Project #18687

May 3, 2022

Mr. Lee Delcore Hydrogeologist – Remediation and Redevelopment Program Wisconsin Department of Natural Resources 1155 Pilgrim Rd, PO Box 408 Plymouth, WI 53073-0408

RE: Summary Report of Supplemental Site Investigation – PZ-03 Area Moss American Superfund Site 8716 N. Granville Rd., Milwaukee, WI BRRTS # 02-41-529585; FID # 241378280

Dear Mr. Delcore:

The Sigma Group, Inc. (Sigma) has prepared this report to document additional environmental investigation activities completed in the area of monitoring well PZ-03 at the Former Moss-American Facility located at 8716 N. Granville Road in Milwaukee, Wisconsin (hereinafter referred to as the "site", refer to **Figure 1**). The activities were performed to further evaluate the relatively high groundwater impacts and free product identified in the vicinity of this well during post-remediation quarterly groundwater monitoring and the additional site investigation activities performed in 2021. The additional investigation activities were completed as described in the Scope of Work¹ submitted to the Wisconsin Department of Natural Resources (WDNR) on May 5, 2021.

BACKGROUND

The additional site investigation was warranted based on the results of the post-remediation groundwater monitoring conducted beginning in October 2019 and additional site investigation activities performed in 2021. Review of the quarterly groundwater monitoring data indicate that the contaminant concentrations within most of the monitoring wells are less than the laboratory limits of detection (LODs) or levels less than the Wisconsin Administrative Code (WAC) Chapter (ch.) NR 140 Enforcement Standards (ESs) or Preventive Action Limits (PALs). However, concentrations of naphthalene (a fingerprint constituent of creosote which was historically used at the site) were detected within samples from three monitoring wells (MW-33S, PZ-02, and PZ-03) at relatively high concentrations. Specifically, concentrations of naphthalene within monitoring wells MW-33S and PZ-02 have also increased on several occasions and exceeded both the ch. NR 140 PAL and ES by a factor of two. The relatively high concentration of naphthalene in groundwater is an indication of the likely presence of creosote mass (free phase product) in the vicinity of these wells. In order to evaluate if free phase product was still present in the vicinity of these wells, additional investigation activities were performed in March 2021.

The additional site investigation activities included the advancement of 26 soil borings (GP-100 thru GP-125) including the collection and laboratory analysis of 39 soil samples for benzene, toluene,

¹ Scope of Work for Supplemental Site Investigation- PZ-03 Area, Former Moss-American Facility, 8716 N. Granville Rd., Milwaukee, WI, FID # 241378280 by Sigma (dated May 5, 2021).

ethylbenzene, and xylenes (BTEX), and polycyclic aromatic hydrocarbons (PAHs), the installation of ten monitoring wells (PZ-03A thru PZ-03E, MW-33SA thru MW-33SC, PZ-02A, and PZ-02B), development of the new monitoring wells, and the collection of one round of groundwater samples from the new monitoring well network for laboratory analysis of BTEX and PAHs. The additional investigation activities were described in more detail in the Summary Report² submitted to the WDNR on May 5, 2021.

Results of the investigation in the vicinity of monitoring wells MW-33S and PZ-02 indicated groundwater contamination was limited in extent and that no free product was observed in the vicinity of these wells. Naphthalene impacts within soil were limited to four locations at concentrations slightly higher than the ch. NR 720 groundwater pathway Residual Contaminant Level (RCL). Detection of naphthalene impacts within groundwater were present at concentrations greater than the ch. NR 140 PAL and ES.

In contrast, results of the investigation in the vicinity of monitoring well PZ-03 indicated high concentrations of naphthalene in both soil and groundwater samples, and free phase product was observed at several boring locations. Elevated naphthalene impacts were identified in the approximate depth interval of 7.5 to 13 feet below ground surface (bgs) and the data correlated well with the presence of free product observed in the field; however, the lateral extent of this free product was not defined.

Sigma recommended the completion of supplemental site investigation activities to further define the degree and extent of subsurface soil and groundwater naphthalene impacts in the area and the lateral extent of free product.

INVESTIGATION ACTIVITIES

<u>Soil Boring Installation</u> – On January 20-21, 2022, a total of nine direct push soil borings were advanced with a track-mounted Geoprobe[®] hydraulic drill rig in the vicinity of monitoring well PZ-03, as shown on **Figure 2**. Initially eight soil borings were planned, but due to the presence of free product, an additional soil boring was completed in an attempt to define the extent of the free product area. Each soil boring was completed to a depth of approximately 15 feet bgs where a relatively tight clay layer was encountered. At each location the soil borings were sampled continuously, screened in the field for volatile vapors with a calibrated photo-ionization detector (PID) and visually inspected for oily sheen or free phase product.

<u>Sample Collection</u> – Soil samples were collected with a hydraulically driven 2.5-inch diameter by fivefoot long MacroCore[®] sampler and described on the basis of color, texture, grain size, plasticity, presence of free product or oily sheen, and logged in general accordance with the Unified Soil Classification System (USCS). Samples were screened in the field with a calibrated PID to measure for the presence of volatile organic vapors. Soil classifications, descriptions, specific sampling intervals, and PID readings are presented on the soil boring logs (WDNR Form 4400-122) included in **Attachment 1**.

A total of 16 soil samples (two samples per boring with the exception of soil boring SGP-127) were containerized and submitted for laboratory analysis of BTEX and PAHs. Soil boring SGP-127 was not sampled due to the presence of free product. Soil boring SGP-128 was added to the south of SGP-127 and sampled to delineate the horizontal extent of free product. Additionally, the deeper sample from

² Summary Report of Additional Site Investigation, Former Moss-American Facility, 8716 N. Granville Rd., Milwaukee, WI, FID # 241378280 by Sigma (dated May 5, 2021).

each soil boring was also submitted for laboratory analysis of diesel range organics (DRO) and gasoline range organics (GRO) to ensure all petroleum derived constituents are evaluated. Soil samples were placed in laboratory-supplied containers (BTEX and GRO samples were preserved with methanol; PAH and DRO samples do not require field preservation) and transported in coolers with ice to the project laboratory with a completed chain of custody (COC) document. For quality assurance / quality control (QA/QC) purposes, one methanol blank was transported with the cooler of soil samples and analyzed for BTEX to determine if volatile organic compound (VOC) contaminants infiltrated the samples during transportation.

Following advancement of the soil borings, and completion of sampling, the soil borings not selected for installation of monitoring wells were abandoned with hydrated bentonite chips to ground surface in accordance with ch. NR 141. The soil boring abandonment forms are included in **Attachment 2**.

Monitoring Well Installation – Three ch. NR 141-compliant monitoring wells PZ-03F, PZ-03G, and PZ-03H were installed in the vicinity of monitoring well PZ-03. The locations of the new monitoring wells were positioned based on the presence of free product encountered in the soil borings, other indications of impacts such as odor, PID screening data, and to complete the lateral delineation within the investigation area. Following completion of the Geoprobe soil borings, hollow stem augers (4 ¼-inch inside diameter with 8 ¼-inch outside diameter) were used to over drill the Geoprobe soil borings to a depth of approximately 15 feet bgs. Each monitoring well was constructed with a 10-foot length of two-inch diameter PVC screen (0.010-inch machine slotted) connected to an appropriate length of two-inch diameter PVC riser pipe. Each monitoring well was protected with a stickup steel protective casing. The monitoring well construction details are documented on WDNR form 4400-113A and included in **Attachment 3**.

<u>Monitoring Well Development</u> – The new monitoring wells were developed on January 31, 2022, in accordance with ch. NR 141 regulations to remove fine sediment from the bottom of the well casing and establish a hydraulic connection with the saturated soils surrounding the well screen. The well development activities are documented on the WDNR forms presented in **Attachment 4**.

<u>Groundwater Sampling</u> – The three new groundwater monitoring wells as well as the six existing wells in the vicinity of the PZ-03 monitoring well were sampled on February 1-2, 2022, for field parameters including water level, dissolved oxygen, oxidation-reduction (redox) potential, pH, temperature, turbidity, and specific conductance using a Solinst Water Level Indicator, a YSI Professional Plus Multiparameter meter, and a Hach 2100Q portable turbidimeter. The groundwater monitoring wells were then purged using disposable bailers (two-inch diameter wells) or a peristaltic pump (one-inch diameter well). Following the existing project protocols recommended in the October 2019 Quarterly Monitoring Report, each groundwater monitoring well was sampled approximately 24 hours after purging in order to minimize the possibility of drawing fine sediments into the samples. Samples were collected with disposable bailers at each well and the samples were submitted for laboratory analysis of BTEX (Environmental Protection Agency [EPA] Method 8260B), and PAHs (EPA Method M8270C). QA/QC samples included one duplicate sample collected at monitoring well PZ-03F and one equipment blank.

<u>Survey</u> – The soil boring and monitoring well locations and elevations were surveyed on January 21 and February 2, 2022, with a Trimble[®] R8 GPS unit. The elevation data was referenced to a local United Stated Geological Survey (USGS) datum in feet above mean sea level (MSL).

<u>Investigative Waste Disposal</u> – Four drums of soil investigative waste and 17 drums of groundwater investigative waste generated during the investigation activities were staged on site and picked up by Veolia, Inc. under the existing project contract on February 11, 2022, for disposal as hazardous waste. The investigative waste manifests are included in **Attachment 5**.

INVESTIGATION RESULTS

The following discussions of geology, hydrogeology, soil quality, and groundwater quality are based on the results of the additional investigation.

<u>Geology</u> – The soil conditions encountered during the investigation were consistent with historically reported soil conditions. Generally, the site surface consists of a layer of topsoil and / or gravelly clay ranging in depths of approximately three to six feet bgs. The remainder of the investigated depth ranged widely from silty clay to well graded sand. Traces of free phase product were observed in soil borings installed in the vicinity of monitoring well PZ-03 and at depths ranging from six to 10 feet bgs in soil borings GP-127 and GP-134. Soil classifications, descriptions, specific sampling intervals, and PID readings are presented on the soil boring logs (WNDR Form 4400-122) included in **Attachment 1**. A geologic cross section location map is included as **Figure 3** and geologic cross sections A-A' and B-B' are included as **Figure 4** and **Figure 5**, respectively.

<u>Hydrogeology</u> – Static water level elevations measured on February 1, 2022, ranged from 718.10 to 718.29 feet MSL in the vicinity of monitoring well PZ-03. The depth to groundwater ranged from 2.0 to 3.2 feet bgs in the vicinity of monitoring well PZ-03. The water level elevations are summarized in **Table 1**.

<u>Free Product</u> – The soil borings advanced in the vicinity of PZ-03 were inspected for visual signs of free product during soil boring advancement and sampling. Of the nine soil borings advanced in January 2022, free phase product was identified in soil borings GP-127 (from six to nine feet bgs) and GP-134 (from 9.75 to 10 feet bgs). Free product indicators including staining and petroleum odors were also noted in soil boring GP-130; however, no free phase product was observed. The vertical extent of free product is shown on the geologic cross sections included as **Figure 4** and **Figure 5** and the aerial extent of free product is shown on the soil quality map and groundwater quality map included as **Figure 6** and **Figure 7**, respectively. Photographs of soil samples including select soil samples with observed free product are included in **Attachment 6**.

The thickness of free product was measured on April 1, 2022, within the monitoring wells located near the monitoring well PZ-03. Free phase product was identified at the bottom of the water column in only one of the monitoring wells (PZ-03E) and strong petroleum odors were noted in monitoring well PZ-03H. No other obvious signs of free product were identified within the other sampled monitoring wells.

<u>Groundwater *In-Situ* Measurements</u> – Groundwater *in-situ* measurements including dissolved oxygen, oxidation-reduction potential (redox), pH, electrical conductivity, temperature, and turbidity were collected from all nine monitoring wells sampled in February 2022. The *in-situ* readings are summarized in **Table 2**.

<u>Soil Quality Results</u> – A total of 16 soil samples were submitted for laboratory analysis of BTEX and PAHs and eight soil samples were submitted for laboratory analysis of DRO and GRO. The analytical results are summarized in **Table 3**, and the soil analytical report is included in **Attachment 7**. The results are

compared to ch. NR 720 RCLs for the groundwater pathway, non-industrial direct contact, and industrial direct contact. The soil quality results for the new soil borings advanced in the vicinity of monitoring well PZ-03 are summarized in **Figure 6** and discussed below.

- BTEX: No BTEX compounds were detected within 14 of the 16 soil samples collected from PZ-03 area soil borings. The remaining two soil samples contained concentrations of toluene, ethylbenzene, and xylenes less than ch. NR 720 RCLs.
- PAHs: Select PAH compounds were reported in all but one of the 16 soil samples analyzed. Several PAH compounds were detected at moderate to high concentrations within five of the remaining 15 soil samples collected from the PZ-03 area. Of the detected PAH compounds, naphthalene was present within five of the 15 samples with the detected concentrations ranging from less than 1 milligram per kilogram (mg/kg) to 21.4 mg/kg. A positive correlation between the presence of free product observed during field screening and high naphthalene concentrations in soil samples is also evident.

<u>Groundwater Quality Results</u> – As part of the supplemental site investigation activities, one round of groundwater samples was collected from the three newly installed groundwater monitoring wells and the existing PZ-03 area monitoring wells and submitted for laboratory analysis of BTEX and PAHs. The results are summarized in **Table 4** and in **Figure 7**, and the groundwater laboratory analytical report is included in **Attachment 8**. The analytical results for BTEX were compared to ESs and PALs in both ch. NR 140 and the EPA Record of Decision (ROD) for the site are discussed below.

- BTEX: Benzene was detected at concentrations greater than its EPA ROD and ch. NR 140 ES within monitoring well PZ-03E. Benzene was detected at a concentration greater than its EPA ROD PAL and less than its ch. NR 140 PAL within monitoring well PZ-03H. Benzene was not detected within the remaining monitoring wells. Ethylbenzene, toluene, and xylenes were detected in select monitoring wells but at concentrations less than their respective ROD and ch. NR 140 PALs.
- PAHs: Several PAH compounds were detected within each of the groundwater samples collected from the monitoring wells at concentrations greater than laboratory limits of detection (LODs). Select PAHs were reported at concentrations above ch. NR 140 ESs and / or PALs within seven of the nine monitoring wells sampled. Naphthalene was reported at concentrations above its ch. NR 140 ES within monitoring wells PZ-03B, PZ-03D, PZ-03E, and PZ-03H. The detected concentrations of naphthalene range between 0.193 μg/L and 3,500 μg/L. The highest concentration of naphthalene (3,500 micrograms per liter [ug/L]) was detected at PZ-03E where free product was also identified. Similarly, relatively high concentrations were detected at PZ-03H (900 ug/L) where the presence of free product was observed in soil samples. The groundwater quality data appears to correlate well with soil quality data and free product observations.

SUMMARY AND CONCLUSIONS

In 2021 and 2022, a total of 35 soil borings (GP-100 thru GP-134) were advanced and a total of 13 monitoring wells (PZ-03A thru PZ-03H, MW-33SA thru MW-33SC, PZ-02A, and PZ-02B) were installed in the vicinity of MW-33S, PZ-02, and PZ-03 to investigate the source and extent of elevated naphthalene impacts identified in groundwater samples collected from MW-33S, PZ-02, and PZ-03. A total of 70 soil

samples were collected and submitted from the soil borings for laboratory analysis of BTEX and PAHs while one to two rounds of groundwater samples were collected from the newly installed monitoring wells and submitted for laboratory analysis of BTEX and PAHs. The following sections present a summary of the investigation results:

MW-33S and PZ-02

- Results of the investigation in the vicinity of monitoring wells MW-33S and PZ-02 indicate groundwater impacts are limited in extent and that no free product was observed.
- Naphthalene impacts within soil are limited to four locations at concentrations slightly higher than the ch. NR 720 groundwater pathway RCL.
- Although naphthalene impacts within groundwater were identified at concentrations greater than the ch. NR 140 PAL and ES in the vicinity of monitoring wells MW-33S and PZ-02, the detected concentrations do not indicate the presence of free phase creosote in the subsurface.

PZ-03 Area

- Results of the additional site investigation activities conducted in the vicinity of PZ-03 identified two zones of relatively high naphthalene impacted soil which roughly correlate with two areas of free phase product identified in the soil (Figure 4, Figure 5, and Figure 6).
- One of the free product areas is located to the west and south of PZ-03 and includes soil borings GP-104, GP-106, GP-107, GP-111, GP-113, GP-114, and GP-127.
- The second area is located to the northwest of PZ-03 and includes soil boring GP-134.
- Detection of naphthalene within soil in the southern area are greater than other areas evaluated with the highest concentration of 1,230 mg/kg and free product at depths of six to 13 feet bgs.
- The greatest naphthalene concentration in the northern investigation area was 21.4 mg/kg and free product was only present at depths of 9.75 to 10 feet bgs.
- Review of the groundwater quality data collected at monitoring well PZ-03 since 2013 confirms the presence of relatively high concentrations of naphthalene in the subsurface at this location.
- Although the latest sampling data indicates a decrease in naphthalene concentration from 4,000 μg/L to less than 10 μg/L, the results are not likely a true representation of the subsurface condition within monitoring well PZ-03. Considering free phase creosote product is heavier than water and accumulates at the bottom of the well, i is suspected that groundwater samples typically collected from the mid-screen depth (typical procedure for groundwater monitoring) may not have captured the product, if present in the well.
- In the most recent rounds of groundwater sampling, naphthalene concentrations within monitoring wells PZ-03B, PZ-03D, PZ-03E, and PZ-03H were greater than in PZ-03 with the highest concentration (4,100 μg/L) reported in PZ-03E.
- Relatively high groundwater naphthalene concentrations correlate well with high soil quality impacts as well as the presence of free product.
- The degree and extent of groundwater naphthalene impacts in the vicinity of monitoring well PZ-03 is well defined in all directions as presented in **Figure 7**.

In conclusion, based on a review of the historical groundwater quality data and the recently collected soil data, the presence of free product in the subsurface appears to be limited to two isolated areas:

• In the vicinity of monitoring well PZ-03H as documented in the soil sample and strong petroleum odor observed during groundwater sampling.

• Measurable free product at PZ-03E and relatively high concentrations of naphthalene in groundwater samples.

Due to the high concentrations of naphthalene identified in the vicinity of monitoring well PZ-03 and the presence of free product was observed, active remedial measures would be required to meet the conditions of the EPA ROD. A Remedial Action Options Matrix is prepared and included as **Table 5**.

Pending your review, the information included in the report and the potential remedial options discussed in the attached options matrix (**Table 5**) please give us a call to discuss the investigation results and potential remedial options to address the limited free product are at the site.

Sincerely,

THE SIGMA GROUP, INC.

Steven Kikkert, P.E. Staff Engineer

Enclosures:

Mafizul Islam, P.E. Senior Project Manager

- Table 1 Water Level Elevations
- Table 2 Groundwater In-Situ Measurements
- Table 3 Soil Analytical Results
- Table 4 Groundwater Analytical Results
- Table 5 Remedial Action Options Matrix

Figure 1 – Site Location Map

- Figure 2 Borehole Location Map
- Figure 3 Geologic Cross Section Location Map
- Figure 4 Geologic Cross Section A-A'
- Figure 5 Geologic Cross Section B-B'
- Figure 6 Soil Quality Map
- Figure 7 Groundwater Quality Map

Attachment 1 – Soil Boring Logs

- Attachment 2 Borehole Abandonment Forms
- Attachment 3 Groundwater Monitoring Well Construction Forms
- Attachment 4 Monitoring Well Development Forms
- Attachment 5 Investigative Waste Disposal Manifests
- Attachment 6 Free Product Photographs
- Attachment 7 Soil Laboratory Analytical Report
- Attachment 8 Groundwater Laboratory Analytical Report

TABLES

Table 1 Water Level Elevations - PZ-03 Area Investigation Moss American - 8716 N. Granville Road, Milwaukee, Wisconsin Sigma Project No. 18687

PZ-03											
Ground Elev .:	719.1	(feet MSL)				Scree	n Interval: 1.4 to 11.4 (feet bgs)				
TOC Elev.:	722.50	(feet MSL)		717.6 to 707.6 (feet MSL)							
Date	Depth to Groundwater	Well Depth	Water Column	Water Column Difference	Groundwater Elevation	Depth to Groundwater	Physical Observations				
	(feet TOC)	(feet TOC)	(feet)	(feet)	(feet MSL)	(feet bgs)					
4/4/13	4.60	14.85	10.25		717.90	1.2					
10/8/19	4.65	14.61	9.96	0.05	717.85	1.2	Good recovery.				
1/8/20	4.57	14.61	10.04	-0.08	717.93	1.2	Duplicate #2				
3/31/20	4.54	14.60	10.06	-0.03	717.96	1.1	Good recovery, dup #2.				
7/13/20	5.88	14.68	8.80	1.34	716.62	2.5	Good recovery, dup #4.				
10/8/20	5.72	14.66	8.94	-0.16	716.78	2.3	Good recovery, dup #4.				
1/8/21	4.99	14.65	9.66	-0.73	717.51	1.6	Good recovery.				
4/1/21	4.48	14.65	10.17	-0.51	718.02	1.1	Good recovery.				
2/1/22	6.31	14.94	8.63	1.83	716.19	2.9	Good recovery.				

PZ-03A											
Ground Elev.:	718.7	(feet MSL)				Scree	n Interval:	5.2	to	15.2	(feet bgs)
TOC Elev.:	721.26	(feet MSL)					7	713.5	to	703.5	(feet MSL)
Date	Depth to Groundwater	Well Depth	Water Column	Water Column Difference	Groundwater Elevation	Depth to Groundwater	Physical Obs	ervatio	ons		
	(feet TOC)	(feet TOC)	(feet)	(feet)	(feet MSL)	(feet bgs)					
3/9/21	2.65	17.74	15.09		718.61	0.1	Well develop	ment.			
3/11/21	2.81	17.74	14.93	0.16	718.45	0.2	Good recove	ry, no	odo	r	
2/1/22	5.03	17.60	12.57	2.22	716.23	2.4	Turbid, petro	oleum c	dor	, good re	covery.

PZ-03B							
Ground Elev .:	719.2	(feet MSL)				Scree	n Interval: 5.1 to 15.1 (feet bgs)
TOC Elev.:	721.90	(feet MSL)					714.1 to 704.1 (feet MSL)
Date	Depth to Groundwater	Well Depth	Water Column	Water Column Difference	Groundwater Elevation	Depth to Groundwater	Physical Observations
	(feet TOC)	(feet TOC)	(feet)	(feet)	(feet MSL)	(feet bgs)	
3/9/21	3.22	17.84	14.62		718.68	0.5	Well development.
3/11/21	3.41	17.84	14.43	0.19	718.49	0.7	Good recovery, no odor
2/1/22	5.65	17.83	12.18	2.24	716.25	2.9	Turbid, petroleum odor, good recovery.

PZ-03C											
Ground Elev.:	719.2	(feet MSL)				Scree	en Interval: 4.7 to 14.7 (feet bgs)				
TOC Elev.:	721.75	(feet MSL)		714.5 to 704.5 (feet MSL)							
Date	Depth to Groundwater	Well Depth	Water Column	Water Column Difference	Groundwater Elevation	Depth to Groundwater	Physical Observations				
	(feet TOC)	(feet TOC)	(feet)	(feet)	(feet MSL)	(feet bgs)					
3/8/21	3.05	17.26	14.21		718.70	0.5	Well development.				
3/11/21	3.18	17.26	14.08	0.13	718.57	0.7	Good recovery, no odor				
2/1/22	5.47	17.28	11.81	2.29	716.28	2.9	Turbid, petroleum odor, good recovery.				

PZ-03D							
Ground Elev.:	719.0	(feet MSL)				Scree	n Interval: 5.0 to 15.0 (feet bgs)
TOC Elev.:	721.37	(feet MSL)					714.0 to 704.0 (feet MSL)
Date	Depth to Groundwater	Well Depth	Water Column	Water Column Difference	Groundwater Elevation	Depth to Groundwater	Physical Observations
	(feet TOC)	(feet TOC)	(feet)	(feet)	(feet MSL)	(feet bgs)	
3/8/21	2.58	17.38	14.80		718.79	0.2	Well development.
3/11/21	2.74	17.38	14.64	0.16	718.63	0.3	Good recovery, petroleum odor
2/1/22	5.08	17.41	12.33	2.34	716.29	2.7	Good recovery.

PZ-03E											
Ground Elev.:	719.0	(feet MSL)				Scree	n Interval: 4.7 to 14.7 (feet bgs)				
TOC Elev.:	721.27	(feet MSL)		714.3 to 704.3 (feet MSL)							
Date	Depth to Groundwater	Well Depth	Water Column	Water Column Difference	Groundwater Elevation	Depth to Groundwater	Physical Observations				
	(feet TOC)	(feet TOC)	(feet)	(feet)	(feet MSL)	(feet bgs)					
3/9/21	2.62	16.95	14.33		718.65	0.4	Well development.				
3/11/21	2.81	16.95	14.14	0.19	718.46	0.6	Good recovery, petroleum odor				
2/1/22	5.06	17.29	12.23	2.25	716.21	2.8	Product presence, good recovery.				

PZ-03F												
Ground Elev.:	718.4	(feet MSL)				Scree	n Interval:	5.5	to	15.5	(feet bgs)	
TOC Elev.:	720.69	(feet MSL)					7	12.9	to	702.9	(feet MSL)	
Date	Depth to Groundwater	Well Depth	Water Column	Water Column Difference	Groundwater Elevation	Depth to Groundwater	Physical Obse	ervatio	ns			
	(feet TOC)	(feet TOC)	(feet)	(feet)	(feet MSL)	(feet bgs)						
1/21/22	4.49	17.82	13.33		716.20	2.1	Well installation	on.				
1/31/22	4.59	17.63	13.04	0.10	716.10	2.2	Well developr	ment.				
2/1/22	4.41	17.38	12.97	-0.18	716.28	2.1	Good recover	y.				
<u> </u>		1		I			1					

PZ-03G												
Ground Elev.:	718.2	(feet MSL)				Scree	n Interval:	5.5	to	15.5	(feet bgs)	
TOC Elev.:	720.53	(feet MSL)						712.7	to	702.7	(feet MSL)	
Date	Depth to Groundwater	Well Depth	Water Column	Water Column Difference	Groundwater Elevation	Depth to Groundwater	Physical C	bservatio	ons			
	(feet TOC)	(feet TOC)	(feet)	(feet)	(feet MSL)	(feet bgs)						
1/21/22	4.11	17.84	13.73		716.42	1.8	Well instal	lation.				
1/31/22	4.41	17.75	13.34	0.30	716.12	2.1	Well devel	opment.				
2/1/22	4.28	17.79	13.51	-0.13	716.25	2.0	Good reco	very.				

PZ-03H											
Ground Elev.:	719.3	(feet MSL)				Scree	n Interval:	5.5	to	15.5	(feet bgs)
TOC Elev.:	721.60	(feet MSL)						713.8	to	703.8	(feet MSL)
Date	Depth to Groundwater	Well Depth	Water Column	Water Column Difference	Groundwater Elevation	Depth to Groundwater	Physical C)bservati	ons		
	(feet TOC)	(feet TOC)	(feet)	(feet)	(feet MSL)	(feet bgs)					
1/21/22	5.43	17.79	12.36		716.17	3.1	Well insta	llation.			
1/31/22	5.63	17.63	12.00	0.20	715.97	3.3	Well deve	lopment.			
2/1/22	5.50	17.55	12.05	-0.13	716.10	3.2	Good reco	overy, pe	trole	um odor	

Notes: 1. All montioring wells surveyed by The Sigma Group, Inc. on March 2 & 3, 2021 with Trimble GPS receiver. 2. feet MSL = feet above Mean Sea Level Data entered / updated

feet bgs = feet below ground surface	Data entered / updated by: SVK	Date:	3/17/2022
feet TOC = feet below top of casing	Data checked by: DBC	Date:	3/20/2022

Table 2 Groundwater *In Situ* Measurements Moss American - 8716 N. Granville Road, Milwaukee, Wisconsin Sigma Project No. 18687

					In Situ Mea	asurements			
Well	Date	Dissolved	Redox					Specific	Ferrous
Identification	Dale	Oxygen	Potential	pH	Conductivity	Temperature	Turbidity	Conductance	Iron
		(mg/L)	(mV)	(S.U.)	(mS/cm)	(°C)	(NTU)	(mmhos/cm)	(mg/L)
PZ-03	9/29/10	NS	NS	NS	NS	NS	NS	NS	NS
	4/4/13	0.95	-20.0	7.20	NS	6.8	NA	NA	4.0
	10/8/19	2.84	342.6	6.93	1.70	16.5	172.0	2.028	3.4
	1/8/20	0.86	117.6	7.00	0.99	6.8	86.7	1.518	2.4
	3/31/20	3.20	252.7	7.16	0.46	5.0	66.0	0.746	2.4
	7/13/20	2.25	135.2	7.18	1.04	16.1	77.9	1.253	4.8
I	10/8/20	0.15	-176.1	6.93	1.04	16.5	14.9	1.242	1.4
	1/8/21	0.38	-132.3	7.44	0.61	5.3	33.3	0.978	1.0
	4/1/21	0.53	92.6	7.53	0.61	8.2	18.9	0.898	3.6
	2/2/22	0.37	-90.4	7.16	0.65	3.7	9.5	1.10	0.0
PZ-03A	3/11/21	1.68	157.7	6.92	0.69	7.0	too turbid	1.052	0.0
J	2/2/22	0.70	-83.2	7.30	0.58	4.1	41.7	0.965	NA
D7 02B	2/11/01	1.20	172.0	6.02	0.71	7.4	too turbid	1.070	0.0
PZ-03B	3/11/21	1.38	173.8	0.93	0.71	7.1		1.079	0.8
	212122	1.23	-95.6	7.40	0.65	4.4	62.6	1.072	NA
PZ-03C	3/11/21	0.98	157.5	6.93	0.79	8.3	too turbid	1.160	0.8
	2/2/22	0.46	-55.7	6.95	0.76	7.3	91.2	1.148	NA
PZ-03D	3/11/21	1.22	139.2	6.87	0.75	9.0	too turbid	1.080	1.2
	2/2/22	0.65	-35.9	7.00	0.69	7.1	12.0	1.048	NA
PZ-03E	3/11/21	1.33	137.7	7.03	0.64	7.3	too turbid	0.967	0.0
	2/2/22	NA	NA	NA	NA	NA	NA	NA	NA
PZ-03F	2/2/22	0.49	-40.9	7.19	0.59	4.0	13.8	0.985	NA
						_			
PZ-03G	2/2/22	0.88	-55.2	7.18	0.63	4.0	12.8	1.052	NA
PZ-03H	2/2/22	NA	NA	NA	NA	NA	20.6	NA	0.0
	//						2010		0.0

Notes:

1. ° C = degrees Celcius

mg/L = milligrams per liter (equivalent to parts per million, ppm)

3. mV = millivolts

4. NA = not analyzed

Data entered / updated by: SVK	Date:	2/11/2022
Data checked by: DBC	Date:	3/2/2022

Table 3 Soil Analytical Results - PZ-03 Area Investigation Moss American - 8716 N. Granville Road, Milwaukee, Wisconsin Sigma Project No. 18687

