

January 16, 2007 (ECI 01-2300-3057)

Mr. Mark Drews Wisconsin Department of Natural Resources 141 Northwest Barstow Street, Room 180 Waukesha, Wisconsin 53188

RE: Site Investigation Scoping; Express Cleaners, Incorporated, 3941 North Main Street, Racine, Wisconsin; WDNR BRRTS #02-52-547631

Dear Mr. Drews:

Northern Environmental Technologies, Incorporated (Northern Environmental) completed the site investigation scoping for Express Cleaners, Incorporated (Express Cleaners) at 3941 North Main Street, Racine, Wisconsin (the Site). Express Cleaners is an active dry cleaning business that occupies the northern portion of a building on a parcel of property with the address of 3921-3941 North Main Street, Racine, Wisconsin (the Property).

During April 2006, perchloroethylene contamination was discovered during a Phase II environmental site assessment (ESA) completed at the Site. This submittal summarizes the historic uses of the Site, provides details of previous Phase I and II ESAs, and addresses the site investigation scoping requirements of section NR 169.05(27), Wisconsin Administrative Code (s. NR 169.05[27], Wis. Adm. Code). This report was prepared to ensure that the scope and detail of subsequent field investigation is appropriate to the complexity of the Site.

BACKGROUND INFORMATION

The Site is located on an approximately 0.78-acre parcel in the northeast quarter of the northeast quarter of Section 33, Township 4 North, Range 23 East, Racine, Racine County, Wisconsin as shown in Figure 1 (USGS, 1971). The Property layout is shown in Figure 2. The Site is in a commercial and residential developed area in the city of Racine. The Property is bordered by a gasoline filling station/automobile repair business to the north, vegetable gardens to the east, commercial businesses to the south, and North Main Street followed by an apartment complex to the west.

A single-story masonry building on a concrete slab occupies the Property. The remainder of the Property is covered by asphalt. The Property building is divided into three units (Figure 2). Express Cleaners has operated a dry cleaning business in the northern unit for approximately 1 year. The former and current layout of the dry cleaning equipment is illustrated in Figure 3. Tetrachloroethene (PCE) is the solvent currently used in the dry cleaning machine at the Site. The middle unit, (3931 North Main Street), formerly used as a liquor store, is currently vacant. A tanning salon has occupied the southern unit (3921 North Main Street) for at least 16 years.

Gabriel Environmental Services (Gabriel) completed a Phase I ESA of the Site during March 2006 (Gabriel, 2006a). At the time of the Phase I ESA, Express Cleaners operated a dry cleaning business in the northern unit of the Property building. Based on information contained in the report, a Columbia Dry Cleaning Machine and other laundry equipment were observed in the southeast corner of the northern unit. The dry

cleaning machine was placed within secondary containment. Gabriel identified recognized environmental conditions (RECs) associated with the dry cleaning business operating at the Property. During Gabriel's property inspection, three 55-gallon drums of used PCE and used filters were observed along the outside east wall of the building. The drums did not have secondary containment. Disposal documentation of used PCE and filters was not available at the time of the Phase I ESA inspection. Gabriel also observed a 143-pound plastic container of sodium hydroxide and a 5-gallon container of PCE adjacent to the dry cleaning machine in the southeast corner of Express Cleaners. The containers did not have secondary containment. The condition of the storage containers or evidence of spilling was not discussed. A garbage dumpster was also observed in the northeast corner of the Property. No dry cleaning waste was observed within the dumpster.

Gabriel conducted a Phase II ESA during April 2006 (Gabriel, 2006b) to evaluate soil quality near the building. Gabriel collected soil samples from three boreholes. The soil samples were laboratory analyzed for volatile organic compounds. The borehole locations are included in Figure 3. PCE concentrations as high as 121,000 micrograms per kilogram and lesser concentrations of trichloroethene (TCE) and cis 1,2-dichloroethene (cis 1,2-DCE) were detected in the collected soil samples. Gabriel concluded that used PCE and filters stored in 55-gallon drums and PCE stored within the building had been released to soil at the Site. A copy of the Phase II ESA report is included in Attachment A.

The results of the Phase II ESA were reported to the Wisconsin Department of Natural Resources (WDNR) who subsequently assigned Bureau of Remediation and Redevelopment Tracking System number 02-52-547631 to the Site and requested a site investigation and appropriate remedial action be performed (WDNR, 2006). During December 2006, Mr. James C. Small, on behalf of the owner (Erhlich Family Limited Partnership), retained Northern Environmental to complete site scoping activities at the Site. Northern Environmental understands that eligibility for the Dry Cleaning Environmental Fund has been established for the Site.

METHODS OF INVESTIGATION

Northern Environmental inspected the Property, interviewed the following individuals, and reviewed data from the following sources to determine current historical land use, physical setting, existing soil conditions, and to address the Site Investigation Scoping requirements of s. NR 169.05(27), Wis. Adm. Code.

- Aerial photographs (SEWRPC, 1963, 1967, 1970, 1975, 1980, 1985, 1990, 1995, 2000)
- ▲ Local physiography (USGS, 1971)
- Local geology and hydrology (Mickelson, et al., 1984) (Trotta and Cotter, 1973)
- A Historical fire insurance map search (EDR, 2006a)
- Mr. Jun Ahn (Hatfield, 2006a)
- Ms. Gretchen Killips (Hatfield, 2006b)
- City of Racine building inspection department (CRBI, 2006)
- City of Racine Geographic Information System (COR, 2006)
- Wisconsin Department of Commerce Tank Database (COMM, 2006)
- A Phase I ESA (Gabriel, 2006a)
- A Phase II ESA (Gabriel, 2006b)
- ▲ Wisconsin Department of Natural Resources (WDNR) LUST File Review, Pugh Oil Property (Hatfield, 2006c)
- ▲ WDNR BRRTS Database (WDNR, 2006)

Northern Environmental also contracted Environmental Data Resources, Incorporated (EDR) to perform a records search of standard federal and state databases to identify documented potential environmental conditions on or near the Property (EDR, 2006b). Relevant sections of the EDR report and a listing of the searched databases are included in Attachment B. The results of our investigation are documented in the following sections.

OVERVIEW OF LOCAL PHYSIOGRAPHY, GEOLOGY, AND HYDROGEOLOGY

The ground surface at the Site is generally flat. Surface-water runoff west of the Site building flows into storm sewer catch basins in north Main Street. Surface-water runoff east of the Site building flows east and onto the adjacent unpaved property. The parking lot and service drive are paved with asphalt.

Native sediments in the area consist of till deposits of the Oak Creek Formation (Mickelson, et al., 1984). The Oak Creek Formation generally consists of silty clay till deposited by ice of the Lake Michigan and Green Bay Lobes and associated fluvial and lacustrine deposits. This formation typically overlies older glacial sediments or Ordovician-age dolomite bedrock (Mickelson, et al., 1984). Based on soil descriptions logged by Gabriel during a Phase II ESA, soil at the Site consists of discontinuous units of sand, clay, and sandy clay. Depth to bedrock ranges from 50 to 100 feet below grade (fbg) (Trotta and Cotter, 1973).

The shallow water table is often a subdued expression of surface topography. Shallow groundwater generally flows from areas of groundwater recharge, such as hills and broad uplands, to areas of groundwater discharge, such as wetlands, rivers, and lakes. Based on the local surface topography, shallow groundwater is expected to flow generally north towards an unnamed intermittent stream that flows east into Lake Michigan. Based on groundwater elevation measurements collected as part of a leaking underground storage tank (LUST) investigation at the neighboring Pugh Oil property, groundwater was encountered at approximately 4 to 16 fbg and flowed northwest (Hatfield, 2006c). A groundwater elevation contour map is included in Attachment C. Buried utility lines and sewers within North Main Street may be altering shallow groundwater flow direction.

SCOPING RESULTS

Site investigation scoping was conducted in accordance with s NR 169.05(27), Wis. Adm. Code. The specific scoping requirements are listed in italics and followed by the appropriate response.

1 History of the facility, including the location of dry cleaning equipment and chemical and filter storage.

Northern Environmental contracted EDR to conduct a search of historical fire insurance maps of the Property and surrounding area (EDR, 2006b). Historical fire insurance maps were not available for the Property or surrounding area.

Aerial photographs (SWRPC, 1963, 1967, 1970, 1975, 1980, 1985, 1990, 1995, 2000) were reviewed for historical changes that have occurred at the Property since 1963. The Property appeared to be a vacant grassy field between at least 1963 and 1970. The current Property building is first visible in the 1975 aerial photograph. No significant changes to the Property were observed in the aerial photographs after 1975. The two gasoline filling stations north of the Property were observed in all the aerial photographs.

No permits or records of environmental concern were noted in the building inspection records (CRBI, 2006). Information regarding how long the Site had been used as by a dry cleaning business was not available. The EDR report identified the Site as a RCRA small quantity generator, FINDS site, and MANIFEST site. According to EDR records, these are the result of the disposal of used dry cleaning solvents. No violations were reported. No underground storage tanks (USTs) or aboveground storage tanks were registered on Wisconsin Department of Commerce tank database for the Property (COMM, 2006)

The current owner of Express Cleaners, Mr. Jun Ahn, was interviewed to evaluate the current dry cleaning operation and to provide information regarding the Site history (Hatfield, 2006a). Mr. Ahn has operated Express Cleaners at the Site since 2005. Valet Cleaners, also a dry cleaning business, occupied the Site before 2005. Before moving his dry cleaning business to the Site, Mr. Ahn observed a dry cleaning machine that used PCE being removed from the building. According to Mr. Ahn, the dry cleaning machine was "very old" and did not have secondary containment. The former dry cleaning machine location is shown in Figure

3. Mr. Ahn did not observe any other dry cleaning machines at the Site. Mr. Ahn installed the in-use Columbia Dry Cleaning Machine before opening Express Cleaners. The Columbia Dry Cleaning Machine uses PCE and is placed within secondary containment. PCE is stored within the machine. Mr. Ahn stated that the only solvent he uses is PCE. Used PCE, dry cleaning machine filters, and separator water are stored in 5- to 55-gallon sealed containers within the Site building.

During a site inspection conducted by Mr. Christopher Hatfield (Northern Environmental) on December 8, 2006, the observed Property uses were consistent with those reported in the Gabriel Phase I ESA. However, the drums of used PCE and filters were stored within the Site building. In addition, no floor drains were observed within the Site building. Two sealed sanitary sewer pipes were observed protruding from the concrete floor at the locations shown in Figure 3.

Ms. Gretchen Killips, an employee of Valet Cleaners between 1991 and 2005 and employee of Express Cleaners between 2005 and the present, was also interviewed to determine historic dry cleaning operations at the Site (Hatfield, 2006b). She confirmed the location of the former dry cleaning machine (Figure 3) and stated that the dry cleaning machine previously used was a Marvel brand machine and at least 30 years old when it was removed during 2005. The machine was typically filled by a tanker truck that parked along the east side of the Site building and pumped PCE through a hose directly into the dry cleaning machine. She also reported the storage of used PCE and filters (without secondary containment) in 55-gallon drums occurred east of the building. She did not recall who performed the disposal of used PCE or filters and did not recall any spillage on surfaces east of the building associated with the used PCE and filter storage, or PCE deliveries. She did recall "minor" spillage of PCE on a few occasions at the dry cleaning machine during filling. She did not observe any spilled PCE spreading further than a few feet from the dry cleaning machine during filling. She also stated that the garbage dumpster has always been located at the northeast corner of the Site.

Northern Environmental attempted to contact a former manager of Valet Cleaners (Mr. Steve Rawlinko) to obtain additional dry cleaning operation history. Mr. Rawlinko did not respond to our requests (Hatfield, 2006d).

2) Knowledge of the type and amount of contamination.

The type of contamination (PCE and its breakdown products) was identified during the Gabriel Phase II ESA. The amount of contamination is unknown. Boreholes completed during the Gabriel Phase II ESA are shown on Figure 3. The soil sampling results are summarized below.

Borehole	Sample	Depth	Detected Vo	latile Organie	c Compounds (microg	rams per liter)
ID	#	(feet)	PCE	TCE	Cis-1,2-DCE	Acetone
B1	S2	4	121,000	618	461	ND
B1	S6	12	ND	ND	ND	ND
B2	S1	2	9900	ND	ND	ND
B2	S6	12	465	ND	26	ND
B3	S2	4	21,100	346	6	475

Note: ND = not detected

3) Environmental media-affected or potentially effected by the contamination.

The Gabriel Phase II ESA detected released PCE and associated breakdown products in soil at the Site. The released PCE has also likely contaminated groundwater at the Site and has potentially migrated off site.

4) Location of the Site or facility and its proximity to other sources of contamination.

Two LUST sites (Pugh Oil Company [Pugh Oil] and Murphy Oil USA [Murphy Oil]) are located near the Site (EDR, 2006b). The Pugh Oil site is adjacent to the northern Site boundary. Northern Environmental personnel reviewed the WDNR records regarding Pugh Oil (Hatfield, 2006c). Petroleum contamination was discovered during the removal of six USTs from the site during 1991. The extent of petroleum-contaminated soil and groundwater resulting from the release was determined during subsequent site investigation activities. During 1991, approximately 1040 tons of petroleum-contaminated soil was excavated from the site. Additional groundwater monitoring was conducted between 1992 and 1999. Dry cleaning solvents were not detected during the investigation. However, very few soil or groundwater samples were analyzed using methods that would detect non-petroleum-based solvents. The recorded groundwater flow direction was to the northwest. During 2000, the WDNR required no further investigation of the petroleum release and conditionally closed the site (Kalvelage, 2000). Based on the results of the site investigation, petroleum-contaminated soil does not appear to extend onto the Site. However, the current USTs at this site are within approximately 20 feet of the northern Site boundary. Therefore, a future release could affect soil or groundwater quality at the Site. Additional details regarding Pugh Oil investigation are present in Attachment D.

The Murphy Oil LUST site is located approximately 300 feet northwest of the Site on the northwest corner of 3 Mile Road and North Main Street. A gasoline filling station has operated at the Murphy Oil site since at least 1973. During April 1991, gasoline was detected in collected soil samples. The gasoline release was reported to the WDNR during April 1991 (Lewis, 2006). Between 1991 and 2006, a site investigation was completed that defined the extent of released petroleum in soil and groundwater at the Murphy Oil site. Gasoline-contaminated soil and groundwater extended into 3 Mile Road, North Main Street, and an adjacent property but did not appear to extend south of 3 Mile Road. In addition, PCE was detected in groundwater from a monitoring well located in the North Main Street right-of-way approximately 180 feet north of 3 Mile Road. PCE was not detected in any other monitoring well. The source of the PCE was not determined. Northern Environmental completed a letter summarizing the site investigation and groundwater monitoring conducted at the site and requested the WDNR review the site for closure during 2006 (Lewis, 2006). During 2006, the WDNR approved the request for no further action and closed the site. Gasolinecontaminated soil or groundwater originating from the site is not likely to impact soil or groundwater quality at the Property.

