

September 26, 2023

Greg Moll, Hydrogeologist Wisconsin Department of Natural Resources 2300 N. Dr. Martin Luther King Jr. Drive Milwaukee, WI 53212

Re: PFAS Sampling Update Former One Hour Martinizing 13405 Watertown Plank Road, Elm Grove, Wisconsin BRRTS# 02-68-552102

Dear Mr. Moll:

EnviroForensics, LLC (EnviroForensics) is providing the results of recent groundwater sampling for PFAS compounds. Samples of groundwater were collected from monitoring wells MW-4, MW-7, and MW-9 on July 31, 2023. MW-4 is a down-gradient well; MW-7 is a source area well that has historically contained the highest concentrations of drycleaning-related chlorinated volatile organic compounds (CVOCs); and MW-9 is an up-gradient well. The locations of these wells are shown on attached **Figure 2**. This figure is taken from a previously submitted remedial status update report dated February 16, 2021, and shows the consistent direction of groundwater flow and iso-concentrations of 1,2-DCE (the highest concentration of any CVOC at that time. All samples were collected using disposable bailers.

As can be seen in the attached laboratory results report, a few PFAS compounds were detected in all of the wells sampled with the greatest number of detections and the highest concentrations of detected compounds occurring in off-site and up-gradient well MW-9. However, all of the compounds detected were at concentrations below their respective proposed groundwater standards. DUP-1 is a duplicate sample of MW-7. There were no detections of PFAS compounds in the field blank collected as part of our QA/QC procedure. A copy of our standard operating procedures for collection of PFAS samples is attached.

Due to the very low concentrations of PFAS compounds detected, we conclude that investigations regarding the release of PFAS compounds at this property are complete and further investigations are not necessary.

We believe that all site investigations at this property are complete and that past groundwater remedial efforts have been largely successful in reducing concentrations of CVOC impacts. The Village of Elm Grove has acquired the property and has demolished the existing building which eliminates the need for further vapor intrusion sampling. The concrete slab remains, as well as the asphalt paving. This provides a barrier to further downward migration to the water table of

contaminants in the shallow unsaturated soil. As such, we are prepared to submit case closure request documentation in the near future.

If you have questions regarding the content of this report, please feel free to contact me at 262-490-6472 or <u>wfassbender@enviroforensics.com</u>.

Sincerely, **EnviroForensics LLC** Wayer P. La

Wayne Fassbender, P.G. Senior Project Manager

- Enclosure: Figure: cis-1,2-DCE Groundwater Results and Potentiometric Surface Contour Map, December 10, 2020 Pace Analytical Laboratory Results Report EnviroForensics PFAS Sampling Standard Operating Procedures (SOP)
- Copy: Collin Martin, Ash Union, LLC Dave DeAngeles, Village of Elm Grove Administrator

Legend	
	Property boundary
GAS GAS	Underground gas utility line
WTR WTR	Underground water utility line
SAN SAN	Underground sanitary utility line (Arrow shows direction of flow)
CATV	Underground cable television utility line
ОУНД	Over head electrical utility line
UGE UGE	Underground electrical utility line
MW-1 🜩	Monitoring well location
S	Sanitary Sewer Manhole
\mathbb{M}	Manhole
726.95	Groundwater elevation contour
726.94	Groundwater elevation (feet above mean sea level)
0.53 J	cis-1,2-DCE concentration in ug/L
	ug/L = Micrograms per Liter
<u> </u>	cis-1,2-DCE contour interval in ug/L Dashed boundaries are inferred

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

August 22, 2023

Wayne Fassbender Enviroforensics N16 W23390 Stone Ridge Drive Suite G Waukesha, WI 53188

RE: Project: 6142 OHM ELM GROVE Pace Project No.: 40265982

Dear Wayne Fassbender:

Enclosed are the analytical results for sample(s) received by the laboratory on August 01, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Baton Rouge
- Pace Analytical Services Green Bay

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Dan Milent

Dan Milewsky dan.milewsky@pacelabs.com (920)469-2436 Project Manager

Enclosures

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

CERTIFICATIONS

Project: 6142 OHM ELM GROVE

Pace Project No.: 40265982

Pace Analytical Services Green Bay

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 North Dakota Certification #: R-150 South Carolina Certification #: 83006001 Texas Certification #: T104704529-21-8 Virginia VELAP Certification ID: 11873 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-21-00008 Federal Fish & Wildlife Permit #: 51774A

Pace Analytical Services Baton Rouge

7979 Innovation Park Drive Ste A, Baton Rouge, LA 70820-7402 Louisiana Dept of Enviromental Quality (NELAC/LELAP): 01979 Florida Dept of Health (NELAC/FELAP): E87854 DoD ELAP (A2LA) #: 6429.01 Alabama DEM #: 41900 Alaska DEC-DW #: LA00024 Alaska DEC CS-LAP #: 21-001 Arkansas DEQ #: 88-0655 California ELAP #: 3063 Georgia DPD #: C050 Hawaii DOH State Laboratories Division Illinois EPA #: 200048 Kansas DoHE #: E-10354 Kentucky DEP UST Branch #: 123054 Louisiana DOH #: LA036 Minnesota DOH #: 2233799 Mississippi State Dept of Health

Montana Department of Environmental Quality Nebraska DHHS #: NE-OS-35.21 Nevada DCNR DEP #: LA00024 New York DOH #: 12149 North Carolina DEQ - WW & GW #: 618 North Dakota DEQ #: R195 Ohio EPA #: 87782 Oklahoma Dept of Environmental Quality #: 9403 Oregon ELAP #: 4168 Pennsylvania Dept of Environmental Protection #: 68-05973 South Carolina DHEC #: 73006001 Texas CEQ #: T104704178-23-15 Utah DOH #: LA00024 Virginia DCLS #: 6460215 Washington Dept of Ecology #: C929 Wisconsin DNR #: 399139510

SAMPLE SUMMARY

Project: 6142 OHM ELM GROVE

Pace Project No.: 40265982

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40265982001	6142-MW9	Water	07/31/23 14:00	08/01/23 09:00
40265982002	6142-FB	Water	07/31/23 14:10	08/01/23 09:00
40265982003	6142-MW4	Water	07/31/23 15:15	08/01/23 09:00
40265982004	6142-MW7	Water	07/31/23 15:35	08/01/23 09:00
40265982005	6142-DUP	Water	07/31/23 00:00	08/01/23 09:00
40265982006	6142-IDM-1	Water	07/31/23 15:45	08/01/23 09:00

SAMPLE ANALYTE COUNT

Project:	6142 OHM ELM GROVE
Pace Project No.:	40265982

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
40265982001	6142-MW9	EPA 537 Mod	AG	33	PASI-BR
40265982002	6142-FB	EPA 537 Mod	AG	33	PASI-BR
40265982003	6142-MW4	EPA 537 Mod	AG	33	PASI-BR
40265982004	6142-MW7	EPA 537 Mod	AG	33	PASI-BR
40265982005	6142-DUP	EPA 537 Mod	AG	33	PASI-BR
40265982006	6142-IDM-1	EPA 8260	SMT	64	PASI-G

PASI-BR = Pace Analytical Services - Baton Rouge

PASI-G = Pace Analytical Services - Green Bay

SUMMARY OF DETECTION

Project: 6142 OHM ELM GROVE

Pace Project No.: 40265982

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
40265982001	6142-MW9					
EPA 537 Mod	NMeFOSAA	1.7J	ng/L	8.7	08/15/23 13:13	2q
EPA 537 Mod	Perfluorobutanesulfonic acid	7.2	ng/L	4.3	08/15/23 13:13	
EPA 537 Mod	Perfluorohexanoic acid	18.8	ng/L	4.3	08/15/23 13:13	
EPA 537 Mod	PFBA	27.1	ng/L	4.3	08/15/23 13:13	
EPA 537 Mod	PFPeA	29.4	ng/L	4.3	08/15/23 13:13	
EPA 537 Mod	Perfluoroheptanoic acid	5.2	ng/L	4.3	08/15/23 13:13	
EPA 537 Mod	Perfluorooctanesulfonic acid	2.6J	ng/L	4.3	08/15/23 13:13	
EPA 537 Mod	Perfluorooctanoic acid	2.4J	ng/L	4.3	08/15/23 13:13	
40265982003	6142-MW4					
EPA 537 Mod	Perfluorobutanesulfonic acid	2.5	ng/L	2.0	08/15/23 13:44	
EPA 537 Mod	Perfluorohexanoic acid	5.2	ng/L	2.0	08/15/23 13:44	
EPA 537 Mod	PFBA	7.7	ng/L	2.0	08/15/23 13:44	
EPA 537 Mod	PFPeA	9.9	ng/L	2.0	08/15/23 13:44	
EPA 537 Mod	Perfluoroheptanoic acid	1.7J	ng/L	2.0	08/15/23 13:44	
EPA 537 Mod	Perfluorohexanesulfonic acid	0.66J	ng/L	2.0	08/15/23 13:44	
EPA 537 Mod	Perfluorooctanesulfonic acid	0.73J	ng/L	2.0	08/15/23 13:44	В
EPA 537 Mod	Perfluorooctanoic acid	1.1J	ng/L	2.0	08/15/23 13:44	
40265982004	6142-MW7					
EPA 537 Mod	Perfluorobutanesulfonic acid	2.2	ng/L	1.9	08/15/23 13:59	
EPA 537 Mod	Perfluorohexanoic acid	2.1	ng/L	1.9	08/15/23 13:59	
EPA 537 Mod	PFBA	4.3	ng/L	1.9	08/15/23 13:59	
EPA 537 Mod	PFOSA	0.58J	ng/L	1.9	08/15/23 13:59	2q
EPA 537 Mod	PFPeA	4.2	ng/L	1.9	08/15/23 13:59	
EPA 537 Mod	Perfluoroheptanoic acid	1.0J	ng/L	1.9	08/15/23 13:59	
EPA 537 Mod	Perfluorooctanesulfonic acid	0.92J	ng/L	1.9	08/15/23 13:59	В
EPA 537 Mod	Perfluorooctanoic acid	0.63J	ng/L	1.9	08/15/23 13:59	
40265982005	6142-DUP					
EPA 537 Mod	Perfluorobutanesulfonic acid	2.5	ng/L	2.0	08/15/23 14:15	
EPA 537 Mod	Perfluorohexanoic acid	2.0	ng/L	2.0	08/15/23 14:15	
EPA 537 Mod	PFBA	4.3	ng/L	2.0	08/15/23 14:15	
EPA 537 Mod	PFPeA	4.2	ng/L	2.0	08/15/23 14:15	
EPA 537 Mod	Perfluoroheptanoic acid	1.0J	ng/L	2.0	08/15/23 14:15	
EPA 537 Mod	Perfluorooctanesulfonic acid	0.65J	ng/L	2.0	08/15/23 14:15	В
EPA 537 Mod	Perfluorooctanoic acid	0.54J	ng/L	2.0	08/15/23 14:15	
40265982006	6142-IDM-1					
EPA 8260	cis-1,2-Dichloroethene	74.9	ug/L	1.0	08/02/23 20:26	
EPA 8260	trans-1,2-Dichloroethene	2.2	ug/L	1.0	08/02/23 20:26	
EPA 8260	Tetrachloroethene	0.98J	ug/L	1.0	08/02/23 20:26	
EPA 8260	Trichloroethene	1.2	ug/L	1.0	08/02/23 20:26	
EPA 8260	Vinyl chloride	18.0	ug/L	1.0	08/02/23 20:26	

Project: 6142 OHM ELM GROVE

Pace Project No.: 40265982

Sample: 6142-MW9	Lab ID: 40265982001		Collected	Collected: 07/31/23 14:00			Received: 08/01/23 09:00 Matrix: Water			
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual	
PFAS in Water-EPA 537 Mod	Analytical	Method: EPA 5	37 Mod Pr	eparation M	lethod:	EPA 537 Mod				
	Pace Anal	ytical Services	- Baton Rou	uge						
11CI-PF3OUdS	<0.97	ng/L	4.3	0.97	1	08/11/23 09:11	08/15/23 13:13	763051-92-9		
4:2 FTS	<1.3	ng/L	4.3	1.3	1	08/11/23 09:11	08/15/23 13:13	757124-72-4		
6:2 FTS	<1.6	ng/L	4.3	1.6	1	08/11/23 09:11	08/15/23 13:13	27619-97-2		
8:2 FTS	<1.1	ng/L	4.3	1.1	1	08/11/23 09:11	08/15/23 13:13	39108-34-4	2q	
9CI-PF3ONS	<0.97	ng/L	4.3	0.97	1	08/11/23 09:11	08/15/23 13:13	756426-58-1		
ADONA	<0.93	ng/L	4.3	0.93	1	08/11/23 09:11	08/15/23 13:13	919005-14-4		
HFPO-DA	<7.2	ng/L	21.7	7.2	1	08/11/23 09:11	08/15/23 13:13	13252-13-6		
NEtFOSAA	<1.7	ng/L	8.7	1.7	1	08/11/23 09:11	08/15/23 13:13	2991-50-6	2q	
NEtFOSA	<1.5	ng/L	8.7	1.5	1	08/11/23 09:11	08/15/23 13:13	4151-50-2	2q,L1	
NEtFOSE	<1.1	ng/L	8.7	1.1	1	08/11/23 09:11	08/15/23 13:13	1691-99-2	2q,N2	
NMeFOSAA	1.7J	ng/L	8.7	0.97	1	08/11/23 09:11	08/15/23 13:13	2355-31-9	2q	
NMeFOSA	<1.8	ng/L	8.7	1.8	1	08/11/23 09:11	08/15/23 13:13	31506-32-8	2q,L1	
NMeFOSE	<1.4	ng/L	8.7	1.4	1	08/11/23 09:11	08/15/23 13:13	24448-09-7	2q,L1, N2	
Perfluorobutanesulfonic acid	7.2	ng/L	4.3	0.67	1	08/11/23 09:11	08/15/23 13:13	375-73-5		
Perfluorodecanoic acid	<1.6	ng/L	4.3	1.6	1	08/11/23 09:11	08/15/23 13:13	335-76-2		
Perfluorohexanoic acid	18.8	ng/L	4.3	1.0	1	08/11/23 09:11	08/15/23 13:13	307-24-4		
PFBA	27.1	ng/L	4.3	1.6	1	08/11/23 09:11	08/15/23 13:13	375-22-4		
PFDS	<1.3	ng/L	4.3	1.3	1	08/11/23 09:11	08/15/23 13:13	335-77-3		
PFDoS	<1.4	ng/L	4.3	1.4	1	08/11/23 09:11	08/15/23 13:13	79780-39-5		
PFHpS	<1.3	ng/L	4.3	1.3	1	08/11/23 09:11	08/15/23 13:13	375-92-8		
PFNS	<1.9	ng/L	4.3	1.9	1	08/11/23 09:11	08/15/23 13:13	68259-12-1		
PFOSA	<0.80	ng/L	4.3	0.80	1	08/11/23 09:11	08/15/23 13:13	754-91-6		
PFPeA	29.4	ng/L	4.3	0.95	1	08/11/23 09:11	08/15/23 13:13	2706-90-3		
PFPeS	<1.1	ng/L	4.3	1.1	1	08/11/23 09:11	08/15/23 13:13	2706-91-4		
Perfluorododecanoic acid	<1.4	ng/L	4.3	1.4	1	08/11/23 09:11	08/15/23 13:13	307-55-1	2q	
Perfluoroheptanoic acid	5.2	ng/L	4.3	1.3	1	08/11/23 09:11	08/15/23 13:13	375-85-9		
Perfluorohexanesulfonic acid	<1.3	ng/L	4.3	1.3	1	08/11/23 09:11	08/15/23 13:13	355-46-4		
Perfluorononanoic acid	<1.1	ng/L	4.3	1.1	1	08/11/23 09:11	08/15/23 13:13	375-95-1		
Perfluorooctanesulfonic acid	2.6J	ng/L	4.3	0.82	1	08/11/23 09:11	08/15/23 13:13	1763-23-1		
Perfluorooctanoic acid	2.4J	ng/L	4.3	0.91	1	08/11/23 09:11	08/15/23 13:13	335-67-1		
Perfluorotetradecanoic acid	<1.2	ng/L	4.3	1.2	1	08/11/23 09:11	08/15/23 13:13	376-06-7	2q	
Perfluorotridecanoic acid	<1.3	ng/L	4.3	1.3	1	08/11/23 09:11	08/15/23 13:13	72629-94-8	2q	
Perfluoroundecanoic acid	<1.3	ng/L	4.3	1.3	1	08/11/23 09:11	08/15/23 13:13	2058-94-8		

