

Dallas, TX
Los Angeles, CA

Manassas, VA

· Milwaukee, WI

GILES Engineering Associates, inc.

GEOTECHNICAL, ENVIRONMENTAL & CONSTRUCTION MATERIALS CONSULTANTS

October 27, 2015 Revised July 8, 2020 Revised September 6, 2023

Wisconsin Department of Natural Resources Southeast Region 141 NW Barstow Street, Room 180 Waukesha, WI 53188

- Attention: Ms. Shanna Laube-Anderson Hydrogeologist Advanced
- Subject: Change Order No. 3 Proposed Additional Site Investigation & Cost Estimate Martinizing Dry Cleaning Site 1730 State Street Racine, Wisconsin 53404 Project No. 1E-0909013 BRRTS No. 02-52-549890 / FID No. 252251010

Dear Ms. Laube-Anderson:

Giles Engineering Associates, Inc. (Giles) has prepared this Change Order #3 which includes a scope of services and cost estimate on behalf of BMP Realty LLC, owner of the Martinizing Racine property (the "Site"), located at 1730 State Street, in Racine, Wisconsin. Based on our previous correspondence and dialog, it is our understanding that the Wisconsin Department of Natural Resources (WDNR) has requested that additional site investigation (SI) work be completed to determine the vertical and horizontal extent of contamination on the periphery of the site and off-site to the north. In addition, up to four quarterly groundwater sampling events are required to establish the groundwater contaminant trends and extent.

A vapor mitigation system was installed on July 7, 2023, and a telephone meeting was conducted on July 26, 2023, with the WDNR. Additional scope that was discussed included performing Pressure Field Extension and indoor air testing, which are added to this change order.

BACKGROUND

The Site operated as a gasoline filling station in the early 1930s to 1970. In 1970, the Site became a self-service coin laundromat and a dry-cleaning facility. Dry cleaning operations were performed at the Site until approximately 2004, when it became a drop-off for offsite dry-cleaning at another facility. Currently, the former dry-cleaning portion of the building Site is leased and occupied a cell phone store (Metro PCS). The south portion of the building continues to operate as a laundromat (Coin Laundry). Site Plan illustrating the current building is included as Figure 1.

The results of the initial environmental investigation (2007) and the SI (2010) have shown that lowlevel petroleum volatile organic compounds (PVOCs) and elevated concentrations of chlorinated VOCs (CVOCs) were detected in the soil and groundwater at the Site. The petroleum impacts are inferred to be associated with the historic use of the Site as a gasoline station, and CVOCs are associated with the former on-Site dry-cleaning operation. The extent of soil impacts are shown on Figure 2 and groundwater impacts are shown on Figure 3.

The detected PVOCs in soil are generally present on the western portion of the Site at concentrations below the WDNR NR 720 residual contaminant levels (RCLs). CVOCs were detected in soil at levels exceeding the RCLs for protection of groundwater. The distribution of the CVOCs generally appears to be beneath the building and in the paved area (dumpster staging area) immediately northwest of the building. The highest soil concentrations exceed the WDNR landfill standard for Contaminated-Out, Non-Hazardous Material and are located immediately north and west of the service door on the north side of the building. Soil results are summarized in Table 1.

The direction of groundwater flow has been generally to the south or southwest across the Site. However, a "mounded" groundwater condition was noted during groundwater sampling events performed in August and December of 2010, with the high point being monitoring well MW-2, located on the north side of the building.

PVOCs were detected in the groundwater on the west portion of the Site. The detected concentration of benzene exceeded its NR 140 Preventative Action Limit (PAL) or Enforcement Standard (ES) in a groundwater grab sample from temporary well TW-1 in February 2010 and during the two quarterly groundwater sampling events in 2010 in wells MW-6 and MW-7.

Groundwater samples collected from monitoring wells located within the building (MW-1) and to the north, west, and south of the building (MW-2, MW-3, MW-4, MW-7, and MW-8) contained concentrations of CVOCs above their respective NR 140 ES or PAL. Groundwater results are summarized in Table 2.

Sub-slab vapor samples were collected from inside the on-Site building from vapor points VP-1 and VP-2. Vapor point VP-1 was located near the dry-cleaning machine, and VP-2 was located in the laundromat space. Both soil vapor samples contained Tetrachloroethene (PCE) which exceeded the Vapor Risk Screening Level (VRSL) for large commercial/industrial properties. In addition, Trichlorethene (TCE) was reported at a concentration exceeding the VRSL for large commercial/industrial properties at VP-2. The locations of the sampling points are shown on Figure 4 and the soil gas analytical results are summarized in Table 3.

At this time, it is our understanding that additional SI activities are necessary to determine the vertical and horizontal extent of contamination on the periphery of the site. In addition, the WDNR has requested that we establish the current groundwater contaminant trends, the extent of groundwater contamination to the north, west and east, and a vapor intrusion assessment for the property to the north. In addition, since a vapor mitigation system has been installed pressure field extension (PFE) testing and indoor air sampling have been added to the scope of services. The additional SI activities will be completed prior to bidding the remediation phase of this project.

PROPOSED SCOPE OF SERVICES

Prepare this Change Order #3 to provide a description of the proposed soil, sub-slab vapor, groundwater, indoor air sampling services, plus PFE testing, and associated costs for WDNR review and approval.

• Establish top of casing elevations for the existing groundwater monitoring well network, wells MW-1 through MW-8, and gauge the groundwater elevations in each of the wells.

