

June 20, 2011

Ramon C. Mendoza, On Scene Coordinator Emergency Response Branch 2 Superfund Division USEPA Region 5 77 W. Jackson Blvd. Chicago, IL. 60604

Subject: Site Assessment Report Sandies Dry Cleaner SA Little Chute, Outagamie County, Wisconsin Technical Direction Document No. TO-05-11-03-0007 OTIE Contract No. EP-S5-10-10

Dear Mr. Mendoza:

OTIE is submitting the enclosed Site Assessment report for the Sandies Dry Cleaner Site in Little Chute, Wisconsin. If you have any questions or comments about the report or need additional copies, please contact me at (312) 220-7000 or Raghu Nagam at (312) 220-7005.

Sincerely,

Lagher Nagam.

for Naren Babu Project Manager

Enclosure

cc: Raghu Nagam, START Program Manager

SITE ASSESSMENT REPORT FOR SANDIES DRY CLEANER LITTLE CHUTE, OUTAGAMIE COUNTY, WISCONSIN

NPL STATUS: NON-NPL

Prepared for:

U.S. Environmental Protection Agency, Region 5 Emergency Response Branch, 77 West Jackson Boulevard Chicago, IL 60604

TDD No.: Date Prepared: Contract No.: Prepared by: START Project Manager: Telephone No.: U.S. EPA On-Scene Coordinator: Telephone No.: TO-05-11-03-0007 June 20, 2011 EP-S5-10-10 OTIE Naren Babu (312) 220-7000 Ramon Mendoza (312) 802-1409

100 W Monroe Street, Suite 300 Chicago, IL 60603

TABLE OF CONTENTS

Section	Page
1. INT	RODUCTION1
2. SIT	E BACKGROUND2
2.1	Site Description2
2.2	Site History2
3. SIT	E ASSESSMENT ACTIVITIES7
3.1	Site Reconnaissance
3.2	Indoor Air Sampling
3.3	Subsurface and Sub-slab Soil Sampling9
3.4	Monitoring Well Installation and Groundwater Sampling11
3.5	Sub-slab Soil-gas Sampling11
4. AN	ALYTICAL RESULTS
4.1	Indoor Air Sample Results
4.2	Subsurface and Sub-slab Soil Sample Results
4.3	Groundwater Sample Results
4.4	Sub-slab Soil-gas Sample Results
5. PO7	TENTIAL SITE RELATED THREATS23
6. SUN	/MARY

FIGURES

<u>Figure</u>

Figure 1 Site Location Map	5
Figure 2 Site Layout Map.	6
Figure 3 Sample Location Map	13

TABLES

Table

Table 1 Sample Locations and Descriptions	14
Table 2 Indoor Air Volatile Organic Compounds Results	
Table 3 Subsurface soil Volatile Organic Compounds Results	
Table 4 Sub-slab soil Volatile Organic Compounds Results	
Table 5 Groundwater Volatile Organic Compounds Results	
Table 6 Sub-slab Soil-Gas Volatile Organic Compounds Results	

Page

Page

APPENDICES

- A PHOTOGRAPHIC LOG
- B VALIDATED ANALYTICAL DATA PACKAGE
- C SOIL-GAS SAMPLING SOP
- D SOIL BORING LOG
- E WDHS RESULT LETTERS

1. INTRODUCTION

Oneida Total Integrated Enterprises (OTIE) has prepared this Site Assessment report in accordance with the requirements of U.S. Environmental Protection Agency (U.S. EPA) Technical Direction Document (TDD) No. TO-05-11-03-0007 under the Superfund Technical Assessment and Response Team (START) contract No. EP-S5-10-10. The scope of this Site Assessment (SA) at the Sandies Dry Cleaner Site in Little Chute, Outagamie County, Wisconsin was to identify the extent of perchloroethylene/ trichloroethylene (PCE/TCE) contamination in soil and groundwater, assess vapor intrusion in adjacent properties and to determine the need for a removal action. START was tasked to prepare a site-specific Health and Safety Plan, field sampling and analysis plan, subcontract an analytical laboratory and Geoprobe contractor, collect soil, soil-gas, air, and groundwater samples, evaluate analytical data, document on-site conditions with written logbook notes and still photographs, and prepare this SA report. Naren Babu was the START Project Manager and Andy Plier assisted with the sampling activities.

This SA Report summarizes the site background; discusses the assessment activities; provides a summary of the analytical data; and discusses potential site-related threats. The attachments for this report include a photographic log of the site (Appendix A) and the validated sample analytical results (Appendix B).

This section provides Site background information and the history of the Site.

2.1 Site Description

The former Sandies Dry Cleaner and Laundry facility (site) has been vacant since 2006 and is comprised of a commercial building located at 513 Grand Ave in Little Chute, Outagamie County, Wisconsin. The geographical coordinates for the building are 44.279208 degrees north latitude and 88.315852 degrees west longitude (Figure 1 – Site Location Map). The site contains a two-story building with concrete flooring on the first floor and an unoccupied apartment on the second floor. The site building and backyard area, is approximately 90 feet by 37.55 feet. The property area, which includes the site building and backyard area, is approximately 100.96 feet by 37.55 feet. The site is located among a mixture of residential and commercial properties. The site is surrounded by Grand Avenue to the east, the village-owned alley behind SDC to the west, Bakers Outlet and W Lincoln Avenue to the south, and Weenies Still Bar and W Main Street to the north. Both Weenies Still Bar and Bakers Outlet share a brick wall with the site building on the north side and south side, respectively. Both businesses are operating and both have residences on the second floor. The Fox River is approximately 1,000 feet (0.2-miles) from the site on the southeast side and flows northeast to Lake Michigan.

Soil borings collected during EPA's SA in March-April 2011 indicates dark brown fill material with gravel from 0 to 2 feet followed by soft, light brownish red silty clay material. Hard clay was found around 14 feet. Moist soil, due to a shallow aquifer, was found below 4 feet. Groundwater flow is estimated to flow southwest towards the Fox River.

Dave Linskens is the owner of the site and operated Sandies Dry Cleaner until 2002. PCE was used as a dry cleaning solvent during dry cleaning operations. The owner of SDC is planning to use the unoccupied apartment on the second floor of SDC as his future residence.

2.2 Site History

According to the Wisconsin Department of Natural Resources (WDNR) investigation, Naomi & Sylvester Sanderfoot operated the dry cleaner from 1957 - Dec 1972. Mr. Linskens and his mother worked for the Sanderfoots. Mr. Linskens initiated purchase of the property through a land contract and operated the dry cleaner from December 1972 until 2001 or 2002. Mr. Linskens finalized purchase of the property in 2005 from Janice Hartjes, daughter of the Sanderfoots, who inherited the property.

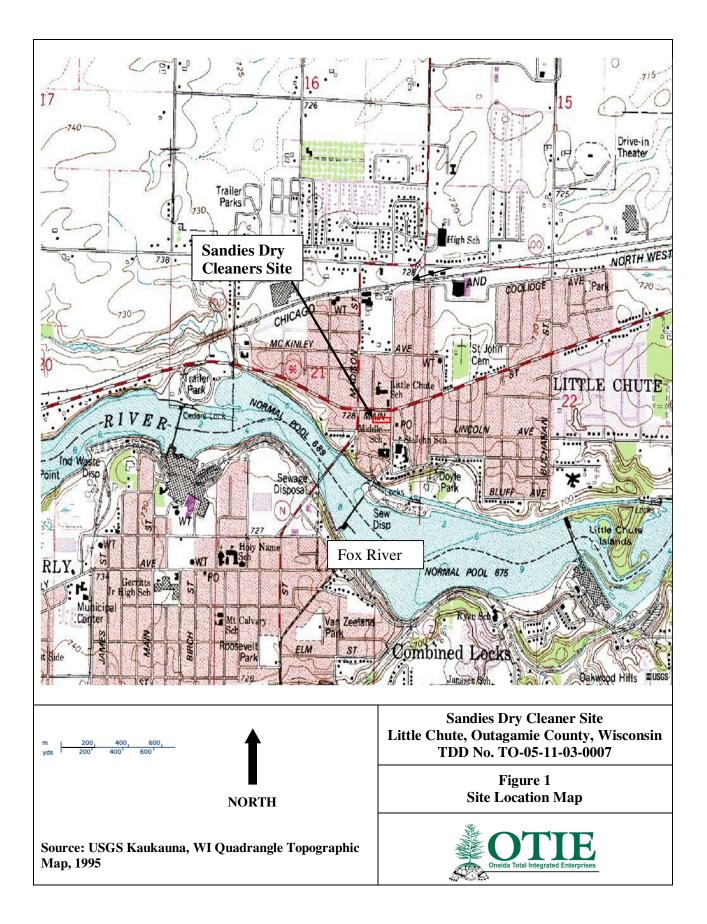
According to a bid for site investigation from Alpha Terra, Mr. Linskens stated in an interview with them that Tetrachloroethylene (PCE) was used the entire time, from 1958 to 2003 when wet dry cleaning ceased. The Alpha Terra bid also states, "Solvent delivery was via drums and pump transfer through access doors on the west side of the building."

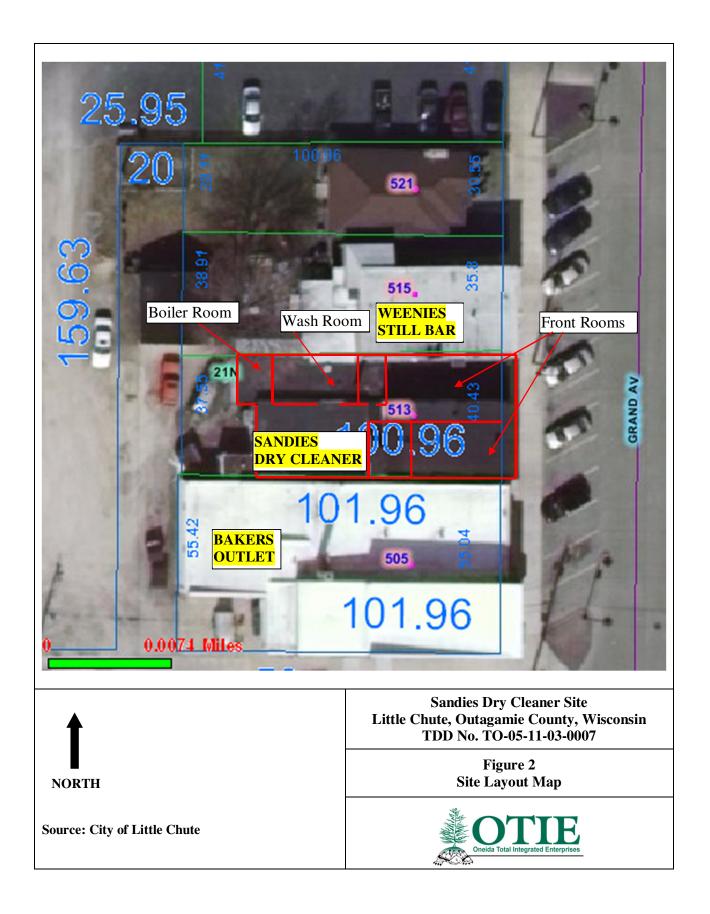
An environmental investigation was performed by Terracon, in 2008 at the request of Mr. Linskens in preparation of selling the property. Soil contamination was discovered and the Phase II report, dated August 28, 2008, and was submitted electronically to the WDNR on the same date.

According to the report, a soil sample collected at one-foot below the former dry cleaning machine indicated PCE concentration of 125 milligrams per kilogram (mg/Kg). A second soil sample collected from three feet below ground surface (bgs) in the alley behind the site building indicated a PCE concentration of 4.5 mg/Kg.

WDNR sent Linskens a letter of responsibility on August 29, 2008 under the Spills Law, listed under s.292.11 of the Wisconsin Statutes (Wis. Stats). Delays in the cleanup precipitated WDNR to issue Mr. Linskens three notices of noncompliance with the Spills Law followed by a notice of violation for failure to clean up the contamination in August 10, 2010. Mr. Linksins explained to WDNR that he could not get a loan from the banks and therefore could not do the cleanup. WDNR was concerned about the lack of action and conducted additional investigation of the site.

As part of the WDNR investigation, the Wisconsin Department of Health Services (WDHS) conducted indoor air sampling on February 17, 2011 using Summa canisters inside the site building and adjacent buildings.


WDHS documented the presence of PCE in all samples collected during this sampling event. Results of PCE in indoor air samples collected in the unoccupied apartment above the SDC facility, where the owner of SDC plans to reside in the future, and all three levels of the Weenies Still property exceeded both the WDNR vapor action level (VAL) for residential and commercial indoor air for PCE. The PCE level found in the owner-occupied residence above Weenies Still was 22.4 parts per billion by volume (ppbv), which is more than thirty times the residential indoor air VAL of 0.6 ppbv PCE. For the basement and main floor samples, PCE was measured at 32.9 and 24.0 ppbv, respectively, which are above the PCE commercial VAL of 3.1 ppbv. Results of PCE in indoor air samples collected from the Bakers Outlet were above the residential VAL of 0.6 ppbv, but below the commercial VAL of 3.1 ppbv. After their findings indicated the presence of elevated levels of PCE in the Weenies Still property, the WDNR



suggested the property owners of Weenies Still, LLC to increase outdoor air ventilation inside all levels of their building until a permanent mitigation system is installed.

On March 3, 2011, WDNR requested U.S. EPA's assistance to conduct a Site Assessment and Removal Action at the site.

3. SITE ASSESSMENT ACTIVITIES

Site Assessment and site reconnaissance activities at the Sandies Dry Cleaner site, including sampling events, are discussed below. START performed site assessment activities, including the collection of environmental samples to determine the nature and extent of PCE contamination at the site and two adjacent off-site properties. Indoor air, soil-gas, soil and groundwater samples were collected to determine whether contaminants are present in excess of the WDNR VAL for PCE and other volatile organic compounds (VOCs).

A site-specific Sampling and Analysis Plan (SAP) was developed for the SA prior to fieldwork (Ref. 6). The SAP describes the data quality objectives (DQO), sampling strategy, sampling locations, sampling methodology, and analytical procedures used during the SA. The SA was conducted in three phases - March 10 and March 11; April 6 and April 7; and April 18 to April 20, 2011.

This section summarizes field investigation activities including Site Reconnaissance (subsection 3.1), Indoor Air Sampling (subsection 3.2), subsurface and sub-slab soil sampling (subsection 3.3), monitoring well installation and groundwater sampling (subsection 3.4), and soil-gas sampling (subsection 3.5). Table 1 presents a summary of all of the samples collected and their associated locations. Photographic documentation is provided as Appendix A.

3.1 Site Reconnaissance

On March 10th 2011, On-Scene Coordinators (OSC) Ramon Mendoza and Kathy Halbur, and START members Raghu Nagam and Andrew Plier of OTIE mobilized to the site and conducted site reconnaissance. The OSC and START met with Jennifer Borski from the WDNR and the property owner. The site reconnaissance activities were conducted in Level D personal protective equipment (PPE) in accordance with the approved site-specific health and safety plan (HASP). Air monitoring was conducted in the breathing zone throughout the site reconnaissance using a RAE Systems MultiRAE® five-gas monitor. MutiRAE includes a photoionization detector that measures organic vapors, carbon monoxide (CO) sensor, hydrogen sulfide (H₂S) sensor, lower explosive limit (LEL) sensor, and oxygen (O₂) sensor. MultiRAE was calibrated prior to conducting the Site reconnaissance.

Site reconnaissance was conducted in the site building where SDC was operated and in the two adjacent buildings, Weenies Still Bar to the north and Bakers Outlet to the South. Weenies Still Bar and Bakers Outlet each share a brick wall with the site building on the north side and the south side, respectively. The site reconnaissance began in the site building (Figure 2 – Site Layout Map). Both front and back doors of

the site building were locked. The site owner provided the access to the building. No evidence of trespassing was found during the site reconnaissance. EPA and START entered through the front door located along Grand Avenue. There were two rooms adjacent to each other inside the building along Grand Avenue. Office furniture and other materials were noted in both rooms. An unoccupied apartment is located on the second floor of these rooms and could be accessed by wooden stairs located behind the front rooms. The wash room and boiler room are in the ground level of the site building behind the front rooms on the north of the site building. The dry cleaning machine is currently situated in the wash room (Photo #1 in Appendix A). Used PCE-solvent filters were found behind the dry cleaning machine. The concrete floor behind the dry cleaning machine was observed to be discolored and is suspected to be from historic spills of PCE solvent and bad housekeeping (Photo #2). A metal pipe was found to be extending from the wall behind the dry cleaning machine that runs to the back of the building ((Photo #3).

The storage room on the south side of the machine room and behind the stairs was not part of the original structure and reportedly constructed as an expansion to the original building. This storage room is currently filled with old washers, other equipments, bags of mortar mix, empty buckets, buckets filled with trash, electrical cords, ducts, scrap metal and other materials. Electrical ballasts were found in the storage room near a Safety-Kleen plastic container (Photo #7). The Safety-Kleen plastic container is currently filled with trash (Photos #5 and 6). This container was originally intended to be used for packing and transporting the used PCE-solvent filters from the dry cleaning machine to the disposal/recycling facility. The back door in the storage room leads to the backyard of the property on the west side. A 20-feet wide alley owned by the Village of Little Chute is present behind the backyard of the property. A rusty metal pipe sticking out of the ground surface was located in the back alley just behind the building on the north side closer to Weenies Still property. The owner of Weenies Still property informed that the owner of the Site dumped unknown liquid through this pipe using a funnel during after-hours.

Site reconnaissance continued on to Weenies Still Bar on the north side of the site (Figure 2 – Site Layout Map). The property of Weenies Still Bar has a tavern on the front side along Grand Avenue, an unoccupied basement which shares the brick wall with the site, and an occupied apartment located on the second floor above the tavern. The owner of Weenies Still Bar reported that water seeps through the adjoining wall from the site to the basement of Weenies Still property during storm events. Cracks and wet areas were noted on adjoining wall between the site and Weenies basement (Photo #21).

Site reconnaissance then moved to Bakers Outlet on the south side of the site (Figure 2 – Site Layout Map). The property of Bakers Outlet has a commercial store that sells baked items on the first floor and a basement that extends to the south of another commercial property, American Family Insurance, located

on the first floor level. There is an apartment on the second floor level of American Family Insurance, which is a home to a former worker of SDC.

Air monitoring during this site reconnaissance using a MultiRAE did not indicate any VOC readings above background levels.

3.2 Indoor Air Sampling

On March 10th 2011, START conducted indoor air sampling by collecting 6 summa canister air samples from SDC and premises located to the north and south of the SDC. A 24-hour summa canister air sample was collected from six locations. One sample was collected from the unoccupied second floor apartment at SDC where the owner of SDC is planning to reside in; one sample from the first floor of the adjacent Weenies Still Bar; one sample from the occupied second floor apartment above Weenies Still Bar; one sample from the basement of Weenies Still property near an adjoining wall to the dry cleaners; one sample from the basement of the adjacent Bakers Outlet; and one sample from the occupied second floor apartment south of the Bakers Outlet, above American Family Insurance. All samples were collected in 6-liter Summa canisters with attached pre-set flow regulators. On March 11, 2011, the valves on the Summa canisters were closed approximately after a 24-hr period. The samples were packaged and shipped off to Microbac Laboratories in Merrillville, Indiana for VOC analysis following EPA method TO-15. Descriptions of indoor air sample locations are listed in Table 1.

3.3 Subsurface and Sub-slab Soil Sampling

On April 6 and 7, 2011, subsurface soil sampling was conducted to determine the presence or absence of contaminated soils and the need for removal actions. A total of twelve soil borings were advanced using a Geoprobe® DPT drill operated by OTIE's drilling subcontractor, Moraine Environmental. Seven soil borings, SDC-GP-6 through SDC-GP-12, were advanced on the site property, three soil borings, SDC-GP-3, on the Village alley way and two soil borings, SDC-GP-1 and SDC-GP-3, on the adjacent Weenies Still property. Out of the seven soil borings advanced on the site property, two of them, SDC-GP-6 and SDC-GP-7, were outside the building and five of them, SDC-GP-8 through SDC-GP-12, were inside the building. All other soil borings, which were advanced on the Village alley and Weenies Still property, were outside the building. Soil boring locations are indicated on Figure 3. SDC-GP-1 was collected at an upgradient location on the Weenies Still property, just north of the building (Photo #8). SDC-GP-2 was collected from the backyard of Weenies Still property just northwest of the site (Photo #10). SDC-GP-4 and SDC-GP-5 were collected from locations that were cross-gradient from the site in the Village alley (Photos #11 and 12). SDC-GP-6 was collected from the

southwest edge of the site (Photo #13). SDC-GP-7 was collected from the location where a metal pipe was sticking out of the ground just behind the boiler room of the site building (Photo #14). SDC-GP-8 was collected in the wash room inside SDC and east of the dry cleaning machine (Photo #15). This location is one foot from the Phase II sample location where 125 mg/Kg PCE was found in the soil. SDC-GP-9 was collected inside SDC in the room east of the wash room (Photo #16). SDC-GP-10 was collected inside SDC below the stairs (Photo #17). SDC-GP-11 was collected inside SDC in the boiler room (Photo #18). SDC-GP-12 was collected 6 feet north of SDC-GP-8 closer to the adjoining wall between SDC and Weenies Still properties (Photo #19). This is the old location of the dry cleaning machine before it was moved to its current location. The soil borings were collected to a maximum depth of 20 feet below ground surface (bgs) at locations outside the building and 8 feet bgs at locations inside the building. For the soil boring locations inside the building, sub-slab soil cores were collected after coring and removing the concrete slab. Descriptions of soil boring locations are listed in Table 1.

Soil borings were logged by START Naren Babu and Andrew Plier. Copies of the completed soil boring logs are provided in Appendix D. The soil borings were logged in 5-foot intervals for the outdoor locations and 2-foot intervals for the indoor locations. In the soil borings outside the building, dark brown fill material with gravel was found from 0 to 2 feet followed by soft, light brownish red silty clay material found. Hard clay was found around 14 feet. Moist soil, due to a shallow aquifer, was found below 4 feet. Each boring interval was screened using an UltraRAE VOC meter. Sample from one interval per boring was submitted to the laboratory for analysis of VOCs. The soil depth interval from each boring which exhibited the highest reading for VOCs was submitted to the laboratory for analysis. If no VOC readings were recorded for any interval of the soil boring, the deepest depth interval above the shallow water table was submitted to the laboratory for analysis. A duplicate sample was collected from soil boring SDC-GP-8, located nearest to the source area inside the site building. In soil boring SDC-GP-8, depth interval 0-1 feet bgs exhibited the highest VOC reading on the UltraRAE at 15 parts per million (ppm). Voids were identified under the slab during soil boring inside the building. The depth of voids ranged up to 6 inches. In soil boring SDC-GP-12, air monitoring inside the bore hole indicated VOC readings up to 25 ppm on the UltraRAE.

A total of seven subsurface soil samples from locations outside the site building, and six sub-slab soil samples, including one duplicate sub-slab soil sample from locations inside the building were submitted to the laboratory for analysis of VOCs. Samples were packaged and stored with ice. Samples were delivered to Microbac Laboratories in Merrillville, Indiana for total VOCs analysis following EPA method SW 846 8260. Upon the receipt of analytical data, two samples with the highest PCE result were requested for additional Toxic Characteristic Leaching Procedure (TCLP) VOCs.

In addition, temporary wells were installed at the three soil boring locations. Temporary groundwater monitoring well installation and sampling is described in Section 3.2 of this report.

3.4 Monitoring Well Installation and Groundwater Sampling

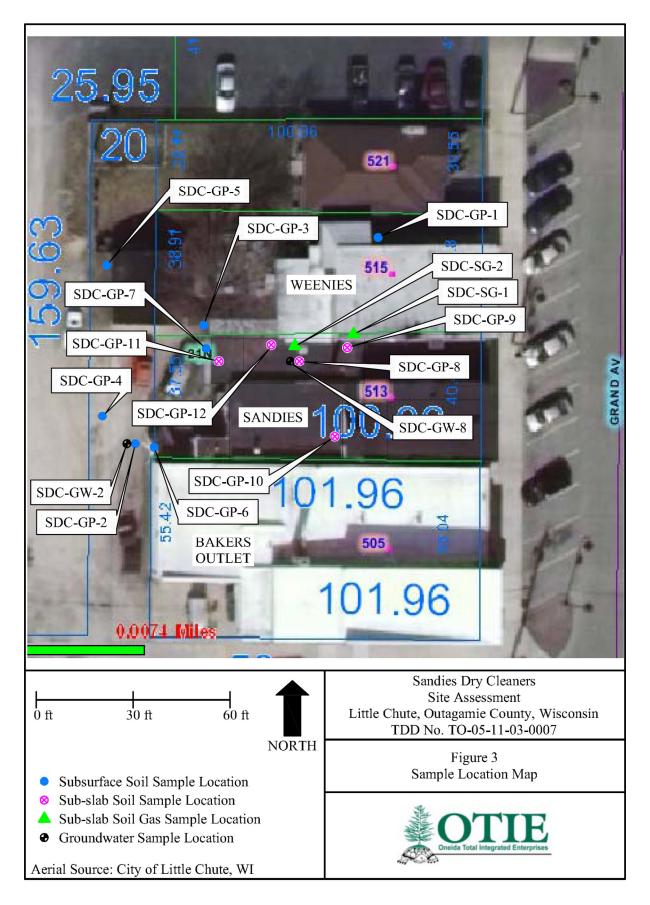
On April 6, 2011, START's subcontractor installed temporary groundwater monitoring wells in three locations. Two monitoring wells, at boring locations SDC-GP-1 and SDC-GP-2, outside the building, and one at boring location SDC-GP-8, inside the site building were installed. Figure 3 shows the monitoring well locations and Table 1 shows the descriptions of temporary monitoring well locations.

The temporary monitoring wells consisted of new, dedicated 1-inch inner diameter, polyvinyl chloride (PVC) risers and screens. The screens were 5 feet in length and had 0.010 inch factory cut slots. The wells were set with the screened interval at 4 - 9 feet bgs. The wells did not recharge after few minutes of purging using a low-flow pump. The purge water from well development was contained and stored onsite in a 55-gallon drum for later disposal. Wells were allowed to recharge overnight on April 6, 2011 prior to sampling.

On April 7, 2011, START collected two groundwater samples from SDC-GW-2 and SDC-GW-8. Groundwater sample was not collected from well, SDC-GW-1, since there was not enough water available for sampling. The samples for VOC analysis were collected directly into the pre-preserved 40milliliter (mL) vials and filled directly from the tubing via gravity and capillary action. Sampled groundwater appeared turbid. Hence, the laboratory was informed to let the solids in sample vials to settle out before decanting the clear water for analysis. The sample bottles were placed on ice, and dropped off at the laboratory on April 7, 2011.

3.5 Sub-slab Soil-gas Sampling

On April 18, 2011, START installed permanent soil-gas sampling ports at three locations as detailed in REAC SOP 2082 (Appendix C). One sample port was installed at each of the following locations: in the basement level of Bakers Outlet property at a location west of the stairs and closer to the adjoining wall from SDC; in the basement level of Weenies Still property on the adjoining wall between SDC and Weenies Still properties; and on main floor level of SDC inside washroom about six feet north from SDC-GW-8 location and closer to the adjoining wall to the Weenies Still property. Descriptions of sub-slab soil-gas locations are listed in Table 1. A brief summary of installation of sub-slab port is provided in the following paragraph.


After wiping off the concrete surface where the sub-slab port was planned to be installed, an electric Hilti Hammer Drill with the 1/2" diameter drill bit was used to drill an inner or pilot hole into the concrete slab

to a depth of approximately 2". Using the pilot hole as the center, an outer hole was drilled to an approximate depth of $1 \frac{3}{8}$ " using the 1" diameter drill bit. The 1" diameter drill bit was then replaced with the $\frac{1}{2}$ " drill bit. The pilot hole was drilled through the slab and at least three inches into the sub-slab material. Once drilling was completed, a stainless steel probe was assembled and inserted into the pre-drilled hole. The probe was mounted flush with the surrounding slab so that there was no interference with pedestrian or vehicular traffic and cemented into place.

On April 19, 2011, START set one Summa canister each at the ports installed on SDC (Photo #22) and Weenies Still properties (Photo #23) for 24-hr sample collection. The port installed at Bakers Outlet was filled with water, possibly intruded from underneath the slab due to recent storm events. No soil-gas sample was collected from Bakers Outlet. Soil-gas samples were collected by attaching a length of Teflon® tubing between the port assembly and a 6-L Summa Canister. Then the pre-set valve on the Summa canister was opened to begin the soil-gas sampling and initial vacuum reading was noted on the logbook. On April 20, 2011, the valves on the Summa canisters were closed approximately after a 24-hr period. Both Summa canister samples were collected before the negative pressure in the canister. After sampling was completed, all ports were left in place in case if future sampling is needed. The samples were packaged and shipped off to Microbac Laboratories in Merrillville, Indiana on April 20, 2011 for VOC analysis following EPA method TO-15.

Table 1 Sample Locations and Descriptions Sandies Dry Cleaner Site Assessment Little Chute, Wisconsin

Boring ID/ Well ID	Installation Date	Location Description		Sample ID	Sample Date	Sample Description
None	Not Applicable	Inside Sandies dry cleaner, unoccupied apartment, upper level	Air	A01-513GRND-UL	3/11/2011	Indoor Air, 24-Hr
None	Not Applicable	Inside Weenies bar, ground level	Air	A02-515GRND- GL	3/11/2011	Indoor Air, 24-Hr
None	Not Applicable	Inside Weenies bar, occupied apartment, upper level	Air	A03-515GRND-UL	3/11/2011	Indoor Air, 24-Hr
None	Not Applicable	Inside Weenies bar, basement level	Air	A04-515GRND-BL	3/11/2011	Indoor Air, 24-Hr
None	Not Applicable	Inside Bakers Outlet, basement level	Air	A05-505GRND-BL	3/11/2011	Indoor Air, 24-Hr
None	Not Applicable	Inside Apartment above American Family Insurance, occupied, upper level	Air	A06-505GRND-UL	3/11/2011	Indoor Air, 24-Hr
SDC-GP-1-3'	4/6/2011	Outside, From NW outside corner of Weenies building go 21.0ft E, 4.3ft N	Soil	SDC-GP-1-3'	4/6/2011	Soil from 3' bgs
SDC-GP-2-2'	4/6/2011	Outside behind Condian In parking lat	Soil	SDC-GP-2-2'	4/6/2011	Soil from 2' bgs
SDC-GW-2	4/6/2011	Outside, behind Sandies, In parking lot	GW	SDC-GW-2	4/7/2011	Groundwater
SDC-GP-3-2_5'	4/6/2011	Outside, backyard of Weenies, near walk way to backdoor, near SE corner of garage	Soil	SDC-GP-3-2_5'	4/6/2011	Soil from 2.5' bgs
SDC-GP-4-4'	4/6/2011	Outside, Behind Sandies, on edge of village property, near alley	Soil	SDC-GP-4-4'	4/6/2011	Soil from 4' bgs
SDC-GP-5-3_5'	4/6/2011	Outside, Behind Weenies, on west side of the garage, near alley	Soil	SDC-GP-5-3_5'	4/6/2011	Soil from 3.5' bgs
SDC-GP-6-14'	4/6/2011	Outside, Near NW edge of Bakery, by dumpsters	Soil	SDC-GP-6-14'	4/6/2011	Soil from 14' bgs
SDC-GP-7-1_5'	4/6/2011	Outside, Behind Sandies where pipe was sticking out of the ground, NW edge of building	Soil	SDC-GP-7-1_5'	4/6/2011	Soil from 5' bgs
SDC-GP-8-1'	4/6/2011		Soil	SDC-GP-8-1'	4/6/2011	Sub-Slab Soil
SDC-GP-8-1'-D	4/6/2011	Inside Sandies, Wash Room, beneath concrete slab,	Soil	SDC-GP-8-1'-D	4/6/2011	from 1' bgs
SDC-GW-8	4/6/2011	From NE corner go 10.8ft W, 7.2ft S.	GW	SDC-GW-8	4/7/2011	Groundwater below Sub-Slab

Table 1 (continued) Sample Locations and Descriptions Sandies Dry Cleaner Site Assessment Little Chute, Wisconsin

Boring ID/ Well ID	Installation Date	Location Description	Matrix	Sample ID	Sample Date	Sample Description
SDC-GP-9-5'	4/7/2011	Inside Sandies, room east of wash room, From NE corner go 1.3ft S, 3.4ft W	Soil	SDC-GP-9-5'	4/7/2011	Sub-Slab Soil from 5' bgs
SDC-GP-10-1'	4/7/2011	Inside Sandies, under stairs, From SE corner of main room go 2.3ft W, 6.9ft N	Soil	SDC-GP-10-1'	4/7/2011	Sub-Slab Soil from 1' bgs
SDC-GP-11-2'	4/7/2011	Inside Sandies, boiler room, from NE corner of room go 7.2ft S, 7.5ft W	Soil	SDC-GP-11-2'	4/7/2011	Sub-Slab Soil from 2' bgs
SDC-GP-12-0_5'	4/7/2011	Inside Sandies, In wash Room, from NW corner of room go 2.1ft S, 5.4' E	Soil	SDC-GP-12-0_5'	4/7/2011	Sub-Slab Soil from 0.5' bgs
SDC-SG-01	4/18/2011	Inside Weenies basement, adjoining Wall between Sandies and Weenies, SW corner of the basement room, 5.45 feet height from the floor and 1 feet from west wall	Air	SDC-SG-01	4/20/11	Sub-Slab Soil- gas, 24-Hr
SDC-SG-02	4/18/2011	Inside Sandies, In wash room, from NW corner of room go 11.7' E, 1.45' S	Air	SDC-SG-02	4/20/11	Sub-Slab Soil- gas, 24-Hr
SDC-SG-03	4/18/2011	Inside Bakers Outlet, In basement near bottom of stairs, from NW corner of room go 2.55' E, 2.1' S		Not Sampled		Port was filled with water. Not sampled

START reviewed the SA analytical data and supporting quality assurance/quality control (QA/QC) data provided by Microbac laboratories. The validated analytical data package is included in Appendix B. Based on START's data validation, the data is acceptable for use as qualified.

4.1 Indoor Air Sample Results

Results for indoor air samples collected on March 11, 2011 are shown in Table 2. Detected PCE results in indoor air were 31 ppbv in SDC, 3.6 to 5 ppbv in Weenies Tavern and 0.78 ppbv in the Bakers Outlet. Results for indoor air samples collected from SDC and Weenies were above the WDNR VAL for commercial indoor air of 3.1 ppbv for PCE. The indoor air result for the sample collected from the basement of Bakers Outlet was above the WDNR VAL for residential indoor air of 0.6 ppbv but below the WDNR VAL for commercial indoor air. PCE was not detected in the sample collected in the apartment above American Family Insurance.

4.2 Subsurface and Sub-slab Soil Sample Results

All detected analytical results for subsurface and sub-slab soil samples are shown in Table 3 and Table 4, respectively. PCE was detected above EPA's risk based Soil Screening Levels (SSLs) of 0.049 micrograms per kilogram (µg/Kg) derived for protection of groundwater in all soil samples from the site, SDC-GP-6-14', SDC-GP-7-1.5' SDC-GP-8-1' SDC-GP-9-5' SDC-GP-10-1' SDC-GP-11-2' and SDC-GP-12-0.5', two subsurface soil samples in Village alley, SDC-GP-2-2' and SDC-GP-4-4', and one subsurface soil sample from Weenies Still property closer to the site, SDC-GP-3-2.5'. The highest sub-slab soil result for PCE was obtained from the soil sample, SDC-GP-8-1'-D, collected from within 1-foot below the concrete slab next to the dry cleaning machine inside SDC. This sample had a PCE result of 1,400,000 µg/Kg result, which is 28.5 million times the SSL. The highest subsurface soil result of 36 mg/Kg for PCE was obtained from the soil sample collected at 14 feet bgs at soil boring location SDC-GP-6, which is located on southwest side of the site downgradient to the source area. TCE was detected above EPA's risk based SSLs at two subsurface soil locations, SDC-GP-2, and two sub-slab soil locations, SDC-GP-8 and SDC-GP-12, in the source area inside the wash room. At the downgradient location, SDC-GP-2, other daughter products of PCE, cis-1,2-dichloroethylene and trans-1,2-dichloroethylene, were also detected.

4.3 Groundwater Sample Results

All detected analytical results for groundwater samples are shown in Table 5. Analytical results indicate that SDC-GW-2 contained 180 micrograms per liter (μ g/L) PCE and SDC-GW-8 contained 1,500 μ g/L

PCE. According to the U.S. EPA Safe Drinking Water Act (SDWA), the Maximum Contaminant Level (MCL) for PCE is $5 \mu g/L$. Under the Wisconsin Administrative Code, chapter NR 140, Table 1, Public Health Groundwater Quality Standards, the Enforcement Standard (ES) for PCE is listed as $5.0 \mu g/L$.

4.4 Sub-slab Soil-gas Sample Results

All detected analytical results for sub-slab soil-gas samples are shown in Table 6. Analytical results indicate that PCE concentrations were 3.5 ppbv in SDC-SG-01, collected on Weenies Still property, and 22,000 ppbv in SDC-SG-02, collected on SDC property. The WDNR Vapor Risk Screening Level (VRSL) for non-residential properties for PCE based on a 1 in 10,000 risk is 31 ppbv. The result of soil-gas sample collected from the site is 709 times the WDNR VRSL.

			Sandie	es Drycleaner Site A	ssessment			
Little Chute, WI								
	WDNR	WDNR	A01-513GRND-UL	A02-515GRND-GL	A03-515GRND-UL	A04-515GRND-BL	A05-505GRND-BL	A06-505GRND-UL
Analyte	Residential	Commercial	03/11/2011	03/11/2011	03/11/2011	03/11/2011	03/11/2011	03/11/2011
Analyte	Vapor	Vapor						
	Action Level	Action Level						
VOCs (ppbv)								
1,2,4-Trimethylbenzene	14.85	63.06	0.62	ND	ND	ND	ND	ND
1,3-Butadiene	0.366	1.854	ND	ND	2.2	ND	ND	ND
1,4-Dichlorobenzene	0.366	1.830	ND	0.67	0.59	ND	ND	ND
2-Butanone	17,633	74,603	ND	ND	2	ND	ND	ND
2-Propanol	29,702	126,130	ND	31	29	ND	ND	ND
Acetone	134,727	589,430	7.1	20	27	4.3	ND	5.9
Benzene	0.97	5.01	ND	0.48	1.7	ND	0.44	0.49
Chloroform	0.225	1.086	ND	0.6	0.73	ND	ND	ND
Chloromethane	455	1,889	ND	1.1	3.6	ND	ND	0.93
Dichlorodifluoromethane	202.24	890	0.59	0.54	0.52	0.54	0.89	0.7
Ethyl acetate	NL	NL	ND	2.4	2.8	0.56	ND	ND
Ethylbenzene	2.23	11.29	ND	ND	0.4	ND	ND	ND
Heptane	NL	NL	0.78	0.48	0.82	ND	ND	ND
m,p-Xylene	230	1,013	0.91	ND	1.2	ND	ND	ND
Propylene	18,014	75,544	ND	ND	10	ND	ND	ND
Styrene	2,348	10,331	ND	ND	0.49	ND	ND	ND
Tetrachloroethylene	0.60	3.10	31	3.6	3.9	5	0.78	ND
Toluene	13,800	58,386	5.9	1.5	3.7	1.2	0.66	0.71
Trichloroethylene	2.23	11.35	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane	1,299	5,518	ND	0.44	0.5	ND	1.3	0.81
Xylenes, Total	230	1,013	1.2	ND	1.5	ND	ND	ND

Table 2 Indoor Air Volatile Organic Compounds Results Sandies Drycleaner Site Assessment

Notes:

Samples were collected on March 11th, 2011 under START contract EP-S5-10-10.

Analyses were conducted by Microbac Laboratories, Merrilville, Indiana under TDD No: TO-05-11-03-0007

ppbv – parts per billion by volume

NL - Not listed

ND - analyte not detected above the laboratory method detection limit

Bolded results indicate detections above the reporting limit

Shaded results exceeded either residential or residential and commercial vapor action levels set by WDNR.

Little Chute, Wisconsin								
Analyte	Risk Based SSLs	SDC-GP-1-3'	SDC-GP-2-2'	SDC-GP-3-2_5'	SDC-GP-4-4'	SDC-GP-5-3_5'	SDC-GP-6-14'	SDC-GP-7-1_5'
Analyte	(μg/Kg)*	4/6/2011	4/6/2011	4/6/2011	4/6/2011	4/6/2011	4/6/2011	4/6/2011
VOCs (µg/Kg dry)				•				
2-Butanone	1,500	ND	16	11 J	ND	ND	ND	ND
Acetone	4,500	68	170	160	30 J	150	ND	ND
Benzene	0.21	ND	ND	2.4 J	3.1 J	ND	ND	ND
cis-1,2-Dichloroethene	21	ND	64	ND	ND	ND	ND	ND
Ethylbenzene	1.70	1.5 J	1.4 J	1.4 J	4.0 J	2.0 J	ND	ND
m,p-Xylene	1,200	2.5 J	2.4 J	3.0 J	6.4	4.5 J	ND	ND
o-Xylene	1,200	ND	ND	ND	2.3 J	ND	ND	ND
Tetrachloroethene (PCE)	0.049	ND	700	120	5.5 J	ND	36,000	1,300
Toluene	1,600	1.8 J	2.1 J	4.9 J	8.4	2.4 J	ND	ND
Total 1,2-Dichloroethene	97	ND	80	ND	ND	ND	ND	ND
Total Xylenes	200	2.5 J	2.4 J	3.0 J	8.8	4.5 J	ND	ND
trans-1,2-Dichloroethene	31	ND	16	ND	ND	ND	ND	ND
Trichloroethene (TCE)	0.72	ND	100	ND	1.4 J	ND	ND	ND

Table 3 Subsurface Soil Volatile Organic Compounds Results Sandies Drycleaner Site Assessment

Notes:

Site Assessment conducted under START contract EP-S5-10-10 on April 6th and 7th, 2011.

Analyses were conducted by Microbac Laboratories, Merrilville, Indiana under TDD No: TO-05-11-03-0007

µg/Kg dry – micrograms per kilogram dry basis

J - result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value

ND - analyte not detected above the laboratory method detection limit

* Values were obtained from EPA Region 9 RSL Table for the Soil Screening Levels calculated for Protection of Groundwater Criteria

Bolded results indicate detections above the reporting limit

Shaded results exceeded EPA's Risk based SSLs

Little Chute, Wisconsin							
	Risk Based	SDC-GP-8-1'	SDC-GP-8-1'-D	SDC-GP-9-5'	SDC-GP-10-1'	SDC-GP-11-2'	SDC-GP-12-0_5'
Analyte	SSLs (_µ g/Kg)*	4/6/2011	4/6/2011	4/7/2011	4/7/2011	4/7/2011	4/7/2011
VOCs (µg/Kg dry)							
1,1,1,2-Tetrachloroethane	0.20	ND	ND	ND	ND	ND	110 J
Acetone	4,500	ND	ND	23 J	ND	ND	ND
Benzene	0.21	ND	ND	1.8 J	ND	ND	ND
cis-1,2-Dichloroethene	21	ND	ND	ND	ND	ND	ND
Ethylbenzene	1.70	ND	ND	2.8 J	ND	ND	ND
m,p-Xylene	1,200	ND	ND	3.3 J	ND	ND	ND
o-Xylene	1,200	ND	ND	1.2 J	ND	ND	ND
Tetrachloroethene (PCE)	0.049	390,000	1,400,000	19	1,500	780	810,000
Toluene	1,600	ND	ND	4.6 J	ND	ND	ND
Total 1,2-Dichloroethene	97	ND	ND	ND	ND	ND	ND
Total Xylenes	200	ND	ND	4.5 J	ND	ND	ND
trans-1,2-Dichloroethene	31	ND	ND	ND	ND	ND	ND
Trichloroethene (TCE)	0.72	120 J	430 J	ND	ND	ND	810
TCLP VOCs	TCLP Limit (mg	/L)					
Tetrachloroethene (PCE)	0.70	ND	N/A	N/A	N/A	N/A	0.11

Table 4 Sub-Slab Soil Volatile Organic Compounds Results Sandies Drycleaner Site Assessment

Notes:

Site Assessment conducted under START contract EP-S5-10-10 on April 6th and 7th, 2011.

Analyses were conducted by Microbac Laboratories, Merrilville, Indiana under TDD No: TO-05-11-03-0007

µg/Kg dry – micrograms per kilogram dry basis

J – result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value

ND – analyte not detected above the laboratory method detection limit

N/A – Not Analyzed

Sample SDC-GP-8-1'-D is a field duplicate of sample SDC-GP-8-1'

* Values were obtained from EPA Region 9 RSL Table for the Soil Screening Levels calculated for Protection of Groundwater Criteria

TCLP - Toxic Characteristic Leaching Procedure

Bolded results indicate detections above the reporting limit

Shaded results exceeded EPA's Risk based SSLs

Table 5					
Groundwater Volatile Organic Compounds Results					
Sandies Drycleaner Site Assessment					
Little Chute, Wisconsin					

Analyte	Federal MCL	WDNR NR 140 ES	SDC-GW-2 4/7/2011	SDC-GW-8 4/7/2011
VOCs (µg/L)				
Tetrachloroethene (PCE)	5	5	180	1,500

Notes:

Site Assessment conducted under START contract EP-S5-10-10 on April 6th and 7th, 2011.

Analyses were conducted by Microbac Laboratories, Merrilville, Indiana under TDD No: TO-05-11-03-0007 μ g/L – micrograms per liter

Bolded results indicate detections above the reporting limit

Shaded results exceeded the federal Maximum Contaminant Level (MCL) and State Enforcement Standard

Table 6
Sub-Slab Soil-Gas Volatile Organic Compounds Results
Sandies Drycleaner Site Assessment
Little Chute, WI

	WDNR	SDC-SG-01	SDC-SG-02
Analyte	Commercial	4/20/2011	4/20/2011
Analyte	Vapor Risk		
	Screening Level		
VOCs (ppbv)			
2-Butanone	746,033	0.74 J	ND
2-Propanol	1,261,298	0.97 J	ND
Acetone	5,894,297	4.3	17 J
Acrolein	4	0.78	ND
Benzene	50	0.27 J	ND
Carbon disulfide	99,572	0.21 J	7.3 J
Chloromethane	18,888	0.49 J	ND
Dichlorodifluoromethane	8,899	0.28 J	ND
Ethyl acetate	NL	1.9	ND
Heptane	NL	0.32 J	ND
Hexane	87,960	1.6	ND
Methylene chloride	749	1.3 J	ND
Propylene	755,437	0.71 J	ND
Tetrachloroethylene	31	3.5	22,000
Toluene	583,855	1.2	ND
Trichloroethylene	114	ND	24
Trichlorofluoromethane	55,182	0.22 J	ND

Notes:

Samples were collected on April 20th, 2011 under START contract EP-S5-10-10.

Analyses were conducted by Microbac Laboratories, Merrilville, Indiana under TDD No: TO-05-11-03-0007

ppbv – parts per billion by volume

 $J-\mbox{result}$ is less than the RL but greater than or equal to the MDL and the concentration is an approximate value NL - Not listed

ND – analyte not detected above the laboratory method detection limit

Bolded results indicate detections above the reporting limit

Shaded results exceeded commercial vapor risk screening level set by WDNR.

5. POTENTIAL SITE RELATED THREATS

Threats posed by the site were evaluated in accordance with Title 40 of the Code of Federal Regulations (CFR), Section 300.415(b) (2). Paragraph (b) (2) of 40 CFR Section 300.415 lists factors to be considered when determining the appropriateness of a potential removal action at a site. Potential site-related threats to human health and the environment were evaluated based on the criteria listed in 40 CFR, Sections 261.20 through 261.24 and under WDNR VAL. Factors that are applicable to the site are discussed below.

Actual or potential exposure of nearby human populations, animals, or the food chain to hazardous substances or pollutants or contaminants

Human populations face an ongoing exposure to hazardous substances next to the Site. PCE was detected above the WDNR VAL of 3.1 ppbv for commercial indoor air in all indoor air samples collected by WDHS in February 2011 and U.S. EPA in March 2011 from the Site building and the adjacent Weenies Still property. Weenies Still Bar has an unoccupied basement, an active tavern business on the first floor and an occupied second floor apartment. The property owners of Weenies Still property opened the vents in all levels of their building to increase the ventilation and reduce PCE concentration in indoor air, at the suggestion of WDHS. Even after continued ventilation, PCE was detected above WDNR vapor action level in all indoor air samples from Weenies.

