoranthene	10.	1.	330.	30.			
Benzo(a) pyrene	10.	1.	330.	30.			
Indeno(1,2,3-cd)pyrene	10.	1.	330.	3Ö.			
Dibenzo(a,h)anthracene	10.	1.	330.	30.			
Benzo(ghi)perylene	10.	1.	330.	30.			

Section No. 9
Revision No.
Date: 08/26/93
Page 6 of 10

- * Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.
- ** Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry weight basis will be higher.

The laboratory routinely reports at the limit of quantitation (LOQ) but can estimate down to the "J"-Value when requested by the client. Values reported below the LOQ are reported with a J-flag and are defined as estimated values.

Section No. 9
Revision No.
Date: 08/26/93
Page 7 of 10

Volatiles by GC								
	Wat	ers	Soi	ls**				
Compound	LOQ* (ug/1)	J-Value (ug/1)	LOQ*	J-Value (ug/kg)				
Benzene	1.	.1	5.	1.				
Toluene	1.	.1	5.	1.				
Ethylbenzene	1.	.1	5.	1.				
o-Xylene	1.	.1	5.	. 1.				
m-Xylene	1.	.1	5.	1.				
p-Xylene	1.	.1	5.	1.				

- * Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.
- ** Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry weight basis will be higher.

The laboratory routinely reports at the limit of quantitation (LOQ) but can estimate down to the "J"-Value when requested by the client. Values reported below the LOQ are reported with a J-flag and are defined as estimated values.

Section No. 9
Revision No.
Date: 08/26/93
Page 8 of 10

PAHs by HPLC 8310							
	. Wa	aters	So	lls**			
Compound	LOQ* (ug/l)	J-Value (ug/l)	LOQ* (mg/kg)	J-Value (mg/kg)			
Naphthalene	10.	.9	2.	.2			
Acenaphthylene	20.	.7	· 2.	.2			
Acenaphthene	20.	2.	2.	.2			
Fluorene	2.	1.	2.	.05			
Phenanthrene	2.	.04	0.5	.006			
Anthracene	1.	.03	0.5	.005			
Fluoranthene	0.5	.02	0.2	.005			
Pyrene	2.	.5	0.2	.08			
Benzo(a)anthracene	0.1	.04	0.01	.004			
Chrysene	1.	.2	0.1	.04			
Benzo(b) fluoranthene	0.2	.03	0.02	.004			
Benzo(k)fluoranthene	0.1.	.01	0.02	.002			
Benzo(a) pyrene	0.2	.02	0.02	.005			
Dibenzo(a,h)anthracene	0.2	.04	0.02	.01			
Benzo(g,h,i)perylene	0.5	.2	0.05	.03			
Indeno(1,2,3-cd)pyrene	0.5	.1	0.05	.04			

Section No. 9
Revision No.
Date: 08/26/93
Page 9 of 10

- * Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.
- ** Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry weight basis will be higher.

The laboratory routinely reports at the limit of quantitation (LOQ) but can estimate down to the "J"-Value when requested by the client. Values reported below the LOQ are reported with a J-flag and are defined as estimated values.

	Waters		Soils**	
Parameter	LOQ* (mg/l)	J-Value (mg/l)	LOQ* (mg/kg)	J-Value (mg/kg)
TOC .	0.5	.04	50.	1.
Ammonia-N	1.0	.3	50.	3.0
Kjeldahl-N	0.2	.2	50.	25.
Phosphorus	.05	.03	Wt. dependent	4.
рн	0.01	.01	0.01	.01
Nitrate-N	0.1	.009	1.0	.09
COD	50.	14.	.50.	6.
BOD	2.0	.6	NA	NA
TSS	7.0	2.3	NA	NA
Oil and Grease	0.2	.07	60.	9.

- * Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.
- ** Quantitation limits listed for soil/sediment are based on wet weight.

 The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry weight basis will be higher.

Section No. 10 Revision No. Date: 08/26/93 Page 1 of 9

10. Data Reduction, Validation and Reporting

Raw analytical data generated in the laboratories is collected on printouts from the instruments and associated data system or manually in bound notebooks. Analysts review data as it is generated to determine that the instruments are performing within specifications. This review includes calibration checks, surrogate recoveries, blank checks, retention time reproducibility, and other QC checks described in Section No. 11. If any problems are noted during the analytical run, corrective action is taken and documented.

Each analytical run is reviewed by a chemist for completeness and accuracy prior to interpretation and data reduction. The following calculations are used to reduce raw data to reportable results.

GC/MS calculation used by the data system to determine concentration in extract for semivolatiles or in the sample itself for volatiles:

Q = (Ax) (Is) / (AIs) (RRF) (Vi)

Where Ax = peak area

AIs = internal standard peak area

Is = amount of internal standard injected (ng)

RRF = relative response factor

Vi = volume of extract injected (ul) or volume sample purged (ml) Section No. 10 Revision No. Date: 08/26/93 Page 2 of 9

The extract concentration is further reduced by considering the initial sample weight or volume and the final extract volume:

Concentration = (Q) (D) (F) (1000) / (I)

Where Q = concentration determined by the data system (mg/l)

D = dilution factor if needed

F = final extract volume (ml)

I = initial sample weight (grams) or volume (ml)

Results are reported in ug/l for water samples and ug/kg for solid samples. Soil samples are reported on an as received and on a dry weight basis. The results are reported on LLI Analysis Report Forms shown in Appendix A.

For Volatiles by GC, a five-point external calibration procedure is used. The resulting point-to-point calibration curve is used by the data system to calculate analyte concentrations. The equations that the data system uses for calculating analyte concentrations are shown below.

A. When analyte peak height, Hx, falls between the peak heights of two calibration points, Hn and Hn+1, the analyte concentration is calculated as follows when using a point-to-point calibration curve:

Concentration = $([(Hx - Hn) / S] + An) \times (DF)$

S = (Hn+1 - Hn) / (An+1 - An)

Section No. 10
Revision No.
Date: 08/26/93
Page 3 of 9

Where Hx = analyte peak height

Hn = analyte peak height in the nth calibration
level

Hn+1 = analyte peak height in the n+1 calibration
level

S = slope between the n and n+1 calibration points for the analyte

An = the concentration of the analyte in the nth calibration level

An+1 = the concentration of the analyte in the n+1 calibration level

DF = dilution factor

B. When the analyte peak height is below the peak height for the lowest calibration standard, the analyte concentration is calculated as follows when using a point-to-point calibration curve with extrapolation to zero:

Concentration = [(Hx) x (A1 / H1)] x (DF)

Where Hx = analyte peak height

A1 = concentration of analyte in the first calibration level

H1 = analyte peak height in first calibration level

DF = dilution factor

Results are reported in ug/l for water samples and in ug/kg for solid samples. Soil samples are reported on an as received and on a dry weight basis.

Section No. 10 Revision No. Date: 08/26/93 Page 4 of 9

The results for the PAHs by HPLC analysis are calculated using the following equation:

 $\frac{Pk \ Ht \ x \ RF \ x \ FV \ x \ DF \ x \ AF}{IV \ (or \ IW)} = Concentration \ (ug/1) \ or \ mg/kg$

Where Pk Ht = Peak height found in sample

W. W. W. S. W. C.

100 36 6 5

FV = Final volume of sample extract* (ml)

DF = Dilution factor (where applicable)

: IV = Initial volume of sample extracted (liters)

**AF = Additional factor

- *Please note that the final volume of the extract is 3 ml for aqueous and 10 ml for solids
- **Additional factor is 5 to compensate for the dilution into ACN

Results are reported as ug/l for water samples and mg/kg for solid samples. Soil samples are reported on an as received and on a dry weight basis. Results are reported on LLI Analysis Report Forms shown in Appendix A.

Section No. 10 Revision No. Date: 08/26/93 Page 5 of 9

The results for inorganic analyses are calculated using the following equation:

Concentration = (A) (D) (E) / (F)

Where A = the concentration determined by AA, ICP, or FTIR using calibration data programmed into the instrument (mg/l)

D = dilution factor if needed

E = final extract volume (ml)

F = initial sample volume (ml) or weight (gm)

Results are usually reported in mg/l for water samples and in mg/kg for solid samples. Alternate units are available upon request. Soil samples are reported on an as received and on a dry weight basis. The results are reported on LLI Analysis Report Forms shown in Appendix A.

The principle criteria used to validate data will be the acceptance criteria described in Sections No. 8 and 11 and protocols specified in laboratory SOPs. Following review, interpretation and data reduction by the analyst, data is transferred to the laboratory sample management system either by direct data upload from the analytical data system or manually. This system stores client information, sample results, and QC results. A security system is in place to control access of laboratory personnel and to provide an audit trail for information changes. The data is again reviewed by the Group Leader or another analyst whose function is to provide an independent review and verified on the sample management system. The person performing the verification step reviews all data including quality control information prior to verifying the data. Any errors identified and corrected during the review process are

Section No. 10
Revision No.
Date: 08/26/93
Page 6 of 9

documented and addressed with appropriate personnel to ensure generation of quality data. If data package deliverables have been requested, the laboratory will complete the appropriate forms (see Appendix A) summarizing the quality control information, and transfer copies of all raw data (instrument print-outs, spectra, chromatograms, laboratory notebooks, etc.) to the Data Packages Group. This group will combine the information from the various analytical groups and the analytical reports from the laboratory sample management system into one package in the client requested This package is reviewed by the Quality Assurance format. Department for conformance with SOPs and to ensure that all QC goals have been met. Any analytical problems are discussed in the case narrative, which is also included with the data package deliverables.

The validation of the data by the Quality Assurance
Department includes spot checking raw data versus the final
report, checking that all pertinent raw data is included and
does refer to the samples analyzed, review of all QC results
for conformance with the method, and review of the case
narrative for description of any unusual occurrences during
analysis. This validation is performed using techniques
similar to those used by the Sample Management Office for the
USEPA's Contract Laboratory Program. The validation
performed by the laboratory does not address useability of
the data, which usually requires some knowledge of the site.
The laboratory will make every attempt to meet the
requirements of this QAPP, thus reducing the need to assess
useability of the data.

Section No. 10 Revision No. Date: 08/26/93 Page 7 of 9

The laboratory sample management system is programmed to accept and track the results of quality control samples including blanks, surrogates, recoveries, duplicates, controls, and reference materials. The computer is programmed with the acceptance criteria for each type of QC sample and will display an out-of-spec message if the data is not within specifications. All data outside of specifications appears on a report to the Quality Assurance Department on the next working day. These are reviewed by the Quality Assurance Department for severity of the problems and trends in the data. The reports are then sent to the analytical groups for the purpose of documenting the corrective action taken. The sample management system also produces control charts and has searching capabilities to aid in data review. The flow of data from the time the samples enter the laboratory until the data is reported are summarized in Table 10-1.

Any data recorded manually will be collected in bound notebooks. All entries will be in ink, with no erasures or white-out being permitted. Any changes in data will be made using a single line to avoid obliteration of the original entry and will be dated and signed. Any data resulting from instrument printouts will be dated and will contain the signature and/or identification of the analyst responsible for its generation. After copies of the data are incorporated into the data package deliverables, the originals will be stored in locked archives at the laboratory for a period of ten years.

Project files will be created per client/project and will contain chain-of-custody records, analysis requirements, and laboratory acknowledgements which document samples received, laboratory sample number assignment, and analysis requested.

Section No. 10
Revision No.
Date: 08/26/93
Page 8 of 9

Raw data is filed per batch number assignment and laboratory sample number which correlates to the sample receipt documents. When the project is complete, all documentation is archived in a limited access area and retained for ten years.

Section No. 10 Revision No. Date: 08/26/93 Page 9 of 9

Table 10-1							
Sample and Data Routing at Lanca	ster Laboratories, Inc.						
Action	Personnel Involved						
Sample received at LLI	Sample Administration						
Sample is entered onto sample management system (lab ID number assigned, analyses scheduled, chain of custody started, storage location assigned)	Sample Administration						
Sample stored in assigned location (refrigerator, freezer, etc.)	Sample Support						
Acknowledgement sent to client	Sample Administration						
Removed from storage for analysis; necessary aliquot taken and sample returned to storage	Technical Personnel						
Analysis is performed according to selected analytical method; raw data recorded, reviewed, and transferred to computer by chemist or technician*	Technical Personnel						
Computer performs calculations as programmed according to methods	Data Processing						
Chemist or supervisor verifies raw data	Technical Personnel						
Data package deliverables are assembled	Data Package Group						
Data packages are reviewed prior to mailing	Quality Assurance Dept. Laboratory Management						

^{*} Analyses requiring the chemist's interpretation may involve manual data reduction prior to entry onto the computer.

Section No. 11 Revision No. Date: 08/26/93 Page 1 of 14

11. Internal Quality Control Checks

The particular types and frequencies of quality control checks analyzed with each sample are defined in the Chemical Analysis of Water and Wastes, USEPA 60014-79-020 and in USEPA SW-846 3rd Edition, 1986. The quality con'trol checks routinely performed during sample analysis include surrogates, matrix spikes, duplicates, blanks, internal standards, and laboratory control samples.

<u>Surrogates</u> (used for organic analysis only) - Each sample, matrix spike, matrix spike duplicate, and blank are spiked with surrogate compounds prior to purging and extraction in order to monitor preparation and analysis. Surrogates are used to evaluate analytical efficiency by measuring recovery.

<u>Matrix Spikes</u> - A matrix (soil or water) is spiked with known quantities of specific compounds and subjected to the entire analytical procedure in order to indicate the appropriateness of the method for the matrix by measuring recovery.

<u>Duplicates</u> (matrix spike duplicate - organics and inorganic hydride generation; duplicate - inorganics) - A second aliquot of a matrix/sample is analyzed at the same time as the original sample in order to determine the precision of the method. Recovery of the original compared to the duplicate is expressed as relative percent differences (RPD).

<u>Blanks</u> (Method, Preparation) - Blanks are an analytical control consisting of a volume of deionized, distilled laboratory water for water samples, or a purified solid matrix for soil/sediment samples. (Metals use a digested

Section No. 11 Revision No. Date: 08/26/93 Page 2 of 14

reagent blank with soils.) They are treated with the same reagents, internal standards, and surrogate standards and carried through the entire analytical procedure. The blank is used to define the level of laboratory background contamination.

Internal Standards (used for GC/MS analysis) - Internal standards are compounds added to every standard, blank matrix, spike, matrix spike duplicate, and sample at a known concentration, prior to analysis. Comparison of the peak areas of the internal standards are used for internal standard quantitation as well as to determine when changes in the instrument response will adversely affect quantification of target compounds.

Laboratory Control Samples - Aqueous and solid control samples of known composition are analyzed using the same sample preparation, reagents, and analytical methods employed for the sample. For inorganics, LCS recovery must fall within established control limits. For organics, an LCS is run when MS/MSD recovery falls outside established limits. The LCS recovery must fall within acceptance limits based on statistical evaluation of past lab data.

The results of all quality control samples are entered into the computer along with sample results. The computer is programmed to compare the individual values with the acceptance limits. If the results are not within the acceptance criteria, appropriate corrective action is taken where necessary. Management is kept informed by daily reports of QC outliers generated by the computerized system. Monthly reports on results of all QC analyses showing mean and standard deviation will indicate trends or method bias. Control Charts are plotted via computer and may be accessed at any time by all analysts.

Section No. 11
Revision No.
Date: 08/26/93
Page 3 of 14

The charts that follow show the types and frequency of QC performed, along with the acceptance limits and corrective action.

Table 11-1

Quality Control GC/MS Semivolatiles

Туре	Acceptance WATERS	Limits (%) SOILS	Frequency	Corrective Action		
Surrogate: Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 Phenol-d6 2-Fluorophenol 2,4,6-Tribromophenol	35-114 43-116 33-141 10- 94 21-100 10-123	23-120 30-115 18-137 24-113 25-121 19-122	Each sample, MS, MSD, LCS, and blank	Repeat analysis if more then one surrogate out per fraction (acid/base) or any recovery <10%. If reanalysis confirms originals, document on report and/or case narrative		
Matrix Spikes: Spike all compounds of interest	See Table : acceptance		Each group (≤20) of samples per matrix/level	Run LCS for compounds outside recovery window		
Laboratory Control Sample: Spike all compounds of interest	Same as for	r spikes	Each group (≤20) When MS/MSD falls outside established limits.	Re-extract and re- analyze LCS and associated samples for compounds outside acceptance limits		
Matrix Spike Duplicates (RPD): Same as for matrix spikes	≤ 30%		Each group (≤20) of samples per matrix/level	Evaluated by analyst in relationship to other QC results		
Blanks:	<pre>≤ (5x) LOQ phthalate (benzaldehyo ≤ LOQ for (compounds</pre>	esters and de	Once per case or group (≤20) of samples, each matrix, level, instrument	Re-extract and re- analyze blank and associated samples		

Section No. 11
Revision No.
Date: 08/26/93

Table 11-1

Quality Control GC/MS Semivolatiles

Туре	Acceptance Limits (%) WATERS SOILS	Frequency	Corrective Action
Internal Standards: 1,4-Dichlorobenzene-d4 Naphthalene-d8 Acenaphthene-d10 Phenanthrene-d10 Chrysene-d12 Perylene-d12	-50 to +100 of internal standard area of 12 hour STD RT change <30 sec.	Each sample, MS, MSD, LCS, and blank	Re-analyze samples. If re-analysis confirms original, document on report and/or case narrative

Accuracy is subject to change over time.

Revision No.
Date: 08/26/9:

Section No. 11 Revision No. Date: 08/26/93 Page 6 of 14

Table 11-2 PAHs by GC/MS Matrix Spike/ Matrix Spike Duplicate Sample Recovery

matrix spike bupiltate sample kecovery						
Compound Name	Acceptance Limits (%)					
Naphthalene	21.0 - 133.0					
Acenaphthylene	33.0 - 145.0					
Acenaphthene	47.0 - 145.0					
Fluorene	59.0 - 121.0					
Phenanthrene	54.0 - 120.0					
Anthracene	27.0 - 133.0					
Fluoranthene	26.0 - 137.0					
Pyrene	52.0 - 115.0					
Benzo(a) anthracene	33.0 - 143.0					
Chrysene	17.0 - 168.0					
Benzo(b)fluoranthene	24.0 - 159.0					
Benzo(k)fluoranthene	11.0 - 163.0					
Benzo(a)pyrene	17.0 - 163.0					
Indeno(1,2,3-cd)pyrene	1.0 - 171.0					
Dibenz(a,h)anthracene	1.0 - 227.0					
Benzo(g,h,i)perylene	1.0 - 219.0					

Acceptance limits are based on statistical evaluation of compiled laboratory data and are subject to change.

Table 11-3

Quality Control PAHs by HPLC (8310)

Туре	Acceptance I WATERS	imits (%) SOILS	Frequency	Corrective Action
Surrogate:				
Nitrobenzene	60-120	50-120	Added to each sample, MS/MSD, LCS, blank, LCS/LCSD during the extraction phase	Surrogate must be in spec unless matrix-related problems are evident. If matrix-related problems are evident, report results and comment in case narrative.
Matrix Spike:		,		
Spike all compounds of interest	See attached	l Table	Each group (≤20) of samples per matrix/level	Run LCS for compounds outside acceptance window
Laboratory Control Sample:				
Spike all compounds of interest	See attached	l Table	Each group (≤20) When MS/MSD falls outside established limits.	Re-extract and re- analyze LCS and associated samples for compounds outside acceptance limits
Matrix Spike Duplicates (RPD):			;	, 1
Spike all compounds of interest	<u>≼</u> 30 %	<u>≤</u> 50 % ′	Each group (≤20) of samples per matrix/level	Evaluated by analyst in relationship to other QC results

Revision No. 11
Date: 08/26/9:

Table 11-3

Quality Control PAHs by HPLC (8310)

Туре	Acceptance Limits (%) WATERS SOILS	Frequency	Corrective Action
Blanks:	≤ LOQ for all compounds	Once per case or extraction group (≤20) of samples, each matrix, level, instrument	Inject a hexane or solvent blank first to be sure the analytical system is clean then reinject the blank itself. If the reinjected blank is acceptable, any samples extracted with this blank should be reinjected if they, too, contain the analyte which was contaminating the blank. If the reinjected blank is unacceptable, any affected samples must be re-extracted.

ance limits are based on statistical evaluation of compiled laboratory data and are subject to change.

Revision No.
Date: 08/26/9

Section No. 11 Revision No. Date: 08/26/93 Page 9 of 14

Table 11-4 Quality Control PAHs by HPLC Spike Acceptance Limits

PANS DY MPLC Spike Acceptance Limits									
Compound Name	Matrix Spike and Laboratory Control Sample Limits for Waters (%)	Laboratory Control Limits for Soils (%)	Matrix Spike Limits for Soils (%)						
Napthalene	46-120	64-120	57-120						
Acenaphthylene	48-120	66-120	66-120						
Acenaphthene	49-120	51-131	69-120						
Fluorene	51-120	73-120	71-124						
Phenanthrene	58-120	80-115	62-140						
Anthracene	51-120	51-120	43-140						
Fluoranthene	58-121	80-120	64-137						
Pyrene	59-120	74-120	65-122						
Benzo(a)anthracene	61-124	78-124	51-150						
Chrysene	17-122	44-125	44-139						
Benzo(b)fluoranthene	63-120	77-120	62-120						
Benzo(k)fluoranthene	58-122	70-120	55-124						
Benzo(a)pyrene	56-120	68-115	44-123						
Dibenzo(a,h)anthracene	39-120	72-121	63-120						
Benzo(g,h,i)perylene	26-120	68-120	58-120						
Indeno(1,2,3-CD)pyrene	54-120	64-122	42-127						

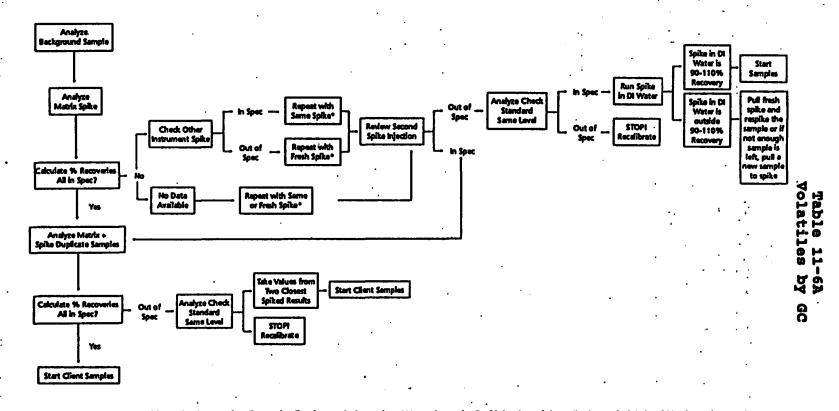
Acceptance limits are based on statistical evaluation of compiled laboratory data and are subject to change.

Table 11-5

Quality Control Volatiles by GC

Туре	Acceptance WATERS	Limits (%) SOILS	Prequency	Corrective Action
Surrogates:				·
VOA by GC n-propylbenzene	75-125	70-130	Each sample, MS, MSD, and blank	Results would not be reported if the surrogate recovery is outside the limits unless matrix related problems are evident
Matrix Spikes:				
Spike all compounds of interest	75 ∸125	70-130	Each group (≤20) of samples per matrix/level	See Flow Chart 11-6A
Matrix Spike Duplicate (RPD):		. ;		· · ·
spike all compounds of interest	15	20	Each group (<20) of samples per matrix/level	Evaluated by analyst in relationship to other QC results
Blanks:				
VOA by GC	≤ LOQ for a compounds	11	Every 8-10 hours	Re-analyze blank and associated samples if blank is outside limits.

