GIS REGISTRY **Cover Sheet**

Source Prop	perty Information	CLOSURE DATE: Jul 29, 2011
BRRTS #:	03-20-553033	
ACTIVITY NAME:	Manowske Welding Inc - 1000 Gal Fu	FID #: 420024110
PROPERTY ADDRESS:	192 N Main St (formerly 200 N Main	St)
MUNICIPALITY:	Fond Du Lac	COMM #:
PARCEL ID #:	FDL-15-17-10-13-662-00	
	*WTM COORDINATES:	WTM COORDINATES REPRESENT:
)	X: 644902 Y: 369096	O Approximate Center Of Contaminant Source
	* Coordinates are in WTM83, NAD83 (1991)	Approximate Source Parcel Center
Please check as appr	opriate: (BRRTS Action Code)	
	Conta	minated Media:
Gro	oundwater Contamination > ES (236)	Soil Contamination > *RCL or **SSRCL (232)
Г	Contamination in ROW	Contamination in ROW

Off-Source Contamination (note: for list of off-source properties see "Impacted Off-Source Property" form) Contamination in ROW

Off-Source Contamination

(note: for list of off-source properties see "Impacted Off-Source Property" form)

Land Use Controls:

N/A (Not Applicable)

Soil: maintain industrial zoning (220)

(note: soil contamination concentrations between non-industrial and industrial levels)

Structural Impediment (224)

Site Specific Condition (228)

X Cover or Barrier (222)

(note: maintenance plan for groundwater or direct contact)

Vapor Mitigation (226)

Maintain Liability Exemption (230)

(note: local government unit or economic development corporation was directed to take a response action)

Monitoring Wells:

Are all monitoring wells properly abandoned per NR 141? (234)

• Yes ∩ No ON/A

> * Residual Contaminant Level **Site Specific Residual Contaminant Level

State of Wisconsin	GIS Registry Checklist	
Department of Natural Resources	Form 4400-245 (R 3/10)	Dage 1 of 2
http://dnr.wi.gov	F011114400-243 (N 3/10)	Page 1 of 3

This Adobe Fillable form is intended to provide a list of information that is required for evaluation for case closure. It is to be used in conjunction with Form 4400-202, Case Closure Request. The closure of a case means that the Department has determined that no further response is required at that time based on the information that has been submitted to the Department.

NOTICE: Completion of this form is mandatory for applications for case closure pursuant to ch. 292, Wis. Stats. and ch. NR 726, Wis. Adm. Code, including cases closed under ch. NR 746 and ch. NR 726. The Department will not consider, or act upon your application, unless all applicable sections are completed on this form and the closure fee and any other applicable fees, required under ch. NR 749, Wis. Adm. Code, Table 1 are included. It is not the Department's intention to use any personally identifiable information from this form for any purpose other than reviewing closure requests and determining the need for additional response action. The Department may provide this information to requesters as required by Wisconsin's Open Records law [ss. 19.31 - 19.39, Wis. Stats.].

BRRTS #:	03-20-553033	PARCEL ID #:	FDL-15-17-10-13-662-00		
ACTIVITY NAME:	Manowske Weld	ding Inc - 1000 Gal Fuel Oil	WTM COORDINATES:	X: 644902	Y: 369096

CLOSURE DOCUMENTS (the Department adds these items to the final GIS packet for posting on the Registry)

X Closure Letter

- X Maintenance Plan (if activity is closed with a land use limitation or condition (land use control) under s. 292.12, Wis. Stats.)
- **Continuing Obligation Cover Letter** (for property owners affected by residual contamination and/or continuing obligations)

X Conditional Closure Letter

Certificate of Completion (COC) (for VPLE sites)

SOURCE LEGAL DOCUMENTS

Deed: The most recent deed as well as legal descriptions, for the **Source Property** (where the contamination originated). Deeds for other, off-source (off-site) properties are located in the **Notification** section.

Note: If a property has been purchased with a land contract and the purchaser has not yet received a deed, a copy of the land contract which includes the legal description shall be submitted instead of the most recent deed. If the property has been inherited, written documentation of the property transfer should be submitted along with the most recent deed.

Certified Survey Map: A copy of the certified survey map or the relevant section of the recorded plat map for those properties where the legal description in the most recent deed refers to a certified survey map or a recorded plat map. (lots on subdivided or platted property (e.g. lot 2 of xyz subdivision)).

Figure #: 1 Title: Fond Du Lac County Certified Survey Map

Signed Statement: A statement signed by the Responsible Party (RP), which states that he or she believes that the attached legal description accurately describes the correct contaminated property.

MAPS (meeting the visual aid requirements of s. NR 716.15(2)(h))

Maps must be no larger than 11 x 17 inches unless the map is submitted electronically.

Location Map: A map outlining all properties within the contaminated site boundaries on a U.S.G.S. topographic map or plat map in sufficient detail to permit easy location of all parcels. If groundwater standards are exceeded, include the location of all potable wells within 1200 feet of the site.

Note: Due to security reasons municipal wells are not identified on GIS Packet maps. However, the locations of these municipal wells must be identified on Case Closure Request maps.

Figure #: 1 Title: Site Location Map

Detailed Site Map: A map that shows all relevant features (buildings, roads, individual property boundaries, contaminant sources, utility lines, monitoring wells and potable wells) within the contaminated area. This map is to show the location of all contaminated public streets, and highway and railroad rights-of-way in relation to the source property and in relation to the boundaries of groundwater contamination exceeding a ch. NR 140 Enforcement Standard (ES), and/or in relation to the boundaries of soil contamination exceeding a Residual Contaminant Level (RCL) or a Site Specific Residual Contaminant Levels (SSRCL) as determined under s. NR 720.09, 720.11 and 720.19.

Figure #: 2 Title: Sampling Locations

Soil Contamination Contour Map: For sites closing with residual soil contamination, this map is to show the location of all contaminated soil and a single contour showing the horizontal extent of each area of contiguous residual soil contamination that exceeds a Residual Contaminant Level (RCL) or a Site Specific Residual Contaminant Level (SSRCL) as determined under s. NR 720.09, 720.11 and 720.19.

BRRTS #: 03-20-553033

ACTIVITY NAME: Manowske Welding Inc - 1000 Gal Fuel Oil

MAPS (continued)

Geologic Cross-Section Map: A map showing the source location and vertical extent of residual soil contamination exceeding a Residual Contaminant Level (RCL) or a Site Specific Residual Contaminant Level (SSRCL). If groundwater contamination exceeds a ch. NR 140 Enforcement Standard (ES) when closure is requested, show the source location and vertical extent, water table and piezometric elevations, and locations and elevations of geologic units, bedrock and confining units, if any.

Figure #: 4 Title: Geologic Cross-Section A-A'

Figure #: Title:

Groundwater Isoconcentration Map: For sites closing with residual groundwater contamination, this map shows the horizontal extent of all groundwater contamination exceeding a ch. NR140 Preventive Action Limit (PAL) and an Enforcement Standard (ES). Indicate the direction and date of groundwater flow, based on the most recent sampling data. *Note: This is intended to show the total area of contaminated groundwater.*

Figure #: 5 Title: Groundwater Contour Map

Groundwater Flow Direction Map: A map that represents groundwater movement at the site. If the flow direction varies by more then 20° over the history of the site, submit 2 groundwater flow maps showing the maximum variation in flow direction.

Figure #: Title:

Figure #: Title:

TABLES (meeting the requirements of s. NR 716.15(2)(h)(3))

Tables must be no larger than 11 x 17 inches unless the table is submitted electronically. Tables <u>must not</u> contain shading and/or cross-hatching. The use of **BOLD** or *ITALICS* is acceptable.

Soil Analytical Table: A table showing <u>remaining</u> soil contamination with analytical results and collection dates.
 Note: This is one table of results for the contaminants of concern. Contaminants of concern are those that were found during the site investigation, that remain after remediation. It may be necessary to create a new table to meet this requirement.

Table #: 1, 2 Title: Soil Analytical Results, Summary of VOC Soil Analytical Results, Summary of PAH

Groundwater Analytical Table: Table(s) that show the <u>most recent</u> analytical results and collection dates, for all monitoring wells and any potable wells for which samples have been collected.

Table #: 3, 4 Title: Summary of Monitoring Well Groundwater Analytical Results, GW Analytical Results

Water Level Elevations: Table(s) that show the previous four (at minimum) water level elevation measurements/dates from all monitoring wells. If present, free product is to be noted on the table.

Table #: 5 Title: Field Data - Groundwater

IMPROPERLY ABANDONED MONITORING WELLS

For each monitoring well <u>not</u> properly abandoned according to requirements of s. NR 141.25 include the following documents. **Note:** If the site is being listed on the GIS Registry for only an improperly abandoned monitoring well you will only need to submit the documents in this section for the GIS Registry Packet.

X Not Applicable

Site Location Map: A map showing all surveyed monitoring wells with specific identification of the monitoring wells which have not been properly abandoned.

Note: If the applicable monitoring wells are distinctly identified on the Detailed Site Map this Site Location Map is not needed.

Figure #: Title:

Well Construction Report: Form 4440-113A for the applicable monitoring wells.

Deed: The most recent deed as well as legal descriptions for each property where a monitoring well was not properly abandoned.

Notification Letter: Copy of the notification letter to the affected property owner(s).

Page 3 of 3

BRRTS #: 03-20-553033

ACTIVITY NAME: Manowske Welding Inc - 1000 Gal Fuel Oil

NOTIFICATIONS

Source Property

X Not Applicable

- Letter To Current Source Property Owner: If the source property is owned by someone other than the person who is applying for case closure, include a copy of the letter notifying the current owner of the source property that case closure has been requested.
- **Return Receipt/Signature Confirmation:** Written proof of date on which confirmation was received for notifying current source property owner.

Off-Source Property

Group the following information per individual property and label each group according to alphabetic listing on the "Impacted Off-Source Property" attachment.

X Not Applicable

Letter To "Off-Source" Property Owners: Copies of all letters sent by the Responsible Party (RP) to owners of properties with groundwater exceeding an Enforcement Standard (ES), and to owners of properties that will be affected by a land use control under s. 292.12, Wis. Stats.

Note: Letters sent to off-source properties regarding residual contamination must contain standard provisions in Appendix A of ch. NR 726.

Number of "Off-Source" Letters:

Return Receipt/Signature Confirmation: Written proof of date on which confirmation was received for notifying any off-source property owner.

Deed of "Off-Source" Property: The most recent deed(s) as well as legal descriptions, for all affected deeded off-source property(ies). This does not apply to right-of-ways.

Note: If a property has been purchased with a land contract and the purchaser has not yet received a deed, a copy of the land contract which includes the legal description shall be submitted instead of the most recent deed. If the property has been inherited, written documentation of the property transfer should be submitted along with the most recent deed.

Letter To "Governmental Unit/Right-Of-Way" Owners: Copies of all letters sent by the Responsible Party (RP) to a city, village, municipality, state agency or any other entity responsible for maintenance of a public street, highway, or railroad right-of-way, within or partially within the contaminated area, for contamination exceeding a groundwater Enforcement Standard (ES) and/or soil exceeding a Residual Contaminant Level (RCL) or a Site Specific Residual Contaminant Level (SSRCL).

Number of "Governmental Unit/Right-Of-Way Owner" Letters:

State of Wisconsin \ DEPARTMENT OF NATURAL RESOURCES

Scott Walker, Governor Cathy Stepp, Secretary Bruce Urben, Regional Air & Waste Leader Plymouth Service Center 1155 Pilgrim Rd Plymouth, Wisconsin 53073 Phone (920) 892-8756 Fax (920) 892-6638

July 29, 2011

Brian Cummings MRED CUMMINGS W228 N745 Westmound Dr Waukesha, WI 53186

Subject: Final Case Closure with Continuing Obligations Former Manowske Welding Redevelopment Site, 180 N. Main Street, Fond du Lac, Wisconsin **WDNR BRRTS** #03-20-553033

Dear Mr. Cummings:

Regarding the closure request for Former Manowske Welding, the Department of Natural Resources (Department) considers this site closed and no further investigation or remediation is required at this time. This final closure decision is based on the correspondence and data provided, and is issued under ch. NR 726, Wisconsin Administrative Code.

The Former Manowske Welding and the adjacent former Georgetown Cleaners are on the same Deed and are both enrolled in the Voluntary Party Liability Exemption Process (VPLE). You will receive a Certificate of Completion for the Deeded property in a couple of weeks when all closure actions are completed.

Previously on January 23, 2009, the NER Closure Committee reviewed the Closure Request regarding the petroleum and metal contamination on the site from the Former Manowske Welding underground storage tanks and historic waste. A conditional closure letter was issued by the Department on February 10, 2009; however, this case was left open to use monitoring well #MW-MW 5 for the adjacent Georgetown Cleaners investigation and cleanup.

The following conditional closure documentation was received:

- April 27, 2009 (GIS Registry & Pavement Cover Maintenance Plan)
- April 16, 2010 (Department of Health Services memo stating no vapor mitigation system needed*) that the conditions in that letter were met
- August 10, 2010 (Abandonment of monitoring well MW-MW 5),
- September 28, 2010, March 17, 2011 and May 26, 2011 (Utility Trench Plug Installation Reports), and

*Note: A vapor venting system has been voluntarily installed beneath the newly constructed retail building and is being maintained by Walgreens now located on the former Manowske and former Georgetown Cleaners properties.

Mr. Cummings, July 29, 2011 Final Case Closure with Continuing Obligations, Former Manowske Welding Redevelopment Site 180 N. Main Street, Fond du Lac, Wisconsin BRRTS # 03-20-553033

This site was used as a welding, machining and metal structure assembly business from the 1960s to 2005. Soil has been contaminated with petroleum and historical waste metals. The contaminated soil on the property was excavated to the extent practicable. Pavement and landscaping completed the remedial action at the site. A passive venting system was installed under the new retail building. However the Department is not requiring maintenance of this system as a continuing obligation because no contamination was detected under the building. Utility plugs were installed in the utility trenches. Petroleum contamination exists on the former Manowski Welding and the former Georgetown Cleaners sites at monitoring well locations MW-7, MW-7D, MW-8, and MW-8A from an off-site source known as Mobile Gas Mart (COMM #54935346075). Some contaminated soil remains (one sample point on the northwest side of the property) and is addressed by the conditions of closure in this letter.

The final closure decision was based on the property being used for retail purposes and customer parking. This use affected the type of cleanup employed, and the type of continuing obligations required.

While the Department considers this case closed, you and future property owners must comply with the continuing obligations as explained in this letter. Please provide a copy of this letter and any attached maps and maintenance plan to anyone who purchases this property from you.

Continuing Obligations and GIS Registry

The continuing obligations for this site are summarized below:

- Residual soil contamination exists that must be properly managed should it be excavated or removed.
- A building, pavement, an engineered cover or a soil barrier must be maintained over contaminated soil and the state must approve any changes to this barrier.

This site will be listed on the Remediation and Redevelopment Program's internet accessible GIS Registry, to provide notice of residual contamination and of any continuing obligations. If the property is listed on the GIS Registry because of remaining contamination and you intend to construct or reconstruct a well, you will need prior Department approval in accordance with s. NR 812.09(4) (w), Wis. Adm. Code. To obtain approval, Form 3300-254 needs to be completed and submitted to the DNR Drinking and Groundwater program's regional water supply specialist. This form can be obtained on-line at http://dnr.wi.gov/org/water/dwg/3300254.pdf or at the web address listed below for the GIS Registry.

All site information, impervious cover (parking lot) maintenance plan, is also on file at the DNR's Oshkosh Service Center, 625 E County Rd Y STE 700, Oshkosh, WI 54901-9731. This letter and information that was submitted with your closure request application, including the maintenance plan, will be included on the GIS Registry in a PDF attachment. To review the site on the GIS Registry web page, visit the RR Sites Map page at http://dnr.wi.gov/org/aw/rr/gis/index.htm.

Prohibited Activities

Certain activities are prohibited due to a condition of closure which requires maintenance of a barrier intended to limit or prevent contact with or exposure to contamination remaining at the site. Department notification is required before making a change, in order to determine if further action is needed to maintain the protectiveness of the remedy employed. The following activities are prohibited on any portion of the property where parking lot pavement is required as shown on the **attached map - Figure 11 Cover Maintenance**], <u>unless prior written approval has been obtained from the Wisconsin Department of Natural Resources</u>: 1) removal of the existing barrier; 2) replacement with another barrier; 3) excavating or grading of the land surface; 4) filling on capped or paved areas; 5) plowing for agricultural cultivation; and 6) construction or placement of a different building or other structure.

Upon Department approval to replace the existing barrier, the replacement barrier must be one of similar permeability, or must be protective of the revised use of the property, until contaminant levels no longer exceed the applicable standards.

Closure Conditions

Please be aware that pursuant to s. 292.12 Wisconsin Statutes, compliance with the requirements of this letter is a responsibility to which the current property owner and any subsequent property owners must adhere. You must pass on both the information about these continuing obligations and the maintenance plan to the next property owner or owners. The Department intends to conduct inspections in the future to ensure that the conditions included in this letter, including compliance with **attached maintenance plan**, are met.

Residual Soil Contamination

Residual low level soil contamination remains at one soil sample point (Former Tank 5 – South sample), which is below the current Walgreens building on the northwest side of the building as indicated on the **attached map - Figure 3 Residual DRO Soil**, and in the information submitted to the Department of Natural Resources.

If soil in the specific locations described above is excavated in the future, then pursuant to ch. NR 718 or, if applicable, ch. 289, Stats. and chs. 500 to 536, the property owner at the time of excavation must sample and analyze the excavated soil to determine if residual contamination remains. If sampling confirms that contamination is present the property owner at the time of excavation will need to determine whether the material is considered solid or hazardous waste and ensure that any storage, treatment or disposal is in compliance with applicable standards and rules. In addition, all current and future owners and occupants of the property need to be aware that excavation of the contaminated soil may pose an inhalation or other direct contact hazard and as a result special precautions may need to be taken to prevent a direct contact health threat to humans.

Cover or Barrier

Pursuant to s. 292.12(2)(a), Wis. Stats., the building, pavement, or other impervious cover that exists in the location shown on the **attached map - Figure 11 Cover Maintenance** shall be

Mr. Cummings, July 29, 2011 Final Case Closure with Continuing Obligations, Former Manowske Welding Redevelopment Site 180 N. Main Street, Fond du Lac, Wisconsin BRRTS # 03-20-553033

maintained in compliance with the **attached maintenance plan** in order to minimize the infiltration of water and prevent additional groundwater contamination that would violate the groundwater quality standards in ch. NR 140, Wis. Adm. Code, and to prevent direct contact with residual soil contamination that might otherwise pose a threat to human health. The **attached maintenance plan and inspection log** are to be kept up-to-date and on-site. Only upon request should you submit the inspection log to the Department.

When to Notify the Department about Property Use or Conditions of Closure

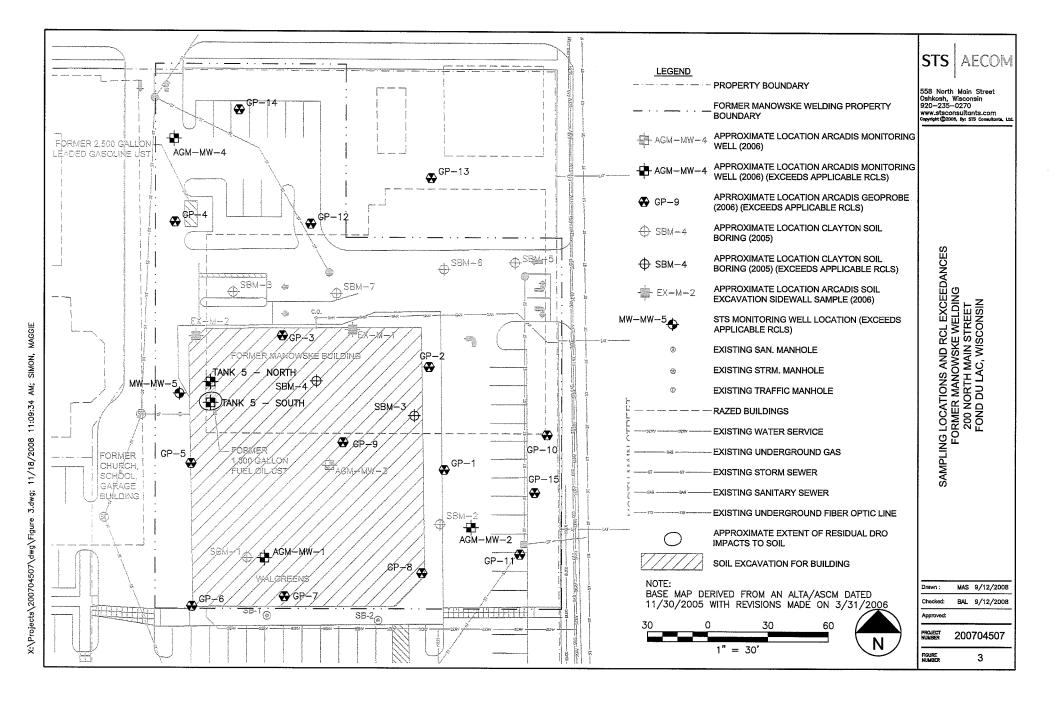
In accordance with ss. 292.12 and 292.13, Wis. Stats., you must notify the Department before making changes that affect or relate to the conditions of closure in this letter. For this case, changed conditions requiring prior notification are:

 Disturbance, construction on, change or removal in whole or part of pavement that must be maintained over contaminated soil.

