

GROUNDWATER MONITORING REPORT

KONOP PROPERTY SITE 110 BUSINESS HIGHWAY 141 N COLEMAN, WISCONSIN

> Tetra Tech #114-330854 WDNR BRRTS #03-38-548949 WDCOM #54112-9792-10 January 20, 2011

CLEAR SOLUTIONS[™]

complex world

Rocened OF-24-11

1837 County Highway OO Chippewa Falls, WI 54729-6519

> Office 715.832.0282 Fax 715.832.0541

January 20, 2011

Kristin DuFresne WDNR 2984 Shawano Avenue Green Bay, WI 54313-6727

 Re: Groundwater Monitoring Report for the Konop Property Site, 110 Business Highway 141 N, Coleman, Marinette County, Wisconsin.
 WDNR BRRTS #03-38-548949. WDCOM #54112-9792-10. Tetra Tech Project #114-330854.

Dear Ms. DuFresne:

This report documents three rounds of groundwater sampling at the Konop Property site, 110 Business Highway 141 N, Coleman, Wisconsin. See Figure 1.

Results of our groundwater monitoring show that petroleum constituents remain present on and off site at concentrations exceeding NR 140 enforcement standards (ESs). Contaminant trends in PZ-2, PZ-4, and MW-F are stable and decreasing. Mann-Kendall tests confirm the trends.

Besides the groundwater pathway, there are no other pathways or receptors, such as water supply pathways, surface waters, sensitive environments, utility trenches, or plant uptake and food chain, through which petroleum can move. There are two environmental factors as outlined in NR 746 including groundwater contamination within the limestone bedrock and the petroleum release is greater than 10 years old.

Based on these results, Tetra Tech recommends the Wisconsin Department of Natural Resources (WDNR) review the site for closure. If WDNR agrees Tetra Tech will submit a closure application.

Purpose and Scope

This report documents the results of groundwater sampling events completed in May 2010, October 2010, and December 2010.

Well Installation and Groundwater Testing Methods

Tetra Tech installed and developed one groundwater monitoring well (MW-12) and one piezometer (PZ-7) at the Konop Property site. The monitoring well was installed at a depth of 18 feet below ground surface (bgs) and screened from approximately 8 to 18 feet bgs. Piezometer depths are 32 feet bgs and screened from approximately 27 to 32 feet bgs The wells were installed and developed according to Chapter NR 141 of the Wisconsin Administrative Code and are shown in Figure 2.

Tetra Tech collected two quarterly rounds of groundwater samples from 12 wells/piezometers and one round from four wells by purging each monitoring well and collecting a sample using a disposable bailer. Bailer contents were emptied into the appropriately preserved containers, and all samples were packed in a cooler and shipped with the chain of custody record. Groundwater samples collected were analyzed for petroleum volatile organic compounds (PVOCs), naphthalene, 1,2-dichloroethane (DCA), and lead. Samples collected from MW-12 and PZ-7 were initially analyzed for volatile organic compounds (VOCs). The samples were shipped to Siemens, Rothschild, Wisconsin.

Appendix A contains groundwater sampling procedures. Appendix B contains monitoring well/piezometer construction forms (Form 4400-113A) and well development forms (Form 4400-113B) for wells MW-12 & PZ-7.

Recent Groundwater Results

The Wisconsin Department of Natural Resources (WDNR) established groundwater preventive action limits (PALs) and ESs for selected compounds that are listed in Wisconsin Administrative Code NR 140. If a contaminant concentration exceeds the PAL, the WDNR may require monitoring or additional investigation. If the concentration exceeds the ES, the WDNR may require monitoring or remediation.

Benzene (1,550 parts per billion [ppb]), ethylbenzene (2,310 ppb), naphthalene (502 ppb), toluene (8,840 ppb), and total trimethylbenzenes (TMBs) (3,100 ppb) were detected above their respective ESs in monitoring well MW-F. Benzene (520 ppb), 1,2-DCA (8.92 ppb), and total TMBs (530 ppb) were detected above their respective ESs in monitoring well PZ-4.

A benzene concentration above its ES of 5 ppb was detected in well PZ-2 (377 ppb).

Several PVOCs were detected above their respective PALs in well MW-F, PZ-4, and PZ-2.

No PVOCs were detected above laboratory detection limits in wells MW-3, PZ-3, MW-10, PZ-5, MW-8, MW-11, PZ-6, MW-12, and PZ-7.

Groundwater analytical results are summarized in Table 1 and depicted in Figures 3 through 8. Complete laboratory results are included in Appendix C.

Natural Attenuation Monitoring

Mann-Kendall Tests

We calculated the stability of the groundwater plume at MW-F, PZ-2, and PZ-4 using the Mann-Kendall statistical test (WDNR Form 4400-215) to determine trends in the groundwater quality in these wells. The groundwater plume is decreasing or stable in wells MW-F, PZ-2, and PZ-4. Appendix D includes a copy of the Mann-Kendall Statistical test for wells MW-F, PZ-2, and PZ-4.

Risk Assessment

Tetra Tech completed a risk analysis based on the criteria outlined in Wisconsin Administrative Code Chapter 746. We evaluated the criteria to determine the appropriate remedial approach for the site. Based on our evaluation the following risks exist at the site:

- 746.06(2) (a)3 Groundwater contamination is within the limestone bedrock.
- 746.06(2) (f) The petroleum release is greater than 10 years old.

AS A MUTUAL PROTECTION TO CLIENTS, THE PUBLIC, AND OURSELVES, ALL TETRA TECH REPORTS ARE SUBMITTED AS THE CONFIDENTIAL INFORMATION OF CLIENTS, AND AUTHORIZATION FOR PUBLICATION OF STATEMENT, CONCLUSIONS OR EXTRACTIONS FROM OR REGARDING OUR REPORTS IS RESERVED PENDING OUR PRIOR WRITTEN APPROVAL.

Appendix E includes a complete NR 746 analysis.

Conclusions and Recommendations

Results of our groundwater monitoring show that petroleum constituents remain present on and off site at concentrations exceeding NR 140 ESs. Contaminant trends in PZ-2, PZ-4, and MW-F are stable and decreasing. Mann-Kendall tests confirm the trends.

Besides the groundwater pathway, there are no other pathways or receptors, such as water supply pathways, surface waters, sensitive environments, utility trenches, or plant uptake and food chain, through which petroleum can move. There are two environmental factors as outlined in NR 746 including groundwater contamination within the limestone bedrock and the petroleum release is greater than 10 years old.

Based on these results, Tetra Tech recommends the WDNR review the site for closure. If WDNR agrees Tetra Tech will submit a closure application.

If you have any questions, I can be reached at 715-832-0282.

Michael K. Neal, Professional Hydrologist WI ONAL HYDRO

Dale Konop, 7105 Konitzer Road, Oconto Falls, WI 54154 CC:

Beth A. Erdman, WDCOM, 375 City Center, Suite I, Oshkosh, WI 54901-1805

		A KON	TABI	LE 1 (page 1 o RESULTS - GR Y SITE, COLE	f 12) OUNDWATER MAN, WISCON	ISIN			
				MW-3				NR 140 Ren	nedial Action
Date	May-06	Oct-06	Aug-07	Nov-07	Apr-08	May-10	Oct-10	Lin	nits
Relative Elevation (ft)	706.79	705.90	704.05	704.82	705.44	705.87	706.83		
<u>ANALYTE</u>								ES	PAL
Lead (ppb)						< 0.6		15	1.5
VOCs/PVOCs (ppb)									
Benzene	1,600	700	165	116	< 0.3	0.64	<0.2	5	0.5
1,2-DCA	< 6	9	3	7	< 0.5	< 0.2	<0.3	5	0.5
Ethylbenzene	< 6	9	3	7	< 0.5	< 0.2	<0.2	700	140
MTBE	76	82	28	< 3	1.32	< 0.5	<0.5	60	12
Naphthalene						< 1	<1	100	10
Toluene	380	44	4	< 3	< 0.3	< 0.4	<0.4	1,000	200
1,2,4- & 1,3,5-TMB	< 10	2	3	< 4	< 0.4	< 0.2	<0.2	480	96
Total Xylenes	< 18	110	11	< 6	< 0.6	< 0.4	<0.4	10,000	1,000
ND = Not Detected							Well De	pth (feet):	12

--- = not analyzed or no standard

MTBE = methyl-tert-butylether

TMB = trimethylbenzene

DCA = dichloroethane

Bold italic numbers indicate concentrations above the ES outlined in NR 140.10.

Bold numbers indicate concentrations above the PAL outlined in NR 140.10.

Well Depth (feet): TOC Elevation (feet):

715.22 Date Installed: 28-Apr-06

Screen Length (feet): 10

		KON	TAB ANALYTICAL I OP PROPERT	LE 1 (page 2 o RESULTS - GR Y SITE, COLE	f 12) OUNDWATER MAN, WISCOM	ISIN			
				PZ-3				NR 140 Remedial Action	
Date	Jun-06	Oct-06	Aug-07	Nov-07	Apr-08	May-10	Oct-10	Lin	nits
Relative Elevation (ft)	701.25	702.43	699.44	699.35	704.18	701.48	703.77	1	
ANALYTE	-							ES	PAL
Lead (ppb)						< 0.6		15	1.5
VOCs/PVOCs (ppb)									
Benzene	< 0.4	< 0.1	< 0.3	< 0.3	< 0.3	1.71	<0.2	5	0.5
1,2-DCA						< 0.3	<0.3	5	0.5
Ethylbenzene	< 0.5	< 0.4	< 0.5	< 0.5	< 0.5	< 0.2	<0.2	700	140
MTBE	3.5	3.7	4	3	< 0.3	< 0.5	<0.5	60	12
Naphthalene						< 1	<1	100	10
Toluene	< 0.7	< 0.4	< 1	< 1	< 0.3	< 0.4	<0.4	1,000	200
1,2,4- & 1,3,5-TMB	< 1	<0.4	< 0.4	< 0.4	< 0.4	< 0.2	<0.2	480	96
Total Xylenes	< 2	< 1	< 0.6	< 0.6	< 0.6	< 0.4	<0.4	10,000	1,000
ND = Not Detected							Well De	oth (feet):	35

--- = not analyzed or no standard

MTBE = methyl-tert-butylether

TMB = trimethylbenzene

DCA = dichloroethane

Bold italic numbers indicate concentrations above the ES outlined in NR 140.10.

Bold numbers indicate concentrations above the PAL outlined in NR 140.10.

TOC Elevation (feet): 714.18 Date Installed: 6-Jun-06

Screen Length (feet): 10

	A KON	TABL	E 1 (page 3 o RESULTS - GR Y SITE, COLE	f 12) COUNDWATER MAN, WISCON	ISIN		
			MW-10			NR 140 Rer	medial Action
Date	Aug-07	Nov-07	Apr-08	May-10	Oct-10	Lir	nits
Relative Elevation (ft)	Dry	703.54	708.04	706.24	707.49	1	
ANALYTE						ES	PAL
Lead (ppb)				< 0.6		5	0.5
VOCs/PVOCs (ppb)					•		
Benzene		< 0.2	< 0.3	< 0.2	< 0.2	5	0.5
1,2-DCA				< 0.2	<0.3	5	0.5
Ethylbenzene		< 0.1	< 0.5	< 0.2	< 0.2	700	140
MTBE		< 0.2	< 0.3	< 0.5	< 0.5	60	12
Naphthalene		< 1		< 1	< 1	100	10
Toluene		< 0.4	< 0.3	< 0.4	< 0.4	1,000	200
1,2,4- & 1,3,5-TMB		< 0.4	< 0.4	< 0.2	< 0.2	480	96
Total Xylenes		< 0.6	< 0.6	< 0.4	< 0.4	10,000	1,000
ND = Not Detected					Well De	pth (feet):	13
= not analyzed or no sta	andard				TOC Eleva	ation (feet):	713.34
MTBE = methyl-tert-butylet	her				Date Ir	nstalled:	30-Aug-07

Screen Length (feet):

10

TMB = trimethylbenzene

DCA = dichloroethane

Bold italic numbers indicate concentrations above the ES outlined in NR 140.10.

	A KON	TABI	E 1 (page 4 o ESULTS - GR Y SITE, COLE	f 12) COUNDWATER MAN, WISCOM	ISIN			
			PZ-5			NR 140 Remedial Action		
Date	Aug-07	Nov-07	Apr-08	May-10	Oct-10	Lir	nits	
Relative Elevation (ft)	713.30	701.42	705.67	703.10	705.25			
ANALYTE						ES	PAL	
Lead (ppb)				< 0.6		15	1.5	
VOCs/PVOCs (ppb)		•						
Benzene	1.7	< 0.3	< 0.3	< 0.2	< 0.2	5	0.5	
Bromomethane	2					10	1	
1,2-DCA				0.3	<0.3	5	0.5	
Ethylbenzene	< 1	< 0.5	< 0.5	< 0.2	< 0.2	700	140	
MTBE	< 0.2	< 0.3	< 0.3	< 0.5	< 0.5	60	12	
Naphthalene				< 1	< 1	100	10	
Toluene	< 1	< 0.3	< 0.3	< 0.4	< 0.4	1,000	200	
1,2,4- & 1,3,5-TMB	< 0.5	< 0.4	< 0.4	< 0.2	< 0.2	480	96	
Total Xylenes	< 0.4	< 0.6	< 0.6	< 0.4	< 0.4	10,000	1,000	
ND = Not Detected					Well De	pth (feet):	30	
= not analyzed or no sta	andard				TOC Elev	ation (feet):	713.30	

Date Installed:

Screen Length (feet):

30-Aug-07

5

MTBE = methyl-tert-butylether

Bold italic numbers indicate concentrations above the ES outlined in NR 140.10. **Bold** numbers indicate concentrations above the PAL outlined in NR 140.10.

TMB = trimethylbenzene

DCA = dichloroethane

				ANALYTI KONOP PRO	TABLE 1 (pa CAL RESUL PERTY SITE	age 5 of 12) FS - GROUNE , COLEMAN, ⁷	WATER WISCONSIN		1110				
	MW-F										NR 140 Rer	NR 140 Remedial Action	
Date	Jun-02 Sep-02 Nov-03 Oct-06 Aug-07 Nov-07 Apr-08 May-10 Oct-10 Dec-10										Lin	nits	
Relative Elevation (ft)				706.02	702.00	703.36	708.16	705.76	707.64	705.20			
ANALYTE											ES	PAL	
Lead (ppb)								4.15	3.82		15	1.5	
VOCs/PVOCs (ppb)													
Benzene	7,400	3,400	2,400	770	803	1,370	2,910	2,030	1,690	1,550	5	0.5	
1,2-DCA								45.8	<30	< 60	5	0.5	
Ethylbenzene	2,600	2,700	230	2,300	292	1,670	2,960	2,540	2,060	2,310	700	140	
MTBE	< 100	< 43	36	< 18	48	< 15	< 150	< 50	<50	< 100	60	12	
Naphthalene								378	419	502	100	10	
Toluene	18,000	13,000	9,200	5,100	2,660	6,230	12,800	9,220	9,150	8,840	1,000	200	
1,2,4- & 1,3,5-TMB	2,150	2,140	1,670	2,630	823	1,750	2,305	1,662	1,700	3,100	480	96	
Total Xylenes	11,200	9,600	8,300	7,300	3,420	10,690	10,060	8,880	8,400	9,960	10,000	1,000	
ND = Not Detected					and the second					Well De	pth (feet):	13	

ND = Not Detected

--- = not analyzed or no standard

MTBE = methyl-tert-butylether

TMB = trimethylbenzene

DCA = dichloroethane

Bold italic numbers indicate concentrations above the ES outlined in NR 140.10.

Bold numbers indicate concentrations above the PAL outlined in NR 140.10.

Well Depth (feet):

Date Installed:

TOC Elevation (feet):

715.06 3-Jun-02

5

Screen Length (feet):

		A KON	TABLE 1 (p NALYTICAL RESUL OP PROPERTY SITE	age 6 of 12) TS - GROUNDWATE , COLEMAN, WISCO	R NSIN						
	PZ-4										
Date	Aug-07	Nov-07	Apr-08	May-10	Oct-10	Dec-10	Lir	nits			
Relative Elevation (ft)	715.12	700.21	696.50	697.62	705.30	703.00	1				
ANALYTE				• • • • • • • • • • • • • • • • • • • •			ES	PAL			
Lead (ppb)				< 0.6			15	1.5			
VOCs/PVOCs (ppb)											
Benzene	132	563	869	1,010	941	520	5	0.5			
1,2-DCA	3			25.4	<15	8.92	5	0.5			
Ethylbenzene	213	848	1,120	1,270	1,090	67.3	700	140			
Isopropylbenzene	6										
MTBE	6	< 15	< 30	< 25	<25	< 10	60	12			
Naphthalene	80			226	234	56.5	100	10			
Toluene	97	891	1,820	2,380	3,140	703	1,000	200			
1,2,4- & 1,3,5-TMB	253	749	944	1,473	860	530	480	96			
Total Xylenes	503	2,215	2,739	3,960	3,600	1,054	10,000	1,000			
ND = Not Detected						Well Depth	(feet):	35			

--- = not analyzed or no standard

MTBE = methyl-tert-butylether

TMB = trimethylbenzene

DCA = dichloroethane

Bold italic numbers indicate concentrations above the ES outlined in NR 140.10.

Bold numbers indicate concentrations above the PAL outlined in NR 140.10.

Well Depth (feet): TOC Elevation (feet):

715.12 Date Installed: 30-Aug-07

5

Screen Length (feet):

			A KON	TABL	E 1 (page 7 o RESULTS - GR Y SITE, COLE	f 12) OUNDWATER MAN, WISCON	ISIN				
					MW-8					NR 140 Ren	nedial Action
Date	Apr-99	Mar-00	Sep-00	Oct-06	Aug-07	Nov-07	Apr-08	May-10	Oct-10	Lin	nits
Relative Elevation (ft)		Dry	Dry	705.23	Dry	Dry	710.95	Dry	707.98	1	
ANALYTE		-								ES	PAL
VOCs/PVOCs (ppb)											
Benzene	< 0.2			< 0.2			< 0.3		<0.2	5	0.5
Ethylbenzene	< 0.3			< 0.3			< 0.5		<0.2	700	140
MTBE	< 0.3			< 0.3			< 0.3		<0.5	60	12
Toluene	< 0.4			< 0.4			< 0.3		<0.4	1,000	200
1,2,4- & 1,3,5-TMB	< 0.7			< 0.7			< 0.4		<0.4	480	96
Total Xylenes	2			< 2			< 0.6		<0.4	10,000	1,000
ND = Not Detected									Well Dep	oth (feet):	9

TOC Elevation (feet):

Date Installed:

Screen Length (feet):

713.86

1-Dec-98

5

--- = not analyzed or no standard

MTBE = methyl-tert-butylether

TMB = trimethylbenzene

Bold italic numbers indicate concentrations above the ES outlined in NR 140.10.

					к	ANALY	TABL TICAL R	E 1 (page ESULTS Y SITE, C	e 8 of 12) - GROUN OLEMAN	NDWATE I, WISCO	R						
								PZ-2								NR 140 Re	medial Action
Date	Dec-99	Mar-00	Sep-00	Jul-01	Jun-02	Sep-02	Jan-03	May-03	Nov-03	Oct-06	Aug-07	Nov-07	Apr-08	May-10	Oct-10	L	imits
Relative Elevation (ft)										705.70	701.39	702.76	706.71	704.22	706.95		
ANALYTE																ES	PAL
Lead (ppb)														< 0.6		15	1.5
VOCs/PVOCs (ppb)																	
Benzene	34	300	2,200	350	210	450	450	46	460	100	9	133	39.6	235	377	5	0.5
1,2-DCA														6.01	<0.3	5	0.5
Ethylbenzene	< 0.3	11	330	62	39	120	240	1	250	170	24	449	26.6	240	142	700	140
MTBE	0.7	< 3	< 5	< 6	< 5	3	< 1	6	16	1.5	2	< 6	< 0.3	< 5	<5	60	12
Naphthalene														25.4	36.6	100	10
Toluene	4	28	1,400	440	37	37	11	4	54	82	14	569	42.5	45.5	51.3	1,000	200
1,2,4- & 1,3,5-TMB	2	6	277	93	60	28	5	< 0.7	120	213	13	515	163.57	132	71	480	96
Total Xylenes	19	42	1,200	390	62	35	9	3	53	319	58	1,211	214.6	149.5	100	10,000	1,000
ND = Not Detected															Well D	Depth (feet):	25

--- = not analyzed or no standard

MTBE = methyl-tert-butylether

TMB = trimethylbenzene

DCA = dichloroethane

Bold italic numbers indicate concentrations above the ES outlined in NR 140.10.

Bold numbers indicate concentrations above the PAL outlined in NR 140.10.

