

🕈 🕅 🔻 🖷

Wisconsin Department of Natural Resources Attn: Matt Thompson 1300 West Clairemont Avenue Eau Claire, WI 54701

Subject:

Sewer Line Vapor Sampling Mosinee Dry Cleaners 735 Old Highway 51 Mosinee, WI 54455 WDNR BRRTS #02-37-552230

Dear Matt,

This letter and enclosed information will summarize sewer line vapor sampling at the Mosinee Dry Cleaners site.

In accordance with Change Order #5, REI performed sewer line vapor sampling at the site on September 30, 2020. Prior to sampling, site reconnaissance was performed to determine an appropriate sampling location. There is no access to a cleanout to the lateral, and the main is located on the south side of Business Highway 51. It was therefore determined that the best access for sampling was the sink drain, located near the former dry cleaning machine. Photographs of the drain are attached.

The Investigation Protocol – Sewers and utility Tunnels as Preferential Pathways for Volatile Organic Compound Migration Into Buildings: Risk Factors and Investigation Protocol document describes the process by which sewer lines can be sampled through a sink drain beyond the P trap. The polyethylene tubing could not pass the trap without disconnecting the plumbing, which consisted of hand tight PVC fittings. The piping was disconnected, the tubing slid beyond the trap, and the plumbing was then reconnected for sampling.

The line was purged for five (5) minutes using a RAE Plus Classic 4 gas meter with field measurements for Oxygen, Carbon Monoxide (CO), Lower Explosive Limit (LEL), Hydrogen Sulfide (H_2S) and Volatile Organic Compounds (VOCs). Oxygen was 20.1%, CO and LEL were 0 %, with H_2S and VOCs 0.0 parts per million (PPM).

After purging, the line was connected to the Summa can and filled through a 200 ml/minute flow controller. The sample "Sewer" was submitted to Synergy Environmental Lab, Inc. in Appleton, WI for TO-15 analysis.

The results are summarized on the attached Table 4. Detections were comparted to Non-Residential sub-slab screening levels. A variety of low-level detections were present, with Tetrachloroethylene and Trichloroethylene well below the screening level. Chloroform was present at a level exceeding the residential screening level, but may represent a breakdown of chlorination products from municipal tap water, or common household cleaners. Chloroform was not present at significant levels in any previous sub-slab vapor samples. The complete laboratory report is attached.

Dry cleaning has not been performed at the Mosinee Cleaners site for over ten (10) years. Based on the results of additional vapor sampling, residual product does not appear to be present in the sewer line. Sewer line vapor does not represent a significant vapor source into the building. REI recommends submitting a closure report with Continuing Obligations package for the site.

Thank you for your assistance with this project. If you have questions or you would like to discuss, please contact me at Adelforge@REIengineering.com or (715) 675-9784.

Sincerely, REI Engineering, Inc.

and Mon

Andrew R. Delforge, P.G. Senior Hydrogeologist

Enclosure

CC: Annie Maas, Mosinee Dry Cleaners, 735 Old Highway 51, Mosinee, WI 54455

TABLE 4 SUB-SLAB & SEWER LINE VAPOR SAMPLING RESULTS MOSINEE CLEANERS 735 OLD HIGHWAY 51 MOSINEE, WI

VOCs (ug/m ³)	Screening Levels	4/23/12	6/10/19	3/4/20	6/24/20	6/26/20	9/30/20
	Non-Residential			VP-1			Sewer
Acetone	1,400,000	54.6		44		209	16.2
Benzene	160	<13.1		5.1		7.1	5.2
Carbon Tetrachloride	200	<25.9		0.57		0.57j	9.6
Chloroform	53	<40.0		< 0.3		1.12	231
Chloromethane	3,900	<17.0		1.26j		5.1	7.8
Dichlorodifluoromethane	4,400	<40.8		2.62		9.7	2.77
1,1-Dichloroethane	770	<33.1		< 0.187		< 0.187	< 0.374
1,2-Dichloroethane	47	<16.6		< 0.24		0.32	< 0.48
1,1-Dichloroethelyene	8,800	<32.7		< 0.21		< 0.21	< 0.42
cis-1,2 Dichloroethene	NS	<32.7		< 0.197	S	< 0.197	< 0.394
trans-1,2-Dichloroethene	2600	<32.7	SVE System Startup	< 0.231	SVE System Shutdown	< 0.231	< 0.462
Ethylbenzene	490	47.8		6.2	Sy	35	8.9
n-Heptane	NS	50.0		4.5	ster	13.2	7.8
n-Hexane	31,000	<29.1		3.3	n S	24.5	10.4
Methylene Chloride	2,600	<28.7		<15	hut	<15	<30
Naphthalene	36	NA	rtuj	2.25	dov	11.8	5.8
Tetrachloroethene	1,800	2,270	O.	12.6	vn	108	18.5
Toluene	220,000	124		42		170	38
1,1,1-Trichloroethane	220,000	<44.8		< 0.249		< 0.249	< 0.498
Trichloroethene	88	25.1		< 0.237		< 0.237	4.1
Trichlorofluoromethane	31,000	<46.1		2.25		13	2.7
1,2,4-Trimethylbenzene	310	85.1		12		80	26.5
1,3,5-Trimethylbenzene	NS	<40.4		3.3		19.9	6
Vinyl Chloride	280	<10.5		< 0.148		< 0.148	< 0.296
m&p-Xylene	4,400	92.0		22.1		119	32
o-Xylene	4,400	<35.6		9.9		54	14.1

