	Letter Of Transmittal
Ту	pe of Submittal: _LUST _K_ERPVPLE other (describe):
0:	Program Assistant/BRR Program Wisconsin Dept. of Natural Resources Box 12436
	2300 N. Dr. Martin Luther King Jr. Dr.
	Milwaukee, WI 53212

Theck type(s) of documents enclosed. Submittals are tracked & led based on information you provide. Include FID & BRRTS umbers assigned to this site. Identify the intent of document(s) you are submitting in order to speed processing. Please attach equired fees to this form.

		Tom Bauman
FROM	1: Name	Ion Daumen
	Company	Giles Englineering
	Address	N8 W22350 Dat Johnson Drive
		Wantesha, WI 53186
	Phone	(262) 544-0118
	Date	3/31/11
FOR:	Site Nam	e Martinizing Dry Cleaning
	Address	1730 STATE STREET
		Racine, WI
	FID#	252251010
	BRRTS#	02-52-549890

√ √	TYPE OF DOCUMENT/REPORT APR	0 1 20 FEE	DNR (office use CODE only)
	Notification of Release	none	01
	Tank Closure/Site Assessment where release(s) have been deter	cted* none	33
	Site Investigation Workplan	\$500 if review is requested	35, 135~
	Site Investigation Report groundwater impacts above ES no groundwater impacts or gw impacts below ES (if petrole transferred to Department of Commerce)	\$750 if review is requested	37, 137~, 76, 96
	Request to Transfer Case to Department of Commerce	none	76
	Off-Site Determination Request	\$500 mandatory	638~
	Remedial Action Options Plan	\$750 if review is requested	39, 143~
	NR 720.19 Site Specific Clean-Up Goal Proposal	\$750 if review is requested	67, 68~
	NR 718 Landspreading Request	\$500 mandatory	61~
	"Notification to Treat or Dispose" of Contaminated Soil/Water	none	99
	Injection/Infiltration Request	\$500 mandatory	63~
	Quarterly Report or Update	\$500 if review is requested	43, 43~
	O & M Form 4400-194	\$300 if review is requested	92, 192~
	Remedial Action Options Report	\$750 if review is requested	41, 41~
	Closure Review Request	\$750 mandatory	79~
	NR700.11 Simple Site Closure Request	\$250 mandatory	183~
	"Draft Deed Affidavit" or "Restriction required for close-out"	none	99
	"Well Abandonment Forms"	none	99
	Remedial Design Report	\$750 if review is requested	147, 148~
	Construction Documentation Reports	\$250 if review is requested	151, 152~
	Long Term Monitoring Plan	\$300 if review is requested	24, 25~
	Voluntary Party Liability Exemption (VPLE) Application	\$250 mandatory	662
	VPLE "Phase I/II Assessments" or "Additional Reports"	computed hourly	99
	Tax Cancellation Agreement	\$500 mandatory	654
	Negotiated Agreement	\$1000 mandatory	630
	Lender Assessment	\$500 mandatory	686
	Negotiation and Cost Recovery (municipalities only)	fee for each service, mandatory	90~
	General Liability Clarification Request	\$500 mandatory	684
	Lease Letter Request - Single Property	\$500 mandatory	646
	Lease Letter Request -Multiple Properties	\$1000 mandatory	646
_	Request for Other Technical Assistance	\$500 mandatory	90~
V	Other (please describe) Hazardous wasre Deremina		216

Closure reports for sites where no releases have been detected should be sent directly to "Clean Closures" c/o DNR Remediation & Redevelopment Program, P.O. Box 7921, Madison WI 53707

emarks:

GEOTECHNICAL, ENVIRONMENTAL & CONSTRUCTION MATERIALS CONSULTANTS

• Atlanta, GA

- · Baltimore/Wash. DC
- Dallas, TX
- Los Angeles, CA
- Milwaukee, WI
- Orlando, Fl.

March 31, 2011

Wisconsin Department of Natural Resources 2300 North Dr. Martin Luther King Jr. Drive Milwaukee, WI 53212

Attention:

Ms. Shanna Laube-Anderson

Hydrogeologist

Subject:

Hazardous Waste Contained-Out Determination

Martinizing Dry Cleaning Site

1730 State Street Racine, Wisconsin BRRTS # 02-52-549890 Project No. 1E-0909013

Dear Ms. Laube-Anderson:

On behalf of BMP Realty Inc., Giles Engineering Associates, Inc. (Giles) has prepared this correspondence to evaluate the source of PCE impact found at the above referenced Site and how it affects the disposal of investigative and remedial waste. A Hazardous Waste Determination has been performed in accordance with NR 661 and the WDNR Publication RR-705 Guidance for Hazardous Waste Remediation. A completed Remediation Site Hazardous Waste Determination Form (4430-019) for the Site is attached.

The Site has been occupied by an operating drycleaner facility from the 1960's to 2004. According to information provided from the owner/operator of the dry cleaning facility, tetrachloroethene (PCE) was used at the Site for dry cleaning. PCE was stored along the northern wall of the dry cleaning operations room. Site investigation activities completed to date have identified the majority of PCE and associated degradation products in soil samples collected from borings completed near the rear service entrance on the north side of the building. Considering the aforementioned, PCE-impacted investigative waste and PCE impacted soil removed during Site investigation and remediation is considered a listed hazardous waste.

Giles requests the application of the "contained-out" policy for disposal of soil determined to be non-hazardous. According to the United States Environmental Protection Agency (USEPA), contaminated environmental media no longer contain hazardous waste "1) when they no longer exhibit a characteristic of hazardous waste, and 2) when concentrations of hazardous constituents from listed hazardous wastes are below health-based levels." With the application of appropriate industrial health based levels, soil containing PCE, trichloroethylene (TCE), and vinyl chloride (VC) concentrations can be managed at an approved solid waste landfill. A copy of the industrial worker health based screening levels calculated using the USEPA Soil Screening Guidance is attached.

Hazardous Waste Determination Martinizing Dry Cleaning Site Racine, Wisconsin Project No. 1E-0909012 Page 2

The maximum concentrations protective of human health at an approved solid waste landfill are:

PCE 25 milligrams per kilogram (mg/kg)

TCE 0.17 mg/kg VC 0.68 mg/kg

Contaminant concentrations in soil exceeding these screening levels will require disposal as hazardous waste. PCE contaminant concentrations in soil less than the landfill screening levels, and at the discretion of the landfill facility, may be disposed of as a solid waste provided the soil does not fail a toxicity leaching characteristic procedure (TCLP) test; or if contaminant concentrations are less than 20 times the landfill acceptance limit. For example, a TCLP would be required when the total PCE contaminant concentration is equal to or greater than 14 mg/kg, but less than 25 mg/kg to determine if the soil is characteristically hazardous.

PCE and TCE soil concentrations detected near the north wall area on the Site exceed the industrial landfill screening levels, and would become hazardous waste if excavated and removed from the Site (MW-1, MW-2, GP-1, and GP-2). PCE and TCE impacted soil concentrations from the surrounding area are below the industrial landfill screening level, are not characteristically hazardous, and may be disposed of as special waste. Refer to the attached Site plan, soil quality table, and laboratory analytical reports.

Giles requests WDNR review and concurrence of the hazardous waste "contained-out" determination. Please provide a written response to this request. Giles will then work with the appropriate licensed disposal facilities to complete disposal of soil and groundwater investigative waste. Thank you in advance for your assistance. If you have any questions, please contact us at (262) 544-0118.

Kevin T. Buget, P.G.,

Environmental Division Manager

Respectfully submitted,

GILES ENGINEERING ASSOCIATES, INC.

Thomas J. Bauman, P.G. Project Hydrogeologist

Enclosures:

WDNR Form 4430-019

USEPA Soil Screening Guidance Calculations

Figure 1 - Site Plan

Table 1 - Soil Analytical Results

Soil Laboratory Analytical Reports and Chain-of-Custodies

Distribution: Wisconsin Department of Natural Resources

Attn: Ms. Shanna Laube-Anderson (1)

BMP Realty Inc.

Attn: Mr. Douglas Berry (1)

State of Wisconsin Department of Natural Resources

Remediation Site Hazardous Waste Determination

Form 4430-019 (R 4/03)

Page 1 of 2

Notice: This voluntary form is intended as an aid for use by Generators and Responsible Parties in determining whether contaminated soil or groundwater and wastes encountered or generated during the remediation of contaminated sites in Wisconsin are or would be listed or characteristic hazardous wastes subject to regulation under ch. 291. Wis. Stats, and chs. NR 600 to 690, Wis. Adm. Code. There are no penalties for failure to provide information requested. Personally identifiable information collected will be used for program management. Wisconsin's Open Records law requires the Department to provide this information upon request [ss. 19.31 - 19.69, Wis. Stats.].

Listing determinations are often particularly difficult in the remedial context because the listings are generally identified by the sources of the hazardous wastes rather than the concentrations of various hazardous constituents. Therefore, analytical testing alone, without information on a waste's source, will not generally produce information that will conclusively indicate whether a given waste is a listed hazardous waste. Generators and Responsible Parties should use available life Information such as material safety data sheets (MSDS's), manifests, vouchers, bills of lading, sales and inventory records, accident reports, spill reports, inspection reports, and other available information. It may also be necessary to conduct interviews of current or former personnel who would have knowledge of the processes and hazardous materials used including waste handling or past spills in an effort to ascertain the sources of wastes or contaminants.

Where a person makes a good faith effort to determine if a material is a listed hazardous waste but cannot make such a determination because documentation regarding a source of contamination, contaminent, or waste is unavailable or inconclusive. EPA has stated that one may assume the source, contaminant or waste is not listed hazardous waste and, therefore, provided the material in question does not exhibit a characteristic of hazardous waste, RCRA requirements do not apply.

Generator information	and the second of the second o
Generator's Name	Preparer's Name
BMP Realty, Inc	Kevin Bugel
Address	Address
3319 Nobb Hill Drive	N8 W22350 Johnson Drive
Clly, State and ZiP Code	City, State and ZIP Code
Racine, WI 53406	Waukesha, WI 53186
Telephone Number	Telephone Number
	(262) 544-0118
Site information	No. 100 and the second
Site Name	Other name(s) site is known by
Martinizing Dry Cleaning	
Address	County
1730 State Street	Racine
Located in the City, Town or Village ZIP Code	Nac And
City of Racine	
Hazardous Waste Determination Information Reviewed	The second secon
Listed Hazardous Waste Determination	
Manifests reviewed	Vouchers reviewed
Yes No None Found None Available	Yes No None Found None Available
Bills of lading reviewed	Sales and inventory records reviewed
Yes X No None Found None Available	Yes No None Found None Available
Material safety data sheets	Accident reports reviewed
Yes No None Found None Available	Yes X No None Found None Available
Spill reports reviewed	Inspection reports reviewed
Yes No None Found None Available	Yes X No None Found None Available
DNR's case files reviewed	Interviewed current end/or former employees who are likely to know about the use and/or disposal of the chemical or waste of concern (not just managers).
Yes No None Found None Available	Yes X No None Found None Available

Remediation Site Hazardous Waste Determination

Form 4430-019 (R 4/03)

Page 2 of 2

Hazardous Waste Determination Information Reviewed (contin	ued)	
Other information considered (provide description)	× Yes No	None Found None Available
The Martinizing Dry Cleaning is located at the the City of Racine; the dry cleaner has operate occurred on the Site from the 1960's to 2004, a cleaning area. A Site Investigation Scoping wa and Site Investigation was completed by Giles E investigations revealed the presence of Tetrach soil and groundwater of the property.	d since 1978. We nd PCE was stored s completed by Nor ngincering on February	understand that dry cleaning along the north wall of the dry thern Environmental on June 8, 2007 mary 8, 2011. The results of these
- Commission of the Commission	A during the second	
Characteristic hazardous waste Determination		
Identified location(s)	Testing results	
PCE and TCE detected in soil collected from the Site at MW-1, MW-2, GP-2, and GP-3 are considered hazardous based on the US EPA Site Soil Screening Guidance Calculations. Because PCE/TCE soil impact at these locations are hazardous based on risk screening criteria at the landfill disposal facility, they would be managed as hazardous waste and not require TCLP testing.	Reports	able 1 and Laboratory Analyitcal
Based on the total PCE, TCE, and VC soil concentrations detected in the soil from the remainder of the Site, the chlorinated impacted soil should not exceed the landfill leachability acceptance limits for each compound are are not considered characteristically hazardous.		
Certification	and and the second second second	A STATE OF THE PARTY OF THE PAR
I certify that the information documented above in the "information reviewed to and used as part of a good faith effort to make a hazardous waste determined evaluating the information, and using the compiled information. I certify that it that I have authority to make this certification.	ion. Reasonable diligence	was used in collecting the information,
Name and Title		
Douglas L Borry		
Signature		Date
Nano Filem		3-30-11

http://rais.oml.gov/cgi-bin/epa/ssl1.cgi

Waste and Cleanup Risk Assessment

You are here: <u>EPA Home OSWER</u> <u>Waste and Cleanup Risk Assessment</u> <u>Databases and Tools</u> Soil Screening Guidance for Chemicals (SSG)

SSG Home

SSG Search

Soil Screening Guidance for Chemicals

SELECTION:

Your **Analytes** are:
Tetrachioroethylene
Trichloroethylene
Vinyl Chloride
Your **Pathways** are
Ingestion
Inhalation of Fugitive Dust
Inhalation of Volatiles

Default Parameters

Each pathway you have selected is given below along with the applicable Equations and its associated Default Parameters. For each equation, the default values will be used unless you enter a different value.

Ingestion

Ingestion of Noncarcinogenic Contaminants in Soil

$$SL(mg/kg) = \frac{THQ \times BW \times AT \times 366(d/yr)}{1/RfD_0 \times 10^{-6} (kg/mg) \times EF \times ED \times IR}$$

1 THQ (target hazard quotient) unitless

70 BW (body weight) kg

25 AT (averaging time) yr

250 EF (exposure frequency) d/yr

25 ED (exposure duration) yr

100 IR (intake rate) mg/d

NOTES:

1. AT=ED for Noncarcinogens.

RfD_o=oral reference dose (mg/kg-d). chemical-specific

Ingestion of Carcinogenic Contaminants in Soil - Age Adjusted

$$SL(mg/kg) = \frac{TR \times AT \times 365(d/yr)}{SF_o \times 10^{-6}(kg/mg) \times EF \times IF_{soil/adj}}$$

1.0E-6 TR (target risk) unitless

70 AT (averaging time) yr

350 EF (exposure frequency) d/yr

100 IR_a (adult ingestion rate) mg/d

200 IR_c (child ingestion rate) mg/d

24 ED_a (adult exposure duration) yr

6 ED_c (child exposure duration) yr

70 BW_a (adult body weight) kg

15 BW_c (child body weight) kg

114.29 IF_{soil/adi} (age-adjusted ingestion factor) mg-yr/kg-d

NOTES:

1. SF_o=oral slope factor. chemical-specific

Ingestion of Carcinogenic Contaminants in Soil - Nonadjusted

$$SL(mg/log) = \frac{TR \times BW \times AT \times 365(d/yr)}{SF_o \times 10^{-6} (kg/mg) \times EF \times ED \times IR}$$

1.0E-6 TR (target risk) unitless

70 BW (body weight) kg

70 AT (averaging time) yr

250 EF (exposure frequency) d/yr

25 ED (exposure duration) yr

100 IR (intake rate) mg/d

NOTES:

1. SF₀=oral slope factor. chemical-specific

2. Use this pathway for adult-only situations (i.e. worker, etc.)

Inhalation of Fugitive Dusts

Inhalation of Fugitive Dusts - Particulate Emission Factor

PEF(m³ / kg) =
$$\frac{Q}{C} \times \frac{3,500(a/h)}{0.036 \times (1 - V) \times \left(\frac{U_{m/L}}{U_{m/L}}\right)^{3} \times F(a)}$$

Chicago (VII) City (Climatic Zone)

0.5 Surface (acres)

98.43071 Q/C (inverse of the mean conc. at the center of a 0.5-acre-square source) g/m²-s per kg/m³

0.5 V (fraction of vegetative cover) unitless

4.65 U_m (mean annual windspeed) m/s

11.32 U_t (equivalent threshold value of windspeed at 7m) m/s

F(x) (function dependent on U_m/U_t) unitless

NOTES:

PEF (particulate emission factor) m³/kg. Default is 1.36x10⁹

2. The Surface Area and City/Climate Zone are used to look up a Q/C. Q/C is the inverse of mean concentration at center of a 0.5 acre-square source (g/m²-s per kg/m³). Pick the city with the most similar climatic conditions (map).

3. The F(x) function is derived using Cowherd et al. (1985)

Inhalation of Noncarcinogens in Fugitive Dusts

$$SL(mg / kg) = \frac{THQ \times AT \times 365(d / yr)}{EF \times ED \times \left[\frac{1}{RTC} \times \frac{1}{PEF}\right]}$$

1 THQ (target hazard quotient) unitless

25 AT (averaging time) yr

250 EF (exposure frequency) d/yr)

25 ED (exposure duration) yr

NOTES:

- 1. AT=ED for Noncarcinogens.
- 2. RfC (inhalation reference concentration) mg/m³ chemical specific
- 3. PEF (particulate emission factor) m3/kg. Default is 1.32x109

Inhalation of Carcinogens in Fugitive Dusts

$$SL(mg/kg) = \frac{TR \times AT \times 385(d/yr)}{URF \times 1,000(ug/mg) \times EF \times ED \times \frac{4}{pFF}}$$

1.0E-6 TR (target risk) unitless
70 AT (averaging time) yr
250 EF (exposure frequency) d/yr

ED (exposure duration) yr

NOTES:

25

- URF (inhalation unit risk factor) (ug/m³)⁻¹ chemical specific
- 2. PEF (particulate emission factor) m³/kg. Default is 1.32x10⁹

Inhalation of Volatiles

There are two methods for calculating volatilization factor depending on which parameters are known. Select a surface area, a climatic zone, and a method calculation.

Volatilization Factor - METHOD 1

$$VF(m^{3} / kg) = \frac{9 / c \times (3.14 \times D_{A} \times T)^{1/2} \times 10^{-4} (m^{2} / cm^{2})}{2 \times p_{b} \times D_{A}}$$
where $D_{A} = \frac{\left[\left(e_{a}^{10/3} D_{1} H^{2} + e_{w}^{10/3} D_{w}\right) / n^{2}\right]}{p_{a} K_{c} + e_{w} + e_{a} H^{2}}$

0.006 foc (fraction organic carbon in soil) g/g

1.5 P_b (dry soil bulk density) g/cm³

2.65 P_s (soil particle density) g/cm³

9.5e08 T (exposure interval) s
0.15 θ_w (water-filled soil porosity) L_{water}/L_{soil}

Volatilization Factor - METHOD 2 (mass-limit approach)

$$VF = \frac{9}{6} \times \frac{\left[T \times \left[3.15 \times 10^{7} (s / yr)\right]\right]}{\left[\rho_{b} \times d_{s} \times 10^{6} (g / Mg)\right]}$$

1.5 P_h (dry soil bulk density) kg/L or Mg/m³

30 T (exposure interval) yr

d_s (depth of source) m - site-specific

Do not use this method unless you have values for all of the parameters.

Chicago (VII) City (Climatic Zone)

0.5 Surface Area (acres)

98.43071 Q/C (inverse of the mean conc. at the center of a 0.5-acre-square source) g/m²-s per kg/m³

Method for Calculating VF

Method 1 @ Method 2

NOTES:

- 1. VF (volatilization factor) m³/kg
- The Surface Area and City/Climate Zone are used to look up a Q/C. Q/C is the inverse of mean concentration at center of a 0.5 acre-square source (g/m²-s per kg/m³). Pick the city with the most similar climatic conditions (map) .

- 3. D_{Δ} (apparent diffusivity) cm²/s
- 4. θ_a (air-filled soil porosity) $L_{air}/L_{soil} = n \theta_w$
- 5. D_i (diffusivity in air) cm²/s chemical-specific
- 6. H' (dimensionless Henry's law constant) chemical-specific
- 7. n (total soil porosity) $L_{pore}/L_{soil} = 1-(P_b/P_s)$
- 8. D_w (diffusivity in water) chemical-specific
- 9. K_d (soil-water partition coefficient) cm³/g = $K_{oc} \times f_{oc}$ (organics) chemical-specific
- 10. K_{oc} (soil organic carbon partition coefficient) cm³/g chemical specific

Inhalation of Noncarcinogenic Volatiles in Soil

$$SL(mg/log) = \frac{THQ \times AT \times 385(d/yr)}{EF \times ED \times \left[\frac{1}{RTC} \times \frac{1}{VF}\right]}$$

- 1 THQ (target hazard quotient) unitless
- 25 AT (averaging time) yr
- 250 EF (exposure frequency) d/yr
- 25 ED (exposure duration) yr

NOTES:

- 1. AT=ED for Noncarcinogens.
- 2. RfC (inhalation reference concentration) mg/m³ chemical-specific
- 3. VF (volatilization factor) m³/kg

Inhalation of Carcinogenic Volatiles in Soil

$$SL(mg/kg) = \frac{TR \times AT \times 365(d/yr)}{URF \times 1,000(ug/mg) \times EF \times ED \times \frac{1}{VF}}$$

- 1.0E-6 TR (target risk) unitless
- 70 AT (averaging time) yr
- 250 EF (exposure frequency) d/yr
- 25 ED (exposure duration) yr

NOTES:

- 1. URF (inhalation unit risk factor) (ug/m³)⁻¹ chemical-specific
- 2. VF (volatilization factor) m³/kg

Inhalation of Volatiles - Soil Saturation Concentration

Only applies to chemicals which are liquid at ambient air temperatures.

$$C_{sat} = \frac{S}{\rho_b} (K_d \rho_b + \theta_w + H' \theta_a)$$

- 0.006 foc (fraction organic carbon in soil) g/g
- 1.5 P_b (dry soil bulk density) kg/L
- 2.65 P_s (soil particle density) kg/L
- $\theta_{\rm w}$ (water-filled soil porosity) $L_{\rm water}/L_{\rm soil}$

NOTES:

- 1. C_{sat} (soil saturation concentration) mg/kg
- 2. S (solubility in water) mg/L-water chemical-specific
- 3. θ_a (air-filled soil porosity) $L_{air}/L_{soil} = \mathbf{n} \mathbf{\theta}_w$

- 4. H' (dimensionless Henry's law constant) chemical-specific
- 5. n (total soil porosity) $L_{pore}/L_{soil} = 1-(P_b/P_s)$
- 6. K_d (soil-water partition coefficient) L/kg = $K_{oc} \times f_{oc}$ (organics) chemical-specific
- 7. K_{oc} (soil organic carbon/water partition coefficient) L/kg chemical specific

You must select one of the following output options

- View on Screen
- Tab delimited file
- Comma delimited file

RETRIEVE clear selection

back to top

This site is maintained and operated through an interagency Agreement between the EPA/OSRTI and Oak Ridge National Laboratory. For questions or comments please contact <u>Dave Crawford</u> in EPA/OSRTI.

http://rais.ornl.gov/cgi-bin/epa/ssl2.cgi

You are here: <u>EPA Home</u> <u>OSWER</u> <u>Waste and Cleanup Risk Assessment</u> <u>Databases and Tools</u> Soil Screening Guidance for Chemicals (SSG)

SSG Home

SSG Search

Soil Screening Guidance for Chemicals

Equation Values for Ingestion

Noncarcinogenic Parameter	Value	Carcinogenic Age-adjusted Parameter	Value	Carcinogenic Nonadjusted Parameter	Valu
Target Hazard Quotient (unitless)	1	Target Risk (unitless)	1.0E-6	Target Risk (unitless)	1.0E
Body Weight (kg)	70	Adult Body Weight (kg)	70	Body Weight (kg)	70
		Child Body Weight (kg)	15		
Exposure Duration (yr)	25	Adult Exposure Duration (yr)	24	Exposure Duration (yr)	25
		Child Exposure Duration (yr)	6		
Exposure Frequency (day/yr)	250	Exposure Frequency (day/yr)	350	Exposure Frequency (day/yr)	250
Intake Rate (mg/day)	100	Adult Intake Rate (mg/day)	100	Intake Rate (mg/day)	100
		Child Intake Rate (mg/day)	200		
		Average Lifetime (yr)	70	Average Lifetime (yr)	70
		Age-adjusted Ingestion Factor (mg-yr/kg-day)	114.29		

Soil Screening Levels for Ingestion (mg/kg)

Analyte	Cas Number	Oral Oral Slope Noncarcinogeni RfD Factor		Noncarcinogenic	Carcinogenic (Age-adjusted)	Carcinogenic (Nonadjusted
Tetrachloroethylene	127184	1.00E-02 ^a	5.20E-02 ¥	1.02E+04	1.23E+01	5.50E+01
Trichloroethylene	79016	3.00E-04 ¥	4.00E-01 ¥	3.07E+02	1.60E+00	7.15E+00
Vinyl Chloride	75014	3.00E-03 ^a	1.50E+00 ª	3.07E+03	4.26E-01	1.91E+00

Equation Values for Inhalation of Fugitive Dust

Particulate Emission Factor Parameter	Value	Noncarcinogenic Parameter	Value	Carcinogenic Parameter	Valu
Surface Area (acres)	0.5	Target Hazard Quotient (unitless)	1	Target Risk (unitless)	1.0E-
City (climate zone)	Chicago(VII)	Exposure Duration (yr)	25	Exposure Duration (yr)	25
Q/C (g/m ² -s per kg/m ³)	98.43071	Exposure Frequency (day/yr)	250	Exposure Frequency (day/yr)	250
Fraction of vegetative cover (unitless)	0.5			Average Lifetime (yr)	70
Mean annual windspeed (m/s)	4.65				
Equivalent threshold value of windspeed at 7m (m/s)	11.32				
Function dependent on U_m/U_t (unitless)	0.182				

Soil Screening Levels for Inhalation of Fugitive Dust (mg/kg)

Analyte	Cas Number	Inhalation RfC	Inhalation Unit Risk	Particulate Emission Factor	Noncarcinogenic	Carcinogenic
Tetrachloroethylene	127184	6.00E-01 ¥	5.8E-07 [¥]	1.56E+09	1.37E+09	1.10E+07
Trichloroethylene	79016	4.00E-02 ¥	1.1E-04 [⊻]	1.56E+09	9.11E+07	5.80E+04
Vinyl Chloride	75014	1.00E-01 ^a	8.8E-06 ^a	1.56E+09	2.28E+08	7.25E+05

Equation Values for Inhalation of Volatiles

Volatilization Factor Parameter	Value	Soil Saturation Concentration Parameter	Value	Noncarcinogenic Parameter	Value	Carcinogenic Parameter	Valı
		A					
Surface Area (acres)	0.5			Target Hazard Quotient (unitless)	1	Target Risk (unitless)	1.0E 6
City (climate zone)	Chicago (VII)			Exposure Duration (yr)	25	Exposure Duration (yr)	25
Q/C (g/m ² -s per kg/m ³)	98.43071	,		Exposure Frequency (day/yr)	250	Exposure Frequency (day/yr)	250
Fraction organic carbon (unitless)	0.006	Fraction organic carbon (unitless)	0.006			Average Lifetime (yr)	70
Dry soil bulk density (g/cm3)	1.5	Dry soil bulk density (g/cm ³)	1.5				
Soil particle density (g/cm3)	2.65	Soil particle density (g/cm3)	2.65				
Water-filled soil porosity (L _{water} /L _{soil})	0.15	Water-filled soil porosity (L _{water} /L _{soil})	0.2				
Exposure interval (s)	9.5e08						

Soil Screening Levels for Inhalation of Volatiles (mg/kg)

Analyte	Cas Number	Inhalation RfC	Inhalation Unit Risk	Volatilization Factor	Soil Saturation Concentration	Noncarcinogenic	Carcinogeni
		* ** * ** ** ** ** ***	to the standard transfer of the			A A total oraș ti	or a second of the second
Tetrachloroethylen	e 127184	6.0E-01 [⊻]	5.8E-07 ¥	3.6E+03	2.4E+02	3.2E+03	2.5E+01
Trichloroethylene	79016	4.0E-02 ¥	1.1E-04 ¥	4.6E+03	1.3E+03	2.7E+02	1.7E-01
Vinyl Chloride	75014	1.0E-01 ^a	8.8E-06 ª	1.5E+03	1.2E+03	2.1E+02	6.8E-01

back to top

This site is maintained and operated through an interagency Agreement between the EPA/OSRTI and Oak Ridge National Laboratory. For questions or comments please contact <u>Dave Crawford</u> in EPA/OSRTI.

TABLE 1 SOIL ANALYTICAL RESULTS (VOCs)

One Hour Martinizing Racine 1730 State Street Racine, Wisconsin 1E-0909013

A 1.4.	Τ							_				Sam	ple Locati	on												
Analyte	TW-1	MV	N-1	MV	I-2	MW-3	MV	V-4	MW-5	MW-6	MW-7	MW-8		GP-1		G	P-2	GI	P-3	G	P-4	G	P-5	GP-6	GP-7	US EPA Soil
Sample Depth (feet)	6 - 8	0 - 2	10 - 12	0 - 2	6 - 8	2 - 4	2 - 4	10 - 12	2 - 4	2 - 4	2 - 4	2 - 3	4 - 6	8 - 10	12 - 14	4 - 6	8 - 10	2 - 4	6 - 8	4 - 6	6 - 8	4 - 6	6 - 8	4 - 6	6 - 8	Screening Level
Sample Date	1/21/10	1/21/10	1/21/10	1/21/10	1/21/10	1/21/10	1/21/10	1/21/10	7/23/10	7/23/10	7/23/10	7/23/10	6/23/10	6/23/10	6/23/10	6/23/10	6/23/10	6/23/10	6/23/10	6/23/10	6/23/10	6/23/10	6/23/10	6/23/10	6/23/10	(Industrial Land Use as Landfill) (ug/kg)
PID (instrument units)	14	11	12	420	42	BDL	BDL	BDL	BDL	16	7	BDL	86	188	152	498	228	BDL	BDL	246	28	13	9	71	50	as Lanami, (ag/kg)
Detected VOCs (ug/kg)																										
n-Butylbenzene	<29	<28	<58	<14,000	<300	<27	<31	<29	<31	<31	<31	<34	<290	<2,900	<290	<580	<1,400	<31	<29	780	<29	<31	<29	<28	290	
sec-Butylbenzene	130	29	<58	<14,000	<300	<27	<31	<29	<31	<31	<31	<34	<290	<2,900	<290	<580	<1,400	<31	<29	860	43	<31	<29	<28	170	
cis-1,2-Dichloroethene	<29	7,300	1,900	19,000	<300	<27	<31	34	<31	<31	<31	<34	<290	<2,900	770	5,500	2,300	<31	<29	<31	58	220	220	<28	<31	
trans-1,2-Dichloroethene	<29	45	<58	<14,000	<300	<27	<31	<29	<31	<31	<31	<34	<290	<2,900	<290	<580	<1,400	<31	<29	<31	<29	<31	<29	<28	<31	
Ethylbenzene	<29	41	<58	<14,000	<300	<27	<31	<29	<31	<31	<31	<34	<290	<2,901	<290	<580	<1,400	<31	<29	<31	<29	<31	<29	<28	<31	
Isopropylbenzene	110	<28	<58	<14,000	<300	<27	<31	<29	<31	<31	<31	<34	<290	<2,902	<290	<580	<1,400	<31	<29	94	<29	<31	<29	<28	290	
p-Isopropyltoluene	<29	61	<58	<14,000	<300	<27	<31	<29	<31	<31	<31	<34	<290	<2,903	<290	<580	<1,400	<31	<29	<31	<29	<31	<29	<28	<31	
Naphthalene	<58	340	<120	<28,000	<610	230	<63	<57	<62	<61	<62	80	<590	<5,800	<570	<1,200	<2,900	<62	<58	<61	<58	<63	<58	<57	140	
n-Propylbenzene	62	41	<58	<14,000	<300	<27	<31	<29	<31	<31	<31	<34	<290	<2,900	<290	<580	<1,400	<31	<29	45	<29	<31	<29	<28	390	••
Tetrachloroethene	41	570	10,000	5,200,000	59,000	33	73	82	<31	<31	530	<34	62,000	510,000	47,000	97,000	250,000	<31	<29	32	<29	78	<29	150	<31	25,000
Toluene	<29	32	<58	<14,000	<300	<27	<31	<29	<31	<31	<31	<34	<290	<2,900	~290	U0C-	~1,400	<31	<29	<31	<29	<31	<29	<28	<31	
Trichloroethene	<29	83	2,700	420,000	2,200	<27	<31	<29	<31	<31	44	<34	1,200	9,300	380	5,300	5,500	<31	<29	<31	<29	41	<29	<28	<31	170
1,2,4-Trimethylbenzene	<29	320	<58	<14,000	<300	<27	<31	<29	<31	<31	<31	55	<290	<2,900	~290	<500	51,400	<31	<29	<31	<29	<31	<29	<28	<31	
1,3,5-Trimethylbenzene	<29	110	<58	<14,000	<300	<27	<31	<29	<31	<31	<31	<34	<290	<2,900	<290	<580	<1,400	<31	<29	<31	<29	<31	<29	<28	<31	
Vinyl chloride	<41	210	<82	<20,000	<420	<38	<44	<40	<44	<43	<43	<47	<410	<4,100	<400	<810	<2,000	<43	<41	<43	41	<44	<40	<40	<43	680
total Xylenes	<99	220	<200	<47,000	<1000	<93	<110	<98	<110	<100	<110	<110	<1,000	<9,900	<980	<2,000	<4,900	<110	<99	<100	<99	<110	<98	<97	<100	

NOTES:

PID: Photoionization Detector
BDL: Below Detection Limit
VOCs: Volatile organic compounds

ug/kg: Micrograms per kilogram; equivalent to parts per billion (ppb)

Results indicated in brown/underline exceed the US EPA Soil Screening Level (for an industrial property). Screening levels calculated using the US EPA Soil Screening Level Web Site and NR 720 default values as specified in PUB-RR-682 (January 11, 2002)

		1	41			WTFO	804
Giles Engineering As	sociates, I	nc.	CHAIN-C	OF-CUSTODY		Site (nmagai	al Property
N8 W22350 Johnson Road Suite A1, Water 4875 East La Palma Avenue, Suite 607, A	kesha, WI 53186 naheim, CA 92807	tel: 414-544-0118 tel: 714-779-0052	fax: 414-549-5868 fax: 714-779-0068	Closure sample		Site Commerci Address 1730 STO Racine,	or Snew
8300 Guilford Road, Suite F1, Columbia, I 10722 North Stemmons Freeway, Dallas,		tel: 410-312-9950 tel: 214-358-5885	fax: 410-312-9955 fax: 214-358-5884	□ confirmation required □ RUSH	(NR720)	Racine,	WI I
 2830 Agriculture Drive, Madison, VM 5371 3990 Flowers Road, Suite 530, Atlanta, G 		tel: 608-223-1853 tel: 770-458-3399	fax: 608-223-1854 fax: 770-458-3998	POSSIBLE HAZARDS:			
Sample Collector Ton Baune	^	Proje	ct Manager Tim	Taugher	Project Number	E- 0909013	
Laboratory Used Test Amer	ca	Lab C	Contact Dan	M.	Lab Job Number		
The same of the sa	(ing. 1986) (ing.	100 September 10		Analysis Required		Due Date	C Lab ID Temp
1 GP-1 4-6'	Soil 6/3x/0	AM Sto	K		14,1	H Madt STD	
a GP-1 8-10'			K		1111		
3 GP-1 12-14'		AM PM 152	K				A TOTAL
		AM 1					
4 68-2 4-6'		AM 498	K				
s CP-2 8-10'	1	8 AG MA	K				
6 Gl-3 2-4'		AM BOL	X				
1 Cl-3 6-8'			K				
8 68-4 4-6'		AM 246	K				
a cl-4 6-81		AM 28	×				
GR-5 4-6		PM 13	X				
G GP-5 6-8'	4 4	AM 9	K			1 + +	
container code: A = 8 oz/250 ml B = 4 oz/ 120 ml Relinquished By	D =	oo My Matt		INVOICE TO: Transfer	Send copy to Project Manager	J=	same
forms.xls//COC 08/10/99		PM AM PM	4		Page of _	2	

WTF0804

							7		f		2												F08		
Giles Engi	neering As	soci	ates	Inc.							OF-C	CUST	ODY	,							Site	Con	naero	al P	PERCO
N8 W22350 John 4875 East La Pai	son Road Suite A1, Wau na Avenue, Suite 607, A nd, Suite F1, Columbia, I	ikesha, Wi 5 Inaheim, CA	3186	tel: 414 tel: 714	-544-01 -779-00 -312-99	52		fax: 71	14-549- 14-779- 10-312-	-0068			Clo		•		(NR7:	20)		Ad	dress	173	0 ST0	3e S	Treat
	nmons Freeway, Dallas,				4-358-58				14-358-			ŧ	D RI	JSH								Kac	me,	<u>ಸ</u> ≖	
	Drive, Madison, WI 5371 Id, Suite 530, Atlanta, G				3-223-189 3-458-339				08-223- 70-458-			POS	SIBL	E HA	AZA I	RDS:									
Sample Collector	Tom Bour	101				Proj	ject Ma	nager	_	Ti	m	To	أوسا	her	-			Proje	ct Nu	mber [f	€-	0909	013		
Laboratory Used	TEST AM	ertea				Lab	Conta	ct	0	an	M.		U					Lab.	ob N	imber					
Anna Sames	The state of the s	· / 5	(Soil Motor Ments	The second secon	1000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1000	Alex		7		nalysi	s Requ	/	//		7/	1	Nony.	Contain Type	Sem.	Due Date		Temp
GP-10	4-6'	Soll	6/33/00	AM PN	71		X													1C.1+	+	MeoH	SAD		
GP-7	6-81	+	+	AM PM	0		X													1					
MeOH Blond			_	AM PM	X		K													10		+	+		A COLUMN
	***************************************			AM PM																					
				AM PM																					
				AM PM																					
				AM PM																					
				AM PM		T																		12.00	
				AM PM										T											
1.0				AM PM					+	T															
				AM PM	1	+		1	+	+							1							5 (1.7. a.d.	
				AM	1				1	+			+	1											
container code: A = 8 oz/250 ml B = 4 oz/ 120 ml				C = 2 oz/ 60 ml D = 40 mL VOA			الـــا				1 L An 250 m		c		G = p	oly bag	aL	plar	חיכ			l = J =		1-2-POLGE 200.00	
Relinquished By		Date		Time Re	ceived B	v		ow	IC	· e		11	IVOICE	E TO:				copy t				REPORT	TO:		same PM
55 Sm	•	6/23		1300	la		W						Th		Tan								Tau	-	
N	on work	6.34		15.00 PM	11/	uts	5	61	24/	8	161		1 1 1			9				_				0	
		-	-	PM AM								-								Page 0					

forms.xls//COC 08/10/99

Cooler Receipt Log

Work Order(s):اح	TFO 804 Client Name/Project:	les	# of Coolers:
How did samples arrive?	☐ Fed-Ex ☐ UPS ─☐ Test/	America □ Client □	Dunham Speedy S
·	of custody seals?		Broken Thot present
mat was the condition t	i ,		. Not present
te/time cooler was ope	ned: 6/24/0	By: Watty	Royw
emperature °C	Re	ceived on ice?Yes	s 🗆 No
oes this Project require	RUSH turn around?	🗌 Yes	s – []N o
"re there any short hold	time tests?	Yes	s DNo
☐ within 1 hr of or ☐ pa	st expiration of hold-time?	Provid	te details in space at bottom of form
	48 hours or less	7 days	s
	Coliform Bacteria 8/30 hours	Aqueous Organic Pre	p
	Chlorine/Hex Cr24 hours BOD	TS	
	Nitrate (DW is 14 days)	TSS	
	Nitrite	Sulfide	
	Orthophosphate)	Volatile Solids	
Except for tests with hold	d times of 48 hrs or less, are any samples		
within 2 days of or	past expiration of hold-time?	Yes ₽No	Provide details in space at bottom of form
Which Ops Mgr, PM or	Analyst was informed of short hold and when	? Who	When
; the date and time of c	ollection recorded?	Date Yes	□ No Time ⊕Yes □ No
vere all sample contain	ers listed on the COC received and intact?	Yes No	Provide details in space at bottom of form
. Do sample IDs match the	e COC?		Provide details in space at bottom of form
Are dissolved parameter	ers field filtered or being filtered in the lab?		D □NA
Are sample volumes as	dequate and preservatives correct for test requ	ested? VolYes	□ No Pres. □ Yes □ No
2, Are VOC samples free	of bubbles >6mm?	Yes □ No	₽N Ā
How were VOC soils re	ceived? / Methanol Sodium Bisulfate	e Packed jar	Encore Water* Other
*☑within 48 hrs of sar	mpling past 48 hrs of sampling Fro	ozen Not Frozen	•
is an aqueous Trip Blan	nk included? Yes No NA	is a Methanol Trip Bla	ınk included? ⊒Yes □ No □ NA
Are any samples on ho	ld?	Yes No	Provide details in space at bottom of form
6. Are there samples to be	e subcontracted?	Yes 🗖 No	•
If any changes are made	le to this Work Order after Login, or if commen	ts must be made regard	ding this cooler, explain them below:
			·

6mm = ----

July 01, 2010

Client:

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186

Work Order:

WTF0804

Project Name:

1E-0909013 Racine, WI

Project Number:

1730 State Street

Attn:

Mr. Tim Taugher

Date Received:

06/24/10

An executed copy of the chain of custody is also included as an addendum to this report.

