Robert E. Lee & Associates, Inc.

Engineering, Surveying, Environmental Services

Green Bay Office 1250 Centennial Centre Boulevard Hobart, WI 54155-8995 920-662-9641 FAX 920-662-9141

June 9, 2014

Mr. James Brunnquell TPAL, LLC 1708 12th Avenue Grafton, WI 53024

RE: Indoor Air and Vapor Sampling Results for 1224 11th Avenue, Grafton, Wisconsin WDNR BRRTS #02-46-560212 \overrightarrow{r} \overrightarrow{r} \overrightarrow{r} \overrightarrow{r} \overrightarrow{r} \overrightarrow{r} \overrightarrow{r} \overrightarrow{r}

Dear Mr. Brunnquell:

This correspondence is to provide you with the results of the indoor air and sub-slab vapor sampling conducted on April 9, 2014 within the interior of your building located at 1124 11th Avenue, Grafton, Wisconsin. The sampling was conducted by Robert E. Lee & Associates, Inc., (REL) as required by the Wisconsin Department of Natural Resources (WDNR) for the on-going environmental investigation of a historic dry cleaning solvent release identified at former Quality Cleaners (the Site). Initial investigation results indicate that soil and groundwater at the Site are contaminated with dry cleaning solvents. Based on these findings, the responsible party will be taking actions to protect the public from potentially unhealthy exposures to these contaminants.

The purpose of the sampling was to determine whether dry cleaning related compound vapors from the subsurface contamination are migrating through soil and into the air (atmosphere) in the building. One 24-hour indoor air sample (IA-3) was collected from within the building and one sub-slab vapor sample (SSV-3) was collected from beneath the building floor via sampling devices installed in the floor. The samples were submitted to Pace Analytical Services, Inc., of Minneapolis, Minnesota for analysis of the following dry cleaning related compounds: cis-1,2-dichloroethlene (cis-1,2-DCE), trans-1,2-dichloroethene (trans-1,2-DCE), tetrachloroethene (PCE), trichloroethene (TCE), and vinyl chloride. A copy of the laboratory report is attached, and the results are summarized in Table 1.

Sub-Slab Vapor Results

Concentrations of PCE were detected in the sub-slab vapor sample collected from beneath the building's floor on this day; <u>however</u>, the concentrations are below the health-based Vapor Risk Screening Level established by the WDNR for halting exposures. The WDNR sub-slab Vapor Risk Screening Level (VRSL) for PCE is a health-based risk standard for long-term exposure and is a protective value that serves as a threshold of when sub-slab soil vapor concentrations may start to pose a risk for reaching and affecting indoor air quality.

Indoor Air Results

Concentrations of PCE were also detected in the indoor air of the building on this <u>day</u>; <u>however</u>, <u>the concentrations are below the Vapor Action Level established by the WDNR</u>. The WDNR Vapor Action Level (VAL) for PCE is a health-based risk standard for long-term exposure and is set at a concentration that is protective of human health and serves as a threshold above which exposure needs to be halted.

W:\5400\5446\5446-001\L060914a_VI results_1224 11th Ave.docx

June 9, 2014 Mr. James Brunnquell TPAL, LLC Page 2

Conclusions

The WDNR, Wisconsin Department of Health Services (WDHS), and the Ozaukee County Health Department are working together with the responsible party to protect the public from exposures to the dry cleaning related contamination at the Site.

Although PCE concentrations were not detected above health-based risk standards in the levels of PCE in the sub-slab vapor and indoor air samples from your building, we have been informed that the WDNR is requiring at a minimum one additional indoor air and sub-slab vapor sample be collected from/beneath your building during the winter months (i.e., January or February). You will be contacted in the future to schedule the additional sampling.

In addition, the other buildings near the Site may be tested during the site investigation to determine if there are impacts to other off-site properties. Once the site investigation activities are complete, the WDNR will require remediation of the contaminated soil and groundwater at the Site to reduce the potential for PCE vapors in the future.

Enclosed are publications provided by the WDNR and WDHS that provide further information on vapor intrusion at properties.

Please feel free to contact Mr. John Feeney of the WDNR (920-893-8523) with any questions or concerns regarding the sampling results or required future actions for the Site. You may also contact Nicole LaPlant of Robert E. Lee & Associates, Inc., (920-662-9641) regarding results of the sampling.

Please contact Ms. Liz Evans of the Wisconsin Department of Health Services at 608-266-3393 or Mr. Dan Ziegler of the Ozaukee County Public Health Department at 262-284-8170 with any questions regarding any health questions related to the PCE concentrations detected in your building.

Sincerely,

ROBERT E. LEE & ASSOCIATES, INC.

Viede A. Lallant

Nicole L. LaPlant Senior Project Geologist

NLL/BDM/LAR

ENC.

Brun D. Messine

Bruce D. Meissner, PG Environmental Services Manager

CC/ENC: Mr. Gerald Kuehl Mr. John Feeney, WDNR Ms. Liz Evans, WDHS Mr. Dan Ziegler, Ozaukee County Health Department

TABLE 1 SUB-SLAB VAPOR AND AIR ANALYTICAL RESULTS SUMMARY ADJACENT RESIDENTIAL/COMMERCIAL PROPERTY TO FORMER QUALITY CLEANERS, GRAFTON, WI

						Relevant VOCs	(µg/m³)	
Sample ID	Sample Location	Sample Type	Date Collected	PCE	TCE	Cis-1,2 DCE	Trans-1,2 DCE	Vinyl Chloride
Residential Sub	-Slab Vapor Risk Screening Level (VRS	L) µg/m ³		420	21		630	16
Residenital Indo	or Air Vapor Action Level (VAL) µg/m	3		42	2.1		63	1.6
SSV-3	1224 11th Avenue	Sub-slab		375	ND	ND	ND	ND
IA-3		Indoor air	4/9/2014	3.4	ND	ND	ND	ND
OA-2	Parking lot, east of building along east property boundary (upwind)	Outdoor air		1	ND	ND	ND	ND

<u>Kev:</u>

6.

