Technical Assistance, Environmental Liability Clarification or Post-Closure Modification Request

Form 4400-237 (R 9/15)

Page 1 of 8

Notice: Use this form to request a written response (on agency letterhead) from the Department of Natural Resources (DNR) regarding technical assistance, a post-closure change to a site, a specialized agreement or liability clarification for Property with known or suspected environmental contamination. A fee will be required as is authorized by s. 292.55, Wis. Stats., and NR 749, Wis. Adm. Code., unless noted in the instructions below. Personal information collected will be used for administrative purposes and may be provided to requesters to the extent required by Wisconsin's Open Records law [ss. 19.31 - 19.39, Wis. Stats.].

Definitions

"Property" refers to the subject Property that is perceived to have been or has been impacted by the discharge of hazardous substances.

"Liability Clarification" refers to a written determination by the Department provided in response to a request made on this form. The response clarifies whether a person is or may become liable for the environmental contamination of a Property, as provided in s. 292.55, Wis. Stats.

"Technical Assistance" refers to the Department's assistance or comments on the planning and implementation of an environmental investigation or environmental cleanup on a Property in response to a request made on this form as provided in s. 292.55, Wis. Stats.

"Post-closure modification" refers to changes to Property boundaries and/or continuing obligations for Properties or sites that received closure letters for which continuing obligations have been applied or where contamination remains. Many, but not all, of these sites are included on the GIS Registry layer of RR Sites Map to provide public notice of residual contamination and continuing obligations.

Select the Correct Form

.

.

This from should be used to request the following from the DNR:

- **Technical Assistance**
- Liability Clarification
- Post-Closure Modifications
- Specialized Agreements (tax cancellation, negotiated agreements, etc.)

Do not use this form if one of the following applies:

- Request for an off-site liability exemption or clarification for Property that has been or is perceived to be contaminated by one or more hazardous substances that originated on another Property containing the source of the contamination. Use DNR's Off-Site Liability Exemption and Liability Clarification Application Form 4400-201.
- Submittal of an Environmental Assessment for the Lender Liability Exemption, s 292.21, Wis. Stats., if no response or review by DNR is requested. Use the Lender Liability Exemption Environmental Assessment Tracking Form 4400-196.
- Request for an exemption to develop on a historic fill site or licensed landfill. Use DNR's Form 4400-226 or 4400-226A.
- Request for closure for Property where the investigation and cleanup actions are completed. Use DNR's Case Closure GIS Registry Form 4400-202.

All forms, publications and additional information are available on the internet at: dnr.wi.gov/topic/Brownfields/Pubs.html.

Instructions

- 1. Complete sections 1, 2, 6 and 7 for all requests. Be sure to provide adequate and complete information.
- 2. Select the type of assistance requested: Section 3 for technical assistance or post-closure modifications, Section 4 for a written determination or clarification of environmental liabilities; or Section 5 for a specialized agreement.
- 3. Include the fee payment that is listed in Section 3, 4, or 5, unless you are a "Voluntary Party" enrolled in the Voluntary Party Liability Exemption Program and the questions in Section 2 direct otherwise. Information on to whom and where to send the fee is found in Section 8 of this form.
- 4. Send the completed request, supporting materials and the fee to the appropriate DNR regional office where the Property is located. See the map on the last page of this form. A paper copy of the signed form and all reports and supporting materials shall be sent with an electronic copy of the form and supporting materials on a compact disk. For electronic document submittal requirements see: http://dnr.wi.gov/files/PDF/pubs/rr/RR690.pdf"

The time required for DNR's determination varies depending on the complexity of the site, and the clarity and completeness of the request and supporting documentation.

Technical Assistance, Environmental Liability Clarification or Post-Closure Modification Request Form 4400-237 (R 9/15) Page 2 of 8

Section 1. Contact and Reci	plent information	_			
Requester Information					
			e modification review, that his or her liability t 7. DNR will address its response letter to thi		
Last Name	First	MI	Organization/ Business Name		
Pelc	Doris				
Mailing Address			City	State	ZIP Code
1680 Pilgrim Parkway			Elm Grove	WI	53122-1531
Phone # (include area code)	Fax # (include area code)		Email		
(414) 217-6339			pelskal@hotmail.com		
The requester listed above: (sele	ect all that apply)				
Is currently the owner			Is considering selling the Property		
Is renting or leasing the Pr	operty		Is considering acquiring the Property		
Is a lender with a mortgag	ee interest in the Property				
Other. Explain the status of	of the Property with respect to	the a	applicant:		

Contact Information (to be o	contacted with questi	ons about	this request)	🛛 🗙 Select if sam	ne as requester
Contact Last Name	First	MI	Organization/ Business Name		
Pelc	Doris				
Mailing Address			City	State	ZIP Code
1680 Pilgrim Parkway			Elm Grove	WI	53122-1531
Phone # (include area code)	Fax # (include area co	ode)	Email		
(414) 217-6339			pelskal@hotmail.com		
Environmental Consultant					
Contact Last Name	First	MI	Organization/ Business Name		
Ebbott	Kendrick		Fehr-Graham Inc.		
Mailing Address			City	State	ZIP Code
1237 Pilgrim Road			Plymouth	WI	53073
Phone # (include area code)	Fax # (include area co	ode)	Email	<u> </u>	
(920) 892-2444	(920) 892-20	620	kebbott@fehr-graham.com		
Attorney (if applicable)					
Contact Last Name	First	MI	Organization/ Business Name		
Gallo	Donald		Husch Blackwell		
Mailing Address			City	State	ZIP Code
20800 Swenson Drive, Suite	300		Waukesha	WI	53186
Phone # (include area code)	Fax # (include area co	ode)	Email		
(262) 956-6224			Donald.Gallo@huschblackwe	ll.com	
Property Owner (if differen	nt from requester)				
Contact Last Name	First	MI	Organization/ Business Name		
Shipshock	Harold		Master Drycleaners Inc.		
Mailing Address			City	State	ZIP Code
N57 W26389 Mt. Dulac Driv	ve		Sussex	WI	53089
Phone # (include area code)	Fax # (include area co	ode)	Email		
(414) 313-9168			tshipshock@hydro-flo.com		

J

Technical Assistance, Environmental Liability Clarification or Post-Closure Modification Request Page 3 of 8

Form 4400-237 (R 9/15)

Section 2. Property Inform	nation								
Property Name		FID No. (if known)							
Master Drycleaning Inc.		241398630							
BRRTS No. (if known)		Parcel Identificati	on Number						
0241545142		384041800							
Street Address		City		State ZIP Code					
6326 W Bluemound Road		Wauwatosa		WI 53213					
County	Municipality where the Property is loca		Property is composed of: Single tax Multiple to parcel	Property Size Acres					
Milwaukee	● City ○ Town ○ Village of Wau	watosa	parcel parcels	lax 0 e 22					
 Is a response needed by a plan accordingly. No Yes Date reques Reason: 	a specific date? (e.g., Property closing on the second secon	date) Note: Most re	equests are completed with	ıin 60 days. Please					
 Is the "Requester" enrolled No. Include the fee the 	d as a Voluntary Party in the Voluntary nat is required for your request in Se a separate fee. This request will be bille	ction 3, 4 or 5.							
Fill out the information in Section 3. Technical A	n Section 3, 4 or 5 which correspond Assistance or Post-Closure Modificat Arification; or Section 5. Specialized	is with the type o tions;	0						
Section 3. Request for Te	chnical Assistance or Post-Closure	e Modification							
Select the type of technical a	assistance requested: [Numbers in bra	ackets are for WI	DNR Use]						
No Further Action	Letter (NFA) (Immediate Actions) - NR	708.09, [183] - I	nclude a fee of \$350. Use	for a written response					
	ction after a discharge of a hazardous s estigation Work Plan - NR 716.09, [135		• •	one-time spill event.					
	estigation Report - NR 716.15, [137] -	-							
<u> </u>	Specific Soil Cleanup Standard - NR 72								
	dial Action Options Report - NR 722.13								
	dial Action Design Report - NR 724.09,								
	dial Action Documentation Report - NR								
harmed a	erm Monitoring Plan - NR 724.17, [25]	••••							
	ation and Maintenance Plan - NR 724.								
Other Technical Assistan	ce - s. 292.55, Wis. Stats. [97] (For req	uest to build on ar	abandoned landfill use Fo	orm 4400-226)					
Schedule a Techni	cal Assistance Meeting - Include a fee	e of \$700.							
Hazardous Waste	Determination - Include a fee of \$700								
Other Technical As	ssistance - Include a fee of \$700. Exp	lain your request i	n an attachment.						
Post-Closure Modification	ns - NR 727, [181]								
	ifications: Modification to Property bour e GIS Registry. This also includes remo								
Include a fee of	f \$300 for sites with residual soil contar	nination; and	×						
Include a fee o obligations.	f \$350 for sites with residual groundwa	ter contamination,	monitoring wells or for vap	or intrusion continuing					
Attach a descriptio	n of the changes you are proposing, an	d documentation a	as to why the changes are	needed (if the change					

to a Property, site or continuing obligation will result in revised maps, maintenance plans or photographs, those documents may be submitted later in the approval process, on a case-by-case basis).

Technical Assistance, Environmental Liability Clarification or Post-Closure Modification Request

Page 4 of 8

Form 4400-237 (R 9/15)

Skip Sections 4 and 5 if the technical assistance you are requesting is listed above and complete Sections 6 and 7 of this form.

Section 4. Request for Liability Clarification

Select the type of liability clarification requested. Use the available space given or attach information, explanations, or specific questions that you need answered in DNR's reply. Complete Sections 6 and 7 of this form. [Numbers in brackets are for DNR Use]

"Lender" liability exemption clarification - s. 292.21, Wis. Stats. [686]

Include a fee of \$700.

Provide the following documentation:

- (1) ownership status of the real Property, and/or the personal Property and fixtures;
- (2) an environmental assessment, in accordance with s. 292.21, Wis. Stats.;
- (3) the date the environmental assessment was conducted by the lender;
- (4) the date of the Property acquisition; for foreclosure actions, include a copy of the signed and dated court order confirming the sheriff's sale.
- (5) documentation showing how the Property was acquired and the steps followed under the appropriate state statutes.
- (6) a copy of the Property deed with the correct legal description; and,
- (7) the Lender Liability Exemption Environmental Assessment Tracking Form (Form 4400-196).
- (8) If no sampling was done, please provide reasoning as to why it was **not** conducted. Include this either in the accompanying environmental assessment or as an attachment to this form, and cite language in s. 292. 21(1)(c)2.,h.-i., Wis. Stats.:
 - h. The collection and analysis of representative samples of soil or other materials in the ground that are suspected of being contaminated based on observations made during a visual inspection of the real Property or based on aerial photographs, or other information available to the lender, including stained or discolored soil or other materials in the ground and including soil or materials in the ground in areas with dead or distressed vegetation. The collection and analysis shall identify contaminants in the soil or other materials in the ground and shall quantify concentrations.
 - i. The collection and analysis of representative samples of unknown wastes or potentially hazardous substances found on the real Property and the determination of concentrations of hazardous waste and hazardous substances found in tanks, drums or other containers or in piles or lagoons on the real Property.

"Representative" liability exemption clarification (e.g. trustees, receivers, etc.) - s. 292.21, Wis. Stats. [686]

Include a fee of \$700.

Provide the following documentation:

(1) ownership status of the Property;

(2) the date of Property acquisition by the representative;

- (3) the means by which the Property was acquired;
- (4) documentation that the representative has no beneficial interest in any entity that owns, possesses, or controls the Property;
- (5) documentation that the representative has not caused any discharge of a hazardous substance on the Property; and

(6) a copy of the Property deed with the correct legal description.

Clarification of local governmental unit (LGU) liability exemption at sites with: (select all that apply)

hazardous substances spills - s. 292.11(9)(e), Wis. Stats. [649];

Perceived environmental contamination - [649];

hazardous waste - s. 292.24 (2), Wis. Stats. [649]; and/or

solid waste - s. 292.23 (2), Wis. Stats. [649].

• Include a fee of \$700, a summary of the environmental liability clarification being requested, and the following:

(1) clear supporting documentation showing the acquisition method used, and the steps followed under the appropriate state statute(s).

- (2) current and proposed ownership status of the Property;
- (3) date and means by which the Property was acquired by the LGU, where applicable;
- (4) a map and the 1/4, 1/4 section location of the Property;
- (5) summary of current uses of the Property;
- (6) intended or potential use(s) of the Property;
- (7) descriptions of other investigations that have taken place on the Property; and
- (8) (for solid waste clarifications) a summary of the license history of the facility.

Technical Assistance, Environmental Liability Clarification or Post-Closure Modification Request

Page 5 of 8

Form 4400-237 (R 9/15)

Section 4. Request for Liability Clarification (cont.)

Lease liability clarification - s. 292.55, Wis. Stats. [646]

- Include a fee of \$700 for a single Property, or \$1400 for multiple Properties and the information listed below:
- (1) a copy of the proposed lease;
- (2) the name of the current owner of the Property and the person who will lease the Property;
- (3) a description of the lease holder's association with any persons who have possession, control, or caused a discharge of a hazardous substance on the Property;
- (4) map(s) showing the Property location and any suspected or known sources of contamination detected on the Property;
- (5) a description of the intended use of the Property by the lease holder, with reference to the maps to indicate which areas will be used. Explain how the use will not interfere with any future investigation or cleanup at the Property; and
- (6) all reports or investigations (e.g. Phase I and Phase II Environmental Assessments and/or Site Investigation Reports conducted under s. NR 716, Wis. Adm. Code) that identify areas of the Property where a discharge has occurred.

General or other environmental liability clarification - s. 292.55, Wis. Stats. [682] - Explain your request below.

Include a fee of \$700 and an adequate summary of relevant environmental work to date.

No Action Required (NAR) - NR 716.05, [682]

✤ Include a fee of \$700.

Use where an environmental discharge has or has not occurred, and applicant wants a DNR determination that no further assessment or clean-up work is required. Usually this is requested after a Phase I and Phase II environmental assessment has been conducted; the assessment reports should be submitted with this form. This is not a closure letter.

Clarify the liability associated with a "closed" Property - s. 292.55, Wis. Stats. [682]

Include a fee of \$700.

- Include a copy of any closure documents if a state agency other than DNR approved the closure.

Use this space or attach additional sheets to provide necessary information, explanations or specific questions to be answered by the DNR.

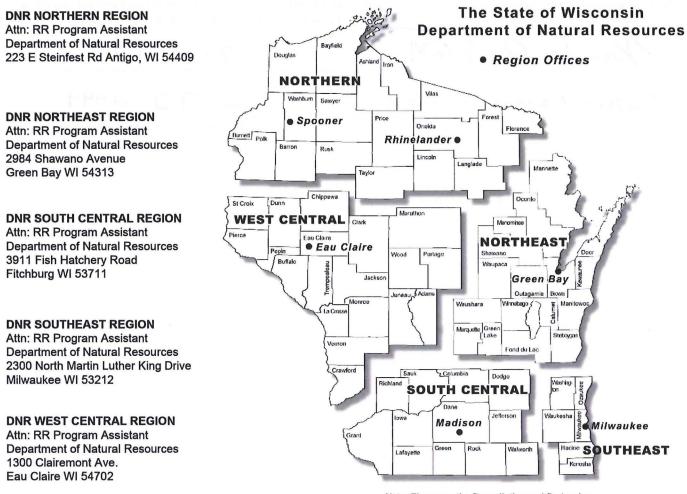
Technical Assistance, Environmental Liability Clarification or Post-Closure Modification Request Page 6 of 8

Form 4400-237 (R 9/15)

Section 5. Request for a Specialized Agreement
Select the type of agreement needed. Include the appropriate draft agreements and supporting materials. Complete Sections 6 and 7 of this form. More information and model draft agreements are available at: <u>dnr.wi.gov/topic/Brownfields/lgu.html#tabx4</u> .
Tax cancellation agreement - s. 75.105(2)(d), Wis. Stats. [654]
 Include a fee of \$700, and the information listed below:
(1) Phase I and II Environmental Site Assessment Reports, (2) a copy of the Property deed with the correct legal description; and, (3) a draft 75.105 agreement based on the DNR's model (<u>dnr.wi.gov/topic/brownfields/documents/mod75-105agrmt.pdf</u>).
Agreement for assignment of tax foreclosure judgement - s.75.106, Wis. Stats. [666]
Include a fee of \$700, and the information listed below:
 (1) Phase I and II Environmental Site Assessment Reports, (2) a copy of the Property deed with the correct legal description; and, (3) a draft 75.105 agreement based on the DNR's model (<u>dnr.wi.gov/topic/brownfields/documents/mod75-106agrmt.pdf</u>).
Negotiated agreement - Enforceable contract for non-emergency remediation - s. 292.11(7)(d) and (e), Wis. Stats. [630]
Include a fee of \$1400, and the information listed below:
(1) a draft schedule for remediation; and, (2) the name, mailing address, phone and email for each party to the agreement.
Section 6. Other Information Submitted
Identify all materials that are included with this request.
Include one copy of any document from any state agency files that you want the Department to review as part of this request. The person submitting this request is responsible for contacting other state agencies to obtain appropriate reports or information.
Phase I Environmental Site Assessment Report - Date:
Phase II Environmental Site Assessment Report - Date:
Legal Description of Property (required for all liability requests and specialized agreements)
Map of the Property (required for all liability requests and specialized agreements)
Analytical results of the following sampled media: Select all that apply and include date of collection.
Groundwater Soil Sediment Other medium - Describe:
Date of Collection:
A copy of the closure letter and submittal materials
Draft tax cancellation agreement
Draft agreement for assignment of tax foreclosure judgment
Other report(s) or information - Describe: May 25 2017 FG Report "Vapor System Commission Rprt /Indoor Air Rslts
For Property with newly identified discharges of hazardous substances only: Has a notification of a discharge of a hazardous substance been sent to the DNR as required by s. NR 706.05(1)(b), Wis. Adm. Code?
○ Yes - Date (if known):
○ No

Note: The Notification for Hazardous Substance Discharge (non-emergency) form is available at: dnr.wi.gov/files/PDF/forms/4400/4400-225.pdf.

Technical Assistance, Environmental LiabilityClarification or Post-Closure Modification RequestForm 4400-237 (R 9/15)Page 7 of 8


Section 7. Certification by the Person who completed this form	
I am the person submitting this request (requester)	
I prepared this request for: Doris Pelc	
Requester Name	
I certify that I am familiar with the information submitted on this request, and true, accurate and complete to the best of my knowledge. I also certify I have	
this request. Kentra 9 - Elit	7-20-17
Signature	Date Signed
PROJECT MAMAGER /P.G.	920 892-2444
Title	Telephone Number (include area code)

Technical Assistance, Environmental Liability Clarification or Post-Closure Modification Request Page 8 of 8

Form 4400-237 (R 9/15)

Section 8. DNR Contacts and Addresses for Request Submittals

Send or deliver one paper copy and one electronic copy on a compact disk of the completed request, supporting materials, and fee to the region where the property is located to the address below. Contact a DNR regional brownfields specialist with any questions about this form or a specific situation involving a contaminated property. For electronic document submittal requirements see: http://dnr.wi.gov/files/PDF/pubs/rr/RR690.pdf.

Note: These are the Remediation and Redevelopment Program's designated regions. Other DNR program regional boundaries may be different.

		DNR Use Only	
Date Received	Date Assigned	BRRTS Activity Code	BRRTS No. (if used)
DNR Reviewer		Comments	
Fee Enclosed?	Fee Amount	Date Additional Information Requested	Date Requested for DNR Response Letter
○ Yes ○ No	\$		A statement of the statement of the
Date Approved	Final Determination		

July 20. 2017

Mr. John Hnat WDNR 2300 N Dr. Martin Luther King Jr Dr. Milwaukee, WI 53212

RE: Vapor Results and Request for WDNR Concurrence that Building is Acceptable for Occupancy, Master Dry Cleaners DERF Site, 6326 W. Bluemound Road, Wauwatosa, WI, BRRTS # 02-41-545142

FEHR GRAH

ENGINEERING & ENVIRONMENTAL

Dear John:

Objective and Introduction

The purpose of this submittal is to present information to the WDNR so they can review and provide comments on occupation by a fast food restaurant of the above-referenced former drycleaning building.

Based on completed actions and chemical test results, the air chemistry inside the building is below threshold concentrations for human exposure. Subslab building vapors exceed theoretical levels that could pose a risk of potential exposure to building occupants, but an active subslab depressurization system (SSDS) has been installed and is operating to capture and vent to the roof subslab vapors.

Occupancy approval from local government officials has not been possible, as they have indicated they need to obtain information from the State that indicates occupancy is acceptable, based on the site conditions.

The desired outcome from this submittal is that the WDNR will send a letter to the property owner (Mr. Harold Shipshock, Master Drycleaning Inc.), the potential property tenant (Ms. Doris Pelc), and the municipality (City of Wauwatosa Health Department, Ms. Laura Conklin) indicating occupancy can be allowed from an indoor air quality perspective. Contact information and addresses for these three individuals are provided at the end of this letter, in the cc's.

Background Information and Environmental Remediation

The Site consists of a 0.22-acre parcel (90 by 108 feet) on the northeast corner of W. Bluemound Road and 64th Street (Figure 1). The property address is 6326 W. Bluemound Road, and there is a single slab on grade structure measuring roughly 28 feet by 40 feet on the parcel. Most of the lot is asphalt covered, with small grass strips adjacent to 64th Street. (Figure 2).

Surrounding properties include the Police Association building to the east (single story, slab on grade), residences with detached garages to the north and northeast (full basements typically). To the west is 64th street and to the south is Bluemound Road.

The property was developed in 1950 when a gas station was constructed. Drycleaning operations commenced circa 1970 and the business and property were acquired by the current owner, Mr. Shipshock, in 1973. Drycleaning on-site using tetrachloroethene (PCE) was performed from 1973 until 2015, when operations ceased.

Petroleum investigation and remediation activities were completed from 2006 until 2013, including excavation and disposal of contaminated soil around the former underground storage tanks south of the building. Following excavation, the soil and groundwater conditions indicated that while residual contamination was present, no further activities were necessary. Closure for the petroleum project (BRRTS # 03-41-547831) was obtained from the WDNR in March 2013. Closure included a requirement that the existing building floor plus exterior asphalt and concrete surfaces be maintained as a cap to prevent direct contact with remaining impacted soil. The cap was also necessary to minimize infiltration to groundwater through remaining petroleum-contaminated soil.

In 2015, Fehr Graham was hired to complete the remedial actions related to the released PCE. Remediation of the drycleaning chemical release has involved a multi-prong approach. The main effort has included injection of 3,200 pounds of Provect IR, a carbon and zero-valent iron amendment, that was pressure-injected using geoprobe borings into the subsurface around the south, east, and north sides of the drycleaner building in December 2015. A water-based mixture was pressure-injected into the saturated soil and groundwater from approximately 5 to 15 feet below grade. Provect IR optimizes the in-situ reductive dechlorination of PCE and can actively degrade contaminants for an estimated five to ten years. The Fehr-Graham January 28, 2016 Remedial Action Injection Documentation Report summarizes the completed injection activities, and the injection locations are shown on Figure 2.

Post-injection groundwater monitoring has been performed following the injection, with significant improvements observed in the groundwater chemistry since injection. Four post-injection sample events have been completed, and further groundwater monitoring is planned in 2017.

A secondary remedial action was completed to address remaining contamination beneath the building. Injection of Provect IR could not be performed beneath the building, due to the inability of the geoprobe to access the building interior. Instead, source contaminated soil removal actions were implemented in February 2016 and March 2017.

In February 2016, a floor sump that had been historically been connected to the sanitary sewer was excavated and removed, along with a small quantity of surrounding contaminated soil. Provect IR (250 pounds) was mixed with water and poured into the excavation, in an effort to remediate remaining contaminated soil below a depth of 4.5 feet that couldn't be removed in the initial excavation.

After completion of additional soil borings and subslab vapor testing activities, WDNR approval was obtained to complete further remedial excavation actions. In March 2017, approximately 8.7 tons of contaminated soil was removed from an excavation just outside the northwest corner of the building, adjacent to the sanitary sewer lateral (Figure 3). Based on obtained soil samples and visual observation of the sanitary sewer lateral connection, the connection to the building sanitary lateral was intact, and there does not appear to be any significant release of solvent from a broken sewer lateral to the surrounding soil. A report documenting these findings is in preparation, but the soil chemistry information has been provided as Table A.2.1, and is shown on Figure 3.

Soil excavation under the building was also performed the week of March 20, 2017. The excavation consisted of removal and landfill disposal of approximately 15 tons (325 square feet) of concrete from within the building, plus 42 tons of soil from beneath the building.

In addition, five drums of soil were removed from the area immediately beneath the former sump to a depth of eight feet below grade. Upon reaching the target depth, an aqueous solution containing 150 gallons of emulsified zero valent iron (EZVI) was blended into the remaining in place soils below approximately eight feet for additional treatment of residual PCE. Due to the presence of elevated levels of PCE in the drummed soil, this material was handled as hazardous waste, and properly discarded by Badger Disposal.

The excavation created an approximately 40-foot long by four-foot wide by six-foot deep trench that extended east / west beneath the north part of the building (Figure 3). The excavation followed the pathway of the former indoor sanitary sewer line, which was entirely removed beneath the building. In addition, concrete from another roughly 8-foot by 20-foot area east of the former floor sump, in the location of the former drycleaning machine and other PCE handling areas, was removed in case the floor contained residual trace levels of PCE. The entire interior excavated area was restored with new concrete flooring.

As documented in the May 25, 2017 Vapor System Commission Report and Indoor Air Test Results report (attached), upon completion of the indoor excavation, a subslab depressurization system was installed beneath the building. The system includes extraction pipes bedded in pea gravel, a sealed Stego-wrap barrier, and a roof-mounted fan that vents recovered air to the exterior. The floor was restored to grade with fresh concrete in the excavated areas. As summarized in the report, smoke testing, and a pressure field extension test were completed to demonstrate capture from all areas beneath the building.

Approximately two weeks after the system began continuous operation, the indoor air chemistry was measured using a 24-hour summa canister sample. Analysis was completed for drycleaning related compounds using the Niosh TO-15 analytical method. The results indicate detections of a trace amount of PCE (13.8 ug/m^3), but no other detections of chlorinated VOC compounds. These levels of PCE in the indoor air are far below regulatory threshold values for commercial buildings of 180 ug/m^3 .

Proposed Building Use

The building has been vacant for approximately two years pending resolution of environmental issues. A tenant (Ms. Doris Pelc) has plans for conversion of the building into a restaurant specializing in hot dogs. Specific plans have not been provided pending indications from the municipality that occupancy could be possible. It is assumed the existing structure would be entirely remodeled, with new wall and floor coverings, fixtures, and plumbing.

In planning for eventual repurposing, during replacement of the building interior following the indoor excavation in March 2017, a floor drain was installed beneath the building floor. The drain is sloped to discharge to the existing sanitary sewer lateral in the northwest corner of the building. One existing wall sink from the approximate building center was also connected to the newly-installed indoor sewer lateral with subsurface piping. While the existing bathroom lateral was observed during the excavation, it was left intact, as it already connects to the existing sanitary lateral near the far northwest corner of the building.

Based on these efforts, at this time, it appears no further subsurface work will be necessary during the building reconstruction efforts. If redevelopment does require excavation, the recovered soil will be properly handled, and construction workers will be informed of the presence of residual contaminants / advised regarding proper personal protective equipment.

Questions to Address

The WDNR has indicated this request should identify the questions we want addressed.

Question One: Have the remedial and interim actions completed to date addressed the exposure pathways for the proposed use for the property?

The investigation results and the completed remedial actions have addressed all exposure pathways of concern.

 Figure 3 and Table A.2.I (attached) shows the excavation limits and the remaining soil chemistry results for material beneath the building and in the surrounding soil borings. No soil within the top four feet contains concentrations of PCE or TCE above the non-industrial direct contact threshold values. In addition, no petroleum is known to be present in the top four feet that exceeds direct contact threshold values.

Soil at depth, including beneath the building at a depth of approximately seven feet below grade, contains concentrations of PCE and TCE above the non-industrial direct contact threshold values of 30,600 and 1,260 ug/kg. These elevated concentrations are only present in soil from depths greater than four feet, and are covered by seven feet of clean, imported fill, and a new concrete floor

- 2) Ingestion of contaminated groundwater is not a concern, as the site is connected to the municipal water supply. The water lateral enters the building on the northwest corner, and has been piped above grade, so it can be distributed to desired locations upon redevelopment.
- 3) The utility laterals have been evaluated via soil sampling, and results indicate soils near the utility lines are not impacted with significantly elevated concentrations of PCE or related degradation compounds. To be proactive with potential residual contaminant migration along the utility corridor, clay plugs have been installed along the northwest terminus of the outside excavation around the sanitary sewer lateral, and around the indoor sanitary sewer lateral, as shown on Figure 3.
- 4) Exposure of building occupants to elevated levels of contaminant vapors has been addressed by the installed SSDS. The system has been shown to draw adequate vacuum to capture vapors from beneath the entire building subslab. The indoor building air quality when the system is operating has been demonstrated to be compliant with chemical indoor air standards for a commercial building.

