

151 Mill Street • P.O. Box 218 • Amherst, WI 54406 • 715.824.5169

April 12, 2022

Ms. Dee Lance, Hydrogeologist Wisconsin Department of Natural Resources 473 Griffith Avenue Wisconsin Rapids, WI 54494-7859

Re: Klismith Property (former Newman Appraisal Service)

157 N Main Street Amherst, Wisconsin BRRTS No. 02-50-550910

Subject: Site Investigation Report

Dear Ms. Lance:

Attached for your review and Department files is the *Site Investigation Report* for the Klismith Property (former Newman Appraisal Service). The purpose of this report is to detail the findings of the site investigations completed at the Property.

Under separate cover letter, you will receive for review and approval by the Closure Review Committee, the Case Closure Request for the Klismith Property (former Newman Appraisal Service).

If you have any questions or would like to discuss, please contact me via phone at 715.445.1497 or by email at pete.arntsen@sandcountyenv.com.

Sincerely,

SAND COUNTY ENVIRONMENTAL, INC.

Pete Arntsen, MS, PH, PG

Senior Hydrogeologist/Project Manager

Enclosure: Site Investigation Report

Via email and RR Portal

cc/enc: Mr. Tom Klismith, via email only

Site Investigation Report

for

Klismith Property (former Newman Appraisal Service)

Amherst, Wisconsin

prepared on behalf of

Klismith Accounting Amherst, Wisconsin

Amherst Office 151 Mill Street PO Box 218 Amherst, WI 54406 **Ph** 715.824.5169

Cedarburg Office 668 Martin Drive Cedarburg WI 53012 Ph 414.791.6030

Plymouth Office W5877 Pheasants Lane Plymouth, WI 53073 Ph 920.918.9024

Rhinelander Office 580 Shepard Street Suite A Rhinelander, WI 54501 Ph 715.365.1818

Signature Page

This report was prepared by Andrew Rakers and Peter Arntsen and reviewed by Hollie DePuydt, all with Sand County Environmental, Inc.

I, Andrew Rakers, hereby certify that I am a scientist as that term is defined in s. NR 712.03 (3), Wis. Adm. Code, and that, to the best of my knowledge, all of the information contained in this document is correct and the document was prepared in compliance with all applicable requirements in chs. NR 700 to 726, Wis. Adm. Code.

Andrew Rakers, EIT

Date

4/12/2022

Project Engineer

I, Peter Arntsen, hereby certify that I am a hydrogeologist as that term is defined in s. NR 712.03 (1), Wis. Adm. Code, am registered in accordance with the requirements of ch. GHSS 2, Wis. Adm. Code, or licensed in accordance with the requirements of ch. GHSS 3, Wis. Adm. Code, and that, to the best of my knowledge, all of the information contained in this document is correct and the document was prepared in compliance with all applicable requirements in chs. NR 700 to 726, Wis. Adm. Code.

4/12/2022

Date

Peter Arntsen, MS, PH, PG

Project Manager/Senior Hydrogeologist

I, Hollie DePuydt, hereby certify that I am a registered professional engineer in the State of Wisconsin, registered in accordance with the requirements of ch. A-E 4, Wis. Adm. Code; that this document has been prepared in accordance with the Rules of Professional Conduct in ch. A-E 8, Wis. Adm. Code; and that, to the best of my knowledge, all information contained in this document is correct and the document was prepared in compliance with all applicable requirements in chs. NR 700 to 726, Wis. Adm. Code.

4/12/2022

Hollie DePuydt, PE Senior Engineer Date

Table of Contents

Exe	cutiv	e Summary	. i\
1	Intr	oduction	1
		Purpose of Document	
	1.2	Objectives of Investigation	1
	1.3	Substances of Concern	1
	1.4	Areas of Concern	1
	1.5	Site Location	1
		1.5.1 Property Address	1
		1.5.2 Public Land Survey System	1
		1.5.3 Latitude/Longitude	1
		1.5.4 Wisconsin Transverse Mercator 1991	1
	1.6	Interested Parties	1
		1.6.1 Responsible Party and Property Owner	1
		1.6.2 Environmental Consultant	1
2	Das	kground	-
2		Site Description and Surrounding Land Use	
		· · · · · · · · · · · · · · · · · · ·	
	2.2	Site History	
		2.2.1 History of Ownership	
		· · ·	
	2.2	2.2.3 Discharge Event	
	2.5	Nearby Investigations	
	2.4	Previous Investigations	
	2.4	2.4.1 Newman Appraisal Phase II Environmental Site Assessment and Site Investigation	
	2 5	Response Actions	
		Physiographic Setting	
	2.0	2.6.1 Topography and Hydrology	
		2.6.2 Geology and Hydrogeology	
	2.7	Potential Sensitive Receptors	
	2.7	2.7.1 Potable Wells	
		2.7.2 Inhalation Exposure	
		2.7.3 Surface Waters and Wetlands	
		2.7.4 Utility Corridors	
		2.7.4 Othity Corridors	¬
3	Met	thods	5
	3.1	Soil	5
		3.1.1 Soil Sample Collection	5
	3.2	Groundwater	
		3.2.1 Monitoring Well Installation	5
		3.2.2 Monitoring Well Development	5
		3.2.3 Groundwater Monitoring	5
	3.3	Vapor	6
		3.3.1 Vapor Sampling Devices	6
		3.3.2 Vapor Sample Collection	
	3.4	Sample Analysis	7

		Boring and Well Abandonment	
	3.6	Investigative Wastes	/
4	Resu	ults and Discussion	8
		Geologic and Hydrogeologic Characteristics	
	4.2	Degree and Extent of PCE	
		4.2.1 Soil	
		4.2.2 Groundwater	
		4.2.3 Vapor Investigations	9
5		clusions and Recommendations	
		Conclusions	
	5.2	Recommendations	10
6	Refe	erences	11
		List of Figures	
Figu	re 1	Site Location Map	
Figu	re 2	Site Layout and Sample Locations	
Figu	re 3	Geologic Cross-Section A-A'	
Figu	re 4	Soil Sample Locations and Results October 2021	
Figu	re 5	Groundwater Sample Locations and Results October 2021	
Figu	re 6	Vapor Sample Locations and Results September 2021	
		List of Tables	
Tabl	e 1	Soil Analysis Results	
Tabl	e 2	Groundwater Chemistry and Water Table Elevation Data	
Tabl	e 3	Vapor Sample Results	
		List of Appendices	
Арре	endix	x A Cox-Colvin Vapor Pin™ Information	
Арре	endix	x B Laboratory Reports	
Appe	endix	Site Investigation Boring Logs, Well Logs, Field Notes, and Borehole Abandonment Forms	
Арре	endix	x D Excerpts from Amherst Super Station Project File	
Арре	endix	x E Property History	

Executive Summary

The Klismith Property (former Newman Appraisal Service) (Site) is the location of a former laundry facility that offered dry cleaning services. Investigations performed in 1998, at a nearby petroleum-release site, (Amherst Super Service) revealed the presence of tetrachloroethylene (a.k.a. perchloroethylene and PCE) in groundwater east of the Site. The office building was identified by the Wisconsin Department of Natural Resources (WDNR) as a potential source of the PCE, and the WDNR requested that the owner perform investigations.

In 2007, PCE was detected in groundwater samples collected from two soil borings, one installed in front (east) of the building and the other behind (west). The results were reported to the WDNR, and a responsible party letter was subsequently issued.

In 2009, soil samples were collected from soil borings installed at the Site, groundwater samples were collected in monitoring wells installed downgradient (east) of the Site, and a sub-slab vapor sample was installed in the floor of the office building. PCE was detected in the soil at a concentration above the Groundwater Pathway Residual Contaminant Level (Groundwater RCL); it was detected in the groundwater at concentrations above its NR 140 Enforcement Standard (ES); and it was detected in the soil vapor at a concentration above its Environmental Protection Agency's Vapor Intrusion Screening Level (VISL). The sub-slab vapor concentration was reported to the WDNR, and a sub-slab vapor mitigation system was installed at the Site office building in September 2009.

Due to a number of factors primarily related to property transactions, no further investigations were implemented at the Site until 2019, at which time groundwater samples were collected from four monitoring wells and a vapor sample was collected from exhaust of the mitigation system. The results of the groundwater samples showed concentrations below the NR 140 ES, and the vapor sample concentration was below VISL. After discussing the results with the WDNR, it was determined that additional sampling was warranted.

In 2021, two sub-slab vapor probes were installed in the floor of the office building and sub-slab soil vapor samples were collected on two occasions. In addition, groundwater samples were collected from monitoring wells and municipal water-supply wells. None of the vapor samples had a concentration of PCE above its VISL, and no water sample had a PCE concentration above its ES.

Because there is no evidence of residual PCE present at concentrations above action levels in the soil, groundwater, or soil vapors, the site should be closed and the groundwater monitoring wells abandoned. The sub-slab mitigation system should remain in operation until such time that it is demonstrated that it is no longer necessary.

1 Introduction

1.1 Purpose of Document

The purpose of this Site Investigation Report is to provide documentation and interpretation of site investigation activities and results associated with the former Newman Appraisal Services, now Klismith Accounting.

1.2 Objectives of Investigation

The objectives of this investigation were to determine the extent to which air, soil, and groundwater at or surrounding the Klismith Accounting property (the Site) have been impacted by tetrachloroethene (PCE) and other chlorinated solvents.

1.3 Substances of Concern

The substances of concern at the Site are tetrachloroethylene (PCE) and trichloroethylene (TCE).

1.4 Areas of Concern

The areas of concern include the Site office building, the Site subsurface soils, and the groundwater beneath and downgradient of the site.

1.5 Site Location

1.5.1 Property Address

Klismith Property (former Newman Appraisal Service) 157 N. Main Street Amherst, WI 54406

Attn: Mr. Tom Klismith

Email: tom.klismith@kerberrose.com

Phone: 715.347.5101

The general Site location is indicated on Figure 1.

1.5.2 Public Land Survey System

Northeast Quarter of the Southeast Quarter, Section 21, Township 23 North, Range 10 East, Village of Amherst, Portage County, Wisconsin.

1.5.3 <u>Latitude/Longitude</u>

Latitude: 44.4511609 N Longitude: 89.2849353 W.

1.5.4 Wisconsin Transverse Mercator 1991

X Coordinate (WTM91): 576894 Y Coordinate (WTM91): 442232

1.6 Interested Parties

1.6.1 Responsible Party and Property Owner

Jay-Mar Road Professional Court, LLC 2040 Jay Mar Road, Suite 1 Plover, WI 54467

Attn: Mr. Tom Klismith, Owner Email: tom.klismith@kerberrose.com

Phone: 715.347.5101

1.6.2 <u>Environmental Consultant</u>

Sand County Environmental, Inc. P.O. Box 218 151 Mill Street Amherst, WI 54406

Attn: Mr. Pete Arntsen, Project Manager Email: pete.arntsen@sandcountyenv.com

Phone: 715.445.1497

2 Background

2.1 Site Description and Surrounding Land Use

The Site is situated near the center of the Village of Amherst in the downtown commercial district. The single parcel is rather small (about 26 feet by 90 feet) and includes a brick office building on the east half and pervious grass and gravel on the west half. The office building currently is used by the accounting firm KerberRose. The surrounding and nearby properties are primarily commercial businesses and single-family residential.

The Site and surrounding area is shown on Figure 2.

2.2 Site History

2.2.1 <u>History of Ownership</u>

The history of Site ownership is partially provided by a written narrative by Mr. and Mrs. Dale and Carol Newman dated February 16, 2008 (**Appendix F**). Ownership information since 2008 was obtained from the International Bank of Amherst and the current property owner:

- 1975 Building constructed for use as laundromat and included one self-service dry cleaning machine by Mr. Wayne Patoka.
- 1980/1981 Business and property purchased by Mr. Timothy Quella.
- 1993 Business ceased operations. Laundry and dry cleaning machines and materials removed.
- 2004 Property purchased by Mr. and Mrs. Dale and Carol Newman/Newman Enterprises and operated as Newman Appraisal Service.
- 2008 Property purchased by Mr. and Mrs. James and Jennifer Culver. Subsequently acquired by International Bank of Amherst.
- 2010 to 2021 Purchased by Jay-Mar Road Professional Court, LLC and operated as Klismith Accounting Services.

2.2.2 <u>History of Significant Facility Operations</u>

The earliest use of the property identified during this investigation was by Amherst Laundry and Dry Cleaning from 1981 to 1991.

The building was reportedly vacant for 10 years prior to purchase by Newman Appraisal, which used it as a business office.

The building had a trench floor drain that drained to the municipal sanitary sewer, but the drain was removed in 2005 when purchased by Newman Appraisal.

A sub-slab mitigation system was installed in September 2009, by Radon Specialists after a sub-slab vapor sample collected in July 2009, had concentrations of PCE above screening levels.

Klismith Accounting used the property as a business office.

April 2022

2.2.3 <u>Discharge Event</u>

There is no known specific discharge event. The source of the PCE is attributed to operations when dry cleaning services were offered at the Property.

2.3 Nearby Investigations

2.3.1 <u>Amherst Super Service</u>

In February 1998, PCE was detected in a groundwater sample collected from a monitoring well installed as part of investigation activities at the Amherst Super Service petroleum release site, located across the street from the Site at 108 Main Street. Dissolved PCE was detected in a sample from a second well in May 1998. Water samples were collected from both wells in August 2001, each had detections of PCE. No PCE was detected in samples collected from two municipal wells located downgradient of the Site. In May 2001, when Case Closure was approved for the Amherst Super Service site, the DNR requested that some of the wells installed during investigation not be abandoned for use in monitoring the PCE plume.

2.4 Previous Investigations

2.4.1 Newman Appraisal Phase II Environmental Site Assessment and Site Investigation

In December 2007, a Phase II Environmental Site Assessment (ESA) was conducted at the Site, and PCE was identified in soil and groundwater samples. The results were reported to the Wisconsin Department of Natural Resources (WDNR) and a "Responsible Party" letter dated February 8, 2008, was issued. The Site was subsequently enrolled in the Dry Cleaner Environmental Response Fund (DERF). Consultant selection, scope of work, and costs were approved in November 2008.

In April 2009, four borings, two water table observation wells, and one piezometer were installed, and soil and groundwater samples were collected. Soil samples from two borings had detections of PCE (0.48 milligrams per kilogram [mg/kg] and 0.061 mg/kg). Groundwater samples from two of the three new wells, and from two existing wells (from Amherst Super Service) had detections of PCE (PCE range of 0.55 micrograms per liter [μ g/l to 69 μ g/l]).

In June 2009, a sub-slab vapor sample was collected from the building. PCE was detected in the sample at 1900 parts per billion by volume (ppbv) (13,100 micrograms per cubic meter $[\mu g/m^3]$).

No further investigations were conducted under the Newman Appraisal project.

2.5 Response Actions

A sub-slab mitigation system was installed at the office building on the Property in September 2009.

2.6 Physiographic Setting

2.6.1 <u>Topography and Hydrology</u>

Downtown Amherst is situated on an alluvial terrace of the nearby Tomorrow River. The topography of the Site is generally flat, with a gentle slope to the east, towards the Tomorrow River. Topography slopes upward to the west starting approximately a quarter mile from the Site.

Much of the surface drainage in the Site area is captured by a municipal storm sewer and discharged to the Tomorrow River. Runoff not captured by the storm sewer flows overland to the River.

rst, Wisconsin April 2022

The Tomorrow River flows generally north to south a few hundred feet east of the Site. A dam on the River creates a long narrow impoundment that extends to the north.

2.6.2 Geology and Hydrogeology

The geology at the Site consists of alluvial sands deposited over outwash sands. Crystalline bedrock occurs at depths of greater than 100 feet. The well construction reports for Amherst municipal wells No. 1 and No. 2 show the wells screened in sand and gravel to depths of 60 feet.

Groundwater occurs within the coarse-grained sediments at depths of around 10 feet. Groundwater flow is southeast (towards the Tomorrow River and its direction of flow) at estimated flow velocities of greater than 1 foot per day.

2.7 Potential Sensitive Receptors

2.7.1 Potable Wells

The Village of Amherst is served by a municipal water system; there are no private drinking water wells near the Site. Two of the three Village of Amherst public water supply wells are less than 500 feet directly downgradient of Site. The third Village well is located on the east side of the River (mill pond) about a half-mile northeast of the Site.

2.7.2 Inhalation Exposure

The Site office building is the only structure considered to be susceptible to vapor intrusion and thus inhalation exposure. The porous soils and pervious surfaces adjacent to the building minimizes the potential threat to adjacent buildings.

2.7.3 Surface Waters and Wetlands

Dissolved PCE is unlikely to have any significant impact on the only nearby surface water (the Tomorrow River).

2.7.4 <u>Utility Corridors</u>

Any PCE originating at the Site is unlikely to impact utility corridors because the depth to water (i.e., about 10 feet) is below the expected depth of utility lines, and the sandy geologic materials are not significantly less permeable than materials potentially used as backfill for utility construction.

3 Methods

3.1 Soil

3.1.1 Soil Sample Collection

Soil samples were collected from two locations in 2007, and from six additional locations in 2009. The samples were collected using a Geoprobe® soil probing unit to drive a Macro-core sampler equipped with acetate liners at intervals of 4 feet. Samples were collected continuously from the surface to the bottom of boring (typically 12 feet), with the liner extracted and replaced after each interval. The acetate liners were split lengthwise allowing access to the geologic materials. Samples were inspected and characterized by a field geologist, and descriptions recorded on field logs.

Soil from selected sample intervals was placed in a ziplock plastic bag and allowed to sit for at least 5 minutes to allow the headspace to equilibrate. The samples were then analyzed using a hand-held photoionization detector.

Samples for laboratory analysis were placed in laboratory-supplied jars and stored on ice pending delivery to lab under chain-of-custody procedures. The samples were analyzed for volatile organic compounds (VOCs).

3.2 Groundwater

3.2.1 Monitoring Well Installation

Two water-table observation wells and one piezometer were installed in 2009. The wells were installed in boreholes created with a 4 1/4-inch hollow-stem auger driven by Geoprobe®. Wells were constructed of 2-inch diameter schedule 40 polyvinylchloride (PVC) equipped with 10-foot (water table wells) or 5-foot (piezometer) screens. The annular space around the well screens were filled with coarse sand that extended at least 1 foot above the top of screen. At least 1 foot of fine sand was placed on top of the filter-packed sand, and the balance of annular space was filled with chipped bentonite. The wells were equipped with a water-tight cap and protected by a flush mount cover.

Monitoring well installation was in accordance with Wisconsin Administrative Code (WAC) NR 141.

3.2.2 Monitoring Well Development

The monitoring wells were developed by using a submersible pump to alternately surge and pump water from the wells until the pump discharge after surging was clear.

3.2.3 <u>Groundwater Monitoring</u>

Groundwater samples were collected from two borings, five water-table observation wells, two piezometers, and two municipal water-supply wells. Four of the monitoring wells were installed during other site investigations.

Prior to sampling the monitoring wells, the well caps were removed and the water levels allowed to equilibrate. Water levels were measured using an electronic water-level indicator, with the depth below the well top measured to the nearest 0.01 foot. The depth measurement was recorded on a field data sheet.

April 2022

Except for after well development, when samples were collected directly from the submersible pump discharge, samples from monitoring wells were collected by inserting 3/8-inch diameter plastic tubing to the bottom of the well and withdrawing water using a peristaltic pump. The pump discharge was captured in a 5-gallon bucket until approximately 4 gallons were removed, at which time the pump discharge was directed into laboratory supplied containers.

Water sample collection from the municipal wells was coordinated with Village staff. Samples were collected when the wells were operating regularly. The samples were collected from the pump house prior to any treatment.

Grab groundwater samples were collected from two borings by using a peristaltic pump to draw water through plastic tubing from the bottom of the boring and into laboratory-supplied containers.

All groundwater samples were stored on ice pending delivery to a laboratory under chain-of-custody procedures. The samples were analyzed for VOCs.

3.3 Vapor

3.3.1 Vapor Sampling Devices

The first sub-slab vapor sampling device (Vapor 1) was installed in 2009 in the northwestern portion of the building. The location was selected because it was the reported location of the former dry cleaning machine. The sampling device was installed by using a hammer drill to first create a 1/2-inch diameter hole through the building floor (which was approximately 6-inches thick). The hole was over-drilled with a 1-inch drill bit to a depth of approximately 1 inch to create a "cup" at the top of the hole. A 3/8-inch stainless steel tube was inserted into the hole to 2 inches below the base of the concrete slab, then sealed with melted bees wax.

The exhaust pipe for the sub-slab mitigation system, located at the rear (west) side of the building, was used to collect one vapor sample in 2019.

Two Vapor Pins™ (see **Appendix A**) were installed in 2021: one (SSV-201) near the original Vapor 1 location, and another (SSV-202) near the central portion of the building. A hammer drill was used to create a 5/8-inch diameter hole through the concrete slab. The hole was then over-drilled with a 1 1/2-inch diameter bit to a depth of approximately 1 1/2-inches. A Vapor Pin™ with silicone sleeve was inserted into the smaller diameter hole with the top of sampling port set just below the floor.

3.3.2 <u>Vapor Sample Collection</u>

The first sub-slab vapor sample was collected immediately after installation by connecting laboratory-supplied plastic tubing to the steel tube and connecting the other end of the tubing to a summa canister. The valve to the summa canister was opened and allowed to fill. The initial canister pressure (vacuum) was recorded and the valve was closed when the pressure approached zero (atmospheric pressure.)

The vapor exhaust sample was collected with a summa canister by lowering the sample tubing into the exhaust port while the system was operating. Initial canister pressure was recorded and the value was closed when near zero.

Samples from the Vapor Pins™ were collected in accordance with recommended Vapor Pins™ sampling procedures. The sampling train included valve fittings that were pressure tested prior to use. The sampling train allowed the sub-slab vapors to be purged and monitored with a hand-held photoionization detector prior to closing the exhaust port and opening the summa canister port. As with other vapor samples, the canisters were allowed to fill until the canister pressure was near atmospheric.

3.4 Sample Analysis

All soil, water, and vapor samples were submitted to WDNR-certified labs for analysis of VOCs.

The groundwater and soil samples collected in 2007 were analyzed by CT Laboratories, Inc. in Baraboo, Wisconsin.

Soil samples collected in 2009 were analyzed by TestAmerica in Watertown, Wisconsin. The sub-slab vapor sample collected in 2009 was analyzed TestAmerica in Knoxville, Tennessee.

The 2019 and 2021 groundwater samples were analyzed by PACE Analytical in Green Bay, Wisconsin.

The 2019 and 2021 vapor samples were analyzed by Pace Analytical in Minneapolis, Minnesota.

Laboratory reports are included in **Appendix B**.

3.5 Boring and Well Abandonment

Bore holes without wells installed were abandoned by backfilling with chipped bentonite after sample collection. Boring and well abandonment was performed in accordance with WAC NR 141.

MW-2 was abandoned shortly after the first water sample was collected when it was discovered that it was installed though a sanitary lateral. The well was abandoned by filling the well casing with chipped bentonite and cutting off the PVC at least 30 inches below ground surface. The sewer lateral was repaired by the Village of Amherst.

The first vapor sampling device, Vapor 1, was abandoned immediately after sample collection by removing the steel tubing and sealing the hole with concrete.

3.6 Investigative Wastes

Soils not submitted for laboratory analysis or retained for geologic characterization were thin-spread on pervious areas of the Property.

Groundwater development and purge water were thin-spread on impervious surfaces and allowed to evaporate.

Vapors purged during sub-slab sampling were vented to atmosphere.

4 Results and Discussion

4.1 Geologic and Hydrogeologic Characteristics

Well and boring locations and the Site layout are indicated on **Figure 2**; a geologic cross-section is included as **Figure 3**; boring logs, well logs, and abandonment forms from this Site investigation are included in **Appendix C.** Boring logs, geologic cross-sections, and water table contour maps from the Amherst Super Station project are included in **Appendix D**.

The geologic conditions are well defined in the Site area. The surficial few feet are silty and sandy loess and alluvial deposits. The balance of the unconsolidated deposits is poorly graded sands with occasional lenses of fines deposited as alluvium, outwash, or coarse till. Crystalline bedrock underlies the unconsolidated deposits at depths of around 100 feet.

The hydrogeologic conditions are similarly well defined. Groundwater occurs approximately 10 feet below ground surface at the Site, and becomes shallower as the surface topography drops to the Tomorrow River. The groundwater flow direction is southeasterly from the Site to the river. The hydraulic conductivity of the aquifer sediments is estimated to be on the order of 50 to 100 feet per day, and average linear groundwater flow velocity on the order of 1 to 2 feet per day.

4.2 Degree and Extent of PCE

4.2.1 Soil

Soil sample locations and results from October 2021, are indicated on **Figure 4**; results are also included on **Table 1**.

PCE was detected in soil samples collected from two locations: B-7 and MW-2. Both locations are outside the west side of the building, and both samples were collected from depths of 3 to 4 feet below ground surface. The concentrations were above the Groundwater Pathway Residual Contaminant Level (RCL) but below Direct Contact RCLs.

Acetone and methylene chloride were detected at two locations: B-2 and B-3. However, these detections are considered to be spurious and are attributed to cross-contamination, probably by the lab. Reasons to discount the results include the compounds are common solvents used in laboratories, and methylene chloride was detected in the method blank. Regardless, the concentrations were well below any RCLs.

4.2.2 <u>Groundwater</u>

Groundwater sample locations are shown on **Figure 5**; results are included on **Table 2**; laboratory reports for samples collected in 2019 and 2021 are included in **Appendix B**; field notes are included in **Appendix C**.

PCE was detected at six locations: B-1, B-2, MW-1, PZ-1, MW-100, and MW-1000. The highest concentration detected was 69 μ g/l at MW-1 in 2009. Samples collected from the well in 2019 and 2021 were below the ES for the substance.

PCE was not detected in any sample collected from the Village municipal wells.

April 2022

4.2.3 <u>Vapor Investigations</u>

Vapor sampling locations are shown on **Figure 6**; results are included on **Table 3**; laboratory reports for samples collected in 2019 and 2021 are included in **Appendix B**; field notes are included in **Appendix C**.

PCE was detected at all four vapor sample locations. The highest concentration (13,100 μ g/m³) was in the 2009 sample from Vapor 1. Samples collected from that location (SSV-201) on two occasions in 2021 had PCE concentrations of 39.6 μ g/m³ and 41.6 μ g/m³. Samples from SSV-202 collected on the same dates had similar concentrations as SSV-201. The 2021 concentrations are below sub-slab vapor screening levels determined using the U.S. EPA Vapor Intrusion Screening Level (VISL) calculator and reported in DNR Publication RR-0136 (WDNR, 2022).

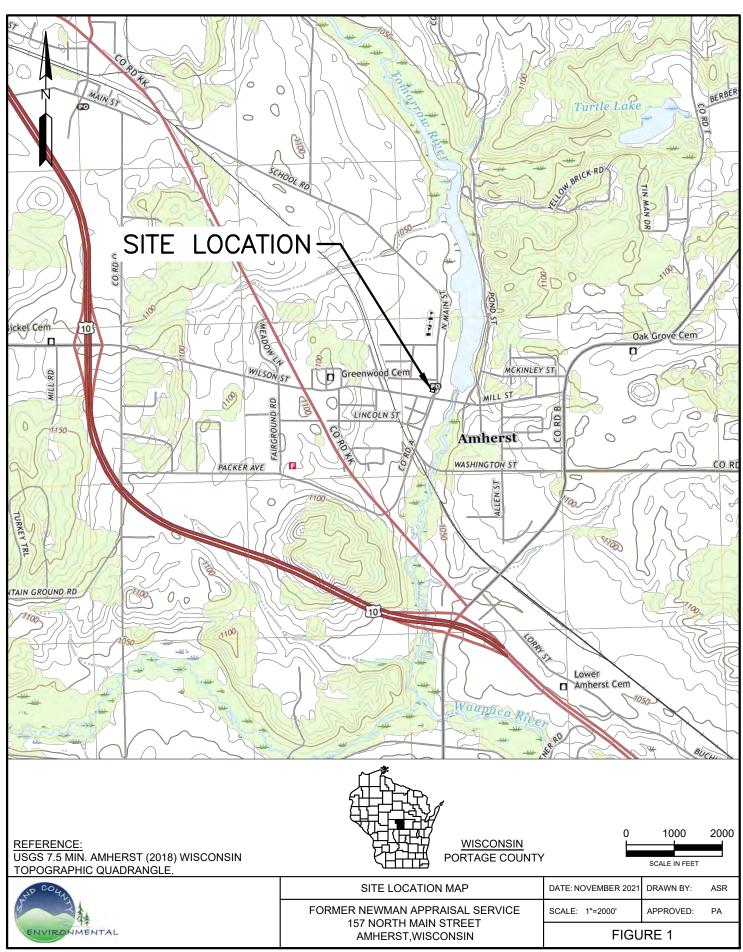
5 Conclusions and Recommendations

5.1 Conclusions

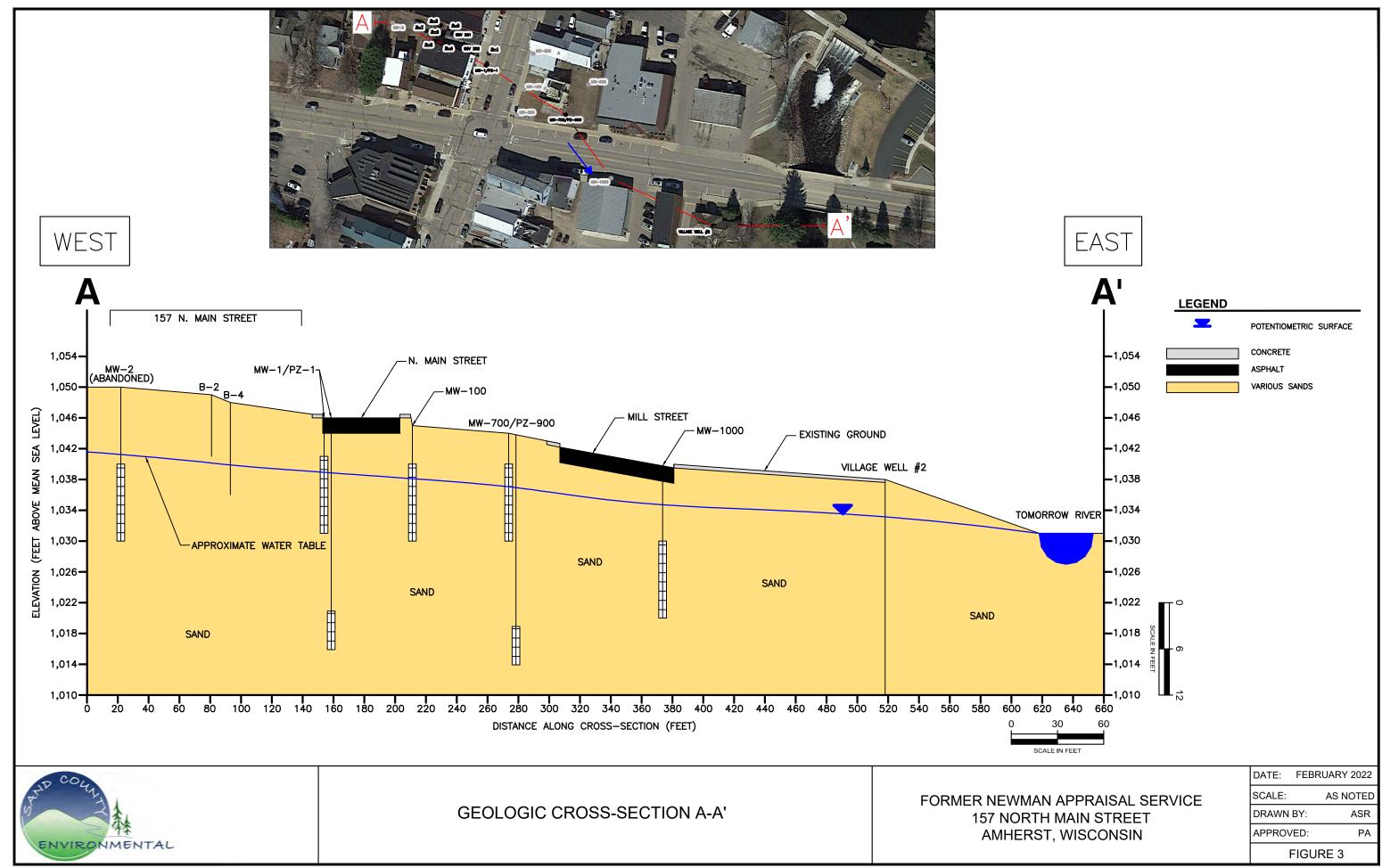
The result investigations performed to date adequately define the degree and extent of PCE and TCE in the soil, groundwater, and soil vapors at and near the Site.

- PCE/TCE concentrations in the soil are below direct contact RCLs, and the residual contamination is not impacting groundwater quality above NR 140 ES, nor contributing to subslab vapor concentrations that exceed EPA Vapor Intrusion Screening Levels.
- PCE/TCE concentrations in the groundwater are below NR 140 ES; the residual contamination is
 not a threat to the municipal wells or the Tomorrow River; the dissolved concentrations are not
 contributing to sub-slab vapor concentrations that exceed EPA Vapor Intrusion Screening Levels;
 and the concentrations will decrease over time due to natural attenuation processes.
- PCE/TCE concentrations in the soil vapors are below sub-slab vapor concentrations that exceed EPA Vapor Intrusion Screening Levels, and there is no evidence that vapor intrusion presents a threat to Indoor Air Vapor Action Levels (WDNR, 2022).

5.2 Recommendations


Because the residual PCE/TCE does not present a threat to human health or the environment, the Site should be closed in accordance with NR 726. To that end, a Case Closure packet will be assembled and submitted to WDNR. After closure is approved, the monitoring wells should be abandoned per NR 141 and final closure granted.

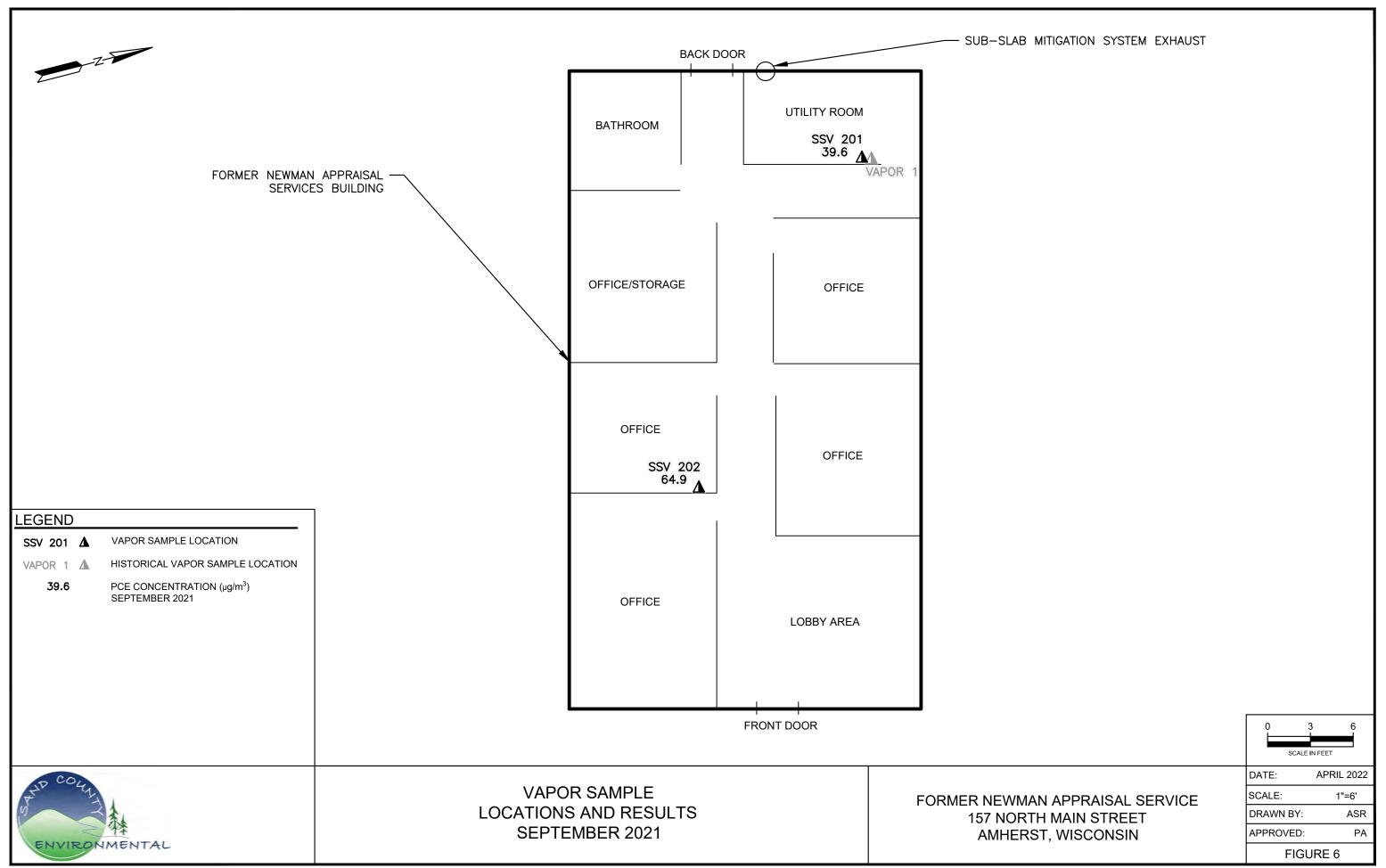
6 References


Wisconsin Department of Natural Resources, 2022, *Wisconsin Vapor Quick Look-Up Table for Indoor Air VALs and VRSL (RR-0136)*.

Wisconsin Department of Natural Resources, Bureau for Remediation and Redevelopment Tracking System on the Web, RR Sites Map and Database.

Figures

O:\1-Projects\Klismith 157 Main St Amherst\Drawings\MASTER Klismith October 2021 GW.dwg 3/24/2022 10:31 AM


ENVIRONMENTAL

OCTOBER 2021

157 NORTH MAIN STREET AMHERST, WISCONSIN

DRAWN BY: ASR APPROVED:

FIGURE 5

Tables

Table 1

Soil Analysis Results

Klismith Property (former Newman Appraisal Service)

157 N. Main Street Amherst, Wisconsin

Sample Number	B-2		B-3		B-4		B-5		B-6		B-7		PZ-1		MW-2	
Depth below ground surface (ft)	3-4	7-8	3-4	7-8	3-4	11-12	3-4	10-11	3-4	10-11	3-4	11-12	3-4	8.5-9.5	3-4	15-16
Date Sampled			//2007	4/20/2009		4/20/2009		4/20/2009		4/20/2009		4/20/2009		4/20/2009		

Non-Industrial	Industrial Direct	Groundwater
Direct Contact RCL	Contact RCL	Pathway RCL

Analyte (mg/kg)				(mg/kg)															
Acetone	63,400	100,000	3.68	0.34	0.84	0.86	0.32												
Methylene Chloride	62	1,150	2.6	0.061	0.08	0.093	0.092	<	<	<	<	<	<	<	<	<	<	<	<
Tetrachloroethene (PCE)	33	145	0.0045	<	<	<	<	<	<	<	<	<	<	0.48	<	<	<	0.061	<
Toluene	818	818	1.11	<	<	<	<	<	<	<	<	<	<	0.044	<	<	<	<	<

Notes

< Less than the method detection limit

-- Not Analyzed

7.6 Bold result exceeds a Direct Contact RCL

1.8 Italic result exceeds a Groundwater Pathway RCL

RCL NR 270 Residual Contaminant Level

Only analytes detected in the laboratory are listed All soil samples were collected from unsaturated soil

O:\1-Projects\Klismith 157 Main St Amherst\Data\[MASTER SCE Klismith data.xlsx]Soil Results

Table 2 Groundwater Chemistry and Water Table Elevation Data Klismith Property (former Newman Appraisal Service) 157 N. Main Street Amherst, Wisconsin

Sample Location			Date	Depth to Water (feet)*	Water Elevation (feet)*	Tetrachloroethene µg/l	Trichloroethene μg/l	Chloromethane μg/l	Chloroethane μg/l	Other VOCs detected
				40 Enforceme		5	5	6	400	
			1	0 Preventive	Action Limit	0.5	0.5	0.6	80	
B-1	Top of PVC		12/27/2007			13	<	0.92	<	None
	Top of Screen									
	Bottom of Well	-12								
B-2	Top of PVC		12/27/2007			0.6	2.9	2.8	3.5	TMB, Xylenes, Naphthalene, 2 Buanone, Acetone
	Top of Screen									
	Bottom of Well	-12								
MW-1	Top of PVC	100.01		8.67	91.34	69	<	<	<	None
	Top of Screen	95.56		6.56	93.45	2.5	<0.26	<2.2	<1.3	None
	Bottom of Well	85.56		7.05	92.96	1.0	<0.32	<1.6	<1.4	None
PZ-1	Top of PVC	100.00		8.68	91.32	1.8	<	<	<	Chlorobenzene
	Top of Screen	75.25		6.70	93.30	<0.33	<0.26	<2.2	<1.3	None
	Bottom of Well	70.25	10/4/2021	7.05	92.95	<0.41	<0.32	<1.6	<1.4	None
MW-2	Top of PVC	103.99	4/22/2009	12.22	91.77	<	<	<	<	Trichlorofluoromethane
	Top of Screen	94.24	5/10/2019	Aband	doned					
	Bottom of Well	84.24								
MW-100	Top of PVC	100.18	2/17/1998			7.4				None
	Top of Screen		8/30/2001			3.0	<0.3			None
	Bottom of Well		4/22/2009	9.05	91.13	7.6	<	<	<	None
MW-700	Top of PVC		2/17/1998			<6.5				Several petroleum-related hydrocarbons
	Top of Screen		8/30/2001			<8.0	<6.0			Several petroleum-related hydrocarbons
	Bottom of Well	-15.10	5/10/2019	8.25		< 0.33	<0.26	<2.2	<1.3	Several petroleum-related hydrocarbons
			10/1/2021	8.98		<0.41	<0.32	<1.6	<1.4	Several petroleum-related hydrocarbons
PZ-900	Top of PVC		2/17/1998			<3.5				None
	Top of Screen		8/30/2001			<0.40	<0.3			None
	Bottom of Well	-32.32	5/10/2019	7.70		< 0.33	<0.26	<2.2	<1.3	None
			10/1/2021	8.25		<0.41	<0.32	<1.6	<1.4	None
MW-1000	Top of PVC	94.74	5/6/1998			8.9				Trimethylbenzene
	Top of Screen		8/30/2001			4.7	0.38 ^J			None
	Bottom of Well		4/22/2009	4.10	90.64	0.55 ¹	0.33 ^J	0.33 ^J	0.33 ^J	Trichlorofluoromethane
/W#1	Top of PVC		10/2/2001			<0.40	<0.30			None
	Top of Screen		10/1/2021			< 0.41	< 0.32	<1.6	<1.4	None
	Bottom of Well									
/W#2	Top of PVC		8/13/1998			<0.35	<0.30			None
	Top of Screen		8/30/2001			<0.40	<0.30			None
	Bottom of Well		5/10/2019			<0.33	<0.26	<2.2	<1.3	None
			10/1/2021			<0.41	<0.32	<1.6	<1.4	None

Notes

- 7.6 Bold result exceeds NR 140 Enforcement Standard (ES)
- 1.8 Italic result exceeds NR 140 Preventive Action Limit (PAL)
- -- Not analyzed, not reported, not available.
- <0.33 No detect (below indicated method detection limit, if known)
- J Concentration is estimated; below quantitation limit
- VW Village Wel

O:\1-Projects\Klismith 157 Main St Amherst\Data\[MASTER SCE Klismith data.xlsx]Water Data

Sand County Environmental, Inc.
Page 1 of 1

^{*} All elevations are referenced to a benchmark established on PZ-1 by Sand County Envrionmental (100.00 ft)

Table 3
Vapor Sample Results
Klismith Property (former Newman Appraisal Service)
157 N. Main Street
Amherst, Wisconsin

Sample ID	Date	Tetrachloroethene μg/m³	Trichloroethene μg/m³	Chloromethane μg/m³	Dichlorodifluormethane μg/m³	Trichlorofluormethane μg/m³	Methylene Chloride μg/m³
Vapor 1	4/22/2009	13,100	<	<	<	<	<
System Exhaust	5/21/2019	2.2	1.2	0.53 ^J	2.0	1.3 ^J	85.7
SSV 201	9/28/2021	39.6	<0.28	<0.12	2.8	1.5 ^J	<0.85
33V 2U1	12/23/2021	41.6	<0.28	0.42 ^J	2.5	<0.33	<0.84
SSV 202	9/28/2021	64.9	<0.28	0.22 ^J	2.5	1.4 ^J	<0.85
33 V 202	12/23/2021	58.2	<0.28	<0.12	2.5	<0.33	<0.84
Indoor Air Vapor	Action Levels ¹						
	Non-Residential	180	8.8	390	440		2,600
	Residential	42	2.1	94	100		630
Sub-Slab Vapor S	creening Levels ²						
	Non-Residential	6,000	290	13,000	15,000		87,000
	Residential	1,400	70	3,100	3,330		21,000

Notes

- Less than the method detection limit, with a dilution factor of 56.65
- -- No screening level
- 7.6 Bold result exceeds a Non-Residential Action Level or Screening Level
- 1.8 Italic result exceeds a Residential Action Level or Screening Level
- J Concentration is estimated; below quantitation limit

O:\1-Projects\Klismith 157 Main St Amherst\Data\[MASTER SCE Klismith data.xlsx]Water Data

Sand County Environmental, Inc. Page 1 of 1

¹ Vapor Action Levels obtained from the Indoor Air Vapor Action Levels for Various VOCs Quick Look-up Table Based on November 2017 Regional Screening Level Summary Table [http://dnr.wi.gov/topic/Brownfields/documents/vapor-quick.pdf]

² Screening level for Residential/Small Commercial Buildings (dilution factor of 33.3)

Appendix A Cox-Colvin Vapor Pin™ Information

Standard Operating Procedure Installation and Extraction of the Vapor Pin™

December 3, 2013

Scope:

This standard operating procedure describes the installation and extraction of the Vapor Pin[™] for use in sub-slab soil-gas sampling.

