

Technical Memorandum

To:Alex Smith, Enbridge EnergyFrom:Ryan EricksonSubject:Superior Terminal Tank 1 Ring Road ProjectDate:April 3, 2015Project:49161253.19

This memorandum summarizes the field screening, analytical sampling, and waste management assistance provided by Barr Engineering (Barr) at the request of Enbridge Energy (Enbridge) during Tank 1 ring road replacement activities at the Enbridge Superior Terminal in Superior, Wisconsin (Figure 1) in 2014.

Background

In November and December of 2014, Enbridge replaced the ring road located around the perimeter of Tank 1 at the Superior Terminal (Figure 2). The road was replaced to improve access to the tank for future maintenance work. Project tasks included removal of the old gravel roadbed, additional excavation to accommodate the new ring-road fill material, placing a geotextile fabric along the bottom of the excavation, and backfilling the excavation with Class-5 gravel. Soil with historical crude oil contamination was encountered during the excavation of the old ring road. Enbridge Environment personnel were notified when crude oil contaminated soil was encountered.

Enbridge requested that Barr complete the following actions during the project:

- field screen soil excavated from the old ring road for the presence of hydrocarbon contamination
- assess and document areas where crude oil contaminated soil was identified and segregate the excavated contaminated soil from soil without contamination
- assist with the coordination of off-site soil management of contaminated soil
- review historical release information for this location
- prepare a memorandum summarizing the extent of identified impacts and the response actions that were taken.

Field Activities

Barr was onsite as needed during the Tank 1 ring road excavation activity to field screen soil, collect analytical samples, and assist with the contaminated soil management.

Soil samples were collected as the old ring road was being excavated and the samples were field screened by Barr for the presence of organic vapors using an 11.7 eV photoionization detector (PID). Samples were also physically inspected for the presence of other potential indicators of crude oil impacts such as odor, discoloration and sheen. PID readings and physical observations were documented on screening logs (Attachment A).

Soil was classified as contaminated if PID headspace readings were greater than 10 parts per million (ppm), or if other physical observations of hydrocarbon impacts were observed, as outlined in the pending WDNR *Enbridge Superior Terminal Site Investigation and Response Action Plan* (SI/RAP) (2014). Soil with no identified contamination was transported to and managed at an off-site gravel pit. Contaminated soil was segregated and managed in the Superior Terminal soil management area (SMA) (Figure 2) until off-site disposal was coordinated.

If contaminated soil remained in place following excavation activities, the excavation extents were field screened and representative soil samples were collected and submitted to a laboratory for analyses of petroleum volatile organic compounds (PVOC) and naphthalene to document contaminant concentrations to document existing site conditions.

Barr collected two analytical samples (*TK-1-2014-B-1* and *TK-1-2014-B-2*) from the excavation base following the completion of excavation activities to document residual contaminant concentrations. The samples were submitted to Legend Technical Services in St. Paul, Minnesota. Analyte detections were compared to WDNR industrial direct contact residual concentration limits (RCL's), WDNR groundwater RCL's and Cumulative Hazard Index criteria. Contaminated soil removal was performed to the extent practical, but the presence of above ground and below ground pipeline infrastructure limited additional remedial excavation in this location.

Enbridge indicated that the crude oil contamination encountered in the excavation was likely historical based on the location and characteristics of the contaminated soil. Barr reviewed the WDNR Bureau of Remediation and Redevelopment Tracking System (BRRTS) database for nearby release sites. Barr's findings are included in the *Results* section of this memo and historical WDNR release documents are included in Attachment A.

Results

Barr was onsite seven times between November 10 and December 15, 2014 to provide environmental assistance during Tank 1 ring road excavation activities. The ring road replacement excavation was approximately 2 feet deep and extended approximately 30 feet out from the tank (Figure 2). Excavated material consisted of the old road bed gravel fill and clay. Barr field screened the gravel and soil excavated from the old ring road (Attachment B). Approximately 8,500 cubic yards of soil were excavated from the ring road without identified crude oil contamination.

On November 20, 2014, crude oil contaminated soil was identified near a Tank 1 valve on the southeast side of the tank. The contaminated soil was located within 5 feet of the tank wall and consisted of sand

and gravel fill and clay. The soil had a petroleum odor, dark staining and elevated headspace readings that exceeded 320 ppm. Enbridge excavated as much contaminated soil as possible; however, the presence of the tank infrastructure limited additional remedial excavation activities. Analytical samples *TK-1-2014-B-1* and *TK-1-2014-B-2* were collected from the contaminated soil left in place at the base of the tank. Analyte concentrations in both samples (Table 1) were below the WDNR industrial direct contact RCL's and passed the Cumulative Hazard Index criteria. Analyte concentrations in *TK-1-2014-B-1* were below the WDNR groundwater RCL's. Analyte concentrations in *TK-1-2014-B-2* exceeded the WDNR groundwater RCL's for the 1,2,4- and 1,3,5-trimethyl benzenes and benzene.

Sample ID	Sample Date	Sample Depth (feet)	1,2,4- Trimethyl benzene	1,3,5- Trimethyl benzene	Benzene	Ethyl benzene	Toluene	Xylenes (total)	Naphthalene
Groundwater RCLs			1.3793	1.3793	0.0051	0.785	0.5536	1.97	0.3294
Industrial DC RCLs			219	182	7.41	37	818	258	26
ТК-1-2014- В-1	11/20/14	3	0.39	0.31	<0.0030	0.022	0.011	0.092	<0.023
TK-1-2014-									
B-2	11/20/14	3	2.6	1.6	0.025	0.091	0.074	0.55	<0.024

TABLE 1: Analytical Soil Sample Results (all analyte concentrations in mg/kg)

BOLD = Analyte detections exceeding WDNR Groundwater RCLs.

The excavation was lined with a geotechnical fabric and backfilled with 2 feet of gravel fill at the completion of the ring road excavation activities.

Barr reviewed the WDNR BRRTS database for nearby release sites. Barr's findings did not identify any BRRTS sites in a close proximity to contaminated soil that was encountered.

Discussion

Residual crude oil contaminated soil remains at the base of Tank 1 southeast side. PVOC and naphthalene concentrations in samples collected from this soil were below WDNR Industrial Direct Contact RCL's and passed the Cumulative Hazard Index criteria. Analyte concentrations in *TK-1-2014-B-2* exceeded WDNR Groundwater RCL's; however, a facility-wide groundwater monitoring program is conducted at the Superior Terminal as part of the hydrogeologic performance standard established in the *WDNR SI/RAP* (2014), therefore, project specific monitoring is not required for this site. The excavation extents were covered with a geotechnical fabric and backfilled with 2 feet of gravel fill. No potential vapor receptors were identified as defined in the *WDNR SI/RAP* (2014).

Waste Disposal Coordination and Documentation

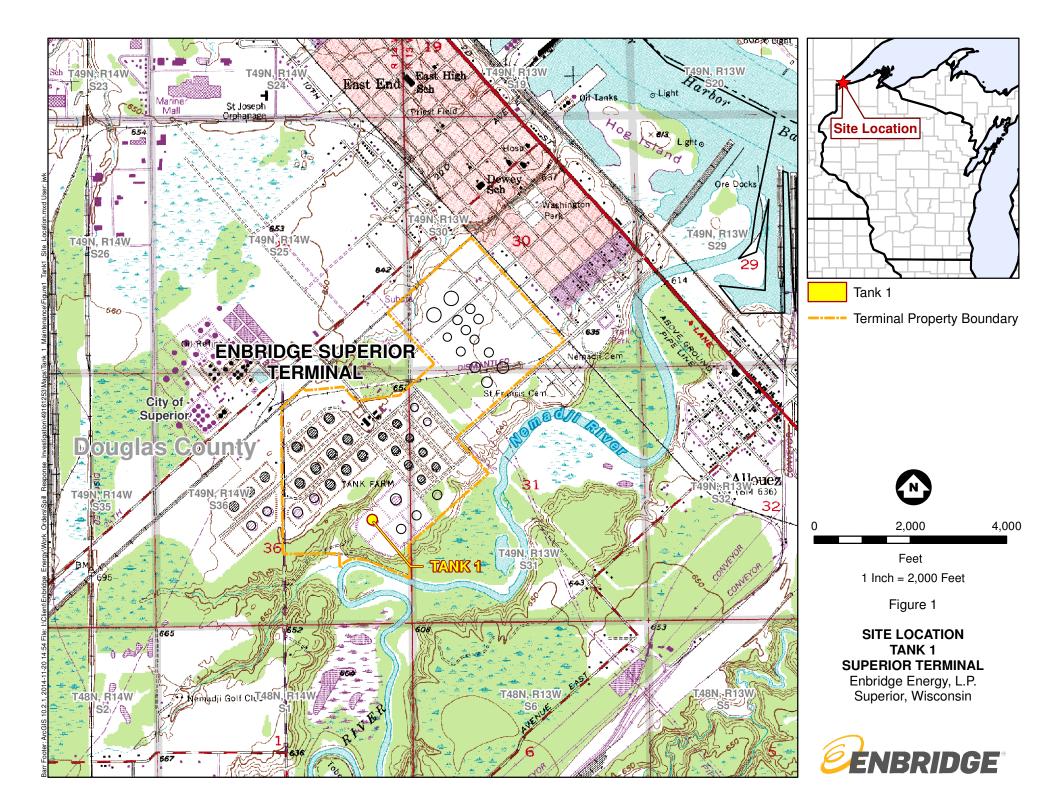
Barr collected one analytical waste characterization soil sample (*Tank1Road-Stockpile-1*) from the crude oil impacted stockpile for laboratory analysis at Legend Technical Services. The sample was analyzed for diesel range organics (DRO) and benzene, toluene, ethyl benzene, and xylenes (BTEX). A waste profile application was submitted to the Shamrock Landfill located in Cloquet, Minnesota and the soil was accepted under waste profile #CL14-0063. A total of 27.37 tons of crude oil contaminated soil was hauled to the landfill in February of 2015. The waste profile documents, the waste characterization laboratory report, and the landfill summary report are included in Attachment C.

Conclusions

Crude oil contaminated soil excavated from the Tank 1 ring road project was managed of at an approved landfill. Contaminated soil that could not be excavated due to the presence of tank infrastructure had analyte concentrations that did not exceed WDNR Industrial Direct Contact RCLs and passed the WDNR Cumulative Hazard Index criteria. The presence of clean fill, above ground infrastructure and employeeawareness will prevent direct contact exposure. Analyte concentrations did exceed WDNR Groundwater RCL's; however, groundwater monitoring at the Superior Terminal will be conducted on a facility-wide basis as part of the hydrogeologic performance standard established in the WDNR SI/RAP and project specific monitoring is not required for this site.

It is recommended that a no further response action be requested of the WDNR for this site and that the release site be added to the WDNR GIS Registry Enbridge Superior Terminal Super ERP Site.

Attachments:


Site Photos	1 through 2
Figure 1	Site Location
Figure 2	Site Layout Map
Attachment A	Site Investigation Field Sampling and Screening Logs
Attachment B	Legend Technical Laboratory Report
Attachment C	Waste Management Documentation

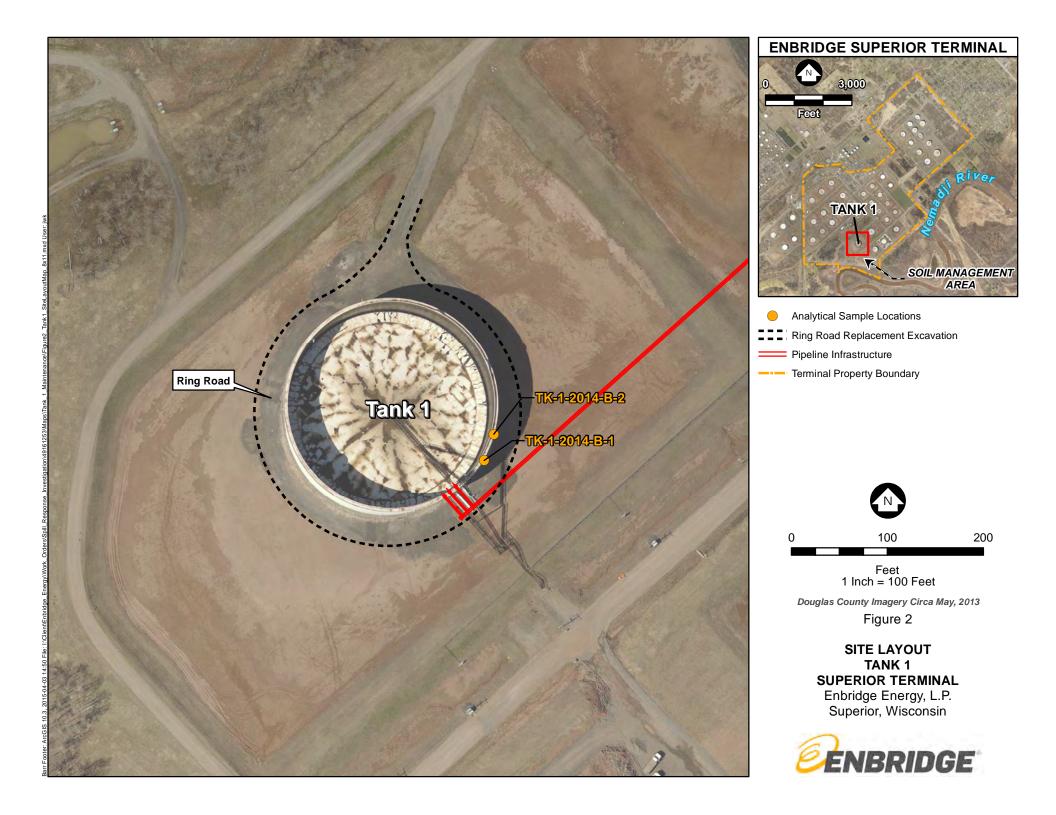
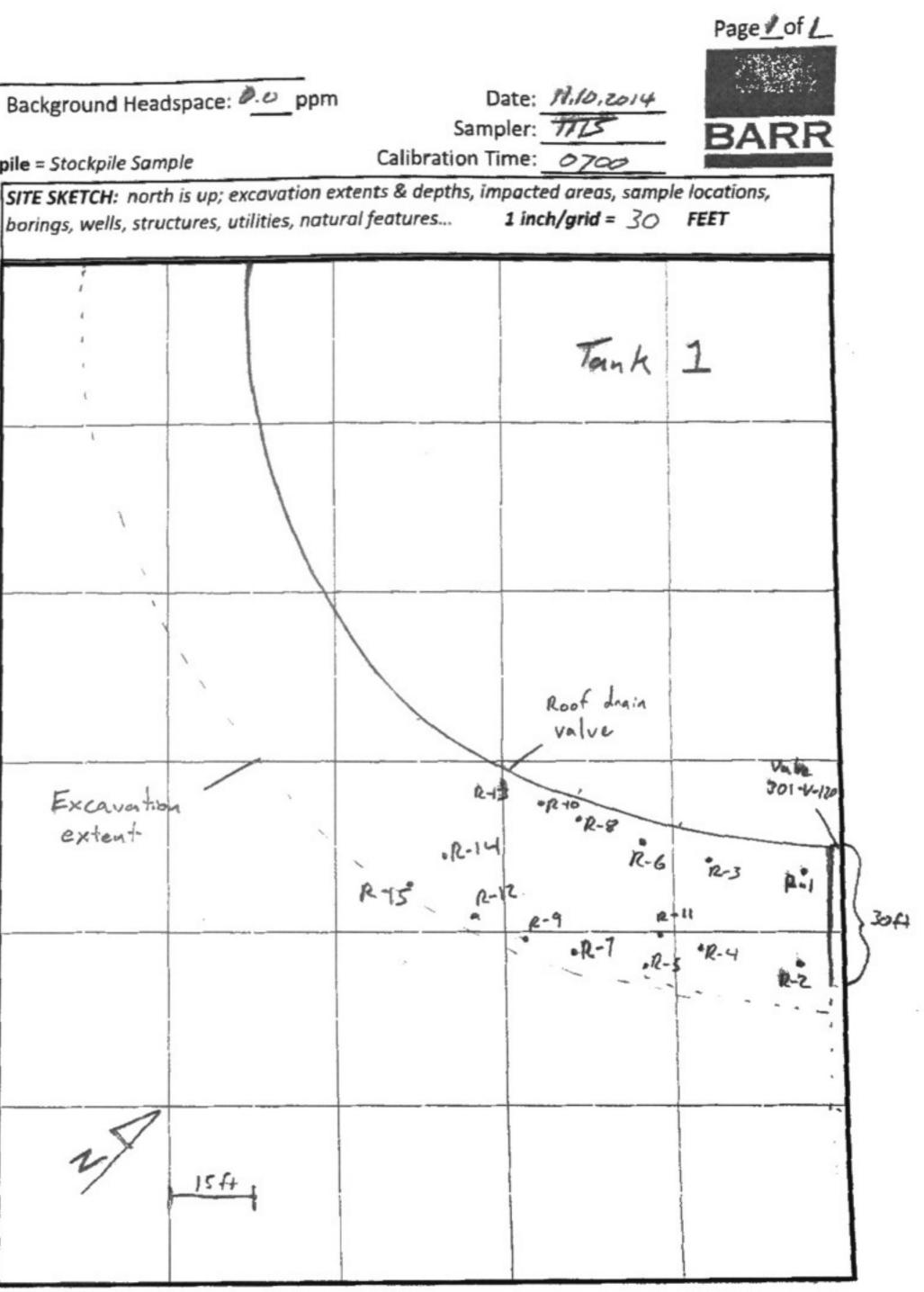

SITE PHOTOS

Photo 1: Ring road excavation near the valves on the southeast side of Tank 1. Photo taken facing north on November 20, 2014.

Photo 2: Discolored crude oil contaminated soil encountered at the base of the southeast side of Tank 1. Photo taken on November 20, 2014.

Attachment A

Site Investigation Field Sampling and Screening Log


SITE INVESTIGATION FIELD SAMPLING AND SCREENING LOG

Ring Road excavation Location: Milepost or Facility ______

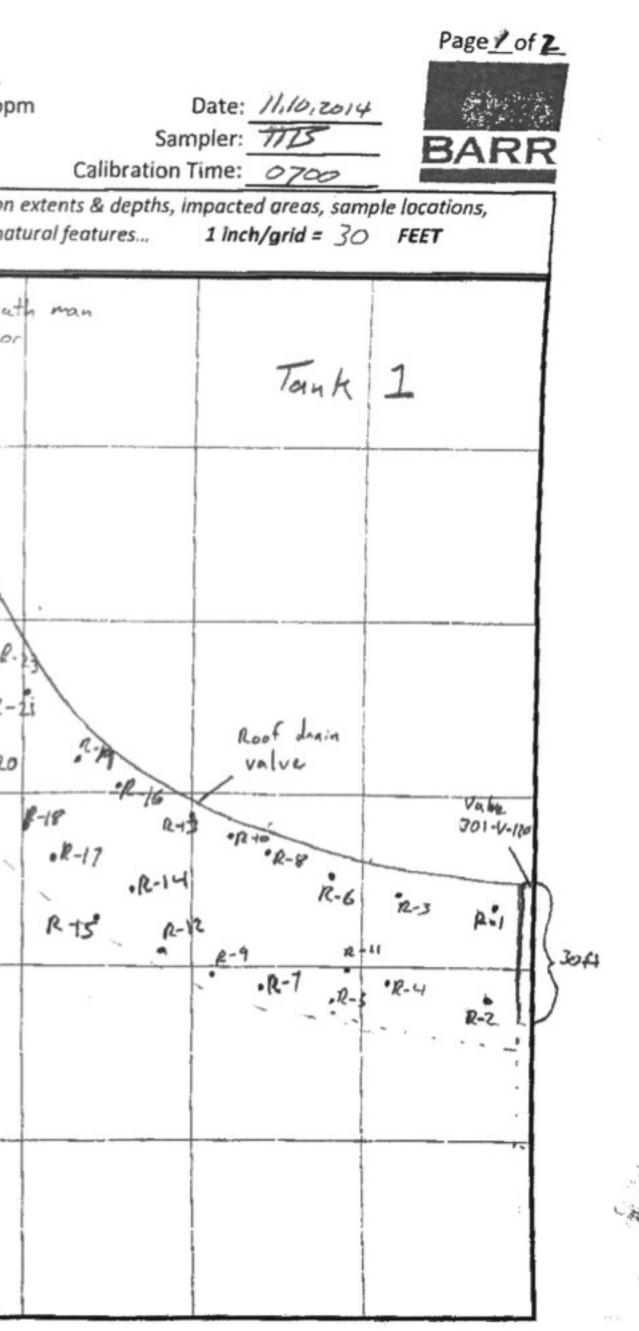
Equipment used: Theto_-ionization detector with 11.7 eV lamp Sample Nomenclature (Location - sample type - #): ____

Soil Sample Types: R = Removed Sample ; S = Sidewall Sample ; B = Bottom Sample ; Stockpile = Stockpile Sample

	Sample ID	Depth (FT)	Time (military)	Soil Type (USCS)	Color/ Discolor	Odor/ Sheen	Headspace Reading (ppm)	SITE SKETCH: north is u borings, wells, structure
	Example: Stockpile-1	4	<u>16;30</u>	<u>a</u>	Reddish brown	Petroleum/ Rainbow	275	1
	R-1	1.6	0800	CH	Rodelich Iron	NN	0.0	
	R-2	1.2	0815	GP	Ok gray		0.0	
	R-3	1.2	0825	CH	Reblah Iran		0.2	C
Γ	R-4	1, 2	0 840	GP/CH	Roldish have		0.0	
Γ	R-5	1.4	0900	GP	Dh gray		8.4	
Γ	R-6	1.5	0920	CH	Robbi Irm		0.0	
Γ	R-7	2.3	0940	CH/GP	1		0.0	8
	R-8	1.4	1000	KH/GP			0.0	· · ·
	R-9	2.0	1015	C4/6-P			0.0	×
	R-10	1.5	1030	C4/68		~	0.0	
	R-11	2.3	1035	CH		Faint	2.6	
	R-12	2.4	1055	C4/60		NN	0.3	Excavation
	12-13	1.5	1105	CH/CP		Part sweet	1.2	extent-
	R-14	2.0	1135	CH/GP		NN	0.0	
	R-15	2.0	1150	CH/CA	V	NN	0.4	
			1					
		-+						
								1
								1
								25
				-+				

SITE INVESTIGATION FIELD SAMPLING AND SCREENING LOG

Location: Milepost or Facility Tank / Ring Road excavation Equipment used: Thete -ionization detector with 11.7 eV lamp


Sample Nomenclature (Location - sample type - #): ____

- 404

Soil Sample Types: R = Removed Sample ; S = Sidewall Sample ; B = Bottom Sample ; Stockpile = Stockpile Sample

Sample ID	Depth	Time (military)	Soil Type (uscs)	Color/ Discolor	Odor/ Sheen	Headspace Reading (ppm)	SITE SKETCH: north is up; excavation borings, wells, structures, utilities, na
Example: Stockpile-1	4	16:30	<u>CL</u>	Reddish brown	Petroleum/ Rainbow	275	i l Fc
RH	1.6	0800	CH	Realchish brown	the second s	0.0	R-IT door
R-2	1.2	0815	GP	Dk gray	1	0.0	5P-22 17-35
R-3	1.2	0825	сн	Cabloh Iron		0.2	R-35 R-33
R-4	1,2	0 840	GP/CH	Roddish have		0.0	·R-3-1 R-21
R-5	1.4	0900	GP	Dk gmy		0.4	R-32
R-6	1.5	0920	CH	Rolli Im		0.0	· R-20 R-27
R-7	2.3	0940	CH/GP			0.0	R-27 R-26
R-8	1.4	1000	CH/GP			0.0	•R-25 •R.
R-9	2.0	1015	CH/G-P			0.0	· R-24
R-10	1.5	1030	C4/6-P		~	0,0	· R-22
R-11	2.3	10 35	CH		Frint	2.6	R-20
R-12	2.4	1055	CH/60		NN	0.3	F. 1
R-13	1.5	1105	CH/GP		Faint sweet	1.2	Excavation
R-14	2.0	1135	CHIGP		NN	0.0	
R-15	2.0	1150	CH/GP	~	N/N	0.4	
	-						
	+						
							1
	+						25
							15.44
	_						

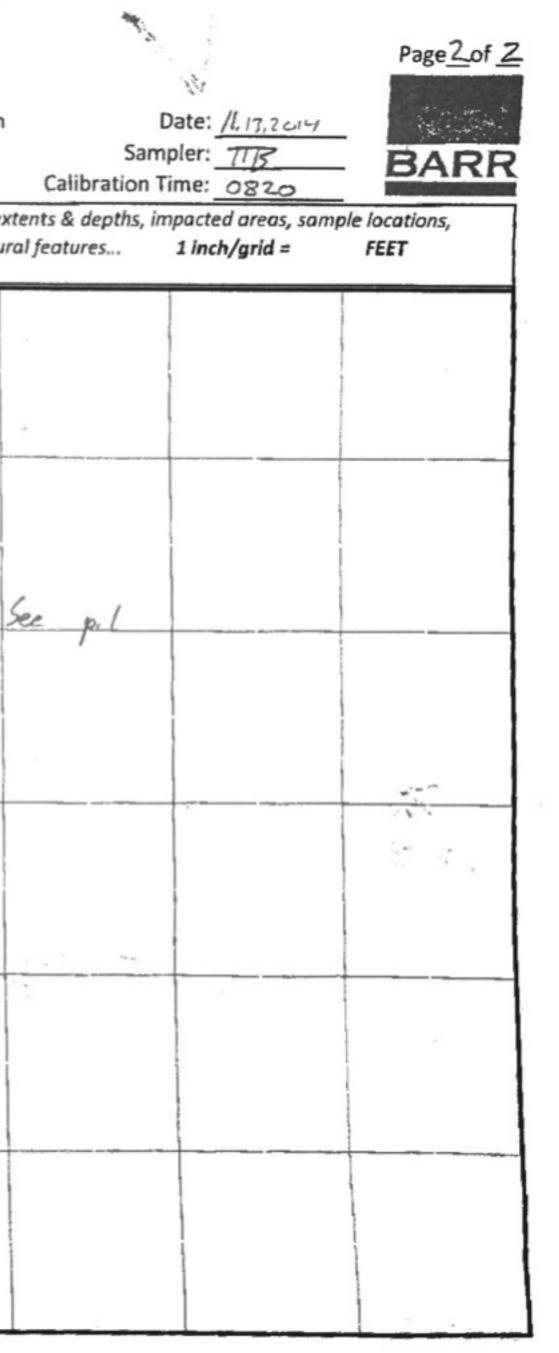
Background Headspace: 0.0 ppm

SITE INVESTIGATION FIELD SAMPLING AND SCREENING LOG Location: Milepost or Facility Tank | Ring Road Exce

Equipment used: Photo -ionization detector with 11.7 eV lamp Sample Nomenclature (Location - sample type - #): ____

.1

Soil Sample Types: R = Removed Sample ; S = Sidewall Sample ; B = Bottom Sample ; Stockpile = Stockpile Sample


Sample ID	Depth	Time (militory)	Soil Type (USCS)	Color/ Discolor	Odor/ Sheen	Headspace Reading (ppm)	SITE SKETCH: north is up; excavation e borings, wells, structures, utilities, natu	
Exomple: Stockpile-1	4	<u>16:30</u>	<u>CL</u>	Reddish brown	Petroleum/ Rainbow	275	1	
R-16	1.5	0840	CH	Reddig Li	At	00		
12-17	2.0	0855	CH, GP	Reddish from	1	-0.0	11 i i	
R-18	2.0	0 905	GP	Dt. gm		0.2		
R-19:	1.8	DTIS	CH, GP	Reddish Im		0.0		
R-20	2.0	0925	CH	Reddish bon		0.1		
R-21	1.5	0935	CH, 69	Reddich be		0.0		
1-22	2.0	1005	CH, SP	1		0.0		3
R-23	1.8	640	3P.	Black		0.0		-
R-24	2.2	1050	CHEP	Reables h bra		0.1	1	
R-25	2.2	1100	CH			0.0		ĺ
R-26	2,0	1120	SP			0.0		-
R-27	2.0	1130	CH 1-P			0./		
R-28	1.8	1140	C14			0.0		
R-29	2.9	1235	SP GP			0.0		l
R-30 "	1.8	1245	CH			0.0		Į
R-31	1.8	1300	6-PSP			0.0		ľ
R-32	2.0	1305	CH			00		ł
R-33	1.8	1420	CP, SP			0.0		1
12-34	2.0	1430	LH			6,0		
R-35	2.0	1440	CH			0.0		
2-36	2.2	1500	UH			0.0	1	
R-37	2.0	1500	C-P			0.0	11	a better
R-38	1.9	1515	69,50		1	0.1	1	

÷

ppm

Ring Road excevation

Background Headspace:

2

ENBRID	<u>GE SITE</u>	INVEST	GATION	FIELD SAME	<u>PLING AND S</u>	CREENING	LOG Date: 1/17/14
				erive Termin			Sampler: <u>CJGZ</u>
Equipme	ent used:	<u>PID</u> -	ionizatio	n detector wit	h <u> //.</u> 7_eV k	тр	Background Headspace: 0.0 ppm Calibration Time: 730
-				ample ty pe - #	/		
Soil Samp	le Types:	R = Remo		e ; \$ = Sidewall	Sample ; B = Be		e ; Stockpile = Stockpile Sample
Sample	Denth	Time	Soil	Color/		Headspace	
ID	Depth (ft)	(military)	Type (USCS)	Discolor	Odor/ Sheen	Reading (ppm)	utilities, boring locations, wells, natural features 1 inch/grid = 30 FEET
Example: R-1	4	<u>16:30</u>	<u>a</u>	Reddish brown	Petroleum/ Rainbow	<u>275</u>	
R-1	1	745	GP	64/-	have I non:	3.0	
2	2	745	4	Rex 1-		2.4	
3	1	755	GP	6		1.7	
4	2	755	LL	Red -		2.2	
5	L	\$ 805	62	buy/-		1.9	
6	2	805	LL	Rell-		2.0	
7	1	815	62	Grey/-		2.1	
ક	2	815	4	Ret -		1.0	
٩	١	825	GP	bery/-		0.7	
10	2	825	(1	Re2 / -		6.1	
11	١	1000	68	67.17/-		1.2	June 2 marship
12	2	1000	<u> </u>	Ruj-		3.1	
B	1	lols	68	brey -		3.7	1.X11-
14	2	lois	(L	Re21-		2.5	
15	1	1030	6-2	bruy -		3.1	61, 47 27 23 14 11 5
16	2	1030	CL .	Rel -		2.4	Oll 50 - 22 1 10 4 US 57 - 23 1211 5 12 57 - 23 1211 5 14 37 24 19 12 6 15 7 - 27 12 11 5 15 7 - 27 12 11 5 16 40 16 7 1 37 12 11 9 16 40 16 7 1 37 12 11 9 16 40 17 7 12 11 9 16 40 17 7 12 11 9 16 40 17 7 12 11 9 17 7
17	۱	1645	68	brey -		1.1	Sand House
18	2	1045	LL	This/-		1.7	Gle start (and Hereit
19	1	1100	67	bery -		1.4	CIC (Internel)
20	2	1100	4	1.11-		1.2	
21	1	1130	67	bery -		1.8	AUNT TIMULANT TANK 1 Basin
22	2	1130	4	L.Y-		2.0	amiller Taur 1 R
23	1	1225	67	brey ~		2.1	ALLANT TANK 1 Basin (clay)
24	2	1225	LL	Rel		1.6	

2.2

く

1

1235

65

6-554 (-

25

ENBRIDGE SITE INVESTIGATION FIELD SAMPLING AND SCREENING LOG

Location: Milepost or Facility Survey Terminal Time 1 These Exception Equipment used: <u>PID</u> -ionization detector with <u>11.7</u> eV lamp Background

Background Headspace: <u>0.0</u> ppm

Date: / Sampler: **Calibration Time:**

Sample Nomenclature (Location - sample type - #):

Soil Sample Types: R = Removed Sample ; S = Sidewall Sample ; B = Bottom Sample ; Stockpile = Stockpile Sample

			Soil			Headspace	SITE SKETCH: no		ion extents and a	epths, sample locatio	ns, structures,
Sample ID	Depth (ft)	Time (military)	Type (USCS)	Color/ Discolor	Odor/ Sheen	Reading (ppm)	utilities, boring l	ocations, wells, no	ntural features	1 inch/grid =	FEET
Example: R-1	4	<u>16:30</u>	<u>cı</u>	Reddish brown	Petroleum/ Rainbow	<u>275</u>					
2-24	2	1235	42	Re21 -	none/none	1.8					
27	1	1245	GP	Grey/ -		2.1					
28	Z	1245	LL	Reel -		1.0					
29	1	1300	68	bery -		0.6					
30	Ζ	1300	6	R.21 -		1.3					
31	1	1310	67	65er1 -		2.4					
32	Z	1310	62	Rul -		2.1			12		
33	1	1370	68	brul -		1.8					
34	2	1336	62	R.11 -		1.8					
35	1	14lb	68	bry -		0.9					
36	2	1410	U	Res -		1.3					
37	1	1425	GP	brey -		1.3					
38	2	1425	66	Rul -		1.4					
39	1	1440	67	bry -		2.3					
40	۲	<u> 440</u>	LL	Rell -		2.1					
41	1	1455	67	bey -		4.0					
41	Z	1455	11	Rel -		2.5					
43	l	1516	6P	brey -		2.0					
44	2	lyla	u	R.11 -		2.1					
45	1	1520	6P	brey -		1.7			4 •		
46	l	1520	62	Rell -		0.9					
43	1	1520	6-P	6147/-		2.4					
48	1.	1520	(L	Red -		2.1	· · · · · · · · · · · · · · · · · · ·	 			
44	1	1520	67	brey -		2.2					
50	2	1520	61	Reel -	V	3.1					

	ENBRID	<u>GE SITE</u>	INVESTI	GATION	FIELD SAME	LING AND S	CREENING	LOG Date: [1]/[2]/[Sampler: Csc.7 Background Headspace: 0.0 ppm Calibration Time: 7.0	ų
	1		t an East	1m. <	. 1		7.1	Sampler: (SL)	
	Equipme	ent used:_	<u>- 717</u>	ionizatio	n detector wit	h 11.7/ eV k	imp	Background Headspace: 6.0 ppm Calibration Time: 730	200
	paruhic i	vomencie	arme troc	<i>auon</i> - 3	<i>ample type - #</i>	・		110~ 54 W16	
,	Soil Samp	le Types:	R = Remov		e ; \$ = Sidewall	Sample ; B = Be		e ; Stockpile = Stockpile Sample	_,
	Sample	Depth	Time	Soil Type	Color/		Headspace Reading		
	ID	(ft)	(military)	(USCS)	Discolor	Odor/ Sheen		utilities, boring locations, wells, natural features 1 inch/grid = $30'$ FEET	Concrety
	Example R-1	<u>4</u>	<u>16:30</u>	<u>CL</u>	Reddish brown	<u>Petroleum/</u> Rainbow	<u>275</u>	ture 1	Fourtation
	1]	730	68	Grey 1 -	have I wave	2.1	17 CINUME MA	
	2	2	730	62	Ril -		3.1	10 18	
	3)	750	69	(1107) -		6.4	14 13 11	
	4	2	750	4	Rui ~		1.7	12 16 20	
	5	1	830	62	6m1 -		1.7	14 15 0	
	6	2	830	L'h	Rul		2.0		
	7	1	845	67	Greg -		2.1	5'	
	8	2	845	LL_	Ral ~		2.1		
	4	1	930	(r?	brent -	V	3.0		
2.	١٥	2	930	62	Red black	Petro Meine	4.3		
5	11	2.5	1000	<u>(L</u>	Relline	nor / nove	1.2		_
2	12	2.1	1000	66	Rellingue		2.6		
	13	2.5	1000	4	Redluore		4.0	Electoric Insert More	
	14	2	1000	CL	lethone		3.3		
	12	2	1000	<u>CL</u>	Reclum		2.5		_
	16		1000	LL	<u>liller</u>		3.0		
	ب ا با	2.5	1006	\mathcal{L}	Rellmore		l.1 2.7	E in state 1 2	
	18	2.5	1000 (000	11	Leilhon			53 42 41 75 44 21 83 54 48 42 36 31 26 22 94	
ł				CL	Rellin		1.4 3.3		-
ŀ	20	2	1000	<u> (</u>	Ration			55 419 473 73 72 17 28 56 50 444 38 37 28 57 50 444 38 37 28	
┝	21	1	1016	GP	(my/ - R) 1 -		1.8	56 50 44 38 37 28 57 51 45 31 28 58 52 49 40	
ŀ	22 23	1	1610		1		2.5		
ŀ	24	 Z	1020 1020	6P 61	- -		5.5 4.1		
L	25		1020		5		3.0		
	8° 3	l	1 - / *	64	brey -	¥	2.0		

Revourses W-20 with exconsision of signity borganetes Soil

Location	Milepos	t or Facil	ity Sura	rior Termin	al Tunk!	1 Rock 1	x (uvu tion		· 11/18/14
				n detector wit			Background Headspace: 2,6 ppm	Calibration Time:	:
Sample N	Iomencla	ature (Loo	ation - se	ample ty pe - #):	<u>.</u>			
Soil Samp	le Types: l	R = Remov		e ; S = Sidewall	Sample ; B = Be		; Stockpile ≈ Stockpile Sample	1	
Sample	Depth	Time	Soil Type	Color/		Headspace Reading	SITE SKETCH: north is up; excavation extents and a		
ID	(ft) _	(military)	(USCS)	Discolor	Odor/ Sheen		utilities, boring locations, wells, natural features	1 inch/gria =	FEET
Example R-1	4	<u>16:30</u>	<u>CL</u>	Reddish brown	Petroleum/ Rainbow	275			
16	2	1030	42	Rez I -	nove / www.	2.3			
17	1	1040	69	(rey) -		1.7			
28	2	1640	62	[4] -		1.1			
24	١	1050	62	Grey -		0.7			
30	2	1050	Ĺ	Rell -		0.1			
31	1	llou	LP	644 -		3.3			
32	2	1100	٢L	Riz -		2.3			
33	-	17.30	68	Grey -		2.4			
34	2	1230	(L	Rul -		3.1			
35	1	1240	62	long -		1.7			
36	2	1140	62	Red -		1.4			
ኝት	١	1240	52	berry -		2.1			
38	1	แ็นอ	4	R.21 -		J. lp			
39	1	liso	62	(rear) ~		4.1			
40	2	1150	CL	Res1 ~		3.7			
41	١	1200	67	bry -		2.5			
42	2	1200	4	R12 -		3.3			
43	١	17210	4	bay -		4.1			
44	2	1210	LL	6R.21 -		3.7			
45	1	1220	63	brag 1 -		2.6			
46	R	1220	62	R=2/ -		1.9			
47	I	1230	(+?	brig -		2.1			
48	2	12.30	(1	R12/ -		2.5			
Чч	1	1250	67	Gray -		2.0			

ENBRIDGE SITE INVESTIGATION FIELD SAMPLING AND SCREENING LOG

Date: ///w/w

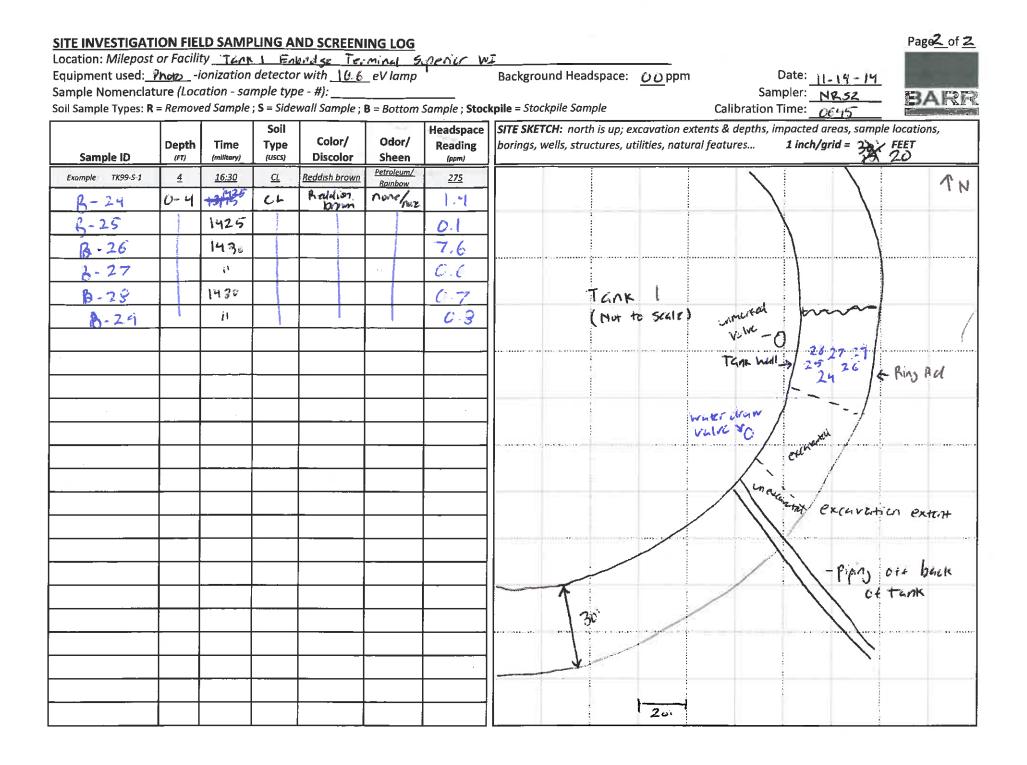
ENBRIDGE SITE INVESTIGATION FIELD SAMPLING AND SCREENING LOG

Location: Milepost or Facility S-Paris Terminal Tank 1

Equipment used: <u><u>P</u>/<u>P</u>_-ionization detector with <u>l0.6</u> eV lamp</u>

Background Headspace: <u>266</u>_ppm

Date: 1 /// 8/14 Sampler: 150 Calibration Time: 1000

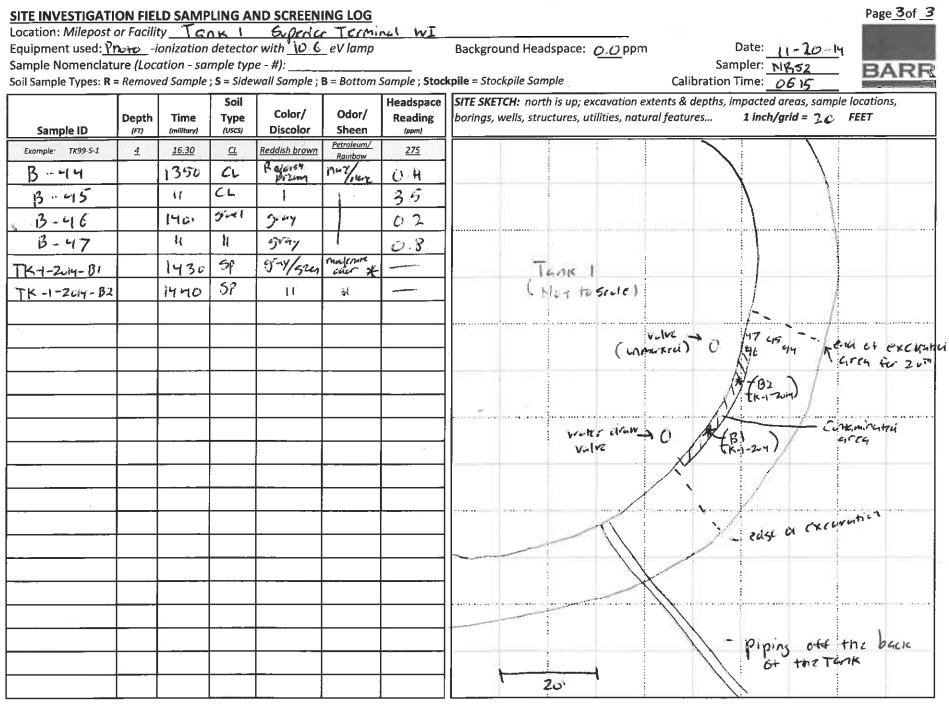

Sample Nomenclature (Location - sample type - #):

Soil Sample Types: R = Removed Sample ; S = Sidewall Sample ; B = Bottom Sample ; Stockpile = Stockpile Sample

			Soil				SITE SKETCH: no		ion extents and d	epths, sample locat	tions, structures,
Sample ID	Depth (ft)	Time (military)	Type (uscs)	Color/ Discolor	Odor/ Sheen	Reading				1 inch/grid =	FEET
Example: R-1	<u>4</u>	<u>16:30</u>	<u>cı</u>	Reddish brown	Petroleum/ Rainbow	275					
50	Z	1250	LL	Rell -	nevel nome	0.4					
51	l	1300	GR	brevel ~		0.7					
52	2	1760	۱L	Reel -		1.2					
53	1	1310	67	brul -		1.4					
54	2	1310	L	Jul -		2.5					
55	1	1320	62	Gray		4.2					
56	2	1320	66	Rell -		3.7					
57	1	1336	67	bral		3.0					
58	2	1330	66	Rec -		3.2					
54	1	1340	69	Gray -	V	30					
				1							
								· · · · · · · · · · · · · · · · · · ·			
								4			
									<u> </u>		

Row Exception

uipment used: mple Nomenclat il Sample Types: R	n <u>te</u> -	ionization ation - sai	detecto. nple typ	e - #):	_eV lamp	·	Backgrour	nd Headspace:	<u><i>O</i>.i</u> ppm	ا Sam Calibration T	Date: 11-19-4 pler: NR52 Ime: 06:45	BARR
Sample ID	Depth (FT)	Time (military)	Soil Type (USCS)	Color/ Discolor	Odor/ Sheen	Headspace Reading (ppm)		H: north is up; ex Ils, structures, ut		nts & depths, in	npacted areas, san 1 inch/grid = 3	ple locations,
Example TK99-5-1	4	<u>16.30</u>	<u>CL</u>	Reddish brown	Petroleum/ Rainbow	<u>275</u>						
R -1	0-4	0300	CL	Redelish	Rainbow Nune/nune	1.2						IN
R-2	0-4	11				1.4				X		174 28 28 29 26 24
8 - 3	0-4	0320				1.0				1		
B - 4	0-4	11 1				[, 2						
B-5	0-4	0340				1.5						
3-6		đ				1.5					K	
8-7		0.935				1.5		Tank	1			11111
6-8		- 61				1.7	120	TCAK (Not to s	icule)	TUNE		-
B-9	1.4	1007				2.4				wull		a ad
B1-10	36.34	i)				1.8			5			E Prins Rd
R-11		1030				2.0		•			2.0 31 22	1
B-12		$\mathbf{i}^{\mathbf{I}}$				5.3				With -0/	4 134 1011C	
B-13		E.				2.5				Valve /	5612/	
B-14		1140									3	
8-15		1				1.3						
6-11		1195				۲ L						
B-17		ļš N									X	
P - 18		<u>11</u>				05		1		1	* Pi	ping off
13-19		11				10		30				Back of Tunk
6-20		335				0.3				/		
B - 21		t i		X		1.2		V				
3-22		11				1.3						
6-23		1425				1.3					ž	



Page 4 of 3 SITE INVESTIGATION FIELD SAMPLING AND SCREENING LOG Location: Milepost or Facility TAAK 1 Spinior Terminal WT Equipment used: Photo -ionization detector with 10.6 eV lamp Date: 11-20-14 Background Headspace: ppm Sample Nomenclature (Location - sample type - #): _____ Sampler: NR52 BARF Soil Sample Types: R = Removed Sample ; S = Sidewall Sample ; B = Bottom Sample ; Stockpile = Stockpile Sample Calibration Time: 06 15 Soil SITE SKETCH: north is up; excavation extents & depths, impacted areas, sample locations, Headspace Odor/ Color/ $1 inch/grid = 15^{+} FEET$ borings, wells, structures, utilities, natural features... Depth Type Reading Time Discolor Sample ID (FT) (military) (USCS) Sheen (ppm) Petroleum/ Example Tk99-S-1 4 Reddish brown 16.30 <u>CL</u> <u>275</u> Rainbow num / num Reddish CL 0.9 B-1 0825 11 B-2 1.1 B-3 14 0900 22 B-4 t^* Tank | (Not to scale) <u>R-5</u> 0.8 2 17 14 15 217 14 15 227 8 9 26 8 4 26 8 4 5 1 2 6910 B-6 1.0 11 R. 7 9:20 01 925 B-8 0-8 9:40 3-4 0.7 1.2 Wher draw Velve 13-10 11 13-11 0.8 1050 8-12 18 1.2 11:00 B=13 0.7 Excurated 1.7 6-14 11 exchuition externa B-15 0.8 11 1.5 0-20 unexcurrented , 1 30 1 5-15-21 1120 53 Tank will 1990 320 5-22 1120 Ring Rd

÷.

SITE INVESTIGATI	or Facili	ty_TG	nk I	Spric	r termin	nel WI	Page <u>2</u> of <u>3</u>
Equipment used:	ure <i>(Loc</i>	ation - sa	mple typ	oe - #):			Background Headspace: (1) ppm Date: (1-20-14) Sampler: NR52 Sample: NR52 Skpile = Stockpile Sample Calibration Time: 0615 and
Sample ID	Depth	Time (military)	Soil Type (USCS)	Color/ Discolor	Odor/ Sheen	Headspace Reading (ppm)	
Example TK99-S-1	4	<u>16.30</u>	<u>a</u>	Reddish brown	Petroleum/ Rainbow	275	
5-21		1120	Seinel	Carnish	making	58	
5-22		10			i	320+	
5-23		1135				150+	
5-24		1				93	
5-25						23	TGAK
5-26		1140	CL	Kenchist	sune/nure	38	(TGAK NUT to seale)
B-27			CL.	1	1	4.1	V=IVC >0 >
6-26			CL		1	6.7	
3-24			CL			0.6	fre 35336 3.
B-30			CL			6.8	Witter draw / 25.3.33 3.1/
8-31		1150				05	Valve >0 23 30
13 - 32		ji.				0.8	Water draw $\frac{13}{125} \frac{41}{336}$ Water draw $\frac{10}{125} \frac{13}{36} \frac{31}{36}$ Valve $\rightarrow 0$ 23 30 $\frac{12}{23} \frac{21}{36}$ $\frac{12}{34} \frac{21}{36}$
13 - 33		1155				0.4	27 328
B-34		N.				0.5	
B-35						0-8	Ledy at excernion
B-36						1.0	
D - 37		12.00				0.5	
B-38		ii (0.4	30
B-39		1310	61			3 1	Bins
5-40		<u></u> î l	CL + 51	gray discourse	Slight	50+	Rocket
13-41		11	CL	Redaist	NU.E/NYE	1.0	Piping the the back of
13-42		1330	66	BILK + by		5.6	20" Piping off the back of the TGAK
B - 43		1340	CL.			0.1	

* Mollerate pervoieum odor

* Moderte formen oder. No Shren

Attachment B

Legend Technical Laboratory Report

December 11, 2014

Ms. Andrea Nord Barr Engineering Co. 4700 W 77th St Minneapolis, MN 55435

Work Order Number: 1405361 RE: 49161253

Enclosed are the results of analyses for samples received by the laboratory on 11/25/14. If you have any questions concerning this report, please feel free to contact me.

Results are not blank corrected unless noted within the report. Additionally, all QC results meet requirements unless noted.

All samples will be retained by Legend Technical Services, Inc., unless consumed in the analysis, at ambient conditions for 30 days from the date of this report and then discarded unless other arrangements are made. All samples were received in acceptable condition unless otherwise noted.

WI Accreditation #998022410

Prepared by, LEGEND TECHNICAL SERVICES, INC

Bach Pham Client Manager II bpham@legend-group.com

Barr Engineering Co. 4700 W 77th St	Project: 491 Project Number: 491	61253 61253.19 100 001	Work Order #: 1405361					
Minneapolis, MN 55435	Project Manager: Ms.	Andrea Nord		Date Re	ported: 12/11/14			
	ANALYTICAL REP	ORT FOR SAM	IPLES					
Sample ID	l	_aboratory ID	Matrix	Date Sampled	Date Received			
TK-1-2014-B1_3-3		1405361-01	Soil	11/20/14 14:30	11/25/14 09:45			
TK-1-2014-B2_3-3		1405361-02	Soil	11/20/14 14:40	11/25/14 09:45			
Shipping Container Informa	tion							
Default Cooler	Temperature (°C): 1.2							
Received on ice: Yes Received on melt water: No Custody seals: No	Temperature blank was p Ambient: No	present		Received on ice pack: No Acceptable (IH/ISO only): No				

Case Narrative:

The dry weight correction and dilution applies to the sample result, MDL, and RL.

Ethylbenzene; 1,3,5-trimethylbenzene; 1,2,4-trimethylbenzene; and naphthalene were present in the method blank between the MDL and RL for the BTEX analysis.

Barr Engineering Co.	Project:	49161253		
4700 W 77th St	Project Number:	49161253.19 100 001	Work Order #:	1405361
Minneapolis, MN 55435	Project Manager	: Ms. Andrea Nord	Date Reported:	12/11/14

WI(95) GRO/8015D Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
TK-1-2014-B1_3-3 (1405361-01) Soil	Sampled:	11/20/14	14:30 I	Received: 11/2	5/14 9:45					
1,2,4-Trimethylbenzene	0.39	0.026	0.0028	mg/kg dry	1	B4L0411	12/04/14	12/04/14	WI(95) GRO	
1,3,5-Trimethylbenzene	0.31	0.026	0.0064	mg/kg dry	1					
Benzene	<0.0030	0.026	0.0030	mg/kg dry	1					
Ethylbenzene	0.022	0.026	0.0066	mg/kg dry	1		"		"	B-01, J
Naphthalene	<0.023	0.52	0.023	mg/kg dry	1		"		"	T-1
Toluene	0.011	0.026	0.0042	mg/kg dry	1		"		"	J
Xylenes (total)	0.092	0.078	0.015	mg/kg dry	1		"			
Surrogate: 4-Fluorochlorobenzene	99.4			80-150 %		"	"	"	"	
TK-1-2014-B2_3-3 (1405361-02) Soil	Sampled:	11/20/14	14:40 F	Received: 11/2	5/14 9:45					
1,2,4-Trimethylbenzene	2.6	0.028	0.0030	mg/kg dry	1	B4L0411	12/04/14	12/04/14	WI(95) GRO	
1,3,5-Trimethylbenzene	1.6	0.028	0.0068	mg/kg dry	1		"			
Benzene	0.025	0.028	0.0032	mg/kg dry	1		"			J
Ethylbenzene	0.091	0.028	0.0071	mg/kg dry	1		"			B-01
Naphthalene	<0.024	0.55	0.024	mg/kg dry	1	"	"	"	"	T-1
Toluene	0.074	0.028	0.0045	mg/kg dry	1	"	"	"	"	
Xylenes (total)	0.55	0.083	0.016	mg/kg dry	1		"	"	"	
Surrogate: 4-Fluorochlorobenzene	115			80-150 %		"	"	"	"	

Barr Engineering Co. 4700 W 77th St Minneapolis, MN 55435		Proje Proje Proje		rk Order #: e Reported:	1405361 12/11/14							
PERCENT SOLIDS Legend Technical Services, Inc.												
Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
TK-1-2014-B1_3-3 (1405361-01) Soil	Sampled: 1	1/20/14	14:30 R	eceived: 11/	25/14 9:45							
% Solids	89			%	1	B4L0208	12/02/14	12/02/14	% calculation	1		
TK-1-2014-B2_3-3 (1405361-02) Soil	Sampled: 1	1/20/14	14:40 R	eceived: 11/	25/14 9:45							
% Solids	86			%	1	B4L0208	12/02/14	12/02/14	% calculatior	ı		

Barr Engineering Co.	Project:	49161253		
4700 W 77th St	Project Number:	49161253.19 100 001	Work Order #:	1405361
Minneapolis, MN 55435	Project Manager:	Ms. Andrea Nord	Date Reported:	12/11/14

WI(95) GRO/8015D - Quality Control Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	%RPD	%RPD Limit	Notes
Batch B4L0411 - EPA 5035 Soil (Purge			MDL	Grinto	20701	rtooun	/01/20	Linnito	70131 0	Latin	110100
Blank (B4L0411-BLK1)		,			Prenared	& Analyze	≏d· 12/04/1	14			
1,2,4-Trimethylbenzene	0.00713	0.025	0.0027	mg/kg wet	repuied		50. 12/04/1	1-7			B-02, J
1,3,5-Trimethylbenzene	0.00624	0.025		mg/kg wet							B-02, J
Benzene	< 0.0029	0.025		mg/kg wet							- , -
Ethylbenzene	0.0151	0.025		mg/kg wet							B-02, J
Naphthalene	0.0448	0.50	0.022	mg/kg wet							B-02, J
Toluene	< 0.0041	0.025	0.0041	mg/kg wet							
Xylenes (total)	< 0.014	0.075	0.014	mg/kg wet							
Surrogate: 4-Fluorochlorobenzene	25.2			ug/L	25.0		101	80-150			
LCS (B4L0411-BS1)				I	Prepared	& Analyze	ed: 12/04/1	14			
1,2,4-Trimethylbenzene	92.2			ug/L	100		92.2	80-120			
1,3,5-Trimethylbenzene	96.4			ug/L	100		96.4	80-120			
Benzene	98.9			ug/L	100		98.9	80-120			
Ethylbenzene	99.3			ug/L	100		99.3	80-120			
Naphthalene	90.9			ug/L	100		90.9	80-120			
Toluene	99.2			ug/L	100		99.2	80-120			
Xylenes (total)	293			ug/L	300		97.5	80-120			
Surrogate: 4-Fluorochlorobenzene	25.2			ug/L	25.0		101	80-150			
LCS Dup (B4L0411-BSD1)				I	Prepared	1: 12/04/14	Analyzed	l: 12/05/14	ŀ		
1,2,4-Trimethylbenzene	95.1			ug/L	100		95.1	80-120	3.11	20	
1,3,5-Trimethylbenzene	98.0			ug/L	100		98.0	80-120	1.60	20	
Benzene	96.7			ug/L	100		96.7	80-120	2.23	20	
Ethylbenzene	98.5			ug/L	100		98.5	80-120	0.782	20	
Naphthalene	103			ug/L	100		103	80-120	12.7	20	
Toluene	96.8			ug/L	100		96.8	80-120	2.44	20	
Xylenes (total)	295			ug/L	300		98.2	80-120	0.741	20	
Surrogate: 4-Fluorochlorobenzene	24.5			ug/L	25.0		97.8	80-150			
Matrix Spike (B4L0411-MS1)	S	ource: 1	405394-	02	Prepared	1: 12/04/14	Analyzed	l: 12/05/14			
1,2,4-Trimethylbenzene	106			ug/L	100	3.84	103	80-120			
1,3,5-Trimethylbenzene	111			ug/L	100	2.57	108	80-120			
Benzene	97.6			ug/L	100	0.00651	97.6	80-120			
Ethylbenzene	102			ug/L	100	2.79	99.6	80-120			
Naphthalene	114			ug/L	100	9.29	105	80-120			
Toluene	97.0			ug/L	100	0.526	96.5	80-120			
Xylenes (total)	302			ug/L	300	3.66	99.4	80-120			
Surrogate: 4-Fluorochlorobenzene	27.2			ug/L	25.0		109	80-150			

Barr Engineering Co.	Project:	49161253		
4700 W 77th St	Project Number:	49161253.19 100 001	Work Order #:	1405361
Minneapolis, MN 55435	Project Manager:	Ms. Andrea Nord	Date Reported:	12/11/14

PERCENT SOLIDS - Quality Control Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	%RPD	%RPD Limit	Notes
Batch B4L0208 - General Preparation											
Duplicate (B4L0208-DUP1)	S	ource:	1405318-1	0	Prepared	l & Analyze	ed: 12/02/1	4			
% Solids	79.0			%		79.0			0.00	20	
Duplicate (B4L0208-DUP2)	S	ource:	1405361-0	2	Prepared	& Analyze	ed: 12/02/1	4			
% Solids	88.0			%		86.0			2.30	20	

Barr Engineering Co.	Project:	49161253		
4700 W 77th St	Project Number:	49161253.19 100 001	Work Order #:	1405361
Minneapolis, MN 55435	Project Manager:	Ms. Andrea Nord	Date Reported:	12/11/14

Notes and Definitions

T-1	MDH does not offer certification for this parameter.
1-1	mon does not oner certification for this parameter.

- J Parameter was present between the MDL and RL and should be considered an estimated value
- B-02 Target analyte was present in the method blank between the MDL and RL.
- B-01 Analyte was present in the method blank. Sample result is less than or equal to 10 times the blank concentration.
- < Less than value listed
- dry Sample results reported on a dry weight basis
- NA Not applicable. The %RPD is not calculated from values less than the reporting limit.
- MDL Method Detection Limit
- RL Reporting Limit
- RPD Relative Percent Difference
- LCS Laboratory Control Spike = Blank Spike (BS) = Laboratory Fortified Blank (LFB)
- MS Matrix Spike = Laboratory Fortified Matrix (LFM)

Chain of 4700 West 77th	Street				4053	01				-			umbe /ater	rofC	onta	mers/	Pres	serva Soi		9. 	ŕ	C	oc_	1	of _	1	
BARR Minneapolis, M. (952) 832-2600	V 55435	-4803		1		< 1								1		T	T		T	- AUX	T	Proj Mar	ject nager:	RE	E		1
Project Number: 4916	125	3.1	1	100 001	1			1					_				1		L	1-yet	s.				-		
				replaceme	m+	'n.					1.0		#3 (BCI			1411	ed)		('saudu	+ Del	ntaine	Pro QC	ject Contac	et: J	ET	<u>.</u>	
Sample Origination State WI		-									(povi (HN)	NO ₃)	crved)	1) 84		OH)#	reserv	(pas	vial. at	GE	Df Co						
COC Number:					N	0	4	31	20	1) 42	Metal	III (H	age O	H150		od Mc	dun p	preset	Instic	- 111	ther (San	npled by	y: N	RS	12	
Location	Start Depth	Stop Depth	Depth Unit (m./tt. or in.)	Collection Date (mm/dd/yyyy)	Collection Time (hh:mm)	1	atrix		Vpe dwo	VOCs (HC	SVOC: (u Dissolved	Total Met.	General (unpreserved)#3 Diesel Range Organics (HCI	Process		VOCs (tured McOH)#1 GR0_BTEX_(tured McOR)#1	DRO (inte	Metals (ur	% Solids (p	PVDC-MTBE + Dupthelene	Total Number Of	Lab	oratory	Le	50	nd	
1. TK-1-2014-BI			3	11/20/2014	14 30		×	×					•						١	2	3	P	tna	- MTE	3E		Ŋ
2 TK-1-2014-B2			3	11/20/2014	1440		×	×											1	2	3			923			2
3.																					Γ						
4.																	Γ				Γ						1
5.								t		T		1				T	T	T	1	T	t	SI	tenates	d T.	-		1
6.																					Τ						1
7.					1	T		t		t					T	Ħ	T	Ħ	1	Ħ	t				_		- 60%+0
8.										1									-		1						Rev. 0940
9.						T		t		T							-		1		t		_				2009 81.0
10.						1		T		1											T						odv Form
Common Parameter/Container	- Preser	vation H	Key 1	telinquished By:	2)	T	Or	Ice		Date			ime	Re	ceived	I by:	-	di inte			-		D	Date	Γ	Time	VOLCIN
 Volatile Organics = BTEX, GR0 Semivolatile Organics = PAHs, Full List, Herbicide/Pesticide/Bi General = pH, Chloride, Fluorid 	PCP, Diou Bs	ins, 8270		Relinquished by	Č	F	Or	I lee	_	Date		-	30 Time	Re	ceived	by:	-						1(/2	Date 5/4	4	Time 945	DFORMS/Chair
TDS, TS, Sulfate #4 - Nutrients = COD, TOC, Phenol			5	iamples Shipped V	/IA: Air 1		nt 🖸	Fed	cral	Expr	38	S	mpler	Air	Bill	Numt		0					-0.0303	namo-O			1.Gram

0

П

G

Ш

Z

Q

Technical

Services,

Inc.

88 Empire Drive St Paul, MN 55103 Tel: 651-642-1150 Fax: 651-642-1239

Page 8 of 8

Attachment C

Waste Management Documentation

Waste Profile Sheet

P.O. Number	Customer Code	SKB	Represer	ntative	CL	CL							
I. Generator Inform	nation												
Generator Name: Enbridge P Partnership, LLC	Pipelines Limited	Generator EPA	A ID Numb	ber		SIC Code							
Generator Location: Enbridge Superior Terminal - Tank	county: Douglas	Generator Cor	ntact: Ale	x Smith									
Maintenance	Douglas	Phone: 715-	398-479	95 Fax:	832-325-55	11							
Generator Mailing Address (if dif	ferent: 1320 Grand Ave,	Generator Em	ail Addres	s: alex.smith@enbri	dge.com								
Superior, WI 54880													
Bill To Name & Address: Enbr Energy, 1100 Louisiana Av	idge Bill To #:	Billing Contact: Alex Smith											
3300, Houston, TX 77002		Phone: 715-	-398-479	95 Fax	832-325-55	11							
Invoice Contact:		Billing Email A	ddress: a	alex.smith@enbridge	e.com								
II. Waste Generatio	on Information												
Waste Name: 141124 Tank				ed rate of waste generatio		_	e time						
Generator Facility Operations an	d/or Site History: Enbridge Pip	eline Termina		s. 🗌 tons 🛛 cy 🗌	j drums		arly						
Describe the generating process	or source of contaminated soil/d	ebris and/or was	ste: Pipe	eline Terminal Activities	6								
III. Waste Composit	tion and Constituents (list all kr	nown)				Actual Rang	ge ppm						
Crude contaminated soil						100	ppm						
IV. Waste Properties	S												
Physical state: Solid Liquid Sludge Gas	☐ Yes ⊠ No ☐ 4	tange: <2	Color: Brown	Odor (describe): petroleum odor									
V. Waste Classifica				200°F									
Waste stream properties (an				Does this waste conta		Yes	🖂 No						
Does this waste stream conta hazardous waste, either in pu	ain any D, F, K, U or P listed a	as Ves	🛛 No	Is this waste lethal (by 7045.0131 Subp. 6)?	/ Minn. Rules	☐ Yes	🛛 No						
treatment residue?	are form, as a mixture, or			7040.0101 Subp. 0):									
Does this waste stream conta	ain PCB material	🗌 Yes	🛛 No	Is this waste recyclabl		🗌 Yes	🖂 No						
If yes, concentration:	ppm			Is this waste explosive	e?	🗌 Yes							
Does this waste stream conta	2019년 - 1919년 2019년 - 1919년 - 1 919년 2019년 2019년 - 1919년 - 191		No No	Is this waste infectious Is this putrescible was			No No						
Does this waste contain asbe Does this waste contain oxid		Yes Yes	⊠ No ⊠ No	ste? on debris?	☐ Yes ☐ Yes	🛛 No 🖾 No							
Does this waste contain oxid		☐ Yes	udge?	☐ Yes	No								
Please attach any available	e information or analytical test i	results that hav	No 🖾 No previou	sly been performed on t	this waste that s								
	rminations. Include MSDS's ar	nd any informat	tion from	other agencies (i.e., MP	PCA, USEPA)	-							
VI. Shipping Inform Proper DOT Shipping Name (per	ation r CFR 172.101) where applicable		September 10										
Reportable Quantity	DOT Hazard Class	UN/NA Num	nber		Packing Group								
Method of packaging: drum:	s (size)	Method of s		id dump 🗌 Rail 🔲	Other (Specify)								
	s (size)				other (opeoily)								
	Non Hazardous Waste & Approvementation of the generator and mysel		st of my kr	owledge and belief, the in	nformation contair	ed herein is a	ccurate,						
and true and that the waste is no and/or any rules adopted by the	onhazardous as defined in Title 42 Minnesota Pollution Control Ager	2, Unites States acy under Minne	Code Sec sota Statu	tion 6903, Minnesota Stat te Section 116.07.	tute Section 116.0	06, Subdivisior	n 13,						
of the waste. Therefore, if the co	s no longer valid if there are any composition of the waste stream ch behalf of the generator, hereby ag ate or untrue.	anges or potent	ially chang	ges, I or someone represe	enting the generat	or, will immed	iately						
11110	Alex Ord	*h		Environmentel	Apolyct	<u>11/24</u>	1/1 4						
Signature	Alex Smi	ex Smith Environmental Analyst rinted Name Title					14						
Signature	Printed Na			T LUC		Date							

November 21, 2014

Mr. James E. Taraldsen Barr Engineering Co. 4700 W 77th St Minneapolis, MN 55435

Work Order Number: 1405264 RE: 49161253

Enclosed are the results of analyses for samples received by the laboratory on 11/19/14. If you have any questions concerning this report, please feel free to contact me.

Results are not blank corrected unless noted within the report. Additionally, all QC results meet requirements unless noted.

All samples will be retained by Legend Technical Services, Inc., unless consumed in the analysis, at ambient conditions for 30 days from the date of this report and then discarded unless other arrangements are made. All samples were received in acceptable condition unless otherwise noted.

WI Accreditation #998022410

Prepared by, LEGEND TECHNICAL SERVICES, INC

Bach Pham Client Manager II bpham@legend-group.com

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Barr Engineering Co.	Project:	49161253			
4700 W 77th St	Project Number:	49161253.19 100 001		Work Or	rder #: 1405264
Minneapolis, MN 55435	Project Manager:	Mr. James E. Taraldse	n	Date Re	ported: 11/21/14
	ANALYTICAL F	REPORT FOR SAM	IPLES		
Sample ID		Laboratory ID	Matrix	Date Sampled	Date Received
Tank 1 road-stockpile-1		1405264-01	Soil	11/18/14 09:30	11/19/14 09:45
Tank 1 road-stockpile-1		1405264-01	Soil	11/18/14 09:30	11/19/14 09:45
Tank 1 road-stockpile-1 Shipping Container Informa	tion	1405264-01	Soil	11/18/14 09:30	11/19/14 09:45
	<u>tion</u> Temperature (°C):	1405264-01	Soil	11/18/14 09:30	11/19/14 09:45
Shipping Container Informa				11/18/14 09:30	11/19/14 09:45
Shipping Container Informa Default Cooler	Temperature (°C):		Receive		

Case Narrative:

The dry weight correction and dilution applies to the sample result, MDL, and RL.

Ethylbenzene was present in the method blank between the MDL and RL for the BTEX analysis.

Recovery of the DRO surrogate for the sample was not available due to sample dilution required from high analyte concentration. The DRO chromatogram for the sample is attached.

Barr Engineering Co.	Project:	49161253		
4700 W 77th St	Project Number:	49161253.19 100 001	Work Order #:	1405264
Minneapolis, MN 55435	Project Manager:	Mr. James E. Taraldsen	Date Reported:	11/21/14

DRO/8015D Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Tank 1 road-stockpile-1 (1405264-01) S	Soil Sam	oled: 11/	/18/14 09:30	Received	1: 11/19/14	9:45				
Diesel Range Organics	9500	450	72	mg/kg dry	100	B4K2012	11/20/14	11/21/14	WI(95) DRO	L1
Surrogate: Triacontane (C-30)				70-130 %		"	"	"	"	D-1

Barr Engineering Co.		Proje	ct:	49161253								
4700 W 77th St		Proje	ct Number:	49161253.	19 100 00	1		Wo	rk Order #:	1405264		
Minneapolis, MN 55435		Proje	ct Manager	: Mr. James	E. Taralds	en		Dat	e Reported:	11/21/14		
WI(95) GRO/8015D Legend Technical Services, Inc.												
Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
Tank 1 road-stockpile-1 (140526	Tank 1 road-stockpile-1 (1405264-01) Soil Sampled: 11/18/14 09:30 Received: 11/19/14 9:45											
Benzene	<0.0036	0.031	0.0036	mg/kg dry	1	B4K1907	11/19/14	11/20/14	WI(95) GRC)		

Ethylbenzene	0.021	0.031	0.0079	mg/kg dry	1	"	"	"	"	B-01, J
Toluene	<0.0051	0.031	0.0051	mg/kg dry	1	"		"	"	
Xylenes (total)	0.028	0.093	0.018	mg/kg dry	1	"		"	"	J
Surrogate: 4-Fluorochlorobenzene	97.9			80-150 %		"	"	"	"	

Barr Engineering Co.		Proje	ect:	49161253						
4700 W 77th St		Proje	ect Number:	49161253.1	9 100 00	1		Wo	rk Order #:	1405264
Minneapolis, MN 55435		Proje	ect Manager:	Mr. James I	E. Taralds	en		Dat	e Reported:	11/21/14
PERCENT SOLIDS Legend Technical Services, Inc.										
Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Tank 1 road-stockpile-1 (1405264-0	Tank 1 road-stockpile-1 (1405264-01) Soil Sampled: 11/18/14 09:30 Received: 11/19/14 9:45									
% Solids	81			%	1	B4K2005	11/20/14	11/20/14	% calculation	n

Barr Engineering Co.	Project:	49161253		
4700 W 77th St	Project Number:	49161253.19 100 001	Work Order #:	1405264
Minneapolis, MN 55435	Project Manager:	Mr. James E. Taraldsen	Date Reported:	11/21/14

DRO/8015D - Quality Control Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	%RPD	%RPD Limit	Notes
Batch B4K2012 - Sonication (Wisc DR	D)										
Blank (B4K2012-BLK1)				I	Prepared	l & Analyze	ed: 11/20/1	4			
Diesel Range Organics	< 8.0	8.0	1.3	mg/kg wet							
Surrogate: Triacontane (C-30)	14.6			mg/kg wet	16.0		91.3	70-130			
LCS (B4K2012-BS1)				I	Prepared	& Analyze	ed: 11/20/1	4			
Diesel Range Organics	62.8	8.0	1.3	mg/kg wet	64.0		98.1	70-120			
Surrogate: Triacontane (C-30)	16.4			mg/kg wet	16.0		103	70-130			
LCS Dup (B4K2012-BSD1)				I	Prepared	1: 11/20/14	Analyzed	: 11/21/14			
Diesel Range Organics	56.8	8.0	1.3	mg/kg wet	64.0		88.7	70-120	10.0	20	
Surrogate: Triacontane (C-30)	15.7			mg/kg wet	16.0		98.0	70-130			

Barr Engineering Co.	Project:	49161253		
4700 W 77th St	Project Number:	49161253.19 100 001	Work Order #:	1405264
Minneapolis, MN 55435	Project Manager:	Mr. James E. Taraldsen	Date Reported:	11/21/14

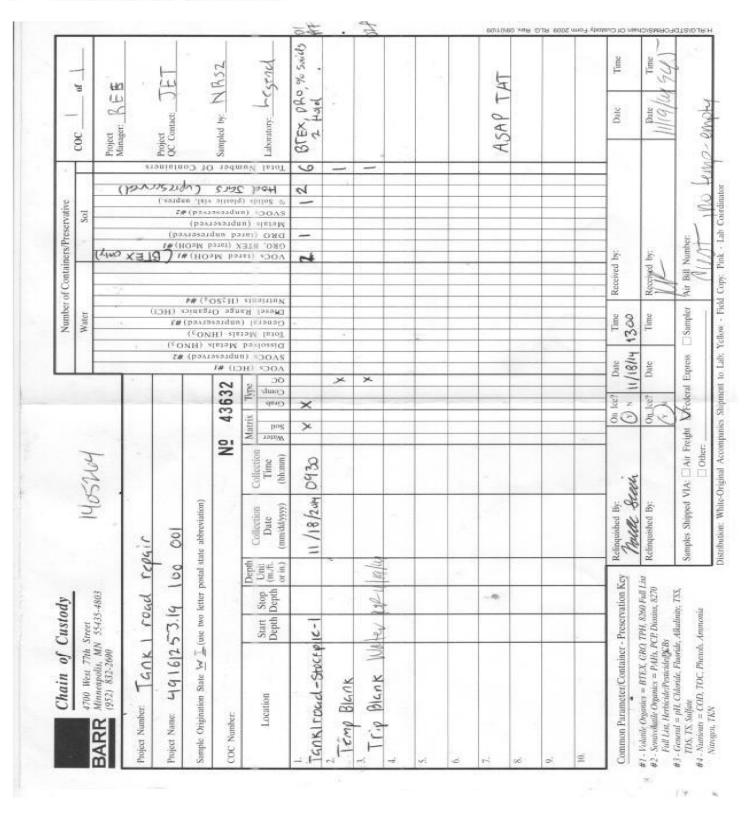
WI(95) GRO/8015D - Quality Control Legend Technical Services, Inc.

Analyta	Dec.14			Linita	Spike	Source		%REC	0/ חחח	%RPD	Notor
Analyte	Result	RL	MDL	Units	Level	Result	%REC	Limits	%RPD	Limit	Notes
Batch B4K1907 - EPA 5035 Soil (P	urge and Trap)									
Blank (B4K1907-BLK1)					Prepared	l & Analyze	ed: 11/19/1	14			
Benzene	< 0.0029	0.025	0.0029	mg/kg wet							
Ethylbenzene	0.0102	0.025	0.0064	mg/kg wet							B-02, J
Toluene	< 0.0041	0.025	0.0041	mg/kg wet							
Xylenes (total)	< 0.014	0.075	0.014	mg/kg wet							
Surrogate: 4-Fluorochlorobenzene	23.7			ug/L	25.0		95.0	80-150			
LCS (B4K1907-BS1)					Prepared	l & Analyze	ed: 11/19/1	4			
Benzene	98.9			ug/L	100		98.9	80-120			
Ethylbenzene	99.4			ug/L	100		99.4	80-120			
Toluene	99.7			ug/L	100		99.7	80-120			
Xylenes (total)	301			ug/L	300		100	80-120			
Surrogate: 4-Fluorochlorobenzene	24.0			ug/L	25.0		96.0	80-150			
LCS Dup (B4K1907-BSD1)					Prepared	I: 11/19/14	Analyzed	1: 11/20/14			
Benzene	98.4			ug/L	100		98.4	80-120	0.564	20	
Ethylbenzene	97.1			ug/L	100		97.1	80-120	2.29	20	
Toluene	98.5			ug/L	100		98.5	80-120	1.25	20	
Xylenes (total)	294			ug/L	300		97.9	80-120	2.34	20	
Surrogate: 4-Fluorochlorobenzene	24.2			ug/L	25.0		96.6	80-150			
Matrix Spike (B4K1907-MS1)	s	ource: 1	405248-	01	Prepared	I: 11/19/14	Analyzed	1: 11/20/14			
Benzene	97.8			ug/L	100	<	97.8	80-120			
Ethylbenzene	98.2			ug/L	100	0.359	97.8	80-120			
Toluene	96.3			ug/L	100	<	96.3	80-120			
Xylenes (total)	299			ug/L	300	2.26	99.0	80-120			
Surrogate: 4-Fluorochlorobenzene	23.9			ug/L	25.0		95.8	80-150			

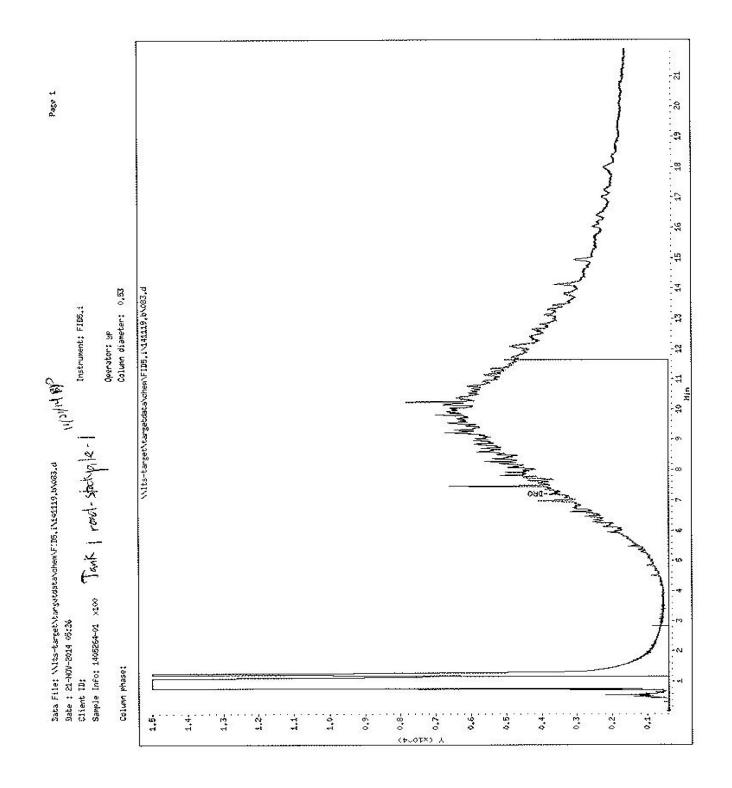
Barr Engineering Co.	Project:	49161253		
4700 W 77th St	Project Number:	49161253.19 100 001	Work Order #:	1405264
Minneapolis, MN 55435	Project Manager:	Mr. James E. Taraldsen	Date Reported:	11/21/14

PERCENT SOLIDS - Quality Control Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	%RPD	%RPD Limit	Notes
Batch B4K2005 - General Preparation											
Duplicate (B4K2005-DUP1)	S	ource: '	1405209-0	1	Prepared	l & Analyze	ed: 11/20/1	4			
% Solids	87.0			%		88.0			1.14	20	
Duplicate (B4K2005-DUP2)	s	ource: '	1405264-0	1	Prepared	l & Analyze	ed: 11/20/1	4			
% Solids	84.0			%		81.0			3.64	20	


Barr Engineering Co.	Project:	49161253		
4700 W 77th St	Project Number:	49161253.19 100 001	Work Order #:	1405264
Minneapolis, MN 55435	Project Manager:	Mr. James E. Taraldsen	Date Reported:	11/21/14

Notes and Definitions


- L1 Results in the diesel organics range are primarily due to overlap from a heavy oil range product.
- J Parameter was present between the MDL and RL and should be considered an estimated value
- D-1 The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interferences.
- B-02 Target analyte was present in the method blank between the MDL and RL.
- B-01 Analyte was present in the method blank. Sample result is less than or equal to 10 times the blank concentration.
- < Less than value listed
- dry Sample results reported on a dry weight basis
- NA Not applicable. The %RPD is not calculated from values less than the reporting limit.
- MDL Method Detection Limit
- RL Reporting Limit
- RPD Relative Percent Difference
- LCS Laboratory Control Spike = Blank Spike (BS) = Laboratory Fortified Blank (LFB)
- MS Matrix Spike = Laboratory Fortified Matrix (LFM)

L E G E N D Technical Services, Inc.

www.legend-group.com

Legend Technical Services, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

November 24, 2014

Alex Smith Enbridge Pipelines Limited Partnership, LLC Accounts Payable 1100 Louisiana Ave, Ste 3300 Houston, TX 77002

RE: CL14-0063 141124 Tank

Dear Mr. Smith,

This agreement will confirm the price and length of service for disposal and /or transportation of your non-hazardous industrial material at our facility. This agreement is for the term of the Waste Approval granted by Shamrock Landfill and is for all services ordered and performance initiated within such period and does include the disposal surcharge fees which you are obligated to pay as of the date of this agreement. Shamrock Landfill may incur additional costs including but not limited to increases in state and local taxes. Shamrock Landfill may pass these costs on to the customer only after notification to the Customer. This agreement grants Shamrock Landfill the exclusive right to dispose of the referenced waste for the term of this agreement. This agreement shall automatically renew thereafter for an additional term of 24 months "Renewal Term" unless either party gives the other party written notification of termination at least 90 days prior to the termination of the then-existing term. Shamrock Landfill will notify the customer prior to the expiration of the agreement of any rate changes prior to the start of the Renewal Term.

Payment and terms are net thirty (30) days. Interest will be charged at a rate of 1 ½% per month (18% annually) on any unpaid balance 30 days after the date of the invoice. In the event Customer terminates this Agreement prior to its expiration other than as a result of a breach by Shamrock Landfill or Shamrock Landfill terminates this agreement for Customer's breach (including nonpayment) Customer agrees to pay to Shamrock Landfill as liquidated damages a sum calculated as follows: (1) if the remaining term under this agreement is six or more months Customer shall pay its average monthly charges multiplied by six: or (2) if the remaining term under this agreement is less than six months Customer shall pay its average monthly charge multiplied by the number of months remaining in the term. Customer expressly acknowledges that in the event of an unauthorized termination of this agreement the anticipated loss to Shamrock Landfill in such event is estimated to be the amount set forth in the foregoing liquidated damages provision and such estimated value is reasonable and is not imposed as a penalty.

These prices are based on an approved waste stream composition. In the event that a non-conforming waste is received, you will be notified of additional charges, when applicable.

To accept this agreement, please sign one copy and return it to our St. Paul, MN office at Shamrock Landfill, 251 Starkey St., St. Paul, MN 55107 or Via Fax at 651-223-8197 or email to jonp@shamrocklandfill.com.

1 ax

Shamrock Landfill on Penheiter

Customer ACCEPTED BY: (name, position) DATE: 11-24-14

WASTE APPROVAL Period: 11/24/2014 to 11/24/2019

Bill To Customer

Enbridge Pipelines Limited Partnership, LLC Accounts Payable 1100 Louisiana Ave, Ste 3300 Houston, TX 77002 Service For Generator Enbridge Pipelines LLP 1320 Grand Ave Superior, WI 54880

Disposal

Waste Description: 141124 Tank

Estimated Volume: 50 YARDS / ONE TIME ONLY

Disposal Method: Secure Non-Hazardous Landfill

Treatment Method: None Expected For Conforming Waste

Pricing

Disposal

\$16.00 Per Ton

141124 Tank

Notification of Waste Acceptance

CUSTOMER INFORMATION

EPA 1D#: Enbridge Pipelines LLP Superior Terminal -Tank 1 Maintenance

1320 Grand Ave Superior, WI 54880 Contact: Alex Smith Phone: (715) 398-4795

INVOICE INFORMATION

Bill #: 2133 Enbridge Pipelines Limited Partnership, Abcounts Payable

1100 Louisiana Ave, Ste 3300 Houston, TX 77002 Contact: Alex Smith Phone: (715) 398-4795

Profile Sheet #: Waste Stream #: CL14-0063 Waste Name: 141124 Tank

Thank you for selecting SHAMROCK LANDFILL for your waste management requirements. Your waste stream has been reviewed and is acceptable for management at our facility based on the information provided in the profile sheet number listed above and conditions below. Our facility has the necessary permits to allow the storage, treatment, or disposal of this waste. The above referenced acceptance number should be listed on all shipping documents and correspondence. Please retain these documents for your records and future reference.

To schedule a shipment, or should you have any questions, please contact the facility at (218) 878-0112.

ACCEPTANCE INFORMATION

The waste stream identified by the reference above is acceptable for disposal. The anticipated frequency of shipment is 50 YARDS / ONE TIME ONLY

This waste is acceptable for delivery beginning on 11/24/2014 thru 11/24/2019 at which time the material will need to be reanalyzed and recertified.

PCB Statement: The Minnesota Pollution Control Agency encourages generators of non-hazardous PCB waste to voluntarily manage the waste as hazardous waste or to seek an alternative to land disposal such as incineration

Spill Reporting Reminder: Proper County and MPCA spill reporting procedures must be followed.

Empty Container Statement: Each shipment containing empty containers must be accompanied with a completed 'EMPTY CONTAINER CERTIFICATION FORM'.

Free Liquid Statement: Free liquids will not be placed in cells at Shamrock Landfill. Free liquids must be solidified either prior to shipment to Shamrock Landfill or at Shamrock Landfill.

Shipping Requirements A NON-HAZARDOUS certificate is required to be on file, certifying the waste is non-hazardous as specified per 40 CFR 261.4. The shipment must be accompanied with an Shamrock Landfill manifest.

AUTHORIZATION Approval:	the	ם	Date:	11/241	اير	
	/					

11/24/2014

STTB SLOQUET	
REPORT NAME:	Tons Each Load By WSID
DESCRIPTION:	Tonnage for EACH LOAD, grouped by customer
DATE RANGE:	01/01/2015 to 03/23/2015
PRINTED ON (DATE):	Monday, March 23, 2015

ENB28 Enbridge Pipelines Limited 150205 Line 5 Valve Superior WI

					Grand Total (Tons): Grand Total (Loads):		27.37 3	
				Total # of Loads: 3		Total Tons:		27.37
29048 (A)	50946	2/27/2015	CL15-0006	150205 Line 5 Valve Soil	2A	S36	1178	8.00
29043 (A)	50948	2/27/2015	CL15-0006	150205 Line 5 Valve Soil	2A	S36	1178	9.79
29042 (A)	50947	2/27/2015	CL15-0006	150205 Line 5 Valve Soil	2A	S36	1178	9.58
LOAD #	MANIFEST	ARRIVED	WASTE STREAM	WASTE NAME	CELL	SPOT.	LIFT	TONS