Project: 6142 OHM ELM GROVE

40265982

Pace Project No .:

Sample: 6142-FB	Lab ID: 40265982002		Collected	Collected: 07/31/23 14:10			Received: 08/01/23 09:00 Matrix: Water			
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual	
PFAS in Water-EPA 537 Mod	Analytical	Method: EPA 5	37 Mod Pre	eparation M	lethod: I	EPA 537 Mod				
	Pace Anal	ytical Services	- Baton Rou	uge						
11CI-PF3OUdS	<0.42	ng/L	1.9	0.42	1	08/11/23 09:11	08/15/23 13:29	763051-92-9		
4:2 FTS	<0.58	ng/L	1.9	0.58	1	08/11/23 09:11	08/15/23 13:29	757124-72-4		
6:2 FTS	<0.70	ng/L	1.9	0.70	1	08/11/23 09:11	08/15/23 13:29	27619-97-2		
8:2 FTS	<0.50	ng/L	1.9	0.50	1	08/11/23 09:11	08/15/23 13:29	39108-34-4		
9CI-PF3ONS	<0.42	ng/L	1.9	0.42	1	08/11/23 09:11	08/15/23 13:29	756426-58-1		
ADONA	<0.40	ng/L	1.9	0.40	1	08/11/23 09:11	08/15/23 13:29	919005-14-4		
HFPO-DA	<3.1	ng/L	9.3	3.1	1	08/11/23 09:11	08/15/23 13:29	13252-13-6		
NEtFOSAA	<0.74	ng/L	3.7	0.74	1	08/11/23 09:11	08/15/23 13:29	2991-50-6		
NEtFOSA	<0.65	ng/L	3.7	0.65	1	08/11/23 09:11	08/15/23 13:29	4151-50-2	L1	
NEtFOSE	<0.47	ng/L	3.7	0.47	1	08/11/23 09:11	08/15/23 13:29	1691-99-2	N2	
NMeFOSAA	<0.42	ng/L	3.7	0.42	1	08/11/23 09:11	08/15/23 13:29	2355-31-9		
NMeFOSA	<0.78	ng/L	3.7	0.78	1	08/11/23 09:11	08/15/23 13:29	31506-32-8	L1	
NMeFOSE	<0.61	ng/L	3.7	0.61	1	08/11/23 09:11	08/15/23 13:29	24448-09-7	L1,N2	
Perfluorobutanesulfonic acid	<0.29	ng/L	1.9	0.29	1	08/11/23 09:11	08/15/23 13:29	375-73-5		
Perfluorodecanoic acid	<0.67	ng/L	1.9	0.67	1	08/11/23 09:11	08/15/23 13:29	335-76-2		
Perfluorohexanoic acid	<0.44	ng/L	1.9	0.44	1	08/11/23 09:11	08/15/23 13:29	307-24-4		
PFBA	<0.71	ng/L	1.9	0.71	1	08/11/23 09:11	08/15/23 13:29	375-22-4		
PFDS	<0.57	ng/L	1.9	0.57	1	08/11/23 09:11	08/15/23 13:29	335-77-3		
PFDoS	<0.61	ng/L	1.9	0.61	1	08/11/23 09:11	08/15/23 13:29	79780-39-5		
PFHpS	<0.57	ng/L	1.9	0.57	1	08/11/23 09:11	08/15/23 13:29	375-92-8		
PFNS	<0.81	ng/L	1.9	0.81	1	08/11/23 09:11	08/15/23 13:29	68259-12-1		
PFOSA	<0.35	ng/L	1.9	0.35	1	08/11/23 09:11	08/15/23 13:29	754-91-6		
PFPeA	<0.41	ng/L	1.9	0.41	1	08/11/23 09:11	08/15/23 13:29	2706-90-3		
PFPeS	<0.48	ng/L	1.9	0.48	1	08/11/23 09:11	08/15/23 13:29	2706-91-4		
Perfluorododecanoic acid	<0.61	ng/L	1.9	0.61	1	08/11/23 09:11	08/15/23 13:29	307-55-1		
Perfluoroheptanoic acid	<0.54	ng/L	1.9	0.54	1	08/11/23 09:11	08/15/23 13:29	375-85-9		
Perfluorohexanesulfonic acid	<0.58	ng/L	1.9	0.58	1	08/11/23 09:11	08/15/23 13:29	355-46-4		
Perfluorononanoic acid	<0.46	ng/L	1.9	0.46	1	08/11/23 09:11	08/15/23 13:29	375-95-1		
Perfluorooctanesulfonic acid	<0.36	ng/L	1.9	0.36	1	08/11/23 09:11	08/15/23 13:29	1763-23-1		
Perfluorooctanoic acid	<0.39	ng/L	1.9	0.39	1	08/11/23 09:11	08/15/23 13:29	335-67-1		
Perfluorotetradecanoic acid	<0.53	ng/L	1.9	0.53	1	08/11/23 09:11	08/15/23 13:29	376-06-7		
Perfluorotridecanoic acid	<0.57	ng/L	1.9	0.57	1	08/11/23 09:11	08/15/23 13:29	72629-94-8		
Perfluoroundecanoic acid	<0.58	ng/L	1.9	0.58	1	08/11/23 09:11	08/15/23 13:29	2058-94-8		

Project: 6142 OHM ELM GROVE

Pace Project No.: 40265982

Sample: 6142-MW4	Lab ID: 40265982003		Collected: 07/31/23 15:15			Received: 08	Received: 08/01/23 09:00 Matrix: Water			
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual	
PFAS in Water-EPA 537 Mod	Analytical	Method: EPA 5	37 Mod Pre	eparation N	lethod:	EPA 537 Mod				
	Pace Anal	ytical Services	- Baton Rou	ıge						
11CI-PF3OUdS	<0.44	ng/L	2.0	0.44	1	08/11/23 09:11	08/15/23 13:44	763051-92-9		
4:2 FTS	<0.61	ng/L	2.0	0.61	1	08/11/23 09:11	08/15/23 13:44	757124-72-4		
6:2 FTS	<0.74	ng/L	2.0	0.74	1	08/11/23 09:11	08/15/23 13:44	27619-97-2		
8:2 FTS	<0.52	ng/L	2.0	0.52	1	08/11/23 09:11	08/15/23 13:44	39108-34-4		
9CI-PF3ONS	<0.44	ng/L	2.0	0.44	1	08/11/23 09:11	08/15/23 13:44	756426-58-1		
ADONA	<0.42	ng/L	2.0	0.42	1	08/11/23 09:11	08/15/23 13:44	919005-14-4		
HFPO-DA	<3.3	ng/L	9.8	3.3	1	08/11/23 09:11	08/15/23 13:44	13252-13-6		
NEtFOSAA	<0.77	ng/L	3.9	0.77	1	08/11/23 09:11	08/15/23 13:44	2991-50-6		
NEtFOSA	<0.69	ng/L	3.9	0.69	1	08/11/23 09:11	08/15/23 13:44	4151-50-2	2q,L1	
NEtFOSE	<0.50	ng/L	3.9	0.50	1	08/11/23 09:11	08/15/23 13:44	1691-99-2	2q,N2	
NMeFOSAA	<0.44	ng/L	3.9	0.44	1	08/11/23 09:11	08/15/23 13:44	2355-31-9		
NMeFOSA	<0.81	ng/L	3.9	0.81	1	08/11/23 09:11	08/15/23 13:44	31506-32-8	2q,L1	
NMeFOSE	<0.64	ng/L	3.9	0.64	1	08/11/23 09:11	08/15/23 13:44	24448-09-7	L1,N2	
Perfluorobutanesulfonic acid	2.5	ng/L	2.0	0.30	1	08/11/23 09:11	08/15/23 13:44	375-73-5		
Perfluorodecanoic acid	<0.71	ng/L	2.0	0.71	1	08/11/23 09:11	08/15/23 13:44	335-76-2		
Perfluorohexanoic acid	5.2	ng/L	2.0	0.46	1	08/11/23 09:11	08/15/23 13:44	307-24-4		
PFBA	7.7	ng/L	2.0	0.75	1	08/11/23 09:11	08/15/23 13:44	375-22-4		
PFDS	<0.60	ng/L	2.0	0.60	1	08/11/23 09:11	08/15/23 13:44	335-77-3		
PFDoS	<0.64	ng/L	2.0	0.64	1	08/11/23 09:11	08/15/23 13:44	79780-39-5		
PFHpS	<0.60	ng/L	2.0	0.60	1	08/11/23 09:11	08/15/23 13:44	375-92-8		
PFNS	<0.85	ng/L	2.0	0.85	1	08/11/23 09:11	08/15/23 13:44	68259-12-1		
PFOSA	<0.36	ng/L	2.0	0.36	1	08/11/23 09:11	08/15/23 13:44	754-91-6		
PFPeA	9.9	ng/L	2.0	0.43	1	08/11/23 09:11	08/15/23 13:44	2706-90-3		
PFPeS	<0.50	ng/L	2.0	0.50	1	08/11/23 09:11	08/15/23 13:44	2706-91-4		
Perfluorododecanoic acid	<0.64	ng/L	2.0	0.64	1	08/11/23 09:11	08/15/23 13:44	307-55-1		
Perfluoroheptanoic acid	1.7J	ng/L	2.0	0.57	1	08/11/23 09:11	08/15/23 13:44	375-85-9		
Perfluorohexanesulfonic acid	0.66J	ng/L	2.0	0.61	1	08/11/23 09:11	08/15/23 13:44	355-46-4		
Perfluorononanoic acid	<0.48	ng/L	2.0	0.48	1	08/11/23 09:11	08/15/23 13:44	375-95-1		
Perfluorooctanesulfonic acid	0.73J	ng/L	2.0	0.37	1	08/11/23 09:11	08/15/23 13:44	1763-23-1	В	
Perfluorooctanoic acid	1.1J	ng/L	2.0	0.41	1	08/11/23 09:11	08/15/23 13:44	335-67-1		
Perfluorotetradecanoic acid	<0.56	ng/L	2.0	0.56	1	08/11/23 09:11	08/15/23 13:44	376-06-7	2q	
Perfluorotridecanoic acid	<0.60	ng/L	2.0	0.60	1	08/11/23 09:11	08/15/23 13:44	72629-94-8		
Perfluoroundecanoic acid	<0.61	ng/L	2.0	0.61	1	08/11/23 09:11	08/15/23 13:44	2058-94-8		

Project: 6142 OHM ELM GROVE

Pace Project No.: 40265982

Sample: 6142-MW7	Lab ID: 40265982004		Collecte	Collected: 07/31/23 15:35			Received: 08/01/23 09:00 Matrix: Water			
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual	
PFAS in Water-EPA 537 Mod	Analytical	Method: EPA 5	37 Mod Pr	eparation M	lethod:	EPA 537 Mod				
	Pace Anal	ytical Services	- Baton Ro	uge						
11CI-PF3OUdS	<0.43	ng/L	1.9	0.43	1	08/11/23 09:11	08/15/23 13:59	763051-92-9		
4:2 FTS	<0.60	ng/L	1.9	0.60	1	08/11/23 09:11	08/15/23 13:59	757124-72-4	1q	
6:2 FTS	<0.72	ng/L	1.9	0.72	1	08/11/23 09:11	08/15/23 13:59	27619-97-2		
8:2 FTS	<0.51	ng/L	1.9	0.51	1	08/11/23 09:11	08/15/23 13:59	39108-34-4		
9CI-PF3ONS	<0.43	ng/L	1.9	0.43	1	08/11/23 09:11	08/15/23 13:59	756426-58-1		
ADONA	<0.41	ng/L	1.9	0.41	1	08/11/23 09:11	08/15/23 13:59	919005-14-4		
HFPO-DA	<3.2	ng/L	9.6	3.2	1	08/11/23 09:11	08/15/23 13:59	13252-13-6		
NEtFOSAA	<0.76	ng/L	3.8	0.76	1	08/11/23 09:11	08/15/23 13:59	2991-50-6		
NEtFOSA	<0.67	ng/L	3.8	0.67	1	08/11/23 09:11	08/15/23 13:59	4151-50-2	2q,L1	
NEtFOSE	<0.49	ng/L	3.8	0.49	1	08/11/23 09:11	08/15/23 13:59	1691-99-2	2q,N2	
NMeFOSAA	<0.43	ng/L	3.8	0.43	1	08/11/23 09:11	08/15/23 13:59	2355-31-9		
NMeFOSA	<0.80	ng/L	3.8	0.80	1	08/11/23 09:11	08/15/23 13:59	31506-32-8	2q,L1	
NMeFOSE	<0.63	ng/L	3.8	0.63	1	08/11/23 09:11	08/15/23 13:59	24448-09-7	2q,L1, N2	
Perfluorobutanesulfonic acid	2.2	ng/L	1.9	0.30	1	08/11/23 09:11	08/15/23 13:59	375-73-5		
Perfluorodecanoic acid	<0.69	ng/L	1.9	0.69	1	08/11/23 09:11	08/15/23 13:59	335-76-2		
Perfluorohexanoic acid	2.1	ng/L	1.9	0.45	1	08/11/23 09:11	08/15/23 13:59	307-24-4		
PFBA	4.3	ng/L	1.9	0.73	1	08/11/23 09:11	08/15/23 13:59	375-22-4		
PFDS	<0.59	ng/L	1.9	0.59	1	08/11/23 09:11	08/15/23 13:59	335-77-3		
PFDoS	<0.63	ng/L	1.9	0.63	1	08/11/23 09:11	08/15/23 13:59	79780-39-5		
PFHpS	<0.59	ng/L	1.9	0.59	1	08/11/23 09:11	08/15/23 13:59	375-92-8		
PFNS	<0.84	ng/L	1.9	0.84	1	08/11/23 09:11	08/15/23 13:59	68259-12-1		
PFOSA	0.58J	ng/L	1.9	0.36	1	08/11/23 09:11	08/15/23 13:59	754-91-6	2q	
PFPeA	4.2	ng/L	1.9	0.42	1	08/11/23 09:11	08/15/23 13:59	2706-90-3		
PFPeS	<0.49	ng/L	1.9	0.49	1	08/11/23 09:11	08/15/23 13:59	2706-91-4		
Perfluorododecanoic acid	<0.63	ng/L	1.9	0.63	1	08/11/23 09:11	08/15/23 13:59	307-55-1	2q	
Perfluoroheptanoic acid	1.0J	ng/L	1.9	0.56	1	08/11/23 09:11	08/15/23 13:59	375-85-9		
Perfluorohexanesulfonic acid	<0.60	ng/L	1.9	0.60	1	08/11/23 09:11	08/15/23 13:59	355-46-4		
Perfluorononanoic acid	<0.47	ng/L	1.9	0.47	1	08/11/23 09:11	08/15/23 13:59	375-95-1		
Perfluorooctanesulfonic acid	0.92J	ng/L	1.9	0.37	1	08/11/23 09:11	08/15/23 13:59	1763-23-1	В	
Perfluorooctanoic acid	0.63J	ng/L	1.9	0.40	1	08/11/23 09:11	08/15/23 13:59	335-67-1		
Perfluorotetradecanoic acid	<0.55	ng/L	1.9	0.55	1	08/11/23 09:11	08/15/23 13:59	376-06-7	2q	
Perfluorotridecanoic acid	<0.59	ng/L	1.9	0.59	1	08/11/23 09:11	08/15/23 13:59	72629-94-8	2q	
Perfluoroundecanoic acid	<0.60	ng/L	1.9	0.60	1	08/11/23 09:11	08/15/23 13:59	2058-94-8		