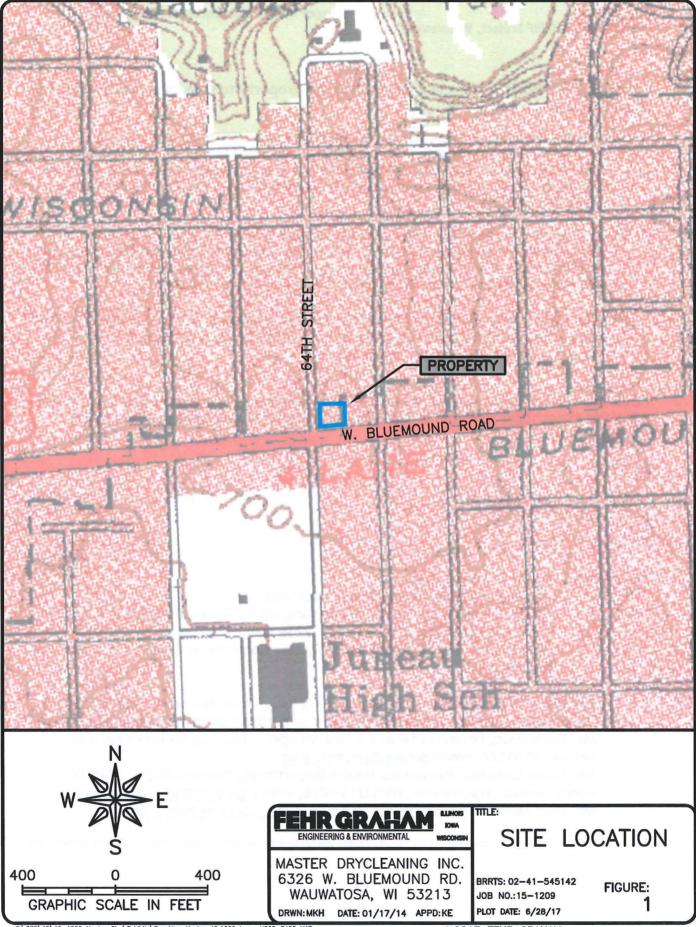
July 20, 2017 Master Cleaners DERF Project, Wauwatosa, WI Vapor Results and Request for Occupancy Page 5

Question Two: What actions are needed for the property to remain protective for the proposed use?

- Ongoing operation and maintenance of the SSDS is necessary to protect building occupants. The operation and maintenance plan provided in the May 25, 2017 Vapor System Commission Report should be followed to keep the system functioning. Basically, the system needs to be monitored regularly by observation of the liquid manometer to verify fan function.
- 2) As requested by the WDNR, approximately six months after occupancy, the indoor air chemistry should be chemically tested for chlorinated VOCs to verify the pre-occupancy results are still at acceptable concentrations. If the post-occupancy results are elevated, additional ventilation measures, or other actions may prove necessary.
- 3) The existing requirement for maintenance and inspection of the building floor and exterior asphalt and concrete surfaces will continue. Annual inspection and repair, if necessary, will be completed.

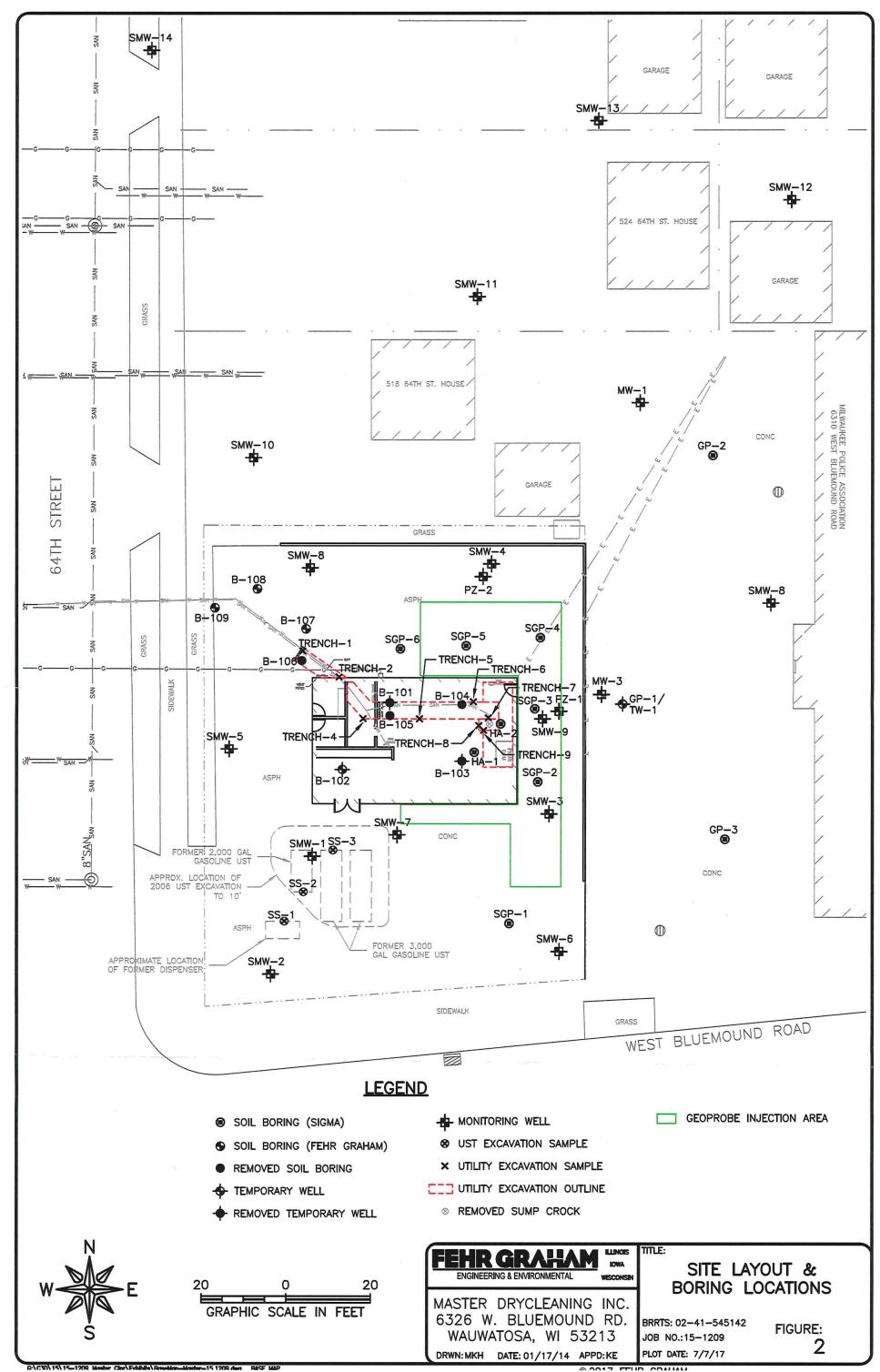
I trust this information meets your needs. Please let me know if you have any questions or need additional information. Feel free to call me at 920 892-2444 or e-mail me at <u>kebbott@fehr-graham.com</u>.

Sincerely,

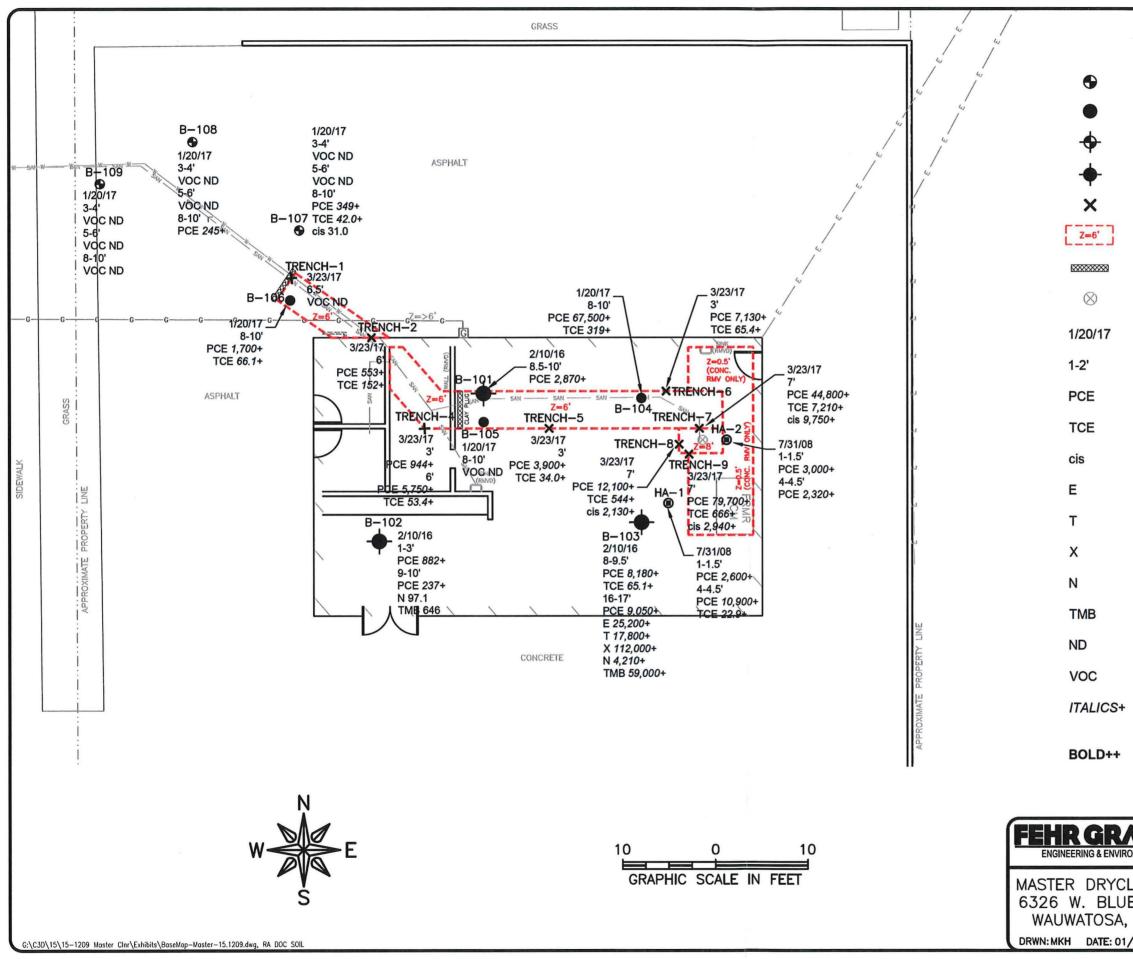

Kenin a. Enn

Kendrick A. Ebbott, PG

Attachment: Figure 1: Site Location Figure 2: Site Layout and Boring Locations Figure 3: Remaining Soil Chemistry and Utility Excavation Limits Table A.2.I Soil Analytical Results Table VOC May 25, 2017 Fehr Graham Vapor System Commission Report and Indoor Air Test Results


 Cc: Mr. Harold Shipshock, Master Drycleaning Inc., Property Owner, N57 W26389 Mt. Dulac Drive, Sussex, WI 53089, email c/o son, <u>tshipshock@hydro-flo.com</u> Ms. Doris Pelc, Potential Tenant / Redeveloper, 1680 Pilgrim Parkway, Elm Grove, WI 53122, email <u>pelskal@hotmail.com</u> Ms. Laura Conklin, Wauwatosa Health Department, Health Officer, 7725 W. North Avenue, Wauwatosa, WI 53213-0068, email <u>lconklin@wauwatosa.net</u> Mr. Don Gallo, Husch Blackwell, <u>Donald.Gallo@huschBlackwell.com</u>

O:\Master Drycleaning\15-1209\REPORTS\Vapor System Commission Report\Vapor System Occupancy Request.docx



G:\C3D\15\15-1209 Master Clnr\Exhibits\BaseMap-Master-15.1209.dwg, _USGS-BASE MAP

© 2017 FEHR GRAHAM

FELID CDALLANA

LEGEND

- SOIL BORING
- REMOVED SOIL BORING
- TEMPORARY WELL
- REMOVED TEMPORARY WELL
- EXCAVATION SAMPLE
- EXCAVATION OUTLINE & DEPTH
- CLAY PLUG (INSTALLED)
- REMOVED SUMP CROCK
- SAMPLE DATE
- SAMPLE DEPTH
- TETRACHLOROETHENE (ug/kg)
- TRICHLOROETHENE (ug/kg)
- cis-1,2-DICHLOROETHENE (ug/kg)
- ETHYLBENZENE (ug/kg)
- TOLUENE (ug/kg)
- XYLENES, TOTAL (ug/kg)
- NAPHTHTALENE (ug/kg)
- TRIMETHYLBENZENE, TOTAL (ug/kg)
- NO DETECT
- VOLATILE ORGANIC COMPOUNDS
- ITALICS+ EXCEEDS NON-INDUSTRIAL DIRECT CONTACT RCL (SOIL IN TOP FOUR FEET ONLY)
- BOLD++ EXCEEDS GROUNDWATER PATHWAY RCL

	nois Wa Onsin	TTLE: REMAINING CHEMISTRY &	UTILITY
LEANING IN	C.	EXCAVATION	LIMITS
EMOUND R , WI 53213 /17/14 APPD:KE		BRRTS: 02-41-545142 JOB NO.:15-1209 PLOT DATE: 7/7/17	FIGURE: 3
0.0017			

© 2017 FEHR GRAHAM

TABLE A.2.I Soil Analytical Results Table - VOC Master Drycleaning, Inc. 6326 W. Bluemound Rd., Wauwatosa, WI 53213 BRRTS# 02-41-545142

					UST OEX						
	Sample ID			SS-1	55-2	55-3	GP-1	GF	-2	GF	-3
	Date		ಕರ	06/23/06	06/23/06	06/23/06	12/06/06	12/06/06	12/06/06	12/06/06	12/06/06
	Depth	Groundwater Pathway RCL	Non-Industrial Direct-Contact RCL	4.5-5'	10'	10'	3-4	3-4	13'	3-4'	12-13
	Notes	A N	-Co udu								
		EF 6	SCL SCL				· · · ·				
Tetrachloroethene (PCE)											
Trichloroethene (TCE)	(ug/kg)	4.54	30,700	<29	<3,000	<610	<36	<33	<36	<40	<37
cis-1,2-Dichloroethene	(ug/kg)	3.58	1,260	<29	<3,000	<610	<41	<37	<41	<40	<42
trans-1,2-Dichloroethene	(ug/kg) (ug/kg)	41.2	1,560,000	<29 <29	<3,000 <3,000	<610 <610	<32 <30	<29 <27	<32 <30	<31 <29	<33 <31
Vinyl Chloride	(ug/kg)	0.138	67	<41	<4,100	<850	<25	<23	<25	<25	<26
Methylene Chloride	(ug/kg)	2.56	60,700	<59	<5,900	<1,200	200	<33	130	138	139
Benzene	(ug/kg)	5.12	1,490	<29	<3,000	<610	<32	<29	<32	<31	<32
Ethylbenzene	(ug/kg)	1,570	7,470	<29	44,000	18,000	<30	<27	<30	<29	<31
Toluene	(ug/kg)	1,110	818,000	<29	<3,000	1,200	<35	<31	<35	<34	<35
Xylenes (TOTAL)	(ug/kg)	3,940	258,000	<100	170,000	110,000	<94	<85	<94	<90	<94
m&p-Xylene	(ug/kg)	NS	778,000	NR	NR	NR	NR	NR	NR	NR	NR
o-Xylene	(ug/kg)	NS	434,000	NR	NR	NR	NR	NR	NR	NR	NR
Naphthalene	(ug/kg)	658	5,150	<59	17,000	9,700	<90	<81	<90	<87	<91
MTBE	(ug/kg)	27	59,400	<29	<3,000	<610	<47	<42	<47	<45	<47
Frimethylbenzene Total (1,2,4-				0.0	150,000	88,000	0.0	0.0	0.0	0.0	0.0
& 1,3,5·)	(ug/kg)	1,380	NS		- 1/						
1,2,4-Trimethylbenzene	(ug/kg)	NS	89,800	<29	120,000	69,000	<36	<32	<36	<35	<36
1,3,5-Trimethylbenzene Bromobenzene	(ug/kg)	NS	182,000	<29	30,000	19,000	<41	<37	<41	<40	<41
Bromochloromethane	(ug/kg)	NS NS	354,000 232,000	<29 NR	<3,000	<610	<37 NR	<33	<37 NR	<36	<37 NR
Bromodichloromethane	(ug/kg) (ug/kg)	0.326	390	NR <29	NR <3,000	NR <610	NR <46	NR <41	NR <46	NR <44	NR <46
Bromoform	(ug/kg)	2.33	61,500	×29 NR	<3,000 NR	NR	NR	NR	NR NR	NR	×40 NR
Bromomethane	(ug/kg)	5.06	10,300	NR	NR	NR	NR	NR	NR	NR	NR
n-Butylbenzene	(ug/kg)	NS	108,000	<29	<3,000	<610	<43	<39	<43	<41	<43
sec-Butylbenzene	(ug/kg)	NS	145,000	<29	<3,000	1,800	<40	<36	<40	<39	<41
tert-Butylbenzene	(ug/kg)	NS	183,000	<29	<3,000	<610	<36	<33	<36	<35	<36
Carbon Tetrachloride	(ug/kg)	3.88	854	<29	<3,000	<610	<32	<29	<32	<31	<32
Chlorobenzene	(ug/kg)	NS	392,000	<29	<3,000	<610	<31	<28	<31	<30	<31
Chloroethane (ethyl chloride)	(ug/kg)	227	2,120,000	<59	<5,900	<1,200	<76	<68	<76	<73	<77
Chloroform	(ug/kg)	3.33	423	<29	<3,000	<610	<29	<26	<29	<28	<29
Chloromethane	(ug/kg)	15.5	171,000	<59	<5,900	<1,200	<59	<53	<59	<57	<60
2-Chlorotoluene	(ug/kg)	NS	907,000	<59	<5,900	<1,200	<35	<32	<36	<34	<36
4-Chlorotoluene	(ug/kg)	NS	253,000	<29	<3,000	<610	<31	<28	<31	<30	<32
1,2-Dibromo-3-chloropropane Dibromochloromethane	(ug/kg)	0.173	8	<59	<5,900	<1,200	<39	<36	<39	<38	<40
	(ug/kg)	32	933	<29	<3,000	<610	<48	<44	<49	<47	<49
1,2-Dibromoethane (EDB) Dibromomethane	(ug/kg)	0.0282	47	<29	<3,000	<610					
1,2-Dichlorobenzene	(ug/kg)	NS 1,170	35,000	NR	NR	NR	NR	NR	NR	NR	NR
1,3-Dichlorobenzene	(ug/kg)	1,170	297,000	<29 <29	<3,000 <3,000	<610 <610	<41 <31	<37 <28	<41 <31	<39 <30	<41 <31
1,4-Dichlorobenzene	(ug/kg) (ug/kg)	144	3,480	<29	<3,000	<610	<42	<38	<42	<41	<43
Dichlorodifluoromethane	(ug/kg)	3,090	135,000	<59	<5,900	<1,200	<32	<29	<32	<31	<32
1,1-Dichloroethane	(ug/kg)	483	4,720	<29	<3,000	<610	<38	<34	<38	<37	<32
1,2-Dichloroethane	(ug/kg)	2.84	608	<29	<3,000	<610	<41	<37	<41	<40	<42
1,1-Dichloroethene	(ug/kg)	5.02	342,000	<29	<3,000	<610	<41	<37	<41	<39	<41
1,2-Dichloropropane	(ug/kg)	3.32	1,330	<29	<3,000	<610	<38	<35	<38	<37	<39
1,3-Dichloropropane	(ug/kg)	NS	1,490,000	<29	<3,000	<610	<46	<42	<47	<45	<47
2,2-Dichloropropane	(ug/kg)	NS	527,000	NR	NR	NR	NR	NR	NR	NR	NR
1,1-Dichloropropene	(ug/kg)	NS	NS	NR	NR	NR	NR	NR	NR	NR	NR
cis-1,3-Dichloropropene	(ug/kg)	0.286	1,220,000	NR	NR	NR	NR	NR	NR	NR	NR
trans-1,3-Dichloropropene	(ug/kg)	0.286	1,570,000	NR	NR	NR	NR	NR	NR	NR	NR
Diisopropyl ether	(ug/kg)	NS	2,260,000	<29	<3,000	<610	<35	*32	<35	<34	<36
Hexachloro-1,3-butadiene Isopropylbenzene	(ug/kg)	NS	6,220 268,000	<41	<4,100	<850	<50	<45	<50	<48	<50
p-lsopropyltoluene	(ug/kg) (ug/kg)	NS NS	268,000	<29 <29	6,400	2,800	<39 <37	<35 <34	<39 <37	<38 <36	<40 <38
n-Propylbenzene	(ug/kg) (ug/kg)	NS	264,000	<29	<3,000 25,000	780	<3/	<34	<3/	<36	<38
Styrene	(ug/kg)	220	867,000	NR NR	25,000 NR	NR	NR NR	×30 NR	×34 NR	NR	×34 NR
1,1,1,2-Tetrachloroethane	(ug/kg)	53.4	2,590	NR	NR	NR	NR	NR	NR	NR	NR
1,1,2,2-Tetrachloroethane	(ug/kg)	0.156	753	<29	<3,000	<610	<52	<47	<52	<51	<53
1,2,3-Trichlorobenzene	(ug/kg)	NS	48,900	<29	<3,000	<610	<59	<54	<59	<57	<60
1,2,4-Trichlorobenzene	(ug/kg)	408	22,000	<29	<3,000	<610	<56	<50	<56	<54	<56
1,1,1-Trichlorethane	(ug/kg)	140	640,000	<29	<3,000	<610	<37	<34	<37	<36	<38
1,1,2-Trichlorethane	(ug/kg)	3.24	1,480	<41	<4,100	<850	<52	<47	<52	<50	<53
Trichlorofluoromethane	(ug/kg)	NS	1,120,000	<29	<3,000	<610	<29	<26	<29	<28	<29
1,2,3-Trichloropropane	(ug/kg)	51.9	5	NR	NR	NR	NR	NR	NR	NR	NR
		dividual Ex	ceedances (DC)				0	0		0	
	Cumu	lative Haza	ard Index (DC)				0.0005	0.	••	0.0004	
		1	ncer Risk (DC)				3.3E-09	0.0E+00		2.3E-00	

Exceedance Highlights:

Exceedance rightingss: BOLD Red font indicates DC RCL exceedance per DNR RCL calculator 7/14/14, and BTV exceedance for metals. *B1*: Cumulative exceedance (HI > 1), eventhough no individual DC RCL was exceeded. *Italic* font indicates GW RCL Exceedance per DNR RCL calculator 7/14/14. Groundwater quality (> NR 140 E5) may be alfected when GW RCLs are exceeded.

Notes:

Xylenes reported as total of m-, o-, p-xylenes NS = No standard established NA = Not analyzed for parameter NR = Not Reported

TABLE A.2.1 Soil Analytical Results Table - VOC Master Drycleaning, Inc. 6326 W. Bluemound Rd., Wauwatosa, WI 53213 BRRTS# 02-41-545142

	Sample ID	1 m			W-1		W-2	SMI			W-4		₩-5
	Date		ಕರ		12/06/06	12/06/06		12/06/06	12/06/06	12/06/06	12/06/06	12/06/06	12/06/0
	Depth	RCL	stria	4-6'	8-10	2-4	10-12'	2-4	6-8'	4-6'	8-10'	2-4	6-8
	Notes	Groundwater Pathway RCL	Non-Industrial Direct-Contact RCL						6.2.2				
		ath	Non-I Direc										
Tetrachloroethene (PCE)	(ug/kg)	4.54	30,700	<25	<1,250	<25	<25	1,440	3,000	<25	115	<25	<25
Trichloroethene (TCE)	(ug/kg)	3.58	1,260	<25	<1,250	<25	<25	<25	40.1	<25	<25	<25	<25
cis-1,2-Dichloroethene	(ug/kg)	41.2	156,000	<25	<1,250	<25	<25	<25	<25	<25	<25	<25	<25
trans-1,2-Dichloroethene	(ug/kg)	58.8	1,560,000	<25	<1,250	<25	<25	<25	<25	<25	<25	<25	<25
Vinyl Chloride	(ug/kg)	0.138	67	<25	<1,250	<25	<25	<25	<25	<25	<25	<25	<25
Methylene Chloride	(ug/kg)	2.56	60,700	<25	<1,250	<25	<25	<25	<25	<25	<25	<25	<25
Benzene	(ug/kg)	5.12	1,490	<25	<1,250	<25	<25	<25	<25	<25	<25	<25	<25
Ethylbenzene	(ug/kg)	1,570	7,470	<25	2,200 J	<25	<25	<25	750	<25	<25	<25	<25
Toluene Xylenes (TOTAL)	(ug/kg)	1,110 3,940	818,000 258,000	<25 <50	<1,250	<25 <50	<25 <50	<25 <50	<25 502 J	<25 <50	<25 <50	<25 <50	<25 <50
mtp-Xylene	(ug/kg) (ug/kg)	3,940 NS	778,000	₹50 NR	<2,500 NR	×50 NR	₹50 NR	×50 NR	NR	×50 NR	<50 NR	<50 NR	<50 NR
o-Xylene	(ug/kg)	NS	434,000	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Naphthalene	(ug/kg)	658	5,150	<25	4,200	<25	<25	<25	222	<25	<25	<25	<25
MTBE	(ug/kg)	27	59,400	<25	<1,250	<25	<25	<25	<25	<25	<25	<25	<25
Frimethylbenzene Total (1,2,4-				26.7	13,100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
£ 1,3,5-)	(ug/kg)	1,380	NS					1.	and the second				
1,2,4-Trimethylbenzene	(ug/kg)	NS	89,800	26.7 J	13,100	<25	<25	<25	2,980	<25	<25	<25	<25
1,3,5-Trimethylbenzene	(ug/kg)	NS	182,000	<25	<1,250	<25	<25	<25	130	<25	<25	<25	<25
Bromobenzene Bromochloromethane	(ug/kg)	NS NS	354,000	<25	<1,250	<25	<25	<25	<25	<25	<25	<25	<25
Bromochloromethane	(ug/kg) (ug/kg)	NS 0.326	232,000	NR <25	NR <1,250	NR <25	NR <25	NR <25	NR <25	NR <25	NR <25	NR <25	NR <25
Bromoform	(ug/kg)	2.33	61,500	<25 NR	<1,250 NR	<25 NR	×25 NR	×25 NR	×25 NR	×25 NR	×25 NR	×25 NR	×25 NR
Bromomethane	(ug/kg)	5.06	10,300	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
n-Butylbenzene	(ug/kg)	NS	108,000	55 J	6,400	<25	<25	<25	740	*25	<25	<25	<25
sec-Butylbenzene	(ug/kg)	NS	145,000	<25	2,060 J	<25	<25	<25	208	<25	<25	<25	<25
tert-Butylbenzene	(ug/kg)	NS	183,000	<25	<1,250	<25	<25	<25	<25	<25	<25	<25	<25
Carbon Tetrachloride	(ug/kg)	3.88	854	<25	<1,250	<25	<25	<25	<25	<25	<25	<25	<25
Chlorobenzene	(ug/kg)	NS	392,000	<25	<1,250	<25	<25	<25	<25	<25	<25	<25	<25
Chloroethane (ethyl chloride) Chloroform	(ug/kg)	227	2,120,000	<25	<1,250	<25	<25	<25	<25	<25	<25	<25	<25
Chloromethane	(ug/kg)	3.33	423	<25	<1,250	<25	<25	<25	<25	<25	<25 -25	<25	<25
2-Chlorotoluene	(ug/kg) (ug/kg)	NS NS	171,000 907,000	<25 <25	<1,250	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25
4-Chlorotoluene	(ug/kg)	NS	253,000	<25	<1,250	<25	<25	<25	<25	<25	<25	<25	<25
1,2-Dibromo-3-chloropropane	(ug/kg)	0.173	8	<25	<1,250	<25	<25	*25	<25	<25	*25	<25	<25
Dibromochloromethane	(ug/kg)	32	933	<25	<1,250	<25	<25	<25	<25	<25	<25	<25	<25
1,2-Dibromoethane (EDB)	(ug/kg)	0.0282	47	<25	<1,250	<25	<25	<25	<25	<25	<25	<25	<25
Dibromomethane	(ug/kg)	NS	35,000	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
1,2-Dichlorobenzene	(ug/kg)	1,170	376,000	<25	<1,250	<25	<25	<25	<25	<25	<25	<25	<25
1,3-Dichlorobenzene	(ug/kg)	1,150	297,000	<25	<1,250	<25	<25	<25	<25	<25	<25	<25	<25
1,4-Dichlorobenzene	(ug/kg)	144	3,480	<25	<1,250	<25	<25	<25	<25	<25	<25	<25	<25
Dichlorodifluoromethane	(ug/kg)	3,090	135,000	<25	<1,250	<25	<25	<25	<25	<25	<25	<25	<25
1,1-Dichloroethane	(ug/kg)	483	4,720	<25	<1,250	<25	<25	<25	<25	<25	<25	<25	<25
1,1-Dichloroethene	(ug/kg) (ug/kg)	2.84	608 342,000	<25 <25	<1,250 <1,250	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25
1,2-Dichloropropane	(ug/kg)	3.32	1,330	<25	<1,250	<25	<25	<25	<25	<25	<25	<25	<25
1,3-Dichloropropane	(ug/kg)	NS	1,490,000	<25	<1,250	<25	<25	<25	<25	<25	<25	<25	<25
2,2-Dichloropropane	(ug/kg)	NS	527,000	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
1,1-Dichloropropene	(ug/kg)	NS	NS	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
cis-1,3-Dichloropropene	(ug/kg)	0.286	1,220,000	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
trans-1,3-Dichloropropene	(ug/kg)	0.286	1,570,000	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Diisopropyl ether	(ug/kg)	NS	2,260,000	<25	<1,250	<25	<25	<25	<25	<25	<25	<25	<25
Hexachloro-1,3-butadiene Isopropylbenzene	(ug/kg)	NS NS	6,220	<25	<1,250	<25	<25	<25	<25	<25	<25	<25	<25
p-isopropyitoluene	(ug/kg) (ug/kg)	NS	268,000	<25	3,080 <1,250	<25	<25 <25	<25 <25	250	<25 <25	<25 <25	<25	<25 <25
n-Propylbenzene	(ug/kg)	NS	264,000	<25 <25	<1,250	<25 <25	<25	<25	130	<25 <25	<25	<25 <25	<25
Styrene	(ug/kg)	220	867,000	×25 NR	13,300 NR	×25 NR	×25 NR	×25 NR	1,200 NR	×25 NR	×25 NR	×25 NR	×25 NR
1,1,1,2-Tetrachloroethane	(ug/kg)	53.4	2,590	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
1,1,2,2-Tetrachloroethane	(ug/kg)	0.156	753	<25	<1,250	<25	<25	<25	<25	<25	<25	*25	<25
1,2,3-Trichlorobenzene	(ug/kg)	NS	48,900	<25	<1,250	<25	<25	<25	<25	<25	<25	<25	<25
1,2,4-Trichlorobenzene	(ug/kg)	408	22,000	<25	<1,250	<25	<25	<25	<25	<25	<25	<25	<25
1,1,1-Trichlorethane	(ug/kg)	140	640,000	<25	<1,250	<25	<25	<25	<25	<25	<25	<25	<25
1,1,2-Trichlorethane	(ug/kg)	3.24	1,480	<25	<1,250	<25	<25	<25	<25	<25	<25	<25	<25
Trichlorofluoromethane 1,2,3-Trichloropropane	(ug/kg)	NS	1,120,000	<25	<1,250	<25	<25	<25	<25	<25	<25	<25	<25
1,2,5 mentoropropane	(ug/kg)	51.9	5	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
	NO. OT IN	UNIQUAL EXC	ceedances (DC)			0		0				0	
		ative Har-	ard Index (DC)			0.		0.0125				0	

Exceedance Highlights:

Exceedance TIMPINGINS: BOLD Red font indicates DC RCL exceedance per DNR RCL calculator 7/14/14, and BTV exceedance for metals. *81*: Cumulative exceedance (HI > 1), eventhough no individual DC RCL was exceeded. *Holic* font indicates GW RCL Exceedance per DNR RCL calculator 7/14/14. Groundwater quality (> NR 140 ES) may be affected when GW RCLs are exceeded.