Purpose:

The purpose of this procedure is to assure good quality control in field operations and uniformity between field personnel in the use of the Vapor Pin[™] for the collection of subslab soil-gas samples.

Equipment Needed:

- Assembled Vapor Pin[™] [Vapor Pin[™] and silicone sleeve (Figure 1)];
- Hammer drill;
- 5/8-inch diameter hammer bit (Hilti™ TE-YX 5/8" x 22" #00206514 or equivalent);
- 1½-inch diameter hammer bit (Hilti™ TE-YX 1½" x 23" #00293032 or equivalent) for flush mount applications;
- 3/4-inch diameter bottle brush;
- Wet/dry vacuum with HEPA filter (optional);
- Vapor Pin[™] installation/extraction tool;
- Dead blow hammer;
- Vapor Pin[™] flush mount cover, if desired;
- Vapor Pin[™] protective cap; and
- VOC-free hole patching material (hydraulic cement) and putty knife or trowel.

Figure 1. Assembled Vapor PinTM.

Installation Procedure:

- 1) Check for buried obstacles (pipes, electrical lines, etc.) prior to proceeding.
- 2) Set up wet/dry vacuum to collect drill cuttings.
- 3) If a flush mount installation is required, drill a 1½-inch diameter hole at least 1¾-inches into the slab.
- 4) Drill a 5/8-inch diameter hole through the slab and approximately 1-inch into the underlying soil to form a void.
- 5) Remove the drill bit, brush the hole with the bottle brush, and remove the loose cuttings with the vacuum.
- 6) Place the lower end of Vapor Pin[™] assembly into the drilled hole. Place the small hole located in the handle of the extraction/installation tool over the Vapor Pin[™] to protect the barb fitting and cap, and tap the Vapor Pin[™] into place using a dead blow hammer (Figure 2). Make sure

the extraction/installation tool is aligned parallel to the Vapor Pin^{TM} to avoid damaging the barb fitting.

Figure 2. Installing the Vapor PinTM.

For flush mount installations, unscrew the threaded coupling from the installation/extraction handle and use the hole in the end of the tool to assist with the installation (Figure 3).

Figure 3. Flush-mount installation.

During installation, the silicone sleeve will form a slight bulge between the slab and the Vapor Pin^{TM} shoulder. Place the protective cap on Vapor Pin^{TM} to prevent vapor loss prior to sampling (Figure 4).

Figure 4. Installed Vapor PinTM.

- 7) For flush mount installations, cover the Vapor Pin[™] with a flush mount cover, using either the plastic cover or the optional stainless-steel Secure Cover.
- 8) Allow 20 minutes or more (consult applicable guidance for your situation) for the sub-slab soil-gas conditions to equilibrate prior to sampling.
- 9) Remove protective cap and connect sample tubing to the barb fitting of the Vapor Pin[™] (Figure 5).

Figure 5. Vapor PinTM sample connection.

10) Conduct leak tests in accordance with applicable guidance. If the method of leak testing is not specified, an attractive alternative can be the use of a water dam and vacuum pump, as described in SOP Leak Testing the Vapor Pin[™] via Mechanical Means (Figure 6).

Figure 6. Water dam used for leak detection.

11) Collect sub-slab soil gas sample. When finished sampling, replace the protective cap and flush mount cover until the next sampling event. If the sampling is complete, extract the Vapor Pin[™].

Extraction Procedure:

- Remove the protective cap, and thread the installation/extraction tool onto the barrel of the Vapor Pin[™] (Figure 7). Continue turning the tool to assist in extraction, then pull the Vapor Pin[™] from the hole.
- 2) Fill the void with hydraulic cement and smooth with the trowel or putty knife. Urethane caulk is widely recommended for installing radon systems and can provide a

Figure 7. Removing the Vapor PinTM.

- tight seal, but it could also be a source of VOCs during subsequent sampling.
- 3) Prior to reuse, remove the silicone sleeve and discard. Decontaminate the Vapor Pin[™] in a hot water and Alconox[®] wash, then heat in an oven to a temperature of 130° C.

The Vapor Pin[™] to designed be used repeatedly; however, replacement parts and supplies will be required periodically. These parts are available on-line at www.CoxColvin.com.

Replacement Parts:

Vapor Pin[™] Kit Case - VPC001
Vapor Pins[™] - VPIN0522
Silicone Sleeves - VPTS077
Installation/Extraction Tool - VPIE023
Protective Caps - VPPC010
Flush Mount Covers - VPFM050
Water Dam - VPWD004
Brush - VPB026
Secure Cover - VPSCSS001
Spanner Wrench - VPSPAN001

Appendix B Laboratory Reports

May 17, 2019

Pete Arntsen SAND CREEK CONSULTANTS, INC. 151 Mill Street Amherst, WI 54406

RE: Project: KLISMITH-FORMER NEWMAN

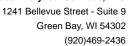
Pace Project No.: 40187638

Dear Pete Arntsen:

Enclosed are the analytical results for sample(s) received by the laboratory on May 15, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,


Dan Milewsky dan.milewsky@pacelabs.com (920)469-2436

Project Manager

Dan Miland

Enclosures

CERTIFICATIONS

Project: KLISMITH-FORMER NEWMAN

Pace Project No.: 40187638

Green Bay Certification IDs

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 North Dakota Certification #: R-150

Virginia VELAP ID: 460263

South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157 Federal Fish & Wildlife Permit #: LE51774A-0

(920)469-2436

SAMPLE SUMMARY

Project: KLISMITH-FORMER NEWMAN

Pace Project No.: 40187638

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40187638001	VW #2	Water	05/10/19 10:30	05/15/19 09:20
40187638002	PZ-900	Water	05/10/19 09:35	05/15/19 09:20
40187638003	PZ-1	Water	05/13/19 11:55	05/15/19 09:20
40187638004	MW-700	Water	05/10/19 09:55	05/15/19 09:20
40187638005	MW-1	Water	05/13/19 11:20	05/15/19 09:20

(920)469-2436

SAMPLE ANALYTE COUNT

Project: KLISMITH-FORMER NEWMAN

Pace Project No.: 40187638

Lab ID	Sample ID	Method	Analysts	Analytes Reported
40187638001	VW #2	EPA 8260	HNW	63
40187638002	PZ-900	EPA 8260	HNW	63
40187638003	PZ-1	EPA 8260	HNW	63
40187638004	MW-700	EPA 8260	HNW	63
40187638005	MW-1	EPA 8260	HNW	63

(920)469-2436

SUMMARY OF DETECTION

Project: KLISMITH-FORMER NEWMAN

Pace Project No.: 40187638

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
40187638004	MW-700					
EPA 8260	1,2,4-Trimethylbenzene	65.1	ug/L	2.8	05/16/19 15:35	
EPA 8260	1,3,5-Trimethylbenzene	8.9	ug/L	2.9	05/16/19 15:35	
EPA 8260	Ethylbenzene	43.1	ug/L	1.0	05/16/19 15:35	
EPA 8260	Isopropylbenzene (Cumene)	2.6J	ug/L	5.0	05/16/19 15:35	
EPA 8260	Naphthalene	4.7J	ug/L	5.0	05/16/19 15:35	
EPA 8260	Toluene	11.1	ug/L	5.0	05/16/19 15:35	
EPA 8260	Xylene (Total)	155	ug/L	3.0	05/16/19 15:35	
EPA 8260	n-Propylbenzene	7.2	ug/L	5.0	05/16/19 15:35	
40187638005	MW-1					
EPA 8260	Tetrachloroethene	2.5	ug/L	1.1	05/16/19 15:58	

Project: KLISMITH-FORMER NEWMAN

Pace Project No.: 40187638

Date: 05/17/2019 09:15 AM

Sample: VW #2 Lab ID: 40187638001 Collected: 05/10/19 10:30 Received: 05/15/19 09:20 Matrix: Water

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV	Analytical	Method: EPA	A 8260						
1,1,1,2-Tetrachloroethane	<0.27	ug/L	1.0	0.27	1		05/16/19 11:05	630-20-6	
1,1,1-Trichloroethane	<0.24	ug/L	1.0	0.24	1		05/16/19 11:05	71-55-6	
1,1,2,2-Tetrachloroethane	<0.28	ug/L	1.0	0.28	1		05/16/19 11:05	79-34-5	
,1,2-Trichloroethane	<0.55	ug/L	5.0	0.55	1		05/16/19 11:05	79-00-5	
,1-Dichloroethane	<0.27	ug/L	1.0	0.27	1		05/16/19 11:05	75-34-3	
,1-Dichloroethene	<0.24	ug/L	1.0	0.24	1		05/16/19 11:05	75-35-4	
,1-Dichloropropene	<0.54	ug/L	1.8	0.54	1		05/16/19 11:05	563-58-6	
,2,3-Trichlorobenzene	< 0.63	ug/L	5.0	0.63	1		05/16/19 11:05	87-61-6	
,2,3-Trichloropropane	<0.59	ug/L	5.0	0.59	1		05/16/19 11:05	96-18-4	
,2,4-Trichlorobenzene	< 0.95	ug/L	5.0	0.95	1		05/16/19 11:05	120-82-1	
,2,4-Trimethylbenzene	<0.84	ug/L	2.8	0.84	1		05/16/19 11:05	95-63-6	
,2-Dibromo-3-chloropropane	<1.8	ug/L	5.9	1.8	1		05/16/19 11:05		
,2-Dibromoethane (EDB)	<0.83	ug/L	2.8	0.83	1		05/16/19 11:05		
,2-Dichlorobenzene	<0.71	ug/L	2.4	0.71	1		05/16/19 11:05		
,2-Dichloroethane	<0.28	ug/L	1.0	0.28	1		05/16/19 11:05		
,2-Dichloropropane	<0.28	ug/L	1.0	0.28	1		05/16/19 11:05		
,3,5-Trimethylbenzene	<0.87	ug/L	2.9	0.87	1		05/16/19 11:05		
,3-Dichlorobenzene	< 0.63	ug/L	2.1	0.63	1		05/16/19 11:05		
,3-Dichloropropane	<0.83	ug/L	2.8	0.83	1		05/16/19 11:05		
,4-Dichlorobenzene	<0.94	ug/L	3.1	0.94	1		05/16/19 11:05		
,2-Dichloropropane	<2.3	ug/L	7.6	2.3	1		05/16/19 11:05		
-Chlorotoluene	<0.93	ug/L	7.0 5.0	0.93	1		05/16/19 11:05		
-Chlorotoluene	<0.76	ug/L	2.5	0.33	1		05/16/19 11:05		
enzene	<0.25	ug/L	1.0	0.76	1		05/16/19 11:05		
romobenzene	<0.24	-	1.0	0.23	1		05/16/19 11:05		
romochloromethane	<0.24 <0.36	ug/L	5.0	0.24	1		05/16/19 11:05		
		ug/L							
Bromodichloromethane	<0.36	ug/L	1.2	0.36	1		05/16/19 11:05		
Sromoform	<4.0	ug/L	13.2	4.0	1		05/16/19 11:05		
Bromomethane	<0.97	ug/L	5.0	0.97	1		05/16/19 11:05		
Carbon tetrachloride	<0.17	ug/L	1.0	0.17	1		05/16/19 11:05		
Chlorobenzene	<0.71	ug/L	2.4	0.71	1		05/16/19 11:05		
Chloroethane	<1.3	ug/L	5.0	1.3	1		05/16/19 11:05		
Chloroform	<1.3	ug/L	5.0	1.3	1		05/16/19 11:05		
Chloromethane	<2.2	ug/L	7.3	2.2	1		05/16/19 11:05		
Dibromochloromethane	<2.6	ug/L	8.7	2.6	1		05/16/19 11:05	_	
ibromomethane	<0.94	ug/L	3.1	0.94	1		05/16/19 11:05		
Pichlorodifluoromethane	<0.50	ug/L	5.0	0.50	1		05/16/19 11:05		
iisopropyl ether	<1.9	ug/L	6.3	1.9	1		05/16/19 11:05		
thylbenzene	<0.22	ug/L	1.0	0.22	1		05/16/19 11:05		
lexachloro-1,3-butadiene	<1.2	ug/L	5.0	1.2	1		05/16/19 11:05		
sopropylbenzene (Cumene)	<0.39	ug/L	5.0	0.39	1		05/16/19 11:05		
lethyl-tert-butyl ether	<1.2	ug/L	4.2	1.2	1		05/16/19 11:05		
lethylene Chloride	<0.58	ug/L	5.0	0.58	1		05/16/19 11:05	75-09-2	
laphthalene	<1.2	ug/L	5.0	1.2	1		05/16/19 11:05	91-20-3	
Styrene	<0.47	ug/L	1.6	0.47	1		05/16/19 11:05	100-42-5	
Tetrachloroethene	< 0.33	ug/L	1.1	0.33	1		05/16/19 11:05	127-18-4	

05/16/19 11:05 460-00-4

05/16/19 11:05 1868-53-7

05/16/19 11:05 2037-26-5

ANALYTICAL RESULTS

Collected: 05/10/19 10:30 Received: 05/15/19 09:20 Matrix: Water

Lab ID: 40187638001

100

101

96

%

%

%

Project: KLISMITH-FORMER NEWMAN

Pace Project No.: 40187638

Sample: VW #2

Surrogates

Toluene-d8 (S)

4-Bromofluorobenzene (S)

Dibromofluoromethane (S)

Date: 05/17/2019 09:15 AM

·									
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EP/	A 8260						
Toluene	<0.17	ug/L	5.0	0.17	1		05/16/19 11:05	108-88-3	
Trichloroethene	<0.26	ug/L	1.0	0.26	1		05/16/19 11:05	79-01-6	
Trichlorofluoromethane	<0.21	ug/L	1.0	0.21	1		05/16/19 11:05	75-69-4	
Vinyl chloride	<0.17	ug/L	1.0	0.17	1		05/16/19 11:05	75-01-4	
Xylene (Total)	<1.5	ug/L	3.0	1.5	1		05/16/19 11:05	1330-20-7	
cis-1,2-Dichloroethene	<0.27	ug/L	1.0	0.27	1		05/16/19 11:05	156-59-2	
cis-1,3-Dichloropropene	<3.6	ug/L	12.1	3.6	1		05/16/19 11:05	10061-01-5	
n-Butylbenzene	<0.71	ug/L	2.4	0.71	1		05/16/19 11:05	104-51-8	
n-Propylbenzene	<0.81	ug/L	5.0	0.81	1		05/16/19 11:05	103-65-1	
p-Isopropyltoluene	<0.80	ug/L	2.7	0.80	1		05/16/19 11:05	99-87-6	
sec-Butylbenzene	<0.85	ug/L	5.0	0.85	1		05/16/19 11:05	135-98-8	
tert-Butylbenzene	<0.30	ug/L	1.0	0.30	1		05/16/19 11:05	98-06-6	
trans-1,2-Dichloroethene	<1.1	ug/L	3.6	1.1	1		05/16/19 11:05	156-60-5	
trans-1,3-Dichloropropene	<4.4	ug/L	14.6	4.4	1		05/16/19 11:05	10061-02-6	

70-130

70-130

70-130

1

1

Project: KLISMITH-FORMER NEWMAN

Pace Project No.: 40187638

Date: 05/17/2019 09:15 AM

Sample: PZ-900 Lab ID: 40187638002 Collected: 05/10/19 09:35 Received: 05/15/19 09:20 Matrix: Water

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV	Analytical	Method: EPA	A 8260						
1,1,1,2-Tetrachloroethane	<0.27	ug/L	1.0	0.27	1		05/16/19 14:50	630-20-6	
1,1,1-Trichloroethane	<0.24	ug/L	1.0	0.24	1		05/16/19 14:50	71-55-6	
1,1,2,2-Tetrachloroethane	<0.28	ug/L	1.0	0.28	1		05/16/19 14:50	79-34-5	
1,1,2-Trichloroethane	<0.55	ug/L	5.0	0.55	1		05/16/19 14:50	79-00-5	
,1-Dichloroethane	<0.27	ug/L	1.0	0.27	1		05/16/19 14:50	75-34-3	
,1-Dichloroethene	<0.24	ug/L	1.0	0.24	1		05/16/19 14:50	75-35-4	
,1-Dichloropropene	<0.54	ug/L	1.8	0.54	1		05/16/19 14:50	563-58-6	
,2,3-Trichlorobenzene	< 0.63	ug/L	5.0	0.63	1		05/16/19 14:50	87-61-6	
,2,3-Trichloropropane	< 0.59	ug/L	5.0	0.59	1		05/16/19 14:50	96-18-4	
,2,4-Trichlorobenzene	< 0.95	ug/L	5.0	0.95	1		05/16/19 14:50	120-82-1	
,2,4-Trimethylbenzene	<0.84	ug/L	2.8	0.84	1		05/16/19 14:50	95-63-6	
,2-Dibromo-3-chloropropane	<1.8	ug/L	5.9	1.8	1		05/16/19 14:50		
,2-Dibromoethane (EDB)	<0.83	ug/L	2.8	0.83	1		05/16/19 14:50		
,2-Dichlorobenzene	<0.71	ug/L	2.4	0.71	1		05/16/19 14:50		
,2-Dichloroethane	<0.28	ug/L	1.0	0.28	1		05/16/19 14:50		
,2-Dichloropropane	<0.28	ug/L	1.0	0.28	1		05/16/19 14:50		
,3,5-Trimethylbenzene	<0.87	ug/L	2.9	0.87	1		05/16/19 14:50		
,3-Dichlorobenzene	< 0.63	ug/L	2.1	0.63	1		05/16/19 14:50		
,3-Dichloropropane	<0.83	ug/L	2.8	0.83	1		05/16/19 14:50		
,4-Dichlorobenzene	<0.94	ug/L	3.1	0.94	1		05/16/19 14:50		
,4-Dichloropropane	<2.3	ug/L	7.6	2.3	1		05/16/19 14:50		
-Chlorotoluene	<0.93	ug/L ug/L	7.0 5.0	0.93	1		05/16/19 14:50		
-Chlorotoluene	<0.76	ug/L ug/L	2.5	0.93	1		05/16/19 14:50		
Senzene	<0.25	ug/L ug/L	1.0	0.76	1		05/16/19 14:50		
Bromobenzene	<0.24	ug/L ug/L	1.0	0.23	1		05/16/19 14:50		
Bromochloromethane	<0.24 <0.36	-	5.0	0.24	1		05/16/19 14:50		
		ug/L							
Bromodichloromethane Bromoform	<0.36	ug/L	1.2	0.36	1 1		05/16/19 14:50		
	<4.0	ug/L	13.2	4.0			05/16/19 14:50		
Bromomethane	<0.97	ug/L	5.0	0.97	1		05/16/19 14:50		
Carbon tetrachloride	<0.17	ug/L	1.0	0.17	1		05/16/19 14:50		
Chlorobenzene	<0.71	ug/L	2.4	0.71	1		05/16/19 14:50		
Chloroethane	<1.3	ug/L	5.0	1.3	1		05/16/19 14:50		
Chloroform	<1.3	ug/L	5.0	1.3	1		05/16/19 14:50		
Chloromethane	<2.2	ug/L	7.3	2.2	1		05/16/19 14:50		
Dibromochloromethane	<2.6	ug/L	8.7	2.6	1		05/16/19 14:50		
Dibromomethane	<0.94	ug/L	3.1	0.94	1		05/16/19 14:50		
Dichlorodifluoromethane	<0.50	ug/L	5.0	0.50	1		05/16/19 14:50		
Diisopropyl ether	<1.9	ug/L	6.3	1.9	1		05/16/19 14:50		
thylbenzene	<0.22	ug/L	1.0	0.22	1		05/16/19 14:50		
lexachloro-1,3-butadiene	<1.2	ug/L	5.0	1.2	1		05/16/19 14:50		
sopropylbenzene (Cumene)	<0.39	ug/L	5.0	0.39	1		05/16/19 14:50		
Methyl-tert-butyl ether	<1.2	ug/L	4.2	1.2	1		05/16/19 14:50		
Methylene Chloride	<0.58	ug/L	5.0	0.58	1		05/16/19 14:50		
laphthalene	<1.2	ug/L	5.0	1.2	1		05/16/19 14:50	91-20-3	
Styrene	<0.47	ug/L	1.6	0.47	1		05/16/19 14:50	100-42-5	
Tetrachloroethene	< 0.33	ug/L	1.1	0.33	1		05/16/19 14:50	127-18-4	

Matrix: Water

05/16/19 14:50 104-51-8 05/16/19 14:50 103-65-1

05/16/19 14:50 99-87-6

05/16/19 14:50 135-98-8

05/16/19 14:50 98-06-6

05/16/19 14:50 156-60-5

05/16/19 14:50 460-00-4

05/16/19 14:50 1868-53-7

05/16/19 14:50 2037-26-5

05/16/19 14:50 10061-02-6

Received: 05/15/19 09:20

ANALYTICAL RESULTS

Collected: 05/10/19 09:35

0.71

0.81

0.80

0.85

0.30

1.1

4.4

1

1

1

1

1

1

1

1

Lab ID: 40187638002

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

%

%

%

<0.71

<0.81

<0.80

<0.85

<0.30

<1.1

<4.4

100

101

96

Project: KLISMITH-FORMER NEWMAN

Pace Project No.: 40187638

Sample: PZ-900

n-Butylbenzene

n-Propylbenzene

p-Isopropyltoluene

sec-Butylbenzene

tert-Butylbenzene

Surrogates

Toluene-d8 (S)

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

4-Bromofluorobenzene (S)

Dibromofluoromethane (S)

Date: 05/17/2019 09:15 AM

Units LOQ LOD DF **Parameters** Results Prepared CAS No. Analyzed Qual 8260 MSV Analytical Method: EPA 8260 Toluene <0.17 ug/L 5.0 0.17 05/16/19 14:50 108-88-3 1 Trichloroethene <0.26 0.26 05/16/19 14:50 79-01-6 ug/L 1.0 1 Trichlorofluoromethane <0.21 0.21 05/16/19 14:50 75-69-4 ug/L 1.0 1 Vinyl chloride <0.17 ug/L 1.0 0.17 1 05/16/19 14:50 75-01-4 05/16/19 14:50 1330-20-7 Xylene (Total) <1.5 ug/L 3.0 1.5 1 cis-1,2-Dichloroethene <0.27 ug/L 0.27 05/16/19 14:50 156-59-2 1.0 1 cis-1,3-Dichloropropene <3.6 ug/L 12.1 3.6 05/16/19 14:50 10061-01-5 1

2.4

5.0

2.7

5.0

1.0

3.6

14.6

70-130

70-130

70-130

Project: KLISMITH-FORMER NEWMAN

Pace Project No.: 40187638

Date: 05/17/2019 09:15 AM

Sample: PZ-1 Lab ID: 40187638003 Collected: 05/13/19 11:55 Received: 05/15/19 09:20 Matrix: Water

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EP/	A 8260						
1,1,1,2-Tetrachloroethane	<0.27	ug/L	1.0	0.27	1		05/16/19 15:13	630-20-6	
1,1,1-Trichloroethane	<0.24	ug/L	1.0	0.24	1		05/16/19 15:13	71-55-6	
1,1,2,2-Tetrachloroethane	<0.28	ug/L	1.0	0.28	1		05/16/19 15:13	79-34-5	
1,1,2-Trichloroethane	<0.55	ug/L	5.0	0.55	1		05/16/19 15:13	79-00-5	
1,1-Dichloroethane	<0.27	ug/L	1.0	0.27	1		05/16/19 15:13	75-34-3	
1,1-Dichloroethene	<0.24	ug/L	1.0	0.24	1		05/16/19 15:13	75-35-4	
1,1-Dichloropropene	<0.54	ug/L	1.8	0.54	1		05/16/19 15:13	563-58-6	
1,2,3-Trichlorobenzene	< 0.63	ug/L	5.0	0.63	1		05/16/19 15:13	87-61-6	
1,2,3-Trichloropropane	<0.59	ug/L	5.0	0.59	1		05/16/19 15:13	96-18-4	
1,2,4-Trichlorobenzene	< 0.95	ug/L	5.0	0.95	1		05/16/19 15:13	120-82-1	
1,2,4-Trimethylbenzene	<0.84	ug/L	2.8	0.84	1		05/16/19 15:13	95-63-6	
1,2-Dibromo-3-chloropropane	<1.8	ug/L	5.9	1.8	1		05/16/19 15:13		
1,2-Dibromoethane (EDB)	<0.83	ug/L	2.8	0.83	1		05/16/19 15:13		
1,2-Dichlorobenzene	<0.71	ug/L	2.4	0.71	1		05/16/19 15:13		
1,2-Dichloroethane	<0.28	ug/L	1.0	0.28	1		05/16/19 15:13		
1,2-Dichloropropane	<0.28	ug/L	1.0	0.28	1		05/16/19 15:13		
1,3,5-Trimethylbenzene	<0.87	ug/L	2.9	0.87	1		05/16/19 15:13		
1,3-Dichlorobenzene	< 0.63	ug/L	2.1	0.63	1		05/16/19 15:13		
1,3-Dichloropropane	<0.83	ug/L	2.8	0.83	1		05/16/19 15:13		
1,4-Dichlorobenzene	<0.94	ug/L	3.1	0.94	1		05/16/19 15:13		
2,2-Dichloropropane	<2.3	ug/L	7.6	2.3	1		05/16/19 15:13		
2-Chlorotoluene	<0.93	ug/L	5.0	0.93	1		05/16/19 15:13		
4-Chlorotoluene	<0.76	ug/L	2.5	0.33	1		05/16/19 15:13		
Benzene	<0.25	ug/L	1.0	0.76	1		05/16/19 15:13		
Bromobenzene	<0.24	ug/L ug/L	1.0	0.23	1		05/16/19 15:13		
Bromochloromethane	<0.24	ug/L ug/L	5.0	0.24	1		05/16/19 15:13		
Bromodichloromethane	<0.36	•	1.2	0.36	1		05/16/19 15:13		
Bromoform	<4.0	ug/L ug/L	13.2	4.0	1		05/16/19 15:13		
Bromomethane	<0.97		5.0	0.97	1		05/16/19 15:13		
	<0.97 <0.17	ug/L	1.0	0.97	1		05/16/19 15:13		
Carbon tetrachloride		ug/L		0.17	1				
Chlorobenzene	<0.71	ug/L	2.4		1		05/16/19 15:13		
Chloroform	<1.3	ug/L	5.0	1.3 1.3	1		05/16/19 15:13		
Chloroform	<1.3	ug/L	5.0				05/16/19 15:13		
Chloromethane	<2.2	ug/L	7.3	2.2	1		05/16/19 15:13		
Dibromochloromethane	<2.6	ug/L	8.7	2.6	1		05/16/19 15:13	_	
Dibromomethane	<0.94	ug/L	3.1	0.94	1		05/16/19 15:13		
Dichlorodifluoromethane	<0.50	ug/L	5.0	0.50	1		05/16/19 15:13		
Diisopropyl ether	<1.9	ug/L	6.3	1.9	1		05/16/19 15:13		
Ethylbenzene	<0.22	ug/L	1.0	0.22	1		05/16/19 15:13		
Hexachloro-1,3-butadiene	<1.2	ug/L	5.0	1.2	1		05/16/19 15:13		
Isopropylbenzene (Cumene)	<0.39	ug/L	5.0	0.39	1		05/16/19 15:13		
Methyl-tert-butyl ether	<1.2	ug/L	4.2	1.2	1		05/16/19 15:13		
Methylene Chloride	<0.58	ug/L	5.0	0.58	1		05/16/19 15:13		
Naphthalene	<1.2	ug/L	5.0	1.2	1		05/16/19 15:13		
Styrene	<0.47	ug/L	1.6	0.47	1		05/16/19 15:13		
Tetrachloroethene	<0.33	ug/L	1.1	0.33	1		05/16/19 15:13	127-18-4	

Project: KLISMITH-FORMER NEWMAN

Pace Project No.: 40187638

Date: 05/17/2019 09:15 AM

Sample: PZ-1 Lab ID: 40187638003 Collected: 05/13/19 11:55 Received: 05/15/19 09:20 Matrix: Water

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EP/	A 8260						
Toluene	<0.17	ug/L	5.0	0.17	1		05/16/19 15:13	108-88-3	
Trichloroethene	<0.26	ug/L	1.0	0.26	1		05/16/19 15:13	79-01-6	
Trichlorofluoromethane	<0.21	ug/L	1.0	0.21	1		05/16/19 15:13	75-69-4	
Vinyl chloride	<0.17	ug/L	1.0	0.17	1		05/16/19 15:13	75-01-4	
Xylene (Total)	<1.5	ug/L	3.0	1.5	1		05/16/19 15:13	1330-20-7	
cis-1,2-Dichloroethene	<0.27	ug/L	1.0	0.27	1		05/16/19 15:13	156-59-2	
cis-1,3-Dichloropropene	<3.6	ug/L	12.1	3.6	1		05/16/19 15:13	10061-01-5	
n-Butylbenzene	<0.71	ug/L	2.4	0.71	1		05/16/19 15:13	104-51-8	
n-Propylbenzene	<0.81	ug/L	5.0	0.81	1		05/16/19 15:13	103-65-1	
p-Isopropyltoluene	<0.80	ug/L	2.7	0.80	1		05/16/19 15:13	99-87-6	
sec-Butylbenzene	<0.85	ug/L	5.0	0.85	1		05/16/19 15:13	135-98-8	
tert-Butylbenzene	<0.30	ug/L	1.0	0.30	1		05/16/19 15:13	98-06-6	
trans-1,2-Dichloroethene	<1.1	ug/L	3.6	1.1	1		05/16/19 15:13	156-60-5	
trans-1,3-Dichloropropene	<4.4	ug/L	14.6	4.4	1		05/16/19 15:13	10061-02-6	
Surrogates		_							
4-Bromofluorobenzene (S)	100	%	70-130		1		05/16/19 15:13	460-00-4	
Dibromofluoromethane (S)	103	%	70-130		1		05/16/19 15:13	1868-53-7	
Toluene-d8 (S)	96	%	70-130		1		05/16/19 15:13	2037-26-5	

Project: KLISMITH-FORMER NEWMAN

Pace Project No.: 40187638

Date: 05/17/2019 09:15 AM

Sample: MW-700 Lab ID: 40187638004 Collected: 05/10/19 09:55 Received: 05/15/19 09:20 Matrix: Water

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EP	A 8260						
1,1,1,2-Tetrachloroethane	<0.27	ug/L	1.0	0.27	1		05/16/19 15:35	630-20-6	
1,1,1-Trichloroethane	<0.24	ug/L	1.0	0.24	1		05/16/19 15:35	71-55-6	
1,1,2,2-Tetrachloroethane	<0.28	ug/L	1.0	0.28	1		05/16/19 15:35	79-34-5	
1,1,2-Trichloroethane	<0.55	ug/L	5.0	0.55	1		05/16/19 15:35	79-00-5	
1,1-Dichloroethane	<0.27	ug/L	1.0	0.27	1		05/16/19 15:35	75-34-3	
1,1-Dichloroethene	<0.24	ug/L	1.0	0.24	1		05/16/19 15:35	75-35-4	
1,1-Dichloropropene	<0.54	ug/L	1.8	0.54	1		05/16/19 15:35	563-58-6	
1,2,3-Trichlorobenzene	<0.63	ug/L	5.0	0.63	1		05/16/19 15:35		
1,2,3-Trichloropropane	<0.59	ug/L	5.0	0.59	1		05/16/19 15:35		
1,2,4-Trichlorobenzene	<0.95	ug/L	5.0	0.95	1		05/16/19 15:35		
1,2,4-Trimethylbenzene	65.1	ug/L	2.8	0.84	1		05/16/19 15:35		
1,2-Dibromo-3-chloropropane	<1.8	ug/L	5.9	1.8	1		05/16/19 15:35		
1,2-Dibromoethane (EDB)	<0.83	ug/L	2.8	0.83	1		05/16/19 15:35		
1,2-Dichlorobenzene	<0.71	ug/L	2.4	0.71	1		05/16/19 15:35		
1,2-Dichloroethane	<0.28	ug/L	1.0	0.71	1		05/16/19 15:35		
1,2-Dichloropropane	<0.28	ug/L	1.0	0.28	1		05/16/19 15:35		
1,3,5-Trimethylbenzene	8.9	ug/L ug/L	2.9	0.28	1		05/16/19 15:35		
•	<0.63	_	2.9	0.63	1		05/16/19 15:35		
1,3-Dichlorobenzene		ug/L			1				
1,3-Dichloropropane	<0.83	ug/L	2.8	0.83			05/16/19 15:35		
1,4-Dichlorobenzene	<0.94	ug/L	3.1	0.94	1		05/16/19 15:35		
2,2-Dichloropropane	<2.3	ug/L	7.6	2.3	1		05/16/19 15:35		
2-Chlorotoluene	<0.93	ug/L	5.0	0.93	1		05/16/19 15:35		
4-Chlorotoluene	<0.76	ug/L	2.5	0.76	1		05/16/19 15:35		
Benzene	<0.25	ug/L	1.0	0.25	1		05/16/19 15:35		
Bromobenzene	<0.24	ug/L	1.0	0.24	1		05/16/19 15:35		
Bromochloromethane	<0.36	ug/L	5.0	0.36	1		05/16/19 15:35		
Bromodichloromethane	<0.36	ug/L	1.2	0.36	1		05/16/19 15:35		
Bromoform	<4.0	ug/L	13.2	4.0	1		05/16/19 15:35		
Bromomethane	<0.97	ug/L	5.0	0.97	1		05/16/19 15:35	74-83-9	
Carbon tetrachloride	<0.17	ug/L	1.0	0.17	1		05/16/19 15:35	56-23-5	
Chlorobenzene	<0.71	ug/L	2.4	0.71	1		05/16/19 15:35	108-90-7	
Chloroethane	<1.3	ug/L	5.0	1.3	1		05/16/19 15:35	75-00-3	
Chloroform	<1.3	ug/L	5.0	1.3	1		05/16/19 15:35	67-66-3	
Chloromethane	<2.2	ug/L	7.3	2.2	1		05/16/19 15:35	74-87-3	
Dibromochloromethane	<2.6	ug/L	8.7	2.6	1		05/16/19 15:35	124-48-1	
Dibromomethane	<0.94	ug/L	3.1	0.94	1		05/16/19 15:35	74-95-3	
Dichlorodifluoromethane	<0.50	ug/L	5.0	0.50	1		05/16/19 15:35	75-71-8	
Diisopropyl ether	<1.9	ug/L	6.3	1.9	1		05/16/19 15:35		
Ethylbenzene	43.1	ug/L	1.0	0.22	1		05/16/19 15:35	100-41-4	
Hexachloro-1,3-butadiene	<1.2	ug/L	5.0	1.2	1		05/16/19 15:35		
Isopropylbenzene (Cumene)	2.6J	ug/L	5.0	0.39	1		05/16/19 15:35		
Methyl-tert-butyl ether	<1.2	ug/L	4.2	1.2	1		05/16/19 15:35		
Methylene Chloride	<0.58	ug/L	5.0	0.58	1		05/16/19 15:35		
Naphthalene	4.7J	ug/L	5.0	1.2	1		05/16/19 15:35		
Styrene	<0.47	ug/L	1.6	0.47	1		05/16/19 15:35		
Tetrachloroethene	<0.33	ug/L	1.1	0.47	1		05/16/19 15:35		

Project: KLISMITH-FORMER NEWMAN

Pace Project No.: 40187638

Date: 05/17/2019 09:15 AM

Sample: MW-700	Lab ID:	40187638004	Collecte	d: 05/10/19	09:55	Received: 05	5/15/19 09:20 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA 8	260						
Toluene	11.1	ug/L	5.0	0.17	1		05/16/19 15:35	108-88-3	
Trichloroethene	<0.26	ug/L	1.0	0.26	1		05/16/19 15:35	79-01-6	
Trichlorofluoromethane	<0.21	ug/L	1.0	0.21	1		05/16/19 15:35	75-69-4	
Vinyl chloride	<0.17	ug/L	1.0	0.17	1		05/16/19 15:35	75-01-4	
Xylene (Total)	155	ug/L	3.0	1.5	1		05/16/19 15:35	1330-20-7	
cis-1,2-Dichloroethene	<0.27	ug/L	1.0	0.27	1		05/16/19 15:35	156-59-2	
cis-1,3-Dichloropropene	<3.6	ug/L	12.1	3.6	1		05/16/19 15:35	10061-01-5	
n-Butylbenzene	<0.71	ug/L	2.4	0.71	1		05/16/19 15:35	104-51-8	
n-Propylbenzene	7.2	ug/L	5.0	0.81	1		05/16/19 15:35	103-65-1	
p-Isopropyltoluene	<0.80	ug/L	2.7	0.80	1		05/16/19 15:35	99-87-6	
sec-Butylbenzene	<0.85	ug/L	5.0	0.85	1		05/16/19 15:35	135-98-8	
tert-Butylbenzene	<0.30	ug/L	1.0	0.30	1		05/16/19 15:35	98-06-6	
trans-1,2-Dichloroethene	<1.1	ug/L	3.6	1.1	1		05/16/19 15:35	156-60-5	
trans-1,3-Dichloropropene	<4.4	ug/L	14.6	4.4	1		05/16/19 15:35	10061-02-6	
Surrogates		-							
4-Bromofluorobenzene (S)	105	%	70-130		1		05/16/19 15:35	460-00-4	
Dibromofluoromethane (S)	99	%	70-130		1		05/16/19 15:35	1868-53-7	
Toluene-d8 (S)	97	%	70-130		1		05/16/19 15:35	2037-26-5	

Project: KLISMITH-FORMER NEWMAN

Pace Project No.: 40187638

Date: 05/17/2019 09:15 AM

Sample: MW-1 Lab ID: 40187638005 Collected: 05/13/19 11:20 Received: 05/15/19 09:20 Matrix: Water

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV	Analytical	Method: EPA	A 8260						
1,1,1,2-Tetrachloroethane	<0.27	ug/L	1.0	0.27	1		05/16/19 15:58	630-20-6	
1,1,1-Trichloroethane	<0.24	ug/L	1.0	0.24	1		05/16/19 15:58	71-55-6	
,1,2,2-Tetrachloroethane	<0.28	ug/L	1.0	0.28	1		05/16/19 15:58	79-34-5	
,1,2-Trichloroethane	<0.55	ug/L	5.0	0.55	1		05/16/19 15:58	79-00-5	
,1-Dichloroethane	<0.27	ug/L	1.0	0.27	1		05/16/19 15:58	75-34-3	
,1-Dichloroethene	<0.24	ug/L	1.0	0.24	1		05/16/19 15:58	75-35-4	
,1-Dichloropropene	<0.54	ug/L	1.8	0.54	1		05/16/19 15:58	563-58-6	
,2,3-Trichlorobenzene	< 0.63	ug/L	5.0	0.63	1		05/16/19 15:58	87-61-6	
,2,3-Trichloropropane	<0.59	ug/L	5.0	0.59	1		05/16/19 15:58	96-18-4	
,2,4-Trichlorobenzene	<0.95	ug/L	5.0	0.95	1		05/16/19 15:58	120-82-1	
,2,4-Trimethylbenzene	<0.84	ug/L	2.8	0.84	1		05/16/19 15:58	95-63-6	
,2-Dibromo-3-chloropropane	<1.8	ug/L	5.9	1.8	1		05/16/19 15:58		
,2-Dibromoethane (EDB)	<0.83	ug/L	2.8	0.83	1		05/16/19 15:58		
,2-Dichlorobenzene	<0.71	ug/L	2.4	0.71	1		05/16/19 15:58		
,2-Dichloroethane	<0.28	ug/L	1.0	0.28	1		05/16/19 15:58		
,2-Dichloropropane	<0.28	ug/L	1.0	0.28	1		05/16/19 15:58		
,3,5-Trimethylbenzene	<0.87	ug/L	2.9	0.87	1		05/16/19 15:58		
,3-Dichlorobenzene	< 0.63	ug/L	2.1	0.63	1		05/16/19 15:58		
,3-Dichloropropane	<0.83	ug/L	2.8	0.83	1		05/16/19 15:58		
,4-Dichlorobenzene	<0.94	ug/L	3.1	0.03	1		05/16/19 15:58		
,2-Dichloropropane	<2.3	ug/L	7.6	2.3	1		05/16/19 15:58		
,2-Dichloropropane -Chlorotoluene	<2.3 <0.93	-	7.6 5.0	0.93	1		05/16/19 15:58		
-Chlorotoluene	<0.93 <0.76	ug/L	2.5	0.93	1		05/16/19 15:58		
		ug/L							
Senzene	<0.25	ug/L	1.0	0.25	1		05/16/19 15:58		
Bromobenzene	<0.24	ug/L	1.0	0.24	1		05/16/19 15:58		
Bromochloromethane	<0.36	ug/L	5.0	0.36	1		05/16/19 15:58		
Bromodichloromethane	<0.36	ug/L	1.2	0.36	1		05/16/19 15:58		
Bromoform	<4.0	ug/L	13.2	4.0	1		05/16/19 15:58		
Bromomethane	<0.97	ug/L	5.0	0.97	1		05/16/19 15:58		
Carbon tetrachloride	<0.17	ug/L	1.0	0.17	1		05/16/19 15:58		
Chlorobenzene	<0.71	ug/L	2.4	0.71	1		05/16/19 15:58		
Chloroethane	<1.3	ug/L	5.0	1.3	1		05/16/19 15:58		
Chloroform	<1.3	ug/L	5.0	1.3	1		05/16/19 15:58		
Chloromethane	<2.2	ug/L	7.3	2.2	1		05/16/19 15:58		
Dibromochloromethane	<2.6	ug/L	8.7	2.6	1		05/16/19 15:58	124-48-1	
Dibromomethane	<0.94	ug/L	3.1	0.94	1		05/16/19 15:58		
Pichlorodifluoromethane	<0.50	ug/L	5.0	0.50	1		05/16/19 15:58	75-71-8	
iisopropyl ether	<1.9	ug/L	6.3	1.9	1		05/16/19 15:58	108-20-3	
thylbenzene	<0.22	ug/L	1.0	0.22	1		05/16/19 15:58	100-41-4	
lexachloro-1,3-butadiene	<1.2	ug/L	5.0	1.2	1		05/16/19 15:58	87-68-3	
sopropylbenzene (Cumene)	<0.39	ug/L	5.0	0.39	1		05/16/19 15:58	98-82-8	
Methyl-tert-butyl ether	<1.2	ug/L	4.2	1.2	1		05/16/19 15:58	1634-04-4	
Methylene Chloride	<0.58	ug/L	5.0	0.58	1		05/16/19 15:58		
Japhthalene	<1.2	ug/L	5.0	1.2	1		05/16/19 15:58		
Styrene	<0.47	ug/L	1.6	0.47	1		05/16/19 15:58		
Tetrachloroethene	2.5	ug/L	1.1	0.33	1		05/16/19 15:58		

05/16/19 15:58 1868-53-7

05/16/19 15:58 2037-26-5

ANALYTICAL RESULTS

Project: KLISMITH-FORMER NEWMAN

Pace Project No.: 40187638

Dibromofluoromethane (S)

Date: 05/17/2019 09:15 AM

Toluene-d8 (S)

100

97

%

%

Sample: MW-1	Lab ID:	40187638005	Collecte	d: 05/13/19	11:20	Received: 05	5/15/19 09:20 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA 8	260						
Toluene	<0.17	ug/L	5.0	0.17	1		05/16/19 15:58	108-88-3	
Trichloroethene	<0.26	ug/L	1.0	0.26	1		05/16/19 15:58	79-01-6	
Trichlorofluoromethane	<0.21	ug/L	1.0	0.21	1		05/16/19 15:58	75-69-4	
Vinyl chloride	<0.17	ug/L	1.0	0.17	1		05/16/19 15:58	75-01-4	
Xylene (Total)	<1.5	ug/L	3.0	1.5	1		05/16/19 15:58	1330-20-7	
cis-1,2-Dichloroethene	<0.27	ug/L	1.0	0.27	1		05/16/19 15:58	156-59-2	
cis-1,3-Dichloropropene	<3.6	ug/L	12.1	3.6	1		05/16/19 15:58	10061-01-5	
n-Butylbenzene	<0.71	ug/L	2.4	0.71	1		05/16/19 15:58	104-51-8	
n-Propylbenzene	<0.81	ug/L	5.0	0.81	1		05/16/19 15:58	103-65-1	
p-Isopropyltoluene	<0.80	ug/L	2.7	0.80	1		05/16/19 15:58	99-87-6	
sec-Butylbenzene	<0.85	ug/L	5.0	0.85	1		05/16/19 15:58	135-98-8	
tert-Butylbenzene	<0.30	ug/L	1.0	0.30	1		05/16/19 15:58	98-06-6	
trans-1,2-Dichloroethene	<1.1	ug/L	3.6	1.1	1		05/16/19 15:58	156-60-5	
trans-1,3-Dichloropropene Surrogates	<4.4	ug/L	14.6	4.4	1		05/16/19 15:58	10061-02-6	
4-Bromofluorobenzene (S)	102	%	70-130		1		05/16/19 15:58	460-00-4	

