State of Wisconsin - Department of Natural Resources **Substance Release Notification Report** Report created on 01/25/2008

04-16-550852 BRRTS No: Spill ID: Incident Date & Time: Reported Date & Time: 02-16-55085 ERP Transferred? 20071022NO16-1 10/22/2007 20:10 DATCP Reported? No NFA Letter Sent? Incident Closed? **DATCP Transferred? No** Yes: 01/25/2008 No

			Loc	ation				
Region: NO	County: Douglas		Municip	ality:	VNSHIP OF			-
Facility/Property MURPHY OIL 2407 STINSON	Name and Street Ad	dress:		Descripti CENTRA	ion: AL TO PROPEI	RTY, SOUTI	H OF GRE	EN GAS UNIT
Facility Type:	Facility Type: Bulk Oil Petroleum Facility/Pipeline/Transfer Station							
Lat/Long:		PLSS:				WTM:		
Weather Conditio	ns;							
			esponsi	ble Partie				
Name/Address (1) MURPHY OIL 2407 STINSON A SUPERIOR, WI (715) 398-8434 x	AVE 54880-	Contact: LIZ LUNDMARK ENV MANAGER (715) 398-8434 x		use	Other Contac	t:	Spill Pa	acket:
			Ca	use				
								;
·								
Cause Type: Equ	ipment Failure							
		20 10		ances			0.1	
Other	ime	Other / Comments CRUDE OIL		Released bbl	9.0 bbl	LIQUID	Color	Odor
Other		Environn				LIQUID		
Environmental Im SOIL	pacts:	<u> </u>		e Damage		Injuries: No		Evacuation: No
"			Cleanup	Actions				
	Method		_			Description		
Vacuum	· · · · · · · · · · · · · · · · · · ·							
Excavation								
		Clear	iup Acu	on Comm	ients			
<u> </u>			Contract	ors Hired				
	Name					Description		
	Location			stination		Description		
		Agency	ies Noti	fied / On S	Scene	Notifie	4	On Scene
		- Agency				Notine		On Scane

10/22/2007

State of Wisconsin - Department of Natural Resources Substance Release Notification Report Report created on 01/25/2008

DNR			Х			
	Additio	nal Comments				
		•				
					•	
Enfancement action () N	Enforc	ement Actions				
Enforcement action? No						
		·				
Case Activity Report Numbers:	(1)					
		on Reporting				
Name	Representing / Address	Primary P		Secondary Phone		
LIZ LUNDMARK	MURPHY OIL	(715) 398-8434 x				
	Name / Address	ractors Hired		Zon	e Contractor Hire	ed by
	Maine / Address			2011	DNR?	iu by
,				No		
	,	Contacts				
Role	Name / Add	ress	Office Ph		Date	Time
Prepared By:	JOHN SAGER (715) 365-89			8959 x	10/22/2007	
Person Notified:	HOTLINE SPOKE TO BURNS/	EMAIL KRULL		,	10/22/2007	
Investigated By:					10/22/2007	
Incident Commander:						
Spill Coordinator:	NO - SAGER, JOHN [P] 715-36		•		01/25/2008	
		Attachments (list)				
Na	ime		Туре			

State of Wisconsin \ DEPARTMENT OF NATURAL RESOURCES

Jim Doyle, Governor Matthew J. Frank, Secretary John Gozdzialski, Regional Director Northern Region Headquarters 107 Sutliff Ave. Rhinelander, Wisconsin 54501-3349 Telephone 715-365-8900 FAX 715-365-8932 TTY Access via relay - 711

January 17, 2008

Mr. David Beattie Murphy Oil 2407 Stinton Avenue Superior, WI 54880

Subject:

October 22, 2007 crude oil spill at Murphy Oil, 2407 Stinton Avenue, Superior, WI

WDNR BRRTS ID: 04-16-550852 and 02-16-550859

Dear Mr. Beattie:

On October 22, 2007, Murphy Oil, notified the Wisconsin Department of Natural Resources ("Department") that a spill of crude oil occurred on the Murphy Oil property. Immediate actions consisting of product collection and contaminated soil excavation occurred immediately following the spill. Soil samples collected from the area of the spill indicate soil contamination remains. As a result the Department is transferring this spill from the Spills Program (BRRTS ID 04-16-550852) to the Environmental Repair Program (BRRTS ID 02-16-550859) for oversight of the remaining investigation and cleanup.

Based on the information that has been submitted to the WDNR regarding this site, we believe you are responsible for investigating and restoring the environment at the above-described site under Section 292.11, Wisconsin Statutes, known as the hazardous substances spills law.

Legal Responsibilities:

Your legal responsibilities to investigate and remediate this spill are defined both in statute and in administrative codes. The hazardous substances spill law, Section 292.11 (3) Wisconsin Statutes, states:

• RESPONSIBILITY. A person who possesses or controls a hazardous substance which is discharged or who causes the discharge of a hazardous substance shall take the actions necessary to restore the environment to the extent practicable and minimize the harmful effects from the discharge to the air, lands, or waters of the state.

Wisconsin Administrative Code chapters NR 700 through NR 749 establish requirements for emergency and interim actions, public information, site investigations, design and operation of remedial action systems, and case closure. Chapter NR 708 includes provisions for immediate actions in response to limited contamination. Wisconsin Administrative Code chapter NR 140 establishes groundwater standards for contaminants that reach groundwater.

All correspondence regarding this site should reference BRRTS ID # 02-16-550859 and be sent to:

Jim Hosch Remediation and Redevelopment Program Wisconsin Department of Natural Resources 1401 Tower Avenue Superior, WI 54880

Please contact me or Jim Hosch if you have any questions concerning this letter.

Thank you for your cooperation.

Sincerely,

Hydrogeologist

Bureau for Remediation & Redevelopment

cc: Jim Hosch (via email)

Sager, John E - DNR

From:

Dave_Beattie@murphyoilcorp.com

Sent:

Thursday, January 17, 2008 11:06 AM

To:

Sager, John E - DNR

Subject:

Spill update for 10/22/07 Crude Spill

Attachments: Soil Analysis and map.pdf

Mr. Sager,

Attached you will find the analysis of the soil in the area of the spill. I had initially thought that I may have to resample in the spring as the ground was frozen pretty early and we could only use hand tools for digging under the rack, but after giving a closer look at the results, I am now hoping the site can be closed out.