Notes:

roces: Xylenes reported as total of m-, o-, p-xylenes NS = No standard established NA = Not analyzed for parameter NR = Not Reported

TABLE A.2.1 Soil Analytical Results Table - VOC Master Drycleaning, Inc. 6326 W. Bluemound Rd., Wauwatosa, WI 53213 BRRTS# 02-41-545142

×4.,

- p = 1

	Sample ID			56	P-1	56	P-2	SG	0.3	56	P-4	SG	P.5
	Date		_ e	09/06/07		09/06/07		09/06/07	09/06/07	09/06/07		09/06/07	09/06/07
	Depth	Groundwater Pathway RCL	Non-Industrial Direct-Contacl RCL	4-6'	8-10	0-2'	6-8'	4-6'	8-10	0-2'	6-8'	2-4'	8-10'
	Notes	ay B	çor										
	Notes	Un Church	L ect			1 × 1							
		Pat											
Tetrachloroethene (PCE)	(ug/kg)	4.54	30,700	550	124	1,620	1,390	6,900	7,800	560	940	105	1,670
Trichloroethene (TCE)	(ug/kg)	3.58	1,260	<25	<25	<25	<25	65	267	<25	<25	<25	<25
cis-1,2-Dichloroethene trans-1,2-Dichloroethene	(ug/kg)	41.2	156,000	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
Vinyl Chloride	(ug/kg)	58.8 0.138	1,560,000	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
Methylene Chloride	(ug/kg) (ug/kg)	2.56	60,700	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25
Benzene	(ug/kg)	5.12	1,490	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
Ethylbenzene	(ug/kg)	1,570	7,470	<25	<25	<25	<25	*25	<25	<25	<25	<25	<25
Toluene	(ug/kg)	1,110	818,000	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
Xylenes (TOTAL)	(ug/kg)	3,940	258,000	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
m&p-Xylene	(ug/kg)	NS	778,000	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
o-Xylene	(ug/kg)	NS	434,000	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Naphthalene	(ug/kg)	658	5,150	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
MTBE	(ug/kg)	27	59,400	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
Trimethylbenzene Total (1,2,4-				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
& 1,3,5·)	(ug/kg)	1,380	NS										
1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	(ug/kg) (ug/kg)	NS NS	89,800 182,000	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25
Bromobenzene	(ug/kg) (ug/kg)	NS	354,000	<25 <25	<25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25
Bromochloromethane	(ug/kg)	NS	232,000	NR	NR	NR	NR	NR	NR NR	NR NR	NR	NR	NR
Bromodichloromethane	(ug/kg)	0.326	390	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
Bromoform	(ug/kg)	2.33	61,500	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Bromomethane	(ug/kg)	5.06	10,300	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
n-Butylbenzene	(ug/kg)	NS	108,000	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
sec-Butylbenzene	(ug/kg)	NS	145,000	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
tert-Butylbenzene	(ug/kg)	NS	183,000	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
Carbon Tetrachloride	(ug/kg)	3.88	854	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
Chlorobenzene Chloroethane (ethyl chloride)	(ug/kg)	NS	392,000	<25	<25	<25	<25	<25	<25 <25	<25	<25	<25	<25
Chloroform	(ug/kg) (ug/kg)	227 3.33	2,120,000	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25
Chloromethane	(ug/kg)	15.5	171,000	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
2-Chlorotoluene	(ug/kg)	NS	907,000	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
4-Chlorotoluene	(ug/kg)	NS	253,000	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
1,2-Dibromo-3-chloropropane	(ug/kg)	0.173	8	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
Dibromochloromethane	(ug/kg)	32	933	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
1,2-Dibromoethane (EDB)	(ug/kg)	0.0282	47	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
Dibromomethane	(ug/kg)	NS	35,000	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
1,2-Dichlorobenzene	(ug/kg)	1,170	376,000	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
1,3-Dichlorobenzene	(ug/kg)	1,150	297,000	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
1,4-Dichlorobenzene Dichlorodifluoromethane	(ug/kg)	144	3,480	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
1,1-Dichloroethane	(ug/kg)	3,090	135,000	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
1,2-Dichloroethane	(ug/kg) (ug/kg)	483 2.84	4,720 608	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25
1,1-Dichloroethene	(ug/kg) (ug/kg)	5.02	342,000	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
1,2-Dichloropropane	(ug/kg)	3.32	1,330	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
1,3-Dichloropropane	(ug/kg)	NS	1,490,000	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
2,2-Dichloropropane	(ug/kg)	NS	527,000	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
1,1-Dichloropropene	(ug/kg)	NS	NS	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
cis-1,3-Dichloropropene	(ug/kg)	0.286	1,220,000	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
trans-1,3-Dichloropropene	(ug/kg)	0.286	1,570,000	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Diisopropyl ether	(ug/kg)	NS	2,260,000	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
Hexachloro-1,3-butadiene	(ug/kg)	NS	6,220	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
Isopropylbenzene p-Isopropyltoluene	(ug/kg)	NS NS	268,000	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
n-Propylbenzene	(ug/kg) (ug/kg)	NS	264,000	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25
Styrene	(ug/kg)	220	867,000	×25 NR	NR	×25 NR	NR NR	NR NR	×25 NR	×25 NR	NR NR	×25 NR	×25 NR
1,1,1,2-Tetrachloroethane	(ug/kg)	53.4	2,590	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
1,1,2,2-Tetrachloroethane	(ug/kg)	0.156	753	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
1,2,3-Trichlorobenzene	(ug/kg)	NS	48,900	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
1,2,4-Trichlorobenzene	(ug/kg)	408	22,000	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
1,1,1-Trichlorethane	(ug/kg)	140	640,000	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
1,1,2-Trichlorethane	(ug/kg)	3.24	1,480	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
Trichlorofluoromethane	(ug/kg)	NS	1,120,000	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
1,2,3-Trichloropropane	(ug/kg)	51.9	5	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
			ceedances (DC)			0				0		0 0009	
			ard Index (DC)			0.0141 5.3E-08				0.0049		0.0009 3.4E-09	
	Cum	utative Ca	ncer Risk (DC)		••	5.3E-08	••	••	••	1.8E-08		3.4E-09	••

Exceedance Highlights: BOLD Red font indicates DC RCL exceedance per DNR RCL calculator 7/14/14, and BTV exceedance for metals. *81*; Cumulative exceedance (HI > 1), eventhough no individual DC RCL was exceeded. Holic font indicates GW RCL Exceedance per DNR RCL calculator 7/14/14. Groundwater quality (> NR 140 ES) may be affected when GW RCLs are exceeded.

Notes:

NOTES: Xylenes reported as total of m·, o·, p·xylenes NS = No standard established NA = Not analyzed for parameter NR = Not Reported

the second second second	Sample ID				P-6		W-6		W-7		W-8	SMW-9
	Date		ਹ ਡ	09/06/07	09/06/07	09/17/07	09/17/07	09/17/07	09/17/07	09/17/07		09/17/0
	Depth	ater	atri	0-2'	6.8'	4-6'	8-10	0-2	6-8'	4-6'	8-10	14-15
	Notes		2 g						1.1			
		Groundwater Pathway RCL	Non-Industrial Direct-Contact RCL						1 S.			<u> </u>
Tetrachloroethene (PCE)	(ug/kg)	4.54	30,700	29.9 J	253	59 J	41 J	<25	<25	<25	<25	214,000
Trichloroethene (TCE)	(ug/kg)	3.58	1,260	<25	<25	<25	<25	<25	<25	<25	<25	51,000
cis-1,2-Dichloroethene	(ug/kg)	41.2	156,000	<25	<25	<25	<25	<25	<25	<25	<25	<2,500
trans-1,2-Dichloroethene Vinvl Chloride	(ug/kg)	58.8	1,560,000	<25	<25	<25	<25	<25	<25	<25	<25	<2,500
Methylene Chloride	(ug/kg)	0.138	67	<25	<25	<25	<25	<25	<25	<25	<25	<2,500
	(ug/kg)	2.56	60,700	<25	<25	<25	<25	<25	<25	<25	<25	<2,500
Benzene	(ug/kg)	5.12	1,490	<25	<25	<25	<25	<25	<25	<25	<25	<2,500
Ethylbenzene	(ug/kg)	1,570	7,470	<25	<25	<25	<25	<25	<25	<25	<25	8,000
Toluene Xylenes (TOTAL)	(ug/kg)	1,110	818,000	<25	<25	<25	<25	<25	<25 62 J	<25	<25	<2,500
map-Xylene	(ug/kg)	3,940 NS	258,000 778,000	<50	<50	<50	<50	<50 NR	62 J NR	<50 NR	<50	<2,500
o-Xylene	(ug/kg)	NS	434,000	NR	NR	NR	NR	NR		NR	NR	NR
Naphthalene	(ug/kg) (ug/kg)	658	5,150	NR <25	NR <25	NR <25	NR <25	247	NR 48 J	<25	NR <25	<2,500
MTBE	(ug/kg)	27	59,400	<25	<25	<25	<25	<25	48 J <25	<25	<25	<2,500
Frimethylbenzene Total (1,2,4-	(ug/kg)	21	39,400	<25	<25	<25	*25	*25	*25	*25	*25	*2,500
& 1,3,5-)	(ug/kg)	1,380	NS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	16,000
1,2,4-Trimethylbenzene	(ug/kg)	NS	89,800	<25	<25	<25	<25	<25	39 J	<25	<25	16,000
1,3,5-Trimethylbenzene	(ug/kg)	NS	182,000	<25	<25	<25	<25	<25	<25	<25	<25	<2,500
Bromobenzene	(ug/kg)	NS	354,000	<25	<25	<25	<25	<25	<25	<25	<25	<2,500
Bromochloromethane	(ug/kg)	NS	232,000	NR	NR	NR	NR	NR	NR	NR	NR	NR
Bromodichloromethane	(ug/kg)	0.326	390	<25	<25	<25	<25	<25	<25	<25	<25	<2,500
Bromoform	(ug/kg)	2.33	61,500	NR	NR	NR	NR	NR	NR	NR	NR	NR
Bromomethane	(ug/kg)	5.06	10,300	NR	NR	NR	NR	NR	NR	NR	NR	NR
n-Butylbenzene	(ug/kg)	NS	108,000	<25	<25	<25	<25	<25	<25	<25	<25	<2,50
sec-Butylbenzene	(ug/kg)	NS	145,000	<25	<25	<25	<25	<25	<25	<25	<25	<2,500
tert-Butylbenzene	(ug/kg)	NS	183,000	<25	<25	<25	<25	<25	<25	<25	<25	<2,50
Carbon Tetrachloride	(ug/kg)	3.88	854	<25	<25	<25	<25	<25	<25	<25	<25	<2,50
Chlorobenzene	(ug/kg)	NS	392,000	<25	<25	<25	<25	<25	<25	<25	<25	<2,50
Chloroethane (ethyl chloride)	(ug/kg)	227	2,120,000	<25	<25	<25	<25	<25	<25	<25	<25	<2,50
Chloroform	(ug/kg)	3.33	423	<25	<25	<25	<25	<25	<25	<25	<25	<2,50
Chloromethane	(ug/kg)	15.5	171,000	<25	<25	<25	<25	<25	<25	<25	<25	<2,50
2-Chlorotoluene	(ug/kg)	NS	907,000	<25	<25	<25	<25	<25	<25	<25	*25	<2,50
4-Chlorotoluene	(ug/kg)	NS	253,000	<25	<25	<25	<25	<25	<25	<25	<25	<2,50
1,2-Dibromo-3-chloropropane	(ug/kg)	0.173	8	<25	<25	<25	<25	<25	<25	<25	<25	<2,50
Dibromochloromethane	(ug/kg)	32	933	<25	<25	<25	<25	<25	<25	<25	<25	<2,500
1,2-Dibromoethane (EDB)	(ug/kg)	0.0282	47	<25	<25	<25	<25	<25	<25	<25	<25	<2,50
Dibromomethane	(ug/kg)	NS	35,000	NR	NR	NR	NR	NR	NR	NR	NR	NR
1,2-Dichlorobenzene	(ug/kg)	1,170	376,000	<25	<25	<25	<25	<25	<25	<25	<25	<2,500
1,3-Dichlorobenzene	(ug/kg)	1,150	297,000	<25	<25	<25	<25	<25	<25	<25	<25	<2,50
1,4-Dichlorobenzene	(ug/kg)	144	3,480	<25	<25	<25	<25	<25	<25	<25	<25	<2,50
Dichlorodifluoromethane	(ug/kg)	3,090	135,000	<25	<25	<25	<25	<25	<25	<25	<25	<2,50
1,1-Dichloroethane	(ug/kg)	483	4,720	<25	<25	<25	<25	<25	<25	<25	<25	<2,50
1,2-Dichloroethane	(ug/kg)	2.84	608	<25	<25	<25	<25	<25	<25	<25	<25	<2,50
1,1-Dichloroethene	(ug/kg)	5.02	342,000	<25	<25	<25	<25	<25	<25	<25	<25	<2,50
1,2-Dichloropropane	(ug/kg)	3.32	1,330	<25	<25	<25	<25	<25	<25	<25	<25	<2,50
1,3-Dichloropropane	(ug/kg)	NS	1,490,000	<25	<25	<25	<25	<25	<25	<25	<25	<2,50
2,2-Dichloropropane 1,1-Dichloropropene	(ug/kg)	NS	527,000	NR	NR	NR	NR	NR	NR	NR	NR	NR
cis-1,3-Dichloropropene	(ug/kg)	NS 0.384	NS	NR	NR	NR	NR	NR	NR	NR	NR	NR NR
trans-1,3-Dichloropropene	(ug/kg)	0.286	1,220,000	NR	NR	NR	NR	NR		NR	NR	NR
Diisopropyl ether	(ug/kg)	0.286 NS	1,570,000	NR <25	<25	NR <25	NR <25	NR <25	NR <25	<25	<25	<2,50
Hexachloro-1,3-butadiene	(ug/kg)	NS	6,220				<25	<25	<25		<25	<2,50
Isopropylbenzene	(ug/kg) (ug/kg)	NS	268,000	<25 <25	<25 <25	<25 <25	<25	<25	<25	<25 <25	<25	<2,50
p-isopropyltoluene	(ug/kg)	NS	162,000	<25	<25	<25	<25	<25	<25	<25	<25	<2,50
n-Propylbenzene	(ug/kg)	NS	264,000	<25	<25	<25	<25	<25	<25	<25	<25	2,860
Styrene	(ug/kg)	220	867,000	NR NR	NR	NR NR	NR NR	NR NR	NR	NR	NR	2,800 NR
1,1,1,2-Tetrachloroethane	(ug/kg)	53.4	2,590	NR	NR	NR	NR	NR	NR	NR	NR	NR
1,1,2,2-Tetrachloroethane	(ug/kg)	0.156	753	<25	<25	<25	<25	<25	<25	<25	<25	<2,50
1,2,3-Trichlorobenzene	(ug/kg)	NS	48,900	<25	<25	<25	<25	<25	<25	<25	<25	<2,50
1,2,4-Trichlorobenzene	(ug/kg)	408	22,000	<25	<25	<25	<25	<25	<25	<25	<25	<2,50
1,1,1-Trichlorethane	(ug/kg)	140	640,000	<25	<25	<25	<25	<25	<25	<25	<25	<2,50
1,1,2-Trichlorethane	(ug/kg)	3.24	1,480	<25	<25	<25	<25	<25	<25	<25	<25	<2,50
Trichlorofluoromethane	(ug/kg)	N5	1,120,000	<25	<25	<25	<25	<25	<25	<25	<25	<2,50
1,2,3-Trichloropropane	(ug/kg)	51.9	5	NR	NR	NR	NR	NR	NR	NR	NR	NR
			ceedances (DC					0				
			ard Index (DC					0.0013				
	cuillu		IDC	9.7E-10				4.8E-08				~~

Exceedance Highlights:

BOLD Red font indicates DC RCL exceedance per DNR RCL calculator 7/14/14, and BTV exceedance for metals. *81*: Cumulative exceedance (HI > 1), eventhough no individual DC RCL was exceeded. Italic font indicates GW RCL Exceedance per DNR RCL calculator 7/14/14. Groundwater quality (> NR 140 ES) may be affected when GW RCLs are exceeded.

Notes:

Xylenes: Xylenes reported as total of m-, o-, p-xylenes NS = No standard established NA = Not analyzed for parameter NR = Not Reported

TABLE A.2.I Soil Analytical Results Table - VOC Master Drycleaning, Inc. 6326 W. Bluemound Rd., Wauwatosa, WI 53213 BRRTS# 02-41-545142

	Sample ID			Inside	HA-1	Inside	HA-2	B-101 (nside N	B-102	Inside S	B-103	nside E
	Date		- 5	07/31/08	07/31/08	07/31/08	07/31/08	02/10/16	02/10/16	02/10/16	02/10/16	02/10/16	02/10/10
	Depth	Groundwater Pathway RCL	Non-Industrial Direct-Contact RCL	1-1.5	4-4.5	1-1.5'	4.5-5	1-3'	8.5-10	1-3'	9-10'	8-9.5	16-17
	Notes	ay dw	in de			RMVD	1.1.1.1	RMVD	4.1				
		th of	1 2 2										
Tetrachloroethene (PCE)	6.0.5	5 C							_				
Trichloroethene (TCE)	(ug/kg)	4.54	30,700	2,600	10,900	3,000	2,320	2,140	2,870	882	237	8,180	9,050
cis-1,2-Dichloroethene	(ug/kg) (ug/kg)	41.2	1,260	<20 <24	22.9 <24	<20 <24	<20 <24	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	65.1 J <25.0	<250 <250
trans-1,2-Dichloroethene	(ug/kg)	58.8	1,560,000	<29	<29	<29	<29	<25.0	<25.0	<25.0	<25.0	<25.0	<250
Vinyl Chloride	(ug/kg)	0.138	67	<17	<17	<17	<17	<25.0	<25.0	<25.0	<25.0	<25.0	<250
Methylene Chloride	(ug/kg)	2.56	60,700	<44	<44	<44	<44	<25.0	<25.0	<25.0	<25.0	<25.0	<250
Benzene	(ug/kg)	5.12	1,490	<20	<20	<20	<20	<25.0	<25.0	<25.0	<25.0	<25.0	<250
Ethylbenzene	(ug/kg)	1,570	7,470	<16	<16	<16	<16	<25.0	<25.0	<25.0	<25.0	<25.0	25,200
Toluene	(ug/kg)	1,110	818,000	<23	<23	<23	<23	<25.0	<25.0	<25.0	<25.0	<25.0	17,800
Xylenes (TOTAL)	(ug/kg)	3,940	258,000	<48	<48	<48	<48	<75.0	<75.0	<75.0	<75.0	<75.0	112,000
m&p-Xylene	(ug/kg)	NS	778,000	NR	NR	NR	NR	<50.0	<50.0	<50.0	<50.0	<50.0	82,300
o-Xylene Naphthalene	(ug/kg) (ug/kg)	658	434,000 5,150	NR <117	NR <117	NR <117	NR <117	<25.0 <40.0	<25.0	<25.0 <40.0	<25.0 97.1J	<25.0 <40.0	29,700
MTBE	(ug/kg)	27	59,400	<23	<23	<23	<23	<25.0	<40.0 <25.0	<25.0	<25.0	<25.0	<250
Trimethylbenzene Total (1,2,4-	(08/16)		57,100										
& 1,3,5·)	(ug/kg)	1,380	NS	0.0	0.0	0.0	0.0	<50.0	<50.0	<50.0	646	<50.0	59,000
1,2,4-Trimethylbenzene	(ug/kg)	NS	89,800	<20	<20	<20	<20	<25.0	<25.0	<25.0	510	<25.0	45,300
1,3,5-Trimethylbenzene	(ug/kg)	NS	182,000	<24	<24	<24	<24	<25.0	<25.0	<25.0	136	<25.0	13,700
Bromobenzene	(ug/kg)	NS	354,000	<34	<34	<34	<34	<25.0	<25.0	<25.0	<25.0	<25.0	<250
Bromochloromethane	(ug/kg)	NS	232,000	NR	NR	NR	NR	<25.0	<25.0	<25.0	<25.0	<25.0	<250
Bromodichloromethane Bromoform	(ug/kg)	0.326	390	<16	<16	<16	<16	<25.0	<25.0	<25.0	<25.0	<25.0	<250
Bromotorm	(ug/kg)	2.33	61,500	NR	NR	NR	NR	<25.0	<25.0	<25.0	<25.0	<25.0	<250
n-Butylbenzene	(ug/kg) (ug/kg)	5.06 NS	10,300	NR <35	NR <35	NR <35	NR <35	<69.9 <25.0	<69.9 <25.0	<69.9 <25.0	<69.9 241	<69.9 <25.0	<699 5,050
sec-Butylbenzene	(ug/kg)	NS	145,000	<25	<35	<25	<25	<25.0	<25.0	<25.0	169	<25.0	969
tert-Butylbenzene	(ug/kg)	NS	183,000	*23	<23	<23	*23	<25.0	<25.0	<25.0	<25.0	<25.0	<250
Carbon Tetrachloride	(ug/kg)	3.88	854	<21	<21	<21	<21	<25.0	<25.0	<25.0	<25.0	<25.0	<250
Chlorobenzene	(ug/kg)	NS	392,000	<16	<16	<16	<16	<25.0	<25.0	<25.0	<25.0	<25.0	<250
Chloroethane (ethyl chloride)	(ug/kg)	227	2,120,000	<23	<23	<23	<23	<67.0	<67.0	<67.0	<67.0	<67.0	<670
Chloroform	(ug/kg)	3.33	423	<50	<50	<50	<50	<46.4	<46.4	<46.4	<46.4	<46.4	×464
Chloromethane	(ug/kg)	15.5	171,000	<43	<43	<43	<43	<25.0	<25.0	<25.0	<25.0	<25.0	<250
2-Chlorotoluene 4-Chlorotoluene	(ug/kg)	NS NS	907,000 253,000	<31	<31	<31	<31	<25.0	<25.0	<25.0	<25.0	<25.0	<250
1,2-Dibromo-3-chloropropane	(ug/kg)	0.173	253,000	<24	<24	<24	<24	<25.0	<25.0	<25.0	<25.0	<25.0	<250
Dibromochloromethane	(ug/kg) (ug/kg)	32	933	<37 <21	<37 <21	<37 <21	<37 <21	<91.2 <25.0	<91.2 <25.0	<91.2 <25.0	<91.2 <25.0	<91.2 <25.0	<912 <250
1,2-Dibromoethane (EDB)	(ug/kg)	0.0282	47	<21	<21	<21	<21	<25.0	<25.0	<25.0	<25.0	<25.0	<250
Dibromomethane	(ug/kg)	NS	35,000	NR	NR	NR	NR	<25.0	<25.0	<25.0	<25.0	<25.0	<250
1,2-Dichlorobenzene	(ug/kg)	1,170	376,000	<32	<32	<32	<32	<25.0	<25.0	<25.0	<25.0	<25.0	<250
1,3-Dichlorobenzene	(ug/kg)	1,150	297,000	<41	<41	<41	<41	<25.0	<25.0	<25.0	<25.0	<25.0	<250
1,4-Dichlorobenzene	(ug/kg)	144	3,480	<42	<42	<42	<42	<25.0	<25.0	<25.0	<25.0	<25.0	<250
Dichlorodifluoromethane	(ug/kg)	3,090	135,000	<33	<33	<33	<33	<25.0	<25.0	<25.0	<25.0	<25.0	<250
1,1-Dichloroethane	(ug/kg)	483	4,720	<22	<22	<22	<22	<25.0	<25.0	<25.0	<25.0	<25.0	<250
1,2-Dichloroethane	(ug/kg)	2.84	608	<24	<24	<24	<24	<25.0	<25.0	<25.0	<25.0	<25.0	<250
1,1-Dichloroethene 1,2-Dichloropropane	(ug/kg)	5.02	342,000	<27	<27	<27	<27	<25.0	<25.0	<25.0	<25.0	<25.0	<250
1,2-Dichloropropane	(ug/kg) (ug/kg)	3.32 NS	1,330	<19	<19 <21	<19 <21	<19	<25.0	<25.0 <25.0	<25.0	<25.0	<25.0	<250 <250
2,2-Dichloropropane	(ug/kg)	NS	527,000	<21 NR	<21 NR	<21 NR	<21 NR	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<250 <250
1,1-Dichloropropene	(ug/kg)	NS	NS	NR	NR	NR	NR	<25.0	<25.0	<25.0	<25.0	<25.0	<250
cis-1,3-Dichloropropene	(ug/kg)	0.286	1,220,000	NR	NR	NR	NR	<25.0	<25.0	<25.0	<25.0	<25.0	<250
trans-1,3-Dichloropropene	(ug/kg)	0.286	1,570,000	NR	NR	NR	NR	<25.0	<25.0	<25.0	<25.0	<25.0	<250
Diisopropyl ether	(ug/kg)	NS	2,260,000	<15	<15	<15	<15	<25.0	<25.0	<25.0	<25.0	<25.0	<250
Hexachloro-1,3-butadiene	(ug/kg)	NS	6,220	<50	<50	<50	<50	<25.0	<25.0	<25.0	<25.0	<25.0	<250
Isopropylbenzene	(ug/kg)	NS	268,000	<30	<30	<30	<30	<25.0	<25.0	<25.0	147	<25.0	2,440
p-Isopropyltoluene	(ug/kg)	NS	162,000	<30	<30	<30	<30	<25.0	<25.0	<25.0	<25.0	<25.0	749
n-Propylbenzene Styrene	(ug/kg)	NS	264,000	<29	<29	<29	<29	<25.0	<25.0	<25.0	499	<25.0	10,400
1,1,1,2-Tetrachloroethane	(ug/kg) (ug/kg)	220	867,000 2,590	NR	NR	NR	NR NR	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<250 <250
1,1,2,2-Tetrachloroethane	(ug/kg)	0.156	753	<25	<25	<25	<25	<25.0	<25.0	<25.0	<25.0	<25.0	<250
1,2,3-Trichlorobenzene	(ug/kg)	NS	48,900	<87	<87	<87	<87	<25.0	<25.0	<25.0	<25.0	<25.0	<250
1,2,4-Trichlorobenzene	(ug/kg)	408	22,000	<53	<53	<53	<53	<47.6	<47.6	<47.6	<47.6	<47.6	<476
1,1,1-Trichlorethane	(ug/kg)	140	640,000	<27	<27	<27	<27	<25.0	<25.0	<25.0	<25.0	<25.0	<250
1,1,2-Trichlorethane	(ug/kg)	3.24	1,480	<30	<30	<30	<30	<25.0	<25.0	<25.0	<25.0	<25.0	<250
Trichlorofluoromethane	(ug/kg)	NS	1,120,000	<16	<16	<16	<16	<25.0	<25.0	<25.0	<25.0	<25.0	<250
1 2 2 2 1 1		51.9	5	NR	NR	NR	NR	<25.0	<25.0	<25.0	<25.0	<25.0	<250
1,2,3-Trichloropropane	(ug/kg)											the second s	
1,2,3-Trichloropropane	No. of In	dividual Ex	ceedances (DC) ard Index (DC)	0		0		0	0	0			

Exceedance Highlights:

DOLD Red font indicates DC RCL exceedance per DNR RCL calculator 7/14/14, and BTV exceedance for metals. "81°: Cumulative exceedance (HI > 1), eventhough no individual DC RCL was exceeded. Italic font indicates GW RCL Exceedance per DNR RCL calculator 7/14/14. Groundwater quality (> NR 140 ES) may be affected when GW RCLs are exceeded.