Revision No. 1
Date: 08/26/


Table 11-5 Quality Control Volatiles by GC Type Acceptance Limits (%) WATERS SOILS

Туре	Acceptance Limits (%) WATERS SOILS	Frequency	Corrective Action
Laboratory Control Sample/Check Standard: Spike all compounds of interest	85%-115%	Each group (≤20) when MS/MSD falls	See Flow Chart
Interest		outside established limits	11-05

Accuracy is subject to change over time.

Batch QC Protocol Flowchart

For data package groups with the background, spike, and spike dup. as independent LLI numbers, the 2nd injection of the spiked sample (*) should be from the matrix spike dup, vial. If the result of the 2 spikes match but are both out of spec. (values), run a check std. and a spike in deionized water. If the check std. is in spec., samples can be started. If the check std. is out of spec., STOPI and recalibrate. The spike in deionized water purpose is to help us evaluate the bkg./sp./sp. dup. results. Being in spec. is not required to continue with samples. The critical determinate is the check std., this must be in spec. for all compounds being reported before continuing with samples. When one spike result is in spec. and the other out of spec., run a 3rd injection of a spiked sample using either the spike or spike dup. vial. This will be decided through analyst experience. Then follow protocol (+) from the point of the spike dup. injection.

2397 6/17/92

Section No. 11 Revision No. Date: 08/26/93 Page 12 of 14

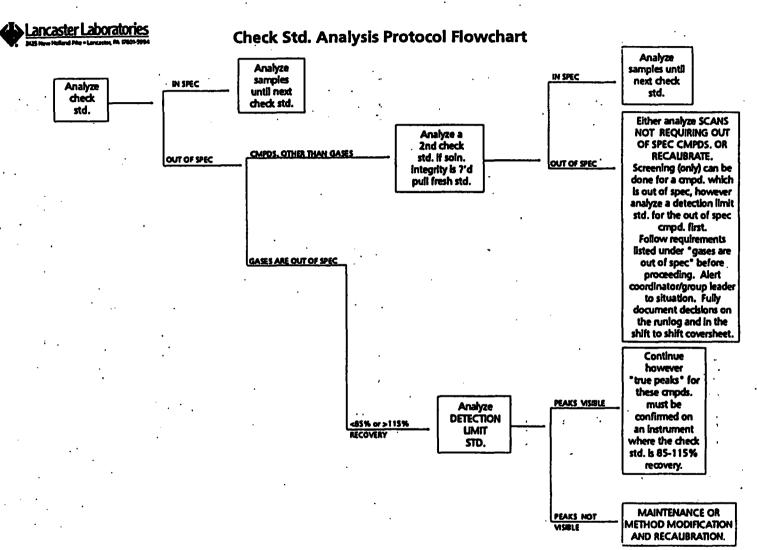


Table 11-6B Volatiles by GC

Section N Revision Date: 08 Page 13 c

No. 11 on No. 08/26/93

2398 6/17/92

Section No. 11
Revision No.
Date: 08/26/93
Page 14 of 14

Table 11-7						
Quality Control Acceptance Criteria						

Parameter	Blank	Spike Recovery (%)	Duplicate RPD (%)	Lab Control Recovery (%)
TOC	<loq< td=""><td>75-125</td><td><u><</u>20</td><td>80-120</td></loq<>	75-125	<u><</u> 20	80-120
Moisture	NA	NA	<u><</u> 20	80-120
Ammonia-N	<loq< td=""><td>75-125</td><td><u><</u>20</td><td>80-120</td></loq<>	75-125	<u><</u> 20	80-120
Kjeldahl-N	<loq< td=""><td>75-125</td><td><u><</u>20</td><td>80-120</td></loq<>	75-125	<u><</u> 20	80-120
Phosphorus	<loq< td=""><td>75-125</td><td><u><</u>20</td><td>80-120</td></loq<>	75-125	<u><</u> 20	80-120
рН	NA	NA	<u><</u> 20	80-120
Nitrate-N	<loq< td=""><td>75-125</td><td><u><</u>20</td><td>80-120</td></loq<>	75-125	<u><</u> 20	80-120
COD	<loq< td=""><td>75-125</td><td><u><</u>20</td><td>80-120</td></loq<>	75-125	<u><</u> 20	80-120
BOD	<loq< td=""><td>75-125</td><td><u><</u>20</td><td>80-120</td></loq<>	75-125	<u><</u> 20	80-120
TSS	<loq< td=""><td>NA</td><td><u><</u>20</td><td>80-120</td></loq<>	NA	<u><</u> 20	80-120
Oil and Grease	<loq< td=""><td>75-125</td><td><u><</u>20</td><td>80-120</td></loq<>	75-125	<u><</u> 20	80-120

Corrective Action: If either the LCS or Blank are outside the criteria, the QC and associated samples will be reprepped and re-analyzed.

Maximum batch size is 20 field samples.

Section No. 12 Revision No. Date: 08/26/93 Page 1 of 22

12. Performance and System Audits

System audits are conducted on each department at Lancaster Laboratories, Inc. (LLI) by members of the Quality Assurance Department. The audits include checks on methodology, reagent preparation, equipment calibration and maintenance, quality control results, and training of personnel. The results of the audits and corrective action, where necessary, are communicated to laboratory personnel and management by means of a written report. Audits by outside organizations including clients, regulatory personnel, and the USEPA are permitted by arrangement with the Quality Assurance Department.

The Quality Assurance Department reviews summaries of the quality control data entered onto the computerized sample management system by analysts. Control charts and statistics are reviewed for trends which may indicate problems with the analytical data. In this way, small problems are identified before they have any significant impact on laboratory results.

Performance audits consist of both intralaboratory and interlaboratory check samples. Blind samples containing known amounts of target analytes are prepared by the Quality Assurance Department and submitted to the laboratories under fictitious client names. In addition, QC samples from commercial suppliers are analyzed quarterly to assess laboratory accuracy. LLI also participates in a number of interlaboratory performance evaluation studies which involve analysis of samples with concentrations of analytes that are known to the sponsoring organization, but unknown to the laboratory. Inorganics, pesticide/herbicides, trihalomethanes, volatile organic compounds, semivolatile organic compounds, and traditional wet chemistry analyses are analyzed by LLI for studies conducted by the USEPA and

Section No. 12
Revision No.
Date: 08/26/93
Page 2 of 22

the New York Department of Health. LLI has participated in the USEPA Contract Laboratory Program which provides laboratory analysis in support of the Superfund program. Part of maintaining this contract includes analysis of quarterly blind samples. Representative results from some of these studies are attached to this section.

Section No. 12 Revision No. Date: 08/26/93 Page 3 of 22

REGION 3
ORGANIC PERFORMANCE EVALUATION SAMPLE
INDIVIDUAL LABORATORY SUPURRY REPORT
FOR OB 1 17 93

LABORATORY: 'Lancester Laboratories (PA)
PERFORMANCE: ACCEPTABLE - No Response Required
RANC: Above = 0 Same = 3 Below = 38

X SCORE: 100 REPORT DATE: 12/24/92 MAIRIX: WATER

	VAR	TOLERAN NING	CE INTER ACT		LA	BORA!		FLAUS	PROGRAM FLASS	DATA		
СОЧРОЈНО	LOVER	UPPER	LOVER	UPPER	CO		•	MIZ-ONI	MO1-10	FLASS 1D-CPD	JAROI ERAJO	
TCL VOLATILE												
CHLOROMETHANE	35	71	29	91		51		Ζ,	1	58	59	
1, 1-DICHLOROEIHANE	NU	NU	KU	WU		11	•	0	0	59	59	
CHLOROFORM	· 61	75	59	83		71		1	<u> </u>	59	59	
2-BUTANONE	71	110	- 66	110	1	10		15	Ž	\$7	59	
C15-1,3-D1CHLOROPROPENE	66	87	63	98		89	8	3	Ĭ	SB	59	
BROMOFORM	57	74	54	77		68		8	Ŏ	59	59	
S-NEXANONE	110	250	92	270		10		3	·ŏ	59	59	
1,1,2,2-TETRACHLOROETHANE	120	160	110	160	ī	40		Š	Ď	59	59	
CHLOROBENZENE	34 .	41	34	46	-	39		3	ŏ	59	59	
STREKE	160	200	150 .	210		80		3	ŏ	59	59	
XTLENES (TOTAL) .	73	92	70	100		88		ž	3	56	59	
ICL SENIVOLATILE	•											
PHEMOL	17	28	16	50		24 .		4	1	58	59	
BIS(2-CHLOROETHYL)ETHER	32	46	30	54				š	i	50 59	59	
L-METRYLPHENOL .	23	36 .	21	40		29		ć	Ö	59		
HEXACHLOROETHANE	33	60	28	76		. 7		0	_		59	
2.4-DIKETHTEPHENOL	17	30	15	38		23		ě	0	59	. 59	
DIS(2-CHLOROETHOXY)HETHANE	20	25	19	28		25 26		າາ	S	57	59	
1,2,4-TRICHLOROBENZENE	28	43	26	\$1					. 0	59	59	
HEXACHLOROCYCLOPENTADIENE	KA Ee	KU	NU			38		S	0	59	59	
2.4.6-TRICHLOROPHENOL	· 21	31	. NO	, MA		10 U		. 0	31	· 28	59	
				35		28		. 7	0	59	59	
4-WITROPHENOL	41	64	38	67		63		11	1	58	59	
K-BROMOPHENYL PHENYL ETHER	13	SS	12	54		20		0	. 0	59	59	
HEXACHLOROGENZENE	34	44	32	49		(0		5	0	59	59	
ANTHRACENE PYRENE	X U 74	W	NU	W		10		0	0	59	59	
	• •	140	65	180		50		3	0	59	59	
BUITL BENZTL PHINALAIE	38	63	35	67		53		9	- 0	59	59	
Behzo(A)Ptrene	25	43	55	25		35		•5	. 0	59	59	
TCL PESTICIDES			•				٠		٠			
ALPHA-BHC	0.16	0.22	0.16	0.23	٥.	19		10	1	58	59	
DETA-DHC	0.16	0.24	0.14	0.26	0.	23		4	4	55	59	
GAMA-BHC (LINDARE)	0.15	0.22	0.14	0.23	0	S.		6	0	59	59	
HEPTACHLOR	0.29	0.43	0.27	0.45	0.	34		8	i	58	59	
ALDRIN	0.12	0.2	0.11	0.21	0.	16		5	Ō	59 .	59	
HEPTACHLOR EPOXIDE	0.31	0.43	0.29	0.44	0.	35		7	Ĭ	58	39	
ENDOSULFAN 1	0.21	0.38	0.19	0.48	0.				ì	58	59	
ENDOSULFAN 11	0.43	0.7	0.39	0.84	0.			ž	i	58	59	
ENDOSULIAN SULFATE	0.82	1.3	0.74	1.6		.2		į	i	58	59	
4.4'-DDT	0.95	1.5	0.87	1.5		.4		è	i	59	59	
ENDRIN KETONE	0.68	1.1	0.62	1.1	0.			6	ĭ	58	59	
NON-TCL VOLATILE					•							
EPICHLORONYDRIN	•					0	MR		50	0	59	

Section No. 12 Revision No. Date: 08/26/93 Page 4 of 22

REGION 3 ORGANIC PERFORMANCE EVALUATION SAMPLE INDIVIOUAL LABORATORY SUMMARY REPORT FOR GB 1 FT 93

LABORATORY: Lancaster Laboratories (PA) PERIORMANCE: ACCEPIABLE - No Response Required
RANC: Above = 0 Same = 3 Below = 38 X SCORE: 100
REPORT DATE: 12/24/92
NATRIX: WATER

Concorno	TOLERANCE VARNING LOVER UPPER	E INTERVALS ACTION LOVER UPPER	LABORATORY DATA CONC 9	FLASS TRO-21M	PROGRAM FLABS NOT-10	DATA FLARS ID-CPO	101AL FLABS
PROPANE, 1, 2-B I BROMO-3-CHLORO- TOLUENE, 2-CHLORO-			12 69		23 7	36 52	59 59
NON-ICL SENIVOLATILE							
4,4*-001	•		44		15	44	59
TCL VOLATILE (Contaminants)	· ·	• • •	• •		•		
ACETONE TRICKLORGETHENE			6		33 33	26 . 31	59 59
ICL PESTICIDES (Contaminants)	•	•					
4,4DDE			0.011		49 .	10	59
NON-TCL VOLATILE (Contaminants)	٠.	•					•
2-PROPANOL	·	•	140		23	. 36	59
MON-ICL SEMIVOLATILE (Contaminants)		•	•				
UNKNOW	•		2	•	37	22	59

[#] OF TCL COMPOUNDS NOT-IDENTIFIED: 0 # OF TCL COMPOUNDS NIS-GUANTIFIED: 0 # OF TCL CONTAMINANTS: 0

[#] OF NON-ICL COMPOUNDS NOT-IDENTIFIED: 0 # OF NON-ICL CONTAMINANTS: 0

Section No. 12 Revision No. Date: 08/26/93 Page 5 of 22

Program Summary Data (cont.):

Header

Definition -

! LABS NOT-ID:

The number of CLP contractors who did not identify a TCL or non-TCL compound added to the PEH.

| LABS ID-CPD:

The number of CLP contractors who identified a TCL or non-TCL compound in the PEH.

TOTAL | LABS:

The number of CLP contractors who analyzed the PEM.

ILSR CODES:

The following codes are used on the ILSR.

U -- Compound analyzed for but not detected.

E -- Compound not identified -- points deducted for identification.

- X -- Compound correctly identified but the reported value is not within the action limit -- points deducted for quantification.
- \$ -- The reported value for the compound is not within the warning limit but is within the action limit -- points not deducted.
- C -- Contaminant -- points deducted.
- CO -- Contaminant which may have been introduced during preparation of the PEH or during shipment -- points not deducted.
- NS -- Data required but not submitted -- points deducted.
- NR -- Data not required.
- NU -- Data not used; insufficient amount of usable data for scoring submitted by the contractors.

DATE: 2/ 3/73

WATER SUPPLY STUDY NUMBER 45031

Lancaster Laboratorica, Inc. 7176562301 LANCASTER, PA

-4-

section No. 12 Revision No. Date: 08/26/93 Page 6 of 22

LABORATORT PAUDY				,		_
AMALTTES	AUNBER	REPORTED VALUE	TALUE*	LINITS	PERFORMANCE Etaluations	-
TRACE HETALS						
ALUNINUN	1	84.5	76.3	62.6- 93.2	ACCRPTAPLE	
TROBLINA	2	3.15	4.69	3.20- 6.10	NOT. ACCEPTABLE	
ARSEP IC	1	79.0	70.2	58.2- 80.2	ACCEPTABLE	
NU REUM .	2	686.	681,	579- 7AJ	ACCEPTABLE	
BERTLLIUR	1	3.42	3.27	2.78- 3.76	ACCEPTAPLE	
BORON	2	763.	720	652- 919	ACCEPTABLE	
CADRIUR	1	12.0	12.6	10.2- 15.9	accept an Le	
CHRONIUM.	1	02.1	81.6	67.4- 93.8	ACCEPTANLE	
COPPER	1	111.	, 110	99.0- 121	ACCEPŢARLE	
LEAD	1	10.9	12.4	8.60- 16.1	ACCSPTABLE	
Hanganese	1,	16.2 •	• 17.0	13.8- 10.7	ACCEPTABLE	
MERCURT	1.	0.42	0.708	0.636- 1.18	ACCEPTAPLE	

BASED UPON THEORETICAL CALCULATIONS, OR A REFERENCE TALUE WHEN NECESSART.

SIGNIFICANT GENERAL "ETHOD RIAS IS ANTICIPATED FOR THIS RESULT.

PERFORMANCE EVALUATION REPORT

DATE: 2/ 3/93

MATER SUPPLY STUDY MUNOFR MSD3)

LABORATORI PAUUP					
AMALTTES	NUMBER	REPORTED VALUE	TALUES		
TRACE METALS					
HOLT BDR NUH	' .	n3.2	42.3	29-2- 54-3	ACCEPTANLS
PICEFL	1	67.1	68.0	57.8- 78.2	ACCEPTABLE
SELERIUN	1	21.5	22.9	18.3- 27.5	ACC SPTABLS
SILTER	2	194.	109	92.4- 123	ACCIPTABLE
THALLIUP	2	1.66	1.48	0.022- 2.26	ACCEPTABLE
TAPADIUN	. 1	24.4	24.2	20.2- 27.5	ACCEPTAPLE
ZINC	1		179	161- 190	ACCEPTABLE
H ETSATUZETH	178/56400	itos in utr	LEGRAPS	PER LITER:	
HITRATE AS K	1	4.5	6.50	5.05- 7.15	ACC PPT A DLP
NETRETE AS 9	ı	0.9	0.430	0.366-0.474	ACCEPTABLE
PLUORIOE .	. 1	5.76	5.70	5.13- 6.27	ACCOPTABLE

pased upon the cherical calculations, or a reference value when mecrosian.

PAGE 2

Revision No. Date: 08/26/9

WATER SUPPLY STUDY NUMBER WS031

	SAMPLE	REPORTED	TRUE	ACCEPTANCE	PERFORMANCE
ADALITES	PUPDER	TALUE	VALUE.	LIMITS	PTALUATIONS
INSECTICIDES	IN NICRO	GRANS PER	LITER:	•	
LLACHLOR	5	1.34	2.50	1.38- 3.62	NOT ACCEPTABLE .
SHISARTA.	5	. 5.03	9.39	5.16- 17.6	NOT ACCEPTABLE
HLORDANE	3	2.59	5.16	2.14- 7.48	NOT ACCEPTABLE
END R I N	1	0.33n	0.699	7.417-0.907	NOT ACCEPTABLE
IEPTACIILOR	. 4	9.526	1.44	0.792- 2.09	NOT ACCEPTABLE
EPTACHLOR EPOILOR	ď	0.96,0	1.92	1.06- 2.78	NOT ACCEPTABLE
EIACHLOROBENZERE	u	1.44 0	9 2.40	0.514- 2.75	ACCEPTABLE
SHDARR	į	0.401	0.971	0.534- 1.41	NOT ACCEPTABLE
IETHORICHLOR	1	4.92	12.9	7.10- 18.7	HOT ACCEPTABLE
S M A Z E M E	5	9.31	12.5	0.590- 22.5	ACCEPTABLE
TO EAPHEHE	2	2.06	3.31	1.62- 4.60	ACCEPTABLE
CARDANATTS 1	N NICROGA	IANS PER LI	TERI		
LDICARD	1	8.79	8.84	5.56- 11.3	ACCEPTABLE

MASED UPON THEORETICAL CALCULATIONS, OR A REFERENCE VALUE WHEN PECESSARY-SIGNIFICANT GENERAL METHOD BIAS IS ARTICIPATED FOR THIS RESULT.

PERFORMANCE STALUATION REPORT VATER SUPPLY STUDY NUMBER W4031

CP/C \S :3710

NALTTES	WALLAN	NFPORTED VALUE	AVFAS		
CANHAHATTS E	4 atcross	APS PER LI	ren:		
DICARR SULFORE	1	11.6	7.33	5.37- 13.6	ACCEPTARLE
DICARR SULFOXIDE	1	9.70	7.66	J.74- 10.7	ACCRPTABLE
NOFURAN	. 1	19.9	11.7	6.22- 16.4	ACCIPTABLE
MONTL	1	7.10	9.76	0.519- A.30	ACCEPTABLE
MIL (VIDATE)	1	0.42	5.72	D.L 11.0	ACCEPTABLE
nennicios i	T TICROGI	IAMS PER LI	TER:		
- D	1	12-2	20.3	10.7- 30.4	ACCPPTABLE
,>-TF (SILVEX)	1	5.07	8.66	4.33- 13.0	ACCEPTABLE
TAZON .	2	13.5	12.7	D.1 21.8	ACCEPTABLE
APON	2	32.2 •	9 22.3	D.L 31.5	HOT ACCPPTABLE
ANDA ,	, 2	17.6 •	0 9.43	0.776- 14.2	ACCEPTABLE
Ioser	2 , ,	19.5 0	• 18.3	D.L 26.1	ACCRPTAPLI

BASED UPON THEORETICAL CALCULATIONS, OR A REFERENCE VALUE WHEN NECESSART. SIGNIFICANT GENERAL METHOD DIAS IS ANTICIPATED FOR THIS RESULT.

STANDS FOR DETECTION LIMIT

WATER SUPPLY STUDY NUMBER 45031

ALTTES '	SAMPLE TUMBER	REPORTED BULAY			· PERFORMANCE EVALUATIONS

nenálcioes la	NTCROGR	AMS PER LI	TERİ		
TACKLOROPHEPOL	1	5.30	11.4	5.7017.1	ACC EPTABLE
ORAN			0 26.7	D.L 42.5	A CCEPTA BLE
POLICHLORINAT	•	ATLS IN MI	CROGRAMS	PER LITER:	·
achloror [Piiey T L	1	9.340	.0.445	D.L0.890	ACCEPTABLE
PAB'S IN BECE	OGRANS P	ER LITER:		. •	, .
D(A) PYRENG	1	0.160	0.202	D.L0.350	ACCEPTABLE
(n) flügranthene	1	9.048	0.040	D.L0.132	ACCRPTABLE
Rene	i	1.74 0	0 1.93	0.459- 2.34	ACCEPTABLE
ABTREES	1	1.29	0 1.40	0.333- 2.03	ACCEPTÁBLE
PFN9\STA910A	LATES I	MICROGRAM	IS PER LIS	rr:	•
(2-ETHI LHERTL) ADTI	PATE1.	7.61	R-10	D.L 13.6	ACCEPTABLE

HASED UPON THEORETICAL CALCULATIONS, OR A REFERENCE VALUE WHEN NECESSART. SIGNIFICANT GENERAL HETHOD RIAS IS ANTICIPATED FOR THIS RESULT. STANDS FOR DITECTION LIMIT

PERFORMANCE EVALUATION REPORT

DATE: 2/ 3/91

	-6103	241.101	31001	" VIIV N	
•					

LABORATORY PAUD?					
ARALTTES	SARPLE BUMPFU	RSPORTED VALUE	TRUE VALUEO	ACCEPTANCE	PERFORMANCE EVALUATIONS
ACIPATE/PRTHA				•	
0[5 _. (2-fthtln511l) p4t#	IAL-1	12.3	11.7	0.349- 21.2	ACCEPTABLE
BUTTER ENSIL CHTRALATI	: 1	7.99 0	• 6.30	D.L 9.71	ACCEPTABLE
DERTHYL PHINALATS	1	4.41	4.20	D.L 7.N2	ACCEPTAPLF
OIRETHIL FUIHALATF	1	n. 46 •	• 5.30	D.L 7.N3	ACCRPTA BLR
n[\$C\$LL 4 # F0"	S soc's t	n nicpogra	MS PER L	ITE9:	
TAUDIO	1	31.7	17 - Å	0.L 40.0	acceptable
ENDOTHALL	1	42.7	69.0	n.L 775	ACCEPTATION
GL1 PHO SATE	1			71.4- 412	ACCEPTABLE
AH TEROJAHA	NES IN MI			.	
Bronor I cii loro eeth a pt	1 .	34.4	36.9	27.5- 44.3	ACCEPTAPLE
BROPOTORN	1	qa.)	43.7	35.0- 52.4	ACCEPTABLE
 24 k h tapurdar 1 dorojas	1	27.0	31.0	25.4- 38.2	ACCEPTABLE

BASED UPON THEORETICAL CALCULATIONS, OR A REFERENCE VALUE WHEN WICESSAPT.