Well Depth (feet):

Date Installed:

TOC Elevation (feet):

713.92 1-Nov-99

Screen Length (feet): 5

	A KON	TABI	LE 1 (page 9 o RESULTS - GR Y SITE, COLE	f 12) ROUNDWATER MAN, WISCON	ISIN		
			MW-11			NR 140 Rer	medial Action
Date	Aug-07	Nov-07	Apr-08	May-10	Oct-10	Lir	nits
Relative Elevation (ft)	Dry	703.58	710.28	705.13	706.58	1	
ANALYTE						ES	PAL
Lead (ppb)				< 0.6		100	10
VOCs/PVOCs (ppb)							
Benzene		< 0.2	< 0.3	< 0.2	<0.2	5	0.5
1,2-DCA				< 0.2	<0.3	100	10
Ethylbenzene		< 0.1	< 0.5	< 0.2	<0.2	700	140
MTBE		< 0.2	< 0.3	< 0.5	<0.5	60	12
Naphthalene		< 1		< 1	<1	100	10
Toluene		< 0.4	< 0.3	< 0.4	<0.4	1,000	200
1,2,4- & 1,3,5-TMB		< 0.4	< 0.4	< 0.2	<0.2	480	96
Total Xylenes		< 0.6	< 0.6	< 0.4	<0.4	10,000	1,000
ND = Not Detected					Well De	oth (feet):	13
= not analyzed or no sta	andard				TOC Eleva	ation (feet):	714.93
MTBE = methyl-tert-butylet	her				Date Ir	nstalled:	30-Aug-07

Screen Length (feet):

10

TMB = trimethylbenzene

DCA = dichloroethane

Bold italic numbers indicate concentrations above the ES outlined in NR 140.10.

	KON	TABL	E 1 (page 10 c RESULTS - GR Y SITE, COLE	of 12) COUNDWATER MAN, WISCON	ISIN			
			PZ-6			NR 140 Rei	medial Action	
Date	Aug-07	Nov-07	Apr-08	May-10	Oct-10	Limits		
Relative Elevation (ft)		702.85	707.97	706.03	706.95	1		
ANALYTE						ES	PAL	
Lead (ppb)				2		15	1.5	
VOCs/PVOCs (ppb)								
Benzene	247	42	3.84	< 0.2	<0.2	5	0.5	
1,2-DCA	6			< 0.2	<0.3	5	0.5	
1,1-Dichloropropylene	7							
Ethylbenzene	142	236	0.734	< 0.2	<0.2	700	140	
lsopropylbenzene	21							
MTBE	< 2	< 6	< 0.3	< 0.5	<0.5	60	12	
Naphthalene	45			< 1	<1	100	10	
Toluene	98	59	1.06	< 0.4	<0.4	1,000	200	
1,2,4- & 1,3,5-TMB	725	782	5.48	0.45	<0.2	480	96	
Total Xylenes	481	1,012	5.69	< 0.4	<0.4	10,000	1,000	
ND = Not Detected		and a second			Well De	pth (feet):	30	
= not analyzed or no star	ndard				TOC Elev	ation (feet):	715.03	
MTBE = methyl-tert-butyleth	ner				Date Ir	nstalled:	30-Aug-07	

Screen Length (feet):

5

TMB = trimethylbenzene

DCA = dichloroethane

Bold italic numbers indicate concentrations above the ES outlined in NR 140.10.

	TA ANALYTICA KONOP PROPE	BLE 1 (page 11 of 1 L RESULTS - GROU RTY SITE, COLEMA	2) INDWATER N, WISCONSIN		
		NR 140 Remedial Action			
Date	May-10	Oct-10	Dec-10	Lir	nits
Relative Elevation (ft)	703.83	707.91	705.15	1	
ANALYTE				ES	PAL
Lead (ppb)	1.33	1		15	1.5
VOCs/PVOCs (ppb)					
Benzene	< 2	<0.2	< 0.2	5	0.5
1,2-DCA	< 3	<0.3	< 0.3	100	10
Ethylbenzene	58.1	<0.2	< 0.2	700	140
MTBE	< 5	<0.5	< 0.5	60	12
Naphthalene	28.6	<1	< 1	100	10
Toluene	12.9	<0.4	< 0.4	1,000	200
1,2,4- & 1,3,5-TMB	505	4	< 0.2	480	96
Total Xylenes	188.8	1.39	< 0.4	10,000	1,000
ND = Not Detected			Well Depth	(feet):	18
= not analyzed or no stan	dard		TOC Elevatio	n (feet):	716.13
MTBE = methyl-tert-butyleth	er		Date Insta	alled:	18-May-10
TMB = trimethylbenzene			Screen Lengt	h (feet):	10

DCA = dichloroethane

Bold italic numbers indicate concentrations above the ES outlined in NR 140.10.

	TA ANALYTICA KONOP PROPE	BLE 1 (page 12 of 12 IL RESULTS - GROU RTY SITE, COLEMA	2) NDWATER N, WISCONSIN		
		NR 140 Rer	nedial Action		
Date	May-10	Oct-10 Dec-10		Lir	nits
Relative Elevation (ft)	703.07	705.57	703.27		
<u>ANALYTE</u>				ES	PAL
Lead (ppb)	< 0.6			15	1.5
VOCs/PVOCs (ppb)					
Benzene	0.56	<0.2	< 0.2	5	0.5
1,2-DCA	< 0.3	<0.3	< 0.3	100	10
Ethylbenzene	2.22	<0.2	< 0.2	700	140
MTBE	< 0.5	<0.5	< 0.5	60	12
Naphthalene	1.53	<1	< 1	100	10
Toluene	1.16	<0.4	< 0.4	1,000	200
1,2,4- & 1,3,5-TMB	20	<0.2	< 0.2	480	96
Total Xylenes	13.3	<0.4	< 0.4	10,000	1,000
ND = Not Detected			Well Dept	h (feet):	32
= not analyzed or no star	ndard		TOC Elevat	ion (feet):	716.07
MTBE = methyl-tert-butyleth	ner		Date Ins	talled:	18-May-10
TMB = trimethylbenzene			Screen Len	gth (feet):	5

DCA = dichloroethane

Bold italic numbers indicate concentrations above the ES outlined in NR 140.10.

LEGEND

· ······	WATERMAIN
	SANITARY SEWER
	APPROXIMATE PROPERTY BOUNDARY
x	FENCE LINE
	NATURAL GAS LINE
po	OVERHEAD POWER LINE
	UNDERGROUND POWER LINE
	RIGHT-OF-WAY LINE
₩ MW-5	MONITORING WELL
🖶 PZ-5	PIEZOMETER

NOTES

1. BASE MAP DEVELOPED FROM A DRAWING BY NRP ENVIRONMENTAL CONSULTANTS, TITLED "GROUNDWATER FLOW: MONITORING WELLS MAY 23, 2006," DATED MAY 2006.

Description	Project No.:	114-330854
	Date:	08-06-10
ATURES	Designed By:	MN
	FIGU	RE 2
ROPERTY		
WISCONSIN		

LEGEND

	WATERMAIN
s	SANITARY SEWER
	APPROXIMATE PROPERTY BOUNDARY
x	FENCE LINE
	NATURAL GAS LINE
	OVERHEAD POWER LINE
	UNDERGROUND POWER LINE
	RIGHT-OF-WAY LINE
} MW−1	MONITORING WELL
PZ-1	PIEZOMETER
	GROUNDWATER CONTOUR
713.30	GROUNDWATER ELEVATION
	GROUNDWATER FLOW
1.7	BENZENE, in parts per billion
DCA	DICHLOROETHANE
ND	NOT DETECTED
NS	NO SAMPLE
	EXTENT OF GROUNDWATER CONTAMINATION

NOTES

1. BASE MAP DEVELOPED FROM A DRAWING BY NRP ENVIRONMENTAL CONSULTANTS, TITLED "GROUNDWATER FLOW: MONITORING WELLS MAY 23, 2006," DATED MAY 2006.

Description	Proje
VATER DATA	Date
2010	Desi
ING WELLS	
PROPERTY	
WISCONSIN	

roject No.: 114-330854 ate: 08-06-10

MN

Date:

signed By:

FIGURE 3

LEGEND

	WATERMAIN
\$	SANITARY SEWER
	APPROXIMATE PROPERTY BOUNDARY
×	FENCE LINE
G	NATURAL GAS LINE
Po	OVERHEAD POWER LINE
	UNDERGROUND POWER LINE
	RIGHT-OF-WAY LINE
W-1	MONITORING WELL
Z—1	PIEZOMETER
3.30	GROUNDWATER ELEVATION
	GROUNDWATER FLOW
1.7	BENZENE, in parts per billion
DCA	DICHLOROETHANE
ND	NOT DETECTED
NS	NO SAMPLE
_	EXTENT OF GROUNDWATER

NOTES

1. BASE MAP DEVELOPED FROM A DRAWING BY NRP ENVIRONMENTAL CONSULTANTS, TITLED "GROUNDWATER FLOW: MONITORING WELLS MAY 23, 2006," DATED MAY 2006.

escription	Project No .:	114-330854
ATER DATA	Date:	08-06-10
2010	Designed By:	MN
IETER	FIGURE	4
ROPERTY		
WISCONSIN	2	

LLGLIND

	WATERMAIN
ş	SANITARY SEWER
	APPROXIMATE PROPERTY BOUNDARY
x	FENCE LINE
(j	NATURAL GAS LINE
	OVERHEAD POWER LINE
	UNDERGROUND POWER LINE
	RIGHT-OF-WAY LINE
MW-1	MONITORING WELL
PZ-1	PIEZOMETER
13.30	GROUNDWATER ELEVATION
1.7	BENZENE, in parts per billion
DCA	DICHLOROETHANE
ND	NOT DETECTED
NS	NO SAMPLE
	EXTENT OF GROUNDWATER CONTAMINATION

NOTES

1. BASE MAP DEVELOPED FROM A DRAWING BY NRP ENVIRONMENTAL CONSULTANTS, TITLED "GROUNDWATER FLOW: MONITORING WELLS MAY 23, 2006," DATED MAY 2006.

114-330854 Project No.: Date: 01-11-11 Designed By: LE FIGURE 5

<u>LEGEN</u>	D
	WATERMAIN
	SANITARY SEWER
	APPROXIMATE PROPERTY BOUNDARY
_×	FENCE LINE
	NATURAL GAS LINE
	OVERHEAD POWER LINE
Pu	UNDERGROUND POWER LINE
	RIGHT-OF-WAY LINE
	MONITORING WELL
	PIEZOMETER
	GROUNDWATER CONTOUR
	GROUNDWATER ELEVATION
	GROUNDWATER FLOW
	BENZENE, in parts per billion
	DICHLOROETHANE
	NOT DETECTED
	NO SAMPLE
16	EXTENT OF GROUNDWATER

1. BASE MAP DEVELOPED FROM A DRAWING BY NRP ENVIRONMENTAL CONSULTANTS, TITLED "GROUNDWATER FLOW: MONITORING WELLS MAY 23, 2006," DATED MAY 2006.

scription	Project No.:	114-330854
TER DATA	Date:	01-11-11
R 2010	Designed By:	LE
ETER	FIGURE	6
OPERTY		
ISCONSIN		
8		

LEGEND

and the second	WATERMAIN
	SANITARY SEWER
	APPROXIMATE PROPERTY BOUNDARY
×	FENCE LINE
	NATURAL GAS LINE
	OVERHEAD POWER LINE
	UNDERGROUND POWER LINE
	RIGHT-OF-WAY LINE
MW-1	MONITORING WELL
PZ-1	PIEZOMETER
	GROUNDWATER CONTOUR
713.30	GROUNDWATER ELEVATION
	GROUNDWATER FLOW
1.7	BENZENE, in parts per billion
DCA	DICHLOROETHANE
ND	NOT DETECTED
NS	NO SAMPLE
	EXTENT OF GROUNDWATER CONTAMINATION

NOTES

1. BASE MAP DEVELOPED FROM A DRAWING BY NRP ENVIRONMENTAL CONSULTANTS, TITLED "GROUNDWATER FLOW: MONITORING WELLS MAY 23, 2006," DATED MAY 2006.

1 INCH = APPROX. 40 FEET

Drawing Description GROUNDWATER DATA DECEMBE:R 2010 MONITORING WELLS KONOP PROPERTY COLEMAN, WISCONSIN Project No.: 114-330854 Date: 01-11-11 Designed By: LE FIGURE 7 Copyright: Tetra Tech

T

LEGEND

	WATERMAIN
- 5	SANITARY SEWER
	APPROXIMATE PROPERTY BOUNDARY
×	FENCE LINE
	NATURAL GAS LINE
	OVERHEAD POWER LINE
	UNDERGROUND POWER LINE
	RIGHT-OF-WAY LINE
V—1	MONITORING WELL
-1	PIEZOMETER
	GROUNDWATER CONTOUR
.30	GROUNDWATER ELEVATION
	GROUNDWATER FLOW
.7	BENZENE, in parts per billion
DCA	DICHLOROETHANE
1D	NOT DETECTED
IS	NO SAMPLE
	EXTENT OF GROUNDWATER CONTAMINATION

NOTES

1. BASE MAP DEVELOPED FROM A DRAWING BY NRP ENVIRONMENTAL CONSULTANTS, TITLED "GROUNDWATER FLOW: MONITORING WELLS MAY 23, 2006," DATED MAY 2006.

Description	Project No .:	114-330854	
/ATER DATA BER 2010 METER	Date:	01-11-11	
	Designed By:	LE	
	FIGURE 8		
ROPERTY			
WISCONSIN			
		TI	

Appendix A

Standard Sampling Procedures and Documentation

AS A MUTUAL PROTECTION TO CLIENTS, THE PUBLIC, AND OURSELVES, ALL TETRA TECH REPORTS ARE SUBMITTED AS THE CONFIDENTIAL INFORMATION OF CLIENTS, AND AUTHORIZATION FOR PUBLICATION OF STATEMENT, CONCLUSIONS OR EXTRACTIONS FROM OR REGARDING OUR REPORTS IS RESERVED PENDING OUR PRIOR WRITTEN APPROVAL.

Office 715.832.0282 Fax 715.832.0541

STANDARD SAMPLING AND FIELD SCREENING PROCEDURES

Soil Sampling Procedures

Soil samples were also collected with a truck-mounted rotary drill equipped with hollow stem augers and a 2-inch-diameter, 24-inch-long split spoon sampler. The split spoon was advanced at 2-foot intervals by conventional methods, including the attachment of the sampler to an AW rod and standard 140-pound hammer. The soil was split into two samples for field screening and laboratory analysis.

All drilling tools and equipment were steam cleaned prior to sampling. Sampling tools were washed with an Alconox[™] and water solution between sampling points to prevent cross contamination.

Field Screening Procedures

We field screened samples with a PID using the headspace procedure. We also recorded instrument readings and sample descriptions and remarks on a soil profile log at the appropriate depth intervals. Results from this screening survey were used to select samples for laboratory analysis. We checked PID calibration daily with isobutylene gas at recommended time intervals according to WDNR guidelines. We conducted the headspace procedure as follows:

- Headspace samples were collected in clean glass jars and filled half-full with the sample material.
- The mouth of the headspace jar was then covered with heavy-gauge aluminum foil and sealed with the lid of the jar.
- The sample was then agitated to break soil clods and release headspace vapors.
- When ambient air temperatures were below 70°F, we placed the headspace samples in a warm environment out of direct sunlight and allowed them to equilibrate to about 70°F. When ambient air temperatures were above 70°F, we placed the samples in a cooler environment out of direct sunlight and allowed them to equilibrate to about 70°F.
- Following equilibration, the sample headspace was analyzed by inserting the PID probe through a single, small hole in the foil seal to a position halfway between the seal and sample surface and then recording the highest instrument readings.
- New headspace jars were used for each site. After use, the headspace jars were cleaned with an Alconox[™] and water solution and allowed to dry. If no VOC carryover was identified with a PID, the jars were reused; if VOC carryover was identified, the sample jars were discarded.

Laboratory Analysis

Split soil samples were put into the appropriate containers as follows:

ANALYTE	CONTAINER TYPE	FIELD PRESERVATIVE
GRO	2-oz. TLC jar	Methanol
DRO	2-oz. TLC jar	None
PVOC/VOC	2-oz. TLC jar	Methanol
PAH	2-oz. TLC jar	None
TOTAL LEAD	4-oz. TLC jar	None

TLC = Teflon-lined cap

Samples were then sealed and cooled to 4°C for transport to the laboratory. All samples were labeled with the following information:

- Site name
- Sample number
- Sample location
- Date and time of collection
- Analysis requested
- Name of sampler
- Other applicable information

Groundwater Monitoring Well Installation and Development Procedures

Monitoring wells were constructed and developed in accordance with Wisconsin Administrative Code - Chapter NR 141 requirements.

Groundwater Sampling Procedures

We collected groundwater samples from the permanent monitoring wells through 2-inch-diameter 0.010-inch slotted polyvinyl chloride (PVC) well casing. Temporary well samples were collected through 1-inch-diameter PVC well casing. We purged each groundwater monitoring well of three well volumes or sufficient water to achieve a sediment-free sample. A clean disposable polyethylene bailer was then inserted down the PVC piping and the contents of the bailer were transferred to the appropriate containers as follows:

ANALYTE	CONTAINER TYPE	FIELD PRESERVATIVE
GRO	40-ml vial	Hydrochloric acid
DRO	1-liter amber bottle	Hydrochloric acid
PVOC/VOC	40-ml vial	Hydrochloric acid
PAH	1-liter amber bottle	None
SULFATES	500-ml plastic bottle	None
NITRATES	500-ml plastic bottle	Sulfuric Acid
SOLUBLE IRON	250-ml plastic bottle	Nitric acid
LEAD	250-ml plastic bottle	Nitric acid

Care was taken to ensure that no air space was included. The water sample containers were then sealed and cooled to 4°C for transport to the laboratory. All collected samples were labeled with the following information:

- Site name
- Sample number
- Sample location
- Date and time of collection
- Analysis requested
- Name of sampler
- Other applicable information

Chain of Custody Procedures

Tetra Tech completed a chain of custody record in triplicate for the samples transported to the laboratory. When transferring sample custody, the individuals relinquishing and receiving the samples signed, dated, and noted the time on the chain of custody record. A designated sample custodian accepted custody of the shipped samples and verified that the sample identification numbers matched those on the chain of custody record. The laboratory then retained a copy of the chain of custody record until analyses were completed. The record was then transferred to Tetra Tech and is maintained in the project file with the analytical results.

Procedures for Abandoning a Borehole

After all necessary soil samples were collected, the borehole was completely backfilled with bentonite and abandoned according to procedures outlined in Chapter NR 141.25 of the Wisconsin Administrative Code. A WDNR borehole abandonment form (Form 3300-5W) was completed for each soil boring not completed as a monitoring well.

Free Product Removal Procedures

We conducted free product removal procedure as follows:

- Remove well cover and scrape away excess dirt.
- Carefully remove test well plug, bailer, & sock from well casing. Remember that bailer and absorbent socks are tied to the plug.
- Set bailer aside and squeeze product from sock into bucket. After squeezing out sock set aside to dry.
- Measure depth to water/product with a product/groundwater interface probe. Record depth to product, groundwater, and thickness of product in feet.
- Secure bailer to rope or string and insert into well casing. Lower the bailer until contact with water table is made. Allow bailer to drop into the water for no more than one foot. Remove bailer and estimate product thickness. Empty contents of bailer into bucket and record product thickness.
- Continue to lower bailer into well and drop to the water table. Allow bailer to fill with no more than one foot of water/product. Remove bailer and empty contents into bucket. Continue fill bucket. Transfer filled buckets to drum.
- Repeat this process until thickness of free product is less than one inch. Record
 amount of water/product removed.
- If a groundwater sample will be collected use a new disposable bailer to obtain a water sample. Insert the bailers bottom empting device and use to fill the appropriate sample bottle.
- Reattach string/rope to well plug, replace bailer and sock into well and cap with well plug. Replace well cover. Replace socks as needed.
- Secure cover on 55-gasllon drum.