<u>Kev:</u> --- = No screening level established ND = Not detected above laboratory detection limits μg/m3 = Micrograms per cubic meter PCE = Tetrachloroethene TCE = Trichloroethene Cis-1,2 DCE = Cis-1,2 Dichloroethene Trans-1,2 DCE = Trans-1,2 Dichloroethene 450 = Vapor Risk Screening Level (VRSL) exceeded

<u>Notes:</u> 1.) Sub-slab samples collected using Vapor Pin.

2.) The Vapor Risk Screening Level (VRSL) was calculated by multiplying the VAL by a dilution factor of 10 for residential buildings, in accordance with WDNR guidance.

Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

May 27, 2014

Nicole LaPlant Robert E. Lee & Associates 1250 Centennial Center Blvd. Hobart, WI 54155

RE: Project: S446-001 Former Quality Cleane Pace Project No.: 10263141

Dear Nicole LaPlant:

Enclosed are the analytical results for sample(s) received by the laboratory on April 11, 2014. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Carolynne That

Carolynne Trout carolynne.trout@pacelabs.com Project Manager

Enclosures

Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

CERTIFICATIONS

Project:S446-001 Former Quality CleanePace Project No.:10263141

Minnesota Certification IDs

1700 Elm Street SE Suite 200, Minneapolis, MN 55414 A2LA Certification #: 2926.01 Alabama Certification #40770 Alabama Certification #40770 Alaska Certification #: UST-078 Alaska Certification #MN00064 Arizona Certification #: AZ-0014 Arkansas Certification #: 88-0680 California Certification #: 01155CA Colorado Certification #Pace Connecticut Certification #: PH-0256 EPA Region 8 Certification #: 8TMS-L Florida/NELAP Certification #: E87605 Guam Certification #: Pace Georgia Certification #: 959 Idaho Certification #: MN00064 Hawaii Certification #MN00064 Illinois Certification #: 200011 Indiana Certification#C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167 Kentucky Dept of Envi. Protection - DW #90062 Kentucky Dept of Envi. Protection - WW #:90062 Louisiana DEQ Certification #: 3086 Louisiana DHH #: LA140001 Maine Certification #: 2013011 Maryland Certification #: 322 Michigan DEPH Certification #: 9909 Minnesota Certification #: 027-053-137

Mississippi Certification #: Pace Montana Certification #: MT0092 Nebraska Certification #: Pace New Jersey Certification #: MN-002 New Jersey Certification #: MN-002 New York Certification #: 11647 North Carolina Certification #: 530 North Carolina State Public Health #: 27700 North Dakota Certification #: R-036 Ohio EPA #: 4150 Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Oregon Certification #: MN300001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification Saipan (CNMI) #:MP0003 South Carolina #:74003001 Texas Certification #: T104704192 Tennessee Certification #: 02818 Utah Certification #: MN000642013-4 Virginia DGS Certification #: 251 Virginia/VELAP Certification #: Pace Washington Certification #: C486 Wisconsin Certification #: 999407970 West Virginia Certification #: 382 West Virginia TO-15 Approval West Virginia DHHR #:9952C

REPORT OF LABORATORY ANALYSIS

_

SAMPLE SUMMARY

Project:S446-001 Former Quality CleanePace Project No.:10263141

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10263141001	OA-2	Air	04/09/14 14:20	04/11/14 13:05
10263141002	IA-3	Air	04/09/14 15:10	04/11/14 13:05
10263141003	SSV-3	Air	04/09/14 16:15	04/11/14 13:05

Pace Analytical \degree www.pacelabs.com

\$

SAMPLE ANALYTE COUNT

Project:S446-001 Former Quality CleanePace Project No.:10263141

Lab ID	Sample ID	Method	Analysts	Analytes Reported
10263141001	OA-2	TO-15	DL1	5
10263141002	IA-3	TO-15	DL1	5
10263141003	SSV-3	TO-15	DL1	5

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

-

Vinyl chloride

ANALYTICAL RESULTS

Pace Project No.: 10263141									
Sample: OA-2	Lab ID: 10	263141001	Collected:	04/09/	14 14:20	Received: C	04/11/14 13:05	Matrix: Air	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Me	thod: TO-15							
cis-1,2-Dichloroethene	ND u	g/m3		1.2	1.44		04/29/14 21:1	5 156-59-2	
trans-1,2-Dichloroethene	ND u	g/m3		1.2	1.44		04/29/14 21:1	5 156-60-5	
Tetrachloroethene	1.0 u	g/m3		0.99	1.44		04/29/14 21:1	5 127-18-4	
Trichloroethene	ND u	g/m3		0.79	1.44		04/29/14 21:1	5 79-01-6	
Vinyl chloride	ND u	g/m3		0.37	1.44		04/29/14 21:1	5 75-01-4	
Sample: IA-3	Lab ID: 10	263141002	Collected:	04/09/	14 15:10	Received: 0	4/11/14 13:05	Matrix: Air	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Me	thod: TO-15							
cis-1,2-Dichloroethene	ND u	g/m3		1.2	1.49		04/29/14 21:3	8 156-59-2	
trans-1,2-Dichloroethene	ND u	g/m3		1.2	1.49		04/29/14 21:3	8 156-60-5	
Tetrachloroethene	3.4 u	g/m3		1.0	1.49		04/29/14 21:3	8 127-18-4	
Trichloroethene	ND ug	g/m3		0.82	1.49		04/29/14 21:3	8 79-01-6	
Vinyl chloride	ND u	g/m3		0.39	1.49		04/29/14 21:3	8 75-01-4	
Sample: SSV-3	Lab ID: 102	63141003	Collected:	04/09/1	14 16:15	Received: 04	4/11/14 13:05	Matrix: Air	
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Met	hod: TO-15							
cis-1,2-Dichloroethene	ND ug	j/m3		1.3	1.55		04/29/14 22:00	0 156-59-2	
trans-1,2-Dichloroethene	ND ug	j/m3		1.3	1.55		04/29/14 22:00	0 156-60-5	
Tetrachloroethene	375 ug	j/m3		1.1	1.55		04/29/14 22:00	0 127-18-4	E
Trichloroethene	ND ug	j/m3		0.85	1.55		04/29/14 22:00	0 79-01-6	