Soil Sampl	e Location:	GP	-126	GP	-128	GP	-129	GP	-130	GP	-131	GP	-132	GP-	133	GP-	-134			
Monitoring Well (if	applicable);			-			-	PZ·	03F					PZ-	03G	PZ-	03H	1		
Sample Colle	ction Date:	1/2	0/22	1/20	0/22	1/20	0/22	1/2	0/22	1/2	0/22	1/2	0/22	1/20)/22	1/20	0/22	Groundwater	Non-Industrial	Industrial
Sample Depth	(feet bgs):	2-4	10-12	2-4	6-8	8-10	12-14	8-10	10-12	2-4	8-10	0-2	10-12	4-6	10-12	4-6	10-12	Pathway	Direct Contact	Direct Contact
Depth to Groundwater	· (feet bgs):	0	.7	0	.7	0	.7	0	.7	0	.7	0	.7	0.	7	0	.7	RCL ⁴	RCL ⁵	RCL ⁶
Fre	e Product :																FP	1		
Unsat (U) or Sa	turated (S):	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S			
Photoionization Detector	ppm	1.5	0.5	0.6	1.1	2.9	2.0	1.8	2.0	2.5	1.8	7.4	2.3	1.4	1.6	2.2	13.0	NS	NS	NS
Gasoline Range Organics	mg/kg	NA	<10	NA	<10	NA	15.1	NA	<10	NA	<10	NA	NA	NA	<10	NA	NA	NS	NS	NS
Diesel Range Organics	mg/kg	NA	<10	NA	<10	NA	<10	NA	<10	NA	<10	NA	NA	NA	<10	NA	NA	NS	NS	NS
VOCs						1			•				•				•			
Benzene	mg/kg	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.0051	1.6	7.07
Ethylbenzene	mg/kg	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.044 J	1.57	8.02	35.4
Toluene	mg/kg	<0.025	<0.025	0.033 J	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	1.1072	818	818
Xylenes (total)	mg/kg	<0.075	<0.075	0.099 J	<0.075	<0.075	<0.075	<0.075	<0.075	<0.075	<0.075	<0.075	<0.075	<0.075	<0.075	<0.075	0.047 J	3.96	260	260
PAHs																				
Acenaphthene	mg/kg	<0.011	<0.011	1.58	0.088	<0.011	4.60	<0.011	0.048	<0.011	2.02	<0.011	0.0232 J	<0.011	<0.011	0.34	33.0	NS	3,590	45,200
Acenaphthylene	mg/kg	0.0303 J	< 0.009	19.2	0.09	<0.009	0.05 J	0.0097 J	<0.009	0.0189 J	0.052	<0.009	<0.009	<0.009	<0.009	0.131	0.34 J	NS	NS	NS
Anthracene	mg/kg	0.05	0.0241 J	49.0	0.044	<0.0071	1.55	0.0196 J	0.0116 J	0.04	0.52	0.0081 J	0.0124 J	<0.0071	0.0123 J	0.295	8.80	196.9492	17,900	100,000
Benzo(a)anthracene	mg/kg	0.0243 J	0.0305 J	[10.2]	<0.0139	<0.0139	0.69	0.047 J	0.0261 J	0.043 J	0.55	<0.0139	0.053 J	<0.0139	0.0263 J	0.132	[4.70]	NS	1.14	20.8
Benzo(a)pyrene	mg/kg	0.043 J	0.0258 J	{[33.0] }	0.045 J	<0.0143	[0.213]	0.036 J	<0.0143	0.035 J	[0.33]	<0.0143	0.0195 J	<0.0143	0.0155 J	[0.70]	[1.26]	0.47	0.115	2.11
Benzo(b)fluoranthene	mg/kg	0.067	0.047	{[44.0] }	0.0081 J	<0.008	0.34	0.056	0.0212 J	0.069	0.50	0.0142 J	0.035	<0.008	0.0228 J	0.51	[2.00]	0.4781	1.15	21.1
Benzo(ghi)perylene	mg/kg	0.057	0.0174 J	78.0	0.036 J	<0.0125	0.071 J	0.04 J	<0.0125	0.076	0.205	0.0146 J	<0.0125	<0.0125	0.018 J	0.71	0.38 J	NS	NS	NS
Benzo(k)fluoranthene	mg/kg	0.027 J	0.0261 J	5.30	<0.0076	<0.0076	0.155	0.0197 J	0.0093 J	0.03	0.162	<0.0076	0.0154 J	<0.0076	0.012 J	0.108	0.96	NS	11.5	211
Chrysene	mg/kg	0.0303 J	0.058	8.40	<0.0124	<0.0124	0.73	0.049 J	0.02 J	0.059	0.56	<0.0124	0.055	<0.0124	0.0205 J	0.162	4.50	0.1442	115	2,110
Dibenzo(a,h)anthracene	mg/kg	<0.0136	<0.0136	{[12.0]}	<0.0136	<0.0136	<0.0272	<0.0136	<0.0136	<0.0136	0.039 J	<0.0136	<0.0136	<0.0136	<0.0136	[0.119]	<0.272	NS	0.115	2.11
Fluoranthene	mg/kg	0.064	0.146	23.3	0.0083 J	0.0198 J	4.40	0.171	0.091	0.081	3.13	0.0142 J	0.128	<0.008	0.062	0.35	32.0	88.8778	2,390	30,100
Fluorene	mg/kg	<0.0091	<0.0091	2.07	0.083	<0.0091	3.60	<0.0091	0.0275 J	<0.0091	1.41	<0.0091	0.0176 J	<0.0091	<0.0091	0.199	28.7	14.8299	2,390	30,100
Indeno(1,2,3-cd)pyrene	mg/kg	0.06	0.0217 J	{[91.0]}	0.034 J	<0.0152	0.102 J	0.048 J	<0.0152	0.073	0.262	<0.0152	<0.0152	<0.0152	0.0186 J	0.89	0.50 J	NS	1.15	21.1
1-Methylnaphthalene	mg/kg	0.0134 J	<0.0118	1.13	0.0302 J	<0.0118	1.39	<0.0118	<0.0118	<0.0118	0.031 J	<0.0118	<0.0118	<0.0118	<0.0118	0.125	12.3	NS	17.6	72.7
2-Methylnaphthalene	mg/kg	<0.0186	< 0.0186	2.29	< 0.0186	<0.0186	2.55	<0.0186	<0.0186	< 0.0186	0.0231 J	<0.0186	<0.0186	<0.0186	<0.0186	0.192	14.2	NS	239	3,010
Naphthalene	mg/kg	< 0.0201	< 0.0201	[6.70]	< 0.0201	<0.0201	4.50	<0.0201	< 0.0201	< 0.0201	0.061 J	<0.0201	<0.0201	<0.0201	<0.0201	0.86	[21.4]	0.6582	5.52	24.1
Phenanthrene	mg/kg	0.042	0.0135 J	18.4	0.0303 J	<0.0089	9.00	0.0151 J	0.0256 J	0.044	0.309	0.0107 J	0.033 J	<0.0089	<0.0089	0.315	76.0	NS	NS	NS
Pyrene	mg/kg	0.055	0.115	19.5	0.0249 J	0.0256 J	3.00	0.131	0.073	0.083	2.15	0.0117 J	0.111	<0.007	0.067	0.299	21.6	54.5455	1,790	22,600

Notes:

1. Unsaturated/smear zone versus saturated soil conditions based on soil moisture conditions recorded on soil boring logs during drilling.

2. Analytical units: mg/kg = milligrams per kilogram (equivalent to parts per million, ppm)

3. NA = not analyzed NS = no standard established

4. Groundwater Pathway RCL = Residual Contaminant Level for protection of groundwater (dilution factor of 2) as presented on the WDNR's RCL Spreadsheet (dated December 2018) referenced in WDNR guidance document PUB-RR-890 "Soil Residual Contaminant Level Determinations Using the US EPA Regional Screening Level Web Calculator", dated June 2014.

5. Non-Industrial Direct Contact RCL = Residual Contaminant Level for protection of direct contact at a non-industrial property as presented on the WDNR's RCL Spreadsheet (dated December 2018) with default input parameters as referenced in WDNR guidance document PUB-RR-890 "Soil Residual Contaminant Level Determinations Using the US EPA Regional Screening Level Web Calculator", dated June 2014.

6. Industrial Direct Contact RCL = Residual Contaminant Level for protection of direct contact at an industrial property as presented on the WDNR's RCL Spreadsheet (dated December 2018) with default input parameters as referenced in WDNR guidance document PUB-RR-890 "Soil Residual Contaminant Level Determinations Using the US EPA Regional Screening Level Web Calculator", dated June 2014.

"J" = Analyte detected between Limit of Detection and Limit of Quantitation 7. Laboratory flags:

8. Methanol blank results: 03/01/2021: All VOCs reported below laboratory detection limits.

01/20/2022: All VOCs reported below laboratory detection limits.

9. Exceedances:

BOLD = Concentration exceeds Groundwater Pathway RCL

[] = Concentration exceeds Non-Industrial Direct Contact RCL (any depth) { } = Concentration exceeds Industrial Direct Contact RCL (any depth)

10. "FP" indicated if free product was visually identified within soil samples

Data entered / updated by: SJB Data checked by: SVK Date: ____ Date: 2/7/2022 2/28/2022 Table 4 Groundwater Analytical Results - PZ-03 Area Investigation Moss American - 8716 N. Granville Road, Milwaukee, Wisconsin Sigma Project No. 18687

																Olginu i		5001																	
Well L	ocation:								PZ-03								PZ	-03A	PZ	-03B	PZ	-03C		PZ-03D		PZ-	03E	PZ-	03F	PZ-03G	PZ-03H				
	Date:	4/4/13	10/9/19	1/8	3/20	3/3	1/20	7/14	4/20	10/9	9/20	10/29	9/20	1/8/21	4/2/21	2/2/22	3/12/21	2/2/22	3/12/21	2/2/22	3/12/21	2/2/22	3/1	2/21	2/2/22	3/12/21	2/2/22	2/2	/22	2/2/22	2/2/22	EPA ROD ES		FS	NR 140
Water Elevation* (fee	t MSL):	717.49*	717.64*	717.72*	DUP #2	717.75*	DUP #2	716.41	DUP #4	716.57	DUP #4	Synergy	Pace	717.30	717.81*	716.19	718.26*	716.23*	718.32*	716.25*	718.42*	716.28*	718.45*	DUP	716.29*	718.38*	716.21*	716.28*	DUP	716.25*	716.10*			-0	
BTEX																																			
Benzene	µg/L	[0.44 J]	{[2.02] }	{[1.45]}	{ [1.38] }	{[2.31]}	{[2.27]}	{ [1.33] }	{[1.14]}	{ [1.27] }	{ [1.11] }	NA	NA	<0.33	<0.38	<0.38	<0.37	<0.38	{[0.95 J]}	<0.38	<0.37	<0.38	[0.43 J]	[0.55 J]	<0.38	{[1.68] }	{[2.35]}	<0.38	<0.38	<0.38	[0.44 J]	0.67	0.067	5	0.5
Ethylbenzene	µg/L	2.68	10.7	54	53	61	60	42	37	1.53	1.39	NA	NA	0.8 J	0.75 J	<0.37	<0.41	<0.37	7.4	<0.37	0.76 J	< 0.37	2.18	2.14	0.50 J	60	53	<0.37	<0.37	<0.37	4.4	1360.0	272.0	700	140
Toluene	µg/L	1.92 J	34.1	68.9	68.3	86	84.5	56.5	48.9	20.4	19.7	NA	NA	4.15	2.01 J	<0.42	0.58 J	<0.42	0.54 J	<0.42	1.08 J	<0.42	0.98 J	0.53 J	<0.42	5.1	9.3	<0.42	<0.42	<0.42	<0.42	343.0	68.6	800	160
Xylenes, Total	µg/L	<0.8	1.01	1.36	1.37	2.09	2.21	1.2	1.27	0.47 J	0.61 J	NA	NA	<0.26	<0.42	<1.21	<1.49	<1.21	19.1	4.74 J	2.87 J	<1.21	5.91	5.61	1.69 J	85.8	93	<1.21	<1.21	<1.21	5.95 J	620.0	124.0	2,000	400
PAHs																																			
Acenaphthene	µg/L	116.0	154	350	NA	316	350	291	320	131	171	191	149	870	56	53.0	15.8	22.3	147	98.0	205	67.0	269	293	64.0	680	590	0.38	NA	0.25	314	NS	NS	NS	NS
Acenaphthylene	µg/L	0.99 J	<4.68	<9.36	NA	<31.2	<31.2	<15.6	<7.8	5.7	7.1	<7.8	1.2 J	0.81 J	0.61	0.52 J	0.11	0.13 J	0.92 J	<0.78	1.19 J	0.71	3.30 J	4.50 J	<3.12	<7.80	<7.80	0.039 J	NA	<0.0156	<3.12	NS	NS	NS	NS
Anthracene	µg/L	2.37	<4.5	<9	NA	<30	<30	<15	<7.5	0.64 J	<0.75	<7.5	<2.1	1.27 J	0.49	0.65 J	0.85	0.42	3.04	0.99 J	20.9	8.30	20.3	34	8.00 J	82.0	69.0	0.058	NA	0.041 J	16.6	NS	NS	3,000	600
Benzo(a)anthracene	µg/L	2.03	<3.93	<12	NA	<40	<40	<20	<10	1.28 J	<1	<10	<1.5	<1	<0.2	<0.40	0.245	0.172 J	<1.00	<1.00	1.49 J	0.37 J	<4.00	7.90 J	<4.00	27.7 J	24.9 J	0.0289 J	NA	<0.02	<4.00	NS	NS	NS	NS
Benzo(a)pyrene	µg/L	0.71 J	<5.01	<10.02	NA	<33.4	<33.4	<16.7	<8.35	0.38 J	<0.835	<8.35	<2.1	<0.835	<0.167	<0.334	0.082 J	0.171 J	<0.835	<0.835	<0.835	<0.167	<3.34	4.00 J	<3.34	<8.35	<8.35	<0.0167	NA	<0.0167	<3.34	NS	NS	0.2	0.02
Benzo(b)fluoranthene	µg/L	1.45	<4.8	<9.6	NA	<32	<32	<16	<8	1.22	<0.8	<8	<1.1	<0.8	<0.16	<0.32	0.134	0.16 J	<0.80	<0.80	<0.80	<0.16	<3.20	6.90 J	<3.20	10.9 J	8.90 J	<0.016	NA	<0.016	<3.20	NS	NS	0.2	0.02
Benzo(ghi)perylene	µg/L	<0.46	<4.26	<8.52	NA	<28.4	<28.4	<14.2	<7.1	0.49 J	<0.71	<7.1	<1.4	<0.71	<0.142	<0.284	0.037 J	0.215 J	<0.71	<0.71	<0.71	<0.142	<2.84	4.60 J	<2.84	<7.10	<7.10	<0.0142	NA	<0.0142	3.03 J	NS	NS	NS	NS
Benzo(k)fluoranthene	µg/L	<0.54	<4.38	<8.76	NA	<29.2	<29.2	<14.6	<7.3	0.7 J	<0.73	<7.3	<1.5	<0.73	<0.146	<0.292	0.047 J	0.152 J	<0.73	<0.73	<0.73	<0.146	<2.92	6.80 J	<2.92	<7.30	<7.30	<0.0146	NA	<0.0146	<2.92	NS	NS	NS	NS
Chrysene	µg/L	1.47	<4.71	<9.42	NA	<31.4	<31.4	<15.7	<7.85	0.85 J	<0.785	<7.85	<2.6	<0.785	<0.157	<0.314	0.219	0.128 J	<0.785	<0.785	1.18 J	0.34 J	<3.14	10.1	<3.14	25.1	18.9 J	0.0229 J	NA	<0.0157	<3.14	NS	NS	0.2	0.02
Dibenzo(a,h)anthracene	µg/L	<0.46	<5.19	<10.38	NA	<34.6	<34.6	<17.3	<8.65	<0.346	<0.865	<8.65	<2	<0.865	<0.173	<0.346	<0.0346	0.178 J	< 0.865	<0.865	<0.865	<0.173	<3.46	<3.46	<3.46	<8.65	<8.65	<0.0173	NA	<0.0173	<3.46	NS	NS	NS	NS
Fluoranthene	µg/L	10.7	<2.64	<5.28	NA	<17.6	<17.6	<8.8	<4.4	1.64	<0.44	<4.4	<2.1	<0.44	0.43	0.53 J	2.03	0.47	6.90	1.58	20.5	8.80	21.6	49.0	9.30	188	147	0.26	NA	0.116	11.3	NS	NS	400	80
Fluorene	µg/L	33	57	110	NA	102	115	121	116	34	48	62	44.9	29.6	18.5	19.9	4.90	5.10	28.9	17.1	121	46.0	136	160	41.0	320	316	0.106	NA	0.065	156	NS	NS	400	80
Indeno(1,2,3-cd)pyrene	µg/L	<0.54	<3.63	<7.26	NA	<24.2	<24.2	<12.1	<6.05	0.48 J	<0.605	<6.05	<3.5	<0.605	<0.121	<0.242	0.034 J	0.18 J	<0.605	<0.605	<0.605	<0.121	<2.42	5.00 J	<2.42	<6.05	<6.05	<0.0121	NA	<0.0121	<2.42	NS	NS	NS	NS
1-Methylnaphthalene	µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	20.1	0.67	<9.55	28.4	45.0	110	24.5	158	175	29.2	380	350	0.084	NA	0.069	248	NS	NS	NS	NS
2-Methylnaphthalene	µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.372	<0.0372	<0.093	<0.93	<0.93	190	24.5	225	243	12.4	380	490	0.058 J	NA	0.054 J	151	NS	NS	NS	NS
Naphthalene	µg/L	47.0	1620	4000	NA	3600	3800	3010	3150	4.9	9.4	1680	1310	360	13.3	4.30	0.90	<0.15	113	148	121	9.00	1090	1190	172	4100	3500	0.193	NA	0.212	990	NS	NS	100	10
Phenanthrene	µg/L	1.87	11 J	37	NA	45 J	51 J	43 J	44	3.7	0.9 J	19.3 J	12.8 J	6.6	2.7	2.77	1.98	0.313	5.60	1.68 J	157	63.0	158	218	58.0	560	490	0.033 J	NA	0.036 J	138	NS	NS	NS	NS
Pyrene	µg/L	7.1	<3.63	<7.26	NA	<24.2	<24.2	<12.1	<6.05	1.9	<0.605	<6.05	<1.5	<0.605	0.277 J	0.4 J	1.33	0.32	4.00	0.95 J	12.4	5.10	12.5	32.0	5.40 J	128	99.0	0.191	NA	0.096	6.20 J	NS	NS	250	50

Notes:

 Notes:
 1. NR 140 ES = Wisconsin Administrative Code, Chapter NR 140 Enforcement Standard

 2. NR 140 PAL = Wisconsin Administrative Code, Chapter NR 140 Preventive Action Limit

 3. NS = no standard
 NA = Not Analyzed

 4. µg/L = micrograms per liter (equivalent to parts per billion, ppb)
 1. Laboratory flags:

 5. Laboratory flags:
 "J" = Analyte detected between Limit of Detection and Limit of Quantitation.

 6. Trip blank results:
 03/12/2021: All VOCs reported below laboratory detection limits.

 7. Equipment blank results:
 03/12/2021: All VOCs reported below laboratory detection limits.

 8. Detections
 = Analyte detected

 9. Exceedances
 BOLD
 = Concentration exceeds NR 140 ES

 ITALICS
 Concentration exceeds NR 140 PAL

 { } = Concentration exceeds SPA ROD ES
 []

 []
 = Concentration exceeds EPA ROD PAL

 10. Special notes:
 * = monitoring well screen submerged below water table

 Data entered / updated by:
 SVK
 Date:
 2/11/2022

 Data checked by:
 DBC
 Date:
 3/2/2022

			Table 5
			Remedial Action Options Matrix
		8	Former Moss-American Site 716 N. Granville Boad, Milwaukee, Wisconsin
		Ũ	Sigma Project No. 18687
			MAY 2022
REMEDIAL ACTION O	PREMEDIAL TECHNOLOGIES	PROCESS OPTIONS	COMMENTS
No Action			Not viable considering the site conditions - included as a baseline to evaluate via
Institutional Controls	Soil & Groundwater GIS Registry	Regulatory Reporting	Viable part of closure strategy - will be used for residual soil & groundwater imp
Containment	Physical Barriers	Slurry Wall	Potentially feasible for GW impacts, but cost prohibitive given degree of impacts
		Sheet Piling	Existing sheet pile along the river provides the necessary containment.
		Grout Curtains	Potentially feasible for GW impacts, but cost prohibitive given degree of impacts
		Surface Soil Cap	Viable option for direct contact risk mitigation. Majority of the site is proposed t
Soil Remediation	Excavation & Treatment or	Thermal	Not viable - cost prohibitive.
	Disposal	Above Ground Biological Treatment	Potentially feasible for highly impact soil, but not viable because of time constrai
		Above Ground Vapor Extraction	Not very effective for creosote free product mixed with PAH compounds.
		Mixing with Chemical Oxidants	Viable for treating free product impacted soil.
		Landfill	Viable part of soil management strategy for excavated soil, particularly for free be managed as hazardous waste and disposed at a hazardous waste landfill.
	In Situ Remediation	Chemical Oxidants Injection	Viable strategy for in-situ treatment. May require multiple injection events and i technologies.
		In-place Chemical Oxidants Mixing	Viable strategy for in-situ treatment of free product impacted soil.
		Enhanced Bioremediation	Potentially feasible for free product impacts, prolonged treatment time and relati
		Vapor Extraction	Not Viable for the type of free product present.
		Steam Enhanced Vapor/Product	Potentially feasible for free product impacts; cost prohibitive.
		Heated Soil Vapor Extraction	Not effective for the type of free product impacted soil.
		Soil Flushing	Potentially feasible for free product impacts, prolonged treatment time and relati
		Phytoremediation	Viable as a long-term remedy for residual impacts following free product remov
Groundwater	Extraction & Treatment or	Extraction Wells	Potentially feasible, but cost prohibitive based on degree of impacts.
Remediation	Discharge	Biological Treatment	Potentially feasible, but cost prohibitive based on degree of impacts.
		Photolysis/Oxidation	Potentially feasible, but cost prohibitive based on degree of impacts.
		Screening/Filtration	Not viable for the type of impacts.
		Air Stripping	Not viable for the type of impacts.
		Activated Carbon Adsorption	Potentially feasible, but cost prohibitive based on degree of impacts.
		POTW Discharge	Feasible if groundwater extraction would be necessary, likely cost prohibitive.
		Surface Water/Storm Water	Potentially feasible if groundwater extraction and treatment would be necessary,
	In Situ Remediation	In Situ Chemical Oxidation (ISCO)	Viable option for type of impacts in groundwater near PZ-03, especially given th for PAH compounds
		Enhanced Bioremediation	Viable option for PAH impacts in groundwater near PZ-03, especially given the li PAH compounds.
		Bioaugmentation	Potentially feasible, but cost prohibitive based on degree of impacts.
		Air Sparging	Potentially feasible, but cost prohibitive based on degree of impacts.
		Steam Stripping	Potentially feasible, but cost prohibitive based on degree of impacts.
		Phytoremediation	Viable as a long-term remedy for residual impacts following free product remov
	Monitored Natural Attenuation	Groundwater Monitoring	Viable following free product removal/treatment.

able options.

pacts after remediation is completed.

to be capped after closure.

ints and likely cost prohibitive.

product and associated impacted soil. Excavated soil will

relatively long time to treat the soil compared to other

ively high cost.

tively high cost.

val/treatment.

, likely cost prohibitive.

ne limited spatial extent of impacts above ch. NR 141 ES

imited spatial extent of impacts above ch. NR 141 ES for

/al/treatment.

FIGURES

ATTACHMENT 1 Soil Boring Logs

Koute 10

Watershed/Wastewater
Remediation/Redevelopment

Waste Management
Other

1 of 1 Page Facility/Project Name License/Permit/Monitoring Number Boring Number GP-126 Moss American 02-41-529585 Boring Drilled By: Name of crew chief (first, last) and Firm Date Drilling Started Date Drilling Completed Drilling Method Tony Kapugi On-Site Environmental Services, Inc. 1/20/2022 1/20/2022 Geoprobe WI Unique Well No. DNR Well ID No. Common Well Name Final Static Water Level Surface Elevation Borehole Diameter NA NA NA Feet MSL 718.5 Feet MSL 2.3 inches Local Grid Origin (estimated:) or Boring Location Local Grid Location 43 ° 10' 34.5 Lat State Plane 434,882 N, 2,492,327 E S/C/N 🗆 N **E** 88° 2' 9.6" NE Feet 🗌 S Feet 🗌 W 1/4 of NW 8, т 8 1/4 of Section N, R 21 E Long Civil Town/City/ or Village Facility ID County County Code 241378280 Milwaukee 41 Milwaukee Soil Properties Sample Length Att. & Recovered (in) Soil/Rock Description Depth In Feet Blow Counts Compressive And Geologic Origin For Comments and Type Strength Moisture Diagram PID/FID Plasticity Horner 1 Pumper S Content Graphic Liquid Limit Each Major Unit SC Index 200 RQD/ Well og P U 60 Brown SILTY CLAY with trace sand and 52 gravel, moist, stiff (frozen). - 1 S 1.0 Н -2 CL-MI - 3 1.5 Sample collected 4 from (2-4') Wet at 4' bgs. for BTEX and PAHs. 5 2 GP Р 60 Tan, well-graded GRAVELY SAND, wet, 1.1 U S H 56 loose. 0 $\left(\right)$ 6 Ō 7 0 0.7 0 0 8 SPG Ò F 9 \bigcirc 1.5 \cap 10 0 Р 3 60 GP U 27 0 S H 11 0 0.5 Sample collected 12 0 ſ. from (10-12') for Grey SILTY CLAY, wet, soft. ÈΤΕΧ, -13 1.0 PAHs. CL-MI DRO, and 14 GRO. 15 End of boring at 15' bgs. Borehole End of 0.6 boring. abandoned with hydrated bentonite chips to surface. I hereby certify that the information on this form is true and correct to the best of my knowledge.

Signature	Firm The Sigma Group	Tel: 414-643-4200
	1500 W Canar St. Willwarkee, W155255	1 ax. +1+-0+J-+210

Koute 10

Waste Management
Other

										Pag	ge 1	of	1	
Facility/Project Name			License	Permit/	Monito	oring Nu	ımber		Boring	ing Number				
Moss American			02-41	1-5295	585						GP	<u>-127</u>		
Boring Drilled By: Name of	of crew chief (first, last) and	nd Firm	Date Dr	illing St	arted		Da	te Drilli	ng Con	npleted		Drill	ing Method	
Tony Kapugi On-Site Environmen	tal Services, Inc.			1/20	/2022				1/20/2	2022		G	eoprobe	
WI Unique Well No.	DNR Well ID No.	Common Well Name	Final Sta	atic Wa	ter Lev	el	Surfac	e Elevat	ion		Bc	orehole	Diameter	
NA	NA	NA		Feet 1	MSL			719.2 H	Feet N	1SL		2.3	inches	
Local Grid Origin (e	stimated: 🗌) or Bor	ing Location	T	. 43	° 1(י ו	84.2 "	Local G	orid Loo	cation				
State Plane 434	,840 N, 2,492,293	E S/C/N	La	at <u></u>		<u> </u>				ΠN			Ε	
NE 1/4 of NW	1/4 of Section 8,	T 8 N, R 21 E	Lon	<u>19 88</u>		<u>2' 1</u>	0.1 "		Feet]	Feet 🗌 W	
Facility ID 241378280	County Milwaukee		County Co 41	Milwaukee										
Sample									Soil	Prope	erties			
t <u><u></u></u>	Soil/R	ock Description												
tt. 8 d (ii ants Fee	And Ge	ologic Origin For						sive					ţ	
er ype cere In	Find Ge	h Major Unit		S	iic.	am	A	ress	nt e		city		Jeni	
and T d T d T d T d T d T d T d T d T d T	Lac	n Major Onit		SC	apt	ell agr	D/F	lmp	oist	qui mit	asti dex	200	D/ DD/	
D B K L B Z				D	J J J	B⊇	Id	šč	Σŭ	ΞΞ	PI II	L L	<u> </u>	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Black to grey, org	anic rich SILTY C												
	with trace sand an	d gravel, moist, me	aium				0.2							
	sum.						0.2							
				CL-M										
							0.4							
-4														
2 - 60 - P = 5							1.4						No samples	
GP 42 U													collected	
	Dark grey SILTY	CLAY with gravel	, wet,										from GP-127 due	
	stiff, free product	present, strong petr	oleum										to presence	
	odors.			CL-M			19						of free	
-8													product.	
	Grev SILTY CLA	Y with some sand	 and				16.4							
	gravel, wet, soft.			CL-MI										
$3 \begin{bmatrix} 60 \\ 20 \end{bmatrix} P = 10$	Dark grev SILTY	CLAY with some s	sand											
GP = 20 = 0	and gravel, wet, v	ery soft.					12.5							
H H H		-					13.5							
-12														
				CL-M										
							11.3							
	End of barring + 1	51 has Devel-1.			print		26						Endof	
	abandoned with h	J Ugs. Dorenoie vdrated bentonita a	hing to				2.0						boring.	
	surface.		mps to											
		1										<u> </u>	<u> </u>	

I hereby certify that the information on this form is true and correct to the best of my knowledge.

Signature Aug	nº/1	Firm The Sigma Group	Tel: 414-643-4200
·Cenn	Whit	1300 W Canal St Milwaukee, WI 53233	Fax: 414-643-4210

100000 101

Waste Management
Other

						Page 1 of										1
Facility/	Projec	t Nan	ne			Licen	se/Permit	'Monito	ring N	umber		Boring	Numb	er	100	
Moss	Am	erica	n		1.5.	02-	41-529	585			· D '11'	0	1 . 1	GP	-128	
Boring L	Jrilled	By:	Name of	crew chief (first, last) a	nd Firm	Date I	Drilling S	tarted		D	ate Drilli	ng Con	npleted		Drill	ing Method
I ony On-S	Kap ite E	ugı nvira	onment	al Services. Inc.			1/20	/2022				1/20/2	2022		G	eoprobe
WI Uniq	ue W	ell No		DNR Well ID No.	Common Well Name	Final	Static Wa	ter Leve	el	Surfa	e Elevat	tion		Bo	rehole	Diameter
	Ν	A		NA	NA		Feet 1	MSL			719.51	Feet N	A SL		2.3	inches
Local G	rid Ori	igin	(es	timated:) or Bor	ing Location	1	Let 4^3	° 10)'	33 9 "	Local C	drid Lo	cation			
State Pla	ane	• N	434,	810 N, 2,492,281	E S/C/N			$\frac{10}{10}$	<u> </u>	10.2 "				[
INE Facility I	1/4 (ID	of IN	W L	County	Ið N, KZIE	L County	ong <u>oc</u>	<u>Civil T</u>	own/C	$\frac{10.3}{\text{itv}/\text{ or}}$	Village	Feet				Feet 🗌 W
2413	7828	0		Milwaukee		41	code	Milw	auke	e e	v muge					
Samp	ole				1							Soil	Prope	erties		
<u>e</u> .	Ē, K	0	<u></u>	Soil/R	ock Description						0					
; e	ed (unt	I Fee	And Ge	ologic Origin For						ssive			~		ıts
Typ	over	č	th Ir	Eac	h Major Unit		CS	ohic	1 pran	FID	ngth	sture	ii d	ticit	0)/
Nun and	Rec	Blov	Dep				U S	Graj Log	Wel	DID	Con	Con Con	Liq.	Plas Inde	P 20	RQI Con
	60	P	E	White to tan well-	graded GRAVELY	[SWG									
GP	42	S	E-1	<u>SAND</u> , dry, loose			_+			10						
		Η	E l	Black to dark brow	wn SILTY CLAY y	with moist				1.0						
			Ē	medium stiff.	iver and trace pear,	moist	l,									
			-3							0.6						Sample
			Ê, I				CL-M			0.0						collected
			<u>–</u> 4													from (2-4') for BTEX
2 H	60	D	<u>-</u> 5							0.8						and PAHs.
GP	43	U	Ē							0.8						
		S H	F ⁶	Grey, well-graded	GRAVELY SAN	D with	1									
			-7	some clay, wet, lo	ose.		SWG	ٳ۫؞۫ڹؽ		1 1						Sample
			E,				500		4 4	1.1						collected
			Ē													from (6-8') for BTEX.
			E-9	Grey SILTY CLA	Y, wet, soft.					14						PAHs,
			E 10							1.7						GRO.
3	60	Р	Ē													
GP	25	S	-11							11						
		Η	Ē 10				CL-M			1.1						
			E^{12}													
			-13							15						
										1.0						
Ц			-15	End of boring at 1	5' has Borehole				1	15						End of
				abandoned with h	ydrated bentonite c	hips to	0									boring.
				surface.	-	•										
I hereby	certif	y that	the info	rmation on this form is tr	ue and correct to the be	st of my	knowled	ge.								

SignatureFirmThe Sigma Group
1300 W Canal St Milwaukee, WI 53233Tel: 414-643-4200
Fax: 414-643-4210

Waste Management
Other

														Pag	ge 1	of	1
Facility	/Projec	et Narr	ne			Li	icense/l	Permit/	Monito	ring N	umber		Boring	Numb	er		
Mos	s Am	erica	n				02-41	-5295	585						GP	<u>-129</u>	
Boring	Drilled	By: 1	Name of	f crew chief (first, last) a	nd Firm	D	ate Dri	lling St	arted		Da	te Drilli	ng Con	npleted		Drill	ing Method
Ton On-S	y Kap Site E	ougi nvirc	onment	tal Services, Inc.				1/20	/2022				1/20/2	2022		G	eoprobe
WI Un	ique W	ell No	•	DNR Well ID No.	Common Well Name	Fi	inal Sta	tic Wat	ter Lev	el	Surfac	e Elevat	ion		Bo	rehole	Diameter
	N	IA		NA	NA			Feet N	MSL		7	718.5 I	Feet N	1SL		2.3	inches
Local (Grid Or	igin	(es	timated:) or Bor	ring Location		La	+ 43	° 10)' ·	34 1 "	Local C	irid Lo	cation			
State F NE	lane 1/4	of N	434, W 1	832 N, 2,492,349 /4 of Section 8,	E S/C/N T 8 N, R 21 E		La	g <u>88</u>	° _ 2	<u> </u>	9.4"		Feet	□ N □ S	[]	□ E Feet □ W
Facility	/ ID			County		Cot	unty Co	de	Civil T	own/C	ity/ or `	Village					
2413	37828	0		Milwaukee		41			Milw	aukee	e						
Sam	ple												Soil	Prope	erties		
	भ्र वि		H	Soil/R	Rock Description												
	d (i	unts	Fee	And Ge	cologic Origin For							sive					ts
ype	th A vere	Ĉ	l In	Fac	ch Maior Unit			S	ji.	am	Đ.	gth	bure ant	.	city	_	nen
lmu T br	engt	low	eptł	Lux	in Major Onit			s	rapl	'ell iagr	D/H	omf	onte	iqui	asti dex	200	Q) III
a Z	Ц К С	B	Ω	I 1 4 1 OII 7				D			[]	N N	Σŭ	ЦЦ	P 1	Ь	й Ŭ
GP	52	r U	-	Light brown SIL I	and moist stiff	ne											
		S	1.5	graver and trace s	and, moist, stim.			CL-MI			0.8						
		н															
				Carrich haster SI	ITVCLAV with t		-										
			-3.0	sand and gravel r	noist stiff	rac	e				1.4						
				sand and graver, i	110151, 51111.			CL-MI									
			-4.5														
2 H	60	D	-	Tan wall graded	CDAVELV SAND		vot		<u>hińi</u>		22						
GP	54	U	Ē	loose	UKAVELI SAND	,	vel,				2.2						
		S	- 6.0	10050.													
		п	_														
			-7.5								2.3						
									L. O								
			-90						2000								
								SWG			2.9						Sample
3 🗄	60	Р															from (8-10')
GP	38	Ū	-10.5														for BTEX
		S Н	-								2.0						and FARS.
		11	-12.0														
			E 12 5								2.0						Sample
			_ 15.5	Grey SILTY CLA	Y, wet, stiff.												collected
								CL-MI									(12-14') for
			-15.0	End of boring at 1	5' bgs. Borehole					1	1.7						BTEX,
				abandoned with h	ydrated bentonite c	hip	os to										DRO, and
				surface.	-	1											GRO. End of
																	boring.
		1 .	4		1		c 1		1	I							<u> </u>
1 nereb	y certif	y inat	ule inio	mation on this form is th	ue and correct to the be	SL O	1 шу кг	iowiedg	ge.								

