

December 6, 2023

Mr. John Sager Wisconsin Department of Natural Resources 1701 N 4th Street Superior, WI 54880

Re: Facility-Wide Continuing Obligations Package Update - 2023 Enbridge Energy Superior Terminal, Superior, WI WDNR BRRTS Activity #: 16-16-560657

Dear Mr. Sager:

On behalf of Enbridge Energy, Limited Partnership (Enbridge), the attached documents are provided as an update to the *Continuing Obligations (CO) Package* for the Enbridge Superior Terminal Facility-Wide BRRTS site. The Updated CO package contains the following new or updated documents:

Doc #	Document Description	Description of Change	# of pages	CO Pages to Replace
1	Table A.7.1	Updated to include Line 1 PVC closed BRRTS site 02-16- 589076.	1	Page 40
2	Figure C.4	Updated to show location and extent of residual contamination associated with Line 1 PVC closed BRRTS site 02-16-589076.	1	Page 323
3	Site Summary Manifold Corridor	Manifold Corridor is an existing facility-wide transfer site. The site summary was updated to include documentation associated with the 2023 Manifold 213 project that occurred within the previously defined corridor area. No evidence of a new release was encountered, and the extent of residual contamination remains the same. The site summary includes updates to the site investigation field sampling and screening logs, soil sample analytical results table, and site layout figure.	13	Pages 167-184

In accordance with NR 749, the WDNR fee for modification of a database site is \$1050. This CO database

modification request will include a WDNR database fee of \$1050 under separate cover. If you have any questions, please contact me at 218-529-7141 or lcarney@barr.com.

Sincerely,

Barr Engineering Company Inc.

June any

Lynette Carney

Enclosures: Updated Facility-Wide Continuing Obligations Documents (as listed above) cc: Karl Beaster, Enbridge Energy Nick Larabel, Enbridge Energy

Table A.7.1

Table A.7.1 Historical Closed Terminal Release Sites (Non- Facility Wide) Enbridge Superior Terminal Superior, Wisconsin

WDNR Site No.	Site Name	Facility ID	Report Date	Closed Date
1980 - 1989				
02-16-000512	LAKEHEAD PIPELINE - PUMP ST	NONE	January 11, 1988	December 1, 1997
1990 - 1999				
03-16-000168	LAKEHEAD PIPE LINE CO	816012450	April 20, 1990	September 18, 1996
02-16-000027	LAKEHEAD PIPELINE - PLM TOOL SHOP	816012450	July 13, 1992	November 8, 1999
02-16-178165	LAKEHEAD PIPELINE - TANK 21 CRUDE OIL	816010580	August 13, 1997	March 16, 1998
02-16-176579	LAKEHEAD PIPELINE CO L P	816010580	November 18, 1997	October 23, 2003
02-16-183249	LAKEHEAD PIPELINE - MANIFOLD 3	816010580	February 2, 1998	April 15, 2004
02-16-275090	ENBRIDGE SUPERIOR TERMINAL	816066130	January 19, 1999	January 11, 2010
02-16-220009	LAKEHEAD PIPELINE - CRUDE OIL TANK 22	816010580	May 12, 1999	October 23, 2003
02-16-275130	LAKEHEAD PIPELINE - TANK 23	816012450	August 6, 1999	February 21, 2007
02-16-275100	LAKEHEAD PIPELINE - TANK 24	816010580	August 30, 1999	February 2, 2004
	2000 - 201	0		
02-16-240727	LAKEHEAD PIPELINE - NEMADJI RIVER	NONE	January 4, 2000	November 11, 2003
02-16-279246	LAKEHEAD PIPELINE CO L P	816010580	July 27, 2000	August 16, 2005
02-16-338051	LAKEHEAD PIPELINE - BOOSTER PUMP #56	816010580	January 20, 2002	July 14, 2006
02-16-513788	ENBRIDGE ENERGY - NEMADJI RIVER	816010580	January 25, 2003	March 24, 2010
02-16-552700	ENBRIDGE ENERGY - TANK 9 PRESSURE LINE	816010580	October 1, 2008	November 18, 2008
02-16-556786	ENBRIDGE ENERGY - TANK 22	816010580	October 9, 2009	September 19, 2011
	2010 - 201	9		
02-16-558329	ENBRIDGE ENERGY - TANK 12	816010580	August 18, 2011	December 3, 2012
02-16-558649	ENBRIDGE ENERGY - LINE 14 BOOSTER PUMP	816010580	September 25, 2011	December 27, 2012
02-16-558989	ENBRIDGE ENERGY - TANK 23	816010580	May 31, 2012	November 18, 2013
02-16-558990	ENBRIDGE ENERGY - TANK 19	816010580	May 31, 2012	September 4, 2012
02-16-558992	ENBRIDGE ENERGY - TANK 20 VALVE	816010580	May 31, 2012	September 4, 2012
02-16-558988	ENBRIDGE ENERGY - OFFICE EXCAVATION	816010580	June 4, 2012	September 4, 2012
02-16-558987	ENBRIDGE ENERGY - TANK 9	816010580	July 2, 2012	September 4, 2012
02-16-560841	Enbridge Energy - Line 5 Pig Trap	816010580	April 22, 2013	September 3, 2013
02-16-561635	Valve 2515-2605	816010580	January 2, 2014	January 29, 2014
02-16-560716	Enbridge Energy - Tank 8	816010580	July 18, 2013	January 28, 2014
02-16-561635	ENBRIDGE ENERGY - VLAVE 2515 & 2605 MAINT EX	816010580	January 2, 2014	January 29, 2014
02-16-563708	ENBRIDGE SUPERIOR TERMINAL - TIMBER PILINGS	816010580	May 20, 2015	November 17, 2015
02-16-577548	ENBRIDGE SUPERIOR TERMINAL - LINE 5 VALVE	816010580	July 7, 2016	September 1, 2016
02-16-579606	ENBRIDGE SUPERIOR - TANK 12 STEP	816010580	June 19, 2017	November 16, 2017
02-16-579604	ENBRDIGE SUPERIOR - FIELD BOOSTER 23	816010580	June 19, 2017	November 16, 2017
02-16-579607	ENBRIDGE SUPERIOR - TANK 2 STEP	816010580	June 19, 2017	November 16, 2017
02-16-583048	TANK 9 BASIN	816010580	January 30, 2019	March 14, 2019
	2020 -			
02-16-586743	Tank 2 Ring Road	816010580	October 30, 2020	February 5, 2021
02-16-589076	Enbridge Terminal - Line 1 PCV	816010580	July 20, 2021	March 17, 2022

