

Technical Memorandum

To: Karl Beaster, Enbridge Energy

From: Ryan Erickson

Subject: Enbridge Superior Terminal Line 61 PLM Tanker Truck Release

SERTS Spill ID: 20130925NO16-1 **Date:** November 20, 2013

Barr Project: 49161092

This memorandum summarizes the response actions completed by Barr Engineering (Barr) at the request of Enbridge Energy (Enbridge) following a crude oil release near the Line 61 pig launch building at the Enbridge Superior Terminal in Superior, Wisconsin (Figure 1).

Background

On September 25, 2013, Enbridge pipe line maintenance (PLM) personnel overfilled a tanker truck with crude oil from the pipeline system during routine pipeline maintenance activities. This resulted in an approximately 10 gallon crude oil release onto the ground surface near the southeast side of the Line 61 pig launch building (Photo 1; Figure 2). The crude oil migrated across the ground surface approximately 80 feet to the south where flow was stopped by an existing earthen berm structure (Figure 2).

Enbridge reported the release to the Wisconsin Department of Natural Resources (WDNR) and Spill Electronic Reporting and Tracking System (SERTS) #20130925NO16-1 was assigned. Enbridge requested that Barr assist with the initial site assessment, remedial excavation oversight and waste disposal coordination for the release event.

Release Response and Site Assessment

Enbridge personnel immediately responded to the release. Response efforts included using a vacuum truck to remove free product from the ground surface and excavating crude oil impacted gravel and clay soil (Photos 2 and 3; Figure 2; Attachment A). Crude oil recovered with the vacuum truck was injected back into the pipeline system. The crude oil impacted gravel and soil that was excavated was placed in a stockpile holding area within the terminal soil management area (SMA) (Figure 2) until offsite disposal could be coordinated.

Barr was onsite on September 25, 2013 shortly after the initial remedial actions had been completed to: field screen the excavation extents; determine whether residual crude oil impacts were still present; and to assist with the waste disposal process. Barr field screened gravel and soil from the excavation extent for the presence of organic vapors with a photoionization detector (PID), and was examined for indications of hydrocarbon impacts such as odor, discoloration, and sheen. The response action excavation continued until soil headspace values were documented to be below ten parts per million (ppm) and no other evidence of crude oil impacts (odor, staining, sheen) were observed (Attachment A).

Based on the field screening results, it was determined that the impacted gravel and soil had been successfully removed and no residual impacts remained above ten ppm, which is the established screening threshold defined in the draft WDNR negotiated agreement for the Superior Terminal. The final dimensions of the remedial excavation were approximately 80 feet long by 20-30 feet wide by 1-1.5 feet deep (Figure 2; Attachment A). The excavated crude oil impacted gravel and soil was temporarily stockpiled in the terminal SMA (Figure 2) until it could be approved for offsite disposal. The excavation was backfilled with clean material upon the completion of the field screening.

Waste Disposal Coordination

Two representative soil samples were collected from the contaminated stockpile by Barr on September 25, 2013 for waste characterization profiling. The samples were submitted to Legend Technical Services in St. Paul, Minnesota for laboratory analysis of diesel range organics (DRO) and benzene, toluene, ethylbenzene, and xylenes (BTEX). Upon receipt of the analytical results, the laboratory report was submitted to the Shamrock Landfill in Cloquet, Minnesota as part of the waste profile application (Attachment B) and the waste profile was accepted (profile #CL13-0052). A total of 88.16 tons of contaminated soil was hauled to the landfill on October 7th and 8th, 2013 (Attachment B).

Conclusions

The gravel and soil impacted during the Line 61 PLM tanker crude oil release was excavated and has been disposed of at an approved landfill facility. Residual soil impacts were not identified in the final excavation extents through field screening methods established in the draft WDNR negotiated agreement. Based on this information it appears that the response action sufficiently addressed the soil impacted during the release and that no further action is recommended.

Attachments:

Site Photos: 1-3

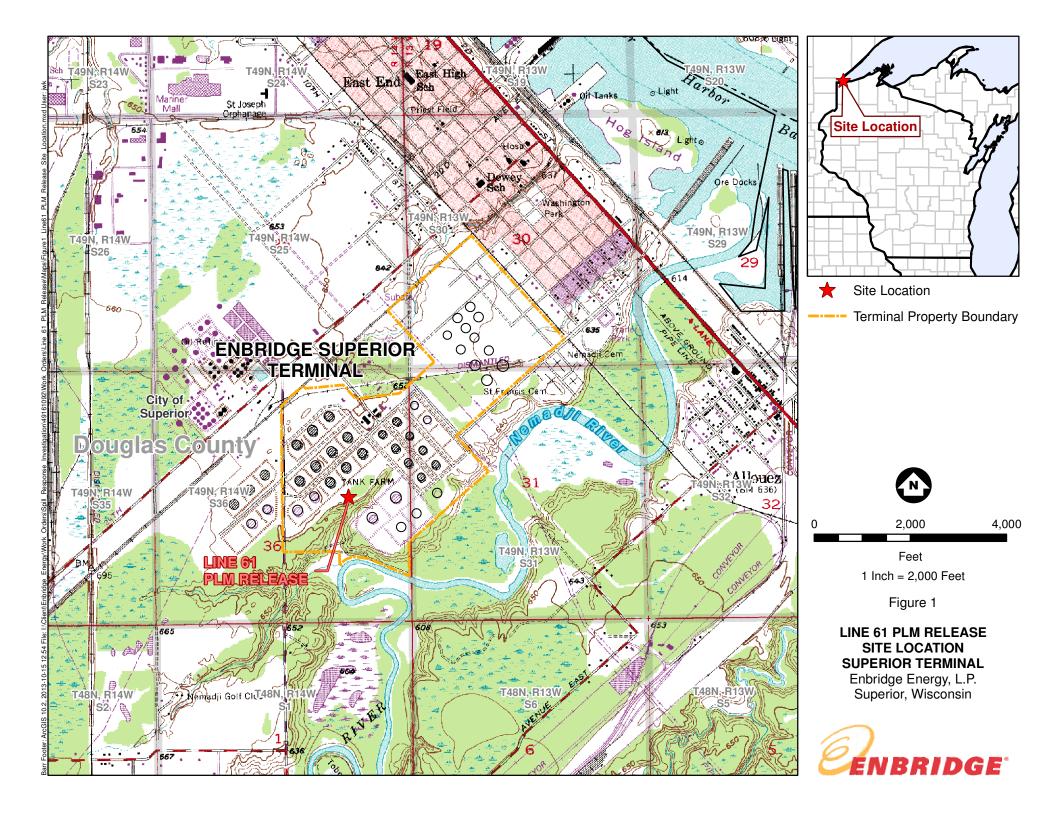
Figure 1: Site Location
Figure 2: Site Layout

Attachment A: Enbridge Site Investigation Field Sampling and Screening Log

Attachment B: Waste Disposal Documentation

SITE PHOTOS:

September 25, 2013 release response and remediation


Photo 1 Photo 2

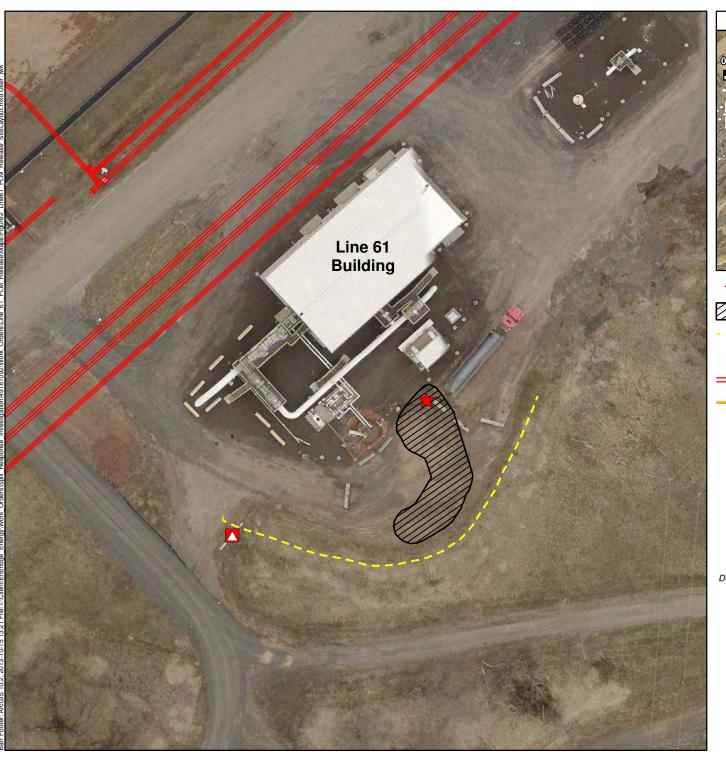

Photo 1: Crude oil on the ground surface after the Line 61 PLM tanker release (facing east). The black tanker from which the release occurred is visible on the left side of the photo. The white vacuum truck is removing crude oil from the ground surface.

Photo 2: Remedial excavation along the southwestern site berm (facing east).

Photo 3: Remedial excavation at the release location (facing north).

Approximate Release Location

Remedial Excavation Extent

- Berm

Davit

Pipeline Infrastructure

---- Terminal Property Boundary

Feet
1 Inch = 50 Feet
Douglas County Aerial Photography Circa April/May, 2013
Figure 2

LINE 61 PLM RELEASE SITE LAYOUT MAP SUPERIOR TERMINAL

Enbridge Energy, L.P. Superior, Wisconsin

Attachment A

Enbridge Site Investigation Field Sampling and Screening Log

ENBRID	GE SITE	INVESTIG/	ATION F	ELD SAMPLI	NG AND SCR	REENING LC	<u>)G</u>		Date: 9/25/15
Location	: Milepos	t or Facility	Line	GI/PLM	Tanker	Release			Sampler: REE
Equipme	nt used:_	PID -io	nization (detector with	10.6 eV lar	пр		Background Headspace: O. (_ppm	Calibration Time: 1000
				nple type - #) :					
Soil Samp	le Types: I	R = Removed	l Sample ;	S = Sidewall Sa	mple ; B = Bott	om Sample ; S	Stock	pile = Stockpile Sample	
			Soil			Headspace	ent	SITE SKETCH: north is up; excavation extents & depth	s, impacted areas, sample locations,
Sample	Depth	Time	Туре	Color/		Reading	Ext	borings, wells, structures, utilities, natural features	1 inch/grid = 20 FEET
ID	(FT)	(military)	(USCS)	Discolor	Odor/ Sheen	(ppm)	Fina		
Example	4	16:30	CI	Reddish brown	Petroleum/	275	γ		