70-130

70-130

1

Project: KLISMITH-FORMER NEWMAN

Pace Project No.: 40187638

Date: 05/17/2019 09:15 AM

 QC Batch:
 321477
 Analysis Method:
 EPA 8260

 QC Batch Method:
 EPA 8260
 Analysis Description:
 8260 MSV

 Associated Lab Samples:
 40187638001, 40187638002, 40187638003, 40187638004, 40187638005

METHOD BLANK: 1867014 Matrix: Water

Associated Lab Samples: 40187638001, 40187638002, 40187638003, 40187638004, 40187638005

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	<0.27	1.0	05/16/19 08:06	
1,1,1-Trichloroethane	ug/L	<0.24	1.0	05/16/19 08:06	
1,1,2,2-Tetrachloroethane	ug/L	<0.28	1.0	05/16/19 08:06	
1,1,2-Trichloroethane	ug/L	<0.55	5.0	05/16/19 08:06	
1,1-Dichloroethane	ug/L	<0.27	1.0	05/16/19 08:06	
1,1-Dichloroethene	ug/L	<0.24	1.0	05/16/19 08:06	
1,1-Dichloropropene	ug/L	<0.54	1.8	05/16/19 08:06	
1,2,3-Trichlorobenzene	ug/L	<0.63	5.0	05/16/19 08:06	
1,2,3-Trichloropropane	ug/L	<0.59	5.0	05/16/19 08:06	
1,2,4-Trichlorobenzene	ug/L	<0.95	5.0	05/16/19 08:06	
1,2,4-Trimethylbenzene	ug/L	<0.84	2.8	05/16/19 08:06	
1,2-Dibromo-3-chloropropane	ug/L	<1.8	5.9	05/16/19 08:06	
1,2-Dibromoethane (EDB)	ug/L	<0.83	2.8	05/16/19 08:06	
1,2-Dichlorobenzene	ug/L	<0.71	2.4	05/16/19 08:06	
1,2-Dichloroethane	ug/L	<0.28	1.0	05/16/19 08:06	
·		<0.28	1.0	05/16/19 08:06	
1,2-Dichloropropane	ug/L ug/L	<0.28 <0.87	2.9	05/16/19 08:06	
1,3,5-Trimethylbenzene	_				
1,3-Dichlorobenzene	ug/L	< 0.63	2.1	05/16/19 08:06	
1,3-Dichloropropane	ug/L	< 0.83	2.8	05/16/19 08:06	
1,4-Dichlorobenzene	ug/L	<0.94	3.1	05/16/19 08:06	
2,2-Dichloropropane	ug/L	<2.3	7.6	05/16/19 08:06	
2-Chlorotoluene	ug/L	< 0.93	5.0	05/16/19 08:06	
4-Chlorotoluene	ug/L	<0.76	2.5	05/16/19 08:06	
Benzene	ug/L	<0.25	1.0	05/16/19 08:06	
Bromobenzene	ug/L	<0.24	1.0	05/16/19 08:06	
Bromochloromethane	ug/L	<0.36	5.0	05/16/19 08:06	
Bromodichloromethane	ug/L	<0.36	1.2	05/16/19 08:06	
Bromoform	ug/L	<4.0	13.2	05/16/19 08:06	
Bromomethane	ug/L	<0.97	5.0	05/16/19 08:06	
Carbon tetrachloride	ug/L	<0.17	1.0	05/16/19 08:06	
Chlorobenzene	ug/L	<0.71	2.4	05/16/19 08:06	
Chloroethane	ug/L	<1.3	5.0	05/16/19 08:06	
Chloroform	ug/L	<1.3	5.0	05/16/19 08:06	
Chloromethane	ug/L	<2.2	7.3	05/16/19 08:06	
cis-1,2-Dichloroethene	ug/L	<0.27	1.0	05/16/19 08:06	
cis-1,3-Dichloropropene	ug/L	<3.6	12.1	05/16/19 08:06	
Dibromochloromethane	ug/L	<2.6	8.7	05/16/19 08:06	
Dibromomethane	ug/L	<0.94	3.1	05/16/19 08:06	
Dichlorodifluoromethane	ug/L	< 0.50	5.0	05/16/19 08:06	
Diisopropyl ether	ug/L	<1.9	6.3	05/16/19 08:06	
Ethylbenzene	ug/L	<0.22	1.0	05/16/19 08:06	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: KLISMITH-FORMER NEWMAN

Pace Project No.: 40187638

Date: 05/17/2019 09:15 AM

METHOD BLANK: 1867014 Matrix: Water

Associated Lab Samples: 40187638001, 40187638002, 40187638003, 40187638004, 40187638005

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Hexachloro-1,3-butadiene	ug/L	<1.2	5.0	05/16/19 08:06	
Isopropylbenzene (Cumene)	ug/L	< 0.39	5.0	05/16/19 08:06	
Methyl-tert-butyl ether	ug/L	<1.2	4.2	05/16/19 08:06	
Methylene Chloride	ug/L	<0.58	5.0	05/16/19 08:06	
n-Butylbenzene	ug/L	< 0.71	2.4	05/16/19 08:06	
n-Propylbenzene	ug/L	<0.81	5.0	05/16/19 08:06	
Naphthalene	ug/L	<1.2	5.0	05/16/19 08:06	
p-Isopropyltoluene	ug/L	<0.80	2.7	05/16/19 08:06	
sec-Butylbenzene	ug/L	<0.85	5.0	05/16/19 08:06	
Styrene	ug/L	< 0.47	1.6	05/16/19 08:06	
tert-Butylbenzene	ug/L	< 0.30	1.0	05/16/19 08:06	
Tetrachloroethene	ug/L	< 0.33	1.1	05/16/19 08:06	
Toluene	ug/L	< 0.17	5.0	05/16/19 08:06	
trans-1,2-Dichloroethene	ug/L	<1.1	3.6	05/16/19 08:06	
trans-1,3-Dichloropropene	ug/L	<4.4	14.6	05/16/19 08:06	
Trichloroethene	ug/L	<0.26	1.0	05/16/19 08:06	
Trichlorofluoromethane	ug/L	<0.21	1.0	05/16/19 08:06	
Vinyl chloride	ug/L	< 0.17	1.0	05/16/19 08:06	
Xylene (Total)	ug/L	<1.5	3.0	05/16/19 08:06	
4-Bromofluorobenzene (S)	%	100	70-130	05/16/19 08:06	
Dibromofluoromethane (S)	%	99	70-130	05/16/19 08:06	
Toluene-d8 (S)	%	96	70-130	05/16/19 08:06	

LABORATORY CONTROL SAMPLE:	1867015					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/L	50	50.6	101	70-130	
1,1,2,2-Tetrachloroethane	ug/L	50	48.1	96	70-130	
1,1,2-Trichloroethane	ug/L	50	52.0	104	70-130	
1,1-Dichloroethane	ug/L	50	52.7	105	73-150	
1,1-Dichloroethene	ug/L	50	54.7	109	73-138	
1,2,4-Trichlorobenzene	ug/L	50	47.5	95	70-130	
1,2-Dibromo-3-chloropropane	ug/L	50	42.5	85	64-129	
1,2-Dibromoethane (EDB)	ug/L	50	51.4	103	70-130	
1,2-Dichlorobenzene	ug/L	50	48.1	96	70-130	
1,2-Dichloroethane	ug/L	50	51.1	102	75-140	
1,2-Dichloropropane	ug/L	50	51.0	102	73-135	
1,3-Dichlorobenzene	ug/L	50	47.4	95	70-130	
1,4-Dichlorobenzene	ug/L	50	47.6	95	70-130	
Benzene	ug/L	50	53.3	107	70-130	
Bromodichloromethane	ug/L	50	55.3	111	70-130	
Bromoform	ug/L	50	47.1	94	68-129	
Bromomethane	ug/L	50	39.7	79	18-159	
Carbon tetrachloride	ug/L	50	50.8	102	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: KLISMITH-FORMER NEWMAN

Pace Project No.: 40187638

Date: 05/17/2019 09:15 AM

LABORATORY CONTROL SAMPLE:	1867015					
_		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chlorobenzene	ug/L	50	49.9	100	70-130	
Chloroethane	ug/L	50	47.0	94	53-147	
Chloroform	ug/L	50	52.0	104	74-136	
Chloromethane	ug/L	50	36.7	73	29-115	
s-1,2-Dichloroethene	ug/L	50	52.1	104	70-130	
is-1,3-Dichloropropene	ug/L	50	44.0	88	70-130	
ibromochloromethane	ug/L	50	46.6	93	70-130	
ichlorodifluoromethane	ug/L	50	39.6	79	10-130	
thylbenzene	ug/L	50	52.9	106	80-124	
opropylbenzene (Cumene)	ug/L	50	53.3	107	70-130	
ethyl-tert-butyl ether	ug/L	50	51.5	103	54-137	
ethylene Chloride	ug/L	50	52.8	106	73-138	
yrene	ug/L	50	53.1	106	70-130	
trachloroethene	ug/L	50	52.5	105	70-130	
luene	ug/L	50	51.6	103	80-126	
ns-1,2-Dichloroethene	ug/L	50	52.5	105	73-145	
ans-1,3-Dichloropropene	ug/L	50	42.1	84	70-130	
richloroethene	ug/L	50	54.7	109	70-130	
richlorofluoromethane	ug/L	50	54.4	109	76-147	
nyl chloride	ug/L	50	47.1	94	51-120	
vlene (Total)	ug/L	150	160	107	70-130	
Bromofluorobenzene (S)	%			104	70-130	
bromofluoromethane (S)	%			99	70-130	
oluene-d8 (S)	%			94	70-130	

MATRIX SPIKE & MATRIX SF	PIKE DUPLI	ICATE: 1867	051	•	1867052				•			
Darameter		40187619003	MS Spike	MSD Spike	MS	MSD	MS % Res	MSD	% Rec	DDD	Max	Oue
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
1,1,1-Trichloroethane	ug/L	<0.24	50	50	50.2	52.1	100	104	70-130	4	20	
1,1,2,2-Tetrachloroethane	ug/L	<0.28	50	50	47.7	49.9	95	100	70-130	5	20	
1,1,2-Trichloroethane	ug/L	<0.55	50	50	51.3	53.9	103	108	70-137	5	20	
1,1-Dichloroethane	ug/L	<0.27	50	50	51.9	54.6	104	109	73-153	5	20	
1,1-Dichloroethene	ug/L	<0.24	50	50	54.5	56.5	109	113	73-138	4	20	
1,2,4-Trichlorobenzene	ug/L	< 0.95	50	50	49.4	51.3	98	102	70-130	4	20	
1,2-Dibromo-3- chloropropane	ug/L	<1.8	50	50	42.9	44.6	86	89	58-129	4	20	
1,2-Dibromoethane (EDB)	ug/L	<0.83	50	50	50.8	53.7	102	107	70-130	6	20	
1,2-Dichlorobenzene	ug/L	<0.71	50	50	47.7	49.4	95	99	70-130	4	20	
1,2-Dichloroethane	ug/L	<0.28	50	50	50.6	51.5	101	103	75-140	2	20	
1,2-Dichloropropane	ug/L	<0.28	50	50	50.8	52.6	102	105	71-138	3	20	
1,3-Dichlorobenzene	ug/L	< 0.63	50	50	47.9	49.1	96	98	70-130	3	20	
1,4-Dichlorobenzene	ug/L	< 0.94	50	50	48.7	49.7	96	98	70-130	2	20	
Benzene	ug/L	<0.25	50	50	53.1	55.0	106	110	70-130	3	20	
Bromodichloromethane	ug/L	< 0.36	50	50	55.0	56.5	110	113	70-130	3	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: KLISMITH-FORMER NEWMAN

Pace Project No.: 40187638

Date: 05/17/2019 09:15 AM

MATRIX SPIKE & MATRIX SF	IKE DUPLIC	CATE: 1867	051		1867052							
			MS	MSD								
_		0187619003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	_
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
Bromoform	ug/L	<4.0	50	50	46.7	48.7	93	97	68-129	4	20	
Bromomethane	ug/L	< 0.97	50	50	43.3	45.5	87	91	15-170	5	20	
Carbon tetrachloride	ug/L	<0.17	50	50	50.8	52.1	102	104	70-130	3	20	
Chlorobenzene	ug/L	< 0.71	50	50	49.8	51.2	99	102	70-130	3	20	
Chloroethane	ug/L	<1.3	50	50	45.6	48.0	91	96	51-148	5	20	
Chloroform	ug/L	<1.3	50	50	51.3	52.9	103	106	74-136	3	20	
Chloromethane	ug/L	<2.2	50	50	36.2	38.8	72	78	23-115	7	20	
cis-1,2-Dichloroethene	ug/L	0.32J	50	50	51.9	53.7	103	107	70-131	3	20	
cis-1,3-Dichloropropene	ug/L	<3.6	50	50	46.9	48.3	94	97	70-130	3	20	
Dibromochloromethane	ug/L	<2.6	50	50	46.5	48.2	93	96	70-130	4	20	
Dichlorodifluoromethane	ug/L	< 0.50	50	50	39.0	40.0	78	80	10-132	2	20	
Ethylbenzene	ug/L	< 0.22	50	50	53.1	54.8	106	110	80-125	3	20	
lsopropylbenzene (Cumene)	ug/L	<0.39	50	50	54.0	55.3	108	111	70-130	2	20	
Methyl-tert-butyl ether	ug/L	<1.2	50	50	51.7	54.3	103	109	51-145	5	20	
Methylene Chloride	ug/L	<0.58	50	50	52.8	54.3	106	109	73-140	3	20	
Styrene	ug/L	< 0.47	50	50	53.4	55.1	107	110	70-130	3	20	
Tetrachloroethene	ug/L	< 0.33	50	50	53.6	55.2	107	110	70-130	3	20	
Toluene	ug/L	<0.17	50	50	52.1	53.4	104	107	80-131	3	20	
trans-1,2-Dichloroethene	ug/L	<1.1	50	50	53.0	54.4	106	109	73-148	3	20	
trans-1,3-Dichloropropene	ug/L	<4.4	50	50	45.0	47.0	90	94	70-130	4	20	
Trichloroethene	ug/L	<0.26	50	50	54.6	55.5	109	111	70-130	2	20	
Trichlorofluoromethane	ug/L	<0.21	50	50	54.0	55.6	108	111	74-147	3	20	
Vinyl chloride	ug/L	<0.17	50	50	46.5	48.4	93	97	41-129	4	20	
Xylene (Total)	ug/L	<1.5	150	150	162	167	108	112	70-130	3	20	
4-Bromofluorobenzene (S)	%						105	104	70-130			
Dibromofluoromethane (S)	%						100	101	70-130			
Toluene-d8 (S)	%						95	95	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: KLISMITH-FORMER NEWMAN

Pace Project No.: 40187638

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor, percent moisture, initial weight and final volume.

LOQ - Limit of Quantitation adjusted for dilution factor, percent moisture, initial weight and final volume.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Date: 05/17/2019 09:15 AM

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: KLISMITH-FORMER NEWMAN

Pace Project No.: 40187638

Date: 05/17/2019 09:15 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40187638001		EPA 8260	321477		
40187638002	PZ-900	EPA 8260	321477		
40187638003	PZ-1	EPA 8260	321477		
40187638004	MW-700	EPA 8260	321477		
40187638005	MW-1	EPA 8260	321477		

Company Name: Sain & Const)		<u>UPPER MIDW</u>	EST REGION	Page 1 of _
Branch/Location: Amherst	<u>e</u> /	Pac	e Analyt	tical°	MN: 612-607-	1700 WI : 920-469-2436	40187638
Project Contact: Rete Arutse	The second secon		www.pacete			Quote #:	(
Phone: 715-824-59	69	<u>CH</u>	AIN C	F CUS	TODY	Mail To Contact:	Pote Anteque
Project Number:	A=Non	e B≖HCL C	<u>*Pres</u> =H2SO4 D=H	ervation Codes NO3 E=DI Water	F=Methanol G=NaOH	Mail To Company:	Sand (700/2
h (1) 2 1 (1) 1	ewman -	lum Bisulfate Soli	ution I=So	dlum Thiosulfate	J≕Other	Mail To Address:	la hax 319
Project State: WF	FILTER (YES/A		$ \mathcal{N} $			 	Ambourst Colf
Sampled By (Print): lete ATUTSES	PRESERV.					Invoice To Contact:	774/1120-51, 001
Sampled By (Sign): ()	tes					Invoice To Company:	Galas
	Regulatory Program:	ş				Invoice To Address:)anc
Data Package Options MS/MSD	Matrix Codes					macice to Address:	
EPA Level III On your sample B	= Air W = Water = Blota DW = Drinking = Charcoal GW = Ground	Water 8	101				
EPA Level IV NOT needed on S	= Oil SW = Surface V = Soil WW = Waste W	Vater 5	2			Invoice To Phone:	
PACE LAB# CLIENT FIELD ID	= Sludge WP = Wipe COLLECTION	MATRIX 2				CLIENT	LAB COMMENTS Profile #
001 VW#2	5/10 10:30 C	34	121			COMMENTS	(Lab Use Only)
016 PZ-900	5/10 9:35	T	121	1 1			
003 PZ-1	3/13 11:55						
004 CD MW-700	3/10 9:55						
005 MW-1	5/13 11:20			+++-			- V
	1111		/ 				<u> </u>
					- -		
				\vdash			
		2,250					
					- 		
				+++	- 		
	1 111 //	0 to 1	1		- - - 	<u> </u>	
Rush Turnaround Time Requested - Prelims	Reinquished	H Sol	DE	ite/Time/	Received By	1 5 30)(9 -)(920
(Rush TAT subject to approval/surcharge) Date Needed:	Relinguished By:	1 V VOX	the Day	5/14/30	19 Jualto	5#12v	PACE Project No.
Transmit Prelim Rush Results by (complete what you want	» Walto		U.	5/15/10	OUR BOOK BY:	gaspull 5/16/	2014012040181878
nall #2:	Relinquished By:		Da	te/Tme:	Received By:	Date/fime:	Receipt Temp = R
lephone: x:	Relinquished By:		Da	te/Time:	Received By:	Date/Time:	Sample Receipt pH OK / Adjusted
Samples on HOLD are subject to	Relinquished By:		Del	te/Time;			Cooler Custody Seal
special pricing and release of liability			Da	v 11179.	Received By:	Date/Time:	Present Not Present Intact / Not Intact
C019a(27Jun2006)							Version 6.0 06/14/06

Pace Analytical Services, LLC 1241 Bellevue Street, Suite 95 Green Bay, WI 54302℃

Client Name: Source

Sample Preservation Receipt Form Project #

All containers needing preservation have been checked and noted below: \(\text{PYes} \) \(\text{DNO} \)

Lab Std #ID of preservation (if nH adjusted):

Initial when completed:

Date/ Time:

										Lai	b Lot#	of pH	рарег:					Lau S	כנויוו נו	of pres	sei vati	on (n j	n auj	isicu).		-		_	comp	·		Time.	
		No.		Glass							Plast	ic					Via	als				Jars		Ge	enera	ı	-6тт) *		Act pH≥9	2		sted	Volume
Pace	AG1U	AG1H	AG4S	AG4U	AGSU	AG2S	BG3U	10	Z				Z	3S	V69Q	DG9T	NG9U	VG9H	VG9M	C69D	JGFU	WGFU	WPFU	LS	ZPLC		VOA Vials (>6mm) *	12SO4 pH <2	NaOH+Zn Ac	VaOH pH≥12	NO3 pH ≤2	pH after adjusted	(mL)
ab#	AG	AG	AG	AG	AG	AG	BG	BP1U	BP2N	BP2Z	BP3U	BP3B	BP3N	BP3S)Q	<u> </u>	5	20	S	5	JG	≱	\(\begin{array}{c}\)	SP5T	ZP	B	70 A	H2S	NaO	NaO	HNC	Hd.	
001			ΤÈ														100	3		11.50	ANTE	1.75						<i>1</i> 55					2.5 / 5 / 10
002																		3															2.5 / 5 / 10
003																		3	4.75		13. 4												2.5 / 5 / 10
004																		3															2.5 / 5 / 10
005															Ä,			3	1.1	12.5		100											2.5 / 5 / 10
006																																	2.5 / 5 / 10
007					1.5				1.0										- 4			34 H											2.5 / 5 / 10
800																																	2.5 / 5 / 10
009									y 44																								2.5 / 5 / 10
010								-																									2.5 / 5 / 10
011								34 11		1						194																:	2.5 / 5 / 10
012																																	2,5 / 5 / 10
013				V V						1	2.5								13											A , M			2.5 / 5 / 10
014																																	2.5 / 5 / 10
015																							1 1 1							- 1			2.5 / 5 / 10
016																											-					5	2.5 / 5 / 10
017																						- 1											2.5 / 5 / 10
018																																	2.5 / 5 / 10
019																								7							Programme and the second		2.5 / 5 / 10
020																																	2.5 / 5 / 10

Exceptions to preservation check VOA, Coliform, TOC, TOX, TOH, O&G, WI DRO, Phenolics, Other.

Headspace in VOA Vials (>6mm): □Yes ¬NO □N/A *If yes look in headspace column

AG1U	l liter amber glass	BP1U	1 liter plastic unpres	DG9A	40 mL amber ascorbic	JGFU	4 oz amber jar unpres
AG1H	1 liter amber glass HCL	BP2N	500 mL plastic HNO3	DG9T	40 mL amber Na Thio	WGFU	4 oz clear jar unpres
AG4S	125 mL amber glass H2SO4	BP2Z	500 mL plastic NaOH, Znact	VG9U	40 mL clear vial unpres	WPFU	4 oz plastic jar unpres
AG4U	120 mL amber glass unpres	BP3U	250 mL plastic unpres	VG9H	40 mL clear vial HCL		
AG5U	100 mL amber glass unpres	BP3B	250 mL plastic NaOH	VG9M	40 mL clear vial MeOH	SP5T	120 mL plastic Na Thiosulfate
AG2S	500 mL amber glass H2SO4	BP3N	250 mL plastic HNO3	VG9D	40 mL clear vial D1	ZPLC	ziploc bag
BG3U	250 mL clear glass unpres	BP3S	250 mL plastic H2SO4			GN:	

Pace Analytical*

1241 Bellevue Street, Green Bay, WI 54302

Document Name:

Sample Condition Upon Receipt (SCUR)

Document No.: F-GB-C-031-Rev.07

Document Revised: 25Apr2018

Issuing Authority:

Pace Green Bay Quality Office

Sample Condition Upon Receipt Form (SCUR)

Client Name: Send Charles Courier: CS Logistics Fed Ex Speed Client Pace Other: Tracking #: 20524 -1 Custody Seal on Cooler/Box Present: yes	no Seals intac	t: □ yes □ no		40187638
Custody Seal on Samples Present: Uyes X Packing Material: Bubble Wrap X Bubl	ole Bags	t:		
Thermometer Used SR - NIA	_	Blue Dry None	Samples or	n ice, cooling process has begun
Cooler Temperature Uncorn: POF /Corn:				
Temp Blank Present: yes no	Biological	Tissue is Frozen:	yes no	Person examining contents:
Temp should be above freezing to 6°C. Biota Samples may be received at ≤ 0°C.				Initials
Chain of Custody Present:	Yes No N	A 1.		10014 5
Chain of Custody Filled Out:	□Yes No □N/	A 2. NO Day	v#	-5/15/20 2014.
Chain of Custody Relinquished:	es 🗆 No 🗆 N/	A 3.	<i></i>	
Sampler Name & Signature on COC:	Yes □No □N/	A 4.		
Samples Arrived within Hold Time:	Yes □No	5.		
- VOA Samples frozen upon receipt	Yes □No	Date/Time:		
Short Hold Time Analysis (<72hr):	□Yes DNo	6.		
Rush Turn Around Time Requested:	□Yes 📶	7.		
Sufficient Volume: For Analysis: ☐ No MS/MSI	D: □Yes ▼ INo □N	8. ⁄A		
Correct Containers Used:	Yes □No	9.		
-Pace Containers Used:	Yes □No □N	/A		
-Pace IR Containers Used:	□Yes □No 🔊	/A		
Containers Intact:	Xyes □No	10.		
Filtered volume received for Dissolved tests		/A 11.		
Sample Labels match COC:	,	/A 12.		
-Includes date/time/ID/Analysis Matrix:	W			
Trip Blank Present:	□Yes □No 💆	/A 13.		
Trip Blank Custody Seals Present	□Yes □No 🎏	/A		
Pace Trip Blank Lot # (if purchased):			If charked, see star	ched form for additional comments
Client Notification/ Resolution: Person Contacted:	Dat	o /Times	ir checked, see allac	Shed joint for additional confinents
Comments/ Resolution:				
Project Manager Review:	ALFr	DM	Date	: 5/15/19

May 31, 2019

Pete Arntsen Sand Creek Consultants PO Box 218 Amherst, WI 54406

RE: Project: Klismith

Pace Project No.: 10476270

Dear Pete Arntsen:

Enclosed are the analytical results for sample(s) received by the laboratory on May 23, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kirsten Hogberg

Kingh Heaftraf

kirsten.hogberg@pacelabs.com

(612)607-1700 Project Manager

Enclosures

cc: Nichole Besyk, Sand Creek Consultants

CERTIFICATIONS

Project: Klismith
Pace Project No.: 10476270

Minnesota Certification IDs

1700 Elm Street SE, Minneapolis, MN 55414-2485

A2LA Certification #: 2926.01 Alabama Certification #: 40770

Alaska Contaminated Sites Certification #: 17-009

Alaska DW Certification #: MN00064 Arizona Certification #: AZ0014 Arkansas DW Certification #: MN00064 Arkansas WW Certification #: 88-0680 California Certification #: 2929 CNMI Saipan Certification #: MP0003

Colorado Certification #: MN00064 Connecticut Certification #: PH-0256

EPA Region 8+Wyoming DW Certification #: via MN 027-

053-137

Florida Certification #: E87605 Georgia Certification #: 959

Guam EPA Certification #: MN00064
Hawaii Certification #: MN00064
Idaho Certification #: MN00064
Illinois Certification #: 200011
Indiana Certification #: C-MN-01
Iowa Certification #: 368
Kansas Certification #: E-10167
Kentucky DW Certification #: 90062
Kentucky WW Certification #: 90062
Louisiana DEQ Certification #: 03086

Louisiana DW Certification #: MN00064 Maine Certification #: MN00064 Maryland Certification #: 322

Massachusetts Certification #: M-MN064

Michigan Certification #: 9909

Minnesota Certification #: 027-053-137

Minnesota Dept of Ag Certification #: via MN 027-053-137

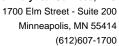
Minnesota Petrofund Certification #: 1240
Mississippi Certification #: MN00064
Missouri Certification #: 10100
Montana Certification #: CERT0092
Nebraska Certification #: NE-OS-18-06
Nevada Certification #: MN00064
New Hampshire Certification #: 2081
New Jersey Certification #: MN002
New York Certification #: 11647

North Carolina DW Certification #: 27700 North Carolina WW Certification #: 530 North Dakota Certification #: R-036 Ohio DW Certification #: 41244 Ohio VAP Certification #: CL101

Oklahoma Certification #: 9507
Oregon Primary Certification #: MN300001
Oregon Secondary Certification #: MN200001
Pennsylvania Certification #: 68-00563
Puerto Rico Certification #: MN00064
South Carolina Certification #:74003001
Tennessee Certification #: TN02818
Texas Certification #: T104704192
Utah Certification #: MN00064
Vermont Certification #: VT-027053137
Virginia Certification #: 460163

Washington Certification #: C486 West Virginia DEP Certification #: 382 West Virginia DW Certification #: 9952 C Wisconsin Certification #: 999407970

Wyoming UST Certification #: via A2LA 2926.01



SAMPLE SUMMARY

Project: Klismith
Pace Project No.: 10476270

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10476270001	System Exhaust	Air	05/21/19 11:08	05/23/19 12:30

SAMPLE ANALYTE COUNT

Project: Klismith
Pace Project No.: 10476270

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory	
10476270001	System Exhaust	TO-15	CH1	32	PASI-M	

Project: Klismith
Pace Project No.: 10476270

Date: 05/31/2019 10:51 AM

Sample: System Exhaust	Lab ID:	10476270001	Collected	d: 05/21/1	9 11:08	Received: 05	5/23/19 12:30 Ma	atrix: Air	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical	Method: TO-15							
Benzyl chloride	<1.7	ug/m3	3.7	1.7	1.41		05/26/19 16:20	100-44-7	
Bromodichloromethane	<0.52	ug/m3	1.9	0.52	1.41		05/26/19 16:20	75-27-4	
Carbon tetrachloride	<0.60	ug/m3	1.8	0.60	1.41		05/26/19 16:20	56-23-5	
Chlorobenzene	<0.39	ug/m3	1.3	0.39	1.41		05/26/19 16:20	108-90-7	
Chlorodifluoromethane	<0.93	ug/m3	2.5	0.93	1.41		05/26/19 16:20	75-45-6	N2
Chloroethane	<0.37	ug/m3	0.76	0.37	1.41		05/26/19 16:20	75-00-3	
Chloroform	<0.28	ug/m3	0.70	0.28	1.41		05/26/19 16:20	67-66-3	
Chloromethane	0.53J	ug/m3	0.59	0.22	1.41		05/26/19 16:20	74-87-3	
Dibromochloromethane	<1.0	ug/m3	2.4	1.0	1.41		05/26/19 16:20	124-48-1	
1,2-Dichlorobenzene	<0.70	ug/m3	1.7	0.70	1.41		05/26/19 16:20	95-50-1	
1,3-Dichlorobenzene	<0.82	ug/m3	1.7	0.82	1.41		05/26/19 16:20	541-73-1	
1,4-Dichlorobenzene	<1.4	ug/m3	4.3	1.4	1.41		05/26/19 16:20	106-46-7	
Dichlorodifluoromethane	2.0	ug/m3	1.4	0.41	1.41		05/26/19 16:20	75-71-8	
1,1-Dichloroethane	<0.32	ug/m3	1.2	0.32	1.41		05/26/19 16:20	75-34-3	
1,2-Dichloroethane	<0.21	ug/m3	0.58	0.21	1.41		05/26/19 16:20	107-06-2	
1,1-Dichloroethene	<0.39	ug/m3	1.1	0.39	1.41		05/26/19 16:20	75-35-4	
cis-1,2-Dichloroethene	<0.31	ug/m3	1.1	0.31	1.41		05/26/19 16:20	156-59-2	
trans-1,2-Dichloroethene	<0.40	ug/m3	1.1	0.40	1.41		05/26/19 16:20	156-60-5	
1,2-Dichloropropane	<0.32	ug/m3	1.3	0.32	1.41		05/26/19 16:20	78-87-5	
cis-1,3-Dichloropropene	<0.43	ug/m3	1.3	0.43	1.41		05/26/19 16:20	10061-01-5	
trans-1,3-Dichloropropene	<0.62	ug/m3	1.3	0.62	1.41		05/26/19 16:20	10061-02-6	
Hexachloro-1,3-butadiene	<2.8	ug/m3	7.6	2.8	1.41		05/26/19 16:20	87-68-3	
Methylene Chloride	85.7	ug/m3	5.0	1.3	1.41		05/26/19 16:20	75-09-2	
1,1,2,2-Tetrachloroethane	<0.41	ug/m3	0.98	0.41	1.41		05/26/19 16:20	79-34-5	
Tetrachloroethene	2.2	ug/m3	0.97	0.44	1.41		05/26/19 16:20	127-18-4	
1,2,4-Trichlorobenzene	<5.2	ug/m3	10.6	5.2	1.41		05/26/19 16:20	120-82-1	
1,1,1-Trichloroethane	<0.44	ug/m3	1.6	0.44	1.41		05/26/19 16:20	71-55-6	
1,1,2-Trichloroethane	<0.35	ug/m3	0.78	0.35	1.41		05/26/19 16:20	79-00-5	
Trichloroethene	1.2	ug/m3	0.77	0.36	1.41		05/26/19 16:20	79-01-6	
Trichlorofluoromethane	1.3J	ug/m3	1.6	0.52	1.41		05/26/19 16:20	75-69-4	
1,1,2-Trichlorotrifluoroethane	<0.80	ug/m3	2.2	0.80	1.41		05/26/19 16:20	76-13-1	
Vinyl chloride	<0.18	ug/m3	0.37	0.18	1.41		05/26/19 16:20	75-01-4	

(612)607-1700

QUALITY CONTROL DATA

Project: Klismith
Pace Project No.: 10476270

QC Batch: 608494 Analysis Method: TO-15

QC Batch Method: TO-15 Analysis Description: TO15 MSV AIR Low Level

Associated Lab Samples: 10476270001

METHOD BLANK: 3289408 Matrix: Air

Associated Lab Samples: 10476270001

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/m3	<0.15	0.56	05/26/19 09:10	
1,1,2,2-Tetrachloroethane	ug/m3	<0.15	0.35	05/26/19 09:10	
1,1,2-Trichloroethane	ug/m3	<0.12	0.28	05/26/19 09:10	
1,1,2-Trichlorotrifluoroethane	ug/m3	<0.28	0.78	05/26/19 09:10	
1,1-Dichloroethane	ug/m3	<0.11	0.41	05/26/19 09:10	
1,1-Dichloroethene	ug/m3	<0.14	0.40	05/26/19 09:10	
1,2,4-Trichlorobenzene	ug/m3	<1.9	3.8	05/26/19 09:10	
1,2-Dichlorobenzene	ug/m3	< 0.25	0.61	05/26/19 09:10	
1,2-Dichloroethane	ug/m3	< 0.075	0.21	05/26/19 09:10	
1,2-Dichloropropane	ug/m3	<0.12	0.47	05/26/19 09:10	
1,3-Dichlorobenzene	ug/m3	< 0.29	0.61	05/26/19 09:10	
1,4-Dichlorobenzene	ug/m3	< 0.50	1.5	05/26/19 09:10	
Benzyl chloride	ug/m3	< 0.60	1.3	05/26/19 09:10	
Bromodichloromethane	ug/m3	<0.18	0.68	05/26/19 09:10	
Carbon tetrachloride	ug/m3	<0.21	0.64	05/26/19 09:10	
Chlorobenzene	ug/m3	<0.14	0.47	05/26/19 09:10	
Chlorodifluoromethane	ug/m3	< 0.33	0.90	05/26/19 09:10	N2
Chloroethane	ug/m3	<0.13	0.27	05/26/19 09:10	
Chloroform	ug/m3	<0.098	0.25	05/26/19 09:10	
Chloromethane	ug/m3	<0.078	0.21	05/26/19 09:10	
cis-1,2-Dichloroethene	ug/m3	<0.11	0.40	05/26/19 09:10	
cis-1,3-Dichloropropene	ug/m3	<0.15	0.46	05/26/19 09:10	
Dibromochloromethane	ug/m3	< 0.36	0.86	05/26/19 09:10	
Dichlorodifluoromethane	ug/m3	<0.15	0.50	05/26/19 09:10	
Hexachloro-1,3-butadiene	ug/m3	< 0.98	2.7	05/26/19 09:10	
Methylene Chloride	ug/m3	< 0.47	1.8	05/26/19 09:10	
Tetrachloroethene	ug/m3	<0.16	0.34	05/26/19 09:10	
trans-1,2-Dichloroethene	ug/m3	<0.14	0.40	05/26/19 09:10	
trans-1,3-Dichloropropene	ug/m3	<0.22	0.46	05/26/19 09:10	
Trichloroethene	ug/m3	<0.13	0.27	05/26/19 09:10	
Trichlorofluoromethane	ug/m3	<0.18	0.57	05/26/19 09:10	
Vinyl chloride	ug/m3	< 0.063	0.13	05/26/19 09:10	

LABORATORY CONTROL SAMPLE: 3289409

Date: 05/31/2019 10:51 AM

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/m3	55.5	57.2	103	70-130	
1,1,2,2-Tetrachloroethane	ug/m3	69.8	73.4	105	70-132	
1,1,2-Trichloroethane	ug/m3	55.5	57.5	104	70-130	
1,1,2-Trichlorotrifluoroethane	ug/m3	77.9	77.1	99	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Klismith
Pace Project No.: 10476270

Date: 05/31/2019 10:51 AM

ABORATORY CONTROL SAMPLE:	3289409					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
						Qualifiers
,1-Dichloroethane	ug/m3	41.1	42.6	104	70-130	
,1-Dichloroethene	ug/m3	40.3	38.7	96	70-130	
,2,4-Trichlorobenzene	ug/m3	75.4	64.4	85	56-130	
,2-Dichlorobenzene	ug/m3	61.1	64.2	105	70-132	
,2-Dichloroethane	ug/m3	41.1	43.1	105	70-130	
,2-Dichloropropane	ug/m3	47	48.1	102	70-130	
,3-Dichlorobenzene	ug/m3	61.1	65.4	107	70-137	
,4-Dichlorobenzene	ug/m3	61.1	67.9	111	70-134	
Benzyl chloride	ug/m3	52.6	53.0	101	70-130	
Bromodichloromethane	ug/m3	68.1	71.7	105	70-130	
arbon tetrachloride	ug/m3	64	70.5	110	66-131	
Chlorobenzene	ug/m3	46.8	47.0	100	70-130	
Chlorodifluoromethane	ug/m3	36	41.4	115	70-135 N	N 2
hloroethane	ug/m3	26.8	27.8	103	70-130	
hloroform	ug/m3	49.6	50.3	101	70-130	
hloromethane	ug/m3	21	20.2	96	66-130	
is-1,2-Dichloroethene	ug/m3	40.3	41.3	103	70-130	
is-1,3-Dichloropropene	ug/m3	46.1	48.4	105	70-133	
Dibromochloromethane	ug/m3	86.6	91.2	105	70-130	
Dichlorodifluoromethane	ug/m3	50.3	53.0	106	70-130	
lexachloro-1,3-butadiene	ug/m3	108	104	96	66-137	
Methylene Chloride	ug/m3	177	167	95	65-130	
- etrachloroethene	ug/m3	68.9	67.2	97	70-130	
rans-1,2-Dichloroethene	ug/m3	40.3	40.9	101	70-130	
ans-1,3-Dichloropropene	ug/m3	46.1	49.5	107	70-134	
richloroethene	ug/m3	54.6	54.3	99	70-130	
richlorofluoromethane	ug/m3	57.1	56.2	98	65-130	
/inyl chloride	ug/m3	26	25.4	98	70-130	

SAMPLE DUPLICATE: 3290079						
		10476270001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,1,1-Trichloroethane	ug/m3	<0.44	<0.44		25	
1,1,2,2-Tetrachloroethane	ug/m3	<0.41	< 0.41		25	
1,1,2-Trichloroethane	ug/m3	< 0.35	< 0.35		25	
1,1,2-Trichlorotrifluoroethane	ug/m3	<0.80	<0.80		25	
1,1-Dichloroethane	ug/m3	< 0.32	< 0.32		25	
1,1-Dichloroethene	ug/m3	< 0.39	< 0.39		25	
1,2,4-Trichlorobenzene	ug/m3	<5.2	<5.2		25	
1,2-Dichlorobenzene	ug/m3	< 0.70	< 0.70		25	
1,2-Dichloroethane	ug/m3	<0.21	<0.21		25	
1,2-Dichloropropane	ug/m3	< 0.32	< 0.32		25	
1,3-Dichlorobenzene	ug/m3	<0.82	< 0.82		25	
1,4-Dichlorobenzene	ug/m3	<1.4	<1.4		25	
Benzyl chloride	ug/m3	<1.7	<1.7		25	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Klismith
Pace Project No.: 10476270

Date: 05/31/2019 10:51 AM

SAMPLE DUPLICATE: 3290079 10476270001 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers < 0.52 Bromodichloromethane ug/m3 < 0.52 25 < 0.60 Carbon tetrachloride ug/m3 < 0.60 25 < 0.39 Chlorobenzene ug/m3 < 0.39 25 Chlorodifluoromethane ug/m3 < 0.93 < 0.93 25 N2 Chloroethane ug/m3 < 0.37 < 0.37 25 <0.28 Chloroform ug/m3 <0.28 25 0.53J Chloromethane ug/m3 0.52J 25 cis-1,2-Dichloroethene ug/m3 < 0.31 < 0.31 25 cis-1,3-Dichloropropene ug/m3 < 0.43 < 0.43 25 <1.0 Dibromochloromethane ug/m3 <1.0 25 2.0 Dichlorodifluoromethane ug/m3 2.0 1 25 <2.8 Hexachloro-1,3-butadiene ug/m3 <2.8 25 85.7 2 Methylene Chloride ug/m3 87.2 25 Tetrachloroethene ug/m3 2.2 2.2 2 25 trans-1,2-Dichloroethene ug/m3 < 0.40 < 0.40 25 trans-1,3-Dichloropropene ug/m3 < 0.62 < 0.62 25 Trichloroethene ug/m3 1.2 1.2 1 25 1.3J Trichlorofluoromethane ug/m3 1.2J 25 < 0.18 Vinyl chloride ug/m3 < 0.18 25

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Klismith
Pace Project No.: 10476270

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor, percent moisture, initial weight and final volume.

LOQ - Limit of Quantitation adjusted for dilution factor, percent moisture, initial weight and final volume.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

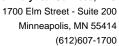
SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

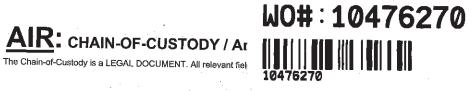

LABORATORIES

PASI-M Pace Analytical Services - Minneapolis

ANALYTE QUALIFIERS

Date: 05/31/2019 10:51 AM

N2 The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.


QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Klismith
Pace Project No.: 10476270

Date: 05/31/2019 10:51 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10476270001	System Exhaust	TO-15	608494		

Section A Required Client Information:	Section B Required Project I	nformation			Section													4	2 C	0.0	٠,	Page		of
Company: Sand Week	Report To:	mormadori			Attentio	Information n:	: 											`	סכ	06) 4	1 090		"
Address: POBar 219	Copy To:	2100 (0			ny Name:		7	$\overline{}$			_							Pro	gram				
Address: POBOX 218 Amherst, CVI Email Toje. CUVITSEL @ Saud- Phone. TIG-824-51890x: CVERL. COM	1				Address	-	-7	een								1	JST	Su	perfun	d T	Emiss	ions	Clean	n Air Act
Email Toy Comment of B Sound	Purchase Order No	· · · · · · · · · · · · · · · · · · ·				uote Refere										.™Vo	luntar	/ Clear	n Up 🖟	,Dry	/ Clean	F RC	CRA	Other
Phone: -824-516 Pax: CV 2016-COM	Project Name:			<u></u>												Locat	ion of			1. 5	=		ting Units mg/m	
Requested Due Date/TAT:	Project Number:	(, 5m	1		Pace P		ger/Sales R				101111111					Samp			te	<u>v</u> .		PPBV Other	PPM\	
'Section D Required Client Information	Valid Media Codes	_	1 8	1			253		_							Repor	t Leve	<u>.</u> II	_ 11		IV	Other		
AIR SAMPLE ID Sample IDs MUST BE UNIQUE	MEDIA CODE Tediar Bag TB 1 Liter Summa Can 1LC 6 Liter Summa Can 5LC Low Volume Puff LVF		ing (Client only)		COLL	ECTED		ter Pressure Field - in Hg)	Canister Pressure (Final Field - in Hg)		Summ Can	а		low	_	Metho	_ /		[] [@/		7 2 2	i (office)	/	
TIEW #	High Volume Puff HVF Other PM	MEDIA C	PID Reading	COMPOSITE STAI	TIME	DATE	POSITE - WGRAB TIME	Canister (Initial Fie	Canister (Final Fi	١	lumbe	r		ımber		0/2/25			21.4	07 187 187 02 187 188 189 02	18 18 18 18 18 18 18 18 18 18 18 18 18 1	Thou work the state of the stat		
1 System Esclaret		610	-	5/21/19	10:29	5/21	1(:08	-79	-2.5		72	3	1 0	58	3	74/3	17	7	/~/	X	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			.ab ID
2							1			•			-		-	-		_	+	1		00	4	
3												-							\vdash			-		
4				_							-			.					\vdash	-	-			
5												-		1-1	-	-		-		-				
6								· · · · · · · · · · · · · · · · · · ·										-	-		<u> </u>			
7								-					_			_		+	-	-	_			·
8												+									_			
9	A THE STATE OF THE			The state of the s										-					-					
10									·		<u> </u>			+				+-						
11										_	<u> </u>		1.		\dashv		-	\dashv	_		_			
12																		+	-		_			
Comments :		RELINQ	UISH	ED BY / AF	FILIATI	ON	DATE	TIM	F !	ACC	EPTED		AEEU	IATIO	N I									
		108		KUTUS			5/2(-IATIO		DA			TIME		SAM		ONDITI	
•	Ţ	122		0000	-		10-1			4			Ma	-		25/2	3/ <u>/</u> 4	12	<u> </u>	7		~	>	Y'N Q'N
	Ī								-+				· .		_			┿		_		×.	× ×	
	f			 -														<u> .</u>	-			₹ .	N.	N X
	L					AMPLED	NIABAE AN	0.010	. T. 122							_						N/X	N/A	₹
						RINT Name of	NAME ANI	7 ./		1											် ပ	no b	dy boler	ntact
ORIGIN	IAL				L	IGNATURE #	7 . at	ete	-41	n	elm	- Ir	ATE Sian	ed (MM/)	DD 110						Temp in °C	Received	Custody Sealed Cooler	Samples Intact
					. [Jex		MJ	la				,σι⊏ olgn	-01		21/	20	19	<u>, </u>	\bot	-E	<u>ж</u>	Seal	Sam

Pace Analytical

hold, incorrect preservative, out of temp, incorrect containers)

Document Name: Air Sample Condition Upon Receipt

Document No.: F-MN-A-106-rev.18

Document Revised: 31Jan2019 Page 1 of 1

Issuing Authority 1017G270

Is sufficient information available to reconcile samples to the COC? Do cans need to be pressurized (3C and ASTM 1946 DO NOT PRESSURIZE)? Samples Received: Canisters Canisters Canisters Canisters Canisters Canisters Canisters Canisters Sample Number Can ID Controller Pressure Pressure	31/19
Packing Material: Bubble Wrap Bubble Bags Foam None Tin Can Other: Temp Blank rec: Temp. (**Tol.7 and **Tol.3 samples only) (**C!: Corrected Temp (**C): Thermometer Used: G87/3915 G87/3	
Contracted length Controller Controlle	_Yes Z N
Chain of Custody Present?	5100842
Chain of Custody Filled Out? Chain of Custody Relinquished? Sampler Name and/or Signature on COC? Samples Arrived within Hold Time? Short Hold Time Analysis (<72 hr)? Rush Turn Around Time Requested? Correct Containers Used? Pace Containers Used? Pressure Gauge # 10AIR34 10AIR35 Canisters Canisters Canisters Canisters Flow Initial Final Sample Number Can ID Controller Pressure Pressure Pressure Pressure Sample Number Can ID Controller Pressure Pressure Pressure Pressure Sample Number Can ID Controller Pressure Pressure Pressure Pressure Sample Number Can ID Controller Pressure Press	
Chain of Custody Relinquished? Yes	
Sampler Name and/or Signature on COC? Yes	
Samples Arrived within Hold Time? Yes	
Short Hold Time Analysis (<72 hr)? Yes	
Rush Turn Around Time Requested? Sufficient Volume? Yes	
Sufficient Volume? Ves	
Correct Containers Used? -Pace Containers Used? -Pace Containers Intact? -Pace Containers Intact. -Pace Containers Int	
Pace Containers Used? Yes	
Media: Air Can Airbag Filter TDT Passive 11. Individually Certified Cans Y N (list whose sufficient information available to reconcile samples to the COC? Yes No 12.	
Is sufficient information available to reconcile samples to the COC? Ves	
Samples to the COC? Yes	ch samples
DO NOT PRESSURIZE)? Pressure Gauge # 10AlR34	
Canisters Can ID Controller Pressure Pressure Sample Number Can ID Controller Pressure A hourt 1723 1583 -1.5 +50	
Sample Number Can ID Controller Pressure Pressure Sample Number Can ID Controller Pressure Pressure Sample Number Can ID Controller Pressure Pressure Sample Number Can ID Controller Pressure	
Sample Number Can ID Controller Pressure Pressure Sample Number Can ID Controller Pressure	
	Final Pressure
CLIENT NOTIFICATION/PESQUITION	
CLIENT NOTIFICATION/PEROLLITION	
Person Contacted: Date/Time: Field Data Required? Yes 1	ló
Comments/Resolution:	
Project Manager Review: Suthan Robert Date: 5/24/19	

Page 12 of 12

October 11, 2021

Pete Arntsen Sand County Environmental PO Box 218 Amherst, WI 54406

RE: Project: Klismith Accounting

Pace Project No.: 10581523

Dear Pete Arntsen:

Enclosed are the analytical results for sample(s) received by the laboratory on October 04, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Minneapolis

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kirsten Hogberg

kirsten.hogberg@pacelabs.com

Kugh Haffrey

(612)607-1700 Project Manager

Enclosures

cc: Nichole Besyk, Sand County Environmental

CERTIFICATIONS

Project: Klismith Accounting

Pace Project No.: 10581523

Pace Analytical Services, LLC - Minneapolis MN

1700 Elm Street SE, Minneapolis, MN 55414

1800 Elm Street SE, Minneapolis, MN 55414--Satellite Air

Lab

A2LA Certification #: 2926.01* Alabama Certification #: 40770

Alaska Contaminated Sites Certification #: 17-009*

Alaska DW Certification #: MN00064 Arizona Certification #: AZ0014* Arkansas DW Certification #: MN00064 Arkansas WW Certification #: 88-0680 California Certification #: 2929

Colorado Certification #: MN00064 Connecticut Certification #: PH-0256

EPA Region 8 Tribal Water Systems+Wyoming DW

Certification #: via MN 027-053-137 Florida Certification #: E87605* Georgia Certification #: 959 Hawaii Certification #: MN00064 Idaho Certification #: MN00064 Illinois Certification #: 200011 Indiana Certification #: C-MN-01 Iowa Certification #: 368

Indiana Certification #: C-MN-01
Iowa Certification #: 368
Kansas Certification #: E-10167
Kentucky DW Certification #: 90062
Kentucky WW Certification #: 90062
Louisiana DEQ Certification #: Al-03086*
Louisiana DW Certification #: MN00064*

Maine Certification #: MN00064* Maryland Certification #: 322 Michigan Certification #: 9909

Minnesota Certification #: 027-053-137*

Minnesota Dept of Ag Approval: via MN 027-053-137

Minnesota Petrofund Registration #: 1240* Mississippi Certification #: MN00064 Missouri Certification #: 10100
Montana Certification #: CERT0092
Nebraska Certification #: NE-OS-18-06
Nevada Certification #: MN00064
New Hampshire Certification #: 2081*
New Jersey Certification #: MN002
New York Certification #: 11647*
North Carolina DW Certification #: 27700
North Carolina WW Certification #: 530
North Dakota Certification #: R-036

Ohio DW Certification #: 41244 Ohio VAP Certification (1700) #: CL101 Ohio VAP Certification (1800) #: CL110*

Oklahoma Certification #: 9507*

Oregon Primary Certification #: MN300001
Oregon Secondary Certification #: MN200001*
Pennsylvania Certification #: 68-00563*
Puerto Rico Certification #: MN00064
South Carolina Certification #: TN02818
Texas Certification #: T104704192*
Utah Certification #: MN00064*
Vermont Certification #: VT-027053137
Virginia Certification #: 460163*
Washington Certification #: C486*

West Virginia DEP Certification #: 382
West Virginia DW Certification #: 9952 C
Wisconsin Certification #: 999407970

Wyoming UST Certification #: via A2LA 2926.01

USDA Permit #: P330-19-00208

*Please Note: Applicable air certifications are denoted with

an asterisk (*).

SAMPLE SUMMARY

Project: Klismith Accounting

Pace Project No.: 10581523

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10581523001	SSV 201	Air	09/28/21 10:08	10/04/21 11:00
10581523002	SSV 202	Air	09/28/21 09:48	10/04/21 11:00

SAMPLE ANALYTE COUNT

Project: Klismith Accounting

Pace Project No.: 10581523

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
10581523001	SSV 201	TO-15	НМН	61	PASI-M
10581523002	SSV 202	TO-15	НМН	61	PASI-M

PASI-M = Pace Analytical Services - Minneapolis

SUMMARY OF DETECTION

Project: Klismith Accounting

Pace Project No.: 10581523

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
0581523001	SSV 201					
ΓΟ-15	Acetone	36.5	ug/m3	8.7	10/09/21 19:41	
ΓΟ-15	Benzene	0.34J	ug/m3	0.47	10/09/21 19:41	
ΓO-15	2-Butanone (MEK)	6.6	ug/m3	4.3	10/09/21 19:41	
ΓO-15	Carbon tetrachloride	0.46J	ug/m3	1.8	10/09/21 19:41	
ΓO-15	Cyclohexane	0.38J	ug/m3	2.5	10/09/21 19:41	
O-15	1,2-Dichlorobenzene	0.84J	ug/m3	4.4	10/09/21 19:41	
O-15	1,3-Dichlorobenzene	2.0J	ug/m3	4.4	10/09/21 19:41	
O-15	1,4-Dichlorobenzene	1.5J	ug/m3	4.4	10/09/21 19:41	
O-15	Dichlorodifluoromethane	2.8	ug/m3	1.5	10/09/21 19:41	
O-15	Ethanol	68.3	ug/m3	2.8	10/09/21 19:41	
O-15	Ethylbenzene	2.9	ug/m3	1.3	10/09/21 19:41	
O-15	4-Ethyltoluene	1.4J	ug/m3	3.6	10/09/21 19:41	
O-15	n-Heptane	0.49J	ug/m3	1.2	10/09/21 19:41	
O-15	n-Hexane	1.3	ug/m3	1.0	10/09/21 19:41	
O-15	2-Hexanone	1.6J	ug/m3	6.0	10/09/21 19:41	
O-15	4-Methyl-2-pentanone (MIBK)	1.4J	ug/m3	6.0	10/09/21 19:41	
O-15	Naphthalene	3.7J	ug/m3	3.8	10/09/21 19:41	
O-15	2-Propanol	12.0	ug/m3	3.6	10/09/21 19:41	
O-15		0.24J	_	1.3	10/09/21 19:41	
O-15	Propylene	10.0	ug/m3		10/09/21 19:41	
	Styrene		ug/m3	1.2		
O-15	Tetrachloroethene Tetrachloroethene	39.6	ug/m3	0.99	10/09/21 19:41	
O-15	Tetrahydrofuran	0.81J	ug/m3	0.86	10/09/21 19:41	
O-15	Toluene	130	ug/m3	1.1	10/09/21 19:41	
O-15	1,1,1-Trichloroethane	0.38J	ug/m3	1.6	10/09/21 19:41	
O-15	Trichlorofluoromethane	1.5J	ug/m3	1.6	10/09/21 19:41	
O-15	1,1,2-Trichlorotrifluoroethane	0.95J	ug/m3	2.2	10/09/21 19:41	
O-15	1,2,4-Trimethylbenzene	3.7	ug/m3	1.4	10/09/21 19:41	
O-15	1,3,5-Trimethylbenzene	1.2J	ug/m3	1.4	10/09/21 19:41	
O-15	m&p-Xylene	10.4	ug/m3	2.5	10/09/21 19:41	
O-15	o-Xylene	5.3	ug/m3	1.3	10/09/21 19:41	
0581523002	SSV 202					
O-15	Acetone	20.6	ug/m3	8.7	10/09/21 20:37	
O-15	Benzene	0.31J	ug/m3	0.47	10/09/21 20:37	
O-15	2-Butanone (MEK)	5.2	ug/m3	4.3	10/09/21 20:37	
O-15	Chloromethane	0.22J	ug/m3	0.60	10/09/21 20:37	
O-15	1,2-Dichlorobenzene	0.83J	ug/m3	4.4	10/09/21 20:37	
O-15	1,4-Dichlorobenzene	1.6J	ug/m3	4.4	10/09/21 20:37	
O-15	Dichlorodifluoromethane	2.5	ug/m3	1.5	10/09/21 20:37	
O-15	Ethanol	27.6	ug/m3	2.8	10/09/21 20:37	
O-15	Ethylbenzene	3.0	ug/m3	1.3	10/09/21 20:37	
O-15	4-Ethyltoluene	1.4J	ug/m3	3.6	10/09/21 20:37	
O-15	n-Heptane	0.58J	ug/m3	1.2	10/09/21 20:37	
O-15	n-Hexane	1.1	ug/m3	1.0	10/09/21 20:37	
O-15	2-Hexanone	1.4J	ug/m3	6.0	10/09/21 20:37	
O-15	4-Methyl-2-pentanone (MIBK)	0.94J	ug/m3	6.0	10/09/21 20:37	
O-15	Naphthalene	3.3J	ug/m3	3.8	10/09/21 20:37	
O-15	2-Propanol	8.5	ug/m3		10/09/21 20:37	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

SUMMARY OF DETECTION

Project: Klismith Accounting

Pace Project No.: 10581523

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
10581523002	SSV 202					
TO-15	Propylene	0.20J	ug/m3	1.3	10/09/21 20:37	
TO-15	Styrene	10.1	ug/m3	1.2	10/09/21 20:37	
TO-15	Tetrachloroethene	64.9	ug/m3	0.99	10/09/21 20:37	
TO-15	Tetrahydrofuran	0.73J	ug/m3	0.86	10/09/21 20:37	
TO-15	Toluene	135	ug/m3	1.1	10/09/21 20:37	
TO-15	1,1,1-Trichloroethane	0.58J	ug/m3	1.6	10/09/21 20:37	
TO-15	Trichlorofluoromethane	1.4J	ug/m3	1.6	10/09/21 20:37	
TO-15	1,1,2-Trichlorotrifluoroethane	0.61J	ug/m3	2.2	10/09/21 20:37	
TO-15	1,2,4-Trimethylbenzene	3.6	ug/m3	1.4	10/09/21 20:37	
TO-15	1,3,5-Trimethylbenzene	1.2J	ug/m3	1.4	10/09/21 20:37	
TO-15	m&p-Xylene	10.9	ug/m3	2.5	10/09/21 20:37	
TO-15	o-Xylene	5.6	ug/m3	1.3	10/09/21 20:37	

PROJECT NARRATIVE

Project: Klismith Accounting

Pace Project No.: 10581523

Method: TO-15

Description: TO15 MSV AIR

Client: Sand County Environmental, Inc.

Date: October 11, 2021

General Information:

2 samples were analyzed for TO-15 by Pace Analytical Services Minneapolis. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: Klismith Accounting

Pace Project No.: 10581523

Date: 10/11/2021 02:06 PM

Sample: SSV 201 Lab ID: 10581523001 Collected: 09/28/21 10:08 Received: 10/04/21 11:00 Matrix: Air

Parameters	Results	Units	LOQ -	LOD	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical	Method: TO-1	5						
	Pace Anal	ytical Services	s - Minneapo	olis					
Acetone	36.5	ug/m3	8.7	2.6	1.44		10/09/21 19:41	67-64-1	
Benzene	0.34J	ug/m3	0.47	0.16	1.44		10/09/21 19:41		
Benzyl chloride	<1.3	ug/m3	3.8	1.3	1.44		10/09/21 19:41		
Bromodichloromethane	< 0.34	ug/m3	2.0	0.34	1.44		10/09/21 19:41		
Bromoform	<2.3	ug/m3	7.6	2.3	1.44		10/09/21 19:41		
Bromomethane	<0.22	ug/m3	1.1	0.22	1.44		10/09/21 19:41		
1.3-Butadiene	<0.17	ug/m3	0.65	0.17	1.44		10/09/21 19:41		
2-Butanone (MEK)	6.6	ug/m3	4.3	0.67	1.44		10/09/21 19:41		
Carbon disulfide	<0.19	ug/m3	0.91	0.19	1.44		10/09/21 19:41		
Carbon tetrachloride	0.46J	ug/m3	1.8	0.40	1.44		10/09/21 19:41		
Chlorobenzene	<0.22	ug/m3	1.3	0.40	1.44		10/09/21 19:41		
Chloroethane	<0.32	ug/m3	0.77	0.22	1.44		10/09/21 19:41		
Chloroform	<0.26	ug/m3	0.71	0.26	1.44		10/09/21 19:41		
Chloromethane	<0.12	ug/m3	0.60	0.12	1.44		10/09/21 19:41		
Cyclohexane	0.38J	ug/m3	2.5	0.12	1.44		10/09/21 19:41		
Dibromochloromethane	<0.74	-	2.5	0.32	1.44		10/09/21 19:41		
		ug/m3		0.74	1.44		10/09/21 19:41		
,2-Dibromoethane (EDB)	<0.43	ug/m3	1.1						
,2-Dichlorobenzene	0.84J	ug/m3	4.4	0.58	1.44		10/09/21 19:41		
,3-Dichlorobenzene	2.0J	ug/m3	4.4	0.73	1.44		10/09/21 19:41		
,4-Dichlorobenzene	1.5J	ug/m3	4.4	1.3	1.44		10/09/21 19:41		
Dichlorodifluoromethane	2.8	ug/m3	1.5	0.27	1.44		10/09/21 19:41		
,1-Dichloroethane	<0.24	ug/m3	1.2	0.24	1.44		10/09/21 19:41		
,2-Dichloroethane	<0.28	ug/m3	1.2	0.28	1.44		10/09/21 19:41		
,1-Dichloroethene	<0.20	ug/m3	1.2	0.20	1.44		10/09/21 19:41		
cis-1,2-Dichloroethene	<0.28	ug/m3	1.2	0.28	1.44		10/09/21 19:41		
rans-1,2-Dichloroethene	<0.24	ug/m3	1.2	0.24	1.44		10/09/21 19:41		
I,2-Dichloropropane	< 0.39	ug/m3	1.4	0.39	1.44		10/09/21 19:41	78-87-5	
cis-1,3-Dichloropropene	<0.37	ug/m3	3.3	0.37	1.44		10/09/21 19:41		
rans-1,3-Dichloropropene	<0.78	ug/m3	3.3	0.78	1.44		10/09/21 19:41	10061-02-6	
Dichlorotetrafluoroethane	<0.29	ug/m3	2.0	0.29	1.44		10/09/21 19:41	76-14-2	
Ethanol	68.3	ug/m3	2.8	0.85	1.44		10/09/21 19:41	64-17-5	
Ethyl acetate	<0.19	ug/m3	1.1	0.19	1.44		10/09/21 19:41	141-78-6	
Ethylbenzene	2.9	ug/m3	1.3	0.44	1.44		10/09/21 19:41	100-41-4	
l-Ethyltoluene	1.4J	ug/m3	3.6	0.68	1.44		10/09/21 19:41	622-96-8	
n-Heptane	0.49J	ug/m3	1.2	0.26	1.44		10/09/21 19:41	142-82-5	
lexachloro-1,3-butadiene	<1.8	ug/m3	7.8	1.8	1.44		10/09/21 19:41	87-68-3	
ı-Hexane	1.3	ug/m3	1.0	0.28	1.44		10/09/21 19:41		
-Hexanone	1.6J	ug/m3	6.0	0.64	1.44		10/09/21 19:41		
Methylene Chloride	<0.85	ug/m3	5.1	0.85	1.44		10/09/21 19:41		
l-Methyl-2-pentanone (MIBK)	1.4J	ug/m3	6.0	0.46	1.44		10/09/21 19:41		
Methyl-tert-butyl ether	<0.18	ug/m3	5.3	0.18	1.44		10/09/21 19:41		
Naphthalene	3.7J	ug/m3	3.8	3.1	1.44		10/09/21 19:41		
2-Propanol	12.0	ug/m3	3.6	0.73	1.44		10/09/21 19:41		
Propylene	0.24J	ug/m3	1.3	0.19	1.44		10/09/21 19:41		
Styrene	10.0	ug/m3	1.2	0.19	1.44		10/09/21 19:41		

Project: Klismith Accounting

Pace Project No.: 10581523

Date: 10/11/2021 02:06 PM

Sample: SSV 201	Lab ID:	10581523001	Collected	d: 09/28/2	1 10:08	Received: 10	/04/21 11:00 M	atrix: Air	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical	Method: TO-15							
	Pace Anal	ytical Services	- Minneapo	lis					
1,1,2,2-Tetrachloroethane	<0.54	ug/m3	2.0	0.54	1.44		10/09/21 19:41	79-34-5	
Tetrachloroethene	39.6	ug/m3	0.99	0.42	1.44		10/09/21 19:41		
Tetrahydrofuran	0.81J	ug/m3	0.86	0.26	1.44		10/09/21 19:41		
Toluene	130	ug/m3	1.1	0.35	1.44		10/09/21 19:41		
1,2,4-Trichlorobenzene	<7.0	ug/m3	10.9	7.0	1.44		10/09/21 19:41		
1,1,1-Trichloroethane	0.38J	ug/m3	1.6	0.27	1.44		10/09/21 19:41		
1,1,2-Trichloroethane	<0.28	ug/m3	0.80	0.28	1.44		10/09/21 19:41		
Trichloroethene	<0.28	ug/m3	0.79	0.28	1.44		10/09/21 19:41		
Trichlorofluoromethane	1.5J	ug/m3	1.6	0.34	1.44		10/09/21 19:41		
1,1,2-Trichlorotrifluoroethane	0.95J	ug/m3	2.2	0.42	1.44		10/09/21 19:41		
1,2,4-Trimethylbenzene	3.7	ug/m3	1.4	0.51	1.44		10/09/21 19:41		
1,3,5-Trimethylbenzene	1.2J	ug/m3	1.4	0.42	1.44		10/09/21 19:41		
Vinyl acetate	<0.30	ug/m3	1.0	0.42	1.44		10/09/21 19:41		
Vinyl chloride	<0.12	ug/m3	0.37	0.12	1.44		10/09/21 19:41		
m&p-Xylene	10.4	ug/m3	2.5	0.12	1.44		10/09/21 19:41		
o-Xylene	5.3	ug/m3	1.3	0.32	1.44		10/09/21 19:41		
Sample: SSV 202	Lab ID:	10581523002	Collected	d: 09/28/2 ⁻	1 09:48	Received: 10	/04/21 11:00 M	atrix: Air	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical	Method: TO-15							
	Pace Anal	ytical Services	- Minneapo	lis					
Acetone	20.6	ug/m3	8.7	2.6	1.44		10/09/21 20:37	67-64-1	
Benzene	0.31J	ug/m3	0.47	0.16	1.44		10/09/21 20:37		
Benzyl chloride	<1.3	ug/m3	3.8	1.3	1.44		10/09/21 20:37		
Bromodichloromethane	<0.34	ug/m3	2.0	0.34	1.44		10/09/21 20:37		
Bromoform	<2.3	ug/m3	7.6	2.3	1.44		10/09/21 20:37		
Bromomethane	<0.22	ug/m3	1.1	0.22	1.44		10/09/21 20:37		
1,3-Butadiene	<0.17	ug/m3	0.65	0.22	1.44		10/09/21 20:37		
2-Butanone (MEK)	5.2	ug/m3	4.3	0.17	1.44		10/09/21 20:37		
Carbon disulfide	<0.19	ug/m3	0.91	0.19	1.44		10/09/21 20:37		
Carbon tetrachloride	<0.40	ug/m3	1.8	0.19	1.44		10/09/21 20:37		
Chlorobenzene	<0.22	-		0.40	1.44		10/09/21 20:37		
Chloroethane	<0.22	ug/m3 ug/m3	1.3 0.77	0.22	1.44		10/09/21 20:37		
Chloroform	<0.32 <0.26	ug/m3 ug/m3	0.77	0.32	1.44		10/09/21 20:37		
		•							
Chloromethane	0.22J	ug/m3	0.60	0.12	1.44		10/09/21 20:37		
Cyclohexane	<0.32	ug/m3	2.5	0.32 0.74	1.44 1.44		10/09/21 20:37		
Dilement a seleta na mare di como				() /4	1 44		10/09/21 20:37	124-48-1	
Dibromochloromethane	<0.74	ug/m3	2.5				10/00/01 00 0=		
1,2-Dibromoethane (EDB)	<0.43	ug/m3	1.1	0.43	1.44		10/09/21 20:37	106-93-4	
1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene	<0.43 0.83J	ug/m3 ug/m3	1.1 4.4	0.43 0.58	1.44 1.44		10/09/21 20:37	106-93-4 95-50-1	
1,2-Dibromoethane (EDB)	<0.43	ug/m3	1.1	0.43	1.44			106-93-4 95-50-1 541-73-1	

Project: Klismith Accounting

Pace Project No.: 10581523

Date: 10/11/2021 02:06 PM

Sample: SSV 202 Lab ID: 10581523002 Collected: 09/28/21 09:48 Received: 10/04/21 11:00 Matrix: Air

Parameters	Results	Units	LOQ	LOD	DF_	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical	Method: TO-	15						
	Pace Anal	ytical Service	es - Minneapo	lis					
Dichlorodifluoromethane	2.5	ug/m3	1.5	0.27	1.44		10/09/21 20:37	75-71-8	
1,1-Dichloroethane	<0.24	ug/m3	1.2	0.24	1.44		10/09/21 20:37	75-34-3	
1,2-Dichloroethane	<0.28	ug/m3	1.2	0.28	1.44		10/09/21 20:37	107-06-2	
1,1-Dichloroethene	<0.20	ug/m3	1.2	0.20	1.44		10/09/21 20:37	75-35-4	
cis-1,2-Dichloroethene	<0.28	ug/m3	1.2	0.28	1.44		10/09/21 20:37	156-59-2	
trans-1,2-Dichloroethene	<0.24	ug/m3	1.2	0.24	1.44		10/09/21 20:37	156-60-5	
1,2-Dichloropropane	< 0.39	ug/m3	1.4	0.39	1.44		10/09/21 20:37		
cis-1,3-Dichloropropene	<0.37	ug/m3	3.3	0.37	1.44		10/09/21 20:37		
trans-1,3-Dichloropropene	<0.78	ug/m3	3.3	0.78	1.44		10/09/21 20:37	10061-02-6	
Dichlorotetrafluoroethane	<0.29	ug/m3	2.0	0.29	1.44		10/09/21 20:37		
Ethanol	27.6	ug/m3	2.8	0.85	1.44		10/09/21 20:37		
Ethyl acetate	<0.19	ug/m3	1.1	0.19	1.44		10/09/21 20:37		
Ethylbenzene	3.0	ug/m3	1.3	0.44	1.44		10/09/21 20:37		
4-Ethyltoluene	1.4J	ug/m3	3.6	0.68	1.44		10/09/21 20:37		
n-Heptane	0.58J	ug/m3	1.2	0.26	1.44		10/09/21 20:37		
Hexachloro-1,3-butadiene	<1.8	ug/m3	7.8	1.8	1.44		10/09/21 20:37		
n-Hexane	1.1	ug/m3	1.0	0.28	1.44		10/09/21 20:37		
1-Hexane 2-Hexanone	1.1 1.4J	ug/m3	6.0	0.26	1.44		10/09/21 20:37		
		Ü	5.1		1.44		10/09/21 20:37		
Methylene Chloride	<0.85	ug/m3		0.85					
1-Methyl-2-pentanone (MIBK)	0.94J	ug/m3	6.0	0.46	1.44		10/09/21 20:37		
Methyl-tert-butyl ether	<0.18	ug/m3	5.3	0.18	1.44		10/09/21 20:37		
Naphthalene	3.3J	ug/m3	3.8	3.1	1.44		10/09/21 20:37		
2-Propanol	8.5	ug/m3	3.6	0.73	1.44		10/09/21 20:37		
Propylene	0.20J	ug/m3	1.3	0.19	1.44		10/09/21 20:37		
Styrene	10.1	ug/m3	1.2	0.55	1.44		10/09/21 20:37		
1,1,2,2-Tetrachloroethane	< 0.54	ug/m3	2.0	0.54	1.44		10/09/21 20:37		
<u>Tetrachloroethene</u>	64.9	ug/m3	0.99	0.42	1.44		10/09/21 20:37		
Tetrahydrofuran	0.73J	ug/m3	0.86	0.26	1.44		10/09/21 20:37		
Toluene	135	ug/m3	1.1	0.35	1.44		10/09/21 20:37		
1,2,4-Trichlorobenzene	<7.0	ug/m3	10.9	7.0	1.44		10/09/21 20:37	120-82-1	
1,1,1-Trichloroethane	0.58J	ug/m3	1.6	0.27	1.44		10/09/21 20:37	71-55-6	
1,1,2-Trichloroethane	<0.28	ug/m3	0.80	0.28	1.44		10/09/21 20:37	79-00-5	
<u>Frichloroethene</u>	<0.28	ug/m3	0.79	0.28	1.44		10/09/21 20:37	79-01-6	
Frichlorofluoromethane	1.4J	ug/m3	1.6	0.34	1.44		10/09/21 20:37	75-69-4	
1,1,2-Trichlorotrifluoroethane	0.61J	ug/m3	2.2	0.42	1.44		10/09/21 20:37	76-13-1	
1,2,4-Trimethylbenzene	3.6	ug/m3	1.4	0.51	1.44		10/09/21 20:37	95-63-6	
1,3,5-Trimethylbenzene	1.2J	ug/m3	1.4	0.42	1.44		10/09/21 20:37	108-67-8	
√inyl acetate	< 0.30	ug/m3	1.0	0.30	1.44		10/09/21 20:37	108-05-4	
Vinyl chloride	<0.12	ug/m3	0.37	0.12	1.44		10/09/21 20:37	75-01-4	
m&p-Xylene	10.9	ug/m3	2.5	0.92	1.44		10/09/21 20:37	179601-23-1	
o-Xylene	5.6	ug/m3	1.3	0.39	1.44		10/09/21 20:37		

Project: Klismith Accounting

Pace Project No.: 10581523

Date: 10/11/2021 02:06 PM

QC Batch: 775725 Analysis Method: TO-15

QC Batch Method: TO-15 Analysis Description: TO15 MSV AIR Low Level

Laboratory: Pace Analytical Services - Minneapolis

Associated Lab Samples: 10581523001, 10581523002

METHOD BLANK: 4132058 Matrix: Air

Associated Lab Samples: 10581523001, 10581523002

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/m3	<0.093	0.56	10/09/21 11:45	
1,1,2,2-Tetrachloroethane	ug/m3	<0.19	0.70	10/09/21 11:45	
1,1,2-Trichloroethane	ug/m3	<0.098	0.28	10/09/21 11:45	
1,1,2-Trichlorotrifluoroethane	ug/m3	<0.14	0.78	10/09/21 11:45	
1,1-Dichloroethane	ug/m3	<0.082	0.41	10/09/21 11:45	
1,1-Dichloroethene	ug/m3	< 0.069	0.40	10/09/21 11:45	
1,2,4-Trichlorobenzene	ug/m3	<2.4	3.8	10/09/21 11:45	
1,2,4-Trimethylbenzene	ug/m3	<0.18	0.50	10/09/21 11:45	
1,2-Dibromoethane (EDB)	ug/m3	<0.15	0.39	10/09/21 11:45	
1,2-Dichlorobenzene	ug/m3	<0.20	1.5	10/09/21 11:45	
1,2-Dichloroethane	ug/m3	< 0.097	0.41	10/09/21 11:45	
1,2-Dichloropropane	ug/m3	<0.13	0.47	10/09/21 11:45	
1,3,5-Trimethylbenzene	ug/m3	<0.14	0.50	10/09/21 11:45	
1,3-Butadiene	ug/m3	<0.060	0.22	10/09/21 11:45	
1,3-Dichlorobenzene	ug/m3	<0.25	1.5	10/09/21 11:45	
1,4-Dichlorobenzene	ug/m3	<0.44	1.5	10/09/21 11:45	
2-Butanone (MEK)	ug/m3	<0.23	1.5	10/09/21 11:45	
2-Hexanone	ug/m3	<0.22	2.1	10/09/21 11:45	
2-Propanol	ug/m3	<0.25	1.2	10/09/21 11:45	
4-Ethyltoluene	ug/m3	<0.24	1.2	10/09/21 11:45	
4-Methyl-2-pentanone (MIBK)	ug/m3	<0.16	2.1	10/09/21 11:45	
Acetone	ug/m3	< 0.90	3.0	10/09/21 11:45	
Benzene	ug/m3	< 0.057	0.16	10/09/21 11:45	
Benzyl chloride	ug/m3	<0.44	1.3	10/09/21 11:45	
Bromodichloromethane	ug/m3	<0.12	0.68	10/09/21 11:45	
Bromoform	ug/m3	<0.81	2.6	10/09/21 11:45	
Bromomethane	ug/m3	< 0.075	0.39	10/09/21 11:45	
Carbon disulfide	ug/m3	<0.064	0.32	10/09/21 11:45	
Carbon tetrachloride	ug/m3	<0.14	0.64	10/09/21 11:45	
Chlorobenzene	ug/m3	<0.078	0.47	10/09/21 11:45	
Chloroethane	ug/m3	<0.11	0.27	10/09/21 11:45	
Chloroform	ug/m3	<0.092	0.25	10/09/21 11:45	
Chloromethane	ug/m3	< 0.043	0.21	10/09/21 11:45	
cis-1,2-Dichloroethene	ug/m3	<0.098	0.40	10/09/21 11:45	
cis-1,3-Dichloropropene	ug/m3	<0.13	1.2	10/09/21 11:45	
Cyclohexane	ug/m3	<0.11	0.88	10/09/21 11:45	
Dibromochloromethane	ug/m3	<0.26	0.86	10/09/21 11:45	
Dichlorodifluoromethane	ug/m3	<0.094	0.50	10/09/21 11:45	
Dichlorotetrafluoroethane	ug/m3	<0.10	0.71	10/09/21 11:45	
Ethanol	ug/m3	< 0.30	0.96	10/09/21 11:45	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Klismith Accounting

Pace Project No.: 10581523

Date: 10/11/2021 02:06 PM

METHOD BLANK: 4132058 Matrix: Air

Associated Lab Samples: 10581523001, 10581523002

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Ethyl acetate	ug/m3	<0.066	0.37	10/09/21 11:45	
Ethylbenzene	ug/m3	<0.15	0.44	10/09/21 11:45	
Hexachloro-1,3-butadiene	ug/m3	<0.62	2.7	10/09/21 11:45	
m&p-Xylene	ug/m3	< 0.32	0.88	10/09/21 11:45	
Methyl-tert-butyl ether	ug/m3	< 0.063	1.8	10/09/21 11:45	
Methylene Chloride	ug/m3	< 0.30	1.8	10/09/21 11:45	
n-Heptane	ug/m3	<0.090	0.42	10/09/21 11:45	
n-Hexane	ug/m3	<0.096	0.36	10/09/21 11:45	
Naphthalene	ug/m3	<1.1	1.3	10/09/21 11:45	
o-Xylene	ug/m3	<0.14	0.44	10/09/21 11:45	
Propylene	ug/m3	<0.065	0.44	10/09/21 11:45	
Styrene	ug/m3	<0.19	0.43	10/09/21 11:45	
Tetrachloroethene	ug/m3	<0.15	0.34	10/09/21 11:45	
Tetrahydrofuran	ug/m3	<0.090	0.30	10/09/21 11:45	
Toluene	ug/m3	<0.12	0.38	10/09/21 11:45	
trans-1,2-Dichloroethene	ug/m3	<0.084	0.40	10/09/21 11:45	
trans-1,3-Dichloropropene	ug/m3	<0.27	1.2	10/09/21 11:45	
Trichloroethene	ug/m3	<0.098	0.27	10/09/21 11:45	
Trichlorofluoromethane	ug/m3	<0.12	0.57	10/09/21 11:45	
Vinyl acetate	ug/m3	<0.10	0.36	10/09/21 11:45	
Vinyl chloride	ug/m3	<0.043	0.13	10/09/21 11:45	

LABORATORY CONTROL SAMPLE:	4132059					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/m3	59.3	66.5	112	70-130	
1,1,2,2-Tetrachloroethane	ug/m3	75.4	91.2	121	70-132	
1,1,2-Trichloroethane	ug/m3	59.6	70.2	118	70-134	
1,1,2-Trichlorotrifluoroethane	ug/m3	83.6	91.1	109	70-130	
1,1-Dichloroethane	ug/m3	43.9	48.7	111	70-133	
1,1-Dichloroethene	ug/m3	43.5	47.9	110	70-130	
1,2,4-Trichlorobenzene	ug/m3	177	187	106	69-132	
1,2,4-Trimethylbenzene	ug/m3	54	61.0	113	70-142	
1,2-Dibromoethane (EDB)	ug/m3	82.5	101	123	70-138	
1,2-Dichlorobenzene	ug/m3	66.2	73.9	112	70-146	
1,2-Dichloroethane	ug/m3	44.4	49.3	111	70-132	
1,2-Dichloropropane	ug/m3	50.6	56.9	113	70-134	
1,3,5-Trimethylbenzene	ug/m3	53.7	60.4	113	70-143	
1,3-Butadiene	ug/m3	24.2	27.1	112	70-136	
1,3-Dichlorobenzene	ug/m3	66.3	73.4	111	70-145	
1,4-Dichlorobenzene	ug/m3	66.3	73.9	112	70-140	
2-Butanone (MEK)	ug/m3	32.3	36.5	113	50-139	
2-Hexanone	ug/m3	44.8	49.4	110	70-148	
2-Propanol	ug/m3	149	160	107	67-135	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Klismith Accounting

Pace Project No.: 10581523

Date: 10/11/2021 02:06 PM

LABORATORY CONTROL SAMPLE:	4132059					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
						Qualifiers
4-Ethyltoluene	ug/m3	53.7	60.3	112	70-145	
4-Methyl-2-pentanone (MIBK)	ug/m3	44.9	56.6	126	70-139	
Acetone	ug/m3	128	132	103	64-130	
Benzene	ug/m3	34.8	39.3	113	70-131	
Benzyl chloride	ug/m3	57.6	61.9	107	70-130	
Bromodichloromethane	ug/m3	73.1	84.0	115	70-133	
Bromoform	ug/m3	114	124	109	70-137	
Bromomethane	ug/m3	42.5	47.8	112	64-134	
Carbon disulfide	ug/m3	34.4	38.9	113	70-131	
Carbon tetrachloride	ug/m3	69.4	78.4	113	70-131	
Chlorobenzene	ug/m3	50.2	59.1	118	70-130	
Chloroethane	ug/m3	28.8	32.2	112	69-141	
Chloroform	ug/m3	52.4	58.2	111	70-130	
Chloromethane	ug/m3	22.6	24.0	107	70-130	
cis-1,2-Dichloroethene	ug/m3	43.4	50.9	117	70-137	
cis-1,3-Dichloropropene	ug/m3	49.4	59.5	120	70-144	
Cyclohexane	ug/m3	37.4	45.1	120	70-137	
Dibromochloromethane	ug/m3	93.2	111	119	70-132	
Dichlorodifluoromethane	ug/m3	54.6	59.1	108	70-130	
Dichlorotetrafluoroethane	ug/m3	71.2	77.6	109	70-130	
Ethanol	ug/m3	124	134	108	63-133	
Ethyl acetate	ug/m3	38.9	44.9	115	70-136	
Ethylbenzene	ug/m3	47.8	53.9	113	70-142	
Hexachloro-1,3-butadiene	ug/m3	133	144	109	70-135	
m&p-Xylene	ug/m3	95.4	109	114	70-141	
Methyl-tert-butyl ether	ug/m3	39.6	45.5	115	70-143	
Methylene Chloride	ug/m3	190	208	109	70-130	
n-Heptane	ug/m3	44.6	51.4	115	70-137	
n-Hexane	ug/m3	38	43.7	115	70-135	
Naphthalene	ug/m3	65.2	69.0	106	67-132	
o-Xylene	ug/m3	47.6	58.5	123	70-141	
Propylene	ug/m3	18.9	19.7	104	70-130	
Styrene	ug/m3	47	52.6	112	70-142	
Tetrachloroethene	ug/m3	73.4	85.3	116	70-130	
Tetrahydrofuran	ug/m3	32.1	38.9	121	70-136	
Toluene	ug/m3	41.6	50.5	121	70-138	
trans-1,2-Dichloroethene	ug/m3	43.6	50.8	116	70-130	
trans-1,3-Dichloropropene	ug/m3	50.5	54.2	107	70-145	
Trichloroethene	ug/m3	58.4	67.6	116	70-130	
Trichlorofluoromethane	ug/m3	62	65.5	106	69-135	
Vinyl acetate	ug/m3	46.4	58.2	126	70-146	
Vinyl chloride	ug/m3	28	32.1	115	70-137	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Klismith Accounting

Pace Project No.: 10581523

Date: 10/11/2021 02:06 PM

SAMPLE DUPLICATE: 4132372		10591502002	Dup		Mov	
Parameter	Units	10581503002 Result	Dup Result	RPD	Max RPD	Qualifiers
1,1,1-Trichloroethane	ug/m3	<0.28	<0.28		25	
1,1,2,2-Tetrachloroethane	ug/m3	< 0.55	<0.55		25	
1,1,2-Trichloroethane	ug/m3	<0.29	< 0.29		25	
1,1,2-Trichlorotrifluoroethane	ug/m3	0.55J	0.68J		25	
1,1-Dichloroethane	ug/m3	<0.25	< 0.25		25	
1,1-Dichloroethene	ug/m3	<0.21	<0.21		25	
1,2,4-Trichlorobenzene	ug/m3	<7.3	<7.3		25	
1,2,4-Trimethylbenzene	ug/m3	0.90J	0.92J		25	
1,2-Dibromoethane (EDB)	ug/m3	< 0.45	< 0.45		25	
1,2-Dichlorobenzene	ug/m3	<0.60	< 0.60		25	
1,2-Dichloroethane	ug/m3	<0.29	< 0.29		25	
1,2-Dichloropropane	ug/m3	< 0.40	< 0.40		25	
1,3,5-Trimethylbenzene	ug/m3	< 0.43	0.44J		25	
1,3-Butadiene	ug/m3	<0.18	<0.18		25	
1,3-Dichlorobenzene	ug/m3	< 0.76	< 0.76		25	
1,4-Dichlorobenzene	ug/m3	<1.3	<1.3		25	
2-Butanone (MEK)	ug/m3	6.4	6.9	7	25	
2-Hexanone	ug/m3	<0.66	< 0.66		25	
2-Propanol	ug/m3	384	401	4	25	
4-Ethyltoluene	ug/m3	< 0.70	< 0.70		25	
4-Methyl-2-pentanone (MIBK)	ug/m3	0.55J	0.56J		25	
Acetone	ug/m3	57.9	58.2	0	25	
Benzene	ug/m3	0.96	1.0	5	25	
Benzyl chloride	ug/m3	<1.3	<1.3		25	
Bromodichloromethane	ug/m3	< 0.35	< 0.35		25	
Bromoform	ug/m3	<2.4	<2.4		25	
Bromomethane	ug/m3	<0.22	< 0.22		25	
Carbon disulfide	ug/m3	<0.19	< 0.19		25	
Carbon tetrachloride	ug/m3	< 0.42	< 0.42		25	
Chlorobenzene	ug/m3	<0.23	< 0.23		25	
Chloroethane	ug/m3	< 0.33	< 0.33		25	
Chloroform	ug/m3	<0.27	< 0.27		25	
Chloromethane	ug/m3	0.94	0.93	1	25	
cis-1,2-Dichloroethene	ug/m3	<0.29	< 0.29		25	
cis-1,3-Dichloropropene	ug/m3	<0.38	< 0.38		25	
Cyclohexane	ug/m3	2.6J	2.7		25	
Dibromochloromethane	ug/m3	<0.77	< 0.77		25	
Dichlorodifluoromethane	ug/m3	2.7	2.9	8	25	
Dichlorotetrafluoroethane	ug/m3	< 0.30	< 0.30		25	
Ethanol	ug/m3	187	192	3	25	
Ethyl acetate	ug/m3	18.1	18.2	0	25	
Ethylbenzene	ug/m3	0.86J	0.93J		25	
Hexachloro-1,3-butadiene	ug/m3	<1.8	<1.8		25	
m&p-Xylene	ug/m3	3.0	3.1	4	25	
Methyl-tert-butyl ether	ug/m3	<0.19	<0.19		25	
Methylene Chloride	ug/m3	7.4	7.7	4	25	
n-Heptane	ug/m3	3.5	3.6	2	25	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Klismith Accounting

Pace Project No.: 10581523

Date: 10/11/2021 02:06 PM

SAMPLE DUPLICATE: 4132372						
		10581503002	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
n-Hexane	ug/m3	3.1	3.3	5	25	
Naphthalene	ug/m3	<3.2	<3.2		25	
o-Xylene	ug/m3	1.0J	1.1J		25	
Propylene	ug/m3	3.5	< 0.19		25	
Styrene	ug/m3	0.91J	0.95J		25	
Tetrachloroethene	ug/m3	1.0	1.1	3	25	
Tetrahydrofuran	ug/m3	1.6	1.6	1	25	
Toluene	ug/m3	6.7	6.7	1	25	
trans-1,2-Dichloroethene	ug/m3	1.1J	1.2J		25	
trans-1,3-Dichloropropene	ug/m3	<0.81	<0.81		25	
Trichloroethene	ug/m3	<0.29	< 0.29		25	
Trichlorofluoromethane	ug/m3	1.5J	1.6J		25	
Vinyl acetate	ug/m3	<0.31	< 0.31		25	
Vinyl chloride	ug/m3	<0.13	< 0.13		25	

SAMPLE DUPLICATE: 4132373						
		10581523001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,1,1-Trichloroethane	ug/m3	0.38J	0.40J		25	
1,1,2,2-Tetrachloroethane	ug/m3	<0.54	<0.54		25	
1,1,2-Trichloroethane	ug/m3	<0.28	<0.28		25	
1,1,2-Trichlorotrifluoroethane	ug/m3	0.95J	0.93J		25	
1,1-Dichloroethane	ug/m3	<0.24	<0.24		25	
1,1-Dichloroethene	ug/m3	<0.20	<0.20		25	
1,2,4-Trichlorobenzene	ug/m3	<7.0	<7.0		25	
1,2,4-Trimethylbenzene	ug/m3	3.7	3.8	1	25	
1,2-Dibromoethane (EDB)	ug/m3	< 0.43	< 0.43		25	
1,2-Dichlorobenzene	ug/m3	0.84J	0.84J		25	
1,2-Dichloroethane	ug/m3	<0.28	<0.28		25	
1,2-Dichloropropane	ug/m3	< 0.39	< 0.39		25	
1,3,5-Trimethylbenzene	ug/m3	1.2J	1.2J		25	
1,3-Butadiene	ug/m3	<0.17	< 0.17		25	
1,3-Dichlorobenzene	ug/m3	2.0J	2.1J		25	
1,4-Dichlorobenzene	ug/m3	1.5J	1.6J		25	
2-Butanone (MEK)	ug/m3	6.6	6.5	2	25	
2-Hexanone	ug/m3	1.6J	1.7J		25	
2-Propanol	ug/m3	12.0	10.5	13	25	
4-Ethyltoluene	ug/m3	1.4J	1.4J		25	
4-Methyl-2-pentanone (MIBK)	ug/m3	1.4J	1.6J		25	
Acetone	ug/m3	36.5	37.3	2	25	
Benzene	ug/m3	0.34J	0.37J		25	
Benzyl chloride	ug/m3	<1.3	<1.3		25	
Bromodichloromethane	ug/m3	< 0.34	< 0.34		25	
Bromoform	ug/m3	<2.3	<2.3		25	
Bromomethane	ug/m3	<0.22	<0.22		25	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Klismith Accounting

Pace Project No.: 10581523

Date: 10/11/2021 02:06 PM

SAMPLE DUPLICATE: 4132373						
		10581523001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Carbon disulfide	ug/m3	<0.19	<0.19		25	
Carbon tetrachloride	ug/m3	0.46J	0.46J		25	
Chlorobenzene	ug/m3	<0.22	< 0.22		25	
Chloroethane	ug/m3	< 0.32	< 0.32		25	
Chloroform	ug/m3	<0.26	< 0.26		25	
Chloromethane	ug/m3	<0.12	< 0.12		25	
cis-1,2-Dichloroethene	ug/m3	<0.28	<0.28		25	
cis-1,3-Dichloropropene	ug/m3	< 0.37	< 0.37		25	
Cyclohexane	ug/m3	0.38J	0.39J		25	
Dibromochloromethane	ug/m3	< 0.74	< 0.74		25	
Dichlorodifluoromethane	ug/m3	2.8	2.9	2	25	
Dichlorotetrafluoroethane	ug/m3	<0.29	< 0.29		25	
Ethanol	ug/m3	68.3	72.8	6	25	
Ethyl acetate	ug/m3	<0.19	< 0.19		25	
Ethylbenzene	ug/m3	2.9	2.9	1	25	
Hexachloro-1,3-butadiene	ug/m3	<1.8	<1.8		25	
m&p-Xylene	ug/m3	10.4	10.7	3	25	
Methyl-tert-butyl ether	ug/m3	<0.18	<0.18		25	
Methylene Chloride	ug/m3	<0.85	<0.85		25	
n-Heptane	ug/m3	0.49J	0.64J		25	
n-Hexane	ug/m3	1.3	0.34J		25	
Naphthalene	ug/m3	3.7J	3.8J		25	
o-Xylene	ug/m3	5.3	5.5	3	25	
Propylene	ug/m3	0.24J	< 0.19		25	
Styrene	ug/m3	10.0	10.3	2	25	
Tetrachloroethene	ug/m3	39.6	39.6	0	25	
Tetrahydrofuran	ug/m3	0.81J	0.87		25	
Toluene	ug/m3	130	134	3	25	
trans-1,2-Dichloroethene	ug/m3	<0.24	<0.24		25	
trans-1,3-Dichloropropene	ug/m3	<0.78	<0.78		25	
Trichloroethene	ug/m3	<0.28	<0.28		25	
Trichlorofluoromethane	ug/m3	1.5J	1.5J		25	
Vinyl acetate	ug/m3	< 0.30	< 0.30		25	
Vinyl chloride	ug/m3	<0.12	< 0.12		25	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Klismith Accounting

Pace Project No.: 10581523

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor, percent moisture, initial weight and final volume.