Figure C.4

Site Summary Manifold Corridor

Enbridge Superior Terminal Facility-Wide Continuing Obligations GIS Registry Update

SUBMITTAL DATE: November 22, 2023 (original submittal May 31, 2019)

RELEASE OR ACTIVITY NAME: ENBRIDGE TERMINAL – MANIFOLD CORRIDOR

ORIGINAL BRRTS / SRRTS # (if applicable): 02-16-577298 Manifold Corridor

Continuing Obligation (CO) or Closed BRRTS #'s within Manifold Corridor Area: 02-16-183249 Manifold 3 (CO); 02-16-513788 Nemadji River (CO); 02-16-558988 Office Excavation (closed); 02-16-577548 Line 5 Valve.

SITE INFORMATION				
Date of Discovery (if applicable)	NA	Date of Rediscovery (if applicable)	Multiple Dates, see below	
WDNR Notification/ Start Date	2/5/2014	WDNR Closure Date (if applicable)	3/10/2022	
Coordinates of	Lat: 46.688267	Coordinates of Current Activity (WTM91)	X: 362522.20809	
(decimal degrees)	Lon: -92.05814		Y: 692583.78245	
Enbridge Contact and Email	Karl Beaster <u>Karl.Beaster@enbridge.com</u>	Consultant Contact and Email	Ryan Erickson rerickson@barr.com	
Previous Report and Memorandum	<i>Enbridge Energy – Manifold 3 Continuing Obligations Package</i> , WDNR BRRTS on the Web document dated March 24, 2010 (BRRTS 0216183248).			
References (if applicable)	<i>Enbridge Energy – Nemadji River Continuing Obligations Package</i> , WDNR BRRTS on the Web document dated April 15, 2004 (BRRTS 0216513788).			
	<i>Superior Terminal Office Electrical Rack Excavation - Historical Crude Oil Impacts</i> , Barr Engineering Technical Memorandum, January 24, 2014 (BRRTS 0216558988).			
	<i>Superior Terminal Historical Contamination: Office Excavation Historical Impacts,</i> Barr Engineering Technical Memorandum, December 28, 2016 (BRRTS 0216558988).			
	<i>Superior Terminal Pipe Rack Associated Projects – Historical Crude Oil Impacts,</i> Barr Engineering Technical Memorandum, February 5, 2014 (BRRTS 0216557298).			
	<i>Superior Terminal Line 5 Valve Historical Contamination Response</i> , Barr Engineering Technical Memorandum, August 9, 2016 (BRRTS 0216577548).			
	<i>Superior Terminal Historical Contamination: Office Excavation Historical Impacts,</i> Barr Engineering Technical Memorandum, December 28, 2016 (BRRTS 0216558988).			

	<i>Superior Terminal Manifold Corridor Area Excavation</i> , Barr Engineering Technical Memorandum, February 19, 2019 (BRRTS 0216557298).
	<i>Enbridge Terminal – Manifold 213 Response</i> , Barr Engineering Technical Memorandum, September 19, 2023 (BRRTS 0216557298).
Release Description and Notification	 Memorandum, September 19, 2023 (BRRTS 0216557298). Soil and water with historical hydrocarbon impacts have been encountered within the Manifold Corridor Area (MCA) boundary in multiple locations (MCA Sites) during project excavation activities at the Enbridge Superior Terminal (Terminal) (Figures 1 and 2). Historical releases or project excavations where historical impacts have been identified within or near the MCA boundary include: <i>LAKEHEAD PIPELINE - MANIFOLD 3 (Closed-Continuing Obligation; 0216183249)</i>: Crude release of unidentified volume reported on February 2, 1998. The site is located in the south corner of the MCA. <i>ENBRIDGE ENERGY – NEMADJI RIVER (Closed-Continuing Obligation; 0216513788)</i>: A 4,500 bbl crude oil release on January 24, 2003. The release location is 250 feet west of the Manifold Corridor Area; however, product from the release migrated through stormwater ditches located along the west side of the MCA. <i>Enbridge Energy – OFFICE EXCAVATION (Closed; 0216558988</i>): historical
	 hydrocarbon impacts encountered in project excavations. Reported on June 4, 2012. The excavations are in the center of the MCA. Additional nearby historical impacts were encountered west of Manifold 223 and were reported to the Wisconsin Department of Natural Resources (WDNR) in 2016. <i>ENBRIDGE SUPERIOR TERMINAL – LINE 5 VALVE (Closed; 0216577548):</i> A Line 5, Valve 5-V-5531 crude oil release (< 1-gallon) was identified. Soil around the valve was excavated, the valve was repaired, and no residual impacts were identified in the final excavation. <i>Pipe Rack Project Sites (MCA Site; 0216577298)</i>: Historical hydrocarbon impacts were identified in five Pipe Rack-associated project excavations in 2012 and 2013 on the east half of the MCA. <i>Manifold Corridor Area Excavations (MCA Site; 0216577298)</i>: Historical hydrocarbon impacts identified in potholes and an excavation in 2018 in the west half of the MCA. <i>Manifold 213 Excavation (MCA Site)</i>: Historical hydrocarbon impacts identified in 2023 along the west side of the MCA.
	Based on the number of potential sources of historical hydrocarbon impacts and the concentration of Terminal infrastructure (i.e. preferential pathways and structural impediments), identifying a specific historical release source within the MCA is not practical.
	Hydrocarbon impacts observed in the MCA typically consist of excavation water with a hydrocarbon sheen or free-product and/or soil with evidence of hydrocarbon impacts (e.g. headspace reading > 10 ppm, hydrocarbon odor, hydrocarbon sheen or free-product, and/or discoloration). Conditions observed within the excavations vary by location and depth.
	The WDNR is aware of the historical impacts within the MCA and of the MCA Site excavation activity. Based on conditions described above, the WDNR