			Soil			Headspace	tent	SITE SKETCH: north is up; excavation extents & depths, impacted areas, sample locations,
Sample	Depth	Time	Туре	Color/	0.1.751	Reading	inal Extent	borings, wells, structures, utilities, natural features 1 inch/grid = 20 FEET
ID Summala	(FT)	(military)	(USCS)	Discolor	Odor/ Sheen Petroleum/	(ppm)	ᄩ	
Example: R-1	4	<u>16:30</u>	<u>CL</u>	Reddish brown	Rainbow	<u>275</u>	<u>Y</u>	
	1	1245	CL+GP	Reddish Brown	N/N	9.9	H	LINE 61 INFRASTRUCTURE Remedial Execution
2	ŧ		1	1		2.9	ý	
3	1					6.2	v	40 ×
4	1					0.9	, y	The state of the s
5	1	•				3.2	<u> </u>	
6	1						Ÿ	3
						4.9	7_	
7_	1					0.9	У	
8	ł.					6.9	У	
9	1.5					0.8	Y	5 //
10	1.5					0.7	У	
Ш	1.5					0.3	y	6 6
12	1.5					0.7	y	
13	1.5	. •				0.6	У	
14	1.5					0.3	Ÿ	8 //
15	1.5	1720	7	7	—	1.3	v	
1,7	16T)	1350	¥	ν	<u> </u>	113	7	(t2)
							\vdash	(B) (D) //
	2							
								(3)
						,		
								pa - approximate release location
								# Approximate release location (#) > screening point
							$\vdash \vdash$	== Berm location
								- veint lacellant

Attachment B Waste Disposal Documentation

Waste Profile Sheet

P.O. Number	Customer 0	Code	SKB Representative CL									
	Information											
Generator Name: Enbr Partnership, LLC	idge Pipelines Limite	ed	Generator EPA	A ID Num	ber		SIC Code					
Generator Location: En Superior Terminal - I	bridge Cou	nty: 0	Generator Cor	itact: Ale	ex Smith							
release		F	Phone: 715-	398-47	95 Fa	x: 832-325-55	11					
Generator Mailing Addres Superior, WI 54880	s (if different: 1320 G	rand Ave,	Generator Email Address: alex.smith@enbridge.com									
Bill To Name & Address:		To#: E	Billing Contact	Alex	Smith							
Energy, 1100 Louisia 3300, Houston, TX 7	7002	,	Phone: 715-398-4795 Fax: 832-325-5511									
		I	Billing Email Address: alex.smith@enbridge.com									
Invoice Contact:	neration Information						_					
Waste Name: Crude C		ine 61 release			ed rate of waste generat		⊠ one	e time				
Generator Facility Operation	ions and/or Site History:	Enbridge Pipel	line Termina		is. 🔲 tons 🖂 cy [_ diditis	ј 🗀 уег	arty				
Describe the generating p	process or source of con	taminated soil/deb	oris and/or was	ste: Lin	e 61/PLM Release							
III. Waste Co	mposition and Constit	uents (list all kno	wn)				Actual Rang	ge				
	The second second	C. 10 10 25 0 1	Yes -				1100	ppm				
Crude oil impacted s	ioli .						100					
Physical state: Solid Liqu Sludge Gas		PH Ran No	2-4 3	>	point: 140°F 140°F to < 200°F 200°F	Color: Brown	Odor (de petrolei odor					
Waste stream propert		tions)			Does this waste con	tain absorbents?	Yes	⊠ No				
Does this waste stream hazardous waste, eith treatment residue?	n contain any D, F, K,	U or P listed as	☐ Yes	⊠ No	Is this waste lethal (I 7045.0131 Subp. 6)	y Minn. Rules	☐ Yes					
Does this waste stream		al	Yes	⊠ No	Is this waste recycla Is this waste explosi		☐ Yes ☐ Yes	⊠ No ⊠ No				
If yes, concentra Does this waste stream		s?	☐Yes	⊠ No	Is this waste explosi		Yes	⊠ No				
Does this waste conta			Yes	⊠ No	Is this putrescible wa		Yes	⊠ No				
Does this waste conta	in oxidizers?		Yes	⊠ No	Is this waste demolit		Yes	⊠ No				
Does this waste conta	in radioactive materia	1?	☐ Yes	⊠ No	Is this waste sewer s		∐ Yes	. ⊠ No				
Please attach any a	vailable information or	analytical test res	sults that hav	e previo	usly been performed or other agencies (i.e., N	this waste that s IPCA, USEPA)	ubstantiates	these				
VI. Shipping	Information	inde Mobo 3 una	uny inionia		other agenties (ner,							
Proper DOT Shipping Na	me (per CFR 172.101) v	vhere applicable										
Reportable Quantity	DOT Haza	ard Class	UN/NA Nun	nber		Packing Group						
Method of packaging:	drums (size)		Method of s		nd dump 🔲 Rail 🗆	Other (Specify)						
☐ Bulk Solids	boxes (size)			===		a and the age and the						
I hereby certify and warrand true and that the war and/or any rules adopted I understand that any ap of the waste. Therefore.	ste is nonhazardous as of by the Minnesota Pollut proval is no longer valid i if the composition of the al. I, on behalf of the gen	erator and myself t lefined in Title 42, ion Control Agency f there are any cha waste stream char	hat, to the bes Unites States y under Minne anges in the p nges or potent	Code Se sota Stat rocess ge ially char	ction 6903, Minnesota St ute Section 116.07. enerating the waste or the	atute Section 116. ere have been char senting the general	06, Subdivision nges in the con tor, will immed	n 13, nposition lately				
/III K	2	Alex Smith	r		Environmental	Analyst	10/1	/2013				
Signature Cin	(u)	Printed Nam			Title	Manyot	Date	-9				

