Lauridsen, Keld B - DNR

From: Lauridsen, Keld B - DNR

Sent: Friday, August 20, 2021 12:32 PM

To: Hassett, Mike P

Cc: Christopher, Michael L; Council, Greg; Savale, Michael; Nobile, Trevor W - DNR;

McKnight, Kevin - DNR; Chronert, Roxanne N - DNR

Subject: RE: PFAS investigation Summary Report - Ashview Terrace Apartments, BRRTS #:

02-05-564043

Hi Mike,

If needed, I would be happy to have a conference call to discuss the DNR recommendation to collect a confirmatory groundwater sampling round for PFAS from the newly installed wells at the above referenced site. The main reason for asking for an additional round of groundwater sampling is to have more data to make a more informed regulatory decision on how to proceed. Note that PFAS compounds were detected in groundwater above the proposed ES and/or PAL at the three monitoring wells sampled. Hopefully, it will also be possible to determine the actual groundwater flow direction at the site.

Let me know if you would like to discuss this further.

Have a nice weekend.

-Keld

We are committed to service excellence.

Visit our survey at http://dnr.wi.gov/customersurvey to evaluate how I did.

Keld B. Lauridsen Phone: (920) 510 8294

Keld.Lauridsen@wisconsin.gov

From: Hassett, Mike P < Mike. Hassett@gapac.com>

Sent: Friday, August 20, 2021 10:37 AM

To: Lauridsen, Keld B - DNR <Keld.Lauridsen@wisconsin.gov>; Savale, Michael <Michael.Savale@tetratech.com> **Cc:** Christopher, Michael L <Michael.Christopher@GAPAC.com>; Council, Greg <greg.council@tetratech.com>; Nobile,

Trevor W - DNR <Trevor.Nobile@wisconsin.gov>; McKnight, Kevin - DNR <Kevin.McKnight@wisconsin.gov> **Subject:** RE: PFAS investigation Summary Report - Ashview Terrace Apartments, BRRTS #: 02-05-564043

Hi Keld,

Thank you for your review and comments. Generally speaking, GP is not averse to collecting additional groundwater samples from the recently installed wells. That being said, we were wondering if you and your team would be available for a brief call to discuss the objectives of the sampling. We understand that PFAS standards in groundwater are under development and in the absence of promulgated groundwater standards, we are just trying to understand to what extent collecting additional data at this time will provide information to determine appropriate next steps.

Thank you, Mike From: Lauridsen, Keld B - DNR < Keld. Lauridsen@wisconsin.gov>

Sent: Wednesday, August 18, 2021 5:29 PM

To: Savale, Michael < Michael. Savale@tetratech.com >

Cc: Christopher, Michael L < <u>Michael.Christopher@GAPAC.com</u>>; Hassett, Mike P < <u>Mike.Hassett@gapac.com</u>>; Council, Greg < <u>greg.council@tetratech.com</u>>; Nobile, Trevor W - DNR < <u>Trevor.Nobile@wisconsin.gov</u>>; McKnight, Kevin - DNR < <u>Kevin.McKnight@wisconsin.gov</u>>

Subject: RE: PFAS investigation Summary Report - Ashview Terrace Apartments, BRRTS #: 02-05-564043

Sent by an external sender

Hi Mike,

DNR has reviewed the PFAS soil and groundwater sampling results for the above referenced site provided in the *PFAS Investigation Summary Report* received via email on July 22, 2021. No hard copy is needed at this time.

Based on this review, DNR recommends that the three newly installed monitoring wells be resampled for PFAS in order to confirm the initial analytical results. Groundwater elevations should also be determined in order to establish the actual groundwater flow direction, if possible, based on the existing monitoring well network.

It is noted that the monitoring well screens were fully submerged below the water table when groundwater elevations were measured for two of three the monitoring wells.

When the monitoring wells have been resampled, it will be determined if any additional work is needed related to PFAS.

Let me know if you would like to discuss anything further.

Thanks,

-Keld

We are committed to service excellence.

Visit our survey at http://dnr.wi.gov/customersurvey to evaluate how I did.

Keld B. Lauridsen Phone: (920) 510 8294

Keld.Lauridsen@wisconsin.gov

From: Savale, Michael < Michael. Savale@tetratech.com >

Sent: Thursday, July 22, 2021 3:52 PM

To: Lauridsen, Keld B - DNR < Keld. Lauridsen@wisconsin.gov>

Cc: Christopher, Michael L < <u>Michael.Christopher@GAPAC.com</u>>; Hassett, Mike < <u>mike.hassett@gapac.com</u>>; Council,

Greg < Greg. Council@tetratech.com>

Subject: PFAS investigation Summary Report - Ashview Terrace Apartments, BRRTS #: 02-05-564043

Hi Keld,

Please see the attached PFAS Investigation Summary Report for the Ashview Terrace Apartments (BRRTS #: 02-05-564043), as prepared by Tetra Tech Inc for Georgia-Pacific LLC. This report will also be uploaded to the BRRTS site. Please advise if a hard copy is required.

Thank you, Mike Savale

Mike Savale | Senior Project Geologist

Mobile (810) 923-8076 | Fax (734) 213-5008 | michael.savale@tetratech.com

Tetra Tech | Leading with Science® | ECA

710 Avis Drive, Suite 100 | Ann Arbor, MI 48108 | tetratech.com

This message, including any attachments, may include privileged, confidential and/or inside information. Any distribution or use of this communication by anyone other than the intended recipient is strictly prohibited and may be unlawful. If you are not the intended recipient, please notify the sender by replying to this message and then delete it from your system.

Please consider the environment before printing. Read more

LETTER OF TRANSMITTAL

710 Avis Drive Suite 100

July 22, 2021

Ann Arbor, Michigan 48108

Telephone (734) 665-6000 Fax: (734) 213-5008

TO: Mr. Keld Lauridsen
Hydrogeologist
Wisconsin Department of Natural Resources

2984 Shawano Avenue

Green Bay, Wisconsin 54313-6727

We are sending you the following:

No of Copies		Description					
1	PFAS Investigation Summary Repo BRRTS #02-05-564043	ort, Ashview Terrace Apartments,					
Transmitted as c ☐ For approva ☐ For your use ☐ As requested ☐ For review a REMARKS:	1	Approved as submitted Approved as noted Returned for corrections Other					
Transmitted by:		⊠ Email					
First Class N	Mail	Signed: Michael Savale, Tetra Tech					
Federal Exp	ress	cc: Michael Christopher, Georgia-Pacific					
Courier		Michael Hassett, Georgia-Pacific					
Registered N	Mail	Gregory Council, Tetra Tech					
UPS							

July 22, 2021

Mr. Michael Christopher Senior Remediation Project Manager Global Remediation & Environmental Services LLC 1560 Bay Area Boulevard, Suite 200 Friendswood, Texas 77546 (281)947-0083

RE: **PFAS Investigation Summary Report Ashview Terrace Apartments** Ashwaubenon, Wisconsin BRRTS # 02-05-564043

Dear Mr. Christopher,

Tetra Tech completed a groundwater investigation for polyfluoroalkyl and perfluoroalkyl substances (PFAS) at the Ashview Terrace Apartments in Ashwaubenon, Wisconsin (Figure 1). The investigation was conducted from May 3 through 6, 2021, in response to an August 17, 2020 letter from the Wisconsin Department of Natural Resources (WDNR) regarding "Reminder to Include Evaluation of Emerging Contaminants in Site Investigation." The investigation was conducted in general accordance with the WDNR-approved work plan, PFAS Site Investigation Work Plan, Ashview Terrace Apartments, Ashwaubenon, WI, dated November 16, 2020 (work plan), and in adherence to the Tetra Tech Standard Operating Procedure for PFAS sample acquisition, Attachment 1.

The Ashview Terrace Apartments (Site) PFAS investigation, as specified in the work plan, included the installation of three monitoring wells and the collection groundwater samples. In addition, one soil sample was collected from the southeastern soil boring location, SB-21-02. This report summarizes the Site PFAS investigation and includes a discussion of the Wisconsin PFAS regulatory background, soil boring and well installation methods, sampling and analytical methods, sample analytical results, investigation derived waste (IDW), and the proposed next steps.

REGULATORY BACKGROUND

In June 2019, the Wisconsin Department of Health Services (WDHS) developed recommended groundwater standards for two PFAS, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS). The WDHS recommended an Enforcement Standard of 20 ng/L and a Preventive Action Limit of 2 ng/L for both PFOA and PFOS, individually and combined. In November 2020, the WDHS developed recommended groundwater standards for 16 additional PFAS. However, on March 1, 2021, the WDNR removed perfluorooctadecanoic acid (PFODA) from the list of PFAS with WDHS recommended standards. The current WDHS recommended standards for PFAS are summarized in the following table.

PFAS with Assigned WDHS Standards	WDHS Recommended Enforcement Standard	WDHS Recommended Preventative Action Limit
Perfluorooctane sulfonamide (PFOSA)	20 ng/L	2 ng/L
Hexafluoropropylene oxide dimer acid (HPFO-DA)	300 ng/L	30 ng/L
N-Ethyl perfluorooctane sulfonamidoethanol (NEtFOSE)	20 ng/L	2 ng/L
Perfluorobutanoic acid (PFBA)	10,000 ng/L	2,000 ng/L
Perfluorobutanesulfonic acid (PFBS)	450,000 ng/L	90,000 ng/L
Perfluorododecanoic acid (PFDoA)	500 ng/L	100 ng/L
Perfluorohexanoic acid (PFHxA)	150,000 ng/L	30,000 ng/L
Perfluorooctane sulfonic acid (PFOS)	20 ng/L	2 ng/L
Perfluorooctanoic acid (PFOA)	20 ng/L	2 ng/L
Perfluorotetradecanoic acid (PFTeA)	10,000 ng/L	2,000 ng/L
Perfluoroundecanoic acid (PFUnA)	3,000 ng/L	600 ng/L
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	3,000 ng/L	600 ng/L
Perfluorohexanesulfonic acid (PFHxS)	40 ng/L	4 ng/L
Perfluorononanoic acid (PFNA)	30 ng/L	3 ng/L
Perfluorodecanoic acid (PFDA)	300 ng/L	60 ng/L
N-Ethyl perfluorooctane sulfonamide (NEtFOSA)	20 ng/L	2 ng/L
N-Ethyl perfluorooctane sulfonamidoacetic acid (NEtFOSAA)	20 ng/L	2 ng/L

For PFOSA, NEtFOSE, NEtFOSA, NEtFOSAA, PFOS, and PFOA (collectively these will be called the "select six PFAS"), the WDHS has recommended an Enforcement Standard of 20 ng/L and Preventive Action Limit of 2 ng/L for individual and combined concentrations of these select six PFAS. At this time, the WDNR has not amended *Table I - Drinking Water & Groundwater Quality Health Standards/Advisory Levels* to include enforceable standards for any PFAS. The current list of 33 PFAS compounds the WDNR expects to be included in PFAS sample analysis is presented on the Wisconsin DNR PFAS List 1.1.21 found in the Wisconsin DNR PFAS Updates, dated March 1, 2021 (Attachment 2).

SOIL BORING METHODS

Prior to drilling, several precautionary measures were taken. Utility locating was completed by utilizing the Diggers Hotline and a private utility locating service. To avoid property damage, ground protection mats were used when moving the drill rig over unpaved areas. While drilling was in progress, the work areas were delineated using traffic cones and caution tape. As an additional precaution, the upper five feet of soil borings SB-21-02 and SB-21-03 were completed using hand tools.

Soil borings were completed at three locations depicted on **Figure 2.** At each boring location, continuous soil samples were collected by sonic drilling methods using 6-inch diameter drill casing and 4-inch diameter core barrel. The soil samples were collected into the 4-inch diameter core barrel and placed into plastic sleeves. The plastic sleeves were placed on a table and cut open to access the recovered soil samples, which then were photographed and logged by the onsite Tetra Tech geologist. Each soil sample was described using the Unified Soil Classification System. Moisture content, sample recovery, and other notable observations were documented. This information was used to finalize depths for well installation. WDNR Soil Boring Logs (WDNR Form 4400-122) are included as **Attachment 3**.

MONITORING WELL INSTALLATION METHODS

The work plan included the installation of three monitoring wells, one monitoring well installed in the western portion of the Site to evaluate upgradient groundwater PFAS concentrations and two monitoring wells installed within the eastern portion of the Site to evaluate downgradient groundwater PFAS concentrations. With the exception of monitoring well, MW-21-03, all wells were installed at the general locations specified in the work plan. Monitoring well, MW-21-03 was relocated approximately 85-feet to the north-northeast due to the presence of underground utilities at the original planned location. The monitoring well installation locations are depicted on **Figure 2**.

The monitoring wells were installed in the soil sampling boreholes via 6-inch diameter drill casing. With the exception of MW-21-02 (discussed below), the monitoring wells were installed in general accordance with the procedures and specifications described in Chapter NR 141 Wisconsin Administrative Code. Monitoring wells were constructed with two-inch diameter polyvinyl chloride (PVC) casing and 0.010-inch slot, PVC well screen. The well annulus was filled above the top of the screen using well sand pack and then plugged to one foot below surface grade with bentonite chips. The monitoring wells were finished flush with the surface grade and covered with eight-inch protective covers set in concrete. Monitoring well construction details are summarized on **Table 1.** WDNR Monitoring Well Construction Forms (WDNR Form 4400-113A) are included as **Attachment 4.** Following installation, the monitoring wells were developed, by purging the wells with a pump to remove fine sediment. Monitoring Well Development Forms (WDNR Form 4400-113B) are included as **Attachment 5.**

Due the subsurface conditions observed while installing MW-21-02, the final well construction deviated from the procedures and specifications described in Chapter NR 141 Wisconsin Administrative Code. While collecting the continuous soil sample at this boring location (SB-21-02), a grey, clay-like soil was intermittently observed in the vadose zone from 2.5 to 4 feet below the ground surface (bgs). Past site investigations indicate the presence of paper residuals in this area. In addition, approximately two inches of saturated sand was observed 20-feet bgs, at the top of a 3.5-foot-thick clay interval. It was determined that the two-inch layer of saturated sand most likely would not produce enough groundwater for sample collection and that the well would be screened into a 1.5-foot interval of saturated sand occurring below the clay. With the presence of potential paper residual in the soil boring, the well was constructed using a three-foot screen placed only within the zone of saturation below the clay to avoid breaching the upper confining unit.

DECONTAMINATION PROCEDURES

All drilling equipment was decontaminated before being brought to the Site and between each of the boring locations. Drilling tooling was decontaminated using a pressure washer and Alconox detergent.

All non-disposable sampling equipment was decontaminated prior to use and after each use. Non-disposable sampling equipment was decontaminated using Alconox detergent and rinsed with distilled water. The decontamination water was containerized for offsite disposal as described below.

MONITORING WELL SURVEY

After the monitoring well installations were completed, a professional survey was conducted to measure the geographic location of each well, including the top of well casing elevation and the adjacent ground elevation. Survey data for all monitoring wells is included in **Table 1**.

SOIL SAMPLING AND ANALYTICAL METHODS

While retrieving the continuous soil sample at soil boring SB-21-02, a grey, clay-like soil was intermittently

observed in the vadose zone from 2.5 to 4 feet bgs. Past site investigations indicate the presence of paper residuals in this area. A grab sample of the grey, clay-like soil was collected into a clean, pre-labeled, laboratory-provided high-density polyethylene (HDPE) container and placed into an ice-packed cooler. The sample was shipped to Vista Analytical Laboratory (Vista) and analyzed for the 33 PFAS included on the Wisconsin DNR PFAS List 1.1.21 (**Attachment 2**), via a modified EPA Method 537 utilizing isotope dilution. The laboratory analytical report for the soil sample is included in **Attachment 6**.

GROUNDWATER SAMPLING AND ANALYTICAL METHODS

Prior to groundwater sampling, the static water level was measured at each well. Field personnel gauged depth-to-water from the top of the well casings with a water-level interface probe accurate to 0.01 foot. Measurements were subtracted from top-of-casing elevations to obtain groundwater elevations, provided in **Table 1.**

Groundwater samples were collected from the monitoring wells using low-flow techniques. Groundwater was purged using a peristatic pump until a stabilized water level and stabilized field parameters were achieved. Field parameters including pH, specific conductance, temperature, oxidation-reduction potential (ORP), dissolved oxygen (DO), and turbidity were measured using YSI ProDSS multi-parameter water quality meter. The instrument was calibrated according to the manufacturer's specifications prior to sampling. To avoid cross-contamination between wells, new HDPE and silicone tubing was used for each monitoring well. The water quality parameters were collected at three-minute intervals until all parameters had stabilized for three consecutive readings and were within the following limits:

• pH (0.1 unit)

ORP (10 millivolts)

• Specific conductance (3%)

Turbidity (10%)

• Temperature (3%)

• DO (10%)

Drawdown was maintained at 0.3 foot or less during purging and sampling. Groundwater monitoring field data are included in **Table 2**.

Following stabilization, groundwater samples were collected directly into clean, pre-labeled, laboratory-provided HDPE containers and placed into an ice-packed cooler. Samples were shipped to Vista and analyzed for the 33 PFAS included on the Wisconsin DNR PFAS List 1.1.21 (**Attachment 2**), via a modified EPA Method 537 utilizing isotope dilution. The laboratory analytical report for the groundwater samples is included in **Attachment 6**.

QUALITY ASSURANCE/QUALITY CONTROL (QA/QC) SAMPLES

QA/QC samples were collected to assure PFAS contamination was not introduced to the samples from the drilling equipment, sample collection equipment, or the environment. QA/QC samples are also used to assess the accuracy and reliability of concentration results. QA/QC sample collection methodology is provided below:

- Drilling Activities
 - After drilling tooling was decontaminated, one equipment rinsate blank sample was collected from the drill rig tooling. The equipment blank was collected by pouring laboratory-provided reagent-free water over the drilling tooling and into laboratory supplied containers.
- Sample Collection Events

- One equipment rinsate blank sample was collected during groundwater sampling. Reusable sampling equipment was decontaminated before and after each use. Following decontamination, laboratory provided reagent-free water poured over non-disposable equipment (water level meter) and was run through and over disposable equipment (tubing and nitrile gloves). The rinsate was collected into laboratory supplied containers.
- One field blank sample was collected concurrently with the groundwater sampling equipment rinsate blank sample.
- One groundwater field duplicate sample was collected concurrently with the MW-21-03 groundwater sample.
- One soil field duplicate sample was collected concurrently with the SB-21-02 soil sample.

QA/QC samples were collected into laboratory-provided HDPE containers and placed into an ice-packed cooler. Samples were shipped to Vista and analyzed for the 33 PFAS included on the Wisconsin DNR PFAS List 1.1.21 (Attachment 2), via a modified EPA Method 537 utilizing isotope dilution. The laboratory analytical report for the QA/QC samples is included in **Attachment 6**.

SOIL ANALYTICAL RESULTS

The PFAS analytical results associated with the gray, soil like material encounter at soil boring SB-21-02 indicate the following:

- PFOS was detected above the reporting limit (RL) at 1.69 nanograms per gram (ng/g).
- PFOS was detected above the RL in the SB-21-02 duplicate soil sample at 2.30 ng/g.
- No PFAS were detected in the equipment rinsate blank sample collected from the drill rig tooling.

The soil PFAS analytical results are presented in **Table 3**. The soil laboratory analytical report is provided in **Attachment 6**.

GROUNDWATER ELEVATION MEASUREMENTS

Prior to well installation, it was expected that groundwater flow would be toward the southeast. This was based on local topography and the presence of the Fox River (a major groundwater sink) located 1.4 miles to the southeast of the Site. The water levels measured at the three Site wells did not exhibit the expected pattern. The northwestern well (MW-21-03) had the lowest water level (617.99 ft above mean sea level [amsl]) and the southeastern well (MW-21-02) had a slightly higher water level (619.01 ft amsl). Groundwater was encountered at a much higher elevation (631.84 ft amsl) in the northeastern well (MW-21-01), suggesting the possible presence of perched groundwater at this location. Therefore, groundwater flow direction at the Site could not be determined from the water level data.

GROUNDWATER ANALYTICAL RESULTS

The PFAS analytical results associated with the groundwater samples collected from the monitoring wells indicate the following:

- PFAS were detected in all 3 monitoring wells.
- The total concentration of the select six PFAS was above the WDHS recommended Preventive Action Limit but below the recommended Enforcement Standard in MW-21-01 and MW-21-02.
- The total concentration of the select six PFAS was detected above the WDHS recommended

Preventive Action Limit and the WDHS recommended Enforcement Standard in monitoring well MW-21-03. PFOA had the highest concentration of the select six PFAS, with a concentration of 23.4 ng/L which slightly exceeds the 20 ng/L Enforcement Standard.

- The duplicate sample collected at MW-21-03 indicated maximum percent difference of 22.8 percent in PFAS detections.
- No PFAS were detected in the equipment rinsate blank sample or the field blank sample collected during groundwater sampling.

A summary of the PFAS groundwater sampling results is presented in **Table 4**. The laboratory analytical report for groundwater samples is provided in **Attachment 6**. PFAS detections exceeding the WDHS recommended Preventive Action Limits for groundwater are presented on **Figure 2**.

INVESTIGATION DERVIVED WASTE

Soil cuttings generated during well installations were containerized in 55-gallon drums. Well purge water and equipment decontamination water generated during monitoring well installation and groundwater sampling were containerized in separate 55-gallon drums. Drums were properly labeled identifying their contents and staged on-site pending transport and disposal. To characterize the waste, composite samples were collected from both the liquid and solid IDW. The solid composite sample was submitted to Pace Analytical for the following analysis:

- Toxic Characteristic Leaching Procedure (TCLP) Resource Conservation and Recovery Act (RCRA) Volatile Organic Compounds (VOCs)
- TCLP RCRA Semi-volatile Organic Compounds (SVOCs)
- TCLP RCRA metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver)
- Polychlorinated Biphenyls (PCBs)

The liquid composite sample was submitted to Pace Analytical for the following analysis:

- RCRA VOCs
- RCRA SVOCs
- RCRA metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver)
- PCBs

For solid IDW PFAS characterization, a composite sample was collected from the drums and submitted to Vista for analysis via a modified EPA Method 537. The liquid IDW is comprised primarily of groundwater generated during well development and is assumed to contain PFAS at similar concentrations. The laboratory analytical reports for the waste characterization samples are provided in **Attachment 7**.

Waste characterization analytical results indicate that the solid IDW contains no detectable PFAS and that it is non-hazardous; not regulated by RCRA or the Toxic Substances Control Act (TSCA).

Analysis of the liquid IDW characterization samples indicate that it is non-hazardous; not regulated by RCRA or TSCA. The analysis of groundwater samples collected from the monitoring wells indicated the

presence of PFAS. This IDW will be transported off-Site for treatment/disposal at an appropriate facility.

SUMMARY AND PROPOSED NEXT STEPS

Low concentrations of PFAS were measured in groundwater at all three wells at the Site. Only one well (MW-21-03) had PFAS concentrations that exceeded the WDHS recommended Enforcement Standard. At this well, the PFOA concentration was 23.4 ng/L and the recommended Enforcement Standard is 20 ng/L. This well was intended to be an upgradient well, but the expected west-to-east groundwater flow direction could not be confirmed from the groundwater levels collected.

A soil sample was collected from an interval of soil boring SB-21-02 that appeared to contain paper residuals. This sample had a very low detection of PFOS and does not appear to represent a significant source.

Given the relatively low concentrations of PFAS measured during this investigation and the absence of enforceable PFAS standards in Wisconsin, no further investigation related to PFAS is recommended at this time.

Tetra Tech appreciates the opportunity to provide our services to GP. If you have any questions regarding the information herein, please contact Michael Savale at 810.923.8076 or michael.savale@tetratech.com.

Sincerely,

Michael Savale

Senior Project Geologist

Michael Daval

Mark A. Manthey, P.G

Associate Hydrogeologist

Table 1 - Well Construction and Water Levels

Table 2 - Groundwater Monitoring Field Data

Table 3 - Soil Analytical Results

Table 4 - Groundwater Analytical Results

Figure 1 - Site Location Map

Figure 2 - Groundwater Analytical Results and Soil Boring Locations

Attachment 1 - Tetra Tech Standard Operating Procedure: Sample Acquisition for PFCs and Other

Polyfluoroalkyl Substance Analysis

Attachment 2 - Wisconsin DNR PFAS Updates

Attachment 3 - Soil Boring Logs

Attachment 4 - Monitoring Well Construction Forms

Attachment 5 - Monitoring Well Development Forms

Attachment 6 - Soil and Groundwater Analytical Reports

Attachment 7 - Investigation Derived Waste Analytical Reports

Table 1 Well Construction and Water Levels

Table 1

Well Construction and Water Levels

PFAS Investigation Summary Report Ashview Terrace Apartments Ashwaubenon, Wisconsin

Well Name	Soil Boring Name	Date Installed	Northing	Easting	TOC Elevation (feet amsl)	Surface Elevation (feet amsl)	Screen Length (feet)	Screen Slot Size	(bgs	,	(, , , ,	,	Well Casing Diameter (inches)	Well Casing Material	Stickup or Flush Mount (S/F)	Depth to Water 5/6/21 (feet)	Groundwater Elevation 5/6/21 (feet amsl)
									Тор	Bottom	Тор	Bottom					
MW-21-01	SB-21-01	5/3/2021	558055.22	85188.41	643.38	643.79	5	10	13	18	630.79	625.79	2	PVC	F	11.54	631.84
MW-21-02	SB-21-02	5/5/2021	557836.76	85071.85	638.34	638.72	3	10	23	26	615.72	612.72	2	PVC	F	19.33	619.01
MW-21-03	SB-21-03	5/4/2021	558266.87	84719.66	642.51	642.96	5	10	23	28	619.96	614.96	2	PVC	F	24.52	617.99

Notes:

Coordinates are based on WisCRS-Brown County, NAD83(2011)
Elevations are based on NAVD88 vertical Datum
TOC = Top of Casing
amsl = Above Mean Sea Level
bgs = Below Ground Surface
PVC = Polyvinyl chloride

Table 2 Groundwater Monitoring Field Data

Table 2 Groundwater Monitoring Field Data

PFAS Investigation Summary Report Ashview Terrace Apartments Ashwaubenon, Wisconsin

Well Name	Groundwater Sample Name	Sample Date	Temp (°C)	Specific Conductance (mS/cm)	DO (mg/L)	pH (S.U.)	ORP (mV)	Turb (NTU)	Approximate Pump Rate
	name			(mL/min)					
			3%	3%	10%	0.1	10 mV	10%	
MW-21-01	MW-21-01-210506	5/6/2021	9.7	5.218	2.75	6.99	-181.0	7.41	100
MW-21-02	MW-21-02-210506	5/6/2021	12.7	1.388	1.69	7.19	-20.4	4.49	100
MW-21-03	MW-21-03-210505	5/5/2021	11.8	0.882	4.70	7.20	-121.9	29.49	110

Notes:

Temp (°C) = Temperature in degrees Celsius

pH (S.U.) = pH represented in pH units

Specific Conductance (mS/cm) = Conductivity represented in microsiemens per centimeter

ORP (mV) = Oxidation reduction potential represented in millivolts

DO (mg/L) = Dissolved oxygen represented in milligrams per liter

Turb (NTU) = Turbidity represented in nephelometric turbidity units

mL/min = milliliters per minute

ft amsl = feet above mean sea level

ft below TOC = feet below the top of well casing

Table 3 Soil Analytical Results

Table 3 Soil Analytical Results

PFAS Investigation Summary Report Ashview Terrace Apartments Ashwaubenon, Wisconsin

Parameter	CAS Number	Units	Non-Industrial Not- to-Exceed Direct	Sample Location and Date
i arameter	OAS Number	Onits	Contact Residual Contaminant Levels	SB-21-02 5/4/21
Perfluoroalkyl Carboxylates/Carboxylic Acids (PFCA)				3/4/21
Perfluorobutanoic acid (PFBA)	375-22-4	ng/g		<0.261
Perfluoropentanoic acid (PFPeA)	2706-90-3	ng/g		<0.247
Perfluorohexanoic acid (PFHxA)	307-24-4	ng/g		<0.625
Perfluoroheptanoic acid (PFHpA)	375-85-9			<0.025
Perfluoroctanoic acid (PFOA)		ng/g		
,	335-67-1	ng/g	1,260	<0.282
Perfluorononanoic acid (PFNA)	375-95-1	ng/g		<0.369
Perfluorodecanoic acid (PFDA)	335-76-2	ng/g		<0.639
Perfluoroundecanoic acid (PFUnDA/PFUdA)	2058-94-8	ng/g		<0.306
Perfluorododecanoic acid (PFDoA)	307-55-1	ng/g		<0.400
Perfluorotridecanoic acid (PFTrDA)	72629-94-8	ng/g		<0.606
Perfluerosellul Sulfanata (Sulfania Asida (PESA)	376-06-7	ng/g		<0.596
Perfluoroalkyl Sulfonates/Sulfonic Acids (PFSA) Perfluorobutane sulfonic acid (PFBS)	375-73-5	ng/g	1,260,000	<0.429
Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	ng/g	1,200,000	<0.318
Perfluorohexane sulfonic acid (PFHxS)	355-46-4			<0.400
		ng/g		
Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	ng/g	4.000	<0.618
Perfluorooctane sulfonic acid (PFOS)	1763-23-1	ng/g	1,260	1.69
Perfluoronone sulfonic acid (PFNS)	68259-12-1	ng/g		<0.610
Perfluorodecane sulfonic acid (PFDS)	335-77-3	ng/g		<0.737
Perfluoroalkane Sulfonamides/Sufonamidoacetic Acids, Sulfonamido	79780-39-5	ng/g		<0.988
Perfluorooctane sulfonamide (PFOSA)	754-91-6	ng/g		<0.443
N-methyl perfluorooctane sulfonamide (NMeFOSA)	31506-32-8	ng/g		<3.10
N-ethyl perfluorooctane sulfonamide (NEtFOSA)	4151-50-2	ng/g		<4.90
N-methyl perfluorooctane sulfonamidoacetic acid (NMeFOSAA)	2355-31-9			<0.376
	2991-50-6	ng/g		
N-ethyl perfluorooctane sulfonamidoacetic acid (NEtFOSAA)		ng/g		<0.690 <3.00
N-methyl perfluorooctane sulfonamidoethanol (NMeFOSE)		ng/g		
N-ethyl perfluorooctane sulfonamidoethanol (NEtFOSE) Fluorotelomer Substances (FTS)	1691-99-2	ng/g		<3.45
4:2 Fluorotelomer sulfonic acid (4:2FTS)	757124-72-4	ng/g		<0.408
6:2 Fluorotelomer sulfonic acid (6:2FTS)	27619-97-2	ng/g		<0.635
8:2 Fluorotelomer sulfonic acid (8:2FTS)	39108-34-4	ng/g		<0.527
Replacement Chemicals	22.23 3. 1			
Hexafluoropropylene oxide dimer acid (HFPO-DA)	13252-13-6	ng/g		<0.537
4,8-Dioxa-3H-perfluorononanioc acid (ADONA)	919005-14-4	ng/g		<0.343
9-chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	756426-58-1	ng/g		<0.700
11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11CI-PF3OUdS)	763051-92-9	ng/g		<1.11

PFAS laboratory analysis was completed using Modified USEPA Method 537.

Bold = value exceeds the Method Detection Limit

J = The amount detected is greater than the Method Detection Limit, but less than the Reporting Limit.

Q = The ion transition ratio is outside of the acceptance criteria.