Enbridge Superior	Terminal Facility-Wide Continuing Obligations, GIS Registry Update - BRRTS#: 01-16-560657
Site Name:	ENBRIDGE TERMINAL – MANIFOLD CORRIDOR
Original BRRTS #:	02-16-577298
Date:	November 22, 2023
Page:	3

agreed (December 19, 2018) to establish the MCA Bureau for Remediation and Redevelopment Tracking System (BRRTS) # and its boundaries (Figure 2) to simplify the reporting of historical impacts encountered during project activities. The MCA BRRTS # was previously associated with the *Pipe Rack Project* excavations. This Update focuses on conditions encountered in the two MCA Sites.

	Response Action Summary
Date of Excavation, extent and soil disposal	The MCA Site projects described below: 1) had historical hydrocarbon impacts; 2) are located within the MCA boundary; and 3) have not been previously closed by the WDNR. The MCA Site excavation locations are shown on Figure 2:
	Pipe Rack Project (2012-2013):
	 LHB Investigation Borings (August/October 2012): Impacted soil identified by contractors at depth in potholes that were 2 feet wide by 10 feet deep. Water Valve Replacement Excavation (November 2012) (Table 1-Sheet 1): Impacted soil and water in an infrastructure excavation that was 8 feet wide by 8 feet long by 6 feet deep. Fire Hydrant Excavation (November 2012) (Table 1-Sheet 2): Impacted soil in an infrastructure excavation that was 10 feet wide by 8 feet long by 7 feet deep. Pipe Rack Footing Excavations (July 2013) (Table 1-Sheet 3): Impacted soil and water in three infrastructure construction excavations that were each 8 feet wide by 8 feet long by 8 feet long by 8 feet deep. Central Manifold Expansion Excavation (July-August 2013) (Table 1-Sheet 4): Impacted soil in a Manifold construction excavation that was 100 feet wide by 100 feet long by 6 feet deep.
	Manifold Corridor Area Excavations (2018-2023):
	 Western Potholes (November 2018) (Table 1-Sheet 5): Impacted water (free-product, sheen) in potholes advanced for the pipeline infrastructure supports. Free-product was recovered by Enbridge with a vacuum truck and was not observed in the borings after initial recovery activity. Road Excavation (November-December 2018) (Table 1-Sheets 6, 7, 8): Impacted soil and water in the eastern half of a pipeline construction project. The excavation was approximately 80 feet long by 40 feet wide by up to 12 feet deep. Manifold 213 Excavation (July 2023) (Table 1-Sheet 9): Impacted soil and water in the southeast half of the excavation. The excavation was approximately 60 feet long by 20 feet wide by up to 3 feet deep.
	Due to the presence of nearby Terminal infrastructure, additional excavation of residual impacts in the above locations was not feasible. Soil and excavation water with identified hydrocarbon impacts that were removed from the excavation were segregated for off-site disposal. Impacted soil was transported to the Terminal Soil Management Area (SMA) until off-site disposal could be

	coordinated. Impacted water removed from the excavation was containerized until off-site disposal could be coordinated. All excavations were backfilled with clean fill material or terminal infrastructure was constructed within them.
Groundwater Depth and Nearest Monitoring Well	Water was observed in some of the excavations between 2 and 6 feet below ground surface. The water table at the Superior Terminal is typically between 3 and 6 feet below ground surface (bgs) based on data from the Superior Terminal Groundwater Monitoring Program. The nearest monitoring wells are <i>MW-24</i> located 400 feet to the northeast and <i>MW-20</i> located 800 feet to the south (Figure 2).
Soil Field Screening Results Summary	Field screening soil samples were collected from impacted MCA Site excavations, where feasible. Sample collection was limited in some locations by excavation size, unsafe entry conditions, and the use of excavation/trench boxes. Field screening results are summarized below and site investigation logs are provided in Table 1.
	 LHB Investigation Borings (August/October 2012) (Figure 2): Soil field screening was not feasible due to the excavation method (hydrovac), the size of the potholes, and the estimated contamination depth (greater than 4 feet bgs). Water Valve Replacement Excavation (11/5, 11/15/2012) (Table 1-Sheet 1): Five direct contact zone soil samples were collected and had headspace readings between 0.6 ppm and 1.1 ppm and no other evidence you hydrocarbon impacts. Soil sample Office valve-S-2 was collected at 6 feet bgs and had a headspace reading of 150+ ppm and a petroleum odor and sheen. Fire Hydrant Excavation (November 5, 2012) (Table 1-Sheet 2): Seven field screening samples were collected from the excavation extents. Five of the samples were collected between 1 and 2 feet bgs and had headspace readings between 0.1 ppm and 1.2 ppm. Evidence of residual impacts was observed in two samples collected from the western corner of the excavation. S-6 was collected from 3 feet bgs and had a headspace of 15.8 ppm and no other evidence of impacts was identified. Pipe Rack Footing Excavations (July 9, 2013) (Table 1-Sheet 3): Field screening samples were identified in 3 of the 4 excavations from 4 to 6 feet bgs. Headspace readings in the impacted samples were between 21.9 and 199 ppm and a hydrocarbon odor and sheen was identified in those samples. Central Manifold Expansion Excavation (August 1, 2013) (Table 1-Sheet 4): 18 field screening soil samples were collected from the accessible final excavation extents and only sample R-15's (6 feet bgs) headspace reading of 26.8 ppm exceeded 10 ppm. No other evidence of hydrocarbon impacts was observed. Manifold Corridor Area Excavations (2018-2023): Western Pothole Impacts (November 2018) (Table 1-Sheet 5): Soil field
	 western rotrole impacts (November 2018) (Table 1-Sneet 5): Soll field screening was not feasible due to the excavation method (hydrovac),