Signature	Firm	The Sigma Group	Tel: 414-643-4200
allow In	-101uf	1300 W Canal St Milwaukee, WI 53233	Fax: 414-643-4210

100400 10.

Waste Management
Other

													Pag	ge 1	of	1	
Facilit	y/Proje	ct Nan	ne			License/Permit/Monitoring Number						Boring Number					
Boring	Drilled	erica 1 Bv:	n Name o	f crew chief (first, last) a	nd Firm	Date Drilling Started Date Dr					te Drilli	Drilling Completed				Drilling Method	
Ton	v Kar	ugi										Drining Completed					
On-	Site E	nviro	onmen	tal Services, Inc.		1/20	/2022				1/20/2	2022		Ge	Geoprobe		
WI Unique Well No.DNR Well ID No.Common Well Name						Final Sta	atic Wa	ter Leve	el T	Surfac	e Elevat	ion		Bo	rehole	Diameter	
Local	W(Grid Or	2621		Intimated: I) or Por	PZ-03F	/16	5.3 Fe	et MS	L		$\frac{18.41}{100010}$	rid Lo	1SL		2.3	inches	
State Plane 434 859 N 2 492 364 E S/C/N						La	at <u>43</u>	°	<u>)' 3</u>	<u> 4.3 "</u>				r		ПБ	
NE	1/4	of N	W 1	/4 of Section 8,	т 8 N, R 21 E	Lon	1g 88	°2	<u>'</u>	9.1 "		Feet]	Feet 🗌 W	
Facilit	y ID	_		County	0	County Co	ode	Civil T	own/Ci	ty/ or V	Village						
241	37828	30		Milwaukee		41		Milw	aukee	;	1					.	
San	nple											Soil	Prope	erties		-	
	. & (in)	ıts	eet	Soil/R	lock Description						ve						
r pe	Atter	Cour	In F	And Ge	ologic Origin For		S	0	E	D	essi [,] th	t re		ity		ents	
d Ty	ngth cove	ow (pth	Eac	ch Major Unit		SC	aphi g	ell agra	D/FI	mpr	oistu nter	quid	astic lex	500	D/	
- Nu	Le Re	BI	Ď	TODGOU D	· · 1 or 7	X 7	D	5 S	D X	Π	Str Cc	Σΰ	Ľ.	Pla Inc	F	Č K	
GP	60 45	P U	E	TOPSOIL: Brown	i, organic rich SILT i	Y T	TOPSO										
		S H	-1.5	Brown SILTY CI	AY with trace sand	′				1.4							
			F	gravel and black s	treaks, moist, stiff.				Ţ								
			E-3.0				CL-MI										
			-							1.4							
			E ₄₅														
2 H	60	р	-	Top wall graded	CDAVELV SAND	wat				15							
GP	48	Ŭ	E-60	loose.	UKAVELI SAND	, wei,				1.5							
		S H															
			- 75							1.7							
			- 7.5	C1' 1 4 4 1	1 1 4 1		SWC										
			F	(8-10)	bdor and staining fr	om	SwG										
			E ^{9.0}	(0 10).						1.8						Sample	
3	60	Р	F 10 5					8.0								from (8-10')	
GP	24	US	E 10.5							2.0						for BTEX and PAHs.	
		Н	-	Grev SILTY CLA	V wet medium so	 ft	-			2.0						Sample	
			E ^{-12.0}		ri, wet, metarum so	11.										from	
			-				CL-MI			1.7						(10-12') for BTEX,	
			-13.5							,						PAHs, DRO and	
			-													GRO.	
			F ^{15.0}	Stopped logging a	ut 15' bgs.		1		目	1.6						End of	
				End of boring at 1	5' bgs. 2" PVC NR	141										boring.	
				compliant monito	ring well installed to	o 15.5'											
				020.													

I hereby certify that the information on this form is true and correct to the best of my knowledge.

Signature Aug	nº/ 1	Firm The Sigma Group	Tel: 414-643-4200
·Cam	Whit	1300 W Canal St Milwaukee, WI 53233	Fax: 414-643-4210

Waste Management
Other

													Pag	ge 1	of	1	
Facilit	y/Projec	et Nam	ne			License/Permit/Monitoring Number						Boring Number					
Boring	ss Am	erica	n Name of	f crew chief (first last) ar	d Firm	02-41-529585						ng Cor	nnleted		Drilling Method		
Ton	y Kar	unori		r crew chier (first, fast) af		Date Drining Started						ing COL	npicicu		ing Method		
On-	Site E	nviro	onment	tal Services, Inc.		1/20/2022						1/20/2	2022		Geoprobe		
WI Ur	ique W	ell No		DNR Well ID No.	Common Well Name	Final Sta	tic Wat	er Level	S	Surfac	e Elevat	tion		Bo	rehole	Diameter	
NA NA NA							Feet N	ASL			718.2 Feet MSL				2.3	inches	
Local Grid Origin $[]$ (estimated: $[]$) or Boring Location $[]$						Lat 43° 10' 34.6"					Local Grid Location						
NE	1/4	of N	W 1	$/4 ext{ of Section } 8$	T 8 NR 21 E	$\begin{array}{c c} & Lat & \underline{} \\ Long & 88^{\circ} & 2' & 9.0'' \end{array}$						Feet			⊢ E Feet □ W		
Facilit	y ID	01 10	1	County	<u> </u>	County Co	ode	Civil Tow	vn/Cit	ty/ or `	Village	1 000					
241378280 Milwaukee 41 Milwaukee																	
San	nple											Soil	Prope	erties		-	
	(ii) &	S	et	Soil/R	ock Description						မ						
e e	Att. red (ount	n Fe	And Ge	ologic Origin For				e	0	ssiv	e		\ ∧		nts	
Typ	gth ovei	Č M	th L	Eac	h Major Unit		CS	phic	u gran	/FII	npre	stur	uit uid	sticit *X	0	D/	
Nur and	Len Rec	Blo	Dep				U S	Gra Log	Dia	PID	Cor	C OC	Lig	Plas	P 2(RQ	
	60	P	E	Brown SILTY CL	AY with trace sand	l and											
or	40	S	-1	gravel, moist, stiff						16							
		Н	E,							1.0							
			Ē				CL-MI										
			-3							25						Sample	
			Ē,							2.0						collected	
			-4													for BTEX	
2	60	Р	-5	Tan well-graded (RAVELV SAND	wet				16						and PAHs.	
ĞΡ	44	Ŭ	Ē	loose.	JIAVEET SAND,	, wet,				1.0							
		S H	E														
			-7				SWG			11							
			Ë,														
			Ē														
			=9	Grev well-graded	CLAVEY SAND					1.8						Sample	
			E ₁₀	soft.	CENTET SHILD,	wet,				110						collected	
3 GP	60 43	P					sw-so									for BTEX,	
or	43	S	-11							1.1						PAHs,	
		Н	E ₁₂													GRO.	
				Grey SILTY CLA	Y with trace sand a	nd											
			-13	gravel, wet, stiff.						1.5							
			E ₁₄				CL-MI										
L			-15	End of boring at 1	5' bgs. Borehole					1.3						End of	
				abandoned with hy	drated bentonite cl	nips to										boring.	
				surface.													
I hereb	ov certif	v that	the info	rmation on this form is tr	ue and correct to the best	t of mv kr	nowledg	ze.									

Signature August Mel 1	Firm The Sigma Group	Tel: 414-643-4200
	1300 W Canal St Milwaukee, WI 53233	Fax: 414-643-4210

Waste Management
Other

													Pag	ge 1	of	1		
Facility/Pro	oject Na	me				Licens	License/Permit/Monitoring Number						Boring Number					
Moss A	meric	an				02-4	11-529:	585		-	~ ~ ~	GP-				132		
Boring Dril	lled By:	Nar	ne of	crew chief (first, last) ar	nd Firm	Date Drilling Started Date Dril					ite Drilli	illing Completed				ing Method		
Tony K On-Site	apugi Envi	ronn	nente	al Services Inc			1/20/2022					1/20/2022				eonrohe		
WI Unique	Well N	0.	nenu	DNR Well ID No.	Common Well Name	Final S	Static Wa	ter Leve	el	Surfac	I/20/2022				Borehole Diameter			
	NA			NA	NA		Feet]	MSL			718 2 Feet MSL				2.3 inches			
Local Grid	Origin		(est	imated: 🗌) or Bori	ing Location	1	40	10 10		24.5.11	Local Grid Location					2.5 menes		
State Plane	e	4	434,8	374 N, 2,492,350	E S/C/N	Lat 43° 10' 34.5'					<u>5"</u> □ N					Ε		
NE 1	/4 of]	NW	1/4	4 of Section 8,	T 8 N, R 21 E	Lo	Long <u>88°</u> <u>2'</u> <u>9.3"</u>					Feet S				Feet 🗌 W		
Facility ID	200			County		County (Code	Civil T	own/C	ity/ or	Village							
2413/8	280			Milwaukee		41		Milw		e								
Sample	:											Soil	Prope	erties		-		
~~ (Its (II)		eet	Soil/R	ock Description						ve							
Att	our lour		Ч	And Ge	ologic Origin For			0	_ F		essi [,]	е т.		ty		ents		
nbe Tyl Igth	w C		th I	Eac	h Major Unit		C	phid 2	11 Prat	o/FII	npre	istu	uid nit	stici ex	00	D/		
Nu Ler Ler	Blo Blo		Del				D S	Gra	We	PIL	Coi Stre	C Mo	Lin	Pla	P 2	RQ Coi		
$\begin{array}{c c} 1 & 60 \\ CP & 50 \end{array}$	P U	E		Brown SILTY CL	AY with trace san	d and												
Ur 50	s	F	1	gravel, moist, stiff	•					74						Sample		
	H	Ē.	_							/						collected		
		Ē	2				CL-M	L								from (0-2') for BTEX		
		E	3							1.0						and PAHs.		
		Ē								1.9								
		Ē	4															
		E	5	Tan wall graded	DAVELV CANE	wat		hiii										
$\begin{array}{c c} 2 & 60 \\ CP & 44 \end{array}$	P II	Ē	5	loose.	JKAVELI SANL	, wei,				1.6								
UI 44	S	E	6	10050														
	H	Ē,	-															
		F	/							1.2								
		E	8															
		E					SWG	ڹ <u>ٛ</u> ڝؚ؞ؚٵ										
		E	9							1.0								
	_	E	10															
$\begin{array}{c c} 3 & 60 \\ GP & 28 \end{array}$		Ē																
	Š	F	11							2.3						Sample		
	Н	E	12					Ì.								collected		
		E	12	Grey SILTY CLA	Y, wet, stiff.											from (10-12') for		
		E	13							22						BTEX and		
		Ē					CL-M	I III		2.2						PAHS.		
		Ē	14															
Ц		Ē	15	F 1 C1 1 1 1	<u></u>			- FIIIII	1	1.0						F 1 6		
				End of boring at l	5' bgs. Borehole	hina ta				1.3						End of boring.		
				surface.		mps to	'											
L hereby cer	rtify the	t the	infor	nation on this form is tr	ue and correct to the be	est of my	knowled	ge	I	1		1	I	1		1		
i nereby ee	uny une		mon	ination on and form is u		St Or my	KIIC WICU	50.										

Signature Atur Mel J	Firm The Sigma Group	Tel: 414-643-4200
- Cland Turning	1300 W Canal St Milwaukee, WI 53233	Fax: 414-643-4210

Waste Management
Other

													Pag	ge 1	of	1	
Facilit	y/Projec	et Nam	ne			License/Permit/Monitoring Number Boring Number											
Mos	ss Am	erica	n	f	1.5	02-41-529585						C	1.4.1	-133	133/PZ-03G		
Ton	y Drilled	i By: 1	Name o	i crew chief (lirst, last) ar	la film	Date Dri	ning St	arted		Da	ue Driin	ng Con	npieted	Driii	ing Method		
On-	Site E	nviro	onmen	tal Services. Inc.		1/20/2022						1/20/2022				Geoprobe	
WI Un	ique W	ell No		DNR Well ID No.	Common Well Name	Final Sta	tic Wat	ter Leve	el	Surfac	e Elevat	tion	-	Во	rehole	Diameter	
	WC	C622		NA	PZ-03G	716	5.2 Fee	et MS	L		718.2	Feet N	/ISL		2.3	inches	
Local	Grid Or	igin	\Box (es	timated: \Box) or Bori	ng Location		st 43	° 10	'	34.7 "	Local C	ocal Grid Location					
State Plane $434,895$ N, $2,492,347$ E S/C/N						Lat 19 10 980 11 10 11				9.4."							
Facilit	1/4 v ID	of IN	VV I	County	18 N, K 21 E	Lon	g <u>00</u> ode	 Civil To	own/C	$\frac{1}{1}$	Village	Feet			-	reet 🗋 w	
241	, 12 37828	0		Milwaukee		41	Jue	Milw	auke	e	• mage						
San	nple											Soil	Prope	erties			
	n) k		+	Soil/R	ock Description												
0	att. 8 ed (i	unts	Fee	And Ge	ologic Origin For						sive					ts	
lber Lype	th A vere	,C	h In	Eac	h Major Unit		S C	hic	ram	ED	pres	sture	t id	icity K	0	nen	
un ^V	Secc	Blov	Dept		-		S	Grap	Vell Diap	<u>D</u>	Com	Mois Cont	imi	last	20	Com	
1	60	P	-	Brown SILTY CL	AY with trace sand	l and									I		
GP	48	U S	E	gravel, moist, stiff						1.2							
		H	-1.5							1.5							
			F				CL-MI										
			-3.0							12							
			_							1.2							
			-4.5														
2	60	Р	E	Wet at 4.5 feet bgs	S. 7D AVELV SAND					1.1						Sample	
GP	37	U	-6.0	loose.	JKAVELY SAND	, wei,										collected	
		H	F	10000												for BTEX	
										0.7						and PAHs.	
			- /.5														
			F				SWG										
			E ^{9.0}						目	1.0							
3	60	Р	-					i. N		:.							
GP	46	U	= 10.5														
		В Н	L I							1.6						Sample collected	
			-12.0	Grey SILTY CLA	Y with trace sand,	wet,		İİİİİ		1						from	
			Ē	stiff.	,	,										$(10-12^{\circ})$ for BTEX,	
			-13.5				CL-MI			1.1						PAHs, DRO, and	
			-													GRO.	
			-15.0	Stopped logging a	t 15' has					1.2						End of	
				End of boring at 1	5' bos 2'' PVC NR	141			<u></u>							boring.	
				compliant monitor	ing well installed to	o 15.5'											
				bgs.													
T 1 1		er that	1. a	mustion on this fame is to		t of 1-	. orvio 1										

I hereby certify that the information on this form is true and correct to the best of my knowledge.

Signature Aug	nº/ 1	Firm The Sigma Group	Tel: 414-643-4200
·Cam	Whit	1300 W Canal St Milwaukee, WI 53233	Fax: 414-643-4210

Route 10

Waste Management
Other

T						1	75		. <u></u>			. .	Pag	ge 1	of	1
Facilit	y/Projec	et Nan	ne			License	/Permit/	Monitor	ing Nu	ımber	-	Boring Number $CD 124/DZ 02H$				
NIOS	Drille	erica	n Nome of	forew object (first last) or	d Firm	Dote Dr	1-5293	080 Forted		Det	o Drilli	ng Con	nlatad	UP	-134	PZ-U3II
Ton	v Kor	i Dy.		r crew chier (first, fast) af		Date Di	ining 50	ancu		Da		ning Completed			Dim	ing wiethou
On-	y Kap Site E	nviro	onment	tal Services, Inc.			1/20	/2022				1/20/2022			G	eoprobe
WI Un	ique W	ell No		DNR Well ID No.	Common Well Name	Final Sta	atic Wa	ter Level	1	Surface	e Elevat	ation Borehole Diameter				Diameter
	WC	2623		NA	PZ-03H	716.1 Feet MSL 719.3 H				Feet N	1SL		2.3	inches		
Local	Grid Or	igin	\Box (es	timated: \Box) or Bori	ng Location	Lat $43^{\circ} 10' 35.6''$				rid Loo	cation					
State Plane $454,504$ N, 2,452,212 E S/C/N NE 1/4 of NW 1/4 of Section 8 T 8 N P 21 F				Lat 49 10 55.0							,					
INE 1/4 of INW 1/4 of Section 0, 1 0 N, K 21 E Facility ID County 0				County Co	ode	<u> </u>	wn/Ci	$\frac{1.2}{\text{tv/ or V}}$	Village	Feet			-	reet 🗋 w		
241	, 37828	0		Milwaukee		41		Milwa	aukee	;	8-					
San	ple											Soil	Prope	erties		
	ت لا			Soil/R	ock Description											
0	tt. 8 sd (i	unts	Fee	And Ge	ologic Origin For						sive					ts
ber Type	th A vere	[°] Co	h In	Eac	h Maior Unit		S C	hic	ram	FID	pres gth	ture ent	L E	icity ((men
um nd J	eng	Blow)ept		5] S (jrap .og	Vell Diag	D/	om	Aois Cont	imi	'last ndey	200	OD mo
1	<u> </u>	 P		Brown SILTY CL	AY with trace san	d and				щ		N O			F	<u> </u>
GP	40	US	F	gravel, moist, stiff												
		Н	-1.5				CL-M			1.3						
			E I													
			-3.0	D1 1		·			V	2.0						
			E	clay and trace wo	od wet mediums	oft		1, 1,		2.0						
			-4.5	endy und thee we	ou, wet, meaturn s	011.		<u></u>								
2 H	60	р	F				PT	1, 11		22						Sample
GP	27	Û	E					<u> . 1, . 1</u>								collected
		S H					-	1, 11	目							from (4-6') for BTEX
			=	Gray, well-graded	CLAYEY GRAV	EL		•		2.7						and PAHs.
			E 7.5	with some sand, w	сі, 1003с.											
			E I				GW-G									
			-9.0				00			9.1						
, -	(0)	р	E I	Free product prese	ent from (9.75-10')											
GP	42	P U	-10.5		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											
		S L	F I	Gray SILTY CLA	Y, wet, medium st	iff.			目	13.0						Sample
		11	-12.0						目							from
			E				CT M									(10-12') for
			-13.5				CL-MI		H	2.2						PAHs.
			EI													
			E150						目							
			F	_Stopped logging a	t 15' bgs.					1.4						End of boring
				End of boring at 1	5' bgs. 2" PVC NI	K 141										8.
				bgs.	ing wen instaned i	0 13.3										
				5												
																<u> </u>

I hereby certify that the information on this form is true and correct to the best of my knowledge.

Signature A	nel 1	Firm The Sigma Group	Tel: 414-643-4200
. Celling	Whit	1300 W Canal St Milwaukee, WI 53233	Fax: 414-643-4210

ATTACHMENT 2

Borehole Abandonment Forms

Well / Drillhole / Borehole Filling & Sealing Form 3300-5 (R 4/08) Page 1 of

Page 1 of 2

	1			inionnadon.					
Verification Only of Fill a	nd Seal	Route to	D :	_	_				
CP_126			rinking Water		_ Watershe	ed/Wastewater	emediation/	Redevelopment	
<u> </u>			aste Managemer	nt L	Other				
1. Well Location Information				2. Facility	/ Owner Ir	nformation			
County WI Unique We Removed Wel	ell # of I	Hicap #		Facility Name					
Milwaukee NA		NA		Moss Ame	or PWS)				
Lattitude / Longitude (Degrees and Minute	s) Me	thod Code	(see instructions)	2/137828	0				
43 ° 10 ' 34.5 " 'N				License/Permi	t/Monitoring	1#			
88° 2' 9.6 "'W				02-41-529	585	,			
1/4 / 1/4 NE 1/4 NW 5	Section To	ownship	Range 🕅 F	Original Well (Owner				
or Gov't Lot #	8	8		Milwauke	e County				
Well Street Address				Present Well (Jwner				
				Milwauke	e County				
9633 W. Brown Deer Road			0-1-	Mailing Addres	ss of Preser	nt Owner			
vveli City, village or Town			Code	901 N. 9th	n Street				
MIIWaukee Subdivision Namo		53224	•	City of Presen	t Owner		State	ZIP Code	
				Milwauke	e		WI	53233	
Reason For Removal From Service W	I Unique Well #	t of Replace	ement Well	4. Pump, Li	iner, Scre	en, Casing & Sealing Ma	terial		
Investigative Boring		ΝΔ		Pump and	piping remo	ved?	Yes	No 📉 N/A	
3. Well / Drillhole / Borehole Inform	nation	1171		Liner(s) ren	noved?		Yes	No 📉 N/A	
	Original Constr	uction Date	9	Screen rem	noved?]Yes ∐	No 📉 N/A	
	1/20/2022			Casing left	in place?			<u>No X N/A</u>	
Water Well	16 14 11 0			Was casing	g cut off belo	ow surface?	Yes	No 📉 N/A	
Drillhole / Borehole	available, ple	ease attach	eport is	Did sealing	material ris	e to surface?	Yes	No 📋 N/A	
Construction Turne:				Did materia	al settle after	r 24 hours?]Yes ⊠]V□		
	Sandpoint)	Г	Dug	If yes, w	as hole reto	pped?	j res 🔄	NO X N/A	
	oanupoint)		J Dug	If bentonite	chips were	used, were they hydrated			
Other (Specify) Direct Push				Required Meth	from a know	ng Sealing Material			
Formation Type:					tor Pine-Gra		ictor Pine-Pi	imped	
Unconsolidated Formation	E	Bedrock		Screened & Poured Conductor Pipe-Pumped					
Total Well Depth From Ground Surface (ft)) Casing Dia	ameter (in)	1	(Benton	ite Chips)		(
15.0				Sealing Mater	ials				
				Neat Ce	ement Grout		av-Sand Sli	rrv (11 lb /aal. wt)	
Lower Drilinole Diameter (In.)	Casing De	ptn (tt.)		Sand-C	ement (Con	crete) Grout	entonite-Sar	d Slurry " "	
2.3	NA			Concret	te	В	entonite Chi	DS	
Was well annular space grouted?	Yes 🛛	No 🗌	Unknown	For Monitoring	g Wells and	Monitoring Well Boreholes C	Only:		
If yes, to what depth (feet)?	Depth to Water	(feet)		Bentonit	e Chips	Bentonite - C	Cement Grou	ut	
				Granular	Bentonite	Bentonite - S	Sand Slurry		
5. Material Used to Fill Well / Drill	nole			From (ft.)	To (ft.)	No. Yards, Sacks Sea or Volume (circle or	ilant ne) o	Mix Ratio r Mud Weight	
				Surface	15.0	0.5			
6. Comments						<u> </u>			

7. Supervision of Work	Supervision of Work							
Name of Person or Firm Doing Filling & Sealing	License	e #	Date of Filling & Sealing (mm/dd/yyyy)	Date Received	Noted By			
On-Site Environmental Services, Inc.			1/20/2022					
Street or Route			Telephone Number	Comments				
3210 Edmonton Drive			608-837-8992					
City	State	ZIP Code	Signature of Person Doing Work	Ann Mell	Date Signed			
Sun Prairie	WI	53590	i Ca	and they	04/14/2022			

Well / Drillhole / Borehole Filling & Sealing Form 3300-5 (R 4/08) Page 1 of

Page 1 of 2

		Deute ti						
Verification Only of Fill a	nd Seal	Route to) :	_	-			
CP_127			rinking Water		_ Watershe	ed/Wastewater	emediation/	Redevelopment
UI-12 /			aste Managemer	nt L	Other			
1. Well Location Information				2. Facility	Owner Ir	nformation		
County WI Unique We Removed Wel	ll # of	Hicap #		Facility Name				
Milwaukee NA		NA		Moss Ame	erican			
Lattitude / Longitude (Degrees and Minute	s) Me	ethod Code	(see instructions)		J OF PVVS)			
43 ° 10' 34.2 "'N	, 		````	2413/828	U it/Manitarina	. 4		
88° 2' 101 "'W				License/Perm	it/ivionitoring)#		
1/4/1/4 NE 1/4 NW 19	Section T	ownship	Range N	02-41-529 Original Woll (282 Dwpor			
or Gov't Lot #	8	8						
				Present Well (Owner			
Well Street Address				Milwauke	e County			
9633 W. Brown Deer Road				Mailing Addres	ss of Preser	nt Owner		
Well City, Village or Town		Well ZIP	Code	901 N 9th	Street			
Milwaukee		53224	<u>ا</u>	City of Presen	t Owner		State	ZIP Code
Subdivision Name		Lot #		Milwauke	e		WI	53233
NA		NA		4. Pump, Li	iner, Scre	en, Casing & Sealing Mat	erial	1
Reason For Removal From Service W	I Unique Well a	# of Replac	ement Well	Pump and	nining remo	ved?	Yes 🗌	No ⊠ N/A
Investigative Boring		NA		l iner(s) rer	noved?		Yes 🗌	No 🕅 N/A
3. Well / Drillhole / Borehole Inform	nation			Screen rem	noved?		Yes 🗌	No 🕅 N/A
Monitoring Well	Uriginal Consti	ruction Date	9	Casing left	in place?		Yes 🗌	No 🕅 N/A
Water Well	1/20/2022			Was casing	r cut off belo	w surface?	Yes 🗌	 No ⊠ N/A
Drillhala / Barabala	If a Well Cor	nstruction F	Report is	Did sealing	material ris	e to surface?	Yes 🗌	No 🗍 N/A
Drillinole / Borenole	available, pl	ease attach		Did ocaling Did materia	al settle after	r 24 hours?	Yes 📈	No 🗍 N/A
Construction Type:				If ves. w	as hole reto	pped?	Yes 🗍	No 🕅 N/A
Drilled Driven (S	Sandpoint)		Dug	If bentonite	chips were	used, were they hydrated		_
Other (Specify) Direct Push				with water	from a know	n safe source	Yes	No N/A
				Required Met	nod of Placir	ng Sealing Material		
Formation Type:				Conduc	tor Pipe-Gra	avity 🗌 Condu	ctor Pipe-P	umped
Unconsolidated Formation		Bedrock		Screene	ed & Poured	I Other ((Explain)	
Total Well Depth From Ground Surface (ft)) Casing Di	ameter (in.)		(Benton	ite Chips)			
15.0	ΝΔ			Sealing Mater	ials			
Lower Drillhole Diameter (in)	Casing De	enth (ft.)		Neat Ce	ement Grout		ay-Sand Slu	ırry (11 lb./gal. wt.
		spin (n.)		Sand-C	ement (Con	crete) Grout 🗌 Be	ntonite-Sar	nd Slurry " "
2.3	NA			Concret	e	🛛 Ве	ntonite Chi	ps
Was well annular space grouted?	Yes 🛛	No	Unknown	For Monitorin	g Wells and	Monitoring Well Boreholes O	nly:	
If yes, to what depth (feet)?	Depth to Wate	r (feet)		Bentonit	e Chips	Bentonite - C	ement Gro	ut
				Granular	Bentonite	Bentonite - S	and Slurry	
5. Material Used to Fill Well / Drill	nole			From (ft.)	To (ft.)	No. Yards, Sacks Sea or Volume (circle on	lant le) o	Mix Ratio r Mud Weight
3/8" Bentonite Chips				Surface	15.0	0.5		
.								
6 Commonts								
0. Comments								

7. Supervision of Work	Supervision of Work							
Name of Person or Firm Doing Filling & Sealing	License	e #	Date of Filling & Sealing (mm/dd/yyyy)	Date Received	Noted By			
On-Site Environmental Services, Inc.			1/20/2022					
Street or Route			Telephone Number	Comments				
3210 Edmonton Drive			608-837-8992					
City	State	ZIP Code	Signature of Person Doing Work	Ann Mell	Date Signed			
Sun Prairie	WI	53590	i Ca	and they	04/14/2022			

Well / Drillhole / Borehole Filling & Sealing Form 3300-5 (R 4/08) Page 1 of

Page 1 of 2

Ionn to the appropriate Divit once and burea				inionnation.						
Verification Only of Fill an	d Soal	Route to) :	_	_					
	u Seai	🗆 D	rinking Water		☐ Watershe	ed/Wastewater	🖂 Ren	nediation/	Redevel	opment
GP-128		L w	aste Managemer	nt 🗌	Other					
1. Well Location Information				2. Facility	/ Owner Ir	nformation				
County WI Unique Well	# of	Hicap #		Facility Name						
Removed Well				Moss Ame	erican					
Milwaukee NA		NA	()++	Facility ID (FI	D or PWS)					
Lattitude / Longitude (Degrees and Minutes)		inoa Coae	(see instructions)	24137828	0					
43° 10° 33.9 " N				License/Perm	it/Monitoring	; #				
88° 2' 10.3 "'W				02-41-529	585					
74 NW Se		ownsnip		Original Well (Owner					
or Gov't Lot #	8	8	²¹ 🗌 w	Milwauke	e County					
Well Street Address				Present Well (Owner					
				Milwauke	e County					
Well City Village or Town			Codo	Mailing Addre	ss of Preser	nt Owner				
		Code	901 N. 9th	n Street						
VIIIWAUKEE		53224	•	City of Presen	nt Owner		S	tate	ZIP Co	de
				Milwauke	e			WI	532	33
INA Reason For Removal From Service W/L	Inique Well #		omont Wall	4. Pump, Li	iner, Scre	en, Casing & S	ealing Mater	rial		
				Pump and	piping remo	ved?		Yes 🗌	No	🛛 N/A
2 Well / Drillbole / Borebole Inform	ation	INA		Liner(s) rer	moved?			Yes 🗌	No	🗙 N/A
	alion riginal Constr	uction Date	2	Screen rem	noved?			Yes 🗌	No	🗙 N/A
Monitoring Well	1/20/2022	aotion Bat		Casing left	in place?			Yes 🗌	No [✓ N/A
Water Well	1/20/2022			Was casino	g cut off belo	ow surface?		Yes 🗌	No	🛛 N/A
Drillhole / Borehole	If a Well Con	struction F	leport is	Did sealing	- material ris	e to surface?	\boxtimes	Yes 🗌	No	N/A
	avallable, ple	ase attach		Did materia	al settle after	24 hours?		Yes 🔀	No	N/A
Construction Type:				If yes, w	as hole reto	pped?		Yes 🗌	No [🛛 N/A
Drilled Driven (Sa	andpoint)] Dug	If bentonite	chips were	used, were they h	ydrated			
Other (Specify) Direct Push				with water	from a know	n safe source		Yes 🗌	No	N/A
				Required Met	hod of Placir	ng Sealing Materia	al			
Formation Type:				Conduc	tor Pipe-Gra	avity	Conduct	or Pipe-P	umped	
Unconsolidated Formation	L B	edrock		Screene	ed & Poured	l	Other (E	xplain)		
Total Well Depth From Ground Surface (ft)	Casing Dia	meter (in.)		(Benton	nite Chips)					
15.0	ΝΔ			Sealing Mater	ials					
Lower Drillhole Diameter (in)	Casing De	oth (ft.)		Neat Ce	ement Grout		Clay	-Sand Slu	ırry (11 l	b./qal. wt.)
		pui (ii.)		Sand-C	ement (Con	crete) Grout	Bent	onite-Sar	d Slurry	
2.3	NA			Concret	te	,	Bent	onite Chi	os	
Was well annular space grouted?	Yes 🛛	No 🗌	Unknown	For Monitorin	g Wells and	Monitoring Well	Boreholes Onl	y: '		
If yes, to what depth (feet)?	epth to Water	(feet)		Bentonit	e Chips		Bentonite - Cer	ment Grou	ut	
				Granular	r Bentonite		Bentonite - Sar	nd Slurry		
5. Material Used to Fill Well / Drillho	ble			From (ft.)	To (ft.)	No. Yards, or Volume	Sacks Seala e (circle one	int) oi	Mix R r Mud V	atio Neight
3/8" Bentonite Chips				Surface	15.0		0.5			
6. Comments				<u> </u>						