Table 4 Groundwater Analytical Results

Table 4

Groundwater Analytical Results

PFAS Investigation Summary Report Ashview Terrace Apartments Ashwaubenon, Wisconsin

		Units	D d. d	D d. d	Sample Location and Date			
Parameter	CAS Number		Recommended Enforcement	Recommended Preventive	MW-21-01	MW-21-02	MW-21-03	
			Standard	Action Limit	5/6/21	5/6/21	5/5/21	
Perfluoroalkyl Carboxylates/Carboxylic Acids (PFCA)								
Perfluorobutanoic acid (PFBA)	375-22-4	ng/L	10,000	2,000	18.8	3.69	15.2	
Perfluoropentanoic acid (PFPeA)	2706-90-3	ng/L			25.2	2.92	5.48	
Perfluorohexanoic acid (PFHxA)	307-24-4	ng/L	150,000	30,000	15.7	1.89 (J)	3.97	
Perfluoroheptanoic acid (PFHpA)	375-85-9	ng/L			8.43	1.20 (J)	3.37	
Perfluorooctanoic acid (PFOA)	335-67-1	ng/L	20	2	12.1	<1.15	23.4	
Perfluorononanoic acid (PFNA)	375-95-1	ng/L	30	3	<0.577	<0.596	0.687 (J)	
Perfluorodecanoic acid (PFDA)	335-76-2	ng/L	300	60	<0.920	<0.949	<0.979	
Perfluoroundecanoic acid (PFUnDA/PFUdA)	2058-94-8	ng/L	3,000	600	<1.37	<1.42	<1.46	
Perfluorododecanoic acid (PFDoA)	307-55-1	ng/L	500	100	<0.802	<0.828	<0.854	
Perfluorotridecanoic acid (PFTrDA)	72629-94-8	ng/L			<1.13	<1.17	<1.20	
Perfluorotetradecanoic acid (PFTeDA)	376-06-7	ng/L	10,000	2,000	<0.833	<8.59	<0.886	
Perfluoroalkyl Sulfonates/Sulfonic Acids (PFSA)								
Perfluorobutane sulfonic acid (PFBS)	375-73-5	ng/L	450,000	90,000	169	3.64	122	
Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	ng/L			<0.925	<0.954	<0.984	
Perfluorohexane sulfonic acid (PFHxS)	355-46-4	ng/L	40	4	1.44 (J,Q)	<1.13	<1.17	
Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	ng/L			<2.52	<2.60	<2.69	
Perfluorooctane sulfonic acid (PFOS)	1763-23-1	ng/L	20	2	1.39 (J,Q)	<1.12	3.12	
Perfluoronone sulfonic acid (PFNS)	68259-12-1	ng/L			<1.44	<1.49	<1.53	
Perfluorodecane sulfonic acid (PFDS)	335-77-3	ng/L			<2.76	<2.85	<2.94	
Perfluorododecanesulfonic acid (PFDoS)	79780-39-5	ng/L			<1.63	<1.68	<1.73	
Perfluoroalkane Sulfonamides/Sufonamidoacetic Acids, Sulfonamidoet	hanols (FASA)		Ĭ					
Perfluorooctane sulfonamide (PFOSA)	754-91-6	ng/L	20	2	3.91	2.22 (Q)	3.70	
N-methyl perfluorooctane sulfonamide (NMeFOSA)	31506-32-8	ng/L			<7.00	<7.22	<7.45	
N-ethyl perfluorooctane sulfonamide (NEtFOSA)	4151-50-2	ng/L	20	2	<7.46	<7.70	<7.94	
N-methyl perfluorooctane sulfonamidoacetic acid (NMeFOSAA)	2355-31-9	ng/L			<0.966	<0.996	<1.03	
N-ethyl perfluorooctane sulfonamidoacetic acid (NEtFOSAA)	2991-50-6	ng/L	20	2	<2.59	<2.67	<2.76	
N-methyl perfluorooctane sulfonamidoethanol (NMeFOSE)	24448-09-7	ng/L			<8.18	<8.44	<8.70	
N-ethyl perfluorooctane sulfonamidoethanol (NEtFOSE)	1691-99-2	ng/L	20	2	<5.67	<5.85	<6.04	
Fluorotelomer Substances (FTS)			ì					
4:2 Fluorotelomer sulfonic acid (4:2FTS)	757124-72-4	ng/L			<1.10	<1.14	<1.17	
6:2 Fluorotelomer sulfonic acid (6:2FTS)	27619-97-2	ng/L			1.81	<1.02	5.63	
8:2 Fluorotelomer sulfonic acid (8:2FTS)	39108-34-4	ng/L			<2.29	<2.36	<2.44	
Replacement Chemicals	10050 10 5				0.004	0.054	0.074	
Hexafluoropropylene oxide dimer acid (HFPO-DA)	13252-13-6	ng/L	300	30	<0.634	<0.654	<0.674	
4,8-Dioxa-3H-perfluorononanioc acid (ADONA)	919005-14-4	ng/L	3,000	600	<0.869	<0.896	<0.925	
9-chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	756426-58-1	ng/L			<0.848	<0.875	<0.903	
11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11CI-PF30UdS)	763051-92-9	ng/L	20	-	<0.436	<0.450	<0.464	
*Total combined PFOSA, NEtFOSE, NEtFOSA, NEtFOSAA, PFOA	ana PFUS	ng/L	20	2	17.40	2.22	30.22	

PFAS laboratory analysis was completed using Modified USEPA Method 537.

ng/L = nanogram per liter

Bold = value exceeds the Method Detection Limit
Blue highlighted values exceed the WDHS Recommended Preventive Action Limit for groundwater.

Yellow highlighted values exceed both the WDHS Recommended Preventive Action Limit and the WDHS Recommended Enforcement Standard for groundwater.

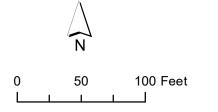
J = The amount detected is greater than the Method Detection Limit, but less than the Reporting Limit.

Q = The ion transition ratio is outside of the acceptance criteria.

^{*} The Wisconsin Department of Health Services (WDHS) recommends a combined enforcement standard of 20 ng/L and combined preventive action limit of 2 ng/L for PFOSA, NEtFOSE, NEtFOSA, NEtFOSAA, PFOS, and PFOA.

Figure 1
Site Location Map

P:\Projects\Georgia-Pacific\Ashwaubenon, WI\GIS


Figure 2 Groundwater Analytical Results and Soil Boring Locations

- Results are in nanograms per liter (ng/L)
 Posted analytical results only include detections for PFAS which exceed the Wisconsin Department of Health Services recommended Preventative Action Limits.
 "Select Six PFAS" refers to total combined values of PFOSA, NEtFOSA, NEtFOSA,
- PFOA and PFOS for groundwater.

 4. (Q) = The ion transition ratio is outside of the acceptance criteria

ORIGINAL BY: ARR

DATE: 11/5/2020

REVISED BY: ARR

DATE: 7/15/2021

PFAS INVESTIGATION SUMMARY REPORT ASHVIEW TERRACE APARTMENTS ASHWAUBENON, WISCONSIN

GROUNDWATER ANALYTICAL RESULTS AND SOIL BORING LOCATIONS

FIGURE

Attachment 1

Tetra Tech Standard Operating Procedure:
Sample Acquisition for Perfluorinated
Compounds (PFCs) and Other
Polyfluoroalkyl Substance Analysis

STANDARD OPERATING PROCEDURE <u>SAMPLE ACQUISITION FOR PERFLUORINATED COMPOUNDS (PFCs) AND OTHER</u> POLYFLUOROALKYL SUBSTANCE ANALYSIS

1.0 PURPOSE

This Standard Operating Procedure (SOP) describes the methods and protocols to be used for collecting and handling samples to be analyzed for perfluorinated chemicals (PFCs), and other polyfluoroalkyl substances (PFASs). PFAS are present in many consumer products including some typical sampling equipment and are ubiquitous in the environment. Because regulatory screening criteria are very low, measurements of very low PFAS concentrations are required. These two conditions make the collection of samples for accurate quantitation of PFAS concentrations difficult unless special precautions are taken to avoid introducing contaminants into the samples. Instructions are provided herein for collection of environmental samples without contaminating them. This SOP is designed to supplement but not replace existing sampling SOPs. In addition, some clients and/or projects may have specific PFAS-related sampling requirements that extend beyond the procedures described in this SOP.

2.0 SCOPE AND APPLICABILITY

This document provides information on proper sampling equipment and techniques for groundwater, surface water, sediment, and soil sampling for PFAS analysis. Sampling of air or biota is not addressed in this SOP, but the same principles would apply for those media.

3.0 BACKGROUND

PFAS have been used since the 1940s as manufacturer-applied oil and water repellants on products such as clothing, upholstery, paper, and carpets; and in making fluoropolymers for non-stick cookware. They are found in textiles and leather products, mist suppressants for metal plating, the photography industry, photolithography, semi-conductors, paper and packaging coatings, cleaning products, pesticides, and cosmetics. They have been used in well-known consumer products including Teflon®, StainMaster®, Scotchgard®, and GoreTex®. In the 1960s, aqueous film-forming foam (AFFF) containing PFAS was developed for fighting flammable liquid fires, particularly petroleum-fueled (Class B) fires (ATSDR, 2009). The two most researched and most prevalent PFAS in the environment are perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) (ATSDR, 2009).

STANDARD OPERATING PROCEDURE SAMPLE ACQUISITION FOR PERFLUORINATED COMPOUNDS (PFCs) AND OTHER POLYFLUOROALKYL SUBSTANCE ANALYSIS

PFAS are persistent in the environment, tend to bioaccumulate, and demonstrate toxicity in laboratory animals, enough to raise concerns about their presence in the environment. Some areas where PFAS may have been released to the environment include the following:

- Firefighting training areas
- Areas where firefighting products/materials are stored
- Aircraft crash sites
- Metal coating and plating facilities
- Water treatment systems and receiving water bodies
- Airport hangars and other facilities storing fire-fighting foams
- Fluorochemical manufacturing, use, and disposal facilities

PFAS are ubiquitous in consumer products and some materials used in environmental sampling (Teflon® tubing, waterproof logbooks, or GoreTex® field clothing). There are many potential sources of PFAS that are independent of media being sampled; therefore, it is essential to take special precautions to minimize the potential for contaminating environmental samples with PFAS during collection and handling. Laboratory detection limits are low for these compounds and contact of sample material or sampling equipment with any one of the multitude of PFAS sources could result in detectable contamination. In addition, PFAS tend to adsorb to glass so glass sample collection containers are inappropriate. Adsorption to glass sample containers may result in a low bias for measured PFAS concentrations.

Collection and analysis of Quality Control blanks is an important aspect of verifying that samples have not been contaminated during sample collection and handling. Use of additional blanks or blanks of a different type than usual may be required and the governing project planning documents should be consulted. Consult Section 7.7 of this SOP for instructions regarding collection of field reagent blanks (FRBs).

4.0 DEFINITIONS AND ABBREVIATIONS

<u>AFFF</u> – Aqueous film-forming foam.

<u>FRB</u> – Field Reagent Blank. A blank sample prepared in the field by transferring laboratory-supplied, chemically-preserved deionized water to an empty, laboratory-supplied collection bottle.

STANDARD OPERATING PROCEDURE <u>SAMPLE ACQUISITION FOR PERFLUORINATED COMPOUNDS (PFCs) AND OTHER</u> POLYFLUOROALKYL SUBSTANCE ANALYSIS

FRBs are typically analyzed only for PFAS and are treated as a site sample in all respects, including shipment to the sampling site, exposure to sampling site conditions, storage, preservation, and all PFAS analytical procedures. The purpose of FRBs is to indicate whether PFAS measured in corresponding site samples may have been introduced during sample collection and handling.

<u>PFASs</u> – Per- and polyfluoroalkyl Substances. A reference term currently in use, replacing "PFCs" in recent scientific and other technical literature. The term is inclusive of both perfluorinated chemicals like PFOA and PFOS and polyfluoroalkyl substances like fluorinated telomers.

<u>PFCs</u> – Perfluorinated Compounds or Chemicals. PFCs are a family of man-made chemicals that have been used for commercial, industrial, and military applications because they resist thermal degradation, and they repel oil, stains, grease, and water.

<u>PFOA</u> – Perfluorooctanoic Acid. PFOA is used as an aqueous dispersion agent and in the manufacture of fluoropolymers (including Teflon®) that are used in industrial components such as electrical wire casings, fire- and chemical-resistant tubing, and plumbing seal tape. PFOA is used in surface treatment products to impart oil, stain, grease, and water resistance. PFOA can also be produced by the breakdown of some fluorinated telomers.

<u>PFOS</u> – Perfluorooctane Sulfonate. PFOS was a key ingredient in Scotchgard® and used in the manufacture of Class B AFFF used per DoD military specifications. Phase out of AFFF by 3M occurred in 2002.

5.0 SAFETY PRECAUTIONS

Sample acquisition activities shall be conducted in accordance health and safety requirements identified in the project-specific Health and Safety Plan (HASP), corporate health and safety policies, and individual sampling SOPs, as applicable.

6.0 PERSONNEL RESPONSIBILITIES, QUALIFICATIONS, AND TRAINING

<u>Project Manager (PM)</u> – The PM is responsible for determining sampling objectives, initial sampling locations, and field procedures used in the collection of samples of environmental

STANDARD OPERATING PROCEDURE SAMPLE ACQUISITION FOR PERFLUORINATED COMPOUNDS (PFCs) AND OTHER POLYFLUOROALKYL SUBSTANCE ANALYSIS

media. Additionally, in consultation with other project personnel (geologist, hydrogeologist, etc.), the PM is responsible for selecting and detailing the specific sampling techniques, equipment to be used, and providing detailed input in this regard to the project planning documents. The PM has the overall responsibility for ensuring that sampling activities are properly conducted by appropriately trained staff.

<u>Site Safety Officer (SSO)</u> – The SSO (or a qualified designee) is responsible for providing the technical support necessary to implement the project HASP, AP or equivalent. The SSO or SSO designee may also be required to advise the Field Operations Leader (FOL) on safety-related matters regarding sampling, such as measures to mitigate potential hazards from hazardous objects or conditions. The SSO may be referred to as the Site Safety and Health Officer (SSHO).

<u>Project Geologist/Sampler</u> – The project geologist/sampler is responsible for the proper acquisition of samples in accordance with this SOP or other project-specific documents. In addition, this individual is responsible for the completion of all required paperwork (e.g., sample log sheets, field notebook, boring logs, container labels, custody seals, and chain-of-custody forms) associated with the collection of those samples.

<u>Field Operations Leader (FOL)</u> – This individual is primarily responsible for the execution of the field sampling program in accordance with the project planning documents. This is accomplished through management of a field sampling team for the proper acquisition of samples.

- General personnel qualifications for environmental media sample collection include the following:
- Occupational Safety and Health Administration (OSHA) 40-hour HAZWOPER and applicable refresher training.
- Ability to perform field work under the expected physical and environmental (i.e., weather)
 conditions
- Familiarity with appropriate procedures for sample documentation, handling, packaging, and shipping
- Familiarity with chemical-specific requirements for collection and handling of samples for PFAS analysis as described in this procedure.

STANDARD OPERATING PROCEDURE SAMPLE ACQUISITION FOR PERFLUORINATED COMPOUNDS (PFCs) AND OTHER POLYFLUOROALKYL SUBSTANCE ANALYSIS

 Personnel implementing this SOP must read and understand this SOP prior to collection of samples designated for PFAS analysis.

7.0 PROCEDURES

All personnel involved in sample acquisition must strive to prevent contact of sample media with potential sources of PFAS contamination. Given the widespread use of PFAS in products including those typically preferred for environmental sampling, all samples for PFAS analysis are to be collected using precautions to avoid inadvertent contamination of the sample media. These precautions are identified below for selection of sampling equipment and general field equipment, field personnel clothing and protective gear, sample containers and sample handling activities.

7.1 Selection of Equipment

It is important to research available equipment and materials at the planning stage to avoid last minute problems in the field; for example, ensuring compatibility of high-density polyethylene (HDPE) tubing with fittings for use in a peristaltic or other pump; or ensuring that equipment does not contain Teflon®.

Sampling Equipment:

- Avoid using any sampling equipment constructed of or containing polytetrafluoroethylene (PTFE) or Teflon® (DuPont brand name) or fluorinated ethylene propylene (FEP) during sample handling or mobilization/demobilization.
- Avoid using low-density polyethylene products (LDPE) if contamination from those products can be transferred to environmental samples or QC samples.
- Use sampling equipment made of stainless steel, acetate, silicone, high-density polyethylene (HDPE), or polypropylene. This applies to tubing, pumps and pump components, tape for plumbing fittings, trowels, mixing bowls or other equipment that could contact the sample media. Gasket and O-ring components of sampling equipment may contain fluoropolymers.

Non-Sampling Field Equipment:

 Avoid using waterproof field books or paper during sampling activities. Non-waterproof loose-leaf paper or notebooks are acceptable. Do not use plastic clipboards, binders, or

STANDARD OPERATING PROCEDURE <u>SAMPLE ACQUISITION FOR PERFLUORINATED COMPOUNDS (PFCs) AND OTHER</u> POLYFLUOROALKYL SUBSTANCE ANALYSIS

spiral hard cover notebooks that may be coated; use Masonite or aluminum clipboards instead.

- Avoid using Post-it® notes or similar removable notes during sample handling or mobilization/demobilization activities.
- Avoid using Sharpies® or similar indelible markers; do use ball-point pens or pencils for note taking and sample bottle labeling.

Field Personnel Clothing and Protective Gear:

- Avoid wearing new clothing due to the possible treating of fabric with PFAS for stain
 resistance. Wear clothing made from natural fibers (e.g. cotton) to the extent possible.
 Clothing should have been washed at least several times between time of purchase and
 time of first use during sampling activities. Avoid using fabric softener when laundering
 clothing to be worn during sample collection.
- During wet weather, use rain gear made from polyurethane or wax-coated materials.
- Avoid wearing water-resistant (e.g., Gore-Tex® or similar material) clothing or footwear (i.e., boots) immediately prior to or during sample collection and management.
- Avoid wearing cosmetics, shampoos, moisturizers, or other similar personal hygiene products on the day of sampling.
- Use sunscreens and insect repellants with 100% natural ingredients. The following items
 are acceptable for use, but the suitability of these items has not been independently
 verified:
 - Sunscreens Alba Organics Natural Sunscreen, Yes To Cucumbers, Aubrey Organics, Jason Natural Sun Block, Kiss my face, Baby sunscreens that are "free" or "natural."
 - Insect Repellents Jason Natural Quit Bugging Me, Repel Lemon Eucalyptus
 Insect repellant, Herbal Armor, California Baby Natural Bug Spray, BabyGanics
 - Sunscreen and insect repellant Avon Skin So Soft Bug Guard Plus SPF 30
 Lotion
- Avoid wearing Tyvek® suits.
- Wear un-powdered nitrile gloves at all times while collecting and handling samples and change gloves often.

STANDARD OPERATING PROCEDURE SAMPLE ACQUISITION FOR PERFLUORINATED COMPOUNDS (PFCs) AND OTHER POLYFLUOROALKYL SUBSTANCE ANALYSIS

 Avoid unnecessary contact with automobile upholstery that may have been treated with PFAS. If practical, cover clothing and skin that has been in contact with such upholstery within non-fluorinated clothing.

Sample Containers and Shipping Materials

- Avoid the use of glass sample containers, which are believed to result in loss of PFAS from samples through adsorption to the container.
- Collect samples in laboratory-supplied plastic bottles only, typically polypropylene or HDPE.
- Confirm that Teflon®-lined caps are not used in sample containers; unlined polypropylene screw caps must be used.
- Avoid using Blue Ice® or similar items to cool samples and avoid placing such items in sample coolers for shipping. Use commercially available (e.g., from convenience stores or supermarkets) double-bagged ice instead.

7.2 Other Precautions for Sample Handlin

- Avoid handling or bringing pre-wrapped food or snacks (e.g., fast food, candy bars, microwave popcorn, etc.) into the sampling area before or during sampling, because many food and snack products are packaged in wrappers treated with PFAS. Only water or hydrating drinks (e.g., Gatorade) should be brought onsite or allowed in vehicles used for PFAS sampling activities.
- Wash hands thoroughly after handling fast food, carryout food, or snacks, or other items that may contain PFAS.
- Assume that shipping tape used for securing coolers could contain PFAS; therefore, take care not to transfer PFAS from tape to samples.

These precautions should be observed during sampling activities, especially during water sample collection (groundwater and surface water), given the high solubility of PFAS in water. Examples of how these precautions may be applied to sampling of specific media are provided in the following sections.

STANDARD OPERATING PROCEDURE <u>SAMPLE ACQUISITION FOR PERFLUORINATED COMPOUNDS (PFCs) AND OTHER</u> POLYFLUOROALKYL SUBSTANCE ANALYSIS

7.3 Groundwater Sample Acquisition

The precautions and requirements identified in the previous sections must be observed for groundwater sampling. Do not proceed any further without reviewing each of those precautions and requirements.

- Collect groundwater samples for PFAS analyses in accordance with this SOP, and/or project- or client-specific requirements.
- If non-dedicated, non-disposable equipment is used between sampling locations, it should be decontaminated with Alconox® or Liquinox®, unless 1,4-dioxane (a potential component of these detergents) is also a contaminant of concern. In that case Liquinox® should not be used. Products such as Decon 90 should not be used.
- If samples are to be collected for analysis of PFAS and other analytes, determine whether the same equipment can be used for all sample analyses. If Teflon® or LDPE materials are required for the non-PFAS analytes, then use multiple sets of equipment and determine a suitable sample collection sequence and protocol for collecting the groundwater samples for the analyte groups of interest. For example, purge and sample a monitoring well for PFAS first using a peristaltic pump with HDPE and silicone tubing. Then use a bladder pump with Teflon® tape on air-line fittings to purge the well and sample for VOCs with Teflon tubing, if the VOC protocol requires it. Or use silicone tubing for all parameters, if appropriate. Protocols and order of sampling should be clearly identified in the SAPs. If the sampling sequence is unclear, consult the FOL or Project Manager and record the actual sequence in the field notes.
- If tasked to sample monitoring wells that have or had dedicated Teflon® or FEP tubing
 that potentially contained PFAS, after removing the tubing, evacuate at least one well
 volume prior to sampling using silicone or HDPE tubing. This will ensure that standing
 water that was in contact with the tubing is removed from the water column prior to
 sampling.

7.4 Soil Sample Acquisition

The precautions and requirements identified in Sections 7.1 and 7.2 must be observed for soil sampling. Do not proceed any further without reviewing each of those precautions and requirements.

STANDARD OPERATING PROCEDURE SAMPLE ACQUISITION FOR PERFLUORINATED COMPOUNDS (PFCs) AND OTHER POLYFLUOROALKYL SUBSTANCE ANALYSIS

- Collect soil samples for PFAS analyses in accordance with this SOP, and/or project- or client-specific requirements.
- Soil sampling equipment should not be constructed of or contain Teflon® materials.
 Acceptable materials for sampling include stainless steel, acetate, or polypropylene. If non-dedicated, non-disposable equipment is used between sample locations, it should be decontaminated with Alconox® or Liquinox®.
- Collect samples in laboratory-provided containers specifically designated for PFAS analysis. Do not use glass jars typically used for soil sample collection.

7.5 <u>Surface Water and Sediment Sample Acquisition</u>

The precautions and requirements identified in Sections 7.1 and 7.2 must be observed for surface water and sediment sampling. Do not proceed any further without reviewing each of those precautions and requirements.

- Collect surface water and sediment samples for PFAS analysis in accordance with this SOP, and/or project- or client-specific requirements.
- Surface water and sediment samples should be collected in laboratory-supplied bottleware specifically designated for PFAS analysis (not glass). If transfer bottles are required for collection of surface water samples, the transfer bottles used should be the same material as the containers designated for submission to the laboratory.
- Surface water and sediment sampling equipment should not be constructed of or contain Teflon® or LDPE materials. Acceptable materials for sampling include HDPE, silicone, stainless steel, acetate, or polypropylene. If non-dedicated, non-disposable equipment is used between sample locations, it should be decontaminated with Alconox® or Liquinox®.

7.6 Water Supply Sampling

This section applies to sampling from taps, spigots, faucets, or similar devices. The precautions and requirements identified in Sections 7.1 and 7.2 must be observed for water supply sampling. Do not proceed any further without reviewing each of those precautions and requirements.

- Collect water supply samples for PFAS analysis in accordance with applicable portions of this SOP, and/or project- or client-specific requirements.
- Water supply samples should be collected in laboratory-supplied bottleware specifically designated for PFAS analysis (not glass).

STANDARD OPERATING PROCEDURE SAMPLE ACQUISITION FOR PERFLUORINATED COMPOUNDS (PFCs) AND OTHER POLYFLUOROALKYL SUBSTANCE ANALYSIS

- Ensure that sample bottles used to collect chlorinated water samples contain the proper preservative; non-chlorinated water does not require chemical preservatives designed to remove chlorine.
- Water supply sampling equipment (if needed) should not be constructed of or contain Teflon® or LDPE materials. Acceptable materials for sampling include HDPE, silicone, stainless steel, acetate, or polypropylene. If non-dedicated, non-disposable equipment is used between sample locations, it should be decontaminated with Alconox® or Liquinox®.
- Locate the sampling point. If a specific sampling point has already been designated (e.g., a kitchen tap), plan to collect the sample from that point; otherwise, identify a location in the water supply line that is as close as possible to the water's point of origination (e.g., a well or other water source) and upstream of any local water treatment unit(s) that could affect PFAS levels (e.g., water softeners, activated carbon, or reverse osmosis treatment units). If a treatment unit is in use, a post-treatment sample may also be required in some cases, per project requirements.

Note: If treatment that could affect PFAS levels (e.g., carbon filtration or reverse osmosis) is part of the water distribution system, often a spigot will be present in the plumbing line between the water source and the treatment unit and this spigot should be used

- Remove any aerator/diffuser from the faucet, if possible. If removal is not possible, record this observation in the field notes.
- Allow the water to run freely from the tap until parameter stabilization per project-specific requirements is achieved, or as otherwise required by project-specific requirements. This will often require purging for 3 to 5 minutes.
- Reduce the water flow rate to minimize aeration of the sample. The water stream should be no wider than the diameter of a pencil.
- Fill the sample bottle (typically 250 mL) directly from the tap to the bottom of the neck of the bottle and cap the bottle immediately.
- After collecting the sample, cap the bottle and, if preservative is included, agitate by hand until the preservative is dissolved.

STANDARD OPERATING PROCEDURE <u>SAMPLE ACQUISITION FOR PERFLUORINATED COMPOUNDS (PFCs) AND OTHER</u> POLYFLUOROALKYL SUBSTANCE ANALYSIS

7.7 Field Reagent Blank Collection

Note: EPA Method 537 and modifications thereof for PFAS analysis require an FRB to be handled along with each sample set. A sample set is described as samples collected from the same sample site and at the same time, but "sample site" and "same time" are not precisely defined. Therefore, it is important to verify that the correct number of FRBs will be collected. *Collection of an FRB at every sampling point may be required.*

- Verify the number of FRBs to be collected for the project and where those samples must be collected. This should be described in the project planning documents such as work plans or sampling and analysis plans. If it is not, consult the PM.
- At the sampling site, when ready to collect an FRB, open the bottle of chemically preserved FRB reagent water provided by the laboratory and a corresponding empty bottle, also provided by the laboratory.
- Pour the preserved FRB reagent water into the empty sample bottle, close the cap, and label this filled bottle as the FRB.
- Pack and ship the FRB along with site samples and the required documentation (e.g., chain of custody form) to the laboratory.

Note: Although chain of custody forms will indicate that FRBs must be analyzed for PFAS, analysis of an FRB will be required only if site samples contain PFAS above a certain concentration. If an FRB is analyzed and any PFAS concentration in the FRB exceeds 1/3 the laboratory MRL, then all samples collected with that FRB may be considered invalid and may require recollection and analysis of the recollected samples. Consult the project planning documents governing sample collection for specifics as to whether resampling is necessary. Care in collection and handling of site samples and FRBs in a way that avoids contamination cannot be overemphasized.

Attachment 2 Wisconsin DNR PFAS Updates

Wisconsin DNR PFAS Updates - effective March 1, 2021

Update to the Wisconsin DNR PFAS list

After careful consideration, the Wisconsin Department of Natural Resources (DNR) will no longer expect laboratories to report 10:2 FTS, PFHxDA or PFODA, as part of the WI DNR default PFAS list, at this time. This applies to new and existing projects, unless otherwise directed by the DNR. The DNR will continue to evaluate which PFAS are critical for reporting in Wisconsin as PFAS analysis and science continues to evolve. This decision was based on the exclusion of these compounds in the forthcoming EPA method. Therefore, the updated DNR PFAS list now consists of 33 PFAS and is provided on the third page of this document.

The remainder of this document clarifies the administrative rule requirements and general recommendations that the DNR has for the regulated community regarding PFAS sampling. Where guidance is provided, it is done so to assist the regulated community in submitting information to the DNR that it can use to make regulatory decisions with confidence.

Reporting PFAS results based on Wisconsin DHS recommended PFAS groundwater standards

The DNR expects laboratories to have PFAS method detection limits (MDLs) equal to or below the recommended groundwater enforcement standards (ES).

The DNR does not expect laboratories to have PFAS MDLs that are below the recommended groundwater preventative action limits (PAL) for all of the PFAS on the DNR PFAS list if the laboratory's routine method procedure does not generate MDLs below the PALs. Neutral PFAS are examples of PFAS for which laboratories may not have MDLs below the recommended PALs. The recommended groundwater ESs and PALs are provided for the updated DNR PFAS list on the third page of this document.

The DNR expects all sample results to be reported to the statistical MDL.

Certification requirements and expectations

The DNR's administrative rules require the analysis of drinking water samples submitted under s. NR 716.13 or s. NR 809.73 to be performed by a Wisconsin certified laboratory if one exists.

The DNR's administrative rules require the analysis of non-drinking water samples submitted under ss. NR 200.027 (except for those tests excluded in NR 219.037), NR 507.17, NR 664.0013 or NR 716.13 to be performed by a Wisconsin certified laboratory if one exists.

For samples that do not fall under ss. NR 200.027, NR 507.17, NR 664.0013, NR 716.13 or NR 809.73, the DNR recommends the analysis to be performed by a Wisconsin certified laboratory if one exists.

If a Wisconsin certified laboratory does not exist, the DNR recommends that the samples be performed by a laboratory that has applied for Wisconsin PFAS certification. The list of laboratories that have applied for Wisconsin PFAS certification can be found at https://dnr.wisconsin.gov/topic/Contaminants/Labs.html.

Analysis requirements and expectations

Laboratories perform PFAS analysis according to the instructions provided to them by their client. If the client does not provide instructions, the DNR expects drinking water and non-drinking water samples to be performed using the laboratory's isotope dilution method that utilizes the Wisconsin PFAS Aqueous (Non-Potable Water) and Non-Aqueous Matrices Method Expectations guidance document.

In addition, unless otherwise instructed by the client, the DNR expects drinking water and non-drinking water samples to be tested for the 33 compounds on the DNR PFAS list.

Non-drinking water matrices field quality control samples requirements

For non-drinking water matrices, laboratories are not responsible for sending out instructions or supplies for collecting field quality control samples unless requested by their client.

Responsible parties as defined in ch. NR 716 and owners and operators of solid waste disposal facilities regulated under chs. NR 500 to 538 are obligated to ensure that field quality control samples (e.g. field blanks, field duplicates, equipment blanks) are collected as required by the administrative code sections presented below. These parties and agents acting on their behalf shall inform laboratories of the field quality control samples that must be collected in order for the laboratory to provide the proper sampling supplies for collection.

Groundwater: s. NR 140.16 Monitoring and laboratory data requirements.

(1)

- (a) All groundwater quality samples collected to determine compliance with ch. 160, Stats., shall comply with this section except as noted.
- (b) Groundwater sampling requirements. All groundwater quality samples shall be collected and handled in accordance with procedures specified by the applicable regulatory agency or, where no sampling procedures are specified by that agency, in accordance with the sampling procedures referenced in par. (c). The sampling procedures specified by a regulatory agency may include requirements for field filtration.
- (c) Department groundwater sampling procedures.
- 1. If sampling procedures are not specified by the applicable regulatory agency pursuant to par. (b), all groundwater quality samples shall be collected and handled in accordance with the sampling procedures contained in the following publications:
- a. Groundwater Sampling Desk Reference. Wisconsin Department of Natural Resources, PUBL-DG-037-96, September, 1996.
- b. Groundwater Sampling Field Manual. Wisconsin Department of Natural Resources, PUBL-DG-038-96, September, 1996.

Landfills: s. **NR 507.16 Sampling plan.** The owner or operator shall submit a sampling plan for all monitoring devices at the facility for approval as part of the feasibility report. The sampling plan shall be implemented as approved in writing by the department. The sampling plan shall follow procedures and methodologies specified by the department and shall comply with the requirements in s. NR 140.16.

Site Investigations: s. NR 716.13 Sampling and analysis requirements.

(6)

Responsible parties shall provide for the following quality control and quality assurance procedures, at a minimum, when collecting samples for laboratory analysis for a field investigation conducted under this chapter:

- (a) Chain of custody shall be documented from the time of sample collection to the receipt of the sample by the analytical laboratory. Chain of custody documentation shall be in compliance with ch. NR 149, and shall be submitted to the department with the sample results.
- (b) For soil samples, one temperature blank for every shipping container of samples that require cooling for preservation, unless samples are received by the laboratory on ice, unless another temperature is required by the analytical method used.
- (c) For water samples:
- 1. One replicate sample for every 10 or less samples.
- 2. One equipment blank for every 10 or less samples, unless dedicated sampling equipment is used to prevent cross-contamination.
- 3. One trip blank for each shipping container that contained volatile samples.
- 4. One temperature blank for every shipping container of samples that require cooling for preservation, unless samples are shipped on ice.
- (d) Decontamination of all sampling instruments between each sampling event, unless dedicated or disposable sampling devices are used in a manner that prevents cross contamination or other unintended contamination of samples.

(10)

Responsible parties shall ensure that groundwater samples are collected and handled according to the procedures specified in s. NR 140.16 (1), unless the department approves the use of an alternative procedure.

Any questions contact Tom Trainor at tom.trainor@wisconsin.gov or 920.412.5970.

Disclaimer: This document is intended solely as guidance and does not contain any mandatory requirements except where requirements found in statute or administrative rule are referenced. Any regulatory decisions made by the Department of Natural Resources in any matter addressed by this guidance will be made by applying the governing statutes and administrative rules to the relevant facts.