	 groundwater depth, pothole diameter, and the estimated contamination depth (greater than 4 feet bgs). <i>Road Excavation</i> (<i>November-December 2018</i>) (<i>Table 1-Sheets 6, 7, 8</i>): Impacted soil and water in a pipeline construction project that was approximately 80 feet long by 40 feet wide by up to 12 feet deep. <i>Manifold 213 Excavation</i> (<i>July 2023</i>) (<i>Table 1-Sheet 9</i>): Four of eighteen field screening samples collected from the final southeastern excavation extents had headspace readings between 10.6 ppm and 360.4 ppm from 1.5 feet bgs and 3 feet bgs. A petroleum odor and sheen was identified in three of the samples.
Analytical Sampling Results Summary	Analytical soil samples were collected from impacted MCA Site excavations, where feasible. Soil samples were submitted to Pace Analytical for some or all of the following laboratory analyses: petroleum volatile organic compounds (PVOCs), diesel range organics (DRO), and polycyclic aromatic hydrocarbons (PAH). Detected analyte concentrations were compared to the WDNR Direct Contact (DC) and Groundwater Residual Contaminant Levels (RCLs) and WDNR RCL Determination Hazard Index value was calculated. Analytical sampling locations are shown on Figure 2 and in Table 1 and the results are summarized below. Table 2 summarizes the available PVOC, Naphthalene, DRO, and PAH RCL exceedances and shows the Hazard Index value.
	 LHB Investigation Borings (August/October 2012): No confirmation samples were collected from the pothole excavations. Water Valve Replacement Excavation (11/15/2012): Soil samples Office Valve-S-1 (1 foot bgs) and Office Valve-S-1 (6 feet bgs) were collected from the excavation and all analyte concentrations were below WDNR DC RCLs and Groundwater RCLs. Fire Hydrant Excavation (November 2012): No samples were collected from the fire hydrant excavation. Pipe Rack Footing Excavations (July 9, 2013): Soil samples 2013 Pipe Rack-S-1, 2013 Pipe Rack-S-1, and 2013 Pipe Rack-S-1 were collected from the three excavations with residual impacts. No analyte concentrations exceeded WDNR DC RCLs and only 2013 Pipe Rack-S-3 had analyte concentrations exceeding WDNR Groundwater RCLs. Central Manifold Expansion Excavation (August 1, 2013): Soil sample 2013 Pipe Rack-S-4 was collected from 3.5 feet bgs near the location of the identified residual impacts. Detected analyte concentrations were below WDNR DC RCLs and only exceeded the WDNR Groundwater RCL for Chrysene.
	Manifold Corridor Area Excavations (2018-2023):
	 Western Pothole Impacts (November 2018): No confirmation samples were collected from the MCA western potholes due to accessibility and the field screening results. Road Excavation (November-December 2018): No confirmation samples were collected from the MCA road excavation due to accessibility and the field screening results.

Enbridge Superior	Terminal Facility-Wide Continuing Obligations, GIS Registry Update - BRRTS#: 01-16-560657
Site Name:	ENBRIDGE TERMINAL – MANIFOLD CORRIDOR
Original BRRTS #:	02-16-577298
Date:	November 22, 2023
Page:	6

 Manifold 213 Excavation (July 2023): Soil sample MAN213-S-1 was
collected from 1.5 feet bgs near the location of the identified residual
impacts. Detected analyte concentrations were below WDNR DC RCLs and
only exceeded the WDNR Groundwater RCL for Naphthalene.

	Risk Assessment Discussion
Direct Contact Receptor	Subsurface residual hydrocarbon impacts are known to be present in the MCA based on field observations and previous investigations. The extents, depth, and magnitude of these impacts are unknown and difficult to delineate because of the presence of above and below ground pipeline infrastructure. In the Pipe Rack and Manifold Corridor MCA Site excavations described above, there is little to no direct contact risk based on field screening and analytical sampling results, the presence of clean backfill, and Enbridge employee awareness and safety requirements.
Surface Water Receptor	There does not appear to be a risk to surface water receptors from residual impacts based on field observations and assessment results, the site location, the depth of the identified residual impacts, and Terminal water management practices.
Groundwater Receptor	The nearest private water well receptor is located more than 2,000 feet to the west. Although soil analyte concentrations were detected above the Groundwater RCL, the groundwater pathway at the Superior Terminal is addressed on a facility-wide basis through the established hydrogeologic performance standard approved by the WDNR.
Vapor Receptor	 The Terminal Office building and several small pipeline operation buildings are located within the MCA boundary. Only the Terminal Office Building was defined as a potential vapor receptor in the <i>Facility-Wide SI/RAP</i> and <i>Addendum</i>. The other buildings are not considered vapor receptors based on construction and occupancy. Per the <i>Facility-Wide SI/RAP</i> and <i>Addendum</i> and vapor guidance in WDNR document <i>RR-800</i> (January 2018), it was determined that the risk of vapor intrusion into the Terminal Office Building was low based on the following observations from the <i>Office Excavation</i> (BRRTS #021655898) and the <i>MCA Pipe Rack: Water Valve Replacement Excavation</i>: Non-Aqueous Phase Liquids (NAPL; free-product) were not identified in excavations within 30 feet of the building, PVOC impacted soil within 5 feet of the building (<i>Office Excavation</i>) had field screening and analytical soil sampling results below the <i>NAPL Indicator</i> values (PR-800) and
	• The source of the impacts was likely from older, heavier end petroleum products that "are not likely to be a source of vapors" (RR-800).