7. Supervision of Work	2. Supervision of Work							
Name of Person or Firm Doing Filling & Sealing	License	#	Date of Filling & Sealing (mm/dd/yyyy)	Date Received	Noted By			
On-Site Environmental Services, Inc.			1/20/2022					
Street or Route			Telephone Number	Comments				
3210 Edmonton Drive			608-837-8992	1				
City	State	ZIP Code	Signature of Person Doing Work	Ann Nº11	Date Signed			
Sun Prairie	WI	53590	i Ca	and another	04/14/2022			

Well / Drillhole / Borehole Filling & Sealing Form 3300-5 (R 4/08) Page 1 of

Page 1 of 2

Ionn to the appropriate Drift onloc and bar				inionnation.				
Verification Only of Fill a	nd Seal	Route to	D:	_	_			
CP 120	na obai		rinking Water		_ Watershe	ed/Wastewater	Remediation	Redevelopment
<u> </u>		W	/aste Managemer	nt L	Other			
1. Well Location Information				2. Facility	/ Owner Ir	nformation		
County WI Unique We Removed Wel	ll # of	Hicap #		Facility Name				
Milwaukee NA		NA		Moss Ame	erican			
Lattitude / Longitude (Degrees and Minute	s) Me	thod Code	(see instructions)		0			
43 ° 10 ' 34.1 " ' N	·		,	2413/828	U it/Monitoring	. #		
88° 2' 9.4 "'W				02 41 520	17110111011119 1595	j #		
1/4/1/4 NE 1/4 NW S	Section T	ownship		Original Well (Owner			
or Gov't Lot #	8	8		Milwauke	e County			
Wall Street Address				Present Well (Owner			
Weil Street Address				Milwauke	e County			
9633 W. Brown Deer Road				Mailing Addres	ss of Preser	nt Owner		
Well City, Village or Town		Well ZIP	Code	901 N. 9th	Street			
Milwaukee		53224	1	City of Presen	nt Owner		State	ZIP Code
Subdivision Name		Lot #		Milwauke	e		WI	53233
NA		NA		4. Pump, Li	iner, Scre	en, Casing & Sealing Ma	terial	
Reason For Removal From Service W	I Unique Well #	# of Replac	ement Well	Pump and	pipina remo	ved?	Yes	No 🕅 N/A
Investigative Boring		NA		Liner(s) rer	noved?		Yes 🗌	No 🕅 N/A
3. Well / Drillhole / Borehole Inform	nation	uction Dot		Screen rem	noved?		Yes 🗌	No 🔀 N/A
Monitoring Well		UCTION Date	3	Casing left	in place?		Yes	No 🔀 N/A
Water Well	1/20/2022			Was casino	a cut off belo	ow surface?	Yes	No 🕅 N/A
 Drillhole / Borehole	If a Well Cor	nstruction F	Report is	Did sealing	, material ris	e to surface?	Yes 🗌	No 🗌 N/A
	available, ple	ease attach	1.	Did materia	al settle after	r 24 hours?	Yes 🛛	No 🗌 N/A
Construction Type:				If yes, w	as hole reto	pped?	Yes	No 🔀 N/A
Drilled Driven (Sandpoint)		Dug	If bentonite	chips were	used, were they hydrated		
Other (Specify) Direct Push				with water	from a know	n safe source	Yes 🗌	No N/A
				Required Met	hod of Placir	ng Sealing Material		
	Π.			Conduc	tor Pipe-Gra	avity 📃 Condu	uctor Pipe-P	umped
Unconsolidated Formation		Bedrock		Screene	ed & Poured	I Other	(Explain)	
Total Well Depth From Ground Surface (ft)) Casing Dia	ameter (in.)	1	(Benton	nite Chips)			
15.0	NA			Sealing Mater	ials	_		
Lower Drillhole Diameter (in.)	Casing De	epth (ft.)		Neat Ce	ement Grout		lay-Sand Slu	urry (11 lb./gal. wt.)
2.2		1 ()		Sand-C	ement (Con	crete) Grout 📃 Be	entonite-Sar	nd Slurry " "
2.5				Concret	te	В	entonite Chi	ps
Was well annular space grouted?	Yes 🛛	No	Unknown	For Monitorin	g Wells and	Monitoring Well Boreholes C	Only:	
If yes, to what depth (feet)?	Depth to Water	r (feet)		Bentonit	e Chips	Bentonite - 0	Cement Gro	ut
				Granular	r Bentonite	Bentonite - S	Sand Slurry	
5. Material Used to Fill Well / Drillh	nole			From (ft.)	To (ft.)	No. Yards, Sacks Sea or Volume (circle or	alant ne) o	Mix Ratio r Mud Weight
3/8" Bentonite Chips				Surface	15.0	0.5		
				Statuee		0.0		
6 Comments								
o. commenta								

7. Supervision of Work	2. Supervision of Work							
Name of Person or Firm Doing Filling & Sealing	License	#	Date of Filling & Sealing (mm/dd/yyyy)	Date Received	Noted By			
On-Site Environmental Services, Inc.			1/20/2022					
Street or Route			Telephone Number	Comments				
3210 Edmonton Drive			608-837-8992	1				
City	State	ZIP Code	Signature of Person Doing Work	Ann Nº11	Date Signed			
Sun Prairie	WI	53590	i Ca	and another	04/14/2022			
State of Wis., Dept. of Natural Resources dnr.wi.gov

Well / Drillhole / Borehole Filling & Sealing Form 3300-5 (R 4/08) Page 1 of

Page 1 of 2

Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return this form to the appropriate DNR office and bureau. See instructions on reverse for more information.

Verification Only of Fill ar	nd Seal	Route to	D:	_	_	5-7			
CD 121			rinking Water	L	Watershe	ed/Wastewater	Remediatio	on/Redevelopment	
<u> </u>		l w	/aste Managemer	nt 🗌	Other				
1. Well Location Information				2. Facility	/ Owner Ir	nformation			
County WI Unique Well	l # of	Hicap #		Facility Name					
Milweylee NA		NIA		Moss Ame	erican				
Intitude / Longitude / Degrees and Minuter	s) Mo	INA thod Code	(coo instructions)	Facility ID (FI	D or PWS)				
				24137828	00				
43 10 34.0 N				License/Perm	it/Monitoring	1#			
<u>88 2 9.0 W</u>		ownshin	Pango -	02-41-529	585				
74174 NE 74 NW 5		ownsnip		Original Well (Owner				
or Gov't Lot #	0	0		Milwauke	e County				
Well Street Address				Present Well (Owner				
0633 W/ Brown Door Boad				Milwauke	e County				
Well City Village or Town		Well 7IP	Code	Mailing Addre	ss of Preser	nt Owner			
Milwoukoo		5222A		901 N. 9th	Street				
Subdivision Name			•	City of Presen	t Owner		State	ZIP Code	
NA				Milwauke	e		WI	53233	
Reason For Removal From Service WI	Linique Well #	t of Replace	ement Well	4. Pump, Li	iner, Scre	en, Casing & Sealing N	laterial		
Investigative Dering		NIA		Pump and	piping remo	ved?	Yes	No 🔀 N/A	
3 Well / Drillhole / Borehole Inform	Investigative Boring NA		Liner(s) rer	noved?		Yes	No N/A		
	Original Construction Date		Screen rem	noved?		Yes	No 🛛 N/A		
Monitoring Well	1/20/2022	1/20/2022		Casing left	in place?		Yes	No 🛛 N/A	
Water Well	1/20/2022	1/20/2022		Was casing	g cut off belo	ow surface?	Yes	No 🛛 N/A	
Drillhole / Borebole	If a Well Cor	If a Well Construction Report is		Did sealing	material ris	e to surface?	🛛 Yes 🛛	No N/A	
	available, ple	ease attach		Did materia	al settle after	r 24 hours?	🗌 Yes [No N/A	
Construction Type:				If yes, was hole retopped?					
Drilled Driven (S	Sandpoint)		Dug	If bentonite chips were used, were they hydrated					
Other (Specify) Direct Push				with water from a known safe source Yes No N/A					
				Required Met	hod of Placir	ng Sealing Material			
Formation Type:				Conductor Pipe-Gravity					
Unconsolidated Formation		Bedrock		Screened & Poured Other (Explain)					
Total Well Depth From Ground Surface (ft)	Casing Dia	ameter (in.)		(Benton	ite Chips)				
15.0				Sealing Mater	ials				
Lower Drillholo Diameter (in)	Cooing Do	nth (ft)		Neat Ce	ement Grout		Clav-Sand	Slurry (11 lb./ɑal. wt	
		pui (ii.)		Sand-C	ement (Con	crete) Grout	Bentonite-S	and Slurry " "	
2.3	NA				te	$\overline{\mathbf{X}}$	Bentonite C	Chips	
Was well annular space grouted?	Yes 🛛	No 🗌	Unknown	For Monitorin	g Wells and	Monitoring Well Boreholes	s Only:		
If yes, to what depth (feet)?	Depth to Water	(feet)		Bentonit	e Chips	Bentonite	- Cement G	rout	
				Granular	Bentonite	Bentonite	- Sand Slurr	v	
5 Material Used to Fill Well / Drillh				From (ft)	To (ft)	No. Yards, Sacks S	ealant	Mix Ratio	
				Troin (it.)	10 (11.)	or Volume (circle	one)	or Mud Weight	
				G (15.0	0 F			
3/8" Bentonite Chips		Surface	15.0	0.5					
6. Comments									

7. Supervision of Work		DNR Use Only			
Name of Person or Firm Doing Filling & Sealing	License	e #	Date of Filling & Sealing (mm/dd/yyyy)	Date Received	Noted By
On-Site Environmental Services, Inc.			1/20/2022		
Street or Route 7		Telephone Number	Comments		
3210 Edmonton Drive			608-837-8992		
City	State	ZIP Code	Signature of Person Doing Work	Ann Mell	Date Signed
Sun Prairie	WI	53590	i Ca	and annut	04/14/2022

State of Wis., Dept. of Natural Resources dnr.wi.gov

Well / Drillhole / Borehole Filling & SealingForm 3300-5 (R 4/08)Page 1 degree

Page 1 of 2

Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return this form to the appropriate DNR office and bureau. See instructions on reverse for more information.

				inionnadon.					
Verification Only of Fill a	Il and Seal			_	_				
CD 127			rinking Water		Watershe	ed/Wastewater	🖄 Remedia	tion/Redev	/elopment
<u>GF-152</u>		Lw	aste Managemer	nt 🗌	Other				
1. Well Location Information				2. Facility	Owner Ir	nformation			
County WI Unique We Removed Wel	ell # of II	Hicap #		Facility Name					
Milwaukee NA		NA		Moss Ame	erican				
Lattitude / Longitude (Degrees and Minute	es) Me	thod Code	(see instructions)		J OF PVVS)				
43 ° 10' 34.5 "'N	,		,	2413/828	U it/Monitoring	. #			
88° 2' 9.3 "'W						; #			
1/4/1/4 NE 1/4 NW 15	Section T	ownship	Range 🖂 🗕	02-41-529 Original Well (080 Dwner				
or Gov't Lot #	8	8		Milwauke	e County				
				Present Well (Owner				
Well Street Address				Milwauke	e County				
9633 W. Brown Deer Road				Mailing Addres	ss of Preser	nt Owner			
Well City, Village or Town		Well ZIP	Code	901 N 9th	Street				
Milwaukee		53224	•	City of Presen	t Owner		State	ZIP (Code
Subdivision Name		Lot #		Milwauke	e		WI	53	3233
NA		NA		4. Pump, Li	iner, Scre	en, Casing & Sealin	g Material	1	
Reason For Removal From Service W	/I Unique Well #	f of Replace	ement Well	Pump and	nining remo	ved?	Yes	No	N/A
Investigative Boring	Investigative Boring NA		Liper(s) removed?						
3. Well / Drillhole / Borehole Inform	mation								
Monitoring Well	Original Constr	uction Date	2	Casing left in place?			Yes	No No	🕅 N/A
Water Well	1/20/2022	1/20/2022		Was casing cut off below surface?			Yes	No	N/A
	If a Well Cor	struction R	leport is	Did sealing material rise to surface?				No	N/A
	available, ple	ease attach		☐ Did material settle after 24 hours? ☐ Yes					
Construction Type:				If yes, was hole retopped?					
Drilled Driven (Sandpoint)		Dug	If bentonite chips were used, were they hydrated					
Other (Specify) Direct Push				with water from a known safe source Yes No N/A					
				Required Meth	nod of Placir	ng Sealing Material			
Formation Type:				Conduc	tor Pipe-Gra	avity	Conductor Pip	e-Pumpeo	ł
Unconsolidated Formation		Bedrock		Screened & Poured Other (Explain)					
Total Well Depth From Ground Surface (ft	:) Casing Dia	ameter (in.)		(Bentonite Chips)					
15.0	NA			Sealing Mater	ials				
Lower Drillhole Diameter (in)	Casing De	oth (ft.)		Neat Ce	ement Grout	: [Clay-Sand	d Slurry (1	1 lb./gal. wt.)
		pur (iii)		Sand-C	ement (Con	crete) Grout	Bentonite	-Sand Slur	ry " "
2.3				Concret	e		Bentonite	Chips	
Was well annular space grouted?	Yes 🛛	No	Unknown	For Monitoring	g Wells and	Monitoring Well Boreh	oles Only:		
If yes, to what depth (feet)? Depth to Water (feet)		Bentonit	e Chips	Bentor	nite - Cement	Grout			
				Granular	Bentonite	Bentor	nite - Sand Slu	urry	
5. Material Used to Fill Well / Drillhole		From (ft.)	To (ft.)	No. Yards, Sack or Volume (cire	s Sealant cle one)	Mix or Muc	Ratio I Weight		
3/8" Bentonite Chips		Surface	15.0	0.5					
6. Comments					1				

7. Supervision of Work		DNR Use Only			
Name of Person or Firm Doing Filling & Sealing	License	e #	Date of Filling & Sealing (mm/dd/yyyy)	Date Received	Noted By
On-Site Environmental Services, Inc.			1/20/2022		
Street or Route 7		Telephone Number	Comments		
3210 Edmonton Drive			608-837-8992		
City	State	ZIP Code	Signature of Person Doing Work	Ann Mell	Date Signed
Sun Prairie	WI	53590	i Ca	and annut	04/14/2022

Monitoring Well Construction Forms

State of Wisconsin Department of Natural Resources	XX7 4 1 1/XX		1	r , f		MONITODINC WELL	CONSTRI	ICT	ION
<u>Route 10:</u>	Remediation	Redevelopme	nt 🛛 Other			Form 4400-113A	Rev. 7-9	8	1010
Facility/Project Name	Local Grid Loc	ation of Well				Well Name			
Moss American		$_ft. \square S.$	f	t. $\square W$.		PZ-	03F		
Facility License, Permit or Monitoring No.	Local Grid Ori	gin 🗍 (est	imated: 🗌) or	Well Location	n 🗌	Wis. Unique Well No.	DNR Well N	lumł	ber
02-41-529585	Lat. <u>43°</u>	10' 34.3	<u>3"</u> Long. <u>88°</u>	9	9.1" or	WC621	NA	1	
Facility ID	St Plana 4	134.859 fr	N 2.492.364	θE S	E/C/N	Date Well Installed			
241378280	Section Location	on of Waste/Se	ource	II. D. C	5/C/IN	01/20	/2022		
Type of Well					. 🛛 E	Well Installed By: (Per	son's Name a	nd F	irm)
Well Code 11/mw	<u>NE</u> 1/4 of _	<u>NW</u> 1/4 of S	Sec. <u>8</u> , T. <u>8</u>	<u>N, R.</u> 2		Tony	/ omugi		
Distance from Waste/ Enf. Stds.	Location of W	ell Relative to	Waste/Source	Gov. Lot N	Jumber	1011y P	Capugi		
Source Apply		mediant m	\square Subgradient			On-Site Env	vironmental		
1. A D which is a 1 with 77	100 c	gradient n		1 Can and 1	ock?		Vec		No
A. Protective pipe, top elevation	21.00 ft. MSL			~ 2 Protective	e cover ni	ne.			110
B. Well casing, top elevation 72	20.69 ft. MSL			a Inside d	liameter	pe.		4	.0 in
	7184			h Length			-	5	.0 ft
C. Land surface elevation	710.4 ft. MSL			o. Motorio	.1.			M	II.
D. Surface seal, bottom ft. MSL	or <u>3.5</u> f	521521 - 521521 - 52152153					Other		
12. USCS classification of soil near screen:		Tike ike ike		d. Additio	onal prote	ction?	□ Yes	\boxtimes	No
$GP \Box GM \Box GC \Box GW \Box S'$	W⊠ SP □		$ \wedge \langle \rangle$	If yes,	describe:			_	
$SM \square SC \square ML \boxtimes MH \square C$	L 🛛 CH 🗆			2 6	1.		Bentonite	\boxtimes	30
Bedrock				5. Surface se	ear:		Concrete		01
13. Sieve analysis attached? \Box Ye	es 🖾 No						Other		
14. Drilling method used: Rota	ry □50			4. Material b	oetween v	vell casing and protectiv	e pipe:		
Hollow Stem Aug	er ⊠41					0 1	Bentonite		30
Oth	er 🗆				I	Filter Pack	Other	\boxtimes	
			፼ ፼	- 5 Annular e	mace seal	. a Granular/Chinn	ed Bentonite		33
15. Drilling fluid used: Water $\Box 0.2$ A				b I	balant balant	d weight Bentonit	a cond clurry		25
Drilling Mud 0 3 Nor	ne ⊠99			0L	bs/gal m	id weight Dentollid id weight Pertollid	tonite clurry		21
				d1	/os/gai iii /o Bentoni	te Bentonite-	ement grout		50
16. Drilling additives used?	es 🖾 No			u/	⁶ Dentoin Et ³ x	volume added for any of	the above		50
				f How i	rt	orallic added for any or	Tromio		0.1
Describe				1. 110w I	instancu.	Tro			01
17. Source of water (attach analysis, if required	ł):					110	Growity		02
									0.8
				6. Bentonite	seal:	a. Bentor	nite granules		33
710.4	0.0			b. ∐1/4	ın. ⊠3	$/8 \text{ in.} \square 1/2 \text{ in.} Bei$	ntonite chips		32
E. Bentonite seal, top ft. MSL	or0.0	ft.		c			Other	. Ц	
				7. Fine sand	material:	Manufacturer, product	name & mes	h siz	2e
F. Fine sand, top 714.9 ft. MSL	or <u>3.5</u>	ft.		a		Red Flint Sand #15			
		\sim	₩ ₩ /	b. Volume	e added	0.5 ft	5		
G. Filter pack, top -713.9 ft. MSL	or <u>4.5</u>	ft.		8. Filter pac	k materia	l: Manufacturer, produc	t name & me	sh si	ize
				a		Red Flint Sand #40			
H. Screen joint, top712.9 ft. MSL	or5.5	ft		b. Volume	e added	<u> </u>	3		
				9. Well casin	ng:	Flush threaded PVC	schedule 40	\boxtimes	23
I. Well bottom ft. MSL	or <u>15.5</u>	ft. 🥄				Flush threaded PVC	schedule 80		24
							Other		
J. Filter pack, bottom702.9 ft. MSL	or15.5	ft		10. Screen ma	aterial:	SCH 40 PVC	2		
1 /				a. Screen	Type:		Factory cut		11
K. Borehole, bottom 702.9 ft. MSL	or 15.5	ft. N			- Jpon	Co	ntinuous slot		01
						00	Other		01
I Borehole diameter 2.3 in				h Manuf	acturer	Monoflex			
			\backslash	c Slot er	76.			0.01	10 in
MOD well anging 235			\backslash	d Slotted	length		-	10	п.).0 ғ
w. O.D. well casing 2.55 in.			\mathbf{i}	11 Backfill n	naterial (l	elow filter pack).		M	II. 1 /
N LD						now much pack).	Other		14
N. I.D. well casing 2.00 in.									
	., .								
I nereby certify that the information on this form	in is true and cor	Firm	t of my knowledge.						
Signature 11 H. Mell		The Ci	ama Crown				Tal: 414	612	4 4200

Firm The Sigma Group 1300 W Canal St Milwaukee, WI 53233

MU

Tel: 414-643-4200 Fax: 414-643-4210

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

State of Wisconsin Department of Natural Resources	W/-411/W	7	Weste Me		MONITORING WE	I L CONSTRI	ТСТ	ION
<u>Route 10:</u>	Remediation	/Redevelopmen	t 🛛 Other 🗌]	Form 4400-113A	Rev. 7-9	8	1010
Facility/Project Name	Local Grid Lo	cation of Well			Well Name			
Moss American		$\{\text{ft.}} \square S.$	ft.	$\cdot \square W.$	PZ	2-03G		
Facility License, Permit or Monitoring No.	Local Grid Ori	igin 🗌 (estin	mated: 🗌) or V	Well Location	Wis. Unique Well No). DNR Well N	Juml	ber
02-41-529585	Lat. <u>43°</u>	10' 34.7	<u>Long. 88°</u>	2' 9.4"	or WC622	N	٩	
Facility ID	St Plana	434.895 ft	N 2.492.347	AF S/C	Date Well Installed			
241378280	Section Locati	on of Waste/So	IN, <u></u>	II. E 37 C	01/	20/2022		
Type of Well			0 0	21	⊠ E Well Installed By: (F	Person's Name a	nd F	irm)
Well Code 11/mw	<u>NE 1/4 of</u>	<u>NW</u> 1/4 of Se	ec. $\underline{8}$, T. $\underline{8}$	<u>N, R.</u> <u>21</u>	Ton	v Kapugi		
Distance from Waste/ Enf. Stds.	Location of W	ell Relative to V	Waste/Source	Gov. Lot Num	ber	y Kapugi		
Source ft Apply	d 🗆 Down	gradient n	Not Known		On-Site I	Environmental		
$\frac{1}{\sqrt{2}}$	$1.00 \pm MSI$			1. Cap and lock		Ver	П	No
A. Flotective pipe, top elevation	II. MSL			2. Protective cov	ver nine:			110
B. Well casing, top elevation 72	20.53 ft. MSL			a. Inside diam	neter:		4	.0 in.
C. Land surface elevation	718.2 ft MSI			b. Length:			5	.0 ft.
				c. Material:		Steel		04
D. Surface seal, bottom ft. MSL	or <u>3.5</u> f	t. 210210 - 2210210	1.2.2.2 1.011 011 21-21-21			Other		
12. USCS classification of soil near screen:		<u> </u>		d. Additional	protection?	□ Yes	\boxtimes	No
$GP \Box GM \Box GC \Box GW \Box S'$	W 🛛 SP 🗆			If yes, desc	cribe:		_	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L 🖾 CH 🗆			3 Surface seal		Bentonite	\boxtimes	30
				5. Surface Sear.		Concrete		01
13. Sieve analysis attached?	es 🖾 No					Other		
14. Drilling method used: Rotar	ry □50		X X `	4. Material betw	veen well casing and protec	tive pipe:		
Hollow Stem Aug	er 🛛 4 1				E:14 D 1-	Bentonite		30
Oth	er 🗆				Filler Pack	Other	\bowtie	
			▩ ▩───	5. Annular space	e seal: a. Granular/Chi	pped Bentonite	\boxtimes	33
15. Drilling fluid used: Water $\Box 02$ A	$\operatorname{ar} \square 01$			bLbs/g	gal mud weight Benton	nite-sand slurry		35
Drilling Mud $\Box 0.3$ Nor	ne ⊠99			cLbs/g	gal mud weight E	Bentonite slurry		31
16 Drilling additives used?	No.			d%Be	entonite Bentonit	e-cement grout		50
				e2	_Ft ³ volume added for any	of the above		
Describe				f. How insta	illed:	Tremie		01
17 Source of water (attach analysis if required	D·]	fremie pumped		02
17. Source of water (attach anarysis, if requiree	.y.					Gravity	\boxtimes	08
			🕺 👹 🧳	6. Bentonite sea	l: a. Ber	itonite granules		33
		_	🛛 🕅 🖊	b. □ 1/4 in.	\boxtimes 3/8 in. \square 1/2 in.	Bentonite chips	\boxtimes	32
E. Bentonite seal, top718.2 ft. MSL	or0.0	ft.		c		Other		
			🗑 🕅 / /	7. Fine sand mat	terial: Manufacturer, produ	act name & mes	h siz	ze
F. Fine sand, top ft. MSL	or <u>3.5</u>	ft.	▩ ▩ / /	a	Red Flint Sand #15			
			₩ ₩ /	b. Volume ad	ded0.5	. ft ³		
G. Filter pack, top ft. MSL	or <u>4.5</u>	ft.		8. Filter pack ma	aterial: Manufacturer, proc	luct name & me	sh si	ize
710 7				a	Red Flint Sand #40			
H. Screen joint, top ft. MSL	or5.5	ft		b. Volume ad	ded3	ft^3		
				9. Well casing:	Flush threaded PV	VC schedule 40	\boxtimes	23
I. Well bottom ft. MSL	or <u>15.5</u>	ft.			Flush threaded PV	VC schedule 80		24
						Other		
J. Filter pack, bottom702.7 ft. MSL	or <u>15.5</u>	ft		0. Screen materi	ial: SCH 40 P	VC	-	
				a. Screen Typ	pe:	Factory cut	\boxtimes	11
K. Borehole, bottom <u>702.7</u> ft. MSL	or <u>15.5</u>	ft.			(Continuous slot		01
						Other		
L. Borehole, diameter <u>2.3</u> in.		\checkmark		b. Manufactu	arer Monoflex		~ ~	10
			\backslash	c. Slot size:		-	0.0	<u>10</u> in.
M. O.D. well casing 2.35 in.			\backslash	d. Slotted len	ngth:	-	10	<u>.0</u> ft.
			`1	1. Backfill mate	rial (below filter pack):	None		14
N. I.D. well casing 2.00 in.						Other		
I hereby certify that the information on this form	n is true and con	rect to the best	of my knowledge.					
Signature // A Mell		rirm The Sig	ma Crown			Tal: 41/	642	1200

Firm The Sigma Group 1300 W Canal St Milwaukee, WI 53233

MU

Tel: 414-643-4200 Fax: 414-643-4210

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

State of Wisconsin Department of Natural Resources	W/-411/W		Weste Me		MONITORING WELL	CONSTRI	ICT	ION
<u>Route 10:</u>	Remediation	Redevelopment	\boxtimes Other		Form 4400-113A	Rev. 7-9	8	1010
Facility/Project Name	Local Grid Loc	ation of Well			Well Name			
Moss American		$\{ft.} \square S.$	ft.	\square W.	PZ-	03H		
Facility License, Permit or Monitoring No.	Local Grid Ori	gin 🔲 (estin	nated: 🗌) or V	Well Location	Wis. Unique Well No.	DNR Well N	Jumł	ber
02-41-529585	Lat. <u>43°</u>	10' 35.6"	_ Long. <u>88°</u> _	<u>2' 11.2"</u> or	WC623	NA	A	
Facility ID	St Plana 4	134.984 G N	J 2.492.212	fF S/C/N	Date Well Installed			
241378280	Section Location	on of Waste/Sou	v, <u> </u>	_ II. E. 5/C/N	01/20	/2022		
Type of Well		an of Wasterson		. ⊠E	Well Installed By: (Per	son's Name a	nd F	irm)
Well Code 11/mw	<u>NE</u> 1/4 of _	<u>NW</u> 1/4 of Sec	c. <u>8</u> , T. <u>8</u>	$N, R. 21 \square V$	Tony	Zamuai		
Distance from Waste/ Enf. Stds.	Location of W	ell Relative to W	/aste/Source	Gov. Lot Number		vapugi		
Source Apply		andiant n	Suegradient		On-Site Env	vironmental		
1. A D which is a 1 with 77	$1 a \square Down$	gradient n		1 Can and lock?		Vec		No
A. Protective pipe, top elevation	<u>22.00</u> ft. MSL			 Cap and lock: Protective cover 	nine.			110
B. Well casing, top elevation 72	21.60 ft. MSL			a Inside diamete	r.		4	.0 in
	710.3 0 1/01			h Length:		_	5	.0 ft
C. Land surface elevation	<u>719.5</u> ft. MSL			o. Motorial:				II.
D. Surface seal, bottom ft. MSL	or <u>3.5</u> f	SZIEŻIA SZIEŻIEŻ	15.275.21 16.275.21 19.275.21			Other		
12. USCS classification of soil near screen:		<u> <u>AIKOIKOIk</u></u>	. AICOILOIL	d. Additional pro	tection?	□ Yes	\boxtimes	No
$GP \Box GM \Box GC \boxtimes GW \boxtimes S'$	W□ SP □			If yes, describ	e:		_	
$SM \square SC \square ML \boxtimes MH \square C$	L 🛛 CH 🗆			2 Countries and 1		Bentonite	\boxtimes	30
Bedrock				5. Surface seal:		Concrete		01
13. Sieve analysis attached? \Box Ye	es 🖾 No	l X				Other		
14. Drilling method used: Rota	ry □50			4. Material between	well casing and protectiv	e pipe:		
Hollow Stem Aug	er ⊠41	l &	8 🕅		U .	Bentonite		30
Oth	er 🗆		8 🕅		Filter Pack	Other	\boxtimes	
			ᅠ ፟	5 Annular space se	al: a Granular/Chinn	ed Bentonite		33
15. Drilling fluid used: Water $\Box 0.2$ A		8	8 🕅	b I be/gol	ai. a. Oranunai/Chipp mud weight Bentonit	a cond clurry		25
Drilling Mud 0 3 Nor	ne ⊠99		∅ 🕅	0Los/gal i	nud weight Dentoning	tonite clurry		21
			8 🕅	d % Bento	nite Bentonite-	coment grout		50
16. Drilling additives used?	es 🖾 No		≋ 🕅	a / 0 Dento	³ volume added for any of	the above		50
			∅ 🕅	f How installed	i.	Tromia		0.1
Describe		8	8 🕅	1. TIOW IIIStalled	ι. Τπ			01
17. Source of water (attach analysis, if required	ł):		೫ ₩		110	Growity		02
			8 🕅		-			0.8
] 8	8 🕅 📝	6. Bentonite seal:	a. Bento	nite granules		33
710.2	0.0	8	▓ ▓ /	b. ∐ 1/4 m. ⊠	$13/8$ in. $\Box 1/2$ in. Be	ntonite chips		32
E. Bentonite seal, top ft. MSL	or0.0	ft.	88/	C		Other		
			▓ ▓ / /	7. Fine sand materia	al: Manufacturer, product	name & mes	h siz	2e
F. Fine sand, top715.8 ft. MSL	or <u>3.5</u>	ft.	8 🛛 / /	a	Red Flint Sand #15			
		~ 4	S S /	b. Volume added	ft	5		
G. Filter pack, top714.8 ft. MSL	or <u>4.5</u>	ft.		Filter pack mater	ial: Manufacturer, produc	t name & me	sh si	ize
				a	Red Flint Sand #40			
H. Screen joint, top713.8 ft. MSL	or5.5	ft		b. Volume added	3 ft	3		
				9. Well casing:	Flush threaded PVC	schedule 40	\boxtimes	23
I. Well bottom ft. MSL	or <u>15.5</u>	ft. <			Flush threaded PVC	schedule 80		24
						Other		
J. Filter pack, bottom703.8 ft. MSL	or15.5	ft	E - 1	0. Screen material:	SCH 40 PVC	2		
1 /				a. Screen Type:		Factory cut		11
K. Borehole, bottom 703.8 ft. MSL	or 15.5	ft. s		an Sereen Typer	Co	ntinuous slot		01
					00	Other		01
I Borehole diameter 2.3 in				h Manufacturer	Monoflex			
			\backslash	c. Slot size			0.01	10 in
MOD well anging 235			\backslash	d Slatted length		-	10	п.).0 ғ
w. O.D. well casing 2.55 in.			\backslash_1	1 Backfill material	(below filter pack):		M	II. 1 /
N LD			1		(ociow mici pack).	Other		14
N. I.D. well casing 2.00 in.								
	., .		<u> </u>					
I nereby certify that the information on this form	in is true and cor	rect to the best c	m my knowledge.					
Signature 11 H. Mela		The Sign	no Crown			Tal: 414	612	4 4200

Firm The Sigma Group 1300 W Canal St Milwaukee, WI 53233

MU

Tel: 414-643-4200 Fax: 414-643-4210

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

Monitoring Well Development Forms

State of Wisconsin Department of Natural Resources

MONITORING WELL DEVELOPMENT Form 4400-113B Rev. 7-98

1				
Route to: Watershed	/Wastewater	Waste Management		
Remediation	on/Redevelopment	Other 🔲		
Facility/Project Name <u>MOSS</u> <u>AMERICA</u> Facility License, Permit or Monitoring Number () 2 - 41 - 52 4585	County Name MILWK County Code 44	WK CE Wis, Unique Well No W C	Well Name PZ-O umber 721_ DN	3 F NR Well ID Number N/A
1. Can this well be purged dry?	I Yes V No	11. Depth to Water	Before Develo	pment After Development
 2. Well development method surged with bailer and bailed surged with bailer and pumped surged with block and bailed surged with block and pumped surged with block, bailed and pumped compressed air bailed only pumped only pumped slowly Other	41 1 = 61 2 = 42 1 = 62 2 = 70 2 = 20 10 1 = 51 1 = 50 2 = 10 1 = 51 1 = 50 1 = 20 1 = 51 1 = 51 1 = 50 1 = 70 1 = 51 1 = 50 1 = 70 1 =	(from top of well casing) Date Time 12. Sediment in well bottom 13. Water clarity	a $4.5.4$ b. $\frac{O}{m} \frac{1}{m} / \frac{3}{d} \frac{1}{d} / \frac{3}{d} \frac{1}{d} / \frac{3}{d} \frac{1}{d} / \frac{3}{d} \frac{1}{d} / \frac{3}{d} \frac{1}{d}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
 6. Volume of water in filter pack and well casing 7. Volume of water removed from well 8. Volume of water added (if any) 	15.3 gal. 100.0 gal. N/A gal.	Fill in if drilling flui 14. Total suspended solids	ds were used and 1A	well is at solid waste facility: mg/lM4mg/l
9. Source of water added		15. COD	_14A.	M/A,mg/l
10. Analysis performed on water added? (If yes, attach results)	🗋 Yes 📋 No	16. Well developed First Name: DK Firm: THE	by: Name (first, last LEW L SIGMA) and Firm ast Name: COFFIN GrROUP

17. Additional comments on development:

Name and Address of Facility Contact /Owner/Responsible Party First P Last DelCOVE	I hereby certify that the above information is true and correct to the best of my knowledge.
Facility/Firm: W DNR	Signature: <u>M</u>
Street: 1027 W. St. Paul Aug	Print Name: DREW COFFIN
City/State/Zip: Milwauter, WI 53233	Firm: THE SIGNA GIROUP

NOTE: See instructions for more information including a list of county codes and well type codes.