The majority of the oil that spilled was sitting on top of water that was present in the low areas under the pipe rack. The water and oil was vacuumed up and treated through our onsite WWTP. Stained dirt(along the edges of the water) and long grass was also removed(the crude oil spilled is black in color) during the next week and completed on 11/2/07(soil and grass brought to Voyageaur Landfill in Canyon,MN). Samples were taken on 11/13 by Twin Ports Testing. It appears to me, although I may have missed something, that all values fall below the values in Table 1 of NR746.06 used for identifying sites for closure. Sample site S-1, which had 1.2 ppm Benzene(1.1ppm standard) is the only site with a value over the Table 2 direct contact.

With this site being clay, which has very low hydraulic conductivity, can this site be closed out with GIS register?

Please let me know what you think when you get a chance. My apologies for not getting you this stuff earlier for this site, I thought I had gotten it to you, but I must not have gotten to it.

Thanks. Please call with any questions.

Dave

David Beattie **Environmental Engineer** Murphy Oil USA - Superior Refinery 715-398-8455 715-398-8209 fax

(See attached file: Soil Analysis and map.pdf)

This e-mail and all attachments is confidential and may contain legally privileged information intended solely for the use of the addressee. If you are not the intended recipient, you are hereby notified that reading or any other use of this message is unauthorized. Any views or opinions expressed in this message are solely those of the author, and do not necessarily reflect those of Murphy Oil Corporation or any of its subsidiaries.

Twin Ports Testing, Inc.

1301 N. 3rd St. • Superior, WI 54880 • 715-392-7114 • 800-373-2562 • FAX 715-392-7163 P.O. Box 16246 • Duluth, MN 55816-0246 • 218-722-1911 P.O. Box 2 • Virginia, MN 55792 • 218-741-5785 www.twinportstesting.com

November 27th, 2007

TPT #07E-2239

Mr. Dave Beattie Murphy Oil, U.S.A 2407 Stinson Avenue Superior, WI 54880

Re:

Soil Sampling Locations and Analytical Results, Spill South of GGU

Murphy Oil, U.S.A Superior Refinery 2407 Stinson Avenue Superior, WI 54880

Dear Mr. Beattie,

Enclosed is a copy of the laboratory analytical results of the soil samples collected from the spill area located on the south side of the Green Gas Unit. Samples were collected on November 13th, 2007 at approximately 6 inches below the surface and analyzed in the field with a PID. Readings did not exceed 1 ppm in any of the samples collected. Also included is a site map with sampling locations. If you have any questions, please contact me at 715-392-7114.

Sincerely,

Twin Ports Testing, Inc.

Todd Flak, Project Manager

Twin Ports Testing

Soil Sampling Locations-South Side of GGU Murphy Oil, Superior, WI

DRAWN BY	ΤF	
CHECKED	BY	TF
APPR BY		TF
DATE	11/13/0	7
TPT NO.	07e-223	9
FIGURE	1	

Tax I.D. 62-0814289

ISC Representative

Est. 1970

Todd Flak Twin Ports Testing 1301 North 3rd Street

Superior, WI 54880

Report Summary

Wednesday November 21, 2007

Report Number: L319836 Samples Received: 11/15/07 Client Project:

Description: Soil Sampling South of GGU

The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call. Jennyfer Mariwe, arlowe

Entire Report Reviewed By:

Laboratory Certification Numbers

A2LA - 1461-01, A1HA - 09227, AL - 40660, CA - I-2527, CT - PH-0197, FL - E87487 GA - 923, IN - C-TN-01, KY - 90010, KYUST - 0016, NC - RNV375, DW21704, ND - R-140 NJ - TN002, SC - 84004, TN - 2006, VA - 00109, WV - 233 AZ - 0612, MN - 047-999-395, NY - 11742, WI - 998093910

This report may not be reproduced, except in full, without written approval from Environmental Science Corp.

10 Samples Reported: 11/21/07 15:11 Revised: 11/21/07 19:40 Page 1 of 16

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

November 21,2007

Todd Flak Twin Ports Testing 1301 North 3rd Street Superior, WI 54880

ESC Sample # : L319836-01

Date Received

November 15, 2007

Site ID :

Description

: Soil Sampling South of GGU

Sample ID

S-1 6IN

Project # :

Collected By : Collection Date :

Todd Flak 11/13/07 10:30

Date Dil. Units Method Parameter Dry Result Det. Limit 11/21/07 1 Total Solids 79.6 0.100 * 2540G PVOCGRO 11/16/07 42.5 11/16/07 42.5 11/16/07 42.5 11/16/07 42.5 11/16/07 42.5 0.027 0.27 0.027 Benzene 1.2 mg/kg 8021 mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg 8021 3.6 0.82 Toluene Ethylbenzene 8021 mip-Xylene o-Xylene Methyl tert-butyl ether 2.4 0.053 8021 8021 11/16/07 11/16/07 11/16/07 0.053 8021 8021 42.5 Naphthalene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene BDI. 0.053 8021 42.5 0.19 11/16/07 11/16/07 42.5 42.5 0.72 0.053 8021 8015 GRO 13. 5.3 mg/kg Surrogate Recovery (70-130) a,a,a-Trifluorotoluene (PID) 103. % Rec. 8021 11/16/07 42.5 a 10. mg/kg DRO 11/18/07 1 WI DRO Surrogate Recovery (50-150) 11/18/07 1 101. % Rec. DRO Triacontane

Results listed are dry weight basis.
BDL - Below Detection Limit
Det. Limit - Practical Quantitation Limit(PQL)

This report shall not be reproduced, except in full, without the written approval from BSC. The reported analytical results relate only to the sample submitted Reported: 11/21/07 15:11 Revised: 11/21/07 19:41

Page 2 of 16

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

November 21,2007

Todd Flak Twin Ports Testing 1301 North 3rd Street Superior, WI 54880

ESC Sample # : L319836-02

Date Received

November 15, 2007 Soil Sampling South of GGU : :

Site ID :

Description Sample ID

S-2 6IN

Project # :

Collected By : Collection Date :