Notes:

NOLES: Xylenes reported as total of m-, o-, p-xylenes N5 = No standard established NA = Not analyzed for parameter NR = Not Reported

TABLE A.2.1 Soil Analytical Results Table - VOC Master Drycleaning, Inc. 6326 W. Bluemound Rd., Wauwatosa, WI 53213 BRRTS# 02-41-545142

	Comple ID				Inside SU/	10	D 104 louid	- hu fume	B 105 1-	ide West		B-106	
	Sample ID Date			02/10/16		2/24/16	B-104 Insid		B-105 Ins 01/2			01/20/17	
	Depth	눌러	act	W Wall 2.5'	02/10/16 Floor 5.5'	Floor 5.5'	4-5'	8-10	4-5'	8-10	3.4	5-6	8-10
		Groundwater Pathway RCL	Von-Industrial Direct-Contact RCL		Slurry of Pro-			6.10		6.10			0.10
	Notes	pu kaw	PE ti		IR; RMVD	RMVD	RMVD		RMVD		RMVD	RMVD	
		ath	CL do	Under Lat.									
Tetrachloroethene (PCE)	(ug/kg)	4.54	30,700	37,600	3,160,000	10,800,000	55,600	67,500	16,100	<25.0	340	<25.0	1,700
Trichloroethene (TCE)	(ug/kg)	3.58	1,260	<125	<12,500	<31,200	494 J	319 J	443	*25.0	<25.0	<25.0	66.1 J
cis-1,2-Dichloroethene	(ug/kg)	41.2	156,000	<125	<12,500	<31,200	<200	<250	+50.0	<25.0	<25.0	<25.0	<25.0
trans-1,2-Dichloroethene	(ug/kg)	58.8	1,560,000	<125	<12,500	<31,200	<200	*250	<50.0	*25.0	<25.0	<25.0	<25.0
Vinyl Chloride	(ug/kg)	0.138	67	<125	<12,500	<31,200	<200	<250	<50.0	<25.0	<25.0	<25.0	<25.0
Methylene Chloride	(ug/kg)	2.56	60,700	<125	<12,500	<31,200	+200	+250	<50.0	<25.0	<25.0	<25.0	<25.0
Benzene	(ug/kg)	5.12	1,490	<125	<12,500	<31,200	<200	<250	<50.0	*25.0	<25.0	<25.0	<25.0
Ethylbenzene	(ug/kg)	1,570	7,470	<125	<12,500	<31,200	<200	+250	<50.0	<25.0	<25.0	<25.0	<25.0
Toluene	(ug/kg)	1,110	818,000	<125	<12,500	<31,200	<200	<250	+50.0	<25.0	<25.0	<25.0	<25.0
Xylenes (TOTAL)	(ug/kg)	3,940	258,000	<375	<37,500	<93,700	<600	<750	<150	<75.0	<75.0	<75.0	∢75.0
mttp-Xylene	(ug/kg)	NS	778,000	<250	<25,000	<62,500	<400	<500	<100	<50.0	<50.0	<50.0	<50.0
o-Xylene	(ug/kg)	NS	434,000	<125	<12,500	<31,200	<200	<250	₹50.0	<25.0	<25.0	<25.0	<25.0
Naphthalene	(ug/kg)	658	5,150	<200	<20,000	<50,100	<320	<400	<80.1	<40.0	<40.0	<40.0	<40.0
MTBE	(ug/kg)	27	59,400	<125	<12,500	<31,200	<200	<250	<50.0	<25.0	<25.0	<25.0	<25.0
Trimethylbenzene Total (1,2,4-			1.1.1	222 J	<25,000	<62,400	<400	<500	<100	<50.0	<50.0	<50.0	<50.0
£ 1,3,5-)	(ug/kg)	1,380	NS								Contrastion of		
1,2,4-Trimethylbenzene	(ug/kg)	NS	89,800	222 J	<12,500	<31,200	<200	<250	<50.0	<25.0	<25.0	<25.0	<25.0
1,3,5-Trimethylbenzene	(ug/kg)	NS	182,000	<125	<12,500	<31,200	<200	<250	<50.0	<25.0	<25.0	<25.0	<25.0
Bromobenzene	(ug/kg)	NS	354,000	<125	<12,500	<31,200	<200	<250	<50.0	<25.0	<25.0	<25.0	<25.0
Bromochloromethane	(ug/kg)	NS	232,000	<125	<12,500	<31,200	<200	<250	<50.0	<25.0	<25.0	<25.0	<25.0
Bromodichloromethane	(ug/kg)	0.326	390	<125	<12,500	<31,200	<200	<250	<50.0	<25.0	<25.0	<25.0	₹25.0
Bromoform Bromomethane	(ug/kg)	2.33	61,500	<125	<12,500	<31,200	<200	+250	<50.0	<25.0	<25.0	<25.0	<25.0
n-Butylbenzene	(ug/kg)	5.06	10,300	<350	<35,000	<87,400	<559	<699	<140	<69.9	<69.9	<69.9	<69.9
	(ug/kg)	NS	108,000	<125	<12,500	<31,200	<200	<250	<50.0	+25.0	<25.0	<25.0	<25.0
sec-Butylbenzene tert-Butylbenzene	(ug/kg)	NS NS	145,000	<125	<12,500	<31,200	<200 <200	<250 <250	<50.0 <50.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0
Carbon Tetrachloride	(ug/kg)	3.88	854	<125	<12,500	<31,200	*200	<250 <250	<50.0	*25.0	<25.0	<25.0 <25.0	<25.0
Chlorobenzene	(ug/kg)	3.88 NS	392,000	<125	<12,500	<31,200	*200	*250	<50.0	*25.0	<25.0	<25.0 <25.0	<25.0 <25.0
Chloroethane (ethyl chloride)	(ug/kg)	227	2,120,000	<125	<12,500	<31,200	*536	<250	<134	<25.0	<67.0	<25.0 <67.0	<67.0
Chloroform	(ug/kg)	3.33	423	<335 <232	<33,500 <23,200	<83,800 <58,100	<372	<464	*92.9	<46.4	<07.0 <46.4	<46.4	<46.4
Chloromethane	(ug/kg)	15.5	171,000	<125	<12,500	<31,200	*372	*250	<50.0	*40.4	<25.0	<40.4	<25.0
2-Chlorotoluene	(ug/kg) (ug/kg)	NS	907,000	<125	<12,500	<31,200	*200	*250	<50.0	*25.0	<25.0	<25.0	<25.0
4-Chlorotoluene	(ug/kg)	NS	253,000	<125	<12,500	<31,200	<200	<250	<50.0	<25.0	<25.0	<25.0	+25.0
1,2-Dibromo-3-chloropropane	(ug/kg)	0.173	8	<456	<45,600	<114,000	<730	+912	<182	<91.2	<91.2	<91.2	<91.2
Dibromochloromethane	(ug/kg)	32	933	<125	<12,500	<31,200	<200	<250	-50.0	<25.0	<25.0	<25.0	+25.0
1,2-Dibromoethane (EDB)	(ug/kg)	0.0282	47	<125	<12,500	<31,200	<200	<250	<50.0	<25.0	<25.0	<25.0	<25.0
Dibromomethane	(ug/kg)	NS	35,000	<125	<12,500	<31,200	*200	*250	-50.0	<25.0	+25.0	<25.0	<25.0
1.2-Dichlorobenzene	(ug/kg)	1,170	376,000	<125	<12,500	<31,200	<200	+250	+50.0	<25.0	<25.0	<25.0	<25.0
1,3-Dichlorobenzene	(ug/kg)	1,150	297,000	<125	<12,500	<31,200	<200	*250	+50.0	<25.0	*25.0	<25.0	+25.0
1,4-Dichlorobenzene	(ug/kg)	144	3,480	<125	<12,500	<31,200	+200	<250	<50.0	<25.0	<25.0	<25.0	<25.0
Dichlorodifluoromethane	(ug/kg)	3,090	135,000	<125	<12,500	<31,200	<200	<250	<50.0	<25.0	<25.0	<25.0	+25.0
1,1-Dichloroethane	(ug/kg)	483	4,720	<125	<12,500	<31,200	<200	<250	<50.0	<25.0	<25.0	<25.0	<25.0
1,2-Dichloroethane	(ug/kg)	2.84	608	<125	<12,500	<31,200	<200	<250	<50.0	<25.0	<25.0	<25.0	+25.0
1,1-Dichloroethene	(ug/kg)	5.02	342,000	<125	<12,500	<31,200	<200	<250	<50.0	<25.0	<25.0	<25.0	<25.0
1,2-Dichloropropane	(ug/kg)	3.32	1,330	<125	<12,500	<31,200	<200	<250	<50.0	<25.0	<25.0	<25.0	<25.0
1,3-Dichloropropane	(ug/kg)	NS	1,490,000	<125	<12,500	<31,200	<200	<250	<50.0	<25.0	<25.0	<25.0	₹25.0
2,2-Dichloropropane	(ug/kg)	NS	527,000	<125	<12,500	<31,200	<200	<250	<50.0	<25.0	<25.0	<25.0	<25.0
1,1-Dichloropropene	(ug/kg)	NS	NS	<125	<12,500	<31,200	<200	<250	<50.0	<25.0	<25.0	<25.0	<25.0
cis-1,3-Dichloropropene	(ug/kg)	0.286	1,220,000	<125	<12,500	<31,200	<200	<250	<50.0	<25.0	<25.0	<25.0	<25.0
trans-1,3-Dichloropropene	(ug/kg)	0.286	1,570,000	<125	<12,500	<31,200	<200	<250	<50.0	<25.0	<25.0	<25.0	<25.0
Diisopropyl ether	(ug/kg)	NS	2,260,000	<125	<12,500	<31,200	<200	+250	<50.0	<25.0	<25.0	<25.0	<25.0
Hexachloro-1,3-butadiene	(ug/kg)	NS	6,220	<125	<12,500	<31,200	<200	+250	<50.0	<25.0	<25.0	<25.0	<25.0
Isopropylbenzene	(ug/kg)	NS	268,000	<125	<12,500	<31,200	<200	<250	<50.0	<25.0	<25.0	<25.0	<25.0
p-isopropyitoluene	(ug/kg)	NS	162,000	<125	<12,500	<31,200	<200	<250	<50.0	<25.0	<25.0	<25.0	<25.0
n-Propylbenzene	(ug/kg)	NS	264,000	<125	<12,500	<31,200	<200	<250	<50.0	<25.0	<25.0	<25.0	<25.0
Styrene	(ug/kg)	220	867,000	<125	<12,500	<31,200	<200	<250	<50.0	<25.0	<25.0	<25.0	<25.0
1,1,1,2-Tetrachloroethane	(ug/kg)	53.4	2,590	<125	<12,500	<31,200	<200	<250	<50.0	<25.0	<25.0	<25.0	<25.0
1,1,2,2-Tetrachloroethane	(ug/kg)	0.156	753	<125	<12,500	<31,200	+200	<250	<50.0	+25.0	<25.0	+25.0	<25.0
1,2,3-Trichlorobenzene	(ug/kg)	NS	48,900	<125	<12,500	<31,200	<200	<250	<50.0	+25.0	<25.0	<25.0	<25.0
1,2,4-Trichlorobenzene	(ug/kg)	408	22,000	<238	<23,800	<59,400	<380	<476	+95.1	<47.6	-47.6	<47.6	<47.6
1,1,1-Trichlorethane 1,1,2-Trichlorethane	(ug/kg)	140	640,000	<125	<12,500	<31,200	<200	+250	+50.0	<25.0	<25.0	<25.0	<25.0
1,1,2-Irichlorethane Trichlorofluoromethane	(ug/kg)	3.24	1,480	<125	<12,500	<31,200	<200	<250 <250	+50.0	<25.0	<25.0	<25.0	<25.0
1,2,3-Trichloropropane	(ug/kg)	NS 51.9	1,120,000	<125	<12,500	<31,200	<200 <200	<250 <250	<50.0 <50.0	<25.0 <25.0	<25.0	<25.0	<25.0 <25.0
-1-1	(ug/kg)			<125	<12,500	<31,200	<200	\$250	430.0	\$25.0	<25.0	<25.0	*25.0
			ceedances (DC) ard Index (DC)	0.3294	1 27 4783		-						
					27.4783 1.0E-04		-		-				
	Cum	mative Ca	ncer Risk (DC	1.22:00	1.0E-04							L	

Exceedance Highlights:

BOLD Red for indicates DC RCL exceedance per DNR RCL calculator 7/14/14, and BTV exceedance for metals. *#1*: Cumulative exceedance (HI > 1), eventhough no individual DC RCL was exceeded. Itelic font indicates GW RCL Exceedance per DNR RCL calculator 7/14/14. Groundwater quality (> NR 140 E5) may be affected when GW RCLs are exceeded.

Notes:

Xylenes reported as total of m-, o-, p-xylenes NS = No standard established NA = Not analyzed for parameter NR = Not Reported

TABLE A.2.1 Soil Analytical Results Table - VOC Master Drycleaning, Inc. 6326 W. Bluemound Rd., Warwatosa, WI 53213 BRRTS# 02-41-545142

	Sample ID			B-107				B-108		B-109			Trench 1
	Date		- #		01/20/17			01/20/17			01/20/17		03/23/17
	Depth	Groundwater Pathway RCL	Non-Industrial Direct-Contact RCL	3-4	5-6'	8-10'	3-4'	5.6'	8-10'	3-4'	5-6'	8-10'	6.5
	Notes	ay l	si o										
		th ou	L rect										
Tetrachloroethene (PCE)	6					240			2.00		25.0		
Trichloroethene (TCE)	(ug/kg) (ug/kg)	4.54	30,700 1,260	<25.0 <25.0	<25.0 <25.0	349 42.0 J	<25.0 <25.0	<25.0 <25.0	245 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0
cis-1,2-Dichloroethene	(ug/kg)	41.2	156,000	*25.0	*25.0	31.0 J	<25.0	*25.0	<25.0	*25.0	*25.0	*25.0	*25.0
trans-1,2-Dichloroethene	(ug/kg)	58.8	1,560,000	<25.0	*25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	+25.0	<25.0
Vinyl Chloride	(ug/kg)	0.138	67	*25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	₹25.0	<25.0	×25.0
Methylene Chloride	(ug/kg)	2.56	60,700	*25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Benzene	(ug/kg)	5.12	1,490	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Ethylbenzene	(ug/kg)	1,570	7,470	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Toluene	(ug/kg)	1,110	818,000	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	₹25.0	<25.0	<25.0
Xylenes (TOTAL) m&p-Xylene	(ug/kg)	3,940 NS	258,000	<75.0 <50.0	<75.0 <50.0	<75.0 <50.0	<75.0 <50.0	<75.0 <50.0	<75.0 <50.0	<75.0 <50.0	<75.0 <50.0	<75.0 <50.0	<75.0 <50.0
o·Xylene	(ug/kg) (ug/kg)	NS	434,000	+25.0	<25.0	<25.0	<25.0	₹25.0	<25.0	<25.0	*25.0	*25.0	<25.0
Naphthalene	(ug/kg)	658	5,150	<40.0	<40.0	<40.0	<40.0	<40.0	<40.0	<40.0	<40.0	<40.0	<40.0
МТВЕ	(ug/kg)	27	59,400	*25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	+25.0	<25.0	*25.0
Trimethylbenzene Total (1,2,4-				<50.0	₹50.0	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0
& 1,3,5·)	(ug/kg)	1,380	NS	- Detto	CONTRACT.		Starting.	0.000					
1,2,4-Trimethylbenzene	(ug/kg)	NS	89,800	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	+25.0	<25.0
1,3,5-Trimethylbenzene	(ug/kg)	NS	182,000	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Bromobenzene Bromochloromethane	(ug/kg) (ug/kg)	NS NS	354,000 232,000	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0
Bromodichloromethane	(ug/kg) (ug/kg)	0.326	390	*25.0	*25.0	*25.0	<25.0	×25.0 ×25.0	<25.0	*25.0	*25.0	*25.0	<25.0 <25.0
Bromoform	(ug/kg)	2.33	61,500	*25.0	*25.0	*25.0	<25.0	<25.0	<25.0	<25.0	*25.0	*25.0	<25.0
Bromomethane	(ug/kg)	5.06	10,300	<69.9	<69.9	<69.9	<69.9	<69.9	<69.9	<69.9	<69.9	<69.9	<69.9
n-Butylbenzene	(ug/kg)	NS	108,000	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
sec-Butylbenzene	(ug/kg)	NS	145,000	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
tert-Butylbenzene	(ug/kg)	NS	183,000	<25.0	<25.0	<25.0	<25.0	₹25.0	<25.0	<25.0	₹25.0	<25.0	<25.0
Carbon Tetrachloride	(ug/kg)	3.88	854	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Chlorobenzene Chloroethane (ethyl chloride)	(ug/kg)	NS 227	392,000	<25.0 <67.0	<25.0 <67.0	<25.0 <67.0	<25.0 <67.0	<25.0 <67.0	<25.0 <67.0	<25.0 <67.0	<25.0 <67.0	<25.0 <67.0	<25.0 <67.0
Chloroform	(ug/kg) (ug/kg)	3.33	423	<46.4	<46.4	<07.0 <46.4	<07.0 <46.4	<07.0 <46.4	<07.0 <46.4	<46.4	+46.4	<46.4	<07.0 <46.4
Chloromethane	(ug/kg)	15.5	171,000	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
2-Chlorotoluene	(ug/kg)	NS	907,000	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	*25.0	<25.0
4-Chlorotoluene	(ug/kg)	NS	253,000	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	₹25.0	<25.0	<25.0
1,2-Dibromo-3-chloropropane	(ug/kg)	0.173	8	<91.2	<91.2	<91.2	<91.2	<91.2	<91.2	<91.2	<91.2	< 91.2	<91.2
Dibromochloromethane	(ug/kg)	32	933	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
1,2-Dibromoethane (EDB)	(ug/kg)	0.0282	47	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Dibromomethane	(ug/kg)	NS	35,000	+25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	+25.0	<25.0	<25.0
1,2-Dichlorobenzene	(ug/kg) (ug/kg)	1,170	376,000 297,000	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0
1.4-Dichlorobenzene	(ug/kg)	144	3,480	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	*25.0	<25.0
Dichlorodifluoromethane	(ug/kg)	3,090	135,000	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	+25.0	<25.0	<25.0
1,1-Dichloroethane	(ug/kg)	483	4,720	+25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	+25.0	<25.0	<25.0
1,2-Dichloroethane	(ug/kg)	2.84	608	×25.0	<25.0	<25.0	<25.0	₹25.0	<25.0	<25.0	<25.0	<25.0	<25.0
1,1-Dichloroethene	(ug/kg)	5.02	342,000	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
1,2-Dichloropropane	(ug/kg)	3.32	1,330	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	+25.0	<25.0
1,3-Dichloropropane 2,2-Dichloropropane	(ug/kg)	NS NS	1,490,000 527,000	<25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	+25.0 +25.0	<25.0 <25.0	<25.0 <25.0
1,1-Dichloropropane	(ug/kg) (ug/kg)	NS	527,000 NS	<25.0 <25.0	<25.0	<25.0	<25.0 <25.0	×25.0 ×25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0
cis-1,3-Dichloropropene	(ug/kg)	0.286	1,220,000	+25.0	<25.0	<25.0	<25.0	<25.0	<25.0	*25.0	<25.0	*25.0	<25.0
trans-1,3-Dichloropropene	(ug/kg)	0.286	1,570,000	+25.0	<25.0	<25.0	*25.0	<25.0	<25.0	<25.0	+25.0	<25.0	<25.0
Diisopropyl ether	(ug/kg)	NS	2,260,000	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Hexachloro-1,3-butadiene	(ug/kg)	NS	6,220	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Isopropylbenzene	(ug/kg)	NS	268,000	₹25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	×25.0	<25.0	<25.0
p-Isopropyltoluene	(ug/kg)	NS	162,000	<25.0	+25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	+25.0	<25.0
n-Propylbenzene Styrene	(ug/kg)	NS 220	264,000 867,000	+25.0	<25.0 <25.0	<25.0	<25.0	<25.0 -25.0	<25.0 <25.0	<25.0	+25.0	<25.0 <25.0	<25.0
1,1,1,2-Tetrachloroethane	(ug/kg) (ug/kg)	53.4	2,590	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0
1,1,2,2-Tetrachloroethane	(ug/kg) (ug/kg)	0.156	753	*25.0	<25.0	<25.0	*25.0	<25.0	<25.0	*25.0	*25.0	*25.0	<25.0
1,2,3-Trichlorobenzene	(ug/kg)	NS	48,900	<25.0	+25.0	<25.0	<25.0	<25.0	<25.0	*25.0	<25.0	+25.0	<25.0
1,2,4-Trichlorobenzene	(ug/kg)	408	22,000	<47.6	<47.6	×47.6	<47.6	<47.6	<47.6	<47.6	-47.6	-47.6	«47.6
1,1,1-Trichlorethane	(ug/kg)	140	640,000	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	₹25.0	₹25.0	×25.0	<25.0
1,1,2-Trichlorethane	(ug/kg)	3.24	1,480	<25.0	<25.0	<25.0	<25.0	₹25.0	<25.0	<25.0	×25.0	<25.0	<25.0
Trichlorofluoromethane	(ug/kg)	NS	1,120,000	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
1,2,3-Trichloropropane	(ug/kg)	51.9	5 ceedances (DC)	<25.0	<25.0	<25.0	<25.0	₹25.0	<25.0	<25.0	₹25.0	<25.0	<25.0
			ceedances (DC) ard Index (DC)									_	
			ncer Risk (DC)				-						
	cun	unative La	incer hisk (DC)										

Exceedance Highlights: BOLD Red font indicates DC RCL exceedance per DNR RCL calculator 7/14/14, and BTV exceedance for metals. *81*: Cumulative exceedance (HI > 1), eventhough no individual DC RCL was exceeded. Holic font indicates GW RCL Exceedance per DNR RCL calculator 7/14/14. Groundwater quality (> NR 140 ES) may be affected when GW RCLs are exceeded.

Notes:

NOTES: Xylenes reported as total of m-, o-, p-xylenes NS = No standard established NA = Not analyzed for parameter NR = Not Reported

TABLE A.2.1 Soil Analytical Results Table - VOC Master Drycleaning, Inc. 6326 W. Bluemound Rd., Wauwatosa, WI 53213 BRRTS# 02-41-545142