SIGNIFICANT GENERAL BETHOD RIAS IS ANTICIPATED FOR THIS APSULT.

D.L. STANDS FOR DETECTION LIMIT

WATER SUPPLY STUDY BUNBER WSO31

LABORATORY PAUD9					
APALTTES	RSGNUR	REPORTED VALUE	TRUE TALUE®	ACCEPTANCE LINITS	PERFORMANCE . EVALUATIONS
,. Trinalonetuan		7			
CHLOROFORS	1	. 40.3	40.4	38.7- 58.1	ACCEPTABLE
TOTAL TRINALORETHANE	1	156.4	150.6	129- 193	ACCEPTABLE
TOLATILE ORGA	PIC COMP	OURDS IN N	I CROGRAM S	PER LITER:	
BE82.FR	1	12.7	12.6	10.1- 15.1	ACCEPTABLE
CARRON TETRACHLORIDE	1	n. 93	8.69	5.21- 12.2	ACCRPTABLE
HLOROBENZENE	2	7.40	7.68	4.61- 10.6	ACCEPTABLE
1,2 DICHLORONENEERS	2 ·	14.4	16.3	13.0- 19.6	ACCEPTABLE
L,4-d ica Lororenzan 2	1	8.39	7.40	5.64- 13.2	ACCOPTABLE
L.Z-DICHLOROZTHANZ	1	9.43	9.25	5.55- 12.9	ACCEPTABLE
1,1-DICHLORCETHTLERE	. 1	7.76	7.02	4.21- 9.63	ACCEPTABLE
C 1,2 DICHLORORTHILER	E 2	14.6	14.5	11.6- 17.4	ACCEPTABLE
T 1,2 DICHLOROETHTLER	18 - 2	9.76	10.1	6.06- 12.1	ACCEPTABLE

[•] RASED UPON THEORETICAL CALCULATIONS, OR A REFERENCE TALUE NEED RECESSANT.

PAGE 7

Revision No.
Date: 08/26/9:

PEPFORMANCE EVALUATION REPORT

DATE: 2/ 1/77

VATER SUPPLE STUDE RUNDER 45031

LABORATORY PAUUT						
= "	SAMPLE HUMBER	PEPORTED VALUE	TRUE	ACCEPTANCE		
. VOLATILE CRGA	#1C C08P	OUNDS IN N	ICROGR <i>i</i> ns	PRR LITER:		
1. 2 OICHLOROPHOPANY	2	12.2	12.7	19.2- 15.2) CCRPTABLE	
ETHT LD.ENSEN C	2	n.72	9:27	5.56- 13.0	ACCEPTAPLE	
STIREYE	2	11.2	11.4	7.12- 17.7	ACCEPTABLE	
TETRACHLORO?THTLEBE	2	11.1	i1.6	9.28- 13.9	acc spt a ¬l r	
TOLUENE	,	15.3	15.3	12.2- 19.4	ACCEPTABLE	
1,1,1-TRECHLOROETHARS	: 1	13.7	13.0	10.4- 15.6	ACCEPTABLE	
TRICK LOROETHY LERF	1	7.77	7.46	n.an- 10.a	a corpt able	
TIPIL CHLORIOR	1	14.5	11.9	7.14- 16.7	ACCEPTABLE	
TOTAL RILPPRS	2	12.5	13.2	10.615.8	ACCSPTABLE	
1, 201 BROHOJCH LARAPHAR	. Y # 2 4	2.345	2.65	1.57- 3.71	ACCEPTABLE	
z, z-dichloroppopana	3	13.9	15.7	12.65 19.8	ACCEPTABLE	
1,1-DICHLOROPROPEUE	3	6 . 30 .	7.31	q.jq- 1n.2	ACCEPTAPLE	

BASED UPON THRORETICAL CALCULATIONS, OF A REFERENCE VALUE WHEN PECESSAPT.

PAGE 8

Revision No.
Date: 08/26/93

PERFORMANCE EVALUATION REPORT

DATP: 2/ 3/93

WATER SUPPLY STUDY NUMBER WSO 31

Magoratori Pagg			-		_
APALYTES	SAMP LE NUMBER	AKPORTED Saluk	TRUE	ACCEPTANCE LINITS	PERFORMANCE RVALUATIONS
VOLATILE ORGA	htc	OUNDS IN M	ICNOGRAM:	S PEŅ LITEN:	
ETHTLENE DIBROMIDE (E:	ה (תם	0.631	0.637	0.302-0.892	ACCEPTABLE
PLUOROTRICH LOROHSTHAM	E 3	12.4	12.6	10.1- 15.1	ACCRPTABLE
r-PROPILBERZERE	3	11.2	11.7	9.76- 19.0	ACCEPTAPLE.
L, J, 5-TRINETH TLASSEN	. J	7.93	. 8.60	5.16- 12.0	ACCEPTABLE
MISC ELLANEOUS	 AMALTTI	! s :			
RESIDUAL PREE CHLORIN (MILLIGRAMS PER LITTA)		0.295	0.360	0.160-0.451	ACCSPTABLE
upolditt (htu·s)	1	2.85	3.00	2.55- 3.57	ACCEPTABLE
OTAL FILTERABLE RESI MILLIGRAMS PER LITER		349. 6	406	203- 616	ACCEPTAPLE
ALCION (NG. CACO3/L)	1	221.	230	214- 244	ACCEPTABLE
n-untrs	1 .	7.86	9.13	8.84- 9.34	ACCEPTABLE
LEALINITY (NG. CACOS/L)	1	44.0	96.0	43.1- 52.0	ACCEPTABLE
OPROSITITT LANGELIEN IND. AT 20	1 ()	1.0	1-19	0.794- 1.49	ACCEPTABLE

BASED UPON THEORYTICAL CALCULATIONS, ON A REFERENCE VALUE WHEN MECESSARY.
 SIGNIFICANT GRACAL METHOD BIAS IS ANTICIPATED FOR THIS RESULT.

PAGE 9

Revision No. Date: 08/26/93

DATE: 2/ 3/93

WATER SUPPLY STUDY NUMBER 45031

LABORATORY PAUDY								
y Jarac Raanuu	HEPORTED VALUE	TRUE VALUE®	ACCEPTANCE LIGITS	PERFORFANCE EVALUATIONS				
5 APAÜYT!	IS:	,						
1 R)	17.6	21.1	19.2- 23.0	acceptanlë				
1 R)	7.49	8.40	6.04- 10.5	ACCEPTABLE				
. 1 n)	0.717	0.270	0.202-0.337	ACCEPTABLE				
	HUMPFR	NUMBER VALUE S AFALYTES: 1 17.6 1 7.49 R) 1 0.717	NUMBER VALUE	NUMBER VALUE VALUE LIMITS S AFALTIES: 1 17.6 21.1 19.2-23.5 H) 1 7.49 8.60 6.44-10.5 H) 1 0.717 0.270 0.292-0.337				

PAGE 10 (LAST PAGE)

Revision No.
Date: 08/26/9:

PERFORMANCE EVALUATION REPORT

DATE: 12/22/92

WATER POLLUTION STUDY NUMBER WP029 7176562301

7176562301 LANCASTER, PA Lancaster Laboratories, Inc.

Abalttes	Sample Worder	R Z POR T V A LUE	TRUZ VALUZO	ACCEPTANCE LIBITS		Performance Evaluation
	HETALS IN NIC			•		
LLONINUN	1	75.0	65.9	80-1- 100	87.7- 97.6	ACCEPTABLE
	. 2				462- 619	ACCEPTABLE
RSENIĆ	1	142.	140	113- 160	120- 161	ACCEPTABLE
	ž	15.3		11.1- 19.4		ACCEPTABLE
ERTLLIUR	1	16.1				ACCEPTABLE
•	2	602.	609	497- 714	525- 686	ACCEPTABLE
ADHIUN .	1	15.9		12.2- 21.5	13.4- 20.4	ACCEPTABLE
•	2	385.	360	319- 440	334- 425	acceptable
OBALT	1			566- 724		ACCEPTABLE
	2	12.0	13.3	9.54- 17.0	10.5- 16.0	ACCEPTABLE
RECRIUM	1				541- 691	
•	2	7.31	8.11	3.37- 12.3	4.49- 11.2	ACCEPTABLE
OPPER		5.10	6.33			
•	2	246.	241	213- 267	219- 260	ACCEPTABLE
RON	1				697- 778	ACCEPTABLE
	2	84.7	83.0	68.2- 97.7	71.9- 94.0	ACCEPTABLE
RERCURT	1	7.71		6.26- 10.3		ACCEPTABLE
	2	12.4	13.0	9.49- 16.9	10.4- 15.9	ACCEPTABLE
ARGANESE	1	343.	340	303- 373		ACCEPTABLE
	2	34.4	30.6	25.7- 35.6	26.9- 34.3	CHECK FOR ERROR
ICK EL	1	35.8	31.7	25.5- 37.4	27.0- 35.9	ACCEPTABLE
•	2				515- 616	ACCEPTABLE
LEAD	1	992.	959	831- 1080	862- 1050	ACCEPTABLE
						ACCEPTABLE

BASED UPON THEORETICAL CALCULATIONS, OR A REFERENCE VALUE WREN NECESSARY.

PAGE 1

Revision No.
Date: 08/26/9

PERFORMANCE EVALUATION REPORT

WATER POLLUTION STUDY NUMBER WP029

	SAMPLE	BEPCRT	TRUE	ACCEPTANCE	MARNING	PERFORMANCE
ABALTTES	n und er	value	AVFAS	LIMITS	LIMITS	EVALUATION
TRACE HETA	LS IN HIC	ROGRANS	Per lit	Za:	•	
SELENION	. 1					ACCEPTABLE
	2	142.		116- 203	127- 192	acc epta ble
TABADIUR	1	985.	490	931- 591	445- 527	ACCEPTABLE
	· 2			30.6- 46.8		
ZINC	1	23.0	17.0	11.3- 22.9	12.8- 21.9	NOT ACCEPTABLE
	2				555- 670	ACCEPTABLE
ANTIMONI	3	20.6	22.0	12.4- 29.9	14.6- 27.6	ACCEPTABLE
	4		146	96.6- 182	107- 171	ACCEPTABLE
SILVER.	3	4.90	5. 59	A.20- 7.01	H-56- 6-66	ACCEPTA RLE
,	ã.	12.3	14.0	11.1- 16.8	11.8- 16.1	ACCEPTA BLE ACCEPTA BLE
THALLIUM	3	5.00	5.30	3.85- 7.01	3.92- 6.54	ACCEPTABLE
	4	84.6	76.2	58.3- 94.0	63.0- 89.4	ACCEPTABLE
OLTBDERUK	•	00.S	80. N	38.0- 61.3	81.0- 58.2	ACCEPTABLE
1021006444	i		7.96	4.27- 12.2		ACCEPTABLE
nulthort	•	11 6		101-150		ACCEPTABLE
						ACCEPTABLE ACCEPTABLE
	_					
'ITAHIUN) 4		76.0	185- 237 65.4- 88.2	192- 230 68-5- 85-2	ACCEPTABLE ACCEPTABLE
MINERALS IN	HILLIGRA	MS PER L	ITEN:	(EXCEPT AS N	DT 20)	•
M-UNITS	3	4.39	4.40	4.28- 4.48	4.31- 4.45	ACCEPTABLE
. •	4	7.93	8.00	7.76- 8.21	7.01- 6.16	ACCEPTABLE
PEC. COND. UBROS/CR AT 25 C)	. 1	189.	182	162- 199	167- 194	ACCEPTABLE
UBROS/CR AT 25 C)	2	807.	612	752- 062	769- 865	ACCEPTABLE

BASED UPON THEORETICAL CALCULATIONS, OR A REPERENCE VALUE WHEN NECESSARY.

PAGE 2

Revision No.

Date: 08/26/93

PERFORMANCE EVALUATION REPORT
WATER POLLUTION STUDY NUMBER WP029

	SARPLE	REPOR	T TÄVE	ACCEPTANCE	VAR HI RG	PERFORMANCE
ANALYTES	MOMBER	VALUE	VALUE'	LIMITS	LIBITS	EVALUATION
•					IOTED)	
PDS AT 180 C	1 2	81.2 407.	99.7 459	64.0- 144 342- 572	73.9- 139 370- 593	acceptable acceptable
TOTAL BARDNESS	, 1	45.0	46.5	39.6- 51.0	41.0- 49.6	ACCEPTABLE
(AS CACO3)	3,2	211.	221	203- 237	207- 233	ACCEPTABLE
ALCION	1	14.3	15.0	12.8- 15.9	13.2- 15.5	. ACCEPTABLE
- · ·	2	50.5	49.0	44.7- 54.1	13.2- 15.5 45.9- 53.0	ACCEPTABLE
AGUZSIUN	1	2.52	2.48	2-07- 2-90	2.17- 2.79	ACCEPTABLE
	2	24.6		21.0- 26.9	21.8- 26.2	ACCEPTABLE
ODIUR	1		9.68	8.19- 11.3	8.59- 10.9	ACCEPTABLE
•	2	48.1	48.4	42.4- 55.2	44.0- 53.6	ACCEPTABLE
OTASSIUN	1	6.28	6.30	5.16- 7.32	5.44- 7.05	ACCEPTABLE
	2	33.2	34.0	29.1- 38.9	30.3- 37.6	ACCEPTABLE
OTAL ALKALIMITT	1	9.83	9.70		7.58- 13.2	ACCEPTABLE
AS CACO3)	2	55.1	54.0	47.2- 62.0	49.0- 60.1	ACCEPTABLE
HLORIDE	1	32.0			29.7- 35.1	
	. 2	150.	159	143- 171	196- 167	ACCEPTABLE
LUORIDE	1	0.466	0.460		0.399-0.523	
	2	1.89	1.80	1.55- 2.02	1.61- 1.96	ACCEPTABLE
DLPATE	1				14.1- 19.4	ACCEPTABLE
	2	81.0	84.0	70.1- 93.9	73.1- 90.9	ACCEPTABLE
BUTRIERTS	IF RILLIG	RAUS PER	LITER			
Broria- Hitrogen	1				0.729- 1.10 #	
	2				0.227-0.493 R	

BASEC UPON THEORETICAL CALCULATIONS, OR A REPERENCE VALUE WHEN NECESSARY.

PAGE 3

Section No. 12
Revision No.
Date: 08/26/93
Page 18 of 22

DATE: 12/22/92

WATER POLLUTION STUDY NUMBER WP029

MALITES	Sample Munder		TRUE	ACCEPTANCE LIMITS	WARNING LINITS	PERFORMANCE EVALUATION
NUTRIENTS :	IN HILLIG	RAMS PE	R LITER:	1		
HITRATE-HITROGEN	1 2	0.16 1.3	0.170 1.30	.0849-0.256 1.00- 1.59		ACCEPTABLE ACCEPTABLE
DRINOPHOSPRATE				.01160498 0.555-0.779	.01620452 0.582-0.752	ACCEPT A BLE
kjeldahl-Hitrogen	3	2 - 2 0 - 4	2.40 0.490	1.47- 3.36 .0120- 1.11	1.69- 3.13 0.144-0.979	ACCEPTABLE ACCEPTABLE
TOTAL PHOSPHORUS	3 4		7.02 0.713	5.20- 7.72 0.512-0.802	5.50- 7.42 0.546-0.767	ACCEPTABLE ACCEPTABLE
DEMANOS IN	HILLIGRA	MS PER	LITER:			• a
COD	1 2	328. 154.		240- 341 122- 179		ACCEPTABLE ACCEPTABLE
roc	1 2	120. 63.	120 62.0		105- 136 54.6- 70.8	ACCEPTA BLE ACCEPTA BLE
S-DAT BOD	1 2	. 219. 116.	193 99-6	120- 266 61.1- 138		ACCEPTABLE ACCEPTABLE
CARBONACEOUS BOD	1 2	206. 110.	162 83.7	76.0- 256 34.7- 133	101- 233 46-2- 119	ACCEPTARLE ACCEPTABLE
PCB*S IN N	CROGRANS	PER LI	TER:	•		
PCB-AROCLOR 1246	.5	1.68	1.76	0.538- 2.74	0.816- 2.46	ACCEPTABLE
PCB-AROCLOR 1254	. · · 1	2.44	2.37	1.41- 2.95	1.60- 2.76	ACCEPTABLE

BASED UPON THEORETICAL CALCULATIONS, OB A REFERENCE VALUE WHEN MECESSART.

-

Revision No.

Date: 08/26/93

DATE: 12/22/92

PERFORMANCE EVALUATION REPORT

WATER POLLUTION STUDY NUMBER WP029

LABORATORY: PAGG9 WARNING REPORT TRUE ACCEPTANCE ABALTTES TALUE TALUES LIMITS LINITS PCB'S IN OIL IN MILLIGRAMS PER KILOGRAM: 14.9- 54.0 PCB IR OIL- 1016/1242 2 23.7 42.6 8.20- 60.7 ACCEPTABLE PCB IN OIL- 1259 1 32.8 35.2 12.2- 51.4 17.2- 46.4 ACCEPTABLE PESTICIDES IN MICROGRAMS PER LITER: 4.19- 7.65 CHLORDANZ 6.48 3.59- 8.25 ACCEPTABLE 1.43 0.764- 1.88 0.907- 1.74 ACCEPTABLE ALDRIE 1 0.582 0.676 0.179-0.834 0.262-0.751 ACCEPTABLE -0254-0-176 .0446-0.157 ACCEPTABLE 0.389-0.817 DIELDRIN 1 0.690 0.617 0.309-0.892 ACCEPTABLE 2 0.120 0.137 .0650-0.200 .0823-0.183 ACCEPTABLE 1 0.839 0.777 0.431- 1.05 0.510-0.973 DDD ACCEPTABLE 2 0:125 D.129 .0511-0.192 .0690-0.175 ACCEPTABLE 1 0.512 0.548 0.245-0.785 0.314-0.716 ACCEPTABLE DDE 2 .0491 0.087 .0352-0.124 ACCEPTABLE 1 0.729 0.674 0.353-0.856 0.416-0.792 **ACCEPTABLE** DOT 2 0.129 0.150 .0572-0.210 .0766-0.191 REPTACHLOR 1 0.474 0.486 0.168-0.657 0.231-0.594 ACCEPTABLE 2 0.110 0.129 .0346-0.190 -0595-0-170 ACCEPTABLE 1 0.749 0.571 0.312-0.722 0.364-0.670 NOT ACCEPTABLE 2 0.168 0.143 .0705-0.189 .0855-0.174

PAGE 5

Section No. 12 Revision No. Date: 08/26/93 Page 20 of 22

BASED UPON THEORETICAL CALCULATIONS, OR A REFERENCE VALUE WHEN RECESSART.

DATE: 12/22/92

PERFORMANCE EVALUATION REPORT WATER POLLUTION STUDY NUMBER WP029

a naliteš	Sanple Wumber	REPORT VALUE	AVTAS.	ACCEPTANCE LIBITS	DHINRAW Linil	PERFORMANCE EVALUATION
VOLATILE RAL	DCAR BONS	IN NIC	ROGR AMS	PER LITER:		
1,2 DICHLOROZTHANZ		14.4		9.64- 18.6		
	2	60.1	58.5	40.8- 76.1	45.3- 71.6	ACCEPTABLE
CHLOROPORA	1	9.23	8.40	5.60- 11.2	6.32- 10.5	ACCEPTABLE
				26.1- 50.9		
.1.1 TRICHLOROETHAN	2 1	13.8	12.6	7.58- 17.0	8.77- 15.8	ACCEPTABLE
	2	67.4	63.8	41.9- 83.7	97.2- 78.9	ACCEPTABLE
PRICKLOROETHERE	1	16.2	15.5	10.2- 20.0	11.518.8	ACCEPTABLE
				36.1- 67.2		ACCEPTABLE
CARBORTETRACELORIDE		12.3	10.7	6.73- 14.8	7.76- 13.8	ACCEPTABLE
	2	58.0	54.5	34.2- 77.3	39.6- 71.9	ACCEPTABLE
Petrac hloro ether e						ACCEPTABLE
	2	50.4	46.2	30.5- 60.2	34.2- 56.5	A CCEPTA BLE
RONODICHLORONETHAME	· 1	17.4	16.4	11.1- 21.3	12.4- 20.0	ACCEPTABLE
•	2	66.0	62.9	43.6- 82.9	48.6- 77.9	ACCEPTABLE
DI BRONOCH LORON ETH A HE	1	12.7	12.5	8.09- 16.6	9.17- 15.6	ACCEPTABLE
•	2	44.6	45.4	28.6- 61.3	32.9- 57.2	ACCEPTABLE
RONOPORN	1	15.9	16.3	7.67- 24.0	9.7)- 21.9	ACCEPTABLE
	. 3	37.6	37.7	22.7- 52.3	26.4- 48.6	ACCEPTABLE
SETRILENE CHLORIDE	1	14.0	12.8	6.66- 19.0	8.22- 17.4	ACCEPTABLE
	, 2	73.5	65.6	43.6- 91.0	49.5- 85.0	ACCEPTABLE
HLOROBENZENE	1	11.0	10.3	6.92- 13.5	7.76- 12.7	ACCEPTABLE
	2	58.4	57.2	39.7- 73.0	44.1- 69.5	ACCEPTABLE
TOLATILE ARO	MATICS I	# HICRO	GRANS P	ES LITER:		
DE# 2E #E	1	99.0	43.9	30.0- 59.0	33.6- 55.9	ACCEPTABLE
				9.00- 17.0		ACCEPTABLE

BASED UPON THEORETICAL CALCULATIONS, OR A REFERENCE TALUE WHEN MECESSARI.