In addition, the indoor air samples collected by WDNR and EPA inside the unoccupied apartment of the Site, where the owner is planning to live in the future, exceeded the VAL for PCE in residential indoor air set by WDNR.

Analytical results of all subsurface and sub-slab soil samples collected inside and outside the Site building exceeded the EPA Soil Screening Levels (SSLs) for PCE based on protection of groundwater criteria with the highest concentration found next to the dry cleaner machine at 1,400,000 μ g/kg, which is 28.5 million times the EPA SSL. PCE in shallow groundwater was found at 1,500 μ g/l which is 300 times the EPA MCL and WDNR ES of 5 μ g/L , next to the dry cleaner machine.

In addition, groundwater contaminated with PCE was found outside at a downgradient location on-site at 36 times the EPA MCL and WDNR ES. This source area and the basement wall of Weenies Still property are separated by an adjoining wall, which has several cracks. Water was observed to be seeping through this adjoining wall into the basement of Weenies Still property from the site. PCE dissolved in water infiltrating into the basement can off-gas to indoor air. There is a potential for the residents of

Weenies Still property and workers of the tavern to come into contact with the PCE-contaminated groundwater that seeps into the basement.

Humans exposed to intermediate to high levels of PCE in air experience eye and respiratory irritation, dizziness, lack of coordination and unconsciousness. Animal studies indicate PCE adversely affects the central nervous system and the liver, and that PCE causes cancer by both inhalation and ingestion exposures in rats and mice (U.S. EPA 1984).

Research also indicates that PCE leaches readily to groundwater. In saturated deep soils (such as at this Site), 26% of the chemical leaches to groundwater (U.S. Air Force 1989). PCE's degradation products (TCE and cis-1,2-Dichloroethene) are known to cause nausea, dizziness, and sleepiness.

High levels of hazardous substances or pollutants or contaminants in soils largely at or near the surface, that may migrate

Analytical results of all subsurface and sub-slab soil samples collected inside and outside the site building exceeded the EPA Soil Screening Levels (SSLs) for PCE based on protection of groundwater criteria with the highest concentration found next to the dry cleaner machine at 1,400,000 μ g/Kg which is 28.5 million times the EPA SSL. PCE in shallow groundwater next to the dry cleaner machine was found at 1,500 μ g/L, which is 300 times the EPA MCL and WDNR ES of 5 μ g/L. In addition, groundwater contaminated with PCE was found outside at a downgradient location on-site at 36 times the EPA MCL and WDNR ES. The results of the site assessment show that high levels of PCE (which is a hazardous substance) are migrating off-site through groundwater and soil gas. If no action is taken, the PCE migration is expected to continue, potentially further increasing the risk to the downgradient receptor populations.

Weather conditions that may cause substances or pollutants or contaminants to migrate or be released

Rain water and snow melt, as they percolate through Site soil to the water table, can mobilize contaminants toward the water table. The water table is very shallow at this Site, less than three feet below grade. Elevated concentrations of PCE have been detected in the groundwater, next to the dry cleaner machine and downgradient of the dry cleaner building indicating that precipitation is causing the spilled material to migrate. Additionally, it is probable that snow melt has caused historic surface spills to migrate off the property via runoff onto the adjacent down gradient properties. Dry conditions also pose a risk at this Site.

The availability of other appropriate federal or state response mechanisms to respond to the release

WDNR requested U.S. EPA Region 5 Emergency Response Branch assistance to help evaluate and mitigate a possible threat posed by the Sandies Dry Cleaner site. This request was made to U.S. EPA since WDNR does not have appropriate state response mechanisms or resources to respond.

Other situations or factors that may pose threats to public health or welfare of the United States or the environment

Numerous residences and small businesses are located downgradient of the Site. U.S. EPA's initial Site Assessment demonstrated that the health of the neighbors is at risk from vapors volatilizing from groundwater and permeating the soil beneath the Sandies Dry Cleaner and Laundry Building.

6. SUMMARY

From March 10 to April 20, 2011, U.S. EPA and START conducted Site Assessment activities at the Sandies Dry Cleaner site in Little Chute, Wisconsin. A total of seven subsurface soil samples from locations outside the site building, and six sub-slab soil samples, including one duplicate sub-slab soil sample, from locations inside the site building and two groundwater samples were submitted to the laboratory for VOC analysis. Two soil samples were analyzed for TCLP VOCs.

Six indoor air, 24-hr Summa canister samples were collected from the site and premises located north and south of the site and submitted for TO-15 analysis. Two sub-slab soil-gas samples, one each from the site and Weenies Still property, from the soil-gas ports were also collected and submitted for TO-15 analysis.

Analytical results of all subsurface and sub-slab soil samples collected inside and outside the site building exceeded the EPA Soil Screening Levels (SSLs) for PCE based on protection of groundwater criteria with the highest concentration found next to the dry cleaner machine at 1,400,000 μ g/Kg which is 28.5 million times the SSL. PCE in shallow groundwater collected next to the dry cleaner machine was found at 1,500 μ g/L, which is 300 times the EPA Maximum Contaminant Level (MCL) and WDNR Enforcement Standard (ES) of 5 μ g/L, In addition, groundwater contaminated with PCE was found outside at a downgradient location on-site at 36 times the EPA MCL and WDNR ES.

Vapor Intrusion of PCE contaminated indoor air was detected at the Weenies Still property next door. Specifically, USEPA found an indoor air sample result of 3.9 ppbv at the occupied apartment at Weenies which is 6.5 times the WDNR vapor action level (VAL) for residential indoor air. PCE results for all indoor air samples collected from the site and adjacent Weenies Still property exceeded the WDNR VAL of 3.1 ppbv for commercial indoor air. The soil-gas sample collected from the source area in the site had a PCE concentration of 22,000 ppbv, which is 709 times the WNDR VRSL for commercial properties.

Because the PCE contamination identified at this Site is a direct contact and inhalation risk to the public and the contamination continues to migrate off-site, U.S. EPA seeks to conduct a more extensive investigation, to remove and dispose of the hazardous material in the soil, and to install vapor abatement systems in impacted structures.

APPENDIX A

PHOTOGRAPHIC LOG

(12 Pages)

Photograph No.: 1Photographer: Naren BabuOrientation: WestTDD Number: TO-05-11-03-0007Contract:EP-S5-10-10, OTIEDate:April 7, 2011Site Name & Location:Sandies Dry Cleaning Site, Little Chute, Outagamie County, Wisconsin.Subject:View of the drycleaning machine located inside the wash room of Sandies Dry Cleaner site building

Photograph No.: 2Photographer: Naren BabuOrientation: SouthTDD Number: TO-05-11-03-0007Contract:EP-S5-10-10, OTIEDate:April 7, 2011Site Name & Location:Sandies Dry Cleaning Site, Little Chute, Outagamie County, Wisconsin.Subject: View of the discolored area behind the dry cleaning machineNaren BabuOrientation: South

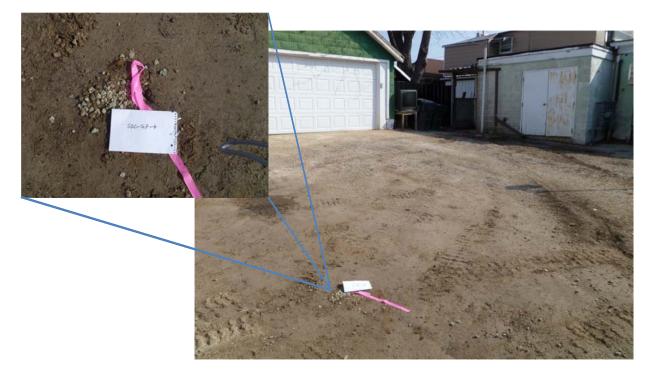
Photograph No.: 3Photographer: Naren BabuOrientation: WestTDD Number: TO-05-11-03-0007Contract:EP-S5-10-10, OTIEDate:April 7, 2011Site Name & Location:Sandies Dry Cleaning Site, Little Chute, Outagamie County, Wisconsin.Subject:View of the pipe in the wash room that extends to the backyard

Photograph No.: 4Photographer: Naren BabuOrientation: SouthwestTDD Number: TO-05-11-03-0007Contract:EP-S5-10-10, OTIEDate:April 7, 2011Site Name & Location:Sandies Dry Cleaning Site, Little Chute, Outagamie County, Wisconsin.Subject:View of the bucket and mop from behind the dry cleaning machine in the wash room

Photograph No.: 5Photographer: Naren BabuOrientation: SouthTDD Number: TO-05-11-03-0007Contract:EP-S5-10-10, OTIEDate:April 7, 2011Site Name & Location:Sandies Dry Cleaning Site, Little Chute, Outagamie County, Wisconsin.Subject:View of the Safety-Kleen container for the purpose of the recycling PCE solvent filters

Photograph No.: 6Photographer: Naren BabuOrientation: Looking DownTDD Number: TO-05-11-03-0007Contract:EP-S5-10-10, OTIEDate: April 7, 2011Site Name & Location:Sandies Dry Cleaning Site, Little Chute, Outagamie County, Wisconsin.Subject: Safety-Kleen container is filled with trash

Photograph No.: 7Photographer: Naren BabuOrientation: Looking DownTDD Number: TO-05-11-03-0007Contract: EP-S5-10-10, OTIEDate: April 7, 2011Site Name & Location: Sandies Dry Cleaning Site, Little Chute, Outagamie County, Wisconsin.Subject: Electrical ballasts found inside Sandies Dry Cleaners which may contain PCBs


Photograph No.: 8Photographer: Naren BabuOrientation: WestTDD Number: TO-05-11-03-0007Contract:EP-S5-10-10, OTIEDate:April 7, 2011Site Name & Location:Sandies Dry Cleaning Site, Little Chute, Outagamie County, Wisconsin.Subject: View of the location of soil boring SDC-GP-1 just north of Weenies Still property

Photograph No.: 9Photographer: Naren BabuOrientation: NorthwestTDD Number: TO-05-11-03-0007Contract:EP-S5-10-10, OTIEDate:April 7, 2011Site Name & Location:Sandies Dry Cleaning Site, Little Chute, Outagamie County, Wisconsin.Subject: View of the location of soil boring SDC-GP-2 in the City alleyView of the location of soil boring SDC-GP-2

Photograph No.: 10Photographer: Naren BabuOrientation: Looking DownTDD Number: TO-05-11-03-0007Contract:EP-S5-10-10, OTIEDate: April 7, 2011Site Name & Location:Sandies Dry Cleaning Site, Little Chute, Outagamie County, Wisconsin.Subject: View of the location of soil boring SDC-GP-3 just north of Sandies Dry Cleaner property

Photograph No.: 11Photographer: Naren BabuOrientation: NorthTDD Number: TO-05-11-03-0007Contract: EP-S5-10-10, OTIEDate: April 7, 2011Site Name & Location: Sandies Dry Cleaning Site, Little Chute, Outagamie County, Wisconsin.Subject: View of the location of soil boring SDC-GP-4 in the City Alley

Photograph No.: 12Photographer: Naren BabuOrientation: EastTDD Number: TO-05-11-03-0007Contract:EP-S5-10-10, OTIEDate: April 7, 2011Site Name & Location:Sandies Dry Cleaning Site, Little Chute, Outagamie County, Wisconsin.Subject: View of the location of soil boring SDC-GP-5 just west of Weenies Still property in the City alley

Photograph No.: 13Photographer: Naren BabuOrientation: SoutheastTDD Number: TO-05-11-03-0007Contract:EP-S5-10-10, OTIEDate:April 7, 2011Site Name & Location:Sandies Dry Cleaning Site, Little Chute, Outagamie County, Wisconsin.Subject:View of the location of soil boring SDC-GP-6 in the southwest side of the site

 Photograph No.: 14
 Photographer: Naren Babu
 Orientation: Looking Down

 TDD Number: TO-05-11-03-0007
 Contract: EP-S5-10-10, OTIE
 Date: April 7, 2011

 Site Name & Location: Sandies Dry Cleaning Site, Little Chute, Outagamie County, Wisconsin.
 Subject: View of the location of soil boring SDC-GP-7 just behind the site building where a metal pipe was sticking out of the ground.

 Photograph No.: 15
 Photographer: Naren Babu
 Orientation: West

 TDD Number: TO-05-11-03-0007
 Contract:
 EP-S5-10-10, OTIE
 Date:
 April 7, 2011

 Site Name & Location:
 Sandies Dry Cleaning Site, Little Chute, Outagamie County, Wisconsin.
 Subject:
 View of the location of sub-slab soil boring SDC-GP-8 just west of the dry cleaning machine inside the site building

 Photograph No.: 16
 Photographer: Naren Babu
 Orientation: North

 TDD Number: TO-05-11-03-0007
 Contract:
 EP-S5-10-10, OTIE
 Date:
 April 7, 2011

 Site Name & Location:
 Sandies Dry Cleaning Site, Little Chute, Outagamie County, Wisconsin.
 Subject:
 View of the location of sub-slab soil boring SDC-GP-9 just west of the dry cleaning machine inside the site building

Photograph No.: 17Photographer: Naren BabuOrientation: SoutheastTDD Number: TO-05-11-03-0007Contract:EP-S5-10-10, OTIEDate:April 7, 2011Site Name & Location:Sandies Dry Cleaning Site, Little Chute, Outagamie County, Wisconsin.Subject:View of the location of sub-slab soil boring SDC-GP-10 beneath the stairs inside the site building

Photograph No.: 18Photographer: Naren BabuOrientation: Looking downTDD Number: TO-05-11-03-0007Contract:EP-S5-10-10, OTIEDate: April 7, 2011Site Name & Location:Sandies Dry Cleaning Site, Little Chute, Outagamie County, Wisconsin.Subject: View of the location of sub-slab soil boring SDC-GP-11 in the boiler room inside the site building

 Photograph No.: 19
 Photographer: Naren Babu
 Orientation: West

 TDD Number: TO-05-11-03-0007
 Contract:
 EP-S5-10-10, OTIE
 Date: April 7, 2011

 Site Name & Location:
 Sandies Dry Cleaning Site, Little Chute, Outagamie County, Wisconsin.
 Subject: View of the location of sub-slab soil boring SDC-GP-12 just north of the dry cleaning machine inside the site building

Photograph No.: 20Photographer: Naren BabuOrientation:TDD Number: TO-05-11-03-0007Contract:EP-S5-10-10, OTIEDate:Site Name & Location:Sandies Dry Cleaning Site, Little Chute, Outagamie County, Wisconsin.Subject:Subject:View of the drums with purged groundwater and soil cuttings stored inside the site building

 Photograph No.: 21
 Photographer: Naren Babu
 Orientation: Southwest

 TDD Number: TO-05-11-03-0007
 Contract:
 EP-S5-10-10, OTIE
 Date:
 April 18, 2011

 Site Name & Location:
 Sandies Dry Cleaning Site, Little Chute, Outagamie County, Wisconsin.
 Subject:
 View of the adjoining wall inside the basement in Weenies Still Bar showing water seeping from the site source area due to cracks in the wall

Photograph No.: 22Photographer: Naren BabuOrientation: NorthTDD Number: TO-05-11-03-0007Contract:EP-S5-10-10, OTIEDate:April 20, 2011Site Name & Location:Sandies Dry Cleaning Site, Little Chute, Outagamie County, Wisconsin.Subject: View of the sub-slab soil-gas, SDC-SG-02, sample collected from SandiesSubject:

 Photograph No.: 23
 Photographer: Naren Babu
 Orientation: South

 TDD Number: TO-05-11-03-0007
 Contract:
 EP-S5-10-10, OTIE
 Date:
 April 20, 2011

 Site Name & Location:
 Sandies Dry Cleaning Site, Little Chute, Outagamie County, Wisconsin.
 Subject:
 View of the sub-slab soil-gas, SDC-SG-01, sample collected from the adjoining wall in Weenies Still basement

APPENDIX B

VALIDATED LABORATORY ANALYTICAL RESULTS

(77 Pages)

DTIE Oneida Total Integrated Enterprises

100 W Monroe Street, Suite 300 • Chicago, IL 60607 • (312) 220-7000 • (312) 220-7004 (Fax)

MEMORANDUM

Date: May 20, 2011

To:Naren Babu, Project Manager, OTIESuperfund Technical Assessment and Response Team (START) for Region 5

Prepared by: Allyson Warrington, START Environmental Scientist

allipor Warrie for

Russell Henderson, START Deputy Program Manager

QA/QC Concurrence by:

Russell Sport

Subject:

Data Validation Sandies Dry Cleaners Little Chute, WI

Laboratory: STAT Analysis Corporation, Chicago, IL. Laboratory ID: 11030307

Lab ID 11030307: Analyses of six (6) air samples for volatile organic compounds (VOCs)

Laboratory: Microbac Laboratories, Inc., Merrillville, IN. Laboratory ID: 11D0820

Lab ID 11D0820: Analyses of two (2) air samples for VOCs.

Laboratory: Microbac Laboratories, Inc., Merrillville, IN. Laboratory ID: 11D0311

Lab ID 11D0311: Analyses of thirteen (13) soil samples for percent solids; Analysis of 13 (soil) samples and two (2) groundwater samples for VOCs.

1.0 INTRODUCTION

START validated 8 air samples for volatile organic compounds (VOCs), 13 soil samples for percent solids, 13 soil samples for VOCs, and 2 groundwater samples for VOCs. Samples were submitted to STAT Analysis Corporation in Chicago, IL and/or Microback Laboratories, Inc. in Merrillville, IN. All samples were collected in March and April 2011.

Laboratory data were validated using guidelines set forth in the U.S. EPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (EPA540/R-99/008, October 1999), U.S. EPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (EPA 540/R-94/013, February, 1994), and applicable methodologies. The purpose of the chemical data quality evaluation process is to assess the usability of data for the project decision-making process.

Organic data validation consisted of a review of the following QC audits:

- Chain of custody and sample receipt forms review
- Sample preservation and holding time
- Blank results
- Surrogate recoveries
- Matrix spike and Matrix Spike Duplicate (MS/MSD) recovery results
- Laboratory Control Sample (LCS) recovery results

Inorganic data validation consisted of a review of the following QC audits:

- Chain of custody and sample receipt forms review
- Sample preservation and holding time
- Blank results
- Duplicate Sample Results

Section 2.0 of this memorandum discusses the results of organic data validation. Section 3.0 of this memorandum discusses the results of inorganic data validation. Section 4.0 presents an overall assessment of the data. The attachment to this memorandum contains the laboratory reporting forms as well as START's handwritten data qualifications where warranted.

2.0 ORGANIC DATA VALIDATION RESULTS

The Results of START's organic data validation are summarized below by QC audit reviewed. After the START project staff received the data packages, they were inventoried for completeness and then reviewed according to matrix-specific protocols and data quality objectives established for the project.

2.1 AIR SAMPLES BY METHOD TO-15 (Lab ID 11030307)

2.1.1 SAMPLE HANDLING

Chain of custody documentation and sample receipt forms were reviewed to ensure requested analyses were performed and that samples arrived at the laboratory intact. Air samples were received with no discrepancies noted by the lab.

2.1.2 SAMPLE PRESERVATION AND HOLDING TIME

Air samples were analyzed within holding time criteria. No discrepancies were noted.

2.1.3 BLANK RESULTS

The purpose of laboratory (or field) blank analysis is to determine the existence and magnitude of contamination resulting from laboratory (or field) activities. A laboratory method blank sample (MB031611-6) was run with this SDG.

No method blank detects were noted.

2.1.4 INTERNAL STANDARD AREAS AND RETENTION TIMES

Internal standard areas and retention times were within QC limits. Internal standards used for this batch are: bromochloromethane, 1,4-difluorobenzene, and chlorobenzene-d5.

No discrepancies were noted.

2.1.5 MS/MSD RECOVERY RESULTS

Data for MS/MSDs are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis.

An MS/MSD was run on this SDG. No deficiencies were noted.

2.1.6 LCS/LCSD RECOVERY RESULTS

Data for the LCS/LCSD is generated to provide information on the accuracy of the analytical method and on the laboratory performance. The LCS is fortified with the full list of VOCs and analyzed with each batch of samples. The LCS accuracy performance is measured by Percent Recovery (%R). An LCS/LCSD (LCS031611-6/LCSD031611-6) was run with this SDG.

No deficiencies were noted.

2.1.7 GENERAL LABORATORY OBSERVATIONS

No additional laboratory observations were noted for VOC analysis of air.

2.2 AIR SAMPLES BY METHOD TO-15 (Lab ID 11D0820)

2.2.1 SAMPLE HANDLING

Chain of custody documentation and sample receipt forms were reviewed to ensure requested analyses were performed and that samples arrived at the laboratory intact. Air samples were received with no discrepancies noted by the lab.

2.2.2 SAMPLE PRESERVATION AND HOLDING TIME

Air samples were analyzed within holding time criteria. No discrepancies were noted.

2.2.3 BLANK RESULTS

The purpose of laboratory (or field) blank analysis is to determine the existence and magnitude of contamination resulting from laboratory (or field) activities. A laboratory method blank sample, B013998-BLK1, was run with Batch B013998; B014064-BLK1 was run with Batch B014064.

No method blank detects were noted.

2.2.4 SURROGATE STANDARD RECOVERY

Laboratory performance on individual samples is established by means of fortifying each sample with surrogate compounds (System Monitoring Compounds). Surrogate spike compounds included 4-bromofluorobenzene.

No discrepancies were noted.

2.2.5 INTERNAL STANDARD AREAS AND RETENTION TIMES

Internal standard areas and retention times were within QC limits. Internal standards used for this batch are: bromochloromethane, 1,4-difluorobenzene, and chlorobenzene-d5.

No discrepancies were noted.

2.2.6 LCS/LCSD RECOVERY RESULTS

Data for the LCS/LCSD is generated to provide information on the accuracy of the analytical method and on the laboratory performance. The LCS is fortified with the full list of VOCs and analyzed with each batch of samples. The LCS accuracy performance is measured by Percent Recovery (%R). An LCS/LCSD (B013998-BS1/B013998-BSD1) was run with for Batch B013998. An LCS/LSCD (B014064-BS1/B014064-BSD1) was run with Batch B014064.

The LCS/LCSD recoveries for hexachlorobutadiene were below QC limits of 70-130% (67.7%/69.5%) in Batch B013998. Since the compound was not detected in the samples associated with the batch, no further action was taken.

No deficiencies were noted for Batch B014064.

2.2.7 GENERAL LABORATORY OBSERVATIONS

Sample SDC-SG-02 was run with a dilution factor of 14.9. Trichloroethene (TCE) was flagged "D" in the initial run, and was reanalyzed with a dilution factor of 3000, yielding a concentration of 22,000 parts per billion by volume (ppbv). While the initial run was included in the data set, only the second run should be used for reporting.

2.3 GROUNDWATER AND SOIL SAMPLES BY METHOD 8260B (Lab ID 11D0311)

2.3.1 SAMPLE HANDLING

Chain of custody documentation and sample receipt forms were reviewed to ensure requested analyses were performed and that samples arrived at the laboratory intact. Groundwater and soil samples were received with no discrepancies noted by the lab.

2.3.2 SAMPLE PRESERVATION AND HOLDING TIME

All samples were analyzed within holding time criteria. No discrepancies were noted.

2.3.3 BLANK RESULTS

The purpose of laboratory (or field) blank analysis is to determine the existence and magnitude of contamination resulting from laboratory (or field) activities. A laboratory method blank sample, B013225-BLK1, was run with Batch B013225; B013333-BLK1 was run with Batch B013333; and B013346-BLK1 was run with Batch B013346.

No method blank detects were noted.

2.3.4 SURROGATE STANDARD RECOVERY

Laboratory performance on individual samples is established by means of fortifying each sample with surrogate compounds (System Monitoring Compounds). Surrogate spike compounds included 4-bromofluorobenzene, 1,2-dichloroethane-d4, dibromofluoromethane, and toluene-d8.

No discrepancies were noted.

2.3.5 MS/MSD RECOVERY RESULTS

Data for MS/MSDs are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. Two MS/MSD were run on this SDG.

The MS/MSD recoveries for acrolein (159%; 154%) were above the QC limit in Batch B013225. The MS recovery for bromomethane (45.4%) was lower than the QC limit in Batch B013225. The MS/MSD recoveries for acetone (-81.2%; -65.3%) was well below the QC limit of 27.9-161% in Batch B013333. The MS/MSD relative percent difference for bromomethane (33.6%) was higher than the QC limit in Batch B013333.

Since the overall data set was acceptable, data was not qualified on MS/MSD deficiencies alone.

2.3.6 LCS/LCSD RECOVERY RESULTS

Data for the LCS/LCSD is generated to provide information on the accuracy of the analytical method and on the laboratory performance. The LCS is fortified with the full list of VOCs and analyzed with each batch of samples. The LCS accuracy performance is measured by Percent Recovery (%R). An LCS (B013225-BS1) was run with for Batch B013225. An LCS (B013333-BS1) was run with Batch B013333. An LCS/LCSD (B013346-BS1/B013346-BSD1) was run with Batch B013346.

The LCS recovery for chloroethane were above QC limits (128%) in Batch B013333. Since the compound was not detected in the samples associated with the batch, no further action was taken.

The LCS recoveries for 2-hexanone (118%) and 4-methyl-2-pentanone (128%) were above QC limits in Batch B013346. The LCSD recovery for 2-methyl-2-pentanone (123%) was also above QC limits in Batch B013346. Since both compounds were not detected in any sample associated with the batch, no further action was taken.

2.3.7 GENERAL LABORATORY OBSERVATIONS

In Batch B013346, tetrachloroethene (PCE) was run with a dilution factor of 50 in sample SDC-GP-2-2'. PCE was flagged "D", yielding a concentration of 570 μ g/Kg. While the initial run was included in Batch B013333, only the dilution run should be used for reporting.

PCE was run with a dilution factor of 500 in sample SDC-GP-6-14' in Batch B013346. PCE was flagged "D" in the run, yielding a concentration of 29,000 μ g/Kg. This run should be used for reporting.

PCE was run with a dilution factor of 10,000 in sample SDC-GP-8-1'-D in Batch B013346. PCE was flagged "D" in the run, yielding a concentration of 1,100,000 μ g/Kg. This run should be used for reporting.

PCE was run with a dilution factor of 10,000 in sample SDC-GP-8-1' in Batch B013346. PCE was flagged "D" in the run, yielding a concentration of 320,000 μ g/Kg. This run should be used for reporting.

PCE was run with a dilution factor of 10,000 in sample SDC-GP-12-0.5' in Batch B013346. PCE was flagged "D" in the run, yielding a concentration of 650,000 μ g/Kg. This run should be used for reporting.

3.0 INORGANIC DATA VALIDATION RESULTS

The Results of START's inorganic data validation are summarized below by QC audit reviewed. After the START project staff received the data packages, they were inventoried for completeness and then reviewed according to matrix-specific protocols and data quality objectives established for the project.

3.1 SOIL SAMPLES BY METHOD SM-2540B

3.1.1 SAMPLE HANDLING

Chain of custody documentation and sample receipt forms were reviewed to ensure requested analyses were performed and that samples arrived at the laboratory intact. Soil samples were received with no discrepancies noted by the lab.

3.1.2 SAMPLE PRESERVATION AND HOLDING TIME

Samples were analyzed within the holding time criteria. No discrepancies were noted.

3.1.3 DULPICATE RESULTS

A duplicate run was performed on sample SDC-GP-5-3.5'. The relative percent difference between the native and duplicate result was 2.58%, which is within the control limit of 20%.

No deficiencies were noted.

4.0 OVERALL ASSESSMENT OF DATA

The analytical results meet the data quality objectives defined by the applicable method and validation guidance documentation. The analytical data is usable and acceptable as reported by the laboratory.

ATTACHMENT A

SUMMARY OF ANALYTICAL RESULTS

AND

CHAIN-OF-CUSTODY

Current Putaty515 COLPOLAUOII 2242 W. Harrison, Suite 200, Chicago, Illinois 60612 Phone: (312) 733-0551 Fax: (312) 733-2386 e-mail address: STATinfo@STATAnalysis.com AIHA, NVLAP and NELAP accredited

TIE (START) CHAIN OF CUSTODY RECORD ことさいらいの P.O. No.:	N ² : 836874 Page: of
Dry Charle rs Chickey was	
Phone: 312-220-7005	Turn Around:
e-mail:	
Date Taken Time Taken Mattrix No. of No. of Taken Mattrix	
Air V 1 V 30 1.8 interests	
	Can H 12.1
Alt	Can # 133
	2 2 4 0 4 0 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1
AIC V V V	
- ,	
Date/Time: 3/14/11 12 pm Comments: Date/Time: S/14/11 1200 COPY results to rnggam @	Laboratory Work Order No.: 11030 00
-	
DaterTime: . With a round time - I week	- 1 Week. Received on Ice: Yes No 🕅
Preservation Code: A = None	$B = IINO_3$ $C = NaOII$
Date/Time: $D = H_2SO_4$ E = HC1 F = 503	F = 5035/EnCare G = Other

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-

					port Date: Print Date:		March 18, 2011 March 18, 2011	
Client:	Onoido Total Interneted Ent							
	Oneida Total Integrated Ente	erprises			ample ID:	A01-513GRNI)-UL	
Lab Order:	11030307			Tag	g Number:			
Project:	2010101, Sandies Dry Cleand	ers, Little Ch	ute, WI	Collec	tion Date:	3/11/2011 10:2	5:00 AM	
Lab ID:	11030307-001A				Matrix:	Air		
Analyses		Result	RL	Qualifier	Units	DF 3	Date Analyzed	
Volatile Organi	c Compounds in Air by GC/MS	TO-15			Prep I	Date: 3/16/2011	Analyst: VP	
1,1,1-Trichloroe	ethane	ND	0.36		ppbv	1	3/16/2011	
1,1,2,2-Tetrach	loroethane	ND	0.36		ppbv	1	3/16/2011	
1,1,2-Trichloroe	ethane	ND	0.36		ppbv	1	3/16/2011	
1,1-Dichloroeth	ane	ND	0.36		ppbv	1	3/16/2011	
1,1-Dichloroeth	ene	ND	0.36		ppbv	1	3/16/2011	
1,2,4-Trichlorot		ND	0.36		ppbv	1	3/16/2011	
1,2,4-Trimethyll	benzene	0.62	0.36		ppbv	1	3/16/2011	
1,2-Dibromoeth	ane	ND	0.36		ppbv	1	3/16/2011	
1,2-Dichlorober	izene	ND	0.36		ppbv	1	3/16/2011	
1,2-Dichloroeth	ane	ND	0.36		ppbv	1	3/16/2011	
1,2-Dichloropro	pane	ND	0.36		ppbv	1	3/16/2011	
1,3,5-Trimethylt	benzene	ND	0.36		ppbv	1	3/16/2011	
1,3-Butadiene		ND	0.36		ppbv	1	3/16/2011	
1,3-Dichloroben	izene	ND	0.36		ppbv	1	3/16/2011	
1,4-Dichloroben	zene	ND	0.36		ppbv	1	3/16/2011	
1,4-Dioxane		ND	0.89		ppbv	1	3/16/2011	
2-Butanone		ND	0.89		ppbv	1	3/16/2011	
2-Hexanone		ND	1.8		ppbv	1	3/16/2011	
4-Ethyltoluene		ND	0.36		ppbv	1	3/16/2011	
4-Methyl-2-pent	anone	ND	1.8		ppbv	1	3/16/2011	
Acetone		7.1	3.6	×	ppbv	1	3/16/2011	
Benzene		ND	0.36		ppbv	1	3/16/2011	
Benzyl chloride		ND	0.89		ppbv	1	3/16/2011	
Bromodichlorom	lethane	ND	0.36		ppbv	1	3/16/2011	
Bromoform		ND	0.89		ppbv	1	3/16/2011	
Bromomethane		ND	0.89		ppbv	1	3/16/2011	
Carbon disulfide	9	ND	0.36		ppbv	1	3/16/2011	
Carbon tetrachic		ND	0.36		ppbv	1	3/16/2011	
Chlorobenzene		ND	0.36		ppbv	1	3/16/2011	
Chloroethane		ND	0.36		ppbv	1	3/16/2011	
Chloroform		ND	0.36		ppbv	1	3/16/2011	
Chloromethane		ND	0.89		ppbv	1	3/16/2011	
cis-1,2-Dichloro	ethene	ND	0.36		ppbv	1	3/16/2011	
cis-1,3-Dichloro		ND	0.36		ppbv	1	3/16/2011	
Cyclohexane	с г - / / Ф	ND	0.36		ppbv	1	3/16/2011	
Dibromochlorom	ethane	ND	0.36		ppbv	1	3/16/2011	
Dichlorodifluoron		0.59	0.36		ppbv	1	3/16/2011	
Ethyl acetate	······································	ND	0.36		ppbv	1	3/16/2011	

Qualifiers:

- ND Not Detected at the Reporting Limit
- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- HT Sample received past holding time
- * Non-accredited parameter

- RL Reporting / Quantitation Limit for the analysis
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- H Holding time exceeded

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-

				-	port Date: Print Date:	March 18, 2011 March 18, 2011	
Client:	Oneida Total Integrated Ente	erprises		Client Sa	ample ID:	A01-513GRND	-UL
Lab Order:	11030307			Tag	Number:		
Project:	2010101, Sandies Dry Cleane	ers Little Chu	te WI	-	, tion Date:	3/11/2011 10:2:	5:00 AM
Lab ID:	11030307-001A	ns, Entite Chu	, 111	Conce	Matrix:		
Analyses		Result	RL	Qualifier	Units		Date Analyzed
Volatile Organi	c Compounds in Air by GC/MS	TO-15			Prep	Date: 3/16/2011	Analyst: VP
Ethylbenzene		ND	0.36		ppbv	1	3/16/2011
Freon-113		ND	0.36		ppbv	1	3/16/2011
Freon-114		ND	1.8		ppbv	1	3/16/2011
Heptane		0.78	0.36		ppbv	1	3/16/2011
Hexachlorobuta	adiene	ND	0.36		ppbv	1	3/16/2011
Hexane		ND	0.89		ppbv	1	3/16/2011
Isopropyl Alcoh	ol	ND	1.8		ppbv	1	3/16/2011
m,p-Xylene		0.91	0.71		ppbv	1	3/16/2011
Methyl tert-buty	/l ether	ND	0.36		ppbv	1	3/16/2011
Methylene chlor	ride	ND	3.6		ppbv	1	3/16/2011
o-Xylene		ND	0.36		ppbv	1	3/16/2011
Propene		ND	3.6		ppbv	1	3/16/2011
Styrene		ND	0.36		ppbv	1	3/16/2011
Tetrachloroethe	ene	31	0.36		ppbv	1	3/16/2011
Tetrahydrofura	n	ND	0.89		ppbv	1	3/16/2011
Toluene		5.9	0.36		ppbv	1	3/16/2011
trans-1,2-Dichlo	proethene	ND	0.36		ppbv	1	3/16/2011
trans-1,3-Dichlo	propropene	ND	0.36		ppbv	1	3/16/2011
Trichloroethene		ND	0.36		ppbv	1	3/16/2011
Trichlorofluorom	nethane	ND	0.36		ppbv	1	3/16/2011
Vinyl acetate		ND	3.6		ppbv	1	3/16/2011
Vinyl chloride		ND	0.36		ppbv	1	3/16/2011
Xylenes, Total		1.2	1.1		ppbv	1	3/16/2011

	ND - Not Detected at the Reporting Limit	RL - Reporting / Quantitation Limit for the analysis
Qualifiers:	J - Analyte detected below quantitation limits	S - Spike Recovery outside accepted recovery limits
	B - Analyte detected in the associated Method Blank	R - RPD outside accepted recovery limits
	HT - Sample received past holding time	E - Value above quantitation range
	* - Non-accredited parameter	H - Holding time exceeded

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-

				Re	March 18, 202			
				F	Print Date:	March 18, 2011		
Client:	Oneida Total Integrated Ente	erprises		Client S	ample ID:	A02-515GRN	D-GL	
Lab Order:	11030307	-P-10-D			g Number:	102 010 GIU		
Project:		re Little Ch	10 XX/I			2/11/2011 10.	24.00 ANA	
•	2010101, Sandies Dry Cleane	ers, Little Chi	ne, wi	Collec	tion Date:	3/11/2011 10::	34:00 AM	
Lab ID:	11030307-002A				Matrix:	Air		
Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed	
Volatile Organic C	ompounds in Air by GC/MS	TO-15			Prep [Date: 3/16/2011	Analyst: VP	
1,1,1-Trichloroetha	ane	ND	0.38		ppbv	1	3/16/2011	
1,1,2,2-Tetrachloro	pethane	ND	0.38		ppbv	1	3/16/2011	
1,1,2-Trichloroetha	ane	ND	0.38		ppbv	1	3/16/2011	
1,1-Dichloroethane	9	ND	0.38		ppbv	1	3/16/2011	
1,1-Dichloroethene	9	ND	0.38		ppbv	1	3/16/2011	
1,2,4-Trichloroben	zene	ND	0.38		ppbv	1	3/16/2011	
1,2,4-Trimethylben	zene	ND	0.38		ppbv	1	3/16/2011	
1,2-Dibromoethane	•	ND	0.38		ppbv	1	3/16/2011	
1,2-Dichlorobenzer	ne	ND	0.38		ppbv	1	3/16/2011	
1,2-Dichloroethane	•	ND	0.38		ppbv	1	3/16/2011	
1,2-Dichloropropar	10	ND	0.38		ppbv	1	3/16/2011	
1,3,5-Trimethylben	zene	ND	0.38		ppbv	1	3/16/2011	
1,3-Butadiene		ND	0.38		ppbv	1	3/16/2011	
1,3-Dichlorobenzer	ne	ND	0.38		ppbv	1	3/16/2011	
1,4-Dichlorobenzer	ne	0.67	0.38		ppbv	1	3/16/2011	
1,4-Dioxane		ND	0.96		ppbv	1	3/16/2011	
2-Butanone		ND	0.96		ppbv	1	3/16/2011	
2-Hexanone		ND	1.9		ppbv	1	3/16/2011	
4-Ethyltoluene		ND	0.38		ppbv	1	3/16/2011	
4-Methyl-2-pentance	one	ND	1.9		ppbv	1	3/16/2011	
Acetone		20	3.8		ppbv	1	3/16/2011	
Benzene		0.48	0.38		ppbv	1	3/16/2011	
Benzyl chloride		ND	0.96		ppbv	1	3/16/2011	
Bromodichlorometh	ane	ND	0.38		ppbv	1	3/16/2011	
Bromoform		ND	0.96		ppbv	1	3/16/2011	
Bromomethane		ND	0.96		ppbv	1	3/16/2011	
Carbon disulfide		ND	0.38		ppbv	1	3/16/2011	
Carbon tetrachlorid	e	ND	0.38		ppbv	1	3/16/2011	
Chlorobenzene		ND	0.38		ppbv	1	3/16/2011	
Chloroethane		ND	0.38		ppbv	1	3/16/2011	
Chloroform		0.6	0.38		ppbv	1	3/16/2011	
Chloromethane		1.1	0.96		ppbv	1	3/16/2011	
cis-1,2-Dichloroeth		ND	0.38		ppbv	1	3/16/2011	
cis-1,3-Dichloropro	pene	ND	0.38		ppbv	1	3/16/2011	
Cyclohexane		ND	0.38		ppbv	1	3/16/2011	
Dibromochlorometh		ND	0.38		ppbv	1	3/16/2011	
Dichlorodifluoromet	hane	0.54	0.38		ppbv	1	3/16/2011	$_{1}\mathcal{Y}$
Ethyl acetate		2.4	0.38		ppbv	1	3/16/2011	
								51

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits

Qualifiers:

- B Analyte detected in the associated Method Blank
- HT Sample received past holding time
- * Non-accredited parameter

- RL Reporting / Quantitation Limit for the analysis
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- H Holding time exceeded

-

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-

				-	port Date: rint Date:	March 18, 2011 March 18, 2011	
Client:	Oneida Total Integrated Ente	erprises			ample ID:	A02-515GRND	-GL
Lab Order:	11030307			Tag	Number:		
Project:	2010101, Sandies Dry Cleane	ers, Little Chu	ite, WI	Collec	tion Date:	3/11/2011 10:34	4:00 AM
Lab ID:	11030307-002A				Matrix:	Air	
Analyses		Result	RL	Qualifier	Units	DF I	Date Analyzed
Volatile Organic	Compounds in Air by GC/MS	TO-15			Prep	Date: 3/16/2011	Analyst: VP
Ethylbenzene		ND	0.38		ppbv	1	3/16/2011
Freon-113		ND	0.38		ppbv	1	3/16/2011
Freon-114		ND	1.9		ppbv	1	3/16/2011
Heptane		0.48	0.38		ppbv	1	3/16/2011
Hexachlorobuta	diene	ND	0.38		ppbv	1	3/16/2011
Hexane		ND	0.96		ppbv	1	3/16/2011
Isopropyl Alcoho	bl	31	1.9		ppbv	1	3/16/2011
m,p-Xylene		ND	0.77		ppbv	1	3/16/2011
Methyl tert-butyl	ether	ND	0.38		ppbv	1	3/16/2011
Methylene chlori	ide	ND	3.8		ppbv	1	3/16/2011
o-Xylene		ND	0.38		ppbv	1	3/16/2011
Propene		ND	3.8		ppbv	1	3/16/2011
Styrene		ND	0.38		ppbv	1	3/16/2011
Tetrachloroethe	ne	3.6	0.38		ppbv	1	3/16/2011
Tetrahydrofurar	1	ND	0.96		ppbv	1	3/16/2011
Toluene		1.5	0.38		ppbv	1	3/16/2011
trans-1,2-Dichlo	roethene	ND	0.38		ppbv	1	3/16/2011
trans-1,3-Dichlo	ropropene	ND	0.38		ppbv	1	3/16/2011
Trichloroethene		ND	0.38		ppbv	1	3/16/2011
Trichlorofluorom	ethane	0.44	0.38		ppbv	1	3/16/2011
Vinyl acetate		ND	3.8		ppbv	1	3/16/2011
Vinyl chloride		ND	0.38		ppbv	1	3/16/2011
Xylenes, Total		ND	1.2		ppbv	1	3/16/2011

N 18/11

	ND - Not Detected at the Reporting Limit	RL - Reporting / Quantitation Limit for the analysis
Qualifiers:	J - Analyte detected below quantitation limits	S - Spike Recovery outside accepted recovery limits
	B - Analyte detected in the associated Method Blank	R - RPD outside accepted recovery limits
	HT - Sample received past holding time	E - Value above quantitation range
	* - Non-accredited parameter	H - Holding time exceeded

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-

				port Date: Print Date:	March 18, 2011 March 18, 2011			
Client:	Oneida Total Integrated Ente	erprises		Client S	ample ID:	A03-515GRNE	ND-UL	
Lab Order:	11030307			Tag	Number:			
Project:	2010101, Sandies Dry Clean	ers Little Chr	ite WI	-	, tion Date:	3/11/2011 10:4	5.00 AM	
Lab ID:	11030307-003A	ens, Entre ent	,	conce	Matrix:		0.007.001	
	11050507-005A							
Analyses		Result	RL	Qualifier	Units	DF 1	Date Analyzed	
Volatile Organic	Compounds in Air by GC/MS	TO-15			Prep [Date: 3/16/2011	Analyst: VP	
1,1,1-Trichloroe	thane	ND	0.35		ppbv	1	3/16/2011	
1,1,2,2-Tetrachl	oroethane	ND	0.35		ppbv	1	3/16/2011	
1,1,2-Trichloroe	thane	ND	0.35		ppbv	1	3/16/2011	
1,1-Dichloroetha	ane	ND	0.35		ppbv	1	3/16/2011	
1,1-Dichloroethe	ene	ND	0.35		ppbv	1	3/16/2011	
1,2,4-Trichlorob	enzene	ND	0.35		ppbv	1	3/16/2011	
1,2,4-Trimethylb	enzene	ND	0.35		ppbv	1	3/16/2011	
1,2-Dibromoetha	ane	ND	0.35		ppbv	1	3/16/2011	
1,2-Dichloroben	zene	ND	0.35		ppbv	1	3/16/2011	
1,2-Dichloroetha	ane	ND	0.35		ppbv	1	3/16/2011	
1,2-Dichloroprop	bane	ND	0.35		ppbv	1	3/16/2011	
1,3,5-Trimethylb	enzene	ND	0.35		ppbv	1	3/16/2011	
1,3-Butadiene		2.2	0.35		ppbv	1	3/16/2011	
1,3-Dichloroben	zene	ND	0.35		ppbv	1	3/16/2011	
1,4-Dichloroben:	zene	0.59	0.35		ppbv	1	3/16/2011	
1,4-Dioxane		ND	0.87		ppbv	1	3/16/2011	
2-Butanone		2	0.87		ppbv	1	3/16/2011	
2-Hexanone		ND	1.7		ppbv	1	3/16/2011	
4-Ethyltoluene		ND	0.35		ppbv	1	3/16/2011	
4-Methyl-2-penta	anone	ND	1.7		ppbv	1	3/16/2011	
Acetone		27	3.5	*	ppbv	1	3/16/2011	
Benzene		1.7	0.35	•	ppbv	1	3/16/2011	
Benzyl chloride		ND	0.87		ppbv	1	3/16/2011	
Bromodichlorom	ethane	ND	0.35		ppbv	1	3/16/2011	
Bromoform		ND	0.87		ppbv	1	3/16/2011	
Bromomethane		ND	0.87		ppbv	1	3/16/2011	
Carbon disulfide		ND	0.35		ppbv	1	3/16/2011	
Carbon tetrachio		ND	0.35		ppbv	1	3/16/2011	
Chlorobenzene		ND	0.35		ppbv	1	3/16/2011	
Chloroethane		ND	0.35		ppbv	1	3/16/2011	
Chloroform		0.73	0.35		ppbv	1	3/16/2011	
Chloromethane		3.6	0.87		ppbv	1	3/16/2011	
cis-1,2-Dichloroe	athene	ND	0.35		ppbv	1	3/16/2011	
cis-1,3-Dichlorop		ND	0.35		ppbv	1	3/16/2011	
Cyclohexane		ND	0.35		ppbv	1	3/16/2011	
Dibromochlorome	ethane	ND	0.35		ppbv	1	3/16/2011	
Dichlorodifluoron		0.52	0.35		ppbv	1	3/16/2011	
Ethyl acetate		2.8	0.35		ppbv	1	3/16/2011	

Qualifiers:

- ND Not Detected at the Reporting Limit
- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- HT Sample received past holding time
- * Non-accredited parameter

- RL Reporting / Quantitation Limit for the analysis
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- H Holding time exceeded

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-

				Report I	Date:	March 18, 201	1		
				Print 1	Date:	March 18, 201	1		
Client:	Oneida Total Integrated Ente	erprises		Client Sample	e ID:	A03-515GRND-UL			
Lab Order:	11030307			Tag Nun	nber:				
Project:	2010101, Sandies Dry Cleane	ers Little Chu	te WI	Collection 1		3/11/2011 10:45:00 AM			
Lab ID:	11030307-003A	no, mae cha	, ,, ,, ,				5.007.001		
	11050507-005A			1913	atrix:	Air			
Analyses		Result	RL	Qualifier Uni	ts I	DF I	Date Analyzed		
Volatile Organic	Compounds in Air by GC/MS	TO-15		F	⁻ rep Da	ate: 3/16/2011	Analyst: VP		
Ethylbenzene		0.4	0.35	ppb	•	1	3/16/2011		
Freon-113		ND	0.35	ppb	v	1	3/16/2011		
Freon-114		ND	1.7	ppb	v	1	3/16/2011		
Heptane		0.82	0.35	ppb	v	1	3/16/2011		
Hexachlorobutad	diene	ND	0.35	ppb	v	1	3/16/2011		
Hexane		ND	0.87	ppb	v	1	3/16/2011		
Isopropyl Alcoho	bl	29	1.7	ppb	v	1	3/16/2011		
m,p-Xylene		1.2	0.69	ppb	v	1	3/16/2011		
Methyl tert-butyl	ether	ND	0.35	ppb	v	1	3/16/2011		
Methylene chlori	de	ND	3.5	ppb	v	1	3/16/2011		
o-Xylene		ND	0.35	ppb	v ·	1	3/16/2011		
Propene		10	3.5	ppby	v .	1	3/16/2011		
Styrene		0.49	0.35	ppby	v ·	1	3/16/2011		
Tetrachloroether	ne	3.9	0.35	ppby	v ·	1	3/16/2011		
Tetrahydrofuran		ND	0.87	ppby	v .	1	3/16/2011		
Toluene		3.7	0.35	ppby	v .	1	3/16/2011		
trans-1,2-Dichlor	oethene	ND	0.35	ppby	v .	1	3/16/2011		
trans-1,3-Dichlor	opropene	ND	0.35	ppby	v ,	1	3/16/2011		
Trichloroethene		ND	0.35	ppby	v .	1	3/16/2011		
Trichlorofluorom	ethane	0.5	0.35	ppby	, ·	1	3/16/2011		
Vinyl acetate		ND	3.5	ppby	, ·	1	3/16/2011		
Minud ablasida		ND	0.35	ppby	, ·	1	3/16/2011		
Vinyl chloride		1.5	1	ppby	, ,	1	3/16/2011		