5) Assessment of potential or known impacts to receptors. Receptors are defined by the Wisconsin Administrative Code as "environmental resources, including but not limited to, plant and animal species and humans, sensitive environments and habitats, water supply wells, and buildings or locations that have the potential to be, or have actually been exposed to contamination."

There are no known threatened or endangered species, habitats, or ecosystems sensitive to the contamination; outstanding resource waters; sites; or facilities of historical or archeological significance (CRBI, 2006) (COR, 2006). The property immediately east of the subject site, approximately 25 feet from the rear door of the dry cleaning operation, is used as a public vegetable garden. This area may have the potential for human contact with the dry cleaning solvent contamination.

6) Assessment of potential or known impacts to sensitive areas including wetlands, outstanding resource waters and exceptional resource waters, and sites or facilities of historical or archaeological significance.

The Property is serviced by city of Racine public water and sewer utilities. Potable water is obtained from Lake Michigan. No other known private wells are located within 1200 feet of the Site (Lewis, 2006). There are no known impacts to sensitive areas.

7) A map showing the site boundaries, location of the source areas, including utility corridors, sewer lines, adjacent streets, receptor locations, sample locations and the results of sampling.

Figures 2 and 3 illustrate the layout of the Site and surrounding area. The Gabriel Phase II ESA borehole locations are also shown in Figure 3. Water and sewer utilities likely enter beneath the southern end of the Site building and extend to the eastern side of the Site buildings (COR, 2006). Natural gas-burning furnaces are used to heat the building. Natural-gas service is provided by a buried utility pipe extending along the northern Property boundary and entering the northeast corner of the building.

CONCLUSIONS

The Site has been used by two dry cleaning businesses since at least 1991. PCE is reportedly the only dry cleaning solvent used in dry cleaning machines at the Site. Historically, used PCE and filters were stored in 55-gallon drums placed east of the Site building. PCE spillage may have occurred at the former dry cleaner machine location.

Soil sampling conducted by Gabriel during April 2006 determined that a PCE release to soil has occurred. The highest concentrations of PCE in soil were detected near the used PCE solvent storage area. PCE was also detected beneath the concrete floor adjacent to the active dry cleaning machine. Soil samples were not collected in the former dry cleaning machine location.

RECOMMENDATIONS

Additional investigation is needed to determine the magnitude and extent of contaminated soil and groundwater. This site investigation scoping report should be used to develop a workplan for completing the site investigation. The goal of the investigative work is to further evaluate contaminant concentrations and determine the vertical and horizontal extent of released dry cleaning solvent. To assist with obtaining cost proposals for the site investigation, we are submitting our suggested workplan for the site investigation in a separate letter.

We trust this information meets your needs. Please contact us if you have any questions or comments.

Sincerely, Northern Environmental Technologies, Incorporated

Christopher C. Hatfield Project Geologist

Stuart I Gross, PG

Associate Geologist

CCH/lmh Attachments

c: James C. Small POA, Ehrlich Family Limited Partnership

© 2007 Northern Environmental Technologies, Inc

REFERENCES

City of Racine (COR) Geographic Information System, December 7, 2006. http://gisweb.cityofracine.org

City of Racine Building Inspection Department (CRBI) records review by Christopher C. Hatfield (Northern Environmental, Technologies, Incorporated (Northern Environmental), December 8, 2006.

Environmental Data Resources, Incorporated, Sanborn Fire Insurance Map Search, Express Cleaners, Inc, 3941 North Main Street, Racine, Wisconsin, December 6, 2006(a).

Environmental Data Resources, Incorporated, The EDR Radius Map Report, Express Cleaners, Inc, 3941 North Main Street, Racine, Wisconsin, December 6, 2006(b).

Gabriel Environmental Services (Gabriel), "Phase I Environmental Site Assessment, 3921-3941 North Main Street, Racine, Wisconsin", March 6, 2006(a).

Gabriel Environmental Services (Gabriel), "Limited Focused Phase II Environmental Site Assessment, 3921-3941 North Main Street, Racine, Wisconsin", March 6, 2006(b).

Hatfield, Christopher C. (Northern Environmental Technologies, Incorporated) conversation with Jun Ahn (Express Cleaners, Incorporated), December 8, 2006(a).

Hatfield, Christopher C. (Northern Environmental Technologies, Incorporated) conversation with Gretchen Killips (Express Cleaners, Incorporated), December 11, 2006(b).

Hatfield, Christopher C. (Northern Environmental Technologies, Incorporated) review of WDNR LUST file Pugh Oil Company, 3953 North Main Street, Racine, Wisconsin, December 11, 2006(c).

Hatfield, Christopher C. (Northern Environmental Technologies, Incorporated), telephone call to Steve Rawlinko (former Manager, Valet Cleaners), December 11 and 12, 2006(d).

Kalvelage, Brian H. (Wisconsin Department of Natural Resources), letter to William Pugh (Pugh Oil), January 31, 2000.

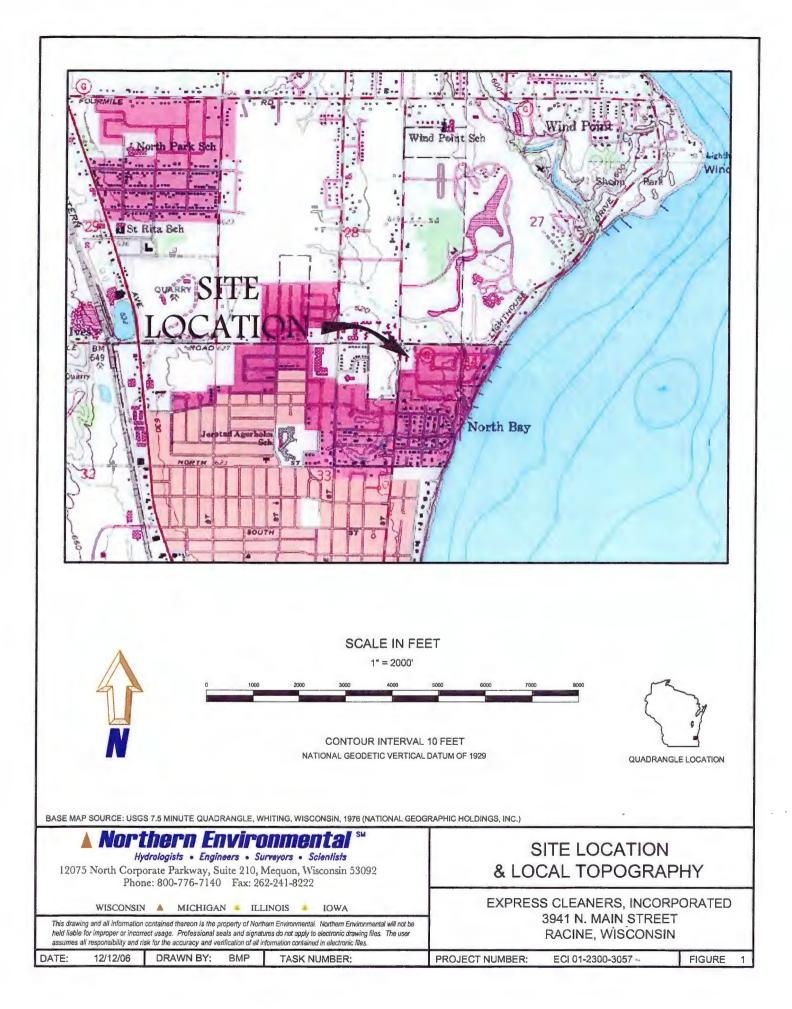
Lewis, Jonathan C. (Northern Environmental Technologies, Incorporated) letter to C.L. Russell (Murphy Oil USA), June 5, 2006.

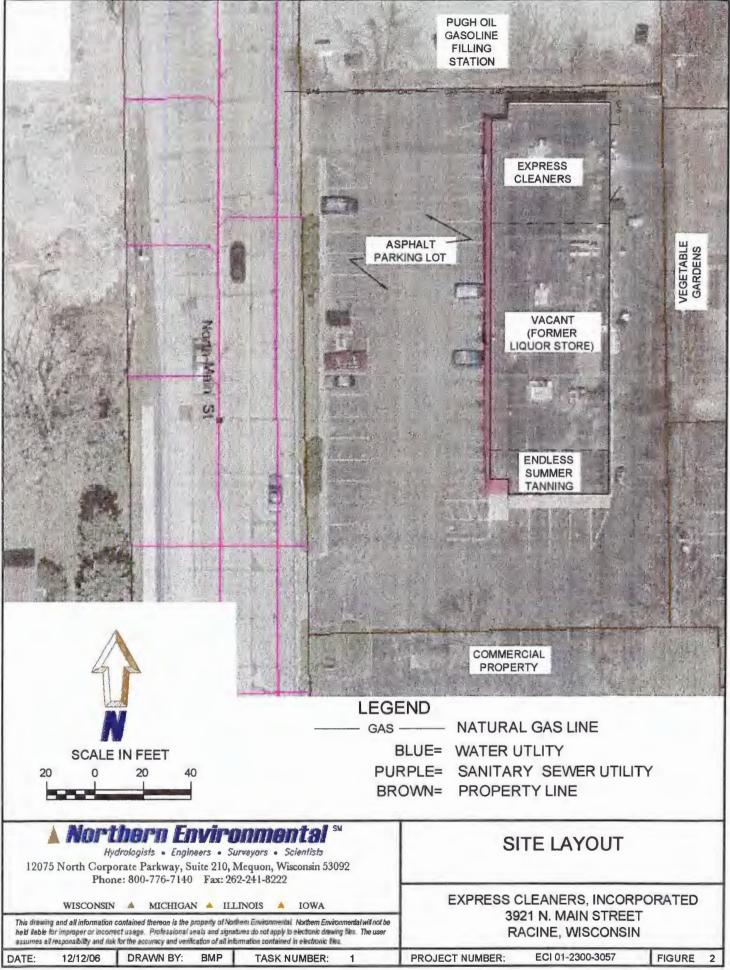
Mickelson, D. M., Lee Clayton, Robert W. Baker, William D. Mode, and Allen F. Schneider, *Miscellaneous Paper 84-1: Pleistocene Stratigraphic Units of Wisconsin*, Wisconsin Geological and Natural History Survey, July 1984.

Southeast Wisconsin Regional Planning Commission (SEWRPC), Aerial Photographs, Township 4 North, Range 23 East Section 33, 1963, 1967, 1970, 1975, 1980, 1985, 1990, 1995, 2000.

Trotta, L.C. and R.D. Cotter, Depth to Bedrock Map of Wisconsin, United States Geological Survey, 1973.

U.S. Geological Survey (USGS), Racine North, Wisconsin, 7.5 Minute Quadrangle Topographic Map, 1951, revised 1971.


Wisconsin Department of Commerce (COMM), Tank Database Search, December 8, 2006.


Wisconsin Department of Natural Resources, "Hazardous Substance Discharge Notification and Source Confirmation Requirements, *Wisconsin Administrative Code*, Chapter 706, March 2001.

Wisconsin Department of Natural Resources, "Site Investigation," Wisconsin Administrative Code, Chapter 716, October 2001.

Wisconsin Department of Natural Resources, "Dry Cleaner Environmental Response Program," Wisconsin Administrative Code, Chapter NR 169, July 2005.

Wisconsin Department of Natural Resources, BRRTS Internet Database, http://botw.dnr.state.wi.us/botw/GetActivityDetail.do?detailSeqNo=547631&siteId=754300&crumb=1&s=B, December 18, 2006.

DRAWING=5:\CAD\Mequon\PROJECTS\ECI\06_1205-SITE-LAYOUT.dwg TAB=FIG-2 USER=paybre Dec 19, 2006 12:33 PM

ATTACHMENT A

GABRIEL ENVIRONMENTAL SERVICES PHASE II ENVIRONMENTAL SITE ASSESSMENT

Environmental Services

LIMITED FOCUSED PHASE II ENVIRONMENTAL SITE ASSESSMENT

. .

STORM DALGEMAN MILLER

Performed For

EHRLICH FAMILY LIMITED PARTNERSHIP 4101 WASHINGTON AVENUE RACINE, WISCONSIN 53408

On A Site Located At

3921-3941 NORTH MAIN STREET RACINE, WISCONSIN 53402

By

Gabriel Environmental Services 1500 S. Sylvania Avenue #112 Sturtevant, Wisconsin 53177-1232 ©2005

Submitted on April 25, 2006 by:

Deidrah Simcik Field Specialist

Project Number: P06-04014

6 MARE

Suma States .

<u>12</u>004

. . . .

Chicago

à

1421 N. Elston Avenue Chicago, Illinois 60622 Phone (773) 486-2123 Fax (773) 486-0004 Rockford 7123 Chenyvale Blvd. North Sufa 200B Rockford, IL 61112 Phone (815) 332-8378 Fax (815) 332-8377

NW Indiana

8522 Kennedy Avenue Highland, IN 46322 Phone (219) 972-1110 Fax (219) 972-1211 SE Wisconsin [500 S, Sylvania Avenue Suite 112 Sturte valt WI 53177 Phone (262) 886-9505 Fax (262) 886-9510

LIMITED PHASE II ENVIRONMENTAL INVESTIGATION EHRLICH FAMILY LIMITED PARTNERSHIP 4101 WASHINGTON AVENUE RACINE, WISCONSIN 53408

THI VU.

Carlina

۰.

.1

1.47

STORM BALGEMAN MILLEK

••• ••• •• •• ••

, LØ 005

TABLE OF CONTENTS

26	chon		rage
1.	Executive	e Summary	1
2.	Site Back	ground	2
3.	Methodol	ogy	2
	3.1 3.2 3.3 3.4	Subsurface Soil Borings Sample Collection Field Screening Method Sample Selection and Laboratory Analysis	
4.	Data Revi	iew	3
	4.1 Vo	olatile Organic Compounds Results	
5.	Statement	t of Limitations	5
6.	Appendic	æs	6
	-	tical Results oring Location Diagram	

SIURM DALGEMAN MILLER

1. Executive Summary

Ehrlich Family Limited Partnership retained Gabriel Environmental Services (Gabriel) to conduct a Limited Phase II Environmental Investigation at the property located at 3921-3941 North Main Street, Racine, Wisconsin 53402. This investigation action was performed to address the subsurface soils on the north/east end of the building, where according to the Phase I Environmental Site Assessment, soil contaminants may have been leaking from 55-gallon storage drums containing hazardous wastes and from solvents stored inside the building without secondary containment.