- Re-develop existing wells MW-1 through MW-8. The wells were last sampled in 2010; therefore, redevelopment is necessary to ensure representative groundwater samples are collected. Development water will be temporarily drummed and stored on-Site until Giles can arrange proper disposal.
- Collect one groundwater sample from each of the existing groundwater monitoring wells (MW-1 through MW-8) plus duplicate (nine total) to evaluate the current groundwater conditions at the Site. Groundwater samples will be collected using a peristaltic pump and low-flow sampling techniques. The groundwater samples will be submitted to a Wisconsin Licensed Analytical Laboratory for analysis of VOCs by U.S. EPA Method 8260.
- Evaluate the groundwater results from the initial groundwater sampling event within a brief letter summary (status report) which will include all previous groundwater data.
- Based on the results of the initial sampling event, Giles will install up to four WDNR Ch. NR-141 variance wells to 13-feet (bgs) below ground surface due to the shallow groundwater table, and up to two NR-141 variance piezometers (screened between 25 to 30 feet) to further define the extent of groundwater contamination at the Site (up to 6 new wells/piezometers total).
- The groundwater table monitoring wells will need a variance since the water table is shallow between 2 to 4 feet deep and Giles is planning on using direct-push sampling techniques to install ³/₄-inch inside diameter (I.D.) prepacked well screens. The filter pack seal shall be reduced from 2 feet of fine sand material to 1 foot. The bentonite seal (granules) and annular space seal (bentonite granules) shall be placed as one unit and be 1 foot thick instead of 2. The proposed wells/piezometers will be finished with flushmount well covers with 1 foot of concrete as the surface seal.
- Piezometers will be installed in accordance with WDNR Ch. NR 141 requirements with a variance for ³/₄-inch I.D pre-packed well screens. Piezometers will be installed using direct-push sampling methods. Down-hole tooling and hand tools will be cleaned prior to arrival and cleaned in between each sample interval to minimize cross contamination.
- Survey and develop the newly installed wells/piezometers.
- Collect two soil samples from each boring during the completion of each new wells/piezometers and submit them to a Wisconsin licensed analytical laboratory for analysis of VOCs by U.S. EPA Method 8260 (12 total soil samples).
- Complete two soil borings within the on-Site building to further define the extent of soil impacts. Two soil samples will be collected from each interior soil boring and submitted to a Wisconsin licensed analytical laboratory for analysis of VOCs by U.S. EPA Method 8260. These soil borings are expected to be 8 feet or less using a cart mounted rig. Moreover, two soil borings will be advanced between MW-3 and MW-7 on the western side of the property to a depth of 4 feet deep. Two soil samples will be collected from each exterior boring and submitted to a Wisconsin licensed analytical laboratory for analysis of VOCs by U.S. EPA Method 8260 (ideally a 2 to 4 foot deep sample).
- Install one sub-slab vapor point within the adjacent neighboring building to the north. Collect one sub-slab soil vapor sample for CVOCs by Method TO-15 for the following parameters:
 - Tetrachloroethene (PCE),
 - Trichloroethene (TCE),

- Cis-1,2-Dichlorethene (cis-1,2-DCE),
- *Trans*-1,2-Dichloroethene (*Trans*-1,2-DCE),
- 1,1-Dichloroethene (1,1-DCE),
- 1,2-Dichloroethane (1,2-DCA), and
- Vinyl Chloride (VC).
- Perform up to three quarterly groundwater sampling events to include the existing (8) and newly installed (6) monitoring wells/piezometers, plus two (2) duplicate samples per sampling event (16 total samples per event, or 48 total for three sampling events). Groundwater will be collected using low-flow sampling techniques. The groundwater samples will be submitted to a Wisconsin Licensed Analytical Laboratory for analysis of VOCs by U.S. EPA Method 8260.
- Coordinate the transport and disposal of wastewater generated during development and from the groundwater sampling events, and soil spoils generated during the well installation.
- The Responsible Party has coordinated with a subcontractor for the installation of a sub-slab depressurization system beneath the existing on-Site building's concrete slab. The system required two separate manifolds due to the presence of a structural wall down the center of the building. This task work has been completed already and was approved by the WDNR in a letter dated April 27, 2023.
- Prepare a Vapor Mitigation Commissioning Plan and submit it to the WDNR for approval.
- Perform sub-slab Pressure Field Extension (PFE) test after installation of the depressurization system to ensure the system is working properly, and that an adequate pressure field is established (> or = to 0.004 inches of water). This will be performed for a total of three quarterly events (summer 2023, winter 2023, and spring 2024). An estimated 6 vapor ports on a grid system are planned.
- Perform 10-day passive indoor air sampling using the Radiello 130 for analysis of CVOCs (PCE, TCE, cis-1,2-DCE, trans-1,2-DCE, and VC). Air sampling will occur in both areas of the building on a quarterly basis as the PFE test (2 samples quarterly / 6 total indoor air samples).
- Prepare three commissioning reports (brief letter reports) to document the commissioning process. This will include the results of the PFE testing, indoor air sampling, figures and tables.
- Prepare a Supplemental Site Investigation Report summarizing the tasks performed, results of soil, sub-slab vapor, groundwater and indoor air chemical analyses, and provide conclusions and recommendations for additional delineation, site characterization, monitoring, or remediation.

Proposed locations of the soil probes, groundwater wells, piezometers, sub-slab, PFE samples included in the scope of services are shown on Figure 1. The sub-slab depressurization system and locations of the two proposed sub-slab vapor points are shown on Figure 4.

COST

The estimated cost to complete referenced scope of services is **\$53,750**. The costs for soil and groundwater sampling assumes that in addition to the eight existing wells, four groundwater monitoring wells and two piezometers will be installed and sampled (total of 14 wells/piezometers

in the groundwater monitoring network, plus duplicates {16 total}). The cost also assumes that the two interior soil borings will be completed the same day the additional wells/piezometers are installed. Should these wells/piezometers not be installed, the drilling costs for mobilization/demobilization costs and decontamination would still apply.

A detailed cost summary is attached as Table 4 and in the attached DERF Investigation Bid Sheet (WDNR Form 4400-233). The estimated costs have been prepared based on good-faith estimates submitted from qualified commodity service providers based on the proposed scope of services.

Due to the potential for WDNR revisions/additional to the scope of services, final compensation will be determined based on the actual lineal footage of borings drilled, waste disposal tipping and transportation fees, number of types of laboratory tests performed, and the actual costs for professional services. Also, it should be noted that the fees presented in the attached bid sheets do not include costs for expedited analytical turnaround time.

If project costs are envisioned to exceed the estimated amount due to circumstances listed in NR169.21(2)(e), Giles will not incur additional costs in excess of \$3,000.00 or 5 percent of the total project amount (whichever is lower) without prior authorization from you and the WDNR. Additional communication, correspondence, or supplemental reporting is not included in the scope of services or cost estimate.