Project: 6142 OHM ELM GROVE

Pace Project No.: 40265982

Sample: 6142-DUP	Lab ID: 40265982005		Collected: 07/31/23 00:00 F		Received: 08/01/23 09:00 Matrix: Water				
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
PFAS in Water-EPA 537 Mod	Analytical	Method: EPA 5	37 Mod Prep	paration M	lethod:	EPA 537 Mod			
	Pace Anal	ytical Services	- Baton Roug	je					
11CI-PF3OUdS	<0.44	ng/L	2.0	0.44	1	08/11/23 09:11	08/15/23 14:15	763051-92-9	
4:2 FTS	<0.61	ng/L	2.0	0.61	1	08/11/23 09:11	08/15/23 14:15	757124-72-4	1q
6:2 FTS	<0.74	ng/L	2.0	0.74	1	08/11/23 09:11	08/15/23 14:15	27619-97-2	
8:2 FTS	<0.52	ng/L	2.0	0.52	1	08/11/23 09:11	08/15/23 14:15	39108-34-4	
9CI-PF3ONS	<0.44	ng/L	2.0	0.44	1	08/11/23 09:11	08/15/23 14:15	756426-58-1	
ADONA	<0.42	ng/L	2.0	0.42	1	08/11/23 09:11	08/15/23 14:15	919005-14-4	
HFPO-DA	<3.3	ng/L	9.8	3.3	1	08/11/23 09:11	08/15/23 14:15	13252-13-6	
NEtFOSAA	<0.78	ng/L	3.9	0.78	1	08/11/23 09:11	08/15/23 14:15	2991-50-6	
NEtFOSA	<0.69	ng/L	3.9	0.69	1	08/11/23 09:11	08/15/23 14:15	4151-50-2	2q,L1
NEtFOSE	<0.50	ng/L	3.9	0.50	1	08/11/23 09:11	08/15/23 14:15	1691-99-2	2q,N2
NMeFOSAA	<0.44	ng/L	3.9	0.44	1	08/11/23 09:11	08/15/23 14:15	2355-31-9	
NMeFOSA	<0.82	ng/L	3.9	0.82	1	08/11/23 09:11	08/15/23 14:15	31506-32-8	2q,L1
NMeFOSE	<0.64	ng/L	3.9	0.64	1	08/11/23 09:11	08/15/23 14:15	24448-09-7	2q,L1, N2
Perfluorobutanesulfonic acid	2.5	ng/L	2.0	0.30	1	08/11/23 09:11	08/15/23 14:15	375-73-5	
Perfluorodecanoic acid	<0.71	ng/L	2.0	0.71	1	08/11/23 09:11	08/15/23 14:15	335-76-2	
Perfluorohexanoic acid	2.0	ng/L	2.0	0.46	1	08/11/23 09:11	08/15/23 14:15	307-24-4	
PFBA	4.3	ng/L	2.0	0.75	1	08/11/23 09:11	08/15/23 14:15	375-22-4	
PFDS	<0.60	ng/L	2.0	0.60	1	08/11/23 09:11	08/15/23 14:15	335-77-3	
PFDoS	<0.64	ng/L	2.0	0.64	1	08/11/23 09:11	08/15/23 14:15	79780-39-5	
PFHpS	<0.60	ng/L	2.0	0.60	1	08/11/23 09:11	08/15/23 14:15	375-92-8	
PFNS	<0.86	ng/L	2.0	0.86	1	08/11/23 09:11	08/15/23 14:15	68259-12-1	
PFOSA	<0.36	ng/L	2.0	0.36	1	08/11/23 09:11	08/15/23 14:15	754-91-6	2q
PFPeA	4.2	ng/L	2.0	0.43	1	08/11/23 09:11	08/15/23 14:15	2706-90-3	
PFPeS	<0.50	ng/L	2.0	0.50	1	08/11/23 09:11	08/15/23 14:15	2706-91-4	
Perfluorododecanoic acid	<0.64	ng/L	2.0	0.64	1	08/11/23 09:11	08/15/23 14:15	307-55-1	2q
Perfluoroheptanoic acid	1.0J	ng/L	2.0	0.57	1	08/11/23 09:11	08/15/23 14:15	375-85-9	·
Perfluorohexanesulfonic acid	<0.61	ng/L	2.0	0.61	1	08/11/23 09:11	08/15/23 14:15	355-46-4	
Perfluorononanoic acid	<0.48	ng/L	2.0	0.48	1	08/11/23 09:11	08/15/23 14:15	375-95-1	
Perfluorooctanesulfonic acid	0.65J	ng/L	2.0	0.37	1	08/11/23 09:11	08/15/23 14:15	1763-23-1	В
Perfluorooctanoic acid	0.54J	ng/L	2.0	0.41	1	08/11/23 09:11	08/15/23 14:15	335-67-1	
Perfluorotetradecanoic acid	<0.56	ng/L	2.0	0.56	1	08/11/23 09:11	08/15/23 14:15	376-06-7	2q
Perfluorotridecanoic acid	<0.60	ng/L	2.0	0.60	1	08/11/23 09:11	08/15/23 14:15	72629-94-8	2q
Perfluoroundecanoic acid	<0.61	ng/L	2.0	0.61	1	08/11/23 09:11	08/15/23 14:15	2058-94-8	

REPORT OF LABORATORY ANALYSIS

Project: 6142 OHM ELM GROVE

Pace Project No.: 40265982

Sample: 6142-IDM-1	Lab ID:	40265982006	Collected: 07/31/23 15:45			Received: 08/01/23 09:00 Matrix: Water				
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual	
8260 MSV	Analytica	I Method: EPA 8	260							
	Pace Ana	alytical Services	- Green Ba	ıy						
Benzene	<0.30	ug/L	1.0	0.30	1		08/02/23 20:26	71-43-2		
Bromobenzene	<0.36	ug/L	1.0	0.36	1		08/02/23 20:26	108-86-1		
Bromochloromethane	<0.36	ug/L	1.0	0.36	1		08/02/23 20:26	74-97-5		
Bromodichloromethane	<0.42	ug/L	1.0	0.42	1		08/02/23 20:26	75-27-4		
Bromoform	<0.43	ug/L	1.0	0.43	1		08/02/23 20:26	75-25-2		
Bromomethane	<1.2	ug/L	5.0	1.2	1		08/02/23 20:26	74-83-9		
n-Butylbenzene	<0.86	ug/L	1.0	0.86	1		08/02/23 20:26	104-51-8		
sec-Butylbenzene	<0.42	ug/L	1.0	0.42	1		08/02/23 20:26	135-98-8		
tert-Butylbenzene	<0.59	ug/L	1.0	0.59	1		08/02/23 20:26	98-06-6		
Carbon tetrachloride	<0.37	ug/L	1.0	0.37	1		08/02/23 20:26	56-23-5		
Chlorobenzene	<0.86	ug/L	1.0	0.86	1		08/02/23 20:26	108-90-7		
Chloroethane	<1.4	ug/L	5.0	1.4	1		08/02/23 20:26	75-00-3		
Chloroform	<0.50	ug/L	5.0	0.50	1		08/02/23 20:26	67-66-3		
Chloromethane	<1.6	ug/L	5.0	1.6	1		08/02/23 20:26	74-87-3		
2-Chlorotoluene	<0.89	ug/L	5.0	0.89	1		08/02/23 20:26	95-49-8		
4-Chlorotoluene	<0.89	ug/L	5.0	0.89	1		08/02/23 20:26	106-43-4		
1,2-Dibromo-3-chloropropane	<2.4	ug/L	5.0	2.4	1		08/02/23 20:26	96-12-8		
Dibromochloromethane	<2.6	ug/L	5.0	2.6	1		08/02/23 20:26	124-48-1		
1,2-Dibromoethane (EDB)	<0.31	ug/L	1.0	0.31	1		08/02/23 20:26	106-93-4		
Dibromomethane	<0.99	ug/L	5.0	0.99	1		08/02/23 20:26	74-95-3		
1,2-Dichlorobenzene	<0.33	ug/L	1.0	0.33	1		08/02/23 20:26	95-50-1		
1,3-Dichlorobenzene	<0.35	ug/L	1.0	0.35	1		08/02/23 20:26	541-73-1		
1,4-Dichlorobenzene	<0.89	ug/L	1.0	0.89	1		08/02/23 20:26	106-46-7		
Dichlorodifluoromethane	<0.46	ug/L	5.0	0.46	1		08/02/23 20:26	75-71-8		
1,1-Dichloroethane	<0.30	ug/L	1.0	0.30	1		08/02/23 20:26	75-34-3		
1,2-Dichloroethane	<0.29	ug/L	1.0	0.29	1		08/02/23 20:26	107-06-2		
1,1-Dichloroethene	<0.58	ug/L	1.0	0.58	1		08/02/23 20:26	75-35-4		
cis-1,2-Dichloroethene	74.9	ug/L	1.0	0.47	1		08/02/23 20:26	156-59-2		
trans-1,2-Dichloroethene	2.2	ug/L	1.0	0.53	1		08/02/23 20:26	156-60-5		
1,2-Dichloropropane	<0.45	ug/L	1.0	0.45	1		08/02/23 20:26	78-87-5		
1,3-Dichloropropane	<0.30	ug/L	1.0	0.30	1		08/02/23 20:26	142-28-9		
2,2-Dichloropropane	<0.42	ug/L	1.0	0.42	1		08/02/23 20:26	594-20-7		
1,1-Dichloropropene	<0.41	ug/L	1.0	0.41	1		08/02/23 20:26	563-58-6		
cis-1,3-Dichloropropene	<0.24	ug/L	1.0	0.24	1		08/02/23 20:26	10061-01-5		
trans-1,3-Dichloropropene	<0.27	ug/L	1.0	0.27	1		08/02/23 20:26	10061-02-6		
Diisopropyl ether	<1.1	ug/L	5.0	1.1	1		08/02/23 20:26	108-20-3		
Ethylbenzene	<0.33	ug/L	1.0	0.33	1		08/02/23 20:26	100-41-4		
Hexachloro-1,3-butadiene	<2.7	ug/L	5.0	2.7	1		08/02/23 20:26	87-68-3		
Isopropylbenzene (Cumene)	<1.0	ug/L	5.0	1.0	1		08/02/23 20:26	98-82-8		
p-lsopropyltoluene	<1.0	ug/L	5.0	1.0	1		08/02/23 20:26	99-87-6		
Methylene Chloride	<0.32	ug/L	5.0	0.32	1		08/02/23 20:26	75-09-2		
Methyl-tert-butyl ether	<1.1	ug/L	5.0	1.1	1		08/02/23 20:26	1634-04-4		
Naphthalene	<1.9	ug/L	5.0	1.9	1		08/02/23 20:26	91-20-3		
n-Propylbenzene	<0.35	ug/L	1.0	0.35	1		08/02/23 20:26	103-65-1		
Styrene	<0.36	ug/L	1.0	0.36	1		08/02/23 20:26	100-42-5	L1	

Project: 6142 OHM ELM GROVE

Pace Project No.: 40265982

Sample: 6142-IDM-1	Lab ID: 40265982006		Collecte	d: 07/31/23	8 15:45	Received: 08	atrix: Water	Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA 8	260						
	Pace Anal	ytical Services	- Green Ba	у					
1,1,1,2-Tetrachloroethane	<0.36	ug/L	1.0	0.36	1		08/02/23 20:26	630-20-6	
1,1,2,2-Tetrachloroethane	<0.38	ug/L	1.0	0.38	1		08/02/23 20:26	79-34-5	
Tetrachloroethene	0.98J	ug/L	1.0	0.41	1		08/02/23 20:26	127-18-4	
Toluene	<0.29	ug/L	1.0	0.29	1		08/02/23 20:26	108-88-3	
1,2,3-Trichlorobenzene	<1.0	ug/L	5.0	1.0	1		08/02/23 20:26	87-61-6	
1,2,4-Trichlorobenzene	<0.95	ug/L	5.0	0.95	1		08/02/23 20:26	120-82-1	
1,1,1-Trichloroethane	<0.30	ug/L	1.0	0.30	1		08/02/23 20:26	71-55-6	
1,1,2-Trichloroethane	<0.34	ug/L	1.0	0.34	1		08/02/23 20:26	79-00-5	
Trichloroethene	1.2	ug/L	1.0	0.32	1		08/02/23 20:26	79-01-6	
Trichlorofluoromethane	<0.42	ug/L	1.0	0.42	1		08/02/23 20:26	75-69-4	
1,2,3-Trichloropropane	<0.56	ug/L	1.0	0.56	1		08/02/23 20:26	96-18-4	
1,2,4-Trimethylbenzene	<0.45	ug/L	1.0	0.45	1		08/02/23 20:26	95-63-6	
1,3,5-Trimethylbenzene	<0.36	ug/L	1.0	0.36	1		08/02/23 20:26	108-67-8	
Vinyl chloride	18.0	ug/L	1.0	0.17	1		08/02/23 20:26	75-01-4	
m&p-Xylene	<0.70	ug/L	2.0	0.70	1		08/02/23 20:26	179601-23-1	
o-Xylene	<0.35	ug/L	1.0	0.35	1		08/02/23 20:26	95-47-6	
Surrogates									
4-Bromofluorobenzene (S)	101	%	70-130		1		08/02/23 20:26	460-00-4	
1,2-Dichlorobenzene-d4 (S)	100	%	70-130		1		08/02/23 20:26	2199-69-1	
Toluene-d8 (S)	103	%	70-130		1		08/02/23 20:26	2037-26-5	

