

Site Investigation Report

Martinizing Racine 1730 State Street Racine, Wisconsin

Prepared for:

Mr. Douglas Berry Racine, Wisconsin

February 8, 2011 Project No. 1E-0909013

GEOTECHNICAL, ENVIRONMENTAL & CONSTRUCTION MATERIALS CONSULTANTS

· Atlanta, GA

- Baltimore/Wash. DC
- Dallas, TX
- · Los Angeles, CA
- Milwaukee, WI
- · Orlando, FL

February 8, 2011

Wisconsin Department of Natural Resources 2300 North Dr. Martin Luther King Drive Milwaukee, WI 53212

Attention:

Ms. Shanna Laube-Anderson

c/o Victoria Stovall

Subject:

Site Investigation Report

Martinizing Dry Cleaning Site

1730 State Street Racine, Wisconsin

Project No. 1E-0909013

Dear Ms. Laube-Anderson:

In accordance with your request and subsequent authorization, we have completed a Site Investigation Report for the above-referenced property. The findings, conclusions, and recommendations are discussed in detail within the accompanying report.

We appreciate the opportunity to be of service on this project. If there are any questions regarding the information contained herein, or if we can be of any additional service, please contact the undersigned at your convenience.

Very truly yours,

GILES ENGINEERING ASSOCIATES. INC.

Timothy J. Taugher, P.G.

Senior Hydrogeologist

Kevin T. Bugel, P.G.; C.P.G.

Environmental Division Manager

Distribution: Wisconsin Department of Natural Resources

Attention: Ms. Shanna Laube-Anderson (1 bound copy)

BMP Realty

Attention: Mr. Doug Berry (1 bound copy)

TABLE OF CONTENTS

SITE INVESTIGATION REPORT MARTINIZING DRY CLEANING SITE 1730 STATE STREET RACINE, WISCONSIN PROJECT NO. 1E-0909013

Section	n No.	Description	Page No.
EXEC	JTIVE :	SUMMARY	
1.		DDUCTION	
2.	CONT	ACT INFORMATION	1
	2.1.	Responsible Party Information	
	2.2.	·	
3.	SCOP	E OF SERVICES	
4.		DESCRIPTION	
	4.1.	Location and Setting	3
	4.2.	Current Property Use and History	
5.		IODS AND PROCEDURES	
	5.1.		
	5.2.	Groundwater Investigation Methods	5
	5.3.	Sample Collection	6
		3.1. Soil Field Screening and Soil Sample Collection	
	5.3	3.2. Groundwater Sample Collection	7
6.	INVES	STIGATIVE WASTE MANAGEMENT	7
7.		NVESTIGATION RESULTS	
	7.1.	Site Geology	7
	7.2.	Regional Geology	
	7.3.	Soil Field Screening and Laboratory Analytical Results	
		3.1. Soil Field Screening	
	7.3	3.2. Soil Laboratory Results	
	7.4.	Site Hydrogeologic Conditions	
	7.5.	, , ,	
8.		CLUSIONS	
9.		MMENDATIONS	
10.		IITTAL CERTIFICATION	
11.		RAL COMMENTS	

TABLE OF CONTENTS (Continued) Project No. 1E-0909013

FIGURES

Figure 1 Site Location Map

Figure 2 Site Plan

Figure 3 Groundwater Contour Map (8/3/10)
Figure 4 Groundwater Contour Map (12/1/10)

TABLES

Table 1 Soil Analytical Results (VOCs)

Table 2 Groundwater Analytical Results (VOCs)

Table 3 Groundwater Elevation Summary

APPENDICES

Appendix A	Important Infori	nation About	Your Geoenvin	onmental Report

Appendix B Soil Boring Logs (Form 4400-122)

Appendix C Well/Drillhole/Borehole Abandonment Forms (Form 3300-5)

Appendix D Monitoring Well Construction and Development Forms (Form 4400-113A-B)

Appendix E Soil Analytical Reports & Chain-of-Custody Documentation

Appendix F Groundwater Analytical Reports & Chain-of-Custody Documentation

© GILES ENGINEERING ASSOCIATES, INC. 2011

SITE INVESTIGATION REPORT

MARTINIZING DRY CLEANING SITE 1730 STATE STREET RACINE, WISCONSIN PROJECT NO. 1E-0909013

EXECUTIVE SUMMARY

Giles Engineering Associates, Inc. (Giles) has completed a Site Investigation (SI) in general accordance with Wisconsin Administrative Code (WAC), Chapter Natural Resources 716 (Ch. NR 716) for the property located at 1730 State Street, in the City of Racine, Racine County, Wisconsin (the "Site"). The Site is formerly operated as a dry cleaning facility. The southern portion of the structure is currently utilized as a coin-operated laundry facility and the north portion of the building is used as a dry cleaning drop-off.

The Wisconsin Department of Natural Resources (WDNR) received notification on June 1, 2007 of a release of chlorinated volatile organic compounds (CVOCs) consisting of perchloroethene (PCE), a common dry cleaning solvent, and its breakdown products at the Site. The CVOC release was documented with a Preliminary Site Investigation (PSI) letter report prepared by others. Based on the results of the PSI (initial scoping document), the WDNR issued a "responsible partly" ("RP") letter on August 2, 2007, naming the Mr. Douglas Berry as the RP.

Four groundwater monitoring wells and one temporary well were installed by Giles during the initial phase of the SI on January 21, 2010. Based on the results of soil and groundwater analysis from the five borings, the WDNR approved a request for a change order for additional Site investigation activities on June 4, 2010 to expand the investigation. Eleven additional borings were completed in June and July 2010. Giles utilized direct-push soil sampling techniques to evaluate the extent and magnitude of impacted soil at seven of the soil boring locations. In addition, seven borings were advanced utilizing hollow-stem auger (HSA) drilling methods and completed as monitoring wells.

The subsurface consisted of fine to coarse sand and gravel fill with concrete and asphalt fragments to depths of 1 to 10 feet below the ground surface (bgs). The fill was underlain by silty clay to clayey silt or clayey sand to depths of 10 to 16 feet bgs. Groundwater was generally encountered 2 to 6 feet bgs.

EXECUTIVE SUMMARY (continued)

The extent of the CVOC-impacted soil is adequately defined. Elevated concentrations of CVOC-impacted soil generally appear to be confined to beneath the northern portion of the building where the former dry cleaning machine (DCM) existed, and in the paved area immediately northwest of the building. The highest soil concentrations are evident immediately north and west of the service door on the north side of the building.

The direction of groundwater flow is generally to the south or southwest across the Site. However, a "mounded" groundwater condition was noted during groundwater sampling event performed in August, 2010 at the location of MW-2, situated north of the western portion of the structure, and December 2010 associated with monitoring wells. The CVOC-impacted groundwater appears to be stable during the groundwater sampling events completed between February and December, 2010. The reported concentrations of select CVOC constituents exceeded the WAC, Ch. NR 140 enforcement standards (ES) in monitoring wells MW-1, MW-2, MW-7, and MW-8. Monitoring well MW-8 is located on the property immediately north of the Site. Select CVOC constituents also exceeded the ES in monitoring wells MW-3 and MW-6 during the first groundwater sampling event, but have since decreased. During the most recent (December 2010) groundwater sampling event, CVOC preventive action limit (PAL) exceedences were identified in samples from MW-3, MW-4, and MW-6.

1. INTRODUCTION

Giles Engineering Associates, Inc. (Giles) has completed a Site Investigation (SI) for the property located at 1730 State Street (the "Site"), in the City of Racine, Racine County, Wisconsin (Figure 1). The Site property is owned by Mr. Douglas Berry. The notification of a release was reported to the Wisconsin Department of Natural Resources (WDNR) on June 1, 2007, during the course of a preliminary Site investigation (PSI) performed by Northern Environmental, Inc. (Northern) as part of the initial scoping for the Site. Subsequently, the WDNR issued a "responsible partly" ("RP") letter on August 2, 2007, naming BMP Realty as the RP.

The SI was performed in general accordance the requirements of Wisconsin Administrative Code (WAC), Chapter Natural Resources (NR) 716. In addition, the scope of services performed was accomplished in a manner, consistent with WAC, NR Ch. 169, of the Dry cleaner Environmental Response Program (DERP), to maintain eligibility for reimbursement through the Dry Cleaner Environmental Response Fund (DERF). Giles field personnel, Mr. Gregory Roanhouse and Mr. Thomas Bauman, conducted the SI subsurface exploration activities and groundwater gauging and sampling from February through December, 2010. Important information regarding this Geoenvironmental report is included in Appendix A.

2. CONTACT INFORMATION

2.1. Responsible Party Information

BMP Realty 3319 Nobb Hill Drive Racine, Wisconsin 53406 Attn: Mr. Douglas Barry (262) 554-5993

2.2. Consultant Information

Giles Engineering Associates, Inc. N8 W22350 Johnson Road, Suite A-1 Waukesha, Wisconsin 53186 Attn: Mr. Kevin Bugel, P.G., C.P.G. (262) 544-0118

3. SCOPE OF SERVICES

The following SI scope of services was performed including:

- Prepared a SI work plan to evaluate the extent of soil and groundwater impact at the Site in general accordance with NR 716.
- Prepared and implemented a Site-specific health and safety plan in accordance with 29 CFR 1910 for the proposed field activities to be performed at the Site.
- Coordinated the Site field activities including client communication and utility location calls.
- Completed seven hollow stem auger (HSA) soil borings (MW-2 through MW-8) and nine direct-push borings (MW-1, TW-1, and GP-1 through GP-7); termination depths ranged from 10 to 16 feet below ground surface (bgs). Soil borings MW-1 through MW-4 and TW-1 were completed during the initial investigation phase, conducted in January 2010; subsequently additional borings GP-1 through GP-7 and MW-5 through MW-8 were completed in June and July, 2010 to complete the soil delineation (Figure 2).
- Collected soil samples continuously for visual evaluation, and field screening for the presence of volatile organic vapors utilizing a photoionization detector (PID).
- Submitted 25 soil samples to a Wisconsin licensed analytical laboratory for analysis of VOCs by U.S. EPA Method 8260.
- Containerized investigative soil cuttings in 55-gallon DOT-approved drums and staged them on-Site.
- Constructed Ch. NR 141-compliant to water table monitoring wells in soil borings MW-1 through MW-8 and TW-1 to facilitate groundwater sample collection. The monitoring well locations were established to assess the horizontal extent of groundwater impact, and to establish the direction of groundwater flow for the Site.

- Developed the monitoring wells in accordance with WAC, Chapter NR 141.
 Monitoring well development/purge water was containerized in 55-gallon DOT-approved drums, and staged on-Site.
- Completed three groundwater sampling events at the Site on February 8, August 3, and December 1, 2010. Groundwater samples were collected from the four groundwater monitoring wells installed in February 2010; groundwater samples were collected from monitoring wells MW-1 through MW-8 during the subsequent sampling events in August and December 2010 using disposable bailers. The groundwater samples were submitted to a Wisconsin licensed analytical laboratory for analysis of VOCs by U.S. EPA Method 8260.
- Prepared a Site Investigation Report (SIR) in general accordance with WAC Ch. NR 716 which includes WDNR boring logs, well development forms, well construction forms, the soil and groundwater sample chain-of-custody forms and laboratory reports, and Giles conclusions and recommendations.

4. SITE DESCRIPTION

4.1. Location and Setting

The Site is located in the NE ¼ of the SE ¼ of Section 8, Township 3 North, Range 23 East of U.S. Public Land Survey, at 42.7337 degrees latitude and 87.8023 degrees longitude of the North American Datum (NAD83), in the City of Racine, Racine County, Wisconsin. The Site is located at 1730 State Street, Racine, Wisconsin. Figure 1 illustrates the general location of the Site.

Site improvements include a slab-on-grade, single-story, commercial masonry structure, asphaltic concrete parking lot, and landscaping areas. The Site is bounded on the west by State Street, on the south by West Street, and on the east by Blake Avenue. The property usage in the vicinity of the Site is mixed residential and commercial.

4.2. Current Property Use and History

The Site was formerly utilized as an active dry cleaning facility from the early 1960's to 2004. The southern portion of the structure is currently utilized as a coin operated Laundromat and the northern portion is used as a dry cleaning drop-off site. The building occupies much of the northern and central portions of the Site. Parking areas surround the building on the east, south, and west.

Giles reviewed portions of an environmental report prepared for the Site by Northern. The entire report was not available for review. Northern completed three borings on the Site in 2007. Two of the borings were completed adjacent to the northwest and southeast sides of the dry cleaning machine (DCM). The third boring was completed near the northwest corner of the building, just outside the former dry cleaning area.

One soil sample from each boring was submitted for laboratory analysis of VOCs. Very high concentrations of PCE ranging from 46,000 to 360,000 micrograms per kilogram (μ g/kg) and elevated concentrations of trichloroethene (TCE) ranging from 87 to 3700 μ g/kg were detected in soil samples submitted for laboratory analysis from each boring. Cis-1,2-dichloroethene (cis-1,2-DCE) was also detected in the soil sample from boring B3 (just northwest of the building) at a concentration of 1540 μ g/kg. The highest concentration of all three contaminants was identified in the sample from boring B3.

In addition, Northern, Inc. obtained a water sample from boring B1 (located immediately southwest of the DCM). TCE, PCE, cis-1,2,-DCE, and vinyl chloride were detected in the water sample from B1 at concentrations exceeding the NR 140 ES.

5. METHODS AND PROCEDURES

5.1. Soil Investigation Methods

Direct-push sampling and hollow-stem auger (HSA) drilling and split-spoon sampling techniques were used to obtain soil samples to evaluate the extent and magnitude of impacted soil at the Site. Seven direct-push borings (GP-1 through GP-7) were completed on the Site on June 23, 2010. Soil samples were obtained continuously for

each boring using a 1.25-inch inside-diameter (ID), 4-foot long macro-core sampling barrel. Soil samples were collected from each 2-foot interval for classification and field screening. The soil boring locations are shown on Figure 2.

Giles completed four monitoring wells (MW-1 through MW-4) on January 28, 2010, and four additional monitoring wells (MW-5 through MW-8) on July 22, 2010. The soil samples were collected utilizing split-spoon sample techniques which lowered through a 4.25-inch inside ID hollow-stem auger and driven into the subsurface. Soil samples were collected from each 2-foot interval for classification and field screening. The soil borings are shown on Figure 2.

Soil sampling equipment decontamination procedures were performed between sampling intervals and between each boring to limit cross-contamination. Soil samples were classified in the field in general accordance with the Unified Soil Classification System (USCS) ASTM D-2488-75. The soil classifications for each boring were documented on the WDNR soil boring log Form 4400-122 and are included in Appendix B.

Upon completion of the soil sample collection activities from each direct-push boring location, the open boreholes and temporary well were abandoned with bentonite chips in accordance with NR 112 and NR 141. Copies of the WDNR Well/Drillhole/Borehole Abandonment Forms (WDNR Form 3300-5) are included in Appendix C.

5.2. Groundwater Investigation Methods

NR 141-compliant monitoring wells were constructed in borings MW-1 through MW-8 to facilitate groundwater sample collection. The monitoring wells were constructed using 10 feet of two-inch ID, factory-cut, 0.010-inch slotted, schedule 40 polyvinyl chloride (PVC) screen and two-inch ID PVC riser piping to finish the top of casing 0.2 to 0.3 feet below existing grade. The monitoring wells were completed at the surface with concrete pads and steel, bolt-down, flush-mount protective cover assemblies. Monitoring well MW-1 was constructed as a 0.55-inch inside diameter pre-packed PVC screen and 0.55-inch ID PVC riser piping to finish the top of casing 0.2 to 0.3 feet below existing grade

Giles developed the newly constructed monitoring wells with polyethylene (disposable) bailers and a whale pump on February 8, 2010 (MW-1 through MW-4) and August 3, 2010 (MW-5 through MW-8). Copies of the Monitoring Well Construction and Development Forms (WDNR Forms 4400-113A and 4400-113B) are included in Appendix D.

5.3. Sample Collection

5.3.1. Soil Field Screening and Soil Sample Collection

Soil headspace field screening was performed on soil samples collected from each boring to provide an in-field assessment of the potential presence of volatile organic vapors at discrete intervals bgs. When organic vapors are detected, this information may be used to make adjustments in the field (i.e. vertical or horizontal vapor profiling). In addition, this information maybe used to assist in the selection of appropriate samples for laboratory analysis.

Soil samples collected from each two-foot interval were split into two replicate sample portions placed into containers; one sample portion was field screened, and the second portion was placed in a cooler. Headspace field screening was completed using a PID equipped with a 10.6 electron volt (eV) bulb, and calibrated with isobutylene standard gas to a benzene equivalent. The field screening sample containers were partially filled with soil, agitated, and allowed to warm to approximately 70°F prior to the headspace field screening. The PID tip was inserted into the headspace of the container and the maximum reading was recorded.

Based on Giles field technician's visual and olfactory observations, PID field screening and/or the Site Investigation Work Plan, 25 soil samples were selected for laboratory analysis from the unsaturated zone. For the VOC soil sample analysis, approximately 25 to 35 grams of soil and 25 milliliters (ml) of methanol preservative were placed into a laboratory-provided two-ounce (oz) sampling container and sealed with a Teflon™-lined lid. Soil samples were stored and preserved for transport in a cooler with ice. The sample collection, preservation, storage, and transportation were performed in general accordance with the WDNR, and ASTM requirements. Soil samples were submitted TestAmerica Analytical Testing Corporation (TestAmerica), located in Watertown, Wisconsin (WDNR Certification No. 128053530) for the analysis of VOCs (8260B).

5.3.2. Groundwater Sample Collection

Three quarterly groundwater sampling events were conducted in conjunction with the SI activities for monitoring wells MW-1 through MW-4. Two quarterly groundwater sampling events were completed for MW-5 through MW-8. Groundwater samples were collected from monitoring wells MW-1 through MW-4, as well as temporary well TW-1, on February 8, 2010. Groundwater samples were collected from the complete network of eight groundwater monitoring wells on August 3, 2010 and December 1, 2010.

For each quarterly groundwater sampling event, groundwater levels were gauged and recorded prior to monitoring well purging and sampling. The monitoring wells were purged of approximately 3 well volumes with disposable polyethylene bailers. After purging, a representative groundwater sample was extracted with the bailer and transferred into three laboratory-supplied, 40-ml glass vials containing hydrochloric acid preservative. Upon collection, the groundwater samples were placed on ice in a cooler for storage and transport. The collection, preservation, storage, and transportation of the groundwater samples were performed in general accordance with WDNR and ASTM requirements. Groundwater samples were submitted to TestAmerica for VOC analysis.

6. INVESTIGATIVE WASTE MANAGEMENT

Investigative waste generated in conjunction with the drilling events for the installation of the Site monitoring well network included six 55-gallon drums of soil cuttings and two 55-gallon drums of purge/development water. Investigative waste is currently stored on-site, arrangements for transport, and disposal are pending.

7. SITE INVESTIGATION RESULTS

7.1. Site Geology

Borings completed in the building penetrated approximately 6" of concrete underlain by fine to coarse sand and gravel base course; borings completed outside the building were generally penetrated approximately 4" of asphalt underlain fine to coarse sand and gravel base coarse. Fill was encountered in several of the borings to depths of up to 10 feet below the ground surface (bgs). Fill was variable across the Site, and included medium sand with trace asphalt fragments, fine to medium sandy silt, fine to coarse gravel with some sand, and clayey silt with some fine to coarse sand. Underlying natural

materials generally consisted of brown and gray clayey silt to silty clay, little to some fine to coarse sand to the maximum depths explored. Intermittent layers of sandy silt or sand were also encountered in a few of the borings.

7.2. Regional Geology

Unconsolidated material in the vicinity of the Site is morainal till.¹ Regional bedrock in the vicinity of the Site is described as Silurian Age, Dolomite (Undifferentiated) and includes the Cayugan, Niagara, and Alexandrian series.²

7.3. Soil Field Screening and Laboratory Analytical Results

7.3.1. Soil Field Screening

Elevated Volatile organic vapors were detected in soil samples from GP-1, GP-2, GP-4, GP-6, GP-7 and MW-2 at levels ranging from 50 to 498 instrument units. Low level Volatile organic vapors were also detected in detected in soil samples from GP-5, TW-1, MW-1, MW-6, and MW-7 at levels ranging from ranging from 7 to 16 instrument units. Volatile organic vapors were not detected in soil samples collected from borings GP-3, MW-3, MW-4, MW-5, and MW-8.

PID headspace in-field screening results were recorded on the soil boring logs (WDNR Form 4400-122) for each representative interval collected. The results of the volatile vapor scan are shown within the PID column on the soil boring logs and included in Appendix B.

7.3.2. Soil Laboratory Results

PCE was detected in soil samples from borings MW-2 (0 to 2 and 6 to 8 feet bgs), GP-1 (4 to 6, 8 to 10, and 12 to 14 feet bgs), and GP-2 at depths of 4 to 6 and 8 to 10 feet bgs at concentrations exceeding the WDNR Landfill Non-Hazardous Disposal Limit.

TCE was detected in soil boring MW-2 (0 to 2 feet bgs) at concentrations exceeding the calculated Soil Screening Level (SSL) for direct contact. Additional VOCs were detected at levels below regulatory standards or with no established regulatory standard.

² Bedrock Geology of Wisconsin, UW-Extension, Geological and Natural History Survey, 1981

-

¹ Ice Age Deposits of Wisconsin, UW-Extension, Geological and Natural History Survey, 1964

The VOC soil analytical results are summarized in Table 1. The distribution of detected soil VOCs is illustrated on Figure 4. Copies of the soil laboratory analytical reports and the Chain-of-Custody documentation are included in Appendix F.

7.4. Site Hydrogeologic Conditions

Saturated soil conditions were encountered at depths of 2 to 5 feet bgs. The direction of groundwater flow, based on water level measurements, is generally to the south or southwest, toward the Root River, based on the measurements taken in August and December 2010. The granular fill of the north central region of the Site has created a water table mounding condition which has resulted in a localized northerly direction of groundwater flow towards monitoring well MW-8. The direction of groundwater flow is depicted on Figures 3 and 4. A groundwater elevation summary is included in the attached Table 3.

7.5. Groundwater Laboratory Analytical Results

Select CVOC detections were reported in groundwater samples collected from monitoring wells MW-1, MW-2, MW-3, MW-4, MW-6, MW-7, and MW-8 and temporary well TW-1 at levels exceeding their respective WAC, Ch. NR 140 enforcement standards (ES) during one or more of the groundwater sampling events conducted during the SI. No regulatory exceedences were reported for groundwater samples collected from monitoring well MW-5.

PCE and TCE were detected in groundwater samples from monitoring wells MW-1 through MW-4 and MW-8 at concentrations exceeding their respective Ch. NR 140 ES. However, results from the December 1, 2010 groundwater sampling event show a stable to declining trend with respect to the CVOC concentrations.

Benzene was detected in groundwater samples from monitoring wells MW-6 and MW-7, as well as temporary well TW-1, at concentrations in excess of the ES and/or the WAC, Ch. NR 140 Preventative Action Limit (PAL). Groundwater analytical results are summarized in the attached Table 2. Copies of the groundwater laboratory analytical reports and Chain-of-Custody documentation are included in Appendix H.

8. CONCLUSIONS

- The CVOC soil and groundwater impacts are adequately defined. The highest concentrations of soil and groundwater impact are confined to the area in the vicinity of the DCM and near the rear service entrance on the north side of the building. Significantly lower concentrations of impacted groundwater were identified south of the building and on the western portion of the Site.
- The PCE and TCE concentrations documented in the soil immediately north and west of the north service entrance to the building are at levels which will require disposal as hazardous waste if they are excavated or removed.
- The direction of groundwater flow across the Site appears to be to the south or southwest; a localized mounding condition during the August and December 2010 groundwater sampling events shows a direction of groundwater flow to the north toward groundwater monitoring well MW-8.
- The CVOC groundwater impact appears to be stable to declining through the reporting period.
- It is Giles opinion that further delineation of the extent of groundwater impact is not warranted, based on the groundwater data collected to date.

9. RECOMMENDATIONS

The soil sampling activities performed during the SI show that the highest concentrations of PCE appear to be fairly limited and are defined within an approximate 20-foot by 20-foot by 15-foot deep area immediately north and west of the rear entrance to the building. Giles recommends the excavation and proper disposal of the accessible soil that exists to the north of the building, one year of post-remediation quarterly groundwater monitoring, and a sub-slab vapor intrusion assessment be considered as part of the Site remediation options.

10. SUBMITTAL CERTIFICATION

I, Timothy J. Taugher, hereby certify that I am a registered professional geologist in the State of Wisconsin, registered in accordance with the requirements of ch. A-E 4, Wis. Adm. Code; that this document has been prepared in accordance with the Rules of Professional Conduct in ch. A-E 8, Wis. Adm. Code; and that, to the best of my knowledge, all of the information contained in this document is correct and the document was prepared in compliance with all applicable requirements in chs. NR 700 to 726, Wis. Adm. Code.

No. 809 WAUKESHA

P.G. Stamp

GENERAL COMMENTS

Signature and Title

This report is an instrument of service prepared for the exclusive use by Mr. Douglas Berry, and may not be reproduced or distributed without written authorization from Giles Engineering Associates, Inc. and Mr. Douglas Berry. The services described in this report were performed consistent with generally accepted professional consulting principles and practices. No other warranty, expressed or implied, is made. These services were performed consistent with our agreement with our client. This report is solely for the use and information of our client or as otherwise noted. Any unauthorized use of this report is strictly prohibited and we assume no liability for any such use.

This report has been prepared to aid in the evaluation of the Site located at 1730 State Street, in the City of Racine, Racine County, Wisconsin, with regard to the known release of a hazardous substance, discovered by others. The conclusions presented in this report were based on available information pertaining to various points in time and were presented by others for our use or were based on informal discussion with various agency personnel. We do not warrant the accuracy of information supplied by others.

11.

The boring logs and related information enclosed within the Appendices depict subsurface conditions only at specific locations drilled and at the particular times designated on the logs. Soil conditions at other locations may differ from conditions occurring at these boring locations. Also, the passage of time may result in a change of soil conditions at the boring locations drilled.

© Giles Engineering Associates, Inc. 2011

Source:

USGS Racine South, Wisconsin 7.5-Minute Series (topographic) Quadrangle Map (1958; photorevised in 1971 and 1976)

Scale:

1:24,000

Contour Interval:

10 Feet

FIGURE 1 SITE LOCATION MAP

Martinizing Racine 1730 State Street Racine, Wisconsin Project No. 1E-0909013

TABLE 1 SOIL ANALYTICAL RESULTS (VOCs)

Martinizing Racine 1730 State Street Racine, Wisconsin 1E-0909013

												Sai	nple Locat	tion												1			
Analyte	TW-1	MV	V-1	MV	V-2	MW-3	M	W-4	MW-5	MW-6	MW-7	MW-8		GP-1		G	P-2	G	P-3	GI	P-4	G	P-5	GP-6	GP-7	7	NR 746.06	2022	WDNR Landfill
Sample Depth (feet)	6 - 8	0-2	10 - 12	0-2	6 - 8	2-4	2-4	10 - 12	2-4	2-4	2-4	2-3	4 - 6	8 - 10	12 - 14	4-6	8 - 10	2 - 4	6-8	4-6	6 - 8	4-6	6 - 8	4-6	6 - 8	NR 720.09	Table 1	Calculated	Disposal Limit
Sample Date	1/21/10	1/21/10	1/21/10	1/21/10	1/21/10	1/21/10	1/21/10	1/21/10	7/23/10	7/23/10	7/23/10	7/23/10	6/23/10	6/23/10	6/23/10	6/23/10	6/23/10	6/23/10	6/23/10	6/23/10	6/23/10	6/23/10	6/23/10	6/23/10	6/23/10	RCLs	(Product Indicator)	EPA SSL	Contaminated-Out Non-Hazardous
PID	14	11	12	420	42	BDL	BDL	BDL	BDL	16	7	BDL	86	188	152	498	228	BDL	BDL	246	28	13	9	71	50	1	maicutory		THE THE LANGE OF THE PARTY OF T
Detected VOCs (µg/kg)																												L.	
n-Butylbenzene	<29	<28	<58	<14000	<300	<27	<31	<29	<31	<31	<31	<34	<290	<2900	<290	<580	<1400	<31	<29	780	<29	<31	<29	<28	290	NS	NS	NC	NS
sec-Butylbenzene	130	29	<58	<14000	<300	<27	<31	<29	<31	<31	<31	<34	<290	<2900	<290	<580	<1400	<31	<29	860	43	<31	<29	<28	170	6,000	8,500	NC	NS
cis-1,2-Dichloroethene	<29	7300	1900	19000	<300	<27	<31	34	<31	<31	<31	<34	<290	<2900	770	5500	2300	<31	<29	<31	58	220	220	<28	<31	NS	NS	156,000	NS
trans-1,2-Dichloroethene	<29	45	<58	<14000	<300	<27	<31	<29	<31	<31	<31	<34	<290	<2900	<290	<580	<1400	<31	<29	<31	<29	<31	<29	<28	<31	NS	NS	NC	NS
Ethylbenzene	<29	41	<58	<14000	<300	<27	<31	<29	<31	<31	<31	<34	<290	<2900	<290	<580	<1400	<31	<29	<31	<29	<31	<29	<28	<31	2,900	4,600	NC	NS
Isopropylbenzene	110	<28	<58	<14000	<300	<27	<31	<29	<31	<31	<31	<34	<290	<2900	<290	<580	<1400	<31	<29	94	<29	<31	<29	<28	290	NS	NS	NC	NS
p-Isopropyltoluene	<29	61	<58	<14000	<300	<27	<31	<29	<31	<31	<31	<34	<290	<2900	<290	<580	<1400	<31	<29	<31	<29	<31	<29	<28	<31	NS	NS	NC	NS
Naphthalene	<58	340	<120	<28000	<610	230	<63	<57	<62	<61	<62	80	<590	<5800	<570	<1200	<2900	<62	<58	<61	<58	<63	<58	<57	140	NS	2,700	NC	NS
n-Propylbenzene	62	41	<58	<14000	<300	<27	<31	<29	<31	<31	<31	<34	<290	<2900	<290	<580	<1400	<31	<29	45	<29	<31	<29	<28	390	NS	NS	NC	NS
Tetrachloroethene	41	570	10000	{5200000}	{59000}	33	73	82	<31	<31	530	<34	{62000}	{510000}	{47000}	{97000}	{250000}	<31	<29	32	<29	78	<29	150	<31	NS	NS	1,230	33,000
Toluene	<29	32	<58	<14000	<300	<27	<31	<29	<31	<31	<31	<34	~290	<2900	₹290	<580	≺1400	<31	<29	<31	<29	<31	<29	<28	<31	1,500	36,000	NC	NS
Trichloroethene	<29	83	2700	{420000}	2200	<27	<31	<29	<31	<31	44	<34	1200	9300	380	5300	5500	<31	<29	<31	<29	41	<29	<28	<31	NS	NS	850	14,000
1,2,4-Trimethylbenzene	<29	320	<58	<14000	<300	<27	<31	<29	<31	<31	<31	55	<290	<2900	<290	<580	<1400	<31	<29	<31	<29	<31	<29	<28	<31	NS	NS	NC	NS
1,3,5-Trimethylbenzene	<29	110	<58	<14000	<300	<27	<31	<29	<31	<31	<31	<34	<290	<2900	<290	<580	<1400	<31	<29	<31	<29	<31	<29	<28	<31	NS	NS	NC	NS
Vinyl chloride	<41	210	<82	<20000	<420	<38	<44	<40	<44	<43	<43	<47	<410	<4100	<400	<810	<2000	<43	<41	<43	41	<44	<40	<40	<43	NS	NS	NC	NS
total Xylenes	<99	220	<200	<47000	<1000	<93	<110	<98	<110	<100	<110	<110	<1000	<9900	<980	<2000	<4900	<110	<99	<100	<99	<110	<98	<97	<100	4,100	42,000	NC	NS

NOTES:

PID: Photoionization Detector

BDL: Below Detection Limit

TPH: Total Petroleum Hydrocarbons (TX 1005 Method)

VOCs: Volatile organic compounds

ODEQ: Oklahoma Department of Environmental Quality

mg/kg: Milligrams per kilogram; equivalent to parts per million (ppm)

μg/kg: Micrograms per kilogram; equivalent to parts per billion (ppb)

J: Result is below the method quantitation limit (MQL)

Results indicated in red/underlined exceed the Tier 1 Generic Cleanup Level (Residential)

Results indicated in purple/{...} exceed the WDNR landfill standard for Contaminated-Out, Non-Hazardous Material

Results indicated in brown/#...# exceed the Calculated Soil Screening Level Using the US EPA Web-based Calculator

TABLE 2 GROUNDWATER ANALYTICAL RESULTS (Detected VOCs)

Martinizing Racine 1730 State Street Racine, Wisconsin Project No. 1E-0909013

Analyte																							
Analyse		MW-1			MW-2			MW-3			MW-4		M	W-5	M	N-6	M	W-7	M	W-8	TW-1	NR140 ES	NR 140 PAL
Sample Date	02/08/10	08/03/10	12/01/10	02/08/10	08/03/10	12/01/10	02/08/10	08/03/10	12/01/10	02/08/10	08/03/10	12/01/10	08/03/10	12/01/10	08/03/10	12/01/10	08/03/10	12/01/10	08/03/10	12/01/10	02/08/10		
Benzene	<3.2	<8.0	<10	<2.0	<40	<50	<0.40	<0.20	<0.20	<1.0	<0.20	<0.20	<0.20	<0.20	16.0	(3.4)	(1.8)j	(0.97)j	<0.40	<1.0	(1.6)	5	0.5
n-Butylbenzene	<3.2	<8.0	<10	<2.0	<40	<50	<0.40	<0.20	<0.20	<1.0	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.40	<1.0	1.1	NS	NS
sec-Butylbenzene	<4.0	<10	<13	<2.5	<50	<63	<0.50	<0.25	<0.25	<1.2	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.50	<1.3	1.2	NS	NS
chloroethane	<16	<40	<50	<10	<200	<250	<2.0	<1.0	<1.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.8j	<2.0	<5.0	<1.0	400	80
1,1-Dichloroethene	<8.0	<20	<25	11j	<100	<130	<1.0	<0.50	<0.50	<2.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	1.3j	<2.5	<0.5	850	85
cis-1,2-Dichloroethene	1000	3,800	2,000	2,600	2,300	2,700	(20)	(1.0)j	(5.5)	(13)	(27)	(21)	0.58j	4.6	<0.50	<0.50	<0.50	<0.50	410	670	(17)	70	7
trans-1,2-Dichloroethene	(12)j	(40)j	(25)j	(20)j	<100	<130	<1.0	<0.50	<0.50	<2.5	2.8	1,2j	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	3.0j	4.9j	0.61j	100	20
isopropyl ether	<8.0	<20	<25	<5.0	<100	<130	<1.0	<0.50	<0.50	<2.5	<0.50	<0.50	<0.50	<0.50	<0.50	0.71j	<0.50	<0.50	<1.0	<2.5	<0.50	NS	NS
Isopropylbenzene	<3.2	<8.0	<10	<2.0	<40	<50	<0.40	<0.20	<0.20	<1.0	<0.20	<0.20	<0.20	<0.20	0.57j	0.47j	<0.20	<0.20	<0.40	<1.0	3.7	NS	NS
Naphthalene	<4.0	<10	<13	<2.5	<50	<63	<0.50	<0.25	<0.25	<1.2	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.50	<1.3	0.72j	40	8
n-Propylbenzene	<8.0	<20	<25	<5.0	<100	<130	<1.0	<0.50	<0.50	<2.5	<0.50	<0.50	<0.50	<0.50	0.52j	<0.50	<0.50	<0.50	<1.0	<2.5	4.1	NS	NS
Tetrachloroethene	280	1,700	730	11,000	21,000	22,000	210	(0.60)j	(0.80)j	130	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	170	150	(3.0)	5	0.5
Trichloroethene	260	1,900	860	4,200	8,300	7,000	<u>61</u>	<0.20	(0.22)j	27	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	110	100	<0.2	5	0.5
Vinyl chloride	71	340	210	110	54j	<50j	0.84j	<0.20	<0.20	<1.0	0.36j	<0.20	<0.20	<0.20	<0.20	<0.20	2.4	2.1	24	45	7.0	0,2	0.02

NOTES:

VOCs: Volatile Organic Compounds

NS: No published NR 140 ES or PAL

Results presented in micrograms per liter (µg/L); equivalent to parts per billion (ppb)

j: Result detected between laboratory method detection limit and quantitation limit

NR: Natural Resources

ES: Enforcement Standard

PAL: Preventive Action Limit

Results indicated in red/underline exceed the Wisconsin Administrative Code NR 140 Enforcement Standard (ES)

Results indicated in blue/parenthesis are above the Wisconsin Administrative Code NR 140 Preventive Action Limits (PAL)

Table 3 **Groundwater Elevation Summary**

Martinizing Cleaners 1730 State Street Racine, Wisconsin Giles Project No. 1E-0909013

				Glies Proj	ect No. 1E-09	J9013			
	Elevation	Elevation	Well	Screen	Groundwater	Calculated	Change in	Feet Water	
1	(TOC)*	Ground	Depth	Length	Depth	Groundwater	Elevation	in Well	Date
Well ID		Surface		_	(TOC)	Elevation	Licvation	III VVCII	
MW-1	101.73	101.81	16.00	10.00	4.39	97.34		11.61	02/08/2010
					4.09	97.64	0.30	11.91	02/26/2010
				Ì	2.91	98.82	1.18	13.09	06/23/2010
			*	<u> </u>	3.41	98.32	-0.50	12.59	07/23/2010
					3.14	98.59	0.27	12.86	08/03/2010
					4.53	97.20	-1.39	11.47	12/01/2010
MW-2	101.54	101.85	16.00	10.00	4.25	97.29		11.75	02/08/2010
					3.06	98.48	1.19	12.94	02/26/2010
				1	1.36	100.18	1.70	14.64	06/23/2010
					1.80	99.74	-0.44	14.20	07/23/2010
					1.77	99.77	0.03	14.23	08/03/2010
					2.81	98.73	-1.04	13.19	12/01/2010
MW-3	101.33	101.56	13.00	10.00	4.45	96.88		8.55	02/08/2010
					4.14	97.19	0.31	8.86	02/26/2010
					2.40	98.93	1,74	10.60	06/23/2010
					3.16	98.17	-0.76	9.84	07/23/2010
					2.84	98.49	0.32	10.16	08/03/2010
					5.38	95.95	-2.54	7.62	12/01/2010
MW-4	102.53	102.82	16.00	10.00	4.61	97.92		11.39	02/08/2010
					3.46	99.07	1.15	12.54	02/26/2010
					3.02	99.51	0.44	12.98	06/23/2010
					3.02	99.51	0.00	12.98	07/23/2010
					2.30	100.23	0.72	13.70	08/03/2010
					3.93	98.60	-1.63	12.07	12/01/2010
MW-5	99.61	100.34	13.00	10.00	NW				02/08/2010
					NW				02/26/2010
					NW				06/23/2010
					NW				07/23/2010
					9.03	90.58		3.97	08/03/2010
					2.97	96.64	6.06	10.03	12/01/2010
				<u> </u>					
MW-6	99.47	100.76	13.00	10.00	NW				02/08/2010
					NW				02/26/2010
					NW				06/23/2010
					NW				07/23/2010
					3.96	95.51		9.04	08/03/2010
					4.36	95.11	-0.40	8.64	12/01/2010
	464.65	464.51	40.00	1000	1		<u> </u>	<u> </u>	00/00/00/0
MW-7	101.08	101.51	13.00	10.00	NW				02/08/2010
			; ;	1	NW			<u> </u>	02/26/2010
					NW				06/23/2010
					NW			45.5	07/23/2010
					2.36	98.72		10.64	08/03/2010
					3.25	97.83	-0.89	9.75	12/01/2010
L	400.70	404.40	40.00	40.00					00/00/0045
MW-8	100.78	101.16	13.00	10.00	NW				02/08/2010
					NW NW				02/26/2010
					NW				06/23/2010
					NW	00.00		40.50	07/23/2010
					2.42	98.36	4.04	10.58	08/03/2010
					4.36	96.42	-1.94	8.64	12/01/2010
<u> </u>				<u> </u>	<u> </u>			<u> </u>	<u> </u>

Notes: TOC: NW:

Top of Casing No Well Temporary benchmark referenced to rim of a storm sewer grate located on the Centerline of State Street, south of Martinizing Cleaners

Important Information About Your Geoenvironmental Report

Geoenvironmental studies are commissioned to gain information about environmental conditions on and beneath the surface of a site. The more comprehensive the study, the more reliable the assessment is likely to be. But remember: Any such assessment is to a greater or lesser extent based on professional opinions about conditions that cannot be seen or tested. Accordingly, no matter how many data are developed, risks created by unanticipated conditions will always remain. Have realistic expectations. Work with your geoenvironmental consultant to manage known and unknown risks. Part of that process should already have been accomplished, through the risk allocation provisions you and your geoenvironmental professional discussed and included in your contract's general terms and conditions. This document is intended to explain some of the concepts that may be included in your agreement, and to pass along information and suggestions to help you manage your risk.

Beware of Change; Keep Your Geoenvironmental Professional Advised

The design of a geoenvironmental study considers a variety of factors that are subject to change. Changes can undermine the applicability of a report's findings, conclusions, and recommendations. Advise your geoenvironmental professional about any changes you become aware of. Geoenvironmental professionals cannot accept responsibility or liability for problems that occur because a report fails to consider conditions that did not exist when the study was designed. Ask your geoenvironmental professional about the types of changes you should be particularly alert to. Some of the most common include:

- modification of the proposed development or ownership group,
- · sale or other property transfer,
- replacement of or additions to the financing entity,
- amendment of existing regulations or introduction of new ones, or
- changes in the use or condition of adjacent property.

Should you become aware of any change, *do not rely on a geoenvi*ronmental report. Advise your geoenvironmental professional immediately; follow the professional's advice.

Recognize the Impact of Time

A geoenvironmental professional's findings, recommendations, and conclusions cannot remain valid indefinitely. The more time that passes, the more likely it is that important latent changes will occur. Do not rely on a geoenvironmental report if too much time has elapsed since it was completed. Ask your environmental professional to define "too much time." In the case of Phase I Environmental Site Assessments (ESAs), for example, more than 180 days after submission is generally considered "too much."

Prepare To Deal with Unanticipated Conditions

The findings, recommendations, and conclusions of a Phase I ESA report typically are based on a review of historical information, interviews, a site "walkover," and other forms of noninvasive research. When site subsurface conditions are not sampled in any way, the risk of unanticipated conditions is higher than it would otherwise be.

While borings, installation of monitoring wells, and similar invasive test methods can help reduce the risk of unanticipated conditions, do not overvalue the effectiveness of testing. Testing provides information about actual conditions only at the precise locations where samples are taken, and only when they are taken. Your geoenvironmental professional has applied that specific information to develop a general opinion about environmental conditions. Actual conditions in areas not sampled may differ (sometimes sharply) from those predicted in a report. For example, a site may contain an unregistered underground storage tank that shows no surface trace of its existence. Even conditions in areas that were tested can change, sometimes suddenly, due to any number of events, not the least of which include occurrences at

adjacent sites. Recognize, too, that *even some conditions in tested* areas may go undiscovered, because the tests or analytical methods used were designed to detect only those conditions assumed to exist.

Manage your risks by retaining your geoenvironmental professional to work with you as the project proceeds. Establish a contingency fund or other means to enable your geoenvironmental professional to respond rapidly, in order to limit the impact of unforeseen conditions. And to help prevent any misunderstanding, identify those empowered to authorize changes and the administrative procedures that should be followed.

Do Not Permit Any Other Party To Rely on the Report

Geoenvironmental professionals design their studies and prepare their reports to meet the specific needs of the clients who retain them, in light of the risk management methods that the client and geoenvironmental professional agree to, and the statutory, regulatory, or other requirements that apply. The study designed for a developer may differ sharply from one designed for a lender, insurer, public agency...or even another developer. Unless the report specifically states otherwise, it was developed for you and only you. Do not unilaterally permit any other party to rely on it. The report and the study underlying it may not be adequate for another party's needs, and you could be held liable for shortcomings your geoenvironmental professional was powerless to prevent or anticipate. Inform your geoenvironmental professional when you know or expect that someone else—a third-party will want to use or rely on the report. Do not permit third-party use or reliance until you first confer with the geoenvironmental professional who prepared the report. Additional testing, analysis, or study may be required and, in any event, appropriate terms and conditions should be agreed to so both you and your geoenvironmental professional are protected from third-party risks. Any party who relies on a geoenvironmental report without the express written permission of the professional who prepared it and the client for whom it was prepared may be solely liable for any problems that arise.

Avoid Misinterpretation of the Report

Design professionals and other parties may want to rely on the report in developing plans and specifications. They need to be advised, in writing, that their needs may not have been considered when the study's scope was developed, and, even if their needs were considered, they might misinterpret geoenvironmental findings, conclusions, and recommendations. Commission your geoenvironmental professional to explain pertinent elements of the report to others who are permitted to rely on it, and to review any plans, specifications or other instruments of professional service that incorporate any of the report's findings, conclusions, or recommendations. Your geoenvironmental professional has the best understanding of the issues involved, including the fundamental assumptions that underpinned the study's scope.

Give Contractors Access to the Report

Reduce the risk of delays, claims, and disputes by giving contractors access to the full report, providing that it is accompanied by a letter of transmittal that can protect you by making it unquestionably clear that: 1) the study was not conducted and the report was not prepared for purposes of bid development, and 2) the findings, conclusions, and recommendations included in the report are based on a variety of opinions, inferences, and assumptions and are subject to interpretation. Use the letter to also advise contractors to consult with your geoenvironmental professional to obtain clarifications, interpretations, and guidance (a fee may be required for this service), and that—in any event—they should conduct additional studies to obtain the specific type and extent of information each prefers for preparing a bid or cost estimate. Providing access to the full report, with the appropriate caveats, helps prevent formation of adversarial attitudes and claims of concealed or differing conditions. If a contractor elects to ignore the warnings and advice in the letter of transmittal, it would do so at its own risk. Your geoenvironmental professional should be able to help you prepare an effective letter.

Do Not Separate Documentation from the Report

Geoenvironmental reports often include supplemental documentation, such as maps and copies of regulatory files, permits, registrations, citations, and correspondence with regulatory agencies. If subsurface explorations were performed, the report may contain final boring logs and copies of laboratory data. If remediation activities occurred on site, the report may include: copies of daily field reports; waste manifests; and information about the disturbance of subsurface materials, the type and thickness of any fill placed on site, and fill placement practices, among other types of documentation. Do not separate supplemental documentation from the report. Do not, and do not permit any other party to redraw or modify any of the supplemental documentation for incorporation into other professionals' instruments of service.

Understand the Role of Standards

Unless they are incorporated into statutes or regulations, standard practices and standard guides developed by the American Society for Testing and Materials (ASTM) and other recognized standards-developing organizations (SDOs) are little more than aspirational methods agreed to by a consensus of a committee. The committees that develop standards may not comprise those best-qualified to establish methods and, no matter what, no standard method can possibly consider the infinite client- and project-specific variables that fly in the face of the theoretical "standard conditions" to which standard practices and standard guides apply. In fact, these variables can be so pronounced that geoenvironmental professionals who comply with every directive of an ASTM or other standard procedure could run afoul of local custom and practice, thus violating the standard of care.

Accordingly, when geoenvironmental professionals indicate in their reports that they have performed a service "in general compliance" with one standard or another, it means they have applied professional judgement in creating and implementing a scope of service designed for the specific client and project involved, and which follows some of the general precepts laid out in the referenced standard. To the extent that a report indicates "general compliance" with a standard, you may wish to speak with your geoenvironmental professional to learn more about what was and was not done. *Do not assume a given standard was followed to the letter.* Research indicates that that seldom is the case.

Realize That Recommendations May Not Be Final

The technical recommendations included in a geoenvironmental report are based on assumptions about actual conditions, and so are preliminary or tentative. Final recommendations can be prepared only by observing actual conditions as they are exposed. For that reason, you should retain the geoenvironmental professional of record to observe construction and/or remediation activities on site, to permit rapid response to unanticipated conditions. The geoenvironmental professional who prepared the report cannot assume responsibility or liability for the report's recommendations if that professional is not retained to observe relevant site operations.

Understand That Geotechnical Issues Have Not Been Addressed

Unless geotechnical engineering was specifically included in the scope of professional service, a report is not likely to relate any findings, conclusions, or recommendations about the suitability of subsurface materials for construction purposes, especially when site remediation has been accomplished through the removal, replacement, encapsulation, or chemical treatment of on-site soils. The

equipment, techniques, and testing used by geotechnical engineers differ markedly from those used by geoenvironmental professionals; their education, training, and experience are also significantly different. If you plan to build on the subject site, but have not yet had a geotechnical engineering study conducted, your geoenvironmental professional should be able to provide guidance about the next steps you should take. The same firm may provide the services you need.

Read Responsibility Provisions Closely

Geoenvironmental studies cannot be exact; they are based on professional judgement and opinion. Nonetheless, some clients, contractors, and others assume geoenvironmental reports are or certainly should be unerringly precise. Such assumptions have created unrealistic expectations that have led to wholly unwarranted claims and disputes. To help prevent such problems, geoenvironmental professionals have developed a number of report provisions and contract terms that explain who is responsible for what, and how risks are to be allocated. Some people mistake these for "exculpatory clauses," that is, provisions whose purpose is to transfer one party's rightful responsibilities and liabilities to someone else. Read the responsibility provisions included in a report and in the contract you and your geoenvironmental professional agreed to. Responsibility provisions are not "boiler-plate." They are important.

Rely on Your Geoenvironmental Professional for Additional Assistance

Membership in ASFE exposes geoenvironmental professionals to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a geoenvironmental project. Confer with your ASFE-member geoenvironmental professional for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2000 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only ASFE Member Firms may insert this document in their reports.

State of Wisconsin
Department of Natural Resources

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 5-97

			Ro	oute To:			astewat Redeve	er 🗌 lopment	Was Othe	te Mana er 🗌	gement								
Facilit	v/Proje	ct Nar	me						Licen	se/Perm	it/Monit	toring l	Vumbe	r	Borin	Pa g Num	ige 1 ber	of	2
				1730 St	tate Str	reet												W-1	
Boring	Drille	d By (Firm na	ame and r	name of	crew cl	niet)		Date 1	Drilling	Started		Da	te Dril	ling C	omplete	ed	Dril	ing Method
																/2010			
WI Ur	nique W	ell No	0.	DNR V	Well ID	No.	Commo	on Well Nan	ne Final	Static W		vel	Surfac	e Elev		77	Bo		Diameter
Roring	Locati	011 05	Local (Grid Orig	in /	Check	f estima	ated: 🔲)	1	reet	MSL				et M		ı (If app		nches
State		ion or	Local	ond one	, ,	One on		S/C/N	La	.t	<u> </u>	<u> </u>	**	200	0				_ E
	1/4	of	1	1/4 of Sec	ction ,	,	T	N, R	Lo	ng	0		lt .			et 🗌	S		Feet W
Facilit	y ID				County				County	Code	Civil	Town/C	City/ or	Villag	e				
San	nple														Soi	l Prop	erties		
	(ii)	ro.	=			Soil/Re	ock Des	cription						40					
. •	Att.	ount	n Fee		A		-	rigin For				-		SSIV	0		E		ınts
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet			Eacl	h Major	Unit		USCS	Graplic	Well Diagram	PIDÆID	Compressive Strength	Moisture	Liquid	Plasticity Index	P 200	RQD/ Comments
1-SS	24	щ	D	6" Cc	oncrete	:						1	11	0 8	20		1 1	124	sample*
2-SS 3-SS 4-SS	24		3	fine the Fragram Gray coars	to coars ments - -Brown se Sand	se Gra- Mois n Silty l - Mo	avel and t 7 Clay, ist	fine to m	e to	CL CI	.1		BDL 9						
6-SS	24		-10 -11	Brow	wn Clay I - Moi	yey Si st	lt, littl	e fine to n	nedium	MI			12						sample*
I here	by cert	ify the		formation	n on this	form is	true an	d correct to	the best of	my kno	wledge				-				
Signa	-	-						Firm C	Files Eng	gineeri	ng As	sociat	es, In	C.	a, WI	53186			262-544-0118 262-549-5868

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completions of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

SOIL BORING LOG INFORMATION SUPPLEMENT Form 4400-122A Rev. 5-97

Sam	ple									Soil	Prop	erties		
and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well		Compressive Strength			ity	P 200	RQD/
SS	24			Gray Silty Clay, some fine to coarse Sand - Moist	CL			BDL						
SS	24		14	Gray Silty Clay, little fine to coarse Sand, trace fine Gravel - Moist	CL			BDL						
			-16	A 16-Foot Groundwater Well Was Set								e		
	*			Sample submitted for laboratory analysis										
							The state of the s							

State of Wisconsin Department of Natural Resources

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 5-97

			Ro	ute To:		d/Wastewater ☐ on/Redevelopmen[Waste Other		gement								
															Pa	ge 1	of	2
	y/Proje			1720 5	State Ctores			License	/Permi	t/Moni	toring l	Vumbe	т	Borin	g Num		W-2	
Boring	g Drille	d By (Firm na	ime and	name of crev	w chief)		Date D	rilling	Started	-	Da	ate Dril	ling Co	mplete			ling Method
														1/21/	2010			
WIU	nique W	ell No	0.	DNR	Well ID No.	Common Well	Name	Final S	tatic W	ater Le	vel	Surfac	e Elev		2010	Вс	rehole	Diameter
D	. 1		1 17	2-140-	/Cho	als et agrimated:			Feet	MSL				et MS		(If app		nches
	Plane	on or	Local	Grid On	gin (Cne	S/C/N)	Lat.		0		61	Local	Ond L			HCable) E
T. 11.	1/4	of	1	/4 of Se		T N, R	10	Lon	~	0	rown/C	it or	William		t 🗆 S	3		Feet W
Facilit	ty ID				County			ounty C	ode	CIVII	i own/C	Aty/ Of	Villag	е				
San	nple				1_,									Soil	Prop	erties		
	& (ii)	ıts	eet			l/Rock Description Geologic Origin For	_						Ve					
ype	h Att	Cour	In F			Geologic Ongili Fo Each Major Unit	T		S	nic	am	Qi.	ressi	int	ъ	city		nents
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet			•			USC	Graphic	Well	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
1-SS	24		-	4" A	sphalt	~			asph			420						
			E ,	and	te-Black-E fine to coa	Brown fine to co rse Gravel - Mo	ist	and	fil	10°C								sample*
			E							000								
2-SS	24		-2	Gray	v-Brown S	ilty Clay, some	fine to)	CL	11111		71						
			E	coar	se Sand, tr	ace fine Gravel	- Mois	st										
			-3															1
			-4									50						
3-SS	24		-						CL			52						
			_5															
			Ē.															
4-SS	24		-6						CL			42						
			E-7															
			E															
5-SS	24		-8	Bro	wn Silty C	lay to Clayey Sa	and, lit	ttle	CL			46	1					sample*
			=	fine	to medium	Sand - Wet												
			- 9															
6-SS	24		-10						CL			14						
0-33	24		F									17						
			-11															
			- 12				•											
I here	by certi	fy tha	1 2-	formatio	on on this form	n is true and correct	to the b	est of n	ny kno	wledge	!	1		-		!		
Signa						Firm	Giles	s Engi	neerii	ng Ass	ociat						Tel:	262-544-0118
							N8 W	22350 J	ohnson	n Drive	Suite.	Al W	aukesh	a, WI 5	3186		Fax:	262-549-5868

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completions of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

SOIL BORING LOG INFORMATION SUPPLEMENT Form 4400-122A Rev. 5-97

	g Numb		MW	Use only as an attachment to Form 440						Soi		ge 2 erties		
So Intimper	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Grapliic Log	Well	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Iudex	P 200	RQD/
-SS	24		-13		CL			33 BDL						
And the state of t			15 16	A 16-Foot Groundwater Well Was Set										
				*sample submitted for laboratory analysis		And the state of t								
			# F											

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 5-97

			Ro			Vastewater□ /Redevelopmen□	Was	te Mana er 🗌	gement								
														Pa	ige 1	of	2
	y/Proje						Licen	se/Permi	t/Moni	toring l	vumbe	r	Borin	g Num	ber		
				1730 Sta	te Street	hiet)	Date	Drilling S	Started		Da	te Drill	ing Co	mniete		W-3	ing Method
DOIM	Dimo	a by (1 11111 1	anc and na	ano or oron o	inot)	, Dute		Jujica			no Din	ing o	mpree		J. 1.1.	ing monoc
				- In. m. m.	II ID M	IC WIN	T. V	C 177	· Y	5	Confi		1/21/	2010	ID.		Discourse
WI Ur	nique W	ell N	0.	DNR W	ell ID No.	Common Well Na	me Final	Static W Feet		vei	Surfac	e Eleva	et MS	SL.	B		Diameter nches
		on or	Local	Grid Origin	(Check	if estimated:)	1 -		0	,	**			ocation	(If app		
State		C		14 - 65		S/C/N	La		0		11		Eas	t 🗆 3			E Feet W
Facilit	1/4 y ID	ot	-	1/4 of Section	on ,	T N, R	County	ng	Civil	Town/C	ity/ or	Village			5		reet 🗆 w
	-												~				
San	aple				0.11/5	1.0							Soil	Prop	erties		
	Length Att. & Recovered (in)	nts	eel			ock Description cologic Origin For						ive					os
уре	ih At	Cou	l In I			h Major Unit		CS	hic	ram	FID	press	ture	P	icity		nent
Number and Type	Length Att. Recovered (Blow Counts	Depth In Feet					USO	Graphic Log	Well	PID/FID	Compressive Strength	Moisture	Liquid	Plasticity Index	P 200	RQD/ Comments
I-SS.	24	_	E	4" Asp				asph			BDL						
			-1	Orange trace A	e-Brown fi Asphalt Fra	ne to medium S igments (Fill) - I	and, Moist										
			= 1			5											
			-2					an			DD7						
2-SS	24		E					SP			BDL						sample*
			-3														
			F														
3-SS	24		-4			e to medium Sa	ndy Silt	SM			BDL						
			Ē.	(Fill) -	Wet												
			-5														
			-6														
4-SS	24		-					SM		-	BDL						
			F-7							}							
			E														
5-SS	24		-8	White	-Brown fir	ne to coarse Grav	vel	GP	000		BDL			i			
	-		E	some f	fine to coa	rse Sand (washe			000								
			-9	(Fill) -	· Wet				000								
			Ē						200								
6-SS	24		-10			y, some fine to n	nedium	CL			BDL						
			-11	Sand -	Wet												
			- '														
			-12							1							
I here	by certi	ify tha			on this form i	s true and correct to	the best of	my kno	wledge								·
Signa						Firm (Giles Eng	ineerii	ng As	sociat	es, In	c.				Tel:	262-544-0118
						N	18 W22350	Johnson	n Drive	, Suite	Al W	aukesh	a, WI	53186		Fax:	262-549-5868

SOIL BORING LOG INFORMATION SUPPLEMENT Form 4400-122A Rev. 5-97

oring Nu Sample	_		MW	Use only as an attachment to Form 4400	1					Soil		ge 2 erties	
and Type Length Att. &	Recovered (III)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well		Compressive Strength			. ty	RQD/
SS 24			13		CL			BDL					
SS 24			14	Brown-Gray Silty Clay, some fine to coarse Sand, trace fine to coarse Gravel - Wet	CL			BDL					
			-16	A 16-Foot Groundwater Well Was Set *sample submitted for laboratory analysis									
											The state of the s		
			Production of the state of the										

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 5-97

			Ro	ute To:		Wastewater ☐ n/Redevelopmen☐	Wast	e Mana	gemen	t 🗌							
																of	2
Facility				1.720.0			Licens	e/Perm	it/Mon	itoring	Numbe	r	Borin	g Num		T7 4	
					tate Street	chiet)	Date D	rilling	Started		De	te Dril	ling Co	mplete		W-4	ling Method
Dorring	, Dimo	(ino una i				5	Juitou			iii Diii	mig oc	mpioto			ing monoc
													1/21/	2010			
WI Un	ique W	ell No	0.	DNR V	Well ID No.	Common Well Name	e Final S		ater Le		Surfac	e Elev	ation et MS	T	В		Diameter nches
Boring	Locat	on or	Local (Grid Orig	gin (Check	(if estimated:)		reet							(If app		
State						S/C/N	Lat.	-	<u> </u>		н						□ E
	1/4	of	I	/4 of Sec	,	T N, R	Lor		0	1	"	7.711		t 🗆 S	3		Feet W
Facilit	y ID			1	County		County (Code	Civil	Town/(City/ or	Villag	е				
San	ple	-		1				j	-	1	1	_	Soil	Pron	erties		i .
Juli			_		Soil/I	Rock Description								1100			
	Length Att. & Recovered (in)	Blow Counts	Depth In Feet			eologic Origin For						Compressive Strength					lls
Typ	Length Att. Recovered (S C	th In	A STATE OF THE STA	Ea	ch Major Unit		CS	ohic	Well	PID/FID	ngth	sture	r ig	ticity	0)/ imer
Number and Type	Len	Blov	Dep					US	Graphic	Well	PID	Compress	Moisture Content	Liquid	Plasticity Index	P 200	RQD/ Comments
1-SS	24		E	-3" As	sphalt			asph	0 .		BDL						
			E.,			lack fine to coarse e Asphalt Fragme		GW									
			E	Mois	st		ZXED		0								
			_2														
2-SS	24		= 2	Brow	vn Clay Silt - Moist	, some fine to coar	rse	ML			BDL						sample*
			<u>-3</u>	Sand	- MOISI								2				
			=														
			-4		0 0:1	CI I'm C					DD.						
3-SS	24		E	Brow	vn-Gray Sill um Sand - l	ty Clay, little fine	to	CL			BDL						
			-5	moun	um Suna	110150											
			E														
1 00	24		-6					G.F.			DDI						
4-SS	24		=					CL			BDL						
			-7														
			E														
5-SS	24		-8					CL			BDL						
3-33	24		E								DDL						
			-9														
			-														
6-SS	24		-10					CL			BDL						sample*
	-		-														
			-11														
			-														
	-		-12	-					/////	4							
	-	fy tha	t the in	formation	n on this form	is true and correct to th	e best of n	ny knov	wledge								
Signa	ture					Firm Gi	les Engi	neerin	g Ass	sociat	es, Inc	2.					262-544-0118 262-549-5868

Sam	Numi		MV	V-4 Use only as an attachment to Form 440	1					Soil	ge 2 erties		
_	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graplic Log	Well	PID/FID	Compressive Strength		ity	P 200	RQD/
SS	24		13 -14 -15 -16	Brown-Gray Silty Clay, some fine to medium Sand - Moist NR-141 Groundwater Monitoring Well Set at 16± Feet	CT			BDI					
				*sample submitted for laboratory analysis									
							A CALL TO SERVICE A SERVICE OF THE S						

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 5-97

			Ro	ute To:		Wastewater□ n/Redevelopmen□	Waste		gemen	t□							
Facility	//Proj-	ot Me	200				II ican	/D	+/)./-		Mars Y		ID	Pa		of	2
	_			1730 S	tate Street		License	Perm	it/Moni	toring	Numbe	T	Boring	g Num		W-5	
					name of crew	chief)	Date D	rilling	Started		Da	ite Dril	ing Co	mplete			lling Method
													7/22/	2010			
WI Un	ique V	Vell No	0.	DNR V	Well ID No.	Common Well Name	Final St	tatic W	ater Le	evel	Surfac	e Elev		2010	B	orehol	e Diameter
					(6)			Feet	MSL				et MS				Inches
State I		1011 Or	Local	Grid Orig	gin (Check	s if estimated: () S/C/N	Lat.		0	,	11	Local	Grid Lo		(If app	olicable	_
	1/4	of	1	/4 of Sec	ction ,	T N, R	Lon	g	0	'	**		Fee	t 🗆 S			Feet W
Facility	y ID			10	County		County C	ode	Civil	Town/(City/ or	Villag					
Sam	nla									T			Cail	D	i		
Sail					Soil/I	Rock Description						-	3011	гюр	erties		1
	Length Att. & Recovered (in)	Blow Counts	Depth In Feet			eologic Origin For						sive					N
Number and Type	Length Att. Recovered (Co	th In		Ea	ch Major Unit		CS	Graphic	Well	PID/FID	Compressive Strength	Moisture Content	pi 1	Plasticity Index	0	RQD/ Comments
Num	Len	Blov	Dep					US	Grap	Well	PID	Com	Moisture	Liquid	Plastic	P 200	RQI
1-SS	2	4	=	-3½"±	Asphalt	Cilt - C		aspi	2		BDL						
			E ₁	coars	se Sand (Fil	ayey Silt, some fin l) - Moist	e to	ML									
			= 1			,											
2 00	_	,	-2		C.1 OI	Tint C		CL			DDI						
2-SS	2	6	E	Sand	vn Silty Cla	y, little fine to coar	se				BDL						sample*
			-3														
			=														
3-SS□	2	12	-4	Grav	-Brown Sil	ty Clay, little fine to	0	CL			BDL						
			E	medi	ium Sand	.,, ,		•								İ	
			-5														
4-SS	2	15	-6					CL			BDL						
			-														
			E														
			-8														
5-SS	2	20	= 0					CL			BDL						
			<u>-</u> 9														
			E														
6-SS□	2	18	-10					CL			BDL						
U-00-	2	10	E								DDL						
			-11														
			-														
			-12						/////	9					l		
		ify tha	t the in	formation	n on this form	is true and correct to the	best of n	ny kno	wledge								
Signat	ure						es Engin						33.07.6	2106			262-544-0

SOIL BORING LOG INFORMATION SUPPLEMENT Form 4400-122A Rev. 5-97

am	ple									Soi	l Prop	erties		
and 1 ype	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic	Well	PID/FID	Compressive Strength	Moisture	Liquid	Plasticity	P 200	RQD/
				Boring Terminated at 12 Feet										
				*sample submitted for laboratory analysis										
	The second secon													
	19.660													
70.00				·			A MARKATANA AND AND AND AND AND AND AND AND AND							

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 5-97

			Ro	oute To:		Wastewater□ n/Redevelopmen□	Waste		gement								
														Pa	ige 1	of	2
Facilit				1720 0	4-4- C44		License	/Perm	it/Moni	toring 1	Numbe	T	Borin	g Num		W (
					tate Street	chief)	Date D	rilling	Started		Da	ite Dril	ling Co	omplete		W-6	ling Method
														2010			
WIUn	ique W	ell No	0.	DNR	Well ID No.	Common Well Name	e Final S			vel	Surfac	e Elev		2010	В	orehole	Diameter
Borino	Locati	on or	Loggi	Grid Orig	in (Chec)	k if estimated: ()		Feet	MSL				et MS		(If app		nches
State		1011 01	Local	ond Ong	giii (Cilco)	S/C/N	Lat.	_	0		#	Local	OHU L			псаыс	□ E
~ 10	1/4	of]	/4 of Sec		T N, R	Lon		0	1				t 🗆 S			Feet W
Facilit	y ID			1	County		County C	Code	Civil	Town/C	City/ or	Villag	е				
San	ple												Soil	Prop	erties		
	æ in)	S	ē ē			Rock Description			1			v					
r pe	Att.	Jount	In Fe			eologic Origin For		S	o o	а	Q	essiv	e T		ty.		ents
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		Ea	ch Major Unit		SC	Graphic	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid	Plasticity Index	P 200	RQD/ Comments
Z 8 1-SS-	2	8	10	72"± A	Asphalt))		N C	BDL	0.2	ΣŬ	133	교	Ь	<u> </u>
			E	31/2"±	Concrete			fil									
•			-1		vn-White fii el - Moist	ne to coarse Sand a	and /		11111						***************************************		
			E	Brow	n Silty Cla	y, some fine to coa	arse	CL									
2-SS□	2	8	_2	Gray	- Moist -Brown Sar	nd - Wet		GW			16						sample*
			-3														
			=														
3-SS□	2	12	-4	Crox	Cilty Clay	little fine to media		CL	111111		97						
J-0 <u>D</u>	-	12	F	Sand	- Wet	intac inte to mean	шп	Ch			,						
			_5														
			E														
4-SS	2	11	-6					CL			7						
			- 7														
			F														
			-8					-									
5-SS□	2	15	E					CL			5						
			-9														
			-														
6-SS	2	15	-10					CL			BDL						
			=														
			-11														
			-12											-			
I herel	ov certi	fy that		ormation	on this form	s true and correct to the	e best of m	ıv kno	wledge	1							
Signat		-) 6121				I was	les Engir				es Ind	c.				Tel·	262-544-0118
							W22350 J						, WI 5	3186			262-549-5868

SOIL BORING LOG INFORMATION SUPPLEMENT Form 4400-122A Rev. 5-97

_	Numt	per	MW	7-6 Use only as an attachment to Form 440	0-122.		,				Pa		of	2
Sam	ple									Soil	Ргор	erties		
and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic	Well	PID/FID	Compressive Strength	Moisture Content	Liquid	Plasticity Index	P 200	RQD/ Comments
				Boring Terminated at 12 Feet *sample submitted for laboratory										
	100			analysis										
				,										
	10 m										to a constant of the constant			

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 5-97

			Ro	ute To:		/Wastewater on/Redevelopmen	Waste		agement								
														Pa	ge 1	of	2
Facilit				1770 0	1-4- Ctt		License	Perm	it/Moni	toring l	Numbe	r	Borin	g Numl		17 7	
					tate Street	chief)	Date D	rilling	Started		Da	te Dril	ling Co	mplete		W-7	ling Method
_		,				,											
WIUr	ique V	All N	2	IDNR V	Well ID No.	Common Well Nam	ne Final S	tatic W	later I e	wel.	Surfac	ce Elev	7/23/	2010	IRo	rehole	Diameter
WIOI	iique vi	CII IV	J.	DIVIC	von 15 110.	Common won Ivan	ic i mai b		MSL		Julia		et MS	L	Bo		nches
		on or	Local (orid Origi	in (Chec	k if estimated: () S/C/N	Lat.		0	1	"	Local	Grid L		(If app	licable	
State	Prane 1/4	of	1	/4 of Sec	tion	T N, R	Lon		0	,	11		Fee	t 🗆 S			☐ E Feet ☐ W
Facilit					County		County C		Civil	Town/C	City/ or	Villag					
	1		1					1		1		1	C '1	D			
San					Soil/	Rock Description						-	5011	Prop	erties	-	
45	Length Att. & Recovered (in)	unts	Depth In Feet			Geologic Origin For						Sive					ts
Number and Type	Length Att. Recovered (Blow Counts	th In		E	ach Major Unit		CS	Graphic	Well	PID/FID	Compressive Strength	Moisture	nid it	Plasticity Index	0	RQD/ Comments
Num	Len		Dep					US	Grap	Well	PID	Con	Moi	Liquid Limit	Plastic Index	P 200	Con RQI
1-SS	2	5	-	4"± A	Asphalt	Ilty Clay, little fine	e to	aspl	1		4						
			F-1	medi	um Sand -	Moist	C 10										
			E														
2-SS□	2	6	_2					CL			7						sample*
2 00	-		E								,						Dampio
			-3														
			E														
3-SS□	2	9	E-4	Brow	m-Gray Sil	ty Clay, trace fine	to	CL			114						
			E 5	medi	um Sand -	Wet											
			F														
100	2	16	E-6					CL			5						
4-SS	2	10	E								3						
			-7														
			E														
5-SS	2	22	-8					CL									
			E														
			-9														
_			10														
6-SS	2	26	= 10	Gray	Silty Clay	, trace fine Sand -	Wet	CL									
			-11														
			E														
			-12						111111	4							
	-	fy tha	t the inf	ormation	on this form	is true and correct to the											
Signa	ure					Firm Gi	iles Engi 3 W22350	neerii	ng Ass n Drive	Sociate,	es, In	C. aukesh	a, WI 5	3186			262-544-0118 262-549-5868

SOIL BORING LOG INFORMATION SUPPLEMENT Form 4400-122A Rev. 5-97

Sam	ple	per		V-7 Use only as an attachment to Form 4400		1					Soil	erties	of	
	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	uscs	Graphic	Log	Well	PID/FID	Compressive Strength		Plasticity Index	P 200	RQD/
-			_	Boring Terminated at 12 Feet			1						_	
				*sample collected for laboratory analysis										
							Marine - April							

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 5-97

			Ro	ute To:		Wastewater□ n/Redevelopmen□	Wast	te Mana r 🗌	gemen	t 🗆							
															ige 1	of	2
	y/Proje			1720 0	toto Ctut		Licens	se/Perm	it/Moni	toring)	Numbe	r	Borin	g Num		W-8	
					tate Street	chief)	Date I	Drilling	Started		Da	te Dril	ling Co	mplete			lling Method
	,		(,											
VA/T T I	nique W	iell N	0	DNR	Well ID No.	Common Well Name	Final	Static W	later I e	iavei	Surfac	e Elev		2010	IB ₀	rehois	e Diameter
WIOI	nque v	4 OH 14	0.	DIVIC	WOII 115 140.	Common went Name	I mai		MSL		Julia		et MS	SL			nches
	-	ion or	Local (Grid Orig	in (Check	if estimated: ()	Lat		0	,	11	Local	Grid L		(If app	licable	:)
State	Plane 1/4	of	1	/4 of Sec	tion	T N. R	Lat		0	ł	R		Eee	t 🗆 1			☐ E Feet ☐ W
Facili		01			County	1 N. K	County		Civil	Town/C	ity/ or	Villag			3		reet 🗀 w
-	-		-						-		i	1	0 ''	D			1
San	aple				Soi1/1	Rock Description							1	Prop	erties		-
	ff. & d (in	ınts	Feet			eologic Origin For						sive			and the same of th		25
ber	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		Ea	ch Major Unit		CS	hic	Well	PID/FID	pres	Moisture	P	Plasticity Index	0	men Men
Number and Type	Leng	Blov	Dept					US	Graphic	Well	PID/	Compressive Strength	Moisture Content	Liquid	Plastic	P 200	RQD/ Comments
1-SS	24	10	=	4"± A	Asphalt Tar	mix	1	aspi	1		BDL						
			E ,		el, some As	e to coarse Sand ar	na	Fill	۵. ۵.								
			- 1		,	1			}								
2 00	24	7	-2	-	0:14 01	C 1:		CL	211111		BDL				The second secon		sample*
2-SS	24	′	E	Sand		some fine to medi	um				BDL						Bampic
			_3														
			E														
3-88	24	12	-4	Brow	n-Gray Cla	yey Silt, little fine	Sand	ML			BDL						
			E														
			_5														
			-6														
4-SS	24	12	-					ML			BDL						
			-7														
			E														
5-SS	24	10	_8	Brow	n Silty Cla	y, little fine to med	iium	CL			BDL						
			E	Sand	in Date; Ota,	, , , , , , , , , , , , , , , , , , , ,											
			-9														
			F														
6- SS	24	29	-10					CL			BDL						
			-11														
			- 11														
			-12														
I herei	y certif	fy tha		ormation	on this form i	s true and correct to the	best of	ny knov	vledge.								
Signal	-					Firm Gile	es Engi	neerin	g Ass	ociate	s, Inc	c.	_			Tel: 2	262-544-0118
						N8 7	W22350.	Johnson	Drive.	Suite	Al Wa	ukesha	L WI 5	3186		Fax:	262-549-5868

SOIL BORING LOG INFORMATION SUPPLEMENT Form 4400-122A Rev. 5-97

am	Numb ple		MW	V-8 Use only as an attachment to Form 440							Soil	erties	of 2	
and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic	Well	Diagram	PID/FID	Compressive Strength	Moisture Content	ly.	P 200	RQD/
				Boring Terminated at 12 Feet					1					
				*sample submitted for laboratory analysis										
										-				
					And a second of the second of									
					A THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE									

SOIL BORING LOG INFORMATION Form 4400-122 Rev. 5-97

			Ro	ute To: Watershed/W Remediation/	astewater∐ Redevelopmen☐	Other		gement										
	ry/Proje			1500 G G		Licens	e/Perm	it/Moni	toring l	Vumbe	r	Boring	Pa g Num			2		
				1730 State Street	niet)	Date Drilling Started Date Drilling Completed								TW-1 Drilling Met				
							1/21/2010											
	WI Unique Well No. DNR Well ID No. Common Well Nam							ater Le MSL	vel	Surfac	Fee	eet MSL				rehole Diameter Inches		
	g Locati Plane	on or			f estimated: () S/C/N	Lat		0	<u> </u>	"	Local			1	If applicable)			
Facili	1/4 ty ID	of	1	/4 of Section ,	T N, R	County (Town/C		Village		t 🗌 S	<u> </u>		Feet W		
Sar	nple											Soil	Prop	erties				
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	And Geo	ock Description blogic Origin For h Major Unit		USCS	Graphic	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid	Plasticity Index	P 200	RQD/ Comments		
2-SS 3-SS	24 24 24		-3 -4 -5 -7	4" Asphalt Brown Clayey Sil Sand and fine to commended to the second sec	Clay, some findoist	Moist e to	ML CL CL			9						sample*		
5-SS 6-SS	24		8	Brown Clayey Si fine to coarse Sar	lt to Silty Clay, s nd - Moist	some	ML			BDL BDL								
	eby certi	fy tha	-11 -11 -12	formation on this form is	In:	he best of r	ny kno							the days of the same and the same and the		262-544-01		

SOIL BORING LOG INFORMATION SUPPLEMENT Form 4400-122A Rev. 5-97

	Numl			-1 Use only as an attachment to Form 440						Soi	l Prop	erties		
and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture	Liquid	Plasticity Index	P 200	RQD/
SS	24	,	13	Brown fine to medium Sandy Silt, some Clay - Moist	CL			BDL						
S	24		14	Gray Silty Clay, trace fine Sand - Moist	CL			BDL						
			-16	Boring Terminated at 16 Feet										
				*sample submitted for laboratory										
				analysis										

State	of Wi	isconsin	
Depa	rtmen	t of Natura	d Resources

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			Rout		Vastewater Wastewater			ı 🗌								
				Tomodium.	Attoroxopinioni [_]		-						Page		_ of _	1
Facili	ty/Proje	ct Na	me			Licer	ise/Per	mit/Mc	mitorir	ıg Num	ber	Borin	g Num		_ 01 _	
V	, -+ i, i	n .	-	The Mary Jan			(2-1									
	g Drille vame:		Name	of crew chief (first,	last) and Firm	Date	Drillin	g Starte	ed .					Drilling Method		
	٠.)					m m	/ d d	·/ _y _y	<u>y</u> <u>y</u>	$\frac{2}{m}\frac{2}{m}$	$\frac{2}{\mathbf{d}} \cdot \frac{3}{\mathbf{d}}$	/ <u>y</u> <u>y</u>	<u>y</u> <u>y</u>			1
WI Unique Well No. DNR Well ID No. Well Name								Water	Level	Surfac		ation		Borehole Diameter		
				timated: 🖸) or Bo				Feet N		Local	C=11	_Feet		,	i	nches
State 1	Plane_	rigin	Li (es	N,N	E	1	Lat	0		LOCBI	Gria L		n IN			DЕ
25	1/4 of		1/4 of	Section, T	N, R	Lo	ng	0 '				eet 🗆				ı w
Facili	ty ID	:		County		County (Code		Town/	City/ o	r Villa	ge				
San				-				1	100			Soil	Prope	rties		T
Jan		s	Depth in Feet (Below ground surface)	Soil/Ro	ck Description							3011	Tope	1000		
_ ×	Length Att. & Recovered (in)	Blow Counts	n Fe	And Geo	logic Origin For		S		ء		Compressive Strength	8 T		2		uts
Number and Type	ngth	ĭ. O	pth i	Each	Major Unit		SC	phi ,	Well Diagram	PID/FID	npre	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
N Sug	Le Re	BE	2 %				n	ु हैं	≥ :∃	≧	Str	Σိပိ	تُدُدُ	Pla Inc	P 2	జ రి
					Carrier Town											
				and the second second						31A						
				with the state of	we are	5.1.54	1									
	†				· #				1							-
										:21-5						
			1 1	and a second												
						:										, , ,
										33.						
									}]					
			1				1			13.1						
	1								1							
		ĺ						}		15,						
										ŀ			İ			
			1.							No. 12						
										23.2						i.
	1					-								1		
										: ²⁸						
			1						ĺ	-						
											<u></u>					
I here	by cer	tify th	at the	information on this	form is true and o	correct to	the be	st of m	y kno	wledg	e.					
Signa	ture	_ {	$\overline{}$			Firm	1 1	, , , ,		1						

State of Wisconsin	
Department of Natural Resource	es

Facility/Proje	izin	a , 1	730 State Street, Racine		icense/						6	Num					
First Name:	Tim		of crew chief (first, last) and Firm Last Name:		Date Drilling Started $ \frac{0}{m} \frac{\sqrt{3}}{m} / \frac{3}{d} \frac{3}{d} / \frac{3}{y} \frac{0}{y} \frac{1}{y} \frac{0}{y} $				Date Drilling Completed								
WI Unique Well No. DNR Well ID No. Well Name										m m d d y y y y y Surface Elevation				Borehole Diameter			
Local Grid C	rigin	(es	timated: Or Boring Location E N, E	1	_		Feet M		Feet MSL Local Grid Location				inches inches				
State Plane_	NE	1 /4 of	N, E Section 8 , T 3 N, R 23 E		Lat		0 '			F	eet 🗆	N IS	□ E Feet□ W				
Facility ID			County	Cour	ty Cod	e	Civil	Town/	City/ o						''		
Sample												Prope	rties				
Number and Type Length Att. & Recovered (in)	Blow Counts	Depth in Feet (Below ground surface)	Soil/Rock Description And Geologic Origin For Each Major Unit		50 31	0303	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments		
-PS -			Bonda But die The 1999		. }				(6.5								
		>	and the second s	e 1 - 2003 1 1													
2-PS			Black Land Rivery The gills of the same of						po,								
3-175-		4-6	Change the reserve to the second	Car III					s) in						tidan i		
4-65-									#\u00e4								
C-PS-		-8-	Supplied to the supplied to th	graphy.					2								
6-PS		-/2	The same of the sa	٠. ٠	g gro												
		-1-2-															
I hereby cer	rify th	at the	information on this form is true and	i correct	to the	bes	t of m	y kno	wledg	e.							

State of Wisconsin	
Department of Natural	Resources

Watershed/Wastewater Waste Management Route To: Remediation/Revelopment Other Facility/Project Name License/Permit/Monitoring Number Martinizing, 1730 State Street, Racine Boring Drilled By: Name of crew chief (first, last) and Firm
First Name: Last Name: | Last Name: Date Drilling Completed Drilling Method Date Drilling Started $\frac{2}{m}\frac{6}{m}\frac{3}{d}\frac{3}{d}\frac{2}{y}\frac{2}{y}\frac{1}{y}\frac{0}{y}$ $\frac{0}{m}\frac{6}{m}\frac{3}{d}\frac{3}{d}\frac{0}{y}\frac{0}{y}\frac{1}{y}\frac{0}{y}$ Direct - Puch Firm: Giles Engineering m m Final Static Water Level Surface Elevation DNR Well ID No. Well Name WI Unique Well No. Borehoie Diameter Feet MSL 2.0 Feet MSL inches Local Grid Origin (estimated:) or Boring Location " Local Grid Location , Lat _ N, _ \square N \Box E 0 SW 1/4 of NE 1/4 of Section 8 Long Feet□ W Feet D S Civil Town/City/ or Village Facility ID County Code 02-52-549890 Ractne Racine Sample Soil Properties Depth in Feet (Below ground surface) ತ Recovered (in) Soil/Rock Description Blow Counts Compressive Strength Length Att. And Geologic Origin For Log Well Diagram PID/FID Moisture Content Plasticity Index Number Graphic Each Major Unit USC Liquid Limit P 200 MILLER TO BE THE THE 1-PS 61. 1-PS 5-12 4-8 C-PS 10 6-15 I hereby certify that the information on this form is true and correct to the best of my knowledge. Signature ailer Engineering

State of Wisconsin	
Department of Natural	Resources

		Rout	e To: Watershed/Wastewater Wat		gement									
			· · ·								Page		_ of	1
Facility/Proje			5 5 0 :	Licer	se/Per	mit/Mo	nitorin	g Num	ber	Borin	Num			
Boring Drille	d Bv	VName	730 State Street, Racine of crew chief (first, last) and Firm	Date	Drillin	c Starte	d	Dote F)rilling		P_ :	Deillin	a Mat	had
First Name:	Tim	1144114	Last Name: RIGHT		Date Drilling Started $\frac{\mathcal{O}}{m} \frac{\mathcal{G}}{m} / \frac{\lambda}{d} \frac{\mathcal{J}}{\sqrt{y}} / \frac{\lambda}{y} \frac{\mathcal{O}}{y} / \frac{1}{y}$					Date Drilling Completed $\frac{0}{m} \frac{(\omega)}{m} / \frac{2}{d} \frac{3}{d} / \frac{2}{y} \frac{0}{y} + \frac{0}{y} \frac{0}{y}$				= Puch
Firm: Cile	5 5	אומח-	eeting								<u>y</u> <u>y</u>			
WI Unique V	Vell N	0.	DNR Well ID No. Well Name	Final	Static	Water I Feet M		Surfac	e Elev		MSI.	Boreh	_	ameter nches
Local Grid O	rigin	(es	timated: 2) or Boring Location D			0 1		Local					<u> </u>	ncnes
				1	Lat	0 1					N			□ E
Facility ID	Nº.	1/4 of	Section 8, T 3 N, R 23 E	County (Civil '	Town/	City/o		eet 🗆	<u> </u>		Feet	U W
02-62-6	1198	90	Ractae			Ro	CONE	City/ U	· VIIIA	gc				
Sample		(e)								Soil	Prope	rties		
Number and Type Length Att. & Recovered (in)	nts	Depth in Feet (Below ground surface)	Soil/Rock Description						9					
ber ype th A	Con	in F	And Geologic Origin For Each Major Unit		CS	ic	am	QI.	ressi 3th	ure	-5	city		nente
Number and Type Length At Recovered	Blow Counts	Schut Below	•		U S (Chraphic	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
7 8 1 8	<u> </u>	100	The American interface for the		+-	127	1		ON	20	1	-		120
			The State of the State of Stat											
1-P5 -			The second second					Ri d			t			
		->-	apage 1 to 17 - Change 1 to 12 a								-			
			File Marine						1					
2-PS								===			ł			
		1												
		1	Commence Commence	1.,					1		1			Marie Land
3-PS+			the second secon					211			-			Section 1
			2467								1			The State of the
		6	Authoritation (1995) Authorita					-			f			
4-13.			Maria Carama Calendaria	1				1,20						
77.7			The second secon					1						N/4
		-8-							-		+			
c 50			marga B. A. Mar			1		BO.						
5- PE-			The state of the s			ĺ		223	l		İ			
		12									1			
2.0			Company of the second	. '									l	
6-12			·								1			
		1.5												
		1-1-2-			1						1			
I hereby cer	tify th	at the	information on this form is true and co	orrect to	the be	st of m	y kno	wledg	e.			1		
Signature)		Firm			-							
	<u>ئىر</u> ،	2-			<u>() ; le</u>	5 5	nair	reeti	NA					

State of	Wisconsin	
Departm	ent of Natural	Resources

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

Facility					Licen	se/Per	nit/Me	nitorir	g Nun	ber	Borin	Page g Num	ber	_ of		
Mor	tini	2/14	9.1	730 State Street, Racine	<u> </u>				·			P- 3				
First Nar		By:	'Name	of crew chief (first, last) and Firm Lest Name: () () ()					1				Drilling Method			
Firm:	Firm Giles Engineering										1 2 0 y y		Direct - Puch			
WI Uni	que W	ell No	D. U	DNR Well ID No. Well Name	Final	Static	Water Feet N			e Elev			Borehole Diameter			
Local G	rid O	rigin	[timated: or Boring Location			O		Local					<u> </u>	ncnes	
State Pla		.15		N,E	- 1	_at	0 1			_		N			Ε	
Facility	/4 of _ ID	NE	1/4 of	Section 8, T 3 N, R 23 E	Lo ounty (Civil	Town/	City/ o	r Villa	eet 🗆	1 S _		Feet	ı□ w	
02-6	3-5	1196	90	Ractne			Civil	rcine	,							
Samp	ie		face)								Soil	Prope	rties			
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth in Feet (Below ground surface)	Soil/Rock Description And Geologic Origin For Each Major Unit		USCS	Graphic	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments	
				a Arma and the Same												
-PS				a seeks in the second seeks of	, , ,				111			-				
			_	The second secon												
			-													
2-P5				A Section 1								ł				
			4													
			'	The state of the s											- 100	
3-125 +				A No. A No. A Market Market					, 20 s						Francisco	
			,	: , <u></u>											1966 200 W	
			1													
4-13-			57 %	and the state of t		1			į			+			white or	
			9												1 2 200	
			ľ		. 0											
5-15-						1			2A.			-				
			10													
				1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -												
6-62							1					1				
			1-12-													
			e.													
													1			
	<u> </u>	tify th	at the	information on this form is true and con		the be	st of m	y kno	wledg	e						
Signatu	re	12	ے بات		Firm	(le	(<u>E</u>	oal.	200 m	Na						
	`	/ e-				<u> </u>		E7 1	465-1 !							

State of Wisconsin

6-15

SOIL BORING LOG INFORMATION

Department of Natural Resources Form 4400-122 Rev. 7-98 Route To: Watershed/Wastewater Waste Management Remediation/Revelopment Other Boring Number Facility/Project Name License/Permit/Monitoring Number GP- 10 Martinizing, 1770 State Street, Racine Boring Drilled By: 'Name of crew chief (first, last) and Firm Date Drilling Started Date Drilling Completed Drilling Method First Name: Jick Last Name: Blair $\frac{0}{m}\frac{6}{m}/\frac{3}{d}\frac{3}{d}/\frac{3}{y}\frac{0}{y}\frac{1}{y}\frac{0}{y}$ Direct - Puch Firm Giles Engineering <u>y</u> <u>y</u> <u>y</u> WI Unique Well No. DNR Well ID No. Well Name Final Static Water Level Surface Elevation Borehole Diameter Feet MSL Feet MSL inches Local Grid Origin (estimated: 1) or Boring Location " Local Grid Location O Lat State Plane _ \square N \Box E N, R 23 E Sid 1/4 of NE 1/4 of Section 8 Long Feet D S Feet□ W Facility ID Civil Town/City/ or Village County County Code 02-62-549890 Ractne Raune Sample Depth in Feet (Below ground surface) Soil Properties æ Recovered (in) Soil/Rock Description Blow Counts Compressive Strength Length Att. RQD/ Comments Number and Type And Geologic Origin For Graphic Log Well Diagram PID/FID Moisture Content Plasticity Index S Each Major Unit USC Liquid Limit P 200 j-P5 2-PS 3-62 5-15 12

I hereby certify that the information on this form is true and correct to the best of my knowledge. Signature Englneering Chiles

State of Wisconsin	
Department of Natural	Resources

Route To: Watershed/Wastewater Waste Management Remediation/Revelopment 🛛 Other 🔲 Boring Number Facility/Project Name License/Permit/Monitoring Number GP- -Martinizing, 1730 STATE STRET. Racine Boring Drilled By: 'Name of crew chief (first, last) and Firm Date Drilling Started Date Drilling Completed Drilling Method First Name: Jirk Last Name: (3) A) F $\frac{O_{\frac{1}{2}}(\frac{1}{2})}{m} \frac{O_{\frac{1}{2}}(\frac{1}{2})}{d} \frac{O_{\frac{1}{2}}(\frac{1}{2})}{d} \frac{O_{\frac{1}{2}}(\frac{1}{2})}{y} \frac{O_{\frac{1}{2}}(\frac{1}{2})}{y}$ $\frac{0}{m}\frac{6}{m}\frac{3}{d}\frac{3}{d}\frac{3}{y}\frac{9}{y}\frac{1}{y}\frac{9}{y}$ Direct - Push Fim: Giles Engineering m m Final Static Water Level DNR Well ID No. Well Name Borchole Diameter WI Unique Well No. Surface Elevation Feet MSL 2.0 Feet MSL Local Grid Origin (estimated:) or Boring Location Local Grid Location 0 . Lat \square N \Box E 0 5\(\Omega\) 1/4 of NE 1/4 of Section _ Long Feet□ W Feet D S Facility ID County Code Civil Town/City/ or Village County 02-52-549890 Kachne Racine Sample Soil Properties Depth in Feet (Below ground surface) ઝ Recovered (in) Soil/Rock Description Blow Counts Compressive Strength Length Att. And Geologic Origin For PID/FID Moisture Content USCS Plasticity Well Diagram Graphic Each Major Unit Liquid Limit Index P 200 1-85 J-PS 3-PS 4-13 C-PS 10 6-PS I hereby certify that the information on this form is true and correct to the best of my knowledge. Signature Engineering sile! >

Form 3300-005 (R 4/08) Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return form to the appropriate DNR office and bureau. See instructions on reverse for more information. Route to: Drinking Water Watershed/Wastewater Remediation/Redevelopment Verification Only of Fill and Seal Waste Management Other: 1. Well Location Information Facility / Owner Information County WI Unique Well # of Hicap # acility Name Removed Well Martinizina acility ID (FID or PWS) Lattitude / Longitude (Degrees and Minutes) Method Code (see instructions) 02-52-549890 License/Permit/Monitoring # ap- 1 Original Well Owner Section Township Range ₩ E 3 or Gov't Lot # 23 W Present-Well Owner Well Street Address Mailing Address of Present Owner Well City, Village or Town Well ZIP Code 1730 State STREET Racine 53404 City of Present Owner State ZIP Code Subdivision Name Kadne Pump, Liner, Screen, Casing & Sealing Material Reason For Removal From Service | WI Unique Well # of Replacement Well JNo Lod N/A Sampling Completel Pump and piping removed? □No MN/A 3. Well / Drillhole / Borehole Information Liner(s) removed? Original Construction Date (mm/dd/yyyy) ∐ No Screen removed? Monitoring Well 06/23/2010 Yes ∐ No Casing left in place? Water Well If a Well Construction Report is available, Was casing cut off below surface? J No Borehole / Drillhole Yes ∐ No Did sealing material rise to surface? Construction Type: Yes UNO KANA Did material settle after 24 hours? Drilled Driven (Sandpoint) Dug If yes, was hole retopped? Yes LINO KINA Drieut If bentonite chips were used, were they hydrated Other (specify): with water from a known safe source? Formation Type: Required Method of Placing Sealing Material ☐ Conductor Pipe-Gravity ☐ Conductor Pipe-Pumped Unconsolidated Formation Screened & Poured Other (Explain): Crawing Total Well Depth From Ground Surface (ft.) Casing Diameter (in.) (Bentonite Chips) Sealing Materials Lower Drillhole Diameter (in.) Casing Depth (ft.) Clay-Sand Slurry (11 lb./gal. wt.) 2.0 Sand-Cement (Concrete) Grout Bentonite-Sand Slurry " " Bentonite Chips Yes Unknown Was well annular space grouted? For Monitoring Wells and Monitoring Well Boreholes Only: If yes, to what depth (feet)? Depth to Water (feet) Bentonite Chips Bentonite - Cement Grout £ /, Granular Bentonite Bentonite - Sand Slurry No. Yards Sacks Sealand Mix Ratio or 5. Material Used To Fill Well / Drillhole From (ft.) To (ft.) or Volume (circle one) Mud Weight 0.5 (prichere Surface 0.10 0.5 16.0 0.25 6. Comments Supervision of Work **DNR Use Only** Name of Person or Firm Doing Filling & Sealing License # Date of Filling & Sealing (mm/dd/yyyy) Date Received Noted By 06/23/2010 ailes Engineering Street or Route U Telephone Number Comments NS WEST OZEGGW BN (262)544-0118

ZIP Code

53186

State

Waukesha

Signature of Person Doing Work

Date Signed

6/24/2010

State of Wis., Dept. of Natural Resources adnr.wi.gov

- 6660: PM

Mauk Osha

JEN MENE I'm

Well / Drillhole / Borehole Filling & Sealing

Form 3300-005 (R 4/08)

Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return form to the appropriate DNR office and bureau. See instructions on reverse for more information. Route to: Remediation/Redevelopment **Drinking Water** Watershed/Wastewater Verification Only of Fill and Seal Waste Management Other: 2. Facility / Owner Information 1. Well Location Information WI Unique Well # of Hicap # Facility Name County Removed Well Martinizira Raino acility ID (FID or PWS) Lattitude / Longitude (Degrees and Minutes) Method Code (see instructions) 02-54-549740 License/Permit/Monitoring # (P-) Original Well Owner Range Section Township Doug there or Gov't Lot # N Present Well Owner Well Street Address I red 2 or graphy true 2 Mailing Address of Present Owner Well ZIP Code Nell City, Village or Town 1230 chart Corpe E SHOW E . 1100 State ZIP Code City of Present Owner Subdivision Name Lot# Kadre 4. Pump, Liner, Screen, Casing & Sealing Material WI Unique Well # of Replacement Well Reason For Removal From Service NO NINA Sneantha in Livel Pump and piping removed? UNO M N/A Well / Dřillhole / Borehole Information Liner(s) removed? Yes No Y Original Construction Date (mm/dd/yyyy) Screen removed? Monitoring Well Yes No NA 210/23/2010 Casing left in place? Water Well Yes No If a Well Construction Report is available. Was casing cut off below surface? Borehole / Drillhole please attach. Yes UNO Did sealing material rise to surface? Construction Type: No A Did material settle after 24 hours? Drilled Driven (Sandpoint) No WNA If ves, was hole retopped? If bentonite chips were used, were they hydrated with water from a known safe source? Dimoin Other (specify): Required Method of Placing Sealing Material Formation Type: Conductor Pipe-Pumped Conductor Pipe-Gravity Unconsolidated Formation Screened & Poured Other (Explain): otal Well Depth From Ground Surface (ft.) Casing Diameter (in.) (Bentonite Chips) Sealing Materials Casing Depth (ft.) ower Drillhole Diameter (in.) **Neat Cement Grout** Clay-Sand Slurry (11 lb./gal. wt.) 3.1. Sand-Cement (Concrete) Grout Bentonite-Sand Slurry " " Bentonite Chips Concrete No. Unknown Nas well annular space grouted? or Monitoring Wells and Monitoring Well Boreholes Only: Depth to Water (feet) yes, to what depth (feet)? Bentonite Chips Bentonite - Cement Grout Granular Bentonite Bentonite - Sand Slurry 11 1,0 No. Yards Sacks Sealant Mix Ratio or Material Used To Fill Well / Drillhole From (ft.) To (ft.) or Volume (circle one) **Mud Weight** Surface 0 15 0.10 14 6 5.25 PROPERTY & OFTENDER 100.0 Comments **DNR Use Only** Supervision of Work Noted By Name of Person or Firm Doing Filling & Sealing Date of Filling & Sealing (mm/dd/yyyy) Date Received The Francisco 06/25,900 Comments treet or Route V Telephone Number

(ish) 5416-0119

Signature of Person Doing Work

Date Signed

6/23/2010

ZIP Code

53:810

State

1.00

dnr.wi.gov Form 3300-005 (R 4/08) Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return form to the appropriate DNR office and bureau. See instructions on reverse for more information. Route to: **Drinking Water** Watershed/Wastewater Remediation/Redevelopment Verification Only of Fill and Seal Waste Management Other: 1. Well Location Information 2. Facility / Owner Information County WI Unique Well # of Hicap # Facility Name Removed Well Martinizina Racine acility ID (FID or PWS) Lattitude / Longitude (Degrees and Minutes) Method Code (see instructions) 02-52-549890 License/Permit/Monitoring # Original Well Owner Section Township Range E 3 23 or Gov't Lot# Present-Well Owner Well Street Address Mailing Address of Present Owner Well City, Village or Town Weil ZIP Code 1730 Stare Street Racine 53404 City of Present Owner State ZIP Code Subdivision Name Kache Pump, Liner, Screen, Casing & Sealing Material Reason For Removal From Service | WI Unique Well # of Replacement Well Jno Man/A Sampling Completed Pump and piping removed? L No 3. Well / Drillhole / Borehole Information Liner(s) removed? Original Construction Date (mm/dd/yyyy) ∐ No Screen removed? Monitoring Well 06/23/2010 Casing left in place? Water Weil If a Well Construction Report is available, Was casing cut off below surface? Borehole / Drillhole please attach. L No Did sealing material rise to surface? Construction Type: Did material settle after 24 hours? Drilled Driven (Sandpoint) Dug If yes, was hole retopped? If bentonite chips were used, were they hydrated Other (specify): with water from a known safe source? Required Method of Placing Sealing Material Formation Type: Conductor Pipe-Pumped Conductor Pipe-Gravity Unconsolidated Formation Bedrock Screened & Poured Other (Explain): ______ Total Well Depth From Ground Surface (ft.) Casing Diameter (in.) (Bentonite Chips) Sealing Materials ower Drillhole Diameter (in.) Casing Depth (ft.) Neat Cement Grout Clay-Sand Slurry (11 lb./gal. wt.) Sand-Cement (Concrete) Grout Bentonite-Sand Slurry " " Bentonite Chips Yes Unknown Vas well annular space grouted? For Monitoring Wells and Monitoring Well Boreholes Only: Depth to Water (feet) f yes, to what depth (feet)? Bentonite Chips Bentonite - Cement Grout Granular Bentonite Bentonite - Sand Slurry No. Yards Sacks Sealand Mix Ratio or i. Material Used To Fill Well / Drillhole To (ft.) From (ft.) or Volume (circle one) **Mud Weight** 0 5 0.10 Surface 0.5 12.0 0.25 6. Comments Supervision of Work DNR Use Only Name of Person or Firm Doing Filling & Sealing License # Date of Filling & Sealing (mm/dd/yyyy) Date Received Noted By 0106/26/90 Telephone Number Comments

(262)544-0118

Signature of Person Doing Work

Date Signed

10/23/2010

ZIP Code

53186

State

Form 3300-005 (R 4/08)

Page 1 of 2

Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return form to the appropriate DNR office and bureau. See instructions on reverse for more information.

Verification Only of Fill and Seal	Drinking Water Waste Manageme	ent	Watershed/Wa	astewater [Remedia	ation/Redevelopment
1. Well Location Information		2. Facility	/ Owner Info	ormation		
County WI Unique Well # of Removed Well — —	Hicap #	Facility Nam Martin Facility ID (F				
Lattitude / Longitude (Degrees and Minutes) Meth	od Code (see Instructions)	License/Peri	A - 54 98° mit/Monitoring			
or Gov't Lot # Well Street Address	ownship Range K E W	Original Well Doug Present Well	Berry			
1730 State Steet Well City, Village or Town Racine	Well ZIP Code	1	ess of Presen			
Subdivision Name	Lot#	City of Prese			State WI	ZIP Code
Sansling completel -	ell # of Replacement Well	Pump and	piping remov	n, Casing & Seali red?	□Y	es No N/A
1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ction Date (mm/dd/yyyy)	Screen re	moved?		ΠY	es No N/A es No N/A es No N/A
Water Well Water Well Ob / 23 / 20 O			Casing left in place? Was casing cut off below surface? Did sealing material rise to surface? Yes □ No □ N/ Yes □ No □ N/			
Construction Type: Drilled Driven (Sandpoint) Other (specify): Driven Purch	Dug	Did mater	ial settle after was hole reto	24 hours?		es No N/A
Formation Type: Unconsolidated Formation Detail Well Depth From Ground Surface (ft.) Bed Casin	drock g Diameter (in.)	Conduction Screen (Benton	etor Pipe-Gravi ed & Poured hite Chips)	Sealing Material ty Conductor F Other (Expla		
2.0	g Depth (ft.)		ement Grout ement (Concre	ete) Grout	-	Slurry (11 lb./gal. wt.) Sand Slurry " "
Vas well annular space grouted? Yes Yes Yes Depth to W		For Monitorin		onitoring Well Borel Bentor Bentor	holes Only: nite - Cemer nite - Sand S	nt Grout
. Material Used To Fill Well / Drillhole		From (ft.)	To (ft.)	No. Yards Sacks or Volume (circl	Sealand e one)	Mix Ratio or Mud Weight
Concrete Granular Benjoine		Surface 0.5	12.0	0.10		
6. Comments						
Supervision of Work					NR Use C	Only
Name of Person or Firm Doing Filling & Sealing L	06/23	0106/5	.(mm/dd/yyyy)	Date Received	Note	
NS Warson Dr		262) 544-6	311	Comments		
Ew ankesha Los		Signature of	Person Doing	VVork	Date i.	Signed

Form 3300-005 (R 4/08)

Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return form to the appropriate DNR office and bureau. See instructions on reverse for more information.

	ſ	Route to:					
Verification Only of Fill and	l Seal	Drinking Water		Watershed/Wa	stewater	Remedia	ation/Redevelopment
		Waste Managemen	nt 🗌	Other:			
Well Location Information			2. Facility	/ Owner Info	rmation		
County WI Unique V	Nell#of H	icap #	Facility Nam				
Removed W			Martin				
Racine			Facility ID (F				
Lattitude / Longitude (Degrees and Mir	nutes) Method	Code (see instructions)	, ,	2-54989	Ď		
	_ 'N		License/Peri	nit/Monitoring i	#		
•	·wl		1 ap- 5	>			
1/4 51 1/4 NE Se	ction Town	ship Range NA E	Original Wel	Owner			
or Gov't Lot #	8 3	\ <u>E</u>	Doug	Berry			
		N & S W	Present-Wel	Owner "			
Well Street Address							
17-30 State Street		Well ZIP Code	1 -	ess of Present			
Well City, Village or Town		5 3404		عبير كيمو	<u> </u>		
Subdivision Name		Lot#	City of Prese				ZIP Code
Subdivision Name		Lot #	Racine			WI	
Reason For Removal From Service V	W Unique Well	f of Replacement Well	4. Pump, l	iner, Screen	, Casing & Se	aling Materi	ial
Sampling Completel	Vi Orlique VVeli	or replacement ven	Pump and	piping remove	ed?		res No NA
3. Well / Drillhole / Borehole Info			Liner(s) re	. , –			res No N/A
		n Date (mm/dd/yyyy)	Screen re				res No No NA
1 1 2 4 1/4 1/4 -	6/23/20			ft in place?			res No NA
Mater Mell	-14						
1 1 2	vveil Constructionse attach.	n Report is available,	1	ng cut off below			
Construction Type:			1	g material rise		l <u>M</u> y	
	:_\	Dug		ial settle after 2			res No No NA
Drilled Driven (Sand		1 Dug		was hole retor	pped? sed, were they hy	γ∐ — betsthy	
Other (specify): Direct	rush		with water	from a known	safe source?	drated My	res □No □N/A
Formation Type:			Required Me	thod of Placing	Sealing Materia		
Unconsolidated Formation	Bedroo	k		ctor Pipe-Gravit		or Pipe-Pumpe	
Total Well Depth From Ground Surface	e (ft.) Casing D	iameter (in.)		ed & Poured nite Chips)	Other (Ex	plain):(~~	aury
			Sealing Mate	· · · /		_	
.ower Drillhole Diameter (in.)	Casing D	epth (ft.)	Neat C	ement Grout		Clay-Sand	Slurry (11 lb./gal. wt.)
2.5			Sand-0	Cement (Concre	ete) Grout	Bentonite-	Sand Slurry " "
Vas well annular space grouted?	Yes	No Unknown	Concre	te		Bentonite	Chips
			For Monitorin	ng Wells and Mo	onitoring Well Bo	rehoies Only:	•
yes, to what depth (feet)?	Depth to Wate	•		ite Chips	☐ Ben	tonite - Ceme	nt Grout
	N	A	K Granul	ar Bentonite		tonite - Sand	· · · · · · · · · · · · · · · · · · ·
i. Material Used To Fill Well / Drillh	oie		From (ft.)	To (ft.)	No. Yards Sac or Volume (ci		Mix Ratio or Mud Weight
Concrote			Surface	0.5	0.10		
Granular Bentonine			0.5	12.0	0.25		
6. Comments							
1							
. Supervision of Work						DNR Use	Only
Name of Person or Firm Doing Filling 8	& Sealing Lice	1	, -	g.(mm/dd/yyyy)	Date Received	Note	ed By
ailes Engineeting	,	06/23					
treet or Route U			lephone Num		Comments		
1 moon dot 028 46 W PN) [7697) 544-1				
ity	State	ZIP Code	Signature of	Rerson Doing	Work	1 .	e Signed
Wantesha	LUT	53186	1, 3	Suca			123/2010

NS WOSSES DELASON DE

w) aukesha

State

LUT

ZIP Code

53186

Well / Drillhole / Borehole Filling & Sealing

Form 3300-005 (R 4/08) Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return form to the appropriate DNR office and bureau. See instructions on reverse for more information. Route to: **Drinking Water** Watershed/Wastewater Remediation/Redevelopment Verification Only of Fill and Seal Waste Management Other: Facility / Owner Information 1. Well Location Information WI Unique Well # of Hicap # Facility Name County Removed Well Martinizing Kache acility ID (FID or PWS) Lattitude / Longitude (Degrees and Minutes) Method Code (see instructions) 02-52-549890 License/Permit/Monitoring # ap- 10 Original Well Owner Section Township Range ME Doug Berry or Gov't Lot # Present-Well Owner Well Street Address Mailing Address of Present Owner Well City, Village or Town Well ZIP Code 1730 Stare STREET 53404 Racine City of Present Owner State ZIP Code Subdivision Name Radne WI Pump, Liner, Screen, Casing & Sealing Material Reason For Removal From Service | WI Unique Well # of Replacement Well Sampling Completel Pump and piping removed? LYes No NA 3. Well / Drillhole / Borehole Information Liner(s) removed? Yes No NA Original Construction Date (mm/dd/yyyy) Screen removed? Monitoring Well Yes No NA 06/23/2010 Casing left in place? Water Well Yes No If a Well Construction Report is available, Was casing cut off below surface? X Borehole / Drillhole please attach. MYes No Did sealing material rise to surface? Construction Type: Yes LINO KINA Did material settle after 24 hours? Dug Drilled Driven (Sandpoint) If yes, was hole retopped? Yes No KNA If bentonite chips were used, were they hydrated with water from a known safe source? DINELT Other (specify): Required Method of Placing Sealing Material Formation Type: Conductor Pipe-Gravity Conductor Pipe-Pumped Unconsolidated Formation Bedrock Screened & Poured Other (Explain): Grading Total Well Depth From Ground Surface (ft.) Casing Diameter (in.) (Bentonite Chips) Sealing Materials Casing Depth (ft.) ower Drillhole Diameter (in.) Neat Cement Grout Clay-Sand Slurry (11 lb./gal. wt.) Sand-Cement (Concrete) Grout Bentonite-Sand Slurry " " Bentonite Chips Was well annular space grouted? Unknown For Monitoring Wells and Monitoring Well Boreholes Only: If yes, to what depth (feet)? Depth to Water (feet) Bentonite Chips Bentonite - Cement Grout 4.0 Granular Bentonite Bentonite - Sand Slurry No. Yards Sacks Sealand Mix Ratio or 5. Material Used To Fill Well / Drillhole From (ft.) To (ft.) or Volume (circle one) Surface 0.5 0.10 (prichere 0.5 10.0 0.25 Granula 6. Comments . Supervision of Work **DNR Use Only** Name of Person or Firm Doing Filling & Sealing License # Date of Filling & Sealing (mm/dd/yyyy) Date Received Noted By ailes Engineerina 06/23/2010 treet or Route U Telephone Number Comments

(262)541-0118

Signature of Person Doing Work

Date Signed

6/23/2010

dnr.wi.gov Form 3300-005 (R 4/08) Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return form to the appropriate DNR office and bureau. See instructions on reverse for more information. Route to: Drinking Water Watershed/Wastewater Remediation/Redevelopment Verification Only of Fill and Seal Waste Management Other: 1. Well Location Information Facility / Owner Information County WI Unique Well # of Hicap # Facility Name Removed Well Martinizina Racino acility ID (FID or PWS) Lattitude / Longitude (Degrees and Minutes) Method Code (see instructions) 02-52-549890 icense/Permit/Monitoring # Original Well Owner 1/4/1/4 = 1 Range Section Township ₩ E Doug 23 or Gov't Lot # Present-Well Owner Weil Street Address Mailing Address of Present Owner Well City, Village or Town Well ZIP Code 1730 Stare Street 53404 Racine ity of Present Owner State ZIP Code Subdivision Name Lot# WI Kadne 4. Pump, Liner, Screen, Casing & Sealing Material WI Unique Well # of Replacement Well Reason For Removal From Service Sampling completel Pump and piping removed? ∐no Man/A 3. Well / Drillhole / Borehole Information Liner(s) removed? ∐ No Original Construction Date (mm/dd/yyyy) Screen removed? Monitoring Well 06/23/2010 Casing left in place? Water Well If a Well Construction Report is available, Was casing cut off below surface? Borehole / Drillhole Yes J No. Did sealing material rise to surface? Construction Type: No Did material settle after 24 hours? Drilled Dug Driven (Sandpoint) JNo MN/A If yes, was hole retopped? DIMELT If bentonite chips were used, were they hydrated Other (specify): with water from a known safe source? Required Method of Placing Sealing Material Formation Type: Conductor Pipe-Pumped Conductor Pipe-Gravity Unconsolidated Formation Bedrock Screened & Poured Other (Explain): Coravity Total Well Depth From Ground Surface (ft.) Casing Diameter (in.) (Bentonite Chips) Sealing Materials Casing Depth (ft.) ower Drillhole Diameter (in.) Neat Cement Grout Clay-Sand Slurry (11 lb./gal. wt.) 2.0 Sand-Cement (Concrete) Grout Bentonite-Sand Slurry " " Bentonite Chips Unknown Vas well annular space grouted? or Monitoring Wells and Monitoring Well Boreholes Only: yes, to what depth (feet)? Depth to Water (feet) Bentonite Chips Bentonite - Cement Grout 3.0 Granular Bentonite Bentonite - Sand Slurry No. Yards Sacks Sealand or Volume (circle one) Mix Ratio or Material Used To Fill Well / Drillhole From (ft.) To (ft.) Mud Weight 0 15 0.10 Surface 0.5 10.0 0.25 6. Comments 7. Supervision of Work **DNR Use Only** Name of Person or Firm Doing Filling & Sealing License # Date of Filling & Sealing (mm/dd/yyyy) Date Received Noted By Siles Engineering 0106/23/2010 treet or Route Q Telephone Number Comments

(767) 5th-0118

Signature of Person Doing Work

Date Signed

6/23/2010

State

加生

Wankesha

ZIP Code

53186

Facility/Project Name	Local Grid Location	of Well		Well Name	
1730 State Street, Racine, Wiscon		N.	ft. E. W.	MW-1	
Facility License, Permit or Monitoring No.	Local Grid Origin X	(estimated:) or Long.	Well Location	Wis. Unique Well No. DNR Well IIVW300) No.
Facility ID	St. Plane Section Location of V	ft. N,	ft. E. S/C/N	Date Well Installe 1/ 25 _ /2010 m m d d v v	
Type of Well Well Code 11 / mw	NE_1/4 of SE_1/	4 of Sec. 8_,T. 3_ ative to Waste/Source	N, R. 23 W	Well Installed By: Name (first, last) a Kieth Flowers	
Distance from Waste/ Enf. Stds. Sourceft. Apply _	u Upgradient	s Sidegradient n Not Known		Giles Engineering Associates, Inc.	_
A. Protective pipe, top elevation	ft. MSL —		. Cap and lock?	IX Yes □	No
B. Well casing, top elevation	ft. MSL		2. Protective cover p		
a,			a. Inside diameter. b. Length:		_ in. _ ft.
C. Land surface elevation	ft. MSL		c. Material:	Steel IX	
D. Surface seal, bottom ft. MS	Lor ft.	A: V	C. Material:	Other □	
12. USCS classification of soil near screen	1243		d. Additional prot		4.144.434
GP □ GM □ GC □ GW □ S	W SP		If yes, describe		
Bedrock			3, Surface scal:	Concrete IX	
13. Sieve analysis performed?	es IX No			Other □	
14. Drilling method used: Rota Hollow Stem Au	ary □ 50		. Material between	well casing and protective pipe:	\$100.000°
	her IX	 		Other □	10000000
			A annular arrana ana		
15. Drilling fluid used: Water □ 0 2	Air 🗆 01		5. Annular space sea	ud weight Bentonite-sand slurry	
	one IX 99	888 889		and weight Bentonite slurry	
				te Bentonite-cement grout	
16. Drilling additives used?	es IX No			volume added for any of the above	
Describe			i, ilow mstancer.	Tremie pumped	
17. Source of water (attach analysis, if requi	ired):	** **		Gravity X	~ -
			. Bentonite seal:	a. Bentonite granules	
				1/8 in. □1/2 in. Bentonite chips □	_
E. Bentonite seal, top ft. MSI	or _1ft.		c5	Other 🗆	
F. Fine sand, top ft. MSl	or_4ft.\		. Fine sand meterial a. Red Flint # 15	: Manufacturer, product name & mee	sh size
G. Filter pack, top ft. MSl	or _5 ft.	1 3	b. Volume added	_0.25ft ³	-500:000
H. Screen joint, top ft. MSI				al: Manufacturer, product name & me	sh size
I. Well bottom ft. MSI	or 16 fts		b. Volume added . Well casing:	2 ft 3 Flush threaded PVC schedule 40 [X	
. Wen boltom	301_101		. Wen casing:	Flush threaded PVC schedule 80	
I. Filter pack, bottom ft. MSI	or 16 ft.		Samon materials I	Other	SAMA.
K. Borehole, bottom	or _ 16 ft.		a. Screen type:	Factory cut [X	_
L. Borehole, diameter2 in.				Continuous slot Other	
M. O.D. well casing _ 0.75_ in.			b. Manufacturer 2 c. Slot size:	Cimco O.	01 in.
			d. Slotted length:	.10	ft.
N. I.D. well casing 0.55_ in.		11	. Backfill material (below filter pack): None IX Other	
	form is true and correct				

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 293, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

	Watershed/Wastewater Remediation/Redevelopment[X]	Waste Management	MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 7-98
Facility/Project Name	Remediation/Redevelopment[X] Local Grid Location of Well		Well Name
1730 State Street, Racine, Wiscon	<u></u>	N. Sfr. D.	MW-2
Facility License, Permit or Monitoring No.	Local Grid Origin X (estimated Lat. "L	ted: 🔲) or Well Location 🗀	Wis. Unique Well No. DNR Well ID NoVW301
Facility ID	1		Does Well Installe
· woning and		ft. E. S/C/N	_1/_/_2/_/_010
Type of Well	Section Location of Waste/Sour	rce IX E	m m d d y y y y Well Installed By: Name (first, last) and Firm
Well Code 11 / mw	NE_1/4 of SE_ 1/4 of Sec	8T3N, R23 W	- Kieth Flowers
Distance from Waste/ Enf. Stds.	Location of Well Relative to W	aste/Source Gov. Lot Number Sidegradient	
4 1	d Downgradient n		Giles Engineering Associates, Inc.
A. Protective pipe, top elevation	ft_MSL	1. Cap and lock?	IX Yes □ No
B. Well casing, top elevation	ft. MSL	2. Protective cover	• •
_,,,,,,	11	a. Inside diamete	
C. Land surface elevation	ft. MSL	b. Length:	1ft.
D. Surface seal, bottom ft. MS	er ft.	c. Material:	Steel X 04
	18243055343		Other 🗆 🔔
12. USCS classification of soil near screen		d. Additional pro	
	SW C SP C	If yes, describ	e:
SM SC ML MH C	L K CH LI	3, Surface scal:	Bentonite 30
	🕷	S. Burrace sear.	Concrete IX 01
13. Sieve analysis performed?	Yes IX No	—	Other 🗆
14. Drilling method used: Ro	tary 🗆 50	4. Material between	well casing and protective pipe:
Hollow Stem Av			Bentonite IX 30
o	ther 🗆 📖 📗		Other 🗆 🧱
		5. Annular space se	
15. Drilling fluid used: Water □ 0 2	Air □ 01 SS		nud weight Bentonite-sand slurry 35
Drilling Mud □ 0 3	None IX 99		nud weight Bentonite slurry 3 1
		d % Benton	nite Bentonite-cement grout 5 0
16. Drilling additives used?	Yes X No		volume added for any of the above
	💥	f. How installed	m
Describe	1000	1. How mistance	Tremie pumped 02
17. Source of water (attach analysis, if requ	ıired):		Gravity IX 08
		6. Bentonite seal:	_
		KOX	3/8 in. □ 1/2 in. Bentonite chips □ 3 2
E. Bentonite seal, top ft. MS	Lor 1 ft.,	1000	Other 🗆 📰
			(Sale 2 ###
F. Fine sand, top ft. MS	L or _ 4 ft.	COM /	al: Manufacturer, product name & mesh size
		a. Red Flint #15	
G. Filter pack, top ft. MS	L or _ 5 ft.	b. Volume added	
			ial: Manufacturer, product name & mesh size
H. Screen joint, top ft. MS	L or _ 6 it.	a. Red Flint #40	
		b. Volume adde	d_7 ft ³
I. Well bottom ft. MS	Lor_16ft.	9. Well casing:	Flush threaded PVC schedule 40 [X 23
			Flush threaded PVC schedule 80 24
J. Filter pack, bottom ft. MS	Lor_16ft.		Other 🗆 🚆
		10. Screen material:	
K. Borehole, bottom ft. MS	L or _ 16 ft.	a. Screen type:	Factory cut [X 11
			Continuous slot 0 1
L. Borehole, diameter _ 8 in.	(ELL)		Other 🗆
		b. Manufacturer	Timeo
M. O.D. well casing _ 2.38_ in.		c. Slot size:	0.01 in.
		d. Slotted length	.10 ft.
N. I.D. well casing _ 2 in.		11. Backfill material	_
			Other
I hereby certify hat the information on this	form is true and correct to the be	est of my knowledge.	
Signature	Firm		
16 (ineering Associates, Inc.	

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be

	Watershed/Wastewater Remediation/Redevelo	гv1	Waste Mana		MONITORING WELI Form 4400-113A	L CONSTR Rev. 7-98	UC'	TION
Facility/Project Name 1730 State Street, Racine, Wiscon	Local Grid Location	of Well		ft. E.	Well Name MW-3			
Facility License, Permit or Monitoring No.	Local Grid Origin X	(estimate	d: 🔲) or	Well Location	Wis. Unique Well No. VW302	DNR Well	ID l	Na.
Facility ID	St. Plane		_		Data Wall Installe	2/_ /_01	 0_	
Type of Well	Section Location of V		e	IX E	Well Installed By: Nan	d d v		
Well Code 11 / mw	NE_1/4 of SE_1		3_,T3	N, R. 23 \ W	1	wers	, and	
Distance from Waste/ Enf. Stds.	Location of Well Rel u Upgradient	lative to Was	ste/Source Sidegradient	Gov. Lot Number				'
Sourceft. Apply	d Downgradien	_	Not Known		Giles Engineering A	ssociates, in	с.	-
A. Protective pipe, top elevation	ft MSL —			. Cap and lock?		X Yes		No
P. Well assiss top elevation	ft. MSL	+0	2	. Protective cover	•	0		
				a. Inside diamete	r:			
C. Land surface elevation	ft. MSL 🕿	ا البســـ	No. of Street, or other Persons	b. Length: c. Material:		Steel		_ II. 0 4
D. Surface seal, bottom ft. MS	SL or ft.			c. Material:		Other		
12. USCS classification of soil near screen	1825			d. Additional pro	tection?	☐ Yes		,,,
	SW 🗆 SP 🗆	<u> </u>	1	-	e:		_	
SM SC ML MH C	CL X CH 🗆		" / /	•		Bentonite		30
Bedrock		XX	₩ \ 3	, Surface scal:		Concrete	_	0 1
13. Sieve analysis performed?	Yes IX No		₩ \			Other		
14. Drilling method used: Ro	tary □ 50		₩ 4	. Material between	well casing and protecti	ve pipe:		7mg.4mg
Hollow Stem Av						Bentonite	X	30
	ther 🗆 🏬		*			Other		***
14 D 1991 D 119 1 Water [7 0 2	🗆			. Annular space se				3 3
15. Drilling fluid used: Water □ 0 2 Drilling Mud □ 0 3	Air 0 0 1 None IX 99				nud weight Bentonite			3 5
Dining with 1 (1)	None ix 33		₩	Lbs/gal r	nud weight Bent	onite slurry		3 1
16. Drilling additives used?	Yes IX No		(S)		ite Bentonite-c		Ц	50
			₩ •		volume added for any	Tremie		0.1
Describe	<u>_</u>		∰ f	How installed		nie pumped		01
17. Source of water (attach analysis, if requ	uired):		₩		TICK	Gravity		02
	İ		6	. Bentonite seal:	a. Benton	ite granules		33
			₩ .		3/8 in. □ 1/2 in. Ber	-	_	32
E. Bentonite seal, top ft. MS	L or _1 ft.					•		***
F. Fine sand, top ft. MS	ttor 4 ft		7.	. Fine sand materia	al: Manufacturer, produ	ct name & m	nesh	size
1. The said, up	2012 122216			a. Red Flint # 15				
G. Filter pack, top ft. MS	SL or _5 ft.\					3		
5.310			8.		ial: Manufacturer, produ	ict name & r	nesi	
H. Screen joint, top ft. MS	L or _ 0 II.			a. Red Flint # 40	1 7 5	3		
t Wall harrow ft MS	SL or _ 13 ft.			b. Volume added . Well casing:	Flush threaded PVC so	shedule 40	ľV	23
I. Well bottom ft. MS	L 01 _ 13 11.			. Wen casing:	Flush threaded PVC so			24
J. Filter pack, bottom ft. MS	Lor 13 ft.				This included to se	Other	_	27
1. Pitter pack, bottom	201		10	. Screen material:	PVC	Other	_	
K. Borehole, bottom ft. MS	L or _ 13 ft.		2	a. Screen type:		Factory cut	IX	1 1
						inuous slot		0 1
L. Borehole, diameter _ 8 in.		1	a \			Other	_	
				b. Manufacturer	Timco			
M. O.D. well casing _ 2.38_ in.			\	c. Slot size:				1_ in.
			\	d. Slotted length	:			_ ft.
N. I.D. well casing in.			11	. Backfill material	(below filter pack):	None		
-111						Other		
I hereby certify that the information on this		ect to the bes	t of my know	viedge.				
Signature	Firm	Giles Engin	eering Assoc	ciates, Inc.				