Dat Det Det Det Det Det Det Note Tetrachloroethene (PCE) (ug/kg) Trichloroethene (TCE) (ug/kg) trans-1,2-Dichloroethene (ug/kg) Vinyl Chloride (ug/kg) Methylene Chloride (ug/kg) Benzene (ug/kg) Toluene (ug/kg) Toluene (ug/kg) Toluene (ug/kg) Toluene (ug/kg) o-Xylene (ug/kg) o-Xylene (ug/kg) nBp-Xylene (ug/kg) o-Xylene (ug/kg) MTBE (ug/kg) MTBE (ug/kg) 1,2,4-Trimethylbenzene (ug/kg) Bromodichloromethane (ug/kg) Bromodichloromethane (ug/kg) Bromomethane (ug/kg) Chloroethane (tug/kg) Chlorobenzene (ug/kg) Chlorobenzene (ug/kg) Chlorobenzene (ug/kg) Chlorotoluene (ug/kg) Chlorotoluene (ug/kg) Chlorotoluene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) Chlorotoluene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichloropenzene (ug/kg) 1,1-Dickloropenzene (ug/kg) 1,1-Dickloropenzene (ug/kg) 1,1-Dickloropenzene (ug/kg) 1,1-Dickloropenzene (ug/kg) 1,1-Dickloropenzene (ug/kg) 1,1-Dickloropenzene (ug/kg) 1,1-Dickloropenzene (ug/kg) 1,1-Dickloropenzene (ug/kg) 1,1,2,2	Jate wound for the second seco	75,500 778,000 778,000 1,560,000 1,560,000 1,560,000 1,560,000 1,560,000 1,560,000 1,560,000 2,58,000 778,000 778,000 5,150 59,400	03/23/17 6 553 553 553 425.0 4	03/2 3' 944 <25.0 425.0	6' 5,750 53.4 J <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0	03/23/17 3' 3,910 34.0 J <25.0 <25.0 <25.0 <25.0 <25.0	03/23/17 3' 7,130 65.4 J <50.0 <50.0 <50.0 <50.0	03/23/17 7 44,800 7,210 9,750 <200 <200	03/23/17 7 12,100 544 2,130 <50.0 <50.0	03/23/17 7' 79,700 666 J 2,940 <312	<pre>1/20/1 <25.0 <25.0 <25.0 <25.0</pre>
Note Tetrachloroethene (PCE) (ug/kg) Trichloroethene (TCE) (ug/kg) Cis1-2-Dichloroethene (ug/kg) Vinyl Chloride (ug/kg) Methylene Chloride (ug/kg) Ethylbenzene (ug/kg) Ethylbenzene (ug/kg) Stylenes (TOTAL) (ug/kg) Methylens CTOTAL) (ug/kg) MBp-Xylene (ug/kg) Naphthalene (ug/kg) MTBE (ug/kg) NTHE (ug/kg) Naphthalene (ug/kg) J.2,4-Trimethylbenzene (ug/kg) Bromochloromethane (ug/kg) Bromochloromethane (ug/kg) Bromochloromethane (ug/kg) Bromochloromethane (ug/kg) Chlorobenzene (ug/kg)	Average of the second s	30,700 1,260 156,000 67 60,700 1,490 7,470 818,000 258,000 778,000 434,000 5,150	553 152 +25.0 +25.0 +25.0 +25.0 +25.0 +25.0 +25.0 +25.0 +25.0 +25.0 +25.0 +25.0 +25.0 +25.0 +25.0 +25.0	944 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.	5,750 53.4 J <25.0 <25.0 <25.0 <25.0 <25.0 <25.0	3,910 34.0 J <25.0 <25.0 <25.0 <25.0 <25.0 <25.0	7,130 65.4 J <50.0 <50.0 <50.0	7,210 9,750 <200 <200	12, 100 544 2, 130 <50.0	79,700 666 J 2,940 <312	<25.0 <25.0 <25.0
Tetrachloroethene (PCE) (ug/kg) Trichloroethene (TCE) (ug/kg) cis-1,2-Dichloroethene (ug/kg) Vinyl Chloride (ug/kg) Methylene Chloride (ug/kg) Ethylbenzene (ug/kg) Toluene (ug/kg) Stylenes (TOTA) (ug/kg) mftp-Xylene (ug/kg) o-Xylene (ug/kg) Mothylene Total (1,2,4- (ug/kg) frimethylbenzene (ug/kg) J,3,5-Trimethylbenzene (ug/kg) Bromochloromethane (ug/kg) Bromochloromethane (ug/kg) Bromooform (ug/kg) Bromooform (ug/kg) Bromooform (ug/kg) Chlorobenzene (ug/kg) Chlorobenzene (ug/kg) Chlorobenzene (ug/kg) Chlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene	4.54 3.58 41.2 58.8 0.138 2.56 5.12 1,570 1,110 3,940 NS 658 27 1,380 NS NS	30,700 1,260 156,000 67 60,700 1,490 7,470 818,000 258,000 778,000 434,000 5,150	152 425.0 425.0 425.0 425.0 425.0 425.0 425.0 425.0 425.0 425.0 40.0	<25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <50.0	53.4 J <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0	34.0 J <25.0 <25.0 <25.0 <25.0 <25.0 <25.0	65.4 J <50.0 <50.0 <50.0	7,210 9,750 <200 <200	544 2,130 <50.0	666 J 2,940 <312	<25.0 <25.0
Trichloroethene (TCE) (ug/kg) cis-1,2-Dichloroethene (ug/kg) trans-1,2-Dichloroethene (ug/kg) Winyl Chloride (ug/kg) Benzene (ug/kg) Benzene (ug/kg) Ethylbenzene (ug/kg) Toluene (ug/kg) MBP-Xylene (ug/kg) mBp-Xylene (ug/kg) o-Xylene (ug/kg) rimethylbenzene Total (1,2,4- (ug/kg) frimethylbenzene (ug/kg) Bromobenzene (ug/kg) Bromobenzene (ug/kg) Bromochloromethane (ug/kg) Bromochloromethane (ug/kg) Bromochloromethane (ug/kg) Chlorobenzene (ug/kg)	4.54 3.58 41.2 58.8 0.138 2.56 5.12 1,570 1,110 3,940 NS 658 27 1,380 NS NS	30,700 1,260 156,000 67 60,700 1,490 7,470 818,000 258,000 778,000 434,000 5,150	152 425.0 425.0 425.0 425.0 425.0 425.0 425.0 425.0 425.0 425.0 40.0	<25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <50.0	53.4 J <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0	34.0 J <25.0 <25.0 <25.0 <25.0 <25.0 <25.0	65.4 J <50.0 <50.0 <50.0	7,210 9,750 <200 <200	544 2,130 <50.0	666 J 2,940 <312	<25.0 <25.0
Trichloroethene (TCE) (ug/kg) cis-1,2-Dichloroethene (ug/kg) trans-1,2-Dichloroethene (ug/kg) Methylene Chloride (ug/kg) Benzene (ug/kg) Benzene (ug/kg) Toluene (ug/kg) Toluene (ug/kg) Maphylene Chloride (ug/kg) Toluene (ug/kg) Maphylene (ug/kg) Naphthalene (ug/kg) Naphthalene (ug/kg) 1,2,4-Trimethylbenzene (ug/kg) Bromochloromethane (ug/kg) Bromochloromethane (ug/kg) Bromochloromethane (ug/kg) Bromodichloromethane (ug/kg) Chlorobenzene (ug/kg)	3,58 41.2 58.8 0,138 2,56 5,12 1,570 N5 458 27 1,380 N5 N5 N5 N5 N5	1,260 156,000 67 60,700 1,490 7,470 818,000 258,000 778,000 434,000 5,150	152 425.0 425.0 425.0 425.0 425.0 425.0 425.0 425.0 425.0 425.0 40.0	<25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <50.0	53.4 J <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0	34.0 J <25.0 <25.0 <25.0 <25.0 <25.0 <25.0	65.4 J <50.0 <50.0 <50.0	7,210 9,750 <200 <200	544 2,130 <50.0	666 J 2,940 <312	<25.0 <25.0
cis-1,2-Dichloroethene (ug/kg) trans-1,2-Dichloroethene (ug/kg) Methylene Chloride (ug/kg) Benzene (ug/kg) Ethylbenzene (ug/kg) Toluene (ug/kg) Toluene (ug/kg) mBp-Xylene (ug/kg) mBp-Xylene (ug/kg) mBp-Xylene (ug/kg) Naphthalene (ug/kg) MTBE (ug/kg) MTBE (ug/kg) Trimethylbenzene Total (1,2,4- & 1,3,5-) (ug/kg) Bromobenzene (ug/kg) Bromobenzene (ug/kg) Bromobenzene (ug/kg) Bromodichloromethane (ug/kg) Bromoform (ug/kg) Bromoform (ug/kg) Bromoform (ug/kg) Chlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichloropenzene (ug/kg) 1,2-Dichloropenzene (ug/kg) 1,2-Dichloropenzene (ug/kg) 1,2-Dichloropenzene (ug/kg) 1,2-Dichloropenzene (ug/kg) 1,2-Dichloropenzene (ug/kg) 1,2-Dichloropenzene (ug/kg) 1,2-Dichloropenzene (ug/kg) 1,1-Dichloropenzene (ug/kg) 1,1-Dichl	41.2 58.8 0.138 2.56 5.12 1,570 1,110 3,940 NS 658 27 1,380 NS NS NS	156,000 1,560,000 67 60,700 1,490 7,470 818,000 258,000 258,000 778,000 434,000 5,150	+25.0 +2	<25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <75.0 <50.0	*25.0 *25.0 *25.0 *25.0 *25.0 *25.0 *25.0	<25.0 <25.0 <25.0 <25.0 <25.0 <25.0	<50.0 <50.0 <50.0	9,750 <200 <200	2,130 <50.0	2,940 <312	<25.0
trans-1,2-Dichloroethene (ug/kg) Vinyl Chloride (ug/kg) Methylene Chloride (ug/kg) Ethylbenzene (ug/kg) Toluene (ug/kg) Toluene (ug/kg) Toluene (ug/kg) Maphthalene (ug/kg) naph-Xylene (ug/kg) o-Xylene (ug/kg) Naphthalene (ug/kg) ArDEE (ug/kg) frimethylbenzene Total (1,2,4- £ 1,3,5-) (ug/kg) 1,2,4-Trimethylbenzene (ug/kg) Bromobenzene (ug/kg) Bromochloromethane (ug/kg) Bromoform (ug/kg) Bromoform (ug/kg) Bromoform (ug/kg) chlorobenzene (ug/kg) tert-Butylbenzene (ug/kg) Chlorobenzene (ug/kg) Chlorobenzene (ug/kg) Chlorobenzene (ug/kg) Chlorobenzene (ug/kg) Chlorobenzene (ug/kg) Chlorobenzene (ug/kg) Chlorobenzene (ug/kg) Chlorobenzene (ug/kg) Chlorobenzene (ug/kg) 1,2-Dichorobenzene (ug/kg) 1,2-Dichorobenzene (ug/kg) 1,2-Dichorobenzene (ug/kg) T-Dibromoethane (ug/kg) Dibromoethane (ug/kg) 1,2-Dichorobenzene (ug/kg) 1,2-Dichorobenzene (ug/kg) 1,2-Dichorobenzene (ug/kg) 1,2-Dichorobenzene (ug/kg) 1,2-Dichorobenzene (ug/kg) 1,2-Dichorobenzene (ug/kg) 1,2-Dichorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichloropenzene (ug/kg) 1,2-Dichloropenzene (ug/kg) 1,2-Dichloropenzene (ug/kg) 1,2-Dichloropenzene (ug/kg) 1,2-Dichloropenzene (ug/kg) 1,2-Dichloropenzene (ug/kg) 1,2-Dichloropenzene (ug/kg) 1,2-Dichloropenzene (ug/kg) 1,2-Dichloropenzene (ug/kg) 1,1-Dichloropenzene (ug/kg) 1,2-Dichloropenzene (ug/kg) 1,2-Dichloropenzene (ug/kg) 1,1-Dichloropenzene (ug/kg) 1,1-Dichloropenzene (ug/kg) 1,1-Dichloropenzene (ug/kg) 1,1-Dichloropenzene (ug/kg) 1,1-Dichloropenzene (ug/kg) 1,1-Dichloropenzene (ug/kg) 1,1-Dichloropenzene (ug/kg) 1,1-Dichloropenzene (ug/kg) 1,1-Dichloropenzene (ug/kg) 1	58.8 0.138 2.56 5.12 1,570 NS NS NS NS NS NS	1,560,000 67 60,700 1,490 7,470 818,000 258,000 778,000 434,000 5,150	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -75.0 -50.0 -40.0	<25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <75.0 <50.0	<25.0 <25.0 <25.0 <25.0 <25.0	<25.0 <25.0 <25.0 <25.0	<50.0 <50.0	<200 <200	<50.0	<312	
Vinyl Chloride (ug/kg) Methylene Chloride (ug/kg) Benzene (ug/kg) Ethylbenzene (ug/kg) Toluene (ug/kg) Maphylenzene (ug/kg) Maphylenzene (ug/kg) Maphylenzene (ug/kg) Naphthalene (ug/kg) Infactor (ug/kg) Naphthalene (ug/kg) I,2,4-Trimethylbenzene (ug/kg) Bromobenzene (ug/kg) Bromobenzene (ug/kg) Bromobenzene (ug/kg) Bromobenzene (ug/kg) Bromoform (ug/kg) Bromoform (ug/kg) Bromoform (ug/kg) Bromoform (ug/kg) Bromoform (ug/kg) Chlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg)<	0.138 2.56 5.12 1,570 1,110 NS NS 658 27 1,380 NS NS NS	67 60,700 1,490 7,470 818,000 258,000 778,000 434,000 5,150	<25.0 <25.0 <25.0 <25.0 <25.0 <75.0 <50.0 <25.0 <40.0	<25.0 <25.0 <25.0 <25.0 <25.0 <75.0 <50.0	<25.0 <25.0 <25.0 <25.0	<25.0 <25.0 <25.0	*50.0	₹200			
Methylene Chloride (ug/kg) Benzene (ug/kg) Ethylbenzene (ug/kg) Toluene (ug/kg) m&p-Xylene (ug/kg) m&p-Xylene (ug/kg) m&p-Xylene (ug/kg) mAp-Xylene (ug/kg) Maphthalene (ug/kg) MTBE (ug/kg) Frimethylbenzene (ug/kg) Bromoberzene (ug/kg) Bromoberzene (ug/kg) Bromodichloromethane (ug/kg) Bromodichloromethane (ug/kg) Bromodichloromethane (ug/kg) Bromodichloromethane (ug/kg) Bromodichloromethane (ug/kg) Carbon Tetrachloride (ug/kg) Chlorobuene (ug/kg) Chloroform (ug/kg) 1,2-Dibromo-3-chloropropane (ug/kg) 1,2-Dibromo-3-chloropropane (ug/kg) 1,2-Dibromo-3-chloropropane (ug/kg) 1,2-Dibromo-barzene (ug/kg) 1,2-Diblorobenzene (ug/kg) 1,3-Dichlorop	2.56 5.12 1,570 1,110 3,940 NS 658 27 1,380 NS NS NS	60,700 1,490 7,470 818,000 258,000 778,000 434,000 5,150	<pre><25.0 <25.0 <25.0 <25.0 <75.0 <50.0 <50.0 <25.0 <40.0</pre>	<25.0 <25.0 <25.0 <25.0 <75.0 <50.0	<25.0 <25.0 <25.0	<25.0 <25.0			<50.0		<25.0
Benzene (ug/kg) Ethylbenzene (ug/kg) Toluene (ug/kg) Toluene (ug/kg) mBp-Xylene (ug/kg) mBp-Xylene (ug/kg) nBp-Xylene (ug/kg) Naphthalene (ug/kg) ATBE (ug/kg) ATBE (ug/kg) Frimethylbenzene Total (1,2,4' (ug/kg) Bromoberzene (ug/kg) Bromoberzene (ug/kg) Bromochloromethane (ug/kg) Bromooform (ug/kg) Bromomethane (ug/kg) Chlorobenzene (ug/kg) Chlorobenzene (ug/kg) Chlorobenzene (ug/kg) Chlorobenzene (ug/kg) Chlorobenzene (ug/kg) Chlorobenzene (ug/kg) 1,2-Dibromos-hane (ug/kg) 1,2-Dibromos-hane (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-	5.12 1,570 1,110 3,940 NS 658 27 1,380 NS NS NS	1,490 7,470 818,000 258,000 778,000 434,000 5,150	<25.0 <25.0 <25.0 <75.0 <50.0 <25.0 <40.0	<25.0 <25.0 <25.0 <75.0 <50.0	<25.0 <25.0	<25.0		<200	<50.0	<312 <312	<25.0 <25.0
Ethylbenzene (ug/kg) Toluene (ug/kg) Toluene (ug/kg) Naphthalene (ug/kg) n@p-Xylene (ug/kg) n-Xylene (ug/kg) Naphthalene (ug/kg) ATBE (ug/kg) 1,2,4-Trimethylbenzene (ug/kg) Bromobenzene (ug/kg) Bromochloromethane (ug/kg) Bromodichloromethane (ug/kg) Bromoform (ug/kg) Bromoform (ug/kg) Bromoform (ug/kg) Chlorobenzene (ug/kg) 1,2-Dibromo-3-chloropropane (ug/kg) Dibromothane (EDB) (ug/kg) Dibromothane (Ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,3-Dichlorobenzene (ug/kg) 1,3-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,3-Dichloropenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichloropenzene (ug/kg) 1,3-Dichloropenzene (ug/kg) 1,3-Dichloropropane (ug/kg) 1,2-Dichloropenzene (ug/kg) 1,2-Dichloropenzene (ug/kg) 1,3-Dichloropenzene (ug/kg) 1,2-Dichloropenzene (ug/kg) 1,2-Dichloropenzene (ug/kg) 1,2-Dichloropenzene (ug/kg) 1,2-Dichloropenzene (ug/kg) 1,2-Dichloropenzene (ug/kg) 1,2-Dichloropenzene (ug/kg) 1,3-Dichloropenzene (ug/kg) 1,2-Dichloropenzene (ug/kg) 1,2-Dichloropenzene (ug/kg) 1,3-Dichloropenzene (ug/kg) 1,3-Dichlorope	1,570 1,110 3,940 NS 658 27 1,380 NS NS NS	7,470 818,000 258,000 778,000 434,000 5,150	<25.0 <25.0 <75.0 <50.0 <25.0 <40.0	<25.0 <25.0 <75.0 <50.0	<25.0		+50.0	<200	<50.0	<312	*25.0
Toluene (ug/kg) Xylenes (TOTAL) (ug/kg) mBp-Xylene (ug/kg) Naphthalene (ug/kg) Naphthalene (ug/kg) MTBE (ug/kg) Frimethylbenzene Total (1,2,4- & 1,3,5-) (ug/kg) 1,2,4-Trimethylbenzene (ug/kg) Bromobenzene (ug/kg) Bromoberzene (ug/kg) Bromodichloromethane (ug/kg) Bromodichloromethane (ug/kg) Bromoform (ug/kg) Bromoform (ug/kg) Carbon Tetrachloride (ug/kg) Chlorobenzene (ug/kg) Chlorobenzene (ug/kg) Chlorobenzene (ug/kg) Chlorobloromethane (ug/kg) 1,2-Dichorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichloropenane (ug/kg) 1	1,110 3,940 NS 658 27 1,380 NS NS NS	818,000 258,000 778,000 434,000 5,150	<25.0 <75.0 <50.0 <25.0 <40.0	<25.0 <75.0 <50.0		<25.0	<50.0	<200	<50.0	<312	+25.0
Xylenes (TOTAL) (ug/kg) m&p-Xylene (ug/kg) o-Xylene (ug/kg) Naphthalene (ug/kg) MTBE (ug/kg) frimethylbenzene Total (1,2,4- & 1,3,5-Trimethylbenzene (ug/kg) 1,3,5-Trimethylbenzene (ug/kg) Bromobenzene (ug/kg) Bromochloromethane (ug/kg) Bromochloromethane (ug/kg) Bromochloromethane (ug/kg) Bromochloromethane (ug/kg) Bromothorzene (ug/kg) Bromothorzene (ug/kg) Carbon Tetrachloride (ug/kg) Chlorobenzene (ug/kg) Chloroform (ug/kg) Chlorotoluene (ug/kg) Chlorotoluene (ug/kg) Othoroform (ug/kg) Othorobenzene (ug/kg) Chlorotoluene (ug/kg) Dibromo-st-hloropropane (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichloropenane (3,940 NS 658 27 1,380 NS NS NS	258,000 778,000 434,000 5,150	<50.0 <25.0 <40.0	<75.0 <50.0		<25.0	+50.0	+200	+50.0	<312	*25.0
mbp-Xylene (ug/kg) o-Xylene (ug/kg) Naphthalene (ug/kg) MTBE (ug/kg) frimethylbenzene Total (1,2,4- £ 1,3,5-) (ug/kg) 1,2,4-Trimethylbenzene (ug/kg) 1,3,5-Trimethylbenzene (ug/kg) Bromochloromethane (ug/kg) Bromochloromethane (ug/kg) Bromooferm (ug/kg) Bromoofform (ug/kg) Bromoofform (ug/kg) Bromoofform (ug/kg) Chforobenzene (ug/kg) Chforobenzene (ug/kg) Chforobenzene (ug/kg) Chforobenzene (ug/kg) Chforobenzene (ug/kg) Chforobenzene (ug/kg) 1,2-Dichorobenzene (ug/kg) 1,2-Dichorobenzene (ug/kg) 1,2-Dichorobenzene (ug/kg) 1,2-Dichorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,1-Dich	NS 658 27 1,380 NS NS NS NS	778,000 434,000 5,150	<25.0 <40.0		×75.0	<75.0	<150.0	+600	<150.0	<937	<75.0
Naphthalene (ug/kg) MTBE (ug/kg) Internet Total (1,2,4-	658 27 1,380 NS NS NS NS	5,150	<40.0	-25.0	<50.0	<50.0	<100	<400	<100	<625	<50.0
MTBE (ug/kg) frimethylbenzene Total (1,2,4- th,1,3,5-) (ug/kg) 1,2,4-Trimethylbenzene (ug/kg) 1,3,5-Trimethylbenzene (ug/kg) Bromochloromethane (ug/kg) Bromodichloromethane (ug/kg) Bromodichloromethane (ug/kg) Bromomethane (ug/kg) Bromomethane (ug/kg) Bromorethane (ug/kg) Bromomethane (ug/kg) Starbon Tetrachloride (ug/kg) Chlorobenzene (ug/kg) Chlorobenzene (ug/kg) Chloromethane (ug/kg) Chloromethane (ug/kg) Chlorobenzene (ug/kg) 1,2-Dichorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,1-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,1-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,1-Dichloropenzene (ug/kg) 1,	27 1,380 NS NS NS NS			-20.0	+25.0	<25.0	<50.0	<200	<50.0	<312	<25.0
rimethylbenzene Total (1,2,4 & 1,3,5-) (ug/kg) 1,2,4-Timethylbenzene (ug/kg) Bromobenzene (ug/kg) Bromobioromethane (ug/kg) Bromodichloromethane (ug/kg) Bromomethane (ug/kg) Bromomethane (ug/kg) Bromomethane (ug/kg) Carbon Tetrachloride (ug/kg) Carbon Tetrachloride (ug/kg) Chlorobenzene (ug/kg) Chlorobenzene (ug/kg) Chlorobenzene (ug/kg) Chlorotoluene (ug/kg) Chlorotoluene (ug/kg) 1,2-Dichorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,3-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,3-Dichlorobenzene (ug/kg) 1,3-Dichlorobenzene (ug/kg) 1,1-Dichlorobenzene (ug/kg) 1,1-Dichlorobenzene (ug/kg) 1,1-Dichlorobenzene (ug/kg) 1,1-Dichloropenzene (ug/kg) 1,1-Dichloropenzene (ug/kg) 1,2-Dichloropenzene (ug/kg) 1,1-Dichloropenzene (ug/kg) Disopropyl etter (ug/kg) Bisopropylbenzene (ug/kg) Sisopropylbenzene (ug/kg) Sisopr	1,380 NS NS NS NS	59,400	-25.0	<40.0	<40.0	<40.0	<80.1	<320	<80.1	<501	<40.0
£ 1,3,5-) (ug/kg) 1,2,4-Trimethylbenzene (ug/kg) 1,3,5-Timethylbenzene (ug/kg) Bromobenzene (ug/kg) Bromochoromethane (ug/kg) Bromodichoromethane (ug/kg) Bromodichoromethane (ug/kg) Bromodichoromethane (ug/kg) Bromodichoromethane (ug/kg) Bromosthane (ug/kg) Bromotethane (ug/kg) choromethane (ug/kg) chorobenzene (ug/kg) Chlorobenzene (ug/kg) Chloroform (ug/kg) 2-Chlorotoluene (ug/kg) 2-Chlorotoluene (ug/kg) 1,2-Dibromoethane (ug/kg) Dibromochloromethane (ug/kg) 1,2-Dibromoethane (ug/kg) 1,2-Dibromoethane (ug/kg) 1,2-Dibromoethane (ug/kg) 1,2-Dibromoethane (ug/kg) 1,2-Dibloropopane (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichloropopane (ug/kg) 1,2-Dichloropopane (ug/kg) 1,2-Dichloropopane (ug/kg) 1,2-Dichloropopane (ug/kg) 1,2-Dichloropopane (ug/kg) 1,3-Dichloropopane (ug/kg) </td <td>NS NS NS</td> <td></td> <td><25.0</td> <td><25.0</td> <td><25.0</td> <td><25.0</td> <td><50.0</td> <td><200</td> <td><50.0</td> <td><312</td> <td>×25.0</td>	NS NS NS		<25.0	<25.0	<25.0	<25.0	<50.0	<200	<50.0	<312	×25.0
1,2,4-Trimethylbenzene (ug/kg) 1,3,5-Trimethylbenzene (ug/kg) Bromochloromethane (ug/kg) Bromodichloromethane (ug/kg) Bromodichloromethane (ug/kg) Bromomethane (ug/kg) Bromomethane (ug/kg) Bromomethane (ug/kg) Bromomethane (ug/kg) Bromomethane (ug/kg) Seromomethane (ug/kg) seroButylbenzene (ug/kg) Chlorobenzene (ug/kg) Chlorobenzene (ug/kg) Chloromethane (ug/kg) 2-Chlorotoluene (ug/kg) 1,2-Dibromo-shchorepropane (ug/kg) Dibromochloromethane (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,1-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,1-Dichloropenzene (ug/kg) 1,2-Dichloropenzene (ug/kg) 1,2-Dichloropenzene (ug/kg) 1,2-Dichloropenzene (ug/kg) 1,2-Dichlo	NS NS NS		<50.0	<50.0	<50.0	<50.0	<100	<400	<100	<624	<50.0
1,3,5-Trimethylbenzene (ug/kg) Bromobenzene (ug/kg) Bromoloromethane (ug/kg) Bromodichloromethane (ug/kg) Bromodichloromethane (ug/kg) Bromodichloromethane (ug/kg) Bromoferm (ug/kg) Bromoferm (ug/kg) Bromoferm (ug/kg) Sec-Butylbenzene (ug/kg) sec-Butylbenzene (ug/kg) Carbon Tetrachloride (ug/kg) Chlorobenzene (ug/kg) Chlorobenzene (ug/kg) Chlorothane (ug/kg) 2-Chlorotoluene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,1-Dichlorobenzene (ug/kg) 1,1-Dichloropenzene (ug/kg) 1,2-Dichloropenzene (ug/kg) 1,2-Dichloropenzene (ug/kg) 1,2-Dichloropenzene (ug/kg) 1,1-Dichloropenzene (ug/kg) 1,1-Dichloropenzene (ug/kg) 1,2-Dichloropenzene (ug/kg) 1,1-Dichloropenzene (ug/kg) 1,1-Dichloropenzene <td>NS NS NS</td> <td>NS</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>02.0</td> <td>2.00</td>	NS NS NS	NS								02.0	2.00
Bromobenzene (ug/kg) Bromochoromethane (ug/kg) Bromochoromethane (ug/kg) Bromoform (ug/kg) Bromorethane (ug/kg) Bromomethane (ug/kg) Bromomethane (ug/kg) n-Butylbenzene (ug/kg) tert-Butylbenzene (ug/kg) Carbon Tetrachloride (ug/kg) Chlorobenzene (ug/kg) Chlorobenzene (ug/kg) Chlorobenzene (ug/kg) 2-Chlorobluene (ug/kg) 1,2-Dibromoethane (ug/kg) 1,2-Dibromoethane (ug/kg) 1,2-Dibromoethane (ug/kg) 1,2-Dibromoethane (ug/kg) 1,2-Dibromoethane (ug/kg) 1,3-Dichlorobenzene (ug/kg) 1,4-Dichlorobenzene (ug/kg) 1,1-Dichloroethane (ug/kg) 1,2-Dichloropropane (ug/kg) 1,1-Dichloropropane (ug/kg) 1,2-Dichloropropane (ug/kg) 1,2-Dichloropropane (ug/kg) <td< td=""><td>NS NS</td><td>89,800 182,000</td><td><25.0 <25.0</td><td><25.0 <25.0</td><td><25.0</td><td><25.0</td><td><50.0</td><td><200 <200</td><td><50.0</td><td><312</td><td><25.0</td></td<>	NS NS	89,800 182,000	<25.0 <25.0	<25.0 <25.0	<25.0	<25.0	<50.0	<200 <200	<50.0	<312	<25.0
Bromochloromethane (ug/kg) Bromodichloromethane (ug/kg) Bromoform (ug/kg) Bromoform (ug/kg) n-Butylbenzene (ug/kg) sec-Butylbenzene (ug/kg) tert-Butylbenzene (ug/kg) Carbon Tetrachloride (ug/kg) Chlorobenzene (ug/kg) Chloromethane (ug/kg) Chloromethane (ug/kg) 2-Chlorotoluene (ug/kg) 3-Chlorotoluene (ug/kg) 3-Chlorotoluene (ug/kg) 1,2-Dibromo-thane (EDB) (ug/kg) Dibromochloromethane (ug/kg) Dibromoethane (Ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,3-Dichlorobenzene (ug/kg) 1,3-Dichlorobenzene (ug/kg) 1,1-Dichlorobenzene (ug/kg) 1,1-Dichlorobenzene (ug/kg) 1,1-Dichlorobenzene (ug/kg) 1,1-Dichloropenae (ug/kg)	NS	354,000	<25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<50.0 <50.0	<200 +200	<50.0 <50.0	<312	<25.0 <25.0
Bromodichloromethane (ug/kg) Brommoform (ug/kg) Brommethane (ug/kg) n-Butylbenzene (ug/kg) sec-Butylbenzene (ug/kg) sec-Butylbenzene (ug/kg) carbon Tetrachloride (ug/kg) Chlorobenzene (ug/kg) Chlorobenzene (ug/kg) Chlorobenzene (ug/kg) Chlorotoluene (ug/kg) 2-Chlorotoluene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,3-Dichlorobenzene (ug/kg) 1,1-Dichlorobenzene (ug/kg) 1,1-Dichlorobenzene (ug/kg) 1,1-Dichloropenzene (ug/kg) 1,1-Dichloropenzene (ug/kg) 1,1-Dichloropenzene (ug/kg) 1,2-Dichloropenzene (ug/kg) 1,2-Dichloropenzene (ug/kg) 1,1-Dichloropropane (ug/kg) 1,2-Dichloropropane (ug/kg) 1,2-Dichloropropane (ug/kg) 1,1-Dichloropropane (ug/kg)		232,000	<25.0	<25.0	<25.0	<25.0 <25.0	<50.0 <50.0	<200 <200	<50.0 <50.0	<312 <312	<25. <25.
Bromoform (ug/kg) Bromomethane (ug/kg) n-Butytbenzene (ug/kg) sec-Butytbenzene (ug/kg) tert-Butytbenzene (ug/kg) Carbon Tetrachloride (ug/kg) Carbon Tetrachloride (ug/kg) Chlorobenzene (ug/kg) Chlorobenzene (ug/kg) Chlorobenzene (ug/kg) Chlorotoluene (ug/kg) 1,2-Dibromoethane (ug/kg) 1,2-Dibromoethane (ug/kg) 1,2-Dibromoethane (ug/kg) 1,3-Dichlorobenzene (ug/kg) 1,3-Dichlorobenzene (ug/kg) 1,4-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichloroptnane (ug/kg) 1,2-Dichloroptnane (ug/kg) 1,2-Dichloroptnane (ug/kg) 1,2-Dichloroptnane (ug/kg) 1,2-Dichloroptopane (ug/kg) 1,3-Dichloroptopane (ug/kg) 1,3-Dichloroptopane (ug/kg) 1,3-Dichloroptopane (ug/kg) <td>0.326</td> <td>390</td> <td><25.0</td> <td><25.0 <25.0</td> <td>*25.0</td> <td><25.0</td> <td><50.0</td> <td>*200</td> <td><50.0 <50.0</td> <td><312</td> <td><25.</td>	0.326	390	<25.0	<25.0 <25.0	*25.0	<25.0	<50.0	*200	<50.0 <50.0	<312	<25.
Bromomethane (ug/kg) n-Butylbenzene (ug/kg) see-Butylbenzene (ug/kg) tert-Butylbenzene (ug/kg) Carbon Tetrachloride (ug/kg) Chlorobenzene (ug/kg) Chlorobenzene (ug/kg) Chlorobenzene (ug/kg) Chloromethane (ug/kg) 2-Chlorotoluene (ug/kg) 1,2-Dibromo-shlone (ug/kg) 1,2-Dibromo-shlone (ug/kg) 1,2-Dibromosthane (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,3-Dichlorobenzene (ug/kg) 1,4-Dichlorobenzene (ug/kg) 1,1-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,1-Dichloroethane (ug/kg) 1,2-Dichloropopane (ug/kg) 1,2-Dichloropopane (ug/kg) 1,2-Dichloropopane (ug/kg) 1,1-Dichloropopane (ug/kg) 1,2-Dichloropopane (ug/kg) 1,1-Dichloropopane (ug/kg) 1,1-Dichloropopane (ug/kg)	2.33	61,500	<25.0	<25.0	*25.0	*25.0	<50.0	*200	<50.0	<312	<25.
n-Butylbenzene (ug/kg) sec-Butylbenzene (ug/kg) tert-Butylbenzene (ug/kg) Carbon Tetrachloride (ug/kg) Chlorobenzene (ug/kg) Chlorobenzene (ug/kg) Chlorobenzene (ug/kg) Chlorobenzene (ug/kg) Chlorobenzene (ug/kg) 2-Chlorotoluene (ug/kg) 1,2-Dibhorobenzene (ug/kg) 1,2-Dibhorobenzene (ug/kg) 1,2-Dibhorobenzene (ug/kg) 1,2-Dibhorobenzene (ug/kg) 1,2-Dibhorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,1-Dichlorobenzene (ug/kg) 1,2-Dichloropenane (ug/kg) 1,2-Dichloropenane (ug/kg) 1,2-Dichloropopane (ug/kg) 1,2-Dichloropopane (ug/kg) 1,3-Dichloropopane (ug/kg) 1,1-Dichloropopane (ug/kg) 1,1-Dichloropopane (ug/kg) 1,1-Dichloropopene (ug/kg) Diisopropyl ether (ug/kg) </td <td>5.06</td> <td>10,300</td> <td><69.9</td> <td><69.9</td> <td><69.9</td> <td><69.9</td> <td><140</td> <td>+559</td> <td><140</td> <td><874</td> <td><69.</td>	5.06	10,300	<69.9	<69.9	<69.9	<69.9	<140	+559	<140	<874	<69.
sec-Butylbenzene (ug/kg) tert-Butylbenzene (ug/kg) Carbon Tetrachloride (ug/kg) Chlorobenzene (ug/kg) Chlorobenzene (ug/kg) Chloroform (ug/kg) Chlorotoluene (ug/kg) 2-Chlorotoluene (ug/kg) 4-Chlorotoluene (ug/kg) 1,2-Dibromo-sthane (ug/kg) Dibromo-sthane (Ug/kg) Dibromo-sthane (Ug/kg) Dibromoethane (Ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,3-Dichlorobenzene (ug/kg) 1,3-Dichlorobenzene (ug/kg) 1,3-Dichlorothane (ug/kg) 1,3-Dichlorothane (ug/kg) 1,3-Dichlorothane (ug/kg) 1,3-Dichlorothane (ug/kg) 1,3-Dichloroptane (ug/kg) 1,3-Dichloroptane (ug/kg) 1,3-Dichloroptane (ug/kg) 1,3-Dichloroptane (ug/kg) 2,2-Dichloroptane (ug/kg) 2,2-Dichloroptane (ug/kg) 2,2-Dichloroptane (ug/kg) 2,2-Dichloroptane (ug/kg) 1,1-Dichloroptane (ug/kg) 2,2-Dichloroptane (ug/kg) 2,2-Dichloroptane (ug/kg) 1,1-Dichloroptane (ug/kg) Disopropyl ether (ug/kg) Sopropylbenzene (ug/kg) 1,50propylbenzene (ug/kg) 5,5yrene (ug/kg) 1,1,1,2-Tetrachloroethane (ug/kg)	NS	108,000	<25.0	<25.0	<25.0	<25.0	<50.0	+200	<50.0	<312	<25.
tert-Butylbenzene (ug/kg) Carbon Tetrachloride (ug/kg) Chlorobenzene (ug/kg) Chlorobenzene (ug/kg) Chloroform (ug/kg) Chloronethane (ug/kg) 2-Chloronethane (ug/kg) 1,2-Dibromo-chloropromethane (ug/kg) 1,2-Dibromo-chloronethane (ug/kg) 1,2-Dibromoethane (ug/kg) 1,2-Dibromoethane (ug/kg) 1,2-Dibromoethane (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichloropenane (ug/kg) 1,1-Dichloropenane (ug/kg) 1,1-Dichloropropane (ug/kg) 1,2-Dichloropropane (ug/kg) 1,3-Dichloropropane (ug/kg) 1,3-Dichloropropane (ug/kg) 1,1-Dichloropropane (ug/kg) 1,1-Dichloropropane (ug/kg) 1,1-Dichloropropane (ug/kg) 1,1-Dichloropropane (ug/kg) Difspropyl ether (ug/kg) Difspropyl ether (ug/kg) 1,1-Dicplonene (ug/kg) 1,1-Dicplonene (ug/kg) Difspropyl ether (ug/kg) 1,1,2-Dicplonene (ug/kg) 1,1,2-Dicplonene (ug/kg) Difspropyl ether (ug/kg) 1,1,2-Dicplonene (ug/kg) 1,1,2-Dicplonene (ug/kg) 1,1,2-Dicplonene (ug/kg) 1,1,2-Dicplonene (ug/kg) 1,1,2-Tetrachloroptane (ug/kg) 1,1,2-Tetrachloroptane (ug/kg)	NS	145,000	<25.0	<25.0	<25.0	<25.0	<50.0	<200	<50.0	<312	<25.
Carbon Tetrachloride (ug/kg) Chlorobenzene (ug/kg) Chlorobenzene (ug/kg) Chlorobenzene (ug/kg) Chlorotoluene (ug/kg) 2-Chlorotoluene (ug/kg) 4-Chlorotoluene (ug/kg) 1,2-Dibromo-3-chloropropane (ug/kg) 1,2-Dibromo-3-chloropropane (ug/kg) 1,2-Diblorobenzene (ug/kg) 1,3-Dichlorobenzene (ug/kg) 1,1-Dichlorobenzene (ug/kg) 1,2-Dichlorophane (ug/kg) 1,2-Dichlorophane (ug/kg) 1,2-Dichlorophane (ug/kg) 1,1-Dichlorophane (ug/kg) 1,2-Dichloropopane (ug/kg) 1,3-Dichloropopane (ug/kg) 1,3-Dichloropopane (ug/kg) 1,1-Dichloropopane (ug/kg) 1,1-Dichloropopane (ug/kg) 1,1-Dichloropopane (ug/kg) Disopropyl ether (ug/kg) Disopropylbenzene (ug/kg) Disopropylbenzene (ug/kg) Disopropylbenzene	NS	183,000	<25.0	<25.0	*25.0	<25.0	<50.0	<200	<50.0	<312	<25.
Chlorobenzene (ug/kg) Chlorobenzene (ug/kg) Chloroform (ug/kg) Chloroform (ug/kg) 2-Chlorotoluene (ug/kg) 4-Chlorotoluene (ug/kg) 1,2-Dibromo-3-chloropropane (ug/kg) 1,2-Dibromoethane (EDB) (ug/kg) 1,2-Dibromoethane (tug/kg) 1,2-Dibromoethane (ug/kg) 1,3-Dichlorobenzene (ug/kg) 1,3-Dichlorobenzene (ug/kg) 1,3-Dichlorobenzene (ug/kg) 1,1-Dichloroethane (ug/kg) 1,2-Dichloroethane (ug/kg) 1,2-Dichloropenzene (ug/kg) 1,2-Dichloropenzene (ug/kg) 1,2-Dichloropenzene (ug/kg) 1,2-Dichloropenzene (ug/kg) 1,2-Dichloropenzene (ug/kg) 1,2-Dichloropenzene (ug/kg) 1,3-Dichloropenzene (ug/kg) 2,2-Dichloropropane (ug/kg) 1,3-Dichloropenzene (ug/kg) 1,3-Dichloropenzene (ug/kg) 1,3-Dichloropropane (ug/kg) Disopropylenzene (ug/kg) Disopropylbenzene (ug/kg) p-Isopropylbenzene (ug/kg) p-Isopropylbenzene (ug/kg) 5,5yrene (ug/kg) 5,5yrene (ug/kg)	3.88	854	<25.0	<25.0	<25.0	<25.0	<50.0	<200	<50.0	<312	×25.
Chloroethane (ethyl chloride) (ug/kg) Chloroform (ug/kg) Chloromethane (ug/kg) 2-Chlorotoluene (ug/kg) 4-Chlorotoluene (ug/kg) 1,2-Dibromoethane (ug/kg) 1,2-Dibromoethane (ug/kg) Dibromochloromethane (ug/kg) Dibromoethane (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,3-Dichlorobenzene (ug/kg) 1,4-Dichlorobenzene (ug/kg) 1,4-Dichloroethane (ug/kg) 1,1-Dichloroethane (ug/kg) 1,2-Dichloropropane (ug/kg) 1,2-Dichloropropane (ug/kg) 1,2-Dichloropropane (ug/kg) 1,2-Dichloropropane (ug/kg) 1,3-Dichloropropane (ug/kg) 1,3-Dichloropropane (ug/kg) 1,1-Dichloropropane (ug/kg) Dilsopropylenzene (ug/kg) Dilsopropylenzene (ug/kg) Dilsopropylenzene (ug/kg) Isopropylbenzene (ug/kg) Styrene (ug/kg	NS	392,000	<25.0	<25.0	<25.0	<25.0	<50.0	₹200	<50.0	<312	<25.
Chloromethane (ug/kg) 2-Chlorotoluene (ug/kg) 4-Chlorotoluene (ug/kg) 1,2-Dibromo-3-chloropropane (ug/kg) Dibromochloromethane (ug/kg) 1,2-Dibhomoethane (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,3-Dichlorobenzene (ug/kg) 1,4-Dichlorobenzene (ug/kg) 1,1-Dichloroethane (ug/kg) 1,2-Dichloropane (ug/kg) 1,2-Dichloropane (ug/kg) 1,2-Dichloropane (ug/kg) 1,2-Dichloropane (ug/kg) 1,2-Dichloropane (ug/kg) 1,2-Dichloropane (ug/kg) 1,3-Dichloropane (ug/kg) 1,3-Dichloropropane (ug/kg) 1,1-Dichloropropane (ug/kg) 1,1-Dichloropropane (ug/kg) 1,1-Dichloropropane (ug/kg) 1,1-Dichloropropane (ug/kg) Disopropylenzene (ug/kg) Disopropylenzene (ug/kg) Disopropylbenzene (ug/kg) Pisopropyltoluene	227	2,120,000	<67.0	<67.0	<67.0	<67.0	<134	<536	<134	<838	<67.
2-Chlorotoluene (ug/kg) 4-Chlorotoluene (ug/kg) 1,2-Dibromoshane (EDB) (ug/kg) 1,2-Dibromoshane (EDB) (ug/kg) 1,2-Dibromoshane (EDB) (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,3-Dichlorobenzene (ug/kg) 1,4-Dichlorobenzene (ug/kg) 1,4-Dichlorobenzene (ug/kg) 1,4-Dichlorobenzene (ug/kg) 1,1-Dichloroethane (ug/kg) 1,1-Dichloroethane (ug/kg) 1,2-Dichloropopane (ug/kg) 1,2-Dichloropopane (ug/kg) 1,3-Dichloropropane (ug/kg) 1,1-Dichloropropane (ug/kg) 1,1-Dichloropopene (ug/kg) 1,1-Dichloropopene (ug/kg) 1,1-Dichloropopene (ug/kg) Diisopropyl ether (ug/kg) Disopropylbenzene (ug/kg) P-isopropylbenzene (ug/kg) P-isopropylbenzene (ug/kg) N-propylbenzene (ug/kg) Styrene (ug/kg) Styrene (3.33	423	<46.4	-46.4	-46.4	«46.4	>92.9	×372	×92.9	<581	<46.
4-Chlorotoluene (ug/kg) 1,2-Dibromo-3-chloropropane (ug/kg) Dibromo-bloromethane (ug/kg) 1,2-Dibloromoethane (ug/kg) Dibromomethane (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,3-Dichlorobenzene (ug/kg) Dichlorodhloromethane (ug/kg) 1,4-Dichlorobenzene (ug/kg) 1,1-Dichloroethane (ug/kg) 1,2-Dichloropenzene (ug/kg) 1,1-Dichloropenane (ug/kg) 1,2-Dichloropenane (ug/kg) 1,2-Dichloropenane (ug/kg) 1,3-Dichloropenane (ug/kg) 1,1-Dichloropenane (ug/kg) 1,1-Dichloropenane (ug/kg) 1,1-Dichloropropane (ug/kg) Trans-1,3-Dichloropropane (ug/kg) Disopropyl ether (ug/kg) Disopropylbenzene (ug/kg) Isopropylbenzene (ug/kg) n-Propylbenzene (ug/kg) Styrene (ug/kg) 1,1,1,2-Tetrachloroethane (ug/kg)	15.5	171,000	<25.0	<25.0	<25.0	<25.0	<50.0	<200	<50.0	<312	<25.
1,2-Dibromo-3-chloropropane (ug/kg) Dibromochloromethane (ug/kg) 1,2-Dibromoethane (ug/kg) 1,2-Dibromomethane (ug/kg) 1,2-Dibromomethane (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,3-Dichlorobenzene (ug/kg) 1,4-Dichlorobenzene (ug/kg) 1,1-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,2-Dichloroethane (ug/kg) 1,2-Dichloropopane (ug/kg) 1,3-Dichloropopane (ug/kg) 1,3-Dichloropopane (ug/kg) 1,1-Dichloropopane (ug/kg) 1,1-Dichloropopane (ug/kg) Disopropylether (ug/kg) Disopropylbenzene (ug/kg) Disopropylbenzene (ug/kg) n-Propylbenzene (ug/kg) 1,1,2-Tetrachloroethane (ug/kg)	NS	907,000	<25.0	<25.0	<25.0	<25.0	<50.0	<200	<50.0	<312	<25.
Dibromochloromethane (ug/kg) 1,2-Dibromoethane (EDB) (ug/kg) Dibromomethane (EDB) 1,2-Dichlorobenzene (ug/kg) 1,3-Dichlorobenzene (ug/kg) 1,4-Dichlorobenzene (ug/kg) 1,4-Dichloromethane (ug/kg) 1,1-Dichloroethane (ug/kg) 1,1-Dichloroethane (ug/kg) 1,2-Dichloropropane (ug/kg) 1,2-Dichloropropane (ug/kg) 1,3-Dichloropropane (ug/kg) 1,3-Dichloropropane (ug/kg) 1,1-Dichloropropane (ug/kg) 1,1-Dichloropropane (ug/kg) 1,1-Dichloropropane (ug/kg) 1,1-Dichloropropane (ug/kg) 1,1-Dichloropropane (ug/kg) 1,1-Dichloropropene (ug/kg) Disopropyl ether (ug/kg) Disopropylbenzene (ug/kg) n-Propylbenzene (ug/kg) 5,5yrene (ug/kg) 1,1,2-Tetrachloroethane (ug/kg)	NS	253,000	<25.0	<25.0	<25.0	<25.0	<50.0	<200	<50.0	<312	<25.
1,2-Dibromoethane (EDB) (ug/kg) Dibromomethane (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,3-Dichlorobenzene (ug/kg) 1,3-Dichlorobenzene (ug/kg) 1,4-Dichlorobenzene (ug/kg) 1,1-Dichlorobenzene (ug/kg) 1,1-Dichlorobethane (ug/kg) 1,2-Dichloroethane (ug/kg) 1,2-Dichloropropane (ug/kg) 1,2-Dichloropropane (ug/kg) 1,2-Dichloropropane (ug/kg) 1,3-Dichloropropane (ug/kg) 1,1-Dichloropropane (ug/kg) 1,1-Dichloropropane (ug/kg) 1,1-Dichloropropane (ug/kg) 1,1-Dichloropropane (ug/kg) 1,1-Dichloropropane (ug/kg) 1,1-Dichloropropane (ug/kg) Disopropyl ether (ug/kg) Disopropylbenzene (ug/kg) Disopropylbenzene (ug/kg) n-Propylbenzene (ug/kg) Styrene (ug/kg) 1,1,1,2-Tetrachloroethane (ug/kg)	0.173	8	<91.2	<91.2	<91.2	<91.2	<182	<730	<182	<1,140	<91.
Dibromomethane (ug/kg) 1,2-Dichlorobenzene (ug/kg) 1,3-Dichlorobenzene (ug/kg) 1,4-Dichlorobenzene (ug/kg) Dichlorobenzene (ug/kg) Dichlorobenzene (ug/kg) 1,1-Dichloroethane (ug/kg) 1,2-Dichloroethane (ug/kg) 1,2-Dichloropropane (ug/kg) 1,2-Dichloropropane (ug/kg) 1,3-Dichloropropane (ug/kg) 2,2-Dichloropropane (ug/kg) 1,1-Dichloropropane (ug/kg) trans-1,3-Dichloropropene (ug/kg) trans-1,3-Dichloropropene (ug/kg) Disopropyl ether (ug/kg) Isopropylbenzene (ug/kg) n-Propylbenzene (ug/kg) Styrene (ug/kg) Styrene (ug/kg)	32	933	<25.0	<25.0	<25.0	<25.0	<50.0	₹200	<50.0	<312	<25.
1,2-Dichlorobenzene (ug/kg) 1,3-Dichlorobenzene (ug/kg) 1,4-Dichlorobenzene (ug/kg) Dichlorodifluoromethane (ug/kg) 1,1-Dichloroethane (ug/kg) 1,1-Dichloroethane (ug/kg) 1,2-Dichloropropane (ug/kg) 1,3-Dichloropropane (ug/kg) 1,3-Dichloropropane (ug/kg) 1,3-Dichloropropane (ug/kg) 1,1-Dichloropropane (ug/kg) 1,1-Dichloropropene (ug/kg) Disopropylether (ug/kg) Disopropylether (ug/kg) Disopropylether (ug/kg) n-Propylbenzene (ug/kg) 5,5yrene (ug/kg) 1,1,2-Tetrachloroethane (ug/kg)	0.0282	47	<25.0	<25.0	<25.0	<25.0	<50.0	<200	<50.0	<312	<25.0
1,3-Dichlorobenzene (ug/kg) Dichlorof(luoromethane (ug/kg) 1,4-Dichlorobenzene (ug/kg) 1,1-Dichloroethane (ug/kg) 1,2-Dichloroethane (ug/kg) 1,2-Dichloroethane (ug/kg) 1,2-Dichloropropane (ug/kg) 2,2-Dichloropropane (ug/kg) 2,2-Dichloropropane (ug/kg) 1,1-Dichloropropane (ug/kg) trans-1,3-Dichloropropene (ug/kg) Disopropyl ether (ug/kg) Disopropyl ether (ug/kg) p-Isopropylbenzene (ug/kg) n-Propylbenzene (ug/kg) 5,5yrene (ug/kg) 1,1,1,2-Tetrachloroethane (ug/kg)	NS	35,000	<25.0	<25.0	₹25.0	<25.0	<50,0	+200	<50.0	<312	<25.
1,4-Dichlorobenzene (ug/kg) Dichlorodifluoromethane (ug/kg) 1,1-Dichloroethane (ug/kg) 1,2-Dichloroethane (ug/kg) 1,2-Dichloropropane (ug/kg) 1,3-Dichloropropane (ug/kg) 2,2-Dichloropropane (ug/kg) 2,2-Dichloropropene (ug/kg) cis-1,3-Dichloropropene (ug/kg) trans-1,3-Dichloropropene (ug/kg) bilsopropyl ether (ug/kg) Bilsopropyl benzene (ug/kg) p-ksopropylbenzene (ug/kg) n-Propylbenzene (ug/kg) 5/yrene (ug/kg) 1,1,2-Tetrachloroethane (ug/kg)	1,170	376,000	<25.0	<25.0	<25.0	<25.0	<50.0	<200	<50.0	<312	<25.
Dichlorodifluoromethane (ug/kg) 1,1-Dichloroethane (ug/kg) 1,2-Dichloroethane (ug/kg) 1,1-Dichloroethane (ug/kg) 1,2-Dichloroptnane (ug/kg) 1,3-Dichloroptnane (ug/kg) 1,3-Dichloroptnane (ug/kg) 1,1-Dichloroptnane (ug/kg) 1,1-Dichloroptnane (ug/kg) 1,1-Dichloroptnane (ug/kg) cis-1,3-Dichloroptnane (ug/kg) Disoptopyl ether (ug/kg) Hexachloro-1,3-butadiene (ug/kg) p-Isoptopylbenzene (ug/kg) n-Propylbenzene (ug/kg) Styrene (ug/kg) 1,1,1,2-Tetrachloroethane (ug/kg)	1,150	297,000 3,480	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<50.0 <50.0	<200 <200	<50.0	<312	<25. <25.
1,1-Dichloroethane (ug/kg) 1,2-Dichloroethane (ug/kg) 1,2-Dichloroethane (ug/kg) 1,2-Dichloroethane (ug/kg) 1,2-Dichloroethane (ug/kg) 1,2-Dichloropropane (ug/kg) 2,2-Dichloropropane (ug/kg) 1,1-Dichloropropane (ug/kg) 1,1-Dichloropropane (ug/kg) trans-1,3-Dichloropropene (ug/kg) Disopropyl ether (ug/kg) Disopropylbenzene (ug/kg) n-Propylbenzene (ug/kg) Styrene (ug/kg) 1,1,1,2-Tetrachloroethane (ug/kg)	3,090	135,000	<25.0	<25.0 <25.0	*25.0	<25.0	<50.0	*200	<50.0 <50.0	<312 <312	<25. <25.
1,2-Dichloroethane (ug/kg) 1,1-Dichloroptopane (ug/kg) 1,2-Dichloroptopane (ug/kg) 1,3-Dichloroptopane (ug/kg) 2,2-Dichloroptopane (ug/kg) 1,1-Dichloroptopane (ug/kg) 1,1-Dichloroptopane (ug/kg) 1,1-Dichloroptopene (ug/kg) trans-1,3-Dichloroptopene (ug/kg) Disoptopyl ether (ug/kg) Hexachloro-1,3-Dutadeine (ug/kg) Isoptopylbenzene (ug/kg) n-Propylbenzene (ug/kg) Styrene (ug/kg) 1,1,1,2-Tetrachloroethane (ug/kg)	483	4,720	<25.0	<25.0	<25.0	<25.0	<50.0	<200	<50.0	<312	*25.
1,1-Dichloroethene (ug/kg) 1,2-Dichloropropane (ug/kg) 1,3-Dichloropropane (ug/kg) 2,2-Dichloropropane (ug/kg) 1,1-Dichloropropane (ug/kg) 1,1-Dichloropropane (ug/kg) cis-1,3-Dichloropropene (ug/kg) Diisopropyl ether (ug/kg) Hexachloro-1,3-butadiene (ug/kg) p-isopropylbenzene (ug/kg) n-Propylbenzene (ug/kg) Syrene (ug/kg) 1,1,2-Tetrachloroethane (ug/kg)	2.84	608	<25.0	<25.0	*25.0	<25.0	<50.0	*200	<50.0	<312 <312 ·	<25. <25.
1,2-Dichloropropane (ug/kg) 1,3-Dichloropropane (ug/kg) 2,2-Dichloropropane (ug/kg) 1,1-Dichloropropane (ug/kg) trans-1,3-Dichloropropene (ug/kg) trans-1,3-Dichloropropene (ug/kg) Disopropyl ether (ug/kg) Isopropylbenzene (ug/kg) n-Propylbenzene (ug/kg) Syrene (ug/kg) 1,1,1,2-Tetrachloroethane (ug/kg)	5.02	342,000	<25.0	<25.0	+25.0	<25.0	<50.0	*200	<50.0	<312	<25. <25.
1,3-Dichloropropane (ug/kg) 2,2-Dichloropropane (ug/kg) 1,1-Dichloropropene (ug/kg) trans-1,3-Dichloropropene (ug/kg) bisopropyl ether (ug/kg) Hexachloro-1,3-butadiene (ug/kg) Isopropylbenzene (ug/kg) n-Propylbenzene (ug/kg) Styrene (ug/kg) 1,1,1,2-Tetrachloroethane (ug/kg)	3.32	1,330	<25.0	<25.0	+25.0	<25.0	<50.0	<200	<50.0	<312	<25.
2,2-Dichloropropane (ug/kg) 1,1-Dichloropropene (ug/kg) cis-1,3-Dichloropropene (ug/kg) trans-1,3-Dichloropropene (ug/kg) Diisopropyl ether (ug/kg) Hexachloro-1,3-butadiene (ug/kg) isopropylbenzene (ug/kg) n-Propylbenzene (ug/kg) 5/syrene (ug/kg) 1,1,1,2-Tetrachloroethane (ug/kg)	NS	1,490,000	<25.0	<25.0	+25.0	<25.0	+50.0	+200	₹50.0	<312	<25.
1,1-Dichloropropene (ug/kg) cis-1,3-Dichloropropene (ug/kg) trans-1,3-Dichloropropene (ug/kg) Dilsopropyl ether (ug/kg) Hexachloro-1,3-butadiene (ug/kg) Isopropylbenzene (ug/kg) p-Isopropylbenzene (ug/kg) n-Propylbenzene (ug/kg) Styrene (ug/kg) 1,1,2-Tetrachloroethane (ug/kg)	NS	527,000	<25.0	<25.0	<25.0	<25.0	<50.0	<200	<50.0	<312	<25.
cis-1,3-Dichloropropene (ug/kg) trans-1,3-Dichloropropene (ug/kg) Disopropyl ether (ug/kg) Hexachloro-1,3-butadiene (ug/kg) Isopropylbenzene (ug/kg) n-Propylbenzene (ug/kg) Styrene (ug/kg) 1,1,1,2-Tetrachloroethane (ug/kg)	NS	NS	<25.0	<25.0	+25.0	<25.0	<50.0	+200	<50.0	<312	<25.
Dilsopropyl ether (ug/kg) Hexachloro-1,3-butadiene (ug/kg) Isopropylbenzene (ug/kg) p-lsopropylbenzene (ug/kg) n-Propylbenzene (ug/kg) Styrene (ug/kg) 1,1,2-Tetrachloroethane (ug/kg)	0.286	1,220,000	<25.0	<25.0	<25.0	<25.0	<50.0	<200	<50.0	<312	<25.
Hexachloro-1,3-butadiene (ug/kg) Isopropylbenzene (ug/kg) p-isopropyltoluene (ug/kg) n-Propylbenzene (ug/kg) Styrene (ug/kg) 1,1,2-Tetrachloroethane (ug/kg)	0.286	1,570,000	<25.0	<25.0	₹25.0	<25.0	<50.0	₹200	<50.0	<312	<25.
Isopropylbenzene (ug/kg) p-Isopropyltoluene (ug/kg) n-Propylbenzene (ug/kg) Styrene (ug/kg) 1,1,2-Tetrachloroethane (ug/kg)	NS	2,260,000	<25.0	<25.0	<25.0	<25.0	<50.0	<200	<50.0	<312	<25.
p-Isopropyltoluene (ug/kg) n-Propylbenzene (ug/kg) Styrene (ug/kg) 1,1,1,2-Tetrachloroethane (ug/kg)	NS	6,220	<25.0	<25.0	<25.0	<25.0	<50.0	<200	<50.0	<312	<25.
n-Propylbenzene (ug/kg) Styrene (ug/kg) 1,1,1,2-Tetrachloroethane (ug/kg)	NS	268,000	<25.0	<25.0	*25.0	<25.0	<50.0	₹200	<50.0	<312	<25.
Styrene (ug/kg) 1,1,1,2-Tetrachloroethane (ug/kg)	NS	162,000	<25.0	<25.0	<25.0	<25.0	<50.0	<200	<50.0	<312	<25.
1,1,1,2-Tetrachloroethane (ug/kg)	NS	264,000	<25.0	<25.0	₹25.0	<25.0	<50.0	₹200	<50.0	<312	<25.
(agrica)	220	867,000	<25.0	<25.0	<25.0	<25.0	<50.0	<200	<50.0	<312	<25.
(Ug/kg)	53.4	2,590	<25.0	<25.0	+25.0	<25.0	<50.0	+200	<50.0	<312	<25.
	0.156	753 48,900	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<50.0 <50.0	<200 <200	<50.0 <50.0	<312 <312	<25. <25.
1,2,3-Trichlorobenzene (ug/kg) 1,2,4-Trichlorobenzene (ug/kg)	I NC	22,000	<47.6	< <u>47.6</u>	*47.6	<47.6	<95.1	<200 <380	<50.0 <95.1	<31Z <594	< <u>47.</u>
1,1,1-Trichlorethane (ug/kg)	NS 408	640,000	<25.0	<25.0	*47.6	<25.0	<50.0	<200	<95.1	<312	<q .<br=""><25.</q>
1,1,2-Trichlorethane (ug/kg)	408	1,480	<25.0	<25.0	*25.0	*25.0	<50.0	*200	₹50.0	<312	<25. <25.
Trichlorofluoromethane (ug/kg)	408 140	1,120,000	<25.0	<25.0	+25.0	<25.0	<50.0	*200	<50.0	<312	<25.
1,2,3-Trichloropropane (ug/kg)	408 140 3.24	5	<25.0	+25.0	+25.0	<25.0	<50.0	+200	<50.0	<312	<25.
(-8//-8/	408 140	ceedances (DC								- 14	-201
	408 140 3.24 NS 51.9	ard Index (DC									-