PAGE 6

Revision No.
Date: 08/26/93

PERFORMANCE EVALUATION REPORT

VATER POLLUTION STUDY NUMBER WP029

ı		n		Ŧ	n	T	•	D	1	n	0	q

	AMPLE	VALUE	TALOZ	LIMITS	uarring Linits	
VOLATILE AROS	ATICS					
2181182#22#2	1 2	96.3 9.66	47.7 9.71	31.4- 64.3 6.19- 13.0	35.6- 60.2 7.06- 12.2	acceptable acceptable
TOLUZ#E	1 2	59.1 16.7	50.7 17.2		46:5- 72.3 13.3- 20.6	ACCEPTABLE ACCEPTABLE
1,2-DICHLOROBERZERE		55.4 14.9	57.1 15.4		41.7- 69.7 11.8- 18.5	acceptable acceptable
1,3-DICHLOROBERZERE		46.9 15.9			35.6- 56.2 12.6- 19.9	
1,4-DICHLOROBERZERE		46.4 13.0	50.0 13.3		35.1- 63.0 10.9- 16.8	acceptable acceptable
MISCELLAREOUS	PARAM	eters:				
TOTAL CTANIDE (IN RG/L)					.01690531 0.239-0.429	
OP-FILTERABLE RESIDU (IR MG/L)	E 1		18.0 93.0		10.5- 16.4 75.1- 94.8	
DIL AND GREASE (IN NG/L)	1 2	65.1 28.1	72.0 30.0	43.7- 84.3 17.1- 36.7	48.8- 79.2 19.6- 34.2	ACCEPTABLE ACCEPTABLE
OTAL PHÉHOLICS		0.611 0.369			0.697- 1.42 0.316-0.651	
TOTAL RESIDUAL CHLORE (IN RG/L)	ME 1 2				3.71- 5.20 (1.35- 2.00	CRECE FOR ERROI ACCEPTABLE

BASED UPON THEORETICAL CALCULATIONS, ON A REPERENCE VALUE WHEN NECESSART.

PAGE 7 (LAST PAGE)

Revision No.
Date: 08/26/93
Page 22 of 22

Section No. 13 Revision No. Date: 08/26/93 Page 1 of 4

13. Preventive Maintenance

In order to ensure timely production of data, Lancaster Laboratories, Inc. (LLI) schedules routine preventive maintenance of instruments based on manufacturer's recommendations. Maintenance of the laboratory instruments is the responsibility of the technical group using the equipment in conjunction with our in-house equipment maintenance group. A schedule of routinely performed instrument maintenance tasks is attached as Table 13-1. All preventive maintenance, as well as maintenance performed as corrective action, is recorded in instrument logs.

Critical spare parts are kept in supply at the laboratory by the equipment maintenance group. Most items not kept in stock at the laboratory are available through overnight delivery from the manufacturer. In addition, LLI maintains multiple numbers of most of the critical instruments used in our laboratory operations. A recent equipment inventory may be found in the Qualification Manual. Because we are a large laboratory with redundant capacity, the problems of instrument downtime are minimized.

Section No. 13 Revision No. Date: 08/26/93 Page 2 of 4

Table 13-1 Preventive Maintenance Schedule

Preventive Maintenance Schedule					
Instrument	Preventive Maintenance	Frequency			
GC/MS	Change septum Check fans Check cool flow Clean source Change oil in vacuum pump Change oil in turbo pump	Weekly or AN* Monthly Monthly Bimonthly or AN Semiannually Semiannually			
GC Volatiles	Check propanol level Check all flows	Semiweekly or AN Prior to calib. or AN			
	Conductivity Det. Maint. Clean cell Change reaction tube Change Teflon line	AN AN AN AN			
	Change resin Replace trap Column Maintenance Change PID Lamp	AN AN AN AN			
HPLC	Pump lubrication Check pump seals Check valves cleaned or rebuilt	Annually Annually AN			
	Detector Maintenance Bulb replacement and adjustment Flow cell cleaning	AN			
	Routine column maintenance Replace Teflon lines Autosampler septa	AN AN AN			
	replacement In-line filter sonication/ cleaning	AN			
	System Pasivation PCRS pump lubrication	AN AN			

Section No. 13
Revision No.
Date: 08/26/93
Page 3 of 4

Table 13-1 Preventive Maintenance Schedule

Preventive Maintenance Schedule						
Instrument	Preventive Maintenance	Frequency				
Technicon Autoanalyzer	Clean sample probe Clean proportioning pump Inspect pump tubing,	Weekly Weekly AN				
	replace if worn Oil proportioning pump Inspect silicone tubing, replace if worn	Monthly Monthly				
	Clean optical system Clean wash receptacles Inspect condition of distillation head	Monthly Monthly Monthly				
	Oil distillation head Oil chain and bearings	Bimonthly Quarterly				
Spectrometer	Check absorbance Check wavelength	Monthly Quarterly				
Ion Chromatograph	Check guard column filters Check bed supports Check void space Clean columns Check anal. pump for leaks Check DX-100 interior for leaks and spills Oil sample pump and check seals Check air lines/tubing for crimping and/or discoloration Clean check valve Check conductivity cell	Bimonthly Bimonthly Bimonthly Bimonthly Bimonthly Bimonthly Every 2 months Every 2 months Every 3 months AN				
Alpkem Autoanalyzer	Wipe platens/rollers with methanol Rinse reservoirs with deionized water Rinse distillation head Replace sampler/ transmission tubing Clean sampler probe Rinse flowcell with methanol Replace pump tubes	Weekly Monthly Monthly Biannual AN AN				

Section No. 13
Revision No.
Date: 08/26/93
Page 4 of 4

Table 13-1						
	Preventive Maintenance Schedu	1e				
Instrument Preventive Maintenance Frequency						
Total Organic Carbon Analyzer	Check IR zero Check for leaks Check acid pump calib. Check persulfate pump calibration Inspect 6-port rotary valve Inspect sample pump head Wash molecular sieve Check sample loop calibration Clean gas permeation tube Inspect digestion vessel o-rings Check activated carbon scrubber Dust back and clean	Weekly Weekly Bimonthly Bimonthly Monthly Monthly Quarterly Monthly Quarterly 6 Months 6 Months				
	circuit boards Check IR cell	Annually				
Oxygen Meter	Check membrane	AN .				
pH Meter	Check level of buffer solution	Weekly				

^{*} AN means as needed. Any of these items may be performed more frequently if response during operation indicates this is necessary.

Section No. 14
Revision No.
Date: 08/26/93
Page 1 of 5

14. Specific Routine Procedures Used to Assess Data Precision. Accuracy and Completeness

<u>Precision</u> - Precision refers to the reproducibility of a method when it is repeated on a second aliquot of the same sample. The degree of agreement is expressed as the Relative Percent Difference (RPD). The RPD will be calculated according to the following equation:

$$RPD = \frac{D_2 - D_1}{(D_1 + D_2) / 2} \times 100$$

Where: $D_1 = First sample value$

D₂ = Second sample value (Duplicate)

Duplicates will be run on at least 5% of the samples.

Acceptance criteria shall be based on statistical evaluation of past lab data. (See Section No. 11.) All Quality

Control sample results are entered into the computer and compared with acceptance limits. In addition, there is a monthly review of values on the computer QC system. Data obtained from quality control samples is entered onto our computer system which charts the data, and calculates a mean and standard deviation on a monthly basis. The Quality

Assurance Department then reviews this data for trends which may indicate analytical problems. The control charts are graphical methods for monitoring precision and bias over time.

Accuracy - Accuracy refers to the agreement between the amount of a compound measured by the test method and the amount actually present. Accuracy is usually expressed as a percent Recovery (R). Recoveries will be calculated according to the following equations:

Section No. 14 Revision No. Date: 08/26/93 Page 2 of 5

Surrogate Recovery = $\frac{Qd}{Qa} \times 100$

Where: Qd = quantity determined by analysis

Qa = quantity added to sample

 $Matrix Spike Recovery = \frac{SSR - SR}{SA} \times 100$

Where: SSR = Spiked Sample Results

SR = Sample Results

SA = Spike added

Laboratory Control Sample Recovery = $\frac{LCS Found}{LCS True} \times 100$

Surrogate standards are added to each sample analyzed for organics. Spikes and Laboratory Control Samples will be run on at least 5% of the samples (each batch or SDG, ≤20 samples). Refer to Section 11 for acceptance criteria for accuracy. The computer is programmed to compare the individual values with the acceptance limits and inform the analyst if the results meet specification. If the results are not within the acceptance criteria, corrective action suitable to the situation will be taken. This may include, but is not limited to, checking calculations and instrument performance, reanalysis of the associated samples, examining other QC analyzed with the same batch of samples, and qualifying results with documentation of any QC problems in the Case Narrative.

Section No. 14
Revision No.
Date: 08/26/93
Page 3 of 5

Commercial quality control materials are run at least quarterly to ensure accuracy of the analytical procedure. Repetitive analysis of a reference material will also yield precision data. Accuracy information determined from reference materials is valuable because variables specific to sample matrix are eliminated.

The QC program is capable of charting data for surrogates, spikes, control materials and reference materials. The Quality Assurance Department reviews these charts for any indication of possible problems (i.e., shift in the mean and standard deviation).

Completeness - Completeness is the percentage of valid data acquired from a measurement system compared to the amount of valid measurements that were planned to be collected. objective is analysis of all samples submitted intact, and to ensure that sufficient sample weight/volume is available should the initial analysis not meet acceptance criteria. The laboratory's Sample Management System will assign a unique identification number to the sample which tracks and controls movement of samples from the time of receipt until disposal. All data generated will be recorded referencing the corresponding sample identification number. completeness of an analysis can be documented by including in the data deliverables sufficient information to allow the data user to assess the quality of the results. information will include, but is not limited to, summaries of QC data and sample results, chromatograms, spectra, and instrument tune and calibration data. Additional information will be stored in the laboratory's archives, both hard copy and magnetic tape.

Section No. 14 Revision No. Date: 08/26/93 Page 4 of 5

$Completeness = \frac{Number \ of \ valid \ measurements}{Total \ measurements \ needed} \ x \ 100$

Method Detection Limit - It is important to ascertain the limit of quantitation that can be achieved by a given method, particularly when the method is commonly used to determine trace levels of analyte. The Environmental Protection Agency has set forth one method for determining method detection limits (MDLs) from which limits of quantitation (LOQs) can be extrapolated.

MDL is defined as follows for all measurements:

 $MDL = t_{(n-1,1-\alpha=0.99)} \times s$

Where: MDL = method detection limit

s = standard deviation of the replicate analyses

 $t_{(n-1,1-\alpha=0.99)}$ = students' t-value for a one-sided 99% confidence level and a standard deviation estimate with with n-1 degrees of freedom

Definitions:

Method Detection Limit (MDL): The method detection limit is defined as the minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero. It is determined from analysis of a sample in a given matrix containing the analyte.

Section No. 14
Revision No.
Date: 08/26/93
Page 5 of 5

Limit of Quantitation (LOQ): The limit of quantitation is defined as the level above which quantitative results may be obtained with a specified degree of confidence. The EPA recommends setting quantitation limits at a value of five-to-ten times the MDL.

A list of MDLs and LOQs determined for each sample matrix type will be kept on file in the QA department. MDLs will be verified on an annual basis.

Section No. 15 Revision No. Date: 08/26/93 Page 1 of 4

15. Corrective Action

Whenever any of the data generated falls outside of the established acceptance criteria outlined for instrument tune and calibration (Section 8) and Internal QC (Section 11), the cause of this irregularity must be investigated, corrected, and documented. The documentation will be used to prevent a recurrence of the problem and to inform management of the situation.

If the results are not within acceptance criteria, the appropriate corrective action will be initiated. This may include, but is not limited to, checking calculation and instrument performance, reanalysis of the associated samples, examining other QC analyzed with the same batch of samples, and qualifying results with a comment stating the observed deviation.

A Standard Operating Procedure is in place which outlines the procedures to be followed when quality control data for an analysis falls outside of previously established acceptance limits. All QC data must be entered onto the computerized QC system promptly after its generation and daily "out-of-spec" data is reported via this system. Any data outside the acceptance criteria will be reviewed by the Quality Assurance Department. Where appropriate, the Quality Assurance Department will place outliers in one of three categories:

A. Marginal Outlier

Data that are outside the 95% confidence interval but within the 99% confidence interval. This category may also be used for QC samples subject to matrix interferences or sample inhomogeneity.

Section No. 15 Revision No. Date: 08/26/93 Page 2 of 4

B. Outlier

Data outside the 99% confidence interval and/or observable trends such as a shift in mean and standard deviation.

C. Extreme Outlier

Such data would indicate the system is out of control and no results should be reported to clients; an example would be more than one reference or control falling outside the 99% confidence interval.

The daily out-of-spec reports are then distributed to Group Leaders or their QC Coordinator who will check all supporting data and document their findings and any corrective action taken. Documentation of QC Data will be filed in the departmental QC notebook. In the case of Outliers or Extreme Outliers the Quality Assurance Department may issue a formal request for investigation and corrective action (see sample form that follows). The Quality Assurance Department is responsible for initiating the corrective actions, insuring that the actions are taken in a timely manner, and that the desired results are produced. The QA Department will circulate all completed Investigation & Corrective Action forms to the appropriate manager.

The Quality Assurance Department is also responsible for conducting periodic audits which ensure compliance with laboratory SOPs and assist in identifying and correcting any deficiencies. These audits may entail observation as procedures are carried out or a review of records to demonstrate traceability and compliance with all documented record keeping procedures. The QA Department will then issue a written report which summarizes the audit. The technical centers must respond in writing to the audit report within 30 days of report receipt. The response will

Section No. 15
Revision No.
Date: 08/26/93
Page 3 of 4

address the corrective action that needs to be taken along with an expected completion date. Audit results and the corresponding response are communicated to laboratory personnel and management. Follow-up audits verify that proper corrective action has been taken for the identified discrepancy.

Section No. 15 Revision No. Date: 08/26/93 Page 4 of 4

	KASICI LAUVIAIVIRS .
W. 351	NO.
•	
	INVESTIGATION AND CORRECTIVE ACTION REPORT
art I	Description of problem
1	Date
2.	LLI sample number(s) involved
3.	Nature of QA outlier
•	
4.	Check if investigation must be complete before reporting further data to clients
	Initiated by:
art Ti	(Attach separate sheet if needed)
	. (Actaon beharate bileet II lieeded)
1.	Steps taken to investigate outlier:
•	
2.	Explanation of probable cause of outlier:
3.	Steps taken to prevent future occurrence:
٠.	occha cavell to brevell rapare occurrence.
_	
4.	Besides the sample(s) listed above, would data sent to any clients be be affected by this outlier? If yes, explain.
	be directed by this outlief: If yes, explain.
5. ·	Signed: Date:
	.•
	Return by:
	B 40 40 400

Section No. 16 Revision No. Date: 08/26/93 Page 1 of 1

16. Quality Assurance Reports to Management

Reports of quality status from the Quality Assurance
Department to management are made frequently and in various
forms. All results from internal or external performance
evaluation samples are circulated to management. A report
of each audit performed is prepared and copied to
management. Monthly summaries of data obtained from
analysis of quality control check samples are generated via
the computerized sample management system. These summaries
include mean and standard deviation to aid in assessment of
data accuracy and precision. Forms summarizing problems
which require investigation and corrective action are
completed by Group Leaders and circulated to management.
Through these channels, laboratory management is kept
apprised of QA/QC activities.

Any problems or unusual observations that occur during the analysis of samples for a specific project will be listed on the laboratory report and/or in the case narrative delivered with the data package. The items often discussed in this manner include samples with surrogate recovery outside of the acceptance criteria and samples with matrix problems requiring dilution and causing increased detection limits. Where applicable, any corrective action attempted or performed to address the problem will also be presented.

The laboratory will contact the client for direction regarding major problems such as samples listed on the chain of custody but missing from the shipping container, samples which arrive broken or are accidentally broken in the laboratory, and samples with severe matrix problems. The client will be contacted if it is necessary to change any item in the original project plan.

Appendix A

Example Reporting Forms

Data Package Content

```
Title Page
Sample Reference
Table of Contents
Chain of Custody
Laboratory Chronicle
Methodology/Reference Summary
Laboratory Analysis Reports
Per Parameter:
    Case Narrative
    Quality Control Summary
          Tune
          Surrogate Recovery
          Method Blank
          Matrix Spike/Matrix Spike Duplicate
          Duplicate<sup>2</sup>
          Standard Addition<sup>2</sup>
          Serial Dilution<sup>2</sup>
          Laboratory Control Sample Recovery (if applicable)
          Interference Check<sup>2</sup>
          Internal Standard<sup>1</sup>
    Sample Data
          Sample Result Summary and LOQs
          Sample Chromatograms
          Quantitation Reports
          Mass Spectra<sup>1</sup>
          Library Searches (if applicable)
          Confirmatory Chromatogram<sup>3</sup>
          Confirmatory Quantitation Report<sup>3</sup>
```

Standards Data Package

. Initial Calibration Summary Forms

Initial Calibration Data

Continuing Calibration Summary Forms

Continuing Calibration Data

Chromatograms and Quantitation Reports of Standards

Calibration Data for Confirmation Columns³

Calibration Curve (When quantitating against init. calib.)

ICAP Interference Table²

Raw QC Data

BFB/DFTPP Spectra and Mass Listing1

Method Blank Chromatograms, Quantitation Reports,

Mass Spectra¹ (GC/MS)

Matrix Spike/Matrix Spike Duplicate Chromatograms and Quant.

Duplicate Data Printouts²

Standard Addition Data²

Serial Dilution Data²

Laboratory Control Sample (if applicable)

Copy of Instrument Run Log

Extraction/Digestion Logs

Gel Permeation Chromatography (GPC), if applicable

All Peaks Identified

% Resolution Calculations

¹ GC/MS only

² Inorganics only

³ GC only (if applicable)

^{*} Amount of documentation is dependent upon client request.

14:10:24 358848 REP ASR000 D 2 00649 0

Smith Engineering, Inc. 1000 Any Street Lancaster, PA 17601-5994

Water Sample from Monitoring Well #5

LLI Sample No. WV 1892665 Date Reported Date Submitted 11/11/92 Discard Date 11/20/92 Collected 11/11/92 by MLH Time Collected 1000 P.O. Rel.

	RESULT .		LIMIT OF	
ANALYS1S	AS RECEIVE	ED	QUANTITATION	LAB CODE
Pesticides/PCB's		attached .		017824000
Nitrite Nitrogen	1.0	mg/l	0.02	021900800
Nitrate Nitrogen	N.D.	mg/l	0.05	022000700
Ammonia Nitrogen	6.5	mg/l ·	0.1	022202700
Ortho-Phosphate as P	N.D.	mg/l	0.01	022601500
Lead	0.05 J	mg/l	0.1	025501400
Total Organic Carbon	1.2	mg/l	0.5	027302500
The Total Organic Carbon (TOC) resumeasuring total carbon by a persulf on an acidified sample which has be nitrogen. It represents "non-purge	ate digesti en purged o	on/infrared d	etection metho	đ
Total Coliform	. N.D.	/100ml	2.2	030101500
This sample is SAFE for drinking or standards established by the U.S. F Environmental Protection Agency (EP	ublic Healt			
Trichloroethene	5.4	ug/l	0.5	041800500
l COPY TO Kathy DiNunzio				

1 COPY TO ATTN: Mr. John Smith Smith Engineering, Inc.

> Questions? Contact Environmental Client Services at (717) 656-2301 611 00649 90.00 044600

Lancaster Laboratories inc.

2405 New Hoffend Pile Laricaster F4 17604-5994

717-65642301

Respectfully Submitted Lancaster Laboratories, Inc. Reviewed and Approved by:

David Evans, B.S. Group Leader/Inst. Water Olty

See reverse side for explanation of symbols and abbreviations.

14:10:28 358848 REP ASRO00 D 2 1 00649 0

Smith Engineering, Inc. 1000 Any Street Lancaster, PA 17601-5994

Water Sample from Monitoring Well #5

LLI Sample No. WW 1892665
Date Reported 11/12/92
Date Submitted 11/11/92
Discard Date 11/20/92
Collected 11/11/92 by MLH
Time Collected 1000
P.O.
Rel.

•	RESULT	LIMIT OF	
Pesticides/PCB's	AS RECEIVED	QUANTITATION	LAB CODE
Alpha BHC	0.008 J ug/l	0.01	190200000N
Beta BHC	0.007 J ug/l	0.01	190300000N
Gamma BHC - Lindane	0.05 ug/l	. 0.01	045300000N
Delta BHC	N.D. ug/l	0.01	190400000N
Heptachlor	N.D. ug/l	0.01	045400000N
Aldrin	N.D. ug/l	0.01	045500000N
Heptachlor Epoxide	N.D. ug/l	0.01	190500000N
DDE	2.00 ug/l	0.01	190600000N
DDD	N.D. ug/l	0.01	190700000N
DDT	N.D. ug/l	0.01	047800000N
Dieldrin	N.D. ug/l	0.01	046900000N
Endrin	N.D. ug/l	0.01	047700000N
Chlordane	N.D. ug/l	0.3	190800000N
Toxaphene	2.0 J ug/l	4.	190900000N
Endosulfan I	N.D. ug/l	0.01	191000000N
Endosulfan II	N.D. ug/l	0.01	191100000N
Endosulfan Sulfate	N.D. ug/l	0.03	191200000N
Endrin Aldehyde	N.D. ug/l	0.1	063800000N
PCB-1016	N.D. ug/l	1.	191300000N;
PCB-1221	N.D. ug/l	1.	191400000N
PCB-1232	N.D. ug/l	1.	191500000N
PCB-1242	N.D. ug/l	1.	191600000N
PCB-1248	N.D. ug/l	1.	191700000N
PCB-1254	N.D. ug/l	1.	191800000N
PCB-1260	N.D. ug/l	1.	191900000N
1 CORY MO Weeks Divined			

l COPY TO Kathy DiNunzio
l COPY TO Smith Engineering, Inc.

ATTN: Mr. John Smith

Questions? Contact Environmental Client Services at (717) 656-2301

Respectfully Submitted
Lancaster Laboratories, Inc.
Reviewed and Approved by:

Jenifer B. Hess, B.S. Group Leader Pesticides/PCBs

14:13:41 358845 ASR000 D 2 1 00649

Smith Engineering, Inc. 1000 Any Street Lancaster, PA 17601-5994

Vater Sample from Monitoring Vell #5

LLI Sample No. WW 1892655 Date Reported 11/11/92 Date Submitted 11/11/92 Discard Date 11/19/92 Collected 11/11/92 by MLH Time Collected 1000 P.O. Rel.

	RESULT		LIHIT OP	
ANALYSIS	- AS RECEIV	/ED	QUANTITATION	LAB CODE
Pesticides/PCB's		attached		017824000
Nitrite Nitrogen	11.	mg/l	0.02	021900800
Nitrate Nitrogen	< 0.05	mg/l	0.05	022000700
Ammonia Nitrogen	4.1	mg/l	0.1	022202700
Ortho-Phosphate as P	2.1	mg/l	0.01	022601500
Lead	0.3	mg/l	0.1	025501400
Total Organic Carbon	8.5	mg/l	·· ·· 0.5	027302500
The Total Organic Carbon (TOC) r measuring total carbon by a pers on an acidified sample which has nitrogen. It represents "non-pu	ulfate digest been purged	ion/infrared of inorganic	detection metho	d
Total Coliform	< 2.2	/100ml	2.2	030101500
This sample is SAFE for drinking standards established by the U.S Environmental Protection Agency	. Public Heal			
Trichloroethene	12.	ug/l	0.5 🗥	041800500
	•	-	, a	• .
l COPY TO Kathy DiNunzio			* * * * * * * * * * * * * * * * * * * *	•
1 COPY TO Smith Engineering, Inc.	ATTN:	Mr. John Sm	ith .	

Questions? Contact Environmental Client Services at (717) 656-2301 611 00649 90.00 044600

Respectfully Submitted Lancaster Laboratories, Inc. Reviewed and Approved by:

David Evans, B.S.