0.40 1.55

ND ug/m3

Project: S446-001 Former Quality Cleane

REPORT OF LABORATORY ANALYSIS

04/29/14 22:00 75-01-4

QUALITY CONTROL DATA

QC Batch: AIR/	20100	Analysis Me	ethod:	TO-15		······································	
QC Batch Method: TO-1	5	Analysis De	escription:	TO15 MSV A	IR Low Level		
Associated Lab Samples:	10263141001, 10263141002,	10263141003					
METHOD BLANK: 16674	88	Matrix	:: Air				
Associated Lab Samples:	10263141001, 10263141002,	10263141003					
		Blank	Reporting	l			
Parameter	Units	Result	Limit	Analyz	ed Qual	ifiers	
cis-1,2-Dichloroethene	ug/m3	ND	0.	.81 04/29/14	10:27		
Tetrachloroethene	ug/m3	ND	0.	.69 04/29/14	10:27		
trans-1,2-Dichloroethene	ug/m3	ND	0.	.81 04/29/14	10:27		
Trichloroethene	ug/m3	ND	0.	.55 04/29/14	10:27		
Vinyl chloride	ug/m3	ND	0.	.26 04/29/14	10:27		
LABORATORY CONTROL	SAMPLE: 1667489	·m					
		Spike	LCS	LCS	% Rec		
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers	
cis-1,2-Dichloroethene	ug/m3	40.3	35.1	87	71-135		
Tetrachloroethene	ug/m3	69	57.2	83	69-136		
	ug/m3	40.3	34.8	86	70-131		
trans-1,2-Dichloroethene	6	54.6	45.9	84	70-135		
trans-1,2-Dichloroethene Trichloroethene	ug/m3						
trans-1,2-Dichloroethene Trichloroethene Vinyl chloride	ug/m3 ug/m3	26	25.4	98	69-132		
trans-1,2-Dichloroethene Trichloroethene Vinyl chloride SAMPLE DUPLICATE: 16	ug/m3 ug/m3 567988	26	25.4	98	69-132		
trans-1,2-Dichloroethene Trichloroethene Vinyl chloride SAMPLE DUPLICATE: 16	ug/m3 ug/m3 567988	26	25.4 Dup	98	69-132 		
trans-1,2-Dichloroethene Trichloroethene Vinyl chloride SAMPLE DUPLICATE: 16 Parameter	ug/m3 ug/m3 567988 Units	26 10263437003 Result	25.4 Dup Result	98 RPD	69-132 Max RPD	Qualifiers	
trans-1,2-Dichloroethene Trichloroethene Vinyl chloride SAMPLE DUPLICATE: 16 Parameter cis-1,2-Dichloroethene	ug/m3 ug/m3 367988 Units ug/m3	26 10263437003 Result	25.4 Dup Result	98 	69-132 Max RPD	Qualifiers	
trans-1,2-Dichloroethene Trichloroethene Vinyl chloride SAMPLE DUPLICATE: 16 Parameter cis-1,2-Dichloroethene trans-1,2-Dichloroethene	ug/m3 ug/m3 567988 Units ug/m3 ug/m3	26 10263437003 Result	25.4 Dup Result	98 	69-132 Max RPD	Qualifiers	
trans-1,2-Dichloroethene Trichloroethene Vinyl chloride SAMPLE DUPLICATE: 16 Parameter cis-1,2-Dichloroethene trans-1,2-Dichloroethene Trichloroethene	ug/m3 ug/m3 567988 Units ug/m3 ug/m3 ug/m3 ug/m3	26 10263437003 Result 4.3	25.4 Dup Result	98 	69-132 Max RPD	Qualifiers	

QUALIFIERS

Project: S446-001 Former Quality Cleane Pace Project No.: 10263141

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PRL - Pace Reporting Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

E Analyte concentration exceeded the calibration range. The reported result is estimated.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:S446-001 Former Quality CleanePace Project No.:10263141

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10263141001	OA-2	TO-15	AIR/20100		
10263141002	IA-3	TO-15	AIR/20100		
10263141003	SSV-3	TO-15	AIR/20100		