Todd Flak 11/13/07 10:45

Det. Limit Units Date Dil. Parameter Dry Result Method 11/21/07 1 Total Solids 72.7 0.100 2540G **PVOCGRO** 11/16/07 47.5 11/16/07 47.5 11/16/07 47.5 11/16/07 47.5 11/16/07 47.5 Benzene 0.20 0.033 mg/kg 8021 mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg 8021 8021 0.67 0.33 Toluene Ethylbenzene 8021 8021 8021 m&p-Xylene o-Xylene 0.54 0.065 Methyl tert-butyl ether BDL 0.065 11/16/07 11/16/07 11/16/07 11/16/07 11/16/07 Naphthalene 1,3,5-Trimethylbenzene 0.33 8021 8021 BDL 47.5 47.5 47.5 47.5 BDL 1,2,4-Trimethylbenzene 0.065 8021 GRO BDL 6.5 mg/kg 8015 Surrogate Recovery (70-130) a,a,a-Trifluorotoluene (PID) 11/16/07 47.5 104. % Rec. B021 230 18. mg/kg DRO 11/18/07 1.6 Surrogate Recovery (50-150) Triacontane 104. * Rec. DRO 11/18/07 1.6

Results listed are dry weight basis. BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL)

This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted Reported: 11/21/07 15:11 Revised: 11/21/07 19:41

Page 3 of 16

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

November 21,2007

* Rec.

Todd Flak Twin Ports Testing 1301 North 3rd Street Superior, WI 54880

BSC Sample # : L319836-03

Date Received

November 15, 2007 Soil Sampling South of GGU

Description

Site ID :

Sample ID

DRO

11/18/07 1

Collected By : Collection Date :

Triacontane

Todd Flak

11/13/07 11:15

Project # :

<u>Parameter</u>	Dry Result	Det. Limit	Units	Method	Date	Dil.
Total Solids.	81.4	0.100	*	2540G	11/21/07	1
PVOCGRO						
Benzene	0.10	0.028	mq/kq	8021	11/16/07	46.5
Toluene	0.35	0.28	mg/kg	8021	11/16/07	46.5
Ethylbenzene	0.11	0.028	mg/kg	8021	11/16/07	46.5
m&p-Xylene	0.30	0.057	mq/kg	8021	11/16/07	46.5
o-Xylene	0.10	0.028	mg/kg	8021	11/16/07	46.5
Methyl tert-butyl ether	BDL	0.057	mg/kg	8021	11/16/07	46.5
Naphthalene	BDL	0.28	mg/kg	8021	11/16/07	46.5
1,3,5-Trimethylbenzene	BDL	0.057	mq/kq	8021	11/16/07	46.5
1,2,4-Trimethylbenzene	0.12	0.057	mq/kq	8021	11/16/07	46.5
GRO	BDL	5.7	mg/kg	8015	11/16/07	46.5
Surrogate Recovery (70-130)		•••			,,	
a,a,a-Trifluorotoluene (PID)	104.		* Rec.	8021	11/16/07	46.5
WI DRO	11.	9.8	mg/kg	DRO	11/18/07	1
Surrogate Recovery (50-150)				DEG	21/10/07	

96.5

Results listed are dry weight basis. BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL)

Note:
This report shall not be reproduced, except in full, without the written approval from ESC.
The reported analytical results relate only to the sample submitted
Reported: 11/21/07 15:11 Revised: 11/21/07 19:41

Page 4 of 16

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

November 21,2007

Todd Plak Twin Ports Testing 1301 North 3rd Street Superior, WI 54880

ESC Sample # : L319836-04

Date Received : November 15, 2007
Description : Soil Sampling South of GGU

Sample ID

: S-4 6IN

Site ID : Project # :

Collected By : Todd Flak Collection Date : 11/13/07 11:30

Parameter	Dry Result	Det. Limit	Units	Method	Date	Dil.
Total Solids	64.4	0.100	*	2540G	11/21/07	1
PVOCGRO						
Benzene	0.091	0.042	mg/kg	8021	11/16/07	54.5
Toluene	BDL	0.42	mq/kq	8021	11/16/07	54.5
Ethylbenzene	0.095	0.042	mg/kg	8021	11/16/07	54.5
m&p-Xylene	0.24	0.085	mg/kg	8021	11/16/07	54.5
o-Xylene	0.082	0.042	mg/kg	8021	11/16/07	54.5
Methyl tert-butyl ether	BDL	0.085	mg/kg	8021	11/16/07	54.5
Naphthalene	BDL	0.42	mg/kg	8021	11/16/07	54.5
1,3,5-Trimethylbenzene	BDL	0.085	mg/kg	8021	11/16/07	54.5
1,2,4-Trimethylbenzene	0.093	0.085	mg/kg	8021	11/16/07	54.5
GRO	BDL	8.5	mg/kg	8015	11/16/07	54.5
Surrogate Recovery (70-130)			V -			
a,a,a-Trifluorotoluene(PID)	104.	•	% Rec.	8021	11/16/07	54.5
WI DRO	230	20.	mg/kg	DRO	11/18/07	1.6
Surrogate Recovery (50-150) Triacontane	110.		* Rec.	DRO	11/18/07	1.6

Results listed are dry weight basis.
BDL - Below Detection Limit
Det. Limit - Practical Quantitation Limit(PQL)

This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted Reported: 11/21/07 15:11 Revised: 11/21/07 19:41

Page 5 of 16

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

November 21,2007

Todd Flak Twin Ports Testing 1301 North 3rd Street Superior, WI 54880

> RSC Sample # : L319836-05

Date Received

November 15, 2007 Soil Sampling South of GGU

Description

:

Site ID :

Sample ID

S-5 6IN

Project # :

Collected By : Collection Date :

Todd Flak 11/13/07 12:00

Parameter	Dry Result	Det. Limit	Units	Method	Date	Dil.
Total Solids	53.8	0.100	*	2540G	11/21/07	1
PVOCGRO						
Benzene	BDL	0.038	mg/kg	8021	11/16/07	41.5
Toluene	BDL	0.38	mg/kg	8021	11/16/07	41.5
Ethylbenzene	0.053	0.038	mg/kg	8021	11/16/07	41.5
m&p-Xylene	0.098	0.077	mg/kg	8021	11/16/07	41.5
o-Xylene	BDL	0.038	mg/kg	8021	11/16/07	41.5
Methyl tert-butyl ether	BDL	0.077	mg/kg	8021	11/16/07	41.5
Naphthalene	BDL	0.38	mg/kg	8021	11/16/07	41.5
1,3,5-Trimethylbenzene	BDL	0.077	mg/kg	8021	11/16/07	41.5
1,2,4-Trimethylbenzene	BDL	0.077	mg/kg	8021	11/16/07	41.5
GRO	BDL	7.7	mg/kg	8015	11/16/07	41.5
Surrogate Recovery (70-130)						
a,a,a-Trifluorotoluene(PID)	104.		* Rec.	8021	11/16/07	41.5
WI DRO	1400	30.	mg/kg	DRO	11/18/07	2
Surrogate Recovery (50-150) Triacontane	37.0		* Rec.	DRO	11/18/07	2