WISCONSIN DNR PFAS LIST - 1.1.21

#	Acronym (EPA)	Name [# carbons] (trade name)	CAS#	ES (ng/L) *	PAL (ng/L) *	Acronyms (other)						
		Carboxylic A	cids									
1	PFBA	Perfluorobutanoic acid [C4] (FC 23, Fluorad FC 23)	375-22-4	10,000	2,000	HFBA						
2	PFPeA	Perfluoropentanoic acid [C5]	2706-90-3									
3	PFHxA	Perfluorohexanoic acid [C6]	307-24-4	150,000	30,000							
4	PFHpA	Perfluoroheptanoic acid [C7]	375-85-9									
5	PFOA	Perfluorooctanoic acid [C8]	335-67-1	20 ^c	2 ^c	8PF						
6	PFNA	Perfluorononanoic acid [C9]	375-95-1	30	3							
7	PFDA	Perfluorodecanoic acid [C10]	335-76-2	300	60	Ndfda, PFDeA						
8	PFUnA	Perfluoroundecanoic acid [C11]	2058-94-8	3,000	600	PFUdA, PFUnDA						
9	PFDoA	Perfluorododecanoic acid [C12]	307-55-1	500	100	PFDoDA. PFDOA, PFDDA						
10	PFTrDA	Perfluorotridecanoic acid [C13]	72629-94-8			PFTriA, PFTrA						
11	PFTA	Perfluorotetradecanoic acid [C14]	376-06-7	10,000	2,000	PFTeDA, PFTDA, PFTeA, PFTetA, PFTreA						
	Sulfonic Acids											
12	PFBS	Perfluorobutanesulfonic acid [C4] (FC-98)	375-73-5	450,000	90,000	PFBuS						
13	PFPeS	Perfluoropentanesulfonic acid [C5]	2706-91-4									
14	PFHxS	Perfluorohexanesulfonic acid [C6]	355-46-4	40	4	PFHS						
15	PFHpS	Perfluoroheptanesulfonic acid [C7]	375-92-8									
16	PFOS	Perfluorooctanesulfonic acid [C8] (FC 95, Fluorad FC 95)	1763-23-1	20 ^c	2 ^c	nPFOS, P8S						
17	PFNS	Perfluorononanesulfonic acid [C9]	68259-12-1									
18	PFDS	Perfluorodecanesulfonic acid [C10]	335-77-3									
19	PFDoS	Perfluorododecanesulfonic acid [C12]	79780-39-5			PFDoDS, PFDOS						
20	4:2 FTS	4:2 fluorotelomersulfonic acid [C6]	757124-72-4			4:2 FTSA, 4:2 FtS, FtS 4:2						
21	6:2 FTS	6:2 fluorotelomersulfonic acid [C8]	27619-97-2			6:2 FTSA, 6:2 FtS, FtS 6:2, 6:2 PFOS, THPFOS						
22	8:2 FTS	8:2 fluorotelomersulfonic acid [C10]	39108-34-4			8:2 FTSA, 8:2 FtS, FtS 8:2, 8:2 PFOS						
		Sulfonamides, Sulfomidoacetic ac	ids, Sulfonamid	loethanols								
23	PFOSA	Perfluorooctanesulfonamide [C8]	754-91-6	20 ^c	2 ^c	FOSA, pfosa						
24	NMeFOSA	N-Methylperfluorooctanesulfonamide [C9] (Fluorad FX 12)	31506-32-8			MeFOSA, N-MeFOSA, N-Me-FOSA						
25	NEtFOSA	N-Ethylperfluorooctanesulfonamide [C10] (Alstar, Finitron, Fluramin, FX 12, Mirex S, Sulfluramid, Volcano)	4151-50-2	20 °	2 ^c	EtFOSA, N-EtFOSA						
26	NMeFOSAA	N-Methylperfluorooctanesulfonamidoacetic acid [C11]	2355-31-9			MeFOSAA, N-MeFOSAA, NMe-PFOSA-AcOH						
27	NEtFOSAA	N-Ethylperfluorooctanesulfonamidoacetic acid [C12]	2991-50-6	20 ^c	2 ^c	EtFOSAA, N-EtFOSAA, NEt-PFOSA-AcOH						
28	NMeFOSE	N-Methylperfluorooctanesulfonamidoethanol [C11]	24448-09-7			MeFOSE, N-MeFOSE, MeFOSE Alcohol						
29	NEtFOSE	N-Ethylperfluorooctanesulfonamidoethanol [C12] (FC-10, Fluorad FC 10)	1691-99-2	20 ^c	2 ^c	EtFOSE, N-EtFOSE, N-Et-FOSE						
		Replacement Ch	emicals									
30	HFPO-DA	Hexafluoropropylene oxide dimer acid [C6] (FRD-903, GenX)	13252-13-6	300	30	PFPrOPrA						
31	DONA	4,8-dioxa-3H-perfluorononanoic acid [C7]	919005-14-4	3,000	600	ADONA (sodium salt of DONA)						
32	9Cl-PF3ONS	9-chlorohexadecafluoro-3-oxanonane-1-sulfonic acid [C8]	756426-58-1			F-53B Major, C8 Cl-PFESA						
33	11Cl-PF3OUdS	11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid [C10]	763051-92-9			F-53B Minor, C10 Cl-PFESA						
		No recommended standard yet from cycle 11	•									

c = DHS recommends a combined ES of 20 ng/L and a combined PAL of 2 ng/L for PFOS, PFOSA, PFOSA, NEtFOSAA, and NEtFOSE.

^{*} The Enforcement Standard (ES) and Preventive Action Limit (PAL) listed in this table have been recommended by the Department of Health Services to the Department of Natural Resources. The Department of Natural Resources is in the rule making process to include these values into ch. NR 140. The standards presented in this table are not required on January 1, 2021 as the rule making process has not been completed yet.

Attachment 3 Soil Boring Log Information Forms

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			Rou	watershed/V Remediation	Vastewater □ /Redevelopment ⊠	3	Waste N Other	·	ement								
														Page		of	1
	ty/Proje			, , DEAG.		L	_icense/F			ring Ni	umber		Boring	Numb		04 (04
Ast Borin	NIEW	lerra	ce Apa	artments PFAS Inver Forew chief (first, last) a	Stigation and Firm		02-05				IDa	ate Drilli	na Con	nnleted		-21-(Ing Method
	•	•	1441100	r or ow or nor (mor, rade) t			Date Dill	mig G	artoa			ac Diiii	ng con	пріског			mg wanoa
Cas	ndy Ra scade E nique W	Enviro	onment	al TONR WALTO No.	Common Well Na	ame F	-inal Stat	5/3/2		a	Surfac	e Eleva	5/3/2	021	Вс	vil	bratory Diameter
	900		•		MW-21-01				t MSL	-		643.8 F		SI			inches
Local	Grid O	rigin	(es	stimated:) or Bo	ring Location 🖂		1						Grid Lo			0.0	
State	Plane		55	8,055 N, 85,188 E	S/©/N		Lat	44	<u>° 29</u>		22.1 "			□N	I		□ Е
SE		of S	E 1	/4 of Section 4,	T 23 N, R 20		Long				15.0 "		Feet	□s	;	F	eet 🗌 W
Facili	ty ID			County			ounty Co	de			•	Village					
Con	anl a			Brown		5			Ashw	/auber	∩on, \	<u>/VI</u>	Coil	Dropo	rtico		
San	nple _												5011	Prope	riies	1	-
	Length Att. & Recovered (in)	ıts	8		ock Description							é					
be ~	Att	Jno	L L		cologic Origin For			S	U	٤		essi h	e _		t		ents
Number and Type	ngth Sove	Blow Counts	Depth In Feet	Eac	ch Major Unit			sc	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	200	RQD/ Comments
<u> </u>	Re E	B	De					î		Well	=	လွ ညွှ	Σိ ပိ	<u> </u>	P or	P2	8 8
P-1 CU	60 60		 -	TOPSOIL	C OANI	_			77. 7	11							
	l		1.5	Orangish brown, o	damp, fine SANL	D				\boxtimes	8						
			-							\boxtimes	8						
Į,			3.0				.m = -				8						
10			Ė	Light brown, dry 3	SAND, WITH GIR	aver, ii	ıııe			\boxtimes							
			4.5	CODDIC						\otimes	8						
P-2	60		E														
CU	60		-6.0							\boxtimes	8						
	1		E							\boxtimes							
}			7.5							\boxtimes							
Į,			E							\otimes	8						
			9.0	Light gray, dry Sl	LT with Sand an	nd Gra	avel			\bowtie	8						
ļ			E														
P-3 CU	60 60		10.5	Red, dry CLAY, I	ittle Silt, trace fi	ne Sa	nd										
			E	Brown, damp to n	noist, fine SAND), little	e Silt										
			12.0														
Į V			<u> </u>														
			13.5														
			₽ I														
P-4	60		15.0	Red, dry CLAY, I	ittle Silt. trace fi	ne Sa	nd		/////								
CU	60		-	Brown, saturated,							1						
	1		16.5	, ,	•	•											
1			Ė I								1						
			18.0	Red, damp CLAY	, little Silt, trace	efines	Sand		/////	<u> </u>	1						
			E .		•												
Į.	<u> </u>		19.5														
l here	hv certit	l fv that	theinfo	rmation on this form is:	true and correct to the	he heet	of my ki	വധില	lae	<u> </u>	1	1				<u> </u>	
Signa	-	., and			Thirm				.g~								
5 -		robal	Source			Tetra 710 Av	lech ∕is Drive,	Suite	100 Ar	nn Arb	or, MI	48108					Tel: Fax:

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			Rou	<u>Ite To:</u> Watershed/W Remediation/	Vastewater □ /Redevelopment ⊠	Waste I Other	_	ement					Pag	e 1	of	1	
Facili	y/Proje	ct Nan	ne			License/I	Permit/	Monito	ring N	umber		Boring				•	
Asł	nview	Terra	œ Apa	rtments PFAS Inves	stigation	02-05	-5640)43						SB	-21-(02	
Borin	g Drille	d By:	Name of	crew chief (first, last) a	ind Firm	Date Dri	ling St	arted		Da	ate Drilli	ng Con	g Completed Drilling Metho				
Cas		Envir	onment				5/4/2					5/5/2	021			bratory	
WI U	nique W	/ell No).	DNR Well ID No.	Common Well Name						ce Eleva			Bo		Diameter	
l ocal	Grid O	rigin	- 100	 stimated: ┌┐) or Boi	MW-21-02	618.	7 Fee	t MSL	-	(38.7 F	eet M			6.0	inches	
	Plane			7,837 N, 85,072 E	-	La	t <u>44</u>	° 29	<u>'</u> 1	19.9 ")a Lo				□ -	
SE		of S		/4 of Section 4,	T 24 N, R 20 E	Long	88	° 4	ļ' 1	16.6 "		Feet	⊔ N □ s		F	⊟ E Feet □ W	
Facili		01 0	<u> </u>	County	1 24 14,17 20 2	County Co		_			Village	1 64		·		<u> </u>	
				Brown		5		Ashw	/aube	non, \	ΝI						
San	nple			'		<u> </u>						Soil	Prope	rties			
	J., ©	1	_	Soil/Ro	ock Description												
4	#. %		8	And Ge	ologic Origin For						sive					ţ2	
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Eac	h Major Unit		S	. <u>e</u>	Well Diagram	I ₽	Compressive Strength	Moisture Content	ا ت	gity		RQD/ Comments	
Number and Typ	eng	<u> </u>	ebt		•		ဟ	Graphic Log	/ell iagi	PID/FID	ren f	lois	Liquid Limit	Plasticity Index	200	G iii	
Z ऌ HA∏	60	<u> </u>		_ TOPSOIL			\supset	7/3/ 7/1		+-	0 0	≥ 0		<u>~ =</u>		20	
AU∤	60		-	Brown, moist, fine	SAND and CLA	Y. (Grav				8							
			2.5 	soft Clay observed 2.5' - 4.0', potentia	lintermittently bet											Soil sample collected	
K	Red damp CLAY some fine Sand t					trace Silt			\boxtimes							from 2' to 3'	
P-1 CU	60		5.0	•					\boxtimes	8							
CU	42		-						\boxtimes	8							
	'		7.5	Red, damp CLAY	, with Sand, little	Grave			\aleph	8							
			-	Brown, damp SAN	ND, some Gravel,	trace Silt		/////	\boxtimes								
P-2	[] 60		10.0	•					\otimes	8							
ĊŪ	60				n medium SAND	trace			\boxtimes	8							
Į.			_ 12.5	_ ~ .	p, modium o , m o ,	, 11000			\boxtimes	8							
Į,			-						\otimes	8							
/			15.0						\otimes	8							
P-3 CU	60 60		_ 13.0						\boxtimes	8							
	00		<u> </u>	-5		DS	L		\boxtimes								
l k	'		17.5 -	Brown, damp, med trace Gravel	alum to coarse SA	ND,			\otimes	8							
			E	Brown, damp, ver	v fine to fine SAN	D				8							
P-4	60		20.0	Brown, saturated,				111111	▓┸	8							
CU	60		-	Brown, damp CLA	•				\boxtimes	8							
N.			22.5		•		L		\bowtie	8							
			E		•												
, <u> </u>	10		25.0	Dark brown, satur ∖some SiIt	ated, very fine SA	ND,		/////									
P-5 \(\overline{\cu} \)	12		-	√Dark brown, damp	CLAY. little Silt				1: <u> </u>	-							
				1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<u></u>												
	<u> </u>						<u> </u>	<u> </u>									
	-	ty that	tneinfo	rmation on this form is t		pest of my k	nowled	age.									
Signa		1.1.1	Laurel			etra Tech		405 -			40 * 5 =					Tel:	
	//	nound	, Marria	_	71	0 Avis Drive	Suite	100 Ar	าท Arb	or, MI	48108					Fax:	

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			Rou		/astewater □ /Redevelopment ⊠	Waste I Other	_	ement								
	/D						1		N.I				Pag		of	2
	ty/Proje			rtments PFAS Inves	ti aati on	License/F 02-05			ring Nu	mber		Boring	Numb		-21-(1 2
Borin	g Drille	d By:	Name of	crew chief (first, last) a	nd Firm	Date Dri		_		Da	te Drilli	ng Con	npleted			ing Method
Ra	ndy Ra	adke														
			onment		10			2021				5/4/20	021			oratory
VVI U	nique W	/eii ino		DNR Well ID No.	Common Well Name			terLeve			e Elevat		CI	ВС		Diameter inches
Local	Grid O	rigin	(es	stimated:) or Boi	MW-21-03	-					43.0 F	Frid Lo			0.0	IIIUI65
State	Plane		558	8,269 N, 84,720 E	S/©/N		t <u>44</u>			4.2 "			□ N	I		□ Е
SE		of S	E 1,	/4 of Section 4,	T 24 N, R 20 E		88			1.5 "	/illogo	Feet	□ s	<u> </u>	F	eet 🗆 W
Facili	ty ID			Brown		County Co	ue	Civil To	/auben	-	_					
San	nple			DIOWII		<u> </u>		ASIM	auber	IOI I, V	V I	Soil	Prope	rties		
	İ	1		Soil/Ro	ock Description								Ė			-
	#. &	nnts	<u> </u>		ologic Origin For						si ve					<u>\$</u>
ber 'ype	th A	§	모		h Major Unit		S	þic	ram	딤	pres	ture	<u> </u>	icity		men.
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet				O S O	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
HAII	60		<u> </u>	TOPSOIL				<u> </u>			0 0,	20				
AU	60		1.5	Red, damp CLAY	, little fine Sand											
K	Į .		F '.5													
K			3.0	I de la la la companya de la company	- 6 OAND				\otimes							
Į			E	Light brown, dam	p, fine SAND				$\otimes \otimes$							
	}		4.5						$\otimes \otimes$							
P-1 CU	60 26		E !	Dork brown main	t vory fine CAND	and			\otimes							
	20		6.0	Dark brown, mois SILT	i, very fine SAND	anu										
l			F 7.						\otimes							
}			7.5						$\otimes \otimes$							
			9.0						\boxtimes							
ļ!			E						$\otimes \otimes$							
P-2 CU	60 60		10.5	Brown, moist CLA	Y, with Silt, little	very										
			F	fine Sand					\boxtimes							
			12.0						\otimes							
			F 40 5	Brown, moist SIL	T some very fine 9	Sand										
			13.5	trace Clay	r, come vary mie c	sa ia,			$\otimes \otimes$							
ľ	1		_ 15.0													
P-3 CU	60		-						\otimes							
	l		16.5						\otimes							
M																
			18.0	Brown, damp, fine												
			E I	Brown, damp SAN	ND, some Gravel				\bowtie							
1	1		19.5				L									
I here	by certi	fy that	the info	rmation on this form is t	rue and correct to the l	best of my k	nowled	dge.	I	<u> </u>	1		<u> </u>			1
Signa	ture		. 1 .			tra Tech										 Tel:
	Λ	hohad	Javal	_		Avis Drive	Suite	100 Ar	nn Arbo	or, MI	48108					Fax:

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

SOIL BORING LOG INFORMATION SUPPLEMENT

Form 4400-122A

Boring Number	SB-	-21-03 Use only as an attachment to Form 4400-12	22.						Page	e 2	of	2
Sample								Soill	Prope	ties		
Number and Type Length Att. & Recovered (in) Blow Counts	#	Soil/Rock Description					Ф					
A tt.	n Fe	And Geologic Origin For	S	0	٦		essiv h	e t		t		ents
Number and Type Length Att. & Recovered (in Blow Counts	Depth In Feet	Each Major Unit	SCS	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
Number and Type Length Att	De	Prouvo domo modium SANID	Š	Grap Log	Well	급	ပိ ၽွ	ഉ് ഉ	<u> </u>	<u> </u>	P2	Co.
CU 60	21.0	Brown, damp, medium SAND										
M	E											
W	22.5											
		Brown, damp, medium to coarse SAND, trace Gravel										
	24.0	Brown, moist, very fine SAND, trace Silt										
P-5 60 CU 60	25.5											
	Ė.											
M	27.0	Grayish brown, saturated GRAVEL, with Sand, trace Silt		600								
	28.5	One is to be a second and the second second		00								
	- 20.5	SAND, little Gravel										
[1]	30.0											

Attachment 4 Monitoring Well Construction Forms

State of Wisconsin Department of Natural Resources Route To:	Watershed/Wastewater	Waste Management	MONITORING WELL CONS	
Facility/Project Name	Remediation/Redevelopment TLocal Grid Location of Well	Other	Form 4400-113A Rev.	. 7-98
•		ft. □ E.		
Ashview Terrace Apartments PFAS Investigation Facility License, Permit or Monitoring No.	Local Grid Origin (estimated:	ftW.) or Well Location _	MW-21-01 Wis. Unique Well No. DNR W	ell Number
02-05-564043 Facility ID	Lat. <u>44° 29' 22.1"</u> Long	=	or Date Well Installed	
radiity ib	St. Plane558,055 ft. N, Section Location of Waste/Source	85,188 ft. E. S/©/	05/03/2021	
Type of Well	SE_1/4 of SE_1/4 of Sec4	T 23 N P 20 □	Well Installed By: (Person's Na	me and Firm)
Well Code 11/mw	Location of Well Relative to Waste/Sc	ource Gov. Lot Number		
Distance from Waste/ Source Enf. Stds. Apply ft.	u □ Upgradient s □ Sid d □ Downgradient n ⊠ No	degradient ot Known	Cascade Environment	tal
A. Protective pipe, top elevation64	13.79 ft. MSL	1. Cap and lock?		Yes □ No
B. Well casing, top elevation64	13.38 ft. MSL	Protective cove a. Inside diame		9.0_ in
C. Land surface elevation6	543.8 ft. MSL <	b. Length:		1.0 ft
D. Surface seal, bottom642.8 ft. MSL	or 1.0 ft.	c. Material:		teel ⊠ 04 ther □
12. USCS classification of soil near screen:		d. Additional p		ther □ Yes ⊠ No
GP □ GM □ GC □ GW □ S	W 🗆 SP 🗆 📉	•	ibe:	
SM ⊠ SC □ ML □ MH □ C Bedrock □	L 🗆 CH 🗆	3. Surface seal:	Bentor	
_	es ⊠ No		Concr Ot	
14. Drilling method used: Rotar	ry □ 5 0	4. Material between	en well casing and protective pipe:	.1101
Hollow Stem Auge			Bentor	5555555
Sonic Othe	er 🗆			ther 🛛 📖
15. Drilling fluid used: Water □ 0 2 A	Air □01	Α .	seal: a. Granular/Chipped Bentonital mud weightBentonite-sand slur	
Drilling Mud □ 0 3 Non	ne ⊠99		al mud weight Bentonite slu	
16. Drilling additives used? ☐ Ye	es ⊠ No	d% Ben e8	tonite Bentonite-cement ground from the added for any of the above.	
Describe		f. How install		mie 🗆 01
Describe	d):		Tremie pump	
(6. Bentonite seal:		wity ⊠ 08
C42.0		/ b. □1/4 in.	⊠ 3/8 in. ☐ 1/2 in. Bentonite chi	ips ⊠ 32
E. Bentonite seal, top642.8 ft. MSL	or1.0 ft.	c 7. Fine sand mate	Ot erial: Manufacturer, product name &	ther □ mesh size
F. Fine sand, top634.8_ ft. MSL	or9.0 ft.	/ / a	#7 Red Flint	
G. Filter pack, top632.8 ft. MSL	or11.0ft.	b. Volume add	led ft³ terial: Manufacturer, product name &	& mesh size
		a	Red Flint	
H. Screen joint, top630.8 ft. MSL	or13.0 ft.	b. Volume add		
I. Well bottom625.8 ft. MSL	or18.0 ft. <	9. Well casing:	Flush threaded PVC schedule 40 Flush threaded PVC schedule 80	
J. Filter pack, bottom625.3_ ft. MSL	or18.5_ ft.	10. Screen materia		ther 🗆
3. Filter pack, bottom It. IVISE	OI II.	a. Screen Type		 cut ⊠ 11
K. Borehole, bottom 623.8 ft. MSL	or ft.		Continuous s	slot □ 01 ther □
L. Borehole, diameter6.0 in.		b. Manufactur		
M. O.D. well casing2.38_ in.		c. Slot size: d. Slotted leng	ıth:	0.010 in 5.0 ft
W. O.D. wer casing III.		_		one 🗆 14
N. I.D. well casing <u>2.00</u> in.			Ot	ther 🛭
I hereby certify that the information on this for	m is true and correct to the best of mv	knowledae.		
Signature	Firm Tetra Tech			Tel:
Mohan Daval		, Suite 100 Ann Arbor, MI 48	108	Fax:

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

State of Wisconsin Department of Natural Resources Route To:	Watershed/Wastewater	Waste Management	MONITORING WELL CONSTR	
Facility/Draiget Name	Remediation/Redevelopment	Other	Form 4400-113A Rev. 7-9	} 8
Facility/Project Name	Local Grid Location of Well	ПЕ	Well Name	
Ashview Terrace Apartments PFAS Investigation Facility License, Permit or Monitoring No.	Local Grid Origin (estimated:			Number
02-05-564043 Facility ID	Lat. <u>44° 29' 19.9"</u> Lone St. Plane <u>557,837</u> ft. N,		Date Well Installed	
Type of Well	Section Location of Waste/Source	<u> </u>	05/04/2021	and Firm)
Well Code 11/mw	SE 1/4 of SE 1/4 of Sec. 4	, T. <u>24</u> N, R. <u>20</u>	w , , , , , , , , , , , , , , , , , , ,	anariiii
Distance from Waste/ Enf. Stds. Source ft.	Location of Well Relative to Waste/S u □ Upgradient s □ Sid d □ Downgradient n ⊠ No	degradient	Cascade Environmental	
A. Protective pipe, top elevation63	8.72 ft. MSL	1. Cap and lock?		≋ □ No
B. Well casing, top elevation 63	8.34 ft. MSL	Protective cover a. Inside diamet		<u>9.0</u> in
C. Land surface elevation6	538.7 ft. MSL	b. Length:		1.0 ft
D. Surface seal, bottom 637.7 ft. MSL	or	c. Material:	Steel Other	_
12. USCS classification of soil near screen:		d. Additional pr		s⊠ No
	W□ SP□ U U U U U U U U U U U U U U U U U U U	If yes, descril	De:	
Bedrock □		3. Surface seal:	Bentonite Concrete	
13. Sieve analysis attached? ☐ Ye	s ⊠ No		Other	
14. Drilling method used: Rotar	, i kxi kx	`4. Material betwee	n well casing and protective pipe: Bentonite	□ 30
Hollow Stem Auger Sonic Other	I		#40 Red Flint Other	3000000
45 Drilling flyid yearly Water 500 A	:- 🗆 0.4	XI .	seal: a. Granular/Chipped Bentonite	⊠ 33
15. Drilling fluid used: Water □ 0 2 A Drilling Mud □ 0 3 Non	.ir □ 01 e ⊠ 99		mud weight Bentonite-sand slurry mud weight Bentonite slurry	□ 35 □ 31
	es ⊠ No	d% Bent		□ 50
		f. How installe		. □ 01
Describe	1).		Tremie pumped	□ 02
(2.5.0.)		6. Bentonite seal:	Gravity a. Bentonite granules	□ 33
637.7 4 MOL	or	/ b. □1/4 in. [a. Bentonite grandies ⊠ 3/8 in. □ 1/2 in. Bentonite chips Other	⊠ 32
E. Bentonite seal, top 637.7 ft. MSL		X / /	ial: Manufacturer, product name & me	
F. Fine sand, top ft. MSL	or ft.	a b. Volume adde	nd 0 ft ³	
G. Filter pack, top 616.2 ft. MSL	or <u>22.5</u> ft.	8. Filter pack mate	erial: Manufacturer, product name & m Red Flint	nesh size
H. Screen joint, top615.7 ft. MSL	or <u>23.0</u> ft.	a b. Volume adde		
I. Well bottom612.7_ ft. MSL	or26.0 ft. \	9. Well casing:	Flush threaded PVC schedule 40 Flush threaded PVC schedule 80	□ 23 □ 24
			Other	
J. Filter pack, bottom612.2 ft. MSL	or <u>26.5</u> ft.	10. Screen material: a. Screen Type:		_
K. Borehole, bottom 612.7 ft. MSL	or <u>26.0</u> ft.	a. Great type.	Continuous slot Other	□ 01
L. Borehole, diameter6.0 in.		b. Manufacture	_{er} Longyear	
M. O.D. well casing		c. Slot size: d. Slotted lengt	h: _	0.010 in 3.0 ft
N. I.D. well casing <u>2.00</u> in.		`11. Backfill materia	I (below filter pack): None Other	9 □ 14
	m is true and correct to the heat of	knowledge		
I hereby certify that the information on this formation on this formation on the state of the st	Firm	KHOWIEUGE.		
Mohal Saval	letra lech	, Suite 100 Ann Arbor, MI 481	08	Tel: Fax:

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

State of Wisconsin Department of Natural Resources Route To:	Watershed/Wastewater	Waste Managem		MONITORING WELI	L CONSTRU Rev. 7-98	
Facility/Project Name	Remediation/Redevelopment TLocal Grid Location of Well	Other		Form 4400-113A Well Name	Rev. 7-90	<u> </u>
Ashview Terrace Apartments PFAS Investigation	ft. □ N.	ft. W	' <u>. </u>	MW-2	21-03	
Facility License, Permit or Monitoring No.	Local Grid Origin (estimated: Lat. 44° 29' 24.2" Lor	\square) or well Lo	_	Wis. Unique Well No.	DNK Well N	umber
02-05-564043 Facility ID	St. Plane <u>558,269</u> ft. N, _			Date Well Installed		
Type of Well	Section Location of Waste/Source			05/04/ Well Installed By: (Per		nd Firm)
Well Code 11/mw	SE_1/4 of SE_1/4 of Sec4 Location of Well Relative to Waste/S	1 , T. <u>24</u> N, R.	. <u>20</u> 🛱 w	Randy I		
Distance from Waste/ Enf. Stds. Source ft. Apply		degradient	Lot Number	Cascade Envi		
A. Protective pipe, top elevation 6-	42.96 ft. MSL	ı /	and lock?		⊠ Yes	s □ No
B. Well casing, top elevation6	42.51 ft. MSL		tective cover pi nside diameter:	oe:		9.0 in.
C. Land surface elevation	643.0 ft. MSL		ength:		_	1.0 ft
D. Surface seal, bottom642.0 ft. MSI	or 1.0 ft.	c. M	1aterial:		Steel Other	□ 04
12. USCS classification of soil near screen:	An Contain	d. A	Additional prote	ction?		□
	SW □ SP ⊠	If	fyes, describe:			_
SM □ SC □ ML □ MH □ C Bedrock □	CL CH CH C	3. Surf	face seal:		Bentonite Concrete	□ 30 図 01
13. Sieve analysis attached? ☐ Y	es ⊠ No				Other	
	ry □50	4. Mat	terial between v	vell casing and protectiv		
Hollow Stem Auge Sonic Oth	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		#4	0 Red Flint	BentoniteOther	□ 30
			nular space seal	: a. Granular/Chipped		⊠ 33
	Air □01	b	Lbs/gal mi	ud weightBentonite-s	sand slurry	□ 35
Drilling Mud □ 0 3 Nor	ne ⊠ 9 9		Lbs/gal mı % Bentoni	ud weight Bent	-	□ 31
16. Drilling additives used? ☐ Y	es ⊠ No	e	Ft ³ \	te Bentonite-cer volume added for any of	the above	□ 50 _
Describe		f. I	How installed:	Trem	Tremie nie pumped	□ 01 □ 02
17. Source of water (attach analysis, if require	ed):			113.1	Gravity	
		<1 /	tonite seal:	a. Bentonit		□ 33
E. Bentonite seal, top642.0_ ft. MSL	or1.0_ ft.	c		√8 in. □ 1/2 in. Bent	Other	□ 32
F. Fine sand, top624.0_ ft. MSL	or <u>19.0</u> ft.	7. Fine a	e sand material:	Manufacturer, product #7 Red Flint		sh size
622.0 (1.140)	21.0 (·/\ /	olume added			
G. Filter pack, top622.0_ ft. MSL	or <u>21.0</u> ft.	8. Filte		I: Manufacturer, produc Red Flint	at name & me	esn size
H. Screen joint, top <u>620.0</u> ft. MSL	or <u>23.0</u> ft.	54 Z	olume added	9 ft		
I. Well bottom615.0_ ft. MSL	or	9. Wel	•	Flush threaded PVC sch Flush threaded PVC sch	nedule 80	 23 24
J. Filter pack, bottom615.0_ ft. MSL	or28.0_ ft.	10. Scre	en material: _	PVC	Other	
613.0 (1.10)	30.0 %	a. S	Screen Type:		Factory cut	
K. Borehole, bottom613.0_ ft. MSL	or 30.0 ft.			Cont	inuous slot Other	□ 01 □
L. Borehole, diameter6.0 in.			Manufacturer	Longyear		0.010_ in.
M. O.D. well casing		d. S	Slot size: Slotted length:		_	5.0 ft
N. I.D. well casing2.00_ in.		`11. Bad	kfill material (k	pelow filter pack):	None Other	□ 14 ⊠
	no in true and covered to the best of	langualedese				
I hereby certify that the information on this for Signature	Firm	кпомтеаде.				
	Tetra Tech 710 Avis Drive	e, Suite 100 Ann Arl	bor, MI 48108			Tel: Fax:

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

Attachment 5 Monitoring Well Development Forms

MONITORING WELL DEVELOPMENT

Form 4400-113B Rev. 7-98

Facility/Horget Name Shrivest County Shrivest Facility/Horget Name County Shrivest Facility/Horget Name County	Route To: Watershe	d/Wastewa	ter 🗌	Was	ste Management 🏻				
Service Terrose Apartments PFAS Investigation Facility Licrose Permit of Monitoring Number County Code 02-05-564043 1. Can this well be purged dry? 2. Well development method: Surged with beile and bailed Surged with book and bailed Surged with boo		ion/Redevel		Oth	er 🗌		_		
County Code Code County Code County Code Code County Code	· ·		County			Well N			
1. Can this well be purged dry? 2. Well development method: Surged with belier and bailed 41 41 42 42 43 44 44 44 44 44	Ashview Terrace Apartments PFAS Invest	igation	County Code			mher			
1. Can this well be purged dry? 2. Well development method: surged with baller and bailed surged with baller and pumped 61 surged with baller and pumped 62 surged with book and bailed surged with book and pumped 62 surged wi	•		1	VVIS	s. Offique Wai Nu	IIIDGI	DIVIN	ai Numba	
2. Well development method: surged with basier and beiled 41 41 34 34 34 34 34 34									
surged with baller and bailed surged with baller and pumped 61 41 54 54 54 54 54 54 5	1. Can this well be purged dry?	⊠ Ye	s □ No	11.	Depth to Water	Before	Development	After De	evelopment
surged with block and pumped 61 surged with block and pumped 62 surged with block and pumped 70 0 0 0 0 0 0 0 0	2. Well development method:				•	a.	8.49 ft.		16.04 ft.
surged with block and bailed 4.2 Date b. 5/3/2021 5/4/2021 surged with block and pumped 6.2 6.2 6.2 6.3 6.3 6.3 surged with block and pumped 6.2 6.2 6.3 6.3 surged with block and pumped 6.2 6.3 6.3 surged with block and pumped 6.2 surged with block and pumped 6.2 6.3 surged with block and pumped 6.2 surged with	surged with bailer and bailed	□ 4	1 1		well casing)				
surged with block and pumped 62 surged with block belief, and pumped 70 compressed air 20 bailed only 10 pumped only 25 1 pumped slowly 50 other 35 1 3. Time spent developing well 135 min. 2. Sediment in well 0.2 inches 0.0 inches bottom 3. Water darity Clear 10 Clear 20 Turbid 25 Turb	surged with bailer and pumped	□ 6	31					_	
surged with block, bailed, and pumped	_	□ 4	12		Date	b.	5/3/2021		5/4/2021
compressed air	, ,								
bailed only pumped only pumped only pumped only pumped slowly other 10 10 10 10 10 10 10 1			-		_ .				□ a.m
pumped slowly	·				Time	C.	03:39 ⊠	p.m.	U5:UU ⊠ p.m
bottom 13. Water darity Clear 10 Clear 20 Turbid 15 Turbid 25 Turbi			-	40	Coding out in well		0.2 :		O O in shap
3. Time spent developing well 135 min. 4. Depth of well (from top of well casing) 17.0 ft. 5. Inside diameter of well 2.00 in. 6. Volume of water in filter pack and well casing) 5.6 gal. 7. Volume of water removed from well 18.2 gal. 8. Volume of water added (if any) 0.0 gal. 9. Source of water added 15. COD mg/l mg/l 16. Well developed by: Person's Name and Firm 10. Analysis performed on water added? Yes No (if yes, attach results) 17. Additional comments on development: Facility Address or Owner/Responsible Party Address Name Michael Christopher Firm: Georgia-Pacific LLC Street: 133 Peach Tree Street NE				12.			U.Z Inche	5	0.0 inches
3. Time spent developing well 135 min. 4. Depth of well (from top of well casing) 17.0 ft. 5. Inside diameter of well 2.00 in. 6. Volume of water in filter pack and well casing 5.6 gal. 7. Volume of water removed from well 18.2 gal. 8. Volume of water added 15. Turbid 2.5 (Describe)		191		13		Clear	□ 10	Clear ⊠	1 20
4. Depth of well (from top of well casing) 17.0 ft. 5. Inside diameter of well 2.00 in. 6. Volume of water in filter pack and well casing 5.6 gal. 7. Volume of water removed from well 18.2 gal. 8. Volume of water added (if any) 0.0 gal. 9. Source of water added 15. COD mg/l mg/l 16. Well developed by: Person's Name and Firm Randy Radke Clascade Environmental 17. Additional comments on development: Facility Address or Owner/Responsible Party Address Name Michael Christopher Firm: Georgia-Pacific LLC Street: 133 Peach Tree Street NE Milky Brown				13.	wata danty	Turbid	⊠ 15	Turbid 🗆	-
5. Inside diameter of well 2.00 in. 6. Volume of water in filter pack and well casing 5.6 gal. 7. Volume of water removed from well 18.2 gal. 8. Volume of water added (if any) 0.0 gal. 9. Source of water added 15. COD mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	, , , ,					`	,	,	
6. Volume of water in filter pack and well casing 5.6 gal. 7. Volume of water removed from well 18.2 gal. 8. Volume of water added (if any) 0.0 gal. 9. Source of water added 9. Yes No (If yes, attach results) 15. COD mg/l mg/l 10. Analysis performed on water added? Yes No (If yes, attach results) 16. Well developed by: Persons Name and Firm Randy Radke Cascade Environmental Facility Address or Owner/Responsible Party Address Name Michael Christopher Firm: Georgia-Pacific LLC Streat: 133 Peach Tree Street NE	4. Depth of well (from top of well casing)	1	7.0 ft.					_	
Total suspended Total susp	5. Inside diameter of well	2	2.00 in.						
Fill in if drilling fluids were used and well is at solid waste facility: 7. Volume of water removed from well 18.2 gal. 8. Volume of water added (if any) 9. Source of water added 15. COD 16. Well developed by: Persons Name and Firm 10. Analysis performed on water added? (if yes, attach results) 17. Additional comments on development: Facility Address or Owner/Responsible Party Address Name: Michael Christopher Firm: Georgia-Pacific LLC Street: 133 Peach Tree Street NE Fill in if drilling fluids were used and well is at solid waste facility: 14. Total suspended mg/l mg/l 16. Well developed by: Persons Name and Firm Randy Radke Cascade Environmental I hereby certify that the above information is true and correct to the best of my knowledge. Signature: Michael Christopher Print Name: Mike Savale	6. Volume of water in filter pack and well							_	
7. Volume of water removed from well 18.2 gal. 8. Volume of water added (if any) 0.0 gal. 9. Source of water added 15. COD mg/l mg/l 10. Analysis performed on water added? Yes No (if yes, attach results) Randy Radke (if yes, attach results) Randy Radke Cascade Environmental 17. Additional comments on development: Facility Address or Owner/Responsible Party Address Name: Michael Christopher Firm: Georgia-Pacific LLC Streat: 133 Peach Tree Street NE 14. Total suspended mg/l mg/l 16. Well developed by: Person's Name and Firm Randy Radke Cascade Environmental 15. COD mg/l mg/l 16. Well developed by: Person's Name and Firm Randy Radke Cascade Environmental 1 hereby certify that the above information is true and correct to the best of my knowledge. Signature: Michael Christopher Signature: Mike Savale	casing		5.6 gal.						
8. Volume of water added (if any) 9. Source of water added 15. COD mg/l mg/l 16. Well developed by: Person's Name and Firm 10. Analysis performed on water added? Yes No (If yes, attach results) 17. Additional comments on development: Facility Address or Owner/Responsible Party Address Name Michael Christopher Firm: Georgia-Pacific LLC Street: 133 Peach Tree Street NE 14. Total suspended mg/l mg/l 15. COD mg/l mg/l 16. Well developed by: Person's Name and Firm Randy Radke Cascade Environmental 1 hereby certify that the above information is true and correct to the best of my knowledge. Signature: Michael Christopher Signature: Micke Savale				Fill	in if drilling fluids	s were use	dandwellisats	olid waste fac	ility:
8. Volume of water added (if any) 9. Source of water added 15. COD 16. Well developed by: Person's Name and Firm 10. Analysis performed on water added? (If yes, attach results) 17. Additional comments on development: Facility Address or Owner/Responsible Party Address Name: Michael Christopher Firm: Georgia-Pacific LLC Street: 133 Peach Tree Street NE Solids 15. COD mg/l M	7. Volume of water removed from well	1	8.2 gal.						
9. Source of water added				14.	•		mg/l		mg/l
9. Source of water added? Yes No (If yes, attach results) T6. Well developed by: Person's Name and Firm Randy Radke Cascade Environmental 17. Additional comments on development: I hereby certify that the above information is true and correct to the best of my knowledge. 18. Well developed by: Person's Name and Firm Randy Radke Cascade Environmental 19. Well developed by: Person's Name and Firm Randy Radke Cascade Environmental 10. Analysis performed on water added? Yes No Randy Radke Cascade Environmental 11. Hereby certify that the above information is true and correct to the best of my knowledge. 12. Signature: Module Jawaii Mike Savale Print Name: Mike Savale Mik	8. Volume of water added (if any)		0.0 gal.						
10. Analysis performed on water added?	9. Source of water added			15.	COD		mg/l		mg/l
(If yes, attach results) Cascade Environmental To Additional comments on development: Facility Address or Owner/Responsible Party Address Name: Michael Christopher Firm: Georgia-Pacific LLC Street: 133 Peach Tree Street NE I hereby certify that the above information is true and correct to the best of my knowledge. Signature: Mike Savale Take Take				16. \	Well developed by	: Person's	Name and Firm		
Table 133 Peach Tree Street NE Cascade Environmental Cascade Environmental Cascade Environmental I hereby certify that the above information is true and correct to the best of my knowledge. Signature: Michael Christopher Signature: Mike Savale		□ Ye	s 🗆 No		Randy F	Radke			
Facility Address or Owner/Responsible Party Address Name: Michael Christopher Firm: Georgia-Pacific LLC Street: 133 Peach Tree Street NE I hereby certify that the above information is true and correct to the best of my knowledge. Signature: Mike Savale Tata Talk	(, 500, 0				Cascade	e Enviror	nmental		
Name: Michael Christopher Firm: Georgia-Pacific LLC Signature: Mike Savale Attacks CA 20000	17. Additional comments on development:								
Name: Michael Christopher Firm: Georgia-Pacific LLC Signature: Mike Savale Attacks CA 20000									
Name: Michael Christopher Firm: Georgia-Pacific LLC Signature: Mike Savale Attacks CA 20000									
Name: Michael Christopher Firm: Georgia-Pacific LLC Signature: Mike Savale Attacks CA 20000									
Name: Michael Christopher Firm: Georgia-Pacific LLC Signature: Mike Savale Attacks CA 20202	Facility Address or Owner/Responsible Party Ad	dress		I he	ereby certify that th	ne above ir	nformation is true	e and correct t	to the best of my
Street: 133 Peach Tree Street NE Print Name: Mike Savale	Name: Michael Christopher					,			
Attache CA 20000	Firm: Georgia-Pacific LLC			Sigr	nature: Mola	(Anual			
City/State/Zip: Atlanta, GA 30303 Firm: Tetra Tech	Street: 133 Peach Tree Street NE			Prir	nt Name: Mike	Savale			
	City/State/Zip: Atlanta, GA 30303			Firn	m: <u>Tetra</u>	Tech			

MONITORING WELL DEVELOPMENT

Form 4400-113B Rev. 7-98

Route To: Watershed	/Wastewat	ter 🗌	Waste Management				
	n/Redevel	opment 🗵	Other				
Facility/Project Name		County		Well	Name		
Ashview Terrace Apartments PFAS Investion Facility License, Permit or Monitoring Number	gation	County Code	Brown Wis. Unique Well No	ımher	IVI VV DNR Wel	-21-02	
02-05-564043		5	Wis. Offique Wall IN	arriba	DIVIC WG	Trainba	
				- ·	5	A.(; D	
Can this well be purged dry?	⊠ Ye	s □ No	11. Depth to Water	Before	Development	After De	vel opment
2. Well development method:			(from top of	a.	17.96 ft.		22.16 ft.
surged with bailer and bailed	□ 4	1 1	well casing)	Ci.			
surged with bailer and pumped	□ 6	5 1					
surged with block and bailed	□ 4	12	Date	b.	5/5/2021	5	5/5/2021
surged with block and pumped	_	52					
surged with block, bailed, and pumped	_	70	Time	_		a.m.	□ a.m.
compressed air		2.0	Time	C.	11:08 🗆 1	p.m.	01:17 ⊠ p.m.
bailed only pumped only		0 51	12. Sediment in well		0.1 inches		0.0 inches
pumped slowly		50	bottom				oro mana
other			13. Water darity	Clear	□ 10	Clear ⊠	20
				Turbio	d ⊠ 15	Turbid 🗆	25
3. Time spent developing well		129 min.		(Descr	ibe)	(Describe)	
				Brov	wn		
4. Depth of well (from top of well casing)	2	25.8 ft.					
5. Inside diameter of well	2	2.00 in.					
6. Volume of water in filter pack and well							
casing	1	1.9 gal.					
-		· ·	Fill in if drilling fluid	ls were use	ed and well is at sol	lid waste faci	lity:
7. Volume of water removed from well	3	80.0 gal.					,
	_	gan	14. Total suspended		mg/l		mg/l
8. Volume of water added (if any)		0.0 gal.	solids				
			15. COD		mg/l		mg/l
9. Source of water added					9		9.
			16. Well developed b	y: Person's	s Name and Firm		
 Analysis performed on water added? (If yes, attach results) 	□ Ye	s □ No	Randy	Radke			
(II you, allow I ooutlo)			Cascac	le Enviro	nmental		
17. Additional comments on development:							
Facility Address of Owner (Dans and La Danta Add							
Facility Address or Owner/Responsible Party Add	ress		I hereby certify that	the above i	nformation is true	and correct to	the best of my
Name: Michael Christopher			knowledge.				
Firm: Georgia-Pacific LLC			Marie Marie	hal Java	_		
Firm: Georgia-Pacific LLC			Signature:	THE LINE			
Street: 133 Peach Tree Street NE			Print Name: Mike	Savale			
City/State/Zip: Atlanta, GA 30303			Firm: Tetra	Tech			
City/State/Zip: Atlanta, GA 30303			FIIIII. TAIO				

MONITORING WELL DEVELOPMENT

Form 4400-113B Rev. 7-98

	ed/Waste			Wa	aste Management [
	tion/Rede			Oth	ner 🗆					
Facility/Project Name			County			Well	Name			
Ashview Terrace Apartments PFAS Invest Facility License, Permit or Monitoring Number	tigation		County Code		own s. Unique Well Nu	mber		IVI VV	-21-03	
02-05-564043			5	"	s. Offique War Nu	mba		DIVIC WGI	rivarriba	
32 33 33 13 13										
1. Can this well be purged dry?		Yes	□ No	11	Depth to Water	Before	Deve	opment	After De	velopment
2. Well development method:				'''	(from top of			24.50 ft.		24.55 ft.
surged with bailer and bailed		41			well casing)	a.		24.50 ft.		24.55 π.
surged with bailer and pumped		61								
surged with block and bailed		42			Date	b.	5/4	/2021	5	5/4/2021
surged with block and pumped		62								
surged with block, bailed, and pumped		70						□ a	a.m.	□ a.m.
compressed air		20			Time	C.		05:00 ⊠ բ	o.m.	05:46 ⊠ p.m.
bailed only		10								
pumped only	\boxtimes	5 1		12.	Sediment in well		C	0.1 inches		0.0 inches
pumped slowly		50			bottom					
other	_ □	22322		13.	Water darity	Clear Turbio		10 15	Clear ⊠ Turbid □	-
3. Time spent developing well		4	6 min.			(Descri	,		(Describe)	
						Ligh	t Bro	own	Slightly	Turbid
4. Depth of well (from top of well casing)		27.	6 ft.							
5. Inside diameter of well		2.0	0 in.							
6. Volume of water in filter pack and well										
casing		9.	4 gal.							
				Fill	I in if drilling fluids	s were use	d and	well is at sol	id waste faci	lity:
7. Volume of water removed from well		18.	0 gal.							
			· ·	14.	Total suspended			mg/l		mg/l
8. Volume of water added (if any)		0.	0 gal.		solids					
9. Source of water added				15.	COD			mg/l		mg/l
				16.	Well developed by	: Person's	Nam	e and Firm		
10. Analysis performed on water added?		Yes	□ No		Randy F					
(If yes, attach results)					•					
17. Additional comments on development:					Cascade	e Enviro	nmer	ntal		
17. Additional comments on development.										
Facility Address or Owner/Responsible Party Ad	ldress									
Tability Address of Owner/Responsible Fairty Ad	idi cas				ereby certify that th	ne above i	nform	ation is true a	and correct t	o the best of my
Name: Michael Christopher				KII	owledge.					
Firm: Georgia-Pacific LLC				Sig	gnature: _Mchar	l Javal				
Street: 133 Peach Tree Street NE				Pri	nt Name: Mike	Savale				
AU 1 0A 00000					T at ma	Toch				
City/State/Zip: Atlanta, GA 30303				Fir	m: <u>Tetra</u>	ı				

Attachment 6 Soil and Groundwater Analytical Reports

May 28, 2021

Vista Work Order No. 2105075

Mr. Michael Savale Tetra Tech 710 Avis Drive, Suite 100 Ann Arbor, MI 48108

Dear Mr. Savale,

Enclosed are the results for the sample set received at Vista Analytical Laboratory on May 07, 2021 under your Project Name 'Ashview Terrace Apt. PFAS'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

for

Martha Maier Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Analytical Laboratory 1104 Windfield Way El Dorado Hills, CA 95762 ph: 916-673-1520 fx: 916-673-0106 www.vista-analytical.com

Work Order 2105075 Page 1 of 29

Vista Work Order No. 2105075 Case Narrative

Sample Condition on Receipt:

Three aqueous samples and one soil sample were received and stored securely in accordance with Vista standard operating procedures and EPA methodology. The samples were received in good condition and within the recommended temperature requirements.

Analytical Notes:

PFAS Isotope Dilution Method (Aqueous)

The samples were extracted and analyzed for a selected list of PFAS using Vista's PFAS Isotope Dilution Method. The results for PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Results for all other analytes include the linear isomers only.

Holding Times

The samples were extracted and analyzed within the hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank above the Reporting Limit. The OPR recoveries were within the method acceptance criteria.

The labeled standard recoveries for all QC and field samples were within the acceptance criteria.

PFAS Isotope Dilution Method (Soil)

The soil sample was extracted and analyzed for a selected list of PFAS using Vista's Isotope Dilution Method. The results for PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Results for all other analytes include the linear isomers only.

Holding Times

The sample was extracted and analyzed within the hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the

Work Order 2105075 Page 2 of 29

preparation batch. No analytes were detected in the Method Blank above the Reporting Limit (RL). The OPR recoveries were within the method acceptance criteria.

The labeled standard recoveries for all QC and field samples were within the acceptance criteria.

Work Order 2105075 Page 3 of 29

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	4
Sample Inventory	5
Analytical Results	6
Qualifiers	23
Certifications	24
Sample Receipt	27

Work Order 2105075 Page 4 of 29

Sample Inventory Report

	Vista Sample ID	Client Sample ID	Sampled	Received	Components/Containers
2	2105075-01	MW-21-01-210506	06-May-21 09:00	07-May-21 09:33	HDPE Bottle, 250 mL
					HDPE Bottle, 250 mL
2	2105075-02	MW-21-02-210506	06-May-21 10:00	07-May-21 09:33	HDPE Bottle, 250 mL
					HDPE Bottle, 250 mL
2	2105075-03	MW-21-03-210505	05-May-21 17:25	07-May-21 09:33	HDPE Bottle, 250 mL
					HDPE Bottle, 250 mL
2	2105075-04	SB-21-02-210504	04-May-21 11:00	07-May-21 09:33	HDPE Jar, 6 oz

Vista Project: 2105075 Client Project: Ashview Terrace Apt. PFAS

Work Order 2105075 Page 5 of 29

ANALYTICAL RESULTS

Work Order 2105075 Page 6 of 29

Sample ID: Method Blank **PFAS Isotope Dilution Method**

Client Data Laboratory Data

Name: Project:	Tetra Tech Ashview Terrace Apt. PFAS	Matrix:	Aqueous		Lab S	Sample:	B1E0111-	BLK1	Column:	BEH C18	
1 Toject.	Ashview Terrace Apr. 11A5										
Analyte	CAS Number	Conc. (ng/L)	MDL		ŘL	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBA	375-22-4	< 0.715	0.715		2.00		B1E0111	17-May-21	0.250 L	20-May-21 00:10	1
PFPeA	2706-90-3	< 0.980	0.980		2.00		B1E0111	17-May-21	0.250 L	20-May-21 00:10	1
PFBS	375-73-5	< 0.770	0.770		2.00		B1E0111	17-May-21	0.250 L	20-May-21 00:10	1
4:2 FTS	757124-72-4	<1.08	1.08		2.00		B1E0111	17-May-21	0.250 L	20-May-21 00:10	1
PFHxA	307-24-4	<1.13	1.13		2.00		B1E0111	17-May-21	0.250 L	20-May-21 00:10	1
PFPeS	2706-91-4	< 0.905	0.905		2.00		B1E0111	17-May-21	0.250 L	20-May-21 00:10	1
HFPO-DA	13252-13-6	< 0.620	0.620		2.00		B1E0111	17-May-21	0.250 L	20-May-21 00:10	1
PFHpA	375-85-9	< 0.885	0.885		2.00		B1E0111	17-May-21	0.250 L	20-May-21 00:10	1
ADONA	919005-14-4	< 0.850	0.850		2.00		B1E0111	17-May-21	0.250 L	20-May-21 00:10	
PFHxS	355-46-4	<1.08	1.08		2.00			17-May-21	0.250 L	20-May-21 00:10	
6:2 FTS	27619-97-2	< 0.965	0.965		2.00			17-May-21	0.250 L	20-May-21 00:10	
PFOA	335-67-1	<1.09	1.09		2.00		B1E0111	17-May-21	0.250 L	20-May-21 00:10	1
PFHpS	375-92-8	< 2.47	2.47		2.50		B1E0111	17-May-21	0.250 L	20-May-21 00:10	
PFNA	375-95-1	< 0.565	0.565		2.00		B1E0111	17-May-21	0.250 L	20-May-21 00:10	1
PFOSA	754-91-6	<1.35	1.35		2.00		B1E0111	17-May-21	0.250 L	20-May-21 00:10	1
PFOS	1763-23-1	<1.07	1.07		2.00		B1E0111	17-May-21	0.250 L	20-May-21 00:10	
9Cl-PF3ONS	756426-58-1	< 0.830	0.830		2.00		B1E0111	17-May-21	0.250 L	20-May-21 00:10	
PFDA	335-76-2	< 0.900	0.900		2.00			17-May-21	0.250 L	20-May-21 00:10	
8:2 FTS	39108-34-4	<2.24	2.24		2.25		B1E0111	17-May-21	0.250 L	20-May-21 00:10	
PFNS	68259-12-1	<1.41	1.41		2.00		B1E0111	17-May-21	0.250 L	20-May-21 00:10	1
MeFOSAA	2355-31-9	< 0.945	0.945		2.00			17-May-21	0.250 L	20-May-21 00:10	
EtFOSAA	2991-50-6	<2.54	2.54		2.63		B1E0111	17-May-21	0.250 L	20-May-21 00:10	
PFUnA	2058-94-8	<1.35	1.35		2.00		B1E0111	17-May-21	0.250 L	20-May-21 00:10	
PFDS	335-77-3	<2.71	2.71		2.75			17-May-21	0.250 L	20-May-21 00:10	
11Cl-PF3OUdS	763051-92-9	< 0.427	0.427		2.00		B1E0111	17-May-21	0.250 L	20-May-21 00:10	
PFDoA	307-55-1	< 0.785	0.785		2.00		B1E0111	17-May-21	0.250 L	20-May-21 00:10	
MeFOSA	31506-32-8	< 6.85	6.85		8.00		B1E0111	17-May-21	0.250 L	20-May-21 00:10	
PFTrDA	72629-94-8	<1.11	1.11		2.00		B1E0111	17-May-21	0.250 L	20-May-21 00:10	
PFDoS	79780-39-5	<1.59	1.59		2.00		B1E0111	17-May-21	0.250 L	20-May-21 00:10	
PFTeDA	376-06-7	< 0.815	0.815		2.00		B1E0111	17-May-21	0.250 L	20-May-21 00:10	
EtFOSA	4151-50-2	<7.30	7.30		8.00		B1E0111	17-May-21	0.250 L	20-May-21 00:10	
MeFOSE	24448-09-7	<8.00	8.00		8.00		B1E0111	17-May-21	0.250 L	20-May-21 00:10	1
EtFOSE	1691-99-2	<5.55	5.55		8.00		B1E0111	17-May-21	0.250 L	20-May-21 00:10	1
Labeled Standard		% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size		Dilution
13C3-PFBA	IS	138		25 - 150			B1E0111	17-May-21	0.250 L	20-May-21 00:10	1
13C3-PFPeA	IS	87.9		25 - 150			B1E0111	17-May-21	0.250 L	20-May-21 00:10	
13C3-PFBS	IS	86.2		25 - 150			B1E0111	17-May-21	0.250 L	20-May-21 00:10	
13C3-HFPO-DA	IS	81.0		25 - 150			B1E0111	17-May-21	0.250 L	20-May-21 00:10	1

Page 7 of 29 Work Order 2105075

Sample ID: Method Blank PFAS Isotope Dilution Method

Client Data Laboratory Data

Name: Tetra Tech Matrix: Aqueous Lab Sample: B1E0111-BLK1 Column: BEH C18
Project: Ashview Terrace Apt. PFAS

Labeled Standards	Туре	% Recovery	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-4:2 FTS	IS	88.0	25 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:10	1
13C2-PFHxA	IS	87.7	25 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:10) 1
13C4-PFHpA	IS	91.7	25 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:10	1
13C3-PFHxS	IS	91.1	25 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:10	1
13C2-6:2 FTS	IS	96.5	25 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:10	1
13C5-PFNA	IS	89.5	25 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:10	1
13C8-PFOSA	IS	55.2	10 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:10	1
13C2-PFOA	IS	92.6	25 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:10) 1
13C8-PFOS	IS	92.2	25 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:10	1
13C2-PFDA	IS	93.4	25 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:10	1
13C2-8:2 FTS	IS	87.6	25 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:10	1
d3-MeFOSAA	IS	80.9	25 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:10	1
13C2-PFUnA	IS	89.4	25 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:10	1
d5-EtFOSAA	IS	82.6	25 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:10	1
13C2-PFDoA	IS	82.5	25 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:10	1
d3-MeFOSA	IS	28.1	10 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:10) 1
13C2-PFTeDA	IS	72.7	25 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:10	1
d5-EtFOSA	IS	27.2	10 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:10) 1
d7-MeFOSE	IS	48.3	10 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:10	1
d9-EtFOSE	IS	48.3	10 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:10	1

MDL - Method Detection Limit

RL - Reporting limit

Results reported to MDL.

When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.

Work Order 2105075 Page 8 of 29

Sample ID: OPR

PFAS Isotope Dilution Method

Client Data Laboratory Data

Name: Tetra Tech Matrix: Aqueous Lab Sample: B1E0111-BS1 Column: BEH C18

Project: Ashview Terrace Apt. PFAS

Analyte	CAS Number	Amt Found (ng/L)	Spike Amt	% Rec	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBA	375-22-4	8.48	8.00	106	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
PFPeA	2706-90-3	8.23	8.00	103	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
PFBS	375-73-5	9.15	8.00	114	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
4:2 FTS	757124-72-4	7.89	8.00	98.6	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
PFHxA	307-24-4	8.56	8.00	107	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
PFPeS	2706-91-4	9.40	8.00	118	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
HFPO-DA	13252-13-6	8.69	8.00	109	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
PFHpA	375-85-9	7.65	8.00	95.6	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
ADONA	919005-14-4	8.10	8.00	101	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
PFHxS	355-46-4	8.03	8.00	100	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
6:2 FTS	27619-97-2	8.11	8.00	101	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
PFOA	335-67-1	8.41	8.00	105	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
PFHpS	375-92-8	7.52	8.00	94.0	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
PFNA	375-95-1	8.31	8.00	104	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
PFOSA	754-91-6	6.80	8.00	85.0	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
PFOS	1763-23-1	9.06	8.00	113	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
9C1-PF3ONS	756426-58-1	8.36	8.00	105	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
PFDA	335-76-2	7.67	8.00	95.8	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
8:2 FTS	39108-34-4	9.67	8.00	121	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
PFNS	68259-12-1	8.24	8.00	103	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
MeFOSAA	2355-31-9	7.64	8.00	95.5	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
EtFOSAA	2991-50-6	7.94	8.00	99.2	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
PFUnA	2058-94-8	8.90	8.00	111	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
PFDS	335-77-3	7.16	8.00	89.5	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
11Cl-PF3OUdS	763051-92-9	8.88	8.00	111	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
PFDoA	307-55-1	7.63	8.00	95.4	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
MeFOSA	31506-32-8	7.57	8.00	94.6	50 - 150	J	B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
PFTrDA	72629-94-8	7.28	8.00	91.0	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
PFDoS	79780-39-5	7.42	8.08	91.9	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
PFTeDA	376-06-7	8.19	8.00	102	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
EtFOSA	4151-50-2	7.95	8.00	99.4	50 - 150	J	B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
MeFOSE	24448-09-7	7.54	8.00	94.2	50 - 150	J	B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
EtFOSE	1691-99-2	7.53	8.00	94.2	50 - 150	J	B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
Labeled Standards		Туре		% Rec	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution

Work Order 2105075 Page 9 of 29

Sample ID: OPR

PFAS Isotope Dilution Method

Client Data Laboratory Data

Project:

Ashview Terrace Apt. PFAS

Name: Tetra Tech Matrix: Aqueous Lab Sample: B1E0111-BS1 Column: BEH C18

Labeled Standards **Oualifiers** % Rec Limits Extracted **Analyzed** Dilution Type Samp Size Batch 13C3-PFBA IS 131 25 - 150 B1E0111 17-May-21 0.250 L 20-May-21 00:20 17-May-21 13C3-PFPeA IS 85.4 25 - 150 B1E0111 0.250 L 20-May-21 00:20 1 IS 13C3-PFBS 80.0 25 - 150 B1E0111 17-May-21 0.250 L 20-May-21 00:20 IS 25 - 150 17-May-21 20-May-21 00:20 13C3-HFPO-DA 79.1 B1E0111 0.250 L 1 13C2-4:2 FTS IS 85.0 25 - 150 B1E0111 17-May-21 0.250 L 20-May-21 00:20 13C2-PFHxA IS 86.7 25 - 150 17-May-21 0.250 L 1 B1E0111 20-May-21 00:20 IS 13C4-PFHpA 90.8 25 - 150 B1E0111 17-May-21 0.250 L 20-May-21 00:20 13C3-PFHxS IS 97.4 17-May-21 25 - 150 B1E0111 0.250 L 20-May-21 00:20 1 13C2-6:2 FTS IS 87.2 25 - 150 B1E0111 17-May-21 0.250 L 20-May-21 00:20 13C5-PFNA 82.7 25 - 150 17-May-21 0.250 L 20-May-21 00:20 1 IS B1E0111 13C8-PFOSA IS 59.0 10 - 150 B1E0111 17-May-21 0.250 L 20-May-21 00:20 B1E0111 17-May-21 13C2-PFOA IS 87.7 25 - 150 0.250 L 20-May-21 00:20 1 13C8-PFOS IS 90.9 25 - 150 B1E0111 17-May-21 0.250 L 20-May-21 00:20 13C2-PFDA IS 94.7 25 - 150B1E0111 17-May-21 0.250 L 20-May-21 00:20 1 13C2-8:2 FTS IS 81.1 25 - 150 B1E0111 17-May-21 0.250 L 20-May-21 00:20 d3-MeFOSAA 20-May-21 00:20 IS 82.0 25 - 150 B1E0111 17-May-21 0.250 L 1 13C2-PFUnA IS 84.5 25 - 150 0.250 L B1E0111 17-May-21 20-May-21 00:20 d5-EtFOSAA IS 81.7 25 - 150 B1E0111 17-May-21 0.250 L 20-May-21 00:20 1 13C2-PFDoA IS 85.1 25 - 150 B1E0111 17-May-21 0.250 L 20-May-21 00:20 d3-MeFOSA IS 34.8 10 - 150 B1E0111 17-May-21 0.250 L 20-May-21 00:20 1 IS 13C2-PFTeDA 75.3 25 - 150 17-May-21 0.250 L 20-May-21 00:20 B1E0111 IS 10 - 150 d5-EtFOSA 33.8 B1E0111 17-May-21 0.250 L 20-May-21 00:20 1 d7-MeFOSE IS 50.2 10 - 150 B1E0111 17-May-21 0.250 L 20-May-21 00:20 d9-EtFOSE IS 51.8 10 - 150 B1E0111 17-May-21 0.250 L 20-May-21 00:20 1

Work Order 2105075 Page 10 of 29

B1E0111 17-May-21 0.245 L 21-May-21 17:49

Sample ID: MW-21-01-210506 **PFAS Isotope Dilution Method**

Laboratory Data

Name: Tetra Tech

Client Data

13C3-PFBS

IS

84.0

Matrix: Aqueous Lab Sample: 2105075-01 Column: BEH C18

Date Collected: 06-May-21 09:00 Project: Date Received: Ashview Terrace Apt. PFAS 07-May-21 09:33

roject. Ashview	remace Apt. 11745	Built Col	00-1 v1a y-21	07.00 Date	received.	07-Way-2	1 07.55			
Analyte	CAS Number	Conc. (ng/L)	MDL	RL	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBA	375-22-4	18.8	0.731	2.04		B1E0111	17-May-21	0.245 L	21-May-21 17:49	9 1
PFPeA	2706-90-3	25.2	1.00	2.04		B1E0111	17-May-21	0.245 L	21-May-21 17:49	9 1
PFBS	375-73-5	169	0.787	2.04		B1E0111	17-May-21	0.245 L	21-May-21 17:49	9 1
4:2 FTS	757124-72-4	<1.10	1.10	2.04		B1E0111	17-May-21	0.245 L	21-May-21 17:49	9 1
PFHxA	307-24-4	15.7	1.15	2.04		B1E0111	17-May-21	0.245 L	21-May-21 17:49	9 1
PFPeS	2706-91-4	< 0.925	0.925	2.04		B1E0111	17-May-21	0.245 L	21-May-21 17:49	9 1
HFPO-DA	13252-13-6	< 0.634	0.634	2.04		B1E0111	17-May-21	0.245 L	21-May-21 17:49	9 1
PFHpA	375-85-9	8.43	0.905	2.04		B1E0111	17-May-21	0.245 L	21-May-21 17:49	9 1
ADONA	919005-14-4	< 0.869	0.869	2.04		B1E0111	17-May-21	0.245 L	21-May-21 17:49	9 1
PFHxS	355-46-4	1.44	1.10	2.04	J, Q	B1E0111	17-May-21	0.245 L	21-May-21 17:49	9 1
6:2 FTS	27619-97-2	1.81	0.986	2.04	J	B1E0111	17-May-21	0.245 L	21-May-21 17:49	9 1
PFOA	335-67-1	12.1	1.11	2.04		B1E0111	17-May-21	0.245 L	21-May-21 17:49	9 1
PFHpS	375-92-8	<2.52	2.52	2.56		B1E0111	17-May-21	0.245 L	21-May-21 17:49	9 1
PFNA	375-95-1	< 0.577	0.577	2.04		B1E0111	17-May-21	0.245 L	21-May-21 17:49	9 1
PFOSA	754-91-6	3.91	1.38	2.04		B1E0111	17-May-21	0.245 L	21-May-21 17:49	9 1
PFOS	1763-23-1	1.39	1.09	2.04	J, Q	B1E0111	17-May-21	0.245 L	21-May-21 17:49	9 1
9Cl-PF3ONS	756426-58-1	< 0.848	0.848	2.04		B1E0111	17-May-21	0.245 L	21-May-21 17:49	
PFDA	335-76-2	< 0.920	0.920	2.04		B1E0111	17-May-21	0.245 L	21-May-21 17:49	9 1
8:2 FTS	39108-34-4	<2.29	2.29	2.30		B1E0111	17-May-21	0.245 L	21-May-21 17:49	9 1
PFNS	68259-12-1	<1.44	1.44	2.04		B1E0111	17-May-21	0.245 L	21-May-21 17:49	9 1
MeFOSAA	2355-31-9	< 0.966	0.966	2.04		B1E0111	17-May-21	0.245 L	21-May-21 17:49	9 1
EtFOSAA	2991-50-6	< 2.59	2.59	2.68		B1E0111	17-May-21	0.245 L	21-May-21 17:49	9 1
PFUnA	2058-94-8	<1.37	1.37	2.04		B1E0111	17-May-21	0.245 L	21-May-21 17:49	9 1
PFDS	335-77-3	< 2.76	2.76	2.81		B1E0111	17-May-21	0.245 L	21-May-21 17:49	9 1
11Cl-PF3OUdS	763051-92-9	< 0.436	0.436	2.04		B1E0111	17-May-21	0.245 L	21-May-21 17:49	9 1
PFDoA	307-55-1	< 0.802	0.802	2.04		B1E0111	17-May-21	0.245 L	21-May-21 17:49	9 1
MeFOSA	31506-32-8	< 7.00	7.00	8.18		B1E0111	17-May-21	0.245 L	21-May-21 17:49	9 1
PFTrDA	72629-94-8	<1.13	1.13	2.04		B1E0111	17-May-21	0.245 L	21-May-21 17:49	9 1
PFDoS	79780-39-5	<1.63	1.63	2.04		B1E0111	17-May-21	0.245 L	21-May-21 17:49	9 1
PFTeDA	376-06-7	< 0.833	0.833	2.04		B1E0111	17-May-21	0.245 L	21-May-21 17:49	9 1
EtFOSA	4151-50-2	<7.46	7.46	8.18		B1E0111	17-May-21	0.245 L	21-May-21 17:49	9 1
MeFOSE	24448-09-7	< 8.18	8.18	8.18		B1E0111	17-May-21	0.245 L	21-May-21 17:49	9 1
EtFOSE	1691-99-2	< 5.67	5.67	8.18		B1E0111	17-May-21	0.245 L	21-May-21 17:49	9 1
Labeled Standards	Туре	% Recovery]	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBA	IS	124		25 - 150		B1E0111	17-May-21	0.245 L	21-May-21 17:49	
13C3-PFPeA	IS	87.4	2	25 - 150		B1E0111	17-May-21	0.245 L	21-May-21 17:49	9 1