⁷aceAnalytical[®] www.pacelabs.com

[DLb)171 AIR: CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

equired Client Information:	Required Project Inform	ation:		/ /	Invoice In Attention	formation:	<u>terre</u>	<u>. 19</u>							-				-l- 1	23	00		<u></u>	
doress:	IVILOIE C	LaPl	ant		Company	Name:	ill Lar	<u>lant</u>					. 1.070-070 (10) - 000 1.000 1.000 1.000						Pr	ogran	n :			
1250 Centennial Centre Blud Hole of WI 54155		i de eleza puelles ya est			Address:	12501	best	<u>t. Lee</u> viel	- f- AS	SOC R	ich	<u>=</u> /	Ing	<u> </u>			UST /olunt:	S ary Cle	uperfu an Up	nd i D	Emis	sions n	CI RCRA	ean Air Act Other
nail To; <u>Staplatt & plance com</u> hone: JFax;	Purchase Order No.: Project Name:			<u></u>	Pace Qu Pace Pro	ote Referer	nce: her/Sales Re	20.			<u></u>		*****			Loc	ation	of	toto			Rep ug/r	n ²	<u>nits</u> ng/m³ 2PMV
9 20-002-9044 equested Due Date/TAT:	Project Number:	quali	fyl	leance	Pace Pro	ofile #:		Can	ty m	2 71	251	a france				Sai	nping	l Dy S			14119197201	Oth	er	
'Section D. particulation of the state	S7.74 Valid Media Codès	0-00	<u>8</u>					Y				<u> </u>				Rep	ort Le		. <u></u> 777	m		$\frac{-}{77}$	1er	
AIR SAMPLE ID Sample IDs MUST BE UNIQUE	MEDIA CODE Tediar Bag TB I Liter Summa Can 1LC S Liter Summa Can 6LC Low Volume Puff LVP High Volume Puff HVP Other PM10	VEDIA CODE	PID Reading (Client on In ol	OMPOSITE STAR ND/GRAB				Canister Pressure (Initial Field - psig)	Canister Pressure (Final Field - psig)	St Ni	umm Can umbe	a er (Cont	Flov rol N	v umbe	r		0.3 00 0.4 (%)	TO A (Methano)	0-13 (29)			P	7 ace Lab ID
CA-2		ac		4-8-14	1426	4-9-14	1420	-27.5	-1.0	2	29	1	XO	3	20			1-1			X		DO	
ZA-3	er verser blem is des konstantel det beser i her service som	(Ic		4-8-14	1612	4-9-14	1510	-28	-3,5	2	10	6	10	2	66	,	•			\uparrow	X		27	
S(V-3)		Cit		4-9-14	1533	4-9-14	11.15	-20	-4	10	57	5	YA	9	51						X		00	ζ
5 5 6 2																							**************************************	
				·.'										+								10149730194 (million million)	Rysta - (a para paganangan ng tingkolo ka ang diapat panganan
						 				<u> </u> -		+		+	<u> </u>	-		+						nga ganadasan distri lahisin se ali sakeler
						1 																		9999 - 1999 - 1999 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 -
									<u></u>		<u>_</u>		. · 	_		-		-		<u> </u>				
Competis :	R			ED) BY			HDATE:								AIRION		D/AU				s	AMPL	E CO	IDITIONS
TOIS Shorthist (Only P	$\overline{\mathbb{Z}}$			TRE.)	4-10-24	121	26		n fa	AA	A.	Da.	CC CC	9/	114		1250	754	(I) A	-110	Ž	
,		222.2	24-0				1 2		.,	1	1			1			-		130	55		- <u></u>	λ/N	XIN N
-PCE, TCE, cis-1																							Ϋ́N	NV NY
trans-DCE, V	Land Carl		<u>i</u>	<u></u>		SAMPLE	RINAME	NDSIG	Andre												,	> {	N/X IIII	y y/N ooler Y/N