Results listed are dry weight basis. BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL)

Note:
This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted Reported: 11/21/07 15:11 Revised: 11/21/07 19:41
L319836-05 (DROWM) - No extra bottles, cannot be re-extracted

Page 6 of 16

Tax I.D. 62-0814289

Bst. 1970

REPORT OF ANALYSIS

November 21,2007

Todd Flak Twin Ports Testing 1301 North 3rd Street Superior, WI 54880

ESC Sample # : L319836-06

Date Received : Description :

November 15, 2007 Soil Sampling South of GGU

Site ID :

Sample ID

S-6 6IN

Collected By : Collection Date :

Todd Flak 11/13/07 12:15

Project # :

Parameter	Dry Result	Det. Limit	Units	Method	Date	Dil.
Total Solids	74.2	0.100	*	2540G	11/21/07	1
PVOCGRO						
Benzene	0.19	0.032	mg/kg	B021	11/16/07	47
Toluene	0.52	0.32	mg/kg	8021	11/16/07	47
Ethylbenzene	0.35	0.032	mg/kg	8021	11/16/07	47
m&p-Xylene	1.1	0.063	mg/kg	8021	11/16/07	47
o-Xylene	0.38	0.032	mg/kg	8021	11/16/07	47
Methyl tert-butyl ether	BDL	0.063	mg/kg	8021	11/16/07	47
Naphthalene	BDL	0.32	mg/kg	8021	11/16/07	47
1,3,5-Trimethylbenzene	0.13	0.063	mg/kg	8021	11/16/07	47
1,2,4-Trimethylbenzene	0.46	0.063	mq/kq	8021	11/16/07	47
GRO	BDL	6.3	mg/kg	8015	11/16/07	47
Surrogate Recovery (70-130)						
a,a,a-Trifluorotoluene(PID)	104.		* Rec.	8021	11/16/07	47
WI DRO	18.	17.	mg/kg	DRO	11/18/07	1.6
Surrogate Recovery (50-150) Triacontane	67.9		* Rec.	DRÓ	11/18/07	1.6

Results listed are dry weight basis.
BDL - Below Detection Limit
Det. Limit - Practical Quantitation Limit(PQL)
Note:

This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted Reported: 11/21/07 15:11 Revised: 11/21/07 19:41

Page 7 of 16

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

November 21,2007

Todd Flak Twin Ports Testing 1301 North 3rd Street Superior, WI 54880

ESC Sample # : L319836-07

Date Received : November 15, 2007
Description : Soil Sampling South of GGU

Site ID :

Sample ID

: S-7 6IN

Project # :

Collected By : Todd Flak Collection Date : 11/13/07 12:30

Parameter	Dry Result	Det. Limit	Units	Method	Date	<u>Di</u> l.
Total Solids	84.0	0.100	*	2540G	11/21/07	1
PVOCGRO						
Benzene	BDL	0.025	mg/kg	8021	11/16/07	41.5
Toluene	BDL	0.25	mg/kg	8021	11/16/07	41.5
Ethylbenzene	0.060	0.025	mg/kg	8021	11/16/07	41.5
m&p-Xylene	0.13	0.049	mg/kg	8021	11/16/07	41.5
o-Xylene	0.048	0.025	mg/kg	8021	11/16/07	41.5
Methyl tert-butyl ether	BDL	0.049	mg/kg	8021	11/16/07	41.5
Naphthalene	BDL	0.25	mg/kg	8021	11/16/07	41.5
1,3,5-Trimethylbenzene	BDL	0.049	mg/kg	8021	11/16/07	41.5
1,2,4-Trimethylbenzene	0.15	0.049	ng/kg	8021	11/16/07	41.5
GRO	BDL	4.9	mg/kg	8015	11/16/07	41.5
Surrogate Recovery (70-130)			-, -			
a,a,a-Trifluorotoluene(PID)	104.		* Rec.	8021	11/16/07	41.5
WI DRO Surrogate Recovery (50-150)	32.	15.	mg/kg	DRO	11/18/07	1.6
Triacontane (50-150)	79.8		* Rec.	DRO	11/18/07	1.6

Results listed are dry weight basis. BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL)

Note:
This report shall not be reproduced, except in full, without the written approval from ESC.
The reported analytical results relate only to the sample submitted
Reported: 11/21/07 15:11 Revised: 11/21/07 19:41

Page 8 of 16

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

November 21,2007

Todd Flak Twin Ports Testing 1301 North 3rd Street Superior, WI 54880

ESC Sample # : L319836-08

Site ID :

Date Received : November 15, 2007
Description : Soil Sampling South of GGU

Sample ID

Project # :

Collected By : Collection Date : Todd Flak 11/13/07 13:00

Parameter	Dry Result	Det. Limit	Units	Method	Date	Dil.
Total Solids	84.0	0.100	*	2540G	11/21/07	1
PVOCGRO						
Benzene	BDL	0.026	mg/kg	8021	11/16/07	44.5
Toluene	BDL	. 0.26	mg/kg	8021	11/16/07	44.5
Ethylbenzene	0.029	0.026	mg/kg	8021	11/16/07	44.5
m&p-Xylene	0.065	0.053	mg/kg	8021	11/16/07	44.5
o-Xylene	BDL	0.026	mg/kg	8021	11/16/07	44.5
Methyl tert-butyl ether	BDL	0.053	mg/kg	8021	11/16/07	44.5
Naphthalene	BDL	0.26	mg/kg	8021	11/16/07	44.5
1,3,5-Trimethylbenzene	BDL	0.053	mg/kg	8021	11/16/07	44.5
1,2,4-Trimethylbenzene	BDL	0.053	mg/kg	8021	11/16/07	44.5
GRO	BDL	5.3	mg/kg	8015	11/16/07	44.5
Surrogate Recovery (70-130)						
a,a,a-Trifluorotoluene (PID)	104.		* Rec.	8021	11/16/07	44.5
WI DRO	20.	15.	mg/kg	DRO	11/18/07	1.6
Surrogate Recovery (50-150) Triacontane	81.2		% Rec.	DRÓ	11/18/07	1.6