14:13:43 358845 ASROOO D 2 1 00649 0

Smith Engineering, Inc. 1000 Any Street Lancaster, PA 17601-5994

Water Sample from Monitoring Well #5

LLI Sample No. WW 1892655
Date Reported 11/11/92
Date Submitted 11/11/92
Discard Date 11/19/92
Collected 11/11/92 by MLH
Time Collected 1000
P.O.
Rel.

•	RESULT		LIMIT OF	
Pesticides/PCB's	AS RECEIV	ED	QUANTITATION	LAB CODE
Alpha BHC	< 0.01	ug/l	0.01	190200000N
Beta BHC	< 0.01	ug/l	0.01	190300000N
Gamma BHC - Lindane	< 0.01	ug/l	0.01	045300000N
Delta BHC	< 0.01	ug/l	0.01	190400000N
Heptachlor	< 0.01	ug/l	0.01	045400000N
Aldrin	< 0.01	ug/l	0.01	045500000N
Heptachlor Epoxide	< 0.01	ug/l	0.01	190500000N
DDE	< 0.01	ug/l	0.01	190600000N
DDD	< 0.01	ug/l	0.01	190700000N
DDT	< 0.01	ug/l	0.01	047800000N
Dieldrin	< 0.01	ug/l	0.01	046900000N
Endrin	< 0.01	ug/l	0.01	047700000N
Chlordane	< 0.3	ug/l	0.3	190800000N
Toxaphene	< 4.	ug/l	4.	190900000N
Endosulfan I	< 0.01	ug/l	0.01	191000000N
Endosulfan II	< 0.01	ug/l	0.01	191100000N
Endosulfan Sulfate	< 0.03	ug/l	0.03	191200000N
Endrin Aldehyde	< 0.1	ug/l	0.1	063800000N
PCB-1016	< 1.	ug/l	1.	191300000N
PCB-1221	< 1.	ug/l	1.	191400000N
PCB-1232	< 1.	ug/l	1.	191500000N
PCB-1242	< 1.	ug/l	1.	191600000N
PCB-1248	< 1. "	ug/l	1.	191700000N
PCB-1254	< 1.	ug/l	1.	191800000N
PCB-1260	< 1.	ug/l	1.	191900000N
1 dany ma y al may				'—

1 COPY TO Kathy DiNunzio

1 COPY TO Smith Engineering, Inc. ATTN: Mr. John Smith

Questions? Contact Environmental Client Services at (717) 656-2301

Respectfully Submitted Lancaster Laboratories, Inc. Reviewed and Approved by:

Jenifer E. Hess, B.S. Group Leader Pesticides/PCB:

SEMIVOLATILE ORGANIC GC/MS TUNING AND MASS CALIBRATION - DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab	Name:	LANCASTE	K LABS		· Contract:	 •		•
Lab	Code:	LANCAS	Case No.	·	SAS No.:	•	SDG No.:	
Lab	File :	ID: >U1450)		DFTPP	Injection	Date: 0	6/12/92

Instrument ID: HP02861 DFTPP Injection Time: 07:12

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
=====		=========
51	30.0 - 60.0% of mass 198	46.9
68	Less than 2.0% of mass 69	0.0 (0.0)1
69	Mass 69 relative abundance	60.7
70	Less than 2.0% of mass 69	.2 (.4)1
127	40.0 - 60.0% of mass 198	41.6
197	Less than 1.0% of mass 198	0.0
198	Base Peak, 100% relative abundance	100.
199	5.0 to 9.0% of mass 198	6.6
275	10.0 - 30.0% of mass 198	21.4
365	Greater than 1.00% of mass 198	2.69
441	Present, but less than mass 443	10.0
442	Greater than 40.0% of mass 198	64.7
443	17.0 - 23.0% of mass 442	12.8 (19.8)2
	1-Value is % mass 69 2-Value is % mass	ss 442

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01 02 03 04 05 06 07 08 09 10	SAMPLE NO. SSTD160 SSTD120 SSTD20 SSTD80 CL-6SRE 1CL7SR SBLKWB1626 162WBLCS 162WBUS 162WBMS 162WBMSD EQUPD	SAMPLE ID	FILE ID ====================================	ANALYZED ===================================	ANALYZED 07:38 08:27 09:56 10:45 11:34 12:58 13:47 14:35 15:24 16:13 17:02 17:51 18:40
14 15 16 17 18 19 20 21					

2C WATER SEMIVOLATILE SURROGATE RECOVERY

Lab Name: LANCASTER LABS Contract: ____.

is to code: LANCAS | Case No.: ____. SAS No.: ___. SDG No.: ___.

		•							:
	EPA	Sl	S2	S3	S4	S5	S6	OTHER	TOT
	SAMPLE NO.	(NBZ) #	(FBP)#	(TPH) #	(PHL)#	(2FP)#	(TBP)#		OUT
			======	======	======		=====		===
01	SBLKWE1706	68	65	72	. 30	44	71		0
02	170WELCS	74	69	76	31	45	73		ŏ
03	D4LF2	65	62	68	28	41	70		ŏ
04	D4LF2MS	75	74	78	30	43	72		ō
05	D4LF2MSD	74	72	76	31	44	76		Ö
				70			72		Ö
06	D2LF1	- 62	61		28	42			
07	31685	65	65	81	28	41	68		0
80	D5LF3	57	· 57	65	22	32	48	,	0
09	61985	65	63 -	78·	28	42	64		0
10	D7PW1	68	. 66	78	31.	45	75		0
11	81285	63	62	72 ·	28	· 40	68		0
12	D9N51	66	68	82	27	39	69		0
13	D10FB	65	65	74	28	41	67		0
14									
15									
16									
17					 				
18									
19					i				
72							·		
20									
21 22									
22									
23									ll
24									lI
25									
24 25 26									
27									
28									
28 29									
30									
		i ———— I							ا ــــــ ا

QC LIMITS S1 (NBZ) = Nitrobenzene-d5
S2 (FBP) = 2-Fluorobiphenyl
S3 (TPH) = Terphenyl-d14
S4 (PHL) = Phenol-d6
S5 (2FP) = 2-Fluorophenol (35-114)(43-116) 33-141) (10-94)(21-100)S6 (TBP) = 2,4,6-Tribromophenol(10-12.3)

Column to be used to flag recovery values
* Values outside of contract required QC limits

D Surrogates diluted out

EPA SAMPLE NO.

Lab Name: LANCASTER LABS Contract: ____. SBLKLA1709

Lab Code: LANCAS Case No.: ____. SAS No.: ____. SDG No.: ____.

Matrix: (soil/water) SOIL Lab Sample ID: SBLKLA170

Sample wt/vol: 30 (g/mL) G Lab File ID: >16950

Level: (low/med) LOW Date Received:

% Moisture: not dec. ____. dec. ____. Date Extracted: 06/18/92

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 06/22/92

GPC Cleanup: (Y/N) Y pH: ____. Dilution Factor: 1.0

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG (

		,
62-75-9 N-Nitrosodimethylamine	330	ט
109-06-8 2-Picoline	330	ן טן
108-95-2 Phenol	330	ן טן
62-53-3 Aniline	330	ן ט
111-44-4 bis(2-Chloroethyl)ether	⁻ 330	ן ט ן
95-57-8 2-Chlorophenol	330	U
541-73-1 1,3-Dichlorobenzene	. 330	ו טו
106-46-7 1,4-Dichlorobenzene	330	ן טן
95-50-1 1,2-Dichlorobenzene	330	ן ט
108-60-1 bis(2-Chloroisopropyl)ether		ן ט. ן
621-64-7 N-Nitroso-di-n-propylamine_	330	l Ü. l
67-72-1 Hexachloroethane	330	ט
98-95-3 Nitrobenzene	330	ן ט
78-59-1 Isophorone	330	ו ט ו
88-75-5 2-Nitrophenol	⁻ 330	ן ט
105-67-9 2,4-Dimethylphenol	- 330	ן ט ן
111-91-1 bis(2-Chloroethoxy) methane		ו ט
120-83-2 2,4-Dichlorophenol	330	ן ט ן
120-82-1 1,2,4-Trichlorobenzene	330	ן טן
91-20-3 Naphthalene	330	ן ט
87-68-3 Hexachlorobutadiene	_ 330	ן ט ן
59-50-7 4-Chloro-3-methylphenol	-\ 330	บิ
77-47-4 Hexachlorocyclopentadiene	330	ו טו
88-06-2 2,4,6-Trichlorophenol	330	ן ט
91-58-7 2-Chloronaphthalene	⁻ 330	ט ו
131-11-3 Dimethylphthalate	330	ו טו
208-96-8 Acenaphthylene	330	บ
606-20-2 2,6-Dinitrotoluene	⁻ 330	ן טן
99-09-2 3-Nitroaniline	- 330 ⁻	ט
83-32-9 Acenaphthene	- 330	ן ט
51-28-5 2,4-Dinitrophenol	- 830	ו ט
	-1	· -
	- I 	· —— ·

Lab Code: LANCAS Case No.: SAS No.:SDG No.:	ANCASTER LABS Contract:
Cample wt/vol: 30 (g/mL) G	
Date Received: Date Received: Date Received: Date Received: Date Extracted: 06/18/92 Date Analyzed: 06/22/92 oil/water) SOIL Lab Sample ID: SBLKLA170	
Moisture: not dec dec Date Extracted: 06/18/92	ol: 30 (g/mL) G , Lab File ID: >16950
Concentration	.ow/med) LOW Date Received:
CONCENTRATION UNITS: CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG 100-02-7 4-Nitrophenol 121-14-2 2,4-Dinitrotoluene 330 U 84-66-2 Diethylphthalate 330 U 7005-72-3 4-Chlorophenyl-phenylether 330 U 86-73-7 Fluorene 100-01-6 4-Nitroaniline 330 U 100-01-6 4-Nitroaniline 330 U 86-30-6 N-Nitrosodiphenylamine (1) 330 U 86-30-6 1,2-Diphenylhydrazine 330 U 122-66-7 1,2-Diphenylhydrazine 330 U 187-86-5 Hexachlorobenzene 330 U 87-86-5	not dec dec Date Extracted: 06/18/92
CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q 100-02-7 4-Nitrophenol 330 U 121-14-2 2,4-Dinitrotoluene 330 U 84-66-2 Diethylphthalate 330 U 7005-72-3 4-Chlorophenyl-phenylether 330 U 86-73-7 Fluorene 330 U 100-01-6 4-Nitroaniline 330 U 534-52-1 4,6-Dinitro-2-methylphenol 830 U 86-30-6 N-Nitrosodiphenylamine (r) 330 U 122-66-7 1,2-Diphenylhydrazine 330 U 122-66-7 1 4-Bromophenyl-phenylether 330 U 118-74-1 Hexachlorobenzene 330 U 87-86-5 Pentachlorophenol 1700 U 85-01-8 Phenanthrene 330 U 120-12-7 Anthracene 330 U 120-12-7 Anthracene 330 U 120-44-0 Fluoranthene 330 U 206-44-0 Fluoranthene 330 U 129-87-5 Benzidine 330 U 129-00-0 Pyrene 330 U 85-68-7 Butylbenzylphthalate 330 U 91-94-1 33'-Dichlorobenzidine 570 U	(SepF/Cont/Sonc) SONC Date Analyzed: 06/22/92
CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q	o: (Y/N) Y pH: Dilution Factor: 1.0
100-01-6	CONCENTRATION UNITS: NO. COMPOUND (ug/L or ug/Kg) UG/KG Q
117-81-7 bis(2-Ethylhexyl)phthalate 330 U 117-84-0 bis(2-Ethylhexyl)phthalate 330 U 205-99-2 Benzo(b)fluoranthene 330 U 207-08-9 Benzo(k)fluoranthene 330 U	101-6

(1) - Cannot be separated from Diphenylamine

SEMIVOLATILE METHOD	BLANK SUMMARY
Lab Name: LANCASTER LABS	Contract:
Lab Code: LANCAS Case No.:	SAS No.: SDG No.:
Lab File ID:	Lab Sample ID:
Instrument ID:	Date Extracted:
Matrix: (soil/water)	Date Analyzed:
Level: (low/med)	Time Analyzed:
THIS METHOD BLANK APPLIES TO T	HE FOLLOWING SAMPLES, MS AND MSD:

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED
:	SAMPLE NO.	SAMPLE NO. SAMPLE ID	SAMPLE NO. SAMPLE ID FILE ID

COMMENTS:		,	
	· · · · · ·		

page 1 of 1

FORM IV SV

. 3/90

SOIL SEMIVOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE RECOVERY

Lab Name: LANCASTER LABS

Lab Code: LANCAS

51545 METHOD 8270

SPIKE LEVEL: 100 UG/ML

AMT USED: 30.0

SAMPLE SPIKE LEVEL:

3745.UG/KG % MOISTURE 11. DILUTION:

US SAMPLE: 0101-

HS SAMPLE: 0101-HS

1836265

MSD SAMPLE: 0101-MSD

COMPOUND NAME	US CONC	MS CONC	MSD CONC	HS REC	HSD REC .	RPD	RANGE	IN SPEC
•	UG/KG	UG/KG	UG/KG	x	X	X -	LOWER-UPPER	
K-Witrosodimethylamine	. 0.00	3166.89	3166.50	84	84	.01	29.3-100.5	YES
Phenal	0.00	3294.27	3340.31	8.8	89	-1.39	5.0-112.0	YES
tis(2-Chloroethyl)ether	£ 0.00	3095.69	3175.74	83	85	-2.55	12.0-158.0	YES
2-Chlorophenol	0.00	3356.81	3452.60	90	92	-2.81	23.0-134.0	YES
1,3-Dichlorobenzene	0.00	3125.88	3255.69	83 -	87	-4.07	1.0-172.0	YES
1,4-Dichlorobenzene	0.00	3127.83	3215.93	84	. 86	-2.78	20.0-124.0	YES
1,2-Dichlorobenzene	0.00	2963.46	3103.79	79	83	-4.63	32.0-129.0	YES
bis(2.Chloroisopropyl)ether	0.00	3380.23	3476.61	90	° 93	-2.81	36.0-166.0	YES
N-Nitroso-di-n-propylamine	0.00	3457.82	3466.80	92	92	•.26	1.0-230.0	YES
Hexachloroethane	0.00	3069.69	3143.37	82	. 84	-2.37	40.0-113.0	YES
Kitrobenzene	0.00	3126.50	3249.55	83	87	-3.86	35.0-180.0	YES
Isophorone	0.00	3437.80	3431.53	92	92	. 18	21.0-196.0	YES
2-Nitrophenol	0.00	3892.37	3759.65	104	100	3.47	29.0-182.0	YES
2,4-Dimethylphenol	0.00	3456.81	3447.74	92	92	.26	32.0-119.0	YES
bis(2-Chloroethoxy)methane	0.00	2607.48	2618.57	70	70	42	33.0-184.0	YES
2,4-Dichlorophenol	0.00	3343.56	3272.19	29	87	2.16	39.0-135.0	YES
1,2,4-Trichlorobenzene	0.00	3062.25	3144.28	28	84	-2.64	44.0-142.0	YES
Naphthalene	0.00	3311.86	3370.46	88	90	-1.75	21.0-133.0	YES
Hexachlorobutadiene	0.00	3281.52	3226.15	88	86	1.70	24.0-116.0	YES
4-Chloro-3-methylphenol	0.00	3384.94	3436.92	90	92	-1.52	22.0-147.0	YES
Hexachlorocyclopentadiene	0.00	1197.71	896.97	· 32	24	28.71	1.0-100.0	YES
2,4,6-Trichlorophenol	0.00	3688.74	3493.14	98 '	93	5.45	37.0-144.0	YES
2-Chloronaphthalene	0.00	3398.26	3331.89	91	89	1.97	60.0-118.0	YES
Dimethylphthalate	0.00	3521.36	3493.16	94	93	.80	1.0-112.0	YES
Acenaphthylene	0.00	3379.58	3349.67	90	89	.89	33.0-145.0	YES
2,6-Dinitrotoluene	0.00	3466.49	3454.84	92.	92	.34	50.0-158.0	YES
•	. 0.00	3548.24	3569.36	95	95	59	47.0-145.0	YES
2,4-Dinitrophenol	0.00	2364.86	1513.32	63	40	43.91	1.0-191.0	YES
-Nitrophenol .	0.00	3517.55	3173.25	94	85	10.29	1.0-132.0	YES
2,4-Dinitrotoluene	0.00	3680.27	3608.50	98	96	1.97	39.0-139.0	YES
) iethylphthalate	0.00	3249.98	2931.05	87	78	10.32	1.0-114.0	YES
-Chlorophenyl-phenylether	0.00	2768.33	2891.71	74	77	-4.36	25.0-158.0	YES
luorene	0.00	3277.18	3309.95	88	88	99	59.0-121.0	YES
,6-Dinitro-2-methylphenol	0.00	2551.43	1828.74	68	49	33.00	1.0-181.0	YES
-Nitrosodiphenylamine	0.00	3511.64	3234.57	94	86	8.21	37.8-147.0	YES
,2-Diphenylhydrazine	0.00	3249.70	3322.12	87	89	-2.20	25.7-124.9	YES
-Bromophenyl-phenylether	0.00	3493.55	3514.09	93	94	59	53.0-127.0	YES
lexachtorobenzene	0.00	3326.39	3369.43	89	90	-1.29	1.0-152.0	YES
entachlorophenol	0.00	2743.89	2262.51	73	60	19.23	14.0-176.0	YES

SOIL SEMIVOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE RECOVERY

Lab Name: LANCASTER LABS

Lab Code: LANCAS

Instrument: HP03301

SUS46 METHOD 8270

SPIKE LEVEL: 100 UG/HL

AHT USED: 30.0

SAMPLE SPIKE LEVEL:

3745.UG/KG

X HOISTURE 11. DILUTION: 1

US SAMPLE: 0101-

1836265

HS SAMPLE: 0101-MS

1836265 MSD SAMPLE: 0101-MSD

1836265

COMPOUND NAME	US CONC	HS CONC	HSD CONC	MS REC -	HSD REC	. RPD	RANGE	IN SPEC
	UG/KG	UG/KG	UG/KG	X . *	. *	· x	LOWER-UPPER	
Phenanthrene	0.00	3524.57	3770.24	94	101	-6.74	54.0-120.0	YES
Anthracene	0.00	3079.03	3079.03	82	82	00	27.0-133.0	· YES
Di-n-butylphthalate	0.00	3218.05	3298.88	86	88	-2.48	1.0-118.0	YES
Fluoranthene	0.00	3280.20	3369.92	88	90	-2.70	26.0-137.0	YES .
Benzidine :_	0.00	8981.62	12650.0	48	68	-33.92	1.0-101.8	· YES ·
Pyrene	0.00	3924.64	4074.19	105	109	-3.74	52.0-115.0	YES -
Butylbenzylphthalate	0.00	3370.03	3416.35	90	91	• -1.37	1.0-152.0	# YES
3,3'-Dichlorobenzidine	0.00	2083.09	2435.33	56	65	-15.59	1.0-262.0	YES
Eenzo(a)anthracene	0.00	3660.35	3836.40	98	102	-4.70	33.0-143.0	YES
Chrysene	0.00	3649.47	3633.50	97	97	.44	17.0-168.0	YES
bis(2-Ethylhexyl)phthalate	117.90	3355.54	3598.74	86	93	-7.24	8.0-158.0	YES -
Di-n-octylphthalate	0.00	3305.75	3494.29	88	93	-5.55	4.0-146.0	YES
Benzo(b)fluoranthene	0.00	3162.80	3365.10	84	90	-6.20	24.0-159.0	YES
Senzo(k)fluoranthene	0.00	3652.84	3671.10	98	98	50	11.0-163.0	YES
Benzo(a)pyrene	0.00	3723.19	3871.58	99	103	-3.91	17.0-163.0	YES
Indeno(1,2,3-cd)pyrene	0.00	4215.66	4304.08	112	. 115	-2.08	1.0-171.0	YES
Dibenz(a,h)anthracene	0.00	4015.16	4120.64	107	110	-2.59	1.0-227.0	YES
Benzo(g,h,i)perylene	0.00	3750.23	4019.39	. 100	107	-6.93	1.0-219.0	YES

AB NAME: LANCASTER LABS

LAB CODE: LANCAS

INSTRUMENT: MP03301

SPIKE LEVEL: 100 UG/L

CS SAMPLE NO: 184LALCS 184LALCS

TOMPOUND NAME	OCREF CONC	OCREF REC	. RANGE	IN SPEC	
	UG/L	X	LOWER-UPPER	•	
N-Nitrosodimethylamine	81.74	. 82	29.3- 100.5	YES	
rhenol	85.47	85 · ·	5.0- 112.0	YES	
is(2-Chloroethyl)ether	81.11	. 81	12.0- 158.0	YES	
2-Chlorophenol	87.16	87	23.0- 134.0	, YES	
1,3-Dichlorobenzene	81.82	82	1.0- 172.0	YES	
1,4-Dichlorobenzene	80.99	· 81	20.0- 124.0	YES	
1,2-Dichlorobenzene	79.40	79	32.0- 129.0	YES	
bis(2-Chloroisopropyl)ether	88.50	88 .	36.0- 166.0	YES	
1-Nitroso-di-n-propylamine	88.15	88	1.0- 230.0	YES	
lexachloroethane	81.81	82 -	40.0- 113.0	. YES	
Hitrobenzene	84.48	84	35.0- 180.0	YES	
Isophorone	90.20	90	21.0- 196.0	YES	
2-Nitrophenol	100.43	100	29.0- 182.0	YES	
?,4-Dimethylphenol	83.05	. 83	32.0- 119.0	YES	
bis(2-Chloroethoxy)methane	68.32	68	33.0- 184.0	YES	
2,4-Dichlorophenol	83.75	84	39.0- 135.0	YES	
1,2,4-Trichlorobenzene	81.01	81	44.0- 142.0	YES .	
Vaphthal ene	85.70	86	21.0- 133.0	YES	
Hexachlorobutadiene	85.97	86	24.0- 116.0	YES	
4-Chloro-3-methylphenol	. 86.04	86	22.0- 147.0	YES	
Hexachlorocyclopentadiene	88.71	89	1.0- 100.0	YES	
2,4,6-Trichlorophenol	89.39	89 ໍໍ	37.0- 144.0	YES	
2-Chloronaphthalene	84.52	84	60.0- 118.0	YES	
Dimethylphthalate	87.31	87	1.0- 112.0	YES	
Acenaphthylene	84.89	85	33.0- 145.0	YES	
2,6-Dinitrotoluene	87.03	87	50.0- 158.0	YES	
Acenaphthene	90.36	90	47.0- 145.0	YES	
2,4-Dinitrophenol	94.31	94	1.0- 191.0	YES	
4-Nitrophenol	86.96	87	1.0- 132.0	YES	
2,4-Dinitrotoluene	91.51	92	39.0- 139.0	YES	
Diethylphthalate	80.65	81	1.0- 114.0	YES	
4-Chlorophenyl-phenylether	70.89	71	25.0- 158.0	YES	
Fluorene	81.22	81	59.0- 121.0	YES	
4,6-Dinitro-2-methylphenol	99.75	100	1.0- 181.0	YES	
N-Nitrosodiphenylamine	88.05	88	37.8- 147.0	YES	
1,2-Diphenylhydrazine	86.08	86	25.7- 124.9	YES	
-Bromophenyl-phenylether	89.22	89	53.0- 127.0	YES	
Hexachlorobenzene	85.99	86	1.0- 152.0	YES	
Pentachlorophenol	80.55	80	14.0- 176.0	YES	

LAB NAME: LANCASTER LABS

LAB CODE: LANCAS

INSTRUMENT: HP03301

SU345 METHOD 8270

SPIKE LEVEL: 100 UG/L

LCS SAMPLE NO: 184LALCS

184LALCS

COMPOUND 'NAME	OCREF CONC	OCREF REC	RANGE	IN SPEC	
	UG/L	X X	LOJER-UPFER		
Phenanthrene	88.20	88	54.0- 120.0	YES	
Anthracene	81.71	82 .	27.0- 133.0	YES	
Di-n-butylphthalate	86.08	86	1.0- 118.0	YES	• '
Fluoranthene	86.63	87	26.0- 137.0	YES	•
Benzidine	258.59	52	1.0- 101.8	YES	
Pyrene	96.38	96.	52:0- 115.0	YES	
Butylbenzylphthalate	85.74	86 ,	1.0- 152.0	YES	•.
3,3'-Dichlorobenzidine	42.09	42 .	1.0- 262.0	YES .	
Benzo(a)anthracene	88.85	89	33.0- 143.0	YES	
Chrysene	90.05	90	17.0- 168.0	YES	
bis(2-Ethylhexyl)phthalate	87.65	88 '	8.0- 158.0	· YES	• •
i-n-octylphthalate	83.64	84	4.0- 146.0	YES	
Benzo(b)fluoranthene	72.13	72	24.0- 159.0	YES	•
Benzo(k)fluoranthene	97.12	97	11.0- 163.0	YES	•
Benzo(a)pyrene	92.44	92	17.0- 163.0	YES	
Indeno(1,2,3-cd)pyrene	115.16	115	1.0- 171.0	YES	
Dibenz(a,h)anthracene	104.34	104	1.0- 227.0	YES	
Benzo(g,h,i)perylene	104.26	104	1.0- 219.0	YES	

COMMENTS:

8 B SEMIVOLATILE INTERNAL STANDARD AREA SUMMARY

Lab Name: LANCASTER LABS Contract: __ .