Appendix B

WDNR Well Construction (Form 4400-113A) and Well Development (Form 4400-113B) forms

AS A MUTUAL PROTECTION TO CLIENTS, THE PUBLIC, AND OURSELVES, ALL TETRA TECH REPORTS ARE SUBMITTED AS THE CONFIDENTIAL INFORMATION OF CLIENTS, AND AUTHORIZATION FOR PUBLICATION OF STATEMENT, CONCLUSIONS OR EXTRACTIONS FROM OR REGARDING OUR REPORTS IS RESERVED PENDING OUR PRIOR WRITTEN APPROVAL

State of Wisconsin Department of Natural Resources

SOIL BORING LOG INFORMATION Form 4400-122 Rev. 7-98

	Route To: Watershed/Wastewater Waste Management Remediation/Revelopment Other Other																
														Page	1	_of	1
Facili	ty/Proje	ect Na	meKo	nop	Prop	ior ty	Licer	nse/Per	mit/Mc	nitorir	ig Num	nber	Boring	g Num	ber	W-	-12
Borin First 1	g Drille	d By:	Name	e of crev Last Na	w chief (first, ame:	last) and Firm	Date 05	Date Drilling Started Date Drilling Completed						Drilling Method			
Firm: WI Un	nique V	Vell N	<u> </u>	CH DNR V	Vell ID No.	Well Name	m m Final	d d Static	Water	y y Level	m m Surfac	d d e Elev	y ý ation	y y	Borehole Diameter		
Local	Grid C	rigin		timated:	D) or Bo	ring Location 🛛			Feet N	ISL "	Local	Grid L	_Feet	MSL n	<u>6</u> inches		
5w	1/4 of	SW	1/4 of	Section	<u>N,</u> <u>14_</u> , т <u>З</u>	ON, ROOE	Lo	ng	• •	"		F		N S _	□ E Feet□ W		
Facili	ty ID	_			MAr M	ette	County (Code 8	Civil	Town/	City/ o	r Villa	ge (ol	em.	47	
Sam	nple		face)										Soil	Prope	rties		
umber d Type	ength Att. 8 covered (in	ow Counts	spth in Feet		Soil/Ro And Geo Each	ck Description logic Origin For Major Unit		scs	aphic g	/ell agram	D/FID	mpressive rength	oisture	quid mit	asticity dex	200	QD/ mments
Σ́Ε	Re L	Bl	ăë.		ASPLAT	+		n	٤ŝ	≥ä	Id	SG	žຶ	EE	Pl ⁱ	P	¥3
			-5		Srown SAN C	dy Clay ared		CL									ßlind Drill
			-15	E	lime : Bed	stone rock 18 ⁻		R									
I here	by cert	tify th	at the	inform	ation on this	form is true and c	correct to	the be	st of m	y kno	wledg	e.					
Signat	Nu	1	A	m			Firm	70	ita	2	T	ch					

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

Index difference of wearWell Name $M-d_2$ Index difference of wearWell Name $M-d_2$ Cold Gife Constrained WearNote Cold Gife Constrained WearWearModel Constrained WearWearModel Constrained WearWearModel Constrained WearModel Constrained WearWearModel Constrained WearWearModel Constrained WearWearModel Constrained WearWearModel Constrained WearA ref MSLConstrained WearNot Model Constrained WearModel Constrained WearModel Constrained WearModel Constrained WearNot Model Constrained WearNot Model Constrained WearA ref MSLConstrained WearNot Model Constrained WearNot Model Constrained WearA ref MSLConstrained WearNot Model Constrained WearNot Model Constrained WearA ref MSLConstrained WearNot Model Constrained WearNot Model Constrained WearA ref MSLConstrained WearNot Model Constrained WearNot Model Constrained WearA ref MSLConstrained WearNot Model Constrained WearA ref MS	State of Wisconsin Department of Natural Resources <u>Route to:</u> V	Watershed/Wastewater	Waste Management	MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 7-98
Falley Leense, Permit de Monfording No. Local Grid Origin (1) <td>Facility/Project Name</td> <td>Local Grid Location of Well</td> <td>N. <u>E</u>E.</td> <td>Well Name (h) = []</td>	Facility/Project Name	Local Grid Location of Well	N. <u>E</u> E.	Well Name (h) = []
Facility ID Lt	Facility License, Permit or Monitoring No.	Local Grid Origin 🗆 (estima	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Wis. Unique Well No. DNR Well ID No.
Sector Location of Watte/SourceWell CodeISector Low SourceN RefWell resulted BY. Name (first, last) and FirmSourceA probdConstant of Watter/SourceConstant of Watter/SourceConstant of Watter/SourceWell resulted BY. Name (first, last) and FirmSourceA probdDowngradientnNot KnownI. Cag and lock?Yes [N NoneA. Protective pipe, top elevationR. MSLI. Cag and lock?Yes [N NoneA. Protective pipe, top elevationR. MSLB. Wall casing, top elevationR. MSL <t< td=""><td>Facility ID</td><td>Lat "I St. Plane ft. N</td><td>Long o , ft. E. S/C/N</td><td>Date Well Installed 5/ 18/20/0</td></t<>	Facility ID	Lat "I St. Plane ft. N	Long o , ft. E. S/C/N	Date Well Installed 5/ 18/20/0
Well CasteImage: Caste and the second s	Type of Well	Section Location of Waste/Sou		Well Installed By: Name (first, last) and Firm
Distance from Waste' Left. Stors. $\begin{array}{c c c c c c c c c c c c c c c c c c c $	Well Code/	Location of Well Relative to W	aste/Source Gov. Lot Number	NICK A.
A. Protective pipe, top elevation 1. Cm and lock? Yes \square No B. Wall casing, top elevation	Distance from Waste/ Enf. Stds. Sourceft. Apply	u \square Upgradient s \square d P Downgradient n \square	Sidegradient Not Known	Tetra Tech.
B. Well easing, top elevation $-1 - 1$. MSL C. Land surface elevation $-1 - 1$. ft. MSL D. Surface seal, bottom $-1 - 1$. ft. MSL 12. USCS dissification of solutions are screened. B. Material: 0 (the -1 (the	A. Protective pipe, top elevation	ft. MSL	1. Cap and lock?	🔮 Yes 🗆 No
C. Land surface elevation $ \hat{Q}_{-} fh. MSL$ D. Surface seal, bottom $ \hat{fh}. MSL \text{ or } \hat{Q}_{-} \hat{S}_{-} fh$ 12. USCS classification of soil near screen: GP = G M = CC = G M = SW = SW = SP = Bedrock $= 0 \text{ fb} MSL \text{ or } \hat{Q}_{-} fh. MSL \text{ or } \hat{Q}_{-} fh$ 13. Sieve analysis performed? \square Yes \square No H Dilling method used: Rotary \blacksquare 5 0 H. Dilling fuid used: Rotary \blacksquare 5 0 H. Dilling fuid used: Rotary \blacksquare 5 0 H. Dilling fuid used: Rotary \blacksquare 5 0 H. Dilling additives used? \square Yes \blacksquare No Describe $_$ F. Fine sand, top $\ fh. MSL \text{ or } - \hat{L}_{-} fh.$ H. Screen joint, top $_ fh. MSL \text{ or } - \hat{L}_{-} fh.$ H. Screen joint, top $_ fh. MSL \text{ or } - \hat{L}_{-} fh.$ H. Screen joint, top $_ fh. MSL \text{ or } - \hat{L}_{-} fh.$ H. Screen joint, top $_ fh. MSL \text{ or } - \hat{L}_{-} fh.$ H. Screen joint, top $_ fh. MSL \text{ or } - \hat{L}_{-} fh.$ H. Screen joint, top $_ fh. MSL \text{ or } - \hat{L}_{-} fh.$ H. Screen joint, top $_ fh. MSL \text{ or } - \hat{L}_{-} fh.$ H. Screen joint, top $_ fh. MSL \text{ or } - \hat{L}_{-} fh.$ H. Screen joint, top $_ fh. MSL \text{ or } - \hat{L}_{-} fh.$ H. Screen joint, top $_ fh. MSL \text{ or } - \hat{L}_{-} fh.$ H. Screen joint, top $_ fh. MSL \text{ or } - \hat{L}_{-} fh.$ H. Screen joint, top $_ fh. MSL \text{ or } - \hat{L}_{-} fh.$ H. Screen joint, top $_ fh. MSL \text{ or } - \hat{L}_{-} fh.$ H. Screen joint, top $_ fh. MSL \text{ or } - \hat{L}_{-} fh.$ H. Develote, diameter $\hat{L} \cdot \hat{L} = \hat{L}_{-} fh.$ H. Due leasing $\hat{L} \cdot \hat{L}_{-} fh$	B. Well casing, top elevation	ft. MSL	a. Inside diamete	pipe: 6in.
D. Surface seal, bottomf. MSL orS.f. c. Material: Steel @ 0.4 12. USCS destification of soil new screem: GPGMGCGMGCGMGMGMGMGMGM	C. Land surface elevation	ft. MSL	b. Length:	0.5_ft.
12. USCS classification of soil near screen: GP GP GC GC GC GC GC GC GC GC GC GC <td>D. Surface seal, bottom ft. MS</td> <td>SLor O. S ft.</td> <td>c. Material:</td> <td>Steel 🖶 04</td>	D. Surface seal, bottom ft. MS	SLor O. S ft.	c. Material:	Steel 🖶 04
GP GM GC GW SW SP GM SM GC ML MH CL CL CH Bedrock GML ML MH CL CL CH 13. Sieve analysis performed? 14. Drilling method used: Rotary SO ML Other 14. Drilling method used: Rotary SO ML Other 15. Drilling fluid used: Rotary SO ML Other 16. Drilling fluid used: 17. Drilling fluid used: 18. Drilling additives used? 19. Second water (attach analysis, if required): 17. Source of water (attach analysis, if required): 18. Enentonite seal, top	12. USCS classification of soil near screen	n:	d. Additional pr	otection?
Bedrox I Image: Image			If yes, descrit	be:
13. Sieve analysis performed? □ Yes □ Noo 14. Drilling method used: Rotary 0 50 Hollow Stem Auger 4 1 Other □ 15. Drilling fluid used: Water 0 2 Air 0 1 Drilling fluid used: Water 0 2 Air 0 1 Other □ S. Drilling fluid used: Water 0 2 Air 0 1 Drilling Mud 0 3 None 9 9 16. Drilling additives used? Stemonite 30 16. Drilling additives used? □ Yes No Describe	Bedrock		3. Surface scal:	Bentonite 🗆 30
14. Drilling method used: Rotary ● 50 Hollow Stem Auger ● 41 Other □ ■ 15. Drilling fluid used: Water □ 0 2 Milling fluid used: Air □ 0 1 Drilling fluid used: S. Annular space seal: a. Granular//Chipped Bentonite ■ 30 Other □ 33 b. Los/gal mud weight Bentonite slurry □ 31 d. ● Bentonite sand slurry □ 35 c. Los/gal mud weight Bentonite slurry □ 31 d. ● Bentonite sand slurry □ 31 d. ● Bentonite Bentonite slurry □ 31 d. ● Fl 3 Volume added fr 3 Volume added fr3 b. Volume added fr3 g. Well casing Flush threaded PVC schedule 40 € 23 Flush threaded PVC schedule 40 € 24 fluer Street in	13. Sieve analysis performed?	Yes DANO	×	Other 🗆 🧾
BentomineSolution AlgerSolution AlgerSolution algerOtherIn the seal is a Granular/Chipped BentoniteS. Annular space seal:a Granular/Chipped BentoniteI for solution added for any of the aboveF. Termie pumped02Gravity # 06DescribeI. Source of water (attach analysis, if required):Termie pumped02Gravity # 06Bentonite seal:a. Granular/Chipped Bentonite coment groutSource of water (attach analysis, if required):Termie pumped02Gravity # 06Bentonite seal:a. Granular/Chipped Bentonite coment groutGravity # 06Bentonite seal:a. Granular/Chipped BentoniteI. Solution is a start at the seal:a. Gravity # 06Bentonite seal:a. Gravity # 06Gravity # 06	14. Drilling method used: Rot	tary 🖬 50	4. Material betwee	n well casing and protective pipe:
15. Drilling fluid used: Water \Box 0.2 Air \Box 0.1 Drilling Mud \Box 0.3 None \blacksquare 9.9 5. Annular space seal: a. Granular/Chipped Bentonite \Box 33 b. \Box Los/gai mud weight Bentonite samed siurry \Box 35 c. \Box Los/gai mud weight Bentonite sumel siurry \Box 35 c. \Box Los/gai mud weight Bentonite sumel siurry \Box 31 b. \Box Los/gai mud weight Bentonite sumel siurry \Box 35 c. \Box Los/gai mud weight Bentonite sumel siurry \Box 31 b. \Box Los/gai mud weight Bentonite sumel \Box 02 c. \Box P ² volume added for any of the above f. How installed: Tremie pumped \Box 02 Gravity \blacksquare 08 b. \Box 1/4 in. \blacksquare 3/8 in. \Box 1/2 in. Bentonite chips \blacksquare 32 c. \Box 1/4 in. \blacksquare 3/8 in. \Box 1/2 in. Bentonite chips \blacksquare 32 c. \Box 1/4 in. \blacksquare 3/8 in. \Box 1/2 in. Bentonite chips \blacksquare 32 c. \Box 1/4 in. \blacksquare 3/8 in. \Box 1/2 in. Bentonite chips \blacksquare 32 c. \Box 1/4 in. \blacksquare 3/8 in. \Box 1/2 in. Bentonite chips \blacksquare 32 c. \Box 1/4 in. \blacksquare 3/8 in. \Box 1/2 in. Bentonite chips \blacksquare 32 b. \Box 1/4 in. \blacksquare 3/8 in. \Box 1/2 in. Bentonite chips \blacksquare 32 c. \Box 1/4 in. \blacksquare 3/8 in. \Box 1/2 in. Bentonite chips \blacksquare 32 c. \Box 1/4 in. \blacksquare 3/8 in. \Box 1/2 in. Bentonite chips \blacksquare 32 c. \Box 1/4 in. \blacksquare 3/8 in. \Box 1/2 in. Bentonite chips \blacksquare 32 c. \Box 1/4 in. \blacksquare 3/8 in. \Box 1/2 in. Bentonite chips \blacksquare 32 c. \Box 1/4 in. \blacksquare 3/8 in. \Box 1/2 in. Bentonite chips \blacksquare 32 c. \Box 1/4 in. \blacksquare 3/8 in. \Box 1/2 in. Bentonite chips \blacksquare 32 c. \Box 1/4 in. \blacksquare 3/8 in. \Box 1/2 in. Bentonite chips \blacksquare 32 c. \Box 1/4 in. \blacksquare 3/8 in. \Box 1/2 in. Bentonite chips \blacksquare 32 c. \Box 1/4 in. \blacksquare 3/8 in. \Box 1/2 in. Bentonite chips \blacksquare 32 c. \Box 1/4 in. \blacksquare 3/8 in. \Box 1/2 in. Bentonite chips \blacksquare 24 c. \Box 1/4 in. \blacksquare 3/8 in. \Box 24 c	Honow Stem At	ther \Box		Other
15. Drilling fluid used: water 0 2 Air 0 1 Drilling Mud 0 3 None 9 9 16. Drilling additives used? \Box Yes No Describe \Box Yes No 17. Source of water (attach analysis, if required): Tremie 01 18. Bentonite seal, top			5. Annular space se	eal: a. Granular/Chipped Bentonite 33
16. Drilling additives used? \Box Yes \clubsuit No 16. Drilling additives used? \Box Yes \clubsuit No Describe \Box Yes \clubsuit No 17. Source of water (attach analysis, if required): \Box Tremie pumped 17. Source of water (attach analysis, if required): \Box Tremie pumped 18. Bentonite seal, top ft MSL or $___________________________________$	Drilling Mud D 0 3	Air L 01	bLbs/gal	mud weight Bentonite-sand slurry 35
16. Drilling additives used? \Box res \P No 17. Source of water (attach analysis, if required): \Box res \P No 17. Source of water (attach analysis, if required): \Box remie pumped \Box 01 17. Source of water (attach analysis, if required): \Box remie pumped \Box 02 17. Source of water (attach analysis, if required): \Box remie pumped \Box 02 17. Source of water (attach analysis, if required): \Box remie pumped \Box 02 18. Bentonite seal, top \Box ft. MSL or $___________________________________$			cLos/gal	mud weight Bentonite slurry $\Box = 51$ nite Bentonite-cement grout $\Box = 50$
DescribeTremie017. Source of water (attach analysis, if required):if. How installed:Tremie0117. Source of water (attach analysis, if required):if. How installed:Tremie0117. Source of water (attach analysis, if required):if. How installed:Tremie0117. Source of water (attach analysis, if required):if. How installed:if. How installed:Tremie0117. Source of water (attach analysis, if required):if. MSL orif. How installed:if. How	16. Drilling additives used?	Yes 🧖 No	eFt	³ volume added for any of the above
17. Source of water (attach analysis, if required): Interpret of the seal: Interpret of the sead: Interesea: Interpret of the sea:	Describe	8	f. How installed	$\frac{1}{2}$
E. Bentonite seal, top a. Bentonite granules 33 E. Bentonite seal, top ft. MSL or f. ft. F. Fine sand, top ft. MSL or ft. ft. G. Filter pack, top ft. MSL or ft. ft. H. Screen joint, top ft. MSL or ft. ft. I. Well boutom ft. MSL or ft. ft. J. Filter pack, bottom ft. MSL or ft. ft. J. Filter pack, bottom ft. MSL or ft. ft. M. O.D. well casing ft. ft. ft. ft. M. D. well casing ft. in. ft. ft. ft. M. D. well casing ft. ft. ft. ft. ft. M. D. well casing ft. ft. ft. ft. ft. M. D. well casing ft. ft. ft. ft. ft. M. D. well casing ft. ft. ft. ft. ft. M. D. well casing ft. ft. ft. ft. ft. ft. M. D. well casing ft.	17. Source of water (attach analysis, if requ	ired):		Gravity 🗭 08
E. Bentonite seal, topft. MSL orft. MSL or			6. Bentonite seal:	a. Bentonite granules 🔲 33
F. Fine sand, topft. MSL orft.	E. Bentonite seal, topft. MS	L or / ft.	b. □1/4 m. •	Difference in the second seco
G. Filter pack, topft. MSL orft. MSL or	F. Fine sand, top	Lorft.	7. Fine sand materi	ial: Manufacturer, product name & mesh size
H. Screen joint, topft. MSL orSft. I. Well boutomft. MSL orSft. J. Filter pack, bottomft. MSL orSft. I. Borehole, bottomft. MSL orSft. B. Filter pack material: Manufacturer, product name & mesh size a. <u>Rec</u> <u>F/14</u> <u>Sead</u> <u># Jo</u> b. Volume addedft ³ 9. Well casing: Flush threaded PVC schedule 40 <u># 23</u> Flush threaded PVC schedule 80 24 9. Well casing: <u>Flush threaded PVC schedule 80</u> 24 10. Screen material: <u>PVC</u> a. Screen type: Factory cut <u># 11</u> Continuous slot01 b. <u>Manufacturer</u> c. Slot size:01/2 in. M. O.D. well casing <u>2</u> . <u>2</u> in. N. ID. well casing <u>2</u> . <u>2</u> in. I. Backfill material (below filter pack): None <u># 14</u> Other01 <u>14</u> <u>5ignature</u> <u>5ignature</u> <u>5ignature</u> <u>5ignature</u> <u>5ignature</u> <u>5ignature</u> <u>6</u> . <u>6</u> .	G. Filter pack, top ft. MS	Lor7ft.	a. / C. / b. Volume adde	dft ³
H. Screen joint, top I. Wall boltom I. Wall casing: Flush threaded PVC schedule 40 \blacksquare 2.3 J. Filter pack, bottom I. MSL or $___________________________________$	H Game initiation of MS	8 .	8. Filter pack mate	rial: Manufacturer, product name & mesh size
I. Well borromft. MSL or _ / 0 _ ft. J. Filter pack, bottomft. MSL or _ / 8 _ ft. K. Borehole, bottomft. MSL or _ / 8 _ ft. L. Borehole, diameterft. MSL or _ / 8 _ ft. M. O.D. well casingfi. M. I.D. well casingi _ in. M. I.D. well casingi _ in. I. Backfill material (below filter pack): Nonei 14 Other	H. Screen joint, top II. MS		a. <u>Rec. F/1</u> b. Volume adde	$\frac{17}{10}$ 17
J. Filter pack, bottom ft. MSL or ft. Plush threaded PVC schedule 80 24 K. Borehole, bottom ft. MSL or ft.	I. Well bottomft. MS	Lor_/O_ft.	9. Well casing:	Flush threaded PVC schedule 40 💋 23
K. Borehole, bottom ft. MSL orft. IO. Screen material:	J. Filter pack, bottomft. MS	Lor_ <u>18_ft</u> .		Flush threaded PVC schedule 80 24
L. Borehole, diameter $G_{-} G_{-}$ in. M. O.D. well casing $2 \cdot 2 \cdot 5_{-}$ in. N. I.D. well casing $2 \cdot 2 \cdot 5_{-}$ in. I. Beckfill material (below filter pack): I. Beckfill material (below fil	K. Borehole, bottom ft. MS	Lor_18_ft.	a. Screen type:	Factory cut 🔉 11
M. O.D. well casing 2.2.5 in. N. I.D. well casing 2.2. in. N. I.D. well casing 2.2. in. I hereby certify that the information on this form is true and correct to the best of my knowledge. Signature. Signat	L. Borehole, diameter 6.0 in.		A	Continuous slot 0 1 Other
N. I.D. well casing Image: soluted renger. Image: soluted renger. I hereby certify that the information on this form is true and correct to the best of my knowledge. None I a solute renger. Signature. Firm T / T / T / T / T / T / T / T / T / T	M. O.D. well casing		b. Manufacturer c. Slot size:	0. <u>[0</u> in.
I hereby certify that the information on this form is true and correct to the best of my knowledge. Signature.	N. I.D. well casing λ_{-} in.		11. Backfill materia	I (below filter pack): None 4 14
Signature / m// Firm T/ T/	I hereby certify that the information on this	form is true and correct to the b	best of my knowledge.	
and letter lech.	Signature of M	Firm Teti	a Tech.	