Results listed are dry weight basis. BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL)

This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted Reported: 11/21/07 15:11 Revised: 11/21/07 19:41

Page 9 of 16

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

November 21,2007

Todd Flak Twin Ports Testing 1301 North 3rd Street Superior, WI 54880

ESC Sample # : L319836-09

Description

Date Received : November 15, 2007
Description : Soil Sampling South of GGU

Site ID :

Project # :

Sample ID

S-9 6IN

Collected By : Collection Date :

Todd Flak 11/13/07 13:15

Parameter	Dry Result	Det. Limit	Units	Method	Date	Dil.
Total Solids	83.9	0.100	*	2540G	11/21/07	1
PVOCGRO						
Benzene	BDL	0.027	mg/kg	8021	11/16/07	46
Toluene	BDL	0.27	mg/kg	8021	11/16/07	46
Ethylbenzene	BDL	0.027	mg/kg	8021	11/16/07	46
m&p-Xylene	BDL	0.055	mg/kg	8021	11/16/07	46
o-Xylene	BDL	0.027	mg/kg	8021	11/16/07	46
Methyl tert-butyl ether	BDL	0.055	mg/kg	8021	11/16/07	46
Naphthalene	BDL	0.27	mg/kg	8021	11/16/07	46
1,3,5-Trimethylbenzene	BDL	0.055	mg/kg	8021	11/16/07	46
1,2,4-Trimethylbenzene	BDL	0.055	mq/kq	8021	11/16/07	46
GRO	BDL	5.5	mg/kg	8015	11/16/07	46
Surrogate Recovery (70-130)			•			
a,a,a-Trifluorotoluene(PID)	104.		* Rec.	8021	11/16/07	46
WI DRO	5.2	15.	mg/kg	DRO	11/18/07	1.6
Surrogate Recovery (50-150) Triacontane	88.8		* Rec.	DRO	11/18/07	1.6

Results listed are dry weight basis. BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL)

This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted Reported: 11/21/07 15:11 Revised: 11/21/07 19:41

Page 10 of 16

Tax I.D. 62-0814289

Bst. 1970

ESC Sample # : L319836-10

REPORT OF ANALYSIS

November 21,2007

Todd Flak Twin Ports Testing 1301 North 3rd Street Superior, WI 54880

Date Received :

November 15, 2007 Soil Sampling South of GGU

Sample ID S-10 6IN

Collected By Collection Date :

Description

Todd Plak 11/13/07 13:30

Project # :

Site ID :

Parameter	Dry Result	MDL	RDL	Units	Q	Method	Date	Dil.
Total Solids	72.3	0.0330	0.100	*		2540G	11/21/07	1
PVOCGRO								
Benzene	BDL	0.0073	0.031	mg/kg		8021	11/16/07	44.5
Toluene	BDL	0.073	0.31	mg/kg		8021	11/16/07	44.5
Ethylbenzene	0.032	0.0073	0.031	mg/kg		8021	11/16/07	44.5
map-Xylene	BDL	0.015	0.062	mg/kg		8021	11/16/07	44.5
o-Xylene	BDL	0.0073	0.031	mg/kg		8021	11/16/07	44.5
Methyl tert-butyl ether	BDL	0.015	0.062	mg/kg		8021	11/16/07	44.5
Naphthalene	BDL	0.073	0.31	mg/kg		8021	11/16/07	44.5
1,3,5-Trimethylbenzene	BDL	0.015	0.062	mg/kg		8021	11/16/07	44.5
1,2,4-Trimethylbenzene	BDL	0.015	0.062	mg/kg		8021	11/16/07	44.5
GRO	BDL	1.5	6.2	mg/kg		8015	11/16/07	44.5
Surrogate Recovery (70-130)				3. 3			• •	
a,a,a-Trifluorotoluene(PID)	104.			% Rec.		8021	11/16/07	44.5
WI DRO	ס	5.3	22.	mg/kg		DRO	11/18/07	2
Surrogate Recovery (50-150) Triacontane	91.6			* Rec.		DRO	11/18/07	2

Results listed are dry weight basis. V = ND (Not Detected)

MDL = Minimum Detection Limit = LOD = SQL(TRRP)

RDL = Reported Detection Limit = LOQ = PQL = EQL = MQL(TRRP) Note:
This report shall not be reproduced, except in full, without the written approval from ESC.
The reported analytical results relate only to the sample submitted
Reported: 11/21/07 15:11 Revised: 11/21/07 19:41

Page 11 of 16

Attachment A List of Analytes with QC Qualifiers

Sample #	Analyte	Qualifier
		
L319836-05 L319836-09	Triacontane WI DRO	J2 J

Attachment B Explanation of QC Qualifier Codes

Qualifier	Meaning	
5	(EPA) - Estimated value below the lowest calibration point. Confidence correlates with concentration.	
J2	Surrogate recovery limits have been exceeded; values are outside lower control limits	

Qualifier Report Information

ESC utilizes sample and result qualifiers as set forth by the EPA Contract Laboratory Program and as required by most certifying bodies including NELAC. In addition to the EPA qualifiers adopted by ESC, we have implemented ESC qualifiers to provide more information pertaining to our analytical results. Each qualifier is designated in the qualifier explanation as either EPA or ESC. Data qualifiers are intended to provide the ESC client with more detailed information concerning the potential bias of reported data. Because of the wide range of constituents and variety of matrices incorporated by most EPA methods, it is common for some compounds to fall outside of established ranges. These exceptions are evaluated and all reported data is valid and useable unless qualified as 'R' (Rejected).

- Definitions

 Accuracy The relationship of the observed value of a known sample to the true value of a known sample. Represented by percent recovery and relevant to samples such as: control samples, matrix spike recoveries, surrogate recoveries, etc.
- Precision The agreement between a set of samples or between duplicate samples.

 Relates to how close together the results are and is represented by Relative Percent Difference.
- Surrogate Organic compounds that are similar in chemical composition, extraction, and chromotography to analytes of interest. The surrogates are used to determine the probable response of the group of analytes that are chemically related to the surrogate compound. Surrogates are added to the sample and carried through all stages of preparation and analyses.
- TIC Tentatively Identified Compound: Compounds detected in samples that are not target compounds, internal standards, system monitoring compounds, or surrogates.