Lab Code: LANCAS Case No.: _____. SAS No.: . SDG No.:

Lab File ID (Standard): >U1702 Date Analyzed: 06/19/92

Instrument ID: HP02861 Time Analyzed: 07:03

U	L2 HOUR STD	IS1 (DCB) AREA # ====================================	RT ====== 8.57	IS2(NPT) AREA # ====================================	RT	IS3(ANT) AREA #	RT
U	JPPER LIMIT			98150			
== L ==	=======	46060		========	12.27	57525 ========	17.70
. ==			-	196300		115050	=====
==	OWER LIMIT	11515		49075		28763	
E	PA SAMPLE						
02 4 03 4 04 4 05 4 06 4 07 S 08 1 09 D 10 D 11 D	5586 5588 5589 5590 5591 5592 BLKWE1706 70WELCS 04LF2 04LF2MS 04LF2MSD 02LF1	24672 24154 25470 24262 23391 24525 23606 24132 24509 25182 24377 23925	8.56 8.56 8.55 8.56 8.56 8.56 8.56 8.57 8.57	99296 96319 102266 96444 93705 96816 94750 96206 97080 102457 98374 94391	12.25 12.26 12.25 12.25 12.25 12.25 12.28 12.28 12.28 12.28	59784 57794 60535 57609 56056 57205 57234 57908 58661 59352 57651 57152	17.69 17.69 17.69 17.69 17.69 17.70 17.70 17.70

IS1 (DCB) = 1,4-Dichlorobenzene-d4
IS2 (NPT) = Naphthalene-d8

UPPER LIMIT = + 100%

of internal standard area.

IS3 (ANT) = Acenaphthene-dl0

LOWER LIMIT = -50%

of internal standard area.

Column used to flag internal standard area values with an asterisk

page 1 of 1

8C SEMIVOLATILE INTERNAL STANDARD AREA SUMMARY

Lab Name: LANCASTER LABS Contract: __.

Lab Code: LANCAS Case No.: ____. SAS No.: ____. SDG No.: ___

Lab File ID (Standard): >U1702 Date Analyzed: 06/19/92

Instrument ID: HP02861 Time Analyzed: 07:03

IS4 (PHN) AREA # RT AR								<u> </u>
12 HOUR STD						·]
UPPER LIMIT	ŀ		AREA #	RT	AREA #	RT	AREA #	RT
UPPER LIMIT	i	========	=======	======	=======	======	========	===== <u> </u>
LOWER LIMIT	ŀ	12 HOUR STD	94913	22.26	45470	30.54	22917	34.71
LOWER LIMIT		==============	=======	======	=======	=====	========	=====
LOWER LIMIT 47457 22735 11459 EPA SAMPLE NO. 01 45586 93228 22.24 35881 30.55 21301 34.72 245588 85844 22.24 39309 30.54 22340 34.71 34.71 35.59 93886 22.24 38502 30.54 22340 34.71 34.71 35.59 90.580 22.23 34712 30.53 21036 34.71 35.59 88441 22.24 33784 30.53 20133 34.71 36.45591 88441 22.24 33784 30.53 20133 34.71 36.45592 87212 22.23 34405 30.54 19093 34.71 36.55 25317 36.55 25317 36.55 25317 36.55 25317 36.55 25317 36.55 25317 36.55 25317 36.55 25317 36.55 25317 36.55 25317 36.55 25317 36			_					• .
EPA SAMPLE NO. 1							and the second s	
NO. 1	- 1			=====	========	=====		=====
02	}							
02	J	=========	========	=====		=====	========	
03	01	45586	93228	22.24	35881	30.55	21301	34.72
04 45590 90580 22.23 34712 30.53 21036 34.71 05 45591 88441 22.24 33784 30.53 20133 34.71 06 45592 87212 22.23 34405 30.54 19093 34.71 07 SBLKWE1706 90741 22.24 39826 30.55 25317 34.71 08 170WELCS 94491 22.26 45373 30.55 27570 34.71 09 D4LF2 94980 22.24 39878 30.55 23810 34.71 10 D4LF2MS 93986 22.27 42812 30.56 24431 34.72 11 D4LF2MSD 94170 22.27 46417 30.57 26865 34.73 12 D2LF1 93204 22.24 40849 30.55 26079 34.72 13 14 15 16 17 18 19 20 20 21	02	45588	85844	22.24	39309	30.54	28105	34.71
04 45590 90580 22.23 34712 30.53 21036 34.71 05 45591 88441 22.24 33784 30.53 20133 34.71 06 45592 87212 22.23 34405 30.54 19093 34.71 07 SBLKWE1706 90741 22.24 39826 30.55 25317 34.71 08 170WELCS 94491 22.26 45373 30.55 27570 34.71 09 D4LF2 94980 22.24 39878 30.55 23810 34.71 10 D4LF2MS 93986 22.27 42812 30.56 24431 34.72 11 D4LF2MSD 94170 22.27 46417 30.57 26865 34.73 12 D2LF1 93204 22.24 40849 30.55 26079 34.72 13 14 15 16 17 18 19 20 20 21	03	45589	93886	22.24	38502	30.54	22340	34.72
05								
06 45592 87212 22.23 34405 30.54 19093 34.71 39826 30.55 25317 34.71 34.71 39826 30.55 25317 34.71 34.71 39826 30.55 27570 34.71 39826 30.55 27570 34.71 39826 30.55 23810 34.71 39826 30.55 23810 34.71 39826 39878 30.55 23810 34.71 39826 39878 30.55 23810 34.71 39826 39826 22.27 42812 30.56 24431 34.72 39826 3								
07 SBLKWE1706 90741 22.24 39826 30.55 25317 34.71 08 170WELCS 94491 22.26 45373 30.55 27570 34.71 09 D4LF2 94980 22.24 39878 30.55 23810 34.71 10 D4LF2MS 93986 22.27 42812 30.56 24431 34.72 11 D4LF2MSD 94170 22.27 46417 30.57 26865 34.73 12 D2LF1 93204 22.24 40849 30.55 26079 34.72 13 14 15 16 17 18 19 18 19 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
08 170WELCS 94491 22.26 45373 30.55 27570 34.71 09 D4LF2 94980 22.24 39878 30.55 23810 34.71 10 D4LF2MS 93986 22.27 42812 30.56 24431 34.72 11 D4LF2MSD 94170 22.27 46417 30.57 26865 34.73 12 D2LF1 93204 22.24 40849 30.55 26079 34.72 13 14 15 16 17 18 19 20 21								
09 D4LF2 94980 22.24 39878 30.55 23810 34.71 10 D4LF2MS 93986 22.27 42812 30.56 24431 34.72 11 D4LF2MSD 94170 22.27 46417 30.57 26865 34.73 12 D2LF1 93204 22.24 40849 30.55 26079 34.72 13 14 15 16 17 18 19 18 19								
10 D4LF2MS 93986 22.27 42812 30.56 24431 34.72 11 D4LF2MSD 94170 22.27 46417 30.57 26865 34.73 12 D2LF1 93204 22.24 40849 30.55 26079 34.72 13 14 15 16 17 18 19 20 21								
11 D4LF2MSD 94170 22.27 46417 30.57 26865 34.73 12 D2LF1 93204 22.24 40849 30.55 26079 34.72 13 14 15								
12 D2LF1 93204 22.24 40849 30.55 26079 34.72 13 14								
13 14 15 16 17 18 19 20 21								
14 15 16 17 18 19 20 21		DEPLI	93204	22.24	40043	30.55	20079	34.72
15 16 17 18 19 20 21								
16 17 18 19 20 21	14							
17 18 19 20 21	75							
18 19 20 21	16							
19 20 21	17							
20 21	18							
21	19	<u></u>						
								i
22								
	22							

IS4 (PHN) = Phenanthrene-d10 IS5 (CRY) = Chrysene-d12

IS6 (PRY) = Perylene-d12

UPPER LIMIT = + 100%

of internal standard area.

LOWER LIMIT = - 50%

of internal standard area.

Column used to flag internal standard area values with an asterisk

page 1 of 1

Instrument ID: HP03301 . .

Contractor: LANCASTER LABS

Calibration Date: 07/04/92

Case No:

Hinimum RF for SPCC is 0.05

Maximum X RSD for CCC is 30.0%

7-4-92

Laboratory ID:			>u7204	>u7202	>V7201					
Compound	RF 20.00	RF 50.00	RF 80.00	RF 120.00	RF 160.00	RRT	RF	X RSD	ccc	SPCC
	20.00			120.00			nr	~ K3U	•••	3766
N-Witrosodimethylamine	.79215	.82554	.85326	.86241	.80014	.413	.82670	3.768		
2-Picoline	1.35951	1.42977	1.51909	1.49935	1.41079	.571	1.44370	4.535		
Fhenol	1.82504	1.71783	1.67268	1.64775	1.57239	. 913	1.68714	5.535	•	
Aniline	2.23733	2.20556	2.23331	2.20993	2.08297	.921	2.19382	2.895		
bis(2-Chloroethyl)ether	1.56329	1.43752	1.43071	1.43945	1.37231	.937	1.44865	4.820		
2-Chlorophenol	1.46264	1.38858	1.37290	1.36104	1.29364	.948	1.37576	4.404		
1,3-Dichlorobenzene	1.63905	1.45558	1.36515	1.36480	1.30204	.986	1.42532	9.220		
1,4-Dichlorobenzene	1.67988	1.46693	1.35451	1.36371	1.26978	1.004	1.42696	11.054	•	
1,2-Dichlorobenzene	1.68317	1.52105	1.43128	1.39256	1.34090	1.041	1.47379	9.112		
bis(2-Chloroisopropyl)ether	4.50053	4.68677	4.67513	4.58089	4.44439	1.068	4.57754	2.320		
N-Witroso-di-n-propylamine	1.48989	1.51378	1.49465	1.47022	1.45112	1.104	1.48393	1.618		**
Hexachloroethane	.89850	.84677	.80621	.80198	.78519	1.126	.82773	5.506		
2-fluorophenol	1.24298	1.24730	1.21432	1.19973	1.11904	.697	1.20467	4.300		
Phenol-d6	1.85609	1.81422	1.79029	1.79168	1.66119	.909	1.78269	4.092		
Nitrobenzene	.21186	.19914	. 19299	.18814	.17833	.864	. 19409	6.447		
Isophorone	.99067	.94687	.95230	.93721	.91919	.911	.94925	2.777		
2-Nitrophenol	.22090	.23546	.23247	.22523	.21163	.925	.22514	4.218	•	
2,4-Dimethylphenol	.41340	.40459	.39781	.39794	.37792	.932	.39833	3.282		
bis(2-Chloroethoxy)methane	.65025	.59659	.57808	.55937	.54178	.953	.58521	7.131		
2,4-Dichlorophenol	.34382	.33154	.31809	.30781	.29925	.972	.32010	5.596	•	
1,2,4-Trichlorobenzene	.38930	.35400	.32515	.31724	.29668	.989	.33648	10.694		
Naphthalene	1.12051	.96904	.87731	.87843	.81424	1.005	.93190	12.769		
Hexach lorobutadiene	.20654	. 19705	. 19069	.17496	.16543	1.028	. 18693	8.898	•	
4-Chloro-3-methylphenol	.30730	.29278	.28243	.27501	.27113	1.110	.28573	5.114	*	
Nitrobenzene-d5	.51351	.51910	.51234	.49674	.47143	.860	.50262	3.842		
Hexachlorocyclopentadiene	.20422	.32896	.32458	.30685	.30622	.866	.29417	17.443	•	**
2,4,6-Trichlorophenol	.42036	.43846	.41784	.39389	.39789	.885	.41369	4.386	•	
2-Chloronaphthalene	1.26268	1.17370	1.05965	1.02438	.94311	.917	1.09270	11.539		
Dimethylphthalate	1.60010	1.56057	1.49083	1.42663	1.27337	.960	1.47030	8.744		
Acenaphthylene	2.12120	1.94575	1.78450	1.73436	1.59293	.979	1.83575	11.079		

RF - Response Factor (Subscript is amount in MG/L)

RRT - Average Relative Retention Time (RT Std/RT Istd)

RF - Average Response Factor

%RSD - Percent Relative Standard Deviation

CCC - Calibration Check Compounds (*) SPCC - System Performance Check Compounds (**)

Form VI Page 1 of 3

Case No:

Instrument ID: HP03301

Contractor: LANCASTER LAGS

Calibration Date: 07/04/92

Contract No:

):

Minimum RF for SPCC is 0.05

Maximum X RSD for CCC is 30.0%

Laboratory In 207203 207205 207204 207202 207201

Laboratory 10:	>W7203 RF	>U7205 RF	>U7204 RF	>U7202	>U7201 RF		•				
Compound	20.00	50.00	80.00	120.00	160.00	RRT	RF	z RSD	ccc	SPCC	
3-Witroaniline	.37385	.48117	.46716	.44045	.42082	.995	.43669	9.662	•••		•
Acenaphthene	1.32222	1.17549	1.06646	1.02033	.93873	1.006	1.10464	13.462	•		
2,4-Dinitrophenol	. 15894		.23737		.21763	1.010	.21292	14.562	•	••	(Conc=40.0,50.0,80.0,120.
4-Nitrophenol	13029	. 19084	. 19667	.17726	15701	1.018	.17041	15.918		••	(Conc=40.0,50.0,80.0,120.
2.6-Dinitrotoluene	.38226	.40717	.39060	37954	.36003	.969	.38392	4.470			o •
2,4-Dinitrotoluene	.54041	.56621	.48378	.48007	.41782	1.030	.49766	11.631			•
Diethylphthalate	1.97196	1.84260	1.62296	1.59064	1.42316	1.067	1.69026	12.838	•		
4-Chlorophenyl-phenylether	.62442			.39567	.35449	1.083	.45286	23.727			
Fluorene	1.32669	1.02768		.85934	.78605	1.084	.97934	21.753			
4-Nitroaniline	.32227			.40281	.35447	1.087	.39550	14.355			
2-Fluorobiphenyl	1.33740	1.20670	1.06727	1.03407	.96266	.898	1.12162	13.350			
2,4,6-Tribromophenol	.27263	.31503	.30449	.28091	.25466	1.119	.28555	8.526			
4,6-Dinitro-2-methylphenol	. 15465	.16844	.16739	. 16289	. 16180	.891	. 16304	3.359			(Conc=40.0,50.0,80.0,120.
N-Witrosodiphenylamine	.54129	.50230	.47344	.44622	.44457	.899	.48156	8.486	•		
1,2-Diphenylhydrazine	1.39834	1.33712	1.24190	1.17339	1.16263	.904	1.26267	8.150			
4-Bromophenyl-phenylether	.21620	.19999	. 18356	.16861	. 17047	944	.18777	10.789			
Kexach Lorobenzene	.32181	.29905	.26912	.25965	.26090	.952	.28210	9.685			
Pentachlorophenol	.14111	. 17763	. 17289	. 16216	. 16479	.975	. 16372	8.597	•		(Conc=40.0,50.0,80.0,120.
Phenanthrene	1.17905	1.02682	.91801	.88451	.88627	1.003	.97893	12.876			•
Anthracene	1.18798	1.06212	.93990	.90084	.87522	1.010	.99321	13.126			
≎i-n-butylphthalate	2.09753	1.84120	1.61059	1.57147	1.48288	1.071	1.72073	14.455			
fluoranthene	1.25600	1.13706	1.02384	.96825	.93051	1.151	1.06313	12.514	•		e ja e e e e
Terphenyl-d14	1.25584	1.08434	.99585	.92541	.93559	.901	1.03941	13.133			
Senzidine	.55445	.65906	.62454	.51271	.53230	.879	.57661	10.842			(Conc=100.0,200.0,300.0,4
Pyrene	2.01688	1.73171	1.66909	1.56641	1.55634	. 888	1.70809	10.973			•
Butylbenzylphthalate	1.39885	1.22386	1.18583	1.11673	1.11323	.946	1.20770	9.663			
3,3'-Dichlorobenzidine	.37029	.49554	.48936	.40532	.43119	.995	.43834	12.311			
Benzo(a)anthracene	1.12577	1.08713	1.05545	.97467	.95318	.999	1.03924	7.074			
bis(2-Ethylhexyl)phthalate	1.99554	1.55638	1.37333	1.31946	1.23819	.998	1.49658	20.208			
Chrysene	1.20220	1.14718	1.10979	1.02970	1.03118	1.003	1.10401	6.773			

- RF Response factor (Subscript is amount in HG/L)
- RRT Average Relative Retention Time (RT Std/RT 1std)
- RF Average Response Factor
- XRSD Percent Relative Standard Deviation
- CCC Calibration Check Compounds (*) SPCC System Performance Check Compounds (**)

Form VI Page 2 of 3

Initial Calibration Data HSL Compounds

Instrument ID: HP03301 Case No:

Contractor: LANCASTER LABS Calibration Date: 07/04/92

Contract No:

Minimum RF for SPCC is 0.05 Maximum X RSD for CCC is 30.0%

Laboratory	10: >47203	>W7205	>U7204	>47202	>47201				
	RF	RF	RF	RF	RF				
Compound	20.00	50.00	80.00	120.00	160.00	RRT	RF	% RSD	CCC SPCC
	•••		•••••		•••••		•••••	••••••	•••
Di-n-octylphthalate	4.34758	3.67292	3.38699	3.54509	3.40243	.901	3.67100	10.780	•
Benzo(b)fluoranthene	1.22924	1.25774	1.25927	1.35750	1.25857	.949	1.27246	3.867	
Benzo(k)fluoranthene	1.28394	1.21770	1.16070	1.21695	1.14036	. 953	1.20393	4.675	
Benzo(a)pyrene	1.05205	1.10999	1.11644	1.16409	1.09115	.993	1.10674	3.678	•
Indeno(1,2,3-cd)pyrene	.76536	.75464	.77939	.81705	. 78521	1.190	.78033	3.044	
Dibenz(a,h)anthracene	.69699	.74496	. 75972	. 78316	.74132	1.196	.74523	4.238	
Benzo(g,h,i)perylene	.78372	.82966	.81472	. 85 194	.83911	1.251	.82383	3.183	

Response Factor (Subscript is amount in MG/L)

RRT - Average Relative Retention Time (RT Std/RT 1std)

- Average Response Factor

Percent Relative Standard Deviation

- Calibration Check Compounds (*) SPCC - System Performance Check Compounds (**)

Form VI Page 3 of 3

Continuing Calibration Check HSL Compounds

Case No:

Calibration Date: 07/04/92

Contractor: LANCASTER LABS

Time: 13:32

Contract No:

Laboratory ID: >47205

Instrument ID: NP03301

Initial Calibration Date: 07/04/92

Hinimum RF for SPCC is 0.05 Haximum X Diff. for CCC is 30.0X

Compound	RF	RF	2Diff	ccc	SPCC	3
N-Witrosodimethylamine	.82670	.82554	. 14			· · · · · · · · · · · · · · · · · · ·
2-Picoline	1.44370	1.42977	.97			
Phenol	1.68714	1.71783	1.82	•		
Aniline	2.19382	2.20556	.53			•
bis(2-Chloroethyl)ether	1.44865	1.43752	.77	•	•	•
2-Chlorophenol	1.37576	1.38858	.93		• •	` با <i>ع</i>
1,3-Dichlorobenzene	1.42532	1.45558	2.12		•	ج ب ب - ' - ب
1,4-Dichlorobenzene	1.42696	1.46693	2.80	•		·
1,2-Dichlorobenzene	1.47379	1.52105	3.21			
bis(2-Chloroisopropyl)ether	4.57754	4.68677	2.39			
N-Nitroso-di-n-propylamine	1.48393	1.51378	2.01		••	
Hexachloroethane	.82773	.84677	2.30			
2-Fluorophenol	1.20467	1.24730	3.54			
Phenol-d6	1.78269	1.81422	1.77			
Nitrobenzene	. 19409	. 19914	2.60			•
Isophorone	.94925	.94687	.25	•		
2-Nitrophenol	.22514	.23546	4.59	•		
2,4-Dimethylphenol	.39833	.40459	1.57			T.
bis(2-Chloroethoxy)methane	.58521	.59659	1.94			
2,4-Dichlorophenol	.32010	.33154	3.57	•		
1,2,4-Trichlorobenzene	.33648	.35400	5.21			
Naphthalene	.93190	.96904	3.98			
Hexachlorobutadiene	. 18693	. 19705	5.41	•		
4-Chloro-3-methylphenol	.28573	.29278	2.47	•		
Nitrobenzene-d5	.50262	.51910	3.28			
Hexachlorocyclopentadiene	.29417	.32896	11.83		**	
2,4,6-Trichlorophenol	41369	.43846	5.99	•		
2-Chloronaphthalene	1.09270	1.17370	7.41			•
Dimethylphthalate	1.47030	1.56057	6.14			•
Acenaphthylene	1.83575	1.94575	5.99			
3-Witroaniline	.43669	.48117	10.19			
Acenaph thene	1.10464	1.17549	6.41	•		
***************************************	• • • • • • • • • • • • • • • • • • • •		•••••		••••	