 Qualifiers:
 ND - Not Detected at the Reporting Limit
 RL - Reporting / Quantitation Limit for the analysis

 Qualifiers:
 J - Analyte detected below quantitation limits
 S - Spike Recovery outside accepted recovery limits

 B - Analyte detected in the associated Method Blank
 R - RPD outside accepted recovery limits

 HT - Sample received past holding time
 E - Value above quantitation range

 * - Non-accredited parameter
 H - Holding time exceeded

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-

				-	port Date: 'rint Date:	March 18, 2011 March 18, 2011		
Client:	Oneida Total Integrated Ente	erprises			ample ID:		A04-515GRND-BL	
Lab Order:	11030307	orprises			-	104 5150100		
				-	Number:			
Project:	2010101, Sandies Dry Cleand	ers, Little Ch	ute, WI	Collec	tion Date:	3/11/2011 10:5	3:00 AM	
Lab ID:	11030307-004A			Matrix:		Air		
Analyses		Result	RL	Qualifier	Units	DF 3	Date Analyzed	
Volatile Organic Compounds in Air by GC/MS		TO-15			Prep [Date: 3/16/2011	Analyst: VP	
1,1,1-Trichloroe	thane	ND	0.35		ppbv	1	3/16/2011	
1,1,2,2-Tetrachi	oroethane	ND	0.35		ppbv	1	3/16/2011	
1,1,2-Trichloroe	thane	ND	0.35		ppbv	1	3/16/2011	
1,1-Dichloroetha	ane	ND	0.35		ppbv	1	3/16/2011	
1,1-Dichloroethe	ene	ND	0.35		ppbv	1	3/16/2011	
1,2,4-Trichlorob	enzene	ND	0.35		ppbv	1	3/16/2011	
1,2,4-Trimethylb	enzene	ND	0.35		ppbv	1	3/16/2011	
1,2-Dibromoetha	ane	ND	0.35		ppbv	1	3/16/2011	
1,2-Dichloroben	zene	ND	0.35		ppbv	1	3/16/2011	
1,2-Dichloroetha	ane	ND	0.35		ppbv	1	3/16/2011	
1,2-Dichloroprop	bane	ND	0.35		ppbv	1	3/16/2011	
1,3,5-Trimethylb	enzene	ND	0.35		ppbv	1	3/16/2011	
1,3-Butadiene		ND	0.35		ppbv	1	3/16/2011	
1,3-Dichloroben	zene	ND	0.35		ppbv	1	3/16/2011	
1,4-Dichloroben	zene	ND	0.35		ppbv	1	3/16/2011	
1,4-Dioxane		ND	0.88		ppbv	1	3/16/2011	
2-Butanone		ND	0.88		ppbv	1	3/16/2011	
2-Hexanone		ND	1.8		ppbv	1	3/16/2011	
4-Ethyltoluene		ND	0.35		ppbv	1	3/16/2011	
4-Methyl-2-penta	anone	ND	1.8		ppbv	1	3/16/2011	
Acetone		4.3	3.5		ppbv	1	3/16/2011	
Benzene		ND	0.35		ppbv	1	3/16/2011	
Benzyl chloride		ND	0.88		ppbv	1	3/16/2011	
Bromodichlorom	ethane	ND	0.35		ppbv	1	3/16/2011	
Bromoform		ND	0.88		ppbv	1	3/16/2011	
Bromomethane		ND	0.88		ppbv	1	3/16/2011	
Carbon disulfide		ND	0.35		ppbv	1	3/16/2011	
Carbon tetrachlo		ND	0.35		ppbv	1	3/16/2011	
Chlorobenzene		ND	0.35		ppbv	1	3/16/2011	
Chloroethane		ND	0.35		ppbv	1	3/16/2011	
Chloroform		ND	0.35		ppbv	1	3/16/2011	
Chloromethane		ND	0.88				3/16/2011	
cis-1,2-Dichloroe	athene	ND	0.88		ppbv ppbv	1	3/16/2011	
cis-1,3-Dichlorop		ND	0.35		ppbv ppbv	1		
Cyclohexane	Nopelle	ND	0.35		ppbv	1	3/16/2011	
Dibromochlorom	ethane	ND	0.35		ppbv ppbv	1	3/16/2011	
Dichlorodifluoron		0.54	0.35		ppbv ppbv	1	3/16/2011	
Signoroundoron		0.54 0.56	0.35		ppbv	1	3/16/2011	

~

ND - Not Detected at the Reporting Limit

Qualifiers:

- J Analyte detected below quantitation limits B - Analyte detected in the associated Method Blank
- HT Sample received past holding time
- * Non-accredited parameter

- RL Reporting / Quantitation Limit for the analysis
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- H Holding time exceeded

of a

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-

				-	port Date: Print Date:	March 18, 201 March 18, 201	
Client: Lab Order:	Oneida Total Integrated Ente 11030307	erprises		Client Sample ID: Tag Number:		A04-515GRND	-BL
Project:	2010101, Sandies Dry Cleane	ers, Little Chu	te, WI	Collec	tion Date:	3/11/2011 10:53	3:00 AM
Lab ID:	11030307-004A				Matrix:	Air	
Analyses		Result	RL	Qualifier	Units	DF I	Date Analyzed
Volatile Organic	Compounds in Air by GC/MS	TO-15			Prep I	Date: 3/16/2011	Analyst: VP
Ethylbenzene		ND	0.35		ppbv	1	3/16/2011
Freon-113		ND	0.35		ppbv	1	3/16/2011
Freon-114		ND	1.8		ppbv	1	3/16/2011
Heptane		ND	0.35		ppbv	1	3/16/2011
Hexachlorobuta	diene	ND	0.35		ppbv	1	3/16/2011
Hexane		ND	0.88		ppbv	1	3/16/2011
Isopropyl Alcoho	bl	ND	1.8		ppbv	1	3/16/2011
m,p-Xylene		ND	0.7		ppbv	1	3/16/2011
Methyl tert-butyl	ether	ND	0.35		ppbv	1	3/16/2011
Methylene chlori	de	ND	3.5		ppbv	1	3/16/2011
o-Xylene		ND	0.35		ppbv	1	3/16/2011
Propene		ND	3.5		ppbv	1	3/16/2011
Styrene		ND	0.35		ppbv	1	3/16/2011
Tetrachloroether	ne	5	0.35		ppbv	1	3/16/2011
Tetrahydrofuran	1	ND	0.88		ppbv	1	3/16/2011
Toluene		1.2	0.35		ppbv	1	3/16/2011
trans-1,2-Dichlor	roethene	ND	0.35		ppbv	1	3/16/2011
trans-1,3-Dichlor	ropropene	ND	0.35		ppbv	1	3/16/2011
Trichloroethene		ND	0.35		ppbv	1	3/16/2011
Trichlorofluorom	ethane	ND	0.35		ppbv	1	3/16/2011
Vinyl acetate		ND	3.5		ppbv	1	3/16/2011
Vinyl chloride		ND	0.35		ppbv	1	3/16/2011
Xylenes, Total		ND	1.1		ppbv	1	3/16/2011 QY 81

 Qualifiers:
 ND - Not Detected at the Reporting Limit
 RL - Reporting / Quantitation Limit for the analysis

 Qualifiers:
 J - Analyte detected below quantitation limits
 S - Spike Recovery outside accepted recovery limits

 B - Analyte detected in the associated Method Blank
 R - RPD outside accepted recovery limits

 HT - Sample received past holding time
 E - Value above quantitation range

 * - Non-accredited parameter
 H - Holding time exceeded

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-

		Report Date:				March 18, 2011		
				P	rint Date:	March 18, 201	1	
Client:	Oneida Total Integrated Ente	erprises		Client S	ample ID:	A05-505GRNE	D-BL	
Lab Order:	11030307	•			y Number:			
Project:	2010101, Sandies Dry Clean	ara Little Ch	to W/I	Collection Date:		3/11/2011 11:06:00 AM		
-	•	ers, Little Cht	ne, wi	Conec			0:00 AM	
Lab ID:	11030307-005A				Matrix:	Air		
Analyses		Result	RL	Qualifier	Units	DF I	Date Analyzed	
Volatile Organi	Volatile Organic Compounds in Air by GC/MS				Prep I	Date: 3/16/2011	Analyst: VP	
1,1,1-Trichloro	ethane	ND	0.38		ppbv	1	3/16/2011	
1,1,2,2-Tetrach	nloroethane	ND	0.38		ppbv	1	3/16/2011	
1,1,2-Trichloro	ethane	ND	0.38		ppbv	1	3/16/2011	
1,1-Dichloroeth	ane	ND	0.38		ppbv	1	3/16/2011	
1,1-Dichloroeth	nene	ND	0.38		ppbv	1	3/16/2011	
1,2,4-Trichlorol	benzene	ND	0.38		ppbv	1	3/16/2011	
1,2,4-Trimethyl	benzene	ND	0.38		ppbv	1	3/16/2011	
1,2-Dibromoeth	ane	ND	0.38		ppbv	1	3/16/2011	
1,2-Dichlorober	nzene	ND	0.38		ppbv	1	3/16/2011	
1,2-Dichloroeth	lane	ND	0.38		ppbv	1	3/16/2011	
1,2-Dichloropro	pane	ND	0.38		ppbv	1	3/16/2011	
1,3,5-Trimethyll	benzene	ND	0.38		ppbv	1	3/16/2011	
1,3-Butadiene		ND	0.38		ppbv	1	3/16/2011	
1,3-Dichlorober	nzene	ND	0.38		ppbv	1	3/16/2011	
1,4-Dichlorober		ND	0.38		ppbv	1	3/16/2011	
1,4-Dioxane		ND	0.95		ppbv	1	3/16/2011	
2-Butanone		ND	0.95		ppbv	1	3/16/2011	
2-Hexanone		ND	1.9		ppbv	1	3/16/2011	
4-Ethyltoluene		ND	0.38		ppbv	1	3/16/2011	
4-Methyl-2-pen	tanone	ND	1.9		ppbv	1	3/16/2011	
Acetone		ND	3.8	1	ppbv	1	3/16/2011	
Benzene		0.44	0.38	1	ppbv	1	3/16/2011	
Benzyl chloride		ND	0.95		ppbv	1	3/16/2011	
Bromodichlorom		ND	0.38		ppbv ppbv	1	3/16/2011	
Bromoform		ND	0.95		ppbv	1	3/16/2011	
Bromomethane		ND	0.95		ppbv ppbv	1		
Carbon disulfide	e	ND	0.95			1	3/16/2011 3/16/2011	
Carbon tetrachl		ND	0.38		ppbv			
Chlorobenzene					ppbv	1	3/16/2011	
Chloroethane		ND	0.38		ppbv	1	3/16/2011	
Chloroform		ND	0.38		ppbv	1	3/16/2011	
Chloromethane		ND	0.38		ppbv	1	3/16/2011	
	othono	ND	0.95		ppbv	1	3/16/2011	
cis-1,2-Dichloro		ND	0.38		ppbv	1	3/16/2011	
cis-1,3-Dichloro	propene	ND	0.38		ppbv	1	3/16/2011	
Cyclohexane	othene	ND	0.38		ppbv	1	3/16/2011	
Dibromochlorom		ND	0.38		ppbv	1	3/16/2011	
Dichlorodifluoror	memane	0.89	0.38		ppbv	1	3/16/2011	
Ethyl acetate		ND	0.38		ppbv	1	3/16/2011	

Qualifiers:

- ND Not Detected at the Reporting Limit
- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- HT Sample received past holding time
- * Non-accredited parameter

- RL Reporting / Quantitation Limit for the analysis
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- H Holding time exceeded

05/181

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-

				-	port Date: Print Date:	March 18, 2011 March 18, 2011				
Client:	Oneida Total Integrated Ente	rprises		Client Sa	ample ID:	A05-505GRND	-BL			
Lab Order:	11030307	-		Tag	Number:					
Project:	2010101, Sandies Dry Cleane	ers Little Chu	te WI	~	tion Date:	3/11/2011 11:06	500 AM			
Lab ID:	11030307-005A	ns, Entre Chu	,	Conce	Matrix:	Air				
Analyses		Result	RL	Qualifier	Units	DF I	ate Analyzed			
Volatile Organi	c Compounds in Air by GC/MS	TO-15			Prep I	Date: 3/16/2011	Analyst: VP			
Ethylbenzene		ND	0.38		ppbv .	1	3/16/2011			
Freon-113		ND	0.38		ppbv	1	3/16/2011			
Freon-114		ND	1.9		ppbv	1	3/16/2011			
Heptane		ND	0.38		ppbv	1	3/16/2011			
Hexachlorobuta	diene	ND	0.38		ppbv	1	3/16/2011			
Hexane		ND	0.95		ppbv	1	3/16/2011			
Isopropyl Alcoh	ol	ND	1.9		ppbv	1	3/16/2011			
m,p-Xylene		ND	0.76		ppbv	1	3/16/2011			
Methyl tert-buty	lether	ND	0.38		ppbv	1	3/16/2011			
Methylene chlor	ide	ND	3.8		ppbv	1	3/16/2011			
o-Xylene		ND	0.38		ppbv	1	3/16/2011			
Propene		ND	3.8		ppbv	1	3/16/2011			
Styrene		ND	0.38		ppbv	1	3/16/2011			
Tetrachloroethe	ne	0.78	0.38		ppbv	1	3/16/2011			
Tetrahydrofura	n	ND	0.95		ppbv	1	3/16/2011			
Toluene		0.66	0.38		ppbv	1	3/16/2011			
trans-1,2-Dichlo	roethene	ND	0.38		ppbv	1	3/16/2011			
trans-1,3-Dichlo	propropene	ND	0.38		ppbv	1	3/16/2011			
Trichloroethene		ND	0.38		ppbv	1	3/16/2011			
Trichlorofluorom	nethane	1.3	0.38		ppbv	1	3/16/2011			
Vinyl acetate		ND	3.8		ppbv	1	3/16/2011			
Vinyl chloride		ND	0.38		ppbv	1	3/16/2011			
Xylenes, Total		ND	1.1		ppbv	1	3/16/2011			

92/18/11

 Qualifiers:
 Not Detected at the Reporting Limit

 J - Analyte detected below quantitation limits

- B Analyte detected in the associated Method Blank
- HT Sample received past holding time

* - Non-accredited parameter

- RL Reporting / Quantitation Limit for the analysis
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- H Holding time exceeded

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-

			-	•	March 18, 2011				
				rint Date:	March 18, 201	1			
Oneida Total Integrated Ente	erprises		Client Sa	ample ID:	A06-505GRNI	D-UL			
11030307			Tag	Number:					
2010101 Sandies Dry Cleane	ers Little Ch	ute WI		, ,	3/11/2011 11.1	3.00 AM			
•	as, thuc ch	uic, 111	Conce			5.00 / 101			
11030307-006A				Matrix:	Air				
	Result	RL	Qualifier	Units	DF 1	Date Analyzed			
Compounds in Air by GC/MS	TO-15			Prep l	Date: 3/16/2011	Analyst: VP			
thane	ND	0.37		ppbv	1	3/16/2011			
oroethane	ND	0.37		ppbv	1	3/16/2011			
thane	ND	0.37		ppbv	1	3/16/2011			
ine	ND	0.37		ppbv	1	3/16/2011			
ene	ND	0.37		ppbv	1	3/16/2011			
enzene	ND	0.37		ppbv	1	3/16/2011			
enzene	ND	0.37		ppbv	1	3/16/2011			
ine	ND	0.37		ppbv	1	3/16/2011			
zene	ND	0.37			1	3/16/2011			
ine	ND	0.37			1	3/16/2011			
bane	ND	0.37			1	3/16/2011			
enzene	ND	0.37			1	3/16/2011			
	ND	0.37			1	3/16/2011			
zene		0.37			1	3/16/2011			
zene					1	3/16/2011			
				••		3/16/2011			
				••	1	3/16/2011			
					1	3/16/2011			
				• •		3/16/2011			
anone				••	•	3/16/2011			
			y			3/16/2011			
			<i></i>			3/16/2011			
						3/16/2011			
ethane						3/16/2011			
					•	3/16/2011			
					1	3/16/2011			
					1	3/16/2011			
						3/16/2011			
ndo						3/16/2011			
						3/16/2011			
						3/16/2011			
those						3/16/2011			
						3/16/2011			
ropene						3/16/2011			
athane						3/16/2011			
ethane	ND 0.7	0.37 0.37		ppbv ppbv		3/16/2011 3/16/2011			
		11 57		nnnv	1				
	11030307 2010101, Sandies Dry Cleand 11030307-006A Compounds in Air by GC/MS thane oroethane thane enzene enzene enzene enzene enzene zene zene zene zene zene zene zene zene zene zene zene zene	2010101, Sandies Dry Cleaners, Little Ch Result compounds in Air by GC/MS TO-15 thane ND brocethane ND thane ND oroethane ND thane ND oroethane ND thane ND oroethane ND thane ND enzene ND enzene ND ine ND ane ND enzene ND ine ND enzene ND enzene ND cene ND zene ND zene ND zene ND zene ND anone ND	11030307 2010101, Sandies Dry Cleaners, Little Chute, WI 2010101, Sandies Dry Cleaners, Little Chute, WI RL Result RL Compounds in Air by GC/MS TO-15 thane ND 0.37 oroethane ND 0.37 thane ND 0.37 oroethane ND 0.37 thane ND 0.37 enzene ND 0.37 zene ND 0.37 anone ND 0.37 AnD 0.37	Oneida Total Integrated Enterprises Client Science 11030307 Tag 2010101, Sandies Dry Cleaners, Little Chute, WI 1030307-006A Result RL Qualifier Compounds in Air by GC/MS TO-15 thane ND 0.37 oroethane ND 0.37 enzene ND	Oneida Total Integrated Enterprises Client Sample ID: Tag Number: 11030307 Tag Number: 2010101, Sandies Dry Cleaners, Little Chute, WI Toelle Units In30307-006A TO-15 Varian Compounds in Air by GC/MS TO-15 Prep I thane ND 0.37 ppbv oroethane ND 0.37 ppbv ine ND 0.37 ppbv ine ND 0.37 ppbv enzene ND 0.37 ppbv ine ND 0.37 ppbv enzene ND 0.37 ppbv ine ND 0.37 ppbv enzene ND 0.37 ppbv ine ND 0.37 ppbv enzene N	Print Date: March 18, 201 Oneida Total Integrated Enterprises 11030307 Client Sample ID: A06-505GRNT 2010101, Sandies Dry Cleaners, Little Chute, WI Collection Date: 3/11/2011 11:1 11030307-006A Matrix: Air Compounds in Air by GC/MS TO-15 Prep Date: 3/16/2011 thane ND 0.37 ppbv 1 compounds in Air by GC/MS TO-15 Prep Date: 3/16/2011 thane ND 0.37 ppbv 1 oroethane ND 0.37 ppbv 1 enzene ND 0.37 ppbv 1 enzene			

~

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits

Qualifiers:

- B Analyte detected in the associated Method Blank
- HT Sample received past holding time
- * Non-accredited parameter

- RL Reporting / Quantitation Limit for the analysis
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- H Holding time exceeded

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-

				-	port Date: Print Date:	-	March 18, 2011 March 18, 2011				
Client:	Oneida Total Integrated Ente	erprises		Client Sa	ample ID:	A06-505GRNI	D-UL				
Lab Order:	11030307				Number:						
Project:	2010101, Sandies Dry Cleane	ers Little Chu	te WI		tion Date:	3/11/2011 11:1	3.00 AM				
Lab ID:	11030307-006A	ns, Entre Chu	, 111	Conce	Matrix:		5.00 AIVI				
Analyses	11050507-0007	Result	RL	Qualifier	Units	*****	Date Analyzed				
Volatile Organic C	ompounds in Air by GC/MS	TO-15			Prep I	Date: 3/16/2011	Analyst: VP				
Ethylbenzene		ND	0.37		ppbv	1	3/16/2011				
Freon-113		ND	0.37		ppbv	1	3/16/2011				
Freon-114		ND	1.8		ppbv	1	3/16/2011				
Heptane		ND	0.37		ppbv	1	3/16/2011				
Hexachlorobutadie	ne	ND	0.37		ppbv	1	3/16/2011				
Hexane		ND	0.92		ppbv	1	3/16/2011				
Isopropyl Alcohol		ND	1.8		ppbv	1	3/16/2011				
m,p-Xylene		ND	0.73		ppbv	1	3/16/2011				
Methyl tert-butyl etl	her	ND	0.37		ppbv	1	3/16/2011				
Methylene chloride		ND	3.7		ppbv	1	3/16/2011				
o-Xylene		ND	0.37		ppbv	1	3/16/2011				
Propene		ND	3.7		ppbv	1	3/16/2011				
Styrene		ND	0.37		ppbv	1	3/16/2011				
Tetrachloroethene		ND	0.37		ppbv	1	3/16/2011				
Tetrahydrofuran		ND	0.92		ppbv	1	3/16/2011				
Toluene		0.71	0.37		ppbv	1	3/16/2011				
trans-1,2-Dichloroe		ND	0.37		ppbv	1	3/16/2011				
trans-1,3-Dichlorop	ropene	ND	0.37		ppbv	1	3/16/2011				
Trichloroethene		ND	0.37		ppbv	1	3/16/2011				
Trichlorofluorometh	ane	0.81	0.37		ppbv	1	3/16/2011				
Vinyl acetate		ND	3.7		ppbv	1	3/16/2011				
Vinyl chloride		ND	0.37		ppbv	1	3/16/2011				
Xylenes, Total		ND	1.1		ppbv	1	3/16/2011				

EW18/11

Qualifiers: J - A

- ND Not Detected at the Reporting Limit J - Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- HT Sample received past holding time
- * Non-accredited parameter

- RL Reporting / Quantitation Limit for the analysis
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- H Holding time exceeded

	Samples Submitted to:	[] 250 Mei	[] 250 West 84th Drive Merriliville, IN 46410	rive 6410	[] 5713 W Indiana	[] 5713 West 85th Street Indianapolis, IN 46278		Cha	Chain of Custody Record Use this COC for Air Analysis only	tody F	Record
		Tel Ta	Tel: 219-769-8378 Fax: 219-769-1664	80 X	Tel: 31 Fax: 31	Tei: 317-872-1375 Fax: 317-872-1379		NUN	Number A	0773	
		┟						Instr	Instructions on back	ack	
<mark>Silent Name 이가, E</mark>		Pr Dr	Project Send	endies Dry	Cleane	1	Turnaround Time	me		Repo	Report Type
Address 1033 N. MayFur Rd	S. 4200		Location L, ++ 2	He Chul	 	[] Routine ([] Routine (7 working days)	(sk	[] Results Only	, Auc	I I evel II
Stry, State, ZIP A JURN KLEWIN 532	26	PO #	· ·			[}AUSH* (notify lab)	notify lab)	· •	K Level III	•	[]] evel III CI P-like
Dimmet Andrew Plier		<u></u>	Compliance Moni	Monitoring? [] Yes(1) [] No	s(1) [] No	ີ ເກ : 	Ne Ok	the second			
Between 414-303-6825		Ê	(1)Agency/Program	ogram EPA	х 4	×	(vq pepeeu)	ł			
ampled by (PRINT)	1		Sampler Signature	nature A	. (Samp	Sampler Phone #	-		2 C Z Z
iend Report via [] Maii [] Telephone	[] Fax (fax #)			$\left \right\rangle$	×	Ne-mail (ac	We-mail (address) 0 0 1 c r	olier @	0410	3	
* Matrix Types: (A) - Air ** Preservative Types: NA											
			pə								For Lab Use Only
Client Sample ID Client Sample ID	latrix*	omposite	ate Collect	əmiT hst	əmiT bri	Summa ID	Vacuum (initial)	Vacuum (final)	21-01 21-01		i C
SDC- SC-01	4	+	1	1130	1010	Can # 40 Served 2002	-30	-5,9	· >		0/00/11
500 . 50 . 02	¥	$\boldsymbol{\times}$) T	1155 4119			-30	0'5-	>		02
		_									
Possible Hazard Identification [] Hazardous	M Non-Hazardous	azardo		adioactive			I I I I I I I I I I I I I I I I I I I	ppropriate	[] Return	[] Archive	6
Comments			dish (ed By (signature)	Date/Time		Received E	Received By (signature)	(a	Ď	Date/Time
copy rewits to maganeoterion	the co		A /		412e	1345					
Turn around time - 5 Working days	ing dar		Relinquíshed By (signature)	r (signature)	Date/T	æ	Received E	Received By (signature)	(a	ŏ	Date/Time
	7	_	Relinquished By (signature)	(signature)	Date/Time	Ше	Received 1	Received for Laby By (signature)	(gnature)	ă ,	evTime
Sample temperature upon receipt in degrees C =		_					1921	Lunx	Ľ,	1/2	1/11 0725
rev. 11/04/04				i nati				,	Page	-	of

Little Chute WI

SDC-SG-01

Laboratory:	Microbac Laboratories, Inc Chicagoland	SDG:	<u>11D0820</u>	
Client:	Oneida Total Integrated Enterprises	Project:	Little Chute WI	
Matrix:	Air Laboratory ID: 111	<u>D0820-01</u>	File ID: J042609.D	
Sampled:		26/11 16:41	Analyzed: 04/26/11 21:4	19
Solids:		15 PR	Initial/Final: 501 ml / 501 ::	
Batch:		Calibration:		
	<u>B013998</u> Sequence: <u>S005062</u>		<u>0000042</u> Instrument:	<u>TO15-2</u>
CAS NO.	COMPOUND	DILUTION	CONC. (ppbv)	Q
71-55-6	1,1,1-Trichloroethane	1	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	1	0.50	U
76-13-1	1,1,2-Trichloro-1,2,2-Trifluoroethane	1	0.50	U
79-00-5	1,1,2-Trichloroethane	1	0.50	U
75-34-3	1,1-Dichloroethane	1	0.50	U
75-35-4	1,1-Dichloroethene	1	0.50	U
120-82-1	1,2,4-Trichlorobenzene	1	2.0	U
95-63-6	1,2,4-Trimethylbenzene	1	0.50	U
106-93-4	1,2-Dibromoethane	1	0.50	U
95-50-1	1,2-Dichlorobenzene	1	0.50	U
107-06-2	1,2-Dichloroethane	1	0.50	U
78-87-5	1,2-Dichloropropane	1	0.50	U
76-14-1	1,2-Dichlorotetrafluoroethane	1	0.50	U
108-67-8	1,3,5-Trimethylbenzene	1	0.50	U
106-99-0	1,3-Butadiene	1	0.50	U
541-73-1	1,3-Dichlorobenzene	1	0.50	U
106-46-7	1,4-Dichlorobenzene	1	0.50	U
123-91-1	1,4-Dioxane	· 1	2.0	U
78-93-3	2-Butanone	1	2.0	U
591-78-6	2-Hexanone	1	2.0	U
67-63-0	2-Propanol	1	2.0	U
622-98-8	4-Ethyltoluene	1	0.50	U
108-10-1	4-Methyl-2-Pentanone	1	0.50	U
67-64-1	Acetone	1	4.3	
107-02-8	Acrolein	1	0.78	
71-43-2	Benzene	1	0.50	U
100-44-7	Benzyl chloride	1	0.50	U
75-27-4	Bromodichloromethane	1	0.50	U
75-25-2	Bromoform	1	0.50	U
74-83-9	Bromomethane	1	0.50	U
75-15-0	Carbon disulfide	1	1.0	U
56-23-5	Carbon tetrachloride	1	0.50	U
108-90-7	Chlorobenzene	1	0.50	U
75-00-3	Chloroethane	1	0.50	U
67-66-3	Chloroform	1	0.50	U
74-87-3	Chloromethane	1	2.0	U
156-59-2	cis-1,2-Dichloroethene	1	0.50	U
10061-01-5	cis-1,3-Dichloropropene	1	0.50	U
110-82-7	Cyclohexane	1	0.50	U
124-48-1	Dibromochloromethane	1	0.50	U

l II

SDC-SG-01

Laboratory:	Microbac Laboratories,	Inc Chicagoland		SDG:	<u>11D0820</u>	<u>11D0820</u>					
Client:	Oneida Total Integrated	Enterprises		Project:	Little Chute WI						
Matrix:	Air	Laboratory ID:	11D08	20-01	File ID:	J042609.D					
Sampled:	04/20/11 10:10	Prepared:		1 16:41	Analyzed:	04/26/11 21:49)				
-	01/20/11 10:10	-			•		-				
Solids:		Preparation:	<u>TO15</u>	<u>PR</u>	Initial/Final:	<u>501 ml / 501 m</u>	<u>1</u>				
Batch:	B013998 Sequer	nce: <u>S005062</u>		Calibration:	0000042	Instrument:	<u>TO15-2</u>				
CAS NO.	COMPOUND	X		DILUTION	CONC	C. (ppbv)	Q				
75-71-8	Dichlorodifluoromethan	e		1	0	.50	U				
141-78-6	Ethyl acetate			1	-	1.9					
100-41-4	Ethylbenzene			1	0	.50	U				
142-82-5	Heptane			1	0	.50	U				
87-68-3	Hexachlorobutadiene			1		2.0	U				
110-54-3	Hexane			1		1.6					
179601-23-1	m,p-Xylene			1	1	1.0	U				
80-62-6	Methyl Methacrylate			1	0	.50	U				
75-09-2	Methylene chloride			1		4.0					
1634-04-4	Methyl-t-butyl ether			1							
95-47-6	o-Xylene			1	0	U					
115-07-1	Propylene			1	1	U					
100-42-5	Styrene				0	.50	U				
127-18-4	Tetrachloroethene			1	3	3.5					
109-99-9	Tetrahydrofuran			1	0	.50	U				
108-88-3	Toluene			1	1	.2					
156-60-5	trans-1,2-Dichloroethene	9		1	0	.50	U				
10061-02-6	trans-1,3-Dichloroprope	ne		1	0	.50	U				
79-01-6	Trichloroethene			1	0	.50	U				
75-69-4	Trichlorofluoromethane			1	.50	U					
108-05-4	Vinyl acetate			1	2	2.0	U				
75-01-4	Vinyl chloride			1	0	.50	U				

* Values outside of QC limits

Mal'

SDC-SG-02

6

Laboratory:	Microbac Laboratories, Inc Cl	hicagoland	SDG:	<u>11D0820</u>		
Client:	Oneida Total Integrated Enterpr	<u>ises</u>	Project:	Little Chute WI		
Matrix:	<u>Air</u> Labora	atory ID: <u>11D</u>	0820-02	File ID:	J042612.D	
Sampled:	<u>04/20/11 10:26</u> Prepar		6/11 16:41	Analyzed:	04/26/11 23:3	5
Solids:	Prepar		<u>5 PR</u>	Initial/Final:	101 ml / 101 r	
	-					
Batch:	B013998 Sequence:	<u>S005062</u>	Calibration:	0000042	Instrument:	<u>TO15-2</u>
CAS NO.	COMPOUND		DILUTION	CONC	C. (ppbv)	Q
71-55-6	1,1,1-Trichloroethane		14.9		7.4	U
79-34-5	1,1,2,2-Tetrachloroethane		14.9		7.4	U
76-13-1	1,1,2-Trichloro-1,2,2-Trifluoroe	thane	14.9		7.4	U
79-00-5	1,1,2-Trichloroethane		14.9		7.4	U
75-34-3	1,1-Dichloroethane		14.9		7.4	U
75-35-4	1,1-Dichloroethene		14.9		7.4	U
120-82-1	1,2,4-Trichlorobenzene		14.9		30	U
95-63-6	1,2,4-Trimethylbenzene		14.9		7.4	U
106-93-4	1,2-Dibromoethane	*****	14.9		7.4	U
95-50-1	1,2-Dichlorobenzene		14.9	7	7.4	U
107-06-2	1,2-Dichloroethane		14.9	7	7.4	U
78-87-5	1,2-Dichloropropane		14.9	7	7.4	U
76-14-1	1,2-Dichlorotetrafluoroethane		14.9		7.4	U
108-67-8	1,3,5-Trimethylbenzene		14.9	7	7.4	U
106-99-0	1,3-Butadiene		14.9	7	7.4	U
541-73-1	1,3-Dichlorobenzene		14.9	7	7.4	U
106-46-7	1,4-Dichlorobenzene		14.9	7	7.4	U
123-91-1	1,4-Dioxane		14.9		30	U
78-93-3	2-Butanone		14.9	3	30	U
591-78-6	2-Hexanone		14.9	3	30	U
67-63-0	2-Propanol		14.9	3	30	U
622-98-8	4-Ethyltoluene		14.9	7	<i>'.</i> 4	U
108-10-1	4-Methyl-2-Pentanone		14.9	7	7.4	U
67-64-1	Acetone		14.9	3	30	U
107-02-8	Acrolein		14.9	7	'.4	U
71-43-2	Benzene		14.9	7	'.4	U
100-44-7	Benzyl chloride		14.9	7	.4	U
75-27-4	Bromodichloromethane		14.9	7	.4	U
75-25-2	Bromoform		14.9	7	.4	U
74-83-9	Bromomethane		14.9	7	.4	U
75-15-0	Carbon disulfide		14.9	1	5	U
56-23-5	Carbon tetrachloride		14.9	7	.4	U
108-90-7	Chlorobenzene		14.9	7	.4	U
75-00-3	Chloroethane		14.9	7	.4	U
67-66-3	Chloroform		14.9	7	.4	U
74-87-3	Chloromethane		14.9	3	0	U
156-59-2	cis-1,2-Dichloroethene		14.9	7	.4	U
10061-01-5	cis-1,3-Dichloropropene		14.9	7	.4	U
110-82-7	Cyclohexane		14.9	7	.4	U
124-48-1	Dibromochloromethane		14.9	7	.4	U

SDC-SG-02

Laboratory:	Microbac Laboratories	<u>, Inc Chicagoland</u>		SDG:			
Client:	Oneida Total Integrate	d Enterprises		Project:	Little Chute WI		
Matrix:	Air	Laboratory ID:	11D08	20-02	File ID:	J042612.D	
Sampled:	<u>04/20/11 10:26</u>	Prepared:		1 16:41	Analyzed:	04/26/11 23:3:	x
-	0 1/20/11 10.20	-			·		-
Solids:		Preparation:	<u>TO15</u>	<u>PR</u>	Initial/Final:	<u>101 ml / 101 n</u>	<u>1l</u>
Batch:	<u>B013998</u> Seque	ence: <u>S005062</u>		Calibration:	<u>0000042</u>	Instrument:	<u>TO15-2</u>
CAS NO.	COMPOUND			DILUTION	CONC	C. (ppbv)	Q
75-71-8	Dichlorodifluorometha	ne		14.9	,	7.4	U
141-78-6	Ethyl acetate			14.9	,	7.4	U
100-41-4	Ethylbenzene			14.9		7.4	U
142-82-5	Heptane			14.9	,	7.4	U
87-68-3	Hexachlorobutadiene			14.9		30	U
110-54-3	Hexane			14.9		7.4	U
179601-23-1	m,p-Xylene			14.9		15	U
80-62-6	Methyl Methacrylate			14.9		7.4	U
75-09-2	Methylene chloride			14.9		U	
1634-04-4	Methyl-t-butyl ether			14.9	-	U	
95-47-6	o-Xylene			14.9		U	
115-07-1	Propylene			14.9		U	
100-42-5	Styrene			14.9	7	7.4	U
109-99-9	Tetrahydrofuran			14.9	7	7.4	U
108-88-3	Toluene			14.9	7	7.4	U
156-60-5	trans-1,2-Dichloroether	ne		14.9	7	7.4	U
10061-02-6	trans-1,3-Dichloroprop	ene		14.9	7	/.4	U
79-01-6	Trichloroethene			14.9		24	D
75-69-4	Trichlorofluoromethan	<u>,</u>		14.9	7	U	
108-05-4	Vinyl acetate	******		14.9	30		
75-01-4	Vinyl chloride			14.9	7	U	

* Values outside of QC limits

afiali

SDC-SG-02

Laboratory:	Microbac Labo	oratories, Inc (<u>Chicagoland</u>		SDG:	<u>11D0820</u>		
Client:	<u>Oneida Total Ir</u>	ntegrated Enter	orises		Project:	Little Chute WI		
Matrix:	Air	Labo	oratory ID:	<u>11D082</u>	<u>20-02RE1</u>	File ID:	<u>H042616.D</u>	
Sampled:	04/20/11 10:26	Prep	ared:	<u>04/26/1</u>	1 15:38	Analyzed:	04/27/11 17:34	1
Solids:		Prep	aration:	<u>TO15</u>	PR	Initial/Final:	<u>1 ml / 1 ml</u>	
Batch:	<u>B014064</u>	Sequence:	<u>S005084</u>		Calibration:	<u>0000043</u>	Instrument:	<u>TO15-1</u>
CAS NO.	COMPOUND				DILUTION	CONC	C. (ppbv)	Q
127-18-4	Tetrachloroethe	ene			3000	22	D	

* Values outside of QC limits

		5						PD	Sad			
Custody Record 102362 on back	eport	[] Level III CLP-like [] Level IV CLP-like 56-76.95 / 414.303-66	penved	1106311 D1	C0 50	06/	600.	Ophedium Hym	OH: HA Mel	Archive Date/Time	Date/Time Date/Tityte	4/2/11 16:15
Chain of Custody Record Number 102362	days)	by) [1] [1] [1] [1] [1] [1] [1] [1] [1] [1]	[] e-mail (address) NEASU & CTLE-CM (SW), Waste Water (WW), Other (specify) ate, (8) Sodium Thiosulfate, (9) Hexane, (U) Unpreserved ted es] Dispose as appropriate [] Return [] Received By (signature)	Received By (signature) Received for Lab By (signature)	Vird K Province
[] 5713 West 85th Street Indianapolis, IN 46278 Tel: 317-872-1326 Fax: 317-872-1379	1] Routin		[] e-mail (address) NEAGOURSOURCOURSION Groundwater (GW), Surface Water (SW), Waste Water (WW), Other (specify) tate, (6) Methanol, (7) Sodium Bisulfate, (8) Sodium Thiosulfate, (9) Hexane, (10) Hexane,	× #x 205 H					V V V	isposition [] D		9
Drive 46410 378 664	Sandies 1 Hitte Un	Compliance Monitoring? [] Yes(1) [] No (1)Agency/Program Sampler Signature	tered tered tered tered tered	A /6/n	12:00	1345	0051 A	11600	1800		Relinquished By (signature) Relinquished By (signature)	
Merrillville, IN Merrillville, IN Tel: 219-769-8: Fax: 219-769-1	Project Location PO #	Complii (1)Agen りたき、Sai	Ninking WaOH, (5)) Non-Hazardous Relinqu	Relinqu Relinqu	_
	3		atrix************************************	- * -					$\mathbf{\hat{\mathbf{x}}}$	Non-Ha		
Microbac Subr Oueida	Interview States I've W Werkee ST #300 Interview I've W Werkee ST #300 Interview I've States, Zip CMLMbe, I'v, 606.03	Vares Bulon 312-656-7655 INT) Worn Schurf	client Sample ID	SDC-Gp-1-3'	6.P-3-2	- 5-3:51	2010-617-5-3.51 MS	- 412 - 4-1-		Comments	Samble temperature upon receipt in degrees C -	certification and the second receipt in degrees C = rev. 11/04/04

Hans of a stand

Chain of Custody Record	ber 102363	Instructions on back	Renort Tvna		AED .		[] Level IV [] Level IV CLP-like	[] EDU		y) (1) I Innessand	Providence Children Providence Children			1120011	D Tom The state of				Mediums	1.		Return [] Archive	Date/Time	Date/Time	nature) Date/Time	
	Number	Instru	Turnaround Time	11 Bouttine 17 work managers	[] RISH* (notify lab)		(needed by)	Samılar Dhono #	ALLECTIC UNITED TIONE .	r (DW), Groundwater (GW), Surface Water (SW), Waste Water (WW), Other (specify) inc Acetate, (6) Methanol, (7) Sodium Bisulfate, (8) Sodium Thiosulfate, (9) Hexane (1 1 1/0 1	ect 25 / 1			×	×	<u>`</u>] Dispose as appropriate [Received By (signature)	Received By (signature)	Received for Lab By (signature)	
[] 5713 West 85th Street Indianapolis. IN 46278	Tel: 317-872-1375 Fax: 317-872-1379		Dryclearers			-		25.	ten /APUICE	 N. Surface Water (SW), Wa (7) Sodium Bisulfate, (8) S. 	Requested C Analyses	, ive	Types **	3 Sector	3 HEL	たいいま						Sample Disposition	Date/Time	Date/Time	Date/Time	
[] 250 West 84th Drive Merrillville, IN 46410	Tel: 219-769-8378 Fax: 219-769-1664		Sandher			Compliance Monitoring? [] Yes(1) [] No	(1)Agency/Program	nature	and : Mosure all read	Water (DW), Groundwater (GW (5) Zinc Acetate, (6) Methanol,	pə		Filtere Date C	474, 08	9960	CIAS	5480	0926	V 0945			s [] Radioactive	Helinquished By (signature)	Relinquished By (signature)	Relinquished By (signature)	
	Tel: Fax:	-	Project	#300 LOCI			(1) V		[] Fax (fax #) 2 Men	lil, Wipe, Drinking \ 3) HCI, (4) NaOH,			Matrix Grab Compe	×	6JW X	X	- 5	ŝ	N S			[] Non-Hazardous			Relir	
Samples Micro Loo Submitted to:			Client Name OD C	Address IEC IN NEWER BY	City, State, Zip - CAACAELET EL CEERES	Contact Lev Behn	Telephone # 312-656-7635	Sampled by (PRINT) NCM Bash	Send Report via [] Mail [] Telephone [] F	 Matrix Types: Soil/Solid (S), Sludge, Oil, Wipe, Drinking Water (DW), Groundwater (GW), Surface Water (SW), Waste Water (WW), Other (specify) Preservative Types: (1) HNO3, (2) H2SO4, (3) HCI, (4) NaOH, (5) Zinc Acetate, (6) Methanol, (7) Sodium Bisulfate, (8) Sodium Thiosulfate. (9) Hexane. (1) Lincrescued. 		Client Sample ID		SDC-GW-2	50C-GIN-8	SDE-68-9-51	SDC- GP-10-11	SDC-GP-11-2'	506-618-12-051			Possible Hazard Identification [] Hazardous	relling reader complet before	· -buildhard	Sample temperature upon receipt in degrees C =	rev. 11/04/04

D. ... OVE

SDC-GP-1-3'

Laboratory:	Microbac Laboratories, Ir	ic Chicagoland	SDG:				
Client:	Oneida Total Integrated E	nterprises	Project:]				
Matrix:	<u>Solid</u>	Laboratory ID:	<u>11D0311-01</u>	File ID:	<u>040711 -</u>	PSOLID_2540Bei-1	<u>1.</u>
Sampled:	04/06/11 11:30	Prepared:	04/07/11 19:06	Analyzed:	04/07/11	<u>19:14</u>	
Solids:	<u>81.46</u>	Preparation:	PSOLID_2540B_PR	Initial/Final:	<u>1g/1m</u>		
Batch:	B013279 Sequence:		Calibration:		Instrum	ent: Bal-10	
			Concentration	Dilution			٦

CAS NO.	Analyte	Concentration (wt%)	Dilution Factor	Q	Method
E-10151	Percent Solids	81	1		SM2540B Rev 18

apoli

E-10151

Percent Solids

Laboratory: Microbac Laboratories, Inc. - Chicagoland SDG: <u>11D0311</u> Client: Oneida Total Integrated Enterprises Project: Little Chute WI Matrix: Solid Laboratory ID: 11D0311-02 File ID: 040711 - PSOLID_2540Bei-1-Sampled: 04/06/11 12:00 Prepared: 04/07/11 19:06 Analyzed: 04/07/11 19:14 Solids: <u>80.62</u> Preparation: PSOLID 2540B PR Initial/Final: <u>1 g / 1 ml</u> Batch: B013279 Sequence: Calibration: Instrument: Bal-10 Concentration Dilution CAS NO. Analyte (wt%) Factor Q Method

81

1

SDC-GP-2-2'

SM2540B Rev 18

Laboratory: Microbac Laboratories, Inc. - Chicagoland SDG: <u>11D0311</u> Client: Oneida Total Integrated Enterprises Project: Little Chute WI Matrix: Solid Laboratory ID: 11D0311-03 File ID: 040711 - PSOLID_2540Bei-1-Sampled: 04/06/11 13:30 Prepared: 04/07/11 19:06 Analyzed: 04/07/11 19:14 Solids: <u>80.98</u> Preparation: PSOLID_2540B_PR Initial/Final: <u>1 g / 1 ml</u> Batch: B013279 Sequence: Calibration: Instrument: Bal-10

CAS NO.	Analyte	Concentration (wt%)	Dilution Factor	Q	Method
E-10151	Percent Solids	81	1		SM2540B Rev 18

apoli

SDC-GP-3-2.5'

E-10151

Percent Solids

Laboratory: Microbac Laboratories, Inc. - Chicagoland SDG: <u>11D0311</u> Client: Oneida Total Integrated Enterprises Project: Little Chute WI Matrix: Solid Laboratory ID: 11D0311-04 File ID: 040711 - PSOLID_2540Bei-1-Sampled: 04/06/11 13:45 Prepared: 04/07/11 19:06 Analyzed: 04/07/11 19:14 Solids: <u>83.83</u> Preparation: PSOLID 2540B PR Initial/Final: <u>1g/1ml</u> Batch: <u>B013279</u> Calibration: Sequence: Instrument: Bal-10 Concentration Dilution CAS NO. Analyte (wt%) Factor Q Method

84

1

apolli
5

SM2540B Rev 18

SDC-GP-4-4'

E-10151

Percent Solids

SDC-GP-5-3.5'

CAS NO.	Analyte		Concentration (wt%)	Dilution Factor	Q	Method
Batch:	B013279 Sequence	:	Calibration:		Instrument: <u>Bal-10</u>	
Solids:	<u>87.28</u>	Preparation:	PSOLID_2540B_PR	Initial/Final:	<u>1 g / 1 m</u>	1
Sampled:	04/06/11 15:00	Prepared:	04/07/11 19:06	Analyzed:	04/07/11	<u>19:14</u>
Matrix:	<u>Solid</u>	Laboratory ID:	<u>11D0311-05</u>	File ID:	<u>040711 -</u>	PSOLID_2540Bei-1-
Client:	Oneida Total Integrated I	<u>Enterprises</u>	Project:	Little Chute WI		
Laboratory:	Microbac Laboratories, I	nc Chicagoland	SDG:			

87

1

appell
21
Эľ

SM2540B Rev 18

E-10151

Percent Solids

Laboratory:	Microbac Laborator	ies, Inc Chicagoland	SDG:			
Client:	Oneida Total Integra	ated Enterprises	Project: Little Chute WI			
Matrix:	<u>Solid</u>	Laboratory ID:	<u>11D0311-06</u>	File ID:	<u>040711 -</u>	PSOLID_2540Bei-1-
Sampled:	04/06/11 16:00	Prepared:	04/07/11 19:06	Analyzed:	<u>04/07/11</u>	<u>19:14</u>
Solids:	<u>80.96</u>	Preparation:	PSOLID_2540B_PR	Initial/Final:	<u>1 g / 1 m</u>	1
Batch:	<u>B013279</u> Sequ	ience:	Calibration:		Instrum	nent: Bal-10
CAS NO.	Analyte		Concentration (wt%)	Dilution Factor	Q	Method

81

SM2540B Rev 18

1

Laboratory: Microbac Laboratories, Inc. - Chicagoland SDG: <u>11D0311</u> Client: Oneida Total Integrated Enterprises Project: Little Chute WI Matrix: Solid Laboratory ID: <u>11D0311-07</u> File ID: 040711 - PSOLID 2540Bei-1-Sampled: 04/06/11 17:30 Prepared: 04/07/11 19:06 Analyzed: 04/07/11 19:14 Solids: <u>83.07</u> Preparation: PSOLID 2540B PR Initial/Final: <u>1 g / 1 ml</u> Batch: <u>B013279</u> Sequence: Calibration: Instrument: Bal-10

CAS NO.	Analyte	Concentration (wt%)	Dilution Factor	Q	Method
E-10151	Percent Solids	83	1		SM2540B Rev 18