Summary of Remarks For Samples Printed 11/21/07 at 19:41:27

TSR Signing Reports: 341 R5 - Desired TAT

Need case narrative, chromatograms, TIC and QC for all TO-15 projects.

Sample: L319836-01 Account: TWINPORWI Received: 11/15/07 09:00 Due Date: 11/23/07 00:00 RPT Date: 11/21/07 15:11 Sample: L319836-02 Account: TWINPORWI Received: 11/15/07 09:00 Due Date: 11/23/07 00:00 RPT Date: 11/21/07 15:11 Sample: L319836-03 Account: TWINPORWI Received: 11/15/07 09:00 Due Date: 11/23/07 00:00 RPT Date: 11/21/07 15:11 Sample: L319836-04 Account: TWINPORWI Received: 11/15/07 09:00 Due Date: 11/23/07 00:00 RPT Date: 11/21/07 15:11 Sample: L319836-05 Account: TWINPORWI Received: 11/15/07 09:00 Due Date: 11/23/07 00:00 RPT Date: 11/21/07 15:11 Sample: L319836-06 Account: TWINPORWI Received: 11/15/07 09:00 Due Date: 11/23/07 00:00 RPT Date: 11/21/07 15:11 Sample: L319836-07 Account: TWINPORWI Received: 11/15/07 09:00 Due Date: 11/23/07 00:00 RPT Date: 11/21/07 15:11 Sample: L319836-08 Account: TWINPORWI Received: 11/15/07 09:00 Due Date: 11/23/07 00:00 RPT Date: 11/21/07 15:11 Sample: L319836-09 Account: TWINPORWI Received: 11/15/07 09:00 Due Date: 11/23/07 00:00 RPT Date: 11/21/07 15:11 Sample: L319836-10 Account: TWINPORWI Received: 11/15/07 09:00 Due Date: 11/23/07 00:00 RPT Date: 11/21/07 15:11 Sample: L319836-10 Account: TWINPORWI Received: 11/15/07 09:00 Due Date: 11/23/07 00:00 RPT Date: 11/21/07 15:11

Tax I.D. 62-0814289

Bst. 1970

Twin Ports Testing Todd Flak 1301 North 3rd Street

Superior, WI 54880

Quality Assurance Report Level II

L319836

November 21, 2007

			······································				
Analyte	Result	Labore	tory Blank Units Da	te Analy	zed	Batch	
WI, DRÖ , COCO, COLONA, 1940, 255 CARRARIDADO DARA	A < 80%		ng/kg 11	/18/07 1	2:37	MG330945	SEE OFF
1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Benzene Bthylbenzene m&p-Kylene	000. > 000. > 100 . >	5 5	mg/kg 11 mg/kg 11 mg/kg 11 mg/kg 11	/16/07 1 /16/07 1 /16/07 1	2:27 2:27 2:27 2:27	WG330963 WG330963 WG330963 WG330963	
Methyl tert-butyl ether Naphthalene o-Xylene Toluene GRO	< .001 < .005 < .000 < .005 < .1	Significa	mg/kg 11 mg/kg 11 mg/kg 11 mg/kg 11	/16/07 1 /16/07 1 /16/07 1 /16/07 1	2:27 2:27 2:27 2:27 2:27	WG330963 WG330963 WG330963 WG330963	
Total Solids	< .1		* 11 11.000 (14.000)	/21/07 1 /21/07 (WG331409 WG331416	v. ka inggo
	and the second special second	_ Dug	licate				_
Analyte	Unite		Duplicate	RPD	Limit	Ref Samp	Batch
Total Solids	Paragraphy in						
Total Solids	*	84.5	84.0	0.644	5	L319851-04	WG33143
Analyte	Lab Units	TATOTÝ Knowi	Control Samo Val Resu		* Rec	Limit B	atch
WI DROS AS TREES OF THE PROPERTY OF THE PROPER		934 40 750	53555.177 3972 5	go, prochiment, eternique Transcollet in Sur George Patr	98.0	70-120 W	G330945
1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Benzene Ethylbenzene	mg/kg mg/kg mg/kg mg/kg	.05 205 .05 .05	0.05 0.05 0.05 0.05	41 66 54 44	108. 113.44 d 111. 109.	59-138 W 66-132 W 78-141 W 69-133 W	G330963 G330963 G330963 G330963
m&p-Xylene Methyl tert-butyl ether Naphthalene o-Xylene Toluene	mg/kg mg/kg mg/kg	.05 .05 .05 .05	0.11 0.05 0.05 0.05 0.05	96 07 73	119. 101. 115.	80-120 W 71-121 W 65-117 W	G330963 G330963 G330963 G330963
GRO Total Solids	mg/kg	.5 50	0.42 50.0	: 5 ∱& ? 300#	85.1 99.9	, ogs. enggentygta	3330963 3331409
Total Solids		-1450 ÷:	50,0	PHONE.	100,	85-115 W	3331410
Analyte	aborato	ry Contr	ol Sample Du Ref Res	plicate. RPD I	i imit *Re	c Batch	
WITTROS - AT A STORY SHARES IN THE SECOND							51.5 1 5 M - V 1
1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Benzene Ethylbenzene ##P-Xylene	mg/kg mg/kg mg/kg mg/kg	0.0544	0.0541 0.0566 0.0554 0.0544	0.533 2 1.83 2 2 0.516 2 2.06 2	0 109 0 111 0 111 0 107	WG33096	3 3 4/3), 1952/ 3 3
Methyl tert-butyl ether Naphthalene O-Kylene Toluene GRO	mg/kg mg/kg	0.0569	0.0596 0.0507 0.0573 0.0561	4.58 2 9.11 2 0.707 2 0.0455 2	0 114 0 111 0 114	WG33096: WG33096:	3 3 3 *********************************