SCHEDULE

Giles anticipates 14 months from the anticipated date of authorization to proceed to complete through the completion of the proposed scope of services.

CLOSURE

Thank you for the opportunity to offer our engineering services. Should you have any questions relating to the proposed services or if we can be of additional assistance, please do not hesitate to call.

Respectfully submitted,

GILES ENGINEERING ASSOCIATES, INC.

Daniel K. Pelczar, P.G., CPG Senior Project Manager

ENCLOSURES

Figures:

Figure 1 Site Plan Figure 2 Soil Analytical Results Figure 3 Groundwater Analytical Results Figure 4 Proposed Sub-Slab Depressurization System

Kevin T. Bugel, P.G., C.P.G. Environmental Division Manager

- Attachments: Table 1 Soil Analytical Results Table 2 Groundwater Analytical Results Table 3 Vapor Analytical Results Table 4 Proposed Cost Estimate DERF Site Investigation Bid Sheet Form 4400-233 (R4/04)
- Distribution: Wisconsin Department of Natural Resources Attn: Ms. Shanna Laube-Anderson (via RR Program Submittal Portal) BMP Realty, Inc. Attn: Mr. Jason Berry (via email: jberry1907@gmail.com)

© Giles Engineering Associates, Inc. 2023

Ч	
VEN	
KEA	
BLAI	

	LEGE	ND:			
	-	•	PROPOSE PRESSURE (QTY: 6)	D E FIELD EXTENT	TION TEST
		\oplus	PROPOSEI (QTY: 4)	D SOIL PROBE	
			PROPOSEI SUB-SLAB (QTY: 1)	D OFF-SITE	
	3	MW	PROPOSEI MONITORI (QTY: 4)	D GROUNDWAT	ER
AVENUE		PZ ⊕	PROPOSEI (QTY: 2)		
LAKE		GP−1 �	DIRECT-PL	JSH SOIL PROBI	E
8	h	(₩-1 🛎	GROUNDW	ATER MONITOR	RING WELL
	1	ſ₩-1 @	TEMPORA	RY WELL	
	V	P-1 ▲	SOIL VAPO	R PROBE	
	-		PROPERTY	/ LINE	
			FENCE		
		0	ELECTRIC	POLE	
		Å	LIGHT POS	т	
		X	САТСН ВА	SIN	
		0	MANHOLE		
	2	o _	FIRE HYDR	INT	
	IOTES.				
	1.) EXISTING FIELD OF	G FEATURI BSERVATIO	ES ARE APP	PROXIMATE BAS	SED ON RAPHY.
	2.) FORMER		S ARE APP	ROXIMATE BAS	ED ON
	3.) FORMER	UST ARE	A IS APPRO	XIMATE BASED	ON THE
L	"SOIL SA PREPAR	MPLE LOC ED BY TRO	SOLUTIONS", E	DATED JULY 201	6,
~		6			
Æ		LES CN V22350 JOH JKESHA, W	NGINEERING HNSON DRI VI 53186 (2)	3 ↔ SSOCIA1 VE, SUITE A1 52)544-0118	TES, INC.
FIGURE 1 SITE PLAM MARTINIZI 1730 STAT RACINE, V	I ING TE STREET VISCONSIN				
DESIGNED	DRAWN	SC	ALE	DATE	REVISED
	+	SCALE DATE REVISE			

DESIGNE KTB/KMH JSZ approx. 1"=20' 07-01-20 08-22-23 PROJECT NO.: 1EP-1904012 CAD No. 1EP1904012E3

CHEMICAL KEY:

PCE: TETRACHLOROETHENE TCE: TRICHLOROETHENE

ABBREVIATIONS:

VOCs: VOLATILE ORGANIC COMPOUNDS VRSL: VAPOR RISK SCREENING LEVEL

NOTES:

VOC RESULTS EXPRESSED IN MICROGRAMS PER CUBIC METER (ug/m3)

RESULTS INDICATED IN RED/[BRACKETS] EXCEED THE SUB-SLAB VAPOR VRSL LARGE COMMERCIAL / INDUSTRIAL LAND USE.