If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-800-833-7036

SAMPLE IDENTIFICATION	LAB NUMBER	COLLECTION DATE AND TIME
GP-1 4-6'	WTF0804-01	06/23/10
GP-1 8-10'	WTF0804-02	06/23/10
GP-1 12-14'	WTF0804-03	06/23/10
GP-2 4-6'	WTF0804-04	06/23/10
GP-2 8-10'	WTF0804-05	06/23/10
GP-3 2-4'	WTF0804-06	06/23/10
GP-3 6-8'	WTF0804-07	06/23/10
GP-4 4-6'	WTF0804-08	06/23/10
GP-4 6-8'	WTF0804-09	06/23/10
GP-5 4-6'	WTF0804-10	06/23/10
GP-5 6-8'	WTF0804-11	06/23/10
GP-6 4-6'	WTF0804-12	06/23/10
GP-7 6-8'	WTF0804-13	06/23/10
MeOH Blank	WTF0804-14	06/23/10

Samples were received on ice into laboratory at a temperature of 1 °C.

Wisconsin Certification Number: 128053530

The Chain(s) of Custody, 3 pages, are included and are an integral part of this report.

Unless subcontracted, volatiles analyses (including VOC, PVOC, GRO, BTEX, and TPH gasoline) performed by TestAmerica Watertown at 1101 Industrial Drive, Units 9&10. All other analyses performed at the address shown in the heading of this report.

Approved By:

TestAmerica Watertown

Brian DeJong For Dan F. Milewsky

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Mr. Tim Taugher Work Order:

WTF0804

Received:

06/24/10

Project: Project Number: 1E-0909013 Racine, WI 1730 State Street Reported:

07/01/10 10:15

ANALYTICAL REPORT

Analyte	Sample Result	Data Qualifiers	Units	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTF0804-01 (GP-1	4-6' - Soil)					Sampled: 06	/23/10		
General Chemistry Parameters	,					Sampical 00	,20,10		
% Solids	85		%	NA	1	06/29/10 10:47	pam	10F0827	SM 2540G
VOCs by SW8260B	00		,,,	1171	•	00/25/10 10.47	pani	101 0027	5.11 25 100
Benzene	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B
Bromobenzene	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B
Bromochloromethane	<410		ug/kg dry	410	10	06/30/10 18:50	aba	10F0853	SW 8260B
Bromodichloromethane	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B
Bromoform	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B
Bromomethane	<1200		ug/kg dry	1200	10	06/30/10 18:50	aba	10F0853	SW 8260B
n-Butylbenzene	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B
sec-Butylbenzene	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B
tert-Butylbenzene	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B
Carbon Tetrachloride	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B
Chlorobenzene	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B
Chlorodibromomethane	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B
Chloroethane	<590		ug/kg dry	590	10	06/30/10 18:50	aba	10F0853	SW 8260B
Chloroform	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B
Chloromethane	<590		ug/kg dry	590	10	06/30/10 18:50	aba	10F0853	SW 8260B
2-Chlorotoluene	<590		ug/kg dry	590	10	06/30/10 18:50	aba	10F0853	SW 8260B
4-Chlorotoluene	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B
1,2-Dibromo-3-chloropropane	<590		ug/kg dry	590	10	06/30/10 18:50	aba	10F0853	SW 8260B
1,2-Dibromoethane (EDB)	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B
Dibromomethane	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B
1,2-Dichlorobenzene	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B
1,3-Dichlorobenzene	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B
1,4-Dichlorobenzene	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B
Dichlorodifluoromethane	<590		ug/kg dry	590	10	06/30/10 18:50	aba	10F0853	SW 8260B
1,1-Dichloroethane	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B
1,2-Dichloroethane	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B
1,1-Dichloroethene	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B
cis-1,2-Dichloroethene	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B
trans-1,2-Dichloroethene	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B
1,2-Dichloropropane	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B
1,3-Dichloropropane	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B
2,2-Dichloropropane	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B
1,1-Dichloropropene	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B
cis-1,3-Dichloropropene	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B
trans-1,3-Dichloropropene	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B
2,3-Dichloropropene	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B
Isopropyl Ether	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B
Ethylbenzene	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B
Hexachlorobutadiene	<410		ug/kg dry	410	10	06/30/10 18:50	aba	10F0853	SW 8260B
Isopropylbenzene	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B
p-lsopropyltoluene	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B
Methylene Chloride	<590		ug/kg dry	590	10	06/30/10 18:50	aba	10F0853	SW 8260B
Methyl tert-Butyl Ether	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B
Naphthalene	<590		ug/kg dry	590	10	06/30/10 18:50	aba	10F0853	SW 8260B
n-Propylbenzene	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B
Styrene	<590		ug/kg dry	590	10	06/30/10 18:50	aba	10F0853	SW 8260B
1,1,1,2-Tetrachloroethane	<290		ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Mr. Tim Taugher

Work Order:

WTF0804

Received:

Reported:

06/24/10

07/01/10 10:15

Project: Project N 1E-0909013 Racine, WI

Number:	1730 S	tate Street
---------	--------	-------------

Analyte	Sample Result	Data Qualifiers Units	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTF0804-01RE1 (GP-	1 4-6' - Soil) -	cont.			Sampled: 06	/23/10		
VOCs by SW8260B - cont.	,				omnipied: 00			
1,1,2,2-Tetrachloroethane	<290	ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B
Tetrachloroethene	62000	ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B
Toluene	<290	ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B
1,2,3-Trichlorobenzene	<290	ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B
1,2,4-Trichlorobenzene	<290	ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B
1,1,1-Trichloroethane	<290	ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B
1,1,2-Trichloroethane	<410	ug/kg dry	410	10	06/30/10 18:50	aba	10F0853	SW 8260B
Trichloroethene	1200	ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B
Trichlorofluoromethane	<290	ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B
1,2,3-Trichloropropane	<590	ug/kg dry	590	10	06/30/10 18:50	aba	10F0853	SW 8260B
1,2,4-Trimethylbenzene	<290	ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B
1,3,5-Trimethylbenzene	<290	ug/kg dry	290	10	06/30/10 18:50	aba	10F0853	SW 8260B
Vinyl chloride	<410	ug/kg dry	410	10	06/30/10 18:50	aba	10F0853	SW 8260B
Xylenes, total	<1000	ug/kg dry	1000	10	06/30/10 18:50	aba	10F0853	SW 8260B
Surr: Dibromofluoromethane (80-120%)	101 %				00/00/10 10:50	aou	101 0055	D 11 0200D
Surr: Toluene-d8 (80-120%)	98 %							
Surr: 4-Bromofluorohenzene (80-120%)	101 %							
Sample ID: WTF0804-02 (GP-1 8-					C	122/10		
	10 - 3011)				Sampled: 06	/23/10		
General Chemistry Parameters	2.0							
% Solids	86	%	NA	1	06/29/10 10:47	pam	10F0827	SM 2540G
VOCs by SW8260B								
Benzene	<2900	ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
Bromobenzene	<2900	ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
Bromochloromethane	<4100	ug/kg dry	4100	100	06/29/10 16:51	aba	10F0832	SW 8260B
Bromodichloromethane	<2900	ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
Bromoform	<2900	ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
Bromomethane	<12000	ug/kg dry	12000	100	06/29/10 16:51	aba	10F0832	SW 8260B
n-Butylbenzene	<2900	ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
sec-Butylbenzene	<2900	ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
tert-Butylbenzene	<2900	ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
Carbon Tetrachloride	<2900	ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
Chlorobenzene	<2900	ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
Chlorodibromomethane	<2900	ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
Chloroethane	<5800	ug/kg dry	5800	100	06/29/10 16:51	aba	10F0832	SW 8260B
Chloroform	<2900	ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
Chloromethane	<5800	ug/kg dry	5800	100	06/29/10 16:51	aba	10F0832	SW 8260B
2-Chlorotoluene	<5800	ug/kg dry	5800	100	06/29/10 16:51	aba	10F0832	SW 8260B
4-Chlorotoluene	<2900	ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
1,2-Dibromo-3-chloropropane	<5800	ug/kg dry	5800	100	06/29/10 16:51	aba	10F0832	SW 8260B
1,2-Dibromoethane (EDB)	<2900	ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
Dibromomethane	<2900	ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
1,2-Dichlorobenzene	<2900	ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
1,3-Dichlorobenzene	<2900	ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
1,4-Dichlorobenzene	<2900	ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
Dichlorodifluoromethane	<5800	ug/kg dry	5800	100	06/29/10 16:51	aba	10F0832	SW 8260B
1,1-Dichloroethane	<2900	ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
1,2-Dichloroethane	<2900	ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
1,1-Dichloroethene	<2900	ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
cis-1,2-Dichloroethene	<2900	ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
trans-1,2-Dichloroethene	<2900	ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B

Brian DeJong For Dan F. Milewsky

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Work Order:

WTF0804

Received:

06/24/10

Project: Project Number: 1E-0909013 Racine, WI 1730 State Street Reported:

07/01/10 10:15

M- 7	Fim	Taugher
IVII.	IIII	laugher

Analyte	Sample Result	Data Qualifiers	Units	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTF0804-02 (GP-1 8-1	0' - Soil) - cor	ıt.				Sampled: 06	/23/10		
VOCs by SW8260B - cont.									
1,2-Dichloropropane	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
1,3-Dichloropropane	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
2,2-Dichloropropane	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
1,1-Dichloropropene	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
cis-1,3-Dichloropropene	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
trans-1,3-Dichloropropene	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
2,3-Dichloropropene	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
Isopropyl Ether	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
Ethylbenzene	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
Hexachlorobutadiene	<4100		ug/kg dry	4100	100	06/29/10 16:51	aba	10F0832	SW 8260B
Isopropylbenzene	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
p-lsopropyltoluene	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
Methylene Chloride	<5800		ug/kg dry	5800	100	06/29/10 16:51	aba	10F0832	SW 8260B
Methyl tert-Butyl Ether	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
Naphthalene	<5800		ug/kg dry	5800	100	06/29/10 16:51	aba	10F0832	SW 8260B
n-Propylbenzene	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
Styrene	<5800		ug/kg dry	5800	100	06/29/10 16:51	aba	10F0832	SW 8260B
1,1,1,2-Tetrachloroethane	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
1,1,2,2-Tetrachloroethane	<2900		ug/kg dry	. 2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
Tetrachloroethene	510000		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
Toluene	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
1,2,3-Trichlorobenzene	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
1,2,4-Trichlorobenzene	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
1,1,1-Trichloroethane	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
1,1,2-Trichloroethane	<4100		ug/kg dry	4100	100	06/29/10 16:51	aba	10F0832	SW 8260B
Trichloroethene	9300		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
Trichlorofluoromethane	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
1,2,3-Trichloropropane	<5800		ug/kg dry	5800	100	06/29/10 16:51	aba	10F0832	SW 8260B
1,2,4-Trimethylbenzene	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
1,3,5-Trimethylbenzene	<2900		ug/kg dry	2900	100	06/29/10 16:51	aba	10F0832	SW 8260B
Vinyl chloride	<4100		ug/kg dry	4100	100	06/29/10 16:51	aba	10F0832	SW 8260B
Xylenes, total	<9900		ug/kg dry	9900	100	06/29/10 16:51	aba	10F0832	SW 8260B
Surr: Dibromofluoromethane (80-120%)	101 %								
Surr: Toluene-d8 (80-120%)	100 %								
Surr: 4-Bromofluorobenzene (80-120%)	101 %								

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Mr. Tim Taugher

Work Order:

Project Number:

Project:

WTF0804

1730 State Street

004

1E-0909013 Racine, WI

Received:

06/24/10

Reported: 0

07/01/10 10:15

Analyte	Sample Result	Data Qualifiers	Units	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
xhaiyte	Result	Quantitis	Onto	WINL	ractor	Analyzeu	Allatyst	Daten	Methoc
Sample ID: WTF0804-03 (GP-1 1	2-14' - Soil)					Sampled: 06	/23/10		
General Chemistry Parameters									
% Solids	87		%	NA	1	06/29/10 10:47	pam	10F0827	SM 25406
VOCs by SW8260B									
Benzene	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260
Bromobenzene	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260
Bromochloromethane	<400		ug/kg dry	400	10	06/29/10 16:06	aba	10F0832	SW 8260
Bromodichloromethane	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260
Bromoform	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260
Bromomethane	<1100		ug/kg dry	1100	10	06/29/10 16:06	aba	10F0832	SW 8260
n-Butylbenzene	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260
sec-Butylbenzene	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260
tert-Butylbenzene	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260
Carbon Tetrachloride	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260
Chlorobenzene	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260
Chlorodibromomethane	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260
Chloroethane	<570		ug/kg dry	570	10	06/29/10 16:06	aba	10F0832	SW 8260
Chloroform	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260
Chloromethane	<570		ug/kg dry	570	10	06/29/10 16:06	aba	10F0832	SW 8260
2-Chlorotoluene	<570		ug/kg dry	570	10	06/29/10 16:06	aba	10F0832	SW 8260
4-Chlorotoluene	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260
1,2-Dibromo-3-chloropropane	<570		ug/kg dry	570	10	06/29/10 16:06	aba	10F0832	SW 8260
1,2-Dibromoethane (EDB)	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260
Dibromomethane	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260
1,2-Dichlorobenzene	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260
1,3-Dichlorobenzene	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260
1,4-Dichlorobenzene	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260
Dichlorodifluoromethane	<570		ug/kg dry	570	10	06/29/10 16:06	aba	10F0832	SW 8260
1,1-Dichloroethane	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260
1,2-Dichloroethane	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260
1,1-Dichloroethene	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260
cis-1,2-Dichloroethene	770		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260
trans-1,2-Dichloroethene	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260
1,2-Dichloropropane	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260
1,3-Dichloropropane	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260
2,2-Dichloropropane	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260
1,1-Dichloropropene	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260
cis-1,3-Dichloropropene	<290			290	10	06/29/10 16:06	aba	10F0832	SW 8260
trans-1,3-Dichloropropene	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260
			ug/kg dry						
2,3-Dichloropropene Isopropyl Ether	<290 <290		ug/kg dry	290 290	10 10	06/29/10 16:06 06/29/10 16:06	aba	10F0832	SW 8260
Ethylbenzene	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832 10F0832	SW 8260 SW 8260
Hexachlorobutadiene	<400		ug/kg dry	400		06/29/10 16:06	aba		
Isopropylbenzene	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260
p-Isopropyltoluene			ug/kg dry		10		aba	10F0832	SW 8260
	<290		ug/kg dry	290 570	10	06/29/10 16:06	aba	10F0832	SW 8260
Methylene Chloride	<570		ug/kg dry	570	10	06/29/10 16:06	aba	10F0832	SW 8260
Methyl tert-Butyl Ether	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260
Naphthalene	<570		ug/kg dry	570	10	06/29/10 16:06	aba	10F0832	SW 8260
n-Propylbenzene	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260
Styrene	<570		ug/kg dry	570	10	06/29/10 16:06	aba	10F0832	SW 8260
1,1,1,2-Tetrachloroethane	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260
1,1,2,2-Tetrachloroethane	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260
Tetrachloroethene	47000		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 82601

Brian DeJong For Dan F. Milewsky Project Manager

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha WI 53186 Work Order:

Project:

WTF0804

Received:

06/24/10

Project Number:

1E-0909013 Racine, WI 1730 State Street Reported:

07/01/10 10:15

Waukesha, WI 53186
Mr. Tim Taugher

A nalyta	Sample Result	Data Qualifiers	Units	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Analyte	Result	Quanners	Опиз	WIKL	Factor	Allalyzeu	Analyst	Daten	Method
Sample ID: WTF0804-03 (GP-1 12-1	14' - Soil) - c	ont.				Sampled: 06	/23/10		
VOCs by SW8260B - cont.									
Toluene	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260E
1,2,3-Trichlorobenzene	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260E
1,2,4-Trichlorobenzene	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260E
1,1,1-Trichloroethane	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 82601
1,1,2-Trichloroethane	<400		ug/kg dry	400	10	06/29/10 16:06	aba	10F0832	SW 8260E
Trichloroethene	380		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260E
Trichlorofluoromethane	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260E
1,2,3-Trichloropropane	<570		ug/kg dry	570	10	06/29/10 16:06	aba	10F0832	SW 8260E
1,2,4-Trimethylbenzene	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260E
1,3,5-Trimethylbenzene	<290		ug/kg dry	290	10	06/29/10 16:06	aba	10F0832	SW 8260E
Vinyl chloride	<400		ug/kg dry	400	10	06/29/10 16:06	aba	10F0832	SW 8260E
Xylenes, total	<980		ug/kg dry	980	10	06/29/10 16:06	aba	10F0832	SW 8260E
Surr: Dibromofluoromethane (80-120%)	100 %								
Surr: Toluene-d8 (80-120%)	99 %								
Surr: 4-Bromofluorobenzene (80-120%)	101 %								
Sample ID: WTF0804-04 (GP-2 4-6)	- Soil)					Sampled: 06	/23/10		
General Chemistry Parameters									
% Solids	86		%	NA	1	06/29/10 10:47	pam	10F0827	SM 25400
VOCs by SW8260B									
Benzene	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260E
Bromobenzene	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260E
	<810			810	20	06/29/10 18:08	aba	10F0832	SW 8260E
Bromochloromethane			ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260E
Bromodichloromethane	<580		ug/kg dry	580	20	06/29/10 18:08		10F0832	SW 8260E
Bromoform	<580		ug/kg dry			06/29/10 18:08	aba	10F0832	SW 8260E
Bromomethane	<2300		ug/kg dry	2300	20		aba		
n-Butylbenzene	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260F
sec-Butylbenzene	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260E
tert-Butylbenzene	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260E
Carbon Tetrachloride	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260E
Chlorobenzene	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260E
Chlorodibromomethane	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260E
Chloroethane	<1200		ug/kg dry	1200	20	06/29/10 18:08	aba	10F0832	SW 8260F
Chloroform	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260E
Chloromethane	<1200		ug/kg dry	1200	20	06/29/10 18:08	aba	10F0832	SW 8260E
2-Chlorotoluene	<1200		ug/kg dry	1200	20	06/29/10 18:08	aba	10F0832	SW 8260E
4-Chlorotoluene	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260F
1,2-Dibromo-3-chloropropane	<1200		ug/kg dry	1200	20	06/29/10 18:08	aba	10F0832	SW 8260E
1,2-Dibromoethane (EDB)	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260E
Dibromomethane	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260E
1,2-Dichlorobenzene	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260E
1,3-Dichlorobenzene	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260E
1,4-Dichlorobenzene	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260E
Dichlorodifluoromethane	<1200		ug/kg dry	1200	20	06/29/10 18:08	aba	10F0832	SW 8260E
1,1-Dichloroethane	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260E
1,2-Dichloroethane	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260E
1,1-Dichloroethene	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260E
cis-1,2-Dichloroethene	5500		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260E
trans-1,2-Dichloroethene	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260E
1,2-Dichloropropane	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260E
1,3-Dichloropropane	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260E

Brian DeJong For Dan F. Milewsky

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Work Order:

WTF0804

Received:

06/24/10

W 22550 Johnson Road

Project: Project Nu 1E-0909013 Racine, WI

Project Number: 1730 State Street

Reported: 07/01/10 10:15

Analyte	Sample Result	Data Qualifiers	Units	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTF0804-04 (GP-2 4-6	5' - Soil) - cont	t.				Sampled: 06	/23/10		
VOCs by SW8260B - cont.									
2,2-Dichloropropane	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260F
1,1-Dichloropropene	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 82601
cis-1,3-Dichloropropene	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260
trans-1,3-Dichloropropene	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 82601
2,3-Dichloropropene	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 82601
Isopropyl Ether	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260
Ethylbenzene	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260
Hexachlorobutadiene	<810		ug/kg dry	810	20	06/29/10 18:08	aba	10F0832	SW 8260
Isopropylbenzene	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260
p-IsopropyItoluene	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260
Methylene Chloride	<1200		ug/kg dry	1200	20	06/29/10 18:08	aba	10F0832	SW 8260
Methyl tert-Butyl Ether	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260
Naphthalene	<1200		ug/kg dry	1200	20	06/29/10 18:08	aba	10F0832	SW 8260
n-Propylbenzene	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260
Styrene	<1200		ug/kg dry	1200	20	06/29/10 18:08	aba	10F0832	SW 8260
1,1,1,2-Tetrachloroethane	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260
1,1,2,2-Tetrachloroethane	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260
Tetrachloroethene	97000		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260
Toluene	<580		ug/kg dry	580 -	20	06/29/10 18:08	aba	10F0832	SW 8260
1,2,3-Trichlorobenzene	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260
1,2,4-Trichlorobenzene	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260
1,1,1-Trichloroethane	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260
1,1,2-Trichloroethane	<810		ug/kg dry	810	20	06/29/10 18:08	aba	10F0832	SW 8260
Trichloroethene	5300		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260
Trichlorofluoromethane	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260
1,2,3-Trichloropropane	<1200		ug/kg dry	1200	20	06/29/10 18:08	aba	10F0832	SW 8260
1,2,4-Trimethylbenzene	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260
1,3,5-Trimethylbenzene	<580		ug/kg dry	580	20	06/29/10 18:08	aba	10F0832	SW 8260
Vinyl chloride	<810		ug/kg dry	810	20	06/29/10 18:08	aba	10F0832	SW 8260
Xylenes, total	<2000		ug/kg dry	2000	20	06/29/10 18:08	aba	10F0832	SW 8260
Surr: Dibromofluoromethane (80-120%)	101 %								
Surr: Toluene-d8 (80-120%)	100 %								
Surr: 4-Bromofluorobenzene (80-120%)	102 %								

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Work Order:

WTF0804

1730 State Street

Received:

06/24/10

Waukesha, WI 53186

Project: Project Number: 1E-0909013 Racine, WI

Reported:

07/01/10 10:15

Mr. Tim Taugher

	Sample	Data	WT A	3.652	Dilution	Date		Seq/	N. 4. 1
Analyte	Result	Qualifiers	Units	MRL	Factor	Analyzed	Analyst	Batch	Method
Sample ID: WTF0804-05 (GP-2	8-10' - Soil)					Sampled: 06	/23/10		
General Chemistry Parameters									
% Solids	87		%	NA	1	06/29/10 10:47	pam	10F0827	SM 25400
VOCs by SW8260B									
Benzene	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 82601
Bromobenzene	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 82601
Bromochloromethane	<2000		ug/kg dry	2000	50	06/29/10 18:35	aba	10F0832	SW 82601
Bromodichloromethane	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260
Bromoform	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260
Bromomethane	<5700		ug/kg dry	5700	50	06/29/10 18:35	aba	10F0832	SW 8260
n-Butylbenzene	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260
sec-Butylbenzene	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260
tert-Butylbenzene	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260
Carbon Tetrachloride	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260
Chlorobenzene	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260
Chlorodibromomethane	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260
Chloroethane	<2900		ug/kg dry	2900	50	06/29/10 18:35	aba	10F0832	SW 8260
Chloroform	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260
Chloromethane	<2900		ug/kg dry	2900	50	06/29/10 18:35	aba	10F0832	SW 8260
2-Chlorotoluene	<2900		ug/kg dry	2900	50	06/29/10 18:35	aba	10F0832	SW 8260
4-Chlorotoluene	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260
1,2-Dibromo-3-chloropropane	<2900		ug/kg dry	2900	50	06/29/10 18:35	aba	10F0832	SW 8260
1,2-Dibromoethane (EDB)	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260
Dibromomethane	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260
1,2-Dichlorobenzene	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260
1,3-Dichlorobenzene	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260
1,4-Dichlorobenzene	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260
Dichlorodifluoromethane	<2900		ug/kg dry	2900	50	06/29/10 18:35	aba	10F0832	SW 8260
1,1-Dichloroethane	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260
1,2-Dichloroethane	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260
1,1-Dichloroethene	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260
cis-1,2-Dichloroethene	2300		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260
trans-1,2-Dicbloroethene	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260
1,2-Dichloropropane	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260
1,3-Dichloropropane	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260
2,2-Dichloropropane	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260
1,1-Dichloropropene	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260
cis-1,3-Dichloropropene	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260
trans-1,3-Dichloropropene	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260
2,3-Dichloropropene	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260
Isopropyl Ether	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260
Ethylbenzene	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260
Hexachlorobutadiene	<2000		ug/kg dry	2000	50	06/29/10 18:35	aba	10F0832	SW 8260
Isopropylbenzene	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260
p-lsopropyltoluene	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260
Methylene Chloride	<2900		ug/kg dry	2900	50	06/29/10 18:35	aba	10F0832	SW 8260
Methyl tert-Butyl Ether	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260
Naphthalene	<2900		ug/kg dry	2900	50	06/29/10 18:35	aba	10F0832	SW 8260
n-Propylbenzene	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260
Styrene	<2900		ug/kg dry	2900	50	06/29/10 18:35	aba	10F0832	SW 8260
1.1.1.2-Tetrachloroethane	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260
1,1,2,2-Tetrachloroethane	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260
Tetrachloroethene	250000		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260

Brian DeJong For Dan F. Milewsky

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186

Work Order:

WTF0804

Received:

06/24/10

Project: Project Number: 1E-0909013 Racine, WI 1730 State Street

Reported:

07/01/10 10:15

Mr. Tim Taugher

	Sample	Data			Dilution	Date		Seq/	
Analyte	Result	Qualifiers	Units	MRL	Factor	Analyzed	Analyst	Batch	Method
Sample ID: WTF0804-05 (GP-2 8-1	10' - Soil) - coi	nt.				Sampled: 06	6/23/10		
VOCs by SW8260B - cont.									
Toluene	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260E
1,2,3-Trichlorobenzene	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 82601
1,2,4-Trichlorobenzene	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 82601
1,1,1-Trichloroethane	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260
1,1,2-Trichloroethane	<2000		ug/kg dry	2000	50	06/29/10 18:35	aba	10F0832	SW 8260
Trichloroethene	5500		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260
Trichlorofluoromethane	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260
1,2,3-Trichloropropane	<2900		ug/kg dry	2900	50	06/29/10 18:35	aba	10F0832	SW 8260
1,2,4-Trimethylbenzene	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260
1,3,5-Trimethylbenzene	<1400		ug/kg dry	1400	50	06/29/10 18:35	aba	10F0832	SW 8260
Vinyl chloride	<2000		ug/kg dry	2000	50	06/29/10 18:35	aba	10F0832	SW 8260
Xylenes, total	<4900		ug/kg dry	4900	50	06/29/10 18:35	aba	10F0832	SW 8260
Surr: Dibromofluoromethane (80-120%)	101 %								
Surr: Toluene-d8 (80-120%)	99 %								
Surr: 4-Bromofluorobenzene (80-120%)	100 %								
ample ID: WTF0804-06 (GP-3 2-4	4' - Soil)					Sampled: 06	/23/10		
General Chemistry Parameters									
% Solids	81		%	NA	1	06/29/10 10:47	pam	10F0827	SM 25400
OCs by SW8260B							P		
Benzene	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260
Bromobenzene	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260
Bromochloromethane	<43		ug/kg dry	43	1	06/29/10 13:41	ABA	10F0856	SW 8260
Bromodichloromethane	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260
Bromoform	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260
Bromomethane	<120		ug/kg dry	120	1	06/29/10 13:41	ABA	10F0856	SW 8260
n-Butylbenzene	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260
sec-Butylbenzene	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260
tert-Butylbenzene	<31			31	1	06/29/10 13:41	ABA	10F0856	SW 8260
Carbon Tetrachloride	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260
Chlorobenzene	⊲1		ug/kg dry	31	1	06/29/10 13:41			
Chlorodibromomethane	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260
Chloroethane	<62		ug/kg dry				ABA	10F0856	SW 8260
			ug/kg dry	62	1	06/29/10 13:41	ABA	10F0856	SW 8260
Chloro form	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260
Chloromethane	<62		ug/kg dry	62	1	06/29/10 13:41	ABA	10F0856	SW 8260
2-Chlorotoluene	<62		ug/kg dry	62	1	06/29/10 13:41	ABA	10F0856	SW 8260
4-Chlorotoluene	⊲1		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 82601
1,2-Dibromo-3-chloropropane	<62		ug/kg dry	62	1	06/29/10 13:41	ABA	10F0856	SW 82601
1,2-Dibromoethane (EDB)	⊲1		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260
Dibromomethane	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260
1,2-Dichlorobenzene	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260
1,3-Dichlorobenzene	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260
1,4-Dichlorobenzene	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260
Dichlorodifluoromethane	<62		ug/kg dry	62	1	06/29/10 13:41	ABA	10F0856	SW 8260
1,1-Dichloroethane	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260
1,2-Dichloroethane	3 1		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260
,1-Dichloroethene	⊲1		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260
sis-1,2-Dichloroethene	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260
rans-1,2-Dichloroethene	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 82601
1,2-Dichloropropane	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 82601
1,3-Dichloropropane	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 82601

Brian DeJong For Dan F. Milewsky Project Manager

Page 9 of 38

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Work Order:

WTF0804

Received:

06/24/10

Waukesha, WI 53186

Project: Project Number:

1E-0909013 Racine, WI 1730 State Street

Reported:

07/01/10 10:15

Mr. Tim Taugher

	Sample	Data			Dilution	Date		Seq/	
Analyte	Result	Qualifiers	Units	MRL	Factor	Analyzed	Analyst	Batch	Method
Sample ID: WTF0804-06 (GP-3 2-4	4' - Soil) - cont					Sampled: 06	6/23/10		
VOCs by SW8260B - cont.									
2,2-Dichloropropane	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260B
1,1-Dichloropropene	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260B
cis-1,3-Dichloropropene	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260B
trans-1,3-Dichloropropene	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260B
2,3-Dichloropropene	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260B
Isopropyl Ether	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260B
Ethylbenzene	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260B
Hexachlorobutadiene	<43		ug/kg dry	43	1	06/29/10 13:41	ABA	10F0856	SW 8260B
Isopropylbenzene	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260B
p-lsopropyltoluene	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260B
Methylene Chloride	<62		ug/kg dry	62	1	06/29/10 13:41	ABA	10F0856	SW 8260B
Methyl tert-Butyl Ether	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260B
Naphthalene	<62		ug/kg dry	62	1	06/29/10 13:41	ABA	10F0856	SW 8260B
n-Propylbenzene	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260B
Styrene	<62		ug/kg dry	62	1	06/29/10 13:41	ABA	10F0856	SW 8260B
1,1,1,2-Tetrachloroethane	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260B
1,1,2,2-Tetrachloroethane	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260B
Tetrachloroethene	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260B
Toluene	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260B
1,2,3-Trichlorobenzene	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260B
1,2,4-Trichlorobenzene	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260B
1,1,1-Trichloroethane	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260B
1,1,2-Trichloroethane	<43		ug/kg dry	43	1	06/29/10 13:41	ABA	10F0856	SW 8260B
Trichloroethene	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260B
Trichlorofluoromethane	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260B
1,2,3-Trichloropropane	<62		ug/kg dry	62	1	06/29/10 13:41	ABA	10F0856	SW 8260B
1,2,4-Trimethylbenzene	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260B
1,3,5-Trimethylbenzene	<31		ug/kg dry	31	1	06/29/10 13:41	ABA	10F0856	SW 8260B
Vinyl chloride	<43		ug/kg dry	43	1	06/29/10 13:41	ABA	10F0856	SW 8260B
Xylenes, total	<110		ug/kg dry	110	1	06/29/10 13:41	ABA	10F0856	SW 8260B
Surr: Dibromofluoromethane (80-120%)	100 %								
Surr: Toluene-d8 (80-120%)	96 %								
Surr: 4-Bromofluorobenzene (80-120%)	95 %								

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186 Mr. Tim Taugher

Work Order:

Project:

WTF0804

1E-0909013 Racine, WI

06/24/10 Received:

Reported:

07/01/10 10:15

Project Number:	1730 State	Street
-----------------	------------	--------

Analyte	Sample Result	Data Qualifiers	Units	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTF0804-07 (GP-3	3 6-8' - Soil)					Sampled: 06	/23/10		
General Chemistry Parameters	,					Sample and			
% Solids	86		%	NA	1	06/29/10 10:47	pam	10F0827	SM 2540G
VOCs by SW8260B							P		
Benzene	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260B
Bromobenzene	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260B
Bromochloromethane	<41		ug/kg dry	41	1	06/29/10 14:11	ABA	10F0856	SW 8260B
Bromodichloromethane	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260B
Bromoform	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260B
Bromomethane	<120		ug/kg dry	120	1	06/29/10 14:11	ABA	10F0856	SW 8260B
n-Butylbenzene	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260B
sec-Butylbenzene	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260B
tert-Butylbenzene	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260B
Carbon Tetrachloride	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260B
Chlorobenzene	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260B
Chlorodibromomethane	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260B
Chloroethane	<58		ug/kg dry	58	1	06/29/10 14:11	ABA	10F0856	SW 8260B
Chloroform	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260B
Chloromethane	<58		ug/kg dry	58	1	06/29/10 14:11	ABA	10F0856	SW 8260B
2-Chlorotoluene	<58		ug/kg dry	58	1	06/29/10 14:11	ABA	10F0856	SW 8260B
4-Chlorotoluene	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260B
1,2-Dibromo-3-chloropropane	<58		ug/kg dry	58	1	06/29/10 14:11	ABA	10F0856	SW 8260B
1,2-Dibromoethane (EDB)	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260B
Dibromomethane	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260B
1,2-Dichlorobenzene	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260B
1,3-Dichlorobenzene	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260B
1,4-Dichlorobenzene	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260B
Dichlorodifluoromethane	<58		ug/kg dry	58	1	06/29/10 14:11	ABA	10F0856	SW 8260B
1,1-Dichloroethane	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260B
1,2-Dichloroethane	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260B
1,1-Dichloroethene	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260B
cis-1,2-Dichloroethene	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260B
trans-1,2-Dichloroethene	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260B
1,2-Dichloropropane	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260B
1,3-Dichloropropane	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260B
2,2-Dichloropropane	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260B
1,1-Dichloropropene	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260B
cis-1,3-Dichloropropene	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260B
trans-1,3-Dichloropropene	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260B
2,3-Dichloropropene	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260B
Isopropyl Ether	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260B
Ethylbenzene	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260B
Hexachlorobutadiene	<41		ug/kg dry	41	1	06/29/10 14:11	ABA	10F0856	SW 8260B
Isopropylbenzene	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260B
p-Isopropyltoluene	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260B
Methylene Chloride	<58		ug/kg dry	58	1	06/29/10 14:11	ABA	10F0856	SW 8260B
Methyl tert-Butyl Ether	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260B
Naphthalene	<58		ug/kg dry	58	1	06/29/10 14:11	ABA	10F0856	SW 8260B
n-Propylbenzene	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260B
Styrene	<58		ug/kg dry	58	1	06/29/10 14:11	ABA	10F0856	SW 8260B
I,1,1,2-Tetrachloroethane	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260B
1,1,2,2-Tetrachloroethane	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260B
Tetrachloroethene	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260B

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186

Work Order:

Project Number:

Project:

WTF0804

1730 State Street

1E-0909013 Racine, WI

Received:

06/24/10

07/01/10 10:15 Reported:

Analyte	Sample Result	Data Qualifiers	Units	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Samuel ID. WTE0904 07 (CD 2 6 4	Pl Soil) some					C1-1-06	122/10		
Sample ID: WTF0804-07 (GP-3 6-8	5' - Son) - cont					Sampled: 06	/23/10		
VOCs by SW8260B - cont.						0.0000000000000000000000000000000000000	40.	1000000	0111 00/0
Toluene	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260
1,2,3-Trichlorobenzene	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260
1,2,4-Trichlorobenzene	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260
1,1,1-Trichloroethane	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260
1,1,2-Trichloroethane	<41		ug/kg dry	41	1	06/29/10 14:11	ABA	10F0856	SW 8260
Trichloroethene	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260
Trichlorofluoromethane	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260
1,2,3-Trichloropropane	<58		ug/kg dry	58	1	06/29/10 14:11	ABA	10F0856	SW 8260
1,2,4-Trimethylbenzene	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260
1,3,5-Trimethylbenzene	<29		ug/kg dry	29	1	06/29/10 14:11	ABA	10F0856	SW 8260
Vinyl chloride	<41		ug/kg dry	41	1	06/29/10 14:11	ABA	10F0856	SW 8260
Xylenes, total	<99		ug/kg dry	99	1	06/29/10 14:11	ABA	10F0856	SW 8260
Surr: Dibromofluoromethane (80-120%)	104 %								
Surr: Toluene-d8 (80-120%)	97 %								
Surr: 4-Bromofluorobenzene (80-120%)	97 %								
Sample ID: WTF0804-08 (GP-4 4-6	6' - Soil)					Sampled: 06	/23/10		
General Chemistry Parameters									
% Solids	82		%	NA	1	06/29/10 10:47	pam	10F0827	SM 2540
VOCs by SW8260B									
Benzene	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
Bromobenzene	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
Bromochloromethane	<43		ug/kg dry	43	1	06/29/10 19:01	aba	10F0832	SW 8260
Bromodichloromethane	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
Bromoform	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
Bromomethane	<120		ug/kg dry	120	1	06/29/10 19:01	aba	10F0832	SW 8260
n-Butylbenzene	780		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
sec-Butylbenzene	860		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
	<31			31	1	06/29/10 19:01	aba	10F0832	SW 8260
tert-Butylbenzene			ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
Carbon Tetrachloride	<31		ug/kg dry		1				
Chlorobenzene	<31		ug/kg dry	31		06/29/10 19:01	aba	10F0832 10F0832	SW 8260
Chlorodibromomethane	<31		ug/kg dry	31	1	06/29/10 19:01	aba		SW 8260
Chloroethane	<61		ug/kg dry	61	1	06/29/10 19:01	aba	10F0832	SW 8260
Chloroform	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
Chloromethane	<61		ug/kg dry	61	1	06/29/10 19:01	aba	10F0832	SW 8260
2-Chlorotoluene	<61		ug/kg dry	61	1	06/29/10 19:01	aba	10F0832	SW 8260
4-Chlorotoluene	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
1,2-Dibromo-3-chloropropane	<61		ug/kg dry	61	1	06/29/10 19:01	aba	10F0832	SW 8260
1,2-Dibromoethane (EDB)	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
Dibromomethane	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
1,2-Dichlorobenzene	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
1,3-Dichlorobenzene	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
1,4-Dichlorobenzene	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
Dichlorodifluoromethane	<61		ug/kg dry	61	1	06/29/10 19:01	aba	10F0832	SW 8260
1,1-Dichloroethane	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
1,2-Dichloroethane	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
1,1-Dichloroethene	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
cis-1,2-Dichloroethene	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
trans-1,2-Dichloroethene	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
1,2-Dichloropropane	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260
1,3-Dichloropropane	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 826

Brian DeJong For Dan F. Milewsky Project Manager

Page 12 of 38

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Work Order:

WTF0804

Received:

06/24/10

w 22550 Johnson Road

Project Number:

Project:

1E-0909013 Racine, WI 1730 State Street Reported:

07/01/10 10:15

				_	-	~	-	•	~
Mr.	Tim	Ta	ug	gh	e	r			

Sample D: WTF0804-08 (GP-4 4-6' - Soil) - cont. VOCs by SW8260B - cont.	Analyte	Sample Result	Data Qualifiers	Units	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
VOCs by SW8260B - cont.	Allalyte	Kesun	Quantiers	Ullis	WIRL	Pactor	Allalyzeu	Analyst	Daten	Method
2,2-Dichloropropane	Sample ID: WTF0804-08 (GP-4 4-	6' - Soil) - cont	•				Sampled: 06	/23/10		
1-10-biotropropene <1 ug/kg dry 31 1 06/29/10 19-01 aba 1070832 SW 82601 trans-1,3-Diothoropropene <1 ug/kg dry 31 1 06/29/10 19-01 aba 1070832 SW 82601 trans-1,3-Diothoropropene <1 ug/kg dry 31 1 06/29/10 19-01 aba 1070832 SW 82601 trans-1,3-Diothoropropene <1 ug/kg dry 31 1 06/29/10 19-01 aba 1070832 SW 82601 trans-1,3-Diothoropropene <1 ug/kg dry 31 1 06/29/10 19-01 aba 1070832 SW 82601 trans-1,3-Diothoropropene <1 ug/kg dry 31 1 06/29/10 19-01 aba 1070832 SW 82601 trans-1,3-Diothoropropene <1 ug/kg dry 31 1 06/29/10 19-01 aba 1070832 SW 82601 trans-1,3-Diothoropropene <1 ug/kg dry 43 1 06/29/10 19-01 aba 1070832 SW 82601 trans-1,3-Diothoropropene <1 ug/kg dry 31 06/29/10 19-01 aba 1070832 SW 82601 trans-1,3-Diothoropropene <1 ug/kg dry 31 06/29/10 19-01 aba 1070832 SW 82601 trans-1,3-Diothoropropene <1 ug/kg dry 31 06/29/10 19-01 aba 1070832 SW 82601 trans-1,3-Diothoropropene <1 ug/kg dry 31 06/29/10 19-01 aba 1070832 SW 82601 trans-1,3-Diothoropropene <1 ug/kg dry 31 06/29/10 19-01 aba 1070832 SW 82601 trans-1,3-Diothoropropene <1 ug/kg dry 31 06/29/10 19-01 aba 1070832 SW 82601 trans-1,3-Diothoropropene <1 ug/kg dry 31 06/29/10 19-01 aba 1070832 SW 82601 trans-1,3-Diothoropropene <1 ug/kg dry 31 06/29/10 19-01 aba 1070832 SW 82601 trans-1,3-Diothoropropene <1 ug/kg dry 31 06/29/10 19-01 aba 1070832 SW 82601 trans-1,3-Diothoropropene <1 ug/kg dry 31 06/29/10 19-01 aba 1070832 SW 82601 trans-1,3-Diothoropropene <1 ug/kg dry 31 06/29/10 19-01 aba 1070832 SW 82601 trans-1,3-Diothoropropene <1 ug/kg dry 31 06/29/10 19-01 aba 1070832 SW 82601 trans-1,3-Diothoropropene <1 ug/kg dry 31 06/29/10 19-01 aba 1070832 SW 82601 trans-1,3-Diothoropropene <1 ug/kg dry	VOCs by SW8260B - cont.									
cis-1,3-Dichloropropene <31	2,2-Dichloropropane	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260E
Trans-1,3-Dichloropropene	1,1-Dichloropropene	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260F
2,3-Dichloropropene	cis-1,3-Dichloropropene	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 82601
Suppopy Ether 31 ug/kg dry 31 1 06/29/10 19:01 aba 10F0832 SW 82601 Ethylbenzene 31 ug/kg dry 31 1 06/29/10 19:01 aba 10F0832 SW 82601 Isopropy Benzene 94 ug/kg dry 31 1 06/29/10 19:01 aba 10F0832 SW 82601 Isopropy Benzene 94 ug/kg dry 31 1 06/29/10 19:01 aba 10F0832 SW 82601 Isopropy Benzene 31 ug/kg dry 31 1 06/29/10 19:01 aba 10F0832 SW 82601 Isopropy Benzene 31 ug/kg dry 31 1 06/29/10 19:01 aba 10F0832 SW 82601 Methyl tert-Buyl Ether 31 ug/kg dry 31 1 06/29/10 19:01 aba 10F0832 SW 82601 Methyl tert-Buyl Ether 31 ug/kg dry 31 1 06/29/10 19:01 aba 10F0832 SW 82601 Methyl tert-Buyl Ether 31 ug/kg dry 31 1 06/29/10 19:01 aba 10F0832 SW 82601 Methyl tert-Buyl Ether 31 ug/kg dry 31 1 06/29/10 19:01 aba 10F0832 SW 82601 Methyl tert-Buyl Ether 32 ug/kg dry 31 1 06/29/10 19:01 aba 10F0832 SW 82601 Methyl tert-Buyl Ether 32 ug/kg dry 31 1 06/29/10 19:01 aba 10F0832 SW 82601 Methyl tert-Buyl Ether 32 ug/kg dry 31 1 06/29/10 19:01 aba 10F0832 SW 82601 Methyl tert-Buyl Ether 32 ug/kg dry 31 1 06/29/10 19:01 aba 10F0832 SW 82601 Methyl tert-Buyl Ether 32 ug/kg dry 31 1 06/29/10 19:01 aba 10F0832 SW 82601 Methyl tert-Buyl Ether 32 ug/kg dry 31 1 06/29/10 19:01 aba 10F0832 SW 82601 Methyl tert-Buyl Ether 34 ug/kg dry 31 1 06/29/10 19:01 aba 10F0832 SW 82601 Methyl tert-Buyl Ether 34 ug/kg dry 31 1 06/29/10 19:01 aba 10F0832 SW 82601 Methyl tert-Buyl Ether 34 ug/kg dry 31 1 06/29/10 19:01 aba 10F0832 SW 82601 Methyl tert-Buyl Ether 34 ug/kg dry 31 1 06/29/10 19:01 aba 10F0832 SW 82601 Methyl tert-Buyl Ether 34 ug/kg dry 31 1 06/29/10 19:01 aba 10F0832 SW 82601 Methyl tert-Buyl Ether 34 ug/kg dry 31 0 06/29/10 19:01 aba 10F0832 SW	trans-1,3-Dichloropropene	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 82601
Ethylbenzene 31 ug/kg dry 31 1 06/29/10 19:01 aba 10F0832 SW 82601 Haxachlorobundiene 43 ug/kg dry 43 1 06/29/10 19:01 aba 10F0832 SW 82601 Enberporpylbenzene 94 ug/kg dry 31 1 06/29/10 19:01 aba 10F0832 SW 82601 Sw 82601	2,3-Dichloropropene	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260E
Hexachlorobutadiene	Isopropyl Ether	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260E
Suppropylenemene	Ethylbenzene	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260E
p-isopropyltoluene	Hexachlorobutadiene	<43		ug/kg dry	43	1	06/29/10 19:01	aba	10F0832	SW 8260E
Methylene Chloride <61 ug/kg dry 61 1 06/29/10 19-01 aba 10F0832 SW 82601 Methyl tert-Buryl Ether <31 ug/kg dry 31 1 06/29/10 19-01 aba 10F0832 SW 82601 Naphthalene <61 ug/kg dry 61 1 06/29/10 19-01 aba 10F0832 SW 82601 Naphthalene <61 ug/kg dry 31 1 06/29/10 19-01 aba 10F0832 SW 82601 Naphthalene <61 ug/kg dry 31 1 06/29/10 19-01 aba 10F0832 SW 82601 Styrene <61 ug/kg dry 31 1 06/29/10 19-01 aba 10F0832 SW 82601 1,1,2-Tetrachloroethane <31 ug/kg dry 31 1 06/29/10 19-01 aba 10F0832 SW 82601 Tetrachloroethane 32 ug/kg dry 31 1 06/29/10 19-01 aba 10F0832 SW 82601 Toluene <31 ug/kg dry 31 <td>Isopropylbenzene</td> <td>94</td> <td></td> <td>ug/kg dry</td> <td>31</td> <td>1</td> <td>06/29/10 19:01</td> <td>aba</td> <td>10F0832</td> <td>SW 8260E</td>	Isopropylbenzene	94		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260E
Methyl tert-Butyl Ether	p-lsopropyltoluene	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260E
Naphthalene	Methylene Chloride	<61		ug/kg dry	61	1	06/29/10 19:01	aba	10F0832	SW 8260E
## Propylbenzene 45	Methyl tert-Butyl Ether	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260E
Styrene	Naphthalene	<61		ug/kg dry	61	1	06/29/10 19:01	aba	10F0832	SW 8260F
1.1,1,2-Tetrachloroethane	n-Propylbenzene	45		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260E
1,1,2,2-Tetrachloroethane 31 ug/kg dry 31 1 06/29/10 19:01 aba 10F0832 SW 82601 Tetrachloroethene 32 ug/kg dry 31 1 06/30/10 13:03 aba 10F0853 SW 82601 Toluene	Styrene	<61		ug/kg dry	61	1	06/29/10 19:01	aba	10F0832	SW 82601
Tetrachloroethene 32	1.1,1,2-Tetrachloroethane	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260E
Toluene	1,1,2,2-Tetrachloroethane	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260E
1.2,3-Trichlorobenzene	Tetrachloroethene	32		ug/kg dry	31	1	06/30/10 13:03	aba	10F0853	SW 8260I
1,2,4-Trichlorobenzene	Toluene -	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260E
1,1,1-Trichloroethane	1,2,3-Trichlorobenzene	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260E
1,1,2-Trichloroethane	1,2,4-Trichlorobenzene	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260E
Trichloroethene	1,1,1-Trichloroethane	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260E
Trichlorofluoromethane	1,1,2-Trichloroethane	<43		ug/kg dry	43	1	06/29/10 19:01	aba	10F0832	SW 8260E
1,2,3-Trichloropropane	Trichloroethene	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260E
1,2,4-Trimethylbenzene	Trichlorofluoromethane	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260E
1,3,5-Trimethylbenzene	1,2,3-Trichloropropane	<61		ug/kg dry	61	1	06/29/10 19:01	aba	10F0832	SW 8260E
Vinyl chloride < 43 ug/kg dry 43 1 06/29/10 19:01 aba 10F0832 SW 82601 Xylenes, total < 100 ug/kg dry 100 1 06/29/10 19:01 aba 10F0832 SW 82601 Surr: Dibromofluoromethane (80-120%) 101 % Surr: Toluene-d8 (80-120%) 101 % Surr: Toluene-d8 (80-120%) 101 % Surr: Toluene-d8 (80-120%) 101 % Surr: 4-Bromofluorobenzene (80-120%) 118 %	1,2,4-Trimethylbenzene	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260E
Xylenes, total <100 ug/kg dry 100 1 06/29/10 19:01 aba 10F0832 SW 82601	1,3,5-Trimethylbenzene	<31		ug/kg dry	31	1	06/29/10 19:01	aba	10F0832	SW 8260E
Xylenes, total <100 ug/kg dry 100 1 06/29/10 19:01 aba 10F0832 SW 82601	Vinyl chloride	<43			43	1	06/29/10 19:01	aba	10F0832	SW 82601
Surr: Dibromofluoromethane (80-120%) 101 % Surr: Dibromofluoromethane (80-120%) 102 % Surr: Toluene-d8 (80-120%) 101 % Surr: Toluene-d8 (80-120%) 101 % Surr: 4-Bromofluorobenzene (80-120%) 118 %	Xylenes, total	<100			100	1		aba	10F0832	SW 8260E
Surr: Dibromofluoromethane (80-120%) 102 % Surr: Toluene-d8 (80-120%) 101 % Surr: Toluene-d8 (80-120%) 101 % Surr: 4-Bromofluorobenzene (80-120%) 118 %	Surr: Dibromofluoromethane (80-120%)	101 %		5 5 5						
Surr: Toluene-d8 (80-120%) 101 % Surr: Toluene-d8 (80-120%) 101 % Surr: 4-Bromofluorobenzene (80-120%) 118 %		102 %								
Surr: Toluene-d8 (80-120%) 101 % Surr: 4-Bromofluorobenzene (80-120%) 118 %		101 %								
Surr: 4-Bromofluorobenzene (80-120%) 118 %	' '	101 %								
	· · ·									
	Surr: 4-Bromofluorobenzene (80-120%)	116 %								

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Work Order:

WTF0804

Received:

06/24/10

Project:

1E-0909013 Racine, WI

Reported:

07/01/10 10:15

Waukesha, WI 53186	Project Number:	1730 State Street
Mr. Tim Taugher		

Analyte	Sample Result	Data Qualifiers	Units	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTF0804-09 (GP-4	6-8' - Soil)					Sampled: 06	/23/10		
General Chemistry Parameters	o o Bom					Sampled. 00	123/10		
% Solids	86		%	NA	1	06/29/10 10:47		10F0827	CM 2540C
	80		70	NA	1	00/29/10 10.47	pam	1010027	SM 2540G
VOCs by SW8260B	20			20		06/00/10 14 40		100000	0111 An (AD
Benzene	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
Bromobenzene	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
Bromochloromethane	<41		ug/kg dry	41	1	06/29/10 14:40	ABA	10F0856	SW 8260B
Bromodichloromethane	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
Bromoform	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
Bromomethane	<120		ug/kg dry	120	1	06/29/10 14:40	ABA	10F0856	SW 8260B
n-Butylbenzene	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
sec-Butylbenzene	43		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
tert-Butylbenzene	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
Carbon Tetrachloride	<29		ug/kg dry	29	I	06/29/10 14:40	ABA	10F0856	SW 8260B
Chlorobenzene	<29		ug/kg dry	29	I	06/29/10 14:40	ABA	10F0856	SW 8260B
Chlorodibromomethane	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
Chloroethane	<58		ug/kg dry	58	1	06/29/10 14:40	ABA	10F0856	SW 8260B
Chloroform	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
Chloromethane	<58		ug/kg dry	58	1	06/29/10 14:40	ABA	10F0856	SW 8260B
2-Chlorotoluene	<58		ug/kg dry	58	1	06/29/10 14:40	ABA	10F0856	SW 8260B
4-Chlorotoluene	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
1,2-Dibromo-3-chloropropane	<58		ug/kg dry	58	1	06/29/10 14:40	ABA	10F0856	SW 8260B
1,2-Dibromoethane (EDB)	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
Dibromomethane	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
1,2-Dichlorobenzene	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
1,3-Dichlorobenzene	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
1,4-Dichlorobenzene	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
Dichlorodifluoromethane	<58		ug/kg dry	58	1	06/29/10 14:40	ABA	10F0856	SW 8260B
1,1-Dichloroethane	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
1,2-Dichloroethane	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
1,1-Dichloroethene	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
cis-1,2-Dichtoroethene	58		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
trans-1,2-Dicbloroethene	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
1,2-Dichloropropane	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
1,3-Dichloropropane	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
2,2-Dichloropropane	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
1,1-Dichloropropene	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
cis-1,3-Dichloropropene	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
trans-1,3-Dichloropropene	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
2,3-Dichloropropene	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
Isopropyl Ether	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
Ethylbenzene	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
Hexachlorobutadiene	<41		ug/kg dry	41	1	06/29/10 14:40	ABA	10F0856	SW 8260B
Isopropylbenzene	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
p-Isopropyltoluene	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
Methylene Chloride	<58		ug/kg dry	58	1	06/29/10 14:40	ABA	10F0856	SW 8260B
Methyl tert-Butyl Ether	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
Naphthalene	<58		ug/kg dry	58	1	06/29/10 14:40	ABA	10F0856	SW 8260B
n-Propylbenzene	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
Styrene	<58		ug/kg dry	58	1	06/29/10 14:40	ABA	10F0856	SW 8260B
1,1,1,2-Tetrachloroethane	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
1,1,2,2-Tetrachloroethane	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B
Tetrachloroethene	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260B

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Work Order:

WTF0804

Received:

06/24/10

Waukesha, WI 53186

Project: Project Number: 1E-0909013 Racine, WI

1730 State Street

Reported: 07/01/10 10:15

	Sample	Data			Dilution	Date		Seq/	
Analyte	Result	Qualifiers	Units	MRL	Factor	Analyzed	Analyst	Batch	Method
Sample ID: WTF0804-09 (GP-4 6-8	8' - Soil) - cont	t.				Sampled: 06	/23/10		
VOCs by SW8260B - cont.									
Toluene	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 82601
1,2,3-Trichlorobenzene	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260
1,2,4-Trichlorobenzene	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260
1,1,1-Trichloroethane	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260
1,1,2-Trichloroethane	<41		ug/kg dry	41	1	06/29/10 14:40	ABA	10F0856	SW 8260
Trichloroethene	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260
Trichlorofluoromethane	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260
1,2,3-Trichloropropane	<58		ug/kg dry	58	1	06/29/10 14:40	ABA	10F0856	SW 8260
1,2,4-Trimethylbenzene	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260
1,3,5-Trimethylbenzene	<29		ug/kg dry	29	1	06/29/10 14:40	ABA	10F0856	SW 8260
Vinyl chloride	41		ug/kg dry	41	1	06/29/10 14:40	ABA	10F0856	SW 8260
Xylenes, total	<99		ug/kg dry	99	1	06/29/10 14:40	ABA	10F0856	SW 8260
Surr: Dibromofluoromethane (80-120%)	103 %								
Surr: Toluene-d8 (80-120%)	96 %								
Surr: 4-Bromofluorobenzene (80-120%)	97 %								
Sample ID: WTF0804-10 (GP-5 4-6	5' - Soil)					Sampled: 06	/23/10		
General Chemistry Parameters									
% Solids	80		%	NA	1	06/29/10 10:47	pam	10F0827	SM 2540
VOCs by SW8260B							•		
Benzene	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 8260
Bromobenzene	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 8260
Bromochloromethane	<44		ug/kg dry	44	1	06/29/10 15:10	ABA	10F0856	SW 8260
Bromodichloromethane	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 8260
Bromoform	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 8260
Bromomethane	<130		ug/kg dry	130	1	06/29/10 15:10	ABA	10F0856	SW 8260
n-Butylbenzene	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 8260
sec-Butylbenzene	⊲1		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 8260
tert-Butylbenzene	31			31	1	06/29/10 15:10		10F0856	SW 8260
Carbon Tetrachloride	31		ug/kg dry	31	1		ABA		
	<31		ug/kg dry			06/29/10 15:10	ABA	10F0856	SW 8260
Chlorobenzene Chlorodibromomethane			ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 8260
	<31		ug/kg dry	31		06/29/10 15:10	ABA	10F0856	SW 8260
Chloroethane	<63		ug/kg dry	63	1	06/29/10 15:10	ABA	10F0856	SW 8260
Chloroform	⊲1		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 8260
Chloromethane	<63		ug/kg dry	63	1	06/29/10 15:10	ABA	10F0856	SW 8260
2-Chlorotoluene	<63		ug/kg dry	63	1	06/29/10 15:10	ABA	10F0856	SW 8260
4-Chlorotoluene	⊲1		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 8260
1,2-Dibromo-3-chloropropane	<63		ug/kg dry	63	1	06/29/10 15:10	ABA	10F0856	SW 8260
1,2-Dibromoethane (EDB)	⊲1		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 8260
Dibromomethane	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 8260
1,2-Dichlorobenzene	⊲1		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 8260
1,3-Dichlorobenzene	⊲1		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 8260
1,4-Dichlorobenzene	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 8260
Dichlorodifluoromethane	<63		ug/kg dry	63	1	06/29/10 15:10	ABA	10F0856	SW 8260
1,1-Dichloroethane	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 8260
1,2-Dichloroethane	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 8260
1,1-Dichloroethene	⊲1		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 8260
cis-1,2-Dichloroethene	220		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 8260
trans-1,2-Dichloroethene	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 8260
1,2-Dichloropropane	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 8260
1,3-Dichloropropane	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 8260

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Work Order:

WTF0804

Received:

06/24/10

Project: Project Number:

1E-0909013 Racine, WI 1730 State Street

07/01/10 10:15 Reported:

	Sample	Data			Dilution	Date		Seq/		
Analyte	Result	Qualifiers	Units	MRL	Factor	Analyzed	Analyst	Batch	Method	
Sample ID: WTF0804-10 (GP-5 4-6' - Soil) - cont.				Sampled: 06/23/10						
VOCs by SW8260B - cont.										
2,2-Dichloropropane	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 8260E	
1,1-Dichloropropene	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 82601	
cis-1,3-Dichloropropene	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 82601	
trans-1,3-Dichloropropene	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 8260E	
2,3-Dichloropropene	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 8260E	
Isopropyl Ether	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 8260E	
Ethylbenzene	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 82601	
Hexachlorobutadiene	<44		ug/kg dry	44	1	06/29/10 15:10	ABA	10F0856	SW 82601	
Isopropylbenzene	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 82601	
p-lsopropyltoluene	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 82601	
Methylene Chloride	<63		ug/kg dry	63	1	06/29/10 15:10	ABA	10F0856	SW 82601	
Methyl tert-Butyl Ether	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 82601	
Naphthalene	<63		ug/kg dry	63	1	06/29/10 15:10	ABA	10F0856	SW 82601	
n-Propylbenzene	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 8260	
Styrene	<63		ug/kg dry	63	1	06/29/10 15:10	ABA	10F0856	SW 8260	
1,1,1,2-Tetrachloroethane	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 82601	
1,1,2,2-Tetrachloroethane	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 82601	
Tetrachloroethene	78		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 82601	
Toluene	<31		ug/kg dry	31	. 1	06/29/10 15:10	ABA	10F0856	SW 82601	
1,2,3-Trichlorobenzene	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 82601	
1,2,4-Trichlorobenzene	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 82601	
1,1,1-Trichloroethane	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 82601	
1,1,2-Trichloroethane	<44		ug/kg dry	44	1	06/29/10 15:10	ABA	10F0856	SW 82601	
Trichloroethene	41		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 82601	
Trichlorofluoromethane	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 82601	
1,2,3-Trichloropropane	<63		ug/kg dry	63	1	06/29/10 15:10	ABA	10F0856	SW 82601	
1,2,4-Trimethylbenzene	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 82601	
1,3,5-Trimethylbenzene	<31		ug/kg dry	31	1	06/29/10 15:10	ABA	10F0856	SW 82601	
Vinyl chloride	<44		ug/kg dry	44	1	06/29/10 15:10	ABA	10F0856	SW 82601	
Xylenes, total	<110		ug/kg dry	110	I	06/29/10 15:10	ABA	10F0856	SW 82601	
Surr: Dibromofluoromethane (80-120%)	102 %									
Surr: Toluene-d8 (80-120%)	96 %									
Surr: 4-Bromofluorobenzene (80-120%)	99 %									

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha WI 53186

Work Order:

WTF0804

06/24/10

Project:

1E-0909013 Racine, WI 1730 State Street

Received: 07/01/10 10:15 Reported:

waukesna, wi 33100	Project Number
Mr. Tim Taugher	

Result	Qualifiers	Units	MRL	Factor				
		Cities	WIKL	Factor	Analyzed	Analyst	Batch	Method
6-8' - Soil)					Sampled: 06	/23/10		
87		%	NA	1	06/29/10 10:47	pam	10F0827	SM 2540G
<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 8260B
			29	1	06/29/10 16:14	ABA	10F0856	SW 8260B
			40	1	06/29/10 16:14	ABA	10F0856	SW 8260B
<29			29	1	06/29/10 16:14	ABA	10F0856	SW 8260B
<29			29	1	06/29/10 16:14	ABA	10F0856	SW 8260B
<120		ug/kg dry	120	1	06/29/10 16:14	ABA	10F0856	SW 8260B
<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 8260B
<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 8260B
<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 8260B
<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 8260B
<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 8260B
<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 8260B
<58		ug/kg dry	58	I	06/29/10 16:14	ABA	10F0856	SW 8260B
<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 8260B
<58		ug/kg dry	58	1	06/29/10 16:14	ABA	10F0856	SW 8260B
<58		ug/kg dry	58	1	06/29/10 16:14	ABA	10F0856	SW 8260B
<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 8260B
<58		ug/kg dry	58	1	06/29/10 16:14	ABA	10F0856	SW 8260B
<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 8260B
<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 8260B
<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 8260B
<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 8260B
<29		ug/kg dry	29			ABA		SW 8260B
<58		ug/kg dry	58	1		ABA		SW 8260B
<29		ug/kg dry						SW 8260B
<29		ug/kg dry						SW 8260B
<29		ug/kg dry						SW 8260B
		ug/kg dry						SW 8260B
				_				SW 8260B
								SW 8260B
								SW 8260B
								SW 8260B
								SW 8260B
								SW 8260B
								SW 8260B
				_				SW 8260B SW 8260B
								SW 8260B
								SW 8260B
								SW 8260B
								SW 8260B
								SW 8260B
								SW 8260B
								SW 8260B
								SW 8260B
								SW 8260B
								SW 8260B
								SW 8260B
								SW 8260B
	<29 <29 <40 <29 <120 <29 <29 <29 <29 <29 <29 <58 <58 <29 <58 <29 <58 <29 <58 <29 <58 <29 <58 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29	<29 <40 <29 <40 <29 <120 <29 <29 <29 <29 <58 <29 <58 <29 <29 <58 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <58 <29 <58 <29 <58 <29 <58 <29 <58 <29 <58 <29 <58 <29 <58 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29 <29	29 ug/kg dry 29 ug/kg dry <td><29</td> ug/kg dry 29 <29	<29	29	1	1	29

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Mr. Tim Taugher

Work Order:

WTF0804

Received:

06/24/10

Project:
Project Number:

1E-09090I3 Racine, WI 1730 State Street Reported: (

07/01/10 10:15

1	Sample	Data	WY - 14	3.555	Dilution	Date		Seq/	
Analyte	Result	Qualifiers	Units	MRL	Factor	Analyzed	Analyst	Batch	Method
Sample ID: WTF0804-11 (GP-5 6-8	B' - Soil) - con	t.				Sampled: 06	5/23/10		
VOCs by SW8260B - cont.									
Toluene	<29		ug/kg dry	29	I	06/29/10 16:14	ABA	10F0856	SW 8260E
1,2,3-Trichlorobenzene	<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 8260E
1,2,4-Trichlorobenzene	<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 82601
1,1,1-Trichloroethane	<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 8260I
1,1,2-Trichloroethane	<40		ug/kg dry	40	1	06/29/10 16:14	ABA	10F0856	SW 8260I
Trichloroethene	<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 82601
Trichlorofluoromethane	<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 82601
1,2,3-Trichloropropane	<58		ug/kg dry	58	1	06/29/10 16:14	ABA	10F0856	SW 82601
1,2,4-Trimethylbenzene	<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 82601
1,3,5-Trimethylbenzene	<29		ug/kg dry	29	1	06/29/10 16:14	ABA	10F0856	SW 8260
Vinyl chloride	<40		ug/kg dry	40	1	06/29/10 16:14	ABA	10F0856	SW 82601
Xylenes, total	<98		ug/kg dry	98	1	06/29/10 16:14	ABA	10F0856	SW 82601
Surr: Dibromofluoromethane (80-120%)	97 %								
Surr: Toluene-d8 (80-120%)	99 %								
Surr: 4-Bromofluorobenzene (80-120%)	98 %								
Sample ID: WTF0804-12 (GP-6 4-6	6' - Soil)					Sampled: 06	/23/10		
General Chemistry Parameters						-			
% Solids	88		%	NA	1	06/29/10 10:47	pam	10F0827	SM 2540
OCs by SW8260B							•		
Benzene	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 82601
Bromobenzene	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260
Bromochloromethane	<40		ug/kg dry	40	1	06/29/10 17:00	ABA	10F0856	SW 8260
Bromodichloromethane	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260
Bromoform	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260
Bromomethane	<110		ug/kg dry	110	1	06/29/10 17:00	ABA	10F0856	SW 8260
n-Butylbenzene	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260
sec-Butylbenzene	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260
tert-Butylbenzene	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260
Carbon Tetrachloride	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260
Chlorobenzene	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 82601
Chlorodibromomethane	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 82601
Chloroethane	<57		ug/kg dry	57	1	06/29/10 17:00	ABA	10F0856	SW 8260
Chloroform	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260
Chloromethane	<57		ug/kg dry	57	1	06/29/10 17:00	ABA	10F0856	SW 82601
2-Chlorotoluene	<57		ug/kg dry	57	1	06/29/10 17:00	ABA	10F0856	SW 82601
4-Chlorotoluene	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 82601
1,2-Dibromo-3-chloropropane	<57		ug/kg dry	57	1	06/29/10 17:00	ABA	10F0856	SW 82601
1,2-Dibromoethane (EDB)	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260I
Dibromomethane	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 82601
1,2-Dichlorobenzene	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 82601
1,3-Dichlorobenzene	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 82601
1,4-Dichlorobenzene	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260I
Dichlorodifluoromethane	<57		ug/kg dry	57	1	06/29/10 17:00	ABA	10F0856	SW 82601
1,1-Dichloroethane	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 82601
1,2-Dichloroethane	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260
1,1-Dichloroethene	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 82601
cis-1,2-Dichloroethene	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 82601
rans-1,2-Dichloroethene	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 82601
1,2-Dichloropropane	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 82601
1,3-Dichloropropane	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 82601

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Project: Project Number: WTF0804

Received:

06/24/10

Work Order:

1E-0909013 Racine, WI

1730 State Street

Reported:

07/01/10 10:15

Mr. Tim Taugher

Analyte	Sample Result	Data Qualifiers	Units	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTF0804-12 (GP-6 4-6	5' - Soil) - cont					Sampled: 06	5/23/10		
VOCs by SW8260B - cont.						-			
2,2-Dichloropropane	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260E
1,1-Dichloropropene	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260E
cis-1,3-Dichloropropene	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260E
trans-1,3-Dichloropropene	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260E
2,3-Dichloropropene	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260E
Isopropyl Ether	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260E
Ethylbenzene	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260E
Hexachlorobutadiene	<40		ug/kg dry	40	1	06/29/10 17:00	ABA	10F0856	SW 8260E
lsopropylbenzene	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260E
p-lsopropyltoluene	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260E
Methylene Chloride	<57		ug/kg dry	57	1	06/29/10 17:00	ABA	10F0856	SW 8260E
Methyl tert-Butyl Ether	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260E
Naphthalene	<57		ug/kg dry	57	1	06/29/10 17:00	ABA	10F0856	SW 8260E
n-Propylbenzene	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260E
Styrene	<57		ug/kg dry	57	1	06/29/10 17:00	ABA	10F0856	SW 8260I
1,1,1,2-Tetrachloroethane	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260E
1,1,2,2-Tetrachloroethane	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 82601
Tetrachloroethene	150		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260I
Toluene	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 82601
1,2,3-Trichlorobenzene	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260E
1,2,4-Trichlorobenzene	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260E
1,1,1-Trichloroethane	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260E
1,1,2-Trichloroethane	<40		ug/kg dry	40	1	06/29/10 17:00	ABA	10F0856	SW 8260E
Trichloroethene	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260E
Trichlorofluoromethane	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260E
1,2,3-Trichloropropane	<57		ug/kg dry	57	1	06/29/10 17:00	ABA	10F0856	SW 8260E
1,2,4-Trimethylbenzene	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 8260I
1,3,5-Trimethylbenzene	<28		ug/kg dry	28	1	06/29/10 17:00	ABA	10F0856	SW 82601
Vinyl chloride	<40		ug/kg dry	40	1	06/29/10 17:00	ABA	10F0856	SW 8260E
Xylenes, total	<97		ug/kg dry	97	1	06/29/10 17:00	ABA	10F0856	SW 8260E
Surr: Dibromofluoromethane (80-120%)	95 %								
Surr: Toluene-d8 (80-120%)	93 %								
Surr: 4-Bromofluorobenzene (80-120%)	98 %								

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Work Order:

Project Number:

Project:

WTF0804

1730 State Street

1E-0909013 Racine, WI

Received:

06/24/10

Reported:

07/01/10 10:15

Analyte	Sample Result	Data Qualifiers	Units	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTF0804-13 (GP-7	6-8' - Soil)			-		Sampled: 06	/23/10		
General Chemistry Parameters						Dampieu. Vo	20/10		
% Solids	82		%	NA	1	06/29/10 10:47	pam	10F0827	SM 25400
VOCs by SW8260B	02		,,	1171	•	00/27/10 10:47	Peari	101 0027	BIII 25400
Benzene	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260I
Bromobenzene	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 82601
Bromochloromethane	<43		ug/kg dry	43	1	06/29/10 15:29	aba	10F0832	SW 82601
Bromodichloromethane	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260E
Bromoform	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260E
Bromomethane	<120		ug/kg dry	120	1	06/29/10 15:29	aba	10F0832	SW 8260E
n-Butylbenzene	290		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 82601
sec-Butylbenzene	170		ug/kg dry	31	i	06/29/10 15:29	aba	10F0832	SW 8260E
tert-Butylbenzene	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260E
Carbon Tetrachloride	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260E
Chlorobenzene	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260E
Chlorodibromomethane	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260E
Chloroethane	<61		ug/kg dry	61	1	06/29/10 15:29	aba	10F0832	SW 8260E
Chloroform	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260E
Chloromethane	<61		ug/kg dry	61	1	06/29/10 15:29	aba	10F0832	SW 8260E
2-Chlorotoluene	<61		ug/kg dry	61	1	06/29/10 15:29	aba	10F0832	SW 8260E
4-Chlorotoluene	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260E
1,2-Dibromo-3-chloropropane	<61		ug/kg dry	61	1	06/29/10 15:29	aba	10F0832	SW 8260E
1,2-Dibromoethane (EDB)	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260E
Dibromomethane	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260E
1,2-Dichlorobenzene	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260E
1,3-Dichlorobenzene	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260E
1,4-Dichlorobenzene	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260E
Dichlorodifluoromethane	<61		ug/kg dry	61	1	06/29/10 15:29	aba	10F0832	SW 8260E
1,1-Dichloroethane	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260E
1,2-Dichloroethane	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260E
1,1-Dichloroethene	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260E
cis-1,2-Dichloroethene	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260E
trans-1,2-Dichloroethene	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260E
1,2-Dichloropropane	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260E
1,3-Dichloropropane	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260E
2,2-Dichloropropane	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260E
1,1-Dichloropropene	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260E
cis-1,3-Dichloropropene	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260E
trans-1,3-Dichloropropene	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260E
2,3-Dichloropropene	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260E
Isopropyl Ether	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260E
Ethylbenzene	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260E
Hexachlorobutadiene	<43		ug/kg dry	43	1	06/29/10 15:29	aba	10F0832	SW 8260E
Isopropylbenzene	290		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260E
p-Isopropyltoluene	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260E
Methylene Chloride	<61		ug/kg dry	61	1	06/29/10 15:29	aba	10F0832	SW 8260E
Methyl tert-Butyl Ether	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260E
Naphthalene	140		ug/kg dry	61	1	06/29/10 15:29	aba	10F0832	SW 8260E
n-Propylbenzene	390		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260E
Styrene	<61		ug/kg dry	61	1	06/29/10 15:29	aba	10F0832	SW 8260E
1,1,1,2-Tetrachloroethane	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260E
1,1,2,2-Tetrachloroethane	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260E
Tetrachloroethene	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260E

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Work Order:

WTF0804

Received:

06/24/10

Waukesha, WI 53186

Project: Project Number:

1E-0909013 Racine, WI 1730 State Street

Reported:

07/01/10 10:15

Mr.	Tim	Taugher	
-----	-----	---------	--

	Sample	Data			Dilution	Date		Seq/	
Analyte	Result	Qualifiers	Units	MRL	Factor	Analyzed	Analyst	Batch	Method
Sample ID: WTF0804-13 (GP-7 6-8	B' - Soil) - con	t.				Sampled: 06	/23/10		
VOCs by SW8260B - cont.						•			
Toluene	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260B
1,2,3-Trichlorobenzene	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260B
1,2,4-Trichlorobenzene	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260B
1,1,1-Trichloroethane	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260B
1.1.2-Trichloroethane	<43		ug/kg dry	43	1	06/29/10 15:29	aba	10F0832	SW 8260B
Trichloroethene	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260B
Trichlorofluoromethane	⊲1		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260B
1,2,3-Trichloropropane	<61		ug/kg dry	61	1	06/29/10 15:29	aba	10F0832	SW 8260B
1,2,4-Trimethylbenzene	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260B
1,3,5-Trimethylbenzene	<31		ug/kg dry	31	1	06/29/10 15:29	aba	10F0832	SW 8260B
Vinyl chloride	<43		ug/kg dry	43	1	06/29/10 15:29	aba	10F0832	SW 8260B
Xylenes, total	<100		ug/kg dry	100	1	06/29/10 15:29	aba	10F0832	SW 8260B
Surr: Dibromofluoromethane (80-120%)	100 %								
Surr: Toluene-d8 (80-120%)	101 %								
Surr: 4-Bromofluorobenzene (80-120%)	102 %								
Sample ID: WTF0804-14 (MeOH B	lank - Misc. I	Liquid)				Sampled: 06	/23/10		
VOCs by SW8260B									
Benzene	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260B
Bromobenzene	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260B
Bromochloromethane	<35		ug/kg wet	35	1	06/29/10 15:02	aba	10F0832	SW 8260B
Bromodichloromethane	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260B
Bromoform	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260B
Bromomethane	<100		ug/kg wet	100	1	06/29/10 15:02	aba	10F0832	SW 8260B
n-Butylbenzene	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260B
sec-Butylbenzene	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260B
tert-Butylbenzene	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260B
Carbon Tetrachloride	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260B
Chlorobenzene	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260B
Chlorodibromomethane	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260B
Chloroethane	<50		ug/kg wet	50	1	06/29/10 15:02	aba	10F0832	SW 8260B
Chloroform	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260B
Chloromethane	<50		ug/kg wet	50	1	06/29/10 15:02	aba	10F0832	SW 8260B
2-Chlorotoluene	<50		ug/kg wet	50	1	06/29/10 15:02	aba	10F0832	SW 8260B
4-Chlorotoluene	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260B
1,2-Dibromo-3-chloropropane	<50		ug/kg wet	50	1	06/29/10 15:02	aba	10F0832	SW 8260B
1,2-Dibromoethane (EDB)	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260B
Dibromomethane	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260B
1,2-Dichlorobenzene	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260B
1,3-Dichlorobenzene	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260B
1,4-Dichlorobenzene	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260B
Dichlorodifluoromethane	<50		ug/kg wet	50	1	06/29/10 15:02	aba	10F0832	SW 8260B
1,1-Dichloroethane	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260B
1,2-Dichloroethane	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260B
1,1-Dichloroethene	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260B
cis-1,2-Dichloroethene	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260B
trans-1,2-Dichloroethene	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260B
1,2-Dichloropropane	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260B
1,3-Dichloropropane	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260B
2,2-Dichloropropane	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260B
1,1-Dichloropropene	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260B

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Work Order:

WTF0804

1E-0909013 Racine, WI

Received: Reported: 06/24/10

07/01/10 10:15

Project: Project Number:

1730 State Street

	Sample	Data			Dilution	Date		Seq/	
Analyte	Result	Qualifiers	Units	MRL	Factor	Analyzed	Analyst	Batch	Method
Sample ID: WTF0804-14 (MeOH B	lank - Misc. L	iquid) - cont.				Sampled: 06	/23/10		
VOCs by SW8260B - cont.									
cis-1,3-Dichloropropene	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260E
trans-1,3-Dichloropropene	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260E
2,3-Dichloropropene	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260B
Isopropyl Ether	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260E
Ethylbenzene	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260B
Hexachlorobutadiene	<35		ug/kg wet	35	1	06/29/10 15:02	aba	10F0832	SW 8260B
lsopropylbenzene	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260E
p-lsopropyltoluene	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260E
Methylene Chloride	<50		ug/kg wet	50	1	06/29/10 15:02	aba	10F0832	SW 8260B
Methyl tert-Butyl Ether	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260E
Naphthalene	<50		ug/kg wet	50	1	06/29/10 15:02	aba	10F0832	SW 8260E
n-Propylbenzene	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260E
Styrene	<50		ug/kg wet	50	1	06/29/10 15:02	aba	10F0832	SW 8260E
1,1,1,2-Tetrachloroethane	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260E
1,1,2,2-Tetrachloroethane	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260E
Tetrachloroethene	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260B
Toluene	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260B
1,2,3-Trichlorobenzene	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260B
1,2,4-Trichlorobenzene	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260B
1,1,1-Trichloroethane	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260B
1,1,2-Trichloroethane	<35		ug/kg wet	35	1	06/29/10 15:02	aba	10F0832	SW 8260B
Trichloroethene	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260E
Trichlorofluoromethane	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260E
1,2,3-Trichloropropane	<50		ug/kg wet	50	1	06/29/10 15:02	aba	10F0832	SW 8260E
1,2,4-Trimethylbenzene	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260E
1,3,5-Trimethylbenzene	<25		ug/kg wet	25	1	06/29/10 15:02	aba	10F0832	SW 8260E
Vinyl chloride	<35		ug/kg wet	35	1	06/29/10 15:02	aba	10F0832	SW 8260E
Xylenes, total	<85		ug/kg wet	85	1	06/29/10 15:02	aba	10F0832	SW 8260E
Surr: Dibromofluoromethane (80-120%)	101 %								
Surr: Toluene-d8 (80-120%)	99 %								
,									

Surr: 4-Bromofluorobenzene (80-120%)

100 %

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Mr. Tim Taugher

Work Order:

Project Number:

WTF0804

Received:

06/24/10

Project:

1E-0909013 Racine, WI

1730 State Street

Reported:

07/01/10 10:15

		I	ABORAT	OKY B	LANK	QC D	AIA						
	Seq/ S	ource S	oike				Dup	%	Dup	% REC		RPD	
Analyte	Batch F	Result L	evel Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
VOCs by SW8260B													
Benzene	10F0832		ug/kg wet	N/A	25	<25							
Bromobenzene	10F0832		ug/kg wet	N/A	25	<25							
Bromochloromethane	10F0832		ug/kg wet	N/A	35	<35							
Bromodichloromethane	10F0832		ug/kg wet	N/A	25	<25							
Bromoform	10F0832		ug/kg wet	N/A	25	<25							
Bromomethane	10F0832		ug/kg wet	N/A	100	<100							
n-Butylbenzene	10F0832		ug/kg wet	N/A	25	<25							
sec-Butylbenzene	10F0832		ug/kg wet	N/A	25	<25							
tert-Butylbenzene	10F0832		ug/kg wet	N/A	25	<25							
Carbon Tetrachloride	10F0832		ug/kg wet	N/A	25	<25							
Chlorobenzene	10F0832		ug/kg wet	N/A	25	<25							
Chlorodibromomethane	10F0832		ug/kg wet	N/A	25	<25							
Chloroethane	10F0832		ug/kg wet	N/A	50	<50							
Chloroform	10F0832		ug/kg wet	N/A	25	<25							
Chloromethane	10F0832		ug/kg wet	N/A	50	<50							
2-Chlorotoluene	10F0832		ug/kg wet	N/A	50	<50							
4-Chlorotoluene	10F0832		ug/kg wet	N/A	25	<25							
1,2-Dibromo-3-chloropropane	10F0832		ug/kg wet	N/A	50	<50							
1,2-Dibromoethane (EDB)	10F0832		ug/kg wet	N/A	25	<25							
Dibromomethane	10F0832		ug/kg wet	N/A	25	<25							
1,2-Dichlorobenzene	10F0832		ug/kg wet	N/A	25	<25							
1,3-Dichlorobenzene	10F0832		ug/kg wet	N/A	25	<25							
1,4-Dichlorobenzene	10F0832		ug/kg wet	N/A	25	<25							
Dichlorodifluoromethane	10F0832		ug/kg wet	N/A	50	<50							
1,1-Dichloroethane	10F0832		ug/kg wet	N/A	25	<25							
1,2-Dichloroethane	10F0832		ug/kg wet	N/A	25	<25							
1,1-Dichloroethene	10F0832		ug/kg wet	N/A	25	<25							
cis-1,2-Dichloroethene	10F0832		ug/kg wet	N/A	25	<25							
trans-1,2-Dichloroethene	10F0832		ug/kg wet	N/A	25	<25							
1,2-Dichloropropane	10F0832		ug/kg wet	N/A	25	<25							
1,3-Dichloropropane	10F0832		ug/kg wet	N/A	25	<25							
2,2-Dichloropropane	10F0832		ug/kg wet	N/A	25	<25							
1,1-Dichloropropene	10F0832		ug/kg wet	N/A	25	<25							
cis-1,3-Dichloropropene	10F0832		ug/kg wet	N/A	25	<25							
trans-1,3-Dichloropropene	10F0832		ug/kg wet	N/A	25	<25							
2,3-Dichloropropene	10F0832		ug/kg wet	N/A	25	<25							
lsopropyl Ether	10F0832		ug/kg wet	N/A	25	<25							
Ethylbenzene	10F0832		ug/kg wet	N/A	25	<25							
Hexachlorobutadiene	10F0832		ug/kg wet		35	<35							
Isopropylbenzene	10F0832		ug/kg wet		25	<25							
p-Isopropyltoluene	10F0832		ug/kg wet		25	<25							
	10F0832		ug/kg wet		50	<50							
Methylene Chloride					25	<25							
Methyl tert-Butyl Ether	10F0832		ug/kg wet ug/kg wet	N/A	50	<50							
Naphthalene n-Propylbenzene	10F0832 10F0832		ug/kg wet		25	<25							

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Mr. Tim Taugher

Work Order:

WTF0804

Received:

06/24/10

Project: Project Number: 1E-0909013 Racine, WI

1730 State Street

07/01/10 10:15 Reported:

			LAB	ORAT	ORY B	LANK	QC D	ATA						
	Seq/	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Batch	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
VOCs by SW8260B														
Styrene	10F0832		1	ug/kg wet	N/A	50	<50							
1,1,1,2-Tetrachioroethane	10F0832		1	ug/kg wet	N/A	25	<25							
1,1,2,2-Tetrachloroethane	10F0832		1	ug/kg wet	N/A	25	<25							
Tetrachloroethene	10F0832		1	ug/kg wet	N/A	25	<25							
Toluene	10F0832		1	ug/kg wet	N/A	25	<25							
1,2,3-Trichlorobenzene	10F0832		1	ug/kg wet	N/A	25	<25							
1,2,4-Trichlorobenzene	10F0832		1	ug/kg wet	N/A	25	<25							
1,1,1-Trichloroethane	10F0832		1	ug/kg wet	N/A	25	<25							
1,1,2-Trichloroethane	10F0832		1	ug/kg wet	N/A	35	<35							
Trichloroethene	10F0832		1	ig/kg wet	N/A	25	<25							
Trichlorofluoromethane	10F0832		1	ug/kg wet	N/A	25	<25							
1,2.3-Trichloropropane	10F0832		1	ug/kg wet	N/A	50	<50							
1,2,4-Trimethylbenzene	10F0832		1	ug/kg wet	N/A	25	<25							
1,3,5-Trimethylbenzene	10F0832		1	ug/kg wet	N/A	25	<25							
Vinyl chloride	10F0832		1	ug/kg wet	N/A	35	<35							
Xylenes, total	10F0832			ıg/kg wet	N/A	85	<85							
Surrogate: Dibromofluoromethane	10F0832			ıg/kg wet					100		80-120			
Surrogate: Toluene-d8	10F0832			ıg/kg wet					100		80-120			
Surrogate: 4-Bromofluorobenzene	10F0832			ig/kg wet					99		80-120			
Benzene	10F0853			ig/kg wet	N/A	25	<25							
Bromobenzene	10F0853			ıg/kg wet	N/A	25	<25							
Bromochloromethane	10F0853			ıg/kg wet	N/A	35	<35							
Bromodichloromethane	10F0853			ıg/kg wet	N/A	25	<25							
Bromoform	10F0853			ıg/kg wet	N/A	25	<25							
Bromomethane	10F0853			ig/kg wet	N/A	100	<100							
n-Butylbenzene	10F0853			ıg/kg wet	N/A	25	<25							
sec-Butylbenzene	10F0853			ıg/kg wet	N/A	25	<25							
tert-Butylbenzene	10F0853			ıg/kg wet	N/A	25	<25							
Carbon Tetrachloride	10F0853			ig/kg wet	N/A	25	<25							
Chlorobenzene	10F0853			ıg/kg wet	N/A	25	<25							
Chlorodibromomethane	10F0853			ıg/kg wet	N/A	25	<25							
Chloroethane	10F0853			ıg/kg wet	N/A	50	<50							
Chloroform	10F0853			ıg/kg wet	N/A	25	<25							
Chloromethane	10F0853			ıg/kg wet	N/A	50	<50							
2-Chlorotoluene	10F0853			ıg/kg wet	N/A	50	<50							
4-Chlorotoluene	10F0853			ıg/kg wet	N/A	25	<25							
1,2-Dibromo-3-chloropropane	10F0853			ıg/kg wet	N/A	50	<50							
1,2-Dibromoethane (EDB)	10F0853			ıg/kg wet	N/A	25	<25							
Dibromomethane	10F0853			g/kg wet	N/A	25	<25							
1,2-Dichlorobenzene	10F0853			g/kg wet	N/A	25	<25							
1,3-Dichlorobenzene	10F0853			g/kg wet	N/A	25	<25							
1,4-Dichlorobenzene	10F0853			g/kg wet	N/A	25	<25							
Dichlorodifluoromethane	10F0853			g/kg wet	N/A	50	<50							
1,1-Dichloroethane	10F0853			g/kg wet	N/A	25	<25							

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Work Order:

WTF0804

Received:

06/24/10

Project: Project Number: 1E-0909013 Racine, WI

1730 State Street

Reported:

07/01/10 10:15

			LAB	ORAT	ORY B	LANK	QC D	ATA						
	Seg/	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Batch	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
VOCs by SW8260B														
1,2-Dichloroethane	10F0853		1	ug/kg wet	N/A	25	<25							
1,1-Dichloroethene	10F0853		1	ug/kg wet	N/A	25	<25							
cis-1,2-Dichloroethene	10F0853		1	ug/kg wet	N/A	25	<25							
trans-1,2-Dichloroethene	10F0853		1	ug/kg wet	N/A	25	<25							
1,2-Dichloropropane	10F0853		1	ug/kg wet	N/A	25	<25							
1,3-Dichloropropane	10F0853		1	ug/kg wet	N/A	25	<25							
2,2-Dichloropropane	10F0853		1	ug/kg wet	N/A	25	<25							
1,1-Dichloropropene	10F0853			ug/kg wet	N/A	25	<25							
cis-1,3-Dichloropropene	10F0853		1	ug/kg wet	N/A	25	<25							
trans-1,3-Dichloropropene	10F0853			ug/kg wet	N/A	25	<25							
2,3-Dichloropropene	10F0853		1	ug/kg wet	N/A	25	<25							
Isopropyl Ether	10F0853			ug/kg wet	N/A	25	<25							
Ethylbenzene	10F0853		1	ug/kg wet	N/A	25	<25							
Hexachlorobutadiene	10F0853			ug/kg wet	N/A	35	<35							
Isopropylbenzene	10F0853			ug/kg wet	N/A	25	<25							
p-lsopropyltoluene	10F0853			ug/kg wet	N/A	25	<25							
Methylene Chloride	10F0853			ug/kg wet	N/A	50	<50							
Methyl tert-Butyl Ether	10F0853			ug/kg wet	N/A	25	<25							
Naphthalene	10F0853		1	ug/kg wet	N/A	50	<50							
n-Propylbenzene	10F0853			ug/kg wet	N/A	25	<25							
Styrene	10F0853			ug/kg wet	N/A	50	<50							
1,1,1,2-Tetrachloroethane	10F0853			ug/kg wet	N/A	25	<25							
1,1,2,2-Tetrachloroethane	10F0853			ug/kg wet	N/A	25	<25							
Tetrachloroethene	10F0853			ug/kg wet	N/A	25	<25							
Toluene	10F0853			ug/kg wet	N/A	25	<25							
1,2,3-Trichlorobenzene	10F0853			ug/kg wet	N/A	25	<25							
1,2,4-Trichlorobenzene	10F0853			ug/kg wet	N/A	25	<25							
1,1,1-Trichloroethane	10F0853			ug/kg wet	N/A	25	<25							
1,1,2-Trichloroethane	10F0853			ug/kg wet	N/A	35	<35							
Trichloroethene	10F0853			ug/kg wet	N/A	25	<25							
Trichlorofluoromethane	10F0853			ug/kg wet	N/A	25	<25							
1,2,3-Trichloropropane	10F0853			ug/kg wet	N/A	50	<50							
1,2,4-Trimethylbenzene	10F0853			ug/kg wet	N/A	25	<25							
1,3,5-Trimethylbenzene	10F0853			ug/kg wet	N/A	25	<25							
Vinyl chloride	10F0853			ug/kg wet	N/A	35	<35							
Xylenes, total	10F0853			ug/kg wet	N/A	85	<85							
Surrogate: Dibromofluoromethane	10F0853			ug/kg wet	,	-	-		101		80-120			
Surrogate: Toluene-d8	10F0853			ug/kg wet					99		80-120			
Surrogate: 4-Bromofluorobenzene	10F0853			ug/kg wet					101		80-120			

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Work Order:

WTF0804

Received:

06/24/10

Project:
Project Number:

1E-0909013 Racine, WI 1730 State Street Reported:

07/01/10 10:15

			LAB	ORAT	ORY B	LANK	QC D	ATA						
	Seq/	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Batch	Result	_	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
VOCs by SW8260B														
Benzene	10F0856			ug/kg wet	N/A	25	<25							
Bromobenzene	10F0856			ug/kg wet	N/A	25	<25							
Bromochloromethane	10F0856			ug/kg wet	N/A	35	<35							
Bromodichloromethane	10F0856			ug/kg wet	N/A	25	<25							
Bromoform	10F0856			ug/kg wet	N/A	25	<25							
Bromomethane	10F0856			ug/kg wet	N/A	100	<100							
n-Butylbenzene	10F0856			ug/kg wet	N/A	25	<25							
sec-Butylbenzene	10F0856			ug/kg wet	N/A	25	<25							
tert-Butylbenzene	10F0856			ug/kg wet	N/A	25	<25							
Carbon Tetrachloride	10F0856			ug/kg wet	N/A	25	<25							
Chlorobenzene	10F0856			ug/kg wet	N/A	25	<25							
Chlorodibromomethane	10F0856			ug/kg wet	N/A	25	<25							
Chloroethane	10F0856			ug/kg wet	N/A	50	<50							
Chloroform	10F0856			ug/kg wet	N/A	25	<25							
Chloromethane	10F0856			ug/kg wet	N/A	50	<50							
2-Chlorotoluene	10F0856			ug/kg wet	N/A	50	<50							
4-Chlorotoluene	10F0856			ug/kg wet	N/A	25	<25							
1,2-Dibromo-3-chloropropane	10F0856			ug/kg wet	N/A	50	<50							
1,2-Dibromoethane (EDB)	10F0856			ug/kg wet	N/A	25	<25							
Dibromomethane	10F0856			ug/kg wet	N/A	25	<25							
1,2-Dichlorobenzene	10F0856			ug/kg wet	N/A	25	<25							
1,3-Dichlorobenzene	10F0856			ug/kg wet	N/A	25	<25							
1,4-Dichlorobenzene	10F0856			ug/kg wet	N/A	25	<25							
Dichlorodifluoromethane	10F0856			ug/kg wet	N/A	50	<50							
1,1-Dichloroethane	10F0856			ug/kg wet	N/A	25	<25							
1,2-Dichloroethane	10F0856			ug/kg wet	N/A	25	<25							
1.1-Dichloroethene	10F0856			ug/kg wet	N/A	25	<25							
cis-1,2-Dichloroethene	10F0856			ug/kg wet	N/A	25	<25							
rans-1,2-Dichloroethene	10F0856			ug/kg wet	N/A	25	<25							
1,2-Dichloropropane	10F0856			ug/kg wet	N/A	25	<25							
,3-Dichloropropane	10F0856			ug/kg wet	N/A	25	<25							
2,2-Dichloropropane	10F0856			ug/kg wet	N/A	25	<25							
,1-Dichloropropene	10F0856			ug/kg wet	N/A	25	<25							
cis-1,3-Dichloropropene	10F0856			ug/kg wet	N/A	25	<25							
rans-1,3-Dichloropropene	10F0856			ug/kg wet	N/A	25	<25							
2,3-Dichloropropene	10F0856			ug/kg wet	N/A	25	<25							
sopropyl Ether	10F0856			ug/kg wet	N/A	25	<25							
Ethylbenzene	10F0856			ug/kg wet	N/A	25	<25							
lexachlorobutadiene	10F0856			ug/kg wet	N/A	35	<35							
sopropylbenzene	10F0856			ug/kg wet	N/A	25	<25							
-Isopropyltoluene	10F0856			ug/kg wet	N/A	25	<25							
Methylene Chloride	10F0856			ug/kg wet	N/A	50	<50							
Methyl tert-Butyl Ether	10F0856			ug/kg wet	N/A	25	<25							
Naphthalene	10F0856			ug/kg wet	N/A	50	<50							
n-Propylbenzene	10F0856			ug/kg wet	N/A	25	<25							

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, W1 53186 Mr. Tim Taugher Work Order:

WTF0804

Received:

06/24/10

Project:

1E-0909013 Racine, WI

Reported:

07/01/10 10:15

Project Number: 1730 State Street

			LAB	ORAT	ORY B	LANK	QC D	ATA						
Analyte	Seq/ Batch	Source Result	•	Units	MDL	MRL	Result	Dup Result	% REC	Dup %REC	% REC	RPD	RPD Limit	Q
VOCs by SW8260B														
Styrene	10F0856			ug/kg wet	N/A	50	<50							
1,1,1,2-Tetrachloroethane	10F0856			ug/kg wet	N/A	25	<25							
1,1,2,2-Tetrachloroethane	10F0856			ug/kg wet	N/A	25	<25							
Tetrachloroethene	10F0856			ug/kg wet	N/A	25	<25							
Toluene	10F0856			ug/kg wet	N/A	25	<25							
1,2,3-Trichlorobenzene	10F0856			ug/kg wet	N/A	25	<25							
1,2,4-Trichlorobenzene	10F0856			ug/kg wet	N/A	25	<25							
1,1,1-Trichloroethane	10F0856			ug/kg wet	N/A	25	<25							
1,1,2-Trichloroethane	10F0856			ug/kg wet	N/A	35	<35							
Trichloroethene	10F0856			ug/kg wet	N/A	25	<25							
Trichlorofluoromethane	10F0856			ug/kg wet	N/A	25	<25							
1,2,3-Trichloropropane	10F0856			ug/kg wet	N/A	50	<50							
1,2,4-Trimethylbenzene	10F0856			ug/kg wet	N/A	25	<25							
1,3,5-Trimethylbenzene	10F0856			ug/kg wet	N/A	25	<25							
Vinyl chloride	10F0856			ug/kg wet	N/A	35	<35							
Xylenes, total	10F0856			ug/kg wet	N/A	85	<85							
Surrogate: Dibromofluoromethane	10F0856		1	ig/kg wet					98		80-120			
Surrogate: Toluene-d8	10F0856		1	ig/kg wet					97		80-120			
Surrogate: 4-Bromofluorobenzene	10F0856		1	ig/kg wet					95		80-120			

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Work Order:

Project:

WTF0804

Received:

06/24/10

Project Number:

1E-0909013 Racine, WI 1730 State Street

Reported:

07/01/10 10:15

				C	CV QC	DAT	A							
	Seq/	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Batch	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
VOCs by SW8260B														
Benzene	T001422		2500	ug/kg wet	N/A	N/A	2460		98		80-120			
Bromobenzene	T001422		2500	ug/kg wet	N/A	N/A	2420		97		80-120			
Bromochioromethane	T001422		2500	ug/kg wet	N/A	N/A	2510		100		80-120			
Bromodichloromethane	T001422		2500	ug/kg wet	N/A	N/A	2470		99		80-120			
Bromoform	T001422		2500	ug/kg wet	N/A	N/A	2250		90		80-120			
Bromomethane	T001422		2500	ug/kg wet	N/A	N/A	2270		91		60-140			
n-Butylbenzene	T001422		2500	ug/kg wet	N/A	N/A	2450		98		80-120			
sec-Butylbenzene	T001422		2500	ug/kg wet	N/A	N/A	2460		98		80-120			
tert-Butylbenzene	T001422		2500	ug/kg wet	N/A	N/A	2440		97		80-120			
Carbon Tetrachloride	T001422		2500	ug/kg wet	N/A	N/A	2510		101		60-140			
Chlorobenzene	T001422		2500	ug/kg wet	N/A	N/A	2290		91		80-120			
Chlorodibromomethane	T001422		2500	ug/kg wet	N/A	N/A	2350		94		80-120			
Chloroethane	T001422		2500	ug/kg wet	N/A	N/A	2590		104		60-140			
Chloroform	T001422		2500	ug/kg wet	N/A	N/A	2480		99		80-120			
Chloromethane	T001422		2500	ug/kg wet	N/A	N/A	2560		102		60-140			
2-Chlorotoluene	T001422		2500	ug/kg wet	N/A	N/A	2410		97		80-120			
4-Chlorotoiuene	T001422		2500	ug/kg wet	N/A	N/A	2470		99		80-120			
1,2-Dibromo-3-chloropropane	T001422			ug/kg wet	N/A	N/A	2120		85		60-140			
1,2-Dibromoethane (EDB)	T001422			ug/kg wet	N/A	N/A	2340		94		80-120			
Dibromomethane	T001422			ug/kg wet	N/A	N/A	2340		94		80-120			
1,2-Dichlorobenzene	T001422			ug/kg wet	N/A	N/A	2410		96		80-120			
1,3-Dichlorobenzene	T001422			ug/kg wet	N/A	N/A	2430		97		80-120			
1,4-Dichlorobenzene	T001422			ug/kg wet	N/A	N/A	2430		97		80-120			
Dichlorodifluoromethane	T001422			ug/kg wet	N/A	N/A	2430		97		60-140			
1,1-Dichloroethane	T001422			ug/kg wet	N/A	N/A	2500		100		80-120			
1,2-Dichloroethane	T001422			ug/kg wet	N/A	N/A	2510		100		80-120			
1,1-Dichloroethene	T001422			ug/kg wet	N/A	N/A	2460		98		80-120			
cis-1,2-Dichloroethene	T001422			ug/kg wet	N/A	N/A	2470		99		80-120			
trans-1,2-Dichloroethene	T001422			ug/kg wet	N/A	N/A	2440		98		80-120			
	T001422			ug/kg wet	N/A	N/A	2450		98		80-120			
1,2-Dichloropropane	T001422			ug/kg wet	N/A	N/A	2330		93		80-120			
1,3-Dichloropropane	T001422			ug/kg wet			2620		105		60-140			
2,2-Dichloropropane					N/A	N/A			99		80-120			
1,1-Dichloropropene	T001422			ug/kg wet	N/A	N/A	2480				80-120			
cis-1,3-Dichloropropene	T001422			ug/kg wet	N/A	N/A	2500		100 99		80-120			
trans-1,3-Dichloropropene	T001422			ug/kg wet	N/A	N/A	2470							
2,3-Dichloropropene	T001422			ug/kg wet	N/A	N/A	2520		101		80-120			
Isopropyl Ether	T001422			ug/kg wet	N/A	N/A	2540		101		80-120			
Ethylbenzene	T001422			ug/kg wet	N/A	N/A	2320		93		80-120			
Hexachlorobutadiene	T001422			ug/kg wet	N/A	N/A	2290		92		60-140			
lsopropylbenzene	T001422			ug/kg wet	N/A	N/A	2270		91		80-120			
p-lsopropyltoluene	T001422			ug/kg wet	N/A	N/A	2440		98		80-120			
Methylene Chloride	T001422			ug/kg wet	N/A	N/A	2450		98		80-120			
Methyl tert-Butyl Ether	T001422			ug/kg wet	N/A	N/A	2460		98		80-120			
Naphthalene n-Propylbenzene	T001422 T001422			ug/kg wet ug/kg wet	N/A N/A	N/A N/A	2190 2220		88 89		60-140 80-120			

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Work Order:

WTF0804

Received:

06/24/10

Project Number:

Project:

1E-0909013 Racine, WI 1730 State Street Reported:

07/01/10 10:15

			C	CV QC	DAT	A							
		rce Spike		MDI	MRL	Result	Dup Result	% REC	Dup %REC	% REC	RPD	RPD Limit	0
Analyte	Batch Re	sult Level	Units	MDL	MIKL	Result	Result	REC	70KEC	Limits	KFD	Limit	Ų
VOCs by SW8260B	T001422	2500		NIA	NT/A	2360		94		80-120			
Styrene	T001422	2500	ug/kg wet	N/A	N/A	2450		98		80-120			
1,1,1,2-Tetrachloroethane	T001422	2500	ug/kg wet	N/A	N/A			92		80-120			
1,1,2,2-Tetrachloroethane	T001422	2500	ug/kg wet	N/A	N/A	2290		93		80-120			
Tetrachloroethene	T001422	2500	ug/kg wet	N/A	N/A	2320		94					
Toluene	T001422	2500	ug/kg wet	N/A	N/A	2350				80-120			
1,2,3-Trichlorobenzene	T001422	2500	ug/kg wet	N/A	N/A	2260		90		80-120			
1,2,4-Trichlorobenzene	T001422	2500	ug/kg wet	N/A	N/A	2350		94		80-120			
1,1,1-Trichloroethane	T001422	2500	ug/kg wet	N/A	N/A	2520		101		80-120			
1,1,2-Trichloroethane	T001422	2500	ug/kg wet	N/A	N/A	2400		96		80-120			
Trichloroethene	T001422	2500	ug/kg wet	N/A	N/A	2390		95		80-120			
Trichlorofluoromethane	T001422	2500	ug/kg wet	N/A	N/A	2350		94		80-120			
1,2,3-Trichloropropane	T001422	2500	ug/kg wet	N/A	N/A	2310		93		80-120			
1,2,4-Trimethylbenzene	T001422	2500	ug/kg wet	N/A	N/A	2480		99		80-120			
1,3,5-Trimethylbenzene	T001422	2500	ug/kg wet	N/A	N/A	2460		98		80-120			
Vinyl chloride	T001422	2500	ug/kg wet	N/A	N/A	2460		98		80-120			
Xylenes, total	T001422	7500	ug/kg wet	N/A	N/A	6950		93		80-120			
Surrogate: Dibromofluoromethane	T001422		ug/kg wet					104		80-120			
Surrogate: Toluene-d8	T001422		ug/kg wet					100		80-120			
Surrogate: 4-Bromofluorobenzene	T001422		ug/kg wet					101		80-120			
Benzene	T001423	2500	ug/kg wet	N/A	N/A	2700		108		80-120			
Bromobenzene	T001423	2500	ug/kg wet	N/A	N/A	2450		98		80-120			
Bromochloromethane	T001423	2500	ug/kg wet	N/A	N/A	2680		107		80-120			
Bromodichloromethane	T001423	2500	ug/kg wet	N/A	N/A	2560		102		80-120			
Bromoform	T001423	2500	ug/kg wet	N/A	N/A	2500		100		80-120			
Bromomethane	T001423	2500	ug/kg wet	N/A	N/A	2080		83		60-140			
n-Butylbenzene	T001423	2500	ug/kg wet	N/A	N/A	2450		98		80-120			
sec-Butylbenzene	T001423	2500	ug/kg wet	N/A	N/A	2480		99		80-120			
tert-Butylbenzene	T001423	2500	ug/kg wet	N/A	N/A	2440		97		80-120			
Carbon Tetrachloride	T001423	2500	ug/kg wet	N/A	N/A	2870		115		60-140			
Chlorobenzene	T001423	2500	ug/kg wet	N/A	N/A	2400		96		80-120			
Chlorodibromomethane	T001423	2500	ug/kg wet	N/A	N/A	2470		99		80-120			
Chloroethane	T001423	2500	ug/kg wet	N/A	N/A	2660		106		60-140			
Chloroform	T001423	2500	ug/kg wet	N/A	N/A	2570		103		80-120			
Chloromethane	T001423	2500	ug/kg wet	N/A	N/A	3250		130		60-140			
2-Chlorotoluene	T001423	2500	ug/kg wet	N/A	N/A	2390		96		80-120			
4-Chlorotoluene	T001423	2500	ug/kg wet	N/A	N/A	2360		94		80-120			
1,2-Dibromo-3-chloropropane	T001423	2500	ug/kg wet	N/A	N/A	2370		95		60-140			
1,2-Dibromoethane (EDB)	T001423	2500	ug/kg wet	N/A	N/A	2400		96		80-120			
Dibromomethane	T001423	2500	ug/kg wet	N/A	N/A	2610		104		80-120			
1,2-Dichlorobenzene	T001423	2500	ug/kg wet	N/A	N/A	2400		96		80-120			
1,3-Dichlorobenzene	T001423	2500	ug/kg wet	N/A	N/A	2410		96		80-120			
1,4-Dichlorobenzene	T001423	2500	ug/kg wet	N/A	N/A	2350		94		80-120			
Dichlorodifluoromethane	T001423	2500	ug/kg wet	N/A	N/A	2840		114		60-140			
1,1-Dichloroethane	T001423	2500	ug/kg wet	N/A	N/A	2660		106		80-120			

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Work Order:

WTF0804

Received:

06/24/10

Project:

Project Number:

1E-0909013 Racine, WI

1730 State Street

Reported:

07/01/10 10:15

				C	CV QC	DAT	A							
	Seg/	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Batch	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
VOCs by SW8260B														
1,2-Dichloroethane	T001423		2500	ug/kg wet	N/A	N/A	2530		101		80-120			
1.1-Dichloroethene	T001423		2500	ug/kg wet	N/A	N/A	2710		108		80-120			
cis-1,2-Dichloroethene	T001423		2500	ug/kg wet	N/A	N/A	2650		106		80-120			
trans-1,2-Dichloroethene	T001423		2500	ug/kg wet	N/A	N/A	2680		107		80-120			
1,2-Dichloropropane	T001423		2500	ug/kg wet	N/A	N/A	2670		107		80-120			
1,3-Dichloropropane	T001423		2500	ug/kg wet	N/A	N/A	2550		102		80-120			
2,2-Dichloropropane	T001423		2500	ug/kg wet	N/A	N/A	2680		107		60-140			
1,1-Dichloropropene	T001423		2500	ug/kg wet	N/A	N/A	2720		109		80-120			
cis-1,3-Dichloropropene	T001423		2500	ug/kg wet	N/A	N/A	2660		107		80-120			
trans-1,3-Dichloropropene	T001423		2500	ug/kg wet	N/A	N/A	2650		106		80-120			
2,3-Dichloropropene	T001423		2500	ug/kg wet	N/A	N/A	2620		105		80-120			
Isopropyl Ether	T001423		2500	ug/kg wet	N/A	N/A	2560		102		80-120			
Ethylbenzene	T001423		2500	ug/kg wet	N/A	N/A	2480		99		80-120			
Hexachlorobutadiene	T001423		2500	ug/kg wet	N/A	N/A	2370		95		60-140			
Isopropylbenzene	T001423		2500	ug/kg wet	N/A	N/A	2450		98		80-120			
p-Isopropyltoluene	T001423		2500	ug/kg wet	N/A	N/A	2480		99		80-120			
Methylene Chloride	T001423		2500	ug/kg wet	N/A	N/A	2660		106		80-120			
Methyl tert-Butyl Ether	T001423		2500	ug/kg wet	N/A	N/A	2580		103		80-120			
Naphthalene	T001423		2500	ug/kg wet	N/A	N/A	2220		89		60-140			
n-Propylbenzene	T001423		2500	ug/kg wet	N/A	N/A	2490		100		80-120			
Styrene	T001423		2500	ug/kg wet	N/A	N/A	2480		99		80-120			
1,1,1,2-Tetrachloroethane	T001423		2500	ug/kg wet	N/A	N/A	2390		96		80-120			
1.1,2,2-Tetrachloroethane	T001423		2500	ug/kg wet	N/A	N/A	2300		92		80-120			
Tetrachloroethene	T001423		2500	ug/kg wet	N/A	N/A	2590		104		80-120			
Toluene	T001423		2500	ug/kg wet	N/A	N/A	2480		99		80-120			
1.2.3-Trichlorobenzene	T001423		2500	ug/kg wet	N/A	N/A	2320		93		80-120			
1,2,4-Trichlorobenzene	T001423		2500	ug/kg wet	N/A	N/A	2400		96		80-120			
1,1,1-Trichloroethane	T001423		2500	ug/kg wet	N/A	N/A	2540		102		80-120			
1,1,2-Trichloroethane	T001423		2500	ug/kg wet	N/A	N/A	2450		98		80-120			
Trichloroethene	T001423		2500	ug/kg wet	N/A	N/A	2740		110		80-120			
Trichlorofluoromethane	T001423		2500	ug/kg wet	N/A	N/A	2730		109		80-120			
1,2,3-Trichloropropane	T001423		2500	ug/kg wet	N/A	N/A	2330		93		80-120			
1,2,4-Trimethylbenzene	T001423		2500	ug/kg wet	N/A	N/A	2410		97		80-120			
1,3,5-Trimethylbenzene	T001423		2500	ug/kg wet	N/A	N/A	2420		97		80-120			
Vinyl chloride	T001423		2500	ug/kg wet	N/A	N/A	2690		108		80-120			
Xylenes, total	T001423		7500	ug/kg wet	N/A	N/A	7500		100		80-120			
Surrogate: Dibromofluoromethane	T001423			ug/kg wet					102		80-120			
Surrogate: Toluene-d8	T001423			ug/kg wet					99		80-120			
Surrogate: 4-Bromofluorobenzene	T001423			ug/kg wet					98		80-120			

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Work Order:

WTF0804

Received:

06/24/10

Project: Project Number:

1E-0909013 Racine, WI 1730 State Street

Reported:

07/01/10 10:15

		L	ABOR	ATOR	Y DUI	PLICA	TE QC DA	ATA	-				
Analyte	Seq/ Batch	Source Result	•	Units	MDL	MRL	Result	% REC	•	% REC	RPD	RPD Limit	Q
General Chemistry Parameters QC Source Sample: WTF0806-03 % Solids	10F0827	86.0		%	N/A	N/A	84.5				2	20	

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Work Order:

Project Number:

WTF0804

Received:

06/24/10

Project:

1E-0909013 Racine, WI

1730 State Street

Reported:

07/01/10 10:15

			LCS	S/LCS I	DUPLI	CATE	QC DA	IA						
	Seq/ S	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Batch	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
VOCs by SW8260B														
Benzene	10F0832		2500	ug/kg wet	N/A	N/A	2350		94		80-120			
Bromobenzene	10F0832		2500	ug/kg wet	N/A	N/A	2390		95		80-120			
Bromochloromethane	10F0832		2500	ug/kg wet	N/A	N/A	2470		99		80-120			
Bromodichloromethane	10F0832		2500	ug/kg wet	N/A	N/A	2340		94		80-120			
Bromoform	10F0832		2500	ug/kg wet	N/A	N/A	2310		92		80-120			
Bromomethane	10F0832		2500	ug/kg wet	N/A	N/A	2570		103		60-140			
n-Butylbenzene	10F0832		2500	ug/kg wet	N/A	N/A	2400		96		80-120			
sec-Butylbenzene	10F0832		2500	ug/kg wet	N/A	N/A	2390		96		80-120			
tert-Butylbenzene	10F0832		2500	ug/kg wet	N/A	N/A	2380		95		80-120			
Carbon Tetrachloride	10F0832		2500	ug/kg wet	N/A	N/A	2390		96		60-140			
Chlorobenzene	10F0832			ug/kg wet	N/A	N/A	2260		90		80-120			
Chlorodibromomethane	10F0832			ug/kg wet	N/A	N/A	2290		92		80-120			
Chloroethane	10F0832			ug/kg wet	N/A	N/A	2550		102		60-140			
Chloroform	10F0832			ug/kg wet	N/A	N/A	2390		96		80-120			
Chloromethane	10F0832			ug/kg wet	N/A	N/A	2980		119		60-140			
2-Chlorotoluene	10F0832			ug/kg wet	N/A	N/A	2390		96		80-120			
4-Chlorotoluene	10F0832			ug/kg wet	N/A	N/A	2410		96		80-120			
1,2-Dibromo-3-chloropropane	10F0832			ug/kg wet	N/A	N/A	2270		91		60-140			
1,2-Dibromoethane (EDB)	10F0832			ug/kg wet	N/A	N/A	2380		95		80-120			
Dibromomethane	10F0832			ug/kg wet	N/A	N/A	2360		95		80-120			
1,2-Dichlorobenzene	10F0832			ug/kg wet	N/A	N/A	2390		95		80-120			
1,3-Dichlorobenzene	10F0832			ug/kg wet	N/A	N/A	2390		95		80-120			
1.4-Dichlorobenzene	10F0832			ug/kg wet	N/A	N/A	2390		95		80-120			
Dichlorodifluoromethane	10F0832			ug/kg wet	N/A	N/A	2690		108		60-140			
1,1-Dichloroethane	10F0832			ug/kg wet	N/A	N/A	2410		97		80-120			
1,2-Dichloroethane	10F0832			ug/kg wet	N/A	N/A	2390		95		80-120			
1.1-Dichloroethene	10F0832			ug/kg wet	N/A	N/A	2490		100		80-120			
cis-1,2-Dichloroethene	10F0832			ug/kg wet	N/A	N/A	2420		97		80-120			
rans-1,2-Dichloroethene	10F0832			ug/kg wet	N/A	N/A	2440		97		80-120			
1,2-Dichloropropane	10F0832			ug/kg wet	N/A	N/A	2400		96		80-120			
1,3-Dichloropropane	10F0832			ug/kg wet	N/A	N/A	2300		92		80-120			
2,2-Dichloropropane	10F0832			ug/kg wet	N/A	N/A	2410		96		60-140			
1,1-Dichloropropene	10F0832			ug/kg wet	N/A	N/A	2410		97		80-120			
	10F0832			ug/kg wet	N/A	N/A	2340		94		80-120			
cis-1,3-Dichloropropene trans-1,3-Dichloropropene	10F0832			ug/kg wet	N/A	N/A	2380		95		80-120			
Ethylbenzene	10F0832			ug/kg wet	N/A	N/A	2280		91		80-120			
Einyloenzene Hexachlorobutadiene	10F0832			ug/kg wet	N/A	N/A	2300		92		60-140			
sopropylbenzene	10F0832			ug/kg wet	N/A	N/A	2240		90		80-120			
p-Isopropyltoluene	10F0832			ug/kg wet	N/A	N/A	2400		96		80-120			
Methylene Chloride	10F0832			ug/kg wet	N/A	N/A	2360		94		80-120			
	10F0832			ug/kg wet	N/A	N/A	2440		98		80-120			
Methyl tert-Butyl Ether	10F0832			ug/kg wet	N/A	N/A	2310		93		60-140			
Naphthalene - Propulhangene	10F0832			ug/kg wet	N/A	N/A	2190		88		80-120			
n-Propylbenzene	10F0832			ug/kg wet	N/A	N/A	2280		91		80-120			
Styrene 1,1,1,2-Tetrachloroethane	10F0832			ug/kg wet	N/A	N/A	2400		96		80-120			

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Work Order:

WTF0804

Received: Reported: 06/24/10

07/01/10 10:15

Mr. Tim Taugher

1E-0909013 Racine, WI Project:

1730 State Street Project Number:

			LC	S/LCS I	OPLI	CAIL	QC DA	IA						
	Seq/	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Batch	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
VOCs by SW8260B														
1,1,2,2-Tetrachloroethane	10F0832		2500	ug/kg wet	N/A	N/A	2360		94		80-120			
Tetrachloroethene	10F0832		2500	ug/kg wet	N/A	N/A	2340		93		80-120			
Toluene	10F0832		2500	ug/kg wet	N/A	N/A	2320		93		80-120			
1,2,3-Trichlorobenzene	10F0832		2500	ug/kg wet	N/A	N/A	2280		91		80-120			
1,2,4-Trichlorobenzene	10F0832		2500	ug/kg wet	N/A	N/A	2290		92		80-120			
1,1,1-Trichloroethane	10F0832		2500	ug/kg wet	N/A	N/A	2420		97		80-120			
1,1,2-Trichloroethane	10F0832		2500	ug/kg wet	N/A	N/A	2400		96		80-120			
Trichloroethene	10F0832		2500	ug/kg wet	N/A	N/A	2420		97		80-120			
Trichlorofluoromethane	10F0832		2500	ug/kg wet	N/A	N/A	2350		94		80-120			
1,2,3-Trichloropropane	10F0832		2500	ug/kg wet	N/A	N/A	2130		85		80-120			
1,2,4-Trimethylbenzene	10F0832		2500	ug/kg wet	N/A	N/A	2410		96		80-120			
1,3,5-Trimethylbenzene	10F0832		2500	ug/kg wet	N/A	N/A	2390		96		80-120			
Vinyl chloride	10F0832		2500	ug/kg wet	N/A	N/A	2500		100		80-120			
Xylenes, total	10F0832		7500	ug/kg wet	N/A	N/A	6830		91		80-120			
Surrogate: Dibromofluoromethane	10F0832			ug/kg wet					100		80-120			
Surrogate: Toluene-d8	10F0832			ug/kg wet					100		80-120			
Surrogate: 4-Bromofluorobenzene	10F0832			ug/kg wet					101		80-120			
Benzene	10F0853		2500	ug/kg wet	N/A	N/A	2350		94		80-120			
Bromobenzene	10F0853		2500	ug/kg wet	N/A	N/A	2310		92		80-120			
Bromochloromethane	10F0853		2500	ug/kg wet	N/A	N/A	2370		95		80-120			
Bromodichloromethane	10F0853		2500	ug/kg wet	N/A	N/A	2340		94		80-120			
Bromoform	10F0853		2500	ug/kg wet	N/A	N/A	2110		84		80-120			
Bromomethane	10F0853		2500	ug/kg wet	N/A	N/A	2290		92		60-140			
n-Butylbenzene	10F0853		2500	ug/kg wet	N/A	N/A	2380		95		80-120			
sec-Butylbenzene	10F0853		2500	ug/kg wet	N/A	N/A	2370		95		80-120			
tert-Butylbenzene	10F0853		2500	ug/kg wet	N/A	N/A	2340		93		80-120			
Carbon Tetrachloride	10F0853		2500	ug/kg wet	N/A	N/A	2430		97		60-140			
Chlorobenzene	10F0853		2500	ug/kg wet	N/A	N/A	2210		89		80-120			
Chlorodibromomethane	10F0853		2500	ug/kg wet	N/A	N/A	2210		88		80-120			
Chloroethane	10F0853		2500	ug/kg wet	N/A	N/A	2190		87		60-140			
Chloroform	10F0853		2500	ug/kg wet	N/A	N/A	2430		97		80-120			
Chloromethane	10F0853		2500	ug/kg wet	N/A	N/A	2180		87		60-140			
2-Chlorotoluene	10F0853		2500	ug/kg wet	N/A	N/A	2330		93		80-120			
4-Chlorotoluene	10F0853			ug/kg wet	N/A	N/A	2400		96		80-120			
1,2-Dibromo-3-chloropropane	10F0853		2500	ug/kg wet	N/A	N/A	1950		78		60-140			
1,2-Dibromoethane (EDB)	10F0853		2500	ug/kg wet	N/A	N/A	2240		90		80-120			
Dibromomethane	10F0853			ug/kg wet	N/A	N/A	2230		89		80-120			
1,2-Dichlorobenzene	10F0853		2500	ug/kg wet	N/A	N/A	2310		92		80-120			
1,3-Dichlorobenzene	10F0853		2500	ug/kg wet	N/A	N/A	2350		94		80-120			
1,4-Dichlorobenzene	10F0853		2500	ug/kg wet	N/A	N/A	2360		94		80-120			
Dichlorodifluoromethane	10F0853			ug/kg wet	N/A	N/A	2740		109		60-140			
1,1-Dichloroethane	10F0853			ug/kg wet	N/A	N/A	2450		98		80-120			
1,2-Dichloroethane	10F0853		2500	ug/kg wet	N/A	N/A	2380		95		80-120			
1,1-Dichloroethene	10F0853		2500	ug/kg wet	N/A	N/A	2490		100		80-120			