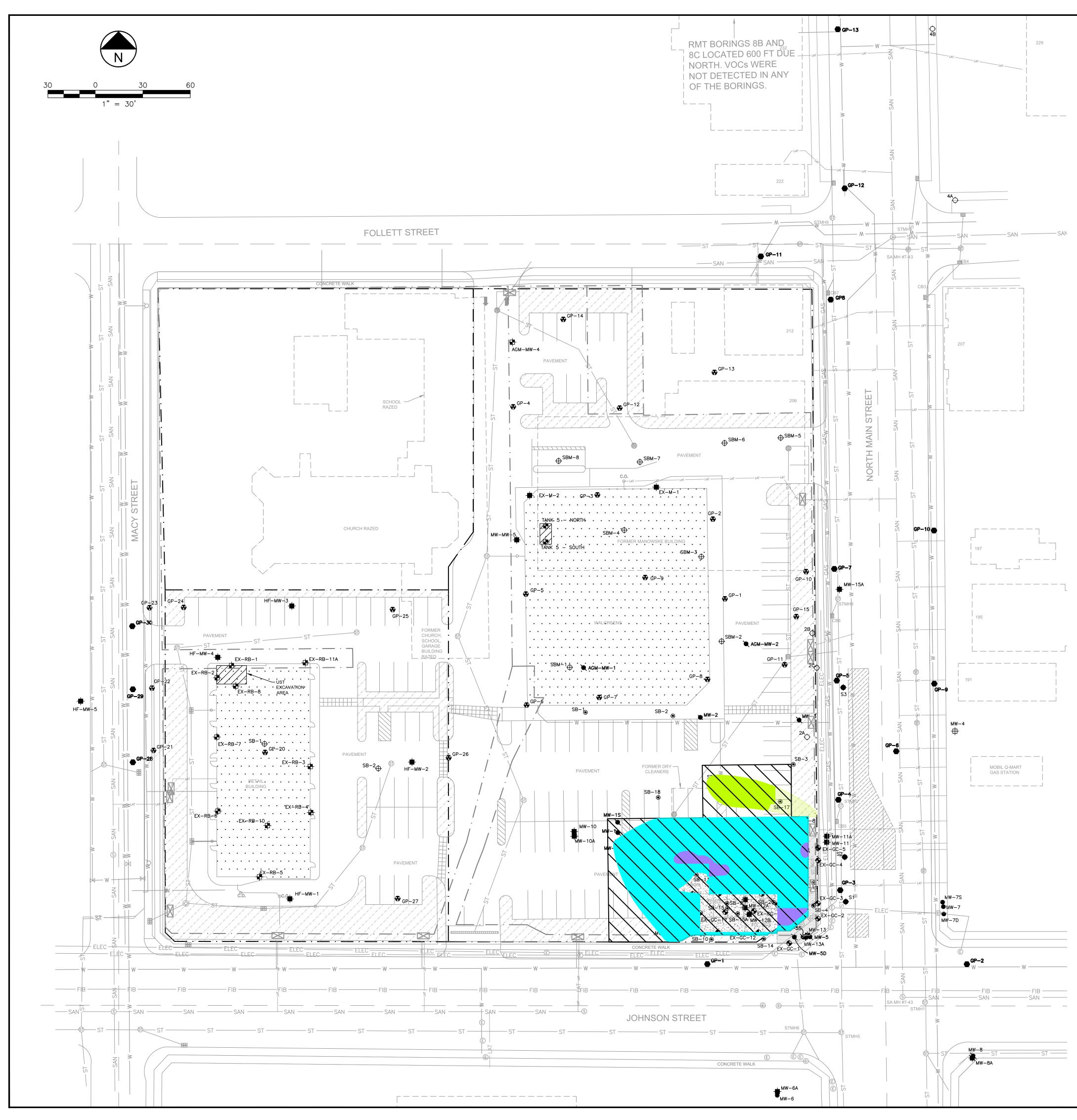
Please send written notifications in accordance with the above requirements to Plymouth Service Center, 1155 Pilgrim Rd, Plymouth, WI 53073, to the attention of Christine Lilek, Hydrogeologist.

The attached DNR fact sheet, RR-819, "Continuing Obligations for Environmental Protection" has been included with this letter, to help explain a property owner's responsibility for continuing obligations on their property. If the fact sheet is lost, you may obtain a copy at http://dnr.wi.gov/org/aw/rr/archives/pubs/RR819.pdf.

The Department appreciates your efforts to restore the environment at this site. If you have any questions regarding this closure decision or anything outlined in this letter, please contact Christine Lilek at (920) 892-8756, extension 3025.


Sincerely,

Jennifer Borski, Acting Team Supervisor Northeast Region Remediation & Redevelopment Program


Attachments:

- remaining soil contamination map Figure 3 Residual DRO Soil
- extent of cap map Figure 11 Cover Maintenance
- maintenance plan
- PUB-RR 819

cc: NER Case File - Plymouth Andrew Mott – <u>Andrew.mott@aecom.com</u> Don Gallo – <u>dgallo@reinhartlaw.com</u> Michelle Williams – <u>mwilliams@reinhartlaw.com</u> Cathy Burrow – CF/2, Jessica Coda - RR/5

£

/work/Projects/60139927/000_CAD/001_Drawings/Sheets/cover_maintance.dwg; 6/30/2011 3:21:06 PM; K0CH, LARRY

"THE INFORMATION SHOWN ON THIS DRAWING CONCERNING TYPE AND LOCATION OF UNDER-GROUND UTILITIES IS NOT GUARANTEED TO BE ACCURATE OR ALL INCLUSIVE. THE CONTRACTOR IS RESPONSIBLE FOR MAKING HIS OWN DETERMINA-TIONS AS TO THE TYPE AND LOCATION OF UNDER-GROUND UTILITIES AS MAY BE NECESSARY TO AVOID DAMAGE THERETO."

CLOSURE SAMPLE LOCATION EXCEEDANCES AT TIME OF CLOSURE			
GEORGETOWN CLEANERS 02-20-546625			
SAMPLE ID	CHLORINATED - DC	CHLORINATED - GW	PETROLEUM - GW PROTECTION
TANK-4-MIDDLE		PCE, TCE	
MW-1D		PCE	
MW-4D	PCE	Cis, PCE, TCE	
MW-11A	PCE	Cis, PCE, TCE	BENZENE
MW-14		PCE	
SB-7		Cis, PCE, TCE	
SB-8		PCE	
SB-12		Cis, PCE	
SB-16	PCE, VC	Cis, PCE, TCE	
SB-21	PCE, TCE	Cis, PCE, TCE	
SB-22	PCE	PCE	
SB-23		PCE	
EX-GC-6		PCE, TCE	
EX-GC-7		Cis, PCE, TCE	
EX-GC-8		Cis, PCE, TCE	
EX-GC-9		Cis, PCE, TCE	
EX-GC-10		Cis, PCE, TCE	
EX-GC-11		Cis, PCE, TCE	
EX-GC-12		PCE	
EX-GC-13		Cis, PCE, TCE	
EX-GC-14		Cis, PCE, TCE	
EX-GC-15		Cis, PCE, TCE	
EX-GC-16		PCE	
TANK-1 S			1, 3, 5- TMB & XYLENE
TANK-2 S			ASSUME NOT ANALYZED
TANK-3 S			ASSUME NOT ANALYZED
SB-6			NAPHTALENE

<u>LEGEND</u>

	PROPERTY BOUNDARY		
	FORMER PROPERTY BOUNDARY		
	RAZED BUILDINGS		
	EXISTING WATER SERVICE		
GAS	EXISTING UNDERGROUND GAS		
ST	EXISTING STORM SEWER		
	EXISTING SANITARY SEWER		
FIB	EXISTING UNDERGROUND FIBER OPTIC LINE		
	PHYTOREMEDIATION TRENCH		
5'BGS	EXTENT OF EXCAVATION AND DEPTH BELOW GROUND SURFACE		
MW-1D	ARCADIS MONITORING WELL		
MW-1D 🍡	ARCADIS ABANDONED MONITORING WELL		
SB−2 _●	ARCADIS GEORGETOWN CLEANERS SOIL BORING		
MW-13 🛖	AECOM MONITORING WELL LOCATION		
MW-11A 🛖	AECOM PIEZOMETRIC WELL		
GP−1	AECOM HYDRAULIC SOIL PROBE LOCATION		
GP−7	ARCADIS GEOPROBE LOCATION		
♦ EX-GC-12	ARCADIS SOIL EXCAVATION SIDEWALL/BASE SAMPLE		
	APPROXIMATE 2009 WATER MAIN EXCAVATION LIMITS		
SBM−1⊕	ARCADIS HOLY FAMILY AND MANOWSKE SOIL BORING		
EX-RB-10	ARCADIS SOIL SAMPLE LOCATION		
MW−4	QUICK MART MONITORING WELL		
S	EXISTING SAN. MANHOLE		
ST	EXISTING STRM. MANHOLE		
E	EXISTING TRAFFIC MANHOLE		
	FORMER GASOLINE UNDERGROUND STORAGE TANK		
🔶 S1	STRAND SAMPLING LOCATIONS		
- ()- 2A	RMT SOIL BORING LOCATIONS		
\boxtimes	UTILITY TRENCH PLUG		
· · · · · · · · · · · · · · · · · · ·	BUILDING		
	GREENSPACE (LANDSCAPE CAP)		
	LUST TANK REMNANTS		
PATH RCL	BOTH GW PROTECTION		
	POTENTIAL LEVELS		

COVE

COVER MAINTANCE AREA

558 North Main Street Oshkosh, WI 54901

920-235-0270

www.stsconsultants.com

Copyright 2007 (C) By: STS Consultants, Ltd.

CAP AREA GEORGETOWN CLEANERS 180 NORTH MAIN STREET FOND DU LAC, WISCONSIN

Issued
Rev Date Description
Designed: BAL 12/22/2008 Drawn: REO 12/22/2008 Checked: AGM 12/22/2008 Approved:
PROJECT NUMBER 60139927
sheet reference number Figure 11

PAVEMENT AND LANDSCAPE BARRIER MAINTENANCE PLAN

March 31, 2011

Property Located at: 180 North Main Street Fond du Lac, Wisconsin 54935

WDNR BRRTS #02-20-546625

LEGAL DESCRIPTION - Attached

Introduction

This document is the Maintenance Plan for a pavement and building barrier at the above-referenced property in accordance with the requirements of s. NR 724.13(2), Wisconsin Administrative Code (WAC). The maintenance activities relate to the existing landscape areas and paved surfaces occupying the area over the solid waste soils on-site. The soil and groundwater are impacted by volatile organic compounds (VOCs), which are above State of Wisconsin standards. The location of the paved surfaces and landscape cap to be maintained in accordance with this Maintenance Plan, as well as the impacted soil and groundwater are identified in the attached Figure 2 and Figure 7. The attached Figure 11 depicts the cap area.

Cover and Building Barrier Purpose

The paved surfaces and the landscape cap over the contaminated soil serve as a partial direct contact barrier to minimize future soil-to-human contact. Based on the current and future use of the property, the barrier should function as intended unless disturbed.

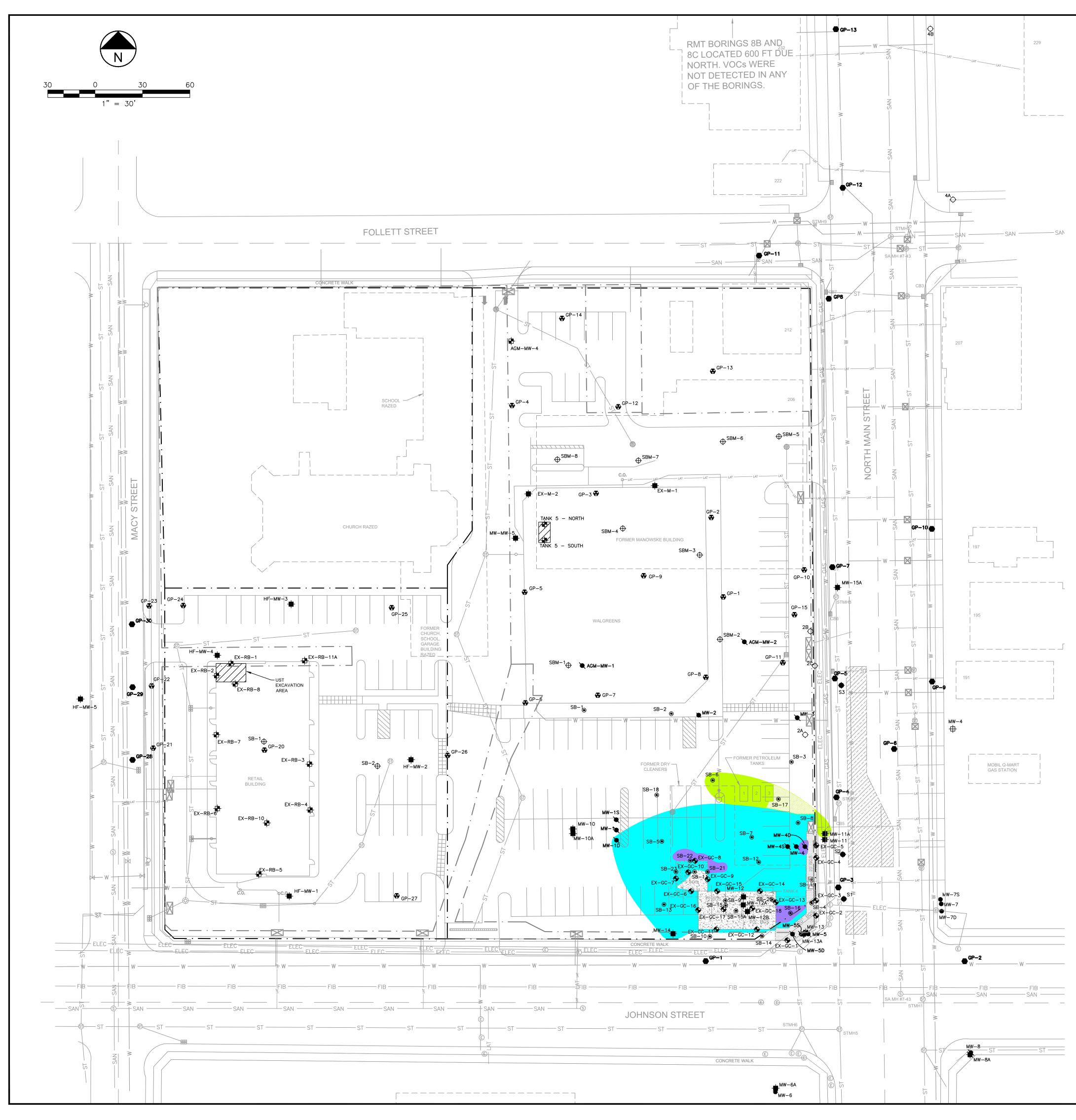
Annual Inspection

The paved surfaces and landscape cap overlying the contaminated soil and groundwater on the former Georgetown Cleaners property will be inspected once a year, normally in the spring after all snow and ice is gone, for deterioration, cracks and other potential problems that can cause additional infiltration into underlying soils. The inspections will be performed to evaluate damage due to settling, exposure to the weather, wear from traffic, increasing age and other factors. Any area where soils have become or are likely to become exposed will be documented. A log of the inspections and any repairs will be maintained by the property owner and is included as Exhibit B, Cap Inspection Log. The log will include recommendations for necessary repair of any areas where underlying soils are exposed. Once repairs are completed, they will be documented in the inspection log. A copy of the inspection log will be sent to the Wisconsin Department of Natural Resources ("WNDR") at least annually after every inspection, unless otherwise directed in the case closure letter.

Maintenance Activities

If problems are noted during the annual inspections or at any other time during the year, repairs will be scheduled as soon as practical. Repairs can include patching and filling operations or they can include larger resurfacing or construction operations. In the event that necessary maintenance activities expose the underlying soil, the owner must inform maintenance workers of the direct contact exposure hazard and provide them with appropriate personal protection equipment ("PPE"). The owner must also sample any soil that is excavated from the site prior to disposal to ascertain if contamination remains. The soil must be treated, stored and disposed of by the owner in accordance with applicable local, state and federal law.

In the event the paved surfaces and/or the building overlying the contaminated soil are removed or replaced, the replacement barrier must be equally impervious. Any replacement barrier will be subject to the same maintenance and inspection guidelines as outlined in this Maintenance Plan unless indicated otherwise by the WNDR or its successor.


The property owner, in order to maintain the integrity of the paved surfaces and/or the landscape cap, will maintain a copy of this Maintenance Plan on-site and make it available to all interested parties (i.e. on-site employees, contractors, future property owners, etc.) for viewing.

Amendment or Withdrawal of Maintenance Plan

This Maintenance Plan can be amended or withdrawn by the property owner and its successors with the written approval of WDNR.

Contact Information February 2011

Site Owner and Operator:	Waltrust Properties, Inc. 104 Wilmot Deerfield, IL 60015
Consultant:	Andrew Mott, AECOM 558 North Main Street, Oshkosh, Wisconsin 54901 920-236-6722
WDNR:	Christine Lilek 1155 Pilgrim Road, Plymouth, WI 53073 920-892-8756

\work\Projects\60139927\000_CAD\001_Drawings\Sheets\soil_gis_map.dwg; 6/30/2011 1:54:16 PM; K0CH, LARRY

"THE INFORMATION SHOWN ON THIS DRAWING CONCERNING TYPE AND LOCATION OF UNDER-GROUND UTILITIES IS NOT GUARANTEED TO BE ACCURATE OR ALL INCLUSIVE. THE CONTRACTOR IS RESPONSIBLE FOR MAKING HIS OWN DETERMINA-TIONS AS TO THE TYPE AND LOCATION OF UNDER-GROUND UTILITIES AS MAY BE NECESSARY TO AVOID DAMAGE THERETO."

CLOSURE SAMPLE LOCATION EXCEEDANCES AT TIME OF CLOSURE			
GEORGETOWN CLEANERS 02-20-546625			
SAMPLE ID	CHLORINATED - DC	CHLORINATED - GW	PETROLEUM - GW PROTECTION
TANK-4-MIDDLE		PCE, TCE	
MW-1D		PCE	
MW-4D	PCE	Cis, PCE, TCE	
MW-11A	PCE	Cis, PCE, TCE	BENZENE
MW-14		PCE	
SB-7		Cis, PCE, TCE	
SB-8		PCE	
SB-12		Cis, PCE	
SB-16	PCE, VC	Cis, PCE, TCE	
SB-21	PCE, TCE	Cis, PCE, TCE	
SB-22	PĆE	PCE	
SB-23		PCE	
EX-GC-6		PCE, TCE	
EX-GC-7		Cis, PCE, TCE	
EX-GC-8		Cis, PCE, TCE	
EX-GC-9		Cis, PCE, TCE	
EX-GC-10		Cis, PCE, TCE	
EX-GC-11		Cis, PCE, TCE	
EX-GC-12		PCE	
EX-GC-13		Cis, PCE, TCE	
EX-GC-14		Cis, PCE, TCE	
EX-GC-15		Cis, PCE, TCE	
EX-GC-16		PCE	
TANK-1 S			1, 3, 5- TMB & XYLENE
TANK-2 S			ASSUME NOT ANALYZED
TANK-3 S			ASSUME NOT ANALYZED
SB-6			NAPHTALENE

<u>LEGEND</u> ----- PROPERTY BOUNDARY ----- FORMER PROPERTY BOUNDARY RAZED BUILDINGS ____ EXISTING WATER SERVICE ----SERV ------EXISTING UNDERGROUND GAS _____ GAS _____ EXISTING STORM SEWER ----- ST -------EXISTING SANITARY SEWER EXISTING UNDERGROUND — FIB — FIBER OPTIC LINE PHYTOREMEDIATION TRENCH EXTENT OF EXCAVATION AND 5' BGS DEPTH BELOW GROUND SURFACE MW−1D ● ARCADIS MONITORING WELL MW-1D ARCADIS ABANDONED MONITORING WELL ARCADIS GEORGETOWN CLEANERS SOIL BORING SB−2 💿 GP−1 AECOM HYDRAULIC SOIL PROBE LOCATION GP−7 **Æ** ARCADIS GEOPROBE LOCATION EX-GC-12 ARCADIS SOIL EXCAVATION SIDEWALL/BASE SAMPLE APPROXIMATE 2009 WATER MAIN EXCAVATION LIMITS SBM−1⊕ ARCADIS HOLY FAMILY AND MANOWSKE SOIL BORING EX-RB-10 ARCADIS SOIL SAMPLE LOCATION MW-4⊕ QUICK MART MONITORING WELL EXISTING SAN. MANHOLE EXISTING STRM. MANHOLE (ST) EXISTING TRAFFIC MANHOLE (E) FORMER GASOLINE UNDERGROUND STORAGE TANK 🔶 S1 STRAND SAMPLING LOCATIONS RMT SOIL BORING LOCATIONS UTILITY TRENCH PLUG \mathbf{X} \mathbf{X} RMT UTILITY TRENCH PLUG* * PLUG AND EXCAVATION AREAS REFERENCED FROM RMT'S EMAIL DATED 03/17/2011.

LUST TANK

REMNANTS

POTENTIAL LEVELS

GW PROTECTION

DIRECT CONTACT

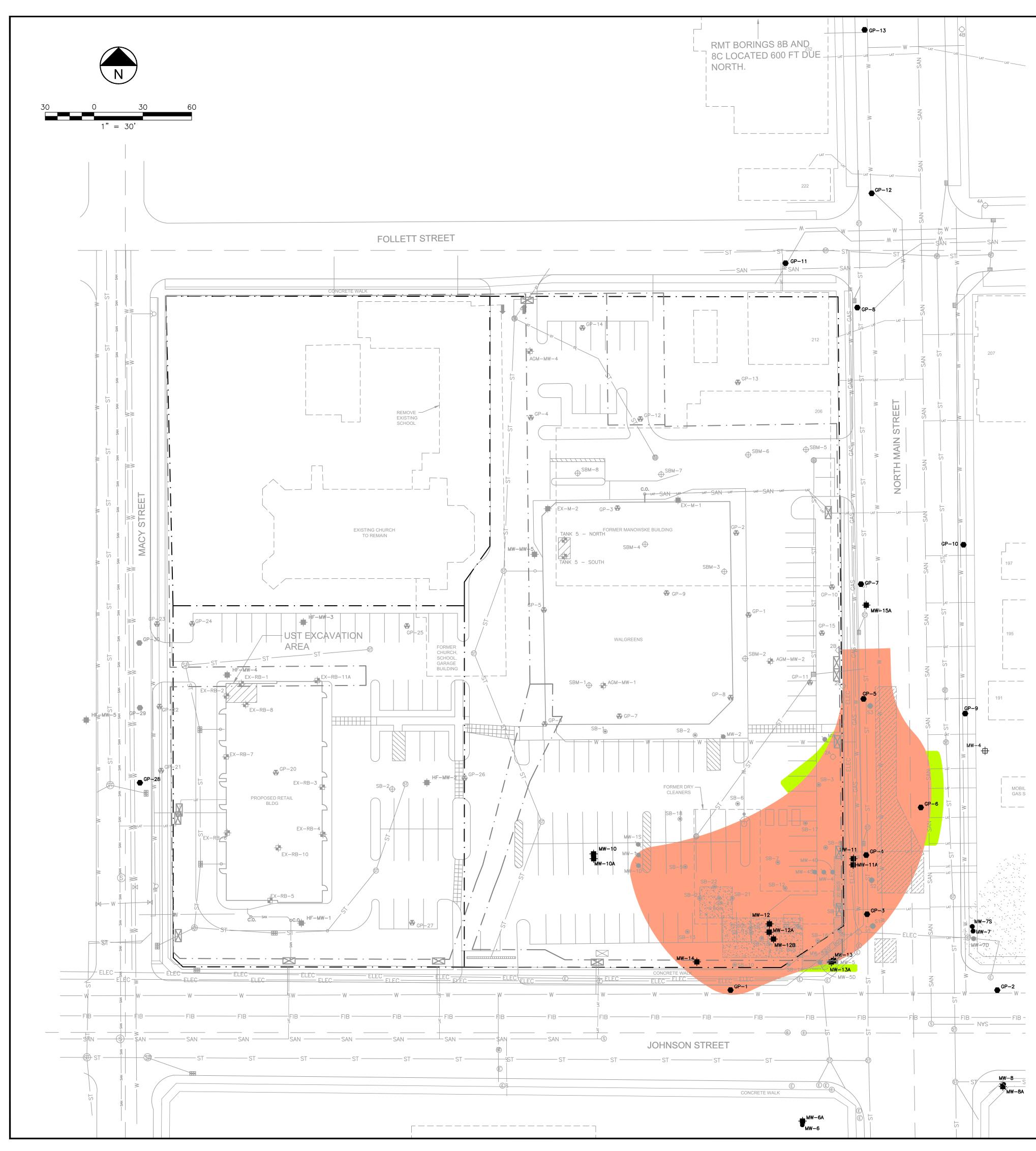
GW PATH RCL

BOTH

558 North Main Street Oshkosh, WI 54901

920-235-0270

www.stsconsultants.com


Copyright 2007 (C) By: STS Consultants, Ltd.