LOQ - Limit of Quantitation adjusted for dilution factor, percent moisture, initial weight and final volume.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Date: 10/11/2021 02:06 PM

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Klismith Accounting

Pace Project No.: 10581523

Date: 10/11/2021 02:06 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10581523001	SSV 201	TO-15	775725		
10581523002	SSV 202	TO-15	775725		

WO#:10581523

AIR: CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

-	ired Client Information:	Section B Required Project Infor					Information:											5	189	9	Page:	of	1
15	any: und County Environmental si mill st.	Report To: Copy To:	nts	sen		Attention Compar Address	n: Pete + ny Name:	trnits	Bav	ironi	non	tal								Emissio			
Email Phone	te. armsenlescod county envices	Project Name:	th	Acc	cunting	Pace Qu	uote Referer		ер.								Locatio		120	Dry Clean I	Reportin		
ITEM#	'Section D Required Client Information AIR SAMPLE ID Sample IDs MUST BE UNIQUE	Project Number: Valid Media Codes MEDIA Tedlar Bag TB 1 Liter Summa Can 6 Liter Summa Can 6 Liter Summa Can Hush Volume Puff Hyp Other PM10	MEDIA CODE	PID Reading (Client only)	COMPOSITE STAR		ECTED	POSITE - IGRAB	Canister Pressure (Initial Field - in Hg)	Canister Pressure (Final Field - in Hg)		umn Can umb			Flow Contro lumbe	ol	Method:		111	N	Other_	7	
	and the same				DATE	JIME		TIME							. 6		100	12/2/	\$\\\ \o \\\ \o \\ \o \\\ \o \\ \o \\\ \o \\ \o \\\ \o \\ \o \\\ \o \\ \o \\\ \o \o	\&\&\		Pace La	b ID
1 2	SSV 201 SSV 202			0.4	9/28/24		912821 1012921			-2					18				X	-		001	
3	55V 20-Z		6L	-0.S	765/21	1-95	712921	1-40	-30	- 2	1	0 3	6	5	1 3	8		++	^	-		10%	
4																	111						
5																1							
6																							
7													T			T							
8																							
9																							
10																							
11			1													П							
12													17							77	_		
	nents:	R	ELING	UISH	HED BY / AF	FFILIAT	TION	DATE	TIÁ	ΛE	ACC	EPTE	D BY	/ AF	FILIAT	ION	DA	TE	TIME	SAN	IPLE C	ONDITIO	ONS
			10)	(1)	Out	to		9/21	4:	50	1	1	-	20			104.	21	1100	the	Q	(2)	3
		0.17	10	M	7 0-0			110	-		1		1	1100	to		1.			1"5	N.	N.	N.
																					N.	N.	N.
																=					× N	Y N	Y N
	ODICINA						PRINT Name	R NAME A	Lars		moh									Temp in °C	Received on Y	Custody Y	Samples Intact Y
	ORIGINA	L					SIGNATURE	of SAMPLER:	Jan	1	mil	h		DATE	973	M/00	21			Ten	Rec	Seale	Samp

Pace Analytical*

Document Name:

Sample Condition Upon Receipt (SCUR) - Air

Document No.: ENV-FRM-MIN4-0113 Rev.00 Document Revised: 24Mar2020

Page 1 of 1 Pace Analytical Services -

Minneapolis

Air Sample Condition Upon Receipt	Client Name		H Envi	ro Pro	ject#:	MO	#:10	5815	523	
Courier:	☐Fed Ex ☐Pace 9753 344	UPS SpeeDee	USPS	Client		PM: K		Due Da	te: 10/11	/21
Custody Seal on Cool	DIT ALL N		ZNo	Seals Intact?	Yes	- No				-
	Bubble Wrap	Bubble B	'		Tin	Can Other		Temp	Blank rec:	Yes No
Temp. (TO17 and TO13 s Temp should be above f Type of ice Received	reezing to 6°C	Correction Fact	V	ملر :(°C): 7		ite & Initials of Pe	3713041751	neter Used: ng Contents:	☐G87A9170 ☐G87A9155	100842
								Comments:		
Chain of Custody Presen						1.				
Chain of Custody Filled C						2.				
Chain of Custody Relinqu					P-1	3.				
Sampler Name and/or Si		?			□N/A	4.				
Samples Arrived within I						5.				
Short Hold Time Analysi Rush Turn Around Time						6. 7.				
Sufficient Volume?	nequesteur					8.				
Correct Containers Used (Tediar bags not accordance TO-15 or APH) -Pace Containers Used	eptable conta	iner for TO-1	4,			9.				
Containers Intact? (visual inspection/no Media: Air Can	o leaks when p		TDT F	es No		10.	vidually Certi	fied Cans Y	Alist which	ch samples)
is sufficient information the COC?	available to reco	oncile samples t	•	es 🔲 No		12.				
Do cans need to be press (DO NOT PRESSUR		TM 1946!!!)	4	es No		13.				
		Gauge #] 10AIR26	AIR34		DAIR35 🔲	1097			-
	Can	isters					Ca	nisters		
Sample Number	Can ID	Flow	Initial Pressure	Final Pressure	Sam	ple Number	Can ID	Flow Controller	Initial Pressure	Final Pressure
201	0668	1185	-7	5				1		
202	1036	3138	-2	5						
				-						
			-							
	+									
	1 -			4				-		
CLIENT NOTIFICATION Person C Comments/Re	ontacted:				Dat	e/Time:	Field Dat	a Required?	□Yes □N	lo
Project Manager Revi	ew:	sheer (Mille	y		Date:	10/5/21			

October 14, 2021

Pete Arntsen SAND COUNTY ENVIRONMENTAL, INC. 151 Mill Street Amherst, WI 54406

RE: Project: KLISMITH ACCOUNTING

Pace Project No.: 40234687

Dear Pete Arntsen:

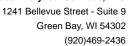
Enclosed are the analytical results for sample(s) received by the laboratory on October 07, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Green Bay

If you have any questions concerning this report, please feel free to contact me.

Sincerely,


Dan Milewsky dan.milewsky@pacelabs.com (920)469-2436

Dan Mileny

Project Manager

Enclosures

CERTIFICATIONS

Project: KLISMITH ACCOUNTING

Pace Project No.: 40234687

Pace Analytical Services Green Bay

North Dakota Certification #: R-150

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 Virginia VELAP ID: 460263

South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157 Federal Fish & Wildlife Permit #: LE51774A-0

(920)469-2436

SAMPLE SUMMARY

Project: KLISMITH ACCOUNTING

Pace Project No.: 40234687

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40234687001	MW-1	Water	10/04/21 17:45	10/07/21 08:50
40234687002	PZ-1	Water	10/04/21 17:05	10/07/21 08:50
40234687003	MW-700	Water	10/01/21 10:00	10/07/21 08:50
40234687004	PZ-900	Water	10/01/21 10:15	10/07/21 08:50
40234687005	VILLAGE WELL 1	Water	10/01/21 10:30	10/07/21 08:50
40234687006	VILLAGE WELL 2	Water	10/01/21 10:40	10/07/21 08:50
40234687007	TRIP BLANK	Water	10/01/21 00:00	10/07/21 08:50

SAMPLE ANALYTE COUNT

Project: KLISMITH ACCOUNTING

Pace Project No.: 40234687

Lab ID	Sample ID	Method	Analysts	Analytes Reported
40234687001	MW-1	EPA 8260	LAP	63
40234687002	PZ-1	EPA 8260	LAP	63
40234687003	MW-700	EPA 8260	LAP	63
40234687004	PZ-900	EPA 8260	LAP	63
40234687005	VILLAGE WELL 1	EPA 8260	LAP	63
40234687006	VILLAGE WELL 2	EPA 8260	LAP	63
40234687007	TRIP BLANK	EPA 8260	LAP	63

PASI-G = Pace Analytical Services - Green Bay

(920)469-2436

SUMMARY OF DETECTION

Project: KLISMITH ACCOUNTING

Pace Project No.: 40234687

Lab Sample ID Method	Client Sample ID Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
 40234687001	MW-1			<u> </u>	·	
EPA 8260	Tetrachloroethene	1.0	ug/L	1.0	10/12/21 19:52	
40234687003	MW-700					
EPA 8260	1,2,4-Trimethylbenzene	1.0	ug/L	1.0	10/12/21 20:31	
EPA 8260	Ethylbenzene	2.8	ug/L	1.0	10/12/21 20:31	
EPA 8260	Isopropylbenzene (Cumene)	1.1J	ug/L	5.0	10/12/21 20:31	
EPA 8260	n-Propylbenzene	1.0	ug/L	1.0	10/12/21 20:31	
EPA 8260	sec-Butylbenzene	0.47J	ug/L	1.0	10/12/21 20:31	

Project: KLISMITH ACCOUNTING

Pace Project No.: 40234687

Date: 10/14/2021 05:13 PM

Sample: MW-1 Lab ID: 40234687001 Collected: 10/04/21 17:45 Received: 10/07/21 08:50 Matrix: Water

Campie. Mill	Lub ID.	40204007007	Concoto	u. 10/04/21	17.40	reconved.	707721 00.00	atrix. Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA 8	3260						
	Pace Anal	ytical Services	- Green Ba	у					
1,1,1,2-Tetrachloroethane	<0.36	ug/L	1.0	0.36	1		10/12/21 19:52	630-20-6	
1,1,1-Trichloroethane	< 0.30	ug/L	1.0	0.30	1		10/12/21 19:52	71-55-6	
1,1,2,2-Tetrachloroethane	<0.38	ug/L	1.0	0.38	1		10/12/21 19:52	79-34-5	
1,1,2-Trichloroethane	< 0.34	ug/L	5.0	0.34	1		10/12/21 19:52	79-00-5	
1,1-Dichloroethane	< 0.30	ug/L	1.0	0.30	1		10/12/21 19:52	75-34-3	
1,1-Dichloroethene	<0.58	ug/L	1.0	0.58	1		10/12/21 19:52	75-35-4	
1,1-Dichloropropene	<0.41	ug/L	1.0	0.41	1		10/12/21 19:52	563-58-6	
1,2,3-Trichlorobenzene	<1.0	ug/L	5.0	1.0	1		10/12/21 19:52		
1,2,3-Trichloropropane	<0.56	ug/L	5.0	0.56	1		10/12/21 19:52		
1,2,4-Trichlorobenzene	<0.95	ug/L	5.0	0.95	1		10/12/21 19:52		
1,2,4-Trimethylbenzene	<0.45	ug/L	1.0	0.45	1		10/12/21 19:52		
1,2-Dibromo-3-chloropropane	<2.4	ug/L	5.0	2.4	1		10/12/21 19:52		
1,2-Dibromoethane (EDB)	<0.31	ug/L	1.0	0.31	1		10/12/21 19:52		
1,2-Dichlorobenzene	<0.33	ug/L	1.0	0.33	1		10/12/21 19:52		
1,2-Dichloroethane	<0.29	ug/L ug/L	1.0	0.29	1		10/12/21 19:52		
1,2-Dichloropropane	<0.45	ug/L ug/L	1.0	0.45	1		10/12/21 19:52		
1,3,5-Trimethylbenzene	<0.36	ug/L ug/L	1.0	0.43	1		10/12/21 19:52		
1,3-Dichlorobenzene	<0.35	ug/L ug/L	1.0	0.35	1		10/12/21 19:52		
1,3-Dichloropropane	<0.30	ug/L ug/L	1.0	0.30	1		10/12/21 19:52		
· ·		-	1.0	0.30	1		10/12/21 19:52		
1,4-Dichlorobenzene	<0.89	ug/L			1				
2,2-Dichloropropane	<4.2	ug/L	5.0	4.2			10/12/21 19:52		
2-Chlorotoluene	<0.89	ug/L	5.0	0.89 0.89	1		10/12/21 19:52		
4-Chlorotoluene	<0.89	ug/L	5.0		1		10/12/21 19:52		
Benzene	<0.30	ug/L	1.0	0.30	1		10/12/21 19:52		
Bromobenzene	<0.36	ug/L	1.0	0.36	1		10/12/21 19:52		
Bromochloromethane	<0.36	ug/L	5.0	0.36	1		10/12/21 19:52		
Bromodichloromethane	<0.42	ug/L	1.0	0.42	1		10/12/21 19:52		
Bromoform	<3.8	ug/L	5.0	3.8	1		10/12/21 19:52		
Bromomethane	<1.2	ug/L	5.0	1.2	1		10/12/21 19:52		
Carbon tetrachloride	<0.37	ug/L	1.0	0.37	1		10/12/21 19:52		
Chlorobenzene	<0.86	ug/L	1.0	0.86	1		10/12/21 19:52		
Chloroethane	<1.4	ug/L	5.0	1.4	1		10/12/21 19:52		
Chloroform	<1.2	ug/L	5.0	1.2	1		10/12/21 19:52		
Chloromethane	<1.6	ug/L	5.0	1.6	1		10/12/21 19:52		
Dibromochloromethane	<2.6	ug/L	5.0	2.6	1		10/12/21 19:52		
Dibromomethane	<0.99	ug/L	5.0	0.99	1		10/12/21 19:52		
Dichlorodifluoromethane	<0.46	ug/L	5.0	0.46	1		10/12/21 19:52		
Diisopropyl ether	<1.1	ug/L	5.0	1.1	1		10/12/21 19:52		
Ethylbenzene	<0.33	ug/L	1.0	0.33	1		10/12/21 19:52		
Hexachloro-1,3-butadiene	<2.7	ug/L	5.0	2.7	1		10/12/21 19:52	87-68-3	
Isopropylbenzene (Cumene)	<1.0	ug/L	5.0	1.0	1		10/12/21 19:52	98-82-8	
Methyl-tert-butyl ether	<1.1	ug/L	5.0	1.1	1		10/12/21 19:52	1634-04-4	
Methylene Chloride	<0.32	ug/L	5.0	0.32	1		10/12/21 19:52	75-09-2	
Naphthalene	<1.1	ug/L	5.0	1.1	1		10/12/21 19:52	91-20-3	
Styrene	< 0.36	ug/L	1.0	0.36	1		10/12/21 19:52	100-42-5	

Project: KLISMITH ACCOUNTING

Pace Project No.: 40234687

Date: 10/14/2021 05:13 PM

Sample: MW-1 Lab ID: 40234687001 Collected: 10/04/21 17:45 Received: 10/07/21 08:50 Matrix: Water

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA	A 8260						
	Pace Anal	ytical Service	es - Green Ba	у					
Tetrachloroethene	1.0	ug/L	1.0	0.41	1		10/12/21 19:52	127-18-4	
Toluene	<0.29	ug/L	1.0	0.29	1		10/12/21 19:52	108-88-3	
Trichloroethene	<0.32	ug/L	1.0	0.32	1		10/12/21 19:52	79-01-6	
Trichlorofluoromethane	<0.42	ug/L	1.0	0.42	1		10/12/21 19:52	75-69-4	
Vinyl chloride	<0.17	ug/L	1.0	0.17	1		10/12/21 19:52	75-01-4	
Xylene (Total)	<1.0	ug/L	3.0	1.0	1		10/12/21 19:52	1330-20-7	
cis-1,2-Dichloroethene	<0.47	ug/L	1.0	0.47	1		10/12/21 19:52	156-59-2	
cis-1,3-Dichloropropene	<0.36	ug/L	1.0	0.36	1		10/12/21 19:52	10061-01-5	
n-Butylbenzene	<0.86	ug/L	1.0	0.86	1		10/12/21 19:52	104-51-8	
n-Propylbenzene	< 0.35	ug/L	1.0	0.35	1		10/12/21 19:52	103-65-1	
p-Isopropyltoluene	<1.0	ug/L	5.0	1.0	1		10/12/21 19:52	99-87-6	
sec-Butylbenzene	<0.42	ug/L	1.0	0.42	1		10/12/21 19:52	135-98-8	
tert-Butylbenzene	<0.59	ug/L	1.0	0.59	1		10/12/21 19:52	98-06-6	
trans-1,2-Dichloroethene	<0.53	ug/L	1.0	0.53	1		10/12/21 19:52	156-60-5	
trans-1,3-Dichloropropene	<3.5	ug/L	5.0	3.5	1		10/12/21 19:52	10061-02-6	
Surrogates									
4-Bromofluorobenzene (S)	101	%	70-130		1		10/12/21 19:52	460-00-4	
1,2-Dichlorobenzene-d4 (S)	105	%	70-130		1		10/12/21 19:52	2199-69-1	
Toluene-d8 (S)	99	%	70-130		1		10/12/21 19:52	2037-26-5	

Project: KLISMITH ACCOUNTING

Pace Project No.: 40234687

Date: 10/14/2021 05:13 PM

Sample: PZ-1 Lab ID: 40234687002 Collected: 10/04/21 17:05 Received: 10/07/21 08:50 Matrix: Water

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA	A 8260						
	Pace Anal	ytical Service	es - Green Ba	y					
1,1,1,2-Tetrachloroethane	<0.36	ug/L	1.0	0.36	1		10/12/21 20:11	630-20-6	
1,1,1-Trichloroethane	<0.30	ug/L	1.0	0.30	1		10/12/21 20:11		
1,1,2,2-Tetrachloroethane	<0.38	ug/L	1.0	0.38	1		10/12/21 20:11		
1,1,2-Trichloroethane	<0.34	ug/L	5.0	0.34	1		10/12/21 20:11		
1,1-Dichloroethane	<0.30	ug/L	1.0	0.30	1		10/12/21 20:11		
1,1-Dichloroethene	<0.58	ug/L	1.0	0.58	1		10/12/21 20:11		
1,1-Dichloropropene	<0.41	ug/L	1.0	0.41	1		10/12/21 20:11		
1,2,3-Trichlorobenzene	<1.0	ug/L	5.0	1.0	1		10/12/21 20:11		
1,2,3-Trichloropropane	<0.56	ug/L	5.0 5.0	0.56	1		10/12/21 20:11		
· ·	<0.95	-	5.0 5.0	0.56	1		10/12/21 20:11		
1,2,4-Trichlorobenzene		ug/L			1				
1,2,4-Trimethylbenzene	<0.45	ug/L	1.0	0.45			10/12/21 20:11		
1,2-Dibromo-3-chloropropane	<2.4	ug/L	5.0	2.4	1		10/12/21 20:11		
1,2-Dibromoethane (EDB)	<0.31	ug/L	1.0	0.31	1		10/12/21 20:11		
1,2-Dichlorobenzene	<0.33	ug/L	1.0	0.33	1		10/12/21 20:11		
1,2-Dichloroethane	<0.29	ug/L	1.0	0.29	1		10/12/21 20:11		
1,2-Dichloropropane	<0.45	ug/L	1.0	0.45	1		10/12/21 20:11		
1,3,5-Trimethylbenzene	<0.36	ug/L	1.0	0.36	1		10/12/21 20:11		
1,3-Dichlorobenzene	<0.35	ug/L	1.0	0.35	1		10/12/21 20:11		
1,3-Dichloropropane	<0.30	ug/L	1.0	0.30	1		10/12/21 20:11	142-28-9	
1,4-Dichlorobenzene	<0.89	ug/L	1.0	0.89	1		10/12/21 20:11	106-46-7	
2,2-Dichloropropane	<4.2	ug/L	5.0	4.2	1		10/12/21 20:11	594-20-7	
2-Chlorotoluene	<0.89	ug/L	5.0	0.89	1		10/12/21 20:11	95-49-8	
4-Chlorotoluene	<0.89	ug/L	5.0	0.89	1		10/12/21 20:11	106-43-4	
Benzene	< 0.30	ug/L	1.0	0.30	1		10/12/21 20:11	71-43-2	
Bromobenzene	<0.36	ug/L	1.0	0.36	1		10/12/21 20:11	108-86-1	
Bromochloromethane	< 0.36	ug/L	5.0	0.36	1		10/12/21 20:11	74-97-5	
Bromodichloromethane	< 0.42	ug/L	1.0	0.42	1		10/12/21 20:11	75-27-4	
Bromoform	<3.8	ug/L	5.0	3.8	1		10/12/21 20:11	75-25-2	
Bromomethane	<1.2	ug/L	5.0	1.2	1		10/12/21 20:11	74-83-9	
Carbon tetrachloride	< 0.37	ug/L	1.0	0.37	1		10/12/21 20:11		
Chlorobenzene	<0.86	ug/L	1.0	0.86	1		10/12/21 20:11		
Chloroethane	<1.4	ug/L	5.0	1.4	1		10/12/21 20:11		
Chloroform	<1.2	ug/L	5.0	1.2	1		10/12/21 20:11		
Chloromethane	<1.6	ug/L	5.0	1.6	1		10/12/21 20:11		
Dibromochloromethane	<2.6	ug/L	5.0	2.6	1		10/12/21 20:11		
Dibromomethane	<0.99	ug/L	5.0	0.99	1		10/12/21 20:11		
Dichlorodifluoromethane	<0.46	ug/L ug/L	5.0	0.99	1		10/12/21 20:11		
	<0.40 <1.1	ug/L ug/L		1.1	1		10/12/21 20:11		
Diisopropyl ether		-	5.0		1				
Ethylbenzene	<0.33	ug/L	1.0	0.33			10/12/21 20:11		
Hexachloro-1,3-butadiene	<2.7	ug/L	5.0	2.7	1		10/12/21 20:11		
Isopropylbenzene (Cumene)	<1.0	ug/L	5.0	1.0	1		10/12/21 20:11		
Methyl-tert-butyl ether	<1.1	ug/L	5.0	1.1	1		10/12/21 20:11		
Methylene Chloride	<0.32	ug/L	5.0	0.32	1		10/12/21 20:11		
Naphthalene	<1.1	ug/L	5.0	1.1	1		10/12/21 20:11		
Styrene	<0.36	ug/L	1.0	0.36	1		10/12/21 20:11	100-42-5	

Project: KLISMITH ACCOUNTING

Pace Project No.: 40234687

Date: 10/14/2021 05:13 PM

Sample: PZ-1 Lab ID: 40234687002 Collected: 10/04/21 17:05 Received: 10/07/21 08:50 Matrix: Water

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA	A 8260						
	Pace Analy	ytical Service	es - Green Ba	у					
Tetrachloroethene	<0.41	ug/L	1.0	0.41	1		10/12/21 20:11	127-18-4	
Toluene	<0.29	ug/L	1.0	0.29	1		10/12/21 20:11	108-88-3	
Trichloroethene	<0.32	ug/L	1.0	0.32	1		10/12/21 20:11	79-01-6	
Trichlorofluoromethane	<0.42	ug/L	1.0	0.42	1		10/12/21 20:11	75-69-4	
Vinyl chloride	<0.17	ug/L	1.0	0.17	1		10/12/21 20:11	75-01-4	
Xylene (Total)	<1.0	ug/L	3.0	1.0	1		10/12/21 20:11	1330-20-7	
cis-1,2-Dichloroethene	<0.47	ug/L	1.0	0.47	1		10/12/21 20:11	156-59-2	
cis-1,3-Dichloropropene	<0.36	ug/L	1.0	0.36	1		10/12/21 20:11	10061-01-5	
n-Butylbenzene	<0.86	ug/L	1.0	0.86	1		10/12/21 20:11	104-51-8	
n-Propylbenzene	<0.35	ug/L	1.0	0.35	1		10/12/21 20:11	103-65-1	
p-Isopropyltoluene	<1.0	ug/L	5.0	1.0	1		10/12/21 20:11	99-87-6	
sec-Butylbenzene	<0.42	ug/L	1.0	0.42	1		10/12/21 20:11	135-98-8	
tert-Butylbenzene	<0.59	ug/L	1.0	0.59	1		10/12/21 20:11	98-06-6	
trans-1,2-Dichloroethene	<0.53	ug/L	1.0	0.53	1		10/12/21 20:11	156-60-5	
trans-1,3-Dichloropropene	<3.5	ug/L	5.0	3.5	1		10/12/21 20:11	10061-02-6	
Surrogates									
4-Bromofluorobenzene (S)	101	%	70-130		1		10/12/21 20:11	460-00-4	
1,2-Dichlorobenzene-d4 (S)	104	%	70-130		1		10/12/21 20:11	2199-69-1	
Toluene-d8 (S)	100	%	70-130		1		10/12/21 20:11	2037-26-5	

Project: KLISMITH ACCOUNTING

Pace Project No.: 40234687

Date: 10/14/2021 05:13 PM

Sample: MW-700 Lab ID: 40234687003 Collected: 10/01/21 10:00 Received: 10/07/21 08:50 Matrix: Water

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV	Analytical	Method: EPA	A 8260						
	Pace Anal	ytical Service	es - Green Ba	у					
1,1,1,2-Tetrachloroethane	<0.36	ug/L	1.0	0.36	1		10/12/21 20:31	630-20-6	
1,1,1-Trichloroethane	<0.30	ug/L	1.0	0.30	1		10/12/21 20:31		
1,1,2,2-Tetrachloroethane	<0.38	ug/L	1.0	0.38	1		10/12/21 20:31		
1,1,2-Trichloroethane	<0.34	ug/L	5.0	0.34	1		10/12/21 20:31		
I,1-Dichloroethane	<0.30	ug/L	1.0	0.30	1		10/12/21 20:31		
1,1-Dichloroethene	<0.58	ug/L	1.0	0.58	1		10/12/21 20:31		
I,1-Dichloropropene	<0.41	ug/L	1.0	0.41	1		10/12/21 20:31		
1,2,3-Trichlorobenzene	<1.0	ug/L	5.0	1.0	1		10/12/21 20:31		
,2,3-Trichloropropane	<0.56	ug/L	5.0	0.56	1		10/12/21 20:31		
,2,4-Trichlorobenzene	<0.95	ug/L	5.0	0.95	1		10/12/21 20:31		
		-			1				
,2,4-Trimethylbenzene	1.0	ug/L	1.0	0.45			10/12/21 20:31		
,2-Dibromo-3-chloropropane	<2.4	ug/L	5.0	2.4	1		10/12/21 20:31		
,2-Dibromoethane (EDB)	<0.31	ug/L	1.0	0.31	1		10/12/21 20:31		
,2-Dichlorobenzene	<0.33	ug/L	1.0	0.33	1		10/12/21 20:31		
,2-Dichloroethane	<0.29	ug/L	1.0	0.29	1		10/12/21 20:31		
,2-Dichloropropane	<0.45	ug/L	1.0	0.45	1		10/12/21 20:31		
,3,5-Trimethylbenzene	<0.36	ug/L	1.0	0.36	1		10/12/21 20:31		
,3-Dichlorobenzene	<0.35	ug/L	1.0	0.35	1		10/12/21 20:31		
,3-Dichloropropane	<0.30	ug/L	1.0	0.30	1		10/12/21 20:31	142-28-9	
,4-Dichlorobenzene	<0.89	ug/L	1.0	0.89	1		10/12/21 20:31	106-46-7	
,2-Dichloropropane	<4.2	ug/L	5.0	4.2	1		10/12/21 20:31	594-20-7	
-Chlorotoluene	<0.89	ug/L	5.0	0.89	1		10/12/21 20:31	95-49-8	
-Chlorotoluene	<0.89	ug/L	5.0	0.89	1		10/12/21 20:31	106-43-4	
Benzene	< 0.30	ug/L	1.0	0.30	1		10/12/21 20:31	71-43-2	
Bromobenzene	< 0.36	ug/L	1.0	0.36	1		10/12/21 20:31	108-86-1	
Bromochloromethane	< 0.36	ug/L	5.0	0.36	1		10/12/21 20:31	74-97-5	
Bromodichloromethane	<0.42	ug/L	1.0	0.42	1		10/12/21 20:31	75-27-4	
Bromoform	<3.8	ug/L	5.0	3.8	1		10/12/21 20:31	75-25-2	
Bromomethane	<1.2	ug/L	5.0	1.2	1		10/12/21 20:31		
Carbon tetrachloride	<0.37	ug/L	1.0	0.37	1		10/12/21 20:31		
Chlorobenzene	<0.86	ug/L	1.0	0.86	1		10/12/21 20:31		
Chloroethane	<1.4	ug/L	5.0	1.4	1		10/12/21 20:31		
Chloroform	<1.2	ug/L	5.0	1.2	1		10/12/21 20:31		
Chloromethane	<1.6	ug/L	5.0	1.6	1		10/12/21 20:31		
Dibromochloromethane	<2.6	ug/L	5.0	2.6	1		10/12/21 20:31		
Dibromomethane	<0.99			0.99	1				
		ug/L	5.0				10/12/21 20:31		
Dichlorodifluoromethane	<0.46	ug/L	5.0	0.46	1		10/12/21 20:31		
Diisopropyl ether	<1.1	ug/L	5.0	1.1	1		10/12/21 20:31		
thylbenzene	2.8	ug/L	1.0	0.33	1		10/12/21 20:31		
Hexachloro-1,3-butadiene	<2.7	ug/L	5.0	2.7	1		10/12/21 20:31		
sopropylbenzene (Cumene)	1.1J	ug/L	5.0	1.0	1		10/12/21 20:31		
Methyl-tert-butyl ether	<1.1	ug/L	5.0	1.1	1		10/12/21 20:31		
Methylene Chloride	<0.32	ug/L	5.0	0.32	1		10/12/21 20:31		
Naphthalene	<1.1	ug/L	5.0	1.1	1		10/12/21 20:31		
Styrene	< 0.36	ug/L	1.0	0.36	1		10/12/21 20:31	100-42-5	

Project: KLISMITH ACCOUNTING

Pace Project No.: 40234687

Date: 10/14/2021 05:13 PM

Sample: MW-700	Lab ID:	40234687003	Collected	l: 10/01/21	10:00	Received: 10	/07/21 08:50 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA 8	260						
	Pace Anal	ytical Services	- Green Bay	/					
Tetrachloroethene	<0.41	ug/L	1.0	0.41	1		10/12/21 20:31	127-18-4	
Toluene	<0.29	ug/L	1.0	0.29	1		10/12/21 20:31	108-88-3	
Trichloroethene	<0.32	ug/L	1.0	0.32	1		10/12/21 20:31	79-01-6	
Trichlorofluoromethane	<0.42	ug/L	1.0	0.42	1		10/12/21 20:31	75-69-4	
Vinyl chloride	<0.17	ug/L	1.0	0.17	1		10/12/21 20:31	75-01-4	
Xylene (Total)	<1.0	ug/L	3.0	1.0	1		10/12/21 20:31	1330-20-7	
cis-1,2-Dichloroethene	<0.47	ug/L	1.0	0.47	1		10/12/21 20:31	156-59-2	
cis-1,3-Dichloropropene	<0.36	ug/L	1.0	0.36	1		10/12/21 20:31	10061-01-5	
n-Butylbenzene	<0.86	ug/L	1.0	0.86	1		10/12/21 20:31	104-51-8	
n-Propylbenzene	1.0	ug/L	1.0	0.35	1		10/12/21 20:31	103-65-1	
p-Isopropyltoluene	<1.0	ug/L	5.0	1.0	1		10/12/21 20:31	99-87-6	
sec-Butylbenzene	0.47J	ug/L	1.0	0.42	1		10/12/21 20:31	135-98-8	
tert-Butylbenzene	<0.59	ug/L	1.0	0.59	1		10/12/21 20:31	98-06-6	
trans-1,2-Dichloroethene	< 0.53	ug/L	1.0	0.53	1		10/12/21 20:31	156-60-5	
trans-1,3-Dichloropropene	<3.5	ug/L	5.0	3.5	1		10/12/21 20:31	10061-02-6	
Surrogates		-							
4-Bromofluorobenzene (S)	99	%	70-130		1		10/12/21 20:31	460-00-4	
1,2-Dichlorobenzene-d4 (S)	105	%	70-130		1		10/12/21 20:31	2199-69-1	
Toluene-d8 (S)	98	%	70-130		1		10/12/21 20:31	2037-26-5	

Project: KLISMITH ACCOUNTING

Pace Project No.: 40234687

Date: 10/14/2021 05:13 PM

Sample: PZ-900 Lab ID: 40234687004 Collected: 10/01/21 10:15 Received: 10/07/21 08:50 Matrix: Water

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EP/	A 8260						
	Pace Analy	ytical Servic	es - Green Ba	y					
1,1,1,2-Tetrachloroethane	<0.36	ug/L	1.0	0.36	1		10/12/21 20:51	630-20-6	
1,1,1-Trichloroethane	<0.30	ug/L	1.0	0.30	1		10/12/21 20:51		
1,1,2,2-Tetrachloroethane	<0.38	ug/L	1.0	0.38	1		10/12/21 20:51		
1,1,2-Trichloroethane	<0.34	ug/L	5.0	0.34	1		10/12/21 20:51		
1,1-Dichloroethane	<0.30	ug/L	1.0	0.30	1		10/12/21 20:51		
1,1-Dichloroethene	<0.58	ug/L	1.0	0.58	1		10/12/21 20:51		
1,1-Dichloropropene	<0.41	ug/L	1.0	0.41	1		10/12/21 20:51		
I,2,3-Trichlorobenzene	<1.0	ug/L	5.0	1.0	1		10/12/21 20:51		
1,2,3-Trichloropropane	<0.56	ug/L	5.0	0.56	1		10/12/21 20:51		
,2,4-Trichlorobenzene	<0.95	ug/L	5.0	0.95	1		10/12/21 20:51		
1,2,4-Trimethylbenzene	<0.45	ug/L	1.0	0.45	1		10/12/21 20:51		
1,2-Dibromo-3-chloropropane	<2.4	ug/L	5.0	2.4	1		10/12/21 20:51		
1,2-Dibromoethane (EDB)	<0.31	ug/L ug/L	1.0	0.31	1		10/12/21 20:51		
1,2-Dichlorobenzene	<0.33	_	1.0	0.31	1		10/12/21 20:51		
		ug/L							
,2-Dichloroethane	<0.29	ug/L	1.0	0.29	1		10/12/21 20:51		
,2-Dichloropropane	<0.45	ug/L	1.0	0.45	1		10/12/21 20:51		
,3,5-Trimethylbenzene	<0.36	ug/L	1.0	0.36	1		10/12/21 20:51		
,3-Dichlorobenzene	<0.35	ug/L	1.0	0.35	1		10/12/21 20:51		
,3-Dichloropropane	<0.30	ug/L	1.0	0.30	1		10/12/21 20:51		
,4-Dichlorobenzene	<0.89	ug/L	1.0	0.89	1		10/12/21 20:51		
,2-Dichloropropane	<4.2	ug/L	5.0	4.2	1		10/12/21 20:51		
2-Chlorotoluene	<0.89	ug/L	5.0	0.89	1		10/12/21 20:51		
-Chlorotoluene	<0.89	ug/L	5.0	0.89	1		10/12/21 20:51		
Benzene	<0.30	ug/L	1.0	0.30	1		10/12/21 20:51	71-43-2	
Bromobenzene	<0.36	ug/L	1.0	0.36	1		10/12/21 20:51	108-86-1	
Bromochloromethane	<0.36	ug/L	5.0	0.36	1		10/12/21 20:51	74-97-5	
Bromodichloromethane	<0.42	ug/L	1.0	0.42	1		10/12/21 20:51	75-27-4	
Bromoform	<3.8	ug/L	5.0	3.8	1		10/12/21 20:51	75-25-2	
Bromomethane	<1.2	ug/L	5.0	1.2	1		10/12/21 20:51	74-83-9	
Carbon tetrachloride	<0.37	ug/L	1.0	0.37	1		10/12/21 20:51	56-23-5	
Chlorobenzene	<0.86	ug/L	1.0	0.86	1		10/12/21 20:51	108-90-7	
Chloroethane	<1.4	ug/L	5.0	1.4	1		10/12/21 20:51	75-00-3	
Chloroform	<1.2	ug/L	5.0	1.2	1		10/12/21 20:51		
Chloromethane	<1.6	ug/L	5.0	1.6	1		10/12/21 20:51	74-87-3	
Dibromochloromethane	<2.6	ug/L	5.0	2.6	1		10/12/21 20:51		
Dibromomethane	<0.99	ug/L	5.0	0.99	1		10/12/21 20:51	_	
Dichlorodifluoromethane	<0.46	ug/L	5.0	0.46	1		10/12/21 20:51		
Diisopropyl ether	<1.1	ug/L	5.0	1.1	1		10/12/21 20:51		
Ethylbenzene	<0.33	ug/L	1.0	0.33	1		10/12/21 20:51		
Hexachloro-1,3-butadiene	<2.7	ug/L	5.0	2.7	1		10/12/21 20:51		
sopropylbenzene (Cumene)	<1.0	ug/L ug/L	5.0 5.0	1.0	1		10/12/21 20:51		
		_					10/12/21 20:51		
Methyl-tert-butyl ether	<1.1 -0.22	ug/L	5.0	1.1	1				
Methylene Chloride	<0.32	ug/L	5.0	0.32	1		10/12/21 20:51		
Naphthalene	<1.1	ug/L	5.0	1.1	1		10/12/21 20:51		
Styrene	<0.36	ug/L	1.0	0.36	1		10/12/21 20:51	100-42-5	

Project: KLISMITH ACCOUNTING

Pace Project No.: 40234687

Date: 10/14/2021 05:13 PM

Sample: PZ-900 Lab ID: 40234687004 Collected: 10/01/21 10:15 Received: 10/07/21 08:50 Matrix: Water

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA	A 8260						
	Pace Anal	ytical Service	es - Green Ba	у					
Tetrachloroethene	<0.41	ug/L	1.0	0.41	1		10/12/21 20:51	127-18-4	
Toluene	<0.29	ug/L	1.0	0.29	1		10/12/21 20:51	108-88-3	
Trichloroethene	<0.32	ug/L	1.0	0.32	1		10/12/21 20:51	79-01-6	
Trichlorofluoromethane	<0.42	ug/L	1.0	0.42	1		10/12/21 20:51	75-69-4	
Vinyl chloride	<0.17	ug/L	1.0	0.17	1		10/12/21 20:51	75-01-4	
Xylene (Total)	<1.0	ug/L	3.0	1.0	1		10/12/21 20:51	1330-20-7	
cis-1,2-Dichloroethene	<0.47	ug/L	1.0	0.47	1		10/12/21 20:51	156-59-2	
cis-1,3-Dichloropropene	<0.36	ug/L	1.0	0.36	1		10/12/21 20:51	10061-01-5	
n-Butylbenzene	<0.86	ug/L	1.0	0.86	1		10/12/21 20:51	104-51-8	
n-Propylbenzene	<0.35	ug/L	1.0	0.35	1		10/12/21 20:51	103-65-1	
p-Isopropyltoluene	<1.0	ug/L	5.0	1.0	1		10/12/21 20:51	99-87-6	
sec-Butylbenzene	< 0.42	ug/L	1.0	0.42	1		10/12/21 20:51	135-98-8	
tert-Butylbenzene	<0.59	ug/L	1.0	0.59	1		10/12/21 20:51	98-06-6	
trans-1,2-Dichloroethene	<0.53	ug/L	1.0	0.53	1		10/12/21 20:51	156-60-5	
trans-1,3-Dichloropropene	<3.5	ug/L	5.0	3.5	1		10/12/21 20:51	10061-02-6	
Surrogates									
4-Bromofluorobenzene (S)	100	%	70-130		1		10/12/21 20:51	460-00-4	
1,2-Dichlorobenzene-d4 (S)	103	%	70-130		1		10/12/21 20:51	2199-69-1	
Toluene-d8 (S)	99	%	70-130		1		10/12/21 20:51	2037-26-5	

Project: KLISMITH ACCOUNTING

Pace Project No.: 40234687

Date: 10/14/2021 05:13 PM

Sample: VILLAGE WELL 1 Lab ID: 40234687005 Collected: 10/01/21 10:30 Received: 10/07/21 08:50 Matrix: Water

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV	Analytical	Method: EPA	N 8260						
	Pace Anal	ytical Service	es - Green Ba	y					
1,1,1,2-Tetrachloroethane	<0.36	ug/L	1.0	0.36	1		10/12/21 21:10	630-20-6	
1,1,1-Trichloroethane	<0.30	ug/L	1.0	0.30	1		10/12/21 21:10		
1,1,2,2-Tetrachloroethane	<0.38	ug/L	1.0	0.38	1		10/12/21 21:10		
1,1,2-Trichloroethane	< 0.34	ug/L	5.0	0.34	1		10/12/21 21:10		
1,1-Dichloroethane	<0.30	ug/L	1.0	0.30	1		10/12/21 21:10		
I,1-Dichloroethene	<0.58	ug/L	1.0	0.58	1		10/12/21 21:10		
,1-Dichloropropene	<0.41	ug/L	1.0	0.41	1		10/12/21 21:10		
,2,3-Trichlorobenzene	<1.0	ug/L	5.0	1.0	1		10/12/21 21:10		
I,2,3-Trichloropropane	<0.56	ug/L	5.0	0.56	1		10/12/21 21:10		
,2,4-Trichlorobenzene	<0.95	ug/L	5.0	0.95	1		10/12/21 21:10		
1,2,4-Trimethylbenzene	<0.45	ug/L	1.0	0.45	1		10/12/21 21:10		
,2-Dibromo-3-chloropropane	<2.4	ug/L	5.0	2.4	1		10/12/21 21:10		
1,2-Dibromoethane (EDB)	<0.31	ug/L ug/L	1.0	0.31	1		10/12/21 21:10		
1,2-Dichlorobenzene	<0.33	ug/L	1.0	0.33	1		10/12/21 21:10		
1,2-Dichloroethane	<0.29	ug/L	1.0	0.33	1		10/12/21 21:10		
	<0.45	-	1.0	0.29	1		10/12/21 21:10		
,2-Dichloropropane		ug/L							
,3,5-Trimethylbenzene	<0.36	ug/L	1.0	0.36	1		10/12/21 21:10		
,3-Dichlorobenzene	<0.35	ug/L	1.0	0.35	1		10/12/21 21:10		
,3-Dichloropropane	<0.30	ug/L	1.0	0.30	1		10/12/21 21:10		
,4-Dichlorobenzene	<0.89	ug/L	1.0	0.89	1		10/12/21 21:10		
2,2-Dichloropropane	<4.2	ug/L	5.0	4.2	1		10/12/21 21:10		
-Chlorotoluene	<0.89	ug/L	5.0	0.89	1		10/12/21 21:10		
-Chlorotoluene	<0.89	ug/L	5.0	0.89	1		10/12/21 21:10		
Benzene	<0.30	ug/L	1.0	0.30	1		10/12/21 21:10		
Bromobenzene	<0.36	ug/L	1.0	0.36	1		10/12/21 21:10	108-86-1	
Bromochloromethane	<0.36	ug/L	5.0	0.36	1		10/12/21 21:10	74-97-5	
Bromodichloromethane	<0.42	ug/L	1.0	0.42	1		10/12/21 21:10		
Bromoform	<3.8	ug/L	5.0	3.8	1		10/12/21 21:10	75-25-2	
Bromomethane	<1.2	ug/L	5.0	1.2	1		10/12/21 21:10	74-83-9	
Carbon tetrachloride	<0.37	ug/L	1.0	0.37	1		10/12/21 21:10	56-23-5	
Chlorobenzene	<0.86	ug/L	1.0	0.86	1		10/12/21 21:10	108-90-7	
Chloroethane	<1.4	ug/L	5.0	1.4	1		10/12/21 21:10	75-00-3	
Chloroform	<1.2	ug/L	5.0	1.2	1		10/12/21 21:10	67-66-3	
Chloromethane	<1.6	ug/L	5.0	1.6	1		10/12/21 21:10	74-87-3	
Dibromochloromethane	<2.6	ug/L	5.0	2.6	1		10/12/21 21:10	124-48-1	
Dibromomethane	<0.99	ug/L	5.0	0.99	1		10/12/21 21:10	74-95-3	
Dichlorodifluoromethane	<0.46	ug/L	5.0	0.46	1		10/12/21 21:10		
Diisopropyl ether	<1.1	ug/L	5.0	1.1	1		10/12/21 21:10		
Ethylbenzene	<0.33	ug/L	1.0	0.33	1		10/12/21 21:10		
Hexachloro-1,3-butadiene	<2.7	ug/L	5.0	2.7	1		10/12/21 21:10		
sopropylbenzene (Cumene)	<1.0	ug/L	5.0	1.0	1		10/12/21 21:10		
Methyl-tert-butyl ether	<1.1	ug/L	5.0	1.1	1		10/12/21 21:10		
Methylene Chloride	<0.32	ug/L	5.0	0.32	1		10/12/21 21:10		
Naphthalene	<1.1	ug/L	5.0	1.1	1		10/12/21 21:10		
Naprilialerie Styrene	<0.36	ug/L ug/L	1.0	0.36	1		10/12/21 21:10		