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

	Name disting /Dadawalasan ant[V]	Waste Management Other	MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 7-98
Facility/Project Name 1730 State Street, Racine, Wiscon	Local Grid Location of Well	ΠF	Well Name MW-4
Facility License, Permit or Monitoring No.	Local Grid Origin X (estimated	d: 🗌) or Well Location 🔲	Wis. Unique Well No. DNR Well ID No.
	Lat, Lo	ng.	VW303
Facility ID	St. Plane ft_ N,		Date Well Installe 1/_/_2/_/_010
T. CW.	Section Location of Waste/Source	2	m m d d v v v v
Type of Well Well Code 11 / mw	NE_1/4 of SE_1/4 of Sec_8		Kieth Flowers
Distance from Waste/ Enf. Stds.	Location of Well Relative to Was	te/Source Gov. Lot Number	
Sourceft. Apply _	,	Vot Known	Giles Engineering Associates, Inc.
A. Protective pipe, top elevation	ft. MSL	1. Cap and lock?	X Yes □ No
B. Well casing, top elevation	ft. MSL	2. Protective cover	
	ft. MSL	b. Length:	1 ft.
	WINDS OF THE PARTY	c. Material:	Steel [X] 0 4
D. Surface seal, bottom ft. MS			Other 🗆 💆
12. USCS classification of soil near scree	1 🔪 14 1	d. Additional pro	
GP GM GC GW S	SW X SP C	If yes, describ	Bentonite 30
Bedrock 🗆		3, Surface scal:	Concrete IX 01
13. Sieve analysis performed?	Yes IX No	\	Other 🗆 🧮
14. Drilling method used: Ro	tary □ 50	4. Material between	n well casing and protective pipe:
Hollow Stem Av			Bentonite IX 30
	ther 🗆	<u> </u>	Other a. Granular/Chipped Bentonite 3 3
15. Drilling fluid used: Water □ 0 2	Air □ 01	5. Annular space so	mud weight Bentonite-sand slurry 35
	None IX 99	bLos/gat :	mud weight Bentonite slurry 31
16 8 1111 1111 1111	Vac IV No	8 d % Benton	nite Bentonite-cement grout 5 0
16. Drilling additives used?	Yes IX No	eFt	volume added for any of the above
Describe		f. How installed	
17. Source of water (attach analysis, if requ	uired):	***	Tremie pumped 0 2 Gravity X 08
		6. Bentonite seal:	a. Bentonite granules 33
		В. □1/4 in. №	3/8 in. □ 1/2 in. Bentonite chips □ 3 2
E. Bentonite seal, top ft. MS	Lor_1ft.	c ^{2.5}	Other 🗆 🏬
F. Fine sand, top ft. MS	L or _ 4 ft.	DOM	ial: Manufacturer, product name & mesh size
		a. Red Flint # 15	
G. Filter pack, top ft. MS	L or _5 ft.	** \$	d_1n³
H. Screen joint, top ft. MS	Lor 6 ft	8. Filter pack mate: a. Red Flint # 40	rial: Manufacturer, product name & mesh size
n. screen joint, top		b. Volume adde	
I. Well bottomft. MS	Lor_16ft.	9. Well casing:	Flush threaded PVC schedule 40 [X 2 3
J. Filter pack, bottomft_MS	L or _ 16 ft.		Flush threaded PVC schedule 80 2 4 Other Other
	. 16	10. Screen material:	
K. Borehole, bottom ft. MS	L or _ 16 II.	a. Screen type:	Factory cut [X 11
L. Borehole, diameter8 in.		<u> </u>	Continuous slot Other
L. Boreroie, diameter m.		b. Manufacturer	Timco
M. O.D. well casing _ 2.38_ in.		c. Slot size:	<u>0.01</u> in.
N. I.D. well casing _ 2 in.		d. Slotted length	h: $.10$ ft. I (below filter pack): None \Box 14
* /			Other 🗆
I hereby certify that the information on this		t of my knowledge.	
Signature	Firm Giles Engin	eering Associates, Inc.	

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a foreiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

		te Management [MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 7-98
Facility/Project Name 1730 State Street, Racine, Wiscon	Remediation/Redevelopment[X] Other Local Grid Location of Well P. S	fr. DE.	Well Name MW-5
Facility License, Permit or Monitoring No.	Local Grid Origin X (estimated: Lat.) or Well Location 🗆	Wis. Unique Well No. DNR Well ID No
Facility ID	St. Planeft. N,		Date Well Installe 7/_/22/_010
Type of Well Well Code 11 / mw	Section Location of Waste/Source NE_1/4 of SE_1/4 of Sec_8_, T		m m d d y y y
Distance from Waste/ Enf. Stds. Source ft. Apply	Location of Well Relative to Waste/So u Upgradient s Sidege d Downgradient n Not K	radient	Giles Engineering Associates, Inc.
	ft. MSL	I. Cap and lock?	IX Yes □ No
B. Well casing, top elevation	ft. MSL	2. Protective cover a. Inside diamete	
C. Land surface elevation	ft. MSL	b. Length:	1 ft.
D. Surface seal, bottom ft. MS	Server 101 1 1200	c. Material:	Steel IX 04
12. USCS classification of soil near screen		d, Additional pro	Other D
GP □ GM □ GC □ GW □ S	SW 🗆 SP 🗆 🔀 🖹		De:
_	CLX CH -	3. Surface scal:	Bentonite 🗆 30
Bedrock ☐ 13. Sieve analysis performed? ☐ 1	Yes IX No	3, Bullace scal.	Concrete X 01
_	1 1503 15501	A Matarial batusas	Other Other on well casing and protective pipe:
14. Drilling method used: Rot Hollow Stem At		4. Maichai deiweei	Bentonite IX 30
	nther 🗆 💢 🐰		Other 🗆
		5. Annular space se	
	Air 🗆 01	bLbs/gal 1	mud weight Bentonite-sand slurry D 35
Drilling Mud 🗆 0 3	None IX 99	cLbs/gal i	mud weight Bentonite slurry D 31
16. Drilling additives used?	Yes IX No		nite Bentonite-cement grout ☐ 50
_		V. ————	volume added for any of the above Tremie 0 1
Describe		f. How installed	Tremie pumped 0 02
17. Source of water (attach analysis, if requ	ıired):		Gravity IX 08
		6. Bentonite seal:	
			3/8 in. □ 1/2 in. Bentonite chips □ 3 2
E. Bentonite seal, top ft. MS	L or _1 ft.	/ c5	Other 🗆 🚆
F. Fine sand, top ft. MS	L or _ 2 ft.	7. Fine sand meteri	al: Manufacturer, product name & mesh size
G. Filter pack, top ft. MS	Lor_3ft.	b. Volume adde	
H. Screen joint, top ft. MS	L or _3 ft.	8. Filter pack mater a Red Flint # 40	rial: Manufacturer, product name & mesh size
I. Well bottom ft. MS	SL or _ 13 ft.	b. Volume adde9. Well casing:	Flush threaded PVC schedule 40 [X 2 3
J. Filter pack, bottom ft. MS	L or _13ft.		Flush threaded PVC schedule 80 2 4 Other Other
K. Borehole, bottom ft. MS	L or _ 13 ft.	10. Screen material: a. Screen type:	Factory cut [X 11
L. Borehole, diameter _ 8 in.			Continuous slot D 0 I Other D
M. O.D. well casing _ 2.38_ in.	`	b. Manufacturer c. Slot size:	<u>0.01</u> in.
N. I.D. well casing _ 2 _ in.		d. Slotted length	(below filter pack): None IX 14
I hereby certify that the information on this	form is true and correct to the best of a	ny knowledse	Other 🗆 💹
Signature	Firm	iij kilonicuge.	
	1	ng Associates, Inc.	

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

	Watershed/Wastewater Remediation/Redevelor	r	1anagement	MONITORING WELL CONSTRUCTION TO THE PORT OF THE PORT O	CTION
Facility/Project Name	Remediation/Redevelor Local Grid Location o	of Well CON		Well Name	
1730 State Street, Racine, Wiscon		ft 🗀 S:	ft. □ E.	MW-6	
Facility License, Permit or Monitoring No.	Local Grid Origin X			vW314	
Facility ID	St. Plane	-		The Statt Leavelle 4	
	Section Location of W			m m d d y y	<u>v</u> <u>v</u>
Type of Well	NE_1/4 of SE_1/4		3 N, R. 23X V	Well Installed By: Name (first, last) an	ıd Firm
Well Code 11 / mw	Location of Well Rela			Beuford Jones	_
Distance from Waste/ Enf. Stds. Source ft. Apply	u □ Upgradient d □ Downgradient	s 🗌 Sidegradi	ent	Giles Engineering Associates, Inc.	_
A. Protective pipe, top elevation	ft_MSL —		- 1. Cap and lock?	IX Yes □	No
D. W. H	ft. MSL		2. Protective cover		
			a. Inside diamet		
C. Land surface elevation	ft. MSL		b. Length:	1	_
D. Surface seal, bottom ft. MS	er fr		c. Material:	Steel IX	
	E-37			Other 🗆	-
12. USCS classification of soil near screen		The last of the la	d. Additional pr		No
	SW SP CH CH CH CH CH CH CH CH CH CH CH CH CH	/# # / ,	If yes, descri	be:	
Bedrock	L W CH D		3. Surface scal:	Bentonite 🗆	
	Van IV NT.	- W W \	\	Concrete X	
	Yes IX No	₩ ₩		Other 🗆	
	tary 🗆 50	XX XX	4. Material between	on well casing and protective pipe:	
Hollow Stem Av				Bentonite IX	
	ther 🗆 🕮	₩ ₩		Other 🗆	- 144-144
45 7 77 5 44 4 77 5 6 0 0			5. Annular space s		
15. Drilling fluid used: Water 0 2	Air 01		bLbs/gal	mud weight Bentonite-sand slurry \Box	3 5
Drilling Mud □ 0 3	None IX 99		cLbs/gal	mud weight Bentonite slurry	3 1
16. Drilling additives used?	Yes IX No			onite Benionite-cement grout 🗆	50
10. Dilling additives asset.	100 [[140	₩ ₩	eF	t 3 volume added for any of the above	
Describe		 	f. How installe		• •
17. Source of water (attach analysis, if requ				Tremie pumped 🛘	02
17. Source of water (attach marysis, if requ	mod).			Gravity X	0 0
			6. Bentonite seal:	a. Bentonite granules	
				X3/8 in. □ 1/2 in. Bentonite chips □	
E. Bentonite seal, top ft. MS	L or _ I II.		/ c5	Other	944. 14 7.
F. Fine sand, top ft. MS	SL or _ 2ft.		7. Fine sand mater	rial: Manufacturer, product name & mesi	h size
1. The said, top	Z 01 _ Z 11		a Red Flint # 1	5	
G. Filter pack, top ft. MS	SL or _3 ft.		b. Volume adde		-
0.1 Hot pack, top =	20			erial: Manufacturer, product name & mes	ch ciza
H. Screen joint, top ft. MS	L or _ 3 ft.		a Red Flint # 40	0	SIL SIZE
I Well bettern & Mc	SL or _ 13 ft.		b. Volume add		2.2
I. Well bottom ft. MS	r or _ 13 11.		9. Well casing:	Flush threaded PVC schedule 40 [X	
J. Filter pack, bottom ft. MS	L or _13ft.			Flush threaded PVC schedule 80 Other	55555
<u>-</u>			10. Screen material		
K. Borehole, bottom ft. MS	L or _ 13 ft.		a. Screen type:		
			71	Continuous slot	
L. Borehole, diameter _ 8 in.				Other	
		\	b. Manufacture	Timco	100
M. O.D. well casing 2.38_ in.		\	c. Slot size:	0.0	01 in.
and the same of th		\	d. Slotted lengt	- -	ft.
N. I.D. well casing _ 2 in.			,	d (below filter pack): None X	
				Other 🗆	
I hereby contify that the information on this	form is true and correct	t to the best of my k	nowledge.		202
Signature	Firm				
7		Giles Engineering A	associates, Inc.		

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299. Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

	Watershed/Wastewater Remediation/Redevelo	amant[Y] Other	anagement 🗌	MONITORING WELL CONSTRU Form 4400-113A Rev. 7-98	ICTION
Facility/Project Name 1730 State Street, Racine, Wiscon	Local Grid Location of	FML.U	ft. DE.	Well Name MW-7	
Facility License, Permit or Monitoring No.	Local Grid Origin X	(esnimated: 🔲)	or well Location 🗀	Wis. Unique Well No. DNR Well II	D No.
Facility ID	St. Plane	ft. N,		Date Well Installe 7/ /23/ / 010)
Type of Well	Section Location of V	Vaste/Source	X P 23 XE	m m d d v v Well Installed By: Name (first, last)	and Firm
Well Code 11 / mw	NE_1/4 of SE_1/4 Location of Well Rela	ative to Waste/Source	N, R23 _ W	Beuford Jones	_
Distance from Waste/ Enf. Stds. Sourceft. Apply	u 🗆 Upgradient d 🗆 Downgradient	s 🗌 Sidegradie	ent	Giles Engineering Associates, Inc.	•
	ft. MSL —		1. Cap and lock?	X Yes [] No
B. Well casing, top elevation	ft. MSL		 2. Protective cover a. Inside diamete 		in.
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2	ft. MSL		b. Length:		ft.
	-		c. Material:	Steel D	
D. Surface seal, bottom ft. MS	1 K2+3			Other D	San San
12. USCS classification of soil near screen	1	THE NEW YORK	d. Additional pro		∃ No
GP GM GC GW S	SW SP SP CL IX CH II		It yes, describ	Bentonite [30
Bedrock			3. Surface scal:	Concrete D	
13. Sieve analysis performed?	Yes IX No		\	Other [2000000
14. Drilling method used: Ro	otary 🗆 5 0		4. Material between	n well casing and protective pipe:	******
Hollow Stem At	1980000			Bentonite D	
O	other 🗆 🏬			Other [1294:440
			5. Annular space se	a. Granular/Chipped Bentonite	
15. Drilling fluid used: Water □ 0 2 Drilling Mud □ 0 3	Air □ 01 None IX 99		bLbs/gal 1	mud weight Bentonite-sand slurry	35
	None ix 99			mud weight Bentonite slurry	
16. Drilling additives used?	Yes IX No			nite Bentonite-cement grout E	□ 50
				volume added for any of the above Tremie [3 01
Describe			f. How installed	Tremie pumped	
17. Source of water (attach analysis, if requ	uired):			Gravity D	
			6. Bentonite seal:	a. Bentonite granules	
			b. □1/4 in. IX	3/8 in. 1/2 in. Bentonite chips [
E. Bentonite seal, top ft. MS	L or _ 1 ft.			Other [
F. Fine sand, top ft. MS	SL or _ 2ft.		7. Fine sand materi	al: Manufacturer, product name & me	esh size
	`		a. Red Flint # 15		
G. Filter pack, top ft. MS	SL or _3 ft.			d_1ft ³	
H. Screen joint, top ft. MS	SL or _ 3 ft.		8. Filter pack mater a Red Flint # 40	rial: Manufacturer, product name & m	esh size
			b. Volume adde	7	design from "
I. Well bottom ft. MS	SL or _ 13 ft.		9. Well casing:	Flush threaded PVC schedule 40	
	12 6			Flush threaded PVC schedule 80	
J. Filter pack, bottom ft. MS	L or _ 13 1t.		10. Screen material:	Other [200000
K. Borehole, bottom ft. MS	SL or _ 13 ft.		a. Screen type:	Factory cut D	X 11
				Continuous slot	
L. Borehole, diameter _ 8 in.		1		Other [
			b. Manufacturer	Timco	01
M. O.D. well easing _ 2.38_ in.		\	c. Slot size:		.01 in.
W. ID. 18 1 2		`	d. Slotted length		0ft.
N. I.D. well casing 2 in.			11. Backfill material	(below filter pack): None Dother I	
I hereby certify that the information on this	form is true and corre	ct to the best of my kr	nowledge.		
Signature	Firm	Giles Engineering As	ssociates, Inc.		

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

State of Wisconsin Department of Natural Resources Route to:	Watershed/Wastewater Remediation/Redevelopment[X]	Waste Management Other	MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 7-98
Facility/Project Name	Remediation/Redevelopment[X] Local Grid Location of Well Local Grid Location of Well	The state of the s	Well Name
1730 State Street, Racine, Wiscon	r >	Nf E.	MW-8
Facility License, Permit or Monitoring No.	Local Grid Origin X (estima	ated: 🗌) or Well Location 🖂	Wis. Unique Well No. DNR Well ID No.
Facility ID	1	•	Data Wall Installe
Facility ID	St. Planeft. N		//_/فك/
T. CW.D	Section Location of Waste/Sou	13. 35	m m d d v v v v Well Installed By: Name (first, last) and Firm
Type of Well	NE_1/4 of SE_1/4 of Sec.	8_,T3N,R23\(\)	Well installed by: Name (first, last) and Firm
Well Code 11 / mw	Location of Well Relative to W	aste/Source Gov. Lot Number	Beuford Jones
Distance from Waste/ Enf. Stds. Sourceft. Apply _	u Upgradient s d	Sidegradient Not Known	Giles Engineering Associates, Inc.
A. Protective pipe, top elevation	ft. MSL	1. Cap and lock?	X Yes □ No
• • •	1	2. Protective cover	r pipe:
B. Well casing, top elevation	ft. MSL	a. Inside diamet	er: 8 in.
C. Land surface elevation	6 Mei	b. Length:	1 ft.
C. Land surface elevation	· 10 MSC	c. Material:	Steel IX 04
D. Surface seal, bottom ft. MS	SL or ft.	C. Machan	Other □
	X24 X74 X44 X		
12. USCS classification of soil near scree	\ W	d. Additional pr	
	SW D SP D	If yes, descri	be:
_	CL X CH 🗆	3. Surface scal:	Bentonite \Box 30
Bedrock		3, Surface scal.	Concrete IX 01
13. Sieve analysis performed?	Yes IX No		Other 🗆
14. Drilling method used: Ro	.tary □ 50	4 Material between	en well casing and protective pipe:
Hollow Stem At		W Maioriai batina	Bentonite IX 30
	Other 🗆 🔛		
			Other 🗆 🏥
AS D W. Said and Water [] 0.2	A:- D A1	5. Annular space s	seal: a. Granular/Chipped Bentonite 3 3
15. Drilling fluid used: Water □ 0 2	Air 0 0 1	bLbs/gal	mud weight Bentonite-sand slurry [35
Drilling Mud 🗆 0 3	None IX 99	cLbs/gal	mud weight Bentonite slurry □ 31
100		d % Bento	mite Bentonite-cement grout 5 0
16. Drilling additives used?	Yes X No	FF	t 3 volume added for any of the above
		f. How installe	TT 1 TT 4
Describe		1. How histance	Tremie pumped 0 2
17. Source of water (attach analysis, if requ	uired):	**	Gravity IX 08
		6. Bentonite seal:	a. Bentonite granules 33
		KOO	
		17701	X3/8 in. 1/2 in. Bentonite chips 1 32
E. Bentonite seal, top ft. MS	L or _ l II.	C5	Other 🗆 🊃
		7 Fine sand mater	ial: Manufacturer, product name & mesh size
F. Fine sand, top ft. MS	SL or _ 2 ft.	EDN /	
	\ B	a. Red Flint # 1	
G. Filter pack, top ft. MS	SL or _ 3 ft.	b. Volume adde	ed_1ft ³
• •		1 2	erial: Manufacturer, product name & mesh size
H. Screen joint, top ft. MS	SL or _ 3 ft.	a Red Flint # 40	, .
in donom jame, top	7	b. Volume add	
t Wall harrow ft MS	SL or _ 13 ft.	9. Well casing:	Flush threaded PVC schedule 40 [X 2.3
I. Well bottom	NE OI = 13 II	9. Well casing.	
6.346	v 13		Flush threaded PVC schedule 80 24
J. Filter pack, bottom ft. MS	LOT _ LOT _ II.		Other 🗆 🚐
		10. Screen material	: PVC
K. Borehole, bottom ft. MS	3L or _ 13 1t.	a. Screen type:	
			Continuous slot 0 1
L. Borehole, diameter _ 8 in.	(22		Other 🗆 🚉
		b. Manufacture	
M. O.D. well casing _ 2.38_ in.		c. Slot size:	0.01 in.
Tr. O.D. Well casting _ miss_ IN.		d. Slotted lengt	
N 1D!- 2		, =	hat .
N. I.D. well casing in.		11. packtili materia	
			Other 🗆 😩
I hereby certify that the information on this		best of my knowledge.	
Signature	Firm		
	Giles En	gineering Associates, Inc.	

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

MONITORING WELL DEVELOPMENT Form 4400-113B Rev. 7-98

Facility/Project Name 1730 State Street, Racine, Wisconsin Facility License, Permit or Monitoring Number County Cod 52	RACINE Wis. Unique Well Number VW300 11. Depth to Water (from top of well casing) Date b. 2 m m	ore Development After Development 39 ft ft.
Facility License, Permit or Monitoring Number County Cod 52	Wis. Unique Well Number VW300 11. Depth to Water (from top of well casing) Date b. 2 m m	DNR Well ID Number ore Development After Development 39 ft. 14.99 ft.
1. Can this well be purged dry? 2. Well development method surged with bailer and bailed surged with bailer and pumped surged with block and bailed surged with block and pumped surged with block and pumped surged with block, bailed and pumped compressed air	2 VW300 11. Depth to Water (from top of well casing) Date b. 2 m m	ore Development After Development 39 ft ft.
2. Well development method surged with bailer and bailed	11. Depth to Water (from top of a. 4. well casing) Date b. 2 m m	.39 ft ft.
bailed only	12. Sediment in well bottom	$ \frac{1}{d} \frac{\partial}{\partial d} \frac{10}{y} \frac{\partial}{\partial y} \frac{2}{y} \frac{2}{m} \frac{\partial}{\partial d} \frac{10}{y} \frac{10}{y} \frac{10}{y} $ $ \frac{15}{X} \frac{\text{a.m.}}{\text{p.m.}} \frac{01}{15} \frac{15}{X} \frac{\text{a.m.}}{\text{p.m.}} $ $ \underline{\qquad} \text{inches} \qquad \underline{\qquad} \text{inches} $
Other	Turbi (Desc Slig	Clear X 2 0 id X 1 5 Turbid □ 2 5 iribe
casing gal. 7. Volume of water removed from well gal.	Fill in if drilling fluids were	used and well is at solid waste facility:
8. Volume of water added (if any) gal.	14. Total suspended solids	mg/l mg/l
9. Source of water added		mg/l mg/l
10. Analysis performed on water added? ☐ Yes X No (If yes, attach results)	16. Well developed by: Name First Name: Greg Firm: Giles Engineering A	Last Name: Roanhouse
17. Additional comments on development:	.	

First Kevin Name: Bugel Name:	I hereby certify that the above information is true and correct to the best of my knowledge.
Facility/Firm: Giles E incering Associates, Inc.	Signature:
Street: N8 W22350 Johnson Drive	Print Name: Greg Roanhouse
City/State/Zip: Waukesha WI 53186-	Firm: Giles Engineering Associates, Inc.

MONITORING WELL DEVELOPMENT Form 4400-113B Rev. 7-98

Route to: Watershed/Was	tewater	Waste Managemen	t 🔲		
Remediation/Re	development[X]	Other			
Facility/Project Name	County Name		Well Name		
1730 State Street, Racine, Wisconsin		RACINE		MW-2	
Facility License, Permit or Monitoring Number	County Code .52	Wis. Unique Well N	lumber W301	DNR Wel	I ID Number
1. Can this well be purged dry?	Yes 🗆 No	11. Depth to Water			After Development
2. Well development method		(from top of	a. <u>4.25</u>	ft.	$\frac{14.89}{1}$ ft.
surged with bailer and bailed	4 1	well casing)			
surged with bailer and pumped	6 1				
surged with block and bailed	42	Date	b. 2 / 8	_/_10	$\frac{2}{y} \frac{2}{m} \frac{\beta}{d} \frac{\beta}{d} \frac{10}{y} \frac{y}{y} \frac{y}{y}$
surged with block and pumped X			mm do	јууу	y mm ddyyyy
surged with block, bailed and pumped	70		04 1	_ □ a.m.	05 : 15 X p.m.
compressed air	20	Time	c. <u>U4</u> : _1	5 X p.m.	05: 15 X p.m.
bailed only	1 0	L			
pumped only	5 1	12. Sediment in well		inches	inches
pumped slowly	5.0	bottom			
Other	<u></u>	13. Water clarity	Clear 1 Turbid X 1		Clear X 2 0 Turbid □ 2 5
3. Time spent developing well 60	min.		(Describe) Slight Odor		(Describe) No Odor
4. Depth of well (from top of well casisng) 16	ft.		Slight Shee	n	No Sheen
5. Inside diameter of well	in.				
6. Volume of water in filter pack and well casing	gal.				
	gal.	Fill in if drilling flui	ids were used a	nd well is a	t solid waste facility:
8. Volume of water added (if any)	gai.	14. Total suspended solids		mg/l	mg/!
9. Source of water added		15. COD		mg/l	mg/l
		16. Well developed	by: Name (first.)	last) and Firm	
10. Analysis performed on water added?	Yes X No	First Name: Gre	•	•	e; Roanhouse
(If yes, attach results)	ics it its	Pust Name.	6	Last Nath	S. Houniouse
(11)41, 111111111111111111111111111111111		Firm: Giles Engin	eering Associat	es. Inc.	
17. Additional comments on development:					
Name and Address of Facility Contact/Owner/Responsi	ble Party	T	4	1	
First Kevin Last Bugel		I hereby certify the of my knowledge.		formation is	s true and correct to the best
Facility/Firm: Giles E , incering Associates, Inc.		Signature:	12	<u>\</u>	
Street: N8 W22350 Johnson Drive		Print Name: Greg I	Roanhouse		
City/State/Zip: Waukesha WI	53186-	Firm: Giles I	Engineering Ass	ociates, Inc.	

MONITORING WELL DEVELOPMENT Form 4400-113B Rev. 7-98

Route to: Watershed/	Wastev	water 🔲	Waste Managemen	t 🔲		,
Remediatio	n/Rede	evelopment[X]	Other			
Facility/Project Name		County Name		Well Name		
1730 State Street, Racine, Wisconsin			RACINE		MW-3	
Facility License, Permit or Monitoring Number		County Code	Wis. Unique Well N		DNR We	ll ID Number
		.52	<u></u>	<u>W302</u>		
1. Can this well be purged dry?	☐ Ye	s X No	11. Depth to Water			After Development
2. Well development method			(from top of	a. 4.45	ft.	5.51 ft.
surged with bailer and bailed	□ 4	1	well casing)			
	□ 6	1				
surged with block and bailed			Date	b. 2 / 8	_/_10	$\frac{2}{\sqrt{y}} \frac{2}{mm} \frac{10}{dd} \frac{10}{y} \frac{1}{y} \frac{1}{y}$
	X 6	2		m m d d	ууу	y mm ddyyy y
surged with block, bailed and pumped	□ 7	0		02 1	_ □ a.m.	02 15 □ a.m.
compressed air	□ 2	0	Time	c. <u>02</u> : _1	5 X p.m.	03 : 15 \times p.m.
bailed only						
pumped only	□ 5	1	12. Sediment in well		inches	inches
pumped slowly		0 .	bottom			
Other		4	13. Water clarity	Clear \sqcap 1 Turbid X 1		Clear X 2 0 Turbid □ 2 5
3. Time spent developing well	60	min.		(Describe)		(Describe)
· -				No Odor		No Odor
4. Depth of well (from top of well casisng)	13	ft.		No Sheen		No Sheen
5. Inside diameter of well	2	in.				
6. Volume of water in filter pack and well						
casing		gal.				
7 V 1	24	gal.	Fill in if drilling flui	ds were used a	nd well is a	at solid waste facility:
7. Volume of water removed from well		gal.			-	_
8. Volume of water added (if any)		gal.	14. Total suspended solids		mg/l	mg/l
9. Source of water added			15. COD		mg/l	mg/l
			16. Well developed l	han Name (See	land) as 4 m'	
10.4.1.1.0			_		•	
10. Analysis performed on water added? (If yes, attach results)	☐ Ye	s X No	First Name: Gre			e: Roanhouse
Commence			Firm: Giles Engin	eering Associat	es. Inc.	
17. Additional comments on development:						

Name and Address of Facility Contact /Owner/Responsible Party First	I hereby certify that the above information is true and correct to the best of my knowledge.
Facility/Firm: Giles Engineering Associates, Inc.	Signature:
Street: N8 W22350 Johnson Drive	Print Name: Greg Roanhouse
City/State/Zip: Waukesha WI 53186-	Firm: Giles Engineering Associates, Inc.

City/State/Zip: Waukesha

Route to: Watershed/Wastewater

MONITORING WELL DEVELOPMENT Form 4400-113B Rev. 7-98

Remediation/Redevelopmen	nt[X] Other
Facility/Project Name County I	Name Well Name
1730 State Street, Racine, Wisconsin	RACINE MW-4
Facility License, Permit or Monitoring Number County C	1
1. Can this well be purged dry? X Yes 1	
2. Well development method surged with bailer and bailed	(from top of well casing) Date b. \(\frac{2}{m} \) \(\frac{\xi}{d} \) \(\frac{10}{y} \) \(\frac{y}{y} \) \(\frac{y}{m} \) \(\frac{m}{d} \) \(\frac{y}{y} \) \(\frac{y}{m} \) \(\frac{m}{m} \) \(\frac{10}{d} \) \(\frac{y}{y} \) \(\frac{y}{m} \) \(\frac{m}{m} \) \(\frac{d}{d} \) \(\frac{y}{y} \) \(\frac{y}{y} \) \(\frac{y}{m} \) \(\frac{m}{m} \) \(\frac{d}{d} \) \(\frac{y}{y} \) \(\frac{y}{y} \) \(\frac{y}{m} \) \(\frac{m}{m} \) \(\frac{d}{d} \) \(\frac{y}{y} \) \(\frac{y}{y} \) \(\frac{y}{m} \) \(\frac{m}{m} \) \(\frac{d}{d} \) \(\frac{y}{y} \) \(\frac{y}{y} \) \(\frac{m}{m} \) \(\frac
3. Time spent developing well 60 min.	(Describe) (Describe) No Odor No Odor
4. Depth of well (from top of well casisng) 16 _ ft.	No Sheen No Sheen
5. Inside diameter of well in.	
6. Volume of water in filter pack and well casing gal.	Fill in if drilling fluids were used and well is at solid waste facility:
7. Volume of water removed from well _8 gal. 8. Volume of water added (if any) gal.	14. Total suspended mg/l mg/l mg/l mg/l
9. Source of water added	mg/l mg/l
10. Analysis performed on water added?	16. Well developed by: Name (first, last) and Firm No First Name: Greg Last Name: Roanhouse Firm: Giles Engineering Associates, Inc.
Name and Address of Facility Contact /Owner/Responsible Party First Last Dead	I hereby certify that the above information is true and correct to the best
Name: Kevin Bugel Facility/Firm: Giles Engineering Associates, Inc.	of my knowledge. Signature:
Street: N8 W22350 Johnson Drive	Print Name. Greg Roanhouse

Giles Engineering Associates, Inc.

Waste Management [

53186-

Firm:

WI

January 29, 2010

RECEIVED FEB 0 3 2010

Client:

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186

Attn:

Mr. Kevin Bugel

Work Order:

WTA0575

Project Name:

1E-0909013 Racine, WI

Project Number:

1730 State Street

Date Received:

01/25/10

An executed copy of the chain of custody is also included as an addendum to this report.

If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-800-833-7036

SAMPLE IDENTIFICATION

LAB NUMBER

COLLECTION DATE AND TIME

TW-1 Trip Blank WTA0575-01 WTA0575-02

01/21/10 01/21/10

Samples were received into laboratory on ice.

Wisconsin Certification Number: 128053530

The Chain(s) of Custody, 2 pages, are included and are an integral part of this report.

Unless subcontracted, volatiles analyses (including VOC, PVOC, GRO, BTEX, and TPH gasoline) performed by TestAmerica Watertown at 1101 Industrial Drive, Units 9&10. All other analyses performed at the address shown in the heading of this report.

Approved By:

Karri Warnock

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Mr. Kevin Bugel Work Order: Project: WTA0575

1E-0909013 Racine, WI

Project Number:

1730 State Street

Received: 01/25/10

Reported: 01/29/10 14:55

ANALYTICAL REPORT

Analyte	Sample Result	Data Qualifiers	Units	MDL	LOQ	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTA0575-01RE1 (7	TW-1 - Ground W	/ater)					Sampled: 01/21/10			
VOCs by SW8260B		,								
Benzene	1.6		ug/L	0.20	0.67	ı	01/28/10 22:39	MAE	10A0493	SW 8260E
Bromobenzene	<0.20		ug/L	0.20	0.67	1	01/28/10 22:39	MAE	10A0493	SW 8260E
Bromochloromethane	<0.50		ug/L	0.50	1.7	I	01/28/10 22:39	MAE	10A0493	SW 8260E
Bromodichloromethane	<0.20		ug/L	0.20	0.67	1	01/28/10 22:39	MAE	10A0493	SW 8260E
Bromoform	<0.20		ug/L	0.20	0.67	1	01/28/10 22:39	MAE	10A0493	SW 8260E
Bromomethane	< 0.50		ug/L	0.50	1.7	1	01/28/10 22:39	MAE	10A0493	SW 8260E
n-Butylbenzene	1.1		ug/L	0.20	0.67	1	01/28/10 22:39	MAE	10A0493	SW 8260E
sec-Butylbenzene	1,2		ug/L	0.25	0.83	1	01/28/10 22:39	MAE	10A0493	SW 8260E
tert-Butylbenzene	<0,20		ug/L	0.20	0.67	1	01/28/10 22:39	MAE	10A0493	SW 8260F
Carbon Tetrachloride	<0,80		ug/L	0.80	2,7	1	01/28/10 22:39	MAE	10A0493	SW 8260E
Chlorobenzene	< 0.20		ug/L	0.20	0.67	i	01/28/10 22:39	MAE	10A0493	SW 8260E
Chlorodibromomethane	< 0.20		ug/L	0.20	0.67	1	01/28/10 22:39	MAE	10A0493	SW 8260E
Chloroethane	<1.0		ug/L	1.0	3.3	1	01/28/10 22:39	MAE	10A0493	SW 8260E
Chloroform	<0.20		ug/L	0.20	0.67	1	01/28/10 22:39	MAE	10A0493	SW 8260E
Chloromethane	< 0.30		ug/L	0.30	1.0	1	01/28/10 22:39	MAE	10A0493	SW 8260E
2-Chlorotoluene	<0.50		ug/L	0.50	1.7	1	01/28/10 22:39	MAE	10A0493	SW 8260E
4-Chlorotoiuene	<0.20		ug/L	0.20	0.67	1	01/28/10 22:39	MAE	10A0493	SW 8260F
1,2-Dibromo-3-chloropropane	<0.50		ug/L	0.50	1.7	1	01/28/10 22:39	MAE	10A0493	SW 8260E
1,2-Dibromoethane (EDB)	<0.20		ug/L	0.20	0.67	1	01/28/10 22:39	MAE	10A0493	SW 8260E
Dibromomethane	<0.20		ug/L	0.20	0.67	1	01/28/10 22:39	MAE	10A0493	SW 82601
1.2-Dichlorobenzene	< 0.20		ug/L	0.20	0,67	1	01/28/10 22:39	MAE	10A0493	SW 82601
1,3-Dichlorobenzene	<0.20		ug/L	0.20	0.67	1	01/28/10 22:39	MAE	10A0493	SW 82601
1,4-Dichlorobenzene	< 0.50		ug/L	0.50	1.7	1	01/28/10 22:39	MAE	10A0493	SW 82601
Dichlorodi fluoromethane	< 0.50		ug/L	0.50	1.7	1	01/28/10 22:39	MAE	10A0493	SW 82601
1.1-Dichloroethane	< 0.50		ug/L	0.50	1.7	1	01/28/10 22:39	MAE	10A0493	SW 82601
1.2-Dichloroethane	< 0.50		ug/L	0.50	1.7	I	01/28/10 22:39	MAE	10A0493	SW 82601
1,1-Dichloroethene	< 0.50		ug/L	0.50	1.7	1	01/28/10 22:39	MAE	10A0493	SW 8260E
cis-1,2-Dichloroethene	17		ug/L	0.50	1.7	1	01/28/10 22:39	MAE	10A0493	SW 8260E
trans-1,2-Dichloroethene	0.61	J	ug/L	0.50	1.7	1	01/28/10 22:39	MAE	10A0493	SW 82601
1,2-Dichloropropane	<0.50		ug/L	0.50	1.7	1	01/28/10 22:39	MAE	I0A0493	SW 82601
1,3-Dichloropropane	<0.25		ug/L	0.25	0.83	1	01/28/10 22:39	MAE	10A0493	SW 8260E
2,2-Dichloropropane	< 0.50		ug/L	0.50	1.7	1	01/28/10 22:39	MAE	10A0493	SW 8260E
1,1-Dichloropropene	<0.50		ug/L	0.50	1.7	1	01/28/10 22:39	MAE	10A0493	SW 82601
cis-1,3-Dichloropropene	<0.20		ug/L	0.20	0.67	1	01/28/10 22:39	MAE	10A0493	SW 8260E
trans-1,3-Dichloropropene	<0.20		ug/L	0.20	0.67	1	01/28/10 22:39	MAE	10A0493	SW 82601
2,3-Dichloropropene	<0.25		ug/L	0.25	0.83	1	01/28/10 22:39	MAE	10A0493	SW 82601
Isopropyl Ether	<0.50		ug/L	0.50	1.7	1	01/28/10 22:39	MAE	10A0493	SW 82601
Ethylbenzene	<0.50		ug/L	0.50	1.7	i	01/28/10 22:39	MAE	10A0493	SW 82601
Hexachlorobutadiene	<0.50		ug/L	0.50	1.7	1	01/28/10 22:39	MAE	10A0493	SW 82601
Isopropylbenzene	3.7		ug/L	0.20	0.67	1	01/28/10 22:39	MAE	10A0493	SW 82601
p-Isopropyltoluene	<0.20		ug/L	0.20	0.67	1	01/28/10 22:39	MAE	10A0493	SW 82601
Methylene Chloride	<1.0		ug/L	1.0	3.3	1	01/28/10 22:39	MAE	10A0493	SW 82601
Methyl tert-Butyl Ether	<0.50		ug/L	0.50	1.7	1	01/28/10 22:39	MAE	10A0493	SW 8260
Naphthalene	0.72	J	ug/L ug/L	0.25	0.83	1	01/28/10 22:39	MAE	10A0493	SW 8260
n-Propylbenzene	4.1	,	ug/L ug/L	0.50	1.7	1	01/28/10 22:39	MAE	10A0493	SW 8260
Styrene	<0.50		_	0.50	1.7	1	01/28/10 22:39		10A0493	SW 8260
1,1,1,2-Tetrachloroethane	<0.25		ug/L	0.25	0.83	1	01/28/10 22:39	MAE	10A0493	SW 8260
1,1,2-Tetrachloroethane	<0.20		ug/L	0.20	0.67	I	01/28/10 22:39	MAE	10A0493	SW 8260
Tetrachloroethene	3.0		ug/L	0.50	1.7	l l	01/28/10 22:39	MAE	10A0493	SW 8260
Toluene	< 0.50		ug/L ug/L	0.50	1.7	1	01/28/10 22:39	MAE MAE	10A0493	SW 82601

TestAmerica Watertown

Karri Warnock For Dan F. Milewsky Project Manager

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Mr. Kevin Bugel

Work Order:

WTA0575

Received:

01/25/10

Waukesha, WI 53186

Project: Project Number: 1E-0909013 Racine, WI

1730 State Street

Analyte	Sample Result	Data Qualifiers	Units	MDL	LOQ	Dilution Factor	Date Analyzed	Analyet	Seq/ Batch	Method
			Onto	MDL	200	Factor	Anatyzeu	Analyst	Daten	Method
Sample ID: WTA0575-01RE1 (TW-	-1 - Ground W	/ater) - cont.					Sampled: 01	/21/10		
VOCs by SW8260B - cont.										
1,2,3-Trichlorobenzene	< 0.25		ug/L	0.25	0.83	1	01/28/10 22:39	MAE	10A0493	SW 8260
1,2,4-Trichlorobenzene	< 0.25		ug/L	0.25	0.83	1	01/28/10 22:39	MAE	10A0493	SW 8260
1,1,1-Trichloroethane	< 0.50		ug/L	0.50	1.7	1	01/28/10 22:39	MAE	10A0493	SW 8260
1,1,2-Trichloroethane	< 0.25		ug/L	0.25	0.83	1	01/28/10 22:39	MAE	10A0493	SW 8260
Trichloroethene	< 0.20		ug/L	0,20	0.67	1	01/28/10 22:39	MAE	10A0493	SW 8260
Trichlorofluoromethane	< 0.50		ug/L	0.50	1.7	1	01/28/10 22:39	MAE	10A0493	SW 8260
1.2,3-Trichloropropane	< 0.50		ug/L	0.50	1.7	I	01/28/10 22:39	MAE	10A0493	SW 8260
1,2,4-Trimethylbenzene	< 0.20		ug/L	0.20	0.67	i	01/28/10 22:39	MAE	10A0493	SW 8260
1,3,5-Trimethylbenzene	< 0.20		ug/L	0.20	0.67	1	01/28/10 22:39	MAE	10A0493	SW 8260
Vinyl chloride	7.0		ug/L	0.20	0.67	1	01/28/10 22:39	MAE	10A0493	SW 8260
Xylenes, Total	< 0.50		ug/L	0.50	1.7	1	01/28/10 22:39	MAE	10A0493	SW 8260
Surr: Dibromofluoromethane (82-122%)	102 %		Ü							
Surr: Toluene-d8 (86-117%)	98 %									
Surr: 4-Bromofluorobenzene (83-118%)	100 %									
Sample ID: WTA0575-02 (Trip Bla	nk - Ground \	Water)					Sampled: 01	/21/10		
VOCs by SW8260B										
Benzene	< 0.20		ug/L	0.20	0.67	1	01/26/10 10:56	MAE	10A0437	SW 8260
Bromobenzene	< 0.20		ug/L	0.20	0.67	1	01/26/10 10:56	MAE	10A0437	SW 8260
Bromochloromethane	< 0.50		ug/L	0.50	1.7	1	01/26/10 10:56	MAE	10A0437	SW 8260
Bromodichloromethane	< 0.20		ug/L	0.20	0.67	1	01/26/10 10:56	MAE	10A0437	SW 8260
Bromoform	< 0.20		ug/L	0.20	0.67	1	01/26/10 10:56	MAE	10A0437	SW 8260
Bromomethane	< 0.50		ug/L	0.50	1.7	1	01/26/10 10:56	MAE	10A0437	SW 8260
n-Butylbenzene	< 0.20		ug/L	0.20	0.67	1	01/26/10 10:56	MAE	10A0437	SW 8260
sec-Butylbenzene	< 0.25		ug/L	0.25	0.83	1	01/26/10 10:56	MAE	10A0437	SW 8260
tert-Butyibenzene	< 0.20		ug/L	0.20	0.67	1	01/26/10 10:56	MAE	10A0437	SW 8260
Carbon Tetrachloride	< 0.80		ug/L	0.80	2.7	1	01/26/10 10:56	MAE	10A0437	SW 8260
Chlorobenzene	< 0.20		ug/L	0.20	0.67	t	01/26/10 10:56	MAE	10A0437	SW 8260
Chlorodibromomethane	< 0.20		ug/L	0.20	0.67	1	01/26/10 10:56	MAE	10A0437	SW 8260
Chloroethane	<1.0		ug/L	1.0	3.3	1	01/26/10 10:56	MAE	10A0437	SW 8260
Chloroform	<0.20		ug/L	0.20	0.67	1	01/26/10 10:56	MAE	10A0437	SW 8260
Chloromethane	< 0.30		ug/L	0.30	1.0	1	01/26/10 10:56	MAE	10A0437	SW 8260
2-Chlorotoluene	< 0.50		ug/L	0.50	1.7	1	01/26/10 10:56	MAE	10A0437	SW 8260
4-Chiorotoluene	<0.20		ug/L	0.20	0.67	1	01/26/10 10:56	MAE	10A0437	SW 8260
1,2-Dibromo-3-chloropropane	<0.50		ug/L	0.50	1.7	1	01/26/10 10:56	MAE	10A0437	SW 8260
1.2-Dibromoethane (EDB)	<0.20		ug/L	0.20	0.67	1	01/26/10 10:56	MAE	10A0437	SW 8260
Dibromomethane	<0.20		ug/L	0.20	0.67	1	01/26/10 10:56	MAE	10A0437	SW 8260
1,2-Dichlorobenzene	<0.20		ug/L	0.20	0.67	1	01/26/10 10:56	MAE	10A0437	SW 8260
1,3-Dichlorobenzene	<0.20			0.20		1	01/26/10 10:56		10A0437	SW 8260
1,4-Dichlorobenzene	<0.50		ug/L	0.50	0.67 1.7	1	01/26/10 10:56	MAE	10A0437	SW 8260
Dichlorodifluoromethane	<0.50		ug/L	0.50	1.7	1	01/26/10 10:56	MAE	10A0437	SW 8260
1.1-Dichloroethane	<0.50		ug/L	0.50	1.7	i	01/26/10 10:56	MAE	10A0437	SW 8260
1,2-Dichloroethane	<0.50		ug/L	0.50	1.7	1	01/26/10 10:56	MAE	10A0437	SW 8260
1,1-Dichloroethene	<0.50		ug/L	0.50		Ī	01/26/10 10:56	MAE	10A0437	SW 8260
cis-1,2-Dichloroethene			ug/L		1.7			MAE		
	<0.50		ug/L	0.50	1.7	l 1	01/26/10 10:56	MAE	10A0437	SW 8260 SW 8260
trans-1,2-Dichloroethene	<0.50		ug/L	0.50	1.7	1	01/26/10 10:56	MAE	10A0437	
1,2-Dichloropropane	<0.50		ug/L	0.50	1.7	1	01/26/10 10:56	MAE	10A0437	SW 826
1,3-Dichloropropane	<0.25		ug/L	0.25	0.83	1	01/26/10 10:56	MAE	10A0437	SW 8260
2,2-Dichloropropane	<0.50		ug/L	0.50	1.7	1	01/26/10 10:56	MAE	10A0437	SW 8260
1,1-Dichloropropene	<0.50		ug/L	0.50	1.7	ı	01/26/10 10:56	MAE	10A0437	SW 8260
cis-1,3-Dichloropropene	<0.20		ug/L	0.20	0.67	1	01/26/10 10:56	MAE	10A0437	SW 8260
trans-1,3-Dichloropropene	< 0.20		ug/L	0.20	0.67	1	01/26/10 10:56	MAE	10A0437	SW 826

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Work Order:

Project:

WTA0575

1E-0909013 Racine, WI

Received: Reported: 01/25/10 01/29/10 14:55

1730 State Street Project Number:

Mr. Kevin Bugel

Analyte	Sample Result	Data Qualifiers	Units	MDL	LOQ	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTA0575-02 (Trip Bla	nk - Ground \	Vater) - cont.					Sampled: 01	/21/10		
-/OCs by SW8260B - cont.										
2,3-Dichforopropene	< 0.25		ug/L	0,25	0.83	1	01/26/10 10:56	MAE	10A0437	SW 8260B
Isopropyl Ether	< 0.50		ug/L	0.50	1.7	1	01/26/10 10:56	MAE	10A0437	SW 8260B
Ethylbenzene	< 0.50		ug/L	0.50	1.7	I	01/26/10 10:56	MAE	10A0437	SW 8260B
Hexachlorobutadiene	< 0.50		ug/L	0.50	1.7	1	01/26/10 10:56	MAE	10A0437	SW 8260B
Isopropylbenzene	< 0.20		ug/L	0.20	0.67	1	01/26/10 10:56	MAE	10A0437	SW 8260B
p-isopropyitoluene	< 0.20		ug/L	0.20	0.67	1	01/26/10 10:56	MAE	10A0437	SW 8260B
Methylene Chloride	<1.0		ug/L	1.0	3.3	1	01/26/10 10:56	MAE	10A0437	SW 8260B
Methyl tert-Butyl Ether	< 0.50		ug/L	0.50	1.7	1	01/26/10 10:56	MAE	10A0437	SW 8260B
Naphthalene	< 0.25		ug/L	0.25	0.83	1	01/26/10 10:56	MAE	10A0437	SW 8260B
n-Propylbenzene	< 0.50		ug/L	0.50	1.7	1	01/26/10 10:56	MAE	10A0437	SW 8260B
Styrene	< 0.50		ug/L	0.50	1.7	1	01/26/10 10:56	MAE	10A0437	SW 8260B
1,1,1,2-Tetrachloroethane	< 0.25		ug/L	0.25	0.83	1	01/26/10 10:56	MAE	10A0437	SW 8260B
1,1,2,2-Tetrachloroethane	< 0.20		ug/L	0.20	0.67	1	01/26/10 10:56	MAE	10A0437	SW 8260B
Tetrachloroethene	< 0.50		ug/L	0.50	1.7	1	01/26/10 10:56	MAE	10A0437	SW 8260B
Toluene	< 0.50		ug/L	0.50	1.7	1	01/26/10 10:56	MAE	10A0437	SW 8260B
1,2,3-Trichlorobenzene	< 0.25		ug/L	0.25	0.83	1	01/26/10 10:56	MAE	10A0437	SW 8260B
1,2,4-Trichlorobenzene	< 0.25		ug/L	0.25	0.83	1	01/26/10 10:56	MAE	10A0437	SW 8260B
1,1,1-Trichloroethane	< 0.50		ug/L	0.50	1.7	ĭ	01/26/10 10:56	MAE	10A0437	SW 8260B
1,1,2-Trichloroethane	< 0.25		ug/L	0.25	0.83	1	01/26/10 10:56	MAE	10A0437	SW 8260B
Trichloroethene	< 0.20		ug/L	0.20	0.67	1	01/26/10 10:56	MAE	10A0437	SW 8260B
Trichlorofluoromethane	< 0.50		ug/L	0.50	1.7	1	01/26/10 10:56	MAE	10A0437	SW 8260B
1,2,3-Trichloropropane	< 0.50		ug/L	0.50	1.7	1	01/26/10 10:56	MAE	10A0437	SW 8260B
1,2,4-Trimethylbenzene	< 0.20		ug/L	0.20	0.67	1	01/26/10 10:56	MAE	10A0437	SW 8260B
1,3,5-Trimethylbenzene	< 0.20		ug/L	0.20	0.67	1	01/26/10 10:56	MAE	10A0437	SW 8260B
Vinyl chloride	< 0.20		ug/L	0.20	0.67	1	01/26/10 10:56	MAE	10A0437	SW 8260B
Xylenes, Total	< 0.50		ug/L	0.50	1.7	1	01/26/10 10:56	MAE	10A0437	SW 8260B
Surr: Dibromofluoromethane (82-122%)	99 %									
Surr: Toluene-d8 (86-117%)	99 %									
Surr: 4-Bromofluorobenzene (83-118%)	97 %									

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Mr. Kevin Bugel

Work Order: Project:

Project Number:

WTA0575

1E-0909013 Racine, WI

1730 State Street

Received:

01/25/10

Reported:

01/29/10 14:55

		LABORATORY BLANK QC DATA												
Analyte	Seq/ Batch	Source Result		Units	MDL	MRL	Result	Dup Result	% REC	Dup %REC	% REC	RPD	RPD Limit	Q
VOCs by SW8260B														
Benzene	10A0437			ug/L	0.20	0.67	< 0.20							
Bromobenzene	10A0437			ug/L	0.20	0.67	< 0.20			,				
Bromochloromethane	10A0437			ug/L	0.50	1.7	< 0.50							
Bromodichloromethane	10A0437			ug/L	0.20	0.67	< 0.20							
Bromoform	10A0437			ug/L	0.20	0.67	< 0.20							
Bromomethane	10A0437			ug/L	0.50	1.7	< 0.50							
n-Butylbenzene	10A0437			ug/L	0.20	0.67	< 0.20							
sec-Butylbenzene	10A0437			ug/L	0.25	0.83	< 0.25							
tert-Butylbenzene	10A0437			ug/L	0.20	0.67	< 0.20							
Carbon Tetrachloride	10A0437			ug/L	0.80	2.6	< 0.80							
Chlorobenzene	10A0437			ug/L	0.20	0.67	< 0.20							
Chlorodibromomethane	10A0437			ug/L	0.20	0.67	<0.20							
Chloroethane	10A0437			ug/L	1.0	3.3	<1.0							
Chloroform	10A0437			ug/L	0.20	0.67	< 0.20							
Chloromethane	10A0437			ug/L	0.30	1.0	< 0.30							
2-Chlorotoluene	10A0437			ug/L	0.50	1.7	< 0.50							
4-Chlorotoluene	10A0437			ug/L	0.20	0.67	< 0.20							
1,2-Dibromo-3-chloropropane	10A0437			ug/L	0.50	1.7	< 0.50							
1,2-Dibromoethane (EDB)	10A0437			ug/L	0.20	0.67	< 0.20							
Dibromomethane	10A0437			ug/L	0.20	0.67	< 0.20							
1,2-Dichlorobenzene	10A0437			ug/L	0.20	0.67	< 0.20							
1,3-Dichlorobenzene	10A0437			ug/L	0.20	0.67	< 0.20							
1,4-Dichlorobenzene	10A0437			ug/L	0.50	1.7	< 0.50							
Dichlorodifluoromethane	10A0437			ug/L	0.50	1.7	< 0.50							
1,1-Dichloroethane	10A0437			ug/L	0.50	1.7	< 0.50							
1,2-Dichloroethane	10A0437			ug/L	0.50	1.7	< 0.50							
1,1-Dichloroethene	10A0437			ug/L	0.50	1.7	< 0.50							
cis-1,2-Dichloroethene	10A0437			ug/L	0.50	1.7	<0.50							
trans-1.2-Dichloroethene	10A0437			ug/L	0.50	1.7	< 0.50							
1,2-Dichloropropane	10A0437			ug/L	0.50	1.7	< 0.50							
1,3-Dichloropropane	10A0437			ug/L	0.25	0.83	< 0.25							
2,2-Dichloropropane	10A0437			ug/L	0.50	1.7	< 0.50							
1.1-Dichloropropene	10A0437			ug/L	0.50	1.7	< 0.50							
cis-1,3-Dichloropropene	10A0437			ug/L	0.20	0.67	<0.20							
trans-1,3-Dichloropropene	10A0437			ug/L	0.20	0.67	< 0.20							
2,3-Dichloropropene	10A0437			ug/L	0.25	0.83	< 0.25							
Isopropyl Ether	10A0437			ug/L	0.50	1.7	< 0.50							
Ethylbenzene	10A0437			ug/L	0.50	1.7	< 0.50							
Hexachlorobutadiene	10A0437			ug/L	0.50	1.7	< 0.50							
Isopropylbenzene	10A0437			ug/L	0.20	0.67	< 0.20							
p-lsopropyltoluene	10A0437			ug/L	0.20	0.67	< 0.20							
Methylene Chloride	10A0437			ug/L	1.0	3.3	<1.0							
Methyl tert-Butyl Ether	10A0437			ug/L	0.50	1.7	< 0.50							
Naphthalene	10A0437			ug/L	0.25	0.83	< 0.25							
n-Propylbenzene	10A0437			ug/L	0.50	1.7	< 0.50							

Project Manager

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Work Order:

WTA0575

Received:

01/25/10

Waukesha, WI 53186

Mr. Kevin Bugel

Project: Project Number:

1730 State Street

1E-0909013 Racine, WI

			LAB	ORAT	ORY B	LANK	QC D	ATA						
	Seq/	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Batch	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
VOCs by SW8260B														
Styrene	10A0437			ug/L	0.50	1.7	< 0.50							
1,1,1,2-Tetrachloroethane	10A0437			ug/L	0.25	0.83	< 0.25							
1,1,2,2-Tetrachloroethane	10A0437			ug/L	0.20	0.67	< 0.20							
Tetrachloroethene	10A0437			ug/L	0.50	1.7	<0.50							
Toluene	10A0437			ug/L	0.50	1.7	< 0.50							
1,2,3-Trichlorobenzene	10A0437			ug/L	0.25	0.83	< 0.25							
1,2,4-Trichlorobenzene	10A0437			ug/L	0.25	0.83	< 0.25							
1,1,1-Trichloroethane	10A0437			ug/L	0.50	1.7	< 0.50							
1,1,2-Trichloroethane	10A0437			ug/L	0.25	0.83	< 0.25							
Trichloroethene	10A0437			ug/L	0.20	0.67	< 0.20							
Trichlorofluoromethane	10A0437			ug/L	0.50	1.7	< 0.50							
1,2,3-Trichloropropane	10A0437			ug/L	0.50	1.7	< 0.50							
1,2,4-Trimethylbenzene	10A0437			ug/L	0.20	0.67	< 0.20							
1,3,5-Trimethylbenzene	10A0437			ug/L	0.20	0.67	< 0.20							
Vinyl chloride	10A0437			ug/L	0.20	0.67	< 0.20							
Xylenes, Total	10A0437			ug/L	0.50	1.7	< 0.50							
Surrogate: Dibromofluoromethane	10A0437			ug/L					100		82-122			
Surrogate: Toluene-d8	10A0437			ug/L					99		86-117			
Surrogate: 4-Bromofluorobenzene	10A0437			ug/L					98		83-118			
Benzene	10A0493			ug/L	0.20	0.67	< 0.20							
Bromobenzene	10A0493			ug/L	0.20	0.67	< 0.20							
Bromochloromethane	10A0493			ug/L	0.50	1.7	< 0.50							
Bromodichloromethane	10A0493			ug/L	0.20	0.67	< 0.20							
Bromoform	10A0493			ug/L	0.20	0,67	< 0.20							
Bromomethane	10A0493			ug/L	0.50	1.7	< 0.50							
n-Butylbenzene	10A0493			ug/L	0.20	0.67	< 0.20							
sec-Butylbenzene	10A0493			ug/L	0.25	0.83	< 0.25							
tert-Butylbenzene	10A0493			ug/L	0.20	0.67	< 0.20							
Carbon Tetrachloride	10A0493			ug/L	0.80	2.6	< 0.80							
Chlorobenzene	10A0493			ug/L	0.20	0.67	<0.20							
Chlorodibromomethane	10A0493			ug/L	0.20	0,67	<0.20							
Chloroethane	10A0493			ug/L	1.0	3.3	<1.0							
Chloroform	10A0493			ug/L	0.20	0.67	<0.20							
Chloromethane	10A0493			ug/L	0.30	1.0	< 0.30							
2-Chlorotoluene	10A0493			ug/L	0.50	1.7	<0.50							
4-Chlorotoluene	10A0493			ug/L	0.20	0.67	<0.20							
1,2-Dibromo-3-chloropropane	10A0493			ug/L	0.50	1.7	<0.50							
1,2-Dibromo-3-chtoropropane	10A0493			ug/L ug/L	0.20	0.67	<0.20							
Dibromomethane	10A0493			ug/L	0.20	0.67	<0.20							
	10A0493			_	0.20	0.67	<0.20							
1,2-Dichlorobenzene	10A0493			ug/L	0.20	0.67	<0.20							
1,3-Dichlorobenzene				ug/L ug/L	0.50	1.7	<0.50							
1,4-Dichlorobenzene	10A0493						<0.50							
Dichlorodifluoromethane 1,1-Dichloroethane	10A0493 10A0493			ug/L ug/L	0.50	1.7 1.7	<0.50							

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186 Mr. Kevin Bugel

Work Order:

WTA0575

1E-0909013 Racine, WI

01/25/10

Project: Project Number:

1730 State Street

Received: 01/29/10 14:55 Reported:

			LAB	ORAT	ORY B	LANK	QC D	ATA						
	Seq/	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Batch	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
VOCs by SW8260B														
1,2-Dichloroethane	10A0493			ug/L	0.50	1.7	< 0.50							
1,1-Dichloroethene	10A0493			ug/L	0.50	1.7	< 0.50							
cis-1,2-Dichloroethene	10A0493			ug/L	0.50	1.7	< 0.50							
trans-1,2-Dichloroethene	10A0493			ug/L	0.50	1.7	< 0.50							
1,2-Dichloropropane	10A0493			ug/L	0.50	1.7	< 0.50							
1.3-Dichloropropane	10A0493			ug/L	0.25	0.83	< 0.25							
2,2-Dichloropropane	10A0493			ug/L	0.50	1.7	< 0.50							
1,1-Dichloropropene	10A0493			ug/L	0.50	1.7	< 0.50							
cis-1,3-Dichloropropene	10A0493			ug/L	0.20	0.67	< 0.20							
trans-1,3-Dichloropropene	10A0493			ug/L	0.20	0.67	< 0.20							
2,3-Dichloropropene	10A0493			ug/L	0.25	0.83	< 0.25							
Isopropyl Ether	10A0493			ug/L	0.50	1.7	< 0.50							
Ethylbenzene	10A0493			ug/L	0.50	1.7	< 0.50							
Hexachlorobutadiene	10A0493			ug/L	0.50	1.7	< 0.50							
Isopropylbenzene	10A0493			ug/L	0.20	0.67	< 0.20							
p-lsopropyltoluene	10A0493			ug/L	0.20	0.67	< 0.20							
Methylene Chloride	10A0493			ug/L	1.0	3.3	<1.0							
Methyl tert-Butyl Ether	10A0493			ug/L	0.50	1.7	< 0.50							
Naphthalene	10A0493			ug/L	0.25	0.83	< 0.25							
n-Propylbenzene	10A0493			ug/L	0.50	1.7	< 0.50							
Styrene	10A0493			ug/L	0.50	1.7	< 0.50							
1,1,1,2-Tetrachloroethane	10A0493			ug/L	0.25	0.83	< 0.25							
1,1,2,2-Tetrachloroethane	10A0493			ug/L	0.20	0.67	< 0.20							
Tetrachloroethene	10A0493			ug/L	0.50	1.7	< 0.50							
Toluene	10A0493			ug/L	0.50	1.7	< 0.50							
1,2,3-Trichlorobenzene	10A0493			ug/L	0.25	0.83	< 0.25							
1,2,4-Trichlorobenzene	10A0493			ug/L	0.25	0.83	< 0.25							
1,1,1-Trichloroethane	10A0493			ug/L	0.50	1.7	< 0.50							
1,1,2-Trichloroethane	10A0493			ug/L	0.25	0.83	< 0.25							
Trichloroethene	10A0493			սց/Լ	0.20	0.67	< 0.20							
Trichlorofluoromethane	10A0493			ug/L	0.50	1.7	<0,50							
1,2,3-Trichloropropane	10A0493			ug/L	0.50	1.7	< 0.50							
1,2,4-Trimethylbenzene	10A0493			ug/L	0.20	0.67	<0.20							
1,3,5-Trimethylbenzene	10A0493			ug/L	0.20	0.67	<0.20							
Vinyl chloride	10A0493			ug/L	0.20	0.67	<0.20							
Xylenes, Total	10A0493			ug/L	0.50	1.7	<0.50							
Surrogate: Dibromofluoromethane	10A0493			ug/L	0.50	1.1	-0.50		102		82-122			
Surrogate: Toluene-d8	10A0493			ug/L					98		86-117			
Surrogate: 4-Bromofluorobenzene	10A0493			ug/L					98 98		83-118			

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Mr Kevin Rugel

Work Order:

WTA0575

Received:

01/25/10

Project:

1E-0909013 Racine, WI 1730 State Street Project Number:

Reported:

01/29/10 14:55

				C	CV Q	CDAT	A							
	Seq/	Source	-					Dup	%	Dup	% REC		RPD	
Analyte	Batch	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
VOCs by SW8260B														
Benzene	T000144		50	ug/L	N/A	N/A	54.1		108		80-120			
Bromobenzene	T000144		50	ug/L	N/A	N/A	50.0		100		80-120			
Bromochloromethane	T000144		50	ug/L	N/A	N/A	50.5		101		80-120			
Bromodichloromethane	T000144		50	ug/L	N/A	N/A	51.1		102		80-120			
Broinoform	T000144		50	ug/L	N/A	N/A	53.4		107		80-120			
Bromomethane	T000144		50	ug/L	N/A	N/A	39.4		79		80-120			
n-Butylbenzene	T000144		50	ug/L	N/A	N/A	53.6		107		80-120			
sec-Butylbenzene	T000144		50	ug/L	N/A	N/A	52.6		105		80-120			
ert-Butylbenzene	T000144		50	ug/L	N/A	N/A	52.3		105		80-120			
Carbon Tetrachloride	T000144		50	ug/L	N/A	N/A	51.0		102		80-120			
Chlorobenzene	T000144		50	ug/L	N/A	N/A	49.8		100		80-120			
Chlorodibromomethane	T000144		50	ug/L	N/A	N/A	51.7		103		80-120			
Chloroethane	T000144		50	ug/L	N/A	N/A	59.4		119		80-120			
Chloroform	T000144		50	ug/L	N/A	N/A	51.4		103		80-120			
Chloromethane	T000144		50	ug/L	N/A	N/A	53.3		107		80-120			
2-Chlorotoluene	T000144		50	ug/L	N/A	N/A	51.0		102		80-120			
1-Chlorotoluene	T000144		50	ug/L	N/A	N/A	50.0		100		80-120			
1,2-Dibromo-3-chloropropane	T000144		50	ug/L	N/A	N/A	52.3		105		80-120			
1,2-Dibromoethane (EDB)	T000144		50	ug/L	N/A	N/A	49.9		100		80-120			
Dibromomethane	T000144		50	ug/L	N/A	N/A	50.0		100		80-120			
1,2-Dichlorobenzene	T000144		50	ug/L	N/A	N/A	49.8		100		80-120			
1,3-Dichlorobenzene	T000144		50	ug/L	N/A	N/A	50.6		101		80-120			
1,4-Dichlorobenzene	T000144		50	ug/L	N/A	N/A	48.9		98		80-120			
Dichlorodifluoromethane	T000144		50	ug/L	N/A	N/A	57.7		115		80-120			
1.1-Dichloroethane	T000144		50	ug/L	N/A	N/A	54.1		108		80-120			
1,2-Dichloroethane	T000144		50	ug/L	N/A	N/A	53.4		107		80-120			
1,1-Dichloroethene	T000144		50	ug/L	N/A	N/A	54.3		109		80-120			
cis-1,2-Dichloroethene	T000144		50	ug/L	N/A	N/A	53.6		107		80-120			
trans-1.2-Dichloroethene	T000144		50	ug/L	N/A	N/A	54.3		109		80-120			
1,2-Dichloropropane	T000144		50	ug/L	N/A	N/A	52.2		104		80-120			
1,3-Dichloropropane	T000144		50	ug/L	N/A	N/A	52.6		105		80-120			
2,2-Dichloropropane	T000144		50	ug/L	N/A	N/A	54.4		109		80-120			
I,I-Dichloropropene	T000144		50	ug/L	N/A	N/A	57.5		115		80-120			
cis-1,3-Dichloropropene	T000144		50	ug/L	N/A	N/A	53.3		107		80-120			
trans-1.3-Dichloropropene	T000144		50	ug/L	N/A	N/A	53.5		107		80-120			
2,3-Dichloropropene	T000144		50	ug/L	N/A	N/A	53.6		107		80-120			
Isopropyl Ether	T000144		50	ug/L	N/A	N/A	55.6		111		80-120			
Ethylbenzene	T000144		50	ug/L	N/A	N/A	50.9		102		80-120			
Hexachlorobutadiene	T000144		50	ug/L	N/A	N/A	50.2		100		80-120			
Isopropylbenzene	T000144		50	ug/L ug/L	N/A	N/A	52.7		105		80-120			
	T000144		50	_	N/A	N/A	52.1		103		80-120			
p-Isopropyltoluene				ug/L					104					
Methylene Chloride	T000144		50	ug/L	N/A	N/A	51.7		103		80-120			
Methyl tert-Butyl Ether	T000144		50	ug/L	N/A	N/A	54.5				80-120			
Naphthalene n-Propylbenzene	T000144 T000144		50 50	ug/L ug/L	N/A N/A	N/A N/A	53.6 51.8		107 104		80-120 80-120			

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Mr. Kevin Bugel

Work Order:

WTA0575

Received: 01/25/10

Project: Project Number: 1E-0909013 Racine, WI 1730 State Street Reported: 01/29/10 14:55

				C	CV Q	CDAT	A							
	Seq/	Source				MADY		Dup	%	Dup	% REC		RPD	
Analyte	Batch	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
VOCs by SW8260B														
Styrene	T000144		50	ug/L	N/A	N/A	53.2		106		80-120			
1,1,1,2-Tetrachloroethane	T000144		50	ug/L	N/A	N/A	50.3		101		80-120			
1,1,2,2-Tetrachloroethane	T000144		50	ug/L	N/A	N/A	51.5		103		80-120			
Terrachloroethene	T000144		50	ug/L	N/A	N/A	50.6		101		80-120			
Toluene	T000144		50	ug/L	N/A	N/A	50.4		101		80-120			
1,2,3-Trichlorobenzene	T000144		50	ug/L	N/A	N/A	49.2		98		80-120			
1,2,4-Trichlorobenzene	T000144		50	ug/L	N/A	N/A	49.4		99		80-120			
1,1,1-Trichloroethane	T000144		50	ug/L	N/A	N/A	54.5		109		80-120			
1,1,2-Trichloroethane	T000144		50	ug/L	N/A	N/A	51.8		104		80-120			
Trichloroethene	T000144		50	ug/L	N/A	N/A	51.2		102		80-120			
Trichlorofluoromethane	T000144		50	ug/L	N/A	N/A	56.7		113		80-120			
1,2,3-Trichloropropane	T000144		50	ug/L	N/A	N/A	50.9		102		80-120			
1,2.4-Trimethylbenzene	T000144		50	ug/L	N/A	N/A	51.8		104		80-120			
1,3,5-Trimethylbenzene	T000144		50	ug/L	N/A	N/A	52.3		105		80-120			
Vinyl chloride	T000144		50	ug/L	N/A	N/A	56.2		112		80-120			
Xylenes, Total	T000144		150	ug/L	N/A	N/A	155		103		80-120			
Surrogate: Dibromofluoromethane	T000144			ug/L					102		80-120			
Surrogate: Toluene-d8	T000144			ug/L					99		80-120			
Surrogate: 4-Bromofluorohenzene	T000144			ug/L					102		80-120			
Benzene	T000168		50	ug/L	N/A	N/A	55.7		111		80-120			
Broinobenzene	T000168		50	ug/L	N/A	N/A	50.6		101		80-120			
Bromochloromethane	T000168		50	ug/L	N/A	N/A	52.4		105		80-120			
Bromodichloromethane	T000168		50	ug/L	N/A	N/A	52.9		106		80-120			
Bromotorm	T000168		50	ug/L	N/A	N/A	51.8		104		80-120			
Broinomethane	T000168		50	ug/L	N/A	N/A	34.0		68		80-120			
n-Butylbenzene	T000168		50	ug/L	N/A	N/A	54.4		109		80-120			
sec-Butylbenzene	T000168		50	ug/L	N/A	N/A	53.0		106		80-120			
tert-Butylbenzene	T000168		50	ug/L	N/A	N/A	52.4		105		80-120			
Carbon Tetrachloride	T000168		50	ug/L	N/A	N/A	51.8		104		80-120			
Chlorobenzene	T000168		50	ug/L	N/A	N/A	50.7		101		80-120			
Chlorodibromomethane	T000168		50	ug/L	N/A	N/A	52.5		105		80-120			
Chloroethane	T000168		50	ug/L	N/A	N/A	58.0		116		80-120			
Chloroform	T000168		50	ug/L	N/A	N/A	53.2		106		80-120			
Chloromethane	T000168		50	ug/L	N/A	N/A	33.6		67		80-120			
2-Chlorotoluene	T000168		50	ug/L	N/A	N/A	51.8		104		80-120			
4-Chlorotoiuene	T000168		50	ug/L	N/A	N/A	50.8		102		80-120			
1,2-Dibromo-3-chloropropane	T000168		50	ug/L	N/A	N/A	51.8		104		80-120			
1,2-Dibromoethane (EDB)	T000168		50	ug/L	N/A	N/A	52.3		105		80-120			
Dibromomethane	T000168		50	ug/L	N/A	N/A	51.3		103		80-120			
1,2-Dichlorobenzene	T000168		50	ug/L	N/A	N/A	50.6		101		80-120			
1,3-Dichlorobenzene	T000168		50	ug/L	N/A	N/A	50.5		101		80-120			
1,4-Dichlorobenzene	T000168		50	ug/L	N/A	N/A	48.9		98		80-120			
Dichlorodifluoromethane	T000168		50	ug/L	N/A	N/A	47.2		94		80-120			
1,1-Dichloroethane	T000168		50	ug/L	N/A	N/A	55.5		111		80-120			

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

1E-0909013 Racine, WI

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Work Order:

Project:

WTA0575

Received:

01/25/10

1730 State Street Project Number:

				C	CV QC	DAT	A							
Analyte	-	Source Result	Spike Level	Units	MDL	MRL	Result	Dup Result	% REC	Dup %REC	% REC	RPD	RPD Limit	Q
VOCs by SW8260B											-			
,2-Dichloroethane	T000168		50	ug/L	N/A	N/A	56.4		113		80-120			
,1-Dichloroethene	T000168		50	ug/L	N/A	N/A	53.4		107		80-120			
is-1,2-Dichloroethene	T000168		50	ug/L	N/A	N/A	54.8		110		80-120			
rans-1,2-Dichloroethene	T000168		50	ug/L	N/A	N/A	54.1		108		80-120			
,2-Dichloropropane	T000168		50	ug/L	N/A	N/A	54.3		109		80-120			
,3-Dichloropropane	T000168		50	ug/L	N/A	N/A	54.9		110		80-120			
2,2-Dichloropropane	T000168		50	ug/L	N/A	N/A	54.3		109		80-120			
,1-Dichloropropene	T000168		50	ug/L	N/A	N/A	58.6		117		80-120			
eis-1,3-Dichloropropene	T000168		50	ug/L	N/A	N/A	54.8		110		80-120			
rans-1,3-Dichloropropene	T000168		50	ug/L	N/A	N/A	54.5		109		80-120			
2,3-Dichloropropene	T000168		50	ug/L	N/A	N/A	54.9		110		80-120			
Isopropyl Ether	T000168		50	ug/L	N/A	N/A	58.0		116		80-120			
Ethylbenzene	T000168		50	ug/L	N/A	N/A	51.5		103		80-120			
Hexachlorobutadiene	T000168		50	ug/L	N/A	N/A	47.9		96		80-120			
sopropyibenzene	T000168		50	ug/L	N/A	N/A	53.9		108		80-120			
p-Isopropyltoluene	T000168		50	ug/L	N/A	N/A	52.3		105		80-120			
Methylene Chloride	T000168		50	ug/L	N/A	N/A	53.1		106		80-120			
Methyl tert-Butyl Ether	T000168		50	ug/L	N/A	N/A	56.4		113		80-120			
Naphthalene	T000168		50	ug/L	N/A	N/A	54.9		110		80-120			
n-Propylbenzene	T000168		50	ug/L	N/A	N/A	52.3		105		80-120			
Styrene	T000168		50	ug/L	N/A	N/A	54.6		109		80-120			
1,1,1,2-Tetrachloroethane	T000168		50	ug/L	N/A	N/A	51.2		102		80-120			
1,1,2,2-Tetrachloroethane	T000168		50	ug/L	N/A	N/A	52.9		106		80-120			
Tetrachloroethene	T000168		50	ug/L	N/A	N/A	50.8		102		80-120			
Toluene	T000168		50	ug/L	N/A	N/A	51.4		103		80-120			
1,2,3-Trichlorobenzene	T000168		50	ug/L	N/A	N/A	49.2		98		80-120			
	T000168		50	ug/L ug/L	N/A	N/A	48.7		97		80-120			
1,2,4-Trichlorobenzene	T000168		50	ug/L	N/A	N/A	55.6		111		80-120			
1,1,1-Trichloroethane				•		N/A			107		80-120			
1,1,2-Trichloroethane	T000168		50	ug/L	N/A		53.7				80-120			
Trichloroethene	T000168		50	ug/L	N/A	N/A	52.1		104					
Trichlorofluoromethane	T000168		50	ug/L	N/A	N/A	56.1		112		80-120			
1,2,3-Trichloropropane	T000168		50	ug/L	N/A	N/A	52.6		105		80-120			
1,2,4-Trimethylbenzene	T000168		50	ug/L	N/A	N/A	52.3		105		80-120			
1,3,5-Trimethylbenzene	T000168		50	ug/L	N/A	N/A	52.7		105		80-120			
Vinyl chloride	T000168		50	ug/L	N/A	N/A	49.6		99		80-120			
Xylenes, Total	T000168		150	ug/L	N/A	N/A	156		104		80-120			
Surrogate: Dibromofluaromethane	T000168			ug/L					103		80-120			
Surrogate: Toluene-d8	T000168			ug/L					99		80-120			
Surrogate: 4-Bromofluorohenzene	7000168			ug/L					102		80-120			

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Mr. Kevin Bugel

Work Order:

WTA0575

Received:

01/25/10

Project: Project Number:

1E-0909013 Racine, WI 1730 State Street

	1417	TRIX		A ATRICA A J	LIZE SI	TILL D	OI LIC	ALE (CDI	114				
	Seq/	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Batch	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
VOCs by SW8260B														
QC Source Sample: WTA0554-16												_		
Benzene	I0A0437	<0.20	50	ug/L	0.20	0.67	56.0	57.6	112	115	79-123	3	20	
Broinobenzene	10A0437	< 0.20	50	ug/L	0.20	0.67	50.5	52.0	101	104	83-117	3	24	
Bromochloromethane	10A0437	<0.50	50	ug/L	0.50	1.7	51.2	53.4	102	107	78-113	4	14	
Bromodichloromethane	10A0437	< 0.20	50	ug/L	0.20	0.67	51.7	53.7	103	107	84-119	4	19	
Bromoform	10A0437	<0.20	50	ug/L	0.20	0.67	51.4	52.9	103	106	79-124	3	26	
Broinomethane	10A0437	<0.50	50	ug/L	0.50	1.7	45.9	37.3	92	75	70-133	21	18	R2
n-Butylbenzene	10A0437	< 0.20	50	ug/L	0.20	0.67	53.3	54.4	107	109	75-138	2	19	
ec-Butylbenzene	10A0437	<0.25	50	ug/L	0.25	0.83	52.6	54.6	105	109	79-136	4	19	
ert-Butylbenzene	10A0437	< 0.20	50	ug/L	0.20	0.67	52.7	55.3	105	111	83-128	5	17	
Carbon Tetrachloride	10A0437	<0.80	50	ug/L	0.80	2.6	55.7	56.3	111	113	88-131	1	17	
Chlorobenzene	10A0437	< 0.20	50	ug/L	0.20	0.67	50.9	52.8	102	106	86-115	4	16	
Chlorodibromomethane	10A0437	< 0.20	50	ug/L	0.20	0.67	51.6	53.2	103	106	84-120	3	23	
Chloroethane	10A0437	<1.0	50	ug/L	1.0	3.3	61.4	60,9	123	122	75-131	1	17	
Chloroform	10A0437	< 0.20	50	ug/L	0.20	0.67	52.8	54.6	106	109	83-120	3	14	
Chloromethane	10A0437	< 0.30	50	ug/L	0.30	1.0	57.2	57.2	114	114	62-129	0	16	
2-Chlorotoluene	10A0437	< 0.50	50	ug/L	0.50	1.7	52.6	54.0	105	108	80-131	3	26	
I-Chiorotoluene	10A0437	< 0.20	50	ug/L	0.20	0.67	51.0	52.3	102	105	80-132	2	26	
,2-Dibromo-3-chloropropane	10A0437	< 0.50	50	ug/L	0.50	1.7	49.5	54.0	99	108	70-122	9	26	
1,2-Dibromoethane (EDB)	10A0437	< 0.20	50	ug/L	0.20	0.67	49.9	52,6	100	105	83-114	5	19	
Dibromomethane	10A0437	< 0.20	50	ug/L	0,20	0.67	49.8	52.5	100	105	81-116	5	26	
1,2-Dichlorobenzene	10A0437	< 0.20	50	ug/L	0.20	0.67	48.5	52.7	97	105	81-118	8	23	
1,3-Dichlorobenzene	10A0437	< 0.20	50	ug/L	0.20	0.67	49.4	52.8	99	106	80-121	7	21	
1.4-Dichlorobenzene	10A0437	< 0.50	50	ug/L	0.50	1.7	47.8	51.1	96	102	80-116	7	21	
Dichlorodifluoromethane	10A0437	< 0.50	50	ug/L	0.50	1.7	58.4	60.2	117	120	74-135	3	19	
I.I-Dichloroethane	10A0437	< 0.50	50	ug/L	0.50	1.7	56.5	58.1	113	116	77-128	3	18	
1,2-Dichloroethane	10A0437	<0.50	50	ug/L	0.50	1.7	54.1	56.2	108	112	80-123	4	19	
1,1-Dichloroethene	10A0437	<0.50	50	ug/L	0.50	1.7	58.2	58.7	116	117	84-131	1	18	
cis-1,2-Dichloroethene	10A0437	<0.50	50	ug/L	0.50	1.7	55.2	57.3	110	115	82-121	4	17	
trans-1,2-Dichloroethene	10A0437	<0.50	50	ug/L	0.50	1.7	57.5	58.6	115	117	82-121	2	23	
1,2-Dichloropropane	10A0437	<0.50	50	ug/L	0.50	1.7	53.2	55.2	106	110	72-123	4	18	
1,3-Dichloropropane	10A0437	<0.25	50		0.25	0.83	52.3	54.5	105	109	79-119	4	24	
	10A0437	<0.50	50	ug/L	0.50	1.7	59.8	61.6	120	123	82-136	3	16	
2,2-Dichloropropane			50	ug/L	0.50	1.7	61.9	63.1	124	126	85-127	2	16	
1,1-Dichloropropene	10A0437	<0.50		ug/L										
cis-1,3-Dichloropropene	10A0437	<0.20	50	ug/L	0.20	0.67	52.6	54.5	105	109	83-120	4	20	
trans-1,3-Dichloropropene	10A0437	<0.20	50	ug/L	0.20	0.67	51.8	54.0	104	108	82-121	7	26	
Isopropyl Ether	10A0437	<0.50	50	ug/L	0.50	1.7	55.6	58.1	111	116	65-133	4	20	
Ethylbenzene	10A0437	<0.50	50	ug/L	0.50	1.7	52.8	54.5	106	109	84-122	3	16	
Hexachlorobutadiene	10A0437	<0.50	50	ug/L	0.50	1.7	49.2	47.1	98	94	56-137	4	20	
Isopropylbenzene	10A0437	<0.20	50	ug/L	0.20	0.67	54.9	56.5	110	113	79-136	3	22	
p-Isopropyltoluene	10A0437	<0.20	50	ug/L	0.20	0.67	53.7	53.7	107	107	75-141	0	20	
Methylene Chloride	10A0437	<1.0	50	ug/L	1.0	3.3	52.6	53.9	105	108	77-123	2 ,	24	
Methyl tert-Butyl Ether	10A0437	< 0.50	50	ug/L	0.50	1.7	54.5	56.5	109	113	76-125	4	18	
Naphthalene	10A0437	< 0.25	50	ug/L	0.25	0.83	50.5	57.3	101	115	62-130	13	24	
n-Propylbenzene	10A0437	< 0.50	50	ug/L	0.50	1.7	53.9	55.1	108	110	83-130	2	23	
Styrene	10A0437	< 0.50	50	ug/L	0.50	1.7	54.1	56.5	108	113	82-126	4	14	

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Mr. Kevin Bugel

Work Order:

WTA0575

Received:

01/25/10

Project: Project Number:

1730 State Street

1E-0909013 Racine, WI

		TRIX												
	Seq/	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Batch	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
VOCs by SW8260B														
QC Source Sample: WTA0554-16														
1,1,1,2-Tetrachloroethane	10A0437	< 0.25	50	ug/L	0.25	0.83	51.3	53.5	103	107	86-120	4	17	
1,1,2,2-Tetrachloroethane	10A0437	< 0.20	50	ug/L	0.20	0.67	49.4	53.6	99	107	75-122	8	26	
Tetrachloroethene	10A0437	< 0.50	50	ug/L	0.50	1.7	54.8	56.4	110	113	86-124	3	18	
Toluene	10A0437	< 0.50	50	ug/L	0.50	1.7	52.3	54.3	105	109	86-120	4	18	
,2,3-Trichlorobenzene	10A0437	< 0.25	50	ug/L	0.25	0.83	44.8	50.6	90	101	64-126	12	24	
.2.4-Trichlorobenzene	10A0437	< 0.25	50	ug/L	0.25	0.83	46.6	50.2	93	100	67-128	7	21	
1,1,1-Trichloroethane	10A0437	< 0.50	50	ug/L	0.50	1.7	58.7	60.5	117	121	87-128	3	19	
1,1,2-Trichloroethane	10A0437	< 0.25	50	ug/L	0.25	0.83	51.6	53.9	103	108	82-117	4	28	
Trichloroethene	10A0437	< 0.20	50	ug/L	0.20	0.67	54.9	56.2	110	112	90-118	2	18	
Trichlorofluoromethane	10A0437	< 0.50	50	ug/L	0.50	1.7	60.6	60.2	121	120	80-143	1	19	
,2,3-Trichloropropane	10A0437	< 0.50	50	ug/L	0.50	1.7	49.9	52.2	100	104	77-120	5	26	
1,2,4-Trimethylbenzene	10A0437	< 0.20	50	ug/L	0.20	0.67	53.2	54.0	106	108	77-135	2	24	
,3,5-Trimethylbenzene	10A0437	<0.20	50	ug/L	0,20	0.67	53.8	54.9	108	110	79-132	2	24	
Vinyl chloride	10A0437	<0.20	50	ug/L	0.20	0.67	60.3	59.9	121	120	72-137	1	17	
Xylenes, Total	10A0437	<0.50	150	ug/L	0.50	1.7	159	165	106	110	85-121	4	13	
Surrogate: Dibromofluoromethane	10A0437			ug/L					102	102	82-122			
Surrogate: Toluene-d8	10A0437			ug/L					98	99	86-117			
Surrogate: 4-Bromofluorobenzene	10A0437			ug/L					104	103	83-118			
QC Source Sample: WTA0595-21														
Benzene	10A0493	< 0.20	50	ug/L	0.20	0.67	59.3	59.1	119	118	79-123	0	20	
Bromobenzene	10A0493	< 0.20	50	ug/L	0.20	0.67	53.0	52.7	106	105	83-117	1	24	
Bromochloromethane	10A0493	< 0.50	50	ug/L	0.50	1.7	55.2	55.3	110	111	78-113	0	14	
Bromodichloromethane	10A0493	< 0.20	50	ug/L	0.20	0.67	56.2	55.6	112	111	84-119	1	19	
Bromoform	10A0493	< 0.20	50	ug/L	0.20	0.67	55.2	54.7	110	109	79-124	1	26	
Bromomethane	10A0493	< 0.50	50	ug/L	0.50	1.7	51.9	53.1	104	106	70-133	2	18	
1-Butylbenzene	10A0493	<0.20	50	ug/L	0.20	0,67	58.0	58.1	116	116	75-138	0	19	
sec-Butylbenzene	10A0493	< 0.25	50	ug/L	0.25	0.83	57.0	57.2	114	114	79-136	1	19	
ert-Butylbenzene	10A0493	< 0.20	50	ug/L	0.20	0.67	56.3	56.5	113	113	83-128	0	17	
Carbon Tetrachloride	10A0493	< 0.80	50	ug/L	0.80	2.6	55.9	56.4	112	113	88-131	1	17	
Chlorobenzene	10A0493	<0.20	50	ug/L	0.20	0.67	53,4	53.1	107	106	86-115	1	16	
Chlorodibromomethane	10A0493	<0.20	50	ug/L	0.20	0.67	55.8	55.0	112	110	84-120	1	23	
Chloroethane	10A0493	<1.0	50	ug/L	1.0	3.3	63,9	63.3	128	127	75-131	1	17	
Chloroform	10A0493	<0.20	50	ug/L	0.20	0.67	56.5	56.2	113	112	83-120	1	14	
Chloromethane	10A0493	< 0.30	50	ug/L	0.30	1.0	53.5	52.6	107	105	62-129	2	16	
2-Chlorotoluene	10A0493	<0.50	50	ug/L	0.50	1.7	55.0	54.9	110	110	80-131	0	26	
4-Chlorotoluene	10A0493	<0.20	50	ug/L	0.20	0.67	53.8	53.8	108	108	80-132	0	26	
1,2-Dibromo-3-chloropropane	10A0493	<0.50	50	ug/L	0.50	1.7	53.7	53.2	107	106	70-122	1	26	
1,2-Dibromoethane (EDB)	10A0493	<0.20	50	ug/L	0.20	0.67	54.0	53.2	108	106	83-114	1	19	
Dibromomethane	10A0493	<0.20	50	ug/L	0.20	0.67	53.0	52.8	106	106	81-116	0	26	
1,2-Dichlorobenzene	10A0493	<0.20	50	ug/L	0.20	0.67	52.8	52.4	106	105	81-118	1	23	
1,2-Dichlorobenzene			50	_					106			0		
•	10A0493	<0.20		ug/L	0.20	0.67	52.9	53.1		106	80-121		21	
1,4-Dichlorobenzene	10A0493	< 0.50	50	ug/L	0.50	1.7	51.7	51.3	103	103	80-116	1	21	
Dichlorodifluoromethane	10A0493	8.48	50	ug/L	0.50	1.7	63.0	59.9	109	103	74-135	5	19	
1,1-Dichloroethane 1,2-Dichloroethane	10A0493 10A0493	<0.50 <0.50	50 50	ug/L ug/L	0.50	1.7 1.7	59.8 58.6	59.5 58.2	120	119 116	77-128 80-123	0	18	

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186

Work Order:

WTA0575

Received:

01/25/10

Project: Project Number:

1E-0909013 Racine, WI 1730 State Street

Reported: 01/29/10 14:55

	MA	TRIX	SPIKE	/MATI	RIX SP	PIKE D	UPLIC	CATE	QC DA	ATA				
	Seq/	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Batch	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
VOCs by SW8260B														
QC Source Sample: WTA0595-21														
1,1-Dichloroethene	10A0493	<0.50	50	ug/L	0.50	1.7	60.5	60.2	121	120	84-131	1	18	
sis-1,2-Dichloroethene	10A0493	< 0.50	50	ug/L	0.50	1.7	58.7	58.3	117	117	82-121	1	17	
rans-1,2-Dichloroethene	10A0493	<0.50	50	ug/L	0.50	1.7	59.6	59.3	119	119	82-126	1	23	
,2-Dichloropropane	10A0493	<0.50	50	ug/L	0.50	1.7	57. I	56.9	114	114	72-123	0	18	
.3-Dichloropropane	10A0493	<0.25	50	ug/L	0.25	0.83	57.2	56.1	114	112	79-119	2	24	
2-Dichloropropane	10A0493	<0.50	50	ug/L	0.50	1.7	58.6	58.2	117	116	82-136	1	16	
,1-Dichloropropene	10A0493	< 0.50	50	ug/L	0.50	1.7	63.1	63.1	126	126	85-127	0	16	
is-1,3-Dichloropropene	10A0493	< 0.20	50	ug/L	0.20	0.67	58.4	57.8	117	116	83-120	1	20	
rans-1,3-Dichloropropene	10A0493	< 0.20	50	ug/L	0.20	0.67	57.8	57.7	116	115	82-121	0	26	
sopropyl Ether	10A0493	< 0.50	50	ug/L	0.50	1.7	60.7	60.3	121	121	65-133	1	20	
Ethylbenzene	10A0493	< 0.50	50	ug/L	0.50	1.7	54.6	54.7	109	109	84-122	0	16	
Hexachlorobutadiene	10A0493	< 0.50	50	ug/L	0.50	1.7	53.2	53.2	106	106	56-137	0	20	
sopropylbenzene	10A0493	< 0.20	50	ug/L	0.20	0.67	57.0	57.2	114	114	79-136	1	22	
-Isopropyltoluene	10A0493	< 0.20	50	ug/L	0.20	0.67	56.4	56.8	113	114	75-141	1	20	
Methylene Chloride	10A0493	<1.0	50	ug/L	1.0	3.3	57.3	56.5	115	113	77-123	2	24	
Methyl tert-Butyl Ether	10A0493	< 0.50	50	ug/L	0.50	1.7	59.1	58.7	118	117	76-125	1	18	
Naphthalene	10A0493	< 0.25	50	ug/L	0.25	0.83	57.4	56.8	115	114	62-130	1	24	
a-Propylbenzene	10A0493	< 0.50	50	ug/L	0.50	1.7	55.8	56.1	112	112	83-130	1	23	
Styrene	10A0493	< 0.50	50	ug/L	0.50	1.7	56.6	56.2	113	112	82-126	1	14	
1,1,1,2-Tetrachloroethane	10A0493	<0.25	50	ug/L	0.25	0.83	54.1	53.9	108	108	86-120	0	17	
1,2,2-Tetrachloroethane	10A0493	<0.20	50	ug/L	0.20	0.67	54.8	53.7	110	107	75-122	2	26	
Tetrachloroethene	10A0493	<0.50	50	ug/L	0.50	1,7	54.0	54.4	108	109	86-124	1	18	
Foluene	10A0493	<0.50	50	ug/L	0.50	1.7	54.5	54.0	109	108	86-120	1	18	
1,2,3-Trichlorobenzene	10A0493	<0.25	50	ug/L	0.25	0.83	51.4	51.3	103	103	64-126	0	24	
1,2,4-Trichlorobenzene	10A0493	<0.25	50	ug/L	0.25	0.83	51.6	51.3	103	103	67-128	1	21	
1,1,1-Trichloroethane	10A0493	< 0.50	50	ug/L	0.50	1.7	60.4	60.5	121	121	87-128	0	19	
1,1,2-Trichloroethane	10A0493	<0.25	50	ug/L ug/L	0.25	0.83	55.8	54.5	112	109	82-117	2	28	
Trichloroethene	10A0493	<0.20	50	ug/L ug/L	0.20	0.67	56.4	56.0	113	112	90-118	1	18	
			50	-	0.50	1.7	59.5		119	117		2	19	
Trichlorofluoromethane	10A0493 10A0493	<0.50 <0.50	50	ug/L	0.50	1.7	54.8	58.4 53.5	119	107	80-143 77-120	2	26	
1,2,3-Trichloropropane				ug/L							77-120	1	24	
1,2,4-Trimethylbenzene	10A0493	<0.20	50	ug/L	0.20	0.67	55.8	55.6	112	111				
,3,5-Trimethylbenzene	10A0493	<0.20	50	ug/L	0.20	0.67	56.3	56.5	113	113	79-132	1	24	
Vinyl chloride	10A0493	<0.20	50	ug/L	0.20	0.67	56.3	55.6	113	111	72-137	1	17	
Xylenes, Total	10A0493	<0.50	150	ug/L,	0.50	1.7	165	165	110	110	85-121	0	13	
Surrogate: Dibromofluoromethane	10A0493			ug/L					104	103	82-122			
Surrogate: Toluene-d8	10A0493			ug/L					99	99	86-117			
Surrogate: 4-Bromofluorobenzene	10A0493			ug/L					103	103	83-118			

602 Commerce Drive Watertown, WI 53094 *800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN N8 W22350 Johnson Road Waukesha, WI 53186

Waukesha, WI 53186 Mr. Kevin Bugel Work Order: WTA0575

Project: 1E-0909013 Racine, WI

Project Number: 1730 State Street

Received: 01/25/10

Reported: 01/29/10 14:55

CERTIFICATION SUMMARY

TestAmerica Watertown

Method	Matrix	Nelac	Wisconsin		
SW 8260B	Water - NonPotable	X	X		

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Mr. Kevin Bugel

Work Order:

Project:

WTA0575

1E-0909013 Racine, WI

Project Number:

1730 State Street

01/25/10 Received:

01/29/10 14:55 Reported:

DATA QUALIFIERS AND DEFINITIONS

J Results reported between the Method Detection Limit (MDL) and Limit of Quantitation (LOQ) are less certain than results at or

above the LOQ.

R2 The RPD exceeded the acceptance limit.

Siles Engineering Ass	ocia	tes, inc	•			С	HAIN-	OF-C	USTO	Υ					Sit	e (0. s 173 Rad	may	Cial	
N8 W22350 Johnson Road Suite A1, Waukes			el: 414-544-0			ax: 414-54			_						A d d - a -	. 17	20 //	6	cher 6
4875 East La Palma Avenue, Suite 607, Anah			el: 714-779-0			ax: 714-77				losure sa			700\		Addres	s 17	00 54	4 14	71457
8300 Guilford Road, Suite F1, Columbia, MD 2			el: 410-312-9			ax: 410-31				ontirmat RUSH	ion requi	irea (NK/	20)			D		1/20	2 4 5 1
☐ 10722 North Stemmons Freeway, Dallas, TX 7	75220		el: 214-358-5			ax: 214-35			шг	козп						1).0.6	TACI	L-15(6	Alis
2830 Agriculture Drive, Madison, Wi 53718			el: 608-223-1			ax: 608-22		p	OSSIB	IFHA	ZARD	9.							
3990 Flowers Road, Suite 530, Atlanta, GA,30)360	Į(el. 770-458-3	399	Ta	ax: 770-45					\	,. <u> </u>							
mple Collector Lives Roanhous	1			Proje	ect Mar	ager			ucid				Project	Number	1E-	09090	7/3		4 76 to 12 10 10 10 10 10 10 10 10 10 10 10 10 10
poratory Used Tist Amuice				Lab	Contac	t	Da	1	m				Lab Jo	b Number					7.7
				,		, ,	,,,,		Analy	sis Requ	ired	, ,	, ,	7 7	//			11: 232	T
Compression of the Compression o	Samues (S)) 1 1/3 (1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4		Se Se Se Se Se Se Se Se Se Se Se Se Se S											Number and y	Sam.	Due Date		Temp
720-1	14/	1-/- A	м		X					1		ff	1	1	27	Hel	570	1 100 0000000	100 100
100-1	Wil	2d(3) C		-	1	-		-	-	-		-	-	-	D			& Barrier	Day Segue
TOPBlonk		P			W	A									10	Hel	510	247 20	
7 7 7 7		A	M		П													7.55	· · · · · · · · · · · · · · · · · · ·
			M	-	-	-			-	-		-	-	-		-		1. 1. 18 / 18 / 18 / 18 / 18 / 18 / 18 /	100 0 100 100 100 100 100 100 100 100 1
		P																	
			M M															- 44-10,00, 01	14. 4
	~	A	м					-	1	-			+++	1		-		- : : : : : : : : : : : : : : : : : : :	7 7 7
		Р								_			4					12/12/17/19	10,3 3202
		P	M M											-					
			м		1								1					V. 301. 1994.	
		P	M	_		-			-	-		-	+	-		-		1 1 1 1 1 1	
			M													4			
		A																1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(A-3, 2 V - 1, 6)
		P		-		-			-				-	-				2.5.38 AB	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
			M																Y
			M															7907443 N	
ntainer code:		P	IVI									<u></u>							
A = 8 oz/250 ml		C = 2 oz/6						1 L Amb			G = poly	bag				1 =		_	
B = 4 oz/ 120 ml/		D = 40 mi	VOA vial H	4			= 2	250 mL p	plastic		H =					J =		_	
linquished By	Date	Time	Received	7	1	V)		INVOI	CE TO:	Ď.		d copy to t Manage	r		REPORT	TO:		same PM
iniquisited by	1 1	ELLA		- J	K	1	/		/							KEP OKT	, –		
	1	110 /	M 2		12	X	2.			1456	agin	26111	15			- 6	US E	Wind Ri	11/12/
Bullson	1/25	1300	M 221	acti	5	1/25/10	139	13	A	SACI	4 45.	Zac	,			As	weinte	to Inc	L. '
7			M			1-4								Pag	. /		1		611
		-	M						_								14		-
		F	PM											of				Bu	146
ms.xls//COC 08/10/99																			

February 15, 2010

RECEIVED FEB 17 2010

Client:

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186

Work Order:

WTB0237

Project Name:

1E-0909013 Racine, WI

Project Number:

1730 State Street; Racine, WI

Attn:

Mr. Kevin Bugel

Date Received:

02/09/10

An executed copy of the chain of custody is also included as an addendum to this report.

If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-800-833-7036

LAB NUMBER	COLLECTION DATE AND TIME
WTB0237-01	02/08/10
WTB0237-02	02/08/10
WTB0237-03	02/08/10
WTB0237-04	02/08/10
WTB0237-05	02/08/10
WTB0237-06	02/08/10
	WTB0237-01 WTB0237-02 WTB0237-03 WTB0237-04 WTB0237-05

Samples were received into laboratory on ice. Wisconsin Certification Number: 128053530

The Chain(s) of Custody, 2 pages, are included and are an integral part of this report.

Unless subcontracted, volatiles analyses (including VOC, PVOC, GRO, BTEX, and TPH gasoline) performed by TestAmerica Watertown at 1101 Industrial Drive, Units 9&10. All other analyses performed at the address shown in the heading of this report.

Approved By:

TestAmerica Watertown Brian DeJong For Dan F. Milewsky

Project Manager

Page 1 of 23

GILES ENGINEERING - WISCONSIN N8 W22350 Johnson Road Waukesha, WI 53186 Mr. Kevin Bugel

Work Order:

WTB0237

Received:

02/09/10

Project: Project Number:

1E-0909013 Racine, WI 1730 State Street; Racine, WI Reported: 02/15/10 12:59

ANALYTICAL REPORT

Analyte	Sample Result	Data Qualifiers	Units	MDL	LOQ	Dilution Factor	Date	A maluat	Seq/	Method
Analyte	Vesuit	Quaillicis	Omis	MIDL	200	ractor	Analyzed	Analyst	Batch	MICHIO
Sample ID: WTB0237-01 (MV	W-1 - Ground Wate	r)					Sampled: 02	/08/10		
VOCs by SW8260B										
Benzene	<3.2		ug/L	3.2	11	16	02/12/10 06:40	MAE	10B0229	SW 8260
Bromobenzene	<3.2		ug/L	3.2	11	16	02/12/10 06:40	MAE	10B0229	SW 8260
Bromochloromethane	<8.0		ug/L	8.0	27	16	02/12/10 06:40	MAE	10B0229	SW 8260
Bromodichloromethane	<3,2		ug/L	3.2	11	16	02/12/10 06:40	MAE	10B0229	SW 8260
Bromoform	<3.2		ug/L	3.2	11	16	02/12/10 06:40	MAE	10B0229	SW 8260
Bromomethane	<8.0		ug/L	8.0	27	16	02/12/10 06:40	MAE	10B0229	SW 8260
n-Butylbenzene	<3.2		ug/L	3.2	11	16	02/12/10 06:40	MAE	10B0229	SW 8260
sec-Butylbenzene	<4.0		ug/L	4.0	13	16	02/12/10 06:40	MAE	10B0229	SW 82601
tert-Butylbenzene	<3.2		ug/L	3.2	11	16	02/12/10 06:40	MAE	10B0229	SW 82601
Carbon Tetrachloride	<13		ug/L	13	43	16	02/12/10 06:40	MAE	10B0229	SW 82601
Chlorobenzene	<3.2		ug/L	3.2	11	16	02/12/10 06:40	MAE	10B0229	SW 82601
Chlorodibromomethane	<3,2		ug/L	3.2	11	16	02/12/10 06:40	MAE	10B0229	SW 82601
Chloroethane	<16		ug/L	16	53	16	02/12/10 06:40	MAE	10B0229	SW 82601
Chloroform	<3.2		ug/L	3.2	11	16	02/12/10 06:40	MAE	10B0229	SW 82601
Chloromethane	<4.8		ug/L	4.8	16	16	02/12/10 06:40	MAE	10B0229	SW 82601
2-Chlorotoluene	<8.0		ug/L	8.0	27	16	02/12/10 06:40	MAE	10B0229	SW 82601
4-Chlorotoluene	<3.2		ug/L	3.2	11	16	02/12/10 06:40	MAE	10B0229	SW 8260
1,2-Dibromo-3-chloropropane	<8.0		ug/L	8.0	27	16	02/12/10 06:40	MAE	10B0229	SW 82601
1,2-Dibromoethane (EDB)	<3.2		ug/L	3,2	11	16	02/12/10 06:40	MAE	10B0229	SW 82601
Dibromomethane	<3.2		ug/L	3.2	11	16	02/12/10 06:40	MAE	10B0229	SW 82601
1,2-Dichlorobenzene	<3,2		ug/L	3.2	11	16	02/12/10 06:40	MAE	10B0229	SW 82601
1.3-Dichlorobenzene	<3.2		ug/L	3.2	11	16	02/12/10 06:40	MAE	10B0229	SW 82601
1,4-Dichlorobenzene	<8.0		ug/L	8.0	27	16	02/12/10 06:40	MAE	10B0229	SW 82601
Dichlorodifluoromethane	<8.0		ug/L	8.0	27	16	02/12/10 06:40	MAE	10B0229	SW 82601
1,1-Dichloroethane	<8.0		ug/L	8.0	27	16	02/12/10 06:40	MAE	10B0229	SW 8260E
1,2-Dichloroethane	<8.0		ug/L	8.0	27	16	02/12/10 06:40	MAE	10B0229	SW 82601
1,1-Dichloroethene	<8.0		ug/L	8.0	27	16	02/12/10 06:40	MAE	10B0229	SW 82601
cis-1,2-Dichloroethene	1000		ug/L	8.0	27	16	02/12/10 06:40	MAE	10B0229	SW 82601
trans-1,2-Dichloroethene	12	J		8.0	27	16	02/12/10 06:40		10B0229	SW 82601
1,2-Dichloropropane	<8.0	,	ug/L	8.0	27	16	02/12/10 06:40	MAE	10B0229	SW 82601
	<4.0		ug/L	4.0	13	16	02/12/10 06:40	MAE	10B0229	SW 8260E
1,3-Dichloropropane	<8.0		ug/L	8.0	27			MAE		SW 82601
2,2-Dichloropropane			ug/L			16	02/12/10 06:40	MAE	10B0229	
1,1-Dichloropropene	<8.0		ug/L	8.0	27	16	02/12/10 06:40	MAE	10B0229	SW 82601
cis-1,3-Dichloropropene	<3.2		ug/L	3.2	11	16	02/12/10 06:40	MAE	10B0229	SW 8260F
trans-1,3-Dichloropropene	<3.2		ug/L	3.2	11	16	02/12/10 06:40	MAE	10B0229	SW 82601
2,3-Dichloropropene	<4.0		ug/L	4.0	13	16	02/12/10 06:40	MAE	10B0229	SW 82601
Isopropyl Ether	<8.0		ug/L	8.0	27	16	02/12/10 06:40	MAE	10B0229	SW 82601
Ethylbenzene	<8.0		ug/L	8.0	27	16	02/12/10 06:40	MAE	10B0229	SW 82601
Hexachlorobutadiene	<8.0		ug/L	8.0	27	16	02/12/10 06:40	MAE	10B0229	SW 82601
Isopropylbenzene	<3.2		ug/L	3.2	11	16	02/12/10 06:40	MAE	10B0229	SW 82601
p-Isopropyltoluene	<3.2		ug/L	3.2	11	16	02/12/10 06:40	MAE	10B0229	SW 82601
Methylene Chloride	<16		ug/L	16	53	16	02/12/10 06:40	MAE	10B0229	SW 82601
Methyl tert-Butyl Ether	<8.0		ug/L	8.0	27	16	02/12/10 06:40	MAE	10B0229	SW 82601
Naphthalene	<4.0		ug/L	4.0	13	16	02/12/10 06:40	MAE	10B0229	SW 82601
n-Propylbenzene	<8.0		ug/L	8.0	27	16	02/12/10 06:40	MAE	10B0229	SW 8260
Styrene	<8.0		ug/L	8.0	27	16	02/12/10 06:40	MAE	10B0229	SW 82601
1,1,1,2-Tetrachloroethane	<4.0		ug/L	4.0	13	16	02/12/10 06:40	MAE	10B0229	SW 82601
1,1,2,2-Tetrachloroethane	<3.2		ug/L	3.2	11	16	02/12/10 06:40	MAE	10B0229	SW 82601
Tetrachloroethene	280		ug/L	8.0	27	16	02/12/10 06:40	MAE	10B0229	SW 8260I

Brian DeJong For Dan F. Milewsky

Project Manager

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186 Mr. Kevin Bugel

Work Order:

WTB0237

Received:

02/09/10

1E-0909013 Racine, WI Project: Project Number:

1730 State Street; Racine, WI

02/15/10 12:59 Reported:

	Sample	Data				Dilution	Date		Seq/	
Analyte	Result	Qualifiers	Units	MDL	LOQ	Factor	Analyzed	Analyst	Batch	Method
Sample ID: WTB0237-01 (MW-1 - 0	Ground Wate	r) - cont.					Sampled: 02	/08/10		
VOCs by SW8260B - cont.										
Toluene	<8.0		ug/L	8.0	27	16	02/12/10 06:40	MAE	10B0229	SW 8260B
1,2,3-Trichlorobenzene	<4.0		ug/L	4.0	13	16	02/12/10 06:40	MAE	10B0229	SW 8260B
1,2,4-Trichlorobenzene	<4.0		ug/L	4.0	13	16	02/12/10 06:40	MAE	10B0229	SW 8260B
1.1.1-Trichloroethane	<8.0		ug/L	8.0	27	16	02/12/10 06:40	MAE	10B0229	SW 8260B
1,1,2-Trichloroethane	<4.0		ug/L	4.0	13	16	02/12/10 06:40	MAE	10B0229	SW 8260B
Trichloroethene	260		ug/L	3.2	11	16	02/12/10 06:40	MAE	10B0229	SW 8260B
Trichlorofluoromethane	<8.0		ug/L	8.0	27	16	02/12/10 06:40	MAE	10B0229	SW 8260B
1,2,3-Trichloropropane	<8.0		ug/L	8.0	27	16	02/12/10 06:40	MAE	10B0229	SW 8260B
1,2,4-Trimethylbenzene	<3.2		ug/L	3.2	11	16	02/12/10 06:40	MAE	10B0229	SW 8260B
1,3,5-Trimethylbenzene	<3.2		ug/L	3.2	11	16	02/12/10 06:40	MAE	10B0229	SW 8260B
Vinyl chloride	71		ug/L	3.2	11	16	02/12/10 06:40	MAE	10B0229	SW 8260B
Xylenes, Total	<8.0		ug/L	8.0	27	16	02/12/10 06:40	MAE	10B0229	SW 8260B
Surr: Dibromofluoromethane (82-122%)	100 %		-8 -							
Surr: Toluene-d8 (86-117%)	100 %									
Surr: 4-Bromofluorobenzene (83-118%)	97 %									
Sample ID: WTB0237-02 (MW-2 -	Ground Wate	r)					Sampled: 02	/08/10		
VOCs by SW8260B										
Benzene	<2.0		ug/L	2.0	6.7	10	02/11/10 17:50	MAE	10B0228	SW 8260B
Bromobenzene	<2.0		ug/L	2.0	6.7	10	02/11/10 17:50	MAE	10B0228	SW 8260B
Bromochloromethane	<5.0		ug/L	5.0	17	10	02/11/10 17:50	MAE	10B0228	SW 8260B
Bromodichloromethane	<2.0		ug/L	2.0	6.7	10	02/11/10 17:50	MAE	10B0228	SW 8260B
Bromoform	<2.0		ug/L	2.0	6.7	10	02/11/10 17:50	MAE	10B0228	SW 8260B
Bromomethane	<5.0		ug/L	5.0	17	10	02/11/10 17:50	MAE	10B0228	SW 8260B
n-Butylbenzene	<2.0		ug/L	2.0	6.7	10	02/11/10 17:50	MAE	10B0228	SW 8260B
sec-Butylbenzene	<2.5		ug/L	2.5	8.3	10	02/11/10 17:50	MAE	10B0228	SW 8260B
tert-Butylbenzene	<2.0		ug/L	2.0	6.7	10	02/11/10 17:50	MAE	10B0228	SW 8260B
Carbon Tetrachloride	<8.0		ug/L	8.0	27	10	02/11/10 17:50	MAE	10B0228	SW 8260B
Chlorobenzene	<2.0		ug/L	2.0	6.7	10	02/11/10 17:50	MAE	10B0228	SW 8260B
Chlorodibromomethane	<2.0		ug/L	2.0	6.7	10	02/11/10 17:50	MAE	10B0228	SW 8260B
Chloroethane	<10		ug/L	10	33	10	02/11/10 17:50	MAE	10B0228	SW 8260B
Chloroform	<2.0		ug/L	2.0	6.7	10	02/11/10 17:50	MAE	10B0228	SW 8260B
Chloromethane	<3.0		ug/L	3.0	10	10	02/11/10 17:50	MAE	10B0228	SW 8260B
2-Chlorotoluene	<5.0		ug/L	5.0	17	10	02/11/10 17:50	MAE	10B0228	SW 8260B
4-Chlorotoluene	<2.0		ug/L	2.0	6.7	10	02/11/10 17:50	MAE	10B0228	SW 8260B
1,2-Dibromo-3-chloropropane	<5.0		ug/L	5.0	17	10	02/11/10 17:50	MAE	10B0228	SW 8260B
1,2-Dibromoethane (EDB)	<2.0		ug/L	2.0	6.7	10	02/11/10 17:50	MAE	10B0228	SW 8260B
Dibromomethane	<2.0		ug/L	2.0	6.7	10	02/11/10 17:50	MAE	10B0228	SW 8260B
1,2-Dichlorobenzene	<2.0		ug/L	2.0	6.7	10	02/11/10 17:50	MAE	10B0228	SW 8260B
1,3-Dichlorobenzene	<2.0		ug/L	2.0	6.7	10	02/11/10 17:50	MAE	10B0228	SW 8260B
1,4-Dichlorobenzene	<5.0		ug/L	5.0	17	10	02/11/10 17:50	MAE	10B0228	SW 8260B
Dichlorodifluoromethane	<5.0		ug/L	5.0	17	10	02/11/10 17:50	MAE	10B0228	SW 8260B
1,1-Dichloroethane	11	J	ug/L	5.0	17	10	02/11/10 17:50	MAE	10B0228	SW 8260B
1,2-Dichloroethane	<5.0		ug/L	5.0	17	10	02/11/10 17:50	MAE	10B0228	SW 8260B
1,1-Dichloroethene	<5.0		ug/L	5.0	17	10	02/11/10 17:50	MAE	10B0228	SW 8260B
cis-1,2-Dichloroethene	2600		ug/L	120	420	250	02/12/10 07:33	MAE	10B0229	SW 8260B
trans-1,2-Dichloroethene	20		ug/L	5.0	17	10	02/11/10 17:50	MAE	10B0228	SW 8260B
1,2-Dichloropropane	<5.0		ug/L	5.0	17	10	02/11/10 17:50	MAE	10B0228	SW 8260B
1,3-Dichloropropane	<2.5		ug/L	2.5	8.3	10	02/11/10 17:50	MAE	10B0228	SW 8260B
2,2-Dichloropropane	<5.0		ug/L	5.0	17	10	02/11/10 17:50	MAE	10B0228	SW 8260B
1,1-Dichloropropene	<5.0		ug/L	5.0	17	10	02/11/10 17:50	MAE	10B0228	SW 8260B

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Mr. Kevin Bugel

Work Order:

Project:

WTB0237

Received:

02/09/10

Project Number:

1E-0909013 Racine, WI

1730 State Street; Racine, WI

02/15/10 12:59 Reported:

Analyte	Sample Result	Data Qualifiers	Units	MDL	LOQ	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTB0237-02 (MW-2 -	Ground Wate	r) - cont.					Sampled: 02	/08/10		
VOCs by SW8260B - cont.							.			
cis-1,3-Dichloropropene	<2.0		ug/L	2.0	6.7	10	02/11/10 17:50	MAE	10B0228	SW 82601
trans-1,3-Dichloropropene	<2.0		ug/L	2.0	6.7	10	02/11/10 17:50	MAE	10B0228	SW 8260
2,3-Dichloropropene	<2.5		ug/L	2.5	8.3	10	02/11/10 17:50	MAE	10B0228	SW 8260
Isopropyl Ether	<5.0		ug/L	5.0	17	10	02/11/10 17:50	MAE	10B0228	SW 8260
Ethylbenzene	<5.0		ug/L	5.0	17	10	02/11/10 17:50	MAE	10B0228	SW 8260
Hexachlorobutadiene	<5.0		ug/L	5.0	17	10	02/11/10 17:50	MAE	10B0228	SW 8260
Isopropylbenzene	<2.0		ug/L	2.0	6.7	10	02/11/10 17:50	MAE	10B0228	SW 8260
p-lsopropyltoluene	<2.0		ug/L	2.0	6.7	10	02/11/10 17:50	MAE	10B0228	SW 8260
Methylene Chloride	<10		ug/L	10	33	10	02/11/10 17:50	MAE	10B0228	SW 8260
Methyl tert-Butyl Ether	<5.0		ug/L	5.0	17	10	02/11/10 17:50	MAE	10B0228	SW 8260
Naphthalene	<2.5		ug/L	2.5	8.3	10	02/11/10 17:50	MAE	10B0228	SW 8260
n-Propylbenzene	<5.0		ug/L	5.0	17	10	02/11/10 17:50	MAE	10B0228	SW 8260
Styrene	<5.0		ug/L	5.0	17	10	02/11/10 17:50	MAE	10B0228	SW 8260
1,1,1,2-Tetrachloroethane	<2.5		ug/L	2.5	8.3	10	02/11/10 17:50	MAE	10B0228	SW 8260
1,1,2,2-Tetrachloroethane	<2.0		ug/L	2.0	6.7	10	02/11/10 17:50	MAE	10B0228	SW 8260
Tetrachloroethene	11000		ug/L	120	420	250	02/12/10 07:33	MAE	10B0229	SW 8260
Toluene	<5.0		ug/L	5.0	17	10	02/11/10 17:50	MAE	10B0228	SW 8260
1,2,3-Trichlorobenzene	<2.5		ug/L	2.5	8.3	10	02/11/10 17:50	MAE	10B0228	SW 8260
1,2,4-Trichlorobenzene	<2.5		ug/L	2.5	8.3	10	02/11/10 17:50	MAE	10B0228	SW 8260
1,1,1-Trichloroethane	<5.0		ug/L	5.0	17	10	02/11/10 17:50	MAE	10B0228	SW 8260
1,1,2-Trichloroethane	<2.5		ug/L	2.5	8.3	10	02/11/10 17:50	MAE	10B0228	SW 8260
Trichloroethene	4200		ug/L	50	170	250	02/12/10 07:33	MAE	10B0229	SW 8260
Trichlorofluoromethane	<5.0		ug/L	5.0	17	10	02/11/10 17:50	MAE	10B0228	SW 8260
1,2,3-Trichloropropane	<5.0		ug/L	5.0	17	10	02/11/10 17:50	MAE	10B0228	SW 8260
1,2,4-Trimethylbenzene	<2.0		ug/L	2.0	6.7	10	02/11/10 17:50	MAE	10B0228	SW 8260
1,3,5-Trimethylbenzene	<2.0		ug/L	2.0	6.7	10	02/11/10 17:50	MAE	10B0228	SW 8260
Vinyl chloride	110		ug/L	2.0	6.7	10	02/11/10 17:50	MAE	10B0228	SW 8260
Xylenes, Total	<5.0		ug/L	5,0	17	10	02/11/10 17:50	MAE	10B0228	SW 8260
Surr: Dibromofluoromethane (82-122%)	103 %									
Surr: Dibromofluoromethane (82-122%)	101 %									
Surr: Toluene-d8 (86-117%)	100 %									
Surr: Toluene-d8 (86-117%)	100 %									
Surr: 4-Bromofluorobenzene (83-118%)	98 %									
Surr: 4-Bromofluorobenzene (83-118%)	97 %									

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

CHI EC ENCINEEDING WICCONCIN

Received:

02/09/10

Reported:

02/15/10 12:59

Analyte	Sample Result	Data Qualifiers	Units	MDL	LOQ	Dilution Factor	Date Analyzed	
Waukesha, WI 53186 Mr. Kevin Bugel			Project ?	Number:	1730 Sta	te Street; Ra	cine, WI	
N8 W22350 Johnson Road			Project:		1E-0909	013 Racine,	WI	
GILES ENGINEERING - WISC	ONSIN		Work O	rder:	WTB023	37		