> SOIL GIS MAP GEORGETOWN CLEANERS 180 NORTH MAIN STREET FOND DU LAC, WISCONSIN

	Issue	ed
Rev Date Description		
Designed:	BAL	12/22/2008
Drawn:	REO	12/22/2008
Checked: Approved:	AGM	12/22/2008

SHEET REFERENCE NUMBER

Figure 2

\work\Projects\60139927\000_CAD\001_Drawings\Sheets\gis_gw_map.dwg; 7/5/2011 8:06:57 AM; K0CH, LARRY

WELL MW-4 MW-5 MW-5S MW-11 MW-11A MW-12 MW-12A MW-12B MW-12B MW-12B MW-12B MW-14 SB-3 SB-13 SB-3 SB-13 SB-20 GP-1 GP-3 GP-4 GP-5 GP-6

CLOSURE SAMPLE LOCATION EXCEEDANCES AT TIME OF CLOSURE

 GEORGETOWN CLEANERS 02-20-	546625
EXEXCEEDANCE	PAL EXCEEDANCE
PCE	
PCE	*
PCE, TCE	
PCE, TCE, Cis 1, 2 DICHLOROETHENE, VC	
PCE, TCE, Cis 1, 2 DICHLOROETHENE, VC	
PCE, TCE, Cis 1, 2 DICHLOROETHENE, VC	
PCE	TCE, VC
VC	PCE
VC	Cis 1, 2 DICHLOROETHENE
VC	
VC	PCE, TCE
VC	Cis 1, 2 DICHLOROETHENE
PCE, TCE, Cis 1, 2 DICHLOROETHENE, VC	
VC	
PCE, TCE, Cis 1, 2 DICHLOROETHENE	
PCE, TCE, Cis 1, 2 DICHLOROETHENE, VC	
PCE, TCE, Cis 1, 2 DICHLOROETHENE	
Cis 1, 2 DICHLOROETHENE, VC	TCE, VC
	* 1, 1, 2 TRICHIOROETHANE, 1, 1
	DICHLOROETHENE, 1, 2
	DICHLOROETHENE, Cis
	1, 2 DICHLOROETHENE

LEGEND

	PROPERTY BOUNDARY
	FORMER PROPERTY BOUNDARY
	RAZED BUILDINGS
SERV	EXISTING WATER SERVICE
GAS	EXISTING UNDERGROUND GAS
ST	EXISTING STORM SEWER
SAN	EXISTING SANITARY SEWER
FIB	EXISTING UNDERGROUND FIBER OPTIC LINE
	PHYTOREMEDIATION TRENCH
5' BGS	EXTENT OF EXCAVATION AND DEPTH BELOW GROUND SURFACE
	APPROXIMATE 2009 WATER MAIN EXCAVATION LIMITS
	APPROXIMATE EXTENT OF ES EXCEEDANCE
S1 🔶	STRAND SAMPLING LOCATIONS
2A -Ò-	RMT SOIL BORING LOCATION
MW-1D	ARCADIS MONITORING WELL
MW-1D	ARCADIS ABANDONED MONITORING WELL
SB−2 ●	ARCADIS GEORGETOWN CLEANERS SOIL BORING
MW-13 🛖	AECOM MONITORING WELL LOCATION
MW-11A	AECOM PIEZOMETRIC WELL
GP-1 🔶	AECOM HYDRAULIC SOIL PROBE LOCATION
GP−7	ARCADIS GEOPROBE LOCATION
SBM-1	ARCADIS HOLY FAMILY AND MANOWSKE SOIL BORING
AGM-MW-2	ARCADIS SOIL SAMPLE LOCATION
MW−4	QUICK MART MONITORING WELL
S	EXISTING SAN. MANHOLE
SI	EXISTING STRM. MANHOLE
E	EXISTING TRAFFIC MANHOLE
	UNDERGROUND STORAGE TANK
\boxtimes	UTILITY TRENCH PLUG

ES EXCEEDANCE

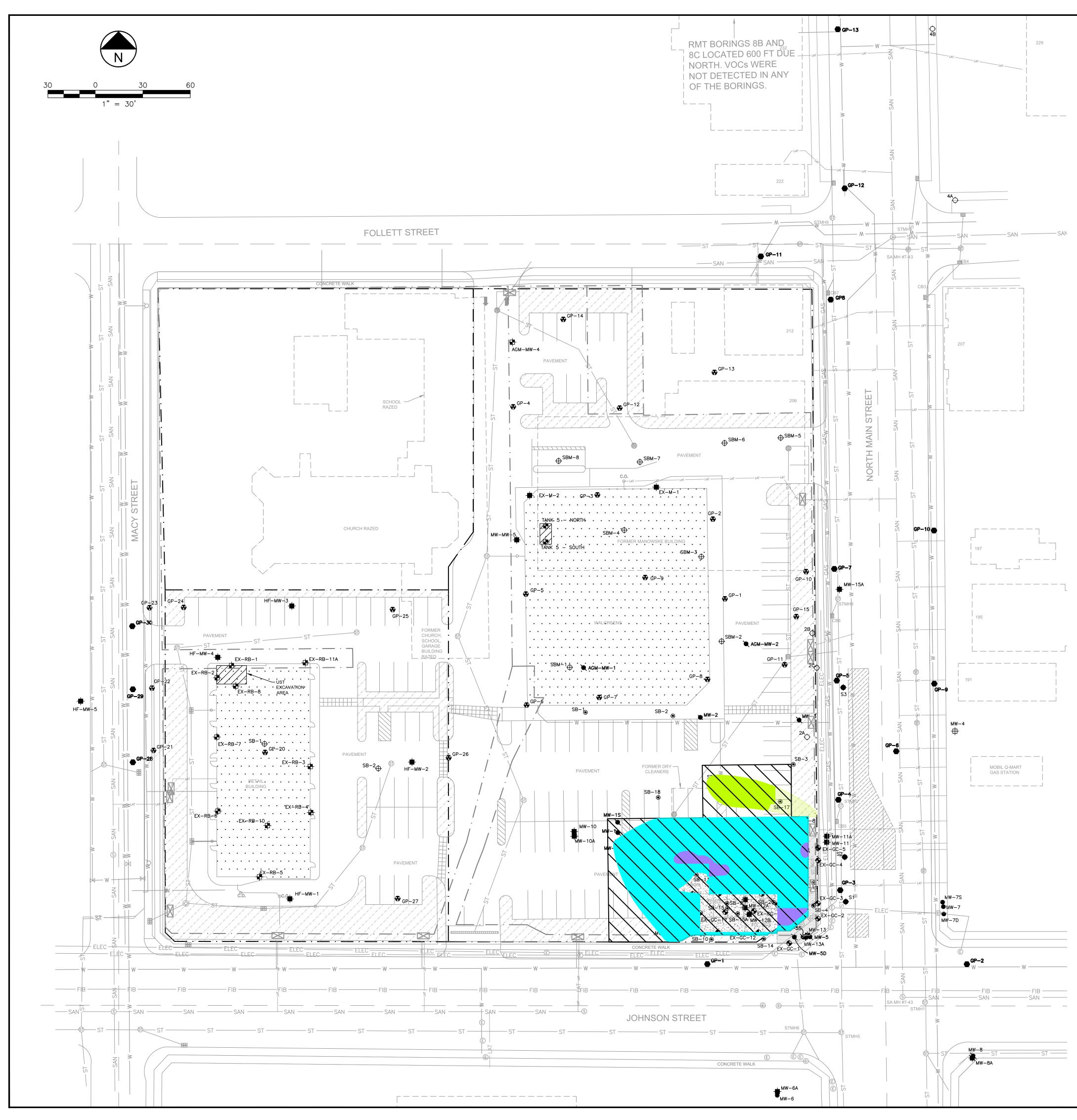
PAL EXCEEDANCE

558 North Main Street Oshkosh, WI 54901

920-235-0270

www.stsconsultants.com

Copyright 2007 (C) By: STS Consultants, Ltd.


GIS GROUND WATER MAP GEORGETOWN CLEANERS 180 NORTH MAIN STREET FOND DU LAC, WISCONSIN

Issued Rev Date Description

PROJECT NUMBER 60139927

SHEET REFERENCE NUMBER

Figure 7

/work/Projects/60139927/000_CAD/001_Drawings/Sheets/cover_maintance.dwg; 6/30/2011 3:21:06 PM; K0CH, LARRY

"THE INFORMATION SHOWN ON THIS DRAWING CONCERNING TYPE AND LOCATION OF UNDER-GROUND UTILITIES IS NOT GUARANTEED TO BE ACCURATE OR ALL INCLUSIVE. THE CONTRACTOR IS RESPONSIBLE FOR MAKING HIS OWN DETERMINA-TIONS AS TO THE TYPE AND LOCATION OF UNDER-GROUND UTILITIES AS MAY BE NECESSARY TO AVOID DAMAGE THERETO."

CLOSU	RE SAMPLE LOCAT		AT TIME OF CLOSURE
		OWN CLEANERS 02-20-	
SAMPLE ID	CHLORINATED - DC	CHLORINATED - GW	PETROLEUM - GW PROTECTION
TANK-4-MIDDLE		PCE, TCE	
MW-1D		PCE	
MW-4D	PCE	Cis, PCE, TCE	
MW-11A	PCE	Cis, PCE, TCE	BENZENE
MW-14		PCE	
SB-7		Cis, PCE, TCE	
SB-8		PCE	
SB-12		Cis, PCE	
SB-16	PCE, VC	Cis, PCE, TCE	
SB-21	PCE, TCE	Cis, PCE, TCE	
SB-22	PCE	PCE	
SB-23		PCE	
EX-GC-6		PCE, TCE	
EX-GC-7		Cis, PCE, TCE	
EX-GC-8		Cis, PCE, TCE	
EX-GC-9		Cis, PCE, TCE	
EX-GC-10		Cis, PCE, TCE	
EX-GC-11		Cis, PCE, TCE	
EX-GC-12		PCE	
EX-GC-13		Cis, PCE, TCE	
EX-GC-14		Cis, PCE, TCE	
EX-GC-15		Cis, PCE, TCE	
EX-GC-16		PCE	
TANK-1 S			1, 3, 5- TMB & XYLENE
TANK-2 S			ASSUME NOT ANALYZED
TANK-3 S			ASSUME NOT ANALYZED
SB-6			NAPHTALENE

<u>LEGEND</u>

	PROPERTY BOUNDARY
	FORMER PROPERTY BOUNDARY
	RAZED BUILDINGS
	EXISTING WATER SERVICE
GAS	EXISTING UNDERGROUND GAS
ST	EXISTING STORM SEWER
	EXISTING SANITARY SEWER
FIB	EXISTING UNDERGROUND FIBER OPTIC LINE
	PHYTOREMEDIATION TRENCH
5'BGS	EXTENT OF EXCAVATION AND DEPTH BELOW GROUND SURFACE
MW-1D	ARCADIS MONITORING WELL
MW-1D 🍡	ARCADIS ABANDONED MONITORING WELL
SB−2 _●	ARCADIS GEORGETOWN CLEANERS SOIL BORING
MW-13 🛖	AECOM MONITORING WELL LOCATION
MW-11A 🛖	AECOM PIEZOMETRIC WELL
GP−1	AECOM HYDRAULIC SOIL PROBE LOCATION
GP−7	ARCADIS GEOPROBE LOCATION
♦ EX-GC-12	ARCADIS SOIL EXCAVATION SIDEWALL/BASE SAMPLE
	APPROXIMATE 2009 WATER MAIN EXCAVATION LIMITS
SBM−1⊕	ARCADIS HOLY FAMILY AND MANOWSKE SOIL BORING
EX-RB-10	ARCADIS SOIL SAMPLE LOCATION
MW−4	QUICK MART MONITORING WELL
S	EXISTING SAN. MANHOLE
ST	EXISTING STRM. MANHOLE
E	EXISTING TRAFFIC MANHOLE
	FORMER GASOLINE UNDERGROUND STORAGE TANK
🔶 S1	STRAND SAMPLING LOCATIONS
- ()- 2A	RMT SOIL BORING LOCATIONS
\boxtimes	UTILITY TRENCH PLUG
· · · · · · · · · · · · · · · · · · ·	BUILDING
	GREENSPACE (LANDSCAPE CAP)
	LUST TANK REMNANTS
PATH RCL	BOTH GW PROTECTION
	POTENTIAL LEVELS

COVE

COVER MAINTANCE AREA

558 North Main Street Oshkosh, WI 54901

920-235-0270

www.stsconsultants.com

Copyright 2007 (C) By: STS Consultants, Ltd.

CAP AREA GEORGETOWN CLEANERS 180 NORTH MAIN STREET FOND DU LAC, WISCONSIN

Issued
Rev Date Description
Designed: BAL 12/22/2008 Drawn: REO 12/22/2008 Checked: AGM 12/22/2008 Approved:
PROJECT NUMBER 60139927
sheet reference number Figure 11

Exhibit B Cap Inspection Log

Inspection		Condition of		Have Recommendations from previous
Date	Inspector	Сар	Recommendations	inspection been implemented?

State of Wisconsin \ DEPARTMENT OF NATURAL RESOURCES

Jim Doyle, Governor Matthew J. Frank, Secretary Ronald W. Kazmierczak, Regional Director Oshkosh Service Center 625 East County Road Y Suite 700 Oshkosh, Wisconsin 54901-9731 Telephone 920-424-3050 FAX 920-424-4404 TTY Access via relay - 711

February 10, 2009

KAY CLABAULT BRIC ASSOCIATES W228 N745 WESTMOUND DR WAUKESHA WI 53186

Subject: Conditional Closure Decision With Requirements to Achieve Final Closure Former Manowske Welding – 1000g Fuel tank, 200 N. Main, Fond du Lac WDNR BRRTS # 03-20-553033 BRRTS VPLE #06-20-547613

Dear Ms. Clabault:

On January 23, 2009, the Northeast Region (NER) Closure Committee reviewed your request for closure of the case described above. The NER Closure Committee reviews environmental remediation cases for compliance with state rules and statutes to maintain consistency in the closure of these cases. After careful review of the closure request, the NER Closure Committee has determined that the petroleum and metal contamination on the site from the fuel oil tank and the historic waste appears to have been investigated and remediated to the extent practicable under site conditions. Your case has been remediated to Department standards in accordance with s. NR 726.05, Wis. Adm. Code and will be closed if the following conditions are satisfied (submittal requirements are bolded for convenience):

MONITORING WELLS

The monitoring well (MW-MW-5) at the site will be maintained for further investigation at the Former Georgetown Cleaners site.

GIS REGISTRY & CAP MAINTENANCE

After review of the site specifics, the NER Closure Committee determined the necessity of putting the site on the Remediation and Redevelopment Program's GIS Registry. The specific reasons are summarized below:

- Residual soil and/or waste fill contamination exists that must be properly managed should it be excavated or removed
- Pavement, an engineered cover or a soil barrier must be maintained over contaminated soil and historic waste fill and the state must approve any changes to this barrier
- A passive vapor extraction system must be operated and maintained (this is related to the potential chlorinated vapors from former Georgetown Cleaners)

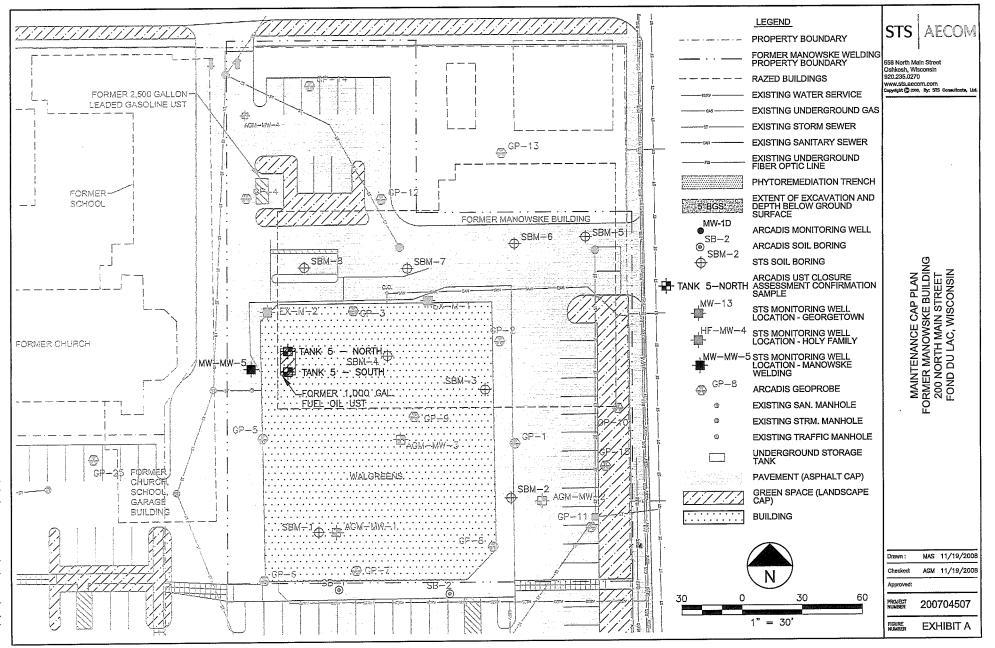
Information (GIS checklist & packet including Cap Maintenance Plan) that needs to be submitted by your consultant will be included on the GIS Registry. To review the sites on the GIS Registry web page, visit the RR Sites Map page at <u>http://dnr.wi.gov/org/aw/rr/gis/index.htm</u>. If your property is listed on the GIS Registry because of remaining contamination and you intend to construct or reconstruct a well, you will need prior Department approval in accordance with s. NR 812.09(4)(w), Wis. Adm. Code. To obtain approval, Form 3300-254 needs to be completed and submitted to the DNR Drinking and Groundwater program's regional water supply specialist. This form can be obtained on-line <u>http://dnr.wi.gov/org/water/dwg/3300254.pdf</u> or at the web address listed above for the GIS Registry. It is strongly recommended that you contact the Department for solid waste assistance on any excavation work that may be planned in the future at the property.

HISTORIC FILL EXEMPTION

On October 10, 2006 the Department issued an exemption for redevelopment in this area which is over a historic waste fill area. Several conditions to that exemption still need to be met and are listed as follows:

- The application included plans to install clay plugs in the utility trenches entering the future Walgreens building. Please submit confirmation that these protections against vapor migration were implemented.
- On page 3 of the exemption, Item 2 states "Photo documentation and a written document from the contractor who completed this work shall be submitted to the Department within 30 days of completing the work." Please provide a copy of this documentation to the Department.

Once the above information has been submitted to the Department, we will retain it for future review regarding the Certificate of Completion under the Voluntary Party Liability Exemption.


We appreciate your efforts to restore the environment at this site. If you have any questions regarding this letter, please contact Jennie Easterly at (920) 303-5447.