A total of (3) soil borings were advanced into the subsurface soils at the subject site on April 12, 2006. See Soil Boring Location Map in Appendix B for boring locations. Field screening of samples collected from the borings, including the use of a Photoionization Detector (PID) meter, revealed no levels of petroleum contamination in the soil borings.

EPA Method 8260 Volatile Organic Compound (VOC) analysis was performed on ... (5) soil samples, B-1 (4.0'), (12.0'), B-2 (2.0'), (12.0'), and B-3 (4.0'). Laboratory analysis revealed VOC levels in all but one, B-1 (12.0'), of the soil samples collected. Complete Laboratory Results are located in Appendix A.

Based on laboratory analysis, it appears that the 55-gallon storage drums outside and the solvent stored inside the building have negatively impacted the subsurface conditions of the subject site.

Gabriel Environmental Services Phase II Environmental Investigation P06-04014 April 27, 2006 Subject Property: 3921-3941 North Main Street Racine, WI 53402

2. Site Background

The subject property is located at 3921-3941 North Main Street, Racine, Wisconsin. The subject property consists of a rectangular shaped, approximately 0.78 acre, parcel of land, located east of North Main Street between 3 Mile Road and Saxony Drive, three miles north of downtown Racine, in the State of Wisconsin. The site is currently developed with one building that is utilized as a commercial space containing a tanning salon, a dry cleaner and a vacant commercial space.

3. Methodology

During the course of the Limited Phase II Environmental Investigation performed at 3921-3941 North Main Street, Racine, Wisconsin, soil samples were procured to evaluate the environmental conditions on the property. A total of three (3) soil borings, labeled B-1, B-2 and B-3 were performed on Wednesday, April 12, 2006.

3.1 Subsurface Soil Borings

Prior to any sampling, utility locations were marked by the appropriate authorities utilizing the Diggers Hotline, a service provided by the State of Wisconsin. Diggers Hotline was informed to notify utilities of digging and allow for marking of the utilities underground lines. The Diggers Hotline number associated with this project is 20061509153.

Three (3) soil borings were advanced into the subsurface soils at the subject property on April 12, 2006. See soil Boring Location Map in Appendix B for boring locations. Boring B-1 was advanced to a depth of twelve (12) feet Below Surface Grade (BSG). Boring B-2 was advanced to a total depth of twelve (12) feet BSG. Boring B-3 was advanced to a total depth of four (4) feet BSG. The boring depths were determined based on the suspect depth of contamination.

3.2 Sample Collection

Representative soil samples for soil borings B-1 and B-2 were collected at intervals from a 2.125' diameter Geoprobe Macro Bore sampling tube. The sampling tube was pushed through the subsurface sediments with a Geoprobe 5400 drilling unit as a continuous soil sample was procured to the desired depth. Samples for boring B-3 were collected from a one and a half inch diameter. The sampling tube was pushed through the subsurface sediments with a Bosch hand held drilling unit. Soil samples were collected directly from the Acetate insert liner of the sampling tube.

Gabriel Environmental Services Phase II Environmental Investigation P06-04014 April 27, 2006

All sampling equipment was then washed with alkaline detergent and rinsed with deionized water between the collection of each sample. Separate Nitride gloves were used to remove the soil samples from each liner.

LAND DISLOYANAN BLUE

4/1000

Samples submitted for laboratory analysis were transferred from the soil liner to disposable plastic syringes and individual plastic containers for VOC and Total Solids analysis. Samples were then immediately placed in a cooler packed with ice to preserve the samples during transport to our laboratory, where all laboratory procedures identified in UPSEPA Method 8260B were followed.

3.3 Field Screening Methods

•·· ·· • •

Soil samples collected in the field were screened with a MiniRae® Micro Tip Photoionization Detector (PID) with a 106 eV lamp. Soil types were described, and visual and olfactory indications were noted. A portion of each sample was placed into a clean plastic Ziploc® bag. The bag was sealed and placed in the cab of the truck then allowed to warm to the ambient air temperature (approximately 70° F). The probe of the PID was inserted through the seal of the plastic bag to measure the concentration of airborne photoionizable gases present in the area over the soil sample "head space". The PID readings were used to provide relative levels of contamination in the soil samples. The PID was calibrated in the field prior to field screening.

3.4 Sample Selection and Laboratory Analysis

Five (5) soil samples, B-1 (4.0'), (12.0'), B-2 (2.0'), (12.0') and B-3 (4.0'), were submitted to the laboratory for UPSEPA Method 8260B Volatile Organic Compound (VOC) analysis. The five (5) samples were chosen for lab analysis due to field location and likelihood of contamination.

4. Data Review

4.1 Volatile Organic Compound Results

USEPA Method 8260B Volatile Organic Compound (VOC) analysis utilized Gas Chromatography and Mass Spectrometry to analyze 69 target volatile compounds including many petroleum and chlorinated compounds. This analysis generates a graphic representation called a chromatogram. The chromatogram shows the target compounds listed in the analytical report and may also indicate the presence of other compounds detected outside of the target parameters. The chromatogram does not quantify concentrations or identify the non-target compounds, but does graphically represent their presence.

STORM DALGEMAN MILLER

KU009

Laboratory analysis of four (4) samples revealed detectable VOC levels.

chromatograms, are contained in Appendix A.

Gabriel Environmental Services Phase II Environmental Investigation P06-04014 April 27, 2006 Subject Property: 3921-3941 North Main Street Racine, WI 53402

5. Statement of Limitations

The environmental assessment detailed in this report has been performed in accordance with generally accepted methods and practices of the environmental laboratory engineering profession. The scope and depth of this study were as directed, and as agreed to, by the client.

Gabriel uses experienced and trained professionals in attempting to locate and identify hazardous materials or conditions. We do not warrant that all such materials have been identified. It is possible that some materials containing a hazardous substance were not visible or accessible to the surveyor, or, for various other reasons, were not sampled.

All findings are based on documentary review, conversations, and analytical data proved by the laboratory as noted in this report. These findings are not to be considered scientific certainties. The intent of this study was to identify environmental concerns, which would be obvious to skilled, knowledgeable professional applying accepted standards. This report is not intended to represent an exhaustive research of all potential hazards that may exist at this site.

This report also does not purport to be representative of future conditions or events. Activities, which transpire subsequent to this report, which result in adverse environmental impacts, are not to be construed as relevant to this study.

This report has been performed for the exclusive use of the client. Our report and its findings shall not, in whole or part, be disseminated to any other party, nor be used by any other party without prior written consent by Gabriel Environmental Services.

Gabriel Environmental Services. Phase II Environmental Investigation P06-04014 April 27, 2006 Subject Property: 3921-3941 North Main Street Racine, WI 53402 RIVIU

APPENDICES

A. Analytical ResultsB. Soil Boring Location Diagram

Gabriel Environmental Services Phase II Environmental Investigation P06-04014 April 27, 2006

Subject Property: 3921-3941 North Main Street Racine, WI 53402

APPENDIX A

GABRIEL

ŀ

•

Environmental Services

Sample Description: Sample Date:	Client: Bi S2 4/12/06	Gabriel	11300		Sample No.: Date Received:	2005040033-1 4/12/2006
Date Analyzed;	4/13/06				Matrix:	Solids
Collected By:	Gabriel				Analyst	AS
Method: SW-846-8260B					Units:	ug/Kg (Dry ₩L).
PARAMETER	RESULT	RL	• .	PARAMETER	RESULT	RL
Acetonic	BRL	. 100		1,3-Dichloropropane	ND	· ·
Benzene	. ND	5		2,2-Dichloropropane	ND	. 5
Bromobenzene	. א D	5		1,1-Dichloropropene	ND	5
Bromochloromethane	ND	5		cis-1,3-Dichloropropene	ND	. 5
Bromodichloromethane	ND	5		trans-1,3-Dichloropropene	ŃD	5
Broinoform	ND	10		Ethylbenzene	ND.	.5 .
Stomonethane :	ND	`Ś		Hexachlorobutadiene	ND	5 .
-Butylbeizene	ND	5		2-Hexanone	ND	5
-Butanone (MEK)	BRL*	2000		lodomethans	ND	. 100 .
cc-Butylbenzene	DN	5		Isopropylocazene	ND	. 5
ert-Butylbenzene	ND	5		4-Isopropyl tolucne	ND	. 5
Carbon disulfide	ND	100		Methylene chloride	··· ND	10
Carbon tetrachloride	ND	5		4-Methyl-2-pentatione	NĎ	· 5
hlorobenzene	. ND	5		Methyl tort-buryl ether	ND	· 5 .
Chloroethane	ND	10		Naphthalenc	ND	Ś
Chloroform	ND	5		n-Propylbenzene	. ND	
bloromethane	ND	10		Styrene	. ND	5
Chlorotoluene	ND	5		1,1,1,2-Tetrachleroethane	ND	5
-Chlorotolucue	ND	5		1,122-Tetrachloroethane	ND	š
Dibromochloromethane	ND	5		Tetrachloroethene	121000**	5000
2-Dibromo-3-chloropropane	ND	5		Tohume	ND .	·
2-Dibromocthane	ND .	5		1.2,3-Trichlorobenzene	ND	. <u>.</u>
ibromoniciliane	ND .	5	۰.	1,2,4-Trichlorobenzene	ND	. s
2-Diohlorobenzene	ND	5	·	1,1,1-Trichloroethane :	· NĐ ·	5
3-Dichlorobenzene	ND	5		1.1,2-Trichloroethane	ND.	5
4-Dichlorobenzene	ND	5	•	Trichloroethene	618*	250
Dichlorodifluoromethane	- ND	5	•	Trichlorofluoromethane	ND	5
,1-Dichloroethane	ND	5		1,2,3-Trichloropropane	ND	s
2-Dichloroethans	, ND		· . ·	1,2,4-Trimethylbeazene	ND	5
.1-Dichloroethene	ND	··		1.3.5 Trimethylbenzene	ND	·
is-1,2-Dichloroethene	461=	250		Vinyl chloride	ND	10
		20022		Vinyl acctate	NĎ	100 .
rans-1,2-Dichloroethene ,2-Dichloropropane	BRL ND			Yinyi acctate Xylones (total)	ND ND	100
: :		-				
	SURR	OGATE 7	6RECO			
:	Dibromofluoro	Smithem	104	79-123	-	
	Toluenz-	48	102	88-119	•	
	4-Bromofluoro	benzene	92	79-117		
•	not detected J= slow reportable limits			ed on detection limit E= R ide limits MI= Matrix viter fo	esult exceeds calibra arace RL= Repo	tion curve prting limit
omments: * Dilution factor of 50, anal ** Dilution factor of 1000, a						
ala Release Authorized by:	D. Pane Danuta Panek, O	R Ko	0 74 0 - 10 s	u-get.	Date: 4-21	-α
í						

194 V T

. . . .

.

. ••

GABRIEL

104/ 20/,00

Environmental Services

:	Client:	Gabriel Wisconsin	I	·	
Sample Description: Sample Date: Date Analyzed: Collected By: Method: SW-846-8260B	B1 S6 4/12/06 4/13/06 Gabriel	·		Sample No.: Date Received: Matrix: Analyst: Units:	2006040053-4 4/12/06 Solids AS ug/K <u>g (</u> Dry wt.)
PARAMETER	RESULT	RL	PARAMETER	RESULT	RL

FARAMELER	RESULT	L-	TARAMETER	RESULI	KL,
Acetone	BRL* 20		-Dichloroptopane	ND	5
Benzene	ND 5	2,2	-Dichloropropane	ND	5
Bromobenzene	ND 5		-Dichloropropene	ND	5
Bromochloromethane	ND 5	cis	-1,3-Dichloropropene	ND	5
Bromodichloromethane	ND 5	tra	ns-1,3-Dichloropropene	ND	5
Bromoform	ND 10) Eth	yIbenzene	ND	5
Bromomethanc	ND 5	He	rachloroburadiene	ND	5
n-Butylbenzene	ND 5	2-3	Icxanonc	ND	5
2-Butanone (MEK)	BRL* 10	0 Iod	omethane	ND	100
sec-Butylbenzene	ND 5	Lso	propylbenzene	ND	5
tert-Butylbenzene	ND 5		sopropyl tolucne	ND	5
Carbon disulfide	ND 10		thylene chloride	ND	10
Carbon tetrachloride	ND 5		fethyl-2-pentanone	ND	5
Chlorobenzene	ND 5	Me	thyl tert-butyl ether	ND	5
Chloroethane	ND 10) Na	phthalene	ND	5
Chloroform	ND 5	n-R	ropylbenzene	ND	5
Chloromethane	ND 10) Sry	TENC	ND	·5
2-Chlorotoluene	ND 5	1,1	1,2-Tetrachloroethane	ND	. 5
4-Chlorotoluene	ND 5	1,1	2,2-Tetrachloroethane	ND	5
Dibromochloromethane	ND 5	Tet	rachloroethene	BRL*	25
1,2-Dibromo-3-chloropropane	ND 5	Tol	Toluene		25
1,2-Dibromoethane	ND 5	1,2	3-Trichlorobenzene	ND	5
Dibromomethane	ND 5	1,2	4-Trichlorobenzene	ND	5
1,2-Dichlorobenzene	ND 5	-1,1	I-Trichlorocthane	ND	5
1,3-Dichlorobenzene	ND 5	1,1	2-Trichlorocthane	ND	5
1,4-Dichlorobenzene	ND 5	Tri	chloroethene	ND	· 5
Dichlorodifluoromethano	ND 5	Trì	chlorofluoromethane	ND	's
1,1-Dichloroethane	ND 5	1,2	3-Trichloropropane	ND	5
1,2-Dichloroethane	ND · 5		4-Trimethylbenzene	ND	5
1,1-Dichloroethene	ND 5	1,3	5-Truncthylbenzene	ND	5
cis-1,2-Dichlomethene	ND 5	Vir	yl chloride	ND	10
trans-1,2-Dichlorocthene	ND 5		yl acctate	ND	100
1.2-Dichloropropane	ND 5	Xyl	enes (total)	ND	10
	SURROGATE	RECOVER	Y LIMITS		
	Dibromofluoromethan	107	79-123		
		3 107	13-123		

Abbreviations: ND= Compound not detected J= Concentration < RL, based on detection limit E= Result exceeds calibration curve BRL+ Below reportable limits Q- Recovery outside limits MI= Matrix interference RL= Reporting limit

96

Manager

79-117

Comments:

Dilution factor of 5, analyzed 4/18/06. Surrogate recoveries were within control limits.