Analyte	Sample Result	Data Qualifiers	Units	MDL	LOQ	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTB0237-03RE1 (M	IW-3 - Ground V	Vater)					Sampled: 02	/08/10		
VOCs by SW8260B										
Benzene	< 0.40		ug/L	0.40	1.3	2	02/12/10 07:07	MAE	10B0229	SW 8260
Bromobenzene	< 0.40		ug/L	0.40	1.3	2	02/12/10 07:07	MAE	10B0229	SW 8260
Bromochloromethane	<1.0		ug/L	1.0	3.3	2	02/12/10 07:07	MAE	10B0229	SW 8260
Bromodichloromethane	< 0.40		ug/L	0.40	1.3	2	02/12/10 07:07	MAE	10B0229	SW 8260
Bromoform	< 0.40		ug/L	0.40	1.3	2	02/12/10 07:07	MAE	10B0229	SW 8260
Bromomethane	<1.0		ug/L	1.0	3.3	2	02/12/10 07:07	MAE	10B0229	SW 8260
n-Butylbenzene	< 0.40		ug/L	0.40	1.3	2	02/12/10 07:07	MAE	10B0229	SW 8260
sec-Butylbenzene	<0.50		ug/L	0.50	1.7	2	02/12/10 07:07	MAE	10B0229	SW 8260
tert-Butylbenzene	< 0.40		ug/L	0.40	1.3	2	02/12/10 07:07	MAE	10B0229	SW 8260
Carbon Tetrachloride	<1.6		ug/L	1.6	5.3	2	02/12/10 07:07	MAE	10B0229	SW 8260
Chlorobenzene	< 0.40			0.40	1.3	2	02/12/10 07:07		10B0229	SW 8260
Chlorodibromomethane	<0.40		ug/L	0.40	1.3	2	02/12/10 07:07	MAE	10B0229	SW 8260
Chloroethane	<2.0		ug/L	2.0				MAE		
Chloroform	<0.40		ug/L		6.7	2	02/12/10 07:07	MAE	10B0229	SW 8260
Chloromethane	<0.40		ug/L	0.40	1.3	2	02/12/10 07:07 02/12/10 07:07	MAE	10B0229	SW 8260
2-Chlorotoluene			ug/L		2.0	2		MAE	10B0229	SW 8260
	<1.0		ug/L	1.0	3.3	2	02/12/10 07:07	MAE	10B0229	SW 8260
4-Chlorotoluene	<0.40		ug/L	0.40	1.3	2	02/12/10 07:07	MAE	10B0229	SW 8260
1,2-Dibromo-3-chloropropane	<1.0		ug/L	1.0	3.3	2	02/12/10 07:07	MAE	10B0229	SW 8260
1,2-Dibromoethane (EDB)	<0.40		ug/L	0.40	1.3	2	02/12/10 07:07	MAE	10B0229	SW 8260
Dibromomethane	<0.40		ug/L	0.40	1.3	2	02/12/10 07:07	MAE	10B0229	SW 8260
1,2-Dichlorobenzene	<0.40		ug/L	0.40	1.3	2	02/12/10 07:07	MAE	10B0229	SW 8260
1,3-Dichlorobenzene	<0.40		ug/L	0.40	1.3	2	02/12/10 07:07	MAE	10B0229	SW 8260
1,4-Dichlorobenzene	<1.0		ug/L	1.0	3.3	2	02/12/10 07:07	MAE	10B0229	SW 8260
Dichlorodifluoromethane	<1.0		ug/L	1.0	3.3	2	02/12/10 07:07	MAE	10B0229	SW 8260
1,1-Dichloroethane	<1.0		ug/L	1.0	3.3	2	02/12/10 07:07	MAE	10B0229	SW 8260
1,2-Dichloroethane	<1.0		ug/L	1.0	3.3	2	02/12/10 07:07	MAE	10B0229	SW 8260
1,1-Dichloroethene	<1.0		ug/L	1.0	3.3	2	02/12/10 07:07	MAE	10B0229	SW 8260
cis-1,2-Dichloroethene	20		ug/L	2.0	6.7	4	02/15/10 12:06	MAE	10B0293	SW 8260
trans-1,2-Dichloroethene	<1.0		ug/L	1.0	3.3	2	02/12/10 07:07	MAE	10B0229	SW 8260
1,2-Dichloropropane	<1.0		ug/L	1.0	3.3	2	02/12/10 07:07	MAE	10B0229	SW 8260
1,3-Dichloropropane	< 0.50		ug/L	0.50	1.7	2	02/12/10 07:07	MAE	10B0229	SW 8260
2,2-Dichloropropane	<1.0		ug/L	1.0	3.3	2	02/12/10 07:07	MAE	10B0229	SW 8260
1,1-Dichloropropene	<1.0		ug/L	1.0	3.3	2	02/12/10 07:07	MAE	10B0229	SW 8260
cis-1,3-Dichloropropene	< 0.40		ug/L	0.40	1.3	2	02/12/10 07:07	MAE	10B0229	SW 8260
trans-1,3-Dichloropropene	< 0.40		ug/L	0.40	1.3	2	02/12/10 07:07	MAE	10B0229	SW 8260
2,3-Dichloropropene	< 0.50		ug/L	0.50	1.7	2	02/12/10 07:07	MAE	10B0229	SW 8260
Isopropyl Ether	<1.0		ug/L	1.0	3.3	2	02/12/10 07:07	MAE	10B0229	SW 8260
Ethylbenzene	<1.0		ug/L	1.0	3.3	2	02/12/10 07:07	MAE	10B0229	SW 8260
Hexachlorobutadiene	<1.0		ug/L	1.0	3.3	2	02/12/10 07:07	MAE	10B0229	SW 8260
lsopropylbenzene	< 0.40		ug/L	0.40	1.3	2	02/12/10 07:07	MAE	10B0229	SW 8260
p-lsopropyltoluene	< 0.40		ug/L	0.40	1.3	2	02/12/10 07:07	MAE	10B0229	SW 8260
Methylene Chloride	<2.0		ug/L	2.0	6.7	2	02/12/10 07:07	MAE	10B0229	SW 8260
Methyl tert-Butyl Ether	<1.0		ug/L	1.0	3.3	2	02/12/10 07:07	MAE	10B0229	SW 8260
Naphthalene	<0.50		ug/L	0.50	1.7	2	02/12/10 07:07	MAE	10B0229	SW 8260
n-Propylbenzene	<1.0		ug/L	1.0	3.3	2	02/12/10 07:07	MAE	10B0229	SW 8260
Styrene	<1.0		_	1.0	3.3	2	02/12/10 07:07		10B0229	SW 8260
1,1,1,2-Tetrachloroethane	<0.50		ug/L	0.50	1.7	2	02/12/10 07:07	MAE	10B0229	SW 8260
1,1,2,2-Tetrachloroethane	<0.40		ug/L	0.40	1.7	2	02/12/10 07:07	MAE	10B0229	SW 8260
Tetrachioroethene	210		ug/L		6.7			MAE		
Toluene	<1.0		ug/L	2.0		4	02/15/10 12:06	MAE	10B0293	SW 8260
LOIGETE	~1.0		ug/L	1.0	3.3	2	02/12/10 07:07	MAE	10B0229	SW 8260

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Work Order:

WTB0237

Received:

02/09/10

Waukesha, WI 53186

Mr. Kevin Bugel

Project: Project Number:

1E-0909013 Racine, WI 1730 State Street; Racine, WI Repor

rted:	02/15	/10	12:59	

Analyta	Sample Result	Data Qualifiers	Units	MDL	LOQ	Dilution	Date	Amalant	Seq/	Method
Analyte	Result	Qualifiers	Onts	MDL	LOQ	Factor	Analyzed	Analyst	Batch	Method
Sample ID: WTB0237-03RE1 (MW	-3 - Ground V	Water) - cont.					Sampled: 02	/08/10		
VOCs by SW8260B - cont.										
1,2,4-Trichlorobenzene	< 0.50		ug/L	0.50	1.7	2	02/12/10 07:07	MAE	10B0229	SW 8260B
1,1,1-Trichloroethane	<1.0		ug/L	1.0	3.3	2	02/12/10 07:07	MAE	10B0229	SW 8260B
1,1,2-Trichloroethane	< 0.50		ug/L	0.50	1.7	2	02/12/10 07:07	MAE	10B0229	SW 8260E
Trichloroethene	61		ug/L	0.80	2.7	4	02/15/10 12:06	MAE	10B0293	SW 8260E
Trichlorofluoromethane	<1.0		ug/L	1.0	3.3	2	02/12/10 07:07	MAE	10B0229	SW 8260E
1,2,3-Trichloropropane	<1.0		ug/L	1.0	3.3	2	02/12/10 07:07	MAE	10B0229	SW 8260E
1,2,4-Trimethylbenzene	< 0.40		ug/L	0.40	1.3	2	02/12/10 07:07	MAE	10B0229	SW 8260E
1,3,5-Trimethylbenzene	< 0.40		ug/L	0.40	1.3	2	02/12/10 07:07	MAE	10B0229	SW 8260B
Vinyl chloride	0.84	J	ug/L	0.80	2.7	4	02/15/10 12:06	MAE	10B0293	SW 8260B
Xylenes, Total	<1.0		ug/L	1.0	3.3	2	02/12/10 07:07	MAE	10B0229	SW 8260B
Surr: Dibromofluoromethane (82-122%)	101 %									
Surr: Dibromofluoromethane (82-122%)	103 %									
Surr: Toluene-d8 (86-117%)	100 %									
Surr: Toluene-d8 (86-117%)	98 %									
Surr: 4-Bromofluorobenzene (83-118%)	97 %									
Surr: 4-Bromofluorobenzene (83-118%)	100 %									
Sample ID: WTB0237-04 (MW-4 - 0	Ground Wate	r)					Sampled: 02	/08/10		
VOCs by SW8260B									1000000	0.VV 00./0E
Benzene	<1.0		ug/L	1.0	3.3	5	02/12/10 04:54	MAE	10B0229	SW 8260E
Bromobenzene	<1.0		ug/L	1.0	3.3	5	02/12/10 04:54	MAE	10B0229	SW 8260E
Bromochloromethane	<2.5		ug/L	2.5	8.3	5	02/12/10 04:54	MAE	10B0229	SW 8260E
Bromodichloromethane	<1.0		ug/L	1.0	3.3	5	02/12/10 04:54	MAE	10B0229	SW 8260E
Bromoform	<1.0		ug/L	1.0	3.3	5	02/12/10 04:54	MAE	10B0229	SW 8260E
Bromomethane	<2.5		ug/L	2.5	8.3	5	02/12/10 04:54	MAE	10B0229	SW 8260E
n-Butylbenzene	<1.0		ug/L	1.0	3.3	5	02/12/10 04:54	MAE	10B0229	SW 8260E
sec-Butylbenzene	<1.2		ug/L	1.2	4.2	5	02/12/10 04:54	MAE	10B0229	SW 8260E
tert-Butylbenzene	<1.0		ug/L	1.0	3.3	5	02/12/10 04:54	MAE	10B0229	SW 8260E
Carbon Tetrachloride	<4.0		ug/L	4.0	13	5	02/12/10 04:54	MAE	10B0229	SW 8260E
Chlorobenzene	<1.0		ug/L	1.0	3.3	5	02/12/10 04:54	MAE	10B0229	SW 8260E
Chlorodibromomethane	<1.0		ug/L	1.0	3.3	5	02/12/10 04:54	MAE	10B0229	SW 8260B
Chloroethane	<5.0		ug/L	5.0	17	5	02/12/10 04:54	MAE	10B0229	SW 8260B
Chloroform	<1.0		ug/L	1.0	3.3	5	02/12/10 04:54	MAE	10B0229	SW 8260E SW 8260E
Chloromethane	<1.5		ug/L	1.5	5.0	5	02/12/10 04:54	MAE	10B0229	SW 8260E
2-Chlorotoluene	<2.5		ug/L	2.5	8.3 3.3	5	02/12/10 04:54 02/12/10 04:54	MAE	10B0229 10B0229	SW 8260E
4-Chlorotoluene	<1.0		ug/L	1.0 2.5		5	02/12/10 04:54	MAE	10B0229	
1,2-Dibromo-3-chloropropane	<2.5 <1.0		ug/L	1.0	8.3 3.3	5	02/12/10 04:54	MAE	10B0229	SW 8260E SW 8260E
1,2-Dibromoethane (EDB)			ug/L			5		MAE		
Dibromomethane	<1.0 <1.0		ug/L	1.0	3.3	5	02/12/10 04:54 02/12/10 04:54	MAE	10B0229 10B0229	SW 8260B SW 8260B
1,2-Dichlorobenzene	<1.0		ug/L	1.0	3.3	5	02/12/10 04:54	MAE	10B0229	SW 8260B
1,3-Dichlorobenzene 1,4-Dichlorobenzene	<2.5		ug/L	2.5	8.3	5	02/12/10 04:54	MAE	10B0229	SW 8260E
Dichlorodifluoromethane	<2.5		ug/L	2.5	8.3	5	02/12/10 04:54	MAE	10B0229	SW 8260E
1,1-Dichloroethane	<2.5		ug/L	2.5	8.3	5	02/12/10 04:54	MAE MAE	10B0229	SW 8260E
1,2-Dichloroethane	<2.5		ug/L ug/L	2.5	8.3	5	02/12/10 04:54	MAE	10B0229	SW 8260E
1,1-Dichloroethene	<2.5		ug/L	2.5	8.3	5	02/12/10 04:54	MAE	10B0229	SW 8260E
cis-1,2-Dichloroethene	13		ug/L ug/L	2.5	8.3	5	02/12/10 04:54	MAE	10B0229	SW 8260E
trans-1,2-Dichloroethene	<2.5		ug/L ug/L	2.5	8.3	5	02/12/10 04:54	MAE	10B0229	SW 8260E
1,2-Dichloropropane	<2.5		ug/L ug/L	2.5	8.3	5	02/12/10 04:54	MAE	10B0229	SW 8260E
1,3-Dichloropropane	<1.2		ug/L ug/L	1.2	4.2	5	02/12/10 04:54	MAE	10B0229	SW 8260E
	- A . de		rates To			-		TATUTE		02002

Project Manager

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Work Order:

Project:

WTB0237

Received:

02/09/10

Project Number:

1E-0909013 Racine, WI 1730 State Street; Racine, WI

Reported:

02/15/10 12:59

Analyte	Sample Result	Data Qualifiers	Units	MDL	LOQ	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTB0237-04 (MW-4 - 0	Ground Wate	r) - cont.					Sampled: 02	/08/10		
VOCs by SW8260B - cont.							-			
1,1-Dichloropropene	<2.5		ug/L	2.5	8.3	5	02/12/10 04:54	MAE	10B0229	SW 82601
cis-1,3-Dichloropropene	<1.0		ug/L	1.0	3,3	5	02/12/10 04:54	MAE	10B0229	SW 82601
trans-1,3-Dichloropropene	<1.0		ug/L	1.0	3.3	5	02/12/10 04:54	MAE	10B0229	SW 8260E
2,3-Dichloropropene	<1.2		ug/L	1.2	4.2	5	02/12/10 04:54	MAE	10B0229	SW 82601
Isopropyl Ether	<2.5		ug/L	2.5	8.3	5	02/12/10 04:54	MAE	10B0229	SW 8260E
Ethylbenzene	<2.5		ug/L	2.5	8.3	5	02/12/10 04:54	MAE	10B0229	SW 8260E
Hexachlorobutadiene	<2.5		ug/L	2,5	8.3	5	02/12/10 04:54	MAE	10B0229	SW 8260I
Isopropylbenzene	<1.0		ug/L	1.0	3.3	5	02/12/10 04:54	MAE	10B0229	SW 8260F
p-Isopropyltoluene	<1.0		ug/L	1.0	3.3	5	02/12/10 04:54	MAE	10B0229	SW 82601
Methylene Chloride	<5.0		ug/L	5.0	17	5	02/12/10 04:54	MAE	10B0229	SW 82601
Methyl tert-Butyl Ether	<2.5		ug/L	2.5	8.3	5	02/12/10 04:54	MAE	10B0229	SW 82601
Naphthalene	<1.2		ug/L	1.2	4.2	5	02/12/10 04:54	MAE	10B0229	SW 8260
n-Propylbenzene	<2.5		ug/L	2.5	8.3	5	02/12/10 04:54	MAE	10B0229	SW 82601
Styrene	<2.5		ug/L	2.5	8.3	5	02/12/10 04:54	MAE	10B0229	SW 82601
1,1,1,2-Tetrachloroethane	<1.2		ug/L	1.2	4.2	5	02/12/10 04:54	MAE	10B0229	SW 82601
1,1,2,2-Tetrachloroethane	<1.0		ug/L	1.0	3.3	5	02/12/10 04:54	MAE	10B0229	SW 82601
Tetrachloroethene	130		ug/L	2.5	8.3	5	02/12/10 04:54	MAE	10B0229	SW 82601
Toluene	<2.5		ug/L	2.5	8.3	5	02/12/10 04:54	MAE	10B0229	SW 8260E
1,2,3-Trichlorobenzene	<1.2		ug/L	1.2	4.2	5	02/12/10 04:54	MAE	10B0229	SW 82601
1,2,4-Trichlorobenzene	<1.2		ug/L	1.2	4.2	5	02/12/10 04:54	MAE	10B0229	SW 82601
1,1,1-Trichloroethane	<2.5		ug/L	2,5	8.3	5	02/12/10 04:54	MAE	10B0229	SW 82601
1,1,2-Trichloroethane	<1.2		ug/L	1.2	4.2	5	02/12/10 04:54	MAE	10B0229	SW 82601
Trichloroethene	27		ug/L	1.0	3.3	5	02/12/10 04:54	MAE	10B0229	SW 82601
Trichlorofluoromethane	<2.5		ug/L	2.5	8.3	5	02/12/10 04:54	MAE	10B0229	SW 8260
1,2,3-Trichloropropane	<2.5		ug/L	2.5	8.3	5	02/12/10 04:54	MAE	10B0229	SW 82601
1,2,4-Trimethylbenzene	<1.0		ug/L	1.0	3.3	5	02/12/10 04:54	MAE	10B0229	SW 82601
1,3,5-Trimethylbenzene	<1.0		ug/L	1.0	3.3	5	02/12/10 04:54	MAE	10B0229	SW 8260
Vinyl chloride	<1.0		ug/L	1.0	3.3	5	02/12/10 04:54	MAE	10B0229	SW 8260
Xylenes, Total	<2.5		ug/L	2.5	8.3	5	02/12/10 04:54	MAE	10B0229	SW 82601
Surr: Dibromofluoromethane (82-122%)	102 %									

Surr: Toluene-d8 (86-117%)

Surr: 4-Bromofluorobenzene (83-118%)

99 %

97%

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Work Order:

WTB0237

Received:

02/09/10

Project:

1E-0909013 Racine, WI

Reported:

02/15/10 12:59

Mr. Kevin Bugel

Project Number:	1730 State Street; Racine, WI

Analyte	Sample Result	Data Qualifiers	Units	MDL	LOQ	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTB0237-05 (Dup-	1 - Ground Water	r)					Sampled: 02	/08/10		
VOCs by SW8260B										
Benzene	<1.0		ug/L	1.0	3.3	5	02/12/10 04:27	MAE	10B0229	SW 8260B
Bromobenzene	<1.0		ug/L	1.0	3,3	5	02/12/10 04:27	MAE	10B0229	SW 8260B
Bromochloromethane	<2.5		ug/L	2.5	8.3	5	02/12/10 04:27	MAE	10B0229	SW 8260B
Bromodichloromethane	<1.0		ug/L	1.0	3.3	5	02/12/10 04:27	MAE	10B0229	SW 8260B
Bromoform	<1.0		ug/L	1.0	3.3	5	02/12/10 04:27	MAE	10B0229	SW 8260B
Bromomethane	<2.5		ug/L	2.5	8.3	5	02/12/10 04:27	MAE	10B0229	SW 8260B
n-Butylbenzene	<1.0		ug/L	1.0	3.3	5	02/12/10 04:27	MAE	10B0229	SW 8260B
sec-Butylbenzene	<1.2		ug/L	1.2	4.2	5	02/12/10 04:27	MAE	10B0229	SW 8260B
tert-Butylbenzene	<1.0		ug/L	1.0	3.3	5	02/12/10 04:27	MAE	10B0229	SW 8260B
Carbon Tetrachloride	<4.0		ug/L	4.0	13	5	02/12/10 04:27	MAE	10B0229	SW 8260B
Chlorobenzene	<1.0		ug/L	1.0	3.3	5	02/12/10 04:27	MAE	10B0229	SW 8260B
Chlorodibromomethane	<1.0		ug/L	1.0	3.3	5	02/12/10 04:27	MAE	10B0229	SW 8260B
Chloroethane	<5.0		-	5.0	17	5	02/12/10 04:27	MAE	10B0229	SW 8260B
Chloroform	<1.0		ug/L	1.0	3.3	5	02/12/10 04:27	MAE	10B0229	SW 8260B
Chloromethane	<1.5		ug/L	1.5	5.0	5	02/12/10 04:27	MAE	10B0229	SW 8260B
2-Chiorotoluene	<2.5		ug/L	2.5	8.3	5	02/12/10 04:27	MAE	10B0229	SW 8260B
4-Chlorotoluene	<1.0		ug/L	1.0	3.3	5	02/12/10 04:27	MAE	10B0229	SW 8260B
	<2.5		ug/L	2.5	8.3	5	02/12/10 04:27		10B0229	SW 8260B
1,2-Dibromo-3-chloropropane	<1.0		ug/L	1.0	3.3	5	02/12/10 04:27	MAE	10B0229	SW 8260B
1,2-Dibromoethane (EDB)			ug/L	1.0	3.3	5	02/12/10 04:27	MAE	10B0229	SW 8260B
Dibromomethane	<1.0 <1.0		ug/L		3.3	5	02/12/10 04:27	MAE	10B0229	SW 8260B
1,2-Dichlorobenzene			ug/L	1.0			02/12/10 04:27	MAE		
1,3-Dichlorobenzene	<1.0		ug/L	1.0	3.3	5		MAE	10B0229	SW 8260B
1,4-Dichlorobenzene	<2.5		ug/L	2.5	8.3	5	02/12/10 04:27	MAE	10B0229	SW 8260B SW 8260B
Dichlorodifluoromethane	<2.5		ug/L	2.5	8.3	5	02/12/10 04:27	MAE	10B0229	
1,1-Dichloroethane	<2.5		ug/L	2.5	8.3	5	02/12/10 04:27	MAE	10B0229	SW 8260B
1,2-Dichloroethane	<2.5		ug/L	2.5	8.3	5	02/12/10 04:27	MAE	10B0229	SW 8260B
1,1-Dichloroethene	<2.5		ug/L	2.5	8.3	5	02/12/10 04:27	MAE	10B0229	SW 8260B
cis-1,2-Dichloroethene	36		ug/L	2.5	8.3	5	02/12/10 04:27	MAE	10B0229	SW 8260B
trans-1,2-Dichloroethene	<2.5		ug/L	2.5	8.3	5	02/12/10 04:27	MAE	10B0229	SW 8260B
1,2-Dichloropropane	<2.5		ug/L	2.5	8.3	5	02/12/10 04:27	MAE	10B0229	SW 8260B
1,3-Dichloropropane	<1.2		ug/L	1.2	4.2	5	02/12/10 04:27	MAE	10B0229	SW 8260B
2,2-Dichloropropane	<2.5		ug/L	2.5	8.3	5	02/12/10 04:27	MAE	10B0229	SW 8260B
1,1-Dichloropropene	<2.5		ug/L	2.5	8.3	5	02/12/10 04:27	MAE	10B0229	SW 8260B
cis-1,3-Dichloropropene	<1.0		ug/L	1.0	3.3	5	02/12/10 04:27	MAE	10B0229	SW 8260B
trans-1,3-Dichloropropene	<1.0		ug/L	1.0	3.3	5	02/12/10 04:27	MAE	10B0229	SW 8260B
2,3-Dichloropropene	<1.2		ug/L	1.2	4.2	5	02/12/10 04:27	MAE	10B0229	SW 8260B
Isopropyl Ether	<2.5		ug/L	2.5	8.3	5	02/12/10 04:27	MAE	10B0229	SW 8260B
Ethylbenzene	<2.5		ug/L	2.5	8.3	5	02/12/10 04:27	MAE	10B0229	SW 8260B
Hexachlorobutadiene	<2.5		ug/L	2.5	8.3	5	02/12/10 04:27	MAE	10B0229	SW 8260B
lsopropylbenzene	<1.0		ug/L	1.0	3.3	5	02/12/10 04:27	MAE	10B0229	SW 8260B
p-lsopropyltoluene	<1.0		ug/L	1.0	3.3	5	02/12/10 04:27	MAE	10B0229	SW 8260B
Methylene Chloride	<5.0		ug/L	5.0	17	5	02/12/10 04:27	MAE	10B0229	SW 8260B
Methyl tert-Butyl Ether	<2.5		ug/L	2.5	8.3	5	02/12/10 04:27	MAE	10B0229	SW 8260B
Naphthalene	<1.2		ug/L	1.2	4.2	5	02/12/10 04:27	MAE	10B0229	SW 8260B
n-Propylbenzene	<2.5		ug/L	2.5	8.3	5	02/12/10 04:27	MAE	10B0229	SW 8260B
Styrene	<2.5		ug/L	2.5	8.3	5	02/12/10 04:27	MAE	10B0229	SW 8260B
1,1,1,2-Tetrachloroethane	<1.2		ug/L	1.2	4.2	5	02/12/10 04:27	MAE	10B0229	SW 8260B
1,1,2,2-Tetrachloroethane	<1.0		ug/L	1.0	3.3	5	02/12/10 04:27	MAE	10B0229	SW 8260B
Tetrachloroethene	230		ug/L	2.5	8.3	5	02/12/10 04:27	MAE	10B0229	SW 8260B
Toluene	<2.5		ug/L	2.5	8.3	5	02/12/10 04:27	MAE	10B0229	SW 8260B
1,2,3-Trichlorobenzene	<1.2		ug/L	1.2	4.2	5	02/12/10 04:27	MAE	10B0229	SW 8260B

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Mr. Kevin Bugel

Work Order:

WTB0237

1E-0909013 Racine, WI

02/09/10 Received:

Reported:

02/15/10 12:59

Project: Waukesha, WI 53186

Project Number: 1730 State Street; Racine, WI

Analyte	Sample Result	Data Qualifiers	Units	MDL	LOQ	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTB0237-05 (Dup-1 - 0	Ground Water	r) - cont.					Sampled: 02	/08/10		
VOCs by SW8260B - cont.		•					Janipital 01			
1,2,4-Trichlorobenzene	<1.2		ug/L	1.2	4.2	5	02/12/10 04:27	MAE	10B0229	SW 8260B
1,1,1-Trichloroethane	<2.5		ug/L	2.5	8.3	5	02/12/10 04:27	MAE	10B0229	SW 8260B
1,1,2-Trichloroethane	<1.2		ug/L	1.2	4.2	5	02/12/10 04:27	MAE	10B0229	SW 8260E
Trichloroethene	93		ug/L	1.0	3.3	5	02/12/10 04:27	MAE	10B0229	SW 8260E
Trichlorofluoromethane	<2.5		ug/L	2.5	8.3	5	02/12/10 04:27	MAE	10B0229	SW 8260E
1,2,3-Trichloropropane	<2.5		ug/L	2.5	8.3	5	02/12/10 04:27	MAE	10B0229	SW 8260E
1,2,4-Trimethylbenzene	<1.0		ug/L	1.0	3.3	5	02/12/10 04:27	MAE	10B0229	SW 8260E
1,3,5-Trimethylbenzene	<1.0		ug/L	1.0	3.3	5	02/12/10 04:27	MAE	10B0229	SW 8260E
Vinyl chloride	<1.0		ug/L	1.0	3.3	5	02/12/10 04:27	MAE	10B0229	SW 8260E
Xylenes, Total	<2.5		ug/L	2.5	8.3	5	02/12/10 04:27	MAE	10B0229	SW 8260B
Surr: Dibromofluoromethane (82-122%)	/02 %		-8-							
Surr: Toluene-d8 (86-117%)	/00 %									
Surr: 4-Bromofluorobenzene (83-118%)	97 %									
Sample ID: WTB0237-06 (Trip Blai	nk - Ground V	Vater)					Complede 02	/00/10		
VOCs by SW8260B	ik - Ground v	, acci,					Sampled: 02	/06/10		
Benzene	< 0.20		ug/L	0.20	0.67	1	02/11/10 14:20	MAE	10B0228	SW 8260B
Bromobenzene	< 0.20		ug/L	0.20	0.67	1	02/11/10 14:20	MAE	10B0228	SW 8260B
Bromochloromethane	<0.50		ug/L	0.50	1.7	1	02/11/10 14:20	MAE	10B0228	SW 8260B
Bromodichloromethane	<0.20		ug/L	0.20	0.67	1	02/11/10 14:20	MAE	10B0228	SW 8260B
Bromoform	<0.20		ug/L	0.20	0.67	1	02/11/10 14:20	MAE	10B0228	SW 8260E
Bromomethane	< 0.50		ug/L	0.50	1.7	1	02/11/10 14:20	MAE	10B0228	SW 8260E
n-Butylbenzene	<0.20		ug/L	0.20	0.67	1	02/11/10 14:20	MAE	10B0228	SW 8260E
sec-Butylbenzene	<0.25		ug/L	0.25	0.83	1	02/11/10 14:20	MAE	10B0228	SW 8260E
tert-Butylbenzene	<0.20		ug/L	0.20	0.67	1	02/11/10 14:20	MAE	10B0228	SW 8260E
Carbon Tetrachloride	<0.80		ug/L	0.80	2.7	I	02/11/10 14:20	MAE	10B0228	SW 8260E
Chlorobenzene	<0.20		ug/L	0.20	0.67	1	02/11/10 14:20	MAE	10B0228	SW 8260E
Chlorodibromomethane	<0.20		ug/L	0.20	0.67	1	02/11/10 14:20	MAE	10B0228	SW 8260E
Chloroethane	<1.0		ug/L	1.0	3.3	1	02/11/10 14:20	MAE	10B0228	SW 8260E
Chloroform	<0.20		ug/L	0.20	0.67	1	02/11/10 14:20	MAE	10B0228	SW 8260E
Chloromethane	< 0.30		ug/L	0.30	1.0	i	02/11/10 14:20	MAE	10B0228	SW 8260B
2-Chlorotoluene	<0.50		ug/L	0.50	1.7	1	02/11/10 14:20	MAE	10B0228	SW 8260B
4-Chlorotoluene	<0.20		ug/L	0.20	0.67	1	02/11/10 14:20	MAE	10B0228	SW 8260B
1,2-Dibromo-3-chloropropane	< 0.50		ug/L	0.50	1.7	1	02/11/10 14:20	MAE	10B0228	SW 8260B
1,2-Dibromoethane (EDB)	<0.20		ug/L	0.20	0.67	1	02/11/10 14:20	MAE	10B0228	SW 8260E
Dibromomethane	<0.20		ug/L	0.20	0.67	1	02/11/10 14:20	MAE	10B0228	SW 8260B
1,2-Dichlorobenzene	<0.20		ug/L	0.20	0.67	1	02/11/10 14:20	MAE	10B0228	SW 8260E
1,3-Dichlorobenzene	<0.20		ug/L	0.20	0.67	1	02/11/10 14:20	MAE	10B0228	SW 8260E
1,4-Dichlorobenzene	< 0.50		~	0.50	1.7	1	02/11/10 14:20	MAE	10B0228	SW 8260B
Dichlorodifluoromethane	< 0.50		ug/L ug/L	0.50	1.7	1	02/11/10 14:20	MAE	10B0228	SW 8260E
1,1-Dichloroethane	< 0.50		ug/L	0.50	1.7	1	02/11/10 14:20	MAE	10B0228	SW 8260E
1,2-Dichloroethane	< 0.50		ug/L	0.50	1.7	1	02/11/10 14:20	MAE	10B0228	SW 8260E
1,1-Dichloroethene	<0.50		ug/L	0.50	1.7	1	02/11/10 14:20	MAE	10B0228	SW 8260E
cis-1,2-Dichloroethene	<0.50		ug/L ug/L	0.50	1.7	1	02/11/10 14:20	MAE	10B0228	SW 8260E
trans-1,2-Dichloroethene	<0.50		ug/L	0.50	1.7	1	02/11/10 14:20	MAE	10B0228	SW 8260E
1,2-Dichloropropane	<0.50		ug/L	0.50	1.7	1	02/11/10 14:20	MAE	10B0228	SW 82601
1,3-Dichloropropane	<0.25		ug/L ug/L	0.25	0.83	1	02/11/10 14:20	MAE	10B0228	SW 82601
2,2-Dichloropropane	<0.50		ug/L ug/L	0.50	1.7	1	02/11/10 14:20	MAE	10B0228	SW 82601
1,1-Dichloropropene	<0.50			0.50	1.7	1	02/11/10 14:20	MAE	10B0228	SW 82601
cis-1,3-Dichloropropene	<0.20		ug/L	0.20	0.67	1	02/11/10 14:20		10B0228	SW 82601
trans-1,3-Dichloropropene	<0.20		ug/L ug/L	0.20	0.67	1	02/11/10 14:20	MAE	10B0228	SW 8260E

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Work Order:

WTB0237

Received:

02/09/10

Project: Project Number:

1E-0909013 Racine, WI 1730 State Street; Racine, WI Reported:

02/15/10 12:59

Mr. Kevin Bugel

_								
				Dilution	Date		Seq/	
	Units	MDL	LOQ	Factor	Analyzed	Analyst	Batch	Metl

Analyte	Sample Result	Data Qualifiers	Units	MDL	LOQ	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTB0237-06 (Trip Blan	nk - Ground V	Water) - cont.					Sampled: 02	/08/10		
VOCs by SW8260B - cont.							•			
2,3-Dichloropropene	< 0.25		ug/L	0.25	0.83	1	02/11/10 14:20	MAE	10B0228	SW 8260B
Isopropyl Ether	< 0.50		ug/L	0.50	1.7	1	02/11/10 14:20	MAE	10B0228	SW 8260B
Ethylbenzene	< 0.50		ug/L	0.50	1.7	1	02/11/10 14:20	MAE	10B0228	SW 8260B
Hexachlorobutadiene	< 0.50		ug/L	0.50	1.7	1	02/11/10 14:20	MAE	10B0228	SW 8260B
Isopropylbenzene	< 0.20		ug/L	0.20	0.67	1	02/11/10 14:20	MAE	10B0228	SW 8260B
p-lsopropyltoluene	< 0.20		ug/L	0.20	0.67	1	02/11/10 14:20	MAE	10B0228	SW 8260B
Methylene Chloride	<1.0		ug/L	1.0	3.3	1	02/11/10 14:20	MAE	10B0228	SW 8260B
Methyl tert-Butyl Ether	< 0.50		ug/L	0.50	1.7	1	02/11/10 14:20	MAE	10B0228	SW 8260B
Naphthalene	< 0.25		ug/L	0.25	0.83	1	02/11/10 14:20	MAE	10B0228	SW 8260B
n-Propylbenzene	< 0.50		ug/L	0.50	1.7	1	02/11/10 14:20	MAE	10B0228	SW 8260B
Styrene	< 0.50		ug/L	0.50	1.7	1	02/11/10 14:20	MAE	10B0228	SW 8260E
1,1,1,2-Tetrachloroethane	< 0.25		ug/L	0.25	0.83	1	02/11/10 14:20	MAE	10B0228	SW 8260E
1,1,2,2-Tetrachloroethane	< 0.20		ug/L	0.20	0.67	1	02/11/10 14:20	MAE	10B0228	SW 8260E
Tetrachloroethene	< 0.50		ug/L	0.50	1.7	1	02/11/10 14:20	MAE	10B0228	SW 8260B
Toluene	< 0.50		ug/L	0.50	1.7	1	02/11/10 14:20	MAE	10B0228	SW 8260E
1,2,3-Trichlorobenzene	< 0.25		ug/L	0.25	0.83	1	02/11/10 14:20	MAE	10B0228	SW 8260E
1,2,4-Trichlorobenzene	< 0.25		ug/L	0.25	0.83	1	02/11/10 14:20	MAE	10B0228	SW 8260B
1,1,1-Trichloroethane	< 0.50		ug/L	0.50	1.7	1	02/11/10 14:20	MAE	10B0228	SW 8260B
1,1,2-Trichloroethane	< 0.25		ug/L	0.25	0.83	1	02/11/10 14:20	MAE	10B0228	SW 8260E
Trichloroethene	< 0.20		ug/L	0.20	0.67	1	02/11/10 14:20	MAE	10B0228	SW 8260E
Trichlorofluoromethane	< 0.50		ug/L	0.50	1.7	1	02/11/10 14:20	MAE	10B0228	SW 8260B
1,2,3-Trichloropropane	< 0.50		ug/L	0.50	1.7	1	02/11/10 14:20	MAE	10B0228	SW 8260E
1,2,4-Trimethylbenzene	< 0.20		ug/L	0.20	0.67	1	02/11/10 14:20	MAE	10B0228	SW 8260B
1,3,5-Trimethylbenzene	< 0.20		ug/L	0.20	0.67	1	02/11/10 14:20	MAE	10B0228	SW 8260E
Vinyl chloride	< 0.20		ug/L	0.20	0.67	1	02/11/10 14:20	MAE	10B0228	SW 8260B
Xylenes, Total	< 0.50		ug/L	0.50	1.7	1	02/11/10 14:20	MAE	10B0228	SW 8260B
Surr: Dibromofluoromethane (82-122%)	102 %		-							
Surr: Toluene-d8 (86-117%)	100 %									
Surr: 4-Bromofluorobenzene (83-118%)	98 %									

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Mr. Kevin Bugel Work Order:

Project Number:

WTB0237

Received:

02/09/10

Project:

1E-0909013 Racine, WI

1730 State Street; Racine, WI

Reported:

02/15/10 12:59

LAROPATORY RIANK OF DATA

	0 1	,						-		_				
Amaluta	Seq/ Batch	Source Result	-	Tinita	MDI	MRL	Danula	Dup	%		% REC	DDD	RPD	0
Analyte VOCs by SW8260B	Daten	Result	Level	Units	MDL	MIKE	Result	Result	REC	%REC	Limits	RPD	Limit	Q
Benzene	10B0228			ug/L	0.20	0.67	<0.20							
Bromobenzene	10B0228				0.20	0.67	<0.20							
Bromochloromethane	10B0228			ug/L	0.50	1.7	<0.50							
Bromodichloromethane	10B0228				0.20	0.67	< 0.20							
Bromoform	10B0228			ug/L	0.20	0.67								
Bromomethane	10B0228			ug/L			<0.20							
				ug/L	0.50	1.7	<0.50							
n-Butylbenzene	10B0228			ug/L	0.20	0.67	<0.20							
sec-Butylbenzene	10B0228			ug/L	0.25	0.83	<0.25							
tert-Butylbenzene	10B0228			ug/L	0.20	0.67	<0.20							
Carbon Tetrachloride	10B0228			ug/L	0.80	2.6	<0.80							
Chlorobenzene	10B0228			ug/L	0.20	0.67	<0.20							
Chlorodibromomethane	10B0228			ug/L	0.20	0.67	<0.20							
Chloroethane	10B0228			ug/L	1.0	3.3	<1.0							
Chloroform	10B0228			ug/L	0.20	0.67	<0.20							
Chloromethane	10B0228			ug/L	0.30	1.0	< 0.30							
2-Chlorotoluene	10B0228			ug/L	0.50	1.7	<0.50							
4-Chlorotoluene	10B0228			ug/L	0.20	0.67	< 0.20							
1,2-Dibromo-3-chloropropane	10B0228			ug/L	0.50	1.7	<0.50							
1,2-Dibromoethane (EDB)	10B0228			ug/L	0.20	0.67	<0.20							
Dibromomethane	10B0228			ug/L	0.20	0.67	< 0.20							
1,2-Dichlorobenzene	10B0228			ug/L	0.20	0.67	< 0.20							
1,3-Dichlorobenzene	10B0228			ug/L	0.20	0.67	< 0.20							
1,4-Dichlorobenzene	10B0228			ug/L	0.50	1.7	< 0.50							
Dichlorodifluoromethane	10B0228			ug/L	0.50	1.7	< 0.50							
1,1-Dichloroethane	10B0228			ug/L	0.50	1.7	< 0.50							
1,2-Dichloroethane	10B0228			ug/L	0.50	1.7	< 0.50							
1,1-Dichloroethene	10B0228			ug/L	0.50	1.7	< 0.50							
cis-1,2-Dichloroethene	10B0228			ug/L	0.50	1.7	< 0.50							
trans-1,2-Dichloroethene	10B0228			ug/L	0.50	1.7	< 0.50							
1,2-Dichloropropane	10B0228			ug/L	0.50	1.7	< 0.50							
1,3-Dichloropropane	10B0228			ug/L	0.25	0.83	< 0.25							
2,2-Dichloropropane	10B0228			ug/L	0.50	1.7	< 0.50							
1,1-Dichloropropene	10B0228			ug/L	0.50	1.7	< 0.50							
cis-1,3-Dichloropropene	10B0228			ug/L	0.20	0.67	< 0.20							
trans-1,3-Dichloropropene	10B0228		,	ug/L	0.20	0.67	< 0.20							
2,3-Dichloropropene	10B0228			ug/L	0.25	0.83	< 0.25							
Isopropyl Ether	10B0228			ug/L	0.50	1.7	< 0.50							
Ethylbenzene	10B0228			ug/L	0.50	1.7	< 0.50							
Hexachlorobutadiene	10B0228			ug/L	0.50	1.7	< 0.50							
Isopropylbenzene	10B0228			ug/L	0.20	0.67	< 0.20							
p-Isopropyltoluene	10B0228			ug/L	0.20	0.67	< 0.20							
Methylene Chloride	10B0228			ug/L	1.0	3.3	<1.0							
Methyl tert-Butyl Ether	10B0228			ug/L	0.50	1.7	<0.50							
Naphthalene	10B0228			ug/L	0.25	0.83	< 0.25							
n-Propylbenzene	10B0228			ug/L	0.50	1.7	< 0.50							

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN N8 W22350 Johnson Road Waukesha, WI 53186

Mr. Kevin Bugel

Work Order: WTB0

WTB0237

Received:

02/09/10

Project: Project Number: 1E-0909013 Racine, WI 1730 State Street; Racine, WI Reported: 02

02/15/10 12:59

	LABORATORY BLANK QC DATA													
	Seq/	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Batch	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
VOCs by SW8260B														
Styrene	10B0228			ug/L	0.50	1.7	< 0.50							
1,1,1,2-Tetrachloroethane	10B0228			ug/L	0.25	0.83	< 0.25							
1,1,2,2-Tetrachloroethane	10B0228			ug/L	0.20	0.67	< 0.20							
Tetrachloroethene	10B0228			ug/L	0.50	1.7	< 0.50							
Toluene	10B0228			ug/L	0.50	1.7	< 0.50							
1,2,3-Trichlorobenzene	10B0228			ug/L	0.25	0.83	< 0.25							
1,2,4-Trichlorobenzene	10B0228			ug/L	0.25	0.83	< 0.25							
1,1,1-Trichloroethane	10B0228			ug/L	0.50	1.7	< 0.50							
1,1,2-Trichloroethane	10B0228			ug/L	0.25	0.83	< 0.25							
Trichloroethene	10B0228			ug/L	0.20	0.67	< 0.20							
Trichlorofluoromethane	10B0228			ug/L	0.50	1.7	< 0.50							
1,2,3-Trichloropropane	10B0228			ug/L	0.50	1.7	<0.50							
1,2,4-Trimethylbenzene	10B0228			ug/L	0.20	0.67	< 0.20							
1,3,5-Trimethylbenzene	10B0228			ug/L	0.20	0.67	<0.20							
Vinyl chloride	10B0228			ug/L	0.20	0.67	<0.20							
Xylenes, Total	10B0228			ug/L	0.50	1.7	< 0.50							
Surrogate: Dibromofluoromethane	10B0228			ug/L	0,00	2.,			102		82-122			
Surrogate: Toluene-d8	10B0228			ug/L					100		86-117			
Surrogate: 4-Bromofluorobenzene	10B0228			ug/L					97		83-118			
Benzene	10B0229			ug/L	0.20	0.67	<0.20		,,		03-110			
Bromobenzene	10B0229			ug/L	0.20	0.67	<0.20							
Bromochloromethane	10B0229			ug/L	0.50	1.7	<0.50							
Bromodichloromethane	10B0229			ug/L	0.20	0.67	<0.20							
Bromoform	10B0229				0.20	0.67	<0.20							
				ug/L										
Bromomethane	10B0229			ug/L	0.50	1.7	<0.50							
n-Butylbenzene	10B0229			ug/L	0.20	0.67	<0.20							
sec-Butylbenzene	10B0229			ug/L	0.25	0.83	<0.25							
tert-Butylbenzene	10B0229			ug/L	0.20	0.67	<0.20							
Carbon Tetrachloride	10B0229			ug/L	0.80	2.6	<0.80							
Chlorobenzene	10B0229			ug/L	0.20	0.67	<0.20							
Chlorodibromomethane	10B0229			ug/L	0.20	0.67	<0.20							
Chloroethane	10B0229			ug/L	1.0	3.3	<1.0							
Chloroform	10B0229			ug/L	0.20	0.67	< 0.20							
Chloromethane	10B0229			ug/L	0.30	1.0	< 0.30							
2-Chlorotoluene	10B0229			ug/L	0.50	1.7	< 0.50							
4-Chlorotoluene	10B0229			ug/L	0.20	0.67	< 0.20							
1,2-Dibromo-3-chloropropane	10B0229			ug/L	0.50	1.7	< 0.50							
1,2-Dibromoethane (EDB)	10B0229			ug/L	0.20	0.67	< 0.20							
Dibromomethane	10B0229			ug/L	0.20	0.67	< 0.20							
1,2-Dichlorobenzene	10B0229			ug/L	0.20	0.67	< 0.20							
1,3-Dichlorobenzene	10B0229			ug/L	0.20	0.67	< 0.20							
1,4-Dichlorobenzene	10B0229			ug/L	0.50	1.7	< 0.50							
Dichlorodifluoromethane	10B0229			ug/L	0.50	1.7	< 0.50							
1,1-Dichloroethane	10B0229			ug/L	0.50	1.7	< 0.50							

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Mr. Kevin Bugel Work Order:

WTB0237

Received:

02/09/10

Project:
Project Number:

1E-0909013 Racine, WI 1730 State Street; Racine, WI Reported:

02/15/10 12:59

Wadkesha, WI 33160	
Mr. Kevin Bugel	

			LAB	ORAT	ORY B	LANK	QC D	ATA						
	Seq/	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Batch	Result	Level	Units	MDL	MRL	Result	Result	REC		Limits	RPD	Limit	Q
VOCs by SW8260B														
1,2-Dichloroethane	10B0229			ug/L	0.50	1.7	< 0.50							
1,1-Dichloroethene	10B0229			ug/L	0.50	1.7	< 0.50							
cis-1,2-Dichloroethene	10B0229			ug/L	0.50	1.7	< 0.50							
trans-1,2-Dichloroethene	10B0229			ug/L	0.50	1.7	< 0.50							
1,2-Dichloropropane	10B0229			ug/L	0.50	1.7	< 0.50							
1,3-Dichloropropane	10B0229			ug/L	0.25	0.83	< 0.25							
2,2-Dichloropropane	10B0229			ug/L	0.50	1.7	< 0.50							
1,1-Dichloropropene	10B0229			ug/L	0.50	1.7	< 0.50							
cis-1,3-Dichloropropene	10B0229			ug/L	0.20	0.67	< 0.20							
trans-1,3-Dichloropropene	10B0229			ug/L	0.20	0.67	< 0.20							
2,3-Dichloropropene	10B0229			ug/L	0.25	0.83	< 0.25							
Isopropyl Ether	10B0229			ug/L	0.50	1.7	< 0.50							
Ethylbenzene	10B0229			ug/L	0.50	1.7	< 0.50							
Hexachlorobutadiene	10B0229			ug/L	0.50	1.7	< 0.50							
Isopropylbenzene	10B0229			ug/L	0.20	0.67	< 0.20							
p-Isopropyltoluene	10B0229			ug/L	0.20	0.67	< 0.20							
Methylene Chloride	10B0229			ug/L	1.0	3.3	<1.0							
Methyl tert-Butyl Ether	10B0229			ug/L	0.50	1.7	< 0.50							
Naphthalene	10B0229			ug/L	0.25	0.83	< 0.25							
n-Propylbenzene	10B0229			ug/L	0.50	1.7	< 0.50							
Styrene	10B0229			ug/L	0.50	1.7	< 0.50							
1,1,1,2-Tetrachloroethane	10B0229			ug/L	0.25	0.83	< 0.25							
1,1,2,2-Tetrachloroethane	10B0229			ug/L	0.20	0.67	< 0.20							
Tetrachioroethene	10B0229			ug/L	0.50	1.7	< 0.50							
Toluene	10B0229			ug/L	0.50	1.7	< 0.50							
1,2,3-Trichlorobenzene	10B0229			ug/L	0.25	0.83	< 0.25							
1,2,4-Trichlorobenzene	10B0229			ug/L	0.25	0.83	< 0.25							
1,1,1-Trichloroethane	10B0229			ug/L	0.50	1.7	< 0.50							
1,1,2-Trichloroethane	10B0229			ug/L	0.25	0.83	< 0.25							
Trichloroethene	10B0229			ug/L	0.20	0.67	< 0.20							
Trichlorofluoromethane	10B0229			ug/L	0.50	1.7	< 0.50							
1,2,3-Trichloropropane	10B0229			ug/L	0.50	1.7	< 0.50							
1,2,4-Trimethylbenzene	10B0229			ug/L	0.20	0.67	<0.20							
1,3,5-Trimethylbenzene	10B0229			ug/L	0.20	0.67	<0.20							
Vinyl chloride	10B0229			ug/L	0.20	0.67	< 0.20							
Xylenes, Total	10B0229			ug/L	0.50	1.7	< 0.50							
Surrogate: Dibromofluoromethane	10B0229			ug/L					101		82-122			
Surrogate: Toluene-d8	10B0229			ug/L					100		86-117			
Surrogate: 4-Bromofluorobenzene	10B0229			ug/L					98		83-118			

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Mr. Kevin Bugel

Work Order:

WTB0237

Received:

02/09/10

Project: Project Number:

1E-0909013 Racine, WI 1730 State Street; Racine, WI Reported:

02/15/10 12:59

LABORATORY	BLANK	QC	DATA
------------	-------	----	------

			LAD	UKAI	OKID	LAND	QC D	AIA						
Amaluta	Seq/ Batch	Source Result	_	Units	MDL	MRL	Docult	Dup	%	Dup %REC	% REC	RPD	RPD Limit	Q
Analyte	Daten	Result	Level	Units	MIDL	WIICE	Result	Result	REC	70KEC	Limits	KID	Lillit	
VOCs by SW8260B Benzene	10B0293			ug/L	0.20	0.67	< 0.20							
Bromobenzene	10B0293			ug/L	0.20	0.67	<0.20							
Bromochloromethane	10B0293			ug/L	0.50	1.7	<0.50							
							<0.20							
Bromodichloromethane	10B0293			ug/L	0.20	0.67								
Bromoform	10B0293			ug/L	0.20	0.67	<0.20							
Bromomethane	10B0293			ug/L	0.50	1.7	<0.50							
n-Butylbenzene	10B0293			ug/L	0.20	0.67	<0.20							
sec-Butylbenzene	10B0293			ug/L	0.25	0.83	<0.25							
tert-Butylbenzene	10B0293			ug/L	0.20	0.67	<0.20							
Carbon Tetrachloride	10B0293			ug/L	0.80	2.6	<0.80							
Chlorobenzene	10B0293			ug/L	0.20	0.67	<0.20							
Chlorodibromomethane	10B0293			ug/L	0.20	0.67	< 0.20							
Chloroethane	10B0293			ug/L	1.0	3.3	<1.0							
Chloroform	10B0293			ug/L	0.20	0.67	< 0.20							
Chloromethane	10B0293			ug/L	0.30	1.0	< 0.30							
2-Chlorotoluene	10B0293			ug/L	0.50	1.7	< 0.50							
4-Chlorotoluene	10B0293			ug/L	0.20	0.67	< 0.20							
1,2-Dibromo-3-chloropropane	10B0293			ug/L	0.50	1.7	< 0.50							
1,2-Dibromoethane (EDB)	10B0293			ug/L	0.20	0.67	< 0.20							
Dibromomethane	10B0293			ug/L	0.20	0.67	< 0.20							
1,2-Dichlorobenzene	10B0293			ug/L	0.20	0.67	< 0.20							
1,3-Dichlorobenzene	10B0293			ug/L	0.20	0.67	< 0.20							
1,4-Dichlorobenzene	10B0293			ug/L	0.50	1.7	< 0.50							
Dichlorodifluoromethane	10B0293			ug/L	0.50	1.7	< 0.50							
1,1-Dichloroethane	10B0293			ug/L	0.50	1.7	< 0.50							
1,2-Dichloroethane	10B0293			ug/L	0.50	1.7	< 0.50							
1,1-Dichloroethene	10B0293			ug/L	0.50	1.7	< 0.50							
cis-1,2-Dichloroethene	10B0293			ug/L	0.50	1.7	< 0.50							
trans-1,2-Dichloroethene	10B0293			ug/L	0.50	1.7	< 0.50							
1,2-Dichloropropane	10B0293			ug/L	0.50	1.7	< 0.50							
1,3-Dichloropropane	10B0293			ug/L	0.25	0.83	< 0.25							
2,2-Dichloropropane	10B0293			ug/L	0.50	1.7	<0.50							
1,1-Dichloropropene	10B0293			ug/L	0.50	1.7	<0.50							
cis-1,3-Dichloropropene	10B0293			ug/L	0.20	0.67	<0.20							
trans-1,3-Dichloropropene	10B0293			ug/L	0.20	0.67	< 0.20							
2.3-Dichloropropene	10B0293			ug/L	0.25	0.83	<0.25							
• •	10B0293			ug/L	0.50	1.7	< 0.50							
Isopropyl Ether Ethylbenzene	10B0293			ug/L	0.50	1.7	< 0.50							
-	10B0293			ug/L	0.50	1.7	<0.50							
Hexachlorobutadiene						0.67	<0.20							
Isopropylbenzene	10B0293			ug/L	0.20									
p-Isopropyltoluene	10B0293			ug/L	0.20	0.67	<0.20							
Methylene Chloride	10B0293			ug/L	1.0	3.3	<1.0							
Methyl tert-Butyl Ether	10B0293			ug/L	0.50	1,7	<0.50							
Naphthalene n-Propylbenzene	10B0293 10B0293			ug/L ug/L	0.25	0.83	<0.25 <0.50							

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, W1 53186

Work Order:

WTB0237

Project Number: 1730 State Street; Racine, WI

Received:

02/09/10

Project:

1E-0909013 Racine, WI

Reported:

02/15/10 12:59

Mr. Kevin Bugel

LABORATORY BLANK QC DATA														
			LAB	ORAT	ORY B	LANK	QC D	ATA						
Analyte	Seq/ Batch	Source Result	Spike Level	Units	MDL	MRL	Result	Dup Result	% REC	•	% REC	RPD	RPD Limit	Q
VOCs by SW8260B	Daten	Acsuit	Level	Cints	MDL		Result	ACSUIT	REC	70KEC	Limits	KID	Limit	<u> </u>
Styrene	10B0293			ug/L	0.50	1.7	< 0.50							
1,1,1,2-Tetrachloroethane	10B0293			ug/L	0.25	0.83	< 0.25							
1.1.2.2-Tetrachloroethane	10B0293			ug/L	0.20	0.67	< 0.20							
Tetrachloroethene	10B0293			ug/L	0.50	1.7	< 0.50							
Toluene	10B0293			ug/L	0.50	1.7	<0.50							
1,2,3-Trichlorobenzene	10B0293			ug/L	0.25	0.83	< 0.25							
1,2,4-Trichlorobenzene	10B0293			ug/L	0.25	0.83	< 0.25							
1,1,1-Trichloroethane	10B0293			ug/L	0.50	1.7	< 0.50							
1,1,2-Trichloroethane	10B0293			ug/L	0.25	0.83	< 0.25							
Trichloroethene	10B0293			ug/L	0.20	0.67	< 0.20							
Trichlorofluoromethane	10B0293			ug/L	0.50	1.7	< 0.50							
1,2,3-Trichloropropane	10B0293			ug/L	0.50	1.7	< 0.50							
1,2,4-TrimethyIbenzene	10B0293			ug/L	0.20	0.67	<0.20							
1,3,5-Trimethylbenzene	10B0293			ug/L	0.20	0.67	< 0.20							
Vinyl chloride	10B0293			ug/L	0.20	0.67	< 0.20							
Xylenes, Total	10B0293			ug/L	0.50	1.7	< 0.50							
Surrogate: Dibromofluoromethane	10B0293			ug/L					103		82-122			
Surrogate: Toluene-d8	10B0293			ug/L					99		86-117			
Surrogate: 4-Bromofluorobenzene	10B0293			ug/L					98		83-118			

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Mr. Kevin Bugel Work Order:

WTB0237

Received:

ived: 02/09/10

Project: 1E-0909013

1E-0909013 Racine, WI

Reported: 02/15/10 12:59

Project Number: 1730 State Street; Racine, WI

CCV QC DATA														
	Seq/ S	ource	Spike					Dup	%	Dup	% REC		RPD	
Analyte	_		Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
VOCs by SW8260B														
Benzene	T000266		50	ug/L	N/A	N/A	48.6		97		80-120			
Bromobenzene	T000266		50	ug/L	N/A	N/A	48.5		97		80-120			
Bromochloromethane	T000266		50	ug/L	N/A	N/A	48.6		97		80-120			
Bromodichloromethane	T000266		50	ug/L	N/A	N/A	49.2		98		80-120			
Bromoform	T000266		50	ug/L	N/A	N/A	52.2		104		80-120			
Bromomethane	T000266		50	ug/L	N/A	N/A	35.8		72		60-140			
n-Butylbenzene	T000266		50	ug/L	N/A	N/A	47.8		96		80-120			
sec-Butylbenzene	T000266		50	ug/L	N/A	N/A	48.4		97		80-120			
tert-Butylbenzene	T000266		50	ug/L	N/A	N/A	48.1		96		80-120			
Carbon Tetrachloride	T000266		50	ug/L	N/A	N/A	46.7		93		60-140			
Chlorobenzene	T000266		50	ug/L	N/A	N/A	48.2		96		80-120			
Chlorodibromomethane	T000266		50	ug/L	N/A	N/A	50.9		102		80-120			
Chloroethane	T000266		50	ug/L	N/A	N/A	58.6		117		60-140			
Chloroform	T000266		50	ug/L	N/A	N/A	47.8		96		80-120			
Chloromethane	T000266		50	ug/L	N/A	N/A	49.4		99		60-140			
2-Chlorotoluene	T000266		50	ug/L	N/A	N/A	48.9		98		80-120			
4-Chlorotoluene	T000266		50	ug/L	N/A	N/A	47.7		95		80-120			
1,2-Dibromo-3-chloropropane	T000266		50	ug/L	N/A	N/A	51.8		104		60-140			
1,2-Dibromoethane (EDB)	T000266		50	ug/L	N/A	N/A	50.4		101		80-120			
Dibromomethane	T000266		50	ug/L	N/A	N/A	49.0		98		80-120			
1,2-Dichlorobenzene	T000266		50	ug/L	N/A	N/A	47.2		94		80-120			
1,3-Dichlorobenzene	T000266		50	ug/L	N/A	N/A	47.6		95		80-120			
1,4-Dichlorobenzene	T000266		50	ug/L	N/A	N/A	48.1		96		80-120			
Dichlorodifluoromethane	T000266		50	ug/L	N/A	N/A	48.2		96		60-140			
1,1-Dichloroethane	T000266		50	ug/L	N/A	N/A	49.3		99		80-120			
1,2-Dichloroethane	T000266		50	ug/L	N/A	N/A	49.3		99		80-120			
1,1-Dichloroethene	T000266		50	ug/L	N/A	N/A	49.4		99		80-120			
cis-1,2-Dichloroethene	T000266		50	ug/L	N/A	N/A	49.0		98		80-120			
trans-1,2-Dichloroethene	T000266		50	ug/L	N/A	N/A	48.9		98		80-120			
1,2-Dichloropropane	T000266		50	ug/L	N/A	N/A	49.1		98		80-120			
1,3-Dichloropropane	T000266		50	ug/L	N/A	N/A	49.9		100		80-120			
2,2-Dichloropropane	T000266		50	ug/L	N/A	N/A	43.4		87		60-140			
1,1-Dichloropropene	T000266		50	ug/L	N/A	N/A	49.6		99		80-120			
cis-1,3-Dichloropropene	T000266		50	ug/L	N/A	N/A	49.6		99		80-120			
trans-1,3-Dichloropropene	T000266		50	ug/L	N/A	N/A	50.0		100		80-120			
2,3-Dichloropropene	T000266		50	ug/L	N/A	N/A	49.8		100		80-120			
lsopropyl Ether	T000266		50	ug/L	N/A	N/A	50.1		100		80-120			
Ethylbenzene	T000266		- 50	ug/L	N/A	N/A	48.5		97		80-120			
Hexachlorobutadiene	T000266		50	ug/L	N/A	N/A	47.7		95		60-140			
Isopropylbenzene	T000266		50	ug/L	N/A	N/A	49.3		99		80-120			
p-Isopropyltoluene	T000266		50	ug/L	N/A	N/A	50.0		100		80-120			
Methylene Chloride	T000266		50	ug/L	N/A	N/A	48.7		97		80-120			
Methyl tert-Butyl Ether	T000266		50	ug/L	N/A	N/A	50.0		100		80-120			
Naphthalene	T000266		50	ug/L	N/A	N/A	49.8		100		60-140			
n-Propylbenzene	T000266		50	ug/L	N/A	N/A	48.7		97		80-120			

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Work Order:

Project Number:

WTB0237

Received:

02/09/10

Project:

IE-0909013 Racine, WI 1730 State Street; Racine, WI Reported:

02/15/10 12:59

Mr. Kevin Bugel

				C	CV QC	CDAT	A							
	Seq/	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Batch	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
VOCs by SW8260B														
Styrene	T000266		50	ug/L	N/A	N/A	50.1		100		80-120			
1,1,1,2-Tetrachloroethane	T000266		50	ug/L	N/A	N/A	49.2		98		80-120			
1,1,2,2-Tetrachloroethane	T000266		50	ug/L	N/A	N/A	48.5		97		80-120			
Tetrachloroethene	T000266		50	ug/L	N/A	N/A	48.6		97		80-120			
Toluene	T000266		50	ug/L	N/A	N/A	48.2		96		80-120			
1,2,3-Trichlorobenzene	T000266		50	ug/L	N/A	N/A	47.8		96		80-120			
1,2,4-Trichlorobenzene	T000266		50	ug/L	N/A	N/A	47.9		96		80-120			
1,1,1-Trichloroethane	T000266		50	ug/L	N/A	N/A	49.1		98		80-120			
1,1,2-Trichloroethane	T000266		50	ug/L	N/A	N/A	49.4		99		80-120			
Trichloroethene	T000266		50	ug/L	N/A	N/A	48.7		97		80-120			
Trichlorofluoromethane	T000266		50	ug/L	N/A	N/A	54.0		108		80-120			
1,2,3-Trichloropropane	T000266		50	ug/L	N/A	N/A	49.4		99		80-120			
1,2,4-Trimethylbenzene	T000266		50	ug/L	N/A	N/A	49.7		99		80-120			
1,3,5-Trimethylbenzene	T000266		50	ug/L	N/A	N/A	49.7		99		80-120			
Vinyl chloride	T000266		50	ug/L	N/A	N/A	48.3		97		80-120			
Xylenes, Total	T000266		150	ug/L	N/A	N/A	146		98		80-120			
Surrogate: Dibromofluoromethane	T000266		150	ug/L	1071	14/16	140		100		80-120			
Surrogate: Toluene-d8	T000266			ug/L					100		80-120			
Surrogate: 4-Bromofluorobenzene	T000266			ug/L					100		80-120			
Benzene	T000282		50	ug/L	N/A	N/A	47.8		96		80-120			
Bromobenzene	T000282		50	_	N/A	N/A	46.4		93		80-120			
Bromochloromethane	T000282		50 -	ug/L ug/L										
Bromodichloromethane	T000282		50	_	N/A N/A	N/A	46.9 48.4		94 97		80-120			
Bromoform	T000282		50	ug/L		N/A					80-120			
Bromomethane	T000282		50	ug/L	N/A	N/A	49.8		100		80-120			
				ug/L	N/A	N/A	39.6		79		60-140			
n-Butylbenzene	T000282		50	ug/L	N/A	N/A	48.5		97		80-120			
sec-Butylbenzene	T000282		50	ug/L	N/A	N/A	48.2		96		80-120			
tert-Butylbenzene	T000282		50	ug/L	N/A	N/A	48.1		96		80-120			
Carbon Tetrachloride	T000282		50	ug/L	N/A	N/A	46.8		94		60-140			
Chlorobenzene	T000282		50	ug/L	N/A	N/A	46.6		93		80-120			
Chlorodibromomethane	T000282		50	ug/L	N/A	N/A	49.5		99		80-120			
Chloroethane	T000282		50	ug/L	N/A	N/A	50.2		100		60-140			
Chloroform	T000282		50	ug/L	N/A	N/A	46.8		94		80-120			
Chloromethane	T000282		50	ug/L	N/A	N/A	48.2		96		60-140			
2-Chlorotoluene	T000282		50	ug/L	N/A	N/A	47.2		94		80-120			
4-Chlorotoluene	T000282		50	ug/L	N/A	N/A	46.3		93		80~120			
1,2-Dibromo-3-chloropropane	T000282		50	ug/L	N/A	N/A	46.7		93		60-140			
1,2-Dibromoethane (EDB)	T000282		50	ug/L	N/A	N/A	46.3		93		80-120			
Dibromomethane	T000282		50	ug/L	N/A	N/A	46.6		93		80-120			
1,2-Dichlorobenzene	T000282		50	ug/L	N/A	N/A	46.2		92		80-120			
1,3-Dichlorobenzene	T000282		50	ug/L	N/A	N/A	46.6		93		80-120			
1,4-Dichlorobenzene	T000282		50	ug/L	N/A	N/A	46.1		92		80-120			
Dichlorodifluoromethane	T000282		50	ug/L	N/A	N/A	49.3		99		60-140			
1,1-Dichloroethane	T000282		50	ug/L	N/A	N/A	48.8		98		80-120			

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Work Order:

WTB0237

Received:

02/09/10

Project:
Project Number:

1E-0909013 Racine, WI 1730 State Street; Racine, WI Reported:

02/15/10 12:59

			 	-	
Mr.	. Kevin Bugel				
wa	ukesna, WID.	3186			

CCV QC DATA														
	Seq/	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Batch	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
VOCs by SW8260B														
1,2-Dichloroethane	T000282		50	ug/L	N/A	N/A	47.7		95		80-120			
1,1-Dichloroethene	T000282		50	ug/L	N/A	N/A	49.5		99		80-120			
cis-1,2-Dichloroethene	T000282		50	ug/L	N/A	N/A	48.1		96		80-120			
trans-1,2-Dichloroethene	T000282		50	ug/L	N/A	N/A	48.4		97		80-120			
1,2-Dichloropropane	T000282		50	ug/L	N/A	N/A	48.3		97		80-120			
1,3-Dichloropropane	T000282		50	ug/L	N/A	N/A	47.5		95		80-120			
2,2-Dichloropropane	T000282		50	ug/L	N/A	N/A	50.9		102		60-140			
1,1-Dichloropropene	T000282		50	ug/L	N/A	N/A	50.9		102		80-120			
cis-1,3-Dichloropropene	T000282		50	ug/L	N/A	N/A	49.9		100		80-120			
trans-1,3-Dichloropropene	T000282		50	ug/L	N/A	N/A	49.9		100		80-120			
2,3-Dichloropropene	T000282		50	ug/L	N/A	N/A	49.2		98		80-120			
lsopropyl Ether	T000282		50	ug/L	N/A	N/A	49.0		98		80-120			
Ethylbenzene	T000282		50	ug/L	N/A	N/A	47.4		95		80-120			
Hexachlorobutadiene	T000282		50	ug/L	N/A	N/A	47.9		96		60-140			
Isopropylbenzene	T000282		50	ug/L	N/A	N/A	47.9		96		80-120			
p-lsopropyltoluene	T000282		50	ug/L	N/A	N/A	47.4		95		80-120			
Methylene Chloride	T000282		50	ug/L	N/A	N/A	47.7		95		80-120			
Methyl tert-Butyl Ether	T000282		50	ug/L	N/A	N/A	47.0		94		80-120			
Naphthalene	T000282		50	ug/L	N/A	N/A	45.3		91		60-140			
n-Propylbenzene	T000282		50	ug/L	N/A	N/A	47.8		96		80-120			
Styrene	T000282		50	ug/L	N/A	N/A	48.4		97		80-120			
1.1.1.2-Tetrachloroethane	T000282		50	ug/L	N/A	N/A	47.5		95		80-120			
1,1,2,2-Tetrachloroethane	T000282		50	ug/L	N/A	N/A	45.4		91		80-120			
Tetrachloroethene	T000282		50	ug/L	N/A	N/A	48.2		96		80-120			
Toluene	T000282		50	ug/L	N/A	N/A	46.7		93		80-120			
1,2,3-Trichlorobenzene	T000282		50	ug/L	N/A	N/A	46.4		93		80-120			
1,2,4-Trichlorobenzene	T000282		50	ug/L	N/A	N/A	46.3		93		80-120			
1,1,1-Trichloroethane	T000282		50	ug/L	N/A	N/A	48.8		98		80-120			
1,1,2-Trichloroethane	T000282		50	ug/L	N/A	N/A	47.0		94		80-120			
Trichloroethene	T000282		50	ug/L	N/A	N/A	48.4		97		80-120			
Trichlorofluoromethane	T000282		50	ug/L	N/A	N/A	46.7		93		80-120			
1,2,3-Trichloropropane	T000282		50	ug/L	N/A	N/A	44.3		89		80-120			
1,2,4-Trimethylbenzene	T000282		50	ug/L	N/A	N/A	47.0		94		80-120			
1,3,5-Trimethylbenzene	T000282		50	ug/L	N/A	N/A	47.9		96		80-120			
Vinyl chloride	T000282		50	ug/L ug/L	N/A	N/A	48.5		97		80-120			
	T000282		150	-	N/A	N/A	142		95		80-120			
Xylenes, Total	T000282		130	ug/L	IN/A	IN/A	142		99					
Surrogate: Dibromofluoromethane				ug/L							80-120			
Surrogate: Toluene-d8	T000282			ug/L					99		80-120			
Surrogate: 4-Bromofluorobenzene	T000282			ug/L					100		80-120			

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Work Order:

Project Number:

WTB0237

Received:

02/09/10

Project:

1E-0909013 Racine, WI 1730 State Street; Racine, WI

Reported:

02/15/10 12:59

Mr. Kevin Bugel

	MA	ATRIX	SPIKE	/MATI	RIX SF	PIKE D	UPLIC	CATE (QC D	ATA				
	Seq/	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Batch	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
VOCs by SW8260B														
QC Source Sample: WTB0193-02														
Benzene	10B0229	12.0	50	ug/L	0.20	0.67	61.7	63.0	100	102	79-123	2	20	
Bromobenzene	10B0229	< 0.20	50	ug/L	0.20	0.67	48.7	50.1	97	100	83-117	3	24	
Bromochloromethane	10B0229	< 0.50	50	ug/L	0.50	1.7	48.8	49.9	98	100	78-113	2	14	
Bromodichloromethane	10B0229	< 0.20	50	ug/L	0.20	0.67	49.3	50.6	99	101	84-119	3	19	
Bromoform	10B0229	< 0.20	50	ug/L	0.20	0.67	52.0	50.2	104	100	79-124	4	26	
Bromomethane	10B0229	< 0.50	50	ug/L	0.50	1.7	35.8	47.0	72	94	70-133	27	18	R2
n-Butylbenzene	10B0229	< 0.20	50	ug/L	0.20	0.67	48.7	51.1	97	102	75-138	5	19	
sec-Butylbenzene	10B0229	< 0.25	50	ug/L	0.25	0.83	50.2	51.7	100	103	79-136	3	19	
tert-Butylbenzene	10B0229	< 0.20	50	ug/L	0.20	0.67	50.1	51.7	100	103	83-128	3	17	
Carbon Tetrachloride	10B0229	< 0.80	50	ug/L	0.80	2.6	48.6	49.7	97	99	88-131	2	17	
Chlorobenzene	10B0229	< 0.20	50	ug/L	0.20	0.67	49.1	50.6	98	101	86-115	3	16	
Chlorodibromomethane	10B0229	< 0.20	50	ug/L	0.20	0.67	50.2	50.7	100	101	84-120	1	23	
Chloroethane	10B0229	<1.0	50	ug/L	1.0	3.3	59.9	62.9	120	126	75-131	5	17	
Chloroform	10B0229	< 0.20	50	ug/L	0.20	0.67	48.8	50.2	98	100	83-120	3	14	
Chloromethane	10B0229	< 0.30	50	ug/L	0.30	1.0	51.2	53.0	102	106	62-129	4	16	
2-Chlorotoluene	10B0229	< 0.50	50	ug/L	0.50	1.7	49.5	51.2	99	102	80-131	3	26	
4-Chlorotoluene	10B0229	< 0.20	50	ug/L	0.20	0.67	49.4	51.4	99	103	80-132	4	26	
1,2-Dibromo-3-chloropropane	10B0229	< 0.50	50	ug/L	0.50	1.7	60.1	60.2	120	120	70-122	0	26	
1,2-Dibromoethane (EDB)	10B0229	< 0.20	50	ug/L	0.20	0.67	50.2	-51.4	100	103	83-114	2	19	
Dibromomethane	10B0229	<0.20	50	ug/L	0.20	0.67	48.9	50.4	98	101	81-116	3	26	
1,2-Dichlorobenzene	10B0229	<0.20	50	ug/L	0.20	0.67	48.5	50.1	97	100	81-118	3	23	
1,3-Dichlorobenzene	10B0229	<0.20	50	ug/L	0.20	0.67	48.4	49.8	97	100	80-121	3	21	
1,4-Dichlorobenzene	10B0229	< 0.50	50	ug/L	0.50	1.7	48.4	49.5	97	99	80-116	2	21	
Dichlorodifluoromethane	10B0229	< 0.50	50	ug/L	0.50	1.7	46.1	47.6	92	95	74-135	3	19	
1,1-Dichloroethane	10B0229	< 0.50	50	ug/L	0.50	1.7	51.3	52.2	103	104	77-128	2	18	
1,2-Dichloroethane	10B0229	<0.50	50	ug/L	0.50	1.7	49.5	50.4	99	101	80-123	2	19	
1,1-Dichloroethene	10B0229	< 0.50	50	ug/L	0.50	1.7	52.7	53.5	105	107	84-131	1	18	
cis-1,2-Dichloroethene	10B0229	< 0.50	50	ug/L	0.50	1.7	50.5	51.7	101	103	82-121		17	
trans-1,2-Dichloroethene	10B0229	<0.50	50									2		
	10B0229	<0.50	50	ug/L	0.50	1.7	51.5	53.0	103	106	82-126	3	23	
1,2-Dichloropropane				ug/L	0.50	1.7	49.7	51.2	99	102	72-123	3	18	
1,3-Dichloropropane 2,2-Dichloropropane	10B0229 10B0229	<0.25	50	ug/L	0.25	0.83	49.7	50.9	99	102	79-119	2	24	
	10B0229	<0.50 <0.50	50	ug/L	0.50	1.7	45.3	46.7	91	93	82-136	3	16	
1,1-Dichloropropene			50	ug/L	0.50	1.7	52.6	53.7	105	107	85-127	2	16	
cis-1,3-Dichloropropene	10B0229	<0.20	50	ug/L	0.20	0.67	50.1	51.2	100	102	83-120	2	20	
trans-1,3-Dichloropropene	10B0229	<0.20	50	ug/L	0.20	0.67	50.0	51.1	100	102	82-121	2	26	
Isopropyl Ether	10B0229	<0.50	50	ug/L	0.50	1.7	50.2	51.5	100	103	65-133	3	20	
Ethylbenzene	10B0229	1.39	50	ug/L	0.50	1.7	52.0	53.4	101	104	84-122	3	16	
Hexachlorobutadiene	10B0229	<0.50	50	ug/L	0.50	1.7	44.5	47.8	89	96	56-137	7	20	
Isopropylbenzene	10B0229	0.360	50	ug/L	0.20	0.67	51.6	53.7	102	107	79-136	4	22	
p-Isopropyltoluene	10B0229	0.260	50	ug/L	0.20	0.67	50.8	53.3	101	106	75-141	5	20	
Methylene Chloride	10B0229	<1.0	50	ug/L	1.0	3.3	49.6	50.7	99	101	77-123	2	24	
Methyl tert-Butyl Ether	10B0229	<0.50	50	ug/L	0.50	1.7	50.1	51.4	100	103	76-125	3	18	
Naphthalene	10B0229	< 0.25	50	ug/L	0.25	0.83	61.8	65.0	124	130	62-130	5	24	
n-Propylbenzene	10B0229	< 0.50	50	ug/L	0.50	1.7	50.7	52.9	101	106	83-130	4	23	
Styrene	10B0229	< 0.50	50	ug/L	0.50	1.7	50.5	52.6	101	105	82-126	4	14	

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Work Order:

WTB0237

Received:

02/09/10

Project: Project Number:

1E-0909013 Racine, WI 1730 State Street; Racine, WI Reported:

02/15/10 12:59

Mr. Kevin Bugel

	IVIA	TRIX	SPIKE	/IVIA I I	KIA SP	IKE D	UPLIC	AIL	L D	AIA				
	Seq/	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Batch	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
VOCs by SW8260B														
QC Source Sample: WTB0193-02														
1,1,1,2-Tetrachloroethane	10B0229	< 0.25	50	ug/L	0.25	0.83	49.6	51.2	99	102	86-120	3	17	
1,1,2,2-Tetrachloroethane	10B0229	< 0.20	50	ug/L	0.20	0.67	50.6	51.5	101	103	75-122	2	26	
Tetrachloroethene	10B0229	<0.50	50	ug/L	0.50	1.7	50.8	52.6	102	105	86-124	3	18	
Toluene	10B0229	< 0.50	50	ug/L	0.50	1.7	50.3	51.5	101	103	86-120	2	18	
1,2,3-Trichlorobenzene	10B0229	< 0.25	50	ug/L	0.25	0.83	52.8	56.3	106	113	64-126	6	24	
1,2,4-Trichlorobenzene	10B0229	< 0.25	50	ug/L	0.25	0.83	49.4	52.0	99	104	67-128	5	21	
1,1,1-Trichloroethane	10B0229	<0.50	50	ug/L	0.50	1.7	51.6	53.1	103	106	87-128	3	19	
1,1,2-Trichloroethane	10B0229	< 0.25	50	ug/L	0.25	0.83	49.2	50.6	98	101	82-117	3	28	
Trichloroethene	10B0229	< 0.20	50	ug/L	0.20	0.67	51.3	52.9	103	106	90-118	3	18	
Trichlorofluoromethane	10B0229	< 0.50	50	ug/L	0.50	1.7	53.9	55.1	108	110	80-143	2	19	
1,2,3-Trichloropropane	10B0229	< 0.50	50	ug/L	0.50	1.7	51.9	53.6	104	107	77-120	3	26	
1,2,4-Trimethylbenzene	10B0229	0.360	50	ug/L	0.20	0.67	50.8	53.1	101	106	77-135	4	24	
1,3,5-Trimethylbenzene	10B0229	<0.20	50	ug/L	0.20	0.67	51.0	53.1	102	106	79-132	4	24	
Vinyl chloride	10B0229	<0.20	50	ug/L	0.20	0.67	50.7	52,6	101	105	72-137	4	17	
Xylenes, Total	10B0229	1.60	150	ug/L	0.50	1.7	152	158	101	104	85-121	4	13	
Surrogate: Dibromofluoromethane	1080229	2.00	100	ug/L	0.00	***			99	99	82-122			
Surrogate: Toluene-d8	10B0229			ug/L					100	100	86-117			
Surrogate: 1-Bromofluorobenzene	10B0229			ug/L					100	101	83-118			
	1080229			ug/L					100	101	03-110			
QC Source Sample: WTB0303-07 Benzene	10B0293	< 0.20	50	ug/L	0.20	0.67	51.1	51.6	102	103	79-123	1	20	
Bromobenzene	10B0293	<0.20	50	ug/L	0.20	0.67	48.1	49.2	96	98	83-117	2	24	
	10B0293	<0.50	50	ug/L	0.50	1.7	48.5	49.4	97	99	78-113	2	14	
Bromochloromethane	10B0293	<0.20	50		0.20	0.67	49.8	50.8	100	102	84-119	2	19	
Bromodichloromethane				ug/L					100	102	79-124	3	26	
Bromoform	10B0293	<0.20	50	ug/L	0.20	0.67	50.8	52.3						
Bromomethane	10B0293	<0.50	50	ug/L	0.50	1.7	49.3	51.0	99	102	70-133	3	18	
n-Butylbenzene	10B0293	<0.20	50	ug/L	0.20	0.67	52.6	52.9	105	106	75-138	1	19	
sec-Butylbenzene	10B0293	<0.25	50	ug/L	0.25	0.83	52.5	52.6	105	105	79-136	0	19	
ert-Butylbenzene	10B0293	<0.20	50	ug/L	0.20	0.67	52.2	52.4	104	105	83-128	0	17	
Carbon Tetrachloride	10B0293	<0.80	50	ug/L	0.80	2.6	51.4	51.7	103	103	88-131	1	17	
Chlorobenzene	10B0293	< 0.20	50	ug/L	0.20	0.67	49.3	49.6	99	99	86-115	1	16	
Chlorodibromomethane	10B0293	< 0.20	50	ug/L	0.20	0.67	50.2	51.5	100	103	84-120	3	23	
Chloroethane	10B0293	<1.0	50	ug/L	1.0	3.3	56.2	62.0	112	124	75-131	10	17	
Chloroform	10B0293	<0.20	50	ug/L	0.20	0.67	49.4	49.9	99	100	83-120	1	14	
Chloromethane	10B0293	<0.30	50	ug/L	0.30	1.0	51.4	52.1	103	104	62-129	1	16	
2-Chlorotoluene	10B0293	< 0.50	50	ug/L	0.50	1.7	49.8	51.0	100	102	80-131	2	26	
1-Chlorotoluene	10B0293	< 0.20	50	ug/L	0.20	0.67	48.9	49.6	98	99	80-132	1	26	
1,2-Dibromo-3-chloropropane	10B0293	< 0.50	50	ug/L	0.50	1.7	48.3	52.4	97	105	70-122	8	26	
,2-Dibromoethane (EDB)	10B0293	<0.20	50	ug/L	0.20	0.67	48.0	49.5	96	99	83-114	3	19	
Dibromomethane	10B0293	<0.20	50	ug/L	0.20	0.67	48.1	49.6	96	99	81-116	3	26	
1.2-Dichlorobenzene	10B0293	< 0.20	50	ug/L	0.20	0.67	47.6	48.6	95	97	81-118	2	23	
1,3-Dichlorobenzene	10B0293	<0.20	50	ug/L	0.20	0.67	48.4	49.1	97	98	80-121	1	21	
1,4-Dichlorobenzene	10B0293	<0.50	50	ug/L	0.50	1.7	48.2	48.5	96	97	80-116	1	21	
Dichlorodifluoromethane	10B0293	<0.50	50	ug/L	0.50	1.7	53.2	52.7	106	105	74-135	1	19	
1,1-Dichloroethane	10B0293	<0.50	50	ug/L	0.50	1.7	51.9	52.3	104	105	77-128	1	18	
1,1-Dichloroethane 1,2-Dichloroethane	10B0293	<0.50	50	ug/L ug/L	0.50	1.7	48.4	49.9	97	100	80-123	3	19	

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Work Order:

WTB0237

Received:

02/09/10

Project:

1E-0909013 Racine, WI

Reported:

02/15/10 12:59

Mr. Kevin Bugel

Project Number: 1730 State Street; Racine, WI

	Seq/	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Batch	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
VOCs by SW8260B														
QC Source Sample: WTB0303-07														
1,1-Dichloroethene	10B0293	< 0.50	50	ug/L	0.50	1.7	54.2	54.6	108	109	84-131	1	18	
cis-1,2-Dichloroethene	10B0293	< 0.50	50	ug/L	0.50	1.7	51.3	51.3	103	103	82-121	0	17	
trans-1,2-Dichloroethene	10B0293	<0.50	50	ug/L	0.50	1.7	52.8	53.2	106	106	82-126	1	23	
1,2-Dichloropropane	10B0293	< 0.50	50	ug/L	0.50	1.7	50.1	51.5	100	103	72-123	3	18	
1,3-Dichloropropane	10B0293	< 0.25	50	ug/L	0.25	0.83	48.5	50.2	97	100	79-119	4	24	
2,2-Dichloropropane	10B0293	<0.50	50	ug/L	0.50	1.7	56.0	56.5	112	113	82-136	1	16	
1,1-Dichloropropene	10B0293	< 0.50	50	ug/L	0.50	1.7	55.3	54.5	111	109	85-127	1	16	
cis-1,3-Dichloropropene	10B0293	< 0.20	50	ug/L	0.20	0.67	51.5	52.8	103	106	83-120	2	20	
trans-1,3-Dichloropropene	10B0293	<0.20	50	ug/L	0.20	0.67	51.2	52.9	102	106	82-121	3	26	
lsopropyl Ether	10B0293	< 0.50	50	ug/L	0.50	1.7	50.0	51.0	100	102	65-133	2	20	
Ethylbenzene	10B0293	<0.50	50	ug/L	0.50	1.7	51.1	51.7	102	103	84-122	1	16	
Hexachlorobutadiene	10B0293	<0.50	50	ug/L	0.50	1.7	52.6	52.4	105	105	56-137	1	20	
lsopropylbenzene	10B0293	<0.20	50	ug/L	0.20	0.67	52.2	52.7	104	105	79-136	1	22	
p-Isopropyltoluene	10B0293	< 0.20	50	ug/L	0.20	0.67	51.5	52.1	103	104	75-141	1	20	
Methylene Chloride	10B0293	<1.0	50	ug/L	1.0	3.3	49.7	50.2	99	100	77-123	1	24	
Methyl tert-Butyl Ether	10B0293	< 0.50	50	ug/L	0.50	1.7	48.3	50.1	97	100	76-125	4	18	
Naphthalene	10B0293	< 0.25	50	ug/L	0.25	0.83	48.0	52.1	96	104	62-130	8	24	
n-Propylbenzene	10B0293	< 0.50	50	ug/L	0.50	1.7	52.0	52.2	104	104	83-130	0	23	
Styrene	10B0293	<0.50	50	ug/L	0.50	1.7	50.8	51.5	102	103	82-126	1	14	
1,1,1,2-Tetrachioroethane	10B0293	<0.25	50	ug/L	0.25	0.83	49.3	50.0	99	100	86-120	1	17	
1.1,2,2-Tetrachloroethane	10B0293	< 0.20	50	ug/L	0.20	0.67	47.0	48.8	94	98	75-122	4	26	
Tetrachloroethene	10B0293	<0.50	50	ug/L	0.50	1.7	52.8	52.8	106	106	86-124	0	18	
Toluene	10B0293	<0.50	50	ug/L	0.50	1.7	50.4	50.6	101	101	86-120	0	18	
1,2,3-Trichlorobenzene	10B0293	<0.25	50	ug/L	0.25	0.83	48.7	50.9	97	102	64-126	4	24	
	10B0293	<0.25	50	ug/L	0.25	0.83	48.2	50.0	96	100	67-128	4	21	
1,2,4-Trichlorobenzene	10B0293	< 0.50	50	ug/L ug/L	0.50	1.7	53.5	53.8	107	108	87-128	1	19	
1,1,1-Trichloroethane			50	_	0.30	0.83	48.3	50.0	97	100	82-117	3	28	
1,1,2-Trichloroethane	10B0293 10B0293	<0.25	50	ug/L	0.20				106	107	90-118		18	
Trichloroethene		<0.20		ug/L		0.67	53.0	53.3				1		
Trichlorofluoromethane	10B0293	<0.50	50	ug/L	0.50	1.7	54.7	56.5	109	113	80-143	3	19	
1,2,3-Trichloropropane	10B0293	<0.50	50	ug/L	0.50	1.7	45.8	48.1	92	96	77-120	5	26	
1,2,4-Trimethylbenzene	10B0293	<0.20	50	ug/L	0.20	0.67	49.9	50.8	100	102	77-135	2	24	
1,3,5-Trimethylbenzene	10B0293	<0.20	50	ug/L	0.20	0.67	51.4	52.0	103	104	79-132	1	24	
Vinyl chloride	10B0293	<0.20	50	ug/L	0.20	0.67	53.0	52.9	106	106	72-137	0	17	
Xylenes, Total	10B0293	<0.50	150	ug/L	0.50	1.7	152	154	101	103	85-121	1	13	
Surrogate: Dibromofluoromethane	10B0293			ug/L					99	99	82-122			
Surrogate: Toluene-d8	10B0293			ug/L					99	99	86-117			
Surrogate: 4-Bromofluorobenzene	10B0293			ug/L					100	100	83-118			

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN N8 W22350 Johnson Road Waukesha, WI 53186

Mr. Kevin Bugel

Work Order:

WTB0237

Received:

02/09/10

Project:
Project Number:

1E-0909013 Racine, WI 1730 State Street; Racine, WI Reported:

02/15/10 12:59

CERTIFICATION SUMMARY

TestAmerica Watertown

Method	Matrix	Nelac	Wisconsin		
SW 8260B	Water - NonPotable	X	X		

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

1E-0909013 Racine, WI

1730 State Street; Racine, WI

GILES ENGINEERING - WISCONSIN N8 W22350 Johnson Road Waukesha, WI 53186 Mr. Kevin Bugel

Work Order:

Project Number:

Project:

WTB0237

Received:

02/09/10

02/15/10 12:59 Reported:

DATA QUALIFIERS AND DEFINITIONS

Results reported between the Method Detection Limit (MDL) and Limit of Quantitation (LOQ) are less certain than results at or J

above the LOQ.

R2 The RPD exceeded the acceptance limit.

								w	TR	mnuci	1	
Giles Engineering Ass	ociates,	Inc.	(CHAIN-OF-C	CUSTODY			Site	Car	nnezi	0	
N8 W22350 Johnson Road Suite A1, Waukes		tel: 414-544-0118	fax: 414-5			re sample						
 4875 East La Palma Avenue, Suite 607, Anal 8300 Guilford Road, Suite F1, Columbia, MD 		tel: 714-779-0052 tel: 410-312-9950	fax: 714-7			re sample rmation required	(NR720)	Address	1170	state	21/661	
☐ 10722 North Stemmons Freeway, Dallas, TX	75220	tel: 214-358-5885	fax: 214-3		□ RUS	SH			Kaci	ine. Wi	SCRASIA	
2830 Agriculture Drive, Madison, WI 537183990 Flowers Road, Suite 530, Atlanta, GA,3	0360	tel: 608-223-1853 tel. 770-458-3399	fax: 608-2 fax: 770-4		POSSIBLE	HAZARDS:						
ample Collector Flea Roashouse		F	Project Manager	Kevin :	Bugel	1	Project Nu	mber /F-	0909	013		
aboratory Used Test Amuica		Į,	Lab Contact	Dan M.	J		Lab Job N	77% A 17%	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			_ the
Semble Description	///				Analysis	Required		Minne, on or or or or or or or or or or or or or	/	Due Date	Lab ID	Temp
MW-1	W 2/8/10	AM AM						3D	HCI	STO	0.00	1.2000年
MW-2	W 2/8/10	AM AM						30	Hel	STO	Control of the contro	Sypte C.
MW-3	W elalio	AM EM	\rightarrow					30	HCI	STO	1961年	AND THE PARTY OF T
MW-4	W Z/8/10	Ø AM						30	HCI	STO	187 (A. 187 (A. 188 (A	SPOPS FOR STANDARDS STANDARD STANDARDS STANDAR
DUP-1	W 2/8/10	@	X					30	HEL	STO	177	
Trip Blank	W 2/8/10	AM Ø	X					1D	HCI	STO		Action (Control of Control of Con
,		AM PM									486-01	500pm2 \$20 mg
		AM PM										
		AM PM									Nore 4	All Colons
		AM PM										
		AM PM										
		AM PM									61	3'-1 3'-1
ontainer code: A = 8 oz/250 ml B = 4 oz/ 120 ml elinquished By rms.xls//COC 08/10/99	Date, 2/9/10	C = 2 oz/60 mł D = 40 mL VOA vial HC (Time Received By 12 O AM PM AM PM AM PM AM PM AM PM AM PM AM PM		E=1LAn F=250 m NICC 2/9/10	INVOICE	G = poly bag H = TO: S Engineers Cintes Tage	Send copy to Project Manager	Page of	A55	TO: les Eng aciate Alta	incei	/
								pa	1911	10		

11/1/160	23+ Coo	eler Receipt Log	
Work Order(s):		6iles	# of Coolers:
. How did samples arrive?	Fed-Ex UPS	TestAmerica Client D	Dunham Speedy
. Were custody seals intac	ct, signed and dated correctly?	Yes No	₽NA
Date/time cooler was ope	ned: $\frac{\mathcal{J}}{\mathcal{J}}$ (1) 124	D By: Rayul M	Pato
3. Temperature taken		Yes	□No
4. Does this Project require	RUSH turn around?		□ No
5. Are there any short hold	time tests?		<u>,⊒</u> No
☐ within 1 hr of or ☐ pa	st expiration of hold-time?	Provide	details in space at bottom of form
	48 hours or less Coliform Bacteria	7 days Aqueous Organic Prep TS TDS TDS Sulfide Volatile Solids	
6. Except for tests with hold	I times of 48 hrs or less, are any samp	oles	
,	past expiration of hold-time?		Provide details in space at bottom of for
	Analyst was informed of short hold ar		When
. •	ollection recorded?		□ No Time □Yes □ No
	ers listed on the COC received and int	•	Provide details in space at bottom of for
	e COC?		Provide details in space at bottom of for
·	ers field filtered or being filtered in the l		₹NA
'	lequate and preservatives correct for to		□ No Pres. ☐ Yes □ No
	of bubbles >6mm?		□ NA
	ceived?		_
	_	☐ Frozen ☐ Not Frozen	
	ld?		Provide details in space at bottom of for
•	e subcontracted?		, revide estate in epace at settem en les
	e to this Work Order after Login, or if o		in this cooler explain them below:
ic. If any changes are mad	e to this voice order and Login, or in	Somments must be made regarding	g this cooler, explain them below.

mm = ---

August 12, 2010

RECEIVED AUG 1 8 2010

Client:

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186

Attn:

Mr. Tim Taugher

Work Order:

WTH0096

Project Name:

1E-0909013 Racine, WI

Project Number:

1730 State Street

Date Received:

08/04/10

An executed copy of the chain of custody is also included as an addendum to this report.

If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-800-833-7036

SAMPLE IDENTIFICATION	LAB NUMBER	COLLECTION DATE AND TIME
MW-1	WTH0096-01	08/03/10
MW-2	WTH0096-02	08/03/10
MW-3	WTH0096-03	08/03/10
MW-4	WTH0096-04	08/03/10
MW-5	WTH0096-05	08/03/10
MW-6	WTH0096-06	08/03/10
MW-7	WTH0096-07	08/03/10
MW-8	WTH0096-08	08/03/10
Trip Blank	WTH0096-09	08/03/10

Samples were received on ice into laboratory at a temperature of 5 °C.

Wisconsin Certification Number: 128053530

The Chain(s) of Custody, 2 pages, are included and are an integral part of this report.

Unless subcontracted, volatiles analyses (including VOC, PVOC, GRO, BTEX, and TPH gasoline) performed by TestAmerica Watertown at 1101 Industrial Drive, Units 9&10. All other analyses performed at the address shown in the heading of this report.

Approved By:

TestAmerica Watertown

Brian DeJong For Dan F. Milewsky Project Manager

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186 Mr. Tim Taugher Work Order: Project:

Project Number:

WTH0096

1E-0909013 Racine, WI

1730 State Street

Received:

08/04/10

Reported: 08/12/10 08:55

ANALYTICAL REPORT

	Sample	Data		ICAL RE		Dilution	Data		Soal	
Analyte	Result	Qualifiers	Units	MDL	MRL	Factor	Date Analyzed	Analyst	Seq/ Batch	Method
•								· · · · · · · · · · · · · · · · · · ·	- Date	-
Sample ID: WTH0096-01 (MW	-1 - Ground Wate	er)					Sampled: 08	/03/10		
VOCs by SW8260B										
Benzene	<8.0		ug/L	8.0	80	40	08/06/10 14:26	ABA	10H0124	SW 8260
Bromobenzene	<8.0		ug/L	8.0	80	40	08/06/10 14:26	ABA	10H0124	SW 8260
Bromochloromethane	<20		ug/L	20	80	40	08/06/10 14:26	ABA	10H0124	SW 8260
Bromodichloromethane	<8.0		ug/L	8.0	80	40	08/06/10 14:26	ABA	10H0124	SW 8260
Bromoform	<8.0		ug/L	8.0	200	40	08/06/10 14:26	ABA	10H0124	SW 8260
Bromomethane	<20		ug/L	20	200	40	08/06/10 14:26	ABA	10H0124	SW 8260
n-Butylbenzene	<8.0		ug/L	8.0	80	40	08/06/10 14:26	ABA	10H0124	SW 8260
sec-Butylbenzene	<10		ug/L	10	80	40	08/06/10 14:26	ABA	10H0124	SW 82601
tert-Butylbenzene	<8.0		ug/L	8.0	80	40	08/06/10 14:26	ABA	10H0124	SW 82601
Carbon Tetrachloride	<32		ug/L	32	80	40	08/06/10 14:26	ABA	10H0124	SW 82601
Chlorobenzene	<8.0		ug/L	8.0	80	40	08/06/10 14:26	ABA	10H0124	SW 82601
Chlorodibromomethane	<8.0		ug/L	8.0	80	40	08/06/10 14:26	ABA	10H0124	SW 82601
Chloroethane	<40		ug/L	40	200	40	08/06/10 14:26	ABA	10H0124	SW 82601
Chloroform	<8.0		ug/L	8.0	80	40	08/06/10 14:26	ABA	10H0124	SW 82601
Chloromethane	<12		ug/L	12	80	40	08/06/10 14:26	ABA	10H0124	SW 82601
2-Chlorotoluene	<20		ug/L	20	80	40	08/06/10 14:26	ABA	10H0124	SW 82601
4-Chlorotoluene	<8.0		ug/L	8.0	80	40	08/06/10 14:26	ABA	10H0124	SW 8260
1.2-Dibromo-3-chloropropane	<20		ug/L	20	80	40	08/06/10 14:26	ABA	10H0124	SW 8260
1,2-Dibromoethane (EDB)	<8.0		ug/L	8.0	80	40	08/06/10 14:26	ABA	10H0124	SW 8260
Dibromomethane	<8.0		ug/L	8.0	80	40	08/06/10 14:26	ABA	10H0124	SW 8260
1,2-Dichlorobenzene	<8.0		ug/L	8.0	80	40	08/06/10 14:26	ABA	10H0124	SW 8260
1.3-Dichlorobenzene	<8.0		ug/L	8.0	80	40	08/06/10 14:26	ABA	10H0124	SW 8260
1.4-Dichlorobenzene	<20		ug/L	20	80	40	08/06/10 14:26	ABA	10H0124	SW 8260
Dichlorodifluoromethane	<20		ug/L	20	80	40	08/06/10 14:26	ABA	10H0124	SW 8260
1.1-Dichloroethane	<20		ug/L	20	80	40	08/06/10 14:26	ABA	10H0124	SW 8260
1,2-Dichloroethane	<20		ug/L	20	80	40	08/06/10 14:26	ABA	10H0124	SW 8260
1,1-Dichloroethene	<20		ug/L	20	80	40	08/06/10 14:26	ABA	10H0124	SW 8260
cis-1,2-Dichloroethene	3800		ug/L	20	80	40	08/06/10 14:26	ABA	10H0124	SW 8260
trans-1,2-Dichloroethene	40	J	ug/L	20	80	40	08/06/10 14:26	ABA	10H0124	SW 82601
1.2-Dichloropropane	<20		ug/L	20	80	40	08/06/10 14:26	ABA	10H0124	SW 82601
1,3-Dichloropropane	<10		ug/L	10	80	40	08/06/10 14:26	ABA	10H0124	SW 82601
2,2-Dichloropropane	<20		ug/L	20	80	40	08/06/10 14:26	ABA	10H0124	SW 8260
1,1-Dichloropropene	<20		ug/L	20	80	40	08/06/10 14:26	ABA	10H0124	SW 82601
cis-1.3-Dichloropropene	<8.0		ug/L	8.0	80	40	08/06/10 14:26	ABA	10H0124	SW 82601
trans-1,3-Dichloropropene	<8.0		ug/L	8.0	80	40	08/06/10 14:26	ABA	10H0124	SW 8260
2.3-Dichloropropene	<10		ug/L	10	80	40	08/06/10 14:26	ABA	10H0124	SW 82601
Isopropyl Ether	<20		ug/L	20	80	40	08/06/10 14:26	ABA	10H0124	SW 82601
Ethylbenzene	<20		ug/L	20	80	40	08/06/10 14:26		10H0124	SW 8260
Hexachlorobutadiene	<20		_	20	80	40	08/06/10 14:26	ABA	10H0124	SW 8260
Isopropylbenzene	<8.0		ug/L	8.0	80	40	08/06/10 14:26	ABA	10H0124	SW 8260
p-Isopropyltoluene	<8.0		ug/L	8.0	80	40	08/06/10 14:26	ABA	10H0124	SW 8260
Methylene Chloride	<40		ug/L	40	80	40	08/06/10 14:26	ABA	10H0124	
Methyl tert-Butyl Ether	<20		ug/L	20	80	40	08/06/10 14:26	ABA	10H0124	SW 8260 SW 8260
Naphthalene	<10		ug/L	10				ABA		
n-Propylbenzene	<20		ug/L		200	40	08/06/10 14:26	ABA	10H0124	SW 8260
			ug/L	20	80	40	08/06/10 14:26	ABA	10H0124	SW 8260
Styrene	<20		ug/L	20	200	40	08/06/10 14:26	ABA	10H0124	SW 8260
1.1.1.2-Terrachloroethane	<10		ug/L	10	80	40	08/06/10 14:26	ABA	10H0124	SW 8260
1.1.2.2-Tetrachloroethane	<8.0		ug/L	8.0	80	40	08/06/10 14:26	ABA	10H0124	SW 8260
Tetrachloroethene	1700		ug/L	20	80	40	08/06/10 14:26	ABA	10H0124	SW 8260

Brian DeJong For Dan F. Milewsky Project Manager

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Work Order: Project:

Project Number:

WTH0096

1730 State Street

1E-0909013 Racine, WI

08/04/10

Received: Reported:

08/12/10 08:55

Mr. Tim Taugher

	Sample	Data	**	1401	MRL	Dilution	Date		Seq/	
\nalyte	Result	Qualifiers	Units	MDL	WIRL	Factor	Analyzed	Analyst	Batch	Method
Sample ID: WTH0096-01 (MW-1	- Ground Wate	er) - cont.					Sampled: 08	/03/10		
VOCs by SW8260B - cont.										
Toluene	<20		ug/L	20	80	40	08/06/10 14:26	ABA	10H0124	SW 82601
1,2,3-Trichlorobenzene	<10		ug/L	10	80	40	08/06/10 14:26	ABA	10H0124	SW 8260
1.2.4-Trichlorobenzene	<10		ug/L	10	80	40	08/06/10 14:26	ABA	10H0124	SW 8260
1,1,1-Trichloroethane	<20		ug/L	20	80	40	08/06/10 14:26	ABA	10H0124	SW 8260
1.1.2-Trichloroethane	<10		ug/L	10	80	40	08/06/10 14:26	ABA	10H0124	SW 8260
Trichloroethene	1900		ug/L	8.0	80	40	08/06/10 14:26	ABA	10H0124	SW 8260
Trichlorofluoromethane	<20		ug/L	20	80	40	08/06/10 14:26	ABA	10H0124	SW 8260
1,2,3-Trichloropropane	<20		ug/L	20	80	40	08/06/10 14:26	ABA	10H0124	SW 8260
1,2,4-Trimethylbenzene	<8.0		ug/L	8.0	80	40	08/06/10 14:26	ABA	10H0124	SW 8260
1,3,5-Trimethylbenzene	<8.0		ug/L	8.0	80	40	08/06/10 14:26	ABA	10H0124	SW 8260
Vinyl chloride	340		ug/L	8.0	80	40	08/06/10 14:26	ABA	10H0124	SW 8260
Xylenes, Total	<20		ug/L	20	80	40	08/06/10 14:26	ABA	10H0124	SW 8260
Surr: Dibromofluoromethane (80-120%)	108 %		-8 -							
Surr: Toluene-d8 (80-120%)	103 %									
Surr: 4-Bromofluorobenzene (80-120%)	93 %									
Sample ID: WTH0096-02 (MW-2	- Ground Wate	er)					Sampled: 08	/03/10		
VOCs by SW8260B										
Benzene	<40		ug/L	40	400	200	08/10/10 14:01	MAE	10H0174	SW 8260
Bromobenzene	<40		ug/L	40	400	200	08/10/10 14:01	MAE	10H0174	SW 8260
Bromochloromethane	<100		ug/L	100	400	200	08/10/10 14:01	MAE	10H0174	SW 8260
Bromodichloromethane	<40		ug/L	40	400	200	08/10/10 14:01	MAE	10H0174	SW 8260
Bromoform	<40		ug/L	40	1000	200	08/10/10 14:01	MAE	10H0174	SW 8260
Bromomethane	<100		ug/L	100	1000	200	08/10/10 14:01	MAE	10H0174	SW 8260
n-Butylbenzene	<40		ug/L	40	400	200	08/10/10 14:01	MAE	10H0174	SW 8260
sec-Butylbenzene	<50		ug/L	50	400	200	08/10/10 14:01	MAE	10H0174	SW 8260
tert-Butylbenzene	<40		ug/L	40	400	200	08/10/10 14:01	MAE	10H0174	SW 8260
Carbon Tetrachloride	<160		ug/L	160	400	200	08/10/10 14:01	MAE	10H0174	SW 8260
Chlorobenzene	<40		ug/L	40	400	200	08/10/10 14:01	MAE	10H0174	SW 8260
Chlorodibromomethane	<40		ug/L	40	400	200	08/10/10 14:01	MAE	10H0174	SW 8260
Chloroethane	<200		ug/L	200	1000	200	08/10/10 14:01	MAE	10H0174	SW 8260
Chloroform	<40		ug/L	40	400	200	08/10/10 14:01	MAE	10H0174	SW 8260
Chloromethane	<60		ug/L	60	400	200	08/10/10 14:01	MAE	10H0174	SW 8260
2-Chlorotoluene	<100		ug/L	100	400	200	08/10/10 14:01	MAE	10H0174	SW 8260
4-Chlorotoluene	<40		ug/L	40	400	200	08/10/10 14:01	MAE	10H0174	SW 8260
1.2-Dibromo-3-chloropropane	<100		ug/L	100	400	200	08/10/10 14:01	MAE	10H0174	SW 8260
1.2-Dibromoethane (EDB)	<40		ug/L	40	400	200	08/10/10 14:01	MAE	10H0174	SW 8260
Dibromomethane	<40		ug/L	40	400	200	08/10/10 14:01	MAE	10H0174	SW 8260
1.2-Dichlorobenzene	<40		ug/L	40	400	200	08/10/10 14:01	MAE	10H0174	SW 8260
1.3-Dichlorobenzene	<40		ug/L	40	400	200	08/10/10 14:01	MAE	10H0174	SW 8260
1.4-Dichlorobenzene	<100		ug/L	100	400	200	08/10/10 14:01	MAE	10H0174	SW 8260
Dichlorodifluoromethane	<100		ug/L	100	400	200	08/10/10 14:01	MAE	10H0174	SW 8260
1.1-Dichloroethane	<100	•	ug/L	100	400	200	08/10/10 14:01	MAE	10H0174	SW 8260
1,2-Dichloroethane	<100		ug/L	100	400	200	08/10/10 14:01	MAE	10H0174	SW 8260
1.1-Dichloroethene	<100		ug/L	100	400	200	08/10/10 14:01	MAE	10H0174	SW 8260
cis-1,2-Dichloroethene	2300		ug/L	100	400	200	08/10/10 14:01	MAE	10H0174	SW 8260
trans-1,2-Dichloroethene	<100		ug/L	100	400	200	08/10/10 14:01	MAE	10H0174	SW 8260
1,2-Dichloropropane	<100		ug/L	100	400	200	08/10/10 14:01	MAE	10H0174	SW 8260
1,3-Dichloropropane	<50		ug/L	50	400	200	08/10/10 [4:0]	MAE	10H0174	SW 8260
2,2-Dichloropropane	<100		ug/L	100	400	200	08/10/10 14:01	MAE	10H0174	SW 8260
1,1-Dichloropropene	<100			100	400	200	08/10/10 14:01			SW 8260

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Mr. Tim Taugher Work Order: Project:

Project Number:

WTH0096

1E-0909013 Racine, WI

1730 State Street

Received: 08/04/10

Reported: 08/12/10 08:55

Analyte	Sample Result	Data Qualifiers	Units	MDL	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTH0096-02 (MW-2 -	Ground Wate	r) - cont.					Sampled: 08	/03/10		
VOCs by SW8260B - cont.										
cis-1,3-Dichloropropene	<40		ug/L	40	400	200	08/10/10 14:01	MAE	I0H0174	SW 8260B
trans-1.3-Dichloropropene	<40		ug/L	40	400	200	08/10/10 14:01	MAE	10H0174	SW 8260B
2.3-Dichloropropene	<50		ug/L	50	400	200	08/10/10 14:01	MAE	10H0174	SW 8260B
Isopropyl Ether	<100		ug/L	100	400	200	08/10/10 14:01	MAE	10H0174	SW 8260B
Ethylbenzene	<100		ug/L	100	400	200	08/10/10 14:01	MAE	10H0174	SW 8260B
Hexachlorobutadiene	<100		ug/L	100	400	200	08/10/10 14:01	MAE	I0H0174	SW 8260B
Isopropylbenzene	<40		ug/L	40	400	200	08/10/10 14:01	MAE	10H0174	SW 8260B
p-Isopropyltoluene	<40		ug/L	40	400	200	08/10/10 14:01	MAE	10H0174	SW 8260B
Methylene Chloride	<200		ug/L	200	400	200	08/10/10 14:01	MAE	10H0174	SW 8260B
Methyl tert-Butyl Ether	<100		ug/L	100	400	200	08/10/10 14:01	MAE	10H0174	SW 8260E
Naphthalene	<50		ug/L	50	1000	200	08/10/10 14:01	MAE	I0H0174	SW 8260E
n-Propylbenzene	<100		ug/L	100	400	200	08/10/10 14:01	MAE	10H0174	SW 8260E
Styrene	<100		ug/L	100	1000	200	08/10/10 14:01	MAE	10H0174	SW 8260E
1,1,1,2-Tetrachloroethane	<50		ug/L	50	400	200	08/10/10 14:01	MAE	10H0174	SW 8260E
1,1,2,2-Tetrachioroethane	<40		ug/L	40	400	200	08/10/10 14:01	MAE	10H0174	SW 8260E
Tetrachloroethene	21000		ug/L	100	400	200	08/10/10 14:01	MAE	10H0174	SW 8260E
Toluene	<100		ug/L	100	400	200	08/10/10 14:01	MAE	10H0174	SW 8260E
1,2,3-Trichlorobenzene	<50		ug/L	50	400	200	08/10/10 14:01	MAE	10H0174	SW 8260B
1,2,4-Trichlorobenzene	<50		ug/L	50	400	200	08/10/10 14:01	MAE	10H0174	SW 8260B
1,1,1-Trichloroethane	<100		ug/L	100	400	200	08/10/10 14:01	MAE	10H0174	SW 8260E
1,1,2-Trichloroethane	<50		ug/L	50	400	200	08/10/10 14:01	MAE	10H0174	SW 8260B
Trichloroethene	8300		ug/L	40	400	200	08/10/10 14:01	MAE	10H0174	SW 8260B
Trichlorofluoromethane	<100		ug/L	100	400	200	08/10/10 14:01	MAE	10H0174	SW 8260E
1.2.3-Trichloropropane	<100		ug/L	100	400	200	08/10/10 14:01	MAE	10H0174	SW 8260E
1,2,4-Trimethylbenzene	<40		ug/L	40	400	200	08/10/10 14:01	MAE	10H0174	SW 8260E
1.3.5-Trimethylbenzene	<40		ug/L	40	400	200	08/10/10 14:01	MAE	10H0174	SW 8260E
Vinyl chloride	54	j	ug/L	40	400	200	08/10/10 14:01	MAE	10H0174	SW 8260E
Xylenes, Total	<100		ug/L	100	400	200	08/10/10 14:01	MAE	10H0174	SW 8260E
Surr: Dibromofluoromethane (80-120%)	87 %									
Surr: Toluene-d8 (80-120%)	97 %									
Surr: 4-Bromofluorobenzene (80-120%)	95 %									

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186

Work Order: Project:

WTH0096

1E-0909013 Racine, WI

Received:

08/04/10

1730 State Street Project Number:

08/12/10 08:55 Reported:

	Sample	Data				Dilution	Date		Seq/	
Analyte	Result	Qualifiers	Units	MDL	MRL	Factor	Analyzed	Analyst	Batch	Method
Sample ID: WTH0096-03RE1 (MW-3 - Ground V	Water)					Sampled: 08	/03/10		
VOCs by SW8260B										
Benzene	<0.20		ug/L	0.20	2.0	1	08/11/10 10:14	MAE	10H0218	SW 82601
Bromobenzene	< 0.20		ug/L	0.20	2.0	1	08/11/10 10:14	MAE	10H0218	SW 8260
Bromochloromethane	< 0.50		ug/L	0.50	2.0	1	08/11/10 10:14	MAE	10H0218	SW 8260
Bromodichloromethane	< 0.20		ug/L	0.20	2.0	1	08/11/10 10:14	MAE	10H0218	SW 8260
Bromoform	< 0.20		ug/L	0.20	5.0	1	08/11/10 10:14	MAE	10H0218	SW 8260
Bromomethane	< 0.50		ug/L	0.50	5.0	1	08/11/10 10:14	MAE	10H0218	SW 8260
n-Butylbenzene	< 0.20		ug/L	0.20	2.0	1	08/11/10 10:14	MAE	10H0218	SW 8260
sec-Butylbenzene	< 0.25		ug/L	0.25	2.0	1	08/11/10 10:14	MAE	10H0218	SW 8260
tert-Butylbenzene	< 0.20		ug/L	0.20	2.0	1	08/11/10 10:14	MAE	10H0218	SW 8260
Carbon Tetrachloride	< 0.80		ug/L	0.80	2.0	1	08/11/10 10:14	MAE	10H0218	SW 8260
Chlorobenzene	< 0.20		ug/L	0.20	2.0	1	08/11/10 10:14	MAE	10H0218	SW 8260
Chlorodibromomethane	< 0.20		ug/L	0.20	2.0	l	08/11/10 10:14	MAE	10H0218	SW 8260
Chloroethane	<1.0		ug/L	1.0	5.0	1	08/11/10 10:14	MAE	10H0218	SW 8260
Chloroform	<0.20		ug/L	0.20	2.0	1	08/11/10 10:14	MAE	10H0218	SW 8260
Chloromethane	< 0.30		ug/L	0.30	2.0	1	08/11/10 10:14	MAE	10H0218	SW 8260
2-Chlorotoluene	< 0.50		ug/L	0.50	2.0	1	08/11/10 10:14	MAE	10H0218	SW 8260
4-Chlorotoluene	< 0.20		ug/L	0.20	2.0	1	08/11/10 10:14	MAE	10H0218	SW 8260
1,2-Dibromo-3-chloropropane	< 0.50		ug/L	0.50	2.0	1	08/11/10 10:14	MAE	10H0218	SW 8260
1,2-Dibromoethane (EDB)	< 0.20		ug/L	0.20	2.0	1	08/11/10 10:14	MAE	10H0218	SW 8260
Dibromomethane	< 0.20		ug/L	0.20	2.0	1	08/11/10 10:14	MAE	10H0218	SW 8260
1.2-Dichlorobenzene	< 0.20		ug/L	0.20	2.0	1	08/11/10 10:14	MAE	10H0218	SW 8260
1,3-Dichlorobenzene	< 0.20		ug/L	0.20	2.0	1	08/11/10 10:14	MAE	10H0218	SW 8260
1.4-Dichlorobenzene	< 0.50		ug/L	0.50	2.0	1	08/11/10 10:14	MAE	10H0218	SW 8260
Dichloroditluoromethane	< 0.50		ug/L	0.50	2.0	1	08/11/10 10:14	MAE	10H0218	SW 8260
1,1-Dichloroethane	<0.50		ug/L	0.50	2.0	1	08/11/10 10:14	MAE	10H0218	SW 8260
1,2-Dichloroethane	<0.50		ug/L	0.50	2.0	1	08/11/10 10:14	MAE	10H0218	SW 8260
1,1-Dichloroethene	<0.50		ug/L	0.50	2.0	i	08/11/10 10:14	MAE	10H0218	SW 8260
cis-1,2-Dichloroethene	1.0	J	ug/L	0.50	2.0	1	08/11/10 10:14	MAE	10H0218	SW 8260
trans-1,2-Dichloroethene	< 0.50	,		0.50	2.0	ı	08/11/10 10:14	MAE	10H0218	SW 8260
1.2-Dichloropropane	<0.50		ug/L ug/L	0.50	2.0	1	08/11/10 10:14		10H0218	SW 8260
1,3-Dichtoropropane	<0.25		-	0.25	2.0	1	08/11/10 10:14	MAE	10H0218	SW 8260
2,2-Dichloropropane	< 0.50		ug/L	0.50	2.0	1	08/11/10 10:14	MAE	10H0218	SW 8260
1.1-Dichloropropene	<0.50		ug/L	0.50	2.0	1		MAE		SW 8260
cis-1,3-Dichloropropene	<0.20		ug/L		2.0	1	08/11/10 10:14	MAE	10H0218	
			ug/L	0.20			08/11/10 10:14	MAE	10H0218	SW 8260
trans-1.3-Dichloropropene	<0.20		ug/L	0.20	2.0	1	08/11/10 10:14	MAE	10H0218	SW 8260
2.3-Dichloropropene	<0.25		ug/L	0.25	2.0	1	08/11/10 10:14	MAE	10H0218	SW 8260
Isopropyl Ether	<0.50		ug/L	0.50	2.0	1	08/11/10 10:14	MAE	10H0218	SW 8260
Ethylbenzene	< 0.50		ug/L	0.50	2.0	1	08/11/10 10:14	MAE	10H0218	SW 8260
Hexachlorobutadiene	<0.50		ug/L	0.50	2.0	1	08/11/10 10:14	MAE	10H0218	SW 8266
Isopropylbenzene	<0.20		ug/L	0.20	2.0	1	08/11/10 10:14	MAE	10H0218	SW 8260
p-IsopropyItoluene	<0.20		ug/L	0.20	2.0	ł	08/11/10 10:14	MAE	10H0218	SW 8260
Methylene Chloride	<1.0		ug/L	1.0	2.0	1	08/11/10 10:14	MAE	10H0218	SW 826
Methyl tert-Butyl Ether	<0.50		ug/L	0.50	2.0	1	08/11/10 10:14	MAE	10H0218	SW 8260
Naphthalene	<0.25		ug/L	0.25	5.0	1	08/11/10 10:14	MAE	10H0218	SW 8260
n-Propylbenzene	<0.50		ug/L	0.50	2.0	1	08/11/10 10:14	MAE	10H0218	SW 8260
Styrene	<0.50		ug/L	0.50	5.0	1	08/11/10 10:14	MAE	10H0218	SW 826
1,1,1,2-Tetrachloroethane	< 0.25		ug/L	0.25	2.0	1	08/11/10 10:14	MAE	10H0218	SW 8260
1.1.2.2-Tetrachloroethane	<0.20		ug/L	0.20	2.0	1	08/11/10 10:14	MAE	10H0218	SW 8260
Tetrachloroethene	0.60	J	ug/L	0.50	2.0	1	08/11/10 10:14	MAE	10H0218	SW 8260
Toluene	< 0.50		ug/L	0.50	2.0	1	08/11/10 10:14	MAE	10H0218	SW 8260
1,2,3-Trichlorobenzene	< 0.25		ug/L	0.25	2.0	1	08/11/10 10:14	MAE	10H0218	SW 826

Brian DeJong For Dan F. Milewsky Project Manager

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Mr. Tim Taugher

Work Order: Project:

Project Number:

WTH0096

1E-0909013 Racine, WI 1730 State Street

08/04/10 Received:

Reported:	08/12/10 08:55
-----------	----------------

Analyte	Sample Result	Data Qualifiers	Units	MDL	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTH0096-03RE1 (MW	-3 - Ground \	Water) - cont.					Sampled: 08	/03/10		
VOCs by SW8260B - cont.										
1,2,4-Trichlorobenzene	< 0.25		ug/L	0.25	2.0	1	08/11/10 10:14	MAE	101-10218	SW 8260B
1.1.1-Trichloroethane	< 0.50		ug/L	0.50	2.0	1	08/11/10 10:14	MAE	10H0218	SW 8260B
1,1,2-Trichloroethane	< 0.25		ug/L	0.25	2.0	1	08/11/10 10:14	MAE	10H0218	SW 8260B
Trichloroethene	<0.20		ug/L	0.20	2.0	1	08/11/10 10:14	MAE	10H0218	SW 8260B
Trichlorofluoromethane	< 0.50		ug/L	0.50	2.0	i	08/11/10 10:14	MAE	10H0218	SW 8260B
1.2.3-Trichloropropane	< 0.50		ug/L	0.50	2.0	i	08/11/10 10:14	MAE	10H0218	SW 8260B
1,2,4-Trimethylbenzene	<0.20		ug/L	0.20	2.0	1	08/11/10 10:14	MAE	10H0218	SW 8260B
1,3,5-Trimethylbenzene	<0.20		ug/L	0.20	2.0	1	08/11/10 10:14	MAE	10H0218	SW 8260B
Vinyl chloride	<0.20		ug/L	0.20	2.0	1	08/11/10 10:14	MAE	10H0218	SW 8260B
Xylenes, Total	< 0.50		ug/L	0.50	2.0	1	08/11/10 10:14	MAE	10H0218	SW 8260B
Surr: Dibromofluoromethane (80-120%)	86 %		ug/L	0.50	2.0	•	00/11/10 10:14	MAL	10110210	5 11 0200B
Surr: Toluene-d8 (80-120%)	95 %									
Surr: 4-Bromofluorobenzene (80-120%)	97 %									
Sample ID: WTH0096-04RE1 (MW	-4 - Ground \	Water)					Sampled: 08	/03/10		
VOCs by SW8260B	, , , , , , , , , , , , , , , , , , , ,	,					Sampled: 00	705/10		
Benzene	< 0.20		ug/L	0.20	2.0	1	08/11/10 10:41	MAE	10H0218	SW 8260B
Bromobenzene	< 0.20		ug/L	0.20	2.0	1	08/11/10 10:41	MAE	10H0218	SW 8260B
Bromochloromethane	< 0.50		ug/L	0.50	2.0	1	08/11/10 10:41	MAE	10H0218	SW 8260B
Bromodichloromethane	< 0.20		ug/L	0.20	2.0	1	08/11/10 10:41	MAE	10H0218	SW 8260B
Bromoform	< 0.20		ug/L	0.20	5.0	1	08/11/10 [0:4]	MAE	10H0218	SW 8260B
Bromomethane	< 0.50		ug/L	0.50	5.0	1	08/11/10 10:41	MAE	10H0218	SW 8260B
n-Butylbenzene	< 0.20		ug/L	0.20	2.0	ı	08/11/10 10:41	MAE	10H0218	SW 8260B
sec-Butylbenzene	< 0.25		ug/L	0.25	2.0	1	08/11/10 10:41	MAE	10H0218	SW 8260B
tert-Butylbenzene	< 0.20		ug/L	0.20	2.0	1	08/11/10 10:41	MAE	10H0218	SW 8260B
Carbon Tetrachloride	< 0.80		ug/L	0.80	2.0	1	08/11/10 10:41	MAE	10H0218	SW 8260B
Chlorobenzene	< 0.20		ug/L	0.20	2.0	ı	08/11/10 10:41	MAE	10H0218	SW 8260B
Chlorodibromomethane	<0.20		ug/L	0.20	2.0	i	08/11/10 10:41	MAE	10H0218	SW 8260B
Chloroethane	<1.0		ug/L	0.1	5.0	1	08/11/10 10:41	MAE	10H0218	SW 8260B
Chloroform	<0.20		ug/L	0.20	2.0	i	08/11/10 10:41	MAE	10H0218	SW 8260B
Chloromethane	< 0.30		ug/L	0.30	2.0	i	08/11/10 10:41	MAE	10H0218	SW 8260B
2-Chlorotoluene	<0.50		ug/L	0.50	2.0	1	08/11/10 10:41	MAE	10H0218	SW 8260B
4-Chlorotoluene	< 0.20		ug/L	0.20	2.0	1	08/11/10 10:41	MAE	10H0218	SW 8260B
1,2-Dibromo-3-chloropropane	< 0.50		ug/L	0.50	2.0	ı	08/11/10 10:41	MAE	10H0218	SW 8260B
1,2-Dibromoethane (EDB)	<0.20		ug/L	0.20	2.0	1	08/11/10 10:41	MAE	10H0218	SW 8260B
Dibromomethane	<0.20		ug/L	0.20	2.0	1	08/11/10 10:41	MAE	10H0218	SW 8260B
1.2-Dichlorobenzene	<0.20		ug/L	0.20	2.0	1	08/11/10 10:41	MAE	10H0218	SW 8260B
1.3-Dichlorobenzene	<0.20		ug/L	0.20	2.0	1	08/11/10 10:41	MAE	10H0218	SW 8260B
1.4-Dichlorobenzene	< 0.50		ug/L	0.50	2.0	1	08/11/10 10:41	MAE	10H0218	SW 8260B
Dichlorodilluoromethane	< 0.50		_	0.50	2.0	1	08/11/10 10:41	MAE	10H0218	SW 8260B
1.1-Dichloroethane	<0.50		ug/L	0.50	2.0	1	08/11/10 10:41		10H0218	SW 8260B
1,2-Dichloroethane	<0.50		ug/L	0.50	2.0	1	08/11/10 10:41	MAE	10H0218	SW 8260B
1,1-Dichloroethene	<0.50		ug/L	0.50		I	08/11/10 10:41	MAE	10H0218	SW 8260B
cis-1,2-Dichloroethene	27		ug/L	0.50	2.0	1	08/11/10 10:41	MAE	10H0218	SW 8260B
trans-1,2-Dichloroethene	2.8		ug/L	0.50	2.0	I	08/11/10 10:41	MAE	10H0218	SW 8260B
1,2-Dichloropropane	<0.50		ug/L	0.50	2.0	1		MAE		
' '	<0.30		ug/L			l	08/11/10 10:41	MAE	10H0218	SW 8260B
1.3-Dichloropropane			ug/L	0.25	2.0		08/11/10 10:41	MAE	10H0218	SW 8260B
2.2-Dichloropropane	<0.50		ug/L	0.50	2.0	1	08/11/10 10:41	MAE	10H0218	SW 8260B
1.1-Dichloropropene	<0.50		ug/L	0.50	2.0	1	08/11/10 10:41	MAE	10H0218	SW 8260B
cis-1,3-Dichloropropene	<0.20		ug/L	0.20	2.0	1	08/11/10 10:41	MAE	10H0218	SW 8260B
trans-1,3-Dichloropropene	< 0.20		սը/Լ	0.20	2.0	1	08/11/10 10:41	MAE	10H0218	SW 8260B