Fe	2 ace Analytical*	Documer Air Sample Condit Docume	it Name: ion Upon Rec int No.:	eipt	Document Reviseu: 200 Page 1 of 1 Issuing Authority Pace Minnesota Quality	
Air Sample Condition (Upon Receipt	Client Name: Robert E L	lee Gassociate	Project #:	MO	+:102631	
Courier: 2	Fed Ex UPS Commercial Pace	USPS CC	lient	10263	3141	
Custody Seal on Cooler/	Box Present? Yes	No Seals Ir	ntact?	Yes	Optional: Proj. Due Date:	Proj. Name:
Packing Material:	ubble Wrap 🔲 Bubble I	Bags Foam No	one	Other:	Tem	p Blank rec: Yes No
Temp. (TO17 and TO13 sam	ples only) (°C):	Corrected Temp (°C):	1	Thermom, Use	d: B888A912167504 B888A9132521491	72337080 80512447
ype of ice Received	Blue Wet None		L	ate of mitials	or reason examining contents.	
	- 7-				Comments:	
Chain of Custody Present	t?	ZYes □No		1.		
Chain of Custody Filled C)ut?	Yes No		2.		
Chain of Custody Relinqu	ished?	Yes No	□n/A	3.		
Sampler Name and/or Sig	gnature on COC?	ZYes No		4,		
Samples Arrived within H	lold Time?	Yes No		5.		-
Short Hold Time Analysis	s (<72 hr)?	Yes No		6.		
Rush Turn Around Time	Requested?	Yes No	□n/a	7.		
Sufficient Volume?		ZYes ☐No	□n/a	8.		
Correct Containers Used	?	Yes No	□n/A	9.		
-Pace Containers Used	1?	Yes No	□n/A			
-Pace Containers Used Containers Intact?	!? 	 ☐Yes □No		10.		
-Pace Containers Used Containers Intact? Media: んつて とつ	<u>م</u>	Yes No		<u>10.</u> 11.		
-Pace Containers Used Containers Intact? Media: ひて とむ Sample Labels Match COO	۱? ۲? ۲?	Yes No Ves No Ves Do Ves Do		10. 11. 12. CJC	Says 6A-2 car	tay reads OA.
-Pace Containers Used Containers Intact? Media: Sample Labels Match COO Samples Received:	۱? <u>م</u> <u>۲</u>	Ves No Ves No VYes DNo		10. 11. 12. たいて	Says 0A-2 car	tuy reads OA-
-Pace Containers Used Containers Intact? Media: ۵٦٢ ۲۹ Sample Labels Match COo Samples Received: Can	۱? <u>۲</u> c? isters	Yes No Yes No Yes Do Flow		10. 11. 12. Coc	59125 0A-2 ζ~ η Stand	Alone G
-Pace Containers Used Containers Intact? Media: Can Containers Intact? Media: Can Containers Intact? Sample Labels Match COntainers Samples Received: Can Can Can	i? C? isters Can ID Can ID	Ves No Ves No Ves Do Flow Sample Number	□N/A □N/A □N/A Controllers	10. 11. 12. たいて Can ID	Says OA-2 car Stand Sample Number	Alone G Can ID
-Pace Containers Used Containers Intact? Media: 07 CQ Sample Labels Match COO Samples Received: Can Sample Number	1? C? isters Can ID 2.39 (Flow	□N/A □N/A □N/A Controllers	10. 11. 12. Coc Can ID 32.2	SGYS OA-2 Car Stand Sample Number	Alone G
-Pace Containers Used Containers Intact? Media: 07 CQ Sample Labels Match COO Samples Received: Can Sample Number OA - 2 IA 3	1? <u>C</u> ? isters <u>Can ID</u> <u>2 3 9 (</u> <u>2 (D 6</u>)	Ves No	□N/A □N/A □N/A Controllers ○ ○	10. 11. 12. Coc Can ID 32. 26.6	Say S OA - 2 Car Stand Sample Number	Alone G
-Pace Containers Used Containers Intact? Media: 07 CQ Sample Labels Match COO Samples Received: Can Sample Number OA - 2 IA 3 CSU - 3	1? C? isters Can ID 2 3 9 1 2 1 0 6 1 5 7 5	Ves No	□N/A □N/A Controllers ○ ○ ○ ○	10. 11. 12. Cuc Can ID 32.0 266 451	Says OA-2 can Stand Sample Number	Alone G Can ID
-Pace Containers Used Containers Intact? Media: <u>A</u> ?C CA Sample Labels Match COO Samples Received: Can Sample Number OA - 2 I.A.3 	1? C? isters Can ID 2 39 (2 10 6 1 5 7 5	Ves No	□N/A □N/A Controllers 0	$10.$ $11.$ $12. Coc$ Can ID $32 \Rightarrow$ 266 451	Says OA-2 car Stand Sample Number	Alone G
-Pace Containers Used Containers Intact? Media: 07 Ca Sample Labels Match COO Samples Received: Can Sample Number OA - 2 TA 3 SSU - 3	1? C? isters Can ID 2 39 (2 1 0 6 1 5 7 5	Ves No Ves No Ves No Flow Sample Number		10. 11. 12. $C \cup C$ Can ID 32. 26.6 $q \leq l$	Says 6A-2 car Stand Sample Number	Alone G Can ID
-Pace Containers Used Containers Intact? Media: <u>A</u> ?C CA Sample Labels Match COO Samples Received: Can Sample Number OA - 2 IA 3 SSU - 3	1?	Flow	□N/A □N/A □N/A Controllers © © 0	10. 11. 12. CJC Can ID 32.0 266 951	Says OA-2 con Stand Sample Number	Alone G
-Pace Containers Used Containers Intact? Media: Q?C CQ Sample Labels Match COO Samples Received: Can Sample Number OA - 2 I A 3 SSU - 3	1? C? isters Can ID 2 39 (2 (D 6 1 5 7 5	Ves No	□N/A □N/A □N/A Controllers □ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	10. 11. 12. $C \cup C$ Can ID 3 $2 =$ 2 $G G$ $q \leq l$	Says on -2 can Stand Sample Number	Alone G Can ID
-Pace Containers Used Containers Intact? Media: Can Sample Labels Match COO Samples Received: Can Sample Number OA - 2 IA 3 SSU - 3	1? 	Yes No Yes No Yes No Yes No Flow Sample Number		$10.$ $11.$ $12. Coc$ Can ID $32 \Rightarrow$ $2Ce G$ 951	Says on -2 can Stand Sample Number	Alone G Can ID
-Pace Containers Used Containers Intact? Media: ATC CA Sample Labels Match COO Samples Received: Can Sample Number OA - 2 IA 3 SSU - 3	1? <u>C</u> ? isters <u>Can ID</u> <u>7.391</u> <u>2.106</u> <u>1.575</u>	Yes No Yes No Yes No Yes No Flow Sample Number		10. 11. 12. $C \cup C$ Can ID 32. 2 $C \cup C$ G G G G G G G G	Says 6A-2 car Stand Sample Number	Alone G Can ID
-Pace Containers Used Containers Intact? Media: <u>A</u> ?(CA Sample Labels Match COO Samples Received: Can Sample Number OA - 2 I.A.3 CSU - 3 LIENT NOTIFICATION/RE Person Conta	1? 	Yes No Yes No Yes No Flow Sample Number		10. 11. 12. Coc Can ID 32. 26.6 45.1 ate/Time:	Says 6A-2 car Stand Sample Number	Alone G Can ID
-Pace Containers Used Containers Intact? Media: <u>A</u> C <u>C</u> A Sample Labels Match COO Samples Received: Can Sample Number OA - 2 I A 3 <u>COMMENTIFICATION/RE</u> Person Conta Comments/Resolution	1?	Ves No	□N/A □N/A □N/A Controllers □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	10. 11. 12. CSC Can ID 3 2 = 2 G G 4 5 1 ate/Time:	SAYS OA-2 Car Stand Sample Number	Alone G Can ID Yes No
-Pace Containers Used Containers Intact? Media: <u>A</u> ?(CA Sample Labels Match COO Samples Received: Can Sample Number OA - 2 I.A.3 	1?	Ves No	□N/A □N/A □N/A Controllers □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	10. 11. 12. C⊃C Can ID 32.⇒ 266 457 	Say S OA - 2 Car Stand Sample Number	Alone G Can ID Yes No
-Pace Containers Used Containers Intact? Media: Sample Labels Match COO Samples Received: Can Sample Number OA - 2 I A 3 SSU - 3 LIENT NOTIFICATION/RE Person Conta Comments/Resolu	1?	Yes No Yes No Yes No Yes No Flow Sample Number		10. 11. 12. CJC Can ID 32. 26.6 95.1 ate/Time:	Says 6A-2 car Stand Sample Number	Alone G Can ID Yes No