Exceedance Highlights:

Exceedance THENDERIS: BOLD Red font indicates DC RCL exceedance per DNR RCL calculator 7/14/14, and BTV exceedance for metals. *81*: Cumulative exceedance (HI > 1), eventhough no individual DC RCL was exceeded. Italic font indicates GW RCL Exceedance per DNR RCL calculator 7/14/14. Groundwater quality (> NR 140 ES) may be affected when GW RCLs are exceeded.

Notes:

Xylenes reported as total of m-, o-, p-xylenes NS = No standard established NA = Not analyzed for parameter NR = Not Reported

1

FEHR GRAHAM ENGINEERING & ENVIRONMENTAL

May 25, 2017

Mr. John Hnat WDNR 2300 N Dr. Martin Luther King Jr Dr. Milwaukee, WI 53212

RE: Vapor System Commission Report and Indoor Air Test Results, Master Dry Cleaners DERF Site, 6326 W. Bluemound Road, Wauwatosa, WI, BRRTS # 02-41-545142

Dear John:

Objective

The purpose of this submittal is to present the construction details and performance test results for the subslab depressurization system (SSDS) beneath the Master Dry Cleaners site (Figure 1) referenced above. The indoor air chemistry sample results indicate no impacts are present above levels of concern in the building.

Based on this information, we believe building occupancy can be pursued by the new tenant.

Vapor Mitigation System Construction

As will be documented in the pending Remedial Action Documentation Report, soil excavation under the building was performed the week of March 20, 2017. The excavation consisted of removal of approximately 42 tons of soil that was landfilled due to the presence of tetrachloroethene (PCE) in the soil. Five additional drums of soil were removed from the area immediately beneath the former sump to a depth of eight feet. This material was handled as hazardous waste, and properly discarded by Badger Disposal.

The excavation created an approximately 40-foot long by four-foot wide by six-foot deep trench that extended east / west beneath the north part of the building. The excavation followed the pathway of the former indoor sanitary sewer line, which was entirely removed.

During backfill placement, the subslab vapor mitigation system piping network was installed in the trench. Two layers of piping were placed, one at a depth of five feet below grade, and the other at a depth of one foot below grade. The piping consists of 25 feet of factoryslotted Schedule 40 PVC pipe with 0.010 inch slots, connected to solid Schedule 40 PVC pipe. Both pipes elbow vertically through the floor along the north wall of the building, at a location approximately ten feet west of the northeast corner of the building (Figure 2).

A sewer pipe was also installed in the trench to service future floor drainage needs. The pipe is sloped to drain to the northwest and connects to the existing building sewer lateral that exits the northwest corner of the building. Connection of the new lateral to an existing indoor sink drain was also completed. The bathroom sewer lateral connection did not need replacement, and was left intact.

To help ensure a good seal for subslab vapor communication, a vertical clay plug was installed in the trench approximately 35 feet west of the east building wall. The plug is approximately one-foot thick, and was built using bentonite which was hydrated during placement. The clay plug extends from the excavation base at six feet to the Stegowrap surface, and runs the entire width of the four-foot wide trench.

Prior to resurfacing with concrete, a layer of 15 mil Stegowrap was placed over the pea gravel. Mastic was used to seal the Stegowrap at the saw-cut concrete floor edges and to seal around piping penetrations. Once the Stegowrap was placed, the concrete floor was restored to grade with three inches of fresh concrete. Penetrations include two vapor extraction pipes (1' and 5' depths) and central floor drain.

The vapor mitigation system fan and electrical connection was completed on April 18, 2017 by Radon Specialists. A RadonAway model GP-501 fan was wired for installation on the building roof. Three-inch PVC piping was used to connect both the five foot and one foot deep Schedule 40 PVC pipes to the single roof-mounted fan. An electrician wired the fan to a separate circuit in the existing electrical box.

The fan was turned on at approximately 10:30 AM on April 18, 2017, and has been operating continuously since then.

The system layout and communication test points are shown on Figure 2. The vapor mitigation system consists of one roof-mounted Radon-Away GP-501 fan that withdraws air from the two sub-floor piping runs. The system captures vapors from the subslab beneath the building and vents them to the outside.

The fan has a maximum draw of approximately 70 to 140 watts at 120 volts and is connected to a dedicated 20-amp circuit breaker in the building electric control panel. The fan meets the clearance requirements for vapor mitigation systems and exhausts the subslab vapors a minimum of two feet above openings that are within a ten-foot horizontal distance.

To monitor suction and operation, a U-Tube manometer has been installed on the vertical piping of the system, clearly visible at eye level height. Viewing the manometer for water column displacement allows a quick and easy way to verify fan operation. The fan has a five-year warranty, and should continue to operate maintenance free.

Pressure Field Extension Testing

During installation, testing was conducted on April 18, 2017 by Fehr Graham. The fan was connected and turned on, and four temporary floor-penetration monitoring points were drilled through the concrete floor near the building corners to verify the subslab pressure differential (Figure 2).

The induced vacuum in the extraction pipe measured 2.0 inches of water column. Measurements at the four subsurface monitoring points indicated sufficient connection between the operating fan and the subsurface, with levels ranging from 0.007 to 0.6 inches of water column (Figure 2). Smoke testing was also performed at all four test borings, with smoke observed to be drawn into the subsurface through the test holes. May 25, 2017 Master Cleaners DERF Project, Wauwatosa, WI

Post-System Installation Chemical Testing

After allowing the system to operate for approximately two weeks, the chemistry of the indoor air was sampled on May 3, 2017. A 6-liter summa canister with a 24-hour regulator was deployed at the approximate center of the building, with the intake placed at the approximate breathing height (four to five feet above grade). Field measurement of the indoor air volatile gas concentration was recorded using a mini Rae photoionization detector sensitive to parts per billion (ppb) range. The field readings indicate the indoor ambient and outside building air had an estimated 75 to 90 ppb total volatiles. The measurement of the air removed by the vapor system fan was approximately 3,600 ppb.

Upon completion of sampling, the canister was shipped via private courier to the analytical laboratory (Pace Laboratory, Minneapolis, MN). Testing was completed for targeted drycleaning related compounds using the Niosh TO-15 VOC's procedures. The laboratory results were received on May 17, and are attached.

The results indicate a detection of 13.8 ug/m^3 of PCE is present, far below the WDNR indoor air standard for inhalation of PCE in a small commercial building (180 ug/m3). There was no detectable TCE, cis- or trans-dichloroethene, or vinyl chloride in the indoor air sample from the Master Drycleaning building. The results of the subslab sampling and the indoor air sampling are summarized on Table A.5.