Project: 6142 OHM ELM GROVE

Pace Project No.:	40265982
-------------------	----------

QC Batch:	451259	Analysis Method:	EPA 8260	
QC Batch Method:	EPA 8260	Analysis Description:	8260 MSV	
		Laboratory:	Pace Analytical Services - Green Bay	
Associated Lab San	nples: 40265982006			
METHOD BLANK:	2592677	Matrix: Water		
Associated Lab San	nples: 40265982006			
		Blank Reportir		

		Diailk	reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	<0.36	1.0	08/02/23 14:13	
1,1,1-Trichloroethane	ug/L	< 0.30	1.0	08/02/23 14:13	
1,1,2,2-Tetrachloroethane	ug/L	<0.38	1.0	08/02/23 14:13	
,1,2-Trichloroethane	ug/L	< 0.34	1.0	08/02/23 14:13	
,1-Dichloroethane	ug/L	<0.30	1.0	08/02/23 14:13	
,1-Dichloroethene	ug/L	<0.58	1.0	08/02/23 14:13	
,1-Dichloropropene	ug/L	<0.41	1.0	08/02/23 14:13	
2,3-Trichlorobenzene	ug/L	<1.0	5.0	08/02/23 14:13	
2,3-Trichloropropane	ug/L	<0.56	1.0	08/02/23 14:13	
2,4-Trichlorobenzene	ug/L	<0.95	5.0	08/02/23 14:13	
2,4-Trimethylbenzene	ug/L	<0.45	1.0	08/02/23 14:13	
2-Dibromo-3-chloropropane	ug/L	<2.4	5.0	08/02/23 14:13	
,2-Dibromoethane (EDB)	ug/L	<0.31	1.0	08/02/23 14:13	
,2-Dichlorobenzene	ug/L	<0.33	1.0	08/02/23 14:13	
,2-Dichloroethane	ug/L	<0.29	1.0	08/02/23 14:13	
,2-Dichloropropane	ug/L	<0.45	1.0	08/02/23 14:13	
3,5-Trimethylbenzene	ug/L	<0.36	1.0	08/02/23 14:13	
3-Dichlorobenzene	ug/L	< 0.35	1.0	08/02/23 14:13	
3-Dichloropropane	ug/L	< 0.30	1.0	08/02/23 14:13	
4-Dichlorobenzene	ug/L	<0.89	1.0	08/02/23 14:13	
2-Dichloropropane	ug/L	<0.42	1.0	08/02/23 14:13	
Chlorotoluene	ug/L	<0.89	5.0	08/02/23 14:13	
Chlorotoluene	ug/L	<0.89	5.0	08/02/23 14:13	
nzene	ug/L	< 0.30	1.0	08/02/23 14:13	
omobenzene	ug/L	<0.36	1.0	08/02/23 14:13	
omochloromethane	ug/L	<0.36	1.0	08/02/23 14:13	
omodichloromethane	ug/L	<0.42	1.0	08/02/23 14:13	
omoform	ug/L	<0.43	1.0	08/02/23 14:13	
romomethane	ug/L	<1.2	5.0	08/02/23 14:13	
arbon tetrachloride	ug/L	<0.37	1.0	08/02/23 14:13	
hlorobenzene	ug/L	<0.86	1.0	08/02/23 14:13	
hloroethane	ug/L	<1.4	5.0	08/02/23 14:13	
hloroform	ug/L	<0.50	5.0	08/02/23 14:13	
hloromethane	ug/L	<1.6	5.0	08/02/23 14:13	
s-1,2-Dichloroethene	ug/L	<0.47	1.0	08/02/23 14:13	
is-1,3-Dichloropropene	ug/L	<0.24	1.0	08/02/23 14:13	
ibromochloromethane	ug/L	<2.6	5.0	08/02/23 14:13	
ibromomethane	ug/L	<0.99	5.0	08/02/23 14:13	
vichlorodifluoromethane	ug/L	<0.46	5.0	08/02/23 14:13	
)iisopropyl ether	ug/L	<1.1	5.0	08/02/23 14:13	
	-				

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 6142 OHM ELM GROVE

Pace Project No.: 40265982

METHOD BLANK: 2592677		Matrix:	Water		
Associated Lab Samples: 40265982	2006				
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Ethylbenzene	ug/L	<0.33	1.0	08/02/23 14:13	
Hexachloro-1,3-butadiene	ug/L	<2.7	5.0	08/02/23 14:13	
Isopropylbenzene (Cumene)	ug/L	<1.0	5.0	08/02/23 14:13	
m&p-Xylene	ug/L	<0.70	2.0	08/02/23 14:13	
Methyl-tert-butyl ether	ug/L	<1.1	5.0	08/02/23 14:13	
Methylene Chloride	ug/L	<0.32	5.0	08/02/23 14:13	
n-Butylbenzene	ug/L	<0.86	1.0	08/02/23 14:13	
n-Propylbenzene	ug/L	<0.35	1.0	08/02/23 14:13	
Naphthalene	ug/L	<1.9	5.0	08/02/23 14:13	
o-Xylene	ug/L	<0.35	1.0	08/02/23 14:13	
p-Isopropyltoluene	ug/L	<1.0	5.0	08/02/23 14:13	
sec-Butylbenzene	ug/L	<0.42	1.0	08/02/23 14:13	
Styrene	ug/L	<0.36	1.0	08/02/23 14:13	
tert-Butylbenzene	ug/L	<0.59	1.0	08/02/23 14:13	
Tetrachloroethene	ug/L	<0.41	1.0	08/02/23 14:13	
Toluene	ug/L	<0.29	1.0	08/02/23 14:13	
trans-1,2-Dichloroethene	ug/L	<0.53	1.0	08/02/23 14:13	
trans-1,3-Dichloropropene	ug/L	<0.27	1.0	08/02/23 14:13	
Trichloroethene	ug/L	<0.32	1.0	08/02/23 14:13	
Trichlorofluoromethane	ug/L	<0.42	1.0	08/02/23 14:13	
Vinyl chloride	ug/L	<0.17	1.0	08/02/23 14:13	
1,2-Dichlorobenzene-d4 (S)	%	99	70-130	08/02/23 14:13	
4-Bromofluorobenzene (S)	%	103	70-130	08/02/23 14:13	
Toluene-d8 (S)	%	105	70-130	08/02/23 14:13	

LABORATORY CONTROL SAMPLE: 2592678

Deremeter	Lipito	Spike	LCS Booult	LCS	% Rec	Qualifiara	
Falametei				76 Rec		Quaimers	
1,1,1-Trichloroethane	ug/L	50	50.6	101	70-134		
1,1,2,2-Tetrachloroethane	ug/L	50	54.1	108	69-130		
1,1,2-Trichloroethane	ug/L	50	53.4	107	70-130		
1,1-Dichloroethane	ug/L	50	53.2	106	70-130		
1,1-Dichloroethene	ug/L	50	52.6	105	74-131		
1,2,4-Trichlorobenzene	ug/L	50	46.9	94	68-130		
1,2-Dibromo-3-chloropropane	ug/L	50	44.9	90	64-137		
1,2-Dibromoethane (EDB)	ug/L	50	50.2	100	70-130		
1,2-Dichlorobenzene	ug/L	50	51.0	102	70-130		
1,2-Dichloroethane	ug/L	50	50.0	100	70-137		
1,2-Dichloropropane	ug/L	50	51.7	103	80-121		
1,3-Dichlorobenzene	ug/L	50	52.4	105	70-130		
1,4-Dichlorobenzene	ug/L	50	50.3	101	70-130		
Benzene	ug/L	50	52.2	104	70-130		
Bromodichloromethane	ug/L	50	52.2	104	70-130		
Bromoform	ug/L	50	43.8	88	70-130		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 6142 OHM ELM GROVE