CHEMICAL FACT SHEET

TETRACHLOROETHYLENE (PCE)

WHAT IS TETRACHLOROETHYLENE?

Tetrachloroethylene (PCE) is a nonflammable, liquid solvent widely used in dry cleaning, wood processing, fabric manufacturing, and metal degreasing. In homes, it may be found in suede protectors, paint removers, furniture stripper, water repellents, silicone lubricants, spot removers, glues, and wood cleaners. PCE evaporates slowly at room temperature and has a sweet, ether-like odor.

When PCE is improperly disposed of or spilled, most of it will evaporate into the air. The rest will seep into the soil. It may mix with ground water and contaminate water supplies.

HOW ARE PEOPLE EXPOSED TO TETRACHLOROETHYLENE?

People are most often exposed to PCE when they use it in their work, when cleaning or doing hobbies.

Breathing: PCE evaporates into the air. People are commonly exposed to PCE by breathing air containing its vapors. PCE can contaminate home air when people use cleaning solvents or other products. Exposure can also occur when using contaminated water to shower, do laundry, or perform other household chores.

Drinking/Eating: People can be exposed when using contaminated water for drinking and preparing food.

Touching: Small amounts of PCE can pass through the skin when people handle the chemical, contaminated soil, or bathe in contaminated water.

DO STANDARDS EXIST FOR REGULATING TETRACHLOROETHYLENE?

Water: The state and federal drinking water standards for PCE are both set at 5 parts per billion (ppb). We suggest you stop drinking water containing more than 5 ppb. If levels of PCE are above 70 ppb, you may need to avoid washing, bathing, or using the water for other purposes. Contact your local public health agency for more information specific to your situation.

Air: No standards exist for regulating the amount of PCE allowed in the air of homes. However, the Wisconsin Department of Natural Resources (DNR) has set a residential indoor air action level for PCE at 6 parts per billion by volume (ppbv). The action level is considered to be protective of public health. Breathing PCE for a lifetime at 6 ppbv is very unlikely to be harmful to people. If PCE concentrations in air are above the action level, we recommend taking an action to halt exposure.

Most people can smell PCE when the level reaches 1,000 ppbv. If you can smell the chemical, the level is too high to be safe.

The Wisconsin Department of Natural Resources regulates the amount of PCE that can be released into outdoor ambient air by industries.

WILL EXPOSURE TO TETRACHLOROETHYLENE RESULT IN HARMFUL HEALTH EFFECTS?

Some workplace jobs and certain home projects can produce levels of PCE high enough to cause health effects. The following symptoms may occur immediately or shortly after exposure to high levels:

- Breathing air containing more than 100 ppm (or 100,000 ppbv) of PCE may cause dizziness, headache, sleepiness, confusion, nausea and difficulty speaking and walking.
- Direct contact with PCE can irritate skin or eyes.
- Swallowing PCE can cause mental confusion and possible loss of consciousness.

The following health effects can occur after several years of exposure to low levels of PCE:

Cancer: PCE is shown to cause liver cancer, kidney cancer, and leukemia in laboratory animals.

Reproductive Effects: When a mother becomes sick from exposure to PCE, the development of her fetus may also be affected. *Pregnant women should avoid contact with PCE.*

Organ Systems: Liver and kidney damage has been noticed among exposed workers.

In general, chemicals affect the same organ systems in all people who are exposed. A person's reaction depends on several things, including individual health, heredity, previous exposure to chemicals including medicines, and personal habits such as smoking or drinking. It's also important to consider the length of exposure to the chemical; the amount of chemical exposure; and whether the chemical was inhaled, touched, or eaten.

Health problems such as cardiovascular disease, nervous system disorders, liver disease, or alcohol abuse may increase sensitivity to the effects of PCE.

CAN A MEDICAL TEST DETERMINE EXPOSURE TO TETRACHLOROETHYLENE?

PCE can be detected in the breath, blood, and urine of people who have recently been exposed to high levels. These tests require special equipment that most doctors' offices do not have, and the test results may not predict what health effects will develop. Liver and kidney function tests may be helpful in determining damage from PCE exposure.

Seek medical advice if you have any symptoms that you think may be related to chemical exposure.

This fact sheet summarizes information about this chemical and is not a complete listing of all possible effects. It does not refer to work exposure or emergency situations.