Sincerely,

plen prophetta

Kathleen M. Sylvester, Hydrogeologist Remediation & Redevelopment Program

cc: Case File – OSH Michelle Williams – Reinhart, Boerner, VanDeuren (email) Andrew Mott – STS (email)

ta\200704507\DWG\G200704507-Closure.dwg; 11/19/2008 11:18:36 AM; SIMON, MAGGE

Ě

Associated VPLE Site

To view the Certificate of Completion (COC) for this site click on the link below:

BRRTS #	SITE NAME
06-20-547612	GEORGETOWN CLEANERS (VPLE)
06-20-547613	MANOWSKE WELDING (VPLE)

· · · · ·		
Document Number	NTY DEED	DDC# 916830
Locument Nan		Recorded
THIS DEED, made between BRIC (Johnson/Main) A Wisconsin Limited Partnership	Associates,	May 16,2008 AT 01:16P
("Graptor " who	ther one or more)	
and Waltrust Properties, Inc.	The one of more	'l
		Catrenies Haans
Granter, for a valuelle ("Grantee," whe	ther one or more)	
Grantor for a valuable consideration, conveys to Grant described real estate together with the series of the serie	tee the following	
described real estate, together with the rents, profits, fi appurtenant interests, in <u>Fond du Lac</u>	ixtures and other	
Wisconsin ("Property") (if more space is needed, please atta	_ County, State of	
		FOND OU LAC COUNTY
The legal description of the property cor	veyed	Fee Amount: \$15.00 Transfer Fee: \$16.750.00
dereby is set forth on Exhibit A attached	hereto and	Iransfer Fee: \$16,750.00
incorporated herein by reference.		Recording Area
		Name and Return Address Richard F. Schmidt, Esq.
		Walgreen Co.
		104 Wilmot Road, MS 1420
		Deerfield, IL 60015
		FDL 15-17-10-13-662-00
		Parcel Identification Number (PIN)
•		
and Bry of middl Climitol, CAUCHE TOT CHOSE Encumbra	easible, in fee sir ances set fo:	This <u>is not</u> homestead property. (is) (is not) nple and free and clear of encumbrances arising by rth on Exhibit B attached hereto
Grantor warrants that the title to the Property is good, indef brough, or under Grantor, except: for those encumbra and incorporated herein by reference.	BRIC	(is) (is not) nple and free and clear of encumbrances arising by, rth on Exhibit B attached hereto (Johnson/Main) Associates.
and incorporated herein by reference.	BRIC BRIC A Wi By:	 (is) (is not) nple and free and clear of encumbrances arising by rth on Exhibit B attached hereto (Johnson/Main) Associates, sconsin Limited Partnership BRIC (Johnson/Main), Inc.
nd incorporated herein by reference.	BRIC A Wi	 (is) (is not) nple and free and clear of encumbrances arising by rth on Exhibit B attached hereto (Johnson/Main) Associates, sconsin Limited Partnership BRIC (Johnson/Main), Inc.
nd incorporated herein by reference.	BRIC BRIC A Wi By:	 (is) (is not) nple and free and clear of encumbrances arising by rth on Exhibit B attached hereto (Johnson/Main) Associates, sconsin Limited Partnership BRIC (Johnson/Main), Inc.
and incorporated herein by reference.	BRIC A Wi By: (SEAL)	(is) (is not) nple and free and clear of encumbrances arising by rth on Exhibit B attached hereto (Johnson/Main) Associates, sconsin Limited Partnership BRIC (Johnson/Main), Inc. Its Sole General Partner (SEAL)
and incorporated herein by reference.	BRIC BRIC A Wi By:	(is) (is not) mple and free and clear of encumbrances arising by, rth on Exhibit B attached hereto (Johnson/Main) Associates, sconsin Limited Partnership BRIC (Johnson/Main), Inc. Its Sole General Partner (SEAL) By:
and incorporated herein by reference.	BRIC A Wi By: (SEAL)	(is) (is not) mple and free and clear of encumbrances arising by rth on Exhibit B attached hereto (Johnson/Main) Associates, sconsin Limited Partnership BRIC (Johnson/Main), Inc. Its Sole General Partner (SEAL) By: Brian Cummings, President
AUTHENTICATION	BRIC A Wi By: (SEAL)	(is) (is not) mple and free and clear of encumbrances arising by, rth on Exhibit B attached hereto (Johnson/Main) Associates, sconsin Limited Partnership BRIC (Johnson/Main), Inc. Its Sole General Partner (SEAL) By:
AUTHENTICATION	BRIC A Wi By: (SEAL) (SEAL)	(is) (is not) nple and free and clear of encumbrances arising by, rth on Exhibit B attached hereto (Johnson/Main) Associates, sconsin Limited Partnership BRIC (Johnson/Main), Inc. Its Sole General Partner (SEAL) Brian Cummings, President ACKNOWLEDGMENT) BOF WISCONSIN
AUTHENTICATION	BRIC A Wi By: (SEAL) (SEAL)	(is) (is not) mple and free and clear of encumbrances arising by, rth on Exhibit B attached hereto (Johnson/Main) Associates, sconsin Limited Partnership BRIC (Johnson/Main), Inc. Its Sole General Partner (SEAL) Brian Cummings, President ACKNOWLEDGMENT) SOF WISCONSIN) SS.
AUTHENTICATION ignature(s)	BRIC A Wi By: (SEAL) (SEAL) (SEAL) * STATE	(is) (is not) mple and free and clear of encumbrances arising by, rth on Exhibit B attached hereto (Johnson/Main) Associates, sconsin Limited Partnership BRIC (Johnson/Main), Inc. Its Sole General Partner (SEAL) Brian Cummings, President ACKNOWLEDGMENT) SOF WISCONSIN) SS. WAUKESHA COUNTY) ally came before me on May /4, 2008
AUTHENTICATION ignature(s) thenticated on THOMAS E.	BRIC A Wi By: (SEAL) (SEAL) (SEAL) * STATE	(is) (is not) mple and free and clear of encumbrances arising by rth on Exhibit B attached hereto (Johnson/Main) Associates, sconsin Limited Partnership BRIC (Johnson/Main), Inc. Its Sole General Partner (SEAL) Brian Cummings, President ACKNOWLEDGMENT) OF WISCONSIN) SS. WAUKESHA COUNTY)
AUTHENTICATION ignature(s) thenticated on THOMAS E. WHIPP	(SEAL) (SEAL) (SEAL) (SEAL) * STATE Persona the abo	(is) (is not) mple and free and clear of encumbrances arising by, rth on Exhibit B attached hereto (Johnson/Main) Associates, sconsin Limited Partnership BRIC (Johnson/Main), Inc. Its Sole General Partner (SEAL) Brian Cummings, President ACKNOWLEDGMENT) SOF WISCONSIN) SS. WAUKESHA COUNTY) ally came before me on May /4, 2008 ve-named Brian Cummings
AUTHENTICATION ignature(s) THOMAS E. THOMAS E. WHIPP TTLE: MEMBER STATE BAR OF WIS CONSIN	BRIC A Wi By: (SEAL) * (SEAL) * (SEAL) * STATE Persong the abo	(is) (is not) mple and free and clear of encumbrances arising by, rth on Exhibit B attached hereto (Johnson/Main) Associates, sconsin Limited Partnership BRIC (Johnson/Main), Inc. Its Sole General Partner (SEAL) Brian Cummings, President ACKNOWLEDGMENT) OF WISCONSIN) SS. WAUKESHA COUNTY) ally came before me on May /4, 2008 ve-named Brian Cummings
AUTHENTICATION ignature(s) ithenticated on THOMAS E. WHIPP ITLE: MEMBER STATE BAR OF WIS CONSIN (If not,	BRIC A Wi By: (SEAL) * (SEAL) * (SEAL) * STATE The abo	(is) (is not) mple and free and clear of encumbrances arising by rth on Exhibit B attached hereto (Johnson/Main) Associates, sconsin Limited Partnership BRIC (Johnson/Main), Inc. Its Sole General Partner (SEAL) Brian Cummings, President ACKNOWLEDGMENT SOF WISCONSIN) SS. WAUKESHA COUNTY) ally came before me on May /4, 2008 ve-named Brian Cummings
AUTHENTICATION ignature(s) THOMAS E. THOMAS E. WHIPP TTLE: MEMBER STATE BAR OF WISCOPSIN (If not, authorized by Wis. Stat. § 706.06)	BRIC A Wi By: (SEAL) * (SEAL) * (SEAL) * STATE Persons the abo	(is) (is not) nple and free and clear of encumbrances arising by, rth on Exhibit B attached hereto (Johnson/Main) Associates, sconsin Limited Partnership BRIC (Johnson/Main), Inc. Its Sole General Partner (SEAL) Brian Cummings, President ACKNOWLEDGMENT) SOF WISCONSIN) SS. WAUKESHA COUNTY) ally came before me on May /4, 2008 we-named Brian Cummings known to be the person(s) who executed the sg instrument and acknowledged the same. WAUKESHA
AUTHENTICATION ignature(s) THOMAS E. THOMAS E. WHIPP TTLE: MEMBER STATE BAR OF WISCONSIN (If not, authorized by Wis. Stat. § 706.06) HIS INSTRUMENT DRAFTED BY:	STATE	(is) (is not) nple and free and clear of encumbrances arising by, rth on Exhibit B attached hereto (Johnson/Main) Associates, sconsin Limited Partnership BRIC (Johnson/Main), Inc. Its Sole General Partner (SEAL) Brian Cummings, President ACKNOWLEDGMENT) SOF WISCONSIN) SS. WAUKESHA COUNTY) ally came before me on May /4, 2008 known to be the person(s) who executed the ag informent and acknowledged the same. MADAL C. MADAL C
AUTHENTICATION ignature(s) thenticated on THOMAS E. TILE: MEMBER STATE BAR OF WIS CONSIN (If not,	BRIC A Wi By: (SEAL) * (SEAL) * (SEAL) * STATE Persona the abo	(is) (is not) nple and free and clear of encumbrances arising by, rth on Exhibit B attached hereto (Johnson/Main) Associates, sconsin Limited Partnership BRIC (Johnson/Main), Inc. Its Sole General Partner (SEAL) By: Brian Cummings, President ACKNOWLEDGMENT SOF WISCONSIN) SS. WAUKESHA COUNTY) ally came before me on May /4, 2008 ve-named Brian Cummings known to be the person(s) who executed the sg instrument and acknowledged the same. MAUKESHA MAUKESHA COUNTY ALLY AND ALLY AND BY: MAUKESHA COUNTY COUNTY ALLY AND ALLY AND SS. MAUKESHA COUNTY ALLY AND ALLY AN
AUTHENTICATION ignature(s) THOMAS E. Whipp, Esq. (Signatures may be authenticated NOTE: THIS IS A STANDARD FORM. ANY MODIFIC	BRIC A Wi By: (SEAL) * (SEAL) * (SEAL) * (SEAL) * STATE The abo to me foregoin * The abo	(is) (is not) mple and free and clear of encumbrances arising by, rth on Exhibit B attached hereto (Johnson/Main) Associates, sconsin Limited Partnership BRIC (Johnson/Main), Inc. Its Sole General Partner (SEAL) Brian Cummings, President ACKNOWLEDGMENT SOF WISCONSIN) SS. WAUKESHA COUNTY) ally came before me on May 14, 2008 ve-named Brian Cummings known to be the person(s) who executed the ag instrument and acknowledged the same. MMM (MMM) as E. Whipp Public, State of Wisconsin mmission (is permanent) (expires:)
AUTHENTICATION ignature(s) THOMAS E. WHIPP TTLE: MEMBER STATE BAR OF WISCOPSIN (If not, authorized by Wis. Stat. § 706.06) HIS INSTRUMENT DRAFTED BY: homas E. Whipp, Esq. (Signatures may be anthenticate: NOTE: THIS IS A STANDARD FORM. ANY MODIFIC	BRIC A Wi By: (SEAL) * (SEAL) * (SEAL) * (SEAL) * STATE The abo to me foregoin * The abo	<pre>(is) (is not) nple and free and clear of encumbrances arising by, rth on Exhibit B attached hereto (Johnson/Main) Associates, sconsin Limited Partnership BRIC (Johnson/Main), Inc. Its Sole General Partner (SEAL) Brian Cummings, President ACKNOWLEDGMENT (SEAL) Brian Cummings (SEAL) SS. WAUKESHA COUNTY) ally came before me on May /4, 2008 Nove-named Brian Cummings known to be the person(s) who executed the ag informent and acknowledged the same. WMM (Market State of Wisconsin mmission (is permanent) (expires:) Both are not necessary.) Both are not necessary.</pre>

EXHIBIT A TO SPECIAL WARRANTY DEED

GRANTOR: BRIC (Johnson/Main) Associates, A Wisconsin Limited Partnership

GRANTEE: Waltrust Properties, Inc.

Legal Description

PARCEL A:

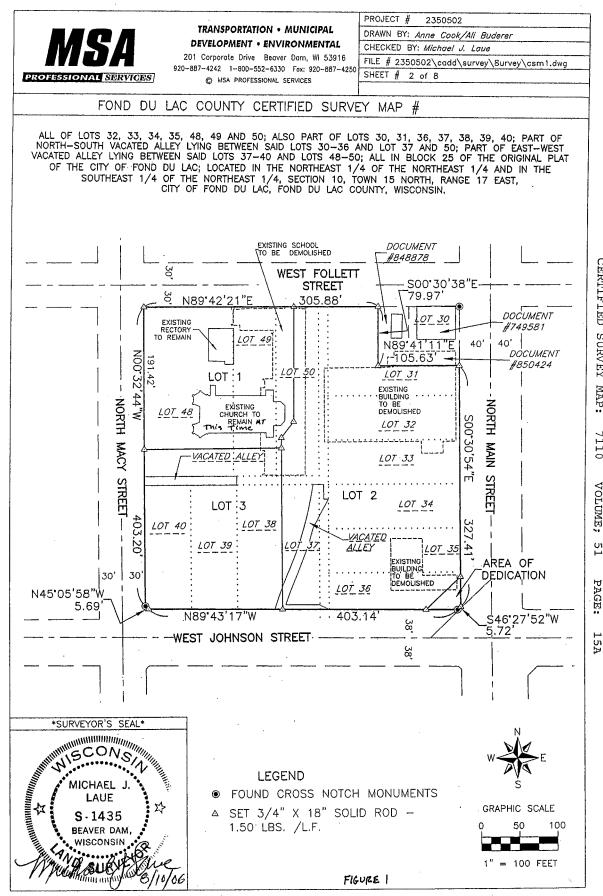
Lot Two (2) of CERTIFIED SURVEY MAP NO. 7110, being all of Lots Thirty-two (32), Thirty-three (33), Thirty-four(34), Thirty-five (35), Forty-eight (48), Forty-nine (49) and Fifty (50); also part of Lots Thirty (30), Thirty-one (31), Thirty-six (36), Thirty-seven (37), Thirty-eight (38), Thirty-nine (39), Forty (40); part of North-South vacated alley lying between said Lots Thirty (30) thru Thirty-six (36) and Lots Thirty-seven (37) and Fifty (50); part of East-West vacated alley being between said Lots Thirty-seven (37) thru Forty (40) and Lots Forty-eight (48) and Fifty (50); all in Block Twenty-five (25) of the ORIGINAL PLAT OF THE CITY OF FOND DU LAC, located in the Northeast Onequarter (1/4) of the Northeast One-quarter (1/4) and in the Southeast One-quarter (1/4) of the Northeast One-quarter (1/4)in Section Ten (10), in Township Fifteen (15) North, Range Seventeen (17) East, in the City of Fond du Lac, County of Fond du Lac, State of Wisconsin, and recorded in the Office of the Register of Deeds for Fond du Lac County, Wisconsin on September 11, 2006 in Volume 51 of Certified Survey Maps at pages 15 to 15G inclusive, as Document No. 879630.

Parcel B:

Non-exclusive easements contained in a Reciprocal Easement Agreement with covenants, conditions and restrictions recorded on September 15, 2006 as Document No. 879907.

2

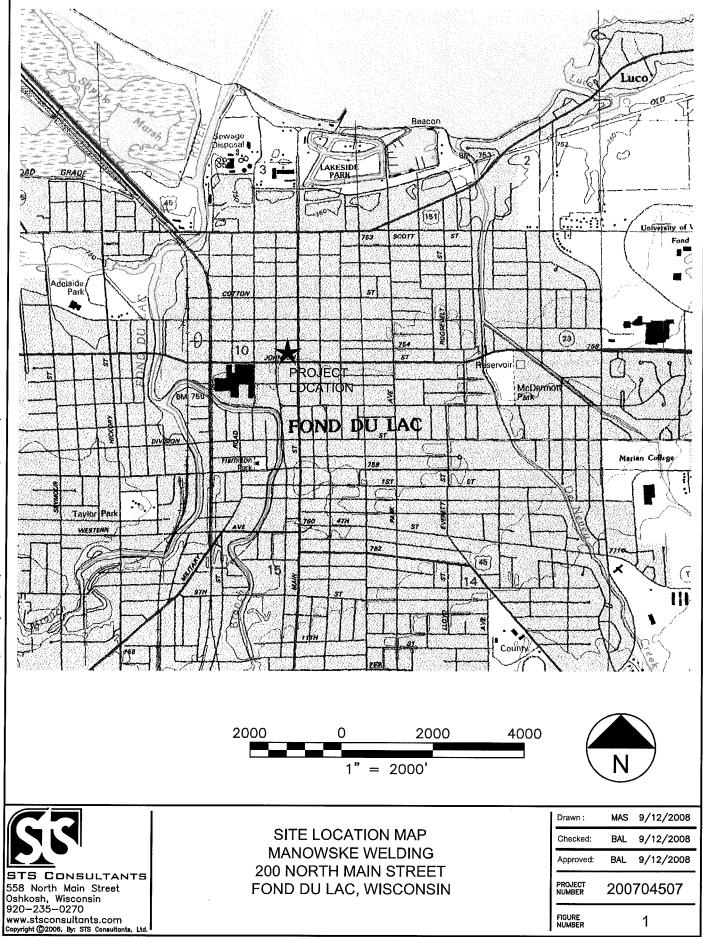
EXHIBIT B TO SPECIAL WARRANTY DEED

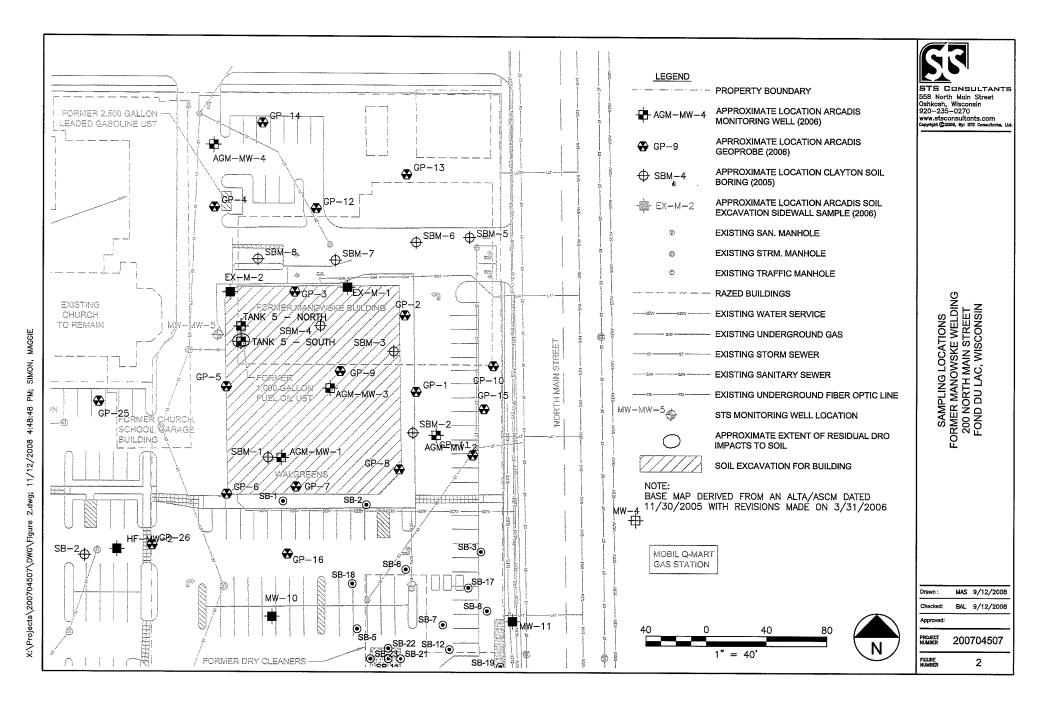

GRANTOR: BRIC (Johnson/Main) Associates, A Wisconsin Limited Partnership

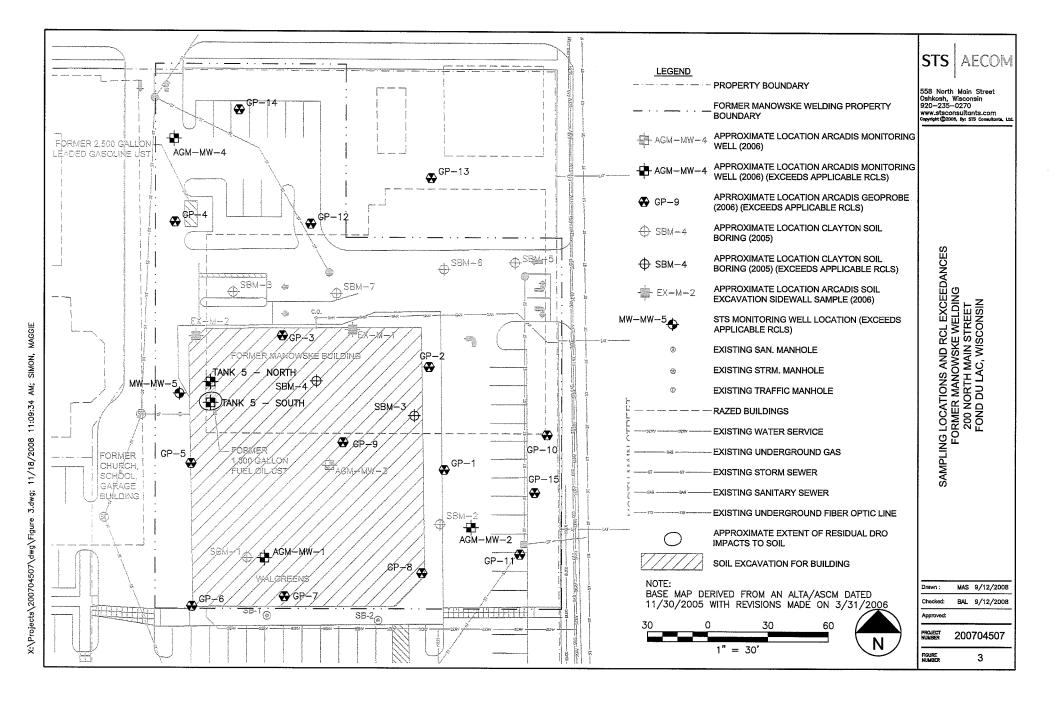
GRANTEE: Waltrust Properties, Inc.

• •

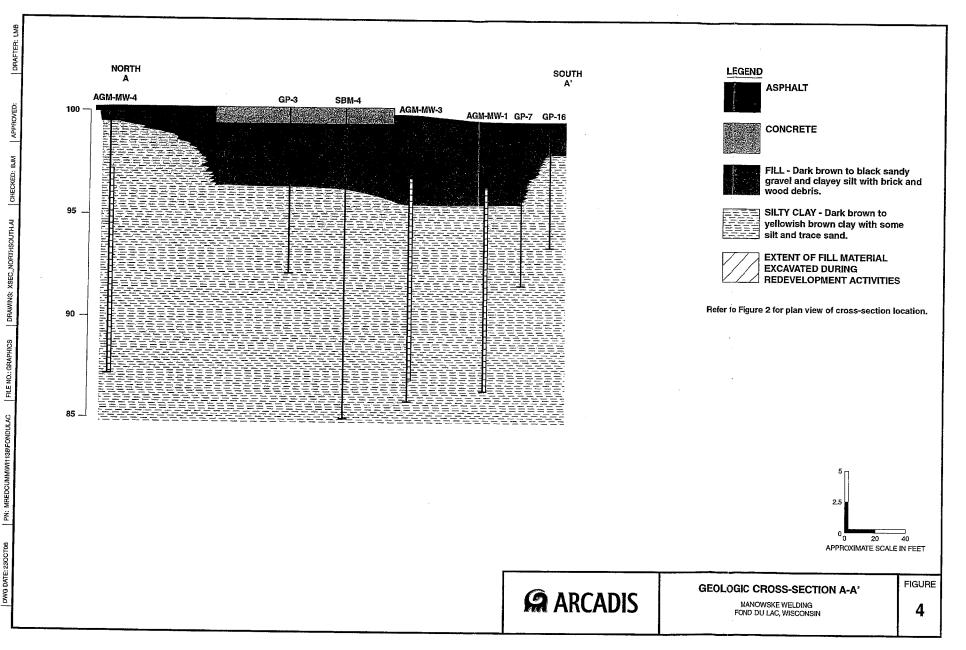
Exceptions to Warranties

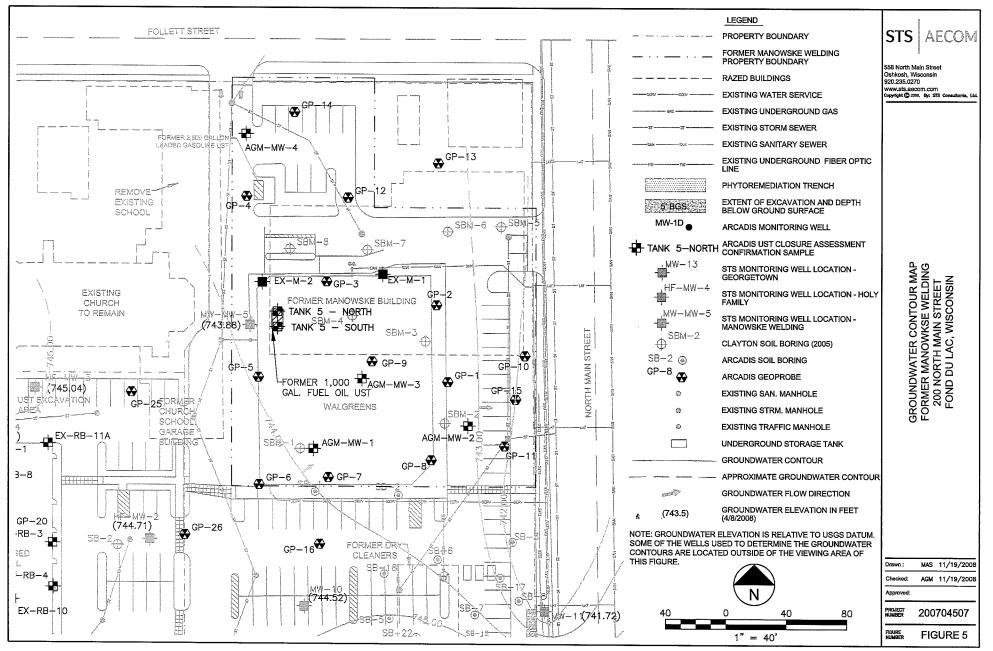

- 1. The lien of general real estate taxes and special assessments for the year 2008 and thereafter.
- Reciprocal Easement Agreement with Covenants, Conditions and Restrictions recorded on September 15, 2006 as Document No. 879907.
- 3. Utility Easement affecting the South 7.5 feet of the premises described in Schedule A hereof as shown on the recorded plat of Certified Survey Map No. 7110.
- 4. Utility Easement Provision as noted on the recorded plat of Certified Survey Map No. 7110.
- 5. Unpaid installment on the general real estate taxes for the year 2007 in the sum of \$5,869.00, due July 31, 2008.
- Overhead electric affecting the Northerly portion of the premises described in Schedule A hereof, as shown on an ALTA/ACSM Land Title Survey prepared by MSA Professional Services under a recorded plat of May 24, 2007, as Project No. 2350502.