Danuta Panek, Organics Labor

РО

V.

4-Bromofluorobenzene

Data Release Authorized by:

421-06 Date:

LØ U14

·····

04/20/00 FRI 00.04 FAA 4144030004 DIUKM BALGEMAN MILLEK

والارتداري والارتجاب

. 121012

. . . .

GABRIEL

-

۰.

Environmental Services

.....

.

Sample Description:	B2 S1				Sample No.;	2006040053-
Sample Description	4/12/06				Date Received:	4/12/06
• · · ·	4/13/06				Matrix:	Solids
	Gabriel				Analyst	AS
Method: SW-846-8260B					Units:	ug/Kg (Dry w
PARAMETER	RESULT	RL.		PARAMETER	RESULT	RL
Acetonc	BRL	200		Dichloropropanc	ND	5.
Benzene	BRĽ	5		Dichloropropane	ND ND	5
Bromobenzene Bromochloromethane	ND	5		Dichloropropene	ND ND	5 5
Bromodichloromethane	ND ND	5		.3-Dichloropropene -1.3-Dichloropropene		· `5
· · · · · · · · · · · · · · · · · · ·		-			ND ND	· 5
Bromoform	ND	10	-	Ibenzene achlorobutadiene		5
Bromomethane	ND	5 5		Xanonc	ND	
n-Butylbenzene	ND	-			ND	5
2-Butanone (MEK)	ND	100		methane	BRL**	1000
scc-Butylbenzene	ND	5		opylbenzenc	ND	5
tert-Butylbenzene	ND	5		propyl toluene	ND	5
Carbon disulfide	ND	100		ylene chloride	ND	10
Carbon tetrachloride	ND	5		thyl-2-pentanone	ND ·	5
Chlorobenzene	ND	5		yl tert-buryl ether	ND BRL**	• 5
Chloroethane	ND	10	•	thalene		250
Chloroform	ND	5		pylbenzene	ND	5
Chloromethane	ND	10	Styre		ND	. 5
2-Chlorotolucne	ND	5		2-Tetrachloroethane	ND	5
4-Chlorotolucne	ND	5		2-Tetrachlorocthanc	ND	5
Dibromochloromethane	ND	5		chloroethene	9900**	250
2-Dibromo-3-chiloropropane	ND	. 5	Toluc		BRL**	250
,2-Dibromoethane	ND	5		Trichlorobenzeue	ND	5
Dibromomethane	ND	5		Trichlorobenzene	ND	5
1,2-Dichlorobenzene	ND	5		Trichloroethane	ND	5.
1,3-Dichlorobenzene	ND	5		-Trichlomethane	ND	5
.4-Dichlorobenzene	ND	• 5	•	loroethene	BRL**	250
Dichlorodifluoromethane	ND	5.		lorofluoromethane	ND	. 5
1,1-Dichloroethane	ND	5		Trichloropropane	ND	5
1,2-Dichloroethane	ND	5		Trimethylbenzene	ND	5
1,1-Dichloroethenc	ND	. 5		Trimethylbenzene	ND	- - S
cis-1,2-Dichloroethene	BRL	5	•	chloride	ND	10
trans-1,2-Dichloroethene	ND	5	• •	acetatc	ND	.100
1,2-Dichloropropane	ND	. 5	Xyler	nes (total)	BRL	250
	SURB	OGATE	%RECOVERY	LIMITS		
	Dibromofluor		109	79-123		
			94	88-119		
	Tolucad	•	94 82	79-117		
	4-Bromofluor	oucuzene	02	/		
bbreviations: ND= Compound BRL= Belo Comments: * Dilution factor of 5, anal	w reportable limits	Q= Reco	ion < RL, based on d overy outside limits verjes were within a	MI=Matrix interferen	sult exceeds calibra ce RL= Reportin	
** Dilution factor of 50, and					11.1	
Data Release Authorized by: _	Danuta Panek,	Organics E	abor Manage	г	Dale: Td	1-06

SIUKM BALGEMAN MILLEK

.

.

• •

· · · · · · · · ·

.

•

12017 .

•

.

.

and a second second second

۰.

...

...

۰. ۰.

	•			:	•	••	
	1.				- î -	-	•
س	A	D	D				•••
J	4	D	ĸ		\mathbf{n}_{i}		
	• •			_			•
						•	•

.

÷

ŗ

•

•. •

·...

. . ۰. . · .

> ... •

•

.

1.VT 00'00 LVV 414400004

.

2.

.

:

.

JABRIEI		· · · ·	•	· · · · · · · · · · · · · · · · · · ·	•	
Environmenta	· · · · · · · · · · · · · · · · · · ·	· · ·	• •			
		·		• • •		
		- ` ·		· ·		
	Client:	Gabri	el Wisco	onsin	•	. •
Sample Description:	B3 S2	• •			Sample No.:	2006040053-9
Sample Date:	4/12/05				Date Received:	4/12/2006
Date Analyzed:	4/13/06	•	•		Matrix	Solids
Collected By:	Gabriel	.•			Analyst:	AS
Acthod: SW-846-8260B	•			*	Ümis:	ug/Kg (Dry wL)
PARAMETER	RESULT	RL		PARAMETER	RESULT	RL
Acetone	475*	200		1,3-Dichloropropane	ND	j
cuzone :	ND	5		2.2-Dichloropropuse	ND	5
Bromobenzene	ND	\$		1,1-Dichloropropene	ND	5
Bromochloromethane	ND	5		cis-1,3-Dichloropropene	ND	. 5
Bromodichloromethine	ND	5		trans-1_3-Dichloropropenc	ND.	5
Iromoform	ND ·	10		Ethylbenzene	ND	5
romomethane	ND	· 5		Hexachlorobutadiene	ND	. 5
-Burylbenzeie	ND	5		2-Hexanonie	ND	5
-Butanone (MEK)	ND	001		Iodomethane :	ND	100
ec-Butylbenzene	ND	5		Isopropylbenzene	ND	s .
rt-Butylbenzene	· ND	5		4-Isopropyl tolucae	ND	· 5
arbon disulfide	ND	100		Methylene chloride	ND	10
arbon tetrachloride	ND	5		4-Methyl-2-pentanone	ND	5.
hlorobenzene	ND	5		Methyl tert-butyl ether	ND ·	5.
hloroethane	ND	10		Naphthalene	ND	
hloroform	ND	5		n-Propylbenzene	ND .	
hloroniethane	ND	10.		Styrene 1,1,1,2-Tetrachloroethane	ND ND	بور
-Chlorotoluene -Chlorotoluene	ND ND	د خ	•	1,1,2,2-Tetrachloroethane	ND	
ibromochloromethine	' ND	2		Tetrachloroethene	21100***	-2500
2-Dibromo-3-chloropropane	ND	5		Tohume	ND	. 2500
2-Diliromoethane	UN UN	5		1,2,3-Trichlorobenzene	ND	· · · ·
promonethane	ND	3		1,2,4-Trichlorobarzenc	ND	5
2-Dichlorobenzene	ND	5		1,1,1-Trichloroethane	ŃĎ	5
3-Dichlorobenzene	ND	5		1,1,2-Trichloioethane	ND	5
4-Dichlorobenzene	ND	Ś		Trichloroethetie	346**	250
lichlorodificoromethane	ND	ş		Trichlorofluoromichanc	ND	5
, 1-Dichloroethune	ND	5	· · ·	1,2,3-Trichloropropane	ND	3
2-Dichloroethane	ND	5		1,2,4-Trimetiylbenzene	ND	5
1-Dichloroethene	. ND	5		13,5-Trimethylbenzene	ND	· · · · · · · · · · · · · · · · · · ·
is-1,2-Dichloroethene	6	5		Vinyl chloride	. אס	10
ans-1,2-Dichloroctliene	ND	5		Vmyl acciate	ND	: 100
2-Dichloropropane	ND	5		Xylenes (total)	ND	10
	STIDD	OGATE	%RECO	VERY LIMITS	•	
	Dibromofluor		103	79-123		
	Toluene		96	88-119		
	4-Bromofluor		95 95	79-117		
	-0100100200	S. Martin Contraction				
bbreviations: ND= Compound	not detected T=	Concentratio	m SRI. ha	sed on defection limit E- 1	Result exceeds calibra	ation curve
-	clow reportable fimit		scovery out		•	norting limit
omments:		ate recover		thin control limits.		· .
omments: Dilution factor of 5, analy	zed 4/18/06. Surrog					• •
Dilution factor of 5, analy Dilution factor of 50, analy	lyzed 4/19/06. Surro					
· Dilution factor of 5, analy	lyzed 4/19/06. Surro					
 Dilution factor of 5, analy Dilution factor of 50, ana *** Dilution factor of 500, and 	lyzed 4/19/06. Surro					161.
Dilution factor of 5, analy Dilution factor of 50, analy	lyzed 4/19/06. Surre alyzed 4/20/06. Surr Pano	ogate recov	eries were (S	within control limits.	Date: 4-2	106
 Dilution factor of 5, analy Dilution factor of 50, ana *** Dilution factor of 500, and 	lyzed 4/19/06. Surro	ogate recov	eries were (S		Date: 4-2	1-06
 Dilution factor of 5, analy Dilution factor of 50, ana *** Dilution factor of 500, and 	lyzed 4/19/06. Surre alyzed 4/20/06. Surr Pano	ogate recov	eries were (S	within control limits.	_Date: <u>4-2</u>	1-06
 Dilution factor of 5, analy Dilution factor of 50, ana *** Dilution factor of 500, and 	lyzed 4/19/06. Surre alyzed 4/20/06. Surr Pano	ogate recov	eries were 15 boral	within control limits.	_ Date:	1-06

GABRIEL

. 1

Environmental Services

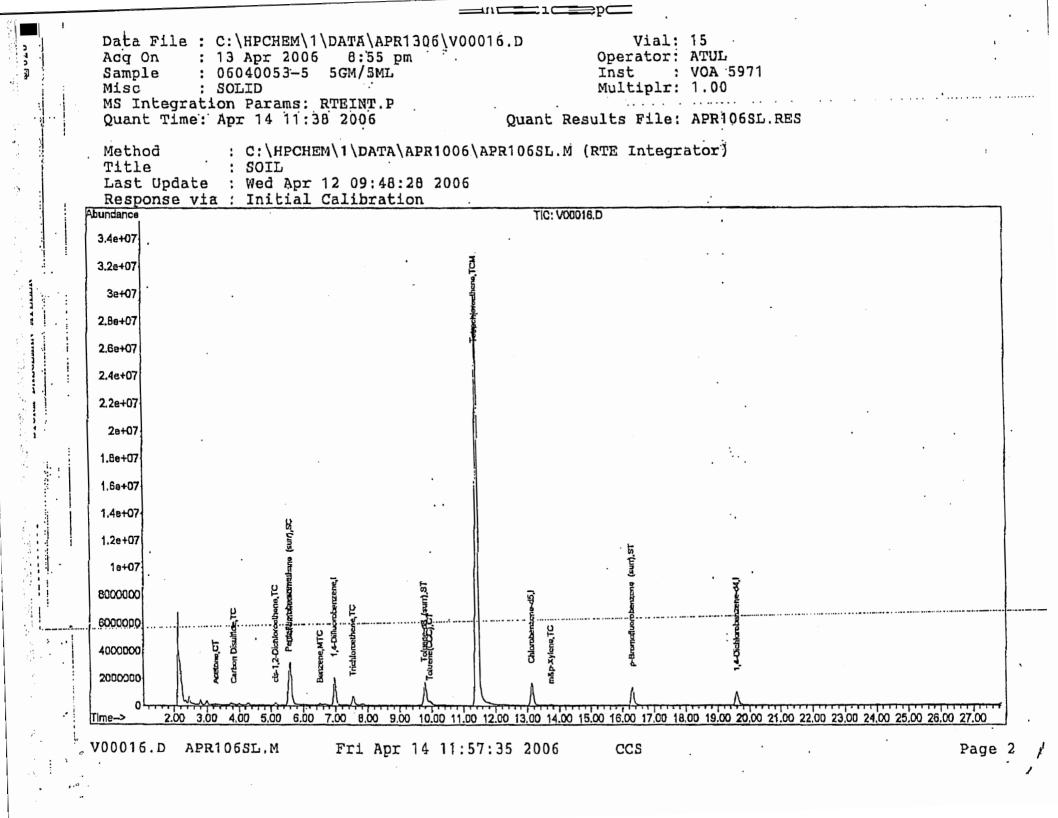
	Client:	Gabriel	Wisconsin		•
Sample Description:	B2 S6		· ·	Sample No.:	2006040053-7
Sample Date:	4/12/06			Date Received:	4/12/06
Date Analyzed:	4/13/06			Matrix:	Solids
Collected By:	Gabricl			Apalyst.	AS
Method: SW-846-8260B				Units:	ug/Kg (Dry w
PARAMETER	RESULT	RĻ	PARAMETER	RESULT	RL
Acetone	BRL	200	1,3-Dichloropropane	ND	5
Benzene	ND	5	2,2-Dichloropropane	ND	5
Bromohenzene	ND	5	1,1-Dichloropropene	ND	5
Bromochloromethane	ND	5	cis-1,3-Dichloropropene	ND	5
Bromodichloromethane	ND	5	trans-1,3-Dichloropropene	-	5
Bromoform	ND D	10	Ethylbenzene	ND	5
	ND	5	Hexachlorobutadiene	' ND	5
Bromomethane	ND	5	2-Hexanonc	ND	5
n-Butylbenzene		-	lodomethane	ND	100
2-Butanone (MEK)	ND	100			
sec-Butylbenzene	ND	5	IsopropyIbenzene	ND	5
tert-Butylbenzene	ND	5	4-Isopropyl tolucac	ND	5
Carbon disulfide	ND	100	Methylene chloride	ND	10
Carbon tetrachloride	ND	S	4-Methyl-2-pentanone	ND	5
Chlorobenzene	ND	\$	Methyl tert-butyl ether	ND	5
Chloroethane	ND	10	Naphthalene	ND	S
Chloroform	ND	5	n-Propylbenzene	ND	5
Chloromethane	ND	10	Styrene	ND	5
2-Chlorotolucne	ND	5	1,1,1,2-Tetrachloroethane	ND	5
4-Chlomtolucne	ND	5	1,1,2,2-Tetrachlorocthane	ND	5
Dibromochloromethane	ND	5	Tetrachloroethene	465*	25
1.2-Dibromo-3-chloropropane	ND	5	Toluenc	BRL*	25
1.2-Dibromoethane	ND	. 5	1,2,3-Trichlorobenzene	ND	5
Dibromomethane :	. ND	5	1,2,4-Trichlorobenzene	ND	5
1,2-Dichlorobenzene	ND	5	1,1,1-Trichloroethane	ND	5
1.3-Dichlorobenzenc	ND	5	1,1,2-Trichloroethane	ND	5
4-Dichlorobenzene	ND	S	Trichloroethene	BRL	5
Dichlorodifluoromethane	ND	5	Trichlorofluoromethane	ND	5
1.1-Dichloroethane	ND	5	1,2,3-Trichloropropane	ND	5
1,2-Dichloroethane	· ND	s	1,2,4-Trimethylbenzene	ND	
1,1-Dichloroethene	· ND · · ·	·: ··· S -····	1.3.5-Trimethylbenzene		 :5
cis-1,2-Dichloroethene	26*	25	Vinyi chloride	ND	10
		25 5	Vinyl acetate	ND	-100
trans-1,2-Dichloroethene	ND	-	Xylenes (total)	ND	10
1.2-Dichloropropane	ND	.	Xylenes (total)	ND	
•	SURI	ROGATE %	RECOVERY LIMITS		
	Dibromofluo	romethane	105 79-123		
	Toluco	c-d8	91 88-119		
	4-Bromofluo		84 79-117		•
Abbreviations: ND= Compound				esult exceeds calibrat ace RL= Reportin	
	w reportable limits	C- Kecover	y outside limits MI= Matrix interferen	and the report	B marc .
Comments:	weed 4/18/06 Sur	moste recoverie	s were within control limits.	-	
Digition factor of J, and	yzar 4/18/00, Sun	IOBAIE IETO ACUE			
	\bigcirc 0.		×0	11 0	· .
Data Release Authorized by:	D. Pa	rer 1:	K <u>S</u>	Date: 4-2	1-06:
		A	6 Manager		
	Danuta Panek	Organics Labo			
	Danuta Panek,	-	des recycled super		•

.....

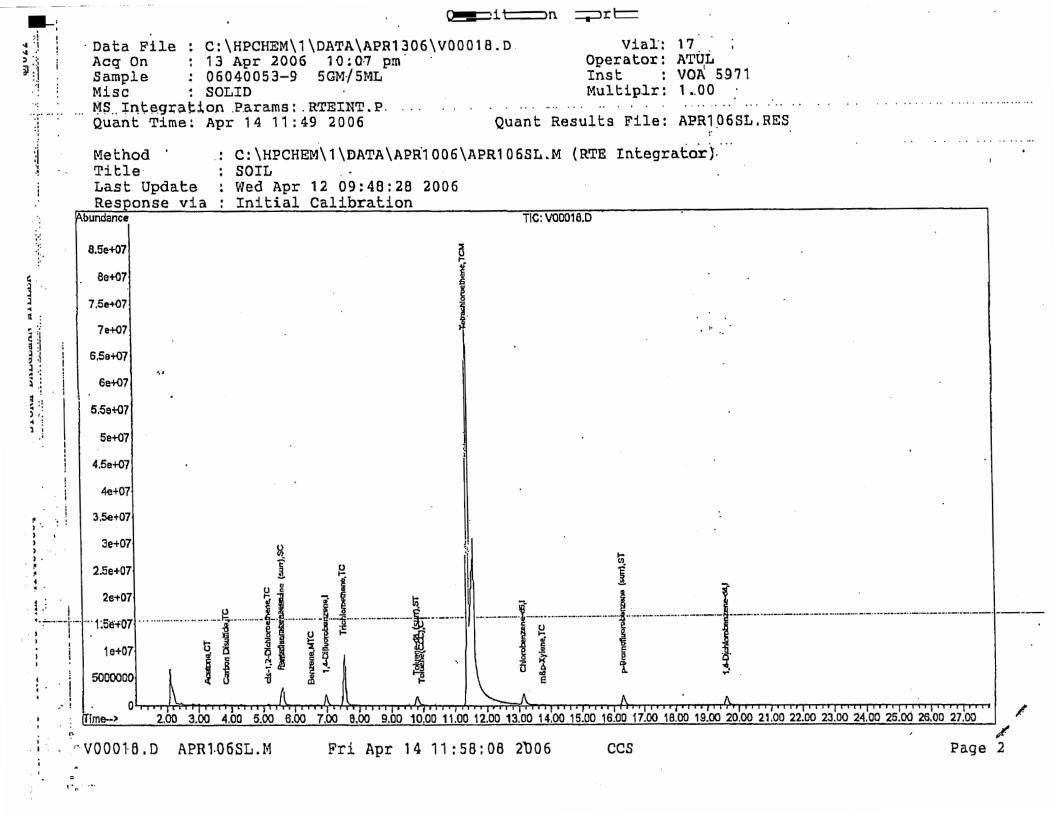
•

......

····

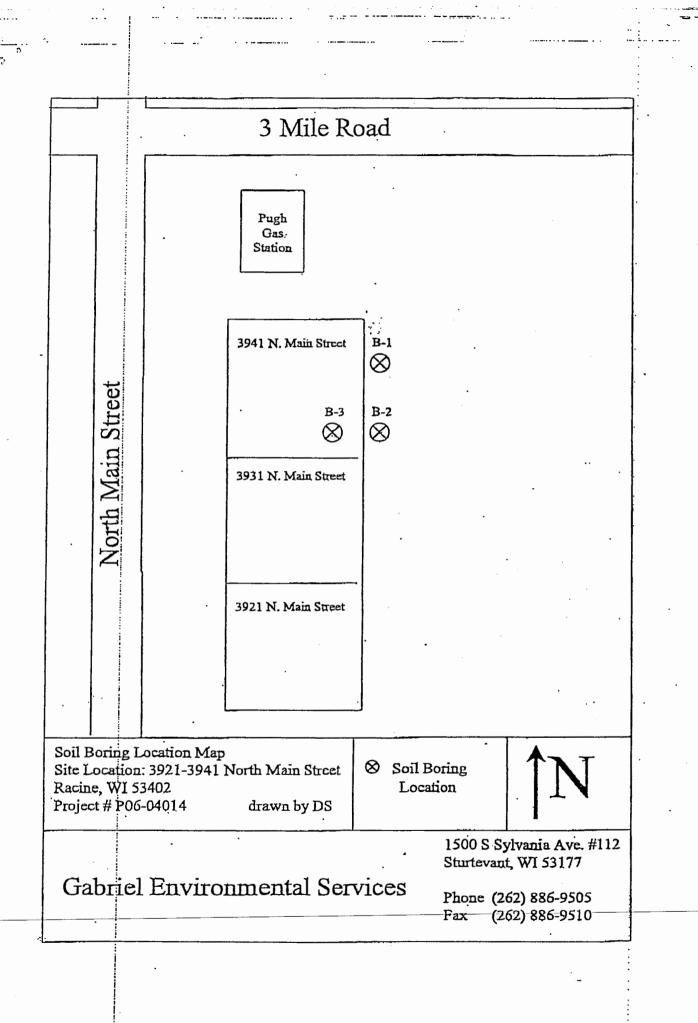

;	Misc MS Integr Quant Tim	: SOII ation F e: Apr	Params;	RTEIN 01 200	Т.Р б	•.	Quant		iplr: File:	APR106SL.RES	· · ·		••••••
	Method	-				1006\#	APR106SL			•			
•	Title	: 5	SOIL					•	2				1
:	Last Upda Response	te : v via :]	ved Apr [nitia]	Calib	:40:20 ration	2006				:			
· [A]	bundarica						TIC:	V00014.D					
	8.5e+07					,TCM							
	8e+07					adodie		-		· .			
	7.5e+07				•	schlore				. :			
1	7e+07												
i	6.5e+07									•	·		
	6e+07												
· .	5,50+07									•			
	5e+07							·	·	÷			
	4.5e+07									•			
,										•			
	48+07		•										
	3.5e+07									•••			
-	3e+07		J.SC					٩	ā.	·. ·			
Í	2,5e+07	þ	iena,TC he (sur	. 10						ŕ			
	2e+07	thene,	C post	cane, l octhon	न, ऽा		Ц		end end	. 9		,	
• !	···1:5e+07	choir bioir		nater Tabler	<u>b</u>		·····						
	1e+07	백숙 다 12-0		tene,M 4-Diflu	E E		. hlorots		omong	+Ckthi			
	5000000	Poch trains	.15	H	Tale				۵.	-			
	0 ¹ 1 Time-> 2.00	***	<u>/</u> //	<u></u>		·····	42 02 42 02 4			8.00 19.00 20.00 21.00 2			17777777777777777777777777777777777777

0 T N FA	Acq On Sample Misc	:	13 Apr . 0604005 SOLID	EM\1\DATA\ 2006 8:1 3-4 5GM/!	9 pm ' ML		tation H	Vial: Operator:	ATUL VOA 5971			
	Quant	Time:	Apr 14	ms: RTEIN, 11:35 2000	5				APR106SL.RES			
	Method Title Last U Respon	pdate	: SOIL : Wed	PCHEM(1(D) , Apr 12 09 :ial Calib:	:48:28.20		06SL.M	(RTE Integr	ator)			ι ι
	Abundance BOOUCOO	00 12					TIC: V0001	5.D	· ·	•		7
	7500000											
1	7000000				•							
	6500000										:	
	6000000								•			
	5500000			Я		•						
	5000000			5°(mr).5								
				ethane .		•						
	4500000			and the second					•		•	
	4000000			ख्या कटेका ह.1			•	sum), ST	•			
	3500000			Rentati	. т.		Ē.		· ·		•	
	3000000				85 True		-Sup Zuc	edenout	<u>व</u> य			
	2500000				aluanç. A	le TCN	rdorold.	lonord.	역 만이 위기.			
	2000000				۲	ະ ເມື່ອກອຸ]	1	۸.	(j. 1)			
	1500000			μ	<u>.</u>							
	1000000		Det Cl	Cene, MT	uene(C	Tct						
	600000	M.	E.	EG .		٨	1					
· ·									00 19.00 20.00 21.00 2		111111111111	≓
	<u>(∏ime></u> ℃V00015.1		0 <u>4.00</u> 5.00 R106SL.M		Apr 14 1			CCS	<u>1,00 19.00 20,00 21,00 2</u>	22.00 23.00 24.00	25.00 26.00 27.00 Page	1
												ľ.


OTAR

ţ .

New State States and the second states and the second states and s



· · ·				; yuan	citation Re	port			
	Acg On Sample Misc	: SOLID	2006 9:31 E -7 5GM/5ML	9 m i ':	•.	Vial: Operator: Inst : Multiplr:	ATUL VOA 5971	4 • •	
	Quant T	gration Param ime: Apr 14 1	AS: RTEINT.P 1:45 2006		Quant Resu	lts File:	APR106SL.RES		
	Method Title	: SOIL	CHEM\1\DATA		PR106SL.M (R	TE Integra	ator)		· · · · ·
	Respons	date : Wed A e via : Init:	lal Calibrat	28 2006					
	Abundance	· · · · · · · · · · · · · · · · · · ·			TIC: V00017:	D		•	
ļ l	1.2e+07								
	1.1e+07		•	thene, TCM					
	1e+07-						· · · _		
	000000				•				
	0000003						:. : •.		
	. 7000000	1	2						
•	0000003		a. [hu] 			•			
:	5000000					ا ^ی د			
	4000000	į p	alturch armun	un),8T	ţţ	cente (surf	. [P		
	3000000	, internet i	1,4-Difluor	E (B	ายวิษาริษา	n ral oyouffor	a chartang	·	
					<u> </u>	Ę			
	1000000	Acctine CT	Berczene,MT	CC energy	т£р-Хуlene,	L.	*		
	0	1	1 million				THEFT		
	Time-> 2	2,00 3,00 4,00 5,00	6,00 7,00 8,00 9,	00 10.00 11.00 12	2.00 13.00.14.00 15.0	00 16.00 17.00 18	0.00 19.00 20.00 21.00 22.0	0 23.00 24.00 25.00 26.0	0 27.00
	~.v00017.D	APR106SL.M	Fri Apı	: 14 11:57:	48 2006	CCS			Page 🔉
	1 								, ,

	gabri chc	e) e ain of					çes,	ltd.	GABRIEL WIS 1500 S. Syl Sturtevant, Phone (262) Fax (262) 8	CONSIN Vania Ay WI 5317 B86-950 66-9510	70 #11 77 05	2				•		•			•
	CLIENT BOLD SH ADDRESS 2433 Milway	PHOLEOTH DOTM . U. May	Storn Storn	j Bal d Sint	genar		1-453-	1200	N. Mains		CONTINUE	The Care	 - 	PAF	аме	TERS		ASO(INE_	52		
	FIELD SAMPLE IDENTIFICATION	5A DATE	NPLE IN=	ORMAŢĮĆ MATRIX		BAMPLED BY		SAMPLE LO	DATION			8 0 7		<u>,</u>	! .		COMM TRAN	ENTS SFER F.ECO	RD		
	1	4/12	10150 11110	S	Creek	DTS.	BI	<u>52</u> 53		2		X	X			-1, -3	2.				
·		N	11:15		Grab		BÌ	35 SG				X	Xe			- 4		·	· · ·		
		412	11:30		Grab	DR.	B2 B2	<u>SI</u>	:	2		X X	X X				5,6.	• •		·	
1.	•••	"	12:10) <u>S</u> '	Grab	· ·	1	57		2	• .	×	X		-	- 0	7,10				نۍ د
		·																			
• •						·						<u> </u>				· .	· · · ·			<u>`</u>	
4	:					2 1, 0 1, p	;			· .								·	•		
		-						·													
							<u>+</u>				· · · · ·	•		•	r	·	·				-
	Fiellnquiteriad		citi	12				Remaiks					•	• •	•				•		
	Freinquished	by; (Signak	uta)		IBLE (TIM	A Pacelvac (Blocetyre)	\cap	oralory by: MPONC	3:00 7 4-12	-					·	•	:	•			
					- Al		30	(1 1 la	00					·			-			1

APPENDIX B

	<u>.</u> 5	[.]						 		:					: 					
Sine of Wisconsin Repairing of Franki Resources										CUL.			og i	NFOI R	: الم الم					
			Rest	er Te	Windshill Westering II Wi Remainshill Westering II Wi		Billion Clark													
	iy in a					15	Fire													
392	21-39	941 M	North		in Street		В									-1				
	Jo	hn		É.M	Gienzik	04	12	20	06	04	12	20	06	Drilling Mathod						
Fee	_Gab	riel E		men	tal		n n	V.0.	X CHEL			Linn		Garchels Diamorer						
-	Gint	Z EUL		1	STD) OF Buring Location D	<u>_</u>		Feet M		Long	Guid L	Ford		22 inches						
lenne]	HELOF		1/4 ct			La		0			F		N S	Forder W						
TACTO					Racine	Campy C		Cost	Ra	cine	- Willia	po								
Sau	pie		I			1						Seil	2 Total Dist	ties F		, ,				
Number and Type	Length Al, & Represed (m)	Blor Could	Depth in from		Spillerik Deutsjon And Cantorio Orgin For Escal Major Unit		UBCS	Chrytho Lan	TVALL Descrimin	rio/rid	Compactive	Molutin	Links Links	Finstoly [miss	P200	AQD/ Conjurtans				
					<u> </u>						, v									
			1	Cen	nent, Gravel		ĒΡ													
			2	Dan	np sand		βP					lamp								
	-	. 111	3	Gra	y Clay		CL						41-14-14		14 - T	-				
2		in fitnes 2	4	Dan	np brown clay		EL			0.0		Jamp	1							
		a da a da a	5	Mol	st sand		SP			Ē		noist								
			6	Wet	sand		БΡ·			0.0		wet								
		7	1.2.2		sandy clay							wet								
				ala a	brown/gray clay		EL.			0.0	•	wet								
					p stony sand		6P					lamp				1. THE				
	•				ip gray clay					0.0	E	lamp	-		•	1981-1-14	: `			
-							I.					wet	•			7 C F F 1 C				
		r			gray clay		Ĺ													
6			12	Wet	gray day					0.0		wet								
																ř.				
										i dete	<u> </u>	L		I	t	ł				
<u>çanı</u>		ur ne			arnon on rue form reach 1966 d	From .	147 DC3			- man B	<u> </u>		/······	<u></u>			مسحين			

. .

his four is sufficient by Charters 281, 283, 289, 298, 293, 295, and 299, Wes. State. Orapictors of this four is mandatory. Fuiler to file is four may result in Entitivity of Lebrary SIO and S25,001, or imprisonment for m to energy and provide a the program and content involved. instally locationistic information on this fours is not installed to be used for any disc purpose. NOTE: See installed for more information, minimally where for completed four should be sent.

U4/20/UU FI		. V / I				יסיעת		<u>.</u>	-		•••	· 	 .	• •	·····	
			· · · · · · · · · · · · · · · · · · ·						•							
incer Mircosi Peperatura di Sa	i aust Ec	401013	229-					5		eon 40-e	KG I	.og 1	R C	ior. 7-1	77015 98	
ŗ	8eq	🕿 Tor	Renderik	Macanan [] 1 Marsonan []	Citer	ů	• CI	*** <u>**</u> **********							4	
- Christer N			an a	-	100	and Prat	-	nicora	g Dim	iber 1	Docin	Piere	. 1 			
3921-3941	North	Mai	in Street		E	·			-	•	-	B	-3			
John		- Énit	Giemzik	, entrally and the product	0 4	1,12	20	06	04	12	20	06	Dritking & Salled			
WI Uniger Well		į		Mall Marso	DF-bbs	i d C ÇSTILE	33	5	Sector.		T T Tori	55 451.	Source: Dismont			
Joint Crist Carpy		******	= or = 	ningloccim U	ľ	Lat	Č I		Look	Grad L		я М	<u> </u>			
La of	_1/4 a	Seed	The T	<u>N.R</u>		oung	C ·	·		F	CCE E		Feeling W			
· · · · · · · · · · · · · · · · · · ·	<u></u>		Raci	ne	5	2	CIVI	Rão	cine"	, r 1966.	and the last of the					
Namher Arti Type Length An, A G Recornsnal (to) Blor Counti	n Past		And One	ck Description logic Origin For		. Ba		ġ	8	THIN .		topie	, T		1 91111	
Rumher and Type Length All, & Herrornsd Gr	Deputitin Pres			a Linger Lindt		UZCB	it is	Division	FIDIFID	Compression	Mobily	Ligned	Index Index	P 200	RQD/ Constructing	
	1	Сеп	nent			БΡ										
	2	Dry	sand	•		βP			0_0							
	3	Dry	sand			δP										
5-2	4	Dam	ıp dark brown	sandy clay		бP			0.0	/	lamp					
				· ,												
-									-							
			~						,		-					
hereby country th	र्ग्न्य क्रिस्ट है	afor:	tion on thes	Form is true met (concert io	the bes	E of m	e Enos	dads	اییں۔۔۔۔۔ کے	·	<u> </u>	ام سیمی میں	·····		
Signature				······································	FLOR										<u></u>	
This from it color	nized b	- Cirr	HERE 281, 255	289, 291, 292, 293	. 295. md	299. W	is. Stat		عيانية	most	nis for	et is s	cie dale	s. P	altere to fair	

This from is automized by Cimpiters 281, 283, 289, 291, 292, 293, 295, and 299, Wiss Date. Complexing of this form is providency. Pathere to file this from usy mouth in forfeitnes of between SIO and S25,003, or imprised one of the overy set, depending on the program and equilibrities Presenting Identificate information on this form is not included to be used for any other purpose. MOTH: See incompletions for more information, relating where the completed form should be sent.

.

.

. –

:

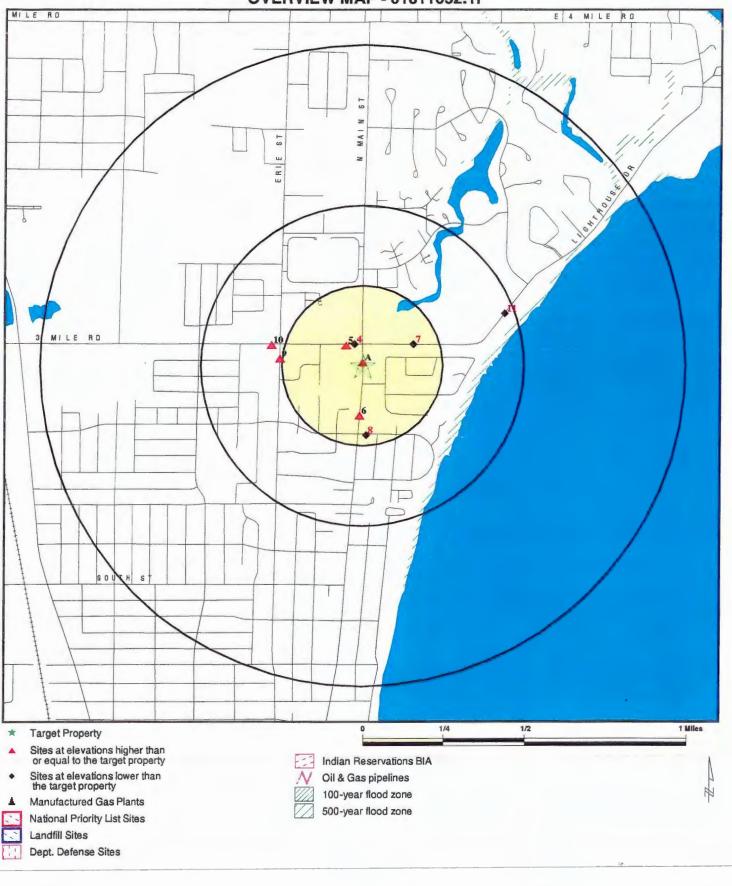
.

.

ŧ

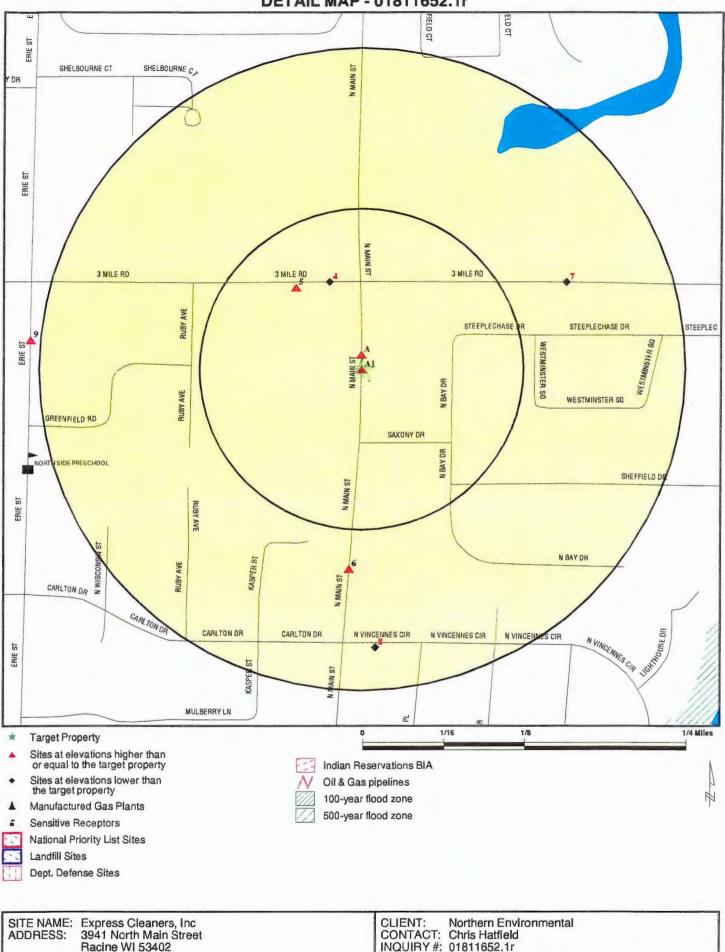
:

EXECUTIVE SUMMARY


Due to poor or inadequate address information, the following sites were not mapped:

Site	Name	•

PUCELY, EMIL PROPERTY GAS LIGHT POINT OFFICE BLDG **DELI-FOOD EXPRESS** 33 E FOUR MILE RD 6422 N HWY 31 15 4 MILE RD 550 THREE MILE RD 1212 FOUR MILE RD 6422 N HWY 31 MOTOR TECHNOGIES SC JOHNSON ENTOMOLOGY RESEARCH CEN NORTH PARK SAN DIST SC JOHNSON & SON COUNCIL HOUSE VILLAGE OF WINDPOINT CLNSWP MID STATE EXPRESS AZARIAN LF (FS)-HOUSING LONI LANE-REGENCY W DR, NW CNR RACINE GAS LIGHT FORMER RACINE COMMERICAL AIRPORT WISCONSIN SCREEN PROCESS INC


Database(s) LUST LUST LUST, WI Spills UST UST UST UST AST AST RCRA-SQG, FINDS RCRA-SQG, FINDS RCRA-SQG, FINDS, BRRTS RCRA-SQG, FINDS FINDS, RCRA-LQG WI Spills WI ERP WI ERP, AUL WI ERP WI WDS WI MANIFEST

OVERVIEW MAP - 01811652.1r

	Express Cleaners, Inc 3941 North Main Street	CLIENT: Northern Environmental CONTACT: Chris Hatfield
LAT/LONG:	Racine WI 53402 42.7690 / 87.7819	INQUIRY #: 01811652.1r DATE: December 06, 2006 4:41 pm

DETAIL MAP - 01811652.1r

-

LAT/LONG:

42.7690 / 87.7819

DATE: December 06, 2006 4:42 pm Copyright @ 2006 EDR, Inc. @ 2006 Tele Atlas Rel. 07/2005.

MAP FINDINGS SUMMARY

Database	Target Property	Search Distance (Miles)	< 1/8	1/8 - 1/4	<u>1/4 - 1/2</u>	<u>1/2 - 1</u>	> 1	Total Plotted
FEDERAL RECORDS								
NPL Proposed NPL Delisted NPL NPL RECOVERY CERCLIS CERC-NFRAP CORRACTS RCRA TSD RCRA Lg. Quan. Gen. ERNS HMIRS US ENG CONTROLS US INST CONTROL DOD FUDS US BROWNFIELDS CONSENT ROD UMTRA ODI TRIS TSCA FTTS SSTS ICIS PADS MLTS MINES FINDS RAATS	x	1.000 1.000 TP 0.500 0.500 1.000 0.250 0.250 0.250 TP TP 0.500 0.500 1.000 1.000 1.000 0.500 1.000 1.000 0.500 1.000 0.500 TP TP TP TP TP TP TP TP TP TP TP TP TP	0 0 0 ^R 0 0 0 0 0 ^R R 0 0 0 0 0 0 0 0 R R R R R R R R R R	0 0 0 R 0 0 0 0 0 R R 0 0 0 0 0 0 0 0 0	0 0 0 R 0 0 0 R R R R R 0 0 0 0 0 0 0 0	0 0 0 RRR 0 RRRRRRR 0 0 R 0 0 RRRRRRR RRRRRR	ŔŔŔŔŔŔŔŔŔŔŔŔŔŔŔŔŔŔŔŔŔŔŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎ	000000000000000000000000000000000000000
STATE AND LOCAL RECORD	<u>is</u>							
State Haz. Waste BRRTS WI ERP State Landfill WI WDS LUST UST LAST AST MANIFEST WI Spills AGSPILLS CRS AUL	x	1.000 TP 0.500 0.500 0.500 0.250 0.250 0.250 0.250 TP TP TP TP 0.500	0 NR 0 0 2 2 0 0 NR NR NR 2	0 NR 0 0 0 3 0 0 NR NR 0	0 NR 0 0 3 NR 0 NR NR NR NR 1	0 NR NR NR NR NR NR NR NR NR NR	NR NR R NR NR R NR NR R NR NR NR NR NR NR NR	0 0 0 5 5 0 0 0 0 0 3

Sime of Wiscousin promen of Manue Resonant

SOIL BORING LOG INFORMATION Form 4400-172 Nov. 7-98

....

Sever De	í
----------	---

Within Weissie [] Ware Mangement [] Kemediation/Revelopment [] Other []

												Pes			1.
39	21-30	41 N	San Jorth	Main Street	free a	ic/Per	mit Ste		S. Name	iter	Bortau	B	-2		
1.4	3921-3941 North Main Street					04,12,2006 04,12			Completed Drising Mediod			iod			
			- dron	Giemzik mental	$\frac{04}{-4}$	<u>-12</u>	20	53		12	20 77 7		•		
711		NCIEN		PRE WELLID No. Well North	and the second second second		1	evet		r Elen	1.1.1	-	linear an		
_001	Carit	ETEIN.		Description La Porting Location La	<u> </u>		F== N		444	Gaid L	Fort.		2.2	ARCENT A	ACTOR NO.
二(約2)	First 14-ce			N. B			0 1					N		Fact	© E Ciw
54625	IT ID			Racine	Caresys		Creat	Rã	cine	r Vola	572				
Sag	mies		Î			l					Sait	-	ndies -		
Number Lod Type	Length An, A Reverends (In)	Blane Counts	Depth in Pert	- Soil Sock Description And Ocalogic Origin For Each Major Unit		nace	Oraphia Log	TVIAL Diagoan	PUPINO	Compression Burnisia	Maluure Content	Link	Presidenty Levies	P 200	RQU
									and a strength						ann an taite an Art Million
		•	1	Blacktop, Gravel		ĢΡ	22		Ĩ				tite to		
S-1			2	Wet sand		5P			0.0		wet		arutte.		
Ú-1						ŧ	911							1400	
			3	Wet gray Clay		EL I	VIII.				wet				
			4	Damp sand		βP			0.0		damp				
			5	Wet sand		βP				-	wet				
			6	Damp sand		Ρ Ρ		ł	0.0		lamp	ŧ.			
			7	Wet sand		βP	CTANTA				wet				
			8	Wet gray clay .		EL			0.0		wet		1		
			9	Wet sand		βP				ł	weț				
		•••	10	Wet sand		БР			0.0		wet		1445-10A		
			11	Wet clay		ĘΓ				ŧ.,	wet				
S-6			12	Wet clay		FL			0.0	ŀ,	wet				
											ŀ				
	tunia			aforizies or this fam is for and co		E	T ASE PAR		k	i		!	F		1
Sibetal		11.2. ETC			Firm,	ميانيا ميند مراجع	COI (1)		- B						

This form is antionized by Chapters 281, 283, 289, 282, 293, 293, 295, and 299, Wit, State. Completions of this form is considering. Philore to file this form may result in formation of between S10 and S25,000, or imprisonment for up to one year, depending on the program and resolution reasonably identification between S10 and S25,000, or imprisonment for up to one year, depending on the program and resolution reasonably identification between on this form is say increased to be used for any other pulpose. NOTE: See boundations for node information, including where the completed form should be sent.

ħ

ATTACHMENT B

PERTINENT PORTIONS OF EDR RADIUS MAP REPORT AND SANBORN FIRE INSURANCE MAP SEARCH

The EDR Radius Map™ Report

Express Cleaners, Inc 3941 North Main Street Racine, WI 53402

Inquiry Number: 01811652.1r

December 06, 2006

The Standard in Environmental Risk Management Information

440 Wheelers Farms Road Milford, Connecticut 06461

Nationwide Customer Service

Telephone: 1-800-352-0050 Fax: 1-800-231-6802 Internet: www.edrnet.com

TABLE OF CONTENTS

SECTION

PAGE

Executive Summary	ES1
Overview Map	2
Detail Map	3
Map Findings Summary	4
Map Findings	6
Orphan Summary	38
Government Records Searched/Data Currency Tracking	GR-1
GEOCHECK ADDENDUM	
GeoCheck - Not Requested	
Orphan Details	0D-1

Thank you for your business. Please contact EDR at 1-800-352-0050 with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2006 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

A search of available environmental records was conducted by Environmental Data Resources, Inc (EDR). The report was designed to assist parties seeking to meet the search requirements of EPA's Standards and Practices for All Appropriate Inquiries (40 CFR Part 312), the ASTM Standard Practice for Environmental Site Assessments (E 1527-05) or custom requirements developed for the evaluation of environmental risk associated with a parcel of real estate.

TARGET PROPERTY INFORMATION

ADDRESS

3941 NORTH MAIN STREET RACINE, WI 53402

COORDINATES

 Latitude (North):
 42.769000 - 42' 46' 8.4"

 Longitude (West):
 87.781900 - 87' 46'-54.8"

 Universal Tranverse Mercator:
 Zone 16

 UTM X (Meters):
 436028.4

 UTM Y (Meters):
 4735245.0

 Elevation:
 618 ft. above sea level

USGS TOPOGRAPHIC MAP ASSOCIATED WITH TARGET PROPERTY

Target Property Map:	42087-G7 RACINE NORTH, WI
Most Recent Revision:	1971

TARGET PROPERTY SEARCH RESULTS

The target property was identified in the following records. For more information on this property see page 6 of the attached EDR Radius Map report:

Site	Database(s)	EPA ID
PARIS ROYAL CLEANERS 3941 N MAIN ST RACINE, WI 53402	RCRA-SQG FINDS WI MANIFEST	WID023515885

DATABASES WITH NO MAPPED SITES

No mapped sites were found in EDR's search of available ("reasonably ascertainable ") government records either on the target property or within the search radius around the target property for the following databases:

FEDERAL RECORDS

NPL	National Priority List
	Proposed National Priority List Sites
	National Priority List Deletions

NPL RECOVERY	Federal Superfund Liens
	. Comprehensive Environmental Response, Compensation, and Liability Information
	System
CERC-NFRAP	. CERCLIS No Further Remedial Action Planned
CORRACTS	
	Resource Conservation and Recovery Act Information
	Resource Conservation and Recovery Act Information
	Emergency Response Notification System
HMIRS	Hazardous Materials Information Reporting System
	. Engineering Controls Sites List
	Sites with Institutional Controls
DOD	Department of Defense Sites
FUDS	Formerly Used Defense Sites
	A Listing of Brownfields Sites
	Superfund (CERCLA) Consent Decrees
ROD	
UMTRA	
ODI.	
	Toxic Chemical Release Inventory System Toxic Substances Control Act
	. FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, &
F115	
SSTS	Section 7 Tracking Systems
	Integrated Compliance Information System
	PCB Activity Database System
	Material Licensing Tracking System
MINES	
RAATS	RCRA Administrative Action Tracking System

STATE AND LOCAL RECORDS

1

SHWS	. Hazard Ranking List
BRRTS	Bureau of Remediation & Redevelopment Tracking System
WI ERP	Environmental Repair Program Database
SWF/LF	
WI WDS	. Registry of Waste Disposal Sites
	Leaking Aboveground Storage Tank Listing
AST	_ Tanks Database
WI Spills	Spills Database
AGSPILLS	Agricultural Spill Cases
CRS	Closed Remediation Sites
VCP	Voluntary Party Liability Exemption Sites
DRYCLEANERS	Five Star Recognition Program Sites
WI WRRSER	Wisconsin Remedial Response Site Evaluation Report
BEAP	Brownfields Environmental Assessment Program
BROWNFIELDS	. Brownfields Site Locations Listing
AIRS	Air Permit Program Listing
TIER 2	
LEAD	Lead Inspection Data

TRIBAL RECORDS

INDIAN RESERV	Indian Reservations
	Leaking Underground Storage Tanks on Indian Land
INDIAN UST	Underground Storage Tanks on Indian Land

EDR PROPRIETARY RECORDS

Manufactured Gas Plants... EDR Proprietary Manufactured Gas Plants

SURROUNDING SITES: SEARCH RESULTS

Surrounding sites were identified in the following databases.

Elevations have been determined from the USGS Digital Elevation Model and should be evaluated on a relative (not an absolute) basis. Relative elevation information between sites of close proximity should be field verified. Sites with an elevation equal to or higher than the target property have been differentiated below from sites with an elevation lower than the target property.

Page numbers and map identification numbers refer to the EDR Radius Map report where detailed data on individual sites can be reviewed.

Sites listed in *bold italics* are in multiple databases.

Unmappable (orphan) sites are not considered in the foregoing analysis.

STATE AND LOCAL RECORDS

LUST: The Leaking Underground Storage Tank Incident Reports contain an inventory of reported leaking underground storage tank incidents. The data come from the Department of Natural Resource's LUST Database.

A review of the LUST list, as provided by EDR, and dated 06/21/2006 has revealed that there are 5 LUST sites within approximately 0.5 miles of the target property.

Equal/Higher Elevation	Address	Dist / Dir	Map ID	Page
PUGH OIL CO/WISHAU'S SERVICE Facility Status: CONDITIONALLY CLOSED	3953 N MAIN ST	0-1/8 N	A2	8
SHELL, FORMER Facility Status: CLOSED	3945 ERIE ST	1/4 - 1/2W	9	27
7-ELEVEN #30512 Facility Status: CLOSED	600 THREE MILE RD	1/4 - 1/2WNV	V 10	29
Lower Elevation	Address	Dist / Dir	Map ID	Page
MURPHY OIL/SPUR #2433 Facility Status: OPEN	414 3 MILE RD	0 - 1/8 NNW	/ 4	18
PRAIRIE SCHOOL Facility Status: CLOSED	4050 LIGHTHOUSE DR	1/4 - 1/2 ENE	11	35

UST: The Underground Storage Tank database contains registered USTs. USTs are regulated under Subtitle I of the Resource Conservation and Recovery Act (RCRA). The data come from the Department of Commerces' List: All Underground Storage Tanks Except for Fuel Oil.

A review of the UST list, as provided by EDR, and dated 10/06/2006 has revealed that there are 5 UST

sites within approximately 0.25 miles of the target property.

Equal/Higher Elevation	Address	Dist / Dir	Map ID	Page
Not reported	3953 N MAIN ST	0 - 1/8 N	A3	14
Not reported	414 THREE MILE RD	0 - 1/8 NW	5	23
Not reported	3720 N MAIN ST	1/8 - 1/4 S	6	24
Lower Elevation	Address	Dist / Dir	Map ID	Page
Not reported	222 3 MILE RD	1/8 - 1/4 ENE	7	25
Not reported	312 N VINECENNES CIR	1/8 - 1/4 S	8	26

AUL: Date a deed restriction is recorded at the Register of Deeds office for a property. Extent of soil contamination is known but impracticable to remove now or an engineering control is required to be maintained or NR720 industrial stds are applied. Restricts property use or requires future actions.

A review of the AUL list, as provided by EDR, and dated 06/21/2006 has revealed that there are 3 AUL sites within approximately 0.5 miles of the target property.

Equal/Higher Elevation	Address	Dist / Dir	Map ID	Page
PUGH OIL CO/WISHAU'S SERVICE	3953 N MAIN ST	0 - 1/8 N	A2	8
7-ELEVEN #30512	600 THREE MILE RD	1/4 - 1/2WNW	10	29
Lower Elevation	Address	Dist / Dir	Map ID	Page
MURPHY OIL/SPUR #2433	414 3 MILE RD	0 - 1/8 NNW	4	18

MAP FINDINGS SUMMARY

Database VCP DRYCLEANERS WI WRRSER BEAP BROWNFIELDS AIRS TIER 2	Target Property	Search Distance (Miles) 0.500 0.250 TP 0.500 0.500 TP TP	< 1/8 0 0 NR 0 0 NR NR	1/8 - 1/4 0 0 NR 0 0 NR NR	1/4 - 1/2 0 NR NR 0 0 NR NR	1/2 - 1 NR NR NR NR NR NR NR NR	> 1 NR NR NR NR NR NR NR	Total Plotted 0 0 0 0 0 0 0 0 0 0
LEAD		TP	NR	NR	NR	NR	NR	0
TRIBAL RECORDS								
INDIAN RESERV INDIAN LUST INDIAN UST		1.000 0.500 0.250	0 0 0	0 0 0	0 0 NR	0 NR NR	NR NR NR	0 0 0
EDR PROPRIETARY RECOR	DS							
Manufactured Gas Plants		1.000	0	0	0	0	NR	0

NOTES:

TP = Target Property

NR = Not Requested at this Search Distance

Sites may be listed in more than one database

-

"Linking Technology with Tradition"®

Sanborn® Map Report

Ship To:	Chris Hatfie	eld	Order Date	: 12/6/20)06	Completion Date:	12/6/2006
	Northern Er	vironmental	Inquiry #:	181165	2.2		
	12075 N. C	orporate	P.O. #:	ECI-01	-2300	0-3300	
	Mequon, W	I 53092	Site Name:	Express	s Clea	aners, Inc	
			Add	ress:	39 41	1 North Main Street	
Customer	Project:	NA	City	/State:	Raci	ine, WI 53402	
1024233CA	AR	262-241-3133	Cros	ss ⁻ Stree	ets: -		

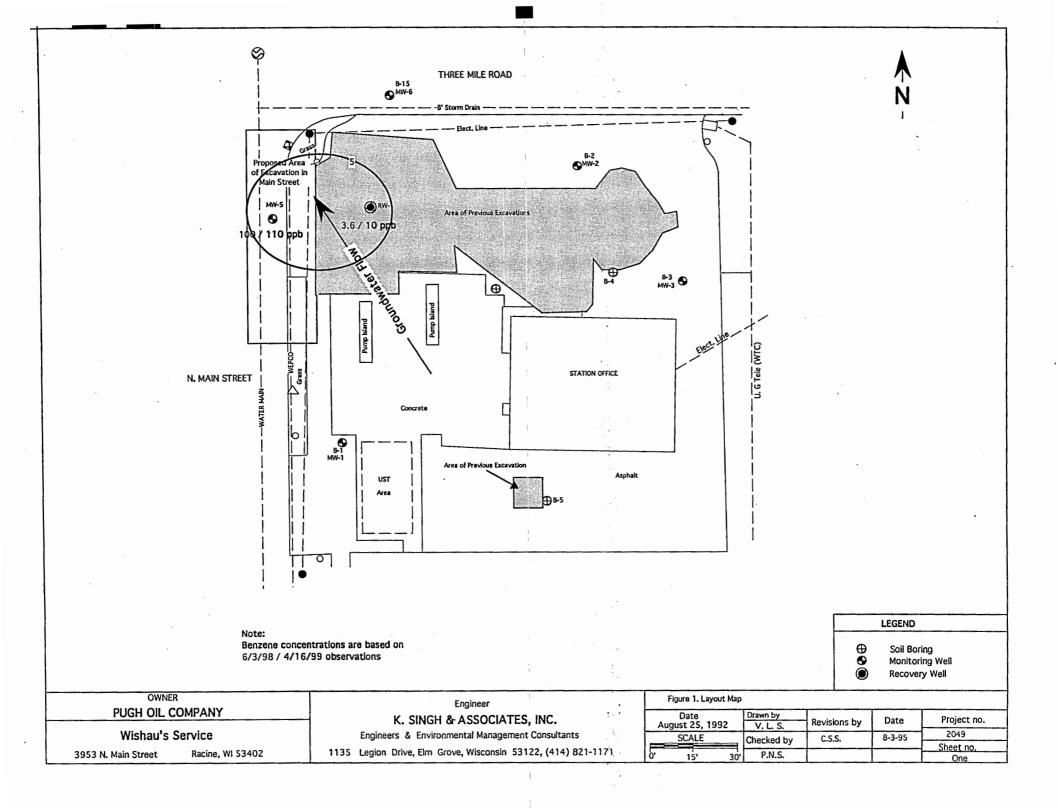
This document reports that the largest and most complete collection of Sanborn fire insurance maps has been reviewed based on client supplied information, and fire insurance maps depicting the target property at the specified address were not identified.

NO COVERAGE


This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT IMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT IMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA ESOURCES, INC. BE LIABLE TO ANYONE, WETHER RAISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF AMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA ESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report AS IS. Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide of rundom provide in this Report is not to be construed as legal advice.

Copyright 2006 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission. EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

ATTTACHMENT C


GROUNDWATER ELEVATION CONTOUR MAP

ATTACHMENT D

PUGH OIL LUST INVESTIGATION INFORMATION

Page 1 of 3

Parameters	Date	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	RW-1
			· · ·				270	
Benzene (ppb)	1/31/92	<1	8.0	<1	2,900	NS	NS	NI
	2/25/92	<2	<2	<2	4.0	<1	<1	NI
ES (ppb) 5	11/14/92	<0.04	9.5	<0.04	DW	<0.04	<0.04	NS
PAL (ppb) 0.5	7/26/93	NS	NS	NS	DW	NS	NS	220
	7/28/93	5.7	7.0	<0.7	DW	32.0	<0.7	220
	3/2/94	<0.7	0.8	NT	DW	NT	NT	<0.7
	12/28/94	<0.7	<0.7	<0.7	DW	<0.7	<0.7	0.1
	4/7/95	<1.0	<1.0	<1.0	DW	6.2	<1.0	25
•	6/21/96	<0.5	2.9	<0.5	DW	150	<0.5	3.6
	9/10/96	< 0.5	2.1	<0.5	DW	51	<0.5	12
	1/31/97	<0.13	0.76	<0.13	DW	300	<0.13	4.3
	4/7/97	NS	0.84	<0.13	DW	48	NS	22
	7/21/97	NS	NS	NS	DW	95	NS	21
• • • • • • • •	10/7/97	NS	NS	NS	DW	59	NS	18
	1/21/98	NS	NS	NS	DW	28	NS	10
	6/3/98	NS	NS	NS	DW	100	NS	3.6
	4/16/99	NS	NS	NS	DW	110	NS	10
				·· · ·			- · · ·	
Ethylbenzene (ppb)	1/31/92	<1	10.0	<1	52.0	NS	NS	NI
	2/25/92	<2	25.0	<2	39.0	<1	<1	NI
ES (ppb) 700	11/14/92	<0.2	3.0	<0.2	DW	<0.2	<0.2	NS
PAL (ppb) 140	7/26/93	NS	NS	NS	DW	NS	NS	47
	7/28/93	3.8	4.3	<0.9	DW	2.2	<0.9	67
	3/2/94	<0.9	<0.9	NT	DW	NT	NT	<0.9
	12/28/94	<0.9	<0.9	<0.9	DW	<0.9	<0.9	<0.9
	4/7/95	<1.0	<1.0	<1.0	DW	2.4	<1.0	22
	6/21/96	<0.5	< 0.5	<0.5	DW	6.6	<0.5	2.8
· · · · · · · · · · · · · · · · · · ·	9/10/96	<0.5	0.7	<0.5	DW	1.1	<0.5	13
	1/31/97	<0.22	<0.22	<0.22	DW	4.3	<0.22	2.4
	4/7/97	NS	0.25	<0.22	DW	1.4	NS	27
	7/21/97	NS	NS	NS	DW	2.7	NS	31
	10/7/97	NS	NS	NS	DW	1.3	NS	32
	1/21/98	NS	NS	NS	DW	<0.22	NS	8.2
	6/3/98	NS	NS	NS	DW	3.5	NS	1.8
	4/16/99	NS	NS	NS	DW	5.5	NS	3.3

Table 1Groundwater Quality Test Results for Wells Located at
Wishau's Service, Racine, Wisconsin

K. SINGH & ASSOCIATES, INC. Engineers, Scientists and Environmental Management Consultants

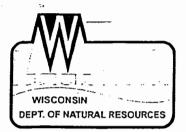
Page 2 of 3

Parameters	Date	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	RW-1
Toluene (ppb)	1/31/92	<1	2.0	3.0	370.0	NS	NS	NI
	2/25/92	<2	<2	<2	6.0	<1	<1	NI
ES (ppb) 343	11/14/92	<0.2	<0.2	<0.2	DW	<0.2	<0.2	NS
PAL (ppb) 68.6	7/26/93	NS	NS	NS	DW	NS	NS	440.0
· · · · · · · · · · · · · · · · · · ·	7/28/93	5.8	3.8	<1	DW	2.2	<1	500.0
<u>.</u> , ., .	3/2/94	<1	<1	NT	DW	NT	NT	<1
	12/28/94	<1.0	<1.0	<1.0	DW	<1.0	<1.0	0.2
	4/7/95	<1.0	<1.0	<1.0	DW	<1.0	<1.0	20.0
	6/21/96	<0.5	0.8	< 0.5	DW	<1.3	<0.5	7.2
	9/10/96	< 0.5	0.6	< 0.5	DW	1.1	<0.5	6.2
·	1/31/97	<0.2	<0.2	<0.2	DW	0.9	<0.2	2.5
	4/7/97	NS	<0.2	<0.2	DW	0.92	NS	17
<u>, , , , , , , , , , , , , , , , , , , </u>	7/21/97	NS	NS	NS	DW	0.92	NS	8.5
		NS		NS	DW	0.90	NS	4.0
	10/7/97		NS					
· · · · · · · · · · · · · · · · · · ·	1/21/98	NS	NS	NS	DW	<0.20	NS	3.0
	6/3/98	NS	NS	NS	DW	0.83	NS	0.7
	4/16/99	NS	NS	NS	DW	1.6	NS	4.1
					100.0			
Total Xylenes (ppb)	1/31/92	<1	75.0 -	4.0	-122.0 -	NS	NS	<u>NI</u>
	2/25/92	<2	2.0	<2	87.0	<1	<1	NI
ES (ppb) 620	11/14/92	<0.2	14.8	<0.2	DW	<0.2	<0.2	NS
PAL (ppb) 124	7/26/93	NS	NS	NS	DW	NS	NS	104.0
	7/28/93	18.0	30.0	<2.4	DW	<2.4	<2.4	420.0
	3/2/94	<2.4	<2.4	NT 12.0	DW	NT	NT	<2.4
	12/28/94	<3.9	<3.9	<3.9	DW DW	<3.9 5.2	<3.9	33.0
	4/7/95	<3.0	<3.0	<3.0	DW DW	<u> </u>	<3.0	
	6/21/96 9/10/96	<0.5 <0.5	3.1 4.1	5.1 <0.5	DW DW	<u>4.9</u> 0.9	<0.5 <0.5	2.6
	1/31/97	<0.3	0.3	<0.3	DW DW	<0.9	<0.23	0.2
	4/7/97	<u><0.25</u> NS	1.6	<0.23	DW	1.3	<u><0.25</u> NS	24
	7/21/97	NS	NS	NS NS	DW	1.5	NS	24
	10/7/97	NS	NS	NS	DW	1.5	NS	4.8
	1/21/98	NS	NS	NS	DW	<0.23	NS	4.1
· · · · · · · · · · · · · · · · · · ·	6/3/98	NS	NS	NS	DW	6.8	NS	2.3
	4/16/99	NS	NS	NS	DW	16	NS	8.6
	-							
BETX (ppb)	1/31/92	<4	95.0	<9	3,444	NS	NS	NI
	2/25/92	<8	<31	<8	136	<4	<4	NI
	11/14/92	<0.64	<14.7	<0.64	DW	<0.84	<0.84	NS
	7/26/93	NS	NS	NS	DW	NS	NS	811
	7/28/93	33.3	45.1	<5	DW	<38.8	<5	1,207
	3/2/94	<5	<5.1	NT	DW	NT	NT	<5
	12/28/94	<6.5	<6.5	<6.5	DW	<6.5	<6.5	<1.8
K. SINGH & ASSOCIA	4/7/95	<6.0	<6.0	<6.0	DW	<14.8	<6.0	100.0

. . .

Table 1 Groundwater Quality Test Results for Wells Located at Wishau's Service, Racine, Wisconsin

K. SINGH & ASSOCIATES, INC. Engineers, Scientists and Environmental Management Consultants


Page 3 of 3

Parameters	Date	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	RW-1
BETX (ppb)	6/21/96	<2.0	<7.3	<6.6	DW	<162.8	<2.0	16.2
	9/10/96	<2.0	7.5	<2.0	DW	54.1	<2.0	1.3
	1/31/97	<0.78	<1.47	<0.78	DW	<305.5	<0.78	10.5
	4/7/97	NS	<2.89	<0.78	DW	51.62	NS	90.0
	7/21/97	NS	NS	NS	DW	100.16	NS	84.5
	10/7/97	NS	NS	NS	DW	62.56	NS	58.8
	1/21/98	NS	NS	NS	DW	<28.65	NS	25.3
	6/3/98	NS	NS	NS	DW	111.13	NS	8.35
	4/16/99	NS	NS	NS	DW	133.1	NS	26.0
						·		
MTBE (ppb)	7/26/93	NS	NS	 NS	DW	NS	NS	63
	7/28/93	5.9	18	<4.6	DW	<4.6	<4.6	84
ES (ppb) 60	3/2/94	16.3	9.6	NT	DW	NT	NT	<4.6
PAL (ppb) 12	12/28/94	18.4	14.7	<4.6	DW	<4.6	<4.6	3
	4/7/95	25.0	11	<1.0	DW	2.2	<1.0	5.9
	6/21/96	30.0	42	<5	DW	<13	<5	11
	9/10/96	23.0	16	<5	DW	<5.0	<5	26
	1/31/97	9.8	<0.16	<0.16	DW	0.23	<1.0	5.7
	4/7/97	NS	6.1	0.84	DW	4.3	NS	3.3
	7/21/97	NS	NS	NS	DW	<0.16	NS	<0.16
	10/7/97	NS	NS	NS	DW	<0.16	NS	<0.16
······································	1/21/98	NS	NS	NS	DW	<0.16	NS	<0.16
	6/3/98	NS	NS	NS	DW	<1.0	NS	<2.0
· · · · · · · · · · · · · · · · · · ·	4/16/99	NS	NS	NS	DW	0.86	NS	3.8
	10/00/04	-0.1	-0.1	-0.1	DW	-0.1		0.0
GRO (ppm)	12/28/94	<0.1	<0.1	<0.1	DW	<0.1	<0.1	0.2
	4/7/95	<0.05	<0.05	< 0.05	DW	0.28	<0.05	0.28
	6/21/96	<0.05	<0.05	0.48	DW	1.1	<0.05	<0.05
	9/10/96	< 0.05	< 0.05	<0.05	DW	0.17	<0.05	0.14
	1/31/97	<0.05	<0.05	<0.05	DW	0.61	<0.05	<0.05
	4/7/97	NS	<0.05	<0.05	DW	0.16	NS	0.24
	7/21/97	NS	NS	NS	DW	0.27	NS	0.33
-	10/7/97	NS	NS	NS	DW	0.15	NS	0.2
	1/21/98	NS	NS	NS	DW	0.09	NS	0.2
	6/3/98	NS	NS	NS	DW	0.17	NS	<0.05
Note:	4/16/99	NS	NS	NS	DW	NS	NS	NS

Table 1 Groundwater Quality Test Results for Wells Located at Wishau's Service, Racine, Wisconsin

Note: NT -- Not Tested due to cover of snow and ice NI -- Not Installed DW -- Damaged during excavation

NS -- Not Sampled

Tommy G. Thompson, Governor George E. Meyer, Secretary Gloria L. McCutcheon, Regional Director

Southeast Region Sturtevant Service Center 9531 Rayne Road Sturtevant, Wisconsin 53177 Telephone 414-884-2300 FAX 414-884-2307 TDD 414-884-2304

tile !

January 31, 2000

RECEIVED

William Pugh Wishaus Service Station/Pugh Oil 3953 North Main Street Racine, WI 53402

JUN 3 0 2000 PECFA SITE REVIEW MILWAUKEE OFFICE

Subject: Proactive closure for Wishaus Service Station, Racine, WI. 53402 (FID#252056090; BRRTS# 03-52-001511) 252058730

Dear Mr. Pugh:

I have reviewed your case file based on the documents submitted by K. Singh and Associates. The Department has determined (prior to November 31, 1999) that it will not require additional site investigation or remediation for this site at this time. However, the case will not be officially entered as closed on the Department's tracking system until a groundwater use restriction is recorded for all properties where there are groundwater enforcement standard excedances (or until the closure criteria of s. NR 726.05 Wis. Admin. Code has been amended).

Case closure under s. NR 726.05 Wis. Adm. Code requires the recording of a groundwater use restriction for all properties where groundwater contamination exceeds ch. NR 140 enforcement standards (ES), including street and highway right-of-ways. NR 140 ESs are exceeded at RW-1 and MW-5 for Benzene. Because MW-5 is located in the right-of-way (ROW) of North Main Street, it appears evident that the groundwater ES excedances extend under the ROW. The latest round of groundwater samples indicated Benzene concentrations of 10 and 110 ppb in RW-1 and MW-5 respectively.

However, you should know that the Department is in the process of proposing changes to s. NR 726.05, Wis. Adm. Code, to allow case closure when contamination is present within a public street or highway right-of-way as long as the investigation has confirmed that the groundwater contaminant plume is stable or receding, that natural attenuation will restore the groundwater to NR 140 standards within a reasonable period of time, and that the contamination has not migrated across the right-of-way to another property. The Code change, which is anticipated sometime in 2000, will probably require written notification to the municipality or the state agency that owns or maintains the street or highway that contamination exists, but will not require the recording of a groundwater use restriction for groundwater contamination beneath public streets or highways.

If you choose not to wait for the proposed changes to s. NR 726.05, Wis. Adm. Code, to become effective, then case closure cannot occur until the current closure requirements are met. Existing closure requirements include the following:

1. A groundwater use restriction (GWUR) must be recorded for the property or properties that have ch. NR 140 enforcement standard excedances as a result of migration of contamination from the responsible party property, per s. NR 726.05(2)(b)4 Wis. Admin. Code, and a copy of the recorded restriction must be sent to this office. A GWUR will be necessary for the Wishaus Service Station property and the adjacent ROW of North Main Street. A draft deed document is enclosed to assist