TABLE 1 SOIL ANALYTICAL RESULTS

Martinizing Racine 1730 State Street Racine, Wisconsin

1E-0909013

						Sample	Location						NF	R 720 RCLs ¹ (ug/l	(a)	WDNR Landfill
Analyte	TW-1	MV	V-1	MM	V-2	MW-3	MV	V-4	MW-5	MW-6	MW-7	MW-8		(110) (F9)	.97	Disposal
Sample Donth (feet)	6-8	0-2	10 - 12	0-2	6 - 8	2 - 4	2 - 4	10 - 12	2 - 4	2 - 4	2 - 4	2 - 3	Soil to	Direct C	ontact ²	Contained-Out
Sample Depth (leet)	1/21/10	1/21/10	1/21/10	1/21/10	1/21/10	1/21/10	1/21/10	1/21/10	7/23/10	7/23/10	7/23/10	7/23/10	Groundwater	Non-Industrial	Industrial	Values ³
Sample Date	1/21/10	11	12	420	42	BDL	BDL	BDL	BDL	16	7	BDL	Pathway	Land Use	Land Use	
PID	14	11	12	420				Contraction of the local division of the loc								
Detected VOCs (µg/kg)		100	-59	<14,000	<300	<27	<31	<29	<31	<31	<31	<34	NS	108,000	108,000	NS
n-Butylbenzene	<29	<28	60>	<14,000	<300	<27	<31	<29	<31	<31	<31	<34	NS	145,000	145,000	NS
sec-Butylbenzene	130	29	<58	<14,000	<300	-27	<31	34	<31	<31	<31	<34	41.2	156,000	2,340,000	NS
cis-1,2-Dichloroethene	<29	<u>7,300</u>	<u>1,900</u>	<u>19,000</u>	<300	<27	-31	<20	<21	<31	<31	<34	62.6	1,560,000	1.850.000	NS
trans-1,2-Dichloroethene	<29	45	<58	<14,000	<300	<27	<31	<29	101	55	<31	<34	1 570	8 020	35.400	NS
Ethylbenzene	<29	41	<58	<14,000	<300	<27	<31	<29	1.0 J	5.5	-31	<24	NS	268.000	268,000	NS
Isopropylbenzene	110	12 J	<58	<14,000	<300	<27	<31	<29	<31	<31	<31	<34	NC	162,000	162,000	NS
p-Isopropyltoluene	<29	61	<58	<14,000	<300	<27	<31	<29	<31	<31	<31	<34		T02,000	24 400	NO
Naphthalene	<58	340	<120	<28,000	<610	230	<63	<57	<62	<61	<62	80	658.2	5,520	24,100	NO
n-Propylbenzene	62	41	<58	<14,000	<300	<27	<31	<29	<31	<31	<31	<34	NS	264,000	264,000	452.000
Tetrachloroethene	41	570	10,000	{5,200,000}	59,000	33	<u>73</u>	82	<31	<31	<u>530</u>	<34	4.5	33,000	145,000	153,000
Toluene	<29	32	<58	<14,000	<300	<27	<31	<29	<31	<31	<31	<34	1,107	818,000	818,000	NS
Trichleroothono	<29	83	2,700	{420.000}	2,200	<27	<31	<29	<31	0.22 J	44	<34	3.6	1,300	8,410	8,800
	<20	320	<58	<14 000	<300	<27	<31	<29	<31	<31	<31	55	1 2704	219,000	219,000	NS
1,2,4-Thimethylbenzene	-29	110	<58	<14,000	<300	<27	<31	<29	<31	<31	<31	<34	1,575	182,000	182,000	NS
1,3,5-1 rimethylbenzene	<29	(210)	<00	<20,000	<420	<38	<44	<40	<44	<43	<43	<47	0.1	67	2,080	2,000
Vinyl chloride	<41		<u>\02</u>	<20,000	<1 000	<03	<110	<98	<110	<100	<110	<110	3,960	260,000	260,000	NS
total Xylenes	<99	220	<200	<u>\$47,000</u>	1,000	-90		00				L				

NOTES:

¹Wisconsin Administrative Code Natural Resources Chapter (NR) 720 Residual Contaminant Levels were obtained from the Wisconsin Department of Natural Resources (WDNR) spreadsheet, last updated December 2018

²Direct Contact RCLs only apply to soil samples collected within four feet of the ground surface

³WDNR Landfill Disposal "Contained-Out" Values obtained from the fact sheet titled "Contained-Out Values for PCE, TCE, and Vinyl Chloride" (RR-969) effective as of November of 2013 ⁴Soil to Groundwater Pathway RCLs for 1,2,4- and 1,3,5-Trimethylbenzene are combined

PID: Photoionization Detector

BDL: Below Detection Limit

VOCs: Volatile organic compounds

µg/kg: Micrograms per kilogram; equivalent to parts per billion (ppb)

J: Result is below the method quantitation limit (MQL)

NS: No Standard Established

<xx.x: Result detected below the method detection limit of x

xx.x: Underlined results exceed the NR 720 RCL for the Soil to Groundwater Pathway

(xx.x): Parenthesized results exceed the NR 720 RCL for Non-Industrial Direct Contact

[xx.x]: Bracketed results exceed the NR 720 RCL for Industrial and Non-Industrial Direct Contact

{xx.x}: Braced results exceed the WDNR Landfill Disposal Conained-Out Value

TABLE 1 (Continued) SOIL ANALYTICAL RESULTS Martinizing Racine 1730 State Street Racine, Wisconsin 1E-0909013

							Sample	Location							NE	R 720 RCL s ¹ (ug/	(a)	WDNR Landfill
Analyte		GP-1		G	P-2	G	P-3	G	2-4	G	P-5	GP-6	GP-7	GP-8		(720 (Kelo (µg/	.97	Disposal
Denth (feet)	1.6	8,10	12 - 14	4-6	8 - 10	2 - 4	6-8	4 - 6	6 - 8	4 - 6	6 - 8	4 - 6	6 - 8	2-4	Soil to	Direct C	contact ²	Contained-Out
Sample Depth (reet)	6/22/10	6/23/10	6/23/10	6/23/10	6/23/10	6/23/10	6/23/10	6/23/10	6/23/10	6/23/10	6/23/10	6/23/10	6/23/10	10/28/10	Groundwater	Non-Industrial	Industrial	Values ³
Sample Date	0/23/10	199	152	498	228	BDL	BDL	246	28	13	9	71	50	50	Pathway	Land Use	Land Use	
PID	00	100	152	400	220			And a second										and the second secon
Detected VOCs (µg/kg)		-0.000	<200	<590	<1400	<31	<29	780	<29	<31	<29	<28	290	<30	NS	108,000	108,000	NS
n-Butylbenzene	<290	<2,900	<290	<580	<1,400	<31	<29	860	43	<31	<29	<28	170	<30	NS	145,000	145,000	NS
sec-Butylbenzene	<290	<2,900	<290	<580	<1,400	<21	<20	<31	58	220	220	<28	<31	45 J	41.2	156,000	2,340,000	NS
cis-1,2-Dichloroethene	<290	<2,900	<u>770</u>	5,500	2,300	<01	<29	<31	<29	<31	<29	<28	<31	<30	62.6	1,560,000	1,850,000	NS
trans-1,2-Dichloroethene	<290	<2,900	<290	<580	<1,400	<31	<29	-31	<29	<31	<20	<28	<31	<30	1.570	8.020	35,400	NS
Ethylbenzene	<290	<2,900	<290	<580	<1,400	<31	<29	<31	~29	-31	<20	<28	200	<30	NS	268,000	268.000	NS
Isopropylbenzene	<290	<2,900	<290	<580	<1,400	<31	<29	94	<29	<31	<29	<20	230	<30	NS	162,000	162,000	NS
p-Isopropyltoluene	<290	<2,900	<290	<580	<1,400	<31	<29	<31	<29	<31	<29	~20	140	<30	659.2	5 520	24 100	NS
Naphthalene	<590	<2,900	<570	<1200	<2,900	<62	<58	<61	<58	<63	< 38	<07	140	<30	NC	264 000	264,000	NS
n-Propylbenzene	<290	<2,900	<290	<580	<1,400	<31	<29	45	<29	<31	<29	<28	390	<30	NO A E	204,000	145 000	153 000
Tetrachloroethene	62,000	{510,000}	47,000	97,000	<u>{250,000}</u>	<31	<29	<u>32</u>	<29	<u>78</u>	<29	150	<31	4,100	4.0	33,000	949 000	NS
Toluene	<290	<2900	<290	<580	<1400	<31	<29	<31	<29	<31	<29	<28	<31	<30	1,107	010,000	010,000	0.000
Trichloroethene	1,200	9,300	380	5,300	5,500	<31	<29	<31	<29	<u>41</u>	<29	<28	<31	<30	3.6	1,300	8,410	0,000
1.2.4 Trimothylbenzene	<290	<2 900	<290	<580	<1,400	<31	<29	<31	<29	<31	<29	<28	<31	<30	1.3794	219,000	219,000	NS
1,2,4-Thimethylbenzene	<200	<2,000	<290	<580	<1.400	<31	<29	<31	<29	<31	<29	<28	<31	<30	1,010	182,000	182,000	NS
1,3,5-11methylbenzene	<110	<4 100	<400	<810	<2.000	<43	<41	<43	41	<44	<40	<40	<43	<30	0.1	67	2,080	2,000
	<1 000	<9,000	<980	<2 000	<4 900	<110	<99	<100	<99	<110	<98	<97	<100	<89	3,960	260,000	260,000	NS
total Xylenes	<1,000	~9,900	-900	~2,000														