Pace Project No.: 40265982

LABORATORY CONTROL SAMPLE: 2592678

Parameter Units Conc. Result % Rec Limits Qualifiers Bromomethane ug/L 50 44.4 89 21-147 Carbon tetrachloride ug/L 50 44.0 88 80-146 Chlorobenzene ug/L 50 52.9 106 70-130 Chlorothane ug/L 50 45.6 91 52-165 Chlorothane ug/L 50 51.7 103 80-123 Chlorothene ug/L 50 51.4 103 70-130 cis-1,2-Dichlorothene ug/L 50 53.0 106 70-130 Dichorodifluoromethane ug/L 50 54.5 89 70-130 Dichorodifluoromethane ug/L 50 56.1 112 80-120 Isopropylbenzene (Curmene) ug/L 50 54.5 109 70-130 Methyl-tert-butyl ether ug/L 50 39.0 78 70-130 Methylene ug/L			Spike	LCS	LCS	% Rec	
Bromomethane ug/L 50 44.4 89 21-147 Carbon tetrachloride ug/L 50 44.0 88 80-146 Chlorobenzene ug/L 50 45.6 91 52-165 Chloroform ug/L 50 45.6 91 52-165 Chloroform ug/L 50 41.7 83 51-122 Cis-1,3-Dichloroethene ug/L 50 44.5 89 70-130 Dibromochloromethane ug/L 50 51.4 103 70-130 Dichlorodifluoromethane ug/L 50 44.5 89 70-130 Dichlorodifluoromethane ug/L 50 44.5 89 70-130 Dichlorodifluoromethane ug/L 50 26.8 54 25-121 Ethylbenzene ug/L 50 56.1 112 80-120 Isopropylbenzene (Cumene) ug/L 50 55.2 109 70-130 Methyl-tert-butyl ether ug/L 50 </th <th>Parameter</th> <th>Units</th> <th>Conc.</th> <th>Result</th> <th>% Rec</th> <th>Limits</th> <th>Qualifiers</th>	Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Carbon tetrachloride ug/L 50 44.0 88 80-146 Chlorobenzene ug/L 50 52.9 106 70-130 Chloroberhane ug/L 50 51.7 103 80-123 Chloroform ug/L 50 41.7 83 51-122 Chloromethane ug/L 50 51.4 103 70-130 cis-1,2-Dichloroethene ug/L 50 51.4 103 70-130 Dibromochloromethane ug/L 50 44.5 89 70-130 Dichlorodifluoromethane ug/L 50 26.8 54 25-121 Ethylbenzene ug/L 50 56.1 112 80-120 Isopropylbenzene (Cumene) ug/L 50 54.5 109 70-130 Methyl-tert-butyl ether ug/L 50 49.6 99 70-130 Methylene Chloride ug/L 50 55.2 110 70-130 Styrene ug/L 50 <	Bromomethane	ug/L		44.4	89	21-147	
Chlorobenzene ug/L 50 52.9 106 70-130 Chloroethane ug/L 50 45.6 91 52-165 Chlorooform ug/L 50 51.7 103 80-123 Chloroothane ug/L 50 51.7 103 80-123 Chloroothane ug/L 50 51.4 103 70-130 cis-1,2-Dichloroothene ug/L 50 53.0 106 70-130 cis-1,3-Dichloroothene ug/L 50 44.5 89 70-130 Dibromochloromethane ug/L 50 56.1 112 80-120 Isopropylbenzene (Cumene) ug/L 50 56.1 112 80-120 Isopropylbenzene (Cumene) ug/L 50 54.5 109 70-130 m&p-Xylene ug/L 50 54.5 109 70-130 Methylene Chloride ug/L 50 55.2 110 70-130 Styrene ug/L 50 55.6	Carbon tetrachloride	ug/L	50	44.0	88	80-146	
Chloroethane ug/L 50 45.6 91 52-165 Chloroform ug/L 50 51.7 103 80-123 Chloromethane ug/L 50 41.7 83 51-122 cis-1,2-Dichloroethene ug/L 50 51.4 103 70-130 cis-1,3-Dichloroppene ug/L 50 53.0 106 70-130 Dichorodthane ug/L 50 44.5 89 70-130 Dichlorodthane ug/L 50 26.8 54 25-121 Ethylbenzene ug/L 50 56.1 112 80-120 Isopropylbenzene (Curnene) ug/L 50 54.5 109 70-130 Methyl-tert-butyl ether ug/L 50 49.6 99 70-130 Methyl-tert-butyl ether ug/L 50 39.0 78 70-130 o-Xylene ug/L 50 55.2 110 70-130 Tetrachloroethene ug/L 50 53.	Chlorobenzene	ug/L	50	52.9	106	70-130	
Chloroform ug/L 50 51.7 103 80-123 Chloromethane ug/L 50 41.7 83 51-122 cis-1,2-Dichloroethene ug/L 50 51.4 103 70-130 cis-1,3-Dichloropropene ug/L 50 53.0 106 70-130 Dichorochloromethane ug/L 50 44.5 89 70-130 Dichlorodifluoromethane ug/L 50 26.8 54 25-121 Ethylbenzene ug/L 50 54.5 109 70-130 lsopropylbenzene (Cumene) ug/L 50 54.5 109 70-130 Methyl-tert-butyl ether ug/L 50 39.0 78 70-130 Methyl-tert-butyl ether ug/L 50 49.6 99 70-130 Methyl-tert-butyl ether ug/L 50 55.2 110 70-130 Styrene ug/L 50 55.2 131 70-130 11 Tetrachloroethene <	Chloroethane	ug/L	50	45.6	91	52-165	
Chloromethane ug/L 50 41.7 83 51-122 cis-1,2-Dichloroethene ug/L 50 51.4 103 70-130 cis-1,3-Dichloropropene ug/L 50 53.0 106 70-130 Dibromochloromethane ug/L 50 44.5 89 70-130 Dichlorodifluoromethane ug/L 50 26.8 54 25-121 Ethylbenzene ug/L 50 54.5 109 70-130 Isopropylbenzene (Cumene) ug/L 50 54.5 109 70-130 m&p-Xylene ug/L 100 111 111 70-130 Methyl-tert-butyl ether ug/L 50 39.0 78 70-130 Methylene Chloride ug/L 50 55.2 110 70-130 11 Styrene ug/L 50 53.8 108 80-120 101 Tetrachloroethene ug/L 50 53.6 111 70-130 11 T	Chloroform	ug/L	50	51.7	103	80-123	
cis-1,2-Dichloroethene ug/L 50 51.4 103 70-130 cis-1,3-Dichloropropene ug/L 50 53.0 106 70-130 Dibromochloromethane ug/L 50 44.5 89 70-130 Dichlorodifluoromethane ug/L 50 26.8 54 25-121 Ethylbenzene ug/L 50 56.1 112 80-120 Isopropylbenzene (Cumene) ug/L 50 54.5 109 70-130 m&p-Xylene ug/L 50 54.5 109 70-130 Methyl-tert-butyl ether ug/L 50 49.6 99 70-130 Methylene Chloride ug/L 50 39.0 78 70-130 O-Xylene ug/L 50 55.2 110 70-130 Styrene ug/L 50 65.7 131 70-130 Toluene ug/L 50 53.8 108 80-120 trans-1,2-Dichloroethene ug/L 50	Chloromethane	ug/L	50	41.7	83	51-122	
cis-1,3-Dichloropropene ug/L 50 53.0 106 70-130 Dibromochloromethane ug/L 50 44.5 89 70-130 Dichlorodifluoromethane ug/L 50 26.8 54 25-121 Ethylbenzene ug/L 50 56.1 112 80-120 Isopropylbenzene (Cumene) ug/L 50 54.5 109 70-130 m&p-Xylene ug/L 50 49.6 99 70-130 Methyl-tert-butyl ether ug/L 50 39.0 78 70-130 Methylene Chloride ug/L 50 55.2 110 70-130 Styrene ug/L 50 65.7 131 70-130 Tetrachloroethene ug/L 50 53.8 108 80-120 trans-1,2-Dichloroethene ug/L 50 53.6 111 70-130 trans-1,3-Dichloropropene ug/L 50 51.5 103 70-130 Trichloroethene ug/L	cis-1,2-Dichloroethene	ug/L	50	51.4	103	70-130	
Dibromochloromethane ug/L 50 44.5 89 70-130 Dichlorodifluoromethane ug/L 50 26.8 54 25-121 Ethylbenzene ug/L 50 56.1 112 80-120 Isopropylbenzene (Cumene) ug/L 50 54.5 109 70-130 m&p-Xylene ug/L 100 111 111 70-130 Methyl-tert-butyl ether ug/L 50 49.6 99 70-130 Methylene Chloride ug/L 50 39.0 78 70-130 O-Xylene ug/L 50 55.2 110 70-130 Styrene ug/L 50 65.7 131 70-130 Tetrachloroethene ug/L 50 53.8 108 80-120 trans-1,2-Dichloroethene ug/L 50 52.8 106 70-130 trans-1,3-Dichloropropene ug/L 50 51.5 103 70-130 Trichloroethene ug/L 50	cis-1,3-Dichloropropene	ug/L	50	53.0	106	70-130	
Dichlorodifluoromethane ug/L 50 26.8 54 25-121 Ethylbenzene ug/L 50 56.1 112 80-120 Isopropylbenzene (Cumene) ug/L 50 54.5 109 70-130 m&p-Xylene ug/L 100 111 111 70-130 Methyl-tert-butyl ether ug/L 50 49.6 99 70-130 Methylene Chloride ug/L 50 39.0 78 70-130 o-Xylene ug/L 50 65.7 131 70-130 Styrene ug/L 50 65.7 131 70-130 L1 Tetrachloroethene ug/L 50 48.5 97 70-130 Toluene ug/L 50 53.8 108 80-120 trans-1,2-Dichloroethene ug/L 50 52.8 106 70-130 trans-1,3-Dichloropropene ug/L 50 51.5 103 70-130 Trichlorofluoromethane ug/L 50	Dibromochloromethane	ug/L	50	44.5	89	70-130	
Ethylbenzene ug/L 50 56.1 112 80-120 Isopropylbenzene (Cumene) ug/L 50 54.5 109 70-130 m&p-Xylene ug/L 100 111 111 70-130 Methyl-tert-butyl ether ug/L 50 49.6 99 70-130 Methylene Chloride ug/L 50 39.0 78 70-130 o-Xylene ug/L 50 55.2 110 70-130 Styrene ug/L 50 65.7 131 70-130 L1 Tetrachloroethene ug/L 50 48.5 97 70-130 Toluene ug/L 50 53.8 108 80-120 trans-1,2-Dichloroethene ug/L 50 52.8 106 70-130 trans-1,3-Dichloropropene ug/L 50 51.5 103 70-130 Trichlorofluoromethane ug/L 50 50.0 100 65-160 Vinyl chloride ug/L 50 <td< td=""><td>Dichlorodifluoromethane</td><td>ug/L</td><td>50</td><td>26.8</td><td>54</td><td>25-121</td><td></td></td<>	Dichlorodifluoromethane	ug/L	50	26.8	54	25-121	
Isopropylbenzene (Cumene) ug/L 50 54.5 109 70-130 m&p-Xylene ug/L 100 111 111 70-130 Methyl-tert-butyl ether ug/L 50 49.6 99 70-130 Methylene Chloride ug/L 50 39.0 78 70-130 o-Xylene ug/L 50 55.2 110 70-130 Styrene ug/L 50 65.7 131 70-130 L1 Tetrachloroethene ug/L 50 48.5 97 70-130 Toluene ug/L 50 53.8 108 80-120 trans-1,2-Dichloroethene ug/L 50 52.8 106 70-130 trans-1,3-Dichloropropene ug/L 50 55.6 111 70-130 Trichloroethene ug/L 50 51.5 103 70-130 Trichlorofluoromethane ug/L 50 50.0 100 65-160 Vinyl chloride ug/L 50	Ethylbenzene	ug/L	50	56.1	112	80-120	
m&p-Xylene ug/L 100 111 111 70-130 Methyl-tert-butyl ether ug/L 50 49.6 99 70-130 Methylene Chloride ug/L 50 39.0 78 70-130 o-Xylene ug/L 50 55.2 110 70-130 Styrene ug/L 50 65.7 131 70-130 L1 Tetrachloroethene ug/L 50 48.5 97 70-130 Toluene ug/L 50 48.5 97 70-130 trans-1,2-Dichloroethene ug/L 50 53.8 108 80-120 trans-1,3-Dichloroptopene ug/L 50 52.8 106 70-130 Trichloroethene ug/L 50 55.6 111 70-130 Trichlorofluoromethane ug/L 50 50.0 100 65-160 Vinyl chloride ug/L 50 50.0 100 65-160 Vinyl chloride ug/L 50 42.9 <td>Isopropylbenzene (Cumene)</td> <td>ug/L</td> <td>50</td> <td>54.5</td> <td>109</td> <td>70-130</td> <td></td>	Isopropylbenzene (Cumene)	ug/L	50	54.5	109	70-130	
Methyl-tert-butyl etherug/L5049.69970-130Methylene Chlorideug/L5039.07870-130o-Xyleneug/L5055.211070-130Styreneug/L5065.713170-130 L1Tetrachloroetheneug/L5048.59770-130Tolueneug/L5053.810880-120trans-1,2-Dichloroetheneug/L5052.810670-130trans-1,3-Dichloropropeneug/L5055.611170-130Trichloroetheneug/L5050.010065-160Vinyl chlorideug/L5050.010065-160Vinyl chlorobenzene-d4 (S)%9870-130Toluene-d8 (S)%10470-130	m&p-Xylene	ug/L	100	111	111	70-130	
Methylene Chloride ug/L 50 39.0 78 70-130 o-Xylene ug/L 50 55.2 110 70-130 Styrene ug/L 50 65.7 131 70-130 L1 Tetrachloroethene ug/L 50 48.5 97 70-130 Toluene ug/L 50 53.8 108 80-120 trans-1,2-Dichloroethene ug/L 50 52.8 106 70-130 trans-1,3-Dichloropropene ug/L 50 55.6 111 70-130 Trichloroethene ug/L 50 55.6 111 70-130 Trichloroethene ug/L 50 51.5 103 70-130 Trichlorofluoromethane ug/L 50 50.0 100 65-160 Vinyl chloride ug/L 50 42.9 86 63-134 1,2-Dichlorobenzene-d4 (S) % 101 70-130 4-Bromofluorobenzene (S) % 101 70-130	Methyl-tert-butyl ether	ug/L	50	49.6	99	70-130	
o-Xylene ug/L 50 55.2 110 70-130 Styrene ug/L 50 65.7 131 70-130 L1 Tetrachloroethene ug/L 50 48.5 97 70-130 Toluene ug/L 50 53.8 108 80-120 trans-1,2-Dichloroethene ug/L 50 52.8 106 70-130 trans-1,3-Dichloropropene ug/L 50 55.6 111 70-130 Trichloroethene ug/L 50 55.6 111 70-130 Trichlorofluoromethane ug/L 50 51.5 103 70-130 Vinyl chloride ug/L 50 50.0 100 65-160 Vinyl chloride ug/L 50 42.9 86 63-134 1,2-Dichlorobenzene-d4 (S) % 101 70-130 4-Bromofluorobenzene (S) % 101 70-130 Toluene-d8 (S) % 104 70-130	Methylene Chloride	ug/L	50	39.0	78	70-130	
Styrene ug/L 50 65.7 131 70-130 L1 Tetrachloroethene ug/L 50 48.5 97 70-130 Toluene ug/L 50 53.8 108 80-120 trans-1,2-Dichloroethene ug/L 50 52.8 106 70-130 trans-1,3-Dichloropropene ug/L 50 55.6 111 70-130 Trichloroethene ug/L 50 55.6 103 70-130 Trichlorofluoromethane ug/L 50 50.0 100 65-160 Vinyl chloride ug/L 50 42.9 86 63-134 1,2-Dichlorobenzene-d4 (S) % 98 70-130 4-Bromofluorobenzene (S) % 101 70-130 Toluene-d8 (S) % 104 70-130	o-Xylene	ug/L	50	55.2	110	70-130	
Tetrachloroethene ug/L 50 48.5 97 70-130 Toluene ug/L 50 53.8 108 80-120 trans-1,2-Dichloroethene ug/L 50 52.8 106 70-130 trans-1,3-Dichloropropene ug/L 50 55.6 111 70-130 Trichloroethene ug/L 50 51.5 103 70-130 Trichlorofluoromethane ug/L 50 50.0 100 65-160 Vinyl chloride ug/L 50 42.9 86 63-134 1,2-Dichlorobenzene-d4 (S) % 98 70-130 4-Bromofluorobenzene (S) % 101 70-130 Toluene-d8 (S) % 104 70-130	Styrene	ug/L	50	65.7	131	70-130 l	L1
Toluene ug/L 50 53.8 108 80-120 trans-1,2-Dichloroethene ug/L 50 52.8 106 70-130 trans-1,3-Dichloropropene ug/L 50 55.6 111 70-130 Trichloroethene ug/L 50 51.5 103 70-130 Trichlorofluoromethane ug/L 50 50.0 100 65-160 Vinyl chloride ug/L 50 42.9 86 63-134 1,2-Dichlorobenzene-d4 (S) % 98 70-130 4-Bromofluorobenzene (S) % 101 70-130 Toluene-d8 (S) % 104 70-130	Tetrachloroethene	ug/L	50	48.5	97	70-130	
trans-1,2-Dichloroethene ug/L 50 52.8 106 70-130 trans-1,3-Dichloropropene ug/L 50 55.6 111 70-130 Trichloroethene ug/L 50 51.5 103 70-130 Trichlorofluoromethane ug/L 50 50.0 100 65-160 Vinyl chloride ug/L 50 42.9 86 63-134 1,2-Dichlorobenzene-d4 (S) % 98 70-130 4-Bromofluorobenzene (S) % 101 70-130 Toluene-d8 (S) % 104 70-130	Toluene	ug/L	50	53.8	108	80-120	
trans-1,3-Dichloropropene ug/L 50 55.6 111 70-130 Trichloroethene ug/L 50 51.5 103 70-130 Trichlorofluoromethane ug/L 50 50.0 100 65-160 Vinyl chloride ug/L 50 42.9 86 63-134 1,2-Dichlorobenzene-d4 (S) % 98 70-130 4-Bromofluorobenzene (S) % 101 70-130 Toluene-d8 (S) % 104 70-130	trans-1,2-Dichloroethene	ug/L	50	52.8	106	70-130	
Trichloroethene ug/L 50 51.5 103 70-130 Trichlorofluoromethane ug/L 50 50.0 100 65-160 Vinyl chloride ug/L 50 42.9 86 63-134 1,2-Dichlorobenzene-d4 (S) % 98 70-130 4-Bromofluorobenzene (S) % 101 70-130 Toluene-d8 (S) % 104 70-130	trans-1,3-Dichloropropene	ug/L	50	55.6	111	70-130	
Trichlorofluoromethane ug/L 50 50.0 100 65-160 Vinyl chloride ug/L 50 42.9 86 63-134 1,2-Dichlorobenzene-d4 (S) % 98 70-130 4-Bromofluorobenzene (S) % 101 70-130 Toluene-d8 (S) % 104 70-130	Trichloroethene	ug/L	50	51.5	103	70-130	
Vinyl chloride ug/L 50 42.9 86 63-134 1,2-Dichlorobenzene-d4 (S) % 98 70-130 4-Bromofluorobenzene (S) % 101 70-130 Toluene-d8 (S) % 104 70-130	Trichlorofluoromethane	ug/L	50	50.0	100	65-160	
1,2-Dichlorobenzene-d4 (S) % 98 70-130 4-Bromofluorobenzene (S) % 101 70-130 Toluene-d8 (S) % 104 70-130	Vinyl chloride	ug/L	50	42.9	86	63-134	
4-Bromofluorobenzene (S) % 101 70-130 Toluene-d8 (S) % 104 70-130	1,2-Dichlorobenzene-d4 (S)	%			98	70-130	
Toluene-d8 (S) % 104 70-130	4-Bromofluorobenzene (S)	%			101	70-130	
	Toluene-d8 (S)	%			104	70-130	

MATRIX SPIKE & MATRIX SP	PIKE DUPL	LICATE: 2592		2593000								
Demonster	11-11-	40265817012	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec	000	Max	Qual
Parameter	Units		Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Quai
1,1,1-Trichloroethane	ug/L	<0.30	50	50	52.7	52.2	105	104	70-134	1	20	
1,1,2,2-Tetrachloroethane	ug/L	<0.38	50	50	56.2	57.6	112	115	61-135	2	20	
1,1,2-Trichloroethane	ug/L	<0.34	50	50	56.4	53.2	113	106	70-130	6	20	
1,1-Dichloroethane	ug/L	<0.30	50	50	54.5	51.7	109	103	70-130	5	20	
1,1-Dichloroethene	ug/L	<0.58	50	50	55.4	53.8	111	108	71-130	3	20	
1,2,4-Trichlorobenzene	ug/L	<0.95	50	50	46.9	47.9	94	96	68-131	2	20	
1,2-Dibromo-3- chloropropane	ug/L	<2.4	50	50	47.1	48.7	94	97	51-141	3	20	
1,2-Dibromoethane (EDB)	ug/L	<0.31	50	50	51.6	51.6	103	103	70-130	0	20	
1,2-Dichlorobenzene	ug/L	<0.33	50	50	52.0	52.7	104	105	70-130	1	20	
1,2-Dichloroethane	ug/L	<0.29	50	50	51.8	51.4	104	103	70-137	1	20	
1,2-Dichloropropane	ug/L	<0.45	50	50	50.9	51.3	102	103	80-121	1	20	
1,3-Dichlorobenzene	ug/L	<0.35	50	50	52.6	52.9	105	106	70-130	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 6142 OHM ELM GROVE

Pace Project No.: 40265982

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2592999			2593000									
			MS	MSD								
		40265817012	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,4-Dichlorobenzene	ug/L	<0.89	50	50	51.2	51.8	102	104	70-130	1	20	
Benzene	ug/L	<0.30	50	50	53.9	51.9	108	104	70-130	4	20	
Bromodichloromethane	ug/L	<0.42	50	50	54.0	53.5	108	107	70-130	1	20	
Bromoform	ug/L	<0.43	50	50	44.7	45.7	89	91	70-133	2	20	
Bromomethane	ug/L	<1.2	50	50	49.8	49.5	100	99	21-149	1	22	
Carbon tetrachloride	ug/L	<0.37	50	50	47.1	49.3	94	99	80-146	5	20	
Chlorobenzene	ug/L	<0.86	50	50	55.0	54.8	110	110	70-130	0	20	
Chloroethane	ug/L	<1.4	50	50	49.3	46.2	99	92	52-165	6	20	
Chloroform	ug/L	<0.50	50	50	52.7	51.1	105	102	80-123	3	20	
Chloromethane	ug/L	<1.6	50	50	42.4	43.0	85	86	42-125	1	20	
cis-1,2-Dichloroethene	ug/L	<0.47	50	50	52.9	52.5	105	104	70-130	1	20	
cis-1,3-Dichloropropene	ug/L	<0.24	50	50	55.0	53.7	110	107	70-130	2	20	
Dibromochloromethane	ug/L	<2.6	50	50	46.6	48.6	93	97	70-130	4	20	
Dichlorodifluoromethane	ug/L	<0.46	50	50	28.7	26.8	57	54	25-121	7	20	
Ethylbenzene	ug/L	<0.33	50	50	58.5	56.3	117	113	80-121	4	20	
Isopropylbenzene (Cumene)	ug/L	<1.0	50	50	57.2	53.9	114	108	70-130	6	20	
m&p-Xylene	ug/L	<0.70	100	100	116	112	116	112	70-130	4	20	
Methyl-tert-butyl ether	ug/L	<1.1	50	50	51.9	51.3	104	103	70-130	1	20	
Methylene Chloride	ug/L	<0.32	50	50	41.0	38.5	82	77	70-130	6	20	
o-Xylene	ug/L	<0.35	50	50	56.8	54.4	114	109	70-130	4	20	
Styrene	ug/L	<0.36	50	50	68.5	65.5	137	131	70-132	4	20	MO
Tetrachloroethene	ug/L	<0.41	50	50	51.1	51.9	102	104	70-130	2	20	
Toluene	ug/L	<0.29	50	50	55.5	53.1	111	106	80-120	4	20	
trans-1,2-Dichloroethene	ug/L	<0.53	50	50	54.0	53.1	108	106	70-130	2	20	
trans-1,3-Dichloropropene	ug/L	<0.27	50	50	56.9	55.2	114	110	70-130	3	20	
Trichloroethene	ug/L	<0.32	50	50	52.5	51.4	105	103	70-130	2	20	
Trichlorofluoromethane	ug/L	<0.42	50	50	51.2	49.5	102	99	65-160	3	20	
Vinyl chloride	ug/L	<0.17	50	50	44.8	44.4	90	89	60-137	1	20	
1,2-Dichlorobenzene-d4 (S)	%						98	98	70-130			
4-Bromofluorobenzene (S)	%						100	102	70-130			
Toluene-d8 (S)	%						104	103	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:	6142 OHM ELM GROVE
Fiojeci.	