Residual	Contamination and Facility-Wide Eligibility Discussion
Residual Contamination and Structural Impediments	Based on analytical sampling results, no residual soil contamination exceeding WDNR Direct Contact Zone RCL criteria has been identified in the MCA. Residual soil contamination exceeding the Groundwater RCL criteria remains in some of the project locations. Additional excavation of this material was not feasible due to the presence Terminal infrastructure. The MCA <i>area of potential residual hydrocarbon impacts</i> boundary was drawn based on: the location of historical releases, previously identified residual historical impacts, and the presence of below ground pipeline infrastructure (e.g. potential preferential pathways). All excavations were backfilled with clean fill or covered by Terminal infrastructure.
Response Action Approval and Continuing Obligations	There is no identified risk to direct contact, surface water, or vapor receptors associated with the residual contamination identified during projects in the MCA. The risk to groundwater from the residual contamination will be addressed through the facility-wide hydrogeologic performance standard established for the Superior Terminal.
	The WDNR will be notified about any identified change in environmental conditions in the MCA. As part of this hydrogeologic performance standard Enbridge will continue to monitor groundwater conditions of the site and, if evidence of contamination is identified, it will be reported to the WDNR and managed in accordance with the approved <i>Facility-Wide SI/RAP</i> and <i>Addendum</i> .
	Based on the <i>Facility-Wide SI/RAP</i> and <i>Addendum</i> site classification, the conditions that were encountered in the field, and the December 11, 2018 WDNR email communication, the pathway to closure for this site is to transfer it to the Superior Terminal Facility-Wide Site (BRRTS#: 02-16-560657) and no additional response, investigation, or reporting activities will be required.

Attachments:

Table 1	Site Investigation Field Sampling and Screening Logs
Table 2	Soil Analytical Data Summary
Figure 1	Site Location
Figure 2	Site Layout

Table ' Sheet	l 1 of 9 (F	Pipe Ra	ck Proje	ect)			10G
	Milenos	t or Eacil	itu Suoro	Sour Transford	Later 16	lub Reoler	rement Excavation Sampler: Deter
Equipme	nt used:	<u>PIN</u> -	ionizatio	n detector wit	h <u>10.6</u> eVI	amp	Background Headspace:ppm Calibration Time:
Sample N	iomencla	ature <i>(Loc</i>	cation - s	ample typ e - #	!):		Dis Jurila - Charlinila Caranta
Soil Samp	le Types: I	к = кетоv	ea Sampli	e ; S = Sidewali . T	Sampie ; B = Bo	Ittom Sample	; stockpile = stockpile sample
Sample	Depth	Time	Type	Color/ Discolor	Odor/Sheen	Reading	<i>utilities, boring locations, wells, natural features</i> 1 <i>inch/grid</i> = $\dot{4}$ FEET
Example.	4	<u>16.30</u>		Reddish brown	Petroleum/	275	k k k k k k k k k k k k k k k k k k k
<u>K-1</u>	3	1310 11/5	<u> </u>	Radich Brown	N IN		N N
5-Z	3	1317		NECTORY VI INCIVI	NIN	•8	
5-3	2	1314 11/1			NIN	.6	SIDEWALK
5-4	4	1316 11/5			N/N	4	
Office value- 5-1	1	1015-1/5			NIN	6	
S-Z	6	1030145	4	4	Retroleum/Y	×150	
							TERMINAL
				·			Coffice Klues-19
							5-3 5-4
							LUATER LINE STONE VALUE
							mound in stand stand on 5
							SIDEWALK 5-2 5-1

Table 1 Sheet 2 of 9 (Pipe Rack Project) Date: 117/2012 SITE INVESTIGATION FIELD SCREENING AND SAMPLING LOG Location: Milepost or Facility Superior lermin, 1 fire Hydraut Excavation Equipment used: <u>PID</u> -ionization detector with 10.6 eV lamp Back Sampler: REE Background Headspace: - ppm Calibration Time: -Sample Nomenclature (Location - sample type - #): Soil Sample Types: **R** = *Removed Sample* ; **S** = *Sidewall Sample* ; **B** = *Bottom Sample* ; **Stockpile** = *Stockpile Sample* Rute/ Headspace SITE SKETCH: north is up; excavation extents and depths, sample locations, structures, Soil Color/ Sample Depth Time Туре Reading utilities, boring locations, wells, natural features... **1** inch/grid = 3FEET ID (USCS) Discolor Odor/ Sheen (ppm) (ft) (military) Example. Petroleum/ Reddish brown <u>4</u> 16.30 CL <u>275</u> 1.5 Rainbow <u>R-1</u> R, 11/5 CL/GP Rei Ň .7 5-1 1030 11/5 N .4 5-2 CL 1035 5-3 145 .8 N i640 CL 11/5 1.2 5-4 N/ 1045 CL \$-3 5.5 11/7 N/-2 # CL 900 Discoluted Potroleum colut. Gray ish 肿 3 5-6 203 CL 905 5-5,6,7 ¥/7 15.8 N/-5-7 6 CL 910 LING Exceptation Bottom = WATERI 7'BGS PIPELINE 54 5-2 HYDRANT 5-1 Ċ \mathcal{O} C Õ ¢. Θ ROAD \sim S \mathcal{O} Ó υ

Table 1Sheet 3 of 9 (Pipe Rack Project)SITE INVESTIGATION FIELD SCREENING AND SAMPLING LOGLocation: Milepost or Facility $\longrightarrow perior for forminal f$

R-

R-

12-R-

R.