NOTES:

¹Wisconsin Administrative Code Natural Resources Chapter (NR) 720 Residual Contaminant Levels were obtained from the Wisconsin Department of Natural Resources (WDNR) spreadsheet, last updated December 2018

²Direct Contact RCLs only apply to soil samples collected within four feet of the ground surface

³WDNR Landfill Disposal "Contained-Out" Values obtained from the fact sheet titled "Contained-Out Values for PCE, TCE, and Vinyl Chloride" (RR-969) effective as of November of 2013

⁴Soil to Groundwater Pathway RCLs for 1,2,4- and 1,3,5-Trimethylbenzene are combined

PID: Photoionization Detector

BDL: Below Detection Limit

VOCs: Volatile organic compounds

µg/kg: Micrograms per kilogram; equivalent to parts per billion (ppb)

J: Result is below the method quantitation limit (MQL)

NS: No Standard Established

<xx.x: Result detected below the method detection limit of x

xx.x: Underlined results exceed the NR 720 RCL for the Soil to Groundwater Pathway

(xx.x): Parenthesized results exceed the NR 720 RCL for Non-Industrial Direct Contact

[xx.x]: Bracketed results exceed the NR 720 RCL for Industrial and Non-Industrial Direct Contact

{xx.x}: Braced results exceed the WDNR Landfill Disposal Conained-Out Value

TABLE 2 GROUNDWATER ANALYTICAL RESULTS Martinizing Racine 1730 State Street Racine, Wisconsin

Project No. 1E-0909013

				Sa	ample Locatio	on				NR 140	¹ (µg/L)
Analyte		MW-1			MW-2			MW-3		DAI	FS
Sample Date	02/08/10	08/03/10	12/01/10	02/08/10	08/03/10	12/01/10	02/08/10	08/03/10	12/01/10	TAL	
Detected VOCs (ug/L)											
Benzene	<3.2	<8.0	<10	<2.0	<40	<50	<0.40	<0.20	<0.20	0.5	5
n-Butylbenzene	<3.2	<8.0	<10	<2.0	<40	<50	<0.40	<0.20	<0.20	NS	NS
sec-Butylbenzene	<4.0	<10	<13	<2.5	<50	<63	<0.50	<0.25	<0.25	NS	NS
chloroethane	<16	<40	<50	<10	<200	<250	<2.0	<1.0	<1.0	80	400
1 1-Dichloroethene	<8.0	<20	<25	<u>11 J</u>	<100	<130	<1.0	<0.50	<0.50	0.7	7
cis_1 2-Dichloroethene	1,000	3,800	2,000	2,600	2,300	2,700	(20)	1.0 J	5.5	7	70
trans_1.2-Dichloroethene	12 J	(40 J)	(25 J)	(20 J)	<100	<130	<1.0	<0.50	<0.50	20	100
isopropyl ether	<8.0	<20	<25	<5.0	<100	<130	<1.0	<0.50	<0.50	NS	NS
	<3.2	<8.0	<10	<2.0	<40	<50	<0.40	<0.20	<0.20	NS	NS
Nonhthalene	<4.0	<10	<13	<2.5	<50	<63	<0.50	<0.25	<0.25	10	100
n Dropylbonzono	<8.0	<20	<25	<5.0	<100	<130	<1.0	<0.50	<0.50	NS	NS
Tetrachloroothopo	280	1 700	730	11.000	21,000	22,000	<u>210</u>	(0.60 J)	(0.80 J)	0.5	5
	260	1 900	860	4,200	8.300	7,000	61	<0.20	0.22 J	0.5	5
	200	340	210	110	54 J	<50 J	0.84 J	<0.20	<0.20	0.02	0.2
VINVI CNIORIOE	1	040	<u>~10</u>	<u></u>	press all a constrained	and the second se		the second se			

NOTES:

¹Wisconsin Administrative Code Natural Resources Chapter (NR) 140

PAL: Preventive Action Limit

ES: Enforcement Standard

VOCs: Volatile Organic Compounds

µg/L: Micrograms per Liter; equivalent to parts per billion (ppb)

J: Result is less than the reporting limit but greater than the method detection limit and the concentration is an approximate value NS: No Standard Established

<xx.x: Result concentration was detected below the method detection limit of x

(xx.x): Result exceeds the NR 140 Preventive Action Limit

xx.x: Result exceeds the NR 140 Enforcement Standard

TABLE 2 (Continued) **GROUNDWATER ANALYTICAL RESULTS** Martinizing Racine 1730 State Street