Pace Project No.: 4026598	2								
QC Batch: 294104		Analysis Metho	od: EF	PA 537 Mod					
QC Batch Method: EPA 53	7 Mod	Analysis Description:		PFAS in Water-EPA 537 Mod					
		Laboratory:	Pa	ce Analytical Serv	vices - Baton Rouge				
Associated Lab Samples:	10265982001 40265982002	40265082003 40	265082004 40	265982005	Baton Rouge				
Associated Lab Samples.	+0203902001, +0203902002,	40203902003, 40	200302004, 40	203902003					
METHOD BLANK: 1410141		Matrix: V	Vater						
Associated Lab Samples: 4	10265982001, 40265982002,	40265982003, 402	265982004, 40	265982005					
		Blank	Reporting						
Parameter	Units	Result	Limit	Analyzed	Qualifiers				
11CI-PF3OUdS	na/L	<0.90	4.0	08/15/23 11:57					
4:2 FTS	ng/L	<1.2	4.0	08/15/23 11:57					
6:2 FTS	ng/L	<1.5	4.0	08/15/23 11:57					
8:2 FTS	ng/L	<1.1	4.0	08/15/23 11:57					
9CI-PF3ONS	ng/L	< 0.90	4.0	08/15/23 11:57					
ADONA	ng/L	<0.86	4.0	08/15/23 11:57					
HFPO-DA	ng/L	<6.7	20.0	08/15/23 11:57					
NEtFOSA	ng/L	<1.4	8.0	08/15/23 11:57	2q				
NEtFOSAA	ng/L	<1.6	8.0	08/15/23 11:57					
NEtFOSE	ng/L	<1.0	8.0	08/15/23 11:57	2q,N2				
NMeFOSA	ng/L	2.2J	8.0	08/15/23 11:57	2q				
NMeFOSAA	ng/L	<0.90	8.0	08/15/23 11:57					
NMeFOSE	ng/L	<1.3	8.0	08/15/23 11:57	2q,N2				
Perfluorobutanesulfonic acid	ng/L	<0.62	4.0	08/15/23 11:57					
Perfluorodecanoic acid	ng/L	<1.4	4.0	08/15/23 11:57					
Perfluorododecanoic acid	ng/L	<1.3	4.0	08/15/23 11:57					
Perfluoroheptanoic acid	ng/L	<1.2	4.0	08/15/23 11:57					
Perfluorohexanesulfonic acid	ng/L	<1.2	4.0	08/15/23 11:57					
Perfluorohexanoic acid	ng/L	<0.94	4.0	08/15/23 11:57					
Perfluorononanoic acid	ng/L	<0.98	4.0	08/15/23 11:57					
Perfluorooctanesulfonic acid	ng/L	<0.76	4.0	08/15/23 11:57					
Perfluorooctanoic acid	ng/L	<0.84	4.0	08/15/23 11:57					
Perfluorotetradecanoic acid	ng/L	<1.1	4.0	08/15/23 11:57					
Perfluorotridecanoic acid	ng/L	<1.2	4.0	08/15/23 11:57					
Perfluoroundecanoic acid	ng/L	<1.2	4.0	08/15/23 11:57					
PFBA	ng/L	<1.5	4.0	08/15/23 11:57					
PFDoS	ng/L	<1.3	4.0	08/15/23 11:57					
PFDS	ng/L	<1.2	4.0	08/15/23 11:57					
PFHpS	ng/L	<1.2	4.0	08/15/23 11:57					
PFNS	ng/L	<1.7	4.0	08/15/23 11:57					
PFOSA	ng/L	<0.74	4.0	08/15/23 11:57					

LABORATORY CONTROL SAMPLE & LCSD: 1410142 1410143										
Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limits	RPD	Max RPD	Qualifiers
11CI-PF3OUdS	ng/L	75.6	66.3	75.8	88	100	70-130	13	30	
4:2 FTS	ng/L	74.8	68.3	80.7	91	108	70-130	17	30	

4.0 08/15/23 11:57

4.0 08/15/23 11:57

<0.88

<1.0

ng/L

ng/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

PFPeA

PFPeS

Project: 6142 OHM ELM GROVE

Pace Project No.: 40265982

LABORATORY CONTROL SAMPLE & LCS	D: 1410142		14	10143						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
6:2 FTS	ng/L	76	72.8	82.7	96	109	70-130	13	30	
8:2 FTS	ng/L	76.8	77.9	86.6	101	113	70-130	11	30	
9CI-PF3ONS	ng/L	74.8	67.2	78.0	90	104	70-130	15	30	
ADONA	ng/L	75.6	68.2	75.7	90	100	70-130	10	30	
HFPO-DA	ng/L	160	150	172	94	108	70-130	14	30	
NEtFOSA	ng/L	80	77.0	81.3	96	102	70-130	5	30	2q
NEtFOSAA	ng/L	80	73.8	82.6	92	103	70-130	11	30	
NEtFOSE	ng/L	80	74.5	83.1	93	104	70-130	11	30	N2
NMeFOSA	ng/L	80	79.7	86.8	100	108	70-130	9	30	2q
NMeFOSAA	ng/L	80	73.4	88.0	92	110	70-130	18	30	
NMeFOSE	ng/L	80	80.0	83.6	100	104	70-130	4	30	2q,N2
Perfluorobutanesulfonic acid	ng/L	70.8	65.9	75.3	93	106	70-130	13	30	
Perfluorodecanoic acid	ng/L	80	73.7	83.0	92	104	70-130	12	30	
Perfluorododecanoic acid	ng/L	80	76.7	84.0	96	105	70-130	9	30	
Perfluoroheptanoic acid	ng/L	80	73.5	84.0	92	105	70-130	13	30	
Perfluorohexanesulfonic acid	ng/L	73.2	68.3	77.0	93	105	70-130	12	30	
Perfluorohexanoic acid	ng/L	80	73.4	83.8	92	105	70-130	13	30	
Perfluorononanoic acid	ng/L	80	74.8	84.5	93	106	70-130	12	30	
Perfluorooctanesulfonic acid	ng/L	74.4	69.4	77.9	93	105	70-130	12	30	
Perfluorooctanoic acid	ng/L	80	75.0	82.0	94	103	70-130	9	30	
Perfluorotetradecanoic acid	ng/L	80	73.0	82.5	91	103	70-130	12	30	
Perfluorotridecanoic acid	ng/L	80	75.3	80.5	94	101	70-130	7	30	
Perfluoroundecanoic acid	ng/L	80	75.8	84.9	95	106	70-130	11	30	
PFBA	ng/L	80	76.0	84.6	95	106	70-130	11	30	
PFDoS	ng/L	77.6	68.4	72.1	88	93	70-130	5	30	
PFDS	ng/L	77.2	68.9	78.5	89	102	70-130	13	30	
PFHpS	ng/L	76.4	72.5	80.7	95	106	70-130	11	30	
PFNS	ng/L	76.8	70.8	80.4	92	105	70-130	13	30	
PFOSA	ng/L	80	77.0	87.2	96	109	70-130	12	30	
PFPeA	ng/L	80	75.0	84.8	94	106	70-130	12	30	
PFPeS	ng/L	75.2	71.3	81.7	95	109	70-130	14	30	

LABORATORY CONTROL SAMPLE: 1410391

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
11CI-PF3OUdS	ng/L	7.5	7.8	104	70-130	
4:2 FTS	ng/L	7.5	9.0	120	70-130	
6:2 FTS	ng/L	7.6	9.1	119	70-130	
8:2 FTS	ng/L	7.7	9.2	120	70-130	
9CI-PF3ONS	ng/L	7.5	8.2	109	70-130	
ADONA	ng/L	7.5	8.4	112	70-130	
HFPO-DA	ng/L	16	18.8J	117	70-130	
NEtFOSA	ng/L	8	11.8	147	70-130 20	I,L1
NEtFOSAA	ng/L	8	9.3	117	70-130	
NEtFOSE	ng/L	8	9.2	115	70-130 20	,N2

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 6142 OHM ELM GROVE

Pace Project No.: 40265982

LABORATORY CONTROL SAMPLE: 1410391

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
NMeFOSA	ng/L	8	12.4	155	70-130	2q,L1
NMeFOSAA	ng/L	8	9.6	121	70-130	
NMeFOSE	ng/L	8	11.1	139	70-130	L1,N2
Perfluorobutanesulfonic acid	ng/L	7	8.4	120	70-130	
Perfluorodecanoic acid	ng/L	8	9.0	113	70-130	
Perfluorododecanoic acid	ng/L	8	9.4	117	70-130	
Perfluoroheptanoic acid	ng/L	8	9.2	115	70-130	
Perfluorohexanesulfonic acid	ng/L	7.4	8.6	117	70-130	
Perfluorohexanoic acid	ng/L	8	9.3	116	70-130	
Perfluorononanoic acid	ng/L	8	9.5	119	70-130	
Perfluorooctanesulfonic acid	ng/L	7.4	9.0	121	70-130	
Perfluorooctanoic acid	ng/L	8	9.1	114	70-130	
Perfluorotetradecanoic acid	ng/L	8	9.3	116	70-130	2q
Perfluorotridecanoic acid	ng/L	8	8.4	104	70-130	
Perfluoroundecanoic acid	ng/L	8	9.4	118	70-130	
PFBA	ng/L	8	9.5	119	70-130	
PFDoS	ng/L	7.8	6.0	77	70-130	
PFDS	ng/L	7.7	8.2	107	70-130	
PFHpS	ng/L	7.7	9.2	120	70-130	
PFNS	ng/L	7.7	8.6	112	70-130	
PFOSA	ng/L	8	9.5	119	70-130	
PFPeA	ng/L	8	9.5	119	70-130	
PFPeS	ng/L	7.5	8.8	117	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 6142 OHM ELM GROVE

Pace Project No.: 40265982

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor, percent moisture, initial weight and final volume.

LOQ - Limit of Quantitation adjusted for dilution factor, percent moisture, initial weight and final volume.

DL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

- 1q The extracted internal standard is above criteria.
- 2q The extracted internal standard is below criteria.
- B Analyte was detected in the associated method blank.
- L1 Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.
- L1 Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results may be biased high.
- M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.
- N2 The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:6142 OHM ELM GROVEPace Project No.:40265982

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40265982006	6142-IDM-1	EPA 8260	451259		
40265982001	6142-MW9	EPA 537 Mod	294104	EPA 537 Mod	294522
40265982002	6142-FB	EPA 537 Mod	294104	EPA 537 Mod	294522
40265982003	6142-MW4	EPA 537 Mod	294104	EPA 537 Mod	294522
40265982004	6142-MW7	EPA 537 Mod	294104	EPA 537 Mod	294522
40265982005	6142-DUP	EPA 537 Mod	294104	EPA 537 Mod	294522