NS - No Standard

NA- Not Analyzed

Bold Exceeds Residential Screening Level

Sink - located near former dry cleaning machine

Trap

Trap disconnected to fish tubing, reconnected for sampling

Purging line and collecting field measurements

Collecting vapor sample

Synergy Environmental Lab, INC

1990 Prospect Ct., Appleton, WI 54914 *P 920-830-2455 * F 920-733-0631

ANDY DELFORGE REI 4080 N. 20TH AVENUE WAUSAU. WI 54401

Report Date 20-Oct-20

Project Name Project #	MOSINEE C 5890	CLEANERS/ M	OSINEE W	VI		Invo	ice # E385	85			
Lab Code Sample ID Sample Matri											
Sample Date	9/30/2020										
		Result	Unit	LOD 1	LOQ D	il	Method	Ext Date	Run Date	Analyst	Code
Organic											
Air Samples											
Acetone		16.2	ug/m3	0.598	1.9	2	TO-15		10/19/2020	CJR	1
Acrolein		< 0.188	ug/m3	0.188	0.598	2	TO-15		10/19/2020	CJR	1
Benzene		5.2	ug/m3	0.272	0.866	2	TO-15		10/19/2020	CJR	1
Benzyl Chloride		< 0.418	ug/m3	0.418	1.33	2	TO-15		10/19/2020	CJR	1
Bromodichlorome	ethane	53	ug/m3	0.748	2.38	2	TO-15		10/19/2020	CJR	1
Bromoform		< 0.828	ug/m3	0.828	2.64	2	TO-15		10/19/2020	CJR	1
Bromomethane		< 0.4	ug/m3	0.4	1.274	2	TO-15		10/19/2020	CJR	1
1,3-Butadiene		< 0.286	ug/m3	0.286	0.908	2	TO-15		10/19/2020	CJR	1
Carbon Disulfide		9.6	ug/m3	0.276	0.88	2	TO-15		10/19/2020	CJR	1
Carbon Tetrachlor	ride	0.63 "J"	ug/m3	0.614	1.956	2	TO-15		10/19/2020	CJR	1
Chlorobenzene		< 0.502	ug/m3	0.502	1.596	2	TO-15		10/19/2020	CJR	1
Chloroethane		< 0.318	ug/m3	0.318	1.014	2	TO-15		10/19/2020	CJR	1
Chloroform		231	ug/m3	0.6	1.906	2	TO-15		10/19/2020	CJR	1
Chloromethane		7.8	ug/m3	1.662	5.28	2	TO-15		10/19/2020	CJR	1
Cyclohexane		20.4	ug/m3	0.424	1.348	2	TO-15		10/19/2020	CJR	1
Dibromochlorome	ethane	13.3	ug/m3	0.752	2.4	2	TO-15		10/19/2020	CJR	1
1,4-Dichlorobenze	ene	0.72 "J"	ug/m3	0.604	1.92	2	TO-15		10/19/2020	CJR	1
1,3-Dichlorobenze	ene	< 0.604	ug/m3	0.604	1.92	2	TO-15		10/19/2020	CJR	1
1,2-Dichlorobenze	ene	1.18 "J"	ug/m3	0.47	1.498	2	TO-15		10/19/2020	CJR	1
Dichlorodifluoron	nethane	2.77	ug/m3	0.526	1.672	2	TO-15		10/19/2020	CJR	1
1,2-Dichloroethan	ne	< 0.48	ug/m3	0.48	1.526	2	TO-15		10/19/2020	CJR	1
1,1-Dichloroethan	ne	< 0.374	ug/m3	0.374	1.192	2	TO-15		10/19/2020	CJR	1
1,1-Dichloroethen	ie	< 0.42	ug/m3	0.42	1.336	2	TO-15		10/19/2020	CJR	1
cis-1,2-Dichloroet	thene	< 0.394	ug/m3	0.394	1.252	2	TO-15		10/19/2020	CJR	1
trans-1,2-Dichloro	bethene	< 0.462	ug/m3	0.462	1.468	2	TO-15		10/19/2020	CJR	1