BUIAN


I, The Cummings, ______, believe the legal description below accurately describes correct location of the petroleum impacted property (Former Manowske Welding, 200 North Main Street, Fond du Lac, Wisconsin).

Lot Two (2) of CERTIFIED SURVEY MAP NO. 7110, being all of Lots Thirty-two (32), Thirty-three (33), Thirty-four (34), Thirty-five (35), Forty-eight (48), Forty-nine (49) and Fifty (50); also part of Lots Thirty (30), Thirty-one (31), Thirty-six (36), Thirty-seven (37), Thirty-eight (38), Thirty-nine (39), Forty (40); part of North-South vacated alley lying between said Lots Thirty (30) thru Thirty-six (36) and Lots Thirty Seven (37) and Fifty (50); part of East-West vacated alley being between said Lots Thirty-seven (37) thru Forty (40) and Lots Forty-eight (48) and Fifty (50); all in Block and Lots Thirty-seven (37) thru Forty (40) and Lots Forty-eight (48) and Fifty (50); all in Block Twenty-five (25) of the ORIGINAL PLAT OF THE CITY OF FOND DU LAC, located in the Northeast One-quarter (1/4) of the Northeast One-quarter (1/4) and in the Southeast One-quarter (1/4) of the Northeast One-quarter (1/4) in Section Ten (10), in Township Fifteen (15) North, Range Seventeen (17) East, in the City of Fond du Lac, County of Fond du Lac, State of Wisconsin, and recorded in the Office of the Register of Deeds for Fond du Lac County, Wisconsin on September 11, 2006 in Volume 51 of Certified Survey Maps at pages 15 to 15G inclusive, as Document No. 879630




X:\Projects\200704507\DWG\G200704507_Fig 1.dwg; 9/12/2008 10:32:55 AM; SIMON, MAGGIE

£

TABLE 1 TABLE 1 SOIL ANALYTICAL RESULTS FORMER MANOWSKE WELDING FOND DU LAC, WISCONSIN STS PROJECT NO. 200704507

Generic RCLs NR 746 Soil MM-Mudatfal forundwate Parameters NR 746 Soil MM-Mudatfal forundwate Parameters Screening 2.47 (FIII) 0 - 0 922 Bornocherzene -	Former Manowske Welding										
Parameters Non-fuclarial Industrial Parameters Levels 9/28/2007 9/28 Bornzene 1,100 - 5.5 0 8,500 -28 Bornschenzene - <td< th=""><th></th><th></th><th>Generic RCLs</th><th></th><th></th><th></th><th colspan="2"></th></td<>			Generic RCLs								
VOC6 (g/kg) 1,100 - 5.5 B 8,500 <25	Parameters	Direct Cont Non-Industrial					6 - 8' (Native) 9/26/2007				
Barczene 1,100 0 5.5 0 8,600 -25 Bromodichkromethane											
Bromodichbromethane -		1,100 ^в	-	5.5 ^B	8,500	<25	<25				
Bromotom -<		-	-		-		<25				
see-Buybberzene		-	-				<25				
Intelluylbenzene		-	-				<25				
n-Butybenzene			-	-			<25				
Cabon tetrachloide -		-	_	_	_		<25 <25				
Chloroform -		_		_			<25				
Chlorodenzene		_	_	-	_		<25				
Chicomethane - <t< td=""><td>Chlorobenzene</td><td></td><td>-</td><td>-</td><td>-</td><td></td><td><25</td></t<>	Chlorobenzene		-	-	-		<25				
2-Chlorototuene -	Chloroethane	-	-	-	-	<25	<25				
4-Chlorotolune -	Chloromethane	-	-	-		<25	<25				
1.2-Dibrome-3-chloropropane -<		-	-	-			<25				
1.2-Dibromoethane				-	-		<25				
1.3-Dichlorobenzene <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td><25</td>				-	-		<25				
1.4-Dichlorobenzene -					-		<25 <25				
1,2-Dichloroethane 540 B - 4,9 B 6600 <25 1,1-Dichloroethane -25 -25 cls1,2-Dichloroethane -255 Dichloroethane -255 1,1-Dichloroethane -255 1,1-Dichloroethane -255 1,1-Dichloroethane 394 -255 1,1-Dichloroethane -255 Dilsopropyl ether -255 Ethylbenzene -255 Disopropyl ether -255 Phylophzene <td></td> <td></td> <td>_</td> <td></td> <td>-</td> <td></td> <td><25 <25</td>			_		-		<25 <25				
1.2-Dichlorobenzene 25 1.1-Dichloroethene 25 Dichloroethene 25 Dichloroethene 25 1:1-Dichloropropane 25 40* 1:3-Dichloropropane 25 40* 1:3-Dichloropropane 25 5 Disopropyl ether 25 5 Disopropyl ether 25 5 Descriptiolulene 25 5 Methylene choidide 25 5 Naphthalene 25				49 B			<25				
1,1-Dichloroethene -25 dis-1,2-Dichloroethene -25 -25 trans-1,2-Dichloroethene -25 -25 1_2-Dichloroethene -25 40' 1_3-Dichloropropane -25 40' 2_2-Dichloropropane -25 40' 1_3-Dichloropropane -25 40' 2_2-Dichloropropane -25 40' Hexachlorobutadiene -25 -25 Hexachlorobutadiene -25 Methylene chloride			_		-		<25				
cis-1,2-Dichloroethane -25 Dichlorodifluoromethane -25 -25 1_2-Dichloroethane ^D -25 40° 1_3-Dichloropropane -255 40° 1_3-Dichloropropane -255 22-Dichloropropane -255 Dilsopropyl etter 2,900 8 4,600 -255 Ethylbenzene -255 5 5 Bopropyliculere -255 Methyl-ter-butyl-tethatif -255 Naphtinalene -255 Naphtinalene -255 1,1,2-Tetrachloroethane -255 - 1,1,1-Trichlorobenzene							<25				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					_		<25				
trans-1,2-Dichloroethene - - - - - -		-	_	-			<25				
1,1-Dichloroethane ⁹ 394 <25	trans-1,2-Dichloroethene	-	-	-			<25				
1,3-Dichloropropane	1_2-Dichloropropane	_		-		<25	<25				
2,2-Dichloropropane -	1,1-Dichloroethane ^D	-	-	394	-	<25	40 "J"				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				-	-		<25				
Ethylbenzene - - 2,900 B 4,600 <25 Hexachlorobutadiene - - - - - 255 Isopropylbenzene - - - - 225 p-Isopropylbouren - - - - 225 Methylene chloride - - - - 225 Methyl-tert-butyl-ether - - - - 225 Naphthalene - - - - 225 1,1,2,2-Tetrachloroethane - - - - 225 1,1,1,2-Tetrachloroethane - - - - 225 Toluene - - - - 225 1,2,4-Trichloroethane - <t< td=""><td></td><td>-</td><td></td><td></td><td>-</td><td></td><td><25</td></t<>		-			-		<25				
Lanyuerizane - <t< td=""><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td><25</td></t<>		-	-				<25				
Isopropylbenzene			-	2,900	4,600		<25				
p-Isopropylloluene <			-	-	-		<25				
Methylene chloride - - - - - </td <td></td> <td></td> <td>-</td> <td>_</td> <td>-</td> <td></td> <td><25 <25</td>			-	_	-		<25 <25				
Methyl-tert-butyl-ether -		_	_		1		<25				
Naphthalene 2,700 <25 n-Propylbenzene		_		_	-		<25				
n-Propylbenzene </td <td></td> <td></td> <td></td> <td>_</td> <td>2,700</td> <td></td> <td><25</td>				_	2,700		<25				
1,1,2,2-Tetrachloroethane -25 1,1,1,2-Tetrachloroethane -25 Tetrachloroethane -255 Toluene 1,500 B 38,000 <265		-	-				<25				
Tetrachloroethene </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><25</td>							<25				
Toluene 1,500 B 38,000 <25 1,2,3-Trichlorobenzene <-	1,1,1,2-Tetrachloroethane		-		1	<25	<25				
Indenter Image: constraint of the second secon	Tetrachloroethene	-		-		<25	<25				
1,2,4-Trichlorobenzene -25 1,1,1-Trichloroethane -25 1,1,2-Trichloroethane -25 1,2,4-Trimethylbenzene -25 1,3,5-Trimethylbenzene -	Toluene		-	1,500 ^в	38,000	<25	<25				
1,1,1-Trichloroethane <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- </td <td></td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td></td> <td><25</td>		-		-	-		<25				
1,1,2-Trichloroethane <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- </td <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td><25</td>			-	-			<25				
1,2,4-Trimethylbenzene 83,000 <25 Trichloroethene - <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td><25</td>		-		-			<25				
Trichloroethene <							<25				
1,3,5-Trimethylbenzene 11,000 <25		_		-	83,000		<25 <25				
Vinyl chloride <td></td> <td>-</td> <td></td> <td></td> <td>11.000</td> <td></td> <td><25 <25</td>		-			11.000		<25 <25				
Xylenes, total - - 4,100 B 42,000 <75 PAHs (ug/kg) ^C 900,000 60,000,000 38,000 - <7.2		_		-			<25 <25				
PAHs (µg/kg) ° 900,000 60,000,000 38,000 - <7.2	-	1	_	4.100 ^B	42,000		<25 <75				
Acenaphthene 900,000 60,000,000 38,000 <7.2 Acenaphthylene 18,000 360,000 700 <7.0				.,							
Acenaphthylene 18,000 360,000 700 <7.0 Anthracene 5,000,000 300,000,000 3,000,000 <14		900,000	60,000,000	38,000	-	<7.2	<7.2				
Anthracene 5,000,000 300,000,000 3,000,000 <14 Benzo(a)anthracene 88 3,900 17,000 34 "J" Benzo(a)pyrene 8.8 390 48,000 37 "J" ^A Benzo(b)fluoranthene 88 3,900 360,000 55 - Benzo(k)fluoranthene 880 39,000 6,800,000 20.4 "J" Benzo(k)fluoranthene 880 39,000 870,000 16.7 "J" Chrysene 8,800 390,000 37,000 52 Dibenzo(a,h,)anthracene 8.8 390 38,000 <11							<7.0				
Benzo(a)pyrene 8.8 390 48,000 37 "J" ^ A Benzo(b)fluoranthene 88 3,900 360,000 55 Benzo(ghi)perylene 1,800 39,000 6,800,000 20.4 "J" Benzo(k)fluoranthene 880 39,000 870,000 20.4 "J" Chrysene 8,800 390,000 37,000 52 Dibenzo(a,h,)anthracene 8.8 390 38,000 <11			300,000,000	3,000,000		<14	<14				
Benzo(b)fluoranthene 88 3,900 360,000 55 Benzo(ghi)perylene 1,800 39,000 6,800,000 20.4 "J" Benzo(k)fluoranthene 880 39,000 870,000 16.7 "J" Chrysene 8,800 390,000 37,000 52 Dibenzo(a,h,)anthracene 8.8 390 38,000 <11						34 "J"	<15				
Benzo(ghi)perylene 1,800 39,000 6,800,000 20.4 "J" Benzo(k)fluoranthene 880 39,000 870,000 16.7 "J" Chrysene 8,800 390,000 37,000 52 Dibenzo(a,h,)anthracene 8.8 390 38,000 <11							<15				
Benzo(k)fluoranthene 880 39,000 870,000 16.7 "J" Chrysene 8,800 390,000 37,000 52 Dibenzo(a,h,)anthracene 8.8 390 38,000 <11							<8.1				
Chrysene 8,800 390,000 37,000 - 52 Dibenzo(a,h,)anthracene 8.8 390 38,000 - <11							<14				
Dibenzo(a,h,)anthracene 8.8 390 38,000 <11 Fluroanthene 600,000 40,000,000 500,000 86							<11				
Fluroanthene 600,000 40,000,000 500,000 86							<13				
							<11				
							<13 <8.5				
							<8.5 <10				
							<13				
							<17				
							<12				
							<15				
							<13				

Notes: VOCs = Volatile Organic Compounds PAHs = Polynuclear Aromatic Hydrocarbons ^A Parameter exceeds Suggested PAH RCLs for Non-Industrial Direct Contact. ^B Generic RCL is established under NR 720 or NR 746 ^C Suggested Generic RCLs provided in *Soli Cleanup Levels for PAHs Interim C* ^D Suggested Generic RCL setablished under NR 720 of NR 740
^C
^C Suggested Generic RCL sprovided in Soli Cleanup Levels for PAHs Interim Guidance, WDNR RR-5 1997
^D Generic RCL calculated utilizing the US EPA Soli Screening Guidance for Chemicals Website calculator
[–] No Generic RCL established.

Generic RCLs not included in Wisconsin Administrative Code or Guidance are calculated from the

US EPA Soil Screening Level Web Page and the default values contained in Determining Residual Contaminant Levels using the EPA Soil Screening Level Web Site WDNR PUB-RR-682 on September 13, 2008

£.

ARCADIS

Table 2. Summary of VOC Soil Analytical Results and Comparison to Applicable WDNR Soil Criteria, Manowske Welding Property, Fond du Lac,

Sample ID Sample Date	NR 720 GW Pathway	NR746 SSL	SBM-1 (16-18') 02/06/06	SBM-2 (8-10') 02/06/06	SBM-3 (3-4') 02/07/06	SBM-4 (8-10') 02/07/06	SBM-5 (10-12')	SBM-6 (4-6')
VOC (ug/kg)					02/07/00	02/01/06	02/07/06	02/07/06
Benzene	5.5	8,500	<53	<56	<0E			
n-Butylbenzene			NA		<85	<54	<65	<60
s-Butylbenzene				NA	NA	NA	NA	NA
Ethylbenzene	2,900		'NA	NA	NA	NA	NA	NA
sopropylbenzene	•	4,600	<53	<56	<85	<54	<65	<60
			<270	<280	<430	<270	<320	<300
o-Isopropyltoluene			NA	NA	NA	NA	NA	NA
Naphthalene			<330	<280	<430	<270	<320	
n-Propylbenzene			NA	NA	NA	NA	NA	<300
Tetrachioroethene			NA	NA	NA	NA		NA
Foluene	1,500	38,000	<110	<110	<170		NA	NA
1,2,4-Trimethylbenzene		83,000	<110	<110		<110	<130	<120
1,3,5-Trimethylbenzene		11,000	<110		<170	<110	<130	<120
(ylene, o	4,100*	42,000*		<110	<170	<110	<130	<120
(ylenes, m + p	4,100*	-	<53	<56	<85	<54	<65	<60
RCL is for Xyle		42,000*	<110	<110	<170	<110	<130	<120

Bold Value exceeds the NR 720 GW Pathway.

Value Value exceeds NR 746 SSL.

- GW Groundwater
- µg/kg Micrograms per kilogram.
- NA Not analyzed.

NR720 WDNR NR 720 Groundwater Pathway Residual Contaminant Levels (RCLs).

NR746 WDNR NR 746 Soil Screening Levels (SSLs).

Q Concentration between limit of detection and limit of quantitation.

VOCs Volatile Organic Compounds

SAMPLED FROM FILL SOILS

Page 1 of 7

. .

. . .

Table 2. Summary of VOC Soil Analytical Results and Comparison to Applicable WDNR Soil Criteria, Manowske Welding Property, Fond du Lac,

Sample ID Sample Date	NR 720 GW Pathway	NR746 SSL	SBM-7 (7-8')	SBM-8 (8-10')	GP-1 (2-4')	GP-1 (4-6')	GP-2 (2-4")	GP-2 (6-8')	GP-3 (2-4') 🛪
VOC (ug/kg)	OWY alliway	- 33L	02/07/06	02/07/06	06/22/06	06/22/06	06/22/06	06/22/06	06/22/06
Benzene	5.5	8,500	<64	<53	<25	<25	-05		
n-Butylbenzene			NA	NA	~25 <25	<25	<25	<25	<25
s-Butylbenzene			NA	NA		<25	<25	<25	<25
Ethylbenzene	2,900	4,600	<64		<25	<25	<25	<25	<25
Isopropylbenzene			· · · ·	<53	<25	<25	<25	<25	<25
p-isopropyitoluene			<320	<270	<25	<25	<25	<25	<25
Naphthalene			NA	NA	<25	<25	<25	<25	<25
n-Propylbenzene			<320	<270	<25	<25	<25	<25	<25
Tetrachloroethene			NA ·	NA	<25	<25	<25	<25	<25
	-		NA	· NA	<25	<25	<25	<25	~25
Toluene	1,500	38,000	<130	<110	<25	<25	<25	<25	
1,2,4-Trimethylbenzene		83,000	<130	<110	<25	<25	<25		<25
1,3,5-Trimethylbenzene		11,000	<130	<110	<25	<25		<25	<25
Xylene, o	4,100*	42,000*	<64	<53	<25	<25	<25	<25	<25
Xylenes, m + p	4,100*	42,000*	<130	<110	<50		<25	<25	<25
* RCL is for Xyle	enes, total.					<50	<50	<50	<50

...

8.

Value exceeds the NR 720 GW Pathway. Bold

<u>Value</u> Value exceeds NR 746 SSL.

GW

- Groundwater
- Micrograms per kilogram. µg/kg
- NA Not analyzed.

WDNR NR 720 Groundwater Pathway Residual Contaminant Levels (RCLs). NR720

NR746 WDNR NR 746 Soil Screening Levels (SSLs). Q

Concentration between limit of detection and limit of quantitation.

Volatile Organic Compounds VOCs

SAMPLED FROM FELL SOILS ×

Page 2 of 7

• • •• .1

1 a a

1 1

Table 2. Summary of VOC Soil Analytical Results and Comparison to Applicable WDNR Soil Criteria, Manowske Welding Property, Fond du Lac, Wisconsin.

1 . . .

A .

NR 720	NR746	GP-3 (4-6")	GP-4 (2-4')	GP-4 (4-6')	GP-4 (6-8")	GP-5 (2.4)	CP E (A E)	CD C (0 40	000 0 ((00
GW Pathway	SSL	06/22/06		• •	• •		. ()		
		· · · · · · · · · · · · · · · · · · ·		00,22,00	00122100	00/21/00	00/2//06	06/22/06	06/22/06
5.5	8,500	<25	250	1.000 Q	<200	-25	-05	-05	~~
				•					<25
-								<25	<25
2 000						<25	<25	<25	<25
2,900	4,600		•	<u>36,000</u>	<u>7,000</u>	<25	<25	<25	<25
		<25	230	3,300	900	<25	<25		<25
		<25	270	2,700	930				<25
	-	<25	1,500	14.000	4.800				<25
		<25	1,100		,				~25 <25
-		<25	<50	•	•				
1,500	38.000								<25
·	•			•					<25
									<25
4 100*					,		<25	<25	<25
-				<u>43,000</u>	4,900	<25	<25	<25	<25
	42,000*	<50	10,000	<u>120,000</u>	24,000	<50	<50	<50	<50
	GW Pathway 5.5 2,900 1,500 1,500 4,100*	GW Pathway SSL 5.5 8,500 - - 2,900 4,600 - - 2,900 4,600 - - 1,500 38,000 - - 1,500 38,000 - 11,000 4,100* 42,000*	GW Pathway SSL 06/22/06 5.5 8,500 <25	GW PathwaySSL $06/22/06$ $06/22/06$ 5.58,500<25	GW PathwaySSL $06/22/06$ $06/22/06$ $06/22/06$ $06/22/06$ 5.58,500<25	GW PathwaySSL $06/22/06$ $06/22/06$ $06/22/06$ $06/22/06$ $06/22/06$ 5.58,500<25	GW PathwaySSL $06/22/06$ 255 570 $56/20$ 5200 525 570 $56/20$ 5700 $50/25$ 570 $56/20$ $50/25$ 570 $56/20$ $50/25$ 570 $50/25$ 570 $50/25$ 570 $50/25$ 570 $50/25$ 570 $50/25$ 570 $50/25$ 570 $50/25$ 570 $50/25$ 570 $50/25$ 570 $50/25$ <	GW PathwaySSL $06/22/06$ $06/22/06$ $06/22/06$ $06/22/06$ $06/22/06$ $06/22/06$ $06/22/06$ $06/22/06$ $06/27/06$ 5.5 $8,500$ <25 250 $1,000$ Q <200 <25 <25 $ <25$ <50 <620 <200 <25 <25 $ <25$ 150 Q 1600 Q 730 <25 <25 $2,900$ $4,600$ <25 570 $36,000$ $7,000$ <25 <25 $ <25$ 230 $3,300$ 900 <25 <25 $ <25$ 270 $2,700$ 930 <25 <25 $ <25$ $1,500$ $14,000$ $4,800$ <25 <25 $ <25$ $1,500$ $14,000$ $4,800$ <25 <25 $ <25$ <50 <620 <200 <25 <25 $ <25$ <50 <620 <200 <25 <25 $ <25$ <50 <4500 <200 <25 <25 $ <25$ <50 $<4,500$ <200 <25 <25 $ <25$ $<10,000$ $110,00030,000<25<25 <10,000<25<25<25<25 <25<10,000<10,000<25<25-$	GW PathwaySSL06/22/0606/22/0606/22/0606/22/0606/22/0606/22/0606/22/0606/22/0606/22/06 5.5 $8,500$ <25 250 $1,000 Q$ <200 <25 <25 <25 $ <25$ <50 <620 <200 <25 <25 <25 $ <25$ <50 <620 <200 <25 <25 <25 $2,900$ $4,600$ <25 570 $36,000$ $7,000$ <25 <25 <25 $ <25$ 270 $3,300$ 900 <25 <25 <25 $ <25$ 270 $2,700$ 930 <25 <25 <25 $ <25$ $1,500$ $14,000$ $4,800$ <25 <25 <25 $ <25$ $1,500$ $14,000$ $4,800$ <25 <25 <25 $ <25$ $1,500$ $14,000$ $4,800$ <25 <25 <25 $ <25$ $1,000$ $14,000$ $4,800$ <25 <25 <25 $ <25$ <50 $<4,500$ <200 <25 <25 <25 $ <25$ $<1,000$ $10,000$ <200 <25 <25 <25 $ <25$ $<1,000$ $<10,000$ <200 <25 <25 <25 $ <25$ <25 $<$

Value exceeds the NR 720 GW Pathway. Bold

<u>Value</u> Value exceeds NR 746 SSL.