Tax I.D. 62-0814289

Est. 1970

Twin Ports Testing Todd Flak 1301 North 3rd Street

Quality Assurance Report Level II

Superior, WI 54880

L319836

November 21, 2007

Analyte	Units		Mat: Res	ix Spike Ref Re		t Rec	Limit	Ref	Samp	Batch
1,2,4-Trinethylbenzene	in a may / kg	1112	26		. N. 05 . N.	102	80-120	L31	9836-10	WG33096 3
1,3,5-Trimethylbenzene	ma/ka	2.	31	0.00	. 05	104.	80-120	L31	9836-10	WG330963
Benzene	mg/kg	2,	27	0.00	.05	102.	80-120		9836-10	
Sthylbenzene	my/kg	2:	18	0.023	0.05		80-120			WG330963
mod-vatene	mg/kg	4.	69	0.00	. 1	105.	80-120		9836-10	
Methyl tert-butyl ether	mg/kg		40	0.00	.05	108.	80-120		9836-10	
Naphthalene	ng/kg		09				80-120			WG330963
o-Xylene	mg/kg		30	0.00	.05	103.	80-120		9836-10	
Toluene	mg/kg	2.	28	0.00	.05	103.	80-120	L319	9836-10	WG330963
GDOY CONT. The result of the contract of the c		~ 4 5	-							
GRO 1	neg/kg	19.	6		5.5 %		80-120			MG330963
	rag/kg	19.	<u>.6 e .5</u>	0.00	5.5					
	rag/kg	= 19. Iatri	.6 .x -8∑		5.5	88.3		L31		
Analyte	Units	atri MSD	x Sy Res	ike Dupl Ref Res	.5 Lcate RPI	88.3 D Lim	80-120	L31	9836-10 E Samp	MG330963 Batch
Analyte 1,2,4-Trimethylbenzene	Units	atri MSD	6 × 81 Res 31	0.00 ike Dupl Ref Res	Lcate RPI	88.3 D Lim	80-120 it *Rec	Re:	9836-10 E Samp 19836-1	MG330963 Batch
Analyte 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	Units	atri MSD	6 x Sy Res 31 35	0.00 ike Dupl Ref Res 2.26 2.31	.5 Lcate RPI 2,2	88.3 D Lim 1 20	80-120 it *Rec 104:	Re:	836-10 E Samp 19836-1	Batch 0 W333096
Analyte 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Benzene	Units mg/kg mg/kg mg/kg mg/kg	atri MSD	6 X Sp Res 31 35 30	0.00 oike Dupl Ref Res 2.26 2.31 2.27	.5 RPI 2.2 1.7(1.3	88.3 D Lim 1 20 0 20 2 20	#80-120 it *Rec 104. 106. 103.	Re:	836-10 E Samp 19836-1 19836-1 19836-1	Batch 0 W3330963 0 W333096 0 W333096 0 W333096
Analyte 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Benzene Behylbenzene	Units mg/kg mg/kg mg/kg mg/kg	atri MSD 2: 2: 2.	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.00 bike Dupl Ref Res 2.26 2.31 2.27 2.18	2.2 1.7 1.3	88.3 D Lim 1 20 0 20 2 20 77 20	#80-120 it *Rec 104: 106: 103:	L31 Re L3 L3 L3 L3	836-10 E Samp 19836-1 19836-1 19836-1	Batch 0 WG330963 0 WG33096 0 WG33096 0 WG33096
Analyte 1.2.4-Trimethylbenzene 1.3.5-Trimethylbenzene Bthylbenzene Kthylbenzene m&p-Xylene	Units Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	19. latri MSD 2. 2.	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.00 bike Dupl Ref Res 2.26 2.31 2.27 2.18 4.69	.5 RPI 2.2 1.7 1.3 0.6	88.3 D Lim 1 20 20 2 20 77 20 75 20	#80-120 it *Rec 104: 106: 103: 97.8: 106:	L31 Re L3 L3 L3 L3 L3	9836-10 F Samp 19836-1 19836-1 19836-1 19836-1	Batch 0 W3330963 W333096 0 W333096 0 W333096 0 W333096
Analyte 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Benzene Bthylbenzene Mep-Xylene Methyl tert-butyl ether	Units Ing/kg mg/kg mg/kg mg/kg mg/kg mg/kg	iatri MSD 2. 2. 2.	x St Res 31 35 30 20 72 32	0.00 bike Dupl Ref Res 2.26 2.31 2.27 2.18 4.69 2.40	.5 RPI 2.2: 1.7: 1.3: 0.5: 3.1:	B8 3 Lim 20 20 20 20 77 20 75 20 2 20	104 106 103 97.8 106 104	L31 Re L3 L3 L3 L3 L3 L3	Samp 19836-1: 19836-1: 19836-1: 19836-1: 19836-1:	Batch 0 W3330963 W3330960 0 W3330960 0 W3330960 0 W3330960 0 W3330960
Analyte 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Benzene Ethylbenzene MKp-Xylene Methyl tert-butyl ether Naphtbalene	Units Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	atri MSD 2 2. 2.	x Sr Res 31 35 30 20 72 32 42	0.00 0.00	RPI 2,2: 1.7(1.3: 0.5: 0.5: 3.1:	BS 3 Lim 20 20 20 20 77 20 75 20 2 20 30	104 106 103 97.8 104 109	L31 Re: L3	5836-10 5 Samp 19836-1 19836-1 19836-1 19836-1 19836-1 19836-1 19836-1	Batch 0 WG33096 0 WG33096 0 WG33096 0 WG33096 0 WG33096
Analyte 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Benzene Ethylbenzene Mep-Xylene Methyl tert-butyl ether	Units Ing/kg mg/kg mg/kg mg/kg mg/kg mg/kg	atri MSD 2 2. 2.	x St Res 31 35 30 20 72 32	0.00 bike Dupl Ref Res 2.26 2.31 2.27 2.18 4.69 2.40	.5 RPI 2.2: 1.7: 1.3: 0.5: 3.1:	BB 3 Lim 20 20 20 20 77 20 75 20 20 79 20	104 106 103 97.8 106 104	L31 Re L3	Samp 19836-1: 19836-1: 19836-1: 19836-1: 19836-1:	Batch W3330963 Batch W333096 W333096 W333096 W333096 W333096 W333096

Batch number /Run number / Sample number cross reference

WG330963: R342195: L319836-01 02 03 04 05 06 07 08 09 10 WG330945: R342251: L319836-01 02 03 04 05 06 07 08 09 10 WG331409: R342680: L319836-01 02 03 04 WG331410: R342694: L319836-05 06 07 08 09 10

^{* *} Calculations are performed prior to rounding of reported values .