2 Ploolu

SDC-GP-7-1.5'

Daton.	<u>B013279</u>	Sequence:		Can	bration:		Instrum	ent: <u>Bal-10</u>	
Ratch.	D010070	Component		Cali			Teretori		
Solids:	<u>82.91</u>		Preparation:	PSOLID_2540B	PR	Initial/Final:	<u>1 g / 1 ml</u>		
Sampled:	04/06/11 18:00		Prepared:	04/07/11 19:06		Analyzed:	04/07/11	19:14	
Matrix:	<u>Solid</u>		Laboratory ID:	<u>11D0311-08</u>		File ID:	<u>040711 -</u>	PSOLID_2540Bei-1	•
Client:	Oneida Total Integrated Enterprises			Project: Little Chute WI					
Laboratory:	Microbac Labo	ratories, Inc.	- Chicagoland		SDG:				
	Client: Matrix: Sampled:	Client: <u>Oneida Total Ir</u> Matrix: <u>Solid</u> Sampled: <u>04/06/11 18:00</u>	Client: <u>Oneida Total Integrated Ent</u> Matrix: <u>Solid</u> Sampled: <u>04/06/11 18:00</u>	Sampled: 04/06/11 18:00 Prepared:	Client:Oneida Total Integrated EnterprisesMatrix:SolidSampled:04/06/11 18:00Prepared:04/07/11 19:06	Client: Oneida Total Integrated Enterprises Project: Matrix: Solid Laboratory ID: 11D0311-08 Sampled: 04/06/11 18:00 Prepared: 04/07/11 19:06	Client:Oneida Total Integrated EnterprisesProject: Little Chute WIMatrix:SolidLaboratory ID:11D0311-08File ID:Sampled:04/06/11 18:00Prepared:04/07/11 19:06Analyzed:	Client: Oneida Total Integrated Enterprises Project: Little Chute WI Matrix: Solid Laboratory ID: 11D0311-08 File ID: 040711 - Sampled: 04/06/11 18:00 Prepared: 04/07/11 19:06 Analyzed: 04/07/11	Client: Oneida Total Integrated Enterprises Project: Little Chute WI Matrix: Solid Laboratory ID: 11D0311-08 File ID: 040711 - PSOLID_2540Bei-1- Sampled: 04/06/11 18:00 Prepared: 04/07/11 19:06 Analyzed: 04/07/11 19:14

CAS NO.	Analyte	Concentration (wt%)	Dilution Factor	Q	Method	
E-10151	Percent Solids	83	1		SM2540B Rev 18	

(DW)III

SDC-GP-8-1'-D

Laboratory: Microbac Laboratories, Inc. - Chicagoland SDG: <u>11D0311</u> Client: **Oneida Total Integrated Enterprises** Project: Little Chute WI Matrix: Solid Laboratory ID: 11D0311-09 File ID: 040711 - PSOLID 2540Bei-1-Sampled: 04/06/11 18:00 Prepared: 04/07/11 19:06 Analyzed: 04/07/11 19:14 Solids: 82.91 Preparation: PSOLID 2540B PR Initial/Final: <u>1 g / 1 ml</u> Batch: B013279 Sequence: Calibration: Instrument: Bal-10

CAS NO.	Analyte	Concentration (wt%)	Dilution Factor	Q	Method
E-10151	Percent Solids	83	1		SM2540B Rev 18

Balli

SDC-GP-8-1'

Laboratory: Microbac Laboratories, Inc. - Chicagoland SDG: <u>11D0311</u> Client: Oneida Total Integrated Enterprises Project: Little Chute WI Matrix: Solid Laboratory ID: <u>11D0311-12</u> File ID: 040711 - PSOLID 2540Bei-1-Sampled: 04/07/11 07:45 Prepared: 04/07/11 19:06 Analyzed: 04/07/11 19:14 Solids: Preparation: PSOLID_2540B_PR <u>83.39</u> Initial/Final: <u>1 g / 1 ml</u> Batch: <u>B013279</u> Sequence: Calibration: Instrument: Bal-10 Т L T Concentration I Dilution

CAS NO.	Analyte	(wt%)	Factor	Q	Method
E-10151	Percent Solids	83	1		SM2540B Rev 18
		•			

SDC-GP-9-5'

CAS NO.	Analyte		Concentration (wt%)	Dilution Factor	Q	Method	
Batch:	Batch: <u>B013279</u> Sequence:		Calibration:		Instrument: <u>Bal-10</u>		
Solids:	<u>88.47</u>	Preparation:	PSOLID_2540B_PR	Initial/Final:	<u>1 g / 1 ml</u>		
Sampled:	04/07/11 08:45	Prepared:	04/07/11 19:06	Analyzed:	04/07/11 19:14		
Matrix:	Solid	Laboratory ID:	<u>11D0311-13</u>	File ID:	040711 - PSOLID_2540Bei-1-		
Client:	Oneida Total Integrate	ed Enterprises	Project:				
Laboratory:	Microbac Laboratorie	s, Inc Chicagoland	SDG:				

		(11270)	* 40101	X	meenou
E-10151	Percent Solids	88	1		SM2540B Rev 18

12 Jool11

SDC-GP-10-1'

			Concentration	Dilution		
Batch:	B013279 Sequence:		Calibration:	Instrument: <u>Bal-10</u>		
Solids:	<u>81.55</u>	Preparation:	PSOLID_2540B_PR	Initial/Final:	<u>1 g / 1 m</u>	<u>l</u>
Sampled:	04/07/11 09:20	Prepared:	04/07/11 19:06	Analyzed:	04/07/11	19:14
Matrix:	Solid	Laboratory ID:	<u>11D0311-14</u>	File ID:	<u>040711 -</u>	PSOLID_2540Bei-1
Client:	Oneida Total Integrate	d Enterprises	Project:			
Laboratory:	Microbac Laboratories	, Inc Chicagoland	SDG:			

CAS NO.	Analyte	Concentration (wt%)	Dilution Factor	Q	Method
E-10151	Percent Solids	82	1		SM2540B Rev 18

appelli

SDC-GP-11-2'

Laboratory:	Microbac Laboratories, In	nc Chicagoland	SDG:				
Client:	Oneida Total Integrated H	Enterprises	Project:				
Matrix:	Solid	Laboratory ID:	<u>11D0311-15</u> File ID		: <u>040711 - PSOLID_2540Bei-</u>		
Sampled:	04/07/11 09:45	Prepared:	<u>04/07/11 19:06</u>	<u>1 19:06</u> Analyzed		04/07/11 19:14	
Solids:	<u>80.33</u>	Preparation:	PSOLID_2540B_PR	PR Initial/Final		L	
Batch:	B013279 Sequence	:	Calibration:		Instrument: <u>Bal-10</u>		
			Concentration	Dilution			

CAS NO.	Analyte	Concentration (wt%)	Dilution Factor	Q	Method
E-10151	Percent Solids	80	1		SM2540B Rev 18

or poli

SDC-GP-12-0.5'

DUPLICATES SM2540B Rev 18

Laboratory: Microbac Laboratories, Inc. - Chicagoland

Client: Oneida Total Integrated Enterprises

Matrix: Solid

Batch: B013279

Preparation: PSOLID 2540B PR

Source Sample Name: SDC-GP-5-3.5'

SDG: <u>11D0311</u>

Project: Little Chute WI

Laboratory ID: B013279-DUP1

Lab Source ID: <u>11D0311-05</u>

Initial/Final: <u>1 g / 1 ml</u>

% Solids: <u>87.28</u>

ANALYTE	CONTROL LIMIT	SAMPLE CONCENTRATION (wt%)	С	DUPLICATE CONCENTRATION (wt%)	С	RPD %	Q	METHOD
Percent Solids	20	87.3		85.1		2.58		SM2540B Rev 18

appalit

SDC-GP-1-3'

Laboratory:	Microbac Laboratories, Inc Chicagoland	SDG:	<u>11D0311</u>	
Client:	Oneida Total Integrated Enterprises	Project:	Little Chute WI	
Matrix:	Solid Laboratory ID: 11D03	2	File ID: A041008.D	
Sampled:	• • • • • • • • • • • • • • • • •	11 20:00	Analyzed: $04/11/1101:19$)
-			•	2
Solids:	<u>81.46</u> Preparation: <u>8260</u>	5035_SB_PR	Initial/Final: <u>5.04 g / 5 ml</u>	
Batch:	<u>B013333</u> Sequence: <u>S004803</u>	Calibration:	UNASSIGNED Instrument:	<u>VOA-1</u>
CAS NO.	COMPOUND	DILUTION	CONC. (µg/Kg dry)	Q
630-20-6	1,1,1,2-Tetrachloroethane	1	12	U
71-55-6	1,1,1-Trichloroethane	1	6.1	U
79-34-5	1,1,2,2-Tetrachloroethane	1	6.1	U
79-00-5	1,1,2-Trichloroethane	1	6.1	U
75-34-3	1,1-Dichloroethane	1	6.1	U
75-35-4	1,1-Dichloroethene	1	6.1	U
107-06-2	1,2-Dichloroethane	1	6.1	U
78-87-5	1,2-Dichloropropane	1	6.1	U
78-93-3	2-Butanone	1	12	U
591-78-6	2-Hexanone	1	6.1	U
108-10-1	4-Methyl-2-Pentanone	1	6.1	U
67-64-1	Acetone	1	68	
107-02-8	Acrolein	1	120	U
107-13-1	Acrylonitrile	1	120	U
71-43-2	Benzene	1	6.1	U
75-27-4	Bromodichloromethane	1	6.1	U
75-25-2	Bromoform	1	6.1	U
74-83-9	Bromomethane	1	12	U
75-15-0	Carbon Disulfide	1	12	U
56-23-5	Carbon tetrachloride	1	6.1	U
108-90-7	Chlorobenzene	1	6.1	U
75-00-3	Chloroethane	1	12	U
67-66-3	Chloroform	1	6.1	U
74-87-3	Chloromethane	1	12	U
156-59-2	cis-1,2-Dichloroethene	1	6.1	U
10061-01-5	cis-1,3-Dichloropropene	1	6.1	U
124-48-1	Dibromochloromethane	1	6.1	U
100-41-4	Ethylbenzene	1	1.5	J
179601-23-1	m,p-Xylene	11	2.5	J
75-09-2	Methylene chloride	1	24	U
1634-04-4	Methyl-t-Butyl Ether	1	6.1	U
95-47-6	o-Xylene	1	6.1	U
100-42-5	Styrene	1	6.1	U
127-18-4	Tetrachloroethene	1	6.1	U
108-88-3	Toluene	1	1.8	J
156-60-5	trans-1,2-Dichloroethene	1	6.1	U
10061-02-6	trans-1,3-Dichloropropene	1	6.1	U
79-01-6	Trichloroethene	1	6.1	U
25323-30-2	Total 1,2-Dichloroethene	1	12	U
75-69-4	Trichlorofluoromethane	1	12	L U AN
				a Spr.

SDC-GP-1-3'

Laboratory:	Microbac Labora	tories, Inc Chicagoland	SDG:		<u>11D0311</u>		
Client:	Oneida Total Integrated Enterprises		Project:		Little Chute WI		
Matrix:	<u>Solid</u>	Laboratory ID:	Laboratory ID: <u>11D0311-0</u>		File ID: <u>A041008.D</u>		
Sampled:	04/06/11 11:30	Prepared:	04/10/11 20:00		Analyzed: <u>04/11/11 01:19</u>		
Solids:	<u>81.46</u>	Preparation:	<u>8260_5035_SB_PR</u>		Initial/Final:	<u>5.04 g / 5 ml</u>	
Batch:	<u>B013333</u>	Sequence: <u>S004803</u>		Calibration:	UNASSIGNED	Instrument:	<u>VOA-1</u>
CAS NO.	COMPOUND			DILUTION	CONC. (µ	ıg/Kg dry)	Q
108-05-4	Vinyl Acetate			1	1	2	U
75-01-4	Vinyl chloride	· · · · · · · · · · · · · · · · · ·		1	1	2	U
1330-20-7T	Total Xylenes			1	2	.5	J

appoli

SDC-GP-2-2'

Laboratory:	Microbac Laboratories, Inc Chicagoland			SDG:	<u>11D0311</u>			
Client:	Oneida Total Integrated Enterprises			Project:	Little Chute WI			
Matrix:	<u>Solid</u>	Laborato	ry ID:	11D031	1-02	File ID:	<u>A040814.D</u>	
Sampled:	04/06/11 12:00	Prepared	:	04/08/1	1 08:00	Analyzed:	04/08/11 15:05	
Solids:	80.62	Preparati	on:	8260_5	035_SB_PR	Initial/Final:	<u>5.56 g / 5 ml</u>	
Batch:	<u>B013346</u>	Sequence:	<u> 5004809</u>		Calibration:	<u>UNASSIGNED</u>	Instrument:	<u>VOA-1</u>
CAS NO.	COMPOUND				DILUTION	CONC. (µ	ıg/Kg dry)	Q
127-18-4	Tetrachloroethe	ne			50	7()0	D

and 111

SDC-GP-2-2'

Client: Oncida Total Integrated Enterprises Project: Little Chute WI Matrix: Solid Laboratory ID: 110011-02RE1 File ID: A041001D Sampled: 04/06/1112:00 Prepared: 04/10/1120:00 A041002D Solids: 80.62 Preparation: 8260 5035 SB-PR Initial/Final: 5.45 g/s Batch: 80.62 COMPOUND Coll/Ontorectime 1 1 U 72-55-6 1.1.12-Tetrachloroethane 1 5.7 U 1 </th <th>Laboratory:</th> <th>Microbac Laboratories, Inc Chicagoland</th> <th>SDG:</th> <th><u>11D0311</u></th> <th></th>	Laboratory:	Microbac Laboratories, Inc Chicagoland	SDG:	<u>11D0311</u>	
Samplet: 94/36/11 12:00 Preparation: 94/10/11 20:00 Analyzed: 04/11/11 01:53 Solids: 80.62 Preparation: 8260_5035_SB_PR Initial/Final: 5.46 g / 5 ml Batch: B013333 Sequence: S004803 Calibration: UNASSIONED Initial/Final: 5.46 g / 5 ml 630-20-0 1.1.1.2-Tetrachloroothane 1 1 U U 79-34-5 1.1.2-Tetrachloroothane 1 5.7 U U 79-34-5 1.1.2-Tetrachloroothane 1 5.7 U U 75-34-4 1.1-Dichloroothane 1 5.7 U U 75-34-4 1.1-Dichloroothane 1 5.7 U U 78-87-5 1.2-Dichloroopropane 1 5.7 U U 78-87-5 1.2-Dichloroopropane 1 5.7 U U 78-87-5 1.2-Dichloroopropane 1 5.7 U U U U U U U U U	Client:	Oneida Total Integrated Enterprises	Project:	Little Chute WI	
Solids: 80.62 Preparation: 5260_5035_SB_PR Initial/Final: 5.46 g / 5 ml Batch: B013333 Sequence: S004803 Calibration: UNASSIGNED Instal/Final: VOA.1 CAS NO. COMPOUND DILUTION CONC (up/kg dry) Q 630-20-6 1,1,1,2-Tracholoroethane 1 5.7 U 79-00-5 1,1,2-Tracholoroethane 1 5.7 U 79-00-5 1,1,2-Tracholoroethane 1 5.7 U 79-00-5 1,1,2-Tracholoroethane 1 5.7 U 107-06-2 1,2-Dichloroethane 1 5.7 U 107-08-4 Actone 1 100 U 107-18-4 Actone	Matrix:	Solid Laboratory ID: <u>11D</u>	0311-02RE1	File ID: <u>A041009.D</u>	
Batch: B01333 Sequence: S004803 Calibration: UNASSIGNED Instrument: VOA-1 CAS NO. COMPOUND DILUTION CONC. (ug/Kg dry) Q 630-20-6 1,1,1-Trichloroethane 1 11 U 79-34-5 1,1,2-2-Tetrachloroethane 1 5.7 U 79-34-5 1,1,2-2-Tetrachloroethane 1 5.7 U 75-34-3 1,1-Dichloroethane 1 5.7 U 75-35-4 1,1-Dichloroethane 1 5.7 U 175-35-4 1,2-Dichloroethane 1 5.7 U 135-7 1,2-Dichloroethane 1 5.7 U 166-6 2-Hoxmone 1 5.7 U 78-87-5 1,2-Dichloroethane 1 5.7 U 108-10-4 Aeditoropropane 1 5.7 U 108-10-4 Aeditoropropane 1 5.7 U 1070-28 Aeorolein 1 110 U <	Sampled:	<u>04/06/11 12:00</u> Prepared: <u>04/1</u>	0/11 20:00	Analyzed: 04/11/11 01:53	
Batch: B01333 Sequence: S004803 Calibration: UNASSIGNED Instrument: VOA-1 CAS NO. COMPOUND DILUTION CONC. (µg/Kg dry) Q 630-20-6 1.1.1.2-Tetrachloroethane 1 11 U 71-55-6 1.1.2-Tetrachloroethane 1 5.7 U 79-34-5 1.1.2-Titchloroethane 1 5.7 U 75-34-3 1.1.2-Titchloroethane 1 5.7 U 75-34-3 1.1-Dichloroethane 1 5.7 U 175-35-4 1.1-Dichloroethane 1 5.7 U 178-87-5 1.2-Dichloroethane 1 5.7 U 178-87-5 1.2-Dichloroethane 1 5.7 U 107-06-2 1.2-Dichloroethane 1 5.7 U 108-10-1 4-Methyl-2-Pentanone 1 5.7 U 107-02-8 Aerolein 1 110 U 107-13-1 Aerylomitrile 1 110 U<	Solids:	80.62 Preparation: 8260	5035 SB PR	Initial/Final: <u>5.46 g / 5 ml</u>	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Batch:	<u>B013333</u> Sequence: <u>S004803</u>	Calibration:	_	<u>VOA-1</u>
630-20-6 1,1,1,2-Tetrachloroethane 1 11 U 71-55-6 1,1,1-Trichloroethane 1 5.7 U 79-34-5 1,1,2-Trichloroethane 1 5.7 U 79-34-5 1,1-2-Trichloroethane 1 5.7 U 75-35-4 1,1-Dichloroethane 1 5.7 U 17-3-35-4 1,1-Dichloroethane 1 5.7 U 107-06-2 1,2-Dichloroethane 1 5.7 U 78-93-3 2-Butanone 1 6 - 78-93-3 2-Dichloropthane 1 16 - 78-93-3 2-Butanone 1 5.7 U 107-06-2 1.2-Dichoropthane 1 16 - 591-78-6 2-Hexanone 1 5.7 U 107-02-8 Acrolein 1 100 U 107-13-1 Actone 1 5.7 U 75-2-2 Bromodethoromethane 1 5.7 U <td>CAS NO.</td> <td>COMPOUND</td> <td>DILUTION</td> <td>CONC. (ug/Kg drv)</td> <td>0</td>	CAS NO.	COMPOUND	DILUTION	CONC. (ug/Kg drv)	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
79-00-5 1,1,2-Trichloroethane 1 5.7 U 75-354-3 1,1-Dichloroethane 1 5.7 U 75-354-1 1,1-Dichloroethane 1 5.7 U 175-354-1 1,2-Dichloroethane 1 5.7 U 178-87-5 1,2-Dichloroethane 1 5.7 U 78-93-3 2-Butanone 1 5.7 U 78-93-3 2-Butanone 1 5.7 U 108-10-1 4-Methyl-2-Pentanone 1 5.7 U 107-02-8 Acrolein 1 110 U 107-02-8 Acrolein 1 110 U 107-31 Acylomitrile 1 110 U 75-27-4 Bromodichloromethane 1 5.7 U 75-25-2 Bromomethane 1 11 U 56-23-5 Carbon Disulfde 1 11 U 56-23-5 Carbon tetrachloride 1 5.7 U <					
75-34-3 1,1-Dichloroethane 1 5.7 U 75-35-4 1,1-Dichloroethane 1 5.7 U 107-06-2 1,2-Dichloroethane 1 5.7 U 78-87-5 1,2-Dichloropenane 1 5.7 U 78-87-5 1,2-Dichloroethane 1 5.7 U 78-87-5 1,2-Dichloroethane 1 5.7 U 78-87-5 1,2-Dichloroethane 1 5.7 U 78-87-5 2-Hexanone 1 5.7 U 78-93-3 2-Butanone 1 5.7 U 78-10-1 Actrolein 1 107 0 108-10-1 Actrolein 1 110 U 107-13-1 Actrolein 1 110 U 107-14-3 Benzene 1 5.7 U 75-25-2 Bromodichloromethane 1 11 U 75-25-2 Garbon Disulfide 1 11 U					1
75.35-4 1,1-Dichloroethane 1 5.7 U 107.06-2 1,2-Dichloroethane 1 5.7 U 78.87-5 1,2-Dichloroethane 1 16				******	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			·····		
78-87-5 1,2-Dichloropropane 1 5.7 U 78-93-3 2-Butanone 1 16					
78-93-3 2-Butanone 1 16 $591-78-6$ 2-Hexanone 1 5.7 U $108-10-1$ 4-Methyl-2-Pentanone 1 5.7 U $67-64-1$ Acetone 1 170 107 $107-02-8$ Acrolein 1 110 U $107-02-8$ Acrolein 1 110 U $71-43-2$ Benzene 1 5.7 U $75-27-4$ Bromodichloromethane 1 5.7 U $75-25-2$ Bromodichloromethane 1 11 U $75-25-2$ Bromodichloromethane 1 111 U $75-15-0$ Carbon Disulfide 1 111 U $56-23-5$ Carbon tetrachloride 1 5.7 U $108-90-7$ Chlorobenzene 1 5.7 U $74-87-3$ Chlorobenzene 1 5.7 U $74-87-3$ Chlorobenzene 1 5.7 U 1					
S91-78-6 2-Hexanone 1 5.7 U 108-10-1 4.Methyl-2-Pentanone 1 5.7 U 67-64-1 Acetone 1 170 U 107-02-8 Acrolein 1 110 U 107-02-8 Acrolein 1 110 U 107-13-1 Acrylonitrile 1 110 U 71-43-2 Benzene 1 5.7 U 75-25-2 Bromodichloromethane 1 5.7 U 75-25-2 Bromodichloromethane 1 11 U 75-25-3 Bromodichloride 1 5.7 U 75-25-4 Bromodichloride 1 11 U 75-25-5 Carbon Disulfide 1 11 U 75-00-6 Carbon tetrachloride 1 5.7 U 108-90-7 Chlorobenzene 1 5.7 U 75-00-3 Chlorobenzene 1 5.7 U <td< td=""><td></td><td></td><td></td><td>·····</td><td></td></td<>				·····	
108-10-1 4-Methyl-2-Pentanone 1 5.7 U 67-64-1 Acetone 1 170 170 107-02-8 Acrolein 1 110 U 107-02-8 Acrolein 1 110 U 107-13-1 Acrylonitrile 1 110 U 71-43-2 Benzene 1 5.7 U 75-27-4 Bromodichloromethane 1 5.7 U 74-83-9 Bromomethane 1 111 U 74-83-9 Bromomethane 1 111 U 75-25-2 Bromomethane 1 111 U 74-83-9 Bromomethane 1 111 U 75-02 Carbon tetrachloride 1 5.7 U 108-90-7 Chlorobenzene 1 5.7 U 75-05-3 Chlorobentane 1 111 U 67-66-3 Chlorobentane 1 5.7 U 144-87-3 <td></td> <td></td> <td></td> <td></td> <td>TT</td>					TT
67-64-1 Acetone 1 170 $107-02-8$ Acrolein 1 110 U $107-13-1$ Acrylonitrile 1 110 U $17-13-2$ Benzene 1 5.7 U $71-43-2$ Bromodichloromethane 1 5.7 U $75-27-4$ Bromodichloromethane 1 5.7 U $75-25-2$ Bromodichloromethane 1 5.7 U $75-25-2$ Bromomethane 1 11 U $75-25-2$ Bromomethane 1 11 U $75-25-2$ Carbon Disulfide 1 11 U $56-25-2$ Carbon tetrachloride 1 5.7 U $108-90-7$ Chloromethane 1 11 U $67-66-3$ Chloromethane 1 11 U $17-66-3-2$ Cis-1,3-Dichloroptopene 1 5.7 U $100-1-5$ cis-1,3-Dichloroptopene 1 5.7 U					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				· · ·	<u> </u>
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					TT
71-43-2 Benzene 1 5.7 U 75-27-4 Bromodichloromethane 1 5.7 U 75-25-2 Bromoform 1 5.7 U 74-83-9 Bromomethane 1 11 U 75-25-2 Bromomethane 1 11 U 74-83-9 Bromomethane 1 11 U 74-83-9 Bromomethane 1 11 U 75-10 Carbon Disulfide 1 11 U 56-23-5 Carbon tetrachloride 1 5.7 U 108-90-7 Chlorobenzene 1 11 U 67-66-3 Chlorothane 1 5.7 U 75-09-2 cis-1,3-Dichloropropene 1 64 1 10061-01-5 cis-1,3-Dichloromethane 1 5.7 U 100-41-4 Ethylbenzene 1 5.7 U 100-41-4 Ethylbenzene 1 2.4 J			· · · · · · · · · · · · · · · · · · ·	····	
75-27-4 Bromodichloromethane 1 5.7 U 75-25-2 Bromoform 1 5.7 U 74-83-9 Bromomethane 1 11 U 74-83-9 Bromomethane 1 11 U 75-15-0 Carbon Disulfide 1 11 U 56-23-5 Carbon tetrachloride 1 5.7 U 108-90-7 Chlorobenzene 1 5.7 U 75-00-3 Chlorotentane 1 11 U 67-66-3 Chloromethane 1 11 U 166-59-2 cis-1,2-Dichloroethene 1 64 10061-01-5 cis-1,3-Dichloropropene 1 5.7 U 1004-01-5 cis-1,3-Dichloropropene 1 5.7 U 1 1004-01-5 cis-1,3-Dichloropropene 1 5.7 U 1 100-41-4 Ethylbenzene 1 5.7 U 1 100-41-4 Ethylbenzene 1 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
74.83.9Bromomethane111U $75.15.0$ Carbon Disulfide111U $56.23.5$ Carbon tetrachloride1 5.7 U $108.90.7$ Chlorobenzene1 5.7 U $75.00.3$ Chloroethane111U $67.66.3$ Chloroform1 5.7 U $74.87.3$ Chloroform1 5.7 U $74.87.3$ Chloroethane111U $10061.01.5$ cis- $1,3$ -Dichloroethene1 64 $10061.01.5$ cis- $1,3$ -Dichloropropene1 5.7 U $100.41.4$ Ethylbenzene1 1.4 J $179601.23.1$ m,p-Xylene1 2.4 J $75.09.2$ Methylene chloride1 5.7 U $100.42.4$ Methylene shloride1 5.7 U $100.42.5$ Styrene1 5.7 U $100.42.6$ trans- 1.3 -Dichloroethene1 16					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					1
10061-01-5 cis-1,3-Dichloropropene 1 5.7 U 124-48-1 Dibromochloromethane 1 5.7 U 100-41-4 Ethylbenzene 1 1.4 J 179601-23-1 m,p-Xylene 1 2.4 J 75-09-2 Methylene chloride 1 2.3 U 1634-04-4 Methyl-t-Butyl Ether 1 5.7 U 95-47-6 o-Xylene 1 5.7 U 100-42-5 Styrene 1 5.7 U 100-42-5 Styrene 1 5.7 U 100-42-5 Styrene 1 2.1 J 108-88-3 Toluene 1 2.1 J 156-60-5 trans-1,2-Dichloroethene 1 16 100 79-01-6 Trichloroethene 1 100 25323-30-2 Total 1,2-Dichloroethene 1 80 75-69-4 Trichlorofluoromethane 1 11 U					Ŭ
124-48-1 Dibromochloromethane 1 5.7 U 100-41-4 Ethylbenzene 1 1.4 J 179601-23-1 m,p-Xylene 1 2.4 J 75-09-2 Methylene chloride 1 2.3 U 1634-04-4 Methyl-t-Butyl Ether 1 5.7 U 95-47-6 o-Xylene 1 5.7 U 95-47-6 o-Xylene 1 5.7 U 100-42-5 Styrene 1 5.7 U 100-42-5 Styrene 1 2.1 J 100-42-5 Styrene 1 2.1 J 100-42-5 Styrene 1 5.7 U 100-42-6 trans-1,2-Dichloroethene 1 16 10061-02-6 10061-02-6 trans-1,3-Dichloropropene 1 5.7 U 79-01-6 Trichloroethene 1 100 25323-30-2 Total 1,2-Dichloroethene 1 80 75-69-4 11 1					IJ
100-41-4Ethylbenzene11.4J179601-23-1m,p-Xylene12.4J75-09-2Methylene chloride123U1634-04-4Methyl-t-Butyl Ether15.7U95-47-6o-Xylene15.7U100-42-5Styrene15.7U108-88-3Toluene12.1J156-60-5trans-1,2-Dichloroethene116110061-02-6trans-1,3-Dichloropropene15.7U79-01-6Trichloroethene110025323-30-2Total 1,2-Dichloroethene111U11U				*****	1
179601-23-1 m,p-Xylene 1 2.4 J 75-09-2 Methylene chloride 1 23 U 1634-04-4 Methyl-t-Butyl Ether 1 5.7 U 95-47-6 o-Xylene 1 5.7 U 100-42-5 Styrene 1 5.7 U 100-42-5 Styrene 1 5.7 U 108-88-3 Toluene 1 2.1 J 156-60-5 trans-1,2-Dichloroethene 1 16 16 10061-02-6 trans-1,3-Dichloropropene 1 5.7 U 79-01-6 Trichloroethene 1 100 100 25323-30-2 Total 1,2-Dichloroethene 1 80 11 75-69-4 Trichlorofluoromethane 1 11 U				**************************************	
75-09-2 Methylene chloride 1 23 U 1634-04-4 Methyl-t-Butyl Ether 1 5.7 U 95-47-6 o-Xylene 1 5.7 U 100-42-5 Styrene 1 5.7 U 100-42-5 Styrene 1 5.7 U 108-88-3 Toluene 1 2.1 J 156-60-5 trans-1,2-Dichloroethene 1 16 16 10061-02-6 trans-1,3-Dichloropropene 1 5.7 U 79-01-6 Trichloroethene 1 100 100 25323-30-2 Total 1,2-Dichloroethene 1 80 11 75-69-4 Trichlorofluoromethane 1 11 U					t
1634-04-4 Methyl-t-Butyl Ether 1 5.7 U 95-47-6 o-Xylene 1 5.7 U 100-42-5 Styrene 1 5.7 U 100-42-5 Styrene 1 5.7 U 108-88-3 Toluene 1 2.1 J 156-60-5 trans-1,2-Dichloroethene 1 16 16 10061-02-6 trans-1,3-Dichloropropene 1 5.7 U 79-01-6 Trichloroethene 1 1000 100 25323-30-2 Total 1,2-Dichloroethene 1 80 11 75-69-4 Trichlorofluoromethane 1 11 U					1
95-47-6 o-Xylene 1 5.7 U 100-42-5 Styrene 1 5.7 U 108-88-3 Toluene 1 2.1 J 156-60-5 trans-1,2-Dichloroethene 1 16 1 10061-02-6 trans-1,3-Dichloropropene 1 5.7 U 79-01-6 Trichloroethene 1 100 1 25323-30-2 Total 1,2-Dichloroethene 1 80 1 75-69-4 Trichlorofluoromethane 1 11 U			-		1
100-42-5 Styrene 1 5.7 U 108-88-3 Toluene 1 2.1 J 156-60-5 trans-1,2-Dichloroethene 1 16 1 10061-02-6 trans-1,3-Dichloropropene 1 5.7 U 79-01-6 Trichloroethene 1 100 1 25323-30-2 Total 1,2-Dichloroethene 1 80 1 75-69-4 Trichlorofluoromethane 1 11 U					
108-88-3 Toluene 1 2.1 J 156-60-5 trans-1,2-Dichloroethene 1 16 1 10061-02-6 trans-1,3-Dichloropropene 1 5.7 U 79-01-6 Trichloroethene 1 100 1 25323-30-2 Total 1,2-Dichloroethene 1 80 1 75-69-4 Trichlorofluoromethane 1 11 U					1
156-60-5 trans-1,2-Dichloroethene 1 16 10061-02-6 trans-1,3-Dichloropropene 1 5.7 U 79-01-6 Trichloroethene 1 100 100 25323-30-2 Total 1,2-Dichloroethene 1 80 11 U 75-69-4 Trichlorofluoromethane 1 11 U					
10061-02-6 trans-1,3-Dichloropropene 1 5.7 U 79-01-6 Trichloroethene 1 100 100 25323-30-2 Total 1,2-Dichloroethene 1 80 1 75-69-4 Trichlorofluoromethane 1 11 U					
79-01-6 Trichloroethene 1 100 25323-30-2 Total 1,2-Dichloroethene 1 80 75-69-4 Trichlorofluoromethane 1 11 U					U
25323-30-2 Total 1,2-Dichloroethene 1 80 75-69-4 Trichlorofluoromethane 1 11 U					
75-69-4Trichlorofluoromethane111U					
					U
	108-05-4	Vinyl Acetate	1	11	<u> </u>

6

SDC-GP-2-2'

Laboratory:	Microbac Laboratories, Inc Chicagoland			SDG:	<u>11D0311</u>		
Client:	Oneida Total Integrated Enterprises			Project:	Little Chute WI		
Matrix:	<u>Solid</u>	Laboratory ID:	<u>11D03</u>	<u>11-02RE1</u>	File ID:	<u>A041009.D</u>	
Sampled:	04/06/11 12:00	Prepared:	<u>04/10/1</u>	1 20:00	Analyzed:	<u>04/11/11 01:53</u>	
Solids:	<u>80.62</u>	Preparation:	<u>8260_5</u>	035_SB_PR	Initial/Final:	<u>5.46 g / 5 ml</u>	
Batch:	<u>B013333</u> Seque	nce: <u>S004803</u>		Calibration:	<u>UNASSIGNED</u>	Instrument:	VOA-1
CAS NO.	COMPOUND			DILUTION	CONC. (µ	ug/Kg dry)	Q
75-01-4	Vinyl chloride			1	1	1	U
1330-20-7T	Total Xylenes			1	2	.4	J

appol1"

SDC-GP-3-2.5'

Laboratory:	Microbac Laboratories, Inc Chicagoland	SDG:	<u>11D0311</u>	
Client:	Oneida Total Integrated Enterprises	Project:	Little Chute WI	
Matrix:		00311-03	File ID: A041010.D	
Sampled:		10/11 20:00	Analyzed: $04/11/11 02:20$	5
Solids:		50 5035 SB PR	Initial/Final: $4.53 \text{ g} / 5 \text{ ml}$	<u></u>
	· · · · ·	_		V04.1
Batch:	<u>B013333</u> Sequence: <u>S004803</u>	Calibration:	<u>UNASSIGNED</u> Instrument:	<u>VOA-1</u>
CAS NO.	COMPOUND	DILUTION	CONC. (µg/Kg dry)	Q
630-20-6	1,1,1,2-Tetrachloroethane	1	14	U
71-55-6	1,1,1-Trichloroethane	1	6.8	U
79-34-5	1,1,2,2-Tetrachloroethane	1	6.8	U
79-00-5	1,1,2-Trichloroethane	1	6.8	U
75-34-3	1,1-Dichloroethane	1	6.8	U
75-35-4	1,1-Dichloroethene	1	6.8	U
107-06-2	1,2-Dichloroethane	1	6.8	U
78-87-5	1,2-Dichloropropane	1	6.8	U
78-93-3	2-Butanone	1	11	J
591-78-6	2-Hexanone	1	6.8	U
108-10-1	4-Methyl-2-Pentanone	1	6.8	U
67-64-1	Acetone	1	160	
107-02-8	Acrolein	1	140	U
107-13-1	Acrylonitrile	1	140	U
71-43-2	Benzene	1	2.4	J
75-27-4	Bromodichloromethane	1	6.8	U
75-25-2	Bromoform	1	6.8	U
74-83-9	Bromomethane	1	14	U
75-15-0	Carbon Disulfide	1	14	U
56-23-5	Carbon tetrachloride	1	6.8	U
108-90-7	Chlorobenzene	1	6.8	U
75-00-3	Chloroethane	1	14	U
67-66-3	Chloroform	1	6.8	U
74-87-3	Chloromethane	1	14	U
156-59-2	cis-1,2-Dichloroethene	1	6.8	U
10061-01-5	cis-1,3-Dichloropropene	1	6.8	U
124-48-1	Dibromochloromethane	1	6.8	U
100-41-4	Ethylbenzene	1	1.4	J
179601-23-1	m,p-Xylene	1	3.0	J
75-09-2	Methylene chloride	1	27	U
1634-04-4	Methyl-t-Butyl Ether	1	6.8	U
95-47-6	o-Xylene	1	6.8	U
100-42-5	Styrene	1	6.8	U
127-18-4	Tetrachloroethene	1	120	
108-88-3	Toluene	1	4.9	J
156-60-5	trans-1,2-Dichloroethene	1	6.8	U
10061-02-6	trans-1,3-Dichloropropene	1	6.8	U
79-01-6	Trichloroethene	1	6.8	U
25323-30-2	Total 1,2-Dichloroethene	1	14	U
75-69-4	Trichlorofluoromethane	1	14	U
L		<u>↓</u>		- Jobth

SDC-GP-3-2.5'

Laboratory:	Microbac Laboratories, Inc Chicagoland			SDG:	<u>11D0311</u>		
Client:	Oneida Total Integrated Enterprises		Project:		Little Chute WI		
Matrix:	<u>Solid</u>	Laboratory ID:	<u>11D031</u>	1-03	File ID:	<u>A041010.D</u>	
Sampled:	04/06/11 13:30	Prepared:	<u>04/10/1</u>	1 20:00	Analyzed:	04/11/11 02:26	
Solids:	<u>80.98</u>	Preparation:	8260_5	<u>035_SB_PR</u>	Initial/Final:	<u>4.53 g / 5 ml</u>	
Batch:	<u>B013333</u> Se	equence: <u>S004803</u>		Calibration:	UNASSIGNED	Instrument:	VOA-1
CAS NO.	COMPOUND			DILUTION	CONC. (J	ıg/Kg dry)	Q
108-05-4	Vinyl Acetate			1	1	4	U
75-01-4	Vinyl chloride			1	1	4	U
1330-20-7T	Total Xylenes			1	3	.0	J

ighol"

SDC-GP-4-4'

appoln

Laboratory:	Microbac Laboratories, Inc Chicagoland	SDG:	<u>11D0311</u>	
Client:	Oneida Total Integrated Enterprises	Project:	Little Chute WI	
Matrix:	Solid Laboratory ID: 11D)311-04	File ID: A041011.D	
Sampled:		0/11 20:00	Analyzed: 04/11/11 03:00)
Solids:		5035 SB PR	Initial/Final: <u>5.22 g / 5 ml</u>	_
Batch:	<u>B013333</u> Sequence: <u>S004803</u>	Calibration:	UNASSIGNED Instrument:	<u>VOA-1</u>
CAS NO.				
	COMPOUND	DILUTION	CONC. (µg/Kg dry)	Q
630-20-6	1,1,1,2-Tetrachloroethane	1	11	U
71-55-6	1,1,1-Trichloroethane	1	5.7	U
79-34-5	1,1,2,2-Tetrachloroethane	1	5.7	U
79-00-5	1,1,2-Trichloroethane	1	5.7	U
75-34-3	1,1-Dichloroethane	1	5.7	U
75-35-4	1,1-Dichloroethene	1	5.7	U
107-06-2	1,2-Dichloroethane	1	5.7	U
78-87-5	1,2-Dichloropropane	1	5.7	U
78-93-3	2-Butanone	1	11	U
591-78-6	2-Hexanone	1	5.7	U
108-10-1	4-Methyl-2-Pentanone	1	5.7	U
67-64-1	Acetone	1	30	J
107-02-8	Acrolein	1	110	U
107-13-1	Acrylonitrile	1	110	U
71-43-2	Benzene	1	3.1	J
75-27-4	Bromodichloromethane	1	5.7	U
75-25-2	Bromoform	1	5.7	U
74-83-9	Bromomethane	1	11	U
75-15-0	Carbon Disulfide	1	11	U
56-23-5	Carbon tetrachloride	1	5.7	U
108-90-7	Chlorobenzene	1	5.7	U
75-00-3	Chloroethane	1	11	U
67-66-3	Chloroform	1	5.7	U
74-87-3	Chloromethane	1	11	U
156-59-2	cis-1,2-Dichloroethene	1	5.7	U
10061-01-5	cis-1,3-Dichloropropene	1	5.7	U
124-48-1	Dibromochloromethane	1	5.7	U
100-41-4	Ethylbenzene	1	4.0	J
179601-23-1	m,p-Xylene	1	6.4	
75-09-2	Methylene chloride	1	23	U
1634-04-4	Methyl-t-Butyl Ether	1	5.7	U
95-47-6	o-Xylene	1	2.3	J
100-42-5	Styrene	1	5.7	U
127-18-4	Tetrachloroethene	1	5.5	J
108-88-3	Toluene	1	8.4	
156-60-5	trans-1,2-Dichloroethene	1	5.7	U
10061-02-6	trans-1,3-Dichloropropene	1	5.7	U
79-01-6	Trichloroethene	1	1.4	J
25323-30-2	Total 1,2-Dichloroethene	1	11	U
75-69-4	Trichlorofluoromethane	1	11	U
/3-09-4	Inchloronuoromethane	<u> </u>	<u>11</u>	

SDC-GP-4-4'

Laboratory:	Microbac Laboratories, Inc Chicagoland		SDG:		<u>11D0311</u>		
Client:	Oneida Total Integrated Enterprises			Project:	Little Chute WI		
Matrix:	Solid	Laboratory ID:	<u>11D03</u>	<u>11-04</u>	File ID:	<u>A041011.D</u>	
Sampled:	04/06/11 13:45	Prepared:	<u>04/10/1</u>	1 20:00	Analyzed:	<u>04/11/11 03:00</u>	
Solids:	<u>83.83</u>	Preparation:	<u>8260_5</u>	035_SB_PR	Initial/Final:	<u>5.22 g / 5 ml</u>	
Batch:	<u>B013333</u> Seque	nce: <u>S004803</u>		Calibration:	<u>UNASSIGNED</u>	Instrument:	<u>VOA-1</u>
CAS NO.	COMPOUND			DILUTION	CONC. (J	ıg/Kg dry)	Q
108-05-4	Vinyl Acetate			1	1	1	U
75-01-4	Vinyl chloride			1	1	1	U
1330-20-7T	Total Xylenes			1	8	.8	

appoll

SDC-GP-5-3.5'

Laboratory:	Microbac Laboratories, Inc Chicagoland	SDG:	<u>11D0311</u>	
Client:	Oneida Total Integrated Enterprises	Project:	Little Chute WI	
Matrix:	Solid Laboratory ID: <u>11</u>	D0311-05	File ID: A041005.D	
Sampled:	· · ·	/10/11 20:00	Analyzed: 04/10/11 23:41	
Solids:	· · · · · · · · · · · · · · · · · · ·	60 5035 SB PR	Initial/Final: <u>3.09 g / 5 ml</u>	*
Batch:	<u>B013333</u> Sequence: <u>S004803</u>	Calibration:	UNASSIGNED Instrument:	<u>VOA-1</u>
CAS NO.	COMPOUND	DILUTION	CONC. (µg/Kg dry)	Q
630-20-6	1,1,1,2-Tetrachloroethane		19	U
71-55-6	1,1,1,1-Trichloroethane	1	9.3	U
79-34-5	1,1,2,2-Tetrachloroethane	1	9.3	U
79-00-5	1,1,2-Trichloroethane	1	9.3	U
75-34-3	1,1-Dichloroethane			
75-35-4	1,1-Dichloroethene	1	9.3	U
107-06-2	1,2-Dichloroethane	1	9.3	U
78-87-5		1	9.3	U
78-93-3	1,2-Dichloropropane 2-Butanone	1	9.3	U
	2-Butanone	1	19	U
591-78-6		1	9.3	U
108-10-1	4-Methyl-2-Pentanone	1	9.3	U
67-64-1	Acetone	1	150	
107-02-8	Acrolein	1	190	U
107-13-1	Acrylonitrile	1	190	U
71-43-2	Benzene	1	9.3	U
75-27-4	Bromodichloromethane	1	9.3	U
75-25-2	Bromoform	1	9.3	U
74-83-9	Bromomethane	1	19	U
75-15-0	Carbon Disulfide	1	19	U
56-23-5	Carbon tetrachloride	1	9.3	U
108-90-7	Chlorobenzene	1	9.3	U
75-00-3	Chloroethane	1	19	U
67-66-3	Chloroform	1	9.3	U
74-87-3	Chloromethane	1	19	U
156-59-2	cis-1,2-Dichloroethene	1	9.3	U
10061-01-5	cis-1,3-Dichloropropene	1	9.3	U
124-48-1	Dibromochloromethane	1	9.3	U
100-41-4	Ethylbenzene	1	2.0	J
179601-23-1	m,p-Xylene	1	4.5	J
75-09-2	Methylene chloride	1	37	U
1634-04-4	Methyl-t-Butyl Ether	1	9.3	U
95-47-6	o-Xylene	1	9.3	U
100-42-5	Styrene	1	9.3	U
127-18-4	Tetrachloroethene	1	9.3	U
108-88-3	Toluene	1	2.4	J
156-60-5	trans-1,2-Dichloroethene	1	9.3	U
10061-02-6	trans-1,3-Dichloropropene	1	9.3	U
79-01-6	Trichloroethene	1	9.3	U
25323-30-2	Total 1,2-Dichloroethene	1	19	U
75-69-4	Trichlorofluoromethane	1 1	19	U

asser.

SDC-GP-5-3.5'

Laboratory:	Microbac Laboratories, Inc Chicagoland			SDG:	<u>11D0311</u>		
Client:	Oneida Total Integrated Enterprises		Project:		Little Chute WI		
Matrix:	<u>Solid</u>	Laboratory ID:	<u>11D031</u>	1-05	File ID:	<u>A041005.D</u>	
Sampled:	04/06/11 15:00	Prepared:	<u>04/10/1</u>	1 20:00	Analyzed:	04/10/11 23:41	
Solids:	<u>87.28</u>	Preparation:	8260_5	035_SB_PR	Initial/Final:	<u>3.09 g / 5 ml</u>	
Batch:	<u>B013333</u> S	Sequence: <u>S004803</u>		Calibration:	<u>UNASSIGNED</u>	Instrument:	VOA-1
CAS NO.	COMPOUND			DILUTION	CONC. (J	ıg/Kg dry)	Q
108-05-4	Vinyl Acetate			1	1	9	U
75-01-4	Vinyl chloride			1	1	9	U
1330-20-7T	Total Xylenes			1	4	.5	J

02/2011

SDC-GP-6-14'

Laboratory:	Microbac Laboratories, Inc Chicagoland		SDG:	<u>11D0311</u>		
Client:	Oneida Total Integrated Enterprises		Project:	Little Chute WI		
Matrix:	Solid Laboratory ID:	11D031	1-06	File ID:	<u>A040807.D</u>	
Sampled:	·		1.08:00	Analyzed:	04/08/11 11:25	
Solids:			035 SB PR	Initial/Final:	6.36 g / 5 ml	
Batch:	<u>B013346</u> Sequence: <u>S004809</u>		Calibration:	UNASSIGNED	-	VOA-1
CAS NO.	COMPOUND		DILUTION	CONC (I	ıg/Kg dry)	Q
630-20-6	1,1,1,2-Tetrachloroethane		50	49	·······	U
71-55-6	1,1,1-Trichloroethane		50	24		U
79-34-5	1,1,2,2-Tetrachloroethane		50	24		U
79-00-5	1,1,2-Trichloroethane		50	24		U
75-34-3	1,1-Dichloroethane		50	24	·····	U
75-35-4	1,1-Dichloroethene		50	24		U
107-06-2	1,2-Dichloroethane		50			U
				24		
78-87-5	1,2-Dichloropropane		50	24		U
78-93-3	2-Butanone		50	49		U
591-78-6	2-Hexanone		50	24		<u>U</u>
108-10-1	4-Methyl-2-Pentanone		50	24		U
67-64-1	Acetone		50	24		U
107-02-8	Acrolein		50	49		U
107-13-1	Acrylonitrile		50	49		U
71-43-2	Benzene		50	24		U
75-27-4	Bromodichloromethane		50	24		U
75-25-2	Bromoform		50	24		U
74-83-9	Bromomethane		50	49		U
75-15-0	Carbon Disulfide		50	49	0	U
56-23-5	Carbon tetrachloride		50	24	0	U
108-90-7	Chlorobenzene		50	24	0	U
75-00-3	Chloroethane		50	49	0	U
67-66-3	Chloroform		50	24	0	U
74-87-3	Chloromethane		50	49	0	U
156-59-2	cis-1,2-Dichloroethene		50	24	0	U
10061-01-5	cis-1,3-Dichloropropene		50	24	0	U
124-48-1	Dibromochloromethane		50	24	0	U
100-41-4	Ethylbenzene		50	24	0	U
179601-23-1	m,p-Xylene		50	24	0	U
75-09-2	Methylene chloride		50	97		U
1634-04-4	Methyl-t-Butyl Ether		50	24		U
95-47-6	o-Xylene		50	24		U
100-42-5	Styrene	1	50	24		U
108-88-3	Toluene		50	24		U
156-60-5	trans-1,2-Dichloroethene		50	24		U
10061-02-6	trans-1,3-Dichloropropene		50	24		• U
79-01-6	Trichloroethene		50	24		U
25323-30-2	Total 1,2-Dichloroethene		50	49		<u>U</u>
75-69-4	Trichlorofluoromethane		50	49		<u>U</u>
108-05-4	Vinyl Acetate		50	49		U
100-03-4	· mj / / loouto			1 47	~	

aspoil!