Vapor Mitigation System Operation and Maintenance Plan

Ongoing monitoring of the subslab vapor system must be performed. WDNR guidance was used to prepare a plan to monitor the system function (attached). The plan outlines system components and provides a form for recording monthly measurements of proper system operation.

The building is slated for redevelopment as a take-out and dine-in restaurant. Once the building has been occupied, daily observation of the fan function should be monitored by noting the displacement of the U-Tube manometer.

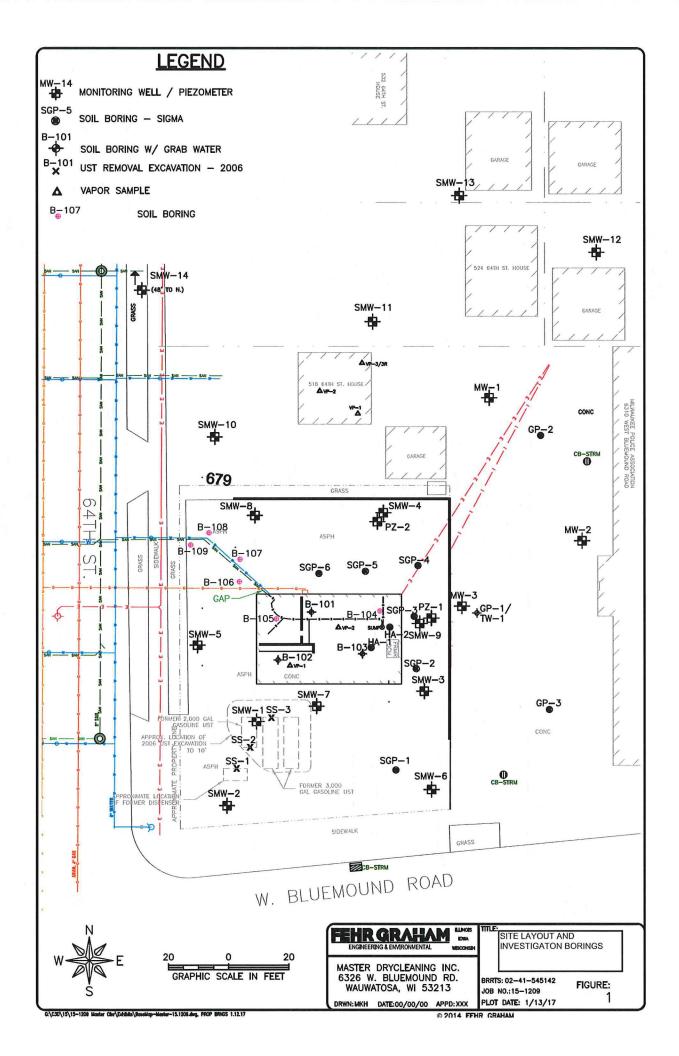
The WDNR has requested that repeat testing of the subslab communication be performed approximately six months after occupancy. This testing will be performed in a manner similar to the completed communication testing, with pressure measurements recorded from floor penetrations. In addition, a second indoor air chemistry analysis will be retained, likely using an 8-hour integrated sampler to minimize business disruption.

Project Status

A more thorough remedial action documentation report will be prepared and submitted following receipt of the next round of groundwater chemistry samples, which were obtained in mid-May 2017. The report will include information on the amount of soil excavated in March, documentation of proper disposal, and a summary of the remaining-in-place soil chemistry results. Further information will be provided on the groundwater contaminant trends since chemical injection. If the information appears suitable, the report may indicate a request for case closure is justified. May 25, 2017 Master Cleaners DERF Project, Wauwatosa, WI

Let me know if you have any questions or comments. Feel free to call me at 920 892-2444 or e-mail me at <u>kebbott@fehr-graham.com</u>.

Sincerely,


enin a. Enn

Kendrick A. Ebbott, PG

Attachment: Figure 1: Site Layout and Investigation Borings Figure 2: Vapor System and Communication Test Results Table A.5 Vapor Analytical Table Laboratory Analytical Report - Indoor Air Vapor Mitigation System Operation and Maintenance Plan

Cc: Mr. Harold Shipshock, Master Cleaners, w/ Attachments Mr. Don Gallo, Husch Blackwell, w/ Attachments

O:\Master Drycleaning\15-1209\REPORTS\Vapor System Commission Report\Draft Vapor Mitigation System Commission Report.docx

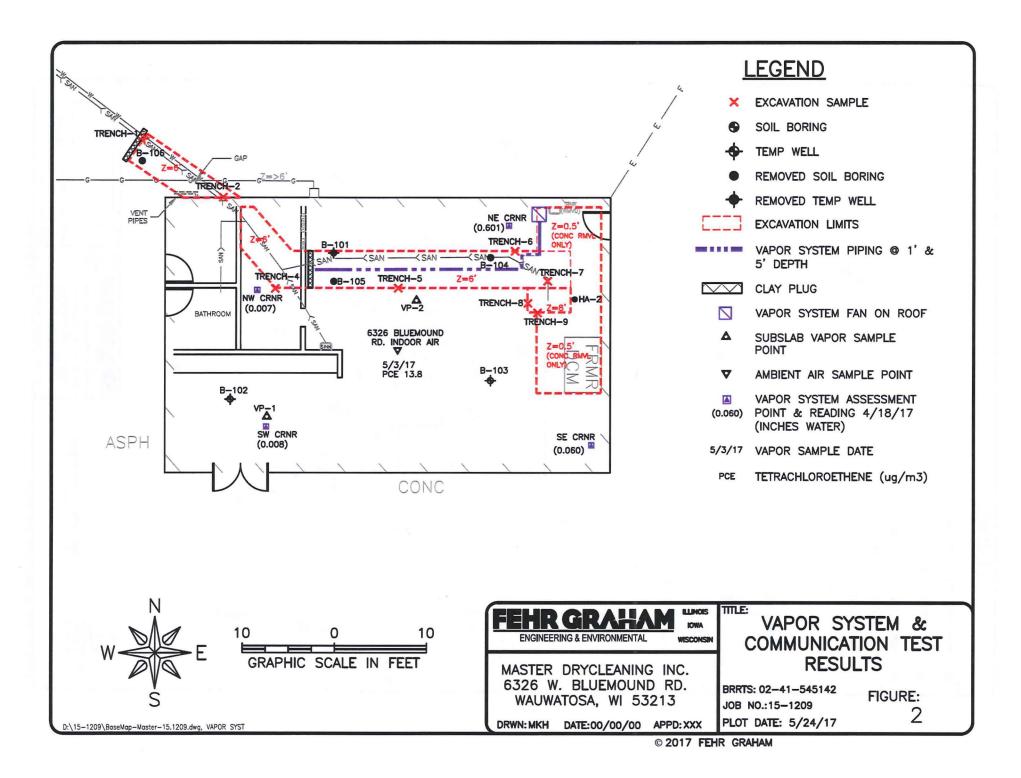


TABLE 1 Vapor Analytical Table - VOC Master Drycleaning, Inc. 6326 W. Bluemound Rd., Wauwatosa, WI 53213 BRRTS# 02-41-545142

	Site : 6326 Bluemound						
	Sample ID					VP-1	VP-2
S	Sample Date					2/24/2016	2/24/2016
Sample Location Type of Sample			L			SE corner (6326)	ctr work area (6326)
			o Ai	Air		sub-slab	sub-slab
	tion Method	_	MAL	MAL		Summa	Summa
Time Period o		C-Carcinogen N-Non Carcinogen	S SI Sub	S SI Indo		30 min	30 min
	ical Method	en Cino	ALA	ALA		TO-15	TO-15
Method/Result Lea	k Detection	C-Carcinogen N-Non Carcino	IN MI	RCI VI		water/shut-in; pass	water/shut-in; pass
STANDARDS COMPARED TO			wdnr / wdhfs small commercial subslab Air	WDNR / WDHFS SMALL COMMERCIAL Indoor Air		SMALL COMM Subslab	SMALL COMM Subslab
Benzene	μg/m ³	C	<u>530</u>	<u> </u>		0.84	6.8
Ethylbenzene	μg/m ³	c	1,600	49		2.6	4.5
Toluene	μg/m ³	N	730,000	22,000		15.3	142
Kylenes	µg/m³	N	15,000	440		12.5	17.6
Naphthalene	µg/m³	С	120	3.6		6.3	5.3
1,2,4-Trimethylbenzene	µg/m³	N	1,000	31		15.0	9.2
1,3,5-Trimethylbenzene	µg/m³	N	NS	NS		2.9	2.2
Fetrachloroethene (PCE)	µg/m³	N	6,000	180		608	63,100
Frichloroethene (TCE)	µg/m³	С	290	8.8		1.1	545
cis-1,2 Dichloroethene	µg/m³	N	NS	NS		<0.38	7.1
trans-1,2 Dichloroethene	µg/m³	N	NS	NS	10.2	<0.60	<0.53
Vinyl Chloride	μg/m³	С	930	28	65. (c	<0.30	<0.27
Methylene Chloride	µg/m³	С	87,000	2,600		0.95 J	<0.75
Acetone	µg/m³	N	4,700,000	140,000		38.4	227
Bromomethane	µg/m³	N	730	22		0.77 J	<0.43
2-Butanone (Methyl Ethyl Ketone)	µg/m³	N	730,000	22,000		2.9 J	37.7
Carbon Disulfide	µg/m³	N	100,000	3,100		0.37 J	3.4
Cyclohexane	µg/m³	N	870,000	26,000		27.8	86.9
Dichlorodifluoromethane	µg/m³	N	15,000	440		3.2	3.5
Ethanol	µg/m³	N	NS	NS		73.1	96.5
4-Ethyltoluene	µg/m³		NS	NS		3.3	2.6
n-Heptane	µg/m³	N	NS	NS		20.4	16.5
n-Hexane	µg/m³	N	100,000	3,100		55.3	141
Methyl Isobutyl Ketone (MIBK)	µg/m³	N	430,000	13,000		<0.34	5.4 J
2-Propanol (Isopropanol)	µg/m³	N	29,000	880		8.0	27.6
Styrene	µg/m³	N	150,000	4,400		0.37 J	0.56 J
Trichlorofluoromethane	µg/m³	N	NS	NS		1.2 J	1.0 J
1,1,2-Trichlorotrifluoroethane	µg/m³	N	4,300,000	130,000		<0.47	0.82 J

Site: Indoor Air 6326 Bluemound Indoor 5/3/2017 **Center Interior** Ambient Summa 24 hour TO-15 NA SMALL COMM Indoor NA NA NA NA NA NA NA 13.8 <0.40 <0.35 <0.55 <0.28 NA NA

N = Noncarcinogen; C = Carcinogen

Blue and ITALICS : Exceeds Subslab Vapor Standard

BOLD Exceeds Indoor Air Standard

NA=Not Analyzed

NS : No Standards

Standards based on DNR Quick Look Up Table and EPA RSL Tables http://www.epa.gov/reg3hwmd/risk/human/rb-concentration table/index.htm June 2015 Small Commercial vs. Large Commercial/Industrial determined based on WDNR Publication RR-800

ce Analvtica www.pacelabs.com

Pace Analytical Services, LLC 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

May 16, 2017

Mr. Ken Ebbott Fehr Graham 1237 Pilgrim Road Plymouth, WI 53073

RE: Project: 15-1209 Master Drycleaning Pace Project No.: 10387771

Dear Mr. Ebbott:

Enclosed are the analytical results for sample(s) received by the laboratory on May 06, 2017. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

march the

Sarah Platzer sarah.platzer@pacelabs.com (612)607-1700 Project Manager

Enclosures

cc: Megan Hansen, Fehr Graham

REPORT OF LABORATORY ANALYSIS

CERTIFICATIONS

Project: 15-1209 Master Drycleaning Pace Project No.: 10387771

Minnesota Certification IDs

1700 Elm Street SE, Suite 200, Minneapolis, MN 55414 A2LA Certification #: 2926.01 Alabama Certification #: 40770 Alaska Contaminated Sites Certification #: UST-078 Alaska DW Certification #: MN00064 Arizona Certification #: AZ0014 Arkansas Certification #: 88-0680 California Certification #: MN00064 CNMI Saipan Certification #:MP0003 Colorado Certification #: MN00064 Connecticut Certification #: PH-0256 EPA Region 8 Certification #: 8TMS-L Florida Certification #: E87605 Georgia Certification #: 959 Guam EPA Certification #: MN00064 Hawaii Certification #: MN00064 Idaho Certification #: MN00064 Illinois Certification #: 200011 Indiana Certification #: C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167 Kentucky DW Certification #: 90062 Kentucky WW Certification #: 90062 Louisiana DEQ Certification #: 03086 Louisiana DW Certification #: MN00064 Maine Certification #: MN00064 Maryland Certification #: 322 Michigan Certification #: 9909

Minnesota Certification #: 027-053-137 Mississippi Certification #: MN00064 Montana Certification #: CERT0092 Nebraska Certification #: NE-OS-18-06 Nevada Certification #: MN00064 New Hampshire Certification #: 2081 New Jersey Certification #: MN002 New York Certification #: 11647 North Carolina DW Certification #: 27700 North Carolina WW Certification #: 530 North Dakota Certification #: R-036 Ohio DW Certification #: 41244 Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon NwTPH Certification #: MN300001 Oregon Secondary Certification #: MN200001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification #: MN00064 South Carolina Certification #:74003001 Tennessee Certification #: TN02818 Texas Certification #: T104704192 Utah Certification #: MN00064 Virginia Certification #: 460163 Washington Certification #: C486 West Virginia DW Certification #: 9952 C West Virginia WW Certification #: 382 Wisconsin Certification #: 999407970 Wyoming via EPA Region 8 Certification #: 8TMS-L

REPORT OF LABORATORY ANALYSIS

SAMPLE SUMMARY

Project: 15-1209 Master Drycleaning

Pace Project No.: 10387771

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10387771001	6326 Bluemound Rd Indoor Compo	Air	05/03/17 16:20	05/06/17 09:00

REPORT OF LABORATORY ANALYSIS

Pace Analytical [°] www.pacelabs.com

SAMPLE ANALYTE COUNT

Project:	15-1209 Master Drycleaning
Pace Project No.:	10387771

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
10387771001	6326 Bluemound Rd Indoor Compo	TO-15	EMC	5	PASI-M

•

REPORT OF LABORATORY ANALYSIS

⁸ace Analytical www.pacelabs.com

ANALYTICAL RESULTS

Project: 15-1209 Master Drycleaning

Pace Project No.: 10387771

Sample: 6326 Bluemound Rd Indoor Compo	Lab ID: 10387771001		Collected: 05/03/17 16:20			Received: 05/06/17 09:00 Matrix: Air			
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical	i							
cis-1,2-Dichloroethene	<0.35	ug/m3	1.2	0.35	1.44		05/10/17 21:29	156-59-2	
trans-1,2-Dichloroethene	<0.55	ug/m3	1.2	0.55	1.44		05/10/17 21:29	156-60-5	
Tetrachloroethene	13.8	ug/m3	0.99	0.40	1.44		05/10/17 21:29	127-18-4	
Trichloroethene	<0.40	ug/m3	0.79	0.40	1.44		05/10/17 21:29	79-01-6	
Vinyl chloride	<0.28	ug/m3	0.37	0.28	1.44		05/10/17 21:29	75-01-4	

REPORT OF LABORATORY ANALYSIS

ace Analytical www.pacelabs.com

QUALITY CONTROL DATA

QC Batch: 472962		Analysis Me	ethod:	TO	-15			
QC Batch Method: TO-15		Analysis De	scription:	то	15 MSV AIR	Low Level		
Associated Lab Samples: 10387771	001	·						
ETHOD BLANK: 2580230		Matrix	:: Air					
Associated Lab Samples: 10387771	001							
		Blank	Reporting	3				
Parameter	Units	Result	Limit		Analyzed	i Qua	lifiers	
cis-1,2-Dichloroethene	ug/m3	<0.25	0	.81	05/10/17 14	:14		_
Tetrachloroethene	ug/m3	<0.28		.69	05/10/17 14			
rans-1,2-Dichloroethene	ug/m3	<0.38			05/10/17 14			
Trichloroethene	ug/m3	<0.28			05/10/17 14			
Vinyl chloride	ug/m3	<0.20		.26	05/10/17 14			
ABORATORY CONTROL SAMPLE:	2580231		menerezandaritza					
	2000201	Spike	LCS	1	LCS	% Rec		
Parameter	Units	Conc.	Result		6 Rec	Limits	QL	alifiers
cis-1,2-Dichloroethene	ug/m3	43.9	43.8		100	70-133		
Fetrachloroethene	ug/m3	72.4	67.0		93	70-130		
rans-1,2-Dichloroethene	ug/m3	41.9	45.3		108	70-131		
Trichloroethene	ug/m3	57.9	55.0		95	70-130		
Vinyl chloride	ug/m3	27	27.2		101	70-130		
SAMPLE DUPLICATE: 2582341								_
		10387812001	Dup			Max		
Parameter	Units	Result	Result		RPD	RPD		Qualifiers
cis-1,2-Dichloroethene	ug/m3	ND	<0	.25			25	
Fetrachloroethene	ug/m3	ND	-	.28			25	
trans-1,2-Dichloroethene	ug/m3	ND		.38			25	
Trichloroethene	ug/m3	ND		.28			25	
Vinyl chloride	ug/m3	ND	-	.20			25	
SAMPLE DUPLICATE: 2582342								
		10387862003	Dup			Max		
Parameter	Units	Result	Result		RPD	RPD		Qualifiers
cis-1,2-Dichloroethene	ug/m3	NC		.37			25	
Fetrachloroethene	ug/m3	1.2		1.1		6	25	
rans-1,2-Dichloroethene	ug/m3	NC).57			25	
Trichloroethene	ug/m3	NC) <0).41			25	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Date: 05/16/2017 12:59 PM

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

www.pacelabs.com

QUALIFIERS

Project: 15-1209 Master Drycleaning Pace Project No.: 10387771

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor and percent moisture.

LOQ - Limit of Quantitation adjusted for dilution factor and percent moisture.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-M Pace Analytical Services - Minneapolis

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 15-1209 Master Drycleaning Pace Project No.: 10387771

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10387771001	6326 Bluemound Rd Indoor Compo	TO-15	472962		

REPORT OF LABORATORY ANALYSIS

Pace Analytical www.pacelabs.com

AIR: CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section A Section B Required Client Information: Required Project I	formation:	:		Section	n C nformation:	•					;					2	23	43	32	Pa	age:) d	of	
Company: Fehr-Graham Report To: Key	Elle	H		Attention	"Ken	Ebb	4										Pr	ogra	m	k			
Address: 1237 Pilgrim Rd Copy To:				Сотрал	v Marmor 7	ehr		shar	~						UST	្ ទ	uperfu	nd 3	🖀 Emb	sions	Clear	n Air A	ct .
Plymouth, WI 53073				Address		<u> </u>								έv	olunta	ry Cle	an Up	X	Dry Clea	in 🗂	RCRA 🗂	Othe	¥r
Email to: Lala Ha Felo free how (on Purchase Order No				Pace Qu	iote Refere	nce:									ition c					Re	porting Units	;	
Phone: 910 24444 Fax: Project Name: Ma	for C) ~~	leaning	Pace Pro	oject Manaç	er/Sales R	ер.	•							pling		ate .	\underline{k}			/m¹mg/r PBV PPM her	N	.
Requested Due Date/TAT: Project Number:		100		Pace Pro	ofile #:									Repo	rt Lev	el jj		III.	IV.		ther		
"Section D Required Client Information Valid Media Codes				COLLE	CTED						T			Meth		77	7	77	77	77	777		
AIR SAMPLE ID		(Client or		COLL.			unse -	nes Bisd	Sur	nma					_/	5	[].	//		Γ.	' / / -		
Sample IDs MUST BE UNIQUE 6 Liber Summa Con 6LL Low Volume Puff LVI		10 10					Canister Pressure (initial Field - psig)	Cenister Pressure (Final Field - psig)		an	0	Flov	-		/ /			/			//		
High Volume Pulf HV		PID Reading	COMPOSITE STAR	r	COM	POSITE -	ital F	niste nal F	Nur	nber	Con		umbe	[] /			2/2	[2],	-	5	/		
E Other PM	0 MEDIA (DATE	TIME	DATE	TIME	05	SE.						1		3/3/	2/2	3/2	2/2	1	Pace	Lab II	,
6326 Bivenound Rd Indoor Compose	461	270	5/2/17	1550	5/3/17	1620	-244	-2"H	12	67	FC	. 04	04	4			T		X		COL		
2		111										·											
3		1							<u> </u>								1	\mathbf{T}	·				
· · · · · · · · · · · · · · · · · · ·		1	<u> </u>								\mathbf{T}			$+\uparrow$			+					<u> </u>	
		+	•															┝─╊					
																		+					
	.	+								╞─┼─					-		+	++		+			
		-									┼─┼─			╉╾┾╵				+					
											$\left \right $												
9		-									┼╌┼╴			╉─┼╴	+								—–]
10										<u> </u>	+ +							┝╌┾					
11			┣──																				
		2000																					
Comments: Testingunalytes * PCE TCE	RELINU		HED BV - AI			DATE	TIM				-37 FA	λ∓FΩ M	A HUN)ATE			ME				TION	
A YCE	1/-	K	lluen	-	-	05/05	8;0	Dam	V		Ŕy	el	fu	_	5		_	5	<u> </u>	_	ξ <u>ξ</u>		<u>¥</u>
TCE	<u> </u>									\mathcal{Q}	6	<i>₹!</i>	te	5-1	-1	74	90	0			× v	• c	ž
Ci's-DCE														5-	6-1	1			_		NX NX		¥,
trans-DCE													• • • .								NN NN		۲/N
110						R NAME A													9		dy dy		Intac
ORIGINAL						us Angler	<u>chuen</u>	emen	M		·.				•				Temo In *C	ceive	Custody Sealed Cooler		Samples Intact
		•		l			le	<u> </u>	<u> </u>		DA	05/	OS/	7					, P			5	San

of 10

.

-7

?

102937771

Here Star	7	Air San	Document nple Conditio		eceipt		Document Rev Pag	/ised: 26AF e 1 of 1	PR2016	
P	ace Analytical		Documen F-MN-A-10				lssuing Pace Minnesc	Authority: ta Quality		
Air Sample Condition Upon Receipt	Client Name: Fehr-Grzhei	n	F	Project #	#:	MO	#:1038	377	71	
	Fed Ex UPS Commercial Pace	Speede		ent Co		10387				, ·
Tracking Number:				. –			Optional: Proj. D	ue Date:	Proj. Name:	
Custody Seal on Cooler/			Seals Inta	· _	Yes	∐ No				
Packing Material:	ubble Wrap Bubble		_	ne 📋	Tin Can	Dth			Blank rec:	
Temp. (T017 and T013 sam		Corrected Tem	ip (°C):	<u> </u>		m. Used:	B88A91216750 B88A01433100	98	☐1514011 ☐1514011	64
Temp should be above free		ctor:	<u>~</u>		Date & I	nitials of	Person Examining Co	ntents:	5-15-1-7	
Type of ice Received 🔲 🛙	Blue 🔟 Wet 🖉 None									
Chain of Custody Presen	+7	V Yes	□No	□n/a	1.		Com	nents:		
Chain of Custody Filled C		Ves			2.					
Chain of Custody Reling		Yes			3.		••••••••••••••••••••••••••••••••••••••			
Sampler Name and/or Si		Yes			4.				. <u> </u>	
Samples Arrived within I		Ves			5.					
Short Hold Time Analysi		Yes	ZN0		6.					
Rush Turn Around Time		Yes	No		7.					
Sufficient Volume?		⊿ Yes			8.					
Correct Containers Used	}	Yes			9.					
-Pace Containers Use		Tes								
Containers Intact?		Ves			10.					
Media: Mr Car	Airbag Filter	TDT	Passive		11.					
Sample Labels Match CC		Ves			12.	 				
								.		
Samples Received:	Conistors						Capistor	-		
Comple Number	Canisters	Tlaw Core	tanilos iD		ananta Ni		Canister	3	Elouy Contr	allan ID
Sample Number	Can ID	Flow Con			ample Nu	IUNEI	Can ID		Flow Contr	Diler ID
			··· ·.			<u></u>				
				-				 		
				-				.		
		· · · · ·	· · · · · · · · · · · · · · · · · · ·	-	······					
				-						
				-			-			
									1	
		+							<u>+</u>	
	· · · · · · · · · · · · · · · · · · ·		• =	-						
CLIENT NOTIFICATION/R Person Con	RESOLUTION	1			Date/Tir		Field Data Re		Yes No	
	blution:									
commenta Acac			R.S							
	······································									
		Λ								
Project Manager Review	" Zush IDa	bes_			-	Date:	5/8/2017			

.

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

SUBSLAB DEPRESSURIZATION SYSTEM MAINTENANCE PLAN

May 25, 2017

Property Located at:

6326 W. Bluemound Road, Wauwatosa, WI 53213

WDNR BRRTS #: 02-41-545142

Milwaukee County, Wisconsin

Introduction

This document is the Maintenance Plan for a Subslab Depressurization System (SSDS) at the above-referenced property in accordance with the requirements of s. NR 724.13(2), Wisconsin Administrative Code.

The maintenance activities relate to the SSDS (also identified as a vapor mitigation system) addressing subslab vapor contamination.

More site-specific information about this property may be found in:

- The case file in the DNR Regional Service Center office
- BRRTS on the Web (DNR's internet-based data base of contaminated sites at http://botw.dnr.state.wi.us/botw/SetUpBasicSearchForm.do
- GIS Registry PDF file for further information on the nature and extent of contamination: http://dnrmaps.wisconsin.gov/imf/imfApplyTheme.jsp?index=1 and
- The DNR Project Manager for this site in Milwaukee County, currently Mr. John Hnat at (414) 263-8644

Description of Contamination

Soil and groundwater contamination containing tetrachloroethene (PCE) and related breakdown products is present beneath the property at levels above relevant soil and groundwater standards established by the WDNR. Soil concentrations pose a risk to potential migration to groundwater (the groundwater pathway RCL) and groundwater concentrations exceed the NR140 Enforcement Standards. Subslab Depressurization System Maintenance Plan - Former Master Cleaners 6326 W. Bluemound Road, Wauwatosa, WI

Vapor containing PCE is present in the indoor air and subslab vapors of the building. The levels in the subslab vapors exceed concentrations that the WDNR / WDHFS has indicated could pose a risk to health. The SSDS has been installed and is operating to prevent the migration of subslab vapors to the interior of the building.

Description of the SSDS to be Maintained

The SSDS is comprised of one fan connected to two sub-floor pipes, installed to intercept vapor contamination beneath the concrete floor of the building. The fan is connected to two 25-foot long perforated pipes that run beneath the floor. One pipe was placed at a depth of five feet below grade, the other at a depth of one foot below grade, and both are bedded in pea gravel. The pea gravel is covered with a 15-mil thick plastic barrier (Stegowrap) that has been joined to the adjacent concrete with mastic prior to installation of the replacement three-inch thick concrete floor.

A RadonAway Model GP 501 electric fan was installed and hard-wired to a 20-amp circuit in the electrical breaker box in the building. The two subslab pipes connect to a three-inch PVC pipe and extend through the building roof, where the fan is mounted. The fan should operate on a continual basis.

A U-Tube manometer filled with blue water has been installed to help verify proper fan operation.

Photographs of the interior piping, U-tube manometer showing the typical measurement when the fan is functioning, and the circuit box control circuit are shown on the back of the inspection form.

Monthly Inspections

Monthly inspections of the SSDS are required to verify proper operation. Postinstallation testing was completed on April 18, 2017 which documented proper subslab communication, as shown by the measured pressure differentials on Figure 2.

The U-Tube manometer gauge must be visually inspected on at least a monthly basis or more frequently to verify operation. If the fan is operating properly, the liquid levels in the U-Tube limbs should not be equal. Please record the height of the elevated limb of the manometer on the U-Tube to the nearest 0.1 inches of water column on the attached Subslab Depressurization System Inspection Log. An initial record of the observed measurement has been noted on the form for your reference. It is recommended that the log be kept on a clipboard mounted on a pipe near the U-Tube.

Maintenance Activities

If problems are noted during inspections or at any other time during the year, repairs will be scheduled as soon as practical. Repairs to the SSDS may require restoration of power, replacement of the fan, resurfacing or filling of cracks or holes in the floor, and replacement or patching of any cracked or broken PVC piping.

The property owner must maintain the integrity of the SSDS and will maintain a copy of this Maintenance Plan on-site and make it available to all interested parties (i.e. on-site employees, contractors, future property owners or tenants, etc.) for viewing.

<u>Prohibition of Activities and Notification of DNR Prior to Actions Affecting a Cap or</u> <u>SSDS</u>

Per WDNR requirements, the following activities are prohibited on any portion of the property where the SSDS is required as shown on the attached map, unless prior written approval has been obtained from the Wisconsin Department of Natural Resources: 1) removal of the SSDS; 2) replacement with another SSDS; 3) excavating or grading of the land surface; 4) filling on capped or paved areas; 5) plowing for agricultural cultivation; or 6) construction or placement of a building or other structure.

Amendment or Withdrawal of Maintenance Plan

This Maintenance Plan can be amended or withdrawn by the property owner and its successors with the written approval of WDNR.