Racine, Wisconsin

Project No. 1E-0909013

						Sample	Location						NR 140	¹ (µg/L)
Analyte		MW-4		MV	V-5	MV	V-6	MV	V-7	MV	V-8	TW-1	PAL	ES
Sample Date	02/08/10	08/03/10	12/01/10	08/03/10	12/01/10	08/03/10	12/01/10	08/03/10	12/01/10	08/03/10	12/01/10	02/08/10	1.05	
Detected VOCs (ug/l)														
Detected VOCS (µg/L)	<10	<0.20	<0.20	<0.20	< 0.20	16.0	(3.4)	(1.8 J)	(0.97 J)	<0.40	<1.0	(1.6)	0.5	5
Benzene	<1.0	10.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.40	<1.0	1.1	NS	NS
n-Butylbenzene	<1.0	<0.20	<0.20	<0.20	<0.20	<0.25	<0.25	<0.25	<0.25	<0.50	<1.3	1.2	NS	NS
sec-Butylbenzene	<1.2	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	-0.20	0.20	<2.0	<5.0	<1.0	80	400
chloroethane	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.8 J	<2.0	<5.0	<1.0	0.7	7
1.1-Dichloroethene	<2.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	(1.3 J)	<2.5	<0.5	0.7	1
cis-1 2-Dichloroethene	(13)	(27)	(21)	0.58 J	4.6	<0.50	<0.50	<0.50	<0.50	<u>410</u>	<u>670</u>	(17)	7	70
trans-1 2-Dichloroethene	<2.5	2.8	1.2 J	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	3.0 J	4.9 J	0.61 J	20	100
isopropyl ether	<2.5	<0.50	< 0.50	<0.50	<0.50	<0.50	0.71 J	<0.50	<0.50	<1.0	<2.5	<0.50	NS	NS
	<1.0	<0.20	<0.20	<0.20	<0.20	0.57 J	0.47 J	<0.20	<0.20	<0.40	<1.0	3.7	NS	NS
Nophthalana	<1.2	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.50	<1.3	0.72 J	10	100
	<2.5	<0.50	<0.50	<0.50	<0.50	0.52 J	<0.50	<0.50	<0.50	<1.0	<2.5	4.1	NS	NS
n-Propyidenzene	420	<0.50	<0.00	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	170	150	(3.0)	0.5	5
Tetrachloroethene	130	<0.50	~0.50	-0.00	-0.00	<0.00	<0.20	<0.20	<0.20	110	100	< 0.2	0.5	5
Trichloroethene	<u>27</u>	<0.20	<0.20	<0.20	<0.20	~0.20	-0.20	-0.20	2.1	24	45	7.0	0.02	0.2
Vinyl chloride	<1.0	<u>0.36 J</u>	<0.20	<0.20	<0.20	<0.20	<0.20	<u> </u>	<u><u><u> </u></u></u>	<u> </u>	12	<u></u>	0.04	

NOTES:

¹Wisconsin Administrative Code Natural Resources Chapter (NR) 140

PAL: Preventive Action Limit

ES: Enforcement Standard

VOCs: Volatile Organic Compounds

µg/L: Micrograms per Liter; equivalent to parts per billion (ppb)

J: Result is less than the reporting limit but greater than the method detection limit and the concentration is an approximate value

NS: No Standard Established

<xx.x: Result concentration was detected below the method detection limit of x

(xx.x): Result exceeds the NR 140 Preventive Action Limit

xx.x: Result exceeds the NR 140 Enforcement Standard

Table 3 Sub-Slab Soil Gas Analyitical Results

Marinizing Cleaners 1730 State St. Racine, Wisconsin BRRTS Number #: 02-52-549890 Project Number 1E-0909013

Sample Location	VP-1	VP-2		Sub-Slab VRSL^ (µg/	m³)
	¥1 -1	VI Z		Land Use	
Sample Depth	sub-slab	sub-slab	Posidontial	Small Commercial	Large Commercial /
Sample Date	10/28/2011	10/28/2011	Residential	Sman Commercial	Industrial
Detected VOCs (µg/m ³)					
Tetrachloroethene (PCE)	[170,000]	[58,000]	1,400	5,800	18,000
Trichloroethene (TCE)	<1,100	[2,200]	70	290	880

Notes:

VRSL: Vapor Risk Screening Level

VOCs: Volatile Organic Compounds

µg/m³: Micrograms per cubic meter

[xx.x]: Bracketed results exceed the sub-slab VRSL for Residential, Small Commercial, and Large Commercial/Industrial land uses

^VRSLs were obtained/calculated from the Wisconsin Vapor Quick Look-Up Table based on the May 2023 US EPA Regional Screening Levels.

VRSLs are based on a Target Risk for Carcinogens of 1 x 10⁻⁵ and a Target Hazard Quotient for Non-Carcinogens of 1.

TABLE 4 Proposed Cost Estimate Martinizing Drycleaning (1730 State St.) Racine, Wisconsin Change Order #3 1E-0909013

Task		C	Consultant F	ees	Subcontractor	Regulatory	Budget
Number	Task Description	Labor	Expenses	Equipment	Fees	Fees	Buugot
TASK 01:	Sampling Plan Preperation	\$1,180	\$0	\$0	\$0	\$0	\$1,180
TASK 02:	SHSP & Utility Locate	\$1,040	\$0	\$0	\$350	\$0	\$1,390
TASK 03:	Well Re-Development, Survey & Gauging	\$1,570	\$60	\$175	\$0	\$ <u>0</u>	\$1,805
TASK 04:	GW Sampling (Initial Event)	\$1,080	\$60	\$235	\$720	\$0	\$2,095
TASK 05:	Evaluate GW Results (Status Report)	\$1,450	\$0	\$0	\$0	\$0	\$1,450
TASK 06	Additional Soil Probes/Wells/Piez, Dev. & Survey	\$2,020	\$180	\$250	\$4,605	\$0	\$7,055
TASK 07:	Interior/Exterior Soil Probes	\$670	\$0	\$75	\$865	\$ <u>0</u>	\$1,610
TASK 08	Off Site Sub-Slab Vapor Testing	\$520	\$0	\$100	\$250	\$0	\$870
TASK 09	GW Sampling (3 Quarterly Events & Disposal)	\$5,370	\$180	\$705	\$4,815	\$0	\$11,070
TASK 10	Vapor Mitigation Commissioning Plan	\$2,145	\$0	\$0	\$0	\$0	\$2,145
TASK 11	PFF & Indoor Air Testing (3 total)	\$3,060	\$360	\$475	\$1,130	\$0	\$5,025
TASK 12	Commissioning Reports (3 total)	\$3,765	\$0	\$0	\$0	\$0	\$3,765
TASK 13	SI Report Preparation	\$8,820	\$0	\$0	\$0	\$0	\$8,820
TASK 14	Project Managemnet & Coordination	\$5,470	\$0	\$0	\$0	\$0	\$5,470
Total Cost Es	stimate	\$38,160	\$840	\$2,015	\$12,735	\$0	\$53,750