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Mr. Tim Taugher

Surr: Toluene-d8 (80-120%)

Surr: 4-Bromofluorohenzene (80-120%)

96 % 97 % Work Order:

Project Number:

WTH0096

1E-0909013 Racine, WI

Received:

08/04/10

Project:

1730 State Street

Reported: 08/12/10 08:55

Analyte	Sample Result	Data Qualifiers	Units	MDL	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTII0096-04RE1 (MW	-4 - Ground \	Water) - cont.					Sampled: 08	/03/10		
VOCs by SW8260B - cont.										
2.3-Dichloropropene	< 0.25		ug/L	0.25	2.0	1	08/11/10 10:41	MAE	10H0218	SW 8260E
isopropyl Ether	< 0.50		ug/L	0.50	2.0	1	08/11/10 10:41	MAE	10H0218	SW 8260E
Ethylbenzene	< 0.50		ug/L	0.50	2.0	1	08/11/10 10:41	MAE	I0H0218	SW 8260E
Hexachlorobutadiene	< 0.50		ug/L	0.50	2.0	1	08/11/10 10:41	MAE	10H0218	SW 8260E
Isopropylbenzene	< 0.20		ug/L	0,20	2.0	1	08/11/10 10:41	MAE	10H02!8	SW 8260B
p-Isopropyltoluene	< 0.20		ug/L	0,20	2.0	Į.	08/11/10 10:41	MAE	10H0218	SW 8260B
Methylene Chloride	<1.0		ug/L	0.1	2.0	1	08/11/10 10:41	MAE	10H0218	SW 8260E
Methyl tert-Butyl Ether	< 0.50		ug/L	0.50	2.0	1	08/11/10 10:41	MAE	10H0218	SW 8260E
Naphthalene	< 0.25		ug/L	0.25	5.0	l	08/11/10 10:41	MAE	10H0218	SW 8260E
n-Propylbenzene	< 0.50		ug/L	0.50	2.0	1	08/11/10 10:41	MAE	10H0218	SW 8260E
Styrene	< 0.50		ug/L	0.50	5.0	1	08/11/10 10:41	MAE	10H0218	SW 8260E
1,1,1,2-Tetrachloroethane	< 0.25		ug/L	0.25	2.0	1	08/11/10 10:41	MAE	10H0218	SW 8260E
1.1.2.2-Tetrachloroethane	< 0.20		ug/L	0.20	2.0	1	08/11/10 10:41	MAE	10H0218	SW 8260E
Tetrachloroethene	< 0.50		ug/L	0.50	2.0	1	08/11/10 10:41	MAE	10H0218	SW 8260E
Toluene	< 0.50		ug/L	0.50	2.0	1	08/11/10 10:41	MAE	10H0218	SW 8260E
1,2,3-Trichlorobenzene	< 0.25		ug/L	0.25	2.0	1	08/11/10 10:41	MAE	10H0218	SW 8260E
1,2,4-Trichlorobenzene	< 0.25		ug/L	0.25	2.0	1	08/11/10 10:41	MAE	10H0218	SW 8260E
1,1,1-Trichloroethane	< 0.50		ug/L	0.50	2.0	1	08/11/10 10:41	MAE	10H0218	SW 8260E
1,1,2-Trichloroethane	< 0.25		ug/L	0.25	2.0	1	08/11/10 10:41	MAE	10H0218	SW 8260E
Trichloroethene	< 0.20		ug/L	0.20	2.0	1	08/11/10 10:41	MAE	10H0218	SW 8260E
Trichlorofluoromethane	< 0.50		ug/L	0.50	2.0	1	08/11/10 10:41	MAE	10H0218	SW 82601
1,2,3-Trichloropropane	< 0.50		ug/L	0.50	2.0	1	08/11/10 10:41	MAE	10H0218	SW 82601
1.2.4-Trimethylbenzene	< 0.20		ug/L	0.20	2.0	1	08/11/10 10:41	MAE	10H0218	SW 82601
1.3,5-Trimethylbenzene	< 0.20		ug/L	0.20	2.0	1	08/11/10 10:41	MAE	10H0218	SW 8260E
Vinyl chloride	0.36	J	ug/L	0.20	2.0	1	08/11/10 10:41	MAE	10H0218	SW 82601
Xylenes, Total	< 0.50		ug/L	0.50	2.0	1	08/11/10 10:41	MAE	10H0218	SW 82601
Surr: Dibromofluoromethane (80-120%)	84 %									

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186

Work Order:

WTH0096

1E-0909013 Racine, WI

Received:

08/04/10

Project: Project Number:

1730 State Street

Reported:

08/12/10 08:55

Mr. Tim Taugher

Amalata	Sample Result	Data Qualifiers	Units	MDL	MRL	Dilution Factor	Date	Amalant	Seq/ Batch	Method
\nalyte			Units	WIDE	MIKE	Factor	Analyzed	Analyst	Baten	victiou
Sample ID: WTH0096-05RE1 (MW-5 - Ground \	Water)					Sampled: 08	/03/10		
VOCs by SW8260B										
Benzene	< 0.20		ug/L	0.20	2,0	1	08/11/10 11:08	MAE	10H0218	SW 8260B
Bromobenzene	< 0.20		ug/L	0.20	2.0	1	08/11/10 11:08	MAE	10H0218	SW 8260B
Bromochloromethane	< 0.50		ug/L	0.50	2.0	1	80:11 01/11/80	MAE	10H0218	SW 8260B
Bromodichloromethane	< 0.20		ug/L	0.20	2.0	1	08/11/10 11:08	MAE	10H0218	SW 8260B
Bromoform	< 0.20		ug/L	0.20	5.0	1	08/11/10 11:08	MAE	10H0218	SW 8260B
Bromoinethane	< 0.50		ug/L	0.50	5.0	1	08/11/10 11:08	MAE	10H0218	SW 8260B
n-Butylbenzene	< 0.20		ug/L	0.20	2.0	1	08/11/10 11:08	MAE	10H0218	SW 8260B
sec-Butylbenzene	< 0.25		ug/L	0.25	2.0	1	08/11/10 11:08	MAE	10H0218	SW 8260B
tert-Butylbenzene	< 0.20		ug/L	0.20	2.0	1	08/11/10 11:08	MAE	10H0218	SW 8260B
Carbon Tetrachloride	< 0.80		ug/L	0.80	2.0	1	08/11/10 11:08	MAE	10H0218	SW 8260B
Chlorobenzene	< 0.20		ug/L	0.20	2.0	1	08/11/10 11:08	MAE	10H0218	SW 8260B
Chlorodibromomethane	< 0.20		ug/L	0.20	2.0	1	08/11/10 11:08	MAE	10H0218	SW 8260B
Chloroethane	<1.0		ug/L	0.1	5.0	1	08/11/10 11:08	MAE	10H0218	SW 8260B
Chloroform	< 0.20		ug/L	0.20	2.0	1	08/11/10 11:08	MAE	10H0218	SW 8260B
Chioromethane	< 0.30		ug/L	0.30	2.0	1	08/11/10 11:08	MAE	10H0218	SW 8260B
2-Chlorotoluene	< 0.50		ug/L	0,50	2.0	1	08/11/10 11:08	MAE	10H0218	SW 8260B
4-Chlorotoluene	<0.20		ug/L	0.20	2.0	1	08/11/10 11:08	MAE	10H0218	SW 8260B
1,2-Dibromo-3-chloropropane	<0.50		ug/L	0.50	2.0	1	08/11/10 11:08	MAE	10H0218	SW 8260B
1,2-Dibromoethane (EDB)	<0.20		ug/L	0.20	2.0	1	08/11/10 11:08	MAE	10H0218	SW 8260B
Dibromomethane	<0.20		ug/L	0.20	2.0	1	08/11/10 11:08	MAE	10110218	SW 8260B
1.2-Dichlorobenzene	<0.20		ug/L	0,20	2.0	i	08/11/10 11:08	MAE	10H0218	SW 8260B
1,3-Dichlorobenzene	<0.20		ug/L	0.20	2.0	1	08/11/10 11:08	MAE	10H0218	SW 8260B
1.4-Dichlorobenzene	<0.50		ug/L	0.50	2.0	1	08/11/10 11:08	MAE	10H0218	SW 8260B
Dichlorodifluoromethane	<0.50		ug/L	0.50	2.0	1	08/11/10 11:08	MAE	10H0218	SW 8260B
1,1-Dichloroethane	<0.50		-	0.50	2.0	1	08/11/10 11:08	MAE	10H0218	SW 8260B
1,2-Dichloroethane	<0.50		ug/L	0.50	2.0	1	08/11/10 11:08	MAE	10H0218	SW 8260B
	<0.50		ug/L	0.50	2.0	1	08/11/10 11:08	MAE	10H0218	SW 8260B
1.1-Dichloroethene cis-1,2-Dichloroethene	0.58	J	ug/L	0.50	2.0	1	08/11/10 11:08	MAE	10H0218	SW 8260B
	< 0.50	,	ug/L	0.50	2.0	i	08/11/10 11:08	MAE	10H0218	SW 8260B
trans-1,2-Dichloroethene	<0.50		ug/L	0.50	2.0	1	08/11/10 11:08	MAE	10H0218	SW 8260B
1.2-Dichloropropane	<0.25		ug/L	0.25	2.0	i	08/11/10 11:08		10H0218	SW 8260B
1,3-Dichloropropane			ug/L	0.50	2.0	1	08/11/10 11:08	MAE	10H0218	SW 8260B
2.2-Dichloropropane	<0.50		ug/L	0.50	2.0	1	08/11/10 11:08	MAE	10H0218	SW 8260B
1,1-Dichloropropene	<0.50		ug/L			1	08/11/10 11:08	MAE	10H0218	SW 8260B
cis-1,3-Dichloropropene	<0.20		ug/L	0.20	2.0		08/11/10 11:08	MAE	10H0218	SW 8260B
trans-1.3-Dichloropropene	<0.20		ug/L	0.20	2.0	1	08/11/10 11:08	MAE	10H0218	SW 8260B
2,3-Dichloropropene	<0.25		ug/L	0.25	2.0	1		MAE		SW 8260B
Isopropyl Ether	<0.50		ug/L	0.50	2.0	1	08/11/10 11:08	MAE	10H0218 10H0218	SW 8260B
Ethylbenzene	<0.50		ug/L	0.50	2.0		08/11/10 11:08	MAE		SW 8260B
Hexachlorobutadiene	<0.50		ug/L	0.50	2.0	1	08/11/10 11:08	MAE	10H0218	
Isopropylbenzene	<0.20		ug/L	0.20	2.0	1	08/11/10 11:08	MAE	10H0218	SW 8260B
p-Isopropyltoluene	<0.20		ug/L	0.20	2.0	1	08/11/10 11:08	MAE	10H0218	SW 8260B
Methylene Chloride	<1.0		ug/L	1.0	2.0	1	08/11/10 11:08	MAE	10H0218	SW 8260B
Methyl tert-Butyl Ether	<0.50		ug/L	0.50	2.0	•	08/11/10 11:08	MAE	10H0218	SW 8260B
Naphthalene	<0.25		ug/L	0.25	5.0	1	08/11/10 11:08	MAE	10H0218	SW 8260B
n-Propylbenzene	<0.50		ug/L	0.50	2.0	1	08/11/10 11:08	MAE	10H0218	SW 8260B
Styrene	<0.50		ug/L	0.50	5.0	1	08/11/10 11:08	MAE	10H0218	SW 8260B
1,1,1,2-Tetrachloroethane	<0.25		ug/L	0.25	2.0	1	08/11/10 11:08	MAE	10H0218	SW 8260E
1,1,2,2-Tetrachloroethane	<0.20		ug/L	0.20	2.0	1	08/11/10 11:08	MAE	10H0218	SW 8260E
Tetrachloroethene	< 0.50		ug/L	0.50	2.0	1	08/11/10 11:08	MAE	10H0218	SW 8260 B
Toluene	< 0.50		ug/L	0.50	2.0	l	08/11/10 11:08	MAE	10H0218	SW 8260B
1,2,3-Trichlorobenzene	< 0.25		ug/L	0.25	2.0	1	08/11/10 11:08	MAE	10H0218	SW 8260B

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha WI 53186

Work Order: Project:

Project Number:

WTH0096

1E-0909013 Racine, WI

1730 State Street

Received:

08/04/10

08/12/10 08:55 Reported:

waukesna, wi 55160	
Mr. Tim Taugher	

Analyte	Sample Result	Data Qualifiers	Units	MDL	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
-			Omes	MDE		ractor	Anaryzeu	Analyst	Daten	Method
Sample ID: WTH0096-05RE1 (MW	-5 - Ground \	Water) - cont.					Sampled: 08	/03/10		
VOCs by SW8260B - cont.										
1.2.4-Trichlorobenzene	<0.25		ug/L	0.25	2.0	1	08/11/10 11:08	MAE	10H0218	SW 8260B
1.1.1-Trichloroethane	< 0.50		ug/L	0.50	2.0	1	08/11/10 11:08	MAE	10H0218	SW 8260B
1.1.2-Trichloroethane	<0,25		ug/L	0.25	2.0	1	08/11/10 11:08	MAE	10H0218	SW 8260B
Trichloroethene	<0.20		ug/L	0.20	2.0	1	08/11/10 11:08	MAE	10H0218	SW 8260B
Truchlorofluoromethane	<0.50		ug/L	0.50	2.0	1	08/11/10 11:08	MAE	10H0218	SW 8260B
1,2,3-Trichloropropane	< 0.50		ug/L	0.50	2.0	1	08/11/10 11:08	MAE	10H0218	SW 8260B
1.2.4-Trimethylbenzene	<0.20		ug/L	0.20	2.0	1	08/11/10 11:08	MAE	10H0218	SW 8260B
1.3.5-Trimethylbenzene	<0.20		ug/L	0.20	2.0	1	08/11/10 11:08	MAE	10H0218	SW 8260B
Vinyl chloride	< 0.20		ug/L	0.20	2.0	1	08/11/10 11:08	MAE	10H0218	SW 8260B
Xylenes, Total	< 0.50		ug/L	0.50	2.0	1	08/11/10 11:08	MAE	10H0218	SW 8260B
Surr: Dibromofluoromethane (80-120%)	86 %									
Surr: Toluene-d8 (80-120%)	96 %									
Surr: 4-Bromofluorohenzene (80-120%)	97 %									
Sample ID: WTH0096-06RE1 (MW	-6 - Ground	Water)					Sampled: 08	/03/10		
VOCs by SW8260B										
Benzene	16		ug/L	0.20	2.0	1	08/11/10 11:36	MAE	10H0218	SW 8260B
Bromobenzene	< 0.20		ug/L	0.20	2.0	1	08/11/10 11:36	MAE	10H0218	SW 8260B
Bromochloromethane	< 0.50		ug/L	0.50	2.0	1	08/11/10 11:36	MAE	10H0218	SW 8260B
Bromodichloromethane	< 0.20		ug/L	0.20	2.0	1	08/11/10 11:36	MAE	10H0218	SW 8260B
Bromoform	<0.20		ug/L	0.20	5.0	1	08/11/10 11:36	MAE	10H0218	SW 8260B
Bromomethane	< 0.50		ug/L	0.50	5.0	1	08/11/10 11:36	MAE	10H0218	SW 8260B
n-Butylbenzene	< 0.20		ug/L	0.20	2.0	1	08/11/10 11:36	MAE	10H0218	SW 8260B
sec-Butylbenzene	< 0.25		ug/L	0.25	2.0	1	08/11/10 11:36	MAE	10H0218	SW 8260B
tert-Butylbenzene	< 0.20		ug/L	0.20	2.0	1	08/11/10 11:36	MAE	10H0218	SW 8260B
Carbon Tetrachloride	<0.80		ug/L	0.80	2.0	1	08/11/10 11:36	MAE	10H0218	SW 8260B
Chlorobenzene	< 0.20		ug/L	0.20	2.0	3	08/11/10 11:36	MAE	10H0218	SW 8260B
Chlorodibromomethane	< 0.20		ug/L	0.20	2.0	1	08/11/10 11:36	MAE	10H0218	SW 8260B
Chloroethane	<1.0		ug/L	1.0	5.0	1	08/11/10 11:36	MAE	10H0218	SW 8260B
Chloroform	< 0.20		ug/L	0.20	2.0	I	08/11/10 11:36	MAE	10H0218	SW 8260B
Chloromethane	< 0.30		ug/L	0,30	2.0	1	08/11/10 11:36	MAE	10H0218	SW 8260B
2-Chlorotoluene	< 0.50		ug/L	0.50	2.0	1	08/11/10 11:36	MAE	10H0218	SW 8260B
4-Chlorotoluene	< 0.20		ug/L	0.20	2.0	1	08/11/10 11:36	MAE	10H0218	SW 8260B
1.2-Dibromo-3-chloropropane	< 0.50		ug/L	0.50	2,0	1	08/11/10 11:36	MAE	I0H02I8	SW 8260B
1.2-Dibromoethane (EDB)	< 0.20		ug/L	0.20	2.0	1	08/11/10 11:36	MAE	10H0218	SW 8260B
Dibromomethane	<0.20		ug/L	0.20	2.0	1	08/11/10 11:36	MAE	10H0218	SW 8260B
1.2-Dichlorobenzene	< 0.20		ug/L	0.20	2.0	1	08/11/10 11:36	MAE	10H0218	SW 8260B
1,3-Dichlorobenzene	< 0.20		ug/L	0.20	2.0	9	08/11/10 11:36	MAE	10H0218	SW 8260B
1.4-Dichlorobenzene	< 0.50		ug/L	0.50	2.0	l	08/11/10 11:36	MAE	10H0218	SW 8260B
Dichlorodifluoromethane	< 0.50		ug/L	0.50	2.0	1	08/11/10 11:36	MAE	10H0218	SW 8260B
I, I-Dichloroethane	< 0.50		ug/L	0.50	2.0	1	08/11/10 11:36	MAE	10H0218	SW 8260B
1,2-Dichloroethane	< 0.50		ug/L	0.50	2.0	1	08/11/10 11:36	MAE	10H0218	SW 8260B
1,1-Dichloroethene	< 0.50		ug/L	0.50	2.0	1	08/11/10 11:36	MAE	10H0218	SW 8260B
cis-1.2-Dichloroethene	< 0.50		ug/L	0.50	2.0	1	08/11/10 11:36	MAE	10H0218	SW 8260B
trans-1,2-Dichloroethene	< 0.50		ug/L	0.50	2.0	t	08/11/10 11:36	MAE	10H0218	SW 8260B
1,2-Dichloropropane	< 0.50		ug/L	0.50	2.0	ŧ	08/11/10 11:36	MAE	10H0218	SW 8260B
1.3-Dichloropropane	< 0.25		ug/L	0.25	2.0	1	08/11/10 11:36	MAE	10H0218	SW 8260B
2.2-Dichloropropane	< 0.50		ug/L	0.50	2.0	1	08/11/10 11:36	MAE	10H0218	SW 8260B
1,1-Dichloropropene	< 0.50		ug/L	0.50	2.0	1	08/11/10 11:36	MAE	10H0218	SW 8260B
cis-1,3-Dichloropropene	< 0.20		ug/L	0.20	2.0	1	08/11/10 11:36	MAE	10H0218	SW 8260B
trans-1,3-Dichloropropene	< 0.20		ug/L	0.20	2.0	ī	08/11/10 11:36	MAE	10H0218	SW 8260B

TestAmerica Watertown

Brian DeJong For Dan F. Milewsky Project Manager

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186

Work Order:

WTH0096

1730 State Street

Received:

08/04/10

NO WZZZZO JUIIISUII F

Project: Project Number: 1E-0909013 Racine, WI

Reported:

08/12/10 08:55

Mr. Tim Taugher

			MDL	MRL	Factor	Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTII0096-06RE1 (MW-6 - Ground Wate	r) - cont.					Sampled: 08/	/03/10		
VOCs by SW8260B - cont.									
2,3-Dichloropropene <0.25		ug/L	0.25	2.0	1	08/11/10 11:36	MAE	10H0218	SW 8260B
Isopropyl Ether <0.50		ug/L	0.50	2.0	1	08/11/10 11:36	MAE	10H0218	SW 8260B
Ethylbenzene <0.50		ug/L	0.50	2.0	1	08/11/10 11:36	MAE	10H0218	SW 8260B
Hexachlorobutadiene <0.50		ug/L	0.50	2.0	1	08/11/10 11:36	MAE	10H0218	SW 8260B
Isopropylbenzene 0.57	J	ug/L	0.20	2.0	1	08/11/10 11:36	MAE	10H0218	SW 8260B
p-Isopropyltoluene <0.20		ug/L	0.20	2.0	1	08/11/10 11:36	MAE	10H0218	SW 8260B
Methylene Chloride <1.0		ug/L	1.0	2.0	1	08/11/10 11:36	MAE	10H0218	SW 8260B
Methyl tert-Butyl Ether <0.50		ug/L	0.50	2.0	1	08/11/10 11:36	MAE	10H0218	SW 8260B
Naphthalene <0.25		ug/L	0.25	5.0	1	08/11/10 11:36	MAE	10H0218	SW 8260B
n-Propylbenzene 0.52	J	ug/L	0.50	2.0	l	08/11/10 11:36	MAE	10H0218	SW 8260B
Styrene <0.50		ug/L	0.50	5.0	1	08/11/10 11:36	MAE	10H0218	SW 8260B
1.1,1,2-Tetrachloroethane <0.25		ug/L	0.25	2.0	1	08/11/10 11:36	MAE	10H0218	SW 8260B
1,1,2,2-Tetrachloroethane <0.20		ug/L	0.20	2.0	1	08/11/10 11:36	MAE	10H0218	SW 8260B
Tetrachioroethene <0.50		ug/L	0.50	2.0	1	08/11/10 11:36	MAE	10H0218	SW 8260B
Toluene <0.50		ug/L	0.50	2.0	1	08/11/10 11:36	MAE	10H0218	SW 8260B
1,2,3-Trichlorobenzene <0.25		ug/L	0.25	2.0	1	08/11/10 11:36	MAE	10H0218	SW 8260B
1,2,4-Trichlorobenzene <0.25		ug/L	0.25	2.0	1	08/11/10 11:36	MAE	10H0218	SW 8260B
1,1,1-Trichloroethane <0.50		ug/L	0.50	2.0	1	08/11/10 11:36	MAE	10H0218	SW 8260B
1,1,2-Trichloroethane <0.25		ug/L	0.25	2.0	1	08/11/10 11:36	MAE	10H0218	SW 8260B
Trichloroethene <0.20		ug/L	0.20	2.0	1	08/11/10 11:36	MAE	10H0218	SW 8260B
Trichlorofluoromethane <0.50		ug/L	0.50	2.0	1	08/11/10 11:36	MAE	10H0218	SW 8260B
1,2,3-Trichloropropane <0.50		ug/L	0.50	2.0	1	08/11/10 11:36	MAE	10H0218	SW 8260B
1.2.4-Trimethylbenzene <0.20		ug/L	0.20	2.0	1	08/11/10 11:36	MAE	10H0218	SW 8260B
1,3,5-Trimethylbenzene <0.20		ug/L	0.20	2.0	1	08/11/10 11:36	MAE	10H0218	SW 8260B
Vinyl chloride <0.20		ug/L	0.20	2.0	\$	08/11/10 11:36	MAE	10H0218	SW 8260B
Xylenes, Total <0.50		ug/L	0.50	2.0	1	08/11/10 11:36	MAE	10H0218	SW 8260B
Surr: Dibromofluoromethane (80-120%) 82 %									
Surr: Toluene-d8 (80-120%) 96 %									
Surr: 4-Bromofluorohenzene (80-120%) 98 %									

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Mr. Tim Taugher Work Order:

WTH0096

E-0909013 Racine, WI

Received: 08/04/10

eported: 08/12/10 08:55

2350 Johnson Road	Project:	1E-0909013 Racine, WI	Reported:	00/12/10 00:
sha, WI 53186	Project Number:	1730 State Street		

Analyte	Sample Result	Data Qualifiers	Units	MDL	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTH0096-07RE1 (MW-7 - Ground V	Vater)					Sampled: 08	/03/10		
VOCs by SW8260B										
Benzene	1.8	J	ug/L	0.20	2.0	1	08/11/10 12:03	MAE	10H0218	SW 8260B
Bromobenzene	< 0.20		ug/L	0.20	2.0	1	08/11/10 12:03	MAE	10H0218	SW 8260B
Bromochloromethane	< 0.50		ug/L	0.50	2.0	1	08/11/10 12:03	MAE	10H0218	SW 8260B
Bromodichloromethane	< 0.20		ug/L	0.20	2.0	t	08/11/10 12:03	MAE	10H0218	SW 8260B
Bromoform	< 0.20		ug/L	0.20	5.0	1	08/11/10 12:03	MAE	10H0218	SW 8260B
Bromomethane	<0.50		ug/L	0.50	5.0	1	08/11/10 12:03	MAE	10H0218	SW 8260B
n-Butylbenzene	< 0.20		ug/L	0.20	2.0	1	08/11/10 12:03	MAE	10H0218	SW 8260B
sec-Butylbenzene	< 0.25		ug/L	0.25	2.0	1	08/11/10 12:03	MAE	10H0218	SW 8260B
terr-Butylbenzene	< 0.20		ug/L	0.20	2.0	1	08/11/10 12:03	MAE	10H0218	SW 8260B
Carbon Tetrachloride	<0.80		ug/L	0.80	2.0	1	08/11/10 12:03	MAE	10H0218	SW 8260B
Chlorobenzene	< 0.20		ug/L	0.20	2.0	1	08/11/10 12:03	MAE	10H0218	SW 8260B
Chlorodibromomethane	< 0.20		ug/L	0.20	2.0	1	08/11/10 12:03	MAE	10H0218	SW 8260B
Chloroethane	<1.0		ug/L	1.0	5.0	1	08/11/10 12:03	MAE	10H0218	SW 8260B
Chloroform	< 0.20		ug/L	0.20	2.0	1	08/11/10 12:03	MAE	10H0218	SW 8260B
Chloromethane	< 0.30		ug/L	0.30	2.0	1	08/11/10 12:03	MAE	10H0218	SW 8260B
2-Chlorotoluene	< 0.50		ug/L	0.50	2.0	1	08/11/10 12:03	MAE	10H0218	SW 8260B
4-Chlorotoluene	< 0.20		ug/L	0.20	2.0	1	08/11/10 12:03	MAE	10H0218	SW 8260B
1,2-Dibromo-3-chloropropane	< 0.50		ug/L	0.50	2.0	1	08/11/10 12:03	MAE	10H0218	SW 8260B
1,2-Dibromoethane (EDB)	< 0.20		ug/L	0.20	2.0	1	08/11/10 12:03	MAE	10H0218	SW 8260B
Dibromomethane	<0.20		ug/L	0.20	2.0	1	08/11/10 12:03	MAE	10H0218	SW 8260B
1,2-Dichlorobenzene	<0.20		ug/L	0.20	2.0	1	08/11/10 12:03	MAE	10H0218	SW 8260B
1,3-Dichlorobenzene	< 0.20		ug/L	0.20	2.0	1	08/11/10 12:03	MAE	10H0218	SW 8260B
1.4-Dichlorobenzene	< 0.50		ug/L	0.50	2.0	1	08/11/10 12:03	MAE	10H0218	SW 8260B
Dichlorodifluoromethane	< 0.50		ug/L	0.50	2.0	1	08/11/10 12:03	MAE	10H0218	SW 8260B
1,1-Dichloroethane	< 0.50		ug/L	0.50	2.0	1	08/11/10 12:03	MAE	10H0218	SW 8260B
1,2-Dichloroethane	< 0.50		ug/L	0.50	2.0	l	08/11/10 12:03	MAE	10H0218	SW 8260B
1.1-Dichloroethene	< 0.50		ug/L	0.50	2.0	1	08/11/10 12:03	MAE	10H0218	SW 8260B
cis-1,2-Dichloroethene	< 0.50		ug/L	0.50	2.0	1	08/11/10 12:03	MAE	10H0218	SW 8260B
trans-1,2-Dichloroethene	< 0.50		ug/L	0.50	2.0	1	08/11/10 12:03	MAE	10H0218	SW 8260B
1.2-Dichloropropane	< 0.50		ug/L	0.50	2.0	l	08/11/10 12:03	MAE	10H0218	SW 8260B
1.3-Dichloropropane	< 0.25		ug/L	0.25	2.0	1	08/11/10 12:03	MAE	10H0218	SW 8260B
2,2-Dichloropropane	< 0.50		ug/L	0.50	2.0	1	08/11/10 12:03	MAE	10H0218	SW 8260B
1,1-Dichloropropene	< 0.50		ug/L	0.50	2.0	1	08/11/10 12:03	MAE	10H0218	SW 8260B
cis-1.3-Dichloropropene	< 0.20		ug/L	0.20	2.0	1	08/11/10 12:03	MAE	10H0218	SW 8260B
trans-1,3-Dichloropropene	< 0.20		ug/L	0.20	2.0	1	08/11/10 12:03	MAE	10H0218	SW 8260B
2,3-Dichloropropene	< 0.25		ug/L	0.25	2.0	1	08/11/10 12:03	MAE	10H0218	SW 8260B
Isopropyl Ether	< 0.50		ug/L	0.50	2.0	1	08/11/10 12:03	MAE	10H0218	SW 8260B
Ethylbenzene	< 0.50		ug/L	0.50	2.0	1	08/11/10 12:03	MAE	10H0218	SW 8260B
Hexachlorobutadiene	< 0.50		ug/L	0.50	2.0	1	08/11/10 12:03	MAE	10H0218	SW 8260B
Isopropylbenzene	< 0.20		ug/L	0.20	2.0	1	08/11/10 12:03	MAE	10H0218	SW 8260B
p-Isopropyltoluene	< 0.20		ug/L	0.20	2.0	1	08/11/10 12:03	MAE	10H0218	SW 8260B
Methylene Chloride	<1.0		ug/L	1.0	2.0	1	08/11/10 12:03	MAE	10H0218	SW 8260B
Methyl tert-Butyl Ether	< 0.50		ug/L	0.50	2.0	1	08/11/10 12:03	MAE	10H0218	SW 8260B
Naphthalene	< 0.25		ug/L	0.25	5.0	1	08/11/10 12:03	MAE	10H0218	SW 8260B
n-Propylbenzene	< 0.50		ug/L	0.50	2.0	1	08/11/10 12:03	MAE	10H0218	SW 8260B
Styrene	< 0.50		ug/L	0.50	5.0	1	08/11/10 12:03	MAE	10H0218	SW 8260B
1.1,1.2-Tetrachloroethane	< 0.25		ug/L	0.25	2.0	1	08/11/10 12:03	MAE	10H0218	SW 8260B
1,1,2,2-Tetrachloroethane	< 0.20		ug/L	0.20	2.0	1	08/11/10 12:03	MAE	10H0218	SW 8260B
Tetrachloroethene	< 0,50		ug/L	0.50	2.0	1	08/11/10 12:03	MAE	10H0218	SW 8260B
Toluene	< 0.50		ug/L	0.50	2.0	1	08/11/10 12:03	MAE	10H0218	SW 8260B
1.2,3-Trichlorobenzene	< 0.25		ug/L	0.25	2.0	1	08/11/10 12:03	MAE	10H0218	SW 8260B

Brian DeJong For Dan F. Milewsky Project Manager

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Mr. Tim Taugher

Work Order: Project:

Project Number:

WTH0096

1E-0909013 Racine, WI 1730 State Street

Received:

08/04/10

08/12/10 08:55 Reported:

	Sample	Data	**		MDI	Dilution	Date		Seq/	
Analyte	Result	Qualifiers	Units	MDL	MRL	Factor	Analyzed	Analyst	Batch	Method
Sample ID: WTH0096-07RE1 (MW	-7 - Ground	Water) - cont.					Sampled: 08	/03/10		
VOCs by SW8260B - cont.										
1,2,4-Trichlorobenzene	< 0.25		ug/L	0.25	2.0	1	08/11/10 12:03	MAE	10H0218	SW 8260B
1,1,1-Trichloroethane	< 0.50		ug/L	0,50	2.0	ŧ	08/11/10 12:03	MAE	10H0218	SW 8260B
1,1,2-Trichloroethane	< 0.25		ug/L	0.25	2.0	1	08/11/10 12:03	MAE	10H0218	SW 8260B
Trichloroethene	< 0.20		ug/L	0.20	2.0	1	08/11/10 12:03	MAE	10H0218	SW 8260B
Trichlorofluoromethane	< 0.50		ug/L	0.50	2.0	1	08/11/10 12:03	MAE	10H0218	SW 8260B
1.2.3-Trichloropropane	< 0.50		ug/L	0.50	2,0	1	08/11/10 12:03	MAE	10H0218	SW 8260B
1.2.4-Trimethylbenzene	< 0.20		ug/L	0.20	2.0	1	08/11/10 12:03	MAE	10H0218	SW 8260B
1,3,5-Trimethylbenzene	< 0.20		ug/L	0.20	2.0	l	08/11/10 12:03	MAE	10H0218	SW 8260B
Vinyl chloride	2.4		ug/L	0.20	2.0	1	08/11/10 12:03	MAE	10H0218	SW 8260B
Xylenes, Total	< 0.50		ug/L	0.50	2.0	1	08/11/10 12:03	MAE	10H0218	SW 8260B
Surr: Dibromofluoromethane (80-120%)	83 %									
Surr: l'oluene-d8 (80-120%)	96 %									
Surr: 4-Bromofluorohenzene (80-120%)	99 %									
Sample ID: WTH0096-08 (MW-8 -	Cround Wate	a e-)					Sampled 08	/03/10		
VOCs by SW8260B	Ground Wat	-1)					Sampled: 08	03/10		
Benzene	< 0.40		/I	0.40	4.0	2	08/10/10 15:24	MAE	10H0174	SW 8260B
Bromobenzene	<0.40		ug/L	0.40	4.0	2	08/10/10 15:24	MAE	10H0174	SW 8260B
Bromochloromethane	<1.0		ug/L ug/L	1.0	4.0	2	08/10/10 15:24	MAE	10H0174	SW 8260B
Bromodichloromethane	< 0.40		ug/L	0.40	4.0	2	08/10/10 15:24	MAE	10H0174	SW 8260B
Bromotorm	< 0.40		-	0.40	10	2	08/10/10 15:24	MAE	10H0174	SW 8260B
Bromomethane	<1.0		ug/L	1.0	10	2	08/10/10 15:24	MAE	10H0174	SW 8260B
n-Butylbenzene	<0.40		ug/L	0.40	4.0	2	08/10/10 15:24	MAE	10H0174	SW 8260B
sec-Butylbenzene	<0.50		ug/L ug/L	0.50	4.0	2	08/10/10 15:24	MAE	10H0174	SW 8260B
tert-Butylbenzene	< 0.40		ug/L	0.40	4.0	2	08/10/10 15:24	MAE	10H0174	SW 8260B
Carbon Tetrachloride	<1.6		սց/L սց/L	1.6	4.0	2	08/10/10 15:24	MAE	10H0174	SW 8260B
Chlorobenzene	< 0.40		ug/L	0.40	4.0	2	08/10/10 15:24	MAE	10H0174	SW 8260B
Chlorodibromomethane	< 0.40		ug/L	0.40	4.0	2	08/10/10 15:24	MAE	10H0174	SW 8260B
Chloroethane	<2.0		ug/L	2.0	10	2	08/10/10 15:24	MAE	10H0174	SW 8260B
Chloroform	< 0.40		ug/L	0.40	4.0	2	08/10/10 15:24	MAE	10H0174	SW 8260B
Chloromethane	< 0.60		ug/L	0.60	4.0	2	08/10/10 15:24	MAE	10H0174	SW 8260B
2-Chlorotoluene	<1.0		սց/L	1.0	4.0	2	08/10/10 15:24	MAE	10H0174	SW 8260B
I-Chlorotoluene	< 0.40		ug/L	0.40	4.0	2	08/10/10 15:24	MAE	10H0174	SW 8260B
1.2-Dibromo-3-chloropropane	<1.0		ug/L	1.0	4.0	2	08/10/10 15:24	MAE	I0H0174	SW 8260B
1.2-Dibromoethane (EDB)	< 0.40		ug/L	0.40	4.0	2	08/10/10 15:24	MAE	10H0174	SW 8260B
Dibronomethane	< 0.40		ug/L	0.40	4.0	2	08/10/10 15:24	MAE	10H0174	SW 8260B
1.2-Dichlorobenzene	< 0.40		ug/L	0.40	4.0	2	08/10/10 15:24	MAE	10H0174	SW 8260B
1,3-Dichlorobenzene	< 0.40		ug/L	0.40	4.0	2	08/10/10 15:24	MAE	10H0174	SW 8260B
1.4-Dichlorobenzene	<1.0		ug/L	1.0	4.0	2	08/10/10 15:24	MAE	10H0174	SW 8260B
Dichlorodifluoromethane	<1.0		ug/L	1.0	4.0	2	08/10/10 15:24	MAE	10H0174	SW 8260B
1,1-Dichloroethane	<1.0		ug/L	1.0	4.0	2	08/10/10 15:24	MAE	10H0174	SW 8260B
1,2-Dichloroethane	<1.0		ug/L	1.0	4.0	2	08/10/10 15:24	MAE	10H0174	SW 8260B
1,1-Dichloroethene	1.3	J	ug/L	1.0	4.0	2	08/10/10 15:24	MAE	10H0174	SW 8260B
cis-1,2-Dichloroethene	410	Ť	ug/L	2.5	10	5	08/11/10 12:31	MAE	10H0218	SW 8260B
trans-1,2-Dichloroethene	3.0	J	ug/L	1.0	4.0	2	08/10/10 15:24	MAE	10H0174	SW 8260B
1,2-Dichloropropane	<1.0	Ť	ug/L	1.0	4.0	2	08/10/10 15:24	MAE	10H0174	SW 8260B
1.3-Dichloropropane	< 0.50		ug/L	0.50	4.0	2	08/10/10 15:24	MAE	10H0174	SW 8260B
2,2-Dichloropropane	<1.0		ug/L	1.0	4.0	2	08/10/10 15:24	MAE	10H0174	SW 8260B
1.1-Dichloropropene	<1.0		ug/L	1.0	4.0	2	08/10/10 15:24	MAE	10H0174	SW 8260B
cis-1.3-Dichloropropene	<0.40		ug/L	0.40	4.0	2	08/10/10 15:24	MAE	10H0174	SW 8260B
trans-1,3-Dichloropropene	<0.40		ug/L	0.40	4.0	2	08/10/10 15:24	MAE	10H0174	SW 8260B

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186 Mr. Tim Taugher Work Order: Project:

Project Number:

WTH0096

1E-0909013 Racine, WI

1730 State Street

Received:

08/04/10

Reported: 08/12/10 08:55

Analyte	Sample Result	Data Qualifiers	Units	MDL	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTH0096-08 (MW-8 -	Ground Wate	r) - cont.					Sampled: 08	/03/10		
VOCs by SW8260B - cont.										
2.3-Dichloropropene	< 0.50		ug/L	0.50	4.0	2	08/10/10 15:24	MAE	10H0174	SW 8260E
Isopropyl Ether	<1.0		ug/L	1.0	4.0	2	08/10/10 15:24	MAE	10H0174	SW 82601
Ethylbenzene	<1.0		ug/L	1.0	4.0	2	08/10/10 15:24	MAE	10H0174	SW 82601
Hexachlorobutadiene	<1.0		ug/L	1.0	4.0	2	08/10/10 15:24	MAE	10H0174	SW 82601
Isopropylbenzene	< 0.40		ug/L	0.40	4.0	2	08/10/10 15:24	MAE	10H0174	SW 82608
p-lsopropyltoluene	< 0.40		ug/L	0.40	4.0	2	08/10/10 15:24	MAE	I0H0174	SW 8260E
Methylene Chloride	<2.0		ug/L	2.0	4.0	2	08/10/10 15:24	MAE	10H0174	SW 82601
Methyl tert-Butyl Ether	<1.0		ug/L	1.0	4.0	2	08/10/10 15:24	MAE	10H0174	SW 82601
Naphthalene	< 0.50		ug/L	0.50	10	2	08/10/10 15:24	MAE	10H0174	SW 8260E
n-Propylbenzene	<1.0		ug/L	1.0	4.0	2	08/10/10 15:24	MAE	10H0174	SW 82601
Styrene	<1.0		ug/L	1.0	10	2	08/10/10 15:24	MAE	10H0174	SW 82601
1,1,1,2-Tetrachloroethane	< 0.50		ug/L	0.50	4.0	2	08/10/10 15:24	MAE	10H0174	SW 8260
1,1,2,2-Tetrachloroethane	< 0.40		ug/L	0.40	4.0	2	08/10/10 15:24	MAE	IOH0174	SW 82601
Tetrachloroethene	170		ug/L	1.0	4.0	2	08/10/10 15:24	MAE	I0H0174	SW 82601
Toluene	<1.0		ug/L	1.0	4.0	2	08/10/10 15:24	MAE	10H0174	SW 82601
1,2,3-Trichlorobenzene	< 0.50		ug/L	0.50	4.0	2	08/10/10 15:24	MAE	10H0174	SW 8260
1,2,4-Trichlorobenzene	< 0.50		ug/L	0.50	4.0	2	08/10/10 15:24	MAE	10H0174	SW 8260
1,1,1-Trichloroethane	<1.0		ug/L	1.0	4.0	2	08/10/10 15:24	MAE	10H0174	SW 8260
1,1,2-Trichloroethane	< 0.50		ug/L	0.50	4.0	2	08/10/10 15:24	MAE	10H0174	SW 82601
Trichloroethene	110		ug/L	0.40	4.0	2	08/10/10 15:24	MAE	10H0174	SW 82601
Trichlorofluoromethane	<1.0		ug/L	1.0	4.0	2	08/10/10 15:24	MAE	10H0174	SW 82601
1,2,3-Trichloropropane	<1.0		ug/L	1.0	4.0	2	08/10/10 15:24	MAE	10H0174	SW 82601
1,2,4-Trimethylbenzene	< 0.40		ug/L	0.40	4.0	2	08/10/10 15:24	MAE	101-10174	SW 82601
1,3,5-Trimethylbenzene	< 0.40		ug/L	0.40	4.0	2	08/10/10 15:24	MAE	10H0174	SW 82601
Vinyl chloride	24		ug/L	0.40	4.0	2	08/10/10 15:24	MAE	101-10174	SW 82601
Xvlenes, Total	<1.0		ug/L	1.0	4.0	2	08/10/10 15:24	MAE	10110174	SW 8260
Surr: Dibromofluoromethane (80-120%)	86 %		5 -							
Surr: Dibromofluoromethane (80-120%)	85 %									
Surr: Toluene-d8 (80-120%)	97 %	4								
Surr: Toluene-d8 (80-120%)	96 %									
Surr: 4-Bromofluorobenzene (80-120%)	96 %									
Surr: 4-Bromofluorohenzene (80-120%)	98 %									

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186 Mr. Tim Taugher Work Order: Project: WTH0096

1E-0909013 Racine, WI

Received: Reported: 08/04/10 08/12/10 08:55

Project Number: 1730 State Street

Analyte	Sample Result	Data Qualifiers	Units	MDL	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/	Method
Knatyte	Kesuit	Quanners	Cints	MIDL	······	Factor	Anatyzeu	Anaiyst	Daten	Wiethor
Sample ID: WTH0096-09 (Trip	Blank - Ground	Water)					Sampled: 08	/03/10		
VOCs by SW8260B										
Benzene	< 0.20		ug/L	0.20	2.0	1	08/05/10 13:54	ABA	10H0098	SW 8260
Bromobenzene	< 0.20		ug/L	0.20	2.0	1	08/05/10 13:54	ABA	10H0098	SW 8260
Bromochloromethane	< 0.50		ug/L	0.50	2.0	I	08/05/10 13:54	ABA	10H0098	SW 8260
Bromodichloromethane	< 0.20		ug/L	0.20	2.0	1	08/05/10 13:54	ABA	10H0098	SW 8260
Bromoform	< 0.20		ug/L	0.20	5.0	1	08/05/10 13:54	ABA	10H0098	SW 8260
Bromomethane	< 0.50		ug/L	0.50	5.0	1	08/05/10 13:54	ABA	10H0098	SW 8260
n-Butylbenzene	< 0.20		ug/L	0.20	2.0	1	08/05/10 13:54	ABA	10H0098	SW 8260
sec-Butylbenzene	< 0.25		ug/L	0.25	2.0	I	08/05/10 13:54	ABA	10H0098	SW 8260
tert-Butylbenzene	< 0.20		ug/L	0.20	2.0	1	08/05/10 13:54	ABA	10H0098	SW 8260
Carbon Tetrachloride	< 0.80		ug/L	0.80	2.0	1	08/05/10 13:54	ABA	10H0098	SW 8260
Chlorobenzene	< 0.20		ug/L	0.20	2.0	1	08/05/10 13:54	ABA	10H0098	SW 8260
Chlorodibromomethane	< 0.20		ug/L	0.20	2.0	t	08/05/10 13:54	ABA	10H0098	SW 8260
Chloroethane	<1.0		ug/L	1.0	5.0	1	08/05/10 13:54	ABA	10H0098	SW 8260
Chloroform	< 0.20		ug/L	0,20	2.0	1	08/05/10 13:54	ABA	I0H0098	SW 8260
Chloromethane	< 0.30		ug/L	0.30	2.0	i	08/05/10 13:54	ABA	10H0098	SW 8260
2-Chlorotoluene	< 0.50		ug/L	0.50	2.0	1	08/05/10 13:54	ABA	10H0098	SW 8260
4-Chlorotoluene	< 0.20		ug/L	0.20	2.0	L	08/05/10 13:54	ABA	10H0098	SW 8260
1.2-Dibromo-3-chloropropane	< 0.50		ug/L	0.50	2.0	1	08/05/10 13:54	ABA	10H0098	SW 8260
1,2-Dibromoethane (EDB)	<0.20		ug/L	0.20	2.0	1	08/05/10 13:54	ABA	10H0098	SW 8260
Dibromomethane	< 0.20		ug/L	0.20	2.0	1	08/05/10 13:54	ABA	10H0098	SW 8260
1,2-Dichlorobenzene	<0.20		ug/L	0,20	2.0	i	08/05/10 13:54	ABA	10H0098	SW 8260
1.3-Dichlorobenzene	<0.20		ug/L	0.20	2.0	1	08/05/10 13:54	ABA	10H0098	SW 8260
1.4-Dichlorobenzene	<0.50		ug/L	0.50	2.0	1	08/05/10 13:54	ABA	10H0098	SW 8260
Dichlorodifluoromethane	< 0.50		ug/L	0.50	2.0	i	08/05/10 13:54	ABA	10H0098	SW 8260
1.1-Dichloroethane	< 0.50		ug/L	0.50	2.0	1	08/05/10 13:54	ABA	10H0098	SW 8260
1,2-Dichloroethane	< 0.50			0.50	2.0		08/05/10 13:54	ABA	10H0098	SW 8260
1.1-Dichloroethene	<0.50		ug/L	0.50	2.0	1	08/05/10 13:54	ABA	10H0098	SW 8260
cis-1,2-Dichloroethene	< 0.50		ug/L	0.50	2.0	1	08/05/10 13:54	ABA	10H0098	SW 8260
	< 0.50		ug/L	0.50	2.0	1	08/05/10 13:54		10H0098	SW 8260
trans-1,2-Dichloroethene	<0.50		ug/L	0.50	2.0	1	08/05/10 13:54	ABA	10H0098	SW 8260
1.2-Dichloropropane	<0.25		ug/L	0.30	2.0	1	08/05/10 13:54	ABA	10H0098	SW 8260
1.3-Dichloropropane			ug/L					ABA		SW 8260
2.2-Dichloropropane	<0.50		ug/L	0.50	2.0	1	08/05/10 13:54	ABA	10H0098	
1.1-Dichloropropene	<0.50		ug/L	0.50	2.0	1	08/05/10 13:54	ABA	10H0098	SW 8260
cis-1,3-Dichloropropene	<0.20		ug/L	0.20	2.0	1	08/05/10 13:54	ABA	10H0098	SW 8260
:rans-1,3-Dichloropropene	<0.20		ug/L	0.20	2.0	1	08/05/10 13:54	ABA	10H0098	SW 8260
2,3-Dichloropropene	<0.25		ug/L	0.25	2.0	1	08/05/10 13:54	ABA	10H0098	SW 8260
Isopropyl Ether	<0.50		ug/L	0.50	2.0	1	08/05/10 13:54	ABA	10H0098	SW 8260
Ethylbenzene	<0.50		ug/L	0.50	2.0	1	08/05/10 13:54	ABA	10H0098	SW 8260
Hexachlorobutadiene	<0.50		ug/L	0.50	2.0	1	08/05/10 13:54	ABA	10H0098	SW 826
Isopropylbenzene	<0.20		ug/L	0.20	2.0	1	08/05/10 13:54	ABA	10H0098	SW 826
p-Isopropyltoluene	<0.20		ug/L	0.20	2.0	1	08/05/10 13:54	ABA	10H0098	SW 826
Methylene Chloride	<1.0		ug/L	1.0	2.0	1	08/05/10 13:54	ABA	10H0098	SW 826
Methyl tert-Butyl Ether	< 0.50		ug/L	0.50	2.0	ŧ	08/05/10 13:54	ABA	10H0098	SW 826
Napluhalene	<0.25		ug/L	0.25	5.0	1	08/05/10 13:54	ABA	10H0098	SW 826
n-Propylbenzene	< 0.50		ug/L	0.50	2.0	1	08/05/10 13:54	ABA	10H0098	SW 826
Styrene	< 0.50		ug/L	0.50	5.0	1	08/05/10 13:54	ABA	10H0098	SW 826
1,1,1,2-Tetrachloroethane	< 0.25		ug/L	0.25	2.0	1	08/05/10 13:54	ABA	10H0098	SW 826
1.1,2,2-Tetrachloroethane	< 0.20		ug/L	0.20	2.0	1	08/05/10 13:54	ABA	10H0098	SW 826
Tetrachloroethene	< 0.50		ug/L	0.50	2.0	1	08/05/10 13:54	ABA	10H0098	SW 826
Toluene	< 0.50		ug/L	0.50	2.0	1	08/05/10 13:54	ABA	10H0098	SW 826
1,2,3-Trichlorobenzene	< 0.25		ug/L	0.25	2.0	1	08/05/10 13:54	ABA	10H0098	SW 826

Project Manager

< 0.20

< 0.50

105 %

102 %

93 %

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186 Mr. Tim Taugher

Vinyl chloride

Xylenes, Total

Surr: Dibromofluoromethane (80-120%) Surr: Toluene-d8 (80-120%)

Surr: 4-Bromofluorohenzene (80-120%)

Work Order: Project:

Project Number:

WTH0096

2.0

2.0

1730 State Street

1E-0909013 Racine, WI

WI

08/05/10 13:54

08/05/10 13:54

Received: 08/04/10

10H0098

10H0098

ABA

ABA

SW 8260B

SW 8260B

Reported:

08/12/10 08:55

raabiiei			_							
Analyte	Sample Result	Data Qualifiers	Units	MDL	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTH0096-09 (Tri	p Blank - Ground	Water) - cont.					Sampled: 08	/03/10		
VOCs by SW8260B - cont.										
1.2.4-Trichlorobenzene	< 0.25		ug/L	0.25	2.0	1	08/05/10 13:54	ABA	10H0098	SW 8260B
1.1.1-Trichloroethane	< 0.50		ug/L	0.50	2.0	1	08/05/10 13:54	ABA	10H0098	SW 8260B
1,1,2-Trichloroethane	< 0.25		ug/L	0.25	2.0	ī	08/05/10 13:54	ABA	10H0098	SW 8260B
Trichloroethene	< 0.20		ug/L	0,20	2.0	1	08/05/10 13:54	ABA	10H0098	SW 8260B
Trichlorofluoromethane	< 0.50		ug/L	0.50	2.0	I	08/05/10 13:54	ABA	10H0098	SW 8260B
1,2,3-Trichloropropane	< 0.50		ug/L	0.50	2.0	1	08/05/10 13:54	ABA	10H0098	SW 8260B
1.2,4-Trimethylbenzene	< 0.20		ug/L	0.20	2.0	l	08/05/10 13:54	ABA	10H0098	SW 8260B
1.3.5-Trimethylbenzene	< 0.20		ug/L	0.20	2.0	1	08/05/10 13:54	ABA	10H0098	SW 8260B

0.20

0.50

ug/L

ug/L

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Mr. Tim Taugher Work Order: Project:

Project Number:

WTH0096

1E-0909013 Racine, WI 1730 State Street Received:

08/04/10

Reported:

08/12/10 08:55

LABORATORY BLANK QC DATA

			LAB	ORATO	ORYB	LANK	QC D	ATA						
Analyte	_	Source Result	-	Units	MDL	MRL	Result	Dup Result	% REC	-	% REC	RPD	RPD Limit	Q
VOCs by SW8260B														
Benzene	10H0098			ug/L	0.20	2.0	< 0.20							
Bromobenzene	10H0098			ug/L	0.20	2.0	< 0.20							
Bromochloromethane	10H0098			ug/L	0.50	2.0	< 0.50							
Bromodichloromethane	10H0098			ug/L	0.20	2.0	< 0.20							
Bromoform	10H0098			ug/L	0.20	5.0	< 0.20							
Bromomethane	10H0098			ug/L	0.50	5.0	< 0.50							
n-Butvlbenzene	10H0098			ug/L	0.20	2.0	< 0.20							
sec-Butylbenzene	10H0098			ug/L	0.25	2.0	< 0.25							
tert-Butylbenzene	10H0098			ug/L	0.20	2.0	< 0.20							
Carbon Tetrachloride	10H0098			ug/L	0.80	2.0	< 0.80							
Chlorohenzene	10H0098			ug/L	0.20	2.0	< 0.20							
Chlorodibromomethane	10H0098			ug/L	0.20	2.0	<0.20							
Chloroethane	10H0098			ug/L	1.0	5.0	<1.0							
Chloroform	10H0098			ug/L	0.20	2.0	<0.20							
Chloromethane	10H0098			ug/L	0.30	2.0	< 0.30							
2-Chlorotoluene	10H0098			ug/L	0.50	2.0	<0.50							
4-Chlorotoluene	10H0098			ug/L	0.20	2.0	<0.20							
1,2-Dibromo-3-chloropropane	10H0098			ug/L	0.50	2.0	<0.50							
1,2-Dibromoethane (EDB)	10H0098			ug/L	0.20	2.0	<0.20							
Dibromomethane	10H0098			ug/L	0.20	2.0	<0.20							
1.2-Dichlorobenzene	10H0098			ug/L	0.20	2.0	<0.20							
					0.20	2.0	<0.20							
1.3-Dichlorobenzene	10H0098			ug/L	0.50	2.0	<0.50							
1.4-Dichlorobenzene	-10H0098			ug/L										
Dichlorodifluoromethane	10H0098			ug/L	0.50	2.0	<0.50							
1.1-Dichloroethane	10H0098			ug/L	0.50	2.0	<0.50							
1.2-Dichloroethane	10H0098			ug/L	0.50	2.0	< 0.50							
1,1-Dichloroethene	10H0098			ug/L	0.50	2.0	<0.50							
cis-1,2-Dichloroethene	10H0098			ug/L	0.50	2.0	<0.50							
trans-1,2-Dichloroethene	10H0098			ug/L	0.50	2.0	<0.50							
1,2-Dichloropropane	10H0098			ug/L	0.50	2.0	<0.50							
1.3-Dichloropropane	10H0098			ug/L	0.25	2.0	< 0.25							
2,2-Dichloropropane	10H0098			ug/L	0.50	2.0	<0.50							
1,1-Dichloropropene	10H0098			ug/L	0.50	2.0	< 0.50							
cis-1,3-Dichloropropene	10H0098			ug/L	0.20	2.0	<0.20							
trans-1,3-Dichloropropene	10H0098			ug/L	0.20	2.0	< 0.20							
2,3-Dichloropropene	10H0098			ug/L	0.25	2.0	< 0.25							
isopropyl Ether	I0H0098			ug/L	0.50	2.0	< 0.50							
Ethylbenzene	10H0098			ug/L	0.50	2.0	< 0.50							
Hexachlorobutadiene	10H0098			ug/L	0.50	2.0	< 0.50							
Isopropylbenzene	10H0098			ug/L	0.20	2.0	< 0.20							
p-Isopropyltoluene	10H0098			ug/L	0.20	2.0	< 0.20							
Methylene Chloride	10H0098			ug/L	1.0	2.0	<1.0							
Methyl tert-Butyl Ether	I0H0098			ug/L	0.50	2.0	< 0.50							
Naphthalene	10H0098			ug/L	0.25	5.0	< 0.25							
n-Propylbenzene	I0H0098			ug/L	0.50	2.0	< 0.50							

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Mr. Tim Taugher

Work Order: Project:

WTH0096

08/04/10

1E-0909013 Racine, WI 1730 State Street

Received: Reported:

08/12/10 08:55

LABORATORY	BLANK	QC	DATA	
------------	-------	----	------	--

Project Number:

			LAB	ORATO	OKY B	LANK	QC D	AIA						
	Seq/	Source	-					Dup	%	Dup	% REC		RPD	
Analyte	Batch	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
VOCs by SW8260B														
Styrene	10H0098			ug/L	0.50	5.0	<0.50							
1.1.1,2-Tetrachloroethane	10H0098			ug/L	0.25	2.0	< 0.25							
1,1,2,2-Tetrachloroethane	10H0098			ug/L	0.20	2.0	<0.20							
Tetrachloroethene	10H0098			ug/L	0.50	2.0	< 0.50							
Toluene	10H0098			ug/L	0.50	2.0	< 0.50							
1.2.3-Trichlorobenzene	10H0098			ug/L	0.25	2.0	< 0.25							
1.2,4-Trichlorobenzene	10H0098			ug/L	0.25	2.0	< 0.25							
1.1.1-Trichloroethane	10H0098			ug/L	0.50	2.0	< 0.50							
1,1,2-Trichloroethane	10H0098			ug/L	0.25	2.0	< 0.25							
Trichloroethene	10H0098			ug/L	0.20	2.0	< 0.20							
Trichlorofluoromethane	10H0098			ug/L	0.50	2.0	< 0.50							
1.2.3-Trichloropropane	10H0098			ug/L	0.50	2.0	< 0.50							
1.2.4-Trimethylbenzene	10H0098			ug/L	0.20	2.0	< 0.20							
1,3,5-Trimethylbenzene	10H0098			ug/L	0.20	2.0	< 0.20							
Vinyl chloride	10H0098			ug/L	0.20	2.0	< 0.20							
Xylenes, Total	10H0098			ug/L	0.50	2.0	< 0.50							
Surrogate: Dibromofluoromethane	10H0098			ug/L					105		80-120			
Surrogate: Toluene-d8	10H0098			ug/L					103		80-120			
Surrogate: 4-Bromofluorohenzene	10H0098			ug/L					94		80-120			
Benzene	10H0124			ug/L	0.20	2.0	< 0.20							
Bromobenzene	10H0124			ug/L	0.20	2.0	< 0.20							
Bromochloromethane	10H0124			ug/L	0.50	2.0	< 0.50							
Bromodichloromethane	10H0124			ug/L	0.20	2.0	< 0.20							
Bromoform	10H0124			ug/L	0.20	5.0	< 0.20							
Bromomethane	10H0124			ug/L	0.50	5.0	< 0.50							
n-Butylbenzene	10H0124			ug/L	0.20	2.0	< 0.20							
sec-Butylbenzene	10H0124			ug/L	0.25	2.0	< 0.25							
tert-Butylbenzene	10H0124			ug/L	0.20	2.0	< 0.20							
Carbon Tetrachloride	10H0124			ug/L	0.80	2.0	< 0.80							
Chlorobenzene	10H0124			ug/L	0.20	2.0	< 0.20							
Chlorodibromomethane	10H0124			ug/L	0.20	2.0	< 0.20							
Chloroethane	10H0124			ug/L	1.0	5.0	<1.0							
Chloroform	10H0124			ug/L	0.20	2.0	< 0.20							
Chloromethane	10H0124			ug/L	0.30	2.0	< 0.30							
2-Chlorotoluene	10H0124			ug/L	0.50	2.0	< 0.50							
4-Chlorotoluene	10H0124			ug/L	0.20	2.0	< 0.20							
1,2-Dibromo-3-chloropropane	10H0124			ug/L	0.50	2.0	< 0.50							
1,2-Dibromoethane (EDB)	10H0124			ug/L	0.20	2.0	< 0.20							
Dibromomethane	10H0124			ug/L	0.20	2.0	< 0.20							
1.2-Dichlorobenzene	10H0124			ug/L	0.20	2.0	<0.20							
1.3-Dichlorobenzene	10H0124			ug/L	0.20	2.0	<0.20							
1,4-Dichlorobenzene	10H0124			ug/L	0.50	2.0	<0.50							
Dichlorodifluoromethane	10H0124			ug/L	0.50	2.0	<0.50							
1,1-Dichloroethane	10H0124			ug/L	0.50	2.0	< 0.50							

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Work Order: Project:

Project Number:

WTH0096

1730 State Street

1E-0909013 Racine, WI

Received:

08/04/10

Reported:

110 H 22330 Johnson Road	
Waukesha, WI 53186	
Mr. Tim Taugher	

			LAB	ORAT	ORYB	LANK	QC D	ATA						
Analyte	Seq/ Batch	Source Result		Units	MDL	MRL	Result	Dup Result	% REC	Dup %REC	% REC	RPD	RPD Limit	Q
VOCs by SW8260B	Daten	Result	Level	Citis	WIDE		Kesuit	Result	REC	70KEC	Limits	KID	Limit	Ų
1.2-Dichloroethane	10H0124			ug/L	0.50	2.0	<0.50							
1.1-Dichloroethene	10H0124			ug/L	0.50	2.0	< 0.50							
cis-1,2-Dichloroethene	10H0124			ug/L	0.50	2.0	< 0.50							
trans-1,2-Dichloroethene	10H0124			ug/L	0.50	2.0	< 0.50							
2-Dichloropropane	10H0124			ug/L	0.50	2.0	< 0.50							
1,3-Dichloropropane	10H0124			ug/L	0.25	2.0	< 0.25							
2.2-Dichloropropane	10H0124			ug/L	0.50	2.0	< 0.50							
1.1-Dichloropropene	10H0124			ug/L	0.50	2.0	< 0.50							
cis-1,3-Dichloropropene	10H0124			ug/L	0.20	2.0	< 0.20							
trans-1,3-Dichloropropene	10H0124			ug/L	0.20	2.0	< 0.20							
2,3-Dichloropropene	10H0124			ug/L	0.25	2.0	< 0.25							
Isopropyl Ether	10H0124			ug/L	0.50	2.0	< 0.50							
Ethylbenzene	10H0124			ug/L	0.50	2.0	< 0.50							
Hexachlorobutadiene	10H0124			ug/L	0.50	2.0	< 0.50							
Isopropylbenzene	10H0124			ug/L	0.20	2.0	< 0.20							
p-Isopropyltoluene	10H0124			ug/L	0.20	2.0	< 0.20							
Methylene Chloride	10H0124			ug/L	1.0	2.0	<1.0							
Methyl ten-Butyl Ether	10H0124			ug/L	0.50	2.0	< 0.50							
Naphthalene	10H0124			ug/L	0.25	5.0	< 0.25							
n-Propylbenzene	10H0124			ug/L	0.50	2.0	< 0.50							
Styrene	10H0124			ug/L	0.50	5.0	< 0.50							
1.1.1.2-Tetrachloroethane	10H0124			ug/L	0.25	2.0	< 0.25							
1,1,2,2-Tetrachloroethane	10H0124			ug/L	0.20	2.0	< 0.20							
Tetrachloroethene	10H0124			ug/L	0.50	2.0	< 0.50							
Toluene	10H0124			ug/L	0.50	2.0	< 0.50							
1.2,3-Trichlorobenzene	10H0124			ug/L	0.25	2.0	< 0.25							
1.2,4-Trichlorobenzene	10H0124			ug/L	0.25	2.0	< 0.25							
1.1.1-Trichloroethane	10H0124			ug/L	0.50	2.0	< 0.50							
1.1.2-Trichloroethane	10H0124			ug/L	0.25	2.0	< 0.25							
Trichloroethene	I0H0124			ug/L	0.20	2.0	< 0.20							
Trichlorofluoromethane	10H0124			ug/L	0.50	2.0	< 0.50							
1.2,3-Trichloropropane	10H0124			ug/L	0.50	2.0	< 0.50							
1,2,4-Trimethylbenzene	10H0124			ug/L	0.20	2.0	< 0.20							
1.3.5-Trimethylbenzene	10H0124			ug/L	0.20	2.0	< 0.20							
Vinyl chloride	10H0124			ug/L	0.20	2.0	< 0.20							
Xylenes, Total	10H0124			ug/L	0.50	2.0	< 0.50							
Surrogate: Dibromofluoromethane	10H0124			ug/L					107		80-120			
Surrogate: Toluene-d8	10H0124			ug/L					102		80-120			
Surrogate: 4-Bromofluorohenzene	10H0124			ug/L					93		80-120			

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Work Order:

WTH0096 1E-0909013 Racine, WI

Received:

08/04/10

Project: Project Number:

1730 State Street

Reported:

08/12/10 08:55

Mr. Tim Taugher

		LABORATORY BLANK QC DATA												
Analyte	Seq/ Batch	Source Result	Spike Level	Units	MDL	MRL	Result	Dup Result	% REC	Dup %REC	% REC	RPD	RPD Limit	Q
VOCs by SW8260B														
Benzene	10H0174			ug/L	0.20	2.0	< 0.20							
Bromobenzene	10H0174			ug/L	0.20	2.0	< 0.20							
Bromochloromethane	10H0174			ug/L	0.50	2.0	< 0.50							
Bromodichloromethane	10H0174			ug/L	0.20	2.0	< 0.20							
Bromoform	10H0174			ug/L	0.20	5.0	< 0.20							
Bromomethane	10H0174			ug/L	0.50	5.0	< 0.50							
n-Butylbenzene	10H0174			ug/L	0.20	2.0	< 0.20							
sec-Butylbenzene	10H0174			ug/L	0.25	2.0	< 0.25							
tert-Butylbenzene	10H0174			ug/L	0.20	2.0	< 0.20							
Carbon Tetrachloride	10H0174			ug/L	0.80	2.0	<0.80							
Chlorobenzene	10H0174			ug/L	0.20	2.0	< 0.20							
Chlorodibromomethane	10H0174			ug/L	0.20	2.0	< 0.20							
Chloroethane	10H0174			ug/L	1.0	5.0	<1.0							
Chloroform	10H0174			ug/L	0.20	2.0	< 0,20							
Chloromethane	10H0174			ug/L	0.30	2.0	< 0.30							
2-Chlorotoluene	10H0174			ug/L	0.50	2.0	< 0.50							
1-Chlorotoluene	10H0174			ug/L	0.20	2.0	< 0.20							
1,2-Dibromo-3-chloropropane	I0H0174			ug/L	0.50	2.0	< 0.50							
1,2-Dibromoethane (EDB)	10H0174			ug/L	0.20	2.0	< 0.20							
Dibromomethane	10H0174			ug/L	0.20	2.0	< 0.20							
1,2-Dichlorobenzene	I0H0174			ug/L	0.20	2.0	< 0.20							
1,3-Dichlorobenzene	10H0174			ug/L	0.20	2.0	< 0.20							
1.4-Dichlorobenzene	10H0174			ug/L	0.50	2.0	< 0.50							
Dichlorodifluoromethane	10H0174			ug/L	0.50	2.0	< 0.50							
1.1-Dichloroethane	10H0174			ug/L	0.50	2.0	< 0.50							
1.2-Dichloroethane	10H0174			ug/L	0.50	2.0	< 0.50							
1,1-Dichloroethene	10H0174			ug/L	0.50	2.0	< 0.50							
cis-1,2-Dichloroethene	10H0174			ug/L	0.50	2.0	< 0.50							
trans-1,2-Dichloroethene	10H0174			ug/L	0.50	2.0	< 0.50							
1.2-Dichloropropane	10H0174			ug/L	0.50	2.0	< 0.50							
1,3-Dichloropropane	10H0174			ug/L	0.25	2.0	< 0.25							
2,2-Dichloropropane	10H0174			ug/L	0.50	2.0	< 0.50							
1.1-Dichloropropene	10H0174			ug/L	0.50	2.0	< 0.50							
cis-1,3-Dichloropropene	10H0174			ug/L	0.20	2.0	< 0.20							
trans-1,3-Dichloropropene	10H0174			ug/L	0.20	2.0	< 0.20							
2,3-Dichloropropene	10H0174			ug/L	0.25	2.0	< 0.25							
Isopropyl Ether	10H0174			ug/L	0.50	2.0	< 0.50							
Ethylbenzene	10H0174			ug/L	0.50	2.0	< 0.50							
Hexachlorobutadiene	10H0174			ug/L	0.50	2.0	< 0.50							
Isopropylbenzene	10H0174			ug/L	0.20	2.0	< 0.20							
p-Isopropyltoluene	10H0174			ug/L	0.20	2.0	< 0.20							
Methylene Chloride	10H0174			ug/L	1.0	2.0	<1.0							
Methyl tert-Butyl Ether	10H0174			ug/L	0.50	2.0	< 0.50							
Naphthalene	10H0174			ug/L	0.25	5.0	4.30							J
n-Propylbenzene	10H0174			ug/L	0.50	2.0	< 0.50							,

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Mr. Tim Taugher Work Order:

WTH0096

1E-0909013 Racine, WI

Received:

08/04/10

Project:
Project Number:

1730 State Street

Reported: 08/12/10 08:55

			LAB	ORAT	ORYB	LANK	QC D	ATA						
Analyte	Seq/ Batch	Source Result	Spike Level	Units	MDL	MRL	Result	Dup Result	% REC	Dup %REC	% REC Limits	RPD	RPD Limit	Q
VOCs by SW8260B														
Styrene	I0H0174			ug/L	0.50	5.0	< 0.50							
1.1.1.2-Tetrachloroethane	IOH0174			ug/L	0.25	2.0	< 0.25							
1,1,2,2-Tetrachloroethane	10H0174			ug/L	0.20	2.0	< 0.20							
Tetrachloroethene	10H0174			ug/L	0.50	2.0	< 0.50							
Toluene	I0H0174			ug/L	0.50	2.0	< 0.50							
1,2,3-Trichlorobenzene	10H0174			ug/L	0.25	2.0	2.84							
1,2,4-Trichlorobenzene	10H0174			ug/L	0.25	2.0	3.19							
1,1,1-Trichloroethane	10H0174			ug/L	0.50	2.0	< 0.50							
1.1,2-Trichloroethane	10H0174			ug/L	0.25	2.0	< 0.25							
Trichloroethene	10H0174			ug/L	0.20	2.0	< 0.20							
Trichlorofluoromethane	10H0174			ug/L	0.50	2.0	< 0.50							
1.2,3-Trichloropropane	10H0174			ug/L	0.50	2.0	< 0.50							
1,2,4-Trimethylbenzene	10H0174			ug/L	0.20	2.0	< 0.20							
1.3.5-Trimethylbenzene	10H0174			ug/L	0.20	2.0	< 0.20							
Vinyl chloride	10H0174			ug/L	0.20	2.0	< 0.20							
Xylenes, Total	10H0174			ug/L	0.50	2.0	<0.50							
Surrogate: Dibromofluoromethane	10H0174			ug/L					92		80-120			
Surrogate: Toluene-d8	10H0174			ug/L					98		80-120			
Surrogate: 4-Bromofluorohenzene	10H0174			ug/L					96		80-120			
Benzene	10H0218			ug/L	0.20	2.0	< 0.20							
Bromobenzene	10H0218			ug/L	0.20	2.0	<0.20							
Bromochloromethane	10H0218			ug/L	0.50	2.0	<0.50							
Bromodichloromethane	10H0218			ug/L	0.20	2.0	<0.20							
Bromoform	10H0218			ug/L	0.20	5.0	<0.20							
Bromomethane	10H0218			_	0.50	5.0	<0.50							
	10H0218			ug/L	0.20	2.0	<0.20							
n-Butylbenzene				ug/L	0.25	2.0	<0.25							
sec-Butylbenzene	10H0218			ug/L										
tert-Butylbenzene	10H0218			ug/L	0.20	2.0	<0.20							
Carbon Tetrachloride	10H0218			ug/L	0.80	2.0	< 0.80							
Chlorobenzene	10H0218			ug/L	0.20	2.0	<0.20							
Chlorodibromomethane	10H0218			ug/L	0.20	2.0	<0.20							
Chloroethane	10H0218			ug/L	1.0	5.0	<1.0							
Chloroform	10H0218			ug/L	0.20	2.0	<0.20							
Chloromethane	10H0218			ug/L	0.30	2.0	<0.30							
2-Chlorotoluene	10H0218			ug/L	0.50	2.0	<0.50							
4-Chlorotoluene	I0H0218			ug/L	0.20	2.0	<0.20							
1.2-Dibromo-3-chloropropane	10H0218			ug/L	0.50	2.0	<0.50							
1.2-Dibromoethane (EDB)	10H0218			ug/L	0.20	2.0	< 0.20							
Dibromomethane	10H0218			ug/L	0.20	2.0	<0.20							
1.2-Dichlorobenzene	10H0218			ug/L	0.20	2.0	< 0.20							
1,3-Dichlorobenzene	10H0218			ug/L	0.20	2.0	< 0.20							
1.4-Dichlorobenzene	10H0218			ug/L	0.50	2.0	< 0.50							
Dichlorodifluoromethane	10H0218			ug/L	0.50	2.0	< 0.50							
1,1-Dichloroethane	10H0218			ug/L	0.50	2.0	< 0.50							

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Mr. Tim Taugher Work Order: Project: WTH0096

1E-0909013 Racine, WI

Received:

08/04/10

Reported:

1730 State Street

			LAB	OKAT	OKYB	LANK	QC D	AIA						
	Seq/	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Batch	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
VOCs by SW8260B														
1.2-Dichloroethane	10H0218			ug/L	0.50	2.0	< 0.50							
I.I-Dichloroethene	10H0218			ug/L	0.50	2.0	< 0.50							
cis-1,2-Dichloroethene	10H0218			ug/L	0.50	2.0	< 0.50							
rans-1.2-Dichloroethene	10H0218			ug/L	0.50	2.0	< 0.50							
1,2-Dichloropropane	10H0218			ug/L	0.50	2.0	< 0.50							
1,3-Dichloropropane	10H0218			ug/L	0.25	2.0	< 0.25							
2,2-Dichloropropane	10H0218			ug/L	0.50	2.0	< 0.50							
1,1-Dichloropropene	10H0218			ug/L	0.50	2.0	< 0.50							
eis-1,3-Dichloropropene	10H0218			ug/L	0.20	2.0	< 0.20							
trans-1.3-Dichloropropene	10H0218			ug/L	0.20	2.0	< 0.20							
2.3-Dichloropropene	10H0218			ug/L	0.25	2.0	< 0.25							
Isopropyl Ether	10H0218			ug/L	0.50	2.0	< 0.50							
Ethylbenzene	10H0218			ug/L	0.50	2.0	< 0.50							
Hexachlorobutadiene	10H0218			ug/L	0.50	2.0	< 0.50							
Isopropylbenzene	10H0218			ug/L	0.20	2.0	< 0.20							
p-Isopropyltoluene	10H0218			ug/L	0.20	2.0	< 0.20							
Methylene Chloride	10H0218			ug/L	1.0	2.0	<1.0							
Methyl tert-Butyl Ether	10H0218			ug/L	0.50	2.0	< 0.50							
Naphthalene	10H0218			ug/L	0.25	5.0	< 0.25							
n-Propylbenzene	10H0218			ug/L	0.50	2.0	< 0.50							
Styrene	10H0218			ug/L	0.50	5.0	< 0.50							
1.1.1.2-Tetrachloroethane	10H0218			ug/L	0.25	2.0	< 0.25							
1,1,2,2-Tetrachloroethane	10H0218			ug/L	0.20	2.0	< 0.20							
Tetrachloroethene	I0H0218			ug/L	0.50	2.0	< 0.50							
Toluene	10H0218			ug/L	0.50	2.0	< 0.50							
1.2.3-Trichlorobenzene	10H0218			ug/L	0.25	2.0	< 0.25							
1,2,4-Trichlorobenzene	10H0218			ug/L	0.25	2.0	< 0.25							
1,1,1-Trichloroethane	10H0218			ug/L	0.50	2.0	< 0.50							
1.1.2-Trichloroethane	10H0218			ug/L	0.25	2.0	< 0.25							
Trichloroethene	10H0218			ug/L	0.20	2.0	< 0.20							
Trichlorofluoroinethane	10H0218			ug/L	0.50	2.0	< 0.50							
1,2,3-Trichloropropane	10H0218			ug/L	0.50	2.0	< 0.50							
1.2.4-Trimethylbenzene	10H0218			ug/L	0.20	2.0	< 0.20							
1,3,5-Trimethylbenzene	10H0218			ug/L	0.20	2.0	< 0.20							
Vinyl chloride	10H0218			ug/L	0.20	2.0	< 0.20							
Xylenes, Total	10H0218			ug/L	0.50	2.0	< 0.50							
Surrogate: Dibromofluoromethane	10H0218			ug/L					83		80-120			
Surrogate: Toluene-d8	10H0218			ug/L					96		80-120			
Surrogate: 4-Bromofluorohenzene	10H0218			ug/L					98		80-120			

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Mr. Tim Taugher

Work Order:

Project Number:

Project:

WTH0096

1E-0909013 Racine, WI

1730 State Street

Received:

08/04/10

Reported:

					OTH	IER								
	Seq/	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Batch	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
VOCs by SW8260B														
Benzene	T001704		150	ug/L	N/A	N/A	162		108					
Bromobenzene	T001704		150	ug/L	N/A	N/A	149		99					
Bromochloromethane	T001704		150	ug/L	N/A	N/A	177		118					
Bromodichloromethane	T001704		150	ug/L	N/A	N/A	202		134					
Bromoform	T001704		150	ug/L	N/A	N/A	162		108					
Bromomethane	T001704		150	ug/L	N/A	N/A	168		112					
n-Butylbenzene	T001704		150	ug/L	N/A	N/A	155		104					
sec-Butylbenzene	T001704		150	ug/L	N/A	N/A	142		95					
tert-Butylbenzene	T001704		150	ug/L	N/A	N/A	144		96					
Carbon Tetrachloride	T001704		150	ug/L	N/A	N/A	209		139					
Chlorobenzene	T001704		150	ug/L	N/A	N/A	143		95					
Chlorodibromomethane	T001704		150	ug/L	N/A	N/A	177		118					
Chloroethane	T001704		150	ug/L	N/A	N/A	171		114					
Chloroform	T001704		150	ug/L	N/A	N/A	189		126					
Chloromethane	T001704		150	ug/L	N/A	N/A	152		101					
2-Chlorotoluene	T001704		150	ug/L	N/A	N/A	153		102					
4-Chlorotoluene	T001704		150	ug/L	N/A	N/A	153		102					
1,2-Dibromo-3-chloropropane	T001704		150	ug/L	N/A	N/A	145		97					
1.2-Dibromoethane (EDB)	T001704		150	ug/L	N/A	N/A	153		102					
Dibromomethane	T001704		150	ug/L	N/A	N/A	173		115					
1,2-Dichlorobenzene	T001704		150	ug/L	N/A	N/A	134		89					
1.3-Dichlorobenzene	T001704		150	ug/L	N/A	N/A	136		91					
1.4-Dichlorobenzene	T001704		150	ug/L	N/A	N/A	131		88					
Dichlorodifluoromethane	T001704		150	ug/L	N/A	N/A	200		133					
1,1-Dichloroethane	T001704		150	ug/L	N/A	N/A	183		122					
1,2-Dichloroethane	T001704		150	ug/L	N/A	N/A	207		138					
1.1-Dichloroethene	T001704		150	ug/L	N/A	N/A	194		129					
cis-1,2-Dichloroethene	T001704		150	ug/L	N/A	N/A	175		116					
trans-1,2-Dichloroethene	T001704		150	ug/L	N/A	N/A	173		115					
1,2-Dichloropropane	T001704		150	ug/L	N/A	N/A	163		109					
1.3-Dichloropropane	T001704		150	ug/L	N/A	N/A	171		114					
2,2-Dichloropropane	T001704		150	ug/L	N/A	N/A	229		152					
1,1-Dichloropropene	T001704		150	ug/L	N/A	N/A	192		128					
cis-1,3-Dichloropropene	T001704		150	ug/L	N/A	N/A	170		113					
trans-1,3-Dichloropropene	T001704		150	ug/L	N/A	N/A	180		120					
2.3-Dichloropropene	T001704		150	ug/L	N/A	N/A	188		125					
Isopropyl Ether	T001704		150	ug/L	N/A	N/A	182		121					
Ethylbenzene	T001704		150	ug/L	N/A	N/A	151		101					
Hexachlorobutadiene	T001704		150	ug/L	N/A	N/A	148		99					
Isopropylbenzene	T001704		150	ug/L	N/A	N/A	160		107					
p-Isopropyltoluene	T001704		150	ug/L ug/L	N/A	N/A	169		113					
Methylene Chloride	T001704		150	ug/L ug/L	N/A	N/A	165		110					
Methyl tert-Butyl Ether	T001704		150	_	N/A	N/A	193		129					
· ·	T001704		150	ug/L	N/A		134		89					
Naphthalene n-Propylbenzene	T001704		150	ug/L ug/L	N/A	N/A N/A	160		106					

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Mr. Tim Taugher Work Order: Project:

Project Number:

WTH0096

1730 State Street

1E-0909013 Racine, WI

Received:

08/04/10

Reported:

					OTH	IER								
		Source		Y/:40	MDI	MRL	Dagulá	Dup	% DEC	Dup	% REC	DDD	RPD	0
Analyte	Batch	Result	Level	Units	MDL	WINL	Resuit	Result	REC	%REC	Limits	RPD	Limit	Q
OCs by SW8260B	T001704		150	/I	NI/A	N1/A	167		102					
tyrene	T001704		150	ug/L	N/A	N/A N/A	153 170		113					
1,1,2-Tetrachloroethane	T001704		150	ug/L	N/A				97					
1,2,2-Tetrachloroethane	T001704		150	ug/L	N/A	N/A	146							
errachloroethene	T001704		150	ug/L	N/A	N/A	151		101					
oluene	T001704		150	ug/L	N/A	N/A	143		95					
.2.3-Trichlorobenzene	T001704		150	ug/L	N/A	N/A	138		92					
.2.4-Trichlorobenzene	T001704		150	ug/L	N/A	N/A	140		93					
.1.1-Trichloroethane	T001704		150	ug/L	N/A	N/A	217		144					
.1.2-Trichloroethane	T001704		150	ug/L	N/A	N/A	165		110					
richloroethene	T001704		150	ug/L	N/A	N/A	169		113					
richlorofluoromethane	T001704		150	ug/L	N/A	N/A	203		135					
,2,3-Trichloropropane	T001704		150	ug/L	N/A	N/A	158		105					
.2,4-Trimethylbenzene	T001704		150	ug/L	N/A	N/A	161		108					
,3,5-Trimethylbenzene	T001704		150	ug/L	N/A	N/A	161		108					
'inyl chloride	T001704		150	ug/L	N/A	N/A	162		108					
Kylenes, Total	T001704		450	ug/L	N/A	N/A	456		101					
urrogate: Dibromofluoromethane	T001704			ug/L					115					
urrogate: Toluene-d8	7001704			ug/L					89					
urrogate: 4-Bromofluorohenzene	7001704			ug/L					///					
Benzene	T001704		100	ug/L	N/A	N/A	99.2		99					
Bromobenzene	T001704		100	ug/L	N/A	N/A	98.0		98					
Bromochloromethane	T001704		100	ug/L	N/A	N/A	102		102					
Bromodichloromethane	T001704		100	ug/L	N/A	N/A	97.2		97					
Bromoform	T001704		100	ug/L	N/A	N/A	96.3		96					
Bromomethane	T001704		100	ug/L	N/A	N/A	112		112					
-Butylbenzene	T001704		100	ug/L	N/A	N/A	100		100					
ee-Butylbenzene	T001704		100	ug/L	N/A	N/A	101		101					
en-Butylbenzene	T001704		100	ug/L	N/A	N/A	100		100					
Carbon Tetrachloride	T001704		100	ug/L	N/A	N/A	97.7		98					
Thlorobenzene	T001704		100	ug/L	N/A	N/A	100		100					
Chlorodibromomethane	T001704		100	ug/L	N/A	N/A	97.2		97					
Chloroethane	T001704		100	ug/L	N/A	N/A	132		132					
liloroform	T001704		100	ug/L	N/A	N/A	100		100					
Thloromethane	T001704		100	ug/L	N/A	N/A	103		103					
2-Chlorotoluene	T001704		100	ug/L	N/A	N/A	97.8		98					
l-Chlorotoluene	T001704		100	ug/L	N/A	N/A	97.9		98					
.2-Dibromo-3-chloropropane	T001704		100	ug/L	N/A	N/A	99.4		99					
.2-Dibromoethane (EDB)	T001704		100	սց/L	N/A	N/A	101		101					
Dibromomethane	T001704		100	ug/L	N/A	N/A	99.5		100					
,2-Dichlorobenzene	T001704		100	սց/L	N/A	N/A	101		101					
1,3-Dichlorobenzene	T001704		100	սց/L սց/L	N/A	N/A	99.6		100					
				_										
1.4-Dichlorobenzene	T001704		100	ug/L	N/A	N/A	100		100					
Dichlorodifluoromethane	T001704		100	ug/L	N/A	N/A	137		137					

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186 Mr. Tim Taugher Work Order:

Project Number:

WTH0096

1E-0909013 Racine, WI

Received:

08/04/10

Project:

1730 State Street

Reported:

		OTHER .												
	Seg/ S	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	-	Result	Level	Units	MDL	MRL	Result	Result	REC		Limits	RPD	Limit	Q
VOCs by SW8260B														
.2-Dichloroethane	T001704		100	ug/L	N/A	N/A	99.3		99					
.1-Dichloroethene	T001704		100	ug/L	N/A	N/A	101		101					
sis-1,2-Dichloroethene	T001704		100	ug/L	N/A	N/A	101		101					
rans-1,2-Dichloroethene	T001704		100	ug/L	N/A	N/A	102		102					
1,2-Dichloropropane	T001704		100	ug/L	N/A	N/A	98.9		99					
1,3-Dichloropropane	T001704		100	ug/L	N/A	N/A	98.3		98					
2.2-Dichloropropane	T001704		100	ug/L	N/A	N/A	97.6		98					
1,1-Dichloropropene	T001704		100	ug/L	N/A	N/A	98.6		99					
cis-1,3-Dichloropropene	T001704		100	ug/L	N/A	N/A	98.5		99					
trans-1,3-Dichloropropene	T001704		100	ug/L	N/A	N/A	97.4		97					
2.3-Dichloropropene	T001704		100	ug/L	N/A	N/A	98.5		98					
Isopropyl Ether	T001704		100	ug/L	N/A	N/A	101		101					
Ethylbenzene	T001704		100	ug/L	N/A	N/A	98.3		98					
Hexachlorobutadiene	T001704		100	ug/L	N/A	N/A	103		103					
Isopropylbenzene	T001704		100	ug/L	N/A	N/A	97.9		98					
p-Isopropyltoluene	T001704		100	ug/L	N/A	N/A	96.7		97					
Methylene Chloride	T001704		100	ug/L	N/A	N/A	101		101					
Methyl tert-Butyl Ether	T001704		100	ug/L	N/A	N/A	102		102					
Naphthalene	T001704		100	ug/L	N/A	N/A	100		100					
n-Propylbenzene	T001704		100	ug/L	N/A	N/A	96.4		96					
Styrene	T001704		100	ug/L	N/A	N/A	99.1		99					
1.1.1.2-Terrachloroethane	T001704		100	ug/L	N/A	N/A	98.1		98					
1.1.2.2-Tetrachloroethane	T001704		100	ug/L	N/A	N/A	99.5		100					
Tetrachloroethene	T001704		100	սց/Ն	N/A	N/A	98.2		98					
	T001704		100	ug/L	N/A	N/A	100		100					
Toluene			100	_	N/A	N/A	99.0		99					
1,2,3-Trichlorobenzene	T001704		100	ug/L	N/A	N/A	98.6		99					
1,2,4-Trichlorobenzene	T001704		100	ug/L	N/A	N/A	98.8		99					
1.1.1-Trichloroethane	T001704			ug/L	N/A	N/A	99.8		100					
1,1,2-Trichloroethane	T001704		100	ug/L					98					
Trichloroethene	T001704		100	ug/L	N/A	N/A	98.3 100		100					
Trichlorofluoromethane	T001704		100	ug/L	N/A	N/A			98					
1,2,3-Trichloropropane	T001704		100	ug/L	N/A	N/A	98.3							
1,2,4-Trimethylbenzene	T001704		100	ug/L	N/A	N/A	97.5		98					
1,3,5-Trimethylbenzene	T001704		100	ug/L	N/A	N/A	97.1		97					
Vinyl chloride	T001704		100	ug/L	N/A	N/A	145		145					
Xylenes, Total	T001704		300	սե/Ր	N/A	N/A	294		98					
Surrogate: Dibromofluoromethane	7001704			ug/L					100					
Surrogate: Toluene-d8	T001704			ug/L					100					
Surrogate: 4-Bromofluorohenzene	7001704			ug/L					97					

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186 Mr. Tim Taugher

Work Order:

WTH0096

1730 State Street

08/04/10 Received:

Project:

1E-0909013 Racine, WI

Reported:

08/12/10 08:55

Project Number:

					OTH	IER								
	Seq/	Source	Snike					Dup	%	Dup	% REC		RPD	
Analyte	Batch	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC		RPD	Limit	Q
VOCs by SW8260B	Duten	resure	20101	Omits	.,,DE		Result	resure	W.C.C	/orede	Limits	KI D	Cilit	V
Benzene	T001704		50	ug/L	N/A	N/A	48.7		97					
Bromobenzene	T001704		50	ug/L	N/A	N/A	48.7		97					
Bromochloromethane	T001704		50	ug/L	N/A	N/A	49.8		100					
Bromodichloromethane	T001704		50	ug/L	N/A	N/A	47.0		94					
Bromoform	T001704		50	ug/L	N/A	N/A	50.3		101					
Bromomethane	T001704		50	ug/L	N/A	N/A	51.9		104					
n-Butylbenzene	T001704		50	ug/L	N/A	N/A	46.5		93					
sec-Butylbenzene	T001704		50	ug/L	N/A	N/A	47.5		95					
tert-Butylbenzene	T001704		50	ug/L	N/A	N/A	47.7		95					
Carbon Tetrachloride	T001704		50	_	N/A	N/A	45.4		91					
			50	ug/L		N/A								
Chlorobenzene	T001704			ug/L	N/A		49.2		98					
Chlorodibromomethane	T001704		50	ug/L	N/A	N/A	50.9		102					
Chloroethane	T001704		50	ug/L	N/A	N/A	63.5		127					
Chloroform	T001704		50	ug/L	N/A	N/A	48.6		97					
Chloromethane	T001704		50	ug/L	N/A	N/A	48.8		98					
2-Chlorotoluene	T001704		50	ug/L	N/A	N/A	47.7		95					
4-Chlorotoluene	T001704		50	ug/L	N/A	N/A	48.0		96					
1.2-Dihromo-3-chloropropane	T001704		50	ug/L	N/A	N/A	45.4		91					
1,2-Dibromoethane (EDB)	T001704		50	ug/L	N/A	N/A	48.9		98					
Dibromomethane	T001704		50	ug/L	N/A	N/A	48.5		97					
1.2-Dichlorobenzene	T001704		50	ug/L	N/A	N/A	49.3		99					
1.3-Dichlorobenzene	T001704		50	ug/L	N/A	N/A	48.7		97					
1.4-Dichlorobenzene	T001704		50	ug/L	N/A	N/A	49.6		99					
Dichlorodifluoromethane	T001704		50	ug/L	N/A	N/A	52.9		106					
1,1-Dichloroethane	T001704		50	ug/L	N/A	N/A	48.7		97					
1,2-Dichloroethane	T001704		50	ug/L	N/A	N/A	48.6		97					
1,1-Dichloroethene	T001704		50	ug/L	N/A	N/A	47.0		94					
cis-1,2-Dichloroethene	T001704		50	ug/L	N/A	N/A	48.9		98					
trans-1,2-Dichloroethene	T001704		50	ug/L	N/A	N/A	48.0		96					
1,2-Dichloropropane	T001704		50	ug/L	N/A	N/A	49.1		98					
1,3-Dichloropropane	T001704		50	ug/L	N/A	N/A	48.4		97					
2.2-Dichloropropane	T001704		50	ug/L	N/A	N/A	44.8		90					
1,1-Dichloropropene	T001704		50	ug/L	N/A	N/A	45.9		92					
cis-1,3-Dichloropropene	T001704		50	ug/L	N/A	N/A	49.0		98					
trans-1,3-Dichloropropene	T001704		50	ug/L	N/A	N/A	50.7		101					
2.3-Dichloropropene	T001704		50	ug/L	N/A	N/A	47.2		94					
Isopropyl Ether	T001704		50	ug/L	N/A	N/A	49.1		98					
Ethylbenzene	T001704		50	ug/L	N/A	N/A	48.1		96					
Hexachlorobutadiene	T001704		50	ug/L	N/A	N/A	48.3		97					
Isopropylbenzene	T001704		50	ug/L	N/A	N/A	47.0		94					
p-Isopropyltoluene	T001704		50	ug/L	N/A	N/A	45.7		91					
Methylene Chloride	T001704		50	ug/L	N/A	N/A	50.1		100					
Methyl tert-Butyl Ether	T001704		50	ug/L	N/A	N/A	48.6		97					
	T001704		50	_	N/A	N/A	44.2		88					
Naphthalene n-Propylbenzene	T001704		50	ug/L ug/L	N/A	N/A	46.6		93					

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Mr. Tim Taugher

Work Order: Project: WTH0096

1E-0909013 Racine, WI

Received:

08/04/10

Reported:

: 08/12/10 08:55

Project Number:	1730 State Street
-----------------	-------------------

					OTH	IER								
Analyte	_	Source Result	_	Units	MDL	MRL	Result	Dup Result	% REC	Dup %REC	% REC	RPD	RPD Limit	Q
VOCs by SW8260B														
Styrene	T001704		50	ug/L	N/A	N/A	48. i		96					
1,1,1,2-Tetrachloroethane	T001704		50	ug/L	N/A	N/A	47.6		95					
1,1,2,2-Tetrachloroethane	T001704		50	ug/L	N/A	N/A	48.5		97					
Tetrachloroethene	T001704		50	ug/L	N/A	N/A	47.2		94					
Toluene	T001704		50	ug/L	N/A	N/A	49.0		98					
1,2,3-Trichlorobenzene	T001704		50	ug/L	N/A	N/A	48.4		97					
1,2,4-Trichlorobenzene	T001704		50	ug/L	N/A	N/A	47.7		95					
1.1.1-Trichloroethane	T001704		50	ug/L	N/A	N/A	46.1		92					
1,1,2-Trichloroethane	T001704		50	ug/L	N/A	N/A	48.7		97					
Trichloroethene	T001704		50	ug/L	N/A	N/A	47.1		94					
Trichlorofluoromethane	T001704		50	ug/L	N/A	N/A	46.4		93					
1,2,3-Trichloropropane	T001704		50	ug/L	N/A	N/A	48.1		96					
1,2,4-Trimethylbenzene	T001704		50	ug/L	N/A	N/A	47.2		94					
1,3,5-Trimethylbenzene	T001704		50	ug/L	N/A	N/A	47.2		94					
Vinyl chloride	T001704		50	ug/L	N/A	N/A	54.0		108					
Xylenes, Total	T001704		150	ug/L	N/A	N/A	144		96					
Surrogate: Dibromofluoromethane	T001704			ug/L					100					
Surrogate: Toluene-d8	T001704			ug/L					100					
Surrogate: 4-Bromofluorobenzene	T001704			ug/L					100					
Benzene	T001704		20	ug/L	N/A	N/A	20.1		100					
Bromobenzene	T001704		20	ug/L	N/A	N/A	19.4		97					
Bromochloromethane	T001704		20	ug/L	N/A	N/A	20.0		100					
Bromodichloromethane	T001704		20	ug/L	N/A	N/A	18.1		91					
Bromofonn	T001704		20	ug/L	N/A	N/A	23.8		119					
Bromomethane	T001704		20	ug/L	N/A	N/A	21.0		105					
n-Butylbenzene	T001704		20	ug/L	N/A	N/A	18.5		92					
sec-Butylbenzene	T001704		20	ug/L	N/A	N/A	19.7		99					
tert-Butylbenzene	T001704		20	ug/L	N/A	N/A	19.9		99					
Carbon Tetrachloride	T001704		20	ug/L	N/A	N/A	18.6		93					
('hlorobenzene	T001704		20	ug/L	N/A	N/A	20.0		100					
Chlorodibromomethane	T001704		20	ug/L	N/A	N/A	22.1		111					
Chloroethane	T001704		20	ug/L	N/A	N/A	25.4		127					
Chlorofonn	T001704		20	ug/L	N/A	N/A	19.6		98					
Chloromethane	T001704		20	ug/L	N/A	N/A	20.4		102					
2-Chlorotoluene	T001704		20	ug/L	N/A	N/A	19.0		95					
4-Chlorotoluene	T001704		20	ug/L	N/A	N/A	19.9		99					
1,2-Dibromo-3-chloropropane	T001704		20	ug/L	N/A	N/A	22,3		112					
1,2-Dibromoethane (EDB)	T001704		20	ug/L	N/A	N/A	19.8		99					
Dibromomethane	T001704		20	ug/L	N/A	N/A	19.8		99					
1.2-Dichlorobenzene	T001704		20	ug/L	N/A	N/A	20.1		101					
1,3-Dichlorobenzene	T001704		20	ug/L	N/A	N/A	19.9		99					
1.4-Dichlorobenzene	T001704		20	ug/L	N/A	N/A	20.2		101					
Dichlorodifluoromethane	T001704		20	ug/L	N/A	N/A	21.5		108					
1.1-Dichloroethane	T001704		20	ug/L	N/A	N/A	19.7		99					

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Mr. Tim Taugher Work Order: Project: WTH0096

1E-0909013 Racine, WI

Received:

08/04/10

Project Number:

1730 State Street

Reported:	08/12/10 08:55
-----------	----------------

					OTH	IER								
	Seq/	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Batch	Result	Level	Units	MDL	MRL	Result	Result	REC		Limits	RPD	Limit	Q
VOCs by SW8260B														-
1.2-Dichloroethane	T001704		20	ug/L	N/A	N/A	19.7		99					
I,I-Dichloroethene	T001704		20	ug/L	N/A	N/A	19.6		98					
cis-1,2-Dichloroethene	T001704		20	ug/L	N/A	N/A	20.4		102					
trans-1,2-Dichloroethene	T001704		20	ug/L	N/A	N/A	20.1		100					
1,2-Dichloropropane	T001704		20	ug/L	N/A	N/A	19.6		98					
1.3-Dichloropropane	T001704		20	ug/L	N/A	N/A	19.8		99					
2.2-Dichloropropane	T001704		20	ug/L	N/A	N/A	18,2		91					
1,1-Dichloropropene	T001704		20	ug/L	N/A	N/A	19.3		96					
cis-1,3-Dichloropropene	T001704		20	ug/L	N/A	N/A	22.1		110					
trans-1,3-Dichloropropene	T001704		20	ug/L	N/A	N/A	22.5		113					
2,3-Dichloropropene	T001704		20	ug/L	N/A	N/A	18,2		91					
Isopropyl Ether	T001704		20	ug/L	N/A	N/A	18.9		95					
Ethylbenzene	T001704		20	ug/L	N/A	N/A	19.3		96					
Hexachlorobutadiene	T001704		20	ug/L	N/A	N/A	20.4		102					
Isopropylbenzene	T001704		20	ug/L	N/A	N/A	19.2		96					
p-Isopropy Itoluene	T001704		20	ug/L	N/A	N/A	18.6		93					
Methylene Chloride	T001704		20	ug/L	N/A	N/A	20,4		102					
Methyl tert-Butyl Ether	T001704		20	ug/L	N/A	N/A	19.1		96					
Naphthalene	T001704		20	ug/L	N/A	N/A	20.1		101					
n-Propylbenzene	T001704		20	ug/L	N/A	N/A	19.0		95					
Styrene	T001704		20	ug/L	N/A	N/A	19.2		96					
1.1.1.2-Tetrachloroethane	T001704		20	ug/L	N/A	N/A	18.6		93					
1,1,2,2-Tetrachloroethane	T001704		20	ug/L	N/A	N/A	19,6		98					
Tetrachloroethene	T001704		20	ug/L	N/A	N/A	20,0		100					
Toluene	T001704		20	ug/L	N/A	N/A	20.1		100					
1.2.3-Trichlorobenzene	T001704		20	ug/L	N/A	N/A	21.2		106					
1,2,4-Trichlorobenzene	T001704		20	ug/L	N/A	N/A	22,2		111					
1.1.1-Trichloroethane	T001704		20	ug/L	N/A	N/A	18.8		94					
1,1,2-Trichloroethane	T001704		20	ug/L	N/A	N/A	19.4		97					
Trichloroethene	T001704		20	ug/L	N/A	N/A	20.1		101					
Trichlorofluoromethane	T001704		20	ug/L	N/A	N/A	19.7		98					
1.2.3-Trichloropropane	T001704		20	ug/L	N/A	N/A	19.9		99					
1,2,4-Trimethylbenzene	T001704		20	ug/L	N/A	N/A	19.0		95					
1.3,5-Trimethylbenzene	T001704		20	ug/L	N/A	N/A	19.1		96					
Vinyl chloride	T001704		20	ug/L	N/A	N/A	22.1		111					
Xylenes, Total	T001704		60	ug/L	N/A	N/A	58.3		97					
Surrogate: Dibromofluoromethane	T001704			ug/L					97					
Surrogate: Toluene-d8	7001704			ug/L					101					
Surrogate: 4-Bromofluorohenzene	7001704			ug/L					98					

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Mr. Tim Taugher Work Order:

WTH0096

1E-0909013 Racine, WI

Received: Reported: 08/04/10 08/12/10 08:55

Project: Project Number:

1730 State Street

				OTI	HER								
	Seq/ S	ource Spi	ke				Dup	0/0	Dup	% REC		RPD	
Analyte		Result Le		MDL	MRL	Result	Result	REC		Limits	RPD	Limit	Q
VOCs by SW8260B													
Benzene	T001704	10	ug/L	N/A	N/A	10.3		103					
Bromobenzene	T001704	10	ug/L	N/A	N/A	10.3		103					
Bromochloromethane	T001704	10	ug/L	N/A	N/A	10.1		101					
Bromodichloromethane	T001704	10	ug/L	N/A	N/A	9.05		91					
Bromoform	T001704	10	ug/L	N/A	N/A	7.52		75					
Bromomethane	T001704	10	ug/L	N/A	N/A	10.8		108					
n-Butylbenzene	T001704	10	ug/L	N/A	N/A	8,78		88					
sec-Butyibenzene	T001704	10	ug/L	N/A	N/A	9.59		96					
tert-Butylbenzene	T001704	10	ug/L	N/A	N/A	9.72		97					
Carbon Tetrachloride	T001704	10	ug/L	N/A	N/A	9.30		93					
Chiorobenzene	T001704	10	ug/L	N/A	N/A	10.4		104					
Chlorodibromomethane	T001704	10	ug/L	N/A	N/A	8.22		82					
Chloroethane	T001704	10	ug/L	N/A	N/A	12.5		125					
Chloroform	T001704	10	ug/L	N/A	N/A	10.0		100					
Chloromethane	T001704	10	ug/L	N/A	N/A	10.5		105					
2-Chlorotoluene	T001704	10	ug/L	N/A	N/A	9.81		98					
4-Chlorotoluene	T001704	10	ug/L	N/A	N/A	10.1		101					
1,2-Dibromo-3-chloropropane	T001704	10	ug/L	N/A	N/A	7.45		75					
1,2-Dibromoethane (EDB)	T001704	10	ug/L	N/A	N/A	10.1		101					
Dibromomethane	T001704	10	ug/L	N/A	N/A	10.4		104					
1.2-Dichlorobenzene	T001704	10	ug/L	N/A	N/A	10.2		102					
1.3-Dichlorobenzene	T001704	10	ug/L	N/A	N/A	10.3		103					
1.4-Dichlorobenzene	T001704	10	ug/L	N/A	N/A	10.4		104					
Dichlorodifluoromethane	T001704	10	ug/L	N/A	N/A	11.3		113					
1,1-Dichloroethane	T001704	10	ug/L	N/A	N/A	10.1		101					
1.2-Dichloroethane	T001704	10	ug/L	N/A	N/A	10.1		101					
1,1-Dichloroethene	T001704	10	ug/L	N/A	N/A	10.1		101					
eis-1,2-Dichloroethene	T001704	10	ug/L	N/A	N/A	10.1		101					
trans-1,2-Dichloroethene	T001704	10	ug/L	N/A	N/A	10.5		105					
1,2-Dichloropropane	T001704	10	ug/L	N/A	N/A	9.92		99					
1.3-Dichloropropane	T001704	10	ug/L	N/A	N/A	9.99		100					
2.2-Dichloropropane	T001704	10	ug/L	N/A	N/A	9.12		91					
1.1-Dichloropropene	T001704	10	ug/L	N/A	N/A	10.2		102					
cis-1,3-Dichloropropene	T001704	10	ug/L	N/A	N/A	8.86		89					
trans-1.3-Dichloropropene	T001704	10	ug/L	N/A	N/A	8.73		87					
2,3-Dichloropropene	T001704	10	ug/L	N/A	N/A	9.26		93					
Isopropyl Ether	T001704	10	ug/L	N/A	N/A	9.92		99					
Ethylbenzene	T001704	10	ug/L	N/A	N/A	9.91		99					
Hexachlorobutadiene	T001704	10	ug/L	N/A	N/A	10.4		104					
Isopropylbenzene	T001704	10	ug/L	N/A	N/A	9.48		95					
p-Isopropyltoluene	T001704	10	ug/L	N/A	N/A	9.07		91					
Methylene Chloride	T001704	10	ug/L	N/A	N/A	10.5		105					
Methyl tert-Butyl Ether	T001704	10	ug/L	N/A	N/A	9.98		100					
Monheleglana	T001704	10	/1	MIZA	21/4	561		= (

T001704

T001704

10

10

ug/L

ug/L

N/A

N/A

N/A

N/A

5.61

9.36

56

94

Naphthalene

n-Propylbenzene

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Mr. Tim Taugher

Work Order: Project:

Project Number:

WTH0096

1730 State Street

1E-0909013 Racine, WI

Received:

08/04/10

08/12/10 08:55 Reported:

OMYXX		
OTHE		

					OTH	IER								
	Seq/	Source	Snike					Dup	%	Dup	% REC		RPD	
Analyte	Batch	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC		RPD	Limit	Q
VOCs by SW8260B														
Styrene	T001704		10	ug/L	N/A	N/A	9.62		96					
1.1.1,2-Tetrachloroethane	T001704		10	ug/L	N/A	N/A	9.33		93					
1,1,2,2-Tetrachloroethane	T001704		10	ug/L	N/A	N/A	10.0		100					
Tetrachloroethene	T001704		10	ug/L	N/A	N/A	9.99		100					
Toluene	T001704		10	ug/L	N/A	N/A	10.3		103					
1,2,3-Trichlorobenzene	T001704		10	ug/L	N/A	N/A	7.42		74					
1,2,4-Trichlorobenzene	T001704		10	ug/L	N/A	N/A	7.49		75					
1.1.1-Trichloroethane	T001704		10	ug/L	N/A	N/A	9.35		94					
1,1,2-Trichloroethane	T001704		10	ug/L	N/A	N/A	9.96		100					
Trichloroethene	T001704		10	ug/L	N/A	N/A	10.2		102					
Trichlorofluoromethane	T001704		10	ug/L	N/A	N/A	9.97		100					
1,2,3-Trichloropropane	T001704		10	ug/L	N/A	N/A	10.6		106					
1.2.4-Trimethylbenzene	T001704		10	ug/L	N/A	N/A	9.66		97					
1.3.5-Trimethylbenzene	T001704		10	ug/L	N/A	N/A	9.63		96					
Vinyl chloride	T001704		10	ug/L	N/A	N/A	10.8		108					
Xylenes, Total	T001704		30	ug/L	N/A	N/A	29.6		99					
Surrogate: Dibromofluoromethane	7001704			ug/L					98					
Surrogate: Toluene-d8	T001704			ug/L					100					
Surrogate: 4-Bromofluorohenzene	7001704			ug/L					99					
Benzene	T001704		5.0	ug/L	N/A	N/A	5.22		104					
Bromobenzene	T001704		5.0	ug/L	N/A	N/A	5.11		102					
Bromochloromethane	T001704		5.0	ug/L	N/A	N/A	5.16		103					
Bromodichloromethane	T001704		5.0	ug/L	N/A	N/A	4.51		90					
Bromoform	T001704		5.0	ug/L	N/A	N/A	3.49		70					
Bromomethane	T001704		5.0	ug/L	N/A	N/A	5.35		107					
n-Butylbenzene	T001704		5.0	ug/L	N/A	N/A	4.14		83					
sec-Butylbenzene	T001704		5.0	ug/L	N/A	N/A	4.71		94					
tert-Butylbenzene	T001704		5.0	ug/L	N/A	N/A	4.68		94					
Carbon Tetrachlonde	T001704		5.0	ug/L	N/A	N/A	4.93		99					
Chlorobenzene	T001704		5.0	ug/L	N/A	N/A	5.38		108					
Chlorodibromomethane	T001704		5.0	ug/L	N/A	N/A	4.11		82					
Chloroethane	T001704		5.0	ug/L	N/A	N/A	6.10		122					
Chloroform	T001704		5.0	ug/L	N/A	N/A	5.19		104					
Chloromethane	T001704		5.0	ug/L	N/A	N/A	5.11		102					
2-Chlorotoluene	T001704		5.0	ug/L	N/A	N/A	4.81		96					
4-Chlorotoluene	T001704		5.0	ug/L	N/A	N/A	4.89		98					
	T001704		5.0	ug/L	N/A	N/A	3.63		73					
1.2-Dibromo-3-chloropropane 1.2-Dibromoethane (EDB)	T001704		5.0	ug/L	N/A	N/A	4.92		98					
Dibromomethane (EDB)	T001704		5.0	ug/L	N/A	N/A	5.16		103					
1,2-Dichlorobenzene	T001704		5.0		N/A	N/A	5.09		103					
1,3-Dichlorobenzene	T001704		5.0	ug/L ug/L	N/A	N/A	5.16		102					
	T001704		5.0			N/A	5.33		103					
1,4-Dichlorobenzene				ug/L	N/A									
Dichlorodifluoromethane 1.1-Dichloroethane	T001704 T001704		5.0	ug/L ug/L	N/A N/A	N/A N/A	5.30 5.02		106					

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Mr. Tim Taugher Work Order:

WTH0096

Received:

08/04/10

Project: Project Number: 1E-0909013 Racine, WI 1730 State Street Reported: 08/12/10 08:55

					OTH	IER								
	Seq/ S	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Batch	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
VOCs by SW8260B														
1,2-Dichloroethane	T001704		5.0	ug/L	N/A	N/A	5.18		104					
1.1-Dichloroethene	T001704		5.0	ug/L	N/A	N/A	5.10		102					
cis-1.2-Dichloroethene	T001704		5.0	ug/L	N/A	N/A	5.12		102					
rans-1.2-Dichloroethene	T001704		5.0	ug/L	N/A	N/A	5.23		105					
1,2-Dichloropropane	T001704		5.0	ug/L	N/A	N/A	5.14		103					
1.3-Dichloropropane	T001704		5.0	ug/L	N/A	N/A	5.15		103					
2,2-Dichloropropane	T001704		5.0	ug/L	N/A	N/A	4.30		86					
1,1-Dichloropropene	T001704		5.0	ug/L	N/A	N/A	5.13		103					
cis-1.3-Dichloropropene	T001704		5.0	ug/L	N/A	N/A	4.25		85					
trans-1,3-Dichloropropene	T001704		5.0	ug/L	N/A	N/A	4.01		80					
2,3-Dichloropropene	T001704		5.0	ug/L	N/A	N/A	4.64		93					
Isopropyl Ether	T001704		5.0	ug/L	N/A	N/A	4.79		96					
Ethylbenzene	T001704		5.0	ug/L	N/A	N/A	4.76		95					
Hexachlorobutadiene	T001704		5.0	ug/L	N/A	N/A	4.67		93					
Isopropyibenzene	T001704		5.0	ug/L	N/A	N/A	4.52		90					
p-lsopropyltoluene	T001704		5.0	ug/L	N/A	N/A	4.26		85					
Methylene Chloride	T001704		5.0	ug/L	N/A	N/A	5.38		108					
Methyl tert-Butyl Ether	T001704		5.0	ug/L	N/A	N/A	4.97		99					
Naphthalene	T001704		5.0	ug/L	N/A	N/A	1.89		38					
n-Propylbenzene	T001704		5.0	ug/L	N/A	N/A	4.63		93					
Styrene	T001704		5,0	ug/L	N/A	N/A	3.45		69					
1.1.1.2-Tetrachloroethane	T001704		5.0	ug/L	N/A	N/A	4.63		93					
1.1,2,2-Tetrachloroethane	T001704		5.0	ug/L	N/A	N/A	4.88		98					
Tetrachloroethene	T001704		5.0	ug/L	N/A	N/A	4.95		99					
Toluene	T001704		5.0	ug/L	N/A	N/A	5.24		105					
1,2,3-Trichlorobenzene	T001704		5.0	ug/L	N/A	N/A	2.98		60					
1,2,4-Trichlorobenzene	T001704		5.0	ug/L	N/A	N/A	3.09		62					
1,1,1-Trichloroethane	T001704		5.0	ug/L	N/A	N/A	4.63		93					
1.1.2-Trichloroethane	T001704		5.0	ug/L	N/A	N/A	5.14		103					
Trichloroethene	T001704		5.0	ug/L	N/A	N/A	5.15		103					
Trichlorofluoromethane	T001704		5.0	ug/L	N/A	N/A	4.93		99					
1,2,3-Trichloropropane	T001704		5.0	սց/Լ	N/A	N/A	4.75		95					
1,2,4-Trimethylbenzene	T001704		5.0	ug/L	N/A	N/A	4.47		89					
1,3,5-Trimethylbenzene	T001704		5.0	ug/L	N/A	N/A	4.46		89					
Vinyl chloride	T001704		5.0	ug/L	N/A	N/A	5.45		109					
Xylenes, Total	T001704		15	սց/L սց/L	N/A	N/A	14.2		94					
Surrogate: Dibromofluoromethane	7001704		13	սց/Լ	17/7	N/A	14.2		97					
Surrogate: Dibromoftworomethane Surrogate: Toluene-d8	7001704 7001704			_					100					
Surrogate: 4-Bromofluorohenzene	7001704			ug/L ug/L					99					

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186 Mr. Tim Taugher Work Order:

WTH0096

Received:

08/04/10

Project:

1E-0909013 Racine, WI

Reported:

08/12/10 08:55

Project Number:

1730 State Street

				OTH	IER								
	Seq/ Se	ource Spike					Dup	%	Dup	% REC		RPD	
Analyte		esult Level		MDL	MRL	Result	Result	REC		Limits	RPD	Limit	Q
VOCs by SW8260B													
Benzene	T001704	2.0	ug/L	N/A	N/A	2.03		102					
Bromobenzene	T001704	2.0	ug/L	N/A	N/A	2.10		105					
Bromochloromethane	T001704	2.0	ug/L	N/A	N/A	2.13		107					
Bromodichloromethane	T001704	2.0	ug/L	N/A	N/A	1.85		93					
Bromoform .	T001704	2.0	ug/L	N/A	N/A	1.38		69					
Bromomethane	T001704	2.0	ug/L	N/A	N/A	2.31		116					
n-Butylbenzene	T001704	2.0	ug/L	N/A	N/A	1.44		72					
sec-Butylbenzene	T001704	2.0	ug/L	N/A	N/A	1.71		86					
tert-Butylbenzene	T001704	2.0	ug/L	N/A	N/A	1.70		85					
Carbon Tetrachloride	T001704	2.0	ug/L	N/A	N/A	2.10		105					
Chlorobenzene	T001704	2.0	ug/L	N/A	N/A	2.15		108					
Chlorodibromomethane	T001704	2.0	ug/L	N/A	N/A	1.59		80					
Chloroethane	T001704	2.0	ug/L	N/A	N/A	2.44		122					
Chloroform	T001704	2.0	ug/L	N/A	N/A	2.21		111					
Chloromethane	T001704	2.0	ug/L	N/A	N/A	2.18		109					
2-Chlorotoluene	T001704	2.0	ug/L	N/A	N/A	1.94		97					
1-Chlorotoluene	T001704	2.0	ug/L	N/A	N/A	2.03		102					
1,2-Dibromo-3-chloropropane	T001704	2.0	ug/L	N/A	N/A	1,34		67					
1.2-Dibromoethane (EDB)	T001704	2.0	ug/L	N/A	N/A	1.92		96					
Dibromomethane	T001704	2.0	ug/L	N/A	N/A	2.09		105					
1.2-Dichlorobenzene	T001704	2.0	ug/L	N/A	N/A	2.05		103					
1.3-Dichlorobenzene	T001704	2.0	ug/L	N/A	N/A	2.13		107					
1,4-Dichlorobenzene	T001704	2.0	ug/L	N/A	N/A	2.24		112					
Dichlorodifluoromethane	T001704	2.0	ug/L	N/A	N/A	1.98		99					
1,1-Dichloroethane	T001704	2.0	ug/L	N/A	N/A	1.97		99					
1,2-Dichloroethane	T001704	2.0	ug/L	N/A	N/A	2.19		110					
1,1-Dichloroethene	T001704	2.0	ug/L	N/A	N/A	2.04		102					
cis-1.2-Dichloroethene	T001704	2.0	ug/L	N/A	N/A	2.08		104					
trans-1,2-Dichloroethene	T001704	2.0	ug/L	N/A	N/A	2.31		116					
1,2-Dichloropropane	T001704	2.0	ug/L	N/A	N/A	2.00		100					
1,3-Dichloropropane	T001704	2.0	ug/L	N/A	N/A	1.99		100					
2,2-Dichloropropane	T001704	2.0	ug/L	N/A	N/A	1.69		85					
1.1-Dichloropropene	T001704	2.0	ug/L	N/A	N/A	1.80		90					
cis-1,3-Dichloropropene	T001704	2.0	ug/L	N/A	N/A	1.65		83					
trans-1,3-Dichloropropene	T001704	2.0	ug/L	N/A	N/A	1.53		77					
2,3-Dichloropropene	T001704	2.0	ug/L	N/A	N/A	1.83		92					
Isopropyl Ether	T001704	2.0	ug/L	N/A	N/A	1.92		96					
Ethylbenzene	T001704	2.0	ug/L	N/A	N/A	1.91		96					
Hexachlorobutadiene	T001704	2.0	ug/L	N/A	N/A	1.88		94					
lsopropylbenzene	T001704	2.0	ug/L	N/A	N/A	1.66		83					
p-Isopropyltoluene	T001704	2.0	ug/L	N/A	N/A	1.50		75					
Methylene Chloride	T001704	2.0	ug/L	N/A	N/A	2.21		111					
Methyl tert-Butyl Ether	T001704	2.0	ug/L	N/A	N/A	1.94		97					
Naphthalene	T001704	2.0	ug/L	N/A	N/A	0.500		25					
n-Propylbenzene	T001704	2.0	ug/L	N/A	N/A	1.71		86					

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Mr. Tim Taugher Work Order: Project:

Project Number:

WTH0096

1730 State Street

1E-0909013 Racine, WI

Received:

08/04/10

Reported:

08/12/10 08:55

					OTH	IER								
Analyte	Seq/ Batch	Source Result	•	Units	MDL	MRL	Result	Dup Result	% REC	Dup %REC	% REC	RPD	RPD Limit	Q
VOCs by SW8260B														
Styrene	T001704		2.0	ug/L	N/A	N/A	1.43		72					
1.1.1.2-Tetrachloroethane	T001704		2.0	ug/L	N/A	N/A	1.78		89					
1.1.2,2-Tetrachloroethane	T001704		2.0	ug/L	N/A	N/A	1.96		98					
Tetrachloroethene	T001704		2.0	ug/L	N/A	N/A	1.99		100					
Toluene	T001704		2.0	ug/L	N/A	N/A	2.13		107					
1.2,3-Trichlorobenzene	T001704		2.0	ug/L	N/A	N/A	0,900		45					
1,2,4-Trichlorobenzene	T001704		2.0	ug/L	N/A	N/A	0.920		46					
1.1.1-Trichloroethane	T001704		2.0	ug/L	N/A	N/A	1.69		85					
1.1.2-Trichloroethane	T001704		2.0	ug/L	N/A	N/A	2.14		107					
Trichloroethene	T001704		2.0	ug/L	N/A	N/A	2.17		109					
Trichlorofluoromethane	T001704		2.0	ug/L	N/A	N/A	1.88		94					
1.2.3-Trichloropropane	T001704		2.0	ug/L	N/A	N/A	1.97		99					
1.2.4-Trimethylbenzene	T001704		2.0	ug/L	N/A	N/A	1.69		85					
1,3,5-Trimethylbenzene	T001704		2.0	ug/L	N/A	N/A	1.65		83					
Vinyl chloride	T001704		2.0	ug/L	N/A	N/A	2.13		107					
Xylenes, Total	T001704		6.0	ug/L	N/A	N/A	5,60		93					
Surrogate: Dibromofluoromethane	T001704			ug/L					99					
Surrogate: Toluene-d8	7001704			ug/L					100					
Surrogate: 4-Bromofluorohenzene	T001704			ug/L					98					

.