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

State of Wisconsin Department of Natural Resources

MONITORING WELL DEVELOPMENT Form 4400-113B Rev. 7-98

Route to: Watershed/Wastewater	Waste Management
Remediation/Redevelopment	Other
Facility/Project Name Konop Property MA	rinette Well Name MW-12
Pacifity License, Permit or Monitoring Number County Code	Wis. Unique Well Number DNR Well ID Number
1. Can this well be purged dry?	Before Development After Development
2. Well development method surged with bailer and bailed 👘 4 1	(from top of a. 230 ft. 250 ft. well casing)
surged with bailer and pumped 61 surged with block and bailed 42 surged with block and pumped 62	Date $b.\underbrace{O5}_{m m} \underbrace{\frac{18}{d}}_{d} \underbrace{\frac{20}{y}}_{y y y y} \underbrace{O5}_{m m} \underbrace{\frac{18}{d}}_{d} \underbrace{\frac{20}{y}}_{y y y y} \underbrace{\frac{05}{m m}}_{m m} \underbrace{\frac{18}{d}}_{d} \underbrace{\frac{20}{y}}_{y y y y} \underbrace{\frac{18}{y}}_{y y y y}$
surged with block, bailed and pumped 70 compressed air 20 bailed only 10	Time $c. \underline{5}: \underline{30} \oplus p.m. \underline{6}: \underline{30} \oplus p.m.$
pumped only pumped slowly Other D D D D D D D D D	12. Sediment in well menes menes bottom 13. Water clarity Clear □ 10 Clear ☑ 20 Turbid ☑ 15 Turbid ☑ 25
3. Time spent developing well <u><u>60</u> min.</u>	(Describe) (Describe)
4. Depth of well (from top of well casisng) $- \cancel{128}$. ft.	
5. Inside diameter of well $\underline{\mathcal{A}}, \underline{\mathcal{O}}_{}$ in.	
6. Volume of water in filter pack and well casing gal.	Eill in if deilling fluide sume word and woll in at solid worth facility
7. Volume of water removed from well 20.2 gal.	The first line of the second were used and were is at solid waste facility:
8. Volume of water added (if any) gal.	solids
9. Source of water added	15. COD mg/l mg/l
10. Analysis performed on water added? Yes No (If yes, attach results)	16. Well developed by: Name (first, last) and Firm First Name: Mike Last Name: N. Firm: Tetra Tech.

17. Additional comments on development:

Name and Address of Facility Contact /Owner/Responsible Party First Dale Last Konop Name: Dale Name: Konop	I hereby certify that the above information is true and correct to the best of my knowledge.
Facility/Firm: <u>Konop Builders</u> Street: 110 BUSN. Hyw 141N	Signature: Mark Mark Print Name: Michael K. Nerl
City/State/Zip: Coleman, WI 54112	Firm: Tetra Tech.

NOTE: See instructions for more information including a list of county codes and well type codes.

State of Wisconsin Department of Natural Resources

SOIL BORING LOG	INFORMATION
Form 4400-122	Rev. 7-98

Watershed/Wastewater 🔲 Waste Management 🗌 Route To: Remediation/Revelopment D Other Page Boring Number Facility/Project Name License/Permit/Monitoring Number Konop roparty Boring Drilled By: Name of crew chief (first, last) and Firm Date Drilling Started Date Drilling Completed Drilling Method First Name: N Last Name: 18 2010 8,2010 0 Tetra V V ir Ko d d TRCH DNR Well ID No. Well Name Surface Elevation Final Static Water Level Borehole Diameter WI Unique Well No. Feet MSL Feet MSL inches Local Grid Origin (estimated:) Local Grid Location Boring Location OF 0 Lat State Plane \square N ΠE $\frac{5 \mathcal{W}}{\text{Facility ID}} \frac{1/4 \text{ of Section}}{\text{Count}}$ 1 11 0 T 30 N, R 20 E Long Feet D S Feet□ W County County Code Civil Town/City/ or Village Marinette em47 0 Soil Properties Sample Depth in Feet (Below ground surface) Length Att. & Recovered (in) Soil/Rock Description Blow Counts Length Att. RQD/ Comments And Geologic Origin For Compressiv Strength Number and Type PID/FID Moisture Content Plasticity Index Well Diagram USCS Graphic Log Each Major Unit Liquid P 200 AS114 1+ Brown SAndy .5 CL CLA-1 10 Blind Drill -15 Wenthered lime stone Bedrock R 20 25 30 3 EOB I hereby certify that the information on this form is true and correct to the best of my knowledge. Signature Firm 4 etra lech

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

State of Wisconsin Department of Natural Resources <u>Route to:</u>	Watershed/Wastewater	Waste Management	MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 7-98
Facility/Project Name	temediation/Redevelopment	Other	Wall Name A
Longr Practic		N. fr	E. P7-7
Facility License, Permit or Monitoring No.	Local Grid Origin D (estimated	ated: ated: box or Well Location	W. Wis Unique Well No. DNR Well ID No.
	fat * * *		
Facility ID	St. Plane ft. N	,ft. E. S,	IC/N Date Well Installed 51 1812010
Type of Well	Section Location of Waste/Sou	irce	E Well Installed By: Name (first, last) and Firm
Well Code /	$\underline{\mathcal{S}W}_{1/4}$ of $\underline{\mathcal{S}W}_{1/4}$ of Sec.	19, T. <u>JO</u> N, RAO	W NICK A.
Distance from Waste/ Enf. Stds.	Location of Well Relative to W	aste/Source Gov. Lot Num Sidegradient	ber T/ T/
Sourceft Apply	d Powngradient n	Not Known	Jetra Tech
A. Protective pipe, top elevation	ft. MSL	1. Cap and loc	k? 📑 Yes 🗆 No
B. Well casing, top elevation	ft. MSL	2. Protective of	over pipe: 6 in
	6 6 1/51	h Length	0.5 ft
C. Land surface elevation	ILMSL	c. Material:	Steel 🏶 0.4
D. Surface seal, bottom ft. MS	SLor O. S. ft.		Other 🔲
12. USCS classification of soil near screen	n:	d. Addition	al protection?
GP GM GC GW GS	WD SPD	If yes, de	scribe:
SM 🗆 SC 🗆 ML 🗆 MH 🗖 🖉	л сн 🛛 🔪		Bentonite $\Box = 3.0$
Bedrock 🖤		3. Surface scal	Concrete C 01
13. Sieve analysis performed?	Yes 🕰 No		Other
14. Drilling method used: Rot	tary 🕼 50	4. Material bet	ween well casing and protective pipe:
Hollow Stem Au	ager 🐺 41		Bentonite 💼 30
0	ther		Other 🗆
		S. Annular sna	ce seal: a. Granular/Chipped Bentonite 33
15. Drilling fiuid used: Water □ 0 2	Air 🗆 01	h Lbs	leal mud weight Bentonite-sand slurry [] 35
Drilling Mud \Box 0.3 B	None 🔊 99	c. Lbs	/gal mud weight Bentonite slurry D 31
		d% B	entonite Bentonite-cement grout 50
16. Drilling additives used?	Yes 🧖 No	e	_Ft ³ volume added for any of the above
D		f. How inst	alled: Tremie 🗆 01
			Tremie pumped 🔲 02
17. Source of water (attach analysis, if requ	nred):	889	Gravity 💋 08
		6. Bentonite se	eal: a. Bentonite granules 🔲 33
		₿ b. □1/4 in	a. $43/8$ in. $\Box 1/2$ in. Bentonite chips $43/2$
E. Bentonite seal, topft, MS	L or ft.	C	Other
F. Fine sand, top ft. MS	Lor 25_{ft}	7. Fine sand m	sterial: Manufacturer, product name & mesh size
		1 a Red	Flint Sand
G. Filter pack, top ft. MS	Lor_26ft.	b. Volume a	addedft ³
U Company laint too		8. Filter pack r	naterial: Manufacturer, product name & mesh size
H. Screen joint, top II. MS		a Kec I	FILAT SAAd FF JO
I Wall borrow ft MS		b. Volume	added ft ²
		9. Well casing:	Elush threaded BVC schedule 20 23
I Filter nack bottom ft MS	Lor 32 ft 1		Plush urreaded PVC schedule 80 1 24
		10 Screen mate	arial: N/C
K. Borehole, bottom ft. MS	$L \text{ or } _{3} $	a Screen fr	Factory cut 🕮 11
			Continuous slot
L. Borehole, diameter 6. 0 in	LE22		Other 🗆 🗤
m.		b. Manufact	
M. O.D. well casing 2-25 in		c. Slot size:	. 0.10_in.
m.		d. Slotted le	ength: _5_ ft.
N. I.D. well casing d in.		11, Backfill mat	terial (below filter pack): None 🖉 14
			Other
I hereby certify that the information on this	form is true and correct to the h	best of my knowledge.	
Signature M	Firm ~ /	- 1	
Mul & May	let.	* lech.	

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

State of Wisconsin Department of Natural Resources

MONITORING WELL DEVELOPMENT Form 4400-113B Rev. 7-98

Route to: Watershed/Wastewater	Waste Management
Remediation/Redevelopment	Other
Facility/Project Name County Name VONOV Property MA	rinette Well Name P2-7
Facility License, Permit or Monitoring Number County Code	Wis. Unique Well Number DNR Well ID Number
1. Can this well be purged dry?	11. Depth to Water
2. Well development method	(from top of a, 13.00 ft. 13.80 ft.
surged with bailer and bailed 📑 41	well casing)
surged with bailer and pumped \Box 61	
surged with block and bailed 🛛 42	Date h051/8120/0 051/812010
surged with block and pumped \Box 62	mm d d y y y y mm d d y y y y
surged with block, bailed and pumped 📋 70	$\int \partial \Box^{a.m.} \int \partial \Box \Box^{a.m.}$
compressed air $\Box 20$	Time $c. _ \bigcirc : _ \bigcirc \blacksquare p.m. _ \bigcirc : _ \bigcirc \blacksquare p.m.$
bailed only 📋 10	
pumped only \Box 51	12. Sediment in well $\underline{/} \underline{/} \underline{/}$ inches $\underline{/} \underline{/}$ inches
pumped slowly \Box 5.0	
Other	13. Water clarity Clear 📋 10 Clear 👺 20
3. Time spent developing well <u>60</u> min.	(Describe) (Describe)
4. Depth of well (from top of well casisng) 32 , ft.	
5. Inside diameter of well $\underline{\mathcal{A}}, \underline{\mathcal{O}}_{}$ in.	
6. Volume of water in filter pack and well casing gal.	
7. Volume of water removed from well 20.0 gal.	Fill in if drilling fluids were used and well is at solid waste facility:
8. Volume of water added (if any)	14. Total suspended mg/l mg/l mg/l solids
9. Source of water added	15. CODmg/lmg/l
	16. Well developed by: Name (first, last) and Firm
10. Analysis performed on water added?	First Name: Mike Last Name: N.
	Firm: Tetra Tech.

17. Additional comments on development:

Name and Address of Facility Contact /Owner/Responsible Party First Dale Name: Dale Name: Konop	I hereby certify that the above information is true and correct to the best of my knowledge.
Facility/Firm: <u>Konop Builders</u> Street: 110 BUSN. Hyw 141N	Signature: Michael K. Nerl
City/State/Zip: Coleman, WI 54112	Firm: Telm Tech.

NOTE: See instructions for more information including a list of county codes and well type codes.

Appendix C

Analytical Results and Chain of Custody Documentation

AS A MUTUAL PROTECTION TO CLIENTS, THE PUBLIC, AND OURSELVES, ALL TETRA TECH REPORTS ARE SUBMITTED AS THE CONFIDENTIAL INFORMATION OF CLIENTS, AND AUTHORIZATION FOR PUBLICATION OF STATEMENT, CONCLUSIONS OR EXTRACTIONS FROM OR REGARDING OUR REPORTS IS RESERVED PENDING OUR PRIOR WRITTEN APPROVAL.

June 02, 2010

Tetra Tech., Inc. 1837 County Highway 00 Chippewa Falls, WI 54729

Attn: Michael Neal

REPORT NO.: 1005389

PROJECT NO.: Konop Property 114-330854

Please find enclosed the analytical report, including the Sample Summary, Sample Narrative and Chain of Custody for your sample set received May 21, 2010.

All analyses were performed in accordance with NELAC Standards using approved methods as indicated on this report.

If you have any questions about the results, please call. Thank you for using Siemens Water Technologies for your analytical needs.

Sincerely,

Siemens Water Technologies

Bruce Schertz

Lab Manager Enviroscan Analytical[™] Services

I certify that the data contained in this report has been generated and reviewed in accordance with the Siemens Water Technologies Quality Assurance Program. Exceptions, if any, are discussed in the sample narrative. Samples will be retained for 30 days from the date of this report, then disposed in an appropriate manner. Siemens Water Technologies Corp. reserves the right to return samples identified as hazardous. Release of this Final Report is authorized as verified by the following signature. The contents of this report apply to the sample(s) analyzed. No duplication of this report is allowed except in its entirety.

Lames R. Sallowsh Reviewed by:

Certifications: Wisconsin 737053130 Minnesota 055-999-302 Illinois 100317

Siemens Water Technologies Corp.

301 West Military Road Rothschild, WI 54474 Tel: 800-338-7226 Fax: 715-355-3221 www.siemens.com/enviroscan

The total number of pages in this report, including this page is 11.

SAMPLE SUMMARY

Lab Id	Client Sample Id	Date/Time	Matrix
1005389-01	MW-3	05/18/10 13:15	Ground Water
1005389-02	PZ-3	05/18/10 13:30	Ground Water
1005389-03	MW-10	05/18/10 15:30	Ground Water
1005389-04	PZ-5	05/18/10 15:45	Ground Water
1005389-05	MW-F	05/18/10 14:00	Ground Water
1005389-06	PZ-4	05/18/10 14:15	Ground Water
1005389-07	PZ-2	05/18/10 14:45	Ground Water
1005389-08	MW-11	05/18/10 12:30	Ground Water
1005389-09	PZ-6	05/18/10 12:45	Ground Water
1005389-10	MW-12	05/18/10 18:45	Ground Water
1005389-11	PZ-7	05/18/10 18:45	Ground Water
1005389-12	Trip Blank	05/18/10 00:00	Water

Tetra Tech., Inc. 1837 County Highway 00 Chippewa Falls, WI 54729

Attn: Michael Neal

PROJECT NO.: Konop Property 114-330854 REPORT NO. : 1005389 DATE REC'D: 05/21/10 16:57 REPORT DATE : 06/02/10 10:51 PREPARED BY : BMS

Sample ID: MW-3	Matrix: Groun	Sample	e Date/Tir	ne: 05/1	8/10 13:15	Lab No. : 1005389-01		
	<u>Results</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	<u>Qualifiers</u>	Date <u>Analyzed</u>	<u>Analyst</u>
EPA 6020 - Diss. Dissolved Lead	ND	ug/L	0.60	4.00	2		05/24/10	JCH
EPA 8260B				1				
1,2,4-Trimethylbenzene	ND	ug/L	0.20	0.67	1		05/27/10	MPM
1,2-Dichloroethane	ND	ug/L	0.30	1.00	1		05/27/10	MPM
1,3,5-Trimethylbenzene	ND	ug/L	0.20	0.67	1		05/27/10	MPM
Benzene	0.64	ug/L	0.20	0.67	1	J	05/27/10	MPM
Ethylbenzene	ND	ug/L	0.20	0.67	1		05/27/10	MPM
m,p-Xylenes	ND	ug/L	0.40	1.30	1		05/27/10	MPM
Methyl-tert-Butyl Ether	ND	ug/L	0.50	1.70	1		05/27/10	MPM
Naphthalene	ND	ug/L	1.00	3.30	1		05/27/10	MPM
o-Xylene	ND	ug/L	0.20	0.67	1		05/27/10	MPM
Toluene	ND	ug/L	0.40	1.30	1		05/27/10	MPM

Matrix: Ground Water		Sample	e Date/Tir	me: 05/1	8/10 13:30	Lab No.: 1005389-02	
<u>Results</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	<u>Qualifiers</u>	Date <u>Analyzed</u>	<u>Analyst</u>
ND	ug/L	0.60	4.00	2		05/24/10	JCH
ND	ug/L	0.20	0.67	1		05/27/10	MPM
ND	ug/L	0.30	1.00	1		05/27/10	MPM
ND	ug/L	0.20	0.67	1		05/27/10	MPM
1.71	ug/L	0.20	0.67	1	S1H, S2H	05/27/10	MPM
ND	ug/L	0.20	0.67	1		05/27/10	MPM
ND	ug/L	0.40	1.30	1	DUP	05/27/10	MPM
ND	ug/L	0.50	1.70	1	S1H, S2H	05/27/10	MPM
ND	ug/L	1.00	3.30	1		05/27/10	MPM
ND	ug/L	0.20	0.67	1	DUP	05/27/10	MPM
ND	ug/L	0.40	1.30	1		05/27/10	MPM
	Matrix: Groun	Matrix: Ground WaterResultsUnitsNDug/L	Matrix: Ground WaterSampleResultsUnitsLODNDug/L0.60NDug/L0.20NDug/L0.30NDug/L0.201.71ug/L0.201.71ug/L0.20NDug/L0.20NDug/L0.20NDug/L0.20NDug/L0.20NDug/L0.20NDug/L0.20NDug/L0.20NDug/L0.50NDug/L0.20NDug/L0.20NDug/L0.20NDug/L0.20	Matrix: Ground Water Sample Date/Tir Results Units LOD LOQ ND ug/L 0.60 4.00 ND ug/L 0.60 4.00 ND ug/L 0.30 1.00 ND ug/L 0.20 0.67 ND ug/L 0.40 1.30 ND ug/L 0.40 3.30 ND ug/L 0.20 0.67 ND ug/L 0.20 0.67 ND ug/L 0.20 0.67 ND ug/L 0.20 0.67 ND ug/L <	Matrix: Ground Water Sample Date/Time: 05/13 Results Units LOD LOQ Dilution Factor ND ug/L 0.60 4.00 2 ND ug/L 0.20 0.67 1 ND ug/L 0.40 1.30 1 ND ug/L 1.00 3.30 1 ND ug/L 0.20 0.67 1 ND ug/L 0.20 0.67 1 ND ug/L 0.20 0.67 1 ND ug/L	Matrix: Ground WaterSample Date/Time:05/18/1013:30ResultsUnitsLODLOQFactorQualifiersNDug/L0.60 4.00 2NDug/L0.200.671NDug/L0.301.001NDug/L0.200.671NDug/L0.200.671NDug/L0.200.671NDug/L0.200.671NDug/L0.200.671NDug/L0.200.671NDug/L0.200.671NDug/L0.401.301NDug/L0.200.671NDug/L0.501.701S1H, S2HNDug/L0.200.671DUPNDug/L0.200.671DUPNDug/L0.200.671DUPNDug/L0.200.671DUPNDug/L0.200.671DUPNDug/L0.200.671DUPNDug/L0.200.671DUPNDug/L0.200.671DUPNDug/L0.200.671DUPNDug/L0.200.671DUPNDug/L0.200.671DUPNDug/L0.40 </td <td>Matrix: Ground Water Sample Date/Time: 05/18/10 13:30 Lab No. : 1 Results Units LOD LOQ Factor Qualifiers Date Analyzed ND ug/L 0.60 4.00 2 05/24/10 05/24/10 ND ug/L 0.20 0.67 1 05/27/10 05/27/10 ND ug/L 0.40 1.30 1 DUP 05/27/10 ND ug/L 0.50 1.70 1 S1H, S2H 05/27/10 ND ug/L 0.20 0.67</td>	Matrix: Ground Water Sample Date/Time: 05/18/10 13:30 Lab No. : 1 Results Units LOD LOQ Factor Qualifiers Date Analyzed ND ug/L 0.60 4.00 2 05/24/10 05/24/10 ND ug/L 0.20 0.67 1 05/27/10 05/27/10 ND ug/L 0.40 1.30 1 DUP 05/27/10 ND ug/L 0.50 1.70 1 S1H, S2H 05/27/10 ND ug/L 0.20 0.67