GW

- Groundwater
- µg/kg Micrograms per kilogram.
- NA Not analyzed.

WDNR NR 720 Groundwater Pathway Residual Contaminant Levels (RCLs). NR720 NR746

:

WDNR NR 746 Soil Screening Levels (SSLs).

Concentration between limit of detection and limit of quantitation. Q

VOCs Volatile Organic Compounds

SAMPLED FROM FILL SOILS \$

а. - -- т. - т.

. .

Table 2. Summary of VOC Soil Analytical Results and Comparison to Applicable WDNR Soil Criteria, Manowske Welding Property, Fond du Lac, Wisconsin.

Sample ID	NR 720	NR746	GP-7 (2-4")	GP-7 (6-8')	GP-8 (2-4"	GP-8 (4-6')	GP-9 (2-11	CP 0 (A.c.	GP-10 (2-4')	00.40.44.00
Sample Date	GW Pathway	SSL	06/22/06	06/22/06	06/22/06	06/22/06	06/22/06	06/22/06		
VOC (ug/kg)						00/22/00	00/22/00	00/22/06	06/22/06	06/22/06
Benzene	5.5	8,500	<25	<25	<25	<25	<25	<25	-05	-05
n-Butylbenzene			<25	<25	<25	<25			<25	<25
s-Butylbenzene			<25				<25	<25	<25	<25
Ethylbenzene	2,900			<25	<25	<25	<25	<25	<25	<25
	2,900	4,600	<25	<25	<25	<25	<25	<25	<25	<25
sopropylbenzene			<25	<25	<25	<25 #	<25	<25	<25	<25
o-Isopropyltoluene			<25	<25	<25	<25	<25	<25	<25	~25 <25
Naphthalene			<25	<25	<25	<25	<25	<25	<25	<25
n-Propylbenzene			<25	<25	<25	<25	<25	<25		
letrachloroethene			<25	<25	<25	<25			<25	<25
luene	1,500	38,000	<25				<25	<25	<25	<25
,2,4-Trimethylbenzene		•		<25	<25	<25	<25	<25	<25	<25
		83,000	<25	<25	<25	<25	<25	<25	<25	<25
1,3,5-Trimethylbenzene		11,000	<25	<25	<25	<25	<25	<25	<25	<25
(ylene, o	4,100*	42,000*	<25	<25	<25	<25	<25	<25	<25	<25
Kylenes, m + p RCL is for Xyle	4,100*	42,000*	<50	<50	<50	<50	<50	<20 <50	~23 <50	<25 <50

RUL is for Xylenes, total.

Bold Value exceeds the NR 720 GW Pathway.

Value Value exceeds NR 746 SSL.

- GW Groundwater
- µg/kg Micrograms per kilogram.
- NA Not analyzed.

NR720 WDNR NR 720 Groundwater Pathway Residual Contaminant Levels (RCLs).

• •

NR746 WDNR NR 746 Soil Screening Levels (SSLs).

Q Concentration between limit of detection and limit of quantitation.

VOCs Volatile Organic Compounds

A SAMPLED FROM FILL SOILS

G:\Aproject\MREDCUMM\WI1138\FonduLac\TABLES\fondduclac_manowski_soil.xls

Page 4 of 7

. .

 Table 2. Summary of VOC Soil Analytical Results and Comparison to Applicable WDNR Soil Criteria, Manowske Welding Property, Fond du Lac,

 Wisconsin.

Sample ID	NR 720	NR746	GP-11 (2-4')	GP-11 (4-6')	GP-12 (4-6')	GP-12 (6-8')	GP 12 (2 4)	OD 42 (4 CD	00.44/0.45
Sample Date	GW Pathway	SSL	06/22/06	06/22/06	06/22/06	06/22/06	GP-13 (2-4') 06/22/06	• • •	GP-14 (2-4')
VOC (ug/kg)					00/22/00	00/22/00	00/22/06	06/22/06	06/22/06
Benzene	5.5	8,500	<25	<25	<25	<25	<25	<25	-05
i-Butylbenzene			<25	<25	<25	<25	<25		<25
-Butylbenzene			<25	<25	<25	<25		<25	<25
Ethylbenzene	2,900	4,600	<25	<25	<25	~25	<25	<25	. <25
sopropylbenzene			<25	<25	<25	<25 <25	<25	<25	<25
-Isopropyltoluene			<25	<25	<25		<25	<25	<25
aphthalene			<25	~25		<25	<25	<25	<25
Propylbenzene			<25 <25	<25	<25	<25	<25	<25	<25
etrachioroethene					<25	<25	<25	· <25	<25
oluene	1,500	38,000	<25	<25	<25	<25	<25	<25	<25
,2,4-Trimethylbenzene	•	•	<25	<25	<25	<25	<25	<25	<25
,3,5-Trimethylbenzene		83,000	<25	<25	<25	<25	52 Q	<25	<25
		11,000	<25	<25	<25	<25	<25	<25	<25
ylene, o	4,100*	42,000*	<25	<25	<25	<25	<25	<25	<25
(ylenes, m + p	4,100*	42,000*	<50	<50	<50	<50			<50
* RCL is for XvI		42,000*	<50	<50	<50	<50	89 Q		<50

4

RCL is for Xylenes, total.

Bold Value exceeds the NR 720 GW Pathway.

<u>Value</u> Value exceeds NR 746 SSL.

- GW Groundwater
- µg/kg Micrograms per kilogram.
- NA Not analyzed.

NR720 WDNR NR 720 Groundwater Pathway Residual Contaminant Levels (RCLs).

NR746 WDNR NR 746 Soil Screening Levels (SSLs).

Q Concentration between limit of detection and limit of quantitation.

VOCs Volatile Organic Compounds

A SAMPLED FROM FILL SOILS

G:\Aproject\MREDCUMM\WI1138\FonduLac\TABLES\fondduclac_manowski_soil.xls

 Table 2. Summary of VOC Soil Analytical Results and Comparison to Applicable WDNR Soil Criteria, Manowske Welding Property, Fond du Lac,

 _______Wisconsin.

Sample ID	NR 720	NR746	GP-14 (4-6')	GP-15 (2-4")	GP-15 (4-6')	AGM_MW_1 (0-2)	AGM-MW-1 (4-6)	ACHI MUU O (O O)
Sample Date	GW Pathway	SSL	06/22/06	06/22/06	06/22/06	06/27/06	06/27/06	AGM-MW-2 (0-2) 06/27/06
VOC (ug/kg)						00/2/100	00/21/00	00/21/06
Benzene	5.5	8,500	<25	<25	<25	<25	<25	<25
n-Butylbenzene			<25	<25	<25	<25	<25	
s-Butylbenzene			<25	<25	<25	<25	~25 <25	<25
Ethylbenzene	2,900	4,600	<25	<25	<25	<25	<25 <25	<25
Isopropylbenzene			<25	<25	<25	× <25	~25 <25	<25
p-isopropyitoluene			<25	<25	<25	<25	~25 <25	<25
Naphthalene			<25	<25	<25	<25	~25	<25
n-Propylbenzene			<25	<25	<25	~23 <25	~25 <25	<25
Tetrachloroethene			<25	<25	<25	<25	<25	<25 <25
Toluene	1,500	38,000	<25	<25	<25	<25	~25 <25	~25 <25
1,2,4-Trimethylbenzene		83,000	<25	<25	<25	<25	<25 <25	<25 <25
1,3,5-Trimethylbenzene		11,000	<25	<25	<25	<25	~25	<25 <25
Xylene, o	4,100*	42,000*	<25	<25	<25	<25	~25 <25	
Xylenes, m + p	4,100*	42,000*	<50	<50	<50	<50	~23 <50	<25 <50
* RCL is for Xyl	enes, total.						-00	<u> </u>

Bold Value exceeds the NR 720 GW Pathway.

Value Value exceeds NR 746 SSL.

GW Groundwater

µg/kg Micrograms per kilogram.

NA Not analyzed.

NR720 WDNR NR 720 Groundwater Pathway Residual Contaminant Levels (RCLs).

NR746 WDNR NR 746 Soil Screening Levels (SSLs).

Q Concentration between limit of detection and limit of quantitation.

VOCs Volatile Organic Compounds

* SAMPLED FROM FILL SOILS

4 .

· · · · .

Sample ID	NR 720	NR746	AGM-MW-2 (2-4)*	AGM-MW-4 (2-4)	AGM-MW-4 (4-6)	TB	EVMA	FYNA	
Sample Date	GW Pathway	SSL	06/27/06	06/27/06	06/27/06	06/22/06	EX-M-1	EX-M-2	TB
VOC (ug/kg)	······································			00/21/00	00/21100	00/22/06	09/20/06	09/20/06	09/20/06
Benzene	5.5	8,500	<25	<25	<25	<25	<25	<25	-05
n-Butylbenzene			<25	460	<25	<25			<25
s-Butylbenzene			<25	130			<25	<25	<25
Ethylbenzene	2,900	4,600	<25		<25	<25	<25	<25	<25
Isopropyibenzene	2,000	•		<25	<25	<25	<25	<25	<25
			<25	130	<25	<25	<25	<25	<25
p-Isopropyltoluene			<25	<25	<25	<25	<25	<25	<25
Naphthalene			<25	1,000	<25	<25	<25	<25	<25
n-Propylbenzene			<25	640	<25	<25	<25	<25	<25
Tetrachloroethene			<25	<25	<25	<25	59 Q	61 Q	
Toluene	1,500	38,000	<25	<25	<25	<25	-		<36
1,2,4-Trimethylbenzene		83,000	<25	<25			<25	<25	<25
1,3,5-Trimethylbenzene		11,000			<25	<25	<25	<25	<25
Xylene, o		•	<25	<25	<25	<25	<25	<25	<25
	4,100*	42,000*	<25	<25	<25	<25	<25	<25	<25
Xylenes, m + p	4,100*	42,000*	<50	<50	<50	<50	<50	<50	<50
* RCL is for Xyl	enes, total.								-00

Bold Value exceeds the NR 720 GW Pathway.

Value Value exceeds NR 746 SSL.

GW Groundwater

µg/kg Micrograms per kilogram.

NA Not analyzed.

NR720 WDNR NR 720 Groundwater Pathway Residual Contaminant Levels (RCLs).

NR746 WDNR NR 746 Soil Screening Levels (SSLs).

Q Concentration between limit of detection and limit of quantitation.

VOCs Volatile Organic Compounds

* SAMPLED TROM FILL SOILS

#

.1 1 . H ,

6.

ARCADIS

Page 1 of 9

1 .

Sample Date	DC IND		GW Pathway	SBM-1 (16-18')	icable WDNR S 	SBM-3 (3-4')	SBM-4 (8-10)	SBM-5 (10-12')
PAHs (ug/kg)		<u></u>	GW Fainway	02/06/06	02/06/06	02/07/06	02/07/06	02/07/06
Acenaphthene	60,000,000	900,000	20.000					02/01/00
Acenaphthylene	360,000	18,000	38,000	<330	<330	<330	<330	<330
Anthracene	300,000,000	5,000,000	700	<330	<330	<330	<330	<330
Benzo(a)anthracene	3,900	•	3,000,000	<330	<330	<330	<330	
Benzo(a)pyrene	390	88	17,000	<8.7	<8.7	500	<8.7	<330
Benzo(b)fluoranthene	3,900	9	48,000	<15	<15		<15	<8.7
Benzo(ghi)perylene	39,000	88	360,000	<11	<11	450	<11	<15
Benzo(k)fluoranthene		1,800	6,800,000	NA	NA	<u>NA</u>	NA	<11
Chrysene	39,000	880	870,000	<11	<11	370		NA
Dibenz(a,h)anthracene	390,000	8,800	37,000	<100	<100	530	<11	<11
Fluoranthene		9	38,000	<20	<20	140	<100	<100
Fluorene	40,000,000	600,000	500,000	<330	<330	1100	<20	<20
ndeno(1,2,3-cd)pyren	40,000,000	600,000	100,000	<140	<140		<330	<330
l-Methylpochtholog	· · · · ·	88	680,000	<29	<29	<140	<140	<140
I-Methylnaphthalene 2-Methylnaphthalene	70,000,000	1,100,000	23,000	NA	NA	380	<29	<29
laphthalene	40,000,000	600,000	20,000	<330	<330	NA	NA	NA
henanthrene	110,000	20,000	400	NA	<330	<330	<330	<330
	390,000	18,000	1,800	<330		<330	<330	<330
Pyrene	30,000,000	500,000	8,700,000	<180	<330	510	<330	<330
<u>letais (mg/kg)</u>			-,,	100	<180	1,000	<180	<180
vrsenic								
Barium	1.6	0.039		NA	NA	NIA		
admium	_	-		NA	NA	NĄ	NA	NA
hromium	510	8		NA	NA	NA	NA	NA
	200	14		NA		NA	NA	NA
ead	500	50	***	NA	NA	NA	NA	NA
lercury					NA	NA	NA	NA
elenium				NA	NA	NA	NA	NA
ilver				NA	NA	NA	NA	NA
Value e	ceeds the DC IND	RCI	·····	NA	<u>NA</u>	NA	NA	NA
Value e	ceeds the DC NO				ig/kg N	licrograms per	kiloaram.	
value ex	ceeds the Ground	water (CM) De			ng/kg 🛛 🔊	/illigrams per k	ilogram.	
	proposed and NR	720 industriat	niway RCL.	N	IA N	lot analyzed.		
NON-IND WONR	FOR one and NO		rect contact RCLs	- F	CL F	Residual Conta	minant Lavol	
	roposed and NR	20 non-Industri	al direct contact F	RCLs.	,			
	roposed and NR 7 ration between lim	20 aroundwate	r nathway DOL					

ration between limit of detection and limit of quantitation. SAMPLED FROM FILL SOZIS

G:\Aproject\MREDCUMM\W11138\FonduLac\TABLES\fondduclac_manowski_soil.xls

4

ARCADIS

.

. . .

 Table 2
 Summary of PAH and Metal Soil Analytical Results and Comparison to Applicable WDNR Soil Criteria, Manowske Welding Property,

 Fond du Lac, Wisconsin.

.

Sample ID) SBM-8 (8-10')	GP-1 (2-4')	GP-1 (4-6')	GP-2 (2-4')
Sample Date	DC IND	DC NON-IND	GW Pathway	02/07/06	02/07/06	02/07/06	06/22/06	06/22/06	06/22/06
PAHs (ug/kg)								·····	
Acenaphthene	60,000,000	900,000	38,000	<330	<330	<330	36	<3.6	56
Acenaphthylene	360,000	18,000	700	<330	<330	<330	29	7.3 Q	430
Anthracene	300,000,000	5,000,000	3,000,000	<330	<330	<330	180	15	650
Benzo(a)anthracene	3,900	88	17,000	<8.7	<8.7	<8.7	300	110	640
Benzo(a)pyrene	390	9	48,000	<15	<15	<15	290	110	580
Benzo(b)fluoranthene	3,900	88	360,000	<11	<11	<11	270	91	510
Benzo(ghi)perylene	39,000	1,800	6,800,000	NA	NA	NA	150	76	340
Benzo(k)fluoranthene	39,000	880	870,000	<11	<11	<11	270	90	480
Chrysene	390,000	8,800	37,000	<100	<100	<100	330	110	600
Dibenz(a,h)anthracene	390	9	38,000	<20	<20	<20	60	20	92
Juoranthene	40,000,000	600,000	500,000	<330	<330	<330	670	180	1600
Fluorene	40,000,000	600,000	100,000	<140	<140	<140	63	<4.2	420
ndeno(1,2,3-cd)pyrene	3,900	88	680,000	<29	<29	<29	140	67	310
-Methylnaphthalene	70,000,000	1,100,000	23,000	NA	NA	NA	8.7 Q	<3.7	130
-Methylnaphthalene	40,000,000	600,000	20,000	<330	<330	<330	9.2 Q	<3.8	240
Naphthalene	110,000	20,000	400	<330	<330	<330	14 Q	<4.9	670
Phenanthrene	390,000	18,000	1,800	<330	<330	<330	740	22	2,100
Pyrene	30,000,000	500,000	8,700,000	<180	<180	<180	690	180	1,400
<u>/letais (mg/kg)</u>									
Arsenic	1.6	0.039		NA	NA	NA	4.8	100 0 10 10 10 10 10 10 10 10 10 10 10 1	
Barium				NA	NA	NA	220	Comparison of the Party of the Party	46
Cadmium	510	8		NA	NA	NA		110	210
Chromium	200	14		NA	NA		0.45	0.45	0.76
ead	500	50		NA	NA	NA	55	28	37
Aercury				NA	NA	NA	16	8.2	71
Selenium				NA	NA	NA	0.1	0.015	0.18
Silver				NA		NA	<1.2	<0.99	<1.1
	xceeds the DC II			INA	NA	NA	<0.36	<0.29	<0.34
	xceeds the DC N				µg/kg	Micrograms per			
					mg/kg	Milligrams per k	ilogram.		
	xceeds the Grou	2 700 industrial	rainway RCL.	01	NA	Not analyzed.			
	proposed and NF	720 noustrial	uirect contact R	ULS.	RCL	Residual Contar	minant Level.		
	proposed and NF	< 120 non-indus	strial direct conta	ct RCLs.					
	proposed and NF	< 720 groundwa	tter pathway RCI	LS.	-				
c Concern	tration between I	imit of detection	and limit of qua	ntitation.					

* SAMPLED FROM FILL SOZLS

G:\Aproject\MREDCUMM\WI1138\FonduLac\TABLES\fondduclac_manowski_soil.xls

Page 2 of 9

the state of the s

.

 Table 2
 Summary of PAH and Metal Soil Analytical Results and Comparison to Applicable WDNR Soil Criteria, Manowske Welding Property,

 Fond du Lac, Wisconsin.

 $e_1 = e_1 + e_2 + e_3 + e_4 + e_4$

Sample ID				GP-2 (6-8')	GP-3 (2-4')	GP-3 (4-6')	GP-4 (2-4')	GP-4 (4-6')	GP-4 (6-8')	GP-5 (2-4)
Sample Date	DC IND	DC NON-IND	GW Pathway	06/22/06	06/22/06	06/22/06	06/22/06	06/22/06	06/22/06	06/27/06
PAHs (ug/kg)										
Acenaphthene	60,000,000	900,000	38,000	<3.6	9.7 Q	<4	<16	<15	<3.7	<4.0
Acenaphthylene	360,000	18,000	700	<3.5	40	<3.9	<16	<14	<3.6	<3.9
Anthracene	300,000,000	5,000,000	3,000,000	<4.3	67	<4.8	<19	<18	<4.4	<4.8
Benzo(a)anthracene	3,900	88	17,000	<6.5	160	<7.2	<29	<27	<6.6	<7.2
Benzo(a)pyrene	390	9	48,000	<3.5	220	<3.9	<16	<14	<3.6	<3.9
Benzo(b)fluoranthene	3,900	88	360,000	<3.4	240	<3.8	<15	<14	<3.5	<3.8
Benzo(ghi)perylene	39,000	1,800	6,800,000	<4.3	95	<4.8	<19	<18	<4.4	<4.8
Benzo(k)fluoranthene	39,000	880	870,000	<3.7	240	<4.1	<17	<15	<3.8	<4.1
Chrysene	390,000	8,800	37,000	<5.3	200	<5.9	<24	<22	<5.4	<5.9
Dibenz(a,h)anthracene	390	9	38,000	<3.4	30	<3.7 "	<15	<14	<3.4	<3.7
Fluoranthene	40,000,000	600,000	500,000	<3.5	290	 <3.9	<16	<14	<3.6	<3.9
Fluorene	40,000,000	600,000	100,000	<4.2	16 Q	<4.6	<18	<17	<4.2	<4.6
ndeno(1,2,3-cd)pyrene	3,900	88	680,000	<3.1	86	<3.4	<14	<13	<3.1	<3.4
1-Methylnaphthalene	70,000,000	1,100,000	23,000	<3.7	11 Q	<4.1	960	1,100	280	<4.1
2-Methylnaphthalene	40,000,000	600,000	20,000	<3.8	13 Q	<4.2	2,200	2,500	420	<4.2
Naphthalene	110,000	20,000	400	<4.9	51	<5.4	1,300	1,400	250	<5.4
Phenanthrene	390,000	18,000	1,800	<3.6	190	<4	<16	<15	<3.6	<4.0
Pyrene	30,000,000	500,000	8,700,000	<3	370	<3.3	<13	<12	<3	<3.3
<u>Metals (mg/kg)</u>										
Arsenic	1.6	0.039		5944	220.0	484.4	14	1 2 8 10 -	3405	484
Barium				120	180	120	180	190	130	240
Cadmium	510	8		0.53	0.67	0.51	0.47	0.67	0.55	0.34
Chromium	200	14		27	29	37	33	40	32	44
_ead	500	50		6.2	12	7.4	30	11	6.6	11
Mercury				0.012	0.12	0.016	0.035	0.016	0.012	0.03
Selenium				<0.99	<1.2	<1.1	<1.1	<1	<1	<1.1
Silver				<0.29	<0.34	<0.32	<0.32	<0.3	<0.3	<0.32
Value exc	ceeds the DC II	ND RCL.				µg/kg	Micrograms	per kilogram.		
	ceeds the DC N	ON-IND RCL.				mg/kg	Milligrams pe	r kilogram.		
	ceeds the Grou	ndwater (GW) F	athway RCL.			NĂ	Not analyzed	-		
			direct contact R	CLs.		RCL	Residual Cor		vel.	
			trial direct conta			· ,				
			ter pathway RC							
			and limit of qua							

A SAMPLED FROM RILL SITLS

G:\Aproject\MREDCUMM\WI1138\FonduLac\TABLES\fondduclac_manowski_soil.xls

Page 3 of 9

. .