GILES ENGINEERING - WISCONSIN N8 W22350 Johnson Road Waukesha, WI 53186 Mr. Tim Taugher Work Order:

Project:

WTH0096

1E-0909013 Racine, WI

Received:

08/04/10

Reported:

08/12/10 08:55

Waukesha, WI 53186	Project Number:	1730 State Street
Mr. Tim Taugher		

				C	CV QC	CDAT	A							
Analyte	-	Source Result	-	Units	MDL	MRL	Result	Dup Result	% REC	Dup %REC	% REC	RPD	RPD Limit	Q
VOCs by SW8260B														
Benzene	T001683		50	ug/L	N/A	N/A	42.6		85		80-120			
Bromobenzene	T001683		50	ug/L	N/A	N/A	46.5		93		80-120			
Bromochloromethane	T001683		50	ug/L	N/A	N/A	43.1		86		80-120			
Bromodichloromethane	T001683		50	ug/L	N/A	N/A	45.4		91		80-120			
Bromotorn	T001683		50	ug/L	N/A	N/A	51.8		104		80-120			
Bromomethane	T001683		50	ug/L	N/A	N/A	52.8		106		60-140			
n-Butylbenzene	T001683		50	ug/L	N/A	N/A	50.1		100		80-120			
sec-Butylbenzene	T001683		50	ug/L	N/A	N/A	49.2		98		80-120			
tert-Butylbenzene	T001683		50	ug/L	N/A	N/A	47.6		95		80-120			
Carbon Tetrachloride	T001683		50	ug/L	N/A	N/A	44.8		90		60-140			
Chlorobenzene	T001683		50	ug/L	N/A	N/A	45.6		91		80-120			
Chlorodibromomethane	T001683		50	ug/L	N/A	N/A	45.8		92		80-120			
Chloroethane	T001683		50	ug/L	N/A	N/A	50.3		101		60-140			
Chloroform	T001683		50	ug/L	N/A	N/A	44.9		90		80-120			
Chloromethane	T001683		50	ug/L	N/A	N/A	43.0		86		60-140			
2-Chlorotoluene	T001683		50	ug/L	N/A	N/A	48.4		97		80-120			
4-Chlorotoluene	T001683		50	ug/L	N/A	N/A	46.3		93		80-120			
1.2-Dibromo-3-chloropropane	T001683		50	ug/L	N/A	N/A	51.4		103		60-140			
1,2-Dibromoethane (EDB)	T001683		50	ug/L	N/A	N/A	48.0		96		80-120			
Dibromomethane	T001683		50	ug/L	N/A	N/A	45.1		90		80-120			
1,2-Dichlorobenzene	T001683		50	ug/L	N/A	N/A	49.5		99		80-120			
1.3-Dichlorobenzene	T001683		50	ug/L	N/A	N/A	48.0		96		80-120			
1.4-Dichlorobenzene	T001683		50	ug/L	N/A	N/A	47.5		95		80-120			
Dichlorodifluoromethane	T001683		50	ug/L	N/A	N/A	50.2		100		60-140			
1,1-Dichloroethane	T001683		50	ug/L	N/A	N/A	45.5		91		80-120			
1.2-Dichloroethane	T001683		50	ug/L	N/A	N/A	50.1		100		80-120			
1,1-Dichloroethene	T001683		50	ug/L	N/A	N/A	45.9		92		80-120			
cis-1,2-Dichloroethene	T001683		50	ug/L	N/A	N/A	42.3		85		80-120			
trans-1,2-Dichloroethene	T001683		50	ug/L	N/A	N/A	41.7		83		80-120			
1.2-Dichloropropane	T001683		50	ug/L	N/A	N/A	43.9		88		80-120			
1.3-Dichloropropane	T001683		50	ug/L	N/A	N/A	44.2		88		80-120			
2,2-Dichloropropane	T001683		50	ug/L	N/A	N/A	48.9		98		60-140			
1.1-Dichloropropene	T001683		50	ug/L	N/A	N/A	43.9		88		80-120			
cis-1,3-Dichloropropene	T001683		50	ug/L	N/A	N/A	44.3		89		80-120			
trans-1,3-Dichloropropene	T001683		50	ug/L	N/A	N/A	47.1		94		80-120			
2,3-Dichloropropene	T001683		50	ug/L	N/A	N/A	45.2		90		80-120			
Isopropyl Ether	T001683		50	ug/L	N/A	N/A	42.9		86		80-120			
Ethylbenzene	T001683		50	ug/L	N/A	N/A	46.8		94		80-120			
Hexachlorobutadiene	T001683		50	ug/L	N/A	N/A	59.0		118		60-140			
Isopropylbenzene	T001683		50	ug/L	N/A	N/A	48.3		97		80-120			
p-Isopropyltoluene	T001683		50	ug/L	N/A	N/A	51.5		103		80-120			
Methylene Chloride	T001683		50	ug/L	N/A	N/A	43.4		87		80-120			
Methyl tert-Butyl Ether	T001683		50	ug/L	N/A	N/A	50.8		102		80-120			
Naphthalene	T001683		50	ug/L	N/A	N/A	57.4		115		60-140			
n-Propylbenzene	T001683		50	ug/L	N/A	N/A	48.2		96		80-120			

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Work Order:

Project Number:

WTH0096

Received:

08/04/10

Project:

1E-0909013 Racine, WI 1730 State Street

08/12/10 08:55 Reported:

Mr. Tim Taugher

				C	CV QC	CDAT	A							
Analyte	Seq/ Batch	Source Result	Spike Level	Units	MDL	MRL	Result	Dup Result	% REC	Dup %REC	% REC	RPD	RPD Limit	Q
VOCs by SW8260B														
Styrene	T001683		50	ug/L	N/A	N/A	49.8		100		80-120			
1.1.1,2-Terrachloroethane	T001683		50	ug/L	N/A	N/A	47.8		96		80-120			
1,1,2,2-Tetrachloroethane	T001683		50	ug/L	N/A	N/A	45.9		92		80-120			
Tetrachloroethene	T001683		50	ug/L	N/A	N/A	46.6		93		80-120			
Toluene	T001683		50	ug/L	N/A	N/A	43.7		87		80-120			
1.2.3-Trichlorobenzene	T001683		50	ug/L	N/A	N/A	59.4		119		80-120			
1.2.4-Trichlorobenzene	T001683		50	ug/L	N/A	N/A	53.3		107		80-120			
1.1.1-Trichloroethane	T001683		50	ug/L	N/A	N/A	45.2		90		80-120			
1,1,2-Trichloroethane	T001683		50	ug/L	N/A	N/A	42.8		86		80-120			
Trichloroethene	T001683		50	ug/L	N/A	N/A	43.2		86		80-120			
Trichlorofluoromethane	T001683		50	ug/L	N/A	N/A	48.2		96		80-120			
1.2.3-Trichloropropane	T001683		50	ug/L	N/A	N/A	51.0		102		80-120			
1.2.4-Trimethylbenzene	T001683		50	ug/L	N/A	N/A	50.4		101		80-120			
1,3,5-Trimethylbenzene	T001683		50	ug/L	N/A	N/A	50.3		101		80-120			
Vinyl chloride	T001683		50	ug/L	N/A	N/A	48.2		96		80-120			
Xylenes, Total	T001683		150	ug/L	N/A	N/A	142		95		80-120			
Surrogate: Dihromofluoromethane	7001683			ug/L					107		80-120			
Surrogate: Toluene-d8	T001683			ug/L					103		80-120			
Surrogate: 4-Bromofluorohenzene	T001683			ug/L					98		80-/20			
Benzene	T001690		50	ug/L	N/A	N/A	42.5		85		80-120			
Bromobenzene	T001690		50	ug/L	N/A	N/A	46.0		92		80-120			
Bromochloromethane	T001690		50	ug/L	N/A	N/A	42.8		86		80-120			
Bromodichloromethane	T001690		50	ug/L	N/A	N/A	46.0		92		80-120			
Bromoform	T001690		50	ug/L	N/A	N/A	51.3		103		80-120			
Bromomethane	T001690		50		N/A	N/A	47.1		94		60-140			
n-Butylbenzene	T001690		50	ug/L	N/A	N/A	49.6		99		80-120			
•	T001690		50	ug/L	N/A	N/A	49.0		98		80-120			
sec-Butylbenzene			50	ug/L										
terr-Butylbenzene	T001690			ug/L	N/A	N/A	47.8		96		80-120			
Carbon Tetrachloride	T001690		50	ug/L	N/A	N/A	45.0		90		60-140			
Chlorobenzene	T001690		50	ug/L	N/A	N/A	45.8		92		80-120			
Chlorodibromomethane	T001690		50	ug/L	N/A	N/A	45.2		90		80-120			
Chloroethane	T001690		50	ug/L	N/A	N/A	50.9		102		60-140			
Chloroform	T001690		50	ug/L	N/A	N/A	45.0		90		80-120			
Chloromethane	T001690		50	ug/L	N/A	N/A	43.8		88		60-140			
2-Chlorotoluene	T001690		50	ug/L	N/A	N/A	48.2		96		80-120			
4-Chlorotoluene	T001690		50	ug/L	N/A	N/A	48.1		96		80-120			
1,2-Dibromo-3-chloropropane	T001690		50	ug/L	N/A	N/A	43.3		87		60-140			
1.2-Dibromoethane (EDB)	T001690		50	ug/L	N/A	N/A	46.9		94		80-120			
Dibromomethane	T001690		50	ug/L	N/A	N/A	45.1		90		80-120			
1,2-Dichlorobenzene	T001690		50	ug/L	N/A	N/A	49.1		98		80-120			
1.3-Dichlorobenzene	T001690		50	ug/L	N/A	N/A	48.0		96		80-120			
1.4-Dichlorobenzene	T001690		50	ug/L	N/A	N/A	47.7		95		80-120			
Dichlorodifluoromethane	T001690		50	ug/L	N/A	N/A	50.1		100		60-140			
1,1-Dichloroethane	T001690		50	ug/L	N/A	N/A	45.9		92		80-120			

Project Manager

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Mr. Tim Taugher Work Order:

WTH0096

1E-0909013 Racine, WI

Received: Reported: 08/04/10 08/12/10 08:55

Project: Project Number:

1730 State Street

				C	CV Q	C DAT	A							
	Seq/	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Batch	Result	-	Units	MDL	MRL	Result	Result	REC	%REC		RPD	Limit	Q
VOCs by SW8260B														
1.2-Dichloroethane	T001690		50	ug/L	N/A	N/A	51.0		102		80-120			
I.I-Dichloroethene	T001690		50	ug/L	N/A	N/A	46.6		93		80-120			
cis-1.2-Dichloroethene	T001690		50	ug/L	N/A	N/A	41.6		83		80-120			
rans-1,2-Dichloroethene	T001690		50	ug/L	N/A	N/A	40.9		82		80-120			
1.2-Dichloropropane	T001690		50	ug/L	N/A	N/A	43.9		88		80-120			
1.3-Dichloropropane	T001690		50	ug/L	N/A	N/A	43.6		87		80-120			
2,2-Dichtoropropane	T001690		50	ug/L	N/A	N/A	47.9		96		60-140			
1,1-Dichloropropene	T001690		50	ug/L	N/A	N/A	44.0		88		80-120			
cis-1,3-Dichloropropene	T001690		50	ug/L	N/A	N/A	43.8		88		80-120			
trans-1,3-Dichloropropene	T001690		50	ug/L	N/A	N/A	46.1		92		80-120			
2,3-Dichloropropene	T001690		50	ug/L	N/A	N/A	45.4		91		80-120			
Isopropyl Ether	T001690		50	ug/L	N/A	N/A	42.9		86		80-120			
Ethylbenzene	T001690		50	ug/L	N/A	N/A	46.5		93		80-120			
Hexachlorobutadiene	T001690		50	ug/L	N/A	N/A	57.7		115		60-140			
Isopropylbenzene	T001690		50	ug/L	N/A	N/A	48.0		96		80-120			
p-Isopropyltoluene	T001690		50	ug/L	N/A	N/A	51.6		103		80-120			
Methylene Chloride	T001690		50	ug/L	N/A	N/A	42.5		85		80-120			
Methyl tert-Butyl Ether	T001690		50	ug/L	N/A	N/A	48.3		97		80-120			
Naphthalene	T001690		50	ug/L	N/A	N/A	50.1		100		60-140			
n-Propylbenzene	T001690		50	ug/L	N/A	N/A	47.7		95		80-120			
Styrene	T001690		50	ug/L	N/A	N/A	49.6		99		80-120			
1,1,1,2-Tetrachloroethane	T001690		50	ug/L	N/A	N/A	48.4		97		80-120			
1,1,2,2-Tetrachloroethane	T001690		50	ug/L	N/A	N/A	44.3		89		80-120			
Tetrachloroethene	T001690		50	ug/L	N/A	N/A	46.1		92		80-120			
Toluene	T001690		50	ug/L	N/A	N/A	44.2		88		80-120			
1,2,3-Trichlorobenzene	T001690		50	ug/L	N/A	N/A	55.9		112		80-120			
1,2,4-Trichlorobenzene	T001690		50	ug/L	N/A	N/A	50.2		100		80-120			
I,I,I-Trichloroethane	T001690		50	ug/L	N/A	N/A	45.3		91		80-120			
1.1.2-Trichloroethane	T001690		50	ug/L	N/A	N/A	42.2		84		80-120			
Trichloroethene	T001690		50	ug/L	N/A	N/A	42.6		85		80-120			
Trichlorofluoromethane	T001690		50	ug/L	N/A	N/A	49.3		99		80-120			
1,2,3-Trichloropropane	T001690		50	ug/L	N/A	N/A	47.7		95		80-120			
1,2,4-Trimethylbenzene	T001690		50	ug/L	N/A	N/A	50.3		101		80-120			
1,3,5-Trimethylbenzene	T001690		50	ug/L	N/A	N/A	50.7		101		80-120			
Vinyl chloride	T001690		50	ug/L	N/A	N/A	49.3		99		80-120			
Xylenes, Total	T001690		150	ug/L	N/A	N/A	142		94		80-120			
Surrogate: Dibromofluoromethane	T001690			ug/L					107		80-120			
Surrogate: Toluene-d8	7001690			ug/L					103		80-120			
	enu a 1 4 0 4													

T001690

ug/L

Surrogate: 4-Bromofluorohenzene

80-120

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Mr. Tim Taugher

Work Order: Project:

WTH0096

1E-0909013 Racine, WI

Project Number: 1730 State Street

08/04/10 Received:

Reported: 08/12/10 08:55

			C	CV Q	CDAT	A							
Analyte		urce Spike		MDL	MRL	Result	Dup Result	% REC	Dup %REC	% REC	RPD	RPD Limit	Q
VOCs by SW8260B	Daten 10	Court Bever	Cinto	MIDE		Result	Result	REC	/UKEC	Canala	KID	Limit	- 0
Benzene	T001718	50	ug/L	N/A	N/A	51.2		102		80-120			
Bromobenzene	T001718	50	ug/L	N/A	N/A	50.5		101		80-120			
Bromochloromethane	T001718	50	ug/L	N/A	N/A	44.8		90		80-120			
Bromodichloromethane	T001718	50	ug/L	N/A	N/A	53.3		107		80-120			
Bromoform	T001718	50	ug/L	N/A	N/A	46.2		92		80-120			
Bromomethane	T001718	50	ug/L	N/A	N/A	38.8		78		60-140			
n-Butylbenzene	T001718	50	ug/L	N/A	N/A	53.3		107		80-120			
sec-Butylbenzene	T001718	50	ug/L	N/A	N/A	51.7		103		80-120			
err-Butylbenzene	T001718	50	ug/L	N/A	N/A	51.3		103		80-120			
Carbon Tetrachloride	T001718	50	ug/L	N/A	N/A	44.9		90		60-140			
Chlorobenzene	T001718	50	ug/L	N/A	N/A	49.8		100		80-120			
Chlorodibromomethane	T001718	50	ug/L	N/A	N/A	56.5		113		80-120			
Chloroethane	T001718	50	ug/L	N/A	N/A	44.4		89		60-140			
Chloroform	T001718	50	ug/L	N/A	N/A	44.2		88		80-120			
Chloromethane	T001718	50	ug/L	N/A	N/A	42.0		84		60-140			
2-Chlorotoluene	T001718	50	ug/L	N/A	N/A	51.8		104		80-120			
4-Chlorotoluene	T001718	50	ug/L	N/A	N/A	49.7		99		80-120			
1,2-Dibromo-3-chloropropane	T001718	50	ug/L	N/A	N/A	42.7		85		60-140			
1.2-Dibromoethane (EDB)	T001718	50	ug/L	N/A	N/A	49.6		99		80-120			
Dibromomethane	T001718	50	ug/L	N/A	N/A	49.7		99		80-120			
1.2-Dichlorobenzene	T001718	50	ug/L	N/A	N/A	49.3		99		80-120			
1,3-Dichlorobenzene	T001718	50	ug/L	N/A	N/A	48.4		97		80-120			
1.4-Dichlorobenzene	T001718	50	ug/L	N/A	N/A	47.0		94		80-120			
Dichlorodi fluoromethane	T001718	50	ug/L	N/A	N/A	43.9		88		60-140			
1,1-Dichloroethane	T001718	50	ug/L	N/A	N/A	45.7		91		80-120			
1,2-Dichloroethane	T001718	50	ug/L	N/A	N/A	43.2		86					
1,1-Dichloroethene	T001718	50	ug/L	N/A	N/A	44.1		88		80-120 80-120			
cis-1,2-Dichloroethene	T001718	50	ug/L	N/A	N/A	45.0		90		80-120			
trans-1,2-Dichloroethene	T001718	50	ug/L	N/A	N/A	43.3		87		80-120			
	T001718	50		N/A	N/A	51.5		103					
1,2-Dichloropropane	T001718	50	ug/L	N/A						80-120			
1,3-Dichloropropane	T001718	50	ug/L	N/A	N/A N/A	50.7 46.9		101 94		80-120			
2,2-Dichloropropane 1,1-Dichloropropene	T001718	50	ug/L ug/L	N/A	N/A	45.4		91		60-140 80-120			
			_										
cis-1,3-Dichloropropene	T001718 T001718	50	ug/L	N/A	N/A	54.7		109		80-120			
trans-1,3-Dichloropropene 2.3-Dichloropropene		50	ug/L	N/A	N/A	54.6		109		80-120			
	T001718	50	ug/L	N/A	N/A	54.3		109		80-120			
Isopropyl Ether	T001718 T001718	50	ug/L	N/A	N/A	46.6		93		80-120			
Ethylbenzene		50	ug/L	N/A	N/A	52.0		104		80-120			
Hexachlorobutadiene	T001718	50	ug/L	N/A	N/A	46.3		93		60-140			
Isopropylbenzene	T001718	50	ug/L	N/A	N/A	53.9		108		80-120			
p-Isopropyltoluene	T001718	50	ug/L	N/A	N/A	53.8		108		80-120			
Methylene Chloride	T001718	50	ug/L	N/A	N/A	43.9		88		80-120			
Methyl tert-Butyl Ether	T001718	50	ug/L	N/A	N/A	44.3		89		80-120			
Naphthalene	T001718	50	ug/L	N/A	N/A	43.8		88		60-140			
n-Propylbenzene	T001718	50	ug/L	N/A	N/A	53.5		107		80-120			

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Mr. Tim Taugher

Work Order: Project:

Project Number:

WTH0096

1730 State Street

1E-0909013 Racine, WI

Received:

08/04/10

Reported:

08/12/10 08:55

				C	CV QC	DAT	A							
Analyte	Seq/ Batch	Source Result	Spike Level	Units	MDL	MRL	Result	Dup Result	% REC	Dup %REC	% REC	RPD	RPD Limit	Q
VOCs by SW8260B	Daten	1103011	20.01	Citto	11120		resure	1405041	1120	701420	2111113	144 17	211111	
Styrene	T001718		50	ug/L	N/A	N/A	54.6		109		80-120			
1,1,1,2-Tetrachloroethane	T001718		50	ug/L	N/A	N/A	53.2		106		80-120			
1,1,2,2-Tetrachloroethane	T001718		50	ug/L	N/A	N/A	48.6		97		80-120			
Tetrachloroethene	T001718		50	ug/L	N/A	N/A	50.4		101		80-120			
Toluene	T001718		50	ug/L	N/A	N/A	50.4		101		80-120			
1,2,3-Trichlorobenzene	T001718		50	ug/L	N/A	N/A	45.9		92		80-120			
1.2.4-Trichlorobenzene	T001718		50	ug/L	N/A	N/A	46.1		92		80-120			
1,1,1-Trichloroethane	T001718		50	ug/L	N/A	N/A	46.7		93		80-120			
1.1,2-Trichloroethane	T001718		50	ug/L	N/A	N/A	50,6		101		80-120			
Trichloroethene	T001718		50	ug/L	N/A	N/A	50.1		100		80-120			
Trichlorofluoromethane	T001718		50	ug/L	N/A	N/A	44.3		89		80-120			
1,2,3-Trichloropropane	T001718		50	ug/L	N/A	N/A	48.0		96		80-120			
1,2.4-Trunethylbenzene	T001718		50	ug/L	N/A	N/A	53.1		106		80-120			
1.3,5-Trunethylbenzene	T001718		50	ug/L	N/A	N/A	53.4		107		80-120			
Vinyl chloride	T001718		50	ug/L	N/A	N/A	43.6		87		80-120			
Xylenes, Total	T001718		150	ug/L	N/A	N/A	157		105		80-120			
Surrogate: Dibromofluoromethane	7001718			ug/L					85		80-120			
Surrogate: Toluene-d8	T001718			ug/L					97		80-120			
Surrogate: 4-Bromofluorohenzene	7001718			ug/L					101		80-120			

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186 Mr. Tim Taugher Work Order:

WTH0096

1E-0909013 Racine, WI

Received:

08/04/10

Project: Project Number:

1730 State Street

Reported: 08/12/10 08:55

	MA	TRIX	SPIKE	/MATI	RIX SP	IKE D	UPLIC	CATE	QC DA	ATA				
Ampleto	Seq/ Batch	Source Result		Units	MDL	MRL	Dogult	Dup Result	% REC	Dup %REC	% REC	DDD	RPD	0
Analyte VOCs by SW8260B	Daten	Result	Level	Units	MDL	171142	Resun	Kesuit	REC	/OKEC	Limits	RPD	Limit	Q
QC Source Sample: WTH0028-22														
Benzene	10H0098	< 0.20	50	ug/L	0.20	2.0	45.2	44.6	90	89	80-120	1	20	
Bromobenzene	10H0098	< 0.20	50	ug/L	0.20	2.0	48.5	47.3	97	95	80-120	3	24	
Bromochloromethane	10H0098	< 0.50	50	ug/L	0.50	2.0	44.4	43.4	89	87	80-120	2	14	
Bromodichloromethane	10H0098	< 0.20	50	ug/L	0.20	2.0	47.4	46.2	95	92	80-120	3	19	
Bromoform	10H0098	< 0.20	50	ug/L	0.20	5.0	51.7	49.6	103	99	80-120	4	26	
Bromomethane	10H0098	<0.50	50	ug/L	0.50	5.0	59.5	59.0	119	118	60-140	1	18	
n-Butylbenzene	10H0098	<0.20	50	ug/L	0.20	2.0	53.9	52.4	108	105	80-120	3	19	
sec-Butylbenzene	10H0098	<0.25	50	ug/L	0.25	2.0	53.6	51.8	107	104	80-120	4	19	
tert-Butylbenzene	10H0098	<0.20	50	ug/L	0.20	2.0	51.7	50.0	103	100	80-120	3	17	
Carbon Tetrachloride	10H0098	< 0.80	50	ug/L	0.80	2.0	49.0	47.5	98	95	60-140	3	17	
Chlorobenzene	10H0098	<0.20	50	ug/L	0.20	2.0	48.2	47.4	96	95	80-120	2	16	
Chlorodibromomethane	10H0098	<0.20	50	ug/L	0.20	2.0	46.2	45.3	92	91	80-120	2	23	
Chloroethane	10H0098	<1.0	50	ug/L	1.0	5.0	55.0	52.6	110	105	60-140	4	17	
Chloroform	10H0098	<0.20	50	ug/L ug/L	0.20	2.0	46.6	46.0	93	92	80-140	1	17	
	10H0098	0.320	50	ug/L	0.30	2.0	46.7	45.8	93	91	60-140	2	16	
Chloromethane 2-Chlorotoluene	10H0098	<0.50	50	-		2.0	50.7	49.5	101	99	80-140	2		
4-Chlorotoluene	10H0098	<0.20	50	ug/L	0.50							3	26	
				ug/L	0.20	2,0	51.3 47.8	49.9	103	100	80-120		26	
1,2-Dibromo-3-chloropropane	10H0098	<0.50	50	ug/L	0.50	2.0		47.0	96	94	60-140	2	26	
I.2-Dibromoethane (EDB)	10H0098	<0.20	50	ug/L	0.20	2.0	48.3	47.9	97	96	80-120	I	19	
Dibromomethane	10H0098	<0.20	50	ug/L	0.20	2.0	46.4	45.3	93	91	80-120	3	26	
1.2-Dichlorobenzene	10H0098	<0.20	50	ug/L	0.20	2.0	51.7	50.4	103	101	80-120	3	23	
1.3-Dichlorobenzene	10H0098	<0.20	50	ug/L	0.20	2.0	50.7	49.3	101	99	80-120	3	21	
1.4-Dichlorobenzene	10H0098	< 0.50	50	ug/L	0.50	2.0	50.2	48.7	100	97	80-120	3	21	
Dichlorodifluoromethane	10H0098	<0.50	50	ug/L	0.50	2.0	54.6	53.7	109	107	60-140	2	19	
1,1-Dichloroethane	10H0098	<0.50	50	ug/L	0.50	2.0	48.3	47.5	97	95	80-120	2	18	
1,2-Dichloroethane	10H0098	<0.50	50	ug/L	0.50	2.0	51.2	50.3	102	101	80-120	2	19	
1,1-Dichloroethene	10H0098	< 0.50	50	ug/L	0.50	2.0	49.8	48.4	100	97	80-120	3	18	
cis-1,2-Dichloroethene	10H0098	1.09	50	ug/L	0.50	2.0	45.2	44.6	88	87	80-120	1	17	
rans-1,2-Dichloroethene	10H0098	< 0.50	50	ug/L	0.50	2.0	44.9	43.6	90	87	80-120	3	23	
1.2-Dichloropropane	10H0098	< 0.50	50	ug/L	0.50	2.0	45.6	44.6	91	89	80-120	2	18	
1.3-Dichloropropane	10H0098	< 0.25	50	ug/L	0.25	2.0	44.7	44.5	89	89	80-120	1	24	
2,2-Dichloropropane	10H0098	< 0.50	50	ug/L	0.50	2.0	52.3	51.5	105	103	60-140	2	16	
1.1-Dichloropropene	10H0098	< 0.50	50	ug/L	0.50	2.0	48.3	47.2	97	94	80-120	2	16	
cis-1,3-Dichloropropene	10H0098	< 0.20	50	ug/L	0.20	2.0	46.2	44.4	92	89	80-120	4	20	
trans-1,3-Dichloropropene	10H0098	< 0.20	50	ug/L	0.20	2.0	48.0	46.6	96	93	80-120	3	26	
Isopropyl Ether	10H0098	< 0.50	50	ug/L	0.50	2.0	43,8	42.8	88	86	80-120	2	20	
Ethylbenzene	10H0098	< 0.50	50	ug/L	0.50	2.0	49.9	48.7	100	97	80-120	3	16	
Hexachlorobutadiene	10H0098	< 0.50	50	ug/L	0.50	2.0	64.9	61.5	130	123	60-140	5	20	
Isopropylbenzene	10H0098	< 0.20	50	ug/L	0.20	2.0	51.9	50.7	104	101	80-120	2	22	
p-Isopropyltoluene	10H0098	< 0.20	50	ug/L	0.20	2.0	56.1	53.9	112	108	80-120	4	20	
Methylene Chloride	10H0098	<1.0	50	ug/L	1.0	2.0	44.2	43.5	88	87	80-120	1	24	
Methyl tert-Butyl Ether	10H0098	< 0.50	50	ug/L	0.50	2.0	49.5	49.6	99	99	80-120	0	18	
Naphthalene	10H0098	< 0.25	50	ug/L	0.25	5.0	53,7	54.4	107	109	60-140	1	24	
n-Propylbenzene	10H0098	< 0.50	50	ug/L	0.50	2.0	51.9	50.4	104	101	80-120	3	23	
Styrene	10H0098	<0.50	50	ug/L	0.50	5.0	52.3	51.0	105	102	80-120	3	14	

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Mr. Tim Taugher Work Order:

WTH0096

Received:

08/04/10

Project: Project Number:

1E-0909013 Racine, WI 1730 State Street

Rep

Reported: 08/12/10 08:55

	IVIA	TRIX	STIKE	IVIAII	MIA SI	IKE D	UI LIC	AIL	ZC D	A I A				
	Seq/	Source	-					Dup	%	Dup	% REC		RPD	
Analyte	Batch	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
VOCs by SW8260B														
QC Source Sample: WTH0028-22	10110008	-0.25	50	/1	0.25	2.0	51.1	49.7	102	99	80-120	3	17	
1.1.1,2-Tetrachloroethane	10H0098	<0.25	50	ug/L	0.25	2.0	45.2		90	90	80-120	0	26	
1.1.2.2-Tetrachloroethane	10H0098	< 0.20	50	ug/L	0.20	2.0	50.2	45.2		98	80-120	2	18	
Tetrachloroethene	10H0098	< 0.50	50	ug/L	0.50				100			2		
Toluene	10H0098	< 0.50	50	ug/L	0.50	2.0	46.9	45.8		92	80-120		18	
1.2.3-Trichlorobenzene	10H0098	<0.25	50	ug/L	0.25	2.0	58.8	58.3	118	117	80-120	1	24	
1.2.4-Trichlorobenzene	10H0098	<0.25	50	ug/L	0.25	2.0	54.7	53.0	109	106	80-120	3	21	
1.1.1-Trichloroethane	10H0098	<0.50	50	ug/L	0.50	2.0	48.8	47.8	98	96	80-120	2	19	
1.1.2-Trichloroethane	10H0098	<0.25	50	ug/L	0.25	2.0	43.3	42.7	87	85	80-120	1	28	
Frichloroethene	10H0098	<0.20	50	ug/L	0.20	2.0	46.5	44.7	93	89	80-120	4	18	
Frichlorofluoromethane	10H0098	<0.50	50	ug/L	0.50	2.0	53.6	51.7	107	103	80-120	4	19	
.2,3-Trichloropropane	10H0098	< 0.50	50	ug/L	0.50	2.0	48.9	48.5	98	97	80-120	1	26	
1,2,4-Trimethylbenzene	10H0098	<0.20	50	ug/L	0.20	2.0	53.2	52.0	106	104	80-120	2	24	
.3.5-Trimethylbenzene	10H0098	< 0.20	50	ug/L	0.20	2.0	53.4	52.2	107	104	80-120	2	24	
Vinyl chloride	10H0098	< 0.20	50	ug/L	0.20	2.0	53.3	52.1	107	104	80-120	2	17	
Xylenes, Total	10H0098	< 0.50	150	ug/L	0.50	2.0	152	148	101	99	80-120	3	13	
Surrogate: Dibromofluoromethane	10H0098			ug/L					106	104	80-120			
Surrogate: Toluene-d8	10H0098			ug/L					103	102	80-120			
Surrogate: 4-Bromofluorohenzene	10H0098			ug/L					98	97	80-120			
QC Source Sample: WTH0096-03														
Benzene	10H0174	<0.20	100	ug/L	0.40	4.0	105	109	105	109	80-120	3	20	
Bromobenzene	10H0174	< 0.20	100	ug/L	0.40	4.0	103	106	103	106	80-120	3	24	
Bromochloromethane	10H0174	< 0.50	100	ug/L	1.0	4.0	101	103	101	103	80-120	2	14	
Bromodichloromethane	10H0174	< 0.20	100	ug/L	0.40	4.0	109	114	109	114	80-120	4	19	
Bromoform	10H0174	< 0.20	100	ug/L	0.40	10	96.4	101	96	101	80-120	4	26	
Bromomethane	10H0174	< 0.50	100	ug/L	1.0	10	103	111	103	111	60-140	7	18	
n-Butylbenzene	10H0174	< 0.20	100	ug/L	0.40	4.0	120	116	120	116	80-120	3	19	
sec-Butylbenzene	10H0174	< 0.25	100	ug/L	0.50	4.0	114	112	114	112	80-120	1	19	
tert-Butylbenzene	10H0174	< 0.20	100	ug/L	0.40	4.0	112	113	112	113	80-120	0	17	
Carbon Tetrachloride	10H0174	< 0.80	100	ug/L	1.6	4.0	110	108	110	108	60-140	2	17	
Chlorobenzene	10H0174	< 0.20	100	ug/L	0.40	4.0	103	106	103	106	80-120	3	16	
Chlorodibromomethane	10H0174	< 0.20	100	ug/L	0.40	4.0	114	118	114	118	80-120	3	23	
Chloroethane	10H0174	<1.0	100	ug/L	2.0	10	105	108	105	108	60-140	3	17	
Chloroform	10H0174	<0.20	100	ug/L	0.40	4.0	102	103	102	103	80-120	1	14	
Chloromethane	10Н0174	< 0.30	100	ug/L	0,60	4.0	100	103	100	103	60-140	3	16	
2-Chlorotoluene	10H0174	<0.50	100	ug/L	1.0	4.0	110	110	110	110	80-120	1	26	
4-Chlorotoluene	10H0174	<0.20	100	ug/L	0.40	4.0	107	106	107	106	80-120	0	26	
1.2-Dibromo-3-chloropropane	10H0174	<0.50	100	ug/L	1.0	4.0	94.7	97.2	95	97	60-140	3	26	
1,2-Dibromoethane (EDB)	10H0174	<0.20	100	ug/L	0.40	4.0	103	107	103	107	80-120	4	19	
Dibromomethane (EBB)	10H0174	<0.20	100	ug/L	0.40	4.0	101	104	101	104	80-120	3	26	
1.2-Dichlorobenzene	10H0174	<0.20	100	ug/L	0.40	4.0	104	105	104	105	80-120	1	23	
1.3-Dichlorobenzene	10H0174	<0.20	100	ug/L	0.40	4.0	104	103	103	103	80-120	i	21	
1.3-Dichlorobenzene	10H0174	<0.20	100	ug/L	1.0	4.0	101	102	101	102	80-120	1	21	
Dichlorodifluoromethane		< 0.50	100	ug/L	0.1	4.0	110	102	110	106	60-140	3	19	
	10H0174			_			105		105		80-140	2	18	
1,1-Dichloroethane	10H0174 10H0174	< 0.50	100	ug/L ug/L	1.0	4.0	101	106	101	106	80-120	2	19	

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Work Order:

Project Number:

WTH0096

1730 State Street

Received: 08/04/10

Project:

1E-0909013 Racine, WI

Reported:

08/12/10 08:55

Mr. Tim Taugher

	C /	0	0 '1						0.4		0/ 000		DDD	
Analyte	Seq/ Batch	Source Result	-	Units	MDL	MRL	Result	Dup Result	% REC	Dup %REC	% REC	RPD	RPD Limit	Q
VOCs by SW8260B														
QC Source Sample: WTH0096-03														
1,1-Dichloroethene	10H0174	<0.50	100	ug/L	1.0	4.0	107	105	107	105	80-120	1	18	
cis-1,2-Dichloroethene	I0H0I74	1.32	100	ug/L	1.0	4.0	104	106	103	105	80-120	2	17	
trans-1.2-Dichloroethene	IOH0174	< 0.50	100	ug/L	1.0	4.0	100	102	100	102	80-120	2	23	
1,2-Dichloropropane	10H0174	<0.50	100	ug/L	1.0	4.0	104	107	104	107	80-120	3	18	
1.3-Dichloropropane	10H0174	< 0.25	100	ug/L	0.50	4.0	103	107	103	107	80-120	4	24	
2,2-Dichloropropane	10H0174	< 0.50	100	ug/L	1.0	4.0	111	111	111	111	60-140	0	16	
I, I-Dichloropropene	10H0174	< 0.50	001	ug/L	1.0	4.0	107	108	107	108	80-120	1	16	
cis-1,3-Dichloropropene	10H0174	<0.20	001	ug/L	0.40	4.0	110	116	110	116	80-120	5	20	
trans-1,3-Dichloropropene	10H0174	< 0.20	100	ug/L	0.40	4.0	112	116	112	116	80-120	4	26	
Isopropyl Ether	10H0174	< 0.50	100	ug/L	1.0	4.0	104	108	104	108	80-120	3	20	
Ethylbenzene	10H0174	< 0.50	100	ug/L	1.0	4.0	110	111	110	111	80-120	2	16	
Hexachlorobutadiene	10H0174	< 0.50	100	ug/L	1.0	4.0	106	101	106	101	60-140	6	20	
Isopropylbenzene	10H0174	< 0.20	100	ug/L	0.40	4.0	117	116	117	116	80-120	1	22	
p-Isopropyltoluene	10H0174	<0.20	100	ug/L	0.40	4.0	118	116	118	116	80-120	ı	20	
Methylene Chloride	10H0174	<1.0	100	ug/L	2.0	4.0	99.3	102	99	102	80-120	2	24	
Methyl tert-Butyl Ether	10H0174	<0.50	100	ug/L	1.0	4.0	101	103	101	103	80-120	3	18	
Naphthalene	10H0174	<0.25	100	ug/L	0.50	10	95.7	96.4	96	96	60-140	I	24	В
n-Propylbenzene	10H0174	< 0.50	100	ug/L	1.0	4.0	114	114	114	114	80-120	0	23	
Styrene	10H0174	< 0.50	100	ug/L	1.0	10	112	115	112	115	80-120	2	14	
1.1.1.2-Tetrachloroethane	10H0174	< 0.25	100	ug/L	0.50	4.0	109	113	109	113	80-120	4	17	
1.1.2.2-Tetrachloroethane	10H0174	< 0.20	100	ug/L	0.40	4.0	103	106	103	106	80-120	3	26	
Tetrachloroethene	10H0174	<0.50	100	ug/L	1.0	4.0	111	111	111	111	80-120	0	18	
Toluene	10H0174	<0.50	100	ug/L	1.0	4.0	106	107	106	107	80-120	i	18	
				-			98.9	98.8	99	99	80-120	0		В
1,2,3-Trichlorobenzene	10H0174	<0.25	100	ug/L	0.50	4.0							24	
1,2,4-Trichlorobenzene	10H0174	<0.25	100	ug/L	0.50	4.0	98.0	97.7	98	98	80-120	0	21	В
1,1,1-Trichloroethane	10H0174	<0.50	100	ug/L	1.0	4.0	113	111	113	111	80-120	2	19	
1.1.2-Trichloroethane	10H0174	<0.25	100	ug/L	0.50	4.0	102	105	102	105	80-120	3	28	
Trichloroethene	10H0174	<0.20	100	ug/L	0.40	4.0	105	106	105	106	80-120	1	18	
Trichlorofluoromethane	10H0174	<0.50	100	ug/L	1.0	4.0	111	107	111	107	80-120	4	19	
1,2,3-Trichloropropane	10H0174	<0.50	100	ug/L	1.0	4.0	102	104	102	104	80-120	2	26	
1,2,4-Trimethylbenzene	10H0174	<0.20	100	ug/L	0.40	4.0	112	113	112	113	80-120	1	24	
1,3.5-Trimethylbenzene	10H0174	<0.20	100	ug/L	0.40	4.0	113	114	113	114	80-120	1	24	
Vinyl chloride	10H0174	< 0.20	100	ug/L	0.40	4.0	103	104	103	104	80-120	1	17	
Xylenes, Total	10H0174	< 0.50	300	ug/L	1.0	4.0	332	337	111	112	80-120	2	13	
Surrogate: Dibromofluoromethane	10H0174			ug/L					96	97	80-120			
Surrogate: Toluene-d8	10H0174			ug/L					101	100	80-120			
Surrogate: 4-Bromofluorobenzene	10H0174			ug/L					101	101	80-120			
QC Source Sample: WTH0206-03														
Benzene	10H0218	< 0.20	50	ug/L	0.20	2.0	51.5	51.0	103	102	80-120	1	20	
Bromobenzene	10H0218	< 0.20	50	ug/L	0.20	2.0	48.7	49,3	97	99	80-120	I	24	
Bromochloromethane	10H0218	< 0.50	50	ug/L	0.50	2.0	44.4	43.8	89	88	80-120	1	14	
Bromodichloromethane	10H0218	< 0.20	50	ug/L	0.20	2.0	52.2	52.0	104	104	80-120	0	19	
Bromoform	10H0218	< 0.20	50	ug/L	0.20	5.0	45.4	45.8	91	92	80-120	1	26	
Bromomethane	10H0218	< 0.50	50	ug/L	0.50	5.0	43.9	43.4	88	87	60-140	1	18	
n-Butylbenzene	10H0218	< 0.20	50	ug/L	0.20	2.0	54.9	52.6	110	105	80-120	4	19	

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Work Order:

WTH0096

Received:

08/04/10

Project:

1E-0909013 Racine, WI

Reported:

08/12/10 08:55

Mr. Tim Taugher

Project Number: 1730 State Street

	C ,	C	C					D.	01	D	0/ 000		nnn	
1 1 4	Seq/	Source		II-it-	MDI	MRL	Danula	Dup	% REC	Dup %REC	% REC	nnn	RPD	Q
Analyte	Batch	Result	Level	Units	MDL	MIKL	Result	Result	KEC	70REC	Limits	RPD	Limit	V
VOCs by SW8260B														
QC Source Sample: WTH0206-03 sec-Butylbenzene	10H0218	< 0.25	50	ug/L	0.25	2.0	52.6	51.3	105	103	80-120	2	19	
ert-Butylbenzene	10H0218	<0.20	50	ug/L	0.20	2.0	52.5	51.4	105	103	80-120	2	17	
Carbon Tetrachloride	10H0218	< 0.80	50	ug/L	0.80	2,0	46.6	45.5	93	91	60-140	2	17	
Chlorobenzene	10H0218	<0.20	50	ug/L	0.20	2.0	49.7	49.0	99	98	80-120	1	16	
Chlorodibromomethane	10H0218	<0.20	50	ug/L	0.20	2.0	54.7	54.5	109	109	80-120	0	23	
Chloroethane	10H0218	<1.0	50	ug/L	1.0	5.0	46.2	44.2	92	88	60-140	5	17	
Chloroform	10H0218	<0.20	50	ug/L	0.20	2.0	43.7	43.3	87	87	80-120	1	14	
Chloromethane	10H0218	<0.30	50	ug/L	0.30	2.0	44.1	44.2	88	88	60-140	0	16	
	10H0218	<0.50	50	ug/L	0.50	2.0	51.0	51.1	102	102	80-120	0	26	
2-Chlorotoluene			50		0.20	2.0	49.7	49.3	99	99	80-120	l	26	
f-Chlorotoluene	10H0218	< 0.20		ug/L					84		60-140	3	26	
1.2-Dibromo-3-chloropropane	10H0218	<0.50	50	ug/L	0.50	2.0	42.2	41.0		82		0		
1.2-Dibromoethane (EDB)	10H0218	<0.20	50	ug/L	0.20	2.0	49.0	49.0	98	98	80-120		19	
Dibromomethane	10H0218	<0.20	50	ug/L	0.20	2.0	48.6	48.6	97	97	80-120	0	26	
1,2-Dichlorobenzene	10H0218	<0.20	50	ug/L	0.20	2.0	48.3	47.5	97	95	80-120	2	23	
1,3-Dichlorobenzene	10H0218	<0.20	50	ug/L	0.20	2.0	47.6	47.0	95	94	80-120	1	21	
1.4-Dichlorobenzene	10H0218	<0.50	50	ug/L	0.50	2.0	47.1	46.4	94	93	80-120	I	21	
Dichlorodifluoromethane	10H0218	<0.50	50	ug/L	0.50	2.0	44.8	42.7	90	85	60-140	5	19	
1.1-Dichloroethane	10H0218	< 0.50	50	ug/L	0.50	2.0	45.5	45.3	91	91	80-120	0	18	
1.2-Dichloroethane	10H0218	< 0.50	50	ug/L	0.50	2.0	41.8	41.9	84	84	80-120	0	19	
1,1-Dichloroethene	10H0218	< 0.50	50	ug/L	0.50	2.0	45.4	45.0	91	90	80-120	1	18	
eis-1,2-Dichloroethene	10H0218	< 0.50	50	ug/L	0.50	2.0	45.4	44.8	91	90	80-120	1	17	
rans-1,2-Dichloroethene	10H0218	< 0.50	50	ug/L	0.50	2.0	44.0	43.8	88	88	80-120	0	23	
1,2-Dichloropropane	10H0218	< 0.50	50	ug/L	0.50	2.0	51.5	51.3	103	103	80-120	0	18	
1.3-Dichloropropane	10H0218	< 0.25	50	ug/L	0.25	2.0	49.9	49.2	100	98	80-120	ì	24	
2,2-Dichloropropane	10H0218	< 0.50	50	ug/L	0.50	2.0	48.6	47.7	97	95	60-140	2	16	
1.1-Dichloropropene	10H0218	< 0.50	50	ug/L	0.50	2.0	47.0	45.7	94	91	80-120	3	16	
cis-1,3-Dichloropropene	10H0218	< 0.20	50	ug/L	0.20	2.0	54.1	54.4	108	109	80-120	1	20	
trans-1,3-Dichloropropene	10H0218	< 0.20	50	ug/L	0.20	2.0	53.7	54.2	107	108	80-120	1	26	
Isopropyl Ether	10H0218	< 0.50	50	ug/L	0.50	2.0	46.1	45.9	92	92	80-120	0	20	
Ethylbenzene	10H0218	< 0.50	50	ug/L	0.50	2.0	52.5	51.8	105	104	80-120	1	16	
Hexachlorobutadiene	10H0218	< 0.50	50	ug/L	0.50	2.0	51.1	47.3	102	95	60-140	8	20	
Isopropylbenzene	10H0218	< 0.20	50	ug/L	0.20	2.0	54.4	54.3	109	109	80-120	0	22	
p-Isopropyltoluene	10H0218	< 0.20	50	ug/L	0.20	2.0	54.7	53.9	109	108	80-120	1	20	
Methylene Chloride	10H0218	<1.0	50	ug/L	1.0	2.0	43.7	43.9	87	88	80-120	0	24	
Methyl tert-Butyl Ether	10H0218	< 0.50	50	ug/L	0.50	2.0	43.3	43.4	87	87	80-120	0	18	
Naphthalene	10H0218	< 0.25	50	ug/L	0.25	5.0	42.5	42.7	85	85	60-140	1	24	
n-Propylbenzene	10H0218	< 0.50	50	ug/L	0.50	2.0	53.5	53.2	107	106	80-120	1	23	
Styrene	10H0218	< 0.50	50	ug/L	0.50	5.0	54.0	53.8	108	108	80-120	0	14	
1,1,1,2-Tetrachloroethane	10H0218	<0.25	50	ug/L	0.25	2.0	52.5	52.1	105	104	80-120	1	17	
1,1,2,2-Tetrachloroethane	10H0218	<0.20	50	ug/L	0.20	2.0	48.0	47.7	96	95	80-120	ı	26	
Tetrachloroethene	10H0218	<0.50	50	ug/L	0.50	2.0	51.4	50.8	103	102	80-120	1	18	
Toluene	10H0218	<0.50	50	ug/L	0.50	2.0	50.5	50.0	101	100	80-120	,	18	
1,2,3-Trichlorobenzene	10H0218	<0.25	50	ug/L	0.25	2.0	44.8	44.7	90	89	80-120	0	24	
1,2,3-Trichlorobenzene	10H0218	<0.25	50	ug/L	0.25	2.0	45.3	44.6	91	89	80-120	2	21	
1.1.1-Trichloroethane	10H0218	< 0.50	50	ug/L	0.50	2.0	47.9	46.9	96	94	80-120	2	19	

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Mr. Tim Taugher

Work Order:

WTH0096

1E-0909013 Racine, WI

Received:

08/04/10

Project: Project Number:

1730 State Street

Reported:

08/12/10 08:55

	Seq/	Source				MDI		Dup	%		% REC		RPD	-
Analyte	Batch	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
VOCs by SW8260B														
QC Source Sample: WTH0206-03														
1,1,2-Trichloroethane	10H0218	< 0.25	50	ug/L	0.25	2.0	49.8	49.1	100	98	80-120	1	28	
Trichloroethene	10H0218	< 0.20	50	ug/L	0.20	2.0	50.0	50.0	100	100	80-120	0	18	
Trichlorofluoromethane	10H0218	< 0.50	50	ug/L	0.50	2.0	45.9	44.9	92	90	80-120	2	19	
1,2,3-Trichloropropane	10H0218	< 0.50	50	ug/L	0.50	2.0	46.4	46.0	93	92	80-120	1	26	
1.2.4-Trimethylbenzene	10H0218	< 0.20	50	ug/L	0.20	2.0	52.7	52.4	105	105	80-120	1	24	
1,3,5-Trimethylbenzene	10H0218	< 0.20	50	ug/L	0.20	2.0	53.2	53.0	106	106	80-120	0	24	
Vinyl chloride	10H0218	< 0.20	50	ug/L	0.20	2.0	45.3	44.4	91	89	80-120	2	17	
Xylenes, Total	10H0218	< 0.50	150	ug/L	0.50	2.0	158	156	105	104	80-120	1	13	
Surrogate: Dibromofluoromethane	10H0218			ug/L					85	85	80-120			
Surrogate: Toluene-d8	10H0218			ug/L					98	97	80-120			
Surrogate: 4-Bromofluorobenzene	10H0218			ug/L					101	102	80-120			

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN N8 W22350 Johnson Road Waukesha, WI 53186

Work Order: Project:

Project Number:

WTH0096

1E-0909013 Racine, WI

Received:

08/04/10

1730 State Street

08/12/10 08:55 Reported:

CERTIFICATION SUMMARY

TestAmerica Watertown

Mr. Tim Taugher

Method	Matrix	Nelac	Wisconsin
SW 8260B	Water - NonPotable	Y	v
3 W 820UB	water - NonPolable	^	Λ.

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN N8 W22350 Johnson Road Waukesha, WI 53186 Mr. Tim Taugher

Work Order: Project:

Project Number:

WTH0096

1E-0909013 Racine, WI

Received: Reported: 08/04/10 08/12/10 08:55

1730 State Street

DATA QUALIFIERS AND DEFINITIONS

B Analyte was detected in the associated Method Blank.

J. Results reported between the Method Detection Limit (MDL) and Limit of Quantitation (LOQ) are less certain than results at or above the LOQ.

J Associa	ates, I	nc.		CHAIN-OF-	CUSTODY			S	te (an	nMUL	ia l	
		tel: 414-544-011			_							. +
	92807					-	720)	Addre	ss / / 50	2007	2 77776	7/
						•	720)		Ray	ing 6	Inna	
					_ 1100i	•			NUL	1115, 1	(13(V/)3	1471
					POSSIBLE H	AZARDS:						
house			Project Manager	Tin T	ausher		Project Nu	mber /E-	090901	13		
Vica			Lab Contact	Dan M.	,		Lab Job Ni			1,00		191 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
,		, ,	/ //	777	Analysis Re	quired	///	///		/	\$25 · 1	
, (motor of the section)	1.00 Males Males (1.00)	Para la la la la la la la la la la la la la						Manufacture of the second	Sam Sam	Due Date		Temp
W	eldio	AM e)	X					30	Hel	510		
		AM	X						He/		A) District the second	
	1 .	PM	X									
		PM	X					3D	1401	STO	Mary Markey	
		PM	X					3D	Hel	510	TANK THE SOLFT.	
	1 ,	â	X					30	Hel	570		
	,	AM ©	X						411			
1	1. 1.	AM	X									- ***
		ÂM	X									
		AM PM										
		AM PM										52
		AM PM										
		= 2 oz/ 60 ml				G = poly bag			1=	1	Agra Carrage	1,1811,110.80
4//	Tim	ne Received B	DOM DOM	F = 250 m	INVOICE TO	Ser Proje	ect Manager		report	то: 's <u>Ел</u> д	ineerin	same PM
7, 4,		AM PM		7		,		Page _				
		AM						,	-	111111		rugher
1	A1, Waukesha, WI 5 e 607, Anaheim, CA umbia, MD 21046 Dallas, TX 75220 MI 53718 lanta, GA,30360 MI GUSA WILL AND WILL AN	A1, Waukesha, WI 53186 e 607, Anaheim, CA 92807 umbia, MD 21046 Dallas, TX 75220 MI 53718 lanta, GA,30360 W 8/3/10 W 8/3/10 W 8/3/10 W 8/3/10 W 8/3/10 W 8/3/10 W 8/3/10 W 8/3/10 W 8/3/10 W 8/3/10 W 8/3/10 W 8/3/10	e 607, Anaheim, CA 92807 umbia, MD 21046 Dallas, TX 75220 MI 53718 lanta, GA,30360 Lei: 410-312-995 tel: 214-358-588 tel: 608-223-185 tel: 608-223-185 tel: 770-458-335 Louss	A1, Waukesha, WI 53186 tel: 414-544-0118 fax: 414 tel: 714-779-0052 fax: 414 Dallas, TX 75220 tel: 410-312-9950 fax: 410 Dallas, TX 75220 tel: 608-223-1853 fax: 608 fax: 770 India, MD 21046 tel: 608-223-1853 fax: 608 fax: 770 India, GA,30360 Tel: 770-458-3399 fax: 770 India, GA,30360 I	A1, Waukesha, WI 53186 tel: 414-544-0118 fax: 414-549-5868 fae 607, Anaheim, CA 92807 tel: 714-779-0052 fax: 714-779-0068 fax: 714-779-0068 fax: 714-779-0068 fax: 714-779-0068 fax: 410-312-9955 fax: 410-312-9955 fax: 410-312-9955 fax: 610-323-1853 fax: 608-223-1854 fax: 608-223-1854 fax: 608-223-1854 fax: 608-223-1854 fax: 70-458-3399 fax: 770-458-3998 AM Project Manager Lab Contact Dan M. ###################################	Markesha, WI 53186 tel: 414-544-0118 fax: 414-549-5868 clory, Anabelin, CA 92807 tel: 714-779-0052 fax: 714-779-0068 clory confirmation, MD 21046 tel: 410-312-9850 fax: 410-312-9850 confirmation, MD 21046 tel: 410-312-9850 fax: 410-312-9850 confirmation, MD 21046 tel: 2410-388-5885 fax: 410-312-9850 RUSH RUSH Market	Mankesha, Wi 53186 tol: 414-544-0118 fax: 414-549-5868 tol: 714-779-0082 fax: 714-779-0082 closure sample tol: 410-312-9856 tol: 410-312-9856 closure sample confirmation required (NR 2016) tol: 214-358-5885 tol: 214-358-5885 tol: 214-358-5885 tol: 214-358-5885 tol: 214-358-5885 tol: 608-223-1854 tol: 608-223-1854 tol: 608-223-1854 tol: 608-223-1854 tol: 608-223-1854 tol: 608-223-1854 tol: 608-223-1854 tol: 608-223-1854 tol: 608-223-1854 tol: 608-223-1854 tol: 770-458-3998 POSSIBLE HAZARDS:	September Sept	Address	1.	Address M. S186 M. 41-44-40-118 M. 41-45-5988 M. 41-45-40-5988 M. 41-45-40-59	Mail Mail

W 70090

Cooler Receipt Log

Work Order(s): WTH0096 Client Name/Project: 600 # of Coolers:	
did samples arrive?	
hat was the condition of custody seals? Intact Broken Not present	-
Thou present	
me cooler was opened: 84/10 1435 By: Mattyada-5	
	٠
Received on ice? Yes No	
es this Project require RUSH turn around?	
there any short hold time tests?	
thin 1 hr of or past expiration of hold-time?	
48 hours or less 7 days	
Coliform Bacteria	
BOD TDS	
Nitrate	
Orthophosphate) Volatile Solids	
t for tests with hold times of 48 hrs or less, are any samples	
within 2 days of or past expiration of hold-time? Yes No Provide details in space at bottom of	fórm
thich Ops Mgr, PM or Analyst was informed of short hold and when?	
date and time of collection recorded?	
all sample containers listed on the COC received and intact?	form
mple IDs match the COC?	form
e dissolved parameters field filtered or being filtered in the lab? Field Lab	
ample volumes adequate and preservatives correct for test requested?Vol	
OC samples free of bubbles ≻6mm?	
w were VOC soils received? Methanol Sodium Bisulfate Packed jar Encore Water* Other	
within 48 hrs of sampling ☐ past 48 hrs of sampling ☐ Frozen ☐ Not Frozen	
arraqueous Trip Blank included? Yes No NA Is a Methanol Trip Blank included? Yes No No	
any samples on hold?	form
ere samples to be subcontracted?	
ny changes are made to this Work Order after Login, or if comments must be made regarding this cooler, explain them below:	
, a page at the track of the tr	
	,
	,
	,
·	

December 14, 2010

Client: Gl

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186

Work Order:

WTL0105

Project Name:

1E-0909013 Racine, WI

Project Number:

1730 State Street

Attn:

Mr. Kevin Bugel

Date Received:

12/02/10

An executed copy of the chain of custody is also included as an addendum to this report.

If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-800-833-7036

SAMPLE IDENTIFICATION	LAB NUMBER	COLLECTION DATE AND TIME
MW-1	WTL0105-01	12/01/10
MW-2	WTL0105-02	12/01/10
MW-3	WTL0105-03	12/01/10
MW-4	WTL0105-04	12/01/10
MW-5	WTL0105-05	12/01/10
MW-6	WTL0105-06	12/01/10
MW-7	WTL0105-07	12/01/10
MW-8	WTL0105-08	12/01/10
Dup-I	WTL0105-09	12/01/10
Trip Blank	WTL0105-10	12/01/10

Samples were received on ice into laboratory at a temperature of 6 °C.

Wisconsin Certification Number: 128053530

The Chain(s) of Custody, 2 pages, are included and are an integral part of this report.

Unless subcontracted, volatiles analyses (including VOC, PVOC, GRO, BTEX, and TPH gasoline) performed by TestAmerica Watertown at 1101 Industrial Drive, Units 9&10. All other analyses performed at the address shown in the heading of this report.

Approved By

TestAmerica Watertown

Brian DeJong For Dan F. Milewsky

Project Manager

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Mr. Kevin Bugel

Work Order:

WTL0105

1730 State Street

Received:

12/02/10

Project:
Project Number:

1E-0909013 Racine, WI

Reported:

12/14/10 09:04

ANALYTICAL REPORT

	Sample	Data				Dilution	Date		Seq/	
Analyte	Result	Qualifiers	Units	MDL	MRL	Factor	Analyzed	Analyst	Batch	Method
Sample ID: WTL0105-01 (MW	-1 - Ground Wate	r)					Sampled: 12	/01/10		
VOCs by SW8260B		•								
Benzene	<10		ug/L	10	100	50	12/10/10 01:18	mae	10L0218	SW 82601
Bromobenzene	<10		ug/L	10	100	50	12/10/10 01:18	mae	10L0218	SW 8260
Bromochioromethane	<25		ug/L	25	100	50	12/10/10 01:18	mae	10L0218	SW 8260
Bromodichloromethane	<10		ug/L	10	100	50	12/10/10 01:18	mae	10L0218	SW 8260
Bromoform	<10		ug/L	10	250	50	12/10/10 01:18	mae	10L0218	SW 8260
Bromomethane	<25		ug/L	25	250	50	12/10/10 01:18	mae	10L0218	SW 8260
n-Butylbenzene	<10		ug/L	10	100	50	12/10/10 01:18	mae	10L0218	SW 8260
sec-Butylbenzene	<13		ug/L	13	100	50	12/10/10 01:18	mae	10L0218	SW 8260
tert-Butylbenzene	<10		_	10	100	50	12/10/10 01:18		10L0218	SW 8260
Carbon Tetrachloride	<40		ug/L	40	100	50	12/10/10 01:18	mae	10L0218	SW 8260
Chlorobenzene	<10		ug/L	10	100	50	12/10/10 01:18	mae	10L0218	SW 8260
Chlorodibromomethane	<10		ug/L	10	100	50	12/10/10 01:18	mae	10L0218	SW 8260
	<50		ug/L	50	250	50	12/10/10 01:18	mae	10L0218	SW 8260
Chloroethane	<10		ug/L	10	100	50	12/10/10 01:18	mae	10L0218	SW 8260
Chloroform	<15		ug/L	15	100	50	12/10/10 01:18	mae	10L0218	SW 8260
Chloromethane	<25		ug/L	25		50	12/10/10 01:18	mae	10L0218	SW 8260
2-Chlorotoluene			ug/L		100		12/10/10 01:18	mae		SW 8260
4-Chlorotoluene	<10		ug/L	10	100	50	12/10/10 01:18	mae	10L0218	SW 8260
1,2-Dibromo-3-chloropropane	<25		ug/L	25	100	50		mae	10L0218	
1,2-Dibromoethane (EDB)	<10		ug/L	10	100	50	12/10/10 01:18	mae	10L0218	SW 8260
Dibromomethane	<10		ug/L	10	100	50	12/10/10 01:18	mae	10L0218	SW 8260
1.2-Dichlorobenzene	<10		ug/L	10	100	50	12/10/10 01:18	mae	10L0218	SW 8260
1,3-Dichlorobenzene	<10		ug/L	10	100	50	12/10/10 01:18	mae	10L0218	SW 8260
1.4-Dichlorobenzene	<25		ug/L	25	100	50	12/10/10 01:18	mae	10L0218	SW 8260
Dichlorodifluoromethane	<25		ug/L	25	100	50	12/10/10 01:18	mae	10L0218	SW 8260
1.1-Dichloroethane	<25		ug/L	25	100	50	12/10/10 01:18	mae	10L0218	SW 8260
1,2-Dichloroethane	<25		ug/L	25	100	50	12/10/10 01:18	mae	10L0218	SW 8260
1,1-Dichloroethene	<25		ug/L	25	100	50	12/10/10 01:18	mae	10L0218	SW 8260
:is-1,2-Dichloroethene	2000		ug/L	25	100	50	12/10/10 01:18	mae	10L0218	SW 8260
trans-1,2-Dichloroethene	25	J	ug/L	25	100	50	12/10/10 01:18	mae	10L0218	SW 8260
1,2-Dichloropropane	<25		ug/L	25	100	50	12/10/10 01:18	mae	10L0218	SW 8260
1,3-Dichloropropane	<13		ug/L	13	100	50	12/10/10 01:18	mae	10L0218	SW 8260
2,2-Dichloropropane	<25		ug/L	25	100	50	12/10/10 01:18	mae	10L0218	SW 8260
1,1-Dichloropropene	<25		ug/L	25	100	50	12/10/10 01:18	mae	10L0218	SW 8260
cis-1,3-Dichloropropene	<10		ug/L	10	100	50	12/10/10 01:18	mae	10L0218	SW 8260
trans-1,3-Dichloropropene	<10		ug/L	10	100	50	12/10/10 01:18	mae	10L0218	SW 8260
2,3-Dichloropropene	<13		ug/L	13	100	50	12/10/10 01:18	mae	10L0218	SW 8260
Isopropyl Ether	<25		ug/L	25	100	50	12/10/10 01:18	mae	10L0218	SW 8260
Ethylbenzene	<25		ug/L	25	100	50	12/10/10 01:18	mae	10L0218	SW 8260
Hexachlorobutadiene	<25		ug/L	25	100	50	12/10/10 01:18	mae	I0L0218	SW 8260
Isopropylbenzene	<10		ug/L	10	100	50	12/10/10 01:18	mae	10L0218	SW 8260
p-Isopropyltoluene	<10		ug/L	10	100	50	12/10/10 01:18	mae	10L0218	SW 8260
Methylene Chloride	<50		ug/L	50	100	50	12/10/10 01:18	mae	10L0218	SW 8260
Methyl tert-Butyl Ether	<25		ug/L	25	100	50	12/10/10 01:18	ınae	10L0218	SW 8260
Naphthalene	<13		ug/L	13	250	50	12/10/10 01:18	mae	10L0218	SW 8260
n-Propylbenzene	<25		ug/L	25	100	50	12/10/10 01:18	mae	10L0218	SW 8260
Styrene	<25		ug/L	25	250	50	12/10/10 01:18	mae	10L0218	SW 8260
1,1,1,2-Tetrachloroethane	<13		ug/L	13	100	50	12/10/10 01:18	mae	10L0218	SW 8260
1,1,2,2-Tetrachloroethane	<10		ug/L	10	100	50	12/10/10 01:18	mae	10L0218	SW 8260
Tetrachloroethene	730		ug/L	25	100	50	12/10/10 01:18	mae	10L0218	SW 8260

Brian DeJong For Dan F. Milewsky

Project Manager

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186 Mr. Kevin Bugel Work Order:

WTL0105

Received:

12/02/10

Project:
Project Number:

1E-0909013 Racine, WI 1730 State Street Reported:

12/14/10 09:04

	Sample	Data	** .		MANA	Dilution	Date		Seq/	
Analyte	Result	Qualifiers	Units	MDL	MRL	Factor	Analyzed	Analyst	Batch	Method
Sample ID: WTL0105-01 (MW-1 - 0	Ground Wate	r) - cont.					Sampled: 12	/01/10		
VOCs by SW8260B - cont.										
Toluene	<25		ug/L	25	100	50	12/10/10 01:18	mae	10L0218	SW 8260
1,2,3-Trichlorobenzene	<13		ug/L	13	100	50	12/10/10 01:18	mae	10L0218	SW 8260
1,2,4-Trichlorobenzene	<13		ug/L	13	100	50	12/10/10 01:18	mae	10L0218	SW 8260
1,1,1-Trichloroethane	<25		ug/L	25	100	50	12/10/10 01:18	mae	10L0218	SW 8260
1,1,2-Trichloroethane	<13		ug/L	13	100	50	12/10/10 01:18	mae	10L0218	SW 8260
Trichloroethene	860		ug/L	10	100	50	12/10/10 01:18	mae	10L0218	SW 8260
Trichlorofluoromethane	<25		ug/L	25	100	50	12/10/10 01:18	mae	10L0218	SW 8260
1,2,3-Trichloropropane	<25		ug/L	25	100	50	12/10/10 01:18	mae	10L0218	SW 8260
1,2,4-Trimethylbenzene	<10		ug/L	10	100	50	12/10/10 01:18	mae	10L0218	SW 8260
1,3,5-Trimethylbenzene	<10		ug/L	10	100	50	12/10/10 01:18	mae	10L0218	SW 8260
Vinyl chloride	210		ug/L	10	100	50	12/10/10 01:18	mae	10L0218	SW 8260
Xylenes, Total	<25		ug/L	25	100	50	12/10/10 01:18	mae	10L0218	SW 8260
Surr: Dibromofluoromethane (80-120%)	107 %		ug/L		. 00			mac		0200
Surr: Toluene-d8 (80-120%)	100 %									
Surr: 4-Bromofluorobenzene (80-120%)	98 %									
Sample ID: WTL0105-02 (MW-2 - 0		<i>(</i> 12)					Sampled: 12	/0.1 /1.0		
VOCs by SW8260B	ground wate	1,					Sampled: 12	/01/10		
Benzene	<50		ug/L	50	500	250	12/10/10 01:45	mae	10L0218	SW 826
Bromobenzene	<50		ug/L	50	500	250	12/10/10 01:45	mae	10L0218	SW 8260
Bromochloromethane	<130		ug/L	130	500	250	12/10/10 01:45	mae	10L0218	SW 8260
Bromodichloromethane	<50		ug/L	50	500	250	12/10/10 01:45	mae	10L0218	SW 8260
Bromoform	<50		ug/L	50	1300	250	12/10/10 01:45	mae	10L0218	SW 826
Bromomethane	<130		ug/L	130	1300	250	12/10/10 01:45	mae	10L0218	SW 826
n-Butylbenzene	<50		ug/L	50	500	250	12/10/10 01:45	mae	10L0218	SW 826
sec-Butylbenzene	<63		ug/L	63	500	250	12/10/10 01:45	mae	10L0218	SW 826
tert-Butylbenzene	<50		ug/L	50	500	250	12/10/10 01:45	mae	10L0218	SW 826
Carbon Tetrachloride	<200		ug/L	200	500	250	12/10/10 01:45	mae	10L0218	SW 826
Chlorobenzene	<50		_	50	500	250	12/10/10 01:45	mae	10L0218	SW 826
Chlorodibromomethane	<50		ug/L	50	500	250	12/10/10 01:45		10L0218	SW 826
Chloroethane	<250		ug/L	250	1300	250	12/10/10 01:45	mae	10L0218	SW 826
	<50		ug/L	50	500	250	12/10/10 01:45	mae	10L0218	SW 826
Chloroform			ug/L					mae	10L0218	SW 826
Chloromethane	<75		ug/L	75	500	250	12/10/10 01:45	mae		
2-Chlorotoluene	<130		ug/L	130	500	250	12/10/10 01:45	mae	10L0218	SW 826
4-Chlorotoluene	<50		ug/L	50	500	250	12/10/10 01:45	mae	10L0218	SW 826
1,2-Dibromo-3-chloropropane	<130		ug/L	130	500	250	12/10/10 01:45	mae	10L0218	SW 826
1,2-Dibromoethane (EDB)	<50		ug/L	50	500	250	12/10/10 01:45	mae	10L0218	SW 826
Dibromomethane	<50		ug/L	50	500	250	12/10/10 01:45	mae	10L0218	SW 826
1.2-Dichlorobenzene	<50		ug/L	50	500	250	12/10/10 01:45	mae	10L0218	SW 826
1,3-Dichlorobenzene	<50		ug/L	50	500	250	12/10/10 01:45	mae	10L0218	SW 826
1.4-Dichlorobenzene	<130		ug/L	130	500	250	12/10/10 01:45	mae	10L0218	SW 826
Dichlorodifluoromethane	<130		ug/L	130	500	250	12/10/10 01:45	mae	10L0218	SW 826
1.1-Dichloroethane	<130		ug/L	130	500	250	12/10/10 01:45	mae	10L0218	SW 826
1.2-Dichloroethane	<130		ug/L	130	500	250	12/10/10 01:45	mae	10L0218	SW 826
1,1-Dichloroethene	<130		ug/L	130	500	250	12/10/10 01:45	mae	10L0218	SW 826
cis-1,2-Dichloroethene	2700		ug/L	130	500	250	12/10/10 01:45	mae	10L0218	SW 826
trans-1,2-Dichloroethene	<130		ug/L	130	500	250	12/10/10 01:45	mae	10L0218	SW 826
1,2-Dichloropropane	<130		ug/L	130	500	250	12/10/10 01:45	mae	10L0218	SW 826
1,3-Dichloropropane	<63		ug/L	63	500	250	12/10/10 01:45	mae	10L0218	SW 826
2,2-Dichloropropane	<130		ug/L	130	500	250	12/10/10 01:45	mae	10L0218	SW 826
1.1-Dichloropropene	<130		ug/L	130	500	250	12/10/10 01:45	mae	10L0218	SW 826

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Work Order:

WTL0105

Received:

12/02/10

Waukesha, WI 53186

Project: Project Number:

1E-0909013 Racine, WI 1730 State Street

12/14/10 09:04 Reported:

N. 4	17.		D.,		ı
Mr.	V	evill	DЦ	KC.	ī

Analyte	Sample Result	Data Qualifiers	Units	MDL	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTL0105-02 (MW-2 - 0	Ground Wate	r) - cont.					Sampled: 12	/01/10		
VOCs by SW8260B - cont.							•			
cis-1,3-Dichloropropene	<50		ug/L	50	500	250	12/10/10 01:45	mae	10L0218	SW 8260B
trans-1,3-Dichloropropene	<50		ug/L	50	500	250	12/10/10 01:45	mae	10L0218	SW 8260B
2,3-Dichloropropene	<63		ug/L	63	500	250	12/10/10 01:45	mae	10L0218	SW 8260B
Isopropyl Ether	<130		ug/L	130	500	250	12/10/10 01:45	mae	10L0218	SW 8260B
Ethylbenzene	<130		ug/L	130	500	250	12/10/10 01:45	mae	10L0218	SW 8260B
Hexachlorobutadiene	<130		ug/L	130	500	250	12/10/10 01:45	mae	10L0218	SW 8260B
lsopropylbenzene	<50		ug/L	50	500	250	12/10/10 01:45	mae	10L0218	SW 8260B
p-lsopropyltoluene	<50		ug/L	50	500	250	12/10/10 01:45	mae	10L0218	SW 8260E
Methylene Chloride	<250		ug/L	250	500	250	12/10/10 01:45	mae	10L0218	SW 8260E
Methyl tert-Butyl Ether	<130		ug/L	130	500	250	12/10/10 01:45	mae	10L0218	SW 8260E
Naphthalene	<63		ug/L	63	1300	250	12/10/10 01:45	mae	10L0218	SW 8260E
n-Propylbenzene	<130		ug/L	130	500	250	12/10/10 01:45	mae	10L0218	SW 8260E
Styrene	<130		ug/L	130	1300	250	12/10/10 01:45	mae	10L0218	SW 8260E
1,1,1,2-Tetrachloroethane	<63		ug/L	63	500	250	12/10/10 01:45	mae	10L0218	SW 8260E
1.1.2.2-Tetrachloroethane	<50		ug/L	50	500	250	12/10/10 01:45	mae	10L0218	SW 8260E
Tetrachloroethene	22000		ug/L	130	500	250	12/10/10 01:45	mae	10L0218	SW 8260E
Toluene	<130		ug/L	130	500	250	12/10/10 01:45	mae	10L0218	SW 8260E
1.2.3-Trichlorobenzene	<63		ug/L	63	500	250	12/10/10 01:45	mae	10L0218	SW 82608
1,2,4-Trichlorobenzene	<63		ug/L	63	500	250	12/10/10 01:45	mae	10L0218	SW 8260E
1.1.1-Trichloroethane	<130		ug/L	130	500	250	12/10/10 01:45	mae	10L0218	SW 8260E
1,1,2-Trichloroethane	<63		ug/L	63	500	250	12/10/10 01:45	mae	10L0218	SW 8260E
Trichloroethene	7000		ug/L	50	500	250	12/10/10 01:45	mae	10L0218	SW 8260E
Trichlorofluoromethane	<130		ug/L	130	500	250	12/10/10 01:45	mae	10L0218	SW 8260E
1,2,3-Trichloropropane	<130		ug/L	130	500	250	12/10/10 01:45	mae	10L0218	SW 8260E
1,2,4-Trimethylbenzene	<50		ug/L	50	500	250	12/10/10 01:45	mae	10L0218	SW 8260E
1.3,5-Trimethylbenzene	<50		ug/L	50	500	250	12/10/10 01:45	mae	10L0218	SW 8260E
Vinyl chloride	<50		ug/L	50	500	250	12/10/10 01:45	mae	10L0218	SW 8260E
Xylenes, Total	<130		ug/L	130	500	250	12/10/10 01:45	mae	10L0218	SW 8260E
Surr: Dibromofluoromethane (80-120%)	107 %		48, 20					*****		
Surr: Toluene-d8 (80-120%)	100 %									
Surr: 4-Bromofluorobenzene (80-120%)	98 %									

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186 Mr. Kevin Bugel Work Order: Project:

Project Number:

WTL0105

VIL0105

1E-0909013 Racine, WI 1730 State Street Received:

12/02/10

Reported: 12/14/10 09:04

	Sample	Data				Dilution	Date		Seq/	
analyte	Result	Qualifiers	Units	MDL	MRL	Factor	Analyzed	Analyst	Batch	Method
ample ID: WTL0105-03 (MW-3	- Ground Wate	r)					Sampled: 12	01/10		
OCs by SW8260B										
Benzene	< 0.20		ug/L	0.20	2.0	1	12/09/10 22:12	mae	10L0218	SW 8260
Bromobenzene	< 0.20		ug/L	0.20	2.0	1	12/09/10 22:12	mae	10L0218	SW 8260
Bromochloromethane	< 0.50		ug/L	0.50	2.0	1	12/09/10 22:12	mae	I0L0218	SW 8260
Bromodichloromethane	< 0.20		ug/L	0.20	2.0	1	12/09/10 22:12	mae	10L0218	SW 8260
Bromoform	<0.20		ug/L	0.20	5.0	1	12/09/10 22:12	mae	10L0218	SW 8260
Bromomethane	< 0.50		ug/L	0.50	5.0	1	12/09/10 22:12	mae	10L0218	SW 8260
n-Butylbenzene	< 0.20		ug/L	0.20	2.0	1	12/09/10 22:12	mae	10L0218	SW 8260
sec-Butylbenzene	< 0.25		ug/L	0.25	2.0	1	12/09/10 22:12	mae	10L0218	SW 8260
tert-Butylbenzene	<0.20		ug/L	0.20	2.0	1	12/09/10 22:12	mae	10L0218	SW 8260
Carbon Tetrachloride	<0,80		ug/L	0.80	2.0	1	12/09/10 22:12	mae	10L0218	SW 8260
Chlorobenzene	<0.20		ug/L	0.20	2.0	1	12/09/10 22:12	mae	10L0218	SW 8260
Chlorodibromomethane	<0.20		ug/L	0.20	2.0	1	12/09/10 22:12	mae	10L0218	SW 8260
Chloroethane	<1.0		_	1.0	5.0	1	12/09/10 22:12		10L0218	SW 8260
Chloroform	<0.20		ug/L	0.20	2.0	1	12/09/10 22:12	mae	10L0218	SW 8260
Chloromethane	<0.30		ug/L		2.0		12/09/10 22:12	mae		SW 8260
			ug/L	0.30		1		mae	10L0218	
2-Chlorotoluene	<0.50		ug/L	0.50	2.0	1	12/09/10 22:12	mae	10L0218	SW 8260
4-Chlorotoluene	<0.20		ug/L	0.20	2.0	1	12/09/10 22:12	mae	10L0218	SW 8260
1,2-Dibromo-3-chloropropane	<0.50		ug/L	0.50	2.0	1	12/09/10 22:12	mae	10L0218	SW 8260
1.2-Dibromoethane (EDB)	<0.20		ug/L	0.20	2.0	1	12/09/10 22:12	mae	10L0218	SW 8260
Dibromomethane	<0.20		ug/L	0,20	2.0	1	12/09/10 22:12	mae	10L0218	SW 8260
1,2-Dichlorobenzene	<0.20		ug/L	0,20	2.0	1	12/09/10 22:12	mae	10L0218	SW 8260
1.3-Dichlorobenzene	<0.20		ug/L	0.20	2.0	1	12/09/10 22:12	mae	10L0218	SW 826
1.4-Dichlorobenzene	<0.50		ug/L	0.50	2.0	1	12/09/10 22:12	mae	10L0218	SW 826
Dichlorodifluoromethane	< 0.50		ug/L	0.50	2.0	1	12/09/10 22:12	mae	10L0218	SW 826
1,1-Dichloroethane	< 0.50		ug/L	0.50	2.0	1	12/09/10 22:12	mae	10L0218	SW 826
1,2-Dichloroethane	< 0.50		ug/L	0.50	2.0	1	12/09/10 22:12	mae	10L0218	SW 826
1,1-Dichloroethene	< 0.50		ug/L	0.50	2.0	1	12/09/10 22:12	mae	10L0218	SW 826
cis-1,2-Dichloroethene	5.5		ug/L	0.50	2.0	1	12/09/10 22:12	mae	10L0218	SW 8260
rans-1,2-Dichloroethene	< 0.50		ug/L	0.50	2.0	1	12/09/10 22:12	mae	10L0218	SW 826
1,2-Dichloropropane	< 0.50		ug/L	0.50	2.0	1	12/09/10 22:12	mae	10L0218	SW 8260
1,3-Dichloropropane	< 0.25		ug/L	0.25	2.0	1	12/09/10 22:12	mae	10L0218	SW 8260
2,2-Dichloropropane	< 0.50		ug/L	0.50	2.0	1	12/09/10 22:12	mae	10L0218	SW 826
1,1-Dichloropropene	< 0.50		ug/L	0.50	2.0	1	12/09/10 22:12	mae	10L0218	SW 8260
cis-1,3-Dichloropropene	< 0.20		ug/L	0,20	2.0	1	12/09/10 22:12	mae	10L0218	SW 8260
rans-1,3-Dichloropropene	< 0.20		ug/L	0.20	2.0	1	12/09/10 22:12	mae	10L0218	SW 8260
2.3-Dichloropropene	< 0.25		ug/L	0.25	2.0	1	12/09/10 22:12	mae	10L0218	SW 826
Isopropyl Ether	< 0.50		ug/L	0,50	2.0	1	12/09/10 22:12	mae	10L0218	SW 826
Ethylbenzene	<0.50		ug/L	0.50	2.0	1	12/09/10 22:12		10L0218	SW 826
Hexachlorobutadiene	< 0.50		ug/L	0.50	2.0	1	12/09/10 22:12	mae	10L0218	SW 826
Isopropylbenzene	<0.20		_	0.20	2.0	1	12/09/10 22:12	mae	10L0218	SW 826
1 12	<0.20		ug/L	0.20	2.0	1	12/09/10 22:12	mae		
o-Isopropyltoluene Methylene Chloride	<1.0		ug/L	1.0	2.0	1	12/09/10 22:12	mae	10L0218 10L0218	SW 826
•	<0.50		ug/L					mae		
Methyl tert-Butyl Ether			ug/L	0.50	2.0	1	12/09/10 22:12	mae	10L0218	SW 826
Naphthalene	<0.25		ug/L	0.25	5.0	1	12/09/10 22:12	mae	10L0218	SW 826
n-Propylbenzene	<0.50		ug/L	0.50	2.0	1	12/09/10 22:12	mae	10L0218	SW 826
Styrene	<0.50		ug/L	0.50	5.0	1	12/09/10 22:12	mae	10L0218	SW 826
1,1,1,2-Tetrachloroethane	<0.25		ug/L	0.25	2.0	1	12/09/10 22:12	mae	10L0218	SW 826
1,1,2,2-Tetrachloroethane	<0.20		ug/L	0.20	2.0	1	12/09/10 22:12	mae	10L0218	SW 826
Tetrachloroethene	0.80	J	ug/L	0.50	2.0	1	12/09/10 22:12	mae	10L0218	SW 826
Toluene	< 0.50		ug/L	0.50	2.0	1	12/09/10 22:12	mae	10L0218	SW 826

Project Manager

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Work Order:

WTL0105

Received:

12/02/10

12/14/10 09:04

Project: Waukesha, WI 53186 Project Number:

1730 State Street

1E-0909013 Racine, WI Reported:

Analyte	Sample Result	Data Qualifiers	Units	MDL	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTL0105-03 (MW-3 - 0	Ground Wate	r) - cont.					Sampled: 12	/01/10		
OCs by SW8260B - cont.										
1,2,4-Trichlorobenzene	< 0.25		ug/L	0.25	2.0	1	12/09/10 22:12	mae	10L0218	SW 8260
1,1,1-Trichloroethane	< 0.50		ug/L	0.50	2.0	1	12/09/10 22:12	mae	I0L0218	SW 8260
1,1,2-Trichloroethane	< 0.25		ug/L	0.25	2.0	1	12/09/10 22:12	mae	10L0218	SW 8260
Trichloroethene	0.22	J	ug/L	0.20	2.0	I	12/09/10 22:12	mae	10L0218	SW 8260
Trichlorofluoromethane	< 0.50		ug/L	0.50	2.0	1	12/09/10 22:12	mae	10L0218	SW 8260
1,2,3-Trichloropropane	< 0.50		ug/L	0.50	2.0	1	12/09/10 22:12	mae	10L0218	SW 8260
,2,4-Trimethylbenzene	< 0.20		ug/L	0.20	2.0	1	12/09/10 22:12	mae	10L0218	SW 8260
1,3,5-Trimethylbenzene	<0.20		ug/L	0.20	2.0	1	12/09/10 22:12	mae	10L0218	SW 8260
Vinyl chloride	<0.20		ug/L	0.20	2.0	1	12/09/10 22:12	mae	10L0218	SW 8260
Xylenes, Total	< 0.50		ug/L	0.50	2.0	1	12/09/10 22:12	mae	10L0218	SW 8260
Surr: Dibromofluoromethane (80-120%)	107 %									
Surr: Toluene-d8 (80-120%)	100 %									
Surr: 4-Bromofluorobenzene (80-120%)	98 %									
ample ID: WTL0105-04 (MW-4 - 0	Ground Wate	r)					Sampled: 12	/01/10		
OCs by SW8260B										
Benzene	< 0.20		ug/L	0.20	2.0	1	12/09/10 22:39	mae	10L0218	SW 8260
Bromobenzene	< 0.20		ug/L	0.20	2.0	1	12/09/10 22:39	mae	10L0218	SW 8260
Bromochloromethane	< 0.50		ug/L	0.50	2.0	1	12/09/10 22:39	mae	10L0218	SW 8260
Bromodichloromethane	< 0.20		ug/L	0.20	2.0	1	12/09/10 22:39	mae	10L0218	SW 8260
Bromoform	< 0.20		ug/L	0.20	5.0	1	12/09/10 22:39	mae	10L0218	SW 826
Bromomethane	< 0.50		ug/L	0.50	5.0	1	12/09/10 22:39	mae	10L0218	SW 826
n-Butylbenzene	< 0.20		ug/L	0.20	2.0	1	12/09/10 22:39	mae	10L0218	SW 826
sec-Butylbenzene	< 0.25		ug/L	0.25	2.0	1	12/09/10 22:39	mae	10L0218	SW 826
ert-Butylbenzene	< 0.20		ug/L	0.20	2.0	1	12/09/10 22:39	mae	10L0218	SW 826
Carbon Tetrachloride	< 0.80		ug/L	0.80	2.0	I	12/09/10 22:39	mae	10L0218	SW 826
Chlorobenzene	< 0.20		ug/L	0.20	2.0	1	12/09/10 22:39	mae	10L0218	SW 826
Chlorodibromomethane	< 0.20		ug/L	0.20	2.0	1	12/09/10 22:39	mae	10L0218	SW 826
Chloroethane	<1.0		ug/L	1.0	5.0	1	12/09/10 22:39	mae	10L0218	SW 826
Chloroform	< 0.20		ug/L	0.20	2.0	1	12/09/10 22:39	mae	10L0218	SW 826
Chloromethane	< 0.30		ug/L	0.30	2.0	1	12/09/10 22:39	mae	10L0218	SW 826
2-Chlorotoluene	< 0.50		ug/L	0.50	2.0	1	12/09/10 22:39	mae	10L0218	SW 826
4-Chlorotoluene	< 0.20		ug/L	0.20	2,0	1	12/09/10 22:39	mae	10L0218	SW 826
1,2-Dibromo-3-chloropropane	< 0.50		ug/L	0.50	2.0	1	12/09/10 22:39	mae	10L0218	SW 826
1,2-Dibromoethane (EDB)	< 0.20		ug/L	0.20	2.0	1	12/09/10 22:39	mae	10L0218	SW 826
Dibromomethane	< 0.20		ug/L	0.20	2.0	1	12/09/10 22:39	mae	10L0218	SW 826
1.2-Dichlorobenzene	<0.20		ug/L	0.20	2.0	1	12/09/10 22:39	mae	10L0218	SW 826
1,3-Dichlorobenzene	<0.20		ug/L	0.20	2.0	1	12/09/10 22:39	mae	10L0218	SW 826
1,4-Dichlorobenzene	<0.50		ug/L	0.50	2.0	1	12/09/10 22:39	mae	10L0218	SW 826
Dichlorodi fluoromethane	<0.50		ug/L	0.50	2.0	1	12/09/10 22:39	inae	10L0218	SW 826
1,1-Dichloroethane	<0.50		ug/L	0.50	2.0	1	12/09/10 22:39	mae	10L0218	SW 826
1.2-Dichloroethane	<0.50		ug/L	0.50	2.0	1	12/09/10 22:39	mae	10L0218	SW 826
1.1-Dichloroethene	<0.50		ug/L	0.50	2.0	1	12/09/10 22:39	mae	10L0218	SW 826
cis-1,2-Dichloroethene	21		ug/L	0.50	2.0	1	12/09/10 22:39	mae	10L0218	SW 826
trans-1,2-Dichloroethene	1.2	J	ug/L	0.50	2.0	1	12/09/10 22:39	mae	10L0218	SW 826
1.2-Dichloropropane	<0.50	,	ug/L	0.50	2.0	1	12/09/10 22:39	mae	10L0218	SW 826
1,3-Dichloropropane	<0.25		ug/L	0.25	2.0	1	12/09/10 22:39		10L0218	SW 826
· ·	<0.50		_	0.50	2.0	I	12/09/10 22:39	mae	10L0218	SW 826
2.2-Dichloropropane	<0.50		ug/L	0.50	2.0	I	12/09/10 22:39	mae	10L0218	SW 826
1,1-Dichloropropene	<0.20		ug/L	0.30	2.0	1	12/09/10 22:39	mae	10L0218	SW 826
cis-1,3-Dichloropropene trans-1,3-Dichloropropene	<0.20		ug/L ug/L	0.20	2.0	1	12/09/10 22:39	mae	10L0218	SW 826

Brian DeJong For Dan F. Milewsky Project Manager

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186 Mr. Kevin Bugel Work Order:

WTL0105

Received:

12/02/10

Project: Project Number: 1E-0909013 Racine, WI 1730 State Street Reported:

12/14/10 09:04

Analyte	Sample Result	Data Qualifiers	Units	MDL	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTL0105-04 (MW-4 - 0	Ground Wate	r) - cont.					Sampled: 12	/01/10		
VOCs by SW8260B - cont.										
2,3-Dichloropropene	< 0.25		ug/L	0.25	2.0	1	12/09/10 22:39	mae	10L0218	SW 82601
Isopropyl Ether	< 0.50		ug/L	0.50	2.0	1	12/09/10 22:39	mae	10L0218	SW 8260
Ethylbenzene	< 0.50		ug/L	0.50	2.0	1	12/09/10 22:39	mae	10L0218	SW 8260
Hexachlorobutadiene	< 0.50		ug/L	0.50	2.0	I	12/09/10 22:39	mae	10L0218	SW 8260
Isopropylbenzene	< 0.20		ug/L	0.20	2.0	1	12/09/10 22:39	mae	10L0218	SW 8260
p-Isopropyltoluene	< 0.20		ug/L	0.20	2.0	1	12/09/10 22:39	mae	IOL0218	SW 8260
Methylene Chloride	<1.0		ug/L	1.0	2.0	1	12/09/10 22:39	mae	10L0218	SW 8260
Methyl tert-Butyl Ether	< 0.50		ug/L	0.50	2.0	1	12/09/10 22:39	mae	10L0218	SW 8260
Naphthalene	< 0.25		ug/L	0,25	5.0	1	12/09/10 22:39	mae	10L0218	SW 8260
n-Propylbenzene	< 0.50		ug/L	0.50	2.0	1	12/09/10 22:39	mae	10L0218	SW 8260
Styrene	< 0.50		ug/L	0.50	5.0	1	12/09/10 22:39	mae	10L0218	SW 8260
1,1,1,2-Tetrachloroethane	< 0.25		ug/L	0.25	2.0	1	12/09/10 22:39	mae	10L0218	SW 8260
1,1,2,2-Tetrachloroethane	< 0.20		ug/L	0.20	2.0	1	12/09/10 22:39	mae	10L0218	SW 8260
Tetrachloroethene	< 0.50		ug/L	0.50	2.0	1	12/09/10 22:39	mae	10L0218	SW 8260
Toluene	< 0.50		ug/L	0.50	2.0	1	12/09/10 22:39	mae	10L0218	SW 8260
1,2,3-Trichlorobenzene	< 0.25		ug/L	0.25	2.0	1	12/09/10 22:39	mae	10L0218	SW 8260
1.2.4-Trichlorobenzene	< 0.25		ug/L	0.25	2.0	1	12/09/10 22:39	mae	10L0218	SW 8260
1,1,1-Trichloroethane	< 0.50		ug/L	0.50	2.0	1	12/09/10 22:39	mae	10L0218	SW 8260
1.1.2-Trichloroethane	< 0.25		ug/L	0.25	2.0	1	12/09/10 22:39	mae	10L0218	SW 8260
Trichloroethene	< 0.20		ug/L	0.20	2.0	1	12/09/10 22:39	mae	10L0218	SW 8260
Trichlorofluoromethane	< 0.50		ug/L	0.50	2.0	1	12/09/10 22:39	mae	10L0218	SW 8260
1,2,3-Trichloropropane	< 0.50		ug/L	0.50	2.0	1	12/09/10 22:39	mae	10L0218	SW 8260
1.2,4-Trimethylbenzene	<0.20		ug/L	0.20	2.0	1	12/09/10 22:39	mae	10L0218	SW 8260
1,3,5-Trimethylbenzene	<0.20		ug/L	0.20	2.0	1	12/09/10 22:39	mae	10L0218	SW 8260
Vinyl chloride	<0.20		ug/L	0.20	2.0	1	12/09/10 22:39	mae	10L0218	SW 8260
Xylenes, Total	<0.50		ug/L	0,50	2.0	1	12/09/10 22:39	mae	10L0218	SW 8260
Surr: Dibromofluoromethane (80-120%)	107 %		46,2	-,		-		mac		
Surr: Toluene-d8 (80-120%)	100 %									
Surr: 4-Bromofluorobenzene (80-120%)	99 %									

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186 Mr. Kevin Bugel

Work Order: Project:

WTL0105

1E-0909013 Racine, WI

Received: Reported: 12/02/10 12/14/10 09:04

1730 State Street Project Number:

	Sample	Data	Y I m ! + -	MDI	MRL	Dilution	Date		Seq/	Math
Analyte	Result	Qualifiers	Units	MDL	WIKL	Factor	Analyzed	Analyst	Batch	Method
Sample ID: WTL0105-05 (MW-	5 - Ground Wate	er)					Sampled: 12	/01/10		
VOCs by SW8260B										
Benzene	<0.20		ug/L	0.20	2.0	1	12/09/10 23:06	mae	10L0218	SW 8260
Bromobenzene	<0.20		ug/L	0.20	2.0	1	12/09/10 23:06	mae	10L0218	SW 8260
Bromochloromethane	<0.50		ug/L	0.50	2.0	1	12/09/10 23:06	mae	10L0218	SW 8260
Bromodichloromethane	<0.20		ug/L	0.20	2.0	1	12/09/10 23:06	mae	10L0218	SW 8260
Bromoform	<0.20		ug/L	0.20	5.0	1	12/09/10 23:06	inae	10L0218	SW 8260
Bromomethane	< 0.50		ug/L	0.50	5.0	1	12/09/10 23:06	mae	10L0218	SW 8260
n-Butylbenzene	<0.20		ug/L	0.20	2.0	1	12/09/10 23:06	mae	10L0218	SW 8260
sec-Butylbenzene	<0.25		ug/L	0.25	2.0	1	12/09/10 23:06	mae	10L0218	SW 8260
tert-Butylbenzene	<0.20		ug/L	0.20	2.0	1	12/09/10 23:06	mae	10L0218	SW 8260
Carbon Tetrachloride	<0.80		ug/L	0.80	2.0	1	12/09/10 23:06	mae	10L0218	SW 8260
Chlorobenzene	<0.20		ug/L	0.20	2.0	1	12/09/10 23:06	mae	10L0218	SW 8260
Chlorodibromomethane	<0.20		ug/L	0.20	2.0	1	12/09/10 23:06	mae	10L0218	SW 8260
Chloroethane	<1.0		ug/L	1.0	5.0	1	12/09/10 23:06	mae	10L0218	SW 8260
Chloroform	<0.20		ug/L	0.20	2,0	1	12/09/10 23:06	mae	10L0218	SW 8260
Chloromethane	<0.30		ug/L	0.30	2.0	1	12/09/10 23:06	inae	10L0218	SW 8260
2-Chlorotoluene	<0.50		_	0.50	2.0	1	12/09/10 23:06	mae	IOL0218	SW 8260
4-Chlorotoluene	<0.20		ug/L	0.20	2.0	1	12/09/10 23:06	inae	10L0218	SW 8260
	<0.50		ug/L	0.50	2.0	1	12/09/10 23:06	mae	10L0218	SW 8260
1,2-Dibromo-3-chloropropane	<0.20		ug/L	0.20	2.0	1	12/09/10 23:06	mae	10L0218	SW 8260
Dibromomethane	<0.20		ug/L	0.20	2.0	1	12/09/10 23:06		10L0218	SW 8260
			ug/L	0.20	2.0	1	12/09/10 23:06	mae	10L0218	SW 8260
1,2-Dichlorobenzene	<0.20		ug/L	0.20	2.0	l	12/09/10 23:06	mae	10L0218	SW 8260
1,3-Dichlorobenzene	<0.20		ug/L	0.50	2.0	1	12/09/10 23:06	mae	10L0218	SW 8266
1,4-Dichlorobenzene	<0.50		ug/L			1	12/09/10 23:06	mae	10L0218	SW 8260
Dichlorodifluoromethane	<0.50		ug/L	0.50	2.0	1	12/09/10 23:06	mae	10L0218	SW 8266
1,1-Dichloroethane	<0.50		ug/L	0.50	2.0	1		inae	10L0218	SW 8266
1,2-Dichloroethane	<0.50		ug/L	0.50	2.0	-	12/09/10 23:06	mae		
1,1-Dichloroethene	<0.50		ug/L	0.50	2.0	ł .	12/09/10 23:06	mae	10L0218	SW 8266
cis-1,2-Dichloroethene	4.6		ug/L	0.50	2.0	i	12/09/10 23:06	mae	10L0218	SW 8260
.rans-1,2-Dichloroethene	<0.50		ug/L	0.50	2.0	1	12/09/10 23:06	mae	10L0218	SW 8260
1,2-Dichloropropane	<0.50		ug/L	0.50	2.0	1	12/09/10 23:06	inae	10L0218	SW 8260
1.3-Dichloropropane	<0.25		ug/L	0.25	2.0	1	12/09/10 23:06	mae	10L0218	SW 8260
2,2-Dichloropropane	<0.50		ug/L	0.50	2.0	1	12/09/10 23:06	mae	10L0218	SW 8260
1,1-Dichloropropene	<0.50		ug/L	0.50	2.0	1	12/09/10 23:06	mae	10L0218	SW 8260
cis-1,3-Dichloropropene	<0.20		ug/L	0.20	2.0	1	12/09/10 23:06	mae	10L0218	SW 8260
trans-1,3-Dichloropropene	<0.20		ug/L	0.20	2.0	1	12/09/10 23:06	mae	10L0218	SW 8260
2,3-Dichloropropene	<0.25		ug/L	0.25	2.0	1	12/09/10 23:06	mae	10L0218	SW 826
Isopropyl Ether	<0.50		ug/L	0.50	2.0	1	12/09/10 23:06	mae	10L0218	SW 826
Ethylbenzene	< 0.50		ug/L	0.50	2.0	I	12/09/10 23:06	mae	10L0218	SW 826
Hexachlorobutadiene	<0.50		ug/L	0.50	2.0	1	12/09/10 23:06	mae	10L0218	SW 826
Isopropylbenzene	<0.20		ug/L	0.20	2.0	1	12/09/10 23:06	mae	10L0218	SW 826
p-Isopropyltoluene	< 0.20		ug/L	0.20	2.0	1	12/09/10 23:06	mae	10L0218	SW 826
Methylene Chloride	<1.0		ug/L	1.0	2,0	1	12/09/10 23:06	inae	10L0218	SW 826
Methyl tert-Butyl Ether	< 0.50		ug/L	0.50	2.0	1	12/09/10 23:06	тае	10L0218	SW 826
Naphthalene	<0.25		ug/L	0.25	5.0	1	12/09/10 23:06	mae	10L0218	SW 826
n-Propylbenzene	<0.50		ug/L	0.50	2.0	1	12/09/10 23:06	mae	10L0218	SW 826
Styrene	<0.50		ug/L	0.50	5.0	1	12/09/10 23:06	mae	10L0218	SW 826
1,1,1,2-Tetrachloroethane	< 0.25		ug/L	0.25	2.0	1	12/09/10 23:06	mae	10L0218	SW 826
1,1,2,2-Tetrachloroethane	<0.20		ug/L	0.20	2.0	1	12/09/10 23:06	mae	10L0218	SW 826
Tetrachloroethene	< 0.50		ug/L	0.50	2.0	1	12/09/10 23:06	mae	10L0218	SW 826
Toluene	<0.50		ug/L	0.50	2.0	1	12/09/10 23:06	mae	10L0218	SW 826
1,2,3-Trichlorobenzene	< 0.25		ug/L	0.25	2.0	1	12/09/10 23:06	mae	10L0218	SW 826

Brian DeJong For Dan F. Milewsky Project Manager

100 %

99 %

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186

Surr: Toluene-d8 (80-120%)

Surr: 4-Bromofluorohenzene (80-120%)

Work Order: Project:

Project Number:

WTL0105

1E-0909013 Racine, WI

1E-0909013 Racine, 1730 State Street Received: Reported: 12/02/10

12/14/10 09:04

Mr. Kevin Bugel										
Analyte	Sample Result	Data Qualifiers	Units	MDL	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTL0105-05 (MW-5 - 0 VOCs by SW8260B - cont.	Ground Water	r) - cont.					Sampled: 12	/01/10		
1,2,4-Trichlorobenzene	< 0.25		ug/L	0.25	2.0	1	12/09/10 23:06	mae	10L0218	SW 8260B
1,1,1-Trichloroethane	< 0.50		ug/L	0.50	2.0	1	12/09/10 23:06	mae	10L0218	SW 8260B
1,1,2-Trichloroethane	< 0.25		ug/L	0.25	2.0	1	12/09/10 23:06	mae	10L0218	SW 8260B
Trichloroethene	< 0.20		ug/L	0.20	2.0	1	12/09/10 23:06	mae	10L0218	SW 8260B
Trichlorofluoromethane	< 0.50		ug/L	0.50	2.0	1	12/09/10 23:06	mae	10L0218	SW 8260B
1,2,3-Trichloropropane	< 0.50		ug/L	0.50	2.0	1	12/09/10 23:06	mae	10L0218	SW 8260B
1,2,4-Trimethylbenzene	< 0.20		ug/L	0.20	2.0	1	12/09/10 23:06	mae	10L0218	SW 8260B
1,3,5-Trimethylbenzene	<0.20		ug/L	0.20	2.0	1	12/09/10 23:06	mae	10L0218	SW 8260B
Vinyl chloride	< 0.20		ug/L	0.20	2.0	1	12/09/10 23:06	mae	10L0218	SW 8260B
Xylenes, Total	< 0.50		ug/L	0.50	2.0	1	12/09/10 23:06	mae	10L0218	SW 8260B
Surr: Dibromofluoromethane (80-120%)	107 %									

Sample ID: WTL0105-06 (MW-6 VOCs by SW8260B	3.4					Sampled: 12/0			
	3.4								
Benzene		ug/L	0.20	2.0	1	12/09/10 23:32	mae	10L0218	SW 8260B
Bromobenzene	< 0.20	ug/L	0.20	2.0	1	12/09/10 23:32	mae	IOL0218	SW 8260B
Bromochloromethane	< 0.50	ug/L	0.50	2.0	1	12/09/10 23:32	mae	10L0218	SW 8260B
Bromodichloromethane	<0.20	ug/L	0.20	2.0	1	12/09/10 23:32	mae	10L0218	SW 8260B
Bromoform	< 0.20	ug/L	0.20	5.0	1	12/09/10 23:32	mae	10L0218	SW 8260B
Bromomethane	<0.50	ug/L	0.50	5.0	1	12/09/10 23:32	mae	10L0218	SW 8260B
n-Burylbenzene	< 0.20	ug/L	0.20	2.0	1	12/09/10 23:32	mae	10L0218	SW 8260B
sec-Butylbenzene	< 0.25	ug/L	0.25	2.0	1	12/09/10 23:32	mae	10L0218	SW 8260B
tert-Butylbenzene	<0.20	ug/L	0.20	2.0	i	12/09/10 23:32	mae	10L0218	SW 8260B
Carbon Tetrachloride	<0.80	ug/L	0.80	2.0	1	12/09/10 23:32	mae	10L0218	SW 8260B
Chlorobenzene	<0.20	ug/L	0.20	2.0	I	12/09/10 23:32	mae	10L0218	SW 8260B
Chlorodibromomethane	<0.20	ug/L	0.20	2.0	1	12/09/10 23:32	mae	10L0218	SW 8260B
Chloroethane	<1.0	ug/L	1.0	5.0	1	12/09/10 23:32	mae	10L0218	SW 8260B
Chloroform	<0.20	ug/L	0.20	2.0	1	12/09/10 23:32	mae	10L0218	SW 8260B
Chloromethane	<0.30	ug/L	0.30	2.0	1	12/09/10 23:32	mae	10L0218	SW 8260B
2-Chlorotoluene	< 0.50	ug/L	0.50	2.0	1	12/09/10 23:32	mae	10L0218	SW 8260B
4-Chlorotoluene	<0.20	ug/L	0.20	2.0	ł	12/09/10 23:32	mae	10L0218	SW 8260B
1,2-Dibromo-3-chloropropane	<0.50	ug/L	0,50	2.0	1	12/09/10 23:32	mae	10L0218	SW 8260B
1,2-Dibromoethane (EDB)	<0.20	ug/L	0.20	2.0	1	12/09/10 23:32	mae	10L0218	SW 8260B
Dibromomethane	<0.20	ug/L	0.20	2.0	1	12/09/10 23:32	mae	10L0218	SW 8260B
1,2-Dichlorobenzene	<0.20	ug/L	0.20	2.0	1	12/09/10 23:32	mae	10L0218	SW 8260B
1,3-Dichlorobenzene	<0.20	ug/L	0.20	2.0	1	12/09/10 23:32	mae	10L0218	SW 8260B
1,4-Dichlorobenzene	< 0.50	ug/L	0.50	2.0	1	12/09/10 23:32	mae	10L0218	SW 8260B
Dichlorodifluoromethane	<0.50	ug/L	0.50	2.0	1	12/09/10 23:32	mae	10L0218	SW 8260B
1,1-Dichloroethane	<0.50	ug/L	0.50	2.0	1	12/09/10 23:32	mae	10L0218	SW 8260B
1,2-Dichloroethane	< 0.50	ug/L	0.50	2.0	1	12/09/10 23:32	mae	10L0218	SW 8260B
1,1-Dichloroethene	<0.50	ug/L	0.50	2.0	1	12/09/10 23:32	mae	t0L0218	SW 8260B
cis-1,2-Dichloroethene	<0,50	ug/L	0.50	2.0	1	12/09/10 23:32	mae	10L0218	SW 8260B
trans-1,2-Dichloroethene	<0.50	ug/L	0.50	2.0	1	12/09/10 23:32	mae	10L0218	SW 8260B
1,2-Dichloropropane	<0.50	ug/L	0.50	2.0	1	12/09/10 23:32	mae	10L0218	SW 8260B
1,3-Dichloropropane	<0.25	ug/L	0.25	2.0	1	12/09/10 23:32	mae	10L0218	SW 8260B
2,2-Dichloropropane	< 0.50	ug/L	0.50	2.0	1	12/09/10 23:32	mae	10L0218	SW 8260B
1,1-Dichloropropene	< 0.50	ug/L	0.50	2.0	1	12/09/10 23:32	mae	10L0218	SW 8260B
cis-1,3-Dichloropropene	<0.20	ug/L	0.20	2.0	1	12/09/10 23:32	mae	10L0218	SW 8260B
trans-1,3-Dichloropropene	<0.20	ug/L	0.20	2.0	1	12/09/10 23:32	mae	10L0218	SW 8260B

Brian DeJong For Dan F. Milewsky

Project Manager

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Work Order: Project:

Project Number:

WTL0105

1E-0909013 Racine, WI

1730 State Street

Received:

12/02/10

Reported: 12/14/10 09:04

Mr. Kevin Bugel			1 Toject I							
Analyte	Sample Result	Data Qualifiers	Units	MDL	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTL0105-06 (MW-6 - 0	Ground Wate	r) - cont.					Sampled: 12	/01/10		
VOCs by SW8260B - cont.							•			
2,3-Dichloropropene	< 0.25		ug/L	0.25	2.0	1	12/09/10 23:32	mae	10L0218	SW 8260E
Isopropyl Ether	0.71	J	ug/L	0.50	2.0	1	12/09/10 23:32	mae	10L0218	SW 8260E
Ethylbenzene	< 0.50		ug/L	0.50	2.0	1	12/09/10 23:32	mae	10L0218	SW 8260E
Hexachlorobutadiene	< 0.50		ug/L	0.50	2.0	1	12/09/10 23:32	ınae	I0L0218	SW 8260E
Isopropyibenzene	0.47	J	ug/L	0.20	2.0	1	12/09/10 23:32	mae	10L0218	SW 8260E
p-Isopropyltoluene	< 0.20		ug/L	0.20	2.0	1	12/09/10 23:32	mae	I0L0218	SW 82601
Methylene Chloride	<1.0		ug/L	1.0	2.0	1	12/09/10 23:32	mae	10L0218	SW 8260E
Methyl tert-Butyl Ether	< 0.50		ug/L	0.50	2.0	1	12/09/10 23:32	ınae	10L0218	SW 82601
Naphthalene	< 0.25		ug/L	0.25	5.0	1	12/09/10 23:32	mae	10L0218	SW 82601
n-Propylbenzene	< 0.50		ug/L	0.50	2.0	1	12/09/10 23:32	mae	10L0218	SW 82601
Styrene	< 0.50		ug/L	0.50	5.0	1	12/09/10 23:32	mae	10L0218	SW 82601
1,1,1,2-Tetrachloroethane	< 0.25		ug/L	0,25	2.0	1	12/09/10 23:32	mae	10L0218	SW 8260
1,1,2,2-Tetrachloroethane	< 0.20		ug/L	0.20	2.0	1	12/09/10 23:32	mae	10L0218	SW 8260
Tetrachloroethene	< 0.50		ug/L	0.50	2.0	l	12/09/10 23:32	mae	10L0218	SW 82601
Toluene	< 0.50		ug/L	0.50	2.0	1	12/09/10 23:32	inae	10L0218	SW 8260I
1.2,3-Trichlorobenzene	< 0.25		ug/L	0.25	2.0	l	12/09/10 23:32	mae	10L0218	SW 82601
1.2,4-Trichlorobenzene	< 0.25		ug/L	0.25	2.0	1	12/09/10 23:32	mae	10L0218	SW 8260E
1.1.1-Trichloroethane	< 0.50		ug/L	0.50	2.0	1	12/09/10 23:32	mae	10L0218	SW 8260E
1.1,2-Trichloroethane	< 0.25		ug/L	0.25	2.0	1	12/09/10 23:32	inae	10L0218	SW 82601
Trichloroethene	< 0.20		ug/L	0.20	2.0	1	12/09/10 23:32	inae	10L0218	SW 82601
Frichlorofluoromethane	< 0.50		ug/L	0.50	2.0	1	12/09/10 23:32	ınae	10L0218	SW 82601
1,2,3-Trichloropropane	< 0.50		ug/L	0.50	2.0	1	12/09/10 23:32	mae	10L0218	SW 8260
1.2.4-Trimethylbenzene	< 0.20		ug/L	0.20	2.0	1	12/09/10 23:32	mae	10L0218	SW 8260
1,3,5-Trimethylbenzene	< 0.20		ug/L	0.20	2.0	1	12/09/10 23:32	mae	10L0218	SW 8260
Vinyl chloride	< 0.20		ug/L	0.20	2.0	1	12/09/10 23:32	mae	10L0218	SW 82601
Xylenes, Total	<0.50		ug/L	0.50	2.0	1	12/09/10 23:32	mae	10L0218	SW 82601
Surr: Dibromofluoromethane (80-120%)	107 %									
Surr: Toluene-d8 (80-120%)	100 %									
Surr: 4-Bromofluorobenzene (80-120%)	99 %									

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186 Mr. Kevin Bugel Work Order: Project: WTL0105

1E-0909013 Racine, WI

Project Number: 1730 State Street

Received: 12/

12/02/10

Reported: 12/14/10 09:04

	Sample	Data				Dilution	Date		Seq/	
Analyte	Result	Qualifiers	Units	MDL	MRL	Factor	Analyzed	Analyst	Batch	Metho
sample ID: WTL0105-07 (MW-	7 - Ground Wate	r)					Sampled: 12	/01/10		
OCs by SW8260B										
Benzene	0.97	J	ug/L	0.20	2.0	1	12/09/10 23:58	mae	10L0218	SW 8260
Broinobenzene	< 0.20		ug/L	0.20	2.0	1	12/09/10 23:58	mae	10L0218	SW 826
Broinochloromethane	< 0.50		ug/L	0.50	2.0	1	12/09/10 23:58	mae	10L0218	SW 826
Bromodichloromethane	< 0.20		ug/L	0.20	2.0	1	12/09/10 23:58	mae	10L0218	SW 826
Bromoform	< 0.20		ug/L	0.20	5.0	1	12/09/10 23:58	mae	10L0218	SW 826
Bromomethane	< 0.50		ug/L	0.50	5.0	1	12/09/10 23:58	mae	10L0218	SW 826
-Butylbenzene	< 0.20		ug/L	0.20	2.0	1	12/09/10 23:58	mae	10L0218	SW 826
ec-Butylbenzene	< 0.25		ug/L	0.25	2.0	1	12/09/10 23:58	mae	10L0218	SW 826
ert-Butylbenzene	< 0.20		ug/L	0.20	2.0	1	12/09/10 23:58	mae	10L0218	SW 826
Carbon Tetrachloride	< 0.80		ug/L	0.80	2.0	1	12/09/10 23:58	mae	10L0218	SW 826
Chlorobenzene	< 0.20		ug/L	0.20	2.0	1	12/09/10 23:58	mae	10L0218	SW 826
Chlorodibromomethane	< 0.20		ug/L	0.20	2.0	1	12/09/10 23:58	mae	10L0218	SW 826
Chloroethane	2.8	J	ug/L	1.0	5.0	1	12/09/10 23:58	mae	10L0218	SW 826
Chloroform	< 0.20		ug/L	0.20	2.0	1	12/09/10 23:58	mae	10L0218	SW 826
Chloromethane	< 0.30		ug/L	0.30	2.0	1	12/09/10 23:58	mae	10L0218	SW 826
2-Chlorotoluene	< 0.50		ug/L	0.50	2.0	1	12/09/10 23:58	mae	10L0218	SW 826
+-Chlorotojuene	<0.20		ug/L	0.20	2.0	I	12/09/10 23:58	mae	10L0218	SW 826
1,2-Dibromo-3-chloropropane	< 0.50		ug/L	0.50	2.0	1	12/09/10 23:58	mae	10L0218	SW 826
1,2-Dibromoethane (EDB)	<0.20		ug/L	0.20	2.0	1	12/09/10 23:58	mae	10L0218	SW 826
Dibromomethane	<0.20		ug/L	0.20	2.0	1	12/09/10 23:58	mae	10L0218	SW 826
,2-Dichlorobenzene	<0.20		_	0.20	2.0	1	12/09/10 23:58		10L0218	SW 826
.3-Dichlorobenzene	<0.20		ug/L	0.20	2.0	1	12/09/10 23:58	mae	10L0218	SW 826
.4-Dichlorobenzene	<0.50		ug/L	0.50	2.0	1	12/09/10 23:58	mae	10L0218	SW 826
Dichlorodifluoromethane	<0.50		ug/L	0.50	2.0	1	12/09/10 23:58	mae	10L0218	SW 826
	<0.50		ug/L	0.50	2.0	1	12/09/10 23:58	mae	10L0218	SW 826
I,1-Dichloroethane	<0.50		ug/L	0.50	2.0	1	12/09/10 23:58	mae	10L0218	SW 826
1,2-Dichloroethane			ug/L				12/09/10 23:58	mae		SW 826
,1-Dichloroethene	<0.50		ug/L	0.50	2.0	1		mae	10L0218	
cis-1,2-Dichloroethene	<0.50		ug/L	0.50	2.0	1	12/09/10 23:58	mae	10L0218	SW 826
trans-1,2-Dichloroethene	<0.50		ug/L	0.50	2.0	1	12/09/10 23:58	mae	10L0218	SW 826
1,2-Dichloropropane	<0.50		ug/L	0.50	2.0	I	12/09/10 23:58	mae	10L0218	SW 826
1,3-Dichloropropane	<0.25		ug/L	0.25	2.0	1	12/09/10 23:58	inae	10L0218	SW 826
2,2-Dichloropropane	<0.50		ug/L	0.50	2.0	1	12/09/10 23:58	mae	10L0218	SW 826
1,1-Dichloropropene	<0.50		ug/L	0.50	2.0	1	12/09/10 23:58	mae	10L0218	SW 826
cis-1,3-Dichloropropene	<0.20		ug/L	0.20	2.0	1	12/09/10 23:58	mae	10L0218	SW 826
trans-1,3-Dichloropropene	<0.20		ug/L	0.20	2.0	1	12/09/10 23:58	ınae	10L0218	SW 826
2,3-Dichloropropene	<0.25		ug/L	0.25	2.0	1	12/09/10 23:58	mae	10L0218	SW 826
Isopropyi Ether	< 0.50		ug/L	0.50	2.0	1	12/09/10 23:58	mae	10L0218	SW 826
Ethylbenzene	<0.50		ug/L	0.50	2.0	. 1	12/09/10 23:58	mae	10L0218	SW 826
Hexachlorobutadiene	< 0.50		ug/L	0.50	2.0	1	12/09/10 23:58	mae	10L0218	SW 826
lsopropylbenzene	< 0.20		ug/L	0.20	2.0	I	12/09/10 23:58	mae	10L0218	SW 826
p-Isopropyltoluene	< 0.20		ug/L	0.20	2.0	1	12/09/10 23:58	mae	10L0218	SW 826
Methylene Chloride	<1.0		ug/L	1.0	2.0	1	12/09/10 23:58	mae	I0L0218	SW 826
Methyl tert-Butyl Ether	<0.50		ug/L	0.50	2.0	ì	12/09/10 23:58	mae	10L0218	SW 826
Naphthalene	< 0.25		ug/L	0.25	5.0	ì	12/09/10 23:58	mae	10L0218	SW 826
n-Propylbenzene	< 0.50		ug/L	0.50	2.0	1	12/09/10 23:58	mae	101.0218	SW 826
Styrene	< 0.50		ug/L	0.50	5.0	1	12/09/10 23:58	mae -	10L0218	SW 826
1,1,1,2-Tetrachloroethane	< 0.25		ug/L	0.25	2.0	1	12/09/10 23:58	ınae	10L0218	SW 826
1,1,2,2-Tetrachloroethane	<0.20		ug/L	0.20	2.0	1	12/09/10 23:58	mae	10L0218	SW 826
retrachloroethene	< 0.50		ug/L	0.50	2.0	1	12/09/10 23:58	mae	10L0218	SW 826
Toluene	<0.50		ug/L	0.50	2.0	1	12/09/10 23:58	mae	10L0218	SW 826
1,2,3-Trichlorobenzene	<0.25		ug/L	0.25	2.0	1	12/09/10 23:58	mae	10L0218	SW 826

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186 Mr. Kevin Bugel Work Order:

Project:

WTL0105

W 1 L U 1 U 3

Project Number:

1E-0909013 Racine, WI 1730 State Street Received:

12/02/10

Reported: 12/14/10 09:04

	Sample	Data				Dilution	Date		Seq/	
Analyte	Result	Qualifiers	Units	MDL	MRL	Factor	Analyzed	Analyst	Batch	Method
Sample ID: WTL0105-07 (MW-7 - 0	Ground Wate	r) - cont.					Sampled: 12	/01/10		
VOCs by SW8260B - cont.										
1,2,4-Trichlorobenzene	< 0.25		ug/L	0.25	2.0	1	12/09/10 23:58	mae	10L0218	SW 8260E
1,1,1-Trichloroethane	< 0.50		ug/L	0.50	2.0	1	12/09/10 23:58	mae	10L0218	SW 8260E
1,1,2-Trichloroethane	< 0.25		ug/L	0.25	2.0	1	12/09/10 23:58	mae	10L0218	SW 8260E
Trichloroethene	< 0.20		ug/L	0.20	2.0	1	12/09/10 23:58	mae	10L0218	SW 8260E
Trichlorofluoromethane	< 0.50		ug/L	0.50	2.0	1	12/09/10 23:58	mae	IOL0218	SW 8260E
1,2,3-Trichloropropane	< 0.50		ug/L	0.50	2.0	1	12/09/10 23:58	mae	10L0218	SW 8260E
1,2,4-Trimethylbenzene	< 0.20		ug/L	0.20	2.0	1	12/09/10 23:58	mae	10L0218	SW 8260E
1,3,5-Trimethylbenzene	< 0.20		ug/L	0.20	2.0	1	12/09/10 23:58	mae	10L0218	SW 8260E
Vinyl chloride	2.1		ug/L	0.20	2.0	1	12/09/10 23:58	mae	10L0218	SW 8260E
Xylenes, Total	< 0.50		ug/L	0.50	2.0	1	12/09/10 23:58	mae	10L0218	SW 8260E
Surr: Dibromofluoromethane (80-120%)	107 %		-0							
Surr: Toluene-d8 (80-120%)	100 %									
Surr: 4-Bromofluorobenzene (80-120%)	98 %									
							6 1 1 10	104140		
Sample ID: WTL0105-08 (MW-8 - 0 VOCs by SW8260B	Ground wate	11)					Sampled: 12.	/01/10		
Benzene	<1.0		ug/L	1.0	10	5	12/10/10 00:52	mae	10L0218	SW 8260B
Bromobenzene	<1.0		ug/L	1.0	10	5	12/10/10 00:52		10L0218	SW 8260B
Bromochloromethane	<2.5		_	2.5	10	5	12/10/10 00:52	mae	10L0218	SW 8260B
Bromodichloromethane	<1.0		ug/L	1.0	10	5	12/10/10 00:52	mae	10L0218	SW 8260B
Bromoform	<1.0		ug/L	1.0	25	5	12/10/10 00:52	mae	10L0218	SW 8260B
	<2.5		ug/L	2.5				mae		
Bromomethane			ug/L		25	5	12/10/10 00:52	mae	10L0218	SW 8260E
n-Butylbenzene	<1.0		ug/L	1.0	10	5	12/10/10 00:52	mae	10L0218	SW 8260E
sec-Butylbenzene	<1.3		ug/L	1.3	10	5	12/10/10 00:52	mae	10L0218	SW 8260E
tert-Butylbenzene	<1.0		ug/L	1.0	10	5	12/10/10 00:52	mae	10L0218	SW 8260E
Carbon Tetrachloride	<4.0		ug/L	4.0	10	5	12/10/10 00:52	mae	10L0218	SW 8260E
Chlorobenzene	<1.0		ug/L	1.0	10	5	12/10/10 00:52	mae	10L0218	SW 8260E
Chlorodibromomethane	<1.0		ug/L	1.0	10	5	12/10/10 00:52	mae	IOL0218	SW 8260E
Chloroethane	<5.0		ug/L	5.0	25	5	12/10/10 00:52	mae	10L0218	SW 8260E
Chloroform	<1.0		ug/L	1.0	10	5	12/10/10 00:52	mae	10L0218	SW 8260B
Chloromethane	<1.5		ug/L	1.5	10	5	12/10/10 00:52	mae	10L0218	SW 8260B
2-Chlorotoluene	<2.5		ug/L	2.5	10	5	12/10/10 00:52	mae	10L0218	SW 8260E
4-Chlorotoluene	<1.0		ug/L	1.0	10	5	12/10/10 00:52	mae	10L0218	SW 8260E
1,2-Dibromo-3-chloropropane	<2.5		ug/L	2.5	10	5	12/10/10 00:52	mae	10L0218	SW 8260E
1,2-Dibromoethane (EDB)	<1.0		ug/L	1.0	10	5	12/10/10 00:52	mae	10L0218	SW 8260E
Dibromomethane	<1.0		ug/L	1.0	10	5	12/10/10 00:52	mae	10L0218	SW 8260E
1,2-Dichlorobenzene	<1.0		ug/L	1.0	10	5	12/10/10 00:52	mae	10L0218	SW 8260E
1,3-Dichlorobenzene	<1.0		ug/L	1.0	10	5	12/10/10 00:52	mae	10L0218	SW 8260E
1,4-Dichlorobenzene	<2.5		ug/L	2.5	10	5	12/10/10 00:52	mae	10L0218	SW 8260E
Dichlorodifluoromethane	<2.5		ug/L	2.5	10	5	12/10/10 00:52	mae	10L0218	SW 8260E
1,1-Dichloroethane	<2.5		ug/L	2.5	10	5	12/10/10 00:52	mae	10L0218	SW 8260E
1,2-Dichloroethane	<2.5		ug/L	2.5	10	5	12/10/10 00:52	mae	10L0218	SW 8260E
1,1-Dichloroethene	<2.5		ug/L	2.5	10	5	12/10/10 00:52	mae	10L0218	SW 8260E
cis-1,2-Dichloroethene	670		ug/L	2.5	10	5	12/10/10 00:52	mae	10L0218	SW 8260E
trans-1,2-Dichloroethene	4.9	J	ug/L	2.5	10	5	12/10/10 00:52	mae	10L0218	SW 8260E
1,2-Dichloropropane	<2.5		ug/L	2.5	10	5	12/10/10 00:52	mae	10L0218	SW 8260E
1,3-Dichloropropane	<1.3		ug/L	1.3	10	5	12/10/10 00:52	mae	10L0218	SW 8260E
2.2-Dichloropropane	<2.5		ug/L	2.5	10	5	12/10/10 00:52	mae	10L0218	SW 8260E
1.1-Dichloropropene	<2.5		ug/L	2.5	10	5	12/10/10 00:52	mae	10L0218	SW 8260E
cis-1,3-Dichloropropene	<1.0		ug/L	1.0	10	5	12/10/10 00:52	mae	10L0218	SW 8260E
trans-1,3-Dichloropropene	<1.0		ug/L	1.0	10	5	12/10/10 00:52	mae	10L0218	SW 8260E