<u>R-</u> <u>R-</u>

5-

Analyters # 5-3

4

			Soil			Headspace	SITE SKETCH: northes are: excavation extents and depths sample locations structures
ple	Depth	Time	Туре	Color/	1	Reading	utilities boring locations wells natural features 1 inch /arid - 1 5
)	(ft)	(military)	(USCS)	Discolor	Odor/ Sheen	(ppm)	$\mathbf{T} = \{\mathcal{D} \in \mathcal{T} \}$
ole !	<u>4</u>	<u>16 30</u>	CL	Reddish brown	<u>Petroleum/</u> <u>Rainbow</u>	<u>275</u>	
1	5	1700	4	Red brown	none/none	2.0	5-1 5-2 1 62
2	5					2.1	
3	5					2.2	
4	6					2.7	
5	-4		V		\checkmark	2.2	12 1/2 1/2 1/3 /4/ Liza
6	Ч	1710	ĹL	Rec brown	nonelmone	4.4	3 8
7	6					2.7	
8	4					4.8	
1	4			V		2.2	
10	6			2. Scolored	Strong Petrolants	199	
4	4	V	1	Slightly distant	STILL OCOT for such	18.4	
2	.4'	1720	LL	Rez brown	nonelnone	4.2	
3	4'			Ciscolorez	Stuen	52.8	
4	6'			Stidely Cistation	\checkmark	46.7	T 1
2	4'			2. scolured	Stidny BENI Thinbur sluty	107.5	lank 9 Tank 5
1	6			V		119	busin
17	4'	V	V	Rec brown	nore home	3.8	
18	4'	1730	LL	Recbrown	more /mone	2.9	
14	4'			V	1	5.0	
20	4'			discolored	Stang Odor/ Sken	87.5	
<u>1</u>	4	V	\checkmark	SI.SLAIY dishur	5 (76+ 0201, 5134+ 3444	21.9	
	4	1800	CL	Stabily Lize.	Sisht olor/10		
2	4'	1905	<u>CL</u>	Biscolony	Sinn dury Stat		
31	- Lí I	1810	in l	Escolory	Strong ocor!	1	

Date: 7/9/13

Time: 845

Calibrati§ampler: ∠)& ≥

Table 1

Sheet 4 of 9 (Pipe Rack Project)

SITE INVESTIGATION FIELD SCREENING AND SAMPLING LOG

Equipment used: <u>Loto</u> -ionization detector with 10.6 eV lamp acon Background Headspace: - 1

Date: 8/1/ Sampler: (56-2 Calibration Time: 1045

ppm

Sample Nomenclature (Location - sample type - #): 2013 Pipe Rack -

Soil Sample Types: R = Removed Sample ; S = Sidewall Sample ; B = Bottom Sample ; Stockpile = Stockpile Sample

Samala			Soil			Headspace	SITE SK	FTCH: nc	rth is up; aveau	· · · · · · · · · · · · · · · · · · ·			
Jampie	Depth	Time	Туре	Color/		Reading	utilitios	horing l	excuv	ation extents and	depths, sample lo	cations, stru	ictures,
Example		(military)	(USCS)	Discolor	Odor/ Sheen	(ppm)		, boring i	ocations, wells,	natural features	1 inch/grid	= 2.5	FEET
R-1	4	<u>16.30</u>	<u>a</u>	Reddish brown	Petroleum/ Rainbow	275							
R-1	3	1200	LL	Red Brown	how	(2, 6)	1 N	<u>.</u>	0	ROAN	. 0	ç	
17-2	LZ	1205	44	Reibran	Ra.	0.0		ن :		ه ۲۰۰۰ ک			~
17-3	Z	1205	LL	Red Bravis	none	0,1			Struct			4	
R-4	3	1210	44	Ret trown	hour	02		1 =	5,00				
R-5	2	1210	LL	The & Brown	inome	01		4 -	5	(5-4).	1 2		
R-6	2	1215	LL.	Rechanne	how	\mathcal{D}_{i}		- E	14			ð	Qe
R-7	3	1217	CL	Red Brown	NIU	0.2			177		RU	Per	
R-8	2	1219	CL	Ked Brown	NIN	0.2		.3				∦	Plastic
R-9	3	1221	CL	Red Biewin	NIN	0.1		2 1					Culuer +
K-10	3	1222	CL	Reelbrown	NINI	DI				le real /	2	1 9	
<u>R-11</u>	2	1224	CL	Red Brown	NN	0.2			1		G	3	
R-th-	5	1245	CL	RealBrown	NIN	0.6		2		Concole		16	<u></u>
R-13	6	1247	ch.	Rad Brown	NIN	0,4			K.			48	Gamp P
R-14	6	1250	a	Real brown	NIN	0.5	· · · ·					105	
R-15	6	1252	CL	Redbrown	NFilm	26.8		1					
R-16	7'	1254	cu	Red from	None	0.5	3	12				1.17	h
R-17	7'	1256	CL	Red brown	None	0.6			11/2 /				2
								¥_]				1110	em o
5-4	3,5	1310	SL	Redbraun	None	0.4				And the second of the			μ,
							· · ·			EONCRIPTO ST			
									6	1 A D	gaion		
	·								CX.57.67	1 huito	12	1	
							(5-Y) a	no yhal.	samate	V			
							 	1	17				<u> </u>
		<u>*</u>					<u>بکا</u>	rcaval	100×700	leep			