Tax I.D. 62-0814289

Twin Ports Testing Todd Flak 1301 North 3rd Street

Quality Assurance Report Level II

November 21, 2007

Est. 1970

Superior, WI 54880 L319836

The data package includes a summary of the analytic results of the quality control samples required by the SW-846 or CWA methods. The quality control samples include a method blank, a laboratory control sample, and the matrix spike/matrix spike duplicate analysis. If a target parameter is outside the method limits, every sample that is effected is flagged with the appropriate qualifier in Appendix B of the analytic report.

Method Blank - an aliquot of reagent water carried through the entire analytic process. The method blank results indicate if any possible contamination exposure during the sample handling, digestion or extraction process, and analysis. Concentrations of target analytes above the reporting limit in the method blank are qualified with the "B" qualifier.

Laboratory Control Sample - is a sample of known concentration that is carried through the digestion/extraction and analysis process. The percent recovery, expressed as a percentage of the theoretical concentration, has statistical control limits indicating that the analytic process is "in control". If a target analyte is outside the control limits for the laboratory control sample or any other control sample, the parameter is flagged with a "J4" qualifier for all effected samples.

Matrix Spike and Matrix Spike Duplicate - is two aliquots of an environmental sample that is spiked with known concentrations of target analytes. The percent recovery of the target analytes also has statistical control limits. If any recoveries that are outside the method control limits, the sample that was selected for matrix spike/matrix spike duplicate analysis is flagged with either a "J5" or a "J6". The relative percent difference (%RPD) between the matrix spike and the matrix spike duplicate recoveries is all calculated. If the RPD is above the method limit, the effected samples are flagged with a "J3" qualifier.

				temate billin	g information	:		Analysis/Container/Preservative					Chain of Custody Page 1 of ₹													
Twin Porter Testing													Prepared by:													
Twin Ported Testing 1301 n. 3rd St. Superior Wa 54810				Report to Told Flok									Environment													
													SCIENC	CE CORP.												
- 7000 001 24110												1	banon Road													
			Emi	ell to:							16		Mt. Juliet.	TN 37122												
Project Description: Soil Sampling Lou	oct cription: Soil sampling bouth of Gole			Ciry/Sate Collected	Syptem	Wa'			1				1	15) 758-5858												
Phone: FAX: 715 392 714	: 715・372・7/14 Clent Project #:			ESC Key:										00) 767-5859 (15) 758-5859												
Collected by Tody Hel			₽.0.#:),\$:			99		<i>A</i> = -	24.6			C. 08 - 30 - 32												
ollected by (signature):	Rush?	{ Lab MU	ST Be	Notified)	Date Rese	its Needed:		3					CoCode	(latit as only												
Joseph Flook	-	Same Day Next Day Two Day Three Day			Email?	No_Yes		e la	ß				Tendente/Presogin													
eckeci en Ice N Y					1	No_Yes	of		9		7															
Sample ID	Comp/		atrix*					C	T-					RemarkarContaminent	Sample # (lab orly)											
5-1	Grab	-GMA	35	6"	11.13.01	1 1030	3	3	3	3	3	3	3						3		X					L. 2 1840-0
4. Z	Grab	CW				1045			ı			2		-0												
5.3						1115	\coprod				4															
5.4		(1130				Ä																
<u>5.5</u>						1200	Ш			1,1				2 30												
<u> </u>						1215	\coprod																			
<u> </u>						1230				3				20.												
4.8	Ţ		1	V V V 100 1		4	1 1 1 V		V				- 08													
"Matrix \$5-Sol/Solid GW-C	Fround water	WW - Was	teWate:	r DW - Dri	nking Water	OT - Other_						pН	Те	тр												
Remarks:							20	34	75	175	2972	Flov	v O1	her												
		Time: 2:48	Ime: Received by: (Signature)				<u>, , </u>		I Sampi	es returned Ex Court	₩ 3: □	Sectifical Control	(late uses conty)													
Relinquished by: (Si	Inquished by: (Si		Time:						elapiz inc		Terres of		or.		5											
telinquished by: (Signatur)		Date:	Time:	-	乙定	UL.				Date	8	9.00	pHttalenation													

•

		l l	emate billin	g information:			Analysis/Container/Preservetive						Chain of Custody Page 2 of 2		
Twin Porte Te. 1301 M.3 Superior, W.	10 Testing						ncs.					Prepared by:			
1301 10.3							Í		1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00		ENVIR	ONMENTAL			
1.50171.5	<i>10</i> 0 ₁ .	700	ort to:						**************************************			SCIEN	CE CORP.		
Superior, W.	· 54890			JY 76	dc] !	1. 1.				J	banon Road		
								ſ					TN 37122		
Project Description: Soil Sampling Sou	that GGL	<u> </u>	City/Sate Collected	Superior	Wi					3		1	515) 758-5858 800) 767-5859		
Phone: FAX: 715-392-7144	Crient Project	# :	ESC Key:				6			2		1	515) 758-5859		
Collected by: Tabl 764	Ste/Facility (C	Wr.	P.O.#:				19								
Collected by (signature):	1	b MUST Be N		Date Resu	its Needed:	No.	7	ر. ال				Cocke & St	(No use drily)		
ad that	N	eme Day ext Day	. 100%	Email?_	Email?_No_Yes			4		200					
Packed on Ice N Y		wo Day	50% 25%	FAX?	No_Yes	of Crean	题	F	*			SEA			
Sample ID	Comp/Grab	Matrix*	Depth	Date	Time							Remerks/Contaminent	Sample # (lab only)		
5.9	Grab	ew 55	6'	11.807	115	3	×	×				<u> </u>	31936 209		
5.10	Grab	6₩35	1	1	130	3	X	쏫	-				40		
	 		<u> </u>	 		-		- 8	+						
				 		+-			+			<u> </u>			
					 	1	3		7						
						1									
"Matrix: 83-SolVSolid GW-Gro	oundwater WW	- WasteWater	DW - Drin	king Water (OT - Other_		·				рH	To	surb		
Remarks:						•	863	4 7	% Z4	5 297	Z Flor	w0	ther		
Relinquished by: Street	Date 11-14	57 Z:4	Recei	ed by: Island	ture)				Samp	iles returned dEx □ Cour	VIA: TURS	Compon	Parties and		
Reinquished by: (Si	Time:	Recei	ved by: (Signi	atu				Tem	5	79		A B			
Relinquished by: (Sign (Sign)	Time:	Red	Deservo de	10				77	15	19:00	S pH Class				