Project NameMOSINEE CLEANERS/ MOSINEE WIProiect #5890

Invoice # E38585

 Lab Code
 5038585A

 Sample ID
 SEWER

 Sample Matrix
 Air

 Sample Date
 9/30/2020

Sumple Dute 9/50/2020	Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date A	Analyst	Code
1,2-Dichloropropane	< 0.56	ug/m3	0.56	1.78	2	TO-15		10/19/2020	CJR	1
trans-1,3-Dichloropropene	< 0.396	ug/m3	0.396	1.26	2	TO-15		10/19/2020	CJR	1
cis-1,3-Dichloropropene	< 0.468	ug/m3	0.468	1.49	2	TO-15		10/19/2020	CJR	1
1,2-Dichlorotetrafluoroethane	< 0.892	ug/m3	0.892	2.84	2	TO-15		10/19/2020	CJR	1
1,4-Dioxane	< 0.314	ug/m3	0.314	1	2	TO-15		10/19/2020	CJR	1
EDB (1,2-Dibromoethane)	< 0.684	ug/m3	0.684	2.18	2	TO-15		10/19/2020	CJR	1
Ethanol	< 0.304	ug/m3	0.304	0.964	2	TO-15		10/19/2020	CJR	1
Ethyl Acetate	< 0.352	ug/m3	0.352	1.118	2	TO-15		10/19/2020	CJR	1
Ethylbenzene	8.9	ug/m3	0.406	1.29	2	TO-15		10/19/2020	CJR	1
4-Ethyltoluene	8.6	ug/m3	0.428	1.362	2	TO-15		10/19/2020	CJR	1
Heptane	7.8	ug/m3	0.53	1.69	2	TO-15		10/19/2020	CJR	1
Hexachlorobutadiene	< 0.978	ug/m3	0.978	3.12	2	TO-15		10/19/2020	CJR	1
Hexane	10.4	ug/m3	0.47	1.496	2	TO-15		10/19/2020	CJR	1
2-Hexanone	< 0.444	ug/m3	0.444	1.414	2	TO-15		10/19/2020	CJR	1
Isopropyl Alcohol	0.64 "J"	ug/m3	0.218	0.694	2	TO-15		10/19/2020	CJR	1
Methyl ethyl ketone (MEK)	1.12 "J "	ug/m3	0.356	1.134	2	TO-15		10/19/2020	CJR	1
Methyl isobutyl ketone (MIBK)	1.23	ug/m3	0.336	1.072	2	TO-15		10/19/2020	CJR	1
Methyl Methacrylate	< 0.434	ug/m3	0.434	1.38	2	TO-15		10/19/2020	CJR	1
Methylene chloride	< 30	ug/m3	0.318	1.012	2	TO-15		10/19/2020	CJR	1
Methyl tert-butyl ether (MTBE)	< 0.32	ug/m3	0.32	1.018	2	TO-15		10/19/2020	CJR	1
Naphthalene	5.8	ug/m3	1.35	4.3	2	TO-15		10/19/2020	CJR	1
Propene	13.4	ug/m3	0.158	0.502	2	TO-15		10/19/2020	CJR	1
Styrene	3.6	ug/m3	0.362	1.154	2	TO-15		10/19/2020	CJR	1
1,1,2,2-Tetrachloroethane	< 0.65	ug/m3	0.65	2.06	2	TO-15		10/19/2020	CJR	1
Tetrachloroethene	18.5	ug/m3	0.556	1.768	2	TO-15		10/19/2020	CJR	1
Tetrahydrofuran	10.6	ug/m3	0.262	0.834	2	TO-15		10/19/2020	CJR	1
Toluene	38	ug/m3	0.368	1.17	2	TO-15		10/19/2020	CJR	1
1,2,4-Trichlorobenzene	< 1.314	ug/m3	1.314	4.18	2	TO-15		10/19/2020	CJR	1
1,1,1-Trichloroethane	< 0.498	ug/m3	0.498	1.586	2	TO-15		10/19/2020	CJR	1
1,1,2-Trichloroethane	< 0.516	ug/m3	0.516	1.644	2	TO-15		10/19/2020	CJR	1
Trichloroethene (TCE)	4.1	ug/m3	0.474	1.508	2	TO-15		10/19/2020	CJR	1
Trichlorofluoromethane	2.7	ug/m3	0.674	2.14	2	TO-15		10/19/2020	CJR	1
Trichlorotrifluoroethane	< 0.804	ug/m3	0.804	2.56	2	TO-15		10/19/2020	CJR	1
1,2,4-Trimethylbenzene	26.5	ug/m3	0.566	1.798	2	TO-15		10/19/2020	CJR	1
1,3,5-Trimethylbenzene	6	ug/m3	0.464	1.478	2	TO-15		10/19/2020	CJR	1
Vinyl acetate	< 0.406	ug/m3	0.406	1.29	2	TO-15		10/19/2020	CJR	1
Vinyl Chloride	< 0.296	ug/m3	0.296	0.944	2	TO-15		10/19/2020	CJR	1
m&p-Xylene	32	ug/m3	0.754	2.4	2	TO-15		10/19/2020	CJR	1
o-Xylene	14.1	ug/m3	0.436	1.39	2	TO-15		10/19/2020	CJR	1