SDC-GP-6-14'

Laboratory:	Microbac Laboratories, Inc Chicagoland			SDG:	<u>11D0311</u>		
Client:	Oneida Total Integrated Enterprises			Project:	Little Chute WI		
Matrix:	Solid	Laboratory ID:	<u>11D03</u>	<u>11-06</u>	File ID:	<u>A040807.D</u>	
Sampled:	04/06/11 16:00	Prepared:	<u>04/08/1</u>	1 08:00	Analyzed:	04/08/11 11:25	
Solids:	<u>80.96</u>	Preparation:	<u>8260_5</u>	035_SB_PR	Initial/Final:	<u>6.36 g / 5 ml</u>	
Batch:	<u>B013346</u> Seque	ence: <u>S004809</u>		Calibration:	UNASSIGNED	Instrument:	VOA-1
CAS NO.	COMPOUND			DILUTION	CONC. (J	ıg/Kg dry)	Q
75-01-4	Vinyl chloride			50	4	90	U
1330-20-7T	Total Xylenes			50	24	40	U

appol 11

SDC-GP-6-14'

Laboratory:	Microbac Laboratories, Inc Chicagoland			SDG:	<u>11D0311</u>			
Client:	Oneida Total Integrated Enterprises			Project:	Little Chute WI			
Matrix:	Solid	Lab	oratory ID:	11D03	<u>11-06RE1</u>	File ID:	<u>A040811.D</u>	
Sampled:	04/06/11 16:00	Pre	pared:	04/08/1	1 08:00	Analyzed:	04/08/11 13:33	
Solids:	<u>80.96</u>	Pre	paration:	<u>8260_5</u>	035_SB_PR	Initial/Final:	<u>6.36 g / 5 ml</u>	
Batch:	<u>B013346</u>	Sequence:	<u>S004809</u>		Calibration:	<u>UNASSIGNED</u>	Instrument:	VOA-1
CAS NO.	COMPOUND				DILUTION	CONC. (µ	ıg/Kg dry)	Q
127-18-4	Tetrachloroethe	ne			500	360	000	D

appelli

SDC-GP-7-1.5'

Laboratory:	Microbac Laboratories, Inc Chicagoland	<u>11D0311</u>		
Client:	Oneida Total Integrated Enterprises	Project:	Little Chute WI	
Matrix:		D0311-07	File ID: A040823.D	
Sampled:	• • •	/08/11 08:00	Analyzed: 04/08/11 19::	51
Solids:	-	60 5035 SB PR	Initial/Final: <u>4.99 g / 5 ml</u>	
Batch:	<u>B013346</u> Sequence: S004809	Calibration:	<u>UNASSIGNED</u> Instrument:	<u>VOA-1</u>
r				
CAS NO.	COMPOUND	DILUTION	CONC. (µg/Kg dry)	Q
630-20-6	1,1,1,2-Tetrachloroethane	50	600	U
71-55-6	1,1,1-Trichloroethane	50	300	U
79-34-5	1,1,2,2-Tetrachloroethane	50	300	U
79-00-5	1,1,2-Trichloroethane	50	300	U
75-34-3	1,1-Dichloroethane	50	300	U
75-35-4	1,1-Dichloroethene	50	300	U
107-06-2	1,2-Dichloroethane	50	300	U
78-87-5	1,2-Dichloropropane	50	300	U
78-93-3	2-Butanone	50	600	U
591-78-6	2-Hexanone	50	300	U
108-10-1	4-Methyl-2-Pentanone	50	300	U
67-64-1	Acetone	50	3000	U
107-02-8	Acrolein	50	6000	U
107-13-1	Acrylonitrile	50	6000	U
71-43-2	Benzene	50	300	U
75-27-4	Bromodichloromethane	50	300	U
75-25-2	Bromoform	50	300	U
74-83-9	Bromomethane	50	600	U
75-15-0	Carbon Disulfide	50	600	U
56-23-5	Carbon tetrachloride	50	300	U
108-90-7	Chlorobenzene	50	300	U
75-00-3	Chloroethane	50	600	U
67-66-3	Chloroform	50	300	U
74-87-3	Chloromethane	50	600	U
156-59-2	cis-1,2-Dichloroethene	50	300	U
10061-01-5	cis-1,3-Dichloropropene	50	300	U
124-48-1	Dibromochloromethane	50	300	U
100-41-4	Ethylbenzene	50	300	U
179601-23-1	m,p-Xylene	50	300	U
75-09-2	Methylene chloride	50	1200	Ū
1634-04-4	Methyl-t-Butyl Ether	50	300	U
95-47-6	o-Xylene	50	300	U
100-42-5	Styrene	50	300	U
127-18-4	Tetrachloroethene	50	1300	D
108-88-3	Toluene	50	300	U
156-60-5	trans-1,2-Dichloroethene	50	300	U
10061-02-6	trans-1,3-Dichloropropene	50	300	U
79-01-6	Trichloroethene	50	300	U
25323-30-2	Total 1,2-Dichloroethene	50	600	U
75-69-4	Trichlorofluoromethane	50	600	U
		<u>~</u> ~	L 000	

SDC-GP-7-1.5'

Laboratory:	Microbac Laboratories, Inc Chicagoland			SDG:	<u>11D0311</u>			
Client:	Oneida Total Integrated Enterprises			Project:	Little Chute WI			
Matrix:	<u>Solid</u>	Laboratory ID: <u>11D03</u>		<u>11D031</u>	11-07	File ID: <u>A040823.D</u>		
Sampled:	04/06/11 17:30	Prep	ared:	<u>04/08/1</u>	1 08:00	Analyzed:	04/08/11 19:51	
Solids:	83.07	Prep	aration:	<u>8260_5</u>	<u>035_SB_PR</u>	Initial/Final:	<u>4.99 g / 5 ml</u>	
Batch:	<u>B013346</u>	Sequence:	<u>S004809</u>		Calibration:	UNASSIGNED	Instrument:	<u>VOA-1</u>
CAS NO.	COMPOUND				DILUTION	CONC. (J	ıg/Kg dry)	Q
108-05-4	Vinyl Acetate				50	60	00	U
75-01-4	Vinyl chloride				50	60	00	U
1330-20-7T	Total Xylenes				50	30)0	U

and all

SDC-GP-8-1'-D

Laboratory: Client:	Microbac Laboratorie		SDG: Project:	<u>11D0311</u> Little Chute WI				
Matrix:								
	<u>Solid</u>	Laboratory ID:			File ID:	<u>A040808.D</u>		
Sampled:	04/06/11 18:00	Prepared:	<u>04/08/1</u>	1 08:00	Analyzed:	04/08/11 11:55	5	
Solids:	<u>82.91</u>	Preparation:	<u>8260_5</u>	035 SB_PR	Initial/Final:	<u>2.5 g / 5 ml</u>		
Batch:	<u>B013346</u> Sequ	ence: <u>S004809</u>	-	Calibration:	UNASSIGNED	<u>D</u> Instrument:	<u>VOA-1</u>	
CAS NO.	COMPOUND			DILUTION	CONC.	(µg/Kg dry)	Q	
630-20-6	1,1,1,2-Tetrachloroeth	ane		50		200	U	
71-55-6	1,1,1-Trichloroethane			50		500	U	
79-34-5	1,1,2,2-Tetrachloroeth	ane		50		500	U	
79-00-5	1,1,2-Trichloroethane			50		500	U	
75-34-3	1,1-Dichloroethane			50		500	U	
75-35-4	1,1-Dichloroethene			50	1	500	U	
107-06-2	1,2-Dichloroethane			50		500	U	
78-87-5	1,2-Dichloropropane			50		500	U	
78-93-3	2-Butanone			50		200	U	
591-78-6	2-Hexanone	<u> </u>		50		500	U	
108-10-1	4-Methyl-2-Pentanone		·····	50		500	U	
67-64-1	Acetone			50		000	U	
107-02-8	Acrolein	······································		50		2000	U	
107-13-1	Acrylonitrile			50		12000		
71-43-2	Benzene			50	600		U U	
75-27-4	Bromodichloromethane			50	600		U	
75-25-2	Bromoform			50		600		
74-83-9	Bromonethane			50		1200		
75-15-0	Carbon Disulfide			50		1200		
56-23-5	Carbon Disulfide Carbon tetrachloride			50		600		
108-90-7	Chlorobenzene			50	600		U U	
75-00-3	Chloroethane			50	1200		U	
67-66-3	Chloroform			50	600		U	
74-87-3	Chloromethane			50	1200		U	
156-59-2	cis-1,2-Dichloroethene	2		50	600		U	
10061-01-5	cis-1,3-Dichloroproper			50	600		U	
124-48-1	Dibromochloromethan			50	600		U	
124-48-1	Ethylbenzene	~		50			U	
179601-23-1	m,p-Xylene			50		600 600		
75-09-2	Methylene chloride			50	1	400	U U	
1634-04-4	Methyl-t-Butyl Ether	ta Mala ta a construction and and a		50			U	
<u>1634-04-4</u> 95-47-6	o-Xylene	drawacha a ann ann ann ann ann ann ann ann ann		50		600 600		
<u>95-47-6</u> 100-42-5		isterne werden einer eine einer		50		500 500	U U	
100-42-3	Styrene Toluene			50			U	
156-60-5		na		50		600		
10061-02-6	trans-1,2-Dichloroethene			50		600 600		
	trans-1,3-Dichloroprop Trichloroethene							
79-01-6	Total 1,2-Dichloroethe			50		30	JD	
25323-30-2				50		200	U	
75-69-4	Trichlorofluoromethan	e		50		200	U	
108-05-4	Vinyl Acetate			50	1 1.	200	U algod	

SDC-GP-8-1'-D

Laboratory:	Microbac Laboratories, Inc Chicagoland			SDG:	<u>11D0311</u>		
Client:	Oneida Total Integrated Enterprises			Project:	Little Chute WI		
Matrix:	<u>Solid</u>	Laboratory ID:	<u>11D03</u>	<u>11-08</u>	File ID:	<u>A040808,D</u>	
Sampled:	04/06/11 18:00	Prepared:	<u>04/08/1</u>	1 08:00	Analyzed:	04/08/11 11:55	
Solids:	<u>82.91</u>	Preparation:	<u>8260_5</u>	<u>035_SB_PR</u>	Initial/Final:	<u>2.5 g / 5 ml</u>	
Batch:	<u>B013346</u> Sequ	ence: <u>S004809</u>		Calibration:	UNASSIGNED	Instrument:	<u>VOA-1</u>
CAS NO.	COMPOUND			DILUTION	CONC. (J	ıg/Kg dry)	Q
75-01-4	Vinyl chloride			50	12	00	U
1330-20-7T	Total Xylenes			50	60	00	U

影

SDC-GP-8-1'-D

Laboratory:	Microbac Laboratories, Inc Chicagoland			SDG:	<u>11D0311</u>			
Client:	Oneida Total Integrated Enterprises			Project:	Little Chute WI			
Matrix:	Solid	Labo	oratory ID:	<u>11D031</u>	1-08RE1	File ID:	<u>A040824.D</u>	
Sampled:	04/06/11 18:00	Prepa	ared:	04/08/1	1 08:00	Analyzed:	04/08/11 20:21	
Solids:	<u>82.91</u>	Prepa	aration:	<u>8260_5</u>	<u>035_SB_PR</u>	Initial/Final:	<u>2.5 g / 5 ml</u>	
Batch:	<u>B013346</u>	Sequence:	<u>S004809</u>		Calibration:	<u>UNASSIGNED</u>	Instrument:	<u>VOA-1</u>
CAS NO.	COMPOUND				DILUTION	CONC. (µ	ıg/Kg dry)	Q
127-18-4	Tetrachloroethe	ene			10000	1400	0000	D

Ofpolit

SDC-GP-8-1'

Laboratory:	Microbac Laboratories, Inc Chicagoland		SDG:	<u>11D0311</u>		
Client:	Oneida Total Integrated Enterprises	Project:	Little Chute WI			
Matrix:	Solid Laboratory ID:	<u>11-09</u>	File ID:	A040809.D		
Sampled:	<u>04/06/11 18:00</u> Prepared:		1 08:00	Analyzed:	04/08/11 12:26	ñ
Solids:	<u>82.91</u> Preparation:		035 SB PR	Initial/Final:	<u>3.68 g / 5 ml</u>	-
Batch:					-	
r		<u>+</u>	Calibration:	UNASSIGNED		<u>VOA-1</u>
CAS NO.	COMPOUND		DILUTION	1	ıg/Kg dry)	Q
630-20-6	1,1,1,2-Tetrachloroethane		50	~~~~	20	U
71-55-6	1,1,1-Trichloroethane		50		10	U
79-34-5	1,1,2,2-Tetrachloroethane		50	41		U
79-00-5	1,1,2-Trichloroethane		50	41		U
75-34-3	1,1-Dichloroethane		50	41		U
75-35-4	1,1-Dichloroethene	······	50	41		U
107-06-2	1,2-Dichloroethane		50	41		U
78-87-5	1,2-Dichloropropane		50	41		U
78-93-3	2-Butanone		50	82		U
591-78-6	2-Hexanone		50	41		U
108-10-1	4-Methyl-2-Pentanone		50	41		U
67-64-1	Acetone		50	41		U
107-02-8	Acrolein		50	82		U
107-13-1	Acrylonitrile		50	82		U
71-43-2	Benzene		50	41	0	U
75-27-4	Bromodichloromethane		50	41	0	U
75-25-2	Bromoform		50	41	0	U
74-83-9	Bromomethane		50	82	.0	U
75-15-0	Carbon Disulfide		50	82	.0	U
56-23-5	Carbon tetrachloride		50	41	0	U
108-90-7	Chlorobenzene		50	41	0	U
75-00-3	Chloroethane		50	82	.0	U
67-66-3	Chloroform		50	41	0	U
74-87-3	Chloromethane		50	82	0	U
156-59-2	cis-1,2-Dichloroethene		50	41	0	U
10061-01-5	cis-1,3-Dichloropropene		50	41	0	U
124-48-1	Dibromochloromethane		50	41	0	U
100-41-4	Ethylbenzene		50	41	0	U
179601-23-1	m,p-Xylene		50	41	0	U
75-09-2	Methylene chloride		50	160	00	U
1634-04-4	Methyl-t-Butyl Ether		50	41	0	U
95-47-6	o-Xylene		50	41	0	U
100-42-5	Styrene		50	41	0	U
108-88-3	Toluene		50	41	0	U
156-60-5	trans-1,2-Dichloroethene		50	41	0	U
10061-02-6	trans-1,3-Dichloropropene	T	50	41	0	U
79-01-6	Trichloroethene		50	12	0	ЛD
25323-30-2	Total 1,2-Dichloroethene		50	82	0	U
75-69-4	Trichlorofluoromethane	T	50	82	0	U
108-05-4	Vinyl Acetate		50	82	0	U

offor "

SDC-GP-8-1'

Laboratory:	Microbac Laboratories, Inc Chicagoland			SDG:	<u>11D0311</u>		
Client:	Oneida Total Integrated Enterprises			Project:	Little Chute WI		
Matrix:	<u>Solid</u>	Laboratory ID:	<u>11D031</u>	11-09	File ID:	<u>A040809.D</u>	
Sampled:	04/06/11 18:00	Prepared:	04/08/1	1 08:00	Analyzed:	04/08/11 12:26	
Solids:	<u>82.91</u>	Preparation:	<u>8260_5</u>	<u>035_SB_PR</u>	Initial/Final:	<u>3.68 g / 5 ml</u>	
Batch:	<u>B013346</u> Sequ	uence: <u>S004809</u>		Calibration:	UNASSIGNED	Instrument:	<u>VOA-1</u>
CAS NO.	COMPOUND			DILUTION	CONC. (J	ıg/Kg dry)	Q
75-01-4	Vinyl chloride			50	82	20	U
1330-20-7T	Total Xylenes			50	4	10	U

05.00111

SDC-GP-8-1'

Laboratory:	Microbac Laboratories, Inc Chicagoland			SDG:	<u>11D0311</u>			
Client:	Oneida Total Integrated Enterprises		Project:		Little Chute WI			
Matrix:	Solid	Labo	ratory ID:	<u>11D03</u>	<u>11-09RE1</u>	File ID:	<u>A040825.D</u>	
Sampled:	04/06/11 18:00	Prepa	ared:	<u>04/08/1</u>	1 08:00	Analyzed:	04/08/11 20:52	
Solids:	<u>82.91</u>	Prepa	aration:	<u>8260_5</u>	035_SB_PR	Initial/Final:	<u>3.68 g / 5 ml</u>	
Batch:	<u>B013346</u>	Sequence:	<u>S004809</u>		Calibration:	UNASSIGNED	Instrument:	<u>VOA-1</u>
CAS NO.	COMPOUND				DILUTION	CONC. (µ	ıg/Kg dry)	Q
127-18-4	Tetrachloroethe	ne			10000	390	000	D

appli

SDC-GW-2

Client:	Oneida Total Integrated	l Enterprises		Project:	Little Chute WI		
Matrix:	Aqueous	Laboratory ID:	<u>11D03</u>	11-10	File ID:	<u>A040716.D</u>	
Sampled:	04/07/11 08:00	Prepared:	04/07/1	1 17:00	Analyzed: <u>04/07/11 17:34</u>		
Solids:		Preparation:	8260 F	STEX+M PR	Initial/Final:	5 ml / 5 ml	
Batch:	<u>B013225</u> Seque	-	0200	Calibration:	UNASSIGNED		VOA-1
CAS NO.	COMPOUND			DILUTION		. (μg/L)	Q
630-20-6	1,1,1,2-Tetrachloroetha	***		10	1		U
71-55-6	1,1,1-Trichloroethane		· · · · · · · · · · · · · · · · · · ·	10		50	U
79-34-5	1,1,2,2-Tetrachloroetha	ne		10		50	U
79-00-5	1,1,2-Trichloroethane			10		50	U
75-34-3	1,1-Dichloroethane			10		50	U
75-35-4	1,1-Dichloroethene			10		50	U
107-06-2	1,2-Dichloroethane			10		50	U
78-87-5	1,2-Dichloropropane			10		50	U
78-93-3	2-Butanone			10		00	U
<u>591-78-6</u>	2-Hexanone			10		00	U
108-10-1	4-Methyl-2-Pentanone			10		00	U
67-64-1	Acetone			10		00	U
107-02-8	Acrolein			10		000	U
107-02-0	Acrylonitrile			10		000	U
71-43-2	Benzene	· <u> </u>		10		50	U
75-27-4	Bromodichloromethane			10		i0	U
75-25-2	Bromoform			10		i0	U
74-83-9	Bromomethane			10		00	U
75-15-0	Carbon Disulfide			10		00	U
56-23-5	Carbon tetrachloride			10		50	U
108-90-7	Chlorobenzene			10		i0	U
75-00-3	Chloroethane			10		00	U
67-66-3	Chloroform			10		i0	U
74-87-3	Chloromethane			10		00	U
156-59-2	cis-1,2-Dichloroethene			10		i0	U
10061-01-5	cis-1,3-Dichloropropen	e		10		0	U
124-48-1	Dibromochloromethane			10	1	0	U
100-41-4	Ethylbenzene			10		0	U
179601-23-1	m,p-Xylene			10		0	U
75-09-2	Methylene chloride			10		00	U
1634-04-4	Methyl-t-Butyl Ether			10		0	U
95-47-6	o-Xylene	444m444		10		0	Ū
100-42-5	Styrene			10	· · · · · · · · · · · · · · · · · · ·	0	U
127-18-4	Tetrachloroethene			10		30	D
108-88-3	Toluene			10		0	U
156-60-5	trans-1,2-Dichloroethen	e		10		0	U
10061-02-6	trans-1,3-Dichloroprope			10	1	0	U
79-01-6	Trichloroethene			10		0	U
75-69-4	Trichlorofluoromethane	;		10		00	U
108-05-4	Vinyl Acetate			10		00	U

SDC-GW-2

Laboratory:	Microbac Laboratories, Inc Chicagoland			SDG:	<u>11D0311</u>		
Client:	Oneida Total Inte	egrated Enterprises		Project:	Little Chute WI		
Matrix:	Aqueous	Laboratory ID:	11D03	11-10	File ID:	<u>A040716.D</u>	
Sampled:	<u>04/07/11 08:00</u>	Prepared:	<u>04/07/1</u>	1 17:00	Analyzed:	04/07/11 17:34	
Solids:		Preparation:	<u>8260_</u> E	BTEX+M_PR	Initial/Final:	<u>5 ml / 5 ml</u>	
Batch:	<u>B013225</u>	Sequence: <u>S004751</u>		Calibration:	<u>UNASSIGNED</u>	Instrument:	VOA-1
CAS NO.	COMPOUND			DILUTION	CONC	. (μg/L)	Q
75-01-4	Vinyl chloride			10	2	0	U
25323-30-2	Total 1,2-Dichlor	roethene		10	5	0	U
1330-20-7T	Total Xylenes			10	5	0	U

* Values outside of QC limits

2522/11

SDC-GW-8

Laboratory:	Microbac Laboratories,	Inc Chicagoland		SDG:	<u>11D0311</u>		
Client:	Oneida Total Integrated	Enterprises		Project:	Little Chute WI		
Matrix:	Aqueous	Laboratory ID:	<u>11D031</u>	<u>1-11</u>	File ID:	<u>A040717.D</u>	
Sampled:	04/07/11 09:00	Prepared:		1 17:00	Analyzed:	04/07/11 18:05	
-	0.1.0.1/11 00.00	-			•		
Solids:	DALADA	Preparation:		TEX+M_PR	Initial/Final:	<u>5 ml / 5 ml</u>	
Batch:	<u>B013225</u> Sequer	nce: <u>S004751</u>		Calibration:	UNASSIGNED		<u>VOA-1</u>
CAS NO.	COMPOUND			DILUTION	7	. (μg/L)	Q
630-20-6	1,1,1,2-Tetrachloroetha	ne		100		00	U
71-55-6	1,1,1-Trichloroethane			100		00	U
79-34-5	1,1,2,2-Tetrachloroetha	ne		100		00	U
79-00-5	1,1,2-Trichloroethane			100	50	00	U
75-34-3	1,1-Dichloroethane			100	50	00	U
75-35-4	1,1-Dichloroethene			100	50	00	U
107-06-2	1,2-Dichloroethane			100	5(00	U
78-87-5	1,2-Dichloropropane			100	50	00	U
78-93-3	2-Butanone			100	10	00	U
591-78-6	2-Hexanone			100	10	00	U
108-10-1	4-Methyl-2-Pentanone			100	10	00	U
67-64-1	Acetone			100	50	00	U
107-02-8	Acrolein			100	100	000	U
107-13-1	Acrylonitrile			100	100	000	U
71-43-2	Benzene			100	50)0	U
75-27-4	Bromodichloromethane			100	5()0	U
75-25-2	Bromoform			100	5()0	U
74-83-9	Bromomethane			100	10	00	U
75-15-0	Carbon Disulfide	······································		100	10	00	U
56-23-5	Carbon tetrachloride	······································		100	50)0	U
108-90-7	Chlorobenzene			100	50)0	U
75-00-3	Chloroethane			100	10		U
67-66-3	Chloroform			100	50		U
74-87-3	Chloromethane			100	10		U
156-59-2	cis-1,2-Dichloroethene		19	100	50		U
10061-01-5	cis-1,3-Dichloropropene	3		100	50		U
124-48-1	Dibromochloromethane			100	50		U
100-41-4	Ethylbenzene	······································		100	50		U
179601-23-1	m,p-Xylene			100	50		U
75-09-2	Methylene chloride			100	10		U
1634-04-4	Methyl-t-Butyl Ether	,		100	50		U
95-47-6	o-Xylene			100	50		U
100-42-5	Styrene			100	50		U
127-18-4	Tetrachloroethene			100	150		D
108-88-3	Toluene			100	50		<u>D</u>
156-60-5	trans-1,2-Dichloroethen	e		100	50		U
10061-02-6	trans-1,3-Dichloroprope			100	50		U
79-01-6	Trichloroethene			100	50		U
75-69-4	Trichlorofluoromethane			100	100		<u> </u>
10 07 1	Vinyl Acetate			100	100		

SDC-GW-8

Laboratory:	Microbac Laboratories, Inc Chicagoland		SDG:		<u>11D0311</u>			
Client:	Oneida Total Integrated Enterprises			Project:	Little Chute WI			
Matrix:	Aqueous	Labo	oratory ID:	<u>11D031</u>	1-11	File ID:	<u>A040717.D</u>	
Sampled:	04/07/11 09:00	Prep	ared:	<u>04/07/1</u>	1 17:00	Analyzed:	04/07/11 18:05	
Solids:		Prep	paration:	<u>8260</u> B	TEX+M_PR	Initial/Final:	<u>5 ml / 5 ml</u>	
Batch:	<u>B013225</u>	Sequence:	<u>S004751</u>		Calibration:	<u>UNASSIGNED</u>	Instrument:	VOA-1
CAS NO.	COMPOUND				DILUTION	CONC	. (μg/L)	Q
75-01-4	Vinyl chloride				100	20)0	U
25323-30-2	Total 1,2-Dichlo	oroethene			100	5()0	U
1330-20-7T	Total Xylenes				100	5()0	U

* Values outside of QC limits

appoint

SDC-GP-9-5'

Laboratory:	Microbac Laboratories, Inc Chicagoland	SDG:	<u>11D0311</u>	
Client:	Oneida Total Integrated Enterprises	Project:	Little Chute WI	
Matrix:	Solid Laboratory ID: 11	D0311-12	File ID: A041012.D	
Sampled:	• • • • • • • • • • • • • • • • •	/10/11 20:00	Analyzed: 04/11/11 03:34	4
Solids:	-	60 5035 SB PR	Initial/Final: $5.12 \text{ g} / 5 \text{ ml}$	<u>-</u>
	• • • •			V04.1
Batch:	<u>B013333</u> Sequence: <u>S004803</u>	Calibration:	<u>UNASSIGNED</u> Instrument:	<u>VOA-1</u>
CAS NO.	COMPOUND	DILUTION	CONC. (µg/Kg dry)	Q
630-20-6	1,1,1,2-Tetrachloroethane	1	12	U
71-55-6	1,1,1-Trichloroethane	1	5.9	U
79-34-5	1,1,2,2-Tetrachloroethane	1	5.9	U
79-00-5	1,1,2-Trichloroethane	1	5.9	U
75-34-3	1,1-Dichloroethane	1	5.9	U
75-35-4	1,1-Dichloroethene	1	5.9	U
107-06-2	1,2-Dichloroethane	1	5.9	U
78-87-5	1,2-Dichloropropane	1	5.9	U
78-93-3	2-Butanone	1	12	U
591-78-6	2-Hexanone	1	5.9	U
108-10-1	4-Methyl-2-Pentanone	1	5.9	U
67-64-1	Acetone	1	23	J
107-02-8	Acrolein	1	120	U
107-13-1	Acrylonitrile	1	120	U
71-43-2	Benzene	1	1.8	J
75-27-4	Bromodichloromethane	1	5.9	U
75-25-2	Bromoform	1	5.9	U
74-83-9	Bromomethane	1	12	U
75-15-0	Carbon Disulfide	1	12	U
56-23-5	Carbon tetrachloride	1	5.9	U
108-90-7	Chlorobenzene	1	5.9	U
75-00-3	Chloroethane	1	12	U
67-66-3	Chloroform	1	5.9	U
74-87-3	Chloromethane	1	12	U
156-59-2	cis-1,2-Dichloroethene	1	5.9	U
10061-01-5	cis-1,3-Dichloropropene	1	5.9	U
124-48-1	Dibromochloromethane	1	5.9	U
100-41-4	Ethylbenzene	1	2.8	J
179601-23-1	m,p-Xylene	· 1	3.3	J
75-09-2	Methylene chloride	1	23	U
1634-04-4	Methyl-t-Butyl Ether	1	5.9	U
95-47-6	o-Xylene	1	1.2	J
100-42-5	Styrene	1	5.9	U
127-18-4	Tetrachloroethene	1	19	
108-88-3	Toluene	1	4.6	J
156-60-5	trans-1,2-Dichloroethene	1	5.9	U
10061-02-6	trans-1,3-Dichloropropene	1	5.9	U
79-01-6	Trichloroethene	1	5.9	U
25323-30-2	Total 1,2-Dichloroethene	1	12	U
75-69-4	Trichlorofluoromethane	1	12	U

aspoli

SDC-GP-9-5'

Laboratory:	Microbac Laboratories, Inc Chicagoland		SDG:		<u>11D0311</u>			
Client:	Oneida Total Integrated Enterprises			Project:	Little Chute WI			
Matrix:	<u>Solid</u>	Labo	ratory ID:	<u>11D031</u>	1-12	File ID:	<u>A041012.D</u>	
Sampled:	04/07/11 07:45	Prepa	ared:	04/10/1	1 20:00	Analyzed:	<u>04/11/11 03:34</u>	
Solids:	<u>83.39</u>	Prepa	aration:	8260_5	<u>035_SB_PR</u>	Initial/Final:	<u>5.12 g / 5 ml</u>	
Batch:	<u>B013333</u>	Sequence:	<u>S004803</u>		Calibration:	<u>UNASSIGNED</u>	Instrument:	VOA-1
CAS NO.	COMPOUND				DILUTION	CONC. (µ	ıg/Kg dry)	Q
108-05-4	Vinyl Acetate				1	1	2	U
75-01-4	Vinyl chloride				1	1	2	U
1330-20-7T	Total Xylenes				1	4	.5	J

* Values outside of QC limits

azpoliu

SDC-GP-10-1'

Client:	Oneida Total Integrate			Project:	Little Chute WI	1040001 -	
Aatrix:	Solid	Laboratory ID:	<u>11D03</u>		File ID:	<u>A040821.D</u>	
Sampled:	04/07/11 08:45	Prepared:	<u>04/08/1</u>	1 08:00	Analyzed:	04/08/11 18:5	<u>0</u>
Solids:	<u>88.47</u>	Preparation:	<u>8260_5</u>	<u>035_SB_PR</u>	Initial/Final:	<u>4.41 g / 5 ml</u>	
Batch:	<u>B013346</u> Seque	ence: <u>S004809</u>		Calibration:	UNASSIGNED	Instrument:	VOA-1
CAS NO.	COMPOUND			DILUTION		µg/Kg dry)	Q
630-20-6	1,1,1,2-Tetrachloroeth	ane		50		40	U
71-55-6	1,1,1-Trichloroethane			50		20	U
79-34-5	1,1,2,2-Tetrachloroeth	ane		50		20	U
79-00-5	1,1,2-Trichloroethane			50		20	U
75-34-3	1,1-Dichloroethane	· · · · · · · · · · · · · · · · · · ·		50		20	U
75-35-4	1.1-Dichloroethene			50		20	U
107-06-2	1,2-Dichloroethane			50		20	U
78-87-5	1,2-Dichloropropane	<u> </u>		50		20	U
78-93-3	2-Butanone			50		40	U
591-78-6	2-Hexanone			50		20	U
108-10-1	4-Methyl-2-Pentanone			50		20	U
67-64-1	Acetone			50		200	U U
107-02-8	Acrolein			50		400	U
107-13-1	Acrylonitrile			50		400	U
71-43-2	Benzene			50		20	U
75-27-4	Bromodichloromethan	e		50		20	U
75-25-2	Bromoform	-		50		20	U
74-83-9	Bromomethane			50	1	40	U
75-15-0	Carbon Disulfide			50		40	U
56-23-5	Carbon tetrachloride			50		20	U
108-90-7	Chlorobenzene			50		20	U
75-00-3	Chloroethane			50	··· • • ··· ··· ··· ··· ··· ··· ··· ···	40	U
67-66-3	Chloroform			50		20	U
74-87-3	Chloromethane			50		40	U
156-59-2	cis-1,2-Dichloroethene			50		20	U
10061-01-5	cis-1,3-Dichloroproper			50		20	U
124-48-1	Dibromochloromethan			50		20	U
100-41-4	Ethylbenzene			50		20	U
1	m,p-Xylene	·····		50		20	U
	Methylene chloride			50	······	800	U
	Methyl-t-Butyl Ether			50		20	U
95-47-6	o-Xylene			50		20	U
100-42-5	Styrene			50		20	U
127-18-4	Tetrachloroethene			50		500	D
	Toluene	******		50		20	U
156-60-5	trans-1,2-Dichloroether	ne		50		20	U
	trans-1,3-Dichloroprop			50	1	20	U
	Trichloroethene	~		50		20	U
	Total 1,2-Dichloroethe	ne		50		40	U
<u>2-0C-Cuccu</u>	Trichlorofluoromethan			<u></u>		40	U V

SDC-GP-10-1'

Laboratory:	Microbac Labora	atories, Inc Chicagolar	d	SDG:	<u>11D0311</u>		
Client:	Oneida Total Int	egrated Enterprises		Project:	Little Chute WI		
Matrix:	<u>Solid</u>	Laboratory ID:	<u>11D03</u>	<u>11-13</u>	File ID:	<u>A040821.D</u>	
Sampled:	<u>04/07/11 08:45</u>	Prepared:	04/08/1	1 08:00	Analyzed:	04/08/11 18:50	
Solids:	<u>88.47</u>	Preparation:	<u>8260_5</u>	035_SB_PR	Initial/Final:	<u>4.41 g / 5 ml</u>	
Batch:	<u>B013346</u>	Sequence: <u>S0048</u>	<u>09</u>	Calibration:	UNASSIGNED	Instrument:	VOA-1
CAS NO.	COMPOUND			DILUTION	CONC. (J	ug/Kg dry)	Q
108-05-4	Vinyl Acetate			50	64	40	U
75-01-4	Vinyl chloride			50	64	40	U
1330-20-7T	Total Xylenes			50	32	20	U

* Values outside of QC limits

Spolu

SDC-GP-11-2'

Client: Oncida Total Integrated Enterprises Project: Little Chute WI Matrix: Schid Laboratory ID: J110311-14 File ID: A040822.D Sampled: 04/07/11 09-20 Preparation: 02/06/11 08-20 Analyzed: A040812 11 9-20 Solids: B155 Preparation: 8226 0355 SB PR Initial/Final: 5.28 g/ Sm Batch: B013246 Sequence: S004800 Calibration: UNASSIGNED Instrument: VOA-1 CAS NO. COMPOUND DILUTION CONC. (gr/K g/qr) Q Q 630-20-6 1,1,1-Trichloroethane 50 290 U U 73-34-3 1,1,2-Entenhoroethane 50 290 U U 73-34-3 1,2-Dichloroethane 50 290 U U 78-87-3 1,2-Dichloroethane 50 290 U U 78-87-3 1,2-Dichloroethane 50 290 U U 78-87-3 1,2-Dichloroethane 50 290	Laboratory:	Microbac Laboratories, Inc Chicagoland	SDG:	<u>11D0311</u>	
Matrix: Solid Laboratory ID: 11D0311-14 File ID: A040822.D Sampled: 94/07/11 09/20 Prepared: 94/08/11 08/00 Analyzed: 94/08/11 19/20 Solids: 8.1.5 Preparation: \$260_035_SB_PR Initial/Final: \$2.87_15 Batch: B013346 Sequence: S004809 Calibration: UNASSIGNED Instrument: YOA-1 CAS NO. COMPOUND DILUTION CONC. (µg/kg dry) Q 30/00 0 71:55-6 1,1,1-Trichloroethane 50 290 U 1/2-20 73:43-1 1,1,D-Trichloroethane 50 290 U 1/2-37 73:43-1 1,1-Dichloroethane 50 290 U 1/2-37 73:43-1 1,D-Dichloroethane 50 290 U 1/2-37 73:43-1 1,D-Dichloroethane 50 290 U 1/2-37 73:43-1 1,D-Dichloroethane 50 290 U 1/2-37 74:87:5 1,D-Dichloroethane	Client:	Oneida Total Integrated Enterprises	Project:	Little Chute WI	
Samplet: 94/07/11.09:20 Prepared: 94/08/11.08:00 Analyzed: 94/08/11.19:20 Solids: 81.55 Preparation: 8260.5035_SB_PR Initial/Final: 5.28 g / 5 ml Batch: B013246 Sequence: S004809 Calibration: UNASSIGNED Initial/Final: 5.28 g / 5 ml G50-20-6 1,1,12-Tetrahloroethane 5.0 580 U U 79-34-5 1,1,12-Tetrahloroethane 5.0 290 U U 79-34-5 1,1,12-Tetrahloroethane 5.0 290 U U 73-34-3 1,1-Dichloroethane 5.0 290 U U 75-35-4 1,1-Dichloroethane 5.0 290 U U 78-87-5 1,2-Dichloroethane 5.0 290 U U 78-87-5 1,2-Dichloroethane 5.0 290 U U 78-87-5 2-Hexanne 5.0 290 U U U 78-87-5 2-Hexanne 5.0 290	Matrix:		5		
Solids: 81.55 Preparation: 8260_5035_SB_PR Initial/Final: 5.28 g/5 ml Butch: B013345 Sequence: S004809 Calibration: UNASSIGNED Instrument: YOA-1 CAS NO. COMPOUND DILUTION CONC (grg g d y) Q G30-20-6 1,1,1-2Tetheloroethane 50 290 U 79-00-5 1,1,2-Tetheloroethane 50 290 U 79-00-5 1,1,2-Tetheloroethane 50 290 U 79-00-5 1,2-Dichloroethane 50 290 U 73-34-3 1,1-Dichloroethane 50 290 U 73-54-3 1,1-Dichloroethane 50 290 U 78-93-3 1,2-Dichloropropane 50 290 U 78-94-3 1,2-Dichloropropane 50 290 U 107-02-8 Acrolein 50 290 U 107-02-8 Acrolein 50 2800 U 107-13-1 Acrylonirile 50 <t< td=""><td></td><td>• • • • •</td><td></td><td></td><td>20</td></t<>		• • • • •			20
Batch: B013345 Sequence: S004809 Calibration: UNASSIGNED Instrument: VOA-1 CAS NO. COMPOUND DILUTION CONC. (µg/Kg dry) Q 630-20-6 1,1,1,7:chtrachloroethane 50 290 U 71-55-6 1,1,1-7:chtrocrethane 50 290 U 73-34-3 1,1-Dichtoroethane 50 290 U 75-34-3 1,1-Dichtoroethane 50 290 U 75-34-3 1,1-Dichtoroethane 50 290 U 78-87-5 1,2-Dichtoroethane 50 290	-	•			
CAS NO. COMPOUND DILUTION CONC. $(\mu g/Kg dry)$ Q 630-20-6 1,1,1-2-Tetrachloroethane 50 580 U 71-55-6 1,1,2-2-Tetrachloroethane 50 290 U 79-34-5 1,1,2-2-Tetrachloroethane 50 290 U 79-34-5 1,1,2-2-Tetrachloroethane 50 290 U 75-34-3 1,1-Dichloroethane 50 290 U 75-34-3 1,1-Dichloroethane 50 290 U 78-87-5 1,2-Dichloroethane 50 290 U 108-10-1 4-Methyl-2-Pentanone 50 290 U 108-10-1 Acetone 50 290 U 107-278 Acetone 50 5800 U 75-25-2 Bromonethane		· · · · · · · · · · · · · · · · · · ·		-	
630-20-6 1,1,1,2-Tetrachloroethane 50 580 U 71-55-6 1,1,1-Trichloroethane 50 290 U 79-34-5 1,1,2-Trichloroethane 50 290 U 73-34-3 1,1-Dichloroethane 50 290 U 73-35-4 1,1-Dichloroethane 50 290 U 78-93-3 2-Butanone 50 290 U 78-93-3 2-Dichloropropare 50 290 U 107-06-2 1,2-Dichloropropare 50 290 U 108-10-1 4-Methyl-2-Pentanone 50 290 U 107-13-1 Acylonitrile 50 5800 U 107-2-8 Acrolein 50 290 U 75-27-4 Bromodermane 50	r		•	UNASSIGNED Instrument:	<u>VOA-1</u>
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	CAS NO.	COMPOUND	DILUTION	CONC. (µg/Kg dry)	Q
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	630-20-6	1,1,1,2-Tetrachloroethane			U
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	71-55-6		50	290	U
75.34.3 1,1-Dichloroethane 50 290 U 75.35.4 1,1-Dichloroethane 50 290 U 107.06.2 1,2-Dichloroethane 50 290 U 78.87.5 1,2-Dichloroethane 50 290 U 78.93.3 2-Butanone 50 290 U 78.97.5 1,2-Dichloroethane 50 290 U 78.93.3 2-Butanone 50 290 U 91.78.6 2-Hexanone 50 290 U 108.10-1 4-Methyl-2-Pentanone 50 290 U 107.02.8 Acrolein 50 5800 U 107.13.1 Acrylonitile 50 5800 U 75.27.4 Bromoform 50 290 U 74.83.9 Bromomethane 50 290 U 75.15.0 Carbon Disulfide 50 290 U 75.43.5 Chlorobenzene 50 280 U <td></td> <td></td> <td></td> <td></td> <td></td>					
75-35-4 1,1-Dichloroethane 50 290 U 107-06-2 1,2-Dichloroethane 50 290 U 78-87-5 1,2-Dichloroethane 50 290 U 78-93-3 2-Butaone 50 580 U 591-78-6 2-Hexanone 50 290 U 108-10-1 4-Methyl-2-Pentanone 50 290 U 107-02-8 Acrolein 50 290 U 107-13-1 Actylonitrile 50 5800 U 75-27-4 Bromodichloromethane 50 290 U 75-27-5 Bromodichloromethane 50 290 U 75-25-2 Bromoderm 50 580 U 75-15-0 Carbon Disulfide 50 580 U 75-15-0 Carbon tetrachloride 50 290 U 108-90-7 Chlorobenzene 50 290 U 75-66-3 Chlorobethane 50 290 <td< td=""><td></td><td></td><td></td><td>290</td><td></td></td<>				290	
107-06-2 1,2-Dichloropropane 50 290 U 78-87-5 1,2-Dichloropropane 50 290 U 78-93-3 2-Butanone 50 580 U 107-86-0 2-Hexanone 50 290 U 108-10-1 4-Methyl-2-Pentanone 50 290 U 67-64-1 Acetone 50 5800 U 107-02-8 Acetone 50 5800 U 107-13-1 Acrylonitrile 50 5800 U 71-43-2 Benzene 50 290 U 75-25-3 Bromoform 50 290 U 74-83-9 Bromomethane 50 290 U 74-83-9 Bromomethane 50 290 U 75-15-0 Carbon trancholide 50 290 U 76-6-3 Chlorobenzene 50 290 U 78-75-5 Carbon tranchide 50 290 U			50	290	U
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
78-93-3 2-Butanone 50 580 U 191-78-6 2-Hexanone 50 290 U 108-10-1 4-Methyl-2-Pentanone 50 290 U 67-64-1 Acetone 50 2900 U 107-02-8 Acrolein 50 2900 U 107-13-1 Acrylonitrile 50 5800 U 71-43-2 Benzene 50 290 U 75-27-4 Bromodichloromethane 50 290 U 75-15-0 Carbon Disulfide 50 580 U 75-15-0 Carbon bisulfide 50 580 U 75-15-0 Carbon bisulfide 50 290 U 108-90-7 Chlorobenzene 50 290 U 76-66-3 Chloroform 50 290 U 74-87-3 Chloromethane 50 290 U 106-10-1-5 cis-1,3-Dichloropropene 50 290 U			·····		
591-78-6 $2+Hexanone$ 50 290 U $108+10-1$ $4-Methyl-2-Pentanone$ 50 290 U $67-64-1$ $Acctone$ 50 2900 U $107-02-8$ $Acrolein$ 50 5800 U $107-02-8$ $Acrolein$ 50 5800 U $107-13-1$ $Acrylonitrile$ 50 5800 U $71-43-2$ Benzene 50 290 U $75-27-4$ Bromodichloromethane 50 290 U $75-25-2$ Bromomethane 50 290 U $75-15-0$ Carbon Disulfide 50 580 U $56-23-5$ Carbon tetrachloride 50 2900 U $108-90-7$ Chlorobenzene 50 2900 U $75-06-3$ Chlorobenzene 50 2900 U $75-06-3$ Chlorobenzene 50 290 U $75-06-3$ <t< td=""><td>78-87-5</td><td>1,2-Dichloropropane</td><td>50</td><td>290</td><td>U</td></t<>	78-87-5	1,2-Dichloropropane	50	290	U
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	78-93-3	2-Butanone	50	580	U
67-64-1 Acetone 50 2900 U 107-02-8 Acrolein 50 5800 U 107-13-1 Acrylonitrile 50 5800 U 71-43-2 Benzene 50 290 U 75-27-4 Bromodichloromethane 50 290 U 75-25-2 Bromodichloromethane 50 290 U 74-83-9 Bromomethane 50 290 U 75-25-2 Bromomethane 50 290 U 75-25-2 Bromomethane 50 290 U 75-25-2 Bromomethane 50 290 U 75-15-0 Carbon Disulfide 50 290 U 108-90-7 Chlorobenzene 50 290 U 75-60-3 Chloromethane 50 290 U 74-87-3 Chloromethane 50 290 U 10661-01-5 cis-1,2-Dichloroethene 50 290 U <	591-78-6	2-Hexanone	50	290	U
107-02-8 Acrolein 50 5800 U 107-13-1 Acrylonitrile 50 5800 U 71-43-2 Benzene 50 290 U 75-27-4 Bromodichormethane 50 290 U 75-25-2 Bromoform 50 290 U 74-83-9 Bromomethane 50 290 U 75-25-2 Bromomethane 50 290 U 74-83-9 Bromomethane 50 580 U 75-15-0 Carbon Disulfide 50 580 U 56-23-5 Carbon tetrachloride 50 290 U 108-90-7 Chlorobenzene 50 290 U 75-00-3 Chloroform 50 290 U 74-87-3 Chloromethane 50 290 U 1064-10-5 cis-1,3-Dichloropropene 50 290 U 10041-04 Ethylbenzene 50 290 U	108-10-1	4-Methyl-2-Pentanone	50	290	U
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	67-64-1	Acetone	50	2900	U
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Acrolein	50	5800	U
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	107-13-1	Acrylonitrile	50	5800	U
75-25-2 Bromoform 50 290 U 74-83-9 Bromomethane 50 580 U 75-15-0 Carbon Disulfide 50 580 U 56-23-5 Carbon tetrachloride 50 290 U 108-90-7 Chlorobenzene 50 290 U 75-00-3 Chlorobentane 50 290 U 67-66-3 Chloroform 50 290 U 74-87-3 Chloromethane 50 290 U 10061-01-5 cis-1,2-Dichloroethene 50 290 U 10061-01-5 cis-1,3-Dichloropropene 50 290 U 100-41-4 Ethylbenzene 50 290 U 179601-23-1 m,p-Xylene 50 290 U 1634-04-4 Methylen chloride 50 290 U 100-42-5 Styrene 50 290 U 100-42-5 Styrene 50 290 U	71-43-2	Benzene	50	290	U
74-83-9Bromomethane 50 580 U $75-15-0$ Carbon Disulfide 50 580 U $56-23-5$ Carbon tetrachloride 50 290 U $108-90-7$ Chlorobenzene 50 290 U $75-00-3$ Chlorothane 50 290 U $67-66-3$ Chlorothane 50 290 U $74-87-3$ Chlorothane 50 290 U $74-87-3$ Chlorothorethene 50 290 U $10061-01-5$ cis-1,3-Dichloroethene 50 290 U $10061-01-5$ cis-1,3-Dichloromethane 50 290 U $100-41-4$ Ethylbenzene 50 290 U $10-41-4$ Ethylbenzene 50 290 U $179601-23-1$ m,p-Xylene 50 290 U $134-04-4$ Methyl-t-Butyl Ether 50 290 U $10-42-5$ Styrene 50 290 U $10-42-5$ Styrene 50 290 U $102-42-5$ Styrene 50 290 U $108-88-3$ Toluene 50 290 U $1066-0-5t$ trans-1,2-Dichloroethene 50 290 U $10061-02-6t$ trans-1,3-Dichloropropene 50 290 U $10061-02-6t$ trans-1,3-Dichloropthene 50 290 U $10061-02-6t$ trans-1,3-Dichloropthene 50 290 U $10061-02-6t$ <td>75-27-4</td> <td>Bromodichloromethane</td> <td>50</td> <td>290</td> <td>U</td>	75-27-4	Bromodichloromethane	50	290	U
75-15-0 Carbon Disulfide 50 580 U 56-23-5 Carbon tetrachloride 50 290 U 108-90-7 Chlorobenzene 50 290 U 75-00-3 Chloroethane 50 290 U 67-66-3 Chloroethane 50 580 U 67-66-3 Chloromethane 50 290 U 74-87-3 Chloromethane 50 290 U 156-59-2 cis-1,2-Dichloroethene 50 290 U 10061-01-5 cis-1,3-Dichloropropene 50 290 U 100-41-4 Ethylbenzene 50 290 U 179601-23-1 m.p-Xylene 50 290 U 1634-04-4 Methyl-t-Butyl Ether 50 290 U 1634-04-4 Methyl-t-Butyl Ether 50 290 U 100-42-5 Styrene 50 290 U 100-42-5 Styrene 50 290	75-25-2	Bromoform	50	290	U
56-23-5 Carbon tetrachloride 50 290 U 108-90-7 Chlorobenzene 50 290 U 75-00-3 Chlorobenzene 50 580 U 67-66-3 Chloroform 50 290 U 74-87-3 Chloromethane 50 290 U 156-59-2 cis-1,2-Dichloroethene 50 290 U 10061-01-5 cis-1,3-Dichloropropene 50 290 U 10041-4 Ethylbenzene 50 290 U 100-41-4 Ethylbenzene 50 290 U 179601-23-1 m,p-Xylene 50 290 U 1634-04-4 Methyl-t-Butyl Ether 50 290 U 1634-04-4 Methyl-t-Butyl Ether 50 290 U 100-42-5 Styrene 50 290 U 100-42-5 Styrene 50 290 U 100-42-5 Styrene 50 290 U <td>74-83-9</td> <td>Bromomethane</td> <td>50</td> <td>580</td> <td>U</td>	74-83-9	Bromomethane	50	580	U
108-90-7 Chlorobenzene 50 290 U 75-00-3 Chloroethane 50 580 U 67-66-3 Chloroform 50 290 U 74-87-3 Chloromethane 50 580 U 156-59-2 cis-1,2-Dichloroethene 50 290 U 10061-01-5 cis-1,3-Dichloropropene 50 290 U 100-41-4 Ethylbenzene 50 290 U 100-41-4 Ethylbenzene 50 290 U 179601-23-1 m,p-Xylene 50 290 U 1634-04-4 Methylen chloride 50 1200 U 1634-04-4 Methylen chloride 50 290 U 100-42-5 Styrene 50 290 U 100-42-5 Styrene 50 290 U 107-18-4 Tetrachloroethene 50 290 U 108-88-3 Toluene 50 290 U <	75-15-0	Carbon Disulfide	50	580	U
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	56-23-5	Carbon tetrachloride	50	290	U
67-66-3 Chloroform 50 290 U 74-87-3 Chloromethane 50 580 U 156-59-2 cis-1,2-Dichloroethene 50 290 U 10061-01-5 cis-1,3-Dichloropropene 50 290 U 124-48-1 Dibromochloromethane 50 290 U 100-41-4 Ethylbenzene 50 290 U 179601-23-1 m,p-Xylene 50 290 U 75-09-2 Methylene chloride 50 1200 U 1634-04-4 Methyl-t-Butyl Ether 50 290 U 95-47-6 o-Xylene 50 290 U 100-42-5 Styrene 50 290 U 127-18-4 Tetrachloroethene 50 290 U 136-60-5 trans-1,2-Dichloroethene 50 290 U 10061-02-6 trans-1,3-Dichloropropene 50 290 U 10061-02-6 trans-1,3-Dichloropropene	108-90-7	Chlorobenzene	50	290	U
74-87-3 Chloromethane 50 580 U 156-59-2 cis-1,2-Dichloroethene 50 290 U 10061-01-5 cis-1,3-Dichloropropene 50 290 U 124-48-1 Dibromochloromethane 50 290 U 100-41-4 Ethylbenzene 50 290 U 179601-23-1 m,p-Xylene 50 290 U 75-09-2 Methylene chloride 50 1200 U 1634-04-4 Methyl-t-Butyl Ether 50 290 U 95-47-6 o-Xylene 50 290 U 100-42-5 Styrene 50 290 U 100-42-5 Styrene 50 290 U 100-42-5 Styrene 50 290 U 108-88-3 Toluene 50 290 U 156-60-5 trans-1,2-Dichloroethene 50 290 U 10061-02-6 trans-1,3-Dichloropropene 50 290	75-00-3	Chloroethane	50	580	U
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	67-66-3	Chloroform	50	290	U
10061-01-5 cis-1,3-Dichloropropene 50 290 U 124-48-1 Dibromochloromethane 50 290 U 100-41-4 Ethylbenzene 50 290 U 179601-23-1 m,p-Xylene 50 290 U 75-09-2 Methylene chloride 50 1200 U 1634-04-4 Methyl-t-Butyl Ether 50 290 U 95-47-6 o-Xylene 50 290 U 100-42-5 Styrene 50 290 U 108-88-3 Toluene 50 290 U 156-60-5 trans-1,2-Dichloroethene 50 290 U 10061-02-6 trans-1,3-Dichloropropene 50 290 U	74-87-3	Chloromethane	50	580	U
124-48-1 Dibromochloromethane 50 290 U 100-41-4 Ethylbenzene 50 290 U 179601-23-1 m,p-Xylene 50 290 U 75-09-2 Methylene chloride 50 1200 U 1634-04-4 Methyl-t-Butyl Ether 50 290 U 95-47-6 o-Xylene 50 290 U 100-42-5 Styrene 50 290 U 108-88-3 Toluene 50 290 U 156-60-5 trans-1,2-Dichloroethene 50 290 U 10061-0	156-59-2	cis-1,2-Dichloroethene	50	290	U
100-41-4Ethylbenzene50290U179601-23-1m,p-Xylene50290U75-09-2Methylene chloride501200U1634-04-4Methyl-t-Butyl Ether50290U95-47-6o-Xylene50290U100-42-5Styrene50290U100-42-5Styrene50290U108-88-3Toluene50290U156-60-5trans-1,2-Dichloroethene50290U10061-02-6trans-1,3-Dichloropropene50290U25323-30-2Total 1,2-Dichloroethene50580U	10061-01-5	cis-1,3-Dichloropropene	50	290	U
179601-23-1 m,p-Xylene 50 290 U 75-09-2 Methylene chloride 50 1200 U 1634-04-4 Methyl-t-Butyl Ether 50 290 U 95-47-6 o-Xylene 50 290 U 100-42-5 Styrene 50 290 U 127-18-4 Tetrachloroethene 50 290 U 108-88-3 Toluene 50 290 U 156-60-5 trans-1,2-Dichloroethene 50 290 U 10061-02-6 trans-1,3-Dichloropropene 50 290 U 79-01-6 Trichloroethene 50 290 U 25323-30-2 Total 1,2-Dichloroethene 50 290 U	124-48-1	Dibromochloromethane	50	290	U
75-09-2 Methylene chloride 50 1200 U 1634-04-4 Methyl-t-Butyl Ether 50 290 U 95-47-6 o-Xylene 50 290 U 100-42-5 Styrene 50 290 U 127-18-4 Tetrachloroethene 50 290 U 108-88-3 Toluene 50 290 U 156-60-5 trans-1,2-Dichloroethene 50 290 U 10061-02-6 trans-1,3-Dichloropropene 50 290 U 79-01-6 Trichloroethene 50 290 U 25323-30-2 Total 1,2-Dichloroethene 50 580 U	100-41-4	Ethylbenzene	50	290	U
1634-04-4Methyl-t-Butyl Ether50290U95-47-6o-Xylene50290U100-42-5Styrene50290U127-18-4Tetrachloroethene50780D108-88-3Toluene50290U156-60-5trans-1,2-Dichloroethene50290U10061-02-6trans-1,3-Dichloropropene50290U79-01-6Trichloroethene50290U25323-30-2Total 1,2-Dichloroethene50580U	179601-23-1	m,p-Xylene	50	290	U
95-47-6 o-Xylene 50 290 U 100-42-5 Styrene 50 290 U 127-18-4 Tetrachloroethene 50 780 D 108-88-3 Toluene 50 290 U 156-60-5 trans-1,2-Dichloroethene 50 290 U 10061-02-6 trans-1,3-Dichloropropene 50 290 U 79-01-6 Trichloroethene 50 290 U 25323-30-2 Total 1,2-Dichloroethene 50 580 U	75-09-2	Methylene chloride	50	1200	U
100-42-5 Styrene 50 290 U 127-18-4 Tetrachloroethene 50 780 D 108-88-3 Toluene 50 290 U 156-60-5 trans-1,2-Dichloroethene 50 290 U 10061-02-6 trans-1,3-Dichloropropene 50 290 U 79-01-6 Trichloroethene 50 290 U 25323-30-2 Total 1,2-Dichloroethene 50 580 U	1634-04-4	Methyl-t-Butyl Ether	50	290	U
127-18-4 Tetrachloroethene 50 780 D 108-88-3 Toluene 50 290 U 156-60-5 trans-1,2-Dichloroethene 50 290 U 10061-02-6 trans-1,3-Dichloropropene 50 290 U 79-01-6 Trichloroethene 50 290 U 25323-30-2 Total 1,2-Dichloroethene 50 580 U	95-47-6	o-Xylene	50	290	U
108-88-3 Toluene 50 290 U 156-60-5 trans-1,2-Dichloroethene 50 290 U 10061-02-6 trans-1,3-Dichloropropene 50 290 U 79-01-6 Trichloroethene 50 290 U 25323-30-2 Total 1,2-Dichloroethene 50 580 U	100-42-5	Styrene	50	290	U
156-60-5 trans-1,2-Dichloroethene 50 290 U 10061-02-6 trans-1,3-Dichloropropene 50 290 U 79-01-6 Trichloroethene 50 290 U 25323-30-2 Total 1,2-Dichloroethene 50 580 U	127-18-4	Tetrachloroethene	50	780	D
10061-02-6 trans-1,3-Dichloropropene 50 290 U 79-01-6 Trichloroethene 50 290 U 25323-30-2 Total 1,2-Dichloroethene 50 580 U	108-88-3	Toluene	50	290	U
79-01-6 Trichloroethene 50 290 U 25323-30-2 Total 1,2-Dichloroethene 50 580 U	156-60-5	trans-1,2-Dichloroethene	50	290	U
25323-30-2 Total 1,2-Dichloroethene 50 580 U	10061-02-6	trans-1,3-Dichloropropene	50	290	U
	79-01-6	Trichloroethene	50	290	U
	25323-30-2	Total 1,2-Dichloroethene	50	580	U
75-69-4 Trichlorofluoromethane 50 580 U	75-69-4	Trichlorofluoromethane	50	580	U