State of Wisconsin Department of Natural Resources

1.8

MONITORING WELL DEVELOPMENT Form 4400-113B Rev. 7-98

Route to: Watershed/Waste	water	Waste Management		
Remediation/Rec	evelopment 🔙	Other 🔄		
Facility/Project Name	County Name		Well Name	7-036
former Muss American	Milwa	ukee	1	L-0.20
Facility License, Permit or Monitoring Number 02 - 41 - 529585	County Code	Wis. Unique Well Nr. <u>WC</u>	12.0_	DNR Well ID Number
 1. Can this well be purged dry? 2. Well development method surged with bailer and bailed surged with block and pumped surged with block and pumped surged with block, bailed and pumped compressed air Lick rely 	es X No 41 61 42 62 70 20	 11. Depth to Water (from top of well casing) Date Time 	Before Deve a4.1 b. $\frac{0}{m} \frac{1}{m} \frac{2}{d} \frac{1}{d}$ c. $1 \bigcirc : 3 \bigcirc$	$\frac{1}{2} \underbrace{0}_{\mathbf{y}} \underbrace{\mathbf{y}}_{\mathbf{y}} \underbrace{0}_{\mathbf{y}} \underbrace{0}_{\mathbf{m}} \underbrace{0}_{\mathbf{m}} \underbrace{0}_{\mathbf{k}} \underbrace{0}_{$
bailed only Image: Constraint of the system of the sys	10 51 50 <u>4</u> <u>0</u> min.). <u>75</u> ft.	12. Sediment in well bottom13. Water clarity	Clear 1 1 Turbid A 1 (Describe)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
5. Inside diameter of well	0 0 in.		2 	
6. Volume of water in filter pack and well	<u>6</u> gal.	Fill in if drilling fluid	is were used an	d well is at solid waste facility:
7. Volume of water removed from well) . (). gal.	14. Total suspended	_MA	_ тдлтдл
s. volume of water added (11 any)	L. J gai.	15 COD	NIA	man MIA mail
10. Analysis performed on water added?	es 🕱 No	16. Well developed b	y; Name (first, la	st) and Firm
(If yes, attach results)		Firm: The	Sigma.	Group

Name and Address of Facility Contact/Owner/Responsible Party First Let Last Del(Oft	I hereby certify that the above information is true and correct to the best of my knowledge.
Facility/Firm: WDNR	Signature: Min Wolink
Street: 1027 W. St. Paul Ave	Print Name: Nickolas Wochlard
City/State/Zip: Milwucker, WI 53233	Firm: The Signus Group

NOTE: See instructions for more information including a list of county codes and well type codes.

State of Wisconsin Department of Natural Resources

MONITORING WELL DEVELOPMENT Form 4400-113B Rev. 7-98

Route to: Watershed/Wastewater	Waste Management
Remediation/Redevelopment	Other
Facility/Project Name County Name MOSS AMENICAN Millwall Facility License, Permit or Monitoring Number County Code () 2 - 41 - 529585 41	Well Name P2-03H Wis. Unique Well Number DNR Well ID Number N/AF
1. Can this well be purged dry?	11. Depth to Water
 2. Well development method surged with bailer and bailed surged with bailer and pumped 61 surged with block and bailed 42 surged with block and pumped 62 surged with block, bailed and pumped 70 compressed air 20 bailed only 10 pumped only 51 pumped slowly 5.0 Other 	(from top of well casing) Date $b \frac{O/}{m m} \frac{31}{d d} \frac{2O}{y y y y} \frac{2A}{m m} \frac{O}{d d} \frac{1}{y y y y} \frac{31}{y y} \frac{1}{y y y y} \frac{1}{y y} \frac{1}{y y y} \frac{1}{y} \frac{1}{y y} \frac{1}{y y} \frac{1}{y} $
3. Time spent developing well $-\frac{240}{7}$ min. 4. Depth of well (from top of well casisng) $\frac{17}{2}$. 5 ft.	(Describe) (Describe) (Describe) (Describe)
6. Volume of water in filter pack and well casing	Fill in if drilling fluids were used and well is at solid waste facility:
7. Volume of water removed from well $\underline{1} \underline{4} \underline{0} \underline{0} \underline{0}$ gal.	14. Total suspendedA_ mg/1A_ mg/1
9. Source of water added (if any)	15. COD $M/A mg/l M/A mg/l$
10. Analysis performed on water added?	16. Well developed by: Name (first, last) and Firm First Name: Me'le'SU Last Name: Greere Firm Mr The Sigwer Group
17. Additional comments on development: & petrolecen odor, Shine & tu	vbid.

Name and Address of Facility Contact/Owner/Responsible Party First Name: <u>Lee</u> Last Name: <u>Delboye</u>	I hereby certify that the above information is true ind correct to the best of my knowledge.
Facility/Firm: WDDR	Signature: LADDO
Street: 1027 W St. Paul Aue	Print Name: Melesa Greene
City/State/Zip: Milwauker, WI, 53233	Firm: The Signa Group.

NOTE: See instructions for more information including a list of county codes and well type codes.

Waste Disposal Manifests

Plea	ase pri	int or type								Form	Approved.	OMB No.	2050-003		
Î	UNIF W	FORM HAZARDOUS ASTE MANIFEST	1. Generator ID Number		2, Page 1 of	3, Emerger	cy Response	Phone	4. Manifest	Tracking Nu	mber 5664	4 VI	ES		
	5. Ge	nerator's Name and Mailin	ng Address	1 2 2 2	1	Generator's	Site Address	(if different tha	an mailing addre:	ss)					
	WI I15 DI Gene	SCONSIN DNR - 1 55 PIL GRIM ROAT VMOLTH, WI 530 rator's Phone:	TOM WENTL does-America Co) //3 	and (dne)	I	8716 GRANVILLE RD MILWAUREE, WI 53224									
	6. Tra	ansporter 1 Company Nam	e						U.S. EPA ID Number						
	VE	OLIA 55 TECHNE	CAL SOLUTIONS						NJ	5 0 G	0 6 3	1 3	6 9		
	7 Ira	insporter 2 Company Nam	e			~			U.S. EPAID N	Number		0			
	8. Des	signated Facility Name and	d Site Address VBOLIA 58 T 7665 HIQHW/ BEAUMONT,	FCHNICAL SOLUT AY 73 TX 77705	TOMS				U.S. EPA ID I	Vumber					
	Facilit	ty's Phone:	16 2021						Y X	0 0 0	0 8 3	8 8	3 8		
	9a. HM	9b. U.S. DOT Descriptio and Packing Group (if a	on (including Proper Shipping Name, any))	Hazard Class, ID Number,		-	10. Contair No	ners Type	11, Total Quantity	12. Unit Wt./Vol.	13. \	Waste Code	s		
TOR -	X	1. NA3082, HA2 F034), 9 TH F	ARDOUS WASTE, LIQU	10, n.c.s., (K001,		-			0		E034				
NERA		2.					1_7	DM	122	Ğ	K001	OUTS	319H		
5	Х	F034), 9, IE, E	lardous waste, scel 10	D, n.o.s., 00001,							F034				
							4	DM.		P	私(00)1	OUTS	409E		
		3_													
		4													
													_		
	14. Sp	pecial Handling Instruction	s and Additional Information	TTP: Change of the state	4.11. 3	ant de la constance	. Annes	L'AVAGE							
		generator confers W 657967 A:PTA	agency authority on midial 4657967L 2) W-1032778	transporter to add or A:PTA001032778	r sabstitute	additiona	ional transporters on generator's behalf. + 1)								
	15. (r E	GENERATOR'S/OFFERO marked and labeled/placar Exporter, I certify that the c I certify that the waste mini	R'S CERTIFICATION: I hereby dec ded, and are in all respects in prope contents of this consignment conform imization statement identified in 40 C	lare that the contents of this r condition for transport acco n to the terms of the attached CFR 262:27(a) (if I am a larg	consignment a ording to applie d EPA Acknowl ge quantity gen	are fully and a cable internati ledgment of C erator) or (b)	occurately des onal and natio onsent. (if I am a smal	scribed above onal governme Il quantity gen	by the proper sh ental regulations, erator) is true.	ipping name, If export ship	and are clas oment and I a	sified, pack am the Prim	aged, ary		
	Gener	rator's/Offeror's Printed/Typ	oed Name		Sigi	nature	il.				Mon I	th Day	Year		
*	16. Int	ternational Shipments			Export from L	10	Port of ont	n/ovil:			2	- 10.	1000		
IN	Trans	porter signature (for expor	ts only):	4 -		,,,,	Date leavin	ng U.S.:							
TER	17, Tra	ansporter Acknowledgment	t of Receipt of Materials		Sig	nalura					Mon	b Day	Voor		
POR		Server 11 million Types that				iddire -					I	I Day			
RANSI	Transp	porter 2 Printed/Typed Nar	ne		Sigr	nature					Mon	th Day	Year		
<u>⊢</u>	18 Dis	screpancy													
	18a. D	Discrepancy Indication Spa	ice 🔲 Quantity	Туре		R	esidue		Partial Rej	ection	E	Full Reje	ection		
	18h A	Iternate Facility (or Genera	ator)			Manife	st Reference	Number:		lumber	_				
	100.11	internation dening (or openent							0.0. EI AID I	amber					
FA(Facility's Phone: 18c, Signature of Alternate Facility (or Generator)								1						
ATED											Mor	nth Day	Year		
IGN/	19. Ha	azardous Waste Report Ma	anagement Method Codes (i.e., code	es for hazardous waste treat	lment, disposal	l. and recyclin	a systems)				_				
DES	1.		2		3.				4,						
	20-04	scienated Facility Owner or	r Onerator: Cartification of resolution	hazardous materiale covera	ad by the manif	factoractes	nded in liters	185					_		
	Printed	d/Typed Name	operator. Continuation of receipt Of	nazardoda materiala covere	Sigr	nature	naca in ttern	100			Mon	th Day	Үеаг		
		0200.00 (D 40.47)	Description and the second second												

U.S. EPA Form 8700-22

Read all instructions before completing this form.

- Federal regulations require generators and transporters of hazardous waste and owners or operators of receiving facilities designated on the manifest to complete this form (EPA Form 8700–22) and, if necessary, the continuation sheet (EPA Form 8700–22A) for both interand intrastate transportation of hazardous waste.
- This manifest reflects formatting changes made by U.S. EPA in December 2017. Beginning on June 30, 2018, this manifest (Revision 12-17) must be used and all previous editions are prohibited. Go to www.epa.gov/e-manifest for additional information.
- 3. This form must be purchased from a registered printer
- (https://www.epa.gov/hwgenerators/approved-registered-printers-epas-manifestregistry#how) and has been designed to be filled out using standard computer printers; a firm point pen may also be used—press down hard. After June 30, 2018, this form can also be completed electronically in EPA's e-Manifest system.

The putie burder healed to the Unitom Hazardus Waste Man (est, which is approved under OMB 2060-003), is estimated to average (per manifest) 50 minutes for generators; 20 minutes for transporters; and 30 minutes for owners and operators of treelwing facilities designated on the manifest. This is a sub-projection under 40 CFR Part 262. Subpart B, 40 CFR Part 263, Subpart B, and 40 CFR Parts 254 and 215. Subpart B, and approved to the provide the transmitter of the

J. Instructions for Generators

Item 1. Generator's U.S. EPA Identification Number

Enter the generator's U.S. EPA twelve-digit identification number, or the state generator identification number if the generator site does not have an EPA identification number. Item 2. Page 1 of ____

Enter the total number of pages used to complete this manifest (i.e., the first page (EPA Form 8700-22) plus the number of continuation sheets (EPA Form 8700-22A), if any).

Item 3. Emergency Response Phone Number

Enter a phone number for which emergency response information can be obtained in the event of an incident during transportation. The emergency response phone number must:

- Be the number of the generator or the number of an agency or organization who is capable of and accepts responsibility for providing detailed information about the shipment;
- Reach a phone that is monitored 24 hours a day at all times the waste is in transportation (including transportation related storage); and
- 3. Reach someone who is either knowledgeable of the hazardous waste being shipped and has comprehensive emergency response and spill cleanup/incident mitigation information for the material being shipped or has immediate access to a person who has that knowledge and information about the shipment.

Note: Emergency Response phone number information should only be entered in Item 3 when there is one phone number that applies to all the waste materials described in Item 9b. If a situation (e.g., consolidated shipments) arises where more than one Emergency Response phone number applies to the various wastes listed on the manifest, the phone numbers associated with each specific material should be entered after its description in Item 9b.

Item 4. Manifest Tracking Number

This unlque tracking number must be pre-printed on the manifest by the forms printer. Item 5. Generator's Mailing Address, Phone Number and Site Address

Enter the name of the generator, the mailing address to which the completed manifest signed by the designated facility should be mailed, and the generator's telephone number. Note, the telephone number (including area code) should be the normal business number for the generator, or the number where the generator or his authorized agent may be reached to provide instructions in the event the designated and/or alternate (if any) facility rejects some or all of the shipment. Also enter the physical site address from which the shipment originates only if this address is different than the mailing address.

Item 6. Transporter 1 Company Name, and U.S. EPA ID Number

Enter the company name and U.S. EPA ID number of the first transporter who will transport the waste. Vehicle or driver information may not be entered here.

Item 7. Transporter 2 Company Name and U.S. EPA ID Number

If applicable, enter the company name and U.S. EPA ID number of the second transporter who will transport the waste. Vehicle or driver information may not be entered here. If more than two transporters are needed, use a continuation sheet(s) (EPA Form 8700-22A).

Item 8. Designated Facility Name, Site Address, and U.S. EPA ID Number

Enter the company name and site address of the facility designated to receive the waste listed on this manifest. Also enter the facility's phone number and the U.S. EPA twelve-digit identification number of the facility.

Item 9. U.S. DOT *Description (Including Proper Shipping Name, Hazard Class or Division, Identification Number, and Packing Group)*

Item 9a, If the wastes identified in Item 9b consist of both hazardous and nonhazardous materials, then identify the hazardous materials by entering an "X" in this Item next to the corresponding hazardous material identified in Item 9b.

Item 9b. Enter the U.S. DOT Proper Shipping Name, Hazard Class or Division, Identification Number (UN/NA) and Packing Group for each waste as Identified in 49 CFR part 172. Include technical name(s) and reportable quantity references, if applicable. Note: If additional space is needed for waste descriptions, enter these additional descriptions in Item 27 on the continuation sheet (EPA Form 8700-22A). Also, if more than one Emergency Response phone number applies to the various wastes described in either Item 9b or Item 27, enter applicable Emergency Response phone numbers immediately following the shipping descriptions for those Items.

Item 10. Containers (Number and Type)

Enter the number of containers for each waste and the appropriate abbreviation from Table I (below) for the type of container.

TABLE I TYPES OF CO	NTAINERS
BA = Burlap, cloth, paper, or plastic bags, CF = Fiber or plastic boxes, cadons, cases	DT = Dump truck.
CM = Metal boxes, cartons, cases (including roll-	HG = Hopper or gondola cars.
CW = Wooden boxes, cartons, cases	TC = Tank cars.
CY = Cylinders. DF = Fiberboard or plastic drums, barrels, kegs	TP = Portable tanks. TT = Cargo tanks (tank trucks)
DM = Metal drums, barrels, kegs.	

Item 11. Total Quantity

Enter, in designated boxes, the total quantity of waste. Round partial units to the nearest whole unit, and *do not* enter decimals or fractions. To the extent practical, report quantities using appropriate units of measure that will allow you to report quantities with precision. Waste quantities entered should be based on actual measurements or reasonably accurate

estimates of actual quantities shipped. Container capacities are not acceptable as estimates. Item 12. Units of Measure (Weight/Volume)

Enter, in designated boxes, the appropriate abbreviation from Table II (below) for the unit of measure.

TABLE I	UNITS OF MEASURE
G = Gallons (liquids only)	N = Cubic Meters.
K = Kilograms.	P = Pounds.
L = Liters (liquids only).	T = Tons (2000 Pounds).
M = Metric Tons (1000 kilograms)	Y = Cubic Yards,
ote: Tons Melric Tons, Cubic Malora	and Cillia Verde eheufd auf die eiter

Note: Tons, Metric Tons, Cubic Meters, and Cubic Yards should only be reported for very large bulk shipments, such as rail cars, tank trucks, or barges.

Item 13. Waste Codes

Enter up to six federal and state waste codes to describe each waste stream identified in Item 9b. State waste codes that are not redundant with federal codes must be entered here. In addition to the federal waste codes which are most representative of the properties of the waste.

Item 14. Special Handling Instructions and Additional Information

- Generators may enter any special handling or shipment-specific information necessary for the proper management or tracking of the materials under the generator's or other handler's business processes, such as waste profile numbers, container codes, bar codes, or response guide numbers. Generators also may use this space to enter additional descriptive information about their shipped materials, such as chemical names, constituent percentages, physical state, or specific gravity of wastes identified with volume units in Item 12.
- 2. This space may be used to record limited types of federally required information for which there is no specific space provided on the manifest, including any alternate facility designations; the manifest tracking number of the original manifest for rejected wastes and residues that are re-shipped under a second manifest; and the specification of polychlorinated biphenyl (PCB) waste descriptions and PCB out-of-service dates required under 40 CFR 761.207. Generators, however, cannot be required to enter information in this space to meet state regulatory requirements.

Item 15. Generator's/Offeror's Certifications

1. The generator must read, sign, and date the waste minimization certification statement. In signing the waste minimization certification statement, those generators who have not been exempted by statute or regulation from the duty to make a waste minimization certification under section 3002(b) of RCRA are also certifying that they have complied with the waste minimization requirements. The Generator's Certification also contains the required attestation that the shipper's certification). The content of the shipper's certification statement is as follows: Thereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged, marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If export shipment and I am the Primary Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknowledgment of Consent." When a party other than the generator prepares the shipment for transportation, this party may also sign the shipper's certification statement as the offeror of the shipper's certification.

2 Generator or Offeror personnel may preprint the words, "On behalf of" in the signature block or may hand write this statement in the signature block prior to signing the generator/offeror cartification, to indicate that the individual signs as the employee or agent of the named principal.

Note: All of the above information except the handwritten signature required in Item 15 may be pre-printed. (Handwritten signatures are not applicable if the generator is preparing and signing an electronic manifest using EPA's e-Manifest system.)

Tansportation Activ Report BT Acnt ID (Cust#) 7134 (534640) BILL TO: WISC DEPT OF NATURAL RE 1155 PILGRIM RD PLYMOUTH, WI 53073 (920) 893-8528	JOB TRK: J-447- JOB NO: 389466 BILL DOC NO: V8202 SL Acnt ID (Gen#): 48145 ESOURCES JOB SITE: WISCOM 8716 GR MILWAU (920) 893	BSC-SC00 50000 WO NO: 3894666000 19877 EPA ID: WID039052626 (639076) SIN DNR - MOSS-AMERICA CO ANVILLE RD KEE, WI 53224 3-8528
CONTACT: TOM WENTLAND (DNR)	CONTACT: TOM WE	NTLAND (DHR)
MANIFEST NUMBER(S): 002026664VES		
CUSTOMER P.O. NUMBER PROJEC	T NUMBER SHI	P DATE TERR.
	02	/10/2022 W38
TOTAL LOADING DEMORRAGE (HRS) START TIME: END TIME:	COMMENTS	TOTAL UNLOADING DEMURRAGE (AR3) START TIME: END TIME:
TOTAL (HRS):	WASHOUT: YES / NO	TOTAL (HRS);
	USED: UTITZTS LINERS	
	SIGNATURES	DATES
CUSTOMER	h las	02/11/22
DRIVER Labor	26	02/11/22
	COMMENTE OR DELAY EXPLANATION	1997 - 19

Customer authorizes Contractor to make changes on Customer's behalf in regards to transporters used and to perform the Services, including adding or changing transporters listed on manifests. If Customer provides an approved transporter list in writing to Contractor at the time Customer executes this Agreement, Contractor shall select only those transporters on that list when providing transportation services to Customer. If Customer does not provide an approved transporter list in writing to Contractor at the time Customer executes this Agreement, Customer does not provide an approved transporter list in writing to Contractor at the time Customer executes this Agreement, Customer authorizes Contractor to select any permitted transporter to provide transportation services to Customer.

/eolia ES Technical Solutions, L.L.C. is permitted for and has capacity to accept waste listed above in container quantities

2 of 2

Land Disposal Restriction Notification Form

Generator Name WISCONSIN DNR - MOSS-AMERICA CO

EPA ID Number WID039052626

Manifest 002026664VES

This notice is being provided in accordance with 40 CFR 268.7 to inform you that this shipment contains waste restricted from land disposal by the USEPA under the land disposal restriction program. Identified below for each container is the designation of the waste as a wastewater of non-wastewater, the Clean Water Act (CWA) permit status associated with the treatment/disposal facility, applicable waste codes and any corresponding subcategories, list of any F001-F005 solvent constituents that are present in the waste, and any underlying bazardous constituents (UHC) that are present.

Container Number: V8-3894660000.001 (1/ 4)

101 1 101 10 01 9 9 9 9 9 9 9 9 9 9 9 9	
WIP / Approval Code:	657967 / PTA657967L
Form Designation / CWA Status:	Non-Wastewater / Non-CWA
Waste Codes (Subcategories):	F034, K001
Constituents (F001 - F005):	None
UHCs Present:	Not Applicable
Treatment Requirements:	Restricted waste requires treatment to applicable standards.
Additional Notices:	

Container Number: V8-3894660000-002 (1/ 2)

WIP / Approval Code:
Form Designation / CWA Status:
Waste Codes (Subcategories):
Constituents (F001 - F005):
UHCs Present:
Treatment Requirements:
Additional Notices:

1032778 / PTA901032778 Non-Wastewater / Non-CWA F034, K001 None Not Applicable Restricted waste requires treatment to applicable standards.

I hearby certify that all information in this and associated land disposal restriction documents is complete and accurate to the best of my knowledge and information.

Signature _____ Title

Date	maria	har have	
	C/	17/Car	

ATTACHMENT 6 Photographs

Photo Page 1

Photo 1: Soil boring GP-127, depth interval 5-10' bgs, close-up. Dark grey silty clay with trace free product. Photograph taken on January 20, 2022.

Photo 2: Soil boring GP-134, depth interval 5-10' bgs, close-up. Well graded gray, clayey gravel with some sand and trace free product. Photograph taken on January 20, 2022.

Moss American 8716 N. Granville Road, Milwaukee, Wisconsin

Sigma Project Number: 18687

Soil Laboratory Analytical Report

Synergy Environmental Lab, LLC.

1990 Prospect Ct., Appleton, WI 54914 *P 920-830-2455 * F 920-733-0631

STEVEN KIKKERT THE SIGMA GROUP, INC. 1300 W. CANAL STREET MILWAUKEE. WI 53233

Report Date 04-Feb-22

Project Name Project #	MOSS AMEI 18687	ERICAN Invoice # E40464											
Lab Code Sample ID Sample Matrix Sample Date	5040464A GP-126 2-4 Soil 1/20/2022	Develé	11-14			ניח	Malad	E-4 D-4-	Dere De te	A Loord	Cala		
		Kesuit	Unit	LOD	LUQ	DII	Method	Ext Date	Run Date	Analyst	Code		
General General Solids Percent		79.5	%			1	5021		1/24/2022	NJC	1		
Organic													
BTEX													
Benzene		< 0.025	mg/kg	0.016	0.062	1	GRO95/802	21	1/26/2022	CJR	1		
Ethylbenzene		< 0.025	mg/kg	0.015	0.059	1	GRO95/802	21	1/26/2022	CJR	1		
Toluene		< 0.025	mg/kg	0.016	0.061	1	GRO95/802	21	1/26/2022	CJR	1		
m&p-Xylene		< 0.05	mg/kg	0.039	0.15	1	GRO95/802	21	1/26/2022	CJR	1		
o-Xylene		< 0.025	mg/kg	0.014	0.055	1	GRO95/802	21	1/26/2022	CJR	1		
PAH SIM													
Acenaphthene		< 0.011	mg/kg	0.011	0.042	1	M8270C	1/26/2022	1/26/2022	NJC	1		
Acenaphthylene		0.0303 "J"	mg/kg	0.009	0.035	1	M8270C	1/26/2022	1/26/2022	NJC	1		
Anthracene		0.05	mg/kg	0.0071	0.027	1	M8270C	1/26/2022	1/26/2022	NJC	1		
Benzo(a)anthracen	ne	0.0243 "J"	mg/kg	0.0139	0.053	1	M8270C	1/26/2022	1/26/2022	NJC	1		
Benzo(a)pyrene		0.043 "J"	mg/kg	0.0143	0.055	1	M8270C	1/26/2022	1/26/2022	NJC	1		
Benzo(b)fluoranthe	ene	0.067	mg/kg	0.008	0.031	1	M8270C	1/26/2022	1/26/2022	NJC	1		
Benzo(g,h,i)peryle	ene	0.057	mg/kg	0.0125	0.048	1	M8270C	1/26/2022	1/26/2022	NJC	1		
Benzo(k)fluoranth	ene	0.027 "J"	mg/kg	0.0076	0.029	1	M8270C	1/26/2022	1/26/2022	NJC	1		
Chrysene		0.0303 "J"	mg/kg	0.0142	0.055	1	M8270C	1/26/2022	1/26/2022	NJC	1		
Dibenzo(a,h)anthra	acene	< 0.0136	mg/kg	0.0136	0.052	1	M8270C	1/26/2022	1/26/2022	NJC	1		
Fluoranthene		0.064	mg/kg	0.008	0.031	1	M8270C	1/26/2022	1/26/2022	NJC	1		
Fluorene		< 0.0091	mg/kg	0.0091	0.035	1	M8270C	1/26/2022	1/26/2022	NJC	1		
Indeno(1,2,3-cd)py	yrene	0.06	mg/kg	0.0152	0.058	1	M8270C	1/26/2022	1/26/2022	NJC	1		
1-Methyl naphthal	ene	0.0134 "J"	mg/kg	0.0118	0.045	1	M8270C	1/26/2022	1/26/2022	NJC	1		
2-Methyl naphthal	ene	< 0.0186	mg/kg	0.0186	0.071	1	M8270C	1/26/2022	1/26/2022	NJC	1		
Naphthalene		< 0.0201	mg/kg	0.0201	0.077	1	M8270C	1/26/2022	1/26/2022	NJC	1		

Project NameMOSS AMERICANInvProject #18687							Invoic	e # E404€	54		
Lab Code Sample ID Sample Matrix Sample Date	5040464A GP-126 2-4 Soil 1/20/2022										
		Result	Unit	LOD	LOQ I	Dil	Method	Ext Date	Run Date	Analyst	Code
Phenanthrene Pyrene		0.042 0.055	mg/kg mg/kg	0.0089 0.007	0.034 0.027	1 1	M8270C M8270C	1/26/2022 1/26/2022	1/26/2022 1/26/2022	NJC NJC	1 1
Lab Code Sample ID Sample Matrix Sample Date	5040464B GP-126 10- Soil 1/20/2022	12									
		Result	Unit	LOD	LOQ I	Dil	Method	Ext Date	Run Date	Analyst	Code
General General Solids Percent		89.7	%			1	5021		1/24/2022	NJC	1
Organic BTEX											
Benzene		< 0.025	mg/kg	0.016	0.062	1	GRO95/802	21	1/26/2022	CJR	1
Ethylbenzene		< 0.025	mg/kg	0.015	0.059	1	GRO95/802	21	1/26/2022	CJR	1
Toluene		< 0.025	mg/kg	0.016	0.061	1	GRO95/802	21	1/26/2022	CJR	1
m&p-Xylene		< 0.05	mg/kg	0.039	0.15	1	GRO95/802	21	1/26/2022	CJR	1
o-Xylene		< 0.025	mg/kg	0.014	0.055	1	GRO95/802	21	1/26/2022	CJR	1
General											
Diesel Range Orgar	nics	< 10	mg/kg	1.3	4.14	1	DRO95		1/28/2022	NJC	1
Gasoline Range Org	ganics	< 10	mg/kg	2.6	8.36	1	GRO95/802	21	1/26/2022	CJR	1
PAH SIM											
Acenaphthene		< 0.011	mg/kg	0.011	0.042	1	M8270C	1/26/2022	1/26/2022	NJC	1
Acenaphthylene		< 0.009	mg/kg	0.009	0.035	1	M8270C	1/26/2022	1/26/2022	NJC	1
Anthracene		0.0241 "J"	mg/kg	0.0071	0.027	1	M8270C	1/26/2022	1/26/2022	NJC	1
Benzo(a)anthracene		0.0305 "J"	mg/kg	0.0139	0.053	1	M8270C	1/26/2022	1/26/2022	NJC	1
Benzo(a)pyrene		0.0258 "J"	mg/kg	0.0143	0.055	1	M8270C	1/26/2022	1/26/2022	NJC	1
Benzo(b)fluoranthe	ne	0.047	mg/kg	0.008	0.031	1	M8270C	1/26/2022	1/26/2022	NJC	1
Benzo(g,h,1)perylen	e	0.01/4 "J"	mg/kg	0.0125	0.048	1	M8270C	1/26/2022	1/26/2022	NJC	1
Chrysone	ne	0.0261 J	mg/kg	0.0076	0.029	1	M8270C	1/26/2022	1/26/2022	NIC	1
Dibonzo(a h)anthro	2010	0.058	mg/kg	0.0142	0.055	1	M8270C	1/26/2022	1/26/2022	NIC	1
Eluoranthene	lene	< 0.0130	mg/kg	0.0130	0.032	1	M8270C	1/26/2022	1/26/2022	NIC	1
Fluorene		< 0.0091	mg/kg	0.0001	0.031	1	M8270C	1/26/2022	1/26/2022	NIC	1
Indeno(1 2 3-cd)pvr	ene	0.0217 "I"	mo/ko	0.0152	0.055	1	M8270C	1/26/2022	1/26/2022	NIC	1
1-Methyl nanhthale	ne	< 0.0118	mg/kg	0.0118	0.045	1	M8270C	1/26/2022	1/26/2022	NJC	1
2-Methyl naphthale	ne	< 0.0186	mg/kg	0.0186	0.071	1	M8270C	1/26/2022	1/26/2022	NJC	1
Naphthalene		< 0.0201	mg/kg	0.0201	0.077	1	M8270C	1/26/2022	1/26/2022	NJC	1
Phenanthrene		0.0135 "J"	mg/kg	0.0089	0.034	1	M8270C	1/26/2022	1/26/2022	NJC	1
Pyrene		0.115	mg/kg	0.007	0.027	1	M8270C	1/26/2022	1/26/2022	NJC	1