Project: KLISMITH ACCOUNTING

Pace Project No.: 40234687

Date: 10/14/2021 05:13 PM

Sample: VILLAGE WELL 1	Lab ID:	40234687005	Collecte	d: 10/01/21	10:30	Received: 10	0/07/21 08:50 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA 8	260						
	Pace Anal								
Tetrachloroethene	<0.41	ug/L	1.0	0.41	1		10/12/21 21:10	127-18-4	
Toluene	<0.29	ug/L	1.0	0.29	1		10/12/21 21:10	108-88-3	
Trichloroethene	<0.32	ug/L	1.0	0.32	1		10/12/21 21:10	79-01-6	
Trichlorofluoromethane	<0.42	ug/L	1.0	0.42	1		10/12/21 21:10	75-69-4	
Vinyl chloride	<0.17	ug/L	1.0	0.17	1		10/12/21 21:10	75-01-4	
Xylene (Total)	<1.0	ug/L	3.0	1.0	1		10/12/21 21:10	1330-20-7	
cis-1,2-Dichloroethene	<0.47	ug/L	1.0	0.47	1		10/12/21 21:10	156-59-2	
cis-1,3-Dichloropropene	<0.36	ug/L	1.0	0.36	1		10/12/21 21:10	10061-01-5	
n-Butylbenzene	<0.86	ug/L	1.0	0.86	1		10/12/21 21:10	104-51-8	
n-Propylbenzene	< 0.35	ug/L	1.0	0.35	1		10/12/21 21:10	103-65-1	
p-Isopropyltoluene	<1.0	ug/L	5.0	1.0	1		10/12/21 21:10	99-87-6	
sec-Butylbenzene	<0.42	ug/L	1.0	0.42	1		10/12/21 21:10	135-98-8	
tert-Butylbenzene	<0.59	ug/L	1.0	0.59	1		10/12/21 21:10	98-06-6	
trans-1,2-Dichloroethene	<0.53	ug/L	1.0	0.53	1		10/12/21 21:10	156-60-5	
trans-1,3-Dichloropropene	<3.5	ug/L	5.0	3.5	1		10/12/21 21:10	10061-02-6	
Surrogates		-							
4-Bromofluorobenzene (S)	101	%	70-130		1		10/12/21 21:10	460-00-4	
1,2-Dichlorobenzene-d4 (S)	106	%	70-130		1		10/12/21 21:10	2199-69-1	
Toluene-d8 (S)	99	%	70-130		1		10/12/21 21:10	2037-26-5	

Matrix: Water

10/12/21 21:30 75-25-2

10/12/21 21:30 74-83-9

10/12/21 21:30 56-23-5

10/12/21 21:30 75-71-8

10/12/21 21:30 108-20-3

10/12/21 21:30 100-41-4

10/12/21 21:30 87-68-3

10/12/21 21:30 98-82-8

10/12/21 21:30 75-09-2

10/12/21 21:30 91-20-3

10/12/21 21:30 100-42-5

10/12/21 21:30 1634-04-4

108-90-7

75-00-3

67-66-3

74-87-3

124-48-1

74-95-3

10/12/21 21:30

10/12/21 21:30

10/12/21 21:30

10/12/21 21:30

10/12/21 21:30

10/12/21 21:30

ANALYTICAL RESULTS

Collected: 10/01/21 10:40

Received: 10/07/21 08:50

Lab ID: 40234687006

<3.8

<1.2

<0.37

<0.86

<1.4

<1.2

<1.6

<2.6

< 0.99

<0.46

<1.1

< 0.33

<2.7

<1.0

<1.1

<0.32

<1.1

<0.36

ug/L

Project: KLISMITH ACCOUNTING

Pace Project No.: 40234687

Sample: VILLAGE WELL 2

Bromoform

Bromomethane

Chlorobenzene

Chloromethane

Dibromomethane

Diisopropyl ether

Ethylbenzene

Naphthalene

Styrene

Chloroethane

Chloroform

Carbon tetrachloride

Dibromochloromethane

Dichlorodifluoromethane

Hexachloro-1,3-butadiene

Date: 10/14/2021 05:13 PM

Methyl-tert-butyl ether

Methylene Chloride

Isopropylbenzene (Cumene)

LOQ DF Results Units LOD Prepared CAS No. **Parameters** Analyzed Qual Analytical Method: EPA 8260 8260 MSV Pace Analytical Services - Green Bay 1,1,1,2-Tetrachloroethane < 0.36 ug/L 1.0 0.36 10/12/21 21:30 630-20-6 1 1,1,1-Trichloroethane <0.30 ug/L 1.0 0.30 1 10/12/21 21:30 71-55-6 1,1,2,2-Tetrachloroethane <0.38 ug/L 1.0 0.38 1 10/12/21 21:30 79-34-5 1.1.2-Trichloroethane < 0.34 ug/L 5.0 0.34 1 10/12/21 21:30 79-00-5 1 1-Dichloroethane < 0.30 ug/L 1.0 0.30 1 10/12/21 21:30 75-34-3 1,1-Dichloroethene <0.58 ug/L 1.0 0.58 1 10/12/21 21:30 75-35-4 1,1-Dichloropropene <0.41 ug/L 1.0 0.41 1 10/12/21 21:30 563-58-6 10/12/21 21:30 87-61-6 1,2,3-Trichlorobenzene <1.0 ug/L 5.0 1.0 1 0.56 1,2,3-Trichloropropane <0.56 ug/L 5.0 1 10/12/21 21:30 96-18-4 1,2,4-Trichlorobenzene < 0.95 ug/L 5.0 0.95 1 10/12/21 21:30 120-82-1 1,2,4-Trimethylbenzene < 0.45 1.0 0.45 10/12/21 21:30 95-63-6 ug/L 1 1,2-Dibromo-3-chloropropane <2.4 ug/L 5.0 2.4 1 10/12/21 21:30 96-12-8 1,2-Dibromoethane (EDB) < 0.31 ug/L 1.0 0.31 1 10/12/21 21:30 106-93-4 1.2-Dichlorobenzene < 0.33 ug/L 1.0 0.33 1 10/12/21 21:30 95-50-1 1,2-Dichloroethane <0.29 ug/L 1.0 0.29 1 10/12/21 21:30 107-06-2 10/12/21 21:30 78-87-5 1,2-Dichloropropane < 0.45 ug/L 1.0 0.45 1 1,3,5-Trimethylbenzene 10/12/21 21:30 108-67-8 < 0.36 ug/L 1.0 0.36 1 1,3-Dichlorobenzene < 0.35 1.0 0.35 1 10/12/21 21:30 541-73-1 ug/L 0.30 10/12/21 21:30 142-28-9 1,3-Dichloropropane < 0.30 ug/L 1.0 1 1,4-Dichlorobenzene <0.89 ug/L 1.0 0.89 1 10/12/21 21:30 106-46-7 2,2-Dichloropropane <4.2 ug/L 5.0 4.2 1 10/12/21 21:30 594-20-7 <0.89 0.89 10/12/21 21:30 95-49-8 2-Chlorotoluene ug/L 5.0 1 4-Chlorotoluene <0.89 ug/L 5.0 0.89 1 10/12/21 21:30 106-43-4 0.30 Benzene < 0.30 ug/L 1.0 1 10/12/21 21:30 71-43-2 Bromobenzene < 0.36 ug/L 1.0 0.36 1 10/12/21 21:30 108-86-1 Bromochloromethane < 0.36 ug/L 5.0 0.36 10/12/21 21:30 74-97-5 1 Bromodichloromethane < 0.42 ug/L 1.0 0.42 10/12/21 21:30 75-27-4 1

5.0

5.0

1.0

1.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

1.0

5.0

5.0

5.0

5.0

5.0

1.0

3.8

1.2

0.37

0.86

1.4

1.2

1.6

2.6

0.99

0.46

0.33

1.1

2.7

1.0

1.1

1.1

0.32

0.36

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Project: KLISMITH ACCOUNTING

Pace Project No.: 40234687

Date: 10/14/2021 05:13 PM

Sample: VILLAGE WELL 2	Lab ID:	40234687006	Collecte	d: 10/01/21	10:40	Received: 10)/07/21 08:50 Ma	atrix: Water			
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual		
8260 MSV	Analytical	Method: EPA 8	260								
	Pace Analytical Services - Green Bay										
Tetrachloroethene	<0.41	ug/L	1.0	0.41	1		10/12/21 21:30	127-18-4			
Toluene	<0.29	ug/L	1.0	0.29	1		10/12/21 21:30	108-88-3			
Trichloroethene	<0.32	ug/L	1.0	0.32	1		10/12/21 21:30	79-01-6			
Trichlorofluoromethane	<0.42	ug/L	1.0	0.42	1		10/12/21 21:30	75-69-4			
Vinyl chloride	<0.17	ug/L	1.0	0.17	1		10/12/21 21:30	75-01-4			
Xylene (Total)	<1.0	ug/L	3.0	1.0	1		10/12/21 21:30	1330-20-7			
cis-1,2-Dichloroethene	<0.47	ug/L	1.0	0.47	1		10/12/21 21:30	156-59-2			
cis-1,3-Dichloropropene	<0.36	ug/L	1.0	0.36	1		10/12/21 21:30	10061-01-5			
n-Butylbenzene	<0.86	ug/L	1.0	0.86	1		10/12/21 21:30	104-51-8			
n-Propylbenzene	<0.35	ug/L	1.0	0.35	1		10/12/21 21:30	103-65-1			
p-Isopropyltoluene	<1.0	ug/L	5.0	1.0	1		10/12/21 21:30	99-87-6			
sec-Butylbenzene	<0.42	ug/L	1.0	0.42	1		10/12/21 21:30	135-98-8			
tert-Butylbenzene	<0.59	ug/L	1.0	0.59	1		10/12/21 21:30	98-06-6			
trans-1,2-Dichloroethene	<0.53	ug/L	1.0	0.53	1		10/12/21 21:30	156-60-5			
trans-1,3-Dichloropropene	<3.5	ug/L	5.0	3.5	1		10/12/21 21:30	10061-02-6			
Surrogates		-									
4-Bromofluorobenzene (S)	102	%	70-130		1		10/12/21 21:30	460-00-4			
1,2-Dichlorobenzene-d4 (S)	106	%	70-130		1		10/12/21 21:30	2199-69-1			
Toluene-d8 (S)	98	%	70-130		1		10/12/21 21:30	2037-26-5			

Matrix: Water

ANALYTICAL RESULTS

Lab ID: 40234687007

Collected: 10/01/21 00:00

Received: 10/07/21 08:50

Project: KLISMITH ACCOUNTING

Pace Project No.: 40234687

Sample: TRIP BLANK

Hexachloro-1,3-butadiene

Date: 10/14/2021 05:13 PM

Methyl-tert-butyl ether

Methylene Chloride

Naphthalene

Styrene

Isopropylbenzene (Cumene)

LOQ DF Results Units LOD Prepared CAS No. **Parameters** Analyzed Qual Analytical Method: EPA 8260 8260 MSV Pace Analytical Services - Green Bay 1,1,1,2-Tetrachloroethane < 0.36 ug/L 1.0 0.36 10/12/21 19:12 630-20-6 1 1,1,1-Trichloroethane <0.30 ug/L 1.0 0.30 1 10/12/21 19:12 71-55-6 1,1,2,2-Tetrachloroethane <0.38 ug/L 1.0 0.38 1 10/12/21 19:12 79-34-5 1.1.2-Trichloroethane < 0.34 ug/L 5.0 0.34 1 10/12/21 19:12 79-00-5 1 1-Dichloroethane < 0.30 ug/L 1.0 0.30 1 10/12/21 19:12 75-34-3 1,1-Dichloroethene <0.58 ug/L 1.0 0.58 1 10/12/21 19:12 75-35-4 1,1-Dichloropropene <0.41 ug/L 1.0 0.41 1 10/12/21 19:12 563-58-6 10/12/21 19:12 87-61-6 1,2,3-Trichlorobenzene <1.0 ug/L 5.0 1.0 1 0.56 1,2,3-Trichloropropane <0.56 ug/L 5.0 1 10/12/21 19:12 96-18-4 1,2,4-Trichlorobenzene < 0.95 ug/L 5.0 0.95 1 10/12/21 19:12 120-82-1 1,2,4-Trimethylbenzene < 0.45 1.0 0.45 10/12/21 19:12 95-63-6 ug/L 1 1,2-Dibromo-3-chloropropane <2.4 ug/L 5.0 2.4 1 10/12/21 19:12 96-12-8 1,2-Dibromoethane (EDB) < 0.31 ug/L 1.0 0.31 1 10/12/21 19:12 106-93-4 1.2-Dichlorobenzene < 0.33 ug/L 1.0 0.33 1 10/12/21 19:12 95-50-1 1,2-Dichloroethane <0.29 ug/L 1.0 0.29 1 10/12/21 19:12 107-06-2 10/12/21 19:12 78-87-5 1,2-Dichloropropane < 0.45 ug/L 1.0 0.45 1 1,3,5-Trimethylbenzene 10/12/21 19:12 108-67-8 < 0.36 ug/L 1.0 0.36 1 1,3-Dichlorobenzene < 0.35 1.0 0.35 1 10/12/21 19:12 541-73-1 ug/L 0.30 10/12/21 19:12 142-28-9 1,3-Dichloropropane < 0.30 ug/L 1.0 1 1,4-Dichlorobenzene <0.89 ug/L 1.0 0.89 1 10/12/21 19:12 106-46-7 2,2-Dichloropropane <4.2 ug/L 5.0 4.2 1 10/12/21 19:12 594-20-7 <0.89 0.89 10/12/21 19:12 95-49-8 2-Chlorotoluene ug/L 5.0 1 4-Chlorotoluene <0.89 ug/L 5.0 0.89 1 10/12/21 19:12 106-43-4 0.30 Benzene < 0.30 ug/L 1.0 1 10/12/21 19:12 71-43-2 Bromobenzene < 0.36 ug/L 1.0 0.36 1 10/12/21 19:12 108-86-1 Bromochloromethane < 0.36 ug/L 5.0 0.36 10/12/21 19:12 74-97-5 1 Bromodichloromethane < 0.42 ug/L 1.0 0.42 10/12/21 19:12 75-27-4 1 Bromoform <3.8 5.0 3.8 10/12/21 19:12 75-25-2 ug/L 1 5.0 Bromomethane <1.2 ug/L 1.2 10/12/21 19:12 74-83-9 1 <0.37 0.37 Carbon tetrachloride ug/L 1.0 1 10/12/21 19:12 56-23-5 Chlorobenzene <0.86 ug/L 1.0 0.86 1 10/12/21 19:12 108-90-7 Chloroethane <1.4 ug/L 5.0 1.4 1 10/12/21 19:12 75-00-3 Chloroform <1.2 ug/L 5.0 1.2 1 10/12/21 19:12 67-66-3 Chloromethane <1.6 ug/L 5.0 1.6 1 10/12/21 19:12 74-87-3 Dibromochloromethane <2.6 ug/L 5.0 2.6 1 10/12/21 19:12 124-48-1 Dibromomethane < 0.99 ug/L 5.0 0.99 1 10/12/21 19:12 74-95-3 <0.46 ug/L 5.0 0.46 Dichlorodifluoromethane 1 10/12/21 19:12 75-71-8 5.0 Diisopropyl ether <1.1 ug/L 1.1 1 10/12/21 19:12 108-20-3 Ethylbenzene < 0.33 1.0 0.33 10/12/21 19:12 100-41-4 ug/L 1

REPORT OF LABORATORY ANALYSIS

5.0

5.0

5.0

5.0

5.0

1.0

<2.7

<1.0

<1.1

<0.32

<1.1

<0.36

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

2.7

1.0

1.1

1.1

0.32

0.36

1

1

1

1

1

10/12/21 19:12 87-68-3

10/12/21 19:12 98-82-8

10/12/21 19:12 75-09-2

10/12/21 19:12 91-20-3

10/12/21 19:12 100-42-5

10/12/21 19:12 1634-04-4

ANALYTICAL RESULTS

Project: KLISMITH ACCOUNTING

Pace Project No.: 40234687

Date: 10/14/2021 05:13 PM

Sample: TRIP BLANK	Lab ID:	40234687007	Collected	d: 10/01/2 ²	00:00	Received: 10	/07/21 08:50 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA 8	260						
	Pace Anal	ytical Services	- Green Ba	y					
Tetrachloroethene	<0.41	ug/L	1.0	0.41	1		10/12/21 19:12	127-18-4	
Toluene	<0.29	ug/L	1.0	0.29	1		10/12/21 19:12	108-88-3	
Trichloroethene	<0.32	ug/L	1.0	0.32	1		10/12/21 19:12	79-01-6	
Trichlorofluoromethane	<0.42	ug/L	1.0	0.42	1		10/12/21 19:12	75-69-4	
Vinyl chloride	<0.17	ug/L	1.0	0.17	1		10/12/21 19:12	75-01-4	
Xylene (Total)	<1.0	ug/L	3.0	1.0	1		10/12/21 19:12	1330-20-7	
cis-1,2-Dichloroethene	<0.47	ug/L	1.0	0.47	1		10/12/21 19:12	156-59-2	
cis-1,3-Dichloropropene	<0.36	ug/L	1.0	0.36	1		10/12/21 19:12	10061-01-5	
n-Butylbenzene	<0.86	ug/L	1.0	0.86	1		10/12/21 19:12	104-51-8	
n-Propylbenzene	< 0.35	ug/L	1.0	0.35	1		10/12/21 19:12	103-65-1	
p-Isopropyltoluene	<1.0	ug/L	5.0	1.0	1		10/12/21 19:12	99-87-6	
sec-Butylbenzene	<0.42	ug/L	1.0	0.42	1		10/12/21 19:12	135-98-8	
tert-Butylbenzene	<0.59	ug/L	1.0	0.59	1		10/12/21 19:12	98-06-6	
trans-1,2-Dichloroethene	< 0.53	ug/L	1.0	0.53	1		10/12/21 19:12	156-60-5	
trans-1,3-Dichloropropene	<3.5	ug/L	5.0	3.5	1		10/12/21 19:12	10061-02-6	
Surrogates		-							
4-Bromofluorobenzene (S)	102	%	70-130		1		10/12/21 19:12	460-00-4	
1,2-Dichlorobenzene-d4 (S)	104	%	70-130		1		10/12/21 19:12	2199-69-1	
Toluene-d8 (S)	98	%	70-130		1		10/12/21 19:12	2037-26-5	

Project: KLISMITH ACCOUNTING

Pace Project No.: 40234687

Date: 10/14/2021 05:13 PM

QC Batch: 397921 Analysis Method: EPA 8260
QC Batch Method: EPA 8260 Analysis Description: 8260 MSV

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40234687001, 40234687002, 40234687003, 40234687004, 40234687005, 40234687006, 40234687007

METHOD BLANK: 2297053 Matrix: Water

Associated Lab Samples: 40234687001, 40234687002, 40234687003, 40234687004, 40234687005, 40234687006, 40234687007

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	 ug/L	<0.36	1.0	10/12/21 17:13	
1,1,1-Trichloroethane	ug/L	< 0.30	1.0	10/12/21 17:13	
1,1,2,2-Tetrachloroethane	ug/L	< 0.38	1.0	10/12/21 17:13	
1,1,2-Trichloroethane	ug/L	< 0.34	5.0	10/12/21 17:13	
1,1-Dichloroethane	ug/L	< 0.30	1.0	10/12/21 17:13	
1,1-Dichloroethene	ug/L	<0.58	1.0	10/12/21 17:13	
1,1-Dichloropropene	ug/L	< 0.41	1.0	10/12/21 17:13	
1,2,3-Trichlorobenzene	ug/L	<1.0	5.0	10/12/21 17:13	
1,2,3-Trichloropropane	ug/L	< 0.56	5.0	10/12/21 17:13	
1,2,4-Trichlorobenzene	ug/L	< 0.95	5.0	10/12/21 17:13	
1,2,4-Trimethylbenzene	ug/L	< 0.45	1.0	10/12/21 17:13	
1,2-Dibromo-3-chloropropane	ug/L	<2.4	5.0	10/12/21 17:13	
1,2-Dibromoethane (EDB)	ug/L	<0.31	1.0	10/12/21 17:13	
1,2-Dichlorobenzene	ug/L	< 0.33	1.0	10/12/21 17:13	
1,2-Dichloroethane	ug/L	< 0.29	1.0	10/12/21 17:13	
1,2-Dichloropropane	ug/L	< 0.45	1.0	10/12/21 17:13	
1,3,5-Trimethylbenzene	ug/L	< 0.36	1.0	10/12/21 17:13	
1,3-Dichlorobenzene	ug/L	< 0.35	1.0	10/12/21 17:13	
1,3-Dichloropropane	ug/L	< 0.30	1.0	10/12/21 17:13	
1,4-Dichlorobenzene	ug/L	< 0.89	1.0	10/12/21 17:13	
2,2-Dichloropropane	ug/L	<4.2	5.0	10/12/21 17:13	
2-Chlorotoluene	ug/L	< 0.89	5.0	10/12/21 17:13	
4-Chlorotoluene	ug/L	< 0.89	5.0	10/12/21 17:13	
Benzene	ug/L	< 0.30	1.0	10/12/21 17:13	
Bromobenzene	ug/L	< 0.36	1.0	10/12/21 17:13	
Bromochloromethane	ug/L	< 0.36	5.0	10/12/21 17:13	
Bromodichloromethane	ug/L	< 0.42	1.0	10/12/21 17:13	
Bromoform	ug/L	<3.8	5.0	10/12/21 17:13	
Bromomethane	ug/L	<1.2	5.0	10/12/21 17:13	
Carbon tetrachloride	ug/L	< 0.37	1.0	10/12/21 17:13	
Chlorobenzene	ug/L	<0.86	1.0	10/12/21 17:13	
Chloroethane	ug/L	<1.4	5.0	10/12/21 17:13	
Chloroform	ug/L	<1.2	5.0	10/12/21 17:13	
Chloromethane	ug/L	<1.6	5.0	10/12/21 17:13	
cis-1,2-Dichloroethene	ug/L	< 0.47	1.0	10/12/21 17:13	
cis-1,3-Dichloropropene	ug/L	< 0.36	1.0	10/12/21 17:13	
Dibromochloromethane	ug/L	<2.6	5.0	10/12/21 17:13	
Dibromomethane	ug/L	< 0.99	5.0	10/12/21 17:13	
Dichlorodifluoromethane	ug/L	< 0.46	5.0	10/12/21 17:13	
Diisopropyl ether	ug/L	<1.1	5.0	10/12/21 17:13	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: KLISMITH ACCOUNTING

Pace Project No.: 40234687

Date: 10/14/2021 05:13 PM

METHOD BLANK: 2297053 Matrix: Water

Associated Lab Samples: 40234687001, 40234687002, 40234687003, 40234687004, 40234687005, 40234687006, 40234687007

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Ethylbenzene	ug/L	<0.33	1.0	10/12/21 17:13	
Hexachloro-1,3-butadiene	ug/L	<2.7	5.0	10/12/21 17:13	
Isopropylbenzene (Cumene)	ug/L	<1.0	5.0	10/12/21 17:13	
Methyl-tert-butyl ether	ug/L	<1.1	5.0	10/12/21 17:13	
Methylene Chloride	ug/L	< 0.32	5.0	10/12/21 17:13	
n-Butylbenzene	ug/L	<0.86	1.0	10/12/21 17:13	
n-Propylbenzene	ug/L	< 0.35	1.0	10/12/21 17:13	
Naphthalene	ug/L	<1.1	5.0	10/12/21 17:13	
p-Isopropyltoluene	ug/L	<1.0	5.0	10/12/21 17:13	
sec-Butylbenzene	ug/L	< 0.42	1.0	10/12/21 17:13	
Styrene	ug/L	< 0.36	1.0	10/12/21 17:13	
tert-Butylbenzene	ug/L	< 0.59	1.0	10/12/21 17:13	
Tetrachloroethene	ug/L	<0.41	1.0	10/12/21 17:13	
Toluene	ug/L	< 0.29	1.0	10/12/21 17:13	
trans-1,2-Dichloroethene	ug/L	< 0.53	1.0	10/12/21 17:13	
trans-1,3-Dichloropropene	ug/L	<3.5	5.0	10/12/21 17:13	
Trichloroethene	ug/L	< 0.32	1.0	10/12/21 17:13	
Trichlorofluoromethane	ug/L	< 0.42	1.0	10/12/21 17:13	
Vinyl chloride	ug/L	<0.17	1.0	10/12/21 17:13	
Xylene (Total)	ug/L	<1.0	3.0	10/12/21 17:13	
1,2-Dichlorobenzene-d4 (S)	%	105	70-130	10/12/21 17:13	
4-Bromofluorobenzene (S)	%	101	70-130	10/12/21 17:13	
Toluene-d8 (S)	%	100	70-130	10/12/21 17:13	

LABORATORY CONTROL SAMPLE:	2297054					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/L	50	53.0	106	70-130	
1,1,2,2-Tetrachloroethane	ug/L	50	49.2	98	66-130	
1,1,2-Trichloroethane	ug/L	50	52.8	106	70-130	
1,1-Dichloroethane	ug/L	50	52.9	106	68-132	
1,1-Dichloroethene	ug/L	50	50.5	101	85-126	
1,2,4-Trichlorobenzene	ug/L	50	44.4	89	70-130	
1,2-Dibromo-3-chloropropane	ug/L	50	43.2	86	51-126	
1,2-Dibromoethane (EDB)	ug/L	50	49.2	98	70-130	
1,2-Dichlorobenzene	ug/L	50	50.1	100	70-130	
1,2-Dichloroethane	ug/L	50	49.9	100	70-130	
1,2-Dichloropropane	ug/L	50	50.7	101	78-125	
1,3-Dichlorobenzene	ug/L	50	48.1	96	70-130	
1,4-Dichlorobenzene	ug/L	50	49.6	99	70-130	
Benzene	ug/L	50	52.2	104	70-132	
Bromodichloromethane	ug/L	50	50.1	100	70-130	
Bromoform	ug/L	50	48.8	98	65-130	
Bromomethane	ug/L	50	36.0	72	44-128	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: KLISMITH ACCOUNTING

Pace Project No.: 40234687

Date: 10/14/2021 05:13 PM

LABORATORY CONTROL SAMPLE:	2297054					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Carbon tetrachloride	ug/L	50	56.2	112	70-130	
hlorobenzene	ug/L	50	51.3	103	70-130	
hloroethane	ug/L	50	51.2	102	73-137	
loroform	ug/L	50	52.6	105	80-122	
nloromethane	ug/L	50	41.2	82	27-148	
s-1,2-Dichloroethene	ug/L	50	49.4	99	70-130	
s-1,3-Dichloropropene	ug/L	50	48.7	97	70-130	
ibromochloromethane	ug/L	50	49.3	99	70-130	
chlorodifluoromethane	ug/L	50	30.1	60	22-151	
hylbenzene	ug/L	50	53.5	107	80-123	
ppropylbenzene (Cumene)	ug/L	50	55.7	111	70-130	
ethyl-tert-butyl ether	ug/L	50	47.3	95	66-130	
ethylene Chloride	ug/L	50	49.6	99	70-130	
yrene	ug/L	50	55.7	111	70-130	
trachloroethene	ug/L	50	49.2	98	70-130	
luene	ug/L	50	51.7	103	80-121	
ans-1,2-Dichloroethene	ug/L	50	51.6	103	70-130	
ns-1,3-Dichloropropene	ug/L	50	48.6	97	58-125	
ichloroethene	ug/L	50	51.2	102	70-130	
chlorofluoromethane	ug/L	50	47.4	95	84-148	
nyl chloride	ug/L	50	48.1	96	63-142	
rlene (Total)	ug/L	150	160	107	70-130	
2-Dichlorobenzene-d4 (S)	%			99	70-130	
Bromofluorobenzene (S)	%			102	70-130	
oluene-d8 (S)	%			101	70-130	

MATRIX SPIKE & MATRIX SF	PIKE DUPI	LICATE: 2298	102 MS	MSD	2298103							
		40234619001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1,1-Trichloroethane	ug/L	<0.30	50	50	56.8	57.6	114	115	70-130	1	20	
1,1,2,2-Tetrachloroethane	ug/L	<0.38	50	50	54.5	55.3	109	111	66-130	1	20	
1,1,2-Trichloroethane	ug/L	< 0.34	50	50	56.7	56.9	113	114	70-130	0	20	
1,1-Dichloroethane	ug/L	< 0.30	50	50	56.9	57.8	114	116	68-132	2	20	
1,1-Dichloroethene	ug/L	<0.58	50	50	54.9	55.1	110	110	76-132	0	20	
1,2,4-Trichlorobenzene	ug/L	< 0.95	50	50	45.7	47.9	91	96	70-130	5	20	
1,2-Dibromo-3- chloropropane	ug/L	<2.4	50	50	49.3	49.2	99	98	51-126	0	20	
1,2-Dibromoethane (EDB)	ug/L	<0.31	50	50	54.7	55.1	109	110	70-130	1	20	
1,2-Dichlorobenzene	ug/L	< 0.33	50	50	53.6	54.6	107	109	70-130	2	20	
1,2-Dichloroethane	ug/L	<0.29	50	50	53.8	55.3	108	111	70-130	3	20	
1,2-Dichloropropane	ug/L	< 0.45	50	50	56.3	57.1	113	114	77-125	1	20	
1,3-Dichlorobenzene	ug/L	< 0.35	50	50	50.9	52.3	102	105	70-130	3	20	
1,4-Dichlorobenzene	ug/L	< 0.89	50	50	52.5	54.1	105	108	70-130	3	20	
Benzene	ug/L	< 0.30	50	50	56.6	57.4	113	115	70-132	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: KLISMITH ACCOUNTING

Pace Project No.: 40234687

Date: 10/14/2021 05:13 PM

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 2298	-		2298103							
			MS	MSD								
_		40234619001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	_
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
Bromodichloromethane	ug/L	< 0.42	50	50	53.3	54.0	107	108	70-130	1	20	
Bromoform	ug/L	<3.8	50	50	54.1	54.2	108	108	65-130	0	20	
Bromomethane	ug/L	<1.2	50	50	46.0	48.1	92	96	44-128	5	21	
Carbon tetrachloride	ug/L	< 0.37	50	50	59.3	60.7	119	121	70-132	2	20	
Chlorobenzene	ug/L	< 0.86	50	50	55.5	55.8	111	112	70-130	1	20	
Chloroethane	ug/L	<1.4	50	50	57.0	57.6	114	115	70-137	1	20	
Chloroform	ug/L	<1.2	50	50	56.3	57.4	113	115	80-122	2	20	
Chloromethane	ug/L	<1.6	50	50	50.8	51.6	102	103	17-149	2	20	
cis-1,2-Dichloroethene	ug/L	< 0.47	50	50	52.7	53.6	105	107	70-130	2	20	
cis-1,3-Dichloropropene	ug/L	< 0.36	50	50	51.8	53.2	104	106	70-130	3	20	
Dibromochloromethane	ug/L	<2.6	50	50	54.4	54.8	109	110	70-130	1	20	
Dichlorodifluoromethane	ug/L	< 0.46	50	50	36.6	37.8	73	76	22-158	3	20	
Ethylbenzene	ug/L	< 0.33	50	50	58.1	59.0	116	118	80-123	2	20	
sopropylbenzene Cumene)	ug/L	<1.0	50	50	59.1	59.9	118	120	70-130	1	20	
Methyl-tert-butyl ether	ug/L	<1.1	50	50	53.5	54.1	107	108	66-130	1	20	
Methylene Chloride	ug/L	< 0.32	50	50	53.5	53.9	107	108	70-130	1	20	
Styrene	ug/L	< 0.36	50	50	60.2	60.3	120	121	70-130	0	20	
Tetrachloroethene	ug/L	< 0.41	50	50	51.4	51.9	103	104	70-130	1	20	
Toluene	ug/L	<0.29	50	50	56.0	56.7	112	113	80-121	1	20	
rans-1,2-Dichloroethene	ug/L	< 0.53	50	50	54.7	56.0	109	112	70-134	2	20	
rans-1,3-Dichloropropene	ug/L	<3.5	50	50	52.6	53.8	105	108	58-130	2	20	
Trichloroethene	ug/L	< 0.32	50	50	55.1	56.2	110	112	70-130	2	20	
Trichlorofluoromethane	ug/L	< 0.42	50	50	54.9	52.4	110	105	82-151	5	20	
/inyl chloride	ug/L	< 0.17	50	50	56.0	56.8	112	114	61-143	1	20	
Kylene (Total)	ug/L	<1.0	150	150	170	172	114	115	70-130	1	20	
,2-Dichlorobenzene-d4 (S)	%						100	99	70-130			
4-Bromofluorobenzene (S)	%						102	104	70-130			
Toluene-d8 (S)	%						101	101	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: KLISMITH ACCOUNTING

Pace Project No.: 40234687

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor, percent moisture, initial weight and final volume.

LOQ - Limit of Quantitation adjusted for dilution factor, percent moisture, initial weight and final volume.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Date: 10/14/2021 05:13 PM

(920)469-2436

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: KLISMITH ACCOUNTING

Pace Project No.: 40234687

Date: 10/14/2021 05:13 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40234687001	MW-1	EPA 8260	397921		
40234687002	PZ-1	EPA 8260	397921		
40234687003	MW-700	EPA 8260	397921		
40234687004	PZ-900	EPA 8260	397921		
40234687005	VILLAGE WELL 1	EPA 8260	397921		
40234687006	VILLAGE WELL 2	EPA 8260	397921		
40234687007	TRIP BLANK	EPA 8260	397921		

(Please Print Clearly)											R MIDWE			Page 1	of I
Company Name: Sand County Ex	ritore	ntal)		A	.h.din	~1®			MN: 6	12-607-17	700 vv	1: 920-469-2436	160014	•
Branch/Location: Anherst		/		ace	Alic	alytic acelabs.c	di om					-	<u></u>	4023468	<u> </u>
Project Contact: Pete arntsen		- [т		~						Quote #:		
Phone: 715-824-516	69		C	AH:	IN	OF	C	US'	TO	DY	,		Mail To Contact:	Peto Arntson	
Project Number:		A=No	ne B=H	ICL C=I	12SO4	*Preserva			=Methan	ol G=N	laOH		Mail To Company:	Sand County E	hV
Project Name: Klismith Accoun	241		dium Bisulf			I=Sodium	n Thiosulf	ate J	Other				Mail To Address:	peto. arntsalesa	udcoutze
Project State: WT	ر ج	FILTER (YES/		Y/N	7									•	Co
Sampled By (Print): Lars Smith		PRESER'	VATION	Pick Letter	B								Invoice To Contact:	Same as abou	Q
Sampled By (Sign): Smith	,		,									ī	nvoice To Company:		
	Regulatory Program:			Requested									Invoice To Address:		
Data Package Options MS/MSD		ix Codes		edn											
FPA Level III On your sample B	= Biota	W = Water DW = Drinkin GW = Ground		ses R	ال		~ * *	Company and	Otherwise state				Invoice To Phone:		
EPA Level IV INOT fleeded of s =	= Soil	SW = Surface WW = Waste WP = Wipe		Analyses	Vο								CLIENT	LAB COMMENTS	Profile #
PACE LAB# CLIENT FIELD ID	COLLE		MATRIX	4									COMMENTS	(Lab Use Only)	
001 mw-1	104/21	17:45	GW		X				,						
002 PZ-1	10/4/21	17:05		166.0	X										
003 mw-700	10/1/21	10:00			X								,		
D4 P2-900	10/1/21	10:15			X										
005 Village Wall 1	10/1/21	10:30			×										
006 Village Well 2	10/1/21	10:40	V		X										
007 trie blank				- N										· .	
				in the course											
	1			100											

Rush Turnaround Time Requested - Prelims (Rush TAT subject to approval/surcharge) Date Needed:

Transmit Prelim Rush Results by (complete what you want):

Samples on HOLD are subject to

special pricing and release of liability

elinquished By:
Suthelinquished By:

Relinquished By:

Relinquished By:

Relinquished By:

Date/Time:

| G | 21 9:00

Date/Time:

Date/Time:

Received By:

Received By:

Received By:

eceived By: Oh Dan

Date/Tirde: /S/O

Date/Time:

Date/Time:

Date/Time:

10234685

Sample Receipt pH OK / Adjusted

Present / Not Present Intact / Not Intact 2

ion 6.0 06/14/06

Email #1:

Emall #2:

Fax:

Telephone:

Pace Analytical Services, LLC 1241 Bellevue Street, Suite 9

Sample Preservation Receipt Form Green Bay, WI 54302 Client Name: Project # All containers needing preservation have been checked and noted below: □Yes □No □N/A Initial when Date/ completed: Time: Lab Lot# of pH paper: Lab Std #ID of preservation (if pH adjusted): laOH+Zn Act pH ≥9 (>6mm) after adjusted Glass Plastic **Vials** Jars General 1aOH pH ≥12 12SO4 pH ≤2 Volume Vials (mL) 펍 WGFU /G9M WPFU AG10 BG1U AG1H AG5U AG2S BG3U BP10 VG9U VG9H VG9D JGFU **BP3U BP3B BP3N BP3S** VG9A DG9T JG9U **ZPLC SP5T** Pace VOA S S Lab # 001 2.5 / 5 / 10 002 2.5/5/10 3 003 2.5 / 5 / 10 004 2.5/5/10 005 2.5 / 5 / 10 3 006 2.5/5/10 007 2.5 / 5 / 10 008 2.5/5/10 009 2.5 / 5 / 10 010 2.5/5/10 011 2.5 / 5 / 10 012 2.5/5/10 013 2.5 / 5 / 10 014 25/5/10 015 2.5 / 5 / 10 016 2.5/5/10 2.5 / 5 / 10 017 018 25/5/10 019 2.5 / 5 / 10 020 2.5/5/10 □Ye(□No) N/A *If yes look in headspace column Exceptions to preservation check: VOA, Coliferm, TOC, TOX, TOH, O&G, WI DRO, Phenolics, Other: Headspace in VOA Vials (>6mm): AG1U 1 liter amber glass BP1U 1 liter plastic unpres VG9A 40 mL clear ascorbic **JGFU** 4 oz amber jar unpres BG1U 1 liter clear glass BP3U 250 mL plastic unpres DG9T JG9U 9 oz amber jar unpres 40 mL amber Na Thio AG1H 1 liter amber glass HCL BP3B 250 mL plastic NaOH VG9U 40 mL clear vial unpres WGFU 4 oz clear jar unpres AG4S 125 mL amber glass H2SO4 BP3N 250 mL plastic HNO3 **WPFU** VG9H 40 mL clear vial HCL 4 oz plastic jar unpres AG4U 120 mL amber glass unpres BP3S 250 mL plastic H2SO4 VG9M 40 mL clear vial MeOH SP5T 120 mL plastic Na Thiosulfate AG5U 100 mL amber glass unpres VG9D 40 mL clear vial DI **ZPLC** ziploc bag AG2S 500 mL amber glass H2SO4 GN BG3U 250 mL clear glass unpres

Pace Analytical®
1241 Pollovius Street Green Boy MI 54202

Document Name:

Sample Condition Upon Receipt (SCUR)

Document No.:

Author:

ENV-FRM-GBAY-0014-Rev.00

Pace Green Bay Quality Office

Document Revised: 26Mar2020

Sample Condition Upon Receipt Form (SCUR)

			Project #		
Client Name:	ounts	_ 	,		40234687
Courier: CS Logistics Fed Ex Spee	dee 🗖 UP	XW	/altco		
Client Pace Other:		/ _			I (I () I () I () I
Tracking #: 24 89 59 7 -	1,		-	40234687	
Custody Seal on Cooler/Box Present: yes	no Seals	intact:	yes 🔲 no		
Custody Seal on Samples Present:	no Seals	intact:	🗌 yes 🔲 no		
Packing Material: Bubble Wrap Bub	oble Bags 🏻 🏾	Nen	—		
Thermometer Used SR - SR -	Type of Ice	Wet	Blue Dry None	Samples of	n ice, cooling process has begun Person examining contents:
Cooler Temperature Uncorr: 6,0/Corr:	4.5				rerson examining contents.
Temp Blank Present: yes □ no	Biolo	gical T	lissue is Frozen:	☐ yes ☐ no	Date: (C) //odinitials: V
Temp should be above freezing to 6°C. Biota Samples may be received at ≤ 0°C if shipped on	Dry Ice.				Labeled By Initials: いん
Chain of Custody Present:	Yes □No	□n/a	1.		
Chain of Custody Filled Out:	□Yes No	□n/a	2.10 NO	1+	10/7/21 0
Chain of Custody Relinquished:	Yes □No	□n/a	3. no ins	to ice to	WADIVE
Sampler Name & Signature on COC:	Yes □No	□n/a	4.		
Samples Arrived within Hold Time:	Zes □No		5.		
 VOA Samples frozen upon receipt 	□Yes □No		Date/Time:		
Short Hold Time Analysis (<72hr):	□Yes XNo		6.		
Rush Turn Around Time Requested:	□Yes XNo		7.		
Sufficient Volume:			8.		
For Analysis! ☐Yes ☐No MS/MS	D: □Yes □No	□n/a			
Correct Containers Used:	Yes □No		9.		
-Pace Containers Used:	Yes □No	□n/a			
-Pace IR Containers Used:	☐Yes ☐No	∐N/A			
Containers Intact:	Yes □No	`	10.		
Filtered volume received for Dissolved tests	□Yes □No	° □N/A	11		
Sample Labels match COC:	Yes □No	□N/A	12.		
-Includes date/time/ID/Analysis Matrix:	<u> </u>				
Trip Blank Present:	Yes □No	□n/a	13.		
Trip Blank Custody Seals Present	Yes □No	□n/a			
Pace Trip Blank Lot # (if purchased): 7					
Client Notification/ Resolution:		Deta		f checked, see attac	hed form for additional comments
Person Contacted: Comments/ Resolution:		_Date/	i iiile.		
Commence Resolution.					
			<u> </u>		

PM Review is documented electronically in LIMs. By releasing the project, the PM acknowledges they have reviewed the sample logir

Appendix C Site Investigation Boring Logs, Well Logs, Field Notes, and Borehole Abandonment Forms

Groundwater Monitoring Field Data Form

Project Name
Project Address
Project Contact
Project Phone

Personnel: L. Smith

P. Arntsen 5/13/19

Weather:
Temp: 505, H Wind: light

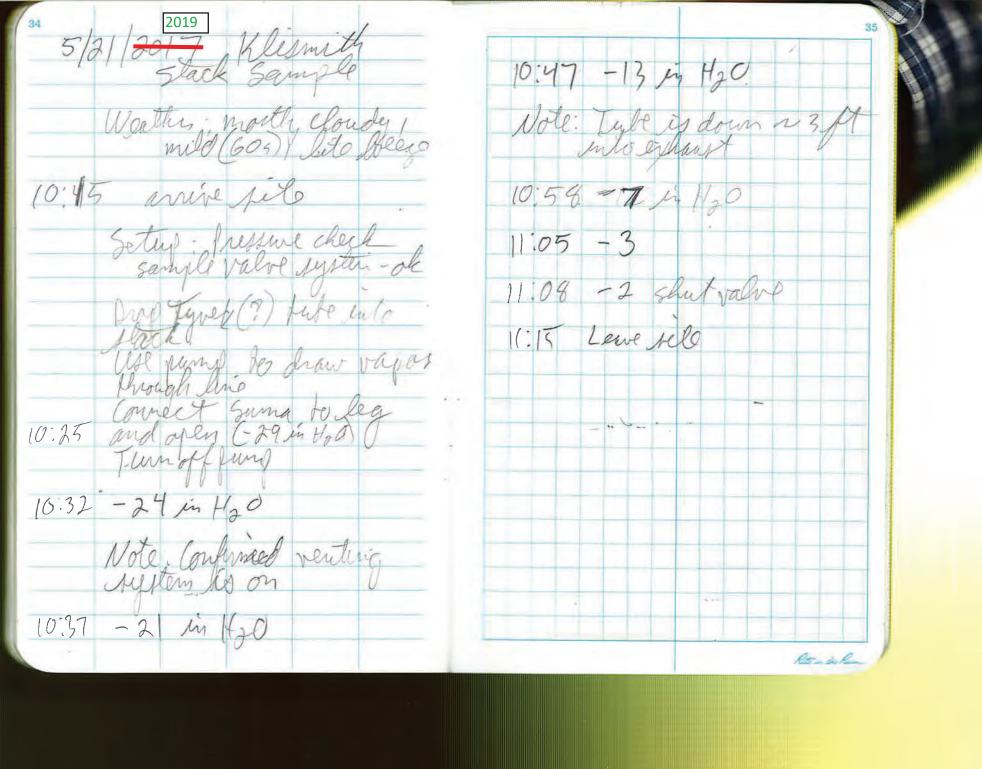
Sample ·	Well Elevation (ft MSL)	Depth to Point (ft)	Screen Length (ft)	Well Diameter (in)	Depth to Water (ft)	Water Elevation (ft MSL)	Height of Water Column (ft)	Calc. Purge Volume (gal)	Actual Purge Volume (gal)	Sample Time	Notes
mw-700		15.10		2 "	8.25		6.85	4.25	4.5	9:55	
P2-900		32.32		2"	7.70		24.62	15.0%	15.5	9:35	
mw-1		14.7		24	6.56		8.1	4.8	5	11:20	1
PZ-1		30.0		2"	6,70	Tri I	23.3	14	14	11:55	under pro. press - place por per
VW#2								1			10111
										10:30	Village wal
		12=0				T					0 332
									1		
			9								
											14
		-									
		7									
										-	

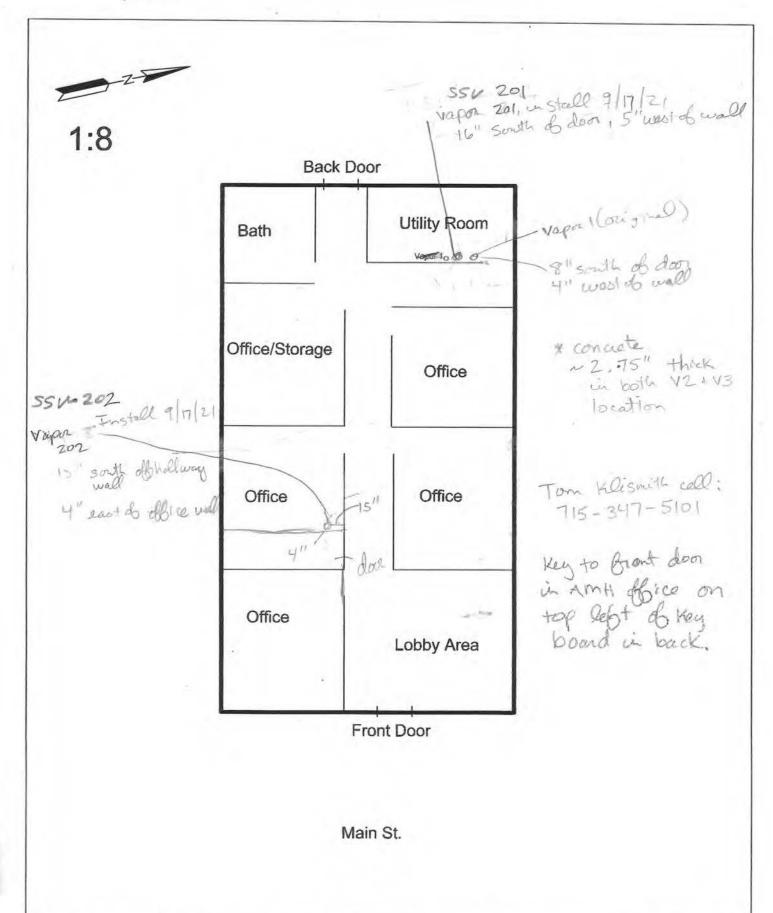
Equipment: Field data sheet, well lock key, water-level indicator, peristaltic pump, battery, pump tubing, bucket, plastic gloves, sample

bottles and labels, Sharpie marker, distilled water, spray bottle, cooler, ice, paper towels, chain-of-custody

Contacts: Sand Creek Consultants - Pete Arntsen 715-824-5969/715-445-1497

Laboratory:


| Well Volumes: gal/ft gal/ft x 3 | -3/4" well | 0.23 | 0.70


- 1 1/4" well 0.39 1.17

- 2" well 0.62 1.87

Purge volume (gal) = gal/ft x 3 x Height of Water Column (ft)

MW1 14.4 + 0.3 1PZ-1 6.69,6,70; 29.7 + 0.3 = 30.0

See Cre	SAND CREEK CONSULTANTS, INC. 151 Mill Street, P.O. Box 218	
CONSULTANTS	Amherst, WI 54406 Tel: 715.365.1818 Fax: 866.608.6473	

FLOOR PLA	AN (Approximate)
-----------	------------------

2 Klismith Accounting office Amherist 9/28/21: onsite 8:40 left 10:35 LS SSV - 202 (moddle office) stant time 9:05 -30" Hg and time 9:48 -2" Hg PID in room - 0.1 ppm PID from vapor probe - 0.3 ppm cannista 1036 FC 3138 55V-201 (back furnare room) Start time 9:23 -30" Hg end time 10:08 -2" Hg PID in room - 0.1 ppm PID from vapor probe - 0.4 ppm cannista 0668 FC 1185

Sand County Environmental

Groundwater Monitoring Field Data Form

Project Name: Klismith Accounting

Project Address: Amherst Project Contact: Tom Klismith

Project Phone:

Personnel: Weather: Temp: Wind:

Precip.