Work Order 2105075 Page 11 of 29

25 - 150

Sample ID: MW-21-01-210506 PFAS Isotope Dilution Method

Client Data Laboratory Data

Name: Tetra Tech Matrix: Aqueous Lab Sample: 2105075-01 Column: BEH C18

Project: Ashview Terrace Apt. PFAS Date Collected: 06-May-21 09:00 Date Received: 07-May-21 09:33

Labeled Standards % Recovery Limits Qualifiers Batch Extracted Samp Size Analyzed **Dilution** Type 13C3-HFPO-DA IS 82.9 25 - 150 B1E0111 17-May-21 0.245 L 21-May-21 17:49 92.3 25 - 150 13C2-4:2 FTS IS B1E0111 17-May-21 0.245 L 21-May-21 17:49 IS 25 - 150 13C2-PFHxA 85.6 B1E0111 17-May-21 0.245 L 21-May-21 17:49 IS 17-May-21 13C4-PFHpA 90.0 25 - 150 0.245 L 21-May-21 17:49 B1E0111 IS 87.8 13C3-PFHxS 25 - 150 B1E0111 17-May-21 0.245 L 21-May-21 17:49 0.245 L IS 87.6 25 - 15017-May-21 13C2-6:2 FTS B1E0111 21-May-21 17:49 1 IS 25 - 150 13C5-PFNA 87.0 17-May-21 0.245 L 21-May-21 17:49 B1E0111 10 - 150 17-May-21 13C8-PFOSA IS 64.4 B1E0111 0.245 L 21-May-21 17:49 1 13C2-PFOA IS 87.6 25 - 150 B1E0111 17-May-21 0.245 L 21-May-21 17:49 13C8-PFOS IS 85.0 25 - 150 17-May-21 0.245 L B1E0111 21-May-21 17:49 1 13C2-PFDA IS 87.9 25 - 150 17-May-21 0.245 L B1E0111 21-May-21 17:49 13C2-8:2 FTS IS 83.1 25 - 150 17-May-21 0.245 L B1E0111 21-May-21 17:49 1 d3-MeFOSAA IS 77.1 25 - 150 B1E0111 17-May-21 0.245 L 21-May-21 17:49 13C2-PFUnA IS 82.2 25 - 150 B1E0111 17-May-21 0.245 L 21-May-21 17:49 1 IS 79.1 d5-EtFOSAA 25 - 15017-May-21 0.245 L B1E0111 21-May-21 17:49 25 - 150 13C2-PFDoA IS 82.1 17-May-21 0.245 L B1E0111 21-May-21 17:49 IS 10 - 150 d3-MeFOSA 40.8 17-May-21 21-May-21 17:49 B1E0111 0.245 L 13C2-PFTeDA IS 76.1 25 - 150 B1E0111 17-May-21 0.245 L 21-May-21 17:49 1 IS d5-EtFOSA 42.1 10 - 150 B1E0111 17-May-21 0.245 L 21-May-21 17:49 d7-MeFOSE IS 59.0 10 - 150 B1E0111 17-May-21 0.245 L 21-May-21 17:49 d9-EtFOSE IS 60.0 10 - 150 B1E0111 17-May-21 0.245 L 21-May-21 17:49

MDL - Method Detection Limit

RL - Reporting limit Results reported to MDL

When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.

Work Order 2105075 Page 12 of 29

Sample ID: MW-21-02-210506 **PFAS Isotope Dilution Method**

Name: Tetra Tech

Client Data

Project: Ashview Terrace Apt. PFAS Matrix: Aqueous Date Collected: 06-May-21 10:00 **Laboratory Data**

Lab Sample: 2105075-02

Date Received: 07-May-21 09:33 Column: BEH C18

Floject. As	silview Terrace Apr. FFAS	Date Cor	nected: 00-May-21	10.00	Date	Received.	07-May-2	1 09.33			
Analyte	CAS Number	Conc. (ng/L)	MDL		RL	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBA	375-22-4	3.69	0.754		2.11		B1E0111	17-May-21	0.237 L	20-May-21 01:22	1
PFPeA	2706-90-3	2.92	1.03		2.11		B1E0111	17-May-21	0.237 L	20-May-21 01:22	1
PFBS	375-73-5	3.64	0.812		2.11		B1E0111	17-May-21	0.237 L	20-May-21 01:22	1
4:2 FTS	757124-72-4	<1.14	1.14		2.11		B1E0111	17-May-21	0.237 L	20-May-21 01:22	1
PFHxA	307-24-4	1.89	1.19		2.11	J	B1E0111	17-May-21	0.237 L	20-May-21 01:22	1
PFPeS	2706-91-4	< 0.954	0.954		2.11		B1E0111	17-May-21	0.237 L	20-May-21 01:22	1
HFPO-DA	13252-13-6	< 0.654	0.654		2.11		B1E0111	17-May-21	0.237 L	20-May-21 01:22	1
PFHpA	375-85-9	1.20	0.933		2.11	J	B1E0111	17-May-21	0.237 L	20-May-21 01:22	1
ADONA	919005-14-4	< 0.896	0.896		2.11		B1E0111	17-May-21	0.237 L	20-May-21 01:22	1
PFHxS	355-46-4	<1.13	1.13		2.11		B1E0111	17-May-21	0.237 L	20-May-21 01:22	1
6:2 FTS	27619-97-2	<1.02	1.02		2.11		B1E0111	17-May-21	0.237 L	20-May-21 01:22	1
PFOA	335-67-1	<1.15	1.15		2.11		B1E0111	17-May-21	0.237 L	20-May-21 01:22	1
PFHpS	375-92-8	< 2.60	2.60		2.64		B1E0111	17-May-21	0.237 L	20-May-21 01:22	1
PFNA	375-95-1	< 0.596	0.596		2.11		B1E0111	17-May-21	0.237 L	20-May-21 01:22	1
PFOSA	754-91-6	2.22	1.42		2.11	Q	B1E0111	17-May-21	0.237 L	20-May-21 01:22	1
PFOS	1763-23-1	<1.12	1.12		2.11		B1E0111	17-May-21	0.237 L	20-May-21 01:22	1
9Cl-PF3ONS	756426-58-1	< 0.875	0.875		2.11		B1E0111	17-May-21	0.237 L	20-May-21 01:22	1
PFDA	335-76-2	< 0.949	0.949		2.11		B1E0111	17-May-21	0.237 L	20-May-21 01:22	1
8:2 FTS	39108-34-4	<2.36	2.36		2.37		B1E0111	17-May-21	0.237 L	20-May-21 01:22	1
PFNS	68259-12-1	<1.49	1.49		2.11		B1E0111	17-May-21	0.237 L	20-May-21 01:22	1
MeFOSAA	2355-31-9	< 0.996	0.996		2.11		B1E0111	17-May-21	0.237 L	20-May-21 01:22	1
EtFOSAA	2991-50-6	< 2.67	2.67		2.77		B1E0111	17-May-21	0.237 L	20-May-21 01:22	1
PFUnA	2058-94-8	<1.42	1.42		2.11		B1E0111	17-May-21	0.237 L	20-May-21 01:22	1
PFDS	335-77-3	< 2.85	2.85		2.90		B1E0111	17-May-21	0.237 L	20-May-21 01:22	1
11Cl-PF3OUdS	763051-92-9	< 0.450	0.450		2.11		B1E0111	17-May-21	0.237 L	20-May-21 01:22	1
PFDoA	307-55-1	< 0.828	0.828		2.11		B1E0111	17-May-21	0.237 L	20-May-21 01:22	1
MeFOSA	31506-32-8	<7.22	7.22		8.44		B1E0111	17-May-21	0.237 L	20-May-21 01:22	1
PFTrDA	72629-94-8	<1.17	1.17		2.11		B1E0111	17-May-21	0.237 L	20-May-21 01:22	1
PFDoS	79780-39-5	<1.68	1.68		2.11		B1E0111	17-May-21	0.237 L	20-May-21 01:22	1
PFTeDA	376-06-7	< 0.859	0.859		2.11		B1E0111	17-May-21	0.237 L	20-May-21 01:22	
EtFOSA	4151-50-2	<7.70	7.70		8.44		B1E0111	17-May-21	0.237 L	20-May-21 01:22	1
MeFOSE	24448-09-7	<8.44	8.44		8.44		B1E0111	17-May-21	0.237 L	20-May-21 01:22	
EtFOSE	1691-99-2	< 5.85	5.85		8.44		B1E0111	17-May-21	0.237 L	20-May-21 01:22	
Labeled Standards	Туре	% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size		Dilution
13C3-PFBA	IS	148		25 - 150			B1E0111	17-May-21	0.237 L	20-May-21 01:22	1
13C3-PFPeA	IS	92.9		25 - 150			B1E0111	17-May-21	0.237 L	20-May-21 01:22	1
13C3-PFBS	IS	85.5		25 - 150			B1E0111	17-May-21	0.237 L	20-May-21 01:22	1

Work Order 2105075 Page 13 of 29

Sample ID: MW-21-02-210506 PFAS Isotope Dilution Method

Client Data Laboratory Data

Name: Tetra Tech Matrix: Aqueous Lab Sample: 2105075-02 Column: BEH C18

Project: Ashview Terrace Apt. PFAS Date Collected: 06-May-21 10:00 Date Received: 07-May-21 09:33

Labeled Standards % Recovery Limits Qualifiers Batch Extracted Samp Size Analyzed **Dilution** Type 13C3-HFPO-DA IS 110 25 - 150 B1E0111 17-May-21 0.237 L 20-May-21 01:22 92.3 25 - 150 13C2-4:2 FTS IS B1E0111 17-May-21 0.237 L 20-May-21 01:22 IS 94.3 25 - 150 13C2-PFHxA B1E0111 17-May-21 0.237 L 20-May-21 01:22 IS 17-May-21 13C4-PFHpA 101 25 - 150 0.237 L 20-May-21 01:22 B1E0111 IS 13C3-PFHxS 104 25 - 150 B1E0111 17-May-21 0.237 L 20-May-21 01:22 IS 92.1 25 - 15017-May-21 0.237 L 13C2-6:2 FTS B1E0111 20-May-21 01:22 1 IS 25 - 150 13C5-PFNA 90.0 17-May-21 0.237 L 20-May-21 01:22 B1E0111 10 - 150 17-May-21 13C8-PFOSA IS 74.2 B1E0111 0.237 L 20-May-21 01:22 1 13C2-PFOA IS 94.5 25 - 150 B1E0111 17-May-21 0.237 L 20-May-21 01:22 13C8-PFOS IS 90.5 25 - 150 17-May-21 0.237 L 20-May-21 01:22 B1E0111 1 13C2-PFDA IS 90.2 25 - 150 17-May-21 0.237 L B1E0111 20-May-21 01:22 13C2-8:2 FTS IS 85.0 25 - 150 17-May-21 0.237 L 20-May-21 01:22 B1E0111 1 d3-MeFOSAA IS 84.8 25 - 150 B1E0111 17-May-21 0.237 L 20-May-21 01:22 13C2-PFUnA IS 88.6 25 - 150 0.237 L B1E0111 17-May-21 20-May-21 01:22 1 IS 25 - 150 d5-EtFOSAA 87.5 17-May-21 0.237 L B1E0111 20-May-21 01:22 25 - 150 13C2-PFDoA IS 88.5 17-May-21 0.237 L B1E0111 20-May-21 01:22 IS 10 - 150 d3-MeFOSA 52.5 17-May-21 0.237 L B1E0111 20-May-21 01:22 13C2-PFTeDA IS 76.8 25 - 150 B1E0111 17-May-21 0.237 L 20-May-21 01:22 1 IS d5-EtFOSA 52.9 10 - 150 B1E0111 17-May-21 0.237 L 20-May-21 01:22 d7-MeFOSE IS 60.1 10 - 150 B1E0111 17-May-21 0.237 L 20-May-21 01:22 d9-EtFOSE IS 61.4 10 - 150 B1E0111 17-May-21 0.237 L 20-May-21 01:22

MDL - Method Detection Limit

RL - Reporting limit Results reported to MDL

When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.

Work Order 2105075 Page 14 of 29

Sample ID: MW-21-03-210505 PFAS Isotope Dilution Method

Name: Tetra Tech

Client Data

13C3-PFBS

IS

85.6

Project: Ashview Terrace Apt. PFAS

Matrix: Aqueous
Date Collected: 05-May-21 17:25

Laboratory Data

Lab Sample: 2105075-03

Date Received: 07-May-21 09:33

B1E0111 17-May-21 0.230 L

20-May-21 01:33

Column: BEH C18

Analyte	CAS Number	Conc. (ng/L)	MDL	ŘL	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBA	375-22-4	15.2	0.778	2.18		B1E0111	17-May-21	0.230 L	20-May-21 01:33	1
PFPeA	2706-90-3	5.48	1.07	2.18		B1E0111	17-May-21	0.230 L	20-May-21 01:33	1
PFBS	375-73-5	122	0.838	2.18		B1E0111	17-May-21	0.230 L	20-May-21 01:33	1
4:2 FTS	757124-72-4	<1.17	1.17	2.18		B1E0111	17-May-21	0.230 L	20-May-21 01:33	1
PFHxA	307-24-4	3.97	1.23	2.18		B1E0111	17-May-21	0.230 L	20-May-21 01:33	1
PFPeS	2706-91-4	< 0.984	0.984	2.18		B1E0111	17-May-21	0.230 L	20-May-21 01:33	1
HFPO-DA	13252-13-6	< 0.674	0.674	2.18		B1E0111	17-May-21	0.230 L	20-May-21 01:33	1
PFHpA	375-85-9	3.37	0.963	2.18		B1E0111	17-May-21	0.230 L	20-May-21 01:33	1
ADONA	919005-14-4	< 0.925	0.925	2.18		B1E0111	17-May-21	0.230 L	20-May-21 01:33	1
PFHxS	355-46-4	<1.17	1.17	2.18		B1E0111	17-May-21	0.230 L	20-May-21 01:33	1
6:2 FTS	27619-97-2	5.63	1.05	2.18		B1E0111	17-May-21	0.230 L	20-May-21 01:33	1
PFOA	335-67-1	23.4	1.19	2.18		B1E0111	17-May-21	0.230 L	20-May-21 01:33	1
PFHpS	375-92-8	< 2.69	2.69	2.72		B1E0111	17-May-21	0.230 L	20-May-21 01:33	1
PFNA	375-95-1	0.687	0.615	2.18	J	B1E0111	17-May-21	0.230 L	20-May-21 01:33	1
PFOSA	754-91-6	3.70	1.47	2.18		B1E0111	17-May-21	0.230 L	20-May-21 01:33	1
PFOS	1763-23-1	3.12	1.16	2.18		B1E0111	17-May-21	0.230 L	20-May-21 01:33	1
9Cl-PF3ONS	756426-58-1	< 0.903	0.903	2.18		B1E0111	17-May-21	0.230 L	20-May-21 01:33	1
PFDA	335-76-2	< 0.979	0.979	2.18		B1E0111	17-May-21	0.230 L	20-May-21 01:33	1
8:2 FTS	39108-34-4	<2.44	2.44	2.45		B1E0111	17-May-21	0.230 L	20-May-21 01:33	1
PFNS	68259-12-1	<1.53	1.53	2.18		B1E0111	17-May-21	0.230 L	20-May-21 01:33	1
MeFOSAA	2355-31-9	<1.03	1.03	2.18		B1E0111	17-May-21	0.230 L	20-May-21 01:33	1
EtFOSAA	2991-50-6	< 2.76	2.76	2.86		B1E0111	17-May-21	0.230 L	20-May-21 01:33	1
PFUnA	2058-94-8	<1.46	1.46	2.18		B1E0111	17-May-21	0.230 L	20-May-21 01:33	1
PFDS	335-77-3	<2.94	2.94	2.99		B1E0111	17-May-21	0.230 L	20-May-21 01:33	1
11Cl-PF3OUdS	763051-92-9	< 0.464	0.464	2.18		B1E0111	17-May-21	0.230 L	20-May-21 01:33	1
PFDoA	307-55-1	< 0.854	0.854	2.18		B1E0111	17-May-21	0.230 L	20-May-21 01:33	1
MeFOSA	31506-32-8	<7.45	7.45	8.70		B1E0111	17-May-21	0.230 L	20-May-21 01:33	1
PFTrDA	72629-94-8	<1.20	1.20	2.18		B1E0111	17-May-21	0.230 L	20-May-21 01:33	1
PFDoS	79780-39-5	<1.73	1.73	2.18		B1E0111	17-May-21	0.230 L	20-May-21 01:33	1
PFTeDA	376-06-7	< 0.886	0.886	2.18		B1E0111	17-May-21	0.230 L	20-May-21 01:33	
EtFOSA	4151-50-2	<7.94	7.94	8.70		B1E0111	17-May-21	0.230 L	20-May-21 01:33	1
MeFOSE	24448-09-7	< 8.70	8.70	8.70		B1E0111	17-May-21	0.230 L	20-May-21 01:33	
EtFOSE	1691-99-2	< 6.04	6.04	8.70		B1E0111	17-May-21	0.230 L	20-May-21 01:33	
Labeled Standards	Type	% Recovery		Limits	Qualifiers	Batch	Extracted	Samp Size	•	Dilution
13C3-PFBA	IS	147		25 - 150		B1E0111	17-May-21	0.230 L	20-May-21 01:33	1
13C3-PFPeA	IS	92.5		25 - 150		B1E0111	17-May-21	0.230 L	20-May-21 01:33	1

Work Order 2105075 Page 15 of 29

25 - 150

Analyzed

20-May-21 01:33

Dilution

Sample ID: MW-21-03-210505 **PFAS Isotope Dilution Method**

Client Data Laboratory Data

Name: Tetra Tech Matrix: Aqueous Lab Sample: 2105075-03 Column: BEH C18 Project: Date Collected: 05-May-21 17:25 Date Received: Ashview Terrace Apt. PFAS 07-May-21 09:33

Labeled Standards % Recovery Limits Qualifiers Batch Extracted Type IS 79.8 25 - 150 B1E0111 17-May-21 25 - 150 IS 86.7 B1E0111 17-May-21 IS 90.7 25 - 150 B1E0111 17-May-21

13C3-HFPO-DA 0.230 L 20-May-21 01:33 13C2-4:2 FTS 0.230 L 20-May-21 01:33 13C2-PFHxA 0.230 L 20-May-21 01:33 IS 17-May-21 13C4-PFHpA 95.5 25 - 150 0.230 L 20-May-21 01:33 B1E0111 IS 13C3-PFHxS 100 25 - 150 B1E0111 17-May-21 0.230 L 20-May-21 01:33 IS 95.9 25 - 15017-May-21 0.230 L 13C2-6:2 FTS B1E0111 20-May-21 01:33 1 IS 25 - 150 13C5-PFNA 85.7 17-May-21 0.230 L 20-May-21 01:33 B1E0111 10 - 150 17-May-21 13C8-PFOSA IS 68.7 B1E0111 0.230 L 20-May-21 01:33 1 13C2-PFOA IS 92.2 25 - 150 B1E0111 17-May-21 0.230 L 20-May-21 01:33 13C8-PFOS IS 93.8 25 - 150 17-May-21 0.230 L B1E0111 20-May-21 01:33 1 13C2-PFDA IS 96.1 25 - 150 17-May-21 0.230 L B1E0111 20-May-21 01:33 13C2-8:2 FTS IS 79.9 25 - 150 17-May-21 0.230 L B1E0111 20-May-21 01:33 1 d3-MeFOSAA IS 87.4 25 - 150 B1E0111 17-May-21 0.230 L 20-May-21 01:33 13C2-PFUnA IS 89.5 25 - 150 0.230 L B1E0111 17-May-21 20-May-21 01:33 1 IS 90.1 25 - 150 d5-EtFOSAA 17-May-21 0.230 L B1E0111 20-May-21 01:33 92.5 25 - 150 13C2-PFDoA IS 17-May-21 0.230 L B1E0111 20-May-21 01:33 IS 10 - 150 d3-MeFOSA 50.5 17-May-21 0.230 L B1E0111 20-May-21 01:33 13C2-PFTeDA IS 79.4 25 - 150 B1E0111 17-May-21 0.230 L 20-May-21 01:33 1 IS d5-EtFOSA 52.0 10 - 150 B1E0111 17-May-21 0.230 L 20-May-21 01:33 d7-MeFOSE IS 61.1 10 - 150 B1E0111 17-May-21 0.230 L 20-May-21 01:33

10 - 150

MDL - Method Detection Limit

d9-EtFOSE

Results reported to MDL RL - Reporting limit

62.9

IS

When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.

0.230 L

17-May-21

B1E0111

Samp Size

Work Order 2105075 Page 16 of 29

Sample ID: Method Blank PFAS Isotope Dilution Method

Client Data Laboratory Data

Name: Tetra Tech Matrix: Solid Lab Sample: B1E0129-BLK1 Column: BEH C18

Ashview Terrace Ant. PFAS	Mauix.	Solid		Laus	ampic.	D1E0127-	DLKI	Column:	BEH C18	
TEMPLE VICTORIA CONTROL TO THE										
CAS Number	Conc. (ng/g)	MDL		RL	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
375-22-4	< 0.266	0.266	C	0.500		B1E0129	21-May-21	1.00 g	26-May-21 17:42	. 1
2706-90-3	< 0.252	0.252	C	0.500		B1E0129	21-May-21	1.00 g	26-May-21 17:42	1
375-73-5	< 0.438	0.438	C	0.500		B1E0129	21-May-21	1.00 g	26-May-21 17:42	1
757124-72-4	< 0.416	0.416	C	0.500		B1E0129	21-May-21	1.00 g	26-May-21 17:42	1
307-24-4	< 0.638	0.638		1.00		B1E0129	21-May-21	1.00 g	26-May-21 17:42	1
2706-91-4	< 0.324	0.324	C	0.500		B1E0129	21-May-21	1.00 g	26-May-21 17:42	. 1
13252-13-6	< 0.548	0.548		1.00		B1E0129	21-May-21	1.00 g	26-May-21 17:42	. 1
375-85-9	< 0.332	0.332	C	0.500		B1E0129	21-May-21	1.00 g	26-May-21 17:42	1
919005-14-4	< 0.350	0.350	C	0.500		B1E0129	21-May-21	1.00 g	26-May-21 17:42	. 1
355-46-4	< 0.408	0.408	C	0.500		B1E0129	21-May-21	1.00 g	26-May-21 17:42	1
27619-97-2	< 0.648	0.648		1.00		B1E0129	21-May-21	1.00 g	26-May-21 17:42	. 1
335-67-1	< 0.288	0.288	C	0.500		B1E0129	21-May-21	1.00 g	26-May-21 17:42	
375-92-8	< 0.630	0.630		1.00		B1E0129	21-May-21	1.00 g	26-May-21 17:42	. 1
375-95-1	< 0.376	0.376	C	0.500		B1E0129	21-May-21	1.00 g	26-May-21 17:42	. 1
754-91-6	< 0.452	0.452	C	0.500		B1E0129	21-May-21	1.00 g	26-May-21 17:42	1
1763-23-1	< 0.764	0.764		1.00				1.00 g	26-May-21 17:42	. 1
756426-58-1	< 0.714	0.714		1.00		B1E0129	21-May-21	1.00 g	26-May-21 17:42	1
335-76-2	< 0.652	0.652		1.00				1.00 g	26-May-21 17:42	
39108-34-4	< 0.538	0.538		1.00		B1E0129	21-May-21	1.00 g	26-May-21 17:42	. 1
68259-12-1	< 0.622	0.622		1.00			•	1.00 g	26-May-21 17:42	
2355-31-9	< 0.384	0.384	C	0.500		B1E0129	21-May-21	1.00 g	26-May-21 17:42	. 1
2991-50-6	< 0.704	0.704		1.00			•	1.00 g	26-May-21 17:42	
2058-94-8	< 0.312	0.312	C	0.500		B1E0129	21-May-21	1.00 g	26-May-21 17:42	. 1
335-77-3	< 0.752	0.752		1.00		B1E0129	21-May-21	1.00 g	26-May-21 17:42	. 1
763051-92-9	<1.13	1.13		1.50		B1E0129	21-May-21	1.00 g	26-May-21 17:42	
307-55-1	< 0.408	0.408	C	0.500		B1E0129	21-May-21	1.00 g	26-May-21 17:42	. 1
31506-32-8	<3.16	3.16		10.0		B1E0129	21-May-21	1.00 g	26-May-21 17:42	
72629-94-8	< 0.618	0.618		1.00		B1E0129	21-May-21	1.00 g	26-May-21 17:42	. 1
79780-39-5	<1.01	1.01		1.50		B1E0129	21-May-21	1.00 g	•	
376-06-7	< 0.608	0.608		1.00				1.00 g	•	
4151-50-2		5.00		10.0				1.00 g		
24448-09-7	< 3.08	3.08					•	1.00 g		
1691-99-2	<3.52	3.52		10.0			•	1.00 g	•	
rds Type	% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
IS	132		25 - 150	· ·		B1E0129	21-May-21	1.00 g	26-May-21 17:42	1
IS	82.6		25 - 150					1.00 g	26-May-21 17:42	
IS	87.9		25 - 150			B1E0129	21-May-21	1.00 g	26-May-21 17:42	
IS	80.5		25 - 150				•	1.00 g	26-May-21 17:42	
	Ashview Terrace Apt. PFAS CAS Number 375-22-4 2706-90-3 375-73-5 757124-72-4 307-24-4 2706-91-4 13252-13-6 375-85-9 919005-14-4 355-46-4 27619-97-2 335-67-1 375-92-8 375-95-1 754-91-6 1763-23-1 756426-58-1 335-76-2 39108-34-4 68259-12-1 2355-31-9 2991-50-6 2058-94-8 335-77-3 763051-92-9 307-55-1 31506-32-8 72629-94-8 79780-39-5 376-06-7 4151-50-2 24448-09-7 1691-99-2 rds Type	CAS Number Conc. (ng/g) 375-22-4 <0.266	CAS Number Conc. (ng/g) MDL 375-22-4 <0.266	CAS Number Conc. (ng/g) MDL 375-22-4 <0.266	CAS Number Conc. (ng/g) MDL RL	CAS Number Conc. (ng/g) MDL RL Qualifiers	CAS Number Conc. (ng/g) MDL RL Qualifiers Batch 375-22-4 <0.266	CAS Number Conc. (ng/g) MDL RL Qualifiers Batch Extracted	Ashview Terrace Apt. PFAS	CAS Number Conc. (ng/g) MDL RL Qualifiers Batch Extracted Samp Size Analyzed

Work Order 2105075 Page 17 of 29

BEH C18

Sample ID: Method Blank PFAS Isotope Dilution Method

Client Data
Name: Tetra Tech Matrix: Solid

Project: Ashview Terrace Apt. PFAS

Lab Sample: B1E0129-BLK1 Column:

Labeled Standards	Туре	% Recovery	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-4:2 FTS	IS	85.5	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
13C2-PFHxA	IS	85.8	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
13C4-PFHpA	IS	90.9	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
13C3-PFHxS	IS	90.2	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
13C2-6:2 FTS	IS	79.5	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
13C5-PFNA	IS	81.0	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
13C8-PFOSA	IS	47.0	10 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
13C2-PFOA	IS	89.6	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
13C8-PFOS	IS	90.4	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
13C2-PFDA	IS	70.1	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
13C2-8:2 FTS	IS	81.8	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
d3-MeFOSAA	IS	58.7	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
13C2-PFUnA	IS	58.1	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
d5-EtFOSAA	IS	62.4	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
13C2-PFDoA	IS	61.1	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
d3-MeFOSA	IS	18.0	10 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
13C2-PFTeDA	IS	66.4	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
d5-EtFOSA	IS	18.1	10 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
d7-MeFOSE	IS	34.4	10 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
d9-EtFOSE	IS	37.4	10 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
MDI Method Detection Limit	PI Penorting limit	The results are report	ed in dry weight	When ren	autod DELLyC	DECA DECC M	aEOCAA and Et	FOSA A include both	

MDL - Method Detection Limit

RL - Reporting limit

The results are reported in dry weight.

The sample size is reported in wet weight.

Results reported to MDL.

When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.