Project Name Proiect #	MOSS AME 18687	RICAN	Invoice # E40464									
Lab Code Sample ID Sample Matrix Sample Date	5040464C GP-128 2-4 Soil 1/20/2022											
		Result	Unit	LOD	LOQ	Dil	Method E	xt Date	Run Date	Analyst	Code	
General General												
Solids Percent		60.1	%			1	5021		1/24/2022	NJC	1	
Organic BTEX												
Benzene		< 0.025	mg/kg	0.016	0.062	1	GRO95/8021		1/26/2022	CJR	1	
Ethylbenzene		< 0.025	mg/kg	0.015	0.059	1	GRO95/8021		1/26/2022	CJR	1	
Toluene		0.033 "J"	mg/kg	0.016	0.061	1	GRO95/8021		1/26/2022	CJR	1	
m&p-Xylene		0.052 "J"	mg/kg	0.039	0.15	1	GRO95/8021		1/26/2022	CJR	1	
o-Xylene		0.047 "J"	mg/kg	0.014	0.055	1	GRO95/8021		1/26/2022	CJR	1	
PAH SIM												
Acenaphthene		1.58	mg/kg	0.22	0.84	20	M8270C	1/26/2022	1/27/2022	NJC	1	
Acenaphthylene		19.2	mg/kg	0.18	0.7	20	M8270C	1/26/2022	1/27/2022	NJC	1	
Anthracene		49.0	mg/kg	0.142	0.54	20	M8270C	1/26/2022	1/27/2022	NJC	1	
Benzo(a)anthracen	ie	10.2	mg/kg	0.278	1.06	20	M8270C	1/26/2022	1/27/2022	NJC	1	
Benzo(a)pyrene		33.0	mg/kg	0.286	1.1	20	M8270C	1/26/2022	1/27/2022	NJC	1	
Benzo(b)fluoranthe	ene	44.0	mg/kg	0.16	0.62	20	M8270C	1/26/2022	1/27/2022	NJC	1	
Benzo(g,h,i)peryle	ne	78.0	mg/kg	0.25	0.96	20	M8270C	1/26/2022	1/27/2022	NJC	1	
Benzo(k)fluoranthe	ene	5.30	mg/kg	0.152	0.58	20	M8270C	1/26/2022	1/27/2022	NJC	1	
Chrysene		8.40	mg/kg	0.284	1.1	20	M8270C	1/26/2022	1/27/2022	NJC	1	
Dibenzo(a,h)anthra	acene	12.0	mg/kg	0.272	1.04	20	M8270C	1/26/2022	1/27/2022	NJC	1	
Fluoranthene		23.3	mg/kg	0.16	0.62	20	M8270C	1/26/2022	1/27/2022	NJC	1	
Fluorene		2.07	mg/kg	0.182	0.7	20	M8270C	1/26/2022	1/27/2022	NJC	1	
Indeno(1,2,3-cd)py	yrene	91.0	mg/kg	0.304	1.16	20	M8270C	1/26/2022	1/27/2022	NJC	1	
1-Methyl naphthal	ene	1.13	mg/kg	0.236	0.9	20	M8270C	1/26/2022	1/27/2022	NJC	1	
2-Methyl naphthal	ene	2.29	mg/kg	0.372	1.42	20	M8270C	1/26/2022	1/27/2022	NJC	1	
Naphthalene		6.70	mg/kg	0.402	1.54	20	M8270C	1/26/2022	1/27/2022	NJC	1	
Phenanthrene		18.4	mg/kg	0.178	0.68	20	M8270C	1/26/2022	1/27/2022	NJC	1	
Pyrene		19.5	mg/kg	0.14	0.54	20	M8270C	1/26/2022	1/27/2022	NJC	1	

Project Name Proiect #	Ime MOSS AMERICAN Invoice # E40464 18687 18 <t< th=""><th></th></t<>										
Lab Code Sample ID Sample Matrix Sample Date	5040464D GP-128 6-8 Soil 1/20/2022	3									
		Result	Unit	LOD	LOQ	Dil	Method I	Ext Date	Run Date	Analyst	Code
General											
General											
Solids Percent		90.7	%			1	5021		1/24/2022	NJC	1
Organic											
BTEX											
Benzene		< 0.025	mg/kg	0.016	0.062	1	GRO95/8021	l	1/27/2022	CJR	1
Ethylbenzene		< 0.025	mg/kg	0.015	0.059	1	GRO95/8021	l	1/27/2022	CJR	1
Toluene		< 0.025	mg/kg	0.016	0.061	1	GRO95/8021	l	1/27/2022	CJR	1
m&p-Xylene		< 0.05	mg/kg	0.039	0.15	1	GRO95/8021	l	1/27/2022	CJR	1
o-Xylene		< 0.025	mg/kg	0.014	0.055	1	GRO95/8021	1	1/27/2022	CJR	1
General											
Diesel Range Orga	anics	< 10	mg/kg	1.3	4.14	1	DRO95		1/28/2022	NJC	1
Gasoline Range O	rganics	< 10	mg/kg	2.6	8.36	1	GRO95/8021	l	1/26/2022	CJR	1
PAH SIM											
Acenaphthene		0.088	mg/kg	0.011	0.042	1	M8270C	1/26/2022	1/26/2022	NJC	1
Acenaphthylene		0.09	mg/kg	0.009	0.035	1	M8270C	1/26/2022	1/26/2022	NJC	1
Anthracene		0.044	mg/kg	0.0071	0.027	1	M8270C	1/26/2022	1/26/2022	NJC	1
Benzo(a)anthracer	ne	< 0.0139	mg/kg	0.0139	0.053	1	M8270C	1/26/2022	1/26/2022	NJC	1
Benzo(a)pyrene		0.045 "J"	mg/kg	0.0143	0.055	1	M8270C	1/26/2022	1/26/2022	NJC	1
Benzo(b)fluoranth	ene	0.0081 "J"	mg/kg	0.008	0.031	1	M8270C	1/26/2022	1/26/2022	NJC	1
Benzo(g,h,i)peryle	ene	0.036 "J"	mg/kg	0.0125	0.048	1	M8270C	1/26/2022	1/26/2022	NJC	1
Benzo(k)fluoranth	ene	< 0.0076	mg/kg	0.0076	0.029	1	M8270C	1/26/2022	1/26/2022	NJC	1
Chrysene		< 0.0124	mg/kg	0.0142	0.055	1	M8270C	1/26/2022	1/26/2022	NJC	1
Dibenzo(a,h)anthr	acene	< 0.0136	mg/kg	0.0136	0.052	1	M8270C	1/26/2022	1/26/2022	NJC	1
Fluoranthene		0.0083 "J"	mg/kg	0.008	0.031	1	M8270C	1/26/2022	1/26/2022	NJC	1
Fluorene		0.083	mg/kg	0.0091	0.035	1	M8270C	1/26/2022	1/26/2022	NJC	1
Indeno(1,2,3-cd)py	yrene	0.034 "J"	mg/kg	0.0152	0.058	1	M8270C	1/26/2022	1/26/2022	NJC	1
1-Methyl naphthal	ene	0.0302 "J"	mg/kg	0.0118	0.045	1	M8270C	1/26/2022	1/26/2022	NJC	1
2-Methyl naphthal	ene	< 0.0186	mg/kg	0.0186	0.071	1	M8270C	1/26/2022	1/26/2022	NJC	1
Naphthalene		< 0.0201	mg/kg	0.0201	0.077	1	M8270C	1/26/2022	1/26/2022	NJC	1
Phenanthrene		0.0303 "J"	mg/kg	0.0089	0.034	1	M8270C	1/26/2022	1/26/2022	NJC	1
Pyrene		0.0249 "J"	mg/kg	0.007	0.027	1	M8270C	1/26/2022	1/26/2022	NJC	1

Project Name Proiect #	MOSS AME 18687	RICAN	AN Invoice # E40464									
Lab Code Sample ID Sample Matrix Sample Date	5040464E GP-129 8-1 Soil 1/20/2022	0	Unit IOD IOO Dil Method Evt Date Run Date Analyst (
		Result	Unit	LOD I	LOQ	Dil	Method E	xt Date	Run Date	Analyst	Code	
General												
General												
Solids Percent		82.9	%			1	5021		1/24/2022	NJC	1	
Organic BTEX												
Benzene		< 0.025	mg/kg	0.016	0.062	1	GRO95/8021		1/26/2022	CJR	1	
Ethylbenzene		< 0.025	mg/kg	0.015	0.059	1	GRO95/8021		1/26/2022	CJR	1	
Toluene		< 0.025	mg/kg	0.016	0.061	1	GRO95/8021		1/26/2022	CJR	1	
m&p-Xylene		< 0.05	mg/kg	0.039	0.15	1	GRO95/8021		1/26/2022	CJR	1	
o-Xylene		< 0.025	mg/kg	0.014	0.055	1	GRO95/8021		1/26/2022	CJR	1	
PAH SIM												
Acenaphthene		< 0.011	mg/kg	0.011	0.042	1	M8270C	2/3/2022	2/3/2022	NJC	1	
Acenaphthylene		< 0.009	mg/kg	0.009	0.035	1	M8270C	2/3/2022	2/3/2022	NJC	1	
Anthracene		< 0.0071	mg/kg	0.0071	0.027	1	M8270C	2/3/2022	2/3/2022	NJC	1	
Benzo(a)anthracen	e	< 0.0139	mg/kg	0.0139	0.053	1	M8270C	2/3/2022	2/3/2022	NJC	1	
Benzo(a)pyrene		< 0.0143	mg/kg	0.0143	0.055	1	M8270C	2/3/2022	2/3/2022	NJC	1	
Benzo(b)fluoranthe	ene	< 0.008	mg/kg	0.008	0.031	1	M8270C	2/3/2022	2/3/2022	NJC	1	
Benzo(g,h,i)peryler	ne	< 0.0125	mg/kg	0.0125	0.048	1	M8270C	2/3/2022	2/3/2022	NJC	1	
Benzo(k)fluoranthe	ene	< 0.0076	mg/kg	0.0076	0.029	1	M8270C	2/3/2022	2/3/2022	NJC	1	
Chrysene		< 0.0124	mg/kg	0.0142	0.055	1	M8270C	2/3/2022	2/3/2022	NJC	1	
Dibenzo(a,h)anthra	acene	< 0.0136	mg/kg	0.0136	0.052	1	M8270C	2/3/2022	2/3/2022	NJC	1	
Fluoranthene		0.0198 "J"	mg/kg	0.008	0.031	1	M8270C	2/3/2022	2/3/2022	NJC	1	
Fluorene		< 0.0091	mg/kg	0.0091	0.035	1	M8270C	2/3/2022	2/3/2022	NJC	1	
Indeno(1,2,3-cd)py	vrene	< 0.0152	mg/kg	0.0152	0.058	1	M8270C	2/3/2022	2/3/2022	NJC	1	
1-Methyl naphthale	ene	< 0.0118	mg/kg	0.0118	0.045	1	M8270C	2/3/2022	2/3/2022	NJC	1	
2-Methyl naphthale	ene	< 0.0186	mg/kg	0.0186	0.071	1	M8270C	2/3/2022	2/3/2022	NJC	1	
Naphthalene		< 0.0201	mg/kg	0.0201	0.077	1	M8270C	2/3/2022	2/3/2022	NJC	1	
Phenanthrene		< 0.0089	mg/kg	0.0089	0.034	1	M8270C	2/3/2022	2/3/2022	NJC	1	
Pyrene		0.0256 "J"	mg/kg	0.007	0.027	1	M8270C	2/3/2022	2/3/2022	NJC	1	

Project Name Proiect #	MOSS AMERICAN Invoice # E40464 18687										
Lab Code Sample ID Sample Matrix Sample Date	5040464 GP-129 1 Soil 1/20/202	F 12-14 2									
		Result	Unit	LOD I	LOQ I	Dil	Method Ex	xt Date	Run Date	Analyst	Code
General General											
Solids Percent		87.9	%			1	5021		1/24/2022	NJC	1
Organic BTEX											
Benzene		< 0.025	mg/kg	0.016	0.062	1	GRO95/8021		1/27/2022	CJR	1
Ethylbenzene		< 0.025	mg/kg	0.015	0.059	1	GRO95/8021		1/27/2022	CJR	1
Toluene		< 0.025	mg/kg	0.016	0.061	1	GRO95/8021		1/27/2022	CJR	1
m&p-Xylene		< 0.05	mg/kg	0.039	0.15	1	GRO95/8021		1/27/2022	CJR	1
o-Xylene		< 0.025	mg/kg	0.014	0.055	1	GRO95/8021		1/27/2022	CJR	1
General											
Diesel Range Orga	anics	15.1	mg/kg	1.3	4.14	1	DRO95		1/28/2022	NJC	1
Gasoline Range Or	rganics	< 10	mg/kg	2.6	8.36	1	GRO95/8021		1/26/2022	CJR	1
PAH SIM											
Acenaphthene		4.60	mg/kg	0.022	0.084	2	M8270C	2/3/2022	2/4/2022	NJC	1
Acenaphthylene		0.05 "J"	mg/kg	0.018	0.07	2	M8270C	2/3/2022	2/4/2022	NJC	1
Anthracene		1.55	mg/kg	0.0142	0.054	2	M8270C	2/3/2022	2/4/2022	NJC	1
Benzo(a)anthracen	ie	0.69	mg/kg	0.0278	0.106	2	M8270C	2/3/2022	2/4/2022	NJC	1
Benzo(a)pyrene		0.213	mg/kg	0.0286	0.11	2	M8270C	2/3/2022	2/4/2022	NJC	1
Benzo(b)fluoranth	ene	0.34	mg/kg	0.016	0.062	2	M8270C	2/3/2022	2/4/2022	NJC	1
Benzo(g,h,i)peryle	ne	0.071 "J"	mg/kg	0.025	0.096	2	M8270C	2/3/2022	2/4/2022	NJC	1
Benzo(k)fluoranth	ene	0.155	mg/kg	0.0152	0.058	2	M8270C	2/3/2022	2/4/2022	NJC	1
Chrysene		0.73	mg/kg	0.0284	0.11	2	M8270C	2/3/2022	2/4/2022	NJC	1
Dibenzo(a,h)anthra	acene	< 0.0272	mg/kg	0.0272	0.104	2	M8270C	2/3/2022	2/4/2022	NJC	1
Fluoranthene		4.40	mg/kg	0.016	0.062	2	M8270C	2/3/2022	2/4/2022	NJC	1
Fluorene		3.60	mg/kg	0.0182	0.07	2	M8270C	2/3/2022	2/4/2022	NJC	1
Indeno(1,2,3-cd)py	yrene	0.102 "J"	mg/kg	0.0304	0.116	2	M8270C	2/3/2022	2/4/2022	NJC	1
1-Methyl naphthal	ene	1.39	mg/kg	0.0236	0.09	2	M8270C	2/3/2022	2/4/2022	NJC	1
2-Methyl naphthal	ene	2.55	mg/kg	0.0372	0.142	2	M8270C	2/3/2022	2/4/2022	NJC	1
Naphthalene		4.50	mg/kg	0.0402	0.154	2	M8270C	2/3/2022	2/4/2022	NJC	1
Phenanthrene		9.00	mg/kg	0.0178	0.068	2	M8270C	2/3/2022	2/4/2022	NJC	1
Pyrene		3.00	mg/kg	0.014	0.054	2	M8270C	2/3/2022	2/4/2022	NJC	1

Project Name Proiect #	MOSS AME 18687	RICAN					Invoice	# E4040	54		
Lab Code Sample ID Sample Matrix Sample Date	5040464G GP-130 8-1 Soil 1/20/2022	0									
		Result	Unit	LOD I	LOQ I	Dil	Method E	xt Date	Run Date	Analyst	Code
General											
General											
Solids Percent		89.6	%			1	5021		1/24/2022	NJC	1
Organic BTEX											
Benzene		< 0.025	mg/kg	0.016	0.062	1	GRO95/8021		1/27/2022	CJR	1
Ethylbenzene		< 0.025	mg/kg	0.015	0.059	1	GRO95/8021		1/27/2022	CJR	1
Toluene		< 0.025	mg/kg	0.016	0.061	1	GRO95/8021		1/27/2022	CJR	1
m&p-Xylene		< 0.05	mg/kg	0.039	0.15	1	GRO95/8021		1/27/2022	CJR	1
o-Xylene		< 0.025	mg/kg	0.014	0.055	1	GRO95/8021		1/27/2022	CJR	1
PAH SIM											
Acenaphthene		< 0.011	mg/kg	0.011	0.042	1	M8270C	2/3/2022	2/3/2022	NJC	1
Acenaphthylene		0.0097 "J"	mg/kg	0.009	0.035	1	M8270C	2/3/2022	2/3/2022	NJC	1
Anthracene		0.0196 "J"	mg/kg	0.0071	0.027	1	M8270C	2/3/2022	2/3/2022	NJC	1
Benzo(a)anthracen	e	0.047 "J"	mg/kg	0.0139	0.053	1	M8270C	2/3/2022	2/3/2022	NJC	1
Benzo(a)pyrene		0.036 "J"	mg/kg	0.0143	0.055	1	M8270C	2/3/2022	2/3/2022	NJC	1
Benzo(b)fluoranthe	ene	0.056	mg/kg	0.008	0.031	1	M8270C	2/3/2022	2/3/2022	NJC	1
Benzo(g,h,i)peryler	ne	0.04 "J"	mg/kg	0.0125	0.048	1	M8270C	2/3/2022	2/3/2022	NJC	1
Benzo(k)fluoranthe	ene	0.0197 "J"	mg/kg	0.0076	0.029	1	M8270C	2/3/2022	2/3/2022	NJC	1
Chrysene		0.049 "J"	mg/kg	0.0142	0.055	1	M8270C	2/3/2022	2/3/2022	NJC	1
Dibenzo(a,h)anthra	acene	< 0.0136	mg/kg	0.0136	0.052	1	M8270C	2/3/2022	2/3/2022	NJC	1
Fluoranthene		0.171	mg/kg	0.008	0.031	1	M8270C	2/3/2022	2/3/2022	NJC	1
Fluorene		< 0.0091	mg/kg	0.0091	0.035	1	M8270C	2/3/2022	2/3/2022	NJC	1
Indeno(1,2,3-cd)py	vrene	0.048 "J"	mg/kg	0.0152	0.058	1	M8270C	2/3/2022	2/3/2022	NJC	1
1-Methyl naphthal	ene	< 0.0118	mg/kg	0.0118	0.045	1	M8270C	2/3/2022	2/3/2022	NJC	1
2-Methyl naphthale	ene	< 0.0186	mg/kg	0.0186	0.071	1	M8270C	2/3/2022	2/3/2022	NJC	1
Naphthalene		< 0.0201	mg/kg	0.0201	0.077	1	M8270C	2/3/2022	2/3/2022	NJC	1
Phenanthrene		0.0151 "J"	mg/kg	0.0089	0.034	1	M8270C	2/3/2022	2/3/2022	NJC	1
Pyrene		0.131	mg/kg	0.007	0.027	1	M8270C	2/3/2022	2/3/2022	NJC	1

Project Name Proiect #	MOSS AM 18687	IERICAN	AN Invoice # E40464									
Lab Code Sample ID Sample Matrix Sample Date	5040464 GP-130 1 Soil 1/20/202	H 0-12 2										
		Result	Unit	LOD 1	LOQ Di	il	Method Ex	t Date	Run Date	Analyst	Code	
General												
General												
Solids Percent		84.6	%			1	5021		1/24/2022	NJC	1	
Organic BTEX												
Benzene		< 0.025	mg/kg	0.016	0.062	1	GRO95/8021		1/27/2022	CJR	1	
Ethylbenzene		< 0.025	mg/kg	0.015	0.059	1	GRO95/8021		1/27/2022	CJR	1	
Toluene		< 0.025	mg/kg	0.016	0.061	1	GRO95/8021		1/27/2022	CJR	1	
m&p-Xylene		< 0.05	mg/kg	0.039	0.15	1	GRO95/8021		1/27/2022	CJR	1	
o-Xylene		< 0.025	mg/kg	0.014	0.055	1	GRO95/8021		1/27/2022	CJR	1	
General												
Diesel Range Orga	nics	< 10	mg/kg	1.3	4.14	1	DRO95		1/28/2022	NJC	1	
Gasoline Range Or	ganics	< 10	mg/kg	2.6	8.36	1	GRO95/8021		1/27/2022	CJR	1	
PAH SIM												
Acenaphthene		0.048	mg/kg	0.011	0.042	1	M8270C	2/3/2022	2/3/2022	NJC	1	
Acenaphthylene		< 0.009	mg/kg	0.009	0.035	1	M8270C	2/3/2022	2/3/2022	NJC	1	
Anthracene		0.0116 "J"	mg/kg	0.0071	0.027	1	M8270C	2/3/2022	2/3/2022	NJC	1	
Benzo(a)anthracen	e	0.0261 "J"	mg/kg	0.0139	0.053	1	M8270C	2/3/2022	2/3/2022	NJC	1	
Benzo(a)pyrene		< 0.0143	mg/kg	0.0143	0.055	1	M8270C	2/3/2022	2/3/2022	NJC	1	
Benzo(b)fluoranthe	ene	0.0212 "J"	mg/kg	0.008	0.031	1	M8270C	2/3/2022	2/3/2022	NJC	1	
Benzo(g,h,i)peryle	ne	< 0.0125	mg/kg	0.0125	0.048	1	M8270C	2/3/2022	2/3/2022	NJC	1	
Benzo(k)fluoranthe	ene	0.0093 "J"	mg/kg	0.0076	0.029	1	M8270C	2/3/2022	2/3/2022	NJC	1	
Chrysene		0.02 "J"	mg/kg	0.0142	0.055	1	M8270C	2/3/2022	2/3/2022	NJC	1	
Dibenzo(a,h)anthra	acene	< 0.0136	mg/kg	0.0136	0.052	1	M8270C	2/3/2022	2/3/2022	NJC	1	
Fluoranthene		0.091	mg/kg	0.008	0.031	1	M8270C	2/3/2022	2/3/2022	NJC	1	
Fluorene		0.0275 "J"	mg/kg	0.0091	0.035	1	M8270C	2/3/2022	2/3/2022	NJC	1	
Indeno(1,2,3-cd)py	vrene	< 0.0152	mg/kg	0.0152	0.058	1	M8270C	2/3/2022	2/3/2022	NJC	1	
1-Methyl naphthal	ene	< 0.0118	mg/kg	0.0118	0.045	1	M8270C	2/3/2022	2/3/2022	NJC	1	
2-Methyl naphthal	ene	< 0.0186	mg/kg	0.0186	0.071	1	M8270C	2/3/2022	2/3/2022	NJC	1	
Naphthalene		< 0.0201	mg/kg	0.0201	0.077	1	M8270C	2/3/2022	2/3/2022	NJC	1	
Phenanthrene		0.0256 "J"	mg/kg	0.0089	0.034	1	M8270C	2/3/2022	2/3/2022	NJC	1	
Pyrene		0.073	mg/kg	0.007	0.027	1	M8270C	2/3/2022	2/3/2022	NJC	1	

Project Name Proiect #	MOSS AME 18687	RICAN					Invoice	# E404e	54		
Lab Code Sample ID Sample Matrix Sample Date	5040464I GP-131 2-4 Soil 1/20/2022										
		Result	Unit	LOD 1	LOQ	Dil	Method H	Ext Date	Run Date	Analyst	Code
General											
General											
Solids Percent		88.4	%			1	5021		1/24/2022	NJC	1
Organic BTEX											
Benzene		< 0.025	mg/kg	0.016	0.062	1	GRO95/8021		1/27/2022	CJR	1
Ethylbenzene		< 0.025	mg/kg	0.015	0.059	1	GRO95/8021		1/27/2022	CJR	1
Toluene		< 0.025	mg/kg	0.016	0.061	1	GRO95/8021		1/27/2022	CJR	1
m&p-Xylene		< 0.05	mg/kg	0.039	0.15	1	GRO95/8021		1/27/2022	CJR	1
o-Xylene		< 0.025	mg/kg	0.014	0.055	1	GRO95/8021		1/27/2022	CJR	1
PAH SIM											
Acenaphthene		< 0.011	mg/kg	0.011	0.042	1	M8270C	2/3/2022	2/3/2022	NJC	1
Acenaphthylene		0.0189 "J"	mg/kg	0.009	0.035	1	M8270C	2/3/2022	2/3/2022	NJC	1
Anthracene		0.04	mg/kg	0.0071	0.027	1	M8270C	2/3/2022	2/3/2022	NJC	1
Benzo(a)anthracen	e	0.043 "J"	mg/kg	0.0139	0.053	1	M8270C	2/3/2022	2/3/2022	NJC	1
Benzo(a)pyrene		0.035 "J"	mg/kg	0.0143	0.055	1	M8270C	2/3/2022	2/3/2022	NJC	1
Benzo(b)fluoranthe	ene	0.069	mg/kg	0.008	0.031	1	M8270C	2/3/2022	2/3/2022	NJC	1
Benzo(g,h,i)peryler	ne	0.076	mg/kg	0.0125	0.048	1	M8270C	2/3/2022	2/3/2022	NJC	1
Benzo(k)fluoranthe	ene	0.03	mg/kg	0.0076	0.029	1	M8270C	2/3/2022	2/3/2022	NJC	1
Chrysene		0.059	mg/kg	0.0142	0.055	1	M8270C	2/3/2022	2/3/2022	NJC	1
Dibenzo(a,h)anthra	acene	< 0.0136	mg/kg	0.0136	0.052	1	M8270C	2/3/2022	2/3/2022	NJC	1
Fluoranthene		0.081	mg/kg	0.008	0.031	1	M8270C	2/3/2022	2/3/2022	NJC	1
Fluorene		< 0.0091	mg/kg	0.0091	0.035	1	M8270C	2/3/2022	2/3/2022	NJC	1
Indeno(1,2,3-cd)py	vrene	0.073	mg/kg	0.0152	0.058	1	M8270C	2/3/2022	2/3/2022	NJC	1
1-Methyl naphthal	ene	< 0.0118	mg/kg	0.0118	0.045	1	M8270C	2/3/2022	2/3/2022	NJC	1
2-Methyl naphthale	ene	< 0.0186	mg/kg	0.0186	0.071	1	M8270C	2/3/2022	2/3/2022	NJC	1
Naphthalene		< 0.0201	mg/kg	0.0201	0.077	1	M8270C	2/3/2022	2/3/2022	NJC	1
Phenanthrene		0.044	mg/kg	0.0089	0.034	1	M8270C	2/3/2022	2/3/2022	NJC	1
Pyrene		0.083	mg/kg	0.007	0.027	1	M8270C	2/3/2022	2/3/2022	NJC	1

Project Name Proiect #	MOSS AME 18687	ERICAN					Invoice #	ŧ E4040	54		
Lab Code Sample ID Sample Matrix Sample Date	5040464J GP-131 8-1 Soil 1/20/2022	10									
		Result	Unit	LOD 1	LOQ D	bil	Method Ex	t Date	Run Date	Analyst	Code
General											
General											
Solids Percent		84.3	%			1	5021		1/24/2022	NJC	1
Organic											
BTEX											
Benzene		< 0.025	mg/kg	0.016	0.062	1	GRO95/8021		1/27/2022	CJR	1
Ethylbenzene		< 0.025	mg/kg	0.015	0.059	1	GRO95/8021		1/27/2022	CJR	1
Toluene		< 0.025	mg/kg	0.016	0.061	1	GR095/8021		1/27/2022	CJR	1
m&p-Xylene		< 0.05	mg/kg	0.039	0.15	1	GR095/8021		1/27/2022	CJR	1
o-Xylene		< 0.025	mg/kg	0.014	0.055	1	GR095/8021		1/2//2022	CJR	1
General		10		1.2			55005		1/20/2022	NUC	
Diesel Range Orga	mics	< 10	mg/kg	1.3	4.14	1	DR095		1/28/2022	NJC	1
Gasoline Range Or	ganics	< 10	mg/kg	2.6	8.36	1	GR095/8021		1/2//2022	CJR	1
PAH SIM		2.02		0.011	0.042		100500	2/2/2022	2/2/2022	NUC	
Acenaphthene		2.02	mg/kg	0.011	0.042	1	M8270C	2/3/2022	2/3/2022	NJC	1
Acenaphthylene		0.052	mg/kg	0.009	0.035	1	M8270C	2/3/2022	2/3/2022	NJC	1
Anthracene		0.52	mg/kg	0.0071	0.027	1	M8270C	2/3/2022	2/3/2022	NJC	1
Benzo(a)anthracen	e	0.55	mg/Kg	0.0139	0.053	1	M8270C	2/3/2022	2/3/2022	NJC	1
Benzo(a)pyrene		0.33	mg/Kg	0.0143	0.055	1	M8270C	2/3/2022	2/3/2022	NJC	1
Benzo(b)IIuorantne	ene	0.50	mg/kg	0.008	0.031	1	M8270C	2/3/2022	2/3/2022	NJC	1
Benzo((t))fluorenthe		0.203	mg/Kg	0.0123	0.048	1	M8270C	2/3/2022	2/3/2022	NIC	1
Chrysona	ene	0.102	mg/kg	0.0070	0.029	1	M8270C	2/3/2022	2/3/2022	NIC	1
Dibenzo(a h)anthra	cana	0.30 "I"	mg/kg	0.0142	0.055	1	M8270C	2/3/2022	2/3/2022	NIC	1
Fluoranthene	leche	3.13	mg/kg	0.0150	0.031	1	M8270C	2/3/2022	2/3/2022	NIC	1
Fluorene		1 41	mg/kg	0.008	0.031	1	M8270C	2/3/2022	2/3/2022	NIC	1
Indeno(1.2.3-cd)py	rene	0.262	mg/kg	0.0152	0.055	1	M8270C	2/3/2022	2/3/2022	NIC	1
1-Methyl nanhthal	ene	0.031 "I"	mo/ko	0.0112	0.045	1	M8270C	2/3/2022	2/3/2022	NIC	1
2-Methyl naphthale	ene	0.0231 "I"	mg/kg	0.0186	0.071	1	M8270C	2/3/2022	2/3/2022	NIC	1
Naphthalene		0.061 "J"	mø/kø	0.0201	0.077	1	M8270C	2/3/2022	2/3/2022	NJC	1
Phenanthrene		0.309	mg/kg	0.0089	0.034	1	M8270C	2/3/2022	2/3/2022	NJC	1
Pyrene		2.15	mg/kg	0.007	0.027	1	M8270C	2/3/2022	2/3/2022	NJC	1
-			0.0								

Project Name Proiect #	MOSS AME 18687	RICAN					Invoice	e# E4046	54		
Lab Code Sample ID Sample Matrix Sample Date	5040464K GP-132 0-2 Soil 1/20/2022										
		Result	Unit	LOD 1	LOQ	Dil	Method 1	Ext Date	Run Date	Analyst	Code
General											
General											
Solids Percent		88.6	%			1	5021		1/24/2022	NJC	1
Organic BTEX											
Benzene		< 0.025	mg/kg	0.016	0.062	1	GRO95/802	1	1/27/2022	CJR	1
Ethylbenzene		< 0.025	mg/kg	0.015	0.059	1	GRO95/802	1	1/27/2022	CJR	1
Toluene		< 0.025	mg/kg	0.016	0.061	1	GRO95/802	1	1/27/2022	CJR	1
m&p-Xylene		< 0.05	mg/kg	0.039	0.15	1	GRO95/802	1	1/27/2022	CJR	1
o-Xylene		< 0.025	mg/kg	0.014	0.055	1	GRO95/802	1	1/27/2022	CJR	1
PAH SIM											
Acenaphthene		< 0.011	mg/kg	0.011	0.042	1	M8270C	2/3/2022	2/3/2022	NJC	1
Acenaphthylene		< 0.009	mg/kg	0.009	0.035	1	M8270C	2/3/2022	2/3/2022	NJC	1
Anthracene		0.0081 "J"	mg/kg	0.0071	0.027	1	M8270C	2/3/2022	2/3/2022	NJC	1
Benzo(a)anthracen	ie	< 0.0139	mg/kg	0.0139	0.053	1	M8270C	2/3/2022	2/3/2022	NJC	1
Benzo(a)pyrene		< 0.0143	mg/kg	0.0143	0.055	1	M8270C	2/3/2022	2/3/2022	NJC	1
Benzo(b)fluoranthe	ene	0.0142 "J"	mg/kg	0.008	0.031	1	M8270C	2/3/2022	2/3/2022	NJC	1
Benzo(g,h,i)peryle	ne	0.0146 "J"	mg/kg	0.0125	0.048	1	M8270C	2/3/2022	2/3/2022	NJC	1
Benzo(k)fluoranthe	ene	< 0.0076	mg/kg	0.0076	0.029	1	M8270C	2/3/2022	2/3/2022	NJC	1
Chrysene		< 0.0124	mg/kg	0.0142	0.055	1	M8270C	2/3/2022	2/3/2022	NJC	1
Dibenzo(a,h)anthra	acene	< 0.0136	mg/kg	0.0136	0.052	1	M8270C	2/3/2022	2/3/2022	NJC	1
Fluoranthene		0.0142 "J"	mg/kg	0.008	0.031	1	M8270C	2/3/2022	2/3/2022	NJC	1
Fluorene		< 0.0091	mg/kg	0.0091	0.035	1	M8270C	2/3/2022	2/3/2022	NJC	1
Indeno(1,2,3-cd)py	rene	< 0.0152	mg/kg	0.0152	0.058	1	M8270C	2/3/2022	2/3/2022	NJC	1
1-Methyl naphthal	ene	< 0.0118	mg/kg	0.0118	0.045	1	M8270C	2/3/2022	2/3/2022	NJC	1
2-Methyl naphthal	ene	< 0.0186	mg/kg	0.0186	0.071	1	M8270C	2/3/2022	2/3/2022	NJC	1
Naphthalene		< 0.0201	mg/kg	0.0201	0.077	1	M8270C	2/3/2022	2/3/2022	NJC	1
Phenanthrene		0.0107 "J"	mg/kg	0.0089	0.034	1	M8270C	2/3/2022	2/3/2022	NJC	1
Pyrene		0.0117 "J"	mg/kg	0.007	0.027	1	M8270C	2/3/2022	2/3/2022	NJC	1