ayboll

SDC-GP-11-2'

Laboratory:	Microbac Laboratories, Inc Chicagoland		SDG:		<u>11D0311</u>		
Client:	Oneida Total Integr	rated Enterprises		Project:	Little Chute WI		
Matrix:	<u>Solid</u>	Laboratory ID:	<u>11D031</u>	1-14	File ID:	<u>A040822.D</u>	
Sampled:	04/07/11 09:20	Prepared:	<u>04/08/1</u>	1 08:00	Analyzed:	04/08/11 19:20	
Solids:	<u>81.55</u>	Preparation:	8260_5	<u>035_SB_PR</u>	Initial/Final:	<u>5.28 g / 5 ml</u>	
Batch:	<u>B013346</u> Se	equence: <u>S004809</u>		Calibration:	<u>UNASSIGNED</u>	Instrument:	<u>VOA-1</u>
CAS NO.	COMPOUND			DILUTION	CONC. (µ	ıg/Kg dry)	Q
108-05-4	Vinyl Acetate			50	58	30	U
75-01-4	Vinyl chloride			50	58	30	U
1330-20-7T	Total Xylenes			50	29	90	U

* Values outside of QC limits

app.m

SDC-GP-12-0.5'

latrix:	Solid	Laboratory ID:	11D031	1-15	File ID:	A040810.D	
ampled:	<u></u> 04/07/11 09:45	Prepared:		1 08:00	Analyzed:	04/08/11 12:57	7
-		-			-		<u>/</u>
Solids:	<u>80.33</u>	Preparation:	8260_5	<u>035_SB_PR</u>	Initial/Final:	<u>3.66 g / 5 ml</u>	
Batch:	<u>B013346</u> Seque	nce: <u>S004809</u>		Calibration:	UNASSIGNEI	<u>D</u> Instrument:	<u>VOA-1</u>
CAS NO.	COMPOUND			DILUTION	CONC.	(µg/Kg dry)	Q
630-20-6	1,1,1,2-Tetrachloroeth	ane		50		110	ЛD
71-55-6	1,1,1-Trichloroethane			50		430	U
79-34-5	1,1,2,2-Tetrachloroetha	ine		50		430	U
79-00-5	1,1,2-Trichloroethane			50		430	U
75-34-3	1,1-Dichloroethane			50		430	U
75-35-4	1,1-Dichloroethene			50		430	U
107-06-2	1,2-Dichloroethane			50		430	U
78-87-5	1,2-Dichloropropane			50		430	U
78-93-3	2-Butanone	· · ·		50		850	U
591-78-6	2-Hexanone			50		430	U
108-10-1	4-Methyl-2-Pentanone			50		430	U
67-64-1	Acetone			50	4	300	U
107-02-8	Acrolein			50	8	500	U
107-13-1	Acrylonitrile			50	8	500	U
71-43-2	Benzene			50		430	U
75-27-4	Bromodichloromethan	>		50		430	U
75-25-2	Bromoform			50		430	U
74-83-9	Bromomethane			50		850	U
75-15-0	Carbon Disulfide			50		850	U
56-23-5	Carbon tetrachloride			50		430	U
108-90-7	Chlorobenzene	1		50		430	U
75-00-3	Chloroethane			50		850	U
67-66-3	Chloroform			50		430	U
74-87-3	Chloromethane			50		850	U
156-59-2	cis-1,2-Dichloroethene			50		430	U
10061-01-5	cis-1,3-Dichloropropen			50		430	U
124-48-1	Dibromochloromethane			50	4	430	U
100-41-4	Ethylbenzene			50		430	U
179601-23-1	m,p-Xylene			50	4	430	U
75-09-2	Methylene chloride			50	1	700	U
1634-04-4	Methyl-t-Butyl Ether			50		430	U
95-47-6	o-Xylene			50	4	430	U
100-42-5	Styrene			50	4	430	U
108-88-3	Toluene			50		430	U
156-60-5	trans-1,2-Dichloroether			50		430	U
10061-02-6	trans-1,3-Dichloroprop	ene		50	4	430	U
79-01-6	Trichloroethene			50		310	D
25323-30-2	Total 1,2-Dichloroether			50		350	U
75-69-4	Trichlorofluoromethane	,		50	8	350	U
108-05-4	Vinyl Acetate			50	<u> </u>	350	U

SDC-GP-12-0.5'

Laboratory:	Microbac Laboratories	<u>Inc Chicagoland</u>		SDG:	<u>11D0311</u>		
Client:	Oneida Total Integrate	d Enterprises		Project:	Little Chute WI		
Matrix:	<u>Solid</u>	Laboratory ID:	11D03	<u>11-15</u>	File ID:	<u>A040810,D</u>	
Sampled:	04/07/11 09:45	Prepared:	<u>04/08/1</u>	1 08:00	Analyzed:	04/08/11 12:57	
Solids:	<u>80.33</u>	Preparation:	<u>8260_5</u>	035_SB_PR	Initial/Final:	<u>3.66 g / 5 ml</u>	
Batch:	<u>B013346</u> Seque	nce: <u>S004809</u>		Calibration:	<u>UNASSIGNED</u>	Instrument:	VOA-1
CAS NO.	COMPOUND			DILUTION	CONC. (J	ug/Kg dry)	Q
75-01-4	Vinyl chloride			50	8:	50	U
1330-20-7T	Total Xylenes			50	43	30	U

* Values outside of QC limits

U U Spoll(

SDC-GP-12-0.5'

Laboratory:			nd	SDG:	<u>11D0311</u>		
Client:	Oneida Total Int	tegrated Enterprises		Project:	Little Chute WI		
Matrix:			: <u>11D03</u>	<u>11-15RE1</u>	File ID:	<u>A040826.D</u>	
Sampled:			04/08/	11 08:00	Analyzed:	04/08/11 21:23	
Solids:	<u> </u>		8260_	<u>5035_SB_PR</u>	Initial/Final:	<u>3.66 g / 5 ml</u>	
Batch:	<u>B013346</u>	Sequence: <u>S004</u>	ce: <u>S004809</u>		<u>UNASSIGNED</u>	Instrument:	<u>VOA-1</u>
CAS NO.	COMPOUND			DILUTION	CONC. (J	ug/Kg dry)	Q
127-18-4	Tetrachloroether	ne		10000	810	0000	D

* Values outside of QC limits

appli

APPENDIX C

SOIL-GAS SAMPLING SOP

(16 Pages)

 SOP:
 2082

 Page:
 1 of 14

 Rev.
 0.0

 DATE:
 03/29/07

CONSTRUCTION AND INSTALLATION OF PERMANENT SUB-SLAB SOIL GAS WELLS

CONTENTS

- 1.0 SCOPE AND APPLICATION
- 2.0 METHOD SUMMARY
- 3.0 SAMPLE PRESERVATION, CONTAINERS, HANDLING AND STORAGE
- 4.0 INTERFERENCES AND POTENTIAL PROBLEMS
- 5.0 EQUIPMENT/APPARATUS
- 6.0 REAGENTS
- 7.0 PROCEDURES
 - 7.1 Probe Assembly and Installation
 - 7.2 Sampling Set-Up
 - 7.3 Repairing a Loose Probe
- 8.0 CALCULATIONS
- 9.0 QUALITY ASSURANCE/QUALITY CONTROL
- 10.0 DATA VALIDATION
- 11.0 HEALTH AND SAFETY
- 12.0 REFERENCES
- 13.0 APPENDICES

 SOP:
 2082

 Page:
 2 of 14

 Rev.
 0.0

 DATE:
 03/29/07

CONSTRUCTION AND INSTALLATION OF PERMANENT SUB-SLAB SOIL GAS WELLS

1.0 SCOPE AND APPLICATION

This standard operating procedure (SOP) outlines the procedure used for the construction and installation of permanent sub-slab soil gas wells. The wells are used to sample the gas contained in the interstitial spaces beneath the concrete floor slab of dwellings and other structures.

Soil gas monitoring provides a quick means of detecting volatile organic compounds (VOCs) in the soil subsurface. Using this method, underground VOC contamination can be identified and the source, extent and movement of pollutants can be traced.

2.0 METHOD SUMMARY

Using an electric Hammer Drill or Rotary Hammer, an inner or pilot hole is drilled into the concrete slab to a depth of approximately 2" with the %" diameter drill bit. Using the pilot hole as the center, an outer hole is drilled to an approximate depth of 1% " using the 1" diameter drill bit. The 1" diameter drill bit is then replaced with the %" drill bit. The pilot hole is drilled through the slab and several inches into the sub-slab material. Once drilling is completed, a stainless steel probe is assembled and inserted into the pre-drilled hole. The probe is mounted flush with the surrounding slab so it will not interfere with pedestrian or vehicular traffic and cemented into place. A length of Teflon[®] tubing is attached to the probe assembly and to a sample container or system.

3.0 SAMPLE PRESERVATION, CONTAINERS, HANDLING AND STORAGE

3.1 SUMMA[®] Canister Sampling

After the sub-slab soil gas sample is collected, the canister valve is closed, an identification tag is attached to the canister and the canister is transported to a laboratory under chain of custody for analysis. Upon receipt at the laboratory, the data documented on the canister tag is recorded. Sample holding times are compound dependent, but most VOCs can be recovered from the canister under normal conditions near the original concentration for up to 30 days. Refer to REAC SOP #1704, *SUMMA Canister Sampling* for more details.

3.2 Tedlar[®] Bag Sampling

Tedlar[®] bags most commonly used for sampling have a 1-liter volume capacity. After sampling, the Tedlar[®] bags are stored in either a clean cooler or an opaque plastic bag at ambient temperature to prevent photodegradation. It is essential that sample analysis be undertaken within 24 to 48 hours following sample collection since VOCs may escape or become altered. Refer to REAC SOP #2102, *Tedlar[®] Bag Sampling* for more details.

 SOP:
 2082

 Page:
 3 of 14

 Rev.
 0.0

 DATE:
 03/29/07

CONSTRUCTION AND INSTALLATION OF PERMANENT SUB-SLAB SOIL GAS WELLS

4.0 INTERFERENCES AND POTENTIAL PROBLEMS

The thickness of a concrete slab may vary from structure to structure. A structure may also have a single slab where the thickness varies. A slab may contain steel reinforcement (REBAR). Drill bits of various sizes and cutting ability will be required to penetrate slabs of varying thicknesses or those that are steel-reinforced.

5.0 EQUIPMENT/APPARATUS

- Hammer Drill or Rotary Hammer
- Alternating current (AC) extension cord
- AC generator, if AC power is not available on site
- Hammer or Rotary Hammer drill bit, 3/8"diameter
- Hammer or Rotary Hammer drill bit, 1"diameter
- Portable vacuum cleaner
- 1 ³/₄" open end wrench or 1-medium adjustable wrench
- 2 9/16" open end wrenches or 2-small adjustable wrenches
- Hex head wrench, ¹/₄"
- Tubing cutter
- Disposable cups, 5 ounce (oz)
- Disposable mixing device (i.e., popsicle stick, tongue depressor, etc.)
- Swagelok[®] SS-400-7-4 Female Connector, ¹/₄" National Pipe Thread (NPT) to ¹/₄" Swagelok[®] connector
- Swagelok[®] SS-400-1-4 Male Connector, ¹/₄"NPT to ¹/₄" Swagelok[®] connector
- ¹/₄" NPT flush mount hex socket plug, Teflon[®]-coated
- ¹/₄" outer diameter (OD) stainless steel tubing, pre-cleaned, instrument grade
- ¹/₄" OD Teflon[®] tubing
- Teflon[®] thread tape
- 1/8"OD stainless steel rod, 12" to 24" length
- Swagelok Tee, optional (SS-400-3-4TMT or SS-400-3-4TTM)

6.0 REAGENTS

- Tap water, for mixing anchoring cement
- Anchoring cement
- Modeling clay

 SOP:
 2082

 Page:
 4 of 14

 Rev.
 0.0

 DATE:
 03/29/07

CONSTRUCTION AND INSTALLATION OF PERMANENT SUB-SLAB SOIL GAS WELLS

7.0 PROCEDURES

- 7.1 Probe Assembly and Installation
 - 1. Drill a %" diameter inner or pilot hole to a depth of 2" (Figure 1, Appendix A).
 - 2. Using the %" pilot hole as your center, drill a 1" diameter outer hole to a depth of 1 %". Vacuum out any cuttings from the hole (Figure 2, Appendix A).
 - 3. Continue drilling the ³/₈ inner or pilot hole through the slab and a few inches into the sub-slab material (Figure 3, Appendix A). Vacuum out any cuttings from the outer hole.
 - 4. Determine the length of stainless steel tubing required to reach from the bottom of the outer hole, through the slab and into the open cavity below the slab. To avoid obstruction of the probe tube, ensure that it does not contact the sub-slab material. Using a tube cutter, cut the tubing to the desired length.
 - 5. Attach the measured length (typically 12") of ¹/₄" OD stainless tubing to the female connector (SS-400-7-4) with the Swagelok[®] nut. Tighten the nut.
 - 6. Insert the ¹/₄" hex socket plug into the female connector. Tighten the plug. **Do not over tighten**. If excessive force is required to remove the plug during the sample set up phase, the probe may break loose from the anchoring cement.
 - 7. Place a small amount of modeling clay around the stainless steel tubing adjacent to the Swaglok[®] nut, which connects the stainless steel tubing to the female connector. Use a sufficient amount of modeling clay so that the completed probe, when placed in the outer hole, will create a seal between the outer hole and the inner hole. The clay seal will prevent any anchoring cement from flowing into the inner hole during the final step of probe installation.
 - 8. Place the completed probe into the outer hole. The probe tubing should not contact the subslab material and the top of the female connector should be flush with the surface of the slab and centered in the outer hole (Figure 4, Appendix A). If the top of the completed probe is not flush with the surface of the slab, due to the outer hole depth being greater than 1 ³/₈", additional modeling clay may be placed around the stainless steel tubing adjacent to the Swaglok[®] nut, which connects the stainless steel tubing to the female connector. Use a sufficient amount of clay to raise the probe until it is flush with the surface of the slab while ensuring that a portion of the clay will still contact and seal the inner hole.

 SOP:
 2082

 Page:
 5 of 14

 Rev.
 0.0

 DATE:
 03/29/07

CONSTRUCTION AND INSTALLATION OF PERMANENT SUB-SLAB SOIL GAS WELLS

- 9. Mix a small amount of the anchoring cement. Fill the space between the probe and the outside of the outer hole. Allow the cement to cure according to manufacturers instructions before sampling.
- 7.2 Sampling Set-Up
 - 1. Wrap one layer of Teflon[®] thread tape onto the NPT end of the male connector (SS-400-1-4). Refer to Figure 5, Appendix A.
 - 2. Remove the ¹/₄" hex socket plug from the female connector (SS-400-7-4). Refer to Section 7.3 if the probe breaks loose from the anchoring cement during this step.
 - 3. To ensure that the well has not been blocked by the collapse of the inner hole below the end of the stainless steel tubing, a stainless steel rod, 1/8" diameter, may be passed through the female connector and the stainless steel tubing. The rod should pass freely to a depth greater than the length of the stainless steel tubing, indicating an open space or loosely packed soil below the end of the stainless steel tubing. Either condition should allow a soil gas sample to be collected.

If the well appears blocked, the stainless steel rod may be used as a ramrod in an attempt to open the well. If the well cannot be opened, the probe should be reinstalled or a new probe installed in an alternate location.

- 4. Screw and tighten the male connector (SS-400-1-4) into the female connector (SS-400-7-4). **Do not over tighten**. This may cause the probe to break loose from the anchoring cement during this step or when the male connector is removed upon completion of the sampling event. Refer to Section 7.3 if the probe breaks loose from the anchoring cement during this step.
- 5. If a collocated sub-slab sample or split sample is desired, a stainless steel Swagelok Tee (SS-400-3-4TMT or SS-400-3-4TTM) may be used in place of the Swagelok male connector (SS-400-1-4).
- 6. Attach a length of ¹/4"OD Teflon[®] tubing to the male connector with a Swagelok[®] nut. The Teflon[®] tubing is then connected to the sampling container or system to be used for sample collection.
- 7. After sample collection remove the male connector from the probe and reinstall the hex socket plug. **Do not over tighten** the hex socket plug. If excessive force is required to remove the plug during the next sampling event the probe may break loose from the

 SOP:
 2082

 Page:
 6 of 14

 Rev.
 0.0

 DATE:
 03/29/07

CONSTRUCTION AND INSTALLATION OF PERMANENT SUB-SLAB SOIL GAS WELLS

anchoring cement. Refer to Section 7.3 if the probe breaks loose from the anchoring cement during this step.

- 7.3 Repairing a Loose Probe
 - 1. If the probe breaks loose from the anchoring cement while removing or installing the hex head plug or the male connector (SS-400-1-4), lift the probe slightly above the surface of the concrete slab.
 - 2. Hold the female connector (SS-400-7-4) with the $\frac{3}{4}$ " open end wrench.
 - 3. Complete the step being taken during which the probe broke loose, following the instructions contained in this SOP (i.e., **Do not over tighten** the hex socket plug or male connector).
 - 4. Push the probe back down into place and reapply the anchoring cement.
 - 5. Modeling clay may be used as a temporary patch to effect a seal around the probe until the anchoring cement can be reapplied.

8.0 CALCULATIONS

This section is not applicable to this SOP.

9.0 QUALITY ASSURANCE/QUALITY CONTROL

An additional collocated soil gas well is installed with the frequency of 10 percent (%) or as specified in the site-specific Quality Assurance Project Plan (QAPP). The following general Quality Assurance (QA) procedures apply:

- 1. A rough sketch of the area is drawn where the ports are installed with the major areas noted on the sketch. This information may be transferred to graphing software for incorporation into the final deliverable.
- 2. A global positioning system (GPS) unit may be used to document coordinates outside of a structure as a reference point.
- 3. Equipment used for the installation of sampling ports should be cleaned by heating, inspected and tested prior to deployment.

 SOP:
 2082

 Page:
 7 of 14

 Rev.
 0.0

 DATE:
 03/29/07

CONSTRUCTION AND INSTALLATION OF PERMANENT SUB-SLAB SOIL GAS WELLS

10.0 DATA VALIDATION

This section is not applicable to this SOP.

11.0 HEALTH AND SAFETY

When working with potentially hazardous materials, follow Environmental Protection Agency (EPA), Occupational Safety and Health Administration (OSHA) and Lockheed Martin corporate health and safety procedures. All site activities should be documented in the site-specific health and safety plan (HASP).

12.0 REFERENCES

This section is not applicable to this SOP.

13.0 APPENDICES

A - Figures

 SOP:
 2082

 Page:
 8 of 14

 Rev.
 0.0

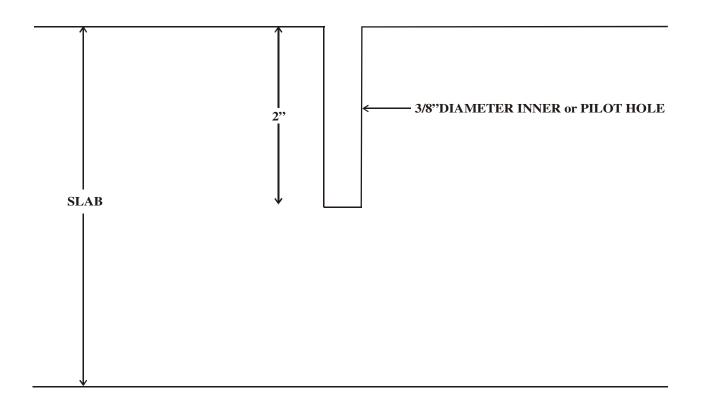
 DATE:
 03/29/07

CONSTRUCTION AND INSTALLATION OF PERMANENT SUB-SLAB SOIL GAS WELLS

APPENDIX A Soil Gas Installation Figures SOP #2082 March 2007

 SOP:
 2082

 Page:
 9 of 14


 Rev.
 0.0

 DATE:
 03/29/07

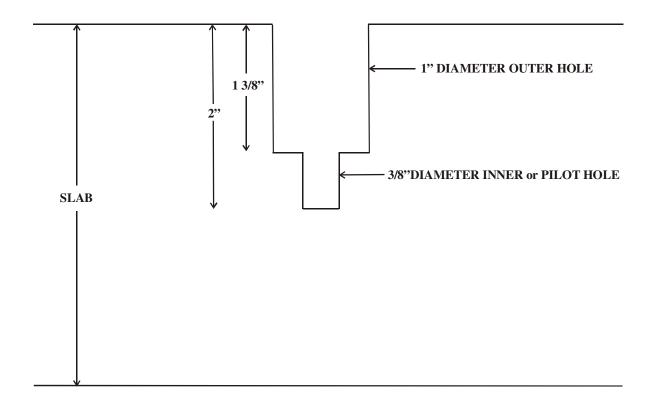
CONSTRUCTION AND INSTALLATION OF PERMANENT SUB-SLAB SOIL GAS WELLS

FIGURE 1

INNER or PILOT HOLE

 SOP:
 2082

 Page:
 10 of 14


 Rev.
 0.0

 DATE:
 03/29/07

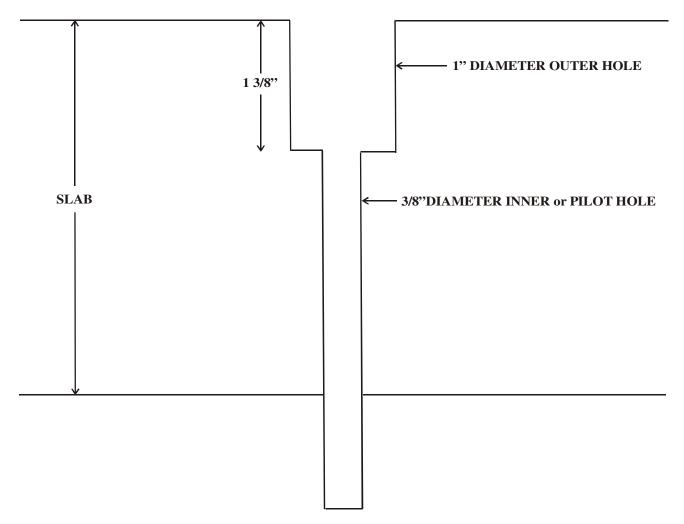
CONSTRUCTION AND INSTALLATION OF PERMANENT SUB-SLAB SOIL GAS WELLS

FIGURE 2

OUTER HOLE

 SOP:
 2082

 Page:
 11 of 14


 Rev.
 0.0

 DATE:
 03/29/07

CONSTRUCTION AND INSTALLATION OF PERMANENT SUB-SLAB SOIL GAS WELLS

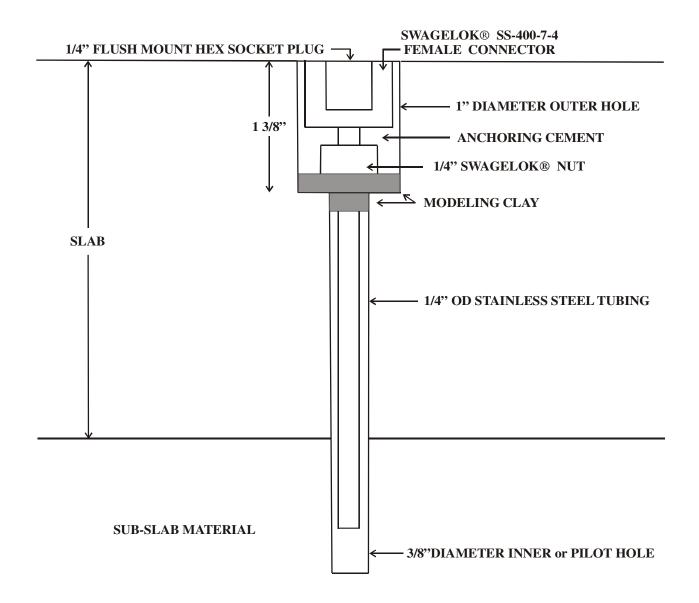
FIGURE 3

COMPLETED HOLE PRIOR to PROBE INSTALLATION

SUB-SLAB MATERIAL

 SOP:
 2082

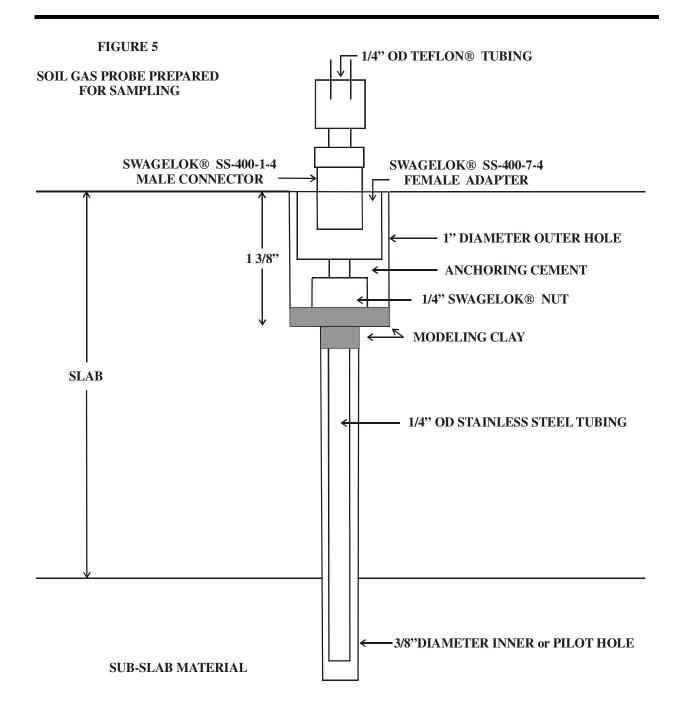
 Page:
 12 of 14


 Rev.
 0.0

 DATE:
 03/29/07

CONSTRUCTION AND INSTALLATION OF PERMANENT SUB-SLAB SOIL GAS WELLS

SOIL GAS PROBE INSTALLED

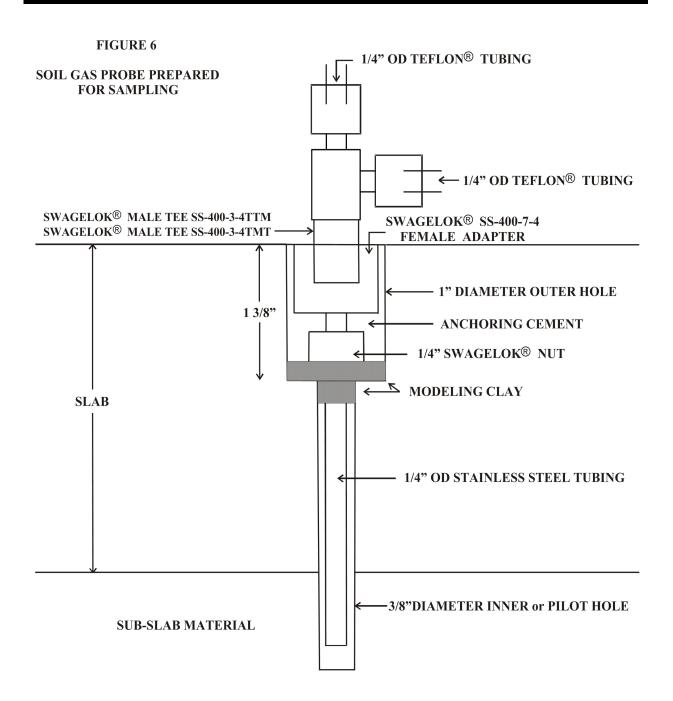

 SOP:
 2082

 Page:
 13 of 14

 Rev.
 0.0

 DATE:
 03/29/07

CONSTRUCTION AND INSTALLATION OF PERMANENT SUB-SLAB SOIL GAS WELLS


 SOP:
 2082

 Page:
 14 of 14

 Rev.
 0.0

 DATE:
 03/29/07

CONSTRUCTION AND INSTALLATION OF PERMANENT SUB-SLAB SOIL GAS WELLS

Sample Log [Add Site Name] [Add City, County, State]

Address:	
Owner's Name:	
Telephone No:	
Occupant's Name (if tenant):	
Telephone No:	
Is resident living in basement?	

Sub-Slab Sample:

Start Date/Time	Barometric Pressure	Outside Temp	Vacuum at Start	Sample ID#	ppbRAE VOC Conc.	SUMMA Canister ID	Regulator ID

End Date/Time	Vacuum at End	Location of Sub-Slab Sample

Indoor Air Sample:

Start Date/Time	Barometric Pressure	Outside Temp	Vacuum at Start	Sample ID#	ppbRAE VOC Conc.	SUMMA Canister ID	Regulator ID

	Vacuum at			
End Date/Time	End		Location of Indoor Air Sample	
PICTURES TO BE TAKEN	1:	I	IF HOUSE HAS A VAPOR ABATEMENT SYSTEM:	
Inside basement (all 4 direc	tions)		U-Tube Manometer (inches water column)	(ideal is greater than 1)
Sub-slab sample			Vacuum Reading (inches water column)	at location
Indoor air sample			Vacuum Reading (inches water column)	at location
Outside of residence (all 4 of	directions)	YES NO	Vacuum Reading (inches water column)	at location
			(ideal digital manometer vacuum reading	is at least 0.01)
TYPE OF AIR SAMPLING	Initial	day post mitig	gationday post mitigationQuarterly San	nple
	Other			
Comments:				

APPENDIX D

SOIL BORING LOG

(12 Pages)

(

SOIL BORING LOG INFORMATION Form 4400-122 Rev. 7-98

Route To:

Watershed/Wastewater 🔲 Waste Management 🗌 Remediation/Revelopment 🗹 Other

Facilit					Licen	se/Pen	mit/Mc	nitorir	ig Num	ber	Boring	g Num	ber G	est di	1.1		
First N	ame: /	tolar	٦ '	a cer 2010101- (SOZ of crew chief (first, last) and Firm Last Name: Sweet			g Starto 1 <u>2 0</u> y y				Com	oleted	Drillin	ig Mei	hod		
				timated:) or Boring Location	Final :	Static	Water Feet N	Level ISL	Surfac	e Elev	ation _Feet]	MSL	Diree Borehi 2,	<u>* Pc</u> ole Di <u>25</u> i	ameter		
State P	lane			N,E Section 21, T 21, N, R 18E	Lor		0 1	n	Local	F	□ ≈t □	N			D E D W		
Sam	S D(ple	n inter An An internation		Ourtagarile -	Sunty C	.oce			City/ or		e.	رے rope	rties		<u> </u>		
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth in Feet (Below ground surface	Soil/Rock Description And Geologic Origin For Each Major Unit		USCS	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Låquid Låmit	Plasticity Index	P 200	RQD/ Comments		
ł			2	Recovered 2 Feet Fill 6", Silty Cley 6"- Light Brown material, me	2 ' 2'				0.2	<u>N</u>				1			
		· · · · ·	4	at the end.							<u></u>				1	4	, wet
			6	Light Brown redish mater 5' recovered, silty, lift bit of clay at top.						는 환자하 - 	· ·					Temp	ered
2			3	Clay at the bottom to 10!		. 84 			0.1			1				-9	
			Ø	Sft recovered. Light Brown to red clay det t top, Dark Brown at bothe Little wet (Moist	he									-		.	
کے ا			12	top, Dark Brown at both Little wet (moist	х _с		×	C	105							· ·	
			-6	2'recovery, very most at end of the liner. Dark prom clay at					0.0								
			12	botton.													
i hereb Signatu		ify th	at the	information on this form is true and corre	ct to the Firm	ne bes	tofm	y knov	wledge	<u>}:</u>				6 9 - 1 - 5 			

This form 15 autoonzed by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

PID Screened @ 015-11.0' intervals.

SOIL BORING	LOG INFORMATION
Form 4400-122	Rev. 7-98

Route To:

Watershed/Wastewater 🔲 Waste Management 🔲 Remediation/Revelopment D Other

	: 			-						· · · · · · ·	Page	2	of	12	
Facility/Pro				Lic	cense/Peri	mit/Mc	mitorin	g Num	iber	Boring					
<u>Sandi</u>	es [$\frac{2}{\sqrt{2}}$	Clearer 2010101-15			 			ie ie:	35	<u>c -</u>	G-P	-2	н. 1	
First Name: A	ndu on	TASTRIC	Last NameSweet		te Drilling			Date [Drilling	Com	leted	Drillin	g Met	hod	•
Firm: M	Oran	ne	Environmental		4,6G	129	<u>}</u>			<u>20</u>	ĻĻ	Due	d-Ro	ch	
WI Unique	Well N	ò.	DNR Well ID No. Well Name	Fin	ial Static			Surfac	e Elev	ation		Boreh	ole Di	ameter	
Local Grid	 Drigin		timated: []) or Boring Location [Feet N				_Feet 1		2-2	<u>5</u> i	nches	
State Plane		·	N,E	1 - C	Lat	0. 	ار 	Local	Gnar		N			DE	
<u>NW 1/4 or</u>	<u>SE</u>	1/4 of	Section 24, T 2/ N. R 181		Long	0	.	n <u>a s</u> an an	E	cet 🗖	<u>s</u>	1000 1000			
Facility ID			County	County	y Code	Civil									
Sample	1	ି	<u>UC AGO MIR</u>				-+-1C	Ch	, te j i		rope				
Number and Type Length Att. & Recovered (in)	5	Depth in Foet (Below ground surface)	Soil/Rock Description	i	=	· :	1977 - 24 1977 - 24			3011	Tope	ues			
a Part	uno	n Fe	And Geologic Origin For		is i	- 13 - 1	2	6	stve					SI	
Number and Type Length A Recovered	Blow Counts	pth ov g	Each Major Unit	an sa	U S	Graphic	Well Diagram	PID/FID	Compres	Moisture Content	Liquid	Plasticity Index	200	2	
ŹĘĽ2	ā.	<u>Å</u> é				Ę õ	Åä	E	<u>65</u>	20	pil.	Fla-	5		
			Ell-gravel -Dark	grag		—		: "			: 1		·····		×
		2	V2" gravel preces -6 brown clay, 6"-12" 12"-5" - Sthy Cby- drown moist from 3"	Minht	+			- 							
:	:		12 grace pieces -			۰.		0.0	5						
1		4	brown clay, 6-12	4 Events)					1,4	
		T	12"-5' - Stilly CO1-	- 1 iyo T - ()										TT	
	<u></u>		prova moisy trams	+ fro									· ·	 	
		6	S Fast recoursery. Mo S'- 6'. 6-10' Lig	Sel Le				1.0513		al a	si J	2		Jerp:	
		5	5-6.6-10-49	nt br			1.				1			(jeng) neij	ned
		8	to redish clay &	dry."	<i>.</i>		с 1	0.0	S		2 A			sure	" ••• <i>γ</i>
2		Ð			ľ		e					2 de 14	• •	4	· -
			10'-11' work Silt	0.5 %	all						e En es				
		10	10'-11' moist silt												
		i.	11 -15 Light Bra	n po		. S &					1 d		:		
7		12	redish Clay		e i l'estèrit :	n n Seri	he est	 3.2 4 	_	er er		8 S			
2					1	с н. н. С	· · · .	0,0	5	1.63	i Gr	;			
		1.1					. '		, et d	۱.,			:		
		14							•						
		1 - 1 - 1 - 1 													
		16			· .		2	1.5	- e - se	$(v_1) \in I$:	
					· .				2 - 2 2	. ²⁰ - 1	· · .		3		
						· .				1					
										100					
			the second for the second s	<u></u>				.,		,		· · ·			
I hereby cer	tify th	at the	nformation on this form is true and	d correct to	o the bes	t of m	y knov	vledge				vide -	697 E.		:
Signature A_					n ·····									······································	

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

01

Lec Desc: Well Location, Back of Sundles in lot-well installed O-41-risen 4'-91-Screen 9'-141-riser.