For more information, contact:

- Your local health department: <u>http://www.dhs.wisconsin.gov/localhealth/</u>
- Division of Public Health, Bureau of Environmental and Occupational Heatth, (608) 266-1120: <u>http://www.dhs.wisconsin.gov/eh/</u>

Prepared by the Wisconsin Department of Health Services, Division of Public Health, with funds from the Agency for Toxic Substances and Disease Registry, Public Health Service, U.S. Department of Health and Human Services.

Vapor Intrusion What to Expect if Vapors from Soil and Groundwater Contamination Exist on My Property

PUB-RR-892

September 2012

Chemicals used in commercial activities – such as dry cleaning chemicals, chemical degreasers, and petroleum products such as gasoline – are sometimes spilled or leaked into soil and groundwater. These chemicals, known as volatile organic compounds (VOCs), often become gases or vapors, which can travel from contaminated groundwater and soil and enter buildings. This can happen in both commercial buildings and homes.

The process where vapors from contamination enter a building or other structure is called vapor intrusion.

How do vapors enter a building?

If you live near a commercial or industrial facility, or a landfill where VOCs have entered the soil and/or groundwater, there may be potential for VOCs to travel as vapors through the soil and enter your home or business through openings in the foundation – such as cracks or utility lines.

Why is vapor intrusion a concern?

Exposure to VOCs can cause an increased risk of adverse health effects. Whether or not a person experiences any health effects depends on several factors, including the amount and length of exposure, the toxicity of the chemical and the individual's sensitivity to the chemical.

When vapor intrusion is the result of environmental contamination, the Wisconsin Department of Natural Resources (DNR) requires steps be taken to reduce or eliminate exposures which could be harmful to human health.

What should I expect if vapor intrusion is a concern near my home or business?

For sites with VOC contamination, the DNR requires that the potential for vapor intrusion be investigated. If you live near a site being cleaned up, you may be contacted by the site owner or others working on the cleanup. Your cooperation and consent will be requested before any testing/sampling is conducted on your property. Ask the person contacting you any questions you have about the work being done, or contact the DNR for more information (see DNR contact information on page 3).

What testing may be done on my property?

After the owner of the property where contamination originated – called the "responsible party" – has conducted tests of soil gas or groundwater on his/her own property and determined that vapors may be moving away from their property, he or she will contact other property owners that may be affected by vapor intrusion.

The responsible party or their representative – usually an environmental consultant – may ask for permission to install soil gas probes or groundwater wells on your property. Soil gas probes and groundwater wells are installed outside buildings, in yards or rights-of-way, using special drilling equipment. They may also ask to install sub-slab vapor probes through the foundation of your home or business.

These probes and wells can help determine if vapors are moving through the soils and onto your property.

Wisconsin Department of Natural Resources P.O. Box 7921, Madison, WI 53707 dnr.wi.gov/topic/Brownfields

What are sub-slab samples and why are they needed?

Sub-slab samples are the most reliable method for determining whether vapors may be entering a structure due to vapor intrusion. Sub-slab samples are collected by drilling one or more small holes through the basement floor or foundation of a building.

A hand-held hammer drill is used to drill the hole and a small stainless steel or brass probe is placed in the hole, flush with the floor, and sealed with cement (see photo below).

When the cement is set, a vapor sample is collected using special equipment. The sub-slab probes may be sampled more than once. When the investigation of the vapor intrusion is complete, the sub-slab probes can be removed and the holes patched with cement.

A probe (1) is inserted into a 1-inch hole in the foundation (2) and held in place with cement (3) (photos courtesy DNR).

Why not take indoor air samples as an alternative to taking sub-slab samples?

Indoor air quality often changes from day to day. Therefore, sampling results one day may not reveal any contamination, while the next day's result will – this can create misleading assumptions about long-term indoor air quality.

In addition, indoor air quality may be affected by household and commercial products, including paints, glues, fuels, cleaners, cigarette smoke, aerosol sprays or new carpeting or furniture. These products can be a source of VOCs found in indoor air samples.

Furthermore, any outdoor air that enters indoors may also contain compounds which can alter test results. Therefore, indoor air testing will not necessarily confirm that the VOCs in the indoor air are entering a building from underground sources.

Sub-slab samples are more reliable indicators of potential vapor intrusion than indoor air samples, and are not affected by indoor chemical sources. If soil vapors are not detected in the sub-slab samples, additional sampling may not be necessary. If sub-slab vapors are detected at levels that may indicate vapors can seep into the indoor air, additional indoor air sampling should be performed to determine the levels at which those vapors are present inside the building.

When will I receive the sample results?

The laboratory results are usually available in two to four weeks. A responsible party is obligated to give you any sample results and explain whether additional steps need to be taken and what those steps will be.

What happens if a problem is found?

If vapor intrusion is detected in a home or business, the most common solution is to install systems often used to reduce naturally occurring radon.

These systems, called sub-slab depressurization systems (see Fig.1) or radon mitigation systems, remove soil vapors from below building foundations before they enter homes. Vapors are vented outside of the building where they disperse and are rendered harmless. These systems use minimal electricity and do not noticeably affect heating and cooling efficiency.

Sub-slab depressurization systems also prevent radon from entering homes – an added health benefit in radon-prone areas like southern Wisconsin.

Fig.1 – Depicting a sub-slab depressurization system

The cost of installing a system is usually paid by the responsible party.

How will I know if the vapors have been eliminated?

After a vapor mitigation system is installed, follow-up testing of indoor air usually takes place three to six months later. The systems are usually considered permanent fixtures of the building.

In cases where the sources of the vapors are completely eliminated, the systems should no longer be needed.