ø	CHAIN-OF-CUSTODY Analytical Request Document											LAB USE ONLY- Affix Workorder/Login Label Here or List Pace Workorder Number or MTIL Log-in Number Here								
/ Pace Analytical*	Chain-o	Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevent fields											,			0		402 les 982		
Company:		ð	Billing Info	ormation:								AL	L SHA	DEC	ARE	AS are	e for LA	B USE ONLY		
Address:	SILL(-	-								Contair	ner Prese	rvative	Type '	**		Lab Projec	t Manager:		
Report To:	<u> </u>		Email_To:	[]			1		** Prese	Preservative Types: (1) nitric acid, (2) sulfuric acid, (3) hydrochloric acid, (4) sodium hydroxide, (5) zinc aceta								odium hydroxide, (5) zinc acetate,		
Copy To:	~		Site Coller	tion Info/A	Derr/1 ddress:	reterns	12510	<u>SM</u>	(6) meth (C) amm	anol, ((7) sodiu n hydroxi	m bisulfat de. (D) TS	e, (8) sod P. (U) Uni	ium th	iosulfate, (ed. (O) C	(9) hexar ther	e, (A) ascori	pic acid, (B) ammonium sulfate,		
Customer Project Name (Number)	· · · · · · · · · · · · · · · · · · ·		States	County/Ci	ty: Tin	20 7020 Co	llected		(-,			Ana	lyses				Lab Profile	e/Line:		
OLUM Elma Crave	6142		LOT	county/ci	[]	-								LaD Sa	mple Receipt Checklist:					
Phone:	Site/Facility D	#:	Compliance Monitoring?							W							Custod Custod Collec	y Signatures Present Y N NA tor Signature Present Y_N NA		
Email: $\mathcal{A}(e_2 - 490 - 6472)$ Collected By (print):	Purchase Orde	r #:			DW PWS I	 D#:				Z		A					Bottle Correc	s Intact YN NA t Bottles N NA		
12. Fassberder	Quote #:				DW Locati	on Code:				J.		2					Suffic Sample	ient (plume s Received on Ice Y N NA		
Collected By (signature):	Turnaround Da	ite Requi	red:		Immediate	ly Packed of 1			1	8					VOA - USLA I	Headspace Acceptable Y N VA explated Soils A NA				
Sample Disposal:	Rush:		[]]]		Field Filter	ed (If appli	cable):			Ś		وا					Resi	al Chlorine Present Y N NA		
[] Dispose as appropriate [] Return [] Archive:	[]Sar []2Day [ne Day] 3 Day	[] Next D [] 4 Day	ay []5 Day	Analysis:	{]NO	(,	n		2					Sample	pH Acceptable Y N NA		
[] Hold:	(E	kpedite Ch	arges Apply)			3							Sulfid	e Prevent Y N NA						
Product (P), Soil/Solid (SL), Oil (Ol	L), Wipe (WP), A	ng wate lir (AR), T	issue (TS), B	ioassay (B)	, Vapor (V),	Other (OT)	/v),			S		2					LAB US	ONLY:		
Customer Sample ID	Matrix *	Comp / Grab	Collec Compos	ted (or site Start)	Compo		PFA		201					Lab	mple # / Comments:					
12142-MIN9	Dater	Grah	4/30/3	7/30/27/25:00 2 1								-	╞──┼					(\mathcal{D})		
6142-FB	11	- /	11 31/10 2						×	ē								an l		
61412-MW#	<i>i</i> 1	Grab	- 11	3:15	1 2													003		
6142-MW-7	11	17	11	3:35	5 2					5	_			*		-		oy		
6142-Dup	()	11	1/	75110	2				-P	4			┠──┠-				·			
6192-2019-1			<u> //</u>	3,95				2		-		4-	┝──┼		_					
										~				, ^в						
			Turns of Is		Wat 1	lius Dr	No.								<u> </u>			Lab Sample Temperature Info		
Customer Remarks / Special Conditions / Possible Hazards: Type of Ice Used: Wet Blue Dry Posture Material Used:										ab Tr	acking #		1 (21</td <td></td> <td><u> </u></td> <td></td> <td></td> <td>Temp Blank Received: Y N NA</td>		<u> </u>			Temp Blank Received: Y N NA		
	s' J			đ					2	90	85	02		e.,	Therm ID#: Cooler 1 Temp Upon Receipt					
Radchem sample(s) screened (<500 cpm): Y N								NA	S	ample	es recel	ved via:	Client	·	urior	Pare C	ourier	Cooler 1 Therm Corr. Eactor:		
Relinquished by/Company: (Signatu	e/Time:	,	Received b	y/Company	: (Signatu	ure)		Da	ate/Tim	e:	CICIL		MTJL L	AB USE C	ONLY	Comments:				
			11	٢_					7/3	1161	3	Table	2 #:		~ · · ·					
Relinquished by/Company: (Signatu	ire)	Dat	e/Time:	Maisi	Received b	y/Company	: (Signatu	ure)		Da	ate/Tim	e:		Acctr	olate:	4	* *	Trip Blank Received: Y N NA		
US lugistic	s lugistic 2					1123 0400 Duester pace \$11/23 0900 Prelogin:						, ; , ;	HCL MeOH TSP Other							
Relinquished by/Čompany: (Signatu	Dat	Date/Time: Received by/Company: (Signature)							Date/Time: PM: Non Conform PB: YES / 1							Non Conformance(s); Page 22 of 25				

DC#_Title: ENV-FRM-GBAY-0035 v03_Sample Preservation Receipt Form Effective Date: 8/16/2022

C All c	lier	nt Na ners r	ime: leedin	g pres	Miervati	J N on ha	D ave be	Ft een cl	hecker Lat	d and r	CS noted I of pH (Delow Daper.		Sam □Ye	i ple Proj ^s	Pres ect i	serva # La		HID of	ceip (7_1 f prese	t For	rm 92 n (if pl	<u>3 2</u> H adju	sted)					lni co	tial wh	en ed		Date/ Time.	
				Glass	5]				Plas	tic					Vi	als			[Ja	ars			Gen	eral		(>6mm) *	H ≤2	Act pH ≥9	≥12	\$2	Idjusted	Volume
Pace Lab #	AG1U	BG1U	AG1H	AG4S	AG5U	AG2S	BG3U	BP1U	BP3U	BP3B	BP3N	BP3S	BP2Z	VG9C	DG9T	VG9U	VG9H	VG9M	VG9D	JGFU	JG9U	WGFU	WPFU	SP5T	ZPLC	GN 1	GN 2	VOA Vials	H2SO4 pl	NaOH+Zn	ИаОН рН	HNO3 pH	pH after a	(mL)
001									2																									2.5/5
002							1		2	1 	6		2 N N N N N N		200	× ≻ 2 2 2	1. 11 A. 1. 12 A. 1. 12 A.		, e		, ⁻		с К. _К		- _N -0		1 V 1	>1 é		Ω	j ^e ret i		(je 1	2.5/5
003									2																		ļ,				ļ			2.5/5
004		41.	2N = 2T	na in in References	豪旅				2	、【教教家	유민공	13 25 14 pr	8 W 115		×		19.25	" Alexan	ž,				hades -	2.5	· · , *		- 25-	<u>.</u>	: ``s		 			2.5/5
005			ļ.,,,	ļ,		20.2002003	20 20 20 20 20 20 20 20 20 20 20 20 20 2	- 8.P - 1	2		N. N. N.	1. b	R						<u></u>			204 (.8)	J 46 C - X							LASSEN				2.5/5
006			B_{γ}	\$43N					D)	14	<u>h7 x</u>	17k			76		3	2.2	la C	1.800		관재		S Bay		- 54 (1					1999 - Ser	17	三時期	2.5/5
007				19.20			1408			145.5				2.35 5	42			<u> </u>	<u> </u>			1 5 4			E . E . 65	PROPERTY.							S	2.5/5
800			181.881		1. 1995 -			1999	§ 81253				10 - 198 12 - 21 N	诸郡寺		73.1	1.8.		n (*			te de t	1. ().	\$~ \$	1993 B	53383	1812	1, 6, 59	1. 200 L	27 M2		18 c. 1		2.5/5
009	1201962	1.36.871		. २ इ	10.0	1.0.1		-		TI. RAL	1000.65	1		LIN SUR	- 8.H 1							4. 5												2.5/5
D10	1358	837 S		. ? % 6	<u>常</u> 、笑:	166		Ŀ,			19.3		1983 3		013	PŠ	* . _* #		1 N	-	7 7 . 1 5 8 8	i din in	10 ×		× · 、 ·	2.9 F	e et al.	1.4 1.4	2	•	 			2.5/5
011										1	1.2.2			8.9				<u> . </u>	<u> </u>			N. Cart				1						· · · ·		2.5/5
012						<u>``</u> .	v		1		- 2, 2	<u>⊸</u> ?	<u> ·</u>					ļ	ļ		· · · · ·	·				x			<u> </u>	1 in 1		<u> </u>	27.9	2.575
013	-35		\$33	8.5 8	84	0.983	2		· · · ,	· ^ · · ·					~			1.1		<u> </u>	,					<u> </u>	+			6.° c	┟──┤			2.5/5
11 4 145	~ 8 <u>,</u> 2		34 P	1748.3	- Strengton	2 <i>34</i> 143	145 5	₩	t		18	Ηì	117	13	<u> </u>				K	\vdash	1	Ì				<u> </u>	Ì			"함," (-	┞──┦			2.575
144	<u></u>	1	:		1 S ¹	12.		+1				1.00			4	1.17		82	2 N	*						. 1%			- j _e z		. 3			2.575
117	à	<u></u>	<u> </u>	1.1.	a			<u> ``</u>		P 09			100.000				+ - <i>A</i> ₂ ¹⁰	27.181					$\left \right $				-		<u></u>			1	1	25/5
018	32.58		12.4	an , gi i	146 175		1.5	1.2		5 . 2 .	34	1.78		(Jeses)	n ni detter	1.11	12 APRIL		22	S. 32 1	< 2 ⁸⁴	湖峰法	in the				ş		i de	e si s	- , 2°81	- 2 ⁴⁵ - 5 71 - 5 - 5	1	2.5/5
019	Ad liek	1.46	1		- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10		1		1.45				- 146 (RE 8	*X & %?								19913		1			K				<u> </u>			2.5/5
020			d le	1.33	18	122		143	3.3.5		1. La 1.	1.1			1844795 18445 - 5	11 - X2 - X894 - 1	AN AN		19.69	96686			Stronger	,		1. julija 1. julija	187. ·	*	如制	₽Č×		dir.c		2.5/5
xcept	ons to	prese	rvation	check	VOA	, Coli	form,	TOC	, тох	, TOH	, 0&G	, WI D	RO, F	henol	ics, Ot	h <u>er.</u>		15.5.248	<u> </u>	_	Неа	idspac	æ in V	/OA Vi	ials (>	6mm)	· 🗆 Ye	es 🗩		N/A	*lf ye	es looi	c in hea	dspace col
G1U	1 lite	er am	ber gi	ass			В	P1U	1 lite	er plas	stic un	pres			-	V	39C	40 m	nL cle	ar asc	orbic	w/ HC		JC	GFU	4 oz	ambe	er jar i	unpres	3			1	
IG1U	1 lite	er cle	ar gla	SS			В	P3U	250	mL pl	astic	unpre	s			DC	G9T	40 m	nL am	ber N	a Thio)		JC	39U	9 oz	ambe	er jar i	unpres	6				
G1H	1 lite	er am	ber gl	ass ⊢		~	B	P3B	250	mL pl	astic I	NaOH	1				39U	40 m	nL cle	ar via	unpr	es		W	GFU	4 oz	clear	jar ur	pres					
G45	125	mL a	mber	glass		U4 295		23N 236	250	mL pl	astic I) 14				29H 20M	40 m	IL CIE	ar vial		н			PFU	4 0Z	piasti ml. nl	astic	unpres Na Th	o Insulf	ate		ł	
\G2S	500	mL a	mber	glass	H2S	04	B	P2Z	500	mL pl	astic I	NaOH	/⊶ I+Zn				G9D	40 m	nL cle	ar vial ar vial	DI	11			PLC	ziplo	c baq	a500	ind III	JUSUII	310			
3G3U	250	mL c	lear g	lass ı	Inpre	S			1	··- F														G	N 1									

GN 2

DC#_Title: ENV-FRM-GBAY-0014 v03_SCUR Effective Date: 8/17/2022

L.			Project #:
Client Name: Enviro Truendics			10# . 10265082
Courier: CS Logistics Fed Ex Speedee		- □ w	
Client Pace Other:		-	
Tracking #:			40265982
Custody Seal on Cooler/Box Present: 📋 yes 🔽 no	Seals	intact:	
Custody Seal on Samples Present: 📋 yes 🛃 no	Seals	intact:	□ yes □ no
Packing Material: Bubble Wrap E Bubble B	ags 🗖	None	e 🔲 Other
Thermometer Used <u>SR - 121</u> Typ	e of Ice:	(Met	Blue Dry None Meltwater Only
Cooler Temperature Uncorr: 3.0 /Corr: 3.0		•	
Temp Blank Present: 🗡 yes 🗖 no	Biolo	gical T	Issue is Frozen: yesi no Date: Jilo /Initials:
Temp should be above freezing to 6° C. Biota Samples may be received at $\leq 0^{\circ}$ C if shipped on Dry Ice.	·		Labeled By Initials:
Chain of Custody Present:	es □No	□n/a	1.
Chain of Custody Filled Out:	es DNo	□n/a	2. Ditt Billing INEX YH STILZJ
Chain of Custody Relinquished:	es No		3.
Sampler Name & Signature on COC:	es 🗆 No	□n/a	4.
Samples Arrived within Hold Time:	es □No		5.
- DI VOA Samples frozen upon receipt	es 🗆 No		Date/Time:
Short Hold Time Analysis (<72hr):	es 🖉 No		6.
Rush Turn Around Time Requested:	es 🖉 No		7.
Sufficient Volume:			8.
For Analysis: ₯γes □No MS/MSD: □Y	es No	□n/A	
Correct Containers Used:	es □No		9.
Correct Type: Pace Green Bay, Pace IR, Non-Pace			
Containers Intact:	es □No		10.
Filtered volume received for Dissolved tests	es 🖉 No		11.
Sample Labels match COC:	es 🗖 Ko		12. 100 2" Label FB-1 + no time
-Includes date/time/ID/Analysis Matrix: 🔨	1	_	"W3-005" NO time the S11/25
Trip Blank Present:	es INo		13.
Trip Blank Custody Seals Present	es 🗖 No	□n/a	
Pace Trip Blank Lot # (if purchased):	-		
Client Notification/ Resolution:		_	If checked, see attached form for additional comments
Person Contacted:		Date/	Time:
Comments/ Resolution:			

PM Review is documented electronically in LIMs. By releasing the project, the PM acknowledges they have reviewed the sample login

,

Page 2 of 2

Dan Milewsky

From:	Wayne Fassbender < wfassbender@enviroforensics.com>
Sent:	Tuesday, August 1, 2023 3:02 PM
То:	Dan Milewsky
Subject:	RE: Bottle order - EnviroForensics project #6142

CAUTION: This email originated from outside Pace Analytical. Do not click links or open attachments unless you recognize the sender and know the content is safe.

I apologize Dan. I mislabeled the date. They were collected on Monday, July 31st.

Wayne Fassbender, Senior Project Manager EnviroForensics® Wisconsin Office/P.O. Box 128/Oconomowoc, WI/53066 262-490-6472 | wfassbender@enviroforensics.com

CONFIDENTIALITY DISCLAIMER: The content of this email is confidential and intended for the recipient specified in message only. It is strictly forbidden to share any part of this message with any third party without written consent of the sender. If you received this message in error, please notify the sender and delete the message.

From: Dan Milewsky <Dan.Milewsky@pacelabs.com>
Sent: Tuesday, August 1, 2023 11:55 AM
To: Wayne Fassbender <wfassbender@enviroforensics.com>
Subject: RE: Bottle order - EnviroForensics project #6142

Wayne,

We received these today in good order. Can you confirm they were collected on Sunday?

Dan Milewsky Project Manager | Pace Environmental Sciences 1241 Bellevue St, STE 9 Green Bay, WI 54302 Direct/Cell-<u>920-412-8566</u> | Lab-<u>920.469.2436</u> | pacelabs.com

From: Dan Milewsky Sent: Thursday, July 27, 2023 10:57 AM To: Wayne Fassbender <<u>wfassbender@enviroforensics.com</u>>; Nicolette Morris <<u>nmorris@enviroforensics.com</u>>; Subject: RE: Bottle order - EnviroForensics project #6142

Nicolette,

STANDARD OPERATING PROCEDURE

Sampling Protocol for Per-and Polyfluoroalkyl Substances (PFAS)

INTRODUCTION

State regulatory agencies are currently developing sampling guidance, soil and groundwater standards, and other procedures aimed at the regulation of per- and polyfluoroalkyl substances (PFAS). Along with the developing regulatory procedures, there exist several sampling guidance resources from various agencies such as the State of Michigan, the U.S. Department of Defense, the U.S. Environmental Protection Agency, the Interstate Technology & Regulatory Council, and a few analytical laboratories such as Pace Analytical and Test America. This Standard Operating Procedure (SOP) was based on the procedures and guidance developed to date by these agencies. Since regulations and standards regarding PFAS are evolving, it is anticipated that this SOP will require periodic modifications.

When sampling for PFAS, this SOP should be used as a supplement to modify existing EnviroForensics SOP's related to standard groundwater and soil sampling procedures.