Attn: Michael Neal

Sample ID: MW-10	Matrix: Grour	nd Water	Sample	e Date/Ti	me: 05/1	8/10 15:30	Lab No. : 1	005389-03
	<u>Results</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	<u>Qualifiers</u>	Date <u>Analyzed</u>	Analyst
EPA 6020 - Diss.								
Dissolved Lead	ND	ug/L	0.60	4.00	2		05/24/10	JCH
EPA 8260B		ug/l	0.20	0.67	1		05/27/10	
1.2 Dichloroothano	ND	ug/L	0.20	1.00	1		05/27/10	
		ug/L	0.30	0.67	1		05/27/10	
Popzono	ND	ug/L	0.20	0.67	1		05/27/10	
Ethylbonzono	ND	ug/L	0.20	0.07	1		05/27/10	
	ND	ug/L	0.20	0.07	1		05/27/10	
Methyl test Butul Ether	ND	ug/L	0.40	1.30	4		05/27/10	
Nechthelene	ND	ug/L	0.50	1.70	1		05/27/10	
Naphthalene	ND	ug/L	1.00	3.30	1		05/27/10	MPM
o-Xylene	ND	ug/L	0.20	0.67	1		05/27/10	MPM
Toluene	ND	ug/L	0.40	1.30	1		05/27/10	MPM
Sample ID: PZ-5	Matrix: Grour	nd Water	Sample	e Date/Tir	me: 05/1	8/10 15:45	Lab No. : 1	1005389-04
					Dilution		Date	
	Results	<u>Units</u>	LOD	LOQ	Factor	Qualifiers	Analyzed	Analyst
EPA 6020 - Diss.								
Dissolved Lead	ND	ug/L	0.60	4.00	2		05/24/10	JCH

				-	-			
EPA 6020 - Diss.								
Dissolved Lead	ND	ug/L	0.60	4.00	2		05/24/10	JCH
<u>EPA 8260B</u>								
1,2,4-Trimethylbenzene	ND	ug/L	0.20	0.67	1		05/27/10	MPM
1,2-Dichloroethane	0.30	ug/L	0.30	1.00	1	J	05/27/10	MPM
1,3,5-Trimethylbenzene	ND	ug/L	0.20	0.67	1		05/27/10	MPM
Benzene	ND	ug/L	0.20	0.67	1		05/27/10	MPM
Ethylbenzene	ND	ug/L	0.20	0.67	1		05/27/10	MPM
m,p-Xylenes	ND	ug/L	0.40	1.30	1		05/27/10	MPM
Methyl-tert-Butyl Ether	ND	ug/L	0.50	1.70	1		05/27/10	MPM
Naphthalene	ND	ug/L	1.00	3.30	1		05/27/10	MPM
o-Xylene	ND	ug/L	0.20	0.67	1		05/27/10	MPM
Toluene	ND	ug/L	0.40	1.30	1		05/27/10	MPM

Attn: Michael Neal

Sample ID: MW-F	Matrix: Groun	d Water	Sample	e Date/Tir	me: 05/1	8/10 14:00	Lab No. : ·	Lab No.: 1005389-05	
	Results	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	<u>Analyst</u>	
EPA 6020 - Diss.									
Dissolved Lead	4.15	ug/L	0.60	4.00	2		05/24/10	JCH	
EPA 8260B									
1,2,4-Trimethylbenzene	1360	ug/L	20.0	67.0	100		05/27/10	MPM	
1,2-Dichloroethane	45.8	ug/L	30.0	100	100	J	05/27/10	MPM	
1,3,5-Trimethylbenzene	302	ug/L	20.0	67.0	100		05/27/10	MPM	
Benzene	2030	ug/L	20.0	67.0	100		05/27/10	MPM	
Ethylbenzene	2540	ug/L	20.0	67.0	100		05/27/10	MPM	
m,p-Xylenes	6480	ug/L	40.0	130	100		05/27/10	MPM	
Methyl-tert-Butyl Ether	ND	ug/L	50.0	170	100		05/27/10	MPM	
Naphthalene	378	ug/L	100	330	100		05/27/10	MPM	
o-Xylene	2400	ug/L	20.0	67.0	100		05/27/10	MPM	
Toluene	9220	ug/L	40.0	130	100		05/27/10	MPM	

Sample ID: PZ-4	Matrix: Ground Water		Sample	e Date/Tir	me: 05/1	8/10 14:15	Lab No.: 1005389-06	
	<u>Results</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	<u>Analyst</u>
EPA 6020 - Diss. Dissolved Lead	ND	ug/L	0.60	4.00	2		05/24/10	JCH
EPA 8260B								
1,2,4-Trimethylbenzene	803	ug/L	10.0	33.5	50		05/28/10	MPM
1,2-Dichloroethane	25.4	ug/L	15.0	50.0	50	J	05/28/10	MPM
1,3,5-Trimethylbenzene	670	ug/L	10.0	33.5	50		05/28/10	MPM
Benzene	1010	ug/L	10.0	33.5	50		05/28/10	MPM
Ethylbenzene	1270	ug/L	10.0	33.5	50		05/28/10	MPM
m,p-Xylenes	2950	ug/L	20.0	65.0	50		05/28/10	MPM
Methyl-tert-Butyl Ether	ND	ug/L	25.0	85.0	50		05/28/10	MPM
Naphthalene	226	ug/L	50.0	165	50		05/28/10	MPM
o-Xylene	1010	ug/L	10.0	33.5	50		05/28/10	MPM
Toluene	2380	ug/L	20.0	65.0	50		05/28/10	MPM

Tetra Tech., Inc. 1837 County Highway 00 Chippewa Falls, WI 54729

Attn: Michael Neal

Sample ID: PZ-2	Matrix: Groun	d Water	Sample	e Date/Tir	ne: 05/1	8/10 14:45	Lab No.: 1005389-07	
	<u>Results</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	Analyst
EPA 6020 - Diss.								
Dissolved Lead	ND	ug/L	0.60	4.00	2		05/24/10	JCH
EPA 8260B								
1,2,4-Trimethylbenzene	76.8	ug/L	2.00	6.70	10		06/01/10	MPM
1,2-Dichloroethane	6.01	ug/L	3.00	10.0	10	J	06/01/10	MPM
1,3,5-Trimethylbenzene	55.2	ug/L	2.00	6.70	10		06/01/10	MPM
Benzene	235	ug/L	2.00	6.70	10		06/01/10	MPM
Ethylbenzene	240	ug/L	2.00	6.70	10		06/01/10	MPM
m,p-Xylenes	130	ug/L	4.00	13.0	10		06/01/10	MPM
Methyl-tert-Butyl Ether	ND	ug/L	5.00	17.0	10		06/01/10	MPM
Naphthalene	25.4	ug/L	10.0	33.0	10	J	06/01/10	MPM
o-Xylene	19.5	ug/L	2.00	6.70	10		06/01/10	MPM
Toluene	45.5	ug/L	4.00	13.0	10		06/01/10	MPM
Sample ID: MW-11	Matrix: Groun	d Water	Sample	e Date/Tir	ne: 05/1	8/10 12:30	Lab No. :	1005389-08

	<u>Results</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	<u>Qualifiers</u>	Date <u>Analyzed</u>	Analyst
EPA 6020 - Diss.								
Dissolved Lead	ND	ug/L	0.60	4.00	2		05/24/10	JCH
EDA 9260B								
1 2 4-Trimethylbenzene	ND	ua/l	0.20	0.67	1		05/28/10	MPM
1,2-Dichloroethane	ND	ug/L	0.30	1.00	1		05/28/10	MPM
1,3,5-Trimethylbenzene	ND	ug/L	0.20	0.67	1		05/28/10	MPM
Benzene	ND	ug/L	0.20	0.67	1		05/28/10	MPM
Ethylbenzene	ND	ug/L	0.20	0.67	1		05/28/10	MPM
m,p-Xylenes	ND	ug/L	0.40	1.30	1		05/28/10	MPM
Methyl-tert-Butyl Ether	ND	ug/L	0.50	1.70	1		05/28/10	MPM
Naphthalene	ND	ug/L	1.00	3.30	1		05/28/10	MPM
o-Xylene	ND	ug/L	0.20	0.67	1		05/28/10	MPM
Toluene	ND	ug/L	0.40	1.30	1		05/28/10	MPM

Tetra Tech., Inc. 1837 County Highway 00 Chippewa Falls, WI 54729

Attn: Michael Neal

Sample ID: PZ-6	Matrix: Groun	Sample	e Date/Tir	ne: 05/1	8/10 12:45	Lab No. : 1005389-09		
	<u>Results</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	<u>Qualifiers</u>	Date <u>Analyzed</u>	<u>Analyst</u>
<u>EPA 6020 - Diss.</u> Dissolved Lead	2.00	ug/L	0.60	4.00	2	J	05/24/10	JCH
EPA 8260B								
1,2,4-Trimethylbenzene	0.24	ug/L	0.20	0.67	1	J	05/28/10	MPM
1,2-Dichloroethane	ND	ug/L	0.30	1.00	1		05/28/10	MPM
1,3,5-Trimethylbenzene	0.21	ug/L	0.20	0.67	1	J	05/28/10	MPM
Benzene	ND	ug/L	0.20	0.67	1		05/28/10	MPM
Ethylbenzene	ND	ug/L	0.20	0.67	1		05/28/10	MPM
m,p-Xylenes	ND	ug/L	0.40	1.30	1		05/28/10	MPM
Methyl-tert-Butyl Ether	ND	ug/L	0.50	1.70	1		05/28/10	MPM
Naphthalene	ND	ug/L	1.00	3.30	1		05/28/10	MPM
o-Xylene	ND	ug/L	0.20	0.67	1		05/28/10	MPM
Toluene	ND	ug/L	0.40	1.30	1		05/28/10	MPM

Matrix: Ground Water		Sample	e Date/Tin	ne: 05/1	8/10 18:45	Lab No.: 1005389-10	
<u>Results</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	<u>Analyst</u>
1.33	ug/L	0.60	4.00	2	J	05/24/10	JCH
298	ug/L	2.00	6.70	10		05/28/10	MPM
ND	ug/L	3.00	10.0	10		05/28/10	MPM
207	ug/L	2.00	6.70	10		05/28/10	MPM
ND	ug/L	2.00	6.70	10		05/28/10	MPM
58.1	ug/L	2.00	6.70	10		05/28/10	MPM
152	ug/L	4.00	13.0	10		05/28/10	MPM
ND	ug/L	5.00	17.0	10		05/28/10	MPM
28.6	ug/L	10.0	33.0	10	J	05/28/10	MPM
36.8	ug/L	2.00	6.70	10		05/28/10	MPM
12.9	ug/L	4.00	13.0	10	J	05/28/10	MPM
	Matrix: Groun <u>Results</u> 1.33 298 ND 207 ND 207 ND 58.1 152 ND 28.6 36.8 12.9	ResultsUnits1.33ug/L1.33ug/L298ug/LNDug/L207ug/L207ug/L58.1ug/L152ug/LNDug/L36.8ug/L12.9ug/L	Matrix: Ground Water Sample Results Units LOD 1.33 ug/L 0.60 298 ug/L 0.60 ND ug/L 3.00 207 ug/L 2.00 ND ug/L 2.00 ND ug/L 2.00 58.1 ug/L 2.00 152 ug/L 4.00 ND ug/L 5.00 28.6 ug/L 10.0 36.8 ug/L 2.00 12.9 ug/L 4.00	Matrix: Ground Water Sample Date/Tir Results Units LOD LOQ 1.33 ug/L 0.60 4.00 298 ug/L 0.60 4.00 298 ug/L 3.00 10.0 207 ug/L 2.00 6.70 ND ug/L 2.00 6.70 ND ug/L 2.00 6.70 152 ug/L 2.00 13.0 ND ug/L 5.00 17.0 28.6 ug/L 10.0 33.0 36.8 ug/L 2.00 6.70 12.9 ug/L 4.00 13.0	Matrix: Ground Water Sample Date/Time: 05/1 Results Units LOD LOQ Dilution Factor 1.33 ug/L 0.60 4.00 2 298 ug/L 2.00 6.70 10 ND ug/L 3.00 10.0 10 207 ug/L 2.00 6.70 10 ND ug/L 2.00 6.70 10 58.1 ug/L 2.00 6.70 10 152 ug/L 2.00 6.70 10 ND ug/L 5.00 17.0 10 28.6 ug/L 5.00 17.0 10 28.6 ug/L 2.00 6.70 10 12.9 ug/L 4.00 13.0 10	Matrix: Ground Water Sample Date/Time: 05/18/10 18:45 Results Units LOD LOQ Factor Qualifiers 1.33 ug/L 0.60 4.00 2 J 298 ug/L 2.00 6.70 10 J 298 ug/L 2.00 6.70 10 J 207 ug/L 2.00 6.70 10 J 207 ug/L 2.00 6.70 10 J 58.1 ug/L 2.00 6.70 10 J 152 ug/L 2.00 6.70 10 J 152 ug/L 5.00 17.0 10 J 28.6 ug/L 5.00 17.0 10 J 36.8 ug/L 2.00 6.70 10 J 36.8 ug/L 2.00 6.70 10 J 36.8 ug/L 2.00 6.70 10 J <td>Matrix: Ground Water Sample Date/Time: 05/18/10 18:45 Lab No. : 1 Results Units LOD LOQ Factor Qualifiers Date Analyzed 1.33 ug/L 0.60 4.00 2 J 05/24/10 298 ug/L 2.00 6.70 10 05/28/10 ND ug/L 3.00 10.0 10 05/28/10 207 ug/L 2.00 6.70 10 05/28/10 ND ug/L 2.00 6.70 10 05/28/10 58.1 ug/L 2.00 6.70 10 05/28/10 152 ug/L 2.00 6.70 10 05/28/10 152 ug/L 5.00 17.0 10 05/28/10 ND ug/L 5.00 17.0 10 05/28/10 28.6 ug/L 10.0 33.0 10 J 05/28/10 36.8 ug/L 2.00 6.70 <td< td=""></td<></td>	Matrix: Ground Water Sample Date/Time: 05/18/10 18:45 Lab No. : 1 Results Units LOD LOQ Factor Qualifiers Date Analyzed 1.33 ug/L 0.60 4.00 2 J 05/24/10 298 ug/L 2.00 6.70 10 05/28/10 ND ug/L 3.00 10.0 10 05/28/10 207 ug/L 2.00 6.70 10 05/28/10 ND ug/L 2.00 6.70 10 05/28/10 58.1 ug/L 2.00 6.70 10 05/28/10 152 ug/L 2.00 6.70 10 05/28/10 152 ug/L 5.00 17.0 10 05/28/10 ND ug/L 5.00 17.0 10 05/28/10 28.6 ug/L 10.0 33.0 10 J 05/28/10 36.8 ug/L 2.00 6.70 <td< td=""></td<>

Attn: Michael Neal				INLIA		DIVIS		
Sample ID: PZ-7	Matrix: Groun	Sample	e Date/Tir	me: 05/1	8/10 18:45	Lab No. : 1005389-11		
	<u>Results</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	<u>Analyst</u>
EPA 6020 - Diss.								
Dissolved Lead	ND	ug/L	0.60	4.00	2		05/24/10	JCH
EPA 8260B								
1,2,4-Trimethylbenzene	9.82	ug/L	0.20	0.67	1		05/28/10	MPM
1,2-Dichloroethane	ND	ug/L	0.30	1.00	1		05/28/10	MPM
1,3,5-Trimethylbenzene	10.2	ug/L	0.20	0.67	1		05/28/10	MPM
Benzene	0.56	ug/L	0.20	0.67	1	J	05/28/10	MPM
Ethylbenzene	2.22	ug/L	0.20	0.67	1		05/28/10	MPM
m,p-Xylenes	10.3	ug/L	0.40	1.30	1		05/28/10	MPM
Methyl-tert-Butyl Ether	ND	ug/L	0.50	1.70	1		05/28/10	MPM
Naphthalene	1.53	ug/L	1.00	3.30	1	J	05/28/10	MPM
o-Xylene	2.99	ug/L	0.20	0.67	1		05/28/10	MPM
Toluene	1.16	ug/L	0.40	1.30	1	J	05/28/10	MPM

Sample ID: Trip Blank	Matrix: Water		Sample	e Date/Tin	ne: 05/1	Lab No.: 1005389-12		
	<u>Results</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	<u>Analyst</u>
EPA 8260B								
1,2,4-Trimethylbenzene	ND	ug/L	0.20	0.67	1		05/28/10	MPM
1,2-Dichloroethane	ND	ug/L	0.30	1.00	1		05/28/10	MPM
1,3,5-Trimethylbenzene	ND	ug/L	0.20	0.67	1		05/28/10	MPM
Benzene	ND	ug/L	0.20	0.67	1		05/28/10	MPM
Ethylbenzene	ND	ug/L	0.20	0.67	1		05/28/10	MPM
m,p-Xylenes	ND	ug/L	0.40	1.30	1		05/28/10	MPM
Methyl-tert-Butyl Ether	ND	ug/L	0.50	1.70	1		05/28/10	MPM
Naphthalene	ND	ug/L	1.00	3.30	1		05/28/10	MPM
o-Xylene	ND	ug/L	0.20	0.67	1		05/28/10	MPM
Toluene	ND	ug/L	0.40	1.30	1		05/28/10	MPM

Qualifier Descriptions

S2H	Second sample matrix spike recovery was high.
S1H	First sample matrix spike recovery was high.
J	Estimated concentration below laboratory quantitation level.
DUP	Result of duplicate analysis in this quality assurance batch exceeds the limits for precision.

Definitions

LOD = Limit of Detection (Dilution Corrected) LOQ = Limit of Quanitation (Dilution Corrected) Reporting Limit = LOQ (Dilution Corrected) ND = Not Detected COMP = Complete SUBCON = Subcontracted analysis mv = millivolts pci/L = picocuries per Liter mL/L = milliliters per Liter mg = milligram

When the word "dry" follows the units on the result page the sample results are dry weight corrected.

LODs and LOQs are dry weight corrected for all soils except WI GRO and EPA 8021methanol and WI DNR methylene chloride preserved soils. ug/I = Micrograms per Liter = parts per billion (ppb) ug/kg = Micrograms per kilogram = parts per billion (ppb) mg/I = Milligrams per liter = parts per million (ppm) mg/kg = Milligrams per kilogram = parts per million (ppm) NOT PRES = Not Present ppth = Parts per thousand * = Result outside established limits. mg/M3 = Milligrams per meter cubed ng/L = Nanograms per Liter = Parts per trillion(ppt) > = Greater Than

Methanol Soils for WI GRO and EPA 8021 are reported to the LOQ.

10f2

Company Name	Tedra Tech			Proje	Project KONOD Proverty 114-330854							
Report Mailing Ac	dress HOO			Cont	Contact Name, Phone, Fax, Email							
CF,	WI 54	1729		/	nichas	1. Nerla	PK	tra tech. com				
Invoice Address				Purc	hase Orde	r#	Invoice C	Contact and Phone No.				
Matrix: Drinking W	ater Groundwater	Wastewater Soil/Solid	Other:		Ana	lyses Requested		Lab Use Only				
Wis. PECFA Project subject to U&C? Yes No For Compliance Monitoring? Yes No (If Yes, please specify Agency or Regulation) Agency/Reg.:			3004	3004			Delivered by Walk-in Courie Ship. Cont. Ok? C N NA Samples Leaking? Y D NA Seals OK? C N NA Rec'd on Ice? C N NA	er) Dunna				
Turnaround Req	Luest: Normal (1 [] Rush (Mu Date Needed	0 Bus. Days) st be pre-approved by La :	ab and is subject to surcharges	Maph + 1	F			Sample Receiving Comments:				
WO No. 100	5387	<u>870</u>			4							
Lab Use Only E	Sample Date Time	No. of Containers Comp Grab	Sample ID	DNOI	16			Comments				
-01 5-1	5-10 115	4	MW.3	7	\mathbf{k}			250ml pl HNO3				
-02	1 /30	4	P2-3	7	×			3 mals HCL				
-03	330	4	MW-10	7	F							
-04	345	4	P2-5	x	x							
-05	200	4	MW-F	×	x							
-06	215	4	P2-4	7	r							
			sales 8					NO SAMPLE DW				
-07	245	4	PZ-2	7	7							
-08	1230	4	m/2 11	17	オ							
-09	1245	4	P2-6	7	X							
Ch	ain of Custody Record			1		Date	Time	Received By: Don hom				
		0			Dethershi	5/21/10	10:57	Manah Kramts				

MENS	2072
Company Name Tetm Tech Report Mailing Address 1837 CF# OO CF, WZ 54729 Invoice Address	Project <u>Konop</u> <u>Property</u> 114-330854 Contact Name, Phone, Fax, Email <u>Michael. Newla tetro tech. scm</u> Purchase Order # Invoice Contact and Phone No.
Matrix: Drinking Water Coundwater Wastewater Soil/Solid Other: Wis. PECFA Project subject to U&C? Yes Yes Yes Yes For Compliance Monitoring? Yes Yes State:	Analyses Requested Lab Use Only Delivered by: Walk-in Ship. Cont. OK? N NA Samples Leaking? \mathcal{O} N NA Samples Leaking? \mathcal{O} N NA Seals OK? \mathcal{O} N NA Sample Receiving Comments: 3.2° C N NA X Imake Mitting Imake Mitting Imake Mitting X Imake Mitting I
Chain of Custody Record	Date Time Received By: 500-10 5-30 Dentron 5/21/10 16:57 Mawah K Permb

October 18, 2010

Tetra Tech., Inc. 1837 County Highway 00 Chippewa Falls, WI 54729

Attn: Michael Neal

REPORT NO.: 1010105

PROJECT NO.: Konop Property 114-330854

Please find enclosed the analytical report, including the Sample Summary, Sample Narrative and Chain of Custody for your sample set received October 6, 2010.