Where can I find more information?

More information about health and vapor-related issues can be found in the Vapor Intrusion fact sheet from the Department of Health Services (DHS) at: <u>www.dhs.wisconsin.gov/eh/air/fs/VI.htm</u>.

For other health related questions, please contact your local health department: www.dhs.wisconsin.gov/localhealth/.

For more DNR information, please visit the DNR's Remediation and Redevelopment (RR) Program Vapor Intrusion page at: <u>dnr.wi.gov/topic/Brownfields/Vapor.html</u>.

Additional information can be obtained through the DNR field office in your region. To find the correct office, visit the RR Program Staff Contacts page at: <u>dnr.wi.gov/topic/Brownfields/Contact.html</u>. Or call the RR Program at (608) 266-2111.

This document contains information about certain state statutes and administrative rules but does not necessarily include all of the details found in the statutes and rules. Readers should consult the actual language of the statutes and rules to answer specific questions.

The Wisconsin Department of Natural Resources provides equal opportunity in its employment, programs, services, and functions under an Affirmative Action Plan. If you have any questions, please write to Equal Opportunity Office, Department of Interior, Washington, D.C. 20240.

This publication is available in alternative format upon request. Please call 608-267-3543 for more information.

3

6/2/14 Quality C email FID# 24666470 BRATS # 0276560212

TABLE 1

SUB-SLAB VAPOR AND AIR ANALYTICAL RESULTS SUMMARY ADJACENT RESIDENTIAL/COMMERCIAL PROPERTY TO FORMER QUALITY CLEANERS, GRAFTON, WI

	<u> </u>	l'		Relevant VOCs (µg/m ³)							
Sample ID	Sample Location	Sample Type	Date Collected	PCE	TCE	Cis-1,2 DCE	Trans-1,2 DCE	Vinyl Chloride			
Residential Sub	-Slab Vapor Risk Screening Level (VR	SL) µg/m ³	5	420	21		630	16			
Residenital Indo	or Air Vapor Action Level (VAL) µg/r	n ³		42	2.1		63	1,6			
SSV-3		Sub-slab		375	ND	ND	ND	ND			
IA-3	1224 THIN Avenue	Indoor air	4/9/2014	3.4	ND	ND	ND	ND			
0A-2	Parking lot, east of building along east property boundary (upwind)	Outdoor air		1	ND	ND	ND	ND			

<u>Key:</u>

--- = No screening level established ND = Not detected above laboratory detection limits

- $\mu g/m3 = Micrograms per cubic meter PCE = Tetrachloroethene$
- TCE = Trichloroethene
- Cis-1,2 DCE = Cis-1,2 Dichloroethene
- Trans-1,2 DCE = Trans-1,2 Dichloroethene

respondent herold torn solow - Vapor Risk Screening Level (VRSL) exceeded

Notes:

1.) Sub-slab samples collected using Vapor Pin.

2.) The Vapor Risk Screening Level (VRSL) was calculated by multiplying the VAL by a dilution factor of 10 for residential buildings, in accordance with WDNR guidance,

Nancy? - Need 1 or 2 contrination samples? - Wait for those results or range out to other objacent properties?

TABLE 1 SUB-SLAB VAPOR AND AIR ANALYTICAL RESULTS SUMMARY FORMER QUALITY CLEANERS, 1228 11th AVENUE, GRAFTON, WI

						Relevant VOCs	(µg/m³)	
Sample ID	Sample Location	Sample Type	Date Collected	PCE	TCE	Cis-1,2 DCE	Trans-1,2 DCE	Vinyl Chloride
Non-Residential	Sub-Slab Vapor Risk Screening Level (VRSL) µg/m³	1,800	88		2,600	280	
Non-Residenital	Indoor Air Vapor Action Level (VAL) I	ug/m ³		180	8.8		260	28
SSV-1	Hallway entrance to two tenant spaces,	Sub-slab	1/16/2014	246,000	3,3	ND	ND	ND
IA-1	stylist.	Indoor air	1/16/2014	882	ND	ND	ND	ND
SSV-2	Near the location of the former dry	Sub-slab	1/16/2014	7,000,000	ND	ND	ND	ND
IA-2	cleaning machine (vicinity of Boring B1)	Indoor air	1/16/2014	865	ND	ND	ND	ND
OA-1	Southwest of Site building, across 11th Street (upwind)	Outdoor air	1/16/2014	1,5	ND	ND	ND	ND

Key:

14.5

4

 Key:

 --- = No screening level established

 ND = Not detected above laboratory detection limits

 µg/m3 = Micrograms per cubic meter

 PCE = Tetrachloroothene

 TCE = Trichloroothene

 Cis-1,2 DCE = Cis-1,2 Dichloroothene

 Trans-1,2 DCE = Trans-1,2 Dichloroothene

 138

 = Vapor Risk Screening Level (VRSL) exceeded

= Vapor Action Level (VAL) exceeded

<u>Notes:</u> 1,) Sub-slab samples collected using Vapor Pin.

2.) The Vapor Risk Screening Level (VRSL) was calculated by multiplying the VAL by a dilution factor of 10 for small commercial buildings, in accordance with WDNR guidance.

Digure 1= VapoodntkiustionpSample Locations

SSV-1 = Sub-\$12218 Satimpleenue

DISCLAMER: 5 JINDOOR Air Sample material contained App in with sater Propriet (or Brownider y misrepresentation of this information or its derivatives.

Ozaukee County 121 W Main St P.O. Box 994 Port Washington WI 53074 262-284-9411

SCALE: 1" =

Print Date:

2/3/2014