Work Order 2105075 Page 18 of 29

Sample ID: OPR

PFAS Isotope Dilution Method

Client Data Laboratory Data

Name: Tetra Tech Matrix: Solid Lab Sample: B1E0129-BS1 Column: BEH C18

Project: Ashview Terrace Apt. PFAS

Analyte	CAS Number	Amt Found (ng/g)	Spike Amt	% Rec	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBA	375-22-4	1.82	2.00	91.1	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFPeA	2706-90-3	1.95	2.00	97.7	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFBS	375-73-5	2.15	2.00	108	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
4:2 FTS	757124-72-4	2.27	2.00	113	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFHxA	307-24-4	1.92	2.00	96.2	50 - 150	Q	B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFPeS	2706-91-4	1.78	2.00	89.2	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
HFPO-DA	13252-13-6	2.03	2.00	102	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFHpA	375-85-9	2.05	2.00	102	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
ADONA	919005-14-4	2.14	2.00	107	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFHxS	355-46-4	1.75	2.00	87.3	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
6:2 FTS	27619-97-2	1.90	2.00	95.0	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFOA	335-67-1	2.02	2.00	101	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFHpS	375-92-8	1.74	2.00	86.9	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFNA	375-95-1	1.97	2.00	98.5	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFOSA	754-91-6	2.16	2.00	108	50 - 150	Q	B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFOS	1763-23-1	2.20	2.00	110	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
9Cl-PF3ONS	756426-58-1	1.86	2.00	92.8	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFDA	335-76-2	2.08	2.00	104	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
8:2 FTS	39108-34-4	2.23	2.00	112	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFNS	68259-12-1	1.63	2.00	81.4	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
MeFOSAA	2355-31-9	1.66	2.00	83.2	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
EtFOSAA	2991-50-6	2.00	2.00	100	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFUnA	2058-94-8	2.17	2.00	109	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFDS	335-77-3	1.64	2.00	81.9	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
11Cl-PF3OUdS	763051-92-9	2.37	2.00	119	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFDoA	307-55-1	1.99	2.00	99.7	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
MeFOSA	31506-32-8	1.70	2.00	85.1	50 - 150	J	B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFTrDA	72629-94-8	1.83	2.00	91.6	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFDoS	79780-39-5	2.15	2.02	107	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFTeDA	376-06-7	1.95	2.00	97.6	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
EtFOSA	4151-50-2	1.86	2.00	92.8	50 - 150	J	B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
MeFOSE	24448-09-7	1.67	2.00	83.3	50 - 150	J	B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
EtFOSE	1691-99-2	2.07	2.00	104	50 - 150	J	B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
Labeled Standards		Type		% Rec	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution

Work Order 2105075 Page 19 of 29

Sample ID: OPR

PFAS Isotope Dilution Method

Client Data Laboratory Data

Project:

Ashview Terrace Apt. PFAS

Name: Tetra Tech Matrix: Solid Lab Sample: B1E0129-BS1 Column: BEH C18

Labeled Standards Qualifiers % Rec Limits Analyzed Dilution Type Extracted Samp Size Batch IS 127 25 - 150 B1E0129 13C3-PFBA 21-May-21 1.00 g26-May-21 17:53 13C3-PFPeA IS 82.8 25 - 150 B1E0129 21-May-21 1.00 g 26-May-21 17:53 1 IS 26-May-21 17:53 13C3-PFBS 96.1 25 - 150 B1E0129 21-May-21 1.00 g IS 25 - 150 B1E0129 21-May-21 13C3-HFPO-DA 75.9 1.00 g26-May-21 17:53 1 13C2-4:2 FTS IS 91.2 25 - 150 B1E0129 21-May-21 1.00 g 26-May-21 17:53 13C2-PFHxA IS 84.2 25 - 150 1.00 g 1 B1E0129 21-May-21 26-May-21 17:53 IS 13C4-PFHpA 83.0 25 - 150 B1E0129 21-May-21 1.00 g 26-May-21 17:53 13C3-PFHxS IS 97.6 25 - 150 B1E0129 21-May-21 1.00 g 26-May-21 17:53 1 13C2-6:2 FTS IS 94.0 25 - 150 B1E0129 21-May-21 1.00 g 26-May-21 17:53 1 13C5-PFNA 79.4 25 - 150 B1E0129 21-May-21 1 IS 1.00 g 26-May-21 17:53 13C8-PFOSA IS 44.0 10 - 150 B1E0129 21-May-21 1.00 g 26-May-21 17:53 B1E0129 21-May-21 13C2-PFOA IS 86.5 25 - 150 1.00 g 26-May-21 17:53 1 13C8-PFOS IS 94.5 25 - 150 B1E0129 21-May-21 1.00 g 26-May-21 17:53 13C2-PFDA IS 76.4 25 - 150B1E0129 21-May-21 1.00 g 26-May-21 17:53 1 13C2-8:2 FTS IS 76.2 25 - 150 B1E0129 21-May-21 1.00 g 26-May-21 17:53 d3-MeFOSAA B1E0129 21-May-21 IS 65.4 25 - 150 1.00 g 26-May-21 17:53 1 13C2-PFUnA IS 65.9 25 - 150 B1E0129 21-May-21 1.00 g26-May-21 17:53 d5-EtFOSAA IS 64.6 25 - 150 B1E0129 21-May-21 1.00 g 26-May-21 17:53 1 13C2-PFDoA IS 68.8 25 - 150 B1E0129 21-May-21 1.00 g 26-May-21 17:53 d3-MeFOSA IS 17.6 10 - 150 B1E0129 21-May-21 1.00 g 26-May-21 17:53 1 IS 13C2-PFTeDA 72.6 25 - 150 1.00 g B1E0129 21-May-21 26-May-21 17:53 IS 10 - 150 d5-EtFOSA 15.5 B1E0129 21-May-21 1.00 g 26-May-21 17:53 1 d7-MeFOSE IS 33.3 10 - 150 B1E0129 21-May-21 1.00 g 26-May-21 17:53 d9-EtFOSE IS 34.6 10 - 150 B1E0129 21-May-21 1.00 g26-May-21 17:53 1

Work Order 2105075 Page 20 of 29

Sample ID: SI	B-21-02-210504							PFAS Iso	otope Dilution N	Method
Client Data Name: Project:	Tetra Tech Ashview Terrace Apt. PFAS	Matrix: Date Coll	Soil lected: 04-May-21	Lab Date	oratory Data Sample: e Received:	2105075-0 07-May-2 81.0		Column	BEH C18	
Analyte	CAS Number	Conc. (ng/g)	MDL	RL	Olids: Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBA	375-22-4	<0.261	0.261	0.490	Q		21-May-21	1.26 g	26-May-21 18:13	
PFPeA	2706-90-3	<0.247	0.247	0.490			21-May-21	1.26 g	26-May-21 18:13	
PFBS	375-73-5	<0.429	0.429	0.490			21-May-21	1.26 g	26-May-21 18:13	
4:2 FTS	757124-72-4	< 0.408	0.408	0.490			21-May-21	1.26 g	26-May-21 18:13	
PFHxA	307-24-4	< 0.625	0.625	0.980			21-May-21	1.26 g	26-May-21 18:13	
PFPeS	2706-91-4	< 0.318	0.318	0.490			21-May-21	1.26 g	26-May-21 18:13	
HFPO-DA	13252-13-6	< 0.537	0.537	0.980			21-May-21	1.26 g	26-May-21 18:13	
PFHpA	375-85-9	< 0.325	0.325	0.490			21-May-21	1.26 g	26-May-21 18:13	
ADONA	919005-14-4	< 0.343	0.343	0.490			21-May-21	1.26 g	26-May-21 18:13	
PFHxS	355-46-4	< 0.400	0.400	0.490			21-May-21	1.26 g	26-May-21 18:13	
6:2 FTS	27619-97-2	< 0.635	0.635	0.980			21-May-21	1.26 g	26-May-21 18:13	
PFOA	335-67-1	< 0.282	0.282	0.490			21-May-21	1.26 g	26-May-21 18:13	
PFHpS	375-92-8	< 0.618	0.618	0.980			21-May-21	1.26 g	26-May-21 18:13	
PFNA	375-95-1	< 0.369	0.369	0.490			21-May-21	1.26 g	26-May-21 18:13	
PFOSA	754-91-6	< 0.443	0.443	0.490			21-May-21	1.26 g	26-May-21 18:13	
PFOS	1763-23-1	1.69	0.749	0.980			21-May-21	1.26 g	26-May-21 18:13	
9Cl-PF3ONS	756426-58-1	< 0.700	0.700	0.980			21-May-21	1.26 g	26-May-21 18:13	
PFDA	335-76-2	< 0.639	0.639	0.980			21-May-21	1.26 g	26-May-21 18:13	
8:2 FTS	39108-34-4	< 0.527	0.527	0.980			21-May-21	1.26 g	26-May-21 18:13	
PFNS	68259-12-1	< 0.610	0.610	0.980			21-May-21	1.26 g	26-May-21 18:13	
MeFOSAA	2355-31-9	< 0.376	0.376	0.490			21-May-21	1.26 g	26-May-21 18:13	
EtFOSAA	2991-50-6	< 0.690	0.690	0.980			21-May-21	1.26 g	26-May-21 18:13	
PFUnA	2058-94-8	< 0.306	0.306	0.490			21-May-21	1.26 g	26-May-21 18:13	
PFDS	335-77-3	< 0.737	0.737	0.980			21-May-21	1.26 g	26-May-21 18:13	
11Cl-PF3OUdS	763051-92-9	<1.11	1.11	1.47		B1E0129	21-May-21	1.26 g	26-May-21 18:13	1
PFDoA	307-55-1	< 0.400	0.400	0.490		B1E0129	21-May-21	1.26 g	26-May-21 18:13	
MeFOSA	31506-32-8	<3.10	3.10	9.80		B1E0129	21-May-21	1.26 g	26-May-21 18:13	1
PFTrDA	72629-94-8	< 0.606	0.606	0.980		B1E0129	21-May-21	1.26 g	26-May-21 18:13	1
PFDoS	79780-39-5	< 0.988	0.988	1.47		B1E0129	21-May-21	1.26 g	26-May-21 18:13	1
PFTeDA	376-06-7	< 0.596	0.596	0.980		B1E0129	21-May-21	1.26 g	26-May-21 18:13	1
EtFOSA	4151-50-2	<4.90	4.90	9.80		B1E0129	21-May-21	1.26 g	26-May-21 18:13	1
MeFOSE	24448-09-7	<3.02	3.02	9.80		B1E0129	21-May-21	1.26 g	26-May-21 18:13	1
EtFOSE	1691-99-2	<3.45	3.45	9.80		B1E0129	21-May-21	1.26 g	26-May-21 18:13	1
Labeled Standar	rds Type	% Recovery	I	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBA	IS	145		5 - 150		B1E0129	21-May-21	1.26 g	26-May-21 18:13	1
13C3-PFPeA	IS	89.3		5 - 150			21-May-21	1.26 g	26-May-21 18:13	
13C3-PFBS	IS	96.7	2	5 - 150			21-May-21	1.26 g	26-May-21 18:13	

Work Order 2105075 Page 21 of 29

Sample ID: SB-21-02-210504 **PFAS Isotope Dilution Method**

Client Data Laboratory Data

Lab Sample: Name: Tetra Tech Matrix: Soil 2105075-04 Column: BEH C18 Date Collected: 04-May-21 11:00

Date Received: 07-May-21 09:33

			9/	6 Solids:	81.0				
Labeled Standards	Туре	% Recovery	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-HFPO-DA	IS	76.9	25 - 150		B1E0129	21-May-21	1.26 g	26-May-21 18:13	1
13C2-4:2 FTS	IS	102	25 - 150		B1E0129	21-May-21	1.26 g	26-May-21 18:13	1
13C2-PFHxA	IS	85.5	25 - 150		B1E0129	21-May-21	1.26 g	26-May-21 18:13	1
13C4-PFHpA	IS	88.6	25 - 150		B1E0129	21-May-21	1.26 g	26-May-21 18:13	1
13C3-PFHxS	IS	97.4	25 - 150		B1E0129	21-May-21	1.26 g	26-May-21 18:13	1
13C2-6:2 FTS	IS	103	25 - 150		B1E0129	21-May-21	1.26 g	26-May-21 18:13	1
13C5-PFNA	IS	83.9	25 - 150		B1E0129	21-May-21	1.26 g	26-May-21 18:13	1
13C8-PFOSA	IS	58.4	10 - 150		B1E0129	21-May-21	1.26 g	26-May-21 18:13	1
13C2-PFOA	IS	89.5	25 - 150		B1E0129	21-May-21	1.26 g	26-May-21 18:13	
13C8-PFOS	IS	90.6	25 - 150		B1E0129	21-May-21	1.26 g	26-May-21 18:13	
13C2-PFDA	IS	83.7	25 - 150		B1E0129	21-May-21	1.26 g	26-May-21 18:13	1
13C2-8:2 FTS	IS	110	25 - 150			21-May-21	1.26 g	26-May-21 18:13	1
d3-MeFOSAA	IS	74.5	25 - 150		B1E0129	21-May-21	1.26 g	26-May-21 18:13	1
13C2-PFUnA	IS	73.7	25 - 150		B1E0129	21-May-21	1.26 g	26-May-21 18:13	
d5-EtFOSAA	IS	77.0	25 - 150		B1E0129	21-May-21	1.26 g	26-May-21 18:13	
13C2-PFDoA	IS	74.8	25 - 150			21-May-21	1.26 g	26-May-21 18:13	
d3-MeFOSA	IS	34.1	10 - 150			21-May-21	1.26 g	26-May-21 18:13	
13C2-PFTeDA	IS	54.2	25 - 150			21-May-21	1.26 g	26-May-21 18:13	
d5-EtFOSA	IS	34.6	10 - 150		B1E0129	21-May-21	1.26 g	26-May-21 18:13	
d7-MeFOSE	IS	54.9	10 - 150		B1E0129	21-May-21	1.26 g	26-May-21 18:13	
d9-EtFOSE	IS	54.5	10 - 150		B1E0129	21-May-21	1.26 g	26-May-21 18:13	
MDI M.d. ID. d. T. T.	DI D 41 11 14	The meanite one noment	1: 1 : 1.	****	I DELL O	DEG : DEGG 3.4		F0644: 1 1 1 1	

MDL - Method Detection Limit

Project:

RL - Reporting limit

Ashview Terrace Apt. PFAS

The results are reported in dry weight. The sample size is reported in wet weight. Results reported to MDL.

When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.

Work Order 2105075 Page 22 of 29

DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank

Conc. Concentration

CRS Cleanup Recovery Standard

D Dilution

DL Detection Limit

E The associated compound concentration exceeded the calibration range of the

instrument

H Recovery and/or RPD was outside laboratory acceptance limits

I Chemical Interference

IS Internal Standard

J The amount detected is below the Reporting Limit/LOQ

LOD Limit of Detection

LOQ Limit of Quantitation

M Estimated Maximum Possible Concentration (CA Region 2 projects only)

MDL Method Detection Limit

NA Not applicable

ND Not Detected

OPR Ongoing Precision and Recovery sample

P The reported concentration may include contribution from chlorinated diphenyl ether(s).

Q The ion transition ratio is outside of the acceptance criteria.

RL Reporting Limit

RL For 537.1, the reported RLs are the MRLs.

TEQ Toxic Equivalency, sum of the toxic equivalency factors (TEF) multiplied by the

sample concentrations.

TEQMax TEQ calculation that uses the detection limit as the concentration for non-detects

TEQMin TEQ calculation that uses zero as the concentration for non-detects

TEQRisk TEQ calculation that uses ½ the detection limit as the concentration for non-

detects

U Not Detected (specific projects only)

* See Cover Letter

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Work Order 2105075 Page 23 of 29

Vista Analytical Laboratory Certifications

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	17-013
Arkansas Department of Environmental Quality	21-023-0
California Department of Health – ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777-26
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2020018
Massachusetts Department of Environmental Protection	M-CA413
Michigan Department of Environmental Quality	9932
Minnesota Department of Health	1980678
New Hampshire Environmental Accreditation Program	207720
New Jersey Department of Environmental Protection	CA003
New York Department of Health	11411
Ohio Environmental Protection Agency	87778
Oregon Laboratory Accreditation Program	4042-016
Pennsylvania Department of Environmental Protection	017
Texas Commission on Environmental Quality	T104704189-21-12
Vermont Department of Health	VT-4042
Virginia Department of General Services	10769
Washington Department of Ecology	C584
Wisconsin Department of Natural Resources	998036160

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request.

Work Order 2105075 Page 24 of 29

NELAP Accredited Test Methods

MATRIX: Air	
Description of Test	Method
Determination of Polychlorinated p- Dioxins & Polychlorinated	EPA 23
Dibenzofurans	
Polychlorinated Dibenzodioxins in Ambient Air by GC/HRMS	EPA TO-9A

MATRIX: Biological Tissue			
Description of Test	Method		
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution	EPA 1613B		
GC/HRMS			
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A		
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C		
by GC/HRMS			
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by	EPA 1699		
HRGC/HRMS			
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537		
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by	EPA 8280A/B		
GC/HRMS			
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA		
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A		

MATRIX: Drinking Water	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution	EPA
GC/HRMS	1613/1613B
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537.1
Determination of Per- and Polyfluoroalkyl Substances in Drinking Water by	EPA 533
Isotope Dilution Anion Exchange Solid Phase Extraction and Liquid	
Chromatography/Tandem Mass Spectrometry	
Perfluorooctanesulonate (PFOS) and Perfluorooctanoate (PFOA) - Method	ISO 25101
for Unfiltered Samples Using Solid Phase Extraction and Liquid	2009
Chromatography/Mass Spectrometry	

Work Order 2105075 Page 25 of 29

MATRIX: Non-Potable Water									
Description of Test	Method								
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B								
Dilution GC/HRMS									
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A								
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C								
by GC/HRMS									
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699								
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537								
Dioxin by GC/HRMS	EPA 613								
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B								
Dibenzofurans by GC/HRMS									
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA								
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A								

MATRIX: Solids	
Description of Test	Method
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613B
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1668A/C
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B
Dibenzofurans by GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

Work Order 2105075 Page 26 of 29

999	
	Vista
	Analytical Laboratory

CHAIN OF CUSTODY

For Laboratory Use Only	12	
Vork Order#:	Temp:	°C
torage ID: R-13, WR-2	Storage Secured: Yes V No	

Analytical Lal	ooratory											Storage !	D: K-10,	WK-Z	St	orage Secu	ured: Yes. 🗹 N	o 🗆
Aghvier Tollace Ag Project ID:	t, PFAS		PO#: 117-41241	61			_Sam	pler: _	1-	Irex bord (name)	1s		TAT (check or	ne): Rus	h (surcharge m			
Andrew Gordo	~ an	/	5-6-21		126				F	el Ex					5-6-2	1	1200	
Relinquished by (printed na			Date		Tim	_	_	Recei		(printed name	and signatur	e)	_		_	Date	Time	
Feder			05/17/21	0	93	3		1	111	Br	~ , /,	schial	Prica	et A	05/07	101	0983	
Relinquished by (printed nar	ne and signa	ture)	Date		Time			Recei	ived by	(printed name	and signatur	e)				Date	Time	
SHIP TO: Vista Analytical 1104 Windfield El Dorado Hills (916) 673-1520 ATTN:	Way , CA 95762 * Fax (916)		Method of Shipment:	Add	Analy		Reque			, the or	QKAS.	oy Olivi		//	EPA Method No.	m)	/	
Sample ID	Date	Time	Location/		Juantity		.it	ONIPPO	5 PF 45	List to I to the of the state o	Prese stach sta	SEOPT SEOPT	405 /445 \\ 405 /45 \\	31. 11. 11. 11. 11. 11. 11. 11. 11. 11.				
uw-21-01-210506	5-6-21	0900	Sample Description	7	P	10 10	Mary Of	0/30 <u>/</u>	5 63/	X	5/62 7 15	<u> </u>	<u>\$\$7.6</u>	<u>?</u>		Comme	nts	
W-21-02-210504	5-6-21	1000		1	P	10	-			$+\hat{x}$		+				_		
w-21-03-210505	5-5-21		-	1	P	1 Q	+		_	X	_	\vdash						_
B-21-02-210504	5-1-21	1100		ΙŤ	PJ	50	1	\top		λ								
				Ť	Ť	<u> </u>												
							\Box											
							\sqcup		\perp									
		<u></u> _				L								Ļ				
Special Instructions/Comment	I Pate	Pack	102.							SEND	0.		Mike					
	1/2/0	[Men	<u> </u>							OCUMENTAT	ION ,		Tetra 710		Suite 100)		
							_		A	ND RESULTS	то: ^	City:	AM Ar.	bar 3.9076	State: /	NE	Zip: <u>48/09</u>	
												Email:	micha	el, garal	e & FeHa to	h.com		
Container Types: P = HDPE PY = Polypropylene, O= Otl			Bottle Preserv							x Types: AQ =	-		-			ulp/Pape	r, SD = Sedim	ent,
ID: LR-537COC					-		v. No.: 2	. Re	ev. Date:	08/03/2020							Pao	e: 1 of 1

Work Order 2105075

Sample Log-In Checklist

Vista Work Orde	er#:	21	05	075					age # ₋	std	of	_
Samples Arrival:	Date/Tim 05/07		32	33 Initials:				Location: W2-2 Shelf/Rack: N/A				
Delivered By:	FedEx	UPS	;	On Trac	С	GLS	DHI	DHL Han Delive			I (ITDA	
Preservation:	lo	æ		Blu	e le	ce		chni ce	Dry	ry Ice None		
Temp °C: \.\frac{1}{2} (uncorrected) Temp °C: \lambda \frac{1}{2} (corrected) Probe used: Y / (incorrected) Thermometer ID:\frac{1}{2} - 3											_	
	Carlotte Committee							7- E		YES	NO	NA
Shipping Contain	er(s) Intac	t?				. •				,	<u> </u>	
Shipping Custody		_										
Airbill ~	Trk	#78(18 <u>5</u>	195=	78	77	_			1		
Shipping Docume	entation Pr	esent?		_			•	_		,		
Shipping Contain	er		(Vis	sta)		Client	F(etain	Re	eturn	Disp	oose
Chain of Custody	/ / Sample	Docum	enta	ation Pre	ese	nt?			,			
Chain of Custody	/ / Sample	Docum	enta	ation Co	mp	lete?				7		
Holding Time Acc	ceptable?											
Logged In:	Date/Tin	ne 21 09	23		Initials:			1		R-13 :: 8-1,	,	
COC Anomaly/Sa	ample Acc	eptance	e Fo	rm com	ple	ted?					<i>(</i>	

Comments:

ID.: LR - SLC

Rev No.: 6

Rev Date: 07/16/2020

Page: 1 of 1

CoC/Label Reconciliation Report WO# 2105075

LabNumber	CoC Sample ID	<u> </u>	SampleAlias	Sample Date/Time	Container	BaseMatrix	Sample Comments
2105075-01	A MW-21-01-210506			06-May-21 09:00	HDPE Bottle, 250 mL	Aqueous	
2105075-01	B MW-21-01-210506			06-May-21 09:00	HDPE Bottle, 250 mL	Aqueous	
2105075-02	A MW-21-02-210506	应		06-May-21 10:00	HDPE Bottle, 250 mL	Aqueous	
2105075-02	B MW-21-02-210506	₫		06-May-21 10:00	HDPE Bottle, 250 mL	Aqueous	
2105075-03	A MW-21-03-210505	<u> 🗹</u>		05-May-21 17:25	HDPE Bottle, 250 mL	Aqueous	
2105075-03	B MW-21-03-210505	₫		05-May-21 17:25	HDPE Bottle, 250 mL	Aqueous	
2105075-04	A SB-21-02-210504	⊡		04-May-21 11:00	HDPE Jar, 6 oz	Solid	

Checkmarks indicate that information on the COC reconciled with the sample label. Any discrepancies are noted in the following columns.

	Yes	No	NA	Comments:
Sample Container Intact?	✓			
Sample Custody Seals Intact?			/	
Adequate Sample Volume?	✓			
Container Type Appropriate for Analysis(es)	V			
Preservation Documented: Na2S2O3 Trizma NH4CH3CO2 Noi	ne)C	ther		•

Verifed by/Date: WWS 15/11/21

Printed: 5/11/2021 11:28:01AM

May 28, 2021

Vista Work Order No. 2105073

Mr. Michael Savale Tetra Tech 710 Avis Drive, Suite 100 Ann Arbor, MI 48108

Dear Mr. Savale,

Enclosed are the results for the sample set received at Vista Analytical Laboratory on May 07, 2021 under your Project Name 'Ashview Terrace Apt. PFAS'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

for

Martha Maier Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Analytical Laboratory 1104 Windfield Way El Dorado Hills, CA 95762 ph: 916-673-1520 fx: 916-673-0106 www.vista-analytical.com

Work Order 2105073 Page 1 of 31

Vista Work Order No. 2105073 Case Narrative

Sample Condition on Receipt:

Four aqueous samples and one soil sample were received and stored securely in accordance with Vista standard operating procedures and EPA methodology. The samples were received in good condition and within the recommended temperature requirements.

Analytical Notes:

PFAS Isotope Dilution Method (Aqueous)

The aqueous samples were extracted and analyzed for a selected list of PFAS using Vista's PFAS Isotope Dilution Method. The results for PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Results for all other analytes include the linear isomers only.

Holding Times

The samples were extracted and analyzed within the hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank above the Reporting Limit. The OPR recoveries were within the method acceptance criteria.

The labeled standard recoveries for all QC and field samples were within the acceptance criteria.

PFAS Isotope Dilution Method (Soil)

The soil sample was extracted and analyzed for a selected list of PFAS using Vista's Isotope Dilution Method. The results for PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Results for all other analytes include the linear isomers only.

Holding Times

The sample was extracted and analyzed within the hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the

Work Order 2105073 Page 2 of 31

preparation batch. No analytes were detected in the Method Blank above the Reporting Limit (RL). The OPR recoveries were within the method acceptance criteria.

The labeled standard recoveries outside the acceptance criteria are listed in the table below.

QC Anomalies

LabNumber	SampleName	Analysis	Analyte	Flag	%Rec
2105073-05	DUP-SB-01-210504	PFAS Isotope Dilution Method	13C2-PFTeDA	Н	23.0

H = Recovery was outside laboratory acceptance criteria.

Work Order 2105073 Page 3 of 31

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	4
Sample Inventory	5
Analytical Results	6
Qualifiers	25
Certifications	26
Sample Receipt	29

Work Order 2105073 Page 4 of 31

Sample Inventory Report

Vista Sample ID	Client Sample ID	Sampled	Received	Components/Containers
2105073-01	EB-DR-01-210504	04-May-21 14:20	07-May-21 09:33	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2105073-02	EB-GW-01-210505	05-May-21 15:55	07-May-21 09:33	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2105073-03	FB-GW-01-210505	05-May-21 15:55	07-May-21 09:33	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2105073-04	DUP-GW-01-210505	05-May-21 00:00	07-May-21 09:33	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2105073-05	DUP-SB-01-210504	04-May-21 00:00	07-May-21 09:33	HDPE Jar, 6 oz
	20. 22 0. 2.000.	5 · ····	J, 21 00.00	= 00., 0 0=

Vista Project: 2105073 Client Project: Ashview Terrace Apt. PFAS

Work Order 2105073 Page 5 of 31

ANALYTICAL RESULTS

Work Order 2105073 Page 6 of 31

Sample ID: Method Blank **PFAS Isotope Dilution Method**

Client Data Laboratory Data

Name:	Tetra Tech	Matrix:	Aqueous		Lab S	Sample:	B1E0111-	BLK1	Column	BEH C18	
Project:	Ashview Terrace Apt. PFAS										
Analyte	CAS Number	Conc. (ng/L)	MDL		RL	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBA	375-22-4	< 0.715	0.715		2.00		B1E0111	17-May-21	0.250 L	20-May-21 00:10	1
PFPeA	2706-90-3	< 0.980	0.980		2.00			17-May-21	0.250 L	20-May-21 00:10	
PFBS	375-73-5	< 0.770	0.770		2.00			17-May-21	0.250 L	20-May-21 00:10	
4:2 FTS	757124-72-4	<1.08	1.08		2.00		B1E0111	17-May-21	0.250 L	20-May-21 00:10	
PFHxA	307-24-4	<1.13	1.13		2.00		B1E0111	17-May-21	0.250 L	20-May-21 00:10	
PFPeS	2706-91-4	< 0.905	0.905		2.00		B1E0111	17-May-21	0.250 L	20-May-21 00:10	
HFPO-DA	13252-13-6	< 0.620	0.620		2.00			17-May-21	0.250 L	20-May-21 00:10	
PFHpA	375-85-9	< 0.885	0.885		2.00		B1E0111	17-May-21	0.250 L	20-May-21 00:10	
ADONA	919005-14-4	< 0.850	0.850		2.00		B1E0111		0.250 L	20-May-21 00:10	
PFHxS	355-46-4	<1.08	1.08		2.00			17-May-21	0.250 L	20-May-21 00:10	
6:2 FTS	27619-97-2	< 0.965	0.965		2.00			17-May-21	0.250 L	20-May-21 00:10	
PFOA	335-67-1	<1.09	1.09		2.00		B1E0111	17-May-21	0.250 L	20-May-21 00:10	
PFHpS	375-92-8	<2.47	2.47		2.50		B1E0111	,	0.250 L	20-May-21 00:10	
PFNA	375-95-1	< 0.565	0.565		2.00		B1E0111	17-May-21	0.250 L	20-May-21 00:10	
PFOSA	754-91-6	<1.35	1.35		2.00			17-May-21	0.250 L	20-May-21 00:10	
PFOS	1763-23-1	<1.07	1.07		2.00		B1E0111	17-May-21	0.250 L	20-May-21 00:10	
9Cl-PF3ONS	756426-58-1	< 0.830	0.830		2.00			17-May-21	0.250 L	20-May-21 00:10	
PFDA	335-76-2	< 0.900	0.900		2.00			17-May-21	0.250 L	20-May-21 00:10	
8:2 FTS	39108-34-4	<2.24	2.24		2.25		B1E0111	-	0.250 L	20-May-21 00:10	
PFNS	68259-12-1	<1.41	1.41		2.00			17-May-21	0.250 L	20-May-21 00:10	
MeFOSAA	2355-31-9	< 0.945	0.945		2.00			17-May-21	0.250 L	20-May-21 00:10	
EtFOSAA	2991-50-6	<2.54	2.54		2.63		B1E0111	17-May-21	0.250 L	20-May-21 00:10	
PFUnA	2058-94-8	<1.35	1.35		2.00		B1E0111	-	0.250 L	20-May-21 00:10	
PFDS	335-77-3	<2.71	2.71		2.75		B1E0111	17-May-21	0.250 L	20-May-21 00:10	
11Cl-PF3OUdS	763051-92-9	< 0.427	0.427		2.00		B1E0111	-	0.250 L	20-May-21 00:10	
PFDoA	307-55-1	< 0.785	0.785		2.00			17-May-21	0.250 L	20-May-21 00:10	
MeFOSA	31506-32-8	<6.85	6.85		8.00			17-May-21	0.250 L	20-May-21 00:10	
PFTrDA	72629-94-8	<1.11	1.11		2.00		B1E0111	-	0.250 L	20-May-21 00:10	
PFDoS	79780-39-5	<1.59	1.59		2.00			17-May-21	0.250 L	20-May-21 00:10	
PFTeDA	376-06-7	< 0.815	0.815		2.00		B1E0111	17-May-21	0.250 L	20-May-21 00:10	
EtFOSA	4151-50-2	<7.30	7.30		8.00		B1E0111		0.250 L	20-May-21 00:10	
MeFOSE	24448-09-7	<8.00	8.00		8.00		B1E0111	17-May-21	0.250 L	20-May-21 00:10	
EtFOSE	1691-99-2	<5.55	5.55		8.00		B1E0111	17-May-21	0.250 L	20-May-21 00:10	
Labeled Standar		% Recovery	3.33	Limits	0.00	Qualifiers	Batch	Extracted	Samp Size		Dilution
13C3-PFBA	IS	138		25 - 150		-	B1E0111	17-May-21	0.250 L	20-May-21 00:10	
13C3-PFPeA	IS	87.9		25 - 150			B1E0111	17-May-21	0.250 L	20-May-21 00:10	
13C3-PFBS	IS	86.2		25 - 150			B1E0111	17-May-21	0.250 L	20-May-21 00:10	
13C3-HFPO-DA	IS	81.0		25 - 150				17-May-21	0.250 L	20-May-21 00:10 20-May-21 00:10	
ices in io bh	10	01.0		20 100			DILUTTI	1, 1,1uy 21	0.230 E	20 maj 21 00.10	

Page 7 of 31 Work Order 2105073

Sample ID: Method Blank PFAS Isotope Dilution Method

Client Data Laboratory Data

Name: Tetra Tech Matrix: Aqueous Lab Sample: B1E0111-BLK1 Column: BEH C18
Project: Ashview Terrace Apt. PFAS

Labeled Standards	Type	% Recovery	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-4:2 FTS	IS	88.0	25 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:10	1
13C2-PFHxA	IS	87.7	25 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:10	1
13C4-PFHpA	IS	91.7	25 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:10	1
13C3-PFHxS	IS	91.1	25 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:10	1
13C2-6:2 FTS	IS	96.5	25 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:10	1
13C5-PFNA	IS	89.5	25 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:10	1
13C8-PFOSA	IS	55.2	10 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:10	1
13C2-PFOA	IS	92.6	25 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:10	1
13C8-PFOS	IS	92.2	25 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:10	1
13C2-PFDA	IS	93.4	25 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:10	1
13C2-8:2 FTS	IS	87.6	25 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:10	1
d3-MeFOSAA	IS	80.9	25 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:10	1
13C2-PFUnA	IS	89.4	25 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:10	1
d5-EtFOSAA	IS	82.6	25 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:10	1
13C2-PFDoA	IS	82.5	25 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:10	1
d3-MeFOSA	IS	28.1	10 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:10	1
13C2-PFTeDA	IS	72.7	25 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:10	1
d5-EtFOSA	IS	27.2	10 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:10	1
d7-MeFOSE	IS	48.3	10 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:10	1
d9-EtFOSE	IS	48.3	10 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:10	1

MDL - Method Detection Limit

RL - Reporting limit

Results reported to MDL.

When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.