SOIL BORING LOG INFORMATION Form 4400-122 Rev. 7-98

Route To:

Watershed/Wastewater Remediation/Revelopment D Other D

acility/	Proi	cr Na-				Licens	• <i>I</i> D=	ii/M~-	itori-	a Nismi		Boring		3	_of	12	·	
	•			Cleaners 201010		LICCIS	ALCU	and taiOI	0.69 W	8 riniti				G P	- 3			
oring E	Drille	d By:	Name	Cleaners 2010 (c of crew chief (first, last) and F	irm	Date D	rilling	Starte	1	Date D	rilling	Comp	leted	Drillin	g Meil	boi		
irst Nam		- C		Last Name: Snieet		04	061	20										
iun: 1 Uniq	<u>M</u>		<u>ine</u>	Environmenta) DNR Well ID No. Well Nam		m m Final S	d d	Y Y Veter I	у у aval	m m Surface	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ter si ter se	1 Y 1 Y 1	D Boreho	<u>rect</u>	-Pus	<u>h</u>	
1 0 149			_			1 3101-2		Feet M	1. C.	JULIAU		Feet N			<u>S</u> ir			
cal G	rîd O	rigin	🗆 (esi	imated: D) or Boring Locati	ion 🗆			0 1	n	Local	Grid L	ocation					 .	
ate Pia		90		Section 21, T 21 N. R.	10 E	Lon	···	0 7			F.	D		, i				
acility	D		1/4 01	County		amty C		Civil 7	'own/	City/ or		et 🗖	<u> </u>		reeu			
S	DC			Outagamie				よー	1+10	<u>Čh</u>	ste,	in	1	<u>.</u>			<u> </u>	
Sampl		· · · · ·	lece)					·				Soil F	rope	ties	14 M			
4	<u> </u>	5	in Feet ground surface)	Soil/Rock Descrip					с (2013) 8 а		ş	2				50		
	c ğ	S.	i i i	And Geologic Origi Each Major Un		- 1	SCS	ы Ц	LIB	A	1355	1 E E E		city		nent	4 5 2	
and Type	Recovered (in)	Blow Counts	Depth				0.S-I	Graphic Log	Vell	PID/FID	Compressiv	Moisture Content	Limit Limit	Plasticity Index	P 200	RQD/ Comment		
			<u>ыс</u>					0 2		jeti Maria	08	<u> </u>		<u>D</u> , 94	1	<u> HQ</u>		
		· •	2	3.5' recovered, 1 dork fill w/grow	.5'-2-5							1.5	· · ·			a.		
				dark fill w/gran	~l.			-		00	5	. :			1			
				Shangt 2.5' 25	51-51- Sc	14	· ·								÷ .			
			4	2:51-35-Parks	color										;			
				3 si- si- Ligh	+ Breni	<u>^</u>												
			6	dark fill wight Sheen at 2.5: 25 2.5: 3.5 - Parks 3.5: - 5: - Ligh 5: recorry, S.H Light Brown upt	Hicky													
		-4		Light Brown wat	06.5					0,9	p\$`		· .		1			
2			B	dfter 6.51-s.1	+ -						i:					:		
				driet as	н А													
		:	10	light Brown 2' recovered, 10	sta ju Y				· · · ·		. >	•						
				2' recovered, 10	2 79 11 Sec.	:			1.1		· · ·		[:	[· .	
		-	(2	Silt, 11-12'- n Silty Clay mat Stapped at 12	10155			.							÷.			
3		5. 		Silty Clay mat	erial 3.					0.0	5	Ľ.						
				chard at 12	•	-		Ì.			ł	ĺ		1	<u> </u>			
			19	- ichter - 1		ţ									ļ			
			ļ				┨	 			[ļ			
			16				l ·	1								:		
					· .			1			1 N N							
								1					ŀ	. :				
			} .					.	l			1 ··· ·	et.	- I	'	}	:	
								ł		1		[: *	1		
							1	l	l	1		ļ		:				
<u> </u>		L	<u> </u>		<u></u>		<u></u>	<u> </u>				<u> </u>				<u> </u>		
		lify th	at the	information on this form is t	rue and corre		he bes	at of m	y kno	wledg	¢			27 - 12 - 24 				
gnatur	°∄∕	η	·· · · ·			Firm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	· · · ·									.	
	71	1-				<u>}</u>		IE_	<u></u>			2.1	<u></u>				<u></u>	1990 - 1990 1990 - 1990 1990 - 1990

This form-is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis-Stats this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent. Completion

-

Loc Dese: Backyard of weenes Still by wylking to backdoon.

SOIL BORING LOG INFORMATION Form 4400-122 Rev. 7-98

Poute To. Watershed/Wastewater 🔲 Waste Management 🔲 Remediation/Revelopment D Other

First Na Firm: // /I Uni ocal C tate PI	ane: A 10 1 ique V Drid O iane _ 1/4 of 1D >DC	dam Fair Vell N Figin SE	√2 o. □ (es 1/4 of	Por crew chief (first, last) and Pirm Last Nama: Sweet Envired Acting 1 DNR Well ID No. Well Name stimated: □) or Boring Location □ NE Section 21. T 21 N. R 18E County County	O 4 m m Final	d d Static at	Vator I Feet M O O	vel SL Town/	O4/ mm Surfac	Grid L F Villa	Y y y ution Feet 1 bcation cation cation ge ge ge ge	<u> </u> y y NSL N S	Boreho Z.2	nrect ble Dia 2.5 in	- Pus Anneter	K .		
and Type	Length Att. &	Blow Counts	Depth in Feet (Below ground surface)	Soil/Rock Description And Geologic Origin For Each Major Unit		U.S.C.S	Graphic Log	Well Diagram	PID/FID	Compressive Scrength	Moisture Content	Liquid Limit	Plasticity Index	p 200	KOD/ Comments		·	
			2	4' Recoury Dark Fill w gravel 1.5F 1.5'- 5' Silt Redish B to light Brown Wet 4'-5'	r				1.5									
·		s :: : :	60	S' Reccourg Wet S'-6' Solt-1 to Light Brinn 6'-10' Light Brinn Cl W some Solt.	Zedich				1.5									
			10 12 19	4 Peccovery Wet 11-14 11-14-5.14 clay, 1.9 Brown					2.0									
ereb	v cert		16	Stepped @ 157														

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

Loc Perc: On border of City's prop & Sandies near alley.

ĺ

Route To:

Watershed/Wastewater
Waste Management
Remediation/Revelopment
Other

Facility/Project Name Sadie Dr. Cleane (S Boring Drilled By: Name of crew chief (first, last) and Firm First Name: Adam Last Name Sweet Firm: Marchine Environmentor WI Unique Well No. DNR Well ID No. Well Name							_		g Num		Boring S						
							g Starts Y <u>2 C</u> y y	ĴŢ	04	<u>, 06</u>	20	<u> </u> y y	Drilling Method Direct Push				
Local Orid Origin C (estimatéd:) of Boring Location						Final Static Water LevelFeet MSL				Surface Elevation Feet MSL Local Grid Location				Borchole Diameter			
State J /// Facili	1/4 of	SE	1/4 of	N,E <u>Section 21, T 21 N, R (8)</u> (County 0	Loi Loi	-	0 '	0 	Çity/ o	F	eet 🗖	N S	<u>ana i</u>		D E D W		:
Sarr	5	20		Dutagame				10WIV	e c	Chu Chu	te,			<u></u>	<u> </u>		
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth. in Feet (Below ground surface	Soil/Rock Description And Geologic Origin For Each Major Unit	: • •	USCS	Graphic Log	Well Diagram	PID/FID	Compressive Strength	2	Låquid Låmit	Plasticity Index	P 200	RQD/ Comments		·
- <u></u>			2	3 Feet Reconcred 1-2 ft Park Brownish/ gravel [Fill. 2-3 Ft L Brownish Red Silt	Black ght				1.5								ang an
			60	5-6' S. 14 Light Brown (6'-10' redish Brown (-n leg				1.5								-
-			10 12 14	5' recovered 10 - 14' - wet, Sitt Clay-light Bro 14'-15'- Light Brow hard Clay.	y ~~				1.5								
- -			16	Styped @ 15'													
here		tify th	at the	information on this form is true and con	Firm	he be:	:	iy kno	wledg	e.							

This form is authorized by Chapters 281, 285, 289, 291, 292, 295, and 299, wits. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

Desc: Border of weenics Still, neorally, on west side of garage.

100

SOIL BORING LOG INFORMATION Form 4400-122 Rev. 7-98

÷.,

Route To:

Watershed/Wastewater 🗋 Waste Management 🔲 Remediation/Revelopment 🗌 Other

Boring	acility/Project Name Sandles Dry Cleane (S Boring Drilled By: Name of frew chief (first, last) and Firm											leted	<u>, - C</u> Drillin	g Metl	ıod		
First Name: Adam Last Name: Sweet Pirm: Moraine Environmintal WI Unique Well No. DNR Well ID No. Well Name Local Orid Origin C (estimated:) or Boring Location C					OH mm Pmal 1	04,05,2011 mm d d y y y y y Surface Elevation Feet MSL Local Grid Location				Direct JOUSH Borehole Diameter inches							
					<u></u>												
State F	Plane 1/4.of			<u>N,</u> Section <u>21 , T 21 N, R 18E</u>	Lor		0 1		9 <u></u>		eet 🗖	N S			DE DW		
	20	<u>د</u>		County Owtagan 1	County C	óđe	Civil '	fown/ ++l	City/ or L	hu t	ف						· .
Sam	% (ii)	Blow Counts	in Feet ground surface)	Soil/Rock Description And Geologic Origin For Each Major Unit		CS	2		<u>a</u>	essive Ú		rope			tents		4
Number and Type	Length An Recovered	Blow	Depth (Below g			nsc	Graphic Log	Well Diagram	PID/FID	Compres	Moistur	Limit	Plasticity Index	P 200	ROD/	······	
		· · ·	2	3' recovered 1'-2,5' Dark Soillyr 2 s'- Derched water Za	2-2/		1		۵.5								
•			5	1'-2,5' Dorn soil lgr 2,5'- Perched water Za 2.5'-3' Dark Brown Silt				····					; ; ;			;	
			6	5' recovered 51 - 6' Silty clay -												,	
			в	51-6' Silty clay- light Brown 6'-10' Cight Brown redish Cla-	· ~ .				0,5								•
			10). 						
		1	12	Bust ground water	13 ¹						131						
			14	51 recovered First ground water 10-11' - Dark Brown M 11'-13'.5' Light Brown 11'-13'.5' Light Brown 13.5'- 15' hard md-Brown	wet			6	0	01	"5 41						
			16	Stopped @ 15'	<u> </u>			 		<u> →</u> -;							
				information on this form is true and co	<u> </u>		<u> </u>	<u> </u>				<u> .</u>	<u> </u>				•

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

SOIL BORING LOG INFORMATION Form 4400-122 Rev. 7-98

5	ty/Proj	103	Dr.	of crew chief (first, last) and Firm			mit/Mo		ig Num Date I		V)	Page Numi	ber	f)-]		
First 1 Firm:	Name: A	dan	n	LastName: Sweet Enviconsental DNR Well ID No, Well Name	<u></u>	06	7 <u>2</u> 9	<u>, </u>	음냄	06 d d	<u>20</u> y y	ĻI_Ţ	D	ine (
State]	Plane_			imated: □) or Boring Location □ N,E Section 24_, T 24_N, R		.at	Feet M		Local			n N			nches	······	
Facili			<u>. 1/</u> 4 Of	County Outagamie	County C		Civil	Town/	City/ a	r Villa	$\frac{e}{b}$		سر	_ ree	to w		
San	nple ≪ (iii	2	Foet and surface)	Soil/Rock Description		1947 - 1947 - 1947 - 1947 1			satt i a		Soil	Prope	rties				
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth in Fo (Below ground:	And Geologic Origin For Each Major Unit		uscs	Graphic	Well Diagram	PID/FID	Compressive Strength	Moisture	Liquid	Plasticity Index	P 200	RQD/ Comments	· .	
			Z	2' recovered. 0'-1' Top Surface 1	ager			· · ·	0.2								
			4	0'-1' Top Surface la grave 1'-2' perch zone d redish brown	s. Ity				0.4	v i							
			6						0.	Þ				-			
			0	g'recoured S'-6' Brown S. Clay G'-10' hard clay- light Brow S' recoured	<u> </u>												
			12	51 recoured 10 - 151 moist light Brown (hard lag				0	0	r r			· · ·		:	
			14	lignif				-						- - 			
			16	Stopped @ 15'						. : .						-	
	ی میرم ا					n	-										
I here Signat		tify th	at the	information on this form is true and c	orrect to I	he be	st of n	ıy kno	wledg	e.	· · · · · ·	·····	• • • • • • • •		-		
This this Perso	form is omn monally i	dentifi	ilt in fo able in	y Chapters 281, 283, 289, 291, 292, 293 rfeiture of between \$10 and \$25,000, or formation on this form is not intended to pleted form should be sent.	, 295, and imprisonn	299, V nent fo	r up to	ats. Co one y	ear, de	pendin	ig on t	he proj	gram a	nd co	nduct in	rvolved	
	S.	n dia	۲	En back of Boile ibe in the grou le reported Dump	r na	20-	(0	u t:	ende		وعو	+ 1	~~]	り	neg		- <u>:</u>

، سر

SOIL BORING LOG INFORMATION Form 4400-122 Rev. 7-98

Route To:

Watershed/Wastewater
Waste Management
Kemediation/Revelopment
Other

First Firm: WI U	Name: A	dan OCD Vell Ni		Disc. Cleaners of crew chief (first, last) and Firm Last Name: Surgers Env: con mental DNR Well ID No. Well Name fimated:	04 mm Final S		Starie 20 y y Water I Feet M	$\frac{1}{y} \frac{1}{y}$ <i>i j j</i> <i>j j</i> <i>j j</i> <i>j j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i>j</i> <i></i>	Of mm Surfac		20 y y ation Feet h	J <u>J</u> y y	D <i>i</i> Boreho	rec Pu	sh meter	
NW	Plane_ 	SE	1/4 of	N, E <u>Section</u> 24, T 21 N, R 18E [County County]	Lon Dunty C	at	o '			F(n et D	N			DE DW	
Ś	SD(•		Octogamits			6	++	<u>e (</u>	hut	e, h		· · ·		،	an gan an a
Number and Type	Length Att. & d Recovered (in)	Blow Counts	Depth in Feet (Selow ground surface)	Soil/Rock Description And Geologic Origin For Each Major Unit		uscs	Gruphic Log	Weil Diagram	PID/FID	Compressive Suppgin	2 2 2	Liquid Limit	Plasticity 60 Index 80	P 200	R@D/ Comments	
				0'-1' 15:0 PID 1'-2' 7.4 PID 2'-3' 1.1 PID 3'-4' 0.6 IF 11 4'-5' 0.1 IF 71 6'-7' 0.0 IF 71 7'-8' 0.0 IF 71 7'-8' 0.0 IF 71												
	+		16	0'-2'-Silty gravel - Derk 6-711 Poster Void detected below Concrete Stab.	Brann		1 					:				
			4	Brown Silty Material 21-41						,						<u> </u>
			6	+1-61 Perched Gw. Light Brown Silty Cley Mon then Cley	t 541t	. 							 			Genf
			e	6-81 Light Brown Jin	+											sores
					• •						·					<u>-g</u>

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

Loc Desci Inside Sundres. In Front of washing machine.

......

Ę

SOIL BORING LOG INFORMATION Form 4400-122 Rev. 7-98

First Name: A Firm: A. (VI Unique V cocal Grid C state Plane _	dam 2011 Vell No.	,	<u>Charle FS</u> of crew chief (first, last) and Firm ^{Last Name:} Sweet Equipmonia to L		0.00									
First Name: A Firm: A.A. WI Unique V .ccal Grid C .tate Plane _ JW 1/4 of facility ID SDC	dam 2011 Vell No.	,	Last Name: Sweet		te Dhim	g Starie	<u>.</u>	Det. 1	منالئهم	5	<u>DC</u>		<u>, p.</u>	- Q hod
ocal Grid C tate Plane _ JW 1/4 of acility ID	rigin C	<u>ne</u> 1	Fourmontal	0	4,07		م ال	04	07	20	11	Dire	e med	Push
ocal Grid C tate Plane _ JW 1/4 of acility ID	rigin C	5 F - 1	Enviceonantal DNR Well ID No. Well Name	m Fi	m d d tal Static	y y Water	y y Level	m m Surfac	d d ze Elev	y y ation		Boreh		
tate Plane _ <u>JW 14 of</u> acility ID SDC						Feet N	1SL	_		Fcct]	MSL		<u>15</u> 1	
acility ID SDC			mated: □) or Boring Location □ NE	· .	Lat	0		Local	Grid L		n N			E E
SOL	SE 1	/4 of S	ection 21, T 21 N. R 18E		Long	—	# 			æt 🗖	<u>S</u>			
			County Octaganile	Count	y Code	Civil L	Town/	City/ o e C	r Ville h J t	ze P. L	r I			
		3								Soil I	Prope	rties		
Number and Type Length Att. & Recovered (in)	Blow Counts	Depth in Feet (Below ground surface)	Soil/Rock Description And Geologic Origin For Each Major Unit		USCS	Graphic Log	Wcll Diagram		Compressive Strength	Moisture Contont	Liquid Limit	Plasticity. Index	P 200	RQD/ Comments
	· .•	2	1 Fact Recovered 6"fill algrouel 6" Sut-Right Breed	}				Ð.						
		: •	2 feet Recoursed Light Brown Silt		1	• .		90))					-
			1,5 feet Reconcred	1										
		6	lis feet Reconcred Begins getting wet	at.				D	0	е. 1. – 1			15. 1910 - 191	
		-	6'				a e alg		e e e e e e e e e e e e e e e e e e e					
		- 	Stopped@6ft.			-						:		
	· .											:		
								ł				-	•	
													· ·	
	:	•					:					· ·		
i i								ŀ				ļ		
		-	· · ·		:	ľ						:		· ·
	•.	-	· · · · · · · · · · · · · · · · · · ·		l					-				

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

Loc Desc. Room East of Washroom hear adjoining wall to wanies still Smple @ 51

SOIL BORING LOG INFORMATION Form 4400-122 Rev. 7-98

Route To:

Watershed/Wastewater Waste Management Remediation/Revelopment Other

cility/Project Name <u>Sandies</u> Dry Cleaners ming Drilled By: Name of clew chief (first, last) and Firm		se/Perm			a gerada i	на с 2014 — 2	5	Num DC	- 66	P G	P - 11	0	
ring Drilled By: Name of olew chief (first, last) and Firm Int Name: Adam Lost Name: Sweet		Drilling					g Com	pleted	Drilli	ig Met	hod		
I Unique Well No. DNR Well ID No. Well Name		1 <u>0</u> 7/	- T		OЧ		1 <u>_</u> 2ş	ÅÅ ÅÅ	D	rec	ush	÷	
Unique Well No. DNR Well ID No. Well Name	Pinal	Static W	Valer I Feet M		Surfac	e Elev	ation Feet	MSI:		ole Di ZS i	ameter		
cal Grid Origin (estimated;) or Boring Location te Plane N. E			0 1	N 1 1 1	Local	Grid I	ocatio	- 44 <u></u>		<u> </u>	ncnes		
W 1/4 of SE 1/4 of Section 21, T 21 N. R 18E	Lor		0 !			E.	eet 🗖	N					
cility ID County	County C		Civil	Fown/	City/ o	r Vills	2Ĉ			_1.01			:
				<u>. 1</u> 7	+16	-Ch	in to	Prope	<u>~1</u>				
Sample Soil/Rock Description vi u vi u vi u vi u		CS	ţ¢	am	£	Compressive Strength	a).				nents		
		ŝ	lida y	Well Diagram	PID/FID		Moisture Content	Liquid	Plasticity Index	P 200	RQD/ Comments		
0.5 Feet recovered Top 2" - Sandy Silt;6"	/1		10		<u></u>								
2 of clay					0.0			-				•	
2ft recovered 6" of Sandy fill M	ateral				0.	þ.						:	
6" of Sandy Fill M 6" of grayish Bro- 4 Sandy S.H. 1" Brownish Block S	N 14							-					
+ Layerswere interesting													
well defined						e de		Serie a					
						- -							
	• • • • •					ŀ							
					ĺ			ļ					
		1			l.	1	1	1	1 1	1	1		

This form's authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

Loc Pesc. In main room of SDC under the stairs. PIDE 6" intervals= O. * Note: interesting Soil Layers.

SOIL BORING LOG INFORMATION Form 4400-122 Rev. 7-98

Route To:

Watershed/Wastewater Waste Management.

Facilit Boring First N		<u>din</u> ed By:	2 S Name	of crew chief (first, last) and Firm		se/Perr	-		nië ur	3 	Boring	Spc	~ <i>G</i> - Drillin	g Mct	hod		
Firm:		4 do 100	uno	Lasi Name: Sweet Environ man tol DNR Well ID No. Well Name:	음음	/음구		Ļ ŢŢ	<u>о</u> ч m	07	<u>2</u> 7 7	<u> </u> y y	D	ire(+Pr	2Sh	,
WI Un					Finals	Static V	Water I Feet N		Surfac	c Elev	ation Feet 1		Borch	ole Di h	1 12		
State P	lane_			timated: D) or Boring Location D NE	L		0		Local	Grid L	- 1 - E	ז N			DΕ	:	
Facilit	1/4 of	SE	1/4 of	Section 21, T 21 N. R 18E	Lo	ng	0	<u> </u>			eet 🗖		· · · · · ·			e de la composición d La composición de la c	
Pachi	Si Si	>c		Outagante	County C	ode	Civil	Fown/	City/ or ++1	r Villa e C	hul	£ . (L 1				
Sam		gan ana A gan	Č Čisce)									rope		1			
Number and Type	Length Att. & Recovered (in)	ow Counts	spth in Foct flow ground starf	Soil/Rock Description And Geologic Origin For Each Major Unit		ŝĊŚ	Chaphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Limit	Plasticity Lidex	200	ROD/ Comments		
^호 통	Re	Å	ăĕ			- D	ÊŜ	≜ב	E.	9ª	≍రి	žđ	E H	d.	යි		<u>.</u>
		-	2	1.5' recovered. 0-1.5' Sand				· ·	0.0								۰.
		<u>.</u>		2' recovered			<u> </u>			- <u></u>						· · ·	
			ц	2' recoverce 115'-2'- Sand 11 moist lightBrown	Sat				0.0					-			
				"" recovered		i tika si	-: · ·	:								•	
			:	2" - Sandy Silt					· ·· ·	1						-	
			6	2" - Sandy Silt 6" moist Light Br Silt 6" Light Brown Mon Silty Clay.	6-0				0.0	2 2 2	a 1.1	te :		:	• • •	:	¥.
				Silt Jamas Mo	ist :						·					:	
•		đ		6 Light Clay.	¢ 4 :				· • •	- 	14 1 4 1 1 1 1				- 2 - 2	à là	
		÷			•					-				· .			
			;	* Note well defined	· 1				:			1					
		:		Layers.								 					
					:								· ·	:			
										÷	<u> </u>					. :	

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

toc Desc, Boiler room + Note interesting Soil Layers.

Ę

(

SOIL BORING LOG INFORMATION Form 4400-122 Rev. 7-98

Route To:

Watershed/Wastewater

Facilit	v/Proie	ct Nar	ne		Licens	e/Perm	it/Mor	itorin	g Numi	ber []	Boring	Page Numb	er	10	<u>n_</u>		
	S	and	122	Dry Cleaners of crew dhief (first, last) and Firm		* 					Ś	5DC	- 6		12		
Boring	Drille	d By:	Name	of crew dhief (first, last) and Firm	Date D	. –						 A (2) 					
			n	Last Name: Suret	64	<u>_</u> 7	<u>20</u>	<u> </u>	ᢕय़	<u> - 7</u> 1	<u>çç</u>	<u>,</u>	D	irect	ush	2 - 12	
WI Un	ique V	Vell N	$\frac{1}{2}$	Environ nenty/ DNR Well ID No. Well Name	Final S		1.		1	And Contract			Boreho				
	a an					نے	cet M				Feet N			in	ches		,
Local State P	Grid O	rigin		inated: D) or Boring Location D N. E	14	n	<u> </u>		Local	Grid La							
NK	1/4 of	SE	1/4 of	Section <u>24</u> , T <u>21</u> N, R 18E County C	Lon	g)	n	· · · ·	Fe				Feetl	JE JW	14	
				County	ounty C	ode	Civil 7	own/	City/ of	Villag	¢	.:					
	300	••• ••••		Outaganie -	<u> </u>	<u> </u>	<u></u>	1+1	le c	<u>'n</u>					andre di		
Sam	ple a c		t rface)			ļ					Soil P	rope	ties				
. 0	Ån. Å	ow Counts	in Peet protond surf	Soil/Rock Description And Geologic Origin For	- · · ·					sive			*		Its		
lumber nd Type	Length An Recovered	NC.		Each Major Unit		scs	hic	Well Diagram	PID/FID	ngth	E T	in in ite	ticit	g	D/		9
hun	E C	- Big	69	Z. Recoursed		S	Graphic Los	× A	8	55	28	ĒĒ	Plasticity Index	P 200	<u>) m</u>		
						4			5.0		2 10					<u> </u>	
				ett Top 61-Darkgrey,	grow	-1,			2.6				ch				
		- 44 - 4															
			2	6"-2'- Dark gray sit		-									:	• •	
						···										i	
		÷.,		Z' recovered			е н. С	ζ (f) -	Q.7		, " 	51)					
		1.1.1		611-21 - dark gay silt	: 	1									N.		
				z 1-3.5' Light BrownA	271 1212 9	1			0.5	121	ان ا						
			4				*			Ľ	- 7	<u> </u>				:	
فتبت سيسب	+	Γ		3.51-4.51 - Moist perc					0.2	(4 ⁷ -	- 51)	1				
	l	. .		water selfy clay, 1	en					2	1.15						
	ŧ :			SOTT]	1		: · ·						
	ł		6	4.5'-6'- more clay	than		in th	Ì .		1	ولاحر ت	Λ^{-1}	9 5. 	5 -			
	: ·	÷		selt-hard.		ļ	ļ	ļ	0.1	15	-6'	2					
			e e e]								<u> </u>			·····
						4; *].	ł		i i)		i '			
]					1		ŕ		1	1	1			1		
			1 :		:]		1		1 × 1							
	1	ĺ.	1 1.	PLD Records		1								1		· ·	
	1	1.		Topt			1	1		1	1				1 :		
	1	1	1		i i	1			1		}	1	1 :	1			
	Ì.	. · ·							1	1	· -		{	1	:	:	
	1	· ·							1	ł	ł	{		1			
<u> </u>	<u> </u>					<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u></u>	<u>]</u>	<u>.</u>	1		
_		tify ti	at the	information on this form is true and cor		he bes	t of n	iy kno	wledg	e.	: :	· ·		. ::::::::::::::::::::::::::::::::::::			n Series Les Series
Signal	77				Firm	۲١											

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

Loc. Desc. Extra Loc. in Wash room, Behind washers

APPENDIX E

WDHS RESULT LETTERS

(28 Pages)

DIVISION OF PUBLIC HEALTH

State of Wisconsin

Department of Health Services

Scott Walker Governor

Dennis G. Smith Secretary

March 25, 2011

Shane Jentz Lisa Peeters Weenies Still, LLC 515 Grand Ave Little Chute, WI 54140

Dear Mr. Jentz & Ms Peeters:

I am writing to provide you with the results of indoor air testing for tetrachloroethylene (PCE) conducted by the U.S. Environmental Protection Agency (EPA) on March 11th, 2011, from inside your property at 515 Grand Avenue, Little Chute, Outagamie County.

The purpose of indoor air testing by EPA was to follow-up with similar testing that I conducted on February 17th and 18th, 2011. I reported these prior results to you in my letter from March 8th (attached).

Three 24-hour indoor air samples were collected from the basement (sample 004A), the main floor (sample 002A), and second floor apartment (sample 003A) of your property using 6-liter evacuated canisters. These samples were submitted to the STAT Analysis Corporation and underwent U.S. EPA TO-15a laboratory analysis for Volatile Organic Compounds (VOCs) in air. Attached is a copy of the STAT laboratory reports and the results for PCE from both rounds of sampling are summarized in the below table.

	parts-per-billio (ppb		micrograms/c (µg/m	
Date & Location (sample no.)	Detected Level	Action Level	Detected Level	Action Level
Feb 17, 2011				
Basement (SCD-05)	32.9	3.1 ^c	233.1	21.0 ^c
Main Floor (SCD-04)	24.0	3.1 ^c	162.8	21.0 ^c
Apartment - 2 nd Floor (SCD-06)	22.4	0.6 ^r	151.9	4.1 ^r
Outdoor – roof (SCD-07)	0.3	0.6 ^r	2.3	4.1 ^r
Mar 11, 2011				
Basement (004A)	5.0	3.1 ^c	34.0	21.0 ^c
Main Floor (002A)	3.6	3.1 ^c	24.4	21.0 ^c
Apartment - 2 nd Floor (003A)	3.9	0.6 ^r	26.5	4.1 ^r
Note: c – commercial indoor a	ir Action Level			

r – residential indoor air Action Level

The PCE levels in all three March 11th indoor air samples were again above health-based Action Levels. For the basement and main floor samples, PCE was measured at 34.0 and 24.4 μ g/m³ (micrograms per cubic meter), respectively, which are above the PCE commercial Action Level of 21.0 μ g/m³. For the apartment air sample, PCE was measured at 26.5 μ g/m³, which is also above the PCE residential Action Level of 4.1 μ g/m³. The PCE Action Levels were established

Wisconsin.gov

1 WEST WILSON STREET P O BOX 2659 MADISON WI 53701-2659

> 608-266-1251 FAX: 608-267-2832 TTY: 888-701-1253 dhs.wisconsin.gov

by the Wisconsin Department of Natural Resources (DNR) and Department of Health Services (DHS), and serves as a threshold for halting exposures.

Even though PCE levels were lower in the March 11th sample, the levels continue to pose an unacceptable increased risk of cancer for your regular customers and those who work at your business. Additionally, for those who spend all day and night in the building and breathe this air for 24 hours per day, such as each of you, these PCE levels pose an additional, slightly higher increased cancer risk. As a result, the indoor air PCE levels in your building is a *human health hazard* for people who both live and work there over the course of many years.

The air samples also found trace levels of other VOCs that are unrelated to PCE. These other VOCs often come from use of consumer products, personal practices (such as smoking), and building materials, and the levels detected are common for the typical U.S. home and office.

For each sample location, the March 11th result had a lower PCE level than what was found in the sample collected on February 17th. These lower PCE levels are probably due to your efforts of increasing outdoor air ventilation inside all levels of your building. Whenever it is feasible and reasonable, I encourage you to continue regular ventilation of your building until a permanent mitigation system is installed.

You may be aware that during the week of April 4th EPA plans to conduct additional investigations at Sandies Dry Cleaners and adjacent properties in order to determine the source and extent of PCE contamination. EPA intends to collect soil, groundwater, and soil gas samples and next week will be calling you with more details.

For more information on EPA's involvement and activities please contact Jennifer Borski, with the DNR Oshkosh Service Center, at 920-424-7887, or Ramon Mendoza with EPA, at 312-802-1409.

I will continue working closely with staff of the Outagamie County Public Health Department, and they will also be involved throughout the EPA investigation. If you wish to talk with an Outagamie County sanitarian they can be reached at 920-832-5100.

You may have many health questions related to your exposures to PCE. Please call me at 608-266-3479 if you wish to discuss this further.

Best Regards,

Julis. Lowe

Henry Nehls-Lowe Division of Public Health

enclosure

cc: Jennifer Borski – Wisconsin Department of Natural Resources Natalie Vandeveld – Outagamie County Health Department Ramon Mendoza – U.S. Environmental Protection Agency

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-

				-	port Date:	March 18, 201	
				P	Print Date:	March 18, 201	1
Client:	Oneida Total Integrated Ente	erprises		Client Sa	ample ID:	A02-515GRNE	-GL
Lab Order:	11030307			Tag	g Number:		
Project:	2010101, Sandies Dry Cleane	ers Little Ch	ute WI	-	tion Date:		4·00 AM
Lab ID:	11030307-002A	ns, Entre en	ute, 111	conce	Matrix:		1.007101
	11050507-002A						
Analyses		Result	RL	Qualifier	Units	DF 1	Date Analyzed
Volatile Organic	Compounds in Air by GC/MS	TO-15			Prep	Date: 3/16/2011	Analyst: VP
1,1,1-Trichloroe	thane	ND	0.38		ppbv	1	3/16/2011
1,1,2,2-Tetrachl	oroethane	ND	0.38		ppbv	1	3/16/2011
1,1,2-Trichloroe	thane	ND	0.38		ppbv	1	3/16/2011
1,1-Dichloroetha	ane	ND	0.38		ppbv	1	3/16/2011
1,1-Dichloroethe	ene	ND	0.38		ppbv	1	3/16/2011
1,2,4-Trichlorob	enzene	ND	0.38		ppbv	1	3/16/2011
1,2,4-Trimethylb	enzene	ND	0.38		ppbv	1	3/16/2011
1,2-Dibromoetha	ane	ND	0.38		ppbv	1	3/16/2011
1,2-Dichloroben	zene	ND	0.38		ppbv	1	3/16/2011
1,2-Dichloroetha	ane	ND	0.38		ppbv	1	3/16/2011
1,2-Dichloroprop	bane	ND	0.38		ppbv	1	3/16/2011
1,3,5-Trimethylb	enzene	ND	0.38		ppbv	1	3/16/2011
1,3-Butadiene		ND	0.38		ppbv	1	3/16/2011
1,3-Dichloroben	zene	ND	0.38		ppbv	1	3/16/2011
1,4-Dichloroben	zene	0.67	0.38		ppbv	1	3/16/2011
1,4-Dioxane		ND	0.96		ppbv	1	3/16/2011
2-Butanone		ND	0.96		ppbv	1	3/16/2011
2-Hexanone		ND	1.9		ppbv	1	3/16/2011
4-Ethyltoluene		ND	0.38		ppbv	1	3/16/2011
4-Methyl-2-pent	anone	ND	1.9		ppbv	1	3/16/2011
Acetone		20	3.8	*	ppbv	1	3/16/2011
Benzene		0.48	0.38		ppbv	1	3/16/2011
Benzyl chloride		ND	0.96		ppbv	1	3/16/2011
Bromodichlorom	ethane	ND	0.38		ppbv	1	3/16/2011
Bromoform		ND	0.96		ppbv	1	3/16/2011
Bromomethane		ND	0.96		ppbv	1	3/16/2011
Carbon disulfide	9	ND	0.38		ppbv	1	3/16/2011
Carbon tetrachle	oride	ND	0.38		ppbv	1	3/16/2011
Chlorobenzene		ND	0.38		ppbv	1	3/16/2011
Chloroethane		ND	0.38		ppbv	1	3/16/2011
Chloroform		0.6	0.38		ppbv	1	3/16/2011
Chloromethane		1.1	0.96		ppbv	1	3/16/2011
cis-1,2-Dichloro	ethene	ND	0.38		ppbv	1	3/16/2011
cis-1,3-Dichloro		ND	0.38		ppbv	1	3/16/2011
Cyclohexane	• • -	ND	0.38		ppbv	1	3/16/2011
Dibromochlorom	ethane	ND	0.38		ppbv	1	3/16/2011
Dichlorodifluoro		0.54	0.38		ppbv	1	3/16/2011
Ethyl acetate		2.4	0.38		ppbv	1	3/16/2011

Qualifiers:

- ND Not Detected at the Reporting Limit
- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- HT Sample received past holding time * - Non-accredited parameter

- \mathbf{RL} Reporting / Quantitation Limit for the analysis
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- H Holding time exceeded

-

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-

				-	oort Date: rint Date:	March 18, 2011 March 18, 2011	
Client:	Oneida Total Integrated Ente	erprises		Client Sa	ample ID:	A02-515GRND	-GL
Lab Order:	11030307	•		Tag	Number:		
Project:	2010101, Sandies Dry Cleane	are Little Chu	to WI	0	tion Date:	3/11/2011 10:34	1.00 AM
•	•	15, Little Cliu	ic, wi	Conec			+.00 AIVI
Lab ID:	11030307-002A				Matrix:	Air	
Analyses		Result	RL	Qualifier	Units	DF I	Date Analyzed
Volatile Organi	c Compounds in Air by GC/MS	TO-15			Prep I	Date: 3/16/2011	Analyst: VP
Ethylbenzene		ND	0.38		ppbv	1	3/16/2011
Freon-113		ND	0.38		ppbv	1	3/16/2011
Freon-114		ND	1.9		ppbv	1	3/16/2011
Heptane		0.48	0.38		ppbv	1	3/16/2011
Hexachlorobuta	adiene	ND	0.38		ppbv	1	3/16/2011
Hexane		ND	0.96		ppbv	1	3/16/2011
Isopropyl Alcoh	lor	31	1.9		ppbv	1	3/16/2011
m,p-Xylene		ND	0.77		ppbv	1	3/16/2011
Methyl tert-buty	yl ether	ND	0.38		ppbv	1	3/16/2011
Methylene chlo	ride	ND	3.8		ppbv	1	3/16/2011
o-Xylene		ND	0.38		ppbv	1	3/16/2011
Propene		ND	3.8		ppbv	1	3/16/2011
Styrene		ND	0.38		ppbv	1	3/16/2011
Tetrachloroethe	ene	3.6	0.38		ppbv	1	3/16/2011
Tetrahydrofura	an	ND	0.96		ppbv	1	3/16/2011
Toluene		1.5	0.38		ppbv	1	3/16/2011
trans-1,2-Dichle	oroethene	ND	0.38		ppbv	1	3/16/2011
trans-1,3-Dichl	oropropene	ND	0.38		ppbv	1	3/16/2011
Trichloroethene	9	ND	0.38		ppbv	1	3/16/2011
Trichlorofluoror	methane	0.44	0.38		ppbv	1	3/16/2011
Vinyl acetate		ND	3.8		ppbv	1	3/16/2011
Vinyl chloride		ND	0.38		ppbv	1	3/16/2011
Xylenes, Total		ND	1.2		ppbv	1	3/16/2011

	ND - Not Detected at the Reporting Limit	RL - Reporting / Quantitation Limit for the analysis
Qualifiers:	J - Analyte detected below quantitation limits	S - Spike Recovery outside accepted recovery limits
	B - Analyte detected in the associated Method Blank	R - RPD outside accepted recovery limits
	HT - Sample received past holding time	E - Value above quantitation range
	* - Non-accredited parameter	H - Holding time exceeded

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-

				-	port Date:	March 18, 201	
				P	Print Date:	March 18, 201	1
Client:	Oneida Total Integrated Ente	erprises		Client Sa	ample ID:	A03-515GRNI	D-UL
Lab Order:	11030307			Tag	g Number:		
Project:	2010101, Sandies Dry Cleane	ers Little Ch	ute WI		tion Date:	3/11/2011 10:4	5:00 AM
Lab ID:	11030307-003A	ins, Entire ent	<i>ate, 11</i>	conce	Matrix:		5.007101
	11050507-005A						
Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
/olatile Organic	Compounds in Air by GC/MS	TO-15			Prep	Date: 3/16/2011	Analyst: VP
1,1,1-Trichloroe	thane	ND	0.35		ppbv	1	3/16/2011
1,1,2,2-Tetrachl	oroethane	ND	0.35		ppbv	1	3/16/2011
1,1,2-Trichloroe	thane	ND	0.35		ppbv	1	3/16/2011
1,1-Dichloroetha	ane	ND	0.35		ppbv	1	3/16/2011
1,1-Dichloroethe	ene	ND	0.35		ppbv	1	3/16/2011
1,2,4-Trichlorob	enzene	ND	0.35		ppbv	1	3/16/2011
1,2,4-Trimethylb	enzene	ND	0.35		ppbv	1	3/16/2011
1,2-Dibromoetha	ane	ND	0.35		ppbv	1	3/16/2011
1,2-Dichloroben	zene	ND	0.35		ppbv	1	3/16/2011
1,2-Dichloroetha	ane	ND	0.35		ppbv	1	3/16/2011
1,2-Dichloroprop	bane	ND	0.35		ppbv	1	3/16/2011
1,3,5-Trimethylb	enzene	ND	0.35		ppbv	1	3/16/2011
1,3-Butadiene		2.2	0.35		ppbv	1	3/16/2011
1,3-Dichloroben	zene	ND	0.35		ppbv	1	3/16/2011
1,4-Dichloroben	zene	0.59	0.35		ppbv	1	3/16/2011
1,4-Dioxane		ND	0.87		ppbv	1	3/16/2011
2-Butanone		2	0.87		ppbv	1	3/16/2011
2-Hexanone		ND	1.7		ppbv	1	3/16/2011
4-Ethyltoluene		ND	0.35		ppbv	1	3/16/2011
4-Methyl-2-pent	anone	ND	1.7		ppbv	1	3/16/2011
Acetone		27	3.5	*	ppbv	1	3/16/2011
Benzene		1.7	0.35		ppbv	1	3/16/2011
Benzyl chloride		ND	0.87		ppbv	1	3/16/2011
Bromodichlorom	ethane	ND	0.35		ppbv	1	3/16/2011
Bromoform		ND	0.87		ppbv	1	3/16/2011
Bromomethane		ND	0.87		ppbv	1	3/16/2011
Carbon disulfide	2	ND	0.35		ppbv	1	3/16/2011
Carbon tetrachlo	oride	ND	0.35		ppbv	1	3/16/2011
Chlorobenzene		ND	0.35		ppbv	1	3/16/2011
Chloroethane		ND	0.35		ppbv	1	3/16/2011
Chloroform		0.73	0.35		ppbv	1	3/16/2011
Chloromethane		3.6	0.87		ppbv	1	3/16/2011
cis-1,2-Dichloro	ethene	ND	0.35		ppbv	1	3/16/2011
cis-1,3-Dichloro	propene	ND	0.35		ppbv	1	3/16/2011
Cyclohexane		ND	0.35		ppbv	1	3/16/2011
Dibromochlorom	ethane	ND	0.35		ppbv	1	3/16/2011
Dichlorodifluoror	methane	0.52	0.35		ppbv	1	3/16/2011
Ethyl acetate		2.8	0.35		ppbv	1	3/16/2011

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

- B Analyte detected in the associated Method Blank
- HT Sample received past holding time
- * Non-accredited parameter

- RL Reporting / Quantitation Limit for the analysis
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- H Holding time exceeded

-

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-

				-	oort Date: rint Date:	March 18, 2011 March 18, 2011	
Client:	Oneida Total Integrated Ente	erprises		Client Sa	ample ID:	A03-515GRND	D-UL
Lab Order:	11030307	-		Тад	Number:		
Project:	2010101, Sandies Dry Cleane	ors Little Chu	te WI	0	tion Date:	3/11/2011 10:4:	5.00 AM
-	11030307-003A	As, Little Cliu	, 11	Conce			0.007101
Lab ID:	11050507-005A				Matrix:	Air	
Analyses		Result	RL	Qualifier	Units	DF I	Date Analyzed
Volatile Organi	c Compounds in Air by GC/MS	TO-15			Prep I	Date: 3/16/2011	Analyst: VP
Ethylbenzene		0.4	0.35		ppbv	1	3/16/2011
Freon-113		ND	0.35		ppbv	1	3/16/2011
Freon-114		ND	1.7		ppbv	1	3/16/2011
Heptane		0.82	0.35		ppbv	1	3/16/2011
Hexachlorobuta	adiene	ND	0.35		ppbv	1	3/16/2011
Hexane		ND	0.87		ppbv	1	3/16/2011
Isopropyl Alcoh	ol	29	1.7		ppbv	1	3/16/2011
m,p-Xylene		1.2	0.69		ppbv	1	3/16/2011
Methyl tert-buty	l ether	ND	0.35		ppbv	1	3/16/2011
Methylene chlor	ride	ND	3.5		ppbv	1	3/16/2011
o-Xylene		ND	0.35		ppbv	1	3/16/2011
Propene		10	3.5		ppbv	1	3/16/2011
Styrene		0.49	0.35		ppbv	1	3/16/2011
Tetrachloroethe	ene	3.9	0.35		ppbv	1	3/16/2011
Tetrahydrofura	n	ND	0.87		ppbv	1	3/16/2011
Toluene		3.7	0.35		ppbv	1	3/16/2011
trans-1,2-Dichlo	proethene	ND	0.35		ppbv	1	3/16/2011
trans-1,3-Dichlo	propropene	ND	0.35		ppbv	1	3/16/2011
Trichloroethene		ND	0.35		ppbv	1	3/16/2011
Trichlorofluoron	nethane	0.5	0.35		ppbv	1	3/16/2011
Vinyl acetate		ND	3.5		ppbv	1	3/16/2011
Vinyl chloride		ND	0.35		ppbv	1	3/16/2011
Xylenes, Total		1.5	1		ppbv	1	3/16/2011

	ND - Not Detected at the Reporting Limit	RL - Reporting / Quantitation Limit for the analysis
Qualifiers:	J - Analyte detected below quantitation limits	S - Spike Recovery outside accepted recovery limits
	B - Analyte detected in the associated Method Blank	R - RPD outside accepted recovery limits
	HT - Sample received past holding time	E - Value above quantitation range
	* - Non-accredited parameter	H - Holding time exceeded

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-

				-	port Date: Print Date:	March 18, 2011 March 18, 2011	
Client:	Oneida Total Integrated Ente	rprises		Client Sample ID:		A04-515GRND-BL	
	•				-	A0+-5150IG4L	-DL
Lab Order:	11030307				g Number:		
Project:	2010101, Sandies Dry Cleane	ers, Little Chu	ute, WI	Collec	tion Date:	3/11/2011 10:5	3:00 AM
Lab ID:	11030307-004A				Matrix:	Air	
Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Volatile Organic	Compounds in Air by GC/MS	TO-15			Prep	Date: 3/16/2011	Analyst: VP
1,1,1-Trichloroe	thane	ND	0.35		ppbv	1	3/16/2011
1,1,2,2-Tetrachl	oroethane	ND	0.35		ppbv	1	3/16/2011
1,1,2-Trichloroe	thane	ND	0.35		ppbv	1	3/16/2011
1,1-Dichloroetha	ane	ND	0.35		ppbv	1	3/16/2011
1,1-Dichloroethe	ene	ND	0.35		ppbv	1	3/16/2011
1,2,4-Trichlorob	enzene	ND	0.35		ppbv	1	3/16/2011
1,2,4-Trimethylb	enzene	ND	0.35		ppbv	1	3/16/2011
1,2-Dibromoetha	ane	ND	0.35		ppbv	1	3/16/2011
1,2-Dichloroben	zene	ND	0.35		ppbv	1	3/16/2011
1,2-Dichloroetha	ane	ND	0.35		ppbv	1	3/16/2011
1,2-Dichloroprop	bane	ND	0.35		ppbv	1	3/16/2011
1,3,5-Trimethylb	enzene	ND	0.35		ppbv	1	3/16/2011
1,3-Butadiene		ND	0.35		ppbv	1	3/16/2011
1,3-Dichloroben	zene	ND	0.35		ppbv	1	3/16/2011
1,4-Dichloroben	zene	ND	0.35		ppbv	1	3/16/2011
1,4-Dioxane		ND	0.88		ppbv	1	3/16/2011
2-Butanone		ND	0.88		ppbv	1	3/16/2011
2-Hexanone		ND	1.8		ppbv	1	3/16/2011
4-Ethyltoluene		ND	0.35		ppbv	1	3/16/2011
4-Methyl-2-pent	anone	ND	1.8		ppbv	1	3/16/2011
Acetone		4.3	3.5	*	ppbv	1	3/16/2011
Benzene		ND	0.35		ppbv	1	3/16/2011
Benzyl chloride		ND	0.88		ppbv	1	3/16/2011
Bromodichlorom	ethane	ND	0.35		ppbv	1	3/16/2011
Bromoform		ND	0.88		ppbv	1	3/16/2011
Bromomethane		ND	0.88		ppbv	1	3/16/2011
Carbon disulfide	2	ND	0.35		ppbv	1	3/16/2011
Carbon tetrachlo	oride	ND	0.35		ppbv	1	3/16/2011
Chlorobenzene		ND	0.35		ppbv	1	3/16/2011
Chloroethane		ND	0.35		ppbv	1	3/16/2011
Chloroform		ND	0.35		ppbv	1	3/16/2011
Chloromethane		ND	0.88		ppbv	1	3/16/2011
cis-1,2-Dichloro	ethene	ND	0.35		ppbv	1	3/16/2011
cis-1,3-Dichloro	propene	ND	0.35		ppbv	1	3/16/2011
Cyclohexane		ND	0.35		ppbv	1	3/16/2011
Dibromochlorom	ethane	ND	0.35		ppbv	1	3/16/2011
Dichlorodifluoror	nethane	0.54	0.35		ppbv	1	3/16/2011
Ethyl acetate		0.56	0.35		ppbv	1	3/16/2011

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits

Qualifiers:

- B Analyte detected in the associated Method Blank
- HT Sample received past holding time
- * Non-accredited parameter

- RL Reporting / Quantitation Limit for the analysis
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- H Holding time exceeded

-

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-

				-	oort Date: rint Date:	March 18, 201 March 18, 201	
Client:	Oneida Total Integrated Ente	erprises		Client Sa	ample ID:	A04-515GRND	-BL
Lab Order:	11030307			Tag	Number:		
Project:	2010101, Sandies Dry Cleane	ers Little Chu	te WI		tion Date:	3/11/2011 10:5	3.00 AM
Lab ID:	11030307-004A	As, Little Cliu	<i>w</i> , <i>w</i>	Conce	Matrix:		5.007101
Lao ID:	11050507-004A				Maurix:		
Analyses		Result	RL	Qualifier	Units	DF I	Date Analyzed
Volatile Organi	c Compounds in Air by GC/MS	TO-15			Prep l	Date: 3/16/2011	Analyst: VP
Ethylbenzene		ND	0.35		ppbv	1	3/16/2011
Freon-113		ND	0.35		ppbv	1	3/16/2011
Freon-114		ND	1.8		ppbv	1	3/16/2011
Heptane		ND	0.35		ppbv	1	3/16/2011
Hexachlorobuta	adiene	ND	0.35		ppbv	1	3/16/2011
Hexane		ND	0.88		ppbv	1	3/16/2011
Isopropyl Alcoh	nol	ND	1.8		ppbv	1	3/16/2011
m,p-Xylene		ND	0.7		ppbv	1	3/16/2011
Methyl tert-buty	yl ether	ND	0.35		ppbv	1	3/16/2011
Methylene chlo	oride	ND	3.5		ppbv	1	3/16/2011
o-Xylene		ND	0.35		ppbv	1	3/16/2011
Propene		ND	3.5		ppbv	1	3/16/2011
Styrene		ND	0.35		ppbv	1	3/16/2011
Tetrachloroeth	ene	5	0.35		ppbv	1	3/16/2011
Tetrahydrofura	an	ND	0.88		ppbv	1	3/16/2011
Toluene		1.2	0.35		ppbv	1	3/16/2011
trans-1,2-Dichl	oroethene	ND	0.35		ppbv	1	3/16/2011
trans-1,3-Dichl	oropropene	ND	0.35		ppbv	1	3/16/2011
Trichloroethene	e	ND	0.35		ppbv	1	3/16/2011
Trichlorofluoror	methane	ND	0.35		ppbv	1	3/16/2011
Vinyl acetate		ND	3.5		ppbv	1	3/16/2011
Vinyl chloride		ND	0.35		ppbv	1	3/16/2011
Xylenes, Total		ND	1.1		ppbv	1	3/16/2011

	ND - Not Detected at the Reporting Limit	RL - Reporting / Quantitation Limit for the analysis
Qualifiers:	J - Analyte detected below quantitation limits	S - Spike Recovery outside accepted recovery limits
	B - Analyte detected in the associated Method Blank	R - RPD outside accepted recovery limits
	HT - Sample received past holding time	E - Value above quantitation range
	* - Non-accredited parameter	H - Holding time exceeded

Page 10 of 16

DIVISION OF PUBLIC HEALTH

1 WEST WILSON STREET

MADISON WI 53701-2659

State of Wisconsin

Department of Health Services

Scott Walker Governor

Dennis G. Smith Secretary

March 28, 2011

David Linskins 1687 Princeton Place #5 Green Bay, WI 54302

Dear Mr. Linskins:

I am writing to provide you with the results of indoor air testing for tetrachloroethylene (PCE) conducted by the U.S. Environmental Protection Agency (EPA), on March 11th, 2011, inside your property at 513 Grand Avenue, Little Chute, Outagamie County.