Invoice # E38585

"J" Flag: Analyte detected between LOD and LOQ

LOD Limit of Detection

LOQ Limit of Quantitation

Code	Comment

1 Laboratory QC within limits.

All solid sample results reported on a dry weight basis unless otherwise indicated. All LOD's and LOQ's are adjusted for dilutions but not dry weight. Subcontracted results are denoted by SUB in the analyst field.

Authorized Signature

Michaelplul

CHAIN OF TODY RECORD					S	Syl.	erg	Ŋ	/							nain 1ge		1	No of 1	389	92 (
Lab I.D. #			F	Environmental Lab,						31	-	Г	-			-		-		Rec	uest						
QUOTE # :	Ens I			Here &				C	Ny		10	P. M.			Rus	1000				10000	1000	uired:					
Project #:	5890				1990 P		 Appleton, V 	NI 5	54914	4				(R	ushe	s ad	cep	oted	only	y with	prior a	uthoriz	ation)				
Sampler: (signature)	Jaca	- 1					ynergy@wi.t						-	4	Nor	ma	ΙTι	Irn .	Aro	und	_						
Project (Name / Loo	sation): MUSINEC Cle	eres/Mas	iner 6	JE	2	2			A	naly	sis	Requ	Jest	ed							Oth	er Ana	lysis				
Reports To:	Bardy DelFinge		Invo	ice To:	BO	1																					
Company RE Company Alea					Alea											S											
Address			Add	Address										w		OLD											
City State Zip City St				State Zip			8	Sep 95)	ep 95					VLEN		EDS	5)		204								
Phone Phone				one				DRO Se	30 Se	BITE	ш	(0)	(100	HL		ENDI	A 524	(09	- 15)	ALS							
Email AD ELHONGE e RELENGINGON Email				ail	4					TIN	REAS	A 827	8 40	NAPI		USP	(EP)	A 82	E	MET				ID/			
Lab I.D.	Sample I.D.	Collec		Filtered Y/N					Sample Type (Matrix)*	Preservation	DRO (Mod	GRO (Mod GRO Sep 95)	LEAU NITRATE/NITRITE	OIL & GREASE	PAH (EPA 8270)	PUB PVOC (FPA 8021)	PVOC + NAPHTHALENE	SULFATE	TOTAL SUSPENDED SOLIDS	VOC DW (EPA 524.2)	VOC (EPA 8260)	- VOC AIR (TO - 15)	8-RCRA METALS				.0
50385851	Sewer	1/30/2	1119	N	1	A											-		4								
Comments/Spec	al Instructions (*Specify	groundwate	r "GW", I	Drinking V	Vater "DW", V	Vaste Water	"WW", Soil "S	", Ai	ir "A",	Oil,	Slud	lge, e	etc.)														
Meth Tem	ntegrity - To be complete od of Shipment: p. of Temp. Blank: al intact upon receipt:	EE DE °C On Ice	E			ed By: (sign)	By:	Tim	ne 12/3		Date		Rece						1	Ano	Tim 		Date				