Project Name Proiect #	MOSS AME 18687	ERICAN					Invoice	# E4040	54		
Lab Code Sample ID Sample Matrix Sample Date	5040464L GP-132 10- Soil 1/20/2022	-12									
		Result	Unit	LOD I	LOQ I	Dil	Method E	xt Date	Run Date	Analyst	Code
General General Solids Percent		87.9	%			1	5021		1/24/2022	NJC	1
Organic BTEX						-					-
Benzene		< 0.025	mg/kg	0.016	0.062	1	GRO95/8021		1/27/2022	CJR	1
Ethylbenzene		< 0.025	mg/kg	0.015	0.059	1	GRO95/8021		1/27/2022	CJR	1
Toluene		< 0.025	mg/kg	0.016	0.061	1	GRO95/8021		1/27/2022	CJR	1
m&p-Xylene		< 0.05	mg/kg	0.039	0.15	1	GRO95/8021		1/27/2022	CJR	1
o-Xylene		< 0.025	mg/kg	0.014	0.055	1	GRO95/8021		1/27/2022	CJR	1
PAH SIM											
Acenaphthene		0.0232 "J"	mg/kg	0.011	0.042	1	M8270C	2/3/2022	2/3/2022	NJC	1
Acenaphthylene		< 0.009	mg/kg	0.009	0.035	1	M8270C	2/3/2022	2/3/2022	NJC	1
Anthracene		0.0124 "J"	mg/kg	0.0071	0.027	1	M8270C	2/3/2022	2/3/2022	NJC	1
Benzo(a)anthracen	e	0.053 "J"	mg/kg	0.0139	0.053	1	M8270C	2/3/2022	2/3/2022	NJC	1
Benzo(a)pyrene		0.0195 "J"	mg/kg	0.0143	0.055	1	M8270C	2/3/2022	2/3/2022	NJC	1
Benzo(b)fluoranthe	ene	0.035	mg/kg	0.008	0.031	1	M8270C	2/3/2022	2/3/2022	NJC	1
Benzo(g,h,i)peryler	ne	< 0.0125	mg/kg	0.0125	0.048	1	M8270C	2/3/2022	2/3/2022	NJC	1
Benzo(k)fluoranthe	ene	0.0154 "J"	mg/kg	0.0076	0.029	1	M8270C	2/3/2022	2/3/2022	NJC	1
Chrysene		0.055	mg/kg	0.0142	0.055	1	M8270C	2/3/2022	2/3/2022	NJC	1
Dibenzo(a,h)anthra	acene	< 0.0136	mg/kg	0.0136	0.052	1	M8270C	2/3/2022	2/3/2022	NJC	1
Fluoranthene		0.128	mg/kg	0.008	0.031	1	M8270C	2/3/2022	2/3/2022	NJC	1
Fluorene		0.0176 "J"	mg/kg	0.0091	0.035	1	M8270C	2/3/2022	2/3/2022	NJC	1
Indeno(1,2,3-cd)py	rene	< 0.0152	mg/kg	0.0152	0.058	1	M8270C	2/3/2022	2/3/2022	NJC	1
1-Methyl naphthale	ene	< 0.0118	mg/kg	0.0118	0.045	1	M8270C	2/3/2022	2/3/2022	NJC	1
2-Methyl naphthale	ene	< 0.0186	mg/kg	0.0186	0.071	1	M8270C	2/3/2022	2/3/2022	NJC	1
Naphthalene		< 0.0201	mg/kg	0.0201	0.077	1	M8270C	2/3/2022	2/3/2022	NJC	1
Phenanthrene		0.033 "J"	mg/kg	0.0089	0.034	1	M8270C	2/3/2022	2/3/2022	NJC	1
Pyrene		0.111	mg/kg	0.007	0.027	1	M8270C	2/3/2022	2/3/2022	NJC	1

Project Name Proiect #	MOSS AMEI 18687	RICAN					Invoic	e# E4046	54		
Lab Code Sample ID Sample Matrix Sample Date	5040464M GP-133 4-6 Soil 1/20/2022	Result	Unit	LOD	100	Dil	Method	Ext Date	Run Date	Analyst	Code
General		itesuit	Cint	LUD	LUX	DI			Run Dute	1 inary 50	couc
General											
Solids Percent		90.5	%			1	5021		1/24/2022	NIC	1
Organic		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	70			-	0021		1/2 // 2022	100	
BTEX											
Benzene		< 0.025	mg/kg	0.016	0.062	1	GRO95/802	21	1/27/2022	CJR	1
Ethylbenzene		< 0.025	mg/kg	0.015	0.059	1	GRO95/802	21	1/27/2022	CJR	1
Toluene		< 0.025	mg/kg	0.016	0.061	1	GRO95/802	21	1/27/2022	CJR	1
m&p-Xylene		< 0.05	mg/kg	0.039	0.15	1	GRO95/802	21	1/27/2022	CJR	1
o-Xylene		< 0.025	mg/kg	0.014	0.055	1	GRO95/802	21	1/27/2022	CJR	1
PAH SIM											
Acenaphthene		< 0.011	mg/kg	0.011	0.042	1	M8270C	2/3/2022	2/3/2022	NJC	1
Acenaphthylene		< 0.009	mg/kg	0.009	0.035	1	M8270C	2/3/2022	2/3/2022	NJC	1
Anthracene		< 0.0071	mg/kg	0.0071	0.027	1	M8270C	2/3/2022	2/3/2022	NJC	1
Benzo(a)anthracen	e	< 0.0139	mg/kg	0.0139	0.053	1	M8270C	2/3/2022	2/3/2022	NJC	1
Benzo(a)pyrene		< 0.0143	mg/kg	0.0143	0.055	1	M8270C	2/3/2022	2/3/2022	NJC	1
Benzo(b)fluoranthe	ene	< 0.008	mg/kg	0.008	0.031	1	M8270C	2/3/2022	2/3/2022	NJC	1
Benzo(g,h,i)peryler	ne	< 0.0125	mg/kg	0.0125	0.048	1	M8270C	2/3/2022	2/3/2022	NJC	1
Benzo(k)fluoranthe	ene	< 0.0076	mg/kg	0.0076	0.029	1	M8270C	2/3/2022	2/3/2022	NJC	1
Chrysene		< 0.0124	mg/kg	0.0142	0.055	1	M8270C	2/3/2022	2/3/2022	NJC	1
Dibenzo(a,h)anthra	acene	< 0.0136	mg/kg	0.0136	0.052	1	M8270C	2/3/2022	2/3/2022	NJC	1
Fluoranthene		< 0.008	mg/kg	0.008	0.031	1	M8270C	2/3/2022	2/3/2022	NJC	1
Fluorene		< 0.0091	mg/kg	0.0091	0.035	1	M8270C	2/3/2022	2/3/2022	NJC	1
Indeno(1,2,3-cd)py	vrene	< 0.0152	mg/kg	0.0152	0.058	1	M8270C	2/3/2022	2/3/2022	NJC	1
1-Methyl naphthale	ene	< 0.0118	mg/kg	0.0118	0.045	1	M8270C	2/3/2022	2/3/2022	NJC	1
2-Methyl naphthale	ene	< 0.0186	mg/kg	0.0186	0.071	1	M8270C	2/3/2022	2/3/2022	NJC	1
Naphthalene		< 0.0201	mg/kg	0.0201	0.077	1	M8270C	2/3/2022	2/3/2022	NJC	1
Phenanthrene		< 0.0089	mg/kg	0.0089	0.034	1	M8270C	2/3/2022	2/3/2022	NJC	1
Pyrene		< 0.007	mg/kg	0.007	0.027	1	M8270C	2/3/2022	2/3/2022	NJC	1

Project Name Proiect #	MOSS AM 18687	IERICAN	AN Invoice # E40464									
Lab Code Sample ID Sample Matrix Sample Date	5040464 GP-133 1 Soil 1/20/202	N 10-12 2										
		Result	Unit	LOD 1	LOQ Di	il	Method Ex	t Date	Run Date	Analyst	Code	
General												
General												
Solids Percent		62.6	%			1	5021		1/24/2022	NJC	1	
Organic BTEX												
Benzene		< 0.025	mg/kg	0.016	0.062	1	GRO95/8021		1/27/2022	CJR	1	
Ethylbenzene		< 0.025	mg/kg	0.015	0.059	1	GRO95/8021		1/27/2022	CJR	1	
Toluene		< 0.025	mg/kg	0.016	0.061	1	GRO95/8021		1/27/2022	CJR	1	
m&p-Xylene		< 0.05	mg/kg	0.039	0.15	1	GRO95/8021		1/27/2022	CJR	1	
o-Xylene		< 0.025	mg/kg	0.014	0.055	1	GRO95/8021		1/27/2022	CJR	1	
General												
Diesel Range Orga	nics	< 10	mg/kg	1.3	4.14	1	DRO95		1/28/2022	NJC	1	
Gasoline Range Or	ganics	< 10	mg/kg	2.6	8.36	1	GRO95/8021		1/27/2022	CJR	1	
PAH SIM												
Acenaphthene		< 0.011	mg/kg	0.011	0.042	1	M8270C	2/3/2022	2/3/2022	NJC	1	
Acenaphthylene		< 0.009	mg/kg	0.009	0.035	1	M8270C	2/3/2022	2/3/2022	NJC	1	
Anthracene		0.0123 "J"	mg/kg	0.0071	0.027	1	M8270C	2/3/2022	2/3/2022	NJC	1	
Benzo(a)anthracen	e	0.0263 "J"	mg/kg	0.0139	0.053	1	M8270C	2/3/2022	2/3/2022	NJC	1	
Benzo(a)pyrene		0.0155 "J"	mg/kg	0.0143	0.055	1	M8270C	2/3/2022	2/3/2022	NJC	1	
Benzo(b)fluoranthe	ene	0.0228 "J"	mg/kg	0.008	0.031	1	M8270C	2/3/2022	2/3/2022	NJC	1	
Benzo(g,h,i)peryler	ne	0.018 "J"	mg/kg	0.0125	0.048	1	M8270C	2/3/2022	2/3/2022	NJC	1	
Benzo(k)fluoranthe	ene	0.012 "J"	mg/kg	0.0076	0.029	1	M8270C	2/3/2022	2/3/2022	NJC	1	
Chrysene		0.0205 "J"	mg/kg	0.0142	0.055	1	M8270C	2/3/2022	2/3/2022	NJC	1	
Dibenzo(a,h)anthra	icene	< 0.0136	mg/kg	0.0136	0.052	1	M8270C	2/3/2022	2/3/2022	NJC	1	
Fluoranthene		0.062	mg/kg	0.008	0.031	1	M8270C	2/3/2022	2/3/2022	NJC	1	
Fluorene		< 0.0091	mg/kg	0.0091	0.035	1	M8270C	2/3/2022	2/3/2022	NJC	1	
Indeno(1,2,3-cd)py	rene	0.0186 "J"	mg/kg	0.0152	0.058	1	M8270C	2/3/2022	2/3/2022	NJC	1	
1-Methyl naphthale	ene	< 0.0118	mg/kg	0.0118	0.045	1	M8270C	2/3/2022	2/3/2022	NJC	1	
2-Methyl naphthale	ene	< 0.0186	mg/kg	0.0186	0.071	1	M8270C	2/3/2022	2/3/2022	NJC	1	
Naphthalene		< 0.0201	mg/kg	0.0201	0.077	1	M8270C	2/3/2022	2/3/2022	NJC	1	
Phenanthrene		< 0.0089	mg/kg	0.0089	0.034	1	M8270C	2/3/2022	2/3/2022	NJC	1	
Pyrene		0.067	mg/kg	0.007	0.027	1	M8270C	2/3/2022	2/3/2022	NJC	1	

Project Name Proiect #	MOSS AME 18687	RICAN					Invoic	e# E4046	54		
Lab Code Sample ID Sample Matrix Sample Date	50404640 GP-134 4-6 Soil 1/20/2022										
		Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
General											
General											
Solids Percent		86.2	%			1	5021		1/24/2022	NJC	1
Organic BTEX											
Benzene		< 0.025	mg/kg	0.016	0.062	1	GRO95/802	21	1/27/2022	CJR	1
Ethylbenzene		< 0.025	mg/kg	0.015	0.059	1	GRO95/802	21	1/27/2022	CJR	1
Toluene		< 0.025	mg/kg	0.016	0.061	1	GRO95/802	21	1/27/2022	CJR	1
m&p-Xylene		< 0.05	mg/kg	0.039	0.15	1	GRO95/802	21	1/27/2022	CJR	1
o-Xylene		< 0.025	mg/kg	0.014	0.055	1	GRO95/802	21	1/27/2022	CJR	1
PAH SIM											
Acenaphthene		0.34	mg/kg	0.011	0.042	1	M8270C	2/3/2022	2/3/2022	NJC	1
Acenaphthylene		0.131	mg/kg	0.009	0.035	1	M8270C	2/3/2022	2/3/2022	NJC	1
Anthracene		0.295	mg/kg	0.0071	0.027	1	M8270C	2/3/2022	2/3/2022	NJC	1
Benzo(a)anthracen	e	0.132	mg/kg	0.0139	0.053	1	M8270C	2/3/2022	2/3/2022	NJC	1
Benzo(a)pyrene		0.70	mg/kg	0.0143	0.055	1	M8270C	2/3/2022	2/3/2022	NJC	1
Benzo(b)fluoranthe	ene	0.51	mg/kg	0.008	0.031	1	M8270C	2/3/2022	2/3/2022	NJC	1
Benzo(g,h,i)peryler	ne	0.71	mg/kg	0.0125	0.048	1	M8270C	2/3/2022	2/3/2022	NJC	1
Benzo(k)fluoranthe	ene	0.108	mg/kg	0.0076	0.029	1	M8270C	2/3/2022	2/3/2022	NJC	1
Chrysene		0.162	mg/kg	0.0142	0.055	1	M8270C	2/3/2022	2/3/2022	NJC	1
Dibenzo(a,h)anthra	acene	0.119	mg/kg	0.0136	0.052	1	M8270C	2/3/2022	2/3/2022	NJC	1
Fluoranthene		0.35	mg/kg	0.008	0.031	1	M8270C	2/3/2022	2/3/2022	NJC	1
Fluorene		0.199	mg/kg	0.0091	0.035	1	M8270C	2/3/2022	2/3/2022	NJC	1
Indeno(1,2,3-cd)py	rene	0.89	mg/kg	0.0152	0.058	1	M8270C	2/3/2022	2/3/2022	NJC	1
1-Methyl naphthal	ene	0.125	mg/kg	0.0118	0.045	1	M8270C	2/3/2022	2/3/2022	NJC	1
2-Methyl naphthale	ene	0.192	mg/kg	0.0186	0.071	1	M8270C	2/3/2022	2/3/2022	NJC	1
Naphthalene		0.86	mg/kg	0.0201	0.077	1	M8270C	2/3/2022	2/3/2022	NJC	1
Phenanthrene		0.315	mg/kg	0.0089	0.034	1	M8270C	2/3/2022	2/3/2022	NJC	1
Pyrene		0.299	mg/kg	0.007	0.027	1	M8270C	2/3/2022	2/3/2022	NJC	1

Project Name Project #	ImmeMOSS AMERICANInvoice #E4046418687											
Lab Code Sample ID Sample Matrix Sample Date	1	5040464P GP-134 10- Soil 1/20/2022	12									
			Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
General General Solids Percent			84.8	%			1	5021		1/24/2022	NJC	1
Organic BTEX												
Benzene			< 0.025	mg/kg	0.016	0.062	2 1	GRO95/80	021	1/27/2022	CJR	1
Ethylbenzene			0.044 "J"	mg/kg	0.015	0.059) 1	GRO95/80	021	1/27/2022	CJR	1
Toluene			< 0.025	mg/kg	0.016	0.061	1	GRO95/80	021	1/27/2022	CJR	1
m&p-Xylene			< 0.05	mg/kg	0.039	0.15	5 1	GRO95/80	021	1/27/2022	CJR	1
o-Xylene			0.047 "J"	mg/kg	0.014	0.055	5 1	GRO95/80	021	1/27/2022	CJR	1
PAH SIM												
Acenaphthene			33.0	mg/kg	0.22	0.84	20	M8270C	2/3/2022	2/4/2022	NJC	1
Acenaphthylene			0.34 "J"	mg/kg	0.18	0.7	20	M8270C	2/3/2022	2/4/2022	NJC	1
Anthracene			8.80	mg/kg	0.142	0.54	20	M8270C	2/3/2022	2/4/2022	NJC	1
Benzo(a)anthracene	e		4.70	mg/kg	0.278	1.06	5 20	M8270C	2/3/2022	2/4/2022	NJC	1
Benzo(a)pyrene			1.26	mg/kg	0.286	1.1	20	M8270C	2/3/2022	2/4/2022	NJC	1
Benzo(b)fluoranthe	ene	e	2.00	mg/kg	0.16	0.62	20	M8270C	2/3/2022	2/4/2022	NJC	1
Benzo(g,h,i)peryler	ne		0.38 "J"	mg/kg	0.25	0.96	5 20	M8270C	2/3/2022	2/4/2022	NJC	1
Benzo(k)fluoranthe	ene	e	0.96	mg/kg	0.152	0.58	3 20	M8270C	2/3/2022	2/4/2022	NJC	1
Chrysene			4.50	mg/kg	0.284	1.1	20	M8270C	2/3/2022	2/4/2022	NJC	1
Dibenzo(a,h)anthra	ace	ene	< 0.272	mg/kg	0.272	1.04	20	M8270C	2/3/2022	2/4/2022	NJC	1
Fluoranthene			32.0	mg/kg	0.16	0.62	20	M8270C	2/3/2022	2/4/2022	NJC	1
Fluorene			28.7	mg/kg	0.182	0.7	20	M8270C	2/3/2022	2/4/2022	NJC	1
Indeno(1,2,3-cd)py	/rei	ne	0.50 "J"	mg/kg	0.304	1.16	5 20	M8270C	2/3/2022	2/4/2022	NJC	1
1-Methyl naphthale	ene	e	12.3	mg/kg	0.236	0.9	20	M8270C	2/3/2022	2/4/2022	NJC	1
2-Methyl naphthale	ene	e	14.2	mg/kg	0.372	1.42	20	M8270C	2/3/2022	2/4/2022	NJC	1
Naphthalene			21.4	mg/kg	0.402	1.54	20	M8270C	2/3/2022	2/4/2022	NJC	1
Phenanthrene			76.0	mg/kg	0.178	0.68	3 20	M8270C	2/3/2022	2/4/2022	NJC	1
Pyrene			21.6	mg/kg	0.14	0.54	20	M8270C	2/3/2022	2/4/2022	NJC	1
Lab Code Sample ID]	5040464Q MEOH BLF	K									
Sample Matrix	K	Soil										
Sample Date		1/20/2022										
			Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
Organic BTEX												
Benzene			< 0.025	mg/kg	0.025	0.1	. 1	8260B		1/31/2022	CJR	1
Ethylbenzene			< 0.023	mg/kg	0.023	0.096	i 1	8260B		1/31/2022	CJR	1
Toluene			< 0.031	mg/kg	0.031	0.13	3 1	8260B		1/31/2022	CJR	1
m&p-Xylene			< 0.062	mg/kg	0.062	0.25	5 1	8260B		1/31/2022	CJR	1
o-Xylene			< 0.03	mg/kg	0.03	0.12	2 1	8260B		1/31/2022	CJR	1

Invoice # E40464

LOQ Limit of Quantitation

"J" Flag: Analyte detected between LOD and LOQ

LOD Limit of Detection

Code Comment

1 Laboratory QC within limits.

All solid sample results reported on a dry weight basis unless otherwise indicated. All LOD's and LOQ's are adjusted for dilutions but not dry weight. Subcontracted results are denoted by SUB in the analyst field.

Authorized Signature

Michaelflul

CHAIN OF STODY RECORD					Syllergy									Chain # 43579												
Lab I.D. #	Environmental Lab Inc									Sample Handling Request																
QUOTE #: WDNR					Larry II Onini Gritari Laavy III O										Rush Analysis Date Required:											
Project #: 18687					1990 Prospect Ct. • Appleton, WI 54914									(Rushes accepted only with prior authorization)												
Sampler: (signature)	Otime Maller	1			920-830	-2455	• mrsy	nergy@	wi.tv	vcbo	c.con	n			1		Norr	nal	Tun	n Ar	oun	d				
Project (Name / Loca	ation): Macs All	Pinteur	end.			1					Ar	alys	sis F	Requ	este	ed		22.27	17				Oth	er Ana	alysis	,
Reports To: Sharran Kikkart Invoic				ce To:						Т		Ĺ		Ť	T	T			T	T	Ι				T	
The start the come				maany																						
Company We DIGMA GVOUP INC. Comp																		SOL								in H
Address 300 W. Cawal St Add				Address / ///							95)					R		SOI								
City State Zip Mi VOUCOO, WI 53235 City :				ity State Zip							Sep	ш			-	TALE		DED	247	6						
Phone 414-1	543-4200	' de					BO	PO B	TRIT	SE	270)	802	Ē		PEN	OVO	1-0	TALS								
Email < KIKKert@thesignugavour.com Email					الأر						po	ENI	REA	A 8	Ada	NAF	ш	SUS	L (E)	E	ME	X				FID/
Lab I.D.	Sample I.D.	Collection Date T	n 'ime	Filtered Y/N	No. of Containers	Sample Type Pres (Matrix)*		Preserv	ation	DRO (M	GRO (M	NITRAT	OIL & G	PAH (EF	PVOC 0	PVOC +	SULFAT	TOTAL	VOC DV	VOC AII	8-RCRA	RTE				
5040414A	(P-126 (2-4)	1/20 9;	23	A	2	5 (50:1)	Mel	H					X		1						X				1.5
B	(P-126 (10-12)	1 9:	33	Ĩ	3			1		X	X			X				-				X				0.5
Ċ	6P-128 (2-4)	10:	107		2									X								X				0.6
D	(P-128 (6-8)	10	:12		3					X	X			X								X				1.1
E	20 61-129 (8-10)	10	:52		2									X								x				2.9
F	6P-129 (12-14)	10	:57		3					X	X			X								X				2.0
G	(P-130 (B-10)	11	:12		2									X		_				_		X	_			1.8
H	6P-130 (10-12)	11	:19		3					X	X			×							1	X				2,0
I	GP-131 (2-4)	11	:26		Z									X								X			_	2.5
J	69-131 (8-10)	11:	:29		3					X	X			X		_						X				1.8
k	69-132 (0-2)	11	:54		2									X								X				7.4
L	(1-13Z (10-12)	V n	:04	V	2		V	`	-					X								N				23
Comments/Spec	ial Instructions (*Specify gro	oundwater "C	∃₩", I	Drinking \	Water "DW", '	Waste	Water	"WW", S	ioil "S"	, Air	"A",	Oil, S	Slud	ge, (etc.) Rece	eived	I By:	(sigr	1)				Tin	18	Da	ate
Sample Integrity - To be completed by receiving lab. Method of Shipment:S					Whulf 12:30 1/21																					
Cooler se	al intact upon receipt: X	Yes N	lo		Received	d in Lat	oratory	BYC		2	2	×	~			2	Time	1	44	0			Date	1/22	-122	
CHAIN OF (STODY RECORD				5	Syl	erg	V	1						Ch	nain	#	43	358	0	(
----------------------------	---	----------------	------------	-----------------	----------------------	-----------------------------	--------------------------------	-------------	---------	---------	----------	----------	-------	----------	---------	----------	--------	----------	----------	-------	-------	-------	-----------	------		
Lab I.D. #			12	E	muira		ntall	-	-				Г	_	Ра	ge	-	_ 0								
QUOTE # : W	ONR				nviro	nme	ntal L	a	D,	1	n	21			Due	Sa	mpl	e H	and	lling	Re	ques	<u>at</u>			
Project #: \	3687				1990 F	www.syne Prospect Ct	 Appleton V 	VI 5	491	4				(6	ushe	s ac	cept	ed o	only	with	prior	autho	d:	ion)		
Sampler: (signature)	gtun h	los 1-			920-830)-2455 • mrs	synergy@wi.t	wcb	00.00	m			_	X	Non	mal	Tur	n A	rou	nd						
Project (Name / Loo	ation): Muss Ameri	can	. /			2			A	naly	sis	Req	uest	ed		1		1			Ot	her A	nalv	sis		
Reports To: Sfc	ven Kikkert		Invoid	e To:						Τ	T						T	T				T				
Company The	SIAMA GINI Inc.		Comp	bany .		. (ľ			(0)										
Address 1300	W. Cand St.		Addre	ess	CAL	AF			_							OLIDS										
City State Zip M	Wavker, WI, 52	233	City S	State Zip	SMI	110		p 95)	56 da					LENE		D SC	5)							2		
Phone 414	43 4200		Phon	e	01			O Se	O Se	SITE		0	110	THA		INDE	524.	() 11	0 0	3						
Email SKik	Kert @ the stamant	Milan	Email	1		1		d DR	d GR	NITE	EASE	827	Jo vo	APH		JSPE	(EPA	826	ETA					PID/		
Lab I.D.	Sample I.D.	Collectio	on Time	Filtered Y/N	No. of Containers	Sample Type (Matrix)*	Preservation	DRO (Mo	GRO (Mo	NITRATE	OIL & GR	PAH (EPA	PCB	PVOC + N	SULFATE	TOTAL SI	VOC DW	VOC (EP/	A BCBA M	のトラン		1		FID		
SOYONBYM	60-133 (4-6)	1/20/22 1	2:46	N	2	5 (Soil)	Meott					X		1			-	-	-	X				1.1		
N	69-133(10-12)		2,50		3			Х	X			X								X				1.6		
P	68-134 (20-12)		17		1	1				+	-	X	-	-		_	-	+	-	N	-			2.2		
					-				2	+		~					-	+	+			-		12.0		
R	MeoH Blank	1/20		N	1		Meot		1				-					-		Х				_		
													-			_	+		+					_		
																_		-						+		
Comments/Speci	al Instructions (*Specify or	oundwater "(GW". Dr	rinkina V	Vater "DW" V	Vaste Water '	'WW" Soil "S"	Air	"A"	Oil	Slud	00	(ate													
Sample In Metho Temp	tegrity - To be completed to od of Shipment:	oy receiving I	ab.		Relinquish	ed By: (sign)	<u>M_1</u>	Time 2:3			Date		Rece	eived	Ву: (sign)				Tir	ne		Date		
Cooler sea	Il intact upon receipt: X	Yes N	0		Received	in Laboratory B	w.C	1.	R	v	_	-		т	ime:	14	101	0			Date	· Yz	2/2	2		

ATTACHMENT 8

Groundwater Laboratory Analytical Report

Synergy Environmental Lab, LLC.

1990 Prospect Ct., Appleton, WI 54914 *P 920-830-2455 * F 920-733-0631

STEVEN KIKKERT THE SIGMA GROUP, INC. 1300 W. CANAL STREET MILWAUKEE. WI 53233

Report Date 11-Feb-22

Project Name Project #	FMR MOSS 18687	AMERICAN					Invoi	ce # E4048	84		
Lab Code Sample ID Sample Matri Sample Date	5040484A PZ-03 ix Water 2/2/2022										
		Result	Unit	LOD I	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
Organic											
BTEX											
Benzene		< 0.38	ug/l	0.38	1.55	1	8260B		2/5/2022	CJR	1
Ethylbenzene		< 0.37	ug/l	0.37	1.51	1	8260B		2/5/2022	CJR	1
Toluene		< 0.42	ug/l	0.42	1.71	1	8260B		2/5/2022	CJR	1
m&p-Xylene		< 0.77	ug/l	0.77	3.14	1	8260B		2/5/2022	CJR	1
o-Xylene		< 0.44	ug/l	0.44	1.8	1	8260B		2/5/2022	CJR	1
PAH SIM											
Acenaphthene		53.0	ug/l	0.188	0.6	20	M8270C	2/9/2022	2/10/2022	NJC	1
Acenaphthylene		0.52 "J"	ug/l	0.312	0.99	20	M8270C	2/9/2022	2/10/2022	NJC	1
Anthracene		0.65 "J"	ug/l	0.3	0.956	20	M8270C	2/9/2022	2/10/2022	NJC	1
Benzo(a)anthrace	ene	< 0.40	ug/l	0.4	1.34	20	M8270C	2/9/2022	2/10/2022	NJC	1
Benzo(a)pyrene		< 0.334	ug/l	0.334	1.062	20	M8270C	2/9/2022	2/10/2022	NJC	1
Benzo(b)fluorant	hene	< 0.32	ug/l	0.32	1.018	20	M8270C	2/9/2022	2/10/2022	NJC	1
Benzo(g,h,i)peryl	lene	< 0.284	ug/l	0.284	0.902	20	M8270C	2/9/2022	2/10/2022	NJC	1
Benzo(k)fluorant	thene	< 0.292	ug/l	0.292	0.926	20	M8270C	2/9/2022	2/10/2022	NJC	1
Chrysene		< 0.314	ug/l	0.314	0.998	20	M8270C	2/9/2022	2/10/2022	NJC	1
Dibenzo(a,h)anth	nracene	< 0.346	ug/l	0.346	1.098	20	M8270C	2/9/2022	2/10/2022	NJC	1
Fluoranthene		0.53 "J"	ug/l	0.176	0.562	20	M8270C	2/9/2022	2/10/2022	NJC	1
Fluorene		19.9	ug/l	0.158	0.502	20	M8270C	2/9/2022	2/10/2022	NJC	1
Indeno(1,2,3-cd)	pyrene	< 0.242	ug/l	0.242	0.77	20	M8270C	2/9/2022	2/10/2022	NJC	1
1-Methyl naphtha	alene	20.1	ug/l	0.382	1.218	20	M8270C	2/9/2022	2/10/2022	NJC	1
2-Methyl naphtha	alene	< 0.372	ug/l	0.372	1.18	20	M8270C	2/9/2022	2/10/2022	NJC	1
Naphthalene		4.30	ug/l	0.6	2	20	M8270C	2/9/2022	2/10/2022	NJC	1
Phenanthrene		2.77	ug/l	0.286	0.912	20	M8270C	2/9/2022	2/10/2022	NJC	1
Pyrene		0.40 "J"	ug/l	0.242	0.772	20	M8270C	2/9/2022	2/10/2022	NJC	1

Lab Code 5040484B Sample ID PZ-03A Sample Matrix Water Sample Date 2/2/2022 Result Unit LOD LOQ Dil Method Ext Date Run Date Organic BTEX 2/5/2022		
Sample Matrix Water Sample Date 2/2/2022 Result Unit LOD LOQ Dil Method Ext Date Run Date Organic BTEX 2/5/2022 2/5/2022		
Sample Date 2/2/2022 Result Unit LOD LOQ Dil Method Ext Date Organic BTEX Benzene < 0.38 ug/l 0.38 1.55 1 8260B 2/5/2022		
Organic BTEX Senzene < 0.38	e Analyst Co	ode
Organic BTEX Benzene < 0.38	e maryse co	Jue
B1EX Benzene <0.38 ug/l 0.38 1.55 1 8260B 2/5/2022		
Benzene <0.38 ug/1 0.38 1.55 1 8260B 2/5/2022		
	CJR I	
Ethylbenzene <0.37 ug/1 0.37 1.51 1 8260B 2/5/2022	CJR I	
Toluene < 0.42 ug/l 0.42 1.71 1 8260B 2/5/2022	CJR 1	
m&p-Xylene < 0.77 ug/l 0.77 3.14 1 8260B 2/5/2022	CJR 1	
o-Xylene < 0.44 ug/l 0.44 1.8 1 8260B 2/5/2022	CJR 1	
PAH SIM		
Acenaphthene 22.3 ug/l 0.047 0.15 5 M8270C 2/9/2022 2/10/2022	2 NJC 1	
Acenaphthylene 0.13 "J" ug/l 0.078 0.2475 5 M8270C 2/9/2022 2/10/2022	2 NJC 1	
Anthracene 0.42 ug/l 0.075 0.239 5 M8270C 2/9/2022 2/10/2022	2 NJC 1	
Benzo(a)anthracene 0.172 "J" ug/l 0.1 0.335 5 M8270C 2/9/2022 2/10/2022	2 NJC 1	
Benzo(a)pyrene 0.171 "J" ug/l 0.0835 0.2655 5 M8270C 2/9/2022 2/10/2022	2 NJC 1	
Benzo(b)fluoranthene 0.16 "J" ug/l 0.08 0.2545 5 M8270C 2/9/2022 2/10/2022	2 NJC 1	
Benzo(g,h,i)perylene 0.215 "J" ug/l 0.071 0.2255 5 M8270C 2/9/2022 2/10/2022	2 NJC 1	
Benzo(k)fluoranthene 0.152 "J" ug/l 0.073 0.2315 5 M8270C 2/9/2022 2/10/2022	2 NJC 1	
Chrysene 0.128 "J" ug/l 0.0785 0.2495 5 M8270C 2/9/2022 2/10/2022	2 NJC 1	
Dibenzo(a,h)anthracene 0.178 "J" ug/l 0.0865 0.2745 5 M8270C 2/9/2022 2/10/2022	2 NJC 1	
Fluoranthene 0.47 ug/l 0.044 0.1405 5 M8270C 2/9/2022 2/10/2022	2 NJC 1	
Fluorene 5.10 ug/l 0.0395 0.1255 5 M8270C 2/9/2022 2/10/2022	2 NJC 1	
Indeno(1,2,3-cd)pyrene 0.18 "J" ug/l 0.0605 0.1925 5 M8270C 2/9/2022 2/10/2022	2 NJC 1	
1-Methyl naphthalene < 9.55 ug/l 0.0955 0.3045 5 M8270C 2/9/2022 2/10/2022	2 NJC 1	
2-Methyl naphthalene < 0.093 ug/l 0.093 0.295 5 M8270C 2/9/2022 2/10/2022	2 NJC 1	
Naphthalene < 0.15 ug/l 0.15 0.5 5 M8270C 2/9/2022 2/10/2022	2 NJC 1	
Phenanthrene 0.313 ug/l 0.0715 0.228 5 M8270C 2/9/2022 2/10/2022	2 NJC 1	
Pyrene 0.32 ug/l 0.0605 0.193 5 M8270C 2/9/2022 2/10/2022	2 NJC 1	