Clouds:

Sample Location	Time	Total Depth (ft brl)	Screen Length (ft)	Well Diameter (in)	Depth to Water (ft bri / bgs)	Stickup (ft)	Height of Water Column (ft)	Calc. One Well Volume (gal)	Calc 4 Well Volumes (gal)	Total Removed (gal)	Purge Dry?	Time end Purge		Water Appearance / Notes
MW-1	17:45	14.7		2"	7.05-		7.65		5	5	N		17:45	
PZ-1	17:05			2"	7.05/		22.95		15	15	12		17:05	10/4/21 - tab + lid broken on Fin
MW-700	10:00	A 680 519		2"	8.981		6.12		4	4	N		10:00	1 I
PZ-900	10:15	32.32		2"	8.25		24.07		15	15	N		10:15	10/1/21
Village Well 1	10:30	Ĭ			1						-		10:30	10/1/21 - well ran for ~ 10min
Village Well 2	10:40	-			1						-		10:40	10/1/21 - well ran for ~ 10min 10/1/21 - well van for ~ 10min - either Nic or Travis Bron city co
					1									- either NIC OI Travis Brown city co
					7									
					1									
					1									
					1		I.							
					1									
					,									

Equipment:

Field data sheet, well lock key, water-level indicator, peristaltic pump, battery, pump tubing, bucket, plastic gloves, sample bottles and labels, Sharpie marker, distilled water, spray bottle, cooler, ice, paper towels, chain-of-custody

Contacts:

Sand County Environmental - 715-824-5169 Laboratory: Pare Green bay

Well Volumes	Sampling : Well Pipe	Dev: Pipe + Sand Pack	Pre-sample Purge (4 Pipe Volumes)	Dev Purge (10X Pipe + Sand Vol or DRY)
- 3/4" ID	gal/ft 0.023	gal/ft	<u>gal/ft</u> 0.09	gal/ft
- 1" ID	0.041	0.10	0.16	1.0
- 2" ID	0.16	0.70	0.65	7.0

State o	Wisconsin	
Depart	ment of Natu	ral Resources

SOIL BORING LOG INFORMATION Form 4400-122 Rev. 7-98

Watershed/Wastewater Waste Management Route To: Remediation/Revelopment Other Facility/Project Name License/Permit/Monitoring Number Boring Number Newman Approsel Service Boring Drilled By: Name of crew chief (first, last) and Firm Date Drilling Started Date Drilling Completed Drilling Method Last Name: Paulson First Name: Powe 04,20,2009 mm d d y y y y 04/20/209 mm dddyyyyy Soil Essentia 6) DNR Well ID No. Final Static Water Level Surface Elevation WI Unique Well No. Well Name Borehole Diameter 3/10 Feet MSL Feet MSL inches Local Grid Origin (estimated:) or Boring Location Local Grid Location Lat DE 0 NG 1/4 of Section 21 22 N. R 9 @W Feet W Feet D S Long Civil Town/City or Yillage County Code Soil Properties h in Feet ground surface) Length Ait. & Recovered (in) Soil/Rock Description Blow Counts And Geologic Origin For Compressiv Strength Plasticity Index Well Diagram Moisture Content PID/FID Each Major Unit Liquid Limit P 200 0 24 0 119 SW 0 12-16 544 I hereby certify that the information on this form is true and correct to the best of my knowledge. Signature Firm

/6-20 SAA 20-24 SAA 20-28 SAA? 28-30 SAA?

50B038'

State of Wisconsin	
Department of Natural	Resources

SOIL BORING LOG INFORMATION Form 4400-122 Rev. 7-98

acility/Pr	roject l	Vame	New	m	Aras	·38/ Se	wire	Lice	nse/Per	mit/M	onitori	ng Nu	nber	Borir	ig Nun		of_ MW-			
	ring Drilled By: Name of crew chief (first, last) and Firm ist Name: Powe Last Name: Powlson m: Soil Starting! Unique Well No. DNR Well ID No. Well Name									g Start			Date Drilling Completed Out of the property o				Drilling Method			
		2			_			Fina	l Static	Water Feet I			ce Elev	_Feet	MSL	Borel	nole D	iamete inches		
tate Plane		,		_N,_		zing Loc Z N, I	E S/C/ R 9 @/\		Lat	0 '				eet 🗆	I N		_ Fee	□ E		
)	_		County	Port	rye		County	Code	Civil	Town/		r Yilla	+						
Sample es	<u>E</u> =	¥.	authree)		Soil/Ro	ck Descri	iption						ę.		Prope	rties				
and Type Length Att.	Recovered (in) Blow Counts	Depth in Feet	ponozi wolaci)			logic Ori Major U			USCS	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments		
49 30		mhundundun	4-8	SAA		ul son	el Som	4	SW		**	0 0 0								
43	1		8-16.	sad See	SHAT Chang	. M. Sed.	tt, Lt													

12-16 SAA 14-15 set, Guly day 1516

16-20

State of Wisconsin	
Department of Natural	Resources

SOIL BORING LOG INFORMATION Form 4400-122 Rev. 7-98

Watershed/Wastewater Waste Management Route To: Remediation/Revelopment Other Facility/Project Name License/Permit/Monitoring Number Boring Number Newman Apassel Serice Boring Drilled By: Name of crew chief (first, last) and Firm Date Drilling Completed Drilling Method Date Drilling Started Last Name: Palson First Name: Powe 1 2 0 1 2 00 9 y y y y 04 1 20 1 2007 mm d d y y y y Soil Essentia 6) DNR Well ID No. Well Name WI Unique Well No. Final Static Water Level Surface Elevation Borehole Diameter Feet MSL Feet MSL inches Local Grid Origin ☐ (estimated: ☐) or Boring Location Local Grid Location 0 E S/C/N Lat State Plane \square N DE 0 SE 1/4 of Section 2 / NG 1/4 of _ 9 (E)W Feet D S Long Feet□ W Facility ID County Code Civil Town/City/ or Village County 4 9 Huberst Sample Soil Properties Depth in Feet (Below ground surface) Length Att. & Recovered (in) Soil/Rock Description Blow Counts And Geologic Origin For Compressiv Strength Plasticity Index USCS PID/FID Moisture Content Diagram Each Major Unit Graphic Liquid Limit P 200 Well 64 Chapen sur chan/sundalchy 0 0 48 0 SW 30 0 ō D 0 0 8-10 SAA ő 0 48 Su 0 6 10 Gos on. I hereby certify that the information on this form is true and correct to the best of my knowledge. Signature Firm

State of Wisconsin	
Department of Natural	Resources

SOIL BUKING LOG INFORMATION Form 4400-122 Rev. 7-98

Facility	Proje	ct Na	me	New	m	Ara	236/	Serie	e	Lice	nse/Per	mit/Mo	onitoria	ig Nur	nber	Borin		ber			
Boring Drilled By: Name of crew chief (first, last) and Firm First Name: Power Last Name: Powler Firm: Soil Specifical										$0 \frac{4}{m} \frac{20}{d} \frac{2009}{d} \frac{9}{y} \frac{9}{y}$				Date Drilling Completed O 4 / 20 / y y y y m m d d d y y y y y							
	T Unique Well No. DNR Well ID No. Well Name									Final	inal Static Water L Feet M			_	Grid I	_Feet		Borehole Diameter inches			
tate Pla	une_ Une_			Sectio	_N	_ , T	22 N	I, R <u>9</u>	S/C/N _@W	Lo	Code	O '		City/ o	F r Villa	eet 🗆	N		_ Fee	D E	
Samp	e		(9)			Pol	tage			4	<u> </u>	-		Ju	hes		Prope	rties			
and Type		Blow Counts	Depth in Feet (Below ground surface)	•		And G	ologic ch Majo	scription Origin Fo T Unit			USCS	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments	
4	18/12		2		sa br		snd	M zoer	x		ζω	0.0000000000000000000000000000000000000	×								
j	48		5	4-8	SAN	4			,		sw	0.0.0.0.000				•					
4	12		<u> </u>	8-10							sw	Q:0. 4 1. 9. 6. 9.									
3	3			10-12	100	se ch sert i	- 5~ 011' 15016	1			SP										

State of V	Visconsin	
Departme	nt of Natural	Resources

SOIL BORING LOG INFORMATION Form 4400-122 Rev. 7-98

acility/	Proje	ct Na	me	New	nem	App	-Jel S	elize	Lie	ense/Pe	rmit/M	onitori	ng Nur	nber	Borin	g Num	iber B	6		
oring Drilled By: Name of crew chief (first, last) and Firm First Name: Power Last Name: Powlson Soil Specific !										te Drillir				Drillin		Drilling Method				
VI Uniq	pue W	/ell N	0.	DNR		D No.	Well				I Static Water Leve Feet MSL			ce Elev	ation Feet	MSL	Borehole Diame			
	4 of			Sectio		_, T_		E S/C	w l	Lat Long	0 '	Tour		Grid I	eet E	N		_ Fcc	D E	
Sampl		-	2	2"	Coun	Por	tage		4	T Coule	Civil	TOWN		hes	+	Prope	rties		_	
and Type	13	Blow Counts	Depth in Feet (Below ground surface)		Car	And Ge	ock Desc ologic Or h Major l	rigin For		uses	Graphic Log	Well Diagram	PID/FID	Compressive Strength		Liquid Limit	Plasticity Index	P 200	RQD/ Comments	
4	12		1 2 3 4	9-	Sor		soul,	JUICLE		c c			0							
				8-1°	(00		m sn sut d	J. Z		SP	0.		0							

State of Wisconsin
Department of Natural Resources

SOIL BORING LOG INFORMATION

Resources
Form 4400-122
Rev. 7-98

Route To: Watershed/Wastewater Waste Management

Facili	y/Proj	ect N	me	Newn	m App	vasel Se	11ile	Licens	se/Per	mit/M	onitori	ng Nu	mber	Borir	g Nun	nber \square	7.7	
Boring Drilled By: Name of crew chief (first, last) and Firm First Name: Parker Last Name: Parker				O 4 / 2 0 / 2 00 9 00 m m Final Static Water Level Surf Feet MSL					ate Drilling Completed O4 20 200 9 m d d y y y y			Drilling Method						
WI Unique Well No. DNR Well ID No. Well Name								Feet MSL			Borehole Diamete							
State F	Plane_ 1/4 of	17.0		Section	N,	Boring Loca	_ E S/C/N	Lon ounty C		0 1			Grid I	eet E	N		_Fee	D E
Sam					County Po	rtuge		4	<u> </u>	CIVIL	I OWIL		hes	+	Prope	etine.	-	_
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth in Feet (Below ground surface)		And C	Rock Descri eologic Orig ach Major Ut	in For		uscs	Graphic	Well Diagram	PID/FID	Compressive Strength		Liquid Limit	Plasticity Index	P 200	RQD/ Comments
	48/42 48/49		والسالسا	4-7.	S SAM	no cla	7		Su	0.								
			E "		Sabol		ue and corre											-

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. NOTE: See instructions for more information,

including where the completed form should be sent.

Section Location of Waste/Source Well Code					
Local Grid Origin	1				
Section St. Plane St. Plane St. Plane Section					
St. Plane ft. N. ft. E. S/CN Date Well Installed J. Date J. Date Well Installed J. Date J.	R Well ID	ID	31		
Symbol S	04/20/2007				
Well Code	v v v	V	V		
Distance from Waster Enf. Sids Downgradient Sol Segregation Sol Case Sol Cas		, an	III		
A. Protective pipe, top elevation		1			
3. Well easing, top elevation ft. MSL or ft.	Yes 🗆				
1. Well casing, top elevation 1. Land surface clevation 1. Land surface clevation 1. Land surface clevation 2. Land surface clevation 3. Surface seal, bottom 1. Cand surface seal, top 1. Cand surface seal 1. Cand su	1 103 [
Surface seal, bottom	1	13	2		
Surface seal, bottom		-	-		
12. USCS classification of soil near screen: GP	Steel 🖫				
Section Sect	Other 🗆		1		
SM SC ML MH CL CH CH Bedrock C13. Sieve analysis performed? Yes S No 14. Drilling method used: Rotary 5 0 Hollow Stem Auger 5 4 1 Other 1 15. Drilling fluid used: Water 10 2 Air 10 1 Drilling Mud 10 3 None 19 9 16. Drilling additives used? Yes No Describe 17. Source of water (attach analysis, if required): E. Bentonite seal, top ft. MSL or ft. M	Yes 🛭	Ø	1 1		
Bedrock	-				
13. Sieve analysis performed?	ntonite 🗆		l		
14. Drilling method used: Rotary 5 0 Hollow Stem Auger 4 1 Other 4 1	ncrete 🗷	X	1		
Hollow Stem Auger 10 4 1 Other 1	Other 🚨	D	l		
S. Annular space seal: a. Granular/Chipped Be b. L. Lbs/gal mud weight Bentonite-sance. L. Lbs/gal mud weight Bentonite Bentonite d Bentonite Bentonite d Bentonite Bentonite Bentonite Bentonite Bentonite seal: a. Bentonite seal: f. How installed: Tremie put Bentonite seal: a. Bentonite graph. The sand, top ft. MSL or ft. MSL or ft Fine sand, top ft. MSL or ft. MSL or ft Filter pack, top ft. MSL or ft Filter pack, top ft. MSL or ft Filter pack, bottom ft. MSL or ft Borehole, diameter ft Filter pack material: ft Filter pack, bottom ft. MSL or ft Filter pack material: ft Filter pack material: ft ft Filter pack, bottom ft. MSL or ft. ft Filter pack, bottom ft. MSL or ft Filter pack material: ft	pe:				
5. Annular space seal: a. Granular/Chipped Be b. Lbs/gal mud weight Bentonite sance. Lbs/gal mud weight Bentonite sance. Lbs/gal mud weight Bentonite d. — % Bentonite Bentonite cemer e. — Ft volume added for any of the ft. How installed: Tremie product name and the ft. MSL or	ntonite 🗆				
S. Drilling fluid used: Water 0 2 Air 0 1 Drilling Mud 0 3 None 0 9 9	Other 🖾	K	1		
Drilling Mud					
16. Drilling additives used?	I slurry 🗆		1		
Describe 17. Source of water (attach analysis, if required): 18. Bentonite seal, top 19. Fine sand, top 19. Fine sand, top 19. Filter pack, top 19. MSL or 19. Filter pack, bottom 10. Screen material: 10. Screen type: 10. Screen type: 11. Factor Continuous Cont	slurry]		
Describe 17. Source of water (attach analysis, if required): E. Bentonite seal, top ft. MSL or ft			J		
Describe Tremie pt G 6. Bentonite seal: a. Bentonite gent b. □1/4 in. \(\frac{1}{2} \) 3/8 in. □1/2 in. Bentonite Fine sand, top ft. MSL or □ ft. 7. Fine sand material: Manufacturer, product nate a. b. Volume added ft3 8. Filter pack material: Manufacturer, product nate a. b. Volume added ft3 8. Filter pack material: Manufacturer, product nate a. b. Volume added ft3 9. Well casing: Flush threaded PVC schedue Flush threaded PVC schedue Flush threaded PVC schedue C. Borehole, bottom ft. MSL or ft. Borehole, diameter □ ft. Borehole, diameter □ ft. M. O.D. well casing □ ft. M. O.D. well cas		_			
17. Source of water (attach analysis, if required): 18. Bentonite seal, top	Tremie 🗆	-			
6. Bentonite seal: a. Bentonite seal: b. \(\bigcup 1/4 \) in. \(\bigcup 3/8 \) in. \(\bigcup 1/2 \) in. \	-				
b. □1/4 in. □3/8 in. □1/2 in. Bentonite seal, top ft. MSL or	ravity [
E. Bentonite seal, top ft. MSL or ft. Fine sand, top ft. MSL or ft. Fine sand, top ft. MSL or ft. Filter pack, top ft. MSL or ft. B. Filter pack, top ft. MSL or ft. B. Well boutom ft. MSL or ft. Filter pack, bottom ft. MSL or ft. Borehole, bottom ft. MSL or ft. Borehole, diameter ft. MSL or ft. Manufacturer ft. Continuous ft. Manufacturer ft. Continuous ft. MSL or ft. Manufacturer ft. Continuous ft. MSL or ft. Manufacturer ft. Continuous ft. MSL or ft. Manufacturer ft. Continuous ft. MSL or ft. MSL or ft. Manufacturer ft. Manufacturer ft. Continuous ft. MSL or ft. MSL or ft. MSL or ft. Manufacturer ft. Manufacturer ft. Continuous ft. MSL or ft. MSL or ft. MSL or ft. Manufacturer ft. MSL or ft. MSL or ft. MSL or ft. Manufacturer ft. Ma					
7. Fine sand material: Manufacturer, product name and material: Manufacturer,		200	22		
a. b. Volume added ft ³ 8. Filter pack material: Manufacturer, product na a. b. Volume added ft ³ 9. Well bottom ft. MSL or ft. MSL or ft. ft. Filter pack, bottom ft. MSL or ft. ft. Borehole, bottom ft. MSL or ft. ft. Borehole, diameter ft. MSL or ft. Borehole, diameter ft. Bor	Other 🗆				
8. Filter pack material: Manufacturer, product na a. b. Volume added ft ³ 9. Well casing: Flush threaded PVC schedurer, product na a. b. Volume added ft ³ 9. Well casing: Flush threaded PVC schedurer, product na a. b. Volume added ft ³ 9. Well casing: Flush threaded PVC schedurer, product na a. b. Volume added ft ³ 9. Well casing: Flush threaded PVC schedurer, product na a. b. Volume added ft ³ 9. Well casing: Flush threaded PVC schedurer, product na a. b. Volume added ft ³ 9. Well casing: Flush threaded PVC schedurer, product na a. b. Volume added ft ³ 9. Well casing: Flush threaded PVC schedurer, product na a. b. Volume added ft ³ 9. Well casing: Flush threaded PVC schedurer, product na a. b. Volume added ft ³ 9. Well casing: Flush threaded PVC schedurer, product na a. b. Volume added ft ³ 9. Well casing: Flush threaded PVC schedurer, product na a. b. Volume added ft ³ 9. Well casing: Flush threaded PVC schedurer, product na a. b. Volume added ft ³ Flush threaded PVC schedurer, product na a. b. Volume added ft ³ Flush threaded PVC schedurer, product na a. b. Volume added ft ³ 9. Well casing: Flush threaded PVC schedurer, product na a. b. Volume added ft ³ 9. Well casing: Flush threaded PVC schedurer, product na a. continuous ft	ne & mesi	iesn	ЯL		
8. Filter pack material: Manufacturer, product na a. b. Volume added ft ³ 9. Well casing: Flush threaded PVC schedurer, product na 6. Filter pack, bottom ft. MSL or ft. MS					
H. Screen joint, top ft. MSL or f					
. Well bottom ft. MSL or	me & mes	nes!	sh		
Well bourd ft. MSL or					
Filter pack, bottomft_ MSL orft Borehole, bottomft_ MSL orft Borehole, diameterfoin. Description in. M. O.D. well casingin.					
Filter pack, bottomft_ MSL orft. Borehole, bottomft_ MSL orft. Borehole, diameter					
C. Borehole, bottomft_ MSL orft. Borehole, diameterfo in. D. Screen material:					
C. Borehole, bottomft_ MSL orft. Borehole, diameterfoin. b. Manufacturerc. Slot size:	Other \square		i		
Borehole, diameter		_			
Borehole, diameter in. b. Manufacturer c. Slot size:	ory cut 🗔	1000			
M. O.D. well casing in. b. Manufacturer c. Slot size:					
1. O.D. well casing in. c. Slot size:	Other		1		
	- 0.01	01	16		
d. Slotted length:			K		
	None 🖪				
J. I.D. well casing in. 11. Backfill material (below filter pack):	Other \square				
hereby certify that the information on this form is true and correct to the best of my knowledge.		_	-		

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

P. 35. 49. 1 - N	Remediation/Redevelopment Other Local Grid Location of Well ft S.	rL	her Mar				
Facility/Project Name	Local Grid Location of Well N.	, DE.	Well Name				
Newman	ft 🗆 S. 💆	ft. 🖁 🕏	P-3-1				
Facility License, Permit or Monitoring No.	Local Grid Origin [(estimated: [Wis. Unique Well No. DNR Well ID				
	Lat, "Long	or II					
Facility ID	St. Planc ft. N	ft. E. S/C/N	Date Well Installed 4/20/200				
	Section Location of Waste/Source		m m d d v v v				
Type of Well	NE 1/4 of SE 1/4 of Sec. 21 . T.	21 NR 5 AW	Well Installed By: Name (first, last) and				
Well Code/	Location of Well Relative to Waste/Sou	arce Gov. Lot Number	- Mare laden				
Distance from Waste/ Enf. Stds.	u □ Upgradient s □ Sidegra	adient	Carl Face Late				
Sourceft Apply [d Downgradient n 🗆 Not Kr	nown ———	Soil Essenhely				
A. Protective pipe, top elevation	ft_MSL	1. Cap and lock?	√ Yes □				
	ft. MSL	2. Protective cover p	pipe;				
B. Well casing, top elevation	IC MISE	a. Inside diameter	<u> </u>				
C. Land surface elevation	ft_MSL	b. Length:	_ (- 5				
	- Service of Contract	c. Material:	Steel 🗵				
D. Surface seal, bottom ft. MS	Lor II.		Other				
12. USCS classification of soil near screen	ii Andria	d. Additional prof	tection?				
	W 🗆 SP 🗷	If yes, describe	ž				
SM C SC ML MH C	т С С Н С Н С Н Н Н Н Н Н Н	1	Bentonite □				
Bedrock □	1 100 100	3. Surface scal:	Concrete 🖊				
13. Sieve analysis performed?	res ⊠ No 🔛 🔛		Other □				
14. Drilling method used: Rota	ary □ 50	4. Material between	well casing and protective pipe:				
Hollow Stem Au			Bentonite □				
	her 🗆 🔛 🔛		Other 🗷				
		5. Annular space sea					
15. Drilling fluid used: Water □ 0 2	Air □ 01		and weight Bentonite-sand slurry				
	one		ud weight Bentonite slurry				
		cLos/gai m	te Bentonite-cement grout				
16. Drilling additives used? ☐ Y	es 🔼 No		volume added for any of the above				
	188 188						
Describe		f. How installed:					
17. Source of water (attach analysis, if requi	ired):		Tremie pumped				
		6. Bentonite seal:	Gravity .⊠ a. Bentonite granules □				
							
E. Bentonite seal, top ft. MSI	/ 0		3/8 in. 1/2 in. Bentonite chips 🗷				
E. Bentonite seat, topit wist	- Cr M M	/ c	Other 🗆				
7. Fine sand, top ft_MSI	2岁 2	7. Fine sand material	: Manufacturer, product name & mesh				
. rine said, top		1					
G. Filter pack, top ft. MSl	- 26 a. 1 1	/ a	_{ft} 3				
G. Filter pack, top ft. MSL	- M M						
T. C	25 0 - 1	8. Filter pack materia	al: Manufacturer, product name & mesh				
I. Screen joint, top ft. MSI	or 1L	a					
	70 0	 Volume added 					
Well bottomft. MSL	or	Well casing:	Flush threaded PVC schedule 40 💆				
	20		Flush threaded PVC schedule 80 \square				
Filter pack, bottom ft. MSL	orft.	\	Other 🗆				
	70.	10. Screen material:	PVC				
K. Borehole, bottom ft. MSL	orft.	 a. Screen type: 	Factory cut 🙎				
			Continuous slot □				
Borehole, diameter in.	· ·		Other				
	1	b. Manufacturer					
I. O.D. well casing 432 in.		c. Slot size:	0.019				
		d. Slotted length:	5				
I. I.D. well casing 2 in.		11. Backfill material (below filter pack): None 🗵				
m.		(Other 🗆				
hereby certify that the information on this f	orm is true and correct to the best of my	knowledge.					
	Firm	11					
Signature (CU)	Firm	Crek Consul	Thus				

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information or these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

w 111 1m 1 11	Remediation/Redevelopment	Other	Tour and a second secon
Facility/Project Name NELVINGA AMERICA	Local Grid Location of Well	Nft. E	Well Name
Facility License, Permit of Monitoring No.	Local Grid Origin (estim	ated:) or Well Location Long.	or MW2
Facility ID	St. Plane ft. N Section Location of Waste/So	I, ft. E. S/C/N	Date Well Installed 4/20/2009
Type of Well Well Code /	NE 1/4 of SE 1/4 of Sec.	21, T. 22 N. R. 5	
Distance from Waste/ Enf. Stds. Source ft. Apply	Location of Well Relative to V u □ Upgradient s □ d □ Downgradient n □	Sidegradient	Soil Essenhely
	ft MSL	1. Cap and lock?	[Yes □ No
B. Well casing, top elevation	ft MSL	2. Protective cover a. Inside diamete	
C. Land surface elevation	ft. MSL	b. Length:	ft. Steel 📳 0
D. Surface seal, hottom ft. MS	SL or ft. sign 1	X	Other 🗆 🧱
12. USCS classification of soil near screening GP GM GC GW GS SM GSC MIL MH GC	SW D SP 🔯	d. Additional pr If yes, descri	otection?
Bedrock 🗆		3. Surface scal:	Concrete 🖾 01
13. Sieve analysis performed?	Yes ⊠ No		Other 🗆
	ary 🗆 5 0	4. Material betwee	n well casing and protective pipe:
Hollow Stem At	nger ≱41 kher □		Bentonite □ 3 (
	inei 🗆 🖘	- A	Other & 33
15. Drilling fluid used: Water □ 0 2	Air □ 01	5. Annular space se	mud weight Bentonite-sand slurry 3 5
	Joney© 99 👹		mud weight Bentonite slurry 3 J
			nite Bentonite-cement grout \(\Pi \) 5 (
16. Drilling additives used?	Yes 🔼 No	eFt	³ volume added for any of the above
Describe		f. How installed	
17. Source of water (attach analysis, if requ	140		Tremie pumped 🗆 02
17. Source of water (attack manysis, if fort	inica).		Gravity 🔲 08
		6. Bentonite seal:	a. Bentonite granules 3.3
E. Bentonite seal, topft. MS	Lorfi.	b. 🗆 1/4 in. 🗵	43/8 in. □ 1/2 in. Bentonite chips ⊠ 3 2 Other □
F. Fine sand, sop ft. MS	L or ft.	7. Fine sand materi	al: Manufacturer, product name & mesh size
G. Filter pack, top ft. MS	Lor9_ft.	b. Volume adde	dfi ³
H. Screen joint, top ft. MS	L or	8. Filter pack mater	rial: Manufacturer, product name & mesh size
		b. Volume adde	dft ³
I. Well bottom ft. MS.	Lor2º_ft.	9. Well casing:	Flush threaded PVC schedule 40 🖰 2.3 Flush threaded PVC schedule 80 🗆 2.4
I. Filter pack, bottom ft. MS	Lorft.	10 Same metariali	Other 🗆 🏬
K. Borehole, bottom ft. MS	L or 20_ ft.	10. Screen material: a. Screen type:	Factory cut 🗷 11
L. Borehole, diameter in,			Continuous slot
M. O.D. well casing in.		b. Manufacturer c. Slot size:	0. 💇 o in.
N. I.D. well casing in.		d. Slotted length	t:ft. (below filter pack); None = 14
			Other 🗆 🚉
hereby certify that the information on this	form is true and correct to the b	est of my knowledge.	
Signature /	Firm		

Please complete both Forms 4460.113A and 4400.113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299. Wis Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information or these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

State of Wisconsin Department of Natural Resources

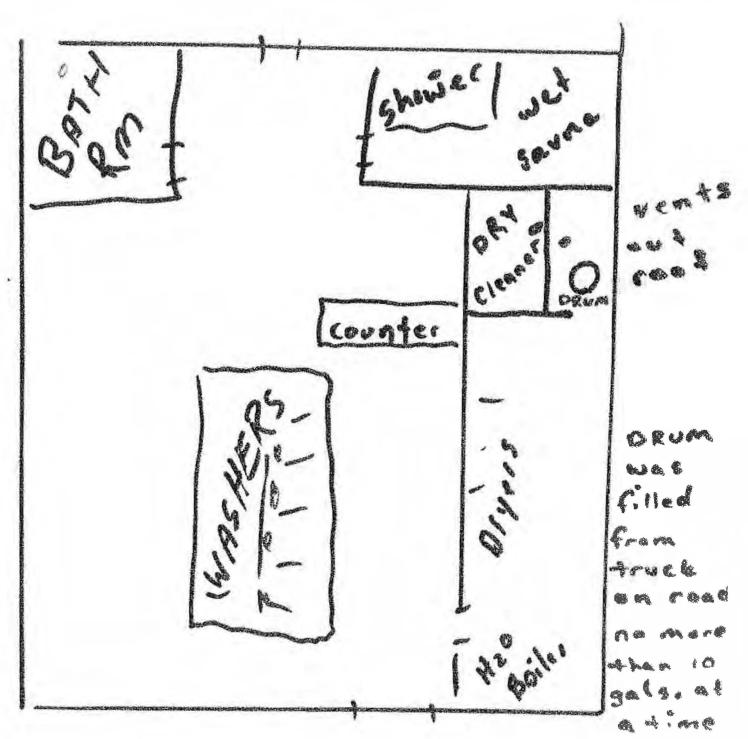
WELL/DRILLHOLE/BOREHOLE ABANDONMENT Form 3300-5 2/2000 Page 1 of 2

Notice: Please complete Form 3300-5 and return it to the appropiate DNR office and bureau. Completion of this report is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file this form may result in a fortelture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. NOTE: See the instructions for more information.

Route to: Drinking Water Watershed/Wastowater Waste Manag	gement Remediation/Redevelopment Other (2) FACILITY/OWNER INFORMATION						
WI Unique Well No. DNR Well ID No. County Portage	Pacility Name Newword Apprecia: Service						
Common Well Name Gov't Lot (If applicable)	Facility ID License/Permit/Monitoring No.						
NE 1/4 of SE 1/4 of Sec. 21; T. 22 N; R. 9 X E Grid Location	Street Address of Well 157 Man St. North						
ft. 🗌 N. 🔲 S., ft. 🔲 E. 🔲 W.	City, Village, or Town Auherst, WI						
Local Grid Origin (estimated:) or Well Location	Present Well Owner See Above Original Owner n/a						
Lat tong or St. Plane ft. N ft. E. □□□ Zone	Street Address or Route of Owner See Alone						
Reason For Abandonment WI Unique Well No. Test Boring See Converses of Replacement Well	City, State, Zip Code See Aloye						
(3) WELL/DRILLHOLE/BOREHOLE INFORMATION	(4) PUMP, LINER, SCREEN, CASING, & SEALING MATERIAL						
Original Construction Date 4-20-09 Monitoring Well Water Well Borehole / Drillhole Water Well Borehole / Drillhole	Pump & Piping Removed? Liner(s) Removed? Screen Removed? Casing Left in Place? Yes No Not Applicable Yes No Not Applicable Yes No Not Applicable Yes No						
Construction Type: Drilled Driven (Sandpoint) Dug Other (Specify)	Was Casing Cut Off Below Surface? Did Sealing Material Rise to Surface? Did Material Settle After 24 Hours? If Yes, Was Hole Retopped? Yes ☑ No Yes ☑ No						
Formation Type: - Unconsolidated Formation	Required Method of Placing Scaling Material Conductor Pipe-Gravity Conductor Pipe-Pumped						
Total Well Depth (ft.) 20 Casing Diameter (in.) 2 (From groundsurface) Casing Depth (ft.) /0	Screened & Poured (Bentonite Chips) Carlie Massing						
Lower Drillhole Diameter (in.) 8	Sealing Materials For monitoring wells and monitoring well boreholes only						
Was Well Annular Space Grouted? 🗵 Yes 🗌 No 🔲 Unknown	Sand-Cement (Concrete) Grout Bentonite Chips Concrete						
If Yes, To What Depth? Feet	Clay-Send Slurry (11 lb./gal. wt.) Granular Bentonite Bentonite - Cement Grout						
Depth to Water (Feet) 2,22	☐ Bentonite-Sand Slurry " " ☐ Bentonite - Centari Ground						
(5) Material Used To Fill Well/Drillhole	From (Ft.) To (Ft.) Sacks Sealant One) Or Muk Ratio or Wolume						
3/4" Best. Chips	8 20 20,555						
(Excavation to report sever was 8' days. Well at off -							
	though a sanitory sever lateral. Well was se Village. SCC as site to ovosee abadonumnt						
7) Name of Person or Firm Doing Sealing Work Date of Abandon's Sand Creek Consultate 9-15-0	ROR DAK OR COURTS THE COURTS						
Signature of Person Doing Work Date Signed 9-15-09	Comments						
Street or Refute							
Cirv. State. Zip Code Aucherst WI 54406							

State of Wisconsin Department of Natural Resources

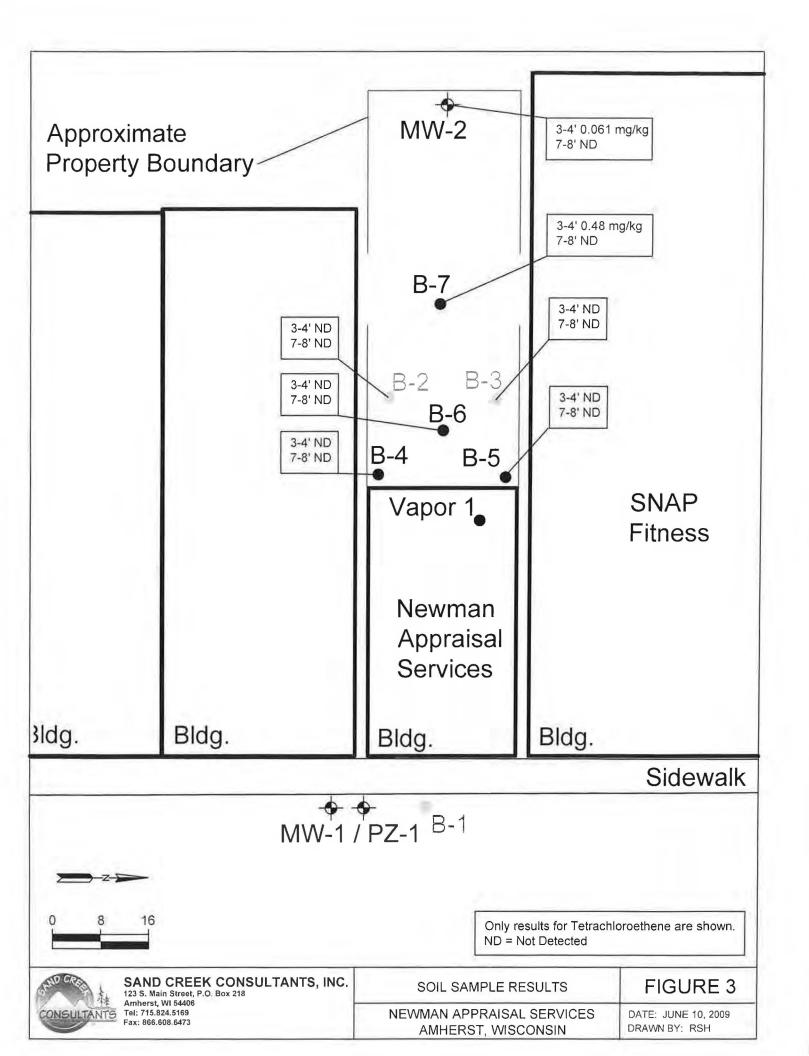
WELL/DRILLHOLE/BOREHOLE ABANDONMENT Form 3300-5 2/2000 Page 1 of 2

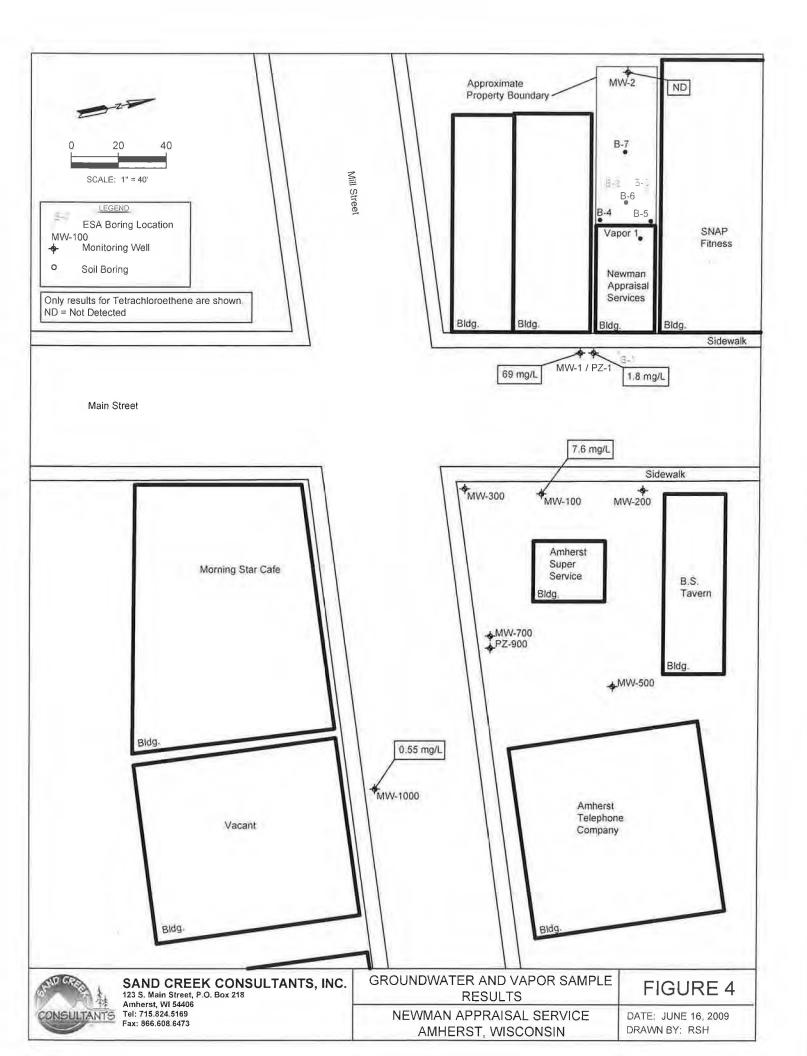

Notice: Please complete Form 3300-5 and return it to the appropiate DNR office and bureau. Completion of this report is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file this form may result in a forteiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. NOTE: See the instructions for more information.