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Wankesha, WI 53186

Waukesha, WI 53186 Mr. Tim Taugher Work Order:

Project Number:

WTF0804

Received: 06/24/10

Project: 1

1E-0909013 Racine, WI 1730 State Street Reported:

07/01/10 10:15

			LC	S/LCS I	DUPLI	CATE	QC DA	ATA						
	Seq/	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Batch	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
VOCs by SW8260B														
cis-1,2-Dichloroethene	10F0853		2500	ug/kg wet	N/A	N/A	2380		95		80-120			
trans-1,2-Dichloroethene	10F0853		2500	ug/kg wet	N/A	N/A	2430		97		80-120			
1,2-Dichloropropane	10F0853		2500	ug/kg wet	N/A	N/A	2380		95		80-120			
1,3-Dichloropropane	10F0853		2500	ug/kg wet	N/A	N/A	2220		89		80-120			
2,2-Dichloropropane	10F0853		2500	ug/kg wet	N/A	N/A	2530		101		60-140			
1,1-Dichloropropene	10F0853		2500	ug/kg wet	N/A	N/A	2420		97		80-120			
cis-1,3-Dichloropropene	10F0853		2500	ug/kg wet	N/A	N/A	2330		93		80-120			
trans-1,3-Dichloropropene	10F0853		2500	ug/kg wet	N/A	N/A	2350		94		80-120			
Ethylbenzene	10F0853		2500	ug/kg wet	N/A	N/A	2240		90		80-120			
Hexachlorobutadiene	10F0853		2500	ug/kg wet	N/A	N/A	2220		89		60-140			
lsopropylbenzene	10F0853		2500	ug/kg wet	N/A	N/A	2190		88		80-120			
p-Isopropyltoluene	10F0853		2500	ug/kg wet	N/A	N/A	2380		95		80-120			
Methylene Chloride	10F0853		2500	ug/kg wet	N/A	N/A	2310		92		80-120			
Methyl tert-Butyl Ether	10F0853		2500	ug/kg wet	N/A	N/A	2390		95		80-120			
Naphthalene	10F0853		2500	ug/kg wet	N/A	N/A	2100		84		60-140			
n-Propylbenzene	10F0853		2500	ug/kg wet	N/A	N/A	2130		85		80-120			
Styrene	10F0853		2500	ug/kg wet	N/A	N/A	2250		90		80-120			
1,1,1,2-Tetrachloroethane	10F0853		2500	ug/kg wet	N/A	N/A	2370		95		80-120			
1,1,2,2-Tetrachloroethane	10F0853		2500	ug/kg wet	N/A	N/A	2190		88		80-120			
Tetrachloroethene	10F0853		2500	ug/kg wet	N/A	N/A	2280		91		80-120			
Toluene	10F0853		2500	ug/kg wet	N/A	N/A	2250		90		80-120			
1,2,3-Trichlorobenzene	10F0853			ug/kg wet	N/A	N/A	2190		87		80-120			
1,2,4-Trichlorobenzene	10F0853			ug/kg wet	N/A	N/A	2290		92		80-120			
1,1,1-Trichloroethane	10F0853			ug/kg wet	N/A	N/A	2460		98		80-120			
1,1,2-Trichloroethane	10F0853			ug/kg wet	N/A	N/A	2310		92		80-120			
Trichloroethene	10F0853			ug/kg wet	N/A	N/A	2380		95		80-120			
Trichlorofluoromethane	10F0853			ug/kg wet	N/A	N/A	2470		99		80-120			
1,2,3-Trichloropropane	10F0853			ug/kg wet	N/A	N/A	1980		79		80-120			
1,2,4-Trimethylbenzene	10F0853			ug/kg wet	N/A	N/A	2380		95		80-120			
1,3,5-Trimethylbenzene	10F0853			ug/kg wet	N/A	N/A	2370		95		80-120			
Vinyl chloride	10F0853			ug/kg wet	N/A	N/A	2440		97		80-120			
Xylenes, total	10F0853			ug/kg wet	N/A	N/A	6700		89		80-120			
Surrogate: Dibromosluoromethane	10F0853			ug/kg wet	1471		0,00		103		80-120			
Surrogate: Toluene-d8	10F0853			ug/kg wet					100		80-120			
Surrogate: 4-Bromosluorobenzene	10F0853			ug/kg wet					101		80-120			
Benzene	10F0856			ug/kg wet	N/A	N/A	2370		95		80-120			
Bromobenzene	10F0856			ug/kg wet	N/A	N/A	2240		90		80-120			
Bromochloromethane	10F0856			ug/kg wet	N/A	N/A	2370		95		80-120			
Bromodichloromethane	10F0856			ug/kg wet	N/A	N/A	2180		87		80-120			
Bromoform	10F0856					N/A	2170		87					
Bromotorm Bromomethane	10F0856			ug/kg wet	N/A						80-120			
				ug/kg wet	N/A	N/A	2060		82		60-140			
n-Butylbenzene	10F0856			ug/kg wet	N/A	N/A	2050		82		80-120			
ec-Butylbenzene ert-Butylbenzene	10F0856 10F0856			ug/kg wet ug/kg wet	N/A N/A	N/A N/A	2090 2060		84 82		80-120 80-120			

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Work Order:

WTF0804

Received:

06/24/10

Project: Project Number: 1730 State Street

1E-0909013 Racine, WI

Reported:

07/01/10 10:15

			CS	LCS I	OUPLIC	CATE	QC DA	TA						
	Seq/ S	ource Sp	ike					Dup	%	Dup	% REC		RPD	
Analyte			vel	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	(
VOCs by SW8260B														
Carbon Tetrachloride	10F0856	25	00 u	g/kg wet	N/A	N/A	2410		96		60-140			
Chlorobenzene	10F0856	25	00 u	g/kg wet	N/A	N/A	2160		86		80-120			
Chlorodibromomethane	10F0856	25	00 u	g/kg wet	N/A	N/A	2170		87		80-120			
Chloroethane	10F0856	25	00 u	ig/kg wet	N/A	N/A	2470		99		60-140			
Chloroform	10F0856	25	00 u	g/kg wet	N/A	N/A	2250		90		80-120			
Chloromethane	10F0856	25	00 u	g/kg wet	N/A	N/A	3270		131		60-140			
2-Chlorotoluene	10F0856	25	00 u	ig/kg wet	N/A	N/A	2150		86		80-120			
4-Chlorotoluene	10F0856	25	00 ц	ig/kg wet	N/A	N/A	2070		83		80-120			
1,2-Dibromo-3-chloropropane	10F0856	25		ig/kg wet	N/A	N/A	2040		82		60-140			
1,2-Dibromoethane (EDB)	10F0856	25		ig/kg wet	N/A	N/A	2170		87		80-120			
Dibromomethane	10F0856	25		ıg/kg wet	N/A	N/A	2350		94		80-120			
1,2-Dichlorobenzene	10F0856	25		ıg/kg wet	N/A	N/A	2110		84		80-120			
1,3-Dichlorobenzene	10F0856	25		ıg/kg wet	N/A	N/A	2120		85		80-120			
1.4-Dichlorobenzene	10F0856	25		ıg/kg wet	N/A	N/A	2080		83		80-120			
Dichlorodifluoromethane	10F0856	25		ig/kg wet	N/A	N/A	2810		112		60-140			
1,1-Dichloroethane	10F0856	25		ıg/kg wet	N/A	N/A	2310		92		80-120			
1,2-Dichloroethane	10F0856	25		ıg/kg wet	N/A	N/A	2100		84		80-120			
1,1-Dichloroethene	10F0856	25		ig/kg wet	N/A	N/A	2460	-	98		80-120			
cis-1,2-Dichloroethene	10F0856	25		ig/kg wet	N/A	N/A	2370		95		80-120			
trans-1,2-Dichloroethene	10F0856	25		ıg/kg wet	N/A	N/A	2360		94		80-120			
1,2-Dichloropropane	10F0856	25		ig/kg wet	N/A	N/A	2200		88		80-120			
1,3-Dichloropropane	10F0856	25		ig/kg wet	N/A	N/A	2190		88		80-120			
2,2-Dichloropropane	10F0856	25		ig/kg wet	N/A	N/A	2300		92		60-140			
1,1-Dichloropropene	10F0856	25		ig/kg wet	N/A	N/A	2340		94		80-120			
cis-1,3-Dichloropropene	10F0856	25		ig/kg wet	N/A	N/A	2240		90		80-120			
trans-1,3-Dichloropropene	10F0856	25		ig/kg wet	N/A	N/A	2280		91		80-120			
Ethylbenzene	10F0856	25		ig/kg wet	N/A	N/A	2190		87		80-120			
Hexachlorobutadiene	10F0856	25		ig/kg wet	N/A	N/A	1970		79		60-140			
Isopropylbenzene	10F0856	25		ig/kg wet	N/A	N/A	2140		86		80-120			
p-lsopropyltoluene	10F0856	25		ig/kg wet	N/A	N/A	2100		84		80-120			
Methylene Chloride	10F0856	25		ig/kg wet	N/A	N/A	2260		90		80-120			
Methyl tert-Butyl Ether	10F0856	25		ig/kg wet	N/A	N/A	2400		96		80-120			
	10F0856	25		ig/kg wet	N/A	N/A	1890		76		60-140			
Naphthalene	10F0856	25		ig/kg wet	N/A	N/A	2200		88		80-120			
n-Propylbenzene	10F0856	25		ig/kg wet	N/A	N/A	2170		87		80-120			
Styrene		25		ig/kg wet	N/A	N/A	2160		87		80-120			
1,1,2,2-Tetrachloroethane	10F0856 10F0856	25		ig/kg wet	N/A	N/A	2020		81		80-120			
Tetrachloroethene	10F0856	25		ig/kg wet	N/A	N/A	2300		92		80-120			
	10F0856	25		ig/kg wet	N/A	N/A	2200		88		80-120			
Toluene	10F0856			ig/kg wet	N/A	N/A	1990		80		80-120			
1,2,3-Trichlorobenzene				ig/kg wet		N/A	2040		82		80-120			
1,2,4-Trichlorobenzene	10F0856	25		ig/kg wet	N/A N/A	N/A	2230		89		80-120			
1,1,1-Trichloroethane	10F0856			-	N/A	N/A	2160		86		80-120			
1,1,2-Trichloroethane	10F0856			ig/kg wet		N/A	2510		100		80-120			
Trichloroethene Trichlorofluoromethane	10F0856 10F0856	25 25		ig/kg wet	N/A N/A	N/A	2360		94		80-120			

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186

Mr. Tim Taugher

Work Order:

WTF0804

Received:

06/24/10

Project: Project Number: 1E-0909013 Racine, WI

1730 State Street

Reported:

07/01/10 10:15

LCS/LCS	DUPLICATE QC DATA	
Cultin	n.,	

Analyte	Seq/ Batch	Source Result	•		MDL	MRL	Result	Dup Result	% REC	% REC	RPD	RPD Limit	Q
VOCs by SW8260B													
1,2,3-Trichloropropane	10F0856		2500	ug/kg wet	N/A	N/A	1930		77	80-120			
1.2,4-Trimethylbenzene	10F0856		2500	ug/kg wet	N/A	N/A	2080		83	80-120			
1,3,5-Trimethylbenzene	10F0856		2500	ug/kg wet	N/A	N/A	2110		84	80-120			
Vinyl chloride	10F0856		2500	ug/kg wet	N/A	N/A	2430		97	80-120			
Xylenes, total	10F0856		7500	ug/kg wet	N/A	N/A	6520		87	80-120			
Surrogate: Dibromofluoromethane	10F0856			ug/kg wet					100	80-120			
Surrogate: Toluene-d8	10F0856			ug/kg wet					97	80-120			
Surrogate: 4-Bromofluorobenzene	10F0856			ug/kg wet					97	80-120			

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Mr. Tim Taugher Work Order:

WTF0804

Received:

06/24/10

Project: Project Number: 1E-0909013 Racine, WI 1730 State Street Reported:

07/01/10 10:15

CERTIFICATION SUMMARY

TestAmerica Watertown

Method	Matrix	Nelac	Wisconsin
SM 2540G	Solid/Soil	X	X
SW 8260B	Solid/Soil	X	X

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN N8 W22350 Johnson Road Waukesha, WI 53186

Mr. Tim Taugher

Work Order:

Project Number:

Project:

WTF0804

1E-0909013 Racine, WI

1730 State Street

Received:

06/24/10

Reported: 07/01/10 10:15

DATA QUALIFIERS AND DEFINITIONS

ADDITIONAL COMMENTS

Results are reported on a wet weight basis unless otherwise noted.

	n Road Suite A1, Wauke Avenue, Suite 607, Ana				414-544-01 714-779-00		114-549-5868 714-779-0068	Closur	WTA D		Address	177	ennu 30 stat Line, L	Stre	et
☐ 8300 Guilford Road,				tei:	410-312-99	50 fax:	110-312-9955		mation required (NR72	0)		D		,	,
10722 North Stemm		75220			214-358-58		214-358-5884	□ RUS	H			Mac	ine, h	SCOAS	in
☐ 2830 Agriculture Dri		30360			608-223-18 770-458-33		508-223-1854 770-458-3998	POSSIBLE	HAZARDS:						
mple Collector E1	7	,				Project Manage		evin Buge 1		Project Number	IE.	0900	2013		est .
poratory Used	est Amic	9				Lab Contact	Dan 1	Analysis R		Lab Job Number	War is		Janes Janes	V-10 EX 2 11	ind-gh
Semilar Semila	Campo Campo	/.	Co. March Monty	The Coulons	To the Part of the						Mumber and The	Same Same	Due Date	Lab, ID	Tem
TW-1	68'	5	Ilzdio	AM	14	X				10	IH	Molt	510		
mu-l	0-2	15	1	PM	11	X				10	14	,	No	-0704s	
MW-1	10-12	5		S PM	12	X					114		50		
mw-2	0-2	5		AM	420	X					dH		510	35 - 15 - 15 - 15 - 15 - 15 - 15 - 15 -	
mw-2	6-81	5	\Box	AM	42	X					iH		STO		
MW-3	2-4'	5		AM RM	BPL	X					IH		570		
max-3	10 X2 LR	-		AM							14	_	-	1000	
MU-4	7-4	3	H	AM		X				,	-14		510		
MW-4	10-12	4		AM	BAL	Ý					44		20		
Mea HBlank	10.16	7	4	AM PM	OBC					11			510		
/ WY O DIEN PC			1	AM PM						10		1	510		
21	composifi	5		AM	9	X				10	114	V	sto		200
ntaiher code: A = 8 oz/250 ml				C = 2 oz/ 60				L Amber	G = poly bag H = Plastic #	40:		= =			
B = 4 oz/ 120 ml	()	T -) = 40 mL V	OA vial Ma) /	7 = 2	mL plastic	Send Project			J =			same
linquished by	10	Date	7 1	9 COSM	Received B	VIII		INVOICE				REPORT	TO:		PM
1500		112	2/10	AM	11	1 124	1		lis Ensinie	1/19		- lyil	15 En	melli	15
36	Str	1/2	5	132PM	m	Pato 4	25/19/134	9			(A55		Lac	
				PM						Page	1		HHA	Kavi	1
ms.xls//COC 08/10/99				. PM						of				Bug	11

WTA05	74 Cooler Re	ceipt Log	
Work Order(s):	'	les	# of Coolers:
1. How did samples arrive? 2. Were custody seals intac	☐ Fed-Ex ☐ UPS ☐ FestA		
Date/time cooler was ope	ned: 1/257(0 (300) B	y: Brafolln	Pato
3. Temperature taken			□No
4. Does this Project require	RUSH tum around?	🗆 Yes	□No
i. Are there any short hold	time tests?	🗀 Yes	₹No
☐ within 1 hr of or ☐ pa	st expiration of hold-time?	Provide deta	ails in space at bottom of form
	48 hours or less	7 days	
	Coliform Bacteria	Aqueous Organic Prep TS TDS TSS Sulfide Voiatile Solids	
 	I times of 48 hrs or less, are any samples	Volatile Solids	
•	past expiration of hold-time?	TYPE PINO Pro	ovide details in space at bottom of form
	Analyst was informed of short hold and when?		When
	bllection recorded?		
	ers listed on the COC received and intact?		ovide details in space at bottom of form
·	COC?		ovide details in space at bottom of form
•			·
	ers field filtered or being filtered in the lab?		
1	equate and preservatives correct for test reque		No Pres. Yes No
·	of bubbles >6mm?		
	ceived? Methanol Sodium Bisulfate	_	e ☐ Water* ☐ Other
_	npling past 48 hrs of sampling		
• •	id?		ovide details in space at bottom of form
	e subcontracted?		
6. If any changes are mad	e to this Work Order after Login, or if comment	s must be made regarding th	is cooler, explain them below:

3mm = ----

January 29, 2010

Client:

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186

Attn:

Mr. Kevin Bugel

Work Order:

WTA0574

Project Name:

1E-0909013 Racine, WI

Project Number:

1730 State Street

Date Received:

01/25/10

An executed copy of the chain of custody is also included as an addendum to this report.

If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-800-833-7036

SAMPLE IDENTIFICATION	LAB NUMBER	COLLECTION DATE AND TIME
TW-1 6-8'	WTA0574-01	01/21/10
MW-1 0-2'	WTA0574-02	01/21/10
MW-1 10-12'	WTA0574-03	01/21/10
MW-2 0-2'	WTA0574-04	01/21/10
MW-2 6-8'	WTA0574-05	01/21/10
MW-3 2-4'	WTA0574-06	01/21/10
MW-4 2-4'	WTA0574-07	01/21/10
MW-4 10-12'	WTA0574-08	01/21/10
MeOH Blank	WTA0574-09	01/21/10
P-1 Composite	WTA0574-10	01/21/10

Samples were received into laboratory on ice.

Wisconsin Certification Number: 128053530

The Chain(s) of Custody, 2 pages, are included and are an integral part of this report.

Unless subcontracted, volatiles analyses (including VOC, PVOC, GRO, BTEX, and TPH gasoline) performed by TestAmerica Watertown at 1101 Industrial Drive, Units 9&10. All other analyses performed at the address shown in the heading of this report.

Approved By:

TestAmerica Watertown Karri Warnock For Dan F. Milewsky Project Manager

Karri Warnock

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Mr. Kevin Bugel

Work Order:

WTA0574

1730 State Street

01/25/10

Project: Project Number: 1E-0909013 Racine, WI

Received: Reported:

01/29/10 16:46

ANALYTICAL REPORT

Analyte	Sample Result	Data Qualifiers	Units	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTA0574-01 (TW-	1 6-8' - Solid/Soil)					Sampled: 01	/21/10		
General Chemistry Parameters	,					oumpieur or	/=1/10		
% Solids	86		%	NA	1	01/27/10 11:45	pam	10A0482	SM 25400
VOCs by SW8260B	00		70	1111	•	01/2//10 11,45	pan	10/10/02	BW 25100
Benzene	<29		ualta da.	29	1	01/27/10 15:19	aba	10A0464	SW 82601
Bromobenzene	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 82601
Bromochloromethane	<41		ug/kg dry ug/kg dry	41	1	01/27/10 15:19	aba	10A0464	SW 8260
Bromodichloromethane	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 8260
Bromoform	<29			29	1	01/27/10 15:19	aba	10A0464	SW 8260
Bromomethane	<120		ug/kg dry	120	1	01/27/10 15:19	aba	10A0464	SW 8260
n-Butylbenzene	<29		ug/kg dry	29	1	01/27/10 15:19		10A0464	SW 8260
	130		ug/kg dry	29	1	01/27/10 15:19	aba aba	10A0464	SW 8260
sec-Butylbenzene tert-Butylbenzene	<29		ug/kg dry ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 82601
Carbon Tetrachloride	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 82601
Chlorobenzene	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 8260
Chlorodibromomethane	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 82601
Chloroethane	<58			58	1	01/27/10 15:19	aba	10A0464	SW 82601
Chloroform	<29		ug/kg dry ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 8260
Chloromethane	<58		ug/kg dry	58	1	01/27/10 15:19	aba	10A0464	SW 8260
2-Chlorotoluene	<58		ug/kg dry	58	1	01/27/10 15:19	aba	10A0464	SW 8260
4-Chlorotoluene	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 82601
1,2-Dibromo-3-chloropropane	<58		ug/kg dry	58	1	01/27/10 15:19	aba	10A0464	SW 82601
1,2-Dibromoethane (EDB)	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 8260
Dibromomethane	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 8260
1,2-Dichlorobenzene	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 8260
1,3-Dichlorobenzene	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 8260
1.4-Dichlorobenzene	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 8260
Dichlorodifluoromethane	<58		ug/kg dry	58	1	01/27/10 15:19	aba	10A0464	SW 8260
1,1-Dichloroethane	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 8260
1,2-Dichloroethane	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 82601
1,1-Dichloroethene	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 82601
≈is-1,2-Dichloroethene	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 82601
₄trans-1,2-Dichloroethene	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 82601
1,2-Dichloropropane	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 82601
1,3-Dichloropropane	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 82601
2,2-Dichloropropane	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 8260E
□,1-Dichloropropene	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 82601
is-1,3-Dichloropropene	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 8260E
trans-1,3-Dichloropropene	<29		ug/kg dry	29	i	01/27/10 15:19	aba	10A0464	SW 82601
2,3-Dichloropropene	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 82601
sopropyl Ether	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 82601
Ethylbenzene	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 82601
Hexachlorobutadiene	<41		ug/kg dry	41	i	01/27/10 15:19	aba	10A0464	SW 8260E
Isopropylbenzene	110		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 82601
p-lsopropyltoluene	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 82601
Methylene Chloride	<58		ug/kg dry	58	1	01/27/10 15:19	aba	10A0464	SW 82601
Methyl tert-Butyl Ether	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 82601
-Naphthalene	<58		ug/kg dry	58	1	01/27/10 15:19	aba	10A0464	SW 82601
Propylbenzene	62		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 82601
tyrene	<58		ug/kg dry	58	1	01/27/10 15:19	aba	10A0464	SW 82601
1,1,1,2-Tetrachloroethane	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 8260E
1,1,2,2-Tetrachloroethane	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 8260E

TestAmerica Watertown

Karri Warnock For Dan F. Milewsky

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Work Order:

WTA0574

Received: 01/25/10

Project: Project Number: 1E-0909013 Racine, WI 1730 State Street Reported:

01/29/10 16:46

w a	TVC2116	r, 44 I	55
Mr.	Kevir	Bug	rel

A market	Sample	Data	¥1*4	1577	Dilution	Date		Seq/	
Analyte	Result	Qualifiers	Units	MRL	Factor	Analyzed	Analyst	Batch	Method
Sample ID: WTA0574-01 (TW-1 6-	-8' - Solid/Soil)	- cont.				Sampled: 01	/21/10		
VOCs by SW8260B - cont.									
Tetrachloroethene	41		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 8260E
Toluene	<29		ug/kg dry	29	-1	01/27/10 15:19	aba	10A0464	SW 8260E
1,2,3-Trichlorobenzene	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 8260E
1,2,4-Trichlorobenzene	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 8260E
1,1,1-Trichloroethane	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 8260E
1,1,2-Trichloroethane	<41		ug/kg dry	41	1	01/27/10 15:19	aba	10A0464	SW 8260E
Trichloroethene	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 8260E
Trichlorofluoromethane	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 8260E
1,2,3-Trichloropropane	<58		ug/kg dry	58	1	01/27/10 15:19	aba	10A0464	SW 8260E
1,2,4-Trimethylbenzene	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 8260E
1,3,5-Trimethylbenzene	<29		ug/kg dry	29	1	01/27/10 15:19	aba	10A0464	SW 8260E
Vinyl chloride	<41		ug/kg dry	41	1	01/27/10 15:19	aba	10A0464	SW 8260E
Xylenes, total	<99		ug/kg dry	99	1	01/27/10 15:19	aba	10A0464	SW 8260E
Surr: Dibromofluoromethane (82-112%)	93 %		ug/kg uly	,,	1	01/2//10 15.17	ava	10/10404	5 11 02001
Surr: Toluene-d8 (91-106%)	89 %	26							
Surr: 4-Bromofluorobenzene (89-110%)	107 %	20							
ample ID: WTA0574-02 (MW-1 0	-2' - Solid/Soil	n				Sampled: 01	/21/10		
eneral Chemistry Parameters	2 50114,5011	,				Sampled. Ut	21/10		
% Solids	88		%	NA	1	01/27/10 11:45	pam	10A0482	SM 25400
OCs by SW8260B					-		Positi		2010
Benzene	<28		unden den	28	1	01/27/10 15:45	aba	10A0464	SW 8260E
Bromobenzene	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	
Bromochioromethane			ug/kg dry		1				SW 82601
Bromodichloromethane	<40		ug/kg dry	40		01/27/10 15:45	aba	10A0464	SW 82601
	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260F
Bromoform	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 82601
Bromomethane	<110		ug/kg dry	110	1	01/27/10 15:45	aba	10A0464	SW 82601
n-Butylbenzene	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260I
ec-Butylbenzene	29		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260F
ert-Butylbenzene	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 82601
Carbon Tetrachloride	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260E
Chlorobenzene	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260I
Chlorodibromomethane	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 82601
Chloroethane	<57		ug/kg dry	57	1	01/27/10 15:45	aba	10A0464	SW 8260E
Chloroform	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260E
Chloromethane	<57		ug/kg dry	57	1	01/27/10 15:45	aba	10A0464	SW 8260E
2-Chlorotoluene	<57		ug/kg dry	57	1	01/27/10 15:45	aba	10A0464	SW 8260E
I-Chlorotoluene	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260E
1,2-Dibromo-3-chloropropane	<57		ug/kg dry	57	1	01/27/10 15:45	aba	10A0464	SW 8260E
,2-Dibromoethane (EDB)	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260E
Dibromomethane	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260E
,2-Dichlorobenzene	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260E
,3-Dichlorobenzene	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260E
,4-Dichlorobenzene	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260B
Dichlorodifluoromethane	<57		ug/kg dry	57	1	01/27/10 15:45	aba	10A0464	SW 8260E
,1-Dichloroethane	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260E
,2-Dichloroethane	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260E
,1-Dichloroethene	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260E
is-1,2-Dichloroethene	7300		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260E
rans-1,2-Dichloroethene	45		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260E
,2-Dichloropropane	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260B

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Work Order:

Project:

WTA0574

1E-0909013 Racine, WI

Received:

01/25/10

Project Number: 1730 State Street

Reported: 01/29/10 16:46

Analyte	Sample Result	Data Qualifiers	Units	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTA0574-02 (MW-1 0-	-2' - Solid/Soil) - cont.				Sampled: 01	/21/10		
VOCs by SW8260B - cont.									
2,2-Dichloropropane	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260
1,1-Dichloropropene	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260
cis-1.3-Dichloropropene	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260
trans-1,3-Dichloropropene	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260
2,3-Dichloropropene	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260
Isopropyl Ether	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260
Ethylbenzene	41		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260
Hexachlorobutadiene	<40		ug/kg dry	40	1	01/27/10 15:45	aba	10A0464	SW 8260
lsopropylbenzene	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260
p-Isopropyltoluene	61		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260
Methylene Chloride	<57		ug/kg dry	57	1	01/27/10 15:45	aba	10A0464	SW 8260
Methyl tert-Butyl Ether	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260
Naphthalene	340		ug/kg dry	57	1	01/27/10 15:45	aba	10A0464	SW 8260
n-Propylbenzene	41		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260
Styrene	<57		ug/kg dry	57	1	01/27/10 15:45	aba	10A0464	SW 8260
1,1,1,2-Tetrachloroethane	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260
1,1,2,2-Tetrachloroethane	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260
Tetrachloroethene	570		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260
Toluene	32		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260
1,2,3-Trichlorobenzene	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260
1,2,4-Trichlorobenzene	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260
1,1,1-Trichloroethane	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260
1,1,2-Trichloroethane	<40		ug/kg dry	40	1	01/27/10 15:45	aba	10A0464	SW 8260
Trichloroethene	83		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260
Trichlorofluoromethane	<28		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260
1,2,3-Trichloropropane	<57		ug/kg dry	57	1	01/27/10 15:45	aba	10A0464	SW 8260
1,2,4-Trimethylbenzene	320		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260
1,3,5-Trimethylbenzene	110		ug/kg dry	28	1	01/27/10 15:45	aba	10A0464	SW 8260
Vinyl chloride	210		ug/kg dry	40	1	01/27/10 15:45	aba	10A0464	SW 8260
Xylenes, total	220		ug/kg dry	96	1	01/27/10 15:45	aba	10A0464	SW 8260
Surr: Dibromofluoromethane (82-112%)	93 %								
Surr: Toluene-d8 (91-106%)	88 %	26							
Surr: 4-Bromofluorobenzene (89-110%)	107 %								

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Mr. Kevin Bugel

Work Order:

Project:

WTA0574

1E-0909013 Racine, WI

01/25/10 Received:

01/29/10 16:46

Reported: Project Number: 1730 State Street

Analyte	Sample Result	Data Qualifiers	Units	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
			-	MILE		1 Linui y Dou	71 mary st	Dates	Michiga
Sample ID: WTA0574-03 (MW-1	10-12' - Solid/So	oil)				Sampled: 01	/21/10		
General Chemistry Parameters									
% Solids	86		%	NA	1	01/27/10 11:45	pam	10A0482	SM 25400
VOCs by SW8260B									
Benzene	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 82601
Bromobenzene	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 82601
Bromochloromethane	<82		ug/kg dry	82	2	01/27/10 16:11	aba	10A0464	SW 82601
Bromodichloromethane	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 82601
Bromoform	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 82601
Bromomethane	<230		ug/kg dry	230	2	01/27/10 16:11	aba	10A0464	SW 82601
n-Butylbenzene	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 82601
sec-Butylbenzene	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 82601
tert-Butylbenzene	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 82601
Carbon Tetrachloride	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 82601
Chlorobenzene	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 8260I
Chlorodibromomethane	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 82601
Chloroethane	<120		ug/kg dry	120	2	01/27/10 16:11	aba	10A0464	SW 82601
Chloroform	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 8260)
Chloromethane	<120		ug/kg dry	120	2	01/27/10 16:11	aba	10A0464	SW 82601
2-Chlorotoluene	<120		ug/kg dry	120	2	01/27/10 16:11	aba	10A0464	SW 82601
4-Chlorotoluene	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 82601
1,2-Dibromo-3-chloropropane	<120		ug/kg dry	120	2	01/27/10 16:11	aba	10A0464	SW 82601
1,2-Dibromoethane (EDB)	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 82601
Dibromomethane	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 8260
1,2-Dichlorobenzene	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 8260
1.3-Dichlorobenzene	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 8260
1,4-Dichlorobenzene	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 82601
Dichlorodifluoromethane	<120		ug/kg dry	120	2	01/27/10 16:11	aba	10A0464	SW 82601
I,1-Dichloroethane	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 8260
1.2-Dichloroethane	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 82601
1,1-Dichloroethene	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 82601
cis-1,2-Dichloroethene	1900		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 82601
trans-1,2-Dichloroethene	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 82601
1,2-Dichloropropane	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 82601
1,3-Dichloropropane	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 82601
2,2-Dichloropropane	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 82601
1,1-Dichloropropene	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 82601
cis-1,3-Dichloropropene	<58			58	2	01/27/10 16:11	aba	10A0464	SW 8260
	<58		ug/kg dry	58	2				
trans-1,3-Dichloropropene 2,3-Dichloropropene	<58		ug/kg dry	58	2	01/27/10 16:11 01/27/10 16:11	aba aba	10A0464 10A0464	SW 82601 SW 82601
Isopropyl Ether	<58		ug/kg dry	58	2	01/27/10 16:11		10A0464 10A0464	SW 82601
Ethylbenzene	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 82601
Hexachlorohutadiene	<82		ug/kg dry	82	2	01/27/10 16:11	aba		
	<58 <58		ug/kg dry	58	. 2	01/27/10 16:11	aba	10A0464 10A0464	SW 8260
sopropylbenzene	<58		ug/kg dry	58	2		aba		SW 82601 SW 82601
p-Isopropyltoluene Methylene Chloride	<120		ug/kg dry	120	2	01/27/10 16:11	aba	10A0464	
Methyl tert-Butyl Ether	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 82601
			ug/kg dry			01/27/10 16:11	aba	10A0464	SW 8260
Naphthalene	<120		ug/kg dry	120	2	01/27/10 16:11	aba	10A0464	SW 82601
n-Propylbenzene	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 8260
Styrene	<120		ug/kg dry	120	2	01/27/10 16:11	aba	10A0464	SW 8260
1,1,2-Tetrachloroethane	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 8260
1,1,2,2-Tetrachloroethane	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 82601
Tetrachloroethene	10000		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 82601

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Mr. Kevin Bugel

Work Order:

WTA0574

1A05/4

1E-0909013 Racine, WI

Project: 11 Project Number: 11

1730 State Street

Received: 01/25/10

Reported: 01/29/10 16:46

Analyte	Sample Result	Data Qualifiers	Units	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTA0574-03 (MW-1 1	0-12' - Solid/S	oil) - cont.				Sampled: 01	/21/10		
VOCs by SW8260B - cont.		,							
1,2,3-Trichlorobenzene	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 8260
1,2,4-Trichlorobenzene	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 8260
1,1,1-Trichloroethane	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 8260
1,1,2-Trichloroethane	<82		ug/kg dry	82	2	01/27/10 16:11	aba	10A0464	SW 8260
Trichloroethene	2700		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 8260
Trichlorofluoromethane	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 8260
1,2,3-Trichloropropane	<120		ug/kg dry	120	2	01/27/10 16:11	aba	10A0464	SW 8260
	<58		ug/kg dry	58	2	01/27/10 16:11	aba	10A0464	SW 8260
1,2,4-Trimethylbenzene	<58			58	2	01/27/10 16:11	aba	10A0464	SW 8260
1,3,5-Trimethylbenzene			ug/kg dry				aba		
Vinyl chloride	<82		ug/kg dry	82	2	01/27/10 16:11		10A0464	SW 8260
Xylenes, total	<200		ug/kg dry	200	2	01/27/10 16:11	aba	10A0464	SW 8260
_Surr: Dibromofluoromethane (82-112%)	94 %								
Surr: Toluene-d8 (91-106%)	88 %	Z6							
Surr: 4-Bromofluorobenzene (89-110%)	106 %								
Sample ID: WTA0574-04 (MW-2 0	-2' - Solid/Soil)				Sampled: 01	/21/10		
General Chemistry Parameters									
% Solids	90		%	NA	1	01/27/10 11:45	pam	10A0482	SM 2540
VOCs by SW8260B									
Benzene	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260
Bromobenzene	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260
Bromochloromethane	<20000		ug/kg dry	20000	500	01/27/10 16:38	aba	10A0464	SW 8260
Bromodichloromethane	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260
Bromoform	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260
Bromomethane	<56000		ug/kg dry	56000	500	01/27/10 16:38	aba	10A0464	SW 8260
an-Butylbenzene	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260
sec-Buty Ibenzene	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260
tert-Butylbenzene	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260
Carbon Tetrachloride	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260
Chlorobenzene	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260
Chlorodibromomethane	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260
	<28000		ug/kg dry	28000	500	01/27/10 16:38	aba	10A0464	SW 8260
Chloroethane				14000	500	01/27/10 16:38	aba	10A0464	SW 8260
Chloroform	<14000		ug/kg dry			01/27/10 16:38		10A0464	SW 8260
Chloromethane	<28000		ug/kg dry	28000	500		aba		
2-Chlorotoluene	<28000		ug/kg dry	28000	500	01/27/10 16:38	aba	10A0464	SW 8260
4-Chlorotoluene	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260
,2-Dibromo-3-chloropropane	<28000		ug/kg dry	28000	500	01/27/10 16:38	aba	10A0464	SW 8260
,2-Dibromoethane (EDB)	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260
Dibromomethane	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260
1,2-Dichlorobenzene	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260
1,3-Dichlorobenzene	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260
1,4-Dichlorobenzene	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260
Dichlorodifluoromethane	<28000		ug/kg dry	28000	500	01/27/10 16:38	aba	10A0464	SW 8260
1,1-Dichloroethane	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260
_,2-Dichloroethane	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260
1,1-Dichloroethene	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260
cis-1,2-Dichloroethene	19000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260
trans-1,2-Dichloroethene	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260
,2-Dichloropropane	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260
,3-Dichloropropane	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260
2,2-Dichloropropane	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260
1,1-Dichloropropene	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Work Order:

WTA0574

Received: Reported:

01/25/10 01/29/10 16:46

Waukesha, WI 53186

Mr. Kevin Bugel

Project: 1E-0909013 Racine, WI

Project Number: 1730 State Street

Analyte	Sample Result	Data Qualifiers	Units	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTA0574-04 (MW-2 0	-2' - Solid/Soil) - cont.				Sampled: 01	/21/10		
VOCs by SW8260B - cont.									
cis-1,3-Dichloropropene	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260B
trans-1,3-Dichloropropene	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260B
2,3-Dichloropropene	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260B
Isopropyl Ether	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260B
Ethylbenzene	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260B
Hexachlorobutadiene	<20000		ug/kg dry	20000	500	01/27/10 16:38	aba	10A0464	SW 8260B
Isopropylbenzene	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260B
p-Isopropyltoluene	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260B
Methylene Chloride	<28000		ug/kg dry	28000	500	01/27/10 16:38	aba	10A0464	SW 8260B
Methyl tert-Butyl Ether	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260B
Naphthalene	<28000		ug/kg dry	28000	500	01/27/10 16:38	aba	10A0464	SW 8260B
n-Propylbenzene	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260B
Styrene	<28000		ug/kg dry	28000	500	01/27/10 16:38	aba	10A0464	SW 8260B
,1,1,2-Tetrachloroethane	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260B
1,1,2,2-Tetrachioroethane	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260B
Tetrachloroethene	5200000	E	ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260B
Toluene	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260B
,2,3-Trichlorobenzene	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260B
,2,4-Trichlorobenzene	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260B
1,1,1-Trichloroethane	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260B
1,1,2-Trichloroethane	<20000		ug/kg dry	20000	500	01/27/10 16:38	aba	10A0464	SW 8260B
Trichloroethene	420000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260B
Trichlorofluoromethane	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260B
,2,3-Trichloropropane	<28000		ug/kg dry	28000	500	01/27/10 16:38	aba	I0A0464	SW 8260B
,2,4-Trimethylbenzene	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260B
,3,5-Trimethylbenzene	<14000		ug/kg dry	14000	500	01/27/10 16:38	aba	10A0464	SW 8260B
Vinyl chloride	<20000		ug/kg dry	20000	500	01/27/10 16:38	aba	10A0464	SW 8260B
Kylenes, total	<47000		ug/kg dry	47000	500	01/27/10 16:38	aba	10A0464	SW 8260B
Surr: Dibromofluoromethane (82-112%)	92 %								
Surr: Toluene-d8 (91-106%)	87 %	<i>Z6</i>							
Surr: 4-Bromofluorobenzene (89-110%)	107 %								

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186

Work Order:

WTA0574

Received:

01/25/10

Wandards WI 52196

Project:
Project Number:

1E-0909013 Racine, WI 1730 State Street Reported:

01/29/10 16:46

Analyte	Sample Result	Data Qualifiers	Units	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
C I ID NUT LOSS A OF CASH O	(01 C-114/C-11	`					10.11.0		
Sample ID: WTA0574-05 (MW-2	6-8' - Solid/Soli)				Sampled: 01	/21/10		
General Chemistry Parameters									
% Solids	82		%	NA	1	01/27/10 11:45	pam	10A0482	SM 25400
VOCs by SW8260B									
Benzene	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 82601
Bromobenzene	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 82601
Bromochloromethane	<420		ug/kg dry	420	10	01/27/10 17:04	aba	10A0464	SW 82601
Bromodichloromethane	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 82601
Bromoform	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 82601
Bromomethane	<1200		ug/kg dry	1200	10	01/27/10 17:04	aba	10A0464	SW 8260I
n-Butylbenzene	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260E
sec-Butylbenzene	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260E
tert-Butylbenzene	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260E
Carbon Tetrachloride	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260E
Chlorobenzene	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260E
Chlorodibromomethane	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260E
Chloroethane	<610		ug/kg dry	610	10	01/27/10 17:04	aba	10A0464	SW 8260E
Chloroform	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260E
Chloromethane	<610		ug/kg dry	610	10	01/27/10 17:04	aba	10A0464	SW 8260E
2-Chlorotoluene	<610		ug/kg dry	610	10	01/27/10 17:04	aba	10A0464	SW 8260E
4-Chlorotoluene	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260E
1,2-Dibromo-3-chloropropane	<610		ug/kg dry	610	10	01/27/10 17:04	aba	10A0464	SW 8260E
1,2-Dibromoethane (EDB)	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260E
Dibromomethane	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260E
1,2-Dichlorobenzene	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260E
1,3-Dichlorobenzene	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260E
1,4-Dichlorobenzene	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260E
Dichlorodifluoromethane	<610		ug/kg dry	610	10	01/27/10 17:04	aba	10A0464	SW 8260E
1,1-Dichloroethane	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260E
1,2-Dichloroethane	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260E
1,1-Dichloroethene	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260E
cis-1,2-Dichloroethene	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260E
trans-1,2-Dichloroethene	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260B
1,2-Dichloropropane	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260B
1,3-Dichloropropane	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260B
2,2-Dichloropropane	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260B
1,1-Dichloropropene	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260B
cis-1,3-Dichloropropene	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260B
trans-1,3-Dichloropropene	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260B
2,3-Dichloropropene	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260B
Isopropyl Ether	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260B
Ethylbenzene	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260B
Hexachlorobutadiene	<420		ug/kg dry	420	10	01/27/10 17:04	aba	10A0464	SW 8260B
Isopropylbenzene	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260E
p-Isopropyltoluene	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260E
Methylene Chloride	<610		ug/kg dry	610	10	01/27/10 17:04	aba	10A0464	SW 8260E
Methyl tert-Butyl Ether	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260B
Naphthalene	<610		ug/kg dry	610	10	01/27/10 17:04	aba	10A0464	SW 8260E
n-Propylbenzene	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260E
Styrene	<610		ug/kg dry	610	10	01/27/10 17:04	aba	10A0464	SW 8260E
1,1,1,2-Tetrachloroethane	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260E
1,1,2,2-Tetrachloroethane	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260E
Tetrachloroethene	59000		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260E
Toluene	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260E

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Work Order:

WTA0574

01/25/10 Received:

Waukesha, WI 53186

Project: Project Number: 1E-0909013 Racine, WI 1730 State Street

01/29/10 16:46 Reported:

	Sample	Data			Dilution	Date		Seq/	
Analyte	Result	Qualifiers	Units	MRL	Factor	Analyzed	Analyst	Batch	Method
Sample ID: WTA0574-05 (MW-2 6-	8' - Solid/Soil) - cont.				Sampled: 01	/21/10		
VOCs by SW8260B - cont.									
1,2,3-Trichlorobenzene	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260
1,2,4-Trichlorobenzene	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260
1,1,1-Trichloroethane	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260
1,1,2-Trichloroethane	<420		ug/kg dry	420	10	01/27/10 17:04	aba	10A0464	SW 8260
Trichloroethene	2200		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260
Trichlorofluoromethane	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260
1,2,3-Trichloropropane	<610		ug/kg dry	610	10	01/27/10 17:04	aba	10A0464	SW 8260
1,2,4-Trimethylbenzene	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260
1,3,5-Trimethylbenzene	<300		ug/kg dry	300	10	01/27/10 17:04	aba	10A0464	SW 8260
Vinyl chloride	<420		ug/kg dry	420	10	01/27/10 17:04	aba	10A0464	SW 8260
Xylenes, total	<1000		ug/kg dry	1000	10	01/27/10 17:04	aba	10A0464	SW 8260
Surr: Dibromofluoromethane (82-112%)	92 %		-863						
Surr: Toluene-d8 (91-106%)	87 %	Z 6							
Surr: 4-Bromofluorobenzene (89-110%)	107 %	20							
							(0.4.(4.0)		
Sample ID: WTA0574-06 (MW-3 2-	-4' - Solid/Soli)				Sampled: 01	/21/10		
General Chemistry Parameters			0/	27.4		0107/10 11 45		10 40 400	C) / 25/0
% Solids	91		%	NA	I	01/27/10 11:45	pam	10A0482	SM 2540
OCs by SW8260B									
Benzene	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260
Bromobenzene	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260
Bromochloromethane	<38		ug/kg dry	38	1	01/27/10 17:30	aba	10A0464	SW 8260
Bromodichloromethane	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260
Bromoform	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260
Bromomethane	<110		ug/kg dry	110	1	01/27/10 17:30	aba	10A0464	SW 8260
n-Butylbenzene	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260
sec-Butylbenzene	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260
tert-Butylbenzene	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260
Carbon Tetrachloride	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260
Chlorobenzene	<27		ug/kg dry	27	Ĭ	01/27/10 17:30	aba	10A0464	SW 8260
Chlorodibromomethane	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260
Chloroethane	<55		ug/kg dry	55	1	01/27/10 17:30	aba	10A0464	SW 8260
Chloroform	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260
Chloromethane	<55		ug/kg dry	55	1	01/27/10 17:30	aba	10A0464	SW 8260
2-Chlorotoluene	<55		ug/kg dry	55	1	01/27/10 17:30	aba	10A0464	SW 8260
4-Chlorotoluene	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260
1,2-Dibromo-3-chloropropane	<55		ug/kg dry	55	1	01/27/10 17:30	aba	10A0464	SW 8260
1,2-Dibromoethane (EDB)	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260
Dibromomethane	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260
1,2-Dichlorobenzene	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260
1,3-Dichlorobenzene	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260
	<27			27	1	01/27/10 17:30	aba	10A0464	SW 8260
1,4-Dichlorobenzene Dichlorodifluoromethane	<55		ug/kg dry	55	1	01/27/10 17:30	aba	10A0464	SW 8260
	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260
1,1-Dichloroethane			ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260
1,2-Dichloroethane	<27		ug/kg dry			01/27/10 17:30			SW 8260
1,1-Dichloroethene	<27		ug/kg dry	27	1		aba	10A0464	
cis-1,2-Dichloroethene	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260
trans-1,2-Dichloroethene	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260
1,2-Dichloropropane	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260
1,3-Dichloropropane	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260
2,2-Dichloropropane	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260
1,1-Dichloropropene	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Mr. Kevin Bugel

Surr: Toluene-d8 (91-106%)

_Surr: Toluene-d8 (91-106%) Surr: 4-Bromofluorobenzene (89-110%)

Surr: 4-Bromofluorobenzene (89-110%)

87 % 98 %

108 %

101%

Work Order:

Project:

WTA0574

1E-0909013 Racine, WI

Received: Reported: 01/25/10 01/29/10 16:46

Waukesha, WI 53186

1730 State Street Project Number:

1 16	Sample	Data	I I i d	MDI	Dilution	Date	Ale-4	Seq/	37.413
Analyte	Result	Qualifiers	Units	MRL	Factor	Analyzed	Analyst	Batch	Method
Sample ID: WTA0574-06 (MW-3 2-	4' - Solid/Soil) - cont.				Sampled: 01	/21/10		
VOCs by SW8260B - cont.									
cis-1,3-Dichloropropene	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260E
trans-1,3-Dichloropropene	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260E
2,3-Dichloropropene	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260E
Isopropyl Ether	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260E
Ethylbenzene	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260E
Hexachlorobutadiene	<38		ug/kg dry	38	1	01/27/10 17:30	aba	10A0464	SW 8260E
Isopropylbenzene	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260E
p-lsopropyltoluene	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 82601
Methylene Chloride	<55		ug/kg dry	55	1	01/27/10 17:30	aba	10A0464	SW 82601
Methyl tert-Butyl Ether	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 82601
Naphthalene	230		ug/kg dry	55	1	01/27/10 17:30	aba	10A0464	SW 82601
n-Propylbenzene	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 82601
Styrene	<55		ug/kg dry	55	1	01/27/10 17:30	aba	10A0464	SW 82601
1,1,1,2-Tetrachloroethane	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 82601
1,1,2,2-Tetrachloroethane	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 82601
Tetrachloroethene	33		ug/kg dry	27	1	01/28/10 13:40	aba	10A0499	SW 8260E
Toluene	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 82601
1,2,3-Trichlorobenzene	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260I
1,2,4-Trichlorobenzene	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260I
1,1,1-Trichloroethane	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260I
1,1,2-Trichloroethane	<38		ug/kg dry	38	1	01/27/10 17:30	aba	10A0464	SW 8260E
Trichloroethene	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260E
Trichlorofluoromethane	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260E
1,2,3-Trichloropropane	<55		ug/kg dry	55	1	01/27/10 17:30	aba	10A0464	SW 8260E
1,2,4-Trimethylbenzene	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260E
1,3,5-Trimethylbenzene	<27		ug/kg dry	27	1	01/27/10 17:30	aba	10A0464	SW 8260E
Vinyl chloride	<38		ug/kg dry	38	1	01/27/10 17:30	aba	10A0464	SW 82601
Xylenes, total	<93		ug/kg dry	93	1	01/27/10 17:30	aba	10A0464	SW 8260H
Surr: Dibromofluoromethane (82-112%)	91 %								
_Surr: Dibromofluoromethane (82-112%)	96 %								

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Work Order:

Project:

WTA0574

1E-0909013 Racine, WI

Received: 01/25/10

Reported:

01/29/10 16:46

Mr. Kevin Bugel

Project Number: 1730 State Street

Analyte	Sample Result	Data Qualifiers	Units	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
ample ID: WTA0574-07 (MW-	4 2-4' - Solid/Soil)				Sampled: 01	/21/10		
eneral Chemistry Parameters		,							
% Solids	80		%	NA	1	01/27/10 11:45	pam	10A0482	SM 2540G
OCs by SW8260B							•		
Benzene	<31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260B
Bromobenzene	<31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260B
Fromochloromethane	<44		ug/kg dry	44	1	01/27/10 17:57	aba	10A0464	SW 8260B
Bromodichloromethane	<31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260B
Bromoform	⊲1		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260B
Bromomethane	<130		ug/kg dry	130	1	01/27/10 17:57	aba	10A0464	SW 8260B
-Butylbenzene	<31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260B
ec-Butylbenzene	<31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260B
ert-Butylbenzene	<31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260B
Carbon Tetrachloride	⊲31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260B
Chlorobenzene	⊲1		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260B
Chlorodibromomethane	⊲31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260B
'hloroethane	<63		ug/kg dry	63	1	01/27/10 17:57	aba	10A0464	SW 8260B
Chloroform	<31			31	1	01/27/10 17:57	aba	10A0464	SW 8260B
Chloromethane	<63		ug/kg dry	63	1	01/27/10 17:57	aba	10A0464	SW 8260B
			ug/kg dry	63	1	01/27/10 17:57		10A0464	SW 8260B
-Chlorotoluene	<63		ug/kg dry	31	1		aba		
-Chlorotoluene	<31		ug/kg dry			01/27/10 17:57	aba	10A0464	SW 8260B
,2-Dibromo-3-chloropropane	<63		ug/kg dry	63	1	01/27/10 17:57	aba	10A0464	SW 8260B
2-Dibromoethane (EDB)	<31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260B
bibromomethane	⊲1		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260E
2-Dichlorobenzene	<31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260B
,3-Dichlorobenzene	⊲1		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260B
4-Dichlorobenzene	<31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260B
ichlorodifluoromethane	<63		ug/kg dry	63	1	01/27/10 17:57	aba	10A0464	SW 8260E
,1-Dichloroethane	⊲1		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260B
,2-Dichloroethane	⊲1		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260B
,1-Dichloroethene	⊲1		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260B
is-1,2-Dichloroethene	⊲1		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260B
ans-1,2-Dichloroethene	⊲1		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260B
,2-Dichloropropane	<31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260B
3-Dichloropropane	<31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260B
2-Dichloropropane	<31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260B
,1-Dichloropropene	<31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260B
is-1,3-Dichloropropene	<31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260B
ans-1,3-Dichloropropene	<31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260B
,3-Dichloropropene	<31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260B
sopropyl Ether	<31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260B
thylbenzene	⊲1		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260B
exachlorobutadiene	<44		ug/kg dry	44	1	01/27/10 17:57	aba	10A0464	SW 8260B
opropylbenzene	<31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260B
Isopropyltoluene	<31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260B
lethylene Chloride	<63		ug/kg dry	63	1	01/27/10 17:57	aba	10A0464	SW 8260B
lethyl tert-Butyl Ether	⊲1		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260B
aphthalene	<63		ug/kg dry	63	1	01/27/10 17:57	aba	10A0464	SW 8260B
-Propylbenzene	⊲1		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260E
tyrene	<63		ug/kg dry	63	1	01/27/10 17:57	aba	10A0464	SW 8260B
1,1,2-Tetrachloroethane	⊲1		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260B
1,2,2-Tetrachloroethane	<31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260B
etrachloroethene	73		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260B
Coluene	<31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260B

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Mr. Kevin Bugel

Work Order:

WTA0574

Received:

01/25/10

Project: Project Number:

1E-0909013 Racine, WI 1730 State Street

Reported:

01/29/10 16:46

Analyte	Sample Result	Data Qualifiers	Units	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Metho
Sample ID: WTA0574-07 (MW-4 2-	4' - Solid/Soil) - cont				Sampled: 01	/21/10		
VOCs by SW8260B - cont.	4 Solid/Soli	, com				Sampicu. 01	721/10		
•	-21			21	1	01/27/10 17:57	nho	10A0464	SW 8260
1,2,3-Trichlorobenzene	<31		ug/kg dry	31	I	01/27/10 17:57	aba	10A0464	SW 8260
1,2,4-Trichlorobenzene	<31		ug/kg dry	31	-		aba	10A0464	SW 826
1,1,1-Trichloroethane	<31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464	SW 8260
1,1,2-Trichloroethane	<44		ug/kg dry	44	1	01/27/10 17:57	aba		SW 826
Trichloroethene	<31		ug/kg dry	31	1	01/27/10 17:57	aba	10A0464 10A0464	SW 826
Trichlorofluoromethane	<31		ug/kg dry	31 63	1	01/27/10 17:57 01/27/10 17:57	aba	10A0464	SW 826
1,2,3-Trichloropropane	<63		ug/kg dry	31	1	01/27/10 17:57	aba aba	10A0464	SW 826
1,2,4-Trimethylbenzene	<31		ug/kg dry	31	1			10A0464	SW 8260
1,3,5-Trimethylbenzene	<31		ug/kg dry		1	01/27/10 17:57	aba		
Vinyl chloride	<44		ug/kg dry	44	_	01/27/10 17:57	aba	10A0464	SW 826
Xylenes, total	<110		ug/kg dry	110	1	01/27/10 17:57	aba	10A0464	5 W 820
Surr: Dibromofluoromethane (82-112%)	93 %	7.							
Surr: Toluene-d8 (91-106%)	87 %	Z 6							
Surr: 4-Bromofluorobenzene (89-110%)	108 %								
Sample ID: WTA0574-08 (MW-4 10	0-12' - Solid/S	oil)				Sampled: 01	/21/10		
General Chemistry Parameters									
% Solids	87		%	NA	1	01/27/10 11:45	pam	10A0482	SM 2540
VOCs by SW8260B									
Benzene	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 8260
Bromobenzene	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 826
Bromochloromethane	<40		ug/kg dry	40	1	01/27/10 18:23	aba	10A0464	SW 826
Bromodichloromethane	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 826
Bromoform	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 826
Bromomethane	<110		ug/kg dry	110	1	01/27/10 18:23	aba	10A0464	SW 826
n-Butylbenzene	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 826
sec-Butylbenzene	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 826
tert-Butylbenzene	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 826
Carbon Tetrachloride	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 826
Chlorobenzene	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 826
Chlorodibromomethane	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 8260
Chloroethane	<57		ug/kg dry	57	1	01/27/10 18:23	aba	10A0464	SW 8260
Chloroform	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 826
Chloromethane	<57		ug/kg dry	57	1	01/27/10 18:23	aba	10A0464	SW 8260
2-Chlorotoluene	<57		ug/kg dry	57	1	01/27/10 18:23	aba	10A0464	SW 8260
4-Chlorotoluene	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 8260
1,2-Dibromo-3-chloropropane	<57		ug/kg dry	57	1	01/27/10 18:23	aba	10A0464	SW 8260
1,2-Dibromoethane (EDB)	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 8260
Dibromomethane (EDB)	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 826
	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 826
1,2-Dichlorobenzene 1,3-Dichlorobenzene	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 826
				29	1	01/27/10 18:23	aba	10A0464	SW 826
1,4-Dichlorobenzene	<29		ug/kg dry	57	1	01/27/10 18:23	aba	10A0464	SW 826
Dichlorodifluoromethane	<57		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 826
1,1-Dichloroethane	<29		ug/kg dry		1	01/27/10 18:23		10A0464	SW 826
1,2-Dichloroethane	<29		ug/kg dry	29	1		aba		
1,1-Dichloroethene	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464 10A0464	SW 826
cis-1,2-Dichloroethene	34		ug/kg dry	29	1	01/27/10 18:23	aba		SW 826
trans-1,2-Dichloroethene	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 8260
,2-Dichloropropane	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 826
,3-Dichloropropane	<29		ug/kg dry	29	I	01/27/10 18:23	aba	10A0464	SW 826
2,2-Dichloropropane	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 826
1,1-Dichloropropene	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 826

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Work Order:

Project:

WTA0574

01/25/10

1E-0909013 Racine, WI Project Number: 1730 State Street

Received: 01/29/10 16:46 Reported:

Analyte	Sample Result	Data Qualifiers	Units	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method	
Sample ID: WTA0574-08 (MW-4 10-12' - Solid/Soil) - cont.					Sampled: 01/21/10					
VOCs by SW8260B - cont.										
cis-1,3-Dichloropropene	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 8260E	
trans-1,3-Dichloropropene	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 8260E	
2,3-Dichloropropene	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 8260E	
Isopropyl Ether	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 8260E	
Ethylbenzene	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 8260E	
Hexachlorobutadiene	<40		ug/kg dry	40	1	01/27/10 18:23	aba	10A0464	SW 8260E	
lsopropylbenzene	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 8260E	
p-Isopropyltoluene	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 8260E	
Methylene Chloride	<57		ug/kg dry	57	1	01/27/10 18:23	aba	10A0464	SW 8260E	
Methyl tert-Butyl Ether	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 8260E	
Naphthalene	<57		ug/kg dry	57	1	01/27/10 18:23	aba	10A0464	SW 8260E	
n-Propylbenzene	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 8260E	
Styrene	<57		ug/kg dry	57	1	01/27/10 18:23	aba	10A0464	SW 8260E	
1,1,1,2-Tetrachloroethane	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 8260I	
1,1,2,2-Tetrachloroethane	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 8260E	
Tetrachloroethene	82		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 8260E	
Toluene	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 8260E	
1,2,3-Trichlorobenzene	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 8260E	
1,2,4-Trichlorobenzene	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 8260E	
1,1,1-Trichloroethane	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 8260E	
1,1,2-Trichloroethane	<40		ug/kg dry	40	1	01/27/10 18:23	aba	10A0464	SW 82601	
Trichloroethene	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 8260E	
Trichlorofluoromethane	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 8260E	
1,2,3-Trichloropropane	<57		ug/kg dry	57	1	01/27/10 18:23	aba	10A0464	SW 8260I	
1,2,4-Trimethylbenzene	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 8260E	
1,3,5-Trimethylbenzene	<29		ug/kg dry	29	1	01/27/10 18:23	aba	10A0464	SW 8260E	
Vinyl chloride	<40		ug/kg dry	40	1	01/27/10 18:23	aba	10A0464	SW 8260E	
Xylenes, total	<98		ug/kg dry	98	1	01/27/10 18:23	aba	10A0464	SW 8260E	
Surr: Dibromofluoromethane (82-112%)	92 %									
Surr: Toluene-d8 (91-106%)	87 %	26								
Surr: 4-Bromofluorobenzene (89-110%)	107 %									

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Work Order:

Project:

WTA0574

1E-0909013 Racine, WI

Received: Reported:

01/25/10 01/29/10 16:46

Project Number:

1730 State Street

Mr. Kevin Bugel											
Analyte	Sample Result	Data Qualifiers	Units	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method		
Sample ID: WTA0574-09 (MeOH Blank - Misc. Organic) VOCs by SW8260B					Sampled: 01/21/10						
Benzene	<25		ug/kg wet	25	1	01/27/10 11:23	aba	10A0464	SW 8260B		
Bromobenzene	<25		ug/kg wet	25	1	01/27/10 11:23	aba	10A0464	SW 8260B		

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Work Order:

Project:

WTA0574

V 1AU3/4

1E-0909013 Racine, WI

Received: Reported: 01/25/10 01/29/10 16:46

Project Number:

1730 State Street

	Sample	Data			Dilution	Date		Seq/	
Analyte	Result	Qualifiers	Units	MRL	Factor	Analyzed	Analyst	Batch	Method
Sample ID: WTA0574-09 (MeOH B	lank - Misc. (Organic) - con	t.			Sampled: 01	/21/10		
VOCs by SW8260B - cont.						•			
1,1,1-Trichloroethane	<25		ug/kg wet	25	1	01/27/10 11:23	aba	10A0464	SW 8260
1,1,2-Trichloroethane	<35		ug/kg wet	35	1	01/27/10 11:23	aba	10A0464	SW 8260
Trichloroethene	<25		ug/kg wet	25	1	01/27/10 11:23	aba	10A0464	SW 8260
Trichlorofluoromethane	<25		ug/kg wet	25	1	01/27/10 11:23	aba	10A0464	SW 8260
1,2,3-Trichloropropane	<50		ug/kg wet	50	1	01/27/10 11:23	aba	10A0464	SW 8260
1,2,4-Trimethylbenzene	<25		ug/kg wet	25	1	01/27/10 11:23	aba	10A0464	SW 8260
1,3,5-Trimethylbenzene	<25		ug/kg wet	25	1	01/27/10 11:23	aba	10A0464	SW 8260
Vinyl chloride	<35		ug/kg wet	35	1	01/27/10 11:23	aba	10A0464	SW 8260
Xylenes, total	<85		ug/kg wet	85	1	01/27/10 11:23	aba	10A0464	SW 8260
Surr: Dibromofluoromethane (82-112%)	100 %		-98						5 0200.
Surr: Toluene-d8 (91-106%)	92 %								
Surr: 4-Bromofluorobenzene (89-110%)	102 %								
Zanni Zi emigratora en Zano (es 11074)									
Sample ID: WTA0574-10 (P-1 Com	posite - Solid/	Soil)				Sampled: 01	/21/10		
General Chemistry Parameters									
% Solids	82		%	NA	1	01/27/10 11:45	pam	10A0482	SM 25400
VOCs by SW8260B									
Benzene	48		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 82601
Bromobenzene	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 82601
Bromochloromethane	<43		ug/kg dry	43	1	01/27/10 18:49	aba	10A0464	SW 8260
Bromodichioromethane	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260
Bromoform	⊲1			31	1	01/27/10 18:49			SW 8260
			ug/kg dry				aba	10A0464	
Bromomethane	<120		ug/kg dry	120	I	01/27/10 18:49	aba	10A0464	SW 8260
n-Butylbenzene	90		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 82601
sec-Butylbenzene	77		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 82601
tert-Butylbenzene	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 82601
Carbon Tetrachloride	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 82601
Chlorobenzene	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 82601
Chlorodibromomethane	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 82601
Chloroethane	<61		ug/kg dry	61	1	01/27/10 18:49	aba	10A0464	SW 82601
Chloroform	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260E
Chloromethane	<61		ug/kg dry	61	1	01/27/10 18:49	aba	10A0464	SW 82601
2-Chlorotoluene	<61		ug/kg dry	61	1	01/27/10 18:49	aba	10A0464	SW 82601
4-Chlorotoluene	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 82601
1,2-Dibromo-3-chloropropane	<61		ug/kg dry	61	1	01/27/10 18:49	aba	10A0464	SW 82601
1,2-Dibromoethane (EDB)	<31		ug/kg dry	31	I	01/27/10 18:49	aba	10A0464	SW 82601
Dibromomethane	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260E
1,2-Dichlorobenzene	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260E
1,3-Dichlorobenzene	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 82601
1,4-Dichlorobenzene	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 82601
Dichlorodifluoromethane	<61		ug/kg dry	61	1	01/27/10 18:49	aba	10A0464	SW 8260I
I,1-Dichloroethane	<31		ug/kg dry	31	I	01/27/10 18:49	aba	10A0464	SW 82601
1,2-Dichloroethane	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 82601
1,1-Dichloroethene	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 82601
cis-1,2-Dichloroethene	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 82601
trans-1,2-Dichloroethene	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 82601
1,2-Dichloropropane	⊲1		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 82601
1,3-Dichloropropane	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260
2,2-Dichloropropane	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 82601
1,1-Dichloropropene	⊲1		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 82601
cis-1,3-Dichloropropene	≪31			31	1				
	21		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 82601

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Mr. Kevin Bugel

Work Order:

WTA0574

Received: 01/25/10

Project:

1E-0909013 Racine, WI

Reported:

01/29/10 16:46

Project Number:	1730 State Street
-----------------	-------------------

Analyte	Sample Result	Data Qualifiers	Units	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTA0574-10 (P-1 Com	posite - Solid/	Soil) - cont.				Sampled: 01	/21/10		
VOCs by SW8260B - cont.									
2,3-Dichloropropene	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260B
Isopropyl Ether	<31		ug/kg dry	31	1	01/27/10 18:49	aba	I0A0464	SW 8260B
Ethylbenzene	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260B
Hexachlorobutadiene	<43		ug/kg dry	43	1	01/27/10 18:49	aba	10A0464	SW 8260B
sopropylbenzene	73		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260B
o-lsopropyltoluene	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260B
Methylene Chloride	<61		ug/kg dry	61	1	01/27/10 18:49	aba	10A0464	SW 8260B
Methyl tert-Butyl Ether	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260B
Naphthalene	150		ug/kg dry	61	1	01/27/10 18:49	aba	10A0464	SW 8260B
-Propylbenzene	86		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260B
ityrene	<61		ug/kg dry	61	1	01/27/10 18:49	aba	10A0464	SW 8260B
,1,1,2-Tetrachloroethane	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260B
,1,2,2-Tetrachloroethane	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260B
etrachloroethene	48		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260B
Toluene	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260B
,2,3-Trichlorobenzene	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260B
,2,4-Trichlorobenzene	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260B
,1,1-Trichloroethane	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260B
,1,2-Trichloroethane	<43		ug/kg dry	43	1	01/27/10 18:49	aba	10A0464	SW 8260B
Trichloroethene	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260B
Trichlorofluoromethane	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260B
,2,3-Trichloropropane	<61		ug/kg dry	61	1	01/27/10 18:49	aba	10A0464	SW 8260B
,2,4-Trimethylbenzene	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260B
,3,5-Trimethylbenzene	<31		ug/kg dry	31	1	01/27/10 18:49	aba	10A0464	SW 8260B
/inyl chloride	<43		ug/kg dry	43	1	01/27/10 18:49	aba	10A0464	SW 8260B
(ylenes, total	<100		ug/kg dry	100	1	01/27/10 18:49	aba	10A0464	SW 8260B
Surr: Dibromofluoromethane (82-112%)	92 %								
Surr: Toluene-d8 (91-106%)	86 %	26							
Surr: 4-Bromofluorobenzene (89-110%)	110 %								

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Mr. Kevin Bugel Work Order:

WTA0574

01/25/10

22550 Johnson Road

Project: Project Number: 1E-0909013 Racine, WI 1730 State Street Received: Reported:

01/29/10 16:46

LABORATORY BLANK QC DATA

Food													
Seq/		Spike	Unite	MDI	MRI	Dagult	Dup	% DEC	Dup % DEC	% REC	DDD	RPD	Q
Daten	Kesun	Level	Units	MDL	WILL	Kesuit	Result	REC	/orec	Limits	KID	Limit	V
10 4 0 4 6 4			na/ka wet	N/A	25	<25							
			-										
			-										
			_										
10A0464				N/A	50								
10A0464			ug/kg wet	N/A	25	<25							
10A0464		1	ug/kg wet	N/A	50	<50							
10A0464		1	ug/kg wet	N/A	50	<50							
10A0464			ug/kg wet	N/A	25	<25							
10A0464		1	ug/kg wet	N/A	50	<50							
10A0464			ug/kg wet	N/A	25	<25							
10A0464			ug/kg wet	N/A	25	<25							
10A0464			ug/kg wet	N/A	25	<25							
10A0464			ug/kg wet	N/A	25	<25							
10A0464		1	ug/kg wet	N/A	25	<25							
10A0464		1	ug/kg wet	N/A	50	<50							
10A0464		1	ug/kg wet	N/A	25	<25							
10A0464				N/A	25	<25							
10A0464				N/A	25	<25							
10A0464				N/A	25	<25							
10A0464				N/A	25								
			-										
			-										
			-										
			-										
			-										
			-										
			-										
			-										
	10A0464 10A0464 10A0464 10A0464 10A0464 10A0464 10A0464 10A0464 10A0464 10A0464 10A0464	10A0464	10A0464 ug/kg wet N/A 25 <25	10A0464	10A0464	10A0464	10A0464						

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Work Order:

Project Number:

WTA0574

Received:

01/25/10

Project:

1E-0909013 Racine, WI

1730 State Street

Reported:

01/29/10 16:46

Mr. Kevin Bugel

			LAB	ORATO	ORY B	LANK	QC D	ATA						
	Seq/	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Batch	Result	-	Units	MDL	MRL	Result		REC	%REC	Limits	RPD	Limit	Q
VOCs by SW8260B														
Styrene	10A0464			ug/kg wet	N/A	50	<50							
1,1,1,2-Tetrachloroethane	10A0464			ug/kg wet	N/A	25	<25							
1,1,2,2-Tetrachioroethane	10A0464			ug/kg wet	N/A	25	<25							
Tetrachloroethene	10A0464			ug/kg wet	N/A	25	<25							
Toluene	10A0464			ug/kg wet	N/A	25	<25							
1,2,3-Trichlorobenzene	10A0464			ug/kg wet	N/A	25	<25							
1,2,4-Trichlorobenzene	10A0464			ug/kg wet	N/A	25	<25							
1,1,1-Trichloroethane	10A0464			ug/kg wet	N/A	25	<25							
1,1,2-Trichloroethane	10A0464			ug/kg wet	N/A	35	<35							
Trichloroethene	10A0464			ug/kg wet	N/A	25	<25							
Trichlorofluoromethane	10A0464			ug/kg wet	N/A	25	<25							
1,2,3-Trichloropropane	10A0464			ug/kg wet	N/A	50	<50							
1,2,4-Trimethylbenzene	10A0464			ug/kg wet	N/A	25	<25							
1,3,5-Trimethylbenzene	10A0464			ug/kg wet	N/A	25	<25							
Vinyl chloride	10A0464			ug/kg wet	N/A	35	<35							
Xylenes, total	10A0464			ug/kg wet	N/A	85	<85							
Surrogate: Dibromofluoromethane	10A0464		,	ug/kg wet					100		82-112			
Surrogate: Toluene-d8	10A0464		1	ug/kg wet					92		91-106			
Surrogate: 4-Bromofluorobenzene	10A0464		1	ug/kg wet					104		89-110			
Benzene	10A0499			ug/kg wet	N/A	25	<25							
Bromobenzene	10A0499			ug/kg wet	N/A	25	<25							
Bromochloromethane	10A0499			ug/kg wet	N/A	35	<35							
Bromodichloromethane	10A0499			ug/kg wet	N/A	25	<25							
Bromoform	10A0499			ug/kg wet	N/A	25	<25							
Bromomethane	10A0499			ug/kg wet	N/A	100	<100							
n-Butylbenzene	10A0499			ug/kg wet	N/A	25	<25							
sec-Butylbenzene	10A0499			ug/kg wet	N/A	25	<25							
tert-Butylbenzene	10A0499			ug/kg wet	N/A	25	<25							
Carbon Tetrachloride	10A0499			ug/kg wet	N/A	25	<25							
Chlorobenzene	10A0499			ug/kg wet	N/A	25	<25							
Chlorodibromomethane	10A0499			ug/kg wet	N/A	25	<25							
Chloroethane	10A0499			ug/kg wet	N/A	50	<50							
Chloroform	10A0499			ug/kg wet	N/A	25	<25							
Chloromethane	10A0499			ug/kg wet	N/A	50	<50							
2-Chlorotoluene	10A0499			ug/kg wet	N/A	50	<50							
4-Chlorotoluene	10A0499			ug/kg wet	N/A	25	<25							
1,2-Dibromo-3-chloropropane	10A0499			ug/kg wet	N/A	50	<50							
1,2-Dibromoethane (EDB)	10A0499			ug/kg wet	N/A	25	<25							
Dibromomethane	10A0499			ug/kg wet	N/A	25	<25							
1,2-Dichlorobenzene	10A0499			ug/kg wet	N/A	25	<25							
1,3-Dichlorobenzene	10A0499			ug/kg wet	N/A	25	<25							
t,4-Dichlorobenzene	10A0499			ug/kg wet	N/A	25	<25							
Dichlorodifluoromethane	10A0499			ug/kg wet	N/A	50	<50							
1,1-Dichloroethane	10A0499			ug/kg wet	N/A	25	<25							

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Work Order:

WTA0574

Received:

01/25/10

Project: Project Number: 1E-0909013 Racine, WI 1730 State Street Reported:

01/29/10 16:46

		LADOD	ATODY DI	A BITT

					ORY B									
	Seq/	Source	•					Dup	%	Dup	% REC		RPD	
Analyte	Batch	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
VOCs by SW8260B														
1,2-Dichloroethane	10A0499			ug/kg wet	N/A	25	<25							
1,1-Dichloroethene	10A0499			ug/kg wet	N/A	25	<25							
cis-1,2-Dichloroethene	10A0499		ı	ig/kg wet	N/A	25	<25							
trans-1,2-Dichloroethene	10A0499		1	ug/kg wet	N/A	25	<25							
1,2-Dichloropropane	10A0499		ı	ug/kg wet	N/A	25	<25							
1,3-Dichloropropane	10A0499		ı	ug/kg wet	N/A	25	<25							
2,2-Dichloropropane	10A0499		ı	ug/kg wet	N/A	25	<25							
1,1-Dichloropropene	10A0499			ug/kg wet	N/A	25	<25							
cis-1,3-Dichloropropene	10A0499		1	ug/kg wet	N/A	25	<25							
trans-1,3-Dichloropropene	10A0499		1	ug/kg wet	N/A	25	<25							
2,3-Dichloropropene	10A0499		1	ug/kg wet	N/A	25	<25							
Isopropyl Ether	10A0499		1	ug/kg wet	N/A	25	<25							
Ethylbenzene	10A0499		1	ug/kg wet	N/A	25	<25							
Hexachlorobutadiene	10A0499		1	ug/kg wet	N/A	35	<35							
lsopropylbenzene	10A0499		1	ug/kg wet	N/A	25	<25							
p-Isopropyltoluene	10A0499		1	ug/kg wet	N/A	25	<25							
Methylene Chloride	10A0499		1	ug/kg wet	N/A	50	<50							
Methyl tert-Butyl Ether	10A0499		1	ug/kg wet	N/A	25	<25							
Naphthalene	10A0499		1	ug/kg wet	N/A	50	<50							
n-Propylbenzene	10A0499		1	ug/kg wet	N/A	25	<25							
Styrene	10A0499		1	ug/kg wet	N/A	50	<50							
1,1,1,2-Tetrachloroethane	10A0499		1	ug/kg wet	N/A	25	<25							
1,1,2,2-Tetrachloroethane	10A0499		1	ug/kg wet	N/A	25	<25							
Tetrachloroethene	10A0499		1	ug/kg wet	N/A	25	<25							
Toluene	10A0499		1	ug/kg wet	N/A	25	<25							
1,2,3-Trichlorobenzene	10A0499		1	ug/kg wet	N/A	25	<25							
1,2,4-Trichlorobenzene	10A0499		1	ug/kg wet	N/A	25	<25							
1,1,1-Trichloroethane	10A0499		1	ug/kg wet	N/A	25	<25							
1,1,2-Trichloroethane	10A0499		1	ug/kg wet	N/A	35	<35							
Trichloroethene	10A0499			ug/kg wet	N/A	25	<25							
Trichlorofluoromethane	10A0499		1	ug/kg wet	N/A	25	<25							
1,2,3-Trichloropropane	10A0499			ug/kg wet	N/A	50	<50							
1,2,4-Trimethylbenzene	10A0499			ug/kg wet	N/A	25	<25							
1,3,5-Trimethylbenzene	10A0499		ı	ug/kg wet	N/A	25	<25							
Vinyl chloride	10A0499			ug/kg wet	N/A	35	<35							
Xylenes, total	10A0499			ug/kg wet	N/A	85	<85							
Surrogate: Dibromofluoromethane	10A0499			ig/kg wet					99		82-112			
Surrogate: Toluene-d8	10A0499			ig/kg wet					98		91-106			
Surrogate: 4-Bromofluorobenzene	10A0499			ıg/kg wet					98		89-110			

GILES ENGINEERING - WISCONSIN N8 W22350 Johnson Road Waukesha, WI 53186 Mr. Kevin Bugel

Work Order:

WTA0574

Received:

01/25/10

Project: Project Number:

1E-0909013 Racine, WI 1730 State Street

01/29/10 16:46 Reported:

			C	CV Q	DAT	A							
	•	irce Spike		, en	MDI	D 1	Dup	%	Dup	% REC	nnn	RPD	0
Analyte	Batch Re	sult Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
VOCs by SW8260B	T000150	2500		27/4	21/4	2700		111		00 100			
Benzene	T000158	2500	ug/kg wet	N/A	N/A	2790		111		80-120			
Bromobenzene	T000158	2500	ug/kg wet	N/A	N/A	2520		101		80-120			
Bromochloromethane	T000158	2500	ug/kg wet	N/A	N/A	2950		118		80-120			
Bromodichloromethane	T000158	2500	ug/kg wet	N/A	N/A	2830		113		80-120			
Bromoform	T000158	2500	ug/kg wet	N/A	N/A	2700		108		80-120			
Bromomethane	T000158	2500	ug/kg wet	N/A	N/A	2930		117		80-120			
n-Butylbenzene	T000158	2500	ug/kg wet	N/A	N/A	2310		93		80-120			
sec-Butylbenzene	T000158	2500	ug/kg wet	N/A	N/A	2300		92		80-120			
ert-Butylbenzene	T000158	2500	ug/kg wet	N/A	N/A	2290		91		80-120			
Carbon Tetrachloride	T000158	2500	ug/kg wet	N/A	N/A	2840		113		80-120			
Chlorobenzene	T000158	2500	ug/kg wet	N/A	N/A	2470		99		80-120			
Chlorodibromomethane	T000158	2500	ug/kg wet	N/A	N/A	2910		116		80-120			
Chloroethane	T000158	2500	ug/kg wet	N/A	N/A	2820		113		80-120			
Chloroform	T000158	2500	ug/kg wet	N/A	N/A	2870		115		80-120			
Chloromethane	T000158	2500	ug/kg wet	N/A	N/A	2430		97		80-120			
2-Chlorotoluene	T000158	2500	ug/kg wet	N/A	N/A	2510		100		80-120			
-Chlorotoluene	T000158	2500	ug/kg wet	N/A	N/A	2560		102		80-120			
,2-Dibromo-3-chloropropane	T000158	2500	ug/kg wet	N/A	N/A	2270		91		80-120			
,2-Dibromoethane (EDB)	T000158	2500	ug/kg wet	N/A	N/A	2560		102		80-120			
Dibromomethane	T000158	2500	ug/kg wet	N/A	N/A	2880		115		80-120			
,2-Dichlorobenzene	T000158	2500	ug/kg wet	N/A	N/A	2290		92		80-120			
,3-Dichlorobenzene	T000158	2500	ug/kg wet	N/A	N/A	2350		94		80-120			
4-Dichlorobenzene	T000158	2500	ug/kg wet	N/A	N/A	2340		94		80-120			
Dichlorodifluoromethane	T000158	2500	ug/kg wet	N/A	N/A	2910		116		80-120			
,1-Dichloroethane	T000158	2500	ug/kg wet	N/A	N/A	2810		112		80-120			
,2-Dichloroethane	T000158	2500	ug/kg wet	N/A	N/A	2880		115		80-120			
,1-Dichloroethene	T000158	2500	ug/kg wet	N/A	N/A	2820		113		80-120			
sis-1,2-Dichloroethene	T000158	2500	ug/kg wet	N/A	N/A	2840		114		80-120			
rans-1,2-Dichloroethene	T000158	2500	ug/kg wet	N/A	N/A	2880		115		80-120			
,2-Dichloropropane	T000158	2500	ug/kg wet	N/A	N/A	2710		108		80-120			
,3-Dichloropropane	T000158	2500	ug/kg wet	N/A	N/A	2790		112		80-120			
2,2-Dichloropropane	T000158	2500	ug/kg wet	N/A	N/A	3010		120		80-120			
,1-Dichloropropene	T000158	2500	ug/kg wet	N/A	N/A	2800		112		80-120			
ris-1,3-Dichloropropene	T000158	2500	ug/kg wet	N/A	N/A	2910		116		80-120			
rans-1,3-Dichloropropene	T000158	2500	ug/kg wet	N/A	N/A	2960		119		80-120			
2,3-Dichloropropene	T000158	2500	ug/kg wet	N/A	N/A	2800		112		80-120			
sopropyl Ether	T000158	2500	ug/kg wet	N/A	N/A	2640		105		80-120			
thylbenzene	T000158	2500	ug/kg wet	N/A	N/A	2490		100		80-120			
Iexachlorobutadiene	T000158	2500	ug/kg wet	N/A	N/A	1820		73		80-120			
sopropylbenzene	T000158	2500	ug/kg wet	N/A	N/A	2520		101		80-120			
-lsopropyltoluene	T000158	2500	ug/kg wet	N/A	N/A	2520		101		80-120			
Methylene Chloride	T000158	2500	ug/kg wet	N/A	N/A	2850		114		80-120			
Methyl tert-Butyl Ether	T000158	2500	ug/kg wet	N/A	N/A	2810		113		80-120			
Naphthalene	T000158	2500	ug/kg wet	. N/A	N/A	1850		74		80-120			
-Propylbenzene	T000158	2500	ug/kg wet	N/A	N/A	2530		101		80-120			