All analyses were performed in accordance with NELAC Standards using approved methods as indicated on this report.

If you have any questions about the results, please call. Thank you for using Siemens Water Technologies for your analytical needs.

Sincerely,

Siemens Water Technologies

amesh. Salkows -

James Salkowski Lab Director Enviroscan Analytical[™] Services

I certify that the data contained in this report has been generated and reviewed in accordance with the Siemens Water Technologies Quality Assurance Program. Exceptions, if any, are discussed in the sample narrative. Samples will be retained for 30 days from the date of this report, then disposed in an appropriate manner. Siemens Water Technologies Corp. reserves the right to return samples identified as hazardous. Release of this Final Report is authorized as verified by the following signature. The contents of this report apply to the sample(s) analyzed. No duplication of this report is allowed except in its entirety.

Reviewed by: mal /www

Certifications: Wisconsin 737053130 Minnesota 055-999-302 Illinois 100317

Siemens Water Technologies Corp.

301 West Military Road Rothschild, WI 54474

Tel: 800-338-7226 Fax: 715-355-3221 www.siemens.com/enviroscan

The total number of pages in this report, including this page is 14.

SAMPLE SUMMARY

Lab Id	Client Sample Id	Date/Time	Matrix
1010105-01	MW-3	10/06/10 09:10	Ground Water
1010105-02	PZ-3	10/06/10 08:55	Ground Water
1010105-03	MW-10	10/06/10 09:30	Ground Water
1010105-04	PZ-5	10/06/10 09:50	Ground Water
1010105-05	MW-F	10/06/10 10:35	Ground Water
1010105-06	PZ-4	10/06/10 10:15	Ground Water
1010105-07	MW-8	10/06/10 11:05	Ground Water
1010105-08	PZ-2	10/06/10 11:15	Ground Water
1010105-09	MW-11	10/06/10 12:45	Ground Water
1010105-10	PZ-6	10/06/10 13:00	Ground Water
1010105-11	MW-12	10/06/10 12:00	Ground Water
1010105-12	PZ-7	10/06/10 12:15	Ground Water
1010105-13	Trip Blank	10/06/10 00:00	Water

Attn: Michael Neal

PROJECT NO. : Konop Property 114-330854 REPORT NO. : 1010105 DATE REC'D: 10/06/10 15:30 REPORT DATE : 10/18/10 08:34 PREPARED BY : JRS

Sample ID: MW-3	Matrix: Ground Water		Sample	e Date/Tir	Lab No.: 1010105-01			
	<u>Results</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	<u>Analyst</u>
EPA 8260B								
1,2,4-Trimethylbenzene	ND	ug/L	0.20	0.67	1		10/07/10	MRD
1,2-Dichloroethane	ND	ug/L	0.30	1.00	1		10/07/10	MRD
1,3,5-Trimethylbenzene	ND	ug/L	0.20	0.67	1		10/07/10	MRD
Benzene	ND	ug/L	0.20	0.67	1		10/07/10	MRD
Ethylbenzene	ND	ug/L	0.20	0.67	1		10/07/10	MRD
m,p-Xylenes	ND	ug/L	0.40	1.30	1		10/07/10	MRD
Methyl-tert-Butyl Ether	ND	ug/L	0.50	1.70	1		10/07/10	MRD
Naphthalene	ND	ug/L	1.00	3.30	1		10/07/10	MRD
o-Xylene	ND	ug/L	0.20	0.67	1		10/07/10	MRD
Toluene	ND	ug/L	0.40	1.30	1		10/07/10	MRD

Sample ID: PZ-3	Matrix: Groun	d Water	Sample	e Date/Tir	Lab No.: 1010105-02			
	<u>Results</u>	<u>Units</u>	LOD	LOQ	Dilution Factor	Qualifiers	Date <u>Analyzed</u>	<u>Analyst</u>
EPA 8260B								
1,2,4-Trimethylbenzene	ND	ug/L	0.20	0.67	1		10/07/10	MRD
1,2-Dichloroethane	ND	ug/L	0.30	1.00	1		10/07/10	MRD
1,3,5-Trimethylbenzene	ND	ug/L	0.20	0.67	1		10/07/10	MRD
Benzene	ND	ug/L	0.20	0.67	1		10/07/10	MRD
Ethylbenzene	ND	ug/L	0.20	0.67	1		10/07/10	MRD
m,p-Xylenes	ND	ug/L	0.40	1.30	1		10/07/10	MRD
Methyl-tert-Butyl Ether	ND	ug/L	0.50	1.70	1		10/07/10	MRD
Naphthalene	ND	ug/L	1.00	3.30	1		10/07/10	MRD
o-Xylene	ND	ug/L	0.20	0.67	1		10/07/10	MRD
Toluene	ND	ug/L	0.40	1.30	1		10/07/10	MRD

Tetra Tech., Inc. 1837 County Highway 00 Chippewa Falls, WI 54729

Attn: Michael Neal Sample ID: MW-10

PROJECT NO. : Konop Property 114-330854 REPORT NO. : 1010105 DATE REC'D: 10/06/10 15:30 REPORT DATE : 10/18/10 08:34 PREPARED BY : JRS

Lab No. : 1010105-03

Sample Date/Time: 10/06/10 9:30

	<u>Results</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	<u>Analyst</u>
EPA 8260B								
1,2,4-Trimethylbenzene	ND	ug/L	0.20	0.67	1		10/07/10	MRD
1,2-Dichloroethane	ND	ug/L	0.30	1.00	1		10/07/10	MRD
1,3,5-Trimethylbenzene	ND	ug/L	0.20	0.67	1		10/07/10	MRD
Benzene	ND	ug/L	0.20	0.67	1		10/07/10	MRD
Ethylbenzene	ND	ug/L	0.20	0.67	1		10/07/10	MRD
m,p-Xylenes	ND	ug/L	0.40	1.30	1		10/07/10	MRD
Methyl-tert-Butyl Ether	ND	ug/L	0.50	1.70	1		10/07/10	MRD
Naphthalene	ND	ug/L	1.00	3.30	1		10/07/10	MRD
o-Xylene	ND	ug/L	0.20	0.67	1		10/07/10	MRD
Toluene	ND	ug/L	0.40	1.30	1		10/07/10	MRD

Matrix: Ground Water

Sample ID: PZ-5	Matrix: Grour	Matrix: Ground Water		e Date/Tir	Lab No. : 1010105-04			
	<u>Results</u>	<u>Units</u>	LOD	LOQ	Dilution Factor	Qualifiers	Date <u>Analyzed</u>	<u>Analyst</u>
EPA 8260B								
1,2,4-Trimethylbenzene	ND	ug/L	0.20	0.67	1		10/07/10	MRD
1,2-Dichloroethane	ND	ug/L	0.30	1.00	1		10/07/10	MRD
1,3,5-Trimethylbenzene	ND	ug/L	0.20	0.67	1		10/07/10	MRD
Benzene	ND	ug/L	0.20	0.67	1		10/07/10	MRD
Ethylbenzene	ND	ug/L	0.20	0.67	1		10/07/10	MRD
m,p-Xylenes	ND	ug/L	0.40	1.30	1		10/07/10	MRD
Methyl-tert-Butyl Ether	ND	ug/L	0.50	1.70	1		10/07/10	MRD
Naphthalene	ND	ug/L	1.00	3.30	1		10/07/10	MRD
o-Xylene	ND	ug/L	0.20	0.67	1		10/07/10	MRD
Toluene	ND	ug/L	0.40	1.30	1		10/07/10	MRD

Attn: Michael Neal

Sample ID: MW-F	Matrix: Ground Water		Sample	e Date/Tin	ne: 10/0	6/10 10:35	Lab No.: 1010105-05	
	<u>Results</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	<u>Analyst</u>
EPA 6020 - Diss. Dissolved Lead	3.82	ug/L	0.60	4.00	2	J	10/14/10	JCH
EPA 8260B								
1,2,4-Trimethylbenzene	1360	ug/L	20.0	67.0	100		10/07/10	MRD
1,2-Dichloroethane	ND	ug/L	30.0	100	100		10/07/10	MRD
1,3,5-Trimethylbenzene	312	ug/L	20.0	67.0	100		10/07/10	MRD
Benzene	1690	ug/L	20.0	67.0	100		10/07/10	MRD
Ethylbenzene	2060	ug/L	20.0	67.0	100		10/07/10	MRD
m,p-Xylenes	6140	ug/L	40.0	130	100		10/07/10	MRD
Methyl-tert-Butyl Ether	ND	ug/L	50.0	170	100		10/07/10	MRD
Naphthalene	419	ug/L	100	330	100		10/07/10	MRD
o-Xylene	2270	ug/L	20.0	67.0	100		10/07/10	MRD
Toluene	9150	ug/L	40.0	130	100		10/07/10	MRD

Sample ID: PZ-4	Matrix: Groun	d Water	Sample	Date/Tir	Lab No.:1010105-06			
	<u>Results</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	Analyst
EPA 8260B								
1,2,4-Trimethylbenzene	704	ug/L	10.0	33.5	50		10/07/10	MRD
1,2-Dichloroethane	ND	ug/L	15.0	50.0	50		10/07/10	MRD
1,3,5-Trimethylbenzene	158	ug/L	10.0	33.5	50		10/07/10	MRD
Benzene	941	ug/L	10.0	33.5	50		10/07/10	MRD
Ethylbenzene	1090	ug/L	10.0	33.5	50		10/07/10	MRD
m,p-Xylenes	2620	ug/L	20.0	65.0	50		10/07/10	MRD
Methyl-tert-Butyl Ether	ND	ug/L	25.0	85.0	50		10/07/10	MRD
Naphthalene	234	ug/L	50.0	165	50		10/07/10	MRD
o-Xylene	959	ug/L	10.0	33.5	50		10/07/10	MRD
Toluene	3140	ug/L	20.0	65.0	50		10/07/10	MRD

Attn: Michael Neal

Sample ID: MW-8	Matrix: Ground Water Sample Date/Time: 10/06/10 1		6/10 11:05	11:05 Lab No. : 1010105				
	<u>Results</u>	<u>Units</u>	LOD	<u>LOQ</u>	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	<u>Analyst</u>
EPA 6020 - Diss. Dissolved Lead	ND	ug/L	0.60	4.00	2		10/14/10	JCH
EPA 8260B							10/07/10	
1,2,4-Trimethylbenzene	ND	ug/L	0.20	0.67	1		10/07/10	MRD
1,2-Dichloroethane	ND	ug/L	0.30	1.00	1		10/07/10	MRD
1,3,5-Trimethylbenzene	ND	ug/L	0.20	0.67	1		10/07/10	MRD
Benzene	ND	ug/L	0.20	0.67	1		10/07/10	MRD
Ethylbenzene	ND	ug/L	0.20	0.67	1		10/07/10	MRD
m,p-Xylenes	ND	ug/L	0.40	1.30	1		10/07/10	MRD
Methyl-tert-Butyl Ether	ND	ug/L	0.50	1.70	1		10/07/10	MRD
Naphthalene	ND	ug/L	1.00	3.30	1		10/07/10	MRD
o-Xylene	ND	ug/L	0.20	0.67	1		10/07/10	MRD
Toluene	ND	ug/L	0.40	1.30	1		10/07/10	MRD

Sample ID: PZ-2	Matrix: Groun	Sample	e Date/Tir	me: 10/0	Lab No.: 1010105-08			
	<u>Results</u>	<u>Units</u>	LOD	LOQ	Dilution Factor	Qualifiers	Date <u>Analyzed</u>	<u>Analyst</u>
EPA 8260B								
1,2,4-Trimethylbenzene	52.8	ug/L	2.00	6.70	10		10/07/10	MRD
1,2-Dichloroethane	ND	ug/L	3.00	10.0	10		10/07/10	MRD
1,3,5-Trimethylbenzene	18.6	ug/L	2.00	6.70	10		10/07/10	MRD
Benzene	377	ug/L	2.00	6.70	10		10/07/10	MRD
Ethylbenzene	142	ug/L	2.00	6.70	10		10/07/10	MRD
m,p-Xylenes	86.7	ug/L	4.00	13.0	10		10/07/10	MRD
Methyl-tert-Butyl Ether	ND	ug/L	5.00	17.0	10		10/07/10	MRD
Naphthalene	36.6	ug/L	10.0	33.0	10		10/07/10	MRD
o-Xylene	17.8	ug/L	2.00	6.70	10		10/07/10	MRD
Toluene	51.3	ug/L	4.00	13.0	10		10/07/10	MRD

Attn: Michael Neal

Sample ID: MW-11	Matrix: Groun	d Water	Sample	Date/Tir	6/10 12:45	Lab No.: 1010105-09		
	<u>Results</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	<u>Analyst</u>
EPA 8260B								
1,2,4-Trimethylbenzene	ND	ug/L	0.20	0.67	1		10/07/10	MRD
1,2-Dichloroethane	ND	ug/L	0.30	1.00	1		10/07/10	MRD
1,3,5-Trimethylbenzene	ND	ug/L	0.20	0.67	1		10/07/10	MRD
Benzene	ND	ug/L	0.20	0.67	1		10/07/10	MRD
Ethylbenzene	ND	ug/L	0.20	0.67	1		10/07/10	MRD
m,p-Xylenes	ND	ug/L	0.40	1.30	1		10/07/10	MRD
Methyl-tert-Butyl Ether	ND	ug/L	0.50	1.70	1		10/07/10	MRD
Naphthalene	ND	ug/L	1.00	3.30	1		10/07/10	MRD
o-Xylene	ND	ug/L	0.20	0.67	1		10/07/10	MRD
Toluene	ND	ug/L	0.40	1.30	1		10/07/10	MRD

Sample ID: PZ-6	Matrix: Groun	Sample	e Date/Tir	me: 10/0	Lab No.: 1010105-10			
	Results	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	<u>Analyst</u>
<u>EPA 6020 - Diss.</u>					· · ·			
Dissolved Lead	ND	ug/L	0.60	4.00	2		10/14/10	JCH
<u>EPA 8260B</u>								
1,2,4-Trimethylbenzene	ND	ug/L	0.20	0.67	1		10/07/10	MRD
1,2-Dichloroethane	ND	ug/L	0.30	1.00	1		10/07/10	MRD
1,3,5-Trimethylbenzene	ND	ug/L	0.20	0.67	1		10/07/10	MRD
Benzene	ND	ug/L	0.20	0.67	1		10/07/10	MRD
Ethylbenzene	ND	ug/L	0.20	0.67	1		10/07/10	MRD
m,p-Xylenes	ND	ug/L	0.40	1.30	1		10/07/10	MRD
Methyl-tert-Butyl Ether	ND	ug/L	0.50	1.70	1		10/07/10	MRD
Naphthalene	ND	ug/L	1.00	3.30	1		10/07/10	MRD
o-Xylene	ND	ug/L	0.20	0.67	1		10/07/10	MRD
Toluene	ND	ug/L	0.40	1.30	1		10/07/10	MRD

Attn: Michael Neal

Sample ID: MW-12	Matrix: Groun	Sample Date/Time: 1			6/10 12:00	Lab No.: 1010105-11		
	<u>Results</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	<u>Analyst</u>
EPA 6020 - Diss. Dissolved Lead	1.11	ug/L	0.60	4.00	2	J	10/14/10	JCH
EPA 8260B								
1,1,1,2-Tetrachloroethane	ND	ug/L	0.30	1.00	1		10/08/10	MRD
1,1,1-Trichloroethane	ND	ug/L	0.50	1.70	1		10/08/10	MRD
1,1,2,2-Tetrachloroethane	ND	ug/L	0.40	1.30	1		10/08/10	MRD
1,1,2-Trichloroethane	ND	ug/L	0.40	1.30	1		10/08/10	MRD
1,1-Dichloroethane	ND	ug/L	0.40	1.30	1		10/08/10	MRD
1,1-Dichloroethylene	ND	ug/L	0.40	1.30	1		10/08/10	MRD
1,1-Dichloropropylene	ND	ug/L	0.80	2.70	1		10/08/10	MRD
1,2,3-Trichlorobenzene	ND	ug/L	0.50	1.70	1		10/08/10	MRD
1,2,3-Trichloropropane	ND	ug/L	1.00	3.30	1		10/08/10	MRD
1,2,4-Trichlorobenzene	ND	ug/L	0.50	1.70	1		10/08/10	MRD
1,2,4-Trimethylbenzene	2.72	ug/L	0.20	0.67	1		10/08/10	MRD
1,2-Dibromo-3-chloropropane	ND	ug/L	1.30	4.30	1		10/08/10	MRD
1,2-Dibromoethane	ND	ug/L	0.30	1.00	1		10/08/10	MRD
1,2-Dichlorobenzene	ND	ug/L	0.80	2.70	1		10/08/10	MRD
1,2-Dichloroethane	ND	ug/L	0.30	1.00	1		10/08/10	MRD
1,2-Dichloropropane	ND	ug/L	0.40	1.30	1		10/08/10	MRD
1,3,5-Trimethylbenzene	0.83	ug/L	0.20	0.67	1		10/08/10	MRD
1,3-Dichlorobenzene	ND	ug/L	0.20	0.67	1		10/08/10	MRD
1,3-Dichloropropane	ND	ug/L	0.20	0.67	1		10/08/10	MRD
1,4-Dichlorobenzene	ND	ug/L	0.80	2.70	1		10/08/10	MRD
2,2-Dichloropropane	ND	ug/L	1.00	3.30	1		10/08/10	MRD
2-Chlorotoluene	ND	ug/L	0.30	1.00	1		10/08/10	MRD
4-Chlorotoluene	ND	ug/L	0.30	1.00	1		10/08/10	MRD
4-Isopropyltoluene	ND	ug/L	0.40	1.33	1		10/08/10	MRD
Benzene	ND	ug/L	0.20	0.67	1		10/08/10	MRD
Bromobenzene	ND	ug/L	0.30	1.00	1		10/08/10	MRD
Bromochloromethane	ND	ug/L	0.40	1.30	1		10/08/10	MRD
Bromodichloromethane	ND	ug/L	0.40	1.30	1		10/08/10	MRD
Bromoform	ND	ug/L	0.20	0.67	1		10/08/10	MRD
Bromomethane	ND	ug/L	1.00	3.30	1		10/08/10	MRD
Butylbenzene	ND	ug/L	0.40	1.30	1		10/08/10	MRD
Carbon Tetrachloride	ND	ug/L	0.30	1.00	1		10/08/10	MRD
Chlorobenzene	ND	ug/L	0.20	0.67	1		10/08/10	MRD
Chloroethane	ND	ug/L	0.70	2.30	1		10/08/10	MRD
Chloroform	ND	ug/L	0.20	0.67	1		10/08/10	MRD
Chloromethane	ND	ug/L	0.40	1.30	1		10/08/10	MRD
cis-1,2-Dichloroethylene	ND	ua/L	0.40	1.30	1		10/08/10	MRD
cis-1,3-Dichloropropylene	ND	ua/L	0.20	0.67	1		10/08/10	MRD
		3						

Attn: Michael Neal

PROJECT NO. : Konop Property 114-330854 REPORT NO. : 1010105 DATE REC'D: 10/06/10 15:30 REPORT DATE : 10/18/10 08:34 PREPARED BY : JRS