Project Name Project #	FMR MOSS 18687	AMERICAN					Invoi	ce # E4048	34		
Lab Code Sample ID Sample Matrix Sample Date	5040484C PZ-03B Water 2/2/2022										
		Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
Organic BTEX											
Benzene		< 0.38	ug/l	0.38	1.55	1	8260B		2/5/2022	CJR	1
Ethylbenzene		< 0.37	ug/l	0.37	1.51	1	8260B		2/5/2022	CJR	1
Toluene		< 0.42	ug/l	0.42	1.71	1	8260B		2/5/2022	CJR	1
m&p-Xylene		2.79 "J"	ug/l	0.77	3.14	1	8260B		2/5/2022	CJR	1
o-Xylene		1.95	ug/l	0.44	1.8	1	8260B		2/5/2022	CJR	1
PAH SIM											
Acenaphthene		98.0	ug/l	0.47	1.5	50	M8270C	2/9/2022	2/10/2022	NJC	1
Acenaphthylene		< 0.78	ug/l	0.78	2.475	50	M8270C	2/9/2022	2/10/2022	NJC	1
Anthracene		0.99 "J"	ug/l	0.75	2.39	50	M8270C	2/9/2022	2/10/2022	NJC	1
Benzo(a)anthracene	e	< 1.00	ug/l	1	3.35	50	M8270C	2/9/2022	2/10/2022	NJC	1
Benzo(a)pyrene		< 0.835	ug/l	0.835	2.655	50	M8270C	2/9/2022	2/10/2022	NJC	1
Benzo(b)fluoranthe	ene	< 0.80	ug/l	0.8	2.545	50	M8270C	2/9/2022	2/10/2022	NJC	1
Benzo(g,h,i)peryler	ne	< 0.71	ug/l	0.71	2.255	50	M8270C	2/9/2022	2/10/2022	NJC	1
Benzo(k)fluoranthe	ene	< 0.73	ug/l	0.73	2.315	50	M8270C	2/9/2022	2/10/2022	NJC	1
Chrysene		< 0.785	ug/l	0.785	2.495	50	M8270C	2/9/2022	2/10/2022	NJC	1
Dibenzo(a,h)anthra	cene	< 0.865	ug/l	0.865	2.745	50	M8270C	2/9/2022	2/10/2022	NJC	1
Fluoranthene		1.58	ug/l	0.44	1.405	50	M8270C	2/9/2022	2/10/2022	NJC	1
Fluorene		17.1	ug/l	0.395	1.255	50	M8270C	2/9/2022	2/10/2022	NJC	1
Indeno(1,2,3-cd)py	rene	< 0.605	ug/l	0.605	1.925	50	M8270C	2/9/2022	2/10/2022	NJC	1
1-Methyl naphthale	ene	45.0	ug/l	0.955	3.045	50	M8270C	2/9/2022	2/10/2022	NJC	1
2-Methyl naphthale	ene	< 0.93	ug/l	0.93	2.95	50	M8270C	2/9/2022	2/10/2022	NJC	1
Naphthalene		148	ug/l	1.5	5	50	M8270C	2/9/2022	2/10/2022	NJC	1
Phenanthrene		1.68 "J"	ug/l	0.715	2.28	50	M8270C	2/9/2022	2/10/2022	NJC	1
Pyrene		0.95 "J"	ug/l	0.605	1.93	50	M8270C	2/9/2022	2/10/2022	NJC	1

Project Name Project #	FMR MOSS 18687	AMERICAN					Invoi	ce # E4048	34		
Lab Code Sample ID Sample Matrix Sample Date	5040484D PZ-03C Water 2/2/2022										
		Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
Organic BTEX											
Benzene		< 0.38	ug/l	0.38	1.55	1	8260B		2/5/2022	CJR	1
Ethylbenzene		< 0.37	ug/l	0.37	1.51	1	8260B		2/5/2022	CJR	1
Toluene		< 0.42	ug/l	0.42	1.71	1	8260B		2/5/2022	CJR	1
m&p-Xylene		< 0.77	ug/l	0.77	3.14	1	8260B		2/5/2022	CJR	1
o-Xylene		< 0.44	ug/l	0.44	1.8	1	8260B		2/5/2022	CJR	1
PAH SIM											
Acenaphthene		67.0	ug/l	0.094	0.3	10	M8270C	2/9/2022	2/10/2022	NJC	1
Acenaphthylene		0.71	ug/l	0.156	0.495	10	M8270C	2/9/2022	2/10/2022	NJC	1
Anthracene		8.30	ug/l	0.15	0.478	10	M8270C	2/9/2022	2/10/2022	NJC	1
Benzo(a)anthracen	e	0.37 "J"	ug/l	0.2	0.67	10	M8270C	2/9/2022	2/10/2022	NJC	1
Benzo(a)pyrene		< 0.167	ug/l	0.167	0.531	10	M8270C	2/9/2022	2/10/2022	NJC	1
Benzo(b)fluoranthe	ene	< 0.16	ug/l	0.16	0.509	10	M8270C	2/9/2022	2/10/2022	NJC	1
Benzo(g,h,i)peryler	ne	< 0.142	ug/l	0.142	0.451	10	M8270C	2/9/2022	2/10/2022	NJC	1
Benzo(k)fluoranthe	ene	< 0.146	ug/l	0.146	0.463	10	M8270C	2/9/2022	2/10/2022	NJC	1
Chrysene		0.34 "J"	ug/l	0.157	0.499	10	M8270C	2/9/2022	2/10/2022	NJC	1
Dibenzo(a,h)anthra	icene	< 0.173	ug/l	0.173	0.549	10	M8270C	2/9/2022	2/10/2022	NJC	1
Fluoranthene		8.80	ug/l	0.088	0.281	10	M8270C	2/9/2022	2/10/2022	NJC	1
Fluorene		46.0	ug/l	0.079	0.251	10	M8270C	2/9/2022	2/10/2022	NJC	1
Indeno(1,2,3-cd)py	rene	< 0.121	ug/l	0.121	0.385	10	M8270C	2/9/2022	2/10/2022	NJC	1
1-Methyl naphthale	ene	24.5	ug/l	0.191	0.609	10	M8270C	2/9/2022	2/10/2022	NJC	1
2-Methyl naphthale	ene	24.5	ug/l	0.186	0.59	10	M8270C	2/9/2022	2/10/2022	NJC	1
Naphthalene		9.00	ug/l	0.3	1	10	M8270C	2/9/2022	2/10/2022	NJC	1
Phenanthrene		63.0	ug/l	0.143	0.456	10	M8270C	2/9/2022	2/10/2022	NJC	1
Pyrene		5.10	ug/l	0.121	0.386	10	M8270C	2/9/2022	2/10/2022	NJC	1

Project Name Proiect #	FMR MOSS 18687	AMERICAN					Invoi	ce # E4048	34		
Lab Code Sample ID Sample Matrix Sample Date	5040484E PZ-03D Water 2/2/2022										
		Result	Unit	LOD	LUQ	Dil	Method	Ext Date	Run Date	Analyst	Code
Organic BTEX											
Benzene		< 0.38	ug/l	0.38	1.55	1	8260B		2/5/2022	CJR	1
Ethylbenzene		0.50 "J"	ug/l	0.37	1.51	1	8260B		2/5/2022	CJR	1
Toluene		< 0.42	ug/l	0.42	1.71	1	8260B		2/5/2022	CJR	1
m&p-Xylene		0.95 "J"	ug/l	0.77	3.14	1	8260B		2/5/2022	CJR	1
o-Xylene		0.74 "J"	ug/l	0.44	1.8	1	8260B		2/5/2022	CJR	1
PAH SIM											
Acenaphthene		64.0	ug/l	1.88	6	200	M8270C	2/9/2022	2/9/2022	NJC	1
Acenaphthylene		< 3.12	ug/l	3.12	9.9	200	M8270C	2/9/2022	2/9/2022	NJC	1
Anthracene		8.00 "J"	ug/l	3	9.56	200	M8270C	2/9/2022	2/9/2022	NJC	1
Benzo(a)anthracene	e	< 4.00	ug/l	4	13.4	200	M8270C	2/9/2022	2/9/2022	NJC	1
Benzo(a)pyrene		< 3.34	ug/l	3.34	10.62	200	M8270C	2/9/2022	2/9/2022	NJC	1
Benzo(b)fluoranthe	ene	< 3.20	ug/l	3.2	10.18	200	M8270C	2/9/2022	2/9/2022	NJC	1
Benzo(g,h,i)peryler	ne	< 2.84	ug/l	2.84	9.02	200	M8270C	2/9/2022	2/9/2022	NJC	1
Benzo(k)fluoranthe	ene	< 2.92	ug/l	2.92	9.26	200	M8270C	2/9/2022	2/9/2022	NJC	1
Chrysene		< 3.14	ug/l	3.14	9.98	200	M8270C	2/9/2022	2/9/2022	NJC	1
Dibenzo(a,h)anthra	cene	< 3.46	ug/l	3.46	10.98	200	M8270C	2/9/2022	2/9/2022	NJC	1
Fluoranthene		9.30	ug/l	1.76	5.62	200	M8270C	2/9/2022	2/9/2022	NJC	1
Fluorene		41.0	ug/l	1.58	5.02	200	M8270C	2/9/2022	2/9/2022	NJC	1
Indeno(1,2,3-cd)py	rene	< 2.42	ug/l	2.42	7.7	200	M8270C	2/9/2022	2/9/2022	NJC	1
1-Methyl naphthale	ene	29.2	ug/l	3.82	12.18	200	M8270C	2/9/2022	2/9/2022	NJC	1
2-Methyl naphthale	ene	12.4	ug/l	3.72	11.8	200	M8270C	2/9/2022	2/9/2022	NJC	1
Naphthalene		172	ug/l	6	20	200	M8270C	2/9/2022	2/9/2022	NJC	1
Phenanthrene		58.0	ug/l	2.86	9.12	200	M8270C	2/9/2022	2/9/2022	NJC	1
Pyrene		5.40 "J"	ug/l	2.42	7.72	200	M8270C	2/9/2022	2/9/2022	NJC	1

Project Name Project #	FMR MOSS 18687	AMERICAN					Invoi	ce # E4048	34		
Lab Code Sample ID Sample Matrix Sample Date	5040484F PZ-03E Water 2/2/2022										
		Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
Organic BTEX											
Benzene		2.35	ug/l	0.38	1.55	1	8260B		2/5/2022	CJR	1
Ethylbenzene		53	ug/l	0.37	1.51	1	8260B		2/5/2022	CJR	1
Toluene		9.3	ug/l	0.42	1.71	1	8260B		2/5/2022	CJR	1
m&p-Xylene		60	ug/l	0.77	3.14	1	8260B		2/5/2022	CJR	1
o-Xylene		33	ug/l	0.44	1.8	1	8260B		2/5/2022	CJR	1
PAH SIM											
Acenaphthene		590	ug/l	4.7	15	500	M8270C	2/9/2022	2/9/2022	NJC	1
Acenaphthylene		< 7.80	ug/l	7.8	24.75	500	M8270C	2/9/2022	2/9/2022	NJC	1
Anthracene		69.0	ug/l	7.5	23.9	500	M8270C	2/9/2022	2/9/2022	NJC	1
Benzo(a)anthracene	•	24.9 "J"	ug/l	10	33.5	500	M8270C	2/9/2022	2/9/2022	NJC	1
Benzo(a)pyrene		< 8.35	ug/l	8.35	26.55	500	M8270C	2/9/2022	2/9/2022	NJC	1
Benzo(b)fluoranthe	ne	8.90 "J"	ug/l	8	25.45	500	M8270C	2/9/2022	2/9/2022	NJC	1
Benzo(g,h,i)perylen	e	< 7.10	ug/l	7.1	22.55	500	M8270C	2/9/2022	2/9/2022	NJC	1
Benzo(k)fluoranthe	ne	< 7.30	ug/l	7.3	23.15	500	M8270C	2/9/2022	2/9/2022	NJC	1
Chrysene		18.9 "J"	ug/l	7.85	24.95	500	M8270C	2/9/2022	2/9/2022	NJC	1
Dibenzo(a,h)anthra	cene	< 8.65	ug/l	8.65	27.45	500	M8270C	2/9/2022	2/9/2022	NJC	1
Fluoranthene		147	ug/l	4.4	14.05	500	M8270C	2/9/2022	2/9/2022	NJC	1
Fluorene		316	ug/l	3.95	12.55	500	M8270C	2/9/2022	2/9/2022	NJC	1
Indeno(1,2,3-cd)py	rene	< 6.05	ug/l	6.05	19.25	500	M8270C	2/9/2022	2/9/2022	NJC	1
1-Methyl naphthale	ne	350	ug/l	9.55	30.45	500	M8270C	2/9/2022	2/9/2022	NJC	1
2-Methyl naphthale	ne	490	ug/l	9.3	29.5	500	M8270C	2/9/2022	2/9/2022	NJC	1
Naphthalene		3500	ug/l	15	50	500	M8270C	2/9/2022	2/9/2022	NJC	1
Phenanthrene		490	ug/l	7.15	22.8	500	M8270C	2/9/2022	2/9/2022	NJC	1
Pyrene		99.0	ug/l	6.05	19.3	500	M8270C	2/9/2022	2/9/2022	NJC	1

Project Name Proiect #	FMR MOSS 18687	AMERICAN					Invoi	ce # E4048	84		
Lab Code Sample ID Sample Matrix Sample Date	5040484G PZ-03F Water 2/2/2022										
		Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
Organic BTEX											
Benzene		< 0.38	ug/l	0.38	1.55	1	8260B		2/5/2022	CJR	1
Ethylbenzene		< 0.37	ug/l	0.37	1.51	1	8260B		2/5/2022	CJR	1
Toluene		< 0.42	ug/l	0.42	1.71	1	8260B		2/5/2022	CJR	1
m&p-Xylene		< 0.77	ug/l	0.77	3.14	1	8260B		2/5/2022	CJR	1
o-Xylene		< 0.44	ug/l	0.44	1.8	1	8260B		2/5/2022	CJR	1
PAH SIM											
Acenaphthene		0.38	ug/l	0.0094	0.03	1	M8270C	2/9/2022	2/9/2022	NJC	1
Acenaphthylene		0.039 "J"	ug/l	0.0156	0.0495	1	M8270C	2/9/2022	2/9/2022	NJC	1
Anthracene		0.058	ug/l	0.015	0.0478	1	M8270C	2/9/2022	2/9/2022	NJC	1
Benzo(a)anthracen	e	0.0289 "J"	ug/l	0.02	0.067	1	M8270C	2/9/2022	2/9/2022	NJC	1
Benzo(a)pyrene		< 0.0167	ug/l	0.0167	0.0531	1	M8270C	2/9/2022	2/9/2022	NJC	1
Benzo(b)fluoranthe	ene	< 0.016	ug/l	0.016	0.0509	1	M8270C	2/9/2022	2/9/2022	NJC	1
Benzo(g,h,i)peryler	ne	< 0.0142	ug/l	0.0142	0.0451	1	M8270C	2/9/2022	2/9/2022	NJC	1
Benzo(k)fluoranthe	ene	< 0.0146	ug/l	0.0146	0.0463	1	M8270C	2/9/2022	2/9/2022	NJC	1
Chrysene		0.0229 "J"	ug/l	0.0157	0.0499	1	M8270C	2/9/2022	2/9/2022	NJC	1
Dibenzo(a,h)anthra	acene	< 0.0173	ug/l	0.0173	0.0549	1	M8270C	2/9/2022	2/9/2022	NJC	1
Fluoranthene		0.26	ug/l	0.0088	0.0281	1	M8270C	2/9/2022	2/9/2022	NJC	1
Fluorene		0.106	ug/l	0.0079	0.0251	1	M8270C	2/9/2022	2/9/2022	NJC	1
Indeno(1,2,3-cd)py	vrene	< 0.0121	ug/l	0.0121	0.0385	1	M8270C	2/9/2022	2/9/2022	NJC	1
1-Methyl naphthale	ene	0.084	ug/l	0.0191	0.0609	1	M8270C	2/9/2022	2/9/2022	NJC	1
2-Methyl naphthale	ene	0.058 "J"	ug/l	0.0186	0.059	1	M8270C	2/9/2022	2/9/2022	NJC	1
Naphthalene		0.193	ug/l	0.03	0.1	1	M8270C	2/9/2022	2/9/2022	NJC	1
Phenanthrene		0.033 "J"	ug/l	0.0143	0.0456	1	M8270C	2/9/2022	2/9/2022	NJC	1
Pyrene		0.191	ug/l	0.0121	0.0386	1	M8270C	2/9/2022	2/9/2022	NJC	1

Project Name Proiect #	FMR MOSS 18687	AMERICAN					Invoi	ce # E4048	34		
Lab Code Sample ID Sample Matrix Sample Date	5040484H PZ-03G Water 2/2/2022										
		Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
Organic BTEX											
Benzene		< 0.38	ug/l	0.38	1.55	1	8260B		2/5/2022	CJR	1
Ethylbenzene		< 0.37	ug/l	0.37	1.51	1	8260B		2/5/2022	CJR	1
Toluene		< 0.42	ug/l	0.42	1.71	1	8260B		2/5/2022	CJR	1
m&p-Xylene		< 0.77	ug/l	0.77	3.14	1	8260B		2/5/2022	CJR	1
o-Xylene		< 0.44	ug/l	0.44	1.8	1	8260B		2/5/2022	CJR	1
PAH SIM											
Acenaphthene		0.25	ug/l	0.0094	0.03	1	M8270C	2/9/2022	2/9/2022	NJC	1
Acenaphthylene		< 0.0156	ug/l	0.0156	0.0495	1	M8270C	2/9/2022	2/9/2022	NJC	1
Anthracene		0.041 "J"	ug/l	0.015	0.0478	1	M8270C	2/9/2022	2/9/2022	NJC	1
Benzo(a)anthracen	e	< 0.02	ug/l	0.02	0.067	1	M8270C	2/9/2022	2/9/2022	NJC	1
Benzo(a)pyrene		< 0.0167	ug/l	0.0167	0.0531	1	M8270C	2/9/2022	2/9/2022	NJC	1
Benzo(b)fluoranthe	ene	< 0.016	ug/l	0.016	0.0509	1	M8270C	2/9/2022	2/9/2022	NJC	1
Benzo(g,h,i)peryler	ne	< 0.0142	ug/l	0.0142	0.0451	1	M8270C	2/9/2022	2/9/2022	NJC	1
Benzo(k)fluoranthe	ene	< 0.0146	ug/l	0.0146	0.0463	1	M8270C	2/9/2022	2/9/2022	NJC	1
Chrysene		< 0.0157	ug/l	0.0157	0.0499	1	M8270C	2/9/2022	2/9/2022	NJC	1
Dibenzo(a,h)anthra	acene	< 0.0173	ug/l	0.0173	0.0549	1	M8270C	2/9/2022	2/9/2022	NJC	1
Fluoranthene		0.116	ug/l	0.0088	0.0281	1	M8270C	2/9/2022	2/9/2022	NJC	1
Fluorene		0.065	ug/l	0.0079	0.0251	1	M8270C	2/9/2022	2/9/2022	NJC	1
Indeno(1,2,3-cd)py	vrene	< 0.0121	ug/l	0.0121	0.0385	1	M8270C	2/9/2022	2/9/2022	NJC	1
1-Methyl naphthale	ene	0.069	ug/l	0.0191	0.0609	1	M8270C	2/9/2022	2/9/2022	NJC	1
2-Methyl naphthale	ene	0.054 "J"	ug/l	0.0186	0.059	1	M8270C	2/9/2022	2/9/2022	NJC	1
Naphthalene		0.212	ug/l	0.03	0.1	1	M8270C	2/9/2022	2/9/2022	NJC	1
Phenanthrene		0.036 "J"	ug/l	0.0143	0.0456	1	M8270C	2/9/2022	2/9/2022	NJC	1
Pyrene		0.096	ug/l	0.0121	0.0386	1	M8270C	2/9/2022	2/9/2022	NJC	1

Project Name Proiect #	FMR MOSS 18687	AMERICAN					Invoi	i ce # E4048	84		
Lab Code Sample ID Sample Matrix Sample Date	5040484I PZ-03H Water 2/2/2022										
		Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
Organic											
BTEX											
Benzene		0.44 "J"	ug/l	0.38	1.55	1	8260B		2/5/2022	CJR	1
Ethylbenzene		4.4	ug/l	0.37	1.51	1	8260B		2/5/2022	CJR	1
Toluene		< 0.42	ug/l	0.42	1.71	1	8260B		2/5/2022	CJR	1
m&p-Xylene		2.75 "J"	ug/l	0.77	3.14	- 1	8260B		2/5/2022	CJR	1
o-Xylene		3.2	ug/l	0.44	1.8	1	8260B		2/5/2022	CJR	1
PAH SIM											
Acenaphthene		314	ug/l	1.88	6	200	M8270C	2/9/2022	2/10/2022	NJC	1
Acenaphthylene		< 3.12	ug/l	3.12	9.9	200	M8270C	2/9/2022	2/10/2022	NJC	1
Anthracene		16.6	ug/l	3	9.56	200	M8270C	2/9/2022	2/10/2022	NJC	1
Benzo(a)anthracene	e	< 4.00	ug/l	4	13.4	200	M8270C	2/9/2022	2/10/2022	NJC	1
Benzo(a)pyrene		< 3.34	ug/l	3.34	10.62	200	M8270C	2/9/2022	2/10/2022	NJC	1
Benzo(b)fluoranthe	ene	< 3.20	ug/l	3.2	10.18	200	M8270C	2/9/2022	2/10/2022	NJC	1
Benzo(g,h,i)peryler	ne	3.03 "J"	ug/l	2.84	9.02	200	M8270C	2/9/2022	2/10/2022	NJC	1
Benzo(k)fluoranthe	ene	< 2.92	ug/l	2.92	9.26	200	M8270C	2/9/2022	2/10/2022	NJC	1
Chrysene		< 3.14	ug/l	3.14	9.98	200	M8270C	2/9/2022	2/10/2022	NJC	1
Dibenzo(a,h)anthra	icene	< 3.46	ug/l	3.46	10.98	200	M8270C	2/9/2022	2/10/2022	NJC	1
Fluoranthene		11.3	ug/l	1.76	5.62	200	M8270C	2/9/2022	2/10/2022	NJC	1
Fluorene		156	ug/l	1.58	5.02	200	M8270C	2/9/2022	2/10/2022	NJC	1
Indeno(1,2,3-cd)py	rene	< 2.42	ug/l	2.42	7.7	200	M8270C	2/9/2022	2/10/2022	NJC	1
1-Methyl naphthale	ene	248	ug/l	3.82	12.18	200	M8270C	2/9/2022	2/10/2022	NJC	1
2-Methyl naphthale	ene	151	ug/l	3.72	11.8	200	M8270C	2/9/2022	2/10/2022	NJC	1
Naphthalene		990	ug/l	6	20	200	M8270C	2/9/2022	2/10/2022	NJC	1
Phenanthrene		138	ug/l	2.86	9.12	200	M8270C	2/9/2022	2/10/2022	NJC	1
Pyrene		6.20 "J"	ug/l	2.42	7.72	200	M8270C	2/9/2022	2/10/2022	NJC	1
Lab Code	5040484J										
Sample ID	DUPLICA	ТЕ									
Sample Matrix	Water										
Sample Date	2/2/2022										
		Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
Organic											
BTEX											
Benzene		< 0.38	ug/l	0.38	1.55	1	8260B		2/5/2022	CJR	1
Ethylbenzene		< 0.37	ug/l	0.37	1.51	1	8260B		2/5/2022	CJR	1
Toluene		< 0.42	ug/l	0.42	1.71	1	8260B		2/5/2022	CJR	1
m&p-Xylene		< 0.77	ug/l	0.77	3.14	1	8260B		2/5/2022	CJR	1
o-Xylene		< 0.44	ug/l	0.44	1.8	1	8260B		2/5/2022	CJR	1

Project Name Proiect #	FMR MOSS AM 18687	ERICAN						Invoi	ce # E404	84		
Lab Code	5040484K											
Sample ID Sample Matrix	EQUIP BLANK Water											
Sample Date	2/2/2022											
	Re	sult	Unit	LOD	LOQ	Dil		Method	Ext Date	Run Date	Analyst	Code
Organic												
BTEX												
Benzene		< 0.38	ug/l	0.38	1.55	5	1	8260B		2/4/2022	CJR	1
Ethylbenzene		< 0.37	ug/l	0.37	1.51		1	8260B		2/4/2022	CJR	1
Toluene		< 0.42	ug/l	0.42	1.71		1	8260B		2/4/2022	CJR	1
m&p-Xylene		< 0.77	ug/l	0.77	3.14	L :	1	8260B		2/4/2022	CJR	1
o-Xylene		< 0.44	ug/l	0.44	1.8	8	1	8260B		2/4/2022	CJR	1
"J" Flag:	Analyte detected betwe	en LOD and I	.00	Ι	.OD Limi	t of Det	tecti	on	LOQ L	imit of Quantita	tion	

Code Comment

1 Laboratory QC within limits.

All solid sample results reported on a dry weight basis unless otherwise indicated. All LOD's and LOQ's are adjusted for dilutions but not dry weight. Subcontracted results are denoted by SUB in the analyst field.

Authorized Signature

Michaelplul

CHAIN OF C	TODY RECORD				S	jyi.	erg	у	1					(Chai Page	in # e _		No of _	393 Z	382 (C		Q
Lab I.D. #		Real Providence	ants.	F	nviro	nmer	tal L	a	6.	11	10				S	am	ple	Har	ndlin	g Re	quest		
	DNR			Base B	101101	WWW SVDE	rov-lab net		- ,	-			-	_R	ush	An	alys	is	Da	te Re	quired	:	
Project #: 186	87				1990 Pi	rospect Ct.	Appleton, W	VI 5	4914			1	×	(Rus	hes	acco	eptec	d onl	y with	n prior	authori	ization	"
Sampler: (signature)	univorn 0	nch	4		920-830-	-2455 • mrs	ynergy@wi.tv	wcb	c.co	m			-	N	onn	an	um	AIC	Junu			-	
Project (Name / Locat	tion): Former Mass Amer	iun /87	16 N	Grani	ik Rol , M	Ailwacke	C, WI		A	naly	sis I	Requ	este	d	_	-	-	_		Ot	her An	alysis	3
Reports To:	in kikkert		Invoi	ce To:		1																	
Company The	Secure land	J.	Com	pany		\sim	1								9	0	×						
Address) -	rigma Bros	Pulling	Addr	ress	1	N								ш			14	_					
Address 1500 L	N Canul St, M	inwukee,w	City	State 7in	0	1		95)	p 95					LEN	0	000	N CC	2					
City State Zip Mi	Wankee, WI, 3	53255	City	State Zip	X			Sel	O Se	E		6	21)	THA		UN PCS	50 5	15)	LS.				
Phone 414-6	43-4200		Pho	ne	51			BRO	GRIG	ATTIN	ASE	827(A 80	APH	100	SPE	928	2	NETA				PID/
Email Skikk	iert athosigme	grapico	Ema	ul	~	2 1		Mod	Mod	TEN	GRE	EPA	E	Z +	ATE	L SU		AIR	AN				FID
Lab I.D.	Sample I.D.	Collectio Date	on Time	Filtered Y/N	No. of Containers	Sample Type (Matrix)*	Preservation	DRO (GRO (NITRA	OIL &	PAH (PVOO	PVOC	SULF	VIOL		VOC	8-RCI				
SOHOYSY A	P2-03	2/2/22	1:05	N	4	GW	Hel/None	-		_		X	-	-	-	-	2	\$				-	-
B	PZ-03 A	11	1:55	1	4			-		-	+	X	-	-		+		2				-	-
C	PZ-03B		1:50		4			-		-	-	S	-			+	5	2					
4	12-03 C	le	2:30		u u			-		+		Ŷ	-				5	2					
E	R-03 D		2:40		Ч							X					>	4					
1-	Para E	1	1:45		4							X					X	<					
Ĥ	P2-03 6	1	2:00		ц							X	_	-		_	2	×		-		-	-
I	P203 H	1	1:45		4		1	_		-	-	X,	-	-		-	K	8	++	-			-
J	Duplicate	-			5	L.	HC	-		-	-		-	-		-	K	>	++	-			
K	Eautoment Blun	K I	:15	1	2		AL	-	-	+	-	N		+			1		++	+			-
Comments/Specia	al Instructions (*Specify g	groundwater *	'GW", ∣	Drinking '	Water "DW", N	Waste Water	"WW", Soil "S	5", A	ir "A"	, Oil,	Slu	dge, e	etc.)								٥		
Sample In Metho	tegrity - To be completed	by receiving	lab.		Relinquis	hed By: (sign) n World	4	Tir 4:	ne LS	2	Date	e 22	Rec	eived	l By:	(sigr	1)				Γime)ate
Temp Cooler sea	o. of Temp. Blank: al intact upon receipt: 🔏	_°C On Ice:	No		Received	I in Laboratory	Bychint	h	in	-			3		Time	8	3 201	0		Da	ite: 2 /	3/2	2

CHAIN OF STODY RECORD					Sy.lergy							Chain # 43701 Page <u>Z</u> of <u>Z</u>												
Lab I.D. #				Environmental Lab Inc																				
QUOTE #: WDNR				Livionnental Lab, IIIC.							Bush Analysis Date Required													
Project #: 18687				1990 Prospect Ct. • Appleton, WI 54914									(Rushes accepted only with prior authorization)											
Sampler: (signature)	Mun Wella I	mcg	A.		920-830	-2455 • mrs	ynergy@wi.t	wcb	oc.co	m				<u> </u>	Vorr	mal	Tu	rn A	rou	ind				
Project (Name / Loo	cation): Former Mass Ame	inum 18	3716 N	6 Green	aviller	Rd, Milwa	utee, WI		A	naly	sis	Req	uest	ed							Oth	ner Ar	alys	is
Reports To: Staven VillKart Invoid				ce To:																				
Company The Simmer Company Comp				ipany												s								
Address Sco (Cancel St Addre				iress					-					ш		GLB								
City State Zip Milwalker WIT 52723 City 5				State Zip					ap 95					LEN		SO	5							
Phone 414-643-4100 Phon				ne X					SO Se	BITE	ш	(0)	(150	THA		END	A 524	(0)	(c1 -	2				
Email Skikkert ath so ma and ching Email										TIN	REAS	A 827	PA R	NAPH		INSPI	(EP/	A 82		MET				PID/
Lab I.D.	Sample I.D.	Collection Date T	ime Y/N	Filtered Y/N	No. of Containers	Sample Type (Matrix)*	Preservation	DRO (Ma	GRO (Mo	NITRATE	OIL & GF	PAH (EP)	PCB PVOC (F	PVOC + I	SULFATE	TOTAL S	VOC DW	VOC (EP		-HCHA				FID
	Mutrix SPike Dup	212122 -	-+	N	1	GW	None					X						1		-				
156	- 1			1																				
								-		+			-	-		-	-	+	-	-			-	
Charles and										+				-		-	+	+	-	+			-	
an Road St.																								
							6			-		-	-	-		-	-	+	-	-		-		_
								-		+				-		+	+	+		-			-	+
								-																
a survey of the					-			-		+		_	_	-		_		_	-	-			-	_
Comments/Spec	I sial Instructions (*Specify ground in the second second second second second second second second second second	oundwater "G	àW", Dri	inking V	Vater "DW", \	Vaste Water	⊥ "WW", Soil "S'	", Аі	r "A",	Oil,	Slud	lge,	etc.)											
Sample Integrity - To be completed by receiving lab. Method of Shipment:					Religquished By: (sign)				1e 15	2	Date	2	2 Received By: (sign) Time							(Date			
Temp. of Temp. Blank:°C On Ice: Cooler seal intact upon receipt: Yes No					Received in Laboratory By:							Time: Date:												