Project Manager

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186 Mr. Kevin Bugel Work Order: Project:

Project Number:

WTL0105

V 1 L 0 1 0 5

1E-0909013 Racine, WI 1730 State Street Received:

12/02/10

Reported: 12/14/10 09:04

Analyte	Sample Result	Data Qualifiers	Units	MDL	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTL0105-08 (MW-8 - 0	Ground Wate	r) - cont.					Sampled: 12	/01/10		
VOCs by SW8260B - cont.										
2,3-Dichloropropene	<1.3		ug/L	1.3	10	5	12/10/10 00:52	mae	IOL0218	SW 8260B
Isopropyl Ether	<2.5		ug/L	2.5	10	5	12/10/10 00:52	mae	10L0218	SW 8260B
Ethylbenzene	<2.5		ug/L	2.5	10	5	12/10/10 00:52	mae	10L0218	SW 8260E
Hexachlorobutadiene	<2.5		ug/L	2.5	10	5	12/10/10 00:52	mae	10L0218	SW 8260E
Isopropylbenzene	<1.0		ug/L	1.0	10	5	12/10/10 00:52	mae	10L0218	SW 8260B
p-Isopropyltoluene	<1.0		ug/L	1.0	10	5	12/10/10 00:52	mae	10L0218	SW 8260E
Methylene Chloride	<5.0		ug/L	5.0	10	5	12/10/10 00:52	mae	10L0218	SW 8260E
Methyl tert-Butyl Ether	<2.5		ug/L	2.5	10	5	12/10/10 00:52	mae	10L0218	SW 8260E
Naphthalene	<1.3		ug/L	1.3	25	5	12/10/10 00:52	mae	10L0218	SW 8260E
n-Propylbenzene	<2.5		ug/L	2,5	10	5	12/10/10 00:52	mae	10L0218	SW 8260E
Styrene	<2.5		ug/L	2.5	25	5	12/10/10 00:52	mae	10L0218	SW 8260E
1,1,1,2-Tetrachloroethane	<1.3		ug/L	1.3	10	5	12/10/10 00:52	mae	10L0218	SW 8260E
1,1,2,2-Tetrachloroethane	<1.0		ug/L	1.0	10	5	12/10/10 00:52	mae	10L0218	SW 8260E
Tetrachloroethene	150		ug/L	2.5	10	5	12/10/10 00:52	mae	10L0218	SW 8260E
Toluene	<2.5		ug/L	2.5	10	5	12/10/10 00:52	mae	10L0218	SW 8260E
1,2,3-Trichlorobenzene	<1.3		ug/L	1.3	10	5	12/10/10 00:52	mae	10L0218	SW 8260E
1,2,4-Trichlorobenzene	<1.3		ug/L	1.3	10	5	12/10/10 00:52	mae	10L0218	SW 8260E
1,1,1-Trichloroethane	<2.5		ug/L	2.5	10	5	12/10/10 00:52	mae	10L0218	SW 8260E
1,1,2-Trichloroethane	<1.3		ug/L	1.3	10	5	12/10/10 00:52	mae	10L0218	SW 8260E
Trichloroethene	100		ug/L	1.0	10	5	12/10/10 00:52	mae	10L0218	SW 8260E
Trichlorofluoromethane	<2.5		ug/L	2.5	10	5	12/10/10 00:52	mae	10L0218	SW 8260E
1,2,3-Trichloropropane	<2.5		ug/L	2.5	10	5	12/10/10 00:52	mae	10L0218	SW 8260E
1,2,4-Trimethylbenzene	<1.0		ug/L	1.0	10	5	12/10/10 00:52	mae	10L0218	SW 8260E
1,3,5-Trimethylbenzene	<1.0		ug/L	1.0	10	5	12/10/10 00:52	mae	10L0218	SW 8260E
Vinyl chloride	45		ug/L	1.0	10	5	12/10/10 00:52	mae	10L0218	SW 8260E
Xylenes, Total	<2.5		ug/L	2.5	10	5	12/10/10 00:52	mae	10L0218	SW 8260E
Surr: Dibromofluoromethane (80-120%)	105 %									
Surr: Toluene-d8 (80-120%)	100 %									
Surr: 4-Bromofluorobenzene (80-120%)	98 %									

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186

Work Order:

Project Number:

WTL0105

12/02/10

Project:

1E-0909013 Racine, WI

1730 State Street

Received: Reported:

12/14/10 09:04

** 4	uncoma,	***	1 22	100
Mr	Kevin	Ru	gel	

	Sample	Data	¥1 **		MDI	Dilution	Date		Seq/	
Analyte	Result	Qualifiers	Units	MDL	MRL	Factor	Analyzed	Analyst	Batch	Method
Sample ID: WTL0105-09 (Dup-1	- Ground Water	r)					Sampled: 12	/01/10		
VOCs by SW8260B										
Benzene	<4.0		ug/L	4.0	40	20	12/10/10 00:25	mae	10L0218	SW 82601
Bromobenzene	<4.0		ug/L	4.0	40	20	12/10/10 00:25	mae	10L0218	SW 8260
Bromochloromethane	<10		ug/L	10	40	20	12/10/10 00:25	mae	10L0218	SW 8260
Bromodichloromethane	<4.0		ug/L	4.0	40	20	12/10/10 00:25	mae	10L0218	SW 8260
Bromoform	<4.0		ug/L	4.0	100	20	12/10/10 00:25	mae	10L0218	SW 8260
Bromomethane	<10		ug/L	10	100	20	12/10/10 00:25	mae	10L0218	SW 8260
n-Butylbenzene	<4.0		ug/L	4.0	40	20	12/10/10 00:25	mae	10L0218	SW 8260
sec-Butylbenzene	<5.0		ug/L	5.0	40	20	12/10/10 00:25	ınae	10L0218	SW 8260
tert-Butylbenzene	<4.0		ug/L	4.0	40	20	12/10/10 00:25	mae	10L0218	SW 8260
Carbon Tetrachloride	<16		ug/L	16	40	20	12/10/10 00:25	mae	10L0218	SW 8260
Chlorobenzene	<4.0		ug/L	4.0	40	20	12/10/10 00:25	mae	10L0218	SW 8260
Chlorodibromomethane	<4.0		ug/L	4.0	40	20	12/10/10 00:25	mae	10L0218	SW 8260
Chloroethane	<20		ug/L	20	100	20	12/10/10 00:25	mae	10L0218	SW 8260
Chloroform	<4.0		ug/L	4.0	40	20	12/10/10 00:25	mae	10L0218	SW 8260
Chloromethane	<6.0		ug/L	6.0	40	20	12/10/10 00:25	mae	10L0218	SW 8260
2-Chlorotoluene	<10		ug/L	10	40	20	12/10/10 00:25	mae	10L0218	SW 8260
4-Chlorotoluene	<4.0		ug/L	4.0	40	20	12/10/10 00:25	mae	10L0218	SW 8260
1,2-Dibromo-3-chloropropane	<10		_	10	40	20	12/10/10 00:25		10L0218	SW 8260
1,2-Dibromoethane (EDB)	<4.0		ug/L	4.0	40	20	12/10/10 00:25	inae	10L0218	SW 8260
	<4.0		ug/L	4.0	40	20	12/10/10 00:25	mae	10L0218	SW 8260
Dibromomethane			ug/L	4.0	40	20	12/10/10 00:25	mae	10L0218	SW 8260
1,2-Dichlorobenzene	<4.0		ug/L		40			mae	10L0218	SW 8260
1,3-Dichlorobenzene	<4.0		ug/L	4.0		20	12/10/10 00:25	mae		SW 8260
1,4-Dichlorobenzene	<10		ug/L	10	40	20	12/10/10 00:25	mae	10L0218	
Dichlorodifluoromethane	<10		ug/L	10	40	20	12/10/10 00:25	mae	10L0218	SW 8260
1,1-Dichloroethane	12	J	ug/L	10	40	20	12/10/10 00:25	mae	10L0218	SW 8260
1,2-Dichloroethane	<10		ug/L	10	40	20	12/10/10 00:25	mae	10L0218	SW 8260
1,1-Dichloroethene	12	J	ug/L	10	40	20	12/10/10 00:25	mae	10L0218	SW 8260
cis-1,2-Dichloroethene	3300		ug/L	40	160	80	12/10/10 21:34	LCK	10L0250	SW 8260
trans-1,2-Dichloroethene	44		ug/L	10	40	20	12/10/10 00:25	mae	10L0218	SW 8260
1,2-Dichloropropane	<10		ug/L	10	40	20	12/10/10 00:25	ınae	10L0218	SW 8260
1.3-Dichloropropane	<5.0		ug/L	5.0	40	20	12/10/10 00:25	mae	10L0218	SW 8260
2,2-Dichloropropane	<10		ug/L	10	40	20	12/10/10 00:25	ınae	10L0218	SW 8260
1,1-Dichloropropene	<10		ug/L	10	40	20	12/10/10 00:25	mae	I0L0218	SW 8260
cis-1,3-Dichloropropene	<4.0		ug/L	4.0	40	20	12/10/10 00:25	mae	10L0218	SW 8260
trans-1,3-Dichloropropene	<4.0		ug/L	4.0	40	20	12/10/10 00:25	mae	10L0218	SW 8260
2,3-Dichloropropene	<5.0		ug/L	5.0	40	20	12/10/10 00:25	mae	10L0218	SW 8260
Isopropyl Ether	<10		ug/L	10	40	20	12/10/10 00:25	mae	10L0218	SW 8260
Ethylbenzene	<10		ug/L	10	40	20	12/10/10 00:25	mae	10L0218	SW 8260
Hexachlorobutadiene	<10		ug/L	10	40	20	12/10/10 00:25	mae	10L0218	SW 8260
lsopropylbenzene	<4.0		ug/L	4.0	40	20	12/10/10 00:25	mae	10L0218	SW 8260
p-lsopropyltoluene	<4.0		ug/L	4.0	40	20	12/10/10 00:25	mae	10L0218	SW 8260
Methylene Chloride	<20		ug/L	20	40	20	12/10/10 00:25	mae	10L0218	SW 8260
Methyl tert-Butyl Ether	<10		ug/L	10	40	20	12/10/10 00:25	mae	10L0218	SW 8260
Naphthalene	<5.0		ug/L	5.0	100	20	12/10/10 00:25	mae	10L0218	SW 8260
n-Propylbenzene	<10		ug/L	10	40	20	12/10/10 00:25	mae	10L0218	SW 8260
Styrene	<10		ug/L	10	100	20	12/10/10 00:25	mae	10L0218	SW 8260
1,1,1,2-Tetrachloroethane	<5.0		ug/L	5.0	40	20	12/10/10 00:25	mae	10L0218	SW 8260
1,1,2,2-Tetrachloroethane	<4.0		ug/L	4.0	40	20	12/10/10 00:25	mae	10L0218	SW 8260
Tetrachloroethene	1500		ug/L	10	40	20	12/10/10 00:25	mae	10L0218	SW 8260
Toluene	<10		ug/L	10	40	20	12/10/10 00:25		10L0218	SW 8260
1,2,3-Trichlorobenzene	<5.0		ug/L ug/L	5.0	40	20	12/10/10 00:25	mae	10L0218	SW 8260

Brian DeJong For Dan F. Milewsky

Project Manager

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186 Mr. Kevin Bugel Work Order: Project: WTL0105

1E-0909013 Racine, WI

Project Number: 1730 State Street

Received:

12/02/10

Reported: 12/14/10 09:04

	Sample	Data				Dilution	Date		Seq/	
Analyte	Result	Qualifiers	Units	MDL	MRL	Factor	Analyzed	Analyst	Batch	Method
Sample ID: WTL0105-09 (Dup-1 - 0	Ground Wate	r) - cont.					Sampled: 12	/01/10		
VOCs by SW8260B - cont.										
1,2,4-Trichlorobenzene	<5.0		ug/L	5.0	40	20	12/10/10 00:25	mae	10L0218	SW 8260B
1,1,1-Trichloroethane	<10		ug/L	10	40	20	12/10/10 00:25	mae	10L0218	SW 8260B
1,1,2-Trichloroethane	<5.0		ug/L	5.0	40	20	12/10/10 00:25	mae	10L0218	SW 8260B
Trichloroethene	1600		ug/L	4.0	40	20	12/10/10 00:25	mae	10L0218	SW 8260B
Trichlorofluoromethane	<10		ug/L	10	40	20	12/10/10 00:25	mae	10L0218	SW 8260B
1,2,3-Trichloropropane	<10		ug/L	10	40	20	12/10/10 00:25	mae	10L0218	SW 8260B
1,2,4-Trimethylbenzene	<4.0		ug/L	4.0	40	20	12/10/10 00:25	mae	10L0218	SW 8260B
1,3,5-Trimethylbenzene	<4.0		ug/L	4.0	40	20	12/10/10 00:25	mae	10L0218	SW 8260B
Vinyl chloride	350		ug/L	4.0	40	20	12/10/10 00:25	mae	10L0218	SW 8260B
Xylenes, Total	<10		ug/L	10	40	20	12/10/10 00:25	mae	10L0218	SW 8260B
Surr: Dibromofluoromethane (80-120%)	107 %									
Surr: Dibromofluoromethane (80-120%)	109 %									
Surr: Toluene-d8 (80-120%)	101 %									
Surr: Toluene-d8 (80-120%)	101 %									
Surr: 4-Bromofluorobenzene (80-120%)	99 %									
Surr: 4-Bromofluorobenzene (80-120%)	101 %									
Sample ID: WTL0105-10 (Trip Bla	nk - Ground V	Water)					Sampled: 12	/01/10		
VOCs by SW8260B										
Benzene	< 0.20		ug/L	0.20	2.0	1	12/09/10 20:24	mae	IOL0218	SW 8260B
Bromobenzene	< 0.20		ug/L	0.20	2.0	1	12/09/10 20:24	mae	10L0218	SW 8260B
Bromochloromethane	< 0.50		ug/L	0.50	2.0	1	12/09/10 20:24	mae	10L0218	SW 8260B
Bromodichloromethane	<0.20		ug/L	0,20	2.0	1	12/09/10 20:24	mae	10L0218	SW 8260B
Bromoform	< 0.20		ug/L	0.20	5.0	1	12/09/10 20:24	mae	10L0218	SW 8260B
Bromomethane	< 0.50		ug/L	0.50	5.0	1	12/09/10 20:24	mae	10L0218	SW 8260B
n-Butylbenzene	< 0.20		ug/L	0.20	2.0	I	12/09/10 20:24	mae	10L0218	SW 8260B
sec-Butylbenzene	< 0.25		ug/L	0.25	2.0	1	12/09/10 20:24	mae	10L0218	SW 8260B
tert-Butylbenzene	< 0.20		ug/L	0.20	2.0	I	12/09/10 20:24	mae	10L0218	SW 8260B
Carbon Tetrachloride	<0.80		ug/L	0.80	2.0	1	12/09/10 20:24	mae	10L0218	SW 8260B
Chlorobenzene	<0.20		ug/L	0.20	2.0	I	12/09/10 20:24	mae	10L0218	SW 8260B
Chlorodibromomethane	<0.20		ug/L	0.20	2.0	1	12/09/10 20:24	mae	10L0218	SW 8260B
Chloroethane	<1.0		ug/L	1.0	5.0	ł	12/09/10 20:24	mae	10L0218	SW 8260B
Chloroform	< 0.20		ug/L	0.20	2.0	1	12/09/10 20:24	mae	10L0218	SW 8260B
Chloromethane	< 0.30		ug/L	0.30	2.0	1	12/09/10 20:24	mae	10L0218	SW 8260B
2-Chlorotoluene	< 0.50		ug/L	0.50	2.0	1	12/09/10 20:24	mae	10L0218	SW 8260B
4-Chlorotoluene	<0.20		ug/L	0.20	2.0	1	12/09/10 20:24	mae	10L0218	SW 8260B
1,2-Dibromo-3-chloropropane	< 0.50		ug/L	0,50	2.0	1	12/09/10 20:24	mae	10L0218	SW 8260B
1.2-Dibromoethane (EDB)	<0.20		ug/L	0.20	2.0	1	12/09/10 20:24	mae	10L0218	SW 8260B
Dibromomethane	<0.20		ug/L	0.20	2.0	1	12/09/10 20:24	mae	10L0218	SW 8260B
1,2-Dichlorobenzene	<0.20		ug/L	0.20	2.0	Ī	12/09/10 20:24	mae	10L0218	SW 8260B
1,3-Dichlorobenzene	<0.20		ug/L	0.20	2.0	1	12/09/10 20:24	mae	10L0218	SW 8260B
I,4-Dichlorobenzene	<0.50		ug/L	0.50	2.0	1	12/09/10 20:24	mae	10L0218	SW 8260B
Dichlorodifluoromethane	<0.50		ug/L	0.50	2.0	1	12/09/10 20:24	mae	10L0218	SW 8260B
1,1-Dichloroethane	<0.50		ug/L	0.50	2.0	1	12/09/10 20:24	mae	10L0218	SW 8260B
1,2-Dichloroethane	< 0.50		ug/L	0.50	2.0	1	12/09/10 20:24	mae	10L0218	SW 8260E
1,1-Dichloroethene	< 0.50		ug/L	0.50	2.0	1	12/09/10 20:24	mae	10L0218	SW 8260E
cis-1,2-Dichloroethene	<0.50		ug/L	0.50	2.0	1	12/09/10 20:24	mae	10L0218	SW 8260E
trans-1,2-Dichloroethene	<0.50		ug/L	0.50	2.0	1	12/09/10 20:24	mae	10L0218	SW 8260E
1,2-Dichloropropane	<0.50		ug/L	0.50	2.0	I	12/09/10 20:24	mae	10L0218	SW 8260E
1,3-Dichloropropane	<0.25		ug/L	0.25	2.0	1	12/09/10 20:24	mae	10L0218	SW 8260E
2,2-Dichloropropane	< 0.50		ug/L	0.50	2.0	1	12/09/10 20:24	mae	10L0218	SW 8260B

Brian DeJong For Dan F. Milewsky

Project Manager

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Mr. Kevin Bugel Work Order: Project: WTL0105

WILDIOJ

Received:

12/02/10

eported: 12/14/10 09:04

Project:	1E-0909013 Racine, WI	Reported:	12/14/10
Project Number:	1730 State Street		

Analyte	Sample Result	Data Qualifiers	Units	MDL	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTL0105-10 (Trip Blan	nk - Ground V	Water) - cont.					Sampled: 12	/01/10		
VOCs by SW8260B - cont.										
1,1-Dichloropropene	< 0.50		ug/L	0.50	2.0	1	12/09/10 20:24	mae	10L0218	SW 8260E
cis-1,3-Dichloropropene	< 0.20		ug/L	0.20	2.0	1	12/09/10 20:24	mae	10L0218	SW 8260E
trans-1,3-Dichloropropene	< 0.20		ug/L	0.20	2.0	1	12/09/10 20:24	mae	10L0218	SW 8260E
2,3-Dichloropropene	< 0.25		ug/L	0.25	2.0	1	12/09/10 20:24	mae	10L0218	SW 8260B
Isopropyl Ether	< 0.50		ug/L	0.50	2.0	i	12/09/10 20:24	mae	10L0218	SW 8260B
Ethylbenzene	< 0.50		ug/L	0.50	2.0	1	12/09/10 20:24	mae	10L0218	SW 8260B
Hexachlorobutadiene	< 0.50		ug/L	0.50	2.0	1	12/09/10 20:24	ınae	10L0218	SW 8260B
Isopropylbenzene	< 0.20		ug/L	0.20	2.0	1	12/09/10 20:24	ınae	10L0218	SW 8260B
p-Isopropyltoluene	< 0.20		ug/L	0.20	2.0	1	12/09/10 20:24	mae	10L0218	SW 8260B
Methylene Chloride	<1.0		ug/L	1.0	2.0	1	12/09/10 20:24	mae	10L0218	SW 8260B
Methyl tert-Butyl Ether	< 0.50		ug/L	0.50	2.0	1	12/09/10 20:24	mae	10L0218	SW 8260B
Naphthalene	< 0.25		ug/L	0.25	5.0	Ī	12/09/10 20:24	mae	10L0218	SW 8260B
n-Propylbenzene	< 0.50		ug/L	0.50	2.0	1	12/09/10 20:24	mae	10L0218	SW 8260B
Styrene	< 0.50		ug/L	0.50	5.0	1	12/09/10 20:24	mae	10L0218	SW 8260E
1,1,1,2-Tetrachloroethane	< 0.25		ug/L	0.25	2.0	1	12/09/10 20:24	mae	10L0218	SW 8260B
1,1,2,2-Tetrachloroethane	< 0.20		ug/L	0.20	2.0	1	12/09/10 20:24	mae	10L0218	SW 8260B
Tetrachloroethene	< 0.50		ug/L	0.50	2.0	1	12/09/10 20:24	mae	10L0218	SW 8260B
Toluene	< 0.50		ug/L	0.50	2.0	i	12/09/10 20:24	mae	10L0218	SW 8260B
1,2,3-Trichlorobenzene	< 0.25		ug/L	0.25	2.0	1	12/09/10 20:24	mae	10L0218	SW 8260B
1,2,4-Trichlorobenzene	< 0.25		ug/L	0.25	2.0	1	12/09/10 20:24	mae	10L0218	SW 8260B
1,1,1-Trichloroethane	< 0.50		ug/L	0.50	2.0	1	12/09/10 20:24	mae	10L0218	SW 8260B
1,1,2-Trichloroethane	< 0.25		ug/L	0.25	2.0	1	12/09/10 20:24	ınae	10L0218	SW 8260B
Trichloroethene	< 0.20		ug/L	0.20	2.0	1	12/09/10 20:24	mae	10L0218	SW 8260B
Trichlorofluoromethane	< 0.50		ug/L	0.50	2.0	1	12/09/10 20:24	mae	10L0218	SW 8260E
1,2,3-Trichloropropane	<0.50		ug/L	0.50	2.0	1	12/09/10 20:24	mae	10L0218	SW 8260E
1,2,4-Trimethylbenzene	< 0.20		ug/L	0.20	2.0	1	12/09/10 20:24	mae	10L0218	SW 8260E
1,3,5-Trimethylbenzene	< 0.20		ug/L	0.20	2.0	1	12/09/10 20:24	mae	10L0218	SW 8260E
Vinyl chloride	< 0.20		ug/L	0.20	2.0	1	12/09/10 20:24	mae	10L0218	SW 8260E
Xylenes, Total	< 0.50		ug/L	0.50	2.0	1	12/09/10 20:24	ınae	10L0218	SW 8260E
Surr: Dibromofluoromethane (80-120%)	105 %									
Surr: Toluene-d8 (80-120%)	100 %									
Surr: 4-Bromofluorobenzene (80-120%)	98 %									

GILES ENGINEERING - WISCONSIN N8 W22350 Johnson Road Waukesha, WI 53186

Mr. Kevin Bugel

Work Order:

Project:

WTL0105

1E-0909013 Racine, WI

Project Number: 173

1730 State Street

Received:

12/02/10

Reported: 12/14/10 09:04

LABORATORY BLANK QC DATA

Analyte Barch Result Level Units MDL MRL Result			LAD	UKAT	OKIB	LANN	QC D	AIA						
SOC. by SW8260B Bremothemenes 10L0218 ug/L 0.20 2.0 <0.20		-	_					Dup		_			RPD	
Benzane	lyte	Batch Res	ult Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
Bromochemzene 10.0218 ug/L 0.20 2.0 -0.20 Bromochichomentame 10.0218 ug/L 0.20 -0.20 Bromochem 10.0218 ug/L 0.20 -2.0 Bromofem 10.0218 ug/L 0.20 5.0 -0.20 Bromofemal 10.0218 ug/L 0.20 5.0 -0.20 Bromofemal 10.0218 ug/L 0.20 5.0 -0.20 u-Buylbenzene 10.0218 ug/L 0.20 -0.20 -0.20 Carbon Terachlorde 10.0218 ug/L 0.20 -0.20 -0.20 Chlorodenzene 10.0218 ug/L 0.50 -0	•													
Bromodiloromethane 10.0218 ug/L 0.50 2.0 <0.20 Bromodiloromethane 10.0218 ug/L 0.20 5.0 -0.20 Bromonethane 10.0218 ug/L 0.50 5.0 -0.20 ine-Burylbenzene 10.0218 ug/L 0.25 2.0 -0.20 ser-Burylbenzene 10.0218 ug/L 0.25 2.0 -0.20 carbon Teracholorde 10.0218 ug/L 0.20 2.0 -0.20 Chlorodelmane 10.0218 ug/L 0.20 2.0 -0.20 Chlorodelmane 10.0218 ug/L 0.20 -0.20 -0.20 Chlorodelmane 10.0218 ug/L 0.20 -0.20 -0.20 Chlorodelmane 10.0218 ug/L 0.20 -0.20 -0.20 Chlorodelmane 10.0218 ug/L 0.50 -0.20 -0.20 Chlorodelmane 10.0218 ug/L 0.50 -0.20 -0.20 Li-Dirbinome-S-chloropropune					0.20	2.0	< 0.20							
Bromodichloromethane 10.018 ug/L 0.20 2.0 <0.20 Bromofen 10.0218 ug/L 0.20 5.0 <0.20	obenzene	10L0218		ug/L	0.20	2.0	< 0.20							
Bromonfonn 10.0218 ug/L 0.20 5.0 «3.0 Bromonfeitine 10.0218 ug/L 0.20 2.0 «3.0 ne-Butylehezne 10.0218 ug/L 0.25 2.0 «3.0 ser-Butylebnezne 10.0218 ug/L 0.20 2.0 ~2.0 Chroben Freinchlorde 10.0218 ug/L 0.80 2.0 ~2.0 Chloroderbane 10.0218 ug/L 0.80 2.0 ~2.0 Chloroderbane 10.0218 ug/L 0.0 ~2.0 Chloroform 10.0218 ug/L 0.0 ~2.0 Chloroform 10.0218 ug/L 0.50 ~2.0 Chloroform 10.0218 ug/L 0.50 ~2.0 2-Chloroforbune 10.0218 ug/L 0.50 ~2.0 1-Chloroforbune 10.0218 ug/L 0.50 ~2.0 1-2-Diblomosthane (EDB) 10.0218 ug/L 0.20 ~2.0 1-2-Diblomosthane 10.0218	ochloromethane	10L0218		ug/L	0.50	2.0	< 0.50							
Bromomethiane 10 L0218 ug/L 0.50 5.0 <0.50 n-Burylbenzene (10,0218 ug/L 0.20 <0.20 <0.20 see-Burylbenzene (10,0218 ug/L 0.20 <0.20 <0.20 cert-Burylbenzene (10,0218 ug/L 0.80 <0.20 <0.20 Carbon Tetruchloride (10,0218 ug/L 0.80 <0.20 <0.20 Chloroditromemethane (10,0218 ug/L 0.20 <0.20 <0.20 Chloroditromemethane (10,0218 ug/L 0.20 <0.20 <0.20 Chloroditromethane (10,0218 ug/L 0.30 <0.20 <0.20 Chloroditromethane (10,0218 ug/L 0.50 <0.20 <0.20 Chloroditromethane (10,0218 ug/L 0.50 <0.20 <0.20 1,2-Dibrome-3-chloropropane (10,0218 ug/L 0.50 <0.20 <0.20 1,2-Dichlorodenzene (10,0218 ug/L 0.50 <0.20 <0.20 <td>odichloromethane</td> <td>10L0218</td> <td></td> <td>ug/L</td> <td>0.20</td> <td>2.0</td> <td>< 0.20</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	odichloromethane	10L0218		ug/L	0.20	2.0	< 0.20							
n-Burylbenzene 10L0218 ug/L 0.20 2.0 0.20 0.20 0.20 0.20 0.20 0.20	oform	10L0218		ug/L	0.20	5.0	< 0.20							
sec-Buylbenzene 10L0218 ug/L 0.25 2.0 -0.25 Carbon Ternabloride 10L0218 ug/L 0.20 -0.00 -0.00 Chlorobenzene 10L0218 ug/L 0.20 -0.00 -0.00 Chlorobenzene 10L0218 ug/L 0.20 -0.00 -0.00 Chloroform 10L0218 ug/L 1.0 0.0 -0.00 Chloroform 10L0218 ug/L 0.00 -0.00 Chloroform 10L0218 ug/L 0.00 -0.00 Chloroform 10L0218 ug/L 0.50 -0.00 -Chlorofolune 10L0218 ug/L 0.50 -0.00 -Chlorofolune 10L0218 ug/L 0.50 -0.00 1,2-Dichlorofone-S-chloropropane 10L0218 ug/L 0.00 -0.50 1,2-Dichlorofonezene 10L0218 ug/L 0.20 -0.20 1,3-Dichlorofonezene 10L0218 ug/L 0.50 -0.50 1,1-Dichlorofonezene	omethane	10L0218		ug/L	0.50	5.0	< 0.50							
ierr Bulylbenzene 10L0218 ug/L 0.20 < 0.20 < 0.20 Curbon Fetrachloride 10L0218 ug/L 0.80 2.0 < 0.20	ylbenzene	10L0218		ug/L	0.20	2.0	< 0.20							
Carbon Tetrachloride 10L0218 ug/L 0.80 2.0 <0.80 Chlorochenzene 10L0218 ug/L 0.20 <0.20	utylbenzene	10L0218		ug/L	0.25	2.0	< 0.25							
Chlorodibromomethane 10L0218 ug/L 0.20 2.0 <0.20 Chlorodibromomethane 10L0218 ug/L 0.0 <0.20	utylbenzene	10L0218		ug/L	0.20	2.0	< 0.20							
Chlorodibromomethane 10L0218 ug/L 0.20 2.0 <0.20 Chlorosthane 10L0218 ug/L 1.0 5.0 <0.20	n Tetrachloride	10L0218		ug/L	0.80	2.0	<0.80							
Chlorochane 10.0218 ug/L 0.20 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	obenzene	10L0218		ug/L	0.20	2.0	< 0.20							
Chloroform 10L0218 ug/L 0.20 2.0 <0.20 Chloronethane 10L0218 ug/L 0.30 2.0 <0.30	odibromomethane	10L0218		ug/L	0.20	2.0	< 0.20							
Chlorofrom 10 L0218 ug/L 0.20 2.0 <0.20 Chloromethane 10 L0218 ug/L 0.30 2.0 <0.30	oethane	10L0218		ug/L	1.0	5.0	<1.0							
2-Chlorotoluene IDLO218 ug/L 0.50 2.0 <0.50 4-Chlorotoluene 10L0218 ug/L 0.20 2.0 <0.50	oform	10L0218			0.20	2.0	< 0.20							
4-Chlorotoluene 10L0218 ug/L 0.20 2.0 < 0.20 1,2-Dibromo-3-chloropropane 10L0218 ug/L 0.50 2.0 < 0.50	omethane	10L0218		ug/L	0.30	2.0	< 0.30							
1,2-Dibromo-3-chloropropane 10L0218 ug/L 0.50 2.0 <0.50	orotoluene	10L0218		ug/L	0.50	2.0	< 0.50							
1,2-Dibromo-3-chloropropane 10L0218 ug/L 0.50 2.0 <0.50	orotoluene	10L0218		ug/L	0.20	2,0	< 0.20							
1.2-Dibromoethane (EDB) IDLO218 ug/L 0.20 2.0 <0.20 Dibromoethane 10L0218 ug/L 0.20 2.0 <0.20	ibromo-3-chloropropane	10L0218			0.50		< 0.50							
Dibromomethane 10L0218 ug/L 0.20 2.0 <0,20 1,2-Dichlorobenzene 10L0218 ug/L 0.20 2.0 <0,20	ibromoethane (EDB)	10L0218		-	0.20									
1.2-Dichlorobenzene 10L0218 ug/L 0.20 2.0 <0.20 1.3-Dichlorobenzene 10L0218 ug/L 0.20 2.0 <0.20 1.4-Dichlorobenzene 10L0218 ug/L 0.50 2.0 <0.50 Dichlorodifluoromethane 10L0218 ug/L 0.50 2.0 <0.50 1.2-Dichlorocethane 10L0218 ug/L 0.50 2.0 <0.50 1.1-Dichlorocethane 10L0218 ug/L 0.50 2.0 <0.50 1.1-Dichlorocethane 10L0218 ug/L 0.50 2.0 <0.50 1.1-Dichlorocethane 10L0218 ug/L 0.50 2.0 <0.50 tans-1,2-Dichlorocethane 10L0218 ug/L 0.50 2.0 <0.50 1,2-Dichlorocethane 10L0218 ug/L 0.50 2.0 <0.50 1,2-Dichlorocethane 10L0218 ug/L 0.50 2.0 <0.50 1,2-Dichloropropane 10L0218 ug/L 0.50 2.0 <0.50 1,1-Dichloropropane 10L0218 ug/L 0.50 2.0 <0.50	· · ·			_										
1,3-Dichlorobenzene 10L0218 ug/L 0.20 2.0 <0.20 1,4-Dichlorobenzene 10L0218 ug/L 0.50 2.0 <0.50 Dichlorodifluoromethane 10L0218 ug/L 0.50 2.0 <0.50 1,1-Dichloroethane 10L0218 ug/L 0.50 2.0 <0.50 1,2-Dichloroethane 10L0218 ug/L 0.50 2.0 <0.50 1,1-Dichloroethane 10L0218 ug/L 0.50 2.0 <0.50 1,1-Dichloroethane 10L0218 ug/L 0.50 2.0 <0.50 trans-1,2-Dichloroethane 10L0218 ug/L 0.50 2.0 <0.50 1,2-Dichloroethane 10L0218 ug/L 0.50 2.0 <0.50 1,2-Dichloropropane 10L0218 ug/L 0.50 2.0 <0.50 1,3-Dichloropropane 10L0218 ug/L 0.50 2.0 <0.50 cis-1,3-Dichloropropene 10L0218 ug/L 0.20 2.0 <0.50 cis-1,3-Dichloropropene 10L0218 ug/L 0.20 2.0 <0	richlorobenzene													
1,4-Dichlorobenzene 10L0218 ug/L 0.50 2.0 <0.50 Dichlorodifluoromethane 10L0218 ug/L 0.50 2.0 <0.50	richlorobenzene													
Dichlorodifluoromethane 10L0218 ug/L 0.50 2.0 <0.50 1,1-Dichloroethane 10L0218 ug/L 0.50 2.0 <0.50	ichlorobenzene			-										
I,1-Dichloroethane 10L0218 ug/L 0.50 2.0 <0.50 I,2-Dichloroethane 10L0218 ug/L 0.50 2.0 <0.50	orodifluoromethane													
I,2-Dichloroethane 10L0218 ug/L 0.50 2.0 <0.50	ichloroethane													
1.1-Dichloroethene 10L0218 ug/L 0.50 2.0 <0.50 cis-1,2-Dichloroethene 10L0218 ug/L 0.50 2.0 <0.50	ichloroethane													
cis-1,2-Dichloroethene 10L0218 ug/L 0.50 2.0 <0.50 1,2-Dichloroethene 10L0218 ug/L 0.50 2.0 <0.50														
trans-1,2-Dichloroethene 10L0218 ug/L 0.50 2.0 <0.50 1,2-Dichloropropane 10L0218 ug/L 0.50 2.0 <0.50				_										
1.2-Dichloropropane 10L0218 ug/L 0.50 2.0 <0.50														
1,3-Dichloropropane 10L0218 ug/L 0.25 2.0 <0.25				_										
2.2-Dichloropropane 10L0218 ug/L 0.50 2.0 <0.50														
1,1-Dichloropropene 10L0218 ug/L 0.50 2.0 <0.50 cis-1,3-Dichloropropene 10L0218 ug/L 0.20 2.0 <0.20				-										
cis-1,3-Dichloropropene 10L0218 ug/L 0.20 2.0 <0.20 trans-1,3-Dichloropropene 10L0218 ug/L 0.20 2.0 <0.20				-										
trans-1,3-Dichloropropene 10L0218 ug/L 0.20 2.0 <0.20 2,3-Dichloropropene 10L0218 ug/L 0.25 2.0 <0.25	·													
2,3-Dichloropropene 10L0218 ug/L 0.25 2.0 <0.25				-										
Isopropyl Ether 10L0218 ug/L 0.50 2.0 <0.50 Ethylbenzene 10L0218 ug/L 0.50 2.0 <0.50														
Ethylbenzene 10L0218 ug/L 0.50 2.0 <0.50 Hexachlorobutadiene 10L0218 ug/L 0.50 2.0 <0.50				_										
Hexachlorobutadiene 10L0218 ug/L 0.50 2.0 <0.50 Isopropylbenzene 10L0218 ug/L 0.20 2.0 <0.20														
Isopropylbenzene 10L0218 ug/L 0.20 2.0 <0.20 p-Isopropyltoluene 10L0218 ug/L 0.20 2.0 <0.20														
p-Isopropyltoluene 10L0218 ug/L 0.20 2.0 <0.20				-										
		10L0218		ug/L	1.0	2.0	<1.0							
Methyl tert-Butyl Ether 10L0218 ug/L 0.50 2.0 <0.50														
Naphthalene 10L0218 ug/L 0.25 5.0 <0.25 n-Propylbenzene 10L0218 ug/L 0.50 2.0 <0.50														

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Mr. Kevin Bugel Work Order: Project: WTL0105

1E-0909013 Racine, WI

Received:

12/02/10

Reported: 12/14/10 09:04

Project Number: 1730 State Street

			LAB	URAT	ORY B	LANK	QC D	ATA						
	Seq/	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Batch	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
VOCs by SW8260B														
Styrene	10L0218			ug/L	0.50	5.0	< 0.50							
1,1,1,2-Tetrachloroethane	10L0218			ug/L	0.25	2.0	< 0.25							
1,1,2,2-Tetrachloroethane	10L0218			ug/L	0.20	2.0	< 0.20							
Tetrachloroethene	10L0218			ug/L	0.50	2.0	< 0.50							
Toluene	10L0218			ug/L	0.50	2.0	< 0.50							
1,2,3-Trichlorobenzene	10L0218			ug/L	0.25	2.0	< 0.25							
1,2,4-Trichlorobenzene	10L0218			ug/L	0.25	2.0	< 0.25							
1,1,1-Trichloroethane	10L0218			ug/L	0.50	2.0	< 0.50							
1,1,2-Trichloroethane	10L0218			ug/L	0.25	2.0	< 0.25							
Trichloroethene	10L0218			ug/L	0.20	2.0	< 0.20							
Trichlorofluoromethane	10L0218			ug/L	0.50	2.0	< 0.50							
1,2,3-Trichloropropane	10L0218			ug/L	0.50	2.0	< 0.50							
1,2,4-Trimethylbenzene	10L0218			ug/L	0.20	2.0	< 0.20							
1,3,5-Trimethylbenzene	10L0218			ug/L	0.20	2.0	< 0.20							
Vinyl chloride	10L0218			ug/L	0.20	2.0	< 0.20							
Xylenes, Total	10L0218			ug/L	0.50	2.0	< 0.50							
Surrogate: Dibromofluoromethane	10L0218			ug/L					107		80-120			
Surrogate: Toluene-d8	10L0218			ug/L					100		80-120			
Surrogate: 4-Bromofluorobenzene	10L0218			ug/L					98		80-120			
Benzene	10L0250			ug/L	0.20	2.0	< 0.20							
Bromobenzene	10L0250			ug/L	0.20	2.0	< 0.20							
Bromochloromethane	10L0250			ug/L	0.50	2.0	< 0.50							
Bromodichloromethane	10L0250			ug/L	0.20	2.0	< 0.20							
Bromoform	10L0250			ug/L	0.20	5.0	< 0.20							
Bromomethane	10L0250			ug/L	0.50	5.0	< 0.50							
n-Butylbenzene	10L0250			ug/L	0.20	2.0	<0.20							
sec-Butylbenzene	10L0250			ug/L	0.25	2.0	< 0.25							
tert-Butylbenzene	10L0250			ug/L	0.20	2.0	<0.20							
Carbon Tetrachloride	10L0250			ug/L	0.80	2.0	< 0.80							
Chlorobenzene	10L0250			ug/L	0.20	2.0	<0.20							
Chlorodibromomethane	10L0250			ug/L	0.20	2.0	<0.20							
Chloroethane	10L0250			ug/L	1.0	5.0	<1.0							
Chloroform	10L0250			ug/L	0.20	2.0	<0.20							
Chloromethane	10L0250			ug/L	0.30	2.0	< 0.30							
2-Chlorotoluene	10L0250			ug/L	0.50	2.0	< 0.50							
4-Chlorotoluene	10L0250			ug/L	0.20	2,0	<0.20							
1,2-Dibroino-3-chloropropane	10L0250			ug/L	0.50	2.0	< 0.50							
1,2-Dibromoethane (EDB)	10L0250			ug/L	0.20	2.0	<0.20							
Dibromomethane	10L0250			ug/L	0.20	2.0	<0.20							
1,2-Dichlorobenzene	10L0250			ug/L	0.20	2.0	<0.20							
1,3-Dichlorobenzene	10L0250			ug/L	0.20	2.0	<0.20							
1.4-Dichlorobenzene	10L0250			ug/L	0.50	2.0	<0.50							
Dichlorodifluoromethane	10L0250			ug/L	0.50	2.0	<0.50							
1,1-Dichloroethane	10L0250			ug/L	0.50	2.0	< 0.50							

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Mr. Kevin Bugel

Work Order:

WTL0105

1E-0909013 Racine, WI

12/02/10

12/14/10 09:04 Reported:

Received:

Project:	1E-0909013 Rac
Project Number:	1730 State Street
	Project: Project Number:

			LAB	ORATO	ORY B	LANK	QC D	ATA						
	Seq/	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Batch	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
VOCs by SW8260B														
1,2-Dichloroethane	10L0250			ug/L	0.50	2.0	< 0.50							
1,1-Dichloroethene	10L0250			ug/L	0.50	2.0	< 0.50							
cis-1,2-Dichloroethene	10L0250			ug/L	0.50	2.0	< 0.50							
rans-1,2-Dichloroethene	10L0250			ug/L	0.50	2.0	< 0.50							
,2-Dichloropropane	10L0250			ug/L	0.50	2.0	< 0.50							
1,3-Dichloropropane	10L0250			ug/L	0.25	2.0	< 0.25							
2,2-Dichloropropane	10L0250			ug/L	0.50	2.0	< 0.50							
,1-Dichloropropene	10L0250			ug/L	0.50	2.0	< 0.50							
sis-1,3-Dichloropropene	10L0250			ug/L	0.20	2.0	< 0.20							
rans-1,3-Dichloropropene	10L0250			ug/L	0.20	2.0	< 0.20							
2,3-Dichloropropene	10L0250			ug/L	0.25	2.0	< 0.25							
sopropyl Ether	10L0250			ug/L	0.50	2.0	< 0.50							
Ethylbenzene	10L0250			ug/L	0.50	2.0	< 0.50							
Hexachlorobutadiene	10L0250			ug/L	0.50	2.0	< 0.50							
sopropylbenzene	10L0250			ug/L	0.20	2.0	< 0.20							
o-Isopropyltoluene	10L0250			ug/L	0.20	2.0	< 0.20							
Methylene Chloride	10L0250			ug/L	1.0	2.0	<1.0							
Methyl tert-Butyl Ether	10L0250			ug/L	0.50	2.0	< 0.50							
Naphthalene	10L0250			ug/L	0.25	5.0	< 0.25							
n-Propylbenzene	10L0250			ug/L	0.50	2.0	< 0.50							
Styrene	IOL0250			ug/L	0.50	5.0	< 0.50							
1,1,1,2-Tetrachloroethane	IOL0250			ug/L	0.25	2.0	< 0.25							
1.1.2.2-Tetrachloroethane	10L0250			ug/L	0.20	2.0	< 0.20							
Tetrachloroethene	10L0250			ug/L	0.50	2,0	< 0.50							
Toluene	10L0250			ug/L	0.50	2.0	< 0.50							
1.2,3-Trichlorobenzene	10L0250			ug/L	0.25	2.0	< 0.25							
1,2,4-Trichlorobenzene	10L0250			ug/L	0.25	2.0	< 0.25							
1.1.1-Trichloroethane	10L0250			ug/L	0.50	2.0	< 0.50							
1,1,2-Trichloroethane	10L0250			ug/L	0.25	2.0	< 0.25							
Trichloroethene	10L0250			ug/L	0.20	2.0	<0.20							
Trichlorofluoromethane	10L0250			ug/L	0.50	2.0	<0.50							
1,2,3-Trichloropropane	10L0250			ug/L	0.50	2.0	<0.50							
1,2,4-Trimethylbenzene	10L0250			ug/L	0.20	2.0	<0.20							
1,3,5-Trimethylbenzene	10L0250			ug/L	0.20	2.0	<0.20							
Vinyl chloride	10L0250			ug/L	0.20	2.0	<0.20							
Xylenes, Total	10L0250			ug/L	0.50	2.0	<0.50							
Surrogate: Dibromofluoromethane	10L0250			ug/L	0.50	2,0	-0,50		106		80-120			
Surrogate: Toluene-d8	10L0250			ug/L					100		80-120			
Surrogate: 4-Bromofluorobenzene	10L0250			ug/L					99		80-120			

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Work Order:

WTL0105

Received:

12/02/10

Project:
Project Number:

1E-0909013 Racine, WI 1730 State Street Reported: 12/14/10 09:04

Mr. Kevin Bugel

	MA	TRIX	SPIKE	/MATI	RIX SP	IKE D	UPLIC	CATE	OC DA	ATA				
	Seq/	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Batch	Result		Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
VOCs by SW8260B														
QC Source Sample: WTL0105-09														
Benzene	10L0218	< 0.20	1000	ug/L	4.0	40	1220	1200	122	120	80-120	2	20	
Bromobenzene	IOL0218	< 0.20	1000	ug/L	4.0	40	1090	1070	109	107	80-120	1	24	
Bromochloromethane	10L0218	< 0.50	1000	ug/L	10	40	1150	1140	115	114	80-120	1	14	
Bromodichloromethane	10L0218	< 0.20	1000	ug/L	4.0	40	1160	1160	116	116	80-120	0	19	
Bromoform	10L0218	< 0.20	1000	ug/L	4.0	100	1080	1140	108	114	80-120	5	26	
Bromomethane	10L0218	< 0.50	1000	ug/L	10	100	1280	1270	128	127	60-140	1	18	
n-Butylbenzene	10L0218	< 0.20	1000	ug/L	4.0	40	1230	1220	123	122	80-120	3	19	
sec-Butylbenzene	10L0218	<0.25	1000	ug/L	5.0	40	1200	1180	120	118	80-120	2	19	
ert-Butylbenzene	I0L0218	< 0.20	1000	ug/L	4.0	40	1170	1150	117	115	80-120	2	17	
Carbon Tetrachloride	10L0218	<0.80	1000	ug/L	16	40	1220	1200	122	120	60-140	2	17	
Chlorobenzene	10L0218	< 0.20	1000	ug/L	4.0	40	1130	1110	113	111	80-120	1	16	
Chlorodibromomethane	10L0218	< 0.20	1000	ug/L	4.0	40	1120	1130	112	113	80-120	1	23	
Chloroethane	10L0218	<1.0	1000	ug/L	20	100	1330	1310	133	131	60-140	2	17	
Chloroform	10L0218	< 0.20	1000	ug/L	4.0	40	1210	1190	121	119	80-120	2	14	
Chloromethane	10L0218	< 0.30	1000	ug/L	6.0	40	1310	1280	131	128	60-140	2	16	
2-Chlorotoluene	10L0218	< 0.50	1000	ug/L	10	40	1140	1130	114	113	80-120	1	26	
-Chlorotoluene	10L0218	<0.20	1000	ug/L	4.0	40	1160	1150	116	115	80-120	1	26	
1,2-Dibromo-3-chloropropane	10L0218	<0.50	1000	ug/L	10	40	972	1060	97	106	60-140	9	26	
1.2-Dibromoethane (EDB)	10L0218	< 0.20	1000	ug/L	4.0	40	1070	1080	107	108	80-120	1	19	
Dibromomethane	10L0218	<0.20	1000	ug/L	4.0	40	1070	1070	107	107	80-120	0	26	
1,2-Dichlorobenzene	10L0218	<0.20	1000	ug/L	4.0	40	1080	1080	108	108	80-120	1	23	
1,3-Dichlorobenzene	10L0218	<0.20	1000	ug/L	4.0	40	1100	1090	110	109	80-120	1	21	
1.4-Dichlorobenzene	10L0218	< 0.50	1000	ug/L	10	40	1100	1080	110	108	80-120	1	21	
	10L0218	<0.50	1000	_	10	40	1210	1200	121	120	60-140	1	19	
Dichlorodifluoromethane			1000	ug/L	10		1300	1280	121	127	80-120	2	18	
1,1-Dichloroethane	10L0218	11.8		ug/L		40						0	19	
1,2-Dichloroethane	10L0218	<0.50	1000	ug/L	10	40	1240	1240	124	124	80-120			
1,1-Dichloroethene	10L0218	12.0	1000	ug/L	10	40	1320	1310	131	130	80-120	1	18	
cis-1,2-Dichloroethene	10L0218	3760	1000	ug/L	10	40	4950	4860	119	109	80-120	2	17	
trans-1,2-Dichloroethene	10L0218	44.2	1000	ug/L	10	40	1260	1240	122	120	80-120	2	23	
1,2-Dichloropropane	10L0218	<0.50	1000	ug/L	10	40	1220	1200	122	120	80-120	1	18	
1.3-Dichloropropane	10L0218	< 0.25	1000	ug/L	5.0	40	1140	1150	114	115	80-120	1	24	
2,2-Dichloropropane	10L0218	< 0.50	1000	ug/L	10	40	1200	1180	120	118	60-140	2	16	
l, l-Dichloropropene	10L0218	< 0.50	1000	ug/L	10	40	1320	1330	132	133	80-120	1	16	
cis-1,3-Dichloropropene	10L0218	< 0.20	1000	ug/L	4.0	40	1170	1170	117	117	80-120	0	20	
trans-1,3-Dichloropropene	10L0218	< 0.20	1000	ug/L	4.0	40	1140	1160	114	116	80-120	2	26	
Isopropyl Ether	10L0218	< 0.50	1000	ug/L	10	40	1330	1320	133	132	80-120	l	20	
Ethylbenzene	10L0218	< 0.50	1000	ug/L	10	40	1140	1130	114	113	80-120	1	16	
Hexachlorobutadiene	10L0218	<0.50	1000	ug/L	10	40	1180	1150	118	115	60-140	3	20	
Isopropylbenzene	10L0218	< 0.20	1000	ug/L	4.0	40	1170	1150	117	115	80-120	2	22	
p-Isopropyltoluene	10L0218	< 0.20	1000	ug/L	4.0	40	1200	1180	120	118	80-120	2	20	
Methylene Chloride	10L0218	<1.0	1000	ug/L	20	40	1170	1150	117	115	80-120	2	24	
Methyl tert-Butyl Ether	10L0218	<0.50	1000	ug/L	10	40	1100	1120	110	112	80-120	2	18	
Naphthalene	10L0218	< 0.25	1000	ug/L	5.0	100	1020	1130	102	113	60-140	10	24	
n-Propylbenzene	10L0218	< 0.50	1000	ug/L	10	40	1160	1150	116	115	80-120	1	23	
Styrene	10L0218	< 0.50	1000	ug/L	10	100	1140	1120	114	112	80-120	2	14	

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Mr. Kevin Bugel Work Order:

WTL0105

1E-0909013 Racine, WI

Received:

12/02/10

Project:
Project Number:

1730 State Street

Reported: 12/14/10 09:04

	Seq/	Source	Snike					Dup	%	Dup	% REC		RPD	
Analyte	Batch	Result	-	Units	MDL	MRL	Result	Result	REC	•		RPD	Limit	Q
VOCs by SW8260B														
QC Source Sample: WTL0105-09														
,1,1,2-Tetrachloroethane	10L0218	< 0.25	1000	ug/L	5.0	40	1150	1130	115	113	80-120	1	17	
1,1,2,2-Tetrachloroethane	10L0218	<0.20	1000	ug/L	4.0	40	1070	1120	107	112	80-120	4	26	
letrachloroethene	10L0218	1500	1000	ug/L	10	40	2570	2550	107	105	80-120	1	18	
Toluene	10L0218	< 0.50	1000	ug/L	10	40	1150	1130	115	113	80-120	2	18	
.2,3-Trichlorobenzene	10L0218	< 0.25	1000	ug/L	5.0	40	1140	1220	114	122	80-120	7	24	
1,2,4-Trichlorobenzene	10L0218	< 0.25	1000	ug/L	5.0	40	1110	1140	111	114	80-120	2	21	
1,1,1-Trichloroethane	10L0218	<0.50	1000	ug/L	10	40	1240	1210	124	121	80-120	2	19	
1,1,2-Trichloroethane	10L0218	< 0.25	1000	ug/L	5.0	40	1100	1110	110	111	80-120	1	28	
Trichloroethene	10L0218	1580	1000	ug/L	4.0	40	2700	2650	112	107	80-120	2	18	
Trichlorofluoromethane	10L0218	< 0.50	1000	ug/L	10	40	1270	1250	127	125	80-120	2	19	
1,2,3-Trichloropropane	10L0218	< 0.50	1000	ug/L	10	40	1030	1070	103	107	80-120	4	26	
.2.4-Trimethylbenzene	10L0218	< 0.20	1000	ug/L	4.0	40	1150	1140	115	114	80-120	1	24	
1,3,5-Trimethylbenzene	I0L0218	<0.20	1000	ug/L	4.0	40	1160	1150	116	115	80-120	1	24	
Vinyl chloride	10L0218	349	1000	ug/L	4.0	40	1670	1640	132	129	80-120	2	17	
Xylenes, Total	10L0218	< 0.50	3000	ug/L	10	40	3440	3370	115	112	80-120	2	13	
Surrogate: Dibromofluoromethane	10L0218			ug/L					106	106	80-120			
Surrogate: Toluene-d8	10L0218			ug/L					101	101	80-120			
Surrogate: 4-Bromofluorobenzene	10L0218			ug/L					100	100	80-120			
QC Source Sample: WTL0107-07	1020210			ug 2										
Benzene	10L0250	< 0.20	50	ug/L	0.20	2.0	57.6	59.3	115	119	80-120	3	20	R2
Broinobenzene	10L0250	<0.20	50	ug/L	0.20	2.0	50,7	51.0	101	102	80-120	1	24	R2
Broinochloroinethane	10L0250	<0.50	50	ug/L	0.50	2.0	53.8	55.6	108	111	80-120	3	14	R2
Bromodichloromethane	10L0250	<0.20	50	ug/L	0.20	2.0	54.6	56.2	109	112	80-120	3	19	R2
Bromoform	10L0250	<0.20	50	ug/L	0.20	5.0	52.1	54.7	104	109	80-120	5	26	R2
Bromomethane	10L0250	<0.50	50	ug/L	0.50	5.0	49.8	39.8	100	80	60-140	22	18	R2
n-Butylbenzene	10L0250	<0.20	50	ug/L	0.20	2.0	60.2	61.1	120	122	80-120	1	19	R2
sec-Butylbenzene	10L0250	<0.25	50	ug/L	0.25	2.0	58.2	59.9	116	120	80-120	3	19	R2
•	10L0250	<0.20	50	ug/L	0.20	2.0	56.2	58.2	112	116	80-120	4	17	R2
tert-Butylbenzene		<0.80	50	-	0.80	2.0	59.5	60.9	119	122	60-140	2	17	R2
Carbon Tetrachloride	10L0250			ug/L		2.0	53.1	54.8	106	110	80-120	3	16	R2
Chlorobenzene	10L0250	<0.20	50	ug/L	0.20									
Chlorodibromomethane	10L0250	<0.20	50	ug/L	0.20	2.0	53.5	54.7	107	109	80-120	2	23	R2
Chloroethane	10L0250	<1.0	50	ug/L	1.0	5.0	67.1	65.2	134	130	60-140	3	17	R2
Chloroforn	10L0250	<0.20	50	ug/L	0.20	2,0	56.9	58.9	114	118	80-120	3	14	R2
Chloromethane	10L0250	<0.30	50	ug/L	0.30	2.0	58.7	61.7	117	123	60-140	5	16	R2
2-Chlorotoluene	10L0250	<0.50	50	ug/L	0.50	2.0	53.4	53.7	107	107	80-120	1	26	R2
4-Chlorotoluene	10L0250	<0.20	50	ug/L	0.20	2.0	53.3	54.8	107	110	80-120	3	26	R2
1,2-Dibromo-3-chloropropane	10L0250	< 0.50	50	ug/L	0.50	2.0	47.1	51.9	94	104	60-140	10	26	R2
1,2-Dibromoethane (EDB)	10L0250	< 0.20	50	ug/L	0.20	2.0	50.4	53.1	101	106	80-120	5	19	R2
Dibromomethane	10L0250	< 0.20	50	ug/L	0.20	2.0	49.7	51.4	99	103	80-120	3	26	R2
1,2-Dichlorobenzene	10L0250	< 0.20	50	ug/L	0.20	2.0	51.0	52.5	102	105	80-120	3	23	R2
1,3-Dichlorobenzene	10L0250	3.06	50	ug/L	0.20	2.0	55.6	57.0	105	108	80-120	3	21	R2
1,4-Dichlorobenzene	10L0250	1.50	50	ug/L	0.50	2.0	53.4	55.1	104	107	80-120	3	21	R2
Dichlorodifluoromethane	10L0250	< 0.50	50	ug/L	0.50	2.0	62.7	61.5	125	123	60-140	2	19	R2
1,1-Dichloroethane	10L0250	< 0.50	50	ug/L	0.50	2.0	61.4	63.4	123	127	80-120	3	18	R2
1,2-Dichloroethane	10L0250	< 0.50	50	ug/L	0.50	2.0	58.4	60.2	117	120	80-120	3	19	R2

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Work Order:

WTL0105

Received:

12/02/10

Project:

1E-0909013 Racine, WI Project Number: 1730 State Street

Reported:

12/14/10 09:04

Mr. Kevin Bugel

			Spike					Dup	%	Dup	% REC		RPD	
Analyte	Batch	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Ç
OCs by SW8260B														
C Source Sample: WTL0107-07														
,1-Dichloroethene	10L0250	0.680	50	ug/L	0.50	2.0	64.9	66.8	129	132	80-120	3	18	R2
is-1,2-Dichloroethene	10L0250	43.5	50	ug/L	0.50	2.0	97.3	100	108	113	80-120	3	17	R2
ans-1,2-Dichloroethene	10L0250	16.7	50	ug/L	0.50	2.0	74.2	76.5	115	119	80-120	3	23	R2
,2-Dichloropropane	IOL0250	< 0.50	50	ug/L	0.50	2.0	5 7 .0	59.2	114	118	80-120	4	18	R2
,3-Dichloropropane	10L0250	< 0.25	50	ug/L	0.25	2.0	53.5	54.9	107	110	80-120	2	24	R2
2-Dichloropropane	10L0250	< 0.50	50	ug/L	0.50	2.0	60.9	62.3	122	125	60-140	2	16	R2
,l-Dichloropropene	10L0250	< 0.50	50	ug/L	0.50	2.0	65.6	65.3	131	131	80-120	0	16	R2
is-1,3-Dichloropropene	10L0250	< 0.20	50	ug/L	0.20	2.0	54.5	55.7	109	111	80-120	2	20	R2
rans-1,3-Dichloropropene	10L0250	< 0.20	50	ug/L	0.20	2.0	52.8	54.3	106	109	80-120	3	26	R2
sopropyl Ether	10L0250	< 0.50	50	ug/L	0.50	2.0	62.7	65.5	125	131	80-120	4	20	R2
thylbenzene	10L0250	< 0.50	50	ug/L	0.50	2.0	54.2	55.9	108	112	80-120	3	16	R2
Iexachlorobutadiene	10L0250	< 0.50	50	ug/L	0.50	2.0	57.8	58.4	116	117	60-140	L	20	R2
sopropylbenzene	10L0250	< 0.20	50	ug/L	0.20	2.0	55.4	56.2	111	112	80-120	1	22	R2
-lsopropyitoluene	10L0250	<0.20	50	ug/L	0.20	2,0	57.1	56.0	114	112	80-120	2	20	R2
Methylene Chloride	10L0250	<1.0	50	ug/L	1.0	2.0	55.6	56.0	111	112	80-120	1	24	R2
Methyl tert-Butyl Ether	10L0250	< 0.50	50	ug/L	0.50	2.0	51,8	55.3	104	111	80-120	7	18	R2
laphthalene	10L0250	< 0.25	50	ug/L	0.25	5.0	48.4	55.5	97	111	60-140	14	24	R2
-Propylbenzene	10L0250	< 0.50	50	ug/L	0.50	2.0	55.3	55.5	111	111	80-120	0	23	R2
tyrene	10L0250	<0.50	50	ug/L	0.50	5.0	53.6	54.4	107	109	80-120	ı	14	R2
.1.1.2-Tetrachloroethane	10L0250	< 0.25	50	ug/L	0.25	2.0	53.8	55.6	108	111	80-120	3	17	R2
.1,2,2-Tetrachloroethane	10L0250	< 0.20	50	ug/L	0.20	2.0	51.2	56.2	102	112	80-120	9	26	R2
etrachioroethene	10L0250	0,790	50	ug/L	0.50	2.0	55.5	57.2	109	113	80-120	3	18	R2
oluene	10L0250	< 0.50	50	ug/L	0.50	2.0	54.1	56.5	108	113	80-120	4	18	R2
,2,3-Trichlorobenzene	10L0250	<0.25	50	ug/L	0.25	2.0	52.1	60.1	104	120	80-120	14	24	R2
.2.4-Trichlorobenzene	10L0250	0.350	50	ug/L	0.25	2.0	52.5	55.6	104	110	80-120	6	21	R2
,1,1-Trichloroethane	10L0250	<0.50	50	ug/L	0.50	2.0	59.3	61.1	119	122	80-120	3	19	R2
,1,2-Trichloroethane	10L0250	< 0.25	50	ug/L	0.25	2.0	50.7	52.3	101	105	80-120	3	28	R2
richloroethene	10L0250	55.9	50	ug/L	0.20	2.0	108	110	104	108	80-120	2	18	R2
richlorofluoromethane	10L0250	< 0.50	50	ug/L	0.50	2.0	64.1	65.5	128	131	80-120	2	19	R2
,2,3-Trichloropropane	10L0250	<0.50	50	ug/L	0.50	2.0	48.9	51.7	98	103	80-120	6	26	R2
,2,4-Trimethylbenzene	10L0250	<0.20	50	ug/L	0.20	2.0	54.5	53.9	109	108	80-120	1	24	R2
,3,5-Trimethylbenzene	10L0250	<0.20	50	ug/L	0.20	2.0	55.1	55.0	110	110	80-120	0	24	R2
/inyl chloride	10L0250	4,55	50	ug/L	0.20	2.0	69.6	69.5	130	130	80-120	0	17	R2
(ylenes, Total	10L0250	< 0.50	150	ug/L	0.50	2.0	162	166	108	111	80-120	2	13	R2
iurrogate: Dibromofluoromethane	10L0250	-0.50		ug/L	0.50	2.0	1.5%	.50	106	106	80-120	-	15	R2
Surrogate: Toluene-d8	10L0250			ug/L					101	103	80-120			R2
Surrogate: 4-Bromofluorobenzene	10L0250			ug/L ug/L					99	98	80-120			R2

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN N8 W22350 Johnson Road Waukesha, WI 53186 Mr. Kevin Bugel Work Order: Project:

Project Number:

WTL0105 1E-0909013 Racine, WI

1730 State Street

Received:

12/02/10

Reported: 12/14/10 09:04

CERTIFICATION SUMMARY

TestAmerica Watertown

Method	Matrix	Nelac	Wisconsin
SW 8260B	Water - NonPotable	X	X

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN N8 W22350 Johnson Road Waukesha, WI 53186 Mr. Kevin Bugel Work Order: Project:

Project Number:

WTL0105

1E-0909013 Racine, WI 1730 State Street Received:

12/02/10

Reported: 12/14/10 09:04

DATA QUALIFIERS AND DEFINITIONS

Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.

R2 The RPD exceeded the acceptance limit.

Glies Engineering As	ooolatot	, 1110.		HAIN-OF-	CUSTODY			JIE 17 30	0 3/	are show
N8 W22350 Johnson Road Suite A1, Wauk	kesha, WI 53186	tel: 414-544-011			_			D. 2	`	NI I
4875 East La Paima Avenue, Suite 607, Ar		tel: 714-779-005			Closure sa		Add	ress Rau	1re	N.T.
8300 Guilford Road, Suite F1, Columbia, M		tel. 410-312-995				on required (NR720)				
☐ 10722 North Stemmons Freeway, Dallas, T		tel: 214-358-588			□ RUSH					
2830 Agriculture Drive, Madison, WI 53718		tel: 608-223-185			POSSIBLE HA	ZARDS.				
3990 Flowers Road, Suite 530, Atlanta, GA	1,30360	tel. 770-458-339	fax: 770-4			EARDS.				
Sample Collector Creg Ronhouse/To	on bauna		Project Manager	Keutr	9	Projec	t Number 18	=- 09091		
Laboratory Used Test America			Lab Contact	Dan	Milewsky		b Number			
		7 7	/ / /	5///	Analysis Requi	red / / / /	111		7	
" " " " " " " " " " " " " " " " " " "	Sample Many						A Sump	Samo,	Due Date	CTALLS II. WITHOUT . NAME
Mw-1 -	H20 12/1/10	AM -	X				30	HCI	STO	
Mw-2 -		AM -	A					1	1	
Mw-3 -		AM PM —	X							
Mw-4 -		AM -	X							
Mw-5 -		AM PM	X							
Mw-6 -	++++	AM PM	X							
		AM	X							
MW-T	++++	PM AM		-			+		-	
Mm-8 -		PM —	K							
Dup-1	+ +	₩ PM —	X				<u> </u>			
Trip Blak -		- AM -	X				10	+	+	
		AM PM								
		AM								
	1	РМ								HAN MIN
container code: A = 8 oz/250 ml B = 4 oz/ 120 ml		C = 2 oz/ 60 ml D = 40 mL VOA vial		E = 1 L A F = 250 m		= poly bag] =		
	1.					Send copy to				same
Relinquished By	Date	Time Received By	7.5.44		INVOICE TO:	1 Toject Mariago	ar .	REPORT	^	□ РМ
029	19/2/10	1300pm /Con	waye		Keun	Suce		Keui	n Bu	gel
(on Wrigh 6°)	12/2/10	1400 PM DA	Herrita 121	2/10 131	52	U				•
/		AM PM		/			Page			*
	 	AM					- 1			
		PM			ti de la companya de la companya de la companya de la companya de la companya de la companya de la companya de		of '			

WTL0105

Cooler Receipt Log Work Order(s): WTL6/05 Client Name/Project: # of Coolers: UPS TestAmerica Client ☐ Dunham ☐ Speedy 1. How did samples arrive? ☐ Fed-Ex Date/time cooler was opened: 3. Were samples on ice?..... □ No 4. Does this Project require quick turn around analysis?..... ☐ Yes ☐ Yes Past Hold? ☐ Yes 7 days 48 hours or less Aqueous Organic Prep Coiiform Bacteria8/30 hours Chlorine/Hex Cr24 hours TS TDS BOD TSS Nitrate/Nitrite.....(DW is 14 days) Sulfite Suifide Voiatile Solids Orthophosphate Surfactants (MBAS) 6. Ops Mgr, PM or Analyst informed of short hold?......Who____ 7. Other than short hold test, were any samples within 2 days of their hold date PNo Pres Z No Or past their expiration of hold time ☐ Yes □ Is the date and time of collection recorded? Date □ No Time.

Yes ANO 9. Were all sample containers listed on the COC received and intact?...... 11. Are dissolved parameters field filtered or being filtered in the lab?..... ☐ Field ☐ Lab ENA 12. Are sample volumes adequate and preservatives correct for test requested? Vol...... 2 Yes O No Pres.... Yes O No O NA ☐ NA 18. How were VOC soils received? ☐ Methanol ☐ Sodium Bisulfate ☐ Packed Jar ☐ Encore ☐ Other ☐ Water (see options*) * D Within 48hrs of sampling D Past 48hrs of sampling D Frozen D Not Frozen If any changes are made to this Work Order after Login, or if comments must be made regarding this cooler, explain them below: has headspace

														-	TOT	LOI	05	
Giles Engin	eering As	soci	iates	s, Inc.				CHAIN-O	F-CUSTO	DY				Site	173	0 57	we S	200
N8 W22350 Johnso 4875 East La Palma 8300 Guilford Road 10722 North Stemm 2830 Agriculture Dri 3990 Flowers Road	n Road Suite A1, Waul n Avenue, Suite 607, An , Suite F1, Columbia, N nons Freeway, Dallas, 1 ve, Madison, WI 53718	kesha, WI naheim, C ID 21046 IX 75220	53186	te te te	i: 414-544- i: 714-779- i: 410-312- i: 214-358- i: 608-223- i: 770-458-	9950 9855 1853	fax: 714 fax: 410 fax: 214 fax: 608	-549-5868 -779-0068 -312-9955 -358-5884 -223-1854 -458-3998		closure san confirmatio RUSH BLE HAZ	n required			Address	Rai	ine,	シエ	
ample Collector Cree	Ronhouse/7	on Ba	una			Project	Manager	Keu	in Bag	وا		Proje	ct Number	IE-	0909	813		
	+ America					Lab Co	ontact	Dan	Miles			Lab J	lob Number					
Samo Secretorio	Semple De	(100)	(Soil moe Main;	Ime Checker	Agiogica		No.							Number and 72	Sep.	Due Date	45 71 10 5 - 1	Tem
Mw-1		H20	12/1/10	A A	-		X						30		HCI	570		
Mw-2	-			AA PA	-		χ									1		
Mw-3	-			PA	-		X										三型 第	
Mw-4	_			AA PA	-		X											
Mw-5	_			AN PA	-	0	Y											
Mw-6	_			AA PA		0	Y											and the latest to the latest t
mw-7	_			AN PA		1	X										THE W	
MW-8	_			AN PN		J	X										A Great	
Dup-1	_	1	1	PA PA	-		X						1					. 42.47
Trip Blake	-	-	-	- AA		(X						10		+	+		
				AM PM														
				AN Ph														
ontainer code: A = 8 oz/250 ml B = 4 oz/ 120 ml elinquished By	Jury (6°)		1/10	C = 2 oz/ 6 D = 40 ml. Time	Received	og W	Ty 12	E=1L F=250	mL plastic		D 1 F	Send copy to	o ger ———————————————————————————————————		I= J= REPORT	to: In Bu		same PM

Cooler Receipt Log Work Order(s): WTL6/05 Client Name/Project: 6/165 # of Coolers: 1. How did samples arrive? OUPS TestAmerica OClient ODunham OSpeedy O ☐ Fed-Ex Date/time cooler was opened: 2. Were custody seals intact, signed and dated correctly?..... ☐ Broken ♠ NA 3. Were samples on ice?.....Yes O No 4. Does this Project require quick turn around analysis?..... O Yes ☐ Yes Past Hold?..... ☐ Yes 7 days 48 hours or less Aqueous Organic Prep Coliform Bacteria8/30 hours Chiorine/Hex Cr24 hours BOD TDS Nitrate/Nitrite.....(DW is 14 days) TSS Suifide Sulfite Volatile Solids Orthophosphate Surfactants (MBAS) 6. Ops Mgr, PM or Analyst informed of short hold?......Who____ 7. Other than short hold test, were any samples within 2 days of their hold date Ano Yes No TYes Or past their expiration of hold time Time. 9. Were all sample containers listed on the COC received and intact?...... 11. Are dissolved parameters field filtered or being filtered in the lab?...... ☐ Field ☐ Lab NA 12. Are sample volumes adequate and preservatives correct for test requested? Vol....... Yes O No Pres.... Yes O No 13. Do VOC samples have air bubbles >6mm?...... ONA ☐ NA 17. Is a Methanol Trip Blank included? 18. How were VOC soils received? ☐ Methanol ☐ Sodium Bisulfate ☐ Packed Jar ☐ Encore ☐ Other ☐ Water (see options*) * ☐ Within 48hrs of sampling ☐ Past 48hrs of sampling ☐ Frozen ☐ Not Frozen If any changes are made to this Work Order after Login, or if comments must be made regarding this cooler, explain them below: has headspace

<u></u>			. ,	,											WT	LOI	05	*
Giles Engir	neering A	SSOCI	ates	, Inc.			С	HAIN-C	OF-CUSTO	DY				Si	te 173	0 57	we!	Tesuce
N8 W22350 Johns 4875 East La Palm 8300 Guifford Roa 10722 North Stem 2830 Agriculture D 3990 Flowers Roa	na Avenue, Suite 607, d, Suite F1, Columbia, mons Freeway, Dallas rrive, Madison, WI 537	Anaheim, C/ , MD 21046 s, TX 75220		tel tel tel:	414-544-0 714-779-0 410-312-9 214-358-5 608-223-1 770-458-3	052 950 885 853	fax: 414-54 fax: 714-77 fax: 410-31 fax: 214-35 fax: 608-22 fax: 770-45	79-0068 12-9955 58-5884 23-1854	0	closure sam confirmatio RUSH BLE HAZ	n required			Addres	ss Ray	ine,	WI	TOSK
Sample Collector CH	9 Ranhouse/	Tom Bas	una			Project M	anager	Kei	un Bag	ol		Project	t Number	IE-	- 0909	1013		
	of America					Lab Conta	act	Dar	-			Lab Jo	ob Number				NA THE	
To the state of th	Samo	(maga / o	(Soil Walny	Pos Collection	Tien l'age		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	//		ysis Rěquir				Number and	So. Something of	Due Date	275 A 190 A . A	Temp
Mw-1		4,0	12/1/10	AN PM	-	X							30		HCI	570	1963	
Mw-2	_			AM PM	-	A							T		1	1		
Mw-3	_			AM PM	-	X											C 7 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	
Mw-4	_			AM PM	-	N N								-				And In
Mw-5	_			AM PM	_	X												
Mw-6	-			AM PM	-	X												Andrews Andrews
mw-7	-			AM PM	-	X												1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
MW-8	_			AM PM	-	K												
Due-1	-	1	1	AM PM	-	X							1				Trible (A)	
Trip Blake	_	-	_	- AM	-	X							10			1		
				AM PM														
				AM PM														
container code: A = 8 oz/250 ml B = 4 oz/ 120 ml Relinquished By	on Wry (6°)	Date 12/2	110	C = 2 oz/ 60 D = 40 mL V Time		110		F = 25		G H ICE TO:		Send copy to Project Manage	er	1	I=	to: In Bu		same PM
forms viel/COC 08/10/80				PM AM PM									Page of _	1				

Cooler Receipt Log Work Order(s): WTL6/05 Client Name/Project: # of Coolers: TestAmerica Client 1. How did samples arrive? ☐ Fed-Ex **UPS** ☐ Dunham ☐ Speedy Date/time cooler was opened: 2. Were custody seals intact, signed and dated correctly?......

Intact ☐ Broken ♠ NA 3. Were samples on ice?...... O No O Yes TYes Past Hold?.....PNo ☐ Yes 48 hours or less 7 days Aqueous Organic Prep Coliform Bacteria8/30 hours Chlorine/Hex Cr24 hours TS TDS TSS Nitrate/Nitrite.....(DW is 14 days) Sulfite Sulfide Volatile Solids Orthophosphate Surfactants (MBAS) 6. Ops Mgr, PM or Analyst informed of short hold?......Who____ When Ø No Or past their expiration of hold time Time. DYes ONO 11. Are dissolved parameters field filtered or being filtered in the lab?..... ☐ Field ☐ Lab NA 12. Are sample volumes adequate and preservatives correct for test requested? Vol...... ✓ Yes □ No Pres.... Yes O No No AYes 13. Do VOC samples have air bubbles >6mm?.... O NA Yes No O NA 16. Are there samples to be subcontracted? ☐ Yes 18. How were VOC soils received? ☐ Methanol ☐ Sodium Bisulfate ☐ Packed Jar ☐ Encore ☐ Other ☐ Water (see options*) * ☐ Within 48hrs of sampling ☐ Past 48hrs of sampling ☐ Frozen ☐ Not Frozen If any changes are made to this Work Order after Login, or if comments must be made regarding this cooler, explain them below:

January 29, 2010

FEB 0 3 2010

Client:

Attn:

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186

Mr. Kevin Bugel

Work Order:

WTA0574

Project Name:

1E-0909013 Racine, WI

Project Number:

1730 State Street

Date Received: 01/25/10

An executed copy of the chain of custody is also included as an addendum to this report.

If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-800-833-7036

SAMPLE IDENTIFICATION	LAB NUMBER	COLLECTION DATE AND TIME
TW-1 6-8'	WTA0574-01	01/21/10
MW-1 0-2'	WTA0574-02	01/21/10
MW-1 10-12'	WTA0574-03	01/21/10
MW-2 0-2'	WTA0574-04	01/21/10
MW-2 6-8'	WTA0574-05	01/21/10
MW-3 2-4'	WTA0574-06	01/21/10
MW-4 2-4'	WTA0574-07	01/21/10
MW-4 10-12'	WTA0574-08	01/21/10
MeOH Blank	WTA0574-09	01/21/10
P-1 Composite	WTA0574-10	01/21/10

Samples were received into laboratory on ice. Wisconsin Certification Number: 128053530

The Chain(s) of Custody, 2 pages, are included and are an integral part of this report.

Unless subcontracted, volatiles analyses (including VOC, PVOC, GRO, BTEX, and TPH gasoline) performed by TestAmerica Watertown at 1101 Industrial Drive, Units 9&10. All other analyses performed at the address shown in the heading of this report.

Approved By:

Karri Warnock

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Mr. Kevin Bugel

Work Order:

Project:

WTA0574

1E-0909013 Racine, WI

Received: Reported: 01/25/10 01/29/10 16:46

1730 State Street Project Number:

ANALYTICAL REPORT

	Sample	Data			Dilution	Date		Seq/	
Analyte	Result	Qualifiers	Units	MRL	Factor	Analyzed	Analyst	Batch	Method
Sample ID: WTA0574-01 (TW-1	6-8' - Solid/Soil)					Sampled: 01	/21/10		
General Chemistry Parameters									
% Solids	86		%	NA	1	01/27/10 11:45	pam	10A0482	SM 2540G
VOCs by SW8260B									
Benzene	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 8260E
Bromobenzene	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 8260B
Bromochloromethane	<41		ug/kg dry	41	1	01/27/10 15:19	aba	10A0464	SW 8260E
Bromodichloromethane	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 8260E
Bromoform	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 8260E
Bromomethane	<120		ug/kg dry	120	1	01/27/10 15:19	aba	10A0464	SW 8260E
n-Butylbenzene	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 8260E
sec-Butylbenzene	130		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 8260E
tert-Butylbenzene	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 8260B
Carbon Tetrachloride	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 8260B
Chlorobenzene	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 8260E
Chlorodibromomethane	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 8260E
Chloroethane	<58		ug/kg dry	58	1	01/27/10 15:19	aba	10A0464	SW 8260B
Chloroform	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 8260E
Chioromethane	<58		ug/kg dry	58	1	01/27/10 15:19	aba	10A0464	SW 8260E
2-Chiorotoluene	<58		ug/kg dry	58	1	01/27/10 15:19	aba	10A0464	SW 8260E
4-Chiorotoluene	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 8260E
1.2-Dibromo-3-chloropropane	<58		ug/kg dry	58	1	01/27/10 15:19	aba	10A0464	SW 8260E
1,2-Dibromoethane (EDB)	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 82601
Dibromomethane	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 8260E
1,2-Dichlorobenzene	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 82601
1,3-Dichlorobenzene	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 82601
1,4-Dichlorobenzene	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 82601
Dichlorodifluoromethane	<58		ug/kg dry	58	1	01/27/10 15:19	aba	10A0464	SW 82601
1,1-Dichloroethane	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 82601
1.2-Dichloroethane	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 8260E
I.I-Dichloroethene	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 8260E
cis-1,2-Dichloroethene	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 8260
trans-1,2-Dichloroethene	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 8260E
1,2-Dichloropropane	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 82601
1,3-Dichloropropane	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 82601
2,2-Dichloropropane	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 8260E
I,I-Dichloropropene	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 82601
cis-1,3-Dichloropropene	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 8260E
trans-1,3-Dichloropropene	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 82601
2,3-Dichloropropene	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 82601
Isopropyl Ether	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 82601
Ethylbenzene	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 8260
Hexachlorobutadiene	<41		ug/kg dry	41	1	01/27/10 15:19	aba	10A0464	SW 8260
Isopropylbenzene	110		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 8260
p-lsopropyltoluene	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 8260
Methylene Chloride	<58		ug/kg dry	58	1	01/27/10 15:19	aba	10A0464	SW 8260
Methyl tert-Butyl Ether	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 8260
Naphthalene	<58		ug/kg dry	58	1	01/27/10 15:19	aba	10A0464	SW 8260
n-Propylbenzene	62		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 8260
Styrene	<58		ug/kg dry	58	1	01/27/10 15:19	aba	10A0464	SW 8260
1.1.1.2-Tetrachloroethane	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 8260
1,1,2,2-Tetrachloroethane	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 8260

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Mr. Kevin Bugel

Work Order:

WTA0574

1E-0909013 Racine, WI

Received: Reported: 01/25/10 01/29/10 16:46

Project: Project Number:

1730 State Street

Analyte	Sample Result	Data Qualifiers	Units	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTA0574-01 (TW-1 6-	8' - Solid/Soil)	- cont.	-			Sampled: 01	/21/10		
VOCs by SW8260B - cont.						Jampiou. 01			
Tetrachloroethene	41		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 82601
Toluene	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 82601
1.2,3-Trichlorobenzene	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 8260
1,2,4-Trichlorobenzene	<29		ug/kg dry	29	i	01/27/10 15:19	aba	10A0464	SW 8260
1,1,1-Trichloroethane	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 8260
1,1,2-Trichloroethane	<41		ug/kg dry	41	1	01/27/10 15:19	aba	10A0464	SW 8260
Trichloroethene	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 8260
Trichlorofluoromethane	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10 A 04 64	SW 8260
1,2,3-Trichloropropane	<58		ug/kg dry	58	1	01/27/10 15:19	aba	10A0464	SW 8260
1,2,4-Trimethylbenzene	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 8260
1;3,5-Trimethylbenzene	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 8260
Vinyl chloride	<41		ug/kg dry	41	1	01/27/10 15:19	aba	10A0464	SW 8260
Xylenes, total	<99		ug/kg dry	99	1	01/27/10 15:19	aba	10A0464	SW 8260
Surr: Dibromofluoromethane (82-112%)	93 %								
Surr: Toluene-d8 (91-106%)	89 %	Z 6							
Surr: 4-Bromofluorobenzene (89-110%)	107 %								
Sample ID: WTA0574-02 (MW-1 0	-2' - Solid/Soil)				Sampled: 01	/21/10		
General Chemistry Parameters						•			
% Solids	88		%	NA	1	01/27/10 11:45	pam	10A0482	SM 2540
VOCs by SW8260B									
Benzene	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260
Bromobenzene	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260
Bromochloromethane	<40		ug/kg dry	40	1	01/27/10 15:45	aba	10A0464	SW 8260
Bromodichloromethane	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260
Bromoform	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260
Bromomethane	<110		ug/kg dry	110	1	01/27/10 15:45	aba	10A0464	SW 8260
n-Butylbenzene	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260
sec-Butylbenzene	29		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260
tert-Butylbenzene	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260
Carbon Tetrachloride	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260
Chlorobenzene	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260
Chlorodibromomethane	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260
Chloroethane	<57		ug/kg dry	57	1	01/27/10 15:45	aba	10A0464	SW 8260
Chloroform	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260
Chloromethane	<57		ug/kg dry	57	1	01/27/10 15:45	aba	10A0464	SW 826
2-Chlorotoluene	<57		ug/kg dry	57	1	01/27/10 15:45	aba	10A0464	SW 8260
4-Chlorotoluene	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260
1,2-Dibromo-3-chloropropane	<57		ug/kg dry	57	1	01/27/10 15:45	aba	10A0464	SW 8260
1,2-Dibromoethane (EDB)	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260
Dibromomethane	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 826
1,2-Dichlorobenzene	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 826
1,3-Dichlorobenzene	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260
1,4-Dichlorobenzene	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 826
Dichlorodifluoromethane	<57		ug/kg dry	57	1	01/27/10 15:45	aba	10A0464	SW 826
1,1-Dichloroethane	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 826
1,2-Dichloroethane	<28		ug/kg dry	28	Ī	01/27/10 15:45	aba	10A0464	SW 826
1,1-Dichloroethene	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 826
cis-I,2-Dichloroethene	7300		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 826
trans-1,2-Dichloroethene	45		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 826
1,2-Dichloropropane	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 826
1.3-Dichloropropane	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 826

Project Manager

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Mr. Kevin Bugel

Work Order:

WTA0574

Received: 01/25/10

Project: Project Number: 1E-0909013 Racine, WI

1730 State Street

Reported:

01/29/10 16:46

Analyte	Sample Result	Data Qualifiers	Units	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTA0574-02 (MW-1 0-	2' - Solid/Soil) - cont.				Sampled: 01	/21/10		
VOCs by SW8260B - cont.						Jampion 01			
2,2-Dichloropropane	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260E
1,1-Dichloropropene	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260E
cis-1,3-Dichloropropene	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260E
trans-1,3-Dichloropropene	<28		ug/kg dry	28	I	01/27/10 15:45	aba	10A0464	SW 8260E
2,3-Dichloropropene	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260E
Isopropyl Ether	<28		ug/kg dry	28	1	01/27/10 15:45	aba	J0A0464	SW 8260E
Ethylbenzene	41		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260E
Hexachlorobutadiene	<40		ug/kg dry	40	1	01/27/10 15:45	aba	10A0464	SW 82601
Isopropylbenzene	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 82601
p-Isopropyltoluene	61		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 82601
Methylene Chloride	<57		ug/kg dry	57	1	01/27/10 15:45	aba	10A0464	SW 82601
Methyl tert-Butyl Ether	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 82601
Naphthalene	340		ug/kg dry	57	1	01/27/10 15:45	aba	10A0464	SW 82601
n-Propylbenzene	41		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260
Styrene	<57		ug/kg dry	57	1	01/27/10 15:45	aba	10A0464	SW 8260
1,1,1,2-Tetrachioroethane	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260
1:1.2.2-Tetrachloroethane	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260
Tetrachloroethene	570		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260
Toluene	32		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260
1,2,3-Trichlorobenzene	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 82601
1.2.4-Trichlorobenzene	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260
1.1.1-Trichloroethane	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260
1.1.2-Trichloroethane	<40		ug/kg dry	40	1	01/27/10 15:45	aba	10A0464	SW 8260
Trichloroethene	83		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260
Trichlorofluoromethane	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260
1,2,3-Trichloropropane	<57		ug/kg dry	57	1	01/27/10 15:45	aba	10A0464	SW 8260
1,2,4-Trimethylbenzene	320		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260
1,3,5-Trimethylbenzene	110		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260
Vinyl chloride	210		ug/kg dry	40	1	01/27/10 15:45	aba	10A0464	SW 8260
Xylenes, total	220		ug/kg dry	96	1	01/27/10 15:45	aba	10A0464	SW 8260
Surr: Dibromofluoromethane (82-112%)	93 %								
Surr: Toluene-d8 (91-106%)	88 %	26							
Surr: 4-Bromofluorobenzene (89-110%)	107 %								

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Work Order:

Project Number:

WTA0574

01/25/10 Received:

01/29/10 16:46

Reported:

Project:

1E-0909013 Racine, WI

1730 State Street

	Sample	Data			Dilution	Date		Seq/	
Analyte	Result	Qualifiers	Units	MRL	Factor	Analyzed	Analyst	Batch	Method
Sample ID: WTA0574-03 (MW-	-1 10-12' - Solid/S	oil)				Sampled: 01	/21/10		
General Chemistry Parameters						•			
% Solids	86		%	NA	1	01/27/10 11:45	pam	10A0482	SM 2540G
VOCs by SW8260B									
Benzene	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 8260B
Bromobenzene	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 8260B
Bromochloromethane	<82		ug/kg dry	82	2	01/27/10 16:11	aba	10A0464	SW 8260B
Bromodichloromethane	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 8260B
Bromoform	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 8260B
Bromomethane	<230		ug/kg dry	230	2	01/27/10 16:11	aba	10A0464	SW 8260B
n-Butylbenzene	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 8260B
sec-Butylbenzene	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 8260B
tert-Butylbenzene	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 8260B
Carbon Tetrachloride	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 8260B
Chlorobenzene	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 8260B
Chlorodibromomethane	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 8260B
Chloroethane	<120		ug/kg dry	120	2	01/27/10 16:11	aba	10A0464	SW 8260B
Chlorofonn	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 8260B
Chloromethane	<120		ug/kg dry	120	2	01/27/10 16:11	aba	10A0464	SW 8260B
2-Chlorotoluene	<120		ug/kg dry	120	2	01/27/10 16:11	aba	10A0464	SW 8260B
4-Chlorotoluene	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 8260B
1,2-Dibromo-3-chloropropane	<120		ug/kg dry	120	2	01/27/10 16:11	aba	10A0464	SW 8260B
1,2-Dibromoethane (EDB)	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 8260B
Dibromomethane	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 8260B
1.2-Dichlorobenzene	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 8260B
1,3-Dichlorobenzene	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 8260B
1,4-Dichlorobenzene	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 8260B
Dichlorodifluoromethane	<120		ug/kg dry	120	2	01/27/10 16:11	aba	10 A0464	SW 8260B
1.1-Dichloroethane	<58	-	ug/kg dry	58	2	01/27/10 16:11	aba	10 A 04 64	SW 8260B
1.2-Dichloroethane	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10 A 0464	SW 8260B
1,1-Dichloroethene	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 8260B
cis-1,2-Dichloroethene	1900		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 8260B
trans-1,2-Dichloroethene	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 8260B
1,2-Dichloropropane	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 8260B
1,3-Dichloropropane	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 8260B
2,2-Dichloropropane	<58		ug/kg dry	58	2	01/27/10 16:11 01/27/10 16:11	aba	10A0464 10A0464	SW 8260B SW 8260B
1,1-Dichloropropene	<58		ug/kg dry	58	. 2	01/27/10 16:11	aba	10A0464	SW 8260B
cis-1,3-Dichloropropene	<58 <58		ug/kg dry	58 58	2	01/27/10 16:11	aba	10A0464	SW 8260B
trans-1,3-Dichloropropene	<58		ug/kg dry	58	2	01/27/10 16:11		10A0464	SW 8260B
2,3-Dichloropropene	<58		ug/kg dry ug/kg dry	58	2	01/27/10 16:11	aba aba	10A0464	SW 8260B
Isopropyl Ether Ethylbenzene	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 8260B
Hexachlorobutadiene	<82		ug/kg dry	82	2	01/27/10 16:11	aba	10A0464	SW 8260B
Isopropylbenzene	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 8260E
p-Isopropyltoluene	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 8260E
Methylene Chloride	<120		ug/kg dry	120	2	01/27/10 16:11	aba	10A0464	SW 8260E
Methyl tert-Butyl Ether	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 8260E
Naphthalene	<120		ug/kg dry	120	2	01/27/10 16:11	aba	10A0464	SW 8260E
n-Propylbenzene	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 8260E
Styrene	<120		ug/kg dry	120	2	01/27/10 16:11	aba	10A0464	SW 8260E
1,1,1,2-Tetrachloroethane	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 8260E
1.1,2,2-Tetrachloroethane	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 8260E
Tetrachloroethene	10000		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 8260E
Toluene	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 8260E

Project Manager

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186

Mr. Kevin Bugel

Work Order:

Project Number:

Project:

WTA0574

1E-0909013 Racine, WI

1730 State Street

Received:

01/25/10

01/29/10 16:46 Reported:

A maluta	Sample Result	Data Oualifiers	Units	MRL	Dilution Factor	Date Analyzed	Amalust	Seq/ Batch	Method
Analyte	Result	Quanners	Units	MIKL	Factor	Analyzeu	Analyst	Daten	Method
Sample ID: WTA0574-03 (MW-1 10)-12' - Solid/S	oil) - cont.				Sampled: 01	/21/10		
VOCs by SW8260B - cont.									
1,2,3-Trichlorobenzene	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 8260B
1,2,4-Trichlorobenzene	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 8260B
1,1,1-Trichloroethane	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 8260B
1,1,2-Trichloroethane	<82		ug/kg dry	82	2	01/27/10 16:11	aba	10A0464	SW 8260B
Trichloroethene	2700		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 8260E
Trichlorofluoromethane	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 8260B
1,2,3-Trichloropropane	<120		ug/kg dry	120	2	01/27/10 16:11	aba	10A0464	SW 8260E
1,2,4-Trimethylbenzene	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 8260E
1,3,5-Trimethylbenzene	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 8260E
Vinyl chloride	<82		ug/kg dry	82	2	01/27/10 16:11	aba	10A0464	SW 8260B
Xylenes, total	<200		ug/kg dry	200	2	01/27/10 16:11	aba	10A0464	SW 8260E
Surr: Dibromofluoromethane (82-112%)	94%								
Surr: Toluene-d8 (91-106%)	88 %	26							
Surr: 4-Bromofluorohenzene (89-110%)	106 %								
Sample ID: WTA0574-04 (MW-2 0-	-2' - Solid/Soil)				Sampled: 01	/21/10		
General Chemistry Parameters									
% Solids	90		%	NA	I	01/27/10 11:45	pam	10A0482	SM 2540C
VOCs by SW8260B									
Benzene	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260E
Bromobenzene	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260E
Bromochloromethane	<20000		ug/kg dry	20000	500	01/27/10 16:38	aba	10 A0464	SW 8260E
Bromodichloromethane	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260E
Bromoform	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260E
Bromomethane	<56000		ug/kg dry	56000	500	01/27/10 16:38	aba	10A0464	SW 8260E
n-Butylbenzene	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10 A0464	SW 8260E
sec-Butylbenzene	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260E
tert-Butylbenzene	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260E
Carbon Tetrachloride	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260E
Chlorobenzene	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260E
Chlorodibromomethane	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260E
Chloroethane	<28000		ug/kg dry	28000	500	01/27/10 16:38	aba	10A0464	SW 8260E
Chloroform	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260E
Chloromethane	<28000		ug/kg dry	28000	500	01/27/10 16:38	aba	10A0464	SW 8260E
2-Chlorotoluene	<28000		ug/kg dry	28000	500	01/27/10 16:38	aba	10A0464	SW 8260E
4-Chlorotoluene	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260I
1,2-Dibromo-3-chloropropane	<28000		ug/kg dry	28000	500	01/27/10 16:38	aba	10A0464	SW 82601
I,2-Dibromoethane (EDB)	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 82601
Dibromomethane	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 82601
1,2-Dichlorobenzene	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 82601
1,3-Dichlorobenzene	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 82601
1,4-Dichlorobenzene	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 82601
Dichlorodifluoromethane	<28000		ug/kg dry	28000	500	01/27/10 16:38	aba	10A0464	SW 82601
1,1-Dichloroethane	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260
1,2-Dichloroethane	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 82601
1,1-Dichloroethene	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260
cis-1,2-Dichloroethene	19000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260
trans-1.2-Dichloroethene	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260
1.2-Dichloropropane	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260
1,3-Dichloropropane	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260
2,2-Dichloropropane	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260
1,1-Dichloropropene	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186 Mr. Kevin Bugel Work Order:

WTA0574

Received: Reported: 01/25/10

01/29/10 16:46

u .

Project: 1E-0909013 Racine, WI

Project Number:	1730 State Street

Analyte	Sample Result	Data Qualifiers	Units	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTA0574-04 (MW-2 0-	2' - Solid/Soil) - cont.				Sampled: 01	/21/10		
VOCs by SW8260B - cont.						-			
cis-1,3-Dichloropropene	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260B
trans-1,3-Dichloropropene	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260B
2,3-Dichloropropene	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260B
isopropyl Ether	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260B
Ethylbenzene	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260E
Hexachlorobutadiene	<20000		ug/kg dry	20000	500	01/27/10 16:38	aba	10A0464	SW 8260E
Isopropylbenzene	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260E
p-Isopropyltoluene	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260E
Methylene Chloride	<28000		ug/kg dry	28000	500	01/27/10 16:38	aba	10A0464	SW 8260E
Methyl tert-Butyl Ether	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260E
Naphthalene	<28000		ug/kg dry	28000	500	01/27/10 16:38	aba	10A0464	SW 8260E
n-Propylbenzene	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260E
Styrene	<28000		ug/kg dry	28000	500	01/27/10 16:38	aba	10A0464	SW 8260E
.1.1.2-Tetrachloroethane	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260E
1,1,2,2-Tetrachloroethane	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260E
Tetrachloroethene	5200000	E	ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260E
Toluene	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260E
1,2,3-Trichlorobenzene	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260E
1,2.4-Trichlorobenzene	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260E
1,1,1-Trichloroethane	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260E
1,1,2-Trichloroethane	<20000		ug/kg dry	20000	500	01/27/10 16:38	aba	10A0464	SW 8260E
Trichloroethene	420000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260E
Trichlorofluoromethane	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260E
1,2,3-Trichloropropane	<28000		ug/kg dry	28000	500	01/27/10 16:38	aba	10A0464	SW 8260E
1,2,4-Trimethylbenzene	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260E
1,3,5-Trimethylbenzene	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260E
Vinyl chloride	<20000		ug/kg dry	20000	500	01/27/10 16:38	aba	10A0464	SW 8260E
Xylenes, total	<47000		ug/kg dry	47000	500	01/27/10 16:38	aba	10A0464	SW 8260E
Surr: Dibromofluoromethane (82-112%)	92 %								
Surr: Toluene-d8 (91-106%)	87 %	Z 6							
Surr: 4-Bromofluorobenzene (89-110%)	107 %								

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Mr. Kevin Bugel

Work Order:

WTA0574

Received: Reported: 01/25/10 01/29/10 16:46

Project: Project Number: 1E-0909013 Racine, WI

1730 State Street

nalyte	Sample Result	Data Qualifiers	Units	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTA0574-05 (MW-2 6-8	R' - Solid/Soil)				Sampled: 01	/21/10		
General Chemistry Parameters	, Solid/Soli	,				Sampieu. 01	121/10		
"% Solids	82		%	NA	1	01/27/10 11:45	pam	10A0482	SM 25400
	82		76	NA	1	01/2//10 11:45	pam	10A0462	SIVI 25400
VOCs by SW8260B								10.10111	0111 00 501
Benzene	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260
Bromobenzene	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260
Bromochloromethane	<420		ug/kg dry	420	10	01/27/10 17:04	aba	10A0464	SW 8260
Bromodichloromethane	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260
Bromoform	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260
Bromomethane	<1200		ug/kg dry	1200	10	01/27/10 17:04	aba	10A0464	SW 8260
n-Butylbenzene	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260
sec-Butylbenzene	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260
tert-Butylbenzene	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260
Carbon Tetrachloride	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260
Chlorobenzene	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260
Chlorodibromomethane	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260
Chloroethane	<610		ug/kg dry	610	10	01/27/10 17:04	aba	10A0464	SW 8260
Chloroform	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260
Chloromethane	<610		ug/kg dry	610	10	01/27/10 17:04	aba	10A0464	SW 8260
2-Chlorotoluene	<610		ug/kg dry	610	10	01/27/10 17:04	aba	10A0464	SW 8260
4-Chlorotoluene	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260
1,2-Dibromo-3-chloropropane	<610		ug/kg dry	610	10	01/27/10 17:04	aba	10A0464	SW 8260
1.2-Dibromoethane (EDB)	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260
Dibromomethane	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260
1,2-Dichlorobenzene	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260
1,3-Dichlorobenzene	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260
1.4-Dichlorobenzene	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260
Dichlorodifluoromethane	<610		ug/kg dry	610	10	01/27/10 17:04	aba	10A0464	SW 8260
1.1-Dichloroethane	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260
1,2-Dichloroethane	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260
1,1-Dichloroethene	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260
cis-1,2-Dichloroethene	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260
trans-1,2-Dichloroethene	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260
1.2-Dichloropropane	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260
	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260
1,3-Dichloropropane	<300			300	10	01/27/10 17:04	aba	10A0464	SW 8260
2.2-Dichloropropane	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260
1,1-Dichloropropene			ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260
cis-1,3-Dichloropropene	<300		ug/kg dry				aba	10A0464	SW 8260
trans-1,3-Dichloropropene	<300		ug/kg dry	300	10	01/27/10 17:04 01/27/10 17:04			
2,3-Dichloropropene	<300		ug/kg dry	300	10		aba	10A0464	SW 8260
Isopropyl Ether	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260
Ethylbenzene	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260
Hexachlorobutadiene	<420		ug/kg dry	420	10	01/27/10 17:04	aba	10A0464	SW 8260
Isopropylbenzene	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260
p-Isopropyltoluene	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260
Methylene Chloride	<610		ug/kg dry	610	10	01/27/10 17:04	aba	10A0464	SW 8260
Methyl tert-Butyl Ether	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260
Naphthalene	<610		ug/kg dry	610	10	01/27/10 17:04	aba	10A0464	SW 8260
n-Propylbenzene	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 826
Styrene	<610		ug/kg dry	610	10	01/27/10 17:04	aba	10A0464	SW 8260
1,1,1,2-Tetrachloroethane	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260
1,1,2,2-Tetrachloroethane	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260
Tetrachioroethene	59000		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260
Toluene	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260

Karri Warnock For Dan F. Milewsky

Project Manager

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Mr. Kevin Bugel

Work Order:

Project:

WTA0574

1E-0909013 Racine, WI

Received:

Reported:

01/25/10 01/29/10 16:46

Project Number: 1730 State Street

	Sample	Data			Dilution	Date	0.	Seq/	
Analyte	Result	Qualifiers	Units	MRL	Factor	Analyzed	Analyst	Batch	Method
Sample ID: WTA0574-05 (MW-2 6-	-8' - Solid/Soil) - cont.				Sampled: 01	/21/10		
∠OCs by SW8260B - cont.									
1,2,3-Trichlorobenzene	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260
1,2,4-Trichlorobenzene	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260
1,1,1-Trichloroethane	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260
1,1,2-Trichloroethane	<420		ug/kg dry	420	10	01/27/10 17:04	aba	10A0464	SW 8260
Trichloroethene	2200		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260
Trichlorofluoromethane	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260
1,2,3-Trichloropropane	<610		ug/kg dry	610	10	01/27/10 17:04	aba	10A0464	SW 8260
1,2,4-Trimethylbenzene	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260
1,3,5-Trimethylbenzene	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260
•	<420		ug/kg dry	420	10	01/27/10 17:04	aba	10A0464	SW 8260
Vinyl chloride	<1000				10				
Xylenes, total			ug/kg dry	1000	10	01/27/10 17:04	aba	10A0464	SW 8260
Surr: Dibromofluoromethane (82-112%)	92 %	76							
Surr: Toluene-d8 (91-106%) Surr: 4-Bromofluorobenzene (89-110%)	87 % 107 %	Z 6							
		3				0 1 1 01	101110		
Sample ID: WTA0574-06 (MW-3 2-	4 - 30110/3011)				Sampled: 01	/21/10		
Deneral Chemistry Parameters	0.4							10.0100	01.1.00.10
% Solids	91		%	NA	1	01/27/10 11:45	pam	10A0482	SM 2540
VOCs by SW8260B									
Benzene	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260
Bromobenzene	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260
Bromochioromethane	<38		ug/kg dry	38	ì	01/27/10 17:30	aba	10A0464	SW 8260
Bromodichloromethane	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260
Bromoform	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260
Bromomethane	<110		ug/kg dry	110	1	01/27/10 17:30	aba	10A0464	SW 8260
n-Butylbenzene	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260
sec-Butylbenzene	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260
tert-Butylbenzene	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260
Carbon Tetrachloride	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260
Chlorobenzene	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260
Chlorodibromomethane	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260
Chloroethane	<55		ug/kg dry	55	1	01/27/10 17:30	aba	10A0464	SW 8260
Chloroform	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260
Chloromethane	<55		ug/kg dry	55	1	01/27/10 17:30	aba	10A0464	SW 8260
2-Chlorotoluene	<55		ug/kg dry	55	1	01/27/10 17:30	aba	10A0464	SW 8260
4-Chlorotoluene	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260
1,2-Dibromo-3-chloropropane	<55		ug/kg dry	55	1	01/27/10 17:30	aba	10A0464	SW 8260
1,2-Dibromoethane (EDB)	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260
Dibromomethane	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10 A0464	SW 8260
1,2-Dichlorobenzene	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260
1,3-Dichlorobenzene	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260
1,4-Dichlorobenzene	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 826
	<55			55	1	01/27/10 17:30	aba	10A0464	SW 826
Dichlorodifluoromethane	<27		ug/kg dry		1			10A0464	
			ug/kg dry	27	1	01/27/10 17:30	aba		SW 8260
1,2-Dichloroethane	<27		ug/kg dry	27	ı	01/27/10 17:30	aba	10A0464	SW 8266
1,1-Dichloroethene	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260
cis-1,2-Dichloroethene	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260
trans-1,2-Dichloroethene	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260
1,2-Dichloropropane	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260
1,3-Dichloropropane	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260
2.2-Dichloropropane	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260
1,1-Dichloropropene	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Mr. Kevin Bugel Work Order:

Project Number:

Project:

WTA0574

1E-0909013 Racine, WI

1730 State Street

Received:

01/25/10

Reported:

01/29/10 16:46

Analyte	Sample Result	Data Qualifiers	Units	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTA0574-06 (MW-3 2-	4' - Solid/Soil) - cont.				Sampled: 01	/21/10		
VOCs by SW8260B - cont.							•		
cis-1,3-Dichloropropene	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260B
trans-1,3-Dichloropropene	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260B
2,3-Dichloropropene	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260B
Isopropyl Ether	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260B
Ethylbenzene	<27		ug/kg dry	27	1	01/27/10 17:30	aba	I0A0464	SW 8260B
Hexachlorobutadiene	<38		ug/kg dry	38	1	01/27/10 17:30	aba	10A0464	SW 8260B
Isopropylbenzene	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260B
p-isopropyltoluene	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260B
Methylene Chloride	<55		ug/kg dry	55	1	01/27/10 17:30	aba	10A0464	SW 8260B
Methyl tert-Butyl Ether	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260B
Naphthalene	230		ug/kg dry	55	1	01/27/10 17:30	aba	10A0464	SW 8260B
n-Propylbenzene	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260E
Styrene	<55		ug/kg dry	55	1	01/27/10 17:30	aba	10A0464	SW 8260E
1,1,1,2-Tetrachloroethane	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260E
1.1.2.2-Tetrachloroethane	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260E
Tetrachloroethene	33		ug/kg dry	27	1	01/28/10 13:40	aba	10A0499	SW 8260E
Toluene	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260E
1.2.3-Trichlorobenzene	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260E
1.2,4-Trichlorobenzene	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260E
1,1,1-Trichloroethane	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260E
1,1,2-Trichloroethane	<38		ug/kg dry	38	3	01/27/10 17:30	aba	10A0464	SW 8260B
Trichloroethene	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260E
Trichlorofluoromethane	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260E
1,2,3-Trichloropropane	<55		ug/kg dry	55	1	01/27/10 17:30	aba	10A0464	SW 8260E
1,2,4-Trimethylbenzene	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260E
1,3,5-Trimethylbenzene	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260F
Vinyl chloride	<38		ug/kg dry	38	1	01/27/10 17:30	aba	10A0464	SW 8260E
Xylenes, total	<93		ug/kg dry	93	1	01/27/10 17:30	aba	10A0464	SW 8260F
Surr: Dibromofluoromethane (82-112%)	91%								
Surr: Dibromofluoromethane (82-112%)	96 %								
Surr: Toluene-d8 (91-106%)	87 %	Z 6							
Surr: Toluene-d8 (91-106%)	98 %								
Surr: 4-Bromofluorobenzene (89-110%)	108 %								
Surr: 4-Bromofluorohenzene (89-110%)	101 %								

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Work Order:

Project Number:

Project:

WTA0574

1E-0909013 Racine, WI 1730 State Street

01/25/10 Received:

Reported:

01/29/10 16:46

A maluta	Sample Result	Data Qualifiers	Vinit-	MDI	Dilution	Date	Ameline	Seq/	Made
Analyte	Kesun	Quaimers	Units	MRL	Factor	Analyzed	Analyst	Batch	Method
Sample ID: WTA0574-07 (MW-4	4 2-4' - Solid/Soil)				Sampled: 01	/21/10		
General Chemistry Parameters									
% Solids	80		%	NA	1	01/27/10 11:45	pam	10A0482	SM 2540
VOCs by SW8260B									
Benzene	<31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260
Bromobenzene	<31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260
Bromochloromethane	<44		ug/kg dry	44	1	01/27/10 17:57	aba	10A0464	SW 8260
Bromodichloromethane	<31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260
Bromoform	<31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260
Bromomethane	<130		ug/kg dry	130	1	01/27/10 17:57	aba	10A0464	SW 8260
n-Butylbenzene	<31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260
sec-Butylbenzene	<31		ug/kg dry	31	I	01/27/10 17:57	aba	10A0464	SW 8260
tert-Butylbenzene	<31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260
Carbon Tetrachloride	<31		ug/kg dry	31	i	01/27/10 17:57	aba	10A0464	SW 8260
Chlorobenzene	<31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260
Chlorodibromomethane	⊲1		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260
Chloroethane	<63		ug/kg dry	63	1	01/27/10 17:57	aba	10A0464	SW 8260
Chloroform	<31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260
Chloromethane	<63		ug/kg dry	63	1	01/27/10 17:57	aba	10A0464	SW 8260
	<63		ug/kg dry	63	1	01/27/10 17:57	aba	10A0464	SW 8260
2-Chlorotoluene	<31			31	1	01/27/10 17:57	aba	10A0464	SW 8260
4-Chlorotoluene	<63		ug/kg dry	63	1	01/27/10 17:57	aba	10A0464	SW 8260
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane (EDB)	<31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260
	<31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260
Dibromomethane			ug/kg dry	31	•			10A0464	
1,2-Dichlorobenzene	⊲1		ug/kg dry		1	01/27/10 17:57	aba	10A0464	SW 8260
1,3-Dichlorobenzene	<31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260 SW 8260
1,4-Dichlorobenzene	<31		ug/kg dry	31	-	01/27/10 17:57	aba		
Dichlorodifluoromethane	<63		ug/kg dry	63	1	01/27/10 17:57	aba	10A0464	SW 8260
1,1-Dichloroethane	<31		ug/kg dry	31	I	01/27/10 17:57	aba	10A0464	SW 8260
L2-Dichloroethane	<31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260
1,1-Dichloroethene	<31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260
cis-1,2-Dichloroethene	<31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260
trans-1,2-Dichloroethene	<31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260
1,2-Dichloropropane	<31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260
1,3-Dichloropropane	<31		ug/kg dry	. 31	1	01/27/10 17:57	aba	10A0464	SW 8260
2.2-Dichloropropane	<31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260
1,1-Dichloropropene	<31		ug/kg dry	31	l .	01/27/10 17:57	aba	10A0464	SW 826
cis-1,3-Dichloropropene	<31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 826
trans-1,3-Dichloropropene	<31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260
2,3-Dichloropropene	<31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 826
Isopropyl Ether	<31		ug/kg dry	. 31	1	01/27/10 17:57	aba	10A0464	SW 826
Ethylbenzene	<31		ug/kg dry	31	l	01/27/10 17:57	aba	10A0464	SW 826
Hexachlorobutadiene	<44		ug/kg dry	44	I	01/27/10 17:57	aba	10A0464	SW 826
Isopropylbenzene	<31		ug/kg dry	31	3	01/27/10 17:57	aba	10A0464	SW 826
p-lsopropyltoluene	<31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 826
Methylene Chloride	<63		ug/kg dry	63	1	01/27/10 17:57	aba	10A0464	SW 826
Methyl tert-Butyl Ether	<31		ug/kg dry	31	3	01/27/10 17:57	aba	10A0464	SW 826
Naphthalene	<63		ug/kg dry	63	1	01/27/10 17:57	aba	10A0464	SW 826
n-Propylbenzene	<31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 826
Styrene	<63		ug/kg dry	63	1	01/27/10 17:57	aba	10A0464	SW 826
1,1,1,2-Tetrachloroethane	<31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 826
1,1,2,2-Tetrachloroethane	<31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 826
Tetrachloroethene	73		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 826
Toluene	<31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 826

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Mr. Kevin Bugel Work Order:

Project:

WTA0574

1 AUS /4

1E-0909013 Racine, WI

Received: Reported:

01/25/10 01/29/10 16:46

Project Number:

ber: 1730 State Street

Austral	Sample	Data Qualifiers	Units	MDI	Dilution	Date	Amelian	Seq/	N. 4. 1
Analyte	Result	Quantiers	Units	MRL	Factor	Analyzed	Analyst	Batch	Method
Sample ID: WTA0574-07 (MW-4 2-	-4' - Solid/Soil) - cont.				Sampled: 01	/21/10		
VOCs by SW8260B - cont.									
1,2,3-Trichlorobenzene	<31		ug/kg dry	31	1	01/27/10 17:57	aba	I0A0464	SW 82601
1,2,4-Trichlorobenzene	<31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260
1,1,1-Trichloroethane	<31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260
1.1,2-Trichloroethane	<44		ug/kg dry	44	1	01/27/10 17.57	aba	10A0464	SW 8260
Trichloroethene	<31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260
Trichlorofluoromethane	<31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260
1,2,3-Trichloropropane	<63		ug/kg dry	63	I	01/27/10 17:57	aba	10A0464	SW 8260
1,2,4-Trimethylbenzene	<31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260
1,3,5-Trimethylbenzene	<31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260
Vinyl chloride	<44		ug/kg dry	44	I	01/27/10 17:57	aba	10A0464	SW 8260
Xylenes, total	<110		ug/kg dry	110	1	01/27/10 17:57	aba	10A0464	SW 8260
Surr: Dibromofluoromethane (82-112%)	93 %		5 5 7						
Surr: Toluene-d8 (91-106%)	87 %	Z6							
Surr: 4-Bromofluorobenzene (89-110%)	108 %								
Sample ID: WTA0574-08 (MW-4 10	0-12' - Solid/S	oil)				Sampled: 01	/21/10		
General Chemistry Parameters									
% Solids	87		%	NA	1	01/27/10 11:45	pam	10A0482	SM 2540
VOCs by SW8260B									
Benzene	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 8260
Bromobenzene	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 8260
Bromochloromethane	<40		ug/kg dry	40	1	01/27/10 18:23	aba	10A0464	SW 826
Bromodichloromethane	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 826
Bromoform	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 826
Bromomethane	<110		ug/kg dry	110	1	01/27/10 18:23	aba	10A0464	SW 826
n-Butylbenzene	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 826
•	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 826
sec-Butylbenzene	<29			29	1	01/27/10 18:23	aba	10A0464	SW 826
tert-Butylbenzene	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 826
Carbon Tetrachloride	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 826
Chlorobenzene			ug/kg dry		1				
Chlorodibromomethane	<29		ug/kg dry	29		01/27/10 18:23	aba	10A0464	SW 8260
Chloroethane	<57		ug/kg dry	57	1	01/27/10 18:23	aba	10A0464	SW 8260 SW 8260
Chloroform	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	
Chloromethane	<57		ug/kg dry	57	1	01/27/10 18:23	aba	10A0464	SW 826
2-Chiorotoluene	<57		ug/kg dry	57	1	01/27/10 18:23	aba	10A0464	SW 826
4-Chiorotoluene	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 826
1,2-Dibromo-3-chloropropane	<57		ug/kg dry	57	1	01/27/10 18:23	aba	10A0464	SW 8260
1.2-Dibromoethane (EDB)	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 826
Dibromomethane	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 826
1,2-Dichlorobenzene	<29		ug/kg dry	29	I	01/27/10 18:23	aba	10A0464	SW 826
I,3-Dichlorobenzene	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 826
1.4-Dichlorobenzene	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 826
Dichlorodifluoromethane	<57		ug/kg dry	57	1	01/27/10 18:23	aba	10A0464	SW 826
1,1-Dichloroethane	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 826
1,2-Dichloroethane	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 826
1,1-Dichloroethene	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 826
cis-1,2-Dichloroethene	34		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 826
trans-1,2-Dichloroethene	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 826
1,2-Dichloropropane	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 826
1,3-Dichloropropane	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 826
2,2-Dichloropropane	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 826
1,1-Dichloropropene	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 826

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Work Order:

WTA0574

Received:

Reported:

01/25/10 01/29/10 16:46

Waukesha, WI 53186

Mr. Kevin Bugel

1E-0909013 Racine, WI Project: Project Number: 1730 State Street

Analyte	Sample Result	Data Qualifiers	Units	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTA0574-08 (MW-4 10)-12' - Solid/S	oil) - cont.				Sampled: 01	/21/10		
VOCs by SW8260B - cont.						•			
cis-1,3-Dichloropropene	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 8260B
trans-1,3-Dichloropropene	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 8260B
2,3-Dichloropropene	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 8260B
Isopropyl Ether	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 8260B
Ethylbenzene	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 8260B
Hexachlorobutadiene	<40		ug/kg dry	40	1	01/27/10 18:23	aba	10A0464	SW 8260B
Isopropylbenzene	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 8260E
p-isopropyitoluene	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 8260E
Methylene Chloride	<57		ug/kg dry	57	1	01/27/10 18:23	aba	10A0464	SW 8260E
Methyl tert-Butyl Ether	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 8260E
Naphthalene	<57		ug/kg dry	57	1	01/27/10 18:23	aba	10A0464	SW 8260E
n-Propylbenzene	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 8260E
Styrene	<57		ug/kg dry	57	1	01/27/10 18:23	aba	10A0464	SW 8260E
1,1,1,2-Tetrachloroethane	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 8260E
1,1,2,2-Tetrachloroethane	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 8260E
Tetrachloroethene	82		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 8260E
Toluene	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 8260E
1.2.3-Trichlorobenzene	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 8260E
1,2,4-Trichlorobenzene	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 8260E
1,1,1-Trichloroethane	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 8260E
1.1.2-Trichloroethane	<40		ug/kg dry	40	1	01/27/10 18:23	aba	10A0464	SW 8260E
Trichloroethene	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 8260E
Trichlorofluoromethane	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 8260E
1,2,3-Trichloropropane	<57		ug/kg dry	57	1	01/27/10 18:23	aba	10A0464	SW 8260E
1,2,4-Trimethylbenzene	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 8260E
1,3,5-Trimethylbenzene	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 8260E
Vinyl chloride	<40		ug/kg dry	40	1	01/27/10 18:23	aba	10A0464	SW 8260E
Xylenes, total	<98		ug/kg dry	98	1	01/27/10 18:23	aba	10A0464	SW 8260E
Surr: Dibromofluoromethane (82-112%)	92 %		5 6 7						
Surr: Toluene-d8 (91-106%)	87 %	26							
Surr: 4-Bromofluorobenzene (89-110%)	107 %								

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186

Work Order:

WTA0574

1E-0909013 Racine, WI

Received: Reported: 01/25/10 01/29/10 16:46

Project: Project Number:

1730 State Street

Analyte	Sample Result	Data Qualifiers	Units	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
	NI Plant Min C) manufa)				6 1101	(21/10		
Sample ID: WTA0574-09 (MeC	oh Blank - Misc. C	rganic)				Sampled: 01	21/10		
VOCs by SW8260B	25			25	,	01/27/10 11:22	aha	1040464	SW 8260E
Benzene	<25		ug/kg wet	25	1	01/27/10 11:23	aba	10A0464	
Bromobenzene	<25		ug/kg wet	25	1	01/27/10 11:23 01/27/10 11:23	aba	10A0464	SW 82601
Bromochloromethane	<35		ug/kg wet	35	1		aba	10A0464	SW 82601
Bromodichloromethane	<25		ug/kg wet	25	1	01/27/10 11:23	aba	10A0464	SW 8260
Bromoform	<25		ug/kg wet	25	1	01/27/10 11:23	aba	10A0464	SW 82601
Broinomethane	<100		ug/kg wet	100	1	01/27/10 11:23	aba	10A0464	SW 82601
n-Butylbenzene	<25		ug/kg wet	25	1	01/27/10 11:23	aba	10A0464	SW 82601
sec-Butylbenzene	<25		ug/kg wet	25	1	01/27/10 11:23	aba	10A0464	SW 82601
tert-Butylbenzene	<25		ug/kg wet	25	1	01/27/10 11:23	aba	10A0464	SW 82601
Carbon Tetrachloride	<25		ug/kg wet	25	1	01/27/10 11:23	aba	10A0464	SW 82601
Chlorobenzene	<25		ug/kg wet	25	1	01/27/10 11:23	aba	10A0464	SW 8260E
Chlorodibromomethane	<25		ug/kg wet	25	1	01/27/10 11:23	aba	10A0464	SW 82601
Chloroethane	<50		ug/kg wet	50	1	01/27/10 11:23	aba	10A0464	SW 82601
Chloroform	<25		ug/kg wet	25	1	01/27/10 11:23	aba	10A0464	SW 8260
Chloromethane	<50		ug/kg wet	50	1	01/27/10 11:23	aba	10A0464	SW 82601
2-Chlorotoluene	<50		ug/kg wet	50	1	01/27/10 11:23	aba	10A0464	SW 82601
4-Chlorotoluene	<25		ug/kg wet	25	I	01/27/10 11:23	aba	10A0464	SW 82601
1.2-Dibromo-3-chloropropane	<50		ug/kg wet	50	1	01/27/10 11:23	aba	10A0464	SW 82601
1,2-Dibromoethane (EDB)	<25		ug/kg wet	25	1	01/27/10 11:23	aba	10A0464	SW 8260
Dibromomethane	<25		ug/kg wet	25	1	01/27/10 11:23	aba	10A0464	SW 8260
1,2-Dichlorobenzene	<25		ug/kg wet	25	1	01/27/10 11:23	aba	10A0464	SW 8260
1.3-Dichlorobenzene	<25		ug/kg wet	25	1	01/27/10 11:23	aba	10A0464	SW 8260
1,4-Dichlorobenzene	<25		ug/kg wet	25	1	01/27/10 11:23	aba	10A0464	SW 82601
Dichlorodifluoromethane	<50		ug/kg wet	50	1	01/27/10 11:23	aba	10A0464	SW 8260
1,1-Dichloroethane	<25		ug/kg wet	25	1	01/27/10 11:23	aba	10A0464	SW 8260
1,2-Dichloroethane	<25		ug/kg wet	25	1	01/27/10 11:23	aba	10A0464	SW 8260
1,1-Dichloroethene	<25		ug/kg wet	25	1	01/27/10 11:23	aba	10A0464	SW 8260
cis-1,2-Dichloroethene	<25		ug/kg wet	25	1	01/27/10 11:23	aba	10A0464	SW 8260
trans-1,2-Dichloroethene	<25		ug/kg wet	25	1	01/27/10 11:23	aba	10A0464	SW 8260
	<25		ug/kg wet	25	1	01/27/10 11:23	aba	10A0464	SW 8260
1,2-Dichloropropane	<25		ug/kg wet	25	1	01/27/10 11:23	aba	10A0464	SW 8260
1,3-Dichloropropane	<25		ug/kg wet	25	1	01/27/10 11:23	aba	10A0464	SW 8260
2,2-Dichloropropane				25	1	01/27/10 11:23	aba	10A0464	SW 8260
1,1-Dichloropropene	<25		ug/kg wet		1	01/27/10 11:23	aba	10A0464	
cis-1,3-Dichloropropene	<25		ug/kg wet	25					SW 8260
trans-1,3-Dichloropropene	<25		ug/kg wet	25	1	01/27/10 11:23	aba	10A0464	SW 8260
2,3-Dichloropropene	<25		ug/kg wet	25	1	01/27/10 11:23	aba	10A0464	SW 8260
Isopropyl Ether	<25		ug/kg wet	25	1	01/27/10 11:23	aba	10A0464	SW 8260
Ethylbenzene	<25		ug/kg wet	25	1	01/27/10 11:23	aba	10A0464	SW 8260
Hexachlorobutadiene	<35		ug/kg wet	35	1	01/27/10 11:23	aba	10A0464	SW 8260
Isopropylbenzene	<25		ug/kg wet	25	I	01/27/10 11:23	aba	10A0464	SW 8260
p-Isopropyitoluene	<25		ug/kg wet	25	1	01/27/10 11:23	aba	10A0464	SW 8260
Methylene Chloride	<50		ug/kg wet	50	1	01/27/10 11:23	aba	10A0464	SW 8260
Methyl tert-Butyl Ether	<25		ug/kg wet	25	1	01/27/10 11:23	aba	10A0464	SW 8260
Naphthalene	<50		ug/kg wet	50	1	01/27/10 11:23	aba	10A0464	SW 8260
n-Propylbenzene	<25		ug/kg wet	25	1	01/27/10 11:23	aba	10A0464	SW 8260
Styrene	<50		ug/kg wet	50	1	01/27/10 11:23	aba	10A0464	SW 8260
1,1,1,2-Tetrachloroethane	<25		ug/kg wet	25	1	01/27/10 11:23	aba	10A0464	SW 8260
1.1.2,2-Tetrachloroethane	<25		ug/kg wet	25	1	01/27/10 11:23	aba	10A0464	SW 8260
Tetrachloroethene	<25		ug/kg wet	25	1	01/27/10 11:23	aba	10A0464	SW 8260
Toluene	<25		ug/kg wet	25	1	01/27/10 11:23	aba	I0A0464	SW 8260
1,2,3-Trichlorobenzene	<25		ug/kg wet	25	1	01/27/10 11:23	aba	10A0464	SW 8260
1,2,4-Trichlorobenzene	<25		ug/kg wet	25	1	01/27/10 11:23	aba	10A0464	SW 8260