Work Order 2105073

Sample ID: OPR

PFAS Isotope Dilution Method

Client Data Laboratory Data

Name: Tetra Tech Matrix: Aqueous Lab Sample: B1E0111-BS1 Column: BEH C18

Project: Ashview Terrace Apt. PFAS

Analyte	CAS Number	Amt Found (ng/L)	Spike Amt	% Rec	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBA	375-22-4	8.48	8.00	106	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
PFPeA	2706-90-3	8.23	8.00	103	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
PFBS	375-73-5	9.15	8.00	114	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
4:2 FTS	757124-72-4	7.89	8.00	98.6	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
PFHxA	307-24-4	8.56	8.00	107	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
PFPeS	2706-91-4	9.40	8.00	118	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
HFPO-DA	13252-13-6	8.69	8.00	109	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
PFHpA	375-85-9	7.65	8.00	95.6	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
ADONA	919005-14-4	8.10	8.00	101	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
PFHxS	355-46-4	8.03	8.00	100	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
6:2 FTS	27619-97-2	8.11	8.00	101	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
PFOA	335-67-1	8.41	8.00	105	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
PFHpS	375-92-8	7.52	8.00	94.0	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
PFNA	375-95-1	8.31	8.00	104	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
PFOSA	754-91-6	6.80	8.00	85.0	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
PFOS	1763-23-1	9.06	8.00	113	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
9Cl-PF3ONS	756426-58-1	8.36	8.00	105	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
PFDA	335-76-2	7.67	8.00	95.8	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
8:2 FTS	39108-34-4	9.67	8.00	121	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
PFNS	68259-12-1	8.24	8.00	103	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
MeFOSAA	2355-31-9	7.64	8.00	95.5	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
EtFOSAA	2991-50-6	7.94	8.00	99.2	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
PFUnA	2058-94-8	8.90	8.00	111	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
PFDS	335-77-3	7.16	8.00	89.5	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
11Cl-PF3OUdS	763051-92-9	8.88	8.00	111	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
PFDoA	307-55-1	7.63	8.00	95.4	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
MeFOSA	31506-32-8	7.57	8.00	94.6	50 - 150	J	B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
PFTrDA	72629-94-8	7.28	8.00	91.0	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
PFDoS	79780-39-5	7.42	8.08	91.9	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
PFTeDA	376-06-7	8.19	8.00	102	50 - 150		B1E0111	17-May-21	0.250 L	20-May-21 00:20	1
EtFOSA	4151-50-2	7.95	8.00	99.4	50 - 150	J	B1E0111	17-May-21	0.250 L	20-May-21 00:20	
MeFOSE	24448-09-7	7.54	8.00	94.2	50 - 150	J	B1E0111	17-May-21	0.250 L	20-May-21 00:20	
EtFOSE	1691-99-2	7.53	8.00	94.2	50 - 150	J	B1E0111	17-May-21	0.250 L	20-May-21 00:20	
Labeled Standards		Туре		% Rec	Limits	Qualifiers	Batch		Samp Size	Analyzed	Dilution

Work Order 2105073 Page 9 of 31

Sample ID: OPR

PFAS Isotope Dilution Method

Client Data Laboratory Data

Project:

Ashview Terrace Apt. PFAS

Name: Tetra Tech Matrix: Aqueous Lab Sample: B1E0111-BS1 Column: BEH C18

Labeled Standards **Oualifiers** Dilution % Rec Limits Extracted **Analyzed** Type Samp Size Batch 13C3-PFBA IS 131 25 - 150 B1E0111 17-May-21 0.250 L 20-May-21 00:20 17-May-21 13C3-PFPeA IS 85.4 25 - 150 B1E0111 0.250 L 20-May-21 00:20 1 IS 13C3-PFBS 80.0 25 - 150 B1E0111 17-May-21 0.250 L 20-May-21 00:20 IS 25 - 150 17-May-21 20-May-21 00:20 13C3-HFPO-DA 79.1 B1E0111 0.250 L 1 13C2-4:2 FTS IS 85.0 25 - 150 B1E0111 17-May-21 0.250 L 20-May-21 00:20 13C2-PFHxA IS 86.7 25 - 150 17-May-21 0.250 L 1 B1E0111 20-May-21 00:20 IS 13C4-PFHpA 90.8 25 - 150 B1E0111 17-May-21 0.250 L 20-May-21 00:20 13C3-PFHxS IS 97.4 25 - 150 17-May-21 B1E0111 0.250 L 20-May-21 00:20 1 13C2-6:2 FTS IS 87.2 25 - 150 B1E0111 17-May-21 0.250 L 20-May-21 00:20 13C5-PFNA 82.7 25 - 150 17-May-21 0.250 L 20-May-21 00:20 1 IS B1E0111 13C8-PFOSA IS 59.0 10 - 150 B1E0111 17-May-21 0.250 L 20-May-21 00:20 B1E0111 17-May-21 20-May-21 00:20 13C2-PFOA IS 87.7 25 - 150 0.250 L 1 13C8-PFOS IS 90.9 25 - 150 B1E0111 17-May-21 0.250 L 20-May-21 00:20 13C2-PFDA IS 94.7 25 - 150B1E0111 17-May-21 0.250 L 20-May-21 00:20 1 13C2-8:2 FTS IS 81.1 25 - 150 B1E0111 17-May-21 0.250 L 20-May-21 00:20 d3-MeFOSAA 20-May-21 00:20 IS 82.0 25 - 150 B1E0111 17-May-21 0.250 L 1 13C2-PFUnA IS 84.5 25 - 150 0.250 L B1E0111 17-May-21 20-May-21 00:20 d5-EtFOSAA IS 81.7 25 - 150 B1E0111 17-May-21 0.250 L 20-May-21 00:20 1 13C2-PFDoA IS 85.1 25 - 150 B1E0111 17-May-21 0.250 L 20-May-21 00:20 d3-MeFOSA IS 34.8 10 - 150 B1E0111 17-May-21 0.250 L 20-May-21 00:20 1 IS 13C2-PFTeDA 75.3 25 - 150 17-May-21 0.250 L 20-May-21 00:20 B1E0111 IS 10 - 150 d5-EtFOSA 33.8 B1E0111 17-May-21 0.250 L 20-May-21 00:20 1 d7-MeFOSE IS 50.2 10 - 150 B1E0111 17-May-21 0.250 L 20-May-21 00:20 d9-EtFOSE IS 51.8 10 - 150 B1E0111 17-May-21 0.250 L 20-May-21 00:20 1

Work Order 2105073 Page 10 of 31

Sample ID: EB-DR-01-210504 PFAS Isotope Dilution Method

Laboratory Data

Tetra Tech

Client Data

Matrix: Lab Sample: 2105073-01 Name: Aqueous Column: BEH C18

Project: As	hview Terrace Apt. PFAS	Date Coll	lected: 04-May-21	14:20 Date	e Received:	07-May-2	1 09:33	Columni	BEH CI6	
Analyte	CAS Number	Conc. (ng/L)	MDL	RL	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBA	375-22-4	0.786	0.731	2.04	J	B1E0111	17-May-21	0.245 L	20-May-21 00:30	1
PFPeA	2706-90-3	<1.00	1.00	2.04		B1E0111	17-May-21	0.245 L	20-May-21 00:30	1
PFBS	375-73-5	< 0.787	0.787	2.04		B1E0111	17-May-21	0.245 L	20-May-21 00:30	1
4:2 FTS	757124-72-4	<1.10	1.10	2.04		B1E0111	17-May-21	0.245 L	20-May-21 00:30	1
PFHxA	307-24-4	<1.16	1.16	2.04		B1E0111	17-May-21	0.245 L	20-May-21 00:30	1
PFPeS	2706-91-4	< 0.925	0.925	2.04		B1E0111	17-May-21	0.245 L	20-May-21 00:30	1
HFPO-DA	13252-13-6	< 0.634	0.634	2.04		B1E0111	17-May-21	0.245 L	20-May-21 00:30	1
PFHpA	375-85-9	< 0.905	0.905	2.04		B1E0111	17-May-21	0.245 L	20-May-21 00:30	1
ADONA	919005-14-4	< 0.869	0.869	2.04		B1E0111	17-May-21	0.245 L	20-May-21 00:30	1
PFHxS	355-46-4	<1.10	1.10	2.04		B1E0111	17-May-21	0.245 L	20-May-21 00:30	1
6:2 FTS	27619-97-2	< 0.987	0.987	2.04		B1E0111	17-May-21	0.245 L	20-May-21 00:30	1
PFOA	335-67-1	<1.11	1.11	2.04		B1E0111	17-May-21	0.245 L	20-May-21 00:30	1
PFHpS	375-92-8	<2.53	2.53	2.56		B1E0111	17-May-21	0.245 L	20-May-21 00:30	1
PFNA	375-95-1	< 0.578	0.578	2.04		B1E0111	17-May-21	0.245 L	20-May-21 00:30	1
PFOSA	754-91-6	<1.38	1.38	2.04		B1E0111	17-May-21	0.245 L	20-May-21 00:30	1
PFOS	1763-23-1	<1.09	1.09	2.04		B1E0111	17-May-21	0.245 L	20-May-21 00:30	1
9C1-PF3ONS	756426-58-1	< 0.849	0.849	2.04		B1E0111	17-May-21	0.245 L	20-May-21 00:30	1
PFDA	335-76-2	< 0.920	0.920	2.04		B1E0111	17-May-21	0.245 L	20-May-21 00:30	1
8:2 FTS	39108-34-4	<2.29	2.29	2.30		B1E0111	17-May-21	0.245 L	20-May-21 00:30	1
PFNS	68259-12-1	<1.44	1.44	2.04			17-May-21	0.245 L	20-May-21 00:30	
MeFOSAA	2355-31-9	< 0.966	0.966	2.04		B1E0111	17-May-21	0.245 L	20-May-21 00:30	
EtFOSAA	2991-50-6	< 2.59	2.59	2.68		B1E0111	17-May-21	0.245 L	20-May-21 00:30	1
PFUnA	2058-94-8	<1.38	1.38	2.04		B1E0111	17-May-21	0.245 L	20-May-21 00:30	1
PFDS	335-77-3	<2.77	2.77	2.81		B1E0111	17-May-21	0.245 L	20-May-21 00:30	1
11Cl-PF3OUdS	763051-92-9	< 0.436	0.436	2.04		B1E0111	17-May-21	0.245 L	20-May-21 00:30	1
PFDoA	307-55-1	< 0.803	0.803	2.04		B1E0111	17-May-21	0.245 L	20-May-21 00:30	
MeFOSA	31506-32-8	< 7.00	7.00	8.18		B1E0111	17-May-21	0.245 L	20-May-21 00:30	1
PFTrDA	72629-94-8	<1.13	1.13	2.04			17-May-21	0.245 L	20-May-21 00:30	
PFDoS	79780-39-5	<1.63	1.63	2.04		B1E0111	17-May-21	0.245 L	20-May-21 00:30	
PFTeDA	376-06-7	< 0.833	0.833	2.04			17-May-21	0.245 L	20-May-21 00:30	
EtFOSA	4151-50-2	<7.46	7.46	8.18			17-May-21	0.245 L	20-May-21 00:30	
MeFOSE	24448-09-7	< 8.18	8.18	8.18		B1E0111	17-May-21	0.245 L	20-May-21 00:30	1
EtFOSE	1691-99-2	< 5.67	5.67	8.18		B1E0111	17-May-21	0.245 L	20-May-21 00:30	
Labeled Standards	Туре	% Recovery		Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBA	IS	146		25 - 150		B1E0111	17-May-21	0.245 L	20-May-21 00:30	1
13C3-PFPeA	IS	91.1		25 - 150			17-May-21	0.245 L	20-May-21 00:30	
13C3-PFBS	IS	91.0		25 - 150			17-May-21	0.245 L	20-May-21 00:30	1

Work Order 2105073 Page 11 of 31

Sample ID: EB-DR-01-210504 PFAS Isotope Dilution Method

Client Data Laboratory Data

Name: Tetra Tech Matrix: Aqueous Lab Sample: 2105073-01 Column: BEH C18

Project: Ashview Terrace Apt. PFAS Date Collected: 04-May-21 14:20 Date Received: 07-May-21 09:33

Labeled Standards % Recovery Limits Qualifiers Batch Extracted Samp Size Analyzed **Dilution** Type 13C3-HFPO-DA IS 83.7 25 - 150 B1E0111 17-May-21 0.245 L 20-May-21 00:30 89.7 25 - 150 13C2-4:2 FTS IS B1E0111 17-May-21 0.245 L 20-May-21 00:30 IS 25 - 150 13C2-PFHxA 91.9 B1E0111 17-May-21 0.245 L 20-May-21 00:30 IS 17-May-21 13C4-PFHpA 96.8 25 - 150 0.245 L 20-May-21 00:30 B1E0111 IS 13C3-PFHxS 101 25 - 150 B1E0111 17-May-21 0.245 L 20-May-21 00:30 IS 0.245 L 99.1 25 - 15017-May-21 13C2-6:2 FTS B1E0111 20-May-21 00:30 1 IS 25 - 150 13C5-PFNA 87.0 17-May-21 0.245 L B1E0111 20-May-21 00:30 10 - 150 17-May-21 13C8-PFOSA IS 61.9 B1E0111 0.245 L 20-May-21 00:30 1 13C2-PFOA IS 95.8 25 - 150 B1E0111 17-May-21 0.245 L 20-May-21 00:30 13C8-PFOS IS 89.7 25 - 150 17-May-21 0.245 L B1E0111 20-May-21 00:30 1 13C2-PFDA IS 95.2 25 - 150 17-May-21 0.245 L B1E0111 20-May-21 00:30 13C2-8:2 FTS IS 86.4 25 - 150 17-May-21 0.245 L B1E0111 20-May-21 00:30 1 d3-MeFOSAA IS 84.2 25 - 150 B1E0111 17-May-21 0.245 L 20-May-21 00:30 13C2-PFUnA IS 88.4 25 - 150 B1E0111 17-May-21 0.245 L 20-May-21 00:30 1 IS 83.2 25 - 150 d5-EtFOSAA 17-May-21 0.245 L B1E0111 20-May-21 00:30 25 - 150 13C2-PFDoA IS 82.8 17-May-21 0.245 L B1E0111 20-May-21 00:30 IS 10 - 150 d3-MeFOSA 27.8 17-May-21 0.245 L 20-May-21 00:30 B1E0111 13C2-PFTeDA IS 67.6 25 - 150 B1E0111 17-May-21 0.245 L 20-May-21 00:30 1 IS d5-EtFOSA 28.9 10 - 150 B1E0111 17-May-21 0.245 L 20-May-21 00:30 d7-MeFOSE IS 47.9 10 - 150 B1E0111 17-May-21 0.245 L 20-May-21 00:30 d9-EtFOSE IS 50.7 10 - 150 B1E0111 17-May-21 0.245 L 20-May-21 00:30

MDL - Method Detection Limit

RL - Reporting limit Results reported to MDL

When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.

Work Order 2105073 Page 12 of 31

BEH C18

20-May-21 00:41

Column:

B1E0111 17-May-21 0.241 L

Sample ID: EB-GW-01-210505 PFAS Isotope Dilution Method

Name: Tetra Tech

Client Data

13C3-PFBS

Matrix: Aqueous Project:

IS

87.9

Date Collected: 05-May-21 15:55 Ashview Terrace Apt. PFAS

Laboratory Data

Lab Sample: 2105073-02

Date Received: 07-May-21 09:33

•	•					•				
Analyte	CAS Number	Conc. (ng/L)	MDL	RI	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBA	375-22-4	< 0.742	0.742	2.08	3	B1E0111	17-May-21	0.241 L	20-May-21 00:41	. 1
PFPeA	2706-90-3	<1.02	1.02	2.08	3	B1E0111	17-May-21	0.241 L	20-May-21 00:41	. 1
PFBS	375-73-5	< 0.799	0.799	2.08	3	B1E0111	17-May-21	0.241 L	20-May-21 00:41	. 1
4:2 FTS	757124-72-4	<1.12	1.12	2.08	3	B1E0111	17-May-21	0.241 L	20-May-21 00:41	1 1
PFHxA	307-24-4	<1.17	1.17	2.08	3	B1E0111	17-May-21	0.241 L	20-May-21 00:41	1 1
PFPeS	2706-91-4	< 0.939	0.939	2.08	3	B1E0111	17-May-21	0.241 L	20-May-21 00:41	1 1
HFPO-DA	13252-13-6	< 0.643	0.643	2.08	3	B1E0111	17-May-21	0.241 L	20-May-21 00:41	1 1
PFHpA	375-85-9	< 0.918	0.918	2.08	3	B1E0111	17-May-21	0.241 L	20-May-21 00:41	1 1
ADONA	919005-14-4	< 0.882	0.882	2.08	3	B1E0111	17-May-21	0.241 L	20-May-21 00:41	l 1
PFHxS	355-46-4	<1.12	1.12	2.08	3	B1E0111	17-May-21	0.241 L	20-May-21 00:41	1 1
6:2 FTS	27619-97-2	<1.00	1.00	2.08	3	B1E0111	17-May-21	0.241 L	20-May-21 00:41	1
PFOA	335-67-1	<1.13	1.13	2.08	3	B1E0111	17-May-21	0.241 L	20-May-21 00:41	1
PFHpS	375-92-8	< 2.56	2.56	2.59)	B1E0111	17-May-21	0.241 L	20-May-21 00:41	1
PFNA	375-95-1	< 0.586	0.586	2.08	3	B1E0111	17-May-21	0.241 L	20-May-21 00:41	. 1
PFOSA	754-91-6	<1.40	1.40	2.08	3	B1E0111	17-May-21	0.241 L	20-May-21 00:41	. 1
PFOS	1763-23-1	<1.11	1.11	2.08	3	B1E0111	17-May-21	0.241 L	20-May-21 00:41	. 1
9Cl-PF3ONS	756426-58-1	< 0.861	0.861	2.08	3	B1E0111	17-May-21	0.241 L	20-May-21 00:41	1
PFDA	335-76-2	< 0.934	0.934	2.08	3	B1E0111	17-May-21	0.241 L	20-May-21 00:41	1
8:2 FTS	39108-34-4	<2.32	2.32	2.33	3	B1E0111	17-May-21	0.241 L	20-May-21 00:41	1
PFNS	68259-12-1	<1.46	1.46	2.08	3	B1E0111	17-May-21	0.241 L	20-May-21 00:41	1
MeFOSAA	2355-31-9	< 0.981	0.981	2.08	3	B1E0111	17-May-21	0.241 L	20-May-21 00:41	
EtFOSAA	2991-50-6	< 2.63	2.63	2.72	2	B1E0111	17-May-21	0.241 L	20-May-21 00:41	1
PFUnA	2058-94-8	<1.40	1.40	2.08	3	B1E0111	17-May-21	0.241 L	20-May-21 00:41	l 1
PFDS	335-77-3	<2.81	2.81	2.85	5	B1E0111	17-May-21	0.241 L	20-May-21 00:41	l 1
11Cl-PF3OUdS	763051-92-9	< 0.443	0.443	2.08	3	B1E0111	17-May-21	0.241 L	20-May-21 00:41	l 1
PFDoA	307-55-1	< 0.815	0.815	2.08	3	B1E0111	17-May-21	0.241 L	20-May-21 00:41	1
MeFOSA	31506-32-8	<7.11	7.11	8.30)	B1E0111	17-May-21	0.241 L	20-May-21 00:41	l 1
PFTrDA	72629-94-8	<1.15	1.15	2.08	3	B1E0111	17-May-21	0.241 L	20-May-21 00:41	. 1
PFDoS	79780-39-5	<1.65	1.65	2.08	3	B1E0111	17-May-21	0.241 L	20-May-21 00:41	l 1
PFTeDA	376-06-7	< 0.846	0.846	2.08	3	B1E0111	17-May-21	0.241 L	20-May-21 00:41	l 1
EtFOSA	4151-50-2	<7.58	7.58	8.30)	B1E0111	17-May-21	0.241 L	20-May-21 00:41	
MeFOSE	24448-09-7	< 8.30	8.30	8.30)	B1E0111	17-May-21	0.241 L	20-May-21 00:41	1
EtFOSE	1691-99-2	< 5.76	5.76	8.30)	B1E0111	17-May-21	0.241 L	20-May-21 00:41	
Labeled Standards	Туре	% Recovery		Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBA	IS	140		25 - 150		B1E0111	17-May-21	0.241 L	20-May-21 00:41	. 1
13C3-PFPeA	IS	88.5		25 - 150		B1E0111	17-May-21	0.241 L	20-May-21 00:41	1

Work Order 2105073 Page 13 of 31

25 - 150

Sample ID: EB-GW-01-210505 PFAS Isotope Dilution Method

Client Data **Laboratory Data**

Matrix: Lab Sample: Name: Tetra Tech Aqueous 2105073-02 Column: BEH C18 Project: Ashview Terrace Apt. PFAS

Date Collected: 05-May-21 15:55 Date Received: 07-May-21 09:33

Labeled Standards	Туре	% Recovery	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-HFPO-DA	IS	89.8	25 - 150		B1E0111	17-May-21	0.241 L	20-May-21 00:41	. 1
13C2-4:2 FTS	IS	95.0	25 - 150		B1E0111	17-May-21	0.241 L	20-May-21 00:41	. 1
13C2-PFHxA	IS	94.8	25 - 150		B1E0111	17-May-21	0.241 L	20-May-21 00:41	. 1
13C4-PFHpA	IS	100	25 - 150		B1E0111	17-May-21	0.241 L	20-May-21 00:41	. 1
13C3-PFHxS	IS	96.2	25 - 150		B1E0111	17-May-21	0.241 L	20-May-21 00:41	. 1
13C2-6:2 FTS	IS	97.8	25 - 150		B1E0111	17-May-21	0.241 L	20-May-21 00:41	. 1
13C5-PFNA	IS	87.9	25 - 150		B1E0111	17-May-21	0.241 L	20-May-21 00:41	. 1
13C8-PFOSA	IS	59.6	10 - 150		B1E0111	17-May-21	0.241 L	20-May-21 00:41	. 1
13C2-PFOA	IS	92.2	25 - 150		B1E0111	17-May-21	0.241 L	20-May-21 00:41	. 1
13C8-PFOS	IS	93.2	25 - 150		B1E0111	17-May-21	0.241 L	20-May-21 00:41	. 1
13C2-PFDA	IS	93.6	25 - 150		B1E0111	17-May-21	0.241 L	20-May-21 00:41	. 1
13C2-8:2 FTS	IS	87.4	25 - 150		B1E0111	17-May-21	0.241 L	20-May-21 00:41	. 1
d3-MeFOSAA	IS	83.4	25 - 150		B1E0111	17-May-21	0.241 L	20-May-21 00:41	. 1
13C2-PFUnA	IS	90.4	25 - 150		B1E0111	17-May-21	0.241 L	20-May-21 00:41	. 1
d5-EtFOSAA	IS	83.5	25 - 150		B1E0111	17-May-21	0.241 L	20-May-21 00:41	. 1
13C2-PFDoA	IS	88.8	25 - 150		B1E0111	17-May-21	0.241 L	20-May-21 00:41	. 1
d3-MeFOSA	IS	33.0	10 - 150		B1E0111	17-May-21	0.241 L	20-May-21 00:41	. 1
13C2-PFTeDA	IS	78.1	25 - 150		B1E0111	17-May-21	0.241 L	20-May-21 00:41	. 1
d5-EtFOSA	IS	32.2	10 - 150		B1E0111	17-May-21	0.241 L	20-May-21 00:41	. 1
d7-MeFOSE	IS	49.8	10 - 150		B1E0111	17-May-21	0.241 L	20-May-21 00:41	1
d9-EtFOSE	IS	51.2	10 - 150		B1E0111	17-May-21	0.241 L	20-May-21 00:41	. 1
MDI Malabara di Tira	DI D 41 11 14	Dogulto noncertad to N	m.r					FOGAA: 1.1.1.d	

MDL - Method Detection Limit

RL - Reporting limit Results reported to MDL. When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.

Work Order 2105073 Page 14 of 31

Sample ID: FB-GW-01-210505 PFAS Isotope Dilution Method

Client Data Name:

Project:

13C3-PFBS

Tetra Tech

Ashview Terrace Apt. PFAS

IS

89.7

Matrix: Date Collected: 05-May-21 15:55

Aqueous

Laboratory Data

Lab Sample: 2105073-03

Date Received: 07-May-21 09:33

B1E0111 17-May-21 0.242 L

20-May-21 00:51

Column: BEH C18

Analyte	CAS Number	Conc. (ng/L)	MDL		ŘL	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBA	375-22-4	< 0.740	0.740		2.07		B1E0111	17-May-21	0.242 L	20-May-21 00:51	1
PFPeA	2706-90-3	<1.01	1.01		2.07		B1E0111	17-May-21	0.242 L	20-May-21 00:51	1
PFBS	375-73-5	< 0.797	0.797	:	2.07		B1E0111	17-May-21	0.242 L	20-May-21 00:51	1
4:2 FTS	757124-72-4	<1.12	1.12		2.07		B1E0111	17-May-21	0.242 L	20-May-21 00:51	1
PFHxA	307-24-4	<1.17	1.17	:	2.07		B1E0111	17-May-21	0.242 L	20-May-21 00:51	1
PFPeS	2706-91-4	< 0.937	0.937		2.07		B1E0111	17-May-21	0.242 L	20-May-21 00:51	1
HFPO-DA	13252-13-6	< 0.642	0.642	,	2.07		B1E0111	17-May-21	0.242 L	20-May-21 00:51	1
PFHpA	375-85-9	< 0.916	0.916		2.07		B1E0111	17-May-21	0.242 L	20-May-21 00:51	1
ADONA	919005-14-4	< 0.880	0.880	,	2.07		B1E0111	17-May-21	0.242 L	20-May-21 00:51	1
PFHxS	355-46-4	<1.11	1.11		2.07		B1E0111	17-May-21	0.242 L	20-May-21 00:51	1
6:2 FTS	27619-97-2	< 0.999	0.999	,	2.07		B1E0111	17-May-21	0.242 L	20-May-21 00:51	1
PFOA	335-67-1	<1.13	1.13		2.07		B1E0111	17-May-21	0.242 L	20-May-21 00:51	1
PFHpS	375-92-8	< 2.56	2.56		2.59		B1E0111	17-May-21	0.242 L	20-May-21 00:51	1
PFNA	375-95-1	< 0.585	0.585		2.07		B1E0111	17-May-21	0.242 L	20-May-21 00:51	1
PFOSA	754-91-6	<1.40	1.40		2.07		B1E0111	17-May-21	0.242 L	20-May-21 00:51	1
PFOS	1763-23-1	<1.10	1.10		2.07		B1E0111	17-May-21	0.242 L	20-May-21 00:51	1
9Cl-PF3ONS	756426-58-1	< 0.859	0.859		2.07		B1E0111	17-May-21	0.242 L	20-May-21 00:51	. 1
PFDA	335-76-2	< 0.932	0.932		2.07		B1E0111	17-May-21	0.242 L	20-May-21 00:51	1
8:2 FTS	39108-34-4	<2.32	2.32		2.33		B1E0111	17-May-21	0.242 L	20-May-21 00:51	1
PFNS	68259-12-1	<1.46	1.46	:	2.07		B1E0111	17-May-21	0.242 L	20-May-21 00:51	
MeFOSAA	2355-31-9	< 0.978	0.978		2.07		B1E0111	17-May-21	0.242 L	20-May-21 00:51	1
EtFOSAA	2991-50-6	<2.62	2.62		2.72		B1E0111	17-May-21	0.242 L	20-May-21 00:51	
PFUnA	2058-94-8	<1.39	1.39	:	2.07		B1E0111	17-May-21	0.242 L	20-May-21 00:51	. 1
PFDS	335-77-3	< 2.80	2.80		2.85		B1E0111	17-May-21	0.242 L	20-May-21 00:51	1
11Cl-PF3OUdS	763051-92-9	< 0.441	0.441	:	2.07		B1E0111	17-May-21	0.242 L	20-May-21 00:51	. 1
PFDoA	307-55-1	< 0.813	0.813	:	2.07		B1E0111	17-May-21	0.242 L	20-May-21 00:51	1
MeFOSA	31506-32-8	< 7.09	7.09		8.28		B1E0111	17-May-21	0.242 L	20-May-21 00:51	
PFTrDA	72629-94-8	<1.14	1.14		2.07		B1E0111	17-May-21	0.242 L	20-May-21 00:51	1
PFDoS	79780-39-5	<1.65	1.65		2.07		B1E0111	17-May-21	0.242 L	20-May-21 00:51	
PFTeDA	376-06-7	< 0.844	0.844		2.07		B1E0111	17-May-21	0.242 L	20-May-21 00:51	
EtFOSA	4151-50-2	<7.56	7.56		8.28		B1E0111	17-May-21	0.242 L	20-May-21 00:51	
MeFOSE	24448-09-7	<8.28	8.28		8.28		B1E0111	17-May-21	0.242 L	20-May-21 00:51	
EtFOSE	1691-99-2	< 5.74	5.74		8.28		B1E0111	17-May-21	0.242 L	20-May-21 00:51	
Labeled Standards	Туре	% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	•	Dilution
13C3-PFBA	IS	144		25 - 150			B1E0111	17-May-21	0.242 L	20-May-21 00:51	1
13C3-PFPeA	IS	91.2		25 - 150			B1E0111	17-May-21	0.242 L	20-May-21 00:51	
12G2 DEDG	IC	90.7		25 150				17 14 21		20 14 21 00 51	

Work Order 2105073 Page 15 of 31

25 - 150

Analyzed

20-May-21 00:51

Dilution

Sample ID: FB-GW-01-210505 PFAS Isotope Dilution Method

Client Data Laboratory Data

Lab Sample: Name: Tetra Tech Matrix: Aqueous 2105073-03 Column: BEH C18 Date Collected: Project: Ashview Terrace Apt. PFAS 05-May-21 15:55 Date Received: 07-May-21 09:33

% Recovery Samp Size **Labeled Standards** Type Limits Qualifiers **Batch** Extracted

	<u> </u>							
13C3-HFPO-DA	IS	89.4	25 - 150	B1E0111	17-May-21	0.242 L	20-May-21 00:51	1
13C2-4:2 FTS	IS	91.8	25 - 150	B1E0111	17-May-21	0.242 L	20-May-21 00:51	1
13C2-PFHxA	IS	94.3	25 - 150	B1E0111	17-May-21	0.242 L	20-May-21 00:51	1
13C4-PFHpA	IS	101	25 - 150	B1E0111	17-May-21	0.242 L	20-May-21 00:51	1
13C3-PFHxS	IS	96.8	25 - 150	B1E0111	17-May-21	0.242 L	20-May-21 00:51	1
13C2-6:2 FTS	IS	95.7	25 - 150	B1E0111	17-May-21	0.242 L	20-May-21 00:51	1
13C5-PFNA	IS	90.4	25 - 150	B1E0111	17-May-21	0.242 L	20-May-21 00:51	1
13C8-PFOSA	IS	54.3	10 - 150	B1E0111	17-May-21	0.242 L	20-May-21 00:51	1
13C2-PFOA	IS	96.1	25 - 150	B1E0111	17-May-21	0.242 L	20-May-21 00:51	1
13C8-PFOS	IS	89.2	25 - 150	B1E0111	17-May-21	0.242 L	20-May-21 00:51	1
13C2-PFDA	IS	101	25 - 150	B1E0111	17-May-21	0.242 L	20-May-21 00:51	1
13C2-8:2 FTS	IS	92.8	25 - 150	B1E0111	17-May-21	0.242 L	20-May-21 00:51	1
d3-MeFOSAA	IS	82.8	25 - 150	B1E0111	17-May-21	0.242 L	20-May-21 00:51	1
13C2-PFUnA	IS	92.2	25 - 150	B1E0111	17-May-21	0.242 L	20-May-21 00:51	1
d5-EtFOSAA	IS	83.9	25 - 150	B1E0111	17-May-21	0.242 L	20-May-21 00:51	1
13C2-PFDoA	IS	88.8	25 - 150	B1E0111	17-May-21	0.242 L	20-May-21 00:51	1
d3-MeFOSA	IS	27.8	10 - 150	B1E0111	17-May-21	0.242 L	20-May-21 00:51	1
13C2-PFTeDA	IS	80.5	25 - 150	B1E0111	17-May-21	0.242 L	20-May-21 00:51	1
d5-EtFOSA	IS	28.3	10 - 150	B1E0111	17-May-21	0.242 L	20-May-21 00:51	1
d7-MeFOSE	IS	46.6	10 - 150	B1E0111	17-May-21	0.242 L	20-May-21 00:51	1

10 - 150

MDL - Method Detection Limit

d9-EtFOSE

RL - Reporting limit Results reported to MDL.

48.2

IS

When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.