RF - Response Factor from daily standard file at 50.00 MG/L

RF - Average Response Factor from Initial Calibration Form VI

#Diff - # Difference from original average or curve

CCC - Calibration Check Compounds (*) SPCC - System Performance Check Compounds (**)

Form VII Page 1 of 3

Continuing Calibration Check HSL Compounds

Case No: Calibration Date: 07/04/92

Contractor: LANCASTER LABS Time: 13:32

Contract No: Laboratory ID: >W7205

Contract so: Caporatory to: Parkey

Instrument ID: MP03301 Initial Calibration Date: 07/04/92

Minimum RF for SPCC is 0.05 Maximum X Diff for CCC is 30.02

. KINIMUM KF TOF SPCC 15	V.U5	MAXII	mum a vi	it for CC	L 15 30.04
Compound	RF	RF	20iii	CCC SPCC	
2,4-Dinitrophenol	.21292	.22404	5.22	••	(Conc=50.00)
4-Witrophenol	.17041	. 19084	11.99	••	(Conc=50.00)
2,6-Dinitrotoluene	.38392	.40717	6.06		
2,4-Dinitrotoluene	.49766	.56621	13.77		(Conc=50.00)
Diethylphthalate	1.69026	1.84260	9.01		
4-Chlorophenyl-phenylether	.45286	.48771	7.70		
Fluorene	.97934	1.02768	4.94		•
4-Witroaniline	.39550	.45515	15.08		
2-fluorobiphenyl	1.12162	1.20670	7.59		
2,4,6-Tribromophenol	.28555	.31503	10.33		
4,6-Dinitro-Z-methylphenol	. 16304	.16844	3.31		(Conc=50.00)
N-Nitrosodiphenylamine	.48156	.50230	4.31	•	
1,2-Diphenylhydrazine	1.26267	1.33712	5.90		
4-Bromophenyl-phenylether	.18777	. 19999	6.51		
Hexachlorobenzene	.28210	.29905	6.01		
Pentachlorophenol	.16372	. 17763	8.50	•	(Conc=50.00)
Phenanthrene	.97893	1.02682	4.89		
Anthracene	.99321	1.06212	6.94		
Di-n-butylphthalate	1.72073	1.84120	7.00		
Fluoranthene	1.06313	1.13706	6.95	•	
Terphenyl-d14	1.03941	1.08434	4.32		•
Benzidine	.57661	.65906	14.30		(Conc=200.00)
Pyrene	1.70809	1.73171	1.38	•	
Butylbenzylphthalate	1.20770	1.22386	1.34		
3,3'-Dichlorobenzidine	.43834	.49554	13.05		
Benzo(a)anthracene	1.03924	1.08713	4.61		
bis(2-Ethylhexyl)phthalate	1.49658	1.55638	4.00		•
Chrysene	1,10401	1.14718	3.91		
Di-n-octylphthalate	3.67100		.05	•	
Benzo(b)fluoranthene	1.27246	1.25774	_		
Benzo(k)fluoranthene	1.20393		1.14		
Benzo(a)pyrene	1.10674	1.10999	. 29	•	
	•••••	•••••	•••••	•••	•

RF - Response Factor from daily standard file at 50.00 MG/L

CCC - Calibration Check Compounds (*) SPCC - System Performance Check Compounds (**)

Form VII Page 2 of 3

RF - Average Response Factor from Initial Calibration Form VI

XDiff - X Difference from original average or curve

Continuing Calibration Check HSL Compounds

Calibration Date: 07/04/92 Case No:

Contractor: LANCASTER LABS Time: 13:32

Laboratory ID: >47205 Contract No:

Instrument ID: HP03301 Initial Calibration Date: 07/04/92

Minimum RF for SPCC is 0.05 Maximum % Diff for CCC is 30.0%

Compound	RF	RF	will	CCC SPCC	
Indeno(1,2,3-cd)pyrene			3.29		
Dibenz(a,h)anthracene Benzo(g,h,i)perylene		.74496 .82966	.04 .71	• ,	

- Response Factor from daily standard file at 50.00 MG/L

RF - Average Response Factor from Initial Calibration Form VI

XDiff - % Difference from original average or curve

- Calibration Check Compounds (*) SPCC - System Performance Check Compounds (**)

form VII Page 3 of 3

Surrogate Recovery Volatiles by GC - Water

QC Limits

		· /.									***********
	LLI Sample No.	Sample, Designation	Dilution Factor	_S1 (MeBrCl)	S2 (1Cl3FBn)	S3 (1Cl3fBn)	\$4 (1,2,3-TCP)	S5 (ProBn)	Other	101 OUT	
	=======	 	 								
				4 .							,
į	· •		,			·					
.			Pr								
					÷	:					
<u> </u>											·
.	•			,-	• .						
	•										

	LOW	HIGH
S1 (MeBrCl) = Bromochloromethane (Hall Det)	75	125
S2 (1Cl3FBn) = 1-Chloro-3-fluorobenzene (Hall Det)	75	125
S3 (1Cl3FBn) = 1-Chloro-3-fluorobenzene (PID Det)	75	125
S4 (1,2,3-TCP) = 1,2,3-Trichloropropane (Hall Det)	75	125
S5 (ProBn) = n-Propylbenzene (PID Det)	75	125

* Values outside QC limits

D Surrogates diluted out

Comments:

Method Blank Volatiles by GC

*** BLANK INFORMATION ***

Sample Inf	ormation			Blank Cont	amination Information		
LL! Sample #	Sample Designation	Analy Date	essessesses ysis Time	CAS Number	Compound	Blank Result	L00
		***********	*********	======== 174-87-3	essessessessessessesses Chloromethane	icessessesses I ND	====== 5
	!!		!	11	Bromomethane	I ND	5
	!!		!	11	Vinyl chloride	I ND	1
	!!		١	1 • ' -	Chloroethane	ND	
	!!		!	1	Kethylene chloride	I ND	i i
	! !		!		1,1-Dichloroethene	ND	i
	!!	-	!		1,1-Dichloroethane	ND	i i
	!!				1,2-Dichloroethene (c/t)	ND	i i
	!!		!		Chloroform	ND	1 1
	1.		1	10. 00 0 .	1,2-Dichloroethane	ND	j 1
	!!				1,1,1-Trichloroethane	ND	i 1
	!!				Carbon tetrachloride	ND	i 1
•	} !		· }		Bromodichloromethane	ND	i . 1
	}	:	!		1,2-Dichloropropane	ND	j 1
	}		,		trans-1,3-Dichloropropene	ND	j 1
	1		}		Trichloroethene	ND	j 1
	! . !				Dibromochloromethane	ND	j 1
	! !		1		1,1,2-Trichloroethane	ND	į 1
	!!!		:		cis-1,3-Dichloropropene	ND ND	j 1
		-			Bromoform	ND	j 2
	}	•	i		1,1,2,2-Tetrachloroethane	ND	į 2
	1 1				Tetrachloroethene	ND	1 . 1
	1 1		i		Chlorobenzene	ND	į 1
	1 1		;] [lBenzene	ND	j 1
	1 1		· ·	•	Toluene	ND	į 1
	}				Ethylbenzene	j ND	į 1
	, " ;			106-42-3	• •	ND	į 1
	1 1		i	•	m-Xylene	ND	j · 1
	1 1		i	195-47-6	o-Xylene	ND '	j 1
	i i		i		p-Dichlorobenzene	ND	1
	1		i		m-Dichlorobenzene	j ND	j 1
	1 1		i	95-50-1	o-Dichtorobenzene	ND] 1
				 . 	. :	•	

ABBREVIATION KEY

COMMENTS:

|LOQ = Limit of Quantitation |ND = None Detected |* = above detection limit

Matrix Spike/Matrix Spike Duplicate Volatiles by GC

Unspiked Sample Number :
Spiked Sample Number :
Spiked Dup Sample Number :

Inj.: Inj.:

Batch Number :

Date : .

Matrix : Vater

							222222		*****	
! This MS/MSD		Spike -	Sample	·MS	MSD	. HS	HSD	l ec	İ	00
applies to the		Added	Conc	Conc	Conc	X	X	Limits	RPD	Lii s
following samples	Compound	(ug/l)	(ug/l)	(ug/l)	(Ug/l)	REC	REC	REC	l	RI
		======================================				:588#866	-		ESSESS	
	Chloromethane		ND	1		l	1	65 -130	1	1 1
	Bromomethane		ND	i	i	j .	ĺ	65 -130	١.	1 1
}	Vinyl chloride		MD	i	i	İ.	İ	65 -130	l	
	Chloroethane		ND	İ	Ì	İ	1	65 -130	1	20
			ND	`	i	1	1	75 -125	1	!!
i	Trichlorofluoromethane		ND	l	İ	1	1	65 -130	ļ	
	1,1-Dichloroethene		ND	İ		1	1	75 -125	!	12
	1,1-Dichloroethane		ND	1	į	l .	1	75 -125	ļ	15
	1,2-Dichloroethene(cis/trans)		ND			1	ļ	75 -125		!!
i	Chloroform		ND	İ	·	1	1	75 -125		!!
	1,2-Dichloroethane		·ND	Ì			1	75 -125		15
	1,1,1-Trichloroethane		ND	1	i	I	i	75 -125	[!!
i ·	Carbon Tetrachloride		ND		[ł	ļ	75 -125	ļ	!!
i	Bromodichloromethane		ND			ĺ	ļ	75 -125	ļ	
i	1,2-Dichloropropane		,ND]	 	1	ļ	75 -125	ļ	15
i . i	Trichloroethene		ND	l		ļ	ļ	75 -125	ļ	!!
,	Dibromochloromethane		ND				ļ	75 -125	!	!!
i . ,	Bromoform		ND	. ,	•	. •	ļ	75 -125	ļ	10
i .	Tetrachloroethene		ND	,		ļ	!	75 -125	<u> </u>	15
j .	Chlorobenzene		ND]	ļ	ļ .	75 -125	<u>!</u>	!!
i	Benzene	`	ND ND	ļ	ļ	ļ	!	75 -125	!	
	Toluene		DM	•		ļ	ļ	75 -125	!	15
i	Ethylbenzene	.	ND	l	i .	ļ	ļ	75 -125	ļ .	! "!
j	p-Xylene		ND			1	!	75 -125	!	!!
j j	m-Xylene		ND ND			ļ	ļ	75 -125	!	1 45 1
į	o-Xylene		· ND		<u> </u>	ļ .	ļ	J75 -125	!	15
į	p-Dichlorobenzene		ND		!	!	!	75 125	ļ .	.
į.	m-Dichlorobenzene		ND		ļ	!	!	75 -125	!	
,	o-Dichlorobenzene		ND ND	[!	!	75 125	!	"
i , i	1			j		J	Į.	I	l	1 1

ABBREVIATION KEY MS = Matrix Spike

MSD = Matrix Spike Duplicate

ND = None Detected

RPD = Relative Percent Difference

COMMENTS: Dichlorodifluoromethane and 2-chloroethyl vinyl ether are not part of the routine spiking solution and no acceptar criteria have been developed.

Initial Calibration Volatiles by GC

Calibration Batch:	•	Sample Batch Number:
Calibration Date	 	Instrument Identification:

IC applies	•	1 3-200+5	15-200+10	115-100+10	125-100+25	125-50+20	l	1 .] XRS
samples:	Compound	Rf STD 1	Rf STD 2	Rf STD 3	Rf STD 4	Rf STD 5	AVE RF	XRSD	OC LI
=========					========		=======	2022222	
· 1	Chloromethane]	1	1	ļ	<u> </u>	[ļ	!
İ	Bromomethane		1				ļ	ļ .	!
Ì	Vinyl chloride	l	1	1	į	,		<u> </u>	ļ
İ	Chloroethane	l	1		,	ļ	!	ļ .	ļ.
į.	Methylene chloride	l	ľ	l	[!	!	ļ	!
· i	Trichlorofluoromethane	l	ŀ	}		[·	! .	<u> </u>	!
j	1,1-Dichloroethene	l	1	i	ļ	ļ		ļ	!
İ	1,1-Dichloroethane	ł <i>'</i>	1	1	ļ	ļ	<u> </u>	ļ	!
İ	1,2-Dichloroethene (c/t)	l '	1	İ		ļ ·	!	ļ	ļ .
Ì	Chloroform	İ .	ı	l	l	ļ	ļ	ļ .	İ
j	1,2-Dichloroethane	ĺ	J	1	1	ļ	!	ļ	!
İ	1,1,1-Trichloroethane	l	1		ļ	ļ		į .	ļ
į,	Carbon tetrachloride	1	1		J	ļ	ļ	ļ	ļ
į	Bromodichloromethane	Ì	1.	!	!	1	!	į	ļ .
İ	1,2-Dichloropropane		I,	1	ļ	1	!	!	!
· İ	Trichloroethene			1	<u> </u>	'	ļ	! .	!
i. i	Dibromochloromethane) .	I	ļ		ļ ··	ļ	!	!
Ì	2-Chloroethyl vinyl ether		ļ:	!	!	! · ·	!	!	ŀ
Ì	Bromoform	ł ·	į	!			.	ļ .	ł
Ī	Tetrachloroethene		ļ		! .	!	ļ	!	
Ì	Chlorobenzene		Į.		!	!	ļ	!	
ĺ	Benzene			1	ļ	į	ļ	,	
İ	Toluene	!	l		ļ .	ļ ·	ļ	ļ.	
İ	Ethylbenzene	İ	1	ļ	ļ	<u>[</u>	!	!	!
Ī	p-Xylene		1	ļ	ļ	[ļ .	!	
Ì	m-Xylene			ļ .	ļ	ļ	!	ļ .	
Ì	o-Xylene	ł		ļ	j .	!		!	
Ĭ	p-Dichlorobenzene]	1	}]	į .	!	!	Ι.
İ	m-Dichlorobenzene	1	1	ļ	l	!	!	ļ .	ļ .
Ì	o-Dichlorobenzene]	1	ļ]	ļ	!	!	!
1	,	,	ļ	,	ļ	ļ ·	ļ	!	!
İ	j ·		I	{	ļ	ļ	!	!	!
j			Į.	ł	! .	ļ	ļ	!	ļ
j.	İ		1	S	I	,	ļ ·	ļ	!

Dichlorodifluoromethane is not part of the routine calibration standard solution due to its coelution with vinyl chloride on the 1% SP-1000 Carbopack B column. If a peak for vinyl chloride is detected, confirmation, when possible, is performed using a capillary column to separate vinyl chloride and dichlorodifluoromethane.

Continuing Calibration Volatiles by GC

Calibration Date....:

Batch Number:

Instrument Identification..:

Inj #..:

Continuing Calibration Date:

85055565388556655866666666		**********		
1	Reference.	-Continuing	Acceptance	
Compound	Concentration	Calib Result	85%-	115X Out of Range
****************				***************************************
Chloromethane	20.0	18.7	. 17.0	. 23.0
Bromomethane	20.0	. 19.2	17.0	23.0
Vinyl chloride	20.0	18.6	17.0	23.0
Chloroethane	20.0	19.7	17.0	23.0
Methylene chloride	20.0	21.3	17.0	23.0
Trichlorofluoromethane	20.0	17.2	17.0	23.0
1,1-Dichloroethene	20.0	19.0	17.0	23.0
1,1-Dichloroethane	20.0	18.3	17.0	23.0
1,2-Dichloroethene (c/t)	20.0	18.8	17.0	23.0
Chloroform	20.0	j 17 . 7	17.0	23.0
1,2-Dichloroethane	20.0	21.2	17.0	23.0
1,1,1-Trichloroethane	20.0	17.9	17.0	23.0
Carbon tetrachloride	20.0	18.9	17.0	23.0
Bromodichloromethane	20.0	19.4	17.0	23.0
1,2-Dichloropropane	20.0	19.7	17.0	23.0
Trichloroethene	20.0	19.5	17.0 [23.0
Dibromochloromethane	20.0	20.9	17.0	23.0
2-Chloroethyl vinyl ether	23.3	24.0	19.8	26.8
Bromoform	1 20.0	17.1	17.0	23.0
Tetrachloroethene	20.0	18.9	17.0	23.0
Chlorobenzene	20.0	17.7	17.0	23.0
Benzene	20.0	i i	17.0	23.0
Toluene	20.0	i i	17.0	23.0
1 Ethylbenzene	20.0	i i	17.0	23.0
p-Xylene	20.0	i i	17.0	23.0
m-Xylene	20.0	i	17.0 j	23.0
o-Xylene	20.0	i i	17.0	23.0
p-Dichtorobenzene	20.0	i i	17.0 j	23.0
m-Dichlorobenzene	20.0	j · i	17.0 j	23.0
o-Dichlorobenzene	20.0	j i	17.0 j	23.0
	2230	j i	i	j
		i i	j	į
	i	i i	· · i	İ
i		i i	į	į
i		į i	j	
i	i	i i	į	j
•	•			

Reference for LLI #'s 1707904, 1707906

Dichlorodifluoromethane is not part of the routine check standard solution due to its coelution with vinyl chloride on the 1% SP-1000 Carbopack B column. If a peak for vinyl chloride is detected, confirmation, when possible, is performed using a capillary column to separate vinyl chloride and dichlorodifluoromethane.

Surrogate Recovery
Pesticides

Matrix: WATER

		nu. Ilikaasee	******	 		
LLI Sample No.	Sample Code	S1 (XBNZ)	\$2 (TCX)	\$3 (MA) 	S4 (OTHER)	
1976425BKG 1976425MS 1976425MSD BLK6/12 1979945 1979946 BLK6/16DK	HTHBLK6/4 WBKG WBKS WHS WHSD HTHBLK6/12 FB2-3 B3MW3 HTHBLK6/16DK MW1PE MW4PE MW4DU	85 85 90 86 82 85 100 91 89 84 73				

QC REC Limits

Low High

والمرازية المرازية المرازية

S1 (NBNZ) Nitrobenzene D5

SZ (TCX) Tetrachlorometaxylene

\$3 (DCAA) 2,4-Dichlorophenylacetic Acid

S4 OTHER

* = Surrogate Recovery is outside the QC limits

= No established limits

D = Surrogates diluted out I = Interferences present

Comments:

The Alberta Control and the Market Con-

Nethod Blank" Pesticides

Matrix..: WATER

Sample Info	rmation	Blank Cont	emination information	*************		· .	
LLI Sample No.	Sample Code	CAS Number	Compound	Analysis Date	Blank Result	 Units	rœ
BLK6/4 1976425BKG 1976425HS 1976425HSD	MTHBLK6/4 UBKG UMS UMSD		Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene	06/10/93 06/10/93	MD MD MD MD MD MD MD MD MD MD	Ug/l Ug/l	10 20 20 20 20 1 0.5 2 0.1 0.2 0.2 0.5 0.5

COMMENTS:

Abbreviation Key

--- = Analysis not requested

ND = None detected

LOQ = Limit of Quantitation

* = Outside QC Limits

Natrix Spike/Matrix Spike Duplicate Pesticides

Inspiked Sample #...:1976425BKG Spiked Sample #...:1976425MS Spiked Dum Sample #..:1976425MSD

Matrix: WATER

applies to the following samples Compound Cug/l) Cug/l) Cug/l) Cug/l) Cug/l) REC	Spiked Dup Sample	: 19/64ZXXSD					7.8	trix: '	LATER		
Naphthalene 668.000 ND 583.800 591.800 87 89 46 -120 1 101 10764258KG Acenaphthylene 696.000 ND 660.500 663.200 95 95 48 -120 0 101 976425MS Acenaphthene 984.000 ND 916.500 924.600 93 94 49 -120 1 100 976425MSD Fluorene 101.600 ND 99.000 96.600 97 95 51 -120 2 100 104 1	applies to the following samples		Added	Conc	Conc	Conc	į×	×	Limits	 RPO	QC Limit: RPD
	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene	696.000 984.000 101.600 33.000 16.160 13.000 64.320 7.720 34.800 7.120 4.800 7.440 12.960 41.900	ND ND ND ND ND ND ND ND ND ND ND ND ND N	660.500 916.500 99.000 33.090 14.210 12.350 61.330 6.853 33.210 6.858 4.771 7.421 11.740 37.220	663.200 924.400 96.600 32.900 13.750 12.250 61.770 6.734 32.870 6.871 4.762 7.434 11.320 37.740	95 93 97 100 88 95 95 95 96 99 100 91 89	95 94 95 100 85 94 96 87 97 99 100 87	48 -120 49 -120 51 -120 58 -120 51 -120 58 -121 59 -120 61 -124 17 -122 63 -120 55 -122 56 -120 26 -120	1 3 1 1 2 1 0 0 0 4	100 100 100 100 100 100 100 100 100 100 100 100 100

ABBREVIATION KEY

ms = Matrix Spike

ින = Matrix Spike Duplicate

= None Detected

> = Relative Percent Difference

-- = Analysis not requested .

= No established limits

COMMENTS:

The stated QC limits are advisory limits only.

Lab Control Spike/Lab Control Spike Duplicate Pesticides

Unspiked Sample #....:
Spiked Sample #....:
Spiked Dum Sample #....