88 Empire Drive St Paul, MN 55103 Tel: 651-642-1150 Fax: 651-642-1239

September 30, 2013

Ms. Andrea Nord Barr Engineering Co. 4700 W 77th St Minneapolis, MN 55435

Work Order Number: 1304775

RE: 49161092

Enclosed are the results of analyses for samples received by the laboratory on 09/26/13. If you have any questions concerning this report, please feel free to contact me.

Results are not blank corrected unless noted within the report. Additionally, all QC results meet requirements unless noted.

All samples will be retained by Legend Technical Services, Inc., unless consumed in the analysis, at ambient conditions for 30 days from the date of this report and then discarded unless other arrangements are made. All samples were received in acceptable condition unless otherwise noted.

WI Accreditation #998022410

Prepared by, LEGEND TECHNICAL SERVICES, INC

> Bach Pham Client Manager II bpham@legend-group.com

Samantha Jaworski Manager, Organics

sjaworski@legend-group.com

Fax: 651-642-1239

Barr Engineering Co. 49161092 Project: 4700 W 77th St Work Order #: 1304775 Project Number: 49161092 300 Minneapolis, MN 55435 Project Manager: Ms. Andrea Nord Date Reported: 09/30/13

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
LN61-PLM-Stockpile-1	1304775-01	Soil	09/25/13 14:15	09/26/13 09:45
LN61-PLM-Stockpile-2	1304775-02	Soil	09/25/13 14:20	09/26/13 09:45

Shipping Container Information

Default Cooler Temperature (°C): 14.3

Received on ice: Yes Received on melt water: No Temperature blank was present

Ambient: No

Received on ice pack: No Acceptable (IH/ISO only): No

Custody seals: No

Case Narrative:

The dry weight correction and dilution applies to the sample result, MDL, and RL.

Ethylbenzene was present in the method blank between the MDL and RL for the BTEX analysis.

DRO chromatograms for both samples are attached.

Fax: 651-642-1239

 Barr Engineering Co.
 Project: 49161092

 4700 W 77th St
 Project Number: 49161092 300
 Work Order #: 1304775

 Minneapolis, MN 55435
 Project Manager: Ms. Andrea Nord
 Date Reported: 09/30/13

DRO/8015D Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
LN61-PLM-Stockpile-1 (1304775-01) Soil			5/13 14:15	Received			ricpared	7 illuly2cu	Method	110100
Diesel Range Organics	3100	480	55	mg/kg dry	50	B3I2609	09/26/13	09/27/13	WI(95) DRO	D-04
Surrogate: Triacontane (C-30)	120			70-130 %						
LN61-PLM-Stockpile-2 (1304775-02) Soi	il Sampled: 09/25/13 14:20			Received	: 09/26/13	9:45			0.000	
Diesel Range Organics	1200	180	21	mg/kg dry	20	B3I2609	09/26/13	09/27/13	WI(95) DRO	D-04
Surrogate: Triacontane (C-30)	104			70-130 %						

Fax: 651-642-1239

 Barr Engineering Co.
 Project:
 49161092

 4700 W 77th St
 Project Number:
 49161092 300
 Work Order #: 1304775

 Minneapolis, MN 55435
 Project Manager:
 Ms. Andrea Nord
 Date Reported: 09/30/13

WI(95) GRO/8015D Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
LN61-PLM-Stockpile-1 (1304775-01) Soil	Samp	led: 09/2	5/13 14:15	Received	09/26/13	9:45	770			
Benzene	5.9	0.032	0.0040	mg/kg dry	1	B3I2605	09/26/13	09/26/13	WI(95) GRO	
Ethylbenzene	6.0	0.032	0.0028	mg/kg dry	1			,		
Toluene	22	0.16	0.018	mg/kg dry	5	•		09/27/13		
Xylenes (total)	33	0.097	0.010	mg/kg dry	1			09/26/13		
Surrogate: 4-Fluorochlorobenzene	124			80-150 %			n	09/27/13		
LN61-PLM-Stockpile-2 (1304775-02) Soil	Samp	led: 09/2	5/13 14:20	Received	09/26/13	9:45				
Benzene	0.18	0.034	0.0042	mg/kg dry	1	B3I2605	09/26/13	09/26/13	WI(95) GRO	
Ethylbenzene	0.28	0.034	0.0029	mg/kg dry	1			·		
Toluene	0.54	0.034	0.0036	mg/kg dry	1		1,00	.9	w	
Xylenes (total)	1.4	0.10	0.011	mg/kg dry	1					
Surrogate: 4-Fluorochlorobenzene	111			80-150 %		"	**			

Fax: 651-642-1239

Barr Engineering Co. Project: 49161092 4700 W 77th St Project Number: 49161092 300 Work Order #: 1304775 Minneapolis, MN 55435 Project Manager: Ms. Andrea Nord Date Reported: 09/30/13

PERCENT SOLIDS Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
LN61-PLM-Stockpile-1 (1304775-01) Soi	5/13 14:15	Received	Received: 09/26/13 9:45							
% Solids	77	77		%	1	B3I2710	09/27/13	09/27/13	% calculation	
LN61-PLM-Stockpile-2 (1304775-02) Soi	Sampl	ed: 09/2	5/13 14:20	Received	1: 09/26/13	9:45				
% Solids	74			%	1	B3I2710	09/27/13	09/27/13	% calculation	

Fax: 651-642-1239

Barr Engineering Co.	Project: 49161092	
4700 W 77th St	Project Number: 49161092 300	Work Order #: 1304775
Minneapolis, MN 55435	Project Manager: Ms. Andrea Nord	Date Reported: 09/30/13

DRO/8015D - Quality Control Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	%RPD	%RPD Limit	Notes
Batch B3I2609 - Sonication (Wisc DRO)											
Blank (B3I2609-BLK1)				F	repared	& Analyze	ed: 09/26/1	13			
Diesel Range Organics	< 0.93	8.0	0.93	mg/kg wet							
Surrogate: Triacontane (C-30)	12.2			mg/kg wet	16.0		76.2	70-130			
LCS (B3I2609-BS1)				F	repared	1: 09/26/13	Analyzed	1: 09/27/13			
Diesel Range Organics	46.7	8.0	0.93	mg/kg wet	64.0		72.9	70-120			
Surrogate: Triacontane (C-30)	13.0			mg/kg wet	16.0		81.3	70-130			
LCS Dup (B3I2609-BSD1)			-	F	repared	1: 09/26/13	Analyzed	. 09/27/13			
Diesel Range Organics	52.1	8.0	0.93	mg/kg wet	64.0		81.5	70-120	11.1	20	
Surrogate: Triacontane (C-30)	13.6			mg/kg wet	16.0		85.1	70-130			

Fax: 651-642-1239

 Barr Engineering Co.
 Project:
 49161092

 4700 W 77th St
 Project Number:
 49161092 300
 Work Order #: 1304775

 Minneapolis, MN 55435
 Project Manager:
 Ms. Andrea Nord
 Date Reported: 09/30/13

WI(95) GRO/8015D - Quality Control Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	%RPD	%RPD Limit	Notes
Batch B3I2605 - EPA 5035 Soil (F	Purge and Trap)										
Blank (B3I2605-BLK1)				1	Prepared	& Analyze	ed: 09/26/1	13			
Benzene	< 0.0031	0.025	0.0031	mg/kg wet							
Ethylbenzene	0.0131	0.025	0.0022	mg/kg wet							B-02,
Toluene	< 0.0027	0.025	0.0027	mg/kg wet							
Xylenes (total)	< 0.0080	0.075	0.0080	mg/kg wet							
Surrogate: 4-Fluorochlorobenzene	23.9			ug/L	25.0		95.8	80-150			
LCS (B3I2605-BS1)					Prepared	& Analyze	ed: 09/26/1	13			
Benzene	103			ug/L	100		103	80-120			
Ethylbenzene	105			ug/L	100		105	80-120			
Toluene	105			ug/L	100		105	80-120			
Xylenes (total)	311			ug/L	300		104	80-120			
Surrogate: 4-Fluorochlorobenzene	24.7			ug/L	25.0		98.6	80-150			
LCS (B3I2605-BS2)				3.50	Prepared	& Analyze	ed: 09/26/1	13			
Benzene	103			ug/L	100		103	80-120			
Ethylbenzene	102			ug/L	100		102	80-120			
Toluene	104			ug/L	100		104	80-120			
Xylenes (total)	303			ug/L	300		101	80-120			
Surrogate: 4-Fluorochlorobenzene	25.1			ug/L	25.0		100	80-150			
LCS Dup (B3I2605-BSD1)				7-2-1	Prepared	& Analyze	ed: 09/26/1	13			
Benzene	102			ug/L	100		102	80-120	0.964	20	
Ethylbenzene	105			ug/L	100		105	80-120	0.300	20	
Toluene	104			ug/L	100		104	80-120	1.25	20	
Xylenes (total)	310			ug/L	300		103	80-120	0.333	20	
Surrogate: 4-Fluorochlorobenzene	25.2			ug/L	25.0		101	80-150			
Matrix Spike (B3I2605-MS1)	S	ource: 1	1304752-	01	Prepared	& Analyze	ed: 09/26/1	13			
Benzene	106			ug/L	100	0.130	106	80-120			
Ethylbenzene	107			ug/L	100	0.264	107	80-120			
Toluene	109			ug/L	100	<	109	80-120			
Xylenes (total)	317			ug/L	300	<	106	80-120			
Surrogate: 4-Fluorochlorobenzene	25.4			ug/L	25.0		102	80-150			