	Subcontractor Fees Detail	Subcontractor Fees Total
TASK 01:	Sampling Plan Preperation	\$(
TASK 02:	SHSP & Utility Locate	\$35
	Private Utility Locator	\$35
TASK 03:	Well Re-Development, Survey & Gauging	\$
TASK 04:	GW Sampling (Initial Event)	\$72
	Laboratory Subcontractor Costs	\$72
TASK 05:	Evaluate GW Results (Status Report)	\$1
TASK 06:	Additional Soil Probes/Wells/Piez, Dev. & Survey	\$4,60
	Laboratory Subcontractor Costs	\$96
	Direct-push Subcontractor Costs	\$3,57
	Drilling Subcontractor Costs	\$7
TASK 07:	Interior/Exterior Soil Probes	\$86
	Laboratory Subcontractor Costs	\$48
	Direct-push Subcontractor Costs	\$38
TASK 08:	Off Site Sub-Slab Vapor Testing	\$25
	Laboratory Subcontractor Costs	\$25
TASK 09:	GW Sampling (3 Quarterly Events & Disposal)	\$4,81
	Laboratory Subcontractor Costs	\$3,84
	Soil Waste Disposal Subcontractor Costs	\$37
	Waste Water Disposal Subcontractor Costs	\$60
TASK 10:	Vapor Mitigation Commissioning Plan	\$
TASK 11:	PFE & Indoor Air Testing (3 total)	\$1,13
	Laboratory Subcontractor Costs	\$1,13
TASK 12:	Commissioning Reports (3 total)	\$I
TASK 13:	SI Report Preparation	\$I
TASK 14:	Project Managemnet & Coordination	\$1

State of WIsconsin Department of Natural Resources PO Box 7921, Madison WI 53707-7921 dnr.wi.gov

DERF Site Investigation Bid Summary Consultant Selection Cover Sheet

Form 4400-233 (R 4/04) Page 1 of 6

Notice: Use this form to notify the Department of Natural Resources of the consultant you are selecting to conduct a site investigation and to submit and summarize the bids required in the Dry Cleaner Environmental Response Fund (DERF) Program. This form is authorized under s. 292.65, Wis. Stats. and s. NR 169.23, Wis. Adm. Code. Completion of this form is mandatory for any person applying for DERF reimbursement. Persons who do not submit a completed form will not be eligible for reimbursement under DERF. Personal information will be used to manage the DERF program, and be made available to requesters under Wisconsin's Open Records laws (ss. 19.32-19.39, Wis. Stats.) and requirements.

Complete the following information and submit it to your DNR regional project manager. Copy this form as necessary.

Site Information					
Site name: Martinizing Dryclear	ning	Facility Nan	ne: Martini	zing Drycleaning	BRRTS # 02-52-549890
Consultant Selected					
Consultant Name: Giles Engine	ering Asso	ociates, Inc.	Consulta 53186	ant Address: N8 W22350 J	lohnson Dr., SuiteA1, Waukesha, Wl
Summary of Costs:	A. 2. 3.	La Initiation			
Consultant Name: Giles Eng	gineering	Associates, I	In	Consultant Name:	
Consulting costs:	\$38	,160		Consulting costs:	
Drilling costs:	\$4,	185		Drilling costs:	
Analytical costs:	\$7,	530		Analytical costs:	
Miscellaneous costs:	\$3,	875		Miscellaneous cost	5:
Total Costs:	\$53	,750		Total Costs:	
Consultant Name:				Optional 4th bid in	formation:
Consulting costs:				Consultant Name:	
Drilling costs:				Consulting costs:	
Analytical costs:				Drilling costs:	
Miscellaneous costs:				Analytical costs:	
Total Costs:				Miscellaneous cost	s:

Justification for Selection:

Martinizing Drycleaners has selected Giles Engineering Associates, Inc. to perform the requested services of the RFP because their proposal provides a thorough and complete approach to accomplish the requested work.

Total Costs:

I certify that the information contained above is tru	ue and correct to the best of my k	nowledge.		
Applicant Name: Laurie Berry		Date:	05/2023	
Street Address: 3319 Nobb Hill Drive	City: Mt. Pleasant	State: WI	Zip Code: 53406	
Signature				
	Department Use Only			
Project Manager Approval Signature	Phone Number		Date	
If not approved, reason for non-approval:				131218

DERF Site Investigation Bid Sheet Consultant Bid Summary

Form 4400-233 (R 4/04) Page 2 of 6

Site Information		
Site Name: Martinizing Drycleaning, 1730 St	ate St., Racine, WI	
Consultant Name: Giles Engineering Associa	ates, Inc.	Applicant Name: Daniel K. Pelczar, CPG, P.G.
Bid Summary		
Drilling Costs Total =	\$4,185	
Analytical Costs Total =	\$7,530	
Consulting Costs Total =	\$38,160	
Misc Costs Total =	\$3,875	
Grand Total =	\$53,750	

I certify that the costs are an accurate estimate of my total projected costs for the site investigation and I understand and will adhere to s.292.65 Stats, and ch NR 169, Wis. Adm. Code.

Consultant Signature:	X. Pelus	10th	Date:	122/	2023
	P				

Please attach to these forms a written narratige specifying how the tasks outlined in these sheets will be performed.