Matrix: WATER

	=======================================					
This LCS/LCSD applies to the ollowing samples	Compound	LCS Value	LCSD Value	QC Limits REC	 RPD 	QC Limit RPD
	Naphthalene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene	100.00 1		46 -120 48 -120 49 -120 51 -120 58 -120 51 -120 58 -121 59 -120 61 -124 17 -122 63 -120 58 -122 56 -120 39 -120 26 -120		

ABBREVIATION KEY

|ND = None Detected

--- = Analysis not requested

|RPD = Relative Percent Difference

[# = No established limits

COMMENTS:

Surrogate Recovery Pesticides

Matrix: SOIL

			2000000		
l LLI	Sample	l si	S2	S3	\$4
Sample No.	Code	(NBNZ)	(TCX)	(DCM)	(OTHER)
********	*********		******		
BLK6/1601	MTHBLK6/1601	83]	l į
19804698KG	SBKG	84	' '		
1980469MS	SHS	88		•	ļ ļ
1980469HSD	SXSD	73			
1979943	184-15	73			
BLK6/23	MTHBLK6/23	62		ļ	į į
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	84-10	80			
4	HTHBLK6/11	78			!!
,	B-2-6	78			ļ. !
1	8-2-8	81			
11979040	\$36	78			ļ ' !
1979041	s3-14	74			
11979042	B1-14	78			
1979043	B1-20	69		İ	
İ.	!				
ļ					
ļ ·					
!	f 1 .				i
					i
1					i
					i
,					
1					i
		i	i i		i i
1	i :				i
1	i				i i
1	<u> </u>				i
•		i		i	i
i			i	j	İ
	: 				

QC REC Limits

120

\$1 (NBNZ) Nitrobenzene D5

_ _

S2 (TCX) Tetrachlorometaxylene

S3 (DCAA) 2,4-Dichlorophenylacetic Acid

S4 OTHER

• = Surrogate Recovery is outside the QC limits

= No established limits

D = Surrogates diluted out

I = Interferences present

Comments:

Nethod Blank Pesticides

Matrix..: SOIL

Sample Info		11	mination information				
LLI Sample No.	Sample Code	CAS Number		Analysis Date	Blank Result	 Units	Γœ
BLK6/11 1978472 1978473 1979040 1979041 1979042 1979043	MTHBLK6/11 B-2-6 B-2-8 S36 S3-14 B1-14 B1-20 		Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene	06/14/93 06/14/93 06/14/93 06/14/93 06/14/93 06/14/93 06/14/93 06/14/93 06/14/93 06/14/93 06/14/93 06/14/93 06/14/93 06/14/93 06/14/93 06/14/93 06/14/93	ND ND ND ND ND ND ND ND ND ND ND ND ND N	mg/kg mg/k	0.5 0.5 0.2 0.01 0.1 0.02 0.02 0.02 0.02
·					•		

COMMENTS:

Abbreviation Key

--- - Analysis not requested

ND = None detected

LOQ = Limit of Quantitation

* = Outside QC.Limits

Matrix Spike/Matrix Spike Duplicate
Pesticides

Unspiked Sample #...:19804698KG Spiked Sample #...:1980469KS

Matrix: SOIL

Spiked Dup Sample #	: 1980469HSD						Trial a			
This XS/XSO	Compound	Spike Added (mg/kg)	Sample Conc (mg/kg)	KS Conc (mg/kg)	MSD Conc (mg/kg)	KS X REC	NSD X REC	QC Limits REC	Î Î RPD	QC Limits RPD
BLK6/1601 19804698KG 1980469MS 1980469MS 1980469MSD 1979943 BLK6/23 1979942R 3LK6/11 1978473 979040 :979041 1979042 1979043	Naphthalene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene	11.100 11.600 16.400 1.690 0.550 0.270 0.220 1.080 0.130 0.580 0.120 0.080 0.120 0.340 0.340	MD MD MD MD MD MD MD MD MD MD MD MD MD M	11.840 12.190 17.730 1.970 0.637 0.252 0.251 1.213 0.143 0.670 0.141 0.092 0.116 0.249 0.832 0.392	11.190 16.350 1.690 0.567 0.269 0.230 1.079	107 105 108 117 116 93 114 112 : 110 116 118 115 97 113 119 115 	99 96 100 100 103 100 105 100 97 98 101 91 100 98 97 	57 -120 66 -120 69 -120 71 -124 62 -140 43 -140 64 -137 65 -122 51 -150 44 -139 62 -120 58 -124 44 -123 63 -120 42 -127 	7 9 8 15 12 7 12 13 17 19 13 6 12 19 17	100 100 100 100 100 100 100 100 100 100 100 100

ABBREVIATION KEY

MS = Matrix Spike

ISD = Matrix Spike Duplicate

| = None Detected

D = Relative Percent Difference

i--- = Analysis not requested

= No established limits

COMMENTS:

The stated QC limits are advisory limits only.

Lab Control Spike/Lab Control Spike Duplicate **Pesticides**

Unspiked Sample #...: Spiked Sample #....:

Spiked Dup Sample #.		=======================================	Matr	ix: Soil	22222-	
This LCS/LCSD applies to the following samples	 Compound	LCS Value	LCSD Value	QC Limits REC	 RPD 	QC Limit: RPD
	Naphthalene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene	100.00 1		64 -120 66 -120 51 -131 73 -120 80 -115 51 -120 80 -120 74 -120 78 -124 44 -125 77 -120 68 -115 72 -121 68 -120 64 -122		

ABBREVIATION KEY

|LCS = Lab Control Spike LCSD = Lab Control Spike Duplicate --- = Analysis not requested |ND = None Detected

|RPD = Relative Percent Difference

| # = No established limits

COMMENTS:

Hethod Blank Instrumental Analysis Data

		***************************************		********	:::::::::::::::::::::::::::::::::::::::				*****
Sample Infor	•	Hethod Blank	Analysis						
LLI	======== Client Designation	Parameter		Analysis	Meth Blank Desig.		i Blank Result	Units	LOO
Sample No.	neziguation	Parameter	Methoo	, vole	Desig.		,		*****
1		Anion Scan	1 (1	1	l	l	l l	
1	! . ! ! !	Fluoride	1 10				! 	mg/L	
l h) i	Chloride	l ic	· .		 		mg/L	
!	1 1	Nitrite-N	1 1C				! •••	ng/L	
1	1 J	Bromide	1 1C	; 1			! !	mg/L	
ļ	! ! ! !	Nitrate-N	110		, * 		! !	mg/L	
1	1 I	Phosphate	1 1C				¦	mg/L	
1	! ! ! !	Sulfate	1 1C				! !	mg/L	
1	! ! ! !	1	1			•	<u>.</u>	13, 5	
1 .	, , ,	i Ammonia-N	TAA I				! 	mg/L	
i i		Chloride	1 1C					mg/L	
-	! !	Chlorine	10	 		,		1 %	
1	1	Cyanide	I TAA			, '	! 	mg/L	
1	; ;	Cyanide	1	,		! !	1	1	
i .	; ;	Reactivity	TAA			•		mg/Kg	
	i i	Nitrite - N	10					mg/L	
i	i i	Nitrate - N	i ic				·	mg/L	
i	i i	Phenol	TAA					mg/L	
i	i i	Phosphorus	TAA			,	i	mg/L	
i	i i	Sulfate	10					mg/L	
i	i i	TOC	TOC				i	mg/L	
i	i i	TOX	TOX			i	i	ug/L	
i	i i	Kjeldahl			·		i	i i	
i	i i	Nitrogen	TAA				j	mg/L	t i
j .	i i	i	i i				Ì	i i	
i	i i	ì	j j			İ	į	i i	
j	i i	İ	i ì			i .	İ	i i	
İ	j j	i	i i				İ	1 1	
Ì	i i	İ	i i				İ	1 1	
İ	i i	İ	i i			İ	İ	1 1	
1	i	1 .	i i		i		I	1 1	
ı	ı i	1	į į		l		l	1 1	
1	i i	ĺ.	į i		j		1	1 · 1	
İ	i i		į į				ĺ	1 1	
ŀ	ı i	1	l i				Į.	1 [
1	ı i	1			l	!	F	1 1	•

Comments:

ABBREVIATION KEY | 1C = Ion Chromatography --- = Analysis not requested | TAA = Technicon AutoAnalyzer ND = Not Detected J = Estimated Value below LOQ D = Distillation

LOQ = Limit of Quantitation | TOC = Total Organic Carbon

| TOX = Total Organic Halogens

Matrix Spike Analysis Instrumental Analysis Data

	:::::::::::::::::::::::::::::::::::::::			22282282								
Sample Infor		Matrix Spike	Analy	sis					Matrix:	WATER		
			-			=========		*********		*******	*****	
LLI	Client	i	1	Analysis	Unspiked	Unspiked		Spiked	Spike	Spiked		
Sample No.	Designation	Parameter	Meth	Date	Desig.	Result	F00	Desig.	Added	Result	Units	ZREC
=======================================			2222	22222222		********		*******	*******		222222	*****
1	1 1	Anion Scan	1	1	l	1]	!	ŀ	1	1 1	
i	i i	fluoride	jic -	Ì	ĺ			I	1	1	mg/L	
i	i i	Chloride	11C	ĺ.	İ	j		İ	1		mg/L	
i	i i	Nitrite-N	110	ĺ	i			1	1	l	mg/L	
i	i		110	İ		•••		İ	1	•••	mg/L	
i	: :	•	110	i i	i	i ••• i	•	İ	Ì		mg/L	
i	: : :	•	jıc	i	.	j j		İ	I		mg/L	
i .	i i	•	ic	i	ĺ	j j		į ·	1	·	mg/L	
· · · ·	i i	•	i	i	İ	Ĭ i		j]	1	1 1	
i	i i	Ammonia-N	TAA	i	İ	j j		j	İ	·	mg/L	
i	j , j	•	jıc	i	į .	j j		İ	İ	j	mg/L	
į.	•	•	110	i	İ	j j		i	İ	1	j×j	
i	: :	Cyanide	TAA	i '	j	i i	İ	j	İ	···	mg/L	
i	•	Cyanide	i	i :	i	j i		i	Ì	İ	į į	
i	i i	Reactivity	TAA	i	i	·	i	i	İ	j	mg/Kg	
i	i i	•	IIC	i	i	· · · · ·	j	i	İ	j	mg/L	
i	i i	•	110	i	i	i i	ĺ	i	Ĭ	j	mg/L	
i		•	TAA	i	i .		i	i	i	•••	mg/L	• •
i	i i	•	TAA	i	i	j i	ĺ	i	i		mg/L	
i	j. i	Sulfate	110	i	i	i	İ	i	i	···	mg/L	
ì	i i	TOC	TOC	i	i	i	ĺ	i	i	·	mg/L	
i	i i	TOX	ITOX	i	<u> </u>			i	i		ug/L	İ
i	j i	Kjeldahl	i	į .	i	j	İ	i ·	i	i	j i	
i .	i i	Nitrogen	İTAA	i	i			j .	i		mg/L	
i	i	1	1	i	i	i i	İ	i	i	i	j i	j
i	i i	i	i	i	i	j i	İ	i	i	i	i i	
i	i i	i	i	i	i	i		i	i	i	i i	Ì
i	i i	i	i	i	i	i		i	i	i	į į	
i	i i	i	i	i	i	j i		i	i	İ	j i	
i	i. i	i	i	i ·	i	i		i	i	i	į i	
i	i i	i	i	i	i	i		i	i	i	j i	
i	i . i	i .	i	i	i	i		i	i	i .	i i	
i		i ·	i	i	i	;		i	i	i	i i	
i	; ;	•	i		! !			i	i	i	i i	i
i	;	i	i		i	1	! 	i	i	i	j ;	
1		1	1		! 			1	i	i	i	
1	: !	ì	ı	I	ı	1	l	I	1	•		1

Comments:

% Recovery Control Limit

125 % Recovery Control Limit

ABBREVIATION KEY

| IC = Ion Chromatography --- = Analysis Not Requested

|TAA = Technicon AutoAnalyzer ND = Not Detected

D = Distillation J = Estimated Value below LOQ

LOQ = Limit of Quantitation |TOC = Total Organic Carbon

|TOX = Total Organic Halogens NA = Not Applicable

* = Out Of Specification

Duplicate Analysis Instrumental Analysis Data

]	=====						========	======	******	
Sample Infor	•	Duplicate Ana	lysis					Hatrix: W	ATER			1
		•							********	======		======
l ttl	Client	ì	ı		1st Dup	list Dup	1 1	2nd Dup.	2nd Dup	1 1	RPD	Control
	Designation	Parameter						Desig.			(X) ·	Limit
		**********	•	•			, ::::::::::::		::::::::		222222	======
1	. i	Anion Scan	1	1 1	1	1		}	1	1 1		ı il
1	i		ic	1	1		: 			mg/L		20 1
1	i		110	! !			I	•	•	mg/L		i 20 i
1	i	•	10	<u> </u>	ł				i	mg/L		i 20 i
1	i	•	110	' 1	!					mg/L		20
	i . i	•	1C	.			!			mg/L	ı	i 20 i
	i i	•	110	i :	i	·	i . i		· •••	mg/L		i 20 i
1	i i	•	ic				: :		i	mg/L		j 20 j
1	i i	1			i	; · ·	, 1		i	i i	•	i il
i I	: 1	Ammonia-N	TAA	1			i i			mg/L		20 i
		•	IIC				: :			img/L		i 20 i
1	•	•	IIC	; !			! 			1 %		i 20 i
	• .	•	TAA	} }	! !		1			mg/L		i 20 i
1		Cyanide	1	i i					ì	1		i il
i	1	Reactivity	I Itaa	l) 		1			mg/Kg	<u>'</u>	i 20 i
1		•	110	 			:)		mg/L		20
i i	•	•	IC	! !			! !		i	mg/L		20 i
1	•	•	TAA	1	i		<u> </u>) 		mg/L		20 i
1	1 1	•	TAA	1	ļ	•••	i :			mg/L		20 i
1	1 1	•	10		}			1		mg/L	! 	20 i
: 			TOC			 •••				mg/L		i 20 i
	i	TOX	TOX	1			1			ug/L		20 i
		Kjeldahl				1	1		i	-3, -		i il
-	;		TAA		*		7		i	mg/L	i	i 20 i
;	i	1			ł	i	i		i	1		i il
i ·	i i	i	i	•	i	i	i		i	i		i il
i	i i	i .	1		i	i :	i		i	i i		i il
i	i i	i	i		i	i	i		i	i i		i il
i	ii	i		i			i		i	i i		i il
i .	i i	i		1		i :	i		i	i i		i il
i	i i	i	i	· [i	j		i	i i		i il
i	į i	i	i i			i	j		j ·	i i		j il
i	i i	i	i '		i i	i	i		i	i i		i il
i	i i	i	i			i	i		i	i i	•	i il
i	i i	i	i		• 	i	i		i	i i		i il
i	į i	i	i			i	i		i	i i		j il
•		•		,	1				•	.• '	,	•

r	٠.

ABBRI	EVIATION KEY
IC' = Ion Chromatography	= Analysis Not Requested
TAA = Technicon AutoAnalyzer	ND = Not Detected
D = Distillation	J = Estimated Value below LOO
TOC = Total Organic Carbon	LOG= Limit of Quantitation
TOX = Total Organic Halogens	NA = Not Applicable
NR = Not Required	<pre>= Out Of Specification </pre>

Quality Control Summary

Laboratory Control Standard Instrumental Analysis Data

	Sample Inform	mation	Laboratory Co	ntrol	Standard			Matrix: WATER			
1	Sample No.	Client Designation	Parameter	 Meth	Analysis Date	True LCS	LCS Value	LOQ	 Units	XREC	
		, i		 	<u> </u>		,	,			
	;		 	 	 		,`		·		
			 	 	 				٠		
] 	 	[[[1	•			;		
]	'. 	. [] - 	i ! !					† 		
			 	i , 							
	: 1		i !	j I I							
	· · · · · ·			j 	i I I ;		;				
	•	·	<u> </u> 	<u>.</u> 							
			 	 			·				
		·	 		 						
		 	!]] 		 				

Comments: The recovery range for LCS is plus or minus 20%.

[ABBREVIAT	ION KEY
IC = Ion Chromatography	= Analysis Not Requested
TAA = Technicon AutoAnalyzer	ND = Not Detected
D = Distillation	AK = AlpKem
TOC = Total Organic Carbon	LOQ = Limit of Quantitation
TOX = Total Organic Halogens	NA = Not Applicable
İ	<pre>= Out Of Specification</pre>

Hethod Blank

Miscellaneous Wet Chemistry

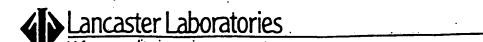
************					:222222222				
Sample Inform		Hethod Blank An	-			Matrix: WATER			
		*====================================					Blank	1 1	
i iii	Client		•		Meth Blank			1 11-12-1	in
Sample No.	Designation		Method		Desig.	Batch Number	Result	Units	F00
=======================================		=====================================		***************************************					
1	,	Alkalinity	l	· ·			•		
1		to pH 8,3	H	ļ	·		•••	mg/L	1
1		to pH 4.5	H '		·		•••	mg/L	' 1
1		Ammonia	1.1					!!!	_
1 1		Nitrogen	11				•••	mg/L	1
]	•	B00] H -				•••	mg/L	2
1		coo	11		ļ		•••	mg/L	50
1		Free Cyanide	CO		Ĭ			mg/L	0.005
1		Hexavalent	1 1	•	:	, [[]	_
1		Chromium	CO				•••	mg/L	0.02
1	;	MBAS	CO]		•••	mg/L	0.02
1 .		Oil and Grease] G		1		***	mg/L	0.2
1		Orthophosphate	CO]		· • • • ·	mg/L	0.01
i i		pH	H					1 1	0.01
i i		Petroleum	l i]]		1 1	
İ			l IR				•••	mg/L	0.2
İ	,	Total Solids .	00				•••	mg/L	10
i i		Total	i i					1 1	
i i		Dissolved	İ]	_ [
i		Solids	00	İ			•••	mg/L	10
Ì	5	Total	i i	; [, ,	: ا ا :	•	1	
i · i		Suspended	l i	. 1	-	· 1		i 1	
i i		Solids	00					mg/L	4
i i		Sulfide	TI					mg/L	0.1
i i	•	ii .	i i					1	
i i	·	i	i i					1	
i i		i	i i					1 1	
j i	Ì	ii	į i	Ì					
j i		İ	į i					1	
i i		İ	į į	, 1					
i i	•	1	l Ì			Ì]		
į i		1	l i			. [1	
l i	Ì	11	l i	İ	l	ĺ	ļ	1	
i i		Ì	l i	Ì	i ·	•	1	I	
.j i	1	i -	i . i	İ	<u> </u>]	1	I
İ		H	İ		i i			Į,	1
				=======	**********	:====================================			:======
-	_		ļ			ABBREVIATION KEY			_
Comments:	,		•	itration			Inalysis not	requeste	4
			ו = טז	urbidimet	ric	ND = 1	lot Detected		

• • •] ABBRE	VIATION KEY		
Comments:	T1 = Titration	= Analysis not requested		
	TU = Turbidimetric	ND = Not Detected		
	CO = Colorimetric	J = Estimated Value below LO	Q	
	IR = Infrared Spectrophotometry	LOQ = Limit of Quantitation		
·	G = Gravimetric .	NA = Not Applicable		
	D = Distillation	M' = Meter		
	OD = Oven Dried		٠.	

Lateria-Caibe-Analysia-

Miscellaneous Wet Chemistry

	Client	1	, . ,	lanalveie	Unenikéd	lunsnikadi	 	Spiked	l Spike	Spiked	1	
ample No.	Designation	 Parameter	l . Heth	Date	Desig.	Result	F00	Desig.	Added	Resült	 Units	ZREC
		:::::::::::::::::::::::::::::::::::::	*****			=======			======================================	::::::::::::::::::::::::::::::::::::::		*****
	1	Alkalinity	l	1 1	,	1	1		!			
	1 !	•	H]		•••				•••	mg/L	
	1 1	to pH 4.5	H	j l	•		1		!		mg/L	
	!!!	Ammonia		1		1	ł	!	[.	!	! . !	
•	1.	Nitrogen	ĮΤΙ]			1	l	ļ	•	mg/L	
	1	B00	H	i		•••	2		ļ		mg/L	
	1 1	•	11				50	1	l	•••	mg/L	!
		Free Cyanide	CO]			0.005	1	1		mg/L	!
		Hexavalent	ł			1	l	i	ļ	!	!!!	!
	1 1	Chromium	CO]			0.02	l	l		mg/L	ļ .
	1 1	•]co	i		•••	0.02	į	İ		mg/L	!
	1	Oil and Grease	•]			0.2		ļ		X	ļ .
	1	Orthophosphate	CO				0.01	ļ	1		mg/L	!
	1	pH	ļH _				0.01	1	ļ		!	!
	1	Petroleum					1	l	ļ	Į		!
	!	Hydrocarbons	•				0.2	1	ļ		mg/L	!
	1	Total Solids	00] .] 10		1		mg/L	!
•	1 1	Total	1			1	1	1	1	ĺ		ļ
	1 1	Dissolved					l		1	ļ		!
	1 1	Solids	00	[,			10	1	1		mg/L	!
	1	Total					l,		1	l	1	I
	·	Suspended	1	1	•		.,	.	I	I	ļ .	ļ
•	1 : 1	Solids	00				4	1	1		mg/L	!
]]	Sulfide	TI	1 1			0.1	1	ļ .		mg/L	•
	1	1 .	l			1	l	1	1	i		
	1 1	1	l	1 1		!	t		I	l	!	!
	1			i i		1	1	1	1]	<u> </u>	ļ
]	1	1		,]	J	1	1	l		ļ
	1	i	l	!		1	1	1	I	ļ		ļ
	1 1	1	1	1		1	l	1	1	Ī	!	!
•	[]	•	l	1 1		1	I	ļ ·	1	Ī]	ļ
	1 1	1		1		1	1			!		!
	l İ	1		! !		1	I	1	1	ļ	!	
	1 1	1	1	i	1	1	i	ı	1	1	I	1


Comments:

X Recovery Control Limit

% Recovery Control Limit

125

1	ABBREVIATI	ON KEY	١
TI	= Titration	= Analysis Not Requested	1
Įτυ	= Turbidimetric	ND = Not Detected	1
CO	= Colorimetric	J = Estimated Value below LOQ	ı
IR	= Infrared Spectrophotometry	LOQ = Limit of Quantitation	I
İG	= Gravimetric	NA = Not Applicable	1
D	= Distillation	M = Heter	1
joo	= Oven Dried	<pre>= Out Of Specification</pre>	l

Duplicate Analysis

					•	
? H	li	S	cel	laneous	Vet	Chemistry

**********	=======================================				:::::::::::::	********	******			======	=======	*======
Sample Infor		Duplicate Analy		Matrix: WATER								
120.4.2												
] Client				1st Dup			2nd Dup				Control
	Designation	Parameter						Desig.	•	•	(%)	Limit
			•	, ,		•		:252265275			******	
1	ı i	Alkalinity	ı] }					1			
i	į į	•	ļĸ	j i		i i	1		i	mg/L		20
i	j i	•	ļĸ .	j i			1	1		mg/L		20
i	į į	Ammonia	۱.	j j		l Ì			i .	1 . 1		
i	i i	Nitrogen	ŢΙ	j i	İ	ı i	1	1	·	mg/L		20
İ	į į	B00	ļĸ				2	1	1	mg/L		20
j	l İ	COO	TI.]		l i	50			mg/L		- 20
ĺ	1 'İ	Free Cyanide	co	1			0.005			mg/L		20
1	i i	Hexavalent	i			1		1	1	1 1]]
1	1	Chromium	co	i l			0.02	,	•••	mg/L		20
1	1 1		co	1 1			0.02	!	!	mg/L		20
1	1 1	Oil and Grease	•	<u> </u>			0.2	.~	ļ ···	X		20
1	1	Orthophosphate	:	!!			0.01	!		mg/L		20
ļ	į į		М				0.01	Į.		! !		20
Ţ	!!!	Petroleum	ļ	!!!		<u> </u>		!	i			
İ	!!!	Hydrocarbons	•	!		ļ ļ	0.2	[!	mg/L		30
1	ļ ļ	•	00	[]			10	!		mg/L		20
!	! · !	Total	ļ	!		<u> </u>			!	[<u> </u>	! !
! .	! !	Dissolved	 	[. !			l •			
!	i i		00	!!!		•••	10			mg/L		20
!	!	•	ļ ·	[, . <u>!</u>		,	. 3 1775			[! ! ! !
	! !	Suspended Solids	i Ion		• 			¦	i !	l mg/L	, 	1 20 j
I .	; ;		[00 [T]	[0.1	! !	l	mg/L	} 	1 20 1 1 20 1
1	i l	301710 2 	[*]		i l	U. I	! !	l 200			, <u> </u>
1	; ;] 		;	i i	i ! i		l I	1	;		; ;
i I	! !	·	1	;			•) ·	i	i		j. i
1		! 	i	1 -]) 	i	i		i i
i	. ! } !		•	·		· '		i	i	i		j i
i	, [] [İ	i	, '				i	i	i	j	į į
i	i	·						i	i	i i	j	i i
i	i i		i	j i		i		İ	i	į į		į i
i	i		i	i i		i		i	i	i i	i	j i
i	i i	i .	i	j i		j i		i I	i	i	ĺ	j j
i	i i			j i		j		j	i	j i		į i
Ī	j i	·	i	į i		j		Ī	Ì	l i		1 1

Comments: