

REMEDIAL ACTION PLAN, REVISION 1

SHEBOYGAN RIVER AND HARBOR SUPERFUND SITE TECUMSEH DEWATERING SITE, SHEBOYGAN FALLS, WI AND MARYLAND AVENUE DEWATERING SITE, SHEBOYGAN, WI

SME Project Number: 069638.00.034.001

November 8, 2018

SME

TABLE OF CONTENTS

1. INTRODUCTION	1
2. SITE HISTORY AND CURRENT CONDITIONS	1
2.1 SITE HISTORY	1
2.2 CURRENT CONDITIONS	1
3. REMEDIAL NEED EVALUATION	2
3.1 TECUMSEH FALLS	2
3.2 MARYLAND AVENUE	3
4. TECUMSEH REMEDIAL EXTENT EVALUATION	5
5. ANALYSIS OF REMEDIAL ALTERNATIVES	5
5.1 EVALUATION CRITERIA	5
5.2 POTENTIAL REMEDIAL ALTERNATIVES	6
5.3 SCREENING LEVEL EVALUATION OF REMEDIAL ALTERNATIVES	7
5.4 DETAILED EVALUATION OF APPLICABLE REMEDIAL ALTERNATIVES	7
6. CONCLUSIONS	8

FIGURES

FIGURE 1 – SITE LOCATION MAP AND DEWATERING SITES	
FIGURE 2 – TECHMSEH SITE SAMPLE LOCATON DIAGRAM	
FIGURE 3 – PHASE II SAMPLE LOCATIONS AND EXTENT OF IMPACTED SC)IL -
MARYLAND AVENUE SITE	
FIGURE 4 – SAMPLE LOCATION WITH PAH-IMPACTED SOIL	
FIGURE 5 – SAMPLE LOCATION WITH PAH-IMPACTED SOIL-0-4 FEET	
FIGURE 6 – SAMPLE LOCATION WITH PAH-IMPACTED SOIL-ALL DEPTHS	

TABLES

TABLE 1 – REMEDIAL ALTERNATIVES

APPENDIX A

PROUCL DOCUMENTATION

APPENDIX B

REMEDIAL ALTERNATIVES SCORING SHEET

1. INTRODUCTION

We prepared this Remedial Action Plan (RAP) to address previously undiscovered, historical polychlorinated biphenyl (PCB) impact in soils at the Tecumseh Falls dewatering facility of the Sheboygan River and Harbor Superfund Site (Site). The PCB impact was discovered during the post remedial sampling of the facility to evaluate the potential that release of sediment during dewatering may have affected the soil. The RAP is also intended to address the Maryland Avenue dewatering facility where lead and polynuclear aromatic hydrocarbons (PAHs) were encountered in shallow soils at concentrations exceeding commercial/industrial preliminary remedial goals (PRGs).

The objective of this RAP is to evaluate the need for remediation at the two dewatering sites and the remedial options to protect human health and the environment. Descriptions of the Site history and known current environmental conditions; data evaluation, proposed remedial methods, reporting; and the estimated project schedule are presented in the following sections.

2. SITE HISTORY AND CURRENT CONDITIONS

The following subsections summarizes the Site history, current Site conditions, and environmental conditions identified during previous investigations of the Property.

2.1 SITE HISTORY

Tecumseh, a manufacturer of refrigeration and air conditioning compressors and gasoline engines, was located adjacent to the Sheboygan River in Sheboygan Falls, Wisconsin. Polychlorinated biphenyls (PCBs) were found in sewer lines that lead to the River from Tecumseh and in hydraulic fluids used in Tecumseh Products Company's Diecast Division manufacturing processes. Prior to remediation, the contamination level was high in the sediments immediately surrounding the Tecumseh Falls Site, but decreased in concentration downstream.

The Record of Decision (ROD) listed the risks at the Sheboygan River and Harbor Superfund site to be from the chemicals of concern, metals and PCBs. Metals, PCBs, and polynuclear aromatic hydrocarbons (PAHs) were the as potential chemicals of concern (PCOC). The metals listed as the target of concern for the Remedial Investigations were cadmium, chromium, copper, lead, mercury, nickel, and zinc. Pesticides, dioxins, and dibenzofurans were not present in the sediment and as such, were no longer PCOC. The ROD required remediation of the Tecumseh site to address the preferential pathways allowing the river to be impacted with sediments and remediation of the PCBs in river sediments.

Between 2003 and 2013, Pollution Risk Services (PRS) and others remediated preferential pathway soils and the river sediments. PRS dewatered the dredged sediment at the Tecumseh Falls and Maryland Avenue sites (Figure 1).

2.2 CURRENT CONDITIONS

Following the sediment remediation activities, the two dewatering sites have remained vacant. In accordance with the approved Sampling and Analysis Plans, SME sampled the areas where one of the geo-tubes broke releasing water outside of the dewatering pads, the wastewater treatment facilities, and the Confined Treatment Facility (CTF) or Sediment Management Facility (SMF) in 2016.

The results of this Phase II ESA demonstrated that soil at the Tecumseh Falls facility is impacted with concentrations of PCBs and PAHs; however, the impact was not the result of dewatering releases or activities by PRS. The impacted soil represents an undiscovered historical release from historical operations that occurred prior the remediation performed by PRS.

The concentrations of PAHs and PCBs at several locations at the Tecumseh Falls facility exceed the 2016 cleanup criteria or screening levels for commercial/industrial receptors. As such, impacted soil in these areas must be addressed through remediation or an engineering control before the Tecumseh facility meets the risk goals. The total cumulative direct contact risk is acceptable for commercial and industrial receptors as long as the soil impacted with PAH and PCB at concentrations above the PCSLs are addressed via remediation or engineering controls. The impacted soil also has the potential to migrate to the river or to nearby properties via two preferential pathways: surface water run-off and leaching to groundwater which then migrates to the river.

There is no residual impact from at the former CTF and SMF from sediment management activities completed by Tecumseh prior the remediation performed by PRS. Figure 2 shows the location of the impacted soil.

The results of this Phase II ESA demonstrated that soil at Maryland Avenue facility was impacted with concentrations of PAHs and lead; however, the impact is not the result of dewatering releases or activities by PRS. The impacted soil represents an undiscovered historical release from historical operations that occurred prior the remediation performed by PRS. The concentrations of PAHs and/or lead at several locations exceeded the 2016 cleanup criteria or screening levels for commercial/industrial receptors (Figure 3). As such, SME evaluated if the impacted soil in these areas need to be addressed to protect human health and the environment.

3. REMEDIAL NEED EVALUATION

3.1 TECUMSEH FALLS

Soils exceed the direct contact standards and need to be addressed. The cleanup goals established during the site investigations were as follows and were based on a 10⁻⁶ risk:

- PCBs 8.66 mg/kg
- Benzo(a)anthracene 29 mg/kg
- Benzo(a)pyrene 2.9 mg/kg
- Benzo(b)fluoranthene 20 mg/kg
- Dibenz(a,h)anthracene 1.8 mg/kg
- Indeno (1,2,3-cd)pyrene 29 mg/kg.

SME used the most current Regional Screening Levels based on a 10⁻⁵ risk to derive the PAH cleanup goals applicable to the potential future use of the site. These are as follows:

- Benzo(a)anthracene 210 mg/kg
- Benzo(a)pyrene 21 mg/kg
- Benzo(b)fluoranthene 210 mg/kg
- Dibenz(a,h)anthracene 21 mg/kg
- Indeno (1,2,3-cd)pyrene 210 mg/kg.

Figure 4 shows the extent of PAH impacted soils at the Tecumseh site based on the 10⁻⁵ risk. Evaluation of the lateral and vertical extent of excavation required is provided in Section 4.

SME installed temporary surface water run-off controls to prevent migration of the impacted soils until we perform remedial activities. Please reference SME Serial Letter #39 (August 10, 2017) for a discussion of the controls and Serial Letter #42 (10/5/2018) for photographs of the installed silt fence.

3.2 MARYLAND AVENUE

The impacted soil is limited to four sample locations and exposure to only those soils would not be a representative site exposure to future receptors. The USEPA guidance *Calculating Upper Confidence Limit for Exposure Point Concentration at Hazardous Waste Sites* (OSWER 9285 6-10), is an update to the *Risk Assessment Guidance Document for Superfund* (RAGs). This guidance states: "Unless there is site-specific evidence to the contrary, an individual receptor is assumed to be equally exposed to media within all portions of the exposure unit over time frame of the risk assessment." RAGs stated the USEPA recommends using the average concentrations to represent "a reasonable estimate of the concentration over time." However, the OSWER update recommended using a 95% UCL as a reasonable exposure point concentration.

The concentrations of the chemicals of concern (COCs) that exceeded the 2016 screening levels at the Maryland Avenue facility are summarized below. The average COC concentrations in the soil intervals within the POC are provided demonstrating that within the POC, only the concentrations of benzo[a]pyrene are close to the screening level. However, all of the COCs will be evaluated by comparing the 95% UCL to the screening levels.

			SAMPL	E DEPTH II	NTERVAL		2018 RSL
	CHEMICALS	OF CONCERN	0-0.5	0.5-1.5	1.5-3.5	AVERAGE	OR CLEANUP CRITERIA ¹
	B1	Denzelelnurene	6.92	0.414	0.0406	2.5	01
	B1-1W	Benzo[a]pyrene	4.28	0.102	< 0.0032	1.46	21
		Benzo[a]pyrene	27.7	2.02	1.97	10.6	21
Commisso	H4	Benzo[b]fluoranthene	32.5	2.61	2.31	12.5	210
Samples		Lead	1,530	219	174	641	800
		Benzo[a]anthracene	29.2	4.00	0.387	11.2	210
	H4-2NW	Benzo[a]pyrene	23.2	3.73	0.455	9.1	21
		Benzo[b]fluoranthene	38.2	5.68	0.569	14.8	210
Results in m	ng/kg.						
¹ Using 10 ⁻⁵	carcinogenic	risk and THQ of 1.0					

SME calculated the 95% UCL using the UEPA program, ProUCL. The results are summarized below and are provided in Appendix A.

CHEMICAL OF CONCERN	EXPOSURE POINT CONCENTRATION	RSL OR CLEANUP CRITERIA
Benzo[a]pyrene	5.21	21
Benzo[a]anthracene	3.48	210
Benzo[b]fluoranthene	8.04	210
Lead	175	800
Results in mg/kg.		

The exposure point concentrations are less than the screening level and exposure to site soils does not pose and unacceptable risk at a carcinogenic risk of 10⁻⁵ and THQ of 1.0. Groundwater was not encountered during the investigation but there is a potential that the residual soil impact could migrate to groundwater. WDNR states in NR 720, "With the exception of naphthalene, PAH compounds are

generally only of concern for direct contact due to their relatively low migration potential. In WDNR publication RR-087, WDNR lists the concentrations of PAHs based on the Soil to Groundwater residual contaminant level (RCL). The concentrations at the Maryland Avenue site are less that these RCLs. Therefore, the soil impacted with PAHs does not appear to present a risk to groundwater. The vertical distribution of the PAHs is consistent with this conclusion.

According to the WDNR NR 720 RR Soil RCL Worksheet, the lead concentration protective of groundwater is either 13.5 or 27 mg/kg depending on the Dilution Attenuation Factor. However, the United States Geological Survey reports the state background concentrations for lead have a mean of 17.8 mg/kg and a 95% UCL of 30.1 mg/kg. The background concentrations of lead in soil compared to the RCL Worksheet implies all of the groundwater in Wisconsin is impacted with lead. However, WDNR reports in their brochure, *Lead in Drinking Water*, that "Most Wisconsin drinking water sources, either wells or lake water intakes, have little or no measurable lead." As such, the RCL defaults are extremely conservative and should be viewed as only a screening level. The following provides a weight of evidence approach as why lead at the site will not impact groundwater. This table is based on several facts affecting groundwater use in the area. Drinking Water Well Database, the closest potable water well to the Maryland Avenue site is located at 2605 Indiana Avenue, 2,400 feet to the southwest. The well is 150 feet deep and obtains groundwater from the limestone aquifer. This aquifer is separated from a shallow sand layer (4-14 feet bgs) by 61 feet of clay. The limestone aquifer is encountered at 75 feet bgs.

		VIDENCE SUMMARY FOR LEAD
FACTOR	VALUE(S)	COMMENT
Separation Distance	≈75 feet	This distance indicates there is a low probability that the impacted soil near the surface will migrate to the groundwater used for drinking water. In borings where lead was analyzed at each sampling interval, the concentration of lead decreases with depth. Based on monitoring wells at the Tecumseh site, water is found in a shallow sand layer encountered at approximately 8 feet bgs.
Representative Concentration	175 mg/kg	Lead levels above background concentration of 30.1 mg/kg were present in two locations at depths below 0.5 feet.
Partition Coefficient (Kd)	1,950 to 10,760 L/kg	Lead has a very high Kd indicating that it does not have the tendency to leach to groundwater.
Solubility	Insoluble to soluble	Literature indicates all but two forms of lead (salts, carbonates, sulphates, etc.) are insoluble in water at ambient temperatures. Only lead acetate and lead nitrate are soluble. Lead acetate is highly soluble but does not occur in nature as it is manufactured with lead and acetic acid. Lead nitrate is also not found in nature as is the byproduct of mixing lead and nitric acid.
Secondary Features	None	There are no fractures or deep utilities that would aid migration of leachate to groundwater.
Other	Migration Potential	According to the Sheboygan County Soil Survey, soils in this area have a pH above 7 and a cation exchange capacity of more than 10 me/100 grams. These soil characteristics increase retardation factor and reduce leaching.

The residual impact poses no threat to receptors or groundwater. As such, SME and PRS recommended that no further action is required at the Maryland Avenue facility.

4. TECUMSEH REMEDIAL EXTENT EVALUATION

The Phase II and delineation investigations have defined the extent of PAH and PCB impact at the site. Figures 4 through 6 depicts the extent of impact above the direct contact cleanup levels. The PAH impacted soil extends to a depth of no more than 4 feet below ground surface (bgs). Approximately 244 cubic feet of soil is impacted with PAHs exceeding acceptable risk levels (Figure 4).

The extent of PCB impact is dependent on using the Wisconsin direct contact point of compliance of 0 to 4 feet bgs¹ as a cleanup or capping requirement or using all PCB impacted soils as the cleanup or capping requirement. Figures 5 and 6 show the extent of impact depending on the depth of impact that has to be addressed. Depending on the depth of soil to be remediated to address PCBs, there is 5,448 to 17,195 cubic yards of soil. The 95% UCL for the PCBs in soil is 1,124 mg/kg. In the event of off-site disposal, all of the soil has to be disposed in a TSCA waste landfill.

During the supplemental delineation assessment of the PCB impacted soils at the Tecumseh site, SME collected samples for Synthetic Precipitation Leaching Procedure (SPLP) analysis to assess the propensity of PCB to leach from the soil. This information will allow a determination of the concentrations that are protective of the leaching to groundwater pathway. Empirical evidence from the 2016 and 2017 investigations of this site indicates PCB concentrations as high as 15,000 mg/kg may not significantly leach to groundwater. At sample location S15-1W, the PCB concentration is 1,030 mg/kg from 0-0.5 feet bgs reducing to 0.938 mg/kg at 1.5 to 3.5 feet bgs. The SPLP test provided evidence that PCBs would leach to groundwater. However, evidence that PCBs will not leach to groundwater is that groundwater results from the two monitoring wells down-gradient of the most impacted area, MW10 and MW12, have seen decreases in PCB concentrations of 45% and 65% respectively. In addition, BB&L installed a shallow and deep well in the area, MW7S and MW7D, and sampled the wells for total and dissolved PCBs. No PCBs were detected in the groundwater. A groundwater interceptor trench is present in the event the concentrations in groundwater increase. Use of the trench has never been necessary. Based on the foregoing, leaching to groundwater is not a pathway to consider when determining the vertical extent of impact that must be removed.

Based on the results, the soil impact will have to be addressed to protect the public from direct contact with soil. During the remediation, steps should be taken to reduce the chance that PCBs may leach to groundwater.

5. ANALYSIS OF REMEDIAL ALTERNATIVES

5.1 EVALUATION CRITERIA

An analysis of remedial alternatives was completed based on three criteria: Threshold, Balancing, and Modifying. The criteria provided decision makers adequate information to allow the selection of an appropriate remedy of the Property. Additional information on the criteria used to select the most appropriate remedial method are described below.

- The Threshold Criteria include:
 - o Protection of Human Health and the Environment
 - Compliance with Applicable or Relevant and Appropriate Requirements (ARARs)

¹ WDNR Publication RR-968, RR-709, RR-528, and WDNR Form 4400-202.

- The Balancing Criteria include:
 - Long and Short-Term Effectiveness
 - Reduction in Toxicity or Mobility
 - o Implementability
 - o Cost
- The Modifying Criteria include:
 - o Community Support
 - o Responsible Party Support
 - o State Support

In preparation of this RAP, we developed Site-Specific cleanup levels (Section 3.1) based on the Property's future use and estimated the extent of impact requiring remediation. The ability of remedial alternatives to meet these standards in the short and long-term will help meet one of the Threshold Criteria. As part of this criteria, we evaluated the ARARs to determine if there are other local, state, or federal criteria that must be met as well as those applicable to the remedial action such as storm-water control, fugitive or particulate emissions control, and prohibition of nuisances.

We also evaluated the range of possible costs for each remedial alternative, the effectiveness of each alternative, and the ability to meet the Site-specific standards. In addition, we evaluated the ability of the alternatives to gain state and community (parents of students) support through outreach efforts.

5.2 POTENTIAL REMEDIAL ALTERNATIVES

We reviewed the following documents for a list of potential remedial alternatives.

- USEPA, Technology Alternatives for the Remediation of PCB Contaminated Soils and Sediments, EPA/600/S-13/079.
- Los Alamos National Laboratory, A Compendium of Cost Data for Environmental Remediation Technologies, August 1996.
- USEPA, The Feasibility Study: Detailed Analysis of Remedial Action Alternatives, March 1990.
- Goldstein, Mike and Ritterling, Jon, *A Practical Guide to Estimating Cleanup Costs*, USEPA Papers, Paper 30, January 2001.
- USEPA, Guidance for Conducting Treatability Studies Under CERCLA, October 1992.
- USEPA, Table 3-2: Treatment Technologies Screening Matrix.
- Dadrasnia, Arezo, Shahsavari, N., and Emenike, C.U., *Remediation of Contaminated Sites*, 2013.
- Mouvet, Christophe and Colombano, Stefan, *Remediation Technologies for PAH Contaminated Soils*, October 2012.

These documents provided the following remedial alternatives that may be effective for PCBs:

- Soil Removal and Off-site Disposal or Incineration
- In Situ Treatment
 - No Action/Natural Attenuation
 - Biological Treatment
 - Bioremediation

- Phytoremediation
- Engineering Control (Capping)
- Vitrification
- Solvent Extraction
- Solidification
- Nano-Valent Iron Reductive Dechlorination
- Sorbent Polymer Extraction and Remediation System (SPEARS)
- Ex Situ Treatment
 - Chemical Treatment
 - > Vitrification
 - Bioremediation

5.3 SCREENING LEVEL EVALUATION OF REMEDIAL ALTERNATIVES

Of the potential remedial alternatives listed in Section 5.2, SME performed a screening level evaluation of the remedial alternatives with the exception of "No Action" (Table 1). The screening evaluation was based on each of the three main criteria discussed in Section 5.1: overall protection of human health, relative cost, and community support. The following provides a summary of this evaluation of the top alternatives, based on the screening evaluation.

REMEDIAL ALTERNATIVE	SCREENING EVALUATION SCORE	RELATIVE COST	COMMENT
1. Soil Removal	62.5	>\$10,00,000	Relatively fast to implement
2. Engineering Control	62.5	<\$500,000	Fastest to implement and is consistent with current engineering control
3. In-Situ Bioremediation	55	<\$1,000,000	A lengthy process

5.4 DETAILED EVALUATION OF APPLICABLE REMEDIAL ALTERNATIVES

Of the three remedial alternatives identified by SME to be most effective, we performed a detailed evaluation of the alternatives based on all of the criteria using a scoring spreadsheet developed based on the guidance document, *Guidance for Conducting Remedial Investigations and Feasibility Studies under CERCLA*. Appendix B provides the results of this evaluation. A summary of the scores for each remedial alternative evaluated is provided in the following table.

REMEDIAL ALTERNATIVE	DETAILED ANALYSIS SCORE	RELATIVE COST	COMMENT
1. Soil Removal	81	>\$10,00,000	Read on sears, select
2. Engineering Control	81	<\$500,000	Based on score, select Engineering Control
3. In-Situ Bioremediation	80	<\$1,000,000	Engineering Control

Both the screening evaluation and the detailed analysis scoring demonstrate the Alternative 2 should be the selected remedy. Capping is consistent with WDNR philosophy as discussed in Section 3.2 of RR-528 that "A soil performance standard implemented to protect human health from direct contact would typically involve capping the contaminated soil".

6. CONCLUSIONS

The soil at the Tecumseh Falls facility should be capped to protect the public and groundwater. The soil at the Maryland Avenue facility does not pose a risk to the public.

FIGURES

- FIGURE 1 SITE LOCATION MAP AND DEWATERING SITES
- FIGURE 2 TECHMSEH SITE SAMPLE LOCATON DIAGRAM
- FIGURE 3 PHASE II SAMPLE LOCATIONS AND EXTENT OF IMPACTED SOIL MARYLAND AVENUE SITE
- FIGURE 4 SAMPLE LOCATION WITH PAH-IMPACTED SOIL
- FIGURE 5 SAMPLE LOCATION WITH PAH-IMPACTED SOIL-0-4 FEET
- FIGURE 6 SAMPLE LOCATION WITH PAH-IMPACTED SOIL-ALL DEPTHS

NOTE: DRAWING INFORMATION TAKEN FROM GOOGLE MAPS AND USGS 7.5-MINUTE TOPOGRAPHIC MAPS OF THE SHEBOYGAN SOUTH AND SHEBOYGAN FALLS QUADRANGLES, WISCONSIN, 1994.

Project

SHEBOYGAN RIVER AND HARBOR SUPERFUND SITES

ProjectLocation

SHEBOYGAN AND SHEBOYGAN FALLS, WISCONSIN

Sheet Name

DEWATERING SITES LOCATION MAP

No. Revision Date

Date

CADD

9-12-2016

JWH

Designer JWH

Scale NOT TO SCALE

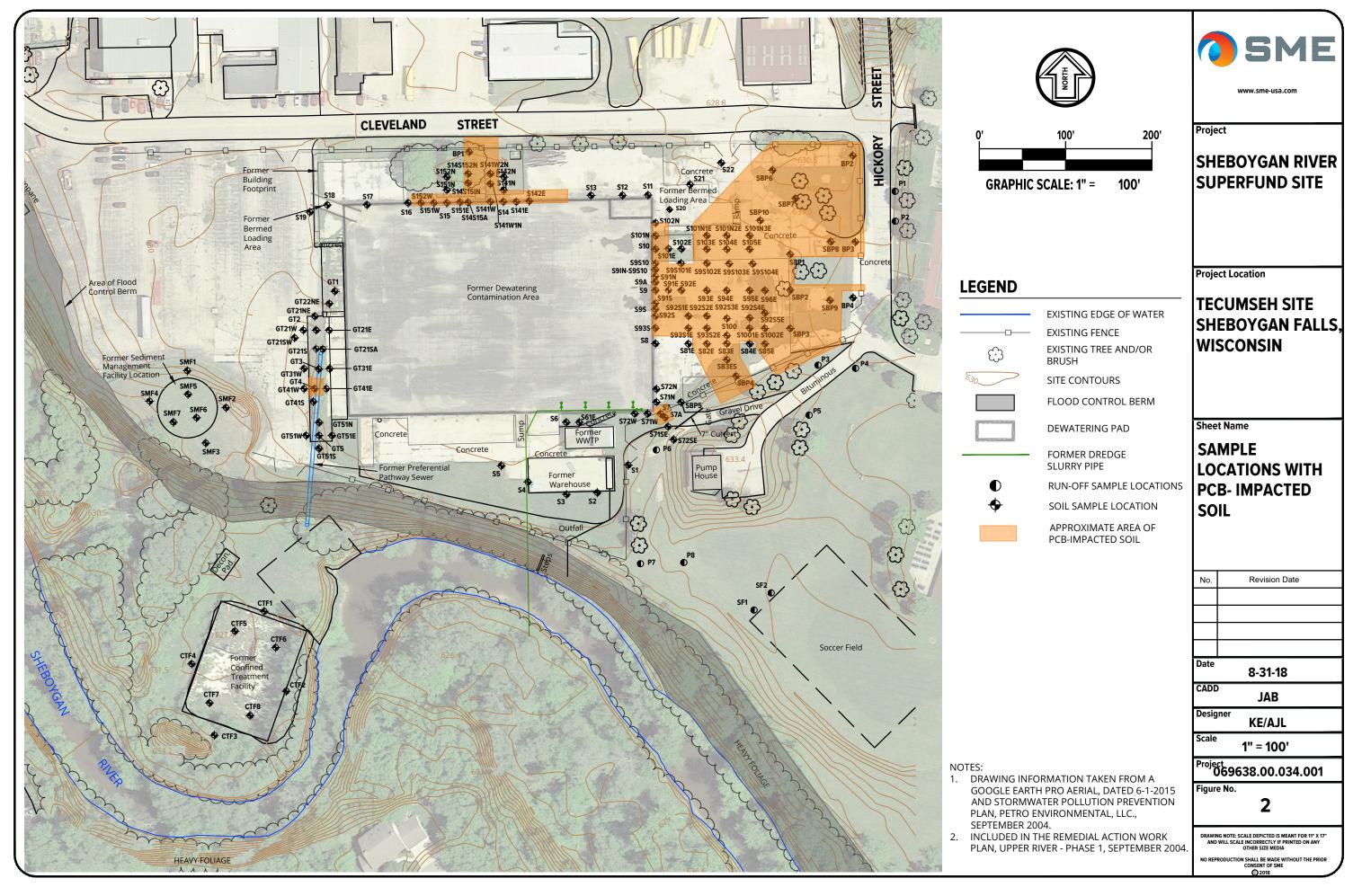
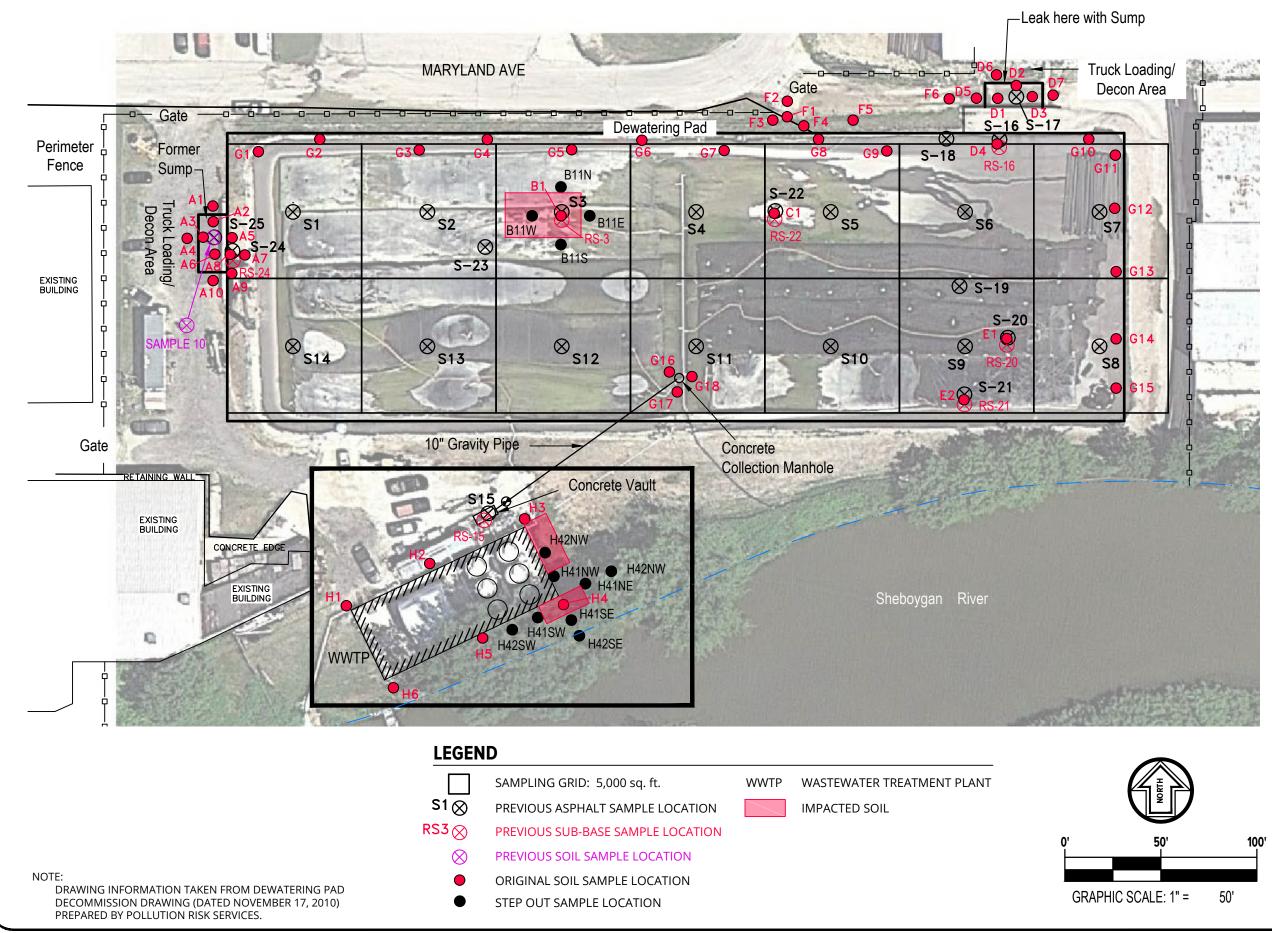
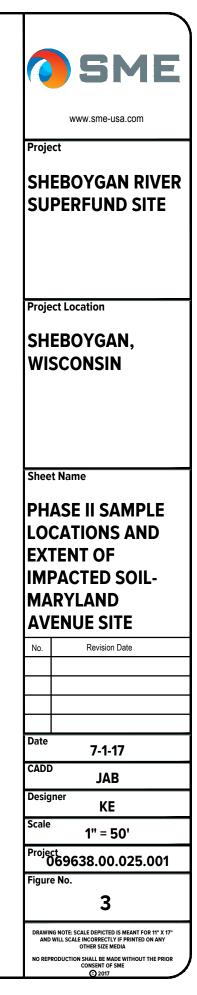
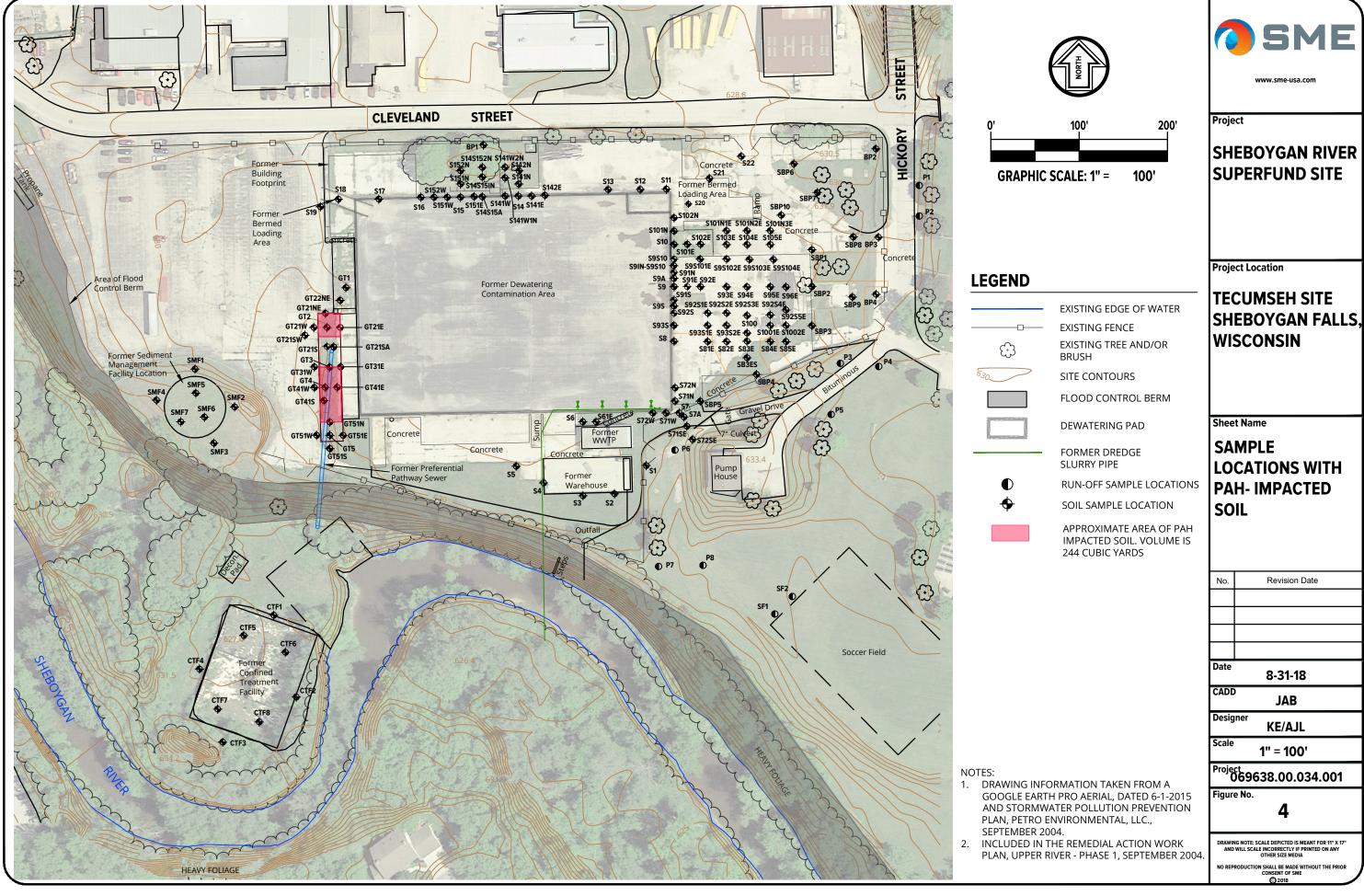
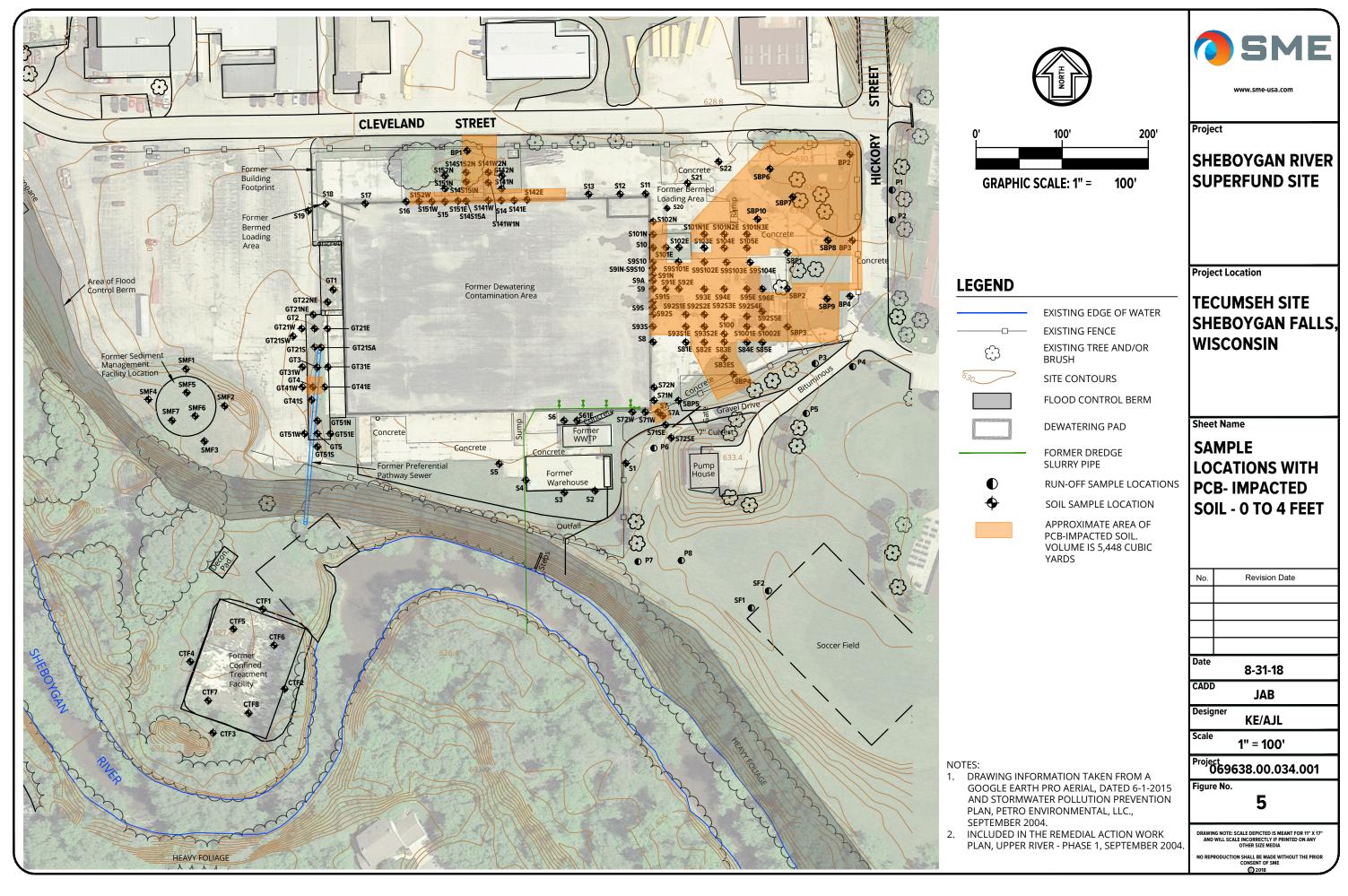

Project 069638.00.024.001

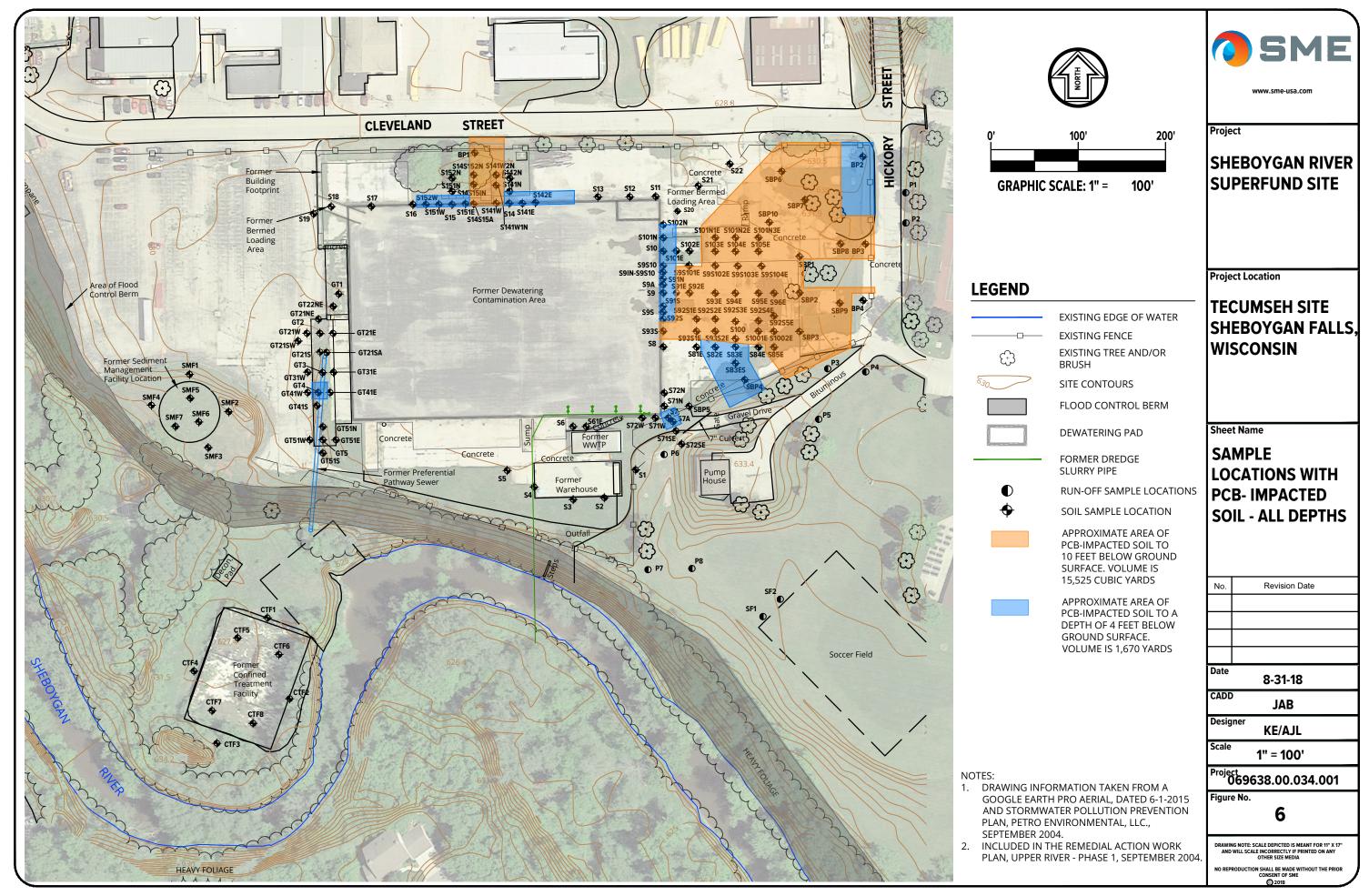
Figure No.


•


DRAWING NOTE: SCALE DEPICTED IS MEANT FOR 11 X 17 AND WILL SCALE INCORRECTLY IF PRINTED OTHER SIZES


NO REPRODUCTION SHALL BE MADE WITHOUT THE CONSENT OF SME (C) 2016




E 2:07 2018 ģ Sep PLOT

TABLESTABLE 1 - REMEDIAL ALTERNATIVES

TABLE 1REMEDIAL ALTERNATIVESSheboygan River and Harbor Superfund SiteTecumseh SiteSheboygan Falls, Ohio

				Remedial Alternatives				
Criterion					In-Situ M	Vethods		
	Soil Removal	Bioremediation Phytoremediation		Engineering Control	Vitrification	Solvent Extraction	Solidification	
Overall Protection of Human Health and the Environment		Not known if reduction would be sufficient to meet standards.	Contamination remains.		Not known if reduction would be sufficient to meet standards.	Not known if reduction would be sufficient to meet standards.	Not known if reduction would be sufficient to meet standards.	
Compliance with ARARs			Contamination remains.		Not known if reduction would be sufficient to meet standards.	Not known if reduction would be sufficient to meet standards.	Not known if reduction would be sufficient to meet standards.	
Long term effectiveness and permanence (magnitude of residual risk, adequacy and reliability of controls)		Lengthy process.						
Reduction of toxicity, mobility, or volume through treatment (degree of expected reductions, degree to which treatment is irreversible, type and quantity of residuals)			Not known if reduction would be sufficient to meet standards. Plants would contain PCBs and would reqiure removal and disposal at some time.	Contamination is not reduced, but exposure is reduced.		Not known if reduction would be sufficient to meet standards. Plants would contain PCBs and would reqiure removal and disposal at some time.		
Short term effectiveness (protection during remediation, time until objectives are complete, environmental impacts)		Lengthy process.	Lengthy process.		Lengthy process.	Lengthy process.	Lengthy process.	
Implementability (space restrictions, reliability, ease, coordination, availibility)					Requires electrical connection and specialized equipment.	Requires electrical connection and specialized equipment.	Requires electrical connection and specialized equipment.	
Approximate Cost (capital)	>\$10,000,000	<\$1,000,000	<\$1,000,000	<\$500,000	>\$1,000,000	>\$1,000,000	>\$1,000,000	
Community Acceptance								
State/Support Agency Acceptance				Does not remove the impact.		May not meet standards.	May not meet standards	
Screening Score (67.5 possible)	62.5	55	47.5	62.5	47.5	37.5	32.5	

shaded brown.

Above Average Performance = 7.5 points

Average Performance = 5 points

Poor Performance = 2.5 points

TABLE 1REMEDIAL ALTERNATIVESSheboygan River and Harbor Superfund SiteTecumseh SiteSheboygan Falls, Ohio

]		Remedial Alternatives		
Criterion				Ex-Situ Methods	
	Nano-Valent Iron Dechlorination	SPEARS	Chemical Treatment	Vitrification	Bie
Overall Protection of Human Health and the Environment	Not known if reduction would be sufficient to meet standards.	Not known if reduction would be sufficient to meet standards.	Not known if reduction would be sufficient to meet standards.	Not known if reduction would be sufficient to meet standards.	Not kn be
Compliance with ARARs	Not known if reduction would be sufficient to meet standards.	Not known if reduction would be sufficient to meet standards.	Not known if reduction would be sufficient to meet standards.	Not known if reduction would be sufficient to meet standards.	
Long term effectiveness and permanence (magnitude of residual risk, adequacy and reliability of controls)					
Reduction of toxicity, mobility, or volume through treatment (degree of expected reductions, degree to which treatment is irreversible, type and quantity of residuals)	Not known if reduction would be sufficient to meet standards.	Not known if reduction would be sufficient to meet standards.	Not known if reduction would be sufficient to meet standards. Plants would contain PCBs and would reqiure removal and disposal at some time.		
Short term effectiveness (protection during remediation, time until objectives are complete, environmental impacts)	Lengthy process.	Lengthy process.	Lengthy process.	Lengthy process.	
Implementability (space restrictions, reliability, ease, coordination, availibility)	Requires electrical connection and specialized equipment.		Requires electrical connection and specialized equipment.	Requires electrical connection and specialized equipment.	
Approximate Cost (capital)	>\$1,000,000	>\$1,000,000	>\$1,000,000	>\$1,000,000	
Community Acceptance					
State/Support Agency Acceptance	May not meet standards	May not meet standards	May not meet standards.		
Screening Score (67.5 possible)	37.5	42	37.5	47.5	
Creening Score based on the three criteria shaded brown.	_				

Above Average Performance = 7.5 points

- Average Performance = 5 points
- Poor Performance = 2.5 points

Biological Treatment
known if reduction would be sufficient to meet standards.
Lengthy process.
Lengthy process.
>\$1,000,000
52.5

APPENDIX A PROUCL DOCUMENTATION

	A	В	С	D General U0	E E Statistics	F for Full D	G ata Sets		Η			J	ł	<	L	
1		User Sele	cted Options													
2			From File	Sheet1.wst												
3		Fu	Ill Precision	OFF												
4	ſ	-	Coefficient	95%												
5			Operations	2000												
6		2001011.04	operatione													
7 0																
8 9	Benzo(a)pyre	ene														
9 10																
11						Gene	ral Statistics	;								
12			Numb	per of Valid (Observations	5 75				Numl	ber of I	Distinct	Observ	ations	70	
13							I									
14			Raw S	tatistics					I	Log-transf	ormed	Statist	tics			
15					Minimum	0.0013						Minimu	m of Log	j Data	-6.645	5
16					Maximum	1 27.7					Ν	/laximu	m of Log	j Data	3.321	
17					Mear	1.183						Me	an of log	j Data	-2.491	1
18				Geo	metric Mear	0.0828						5	SD of log	j Data	2.449	
19						0.0611										
20					SD	4.204										
21					Frror of Mear											
22				Coefficien	t of Variatior											
23					Skewness	5.508										
24																
25						Relevan	t UCL Statist	tics								
26			Normal Dist			0.000			L	.ognormal					0 0	_
27					Test Statistic								s Test St			
28		D :	• • • • • • • • • • • •		Critical Value	0.102							Critical			
29		Data no	t Normal at 5	% Significa	nce Level			Dat	a appea	r Lognorm	al at 5	% Sigr	nificance	Leve		
30			oouming Nam	mal Dist-ik	tion				A	unaine I e -			iku #!			
31		A	ssuming Nor			1 000			Ass	uming Log	ynorma	ai Distri	ibution 95% F		5 207	
32		050	6 UCLs (Adju		ident's-t UCL	1.992				05	0/ 04-	byok-	95% F			
33			95% Adjuste		-	2212						•	(MVUE	,		
34			95% Adjuste 95% Modifie									•	(MVUE	,		
35						2.044				33		Systiev		, 562	5.157	
36			Gamma Dist	tribution Tea	st					Data	Distrib	ution				
37					as corrected	0.263		Dat	a appea	r Lognorm			nificance	Leve		
38					Theta Sta							in cial				
39 40				1	MLE of Mear											
40 41			Μ		ard Deviation											
41						r 39.44										
42			Approximat	e Chi Squar	e Value (.05					Nonparar	netric	Statisti	cs			
43			Adjus	ted Level of	Significance	0.0468						ç	95% CL1	T UCL	1.982	
44			Ac	ljusted Chi S	Square Value	25.84						95% .	Jackknife	e UCL	1.992	
46										95	5% Sta	ndard E	Bootstrap	UCL	1.962	
47			Anders	son-Darling	Test Statistic	4.292					!	95% Bo	ootstrap-	t UCL	4.372	
48			Anderson-	Darling 5% (Critical Value	0.881					95%	Hall's E	Bootstrap	UCL	5.299	
49			Kolmogor	ov-Smirnov	Test Statistic	0.196				959	% Perc	entile E	Bootstrap	0 UCL	2.144	
50		K	Colmogorov-S	mirnov 5% (Critical Value	0.113					95%	BCAE	Bootstrap	UCL	2.447	
51	Dat	a not Gam	ma Distribute	ed at 5% Sig	inificance Le	evel				95%	Cheby	shev(M	lean, Sd) UCL	3.299	
52										97.5%	Cheby	shev(M	lean, Sd) UCL	4.215	
53			ssuming Garr							99%	Cheby	shev(M	lean, Sd) UCL	6.014	
54	95%	6 Approxin	nate Gamma	UCL (Use w	hen n >= 40	1.792										
	·					1	1									

	А	В	С	D	E		F	G	Н			J	K	L	
55		95% A	djusted Gam	na UCL (L	Jse when n <	< 40)	1.806								
56					•										
57			Potentia	UCL to U	Jse							Use	95% H-UCL	5.207	
58								a fan histari							
59					•			c based UCL			-	Techa	inal Ouida		
60		H-statis	tic often resu		•	-		he use of H-		-		e recnn	ical Guide.		
61	Lloc	ofnonn	arametric me									0.000	mo diotributi	0.0	
62	USE				preierreu to	COM			uala sels w		lionow	a yam		ы.	
63	Not	e. Suaa	estions regard	lina the se	election of a	95%	UCL are pr	ovided to hel	n the user t	o select the	most	annron	riate 95% I II		
64			commendatio				•		•						
65	•	1000100			-						-	-		,	
66 67	and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.														
67 68															
69	Benzo(a)anthracene														
70															
70	General Statistics														
72			Nur	nber of Va	lid Observati	ions	75			Numbe	er of Di	istinct C	Observations	71	
73				Number o	f Missing Val	lues	6								
74														<u> </u>	
75			Raw	Statistics					I	Log-transfo	rmed S	Statistic	s		
76					Minin	num	0.00165				М	inimum	of Log Data	-6.407	
77					Maxin	num	29.2				Ма	aximum	of Log Data	3.374	
78					М	lean	1.232					Mear	n of log Data	-2.58	
79					Geometric M	lean	0.0758					SE	D of log Data	2.445	
80					Mee	dian	0.0398								
81						SD	4.464								
82				S	td. Error of M	lean	0.515								
83				Coeffi	cient of Varia	ation	3.624								
84					Skewn	ness	5.553								
85															
86							Relevant U	CL Statistics							
87			Normal Di			1			L	.ognormal [
88					ors Test Stat								Fest Statistic		
89		.			ors Critical Va		0.102	Lilliefors Critical Value 0.102 Data not Lognormal at 5% Significance Level							
90		Data	not Normal at	5% Signi	ficance Leve	əl			Data not l	Lognormal a	at 5% s	Signific	ance Level		
91			Assuming No	rmal Diat	ribution				^	uming Logr	normal	Distrib	ution		
92			Assuming No		Student's-t l		2.00		A99	unning Logi	lonnai		95% H-UCL	4 701	
93		QF	5% UCLs (Ad				2.09			95%	Cheh		MVUE) UCL		
94			-		ICL (Chen-19	995)	2.433				-	•	MVUE) UCL		
95			-		. (Johnson-19						-		MVUE) UCL		
96											2	,			
97 98			Gamma D	istribution	Test					Data D	Distribu	tion			
98 99					(bias correc	ted)	0.253	C	ata do not f				ribution (0.0	5)	
99 100					Theta	-							•	·	
100					MLE of M	lean	1.232								
102				MLE of Sta	andard Devia	ation	2.45								
102					nu	star	37.92								
103			Approxim	ate Chi So	quare Value ((.05)	24.82			Nonparam	etric St	tatistics	6		
105			Adj	usted Leve	el of Significa	ance	0.0468					95	5% CLT UCL	2.079	
106				Adjusted C	Chi Square Va	alue	24.61				9	95% Ja	ckknife UCL	2.09	
107										95%	% Stand	dard Bo	otstrap UCL	2.097	
108			Ande	erson-Darl	ing Test Stat	tistic	5.13				95	5% Boo	tstrap-t UCL	4.89	
								1							

190 Anderson-Darling 5% Chiclarl Value [0.186 95% Halfs Bootstrap UCL [0.847] 110 Kolmogorov-Smirnov 5% Chiclarl Value [0.113 95% BCA Bootstrap UCL [0.17] 111 Comporev-Smirnov 5% Chiclarl Value [0.113 95% BCA Bootstrap UCL [0.17] 112 Data not Gamma Distribution 95% SC Chebysher(Mean, 50) UCL [0.17] 113 95% Approximate Gamma UCL (0.847) 99% Chebysher(Mean, 50) UCL [0.16] 114 95% Approximate Gamma UCL (0.847) 1.882
Note Sector Sector Sector 11 Reserved 95% BCA Bootstrap UCL 256 112 Data not Gamma Distribution 95% Chebyshev(Mean, 8d) UCL 457 113 95% Approximate Gamma Distribution 95% Chebyshev(Mean, 8d) UCL 458 114 Assuming Gamma Distribution 99% Chebyshev(Mean, 8d) UCL 458 115 95% Approximate Gamma UCL (Use when n > 40) 1.882 99% Chebyshev(Mean, 8d) UCL 3478 116 S5% Adjusted Gamma UCL (Use when n > 40) 1.882 Use 95% Chebyshev(Mean, 8d) UCL 3478 119 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most apportiets 95% UCL. 120 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most apportiets 95% UCL. 121 These recommendations are based upon the results of the simulation studies summarized in Singh, and Iad (2002) 121 and Singh (2003). For additional insight, the user may want to consult a statistician. 122 and Singh (2003). For additional insight, the user may want to consult a statistician. 123 Gameral Statistics 124 Constraint of Mainmum 0.00145 Mainmum of Log Data 3.453 125 Maximum 38.2 Max
112 Deta not Gamma Distributed at 5% Significance Level 95% Chebyshev(Maan, Sd) UCL 4.45 113 95% Approximate Gamma UCL (Use when n >= 40) 1.822 95% Chebyshev(Maan, Sd) UCL 6.36 114 Assuming Gamma Distribution 99% Chebyshev(Maan, Sd) UCL 6.36 115 95% Approximate Gamma UCL (Use when n >= 40) 1.822 95% Chebyshev (Maan, Sd) UCL 3.478 117 95% Adjusted Gamma UCL (Use when n >= 40) 1.882 111 118 Potential UCL to Use Use 95% Chebyshev (Mean, Sd) UCL 3.478 119 Use 95% Chebyshev (Mean, Sd) UCL 3.478 3.478 110 Use 95% Chebyshev (Mean, Sd) UCL 3.478 3.478 111 Potential UCL to Use Use 95% Chebyshev (Mean, Sd) UCL 3.478 119 Use 95% Chebyshev (Mean, Sd) UCL 3.478 3.478 110 Use 95% Chebyshev (Mean, Sd) UCL 3.478 3.478 111 These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and lacl (2002) 3.478 112 end Singh and Singh (2003). For additional insight, the user may want to consult a statistican. 1.34 128 Benzo(b)fluoranthene 1.35 Number of Distinct Observations 73 129
113 97.5% Chebyshev(Mean, Sd) UCL 4.45 114 95% Approximate Gamma UCL (Use when n >= 40) 1.882 95% Chebyshev(Mean, Sd) UCL 3.66 115 95% Adjusted Gamma UCL (Use when n <= 40)
Image: Second
115 95% Approximate Gamma UCL (Use when n >= 40) 1.882 116 115 95% Adjusted Gamma UCL (Use when n >= 40) 1.882 117 118 Potential UCL to Use Use 95% Chebyshev (Mean, Sd) UCL 3.478 119 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% VCL. 120 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% VCL. 121 These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iacl (2002) 122 and Singh (2003). For additional insight, the user may want to consult a statistician. 123 124 126 9 127 General Statistics 128 Number of Valid Observations 75 129 Number of Valid Observations 75 129 Maximum 32. 120 Raw Statistics 121 Maximum 32. 122 Maximum 32. 123 Maximum 32. 124 Coernetic Mean 0.116 125 Meal 0.0887 126 SD of tog Date 2.479 127
110 95% Adjusted Gamma UCL (Use when n < 40)
117 Potential UCL to Use Use 95% Chebyshev (Mean, Sd) UCL 3.478 119 3.478 3.478 3.478 3.478 3.478 3.478 3.479 3.478 3.479
118 Potential UCL to Use Use 95% Chebyshev (Mean, Sd) UCL 3.478 119 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. 120 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. 121 These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iacl (2002) 122 and Singh and Singh (2003). For additional insight, the user may want to consult a statistican. 123 Important Statistics 124 Eneral Statistics 125 Benzo(b)fluoranthene 126 General Statistics 127 Mumber of Valid Observations 128 Number of Valid Observations 129 Eneral Statistics 120 Eneral Statistics 121 Maximum 38.2 123 Maximum 38.2 124 Geometric Mean 125 Median 126 SD of log Data 127 Sid. Error of Mean 128 Coefficient of Variation 129 Skewness
Initial Initial Initial 120 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. 121 These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iacl (2002) 122 and Singh and Singh (2003). For additional insight, the user may want to consult a statistician. 123 Benzo(b)fluoranthene 126 General Statistics 127 General Statistics 128 Number of Valid Observations [75 129 Contrastistics 129 Maximum 0.00145 130 Rew Statistics 131 Minimum 0.00145 132 Maximum 0.82 133 Generatic Maximum 0.016 134 Generatic Maximum 0.016 135 Median 0.016 136 Std Error of Mean 0.011 137 Std Error of Mean 0.011 138 Coefficient of Variation 3.532 139 Std Error of Mean 0.012 141 Relevant UCL Statistics 142 Normal Distribution Test 143
Instrume Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Instrume
Instrume Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Instrume
Image: These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iacl (2002) Image: Image
122 and Singh and Singh (2003). For additional insight, the user may want to consult a statistician. 123
123 124 126 Benzo(b)fluoranthene 127 General Statistics 128 Number of Vaild Observations 75 129 Ceneral Statistics 73 129 Contact Statistics 73 129 Contact Statistics 100145 Minimum of Log Data 6.536 131 Minimum Maximum of Log Data 6.536 6.536 6.536 132 Maximum of Log Data 2.157 8.2 Maximum of Log Data 2.457 133 Ceometric Mean 0.116 SD of log Data 2.479 134 Geometric Mean 0.671 4 4 4 135 Coefficient of Variation 3.532 4 4 4 136 Coefficient of Variation 3.532 4 4 4 141 Elevant UCL Statistics 0.102 Lilliefors Test Statistic 0.102 1 1 1 142 Normal Distribution Test Lognormal Distribution Test 1 1 1 <
124 Benzo(b)fluoranthene 126 General Statistics 127 Number of Valid Observations 75 Number of Distinct Observations 73 128 Number of Valid Observations 75 Number of Distinct Observations 73 129 Image: Comparison of Valid Observations 75 Number of Distinct Observations 73 129 Image: Comparison of Valid Observations 75 Number of Distinct Observations 73 129 Image: Comparison of Valid Observations 38.2 Maximum of Log Data 6.535 131 Maximum 38.2 Maximum of Log Data 2.479 133 Mean 0.645 Mean of log Data 2.479 134 Geometric Mean 0.671 Image: Coefficient of Variation 3.532 Image: Coefficient of Variation 3.532 Image: Coefficient of Variation 3.545 Image: Coefficient of Variation 3.545 Image: Coefficient of Variation 1.027 Image: Coefficient of Varia
Instant Benzo(b)fluoranthene 126 General Statistics 127 Ceneral Statistics 128 Number of Valid Observations 75 129 Log-transformed Statistics 73 130 Raw Statistics Log-transformed Statistics 6.536 131 Minimum 0.00145 Minimum of Log Data 6.536 132 Maximum 82.2 Maximum of Log Data 2.437 133 Geometric Mean 0.116 SD of log Data 2.479 135 Median 0.0887
126 General Statistics 127 General Statistics 128 Number of Valid Observations 75 Number of Distinct Observations 73 129 Constraints Log-transformed Statistics 130 Raw Statistics Log-transformed Statistics 131 Minimum 0.00145 Minimum of Log Data 6.535 133 Maximum 38.2 Maximum of Log Data 6.545 133 Median 0.0887 136 SD of log Data 2.479 137 Std. Error of Mean 0.671 138 Coefficient of Variation 3.532 140 Relevant UCL Statistics 142 Normal Distribution Test 143 Lilliefors Test Statistic 0.772 144 Data not Normal at 5% Significance Level Data appear Lognormal Distribution Test 144 Data not Normal at 5% Significance Level
127 General Statistics 128 Number of Valid Observations 75 Number of Distinct Observations 73 129
128 Number of Valid Observations 75 Number of Distinct Observations 73 129
129 Log-transformed Statistics 130 Raw Statistics Log-transformed Statistics 131 Minimum 0.00145 Minimum of Log Data 6.536 132 Maximum 38.2 Maximum of Log Data 3.643 133 Mean 1.645 Mean of log Data 2.157 134 Geometric Mean 0.116 SD of log Data 2.479 135 Median 0.0887
130 Raw Statistics Log-transformed Statistics 131 Minimum 0.00145 Minimum of Log Data 6-536 132 Maximum of Log Data 5-536 133 Maximum of Log Data 5-536 134 Maximum of Log Data 2-157 135 Mean of log Data 2-157 136 Mean of log Data 2-157 137 Geometric Mean 0.16 SD of log Data 2-479 136 Median 0.0887 ST 2-79 137 Std. Error of Mean 0.671 2-79 138 Coefficient of Variation 3.532 2-79 140 Stewness 5-45 2-79 141 Mormal Distribution Test 2-79 2-79 142 Normal Distribution Test 2-79 2-79 143 Data not Normal at 5% Significance Level 0.389 Lilliefors Critical Value 0.102 143 Data not Normal at 5% Significance Level Data appear Lognormal at 5% Significance Level 0.309<
131 Minimum 0.00145 Minimum of Log Data 6.536 132 Maximum 38.2 Maximum of Log Data 3.643 133 Geometric Mean 1.645 Mean of log Data 2.157 134 Geometric Mean 0.116 SD of log Data 2.479 135 Median 0.0887
Maximum 38.2 Maximum of Log Data 3.643 132 Mean of log Data 2.157 133 Geometric Mean 0.116 SD of log Data 2.157 134 Geometric Mean 0.0887 2.157 136 Median 0.0887 2.479 136 Std. Error of Mean 0.671
Normal 1.645 Mean of log Data 2.157 133 Geometric Mean 0.116 SD of log Data 2.479 135 Median 0.0887
Instant Geometric Mean 0.116 SD of log Data 2.479 135 Median 0.0887
Instruct Median 0.0887 135 Median 0.0887 1 136 SD 5.812 1 137 Std. Error of Mean 0.671 1 138 Coefficient of Variation 3.532 1 139 Skewness 5.545 1 1 140 Relevant UCL Statistics 141 Relevant UCL Statistics 142 Normal Distribution Test Lognormal Distribution Test 0.0772 144 Lilliefors Test Statistic 0.389 Lilliefors Test Statistic 0.0772 144 Data not Normal at 5% Significance Level Data appear Lognormal at 5% Significance Level 0.102 145 Data not Normal Distribution Assuming Lognormal at 5% Significance Level 0.102 148 95% Student's-t UCL 2.763 95% H-UCL & 8.039 149 95% UCLs (Adjusted for Skewness) 95% Chebyshev (MVUE) UCL & 6.611 150 95% Adjusted-CLT UCL (Chen-1995) 3.208 97.5% Chebyshev (MVUE) UCL & 8.542 151 95% Modified-1 UCL (Johnso
136 SD 5.812 Image: style st
130 0.671 137 Std. Error of Mean 0.671 138 Coefficient of Variation 3.532 139 Skewness 5.545 140 Elevent UCL Statistics 0.0772 141 Relevent UCL Statistics 0.0772 142 Normal Distribution Test Lognormal Distribution Test 0.0772 143 Lilliefors Test Statistic 0.389 Lilliefors Critical Value 0.102 144 Lilliefors Critical Value 0.102 Lilliefors Critical Value 0.102 145 Data not Normal at 5% Significance Level Data appear Lognormal at 5% Significance Level 1 147 Assuming Normal Distribution Assuming Lognormal Distribution 8.039 148 95% Student's-t UCL 2.763 95% Chebyshev (MVUE) UCL 8.039 149 95% Adjusted-CLT UCL (Chen-1995) 3.208 97.5% Chebyshev (MVUE) UCL 8.542 151 95% Modified-t UCL (Johnson-1978) 2.835 99% Chebyshev (MVUE) UCL 8.542 152 153 Gamma Distribution Test Data Distribution
137 Coefficient of Variation 3.532 138 Coefficient of Variation 3.532 139 Skewness 5.545 140 Elevant UCL Statistics 141 Relevant UCL Statistics 142 Normal Distribution Test Lognormal Distribution Test 143 Lilliefors Test Statistic 0.389 144 Lilliefors Critical Value 0.102 144 Data not Normal at 5% Significance Level Data appear Lognormal at 5% Significance Level 146 147 Assuming Normal Distribution Assuming Lognormal Distribution 148 95% Student's-t UCL 2.763 95% Chebyshev (MVUE) UCL 6.611 150 95% Adjusted for Skewness) 95% Chebyshev (MVUE) UCL 6.611 150 95% Adjusted-CLT UCL (Chen-1995) 3.208 97.5% Chebyshev (MVUE) UCL 8.542 151 95% Modified-t UCL (Johnson-1978) 2.835 99% Chebyshev (MVUE) UCL 12.33 152 153 Gamma Distribution Test Data appear Lognormal at 5% Significance Level 12.33 153 Gamma Distribution Test
138 Skewness 5.545 Image: constraint of the statistic of the statist
133 Relevant UCL Statistics 141 Relevant UCL Statistics 142 Normal Distribution Test Lognormal Distribution Test 143 Lilliefors Test Statistic 0.389 144 Clilliefors Critical Value 0.102 145 Data not Normal at 5% Significance Level Data appear Lognormal at 5% Significance Level 146 147 Assuming Normal Distribution Assuming Lognormal Distribution 148 95% Student's-t UCL 2.763 95% H-UCL 8.039 149 95% UCLs (Adjusted for Skewness) 95% Chebyshev (MVUE) UCL 6.611 150 95% Adjusted-CLT UCL (Chen-1995) 3.208 97.5% Chebyshev (MVUE) UCL 8.542 151 95% Modified-t UCL (Johnson-1978) 2.835 99% Chebyshev (MVUE) UCL 12.33 152 153 Gamma Distribution Test Data Distribution 12.33 153 Gamma Distribution Test Data appear Lognormal at 5% Significance Level 154
Relevant UCL Statistics141Lognormal Distribution Test142Normal Distribution TestLognormal Distribution Test143Lilliefors Test Statistic0.389Lilliefors Test Statistic0.0772144Lilliefors Critical Value0.102Lilliefors Critical Value0.102145Data not Normal at 5% Significance LevelData appear Lognormal at 5% Significance Level0.102146147Assuming Normal DistributionAssuming Lognormal Distribution14895% Student's-t UCL2.76395% Chebyshev (MVUE) UCL8.03914995% VUCLs (Adjusted for Skewness)95% Chebyshev (MVUE) UCL6.61115095% Adjusted-CLT UCL (Chen-1995)3.20897.5% Chebyshev (MVUE) UCL8.54215195% Modified-t UCL (Johnson-1978)2.83599% Chebyshev (MVUE) UCL12.33152153Gamma Distribution TestData appear Lognormal at 5% Significance Level154k star (bias corrected)0.263Data appear Lognormal at 5% Significance Level
Intel Lognormal Distribution Test Lognormal Distribution Test 142 Normal Distribution Test 0.389 Lilliefors Test Statistic 0.0772 143 Clilliefors Test Statistic 0.102 Lilliefors Critical Value 0.102 144 Data not Normal at 5% Significance Level Data appear Lognormal at 5% Significance Level 0.102 145 Data not Normal Distribution Assuming Lognormal Distribution 0.102 146
142Lilliefors Test Statistic0.389Lilliefors Test Statistic0.0772144Lilliefors Critical Value0.102Lilliefors Critical Value0.102145Data not Normal at 5% Significance LevelData appear Lognormal at 5% Significance Level0.102146147Assuming Normal DistributionAssuming Lognormal Distribution14895% Student's-t UCL2.76395% H-UCL8.03914995% UCLs (Adjusted for Skewness)95% Chebyshev (MVUE) UCL6.61115095% Adjusted-CLT UCL (Chen-1995)3.20897.5% Chebyshev (MVUE) UCL8.54215195% Modified-t UCL (Johnson-1978)2.83599% Chebyshev (MVUE) UCL12.33152153Gamma Distribution TestData appear Lognormal at 5% Significance Level12.33154k star (bias corrected)0.263Data appear Lognormal at 5% Significance Level
143 Lilliefors Lilliefors Critical Value 0.102 Lilliefors Critical Value 0.102 144 Data not Normal at 5% Significance Level Data appear Lognormal at 5% Significance Level 0.102 145 Data not Normal at 5% Significance Level Data appear Lognormal at 5% Significance Level 0.102 146
144 Data not Normal at 5% Significance Level Data appear Lognormal at 5% Significance Level 145 Data not Normal at 5% Significance Level Data appear Lognormal at 5% Significance Level 146
145 147 Assuming Normal Distribution Assuming Lognormal Distribution 148 95% Student's-t UCL 2.763 95% H-UCL 8.039 149 95% UCLs (Adjusted for Skewness) 95% Chebyshev (MVUE) UCL 6.611 150 95% Adjusted-CLT UCL (Chen-1995) 3.208 97.5% Chebyshev (MVUE) UCL 8.542 151 95% Modified-t UCL (Johnson-1978) 2.835 99% Chebyshev (MVUE) UCL 12.33 152 153 Gamma Distribution Test Data Distribution 153 Gamma Distribution Test 0.263 Data appear Lognormal at 5% Significance Level
147 Assuming Normal Distribution Assuming Lognormal Distribution 148 95% Student's-t UCL 2.763 95% H-UCL 8.039 149 95% UCLs (Adjusted for Skewness) 95% Chebyshev (MVUE) UCL 6.611 150 95% Adjusted-CLT UCL (Chen-1995) 3.208 97.5% Chebyshev (MVUE) UCL 8.542 151 95% Modified-t UCL (Johnson-1978) 2.835 99% Chebyshev (MVUE) UCL 12.33 152 153 Gamma Distribution Test Data Distribution 154
147 95% Student's-t UCL 2.763 95% H-UCL 8.039 148 95% UCLs (Adjusted for Skewness) 95% Chebyshev (MVUE) UCL 6.611 150 95% Adjusted-CLT UCL (Chen-1995) 3.208 97.5% Chebyshev (MVUE) UCL 8.542 151 95% Modified-t UCL (Johnson-1978) 2.835 99% Chebyshev (MVUE) UCL 12.33 152 153 Gamma Distribution Test Data Distribution 154 k star (bias corrected) 0.263 Data appear Lognormal at 5% Significance Level
148 95% UCLs (Adjusted for Skewness) 95% Chebyshev (MVUE) UCL 6.611 149 95% Adjusted-CLT UCL (Chen-1995) 3.208 97.5% Chebyshev (MVUE) UCL 8.542 151 95% Modified-t UCL (Johnson-1978) 2.835 99% Chebyshev (MVUE) UCL 12.33 152 153 Gamma Distribution Test Data Distribution 153 154 k star (bias corrected) 0.263 Data appear Lognormal at 5% Significance Level
143 95% Adjusted-CLT UCL (Chen-1995) 3.208 97.5% Chebyshev (MVUE) UCL 8.542 150 95% Modified-t UCL (Johnson-1978) 2.835 99% Chebyshev (MVUE) UCL 12.33 152 153 Gamma Distribution Test Data Distribution 154 k star (bias corrected) 0.263 Data appear Lognormal at 5% Significance Level
150 95% Modified-t UCL (Johnson-1978) 2.835 99% Chebyshev (MVUE) UCL 12.33 152 153 Gamma Distribution Test Data Distribution 154 k star (bias corrected) 0.263 Data appear Lognormal at 5% Significance Level
ISI Data Distribution 153 Gamma Distribution Test 153 K star (bias corrected) 0.263 Data appear Lognormal at 5% Significance Level
Instribution Test Data Distribution 153 K star (bias corrected) 0.263 Data appear Lognormal at 5% Significance Level
Iss k star (bias corrected) 0.263 Data appear Lognormal at 5% Significance Level
155 Theta Star 6.249
156 MLE of Mean 1.645
157 MLE of Standard Deviation 3.207
158 nu star 39.5
159 Approximate Chi Square Value (.05) 26.1 Nonparametric Statistics
Adjusted Level of Significance 0.0468 95% CLT UCL 2.749
Adjusted Chi Square Value 25.89 95% Jackknife UCL 2.763
161 Adjusted Chi Square Value 25.89 95% Jackknie UCL 2.763 162 95% Standard Bootstrap UCL 2.736

	A B C D E	F	G H I J K L
163	Anderson-Darling Test Statistic	4.059	95% Bootstrap-t UCL 5.841
164	Anderson-Darling 5% Critical Value	0.881	95% Hall's Bootstrap UCL 7.705
165	Kolmogorov-Smirnov Test Statistic	0.199	95% Percentile Bootstrap UCL 2.912
166	Kolmogorov-Smirnov 5% Critical Value	0.113	95% BCA Bootstrap UCL 3.297
167	Data not Gamma Distributed at 5% Significance Le	vel	95% Chebyshev(Mean, Sd) UCL 4.571
168			97.5% Chebyshev(Mean, Sd) UCL 5.836
	Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL 8.323
169	95% Approximate Gamma UCL (Use when n >= 40)	2 49	
170	95% Adjusted Gamma UCL (Use when n < 40)		
171		2.011	
172			
173	Potential UCL to Use		Use 95% H-UCL 8.039
174			
175			c based UCLs for historical reasons only.
176	· -		ues of UCL95 as shown in examples in the Technical Guide.
177			he use of H-statistic based 95% UCLs.
178	Use of nonparametric methods are preferred to com	npute UCL98	5 for skewed data sets which do not follow a gamma distribution.
179			
180	Note: Suggestions regarding the selection of a 95%	UCL are pr	ovided to help the user to select the most appropriate 95% UCL.
181	These recommendations are based upon the res	ults of the si	mulation studies summarized in Singh, Singh, and laci (2002)
182	and Singh and Singh (2003). For a	additional in	sight, the user may want to consult a statistician.
183			
184	Lead		
185			
186		General	Statistics
187	Number of Valid Observations		Number of Distinct Observations 54
188	Number of Missing Values		
189		10	
	.		
190			
	Raw Statistics		Log-transformed Statistics
190	Raw Statistics Minimum	1.3	Minimum of Log Data 0.262
190 191	Raw Statistics Minimum Maximum	1.3 1530	Minimum of Log Data 0.262 Maximum of Log Data 7.333
190 191 192	Raw Statistics Minimum Maximum Mean	1.3 1530 69.59	Minimum of Log Data 0.262 Maximum of Log Data 7.333 Mean of log Data 2.795
190 191 192 193	Raw Statistics Minimum Maximum	1.3 1530 69.59	Minimum of Log Data 0.262 Maximum of Log Data 7.333
190 191 192 193 194	Raw Statistics Minimum Maximum Mean	1.3 1530 69.59 16.37	Minimum of Log Data 0.262 Maximum of Log Data 7.333 Mean of log Data 2.795
190 191 192 193 194 195 196	Raw Statistics Minimum Maximum Mean Geometric Mean Median	1.3 1530 69.59 16.37	Minimum of Log Data 0.262 Maximum of Log Data 7.333 Mean of log Data 2.795
190 191 192 193 194 195 196 197	Raw Statistics Minimum Maximum Mean Geometric Mean Median	1.3 1530 69.59 16.37 13.8 194.9	Minimum of Log Data 0.262 Maximum of Log Data 7.333 Mean of log Data 2.795
190 191 192 193 194 195 196 197 198	Raw Statistics Minimum Maximum Mean Geometric Mean Median SD	1.3 1530 69.59 16.37 13.8 194.9 24.17	Minimum of Log Data 0.262 Maximum of Log Data 7.333 Mean of log Data 2.795
190 191 192 193 194 195 196 197 198 199	Raw Statistics Minimum Maximum Mean Geometric Mean Median SD Std. Error of Mean	1.3 1530 69.59 16.37 13.8 194.9 24.17 2.801	Minimum of Log Data 0.262 Maximum of Log Data 7.333 Mean of log Data 2.795
190 191 192 193 194 195 196 197 198 199 200	Raw Statistics Minimum Maximum Mean Geometric Mean Median SD Std. Error of Mean Coefficient of Variation	1.3 1530 69.59 16.37 13.8 194.9 24.17 2.801	Minimum of Log Data 0.262 Maximum of Log Data 7.333 Mean of log Data 2.795
190 191 192 193 194 195 196 197 198 199 200 201	Raw Statistics Minimum Maximum Mean Geometric Mean Median SD Std. Error of Mean Coefficient of Variation Skewness	1.3 1530 69.59 16.37 13.8 194.9 24.17 2.801 6.801	Minimum of Log Data 0.262 Maximum of Log Data 7.333 Mean of log Data 2.795
190 191 192 193 194 195 196 197 198 199 200 201 202	Raw Statistics Minimum Maximum Mean Geometric Mean Median SD Std. Error of Mean Coefficient of Variation Skewness	1.3 1530 69.59 16.37 13.8 194.9 24.17 2.801 6.801	Minimum of Log Data 0.262 Maximum of Log Data 7.333 Mean of log Data 2.795 SD of log Data 1.729 Image: Stress of log Data 1.729 Image: Stress of log Data 1.729
190 191 192 193 194 195 196 197 198 199 200 201 202 202	Raw Statistics Minimum Maximum Mean Geometric Mean Median SD Std. Error of Mean Coefficient of Variation Skewness	1.3 1530 69.59 16.37 13.8 194.9 24.17 2.801 6.801 Relevant U	Minimum of Log Data 0.262 Maximum of Log Data 7.333 Mean of log Data 2.795 SD of log Data 1.729 Image: Statistics Image: Statistics
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204	Raw Statistics Minimum Maximum Mean Geometric Mean Geometric Mean Median SD Std. Error of Mean Coefficient of Variation Skewness Normal Distribution Test Lilliefors Test Statistic	1.3 1530 69.59 16.37 13.8 194.9 24.17 2.801 6.801 Relevant U 0.363	Minimum of Log Data 0.262 Maximum of Log Data 7.333 Mean of log Data 2.795 SD of log Data 1.729 Image: Statistic statis statistic
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205	Raw Statistics Minimum Maximum Mean Geometric Mean Geometric Mean Median SD Std. Error of Mean Coefficient of Variation Skewness Normal Distribution Test Lilliefors Test Statistic Lilliefors Critical Value	1.3 1530 69.59 16.37 13.8 194.9 24.17 2.801 6.801 Relevant U 0.363	Minimum of Log Data 0.262 Maximum of Log Data 7.333 Mean of log Data 2.795 SD of log Data 1.729 Image: SD of log Data
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 203 204 205 206	Raw Statistics Minimum Maximum Mean Geometric Mean Geometric Mean Median SD Std. Error of Mean Coefficient of Variation Skewness Normal Distribution Test Lilliefors Test Statistic	1.3 1530 69.59 16.37 13.8 194.9 24.17 2.801 6.801 Relevant U 0.363	Minimum of Log Data 0.262 Maximum of Log Data 7.333 Mean of log Data 2.795 SD of log Data 1.729 Image: Statistic statis statistic
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207	Raw Statistics Minimum Maximum Mean Geometric Mean Median SD Std. Error of Mean Coefficient of Variation Skewness Normal Distribution Test Lilliefors Test Statistic Lilliefors Critical Value Data not Normal at 5% Significance Level	1.3 1530 69.59 16.37 13.8 194.9 24.17 2.801 6.801 Relevant U 0.363	Minimum of Log Data 0.262 Maximum of Log Data 7.333 Mean of log Data 2.795 SD of log Data 1.729 Image: Statistic statistic statistic Image: Statistic statistic statistic CL Statistics 0.13 Lilliefors Test Statistic 0.11 Data not Lognormal at 5% Significance Level Image: Statistic statistic statistic
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208	Raw Statistics Minimum Maximum Mean Geometric Mean Median SD Std. Error of Mean Coefficient of Variation Skewness Normal Distribution Test Lilliefors Test Statistic Lilliefors Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution	1.3 1530 69.59 16.37 13.8 194.9 24.17 2.801 6.801 Relevant U 0.363 0.11	Minimum of Log Data 0.262 Maximum of Log Data 7.333 Mean of log Data 2.795 SD of log Data 1.729 Image: SD of log Data
190 191 192 193 194 195 196 197 198 199 200 201 203 204 203 204 205 206 207 208 209	Raw Statistics Minimum Maximum Mean Geometric Mean Median SD Std. Error of Mean Coefficient of Variation Skewness Normal Distribution Test Lilliefors Test Statistic Lilliefors Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL	1.3 1530 69.59 16.37 13.8 194.9 24.17 2.801 6.801 Relevant U 0.363 0.11	Minimum of Log Data 0.262 Maximum of Log Data 7.333 Mean of log Data 2.795 SD of log Data 1.729
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 203 204 205 206 207 208 209 209 210	Raw Statistics Minimum Maximum Mean Geometric Mean Median SD Std. Error of Mean Coefficient of Variation Skewness Normal Distribution Test Lilliefors Test Statistic Lilliefors Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness)	1.3 1530 69.59 16.37 13.8 194.9 24.17 2.801 6.801 Relevant U 0.363 0.11	Minimum of Log Data 0.262 Maximum of Log Data 7.333 Mean of log Data 2.795 SD of log Data 1.729
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 203 204 205 206 207 208 209 209 210	Raw Statistics Minimum Maximum Mean Geometric Mean Median SD Std. Error of Mean Coefficient of Variation Skewness Normal Distribution Test Lilliefors Test Statistic Lilliefors Critical Value Data not Normal at 5% Significance Level 95% Student's-t UCL 95% Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	1.3 1530 69.59 16.37 13.8 194.9 24.17 2.801 6.801 Relevant U 0.363 0.11 109.9 131.1	Minimum of Log Data 0.262 Maximum of Log Data 7.333 Mean of log Data 2.795 SD of log Data 1.729 SD of log Data 1.71 SD of log Data 1.71
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208	Raw Statistics Minimum Maximum Mean Geometric Mean Median SD Std. Error of Mean Coefficient of Variation Skewness Normal Distribution Test Lilliefors Test Statistic Lilliefors Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness)	1.3 1530 69.59 16.37 13.8 194.9 24.17 2.801 6.801 Relevant U 0.363 0.11 109.9 131.1	Minimum of Log Data 0.262 Maximum of Log Data 7.333 Mean of log Data 2.795 SD of log Data 1.729
190 191 192 193 194 195 196 197 198 200 201 200 201 202 203 204 205 206 207 208 209 210 211	Raw Statistics Minimum Maximum Mean Geometric Mean Geometric Mean SD Std. Error of Mean Coefficient of Variation Skewness Stelliefors Test Statistic Lilliefors Test Statistic Lilliefors Critical Value Data not Normal at 5% Significance Level 95% Student's-t UCL 95% OCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)	1.3 1530 69.59 16.37 13.8 194.9 24.17 2.801 6.801 Relevant U 0.363 0.11 109.9 131.1	Minimum of Log Data 0.262 Maximum of Log Data 7.333 Mean of log Data 2.795 SD of log Data 1.729 SD of log Data 1.71 Data not Lognormal Distribution 95% H-UCL
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 206 207 208 209 210 211 212 212 213	Raw Statistics Minimum Maximum Mean Geometric Mean Geometric Mean Median SD Std. Error of Mean Coefficient of Variation Skewness Normal Distribution Test Lilliefors Test Statistic Lilliefors Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 95% OLCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) 95% Modified-t UCL (Johnson-1978)	1.3 1530 69.59 16.37 13.8 194.9 24.17 2.801 6.801 Relevant U 0.363 0.11 109.9 131.1 113.3	Minimum of Log Data 0.262 Maximum of Log Data 7.333 Mean of log Data 2.795 SD of log Data 1.729 SD of log Data 1.710 So of log Data 1.710 So of log Dat
190 191 192 193 194 195 196 197 198 199 200 201 203 204 203 204 205 206 207 208 209 210 211 211 212	Raw Statistics Minimum Maximum Mean Geometric Mean Geometric Mean SD Std. Error of Mean Coefficient of Variation Skewness Stelliefors Test Statistic Lilliefors Test Statistic Lilliefors Critical Value Data not Normal at 5% Significance Level 95% Student's-t UCL 95% OCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)	1.3 1530 69.59 16.37 13.8 194.9 24.17 2.801 6.801 Relevant U 0.363 0.11 109.9 131.1 113.3	Minimum of Log Data 0.262 Maximum of Log Data 7.333 Mean of log Data 2.795 SD of log Data 1.729 SD of log Data 1.71 Data not Lognormal Distribution 95% H-UCL

	А	В	С	D		E	F	G	Н		J	K	L
217					MLE	of Mean	69.59						
218			M	LE of Star	ndard	Deviation	105.4						
219						nu star	56.72						
220			Approximat	e Chi Squ	iare Va	alue (.05)	40.41			Nonparame	tric Statistics	;	
221			Adjus	ted Level	of Sig	nificance	0.0463				95	% CLT UCL	109.4
222			Ac	ljusted Ch	ni Squa	are Value	40.1				95% Ja	ckknife UCL	109.9
223										95%	Standard Bo	otstrap UCL	108.6
224			Anders	son-Darlin	ng Tes	t Statistic	2.458				95% Boo	tstrap-t UCL	178.1
225			Anderson-I	Darling 5%	% Criti	cal Value	0.829			ç	95% Hall's Bo	otstrap UCL	257.4
226			Kolmogoro	ov-Smirno	ov Tes	t Statistic	0.155			95% I	Percentile Bo	otstrap UCL	112.7
227 Kolmogorov-Smirnov 5% Critical Value 0.118 95% BCA Bootstrap UCL 14										144.8			
228 Data not Gamma Distributed at 5% Significance Level 95% Chebyshev(Mean, Sd) UCL 1									175				
229	97.5% Chebyshev(Mean, Sd) UCL 2									220.6			
230	30 Assuming Gamma Distribution 99% Chebyshev(Mean, Sd) UCL 3									310.1			
231													
232													
233													
234 Potential UCL to Use Use 95% Chebyshev (Mean, Sd) UCL 175										175			
235													
236 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.									CL.				
237		These recom	nmendations	s are base	ed upo	on the res	ults of the si	mulation stu	dies summa	rized in Sing	gh, Singh, an	d laci (2002)
238			and Singh	and Singl	h (200	3). For	additional in	sight, the use	er may want	to consult a	statistician.		
239													

APPENDIX B REMEDIAL ALTERNATIVES SCORING SHEET

DETAILED ANALYSIS SCORING SHEET ALTERNATIVE 1 – SOIL REMOVAL

SUMMARY OF SCORING

ALTERNATIVE 1

AREA	SCORE
Compliance with ARARs, Criteria 7 Guidelines	10
Protection of Human Health and the Environment	20
Short-term Effectiveness	9
Long-term Effectiveness and Performance	12
Reduction of Toxicity, Mobility, Volume	17
Implementability	13
Cost (0-10, "10" is most economical)	0
TOTAL	81

Analysis Factor	Basis for Evaluation During Detailed Analysis	Applic	ability		
COMPLIANCE WITH ARARs, STA	NDARDS, CRITERIA, AND GUIDELINES	YES	NO	So	core
1. Chemical-specific ARARs	i) Meets chemical specific ARARs such as groundwater standards.	X 4	0	=	4
2. Action-specific ARARs	ii) Meets ARARs such as technology standards for incineration or landfill.	X 3	0	=	3
3. Location-specific ARARs	iii) Meets location-specific ARARs such as Freshwater Wetlands Act.	X 3	0	=	3
Note: ARARs - Applicable or Relevant an	d Appropriate Requirements	TOTAL (maxim	um = 10)	=	10
PROTECTION OF HUMAN HEALT	TH AND THE ENVIRONMENT	YES	NO	Sc	core
1. Use of Site after remediation.	i) Unrestricted use of land and water. (If yes, go to end of the Table)	X 20	0	=	20
	ii) Future redevelopment of land and water constrained	0	10		0
		Sub-Total (maxi	mum = 20)	=	20
2. Human health and environment	i) Is the exposure to contaminants via route acceptable?	3	0	=	0
exposure after the remediation	ii) Is the exposure to contaminants via ground/surface water acceptable?	4	0	=	0
	iii) Is the exposure to contaminants via sediments/soils acceptable?	3	0	=	0
		Sub-Total (maxi	mum = 10)	=	0
3. Magnitude of residual public	i) Health risk ≤ 1 in 1,000,000	5	0	=	0
health risks after remediation.	ii) Health risk ≤ 1 in 100,000	2	0	=	0
		Sub-Total (max	ximum = 5)	=	0
4. Magnitude of residual environ-	i) Less than acceptable	0 5	0	=	0
mental risks after remediation.	ii) Slightly greater than acceptable	3	0	=	0
	iii) Significant risk still exists	0	0	=	0
		Sub-Total (max	ximum = 5)	=	0
		TOTAL (maxim	um = 40)	=	20
SHORT-TERM EFFECTIVENESS		YES	NO	So	core
1. Protection of community during	i) Are there significant short-term risks to community that must be addressed? (if no, go	to 2) 0	X 4	=	4
remedial actions.	ii) Can the risk be easily controlled?	1	0	=	0
	iii) Does the mitigative effort to control risk impact community life-style?	0	X 2	=	0
		Sub-Total (max	(imum = 4)	=	4
2. Environmental Impacts	i) Are there short-term risks to environment that must be addressed (if no, go to 3)	0	X 4	=	4
-	ii) Are there significant mitigative measures reliable to minimize potential impacts	3	0	=	0
		Sub-Total (max	(imum = 4)	=	4
3. Time to implement the remedy	i) Is the required time to implement the remedy ≤ 2 yrs?	X 1	0	=	1
	ii) Required duration of the mitigative effort to control short-term risk ≤ 2 yrs?	1	X 0	=	0
		Sub-Total (max	ximum = 2)	=	1
		TOTAL (maxim	$\mathbf{um} = 10$	=	9
		(

Analysis Factor	Basis for Evaluatio	n During Detailed Analys	sis	Applicability					
LONG-TERM EFFECTIVENESS AN	D PERFORMANCE			YES NO					
1. On-site or off-site treatment or	i) On-site treatment Note: treatment is defined as destruction, 3							0	
land disposal.	ii) Off-site treatmentseparation/treatment, or solidification/iii) On-site or Off-site land disposalchemical fixation.					X 0	=	0	
						0	=	0	
		b-Tota	l (ma	=	0				
2. Permanence of the remedial alternative	i) Will the remedy be classified as perm	anent. (if yes, go to 4)		Х	3	0	=	3	
			Su	b-Tota	l (maz	ximum = 3)	=	3	
3. Lifetime of remedial actions	i) Expected lifetime or duration of effect	tiveness of the remedy	25-30 yr		3	0	=	0	
			20-25 yr		2	0	=	0	
			15-20 yr		1	0	=	0	
					0	0	=	0	
			Su	b-Tota	l (ma	ximum = 3)	=	0	
4. Quantity and nature of waste or residual	i) Quantity of untreated hazardous and/	or petroleum waste left at site.	None	Х	3	0	=	3	
left at the site after remediation.			≤25%		2	0	=	0	
			25-50%		1	0	=	0	
			≥50%		0	0	=	0	
	ii) Is there untreated residual left at site?	(if no, go to 5)			0	X 2	=	2	
	iii) Is the untreated residual toxic?			Х	0	1	=	0	
	iv) Is the untreated residual mobile?				0	X 1	=	1	
			Su	b-Tota	l (ma	ximum = 5)	=	6	
5. Adequacy and reliability of controls.	i) Operation and maintenance required t	for a period of < 5 yrs?			1	X 0	=	0	
	ii) Are environmental controls req'd as p	part of the remedy to handle pote	ntial problems?		0	X 1	=	1	
	iii) Degree of confidence that controls ca	n handle potential problems?	Moderate to very		1	0	=	0	
			Somewhat to not		0	0	=	0	
	iv) Relative degree of long-term monitor	ing required	(minimum)	Х	2	0	=	2	
			(moderate)		1	0	=	0	
			(extensive)		0	0	=	0	
			Su	b-Tota	l (ma	ximum = 4)	=	3	
			TOTA	L (m	axim	um = 18)	=	12	

Analysis FactorBasis for Evaluation During Detailed AnalysisApplicability								
REDUCTION OF TOXICITY, MOBI	LITY, VOLUME		YES NO					
1. Volume of hazardous and/or	i) Quantity of hazardous and/or petroleum waste destroyed or treated	99-100%	Х	8	0	=	8	
petroleum waste reduced		90-99%		7	0	=	0	
(reduction in volume or toxicity).	Immobilization technologies do not score under this Factor	80-90%		6	0	=	0	
		60-80%		4	0	=	0	
If not applicable, go to next Factor.		40-60%		2	0	=	0	
		20-40%		1	0	=	0	
		<20%		0	0	=	0	
If no, go to next Factor.	ii) Are there untreated or concentrated wastes produced as a result of (i)?			0	X 2	=	2	
iii) After remediation, how is the untreated, residual waste material disposed?								
		e land disposal	Х	0	0	=	0	
		e land disposal		1	0	=	0	
	offsite destruction			2	0	=	0	
	If sub-total = 10, go to Factor 3.	Sub-	Total	(maxi	mum = 10)	=	10	
2. Reduction in mobility of hazardous or	i) Quantity of Available Wastes Immobilized After Destruction/ Treatment							
petroleum waste.		90-100%	Х	2	0	=	2	
		60-90%		1	0	=	0	
If not applicable, go to next Factor .		<60%		0	0	=	0	
	ii) Method of Immobilization							
	- Reduced mobility by containment.		Х	0	0	=	0	
	 Reduced mobility by alternative treatment technologies.* 			3	0	=	0	
	* - air stripping, natural attenuation (<i>i.e.</i> , physiochemical attraction, biod	legradation)		0	1	=	0	
		Sul	o-Tota	ıl (max	ximum = 5)	=	2	
3. Irreversibility of the destruction or	- Completely irreversible.		Х	5	0	=	5	
treatment or immobilization of	- Irreversible for most of the waste constituents.			3	0	=	0	
hazardous and/or petroleum waste.	- Irreversible for only some of the waste constituents.			2	0	=	0	
	- Reversible for most of the waste constituents.			0	0	=	0	
		Sul	o-Tota	ıl (max	kimum = 5)	Ξ	5	
		ТОТА	L (m	axim	um = 20)	=	17	

Analysis Factor	Analysis Factor Basis for Evaluation During Detailed Analysis Applicabilit					
IMPLEMENTABILITY						core
1. Technical Feasibility						
	i) Ability to construct technology					
	Not difficult to construct. No uncertainties in construction.	Х	3	0	=	3
	Somewhat difficult to construct. No uncertainties in construction.		2	0	=	0
	Very difficult to construct and/or significant uncertainties in construction.		1	0	=	0
	ii) Reliability of technology					
	Very reliable in meeting the specified process efficiencies or performance goals.	Х	3	0	=	3
	Somewhat reliable in meeting the specified process efficiencies or performance goals.		2	0	=	0
	iii) Schedule of delays due to technical problems.					
	Unlikely	Х	2	0	=	2
	Somewhat unlikely		1	0	=	0
	iv) Need of undertaking additional remedial action, if necessary.		_			_
	No future remedial actions may be anticipated.	Х	2	0	=	2
	Some future remedial actions may be necessary.		1	0	=	0
	Sub-	Total	l (maxin	num = 10)	=	10
2. Administrative Feasibility						
	i) Coordination with other agencies					
	Minimal coordination is required.		2	0	=	0
	Required coordination is normal.		1	0	=	0
	Extensive coordination is required.	Х	0	0	=	0
	Sul	o-Tota	al (maxi	(mum = 2)	=	0
3. Availability of Services and Materials						
a. Availability of prospective						
technologies.	i) Are selected technologies commercially available for the site-specific application?	Х	1	0	=	1
-	ii) Will more than one vendor be available to provide a competitive bid?	Х	1	0	=	1
b. Availability of necessary						
equipment and specialists.	i) Additional equipment and specialists may be available without significant delay.	Х	1	0	=	1
	Sul	o-Tot:	al (maxi	imum = 3)	=	3
	ТОТА	L (n	naximi	m = 15)	=	13

DETAILED ANALYSIS SCORING SHEET ALTERNATIVE 2 – *ENGINEERING CONTROL*

r

<u>SUMMARY OF SCORING</u> <u>ALTERNATIVE 2</u>	
AREA	SCORE
Compliance with ARARs, Criteria 7 Guidelines	10
Protection of Human Health and the Environment	25
Short-term Effectiveness	9
Long-term Effectiveness and Performance	7
Reduction of Toxicity, Mobility, Volume	5
Implementability	15
Cost (0-10, "10" is most economical)	10
TOTAL	81

1. Chemical-specific ARARsi) Meets chemical specific ARARs such as groundwater standards.X2. Action-specific ARARsii) Meets ARARs such as technology standards for incineration or landfill.X	ES	NO	_	
2. Action-specific ARARs ii) Meets ARARs such as technology standards for incineration or landfill.			S	Score
	4	0	=	4
	3	0	=	0
3. Location-specific ARARs iii) Meets location-specific ARARs such as Freshwater Wetlands Act. X	3	0	=	3
Note: ARARs - Applicable or Relevant and Appropriate RequirementsTOTAL (n	naxin	num = 10) =	10
PROTECTION OF HUMAN HEALTH AND THE ENVIRONMENT Y	ES	NO	S	Score
1. Use of Site after remediation. i) Unrestricted use of land and water. (If yes, go to end of the Table)	20	0	=	0
ii) Future redevelopment of land and water constrained	0	X 10		10
Sub-Total	l (max	imum = 20) =	10
2. Human health and environment i) Is the exposure to contaminants via route acceptable? X	3	0	=	3
exposure after the remediation ii) Is the exposure to contaminants via ground/surface water acceptable? X	4	0	=	4
iii) Is the exposure to contaminants via sediments/soils acceptable? X	3	0	=	3
Sub-Total	l (max	imum = 10) =	10
3. Magnitude of residual public i) Health risk ≤ 1 in 1,000,000 X	5	0	=	5
health risks after remediation. ii) Health risk ≤ 1 in 100,000	2	0	=	0
Sub-Tota	al (ma	ximum = 5) =	5
4. Magnitude of residual environ- i) Less than acceptable	5	0	=	0
mental risks after remediation. ii) Slightly greater than acceptable	3	0	=	0
iii) Significant risk still exists X	0	0	=	0
Sub-Tot	al (ma	ximum = 5) =	0
TOTAL (n	naxin	num = 40) =	25
SHORT-TERM EFFECTIVENESS Y	ES	NO	S	Score
1. Protection of community during i) Are there significant short-term risks to community that must be addressed? (if no, go to 2)	0	X 4	=	4
remedial actions. ii) Can the risk be easily controlled?	1	0	=	0
iii) Does the mitigative effort to control risk impact community life-style?	0	2	=	0
Sub-Tota	al (ma	ximum = 4) =	4
2. Environmental Impacts i) Are there short-term risks to environment that must be addressed (if no, go to 3)	0	X 4	=	4
ii) Are there significant mitigative measures reliable to minimize potential impacts	3	0	=	0
Sub-Tot.	al (ma	ximum = 4) =	4
3. Time to implement the remedy i) Is the required time to implement the remedy ≤ 2 yrs? X	1	0	=	1
ii) Required duration of the mitigative effort to control short-term risk ≤ 2 yrs? 0	1	0	=	0
Sub-Tot	al (ma	ximum = 2) =	1
		num = 10) =	9

VONG-TERM EFFECTIVENESS AND PERFORMANCE VESNO.Sc1. On-site or off-site treatment or land disposal.i) On-site treatmentNote: reatmentreatment is defined as destruction, separation/treatment, or solidification/3X0=ii) Off-site treatmentseparation/treatment, or solidification/1X0=iii) On-site or Off-site land disposalchemical fixation.X00=Sub-Total treatmentii) On-site or Off-site land disposalthe medy be classified as permanent. (if yes, go to 4)X30=2. Permanence of the remedial alternativei) Will the remedy be classified as permanent. (if yes, go to 4)X30=3. Lifetime of remedial actionsi) Expected lifetime or duration of effectiveness of the remedy25-30 yr30=4. Quantity and nature of waste or residual left at the site after remediation.i) Quantity of untreated hazardous and/or petroleum waste left at site.None30=25-50%10=25-50%10=25-50%10x0=250%0X0=250%0X0=250%0X0=250%0X0=250%0X0=250%0X0=250%0X0=250%10X </th <th></th>	
Iand disposal.ii) Off-site treatment iii) On-site or Off-site land disposalseparation/treatment, or solidification/ chemical fixation.1X0=2. Permanence of the remedial alternativei) Will the remedy be classified as permanent. (if yes, go to 4)X30=3. Lifetime of remedial actionsi) Expected lifetime or duration of effectiveness of the remedy $25-30 \text{ yr}$ 30=i) Expected lifetime or duration of effectiveness of the remedy $25-30 \text{ yr}$ 30= $20-25 \text{ yr}$ 20= $15-20 \text{ yr}$ 10= 215 yr 00= $15-20 \text{ yr}$ 10= $25-30 \text{ yr}$ 20= $20-25 \text{ yr}$ 20= $25-20 \text{ yr}$ 10= $25-20 \text{ yr}$ 10= $25-50\%$ 10=	core
Image: non-state of the remedial alternativeiii) On-site or Off-site land disposalchemical fixation.X00=Sub-Total (maximum = 3)=i) Will the remedy be classified as permanent. (if yes, go to 4)X30=Sub-Total (maximum = 3)=i) Will the remedy be classified as permanent. (if yes, go to 4)X30=Sub-Total (maximum = 3)=i) Expected lifetime or duration of effectiveness of the remedy25-30 yr30=20-25 yr20=15-20 yr10=1) Quantity and nature of waste or residual left at the site after remediation.i) Quantity of untreated hazardous and/or petroleum waste left at site.None30=i) Quantity of untreated hazardous and/or petroleum waste left at site.None30= $\leq 25\%$ 20=25-50%10=	0
Sub-Total (maximum = 3)=2. Permanence of the remedial alternativei) Will the remedy be classified as permanent. (if yes, go to 4)X30=3. Lifetime of remedial actionsi) Expected lifetime or duration of effectiveness of the remedy25-30 yr30=20-25 yr20=15-20 yr10=10Quantity and nature of waste or residual left at the site after remediation.i) Quantity of untreated hazardous and/or petroleum waste left at site.None30=3. Quantity of untreated hazardous and/or petroleum waste left at site.None30=25-50%10=	0
1) Will the remedy be classified as permanent. (if yes, go to 4)X30=Sub-Total (maximum = 3)3. Lifetime of remedial actionsi) Expected lifetime or duration of effectiveness of the remedy $25-30 \text{ yr}$ 30= $20-25 \text{ yr}$ 20= $20-25 \text{ yr}$ 10= $215-20 \text{ yr}$ 10= $4.$ Quantity and nature of waste or residual left at the site after remediation.i) Quantity of untreated hazardous and/or petroleum waste left at site.None30= $4.$ Quantity and nature of waste or residual left at the site after remediation.i) Quantity of untreated hazardous and/or petroleum waste left at site.None30= $25-50\%$ 10=	0
Sub-Total (maximum = 3)=3. Lifetime of remedial actionsi) Expected lifetime or duration of effectiveness of the remedy $25-30 \text{ yr}$ 30= $20-25 \text{ yr}$ 20= $20-25 \text{ yr}$ 20= $15-20 \text{ yr}$ 10= $<15 \text{ yr}$ 00=4. Quantity and nature of waste or residual left at the site after remediation.i) Quantity of untreated hazardous and/or petroleum waste left at site.None30= $25-50\%$ 10=	0
3. Lifetime of remedial actionsi) Expected lifetime or duration of effectiveness of the remedy $25-30 \text{ yr}$ 3 0 $=$ $20-25 \text{ yr}$ 2 0 $=$ $20-25 \text{ yr}$ 2 0 $=$ $15-20 \text{ yr}$ 1 0 $=$ $<15 \text{ yr}$ 0 0 $=$ $<15 \text{ yr}$ 0 0 $=$ $<15 \text{ yr}$ 0 0 $=$ $<25-30 \text{ yr}$ 2 0 $=$ $<25 \text{ yr}$ 2 0 $=$ $<25-50\%$ 2 0 $=$ $<25-50\%$ 1 0 $=$	3
4. Quantity and nature of waste or residual left at the site after remediation.i) Quantity of untreated hazardous and/or petroleum waste left at site.None30= $\leq 25\%$ 20= $\leq 25\%$ 20= $\leq 25\%$ 10=	3
4. Quantity and nature of waste or residual left at the site after remediation.i)Quantity of untreated hazardous and/or petroleum waste left at site.None30= $\leq 25\%$ 20= $\leq 25\%$ 20= $\leq 25\%$ 10=	0
4. Quantity and nature of waste or residual left at the site after remediation.i) Quantity of untreated hazardous and/or petroleum waste left at site.None30= $\leq 25\%$ 20= $\geq 25-50\%$ 10=	0
4. Quantity and nature of waste or residual left at the site after remediation.i) Quantity of untreated hazardous and/or petroleum waste left at site.None30= $\leq 25\%$ 20= $\leq 25\%$ 10=	0
4. Quantity and nature of waste or residual left at the site after remediation.i) Quantity of untreated hazardous and/or petroleum waste left at site.None30= $\leq 25\%$ 20= $25-50\%$ 10=	0
left at the site after remediation. $\leq 25\%$ 20=25-50%10=	0
25-50% 1 0 =	0
	0
≥50% 0 X 0 =	0
	0
ii) Is there untreated residual left at site? (if no, go to 5) $X = 0$	0
iii) Is the untreated residual toxic? $X = 0 = 1$	0
iv) Is the untreated residual mobile? $0 \times 1 =$	1
Sub-Total (maximum = 5) $=$	1
5. Adequacy and reliability of controls. i) Operation and maintenance required for a period of < 5 yrs? 1 X 0 =	0
ii) Are environmental controls req'd as part of the remedy to handle potential problems? $X = 0$ 1 =	0
iii) Degree of confidence that controls can handle potential problems? Moderate to very $X = 1$ 0 =	1
Somewhat to not $X = 0 = 0$	0
iv) Relative degree of long-term monitoring required (minimum) X 2 0 =	2
(moderate) 1 0 =	0
(extensive) $0 0 =$	0
Sub-Total (maximum = 4) $=$	3
TOTAL (maximum = 18) =	7

Analysis FactorBasis for Evaluation During Detailed AnalysisApplicability								
REDUCTION OF TOXICITY, MOBII	LITY, VOLUME		YES	Sc	ore			
1. Volume of hazardous and/or	i) Quantity of hazardous and/or petroleum waste destroyed or treated	99-100%	8	Х	0	=	0	
petroleum waste reduced		90-99%	7	Х	0	=	0	
(reduction in volume or toxicity).	Immobilization technologies do not score under this Factor	80-90%	6	Х	0	=	0	
		60-80%	4	Х	0	=	0	
If not applicable, go to next Factor.		40-60%	2	Х	0	=	0	
		20-40%	1	Х	0	=	0	
		<20%	0		0	=	0	
If no, go to next Factor.	ii) Are there untreated or concentrated wastes produced as a result of (i)?		0	Х	2	=	2	
iii) After remediation, how is the untreated, residual waste material disposed?								
	offsit	e land disposal	0		0	=	0	
	onsit	e land disposal	X 1		0	=	1	
	offsite destruction	on or treatment	2		0	=	0	
	If sub-total = 10, go to Factor 3.	Sub-	Total (max	imum :	= 10)	=	3	
2. Reduction in mobility of hazardous or	i) Quantity of Available Wastes Immobilized After Destruction/ Treatment							
petroleum waste.		90-100%	X 2		0	=	2	
		60-90%	1		0	=	0	
If not applicable, go to next Factor .		<60%	0		0	=	0	
	ii) Method of Immobilization							
	- Reduced mobility by containment.		X 0		0	=	0	
	- Reduced mobility by alternative treatment technologies.*		3		0	=	0	
	* - air stripping, natural attenuation (i.e., physiochemical attraction, bioc	legradation)						
		Sub	o-Total (ma	ximum	n = 5)	=	2	
3. Irreversibility of the destruction or	- Completely irreversible.		5		0	=	0	
treatment or immobilization of	- Irreversible for most of the waste constituents.		3		0	=	0	
hazardous and/or petroleum waste.	- Irreversible for only some of the waste constituents.		2		0	=	0	
*	- Reversible for most of the waste constituents.		0		0	=	0	
		Sub	o-Total (ma	ximum	n = 5)	=	0	
		ТОТА	L (maxin	1um =	= 20)	=	5	

Analysis Factor	Basis for Evaluation During Detailed Analysis		Applicabilit			
IMPLEMENTABILITY		Y	ES	NO	So	core
1. Technical Feasibility						
	i) Ability to construct technology					
	Not difficult to construct. No uncertainties in construction.	Х	3	0	=	3
	Somewhat difficult to construct. No uncertainties in construction.		2	0	=	0
	Very difficult to construct and/or significant uncertainties in construction.		1	0	=	0
	ii) Reliability of technology					
	Very reliable in meeting the specified process efficiencies or performance goals.	Х	3	0	=	3
	Somewhat reliable in meeting the specified process efficiencies or performance goals.		2	0	=	0
	iii) Schedule of delays due to technical problems.					
	Unlikely	Х	2	0	=	2
	Somewhat unlikely		1	0	=	0
	iv) Need of undertaking additional remedial action, if necessary.					
	No future remedial actions may be anticipated.	Х	2	0	=	2
	Some future remedial actions may be necessary.		1	0	=	0
	Sub	Tota	l (maxin	num = 10)	=	10
2. Administrative Feasibility						
	i) Coordination with other agencies		-			
	Minimal coordination is required.	Х	2	0	=	2
	Required coordination is normal.		1	0	=	0
	Extensive coordination is required.		0	0	=	0
	Sul	o-Tota	al (maxi	mum = 2)	=	2
3. Availability of Services and Materials						
a. Availability of prospective						
technologies.	i) Are selected technologies commercially available for the site-specific application?	Х	1	0	=	1
	ii) Will more than one vendor be available to provide a competitive bid?	Х	1	0	=	1
b. Availability of necessary						
equipment and specialists.	i) Additional equipment and specialists may be available without significant delay.	Х	1	0	=	1
	Sul	o-Tota	al (maxi	mum = 3)	=	3
	ТОТА	L (n	naximu	m = 15)	=	15

DETAILED ANALYSIS SCORING SHEET ALTERNATIVE 3 – *IN-SITU BIOREMEDIATION*

SUMMARY OF SCORING

ALTERNATIVE 3

AREA	SCORE
Compliance with ARARs, Criteria 7 Guidelines	7
Protection of Human Health and the Environment	20
Short-term Effectiveness	8
Long-term Effectiveness and Performance	13
Reduction of Toxicity, Mobility, Volume	19
Implementability	9
Cost (0-10, "10" is most economical)	5
TOTAL	80

Analysis Factor	Basis for Evaluation During Detailed Analysis	Applic	-		
COMPLIANCE WITH ARARs, ST	ANDARDS, CRITERIA, AND GUIDELINES	YES NO			core
1. Chemical-specific ARARs	i) Meets chemical specific ARARs such as groundwater standards.	X 4	0	=	4
2. Action-specific ARARs	ii) Meets ARARs such as technology standards for incineration or landfill.	3	X 0	=	0
3. Location-specific ARARs	iii) Meets location-specific ARARs such as Freshwater Wetlands Act.	X 3	0	=	3
Note: ARARs - Applicable or Relevant an	ad Appropriate Requirements 7	TOTAL (maximum = 10)			7
PROTECTION OF HUMAN HEAD	LTH AND THE ENVIRONMENT	YES NO			core
1. Use of Site after remediation.	i) Unrestricted use of land and water. (If yes, go to end of the Table)	X 20	0	=	20
	ii) Future redevelopment of land and water constrained	0	10		0
		Sub-Total (maxi	imum = 20)	=	20
2. Human health and environment	i) Is the exposure to contaminants via route acceptable?	3	0	=	0
exposure after the remediation	ii) Is the exposure to contaminants via ground/surface water acceptable?	4	0	=	0
-	iii) Is the exposure to contaminants via sediments/soils acceptable?	3	0	=	0
		Sub-Total (maximum = 10)			0
3. Magnitude of residual public	i) Health risk ≤ 1 in 1,000,000	5	0	=	0
health risks after remediation.	ii) Health risk ≤ 1 in 100,000	2	0	=	0
		Sub-Total (max	ximum = 5)	=	0
4. Magnitude of residual environ-	i) Less than acceptable	5	0	=	0
mental risks after remediation.	ii) Slightly greater than acceptable	3	0	=	0
	iii) Significant risk still exists	X 0	0	=	0
		Sub-Total (maximum = 5)			0
	ſ	TOTAL (maximum = 40)			20
SHORT-TERM EFFECTIVENESS		YES	NO	Sc	core
1. Protection of community during	i) Are there significant short-term risks to community that must be addressed? (If no, go	to 2) 0	X 4	=	4
remedial actions.	ii) Can the risk be easily controlled?	1	0	=	0
	iii) Does the mitigative effort to control risk impact community life-style?	0	2	=	0
		Sub-Total (max	ximum = 4)	=	4
2. Environmental Impacts	i) Are there short-term risks to environment that must be addressed (if no, go to 3)	0	X 4	=	4
•	ii) Are there significant mitigative measures reliable to minimize potential impacts	3	0	=	0
		Sub-Total (max	ximum = 4)	=	4
3. Time to implement the remedy	i) Is the required time to implement the remedy ≤ 2 yrs?	1	X 0	=	0
	ii) Required duration of the mitigative effort to control short-term risk ≤ 2 yrs?	1	X 0	=	0
		Sub-Total (max	ximum = 2)	=	0
	ſ	FOTAL (maxim	um = 10)	=	8

land disposal.ii) Off-site treatmentseparation/treatment, or solidification/1X0=iii) On-site or Off-site land disposalchemical fixation.X00=	Score = 3 = 0 = 0 = 3 = 3
land disposal.ii) Off-site treatmentseparation/treatment, or solidification/1X0=iii) On-site or Off-site land disposalchemical fixation.X00=	= 0 $= 0$ $= 3$
iii) On-site or Off-site land disposal chemical fixation. X 0 0 =	= 0 = 3
	= 3
Sub-Total (maximum = 3)	
	= 3
2. Permanence of the remedial alternative i) Will the remedy be classified as permanent. (If yes, go to 4) X 3 0 =	e
Sub-Total (maximum = 3)	= 3
3. Lifetime of remedial actions i) Expected lifetime or duration of effectiveness of the remedy 25-30 yr X 3 0 =	= 3
20-25 yr 2 0 =	= 0
15-20 yr 1 0 =	= 0
<15 yr 0 0 =	= 0
Sub-Total (maximum = 3)	= 3
4. Quantity and nature of waste or residual i) Quantity of untreated hazardous and/or petroleum waste left at site. None x 3 0 =	= 3
left at the site after remediation. $\leq 25\%$ 2 0 =	= 0
25-50% 1 0 =	= 0
≥50% X 0 0 =	= 0
	= 0
iii) Is the untreated residual toxic? $X = 0$	= 0
iv) Is the untreated residual mobile? X 0 1 =	= 0
Sub-Total (maximum = 5)	= 3
5. Adequacy and reliability of controls. i) Operation and maintenance required for a period of < 5 yrs? 1 X 0 =	= 0
	= 1
iii) Degree of confidence that controls can handle potential problems? Moderate to very 1 0 =	= 1
Somewhat to not $0 \qquad 0 =$	= 0
iv) Relative degree of long-term monitoring required (minimum) 2 0 =	= 0
(moderate) X 1 0 =	= 1
	= 0
Sub-Total (maximum = 4)	= 1
TOTAL (maximum = 18) =	= 13

1.	CTION OF TOXICITY, MOBIL Volume of hazardous and/or petroleum waste reduced (reduction in volume or toxicity). If not applicable, go to next Factor. If no, go to next Factor.	 i) Quantity of hazardous and/or petroleum waste destroyed or treated Immobilization technologies do not score under this Factor 	99-100% 90-99% 80-90% 60-80% 40-60% 20-40% <20%	Y X	TES 8 7 6 4 2 1	N	0 0 0 0 0 0	= = = = =	0 0 6 0 0
	petroleum waste reduced (reduction in volume or toxicity). If not applicable, go to next Factor.	Immobilization technologies do not score under this Factor	90-99% 80-90% 60-80% 40-60% 20-40%	X	7 6 4		0 0 0 0	= =	0 6 0
	(reduction in volume or toxicity). If not applicable, go to next Factor.		80-90% 60-80% 40-60% 20-40%	Х	6 4		0 0 0	= =	6 0
	If not applicable, go to next Factor.		60-80% 40-60% 20-40%	Х	4		0 0	=	0
]			40-60% 20-40%		•		0		
]			20-40%		2 1			=	0
	If no, go to next Factor.				1				
	If no, go to next Factor.		<20%		-		0	=	0
	If no, go to next Factor.				0		0	=	0
		ii) Are there untreated or concentrated wastes produced as a result of (i)?			0	Х	2	=	2
		iii) After remediation, how is the untreated, residual waste material disposed?							
		off-sit	e land disposal		0		0	=	0
		on-sit	e land disposal		1		0	=	0
		off-site destructi	on or treatment		2		0	=	0
		If sub-total = 10, go to Factor 3.	Sub	-Tota	l (max	imum	= 10)	=	8
2.	Reduction in mobility of hazardous or	i) Quantity of Available Wastes Immobilized After Destruction/ Treatment							
	petroleum waste.		90-100%	Х	2		0	=	2
	-		60-90%		1		0	=	0
]	If not applicable, go to next Factor.		<60%		0		0	=	0
		ii) Method of Immobilization							
		- Reduced mobility by containment.		Х	0		0	=	0
		- Reduced mobility by alternative treatment technologies.*		Х	3		0	=	3
		* - air stripping, natural attenuation (<i>i.e.</i> , physiochemical attraction, biod	egradation)						
			Su	b-Tot	al (ma	ximun	n = 5)	=	5
3.	Irreversibility of the destruction or	- Completely irreversible.		Х	5		0	=	5
	treatment or immobilization of	- Irreversible for most of the waste constituents.			3		0	=	0
	hazardous and/or petroleum waste.	- Irreversible for only some of the waste constituents.			2		0	=	0
	L	- Reversible for most of the waste constituents.			0		0	=	0
			Su	b-Tot	al (ma	ximun	n = 5)	=	5
			TOTA	L (n	naxim	nım =	= 20)	=	18

Analysis Factor	Basis for Evaluation During Detailed Analysis	A	Applio	ability		
IMPLEMENTABILITY		Y	ES	NO	S	core
1. <u>Technical Feasibility</u>				•		
	i) Ability to construct technology					
	Not difficult to construct. No uncertainties in construction.		3	0	=	0
	Somewhat difficult to construct. No uncertainties in construction.	Х	2	0	=	2
	Very difficult to construct and/or significant uncertainties in construction.		1	0	=	0
	ii) Reliability of technology					
	Very reliable in meeting the specified process efficiencies or performance goals.		3	0	=	0
	Somewhat reliable in meeting the specified process efficiencies or performance goals.		2	X 0	=	0
	iii) Schedule of delays due to technical problems.					
	Unlikely		2	0	=	0
	Somewhat unlikely	Х	1	0	=	1
	iv) Need of undertaking additional remedial action, if necessary.		_			_
	No future remedial actions may be anticipated.		2	0	=	0
	Some future remedial actions may be necessary.	Х	1	0	=	1
	Sub-	Sub-Total (maximum =			=	4
2. Administrative Feasibility						
	i) Coordination with other agencies					
	Minimal coordination is required.	Х	2	0	=	2
	Required coordination is normal.		1	0	=	0
	Extensive coordination is required.		0	0	=	0
	Sub)-Tota	al (ma	ximum = 2)	=	2
3. Availability of Services and Materials						
a. Availability of prospective						
technologies.	i) Are selected technologies commercially available for the site-specific application?	Х	1	0	=	1
	ii) Will more than one vendor be available to provide a competitive bid?	Х	1	0	=	1
b. Availability of necessary						
equipment and specialists.	i) Additional equipment and specialists may be available without significant delay.	Х	1	0	=	1
	Sul	o-Tota	al (ma	ximum = 3)	=	3
	ТОТА	L (n	naxim	um = 15)	=	9

Passionate People Building and Revitalizing our World