heet 5 of 9 (Mantold Corridor Area Pipeline Project) TE INVESTIGATION FILE SCREENING AND SAMPLING LOG anifold Corridor Area Western Potholes quilement used: <u>DD</u> -ionization details with <u>DLaceViews</u> Stockpile - Stockpile Stockpile - Stockpile Stockpile - Stockpile Stockpile - St	Table 1				_			
The INVESTIGATION FIELD SCREENING AND SAMPLING LOS	Sheet 5 of 9 (M	lanifold	l Corrido	or Area	a Pipeline	Project)		
supprent used: <u>AD</u> _ionization detector with <u>DLa eviding</u> Background Headspace: <u>DPM</u> Date: <u>Hills</u> Sample: <u>Decide</u> <u>Sample</u> <u>Background</u> <u>Headspace</u> : <u>DPM</u> Date: <u>Hills</u> <u>Background</u> <u>Headspace</u> : <u>Decide</u> <u>Sample</u> <u>Background</u> <u>Backg</u>	Manifold Corrid	or Area	a Weste	ern Pot	tholes	AND SA	MIFLING	Page_of_
ample Komenchaure (Location - sample type - #). and Sample 7 S - Sidewald Sample : 5 -	Equipment used:	PID-	ionization	detecto	r with 10.6	eV lämp		Background Headspace: () ppm Date: 11/1/16
oli sample i yes, se a denoved sample i se solorino somple i solori somple i solorin	Sample Nomenclat	ture <i>(Loc</i>	ation - sa	mple typ	ne - #):	B - Dattaur	Complex Com	BARR
Sample ID Depth Time Top Color / meaning convert 199-54 4 6.820 a Beddeal.boom Beddeal.boom Beddeal.boom Beddeal.boom Beddeal.boom Market / Market / ZZ convert 199-54 4 6.820 a Beddeal.boom Beddeal.boom Beddeal.boom Beddeal.boom Beddeal.boom Beddeal.boom Market / ZZ convert 199-54 4 1.620 a Beddeal.boom Beddeal.boom Beddeal.boom Beddeal.boom Market / ZZ convert 199-54 1 1 1 1 1 1 convert 199-54 1 1 1 1 1 1 convert 199-54 1 1 1 1 1 1 convert 1 1 1 1 1 1 1 <td>Soil Sample Types: K</td> <td>= Kemov</td> <td>ea sample T</td> <td>; 5 = Side</td> <td>wan sample ,</td> <td>B = Bottom</td> <td>Headsnace</td> <td>stre sketch: north is up: excavation extents & depths, impacted areas, sample locations,</td>	Soil Sample Types: K	= Kemov	ea sample T	; 5 = Side	wan sample ,	B = Bottom	Headsnace	stre sketch: north is up: excavation extents & depths, impacted areas, sample locations,
emper 100001 ± 1620 a Bastabarren ZZZ Martin 222 Maine 223 Main	Sample ID	Depth	Time (military)	Type (USCS)	Color/ Discolor	Odor/ Sheen	Reading (ppm)	borings, wells, structures, utilities, natural features 1 inch/grid = FEET
North Manifold 213 Morth Minifold 213 Morth Minifold 20 Proceedings 21 x 21 x 10 Deep 21 x 21 x 10 Deep	Example: TK99-5-1	4	<u>16:30</u>	<u>CL</u>	Reddish brown	<u>Petroleum/</u> Rainbow	275	main Road
North Manifold 213 Month Manifold 213 Month Manifold loke Manifold 213 Month Manifold loke Manifold 213 Month Manifold loke Manifold 213 Dorings 21+21×10 Deep Site Contact- Kevin • borny holes Hild with Contaminated HSC • Hydroval, and dispace in SMA fontaminated Sking bins • bins • borny holes Sking bins	~							TR
Morrie Marini Marini Marini Marini Marini de 213 Morrie Marini Marini de 213 Morrie Marini de 213 Morrie Marini de 213 Pipe Donings 7: *2'x 10 Deep Site Contact: Xuuin • born holes filled with Contaminated HsC • Hydrovag ond dispase in SMA Contaminated Shing Bins Site Shing Bins (Morrie Marini de 213 • Deep • Deep	/							11 1 mar 614 212
Completed Completed 45' 53te Contact- Knuin borng hoko filled with Contaminated Hoc - Hydrovae ond dispose in som A Contaminated Shumy bins 5 th 5								North North Ala
US' Sitz Contact- Kevin Sitz			1n	61				DIPE
45° 145° Site Contact- X, win borng hoks filled with contaminated Hac orthorae, and dispase in SMA Contaminated Shuray bins Strains Contaminated Shuray bins Strains Contaminated Shuray bins			1	row	deted			borings
45' Site Contact- Kewin bonng hokes filled with contaminated HoC - Highovae, and dispase in Sin A- Contaminated Shing bins Shing bins Contaminated Shing bins Contaminated Shing bins Contaminated Shing bins Contaminated Shing bins			1	Lun				2' * 2' × 10' Deep
Site Contact- Kewin bonny hokos filid wifn contaminated HoC - Mydrovae and dispose in Some Contaminated Sturgy bins. State Rood - Mydrovae and dispose in Some Contaminated Sturgy bins.								
Sute Contact: Equin borng holes filled with Contaminated HoC - Hydrovae and dispose in SMA Contaminated Shiring bins - Hold - Hydrovae Shiring - Hydrovae Shi								45'
Side Road Side Road Side Road Side Road Side Road Side Road Side Road Side Si								Sitz Contact - Kaun
SDE Pood 					\backslash			with contaminated H
dispose in Sm4 Contaminated Sturge bins 200 30 30 30 30 30 30 30 30 30 30 30 30 3								and I good
								dispose in 3MA
								Dior Contominated Stan
						\		Ding.
en de la companya de						/	-	
								S S
(WOW 16								3
(imply								
								(forth

Table 1 Sheet 6 of 9 (Manifold Corridor Area Pipeline Project) 11/16/2018 SITE INVESTIGATION FIELD SCREENING AND SAMPLING LOG al Road Excavation Barr Personnel: MJP Was a GPS used to document the location of site features? YES or (NO) Identify the GPS unit: SITE SKETCH: north is up; DRAW (to scale) AND LABEL THE LOCATION OF THE FOLLOWING SITE FEATURES, if applicable: release location, maximum extent of release impacts, roads,

structures, pipelines and pipeline infrastucture, excavations, stockpiles, borings, wells, water tankers/frac tanks, roll-off containers, equipment staging areas, municipal utilities (electric, water, sewer...), culverts, natural features (water bodies, forested areas...), surface water drainage pathways/direction, other site features 1 inch/grid = FEET

Page_ of

BARR

Table 1

Sheet 7 of 9 (Manifold Corridor Area Pipeline Project)

SITE INVESTIGATION FIELD SCREENING AND SAMPLING LOG

Road Excavation

Equipment: Photoionization detector with 10.6 eV bulb

Page | of |

Table 1 Sheet 9 of 9 (Manifold Corridor Area Pipeline Project) SITE INVESTIGATION FIELD SCREENING AND SAMPLING LOG Road Excavation

Equipment used: Photo_-ionization detector with _/0.6_ eV lamp

Background Headspace: 0, 0 ppm

Sample Nomenclature (Location - sample type - #): MAN213 -

Soil Sample Types: R = Removed Sample ; S = Sidewall Sample ; B = Bottom Sample ; Stockpile = Stockpile Sample