Although similar to standard sampling methods for other chemical compounds, special precautions are necessary when sampling for PFAS due to the laboratory detection limits that are in the parts per trillion range, and the proliferation of PFAS in common consumer products. This greatly raises the potential for these compounds to be inadvertently introduced to the samples, resulting in false-positive detections.

The sampling precautions and protocol for PFAS are rigorous and there are many potential opportunities for mistakes in the field that can result in cross-contamination, or the inadvertent introduction of PFAS into the sample media. It is required that any field investigations for **PFAS be conducted by a two (2) person team**. One (1) person is assigned the actual sample collection protocol and the other person is assigned to maintaining the integrity of the sample throughout the sampling process.

PRE-SAMPLING CONSIDERATIONS

As mentioned, PFAS have been detected in many everyday products including cosmetics, soaps, sun-screen, insect repellent, and many products having water repellents and/or stain-resistant coatings to include carpeting, car upholstery, some Tyvek suits, water proof leather boots, garments, and rain-wear. Several agencies have prepared a list of acceptable materials that have

been tested free of PFAS; however, there is a long list of items that have not been tested. This SOP provides some acceptable materials that can be safely used before and during sampling for PFAS, along with comments regarding materials that should not be used and various recommendations to improve sample integrity.

A limited number of readily available and recognizable products are presented below instead of listing all options. For example, there are numerous sun-screen and insect repellent products that have been determined to be PFAS-free (and the list will likely grow over time); however, only a few readily available and recognizable products are listed or recommended here to reduce the number of product decisions that project staff may need to make. If any other product is proposed for use, but is not identified in this SOP as PFAS-free, then that product or substance will need to be analyzed or otherwise determined to be PFAS-free before it can be used.

Personal Hygiene and Care Products

Many personal care products may contain PFAS. These products include soaps, shampoos, cosmetics, deodorants, and dental products including floss. By following this SOP it is not likely that these types of products will come into direct contact with a sample. However, it is <u>highly</u> <u>recommended that the use of personal care products be curtailed the day of sampling</u> until more information is available for personal care products that do not contain PFAS.

Personal Protective Equipment

Many common types of protective equipment including clothes, jackets, boots, gloves, Tyvek products, sunscreen, and insect repellents contain PFAS. For common clothing, jackets, boots, and gloves, the PFAS occurs in water repellent and stain repellent treatments that have been applied to the clothing and outer wear. The use of fabric softeners during laundering may also impart PFAS to clothing. Rain suits made of breathable, yet water repellent, materials typically have PFAS in them. Items made of rubber or PVC do not contain PFAS.

Items that may be worn and are known to be free of PFAS include:

- Powderless nitrile gloves;
- Clothing made of natural and synthetic fibers (preferably cotton) and that have been washed at least six (6) times and without using fabric softeners or dryer sheets;
- Polyvinyl chloride (PVC) or wax-coated fabrics, including rain gear;
- Any boots or over-boots made of polyurethane or PVC;
- Neoprene;
- <u>Un-coated</u> Tyvek® coveralls;

- Sunscreen: Banana Boat Sport Performance Sunscreen Lotion Broad Spectrum SPF 30; or Coppertone Sunscreen Lotion Ultra Guard Broad Spectrum SPF 50; and
- Insect repellent: Off Deep Woods.

Items that **may not** be worn due to the potential for containing PFAS:

- Coated Tyvek® materials as they do contain PFAS;
- Leather or other steel-toed work boots unless polyurethane or PVC over-boots are used;
- Clothing treated with stain or water repellents;
- Clothing and outerwear that has been dry cleaned; and
- Any rain gear having Gore-TexTM or other water-proof, or water-repellent fabrics or coatings.

Field Sampling Equipment

Carefully select sampling equipment that directly contacts the sample to ensure it is free from PFAS. Submersible pumps, down-hole instruments, and tubing used for groundwater sampling could have external or internal parts that are not PFAS-free. Check with the manufacturer to evaluate whether there are PFAS-containing components in the equipment. If unsure collect an equipment blank and have it analyzed for PFAS.

Some materials that are known to be PFAS-free include:

- Metals (metal components used for groundwater sampling are typically either stainless steel or brass);
- Nylon;
- PVC (bailers and pump parts);
- High-density polyethylene (HDPE);
- Polypropylene and polyurethane (bailer rope and tubing);
- Silicone (tubing); and
- Acetate (drill core sleeves).

Materials that may contain PFAS and <u>are not</u> to be used include:

- Low-density polyethylene (LDPE) tubing. LDPE does not inherently contain PFAS, but may have acquired it through materials used in the manufacturing process. LDPE Zip-loc® sample bags can be used if they do not contact the sample media directly;
- Aluminum foil;

- Teflon-lined tubing or equipment having Teflon components;
- Any product or equipment having any "fluoro" prefix;
- "Rite in the Rain" or other all-weather field books; and
- Sharpie markers, post-it notes, or other adhesive paper products.

In addition, <u>do not</u> transport field equipment in direct contact with vehicle carpet or seats. These materials typically contain PFAS in stain and water repellent applications. If equipment must be set on seats or carpet, then transport it in a closed container.

Sample Collection Recommendations:

- 1. If the depth to water is shallow, use disposable PVC bailers with polypropylene or polyurethane rope.
- 2. Collect an equipment blank from or through any sampling equipment before its use in the field, unless all equipment materials are inherently PFAS-free, or the manufacturer can guarantee that all components are PFAS-free.
- 3. Determine if the measuring tape on the water level meter contains PFAS, see #2 above.
- 4. If using a peristaltic pump to collect shallow water table samples, use only new, unused, tubing that is inherently PFAS-free at each sample location (HDPE, nylon, polyurethane, silicone).
- 5. If using any other submersible pump in deeper water table conditions, see #2 above.
- 6. If using any other down-hole data collection probe, see #2 above.
- 7. For longer-term monitoring of confirmed PFAS in groundwater, consider using dedicated and PFAS-free equipment such as dedicated pumps. Passive Diffusion Bags may be used if equipped with HDPE hydrasleeves and the de-ionized water is PFAS-free.
- 8. If setting temporary wells, collecting soil samples, or using any other drilling method, ensure that the core sleeves are either acetate, PVC, or HDPE (see #2 above).
- 9. Use only stainless steel tools or wooden disposable tongue depressors to collect soil subsamples from drill cores.
- 10. Use only aluminum or Masonite clipboards with loose paper (non-water resistant) to record field notes.
- 11. Use only ball-point pens to record field data, prepare sample labels, etc.

Decontamination

It is extremely important that any **water** used for decontamination of equipment or hand washing before, between, and after sampling be free of PFAS. Commercially available distilled water sources should be analyzed for PFAS before its use in the field and should come in an HDPE container. If using municipal water, check with the municipality to determine if the source is

PFAS-free. If that cannot be readily determined, then sample the water for PFAS before its use.

<u>All rental equipment and in-house equipment previously used at other sites needs to be</u> <u>decontaminated before its use.</u> Use only Alconox®, Liquinox®, or Citranox® to decontaminate equipment or wash hands, and use only PVC or HDPE brushes for scrubbing equipment.

Decontaminate equipment before collecting samples, between samples, and at the end of the day. Triple-rinse equipment after cleaning, and change nitrile gloves after decontaminating equipment between sample locations.

FIELD SAMPLING PROCEDURES

Sample Handling

Sample handling procedures are implemented to ensure that sample integrity is maintained throughout the sample collection process. Therefore, the procedures for collecting PFAS samples are not unlike typical sample handling procedures already employed by EnviroForensics personnel. However, due to the pervasiveness of PFAS in the environment, low laboratory detection limits, and possibility of cross-sample contamination, the sample handling procedures for PFAS are more rigorous. EnviroForensics uses a clean hands/dirty hands approach during sample handling activities. One person handles all of the sampling equipment and the other person handles only the sample containers. Specific sample handling procedures with respect to PFAS include:

- 1. Label sample containers and zip-lock bags in the office before visiting the Site, or in a staging area, and keep the containers in a PFAS-free cooler for use on site. Wash hands and don new powderless nitrile gloves before sample collection.
- 2. The person designated "dirty hands" handles the sampling equipment only. The person designated "clean hands" holds the sample container and seals the container lid after collecting the sample.
- 3. <u>**Do not**</u> touch anything other than decontaminated field sampling equipment or sample containers after donning clean nitrile gloves. If you do by accident, change gloves before proceeding further.
- 4. **<u>Do not</u>** touch the sample or let the outside of the sampling equipment (tubing, bailer, etc.) touch the sample container during sample collection.
- 5. **<u>Do not</u>** set the sample container on the ground or other surfaces while collecting the sample. That is why there are two people involved.

- 6. Hands must be washed and new powderless nitrile gloves donned after any decontamination procedure, or (if using all disposable materials) before collecting another groundwater or soil sample;
- 7. Double bag individual soil or groundwater samples in zip-loc bags and immediately place samples on ice in the cooler.

Additional Considerations

- 1. Wash hands and change gloves frequently during a long decontamination procedure.
- 2. Set up a staging area away from the sample collection area for logging field notes, labeling samples containers before sampling, and for taking breaks.
- 3. **Do not bring any fast food to the site or go off site for lunch.** Fast food wrappers typically contain PFAS. Instead, prepare a lunch and bring it in a plain paper bag to consume in the staging area.
- 4. Wash hands thoroughly and don clean nitrile gloves following lunch and other breaks.

Laboratory

Many states are currently developing PFAS regulatory standards and laboratory certification programs. There are many compounds of concern contained in the overall PFAS family of chemicals. If State standards have not yet been developed, check with the State regulatory agency to determine the particular compounds to analyze for. Some analytical laboratories have been certified by various agencies such as: State regulatory agencies; Department of Defense; Department of Energy; National Environmental Laboratory Accreditation Program; and International Organization for Standardization. That does not mean that they are set up to analyze for all PFAS chemicals of concern to a particular State agency. Check with the laboratory after determining the State requirements.

Do not use glass sampling containers, as glass tends to adsorb PFAS. Instead, use HDPE or polypropylene containers. Container caps should be of the same material with no Teflon[™] seal. Confirm that coolers used to store and ship laboratory samples are PFAS-free. A qualified laboratory will provide the appropriate media for these protocols.

For groundwater samples, do not filter or use a chemical preservative. For samples of municipal drinking water (also possibly used for equipment decontamination) the analytical methods call for preservation with Trizma® to buffer and remove chlorine. <u>Check with the laboratory</u> regarding how many sample containers are needed per sample and appropriate preservatives. Place samples separately in double zip-loc® bags and place immediately on ice. Maintain temperature of the samples below 50° F (10° C). Use regular ice. **Do not use "blue ice" or**

chemical ice packs.

Seal Chain-of-Custody forms and other forms in a zip-loc® bag and tape to the inside lid of the cooler. Tape the cooler closed with a custody seal and ship to the analytical laboratory. Hold time is 14 days to the laboratory with extraction within 28 days.

The current U.S. Environmental Protection Agency (USEPA) developed, and validated analytical methods for PFAS are USEPA Method 533, and USEPA Method 537.1. USEPA Method 533 is focused on the detection of short-chained PFAS (4-12 carbon chain lengths), while Method 537.1 is more focused on detecting longer chain PFAS. Using both methods, up to 29 PFAS chemicals can be detected. These methods were developed for drinking water, but would also apply to groundwater. Soil samples are currently being analyzed for PFAS using a modified Method 537M. New sampling methods are evolving, so these methods may change in the future. Check with State agencies and the analytical laboratories to determine if the above stated methods are still valid or if other methods have been developed and approved by the USEPA and State.

ADDITIONAL FIELD QUALITY CONTROL (BLANKS)

Several different blanks will need to be collected during and possibly before field sampling operations. As previously mentioned, equipment blanks should be collected and analyzed before site work if any materials to be used in field sampling cannot be determined to be PFAS-free. There are additional blanks that will need to be collected during the actual sample collection process to ensure that quality control has been maintained and samples have not been contaminated by outside sources.

Equipment Blanks

Equipment blanks are collected to determine the adequacy of the decontamination process. Equipment blanks are not needed if using dedicated or disposable sampling equipment that has been determined to be PFAS-free.

- Collect an equipment blank by passing PFAS-free water through/over field sampling equipment before use; and
- Collect an additional equipment blank for every five (5) samples collected.

Have the analytical laboratory hold the equipment blanks for possible analysis. Some of the equipment blanks may be analyzed if one or more samples contain PFAS detections.

Field Reagent Blanks

Field reagent blanks (FRBs) are collected to determine if PFAS have entered the samples through the ambient environment, the sampling process in general, and the analytical laboratory sample handling processes. The analytical laboratory will supply a vial of PFAS-free water and an empty sample container for collecting the FRB. The analytical laboratory should be consulted regarding the number of FRBs that should be collected per sampling event.

The FRB will be opened during the collection of one (1) site sample and handled in the same way as that of the site sample. The laboratory provided PFAS-free water will be poured into the provided clean sample vial to mimic field sample collection procedures. As with equipment blanks, reserve the FRBs for possible laboratory analysis if PFAS is detected in any given sample.

Field Duplicates

Collect duplicate samples to measure both field and laboratory precision. The State regulatory agency should be contacted to determine the number of duplicate samples to collect. The State may require more duplicate samples than would be typical for other types of contaminants. For example, the Wisconsin Department of Natural Resources typically requires that one (1) duplicate sample be collected for every 10 groundwater samples that are collected. However, this is guidance (refer to *Groundwater Sampling Desk Reference*, PUBL-DG-037, September 1996) and they may require more when sampling for PFAS.

Trip Blanks

Typically, trip blanks are utilized to determine cross-contamination during shipment of samples and the possible introduction of contaminants in the laboratory environment due to volatile organic compounds. However, the analytical laboratory should be consulted regarding the need for a trip blank during PFAS sampling.

If requested by the laboratory, the laboratory will prepare the trip blanks using PFAS-free water and will ship them with the cooler. If required, include one (1) trip blank in each sample cooler. Do not remove the trip blank from the cooler during sampling, or transport to and from the site. The laboratory will decide whether to run the trip blank if one (1) or more site samples contain PFAS.

REFERENCES

California State Water Quality Control Board, Division of Water Quality, 2019, *Per- and Polyfluoroalkyl Substances (PFAS) Sampling Guidelines*, 9 pp.

Interstate Technology Regulatory Council, 2018, *Site Characterization Considerations, Sampling Precautions, and Laboratory Analytical Methods for Per- and Polyfluoroalkyl Substances (PFAS)*, 9 pp.

Michigan Department of Environmental Quality, 2018, *General PFAS Sampling Guidance*, 24 pp.

Pace Analytical Webpage, *PFAS Field Sampling Guide*: <u>https://www.pacelabs.com/assets/2020-01-14-pfas-field-sampling-guide.pdf</u>.

United States Department of Defense Webpage, *Bottle Selection and Other Sampling Considerations When Sampling for Per- and Poly-Fluoroalkyl Substances (PFAS)*: https://www.denix.osd.mil/edqw/home/what-s-new/unassigned/edqw-pfas-sampling-factsheet-rev-1-2-july-2017/.

United States Environmental Protection Agency Webpage, *EPA Drinking Water Laboratory Method 537 Q&A*: <u>https://www.epa.gov/pfas/epa-drinking-water-laboratory-method-537-qa</u>.