. . .

Table 3, Summary of PAH and Metal Soil Analytical Results and Comparison to Applicable WDNR Soil Criteria, Manowske Welding Property, Fond du Lac, Wisconsin.

Sample ID Sample Date	DC IND		<u></u>	GP-5 (4-6)		GP-6 (4-6')	GP-7 (2-4')	GP-7 (6-8')	GP-8 (2-4')	GP-8 (4-6'
PAHs (ug/kg)	DC IND	DC NON-IND	GW Pathway	06/27/06	06/22/06	06/22/06	06/22/06	06/22/06	06/22/06	06/22/06
Acenaphthene	60,000,000	000 000								00121.00
Acenaphthylene	360,000	900,000	38,000	<3.7	<4.1	<3.9	97 Q	<3.6	<4.2	<3.9
Anthracene	300,000,000	18,000	700	<3.6	<4	<3.8	200	<3.5	<4	<3.8
Benzo(a)anthracei	ne 3,900	5,000,000	3,000,000	<4.5	<4.9	6.2 Q	310	<4.4	<5	<4.6
Benzo(a)pyrene	390 3,900	88	17,000	<6.6	<7.3	16 Q	660	<6.5	22 Q	<6.9
Benzo(b)fluoranthe	390	9	48,000	<3.6	<3.9	,17	125000 ×	<3.5	21	<3.7
Benzo(ghi)perylen	•	88	360,000	<3.5	<3.9	16	1,400	<3.4	16	<3.7
Benzo(k)fluoranthe	,	1,800	6,800,000	<4.5	<4.9	8.4 Q	1,100	<4.4	11 Q	<4.6
Chrysene		880	870,000	<3.8	<4.2	17	1,300	<3.8	15	<4
Dibenz(a,h)anthrac	390,000	8,800	37,000	<5.5	<6	19 Q	1,600	<5.4	25	< 5. 7
Fluoranthene		9	38,000	<3.5	<3.8	<3.6	230	<3.4	<3.9	<3.6
Fluorene	40,000,000	600,000	500,000	<3.6	<4	30	3,500	<3.5	29	<3.0 <3.8
Indeno(1,2,3-cd)py	40,000,000	600,000	100,000	<4.3	<4.7	<4.5	240	<4.2	<4.8	<3.0 <4.5
1-Methylnaphthale		88	680,000	<3.2	<3.5	7.6 Q	830	<3.1	9.0 Q	<4.0 <3.3
2-Methylnaphthale	ne 70,000,000	1,100,000	23,000	<3.8	<4.2	<4	300	<3.7	<4.2	<3.9
Vaphthalene	•	600,000	20,000	<3.9	4.7 Q	<4.1	180	<3.8	<4.4	<3. 9 <4.1
Phenanthrene	110,000	20,000	400	<5.0	<5.5	16 Q	270	<4.9	<5.6	<5.2
^o yrene	390,000	18,000	1,800	<3.7	<4.1	12 Q	4,500	<3.6	8.8 Q	<3.8
yrche	30,000,000	500,000	8,700,000	<3.1	<3.4	29	4,600	<3	42	<3.2
<u>Metals (mg/kg)</u>							•	-	12	-0.2
Arsenic	1.6	0.039			No. 15 Million Providence State					
Barium		0.003		3.6	61.00	P#432.024	100 E 6 6 6	7280	2011-58 268 97	0. 8 2 6 OF
Cadmium	510	8		140	230	150	340	110	290	66
Chromium	200	14		0.55	0.62	0.45	1.6	0.48	0.7	0.45
ead	500	50		30	44	36	32	33	60	32
lercury				8.5	10	7.8	330	8.2	14	5.9
Selenium				0.015	0.028	0.014	0.51	0.012	0.062	0.021
Silver				<1.0	<1.1	<1.1	1.3 Q	<0.99	<1.1	<1.1
	ue exceeds the DC IN			<0.30	<0.33	< 0.32	< 0.35	<0.29	<0.33	<0.31
	ue exceeds the DC N					µg/kg	Micrograms p	er kilogram.		
old Valu	ie exceeds the DC N	JN-IND RCL.		,		mg/kg	Milligrams pe			
	e exceeds the Groun	uwater (GW) Pa	atnway RCL.			NA	Not analyzed.			
	NR proposed and NR	720 Industrial d	irect contact RC	Ls.		RCL	Residual Con	taminant Lev	el.	
	NR proposed and NR	/∠∪ non-indust	nal direct contac	t RCLs.						
•	NR proposed and NR	720 groundwat	er pathway RCL	s.						
	centration between lin	nit of detection a	and limit of quar	ititation.						

SAMPLED FROM FELL SILLS G:VAproject/MREDCUMM/WI1138/FonduLac/TABLES/fondduc/ac_manowski_soil.xis

.

£ .

Page 4 of 9

. . .

 Table 2
 Summary of PAH and Metal Soil Analytical Results and Comparison to Applicable WDNR Soil Criteria, Manowske Welding Property,

 Fond du Lac, Wisconsin.

1

• • • •

Sample ID	ic, 113c0115111.	······································		GP-9 (2-4"	GP-9 (4-6")	CP-10 (2.4) GP-10 (4-6')	00 44 /0 45	
Sample Date	DC IND	DC NON-IND	GW Pathway	06/22/06	06/22/06	06/22/06	06/22/06	GP-11 (2-4)	FGP-11 (4-6')
PAHs (ug/kg)				00,22,00	00/22/00	00/22/06	00/22/06	06/22/06	06/22/06
Acenaphthene	60,000,000	900,000	38,000	7.3 Q	<3.8	<3.7	-0.0		
Acenaphthylene	360,000	18,000	700	80	<3.7		<3.6	<3.8	<3.6
Anthracene	300,000,000	5,000,000	3,000,000	84	<3.7 6.2 Q	<3.6	<3.5	14	<3.5
Benzo(a)anthracene	3,900	88	17,000	270		<4.4	<4.3	18	<4.4
Benzo(a)pyrene	390	9	48,000	310	19 Q	7.0 Q	<6.4	67	<6.5
Benzo(b)fluoranthene		88	360,000	270	16	7.4 Q	<3.5	80	<3.5
Benzo(ghi)perylene	39,000	1,800	6,800,000	230	16	7.4 Q	<3.4	68	<3.4
Benzo(k)fluoranthene	39,000	880	870,000		16	6.0 Q	<4.3	54	<4.4
Chrysene	390,000	8,800		310	19	6.7 Q *	<3.7	69	<3.7
Dibenz(a,h)anthracer	ie 390	9	37,000	310	17 Q	7.5 Q	<5.3	87	<5.3
Fluoranthene	40,000,000	9 600;000	38,000	70	13	<3.4	<3.3	15	<3.4
Fluorene	40,000,000	•	500,000	470	14	9.2 Q	<3.5	130	<3.5
Indeno(1,2,3-cd)pyrei	ne 3,900	600,000	100,000	10 Q	<4.4	<4.2	<4.1	4.8 Q	<4.2
1-Methylnaphthalene	•	88	680,000	180	15	5.1 Q	<3	49	<3.1
2-Methylnaphthalene	70,000,000	1,100,000	23,000	8.1 Q	<3.9	<3.7	<3.7	7.1 Q	<3.7
Naphthalene	40,000,000	600,000	20,000	10 Q	<4	<3.9	<3.8	5.9 Q	<3.8
Phenanthrene	110,000	20,000	400	14 Q	<5.2	<5	<4.9	11 Q	<4.9
	390,000	18,000	1,800	200	7.5 Q	4.9 Q	<3.6	98	<3.6
Pyrene	30,000,000	500,000	8,700,000	540	15	11	<3	170	3.1 Q
Metals (mg/kg)							•		
Arsenic	1.6	0.039					1. 22000 and and a second s		
Barium		0.039		21	4.5	4.1	10 (DE 10)		5. 3 8 8
Cadmium	510	•		430	200	200	90	160	150
Chromium	200	8		1.3	0.76	0.52	0.57	0.78	0.57
.ead	500	14		42	42	48	34	38	30
Mercury	500	50		440	12	11	6.7	54	5.9
Selenium				0.27	0.026	0.039	0.016	0.2	0.013
Silver				2.3 Q	<1	<1	<0.98	<1	<0.99
w. /				0.69 Q	<0.31	<0.3	<0.29	<0.31	<0.29
Cide	exceeds the DC IN		r			µg/kg	Micrograms pe		-0120
	exceeds the DC N	ON-IND RCL.				mg/kg	Milligrams per		
Sold Value	exceeds the Grou	ndwater (GW) I	Pathway RCL.			NA	Not analyzed.		
	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	720 industrial	direct contact R	CLs.		RCL	Residual Cont	aminant Lovel	
DC NON-IND WDNF	R proposed and NF	R 720 non-indus	strial direct conta	act RCLs				annalit Level.	
w Pathway WDNF	R proposed and NF	R 720 groundwa	ater pathway RC	l s					
2 Conce	ntration between li	mit of detection	and limit of our	ntitation					
50mt	LED TRom To		and a dat						

A SAMPLED FROM FILL AND SOLLS

G:\AprojectMREDCUMM\WI1138\FonduLac\TABLES\fondduclac_manowski_soil.xls

1 · ·

• •

· · · · · ·

 Table 2. Summary of PAH and Metal Soil Analytical Results and Comparison to Applicable WDNR Soil Criteria, Manowske Welding Property,

 Fond du Lac, Wisconsin.

Sample Date DC NO DC NO DC NO W Pathway 06/22/06	Sample ID				GP-12 (4-6')	GP-12 (6-8')	GP-13 (2-4')	GP-13 (4-6')	GP-14 (2-4')	GP-14 (4-6*
PAHs fug/kg) Accenaphthene 60,000,000 900,000 38,000 11 Q <17	Sample Date	DC IND	DC NON-IND	GW Pathway	06/22/06	06/22/06				
Acenaphthylene 360,000 18,000 700 71.5 53.6 13 53.3 53.9 53.5 Anthracene 300,000,000 5,000,000 3,000,000 12.2 4.4 110 42.2 10.Q 43.3 Benzo(a)pyrene 390 9 48,000 13.Q 3.5 170 4.4 10.Q 4.4.3 Benzo(a)pyrene 390.0 88 300,000 19 4.5 150 4.3.4 42 3.4 42.3.4 Benzo(b)fluoranthene 39,000 8.8 370,000 17 4.8 160 4.6 43.3 42.5.3 43.4 Benzo(k)fluoranthene 390,000 8.80 870,000 17 43.8 160 4.6 43.5 43.3 42.2 53.3 45.3 44.2 43.3 44.5 43.1 59.5 53.6 53.0 53.5 53.0 53.5 53.0 53.5 53.0 53.5 53.0 53.5 53.0 53.5 53.6 <t< td=""><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td>······</td><td></td></t<>			1						······	
Accenaphilylerie 360,000 18,000 700 < 4.5	-				11 Q	<3.7	39	<3.5	<3.9	<3.6
Anthracene 300,000,000 5,000,000 3,000,000 12 Q <4.4 110 <4.2 10 Q <4.3 Benzo(a)pyrene 3,900 88 17,000 16 Q <6.5					<4.5	<3.6	13	<3.4		
Benzo(a)privre 3,900 88 17,000 16 Q <6.5 180 <6.3 34 <6.4 Benzo(a)privre 390 9 48,000 13 Q <3.5			5,000,000	3,000,000	12 Q	<4.4	110	<4.2		
Benzo(billuoranthene 390 9 48,000 13 Q				17,000	16 Q	<6.5	180			
Benzo(b)fluoranthene 3,900 88 360,000 19 <3.5 150 <3.3 42 <3.4 Benzo(b)fluoranthene 39,000 1,800 6,800,000 <5.5			9	48,000	13 Q	<3.5	170			
Benzo(k)fiperylene 39,000 1,800 6,800,000 <5.5 <4.4 70 <4.2 34 <4.3 Benzo(k)fluoranthene 390,000 880 870,000 17			88	360,000	19	<3.5				
Benzofk/fituoranthene 39,000 880 870,000 17 <3.8 160 <3.6 43 <3.7 Chrysene 390,000 8,800 37,000 23 <5.4		39,000	1,800	6,800,000	<5.5					
Chrysene 390,000 8,800 37,000 23 <5.4 190 <5.2 53 <5.3 Dibenz(a,h)anthracene 390 9 38,000 <4.3	••	39,000	880	870,000	17					
Dibers(a,h)anthracene 390 9 38,000 <4.3 <3.4 32 <3.3 8.0 Q <3.3 Fluoranthene 40,000,000 600,000 500,000 32 <3.6	•	390,000	8,800	37,000	23					
Elucranthene 40,000,000 600,000 500,000 32 360		390	9	38,000	<4.3					
Fluorene 40,000,000 600,000 100,000 9.1 Q <4.2 46 <4 <4.5 <4.1 indeno(1,2,3-cd)pyrene 3,900 88 680,000 71 <3.1	Fluoranthene	40,000,000	600,000	500,000			the second se			
indenc(1,2,3-cd)pyrene 3,900 88 660,000 71 <3.1	Fluorene	40,000,000	600,000							
1-Methylnaphthalene 70,000,000 1,100,000 23,000 11 Q 6.7 Q 28 <3.6	indeno(1,2,3-cd)pyrene	3,900	88							
2-Methylnaphthalene 40,000,000 600,000 20,000 13 Q 16 50 <3.7 18 <3.8 Naphthalene 110,000 20,000 400 18 Q 12 Q 47 <4.7	1-Methylnaphthalene	70,000,000	1,100,000							
Naphthalene 110,000 20,000 400 18 Q 12 Q 47 44.7 14 Q 44.8 Phenanthrene 390,000 18,000 1,800 62 <3.6	2-Methylnaphthalene	40,000,000	600,000	•						
Phenanthrene 390,000 18,000 1,800 62 <3.6 380 <3.5 33 <3.6 Pyrene 30,000,000 500,000 8,700,000 80 <3	Naphthalene	110,000	20,000							
Pyrene 30,000,000 500,000 8,700,000 80 <3 340 <2.9 67 <3 Metals (mg/kg) Arsenic 1.6 0.039 - 20000 2000 2000 <t< td=""><td></td><td>390,000</td><td>18,000</td><td>1,800</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		390,000	18,000	1,800						
Arsenic 1.6 0.039 2000 305 2000 100 2000 100 2000 100 730 48 130 110 Cadmium 510 8 1.1 0.63 1.7 0.52 0.49 0.48 Chromium 200 14 13 32 75 27 26 29 Lead 500 50 120 6.7 3000 5.8 17 5.9 Mercury 1.7 0.0089 4 0.012 0.027 0.014 Selenium 1.3 <1	Pyrene	30,000,000	500,000	8,700,000						
Barium - - - 150 110 730 48 130 110 Cadmium 510 8 - 1.1 0.63 1.7 0.52 0.49 0.48 Chromium 200 14 - 13 32 75 27 26 29 Lead 500 50 - 1.7 0.0089 4 0.012 0.027 0.014 Selenium - - - 1.7 0.0089 4 0.012 0.027 0.014 Selenium - - - - 1.7 0.0089 4 0.012 0.027 0.014 Selenium - - - - - 1.7 0.0089 4 0.012 0.027 0.014 0.98 Silver - - - - 0.99 Q <0.3 0.76 Q <0.28 <0.32 <0.29 <0.29 <0.28 <0.32 <0.29 <0.29 <0.28 <0.32 <0.29 <0.28 <0.32 <0.32 <0.29	<u>Metals (mg/kg)</u>									
Barium - - - 150 110 730 48 130 110 Cadmium 510 8 - 1.1 0.63 1.7 0.52 0.49 0.48 Chromium 200 14 - 13 32 75 27 26 29 Lead 500 50 - 120 6.7 300 5.8 17 5.9 Mercury - - - 1.7 0.0089 4 0.012 0.027 0.014 Selenium - - - - 1.3 <1	Arsenic	1.6	0.039		2901	3 9	25-4			
Cadmium 510 8 - 1.1 0.63 1.7 0.52 0.49 0.48 Chromium 200 14 - 13 32 75 27 26 29 Lead 500 50 - 120 6.7 98 5.8 17 5.9 Mercury - - - 1.7 0.0089 4 0.012 0.027 0.014 Selenium - - - - 1.7 0.0089 4 0.012 0.027 0.014 Selenium - - - - - - 1.7 0.0089 4 0.012 0.027 0.014 Silver - - - - 1.3 <1 1.7 Q <0.96 <1.1 N <0.98 Silver - - - - - 0.99 Q <0.3 0.76 Q <0.28 <0.32 <0.29 Value exceeds the DC IND RCL. Main exceeds the Groundwater (GW) Pathway RCL. Main mg/kg Milligrams per kilogram. Milogra	Barium				150	110	730		Contraction (Contraction of Contraction of Contract	Contraction of the second second second
Chromium 200 14 - 13 32 75 27 26 29 Lead 500 50 - 120 6.7 3812 5.8 17 5.9 Mercury - - - 1.7 0.0089 4 0.012 0.027 0.014 Selenium - - - <1.3	Cadmium	510	8		1.1			• -		
Lead500501206.75.8175.9Mercury1.70.008940.0120.0270.014Selenium<1.3	Chromium	200	14							
Mercury - - 1.7 0.0089 4 0.012 0.027 0.014 Selenium - - <1.3		500	50							
Selenium <1.3	Mercury				1.7					
Silver - 0.99 Q <0.3 0.76 Q <0.28 <0.32 <0.29 Value exceeds the DC IND RCL. µg/kg Micrograms per kilogram. Value exceeds the DC NON-IND RCL. mg/kg Milligrams per kilogram. Value exceeds the Groundwater (GW) Pathway RCL. NA Not analyzed. DC IND WDNR proposed and NR 720 industrial direct contact RCLs. RCL Residual Contaminant Level. WDNR proposed and NR 720 groundwater pathway RCLs.	Selenium									
Value exceeds the DC IND RCL. µg/kg Micrograms per kilogram. Value exceeds the DC NON-IND RCL. mg/kg Milligrams per kilogram. Sold Value exceeds the Groundwater (GW) Pathway RCL. NA Not analyzed. DC IND WDNR proposed and NR 720 industrial direct contact RCLs. RCL Residual Contaminant Level. DC NON-IND WDNR proposed and NR 720 non-industrial direct contact RCLs. RCL Residual Contaminant Level. WDNR proposed and NR 720 groundwater pathway RCLs. WDNR proposed and NR 720 groundwater pathway RCLs. NA Not analyzed.	Silver									
Value exceeds the DC NON-IND RCL.mg/kgMilligrams per kilogram.SoldValue exceeds the Groundwater (GW) Pathway RCL.NANot analyzed.DC INDWDNR proposed and NR 720 industrial direct contact RCLs.RCLResidual Contaminant Level.DC NON-INDWDNR proposed and NR 720 non-industrial direct contact RCLs.RCLResidual Contaminant Level.GW PathwayWDNR proposed and NR 720 groundwater pathway RCLs.WDNR proposed and NR 720 groundwater pathway RCLs.WDNR proposed and NR 720 groundwater pathway RCLs.	Value exc	ceeds the DC II	ND RCL.		······································					-0.20
Sold Value exceeds the Groundwater (GW) Pathway RCL. NA Not analyzed. DC IND WDNR proposed and NR 720 industrial direct contact RCLs. RCL Residual Contaminant Level. DC NON-IND WDNR proposed and NR 720 non-industrial direct contact RCLs. RCL Residual Contaminant Level. WDNR proposed and NR 720 non-industrial direct contact RCLs. WDNR proposed and NR 720 groundwater pathway RCLs. NA Not analyzed.	Value exc	ceeds the DC N	ION-IND RCL.						-	
DC IND WDNR proposed and NR 720 industrial direct contact RCLs. RCL Residual Contaminant Level. DC NON-IND WDNR proposed and NR 720 non-industrial direct contact RCLs. RCL Residual Contaminant Level. GW Pathway WDNR proposed and NR 720 groundwater pathway RCLs. RCL Residual Contaminant Level.		ceeds the Grou	ndwater (GW)	Pathway RCL.					anogram.	
DC NON-IND WDNR proposed and NR 720 non-industrial direct contact RCLs. GW Pathway WDNR proposed and NR 720 groundwater pathway RCLs.	DC IND WDNR pr	oposed and N	R 720 industrial	direct contact F	RCLs.			•	minant l eval	
GW Pathway WDNR proposed and NR 720 groundwater pathway RCLs.	C NON-IND WDNR pr	oposed and N	R 720 non-indu	strial direct cont	act RCLs.				annian Lovel.	
Concentration between limit of detection and limit of quantitation	GW Pathway WDNR pr	oposed and NI	R 720 groundwa	ater pathway RC	Ls.					
	Concentra	ation between I	imit of detection	and limit of our	antitation					

.

.

A SAMPLED FROM FELL SOLLS

G:\Aproject\MREDCUMM\WI1138\FonduLac\TABLES\fondduciac_manowski_soil.xls

. .

1.1.1

Table 2, Summary of PAH and Metal Soil Analytical Results and Comparison to Applicable WDNR Soil Criteria, Manowske Welding Property, Fond du Lac, Wisconsin.