Fax: 651-642-1239

Barr Engineering Co. Project: 49161092 4700 W 77th St Project Number: 49161092 300 Work Order #: 1304775 Date Reported: 09/30/13 Minneapolis, MN 55435 Project Manager: Ms. Andrea Nord

PERCENT SOLIDS - Quality Control Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	%RPD	%RPD Limit	Notes
Batch B3l2710 - General Preparation											
Duplicate (B3I2710-DUP1)	S	ource: 1	1304777-0	6	Prepared	& Analyz	ed: 09/27/	13			
% Solids	79.0			10/2		79.0			0.00	20	

Fax: 651-642-1239

 Barr Engineering Co.
 Project: 49161092

 4700 W 77th St
 Project Number: 49161092 300
 Work Order #: 1304775

 Minneapolis, MN 55435
 Project Manager: Ms. Andrea Nord
 Date Reported: 09/30/13

Notes and Definitions

J	Parameter was present between the MDL and RL and should be considered an estimated value
D-04	The hydrocarbons present are a complex mixture of diesel range and heavy oil range organics.
B-02	Target analyte was present in the method blank between the MDL and RL.
<	Less than value listed
dry	Sample results reported on a dry weight basis

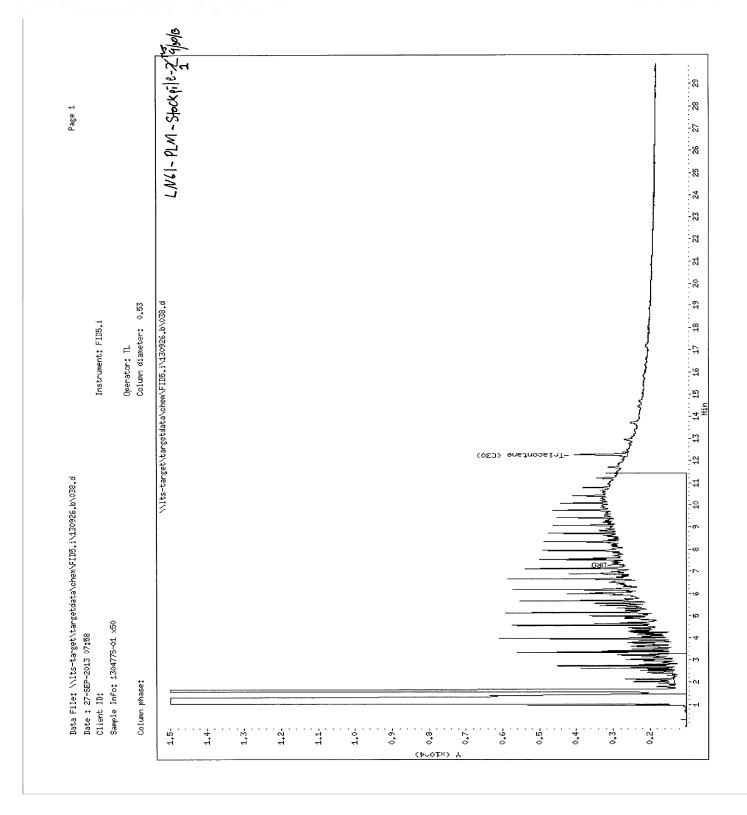
NA Not applicable. The %RPD is not calculated from values less than the reporting limit.

MDL Method Detection Limit

RL Reporting Limit
RPD Relative Percent Difference

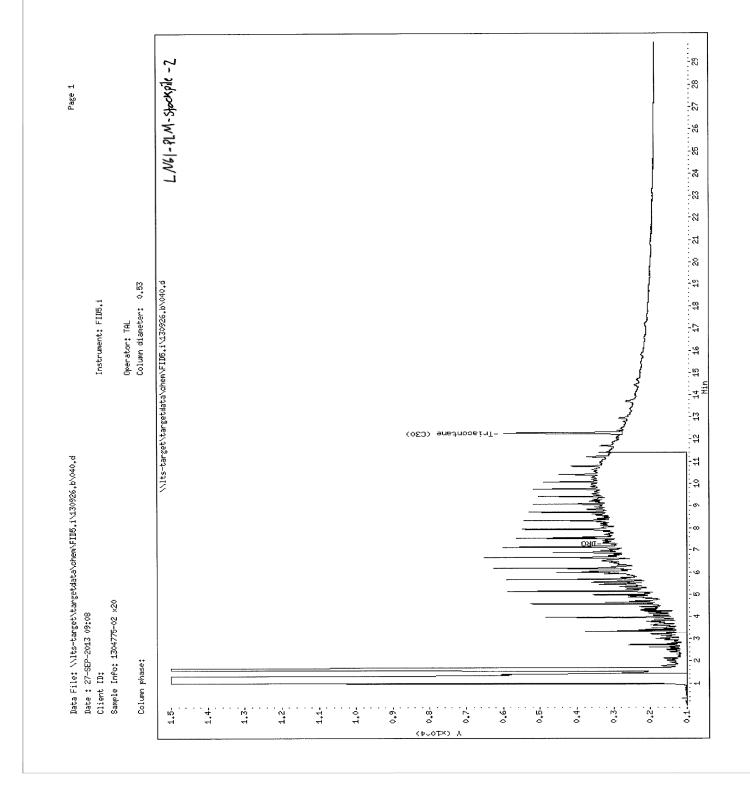
LCS Laboratory Control Spike = Blank Spike (BS) = Laboratory Fortified Blank (LFB)

MS Matrix Spike = Laboratory Fortified Matrix (LFM)


88 Empire Drive

St Paul, MN 55103 Tel: 651-642-1150 Fax: 651-642-1239

Chain of Custody				Numbe	er of Containe	Number of Containers/Preservative		
AARR Mineapolis, MN 55435-4803		130474S		Water		Soil	H	COC 1 of 1
(952) 832-2600			-		- 20.			Project REG
Project Number: 49/6/092 300	0			-				
Project Name: Enbridge Lue 6/	Lue GI/PLM Release			(£0		(pa (pa	oniasn	Project QC Contact: AAN
Sample Origination State $\sum L$ (use two letter postal state abbreviation)	state abbreviation)			(FON	P# (*	Leserv Leserv Leserv Leserv	o) 1(
COC Number:	-	Nº 4	40118	mprese Metall (H) etc	os:H)	dun p 19492di 19492di	_	Sampled by: REE
Location Start Stop Unit Depth Depth (m.ft.	oth Collection fit. Date n.) (mm/dd/yyy)	Collection Matrix Time 21 2 2 3 (hhmm)	Comp.	Diesel Ran Dissolved SAOCI (m SAOCI (M OCe (HC	Vatrients (GRO, BTEX	ma% latoT	Laboratory: Lege vol
1. LNG-PLM-Stripple-	9/25/13	× 5th	×			×	7	DRO, BTEX, MOSSIGER
1. 1.Nol - PLM - Steeleple - 2	A	220 X	X			× × ×	7	→
·								
								\$ 540 TAT
3.								
9								
7.								Hall when it
od							1	
6								
10.								
Common Parameter/Container - Preservation Key	Relinquished Br:	30)	loe?	Date Time 25 (3 600	Received by:			Date Time
#1 - Fourier Organics — B 1123, GRQ 17PH, 8200 Full List #2 - Sonivolatile Organics — P 4Hr, PCP, Dioxina, \$270 M. Tull, List, Herbicide Pesteldel PCBs #3 - Fourier — BM, Chharde Dioxide Allohine TVS	Relinquished By:	8 2	On Jee?	Date Time	Repeived by:			Alatolia 9:45
TDS, TS, Sulfate #4 - Nutrious = COD, TOC, Phensh, Anmonia	Samples Shipped	Samples Shipped VIA: Air Freight	(Bederal Ex	Gederal Express Rempter	Air Bill Number:	мьст: (Ц, 3	3	



88 Empire Drive St Paul, MN 55103 Tel: 651-642-1150 Fax: 651-642-1239

88 Empire Drive St Paul, MN 55103 Tel: 651-642-1150 Fax: 651-642-1239

October 02, 2013

Karl Beaster Enbridge Pipelines Limited Partnership, LLC Accounts Payable 1100 Louisiana Ave. Ste 3300 Houston, TX 77002

RE: CL13-0052 Crude Contaminated Soil - Line 61 Release

Dear Mr. Beaster,

This agreement will confirm the price and length of service for disposal and /or transportation of your non-hazardous industrial material at our facility. This agreement is for the term of the Waste Approval granted by Shamrock Landfill and is for all services ordered and performance initiated within such period and does include the disposal surcharge fees which you are obligated to pay as of the date of this agreement. Shamrock Landfill may incur additional costs including but not limited to increases in state and local taxes. Shamrock Landfill may pass these costs on to the customer only after notification to the Customer. This agreement grants Shamrock Landfill the exclusive right to dispose of the referenced waste for the term of this agreement. This agreement shall automatically renew thereafter for an additional term of 24 months "Renewal Term" unless either party gives the other party written notification of termination at least 90 days prior to the termination of the then-existing term. Shamrock Landfill will notify the customer prior to the expiration of the agreement of any rate changes prior to the start of the Renewal Term.

Payment and terms are net thirty (30) days. Interest will be charged at a rate of 1 1/2% per month (18% annually) on any unpaid balance 30 days after the date of the invoice. In the event Customer terminates this Agreement prior to its expiration other than as a result of a breach by Shamrock Landfill or Shamrock Landfill terminates this agreement for Customer's breach (including nonpayment) Customer agrees to pay to Shamrock Landfill as liquidated damages a sum calculated as follows: (1) if the remaining term under this agreement is six or more months Customer shall pay its average monthly charges multiplied by six: or (2) if the remaining term under this agreement is less than six months Customer shall pay its average monthly charge multiplied by the number of months remaining in the term. Customer expressly acknowledges that in the event of an unauthorized termination of this agreement the anticipated loss to Shamrock Landfill in such event is estimated to be the amount set forth in the foregoing liquidated damages provision and such estimated value is reasonable and is not imposed as a penalty,

These prices are based on an approved waste stream composition. In the event that a non-conforming waste is received, you will be notified of additional charges, when applicable.

To accept this agreement, please sign one copy and return it to our St. Paul, MN office at Shamrock Landfill, 251 Starkey St., St. Paul, MN 55107 or Via Fax at 651-223-8197 or email to sopstad@skbinc.com.

Customer ACCEPTED BY: (name, position)

WASTE APPROVAL Period: 10/2/2013 to 9/25/2015

DATE: 10-7- 2013

Bill To Customer

Enbridge Pipelines Limited Partnership, LLC Accounts Payable 1100 Louisiana Ave, Ste 3300 Houston, TX 77002

Service For Generator

Enbridge Pipelines Limited Partnership, LLC 2800 East 21st St Superior, WI 54880

Disposal

Waste Description: Crude Contaminated Soil - Line 61 Release

Estimated Volume: 50 YARDS / ONE TIME ONLY Disposal Method: Secure Non-Hazardous Landfill

Treatment Method: None Expected For Conforming Waste

Pricing

Disposal \$16.00 Per Ton Crude Contaminated Soil - Line 61 Release

Notification of Waste Acceptance

PAGE 1 of 2 10/2/2013

CUSTOMER INFORMATION

EPA ID#: WID981092133 Enbridge Pipelines Limited Partnership, Enbridge Superior Terminal

2800 East 21st St Superior, WI 54880 Contact: Karl Beaster Phone: (715) 398-4795

Profile Sheet #:

Waste Stream #: CL13-0052

Waste Name: Crude Contaminated Soil - Line 61 Release

INVOICE INFORMATION

Bill #: 2133 Enbridge Pipelines Limited Partnership, Abcounts Payable

1100 Louisiana Ave, Ste 3300 Houston, TX 77002 Contact: Karl Beaster Phone: (715) 398-4795

Thank you for selecting SHAMROCK LANDFILL for your waste management requirements. Your waste stream has been reviewed and is acceptable for management at our facility based on the information provided in the profile sheet number listed above and conditions below. Our facility has the necessary permits to allow the storage, treatment, or disposal of this waste. The above referenced acceptance number should be listed on all shipping documents and correspondence. Please retain these documents for your records and future reference.

To schedule a shipment, or should you have any questions, please contact the facility at (218) 878-0112.

ACCEPTANCE INFORMATION

The waste stream identified by the reference above is acceptable for disposal. The anticipated frequency of shipment is 50 YARDS / ONE TIME ONLY

This waste is acceptable for delivery beginning on 10/2/2013 thru 9/25/2015 at which time the material will need to be reanalyzed and recertified.

PCB Statement: The Minnesota Pollution Control Agency encourages generators of non-hazardous PCB waste to voluntarily manage the waste as hazardous waste or to seek an alternative to land disposal such as incineration

Spill Reporting Reminder: Proper County and MPCA spill reporting procedures must be followed.

Empty Container Statement: Each shipment containing empty containers must be accompanied with a completed 'EMPTY CONTAINER CERTIFICATION FORM'.

Free Liquid Statement: Free liquids will not be placed in cells at Shamrock Landfill. Free liquids must be solidified either prior to shipment to Shamrock Landfill or at Shamrock Landfill.

Shipping Requirements A NON-HAZARDOUS certificate is required to be on file, certifying the waste is non-hazardous as specified per 40 CFR 261.4. The shipment must be accompanied with an Shamrock Landfill manifest.

P.O. Box 338 • Esko, MN 55733-0338 Main: 218.878.0112 • Fax: 218.879.2120

PAGE 2 of 2 10/2/2013

WASTE STREAM ANALYSIS INFORMATION

Waste Name:

Crude Contaminated Soil - Line 61 Release

Physical State:

Solid

Process Producing Waste: tank 5 platform excavation

PRE-ACCEPTANCE SAMPLE RESULTS

Color:

0

0

0

0

0

Paint Filter Test:

0

Flash Point Range: Radioactive?:

Dust Present:

pH Range:

React to Base:

OVM Sniff: Oxidizers:

Reacts with Air:

Physical State:

Free Liquids:

Odor:

Density:

Water Reactivity:

0

0

React to Acid:

% Moisture:

Sulfide:

Cyanide:

This analysis is solely for use by Shamrock Landfill employees for the purpose of determining waste acceptability. No other claims are made or implied.

COMMENTS

AUTHORIZATION

Approval:

Date: 10 2 (1)

SISS SLOQUET

REPORT NAME: DESCRIPTION: Tons Each Load By WSID Tonnage for EACH LOAD, grouped by customer

DATE RANGE: 01/01/2013 to 10/08/2013

PRINTED ON (DATE): Tuesday, October 08, 2013

ENBS1

Enbridge Pipelines Limited Partnership,

2800 East 21st St

Superior WI 54880

LOAD#	MANIFEST	ARRIVED	WASTE STREAM	WASTE NAME	CELL	SPOT	LIFT	TONS
14026 (A)	16984	10/7/2013	CL13-0052	Crude Contaminated Soil - Line 61	2A	R41	1175	17.84
14036 (A)	16982	10/7/2013	CL13-0052	Crude Contaminated Soil - Line 61	2A	R42	1175	19.65
14062 (A)	16983	10/7/2013	CL13-0052	Crude Contaminated Soil - Line 61	2A	R42	1175	17.36
14069 (A)	16978	10/7/2013	CL13-0052	Crude Contaminated Soil - Line 61	2A	R42	1175	16.10
14113 (A)	16977	10/8/2013	CL13-0052	Crude Contaminated Soil - Line 61	2A	R40	1175	17.21

Total # of Loads: 5 **Total Tons:** 88.16

> Grand Total (Tons): 88.16 Grand Total (Loads): 5