Sample ID: MW-12	Matrix: Groun	Matrix: Ground Water		Sample Date/Time: 10/06			Lab No.: 1	: 1010105-11	
	<u>Results</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	<u>Analyst</u>	
EPA 8260B Continued									
Dibromochloromethane	ND	ug/L	0.40	1.30	1		10/08/10	MRD	
Dibromomethane	ND	ug/L	0.40	1.30	1		10/08/10	MRD	
Dichlorodifluoromethane	ND	ug/L	0.30	1.00	1		10/08/10	MRD	
Ethylbenzene	ND	ug/L	0.20	0.67	1		10/08/10	MRD	
Hexachlorobutadiene	ND	ug/L	1.00	3.30	1		10/08/10	MRD	
Isopropylbenzene (Cumene)	ND	ug/L	0.20	0.67	1		10/08/10	MRD	
m,p-Xylenes	1.17	ug/L	0.40	1.30	1	J	10/08/10	MRD	
Methylene Chloride	ND	ug/L	0.40	1.30	1	CSH	10/08/10	MRD	
Methyl-tert-Butyl Ether	ND	ug/L	0.50	1.70	1		10/08/10	MRD	
Naphthalene	ND	ug/L	1.00	3.30	1		10/08/10	MRD	
o-Xylene	0.22	ug/L	0.20	0.67	1	J	10/08/10	MRD	
Propylbenzene	ND	ug/L	0.20	0.67	1		10/08/10	MRD	
sec-Butylbenzene	ND	ug/L	0.30	1.00	1		10/08/10	MRD	
Styrene	ND	ug/L	0.10	0.50	1		10/08/10	MRD	
tert-Butylbenzene	ND	ug/L	0.30	1.00	1		10/08/10	MRD	
Tetrachloroethene	ND	ug/L	0.30	1.00	1	CSH	10/08/10	MRD	
Toluene	ND	ug/L	0.40	1.30	1		10/08/10	MRD	
trans-1,2-Dichloroethylene	ND	ug/L	0.50	1.70	1		10/08/10	MRD	
trans-1,3-Dichloropropylene	ND	ug/L	0.40	1.30	1		10/08/10	MRD	
Trichloroethene	ND	ug/L	0.40	1.30	1		10/08/10	MRD	
Trichlorofluoromethane	ND	ug/L	0.30	1.00	1		10/08/10	MRD	
Vinyl chloride	ND	ug/L	0.20	0.67	1		10/08/10	MRD	

Page 9 of 14

Tetra Tech., Inc. 1837 County Highway 00 Chippewa Falls, WI 54729

Attn: Michael Neal

PROJECT NO. : Konop Property 114-330854 REPORT NO. : 1010105 DATE REC'D: 10/06/10 15:30 REPORT DATE : 10/18/10 08:34 PREPARED BY : JRS

CSL

10/07/10

MRD

Sample ID: PZ-7	Matrix: Groun	Sample	e Date/Tir	me: 10/0	6/10 12:15	Lab No. :	1010105-12	
	Results	Units	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date Analyzed	Analyst
EPA 8260B								
1,1,1,2-Tetrachloroethane	ND	ug/L	0.30	1.00	1		10/07/10	MRD
1,1,1-Trichloroethane	ND	ug/L	0.50	1.70	1		10/07/10	MRD
1,1,2,2-Tetrachloroethane	ND	ug/L	0.40	1.30	1		10/07/10	MRD
1,1,2-Trichloroethane	ND	ug/L	0.40	1.30	1		10/07/10	MRD
1,1-Dichloroethane	ND	ug/L	0.40	1.30	1		10/07/10	MRD
1,1-Dichloroethylene	ND	ug/L	0.40	1.30	1		10/07/10	MRD
1,1-Dichloropropylene	ND	ug/L	0.80	2.70	1		10/07/10	MRD
1,2,3-Trichlorobenzene	ND	ug/L	0.50	1.70	1		10/07/10	MRD
1,2,3-Trichloropropane	ND	ug/L	1.00	3.30	1		10/07/10	MRD
1,2,4-Trichlorobenzene	ND	ug/L	0.50	1.70	1		10/07/10	MRD
1,2,4-Trimethylbenzene	ND	ug/L	0.20	0.67	1		10/07/10	MRD
1,2-Dibromo-3-chloropropane	ND	ug/L	1.30	4.30	1		10/07/10	MRD
1,2-Dibromoethane	ND	ug/L	0.30	1.00	1		10/07/10	MRD
1,2-Dichlorobenzene	ND	ug/L	0.80	2.70	1		10/07/10	MRD
1,2-Dichloroethane	ND	ug/L	0.30	1.00	1		10/07/10	MRD
1,2-Dichloropropane	ND	ug/L	0.40	1.30	1		10/07/10	MRD
1,3,5-Trimethylbenzene	ND	ug/L	0.20	0.67	1		10/07/10	MRD
1,3-Dichlorobenzene	ND	ug/L	0.20	0.67	1		10/07/10	MRD
1,3-Dichloropropane	ND	ug/L	0.20	0.67	1		10/07/10	MRD
1,4-Dichlorobenzene	ND	ug/L	0.80	2.70	1		10/07/10	MRD
2,2-Dichloropropane	ND	ug/L	1.00	3.30	1		10/07/10	MRD
2-Chlorotoluene	ND	ug/L	0.30	1.00	1		10/07/10	MRD
4-Chlorotoluene	ND	ug/L	0.30	1.00	1		10/07/10	MRD
4-Isopropyltoluene	ND	ug/L	0.40	1.33	1		10/07/10	MRD
Benzene	ND	ug/L	0.20	0.67	1		10/07/10	MRD
Bromobenzene	ND	ug/L	0.30	1.00	1		10/07/10	MRD
Bromochloromethane	ND	ug/L	0.40	1.30	1		10/07/10	MRD
Bromodichloromethane	ND	ug/L	0.40	1.30	1		10/07/10	MRD
Bromoform	ND	ug/L	0.20	0.67	1		10/07/10	MRD
Bromomethane	ND	ug/L	1.00	3.30	1		10/07/10	MRD
Butylbenzene	ND	ug/L	0.40	1.30	1		10/07/10	MRD
Carbon Tetrachloride	ND	ug/L	0.30	1.00	1		10/07/10	MRD
Chlorobenzene	ND	ug/L	0.20	0.67	1		10/07/10	MRD
Chloroethane	ND	ug/L	0.70	2.30	1		10/07/10	MRD
Chloroform	ND	ug/L	0.20	0.67	1		10/07/10	MRD
Chloromethane	ND	ug/L	0.40	1.30	1	CSL	10/07/10	MRD
cis-1,2-Dichloroethylene	ND	ug/L	0.40	1.30	1		10/07/10	MRD
cis-1,3-Dichloropropylene	ND	ug/L	0.20	0.67	1		10/07/10	MRD
Dibromochloromethane	ND	ug/L	0.40	1.30	1		10/07/10	MRD
Dibromomethane	ND	ug/L	0.40	1.30	1		10/07/10	MRD

ND

ug/L

0.30

1.00

1

Dichlorodifluoromethane

Attn: Michael Neal

Sample ID: PZ-7	Matrix: Ground Water			e Date/Tir	me: 10/0	6/10 12:15 Lab No. : 1010105		010105-12
	<u>Results</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	<u>Analyst</u>
EPA 8260B Continued								
Ethylbenzene	ND	ug/L	0.20	0.67	1		10/07/10	MRD
Hexachlorobutadiene	ND	ug/L	1.00	3.30	1		10/07/10	MRD
Isopropylbenzene (Cumene)	ND	ug/L	0.20	0.67	1		10/07/10	MRD
m,p-Xylenes	ND	ug/L	0.40	1.30	1		10/07/10	MRD
Methylene Chloride	ND	ug/L	0.40	1.30	1		10/07/10	MRD
Methyl-tert-Butyl Ether	ND	ug/L	0.50	1.70	1		10/07/10	MRD
Naphthalene	ND	ug/L	1.00	3.30	1		10/07/10	MRD
o-Xylene	ND	ug/L	0.20	0.67	1		10/07/10	MRD
Propylbenzene	ND	ug/L	0.20	0.67	1		10/07/10	MRD
sec-Butylbenzene	ND	ug/L	0.30	1.00	1		10/07/10	MRD
Styrene	ND	ug/L	0.10	0.50	1		10/07/10	MRD
tert-Butylbenzene	ND	ug/L	0.30	1.00	1		10/07/10	MRD
Tetrachloroethene	ND	ug/L	0.30	1.00	1		10/07/10	MRD
Toluene	ND	ug/L	0.40	1.30	1		10/07/10	MRD
trans-1,2-Dichloroethylene	ND	ug/L	0.50	1.70	1		10/07/10	MRD
trans-1,3-Dichloropropylene	ND	ug/L	0.40	1.30	1		10/07/10	MRD
Trichloroethene	ND	ug/L	0.40	1.30	1		10/07/10	MRD
Trichlorofluoromethane	ND	ug/L	0.30	1.00	1		10/07/10	MRD
Vinyl chloride	ND	ug/L	0.20	0.67	1		10/07/10	MRD

Sample ID: Trip Blank	Matrix: Water	Sample	e Date/Tir	Lab No.:1010105-13				
	<u>Results</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	<u>Analyst</u>
EPA 8260B								
1,2,4-Trimethylbenzene	ND	ug/L	0.20	0.67	1		10/07/10	MRD
1,2-Dichloroethane	ND	ug/L	0.30	1.00	1		10/07/10	MRD
1,3,5-Trimethylbenzene	ND	ug/L	0.20	0.67	1		10/07/10	MRD
Benzene	ND	ug/L	0.20	0.67	1		10/07/10	MRD
Ethylbenzene	ND	ug/L	0.20	0.67	1		10/07/10	MRD
m,p-Xylenes	ND	ug/L	0.40	1.30	1		10/07/10	MRD
Methyl-tert-Butyl Ether	ND	ug/L	0.50	1.70	1		10/07/10	MRD
Naphthalene	ND	ug/L	1.00	3.30	1		10/07/10	MRD
o-Xylene	ND	ug/L	0.20	0.67	1		10/07/10	MRD
Toluene	ND	ug/L	0.40	1.30	1		10/07/10	MRD

Qualifier Descriptions

J	Estimated concentration below laboratory quantitation level.						
CSL	Check standard for this analyte exhibited a low bias. Sample results may also be biased low.						
CSH	Check standard for this analyte exhibited a high bias. Sample results may also be biased high.						

Definitions

LOD = Limit of Detection (Dilution Corrected) LOQ = Limit of Quanitation (Dilution Corrected) Reporting Limit = LOQ (Dilution Corrected) ND = Not Detected COMP = Complete SUBCON = Subcontracted analysis mv = millivolts pci/L = picocuries per Liter mL/L = milliliters per Liter mg = milligram

When the word "dry" follows the units on the result page the sample results are dry weight corrected.

LODs and LOQs are dry weight corrected for all soils except WI GRO and EPA 8021methanol and WI DNR methylene chloride preserved soils. ug/I = Micrograms per Liter = parts per billion (ppb) ug/kg = Micrograms per kilogram = parts per billion (ppb) mg/I = Milligrams per liter = parts per million (ppm) mg/kg = Milligrams per kilogram = parts per million (ppm) NOT PRES = Not Present ppth = Parts per thousand * = Result outside established limits. mg/m3 = Milligrams per meter cubed ng/L = Nanograms per Liter = Parts per trillion(ppt) > = Greater Than

Methanol Soils for WI GRO and EPA 8021 are reported to the LOQ.

lof2

Company Name	Project
Report Mailing Address	Contact Name, Phone, Fax, Email
1837 CTH 00	mal 1 day a tate day
Invoice Address	Purchase Order # Invoice Contact and Phone No.
* SAME AS ABOVE	114-33-0854
Matrix: Drinking Water Groundwater Wastewater Soil/Solid Other:	Lab Use Only
Wis. PECFA Project subject to U&C? Yes	Delivered by Walk-in Courier
For Compliance Monitoring? Yes No State: (If Yes, please specify Agency or Regulation) Agency/Reg.:	- Ship. Cont. Ok? Y N NA Samples Leaking? Y D NA Seals OK? N NA Rec'd on Ice? N NA
Turnaround Request: Definition [] Rush (Must be pre-approved by Lab and is subject to surch	harges)
Date Needed: WO No10 10 16 5	1 to 1 1
Lab Use Sample No. of Containers Sample	
-1 10-6-10 9:10 3 MW-3	Comments
-2 10-6-10 8:55 / 3 PZ-3	X
-3 10-6-10 9:30 - 3 MW-10	X
-4 10-6-10 9:50 - 3 P2-5	
-5 10-6-10 10:35 - 3+1 MW-F	× × + 1.250pt HADO3
-6 10-6-10 10:15 - 3 P2-4	X
-7 10-6-10 11:05 - 3+1	XX + 1:250pett No3
-8 10-6-10 11:15 - 3 PZ-2	X
Chain of Custody Record	Date Time Received By:
	12-leic 1530 Am Ader

Siemens Water Technologies 301 W. Military Rd. Rothschild, WI 54474 1-800-338-7226

Company N	ame	. /				Proj	ect		D	,	144 2250					
le?	TA JA	rch					80	nop	Prop	nert-	1 114-33083	54				
Report Maili	ng Address					Con	Contact Name, Phone, Fax, Email									
							11	. 1	1 .	1-1	a data to la					
Invoice Add	ess					Pure	chase	Order #	e1. /		Contact and Phone No.	m				
Matrix: Drin	king Water	aroundwater	Wastewater	Soil/Solid	Other:			Analyse	e Roquesto		Lab Use Only					
Wis PECEA	Project subje	ct to U&C?	Yes No	>						u 	Delivered by Walk-in	Courier				
	i ojoot oubjo					v '	B				Ship. Cont. Ck? Y N Samples Leaking? Y N	NA NA				
For Compliar (If Yes, please	specify Agen	ig? Yes cv or Regulat	tion) A	State:		100	NS S				Seals OK? N	NA				
	, · ·.gon	A				600	E.O					NA				
Turnaround	Request:	Normal ((10 Bus. Days lust be pre-ap) proved by La	b and is subject to surcharge	s)	2	5			Sample Receiving Comments:					
		Date Neede	ed:			20	4	00								
WO No.	101	0105	-			4	2	2			2 .	1.5				
Lab Dea	0				Querrale						5.2					
Lab Use Only	Date	mple Time	Comp	Grab	ID Sample	nd	1				Comments	×				
-9	10-6-10	1245	1	3	Mh1-11	X					011.0					
-10	10-6-70	1:00	-	3+1	P2-6	X	X					2.50 , el H				
- 11	10-6-10	12:00		3+1	MW-12	-	X	X				J.				
-12	10-6-10	1215		3	PZ-7			X			J.					
-13	7/29/10	Carlos		d	Trip Black	X					2 vials the 7	-24-10				
	1.1											TB159				
					۲											
	.1	.l	1		Relinquished By:-	l	L	<u>L</u>	Date	Time	Beceived By:					
					A	-			Duit							
	Chain of	f Custod	У		Mine T. The	iunglon	2		10-6-10	3:30						
	Ke	cora				1 3800	\$									
						105 11	<u>а</u>	/	0-10-10	1-						
						The same		(- 010	IS.	SU Man Hick	_				

2072

Siemens Water Technologies 301 W. Military Rd. Rothschild, WI 54474 1-800-338-7226

January 04, 2011

Tetra Tech., Inc. 1837 County Highway 00 Chippewa Falls, WI 54729

Attn: Michael Neal

REPORT NO.: 1012308

PROJECT NO.: 114-330854

Please find enclosed the analytical report, including the Sample Summary, Sample Narrative and Chain of Custody for your sample set received December 17, 2010.

All analyses were performed in accordance with NELAC Standards using approved methods as indicated on this report.

If you have any questions about the results, please call. Thank you for using Siemens Water Technologies for your analytical needs.

Sincerely,

Siemens Water Technologies

Bruce Schertz

Lab Manager Enviroscan Analytical[™] Services Cc: Eric Oleson, Tetratech

I certify that the data contained in this report has been generated and reviewed in accordance with the Siemens Water Technologies Quality Assurance Program. Exceptions, if any, are discussed in the sample narrative. Samples will be retained for 30 days from the date of this report, then disposed in an appropriate manner. Siemens Water Technologies Corp. reserves the right to return samples identified as hazardous. Release of this Final Report is authorized as verified by the following signature. The contents of this report apply to the sample(s) analyzed. No duplication of this report is allowed except in its entirety.

Saltins Reviewed by: anest

Certifications: Wisconsin 737053130 Minnesota 055-999-302 Illinois 100317

Siemens Water Technologies Corp.

301 West Military Road Rothschild, WI 54474

Tel: 800-338-7226 Fax: 715-355-3221 www.siemens.com/enviroscan

The total number of pages in this report, including this page is 7.

SAMPLE SUMMARY

Lab Id	Client Sample Id	Date/Time	Matrix
1012308-01	PZ-4	12/15/10 10:00	Ground Water
1012308-02	MW-F	12/15/10 10:40	Ground Water
1012308-03	MW-12	12/15/10 11:40	Ground Water
1012308-04	PZ-7	12/15/10 12:40	Ground Water
1012308-05	Trip Blank	12/15/10 00:00	Water

Attn: Michael Neal Sample ID: PZ-4 PROJECT NO. : 114-330854 REPORT NO. : 1012308 DATE REC'D: 12/17/10 12:48 REPORT DATE : 01/04/11 11:04 PREPARED BY : BMS

Sample Date/Time: 12/15/10 10:00

Lab No. : 10123	08-01	
-----------------	-------	--

	<u>Results</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	Analyst
EPA 8260B								
1,2,4-Trimethylbenzene	324	ug/L	4.00	13.4	20		12/28/10	MRD
1,2-Dichloroethane	8.92	ug/L	6.00	20.0	20	J	12/28/10	MRD
1,3,5-Trimethylbenzene	206	ug/L	4.00	13.4	20		12/28/10	MRD
Benzene	520	ug/L	4.00	13.4	20		12/28/10	MRD
Ethylbenzene	67.3	ug/L	4.00	13.4	20		12/28/10	MRD
m,p-Xylenes	950	ug/L	8.00	26.0	20		12/28/10	MRD
Methyl-tert-Butyl Ether	ND	ug/L	10.0	34.0	20		12/28/10	MRD
Naphthalene	56.5	ug/L	20.0	66.0	20	J	12/28/10	MRD
o-Xylene	104	ug/L	4.00	13.4	20		12/28/10	MRD
Toluene	703	ug/L	8.00	26.0	20		12/28/10	MRD

Matrix: Ground Water

Sample ID: MW-F Matrix: Ground Water Sample Date/Time: 12/15/10 10:40 Lab No.: 1012308-02 Date Dilution Results Units LOD LOQ Factor Qualifiers Analyzed Analyst EPA 8260B 1670 40.0 1,2,4-Trimethylbenzene ug/L 134 200 MRD 12/29/10 1,2-Dichloroethane ND ug/L 60.0 200 200 12/29/10 MRD 1,3,5-Trimethylbenzene 1430 ug/L 40.0 134 200 12/29/10 MRD Benzene 1550 ug/L 40.0 134 200 MRD 12/29/10 Ethylbenzene 2310 ug/L 40.0 134 200 12/29/10 MRD m,p-Xylenes 7140 ug/L 80.0 260 200 12/29/10 MRD Methyl-tert-Butyl Ether ND ug/L 100 340 200 12/29/10 MRD Naphthalene 502 ug/L 200 660 200 MRD J 12/29/10 o-Xylene 2820 ug/L 40.0 134 200 MRD 12/29/10 Toluene 8840 ug/L 80.0 260 200 12/29/10 MRD

Attn: Michael Neal

PROJECT NO. : 114-330854 REPORT NO. : 1012308 DATE REC'D: 12/17/10 12:48 REPORT DATE : 01/04/11 11:04 PREPARED BY : BMS

Sample ID: MW-12	Matrix: Groun	Sample Date/Time: 12/15/10 11:40			5/10 11:40	Lab No.: 1012308-03		
	<u>Results</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	<u>Analyst</u>
EPA 8260B								
1,2,4-Trimethylbenzene	ND	ug/L	0.20	0.67	1		12/27/10	MPM
1,2-Dichloroethane	ND	ug/L	0.30	1.00	1		12/27/10	MPM
1,3,5-Trimethylbenzene	ND	ug/L	0.20	0.67	1		12/27/10	MPM
Benzene	ND	ug/L	0.20	0.67	1		12/27/10	MPM
Ethylbenzene	ND	ug/L	0.20	0.67	1		12/27/10	MPM
m,p-Xylenes	ND	ug/L	0.40	1.30	1		12/27/10	MPM
Methyl-tert-Butyl Ether	ND	ug/L	0.50	1.70	1		12/27/10	MPM
Naphthalene	ND	ug/L	1.00	3.30	1		12/27/10	MPM
o-Xylene	ND	ug/L	0.20	0.67	1		12/27/10	MPM
Toluene	ND	ug/L	0.40	1.30	1		12/27/10	MPM