1 :

Sample ID			······································	GP-15 (2-4')	GP-15 (4-6')	GP-16 (2-4')	GP-16 (4-6")	AGM-MW-1 (0-2)
Sample Date	DC IND	DC NON-IND	GW Pathway	06/22/06	06/22/06	07/27/06	07/27/06	06/27/06
PAHs (ug/kg)								UNLINU
Acenaphthene	60,000,000	900,000	38,000	26 Q	<3.6	<3.7	<4.0	24
Acenaphthylene	360,000	18,000	700	17 Q	<3.5	<3.6	<3.9	28
Anthracene	300,000,000	5,000,000	3,000,000	74	<4.3	<4.5	<4.8	60
Benzo(a)anthracene	3,900	88	17,000	370	<6.4	11	<7.2	160
Benzo(a)pyrene	390	9	48,000	51010	6.1 Q	10	<3.9	240
Benzo(b)fluoranthene	3,900	88	360,000	490	5.4 Q	9.5	<3.8	230
Benzo(ghi)perylene	39,000	1,800	6,800,000	370	5.7 Q	<4.5	<4.8	160
3enzo(k)fluoranthene	39,000	880	870,000	410	6.5 Q	9.6	<4.1	210
Chrysene	390,000	8,800	37,000	490	6.9 Q	12	<5.9	250
Dibenz(a,h)anthracene	390	9	38,000	110	<3.3	17	<3.7	45
Fluoranthene	40,000,000	600,000	500,000	1200	14	22	<3.9	<u>45</u>
Fluorene	40,000,000	600,000	100,000	30 Q	<4.1	<4.3	<3.9 <4.6	43
ndeno(1,2,3-cd)pyrene	3,900	88	680,000	320] 4.0 Q	18	<4.0 <3.4	140
-Methylnaphthalene	70,000,000	1,100,000	23,000	28 Q	<3.7	<3.8	<3.4 <4.1	29
-Methylnaphthalene	40,000,000	600,000	20,000	20 Q 34 Q	<3.8	<3.0 <3.9	<4.1	33
Vaphthalene	110,000	20,000	400	30 Q	<4.9	<5.9 <5.1	<4.2 <5.4	
Phenanthrene	390,000	18,000	1,800	590	6.3 Q	11	<5.4 <4.0	46
^{>} yrene	30,000,000	500,000	8,700,000	1100	14	20	<4.0 <3.3	420 730
Metals (mg/kg)							-0.0	730
Arsenic	1.6	0.039		270		6		
Barium		0.000		50		NA	NA	
Cadmium	510	8			81	NA	NA	270
Chromium	200	0 14		0.4	0.47	NA	NA	4.3
.ead	500	14 50		12	26	J NA	NA	14
/iercury	500			35	6.4	NÁ	NA	450
Selenium				0.026	0.015	NA	NA	0.48
Silver				<0.86	<0,98	NÁ	NA	1.1 Q
	ceeds the DC II			<0.25	<0.29	NA	NA	<0.30
					µg/kg	Micrograms pe	-	
	ceeds the DC N				mg/kg	Milligrams per l	kilogram.	
	ceeds the Grou	nawater (GW)	Pathway RCL.		NA	Not analyzed.		
P	roposed and NF	< 720 industrial	direct contact R	CLs.	RCL	Residual Conta	minant Level.	
C NON-IND WDNR p	roposed and NF	R 720 non-indu	strial direct conta	act RCLs.				
W Pathway WDNR p	roposed and NF	R 720 groundwa	ater pathway RC	Ls.			•	
2 Concent	ration between l	imit of detection	n and limit of qua	intitation.				
A								

G:\Aproject\MREDCUMM\WI1138\FonduLac\TABLES\fondduclac_manowski_soil.xls

.

1

٦

• • •

:

١.

5 r - ,

· ·

÷ •

r ,

Table Summary of PAH and Metal Soil Analytical Results and Comparison to Applicable WDNR Soil Criteria, Manowske Weiding Property, Fond du Lac, Wisconsin.

Ϊ.

· •

1

8 . .

Sample ID Sample Date	DC IND	DC NON-IND	GW Pathway	AGM-MW-1 (4-6) 06/27/06	AGM-MW-2 (0-2)*	
PAHs (ug/kg)		DOMONTIND	Off Fallway	00/2//06	06/27/06	06/27/06
Acenaphthene	60,000,000	900,000	38,000	<2.0		
Acenaphthylene	360,000	18,000	700	<3.9	- <3.1	<3.6
Anthracene	300,000,000	5,000,000	3,000,000	<3.8	<3.0	<3.5
Benzo(a)anthracene	3,900	88		<4.7	<3.7	<4.4
Benzo(a)pyrene	390	9	17,000	<7.0	<5.5	<6.5
Benzo(b)fluoranthene	3,900	88	48,000	<3.8	4.9 Q	<3.5
Benzo(ghi)perylene	39,000		360,000	<3.7	3.2 Q	<3.4
Benzo(k)fluoranthene	39,000	1,800	6,800,000	<4.7	3.8 Q	<4.4
Chrysene	•	880	870,000	<4.0	<3.2	<3.7
Dibenz(a,h)anthracene	390,000	8,800	37,000	<5.8	6.0 Q	<5.3
Fluoranthene	390	9	38,000	<3.6	<2.8	<3.4
Fluorene	40,000,000	600,000	500,000	<3.8	3.9 Q	<3.5
	40,000,000	600,000	100,000	<4.5	<3.5	<4.2
Indeno(1,2,3-cd)pyrene	3,900	88	680,000	<3.3	<2.6	<3.1
1-Methylnaphthalene	70,000,000	1,100,000	23,000	<4.0	<3.1	<3.7
2-Methylnaphthalene	40,000,000	600,000	20,000	<4.1	<3.2	<3.8
Naphthalene	110,000	20,000	400	<5.3	<4.1	<4.9
Phenanthrene	390,000	18,000	1,800	<3.9	4.9 Q	<3.6
Pyrene	30,000,000	500,000	8,700,000	<3.2	5.9 Q	<3.0
Metals (mg/kg)						
Arsenic	1.6	0.039		51		
Barium		0.000			<0.87	
Cadmium	510	8		140	1.9	·140
Chromium	200	14		0.42	<0.052	0.32
_ead	500	50		37	1.8	32
Mercury	-			11	1.0 Q	8.1
Selenium				0.034	<0.0016	0.018
Silver				<1.1	<0.84	<0.99
	eds the DC IND R			<0.32	<0.25	<0.29
	eds the DC NON-					Micrograms per kilogram.
Bold Value exce	eds the Groundwa	TOP COL.				Milligrams per kilogram.
	nosed and ND 700	industrial dias	y KUL.			Not analyzed.
	posed and NR 720	nuustrial direct	contact RCLs.		RCL	Residual Contaminant Level
	posed and NR 720	non-industrial di	rect contact RCLs.			
	posed and NR 720	groundwater pat	hway RCLs.			· ·
	ion between limit o	t detection and li	mit of quantitation.			
37071P620	FROM FILL	or the				

SAMPLED FROM FILL SOLLS

G:Vaproject/MREDCUMM/WI1138/FonduLac/TABLES/fondduclac_manowski_soil.xis

· 1 ·

Υ.

45

ARCADIS

5 A 1 5

Table 2, Summary of PAH and Metal Soil Analytical Results and Comparison to Applicable WDNR Soil Criteria, Manowske Welding Property, Fond du Lac, Wisconsin.

Sample ID					GP-15 (2-4')	GP-15 (4-6')	GP-16 (2-4')	GP-16 (4-6')	AGM-MW-1 (0-2)
Sample Date		DC IND	DC NON-IND	GW Pathway	06/22/06	06/22/06	07/27/06	07/27/06	06/27/06
<u>PAHs (ug/kg)</u>									
Acenaphthene		60,000,000	900,000	38,000	26 Q	<3.6	<3.7	<4.0	24
Acenaphthylene	•	360,000	18,000	700	17 Q	<3.5	<3.6	<3.9	28
Anthracene		300,000,000	5,000,000	3,000,000	74	<4.3	<4.5	<4.8	60
Benzo(a)anthra		3,900	88	17,000	370	<6.4	11	<7.2	160
Benzo(a)pyrene		390	9	48,000	510	6.1 Q	10	<3.9	240
Benzo(b)fluoran		3,900	88	360,000	490	5.4 Q	9.5	<3.8	230
Benzo(ghi)peryl		39,000	1,800	6,800,000	370	5.7 Q	<4.5	<4.8	160
Benzo(k)fluoran	thene	39,000	880	870,000	410	6.5 Q	9.6	<4.1	210
Chrysene		390,000	8,800	37,000	490	6.9 Q	12	<5.9	250
Dibenz(a,h)anth	iracene	390	9	38,000	110	<3.3	17	<3.7	45
Fluoranthene		40,000,000	600,000	500,000	1200	14	22	<3.9	560
Fluorene		40,000,000	600,000	100,000	30 Q	<4.1	<4.3	<4.6	43
Indeno(1,2,3-cd)pyrene	3,900	88	680,000	320	4.0 Q	18	<3.4	140
1-Methylnaphth:		70,000,000	1,100,000	23,000	28 Q	<3.7	<3.8	<4.1	29
2-Methylnaphth:	alene	40,000,000	600,000	20,000	34 Q	<3.8	<3.9	<4.2	33
Naphthalene		110,000	20,000	400	30 Q	<4.9	<5.1	<5.4	46
Phenanthrene		390,000	18,000	1,800	590	6.3 Q	11	<4.0	420
Pyrene		30,000,000	500,000	8,700,000	1100	14	20	<3.3	730
Metals (mg/kg)									
Arsenic		1.6	0.039		27Q		NA	NA	92
Barium					50	81	NA	NA	270
Cadmium		510	8		0.4	0.47	NA	NA	4.3
Chromium		200	14		12	26] NA	NA	4.0
Lead		500	50		35	6.4	NÁ	NA	450
Mercury	÷				0.026	0.015	NA	NA	0.48
Selenium					<0.86	<0.98	NA	NA	1.1 Q
Silver					<0.25	<0.29	NA	NA	< 0.30
	Value exc	eeds the DC II	ND RCL.			µg/kg	Micrograms pe		-0,00
		eeds the DC N				mg/kg	Milligrams per		
			ndwater (GW) I	Pathway RCI		NA	Not analyzed.	moyran.	
DC IND 1	WDNR pr	oposed and NF	R 720 industrial	direct contact R	2CLs	RCL	Residual Conta	minant Loval	
DC NON-IND	WDNR or	oposed and NF	R 720 non-indu	strial direct contact	act RCLs		ivesidual Collia	anniant Level.	
	WDNR pr	oposed and NF	R 720 groundwa	ater pathway RC	1 e				
ຊ ໌ (Concentr:	ation between i	imit of detection	n and limit of qua	antitation				
	CAm R/T	D FROM FI			anniauon,				

G:\Aproject\MREDCUMM\W11138\FonduLac\TABLES\fondduclac_manowski_soil.xls

Page 7 of 9

A .

ARCADIS

Tablea, Summary of PAH and Metal Soil Analytical Results and Comparison to Applicable WDNR Soil Criteria, Manowske Welding Property, Fond du Lac, Wisconsin.

Sample ID Sample Date		DC IND	DÇ NON-IND	GW Pathway	AGM-MW-1 (4-6)* 06/27/06	AGM-MW-2 (0-2)* 06/27/06	
PAHs (ug/kg)				u	00/21/00	00/2//00	06/27/06
Acenaphthene		60,000,000	900,000	38,000	<3.9	<3.1	10.0
Acenaphthylen	е	360,000	18,000	700	<3.8	<3.0	<3.6
Anthracene		300,000,000	5,000,000	3,000,000	<4.7		<3.5
Benzo(a)anthra	acene	3,900	88	17,000	<7.0	<3.7	<4.4
Benzo(a)pyren	е	390	9	48,000	<3.8	<5.5	<6.5
Benzo(b)fluora		3,900	88	360,000	<3.7	4.9 Q	<3.5
Benzo(ghi)pery	lene	39,000	1,800	6,800,000	<4.7	3.2 Q	<3.4
Benzo(k)fluorar		39,000	880	870,000	<4.0	3.8 Q	<4.4
Chrysene		390,000	8,800	37,000	<5.8	<3.2	<3.7
Dibenz(a,h)anti	hracene	390	9	38,000	<3.6	6.0 Q	<5.3
Fluoranthene		40,000,000	600,000	500,000		<2.8	<3.4
Fluorene		40,000,000	600,000	100,000	<3.8	3.9 Q	<3.5
Indeno(1,2,3-co	f)ovrene	3,900	88		<4.5	<3.5	<4.2
1-Methylnaphth		70,000,000	1,100,000	680,000	<3.3	<2.6	<3.1
2-Methylnaphth		40,000,000	600,000	23,000	<4.0	<3.1	<3.7
Naphthalene		110,000		20,000	<4.1	<3.2	<3.8
Phenanthrene		390,000	20,000	400	<5.3	<4.1	<4.9
Pyrene		30,000,000	18,000	1,800	<3.9	4.9 Q	<3.6
. jiono		30,000,000	500,000	8,700,000	<3.2	5.9 Q	<3.0
Metals (mg/kg)							
Arsenic	-	1.6	0.039		5-2-2-5-6	<0.97	
Barium					140	<0.87	410
Cadmium		510	8	_	0.42	1.9	140
Chromium		200	14		37	<0.052	0.32
ead		500	50		11	1.8	32
Mercury					0.034	1.0 Q	8.1
Selenium					<1.1	<0.0016	0.018
Silver						<0.84	<0.99
	Value exce	eds the DC IND R		10 est	<0.32	<0.25	<0.29
		eds the DC NON-I			-	ig/kg	Micrograms per kilogram.
		eds the Groundwa				ng/kg	Milligrams per kilogram.
	WDNR prov	oosed and NR 720	inductrici dicast	y RUL.		IA	Not analyzed.
	WDNR prov	need and NR 720	nuusulai uirect	contact KCLS.	F	RCL	Residual Contaminant Level.
		bosed and NR 720		rect contact RCLs.			
	Concentrof	oosed and NR 720	gioundwater par	nway RCLs.			
_		on between limit o		mit of quantitation.			

* SAMPLED FROM FILL SOILS

G:\Aproject\MREDCUMM\WI1138\FonduLac\TABLES\fondduclac_manowski_soil.xls

Page 8 of 9

: 1

Table Summary of PAH and Metal Soil Analytical Results and Comparison to Applicable WDNR Soil Criteria, Manowske Welding Property, Fond du Lac, Wisconsin.

Sample ID				AGM-MW-4 (2-4)4	AGM-MW-4 (4-6)	EX-M-1	EX-M-2
Sample Date	DC IND	DC NON-IND	GW Pathway	06/27/06	06/27/06	09/20/06	09/20/06
PAHs (ug/kg)							03/20/00
Acenaphthene	60,000,000	900,000	38,000	<3.6	<3.6	<4.3	< 4.1
Acenaphthylene	360,000	18,000	700	<3.5	<3.5	9.4	< 4.1 < 4.0
Anthracene	300,000,000	5,000,000	3,000,000	<4.3	<4.3	18	< 4.9
Benzo(a)anthracene	3,900	88	17,000	<6.4	<6.5	60	< 7.3
Benzo(a)pyrene	390	9	48,000	<3.5	<3.5	78	4.1
Benzo(b)fluoranthene		88	360,000	<3.4	<3.4	71	< 3.9
Benzo(ghi)perylene	39,000	1,800	6,800,000	<4.3	<4.3	61	< 3.9 < 4.9
Benzo(k)fluoranthene	e 39,000	880	870,000	<3.7	<3.7	88	< 4.9 < 4.2
Chrysene	390,000	8,800	37,000	<5.3	<5.3	77	< 4.2 < 6.0
Dibenz(a,h)anthracer		9	38,000	<3.3	* <3:4	15	
Fluoranthene	40,000,000	600,000	500,000	<3.5	<3.5	110	< 3.8
Fluorene	40,000,000	600,000	100,000	<4.1	<4.2	7.1	9.0
Indeno(1,2,3-cd)pyrei		88	680,000	<3.0	<3.1	54	< 4.7
1-Methylnaphthalene		1,100,000	23,000	150	<3.7	20	< 3.5
2-Methylnaphthalene		600,000	20,000	330	<3.8	26	7.8
Naphthalene	110,000	20,000	400	<4.8	<4.9	48	15
Phenanthrene	390,000	18,000	1,800	<3.6	<3.6	89	8.4
Pyrene	30,000,000	500,000	8,700,000	<3.0	<3.0	110	12 7.6
Metals (mg/kg)						110	
Arsenic	1.6	0.039					
Barium		0.039		24Q+14			26×5-02985
Cadmium	510			120	97	390	190
Chromium	200	8		0.33	0.42	0.91	0.37
_ead	500	14		27	25	14	34
Mercury		50	-	7.9	6.9	230	18
Selenium				0.015	0.013	0.12	0.065
Silver				<0.98	<0.99	<1.2	<1.1
and the function of the second s	exceeds the DC IND			<0.29	<0.29	<0.35	<0.33
Value exceeds the DC IND RCL. Value exceeds the DC NON-IND RCL.				μ	g/kg	Micrograms per kild	
				π	ng/kg	Milligrams per kilog	
and oncoold the Oroundwater (Gw) Faulway RUL.					IA	Not analyzed.	-
	WDNR proposed and NR 720 industrial direct contact RCLs. WDNR proposed and NR 720 non-industrial direct contact RCLs.				CL	Residual Contamina	antLevel
	c proposed and NR 7	20 non-industrial	direct contact RCL	S.			
-	R proposed and NR 7	20 groundwater p	athway RCLs.				
Conce	ntration between limi	t of detection and	limit of quantitation	1.			

.

a sampled from Fill Soils

.

G:\Aproject\MREDCUMM\WI1138\FonduLac\TABLES\fondduclac_manowski_soil.xls

Page 9 of 9

Table 3 Summary of Monitoring Well Groundwater Analytical Results, Manowske Welding Property, Fond du Lac, Wisconsin

Well ID	PAL	ES	AGM-MW-1	AGM-MW-2	AGM-MW-3	
Sample Date			8/22/2006	8/22/2006	8/22/2006	
PAHs (µg/L)				012212000	0/22/2000	
1-Methylnaphthalene	NE	NE	0.034 Q	0.043	0.013 Q	
2-Methylnaphthalene	NE	NE	0.058	0.06	0.028 Q	
Acenaphthene	ŃE	NE	0.013 Q	0.023 Q	0.028 Q 0.010 Q	
Acenaphthylene	NE	NE	< 0.0087	< 0.0086	0.010 Q 0.011 Q	
Anthracene	600	3,000	0.012 Q	<0.000	0.011 Q	
Benzo(a)anthracene	NE	NE	0.046 Q	<0.012		
Benzo(a)pyrene	0.02	0.2	0.072	<0.017	0.34	
Benzo(b)fluoranthene	0.02	0.2	0.079	<0.019		
Benzo(g,h,i)perylene	NE.	NE	0.064 Q	<0.017	0.41	
Benzo(k)fluoranthene	NE	NE	0.066 Q	<0.02		
Chrysene	0.02	0.2	0.072	<0.02	0.41	
Dibenz(a,h)anthracene	NE	NE	<0.02	<0.02	Contraction of the second s	
Fluoranthene	80	400	0.18	<0.02		
Fluorene	80	400	<0.0097	<0.0096		
Indeno(1,2,3-cd)pyrene	NE	NE	0.050 Q	<0.0090	0.021 Q 0.33	
Naphthalene	8	40	0.14 B	0.29 B		
Phenanthrene	NE	NE	0.088	<0.012	0.046 B	
Pyrene	50	250	0.14	<0.012	0.59 D 0.93 D	

Concentration exceeds the WDNR NR 140 Preventive Action Limit.

Concentration exceeds the WDNR NR 140 Enforcement Standard.

В Concentration between limit of detection and the reporting limit.

D Concentration from diluted analysis.

µg/L Micrograms per liter.

NA Not analyzed.

ć.

NE Not established.

PAH Polynuclear Aromatic Hydrocarbons. Q

Concentration between limit of detection and limit of quantitation.

G:\Aproject\MREDCUMM\WI1138\FonduLac\TABLES\manowski_gwtr 2

TABLE 4 GROUNDWATER ANALYTICAL RESULTS MANOWSKE WELDING FOND DU LAC, WISCONSIN STS PROJECT NO. 200704507

	NR	140				
	Stan	dards	MW-MW-5			
Parameters	ES	PAL	11/13/07	4/8/08		
VOCs (µg/L)						
Benzene	5.0	<u>0.5</u>	<0.47	<0.24		
1,2-Dichloroethane	5.0	<u>0.5</u>	<0.45	<0.41		
1,1-Dichloroethane	850	<u>85</u>	21.6	17.6		
Ethylbenzene	700	<u>140</u>	<0.38	<0.35		
1,1,1-Trichloroethane	200	<u>40</u>	<0.5	0.41 "J"		
1,2,4-Trimethylbenzene ¹	480	<u>96</u>	<1.2	<0.51		
1,3,5-Trimethylbenzene ¹	480	<u>96</u>	<0.37	<0.23		
Xylenes, -m & -p ²	10,000	<u>1000</u>	<0.67	<1.0		
PAHs (μg/L)						
Benzo(a)anthracene			<0.015	<0.017		
Benzo(a)pyrene	0.2⁼	<u>0.02</u>	<0.015	<0.016		
Benzo(b)fluoranthene	0.2	<u>0.02</u>	<0.014	<0.01		
Benzo(ghi)perylene			<0.015	<0.02		
Benzo(k)fluoranthene			<0.023	<0.023		
Chrysene	0.2	<u>0.02</u>	<0.016	<0.02		
Dibenzo(a,h,)anthracene			<0.015	<0.012		
Fluroanthene	400	<u>80</u>	<0.015	<0.016		
Indeno(1,2,3-cd)pyrene			<0.014	<0.013		
Naphthalene	100	10	<0.015	<0.015		
Phenanthrene			<0.017	<0.017		
Pyrene	250	<u>50</u>	<0.015	<0.016		

Notes:

VOCs = Volatile Organic Compounds

PAHs = Polynuclear Aromatic Hydrocarbons

¹ Standards are for 1,2,4- and 1,3,5-Trimethylbenzene combined.

² Standards are for Total Xylenes (-m, -p and -o).

Bold value = NR 140 Enforcement Standard Exceedance

<u>Underline value</u> = NR 140 WAC Preventive Action Limit Exceedance

-- No NR 140 ES or PAL established.

TABLE 5 FIELD DATA - GROUNDWATER HOLY FAMILY / MANOWSKE STS PROJECT NO. 200704507

Well I.D.	Date	Ground Surface Elevation (Feet)	TPVC Elevation (Feet)	Screen Interval (Feet bgs)	Screen Interval Elevation (Feet)	Depth to Water below TPVC (Feet)	Groundwater Elevation (Feet)	Temp (C)	pH (Units)	Conductivity (umhos/cm)
MM-MW-5	11/13/07	750.45	750.13	5-15	745.45-735.45	7.65	742.48	14.1	7.43	1715
HF-MW-1	11/13/07 4/8/08 8/1/08	749.20	748.81	5-15	744.2-734.20	6.25 7.99 4.41 4.61	743.88 740.82 744.40 744.20	 15.4 19.4	 6.82 7.06	 2000
HF-MW-2	11/13/07 4/8/08 8/1/08	748.80	748.45	5-15	743.80-733.80	5.12 3.74 7.00	744.20 743.33 744.71 741.45	19.4 14.9 	7.16	2000 2770 3.81
HF-MW-3	11/13/07 4/8/08 8/1/08	749.32	748.94	5-15	744.32-734.32	4.39 3.90 3.68	744.55 745.04 745.26	14.6	7.39	1795 1763
HF-MW-4	11/13/07 4/8/08 8/1/08	749.38	748.98	5-15	744.38-733.88	4.67 4.20 4.05	744.31 744.78 744.93	14.7	7.19 7.06	2110 2.51
HF-MW-5	11/14/07 4/8/08 8/1/08	748.59	748.42	5-15	743.59-733.59	14.15 3.70 2.24	734.27 744.72 746.18	12.8	7.22 7.97	3.40 m/s 4.97
GP-28	11/14/07					10.74				
GP-29	11/14/07					7.41				
GP-30	11/14/07		-			6.30				

Notes:

--= Not Sampled