The purpose of indoor air testing by EPA was to follow-up with similar testing that I conducted on February 17th, 2011. I reported these prior results to you in my letter dated March 8th (attached).

A 24-hour indoor air sample was collected from the second floor, vacant apartment using a 6liter evacuated canister. This sample was submitted to the STAT Analysis Corporation and underwent U.S. EPA TO-15a laboratory analysis for Volatile Organic Compounds in air. Attached is a copy of the STAT laboratory report and the results for PCE from both rounds of sampling are summarized in the below table.

	parts-pe by vo (ppl	lume	microgra cubic n (µg/n	neter
Date & Location (sample no.)	Detected	Action	Detected	Action
	Level	Level	Level	Level
<u>Feb 17</u> : Apartment – 2 nd Floor (SCD-01)	28.4	0.6	192.62	4.1
<u>Mar 11</u> : Apartment – 2 nd Floor (001A)	31.0	0.6	210.49	4.1

The PCE level measured in the March 11th sample was 210.49 μ g/m³, which is similar to the February 17th sample result, and these levels are well above the residential Action Level of 4.1 μ g/m³. This PCE Action Level was established by the Wisconsin Department of Natural Resources (DNR) and Department of Health Services (DHS), and serves as a threshold for halting exposures.

Indoor air at this vacant apartment is a health concern because, when breathed for many years, such PCE levels pose an unacceptable increased cancer risk. This long term cancer risk is sufficient to be a *human health hazard*. As a result, I recommend that this apartment is not occupied until actions are taken that result in PCE levels dropping to and remaining below the residential Action Level.

FAX: TTY:

608-266-1251 FAX: 608-267-2832 TTY: 888-701-1253 dhs.wisconsin.gov

P O BOX 2659

You may be aware that during the week of April 4th EPA plans to conduct additional investigations at Sandies Dry Cleaners and adjacent properties in order to determine the source and extent of PCE contamination. EPA intends to collect soil, groundwater, and soil gas samples and next week will be calling you with more details.

For more information on EPA's involvement and activities please contact Jennifer Borski, with the DNR Oshkosh Service Center, at 920-424-7887, or Ramon Mendoza with EPA, at 312-802-1409.

I will continue working closely with staff of the Outagamie County Public Health Department, and they will also be involved throughout the EPA investigation. If you wish to talk with an Outagamie County sanitarian they can be reached at 920-832-5100.

You may have many health questions related to your exposures to PCE. Please call me at 608-266-3479 if you wish to discuss this further.

Best Regards,

lang lutis - Sowe

Henry Nehls-Lowe Division of Public Health

attachment

cc: Jennifer Borski – Department of Natural Resources Natalie Vandeveld – Outagamie County Health Department Ramon Mendoza – U.S. Environmental Protection Agency

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-

				-	port Date:	March 18, 201	
				P	Print Date:	March 18, 201	1
Client:	Oneida Total Integrated Ent	erprises		Client Sa	ample ID:	A01-513GRNE)-UL
Lab Order:	11030307	1			g Number:		
Project:	2010101, Sandies Dry Clean	ars Little Ch	uto WI	-	tion Date:	3/11/2011 10:2	5:00 AM
	-	ers, Little Ch	uic, wi	Conec			5.00 AM
Lab ID:	11030307-001A				Matrix:	Air	
Analyses		Result	RL	Qualifier	Units	DF I	Date Analyzed
Volatile Organic	: Compounds in Air by GC/MS	TO-15			Prep	Date: 3/16/2011	Analyst: VP
1,1,1-Trichloroe	thane	ND	0.36		ppbv	1	3/16/2011
1,1,2,2-Tetrachl	oroethane	ND	0.36		ppbv	1	3/16/2011
1,1,2-Trichloroe	thane	ND	0.36		ppbv	1	3/16/2011
1,1-Dichloroetha	ane	ND	0.36		ppbv	1	3/16/2011
1,1-Dichloroethe	ene	ND	0.36		ppbv	1	3/16/2011
1,2,4-Trichlorob	enzene	ND	0.36		ppbv	1	3/16/2011
1,2,4-Trimethylb	penzene	0.62	0.36		ppbv	1	3/16/2011
1,2-Dibromoetha	ane	ND	0.36		ppbv	1	3/16/2011
1,2-Dichloroben	zene	ND	0.36		ppbv	1	3/16/2011
1,2-Dichloroetha	ane	ND	0.36		ppbv	1	3/16/2011
1,2-Dichloroprop	pane	ND	0.36		ppbv	1	3/16/2011
1,3,5-Trimethylb	benzene	ND	0.36		ppbv	1	3/16/2011
1,3-Butadiene		ND	0.36		ppbv	1	3/16/2011
1,3-Dichloroben	zene	ND	0.36		ppbv	1	3/16/2011
1,4-Dichloroben	zene	ND	0.36		ppbv	1	3/16/2011
1,4-Dioxane		ND	0.89		ppbv	1	3/16/2011
2-Butanone		ND	0.89		ppbv	1	3/16/2011
2-Hexanone		ND	1.8		ppbv	1	3/16/2011
4-Ethyltoluene		ND	0.36		ppbv	1	3/16/2011
4-Methyl-2-pent	anone	ND	1.8		ppbv	1	3/16/2011
Acetone		7.1	3.6	*	ppbv	1	3/16/2011
Benzene		ND	0.36		ppbv	1	3/16/2011
Benzyl chloride		ND	0.89		ppbv	1	3/16/2011
Bromodichlorom	nethane	ND	0.36		ppbv	1	3/16/2011
Bromoform		ND	0.89		ppbv	1	3/16/2011
Bromomethane		ND	0.89		ppbv	1	3/16/2011
Carbon disulfide	9	ND	0.36		ppbv	1	3/16/2011
Carbon tetrachle	oride	ND	0.36		ppbv	1	3/16/2011
Chlorobenzene		ND	0.36		ppbv	1	3/16/2011
Chloroethane		ND	0.36		ppbv	1	3/16/2011
Chloroform		ND	0.36		ppbv	1	3/16/2011
Chloromethane		ND	0.89		ppbv	1	3/16/2011
cis-1,2-Dichloro	ethene	ND	0.36		ppbv	1	3/16/2011
cis-1,3-Dichloro		ND	0.36		ppbv	1	3/16/2011
Cyclohexane		ND	0.36		ppbv	1	3/16/2011
Dibromochlorom	nethane	ND	0.36		ppbv	1	3/16/2011
Dichlorodifluoro		0.59	0.36		ppbv	1	3/16/2011
Ethyl acetate		ND	0.36		ppbv	1	3/16/2011

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits

Qualifiers:

- B Analyte detected in the associated Method Blank
- HT Sample received past holding time
- * Non-accredited parameter

- RL Reporting / Quantitation Limit for the analysis
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- H Holding time exceeded

-

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-

				Report Date: Print Date:		March 18, 2011 March 18, 2011	
Client:	Oneida Total Integrated Ente	erprises		Client Sa	ample ID:	A01-513GRND	-UL
Lab Order:	11030307	-		Тад	Number:		
Project:	2010101, Sandies Dry Cleane	ors Little Chu	te WI	0	tion Date:	3/11/2011 10:25	5:00 AM
•	11030307-001A	As, Little Cliu	, 11	Conce			
Lab ID:	11030307-001A				Matrix:	Air	
Analyses		Result	RL	Qualifier	Units	DF I	Date Analyzed
Volatile Organi	c Compounds in Air by GC/MS	TO-15			Prep I	Date: 3/16/2011	Analyst: VP
Ethylbenzene		ND	0.36		ppbv	1	3/16/2011
Freon-113		ND	0.36		ppbv	1	3/16/2011
Freon-114		ND	1.8		ppbv	1	3/16/2011
Heptane		0.78	0.36		ppbv	1	3/16/2011
Hexachlorobuta	adiene	ND	0.36		ppbv	1	3/16/2011
Hexane		ND	0.89		ppbv	1	3/16/2011
Isopropyl Alcoh	ol	ND	1.8		ppbv	1	3/16/2011
m,p-Xylene		0.91	0.71		ppbv	1	3/16/2011
Methyl tert-buty	'l ether	ND	0.36		ppbv	1	3/16/2011
Methylene chlo	ride	ND	3.6		ppbv	1	3/16/2011
o-Xylene		ND	0.36		ppbv	1	3/16/2011
Propene		ND	3.6		ppbv	1	3/16/2011
Styrene		ND	0.36		ppbv	1	3/16/2011
Tetrachloroethe	ene	31	0.36		ppbv	1	3/16/2011
Tetrahydrofura	n	ND	0.89		ppbv	1	3/16/2011
Toluene		5.9	0.36		ppbv	1	3/16/2011
trans-1,2-Dichle	proethene	ND	0.36		ppbv	1	3/16/2011
trans-1,3-Dichle	propropene	ND	0.36		ppbv	1	3/16/2011
Trichloroethene		ND	0.36		ppbv	1	3/16/2011
Trichlorofluoror	nethane	ND	0.36		ppbv	1	3/16/2011
Vinyl acetate		ND	3.6		ppbv	1	3/16/2011
Vinyl chloride		ND	0.36		ppbv	1	3/16/2011
Xylenes, Total		1.2	1.1		ppbv	1	3/16/2011

	ND - Not Detected at the Reporting Limit	RL - Reporting / Quantitation Limit for the analysis
Qualifiers:	J - Analyte detected below quantitation limits	S - Spike Recovery outside accepted recovery limits
	B - Analyte detected in the associated Method Blank	R - RPD outside accepted recovery limits
	HT - Sample received past holding time	E - Value above quantitation range
	* - Non-accredited parameter	H - Holding time exceeded

DIVISION OF PUBLIC HEALTH

Scott Walker Governor

Dennis G. Smith Secretary

March 25, 2011

Deborah Smith Bakers Outlet Four D Investments, LLC 505 Grand Avenue Little Chute, WI 54140

Dear Ms. Smith:

I am writing to provide you with the results of indoor air testing for tetrachloroethylene (PCE) conducted by the U.S. Environmental Protection Agency (EPA) on March 11th, 2011, from inside your property at 505 Grand Avenue, Little Chute, Outagamie County.

The purpose of indoor air testing by EPA was to follow-up with similar testing that I conducted on February 17th and 18th, 2011. I reported these prior results to you in my letter of March 8th (attached).

Two 24-hour indoor air samples were collected from the second floor apartment (sample 006A) and basement (sample 005A) of your property using 6-liter evacuated canisters. These samples were submitted to the STAT Analysis Corporation and underwent U.S. EPA TO-15a laboratory analysis for volatile organic compounds (VOCs) in air. Attached is a copy of the STAT laboratory reports and the results for PCE from both rounds of sampling are summarized in the below table.

	parts-per-billio (ppb	,	micrograms/cubic meter (µg/m ³)		
Date & Location (sample no.)	Detected Level	Action Level	Detected Level	Action Level	
Feb 17, 2011 Basement (SCD-02) Main Floor Office (SCD-03) Mar 11, 2011	1.20 0.82	3.1 ^c 3.1 ^c	5.53 8.14	21.0 ^c 21.0 ^c	
Basement (005A) 2 nd Floor Apartment (006A) Note: ND (<) – PCE not de	0.78 ND (<0.37)	3.1 ^c 0.6 ^r	5.30 ND (<2.5)	21.0 ^c 4.1 ^r	

c - commercial indoor air Action Level r - residential indoor air Action Level

For both basement samples, PCE levels were below health-based Action Levels. In the March 11^{th} sample, PCE was measured at 5.30 μ g/m³ (micrograms per cubic meter), which is slightly lower than the February 17^{th} result of 5.53 µg/m³. All these are below the PCE commercial Action Level of 21.0 μ g/m³. The air sample from the second floor apartment did not detect PCE.

Department of Health Services

1 WEST WILSON STREET P O BOX 2659 MADISON WI 53701-2659

> 608-266-1251 FAX: 608-267-2832 TTY: 888-701-1253 dhs.wisconsin.gov

The PCE levels in indoor air of the commercial area of your building does not pose a health concern for you or your staff, as discussed in the March 8th letter. PCE was not detected in the second floor apartment on March 11th, and it is not a health concern for anyone who resides in the apartment. The air samples also found trace levels of other VOCs that are unrelated to PCE. These other VOCs often come from use of consumer products, personal practices (such as smoking), and building materials, and the levels detected are common for the typical U.S. home and office, and do not pose a health concern.

At this time I do not recommend any additional actions at your building.

You may be aware that during the week of April 4th EPA plans to conduct additional investigations at Sandies Dry Cleaners and adjacent properties in order to determine the source and extent of PCE contamination. EPA intends to collect soil, groundwater, and soil gas samples and will be calling you next week with more details.

For more information on EPA's involvement and activities please contact Jennifer Borski, with the DNR Oshkosh Service Center, at 920-424-7887, or Ramon Mendoza with EPA, at 312-802-1409.

I will continue working closely with staff of the Outagamie County Public Health Department, and they will also be involved throughout the EPA investigation. If you wish to talk with an Outagamie County sanitarian they can be reached at 920-832-5100.

Please call me at 608-266-3479 if you wish to discuss your indoor air test results.

Best Regards,

lary tubes. Some

Henry Nehls-Lowe Division of Public Health

enclosure

cc: Jennifer Borski – Wisconsin Department of Natural Resources Natalie Vandeveld – Outagamie County Health Department Ramon Mendoza – U.S. Environmental Protection Agency

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-

				-	port Date:	March 18, 201	
				P	Print Date:	March 18, 201	1
Client:	Oneida Total Integrated Ente	erprises		Client Sa	ample ID:	A05-505GRNI	D-BL
Lab Order:	11030307			Tag	g Number:		
Project:	2010101, Sandies Dry Cleane	ers Little Ch	ute WI		tion Date:	3/11/2011 11:0	6·00 AM
Lab ID:	11030307-005A	no, Entite en	<i>ate, 111</i>	conce	Matrix:		0.001101
	11050507-005A						
Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Volatile Organic	Compounds in Air by GC/MS	TO-15			Prep	Date: 3/16/2011	Analyst: VP
1,1,1-Trichloroe	thane	ND	0.38		ppbv	1	3/16/2011
1,1,2,2-Tetrachl	oroethane	ND	0.38		ppbv	1	3/16/2011
1,1,2-Trichloroe	thane	ND	0.38		ppbv	1	3/16/2011
1,1-Dichloroetha	ane	ND	0.38		ppbv	1	3/16/2011
1,1-Dichloroethe	ene	ND	0.38		ppbv	1	3/16/2011
1,2,4-Trichlorob	enzene	ND	0.38		ppbv	1	3/16/2011
1,2,4-Trimethylb	enzene	ND	0.38		ppbv	1	3/16/2011
1,2-Dibromoetha		ND	0.38		ppbv	1	3/16/2011
1,2-Dichloroben	zene	ND	0.38		ppbv	1	3/16/2011
1,2-Dichloroetha		ND	0.38		ppbv	1	3/16/2011
1,2-Dichloroprop	bane	ND	0.38		ppbv	1	3/16/2011
1,3,5-Trimethylb		ND	0.38		ppbv	1	3/16/2011
1,3-Butadiene		ND	0.38		ppbv	1	3/16/2011
1,3-Dichloroben	zene	ND	0.38		ppbv	1	3/16/2011
1,4-Dichloroben		ND	0.38		ppbv	1	3/16/2011
1,4-Dioxane		ND	0.95		ppbv	1	3/16/2011
2-Butanone		ND	0.95		ppbv	1	3/16/2011
2-Hexanone		ND	1.9		ppbv	1	3/16/2011
4-Ethyltoluene		ND	0.38		ppbv	1	3/16/2011
4-Methyl-2-pent	anone	ND	1.9		ppbv	1	3/16/2011
Acetone		ND	3.8	*	ppbv	1	3/16/2011
Benzene		0.44	0.38		ppbv	1	3/16/2011
Benzyl chloride		ND	0.95		ppbv	1	3/16/2011
Bromodichlorom	ethane	ND	0.38		ppbv	1	3/16/2011
Bromoform		ND	0.95		ppbv	1	3/16/2011
Bromomethane		ND	0.95		ppbv	1	3/16/2011
Carbon disulfide		ND	0.38		ppbv	1	3/16/2011
Carbon tetrachlo		ND	0.38		ppbv ppbv	1	3/16/2011
Chlorobenzene	Shao	ND	0.38		ppbv ppbv	1	3/16/2011
Chloroethane		ND	0.38		ppbv ppbv	1	3/16/2011
Chloroform		ND	0.38		ppbv ppbv	1	3/16/2011
Chloromethane		ND	0.38		ppbv	1	3/16/2011
cis-1,2-Dichloro	ethene	ND	0.95			1	3/16/2011
cis-1,2-Dichloro		ND	0.38		ppbv	1	3/16/2011
Cyclohexane	properte	ND	0.38		ppbv ppbv	1	3/16/2011
Dibromochlorom	ethane	ND	0.38		ppbv	1	3/16/2011
Dichlorodifluoror		0.89	0.38		ppbv	1	3/16/2011
		ND	0.38		ppbv	•	3/16/2011

Qualifiers: J - Analyte

- ND Not Detected at the Reporting Limit J - Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- HT Sample received past holding time
- * Non-accredited parameter

- RL Reporting / Quantitation Limit for the analysis
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- H Holding time exceeded

-

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-

				-	oort Date: rint Date:	March 18, 201 March 18, 201	
Client:	Oneida Total Integrated Ente	erprises		Client Sa	ample ID:	A05-505GRND	-BL
Lab Order:	11030307	•		Tag	Number:		
Project:	2010101, Sandies Dry Cleane	ers Little Chu	te WI	0	tion Date:	3/11/2011 11:0	6:00 AM
Lab ID:	11030307-005A	As, Little Cliu	<i>w</i> , <i>w</i>	Conce	Matrix:		0.007101
Lao ID:	11050507-005A				Maurix:		
Analyses		Result	RL	Qualifier	Units	DF I	Date Analyzed
Volatile Organi	ic Compounds in Air by GC/MS	TO-15			Prep l	Date: 3/16/2011	Analyst: VP
Ethylbenzene		ND	0.38		ppbv	1	3/16/2011
Freon-113		ND	0.38		ppbv	1	3/16/2011
Freon-114		ND	1.9		ppbv	1	3/16/2011
Heptane		ND	0.38		ppbv	1	3/16/2011
Hexachlorobuta	adiene	ND	0.38		ppbv	1	3/16/2011
Hexane		ND	0.95		ppbv	1	3/16/2011
Isopropyl Alcol	hol	ND	1.9		ppbv	1	3/16/2011
m,p-Xylene		ND	0.76		ppbv	1	3/16/2011
Methyl tert-buty	yl ether	ND	0.38		ppbv	1	3/16/2011
Methylene chlo	oride	ND	3.8		ppbv	1	3/16/2011
o-Xylene		ND	0.38		ppbv	1	3/16/2011
Propene		ND	3.8		ppbv	1	3/16/2011
Styrene		ND	0.38		ppbv	1	3/16/2011
Tetrachloroeth	ene	0.78	0.38		ppbv	1	3/16/2011
Tetrahydrofura	an	ND	0.95		ppbv	1	3/16/2011
Toluene		0.66	0.38		ppbv	1	3/16/2011
trans-1,2-Dichl	oroethene	ND	0.38		ppbv	1	3/16/2011
trans-1,3-Dichl	oropropene	ND	0.38		ppbv	1	3/16/2011
Trichloroethene	e	ND	0.38		ppbv	1	3/16/2011
Trichlorofluoror	methane	1.3	0.38		ppbv	1	3/16/2011
Vinyl acetate		ND	3.8		ppbv	1	3/16/2011
Vinyl chloride		ND	0.38		ppbv	1	3/16/2011
Xylenes, Total		ND	1.1		ppbv	1	3/16/2011

	ND - Not Detected at the Reporting Limit	RL - Reporting / Quantitation Limit for the analysis
Qualifiers:	J - Analyte detected below quantitation limits	S - Spike Recovery outside accepted recovery limits
	B - Analyte detected in the associated Method Blank	R - RPD outside accepted recovery limits
	HT - Sample received past holding time	E - Value above quantitation range
	* - Non-accredited parameter	H - Holding time exceeded

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-

				-	port Date:	March 18, 201	
			P	Print Date:	March 18, 2011		
Client:	Oneida Total Integrated Ente	erprises		Client Sa	ample ID:	A06-505GRNI	D-UL
Lab Order:	11030307			Tag	g Number:		
Project:	2010101, Sandies Dry Cleane	ers Little Chi	ite WI		tion Date:	3/11/2011 11:1	3.00 AM
•	•	As, Little Cite	<i>a</i> te, 111	Conce			5.007101
Lab ID:	11030307-006A				Matrix:		
Analyses		Result	RL	Qualifier	Units	DF I	Date Analyzed
Volatile Organic	Compounds in Air by GC/MS	TO-15			Prep	Date: 3/16/2011	Analyst: VP
1,1,1-Trichloroe	thane	ND	0.37		ppbv	1	3/16/2011
1,1,2,2-Tetrachl	oroethane	ND	0.37		ppbv	1	3/16/2011
1,1,2-Trichloroe	thane	ND	0.37		ppbv	1	3/16/2011
1,1-Dichloroetha	ane	ND	0.37		ppbv	1	3/16/2011
1,1-Dichloroethe	ene	ND	0.37		ppbv	1	3/16/2011
1,2,4-Trichlorob	enzene	ND	0.37		ppbv	1	3/16/2011
1,2,4-Trimethylb	enzene	ND	0.37		ppbv	1	3/16/2011
1,2-Dibromoetha	ane	ND	0.37		ppbv	1	3/16/2011
1,2-Dichloroben	zene	ND	0.37		ppbv	1	3/16/2011
1,2-Dichloroetha	ane	ND	0.37		ppbv	1	3/16/2011
1,2-Dichloroprop	bane	ND	0.37		ppbv	1	3/16/2011
1,3,5-Trimethylb		ND	0.37		ppbv	1	3/16/2011
1,3-Butadiene		ND	0.37		ppbv	1	3/16/2011
1,3-Dichloroben	zene	ND	0.37		ppbv	1	3/16/2011
1,4-Dichloroben	zene	ND	0.37		ppbv	1	3/16/2011
1,4-Dioxane		ND	0.92		ppbv	1	3/16/2011
2-Butanone		ND	0.92		ppbv	1	3/16/2011
2-Hexanone		ND	1.8		ppbv	1	3/16/2011
4-Ethyltoluene		ND	0.37		ppbv	1	3/16/2011
4-Methyl-2-pent	anone	ND	1.8		ppbv	1	3/16/2011
Acetone		5.9	3.7	*	ppbv	1	3/16/2011
Benzene		0.49	0.37		ppbv	1	3/16/2011
Benzyl chloride		ND	0.92		ppbv	1	3/16/2011
Bromodichlorom	ethane	ND	0.37		ppbv	1	3/16/2011
Bromoform		ND	0.92		ppbv	1	3/16/2011
Bromomethane		ND	0.92		ppbv	1	3/16/2011
Carbon disulfide		ND	0.37		ppbv	1	3/16/2011
Carbon tetrachlo		ND	0.37		ppbv	1	3/16/2011
Chlorobenzene		ND	0.37		ppbv	1	3/16/2011
Chloroethane		ND	0.37		ppbv	1	3/16/2011
Chloroform		ND	0.37		ppbv	1	3/16/2011
Chloromethane		0.93	0.92		ppbv	1	3/16/2011
cis-1,2-Dichloro	ethene	ND	0.37		ppbv	1	3/16/2011
cis-1,3-Dichloro		ND	0.37		ppbv	1	3/16/2011
Cyclohexane	F. 54 5110	ND	0.37		ppbv	1	3/16/2011
Dibromochlorom	ethane	ND	0.37		ppbv	1	3/16/2011
Dichlorodifluoror		0.7	0.37		ppbv	1	3/16/2011
		ND	0.37		ppbv		3/16/2011

ND - Not

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits

Qualifiers:

- B Analyte detected in the associated Method Blank
- HT Sample received past holding time
- * Non-accredited parameter

- RL Reporting / Quantitation Limit for the analysis
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- H Holding time exceeded

Page 13 of 16

-

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-

				-	oort Date: rint Date:	March 18, 2011 March 18, 2011	
Client:	Oneida Total Integrated Ente	erprises		Client Sa	ample ID:	A06-505GRND	-UL
Lab Order:	11030307	•		Tag	Number:		
Project:	2010101, Sandies Dry Cleane	ers Little Chu	te WI	C C	tion Date:	3/11/2011 11:13	3.00 AM
•	•	As, Little Citu	, 111	Conce			
Lab ID:	11030307-006A				Matrix:	Air	
Analyses		Result	RL	Qualifier	Units	DF I	Date Analyzed
Volatile Organi	c Compounds in Air by GC/MS	TO-15			Prep I	Date: 3/16/2011	Analyst: VP
Ethylbenzene		ND	0.37		ppbv	1	3/16/2011
Freon-113		ND	0.37		ppbv	1	3/16/2011
Freon-114		ND	1.8		ppbv	1	3/16/2011
Heptane		ND	0.37		ppbv	1	3/16/2011
Hexachlorobuta	adiene	ND	0.37		ppbv	1	3/16/2011
Hexane		ND	0.92		ppbv	1	3/16/2011
Isopropyl Alcoh	nol	ND	1.8		ppbv	1	3/16/2011
m,p-Xylene		ND	0.73		ppbv	1	3/16/2011
Methyl tert-buty	/l ether	ND	0.37		ppbv	1	3/16/2011
Methylene chlo	ride	ND	3.7		ppbv	1	3/16/2011
o-Xylene		ND	0.37		ppbv	1	3/16/2011
Propene		ND	3.7		ppbv	1	3/16/2011
Styrene		ND	0.37		ppbv	1	3/16/2011
Tetrachloroethe	ene	ND	0.37		ppbv	1	3/16/2011
Tetrahydrofura	in	ND	0.92		ppbv	1	3/16/2011
Toluene		0.71	0.37		ppbv	1	3/16/2011
trans-1,2-Dichle	oroethene	ND	0.37		ppbv	1	3/16/2011
trans-1,3-Dichle	oropropene	ND	0.37		ppbv	1	3/16/2011
Trichloroethene	9	ND	0.37		ppbv	1	3/16/2011
Trichlorofluoror	nethane	0.81	0.37		ppbv	1	3/16/2011
Vinyl acetate		ND	3.7		ppbv	1	3/16/2011
Vinyl chloride		ND	0.37		ppbv	1	3/16/2011
Xylenes, Total		ND	1.1		ppbv	1	3/16/2011

	ND - Not Detected at the Reporting Limit	RL - Reporting / Quantitation Limit for the analysis
Qualifiers:	J - Analyte detected below quantitation limits	S - Spike Recovery outside accepted recovery limits
	B - Analyte detected in the associated Method Blank	R - RPD outside accepted recovery limits
	HT - Sample received past holding time	E - Value above quantitation range
	* - Non-accredited parameter	H - Holding time exceeded

DIVISION OF PUBLIC HEALTH

State of Wisconsin

Department of Health Services

Scott Walker Governor

Dennis G. Smith Secretary

March 25, 2011

Mike Vanasten N169-A Arrowhead Road Fremont, WI 54940

Dear Ms. Vanasten:

I am writing to provide you with the results of indoor air testing conducted on March 15th, 2011, inside your property at 521 Grand Avenue.

The purpose of this investigation was to assess whether indoor air at your property is being impacted by vapors from dry cleaning solvents previously used at the closed Sandies Dry Cleaners and Laundry, located at 513 Grand Avenue. Prior investigations at the Sandies property have shown substantial levels of soil contamination by tetrachloroethylene (PCE).

An 8-hour indoor air sample was collected in a 6-liter evacuated Summa canister from the basement of your property and another canister was used for a 24-hour air sample from the kitchen on the main floor. These samples were submitted to the Wisconsin State Laboratory of Hygiene (WSLH) and underwent U.S. EPA TO-15a laboratory analysis for toxic compounds in ambient air. Attached is a copy of the WSLH laboratory reports and the results for PCE are summarized in the below table.

	,	micrograms/cubic meter (µg/m³)		
Detected Level	Action Level	Detected Level	Action Level	
ND (<0.085)	3.1	ND (<0.57)	21.0	
ND (<0.085)	3.1	ND (<0.57)	21.0	
	(ppbv Detected Level ND (<0.085) ND (<0.085)	Level Level ND (<0.085)	(ppbv) (μg/m) Detected Action Detected Level Level Level ND (<0.085)	

Note: ND (<) – PCE not detected (less than laboratory detection limit)

For both samples PCE was not detected in indoor air samples. As a result PCE is not a health concern for anyone who resides in your building. The air samples also found trace levels of other volatile organic compounds (VOCs) that are unrelated to PCE. These other VOCs often come from use of consumer products, personal practices (such as smoking), and building materials, and the levels detected are common for the typical U.S. home and office.

In conclusion, based on these sample results there is no evidence that PCE or related degradation compounds from the former Sandies Dry Cleaners and Laundry property are at or affecting indoor air of your property. At this time I do not recommend any additional actions at your building.

1 WEST WILSON STREET P O BOX 2659 MADISON WI 53701-2659

> 608-266-1251 FAX: 608-267-2832 TTY: 888-701-1253 dhs.wisconsin.gov

You may be aware that during the week of April 4th the U.S. Environmental Protection Agency (EPA) plans to conduct additional investigations at Sandies Dry Cleaners and adjacent properties in order to determine the source and extent of PCE contamination. EPA intends to collect soil, groundwater, and soil gas samples and next week will be calling you with more details.

For more information on EPA's involvement and activities please contact Jennifer Borski, with the DNR Oshkosh Service Center, at 920-424-7887, or Ramon Mendoza with EPA, at 312-802-1409.

I will continue working closely with staff of the Outagamie County Public Health Department, and they will also be involved throughout the EPA investigation. If you wish to talk with an Outagamie County sanitarian they can be reached at 920-832-5100.

Please call me at 608-266-3479 if you wish to discuss your indoor air sample results.

Best Regards,

Herry tubes. Some

Henry Nehls-Lowe Division of Public Health

enclosure

cc: Jim Gilbert – 521 Grand Avenue, Little Chute
 Jennifer Borski – Wisconsin Department of Natural Resources
 Natalie Vandeveld – Outagamie County Health Department
 Ramon Mendoza – U.S. Environmental Protection Agency

Laboratory Report

D.F. Kurtycz, M.D., Medical Director • Charles D. Brokopp, Dr.P.H., Director

Environmental Health Division	Organic Chemistry
WDNR LAB ID: 113133790 NELAP LAB ID: E37658	EPA LAB WI00007 WI DATCP ID: 105-415
WSLH Sample: O	/004605
BORSKJ	Bill To
625 E. COUNTY RD Y, STE 700	Billing ID: 1979
	Customer ID: 325192
OSHKOSH, WI 54901-9731	
	Fee Exempt
	ID#:
Field #: SDC-08	Waterbody/Outfall ID:
Collection Start: 03/15/2011 09:15:00	Point/Well:
Collection End: 03/15/2011 17:10:00	Account #: DH060
Collected By: J. BORSKI	Project No:
County: OUTAGAMIE	Date Received: 03/17/2011
Sample Source: AIR	Date Reported: 03/23/2011
Sample Depth:	Sample Reason:
Sample Information: 920-424-7887	
Sample Location: 521 GRAND - BASEMENT	
Sample Description: ON TABLE NEXT TO OPEN SUMP -	8 HR

Analyses and Results:

	Lab Comment INTERFERENCE INDICATED BY *I.					
Analysis Method	Result	Units	LOD	LOQ	Report Limit	
PROPENE	*l <1.68	PPB V	0.085	0.280		
DICHLORODIFLUOROMETHANE	0.498	PPB V	0.085	0.280		
CHLOROMETHANE	0.462	PPB V	0.085	0.280		
1,2-DICHLOROTETRAFLUOROETHAN	E ND	PPB V	0.10	0.330		
VINYL CHLORIDE	ND	PPB V	0.085	0.280		
1,3-BUTADIENE	ND	PPB V	0.085	0.280		
BROMOMETHANE	ND	PPB V	0.085	0.280		
CHLOROETHANE	ND	PPB V	0.085	0.280		
ACROLEIN	0.600	PPB V	0.400	1.32		
Note: The reported value above is equal to or greater than the LOD and less than the LOQ.						
ACETONE	5.06	PPB V	0.400	1.32		
HALOCARBON 11	0.304	PPB V	0.085	0.280		
1,1-DICHLOROETHENE	ND	PPB V	0.085	0.280		

OV004605

Laboratory Report

D.F. Kurtycz, M.D., Medical Director • Charles D. Brokopp, Dr.P.H., Director

Environmental Health DivisionOrganic ChemistryWDNR LAB ID: 113133790NELAP LAB ID: E37658EPA LABWI00007WI DATCP ID: 105-415

WSLH Sample:

Analysis Method	Result	Units	LOD	LOQ	Report Limit
METHYLENE CHLORIDE	ND	PPB V	0.085	0.280	
CARBON DISULFIDE	ND	PPB V	0.085	0.280	
1,1,2-TRICHLOROTRIFLUOROETHANE	ND	PPB V	0.085	0.280	
TRANS-1,2-DICHLOROETHYLENE	ND	PPB V	0.085	0.280	
1,1-DICHLOROETHANE	ND	PPB V	0.085	0.280	
TERT-BUTYL METHYL ETHER	ND	PPB V	0.085	0.280	
VINYL ACETATE	0.467	PPB V	0.085	0.280	
METHYL ETHYL KETONE	0.547	PPB V	0.085	0.280	
CIS-1,2-DICHLOROETHYLENE	ND	PPB V	0.085	0.280	
HEXANE	0.288	PPB V	0.085	0.280	
CHLOROFORM	ND	PPB V	0.085	0.280	
ETHYL ACETATE	0.35	PPB V	0.085	0.280	
TETRAHYDROFURAN	ND	PPB V	0.400	1.32	
1,2-DICHLOROETHANE	ND	PPB V	0.085	0.280	
1,1,1-TRICHLOROETHANE	ND	PPB V	0.085	0.280	
BENZENE	0.714	PPB V	0.085	0.280	
CARBON TETRACHLORIDE	ND	PPB V	0.085	0.280	
CYCLOHEXANE	ND	PPB V	0.085	0.280	
1,2-DICHLOROPROPANE	ND	PPB V	0.085	0.280	
BROMODICHLOROMETHANE	ND	PPB V	0.10	0.33	
TRICHLOROETHYLENE	ND	PPB V	0.085	0.280	
1,4-DIOXANE	ND	PPB V	0.400	1.32	
HEPTANE	ND	PPB V	0.085	0.280	
CIS-1,3-DICHLOROPROPENE	ND	PPB V	0.085	0.280	
METHYL ISOBUTYL KETONE	ND	PPB V	0.400	1.32	
TRANS-1,3-DICHLOROPROPENE	ND	PPB V	0.085	0.280	
1,1,2-TRICHLOROETHANE	ND	PPB V	0.085	0.280	
TOLUENE	0.759	PPB V	0.085	0.280	
METHYL N-BUTYL KETONE	ND	PPB V	0.400	1.32	
DIBROMOCHLOROMETHANE	ND	PPB V	0.085	0.280	
1,2-DIBROMOETHANE	ND	PPB V	0.085	0.280	

Laboratory Report

D.F. Kurtycz, M.D., Medical Director • Charles D. Brokopp, Dr.P.H., Director

Environmental Health Division		Orga	anic Chemistry	
WDNR LAB ID: 113133790	NELAP LAB ID: E37658	EPA LAB	WI00007	WI DATCP ID: 105-415

OV004605

WSLH Sample:

Analysis Method	Result	Units	LOD	LOQ	Report Limit
TETRACHLOROETHYLENE	ND	PPB V	0.085	0.280	
CHLOROBENZENE	ND	PPB V	0.085	0.280	
ETHYLBENZENE	0.305	PPB V	0.085	0.280	
M/P-XYLENE	0.709	PPB V	0.170	0.561	
BROMOFORM	ND	PPB V	0.085	0.280	
STYRENE	ND	PPB V	0.085	0.280	
1,1,2,2-TETRACHLOROETHANE	ND	PPB V	0.085	0.280	
O-XYLENE	0.289	PPB V	0.085	0.280	
1-ETHYL-4-METHYL BENZENE	ND	PPB V	0.085	0.280	
1,3,5-TRIMETHYL BENZENE	ND	PPB V	0.085	0.280	
1,2,4-TRIMETHYL BENZENE	0.405	PPB V	0.085	0.280	
CHLOROMETHYL BENZENE (ALPHA)	ND	PPB V	0.085	0.280	
1,3-DICHLOROBENZENE	ND	PPB V	0.085	0.280	
1,4-DICHLOROBENZENE	ND	PPB V	0.085	0.280	
1,2-DICHLOROBENZENE	ND	PPB V	0.085	0.280	
1,2,4-TRICHLOROBENZENE	ND	PPB V	0.085	0.280	
HEXACHLORO-1,3-BUTADIENE	ND	PPB V	0.085	0.280	
Analysis Date Lab Comment 03/21/2011					
Analysis Method	Result	Units	LOD	LOQ	Report Limit
TOXIC ORGANIC COMPOUNDS IN AMBIENT AIR T015 - PREP	COMPLETE				1

WDNR LAB ID: 113133790

Wisconsin State Laboratory of Hygiene 2601 Agriculture Drive, PO Box 7996 Madison, WI 53707-7996 (800)442-4618 • FAX (608)224-6213 http://www.slh.wisc.edu

Laboratory Report

D.F. Kurtycz, M.D., Medical Director • Charles D. Brokopp, Dr.P.H., Director

Environmental Health Division

NELAP LAB ID: E37658 EPA LAB WI00007

Organic Chemistry

WI DATCP ID: 105-415

WSLH Sample: OV004605

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes see http://www.slh.wisc.edu/nelap/

List of Abbreviations:

LOD = Level of detection LOQ = Level of quantification

ND = None detected. Results are less than the LOD

Responsible Party: the Her

If there are questions about this report, please contact Steve Geis at 608-224-6269.

The results in this report apply only to the sample specifically listed above. This report is not to be reproduced except in full.

Laboratory Report

D.F. Kurtycz, M.D., Medical Director • Charles D. Brokopp, Dr.P.H., Director

Environmental Healt	th Division	Orga	anic Chemistry	
WDNR LAB ID: 113133790	NELAP LAB ID: E37658	EPA LAB	WI00007	WI DATCP ID: 105-415
	WSLH Sample: C	V004604		
BORSKJ			Bill To	
625 E. COUNTY RD Y,	STE 700		Billing ID:	1979
OSHKOSH, WI 54901-	0721		Customer	ID: 325192
USHKUSH, WI 34901-	9731		Fee Exem	pt
			ID#:	
Field #: SDC-09			Waterbody	y/Outfall ID:
Collection Start: 03/15/2011 09:	:25:00		Point/Well	1:
Collection End: 03/16/2011 09:	32:00		Account #	: DH060
Collected By: J. BORSKI			Project No):
County: OUTAGAMIE			Date Rece	eived: 03/17/2011
Sample Source: AIR			Date Repo	orted: 03/23/2011
Sample Depth:			Sample R	eason:
Sample Information: 920-424-7	887			
Sample Location: 521 GRAN	ID - FIRST FLOOR			
Sample Description: ON KITCH	IEN TABLE IN LIVING RC	00M - 24 HR	1	
Analyses and Results:				

Analysis Date Lab Co	omment				
03/21/2011					
Analysis Method	Result	Units	LOD	LOQ	Report Limit
PROPENE	10.4	PPB V	0.085	0.280	
DICHLORODIFLUOROMETHANE	0.472	PPB V	0.085	0.280	
CHLOROMETHANE	3.36	PPB V	0.085	0.280	
1,2-DICHLOROTETRAFLUOROETHANE	ND	PPB V	0.10	0.330	
VINYL CHLORIDE	ND	PPB V	0.085	0.280	
1,3-BUTADIENE	ND	PPB V	0.085	0.280	
BROMOMETHANE	ND	PPB V	0.085	0.280	
CHLOROETHANE	ND	PPB V	0.085	0.280	
ACROLEIN	3.88	PPB V	0.400	1.32	
ACETONE	28.3	PPB V	0.400	1.32	
HALOCARBON 11	0.338	PPB V	0.085	0.280	
1,1-DICHLOROETHENE	ND	PPB V	0.085	0.280	
METHYLENE CHLORIDE	ND	PPB V	0.085	0.280	

Laboratory Report

D.F. Kurtycz, M.D., Medical Director • Charles D. Brokopp, Dr.P.H., Director

Environmental Health Division		Orga	anic Chemistry	
WDNR LAB ID: 113133790	NELAP LAB ID: E37658	EPA LAB	WI00007	WI DATCP ID: 105-415

WSLH Sample:

OV004604

Analysis Method	Result	Units	LOD	LOQ	Report Limit
CARBON DISULFIDE	ND	PPB V	0.085	0.280	
1,1,2-TRICHLOROTRIFLUOROETHANE	ND	PPB V	0.085	0.280	
TRANS-1,2-DICHLOROETHYLENE	ND	PPB V	0.085	0.280	
1,1-DICHLOROETHANE	ND	PPB V	0.085	0.280	
TERT-BUTYL METHYL ETHER	ND	PPB V	0.085	0.280	
VINYL ACETATE	1.73	PPB V	0.085	0.280	
METHYL ETHYL KETONE	2.95	PPB V	0.085	0.280	
CIS-1,2-DICHLOROETHYLENE	ND	PPB V	0.085	0.280	
HEXANE	0.970	PPB V	0.085	0.280	
CHLOROFORM	ND	PPB V	0.085	0.280	
ETHYL ACETATE	24.	PPB V	0.085	0.280	
TETRAHYDROFURAN	1.05	PPB V	0.400	1.32	
Note: The reported value above is equal t	to or greater than t	the LOD and les	s than the	LOQ.	
1,2-DICHLOROETHANE	ND	PPB V	0.085	0.280	
1,1,1-TRICHLOROETHANE	ND	PPB V	0.085	0.280	
BENZENE	1.87	PPB V	0.085	0.280	
CARBON TETRACHLORIDE	0.280	PPB V	0.085	0.280	
CYCLOHEXANE	ND	PPB V	0.085	0.280	
1,2-DICHLOROPROPANE	ND	PPB V	0.085	0.280	
BROMODICHLOROMETHANE	ND	PPB V	0.10	0.33	
TRICHLOROETHYLENE	ND	PPB V	0.085	0.280	
1,4-DIOXANE	ND	PPB V	0.400	1.32	
HEPTANE	0.525	PPB V	0.085	0.280	
CIS-1,3-DICHLOROPROPENE	ND	PPB V	0.085	0.280	
METHYL ISOBUTYL KETONE	ND	PPB V	0.400	1.32	
TRANS-1,3-DICHLOROPROPENE	ND	PPB V	0.085	0.280	
1,1,2-TRICHLOROETHANE	ND	PPB V	0.085	0.280	
TOLUENE	3.15	PPB V	0.085	0.280	
METHYL N-BUTYL KETONE	ND	PPB V	0.400	1.32	
DIBROMOCHLOROMETHANE	ND	PPB V	0.085	0.280	

D.F. Kurtycz, M.D., Medical Director • Charles D. Brokopp, Dr.P.H., Director

Environmental Health DivisionOrganic ChemistryWDNR LAB ID: 113133790NELAP LAB ID: E37658EPA LABWI00007WI DATCP ID: 105-415

OV004604

WSLH Sample:

Analysis Method	Result	Units	LOD	LOQ	Report Limit
1,2-DIBROMOETHANE	ND	PPB V	0.085	0.280	
TETRACHLOROETHYLENE	ND	PPB V	0.085	0.280	
CHLOROBENZENE	ND	PPB V	0.085	0.280	
ETHYLBENZENE	0.543	PPB V	0.085	0.280	
M/P-XYLENE	1.31	PPB V	0.170	0.561	
BROMOFORM	ND	PPB V	0.085	0.280	
STYRENE	0.640	PPB V	0.085	0.280	
1,1,2,2-TETRACHLOROETHANE	ND	PPB V	0.085	0.280	
O-XYLENE	0.434	PPB V	0.085	0.280	
1-ETHYL-4-METHYL BENZENE	0.410	PPB V	0.085	0.280	
1,3,5-TRIMETHYL BENZENE	0.291	PPB V	0.085	0.280	
1,2,4-TRIMETHYL BENZENE	0.624	PPB V	0.085	0.280	
CHLOROMETHYL BENZENE (ALPHA)	ND	PPB V	0.085	0.280	
1,3-DICHLOROBENZENE	ND	PPB V	0.085	0.280	
1,4-DICHLOROBENZENE	ND	PPB V	0.085	0.280	
1,2-DICHLOROBENZENE	ND	PPB V	0.085	0.280	
1,2,4-TRICHLOROBENZENE	ND	PPB V	0.085	0.280	
HEXACHLORO-1,3-BUTADIENE	ND	PPB V	0.085	0.280	
Analysis Date Lab 0 03/21/2011	Comment				
Analysis Method	Result	Units	LOD	LOQ	Report Limit
TOXIC ORGANIC COMPOUNDS IN AMBIENT AIR T015 - PREP	COMPLETE				1
Analysis Date Lab 0 03/21/2011	Comment				
Analysis Method	Result	Units	LOD	LOQ	Report Limit
SINGLE SAMPLE PREPARATION 4	COMPLETE				

WDNR LAB ID: 113133790

Wisconsin State Laboratory of Hygiene 2601 Agriculture Drive, PO Box 7996 Madison, WI 53707-7996 (800)442-4618 • FAX (608)224-6213 http://www.slh.wisc.edu

Laboratory Report

D.F. Kurtycz, M.D., Medical Director • Charles D. Brokopp, Dr.P.H., Director

Environmental Health Division

NELAP LAB ID: E37658 EPA LAB WI00007

Organic Chemistry

WI DATCP ID: 105-415

WSLH Sample: OV004604

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes see http://www.slh.wisc.edu/nelap/

List of Abbreviations:

LOD = Level of detection LOQ = Level of quantification

ND = None detected. Results are less than the LOD

Responsible Party: the Her

If there are questions about this report, please contact Steve Geis at 608-224-6269.

The results in this report apply only to the sample specifically listed above. This report is not to be reproduced except in full.