	Sample ID	Depth (FT)	Date / Time (military)	Soil Type (USCS)	Color/ Discolor	Odor/ Sheen	Headspace Reading (ppm)	SITE SKETCH: no borings, wells, st	rth is up; excave ructures, utilitie	ition extents & d s, natural feature	epths, impacted o es 1 inch,	reas, sample loc /grid = 20 FE	cations, E T
[Example: A3-NE	<u>4</u>	<u>16:30</u>	<u>CL</u>	Reddish brown	<u>Petroleum/</u> Rainbow	275	Δ	B	L C	D	F	
B	1	3	04:55	38	reddigh brown	N/N	1.8		P	F	I The	ice 15	ler in
B	2	3	1	i	1	N/N	2.1	1			Excountion m	ear 11	- in
3	3	3				fusht/N petro/N	12.4 *	MAN213-8-1	10		rain bow she	n observed or	<i>i</i> write
B	4	3	1			NN	3.3	1934	C'	212	Surface through	rghost excava	tion
3	5	3	08:58	V	~	N/N	1.0	1	6				
5	6	2.5	09:02	SP		MIN	3.0	2	39.1	13			~
5	7	1.5	1	SP		N/N	1.5		C. P. 3	7 3	MAN213-B-	1	
5	4	1.5		CH.		NN	3.4		Not	A A	14		
5	4	1.5	1	37		NIN	10.6		MAN	213-S-2 🗮	4		
5	10	1.5	09:06	CH	4	mod / N	127,1	3 MAN213-5-	1	4	k 1's		
5	11	2.5	04:04	5P	sel brown	nod free product	360.4	MAN 213-5-	2	100	\$ 5.		
5	12	1	09:23	SP	reditish brown	NIN	1.3			19 20	MA STA	AN213-S-1	
5	13	1		1		NIN	1.5			10	1. 2		
5	14	١				NIN	1.1	4		13	14		
5	13	1	09 128	1	Ý	N/N	1.1					C	
5	16	2	09:43	SP	reddish brown	NIN	1.0				4		1
3	17	3	09:44	57	1	N/N	1.3			20	1		
5	14	2	09:45	SP		NN	1-6			11			
								5			00		
							1.1				1 4	6 40	
							1.1			11		1	- 4
1										1	- 8		
								* = ANALY	TICAL SAM	PLE			1
									1	S		10	10

Date: 7/14/2023 Sampler: J3P Calibration Time: 07:30

0

Table 2Soil Analytical Data SummaryPipe Rack and Manifold Corridor Area Associated ProjectsEnbridge Energy Terminal - Superior, WisconsinUnits, mg/kg (unless otherwise noted)

							1.2.4-	1,3.5-	Diesel	Chrysene	Naphthalene	WDNR RCL Determinations ¹		
		Parameter	Benzene	Ethyl benzene	Toluene	Xylene, total	Trimethyl benzene	Trimethyl benzene	Range Organics			Hazard Index	Cumulative Cancer Risk	Pass or Fail
	Effective Date	Exceedance Key												
Groundwater RCL, DF=2	12/01/2018	Bold	0.0051	1.57	1.1072	3.96	1.3787 (1)	1.3787 (1)		0.1442	0.6582			
Industrial Direct Contact RCL	12/01/2018	No Exceed	7.07	35.4	818	260	219	182		2110	24.1	1.0	1.00E-05	Pass
Location	Date	Depth (ft)												
Water Valve Replacement	Excavation													
Office Valve-S-1	11/15/2012	1	< 0.067	< 0.067	< 0.067	< 0.20	< 0.067	< 0.067	< 12.3			0.0003	1.1E-08	Pass
Office Valve-S-2	11/15/2012	6	< 0.078	< 0.078	< 0.078	< 0.23	0.56	0.22	222			0.0017	1.3E-08	Pass
Pipe Rack Footing Excave	ations													
2013 Pipe Rack-S-1	7/09/2013	4	< 0.071	< 0.071	< 0.071	< 0.21	< 0.071	< 0.071				0.0004	1.2E-08	Pass
2013 Pipe Rack-S-2	7/09/2013	4	< 0.15 *	0.22 *	< 0.15 *	1.2 *	0.85 *	0.58 *				0.0029	2.6E-08	Pass
2013 Pipe Rack-S-3	7/09/2013	4	< 0.63 *	< 0.63 *	< 0.63 *	3.4 *	5.4 *	3.5 *		0.291 *	0.251 *	0.0169	1.3E-06	Pass
Central Manifold Expansion	n Excavation													
2013 Pipe Rack-S-4	8/01/2013	3.5	< 0.065	< 0.065	< 0.065	< 0.20	< 0.065	< 0.065		0.126	< 0.0135	0.0004	6.5E-07	Pass
Manifold 213 Excavation														
MAN213-B-1	7/14/2023	3	< 0.0079 U	< 0.0198 U	0.0264 HJ	< 0.0334 U	< 0.0171 U	< 0.0165 U			0.0460 HJ	0.00009	3.6E-09	Pass
MAN213-S-1	7/14/2023	1.5	< 0.0086 U	< 0.0216 U	0.0376 HJ	0.161 J	0.127	0.0324 J			0.739 H	0.001	3.3E-08	Pass
MAN213-S-2	7/14/2023	2.5	< 0.0086 U	< 0.0214 U	0.674	< 0.0362 U	0.0751	< 0.0179 U			0.106 HJ	0.0002	6.3E-09	Pass

Table shows results for PVOC's, Naphthalene, DRO, and the one PAH analyte (Chrysene) that exceeded WDNR Groundwater RCLs.

¹WDNR RCL Determinations based on guidance criteria described in WDNR document PUB-RR-890. Hazard index is based a cumulative direct contact standard.

XYL - Based on Xylenes (m-, o-, p- combined).

* - Estimated value, QA/QC criteria not met.

H - Recommended sample preservation, extraction or analysis holding time was exceeded.

J - Estimated detected value. Either certain QC criteria were not met or the concentration is between the laboratory's detection and quantitation limits.

TR - Based on 1,2,4-Trimethylbenzene and

1,3,5-Trimethylbenzene combined.

U - The analyte was analyzed for, but was not detected.