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186 Mr. Kevin Bugel

Work Order:

WTA0574

Received: 01/25/10

Project: 1E-0909013 Racine, WI

Project Number: 1730 State Street

Reported:	01/29/10	16:46
-----------	----------	-------

Analyte	Sample Result	Data Qualifiers	Units	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
			· · · · · · · · · · · · · · · · · · ·	WINE	1400			Daten	Withind
Sample ID: WTA0574-09 (MeOH B	lank - Misc. C)rganic) - con	it.			Sampled: 01	/21/10		
VOCs by SW8260B - cont.									
1,1,1-Trichloroethane	<25		ug/kg wet	25	1	01/27/10 11:23	aba	10A0464	SW 8260E
1.1,2-Trichloroethane	<35		ug/kg wet	35	1	01/27/10 11:23	aba	10A0464	SW 8260F
Trichloroethene	<25		ug/kg wet	25	1	01/27/10 11:23	aba	10A0464	SW 82601
Trichlorofluoromethane	<25		ug/kg wet	25	1	01/27/10 11:23	aba	10A0464	SW 82601
1.2,3-Trichloropropane	<50		ug/kg wet	50	1	01/27/10 11:23	aba	10A0464	SW 8260
,2,4-Trimethylbenzene	<25		ug/kg wet	25	I	01/27/10 11:23	aba	10A0464	SW 8260
1,3,5-Trimethylbenzene	<25		ug/kg wet	25	1	01/27/10 11:23	aba	10A0464	SW 8260
Vinyl chloride	<35		ug/kg wet	35	1	01/27/10 11:23	aba	10A0464	SW 8260
Xylenes, total	<85		ug/kg wet	85	1	01/27/10 11:23	aba	10A0464	SW 8260
Surr: Dibromofluoromethane (82-112%)	100 %								
Surr: Toluene-d8 (91-106%)	92 %								
iurr: 4-Bromofluorobenzene (89-110%)	102 %								
ample ID: WTA0574-10 (P-1 Com	posite - Solid/	Soil)				Sampled: 01	/21/10		
General Chemistry Parameters									
1/n Solids	82		%	NA	1	01/27/10 11:45	pam	10A0482	SM 2540
OCs by SW8260B									
Benzene	48		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260
3romobenzene	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260
Bromochloromethane	<43		ug/kg dry	43	1	01/27/10 18:49	aba	10A0464	SW 8260
Bromodichloromethane	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260
Bromoform	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260
	<120			120	1	01/27/10 18:49	aba	10A0464	SW 8260
Bromomethane	90		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260
n-Butylbenzene			ug/kg dry		1				SW 8260
ec-Butylbenzene	77		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	
en-Butylbenzene	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260
Carbon Tetrachloride	<31		ug/kg dry	31	1	01/27/10 18:49	вbа	10A0464	SW 8260
Chlorobenzene	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260
Chlorodibromomethane	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260
Chloroethane	<61		ug/kg dry	61	1	01/27/10 18:49	aba	10A0464	SW 8260
Chloroform	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260
Chloromethane	<61		ug/kg dry	61	1	01/27/10 18:49	aba	10A0464	SW 8260
2-Chlorotoluene	<61		ug/kg dry	61	1	01/27/10 18:49	aba	10A0464	SW 8260
l-Chlorotoluene	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260
,2-Dibromo-3-chloropropane	<61		ug/kg dry	61	1	01/27/10 18:49	aba	10A0464	SW 8260
,2-Dibromoethane (EDB)	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260
Dibromomethane	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260
,2-Dichlorobenzene	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260
1,3-Dichlorobenzene	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260
.4-Dichlorobenzene	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260
Dichlorodifluoromethane	<61		ug/kg dry	61	1	01/27/10 18:49	aba	10A0464	SW 8260
.1-Dichloroethane	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260
,2-Dichloroethane	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260
,1-Dichloroethene	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260
is-1,2-Dichloroethene	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260
rans-1,2-Dichloroethene	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260
,2-Dichloropropane	⊲31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260
.3-Dichloropropane	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260
2.2-Dichloropropane	<31		ug/kg dry	31	i	01/27/10 18:49	aba	10A0464	SW 8260
1.1-Dichloropropene	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260
	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260
cis-1,3-Dichloropropene trans-1,3-Dichloropropene	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Mr. Kevin Bugel

Work Order:

WTA0574

Received:

01/25/10

Project: Project Number: 1E-0909013 Racine, WI 1730 State Street

Reported:

01/29/10 16:46

Analyte	Sample Result	Data Qualifiers	Units	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTA0574-10 (P-1 Com	posite - Solid/	Soil) - cont.				Sampled: 01	/21/10		
JOCs by SW8260B - cont.									
2,3-Dichloropropene	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260B
Isopropyl Ether	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260B
Ethylbenzene	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260B
Hexachlorobutadiene	<43		ug/kg dry	43	1	01/27/10 18:49	aba	10A0464	SW 8260B
Isopropylbenzene	73		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260B
p-isopropyltoluene	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260B
Methylene Chloride	<61		ug/kg dry	61	1	01/27/10 18:49	aba	10A0464	SW 8260B
Methyl tert-Butyl Ether	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260B
Naphthalene	150		ug/kg dry	61	I	01/27/10 18:49	aba	10A0464	SW 8260E
n-Propylbenzene	86		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260E
Styrene	<61		ug/kg dry	61	1	01/27/10 18:49	aba	10A0464	SW 8260E
1,1,1,2-Tetrachloroethane	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260E
1,1,2,2-Tetrachloroethane	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260E
Tetrachloroethene	48		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260E
Toluene	<31		ug/kg dry	31	I	01/27/10 18:49	aba	10A0464	SW 8260E
1,2,3-Trichlorobenzene	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260E
1,2,4-Trichlorobenzene	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260E
1,1,1-Trichloroethane	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260E
1.1,2-Trichloroethane	<43		ug/kg dry	43	1	01/27/10 18:49	aba	10A0464	SW 8260E
Trichloroethene	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260E
Trichlorofluoromethane	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260E
1,2,3-Trichloropropane	<61		ug/kg dry	61	1	01/27/10 18:49	aba	10A0464	SW 8260E
1,2,4-Trimethylbenzene	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260E
1,3,5-Trimethylbenzene	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260E
Vinyl chloride	<43		ug/kg dry	43	1	01/27/10 18:49	aba	10A0464	SW 8260E
Xylenes, total	<100		ug/kg dry	100	1	01/27/10 18:49	aba	10A0464	SW 8260E
Surr: Dibromofluoromethane (82-112%)	92 %								
Surr: Toluene-d8 (91-106%)	86 %	Z6							
Surr: 4-Bromofluorohenzene (89-110%)	110 %								

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Waukesha, WI 53186 Mr. Kevin Bugel Work Order:

WTA0574

W1A05/4

- 0

01/25/10

Project: Project Number: 1E-0909013 Racine, WI 1730 State Street Received: Reported:

01/29/10 16:46

LABORATORY BLANK QC DATA

		ource	-					Dup	%		% REC		RPD	
Analyte	Batch F	lesult	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
VOCs by SW8260B	******													
Benzene	10A0464			ug/kg wet	N/A	25	<25							
Bromobenzene	10A0464			ug/kg wet	N/A	25	<25							
Bromochloromethane	10A0464			ug/kg wet	N/A	35	<35							
Bromodichloromethane	10A0464			ug/kg wet	N/A	25	<25							
Bromoform	10A0464			ug/kg wet	N/A	25	<25							
Bromomethane	10A0464			ug/kg wet	N/A	100	<100							
n-Butylbenzene	10A0464		1	ug/kg wet	N/A	25	<25							
sec-Butylbenzene	10A0464		1	ug/kg wet	N/A	25	<25							
tert-Butylbenzene	10A0464			ug/kg wet	N/A	25	<25							
Carbon Tetrachloride	10A0464			ug/kg wet	N/A	25	<25							
Chlorobenzene	10A0464			ug/kg wet	N/A	25	<25							
Chlorodibromomethane	10A0464			ug/kg wet	N/A	25	<25							
Chloroethane	10A0464			ug/kg wet	N/A	50	<50							
Chloroform	10A0464			ug/kg wet	N/A	25	<25							
Chloromethane	10A0464			ug/kg wet	N/A	50	<50							
2-Chlorotoluene	10A0464			ug/kg wet	N/A	50	<50							
4-Chlorotoluene	10A0464			ug/kg wet	N/A	25	<25							
1,2-Dibromo-3-chloropropane	10A0464			ug/kg wet	N/A	50	<50							
1,2-Dibromoethane (EDB)	10A0464			ug/kg wet	N/A	25	<25							
Dibromomethane	10A0464			ug/kg wet	N/A	25	<25							
1,2-Dichlorobenzene	10A0464			ug/kg wet	N/A	25	<25							
1,3-Dichlorobenzene	10A0464			ug/kg wet	N/A	25	<25							
1,4-Dichlorobenzene	10A0464			ug/kg wet	N/A	25	<25							
Dichlorodifluoromethane	10A0464			ug/kg wet	N/A	50	<50							
1,1-Dichloroethane	10A0464			ug/kg wet	N/A	25	<25							
1,2-Dichloroethane	10A0464			ug/kg wet	N/A	25	<25							
1,1-Dichloroethene	10A0464			ug/kg wet	N/A	25	<25							
cis-1,2-Dichloroethene	10A0464			ug/kg wet	N/A	25	<25							
trans-1,2-Dichloroethene	10A0464			ug/kg wet	N/A	25	<25							
1,2-Dichloropropane	10A0464			ug/kg wet	N/A	25	<25							
1,3-Dichloropropane	10A0464			ug/kg wet	N/A	25	<25							
2,2-Dichloropropane	10A0464			ug/kg wet	N/A	25	<25							
1,1-Dichloropropene	.10A0464			ug/kg wet	N/A	25	<25							
cis-1,3-Dichloropropene	10A0464			ug/kg wet	N/A	25	<25							
trans-1,3-Dichloropropene	10A0464			ug/kg wet	N/A	25	<25							
2,3-Dichloropropene	10A0464			ug/kg wet	N/A	25	<25							
Isopropyl Ether	10A0464			ug/kg wet	N/A	25	<25							
Ethylbenzene	10A0464			ug/kg wet	N/A	25	<25							
Hexachlorobutadiene	10A0464			ug/kg wet	N/A	35	<35							
Isopropylbenzene	10A0464			ug/kg wet	N/A	25	<25							
p-isopropyltoluene	10A0464			ug/kg wet	N/A	25	<25							
Methylene Chloride	10A0464			ug/kg wet	N/A	50	<50							
Methyl tert-Butyl Ether	10A0464			ug/kg wet	N/A	25	<25							
Naphthalene	10A0464			ug/kg wet	N/A	50	<50							
n-Propylbenzene	10A0464			ug/kg wet	N/A	25	<25							

Project Manager

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Work Order:

Project:

WTA0574

Received:

01/25/10

Project Number:

1E-0909013 Racine, WI 1730 State Street

Reported: 01/29/10 16:46

			LAB	ORAT	ORY B	LANK	QC D	ATA						
	Seq/	Source Result		Units	MDL	MRL	Danult	Dup Result	%	Dup %REC	% REC	RPD	RPD Limit	Q
Analyte	Batch	Result	Level	Onits	MDL	MILL	Result	Result	KEC	70KEC	Limits	KID	Limit	Ų
VOCs by SW8260B	10A0464			ug/kg wet	N/A	50	<50							
Styrene ,1,1,2-Tetrachloroethane	10A0464			ug/kg wet	N/A	25	<25							
	10A0464			ug/kg wet	N/A	25	<25							
,1,2,2-Tetrachloroethane	10A0464			ug/kg wet	N/A	25	<25							
Foluene	10A0464			ug/kg wet	N/A	25	<25							
	10A0464			ug/kg wet	N/A	25	<25							
.2,3-Trichlorobenzene	10A0464			ug/kg wet	N/A	25	<25							
	10A0464			ug/kg wet	N/A	25	<25							
,1,1-Trichloroethane	10A0464			ug/kg wet	N/A	35	<35							
,1,2-Trichloroethane				-	N/A	25	<25							
Trichloroethene	10A0464			ug/kg wet		25	<25							
Trichlorofluoromethane	10A0464			ug/kg wet	N/A									
.2,3-Trichloropropane	10A0464			ug/kg wet	N/A	50	<50							
,2,4-Trimethylbenzene	10A0464			ug/kg wet	N/A	25	<25							
1,3,5-Trimethylbenzene	10A0464			ug/kg wet	N/A	25	<25							
Vinyl chloride	10A0464			ug/kg wet	N/A	35	<35							
Kylenes, total	10A0464			ug/kg wet	N/A	85	<85				00.110			
iurrogate: Dibromofluoromethane	10A0464			ug/kg wet					100		82-112			
Surrogate: Toluene-d8	10A0464			ug/kg wet					92		91-106			
iurrogate: 4-Bromofluorobenzene	10A0464		1	ug/kg wet					104		89-110			
Benzene	10A0499			ug/kg wet	N/A	25	<25							
Bromobenzene	10A0499			ug/kg wet	N/A	25	<25							
Bromochloromethane	10A0499			ug/kg wet	N/A	35	<35							
Bromodichloromethane	10A0499			ug/kg wet	N/A	25	<25							
Bromoform	10A0499			ug/kg wet	N/A	25	<25							
Bromomethane	10A0499			ug/kg wet	N/A	100	<100							
n-Butylbenzene	10A0499			ug/kg wet	N/A	25	<25							
ec-Burylbenzene	10A0499			ug/kg wet	N/A	25	<25							
ert-Butylbenzene	10A0499			ug/kg wet	N/A	25	<25							
Carbon Tetrachloride	10A0499			ug/kg wet	N/A	25	<25							
Chlorobenzene	10A0499			ug/kg wet	N/A	25	<25							
Chlorodibromomethane	10A0499			ug/kg wet	N/A	25	<25							
Chloroethane	10A0499			ug/kg wet	N/A	50	<50							
Chloroform	10A0499			ug/kg wet	N/A	25	<25							
Chloromethane	10A0499			ug/kg wet	N/A	50	<50							
2-Chiorotoluene	10A0499			ug/kg wet	N/A	50	<50							
4-Chlorotoluene	10A0499			ug/kg wet	N/A	25	<25							
1.2-Dibromo-3-chloropropane	10A0499			ug/kg wet	N/A	50	<50							
.2-Dibromoethane (EDB)	10A0499			ug/kg wet	N/A	25	<25							
Dibromomethane	10A0499			ug/kg wet	N/A	25	<25							
.2-Dichlorobenzene	10A0499			ug/kg wet	N/A	25	<25							
.3-Dichlorobenzene	10A0499			ug/kg wet	N/A	25	<25							
,4-Dichlorobenzene	10A0499			ug/kg wet	N/A	25	<25							
Dichlorodifluoromethane	10A0499			ug/kg wet	N/A	50	<50							
1,1-Dichloroethane	10A0499			ug/kg wet	N/A	25	<25							

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Work Order:

WTA0574

Received:

01/25/10

Project: Project Number:

1E-0909013 Racine, WI 1730 State Street

Reported:

01/29/10 16:46

Mr. Kevin Bugel

			LAD	ORAT	JA I D	LAIN	QC D	AIA						
	Seq/	Source	Spike					Dup	0/0	Dup	% REC		RPD	
Analyte	Batch	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
VOCs by SW8260B														
1,2-Dichloroethane	10A0499		1	ug/kg wet	N/A	25	<25							
1,1-Dichloroethene	10A0499		1	ug/kg wet	N/A	25	<25							
cis-1,2-Dichloroethene	10A0499		1	ug/kg wet	N/A	25	<25							
trans-1,2-Dichloroethene	10A0499		1	ug/kg wet	N/A	25	<25							
1,2-Dichloropropane	10A0499			ug/kg wet	N/A	25	<25							
1,3-Dichloropropane	10A0499			ug/kg wet	N/A	25	<25							
2,2-Dichloropropane	10A0499			ug/kg wet	N/A	25	<25							
1,1-Dichloropropene	10A0499			ug/kg wet	N/A	25	<25							
cis-1,3-Dichloropropene	10A0499			ug/kg wet	N/A	25	<25							
trans-1,3-Dichloropropene	10A0499			ug/kg wet	N/A	25	<25							
2.3-Dichloropropene	10A0499			ug/kg wet	N/A	25	<25							
Isopropyl Ether	10A0499			ug/kg wet	N/A	25	<25							
Ethylbenzene	10A0499			ug/kg wet	N/A	25	<25							
Hexachlorobutadiene	10A0499			ug/kg wet	N/A	35	<35							
sopropylbenzene	10A0499			ug/kg wet	N/A	25	<25							
p-Isopropyltoluene	10A0499			ug/kg wet	N/A	25	<25							
Methylene Chloride	10A0499			ug/kg wet	N/A	50	<50							
Methyl tert-Butyl Ether	10A0499			ug/kg wet	N/A	25	<25							
Naphthalene	10A0499			ug/kg wet	N/A	50	<50							
n-Propylbenzene	10A0499			ug/kg wet	N/A	25	<25							
Styrene	10A0499			ug/kg wet	N/A	50	<50							
1,1,1,2-Tetrachloroethane	10A0499			ug/kg wet	N/A	25	<25							
1,1,2,2-Tetrachioroethane	10A0499			ug/kg wet	N/A	25	<25							
Tetrachloroethene	10A0499			ug/kg wet	N/A	25	<25							
Toluene	10A0499			ug/kg wet	N/A	25	<25							
1,2,3-Trichlorobenzene	10A0499			ug/kg wet	N/A	25	<25							
1,2,4-Trichlorobenzene	10A0499			ug/kg wet	N/A	25	<25							
1,1,1-Trichloroethane	10A0499			ug/kg wet	N/A	25	<25							
1.1.2-Trichloroethane	I0A0499			ug/kg wet	N/A	35	<35							
Trichloroethene	10A0499			ug/kg wet	N/A	25	<25							
Trichlorofluoromethane	10A0499			ug/kg wet	N/A	25	<25							
1,2,3-Trichloropropane	10A0499			ug/kg wet	N/A	50	<50							
1,2,4-Trimethylbenzene	10A0499			ug/kg wet	N/A	25	<25							
1,3,5-Trimethylbenzene	10A0499			ug/kg wet	N/A	25	<25							
Vinyl chloride	10A0499			ug/kg wet	N/A	35	<35							
Xylenes, total	10A0499			ug/kg wet	N/A	85	<85							
Surrogate: Dibromofluoromethane	10A0499			ug/kg wet					99		82-112			
Surrogate: Toluene-d8	10A0499			ug/kg wet					98		91-106			
Surrogate: 4-Bromofluorobenzene	10A0499			ug/kg wet					98		89-110			

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN N8 W22350 Johnson Road

Work Order:

WTA0574

Received:

01/25/10

Project: Project Number: 1E-0909013 Racine, WI

1730 State Street

Reported:

01/29/10 16:46

Mr. Kevin Bugel	
Waukesha, WI 53186	

	-		10.100	C	CV QC	DAT	A							
	Seq/	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Batch	Result	Level	Units	MDL	MRL	Result	Result	REC	-	Limits	RPD	Limit	Q
VOCs by SW8260B														
Benzene	T000158		2500	ug/kg wet	N/A	N/A	2790		111		80-120			
Bromobenzene	T000158		2500	ug/kg wet	N/A	N/A	2520		101		80-120			
Bromochloromethane	T000158		2500	ug/kg wet	N/A	N/A	2950		118		80-120			
Bromodichloromethane	T000158		2500	ug/kg wet	N/A	N/A	2830		113		80-120			
Bromoform	T000158		2500	ug/kg wet	N/A	N/A	2700		108		80-120			
Bromomethane	T000158		2500	ug/kg wet	N/A	N/A	2930		117		80-120			
n-Butylbenzene	T000158		2500	ug/kg wet	N/A	N/A	2310		93		80-120			
sec-Butylbenzene	T000158		2500	ug/kg wet	N/A	N/A	2300		92		80-120			
tert-Butylbenzene	T000158		2500	ug/kg wet	N/A	N/A	2290		91		80-120			
Carbon Tetrachloride	T000158		2500	ug/kg wet	N/A	N/A	2840		113		80-120			
Chiorobenzene	T000158		2500	ug/kg wet	N/A	N/A	2470		99		80-120			
Chlorodibromomethane	T000158		2500	ug/kg wet	N/A	N/A	2910		116		80-120			
Chloroethane	T000158		2500	ug/kg wet	N/A	N/A	2820		113		80-120			
Chloroform	T000158		2500	ug/kg wet	N/A	N/A	2870		115		80-120			
Chloromethane	T000158		2500	ug/kg wet	N/A	N/A	2430		97		80-120			
2-Chlorotoluene	T000158		2500	ug/kg wet	N/A	N/A	2510		100		80-120			
4-Chiorotoluene	T000158		2500	ug/kg wet	N/A	N/A	2560		102		80-120			
1,2-Dibromo-3-chloropropane	T000158		2500	ug/kg wet	N/A	N/A	2270		91		80-120			
1,2-Dibromoethane (EDB)	T000158		2500	ug/kg wet	N/A	N/A	2560		102		80-120			
Dibromomethane	T000158		2500	ug/kg wet	N/A	N/A	2880		115		80-120			
1,2-Dichlorobenzene	T000158		2500	ug/kg wet	N/A	N/A	2290		92		80-120			
1,3-Dichlorobenzene	T000158		2500	ug/kg wet	N/A	N/A	2350		94		80-120			
1.4-Dichlorobenzene	T000158		2500	ug/kg wet	N/A	N/A	2340		94		80-120			
Dichlorodifluoromethane	T000158		2500	ug/kg wet	N/A	N/A	2910		116		80-120			
1,1-Dichloroethane	T000158		2500	ug/kg wet	N/A	N/A	2810		112		80-120			
1,2-Dichloroethane	T000158		2500	ug/kg wet	N/A	N/A	2880		115		80-120			
1,1-Dichloroethene	T000158		2500	ug/kg wet	N/A	N/A	2820		113		80-120			
cis-1,2-Dichloroethene	T000158		2500	ug/kg wet	N/A	N/A	2840		114		80-120			
trans-1,2-Dichloroethene	T000158		2500	ug/kg wet	N/A	N/A	2880		115		80-120			
1,2-Dichloropropane	T000158		2500	ug/kg wet	N/A	N/A	2710		108		80-120			
1,3-Dichloropropane	T000158		2500	ug/kg wet	N/A	N/A	2790		112		80-120			
2,2-Dichloropropane	T000158		2500	ug/kg wet	N/A	N/A	3010		120		80-120			
1,1-Dichloropropene	T000158		2500	ug/kg wet	N/A	N/A	2800		112		80-120			
cis-1,3-Dichloropropene	T000158		2500	ug/kg wet	N/A	N/A	2910		116		80-120			
trans-1,3-Dichloropropene	T000158		2500	ug/kg wet	N/A	N/A	2960		119		80-120			
2,3-Dichloropropene	T000158		2500	ug/kg wet	N/A	N/A	2800		112		80-120			
Isopropyl Ether	T000158		2500	ug/kg wet	N/A	N/A	2640		105		80-120			
Ethylbenzene	T000158		2500	ug/kg wet	N/A	N/A	2490		100		80-120			
Hexachlorobutadiene	T000158		2500	ug/kg wet	N/A	N/A	1820		73		80-120			
Isopropyibenzene	T000158		2500	ug/kg wet	N/A	N/A	2520		101		80-120			
p-lsopropyltoluene	T000158		2500	ug/kg wet	N/A	N/A	2520		101		80-120			
Methylene Chloride	T000158		2500	ug/kg wet	N/A	N/A	2850		114		80-120			
Methyl tert-Butyl Ether	T000158		2500	ug/kg wet	N/A	N/A	2810		113		80-120			
Naphthalene	T000158		2500	ug/kg wet	N/A	N/A	1850		74		80-120			
n-Propylbenzene	T000158		2500	ug/kg wet	N/A	N/A	2530		101		80-120			

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Mr. Kevin Bugel

Work Order:

Project:

WTA0574

Received:

01/25/10

Project Number:

1E-0909013 Racine, WI 1730 State Street

Reported:

01/29/10 16:46

				C	CV QC	DAT	A							
	Seq/	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Batch	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
VOCs by SW8260B														
Styrene	T000158		2500	ug/kg wet	N/A	N/A	2570		103		80-120			
1,1,1,2-Tetrachloroethane	T000158		2500	ug/kg wet	N/A	N/A	2590		104		80-120			
1,1,2,2-Tetrachloroethane	T000158		2500	ug/kg wet	N/A	N/A	2340		93		80-120			
Tetrachloroethene	T000158		2500	ug/kg wet	N/A	N/A	2530		101		80-120			
Toluene	T000158		2500	ug/kg wet	N/A	N/A	2450		98		80-120			
.2,3-Trichlorobenzene	T000158		2500	ug/kg wet	N/A	N/A	1790		72		80-120			
1,2,4-Trichlorobenzene	T000158		2500	ug/kg wet	N/A	N/A	2000		80		80-120			
1,1,1-Trichloroethane	T000158		2500	ug/kg wet	N/A	N/A	2930		117		80-120			
1,1,2-Trichloroethane	T000158		2500	ug/kg wet	N/A	N/A	2860		114		80-120			
Frichloroethene	T000158		2500	ug/kg wet	N/A	N/A	2810		112		80-120			
Trichlorofluoromethane	T000158		2500	ug/kg wet	N/A	N/A	2910		116		80-120			
,2,3-Trichloropropane	T000158		2500	ug/kg wet	N/A	N/A	2580		103		80-120			
,2,4-Trimethylbenzene	T000158		2500	ug/kg wet	N/A	N/A	2510		100		80-120			
,3,5-Trimethylbenzene	T000158		2500	ug/kg wet	N/A	N/A	2520		101		80-120			
Vinyl chloride	T000158		2500	ug/kg wet	N/A	N/A	2670		107		80-120			
Xylenes, total	T000158		7500	ug/kg wet	N/A	N/A	7510		100		80-120			
Surrogate: Dibromofluoromethane	7000158			ug/kg wet					105		80-120			
surrogate: Toluene-d8	T000158			ug/kg wet					91		80-120			
Surrogate: 4-Bromofluorohenzene	7000158			ug/kg wet					105		80-120			
Benzene	T000170		2500	ug/kg wet	N/A	N/A	2770		111		80-120			
Bromobenzene	T000170		2500	ug/kg wet	N/A	N/A	2690		107		80-120			
Bromochloromethane	T000170		2500	ug/kg wet	N/A	N/A	2900		116		80-120			
Bromodichloromethane	T000170		2500	ug/kg wet	N/A	N/A	2760		110		80-120			
Bromoform	T000170		2500	ug/kg wet	N/A	N/A	2760		110		80-120			
Bromomethane	T000170		2500	ug/kg wet	N/A	N/A	2920		117		80-120			
n-Butylbenzene	T000170		2500	ug/kg wet	N/A	N/A	2710		108		80-120			
sec-Butylbenzene	T000170		2500	ug/kg wet	N/A	N/A	2690		108		80-120			
ert-Butylbenzene	T000170		2500	ug/kg wet	N/A	N/A	2680		107		80-120			
Carbon Tetrachloride	T000170		2500	ug/kg wet	N/A	N/A	2760		111		80-120			
Chlorobenzene	T000170		2500	ug/kg wet	N/A	N/A	2630		105		80-120			
Chlorodibromomethane	T000170		2500	ug/kg wet	N/A	N/A	2750		110		80-120			
Chloroethane	T000170		2500	ug/kg wet	N/A	N/A	2890		116		80-120			
Chloroform	T000170		2500	ug/kg wet	N/A	N/A	2840		114		80-120			
Chloromethane	T000170		2500	ug/kg wet	N/A	N/A	2280		91		80-120			
2-Chlorotoluene	T000170		2500	ug/kg wet	N/A	N/A	2690		107		80-120			
4-Chlorotoluene	T000170		2500	ug/kg wet	N/A	N/A	2620		105		80-120			
1,2-Dibromo-3-chloropropane	T000170		2500	ug/kg wet	N/A	N/A	2490		99		80-120			
1,2-Dibromoethane (EDB)	T000170		2500	ug/kg wet	N/A	N/A	2700		108		80-120			
Dibromomethane	T000170		2500	ug/kg wet	N/A	N/A	2800		112		80-120			
1,2-Dichlorobenzene	T000170		2500	ug/kg wet	N/A	N/A	2640		106		80-120			
.3-Dichlorobenzene	T000170		2500	ug/kg wet	N/A	N/A	2690		108		80-120			
,4-Dichlorobenzene	T000170		2500	ug/kg wet	N/A	N/A	2660		107		80-120			
Dichlorodifluoromethane	T000170		2500	ug/kg wet	N/A	N/A	2750		110		80-120			
Diemorounituoromediane	1000170		2500	agrag wet	14/75	MA	2/30		110		00-120			

ug/kg wet

N/A

N/A

2760

110

80-120

2500

T000170

Project Manager

1.1-Dichloroethane

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Work Order:

Project Number:

WTA0574

1730 State Street

Received:

01/25/10

Project:

1E-0909013 Racine, WI

Reported:

01/29/10 16:46

Mr. Kevin Bugel

				C	CV QC	DAT	A							
	Seq/	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Batch	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
VOCs by SW8260B														
,2-Dichloroethane	T000170		2500	ug/kg wet	N/A	N/A	2850		114		80-120			
,1-Dichloroethene	T000170		2500	ug/kg wet	N/A	N/A	2750		110		80-120			
is-1.2-Dichloroethene	T000170		2500	ug/kg wet	N/A	N/A	2840		113		80-120			
rans-1,2-Dichloroethene	T000170		2500	ug/kg wet	N/A	N/A	2840		114		80-120			
.2-Dichloropropane	T000170		2500	ug/kg wet	N/A	N/A	2610		104		80-120			
,3-Dichloropropane	T000170		2500	ug/kg wet	N/A	N/A	2680		107		80-120			
2.2-Dichloropropane	T000170		2500	ug/kg wet	N/A	N/A	2970		119		80-120			
.1-Dichloropropene	T000170		2500	ug/kg wet	N/A	N/A	2740		109		80-120			
is-1,3-Dichloropropene	T000170		2500	ug/kg wet	N/A	N/A	2830		113		80-120			
rans-1,3-Dichloropropene	T000170		2500	ug/kg wet	N/A	N/A	2850		114		80-120			
2.3-Dichloropropene	T000170		2500	ug/kg wet	N/A	N/A	2780		111		80-120			
sopropyl Ether	T000170		2500	ug/kg wet	N/A	N/A	2650		106		80-120			
Ethylbenzene	T000170		2500	ug/kg wet	N/A	N/A	2650		106		80-120			
-lexachlorobutadiene	T000170		2500	ug/kg wet	N/A	N/A	2460		98		80-120			
sopropylbenzene	T000170		2500	ug/kg wet	N/A	N/A	2700		108		80-120			
o-Isopropyltoluene	T000170		2500	ug/kg wet	N/A	N/A	2730		109		80-120			
Viethylene Chloride	T000170		2500	ug/kg wet	N/A	N/A	2810		112		80-120			
Methyl tert-Butyl Ether	T000170		2500	ug/kg wet	N/A	N/A	2750		110		80-120			
Naphthalene	T000170		2500	ug/kg wet	N/A	N/A	2120		85		80-120			
-Propylbenzene	T000170		2500	ug/kg wet	N/A	N/A	2700		108		80-120			
Styrene	T000170		2500	ug/kg wet	N/A	N/A	2740		110		80-120			
1,1,1,2-Tetrachloroethane	T000170		2500	ug/kg wet	N/A	N/A	2750		110		80-120			
1.2.2-Tetrachioroethane	T000170		2500	ug/kg wet	N/A	N/A	2650		106		80-120			
Tetrachi oroethene	T000170		2500	ug/kg wet	N/A	N/A	2700		108		80-120			
Toluene	T000170		2500	ug/kg wet	N/A	N/A	2630		105		80-120			
1.2.3-Trichlorobenzene	T000170		2500	ug/kg wet	N/A	N/A	2140		86		80-120			
1.2.4-Trichlorobenzene	T000170		2500	ug/kg wet	N/A	N/A	2350		94		80-120			
I.I.I-Trichloroethane	T000170		2500	ug/kg wet	N/A	N/A	2900		116		80-120			
1.1.2-Trichloroethane	T000170		2500	ug/kg wet	N/A	N/A	2740		110		80-120			
Irichloroethene	T000170		2500	ug/kg wet	N/A	N/A	2730		109		80-120			
Trichlorofluoromethane	T000170		2500	ug/kg wet	N/A	N/A	2700		108		80-120			
1,2,3-Trichloropropane	T000170		2500	ug/kg wet	N/A	N/A	2640		106		80-120			
1,2,4-Trimethylbenzene	T000170		2500	ug/kg wet	N/A	N/A	2700		108		80-120			
1,3,5-Trimethylbenzene	T000170		2500	ug/kg wet	N/A	N/A	2700		108		80-120			
Vinyl chloride	T000170		2500	ug/kg wet	N/A	N/A	2630		105		80-120			
Xylenes, total	T000170		7500	ug/kg wet	N/A	N/A	8030		107		80-120			
Surrogate: Dibromofluoromethane	T000170			ug/kg wet					109		80-120			
Surrogate: Toluene-d8	T000170			ug/kg wet					99		80-120			*
Surrogate: 4-Bromofluorobenzene	T000170			ug/kg wet					100		80-120			

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Mr. Kevin Bugel Work Order:

Project Number:

WTA0574

Received:

01/25/10

Project:

1E-0909013 Racine, WI 1730 State Street Reported: 0

01/29/10 16:46

	_	L	ABOR	ATOR	Y DUI	PLICA	TE QC DA	ATA	 			
Analyte	Seq/ Batch	Source Result	Spike Level	Units	MDL	MRL	Result	% REC	% REC	RPD	RPD Limit	Q
General Chemistry Parameters QC Source Sample: WTA0596-02 % Solids	10A0482	83.8		%	N/A	N/A	83.9			0	20	

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha WI 53186 Work Order:

Project Number:

Project:

WTA0574

1E-0909013 Racine, WI

1730 State Street

Received:

01/25/10

Reported:

01/29/10 16:46

Waukesha, WI 53186	
Mr. Kevin Bugel	
	LC

		LC	S/LCS I	OPLI	CATE	QC DA	TA						
		urce Spike			MDI		Dup	%	Dup	% REC		RPD	
Analyte	Batch R	esult Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
VOCs by SW8260B	10.10474	2600		21/4	27/4	2420		105		44 104			
Benzene	10A0464	2500	ug/kg wet	N/A	N/A	2620		105		64-124			
Bromobenzene	10A0464	2500	ug/kg wet	N/A	N/A	2370		95		70-130			
Bromochloromethane	10A0464	2500	ug/kg wet	N/A	N/A	2700		108		70-130			
Bromodichloromethane	10A0464	2500	ug/kg wet	N/A	N/A	2620		105		70-130			
Bromoform	10A0464	2500	ug/kg wet	N/A	N/A	2510		100		70-130			
Bromomethane	10A0464	2500	ug/kg wet	N/A	N/A	2650		106		70-130			
n-Butylbenzene	10A0464	2500	ug/kg wet	N/A	N/A	2160		86		70-130			
sec-Butylbenzene	10A0464	2500	ug/kg wet	N/A	N/A	2170		87		70-130			
tert-Butylbenzene	10A0464	2500	ug/kg wet	N/A	N/A	2160		86		70-130			
Carbon Tetrachloride	10A0464	2500	ug/kg wet	N/A	N/A	2630		105		70-130			
Chlorobenzene	10A0464	2500	ug/kg wet	N/A	N/A	2320		93		80-123			
Chlorodibromomethane	10A0464	2500	ug/kg wet	N/A	N/A	2700		108		70-130			
Chloroethane	10A0464	2500	ug/kg wet	N/A	N/A	2860		115		70-130			
Chloroform	10A0464	2500	ug/kg wet	N/A	N/A	2690		108		70-130			
Chloromethane	10A0464	2500	ug/kg wet	N/A	N/A	2550		102		70-130			
2-Chlorotoluene	10A0464	2500	ug/kg wet	N/A	N/A	2370		95		70-130			
4-Chlorotoluene	10A0464	2500	ug/kg wet	N/A	N/A	2380		95		70-130			
1,2-Dibromo-3-chloropropane	10A0464	2500	ug/kg wet	N/A	N/A	2090		84		70-130			
1,2-Dibromoethane (EDB)	10A0464	2500	ug/kg wet	N/A	N/A	2410		97		70-130			
Dibromomethane	10A0464	2500	ug/kg wet	N/A	N/A	2690		107		70-130			
1,2-Dichlorobenzene	10A0464	2500	ug/kg wet	N/A	N/A	2120		85		70-130			
1,3-Dichlorobenzene	10A0464	2500	ug/kg wet	N/A	N/A	2180		87		70-130			
1,4-Dichlorobenzene	10A0464	2500	ug/kg wet	N/A	N/A	2170		87		70-130			
Dichlorodifluoromethane	10A0464	2500	ug/kg wet	N/A	N/A	3220		129		70-130			
1.1-Dichloroethane	10A0464	2500	ug/kg wet	N/A	N/A	2580		103		70-130			
1.2-Dichloroethane	10A0464	2500	ug/kg wet	N/A	N/A	2680		107		70-130			
1,1-Dichloroethene	10A0464	2500	ug/kg wet	N/A	N/A	2580		103		43-141			
cis-1,2-Dichloroethene	10A0464	2500	ug/kg wet	N/A	N/A	2690		107		70-130			
trans-1,2-Dichloroethene	10A0464	2500	ug/kg wet	N/A	N/A	2680		107		70-130			
1,2-Dichloropropane	10A0464	2500	ug/kg wet	N/A	N/A	2540		102		70-130			
1,3-Dichloropropane	10A0464	2500	ug/kg wet	N/A	N/A	2620		105		70-130			
2.2-Dichloropropane	10A0464	2500	ug/kg wet	N/A	N/A	2840		113		70-130			
1.1-Dichloropropene	10A0464	2500	ug/kg wet	N/A	N/A	2660		106		70-130			
	10A0464	2500	ug/kg wet	N/A	N/A	2620		105		70-130			
cis-1,3-Dichloropropene	10A0464	2500	ug/kg wet	N/A	N/A	2760		110		70-130			
trans-1,3-Dichloropropene	10A0464	2500		N/A	N/A	2330		93		79-122			
Ethylbenzene			ug/kg wet			1720		69		79-122			
Hexachlorobutadiene	10A0464	2500	ug/kg wet	N/A	N/A					70-130			
lsopropylbenzene	10A0464	2500	ug/kg wet	N/A	N/A	2360		94					
p-lsopropyltoluene	10A0464	2500	ug/kg wet	N/A	N/A	2370		95		70-130			
Methylene Chloride	10A0464	2500	ug/kg wet	N/A	N/A	2520		101		70-130			
Methyl tert-Butyl Ether	10A0464	2500	ug/kg wet	N/A	N/A	2770		111		55-137			
Naphthalene	10A0464	2500	ug/kg wet	N/A	N/A	1810		72		70-130			
n-Propylbenzene	10A0464	2500	ug/kg wet	N/A	N/A	2380		95		70-130			
Styrene	10A0464	2500	ug/kg wet	N/A	N/A	2390		95		70-130			
1,1,1,2-Tetrachloroethane	10A0464	2500	ug/kg wet	N/A	N/A	2420		97		70-130			

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186 Mr. Kevin Bugel Work Order:

WTA0574

Received:

01/25/10

Project:

1E-0909013 Racine, WI

Reported:

01/29/10 16:46

Project Number: 1730 State Street

	Seq/ Sour	ce Spike					Dup	%	Dup	% REC		RPD	
Analyte	Batch Resu	lt Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
OCs by SW8260B													
,1.2,2-Tetrachloroethane	10A0464	2500	ug/kg wet	N/A	N/A	2220		89		70-130			
Tetrachloroethene	10A0464	2500	ug/kg wet	N/A	N/A	2400		96		70-130			
Toluene	10A0464	2500	ug/kg wet	N/A	N/A	2310		93		78-120			
1,2,3-Trichlorobenzene	10A0464	2500	ug/kg wet	N/A	N/A	1720		69		70-130			
1,2,4-Trichlorobenzene	10A0464	2500	ug/kg wet	N/A	N/A	1860		74		70-130			
1,1,1-Trichloroethane	10A0464	2500	ug/kg wet	N/A	N/A	2740		110		70-130			
1,1,2-Trichloroethane	10A0464	2500	ug/kg wet	N/A	N/A	2670		107		70-130			
Trichloroethene	10A0464	2500	ug/kg wet	N/A	N/A	2650		106		78-124			
Trichlorofluoromethane	10A0464	2500	ug/kg wet	N/A	N/A	2630		105		70-130			
1,2,3-Trichloropropane	10A0464	2500	ug/kg wet	N/A	N/A	2370		95		70-130			
1,2,4-Trimethylbenzene	10A0464	2500	ug/kg wet	N/A	N/A	2360		94		75-128			
1,3,5-Trimethylbenzene	10A0464	2500	ug/kg wet	N/A	N/A	2350		94		76-127			
Vinyl chloride	10A0464	2500	ug/kg wet	N/A	N/A	2610		104		70-130			
Xylenes, total	10A0464	7500	ug/kg wet	N/A	N/A	7040		94		79-122			
Surrogate: Dihromofluoromethane	10A0464		ug/kg wet					104		82-112			
Surrogate: Toluene-d8	10A0464		ug/kg wet					92		91-106			
Surrogate: 4-Bromofluorobenzene	10A0464		ug/kg wet					106		89-110			
Benzene	10A0499	2500	ug/kg wet	N/A	N/A	2600		104		64-124			
Bromobenzene	10A0499	2500	ug/kg wet	N/A	N/A	2530		101		70-130			
	10A0499	2500	ug/kg wet	N/A	N/A	2710		108		70-130			
Bromochloromethane	10A0499	2500	ug/kg wet	N/A	N/A	2570		103		70-130			
Bromodichloromethane	10A0499	2500	ug/kg wet	N/A	N/A	2600		104		70-130			
Bromoform	10A0499	2500	ug/kg wet	N/A	N/A	2820		113		70-130			
Bromomethane				N/A				99		70-130			
n-Butylbenzene	10A0499	2500	ug/kg wet		N/A	2480							
sec-Butylbenzene	10A0499	2500	ug/kg wet	N/A	N/A	2490		100		70-130			
tert-Butylbenzene	10A0499	2500	ug/kg wet	N/A	N/A	2460		99		70-130			
Carbon Tetrachloride	10A0499	2500	ug/kg wet	N/A	N/A	2600		104		70-130			
Chlorobenzene	10A0499	2500	ug/kg wet	N/A	N/A	2490		99		80-123			
Chlorodibromomethane	10A0499	2500	ug/kg wet	N/A	N/A	2580		103		70-130			
Chloroethane	10A0499	2500	ug/kg wet	N/A	N/A	2610		105		70-130			
Chloroform	10A0499	2500	ug/kg wet	N/A	N/A	2650		106		70-130			
Chloromethane	10 A 0 4 9 9	2500	ug/kg wet	N/A	N/A	2450		98		70-130			
2-Chlorotoluene	10A0499	2500	ug/kg wet	N/A	N/A	2520		101		70-130			
4-Chlorotoluene	10A0499	2500	ug/kg wet	N/A	N/A	2570		103		70-130			
1,2-Dibromo-3-chloropropane	10A0499	2500	ug/kg wet	N/A	N/A	2270		91		70-130			
1,2-Dibromoethane (EDB)	10A0499	2500	ug/kg wet	N/A	N/A	2580		103		70-130			
Dibromomethane	10A0499	2500	ug/kg wet	N/A	N/A	2630		105		70-130			
1,2-Dichlorobenzene	10A0499	2500	ug/kg wet	N/A	N/A	2450		98		70-130			
1,3-Dichlorobenzene	10A0499	2500	ug/kg wet	N/A	N/A	2530		101		70-130			
1,4-Dichlorobenzene	10A0499	2500	ug/kg wet	N/A	N/A	2520		101		70-130			
Dichlorodifluoromethane	10A0499	2500	ug/kg wet	N/A	N/A	3060		122		70-130			
1,1-Dichloroethane	10A0499	2500	ug/kg wet	N/A	N/A	2530		101		70-130			
1.2-Dichloroethane	10A0499	2500	ug/kg wet	N/A	N/A	2650		106		70-130			
1,1-Dichloroethene	10A0499	2500	ug/kg wet	N/A	N/A	2520		101		43-141			

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Work Order:

WTA0574

Received: Reported: 01/25/10

01/29/10 16:46

Project: 1E-0909013 Racine, WI Project Number:

1730 State Street

Analyte	Seq/ Batch	Source Result	Spike Level	Units	MDL	MRL	Result	Dup Result	% REC	Dup %REC	% REC	RPD	RPD Limit	Q
OCs by SW8260B														
is-1,2-Dichloroethene	10A0499		2500	ug/kg wet	N/A	N/A	2610		105		70-130			
ans-1,2-Dichloroethene	10A0499		2500	ug/kg wet	N/A	N/A	2610		104		70-130			
,2-Dichloropropane	10A0499		2500	ug/kg wet	N/A	N/A	2490		100		70-130			
,3-Dichloropropane	10A0499		2500	ug/kg wet	N/A	N/A	2570		103		70-130			
.2-Dichloropropane	10A0499		2500	ug/kg wet	N/A	N/A	2840		114		70-130			
,1-Dichloropropene	10A0499		2500	ug/kg wet	N/A	N/A	2610		104		70-130			
is-1,3-Dichloropropene	10A0499		2500	ug/kg wet	N/A	N/A	2580		103		70-130			
ans-1,3-Dichloropropene	10A0499		2500	ug/kg wet	N/A	N/A	2720		109		70-130			
thylbenzene	10A0499		2500	ug/kg wet	N/A	N/A	2490		99		79-122			
lexachlorobutadiene	10A0499		2500	ug/kg wet	N/A	N/A	1960		79		70-130			
sopropylbenzene	10A0499		2500	ug/kg wet	N/A	N/A	2530		101		70-130			
-Isopropyltoluene	10A0499		2500	ug/kg wet	N/A	N/A	2520		101		70-130			
Methylene Chloride	10A0499		2500	ug/kg wet	N/A	N/A	2470		99		70-130			
Methyl tert-Butyl Ether	10A0499		2500	ug/kg wet	N/A	N/A	2710		108		55-137			
laphthalene	10A0499		2500	ug/kg wet	N/A	N/A	2010		80		70-130			
-Propylbenzene	10A0499		2500	ug/kg wet	N/A	N/A	2530		101		70-130			
Styrene	10A0499		2500	ug/kg wet	N/A	N/A	2550		102		70-130			
.1,1,2-Tetrachloroethane	10A0499		2500	ug/kg wet	N/A	N/A	2590		104		70-130			
.1,2,2-Tetrachloroethane	10A0499		2500	ug/kg wet	N/A	N/A	2520		101		70-130			
Tetrachloroethene	10A0499		2500	ug/kg wet	N/A	N/A	2580		103		70-130			
Coluene	10A0499		2500	ug/kg wet	N/A	N/A	2490		100		78-120			
1,2,3-Trichlorobenzene	10A0499		2500	ug/kg wet	N/A	N/A	1930		77		70-130			
,2,4-Trichlorobenzene	10A0499		2500	ug/kg wet	N/A	N/A	2140		86		70-130			
,1,1-Trichloroethane	10A0499		2500	ug/kg wet	N/A	N/A	2670		107		70-130			
1,1,2-Trichloroethane	10A0499		2500	ug/kg wet	N/A	N/A	2620		105		70-130			
Frichloroethene	10A0499		2500	ug/kg wet	N/A	N/A	2590		103		78-124			
richlorofluoromethane	10A0499		2500	ug/kg wet	N/A	N/A	2320		93		70-130			
1,2,3-Trichloropropane	10A0499		2500	ug/kg wet	N/A	N/A	2570		103		70-130			
.2,4-Trimethylbenzene	10A0499		2500	ug/kg wet	N/A	N/A	2510		101		75-128			
,3,5-Trimethylbenzene	10A0499		2500	ug/kg wet	N/A	N/A	2520		101		76-127			
/inyl chloride	10A0499		2500	ug/kg wet	N/A	N/A	2540		102		70-130			
(ylenes, total	10A0499		7500	ug/kg wet	N/A	N/A	7570		101		79-122			
Surrogate: Dibromofluoromethane	10A0499			ug/kg wet					106		82-112			
Surrogate: Toluene-d8	10A0499			ug/kg wet					98		91-106			
Surrogate: 4-Bromofluorobenzene	10A0499			ug/kg wet					101		89-110			

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Mr. Kevin Bugel

Work Order:

Project Number:

Project:

WTA0574

1730 State Street

1E-0909013 Racine, WI

Received:

01/25/10

Reported:

01/29/10 16:46

CERTIFICATION SUMMARY

TestAmerica Watertown

Method	Matrix	Nelac	Wisconsin			
SM 2540G	Solid/Soil	X	X			
SW 8260B	Solid/Soil	X	X			

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN N8 W22350 Johnson Road Waukesha, WI 53186 Mr. Kevin Bugel Work Order:

Project Number:

Project:

WTA0574

1E-0909013 Racine, WI

1730 State Street

Received:

01/25/10

Reported: 01

01/29/10 16:46

DATA QUALIFIERS AND DEFINITIONS

E Concentration exceeds the calibration range and therefore result is semi-quantitative.

Z6 Surrogate recovery was below acceptance limits.

ADDITIONAL COMMENTS

Results are reported on a wet weight basis unless otherwise noted.

Giles Engine	eering Ass	ocia	tes, l	nc.			CHAI	N-OF-CU	STODY	WTH	054	Site	6	7.187.11 <u>6.</u>	rial	<i>(</i>
N8 W22350 Johnson 4875 East La Palma					4-544-0118 4-779-0052		fax: 414-549-586 fax: 714-779-006	8	☐ closure			Address				10t
■ 8300 Guilford Road,			2001		0-312-9950		fax: 410-312-995			ation required (NR720)	, 1041042		75 7141	1 - 172	
□ 10722 North Stemmo				tel: 21	4-358-588	5	fax: 214-358-588	4	□ RUSH	1			Rec	cine, L.	liscon	sin.
☐ 2830 Agriculture Driv				tel: 60	8-223-1850	3	fax: 608-223-185							,		
☐ 3990 Flowers Road,				tel. 77	0-458-3399	9	fax: 770-458-399			AZARDS:_						
Sample Collector						Project M			Bugg /		Project N	umber /E	-090	9013	+ # ÷ .	7.40.5-2
Laboratory Used 76	of Amrica	7			-1-11	Lab Conta	act UG-1	Mrs.	· · · · · · · · · · · · · · · · · · ·		Lab Job I	Number	A Sandara	Z 15 g 'a .	2-26	
"Online Description	(mako onules)	James S	A Marie Composition of the Compo	July College	B. John J. S. John J.				Analysis Re	quired		Manna and a straight of the st	10 8 18 18 18 18 18 18 18 18 18 18 18 18 1	Due Date	Lab ID	Temp
TW-1	6-8	5 11	12/10		4	X						16,1H	1404	510		
mu-1	0-21	5		PM j	1	X						15,1H	1	20		
MW-1	10-12	5		PM /	2	X						16,14		STO		
mw-2	0-2	5		PM C	120	X						1414		50		
mw-2	6-81	5		AM	12	X						ICIH		570		
MW-3	2-4'	6		AM RM D	PL	X						(CNH		570		
max-3	10×2 i-R			AM								16/14		_		
M13-4	7-4	3		AM	2136	X						14.14		510		
MW-4	10-12	5		AM	BL	X						16,14		570		
Meg H Blank			t	AM PM		X						10		510		
7 4401 1/10/17			4	AM PM												
P-1	composite	5		AM ED	4	X						14114	V	stop		
contailer code: A = 8 oz/250 ml B = 4 oz/ 120 ml Relinquished by forms.xls//COC 08/10/99)	Date 1/22/	D = Tim	2 oz/ 60 m 40 mL VO/ se Ri PM AM PM AM PM		10 () () () () () () () () () (A.	3 49			Send copy to roject Manager	Page	REPORT	les En	giner S. In Bu	5

WIA057	74 Cooler Rec	eipt Log	
,	Client Name/Project: 6	les	# of Coolers:
1. How did samples arrive?	☐ Fed-Ex ☐ UPS ☐ FestAm	nerica 🗌 Client 🗌 Dunha	am Speedy
2. Were custody seals intac	t, signed and dated correctly?		A
Date/time cooler was oper	ned: 1/257(0 (300) By	: Brafalln	Pats
3. Temperature taken		PYes	□No
4. Does this Project require	RUSH turn around?	🗆 Yes	₽No
5. Are there any short hold t	time tests?	Yes	₽No
☐ within 1 hr of or ☐ pas	st expiration of hold-time?	Provide detai	ls in space at bottom of form
	48 hours or less Coliform Bacteria	7 days Aqueous Organic Prep TS TDS TSS Sulfide Volatile Solids	
Except for tests with hold	times of 48 hrs or less, are any samples		
'	past expiration of hold-time?	Tives Tin Pro	vide details in space at bottom of form
	Analyst was informed of short hold and when?.		When
	ollection recorded?		
	ers listed on the COC received and intact?		vide details in space at bottom of form
•	COC?		vide details in space at bottom of form
	rs field filtered or being filtered in the lab?		
11. Are sample volumes ad	equate and preservatives correct for test reques	ted?Vol. Yes D	lo Pres. Yes No
12. Are VOC samples free of	of bubbles >6mm?		IA
13. How were VOC soils rec	ceived? Methanol Sodium Bisulfate	☐ Packed jar ☐ Encore	☐ Water* ☐ Other
* within 48 hrs of sam	npling past 48 hrs of sampling Froze	en Mot Frozen	
14. Are any samples on hol-	d?	Yes Atto Pro	vide details in space at bottom of form
15. Are there samples to be	subcontracted?		
16. If any changes are mad-	e to this Work Order after Login, or if comments	must be made regarding thi	s cooler, explain them below:

6mm = ----

July 01, 2010

GILES ENGINEERING - WISCONSIN Client:

N8 W22350 Johnson Road

Waukesha, WI 53186

Work Order:

WTF0804

Project Name:

1E-0909013 Racine, WI

Project Number:

1730 State Street

Attn:

Mr. Tim Taugher

Date Received:

06/24/10

An executed copy of the chain of custody is also included as an addendum to this report.

If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-800-833-7036

SAMPLE IDENTIFICATION	LAB NUMBER	COLLECTION DATE AND TIME
GP-1 4-6'	WTF0804-01	06/23/10
GP-1 8-10'	WTF0804-02	06/23/10
GP-1 12-14'	WTF0804-03	06/23/10
GP-2 4-6'	WTF0804-04	06/23/10
GP-2 8-10'	WTF0804-05	06/23/10
GP-3 2-4'	WTF0804-06	06/23/10
GP-3 6-8'	WTF0804-07	06/23/10
GP-4 4-6'	WTF0804-08	06/23/10
GP-4 6-8'	WTF0804-09	06/23/10
GP-5 4-6'	WTF0804-10	06/23/10
GP-5 6-8'	WTF0804-11	06/23/10
GP-6 4-6'	WTF0804-12	06/23/10
GP-7 6-8'	WTF0804-13	06/23/10
MeOH Blank	WTF0804-14	06/23/10

Samples were received on ice into laboratory at a temperature of 1 °C.

Wisconsin Certification Number: 128053530

The Chain(s) of Custody, 3 pages, are included and are an integral part of this report.

Unless subcontracted, volatiles analyses (including VOC, PVOC, GRO, BTEX, and TPH gasoline) performed by TestAmerica Watertown at 1101 Industrial Drive, Units 9&10. All other analyses performed at the address shown in the heading of this report.

TestAmerica Watertown

Brian DeJong For Dan F. Milewsky Project Manager

Page 1 of 38

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Work Order:

Project Number:

WTF0804

Received:

06/24/10

Project:

1E-0909013 Racine, WI

1730 State Street

Reported:

07/01/10 10:15

Mr. Tim Taugher

ANALYTICAL REPORT

	Sample	Data			Dilution	Date		Seq/	
Analyte	Result	Qualifiers	Units	MRL	Factor	Analyzed	Analyst	Batch	Method
Sample ID: WTF0804-01 (GP	'-1 4-6' - Soil)					Sampled: 06	5/23/10		
General Chemistry Parameters						•			
% Solids	85		%	NA	1	06/29/10 10:47	pam	10F0827	SM 2540
VOCs by SW8260B									
Benzene	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260
Bromobenzene	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260
Bromochloromethane	<410		ug/kg dry	410	10	06/30/10 18:50	aba	10F0853	SW 8260
Bromodichloromethane	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260
Bromoform	<290			290	10	06/30/10 18:50	aba	10F0853	SW 8260
			ug/kg dry		10	06/30/10 18:50	aba	10F0853	SW 8260
Bromomethane	<1200		ug/kg dry	1200				10F0853	SW 8260
n-Butylbenzene	<290		ug/kg dry	290	10	06/30/10 18:50	aba		
sec-Butylbenzene	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260
tert-Butylbenzene	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260
Carbon Tetrachloride	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260
Chlorobenzene	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260
Chlorodibromomethane	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260
Chloroethane	<590		ug/kg dry	590	10	06/30/10 18:50	aba	10F0853	SW 8260
Chloroform	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260
Chloromethane	<590		ug/kg dry	590	10	06/30/10 18:50	aba	10F0853	SW 8260
2-Chlorotoluene	<590		ug/kg dry	590	10	06/30/10 18:50	aba	10F0853	SW 8260
4-Chlorotoluene	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260
1,2-Dibromo-3-chloropropane	<590		ug/kg dry	590	10	06/30/10 18:50	aba	10F0853	SW 8260
1,2-Dibromoethane (EDB)	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260
Dibromomethane	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260
1,2-Dichlorobenzene	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260
1,3-Dichlorobenzene	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260
1,4-Dichlorobenzene	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260
Dichlorodifluoromethane	<590		ug/kg dry	590	10	06/30/10 18:50	aba	10F0853	SW 8260
1,1-Dichloroethane	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260
1,2-Dichloroethane	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260
1,1-Dichloroethene	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260
cis-1,2-Dichloroethene	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260
trans-1,2-Dichloroethene	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260
1,2-Dichloropropane	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260
1,3-Dichloropropane	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260
2,2-Dichloropropane	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260
1,1-Dichloropropene	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260
cis-1,3-Dichloropropene	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260
trans-1,3-Dichloropropene	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260
2,3-Dichloropropene	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260
Isopropyl Ether	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260
Ethylbenzene	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260
Hexachlorobutadiene	<410		ug/kg dry	410	10	06/30/10 18:50	aba	10F0853	SW 8260
lsopropylbenzene	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260
p-Isopropyltoluene	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260
Methylene Chloride	<590		ug/kg dry	590	10	06/30/10 18:50	aba	10F0853	SW 8260
	<290		=	290	10	06/30/10 18:50	aba	10F0853	SW 8260
Methyl tert-Butyl Ether			ug/kg dry			06/30/10 18:50	aba	10F0853	SW 8260
Naphthalene	<590		ug/kg dry	590	10				
n-Propylbenzene	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260
Styrene	<590		ug/kg dry	590	10	06/30/10 18:50	aba	10F0853	SW 8260
1,1,1,2-Tetrachloroethane	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186 Mr. Tim Taugher

Work Order:

Project Number:

Project:

WTF0804

1E-0909013 Racine, WI

1730 State Street

Received:

06/24/10

07/01/10 10:15 Reported:

Analyte	Sample Result	Data Qualifiers	Units	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTF0804-01RE1 (GP	-1 4-6' - Soil) -	cont.				Sampled: 06	/23/10		
VOCs by SW8260B - cont.	,								
1.1.2.2-Tetrachloroethane	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B
Tetrachloroethene	62000		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B
Toluene	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B
1,2,3-Trichlorobenzene	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B
1,2,4-Trichlorobenzene	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B
1,1,1-Trichloroethane	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B
1,1,2-Trichloroethane	<410		ug/kg dry	410	10	06/30/10 18:50	aba	10F0853	SW 8260B
Trichloroethene	1200		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B
Trichlorofluoromethane	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B
1,2,3-Trichloropropane	<590		ug/kg dry	590	10	06/30/10 18:50	aba	10F0853	SW 8260B
1,2,4-Trimethylbenzene	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B
1,3,5-Trimethylbenzene	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B
Vinyl chloride	<410		ug/kg dry	410	10	06/30/10 18:50	aba	10F0853	SW 8260B
Xylenes, total	<1000		ug/kg dry	1000	10	06/30/10 18:50	aba	10F0853	SW 8260B
Surr: Dibromofluoromethane (80-120%)	101 %								
Surr: Toluene-d8 (80-120%)	98 %								
Surr: 4-Bromofluorobenzene (80-120%)	101 %								
Sample ID: WTF0804-02 (GP-1 8	-10' - Soil)					Sampled: 06	/23/10		
General Chemistry Parameters									
% Solids	86		%	NA	1	06/29/10 10:47	pam	10F0827	SM 2540G
VOCs by SW8260B									
Benzene	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
Bromobenzene	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
Bromochloromethane	<4100		ug/kg dry	4100	100	06/29/10 16:51	aba	10F0832	SW 8260B
Bromodichloromethane	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
Bromoform	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
Bromomethane	<12000		ug/kg dry	12000	100	06/29/10 16:51	aba	10F0832	SW 8260B
n-Butylbenzene	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
sec-Butylbenzene	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
tert-Butylbenzene	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
Carbon Tetrachloride	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
Chlorobenzene	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
Chlorodibromomethane	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
Chloroethane	<5800		ug/kg dry	5800	100	06/29/10 16:51	aba	10F0832	SW 8260B
Chloroform	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
Chloromethane	<5800		ug/kg dry	5800	100	06/29/10 16:51	aba	10F0832	SW 8260B
2-Chlorotoluene	<5800		ug/kg dry	5800	100	06/29/10 16:51	aba	10F0832	SW 8260B
4-Chlorotoluene	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
1,2-Dibromo-3-chloropropane	<5800		ug/kg dry	5800	100	06/29/10 16:51	aba	10F0832	SW 8260B
1,2-Dibromoethane (EDB)	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
Dibromomethane	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
1,2-Dichlorobenzene	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
1,3-Dichlorobenzene	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
1,4-Dichlorobenzene	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
Dichlorodifluoromethane	<5800		ug/kg dry	5800	100	06/29/10 16:51	aba	10F0832	SW 8260B
1,1-Dichloroethane	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
1,2-Dichloroethane	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
1,1-Dichloroethene	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
cis-1,2-Dichloroethene	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
trans-1,2-Dichloroethene	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Ma Tim Tanahan

Work Order:

Project:

WTF0804

06/24/10

Waukesha, WI 53186

Project Number:

1E-0909013 Racine, WI 1730 State Street Received: Reported:

07/01/10 10:15

	Sample	Data	** 1.		Dilution	Date		Seq/			
Analyte	Result	Qualifiers	Units	MRL	Factor	Analyzed	Analyst	Batch	Method		
Sample ID: WTF0804-02 (GP-1 8-1	0' - Soil) - coi	nt.			Sampled: 06/23/10						
VOCs by SW8260B - cont.											
1,2-Dichloropropane	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260		
1,3-Dichloropropane	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260		
2,2-Dichloropropane	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260		
1,1-Dichloropropene	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260		
cis-1,3-Dichloropropene	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260		
trans-1,3-Dichloropropene	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260		
2,3-Dichloropropene	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260		
Isopropyl Ether	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260		
Ethylbenzene	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260		
Hexachlorobutadiene	<4100		ug/kg dry	4100	100	06/29/10 16:51	aba	10F0832	SW 8260		
lsopropylbenzene	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260		
p-lsopropyltoluene	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260		
Methylene Chloride	<5800		ug/kg dry	5800	100	06/29/10 16:51	aba	10F0832	SW 8260		
Methyl tert-Butyl Ether	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260		
Naphthalene	<5800		ug/kg dry	5800	100	06/29/10 16:51	aba	10F0832	SW 8260		
n-Propylhenzene	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260		
Styrene	<5800		ug/kg dry	5800	100	06/29/10 16:51	aba	10F0832	SW 8260		
1,1,1,2-Tetrachloroethane	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260		
1,1,2,2-Tetrachloroethane	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260		
Tetrachloroethene	510000		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260		
Toluene	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260		
1,2,3-Trichlorobenzene	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260		
1,2,4-Trichlorobenzene	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260		
1,1,1-Trichloroethane	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260		
1,1,2-Trichloroethane	<4100		ug/kg dry	4100	100	06/29/10 16:51	aba	10F0832	SW 8260		
Trichloroethene	9300		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260		
Trichlorofluoromethane	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260		
1,2,3-Trichloropropane	<5800		ug/kg dry	5800	100	06/29/10 16:51	aba	10F0832	SW 8260		
1,2,4-Trimethylbenzene	<2900		ug/kg dry	2900	100	06/29/10 16:51	aha	10F0832	SW 8260		
1,3,5-Trimethylhenzene	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260		
Vinyl chloride	<4100		ug/kg dry	4100	100	06/29/10 16:51	aba	10F0832	SW 8260		
Xylenes, total	<9900		ug/kg dry	9900	100	06/29/10 16:51	aba	10F0832	SW 8260		
Surr: Dibromofluoromethane (80-120%)	101 %										
Surr: Toluene-d8 (80-120%)	100 %										
Surr: 4-Bromofluorobenzene (80-120%)	101 %										

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Work Order:

WTF0804

Received:

06/24/10

Wankesha WI 53186

Project:

1E-0909013 Racine, WI 1730 State Street

Reported:

07/01/10 10:15

waukesna, wi 55180	Project Number:
Mr Tim Taugher	

Analysta	Sample Result	Data Oualifiers	Units	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Analyte	Result	Quantiers	Ollits	WIKL	ractor	Anaryzeu	Allalyst	Daten	Method
Sample ID: WTF0804-03 (GP-1	12-14' - Soil)					Sampled: 06	/23/10		
General Chemistry Parameters									
% Solids	87		%	NA	1	06/29/10 10:47	pam	10F0827	SM 2540G
VOCs by SW8260B									
Benzene	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260B
Bromobenzene	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260B
Bromochloromethane	<400		ug/kg dry	400	10	06/29/10 16:06	aba	10F0832	SW 8260B
Bromodichloromethane	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260B
Bromoform	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260B
Bromomethane	<1100		ug/kg dry	1100	10	06/29/10 16:06	aba	10F0832	SW 8260B
n-Butylbenzene	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260B
sec-Butylbenzene	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260B
tert-Butylbenzene	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260B
Carbon Tetrachloride	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260B
Chlorobenzene	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260B
Chlorodibromomethane	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260B
Chloroethane	<570		ug/kg dry	570	10	06/29/10 16:06	aba	10F0832	SW 8260B
Chloroform	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260B
Chloromethane	<570		ug/kg dry	570	10	06/29/10 16:06	aba	10F0832	SW 8260B
2-Chlorotoluene	<570		ug/kg dry	570	10	06/29/10 16:06	aba	10F0832	SW 8260B
4-Chlorotoluene	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260B
1,2-Dibromo-3-chloropropane	<570		ug/kg dry	570	10	06/29/10 16:06	aba	10F0832	SW 8260B
1,2-Dibromoethane (EDB)	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260B
Dibromomethane	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260B
1,2-Dichlorobenzene	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260B
1,3-Dichlorobenzene	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260B
1,4-Dichlorobenzene	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260B
Dichlorodifluoromethane	<570		ug/kg dry	570	10	06/29/10 16:06	aba	10F0832	SW 8260B
1,1-Dichloroethane	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260B
1,2-Dichloroethane	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260B
1,1-Dichloroethene	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260B
cis-1,2-Dichloroethene	770		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260B
trans-1,2-Dichloroethene	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260B
1,2-Dichloropropane	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260B
1,3-Dichloropropane	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260B
2,2-Dichloropropane	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260B
1,1-Dichloropropene	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260B
cis-1,3-Dichloropropene	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260B
trans-1,3-Dichloropropene	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260B
2,3-Dichloropropene	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260B
Isopropyl Ether	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260B
Ethylbenzene	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260B
Hexachlorobutadiene	<400		ug/kg dry	400	10	06/29/10 16:06	aba	10F0832	SW 8260B
lsopropylbenzene	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260B
p-Isopropyltoluene	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260B
Methylene Chloride	<570		ug/kg dry	570	10	06/29/10 16:06	aba	10F0832	SW 8260B
Methyl tert-Butyl Ether	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260B
Naphthalene	<570		ug/kg dry	570	10	06/29/10 16:06	aba	10F0832	SW 8260B
n-Propylbenzene	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260B
Styrene	<570		ug/kg dry	570	10	06/29/10 16:06	aba	10F0832	SW 8260B
1,1,1,2-Tetrachloroethane	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260E
1,1,2,2-Tetrachloroethane	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260B
Tetrachloroethene	47000		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260B

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186 Mr. Tim Taugher

Work Order:

Project:

WTF0804

1E-0909013 Racine, WI

1730 State Street Project Number:

06/24/10 Received:

07/01/10 10:15 Reported:

	Sample	Data			Dilution	Date		Seq/	
Analyte	Result	Qualifiers	Units	MRL	Factor	Analyzed	Analyst	Batch	Method
Sample ID: WTF0804-03 (GP-1 12-	-14' - Soil) - co	ont.				Sampled: 06	/23/10		
VOCs by SW8260B - cont.	,					Sample of			
Toluene	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260B
1,2,3-Trichlorobenzene	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260B
1,2,4-Trichlorobenzene	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260B
1,1,1-Trichloroethane	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260B
1.1,2-Trichloroethane	<400		ug/kg dry	400	10	06/29/10 16:06	aba	10F0832	SW 8260B
Trichloroethene	380		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260B
Trichlorofluoromethane	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260B
1,2,3-Trichloropropane	<570		ug/kg dry	570	10	06/29/10 16:06	aba	10F0832	SW 8260B
1,2,4-Trimethylbenzene	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260B
1,3,5-Trimethylbenzene	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260B
Vinyl chloride	<400		ug/kg dry	400	10	06/29/10 16:06	aba	10F0832	SW 8260B
Xylenes, total	<980		ug/kg dry	980	10	06/29/10 16:06	aba	10F0832	SW 8260B
Surr: Dibromofluoromethane (80-120%)	100 %		0.0						
Surr: Toluene-d8 (80-120%)	99 %								
Surr: 4-Bromofluorobenzene (80-120%)	101%								
Sample ID: WTF0804-04 (GP-2 4-6	5' - Soil)					Sampled: 06	/23/10		
General Chemistry Parameters									
% Solids	86		%	NA	1	06/29/10 10:47	pam	10F0827	SM 2540G
VOCs by SW8260B									
Benzene	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260B
Bromobenzene	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260B
Bromochloromethane	<810		ug/kg dry	810	20	06/29/10 18:08	aba	10F0832	SW 8260B
Bromodichloromethane	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260B
Bromoform	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260B
Bromomethane	<2300		ug/kg dry	2300	20	06/29/10 18:08	aba	10F0832	SW 8260B
n-Butylbenzene	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260B
sec-Butylbenzene	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260B
tert-Butylbenzene	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260B
Carbon Tetrachloride	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260B
Chlorobenzene	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260B
Chlorodibromomethane	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260B
Chloroethane	<1200		ug/kg dry	1200	20	06/29/10 18:08	aba	10F0832	SW 8260B
Chloroform	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260B
Chloromethane	<1200		ug/kg dry	1200	20	06/29/10 18:08	aba	10F0832	SW 8260B
2-Chlorotoluene	<1200		ug/kg dry	1200	20	06/29/10 18:08	aba	10F0832	SW 8260B
4-Chlorotoluene	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260B
1,2-Dibromo-3-chloropropane	<1200		ug/kg dry	1200	20	06/29/10 18:08	aba	10F0832	SW 8260B
1,2-Dibromoethane (EDB)	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260B
Dibromomethane	<580		ug/kg dry	580	20 .	06/29/10 18:08	aba	10F0832	SW 8260B
1,2-Dichlorobenzene	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260B
1,3-Dichlorobenzene	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260B
1,4-Dichlorobenzene	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260B
Dichlorodifluoromethane	<1200		ug/kg dry	1200	20	06/29/10 18:08	aba	10F0832	SW 8260B
1,1-Dichloroethane	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260B
1,2-Dichloroethane	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260B
1,1-Dichloroethene	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260B
cis-1,2-Dichloroethene	5500		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260B
trans-1,2-Dichloroethene	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260B
1,2-Dichloropropane	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260B
1,3-Dichloropropane	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260B

Project Manager

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Work Order: Project:

WTF0804

Received:

06/24/10

Project Number: 1730 State Street

1E-0909013 Racine, WI

Reported:

07/01/10 10:15

Mr. Tim Taugher

	Sample	Data			Dilution	Date		Seq/	
Analyte	Result	Qualifiers	Units	MRL	Factor	Analyzed	Analyst	Batch	Method
Sample ID: WTF0804-04 (GP-2 4-	6' - Soil) - cont					Sampled: 06	/23/10		
VOCs by SW8260B - cont.						•			
2,2-Dichloropropane	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260B
1,1-Dichloropropene	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260E
cis-1,3-Dichloropropene	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260B
trans-1,3-Dichloropropene	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260B
2,3-Dichloropropene	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260B
Isopropyl Ether	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260B
Ethylbenzene	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260B
Hexachlorobutadiene	<810		ug/kg dry	810	20	06/29/10 18:08	aba	10F0832	SW 8260B
lsopropylbenzene	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260B
p-lsopropyltoluene	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260B
Methylene Chloride	<1200		ug/kg dry	1200	20	06/29/10 18:08	aba	10F0832	SW 8260B
Methyl tert-Butyl Ether	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260B
Naphthalene	<1200		ug/kg dry	1200	20	06/29/10 18:08	aba	10F0832	SW 8260B
n-Propylbenzene	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260B
Styrene	<1200		ug/kg dry	1200	20	06/29/10 18:08	aba	10F0832	SW 8260B
1,1,1,2-Tetrachloroethane	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260B
1,1,2,2-Tetrachloroethane	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260E
Tetrachloroethene	97000		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260B
Toluene	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260B
1,2,3-Trichlorobenzene	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260B
1,2,4-Trichlorobenzene	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260B
1,1,1-Trichloroethane	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260B
1,1,2-Trichloroethane	<810		ug/kg dry	810	20	06/29/10 18:08	aba	10F0832	SW 8260B
Trichloroethene	5300		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260B
Trichlorofluoromethane	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260B
1,2,3-Trichloropropane	<1200		ug/kg dry	1200	20	06/29/10 18:08	aba	10F0832	SW 8260B
1,2,4-Trimethylbenzene	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260E
1,3,5-Trimethylbenzene	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260E
Vinyl chloride	<810		ug/kg dry	810	20	06/29/10 18:08	aba	10F0832	SW 8260E
Xylenes, total	<2000		ug/kg dry	2000	20	06/29/10 18:08	aba	10F0832	SW 8260E
Surr: Dibromofluoromethane (80-120%)	101 %								
Surr: Toluene-d8 (80-120%)	100 %								
Surr: 4-Bromofluorobenzene (80-120%)	102 %								

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186

Work Order:

Project Number:

WTF0804

1730 State Street

Received:

06/24/10

Project:

1E-0909013 Racine, WI

Reported:

07/01/10 10:15

Mr. Tim Taugher

Analyte	Sample Result	Data Qualifiers	Units	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTF0804-05 (GP-2	9 10' Sail)					C1-d- 00	/22/10		
	0-10 - 5011)					Sampled: 06	/23/10		
General Chemistry Parameters	07		0/	DIA	1	00000000000		100000	01/05/00
% Solids	87		%	NA	1	06/29/10 10:47	pam	10F0827	SM 2540G
VOCs by SW8260B									
Benzene	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260B
Bromobenzene	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260E
Bromochloromethane	<2000		ug/kg dry	2000	50	06/29/10 18:35	aba	10F0832	SW 8260B
Bromodichloromethane	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260B
Bromoform	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260B
Bromomethane	<5700		ug/kg dry	5700	50	06/29/10 18:35	aba	10F0832	SW 8260B
n-Butylbenzene	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260B
sec-Butylbenzene	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260B
ert-Butylbenzene	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260E
Carbon Tetrachloride	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260E
Chlorobenzene	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260E
Chlorodibromomethane	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260E
Chloroethane	<2900		ug/kg dry	2900	50	06/29/10 18:35	aba	10F0832	SW 8260E
Chloroform	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260E
Chloromethane	<2900		ug/kg dry	2900	50	06/29/10 18:35	aba	10F0832	SW 8260E
-Chlorotoluene	<2900		ug/kg dry	2900	50	06/29/10 18:35	aba	10F0832	SW 8260E
-Chlorotoluene	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260E
,2-Dibromo-3-chloropropane	<2900		ug/kg dry	2900	50	06/29/10 18:35	aba	10F0832	SW 8260E
,2-Dibromoethane (EDB)	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260E
Dibromomethane	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260E
,2-Dichlorobenzene	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260E
,3-Dichlorobenzene	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260E
,4-Dichlorobenzene	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260E
Dichlorodifluoromethane	<2900		ug/kg dry	2900	50	06/29/10 18:35	aba	10F0832	SW 8260E
,1-Dichloroethane	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260E
,2-Dichloroethane	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260E
,1-Dichloroethene	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260E
ris-1,2-Dichloroethene	2300		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260E
rans-1,2-Dichloroethene	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260E
,2-Dichloropropane	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260B
,3-Dichloropropane	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260E
,2-Dichloropropane	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260E
,1-Dichloropropene	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260E
is-1,3-Dichloropropene	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260E
rans-1,3-Dichloropropene	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260E
,3-Dichloropropene	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260E
sopropyl Ether	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260E
Ethylbenzene	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260E
Hexachlorobutadiene	<2000		ug/kg dry	2000	50	06/29/10 18:35	aba	10F0832	SW 8260E
sopropylbenzene	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260E
o-Isopropyltoluene	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260E
Methylene Chloride	<2900		ug/kg dry	2900	50	06/29/10 18:35	aba	10F0832	SW 8260E
Methyl tert-Butyl Ether	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260E
	2000		0-0-1	2000		44.00.00			CW 0200D

2900

1400

2900

1400

1400

1400

ug/kg dry

ug/kg dry

ug/kg dry

ug/kg dry

ug/kg dry

ug/kg dry

06/29/10 18:35

06/29/10 18:35

06/29/10 18:35

06/29/10 18:35

06/29/10 18:35

06/29/10 18:35

50

50

50

50

50

50

<2900

<1400

<2900

<1400

<1400

250000

Naphthalene

Styrene

n-Propylbenzene

1,1,1,2-Tetrachloroethane

1,1,2,2-Tetrachloroethane

Tetrachloroethene

SW 8260B

SW 8260B

SW 8260B

SW 8260B

SW 8260B

SW 8260B

10F0832

10F0832

10F0832

10F0832

10F0832

10F0832

aba

aba

aba

aba

aba

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186

Work Order: Project:

WTF0804

Received:

06/24/10

Project Number:

1E-0909013 Racine, WI 1730 State Street

Reported:

07/01/10 10:15

Mr. Tim Taugher

Analyte	Sample	Data	Limite	MADI	Dilution	Date	A = -1 1	Seq/	Made
Analyte	Result	Qualifiers	Units	MRL	Factor	Analyzed	Analyst	Batch	Method
Sample ID: WTF0804-05 (GP-2 8-	10' - Soil) - co	nt.				Sampled: 06	5/23/10		
VOCs by SW8260B - cont.	ŕ					Dampieur 00			
Toluene	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260B
1,2,3-Trichlorobenzene	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260B
1,2,4-Trichlorobenzene	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260B
1,1,1-Trichloroethane	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260B
1,1,2-Trichloroethane	<2000		ug/kg dry	2000	50	06/29/10 18:35	aba	10F0832	SW 8260B
Trichloroethene	5500		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260B
Trichlorofluoromethane	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260B
1,2,3-Trichloropropane	<2900		ug/kg dry	2900	50	06/29/10 18:35	aba	10F0832	SW 8260B
1,2,4-Trimethylbenzene	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260B
1,3,5-Trimethylbenzene	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260B
Vinyl chloride	<2000		ug/kg dry	2000	50	06/29/10 18:35	aba	10F0832	SW 8260B
Xylenes, total	<4900		ug/kg dry	4900	50	06/29/10 18:35	aba	10F0832	SW 8260B
Surr: Dibromofluoromethane (80-120%)	101 %								
Surr: Toluene-d8 (80-120%)	99 %								
Surr: 4-Bromofluorobenzene (80-120%)	100 %								
Sample ID: WTF0804-06 (GP-3 2-	4' - Soil)					Sampled: 06	5/23/10		
General Chemistry Parameters									
% Solids	81		%	NA	1	06/29/10 10:47	pam	10F0827	SM 2540G
VOCs by SW8260B									
Benzene	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260B
Bromobenzene	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260B
Bromochloromethane	<43		ug/kg dry	43	1	06/29/10 13:41	ABA	10F0856	SW 8260B
Bromodichloromethane	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260B
Bromoform	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260B
Bromomethane	<120		ug/kg dry	120	1	06/29/10 13:41	ABA	10F0856	SW 8260B
n-Butylbenzene	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260B
sec-Butylbenzene	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260B
tert-Butylbenzene	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260B
Carbon Tetrachloride	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260B
Chlorobenzene	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260B
Chlorodibromomethane	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260B
Chloroethane	<62		ug/kg dry	62	1	06/29/10 13:41	ABA	10F0856	SW 8260B
Chloroform	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260B
Chloromethane	<62		ug/kg dry	62	1	06/29/10 13:41	ABA	10F0856	SW 8260B
2-Chlorotoluene	<62		ug/kg dry	62	1	06/29/10 13:41	ABA	10F0856	SW 8260B
4-Chlorotoluene	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260B
1,2-Dibromo-3-chloropropane	<62		ug/kg dry	62	1	06/29/10 13:41	ABA	10F0856	SW 8260B
1,2-Dibromoethane (EDB)	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260B
Dibromomethane	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260B
1,2-Dichlorobenzene	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260B
1,3-Dichlorobenzene	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260B
1,4-Dichlorobenzene	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260B
Dichlorodifluoromethane	<62		ug/kg dry	62	1	06/29/10 13:41	ABA	10F0856	SW 8260B
1,1-Dichloroethane	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260B
1,2-Dichloroethane	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260B
1,1-Dichloroethene	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260B
cis-1,2-Dichloroethene	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260B
trans-1,2-Dichloroethene	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260B
1,2-Dichloropropane	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260B
1,3-Dichloropropane	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260B

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Work Order:

Project:

WTF0804

Received:

06/24/10

1E-0909013 Racine, WI

Project Number: 1730 State Street

07/01/10 10:15 Reported:

Analyte	Sample Result	Data Qualifiers	Units	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTF0804-06 (GP-3 2-4	' - Soil) - cont					Sampled: 06	/23/10		
VOCs by SW8260B - cont.									
2,2-Dichloropropane	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260
1,1-Dichloropropene	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260
cis-1,3-Dichloropropene	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260
trans-1,3-Dichloropropene	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260
2,3-Dichloropropene	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260
Isopropyl Ether	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260
Ethylbenzene	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260
Hexachlorobutadiene	<43		ug/kg dry	43	1	06/29/10 13:41	ABA	10F0856	SW 8260
lsopropylbenzene	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260
p-lsopropyltoluene	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260
Methylene Chloride	<62		ug/kg dry	62	1	06/29/10 13:41	ABA	10F0856	SW 8260
Methyl tert-Butyl Ether	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260
Naphthalene	<62		ug/kg dry	62	1	06/29/10 13:41	ABA	10F0856	SW 8260
n-Propylbenzene	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260
Styrene	<62		ug/kg dry	62	1	06/29/10 13:41	ABA	10F0856	SW 8260
1,1,1,2-Tetrachloroethane	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260
1,1,2,2-Tetrachloroethane	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260
Tetrachloroethene	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260
Toluene	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260
1,2,3-Trichlorobenzene	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260
1,2,4-Trichlorobenzene	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260
1,1,1-Trichloroethane	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260
1,1,2-Trichloroethane	<43		ug/kg dry	43	1	06/29/10 13:41	ABA	10F0856	SW 8260
Trichloroethene	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260
Trichlorofluoromethane	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260
1,2,3-Trichloropropane	<62		ug/kg dry	62	1	06/29/10 13:41	ABA	10F0856	SW 826
1,2,4-Trimethylbenzene	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260
1,3,5-Trimethylbenzene	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260
Vinyl chloride	<43		ug/kg dry	43	1	06/29/10 13:41	ABA	10F0856	SW 8260
Xylenes, total	<110		ug/kg dry	110	1	06/29/10 13:41	ABA	10F0856	SW 8260
Surr: Dibromofluoromethane (80-120%)	100 %								
Surr: Toluene-d8 (80-120%)	96 %								
Surr: 4-Bromofluorobenzene (80-120%)	95 %								

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Work Order:

WTF0804

Received:

06/24/10

Project:
Project Number:

1E-0909013 Racine, WI

1730 State Street

Reported: 07/01/10 10:15

	Sample	Data			Dilution	Date		Seq/	
Analyte	Result	Qualifiers	Units	MRL	Factor	Analyzed	Analyst	Batch	Method
Sample ID: WTF0804-07 (GP-3	6-8' - Soil)					Sampled: 06	/23/10		
General Chemistry Parameters									
% Solids	86		%	NA	1	06/29/10 10:47	pam	10F0827	SM 2540
VOCs by SW8260B									
Benzene	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260
Bromobenzene	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260
Bromochloromethane	<41		ug/kg dry	41	1	06/29/10 14:11	ABA	10F0856	SW 8260
Bromodichloromethane	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260
Bromoform	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260
Bromomethane	<120		ug/kg dry	120	1	06/29/10 14:11	ABA	10F0856	SW 8260
n-Butylbenzene	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260
sec-Butylbenzene	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260
tert-Butylbenzene	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 82601
Carbon Tetrachloride	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 82601
Chlorobenzene	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 82601
Chlorodibromomethane	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260
Chloroethane	<58		ug/kg dry	58	1	06/29/10 14:11	ABA	10F0856	SW 8260
Chloroform	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260
Chloromethane	<58		ug/kg dry	58	1	06/29/10 14:11	ABA	10F0856	SW 8260
2-Chlorotoluene	<58		ug/kg dry	58	1	06/29/10 14:11	ABA	10F0856	SW 8260
4-Chlorotoluene	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260
1,2-Dibromo-3-chloropropane	<58		ug/kg dry	58	1	06/29/10 14:11	ABA	10F0856	SW 8260
1,2-Dibromoethane (EDB)	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260
Dibromomethane	<29		ug/kg dry	29	1	06/29/10 14:11	ABA		SW 8260
1,2-Dichlorobenzene	<29					06/29/10 14:11		10F0856	
· ·	<29		ug/kg dry	29	1		ABA	10F0856	SW 8260
1,3-Dichlorobenzene			ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260
1,4-Dichlorobenzene	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260
Dichlorodifluoromethane	<58		ug/kg dry	58	1	06/29/10 14:11	ABA	10F0856	SW 82601
1,1-Dichloroethane	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260
1,2-Dichloroethane	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260
1,1-Dichloroethene	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 82601
cis-1,2-Dichloroethene	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 82601
trans-1,2-Dichloroethene	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 82601
1,2-Dichloropropane	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 82601
1,3-Dichloropropane	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 82601
2,2-Dichloropropane	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 82601
1,1-Dichloropropene	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 82601
cis-1,3-Dichloropropene	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 82601
trans-1,3-Dichloropropene	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 82601
2,3-Dichloropropene	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 82601
Isopropyl Ether	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260
Ethylbenzene	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260
Hexachlorobutadiene	<41		ug/kg dry	41	1	06/29/10 14:11	ABA	10F0856	SW 8260
Isopropylbenzene	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260
p-Isopropyltoluene	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260
Methylene Chloride	<58		ug/kg dry	58	1	06/29/10 14:11	ABA	10F0856	SW 8260
Methyl tert-Butyl Ether	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260
Naphthalene	<58		ug/kg dry	58	1	06/29/10 14:11	ABA	10F0856	SW 8260
n-Propylbenzene	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260
Styrene	<58		ug/kg dry	58	1	06/29/10 14:11	ABA	10F0856	SW 8260
1,1,1,2-Tetrachloroethane	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260
1,1,2,2-Tetrachloroethane	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 82601
Tetrachloroethene	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260

Project Manager

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Work Order:

Project Number:

Project:

WTF0804

1E-0909013 Racine, WI

1730 State Street

Received:

06/24/10

07/01/10 10:15 Reported:

Analyte	Sample Result	Data Qualifiers	Units	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTF0804-07 (GP-3 6-8	' - Soil) - cont			· ·- ·		Sampled: 06	/23/10		
VOCs by SW8260B - cont.	o Sony con	•				Sampled. 00	123/10		
Toluene	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260E
1,2,3-Trichlorobenzene	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260E
1,2,4-Trichlorobenzene	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260E
1,1,1-Trichloroethane	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260E
1,1,2-Trichloroethane	<41		ug/kg dry	41	1	06/29/10 14:11	ABA	10F0856	SW 8260I
Trichloroethene	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 82601
Trichlorofluoromethane	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 82601
1,2,3-Trichloropropane	<58		ug/kg dry	58	1	06/29/10 14:11	ABA	10F0856	SW 82601
1,2,4-Trimethylbenzene	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 82601
1,3,5-Trimethylbenzene	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 82601
Vinyl chloride	<41		ug/kg dry	41	1	06/29/10 14:11	ABA	10F0856	SW 82601
Xylenes, total	<99		ug/kg dry	99	1	06/29/10 14:11	ABA	10F0856	SW 8260
Surr: Dibromofluoromethane (80-120%)	104 %		-6 -67						
Surr: Toluene-d8 (80-120%)	97 %								
Surr: 4-Bromofluorobenzene (80-120%)	97%								
Sample ID: WTF0804-08 (GP-4 4-6	o' - Soil)					Sampled: 06	/23/10		
General Chemistry Parameters	201.,					Sampica. 00	723/10		
% Solids	82		%	NA	1	06/29/10 10:47	pam	10F0827	SM 2540
OCs by SW8260B	82		76	INA	1	00/27/10 10.4/	pan	101-0827	5141 2540
•	-21			21	,	06/00/10 10:01	-1 -	1000022	0111 0260
Benzene Bromobenzene	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
Bromochloromethane	<43		ug/kg dry	43	1	06/29/10 19:01	aba	10F0832	SW 8260
Bromodichloromethane	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832 10F0832	SW 8260
Bromoform	<31 <120		ug/kg dry	31 120	1	06/29/10 19:01 06/29/10 19:01	aba aba	10F0832	SW 8260 SW 8260
Bromomethane	780		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
n-Butylbenzene sec-Butylbenzene	860		ug/kg dry ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
tert-Butylbenzene	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
Carbon Tetrachloride	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
Chlorobenzene	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
Chlorodibromomethane	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
Chloroethane	<61		ug/kg dry	61	1	06/29/10 19:01	aba	10F0832	SW 8260
Chloroform	⊲31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
Chloromethane	<61		ug/kg dry	61	1	06/29/10 19:01	aba	10F0832	SW 8260
2-Chlorotoluene	<61		ug/kg dry	61	1	06/29/10 19:01	aba	10F0832	SW 8260
4-Chlorotoluene	⊲31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
1,2-Dibromo-3-chloropropane	<61		ug/kg dry	61	1	06/29/10 19:01	aba	10F0832	SW 8260
1,2-Dibromoethane (EDB)	⊲1		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
Dibromomethane	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
1,2-Dichlorobenzene	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
1,3-Dichlorobenzene	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
,4-Dichlorobenzene	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
Dichlorodifluoromethane	<61		ug/kg dry	61	1	06/29/10 19:01	aba	10F0832	SW 8260
1,1-Dichloroethane	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
1,2-Dichloroethane	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
1,1-Dichloroethene	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
cis-1,2-Dichloroethene	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
rans-1,2-Dichloroethene	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
1,2-Dichloropropane	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
1,3-Dichloropropane	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260

Brian DeJong For Dan F. Milewsky

Project Manager

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Mr. Tim Taugher

Work Order:

WTF0804

Received:

06/24/10

onnson Road

Project: Project Number: 1E-0909013 Racine, WI 1730 State Street Reported: 07/01/10 10:15

A a boda	Sample Result	Data Qualifiers	Units	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Analyte	Result	Qualifiers	Units	MRL	Factor	Analyzeu	Analyst	Батен	Method
Sample ID: WTF0804-08 (GP-4 4-6	6' - Soil) - cont					Sampled: 06	/23/10		
VOCs by SW8260B - cont.									
2,2-Dichloropropane	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
1,1-Dichloropropene	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
cis-1,3-Dichloropropene	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
trans-1,3-Dichloropropene	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
2,3-Dichloropropene	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
Isopropyl Ether	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
Ethylbenzene	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
Hexachlorobutadiene	<43		ug/kg dry	43	1	06/29/10 19:01	aba	10F0832	SW 8260
Isopropylbenzene	94		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
p-Isopropyltoluene	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
Methylene Chloride	<61		ug/kg dry	61	1	06/29/10 19:01	aba	10F0832	SW 8260
Methyl tert-Butyl Ether	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
Naphthalene	<61		ug/kg dry	61	1	06/29/10 19:01	aba	10F0832	SW 8260
n-Propylbenzene	45		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
Styrene	<61		ug/kg dry	61	1	06/29/10 19:01	aba	10F0832	SW 8260
1,1,1,2-Tetrachloroethane	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
1,1,2,2-Tetrachloroethane	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
Tetrachloroethene	32		ug/kg dry	31	1	06/30/10 13:03	aba	10F0853	SW 8260
Toluene	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
1,2,3-Trichlorobenzene	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
1,2,4-Trichlorobenzene	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
1,1,1-Trichloroethane	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
1,1,2-Trichloroethane	<43		ug/kg dry	43	1	06/29/10 19:01	aba	10F0832	SW 8260
Trichloroethene	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
Trichlorofluoromethane	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
1,2,3-Trichloropropane	<61		ug/kg dry	61	1	06/29/10 19:01	aba	10F0832	SW 8260
1,2,4-Trimethylbenzene	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
1,3,5-Trimethylbenzene	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
Vinyl chloride	<43		ug/kg dry	43	1	06/29/10 19:01	aba	10F0832	SW 8260
Xylenes, total	<100		ug/kg dry	100	1	06/29/10 19:01	aba	10F0832	SW 8260
Surr: Dibromofluoromethane (80-120%)	101 %								
Surr: Dibromofluoromethane (80-120%)	102 %								
Surr: Toluene-d8 (80-120%)	101 %								
Surr: Toluene-d8 (80-120%)	101%								
Surr: 4-Bromofluorobenzene (80-120%)	118 %								
Surr: 4-Bromofluorobenzene (80-120%)	116 %								

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Mr. Tim Taugher

Work Order:

WTF0804

Received: Reported: 06/24/10

07/01/10 10:15

Project: Waukesha, WI 53186

1E-0909013 Racine, WI Project Number:

1730 State Street

Analyte	Sample Result	Data Qualifiers	Units	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTF0804-09 (GP-4	4 6-8' - Soil)					Sampled: 06	/23/10		
General Chemistry Parameters	,					oumpiour oc	,,		
% Solids	86		%	NA	1	06/29/10 10:47	pam	10F0827	SM 2540G
VOCs by SW8260B			70	1121	•	00/25/10 10:11	Pun	101 0027	DIN 25100
Benzene	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
Bromobenzene	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
Bromochloromethane	<41		ug/kg dry	41	1	06/29/10 14:40	ABA	10F0856	SW 8260B
Bromodichloromethane	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
Bromoform	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
Bromomethane	<120		ug/kg dry	120	1	06/29/10 14:40	ABA	10F0856	SW 8260B
n-Butylbenzene	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
sec-Butylbenzene	43		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
tert-Butylbenzene	<29		ug/kg dry	29	i	06/29/10 14:40	ABA	10F0856	SW 8260B
Carbon Tetrachloride	<29		ug/kg dry	29	i	06/29/10 14:40	ABA	10F0856	SW 8260B
Chlorobenzene	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
Chlorodibromomethane	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
Chloroethane	<58		ug/kg dry	58	1	06/29/10 14:40	ABA	10F0856	SW 8260B
Chloroform	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
Chloromethane	<58		ug/kg dry	58	1	06/29/10 14:40	ABA	10F0856	SW 8260B
2-Chlorotoluene	<58		ug/kg dry	58	1	06/29/10 14:40	ABA	10F0856	SW 8260B
4-Chlorotoluene	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
1,2-Dibromo-3-chloropropane	<58		ug/kg dry	58	1	06/29/10 14:40	ABA	10F0856	SW 8260B
1,2-Dibromoethane (EDB)	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
Dibromomethane	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
1,2-Dichlorobenzene	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
1,3-Dichlorobenzene	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
1,4-Dichlorobenzene	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
Dichlorodifluoromethane	<58		ug/kg dry	58	1	06/29/10 14:40	ABA	10F0856	SW 8260B
1,1-Dichloroethane	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
1,2-Dichloroethane	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
1,1-Dichloroethene	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
cis-1,2-Dichloroethene	58		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
trans-1,2-Dichloroethene	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
1,2-Dichloropropane	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
1,3-Dichloropropane	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
2,2-Dichloropropane	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
1,1-Dichloropropene	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
cis-1,3-Dichloropropene	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
trans-1,3-Dichloropropene	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
2,3-Dichloropropene	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
Isopropyl Ether	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
Ethylbenzene	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
Hexachlorobutadiene	<41		ug/kg dry	41	1	06/29/10 14:40	ABA	10F0856	SW 8260B
lsopropylbenzene	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
p-lsopropyltoluene	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
Methylene Chloride	<58		ug/kg dry	58	1	06/29/10 14:40	ABA	10F0856	SW 8260B
Methyl tert-Butyl Ether	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
Naphthalene	<58		ug/kg dry	58	1	06/29/10 14:40	ABA	10F0856	SW 8260B
n-Propylbenzene	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
Styrene	<58		ug/kg dry	58	1	06/29/10 14:40	ABA	10F0856	SW 8260B
1,1,1,2-Tetrachloroethane	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
1,1,2,2-Tetrachloroethane	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
Tetrachloroethene	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B

602 Commerce Drive Watertown, WI 53094 *800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Mr. Tim Taugher

Work Order:

Project:

WTF0804

Received: Reported:

06/24/10

07/01/10 10:15

Project Number:

1E-0909013 Racine, WI 1730 State Street

Amalus	Sample	Data	TI!4-	3.500	Dilution	Date		Seq/	
Analyte	Result	Qualifiers	Units	MRL	Factor	Analyzed	Analyst	Batch	Method
Sample ID: WTF0804-09 (GP-4 6-8	B' - Soil) - cont	·.				Sampled: 06	/23/10		
VOCs by SW8260B - cont.						•			
Toluene	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 82601
1,2,3-Trichlorobenzene	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 82601
1,2,4-Trichlorobenzene	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260
1,1,1-Trichloroethane	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260
1,1,2-Trichloroethane	<41		ug/kg dry	41	1	06/29/10 14:40	ABA	10F0856	SW 8260
Trichloroethene	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260
Trichlorofluoromethane	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260
1,2,3-Trichloropropane	<58		ug/kg dry	58	1	06/29/10 14:40	ABA	10F0856	SW 8260
1,2,4-Trimethylbenzene	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 82601
1,3,5-Trimethylbenzene	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 82601
Vinyl chloride	41		ug/kg dry	41	1	06/29/10 14:40	ABA	10F0856	SW 82601
Xylenes, total	<99		ug/kg dry	99	1	06/29/10 14:40	ABA	10F0856	SW 82601
Surr: Dibromofluoromethane (80-120%)	103 %								
Surr: Toluene-d8 (80-120%)	96 %								
Surr: 4-Bromofluorobenzene (80-120%)	97 %								
Sample ID: WTF0804-10 (GP-5 4-6	5' - Soil)					Sampled: 06	/23/10		
General Chemistry Parameters									
% Solids	80		%	NA	1	06/29/10 10:47	pam	10F0827	SM 25400
VOCs by SW8260B									
Benzene	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 82601
Bromobenzene	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 8260
Bromochloromethane	<44		ug/kg dry	44	1	06/29/10 15:10	ABA	10F0856	SW 8260
Bromodichloromethane	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 8260
Bromoform	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 82601
Bromomethane	<130		ug/kg dry	130	1	06/29/10 15:10	ABA	10F0856	SW 82601
n-Butylbenzene	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 82601
sec-Butylbenzene	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 82601
tert-Butylbenzene	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 82601
Carbon Tetrachloride	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 82601
Chlorobenzene	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 82601
Chlorodibromomethane	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 82601
Chloroethane	<63		ug/kg dry	63	1	06/29/10 15:10	ABA	10F0856	SW 82601
Chloroform	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 8260E
Chloromethane	<63		ug/kg dry	63	1	06/29/10 15:10	ABA	10F0856	SW 82601
2-Chlorotoluene	<63		ug/kg dry	63	1	06/29/10 15:10	ABA	10F0856	SW 82601
4-Chlorotoluene	<31		ug/kg dry	31	i	06/29/10 15:10	ABA	10F0856	SW 82601
1,2-Dibromo-3-chloropropane	<63		ug/kg dry	63	1	06/29/10 15:10	ABA	10F0856	SW 82601
1,2-Dibromoethane (EDB)	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 82601
Dibromomethane	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 82601
1,2-Dichlorobenzene	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 82601
1,3-Dichlorobenzene	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 82601
1,4-Dichlorobenzene	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 82601
Dichlorodifluoromethane	<63		ug/kg dry	63	1	06/29/10 15:10	ABA	10F0856	SW 8260
1,1-Dichloroethane	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 82601
1,2-Dichloroethane	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 8260
1,1-Dichloroethene	⊲31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 8260
cis-1,2-Dichloroethene	220		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 8260
trans-1,2-Dichloroethene	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 8260
1,2-Dichloropropane	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 82601
1,3-Dichloropropane	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 82601

Brian DeJong For Dan F. Milewsky

Project Manager

602 Commerce Drive Watertown, Wt 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Work Order:

WTF0804

Received:

06/24/10

Project:

1E-0909013 Racine, WI 1730 State Street Reported: 07/01/10 10:15

Project Number:	1730	State	Stree
-----------------	------	-------	-------

Analyte	Sample Result	Data Qualifiers	Units	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTF0804-10 (GP-5 4-6	o' - Soil) - cont	t .				Sampled: 06	/23/10		
OCs by SW8260B - cont.									
2,2-Dichloropropane	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 8260E
1,1-Dichloropropene	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 8260E
cis-1,3-Dichloropropene	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 8260E
trans-1,3-Dichloropropene	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 8260E
2,3-Dichloropropene	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 8260E
Isopropyl Ether	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 8260E
Ethylbenzene	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 8260E
Hexachlorobutadiene	<44		ug/kg dry	44	1	06/29/10 15:10	ABA	10F0856	SW 8260B
Isopropylbenzene	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 8260E
p-lsopropyltoluene	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 8260E
Methylene Chloride	<63		ug/kg dry	63	1	06/29/10 15:10	ABA	10F0856	SW 8260E
Methyl tert-Butyl Ether	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 8260E
Naphthalene	<63		ug/kg dry	63	1	06/29/10 15:10	ABA	10F0856	SW 8260E
n-Propylbenzene	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 8260F
Styrene	<63		ug/kg dry	63	1	06/29/10 15:10	ABA	10F0856	SW 8260E
1,1,1,2-Tetrachloroethane	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 8260E
1,1,2,2-Tetrachloroethane	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 8260E
Tetrachloroethene	78		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 8260E
Toluene	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 8260E
1,2,3-Trichlorobenzene	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 8260E
1,2,4-Trichlorobenzene	<31		ug/kg dry	31	. 1	06/29/10 15:10	ABA	10F0856	SW 8260E
1,1,1-Trichloroethane	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 8260E
1,1,2-Trichloroethane	<44		ug/kg dry	44	1	06/29/10 15:10	ABA	10F0856	SW 8260E
Trichloroethene	41		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 8260E
Trichlorofluoromethane	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 8260E
1,2,3-Trichloropropane	<63		ug/kg dry	63	1	06/29/10 15:10	ABA	10F0856	SW 8260E
1,2,4-Trimethylbenzene	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 82601
1,3,5-Trimethylbenzene	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 82601
Vinyl chloride	<44		ug/kg dry	44	1	06/29/10 15:10	ABA	10F0856	SW 82601
Xylenes, total	<110		ug/kg dry	110	1	06/29/10 15:10	ABA	10F0856	SW 82601
Surr: Dibromofluoromethane (80-120%)	102 %		20,00 00,1	110					02301
Surr: Toluene-d8 (80-120%)	96 %								
Surr: 4-Bromofluorobenzene (80-120%)	99 %								

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Mr. Tim Taugher

Work Order:

WTF0804

Received:

06/24/10

Vaukasha WI 52186

Project: Project Number: 1E-0909013 Racine, WI 1730 State Street Reported: 07/01/10 10:15

	Sample	Data			Dilution	Date		Seq/	
Analyte	Result	Qualifiers	Units	MRL	Factor	Analyzed	Analyst	Batch	Method
Sample ID: WTF0804-11 (GP-5	6-8' - Soil)					Sampled: 06	/23/10		
General Chemistry Parameters									
% Solids	87		%	NA	1	06/29/10 10:47	pam	10F0827	SM 25400
VOCs by SW8260B									
Benzene	<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 82601
Bromobenzene	<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 8260I
Bromochloromethane	<40		ug/kg dry	40	1	06/29/10 16:14	ABA	10F0856	SW 82601
Bromodichloromethane	<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 8260
Bromoform	<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 8260
Bromomethane	<120		ug/kg dry	120	1	06/29/10 16:14	ABA	10F0856	SW 8260
n-Butylbenzene	<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 8260
sec-Butylbenzene	<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 8260
tert-Butylbenzene	<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 8260
Carbon Tetrachloride	<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 82601
Chlorobenzene	<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 8260
Chlorodibromomethane	<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 82601
Chloroethane	<58		ug/kg dry	58	1	06/29/10 16:14	ABA	10F0856	SW 8260
Chloroform	<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 8260
Chloromethane	<58		ug/kg dry	58	1	06/29/10 16:14	ABA	10F0856	SW 8260
2-Chlorotoluene	<58		ug/kg dry	58	1	06/29/10 16:14	ABA	10F0856	SW 8260
4-Chlorotoluene	<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 8260
1,2-Dibromo-3-chloropropane	<58		ug/kg dry	58	1	06/29/10 16:14	ABA	10F0856	SW 8260
1,2-Dibromoethane (EDB)	<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 8260
Dibromomethane	<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 8260
1,2-Dichlorobenzene	<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 8260
1,3-Dichlorobenzene	<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 8260
1.4-Dichlorobenzene	<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 8260
Dichlorodifluoromethane	<58		ug/kg dry	58	i	06/29/10 16:14	ABA	10F0856	SW 8260
1,1-Dichloroethane	<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 8260
1,2-Dichloroethane	<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 8260
1,1-Dichloroethene	<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 8260
cis-1,2-Dichloroethene	220		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 8260
trans-1,2-Dichloroethene	<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 8260
	<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 8260
1,2-Dichloropropane	<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 8260
1,3-Dichloropropane	<29			29	1	06/29/10 16:14	ABA	10F0856	SW 8260
2,2-Dichloropropane	<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 8260
1,1-Dichloropropene	<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 8260
cis-1,3-Dichloropropene			ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 8260
trans-1,3-Dichloropropene	<29 <29		ug/kg dry	29	1		ABA	10F0856	SW 8260
2,3-Dichloropropene			ug/kg dry		1	06/29/10 16:14		10F0856	SW 8260
Isopropyl Ether	<29		ug/kg dry	29	1	06/29/10 16:14 06/29/10 16:14	ABA		
Ethylbenzene	<29		ug/kg dry	29	1		ABA	10F0856	SW 8260
Hexachlorobutadiene	<40		ug/kg dry	40	1	06/29/10 16:14	ABA	10F0856	SW 8260
lsopropylbenzene	<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 8260
p-lsopropyltoluene	<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 8260
Methylene Chloride	<58		ug/kg dry	58		06/29/10 16:14	ABA	10F0856	SW 8260
Methyl tert-Butyl Ether	<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 8260
Naphthalene	<58		ug/kg dry	58	1	06/29/10 16:14	ABA	10F0856	SW 8260
n-Propylbenzene	<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 8260
Styrene	<58		ug/kg dry	58	1	06/29/10 16:14	ABA	10F0856	SW 8260
1,1,1,2-Tetrachloroethane	<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 8260
1,1,2,2-Tetrachloroethane	<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 8260

Project Manager

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Mr. Tim Taugher

Work Order:

Project:

WTF0804

110004

1E-0909013 Racine, WI

13 Racine, WI Repor

Received: Reported: 06/24/10 07/01/10 10:15

Waukesha, WI 53186 Project Number: 1730 State Street

Analyte	Sample Result	Data Qualifiers	Units	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTF0804-11 (GP-5 6-	8' - Soil) - cont	t.				Sampled: 06	/23/10		
VOCs by SW8260B - cont.	0 5011, 0011					Sampica. 00	25/10		
Toluene	<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 8260B
1,2,3-Trichlorobenzene	<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 8260B
1,2,4-Trichlorobenzene	<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 8260B
1,1,1-Trichloroethane	<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 8260B
1,1,2-Trichloroethane	<40		ug/kg dry	40	I	06/29/10 16:14	ABA	10F0856	SW 8260B
Trichloroethene	<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 8260B
Trichlorofluoromethane	<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 8260B
1,2,3-Trichloropropane	<58		ug/kg dry	58	1	06/29/10 16:14	ABA	10F0856	SW 8260B
1,2,4-Trimethylbenzene	<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 8260B
1,3,5-Trimethylbenzene	<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 8260B
Vinyl chloride	<40		ug/kg dry	40	1	06/29/10 16:14	ABA	10F0856	SW 8260B
Xylenes, total	<98		ug/kg dry	98	1	06/29/10 16:14	ABA	10F0856	SW 8260B
Surr: Dibromofluoromethane (80-120%)	97 %		ug/kg ury	70	1	00/27/10 10.14	ADA	101 0050	5 W 6200D
Surr: Toluene-d8 (80-120%)	99 %								
Surr: 4-Bromofluorobenzene (80-120%)	98 %								
Sample ID: WTF0804-12 (GP-6 4-	6' - Soil)					Sampled: 06	/23/10		
General Chemistry Parameters	,					Sampled: 00	, 20, 10		
% Solids	88		%	NA	1	06/29/10 10:47	pam	10F0827	SM 2540G
	00		70	NA	1	00/29/10 10.4/	Pan	101 0027	3W1 23400
VOCs by SW8260B	-20			20		0/00/10 17.00	470.4	100000	011/ 82/00
Benzene	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260B
Bromobenzene	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260B
Bromochloromethane	<40		ug/kg dry	40	1	06/29/10 17:00	ABA	10F0856	SW 8260B
Bromodichloromethane	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260B
Bromoform	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260B
Bromomethane	<110		ug/kg dry	110	1	06/29/10 17:00	ABA	10F0856	SW 8260B
n-Butylbenzene	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260B
sec-Butylbenzene	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260B
tert-Butylbenzene	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260B
Carbon Tetrachloride	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260B
Chlorobenzene	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260B
Chlorodibromomethane	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260B
Chloroethane	<57		ug/kg dry	57	1	06/29/10 17:00	ABA	10F0856	SW 8260B
Chloroform	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856 10F0856	SW 8260B SW 8260B
Chloromethane	<57		ug/kg dry	57	1	06/29/10 17:00 06/29/10 17:00	ABA		
2-Chlorotoluene	<57		ug/kg dry	57	1		ABA	10F0856	SW 8260B
4-Chlorotoluene	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856 10F0856	SW 8260B SW 8260B
1,2-Dibromo-3-chloropropane	<57 <28		ug/kg dry	57	1	06/29/10 17:00	ABA	10F0856	SW 8260B
1,2-Dibromoethane (EDB)			ug/kg dry	28	1	06/29/10 17:00	ABA		
Dibromomethane	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260B
1,2-Dichlorobenzene 1,3-Dichlorobenzene	<28 <28		ug/kg dry	28 28	1	06/29/10 17:00 06/29/10 17:00	ABA ABA	10F0856 10F0856	SW 8260B SW 8260B
			ug/kg dry			06/29/10 17:00	ABA	10F0856	SW 8260B
1,4-Dichlorobenzene	<28		ug/kg dry	28	1			10F0856	SW 8260B
Dichlorodifluoromethane 1,1-Dichloroethane	<57 <28		ug/kg dry	57 28	1	06/29/10 17:00 06/29/10 17:00	ABA ABA	10F0856	SW 8260B
1,1-Dichloroethane			ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260B
	<28 <28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260B
1,1-Dichloroethene	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260B
cis-1,2-Dichloroethene trans-1,2-Dichloroethene	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260B
	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260B
1,2-Dichloropropane	<28		ug/kg dry ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260B

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Work Order:

WTF0804

Received:

06/24/10

Project: Project Number: 1E-0909013 Racine, WI 1730 State Street Reported:

07/01/10 10:15

Analyte	Sample Result	Data Qualifiers	Units	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTF0804-12 (GP-6 4-6	6' - Soil) - cont					Sampled: 06	/23/10		
VOCs by SW8260B - cont.						•			
2,2-Dichloropropane	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260
1,1-Dichloropropene	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260
cis-1,3-Dichloropropene	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260
trans-1,3-Dichloropropene	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260
2,3-Dichloropropene	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260
Isopropyl Ether	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260
Ethylbenzene	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260
Hexachlorobutadiene	<40		ug/kg dry	40	1	06/29/10 17:00	ABA	10F0856	SW 8260
Isopropylbenzene	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260
p-Isopropyltoluene	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260
Methylene Chloride	<57		ug/kg dry	57	1	06/29/10 17:00	ABA	10F0856	SW 8260
Methyl tert-Butyl Ether	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260
Naphthalene	<57		ug/kg dry	57	1	06/29/10 17:00	ABA	10F0856	SW 8260
n-Propylbenzene	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260
Styrene	<57		ug/kg dry	57	1	06/29/10 17:00	ABA	10F0856	SW 8260
1,1,1,2-Tetrachloroethane	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260
1,1,2,2-Tetrachloroethane	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260
Tetrachloroethene	150		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260
Toluene	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260
1,2,3-Trichlorobenzene	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260
1,2,4-Trichlorobenzene	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260
1,1,1-Trichloroethane	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260
1,1,2-Trichloroethane	<40		ug/kg dry	40	1	06/29/10 17:00	ABA	10F0856	SW 8260
Trichloroethene	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260
Trichlorofluoromethane	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260
1,2,3-Trichloropropane	<57		ug/kg dry	57	1	06/29/10 17:00	ABA	10F0856	SW 8260
1,2,4-Trimethylbenzene	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260
1,3,5-Trimethylbenzene	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260
Vinyl chloride	<40		ug/kg dry	40	1	06/29/10 17:00	ABA	10F0856	SW 8260
Xylenes, total	<97		ug/kg dry	97	1	06/29/10 17:00	ABA	10F0856	SW 8260
Surr: Dibromofluoromethane (80-120%)	95 %								
Surr: Toluene-d8 (80-120%)	93 %								
Surr: 4-Bromofluorobenzene (80-120%)	98 %								

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Mr. Tim Taugher

Work Order:

WTF0804

Received: 06/24/10

Project: Project Number: 1E-0909013 Racine, WI

1730 State Street

Reported:	07/01/10	10:15
-----------	----------	-------

Analyte	Sample Result	Data Qualifiers	Units	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTF0804-13 (GP-7	6-8' - Soil)					Sampled: 06	6/23/10		
General Chemistry Parameters									
% Solids	82		%	NA	1	06/29/10 10:47	pam	10F0827	SM 2540G
VOCs by SW8260B	-				·	00/25/10 10/1/	P		
Benzene	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260B
Bromobenzene	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260B
Bromochloromethane	<43			43	1				SW 8260B
Bromodichloromethane	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	
			ug/kg dry		-	06/29/10 15:29	aba	10F0832	SW 8260B
Bromoform	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260B
Bromomethane	<120		ug/kg dry	120	1	06/29/10 15:29	aba	10F0832	SW 8260B
n-Butylbenzene	290		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260B
sec-Butylbenzene	170		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260B
tert-Butylbenzene	⊲1		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260B
Carbon Tetrachloride	⊲1		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260B
Chlorobenzene	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260B
Chlorodibromomethane	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260B
Chloroethane	<61		ug/kg dry	61	1	06/29/10 15:29	aba	10F0832	SW 8260B
Chloroform	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260B
Chloromethane	<61		ug/kg dry	61	1	06/29/10 15:29	aba	10F0832	SW 8260B
2-Chlorotoluene	<61		ug/kg dry	61	1	06/29/10 15:29	aba	10F0832	SW 8260B
4-Chlorotoluene	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260E
1,2-Dibromo-3-chloropropane	<61		ug/kg dry	61	1	06/29/10 15:29	aba	10F0832	SW 8260E
1,2-Dibromoethane (EDB)	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260E
Dibromomethane	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260E
1,2-Dichlorobenzene	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260E
1,3-Dichlorobenzene	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260B
1,4-Dichlorobenzene	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260E
Dichlorodifluoromethane	<61		ug/kg dry	61	1	06/29/10 15:29	aba	10F0832	SW 8260B
1,1-Dichloroethane	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260B
1,2-Dichloroethane	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260B
1,1-Dichloroethene	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260B
cis-1,2-Dichloroethene	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260B
trans-1,2-Dichloroethene	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260B
1,2-Dichloropropane	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260B
1,3-Dichloropropane	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260B
2,2-Dichloropropane	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260B
1,1-Dichloropropene	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260B
cis-1,3-Dichloropropene	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260B
trans-1,3-Dichloropropene	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260B
2,3-Dichloropropene	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260B
Isopropyl Ether	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260B
Ethylbenzene	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260B
Hexachlorobutadiene	<43		ug/kg dry	43	1	06/29/10 15:29	aba	10F0832	SW 8260B
	290				_			10F0832	
Isopropylbenzene	<31		ug/kg dry	31 31	1	06/29/10 15:29 06/29/10 15:29	aba		SW 8260B
p-lsopropyltoluene Methylene Chloride	<61		ug/kg dry		1		aba	10F0832	SW 8260E
•			ug/kg dry	61		06/29/10 15:29	aba	10F0832	SW 8260E
Methyl tert-Butyl Ether	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260E
Naphthalene	140		ug/kg dry	61	1	06/29/10 15:29	aba	10F0832	SW 8260E
n-Propylbenzene	390		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260E
Styrene	<61		ug/kg dry	61	1	06/29/10 15:29	aba	10F0832	SW 8260F
1,1,1,2-Tetrachloroethane	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260E
1,1,2,2-Tetrachloroethane	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260B
Tetrachloroethene	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 82601

Project Manager

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Work Order:

WTF0804

Received:

06/24/10

Waukesha, WI 53186

Project: Project Number: 1E-0909013 Racine, WI 1730 State Street

Reported:

07/01/10 10:15

Mr. Tim Taugher

Analyta	Sample Result	Data Qualifiers	Units	MRL	Dilution Factor	Date Analyzed	A nalus4	Seq/ Batch	Method
Analyte	resuit	Quamiers	Onits	MIKL	ractor	Anatyzeu	Analyst	Dateil	METHOD
Sample ID: WTF0804-13 (GP-7 6-8	' - Soil) - con	t.				Sampled: 06	/23/10		
VOCs by SW8260B - cont.									
Toluene	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260E
1,2,3-Trichlorobenzene	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260F
1,2,4-Trichlorobenzene	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 82601
1,1,1-Trichloroethane	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 82601
1,1,2-Trichloroethane	<43		ug/kg dry	43	1	06/29/10 15:29	aba	10F0832	SW 82601
Trichloroethene	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 82601
Trichlorofluoromethane	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 82601
1,2,3-Trichloropropane	<61		ug/kg dry	61	1	06/29/10 15:29	aba	10F0832	SW 82601
1,2,4-Trimethylbenzene	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 82601
1,3,5-Trimethylbenzene	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 82601
Vinyl chloride	<43		ug/kg dry	43	1	06/29/10 15:29	aba	10F0832	SW 8260I
Xylenes, total	<100		ug/kg dry	100	1	06/29/10 15:29	aba	10F0832	SW 8260E
Surr: Dibromofluoromethane (80-120%)	100 %								
Surr: Toluene-d8 (80-120%)	101 %								
Surr: 4-Bromofluorobenzene (80-120%)	102 %								
Sample ID: WTF0804-14 (MeOH B	lank - Misc. L	iquid)				Sampled: 06	/23/10		
VOCs by SW8260B									
Benzene	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 82601
Bromobenzene	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 82601
Bromochloromethane	<35		ug/kg wet	35	1	06/29/10 15:02	aba	10F0832	SW 82601
Bromodichloromethane	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 82601
Bromoform	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260
Bromomethane	<100		ug/kg wet	100	1	06/29/10 15:02	aba	10F0832	SW 82601
n-Butylbenzene	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 82601
sec-Butylbenzene	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 82601
tert-Butylbenzene	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260
Carbon Tetrachloride	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 82601
Chlorobenzene	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 82601
Chlorodibromomethane	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 82601
Chloroethane	<50		ug/kg wet	50	1	06/29/10 15:02	aba	10F0832	SW 82601
Chloroform	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 82601
Chloromethane	<50		ug/kg wet	50	1	06/29/10 15:02	aba	10F0832	SW 82601
2-Chlorotoluene	<50		ug/kg wet	50	1	06/29/10 15:02	aba	10F0832	SW 82601
4-Chlorotoluene	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 82601
1,2-Dibromo-3-chloropropane	<50		ug/kg wet	50	1	06/29/10 15:02	aba	10F0832	SW 82601
1,2-Dibromoethane (EDB)	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 82601
Dibromomethane	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 82601
1,2-Dichlorobenzene	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 82601
1,3-Dichlorobenzene	<25		ug/kg wet	25	. 1	06/29/10 15:02	aba	10F0832	SW 82601
1,4-Dichlorobenzene	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 82601
Dichlorodifluoromethane	<50		ug/kg wet	50	1	06/29/10 15:02	aba	10F0832	SW 82601
1,1-Dichloroethane	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 82601
1,2-Dichloroethane	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 82601
1,1-Dichloroethene	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260
cis-1,2-Dichloroethene	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260
trans-1,2-Dichloroethene	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260
1,2-Dichloropropane	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260
1,3-Dichloropropane	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260
2,2-Dichloropropane	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260
1,1-Dichloropropene	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Work Order:

WTF0804

Received:

06/24/10

Project: Project Number: 1E-0909013 Racine, WI 1730 State Street Reported:

07/01/10 10:15

Mr. Tim Taugher

Analyte	Sample Result	Data Qualifiers	Units	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTF0804-14 (MeOH B							-		
-	iank - Misc. L	iquia) - cont.				Sampled: 06	23/10		
VOCs by SW8260B - cont.									
cis-1,3-Dichloropropene	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260B
trans-1,3-Dichloropropene	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260B
2,3-Dichloropropene	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260B
Isopropyl Ether	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260B
Ethylbenzene	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260B
Hexachlorobutadiene	<35		ug/kg wet	35	1	06/29/10 15:02	aba	10F0832	SW 8260B
Isopropylbenzene	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260B
p-Isopropyltoluene	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260B
Methylene Chloride	<50		ug/kg wet	50	1	06/29/10 15:02	aba	10F0832	SW 8260B
Methyl tert-Butyl Ether	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260B
Naphthalene	<50		ug/kg wet	50	1	06/29/10 15:02	aba	10F0832	SW 8260B
n-Propylbenzene	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260B
Styrene	<50		ug/kg wet	50	1	06/29/10 15:02	aba	10F0832	SW 8260B
1,I,1,2-Tetrachloroethane	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260B
1,1,2,2-Tetrachloroethane	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260B
Tetrachloroethene	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260B
Toluene	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260B
1,2,3-Trichlorobenzene	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260B
1,2,4-Trichlorobenzene	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260B
1.1.1-Trichloroethane	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260B
1,1,2-Trichloroethane	<35		ug/kg wet	35	1	06/29/10 15:02	aba	10F0832	SW 8260B
Trichloroethene	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260B
Trichlorofluoromethane	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260B
1,2,3-Trichloropropane	<50		ug/kg wet	50	1	06/29/10 15:02	aba	10F0832	SW 8260B
1,2,4-Trimethylbenzene	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260B
1,3,5-Trimethylbenzene	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260B
Vinyl chloride	<35		ug/kg wet	35	i	06/29/10 15:02	aba	10F0832	SW 8260B
Xylenes, total	<85		ug/kg wet	85	i	06/29/10 15:02	aba	10F0832	SW 8260B
Surr: Dibromofluoromethane (80-120%)	101 %		-00	-	•				J., 52.72
Surr: Toluene-d8 (80-120%)	99 %								
Surr: 4-Bromofluorobenzene (80-120%)	100 %								

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Work Order:

WTF0804

Received:

06/24/10

Project:

LABORATORY BLANK QC DATA

1E-0909013 Racine, WI

Reported:

07/01/10 10:15

Mr. Tim Taugher

1730 State Street Project Number:

	Seq/	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Batch	Result	Level	Units	MDL	MRL	Result	Result	REC		Limits	RPD	Limit	Q
VOCs by SW8260B														
Benzene	10F0832			ug/kg wet	N/A	25	<25							
Bromobenzene	10F0832			ug/kg wet	N/A	25	<25							
Bromochloromethane	10F0832			ug/kg wet	N/A	35	<35							
Bromodichloromethane	10F0832			ug/kg wet	N/A	25	. <25							
Bromoform	10F0832			ug/kg wet	N/A	25	<25							
Bromomethane	10F0832			ug/kg wet	N/A	100	<100							
-Butylbenzene	10F0832			ug/kg wet	N/A	25	<25							
ec-Butylbenzene	10F0832			ug/kg wet	N/A	25	<25							
ert-Butylbenzene	10F0832			ug/kg wet	N/A	25	<25							
Carbon Tetrachloride	10F0832			ug/kg wet	N/A	25	<25							
Chlorobenzene	10F0832			ug/kg wet	N/A	25	<25							
Chlorodibromomethane	10F0832			ug/kg wet	N/A	25	<25							
Chloroethane	10F0832			ug/kg wet	N/A	50	<50							
Chloroform	10F0832			ug/kg wet	N/A	25	<25							
Chloromethane	10F0832			ug/kg wet	N/A	50	<50							
2-Chlorotoluene	10F0832			ug/kg wet	N/A	50	<50							
-Chlorotoluene	10F0832			ug/kg wet	N/A	25	<25							
,2-Dibromo-3-chloropropane	10F0832			ug/kg wet	N/A	50	<50							
1,2-Dibromoethane (EDB)	10F0832			ug/kg wet	N/A	25	<25							
Dibromomethane	10F0832			ug/kg wet	N/A	25	<25							
,2-Dichlorobenzene	10F0832			ug/kg wet	N/A	25	<25							
,3-Dichlorobenzene	10F0832			ug/kg wet	N/A	25	<25							
,4-Dichlorobenzene	10F0832			ug/kg wet	N/A	25	<25							
Dichlorodifluoromethane	10F0832			ug/kg wet	N/A	50	<50							
,1-Dichloroethane	10F0832			ug/kg wet	N/A	25	<25							
1,2-Dichloroethane	10F0832			ug/kg wet	N/A	25	<25							
1,1-Dichloroethene	10F0832			ug/kg wet	N/A	25	<25							
cis-1,2-Dichloroethene	10F0832			ug/kg wet	N/A	25	<25							
rans-1,2-Dichloroethene	10F0832			ug/kg wet	N/A	25	<25							
,2-Dichloropropane	10F0832			ug/kg wet	N/A	25	<25							
1,3-Dichloropropane	10F0832			ug/kg wet	N/A	25	<25							
2,2-Dichloropropane	10F0832			ug/kg wet	N/A	25	<25							
the second second														

ug/kg wet

ug/kg wet

ug/kg wet

ug/kg wet

ug/kg wet

ug/kg wet

ug/kg wet

ug/kg wet

ug/kg wet

ug/kg wet

ug/kg wet

ug/kg wet

ug/kg wet

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

25

25

25

25

25

25

35

25

25

50

25

50

25

<25

<25

<25

<25

<25

<25

<35

<25

<25

<50

<25

<50

<25

1,1-Dichloropropene

2,3-Dichloropropene

Hexachlorobutadiene

Isopropylbenzene

p-Isopropyltoluene

Methylene Chloride

Methyl tert-Butyl Ether

Isopropyl Ether

Ethylbenzene

Naphthalene

n-Propylbenzene

cis-1,3-Dichloropropene

trans-1,3-Dichloropropene

10F0832

10F0832

10F0832

10F0832

10F0832

10F0832

10F0832

10F0832

10F0832

10F0832

10F0832

10F0832

10F0832

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Work Order:

Project:

WTF0804

Received:

06/24/10

Project Number:

1E-0909013 Racine, WI 1730 State Street

Reported:

07/01/10 10:15

Mr. Tim Taugher

LABORATORY BLANK QC DATA														
	Seq/	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Batch	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
VOCs by SW8260B														
Styrene	10F0832		1	ug/kg wet	N/A	50	<50							
1,1,1,2-Tetrachloroethane	10F0832			ug/kg wet	N/A	25	<25							
1,1,2,2-Tetrachloroethane	10F0832			ug/kg wet	N/A	25	<25							
Tetrachloroethene	10F0832		1	ug/kg wet	N/A	25	<25							
Toluene	10F0832		1	ug/kg wet	N/A	25	<25							
1,2,3-Trichlorobenzene	10F0832			ug/kg wet	N/A	25	<25							
1,2,4-Trichlorobenzene	10F0832		1	ug/kg wet	N/A	25	<25							
1,1,1-Trichloroethane	10F0832		1	ug/kg wet	N/A	25	<25							
1,1,2-Trichloroethane	10F0832		1	ug/kg wet	N/A	35	<35							
Trichloroethene	10F0832			ug/kg wet	N/A	25	<25							
Trichlorofluoromethane	10F0832			ug/kg wet	N/A	25	<25							
1,2,3-Trichloropropane	10F0832			ug/kg wet	N/A	50	<50							
1,2,4-Trimethylbenzene	10F0832			ug/kg wet	N/A	25	<25							
1,3,5-Trimethylbenzene	10F0832		1	ug/kg wet	N/A	25	<25							
Vinyl chloride	10F0832		1	ug/kg wet	N/A	35	<35							
Xylenes, total	10F0832			ug/kg wet	N/A	85	<85							
Surrogate: Dibromofluoromethane	10F0832		1	ıg/kg wet					100		80-120			
Surrogate: Toluene-d8	10F0832		1	ig/kg wet					100		80-120			
Surrogate: 4-Bromofluorobenzene	10F0832		1	ig/kg wet					99		80-120			
Benzene	10F0853			ug/kg wet	N/A	25	<25							
Bromobenzene	10F0853			ug/kg wet	N/A	25	<25							
Bromochloromethane	10F0853			ug/kg wet	N/A	35	<35							
Bromodichloromethane	10F0853			ug/kg wet	N/A	25	<25							
Bromoform	10F0853			ug/kg wet	N/A	25	<25							
Bromomethane	10F0853			ug/kg wet	N/A	100	<100							
n-Butylbenzene	10F0853			ug/kg wet	N/A	25	<25							
sec-Butylbenzene	10F0853			ug/kg wet	N/A	25	<25							
tert-Butylbenzene	10F0853			ug/kg wet	N/A	25	<25							
Carbon Tetrachloride	10F0853			ug/kg wet	N/A	25	<25							
Chlorobenzene	10F0853			ug/kg wet	N/A	25	<25							
Chlorodihromomethane	10F0853			ug/kg wet	N/A	25	<25							
Chloroethane	10F0853			ug/kg wet	N/A	50	<50							
Chloroform	10F0853			ug/kg wet	N/A	25	<25							
Chloromethane	10F0853			ug/kg wet	N/A	50	<50							
2-Chlorotoluene	10F0853			ug/kg wet	N/A	50	<50							
4-Chlorotoluene	10F0853			ug/kg wet	N/A	25	<25							
1,2-Dibromo-3-chloropropane	10F0853			ug/kg wet	N/A	50	<50							
1.2-Dibromoethane (EDB)	10F0853			ug/kg wet	N/A	25	<25							
Dibromomethane	10F0853			ug/kg wet	N/A	25	<25							
1,2-Dichlorobenzene	10F0853			ug/kg wet	N/A	25	<25							
1,3-Dichlorobenzene	10F0853			ug/kg wet	N/A	25	<25							
1,4-Dichlorobenzene	10F0853			ug/kg wet	N/A	25	<25							
Dichlorodifluoromethane	10F0853			ug/kg wet	N/A	50	<50							
1,1-Dichloroethane	10F0853			ug/kg wet	N/A	25	<25							

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Work Order:

WTF0804

Received:

06/24/10

Project: Project Number: 1730 State Street

1E-0909013 Racine, WI

Reported:

07/01/10 10:15

Mr. Tim Taugher

LABORATORY BLANK QC DATA														
	Seq/	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Batch	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
VOCs by SW8260B														
1,2-Dichloroethane	10F0853			ig/kg wet	N/A	25	<25							
1,1-Dichloroethene	10F0853			ig/kg wet	N/A	25	<25							
cis-1,2-Dichloroethene	10F0853			ig/kg wet	N/A	25	<25							
rans-1,2-Dichloroethene	10F0853			ig/kg wet	N/A	25	<25							
1,2-Dichloropropane	10F0853			ig/kg wet	N/A	25	<25							
1,3-Dichloropropane	10F0853			ig/kg wet	N/A	25	<25							
2,2-Dichloropropane	10F0853			ig/kg wet	N/A	25	<25							
,1-Dichloropropene	10F0853			ig/kg wet	N/A	25	<25							
cis-1,3-Dichloropropene	10F0853		1	ıg/kg wet	N/A	25	<25							
trans-1,3-Dichloropropene	10F0853		1	ug/kg wet	N/A	25	<25							
2,3-Dichloropropene	10F0853		1	ıg/kg wet	N/A	25	<25							
isopropyl Ether	10F0853		1	ig/kg wet	N/A	25	<25							
Ethylbenzene	10F0853		1	ıg/kg wet	N/A	25	<25							
Hexachlorobutadiene	10F0853		1	ıg/kg wet	N/A	35	<35							
sopropylbenzene	10F0853		1	ıg/kg wet	N/A	25	<25							
p-lsopropyltoluene	10F0853		1	ig/kg wet	N/A	25	<25							
Methylene Chloride	10F0853			ug/kg wet	N/A	50	<50							
Methyl tert-Butyl Ether	10F0853			ug/kg wet	N/A	25	<25							
Naphthalene	10F0853		,	ug/kg wet	N/A	50	<50							
n-Propylbenzene	10F0853		,	ug/kg wet	N/A	25	<25							
Styrene	10F0853		,	ug/kg wet	N/A	50	<50							
1,1,1,2-Tetrachloroethane	10F0853		1	ug/kg wet	N/A	25	<25							
1,1,2,2-Tetrachloroethane	10F0853		1	ug/kg wet	N/A	25	<25							
Tetrachloroethene	10F0853		1	ug/kg wet	N/A	25	<25							
Toluene	10F0853		1	ug/kg wet	N/A	25	<25							
1,2,3-Trichlorobenzene	10F0853		1	ug/kg wet	N/A	25	<25							
1,2,4-Trichlorobenzene	10F0853		,	ug/kg wet	N/A	25	<25							
1.1.1-Trichloroethane	10F0853		1	ug/kg wet	N/A	25	<25							
1,1,2-Trichloroethane	10F0853		1	ug/kg wet	N/A	35	<35							
Trichloroethene	10F0853		1	ug/kg wet	N/A	25	<25							
Trichlorofluoromethane	10F0853		1	ug/kg wet	N/A	25	<25							
1,2,3-Trichloropropane	10F0853		1	ug/kg wet	N/A	50	<50							
1,2,4-Trimethylbenzene	10F0853		1	ug/kg wet	N/A	25	<25							
1,3,5-Trimethylbenzene	10F0853		1	ug/kg wet	N/A	25	<25							
Vinyl chloride	10F0853			ug/kg wet	N/A	35	<35							
Xylenes, total	10F0853			ug/kg wet	N/A	85	<85							
Surrogate: Dibromofluoromethane	10F0853			ıg/kg wet					101		80-120			
Surrogate: Toluene-d8	10F0853			ıg/kg wet					99		80-120			
Surrogate: 4-Bromofluorobenzene	10F0853			ıg/kg wet					101		80-120			

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Work Order:

WTF0804

Received:

06/24/10

Project: Project Number: 1E-0909013 Racine, WI 1730 State Street

Reported:

07/01/10 10:15

			LAB	ORAT	ORY B	LANK	QC D	ATA						
	Seq/	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Batch	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
VOCs by SW8260B														
Benzene	10F0856			ug/kg wet	N/A	25	<25							
Bromobenzene	10F0856			ug/kg wet	N/A	25	<25							
Bromochloromethane	10F0856			ug/kg wet	N/A	35	<35							
Bromodichloromethane	10F0856			ug/kg wet	N/A	25	<25							
Bromoform	10F0856			ug/kg wet	N/A	25	<25							
Bromomethane	10F0856			ug/kg wet	N/A	100	<100							
n-Butylbenzene	10F0856			ug/kg wet	N/A	25	<25							
sec-Butylbenzene	10F0856			ug/kg wet	N/A	25	<25							
tert-Butylbenzene	10F0856			ug/kg wet	N/A	25	<25							
Carbon Tetrachloride	10F0856			ug/kg wet	N/A	25	<25							
Chlorobenzene	10F0856			ug/kg wet	N/A	25	<25							
Chlorodibromomethane	10F0856			ug/kg wet	N/A	25	<25							
Chloroethane	10F0856			ug/kg wet	N/A	50	<50							
Chloroform	10F0856			ug/kg wet	N/A	25	<25							
Chloromethane	10F0856			ug/kg wet	N/A	50	<50							
2-Chlorotoluene	10F0856			ug/kg wet	N/A	50	<50							
4-Chlorotoluene	10F0856			ug/kg wet	N/A	25	<25							
1,2-Dibromo-3-chloropropane	10F0856			ug/kg wet	N/A	50	<50							
1,2-Dibromoethane (EDB)	10F0856			ug/kg wet	N/A	25	<25							
Dibromomethane	10F0856			ug/kg wet	N/A	25	<25							
1,2-Dichlorobenzene	10F0856			ug/kg wet	N/A	25	<25							
1,3-Dichlorobenzene	10F0856			ug/kg wet	N/A	25	<25							
1,4-Dichlorobenzene	10F0856			ug/kg wet	N/A	25	<25							
Dichlorodifluoromethane	10F0856			ug/kg wet	N/A	50	<50							
1,1-Dichloroethane	10F0856			ug/kg wet	N/A	25	<25							
1,2-Dichloroethane	10F0856			ug/kg wet	N/A	25	<25							
1,1-Dichloroethene	10F0856			ug/kg wet	N/A	25	<25							
cis-1,2-Dichloroethene	10F0856			ug/kg wet	N/A	25	<25							
trans-1,2-Dichloroethene	10F0856			ug/kg wet	N/A	25	<25							
1,2-Dichloropropane	10F0856			ug/kg wet	N/A	25	<25							
1,3-Dichloropropane	10F0856			ug/kg wet	N/A	25	<25							
2,2-Dichloropropane	10F0856			ug/kg wet	N/A	25	<25							
1,1-Dichloropropene	10F0856			ug/kg wet	N/A	25	<25							
cis-1,3-Dichloropropene	10F0856			ug/kg wet	N/A	25	<25							
trans-1,3-Dichloropropene	10F0856			ug/kg wet	N/A	25	<25							
2,3-Dichloropropene	10F0856			ug/kg wet	N/A	25	<25							
Isopropyl Ether	10F0856			ug/kg wet	N/A	25	<25							
Ethylbenzene	10F0856			ug/kg wet	N/A	25	<25							
Hexachlorobutadiene	10F0856			ug/kg wet	N/A	35	<35							
Isopropylbenzene	10F0856			ug/kg wet	N/A	25	<25							
p-Isopropyltoluene	10F0856			ug/kg wet	N/A	25	<25							
	10F0856			ug/kg wet	N/A	50	<50							
Methylene Chloride	10F0856			ug/kg wet	N/A	25	<25							
Methyl tert-Butyl Ether	10F0856				N/A	50	<50							
Naphthalene n-Propylbenzene	10F0856			ug/kg wet ug/kg wet	N/A	25	<25							

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Work Order:

WTF0804

Received:

06/24/10

Project:

1E-0909013 Racine, WI

Reported:

07/01/10 10:15

Mr. Tim Taugher

Project Number: 1730 State Street

			LAB	ORAT	ORY B	LANK	QC D	ATA		•				
Analyte	Seq/ Batch	Source Result	Spike Level	Units	MDL	MRL	Result	Dup Result	% REC	Dup %REC	% REC	RPD	RPD Limit	Q
VOCs by SW8260B			•											
Styrene	10F0856		ı	ıg/kg wet	N/A	50	<50							
1,1,1,2-Tetrachloroethane	10F0856			ıg/kg wet	N/A	25	<25							
1,1,2,2-Tetrachloroethane	10F0856		ı	ıg/kg wet	N/A	25	<25							
Tetrachloroethene	10F0856		ı	ıg/kg wet	N/A	25	<25							
Toluene	10F0856		ı	ıg/kg wet	N/A	25	<25							
1,2,3-Trichlorobenzene	10F0856		ı	ıg/kg wet	N/A	25	<25							
1.2.4-Trichlorobenzene	10F0856		ı	ıg/kg wet	N/A	25	<25							
1.1.1-Trichloroethane	10F0856		1	ıg/kg wet	N/A	25	<25							
1.1,2-Trichloroethane	10F0856		1	ig/kg wet	N/A	35	<35							
Trichloroethene	10F0856		ı	ıg/kg wet	N/A	25	<25							
Trichlorofluoromethane	10F0856		ı	ıg/kg wet	N/A	25	<25							
1,2,3-Trichloropropane	10F0856		ı	ıg/kg wet	N/A	50	<50							
1,2,4-Trimethylbenzene	10F0856		ı	ıg/kg wet	N/A	25	<25							
1,3,5-Trimethylbenzene	10F0856		ı	ıg/kg wet	N/A	25	<25							
Vinyl chloride	10F0856		ı	ıg/kg wet	N/A	35	<35							
Xylenes, total	10F0856			ıg/kg wet	N/A	85	<85							
Surrogate: Dibromofluoromethane	10F0856		υ	g/kg wet					98		80-120			
Surrogate: Toluene-d8	10F0856		υ	ıg/kg wet					97		80-120			
Surrogate: 4-Bromosluorobenzene	10F0856		υ	g/kg wet					95		80-120			

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Work Order:

WTF0804

Received:

06/24/10

Project Number:

Project:

1E-0909013 Racine, WI 1730 State Street

Reported:

07/01/10 10:15

				C	CV Q	CDAT	A							
	Seq/	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Batch	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
VOCs by SW8260B														
Benzene	T001422		2500	ug/kg wet	N/A	N/A	2460		98		80-120			
Bromobenzene	T001422		2500	ug/kg wet	N/A	N/A	2420		97		80-120			
Bromochloromethane	T001422		2500	ug/kg wet	N/A	N/A	2510		100		80-120			
Bromodichloromethane	T001422		2500	ug/kg wet	N/A	N/A	2470		99		80-120			
Bromoform	T001422		2500	ug/kg wet	N/A	N/A	2250		90		80-120			
Bromomethane	T001422		2500	ug/kg wet	N/A	N/A	2270		91		60-140			
n-Butylbenzene	T001422		2500	ug/kg wet	N/A	N/A	2450		98		80-120			
sec-Butylbenzene	T001422		2500	ug/kg wet	N/A	N/A	2460		98		80-120			
tert-Butylbenzene	T001422		2500	ug/kg wet	N/A	N/A	2440		97		80-120			
Carbon Tetrachloride	T001422		2500	ug/kg wet	N/A	N/A	2510		101		60-140			
Chlorobenzene	T001422		2500	ug/kg wet	N/A	N/A	2290		91		80-120			
Chlorodibromomethane	T001422		2500	ug/kg wet	N/A	N/A	2350		94		80-120			
Chloroethane	T001422		2500	ug/kg wet	N/A	N/A	2590		104		60-140			
Chloroform	T001422		2500	ug/kg wet	N/A	N/A	2480		99		80-120			
Chloromethane	T001422		2500	ug/kg wet	N/A	N/A	2560		102		60-140			
2-Chlorotoluene	T001422		2500	ug/kg wet	N/A	N/A	2410		97		80-120			
4-Chlorotoluene	T001422		2500	ug/kg wet	N/A	N/A	2470		99		80-120			
1,2-Dibromo-3-chloropropane	T001422		2500	ug/kg wet	N/A	N/A	2120		85		60-140			
1,2-Dibromoethane (EDB)	T001422		2500	ug/kg wet	N/A	N/A	2340		94		80-120			
Dibromomethane	T001422		2500	ug/kg wet	N/A	N/A	2340		94		80-120			
1,2-Dichlorobenzene	T001422		2500	ug/kg wet	N/A	N/A	2410		96		80-120			
1,3-Dichlorobenzene	T001422		2500	ug/kg wet	N/A	N/A	2430		97		80-120			
1,4-Dichlorobenzene	T001422		2500	ug/kg wet	N/A	N/A	2430		97		80-120			
Dichlorodifluoromethane	T001422		2500	ug/kg wet	N/A	N/A	2430		97		60-140			
1,1-Dichloroethane	T001422		2500	ug/kg wet	N/A	N/A	2500		100		80-120			
1,2-Dichloroethane	T001422		2500	ug/kg wet	N/A	N/A	2510		100		80-120			
1,1-Dichloroethene	T001422		2500	ug/kg wet	N/A	N/A	2460		98		80-120			
cis-1,2-Dichloroethene	T001422		2500	ug/kg wet	N/A	N/A	2470		99		80-120			
trans-1,2-Dichloroethene	T001422		2500	ug/kg wet	N/A	N/A	2440		98		80-120			
1,2-Dichloropropane	T001422		2500	ug/kg wet	N/A	N/A	2450		98		80-120			
1,3-Dichloropropane	T001422		2500	ug/kg wet	N/A	N/A	2330		93		80-120			
2,2-Dichloropropane	T001422		2500	ug/kg wet	N/A	N/A	2620		105		60-140			
1,1-Dichloropropene	T001422		2500	ug/kg wet	N/A	N/A	2480		99		80-120			
cis-1,3-Dichloropropene	T001422		2500	ug/kg wet	N/A	N/A	2500		100		80-120			
trans-1,3-Dichloropropene	T001422			ug/kg wet	N/A	N/A	2470		99		80-120			
2,3-Dichloropropene	T001422		2500	ug/kg wet	N/A	N/A	2520		101		80-120			
2,3-Dichioropropene Isopropyl Ether	T001422		2500	ug/kg wet	N/A	N/A	2540		101		80-120			
	T001422		2500	ug/kg wet	N/A	N/A	2320		93		80-120			
Ethylbenzene Hexachlorobutadiene	T001422		2500	ug/kg wet			2290		92		60-140			
	T001422		2500		N/A	N/A	2270		91		80-120			
Isopropylbenzene			2500	ug/kg wet	N/A	N/A								
p-Isopropyltoluene	T001422			ug/kg wet	N/A	N/A	2440		98		80-120			
Methylene Chloride	T001422		2500	ug/kg wet	N/A	N/A	2450		98		80-120			
Methyl tert-Butyl Ether	T001422			ug/kg wet	N/A	N/A	2460		98		80-120			
Naphthalene n-Propylbenzene	T001422 T001422		2500 2500	ug/kg wet ug/kg wet	N/A N/A	N/A N/A	2190 2220		88 89		60-140 80-120			

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Work Order:

WTF0804

Received:

06/24/10

Project:
Project Number:

1E-0909013 Racine, WI 1730 State Street Reported:

07/01/10 10:15

Mr.	Tim	Taugher	

				C	CV Q	CDAT	A							
Analyte	Seq/ Batch	Source Result			MDL	MRL	Result	Dup Result	% REC	Dup %REC	% REC	RPD	RPD Limit	0
VOCs by SW8260B	241011	2100-10	20101	Citto			Account	1100011	2120	701220	Dimited	10.2	211111	Y
Styrene	T001422		2500	ug/kg wet	N/A	N/A	2360		94		80-120			
1,1,1,2-Tetrachioroethane	T001422		2500	ug/kg wet	N/A	N/A	2450		98		80-120			
1,1,2,2-Tetrachloroethane	T001422		2500	ug/kg wet	N/A	N/A	2290		92		80-120			
Tetrachloroethene	T001422		2500	ug/kg wet	N/A	N/A	2320		93		80-120			
Toluene	T001422		2500	ug/kg wet	N/A	N/A	2350		94		80-120			
1,2,3-Trichlorobenzene	T001422		2500	ug/kg wet	N/A	N/A	2260		90		80-120			
1,2,4-Trichlorobenzene	T001422		2500	ug/kg wet	N/A	N/A	2350		94		80-120			
1,1,1-Trichloroethane	T001422		2500	ug/kg wet	N/A	N/A	2520		101		80-120			
1,1,2-Trichloroethane	T001422		2500	ug/kg wet	N/A	N/A	2400		96		80-120			
Trichloroethene	T001422		2500	ug/kg wet	N/A	N/A	2390		95		80-120			
Trichlorofluoromethane	T001422		2500	ug/kg wet	N/A	N/A	2350		94		80-120			
1,2,3-Trichloropropane	T001422		2500	ug/kg wet	N/A	N/A	2310		93		80-120			
1,2,4-Trimethylbenzene	T001422		2500	ug/kg wet	N/A	N/A	2480		99		80-120			
1,3,5-Trimethylbenzene	T001422		2500	ug/kg wet	N/A	N/A	2460		98		80-120			
Vinyl chloride	T001422		2500	ug/kg wet	N/A	N/A	2460		98		80-120			
Xylenes, total	T001422		7500	ug/kg wet	N/A	N/A	6950		93		80-120			
Surrogate: Dibromofluoromethane	T001422			ug/kg wet	1071	14/24	0,50		104		80-120			
Surrogate: Toluene-d8	T001422			ug/kg wet					100		80-120			
Surrogate: 4-Bromofluorobenzene	T001422			ug/kg wet					101		80-120			
Benzene	T001423			ug/kg wet	N/A	N/A	2700		108		80-120			
Bromobenzene	T001423		2500	ug/kg wet	N/A	N/A	2450		98		80-120			
Bromochloromethane	T001423		2500	ug/kg wet	N/A	N/A	2680		107		80-120			
Bromodichloromethane	T001423		2500	ug/kg wet	N/A	N/A	2560		107		80-120			
			2500				2500		100					
Bromoform	T001423 T001423		2500	ug/kg wet	N/A	N/A					80-120 60-140			
Bromomethane				ug/kg wet	N/A	N/A	2080		83 98		80-120			
n-Butylbenzene	T001423		2500	ug/kg wet	N/A	N/A	2450							
sec-Butylbenzene	T001423		2500	ug/kg wet	N/A	N/A	2480		99		80-120			
tert-Butylhenzene	T001423		2500	ug/kg wet	N/A	N/A	2440		97		80-120			
Carbon Tetrachloride	T001423		2500	ug/kg wet	N/A	N/A	2870		115		60-140			
Chlorobenzene	T001423		2500	ug/kg wet	N/A	N/A	2400		96		80-120			
Chlorodibromomethane	T001423		2500	ug/kg wet	N/A	N/A	2470		99		80-120			
Chloroethane	T001423		2500	ug/kg wet	N/A	N/A	2660		106		60-140			
Chloroform	T001423			ug/kg wet	N/A	N/A	2570		103		80-120			
Chloromethane	T001423			ug/kg wet	N/A	N/A	3250		130		60-140			
2-Chlorotoluene	T001423			ug/kg wet	N/A	N/A	2390		96		80-120			
4-Chlorotoluene	T001423			ug/kg wet	N/A	N/A	2360		94		80-120			
1,2-Dibromo-3-chloropropane	T001423			ug/kg wet	N/A	N/A	2370		95		60-140			
1,2-Dibromoethane (EDB)	T001423			ug/kg wet	N/A	N/A	2400		96		80-120			
Dibromomethane	T001423		2500	ug/kg wet	N/A	N/A	2610		104		80-120			
1,2-Dichlorobenzene	T001423			ug/kg wet	N/A	N/A	2400		96		80-120			
1,3-Dichlorobenzene	T001423			ug/kg wet	N/A	N/A	2410		96		80-120			
1,4-Dichlorobenzene	T001423		2500	ug/kg wet	N/A	N/A	2350		94		80-120			
Dichlorodifluoromethane	T001423		2500	ug/kg wet	N/A	N/A	2840		114		60-140			
1,1-Dichloroethane	T001423		2500	ug/kg wet	N/A	N/A	2660		106		80-120			

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Work Order:

WTF0804

1730 State Street

Received:

06/24/10

Project: Project Number: 1E-0909013 Racine, WI

Reported:

07/01/10 10:15

				C	CV QC	DAT	A							
	Seq/	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Batch	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
VOCs by SW8260B														
1,2-Dichloroethane	T001423		2500	ug/kg wet	N/A	N/A	2530		101		80-120			
1,1-Dichloroethene	T001423		2500	ug/kg wet	N/A	N/A	2710		108		80-120			
cis-1,2-Dichloroethene	T001423		2500	ug/kg wet	N/A	N/A	2650		106		80-120			
trans-1,2-Dichloroethene	T001423		2500	ug/kg wet	N/A	N/A	2680		107		80-120			
1,2-Dichloropropane	T001423		2500	ug/kg wet	N/A	N/A	2670		107		80-120			
1,3-Dichloropropane	T001423		2500	ug/kg wet	N/A	N/A	2550		102		80-120			
2,2-Dichloropropane	T001423		2500	ug/kg wet	N/A	N/A	2680		107		60-140			
1,1-Dichloropropene	T001423		2500	ug/kg wet	N/A	N/A	2720		109		80-120			
cis-1,3-Dichloropropene	T001423		2500	ug/kg wet	N/A	N/A	2660		107		80-120			
trans-1,3-Dichloropropene	T001423		2500	ug/kg wet	N/A	N/A	2650		106		80-120			
2,3-Dichloropropene	T001423			ug/kg wet	N/A	N/A	2620		105		80-120			
Isopropyl Ether	T001423		2500	ug/kg wet	N/A	N/A	2560		102		80-120			
Ethylbenzene	T001423		2500	ug/kg wet	N/A	N/A	2480		99		80-120			
Hexachlorobutadiene	T001423		2500	ug/kg wet	N/A	N/A	2370		95		60-140			
Isopropylbenzene	T001423		2500	ug/kg wet	N/A	N/A	2450		98		80-120			
p-Isopropyltoluene	T001423		2500	ug/kg wet	N/A	N/A	2480		99		80-120			
Methylene Chloride	T001423		2500	ug/kg wet	N/A	N/A	2660		106		80-120			
Methyl tert-Butyl Ether	T001423		2500	ug/kg wet	N/A	N/A	2580		103		80-120			
Naphthalene	T001423		2500	ug/kg wet	N/A	N/A	2220		89		60-140			
n-Propylbenzene	T001423		2500	ug/kg wet	N/A	N/A	2490		100		80-120			
Styrene	T001423			ug/kg wet	N/A	N/A	2480		99		80-120			
1,1,2-Tetrachloroethane	T001423		2500	ug/kg wet	N/A	N/A	2390		96		80-120			
1,1,2,2-Tetrachloroethane	T001423		2500	ug/kg wet	N/A	N/A	2300		92		80-120			
Tetrachloroethene	T001423			ug/kg wet	N/A	N/A	2590		104		80-120			
Toluene	T001423			ug/kg wet	N/A	N/A	2480		99		80-120			
1,2,3-Trichlorobenzene	T001423			ug/kg wet	N/A	N/A	2320		93		80-120			
1,2,4-Trichlorobenzene	T001423			ug/kg wet	N/A	N/A	2400		96		80-120			
1,1,1-Trichloroethane	T001423			ug/kg wet	N/A	N/A	2540		102		80-120			
1.1.2-Trichloroethane	T001423			ug/kg wet	N/A	N/A	2450		98		80-120			
Trichloroethene	T001423			ug/kg wet	N/A	N/A	2740		110		80-120			
Trichlorofluoromethane	T001423			ug/kg wet	N/A	N/A	2730		109		80-120			
1,2,3-Trichloropropane	T001423			ug/kg wet	N/A	N/A	2330		93		80-120			
1,2,4-Trimethylbenzene	T001423			ug/kg wet	N/A	N/A	2410		97		80-120			
1,3,5-Trimethylbenzene	T001423			ug/kg wet	N/A	N/A	2420		97		80-120			
Vinyl chloride	T001423			ug/kg wet	N/A	N/A	2690		108		80-120			
Xylenes, total	T001423			ug/kg wet	N/A	N/A	7500		100		80-120			
Surrogate: Dibromofluoromethane	T001423			ug/kg wet			00		102		80-120			
Surrogate: Toluene-d8	T001423			ug/kg wet					99		80-120			
Surrogate: 4-Bromofluorobenzene	T001423			ug/kg wet					98		80-120			

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Work Order:

WTF0804

Received:

06/24/10

Project: Project Number: 1E-0909013 Racine, WI 1730 State Street Reported:

07/01/10 10:15

		L	ABOR	ATOR	Y DUI	PLICA	TE QC DA	ATA				
Analyte	Seq/ Batch	Source Result	•	Units	MDL	MRL	Result	% REC	% REC	RPD	RPD Limit	0
General Chemistry Parameters QC Source Sample: WTF0806-03												
% Solids	10F0827	86.0		%	N/A	N/A	84.5			2	20	

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Work Order:

WTF0804

Received:

06/24/10

Project: Project Number: 1730 State Street

1E-0909013 Racine, WI

Reported:

07/01/10 10:15

Mr.	Tim	Taugher	

		1	LCS	LCS	OUPLI	CATE	QC DA	IA						
	Seq/	Source Sp	ike					Dup	%	Dup	% REC		RPD	
Analyte	Batch	Result L	evel	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
VOCs by SW8260B														
Benzene	10F0832	25	00 u	g/kg wet	N/A	N/A	2350		94		80-120			
Bromobenzene	10F0832	25	00 u	g/kg wet	N/A	N/A	2390		95		80-120			
Bromochloromethane	10F0832	25	00 u	g/kg wet	N/A	N/A	2470		99		80-120			
Bromodichloromethane	10F0832	25	00 u	g/kg wet	N/A	N/A	2340		94		80-120			
Bromoform	10F0832	25	00 u	g/kg wet	N/A	N/A	2310		92		80-120			
Bromomethane	10F0832	25	00 u	g/kg wet	N/A	N/A	2570		103		60-140			
n-Butylbenzene	10F0832	25	00 u	g/kg wet	N/A	N/A	2400		96		80-120			
sec-Butylbenzene	10F0832	25	00 u	g/kg wet	N/A	N/A	2390		96		80-120			
tert-Butylbenzene	10F0832	25	00 u	g/kg wet	N/A	N/A	2380		95		80-120			
Carbon Tetrachloride	10F0832	25		g/kg wet	N/A	N/A	2390		96		60-140			
Chlorobenzene	10F0832	25		g/kg wet	N/A	N/A	2260		90		80-120			
Chlorodibromomethane	10F0832	25	00 u	g/kg wet	N/A	N/A	2290		92		80-120			
Chloroethane	10F0832	25	00 u	g/kg wet	N/A	N/A	2550		102		60-140			
Chloroform	10F0832	25		g/kg wet	N/A	N/A	2390		96		80-120			
Chloromethane	10F0832	25	00 u	g/kg wet	N/A	N/A	2980		119		60-140			
2-Chlorotoluene	10F0832	25	00 u	g/kg wet	N/A	N/A	2390		96		80-120			
4-Chlorotoluene	10F0832	25	00 u	g/kg wet	N/A	N/A	2410		96		80-120			
1,2-Dibromo-3-chloropropane	10F0832	25	00 u	g/kg wet	N/A	N/A	2270		91		60-140			
1,2-Dibromoethane (EDB)	10F0832	25	00 u	g/kg wet	N/A	N/A	2380		95		80-120			
Dibromomethane	10F0832	25		g/kg wet	N/A	N/A	2360		95		80-120			
1,2-Dichlorobenzene	10F0832	25	00 u	g/kg wet	N/A	N/A	2390		95		80-120			
1,3-Dichlorobenzene	10F0832	25	00 u	g/kg wet	N/A	N/A	2390		95		80-120			
I,4-Dichlorobenzene	10F0832	25	00 u	g/kg wet	N/A	N/A	2390		95		80-120			
Dichlorodifluoromethane	10F0832	25		g/kg wet	N/A	N/A	2690		108		60-140			
I,1-Dichloroethane	10F0832	25		g/kg wet	N/A	N/A	2410		97		80-120			
1,2-Dichloroethane	10F0832	25		g/kg wet	N/A	N/A	2390		95		80-120			
1,1-Dichloroethene	10F0832	25	00 u	g/kg wet	N/A	N/A	2490		100		80-120			
cis-1,2-Dichloroethene	10F0832	25	00 u	g/kg wet	N/A	N/A	2420		97		80-120			
trans-1,2-Dichloroethene	10F0832	25	00 u	g/kg wet	N/A	N/A	2440		97		80-120			
1,2-Dichloropropane	10F0832	25	00 u	g/kg wet	N/A	N/A	2400		96		80-120			
1,3-Dichloropropane	10F0832	25	00 u	g/kg wet	N/A	N/A	2300		92		80-120			
2,2-Dichloropropane	10F0832	25	00 u	g/kg wet	N/A	N/A	2410		96		60-140			
1,1-Dichloropropene	10F0832	25	00 u	g/kg wet	N/A	N/A	2410		97		80-120			
cis-1,3-Dichloropropene	10F0832	25		g/kg wet	N/A	N/A	2340		94		80-120			
trans-1,3-Dichloropropene	10F0832	25		g/kg wet	N/A	N/A	2380		95		80-120			
Ethylbenzene	10F0832	25		g/kg wet	N/A	N/A	2280		91		80-120			
Hexachlorobutadiene	10F0832	25		g/kg wet	N/A	N/A	2300		92		60-140			
lsopropylbenzene	10F0832	25		g/kg wet	N/A	N/A	2240		90		80-120			
p-Isopropyltoluene	10F0832	25		g/kg wet	N/A	N/A	2400		96		80-120			
Methylene Chloride	10F0832	25		g/kg wet	N/A	N/A	2360		94		80-120			
Methyl tert-Butyl Ether	10F0832	25		g/kg wet	N/A	N/A	2440		98		80-120			
Naphthalene	10F0832	25		g/kg wet	N/A	N/A	2310		93		60-140			
n-Propylbenzene	10F0832	25		g/kg wet	N/A	N/A	2190		88		80-120			
Styrene	10F0832	25		g/kg wet	N/A	N/A	2280		91		80-120			
1,1,1,2-Tetrachloroethane	10F0832			g/kg wet	N/A	N/A	2400		96		80-120			

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Work Order:

WTF0804

1730 State Street

Received:

06/24/10

Project:
Project Number:

1E-0909013 Racine, WI

Reported:

07/01/10 10:15

			LC	S/LCS I	OUPLI	CATE	QC DA	TA						
	Seq/	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Batch	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
VOCs by SW8260B														
1,1,2,2-Tetrachloroethane	10F0832		2500	ug/kg wet	N/A	N/A	2360		94		80-120			
Tetrachloroethene	10F0832		2500	ug/kg wet	N/A	N/A	2340		93		80-120			
Toluene	10F0832		2500	ug/kg wet	N/A	N/A	2320		93		80-120			
1,2,3-Trichlorobenzene	10F0832		2500	ug/kg wet	N/A	N/A	2280		91		80-120			
1,2,4-Trichlorobenzene	10F0832		2500	ug/kg wet	N/A	N/A	2290		92		80-120			
1,1,1-Trichloroethane	10F0832		2500	ug/kg wet	N/A	N/A	2420		97		80-120			
1,1,2-Trichloroethane	10F0832		2500	ug/kg wet	N/A	N/A	2400		96		80-120			
Trichloroethene	10F0832		2500	ug/kg wet	N/A	N/A	2420		97		80-120			
Trichlorofluoromethane	10F0832		2500	ug/kg wet	N/A	N/A	2350		94		80-120			
1,2,3-Trichloropropane	10F0832		2500	ug/kg wet	N/A	N/A	2130		85		80-120			
1,2,4-Trimethylbenzene	10F0832		2500	ug/kg wet	N/A	N/A	2410		96		80-120			
1,3,5-Trimethylbenzene	10F0832		2500	ug/kg wet	N/A	N/A	2390		96		80-120			
Vinyl chloride	10F0832		2500	ug/kg wet	N/A	N/A	2500		100		80-120			
Xylenes, total	10F0832		7500	ug/kg wet	N/A	N/A	6830		91		80-120			
Surrogate: Dibromofluoromethane	10F0832			ug/kg wet					100		80-120			
Surrogate: Toluene-d8	10F0832			ug/kg wet					100		80-120			
Surrogate: 4-Bromofluorobenzene	10F0832			ug/kg wet					101		80-120			
Benzene	10F0853		2500	ug/kg wet	N/A	N/A	2350		94		80-120			
Bromobenzene	10F0853		2500	ug/kg wet	N/A	N/A	2310		92		80-120			
Bromochloromethane	10F0853		2500	ug/kg wet	N/A	N/A	2370		95		80-120			
Bromodichloromethane	10F0853		2500	ug/kg wet	N/A	N/A	2340		94		80-120			
Bromoform	10F0853		2500	ug/kg wet	N/A	N/A	2110		84		80-120			
Bromomethane	10F0853		2500	ug/kg wet	N/A	N/A	2290		92		60-140			
n-Butylbenzene	10F0853		2500	ug/kg wet	N/A	N/A	2380		95		80-120			
sec-Butylbenzene	10F0853		2500	ug/kg wet	N/A	N/A	2370		95		80-120			
tert-Butylbenzene	10F0853		2500	ug/kg wet	N/A	N/A	2340		93		80-120			
Carbon Tetrachloride	10F0853		2500	ug/kg wet	N/A	N/A	2430		97		60-140			
Chlorobenzene	10F0853		2500	ug/kg wet	N/A	N/A	2210		89		80-120			
Chlorodibromomethane	10F0853		2500	ug/kg wet	N/A	N/A	2210		88		80-120			
Chloroethane	10F0853		2500	ug/kg wet	N/A	N/A	2190		87		60-140			
Chloroform	10F0853		2500	ug/kg wet	N/A	N/A	2430		97		80-120			
Chloromethane	10F0853		2500	ug/kg wet	N/A	N/A	2180		87		60-140			
2-Chlorotoluene	10F0853			ug/kg wet	N/A	N/A	2330		93		80-120		•	
4-Chlorotoluene	10F0853			ug/kg wet	N/A	N/A	2400		96		80-120			
1,2-Dibromo-3-chloropropane	10F0853			ug/kg wet	N/A	N/A	1950		78		60-140			
1,2-Dibromoethane (EDB)	10F0853			ug/kg wet	N/A	N/A	2240		90		80-120			
Dibromomethane	10F0853			ug/kg wet	N/A	N/A	2230		89		80-120			
1.2-Dichlorobenzene	10F0853			ug/kg wet	N/A	N/A	2310		92		80-120			
1,3-Dichlorobenzene	10F0853			ug/kg wet	N/A	N/A	2350		94		80-120			
1,4-Dichlorobenzene	10F0853			ug/kg wet	N/A	N/A	2360		94		80-120			
Dichlorodifluoromethane	10F0853		2500	ug/kg wet	N/A	N/A	2740		109		60-140			
1,1-Dichloroethane	10F0853			ug/kg wet	N/A	N/A	2450		98		80-120			
1,2-Dichloroethane	10F0853		2500	ug/kg wet	N/A	N/A	2380		95		80-120			
1,2-Dichloroethane	10F0853			ug/kg wet	N/A	N/A	2490		100		80-120			

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Work Order:

WTF0804

Received:

06/24/10

Project:

1E-0909013 Racine, WI

Reported:

07/01/10 10:15

Mr. Tim Taugher

Project Number: 1730 State Street

	LC	S/LC3 I	JUPLI	CAIL	QC DA	MIA						
Seg/ Se	ource Spike	,				Dup	%	Dup	% REC		RPD	
Batch R	esult Leve	Units	MDL	MRL	Result	Result	REC		Limits	RPD	Limit	Q
10F0853	2500	ug/kg wet	N/A	N/A	2380		95		80-120			
10F0853	2500	ug/kg wet	N/A	N/A	2430		97		80-120			
10F0853	2500	ug/kg wet	N/A	N/A	2380		95		80-120			
10F0853	2500	ug/kg wet	N/A	N/A	2220		89		80-120			
10F0853	2500	ug/kg wet	N/A	N/A	2530		101		60-140			
10F0853	2500	ug/kg wet	N/A	N/A	2420		97		80-120			
10F0853	2500	ug/kg wet	N/A	N/A	2330		93		80-120			
10F0853	2500	ug/kg wet	N/A	N/A	2350		94		80-120			
10F0853	2500	ug/kg wet	N/A	N/A	2240		90		80-120			
10F0853	2500	ug/kg wet	N/A	N/A	2220		89		60-140			
10F0853	2500	ug/kg wet	N/A	N/A	2190		88		80-120			
10F0853	2500	ug/kg wet	N/A	N/A	2380		95		80-120			
10F0853	2500	ug/kg wet	N/A	N/A	2310		92		80-120			
10F0853	2500	ug/kg wet	N/A	N/A	2390		95		80-120			
10F0853	2500	ug/kg wet	N/A	N/A	2100		84		60-140			
10F0853	2500	ug/kg wet	N/A	N/A	2130		85		80-120			
10F0853	2500	ug/kg wet	N/A	N/A	2250		90		80-120			
10F0853	2500	ug/kg wet	N/A	N/A	2370		95		80-120			
10F0853	2500	_	N/A	N/A	2190		88		80-120			
10F0853	2500		N/A	N/A	2280		91		80-120			
10F0853	2500		N/A	N/A	2250		90		80-120			
10F0853	2500		N/A	N/A	2190		87		80-120			
10F0853	2500		N/A	N/A	2290		92		80-120			
	2500				2460		98		80-120			
	2500				2310		92		80-120			
		_										
					-,							
		-										
	2500		N/A	N/A	2370							
		_										
	Batch R 10F0853	Seq/Batch Source Result Spike Result 10F0853 2500 10	Seq/ Batch Source Result Spike Level Units 10F0853 2500 ug/kg wet 10F0853 2500 <td>Seq/ Source Result Spike Level Units MDL 10F0853 2500 ug/kg wet N/A 10F0853 2500 ug/kg w</td> <td>Seq/ Source Result Spike Level Units MDL MRL 10F0853 2500 ug/kg wet N/A N/A 10F0853 2500 ug/kg wet N/A N/A<td> Seq/ Source Result Level Units MDL MRL Result </td><td> 10F0853</td><td> Seq/ Source Spike Cevel Units MDL MRL Result Result REC </td><td> Seq/ Source Spike Units MDL MRL Result REC %REC %REC </td><td> Seq</td><td> Seq</td><td> No. Source Spike Level Units MRL MRL Result Result Recoll Reco</td></td>	Seq/ Source Result Spike Level Units MDL 10F0853 2500 ug/kg wet N/A 10F0853 2500 ug/kg w	Seq/ Source Result Spike Level Units MDL MRL 10F0853 2500 ug/kg wet N/A N/A 10F0853 2500 ug/kg wet N/A N/A <td> Seq/ Source Result Level Units MDL MRL Result </td> <td> 10F0853</td> <td> Seq/ Source Spike Cevel Units MDL MRL Result Result REC </td> <td> Seq/ Source Spike Units MDL MRL Result REC %REC %REC </td> <td> Seq</td> <td> Seq</td> <td> No. Source Spike Level Units MRL MRL Result Result Recoll Reco</td>	Seq/ Source Result Level Units MDL MRL Result	10F0853	Seq/ Source Spike Cevel Units MDL MRL Result Result REC	Seq/ Source Spike Units MDL MRL Result REC %REC %REC	Seq	Seq	No. Source Spike Level Units MRL MRL Result Result Recoll Reco

602 Commerce Drive Watertown, W! 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Mr. Tim Taugher Work Order:

WTF0804

Received:

06/24/10

Project: Project Number: 1E-0909013 Racine, WI 1730 State Street Reported:

07/01/10 10:15

			LCS	S/LCS I	OPLI	CATE	QC DA	TA						
	Seq/	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Batch	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
VOCs by SW8260B														
Carbon Tetrachloride	10F0856		2500	ug/kg wet	N/A	N/A	2410		96		60-140			
Chlorobenzene	10F0856		2500	ug/kg wet	N/A	N/A	2160		86		80-120			
Chlorodibromomethane	10F0856		2500	ug/kg wet	N/A	N/A	2170		87		80-120			
Chloroethane	10F0856		2500	ug/kg wet	N/A	N/A	2470		99		60-140			
Chloroform	10F0856 .		2500	ug/kg wet	N/A	N/A	2250		90		80-120			
Chloromethane	10F0856		2500	ug/kg wet	N/A	N/A	3270		131		60-140			
2-Chlorotoluene	10F0856		2500	ug/kg wet	N/A	N/A	2150		86		80-120			
4-Chlorotoluene	10F0856		2500	ug/kg wet	N/A	N/A	2070		83		80-120			
1,2-Dibromo-3-chloropropane	10F0856		2500	ug/kg wet	N/A	N/A	2040		82		60-140			
1,2-Dibromoethane (EDB)	10F0856		2500	ug/kg wet	N/A	N/A	2170		87		80-120			
Dibromomethane	10F0856		2500	ug/kg wet	N/A	N/A	2350		94		80-120			
1,2-Dichlorobenzene	10F0856			ug/kg wet	N/A	N/A	2110		84		80-120			
1,3-Dichlorobenzene	10F0856		2500	ug/kg wet	N/A	N/A	2120		85		80-120			
1,4-Dichlorobenzene	10F0856		2500	ug/kg wet	N/A	N/A	2080		83		80-120			
Dichlorodifluoromethane	10F0856			ug/kg wet	N/A	N/A	2810		112		60-140			
1,1-Dichloroethane	10F0856			ug/kg wet	N/A	N/A	2310		92		80-120			
1,2-Dichloroethane	10F0856			ug/kg wet	N/A	N/A	2100		84		80-120			
1,1-Dichloroethene	10F0856			ug/kg wet	N/A	N/A	2460		98		80-120			
cis-1,2-Dichloroethene	10F0856			ug/kg wet	N/A	N/A	2370		95		80-120			
trans-1,2-Dichloroethene	10F0856			ug/kg wet	N/A	N/A	2360		94		80-120			
1,2-Dichloropropane	10F0856			ug/kg wet	N/A	N/A	2200		88		80-120			
1,3-Dichloropropane	10F0856			ug/kg wet	N/A	N/A	2190		88		80-120			
2,2-Dichloropropane	10F0856			ug/kg wet	N/A	N/A	2300		92		60-140			
1,1-Dichloropropene	10F0856			ug/kg wet	N/A	N/A	2340		94		80-120			
cis-1,3-Dichloropropene	10F0856			ug/kg wet	N/A	N/A	2240		90		80-120			
trans-1,3-Dichloropropene	10F0856			ug/kg wet	N/A	N/A	2280		91		80-120			
Ethylbenzene	10F0856			ug/kg wet	N/A	N/A	2190		87		80-120			
Hexachlorobutadiene	10F0856			ug/kg wet	N/A	N/A	1970		79		60-140			
Isopropylbenzene	10F0856			ug/kg wet	N/A	N/A	2140		86		80-120			
p-lsopropyltoluene	10F0856			ug/kg wet	N/A	N/A	2100		84		80-120			
Methylene Chloride	10F0856			ug/kg wet	N/A	N/A	2260		90		80-120			
Methyl tert-Butyl Ether	10F0856			ug/kg wet	N/A	N/A	2400		96		80-120			٠
Naphthalene	10F0856				N/A	N/A	1890		76		60-140			
•	10F0856			ug/kg wet	N/A	N/A	2200		88		80-120			
n-Propylbenzene				ug/kg wet										
Styrene	10F0856			ug/kg wet	N/A	N/A	2170		87		80-120			
1,1,1,2-Tetrachloroethane	10F0856			ug/kg wet	N/A	N/A	2160		87		80-120			
1,1,2,2-Tetrachloroethane	10F0856			ug/kg wet	N/A	N/A	2020		81		80-120			
Tetrachloroethene	10F0856			ug/kg wet	N/A	N/A	2300		92		80-120			
Toluene	10F0856			ug/kg wet	N/A	N/A	2200		88		80-120			
1,2,3-Trichlorobenzene	10F0856			ug/kg wet	N/A	N/A	1990		80		80-120			
1,2,4-Trichlorobenzene	10F0856			ug/kg wet	N/A	N/A	2040		82		80-120			
1,1,1-Trichloroethane	10F0856			ug/kg wet	N/A	N/A	2230		89		80-120			
1,1,2-Trichloroethane	10F0856		2500	ug/kg wet	N/A	N/A	2160		86		80-120			

2360

94

80-120

Trichlorofluoromethane

10F0856

2500

ug/kg wet

N/A

N/A

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

Work Order:

WTF0804

Received:

06/24/10

N8 W22350 Johnson Road Waukesha, WI 53186 Project: Project Number: 1E-0909013 Racine, WI 1730 State Street Reported:

07/01/10 10:15

			LC	S/LCS I	OUPLI	CATE	QC DA	TA						
Analyte	Seq/ Batch	Source Result	Spike Level		MDL	MRL	Dasult	Dup Result	% DEC		% REC	RPD	RPD Limit	o
VOCs by SW8260B	Daten	Result	Devel	Units	MIDL	WIXE	Result	Result	REC	70KEC	Limits	KI D	Limit	
1,2,3-Trichloropropane	10F0856		2500	ug/kg wet	N/A	N/A	1930		77		80-120			
1,2,4-Trimethylbenzene	10F0856			ug/kg wet	N/A	N/A	2080		83		80-120			
1,3,5-Trimethylbenzene	10F0856		2500	ug/kg wet	N/A	N/A	2110		84		80-120			
Vinyl chloride	10F0856		2500	ug/kg wet	N/A	N/A	2430		97		80-120			
Xylenes, total	10F0856		7500	ug/kg wet	N/A	N/A	6520		87		80-120			
Surrogate: Dibromofluoromethane	10F0856			ug/kg wet					100		80-120			
Surrogate: Toluene-d8	10F0856			ug/kg wet					97		80-120			
Surrogate: 4-Bromofluorohenzene	10F0856			ug/kg wet					97		80-120			

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Mr. Tim Taugher Work Order:

Project:

WTF0804

1E-0909013 Racine, WI

Received:

06/24/10

Project Number:

1730 State Street

Reported: 07

07/01/10 10:15

CERTIFICATION SUMMARY

TestAmerica Watertown

Method	Matrix	Nelac	Wisconsin	
SM 2540G	Solid/Soil	X	X	
SW 8260B	Solid/Soil	X	X	

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN N8 W22350 Johnson Road Waukesha, WI 53186 Mr. Tim Taugher Work Order:

Project Number:

WTF0804

Received:

06/24/10

Project:

1E-0909013 Racine, WI 1730 State Street Reported:

07/01/10 10:15

DATA QUALIFIERS AND DEFINITIONS

ADDITIONAL COMMENTS

Results are reported on a wet weight basis unless otherwise noted.

						_	0'	0													
Giles Engine	ering As	soci	ates,	Inc.				CHAIN	N-OF-CI	JSTODY	Υ ,					Site	Co	MARG	cial	Pri	reet
N8 W22350 Johnson	Road Suite A1, Wauk	esha, WI 5	3186		414-544-01	18		4-549-5868									1-17	2 5.		2	
4875 East La Palma A			92807		714-779-00			4-779-0068			sure sam	•	(ND720)			Address	173	0 0	iacre	- 3n	1
■ 8300 Guilford Road, S■ 10722 North Stemmo					410-312-99 214-358-58			0-312-9955 4-358-5884		□ R		required	(NR/20)				Rac	ine.	w	I	
☐ 2830 Agriculture Drive	•				608-223-18			8-223-1854	4									-			
3990 Flowers Road, S	Suite 530, Atlanta, GA	30360		tel.	770-458-33	99	fax: 77	0-458-3998	в Р	OSSIBL	_E HAZ	ARDS:									
Sample Collector	n Bauna	1				Project I	Manager	Tin	Tac	gher			Pr	oject Nu	ımber	IE-	0909	013			
Laboratory Used 795	or Americ	9				Lab Con	ntact	Dan	M.	0			La	b Job N	lumber						
La la la la la la la la la la la la la la	(Somale Den.	65	Soli Waling Co.	Time Sall	rience Lieux		2/3/2			Analys	is Require					Number and The	to allowed to	/	Due Date L	ab ID	Temp
GP-1	4-6'	Soil	6/23/10	AM PM	860	K				11	11		11		10.	1 #	Medi	1 5-0	-		
G-P-1	8-10'	1	1	AM PM	188	X	-								1			T			
GP-1	12-14'			AM PM	152	X	_														
6 P-				AM																	
ap-2	4-6'			AM PM	498	X															Seeks.
CP-2	8-/0'	1		AM	228	×	1				11									1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
61-3	2-4'			AM PM	BDL	X	-	+	1				+++					11			N. W.
G1-3	6-8'	+	1	AM	BDL	×		++	+++		1							1	- 678	A CALL	
			+	PM		-	-	+	++	++	++		++	-	-		+	++			
68-4	4-6'	-		PM AM	246	X	-	-	-	+	++	++	-	-		+		++	131	A. 21	
al-4	6-8	-		PM AM	28	×	-	++	+	-	-	-	-			-	-	++			The state of the s
GP-5	4-6	11		PM AM	13	X	-		-			-	+	-		-		++			
65 CP-5	6-81	4	+	PM	9	X										*	*	-		97	China.
container code: A = 8 oz/250 ml B = 4 oz/ 120 ml				c = 2 oz/ 60 c = 40 mL \				_	= 1 L Amb		G H	= poly bag = 150 A	L play				J =				same
Relinquished By		Date	Т	ime	Received B	у	01	V Ic	6	INVOIC	E TO:	_ F	Send cop Project Ma	nager			REPOR	T TO:			PM
05 Bay		6/23	10	1300 AM	la	a W	ayl.			Tir	n Ta	agher					Tim	Tai	ملور	_	
Roy Wrys		6.24	10	3° AM	141.	att	6/2	1/10	166										U		- 01
0				AM PM			1	1							Page						
				PM											of_	2					
forms.xls//COC 08/10/99																					

1 80

-N-11-8-H

Site Connerdal Property

Address 1730 State Street

Racine, WI Giles Engineering Associates, Inc. CHAIN-OF-CUSTODY tel: 414-544-0118 fax: 414-549-5868 ☐ closure sample fax: 714-779-0068 tel: 714-779-0052 ☐ confirmation required (NR720) tel: 410-312-9950 fax: 410-312-9955 □ RUSH tel: 214-358-5885 fax: 214-358-5884 tel: 608-223-1853 fax: 608-223-1854 **POSSIBLE HAZARDS:** tel. 770-458-3399 fax: 770-458-3998 E-0909013 Taugher Project Manager Project Number Dan M. Lab Contact Lab Job Number **Analysis Required** STOCK BYEY 100 188 Date Lab ID Temp AM PM 5001 6/23/00 SAD 71 14 MeoH AM PM 50 X K PM ID AM PM AM. PM AM PM AM PM AM PM AM PM AM PM AM PM AM PM

A = 8 oz/250 m B = 4 oz/120 m		D = 40 mL \			F = 250 mL pla	stic H	= 150 ml plastic		J =	
Relinquished By	Date	Time	Received By	on Ice		INVOICE TO:	Send copy to Project Manager		REPORT TO:	□ same □ PM
5305	6/23/10	1300 €	b lon	WHY		Tim To	negler		Tim Tau	gher
Roy World	6.24.10	15:00 PM	Mas	6/24/18	1616		U			
		AN PN	A					Page 2		
		AN PN	A					of 2		

N8 W22350 Johnson Road Suite A1, Waukesha, WI 53186

8300 Guilford Road, Suite F1, Columbia, MD 21046

☐ 10722 North Stemmons Freeway, Dallas, TX 75220

3990 Flowers Road, Suite 530, Atlanta, GA,30360

Tom

☐ 2830 Agriculture Drive, Madison, WI 53718

Sample Collector

Laboratory Used

MEDH Black

container code:

4875 East La Palma Avenue, Suite 607, Anaheim, CA 92807

Bauman

America

Cooler Receipt Log

Work Order(s):	TFO 807 Client Name/Proj	ect: Olles	# of C	Coolers:
How did samples arrive?	MEAN THE	S - TestAmerica Clie	ient Dunham Spe	adv 🗆
·		,		,
hat was the condition of	of custody seals?	Intaci	t Broken Not	present
te/time cooler was ope	ned: 6/24/10	By: Mad	Mayu	
Temperature °C		Received on ice?	Yes No	
•	RUSH turn around?			
re there any short hold	time tests?		□ Yes □ No	
multiplication within 1 hr of or particular	st expiration of hold-time?		Provide details in space	at bottom of form
	48 hours or less		7 days	
	Coliform Bacteria	1 _ 2	janic Prep	
	BOD 24 Hours	TDS		
•	Nitrate (DW is 1			
	Nitrite Orthophosphate)	Sulfide Volatile Solid	is	
	d times of 48 hrs or less, are any		_	
within 2 days of or	past expiration of hold-time?		No Provide details	in space at bottom of form
Which Ops Mgr, PM or	Analyst was informed of short he	old and when? Who	When	
s the date and time of c	ollection recorded?	Date A	Yes No Time	-⊟Yes □ No
Vere all sample contains	ers listed on the COC received a	nd intact?	☐ No Provide details	in space at bottom of form
•	e COC?			in space at bottom of form
				iii opioo ut sottom ot ton
	ers field filtered or being filtered in			DVaa DNa
•	dequate and preservatives correct	•		⊒¥es □ No
Are VOC samples free	of bubbles >6mm?		□ No □MA	
How were VOC soils re	eceived? Methanol So	dium Bisulfate 🔲 Packed ja	ar 🗌 Encore 🔲 Wa	ter* Other
*☐within 48 hrs of sar	mpling 🔲 past 48 hrs of samplin	ig ☐ Frozen ☐ Not Fro	ozen	
Is an aqueous Trip Bla	nk included?	☑NA Is a Methanol	Trip Blank included?	Yes □No □NA
Are any samples on ho	id?	Yes	No Provide details	in space at bottom of for
	e subcontracted?			•
	de to this Work Order after Login,			rolain them below
il any changes are mad	te to this work order after Login,	of it comments must be mad	ic regarding this cooler, ex	plain blem below.
	•			
				
	· · · · · · · · · · · · · · · · · · ·			

July 29, 2010

RECEIVED AUG 0 5 2010

Client:

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186

Work Order:

WTG0762

Project Name: Project Number: 1E-0909013 Racine, WI

1730 State Street

Attn:

Mr. Tim Taugher

Date Received:

07/27/10

An executed copy of the chain of custody is also included as an addendum to this report.

If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-800-833-7036

SAMPLE IDENTIFICATION	LAB NUMBER	COLLECTION DATE AND TIME
MW-5 2-4'	WTG0762-01	07/23/10
MW-6 2-4'	WTG0762-02	07/23/10
MW-7 2-4'	WTG0762-03	07/23/10
MW-8 2-3'	WTG0762-04	07/23/10
MeOH Blank	WTG0762-05	07/23/10

Samples were received on ice into laboratory at a temperature of 6 °C.

Wisconsin Certification Number: 128053530

The Chain(s) of Custody, 2 pages, are included and are an integral part of this report.

Unless subcontracted, volatiles analyses (including VOC, PVOC, GRO, BTEX, and TPH gasoline) performed by TestAmerica Watertown at 1101 Industrial Drive, Units 9&10. All other analyses performed at the address shown in the heading of this report.

Approved By:

TestAmerica Watertown

Brian DeJong For Dan F. Milewsky

Project Manager

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Mr. Tim Taugher Work Order: Project:

Project Number:

WTG0762

1E-0909013 Racine, WI

1730 State Street

Received:

07/27/10

Reported: 07/29/10 09:15

ANALYTICAL REPORT

Analyte	Sample Result	Data Qualifiers	Units	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
		- Quantition 1		WILC	Tactor	Anatyzeu	Analyst	Daten	Withou
Sample ID: WTG0762-01 (MW	-5 2-4' - Soil)					Sampled: 07	/23/10		
General Chemistry Parameters									
% Solids	80		%	NA	1	07/28/10 15:35	pam	10G0649	SM 2540G
VOCs by SW8260B									
Benzene	<31		ug/kg dry	31	I	07/27/10 15:35	LCK	10G0621	SW 8260B
Bromobenzene	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
Bromochloromethane	<44		ug/kg dry	44	1	07/27/10 15:35	LCK	10G0621	SW 8260B
Bromodichloromethane	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
Bromoform	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
Bromomethane	<120		ug/kg dry	120	1	07/27/10 15:35	LCK	10G0621	SW 8260B
n-Butylbenzene	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
sec-Butylbenzene	<31		ug/kg dry	31	I	07/27/10 15:35	LCK	10G0621	SW 8260B
tert-Butylbenzene	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
Carbon Tetrachloride	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
Chlorobenzene	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
Chlorodibromomethane	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
Chioroethane	<62		ug/kg dry	62	1	07/27/10 15:35	LCK	10G0621	SW 8260B
Chloroform	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
Chloromethane	<62		ug/kg dry	62	1	07/27/10 15:35	LCK	10G0621	SW 8260B
2-Chlorotoluene	<62		ug/kg dry	62	1	07/27/10 15:35	LCK	10G0621	SW 8260B
4-Chlorotoluene	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
1,2-Dibromo-3-chloropropane	<62		ug/kg dry	62	1	07/27/10 15:35	LCK	10G0621	SW 8260B
1.2-Dibromoethane (EDB)	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
Dibromomethane	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
1,2-Dichlorobenzene	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
1,3-Dichlorobenzene	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
1.4-Dichlorobenzene	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
Dichlorodifluoromethane	<62		ug/kg dry	62	1	07/27/10 15:35	LCK	10G0621	SW 8260B
1,1-Dichloroethane	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
1,2-Dichloroethane	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
1,1-Dichloroethene	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
cis-1,2-Dichloroethene	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
trans-1,2-Dichloroethene	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
1,2-Dichloropropane	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
1,3-Dichloropropane	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
2,2-Dichloropropane	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
1.1-Dichloropropene	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
cis-1,3-Dichloropropene	<31		ug/kg dry	31	Ī	07/27/10 15:35	LCK	10G0621	SW 8260B
trans-1,3-Dichloropropene	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
2.3-Dichloropropene	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
lsopropyl Ether	⊲1		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
Ethylbenzene	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
Hexachlorobutadiene	<44		ug/kg dry	44	1	07/27/10 15:35	LCK	10G0621	SW 8260B
Isopropylbenzene	<31		ug/kg dry	31	I	07/27/10 15:35	LCK	10G0621	SW 8260B
p-Isopropyltoluene	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
Methylene Chloride	<62		ug/kg dry	62	1	07/27/10 15:35	LCK	10G0621	SW 8260B
=	<31		ug/kg dry	31	1				SW 8260B
Methyl tert-Butyl Ether	<62		ug/kg dry	62	1	07/27/10 15:35 07/27/10 15:35	LCK LCK	10G0621	SW 8260B
Naphthalene	<31		ug/kg dry	31		07/27/10 15:35		10G0621	SW 8260B SW 8260B
n-Propylbenzene	<62			62	1		LCK	10G0621	
Styrene			ug/kg dry		1	07/27/10 15:35	LCK	10G0621	SW 8260B
1,1,1,2-Tetrachloroethane	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186

Work Order:

Project Number:

Project:

WTG0762

1730 State Street

07/27/10 Received:

1E-0909013 Racine, WI

Reported:

07/29/10 09:15

Mr. Tim Taugher

Analyte	Sample Result	Data Qualifiers	Units	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTG0762-01 (MW-5 2	-4' - Soil) - co	nt.				Sampled: 07	/23/10		
VOCs by SW8260B - cont.	,					bumpieur o.	120/10		
1,1,2,2-Tetrachloroethane	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
Tetrachloroethene	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
Toluene	⊲1		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
1,2,3-Trichlorobenzene	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
1,2,4-Trichlorobenzene	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
1,1,1-Trichloroethane	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
1,1,2-Trichloroethane	<44		ug/kg dry	44	1	07/27/10 15:35	LCK	10G0621	SW 8260B
Trichloroethene	⊲1		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
Trichlorofluoromethane	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
1,2,3-Trichloropropane	<62		ug/kg dry	62	1	07/27/10 15:35	LCK	10G0621	SW 8260B
1,2,4-Trimethylbenzene	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
1,3,5-Trimethylbenzene	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
Vinyl chloride	<44		ug/kg dry	44	1	07/27/10 15:35	LCK	10G0621	SW 8260B
Xylenes, total	<110		ug/kg dry	110	1	07/27/10 15:35	LCK	10G0621	SW 8260B
Surr: Dibromofluoromethane (80-120%)	104 %		ug/ng uly	110	1	01/21/10 15.55	DOR	1000021	5 W 0200B
Surr: Toluene-d8 (80-120%)	97 %								
Surr: 4-Bromofluorobenzene (80-120%)	102 %								
Sample ID: WTG0762-02 (MW-6 2	-4' - Soil)					Complete 07	/22/10		
General Chemistry Parameters	- Son)					Sampled: 07	/23/10		
	93		0/	27.4	,	07/20/10 15:25		1000(40	61425400
% Solids	82		%	NA	1	07/28/10 15:35	pam	10G0649	SM 2540G
VOCs by SW8260B				-					
Benzene	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260B
Bromobenzene	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260B
Bromochloromethane	<43		ug/kg dry	43	1	07/27/10 16:00	LCK	10G0621	SW 8260B
Bromodichloromethane	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260B
Bromoform	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260B
Bromomethane	<120		ug/kg dry	120	1	07/27/10 16:00	LCK	10G0621	SW 8260B
n-Butylbenzene	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260B
sec-Butylbenzene	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260B
tert-Butylbenzene	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260B
Carbon Tetrachloride	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260B
Chlorobenzene	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260B
Chlorodibromomethane	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260B
Chloroethane	<61		ug/kg dry	61	1	07/27/10 16:00	LCK	10G0621	SW 8260B
Chloroform	⊲1		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260B
Chloromethane	<61		ug/kg dry	61	1	07/27/10 16:00	LCK	10G0621	SW 8260B
2-Chlorotoluene	<61		ug/kg dry	61	1	07/27/10 16:00	LCK	10G0621	SW 8260B
4-Chlorotoluene	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260B
1,2-Dibromo-3-chloropropane	<61		ug/kg dry	61	1	07/27/10 16:00	LCK	10G0621	SW 8260B
1,2-Dibromoethane (EDB)	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260B
Dibromomethane	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260B
1,2-Dichlorobenzene	<31		ug/kg dry	31	I	07/27/10 16:00	LCK	10G0621	SW 8260B
1,3-Dichlorobenzene	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260B
1,4-Dichlorobenzene	⊲31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260B
Dichlorodifluoromethane	<61		ug/kg dry	61	1	07/27/10 16:00	LCK	10G0621	SW 8260B
1,1-Dichloroethane	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260B
1,2-Dichloroethane	⊲1		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260B
1,1-Dichloroethene	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260B
cis-1,2-Dichloroethene	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260B
trans-1,2-Dichloroethene	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260B

TestAmerica Watertown

Brian DeJong For Dan F. Milewsky

Project Manager

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186

Work Order:

Project Number:

WTG0762

1730 State Street

Received: 07/27/10

Project:

1E-0909013 Racine, WI

Reported:

07/29/10 09:15

Mr. Tim Taugher

Analyte	Sample Result	Data Qualifiers	Units	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTG0762-02 (MW-6 2	-4' - Soil) - co	nt.				Sampled: 07	/23/10		
VOCs by SW8260B - cont.									
1,2-Dichloropropane	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 82601
1,3-Dichloropropane	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 82601
2,2-Dichloropropane	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260E
1,1-Dichloropropene	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260E
cis-1,3-Dichloropropene	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260E
trans-1,3-Dichloropropene	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260E
2,3-Dichloropropene	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260E
Isopropyl Ether	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260E
Ethylbenzene	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260F
Hexachlorobutadiene	<43		ug/kg dry	43	I	07/27/10 16:00	LCK	10G0621	SW 8260E
lsopropylbenzene	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260E
p-lsopropyltoluene	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260E
Methylene Chloride	<61		ug/kg dry	61	1	07/27/10 16:00	LCK	10G0621	SW 8260E
Methyl tert-Butyl Ether	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260F
Naphthalene	<61		ug/kg dry	61	1	07/27/10 16:00	LCK	10G0621	SW 8260E
n-Propylbenzene	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260E
Styrene	<61		ug/kg dry	61	1	07/27/10 16:00	LCK	10G0621	SW 8260F
1,1,1,2-Tetrachloroethane	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260F
1,1,2,2-Tetrachloroethane	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260E
Tetrachloroethene	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260F
Toluene	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260E
1,2,3-Trichlorobenzene	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260E
1,2,4-Trichlorobenzene	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 82601
1,1,1-Trichloroethane	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260F
1,1,2-Trichloroethane	<43		ug/kg dry	43	1	07/27/10 16:00	LCK	10G0621	SW 8260E
Trichloroethene	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260E
Trichlorofluoromethane	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260E
1,2,3-Trichloropropane	<61		ug/kg dry	61	1	07/27/10 16:00	LCK	10G0621	SW 8260E
1,2,4-Trimethylbenzene	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 82601
1,3,5-Trimethylbenzene	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260E
Vinyl chloride	<43		ug/kg dry	43	1	07/27/10 16:00	LCK	10G0621	SW 82601
Xylenes, total	<100		ug/kg dry	100	1	07/27/10 16:00	LCK	10G0621	SW 82601
Surr: Dibromofluoromethane (80-120%)	104 %								
Surr: Toluene-d8 (80-120%)	97 %								
	100.01								

Surr: 4-Bromofluorobenzene (80-120%)

102 %

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Work Order:

WTG0762

Received:

07/27/10

Waukesha, WI 53186

Mr. Tim Taugher

1E-0909013 Racine, WI Project: 1730 State Street Project Number:

07/29/10 09:15 Reported:

Analyte	Sample Result	Data Qualifiers	Units	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTG0762-03 (MV	W-7 2-4' - Soil)			- 144		Sampled: 07	/23/10		
General Chemistry Parameters									
% Solids	81		%	NA	1	07/28/10 15:35	pam	10G0649	SM 2540G
VOCs by SW8260B									
Benzene	<31		ug/kg dry	. 31	1	07/27/10 16:26	LCK	10G0621	SW 8260B
Bromobenzene	<31		ug/kg dry	31	I	07/27/10 16:26	LCK	10G0621	SW 8260B
Bromochloromethane	<43		ug/kg dry	43	1	07/27/10 16:26	LCK	10G0621	SW 8260B
Bromodichloromethane	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 8260B
Bromoform	⊲1		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 8260B
Bromomethane	<120		ug/kg dry	120	1	07/27/10 16:26	LCK	10G0621	SW 8260B
n-Butylbenzene	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 8260B
sec-Butylbenzene	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 8260B
tert-Butylbenzene	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 8260B
Carbon Tetrachloride	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 8260B
Chlorobenzene	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 8260B
Chlorodibromomethane	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 8260B
Chloroethane	<62		ug/kg dry	62	1	07/27/10 16:26	LCK	10G0621	SW 8260B
Chloroform	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 8260B
Chloromethane	<62		ug/kg dry	62	1	07/27/10 16:26	LCK	10G0621	SW 8260B
	<62		ug/kg dry	62	1	07/27/10 16:26	LCK	10G0621	SW 8260B
2-Chlorotoluene	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 8260B
4-Chlorotoluene	<62			62	1	07/27/10 16:26	LCK	10G0621	SW 8260B
1,2-Dibromo-3-chloropropane			ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 8260B
1,2-Dibromoethane (EDB)	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 8260B
Dibromomethane	<31 <31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 8260B
1.2-Dichlorobenzene			ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 8260B
1,3-Dichlorobenzene	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 8260B
1,4-Dichlorobenzene	<31		ug/kg dry	62	1	07/27/10 16:26	LCK	10G0621	SW 8260B
Dichlorodifluoromethane	<62		ug/kg dry	31		07/27/10 16:26	LCK	10G0621	SW 8260B
1,1-Dichloroethane	⊲1		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 8260B
1,2-Dichloroethane	⊲1		ug/kg dry	31		07/27/10 16:26	LCK	10G0621	SW 8260B
1,1-Dichloroethene	<31		ug/kg dry		1		LCK	10G0621	SW 8260B
cis-1,2-Dichloroethene	<31		ug/kg dry	31	1	07/27/10 16:26	LCK		SW 8260B
trans-1,2-Dichloroethene	⊲1		ug/kg dry	31	1	07/27/10 16:26		10G0621	SW 8260B
1,2-Dichloropropane	⊲1		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	
1,3-Dichloropropane	⊲1		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 8260B
2,2-Dichloropropane	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 8260B
1,1-Dichloropropene	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 8260B
cis-1,3-Dichloropropene	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 8260B
trans-1,3-Dichloropropene	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 8260B
2,3-Dichloropropene	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 8260B
Isopropyl Ether	<31		ug/kg dry	31	1	07/27/10 16:26	LCK .	10G0621	SW 8260B
Ethylbenzene	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 8260B
Hexachlorobutadiene	<43		ug/kg dry	43	1	07/27/10 16:26	LCK	10G0621	SW 8260B
Isopropylbenzene	<31		ug/kg dry	31	I	07/27/10 16:26	LCK	10G0621	SW 8260B
p-Isopropyltoluene	≪31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 8260B
Methylene Chloride	<62		ug/kg dry	62	1	07/27/10 16:26	LCK	10G0621	SW 8260B
Methyl tert-Butyl Ether	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 8260B
Naphthalene	<62		ug/kg dry	62	1	07/27/10 16:26	LCK	10G0621	SW 8260B
n-Propylbenzene	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 8260B
Styrene	<62		ug/kg dry	62	1	07/27/10 16:26	LCK	10G0621	SW 8260B
1,1,1,2-Tetrachloroethane	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 8260B
1,1,2,2-Tetrachloroethane	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 8260B
Tetrachloroethene	530		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 8260B

602 Commerce Drive Watertown, Wt 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Work Order:

WTG0762

Received:

07/27/10

Project: Project Number: 1E-0909013 Racine, WI 1730 State Street Reported:

	Sample	Data			Dilution	Date		Seq/	
Analyte	Result	Qualifiers	Units	MRL	Factor	Analyzed	Analyst	Batch	Method
Sample ID: WTG0762-03 (MW-7 2	2-4' - Soil) - co	nt.				Sampled: 07	/23/10		
VOCs by SW8260B - cont.									
Toluene	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 8260
1,2,3-Trichlorobenzene	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 8260
1,2,4-Trichlorobenzene	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 8260
1,1,1-Trichloroethane	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 8260
1,1,2-Trichloroethane	<43		ug/kg dry	43	1	07/27/10 16:26	LCK	10G0621	SW 8260
Trichloroethene	44		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 8260
Trichlorofluoromethane	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 8260
1,2.3-Trichloropropane	<62		ug/kg dry	62	1	07/27/10 16:26	LCK	10G0621	SW 8260
1,2,4-Trimethylbenzene	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 8260
1,3,5-Trimethylbenzene	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 8260
Vinyl chloride	<43		ug/kg dry	43	1	07/27/10 16:26	LCK	10G0621	SW 8260
Xylenes, total	<110		ug/kg dry	110	1	07/27/10 16:26	LCK	10G0621	SW 8260
Surr: Dibromofluoromethane (80-120%)	102 %								
Surr: Toluene-d8 (80-120%)	98 %								
Surr: 4-Bromofluorobenzene (80-120%)	101 %								
Sample ID: WTG0762-04 (MW-8 2	2-3' - Soil)					Sampled: 07	/23/10		
General Chemistry Parameters	,								
% Solids	82		%	NA	1	07/28/10 15:35	pam	10G0649	SM 2540
VOCs by SW8260B	02		, 0	****	•	01120110 12122	pari	10000	
•	24			24	1.1	07/27/10 16:52	LCK	10G0621	SW 8260
Benzene	<34		ug/kg dry	34	1.1				SW 8260
Bromobenzene	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	
Bromochloromethane	<47		ug/kg dry	47	1.1	07/27/10 16:52	LCK	10G0621	SW 8260
Bromodichloromethane	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260
Bromoform	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260
Bromomethane	<130		ug/kg dry	130	1.1	07/27/10 16:52	LCK	10G0621	SW 8260
n-Butylbenzene	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260
sec-Butylbenzene	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260
tert-Butylbenzene	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260
Carbon Tetrachloride	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260
Chlorobenzene	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260
Chlorodibromomethane	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260
Chloroethane	<67		ug/kg dry	67	1.1	07/27/10 16:52	LCK	10G0621	SW 8260
Chloroform	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260
Chloromethane	<67		ug/kg dry	67	1.1	07/27/10 16:52	LCK	10G0621	SW 8260
2-Chlorotoluene	<67		ug/kg dry	67	1.1	07/27/10 16:52	LCK	10G0621	SW 8260
4-Chlorotoluene	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260
1,2-Dibromo-3-chloropropane	<67		ug/kg dry	67	1.1	07/27/10 16:52	LCK	10G0621	SW 8260
1,2-Dibromoethane (EDB)	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260
Dibromomethane	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260
1,2-Dichlorobenzene	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260
1,3-Dichlorobenzene	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260
1,4-Dichlorobenzene	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260
Dichlorodifluoromethane	<67		ug/kg dry	67	1.1	07/27/10 16:52	LCK	10G0621	SW 8260
1,1-Dichloroethane	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260
1,2-Dichloroethane	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260
1,1-Dichloroethene	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260
cis-1,2-Dichloroethene	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260
trans-1,2-Dichloroethene	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260
1,2-Dichloropropane	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260
1,3-Dichloropropane	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Mr. Tim Taugher

Work Order:

WTG0762

Received:

07/27/10

Project: Project Number: 1730 State Street

1E-0909013 Racine, WI

Reported:

Analyte	Sample Result	Data Qualifiers	Units	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTG0762-04 (MW-8 2	-3' - Soil) - co	nt.				Sampled: 07	/23/10		
VOCs by SW8260B - cont.						•			
2,2-Dichloropropane	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260E
1,1-Dichloropropene	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260E
cis-1,3-Dichloropropene	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260E
trans-1,3-Dichloropropene	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260E
2,3-Dichloropropene	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260E
Isopropyl Ether	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260E
Ethylbenzene	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260E
Hexachlorobutadiene	<47		ug/kg dry	47	1.1	07/27/10 16:52	LCK	10G0621	SW 82601
Isopropylbenzene	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 82601
p-Isopropyltoluene	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 82601
Methylene Chloride	<67		ug/kg dry	67	1.1	07/27/10 16:52	LCK	10G0621	SW 8260E
Methyl tert-Butyl Ether	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260
Naphthalene	80		ug/kg dry	67	1.1	07/27/10 16:52	LCK	10G0621	SW 8260
n-Propylbenzene	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260
Styrene	<67		ug/kg dry	67	1.1	07/27/10 16:52	LCK	10G0621	SW 82601
1,1,1,2-Tetrachloroethane	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 82601
1,1,2,2-Tetrachloroethane	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260
Tetrachloroethene	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 82601
Toluene	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 82601
1,2,3-Trichlorobenzene	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 82601
1,2,4-Trichlorobenzene	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 82601
1,1,1-Trichloroethane	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 82601
1,1,2-Trichloroethane	<47		ug/kg dry	47	1.1	07/27/10 16:52	LCK	10G0621	SW 8260
Trichloroethene	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 82601
Trichlorofluoromethane	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 82601
1,2,3-Trichloropropane	<67		ug/kg dry	67	1.1	07/27/10 16:52	LCK	10G0621	SW 8260
1,2,4-Trimethylbenzene	55		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260
1,3,5-Trimethylbenzene	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260
Vinyl chloride	<47		ug/kg dry	47	1.1	07/27/10 16:52	LCK	10G0621	SW 82601
Xylenes, total	<110		ug/kg dry	110	1.1	07/27/10 16:52	LCK	10G0621	SW 82601
Surr: Dibromofluoromethane (80-120%)	105 %								
Surr: Toluene-d8 (80-120%)	96 %								
Surr: 4-Bromofluorobenzene (80-120%)	100 %								

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

M

Work Order:

WTG0762

Received:

07/27/10

Project:

1E-0909013 Racine, WI

Reported:

Vaukesha, WI 53186	Project Number:	1730 State Street
Ar. Tim Taugher		

Analyte	Sample Result	Data Qualifiers	Units	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
	-						-		
Sample ID: WTG0762-05 (MeO	II DIANK - MISC. L	iquiu)				Sampled: 07	/23/10		
VOCs by SW8260B	20						1.01/	1000/01	0111 00 (0
Benzene	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260
Bromobenzene	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260
Bromochloromethane	<35		ug/kg wet	35	1	07/27/10 15:09	LCK	10G0621	SW 8260
Bromodichloromethane	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260
Bromoform	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260
Bromomethane	<100		ug/kg wet	100	1	07/27/10 15:09	LCK	10G0621	SW 8260
n-Butylbenzene	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260
sec-Butylbenzene	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260
ert-Butylbenzene	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260
Carbon Tetrachloride	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260
Chlorobenzene	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260
Chlorodibromomethane	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260
Chloroethane	<50		ug/kg wet	50	1	07/27/10 15:09	LCK	10G0621	SW 8260
Chloroform	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260
Chloromethane	<50		ug/kg wet	50	1	07/27/10 15:09	LCK	10G0621	SW 8260
2-Chlorotoluene	<50		ug/kg wet	50	1	07/27/10 15:09	LCK	10G0621	SW 8260
4-Chlorotoluene	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260
1,2-Dibromo-3-chloropropane	<50		ug/kg wet	50	1	07/27/10 15:09	LCK	10G0621	SW 8260
1,2-Dibromoethane (EDB)	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260
Dibromomethane	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260
,2-Dichlorobenzene	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260
,3-Dichlorobenzene	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260
,4-Dichlorobenzene	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260
Dichlorodifluoromethane	<50		ug/kg wet	50	1	07/27/10 15:09	LCK	10G0621	SW 8260
1,1-Dichloroethane	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260
1,2-Dichloroethane	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260
,1-Dichloroethene	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260
eis-1,2-Dichloroethene	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260
rans-1,2-Dichloroethene	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260
,2-Dichloropropane	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260
,3-Dichloropropane	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260
2,2-Dichloropropane	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260
,1-Dichloropropene	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260
cis-1,3-Dichloropropene	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260
rans-1,3-Dichloropropene	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260
2,3-Dichloropropene	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260
sopropyl Ether	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260
Ethylbenzene	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260
Hexachlorobutadiene	<35		ug/kg wet	35	1	07/27/10 15:09	LCK	10G0621	SW 8260
sopropylbenzene	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260
-Isopropyltoluene	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260
Methylene Chloride	<50		ug/kg wet	50	1	07/27/10 15:09	LCK	10G0621	SW 8260
Methyl tert-Butyl Ether	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260
Naphthalene	<50			50	1	07/27/10 15:09	LCK		
•	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621 10G0621	SW 8260 SW 8260
n-Propylbenzene Styrene	<50		ug/kg wet					10G0621 10G0621	
•			ug/kg wet	50	1	07/27/10 15:09	LCK		SW 8260
,1,1,2-Tetrachloroethane	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260
,1,2,2-Tetrachloroethane	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260
Tetrachloroethene	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260
Toluene	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260
1,2,3-Trichlorobenzene	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 826

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

1E-0909013 Racine, WI

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Mr. Tim Taugher

Work Order:

Project:

WTG0762

Received:

07/27/10

Project Number: 1730 State Street

Reported: 07/29/10 09:15

A II-4-	Sample	Data Qualifiers	Units	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Analyte	Result	Quainters	Units	MRL	ractor	Allalyzeu	Analyst	Daten	Method
Sample ID: WTG0762-05 (MeOH B	lank - Misc. I	iquid) - cont.				Sampled: 07	/23/10		
VOCs by SW8260B - cont.						-			
1,2,4-Trichlorobenzene	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260B
1,1,1-Trichloroethane	<25		ug/kg wet	25	. 1	07/27/10 15:09	LCK	10G0621	SW 8260B
1,1,2-Trichloroethane	<35		ug/kg wet	35	1	07/27/10 15:09	LCK	10G0621	SW 8260B
Trichloroethene	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260B
Trichlorofluoromethane	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260B
1,2,3-Trichloropropane	<50		ug/kg wet	50	1	07/27/10 15:09	LCK	10G0621	SW 8260B
1,2,4-Trimethylbenzene	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260B
1,3,5-Trimethylbenzene	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260B
Vinyl chloride	<35		ug/kg wet	35	1	07/27/10 15:09	LCK	10G0621	SW 8260B
Xylenes, total	<85		ug/kg wet	85	1	07/27/10 15:09	LCK	10G0621	SW 8260B
Surr: Dibromofluoromethane (80-120%)	103 %								
Surr: Toluene-d8 (80-120%)	99 %								
Surr: 4-Bromofluorobenzene (80-120%)	104 %								

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Mr. Tim Taugher Work Order:

WTG0762

Received:

07/27/10

VZZ550 JOHNSON KORU Pr

Project: Project Number:

1E-0909013 Racine, WI 1730 State Street Reported:

07/29/10 09:15

LABORATORY BLANK QC DATA

			LABORAT			202							
		Source		MOL	MDI	n 14	Dup	% DEC	Dup	% REC	DDD	RPD	0
Analyte	Batch	Result	Level Units	MDL	MRL	Result	Result	REC	%KEC	Limits	RPD	Limit	Q
VOCs by SW8260B	1000(21			27/4	26	26							
Benzene	10G0621		ug/kg wet	N/A	25	<25							
Bromobenzene	10G0621		ug/kg wet	N/A	25	<25							
Bromochloromethane	10G0621		ug/kg wet	N/A	35	<35							
Bromodichloromethane	10G0621		ug/kg wet	N/A	25	<25							
Bromoform	10G0621		ug/kg wet	N/A	25	<25							
Bromomethane	10G0621		ug/kg wet	N/A	100	<100							
n-Butylbenzene	10G0621		ug/kg wet	N/A	25	<25							
sec-Butylbenzene	10G0621		ug/kg wet	N/A	25	<25							
tert-Butylbenzene	10G0621		ug/kg wet	N/A	25	<25							
Carbon Tetrachloride	10G0621		ug/kg wet	N/A	25	<25							
Chlorobenzene	10G0621		ug/kg wet	N/A	25	<25							
Chlorodibromomethane	10G0621		ug/kg wet	N/A	25	<25							
Chloroethane	10G0621		ug/kg wet	N/A	50	<50							
Chloroform	10G0621		ug/kg wet	N/A	25	<25							
Chloromethane	10G0621		ug/kg wet	N/A	50	<50							
2-Chlorotoluene	10G0621		ug/kg wet	N/A	50	<50							
4-Chlorotoluene	10G0621		ug/kg wet	N/A	25	<25							
1,2-Dibromo-3-chloropropane	10G0621		ug/kg wet	N/A	50	<50							
1,2-Dibromoethane (EDB)	10G0621		ug/kg wet	N/A	25	<25							
Dibromomethane	10G0621		ug/kg wet	N/A	25	<25							
1,2-Dichlorobenzene	10G0621		ug/kg wet	N/A	25	<25							
1,3-Dichlorobenzene	10G0621		ug/kg wet	N/A	25	<25							
1,4-Dichlorobenzene	10G0621		ug/kg wet	N/A	25	<25							
Dichlorodifluoromethane	10G0621		ug/kg wet	N/A	50	<50							
1,1-Dichloroethane	10G0621		ug/kg wet	N/A	25	<25							
1,2-Dichloroethane	10G0621		ug/kg wet	N/A	25	<25							
1,1-Dichloroethene	10G0621		ug/kg wet	N/A	25	<25							
cis-1,2-Dichloroethene	10G0621		ug/kg wet	N/A	25	<25							
trans-1,2-Dichloroethene	10G0621		ug/kg wet	N/A	25	<25							
1,2-Dichloropropane	10G0621		ug/kg wet	N/A	25	<25							
1,3-Dichloropropane	10G0621		ug/kg wet	N/A	25	<25							
2,2-Dichloropropane	10G0621		ug/kg wet	N/A	25	<25							
1,1-Dichloropropene	10G0621		ug/kg wet	N/A	25	<25							
cis-1,3-Dichloropropene	10G0621		ug/kg wet	N/A	25	<25							
trans-1,3-Dichloropropene	10G0621		ug/kg wet	N/A	25	<25							
2,3-Dichloropropene	10G0621		ug/kg wet	N/A	25	<25							
Isopropyl Ether	10G0621		ug/kg wet	N/A	25	<25							
Ethylbenzene	10G0621		ug/kg wet	N/A	25	<25							
Hexachlorobutadiene	10G0621		ug/kg wet	N/A	35	<35							
Isopropylbenzene	10G0621		ug/kg wet	N/A	25	<25							
•													
p-Isopropyltoluene Methylene Chloride Methyl tert-Butyl Ether Naphthalene	10G0621 10G0621 10G0621 10G0621		ug/kg wet ug/kg wet ug/kg wet ug/kg wet	N/A N/A N/A N/A	25 50 25 50	<25 <50 <25 <50							

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Work Order:

WTG0762

Received:

07/27/10

Project: Project Number: 1E-0909013 Racine, W1 1730 State Street

Reported:

07/29/10 09:15

			LAB	ORAT	ORY B	LANK	QC D	ATA						
Analyte	Seq/ Batch	Source Result	Spike Level	Units	MDL	MRL	Result	Dup Result	% REC	•	% REC	RPD	RPD Limit	Q
VOCs by SW8260B														
n-Propylbenzene	10G0621			ıg/kg wet	N/A	25	<25							
Styrene	10G0621			ig/kg wet	N/A	50	<50							
1,1,1,2-Tetrachloroethane	10G0621		1	ig/kg wet	N/A	25	<25							
1,1,2,2-Tetrachioroethane	10G0621		1	ig/kg wet	N/A	25	<25							
Tetrachloroethene	10G0621		1	ig/kg wet	N/A	25	<25							
Toluene	10G0621		ı	ıg/kg wet	N/A	25	<25							
1,2,3-Trichlorobenzene	10G0621		1	ıg/kg wet	N/A	25	<25							
1,2,4-Trichlorobenzene	10G0621		1	ıg/kg wet	N/A	25	<25							
1,1,1-Trichloroethane	10G0621		1	ıg/kg wet	N/A	25	<25							
1,1,2-Trichloroethane	10G0621		1	ig/kg wet	N/A	35	<35							
Trichloroethene	10G0621		1	ig/kg wet	N/A	25	<25							
Trichloro fluoromethane	10G0621		1	ag/kg wet	N/A	25	<25							
1,2,3-Trichloropropane	10G0621		1	ig/kg wet	N/A	50	<50							
1,2,4-Trimethylbenzene	10G0621		1	ig/kg wet	N/A	25	<25							
1,3,5-Trimethylbenzene	10G0621		1	ig/kg wet	N/A	25	<25							
Vinyl chloride	10G0621		1	ıg/kg wet	N/A	35	<35							
Xylenes, total	10G0621		1	ig/kg wet	N/A	85	<85							
Surrogate: Dibromofluoromethane	10G0621		u	g/kg wet					104		80-120			
Surrogate: Toluene-d8	10G0621		u	g/kg wet					97		80-120			
Surrogate: 4-Bromofluorobenzene	10G0621		u	g/kg wet					102		80-120			

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Work Order:

WTG0762

Received:

07/27/10

Project: Project Number: 1730 State Street

1E-0909013 Racine, WI

Reported:

07/29/10 09:15

				C	CV QC	DAT	A							
Analyte	Seq/ Batch	Source Result		Units	MDL	MRL	Result	Dup Result	% REC	Dup %REC	% REC	RPD	RPD Limit	Q
VOCs by SW8260B														
Benzene	T001618		2500	ug/kg wet	N/A	N/A	2330		93		80-120			
Bromobenzene	T001618		2500	ug/kg wet	N/A	N/A	2190		87		80-120			
Bromochloromethane	T001618		2500	ug/kg wet	N/A	N/A	2300		92		80-120			
Bromodichloromethane	T001618		2500	ug/kg wet	N/A	N/A	2290		92		80-120			
Bromoform	T001618		2500	ug/kg wet	N/A	N/A	2220		89		80-120			
Bromomethane	T001618		2500	ug/kg wet	N/A	N/A	2180		87		60-140			
n-Butylbenzene	T001618		2500	ug/kg wet	N/A	N/A	2280		91		80-120			
sec-Butylbenzene	T001618		2500	ug/kg wet	N/A	N/A	2310		92		80-120			
ert-Butylbenzene	T001618		2500	ug/kg wet	N/A	N/A	2290		91		80-120			
Carbon Tetrachloride	T001618		2500	ug/kg wet	N/A	N/A	2350		94		60-140			
Chlorobenzene	T001618		2500	ug/kg wet	N/A	N/A	2300		92		80-120			
Chlorodibromomethane	T001618		2500	ug/kg wet	N/A	N/A	2240		90		80-120			
Chloroethane	T001618		2500	ug/kg wet	N/A	N/A	2400		96		60-140			
Chloroform	T001618		2500	ug/kg wet	N/A	N/A	2440		98		80-120			
Chloromethane	T001618		2500	ug/kg wet	N/A	N/A	2310		92		60-140			
2-Chlorotoluene	T001618		2500	ug/kg wet	N/A	N/A	2240		89		80-120			
-Chlorotoluene	T001618		2500	ug/kg wet	N/A	N/A	2220		89		80-120			
1,2-Dibromo-3-chloropropane	T001618		2500	ug/kg wet	N/A	N/A	2110		84		60-140			
,2-Dibromoethane (EDB)	T001618		2500	ug/kg wet	N/A	N/A	2160		86		80-120			
Dibromomethane	T001618		2500	ug/kg wet	N/A	N/A	2280		91		80-120			
1,2-Dichlorobenzene	T001618		2500	ug/kg wet	N/A	N/A	2200		88		80-120			
3-Dichlorobenzene	T001618		2500	ug/kg wet	N/A	N/A	2250		90		80-120			
.4-Dichlorobenzene	T001618		2500	ug/kg wet	N/A	N/A	2240		90		80-120			
Dichlorodifluoromethane	T001618		2500	ug/kg wet	N/A	N/A	2250		90		60-140			
1,1-Dichloroethane	T001618		2500	ug/kg wet	N/A	N/A	2430		97		80-120			
1,2-Dichloroethane	T001618		2500	ug/kg wet	N/A	N/A	2440		98		80-120			
1,1-Dichloroethene	T001618		2500	ug/kg wet	N/A	N/A	2340		94		80-120			
cis-1,2-Dichloroethene	T001618		2500	ug/kg wet	N/A	N/A	2440		98		80-120			
rans-1,2-Dichloroethene	T001618		2500	ug/kg wet	N/A	N/A	2340		94		80-120			
1,2-Dichloropropane	T001618		2500	ug/kg wet	N/A	N/A	2270		91		80-120			
1,3-Dichloropropane	T001618		2500	ug/kg wet	N/A	N/A	2180		87		80-120			
2,2-Dichloropropane	T001618		2500	ug/kg wet	N/A	N/A	2560		102		60-140			
1,1-Dichloropropene	T001618		2500	ug/kg wet	N/A	N/A	2550		102		80-120			
cis-1,3-Dichloropropene	T001618		2500	ug/kg wet	N/A	N/A	2330		93		80-120			
rans-1,3-Dichloropropene	T001618		2500	ug/kg wet	N/A	N/A	2330		93		80-120			
2,3-Dichloropropene	T001618			ug/kg wet	N/A	N/A	2390		96		80-120			
(sopropy) Ether	T001618		2500	ug/kg wet	N/A	N/A	2520		101		80-120			
Ethylbenzene	T001618			ug/kg wet	N/A	N/A	2280		91		80-120			
Hexachlorobutadiene	T001618		2500	ug/kg wet	N/A	N/A	2350		94		60-140			
sopropylbenzene	T001618		2500	ug/kg wet	N/A	N/A	2320		93		80-120			
o-Isopropyltoluene	T001618		2500	ug/kg wet	N/A	N/A	2330	,	93		80-120			
Methylene Chloride	T001618		2500	ug/kg wet	N/A	N/A	2250		90		80-120			
Methyl tert-Butyl Ether	T001618		2500	ug/kg wet	N/A	N/A	2310		93		80-120			
Naphthalene	T001618		2500	ug/kg wet	N/A	N/A	2030		81		60-140			
n-Propylbenzene	T001618			ug/kg wet	N/A	N/A	2270		91		80-120			

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Work Order:

WTG0762

Received:

07/27/10

Project: Project Number:

1E-0909013 Racine, WI 1730 State Street

Reported:

07/29/10 09:15

				C	CV QC	DAT	A							
Analyte	Seq/ Batch	Source Result	Spike Level		MDL	MRL	Result	Dup Result	% REC	Dup %REC	% REC	RPD	RPD Limit	Q
VOCs by SW8260B														
Styrene	T001618		2500	ug/kg wet	N/A	N/A	2250		90		80-120			
1,1,1,2-Tetrachloroethane	T001618		2500	ug/kg wet	N/A	N/A	2350		94		80-120			
1,1,2,2-Tetrachloroethane	T001618		2500	ug/kg wet	N/A	N/A	2000		80		80-120			
Tetrachloroethene	T001618		2500	ug/kg wet	N/A	N/A	2410		96		80-120			
Toluene	T001618		2500	ug/kg wet	N/A	N/A	2220		89		80-120			
1,2.3-Trichlorobenzene	T001618		2500	ug/kg wet	N/A	N/A	2280		91		80-120			
1,2,4-Trichlorobenzene	T001618		2500	ug/kg wet	N/A	N/A	2320		93		80-120			
1,1,1-Trichloroethane	T001618		2500	ug/kg wet	N/A	N/A	2540		102		80-120			
1,1,2-Trichloroethane	T001618		2500	ug/kg wet	N/A	N/A	2180		87		80-120			
Trichloroethene	T001618		2500	ug/kg wet	N/A	N/A	2370		95		80-120			
Trichlorofluoromethane	T001618		2500	ug/kg wet	N/A	N/A	2510		100		80-120			
1,2,3-Trichloropropane	T001618		2500	ug/kg wet	N/A	N/A	2130		85		80-120			
1,2,4-Trimethylbenzene	T001618		2500	ug/kg wet	N/A	N/A	2220		89		80-120			
1,3,5-Trimethylbenzene	T001618		2500	ug/kg wet	N/A	N/A	2290		91		80-120			
Vinyl chloride	T001618		2500	ug/kg wet	N/A	N/A	2440		98		80-120			
Xylenes, total	T001618		7500	ug/kg wet	N/A	N/A	6740		90		80-120			
Surrogate: Dibromofluoromethane	T001618			ug/kg wet					104		80-120			
Surrogate: Toluene-d8	T001618			ug/kg wet					97		80-120			
Surrogate: 4-Bromofluorobenzene	T001618			ug/kg wet					99		80-120			

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Mr. Tim Taugher

Work Order:

WTG0762

Received:

07/27/10

Project: Project Number: 1730 State Street

1E-0909013 Racine, WI

Reported:

		L	ABOR	RATOR	Y DUI	PLICA	TE QC DA	TA					
Analyte	Seq/ Batch	Source Result	•	Units	MDL	MRL	Result	% REC	Dup %REC	% REC	RPD	RPD Limit	Q
General Chemistry Parameters QC Source Sample: WTG0762-04													
% Solids	10G0649	81.9		%	N/A	N/A	82.2				0	20	

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Work Order:

WTG0762

Received:

07/27/10

Project: Project Number: 1E-0909013 Racine, WI 1730 State Street Reported:

07/29/10 09:15

			LC	S/LCS I	UPLI	CATE	QC DA	ATA						
	Seq/	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Batch	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
VOCs by SW8260B														
Benzene	10G0621		2500	ug/kg wet	N/A	N/A	2320		93		80-120			
Bromobenzene	10G0621		2500	ug/kg wet	N/A	N/A	2210		88		80-120			
Bromochloromethane	10G0621		2500	ug/kg wet	N/A	N/A	2370		95		80-120			
Bromodichloromethane	10G0621		2500	ug/kg wet	N/A	N/A	2310		92		80-120			
Bromoform	10G0621		2500	ug/kg wet	N/A	N/A	2240		90		80-120			
Bromomethane	10G0621		2500	ug/kg wet	N/A	N/A	2290		91		60-140			
n-Butylbenzene	10G0621		2500	ug/kg wet	N/A	N/A	2290		92		80-120			
sec-Butylbenzene	10G0621		2500	ug/kg wet	N/A	N/A	2270		91		80-120			
tert-Butylbenzene	10G0621		2500	ug/kg wet	N/A	N/A	2250		90		80-120			
Carbon Tetrachloride	10G0621		2500	ug/kg wet	N/A	N/A	2350		94		60-140			
Chlorobenzene	10G0621		2500	ug/kg wet	N/A	N/A	2250		90		80-120			
Chlorodibromomethane	10G0621		2500	ug/kg wet	N/A	N/A	2240		89		80-120			
Chloroethane	10G0621		2500	ug/kg wet	N/A	N/A	2440		97		60-140			
Chloroform	10G0621		2500	ug/kg wet	N/A	N/A	2460		98		80-120			
Chloromethane	10G0621		2500	ug/kg wet	N/A	N/A	2600		104		60-140			
2-Chlorotoluene	10G0621		2500	ug/kg wet	N/A	N/A	2250		90		80-120			
4-Cblorotoluene	10G0621		2500	ug/kg wet	N/A	N/A	2200		88		80-120			
1,2-Dibromo-3-chloropropane	10G0621		2500	ug/kg wet	N/A	N/A	2120		85		60-140			
1,2-Dibromoethane (EDB)	10G0621		2500	ug/kg wet	N/A	N/A	2210		89		80-120			
Dibromomethane	10G0621		2500	ug/kg wet	N/A	N/A	2360		94		80-120			
1,2-Dichlorobenzene	10G0621		2500	ug/kg wet	N/A	N/A	2230		89		80-120			
1,3-Dichlorobenzene	10G0621		2500	ug/kg wet	N/A	N/A	2260		90		80-120			
1,4-Dichlorobenzene	10G0621		2500	ug/kg wet	N/A	N/A	2220		89		80-120			
Dichlorodifluoromethane	10G0621		2500	ug/kg wet	N/A	N/A	2540		101		60-140			
1,1-Dichloroethane	10G0621		2500	ug/kg wet	N/A	N/A	2470		99		80-120			
1,2-Dichloroethane	10G0621		2500	ug/kg wet	N/A	N/A	2470		99		80-120			
1,1-Dichloroethene	10G0621		2500	ug/kg wet	N/A	N/A	2460		99		80-120			
cis-1,2-Dichloroethene	10G0621		2500	ug/kg wet	N/A	N/A	2510		100		80-120			
trans-1,2-Dichloroethene	10G0621		2500	ug/kg wet	N/A	N/A	2460		99		80-120			
1,2-Dichloropropane	10G0621		2500	ug/kg wet	N/A	N/A	2260		90		80-120			
1,3-Dichloropropane	10G0621		2500	ug/kg wet	N/A	N/A	2180		87		80-120			
2,2-Dichloropropane	10G0621		2500	ug/kg wet	N/A	N/A	2520		101		60-140			
1,1-Dichloropropene	10G0621		2500	ug/kg wet	N/A	N/A	2560		102		80-120			
cis-1,3-Dichloropropene	10G0621		2500	ug/kg wet	N/A	N/A	2260		90		80-120			
trans-1,3-Dichloropropene	10G0621		2500	ug/kg wet	N/A	N/A	2320		93		80-120			
Ethylhenzene	10G0621		2500	ug/kg wet	N/A	N/A	2230		89		80-120			
Hexachlorobutadiene	10G0621		2500	ug/kg wet	N/A	N/A	2300		92		60-140			
lsopropylbenzene	10G0621		2500	ug/kg wet	N/A	N/A	2260		90		80-120			
p-Isopropyltoluene	10G0621		2500	ug/kg wet	N/A	N/A	2290		91		80-120			
Methylene Chloride	10G0621		2500	ug/kg wet	N/A	N/A	2290		92		80-120			
Methyl tert-Butyl Ether	10G0621		2500	ug/kg wet	N/A	N/A	2460		98		80-120			
Naphthalene	10G0621		2500	ug/kg wet	N/A	N/A	2040		82		60-140			
n-Propylhenzene	10G0621		2500	ug/kg wet	N/A	N/A	2250		90		80-120			
Styrene	10G0621		2500	ug/kg wet	N/A	N/A	2190		88		80-120			
1,1,1,2-Tetrachloroethane	10G0621		2500	ug/kg wet	N/A	N/A	2330		93		80-120			

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Work Order:

WTG0762

Received:

07/27/10

Project: Project Number: 1E-0909013 Racine, WI 1730 State Street Reported:

		,	
Mr.	Tim	Taugher	

LCS/LCS DUPLICATE QC DATA														
Analyte	Seq/ Batch	Source Result	Spike Level	Units	MDL	MRL	Result	Dup Result	% REC	Dup %REC	% REC Limits	RPD	RPD Limit	Q
VOCs by SW8260B														
I,1,2,2-Tetrachloroethane	10G0621		2500	ug/kg wet	N/A	N/A	2050		82		80-120			
Tetrachloroethene	10G0621		2500	ug/kg wet	N/A	N/A	2360		95		80-120			
Toluene	10G0621		2500	ug/kg wet	N/A	N/A	2200		88		80-120			
1,2,3-Trichlorobenzene	10G0621		2500	ug/kg wet	N/A	N/A	2230		89		80-120			
1,2,4-Trichlorobenzene	10G0621		2500	ug/kg wet	N/A	N/A	2300		92		80-120			
1,1,1-Trichloroethane	10G0621		2500	ug/kg wet	N/A	N/A	2590		104		80-120			
1,1,2-Trichloroethane	10G0621		2500	ug/kg wet	N/A	N/A	2160		86		80-120			
Trichloroethene	10G0621		2500	ug/kg wet	N/A	N/A	2430		97		80-120			
Trichlorofluoromethane	10G0621		2500	ug/kg wet	N/A	N/A	2500		100		80-120			
1,2,3-Trichloropropane	10G0621		2500	ug/kg wet	N/A	N/A	1970		79		80-120			
1,2,4-Trimethylbenzene	10G0621		2500	ug/kg wet	N/A	N/A	2220		89		80-120			
1,3,5-Trimethylbenzene	10G0621		2500	ug/kg wet	N/A	N/A	2270		91		80-120			
Vinyl chloride	10G0621		2500	ug/kg wet	N/A	N/A	2470		99		80-120			
Xylenes, total	10G0621		7500	ug/kg wet	N/A	N/A	6600		88		80-120			
Surrogate: Dibromofluoromethane	10G0621			ug/kg wet					105		80-120			
Surrogate: Toluene-d8	10G0621			ug/kg wet					97		80-120			
Surrogate: 4-Bromofluorobenzene	10G0621			ug/kg wet					100		80-120			

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Mr. Tim Taugher Work Order:

Project Number:

Project:

WTG0762

1E-0909013 Racine, WI

1730 State Street

Received:

07/27/10

Reported: 0'

07/29/10 09:15

CERTIFICATION SUMMARY

TestAmerica Watertown

Method	Matrix	Nelac	Wisconsin			
SM 2540G	Solid/Soil	X	X	 		
SW 8260B	Solid/Soil	X	X			

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Mr. Tim Taugher Work Order:

WTG0762

Received: 07/27/10

Project: Project Number: 1E-0909013 Racine, WI 1730 State Street Reported:

07/29/10 09:15

DATA QUALIFIERS AND DEFINITIONS

ADDITIONAL COMMENTS

Results are reported on a wet weight basis unless otherwise noted.

Giles Engineering Associates **N8 W22350 Johnson Road Suite A1, Waukesha, WI 53186	, Inc.	CHAIN-OF-C	USTODY		Site	762 Conne	cial
■ 4875 East La Palma Avenue, Suite 607, Anaheim, CA 92807 ■ 8300 Guilford Road, Suite F1, Columbia, MD 21046	tel: 714-779-0052 tel: 410-312-9950	fax: 714-779-0068 fax: 410-312-9955	closure sample confirmation required (N	R720)	Address	173036	6st
 □ 10722 North Stemmons Freeway, Dallas, TX 75220 □ 2830 Agriculture Drive, Madison, WI 53718 □ 3990 Flowers Road, Suite 530, Atlanta, GA,30360 	tel: 214-358-5885 tel: 608-223-1853 tel. 770-458-3399	fax: 214-358-5884 fax: 608-223-1854 fax: 770-458-3998	□ RUSH POSSIBLE HAZARDS:			Lonne 1730 3to Rouse, l	Visto (5)
ample Collector buy Rose hay Si		2	Taugher	Project Number	18	-09091	2/3
aboratory Used 7/54 Amurica	Lab C	ontact Dan	Analysis Required	Lab Job Numbe	er .		
Search of the se					Winness are The Contest, The Co	Dur Date	Lab.ID To
MU-5 2-4' 5 7/est	BOC BOC	X		1		Mult 500	É Marie de la companya della companya della companya de la companya de la companya della company
mn-6 2-4 5 123h	PM 16			1	-	Red K STA	
MW-7 7-4 7 7/23/11	AND DOL	\		1 1		MADE STO	
MUN Blak						INDITI STO	
1304 1436	AM PM					1 3137	
	AM PM						
	AM PM						
	AM PM						
	AM PM						
	AM PM						THE STATE OF THE S
	AM PM						
ntainer code: A = 8 oz/250 ml	C = 2 oz/ 60 ml / 60 ff	E = 1 L Am			1	=	Publicana and the Contract of
B = 4 oz/ 120 ml	D = 40 mL VOA via	F = 250 mL	Se	end copy to] =	am sam
elinquishes By Date	Time Received By	.10	1.1	ect Manager	F	REPORT TO:	PM
St. Thready 7/27/10	903		Associates I	a la	_	Askar	A Taci
7-27-10	1243 PM 14	Pat 7/27/0 1	286	Pa	ge	A	the Tim
	AM PM	1 -11 -1	7		of		Tan

Cooler Receipt Log

. Work Order(s):	7 GU 76 Client Name/ProjectC	200	# of Coalers:
w did samples arrive?	Fed-Ex UPS Test/	America Client Dunham	Speedy
at was the condition of	of custody seals?	Intact Broken	Not present
		01.11	
time cooler was ope	ned: <u>7/27/() 1243</u> E	y: Math Grads	
1	·		
mperature °C 9	· Rec	ceived on ice? Yes No	
es this Project require	RUSH turn around?	Yes No	`
here any short hold	time tests?	Yes No	
	st expiration of hold-time?		
	48 hours or less	7 days	· .
	Coliform Bacteria 8/30 hours	Aqueous Organic Prep	7
	Chlorine/Hex Cr24 hours BOD	TS	
	Nitrate (DW is 14 days)	TSS .	
	Nitrite Orthophosphate)	Sulfide Volațiie Solids	
-			
_	times of 48 hrs or less, are any samples	<i>"</i>	
within 2 days of or] past expiration of hold-time?	Yes No Provide d	etails in space at bottom of form
mich Ops Mgr, PM or	Analyst was informed of short hold and when	? Who Whe	en
and time of c	ollection recorded?	Date Tes No T	ime Pes No
all sample contain	ers listed on the COC received and intact?		etalls in space at bottom of form
sample IDs match the	e COC?	Yes No Provide d	etails in space at bottom of form
dissolved parameter	ers field filtered or being filtered in the lab?	Field Lab PNA	
	lequate and preservatives correct for test requi		Pres. Pres No
	of bubbles >6mm?	•	
	ceived? Methanol Sodium Bisulfate		Water Other
1	npling past 48 hrs of sampling Fro		
	nk included? Yes No ANA		
[] []	id?		etails in space at bottom of form
	subcontracted?		
changes are mad	e to this Work Order after Login, or if commen	ts must be made regarding this cool	er, explain them below:
-			
			

				$\overline{\omega}_{i}$	G-70	ا نا	
Giles Engineering Associate	s, Inc.	CHAIN-OF-CU	STODY		Site	onnucial	
N8 W22350 Johnson Road Suite A1, Waukesha, WI 53186 4875 East La Palma Avenue, Suite 607, Anaheim, CA 92807 8300 Guilford Road, Suite F1, Columbia, MD 21046 10722 North Stemmons Freeway, Dallas, TX 75220 2830 Agriculture Drive, Madison, WI 53718	tel: 714-779-0052 f tel: 410-312-9950 f tel: 214-358-5885 f	ax: 414-549-5868 ax: 714-779-0068 ax: 410-312-9955 ax: 214-358-5884 ax: 608-223-1854	☐ closure sample ☐ confirmation required (N☐ RUSH	IR720)	Address	Ommucial 7303tatest	₹ŀ.
3990 Flowers Road, Suite 530, Atlanta, GA,30360	tel. 770-458-3399 f	ax: 770-458-3998 PC	SSIBLE HAZARDS:_				
ample Collector 610 Recenhaus	Project Mar	nager Tim7	aucher	Project Number	IE-	0909013	
aboratory Used Tist America	Lab Contac	et Dags 1	7. Analysis Required	Lab Job Number			5. F.
Campo on the Many (Many Many Many Many Many Many Many Many					Munder and The or Continue of The or Continue of The or Continue of Continue o	Due	
	. 400	10/6//	11111			Date Lab ID	Те
MW-5 2-4' 5 7/2				10	,	0/f 5D0	1000 1003
mw-6 2-4 5 723	M PM /O			10	111 Pul		3 Dig.
mw-7 7-4 7 123	W 2-1			10	11H M		3.6
MW-B 2-3 5 1/23				16	114 Me		700
Mult Blak	- AM - X			11	2 the	14 500	7 an 18a
	РМ					- 12 kg 12 kg	17.19.2
	AM PM						
	AM PM						P. Congr.
	AM PM					38. 1. pinangg	1936
	AM PM						
	AM						
	PM AM					4,0-1 \$11	
ontainer code:	РМ					(1	:
A = 8 oz/250 ml B = 4 oz/ 120 ml	C = 2 oz/ 60 ml / 0 f D = 40 mL VOA via/ 1 K	E = 1 L Ambe F = 250 mL pl	astic H = <u>p(ast</u>	iend copy to	J=_		sam
elinquishe By Date	Time Received By			oject Manager	REPO	ORT TO:	PM
7/23/10	430 GM 5/ (weme	47	Liles Engine	wing		Giles Enginee	City
SK Throng 7/27/10	903 AM Belong	6	Associates,	ne!	, _	9501 ofts In	10.
13. Police 7-27-10	1243 PM M/a	to 7/27/0 125	6	Pag	e	AHN T	in
	AM PM	1 1 /		of	1		Tar

12 13

Cooler Receipt Log

. Work Order(s): 🔽	760762 Client Name/Project:	# of Cooler	s:
w did samples arrive?	P □ Fed-Ex □ UPS □ TestAme	rica Client Dunham Speedy	
	of custody seals?		ent
i vas are corrainer.			
time cooler was ope	ened: 2/27/10 1243 BV:	West Suids	•
unie coolei was ope	5).	a digital	•
perature °C 6	Receiv	ed on ice?Yes No	
es this Project require	RUSH tum around?	Yes No	
inere any short hold	time tests?		
within 1 hr of or □ pa	st expiration of hold-time?	Provide details in space at bo	tom of form
	48 hours or less	7 days	
	Coliform Bacteria 8/30 hours	Aqueous Organic Prep	
•	Chlorine/Hex Cr24 hours	TS	
	Nitrate (DW is 14 days)	TDS TSS	
	Nitrite	Sulfide	
	Orthophosphate)	Volatile Solids	
	d times of 48 hrs or less, are any samples		
⊸ithin 2 days of or [past expiration of hold-time?	Yes No Provide details in spa	ace at bottom of form
ch Ops Mgr, PM o	r Analyst was informed of short hold and when?	WhoWhen	
ne date and time of c	ollection recorded?	Date Pres No Time Pr	es No
all sample contain	ers listed on the COC received and intact?	Yes No Provide details in spa	ace at bottom of form
sample IDs match the	e COC?	Yes No Provide details in spi	ace at bottom of form
adissolved parameter	ers field filtered or being filtered in the lab?	Field Lab NA	
	dequate and preservatives correct for test requeste		res No
11	of bubbles >6mm?	•	
	ceived? Methanol Sodium Bisulfate		Other
	mpling past 48 hrs of sampling Froze		
	nk included? Yes No No NA is		TINO THE
	ld?	_	V
	e subcontracted?		
ny changes are mad	de to this Work Order after Login, or if comments in	oust be made regarding this cooler, explain	them below:
	•		
	•	•	
-			