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Mr. Kevin Bugel Work Order:

WTA0574

Received:

01/25/10

Project: Project Number: 1E-0909013 Racine, WI 1730 State Street Reported: 01/29/10 16:46

				C	CV QC	DAT	A							
	Seq/	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Batch	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
VOCs by SW8260B														
Styrene	T000158		2500	ug/kg wet	N/A	N/A	2570		103		80-120			
1,1,1,2-Tetrachloroethane	T000158		2500	ug/kg wet	N/A	N/A	2590		104		80~120			
1,1,2,2-Tetrachloroethane	T000158		2500	ug/kg wet	N/A	N/A	2340		93		80-120			
Tetrachloroethene	T000158		2500	ug/kg wet	N/A	N/A	2530		101		80-120			
Toluene	T000158		2500	ug/kg wet	N/A	N/A	2450		98		80-120			
1,2,3-Trichlorobenzene	T000158		2500	ug/kg wet	N/A	N/A	1790		72		80-120			
1,2,4-Trichlorobenzene	T000158		2500	ug/kg wet	N/A	N/A	2000		80		80-120			
1,1,1-Trichloroethane	T000158		2500	ug/kg wet	N/A	N/A	2930		117		80-120			
1,1,2-Trichloroethane	T000158		2500	ug/kg wet	N/A	N/A	2860		114		80-120			
Trichloroethene	T000158		2500	ug/kg wet	N/A	N/A	2810		112		80-120			
Trichlorofluoromethane	T000158		2500	ug/kg wet	N/A	N/A	2910		116		80-120			
1,2,3-Trichloropropane	T000158		2500	ug/kg wet	N/A	N/A	2580		103		80-120			
1,2,4-Trimethylbenzene	T000158		2500	ug/kg wet	N/A	N/A	2510		100		80-120			
1,3,5-Trimethylbenzene	T000158		2500	ug/kg wet	N/A	N/A	2520		101		80-120			
Vinyl chloride	T000158		2500	ug/kg wet	N/A	N/A	2670		107		80-120			
Xylenes, total	T000158		7500	ug/kg wet	N/A	N/A	7510		100		80-120			
Surrogate: Dibromofluoromethane	T000158			ug/kg wet					105		80-120			
Surrogate: Toluene-d8	T000158			ug/kg wet					91		80-120			
Surrogate: 4-Bromofluorobenzene	T000158			ug/kg wet					105		80-120			
Benzene	T000170		2500	ug/kg wet	N/A	N/A	2770		111		80-120			
Bromobenzene	T000170		2500	ug/kg wet	N/A	N/A	2690		107		80-120			
Bromochloromethane	T000170		2500	ug/kg wet	N/A	N/A	2900		116		80-120			
Bromodichloromethane	T000170		2500	ug/kg wet	N/A	N/A	2760		110		80-120			
Bromoform	T000170		2500	ug/kg wet	N/A	N/A	2760		110		80-120			
Bromomethane	T000170		2500	ug/kg wet	N/A	N/A	2920		117		80-120			
n-Butylbenzene	T000170		2500	ug/kg wet	N/A	N/A	2710		108		80-120			
sec-Butylbenzene	T000170		2500	ug/kg wet	N/A	N/A	2690		108		80-120			
tert-Butylbenzene	T000170		2500	ug/kg wet	N/A	N/A	2680		107		80-120			
Carbon Tetrachloride	T000170		2500	ug/kg wet	N/A	N/A	2760		111		80-120			
Chlorobenzene	T000170						2630		105		80-120			
			2500	ug/kg wet	N/A	N/A	2750		110		80-120			
Chlorodibromomethane	T000170		2500	ug/kg wet	N/A	N/A								
Chloroethane	T000170		2500	ug/kg wet	N/A	N/A	2890		116		80-120			
Chloroform	T000170		2500	ug/kg wet	N/A	N/A	2840		114		80-120			
Chloromethane	T000170		2500	ug/kg wet	N/A	N/A	2280		91		80-120			
2-Chlorotoluene	T000170		2500	ug/kg wet	N/A	N/A	2690		107		80-120			
I-Chlorotoluene	T000170		2500	ug/kg wet	N/A	N/A	2620		105		80-120			
,2-Dibromo-3-chloropropane	T000170		2500	ug/kg wet	N/A	N/A	2490		99		80-120			
,2-Dibromoethane (EDB)	T000170		2500	ug/kg wet	N/A	N/A	2700		108		80-120			
Dibromomethane	T000170		2500	ug/kg wet	N/A	N/A	2800		112		80-120			
,2-Dichlorobenzene	T000170		2500	ug/kg wet	N/A	N/A	2640		106		80-120			
,3-Dichlorobenzene	T000170		2500	ug/kg wet	N/A	N/A	2690		108		80-120			
,4-Dichlorobenzene	T000170		2500	ug/kg wet	N/A	N/A	2660		107		80-120			
Dichlorodifluoromethane	T000170		2500	ug/kg wet	N/A	N/A	2750		110		80-120			
,1-Dichloroethane	T000170		2500	ug/kg wet	N/A	N/A	2760		110		80-120			

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Mr. Kevin Bugel

Work Order:

Project:

WTA0574

Received:

01/25/10

Project Number:

1E-0909013 Racine, WI 1730 State Street Reported: 01/29/10 16:46

CCV QC DATA	
-------------	--

	Seq/	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Batch	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
VOCs by SW8260B														
1,2-Dichloroethane	T000170		2500	ug/kg wet	N/A	N/A	2850		114		80-120			
1,1-Dichloroethene	T000170		2500	ug/kg wet	N/A	N/A	2750		110		80-120			
cis-1,2-Dichloroethene	T000170		2500	ug/kg wet	N/A	N/A	2840		113		80-120			
trans-1,2-Dichloroethene	T000170		2500	ug/kg wet	N/A	N/A	2840		114		80-120			
1,2-Dichloropropane	T000170		2500	ug/kg wet	N/A	N/A	2610		104		80-120			
1,3-Dichloropropane	T000170		2500	ug/kg wet	N/A	N/A	2680		107		80-120			
2,2-Dichloropropane	T000170		2500	ug/kg wet	N/A	N/A	2970		119		80-120			
1,1-Dichloropropene	T000170		2500	ug/kg wet	N/A	N/A	2740		109		80-120			
cis-1,3-Dichloropropene	T000170		2500	ug/kg wet	N/A	N/A	2830		113		80-120			
trans-1,3-Dichloropropene	T000170		2500	ug/kg wet	N/A	N/A	2850		114		80-120			
2,3-Dichloropropene	T000170		2500	ug/kg wet	N/A	N/A	2780		111		80-120			
Isopropyl Ether	T000170		2500	ug/kg wet	N/A	N/A	2650		106		80-120			
Ethylbenzene	T000170		2500	ug/kg wet	N/A	N/A	2650		106		80-120			
Hexachlorobutadiene	T000170		2500	ug/kg wet	N/A	N/A	2460		98		80-120			
Isopropylbenzene	T000170		2500	ug/kg wet	N/A	N/A	2700		108		80-120			
p-lsopropyltoluene	T000170		2500	ug/kg wet	N/A	N/A	2730		109		80-120			
Methylene Chloride	T000170		2500	ug/kg wet	N/A	N/A	2810		112		80-120			
Methyl tert-Butyl Ether	T000170		2500	ug/kg wet	N/A	N/A	2750		110		80-120			
Naphthalene	T000170			ug/kg wet	N/A	N/A	2120		85		80-120			
n-Propylbenzene	T000170		2500	ug/kg wet	N/A	N/A	2700		108		80-120			
Styrene	T000170		2500	ug/kg wet	N/A	N/A	2740		110		80-120			
1,1,1,2-Tetrachloroethane	T000170		2500	ug/kg wet	N/A	N/A	2750		110		80-120			
1,1,2,2-Tetrachloroethane	T000170		2500	ug/kg wet	N/A	N/A	2650		106		80-120			
Tetrachloroethene	T000170		2500	ug/kg wet	N/A	N/A	2700		108		80-120			
Toluene	T000170		2500	ug/kg wet	N/A	N/A	2630		105		80-120			
1,2,3-Trichlorobenzene	T000170		2500	ug/kg wet	N/A	N/A	2140		86		80-120			
1,2,4-Trichlorobenzene	T000170		2500	ug/kg wet	N/A	N/A	2350		94		80-120			
1,1,1-Trichloroethane	T000170		2500	ug/kg wet	N/A	N/A	2900		116		80-120			
1,1,2-Trichloroethane	T000170		2500	ug/kg wet	N/A	N/A	2740		110		80-120			
Trichloroethene	T000170		2500	ug/kg wet	N/A	N/A	2730		109		80-120			
Trichlorofluoromethane	T000170		2500	ug/kg wet	N/A	N/A	2700		108		80-120			
1,2,3-Trichloropropane	T000170		2500	ug/kg wet	N/A	N/A	2640		106		80-120			
,2,4-Trimethylbenzene	T000170		2500	ug/kg wet	N/A	N/A	2700		108		80-120			
,3,5-Trimethylbenzene	T000170		2500	ug/kg wet	N/A	N/A	2700		108		80-120			
Vinyl chloride	T000170		2500	ug/kg wet	N/A	N/A	2630		105		80-120			
Kylenes, total	T000170		7500	ug/kg wet	N/A	N/A	8030		107		80-120			
Surrogate: Dibromofluoromethane	7000170		t	ug/kg wet					109		80-120			
Surrogate: Toluene-d8	7000170		1	ug/kg wet					99		80-120			
Surrogate: 4-Bromofluorobenzene	T000170			ug/kg wet					100		80-120			

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186

Mr. Kevin Bugel

Work Order:

Project Number:

WTA0574

01/25/10

Project:

1E-0909013 Racine, WI

1730 State Street

Received: Reported:

01/29/10 16:46

	Seq/	Source	Spike					%	Dup	% REC		RPD	
Analyte	Batch	Result	Level	Units	MDL	MRL	Result	REC	%REC	Limits	RPD	Limit	Q
General Chemistry Parameters													
QC Source Sample: WTA0596-02													
% Solids	10A0482	83.8		%	N/A	N/A	83.9				0	20	

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Mr. Kevin Bugel

Work Order:

WTA0574

Received:

01/25/10

Waukesha, WI 53186

Project: Project Number:

1E-0909013 Racine, WI 1730 State Street

01/29/10 16:46 Reported:

		LC	S/LCS I	JUPLI	CAIL	QC DA	IA						
	Seq/ Son	urce Spik	e				Dup	%	Dup	% REC		RPD	
Analyte	Batch Re	sult Leve	l Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
VOCs by SW8260B													
Benzene	10A0464	2500	ug/kg wet	N/A	N/A	2620		105		64-124			
Bromobenzene	10A0464	2500	ug/kg wet	N/A	N/A	2370		95		70-130			
Bromochloromethane	10A0464	2500	ug/kg wet	N/A	N/A	2700		108		70-130			
Bromodichloromethane	10A0464	2500	ug/kg wet	N/A	N/A	2620		105		70-130			
Bromoform	10A0464	2500	ug/kg wet	N/A	N/A	2510		100		70-130			
Bromomethane	10A0464	2500	ug/kg wet	N/A	N/A	2650		106		70-130			
n-Butylbenzene	10A0464	2500	ug/kg wet	N/A	N/A	2160		86		70-130			
sec-Butylbenzene	10A0464	2500	ug/kg wet	N/A	N/A	2170		87		70-130			
tert-Butylbenzene	10A0464	2500	ug/kg wet	N/A	N/A	2160		86		70-130			
Carbon Tetrachloride	10A0464	2500	ug/kg wet	N/A	N/A	2630		105		70~130			
Chlorobenzene	10A0464	2500	ug/kg wet	N/A	N/A	2320		93		80-123			
Chlorodibromomethane	10A0464	2500	ug/kg wet	N/A	N/A	2700		108		70-130			
Chloroethane	10A0464	2500	ug/kg wet	N/A	N/A	2860		115		70-130			
Chloroform	10A0464	2500	ug/kg wet	N/A	N/A	2690		108		70-130			
Chloromethane	10A0464	2500	ug/kg wet	N/A	N/A	2550		102		70-130			
2-Chlorotoluene	10A0464	2500	ug/kg wet	N/A	N/A	2370		95		70-130			
4-Chlorotoluene	10A0464	2500	ug/kg wet	N/A	N/A	2380		95		70-130			
,2-Dibromo-3-chloropropane	10A0464	2500	ug/kg wet	N/A	N/A	2090		84		70-130			
1,2-Dibromoethane (EDB)	10A0464	2500	ug/kg wet	N/A	N/A	2410		97		70-130			
Dibromomethane	10A0464	2500	ug/kg wet	N/A	N/A	2690		107		70-130			
,2-Dichlorobenzene	10A0464	2500	ug/kg wet	N/A	N/A	2120		85		70-130			
1,3-Dichlorobenzene	10A0464	2500	ug/kg wet	N/A	N/A	2180		87		70-130			
,4-Dichlorobenzene	10A0464	2500	ug/kg wet	N/A	N/A	2170		87		70-130			
Dichlorodifluoromethane	10A0464	2500	ug/kg wet	N/A	N/A	3220		129		70-130			
1,1-Dichloroethane	10A0464	2500	ug/kg wet	N/A	N/A	2580		103		70-130			
1,2-Dichloroethane	10A0464	2500	ug/kg wet	N/A	N/A	2680		107		70-130			
1,1-Dichloroethene	10A0464	2500	ug/kg wet	N/A	N/A	2580		103		43-141			
cis-1,2-Dichloroethene	10A0464	2500	ug/kg wet	N/A	N/A	2690		107		70-130			
rans-1,2-Dichloroethene	10A0464	2500	ug/kg wet	N/A	N/A	2680		107		70-130			
1,2-Dichloropropane	10A0464	2500	ug/kg wet	N/A	N/A	2540		102		70-130			
1,3-Dichloropropane	10A0464	2500	ug/kg wet	N/A	N/A	2620		105		70-130			
2.2-Dichloropropane	10A0464	2500	ug/kg wet	N/A	N/A	2840		113		70-130			
1,1-Dichloropropene	10A0464	2500	ug/kg wet	N/A	N/A	2660		106		70-130			
eis-1,3-Dichloropropene	10A0464	2500	ug/kg wet	N/A	N/A	2620		105		70-130			
trans-1,3-Dichloropropene	10A0464	2500	ug/kg wet	N/A	N/A	2760		110		70-130			
Ethylbenzene	10A0464	2500	ug/kg wet	N/A	N/A	2330		93		79-122			
Hexachlorobutadiene	10A0464	2500	ug/kg wet	N/A	N/A	1720		69		70-130			
sopropylbenzene	10A0464	2500	ug/kg wet	N/A	N/A	2360		94		70-130			
-Isopropyltoluene	10A0464	2500	ug/kg wet	N/A	N/A	2370		95		70-130			
Methylene Chloride	10A0464	2500	ug/kg wet	N/A	N/A	2520		101		70-130			
Methyl tert-Butyl Ether	10A0464	2500	ug/kg wet	N/A	N/A	2770		111		55-137			
Naphthalene	10A0464	2500	ug/kg wet	N/A	N/A	1810		72		70-130			
n-Propylbenzene	10A0464	2500	ug/kg wet	N/A	N/A	2380		95		70-130			
Styrene	10A0464	2500	ug/kg wet	N/A	N/A	2390		95		70-130			
1,1,1,2-Tetrachloroethane	10A0464	2500	ug/kg wet	N/A	N/A	2420		97		70-130			

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Work Order:

WTA0574

Received:

01/25/10

Mr. Kevin Bugel

Project:

1E-0909013 Racine, WI

Reported:

01/29/10 16:46

Project Number: 1730 State Street

			LC	S/LCS I	UPLI	CATE	QC DA	TA						
Analyte	Seq/ Batch	Source Result	Spike Level	Units	MDL	MRL	Result	Dup Result	% REC	Dup %REC	% REC	RPD	RPD Limit	0
VOCs by SW8260B	Dateil	resur	Devel	Circs	14111		resuit	result	*****	ronde	Dimees	INI D	Zimit	
1,1,2,2-Tetrachloroethane	10A0464		2500	ug/kg wet	N/A	N/A	2220		89		70-130			
Tetrachloroethene	10A0464		2500	ug/kg wet	N/A	N/A	2400		96		70-130			
Toluene	10A0464		2500	ug/kg wet	N/A	N/A	2310		93		78-120			
1,2,3-Trichlorobenzene	10A0464		2500	ug/kg wet	N/A	N/A	1720		69		70-130			
1,2,4-Trichlorobenzene	10A0464		2500	ug/kg wet	N/A	N/A	1860		74		70-130			
1,1,1-Trichloroethane	10A0464		2500	ug/kg wet	N/A	N/A	2740		110		70-130			
1,1,2-Trichloroethane	10A0464		2500	ug/kg wet	N/A	N/A	2670		107		70-130			
Trichloroethene	10A0464		2500	ug/kg wet	N/A	N/A	2650		106		78-124			
Trichlorofluoromethane	10A0464		2500	ug/kg wet	N/A	N/A	2630		105		70-130			
1,2,3-Trichloropropane	10A0464		2500	ug/kg wet	N/A	N/A	2370		95		70-130			
1,2,4-Trimethylbenzene	10A0464		2500	ug/kg wet	N/A	N/A	2360		94		75-128			
1,3,5-Trimethylbenzene	10A0464		2500	ug/kg wet	N/A	N/A	2350		94		76-127			
Vinyl chloride	10A0464		2500	ug/kg wet	N/A	N/A	2610		104		70-130			
Xylenes, total	10A0464		7500	ug/kg wet	N/A	N/A	7040		94		79-122			
Surrogate: Dibromofluoromethane	10A0464			ug/kg wet					104		82-112			
Surrogate: Toluene-d8	10A0464			ug/kg wet					92		91-106			
Surrogate: 4-Bromofluorobenzene	10A0464			ug/kg wet					106		89-110			
Benzene	10A0499		2500	ug/kg wet	N/A	N/A	2600		104		64-124			
Bromobenzene	10A0499		2500	ug/kg wet	N/A	N/A	2530		101		70-130			
Bromochloromethane	10A0499		2500	ug/kg wet	N/A	N/A	2710		108		70-130			
Bromodichloromethane	10A0499		2500	ug/kg wet	N/A	N/A	2570		103		70-130			
Bromoform	10A0499		2500	ug/kg wet	N/A	N/A	2600		104		70-130			
Bromomethane	10A0499		2500	ug/kg wet	N/A	N/A	2820		113		70-130			
n-Butylbenzene	10A0499		2500	ug/kg wet	N/A	N/A	2480		99		70-130			
sec-Butylbenzene	10A0499		2500	ug/kg wet	N/A	N/A	2490		100		70-130			
tert-Butylbenzene	10A0499		2500	ug/kg wet	N/A	N/A	2460		99		70-130			
Carbon Tetrachloride	10A0499		2500	ug/kg wet	N/A	N/A	2600		104		70-130			
Chlorobenzene	10A0499		2500	ug/kg wet	N/A	N/A	2490		99		80-123			
Chlorodibromomethane	10A0499		2500	ug/kg wet	N/A	N/A	2580		103		70-130			
Chloroethane	10A0499		2500	ug/kg wet	N/A	N/A	2610		105		70-130			
Chloroform	10A0499		2500	ug/kg wet	N/A	N/A	2650		106		70-130			
Chloromethane	10A0499		2500	ug/kg wet	N/A	N/A	2450		98		70-130			
2-Chlorotoluene	10A0499		2500	ug/kg wet	N/A	N/A	2520		101		70-130			
4-Chlorotoluene	10A0499		2500	ug/kg wet	N/A	N/A	2570		101		70-130			
1,2-Dibromo-3-chloropropane	10A0499		2500	ug/kg wet	N/A	N/A	2270		91		70-130			
1,2-Dibromo-3-chioropropane 1,2-Dibromoethane (EDB)	10A0499		2500	ug/kg wet	N/A	N/A	2580		103		70-130			
Dibromomethane	10A0499		2500			N/A	2630		105		70-130			
	10A0499		2500	ug/kg wet ug/kg wet	N/A	N/A	2450		98		70-130			
1,2-Dichlorobenzene					N/A		2530		101		70-130			
1,3-Dichlorobenzene	10A0499		2500	ug/kg wet	N/A	N/A	2520		101		70-130			
Dichlorodifluoromethane	10A0499		2500	ug/kg wet	N/A	N/A					70-130			
Dichlorodifluoromethane	10A0499		2500	ug/kg wet	N/A	N/A	3060		122					
,	10A0499		2500	ug/kg wet	N/A	N/A	2530		101		70-130			
1,2-Dichloroethane	10A0499		2500	ug/kg wet	N/A	N/A	2650		106		70-130			
1,1-Dichloroethene	10A0499		2500	ug/kg wet	N/A	N/A	2520		101		43-141			

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Work Order:

WTA0574

1730 State Street

Received:

01/25/10

Waukesha, WI 53186

Project: Project Number: 1E-0909013 Racine, WI

Reported:

01/29/10 16:46

Mr. Kevin Bugel

	Seq/	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Batch	Result	Level	Units	MDL	MRL	Result	_		%REC	Limits	RPD	Limit	O
VOCs by SW8260B							2100411					****		· ·
cis-1,2-Dichloroethene	10A0499		2500	ug/kg wet	N/A	N/A	2610		105		70-130			
trans-1,2-Dichloroethene	10A0499		2500	ug/kg wet	N/A	N/A	2610		104		70-130			
1,2-Dichloropropane	10A0499		2500	ug/kg wet	N/A	N/A	2490		100		70-130			
1,3-Dichloropropane	10A0499		2500	ug/kg wet	N/A	N/A	2570		103		70-130			
2,2-Dichloropropane	10A0499		2500	ug/kg wet	N/A	N/A	2840		114		70-130			
1,1-Dichloropropene	10A0499		2500	ug/kg wet	N/A	N/A	2610		104		70-130			
cis-1,3-Dichloropropene	10A0499		2500	ug/kg wet	N/A	N/A	2580		103		70-130			
trans-1,3-Dichloropropene	10A0499		2500	ug/kg wet	N/A	N/A	2720		109		70-130			
Ethylbenzene	10A0499		2500	ug/kg wet	N/A	N/A	2490		99		79-122			
Hexachlorobutadiene	10A0499		2500	ug/kg wet	N/A	N/A	1960		79		70-130			
lsopropylbenzene	10A0499		2500	ug/kg wet	N/A	N/A	2530		101		70-130			
p-Isopropyltoluene	10A0499		2500	ug/kg wet	N/A	N/A	2520		101		70-130			
Methylene Chloride	10A0499		2500	ug/kg wet	N/A	N/A	2470		99		70-130			
Methyl tert-Butyl Ether	10A0499		2500	ug/kg wet	N/A	N/A	2710		108		55-137			
Naphthalene	10A0499		2500	ug/kg wet	N/A	N/A	2010		80		70-130			
n-Propylbenzene	10A0499		2500	ug/kg wet	N/A	N/A	2530		101		70-130			
Styrene	10A0499		2500	ug/kg wet	N/A	N/A	2550		102		70-130			
1,1,1,2-Tetrachloroethane	10A0499		2500	ug/kg wet	N/A	N/A	2590		104		70-130			
1,1,2,2-Tetrachloroethane	10A0499		2500	ug/kg wet	N/A	N/A	2520		101		70-130			
Tetrachloroethene	10A0499		2500	ug/kg wet	N/A	N/A	2580		103		70-130			
Toluene	10A0499		2500	ug/kg wet	N/A	N/A	2490		100		78-120			
1,2,3-Trichlorobenzene	10A0499		2500	ug/kg wet	N/A	N/A	1930		77		70-130			
1,2,4-Trichlorobenzene	10A0499		2500	ug/kg wet	N/A	N/A	2140		86		70-130			
1,1,1-Trichloroethane	10A0499			ug/kg wet	N/A	N/A	2670		107		70-130			
1,1,2-Trichloroethane	10A0499		2500	ug/kg wet	N/A	N/A	2620		105		70-130			
Trichloroethene	10A0499		2500	ug/kg wet	N/A	N/A	2590		103		78-124			
Trichlorofluoromethane	10A0499		2500	ug/kg wet	N/A	N/A	2320		93		70-130			
1,2,3-Trichloropropane	10A0499		2500	ug/kg wet	N/A	N/A	2570		103		70-130			
1,2,4-Trimethylbenzene	10A0499		2500	ug/kg wet	N/A	N/A	2510		101		75-128			
1,3,5-Trimethylbenzene	10A0499		2500	ug/kg wet	N/A	N/A	2520		101		76-127			
Vinyl chloride	10A0499		2500	ug/kg wet	N/A	N/A	2540		102		70-130			
Kylenes, total	10A0499		7500	ug/kg wet	N/A	N/A	7570		101		79-122			
Surrogate: Dibromofluoromethane	10A0499		1	ug/kg wet					106		82-112			
Surrogate: Toluene-d8	10A0499			ug/kg wet					98		91-106			
Surrogate: 4-Bromofluorobenzene	10A0499		1	ug/kg wet					101		89-110			

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Mr. Kevin Bugel

Work Order:

Project:

WTA0574

1E-0909013 Racine, WI

Received: Reported:

01/25/10 01/29/10 16:46

1730 State Street Project Number:

CERTIFICATION SUMMARY

TestAmerica Watertown

Method	Matrix	Nelac	Wisconsin	
SM 2540G	Solid/Soil	X	X .	
SW 8260B	Solid/Soil	X	X	

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN N8 W22350 Johnson Road Waukesha, WI 53186 Mr. Kevin Bugel

Z6

Work Order:

WTA0574

Received:

01/25/10

Project:
Project Number:

1E-0909013 Racine, WI 1730 State Street Reported:

01/29/10 16:46

DATA QUALIFIERS AND DEFINITIONS

E Concentration exceeds the calibration range and therefore result is semi-quantitative.

Surrogate recovery was below acceptance limits.

ADDITIONAL COMMENTS

Results are reported on a wet weight basis unless otherwise noted.

Site Commercial

Address 1730 3th 4th 4th Recini, Wisconsin Giles Engineering Associates, Inc. CHAIN-OF-CUSTODY N8 W22350 Johnson Road Suite A1, Waukesha, WI 53186 4875 East La Palma Avenue, Suite 607, Anaheim, CA 92807 tel: 414-544-0118 fax: 414-549-5868 tel: 714-779-0052 fax: 714-779-0068 Closure sample Confirmation required (NR720) B300 Guifford Road, Suite F1, Columbia, MD 21046 fax: 410-312-9955 tel: 410-312-9950 10722 North Stemmons Freeway, Dallas, TX 75220 D RUSH tel: 214-358-5885 fax: 214-358-5884 fax: 608-223-1854 tel: 608-223-1853 2830 Agriculture Drive, Madison, WI 53718 POSSIBLE HAZARDS: 3990 Flowers Road, Suite 530, Atlanta, GA,30360 tel. 770-458-3399 fax: 770-458-3998 Dren Rocahows TimTaucher Project Number Sample Collector Project Manager Lab Contact Lab Job Number Laboratory Used Analysis Required Lab ID Temp 16 PM DOC PM AM PM AM PM AM PM container code: C = 2 oz/ 60 ml / 60 E = 1 L Amber G = poly bag A = 8 oz/250 ml D = 40 mL VOA via F = 250 mL plastic B = 4 oz/ 120 ml Send copy to Project Manager □ PM Relinquishe Received By INVOICE TO: 7-27-10 Page

TICE

03

forms.xls//COC 08/10/99

Cooler Receipt Log

Work Order(s): 🔽	TGO 16 Client Name/Project:	oles	#	of Coolers:	_
ow did samples arrive?	P	stAmerica	Dunham 🗀	Speedy	
•	of custody seals?			Not present	
/time cooler was ope	Wanter 12th	By: Matt	Gods		•
mperature °C 6	· F	Received on ice? Y	es 🗆 No		
es this Project require	RUSH tum around?		es "ENo		
e there any short hold	time tests?		es ⊠ No		
within 1 hr of or pa	st expiration of hold-time?	Prov	vide details in sp	ace at bottom of form	1
	48 hours or less	7 da			
	Coliform Bacteria	Aqueous Organic P TS TDS TSS Sulfide Volatile Solids	Prep		
ept for tests with hole	d times of 48 hrs or less, are any samples			_	
	past expiration of hold-time?	Yes 🖽	o Provide del	tails in space at botto	m of form
Vhich Ops Mgr. PM o	r Analyst was informed of short hold and wh	en?	When		
	collection recorded?		s 🗆 No Tin	ne PYes No)
	ers listed on the COC received and intact?			tails in space at botto	
	e COC?			tails in space at botto	
-	ers field filtered or being filtered in the lab?		_		;
	dequate and preservatives correct for test re			res. 🛮 Yes 🗀 No)
	of bubbles >6mm?	r			•
-	ceived?			Water* Other	
	mpling past 48 hrs of sampling		1 5110010		•
•	nk included? Yes No NA		Plank inchedad?		7 NA
	ld?	_		tails in space at botton	m of form
	e subcontracted?			alls in space at botto	ni oi iomi
	te to this Work Order after Login, or if comm			- avalain them below	_
ny changes are mad	te to this voor Order after Logist, of it conting	ents must be made rega	arding this cooler	, explain them below	•
	•	•			
-					
	•				

July 29, 2010

Client:

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186

Work Order:

WTG0762

Project Name:

1E-0909013 Racine, WI

Project Number:

1730 State Street

Attn:

Mr. Tim Taugher

Date Received:

07/27/10

An executed copy of the chain of custody is also included as an addendum to this report.

If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-800-833-7036

SAMPLE IDENTIFICATION	LAB NUMBER	COLLECTION DATE AND TIME
MW-5 2-4'	WTG0762-01	07/23/10
MW-6 2-4'	WTG0762-02	07/23/10
MW-7 2-4'	WTG0762-03	07/23/10
MW-8 2-3'	WTG0762-04	07/23/10
MeOH Blank	WTG0762-05	07/23/10

Samples were received on ice into laboratory at a temperature of 6 °C.

Wisconsin Certification Number: 128053530

The Chain(s) of Custody, 2 pages, are included and are an integral part of this report.

Unless subcontracted, volatiles analyses (including VOC, PVOC, GRO, BTEX, and TPH gasoline) performed by TestAmerica Watertown at 1101 Industrial Drive, Units 9&10. All other analyses performed at the address shown in the heading of this report.

Approved By

TestAmerica Watertown

Brian DeJong For Dan F. Milewsky Project Manager

Page 1 of 18

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Mr. Tim Taugher

Work Order:

Project:

WTG0762

1E-0909013 Racine, WI

Project Number: 1730 State Street

Received:

07/27/10

Reported:

07/29/10 09:15

ANALYTICAL REPORT

	Sample	Data			Dilution	Date		Seq/	
Analyte	Result	Qualifiers	Units	MRL	Factor	Analyzed	Analyst	Batch	Method
Sample ID: WTG0762-01 (MW	-5 2-4' - Soil)					Sampled: 07	//23/10		
General Chemistry Parameters	5 2 4 5011)					Sampled. 07	123/10		
% Solids	80		%	NA	1	07/28/10 15:35		10G0649	SM 2540G
	80		70	NA	1	07/28/10 15:55	pam	1000049	SM 2540G
VOCs by SW8260B	-21			21		0505/10.15.55		100000	GW1 00 (0D
Benzene	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
Bromobenzene	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
Bromochloromethane Bromodichloromethane	<44		ug/kg dry	44	1	07/27/10 15:35	LCK	10G0621	SW 8260B
	<31 <31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
Bromoform Bromomethane			ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
	<120		ug/kg dry	120	1	07/27/10 15:35	LCK	10G0621	SW 8260B
n-Butylbenzene	<31		ug/kg dry	31 31	1	07/27/10 15:35 07/27/10 15:35	LCK	10G0621	SW 8260B
sec-Butylbenzene	<31 <31		ug/kg dry	31	1		LCK	10G0621	SW 8260B
tert-Butylbenzene Carbon Tetrachloride			ug/kg dry		1	07/27/10 15:35	LCK	10G0621	SW 8260B
	<31		ug/kg dry	31	_	07/27/10 15:35	LCK	10G0621	SW 8260B
Chlorobenzene	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
Chlorodibromomethane	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
Chloroethane	<62		ug/kg dry	62	1	07/27/10 15:35	LCK	10G0621	SW 8260B
Chloroform	31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
Chloromethane	<62		ug/kg dry	62	1	07/27/10 15:35	LCK	10G0621	SW 8260B
2-Chlorotoluene	<62		ug/kg dry	62	1	07/27/10 15:35	LCK	10G0621	SW 8260B
4-Chlorotoluene	⊲1		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
1,2-Dibromo-3-chloropropane	<62		ug/kg dry	62	1	07/27/10 15:35	LCK	10G0621	SW 8260B
1,2-Dibromoethane (EDB)	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
Dibromomethane	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
1,2-Dichlorobenzene	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
1,3-Dichlorobenzene	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
1,4-Dichlorobenzene	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
Dichlorodifluoromethane	<62		ug/kg dry	62	1	07/27/10 15:35	LCK	10G0621	SW 8260B
1,1-Dichloroethane	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
1,2-Dichloroethane	⊲1		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
1,1-Dichloroethene	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
cis-1,2-Dichloroethene	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
trans-1,2-Dichloroethene	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
1,2-Dichloropropane	⊲1		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
1,3-Dichloropropane	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
2,2-Dichloropropane	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
1,1-Dichloropropene	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
cis-1,3-Dichloropropene	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
trans-1,3-Dichloropropene	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
2,3-Dichloropropene	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
Isopropyl Ether	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
Ethylbenzene	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
Hexachlorobutadiene	<44		ug/kg dry	44	1	07/27/10 15:35	LCK	10G0621	SW 8260B
Isopropylbenzene	⊲1		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
p-Isopropyltoluene	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
Methylene Chloride	<62		ug/kg dry	62	1	07/27/10 15:35	LCK	10G0621	SW 8260B
Methyl tert-Butyl Ether	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B
Naphthalene	<62		ug/kg dry	62	1	07/27/10 15:35	LCK	10G0621	SW 8260B
n-PropyIbenzene	⊲1		ug/kg dry	31	1	07/27/I0 15:35	LCK	10G0621	SW 8260B
Styrene	<62		ug/kg dry	62	1	07/27/10 15:35	LCK	10G0621	SW 8260B
1,1,1,2-Tetrachloroethane	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260B

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186 Mr. Tim Taugher

Work Order:

WTG0762

1E-0909013 Racine, WI

Received: 07/27/10

Project: Project Number:

1730 State Street

Reported:	07/29/10 09:15

	Sample	Data	¥7. *4		Dilution	Date		Seq/	
Analyte	Result	Qualifiers	Units	MRL	Factor	Analyzed	Analyst	Batch	Method
Sample ID: WTG0762-01 (MW-5 2	-4' - Soil) - co	nt.				Sampled: 07	/23/10		
VOCs by SW8260B - cont.									
1,1,2,2-Tetrachloroethane	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260
Tetrachloroethene	⊲1		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260
Toluene	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260
1,2,3-Trichlorobenzene	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260
1,2,4-Trichlorobenzene	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260
1,1,1-Trichloroethane	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260
1,1,2-Trichloroethane	<44		ug/kg dry	44	1	07/27/10 15:35	LCK	10G0621	SW 8260
Trichloroethene	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260
Trichlorofluoromethane	<31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260
1,2,3-Trichloropropane	<62		ug/kg dry	62	1	07/27/10 15:35	LCK	10G0621	SW 8260
1,2,4-Trimethylbenzene	⊲1		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260
1,3,5-Trimethylbenzene	⊲31		ug/kg dry	31	1	07/27/10 15:35	LCK	10G0621	SW 8260
Vinyl chloride	<44		ug/kg dry	44	1	07/27/10 15:35	LCK	10G0621	SW 8260
Xylenes, total	<110		ug/kg dry	110	1	07/27/10 15:35	LCK	10G0621	SW 8260
Surr: Dibromofluoromethane (80-120%)	104 %								
Surr: Toluene-d8 (80-120%)	97 %								
Surr: 4-Bromofluorobenzene (80-120%)	102 %								
Sample ID: WTG0762-02 (MW-6 2	-4' - Soil)					Sampled: 07	/23/10		
General Chemistry Parameters									
% Solids	82		%	NA	1	07/28/10 15:35	pam	10G0649	SM 2540
OCs by SW8260B									
Benzene	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260
Bromobenzene	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260
Bromochloromethane	<43		ug/kg dry	43	1	07/27/10 16:00	LCK	10G0621	SW 8260
Bromodichloromethane	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260
Bromoform	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260
Bromomethane	<120		ug/kg dry	120	1	07/27/10 16:00	LCK	10G0621	SW 8260
n-Butylbenzene	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260
sec-Butylbenzene	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260
tert-Butylbenzene	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260
Carbon Tetrachloride	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260
Chlorobenzene	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260
Chlorodibromomethane	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260
Chloroethane	<61		ug/kg dry	61	1	07/27/10 16:00	LCK	10G0621	SW 8260
Chloroform	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260
Chloromethane	<61		ug/kg dry	61	1	07/27/10 16:00	LCK	10G0621	SW 8260
2-Chlorotoluene	<61		ug/kg dry	61	1	07/27/10 16:00	LCK	10G0621	SW 8260
4-Chlorotoluene	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260
1,2-Dibromo-3-chloropropane	<61		ug/kg dry	61	1	07/27/10 16:00	LCK	10G0621	SW 8260
1,2-Dibromoethane (EDB)	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260
Dibromomethane	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260
1,2-Dichlorobenzene	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260
1,3-Dichlorobenzene	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260
1,4-Dichlorobenzene	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260
Dichlorodifluoromethane	<61		ug/kg dry	61	1	07/27/10 16:00	LCK	10G0621	SW 8260
1,1-Dichloroethane	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260
1,2-Dichloroethane	⊲31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260
1,1-Dichloroethene	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260
cis-1,2-Dichloroethene	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260
trans-1,2-Dichloroethene	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260

Brian DeJong For Dan F. Milewsky

Project Manager

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186 Mr. Tim Taugher Work Order: Project: WTG0762

1E-0909013 Racine, WI

Received:

07/27/10

Project Number:

1730 State Street

Reported: 07/

07/29/10 09:15

Analyte	Sample Result	Data Qualifiers	Units	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTG0762-02 (MW-6 2-	-4' - Soil) - co	nt.				Sampled: 07	/23/10		
VOCs by SW8260B - cont.									
1,2-Dichloropropane	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260B
1,3-Dichloropropane	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260B
2,2-Dichloropropane	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260B
1,1-Dichloropropene	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260B
cis-1,3-Dichloropropene	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260B
trans-1,3-Dichloropropene	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260B
2,3-Dichloropropene	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260B
Isopropyl Ether	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260B
Ethylbenzene	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260B
Hexachlorobutadiene	<43		ug/kg dry	43	1	07/27/10 16:00	LCK	10G0621	SW 8260B
lsopropylbenzene	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260B
p-lsopropyltoluene	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260B
Methylene Chloride	<61		ug/kg dry	61	1	07/27/10 16:00	LCK	10G0621	SW 8260B
Methyl tert-Butyl Ether	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260B
Naphthalene	<61		ug/kg dry	61	1	07/27/10 16:00	LCK	10G0621	SW 8260B
n-Propylbenzene	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260B
Styrene	<61		ug/kg dry	61	I	07/27/10 16:00	LCK	10G0621	SW 8260B
1,1,1,2-Tetrachloroethane	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260B
1,1,2,2-Tetrachloroethane	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260B
Tetrachloroethene	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260B
Toluene	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260B
1,2,3-Trichlorobenzene	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260B
1,2,4-Trichlorobenzene	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260B
1,1,1-Trichloroethane	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260B
1,1,2-Trichloroethane	<43		ug/kg dry	43	1	07/27/10 16:00	LCK	10G0621	SW 8260B
Trichloroethene	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260B
Trichlorofluoromethane	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260B
1,2,3-Trichloropropane	<61		ug/kg dry	61	1	07/27/10 16:00	LCK	10G0621	SW 8260B
1,2,4-Trimethylbenzene	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260B
1,3,5-Trimethylbenzene	<31		ug/kg dry	31	1	07/27/10 16:00	LCK	10G0621	SW 8260B
Vinyl chloride	<43		ug/kg dry	43	1	07/27/10 16:00	LCK	10G0621	SW 8260B
Xylenes, total	<100		ug/kg dry	100	1	07/27/10 16:00	LCK	10G0621	SW 8260B
Surr: Dibromofluoromethane (80-120%)	104 %								
Surr: Toluene-d8 (80-120%)	97%								
Surr: 4-Bromofluorobenzene (80-120%)	102 %								

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Work Order: Project:

WTG0762

1E-0909013 Racine, WI

Received:

07/27/10

1730 State Street

Reported: 07/29/10 09:15

waukesna, wi 33180	Project Number:	1/30 State Suc
Mr. Tim Taugher		

Analyte	Sample Result	Data Qualifiers	Units	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTG0762-03 (MW-	7 2-4' - Soil)					Sampled: 07	/23/10		
General Chemistry Parameters						•			
% Solids	81		%	NA	1	07/28/10 15:35	pam	10G0649	SM 2540
VOCs by SW8260B									
Benzene	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 8260
Bromobenzene	⊲1		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 8260
Bromochloromethane	<43		ug/kg dry	43	1	07/27/10 16:26	LCK	10G0621	SW 8260
Bromodichloromethane	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 8260
Bromoform	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 8260
Bromomethane	<120		ug/kg dry	120	1	07/27/10 16:26	LCK	10G0621	SW 826
n-Butylbenzene	⊲1		ug/kg dry	31	1	07/27/10 16;26	LCK	10G0621	SW 826
sec-Butylbenzene	⊲1		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 8260
tert-Butylbenzene	⊲1		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 826
Carbon Tetrachloride	⊲1		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 826
Chlorobenzene	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 826
Chlorodibromomethane	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 8260
Chloroethane	<62		ug/kg dry	62	1	07/27/10 16:26	LCK	10G0621	SW 826
Chloroform	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 826
Chloromethane	<62		ug/kg dry	62	1	07/27/10 16:26	LCK	10G0621	SW 826
2-Chlorotoluene	<62		ug/kg dry	62	1	07/27/10 16:26	LCK	10G0621	SW 826
4-Chlorotoluene	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 826
1,2-Dibromo-3-chloropropane	<62		ug/kg dry	62	1	07/27/10 16:26	LCK	10G0621	SW 826
1,2-Dibromoethane (EDB)	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 826
Dibromomethane	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 826
1,2-Dichlorobenzene	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 826
1,3-Dichlorobenzene	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 826
1,4-Dichlorobenzene	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 826
Dichlorodifluoromethane	<62		ug/kg dry	62	1	07/27/10 16:26	LCK	10G0621	SW 826
1,1-Dichloroethane	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 826
1,2-Dichloroethane	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 826
1,1-Dichloroethene	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 826
cis-1,2-Dichloroethene	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 826
trans-1,2-Dichloroethene	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 826
	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 826
1,2-Dichloropropane	<31		ug/kg dry ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 826
1,3-Dichloropropane	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 826
2,2-Dichloropropane				31	1	07/27/10 16:26	LCK	10G0621	SW 826
1,1-Dichloropropene	<31 <31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 826
cis-1,3-Dichloropropene	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 826
trans-1,3-Dichloropropene	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 826
2,3-Dichloropropene lsopropy1 Ether	31		ug/kg dry ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 826
Ethylbenzene	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 826
Hexachlorobutadiene	<43		ug/kg dry	43	1	07/27/10 16:26	LCK	10G0621	SW 826
Isopropylbenzene	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 826
p-Isopropyltoluene	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 826
	<62			62	1	07/27/10 16:26	LCK	10G0621	SW 826
Methylene Chloride Methyl tert-Butyl Ether	<31		ug/kg dry ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 826
					1	07/27/10 16:26	LCK	10G0621	SW 826
Naphthalene	<62		ug/kg dry	62	1	07/27/10 16:26	LCK	10G0621	SW 826
n-Propylbenzene	<31		ug/kg dry	31	1	07/27/10 16:26		10G0621	SW 826
Styrene	<62		ug/kg dry	62			LCK LCK	10G0621	SW 826
1,1,1,2-Tetrachloroethane	<31 21		ug/kg dry	31	1	07/27/10 16:26 07/27/10 16:26	LCK	10G0621	SW 8266
1,1,2,2-Tetrachloroethane Tetrachloroethene	<31 530		ug/kg dry ug/kg dry	31 31	1 1	07/27/10 16:26	LCK	10G0621	SW 826

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186

Work Order:

Project Number:

WTG0762

Received: 07/27/10

Project:

1E-0909013 Racine, W1

1730 State Street

Reported:

07/29/10 09:15

Mr. Tim Taugher

	Sample	Data			Dilution	Date		Seq/	
Analyte	Result	Qualifiers	Units	MRL	Factor	Analyzed	Analyst	Batch	Method
Sample ID: WTG0762-03 (MW-7 2-	-4' - Soil) - co	nt.				Sampled: 07	/23/10		
VOCs by SW8260B - cont.	,								
Toluene	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 8260B
1,2,3-Trichlorobenzene	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 8260B
1,2,4-Trichlorobenzene	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 8260B
1,1,1-Trichloroethane	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 8260E
1,1,2-Trichloroethane	<43		ug/kg dry	43	1	07/27/10 16:26	LCK	10G0621	SW 8260E
Trichloroethene	44		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 8260E
Trichlorofluoromethane	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 8260E
1,2,3-Trichloropropane	<62		ug/kg dry	62	1	07/27/10 16:26	LCK	10G0621	SW 8260E
1,2,4-Trimethylbenzene	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 8260B
1,3,5-Trimethylbenzene	<31		ug/kg dry	31	1	07/27/10 16:26	LCK	10G0621	SW 8260B
Vinyl chloride	<43		ug/kg dry	43	1	07/27/10 16:26	LCK	10G0621	SW 8260B
Xylenes, total	<110		ug/kg dry	110	1	07/27/10 16:26	LCK	10G0621	SW 8260B
Surr: Dibromofluoromethane (80-120%)	102 %								
Surr: Toluene-d8 (80-120%)	98 %								
Surr: 4-Bromofluorobenzene (80-120%)	101 %								
Sample ID: WTG0762-04 (MW-8 2-	-3' - Soil)					Sampled: 07	/23/10		
General Chemistry Parameters						•			
% Solids	82		%	NA	1	07/28/10 15:35	pam	10G0649	SM 2540G
VOCs by SW8260B									
Benzene	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260B
Bromobenzene	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260B
Bromochloromethane	<47		ug/kg dry	47	1.1	07/27/10 16:52	LCK	10G0621	SW 8260B
Bromodichloromethane	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260B
Bromoform	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260B
Bromomethane	<130		ug/kg dry	130	1.1	07/27/10 16:52	LCK	10G0621	SW 8260B
n-Butylbenzene	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260B
sec-Butylbenzene	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260B
tert-Butylbenzene	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260B
Carbon Tetrachloride	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260B
Chlorobenzene	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260B
Chlorodibromomethane	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260B
Chloroethane	<67		ug/kg dry	67	1.1	07/27/10 16:52	LCK	10G0621	SW 8260B
Chloroform	<34		ug/kg dry	34	1,1	07/27/10 16:52	LCK	10G0621	SW 8260B
Chloromethane	<67		ug/kg dry	67	1.1	07/27/10 16:52	LCK	10G0621	SW 8260B
2-Chlorotoluene	<67		ug/kg dry	67	1.1	07/27/10 16:52	LCK	10G0621	SW 8260B
4-Chlorotoluene	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260B
1,2-Dibromo-3-chloropropane	<67		ug/kg dry	67	1.1	07/27/10 16:52	LCK	10G0621	SW 8260B
1,2-Dibromoethane (EDB)	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260B
Dibromomethane	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260B
1,2-Dichlorobenzene	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260B
1,3-Dichlorobenzene	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260B
1,4-Dichlorobenzene	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260B
Dichlorodifluoromethane	<67		ug/kg dry	67	1.1	07/27/10 16:52	LCK	10G0621	SW 8260B
1,1-Dichloroethane	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260B
1,2-Dichloroethane	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260B
1,1-Dichloroethene	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260B
cis-1,2-Dichloroethene	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260B
trans-1,2-Dichloroethene	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260B
1,2-Dichloropropane	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260B
1,3-Dichloropropane	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260B

Project Manager

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186

Work Order:

WTG0762

1730 State Street

Received:

07/27/10

Project: Project Number: 1E-0909013 Racine, WI

Reported:

07/29/10 09:15

Mr. Tim Taugher

Analyte	Sample Result	Data Qualifiers	Units	MRL	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: WTG0762-04 (MW-8 2	2-3' - Soil) - co	nt.				Sampled: 07	/23/10		
VOCs by SW8260B - cont.						•			
2,2-Dichloropropane	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 82601
1,1-Dichloropropene	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260
cis-1,3-Dichloropropene	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 82601
trans-1,3-Dichloropropene	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 82601
2,3-Dichloropropene	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 82601
Isopropyl Ether	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260I
Ethylbenzene	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260E
Hexachlorobutadiene	<47		ug/kg dry	47	1.1	07/27/10 16:52	LCK	10G0621	SW 8260I
Isopropylbenzene	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260I
p-lsopropyltoluene	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 82601
Methylene Chloride	<67		ug/kg dry	67	1.1	07/27/10 16:52	LCK	10G0621	SW 82601
Methyl tert-Butyl Ether	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 82601
Naphthalene	80		ug/kg dry	67	1.1	07/27/10 16:52	LCK	10G0621	SW 82601
n-Propylbenzene	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 82601
Styrene	<67		ug/kg dry	67	1.1	07/27/10 16:52	LCK	10G0621	SW 82601
1,1,1,2-Tetrachloroethane	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 82601
1,1,2,2-Tetrachloroethane	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 82601
Tetrachloroethene	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 82601
Toluene	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260E
1,2,3-Trichlorobenzene	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260E
1,2,4-Trichlorobenzene	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260E
1,1,1-Trichloroethane	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260E
1,1,2-Trichloroethane	<47		ug/kg dry	47	1.1	07/27/10 16:52	LCK	10G0621	SW 8260E
Trichloroethene	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260E
Trichlorofluoromethane	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 8260E
1,2,3-Trichloropropane	<67		ug/kg dry	67	1.1	07/27/10 16:52	LCK	10G0621	SW 8260E
1,2,4-Trimethylbenzene	55		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 82601
1,3,5-Trimethylbenzene	<34		ug/kg dry	34	1.1	07/27/10 16:52	LCK	10G0621	SW 82601
Vinyl chloride	<47		ug/kg dry	47	1.1	07/27/10 16:52	LCK	10G0621	SW 8260F
Xylenes, total	<110		ug/kg dry	110	1.1	07/27/10 16:52	LCK	10G0621	SW 82601
Surr: Dibromofluoromethane (80-120%)	105 %								
Surr: Toluene-d8 (80-120%)	96 %								
Surr: 4-Bromofluorobenzene (80-120%)	100 %								

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186 Mr. Tim Taugher

Work Order:

Project:

WTG0762

1E-0909013 Racine, WI

Received: Reported:

07/27/10 07/29/10 09:15

1730 State Street Project Number:

	Sample	Data			Dilution	Date		Seq/	
Analyte	Result	Qualifiers	Units	MRL	Factor	Analyzed	Analyst	Batch	Method
Sample ID: WTG0762-05 (MeC	H Blank - Misc.	Liquid)				Sampled: 07	/23/10		
VOCs by SW8260B									
Benzene	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260B
Bromobenzene	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260B
Bromochloromethane	<35		ug/kg wet	35	1	07/27/10 15:09	LCK	10G0621	SW 8260B
Bromodichloromethane	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260B
Bromoform	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260B
Bromomethane	<100		ug/kg wet	100	1	07/27/10 15:09	LCK	10G0621	SW 8260B
n-Butylbenzene	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260B
sec-Butylbenzene	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260B
tert-Butylbenzene	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260B
Carbon Tetrachloride	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260B
Chlorobenzene	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260B
Chlorodibromomethane	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260B
Chloroethane	<50		ug/kg wet	50	1	07/27/10 15:09	LCK	10G0621	SW 8260B
Chloroform	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260B
Chloromethane	<50		ug/kg wet	50	1	07/27/10 15:09	LCK	10G0621	SW 8260B
2-Chlorotoluene	<50		ug/kg wet	50	1	07/27/10 15:09	LCK	10G0621	SW 8260B
4-Chlorotoluene	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260B
1,2-Dibromo-3-chloropropane	<50		ug/kg wet	50	1	07/27/10 15:09	LCK	10G0621	SW 8260B
1,2-Dibromoethane (EDB)	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260B
Dibromomethane	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260B
1,2-Dichlorobenzene	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260B
1,3-Dichlorobenzene	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260B
1,4-Dichlorobenzene	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260B
Dichlorodifluoromethane	<50		ug/kg wet	50	1	07/27/10 15:09	LCK	10G0621	SW 8260B
1,1-Dichloroethane	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260B
1,2-Dichloroethane	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260B
1,1-Dichloroethene	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260B
cis-1,2-Dichloroethene	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260B
trans-1,2-Dichloroethene	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260B
1,2-Dichloropropane	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260B
1,3-Dichloropropane	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260B
2,2-Dichloropropane	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260B
1,1-Dichloropropene	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260B
cis-1,3-Dichloropropene	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260B
trans-1,3-Dichloropropene	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260B
2,3-Dichloropropene	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260B
Isopropyl Ether	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260B
Ethylbenzene	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260B
Hexachlorobutadiene	<35		ug/kg wet	35	1	07/27/10 15:09	LCK	10G0621	SW 8260B
lsopropylbenzene	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260B
p-Isopropyltoluene	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260B
Methylene Chloride	<50		ug/kg wet	50	1	07/27/10 15:09	LCK	10G0621	SW 8260B
Methyl tert-Butyl Ether	<2.5		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260B
Naphthalene	<50		ug/kg wet	50	1	07/27/10 15:09	LCK	10G0621	SW 8260B
•	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260B
n-Propylbenzene	<50		ug/kg wet	50	1	07/27/10 15:09	LCK	10G0621	SW 8260B
Styrene						07/27/10 15:09	LCK	10G0621	SW 8260B
1,1,1,2-Tetrachloroethane	<25		ug/kg wet	25	1				SW 8260B
1,1,2,2-Tetrachloroethane	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	
Tetrachloroethene	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260B
Toluene	<25		ug/kg wet	25	1	07/27/10 15:09	LCK	10G0621	SW 8260B

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Mr. Tim Taugher

Work Order:

Project Number:

Project:

WTG0762

1E-0909013 Racine, WI

1730 State Street

Received:

07/27/10

Reported: 07/29/10 09:15

	Sample	Data		Dilution	Date		Seq/	
Analyte	Result	Qualifiers Units	MRL	Factor	Analyzed	Analyst	Batch	Method
Sample ID: WTG0762-05 (MeOH B	lank - Misc. I	iquid) - cont.			Sampled: 07	/23/10		
VOCs by SW8260B - cont.								
1.2.4-Trichlorobenzene	<25	ug/kg w	et 25	1	07/27/10 15:09	LCK	10G0621	SW 8260B
1,1.1-Trichloroethane	<25	ug∕kg w	et 25	1	07/27/10 15:09	LCK	10G0621	SW 8260B
1.1.2-Trichloroethane	<35	ug/kg w	et 35	1	07/27/10 15:09	LCK	10G0621	SW 8260B
Trichloroethene	<25	ug/kg w	et 25	1	07/27/10 15:09	LCK	10G0621	SW 8260B
Trichlorofluoromethane	<25	ug/kg w	et 25	1	07/27/10 15:09	LCK	10G0621	SW 8260B
1.2,3-Trichloropropane	<50	ug/kg w	et 50	1	07/27/10 15:09	LCK	10G0621	SW 8260B
1.2.4-Trimethylbenzene	<25	ug/kg w	et 25	1	07/27/10 15:09	LCK	10G0621	SW 8260B
1,3,5-Trimethylbenzene	<25	ug/kg w	et 25	1	07/27/10 15:09	LCK	10G0621	SW 8260B
Vinyl chloride	<35	ug/kg w	et 35	1	07/27/10 15:09	LCK	10G0621	SW 8260B
Xylenes, total	<85	ug/kg w	et 85	1	07/27/10 15:09	LCK	10G0621	SW 8260B
Surr: Dibromofluoromethane (80-120%)	103 %							
Surr: Toluene-d8 (80-120%)	99 %							
Surr: 4-Bromofluorobenzene (80-120%)	104 %							

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186 Work Order:

WTG0762

71

07/27/10

Project:

1E-0909013 Racine, WI

Received: Reported:

07/29/10 09:15

Mr. Tim Taugher

Project Number: 1730 State Street

LABORATORY BLANK QC DATA

	Seq/	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Batch	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
VOCs by SW8260B														
Benzene	10G0621			ug/kg wet	N/A	25	<25							
Bromobenzene	10G0621			ug/kg wet	N/A	25	<25							
Bromochloromethane	10G0621			ug/kg wet	N/A	35	<35							
Bromodichloromethane	10G0621			ug/kg wet	N/A	25	<25							
Bromoform	10G0621			ug/kg wet	N/A	25	<25							
Bromomethane	10G0621			ug/kg wet	N/A	100	<100							
n-Butylbenzene	10G0621			ug/kg wet	N/A	25	<25							
sec-Butylbenzene	10G0621			ug/kg wet	N/A	25	<25							
tert-Butylbenzene	10G0621			ug/kg wet	N/A	25	<25							
Carbon Tetrachloride	10G0621			ug/kg wet	N/A	25	<25							
Chlorobenzene	10G0621			ug/kg wet	N/A	25	<25							
Chlorodibromomethane	10G0621			ug/kg wet	N/A	25	<25							
Chloroethane	10G0621			ug/kg wet	N/A	50	<50							
Chloroform	10G0621			ug/kg wet	N/A	25	<25							
Chloromethane	10G0621			ug/kg wet	N/A	50	<50							
2-Chlorotoluene	10G0621			ug/kg wet	N/A	50	<50							
4-Chlorotoluene	10G0621			ug/kg wet	N/A	25	<25							
1,2-Dibromo-3-chloropropane	10G0621			ug/kg wet	N/A	50	<50							
1,2-Dibromoethane (EDB)	10G0621			ug/kg wet	N/A	25	<25							
Dibromomethane	10G0621			ug/kg wet	N/A	25	<25							
1,2-Dichlorobenzene	10G0621			ug/kg wet	N/A	25	<25							
1,3-Dichlorobenzene	10G0621			ug/kg wet	N/A	25	<25							
1,4-Dichlorobenzene	10G0621			ug/kg wet	N/A	25	<25							
Dichlorodifluoromethane	10G0621			ug/kg wet	N/A	50	<50							
I,1-Dichloroethane	10G0621			ug/kg wet	N/A	25	<25							
1,2-Dichloroethane	10G0621			ug/kg wet	N/A	25	<25							
1,1-Dichloroethene	10G0621			ug/kg wet	N/A	25	<25							
cis-1,2-Dichloroethene	10G0621			ug/kg wet	N/A	25	<25							
trans-1,2-Dichloroethene	10G0621			ug/kg wet	N/A	25	<25							
1,2-Dichloropropane	10G0621			ug/kg wet	N/A	25	<25							
1,3-Dichloropropane	10G0621			ug/kg wet	N/A	25	<25							
2,2-Dichloropropane	10G0621			ug/kg wet	N/A	25	<25							
1,1-Dichloropropene	10G0621			ug/kg wet	N/A	25	<25							
cis-1,3-Dichloropropene	10G0621			ug/kg wet	N/A	25	<25							
trans-1,3-Dichloropropene	10G0621			ug/kg wet	N/A	25	<25							
2,3-Dichloropropene	10G0621			ug/kg wet	N/A	25	<25							
Isopropyl Ether	10G0621			ug/kg wet	N/A	25	<25							
Ethylbenzene	10G0621			ug/kg wet	N/A	25	<25							
Hexachlorobutadiene	10G0621			ug/kg wet	N/A	35	<35							
lsopropylbenzene	10G0621			ug/kg wet	N/A	25	<25							
p-Isopropyltoluene	10G0621			ug/kg wet	N/A	25	<25							
Methylene Chloride	10G0621			ug/kg wet	N/A	50	<50							
Methyl tert-Butyl Ether	10G0621			ug/kg wet	N/A	25	<25							
Naphthalene	10G0621			ug/kg wet	N/A	50	<50							

602 Commerce Drive Watertown, Wf 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186 Mr. Tim Taugher

Work Order:

WTG0762

07/27/10

Project:

1E-0909013 Racine, WI

Received: Reported:

Project Number:

1730 State Street

07/29/10 09:15

	IDOD	TO DY DE	 000101

			LAB	ORAT	ORY B	LANK	QC D	ATA						
Analyte	Seq/ Batch	Source Result	_	Units	MDL	MRL	Result	Dup Result	% REC	-	% REC	RPD	RPD Limit	Q
VOCs by SW8260B														
n-Propylbenzene	10G0621		,	ıg/kg wet	N/A	25	<25							
Styrene	10G0621		1	ıg/kg wet	N/A	50	<50							
1,1,1,2-Tetrachloroethane	10G0621		1	ıg/kg wet	N/A	25	<25							
1,1,2,2-Tetrachloroethane	10G0621		1	g/kg wet	N/A	25	<25							
Tetrachloroethene	10G0621		1	ıg/kg wet	N/A	25	<25							
Toluene	10G0621		1	ıg/kg wet	N/A	25	<25							
1,2,3-Trichlorobenzene	10G0621		1	ıg/kg wet	N/A	25	<25							
1,2,4-Trichlorobenzene	10G0621		1	ıg/kg wet	N/A	25	<25							
1,1,1-Trichloroethane	10G0621		1	ıg/kg wet	N/A	25	<25							
1,1,2-Trichloroethane	10G0621		1	ıg/kg wet	N/A	35	<35							
Trichloroethene	10G0621		1	ıg/kg wet	N/A	25	<25							
Trichlorofluoromethane	10G0621		1	ıg/kg wet	N/A	25	<25							
1,2,3-Trichloropropane	10G0621		1	ig/kg wet	N/A	50	<50							
1.2,4-Trimethylbenzene	10G0621		1	ıg/kg wet	N/A	25	<25							
1,3,5-Trimethylbenzene	10G0621		1	ıg/kg wet	N/A	25	<25							
Vinyl chloride	10G0621		1	ıg/kg wet	N/A	35	<35							
Xylenes, total	10G0621		1	ıg/kg wet	N/A	85	<85							
Surrogate: Dibromofluoromethane	10G0621		t	g/kg wet					104		80-120			
Surrogate: Toluene-d8	10G0621		υ	g/kg wet					97		80-120			
Surrogate: 4-Bromofluorobenzene	10G0621		υ	g/kg wet					102		80-120			

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186 Mr. Tim Taugher

Work Order:

WTG0762

1E-0909013 Racine, WI

Received:

07/27/10

Project Number:

Project:

1730 State Street

07/29/10 09:15 Reported:

			C	CV Q	DAT	A							
	Seq/ Sou	rce Spike	2				Dup	%	Dup	% REC		RPD	
Analyte	Batch Res			MDL	MRL	Result	Result	REC	•	Limits	RPD	Limit	Q
VOCs by SW8260B													
Benzene	T001618	2500	ug/kg wet	N/A	N/A	2330		93		80-120			
Bromobenzene	T001618	2500	ug/kg wet	N/A	N/A	2190		87		80-120			
Bromochloromethane	T001618	2500	ug/kg wet	N/A	N/A	2300		92		80-120			
Bromodichloromethane	T001618	2500	ug/kg wet	N/A	N/A	2290		92		80-120			
Bromoform	T001618	2500	ug/kg wet	N/A	N/A	2220		89		80-120			
Bromomethane	T001618	2500	ug/kg wet	N/A	N/A	2180		87		60-140			
n-Butylbenzene	T001618	2500	ug/kg wet	N/A	N/A	2280		91		80-120			
sec-Butylbenzene	T001618	2500	ug/kg wet	N/A	N/A	2310		92		80-120			
tert-Butylbenzene	T001618	2500	ug/kg wet	N/A	N/A	2290		91		80-120			
Carbon Tetrachloride	T001618	2500	ug/kg wet	N/A	N/A	2350		94		60-140			
Chlorobenzene	T001618	2500	ug/kg wet	N/A	N/A	2300		92		80-120			
Chlorodibromomethane	T001618	2500	ug/kg wet	N/A	N/A	2240		90		80-120			
Chloroethane	T001618	2500	ug/kg wet	N/A	N/A	2400		96		60-140			
Chloroform	T001618	2500	ug/kg wet	N/A	N/A	2440		98		80-120			
Chloromethane	T001618	2500	ug/kg wet	N/A	N/A	2310		92		60-140			
2-Chlorotoluene	T001618	2500	ug/kg wet	N/A	N/A	2240		89		80-120			
4-Chlorotoluene	T001618	2500	ug/kg wet	N/A	N/A	2220		89		80-120			
1,2-Dibromo-3-chloropropane	T001618	2500	ug/kg wet	N/A	N/A	2110		84		60-140			
1,2-Dibromoethane (EDB)	T001618	2500	ug/kg wet	N/A	N/A	2160		86		80-120			
Dibromomethane	T001618	2500	ug/kg wet	N/A	N/A	2280		91		80-120			
1,2-Dichlorobenzene	T001618	2500	ug/kg wet	N/A	N/A	2200		88		80-120			
1,3-Dichlorobenzene	T001618	2500	ug/kg wet	N/A	N/A	2250		90		80-120			
1,4-Dichlorobenzene	T001618	2500	ug/kg wet	N/A	N/A	2240		90		80-120			
Dichlorodifluoromethane	T001618	2500	ug/kg wet	N/A	N/A	2250		90		60-140			
1,1-Dichloroethane	T001618	2500	ug/kg wet	N/A	N/A	2430		97		80-120			
1,2-Dichloroethane	T001618	2500	ug/kg wet	N/A	N/A	2440		98		80-120			
1,1-Dichloroethene	T001618	2500	ug/kg wet	N/A	N/A	2340		94		80-120			
cis-1,2-Dichloroethene	T001618	2500	ug/kg wet	N/A	N/A	2440		98		80-120			
trans-1,2-Dichloroethene	T001618	2500	ug/kg wet	N/A	N/A	2340		94		80-120			
1,2-Dichloropropane	T001618	2500	ug/kg wet	N/A	N/A	2270		91		80-120			
1,3-Dichloropropane	T001618	2500	ug/kg wet	N/A	N/A	2180		87		80-120			
2,2-Dichloropropane	T001618	2500	ug/kg wet	N/A	N/A	2560		102		60-140			
1,1-Dichloropropene	T001618	2500	ug/kg wet	N/A	N/A	2550		102		80-120			
cis-1,3-Dichloropropene	T001618	2500	ug/kg wet	N/A	N/A	2330		93		80-120			
trans-1,3-Dichloropropene	T001618	2500	ug/kg wet	N/A	N/A	2330		93		80-120			
2,3-Dichloropropene	T001618	2500	ug/kg wet	N/A	N/A	2390		96		80-120			
lsopropyl Ether	T001618	2500	ug/kg wet	N/A	N/A	2520		101		80-120			
Ethylbenzene	T001618	2500	ug/kg wet	N/A	N/A	2280		91		80-120			
Hexachlorobutadiene	T001618	2500	ug/kg wet	N/A	N/A	2350		94		60-140			
Isopropylbenzene	T001618	2500	ug/kg wet	N/A	N/A	2320		93		80-120			
p-lsopropyltoluene	T001618	2500	ug/kg wet	N/A	N/A	2330		93		80-120			
Methylene Chloride	T001618	2500	ug/kg wet	N/A	N/A	2250		90		80-120			
Methyl tert-Butyl Ether	T001618	2500	ug/kg wet	N/A	N/A	2310		93		80-120			
Naphthalene	T001618	2500	ug/kg wet	N/A	N/A	2030		81		60-140			
n-Propylbenzene	T001618	2500	ug/kg wet	N/A	N/A	2270		91		80-120			

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186 Mr. Tim Taugher

Work Order:

WTG0762

Received:

07/27/10

Project:

1E-0909013 Racine, WI

Reported:

07/29/10 09:15

1730 State Street Project Number:

				C	CV QC	CDAT	A							
Analyte	Seq/ Batch	Source Result	Spike Level	Units	MDL	MRL	Result	Dup Result	% REC	Dup %REC	% REC	RPD	RPD Limit	0
VOCs by SW8260B														
Styrene	T001618		2500	ug/kg wet	N/A	N/A	2250		90		80-120			
1,1,1,2-Tetrachloroethane	T001618		2500	ug/kg wet	N/A	N/A	2350		94		80-120			
1,1,2,2-Tetrachloroethane	T001618		2500	ug/kg wet	N/A	N/A	2000		80		80-120			
Tetrachloroethene	T001618		2500	ug/kg wet	N/A	N/A	2410		96		80-120			
Toluene	T001618		2500	ug/kg wet	N/A	N/A	2220		89		80-120			
1,2,3-Trichlorobenzene	T001618		2500	ug/kg wet	N/A	N/A	2280		91		80-120			
1,2,4-Trichlorobenzene	T001618		2500	ug/kg wet	N/A	N/A	2320		93		80-120			
1,1,1-Trichloroethane	T001618		2500	ug/kg wet	N/A	N/A	2540		102		80-120			
1,1,2-Trichloroethane	T001618		2500	ug/kg wet	N/A	N/A	2180		87		80-120			
Trichloroethene	T001618		2500	ug/kg wet	N/A	N/A	2370		95		80-120			
Trichlorofluoromethane	T001618		2500	ug/kg wet	N/A	N/A	2510		100		80-120			
1,2,3-Trichloropropane	T001618		2500	ug/kg wet	N/A	N/A	2130		85		80-120			
1,2,4-Trimethylbenzene	T001618		2500	ug/kg wet	N/A	N/A	2220		89		80-120			
1,3,5-Trimethylbenzene	T001618		2500	ug/kg wet	N/A	N/A	2290		91		80-120			
Vinyl chloride	T001618		2500	ug/kg wet	N/A	N/A	2440		98		80-120			
Xylenes, total	T001618		7500	ug/kg wet	N/A	N/A	6740		90		80-120			
Surrogate: Dibromofluoromethane	T001618			ug/kg wet					104		80-120			
Surrogate: Toluene-d8	T001618			ug/kg wet					97		80-120			
Surrogate: 4-Bromofluorobenzene	T001618			ug/kg wet					99		80-120			

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road

Waukesha, WI 53186

Work Order:

WTG0762

Received:

07/27/10

Project: Project Number: 1E-0909013 Racine, WI 1730 State Street Reported:

07/29/10 09:15

Mr. Tim Taugher

		L	ABOR	ATOR	Y DUI	PLICA	TE QC DA	ATA	-				
Analyte	Seq/ Batch	Source Result		Units	MDL	MRL	Result	% REC	•	% REC	RPD	RPD Limit	0
General Chemistry Parameters QC Source Sample: WTG0762-04													
% Solids	10G0649	81.9		%	N/A	N/A	82.2				0	20	

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Work Order:

Project Number:

Project:

WTG0762

1E-0909013 Racine, WI

1730 State Street

Received:

07/27/10

Reported:

07/29/10 09:15

			LC	S/LCS I	UPLI	CATE	QC DA	TA						
Analysis	Seq/	Source		Ylmita	MDL	MRL	Dogult	Dup Result	% REC	Dup %REC	% REC	RPD	RPD Limit	Q
Analyte VOCs by SW8260B	Batch	Result	Level	Units	MIDL	WIKE	Result	Kesuit	REC	70KEC	Limits	KID	Limit	
Benzene	10G0621		2500	ug/kg wet	N/A	N/A	2320		93		80-120			
Bromobenzene	10G0621		2500	ug/kg wet	N/A	N/A	2210		88		80-120			
Bromochloromethane	10G0621		2500	ug/kg wet	N/A	N/A	2370		95		80-120			
Bromodichloromethane	10G0621		2500	ug/kg wet	N/A	N/A	2310		92		80-120			
Bromoform	10G0621		2500	ug/kg wet	N/A	N/A	2240		90		80-120			
Bromomethane	10G0621		2500	ug/kg wet	N/A	N/A	2290		91		60-140			
n-Butylbenzene	10G0621		2500	ug/kg wet	N/A	N/A	2290		92		80-120			
sec-Butylbenzene	10G0621		2500	ug/kg wet	N/A	N/A	2270		91		80-120			
tert-Butylbenzene	10G0621		2500	ug/kg wet	N/A	N/A	2250		90		80-120			
Carbon Tetrachloride	10G0621		2500	ug/kg wet	N/A	N/A	2350		94		60-140			
Chlorobenzene	10G0621		2500	ug/kg wet	N/A	N/A	2250		90		80-120			
			2500			N/A	2240		89		80-120			
Chlorodibromomethane	10G0621			ug/kg wet	N/A		2440		97		60-140			
Chloroethane Chloroform	10G0621		2500	ug/kg wet	N/A	N/A			98		80-120			
	10G0621		2500	ug/kg wet	N/A	N/A	2460				60-140			
Chloromethane	10G0621		2500	ug/kg wet	N/A	N/A	2600 2250		104 90		80-120			
2-Chlorotoluene	10G0621		2500	ug/kg wet	N/A	N/A			88		80-120			
4-Chlorotoluene	10G0621		2500	ug/kg wet	N/A	N/A	2200							
1,2-Dibromo-3-chloropropane	10G0621		2500	ug/kg wet	N/A	N/A	2120		85		60-140			
1,2-Dibromoethane (EDB)	10G0621		2500	ug/kg wet	N/A	N/A	2210		89		80-120			
Dibromomethane	10G0621		2500	ug/kg wet	N/A	N/A	2360		94		80-120			
1,2-Dichlorobenzene	10G0621		2500	ug/kg wet	N/A	N/A	2230		89		80-120			
1,3-Dichlorobenzene	10G0621		2500	ug/kg wet	N/A	N/A	2260		90		80-120			
1,4-Dichlorobenzene	10G0621		2500	ug/kg wet	N/A	N/A	2220		89		80-120			
Dichlorodifluoromethane	10G0621		2500	ug/kg wet	N/A	N/A	2540		101		60-140			
1,1-Dichloroethane	10G0621		2500	ug/kg wet	N/A	N/A	2470		99		80-120			
1,2-Dichloroethane	10G0621		2500	ug/kg wet	N/A	N/A	2470		99		80-120			
1,1-Dichloroethene	10G0621		2500	ug/kg wet	N/A	N/A	2460		99		80-120			
cis-1,2-Dichloroethene	10G0621		2500	ug/kg wet	N/A	N/A	2510		100		80-120			
trans-1,2-Dichloroethene	10G0621		2500	ug/kg wet	N/A	N/A	2460		99		80-120			
1,2-Dichloropropane	10G0621		2500	ug/kg wet	N/A	N/A	2260		90		80-120			
1,3-Dichloropropane	10G0621		2500	ug/kg wet	N/A	N/A	2180		87		80-120			
2,2-Dichloropropane	10G0621		2500	ug/kg wet	N/A	N/A	2520		101		60-140			
1,1-Dichloropropene	10G0621		2500	ug/kg wet	N/A	N/A	2560		102		80-120			
cis-1,3-Dichloropropene	10G0621			ug/kg wet	N/A	N/A	2260		90		80-120			
trans-1,3-Dichloropropene	10G0621			ug/kg wet	N/A	N/A	2320		93		80-120			
Ethylbenzene	10G0621			ug/kg wet	N/A	N/A	2230		89		80-120			
Hexachlorobutadiene	10G0621		2500	ug/kg wet	N/A	N/A	2300		92		60-140			
Isopropylbenzene	10G0621		2500	ug/kg wet	N/A	N/A	2260		90		80-120			
p-Isopropyltoluene	10G0621		2500	ug/kg wet	N/A	N/A	2290		91		80-120			
Methylene Chloride	10G0621		2500	ug/kg wet	N/A	N/A	2290		92		80-120			
Methyl tert-Butyl Ether	10G0621		2500	ug/kg wet	N/A	N/A	2460		98		80-120			
Naphthalene	10G0621		2500	ug/kg wet	N/A	N/A	2040		82		60-140			
n-Propylbenzene	10G0621			ug/kg wet	N/A	N/A	2250		90		80-120			
Styrene	10G0621		2500	ug/kg wet	N/A	N/A	2190		88		80-120			
1,1,1,2-Tetrachloroethane	10G0621		2500	ug/kg wet	N/A	N/A	2330		93		80-120			

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Work Order:

WTG0762

Received:

07/27/10

Mr. Tim Taugher

Project: Project Number: 1E-0909013 Racine, WI 1730 State Street

Reported:

07/29/10 09:15

			LCS	S/LCS I	OUPLI	CATE	QC DA	TA						
Analyte	•	Source Result	Spike Level	Units	MDL	MRL	Result	Dup Result	% REC	Dup %REC	% REC	RPD	RPD Limit	Q
VOCs by SW8260B														
1,1,2,2-Tetrachloroethane	10G0621		2500	ug/kg wet	N/A	N/A	2050		82		80-120			
Tetrachloroethene	10G0621		2500	ug/kg wet	N/A	N/A	2360		95		80-120			
Toluene	10G0621		2500	ug/kg wet	N/A	N/A	2200		88		80-120			
1,2,3-Trichlorobenzene	10G0621		2500	ug/kg wet	N/A	N/A	2230		89		80-120			
1,2,4-Trichlorobenzene	10G0621		2500	ug/kg wet	N/A	N/A	2300		92		80-120			
1,1,1-Trichloroethane	10G0621		2500	ug/kg wet	N/A	N/A	2590		104		80-120			
1,1,2-Trichloroethane	10G0621		2500	ug/kg wet	N/A	N/A	2160		86		80-120			
Trichloroethene	10G0621		2500	ug/kg wet	N/A	N/A	2430		97		80-120			
Trichlorofluoromethane	10G0621		2500	ug/kg wet	N/A	N/A	2500		100		80-120			
1,2,3-Trichloropropane	10G0621		2500	ug/kg wet	N/A	N/A	1970		79		80-120			
1,2,4-Trimethylbenzene	10G0621		2500	ug/kg wet	N/A	N/A	2220		89		80-120			
1,3,5-Trimethylbenzene	10G0621		2500	ug/kg wet	N/A	N/A	2270		91		80-120			
Vinyl chloride	10G0621		2500	ug/kg wet	N/A	N/A	2470		99		80~120			
Xylenes, total	10G0621		7500	ug/kg wet	N/A	N/A	6600		88		80-120			
Surrogate: Dibromofluoromethane	10G0621			ug/kg wet					105		80-120			
Surrogate: Toluene-d8	10G0621			ug/kg wet					97		80-120			
Surrogate: 4-Bromofluorobenzene	10G0621			ug/kg wet					100		80-120			

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN

N8 W22350 Johnson Road Waukesha, WI 53186

Mr. Tim Taugher

Work Order: Project: WTG0762

1E-0909013 Racine, WI

Project Number: 1730 State Street

Received:

07/27/10

Reported: 07/29/10 09:15

CERTIFICATION SUMMARY

TestAmerica Watertown

Method	Matrix	Nelac	Wisconsin		
SM 2540G	Solid/Soil	X	X		
SW 8260B	Solid/Soil	X	X		

602 Commerce Drive Watertown, WI 53094 * 800-833-7036 * Fax 920-261-8120

GILES ENGINEERING - WISCONSIN N8 W22350 Johnson Road Waukesha, WI 53186 Mr. Tim Taugher

Work Order: Project:

Project Number:

WTG0762 1E-0909013 Racine, WI

1730 State Street

Received:

07/27/10

Reported: 07/29/10 09:15

DATA QUALIFIERS AND DEFINITIONS

ADDITIONAL COMMENTS

Results are reported on a wet weight basis unless otherwise noted.