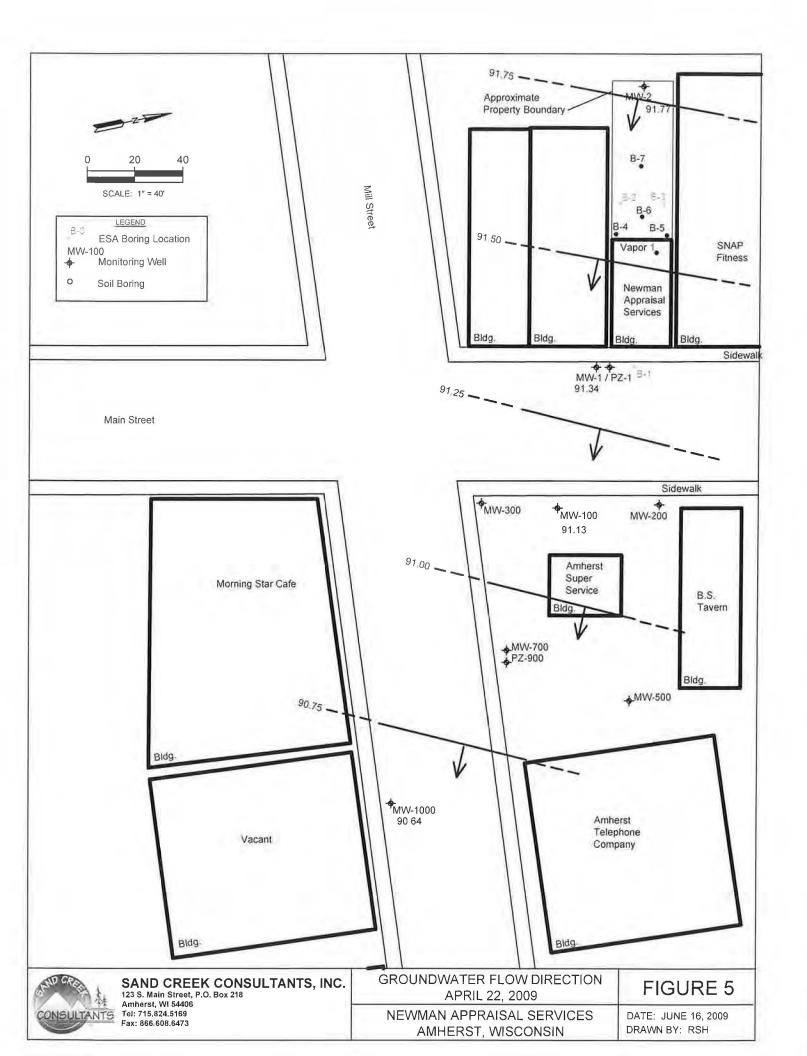
Route to: Drinking Water Watershed/Wastewater Waste Mana (1) GENERAL INFORMATION	gement Remediation/Redevelopment Other						
WI Unique Well No. IDNR Well ID No. ICounty	Pacility Name						
Parture	Neuman Approsi Serve						
Common Well Name Gov't Lot (If applicable)	Facility ID License/Permit/Monitoring No.						
<u>NC</u> 1/4 of <u>SE</u> 1/4 of Sec. <u>Z1</u> ; T. <u>ZZ</u> N; R. <u>9</u> ☐ E Grid Location	Street Address of Well 157 N. Meinst City, Village, or Town Anhast WI 54406						
	City, Village, or Town Anhast WI 54406						
Local Grid Origin (estimated:) or Well Location Lat or	Present Well Owner See Above Original Owner n/a						
<u>8 C N</u>	Street Address or Route of Owner						
St. Plane ft. N. ft. E. Zone Reason For Abandonment Test Boring WI Unique Well No. of Replacement Well	City, State, Zip Code						
	(4) PUMP, LINER, SCREEN, CASING, & SEALING MATERIAL						
Original Construction Date 4-20-09 Monitoring Well Water Well Borehole / Drillhole If a Well Construction Report is available, please attach.	Pump & Piping Removed?						
Construction Type: Drilled Driven (Sandpoint) Dug Other (Specify) Geoprobe	Was Casing Cut Off Below Surface? Yes No Did Sealing Material Rise to Surface? Yes No Did Material Settle After 24 Hours? Yes No If Yes, Was Hole Retopped? Yes No						
Formation Type: Unconsolidated Formation Bedrock Total Well Depth (ft.) Casing Diameter (in.)	Required Method of Placing Scaling Material Conductor Pipe-Gravity Conductor Pipe-Pumped Other (Explain) poured						
(From groundsurface) Casing Depth (ft.) Lower Drillhole Diameter (in.)	Concrete Chips						
Was Well Annular Space Grouted? Yes No Unknown If Yes, To What Depth? Feet Depth to Water (Feet)	Concrete Clay-Sand Slurry (11 lb./gal. wt.) Bentonite-Sand Slurry " " Bentonite - Cement Grou						
(5) Material Used To Fill Well/Drillhole	No. Yards, (Circle Mix Ratio						
	One or Mud Weight						
6) 6							
6) Comments:							
7) Name of Person or Firm Doing Sealing Work Scal Creak Country 1/-20-09	FOR DAR COUNTY USE ONLY						
Signature of Person Doing Work Date Signed 4-20-09	Date Residue						
Street or Route Route	Comments						
City. State, Zip Code							

002/002

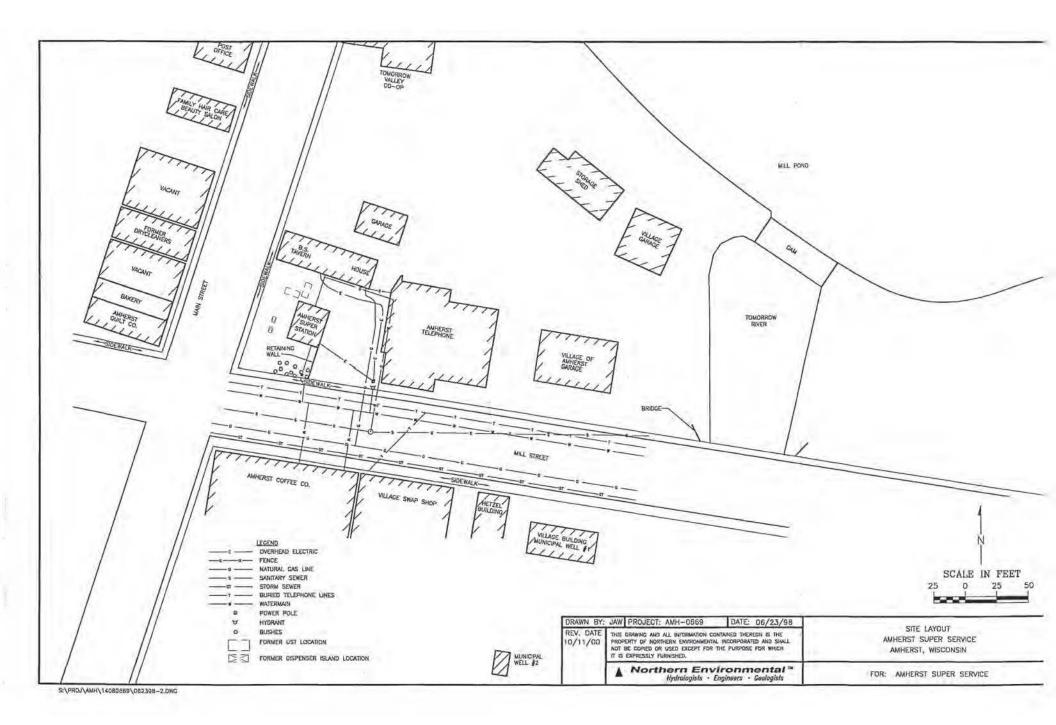
to 1262-951-4690 PARKING

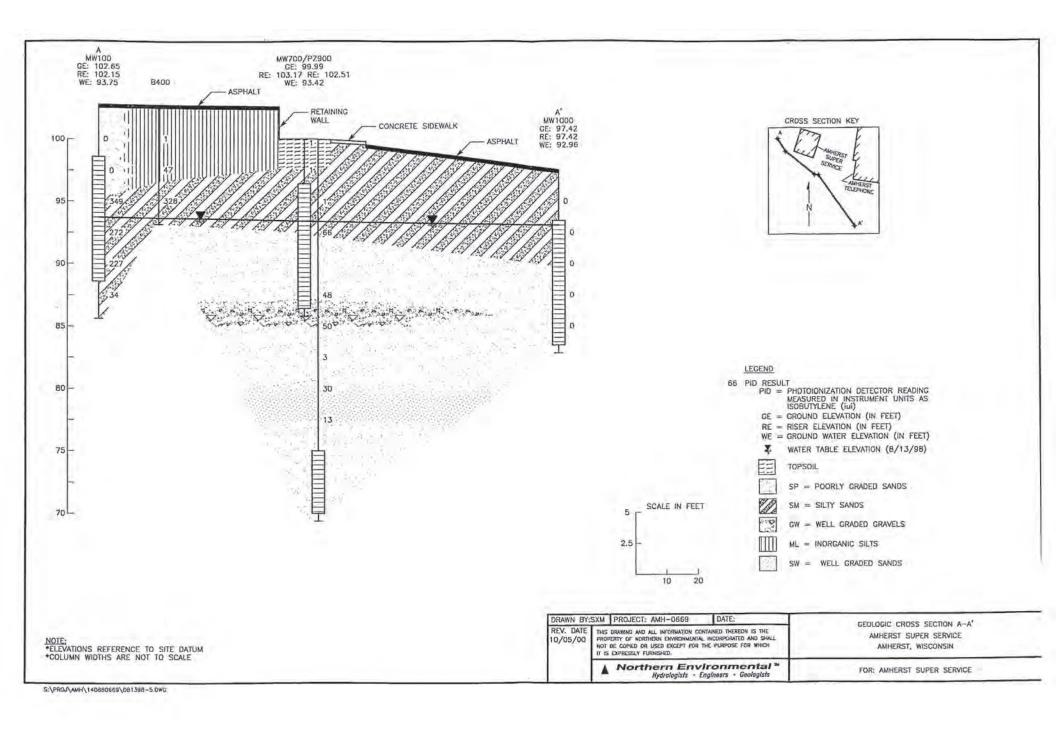

ORAIAS

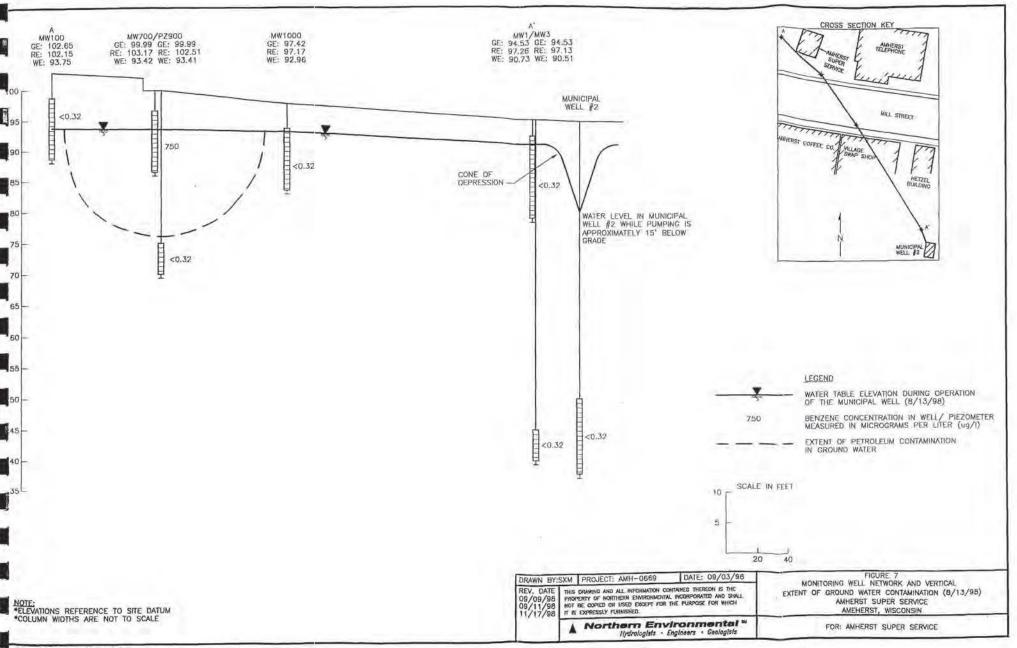


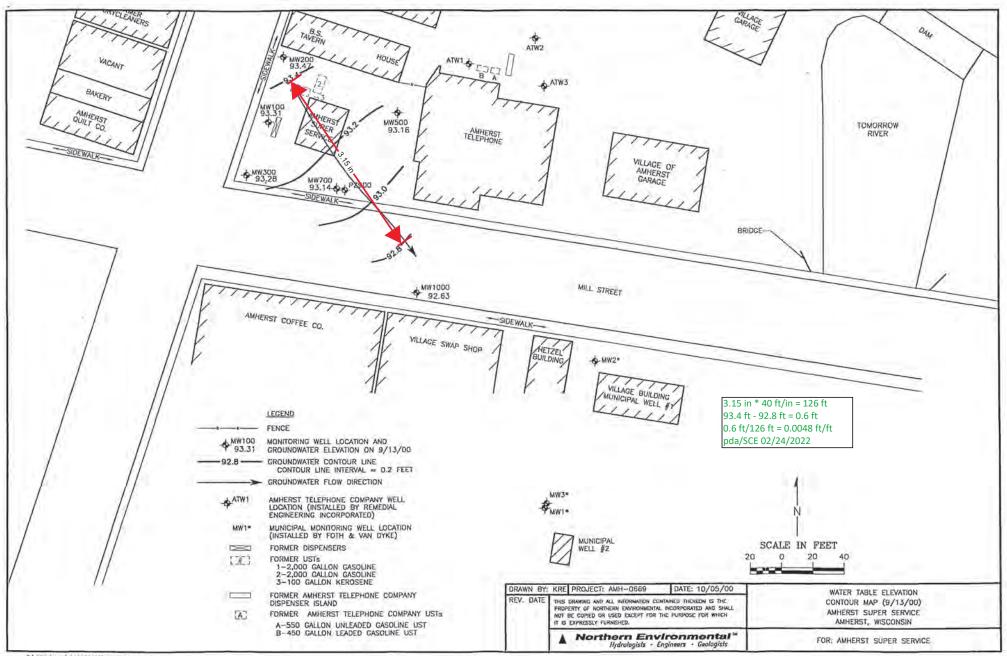

Side walk

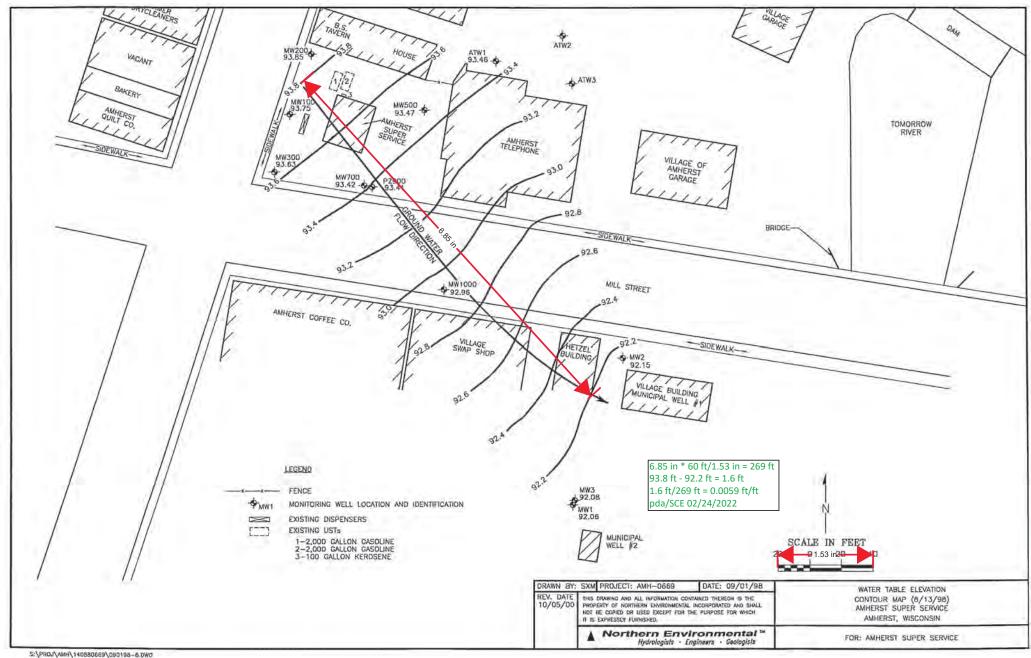
Road

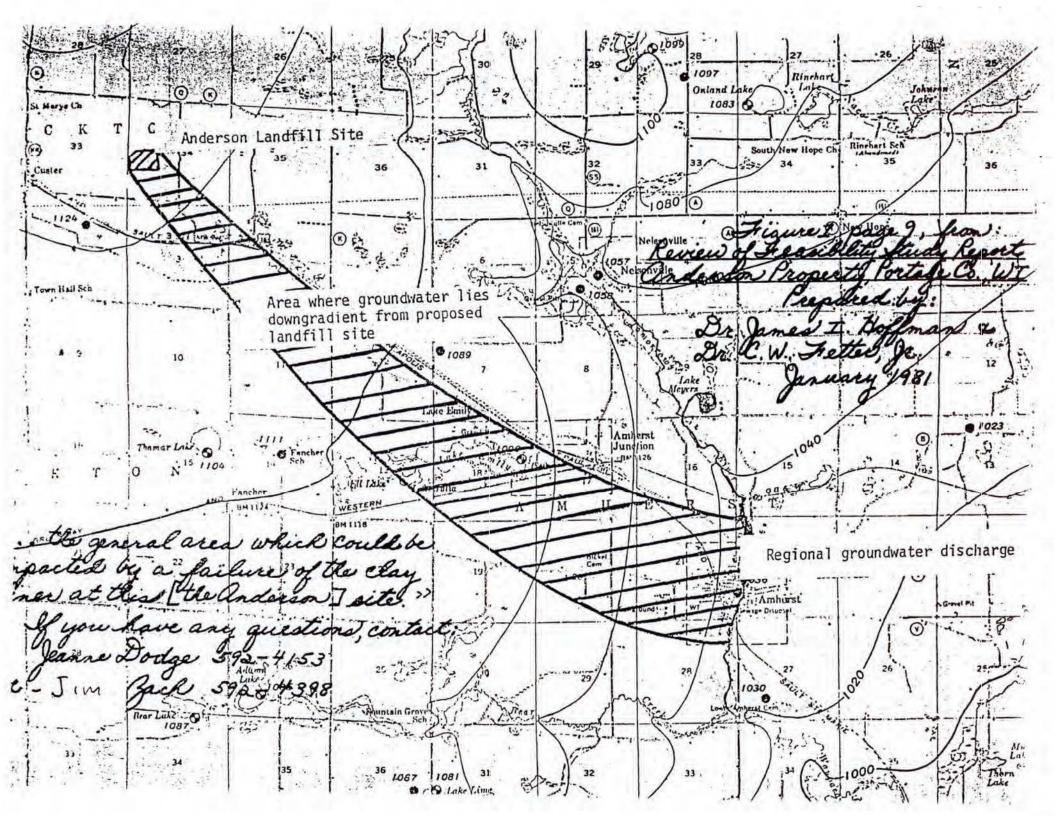

Historic Site Feature Map as sketched by former drycleaner owner. Not to scale.








Appendix D Excerpts from Amherst Super Station Project File



	of Wisco		ral Rese	□ Em	To: id Waste ergency Response stewater	⊠ Uı	az. Waste idergroun ater Reson	-					oring 1 00-122 Pag		of	7-91
	y/Project			ion			License/P	ermit/M	onitorii	ng Nun	nber	Boring B10	Numb	er		
Boring	Drilled	By (F	irm nar	ne and name of crew- ing Services. Cre			Date Drill	ing Star ./16/98		Date	Drillin			Drillin HSA	W. 100-31-20	iod
DNR I	Facility	Well 1	No. W	I Unique Well No.	Common Well No MW100	amc	Final Stat		Level t MSL	Surf	ace Ele	vation Feet M		orehole	Diame	0.555
Boring State I		of SV	V 1/	4 of Section 22	N, E T 23NN,R 10E	1 E		44° 27 89° 17	04"	Loca	al Grid	Service Service Prints	n (If ap	plicable	(:	□ E
County					D		nty Code	Civil T Amh		ity/ or	Village					
San	nple											Soi	Proper	ties	-	
Number	Soil/Rock Description And Geologic Origin For Each Major Unit ASPHALT ASPHALT							Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plastic Limit	P 200	RQD/ Comments
			-1	ASPHALT Blind drilled to lithology SANI		ipated	⊃ SP									
S101	8	4 6 15 9	3	SAND, fine to silt and clay org less silt and clay brown (7.5YR Mapleview Mer Formation)	ganics, trace gray y from (5 to 7) 4/3), no odor. (avel, feet, (SP,	SP			0						
\$102	6	14 11 5 4	-5 -6							0						
\$103	6		8	coarser from (15 to subrounded to (10YR 4/3), sa	trace pebbles, (2.5 to 17) feet, 17) feet, sand well rounded, b turated at 9 feet	less is rown	SM			349						
S104	10		10	slight petroleun	from (9 to 12) n odor from (12 Mapleview Mer	2.5 to	f			272						(3)
		y that	1	ormation on this form	is true and correct			nowledg	ge.			-				
Signat	L		7	emil			Firm	954 Ci	rele Dri	ive, Gr	nment cen Bay Fax: 4	, WI :	54304	c.		

	g Numb	er	B10	Use only as an attachment to Form	n 4400-12.	1		-		Soil	Proper	e 2	10	4
Number	Length (in) Recovered	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	uscs	Graphic	Well Diagram	PID/FID	Standard Penetration	Moisture Content			P 200	RQD/
05	20		13					227						
06	16		-15 -16 -17	End of Boring at 17 Feet.				34						
						V								

200	of Wiscontinent o		ral Reso	ources	☐ Em	To: id Waste ergency Response stewater	⊠ U	az. Waste ndergrou later Rese ther	nd T		s			Soil Bo Form 44			of	7-91
	/Project		Servi	loo		License/	Perm	nit/N	Monitor	ing Nu	mber	Boring B20	Numb					
Boring	Drilled	By (F	irm nar	ne and name		chief) ew Chief was B	rian	Date Dri	lling 2/10			Date	02/		-61	Drillin HSA		hod
DNR I	acility	ame	Final Sta	tic V		r Level et MSL		face Ele	vation Feet M	VIII. 1	orehole		eter Inches					
Boring State I NW		on of SV	V 1/-	4 of Section	22	N, E T 23NN,R 101	E	Lat		0 27	7' 04" 7' 05"	Loc	al Grid		n (If ap	plicable	(:	□ E
County	County DN 50 Portage 50								C		Town/C herst	City/ or	Village					
San	ple							- -						Soil	Prope	rties		
Number	Soil/Rock Description And Geologic Origin For Each Major Unit ASPHALT							USCS	2	Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plastic Limit	P 200	RQD/ Comments
											3	1						-
			-1			2.5 feet. Antic DY SILT.	ipated	ML										
5201	10	7 3 3 3		grayish no recov anticipat	brown very fro ted lithe aplevie	trace pebbles, (10YR 4/2), no om (5 to 7) feet clogy SANDY s w Member of t	odor, SILT.	MI				1						
5202		4 9 4 4	6															
SILTY SAND, sand fine to med grained and subangular to subrounded, trace pebbles, very grayish brown (10YR 3/2), no one moist from (7.5 to 9.5) feet, sat							ry dark odor, aturate	- 1	1 1000 00000000			1						
at 10 feet (SM, Mapleview Mer of the Horicon Formation)												1						
I herel	y certif	fy that	1	ormation on t	his form	is true and correct	to the be	est of my	knov	wled	lge.		1	1				1
Signat	ure	1	-	Zun	1			Firm	95	4 C	ircle D	rive, G	nment reen Bay Fax: 4	y. WI 5	4304	c.		

B200 Boring Number Use only as an attachment to Form 4400-122. Page 2 of 2 Soil Properties Sample Depth In Feet Soil/Rock Description Blow Counts Standard Penetration Length (in) Recovered And Geologic Origin For Moisture Content PID/FID Well Diagram USCS Graphic Log Each Major Unit Liquid Limit Plastic Limit P 200 S205 1 24 6 SAND, well graded, with silt and -13 5 trace pebbles, subangular to subrounded, yellowish brown (10YR 5/4), no odor. (SW, Mapleview 2 Member of the Horicon Formation) End of Boring at 14.5 Feet.

	of Wisco		ral Reso	☐ Em	To: id Waste ergency Response stewater	c 🛛 U	laz. Waste Indergroun Vater Reso	d Tan						oring 1 00-122 Pag			7-91 2
	//Project						License/F	ermit	/Mor	nitorin	g Nur	nber	Boring B30	Numb			
Boring Env	Drilled	By (F	irm nar	ne and name of crewing Services. Cre		Brian	Date Dril	ling S 2/16/		đ	Date	Drillin			Drillin HSA	MOS CONTRACTOR	nod
DNR F	acility '	Well N	lo. W	I Unique Well No.	Common Well MW300	Name	Final Stat		ter L		Surf	ace Ele	vation Feet M		orehole	Diame	3,000
Boring State I		of SV	V 1/2	4 of Section 22	N, E T 23NN,R 10	0E	110000	44° :			Loc		Locatio	N	plicable	()	ЭЕ
County	age						inty Code	Civi		wn/Ci	ty/ or	Village				ca [
San	ple											-	Soi	Proper	ties		
Number	Number Soil/Rock Description And Geologic Origin For Each Major Unit ASPHALT							Graphic	Log	well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plastic Limit	P 200	RQD/ Comments
	Para Maria Maria Maria Maria							1111		18							
S301	ASPHALT Blind drilled to 2.5 feet. Anticipal lithology SANDY SILT. SANDY SILT, trace pebbles, da brown (7.5YR 3/4), no odor. (M Mapleview Member of the Horice					, dark . (ML,	ML ML			S	Ì						
S302	12	6	4	Formation) SILTY SAND, fine to medium	trace pebbles	, sand	SM				1						
S303	fine to medium grained and subangular to subrounded, brown (10YR 4/3) from (5 to 9.5) feet, yellowish brown (10YR 4/4) from to 12) feet, no odor, saturated at feet. (SM. Mapleview Member of										1						
S304											1						
		y that	_	ormation on this form	is true and correc			cnowl	edge				-				
Signat	ure	1		Zuil	1		Firm	954	Circ	le Dri	ve, G	nment een Bay Fax: 4	, WI :	54304	c.		

B300 Boring Number Use only as an attachment to Form 4400-122. Page 2 2 of Sample Soil Properties Depth In Feet Soil/Rock Description Blow Counts Standard Penetration Length (in) Recovered And Geologic Origin For Moisture Content Graphic PID/FID Unimitation Well Diagram Number USCS Each Major Unit Liquid Limit Plastic Limit P 200 SAND, poorly graded, fine grained, trace silt and pebbles, subangular to S305 24 SP 1 -13 subrounded, yellowish brown (10YR 5/4) from (12.5 to 14.5) feet, no -14 odor. (SP, Mapleview Member of the Horicon Formation) End of Boring at 14.5 Feet.

	of Wisco		ral Reso	□ Em	To: id Waste ergency Response stewater	⊠u	az. Waste ndergroun ater Resouther		(S				oring 1 100-122 Pag			7-91
	y/Project herst S			ina			License/P	ermit/l	Monitori	ng Nur	nber	Boring B40	Numb			
Boring	Drilled	By (F	irm nar	ne and name of crew ing Services. Cre		ian	Date Drill	ing Sta /16/9		Date	02/		pleted	Drillin HSA	ach seeds	hod
DNR	acility	Well 1	No. W	I Unique Well No.	Common Well Na	ame	Final Stat		er Level et MSL	Surf	face Ele	vation Feet M		orchole	Diam. 8.0 1	2020
Boring State		on SV	V 1/-	4 of Section 22	N, E T 23NN,R 10E	2		44° 2	7' 04" 7' 05"	Loc	al Grid		n (If ap	plicable	c)	
County					Di		nty Code	Civil	Town/C herst	ity/ or						
San	ple											Soi	Prope	rties		
Number	Length (in) Recovered	Blow Counts	Depth In Feet	Soil/Ro And Geo Each	Г	USCS	Graphic	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plastic Limit	P 200	RQD/ Comments	
S401	16 24 20	2 3 4 3 4 2 2 3 6 8 4 2	-1 -2 -3 -4 -5 -6 -7 -8	SANDY SILT, brown (7.5YR Mapleview Mer Formation) SILTY SAND, subrounded, tra (10YR 4/3) fro odor from (6 to petroleum odor saturated at 8.5	sand fine graine ace pebbles, brom (6 to 9.5) feet, strom from (8.5 to 9) feet. (SM, Maj Horicon Forma	dark ML, ricon				47						
I hereb		y that	the info	Pend	is true and correct t		est of my k	Nort	dge. thern E tircle Dri	ve, Gr	een Bay	, WI	54304	ic.		

	of Wisco		ral Reso	☐ Er	To: lid Waste nergency Respons astewater	e 🛛 L	laz, Waste Indergroun Vater Reso	d Tanks	:			Soil Be Form 44				7-91 2
Facility	/Project			ica			License/F	ermit/N	lonitorir	ig Nur	nber	Boring B50	Numb	Contract of the contract of th		
Boring Env	Drilled	By (F	irm nan	ne and name of crew ng Services. Cr		Brian	Date Dril	ling Star 2/16/98		Date	Drillin	1000	TTT COL	Drillin HSA		hoď
DNR F	acility	Well N	lo. W	I Unique Well No.	Common Well MW500	Name	Final Stat		r Level et MSL	Surf	ace Ele	vation Feet M	Siron of	orchole	Diame	4.40.00
Boring State I NW		of SV	V 1/4	of Section 22	N, E T 23NN,R 1	0E	Lat	44° 27 89° 17		Loc		Locatio	N	plicable	e) [□ E
County						DNR Cot	inty Code	Civil Amh	Fown/Ci nerst	ty/ or	Village					
San	ple		2									Soil	Prope	rties		
Number	Length (in) Recovered	Blow Counts	Depth In Feet	And Ge	ock Descriptio ologic Origin I h Major Unit		USCS	Graphic	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plastic Limit	P 200	RQD/ Comments
S501 S502 S503	8	4 3 4 6	-1 -2 -3 -4 -5 -6 -7	SANDY SILT organic silt frobrown (7.5YR (2.5 to 4.5), sl from (5 to 7) in orecovery franticipated lith (ML, Maplevi Horicon Form	, trace pebbles om (5 to 7) feet 3/4), no odor ight petroleum om (7.5 to 9.5 ology SANDY ew Member of	ML	4 34 34 34 34 34 34 34 34 34 34 34 34 34		10							
S504	2Ò	5 5 1 2 1	-9 -10 -11	SAND, poorly and subangula silt and pebble 4/1) with black petroleum odo	r to subrounders, dark gray (1 k staining, stro	d, trace IOYR ng	SP			47						
I hereb		y that	the info	rmation on this form	is true and correc		est of my k Firm	North 954 Ci	ge. nern Ei ircle Dri 14-592-8	ve, Gr	een Bay	, WI 5	4304	c.		

B500 Boring Number Use only as an attachment to Form 4400-122. 2 2 of Sample Soil Properties Depth In Feet Soil/Rock Description Blow Counts Standard Penetration Length (in) Recovered RQD/ Comments And Geologic Origin For Well Diagram PID/FID Moisture Content Number USCS Graphic Log Liquid Limit Plastic Limit Each Major Unit P 200 Member of the Horicon Formation) Blind drilled from (12 to 14) feet. -13 -14 End of Boring at 14 Feet.

B700 Page 2 Boring Number Use only as an attachment to Form 4400-122. 2 of Sample Soil Properties Depth In Feet Soil/Rock Description Blow Counts Standard Penetration Length (in) Recovered RQD/ Comments And Geologic Origin For Moisture Content Well Diagram Graphic Log PID/FID Number USCS Liquid Limit Plastic Limit Each Major Unit P 200 0000 GW SAND and GRAVEL, some silt, well graded, dark brown (7.5YR 3/2), strong petroleum odor. (GW, Mapleview Member of the Horicon 13 (Formation) End of Boring at 14 Feet.

	of Wisco		ral Rese	☐ Emo	d Waste ergency Response	Haz. Unde	rgroun r Reso	d Tanks					oring 1 00-122 Pag		of	7-91
-	y/Projec			las.				ermit/M	lonitorin	g Nur	nber	Boring B80	Numb			
Boring		By (F	irm nar	me and name of crew o	chief) w Chief was Brian			ling Star 2/16/98		Date	Drillin		.0	Drillin HSA		hod
DNR	Facility	Well N	No. W	I Unique Well No.	Common Well Name	Fir	al Stat	ic Water	Level t MSL	Suri	ace Ele	vation Feet M	30-50 F	orehole	Diame	
Boring State		of SV	V 1/	4 of Section 22	N, E T 23Nn,R 10E			44° 27 89° 17	04"	Loc	al Grid		n (If ap	plicable	;)	□ E
County							The second second	Civil 7	Town/Ci	ty/ or						
San	nple			1 67.							-	Soi	Proper	rties		
Number	Length (in) Recovered	Blow Counts	Depth In Feet	And Geo	ck Description logic Origin For Major Unit		USCS	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plastic Limit	P 200	RQD/ Comments
Each Major Unit Sample Sa						e 7) YR vish eet,	SM			I i						
I herel	•	y that	the info	ormation on this form	is true and correct to th	Fire	Company of the Company	North 954 Ci	ern E	ve, G	cen Bay	, WI :	54304	c.		
	1	en		Tem.	1			Tel: 4	14-592-8	3400,	Fax: 4	14-592	8444			

	of Wisco		iral Reso	□ Em	To: id Waste ergency Respon stewater	ise 🖾 U	laz. Waste Indergroun Vater Reso	d Tank	cs				400-122	Log In		7-91
	y/Projec		r Servi	ion			License/F	ermit/	Monitori	ng Nur	nber	Boring B60	Numb			
Boring	Drilled	By (I	Firm nar	ne and name of crewing Services. Cre		Brian	Date Dril	ling St.		Date	Drillin		pleted	Drillin HSA		hod
	Facility	Well I	No. W	I Unique Well No.	Common Wel	I Name	Final Stat		er Level	Suri	ace Ele	vation Feet M		orehole	-	eter Inches
Boring State NW	OF THE STATE OF	on of SV	V 1/4	4 of Section 22	N, E T 23NN,R I	10E	2 2 2 2 2		7' 04" 7' 05"	Loc	al Grid Fe	Locatio	N	7	- 1	□ E
County	tage					DNR Cot	inty Code		Town/C herst	ity/ or	Village					
Sar	nple								11 =			Soi	l Prope	ties		
Number	Length (in) Recovered	Blow Counts	Depth In Feet	And Geo	ock Description logic Origin Major Unit	For	USCS	Graphic	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plastic Limit	P 200	RQD/ Comments
\$601	16	2 1 1 1 1	1 2 2	SILTY SAND gravel, very da no odor.	TOPSOIL, w rk brown (10	vith OYR 2/2)	,	77 77 77 77 77 77 77 77 77 77 77 77 77		1						
S602	12	3 2 2 2	-3 -4	SANDY SILT, brown (7.5YR Mapleview Mer Formation)	3/3), no odor	r. (ML,	ML			1.						
\$603	14	3 2 3 3	_5 6	SILTY SAND, grained, more s 7) feet, gravel trace pebbles fr brown (10YR 4 very dark gray	silt content fr from (5 to 7) from (7.5 to 9 (7) from (5 to	fom (5 to feet, 1.5) feet, to 7) feet				1						
S604	14	3 6 8 11	8	from (7.5 to 9.5 (5 to 7) feet, str from (7.5 to 9.5 feet. (SM, Map Horicon Forma	5) feet, no oc rong petroleu 5) feet, satur deview Mem tion)	dor from im odor ated at 7.				301						
				End of Boring	at 9.5 Feet.											
I herek Signat		fy that	the info	rmation on this form	is true and corre		est of my k	Nort	dge. thern E Circle Dri 414-592-	ve, Gr	een Bay	, WI :	54304	c.		

	of Wisco		ural Reso	☐ Eme	Fo: d Waste ergency Response stewater	⊠u	az. Waste ndergroun later Resol						oring 1 00-122 Pag			7-91 2
	y/Project		r Servi	ina			License/P	ermit/M	lonitorir	g Nun	nber	Boring B70	Numb			
Boring	Drilled	By (I	irm nan	ne and name of crew on ng Sérvices. Crev		rian	Date Drill	ing Star /16/98		Date	Drillin			Drillin HSA		ıod
DNR	Facility '	Well l	No. W	I Unique Well No.	Common Well No MW700	ame	Final Stat		Level at MSL	Surf	ace Ele	vation Feet M	The second	orchole	Diame	7.726
Boring State		of SV	V 1/4	4 of Section 22	N, E T 23NN,R 10E	Ē	Lat	44° 27 89° 17		Loca		Locatio	N	plicable	:)] E
County	tage				Company of the compan	inty Code	Civil 7		ty/ or	Village						
San	nple		1	0.000							Soil	Prope	rties			
Number	Length (in) Recovered	Blow Counts	Depth In Feet	Soil/Ro And Geo Each		USCS	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plastic Limit	P 200	RQD/ Comments	
\$701	ol 6 2 - SILTY SAND TOPSOIL, with gravel, very dark brown (10YF no odor.							27. 27. 27. 27. 27. 27. 27. 27.		1						
5702	6	3 2 2 2	3	SILTY SAND, grained and sub subrounded, tra (10YR 4/3), no Mapleview Mer Formation)	angular to ce pebbles, bro odor. (SM,	own	SM	4		I						
\$703	5	2 3 4 5	-6	1 ormanony						1						
\$704	12	10 8 7 4	8	SAND, poorly with silt and tra (10YR 5 /3), st saturated at 7.5 Member of the	ce gravel, brow rong petroleum feet. (SP, Map	vn odor, oleviev	SP v			66						
\$705	0	4 4 3 3	-10 -11 -12				c									
		y that	the info	rmation on this form	is true and correct		est of my k						F1 (2)			
Signat	uic /	1		Fen		1	rathii	954 Ci	nern E ircle Dri 14-592-1	ve, Gr	cen Bay	, WI 5	54304	ic.		

	of Wiscontinent o		ral Reso	□ Em	To: id Waste ergency Response stewater	⊠ Un	z. Waste dergroun iter Reso	d Tanks				Soil Be Form 44				7-91 2
	ty/Project herst S			lon			license/P	ermit/M	onitorir	g Nur	nber	Boring B90	Numb			
Boring	g Drilled	By (F	irm nar	ne and name of crew ing Services. Cre			Date Dril 05	ling Star 5/06/98		Date	05/			Drillin HSA		hod
DNR	Facility	Well N	lo. W	I Unique Well No.	Common Well Nam	me F	Final Stat		Level t MSL	Surf	face Ele	vation Feet M	7.31 H	orehole		eter Inches
	Plane	on of SV	V 1/-	4 of Section 22	N, E T 23NN,R 10E			44° 27 89° 17		Loc		Locatio	N	plicable	e) 	□ E
Count					the state of the s	IR Coun	ty Code		own/Ci	ty/ or					Car	
Sa	mple										-	Soi	Prope	rties		1
Number	Length (in) Recovered	Blow Counts	Depth In Feet	And Geo	ck Description logic Origin For Major Unit		USCS	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plastic Limit	P 200	RQD/ Comments
			-1 -2 -3 -4 -5 -6 -7 -8 -10	Blind drilled to assumed to be to located 4 feet fr SILTY SAND SILTY SAND		ology	SM									
I here	by certif	y that		rmation on this form	is true and correct to	the bes	t of my k	nowledg	ge.		1	-				
Signa	ture	1	_	7.	1	Fi	irm	954 Ci	ern Er rele Dri 4-592-8	ve, Gr	een Bay	, WI S	4304	c.		

Soil Boring Log Information Supplement Form 4400-122A 7-9

Sar	nple									Soil	Proper	rties		
Number	Length (in) Recovered	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	uscs	Graphic	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plastic Limit	P 200	RQD/
901	12	10 12 6 5	13	SAND and GRAVEL, some silt, well graded, dark brown (7.5YR 3/2), strong petroleum odor. (GW, Mapleview Member of the Horicon Formation)	GW	0.00.00.000		48						
902	20	6 9 9 10	-15 -16 -17	SAND, medium grained, sub-well rounded, poorly graded, mixed mineralogy, brown (10YR 5/3), slight petroleum odor from (15 to 17) feet, no odor from (17.5 to 19.5) feet. (SP, Mapleview Member of the Horicon	SP	8 8		50						
903	4	1 1 2 2	18	Formation)				3						
904	14	9 10 6 7	-20 -21 -22	SAND, with pebbles, sub-well rounded, well graded, mixed mineralogy, brown (10YR 5/3), slight petroleum odor. (SW, Mapleview Member of the Horicon Formation)	sw			30						
905	10	12 14 20 21	23	SAND, medium grained, sub-well rounded, poorly graded, mixed mineralogy, brown (10YR 5/3), slight petroleum odor. (SP, Maplview Member of the Horicon Formation)	SP			13						
906	0	5 3 4 5	-25 -26 -27	No recovery from 24.5 to 30.5 feet. Lihtology assumed to be poorly graded SAND.	SP									
			-28 -29			2: A								
			F-30	End of Boring at 30.5 Feet.										

	of Wisc		ural Reso	□ Em	To: lid Waste nergency Response astewater	⊠u	laz. Waste Indergroun Vater Resou						oring 100-122 Pag			7-91 2
	y/Project			loo			License/P	ermit/M	lonitorin	g Nun	nber	Boring B10	Numb	/		
Boring	Drilled	By (I		ne and name of crew ing Services. Cre		Brian	Date Drill	ing Star /06/98		Date	Drillin		pleted	Drillin HSA		hod
DNR	Facility	Well	No. W	I Unique Well No.	Common Well N MW1000	Vame	Final Stat		Level t MSL	Surf	ace Ele	vation Feet M		orehole	Diame	
Boring State NW		on of SV	W 1/	4 of Section 22	N, E T 23Nn, R 10		Long		05"		Fe	et 🗆	N	plicable	e) [□ E
	tage		,			DNR Cou	inty Code	Civil 7	rown/Ci erst	ty/ or	Village					
Sar	nple		#	Cail/D	aste Dagaelettan						-	Soi	l Prope	rties		
Number	Length (in) Recovered	Blow Counts	Depth In Feet	And Geo	ock Description blogic Origin Fo h Major Unit		USCS	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plastic Limit	P 200	RQD/ Comments
			E	ASPHALT	255			xxx								
S1001	ASPHALT Blind drilled to 2.5 feet. 20 2 SANDY SILT, dark grayish br (2.5Y 4/2), no odor. (Maplevie Member of the Horicon Format						SM			0						
\$1002	14	1 3 6 7	-5 -6 -7							O						
\$1003	8	3 1 6 3	-8	to 9.5) feet, br 910 to 14.5) fe at 7.5 feet. (SF	d, poorly grade (10YR 4/1) fro own (10YR 5/3 et, no odor, sat c, Mapleview M	ed, dark om (7.5 3) from turated	c			0						
\$1004	24	5 5 5	-10 -11 -12	of the Horicon						0						
I herel		y that	the info	rmation on this form	is true and correct	-	est of my k					ol Tra	h T			
_	1/2	-	-7	Luil				954 Ci	rele Dri 4-592-8	ve, Gr	een Bay	, WI	54304	C.		

Sample									Soil Properties					
Number	Length (in) Recovered	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plastic Limit	P 200	RQD/,
\$1005	20	5 7 9 10	13	,				0						
				End of Boring at 14.5 Feet.										
				<i>y.</i>										

Appendix E Property History dated February 16, 2008

ENVIRONMENTAL ISSUES CONCERNING 157 N MAIN ST, AMHERST, WI 54406

Tests by an independent laboratory show slightly elevated non-acceptable levels of tetrachloroethene, (possibly referred to as PERC for short, call Mark Dawson or Ryan Haney at 715-824-5169 for a better explanation, if needed). I believe the report shows a level 13 and the acceptable levels are 5 and I believe that is in parts per billion. Again, ask Mark or Ryan if need be.

I DON'T THINK THIS IS IMPORTANT TO THE ISSUE OF RESPONSIBILITY, BUT IT MAY ASSIST IN REMEDIATING THE SITUATION.

From conversation with Wayne Patoka Feb 12, 2008 at 9:31:

The history, as best I was able to find, was that Wayne Patoka built the building around 1975. It was designed to be a Laundromat, with one (1) self-service dry cleaning machine. He sold the business and building to Tim Quella around the winter of 1980-81 (Quella was uncertain as to this time line). Mr. Patoka indicated that the dry cleaning machine was NOT a moneymaker indicating minimal use. Mr. Patoka also said that he did not have any chemical storage in the back yard of the premises, nor did he ever dump any such waste there.

Mr. Wayne Patoka can be reached at 6304 Cty Rd DD, Amherst, WI 715-824-3906 (he is presently on vacation, but checks his messages frequently)

From conversation with Tim Quella Feb 11, 2008 around 4 PM.

According to Mr. Quella, in a conversation with me around 4 PM of Feb 11, 2008, from there, the enterprise was owned and operated by Tim Quella until around 1993, when it ceased operation. I do not know when the machines were removed and did not ask that question of Mr. Quella. He said he had a 55-gallon drum of the cleaning solvent in question in the back yard. He said the company he bought the chemical from may have spilled some when they delivered it, but he wasn't sure and he didn't recall having spilled any himself. He also said that there was a question of acceptable levels of contaminants by the DNR at an earlier time (during his ownership) but that he wasn't sure when that was. He did not elaborate upon the DNR's findings of the situation at that time. Perhaps there is a way to get the DNR to search their archives for that report.

Mr. Quella can be reached at 7228 Cty Rd EE, Bancroft, WI 54921, 715-344-5505

NEITHER OF THE ABOVE PARTIES WERE EVER LICENSED, AS THAT WAS A CHOICE, NOT A REQUIREMENT AT THAT TIME. LICENSING BECAME MANDATORY IN 1997, ACCORDING TO MARK DAWSON OF SAND CREEK CONSULTANTS, INC.

The building is presently owned by Dale and Carol Newman, aka Newman Enterprises and has been since Oct of '04.

When we bought it, my wife and I do not recall that Mr. Quella made any comments regarding any environmental issues.

Respectfully submitted:

Dale Newman

Dale Neuman, 824-7646-FAX 824-7629 - cell 715-498-3307 Carol Newman, Newman Carol J Newman Carol J Newman