Matrix: Ground Water		Sample	Sample Date/Time: 12/15/10 12:40				Lab No.: 1012308-04	
<u>Results</u>	<u>Units</u>	LOD	LOQ	Dilution <u>Factor</u>	Qualifiers	Date <u>Analyzed</u>	<u>Analyst</u>	
ND	ug/L	0.20	0.67	1		12/27/10	MPM	
ND	ug/L	0.30	1.00	1		12/27/10	MPM	
ND	ug/L	0.20	0.67	1		12/27/10	MPM	
ND	ug/L	0.20	0.67	1		12/27/10	MPM	
ND	ug/L	0.20	0.67	1		12/27/10	MPM	
ND	ug/L	0.40	1.30	1		12/27/10	MPM	
ND	ug/L	0.50	1.70	1		12/27/10	MPM	
ND	ug/L	1.00	3.30	1		12/27/10	MPM	
ND	ug/L	0.20	0.67	1		12/27/10	MPM	
ND	ug/L	0.40	1.30	1		12/27/10	MPM	
	Matrix: Groun	ResultsUnitsNDug/L	Matrix: Ground WaterSampleResultsUnitsLODNDug/L0.20NDug/L0.30NDug/L0.20NDug/L0.20NDug/L0.20NDug/L0.20NDug/L0.20NDug/L0.20NDug/L0.20NDug/L0.20NDug/L0.20NDug/L0.20NDug/L0.20NDug/L0.20NDug/L0.20NDug/L0.20NDug/L0.20	Matrix: Ground Water Sample Date/Tir Results Units LOD LOQ ND ug/L 0.20 0.67 ND ug/L 0.30 1.00 ND ug/L 0.20 0.67 ND ug/L 0.40 1.30 ND ug/L 0.50 1.70 ND ug/L 0.20 0.67 ND ug/L 0.20 0.67 ND ug/L 0.50 1.70 ND ug/L 0.20 0.67 ND ug/L 0.20 0.67 ND ug/L 0.20 0.67 ND ug/L <	Matrix: Ground Water Sample Date/Time: 12/1 Results Units LOD LOQ Dilution Factor ND ug/L 0.20 0.67 1 ND ug/L 0.30 1.00 1 ND ug/L 0.20 0.67 1 ND ug/L 0.40 1.30 1 ND ug/L 0.20 0.67 1 ND ug/L	Matrix: Ground Water Sample Date/Time: 12/15/10 12:40 Results Units LOD LOQ Dilution Factor Qualifiers ND ug/L 0.20 0.67 1 ND ug/L 0.30 1.00 1 ND ug/L 0.20 0.67 1 ND ug/L 0.20 1.07 1 ND ug/L 0.20 1.67 1 ND ug/L 0.40 1.30 1 ND ug/L 0.50 1.70 1 ND ug/L 0.20 0.67 1 ND ug/L 0.20 0.67 1 ND ug/L 0.20 0.67 1 ND	Matrix: Ground Water Sample Date/Time: 12/15/10 12:40 Lab No. : 1 Results Units LOD LOQ Factor Qualifiers Date Analyzed ND ug/L 0.20 0.67 1 12/27/10 ND ug/L 0.30 1.00 1 12/27/10 ND ug/L 0.20 0.67 1 12/27/10 ND ug/L 0.40 1.30 1 12/27/10 ND ug/L 0.50 1.70 1 12/27/10 ND ug/L 0.20 0.67 1 12/27/10	

Attn: Michael Neal

PROJECT NO. : 114-330854 REPORT NO. : 1012308 DATE REC'D: 12/17/10 12:48 REPORT DATE : 01/04/11 11:04 PREPARED BY : BMS

Sample ID: Trip Blank	mple ID: Trip Blank Matrix: Water		Sample Date/Time: 12/15/10 0:00				Lab No.: 1012308-05	
	<u>Results</u>	<u>Units</u>	LOD	LOQ	Dilution Factor	Qualifiers	Date <u>Analyzed</u>	<u>Analyst</u>
EPA 8260B								
1,2,4-Trimethylbenzene	ND	ug/L	0.20	0.67	1		12/27/10	MPM
1,2-Dichloroethane	ND	ug/L	0.30	1.00	1		12/27/10	MPM
1,3,5-Trimethylbenzene	ND	ug/L	0.20	0.67	1		12/27/10	MPM
Benzene	ND	ug/L	0.20	0.67	1		12/27/10	MPM
Ethylbenzene	ND	ug/L	0.20	0.67	1		12/27/10	MPM
m,p-Xylenes	ND	ug/L	0.40	1.30	1		12/27/10	MPM
Methyl-tert-Butyl Ether	ND	ug/L	0.50	1.70	1		12/27/10	MPM
Naphthalene	ND	ug/L	1.00	3.30	1		12/27/10	MPM
o-Xylene	ND	ug/L	0.20	0.67	1		12/27/10	MPM
Toluene	ND	ug/L	0.40	1.30	1		12/27/10	MPM

Qualifier Descriptions

J

Estimated concentration below laboratory quantitation level.

Definitions

LOD = Limit of Detection (Dilution Corrected) LOQ = Limit of Quantitation (Dilution Corrected) Reporting Limit = LOQ (Dilution Corrected) ND = Not Detected COMP = Complete SUBCON = Subcontracted analysis mv = millivolts pci/L = picocuries per Liter mL/L = milliliters per Liter mg = milligram

When the word "dry" follows the units on the result page the sample results are dry weight corrected.

LODs and LOQs are dry weight corrected for all soils except WI GRO and EPA 8021methanol and WI DNR methylene chloride preserved soils.

ug/I = Micrograms per Liter = parts per billion (ppb) ug/kg = Micrograms per kilogram = parts per billion (ppb) mg/I = Milligrams per liter = parts per million (ppm) mg/kg = Milligrams per kilogram = parts per million (ppm) NOT PRES = Not Present ppth = Parts per thousand * = Result outside established limits. mg/m3 = Milligrams per meter cubed ng/L = Nanograms per Liter = Parts per trillion(ppt) > = Greater Than

Methanol Soils for WI GRO and EPA 8021 are reported to the LOQ.

Company Na Report Mailir 83 Invoice Addre	etra le ng Address 57 Cty. H ess (, Zami	eut my 00 (H-1pput falls 34729	Project Contact Name, P Erc (Purchase Order #	- 330 hone, Fax, Email Deson	854- eric, Oleson & fetratecth com
Matrix: Drinki Wis. PECFA F For Complian (If Yes, please Turnaround WO No	ing Water Groundwater V Project subject to U&C? (Ince Monitoring? Yes) In specify Agency or Regulat Request: [4 Normal ([] Rush (Mu Date Needed 10 2.308 Sample Date Time 14(5(10 0.00 0:40 1:40 1:40 2:40	Vastewater Soil/Solid C Yes No No State: ion) Agency/Reg.: 10 Bus. Days) ust be pre-approved by Lab a d: No. of Containers Comp Grab	$\frac{Sample}{ID}$ $\frac{Sample}{ID}$ $\frac{PZ - 4}{PZ - 7}$ $\frac{Trrp Bicante}{ID}$	Analy Analy	ses Requested	Lab Use Only Courier Delivered by: Walk-in Courier Ship. Cont. OK? Y N NA Samples Leaking? Y N NA Seals OK? Y N NA Rec'd on Ice? Y N NA Sample Receiving Comments: 3.4°C Comments 3.4°C Comments 1.4°C N Y Nods HEC 1.4°C
L	Chain of Custody Record		Relinquished By:		Date Til 12/16/10 5/2 12/17/10 12:	me Received By: B 48 Manual K Reundo

Appendix D

Mann – Kendall Statistical Test

AS A MUTUAL PROTECTION TO CLIENTS, THE PUBLIC, AND OURSELVES, ALL TETRA TECH REPORTS ARE SUBMITTED AS THE CONFIDENTIAL INFORMATION OF CLIENTS, AND AUTHORIZATION FOR PUBLICATION OF STATEMENT, CONCLUSIONS OR EXTRACTIONS FROM OR REGARDING OUR REPORTS IS RESERVED PENDING OUR PRIOR WRITTEN APPROVAL.

State of Wisconsin

Mann-Kendall Statistical Test Form 4400-215 (2/2001)

Department of Natural Resources

Remediation and Redevelopment Program

Notice: This form is the DNR supplied spreadsheet referenced in Appendices A of Comm 46 and NR 746, Wis. Adm. Code. It is provided to consultants as an optional tool for groundwater contaminant trend analysis to support site closure requests under s. Comm 46.07, Comm 46.08, NR 746.07, NR 746.08, Wis. Adm. Code. Use this form or a manual method when seeking case closure under those rules. Earlier versions of this form should not be used.

Instructions: Do not change formulas or other information in cells with a blue background, only cells with a yellow background are used for data entry. To use the spreadsheet, provide at least four rounds and not more than ten rounds of data that is not seasonally affected. Use consistent units. The spreadsheet contains several error checks, and a data entry error may cause "DATA ERR" or "DATE ERR" to be displayed. Dates that are not consecutive will show an error message and will not display the test results. The spreadsheet tests the data for both increasing and decreasing trends at both 80 percent and 90 percent confidence levels. If a declining trend is present at 80 percent but not at 90 percent, a site is still eligible for closure under Comm 46 and NR 746 provided that other conditions in those rules are met. If an increasing or decreasing trend is not present, an additional coefficient of variation test is used to test for stability, as proposed by Wiedemeier et al, 1999. For additional information, refer to the Interim Guidance on Natural Attenuation for Petroleum Releases, dated October 1999. Refer to the guidance for recommendations on data entry for non-detect values.

Site Name :	Konop Property Site, Coleman		BRRTS No. =	03-38-544783	Well Number =	MW-F				
	Compound ->	Benzene	Ethylbenzene	Toluene	TMB	Xylenes				
		Concentration	Concentration	Concentration	Concentration	Concentration	Concentration			
Event	Sampling Date	(leave blank								
Number	(most recent last)	if no data)								
1	1-Jun-02	7,400.00	2,600.00	18,000.00	2,150.00	11,200.00				
2	1-Sep-02	3,400.00	2,700.00	13,000.00	2,140.00	9,600.00				
3	1-Nov-03	2,400.00	230.00	9,200.00	1,670.00	8,300.00				
4	1-Oct-06	770.00	2,300.00	5,100.00	2,630.00	7,300.00				
5	1-Aug-07	803.00	292.00	2,660.00	823.00	3,420.00				
6	1-Nov-07	1,370.00	1,670.00	6,230.00	1,750.00	10,690.00				
7	1-Apr-08	2,910.00	2,960.00	12,800.00	2,305.00	10,060.00				
8	18-May-10	2,030.00	2,540.00	9,220.00	1,662.00	8,880.00				
9	6-Oct-10	1,690.00	2,060.00	9,150.00	1,700.00	8,400.00				
10	15-Dec-10	1,550.00	2,310.00	8,840.00	3,100.00	9,960.00				
	Mann Kendall Statistic (S) =	-13.0	1.0	-13.0	1.0	-5.0	0.0			
	Number of Rounds (n) =	10	10	10	10	10	0			
	Average =	2432.30	1966.20	9420.00	1993.00	8781.00	#DIV/0!			
	Standard Deviation =	1940.257	966.123	4382.934	623.833	2223.923	#DIV/0!			
	Coefficient of Variation(CV)=	0.798	0.491	0.465	0.313	0.253	#DIV/0!			
Error Check, Blank if No Errors Detected n<4										
Trend ≥ 80	% Confidence Level	DECREASING	No Trend	DECREASING	No Trend	No Trend	n<4			
Trend ≥ 90	% Confidence Level	No Trend	n<4							
Stability Test, If No Trend Exists at			CV <= 1		CV <= 1	CV <= 1	n<4			
80% Confi	dence Level	NA	STABLE	NA	STABLE	STABLE	n<4			
	Data Entry By =	mn	Date =	10-Jan-11	Checked By =	EO				

State of Wisconsin

Department of Natural Resources

Remediation and Redevelopment Program

Notice: This form is the DNR supplied spreadsheet referenced in Appendices A of Comm 46 and NR 746, Wis. Adm. Code. It is provided to consultants as an optional tool for groundwater contaminant trend analysis to support site closure requests under s. Comm 46.07, Comm 46.08, NR 746.07, NR 746.08, Wis. Adm. Code. Use this form or a manual method when seeking case closure under those rules. Earlier versions of this form should not be used.

Instructions: Do not change formulas or other information in cells with a blue background, only cells with a yellow background are used for data entry. To use the spreadsheet, provide at least four rounds and not more than ten rounds of data that is not seasonally affected. Use consistent units. The spreadsheet contains several error checks, and a data entry error may cause "DATA ERR" or "DATE ERR" to be displayed. Dates that are not consecutive will show an error message and will not display the test results. The spreadsheet tests the data for both increasing and decreasing trends at both 80 percent and 90 percent confidence levels. If a declining trend is present at 80 percent but not at 90 percent, a site is still eligible for closure under Comm 46 and NR 746 provided that other conditions in those rules are met. If an increasing or decreasing trend is not present, an additional coefficient of variation test is used to test for stability, as proposed by Wiedemeier et al, 1999. For additional information, refer to the Interim Guidance on Natural Attenuation for Petroleum Releases, dated October 1999. Refer to the guidance for recommendations on data entry for non-detect values.

Site Name :	Konop Property Site, Coleman	i, Wisconsin		BRRTS No. =	03-38-544783	Well Number =	PZ-2
	Compound ->	Benzene					
		Concentration	Concentration	Concentration	Concentration	Concentration	Concentration
Event	Sampling Date	(leave blank					
Number	(most recent last)	if no data)					
1	1-Sep-02	450.00					
2	1-Jan-03	450.00					
3	1-May-03	46.00					
4	1-Nov-03	460.00					
5	1-Oct-06	100.00					
6	1-Aug-07	9.00					
7	1-Nov-07	133.00					
8	1-Apr-08	39.60					
9	18-May-10	235.00					
10	6-Oct-10	377.00					
	Mann Kendall Statistic (S) =	-6.0	0.0	0.0	0.0	0.0	0.0
	Number of Rounds (n) =	10	0	0	0	0	0
	Average =	229.96	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	Standard Deviation =	187.555	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	Coefficient of Variation(CV)=	0.816	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Error Check	, Blank if No Errors Detected		n<4	n<4	n<4	n<4	n<4
Trend ≥ 80°	% Confidence Level	No Trend	n<4	n<4	n<4	n<4	n<4
Trend ≥ 90	% Confidence Level	No Trend	n<4	n<4	n<4	n<4	n<4
Stability Tes	st, If No Trend Exists at	CV <= 1	n<4	n<4	n<4	n<4	n<4
80% Confi	dence Level	STABLE	n<4	n<4	n<4	n<4	n<4
	Data Entry By =	mn	Date =	10-Jan-11	Checked By =	EO	

Mann-Kendall Statistical Test Form 4400-215 (2/2001)
State of Wisconsin

Department of Natural Resources

Remediation and Redevelopment Program

Notice: This form is the DNR supplied spreadsheet referenced in Appendices A of Comm 46 and NR /46, VVIs. Adm. Code. It is provided to consultants as an optional tool for groundwater contaminant trend analysis to support site closure requests under s. Comm 46.07, Comm 46.08, NR 746.07, NR 746.08, Wis. Adm. Code. Use this form or a manual method when seeking case closure under those rules. Earlier versions of this form should not be used.

Instructions: Do not change formulas or other information in cells with a blue background, only cells with a yellow background are used for data entry. To use the spreadsheet, provide at least four rounds and not more than ten rounds of data that is not seasonally affected. Use consistent units. The spreadsheet contains several error checks, and a data entry error may cause "DATA ERR" or "DATE ERR" to be displayed. Dates that are not consecutive will show an error message and will not display the test results. The spreadsheet tests the data for both increasing and decreasing trends at both 80 percent and 90 percent confidence levels. If a declining trend is present at 80 percent but not at 90 percent, a site is still eligible for closure under Comm 46 and NR 746 provided that other conditions in those rules are met. If an increasing or decreasing trend is not present, an additional coefficient of variation test is used to test for stability, as proposed by Wiedemeier et al, 1999. For additional information, refer to the Interim Guidance on Natural Attenuation for Petroleum Releases, dated October 1999. Refer to the guidance for recommendations on data entry for non-detect values.

Site Name : Konop Property Site, Coleman, Wisconsin				BRRTS No. =	03-38-544783	Well Number =	PZ-4
Sector States	Compound ->	Benzene	1,2-DCA	TMB			
		Concentration	Concentration	Concentration	Concentration	Concentration	Concentration
Event	Sampling Date	(leave blank					
Number	(most recent last)	if no data)					
1	1-Aug-07	132.00	3.00	253.00			
2	1-Nov-07	563.00		749.00			
3	1-Apr-08	869.00		944.00			
4	18-May-10	1,010.00	25.40	1,473.00			
5	6-Oct-10	941.00	7.50	860.00			
6	15-Dec-10	520.00	8.92	530.00			
7							
8							
9							
10							
	Mann Kendall Statistic (S) =	5.0	2.0	3.0	0.0	0.0	0.0
	Number of Rounds (n) =	6	4	6	0	0	0
	Average =	672.50	11.21	801.50	#DIV/0!	#DIV/0!	#DIV/0!
	Standard Deviation =	332.264	9.794	412.786	#DIV/0!	#DIV/0!	#DIV/0!
	Coefficient of Variation(CV)=	0.494	0.874	0.515	#DIV/0!	#DIV/0!	#DIV/0!
Error Check, Blank if No Errors Detected n<4 n<4							
Trend ≥ 80% Confidence Level		No Trend	No Trend	No Trend	n<4	n<4	n<4
Trend ≥ 90% Confidence Level		No Trend	No Trend	No Trend	n<4	n<4	n<4
Stability Test, If No Trend Exists at		CV <= 1	CV <= 1	CV <= 1	n<4	n<4	n<4
80% Confidence Level		STABLE	STABLE	STABLE	n<4	n<4	n<4
Data Entry By = mn			Date =	10-Jan-11	Checked By =	EO	

Mann-Kendall Statistical Test Form 4400-215 (2/2001)

Appendix E

NR 746 Risk Analysis

AS A MUTUAL PROTECTION TO CLIENTS, THE PUBLIC, AND OURSELVES, ALL TETRA TECH REPORTS ARE SUBMITTED AS THE CONFIDENTIAL INFORMATION OF CLIENTS, AND AUTHORIZATION FOR PUBLICATION OF STATEMENT, CONCLUSIONS OR EXTRACTIONS FROM OR REGARDING OUR REPORTS IS RESERVED PENDING OUR PRIOR WRITTEN APPROVAL.

Konop Property Site NR 746 Risk Analysis

Wisconsin Administrative Code Chapter NR 746 was created to "measure the environmental, safety and health risks associated with petroleum contaminations, and to determine a required action level which could include, but not be limited to, adequate source control and measures to address environmental risk factors, or whether the site may be closed without additional action." The following risks must be evaluated during a site investigation.

746.06(2)(a) - Do any of the following risks, as defined in NR 746 exist at this site?

 Documented expansion of plume margin? Verified PAL exceedance in a private or public potable well? Contamination within, or within 1 meter of, bedrock? More than 0.01 inches of free product during more than one sampling event? Documented contamination discharges to surface waters or wetlands? 	Yes <u>X_No</u> NA Yes <u>X_No</u> NA <u>X_</u> Yes <u></u> NoNA Yes <u>X_</u> NoNA Yes <u>X_</u> NoNA
746.06(2)(b) – Do soil contaminants exceed Table 1 levels?	Yes <u>X_</u> NoNA
746.06(2)(c) – Is soil contamination within 4 feet of the ground surface present at concentrations exceeding Table 2 values?	Yes <u>X_</u> NoNA
746.06(2)(d) – Have human health risks from direct contact been addressed for other contaminants of concern?	YesNo _X_NA
746.06(2)(f) –Is the most recent petroleum release greater than 10 years?	X_YesNoNA
746.06(2)(g) – Is there evidence of petroleum product contaminant migration within a utility corridor or within a permeable material or soil along which vapors, free product, or contaminated water may flow?	Yes <u>X_</u> NoNA
746.06(2)(h) – Is there evidence of migration or imminent migration of petroleum product contamination to building foundation drain tile, sumps or other points of entry into a basement or other enclosed structure where petroleum vapors could collect and create odors or an adverse impact on indoor air quality or where the contaminants may pose an explosion hazard?	Yes <u>X_</u> NoNA
746.06(2)(i) – Is there an ES exceedance in any groundwater within 1,000 feet of a public utility well or 100 feet of any other well used to provide water for human consumption?	Yes <u>X_</u> NoNA