Drilling Costs			的建筑的方案			
Task	Interval	Number of Borings or Wells	Number of Days	Total Number Feet Drilled	Cost/feet, Day or Well	Total Cost
Well installation and Com	pletion					
NR 141 Variance	0 ft to 13 ft	4				\$925
NR 141 Variance Piezometers	0 ft to 30 ft	2				\$930
Decontamination Costs						\$150
Mobilization Costs						\$550
Auger Borings (continuou	is sampling)			Real Production		
	ft_toft					
	ft to ft					
	ft to ft					
	> ft					
Decontamination Costs						
Mobilization Costs						
Auger Borings (specify st	olit spoon sampling inter	val)	18 A. Martin	and south and the	A MAR AND SHORE	
	ft_toft					
	ft to ft					
	ft to ft					
	> ft					
Decontamination Costs						
Mobilization Costs						
Direct Push Borings (per	point)			State of the state of the	1	
Cart Rig (Interior)	8 ft depth	2				385
Soil Probes (exterior)	4 ft depth	2				115
	> ft depth					
Decontamination Costs						
Mobilization Costs						
Well Development (if don	e by subcontractor)		Providence.			State Sheet
	Monitoring Wells	works off, and when the first of				
100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100	Piezometers					
	Recovery Wells					
Other		States Steps		Conception and		And Aller
Drums	1				75	\$75
Drilling Expendables	1				155	\$155
Elush Mount Course		6			150	\$900
Total Drilling Costs	2					\$4,185

Consultant Name: Site Name: BRRTS #:

Date:

DERF Site Investigation Bid Sheet Analytical Costs Form 4400-233 (R 4/04) Page 4 of 6

Parameter	WIC	ertified L	ab	Field Test/Field Kit			Mobile Lab			A State of the second second
	\$/	#	Method	\$/	#	Method	\$/Sample	# Samples	Method	
	sample	samples	Used	sample	samples	Used	\$/Day	# Days	Used	Total Costs
Solids Analysis	a al a seale				and the set		of the second	and the second	a second	Participation of the
VOCs (6 new wells/pz)	\$80.00	12	8260							\$960.00
VOCs (interior soil probes)	\$80.00	4	8260							\$320.00
VOCs (exterior soil probes)	\$80.00	2	8260							\$160.00
Water Analysis (low flow sampli	ng assumed	l unless ot	herwise in	ndicated a	at bottom o	f this shee	t)	and the second states		a share to be
VOCs (8 existing wells+dups.)	\$80.00	36	8260							\$2,880.00
VOCs (6 new wells/pz+Dups.)	\$80.00	21	8260							\$1,680.00
										\$0.00
Air Analysis			S SPECIAL	in the		and the				
VOCs (Sub-Slab)	\$250	1	TO-15							\$250.00
VOCs - (Indoor Air)	\$188	6	RAD							\$1,128.00
Total Analytical Costs										\$7,530.00

* Natural Attenuation parameters required for consideration of NA as remedy.

Consultant Name: Site Name: BRRTS #: Date:

DERF Site Investigation Bid Summary Consultant Costs Form 4400-233 (R 4/04) Page 5 of 6

		Hours/Task													1		
Position (specify)	Hourly Rate	Sampling Plan Preperation	SHSP Preparation & Utility Locate	Well Re- Development, Survey & Gauging	GW Sampling (Initial Event	Evaluate GW Results (Status Report)	Additional Soil Probes, Wells, Piez. Dev. & Survey	Interior/Exterior Soil Probes	Off-Site Sub- SlabVapor Testing	GW Sampling (3 Quarterly Events & Disposal)	Vapor Mitigation Commissioning Plan	PFE & Indoor Air Testing (3 total)	Commissioning Reports (3 Total)	SI Report Preperation	Project Management & Coordination	Other (specify)	Total Costs
Professional Staff							Sec. Strate										
Division Manager	115					1					2		3	4	8		\$2,070.00
Senior Project Manager	110	8	4	2	3	8	2	2	2	12	16	6	12	50	40		\$18,370.00
Field Staff	and the	A States				Part Marine	and the second		1.76	AN ANY		1112633		Constanting of the			
Staff Geologist I/II	75	4	8	18	10	4	24	6	4	54		32	24	24	2		\$16,050.00
																	\$0.00
Office Support Staff	1.452		L de la de la	- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-			AL STREET		1.1.1.1.	an generally	Autoral.	and and the	S. C. S.		a fatter a		A State State
CAD Operator	55					2					2		3	16			\$1,265.00
Clerical	45					1					1		3	4			\$405.00
																	\$0.00
Total Consulting Costs																	\$38,160.00

DERF SIte Investigation Bid Summary Sheet Miscellaneous Costs

Form 4400-233 (R 4/04) Page 6 of 6

Major Activity	Specifications	Commodity Unit	Unit Rate	Number of Units	Total Cost
IDW Disposal			ALL AND STATISTICS		
Soil Disposal - Special Waste	Non-Hazardous	per drum	\$125	1	\$125
Soil Disposal - Direct Subtitle C	Hazardous	per drum			
Soil Drum Transportation		trip	\$250	1	\$250
Groundwater Disposal	Non-hazardous	per drum	\$100	5	\$500
Groundwater Disposal	Hazardous	per drum			
Groundwater Transportation		trip	\$100	1	\$100
Field Supplies (list)					
PID		1	\$75	2	\$150
Water Level Indicator			\$20	6	\$120
Peristaltic Sampling Pump			\$40	6	\$240
Water Quality Meter		1	\$100	4	\$400
Vapor Pin Assembly			\$75	7	\$525
Hammer Drill & Supplies			\$50	1	\$50
Survey Equipment			\$40	2	\$80
Drums			\$75	6	\$450
Surveying					
Personal Protection Equipment (lis	t)				
Sample Shipping Costs					
Other (specify)					
Private Utility Locator			\$350.00	1	\$350
Mileage (Not Eligible)		100 Miles/rnd/trip	\$0.60	1400	\$840
Total Miscellaneous Costs					\$3,875.00

Reminders: DERF does not reimburse for attorney, closure or GIS fees. Mileage and meals are also non-reimbursable. Also, costs to prepare a reimbursement application and discuss the application with the department are not reimburseable. No expedited shipping w/o prior PM approval.