Contact Information as of May 2017

Property Owner: Mr. Harold Shipshock Master Drycleaning Inc. N57 W26389 Mt. Dulac Drive Sussex, WI 53089 Phone c/o Tom Shipshock, Son, at (414) 313-9168

- Purchaser: Ms. Doris Pec 1680 Pilgrim Pkwy Elm Grove, WI 53122-1531 414-217-6339 pelskal@hotmail.com
- Consultant: Fehr Graham 1237 Pilgrim Road Plymouth, WI 53073 (920) 892-2444

Subslab Depressurization System Maintenance Plan - Former Master Cleaners 6326 W. Bluemound Road, Wauwatosa, WI

Page 4

Attn: Mr. Kendrick Ebbott kebbott@fehr-graham.com

WDNR: Wisconsin Department of Natural Resources 2300 N. Dr. Martin Luther King Jr. Dr. Milwaukee, WI 53212 Attn: Mr. John Hnat 414 263-8644 John.Hnat@Wisconsin.gov

Attachments: Subslab Depressurization System Inspection Log and Photographs (3 copies) Figure 1: Site Layout and Investigation Borings Figure 2: Vapor System and Communication Test Results Table A.5: Vapor Analytical Table RadonAway Fan Installation and Operating Instructions

f:_pen\olde tyme cleaners\otc-2009-01\reports\vapor system commission report\vapor system maintenance plan.docx

Vapor Mitigation System Inspection Log Site Name Former Master Drycleaners Contacts: Address 6326 Bluemound Road Wauwatosa, WI BRRTS# 02-41-545142 State Sta

RECORD MEASUREMENTS MONTHLY Ken Ebbott or Dillon Plamann - Fehr Graham 920-892-2444 (Environmental Consulant)

Date	02-41-54514 Time	Initials / Company	North Wall U-Tube Reading (inches water column)	System On?	Comments
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	JS / Fehr		*******	
4/18/2017	11:45 AM	Graham	2.0	Yes	
		_			
	-				
2*677776					
					· · · · · · · · · · · · · · · · · · ·
			<u></u>		
······································				·······	
OTE: If U-Tube	Levels are hig	her on one side th	an the other, system i	s ON	

Vapor Mitigation System Inspection Log Site Name Former Master Drycleaners Contacts:

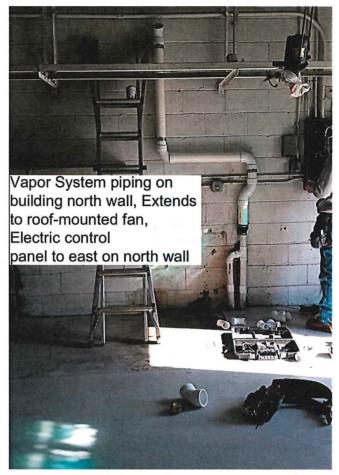
Site Manie	Tormer master Drycleaners	00
Address	6326 Bluemound Road	
	Wauwatosa, WI	
BRRTS#	02-41-545142	

RECORD MEASUREMENTS MONTHLY Ken Ebbott or Dillon Plamann - Fehr Graham 920-892-2444 (Environmental Consulant)

Date	Time	Initials / Company	North Wall U-Tube Reading (inches water column)	System On?	Comments
4/18/2017	11:45 AM	JS / Fehr Graham	2.0	Yes	
4/10/2017	11.45 AM	Grunum	2.0	103	***
_					
	-				
_					
					1999,999,999,999,999,999,999,999,999,99

					A

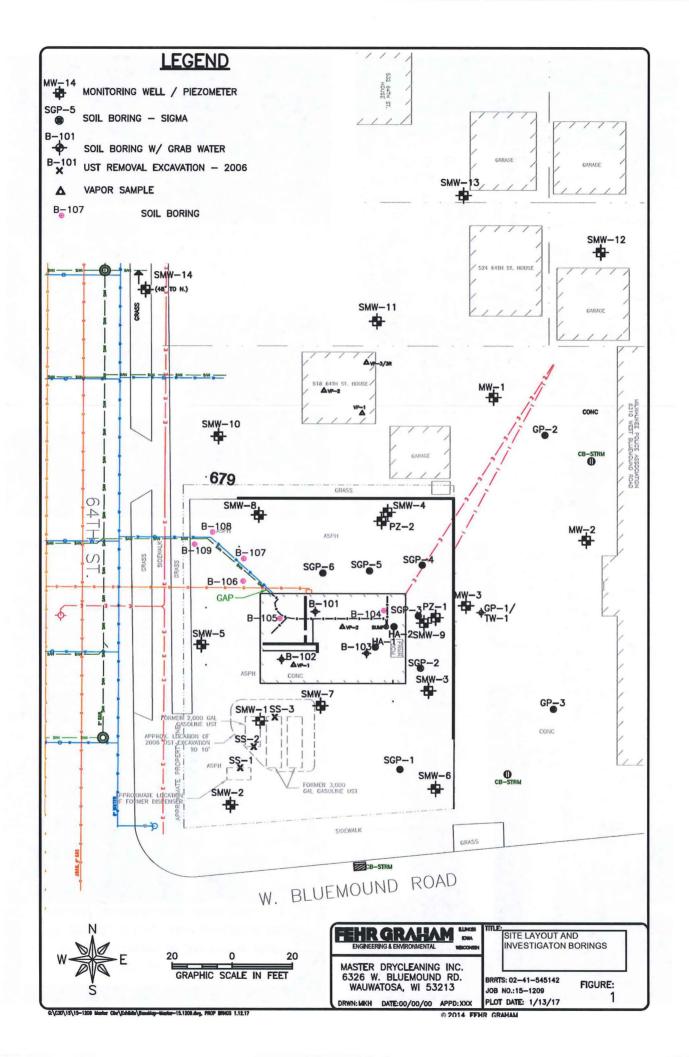
Vapor MitigationSystem Inspection LogSite NameFormer Master DrycleanersContacts:Address6326 Bluemound RoadContacts

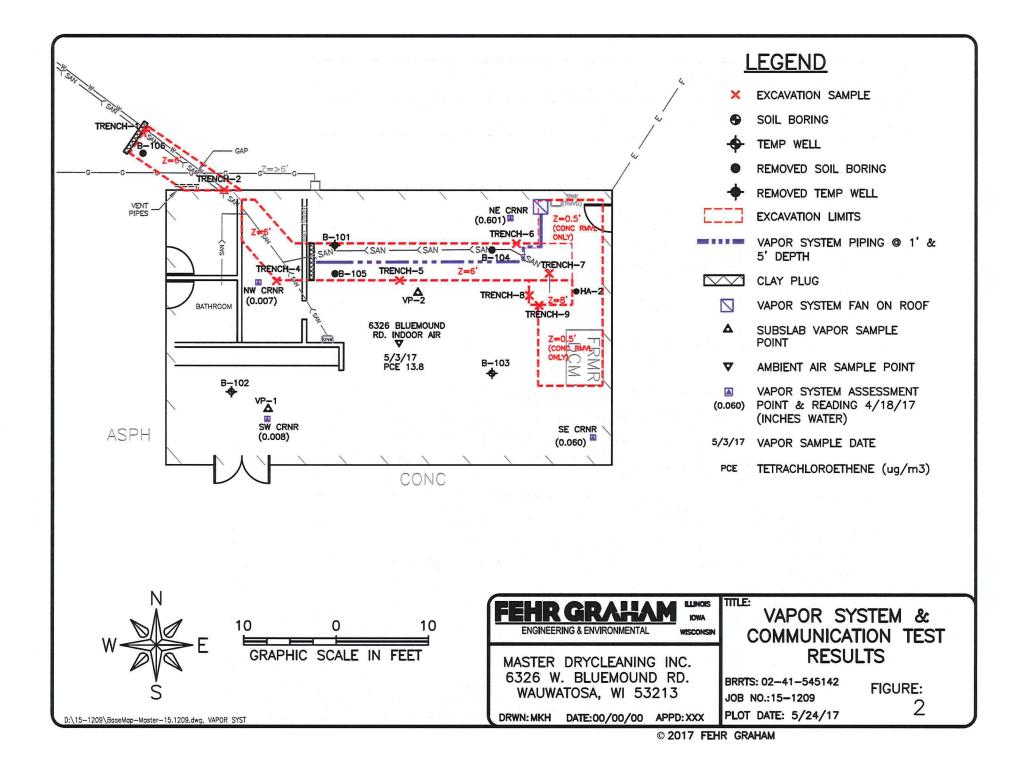

Wai BRRTS# 02-4

6326 Bluemound Road Wauwatosa, WI 02-41-545142

RECORD MEASUREMENTS MONTHLY Ken Ebbott or Dillon Plamann - Fehr Graham 920-892-2444 (Environmental Consulant)

DIR 1 3#			North Wall U-Tube Reading (inches water		
Date	Time	Initials / Company	column)	System On?	Comments
		JS / Fehr			
4/18/2017	11:45 AM	Graham	2.0	Yes	
	ļ				
					1
				·	
	1				
NOTE: If U-Tube I	evels are hig	her on one side th	nan the other, system i	IS ON	




Detail of Subfloor Piping located on Building North Wall, showing connection to Piping that extends through Roof to Fan

U-Tube Manometer showing proper displacement when fan is operating. If water levels are at same height in tubes, System is not operating.

TABLE 1Vapor Analytical Table - VOCMaster Drycleaning, Inc.6326 W. Bluemound Rd., Wauwatosa, WI 53213BRRTS# 02-41-545142

					Site : 6326	Bluemound
1 성공성	Sample ID				VP-1	VP-2
	Sample Date		6.1		2/24/2016	2/24/2016
	ple Location				SE corner (6326)	ctr work area (6326)
Тур	e of Sample		Ai Ai	Ai L	sub-slab	sub-slab
	tion Method		MAI	MAI	Summa	Summa
Time Period o		gen	Sub Sub	Inde S	30 min	30 min
	tical Method	en cino	AL	A R	TO-15	TO-15
Method/Result Lea	ak Detection	Card	N M	N CI N	water/shut-in; pass	water/shut-in; pass
STANDARDS CO	OMPARED TO	C-Carcinogen N-Non Carcinogen	wdnr / wdhfs small commercial subsiad Air	WDNR / WDHFS SMALL COMMERCIAL Indoor Air	SMALL COMM Subslab	SMALL COMM Subslab
Benzene	µg/m ³	C	530	16	0.84	6.8
Ethylbenzene	µg/m ³	С	1,600	49	2.6	4.5
Toluene	µg/m³	N	730,000	22,000	15.3	142
Kylenes	µg/m³	N	15,000	440	12.5	17.6
Naphthalene	µg/m³	С	120	3.6	6.3	5.3
1,2,4-Trimethylbenzene	µg/m ³	N	1,000	31	15.0	9.2
1,3,5-Trimethylbenzene	µg/m³	N	NS	NS	2.9	2.2
Tetrachloroethene (PCE)	µg/m³	N	6,000	180	608	63,100
Trichloroethene (TCE)	µg/m ³	С	290	8.8	 1.1	545
cis-1,2 Dichloroethene	µg/m ³	N	NS	NS	<0.38	7.1
trans-1,2 Dichloroethene	µg/m ³	N	NS	NS	<0.60	<0.53
/inyl Chloride	µg/m³	С	930	28	<0.30	<0.27
Methylene Chloride	µg/m ³	С	87,000	2,600	0.95 J	<0.75
Acetone	µg/m³	N	4,700,000	140,000	38.4	227
Bromomethane	µg/m³	N	730	22	0.77 J	<0.43
2-Butanone (Methyl Ethyl Ketone)	µg/m³	N	730,000	22,000	2.9 J	37.7
Carbon Disulfide	µg/m³	N	100,000	3,100	0.37 J	3.4
Cyclohexane	µg/m ³	N	870,000	26,000	27.8	86.9
Dichlorodifluoromethane	µg/m³	N	15,000	440	3.2	3.5
Ethanol	µg/m³	N	NS	NS	73.1	96.5
4-Ethyltoluene	μg/m ³		NS	NS	3.3	2.6
n-Heptane	µg/m ³	N	NS	NS	20.4	16.5
n-Hexane	µg/m³	N	100,000	3,100	 55.3	141
Methyl Isobutyl Ketone (MIBK)	µg/m³	N	430,000	13,000	<0.34	5.4 J
2-Propanol (Isopropanol)	μg/m ³	N	29,000	880	8.0	27.6
Styrene	µg/m ³	N	150,000	4,400	0.37 J	0.56 J
Trichlorofluoromethane	µg/m³	N	NS	NS	1.2 J	1.0 J
1,1,2-Trichlorotrifluoroethane	µg/m³	N	4,300,000	130,000	<0.47	0.82 J

Site: Indoor Air 6326 Bluemound Indoor 5/3/2017 Center Interior Ambient Summa 24 hour TO-15 NA SMALL COMM Indoor NA NA NA NA NA NA NA 13.8 <0.40 <0.35 <0.55 <0.28 NA NA

N = Noncarcinogen; C = Carcinogen

Blue and ITALICS : Exceeds Subslab Vapor Standard

BOLD Exceeds Indoor Air Standard

NA=Not Analyzed

NS : No Standards

Standards based on DNR Quick Look Up Table and EPA RSL Tables http://www.epa.gov/reg3hwmd/risk/human/rb-concentration table/index.htm June 2015 Small Commercial vs. Large Commercial/Industrial determined based on WDNR Publication RR-800

IMPORTANT INSTRUCTIONS TO INSTALLER

Inspect the CP/XP/XR/RP/SF Series Fan for shipping damage within 15 days of receipt. Notify RadonAway* of any damages immediately. RadonAway* is not responsible for damages incurred during shipping. However, for your benefit, RadonAway* does insure shipments.

There are no user serviceable parts inside the fan. Do not attempt to open. Return unit to factory for service.

Install the GP/XP/XR/RP/SF Series Fan in accordance with all EPA standard practices, and state and local building codes and state regulations.

Provide a copy of this instruction or comparable radon system and testing information to the building occupants after completing system installation.

WARRANTY

RadonAway@ warrants that the GPX01/XP/XP/RP/SF Series Fan (the "Fan") will be free from defects in materials and workmanship for a period of 90 days from the date of purchase (the "Warranty Term").

RadonAway@ will replace any Fan which fails due to defects in materials or workmanship during the Warranty Term. The Fan must be returned (at Owner's cost) to the RadonAway@ factory. Any Fan returned to the factory will be discarded unless the Owner provides specific instructions along with the Fan when it is returned regardless of whether or not the Fan is actually replaced under this warranty. Proof of purchase must be supplied upon request for service under this Warranty.

This Warranty is contingent on installation of the Fan in accordance with the instructions provided. This Warranty does not apply where any repairs or alterations have been mode or attempted by others, or if the unit has been abused or misused. Warranty does not cover damage in shipment unless the damage is due to the nogligence of RadonAway0.

5 YEAR EXTENDED WARRANTY WITH PROFESSIONAL INSTALLATION.

RadonAway® will extend the Warranty Term of the fan to five (5) years from date of purchase or saxty-three (63) months from the date of manufacture, whichever is sooner, if the Fan is installed in a professionally designed and professionally installed active soil depressurzation system or installed as a replacement (an in a professionally designed and professionally installed active soil depressurzation system or installed as a replacement (an in a professionally designed and professionally installed active soil depressurzation system or installed as a replacement (an in a professionally designed and professionally installed active soil depressurzation system or installed as a replacement (an in a professional installation may be required for service under this warranty. Outside the Continental United States and Canada the extended Warranty Term is limited to ne (1) year from the date of manufacture.

RadonAway@ is not responsible for installation, removal or delivery costs associated with this Warranty

LIMITATION OF WARRANTY

EXCEPT AS STATED ABOVE, THE GPx01/XP/XR/RP SERIES FANS ARE PROVIDED WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

IN NO EVENT SHALL RADONAWAY BE LIABLE FOR ANY DIRECT, NDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF, OR RELATING TO, THE FAN OR THE PERFORMANCE THEREOF. RADONAWAYS AGGREGATE LIABILITY HEREUNDER SHALL NOT IN ANY EVENT EXCEED THE AMOUNT OF THE PURCHASE PRICE OF SAID PRODUCT. THE SOLE AND EXCLUSIVE REMEDY UNDER THIS WARRANTY SHALL BE THE REPAIR OR REPLACEMENT OF THE PRODUCT, TO THE EXTENT THE SAME DOES NOT MEET WITH RADONAWAY'S WARRANTY AS PROVIDED ABOVE.

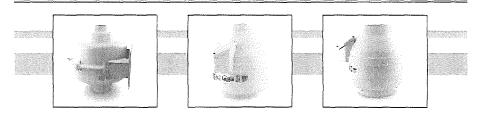
For service under this Warranty, contact RadonAway for a Return Material Authorization (RMA) number and shipping information. No returns can be accepted without an RMA. If factory return is required, the customer assumes all shipping costs, including insurance, to and from factory.

RadonAway® 3 Saber Way Ward Hill, MA 01835 USA TEL (978) 521-3703 FAX (978) 521-3964 Emuil to: Returns®RadonAway com

Record the following information for your records:

Serial No.

Purchase Date.


Page 8 of 8

IN014 Rev. M

MAX Y"we

The World's Leading Radon Fan Manufacturer

GP/XP/XR Series Installation & Operating Instructions Please Read And Save These Instructions

DO NOT CONNECT POWER SUPPLY UNTIL FAN IS COMPLETELY INSTALLED. MAKE SURE ELECTRICAL SERVICE TO FAN IS LOCKED IN "OFF" POSITION. DISCONNECT POWER BEFORE SERVICING FAN.

- 1. WARNING! For General Ventilating Use Only. Do Not Use to Exhaust Hazardous, Corrosive or Explosive Materials, Gases or Vapors. See Vapor Intrusion Application Note #AN001 for important information on VI applications. RadonAway.com/vapor-intrusion
- NOTE: Fan is suitable for use with solid state speed controls however use of speed controls is not generally recommended.
- 3. WARNING! Check voltage at the fan to insure it corresponds with nameplate.
- 4. WARNING! Normal operation of this device may affect the combustion airflow needed for safe operation of fuel burning equipment. Check for possible backdraft conditions on all combustion devices after installation.
- NOTICE! There are no user serviceable parts located inside the fan unit. Do NOT attempt to open. Return unit to the factory for service.
- WARNING! Do not leave fan unit installed on system piping without electrical power for more than 48 hours. Fan failure could result from this non-operational storage.
- WARNING TO REDUCE THE RISK OF FIRE, ELECTRIC SHOCK, OR INJURY TO PERSONS, OBSERVE THE FOLLOWING:

a) Use this unit only in the manner intended by the manufacturer. If you have questions, contact the manufacturer, b)Before servicing or cleaning unit, switch power off at service panel and lock the service disconnecting means to prevent power from being switched on accidentally. When the service disconnecting means cannot be locked, securely fasten a prominent warning device, such as a tag, to the service panel.

c) Installation work and electrical wiring must be done by qualified person(s) in accordance with all applicable codes and standards, including fire rated construction.

d) Sufficient air is needed for proper combustion and exhausting of gases through the flue (chimney) of fuel burning equipment to prevent back drafting. Follow the heating equipment manufacturers guideline and safety standards such as those published by the National Fire Protection Association, and the American Society for Heating, Refrigeration and Air Conditioning Engineers (ASHRAE), and the local code authorities.

e) When cutting or drilling into a wall or ceiling, do not damage electrical wiring and other hidden utilities.

f) Ducted fans must always be vented to outdoors.

g) If this unit is to be installed over a tub or shower, it must be marked as appropriate for the application and be connected to a GFCI (Ground Fault Circuit Interrupter) - protected branch circuit.

8/15

XP/XR SERIES PRODUCT SPECIFICATIONS

The following chart shows fan performance for the XP & XR Series Fan:

						uction "We			
	0"	.25"	.5"	.75"	1.0"	1.25"	1.5 ⁴	1.75"	2.0"
XP151	180	162	140	117	78	46	10	-	-
XP201	150	130	110	93	74	57	38	20	-
XR261	250	215	185	150	115	80	50	20	-

	Maximum Recommended	1 Operating Pressure*
XP151 XP201	1.3" W.C. 1.7" W.C.	(Sea Level Operation)** (Sea Level Operation)**
XR261	1.7 W.C. 1.6" W.C.	(Sea Level Operation)**

*Reduce by 10% for High Temperature Operation **Reduce by 4% per 1000 feet of altitude

	Power Consumption @ 120 VAC
XP151	45 - 60 watts
XP201	45 - 66 watts
XR261	65 - 105 watts

XP Series Inlet/Outlet: 4.5" OD (4.0" PVC Sched 40 size compatible)
XR Series Inlet/Outlet: 5.875" OD
Mounting: Mount on the duct pipe or with optional mounting bracket.
Recommended ducting: 3" or 4" Schedule 20/40 PVC Pipe
Storage temperature range: 32 - 100 degrees F.
Normal operating temperature range: -20 - 120 degrees F.
Maximum inlet air temperature: 80 degrees F.
Size: 9.5H" x 8.5" Dia.
Weight: 6 lbs. (XR261 - 7 lbs)

Continuous Duty Thermally Protected Class B Insulation 3000 RPM Residential Use Only Rated for Indoor or Outdoor Use

Intertek

77728

Conforms to UL STD. 507 Certified to CAN/CSA STD. C22.2 No.113

GP SERIES PRODUCT SPECIFICATIONS

The following chart shows fan performance for the GP Series Fan:

Typical CFM Vs Static Suction "WC								
	1.0"	1.0	<i>4.</i> 0	4.9	5.0	0.0	4.0"	
				_			_	
GP501	95	87	80	70	57	30	5	
GP401	93	82	60	38	12	-	-	
GP301	92	77	45	10	-	-	-	
GP201	82	58	5	-	-	-	-	

Maximum Recommended Operating Pressure*					
GP501	3.8" W.C.	(Sea Level Operation)**			
GP401	3.0" W.C.	(Sea Level Operation)**			
GP301	2.4" W.C.	(Sea Level Operation)**			
GP201	1.8" W.C.	(Sea Level Operation)**			

"Reduce by 10% for High Temperature Operation *"Reduce by 4% per 1000 feet of altitude

	Power Consumption @ 120 VAC	
GP501	70 - 140 watts	
GP401	60 - 110 watts	
GP301	55 - 90 watts	
GP201	40 - 60 watts	

Inlet/Outlet: 3.5" OD (3.0" PVC Sched 40 size compatible) Mounting: Fan may be mounted on the duct pipe or with integral flanges. Weight: 12 lbs. Size: 13H" x 12.5" x 12.5" Recommended ducting: 3" or 4" Schedule 20/40 PVC Pipe Storage temperature range: 32 - 100 degrees F. Normal operating temperature range: -20 - 120 degrees F. Maximum inlet air temperature: 80 degrees F.

Continuous Duty Class B Insulation 3000 RPM Thermally Protected Rated for Indoor or Outdoor Use

LISTED Electric Fan

Intertek CAN 77728 C2

UL STD. 507 S Certified to CAN/CSA STD. C22.2 No.113

Conforms to

Page 6 of 8

IN014 Rev M

Page 7 of 8

IN014 Rev M

INSTALLATION & OPERATING INSTRUCTION IN014 Rev M

eries	GP Seri	es
p/n 23010-1	GP201	p/n 23007-1
p/n 23011-1	GP301	p/n 23006-1
p/n 23019-1	GP401	p/n 23009-1
	GP501	p/n 23005-1

1.0 SYSTEM DESIGN CONSIDERATIONS

1.1 INTRODUCTION

The GP/XP/XR Series Radon Fans are intended for use by trained, professional certified/licensed" after professional Radon mitigators. The purpose of this instruction is to provide additional guidance for the most effective use of a fan. This instruction should be considered as a supplement to EPA / radon industry standard practices, state and local building codes and state regulations. In the event of a conflict, those codes, practices and regulations take precedence over this instruction.

XP/XR S

XP151

XP201

XR261

1.2 ENVIRONMENTALS

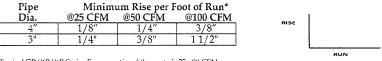
The GP/XP/XR Series Fans are designed to perform year-round in all but the harshest climates without additional concern for temperature or weather. For installations in an area of severe cold weather, please contact RadonAway for assistance. When not in operation, the fan should be stored in an area where the temperature is never less than 32° F. or more than 100° F.

1.3 ACOUSTICS

The GP/XP/XR Series Fan, when installed properly, operates with little or no noticeable noise to the building occupants. The velocity of the outgoing air should be considered in the overall system design. In some cases the "rushing" sound of the outlet air may be disturbing. In these instances, the use of a RadonAway Exhaust Muffler is recommended.

1.4 GROUND WATER

In the event that a temporary high water table results in water at or above slab level, water may be drawn into the riser pipes thus blocking air flow to the GP/XP/XR Series Fan. The lack of cooling air may result in the fan cycling on and off as the internal temperature rises above the thermal cutoff and falls upon shutoff. Should this condition arise, it is recommended that the fan be turned off until the water recedes allowing for return to normal operation.

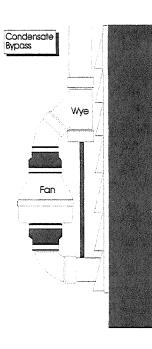

1.5 SLAB COVERAGE

The GP/XP/XR Series Fan can provide coverage up to 2000+ sq. ft. per slab penetration. This will primarily depend on the sub-slab material in any particular installation. In general, the tighter the material, the smaller the area covered per penetration. Appropriate selection of the GP/XP/XR Series Fan best suited for the sub-slab material can improve the slab coverage. The GP & XP Series have a wide range of models to choose from to cover a wide range of subslab material. The higher static suction fans are generally used for tighter subslab materials. The XR Series is specifically designed for high flow applications such as stone/gravel and drain tile. Additional suction points can be added as required. It is recommended that a small pit (5 to 10 gallons in size) be created below the slab at each suction hole.

1.6 CONDENSATION & DRAINAGE

Condensation is formed in the piping of a mitigation system when the air in the piping is chilled below its dew point. This can occur at points where the system piping goes through unheated space such as an attic, garage or outside. The system design must provide a means for water to drain back to a slab hole to remove the condensation. The GP/XP/XR Series Fan **MUST** be mounted vertically plumb and level, with the outlet pointing up for proper drainage through the fan. Avoid mounting the fan in any orientation that will allow water to accumulate inside the fan housing. The GP/XP/XR Series Fans are **NOT** suitable for underground burial.

For GP/XP/XR Series Fan piping, the following table provides the minimum recommended pipe diameter and pitch under several system conditions.


*Typical GP/XP/XR Series Fan operational flow rate is 25 - 90 CFM. (For more precision, determine flow rate by using the chart in the addendum.)

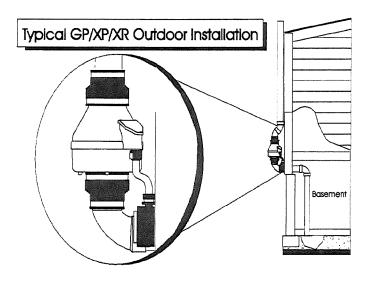
Under some circumstances in an outdoor installation a condensate bypass should be installed in the outlet ducting as shown. This may be particularly true in cold climate installations which require long lengths of outlet ducting or where the outlet ducting is likely to produce large amounts of condensation because of high soil moisture or outlet duct material. Schedule 20 piping and other thin-walled plastic ducting and Aluminum downspout will normally produce much more condensation than Schedule 40 piping.

The bypass is constructed with a 45 degree Wye fitting at the bottom of the outlet stack. The bottom of the Wye is capped and fitted with a tube that connects to the inlet piping or other drain. The condensation produced in the outlet stack is collected in the Wye fitting and drained through the bypass tube. The bypass tubing may be insulated to prevent freezing.

1.7 SYSTEM MONITOR & LABEL

A System Monitor, such as a manometer (P/N 50017) or audible alarm (P/N 28001-2) is required to notify the occupants of a fan system malfunction. A System Label (provided with manometer P/N 50017) with instructions for contacting the installing contractor for service and also identifying the necessity for regular radon tests to be conducted by the building occupants, must be conspicuously placed where the occupants frequent and can see the label.

1.8 ELECTRICAL WIRING


The GP/XP/XR Series Fans operate on standard 120V 60 Hz. AC. All wiring must be performed in accordance with the National Fire Protection Association's (NFPA)"National Electrical Code, Standard #70"-current edition for all commercial and industrial work, and state and local building codes. All wiring must be performed by a qualified and licensed electrician. Outdoor installations require the use of a U.L. listed watertight conduit. Ensure that all exterior electrical boxes are outdoor rated and properly sealed to prevent water penetration into the box. A means, such as a weep hole, is recommended to drain the box.

1.9 SPEED CONTROLS

The GP/XP/XR Series Fans are rated for use with electronic speed controls however, they are generally not recommended. If used, the speed control recommended is Pass & Seymour Solid State Speed Control Cat. No. 94601-1.

2.0 INSTALLATION

The GP/XP/XR Series Fan can be mounted indoors or outdoors. (It is suggested that EPA recommendations be followed in choosing the fan location.) The GP/XP/XR Series Fan may be mounted directly on the system piping or fastened to a supporting structure by means of optional mounting bracket.

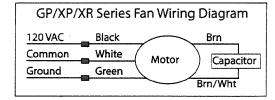
Page 4 of 8

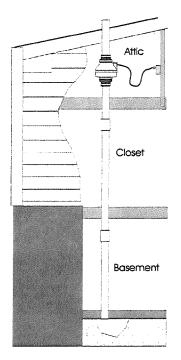
IN014 Rev. M

2.1 MOUNTING

Mount the GP/XP/XR Series Fan vertically with outlet up. Insure the unit is plumb and level. When mounting directly on the system piping assure that the fan does not contact any building surface to avoid vibration noise.

2.2 MOUNTING BRACKET (optional)


The GP/XP/XR Series Fan may be optionally secured with the integral mounting bracket on the GP Series Fan or with RadonAway P/N 25007 mounting bracket for an XP/XR Series Fan. Foam or rubber grommets may also be used between the bracket and mounting surface for vibration isolation.


2.3 SYSTEM PIPING

Complete piping run, using flexible couplings as means of disconnect for servicing the unit and vibration isolation.

2.4 ELECTRICAL CONNECTION

Connect wiring with wire nuts provided, observing proper connections (See Section 1.8):

2.5 VENT MUFFLER (optional)

Install the muffler assembly in the selected location in the outlet ducting. Solvent weld all connections. The muffler is normally installed at the end of the vent pipe.

2.6 OPERATION CHECKS & ANNUAL SYSTEM MAINTENANCE

- _____ Verify all connections are tight and leak-free.
- _____ Insure the GP/XP/XR Series Fan and all ducting is secure and vibration-free.
- Verify system vacuum pressure with manometer. Insure vacuum pressure is within normal operating range and less than the maximum recommended operating pressure. (Based on sea-level operation, at higher altitudes reduce by about 4% per 1000 Feet.) (Further reduce Maximum Operating Pressure by 10% for High Temperature environments) See Product Specifications. If this is exceeded, increase the number of suction points.
 - ____ Verify Radon levels by testing to EPA protocol.

Page 5 of 8

IN014 Rev M