0.242 L

B1E0111 17-May-21

Page 16 of 31 Work Order 2105073

Sample ID: DUP-GW-01-210505 PFAS Isotope Dilution Method

Name: Tetra Tech

Client Data

13C3-PFBS

IS

83.9

Project: Ashview Terrace Apt. PFAS

Matrix: Aqueous

Date Collected: 05-May-21 00:00

Laboratory Data

Lab Sample: 2105073-04

Date Received: 07-May-21 09:33

Column: BEH C18

B1E0111 17-May-21 0.237 L 21-May-21 17:38

y										
Analyte	CAS Number	Conc. (ng/L)	MDL	RL	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBA	375-22-4	14.8	0.753	2.11		B1E0111	17-May-21	0.237 L	21-May-21 17:38	1
PFPeA	2706-90-3	5.49	1.03	2.11		B1E0111	17-May-21	0.237 L	21-May-21 17:38	1
PFBS	375-73-5	122	0.811	2.11		B1E0111	17-May-21	0.237 L	21-May-21 17:38	1
4:2 FTS	757124-72-4	<1.14	1.14	2.11		B1E0111	17-May-21	0.237 L	21-May-21 17:38	1
PFHxA	307-24-4	4.59	1.19	2.11	Q	B1E0111	17-May-21	0.237 L	21-May-21 17:38	1
PFPeS	2706-91-4	< 0.953	0.953	2.11		B1E0111	17-May-21	0.237 L	21-May-21 17:38	1
HFPO-DA	13252-13-6	< 0.653	0.653	2.11		B1E0111	17-May-21	0.237 L	21-May-21 17:38	1
PFHpA	375-85-9	2.66	0.932	2.11	Q	B1E0111	17-May-21	0.237 L	21-May-21 17:38	1
ADONA	919005-14-4	< 0.895	0.895	2.11		B1E0111	17-May-21	0.237 L	21-May-21 17:38	1
PFHxS	355-46-4	<1.13	1.13	2.11		B1E0111	17-May-21	0.237 L	21-May-21 17:38	
6:2 FTS	27619-97-2	4.48	1.02	2.11		B1E0111	17-May-21	0.237 L	21-May-21 17:38	1
PFOA	335-67-1	24.0	1.15	2.11		B1E0111	17-May-21	0.237 L	21-May-21 17:38	1
PFHpS	375-92-8	< 2.60	2.60	2.63		B1E0111	17-May-21	0.237 L	21-May-21 17:38	1
PFNA	375-95-1	< 0.595	0.595	2.11		B1E0111	17-May-21	0.237 L	21-May-21 17:38	1
PFOSA	754-91-6	3.83	1.42	2.11	Q	B1E0111	17-May-21	0.237 L	21-May-21 17:38	1
PFOS	1763-23-1	3.65	1.12	2.11	Q	B1E0111	17-May-21	0.237 L	21-May-21 17:38	1
9Cl-PF3ONS	756426-58-1	< 0.874	0.874	2.11		B1E0111	17-May-21	0.237 L	21-May-21 17:38	1
PFDA	335-76-2	< 0.948	0.948	2.11		B1E0111	17-May-21	0.237 L	21-May-21 17:38	
8:2 FTS	39108-34-4	<2.36	2.36	2.37		B1E0111	17-May-21	0.237 L	21-May-21 17:38	1
PFNS	68259-12-1	<1.48	1.48	2.11		B1E0111	17-May-21	0.237 L	21-May-21 17:38	1
MeFOSAA	2355-31-9	< 0.995	0.995	2.11		B1E0111	17-May-21	0.237 L	21-May-21 17:38	1
EtFOSAA	2991-50-6	< 2.67	2.67	2.76)	B1E0111	17-May-21	0.237 L	21-May-21 17:38	1
PFUnA	2058-94-8	<1.42	1.42	2.11		B1E0111	17-May-21	0.237 L	21-May-21 17:38	1
PFDS	335-77-3	< 2.85	2.85	2.90)	B1E0111	17-May-21	0.237 L	21-May-21 17:38	1
11Cl-PF3OUdS	763051-92-9	< 0.449	0.449	2.11		B1E0111	17-May-21	0.237 L	21-May-21 17:38	1
PFDoA	307-55-1	< 0.827	0.827	2.11		B1E0111	17-May-21	0.237 L	21-May-21 17:38	1
MeFOSA	31506-32-8	<7.21	7.21	8.42		B1E0111	17-May-21	0.237 L	21-May-21 17:38	1
PFTrDA	72629-94-8	<1.16	1.16	2.11		B1E0111	17-May-21	0.237 L	21-May-21 17:38	1
PFDoS	79780-39-5	<1.67	1.67	2.11		B1E0111	17-May-21	0.237 L	21-May-21 17:38	1
PFTeDA	376-06-7	< 0.858	0.858	2.11		B1E0111	17-May-21	0.237 L	21-May-21 17:38	1
EtFOSA	4151-50-2	<7.69	7.69	8.42		B1E0111	17-May-21	0.237 L	21-May-21 17:38	
MeFOSE	24448-09-7	<8.42	8.42	8.42		B1E0111	17-May-21	0.237 L	21-May-21 17:38	
EtFOSE	1691-99-2	< 5.84	5.84	8.42		B1E0111	17-May-21	0.237 L	21-May-21 17:38	
Labeled Standards	Туре	% Recovery		Limits	Qualifiers	Batch	Extracted	Samp Size		Dilution
13C3-PFBA	IS	128		25 - 150		B1E0111	17-May-21	0.237 L	21-May-21 17:38	
13C3-PFPeA	IS	85.8		25 - 150		B1E0111	17-May-21	0.237 L	21-May-21 17:38	3 1

Work Order 2105073 Page 17 of 31

25 - 150

Sample ID: DUP-GW-01-210505 PFAS Isotope Dilution Method

Client Data Laboratory Data

Name: Tetra Tech Matrix: Aqueous Lab Sample: 2105073-04 Column: BEH C18

Project: Ashview Terrace Apt. PFAS Date Collected: 05-May-21 00:00 Date Received: 07-May-21 09:33

Labeled Standards	Туре	% Recovery	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-HFPO-DA	IS	98.3	25 - 150		B1E0111	17-May-21	0.237 L	21-May-21 17:38	3 1
13C2-4:2 FTS	IS	93.6	25 - 150		B1E0111	17-May-21	0.237 L	21-May-21 17:38	3 1
13C2-PFHxA	IS	87.8	25 - 150		B1E0111	17-May-21	0.237 L	21-May-21 17:38	; 1
13C4-PFHpA	IS	90.7	25 - 150		B1E0111	17-May-21	0.237 L	21-May-21 17:38	; 1
13C3-PFHxS	IS	84.7	25 - 150		B1E0111	17-May-21	0.237 L	21-May-21 17:38	; 1
13C2-6:2 FTS	IS	90.0	25 - 150		B1E0111	17-May-21	0.237 L	21-May-21 17:38	; 1
13C5-PFNA	IS	90.5	25 - 150		B1E0111	17-May-21	0.237 L	21-May-21 17:38	1
13C8-PFOSA	IS	65.7	10 - 150		B1E0111	17-May-21	0.237 L	21-May-21 17:38	3 1
13C2-PFOA	IS	91.2	25 - 150		B1E0111	17-May-21	0.237 L	21-May-21 17:38	3 1
13C8-PFOS	IS	84.2	25 - 150		B1E0111	17-May-21	0.237 L	21-May-21 17:38	; 1
13C2-PFDA	IS	84.8	25 - 150		B1E0111	17-May-21	0.237 L	21-May-21 17:38	; 1
13C2-8:2 FTS	IS	85.7	25 - 150		B1E0111	17-May-21	0.237 L	21-May-21 17:38	; 1
d3-MeFOSAA	IS	83.1	25 - 150		B1E0111	17-May-21	0.237 L	21-May-21 17:38	1
13C2-PFUnA	IS	82.1	25 - 150		B1E0111	17-May-21	0.237 L	21-May-21 17:38	; 1
d5-EtFOSAA	IS	83.3	25 - 150		B1E0111	17-May-21	0.237 L	21-May-21 17:38	1
13C2-PFDoA	IS	79.2	25 - 150		B1E0111	17-May-21	0.237 L	21-May-21 17:38	; 1
d3-MeFOSA	IS	36.8	10 - 150		B1E0111	17-May-21	0.237 L	21-May-21 17:38	; 1
13C2-PFTeDA	IS	77.6	25 - 150		B1E0111	17-May-21	0.237 L	21-May-21 17:38	; 1
d5-EtFOSA	IS	35.9	10 - 150		B1E0111	17-May-21	0.237 L	21-May-21 17:38	1
d7-MeFOSE	IS	62.1	10 - 150		B1E0111	17-May-21	0.237 L	21-May-21 17:38	1
d9-EtFOSE	IS	62.8	10 - 150		B1E0111	17-May-21	0.237 L	21-May-21 17:38	1

MDL - Method Detection Limit

RL - Reporting limit Results reported to MDL.

When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.

Work Order 2105073 Page 18 of 31

Sample ID: Method Blank PFAS Isotope Dilution Method

Client Data Laboratory Data

Name: Tetra Tech Matrix: Solid La

Lab Sample: B1E0129-BLK1 Column: BEH C18

Analyte	CAS Number	Conc. (ng/g)	MDL		ŘL	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBA	375-22-4	< 0.266	0.266		0.500		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
PFPeA	2706-90-3	< 0.252	0.252		0.500		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
PFBS	375-73-5	< 0.438	0.438		0.500		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
4:2 FTS	757124-72-4	< 0.416	0.416		0.500		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
PFHxA	307-24-4	< 0.638	0.638		1.00		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
PFPeS	2706-91-4	< 0.324	0.324		0.500		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
HFPO-DA	13252-13-6	< 0.548	0.548		1.00		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
PFHpA	375-85-9	< 0.332	0.332		0.500		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
ADONA	919005-14-4	< 0.350	0.350		0.500		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
PFHxS	355-46-4	< 0.408	0.408		0.500		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
6:2 FTS	27619-97-2	< 0.648	0.648		1.00		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
PFOA	335-67-1	< 0.288	0.288		0.500		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
PFHpS	375-92-8	< 0.630	0.630		1.00			21-May-21	1.00 g	26-May-21 17:42	
PFNA	375-95-1	< 0.376	0.376		0.500		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
PFOSA	754-91-6	< 0.452	0.452		0.500			21-May-21	1.00 g	26-May-21 17:42	
PFOS	1763-23-1	< 0.764	0.764		1.00			21-May-21	1.00 g	26-May-21 17:42	
9Cl-PF3ONS	756426-58-1	< 0.714	0.714		1.00			21-May-21	1.00 g	26-May-21 17:42	
PFDA	335-76-2	< 0.652	0.652		1.00			21-May-21	1.00 g	26-May-21 17:42	
8:2 FTS	39108-34-4	< 0.538	0.538		1.00			21-May-21	1.00 g	26-May-21 17:42	
PFNS	68259-12-1	< 0.622	0.622		1.00			21-May-21	1.00 g	26-May-21 17:42	
MeFOSAA	2355-31-9	< 0.384	0.384		0.500			21-May-21	1.00 g	26-May-21 17:42	
EtFOSAA	2991-50-6	< 0.704	0.704		1.00			21-May-21	1.00 g	26-May-21 17:42	
PFUnA	2058-94-8	< 0.312	0.312		0.500			21-May-21	1.00 g	26-May-21 17:42	
PFDS	335-77-3	< 0.752	0.752		1.00			21-May-21	1.00 g	26-May-21 17:42	
11Cl-PF3OUdS	763051-92-9	<1.13	1.13		1.50			21-May-21	1.00 g	26-May-21 17:42	
PFDoA	307-55-1	< 0.408	0.408		0.500			21-May-21	1.00 g	26-May-21 17:42	
MeFOSA	31506-32-8	<3.16	3.16		10.0			21-May-21	1.00 g	26-May-21 17:42	
PFTrDA	72629-94-8	< 0.618	0.618		1.00			21-May-21	1.00 g	26-May-21 17:42	
PFDoS	79780-39-5	<1.01	1.01		1.50			21-May-21	1.00 g	26-May-21 17:42	
PFTeDA	376-06-7	< 0.608	0.608		1.00			21-May-21	1.00 g	26-May-21 17:42	
EtFOSA	4151-50-2	< 5.00	5.00		10.0			21-May-21	1.00 g	26-May-21 17:42	
MeFOSE	24448-09-7	<3.08	3.08		10.0			21-May-21	1.00 g	26-May-21 17:42	
EtFOSE	1691-99-2	<3.52	3.52		10.0			21-May-21	1.00 g	26-May-21 17:42	
Labeled Standards	Type	% Recovery		Limits		Qualifiers	Batch	Extracted		Analyzed	Dilution
13C3-PFBA	IS	132		25 - 150			B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
13C3-PFPeA	IS	82.6		25 - 150				21-May-21	1.00 g	26-May-21 17:42	
13C3-PFBS	IS	87.9		25 - 150				21-May-21	1.00 g	26-May-21 17:42	
13C3-HFPO-DA	IS	80.5		25 - 150				21-May-21	1.00 g	26-May-21 17:42	

Work Order 2105073 Page 19 of 31

Sample ID: Method Blank PFAS Isotope Dilution Method

Client Data Laboratory Data

Name: Tetra Tech Matrix: Solid Lab Sample: B1E0129-BLK1 Column: BEH C18
Project: Ashview Terrace Apt. PFAS

Labeled Standards	Туре	% Recovery	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-4:2 FTS	IS	85.5	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
13C2-PFHxA	IS	85.8	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
13C4-PFHpA	IS	90.9	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
13C3-PFHxS	IS	90.2	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
13C2-6:2 FTS	IS	79.5	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
13C5-PFNA	IS	81.0	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
13C8-PFOSA	IS	47.0	10 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
13C2-PFOA	IS	89.6	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
13C8-PFOS	IS	90.4	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
13C2-PFDA	IS	70.1	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
13C2-8:2 FTS	IS	81.8	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
d3-MeFOSAA	IS	58.7	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
13C2-PFUnA	IS	58.1	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
d5-EtFOSAA	IS	62.4	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
13C2-PFDoA	IS	61.1	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
d3-MeFOSA	IS	18.0	10 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
13C2-PFTeDA	IS	66.4	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
d5-EtFOSA	IS	18.1	10 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
d7-MeFOSE	IS	34.4	10 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
d9-EtFOSE	IS	37.4	10 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1

MDL - Method Detection Limit

RL - Reporting limit

The results are reported in dry weight.
The sample size is reported in wet weight.
Results reported to MDL.

When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.

Work Order 2105073 Page 20 of 31

Sample ID: OPR

PFAS Isotope Dilution Method

Client Data Laboratory Data

Name: Tetra Tech Matrix: Solid Lab Sample: B1E0129-BS1 Column: BEH C18

Project: Ashview Terrace Apt. PFAS

Analyte	CAS Number	Amt Found (ng/g)	Spike Amt	% Rec	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBA	375-22-4	1.82	2.00	91.1	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFPeA	2706-90-3	1.95	2.00	97.7	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFBS	375-73-5	2.15	2.00	108	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
4:2 FTS	757124-72-4	2.27	2.00	113	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFHxA	307-24-4	1.92	2.00	96.2	50 - 150	Q	B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFPeS	2706-91-4	1.78	2.00	89.2	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
HFPO-DA	13252-13-6	2.03	2.00	102	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFHpA	375-85-9	2.05	2.00	102	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
ADONA	919005-14-4	2.14	2.00	107	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFHxS	355-46-4	1.75	2.00	87.3	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
6:2 FTS	27619-97-2	1.90	2.00	95.0	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFOA	335-67-1	2.02	2.00	101	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFHpS	375-92-8	1.74	2.00	86.9	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFNA	375-95-1	1.97	2.00	98.5	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFOSA	754-91-6	2.16	2.00	108	50 - 150	Q	B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFOS	1763-23-1	2.20	2.00	110	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
9Cl-PF3ONS	756426-58-1	1.86	2.00	92.8	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFDA	335-76-2	2.08	2.00	104	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
8:2 FTS	39108-34-4	2.23	2.00	112	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFNS	68259-12-1	1.63	2.00	81.4	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
MeFOSAA	2355-31-9	1.66	2.00	83.2	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
EtFOSAA	2991-50-6	2.00	2.00	100	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFUnA	2058-94-8	2.17	2.00	109	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFDS	335-77-3	1.64	2.00	81.9	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
11Cl-PF3OUdS	763051-92-9	2.37	2.00	119	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFDoA	307-55-1	1.99	2.00	99.7	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
MeFOSA	31506-32-8	1.70	2.00	85.1	50 - 150	J	B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFTrDA	72629-94-8	1.83	2.00	91.6	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFDoS	79780-39-5	2.15	2.02	107	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFTeDA	376-06-7	1.95	2.00	97.6	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
EtFOSA	4151-50-2	1.86	2.00	92.8	50 - 150	J	B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
MeFOSE	24448-09-7	1.67	2.00	83.3	50 - 150	J	B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
EtFOSE	1691-99-2	2.07	2.00	104	50 - 150	J	B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
Labeled Standards		Туре		% Rec	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution

Work Order 2105073 Page 21 of 31

Sample ID: OPR

PFAS Isotope Dilution Method

Client Data Laboratory Data

Name: Tetra Tech Matrix: Solid Lab Sample: B1E0129-BS1 Column: BEH C18

Project: Ashview Terrace Apt. PFAS

1									
Labeled Standards	Туре	% Rec	Limits	Qualifiers 1	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBA	IS	127	25 - 150	В	E0129	21-May-21	1.00 g	26-May-21 17:53	1
13C3-PFPeA	IS	82.8	25 - 150	B1	E0129	21-May-21	1.00 g	26-May-21 17:53	1
13C3-PFBS	IS	96.1	25 - 150	Bi	E0129	21-May-21	1.00 g	26-May-21 17:53	1
13C3-HFPO-DA	IS	75.9	25 - 150	B1	E0129	21-May-21	1.00 g	26-May-21 17:53	1
13C2-4:2 FTS	IS	91.2	25 - 150	Bi	E0129	21-May-21	1.00 g	26-May-21 17:53	1
13C2-PFHxA	IS	84.2	25 - 150	Bi	E0129	21-May-21	1.00 g	26-May-21 17:53	1
13C4-PFHpA	IS	83.0	25 - 150	Bi	E0129	21-May-21	1.00 g	26-May-21 17:53	1
13C3-PFHxS	IS	97.6	25 - 150	Bi	E0129	21-May-21	1.00 g	26-May-21 17:53	1
13C2-6:2 FTS	IS	94.0	25 - 150	B	E0129	21-May-21	1.00 g	26-May-21 17:53	1
13C5-PFNA	IS	79.4	25 - 150	B	E0129	21-May-21	1.00 g	26-May-21 17:53	1
13C8-PFOSA	IS	44.0	10 - 150	B	E0129	21-May-21	1.00 g	26-May-21 17:53	1
13C2-PFOA	IS	86.5	25 - 150	B	E0129	21-May-21	1.00 g	26-May-21 17:53	1
13C8-PFOS	IS	94.5	25 - 150	Bl	E0129	21-May-21	1.00 g	26-May-21 17:53	1
13C2-PFDA	IS	76.4	25 - 150	B	E0129	21-May-21	1.00 g	26-May-21 17:53	1
13C2-8:2 FTS	IS	76.2	25 - 150	Bl	E0129	21-May-21	1.00 g	26-May-21 17:53	1
d3-MeFOSAA	IS	65.4	25 - 150	B	E0129	21-May-21	1.00 g	26-May-21 17:53	1
13C2-PFUnA	IS	65.9	25 - 150	B	E0129	21-May-21	1.00 g	26-May-21 17:53	1
d5-EtFOSAA	IS	64.6	25 - 150	B	E0129	21-May-21	1.00 g	26-May-21 17:53	1
13C2-PFDoA	IS	68.8	25 - 150	B	E0129	21-May-21	1.00 g	26-May-21 17:53	1
d3-MeFOSA	IS	17.6	10 - 150	B	E0129	21-May-21	1.00 g	26-May-21 17:53	1
13C2-PFTeDA	IS	72.6	25 - 150	Bl	E0129	21-May-21	1.00 g	26-May-21 17:53	1
d5-EtFOSA	IS	15.5	10 - 150	В	E0129	21-May-21	1.00 g	26-May-21 17:53	1
d7-MeFOSE	IS	33.3	10 - 150	Bl	E0129	21-May-21	1.00 g	26-May-21 17:53	1
d9-EtFOSE	IS	34.6	10 - 150	В	E0129	21-May-21	1.00 g	26-May-21 17:53	1

Work Order 2105073

Sample ID: DU	JP-SB-01-210504								PFAS Iso	tope Dilutio	n Met	thod
	Tetra Tech Ashview Terrace Apt. PFAS	Matrix: Date Colle	Soil ected: 04-May-21	00:00	Lab S	oratory Data Sample: Received:	2105073-0 07-May-2 80.3		Column:	BEH C18		
Analyte	CAS Number	Conc. (ng/g)	MDL		RL	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dil	lution
PFBA	375-22-4	<0.261	0.261		.490			21-May-21	1.27 g	26-May-21 18		1
PFPeA	2706-90-3	<0.247	0.247		490			•	1.27 g	26-May-21 18		1
PFBS	375-73-5	<0.429	0.429		490			21-May-21	1.27 g	26-May-21 18		1
4:2 FTS	757124-72-4	< 0.408	0.408		490			21-May-21	1.27 g	26-May-21 18		1
PFHxA	307-24-4	<0.625	0.625		.980			21-May-21	1.27 g	26-May-21 18		1
PFPeS	2706-91-4	< 0.318	0.318		490			21-May-21	1.27 g	26-May-21 18		1
HFPO-DA	13252-13-6	< 0.537	0.537		.980			21-May-21	1.27 g	26-May-21 18		1
PFHpA	375-85-9	< 0.325	0.325		490			•	1.27 g	26-May-21 18		1
ADONA	919005-14-4	< 0.343	0.343		490			21-May-21	1.27 g	26-May-21 18		1
PFHxS	355-46-4	< 0.400	0.400		490			•	1.27 g	26-May-21 18		1
6:2 FTS	27619-97-2	< 0.635	0.635		.980			21-May-21	1.27 g	26-May-21 18		1
PFOA	335-67-1	< 0.282	0.282		490			21-May-21	1.27 g	26-May-21 18		1
PFHpS	375-92-8	< 0.617	0.617		.980			21-May-21	1.27 g	26-May-21 18		1
PFNA	375-95-1	< 0.368	0.368	0.	490		B1E0129	21-May-21	1.27 g	26-May-21 18		1
PFOSA	754-91-6	< 0.443	0.443		.490			21-May-21	1.27 g	26-May-21 18		1
PFOS	1763-23-1	2.30	0.749	0.	.980			•	1.27 g	26-May-21 18		1
9Cl-PF3ONS	756426-58-1	< 0.700	0.700	0.	.980		B1E0129	21-May-21	1.27 g	26-May-21 18		1
PFDA	335-76-2	< 0.639	0.639	0.	.980			21-May-21	1.27 g	26-May-21 18		1
8:2 FTS	39108-34-4	< 0.527	0.527	0.	.980		B1E0129	21-May-21	1.27 g	26-May-21 18		1
PFNS	68259-12-1	< 0.610	0.610	0.	.980		B1E0129	21-May-21	1.27 g	26-May-21 18		1
MeFOSAA	2355-31-9	< 0.376	0.376	0.	490		B1E0129	21-May-21	1.27 g	26-May-21 18	3:03	1
EtFOSAA	2991-50-6	< 0.690	0.690	0.	.980		B1E0129	21-May-21	1.27 g	26-May-21 18	:03	1
PFUnA	2058-94-8	< 0.306	0.306	0.	490		B1E0129	21-May-21	1.27 g	26-May-21 18	:03	1
PFDS	335-77-3	< 0.737	0.737	0.	.980		B1E0129	21-May-21	1.27 g	26-May-21 18	:03	1
11Cl-PF3OUdS	763051-92-9	<1.11	1.11	1	.47		B1E0129	21-May-21	1.27 g	26-May-21 18	:03	1
PFDoA	307-55-1	< 0.400	0.400	0.	490		B1E0129	21-May-21	1.27 g	26-May-21 18	:03	1
MeFOSA	31506-32-8	< 3.10	3.10	9	.80		B1E0129	21-May-21	1.27 g	26-May-21 18	:03	1
PFTrDA	72629-94-8	< 0.606	0.606	0.	.980		B1E0129	21-May-21	1.27 g	26-May-21 18	:03	1
PFDoS	79780-39-5	< 0.988	0.988	1	.47		B1E0129	21-May-21	1.27 g	26-May-21 18	:03	1
PFTeDA	376-06-7	< 0.596	0.596	0.	.980		B1E0129	21-May-21	1.27 g	26-May-21 18	:03	1
EtFOSA	4151-50-2	<4.90	4.90	9	.80		B1E0129	21-May-21	1.27 g	26-May-21 18	3:03	1
MeFOSE	24448-09-7	< 3.02	3.02	9	.80			21-May-21	1.27 g	26-May-21 18	:03	1
EtFOSE	1691-99-2	<3.45	3.45	9	.80		B1E0129	21-May-21	1.27 g	26-May-21 18	3:03	1
Labeled Standard	s Type	% Recovery	I	Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilu	ution
13C3-PFBA	IS	131		5 - 150			B1E0129	21-May-21	1.27 g	26-May-21 18	3:03	1
13C3-PFPeA	IS	81.8	2	5 - 150				21-May-21	1.27 g	26-May-21 18		1
13C3-PFBS	IS	89.6	2	5 - 150			B1E0129	21-May-21	1.27 g	26-May-21 18	3:03	1

Work Order 2105073

Sample ID: DUP-SB-01-210504 PFAS Isotope Dilution Method

Client Data Laboratory Data

Lab Sample: Name: Tetra Tech Matrix: Soil 2105073-05 Column: BEH C18 Date Collected: 04-May-21 00:00 Project: Ashview Terrace Apt. PFAS

Date Received: 07-May-21 09:33 80.3

% Solids.

			9	% Solids:	80.3				
Labeled Standards	Type	% Recovery	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-HFPO-DA	IS	71.2	25 - 150		B1E0129	21-May-21	1.27 g	26-May-21 18:03	1
13C2-4:2 FTS	IS	109	25 - 150		B1E0129	21-May-21	1.27 g	26-May-21 18:03	1
13C2-PFHxA	IS	76.8	25 - 150		B1E0129	21-May-21	1.27 g	26-May-21 18:03	1
13C4-PFHpA	IS	77.2	25 - 150		B1E0129	21-May-21	1.27 g	26-May-21 18:03	1
13C3-PFHxS	IS	86.6	25 - 150		B1E0129	21-May-21	1.27 g	26-May-21 18:03	1
13C2-6:2 FTS	IS	103	25 - 150		B1E0129	21-May-21	1.27 g	26-May-21 18:03	1
13C5-PFNA	IS	66.4	25 - 150		B1E0129	21-May-21	1.27 g	26-May-21 18:03	1
13C8-PFOSA	IS	52.0	10 - 150		B1E0129	21-May-21	1.27 g	26-May-21 18:03	1
13C2-PFOA	IS	75.2	25 - 150		B1E0129	21-May-21	1.27 g	26-May-21 18:03	1
13C8-PFOS	IS	77.9	25 - 150		B1E0129	21-May-21	1.27 g	26-May-21 18:03	1
13C2-PFDA	IS	55.4	25 - 150		B1E0129	21-May-21	1.27 g	26-May-21 18:03	1
13C2-8:2 FTS	IS	80.7	25 - 150		B1E0129	21-May-21	1.27 g	26-May-21 18:03	1
d3-MeFOSAA	IS	46.4	25 - 150		B1E0129	21-May-21	1.27 g	26-May-21 18:03	1
13C2-PFUnA	IS	45.3	25 - 150		B1E0129	21-May-21	1.27 g	26-May-21 18:03	1
d5-EtFOSAA	IS	44.2	25 - 150		B1E0129	21-May-21	1.27 g	26-May-21 18:03	1
13C2-PFDoA	IS	40.7	25 - 150		B1E0129	21-May-21	1.27 g	26-May-21 18:03	1
d3-MeFOSA	IS	19.6	10 - 150		B1E0129	21-May-21	1.27 g	26-May-21 18:03	1
13C2-PFTeDA	IS	23.0	25 - 150	Н	B1E0129	21-May-21	1.27 g	26-May-21 18:03	1
d5-EtFOSA	IS	16.4	10 - 150		B1E0129	21-May-21	1.27 g	26-May-21 18:03	
d7-MeFOSE	IS	47.6	10 - 150		B1E0129	21-May-21	1.27 g	26-May-21 18:03	1
d9-EtFOSE	IS	45.9	10 - 150		B1E0129	21-May-21	1.27 g	26-May-21 18:03	
1007 16 d 100 d 71 d	nr n	TOI I	11 1 11			DEC. DECC.			

MDL - Method Detection Limit

RL - Reporting limit

The results are reported in dry weight. The sample size is reported in wet weight. Results reported to MDL.

When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.

Work Order 2105073 Page 24 of 31

DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank

Conc. Concentration

CRS Cleanup Recovery Standard

D Dilution

DL Detection Limit

E The associated compound concentration exceeded the calibration range of the

instrument

H Recovery and/or RPD was outside laboratory acceptance limits

I Chemical Interference

IS Internal Standard

J The amount detected is below the Reporting Limit/LOQ

LOD Limit of Detection

LOQ Limit of Quantitation

M Estimated Maximum Possible Concentration (CA Region 2 projects only)

MDL Method Detection Limit

NA Not applicable

ND Not Detected

OPR Ongoing Precision and Recovery sample

P The reported concentration may include contribution from chlorinated diphenyl ether(s).

Q The ion transition ratio is outside of the acceptance criteria.

RL Reporting Limit

RL For 537.1, the reported RLs are the MRLs.

TEQ Toxic Equivalency, sum of the toxic equivalency factors (TEF) multiplied by the

sample concentrations.

TEQMax TEQ calculation that uses the detection limit as the concentration for non-detects

TEQMin TEQ calculation that uses zero as the concentration for non-detects

TEQRisk TEQ calculation that uses ½ the detection limit as the concentration for non-

detects

U Not Detected (specific projects only)

* See Cover Letter

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Work Order 2105073 Page 25 of 31

Vista Analytical Laboratory Certifications

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	17-013
Arkansas Department of Environmental Quality	21-023-0
California Department of Health – ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777-26
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2020018
Massachusetts Department of Environmental Protection	M-CA413
Michigan Department of Environmental Quality	9932
Minnesota Department of Health	1980678
New Hampshire Environmental Accreditation Program	207720
New Jersey Department of Environmental Protection	CA003
New York Department of Health	11411
Ohio Environmental Protection Agency	87778
Oregon Laboratory Accreditation Program	4042-016
Pennsylvania Department of Environmental Protection	017
Texas Commission on Environmental Quality	T104704189-21-12
Vermont Department of Health	VT-4042
Virginia Department of General Services	10769
Washington Department of Ecology	C584
Wisconsin Department of Natural Resources	998036160

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request.

Work Order 2105073 Page 26 of 31

NELAP Accredited Test Methods

MATRIX: Air	
Description of Test	Method
Determination of Polychlorinated p- Dioxins & Polychlorinated Dibenzofurans	EPA 23
Polychlorinated Dibenzodioxins in Ambient Air by GC/HRMS	EPA TO-9A

MATRIX: Biological Tissue						
Description of Test	Method					
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution	EPA 1613B					
GC/HRMS						
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A					
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C					
by GC/HRMS						
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by	EPA 1699					
HRGC/HRMS						
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537					
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by	EPA 8280A/B					
GC/HRMS						
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA					
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A					

MATRIX: Drinking Water						
Description of Test	Method					
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution	EPA					
GC/HRMS	1613/1613B					
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537					
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537.1					
Determination of Per- and Polyfluoroalkyl Substances in Drinking Water by	EPA 533					
Isotope Dilution Anion Exchange Solid Phase Extraction and Liquid						
Chromatography/Tandem Mass Spectrometry						
Perfluorooctanesulonate (PFOS) and Perfluorooctanoate (PFOA) - Method	ISO 25101					
for Unfiltered Samples Using Solid Phase Extraction and Liquid	2009					
Chromatography/Mass Spectrometry						

Work Order 2105073 Page 27 of 31

MATRIX: Non-Potable Water						
Description of Test	Method					
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B					
Dilution GC/HRMS						
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A					
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C					
by GC/HRMS						
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699					
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537					
Dioxin by GC/HRMS	EPA 613					
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B					
Dibenzofurans by GC/HRMS						
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA					
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A					

MATRIX: Solids	
Description of Test	Method
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613B
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1668A/C
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B
Dibenzofurans by GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

Work Order 2105073 Page 28 of 31

h.	Vista Anglytical Laboratory
	Analytical Laboratory

CHAIN OF CUSTODY

Temp: 13	°С
Storage Secured: Yes 🚺 No []
	Temp: 103

Shvier Tellace API Project ID:	PEAS		PO#:117-4124	1161			Sampl	er: <u>/</u> /	Ser	(name)		_	TAT (check one):	Standard:	21 day	
Andrew Gordon a	_/_		5-6-21		<i>ጋር</i> ር)				Fre	1FX				5-6-21	1200
Relinquished by (printed nam	e and signat	ture)			Time		R	eceive	d by (pi	inted name and s	signature)				Date	Time
Fedex		Q)		00	133	3	.1.).Stja	Pri	sero Grus	nB		-		05/07/21	0933
Relinquished by (printed name	e and signat	ure)	Date		Time					inted name and s					Date	Time
SHIP TO: Vista Analytical L 1104 Windfield V El Dorado Hills, ((916) 673-1520 * ATTN: Juple (U	Vay CA 95762 Fax (916) 6		Method of Shipment: Fed Ex Tracking No.:	Add	Analys		Requests		o Light	A of the Circle Orther A	pras by		/	Br.	Method Ochy)	7
Sample ID	Date	Time	Location/ Sample Description		uanity T	ibe M	MIN OF OR	PFOS	25 LIST	Distribute OTHER	Ariago, Syl	FOM PE	os proside	at of the	Comme	ents
B-DR-01-210504	5-4-21	1426		7	P	AQ	Ϋ́	Ť	Ť	X					Comme	
B-6W-01-210505	5-5-21	1555		9	P	10			17	λ						
3-64-01-210505	5-5-21	1595		7	P	160		7		λ						
P-6w-01-210505	5-5-21			1	P	10				X:						
1P-513-01-210504	5-4-21	_			Pð	50		1		X						
	 			╁	_				\vdash		_	-	- - -			
	-			╂—	ļ		_	_	₩.							
Special Instructions/Comment LEVEL TL Pa	a pui	hesp								SEND CUMENTATION RESULTS TO:	Comp Addr (Pho	any: ess: City: one:	Mine 5. Fetra Te 710 Avis Ann Arb 210-923-	16 GN 107 GN 13076	State: MS	zip: <u>И</u> 9103
Container Types: P = HDPE, F PY = Polypropylene, O= Othe D: LR-537COC			Bottle Preserv TZ= Trizma:				No.: 2	s		dge, SO = Soil, \	eous, DW	= Drin	king Water, E	F = Effluent		er, SD = Sediment,

Sample Log-In Checklist

Vista Work Orde	r#:	21	15073	3				Page # _	014	of	_	
Samples Arrival:	Date/Time Initials: (933)					Location: W2-2 Shelf/Rack: N/A						
Delivered By:	FedEx	UPS	On Tra	ıc	GLS	DHL	-	Hand Deliver	- 1	Other		
Preservation:	(Ic) 	Blu	ıe l	ce	Ted		Dry	Ice	No	ne	
Temp °C: 1.4 Temp °C: 1.5	(uncorrec	—— P	robe use	ed:	Y / 🛈		The	ermome	ter ID:	<u>12-3</u>	_	
Shipping Contain	er(s) Intac		18	E		% ≠ % > %	· 英· 美·	海 · 海 · 海 · 克 · 克 · 克 · 克 · 克 · 克 · 克 ·	YES	NO	NA	
Shipping Custody			_						7			
Airbill —		#7868	3192	78	77				1			
Shipping Docum	entation P	resent?							/			
Shipping Contain	er	(/ista		Client	F(etair	Re	eturn	Dis	Dispose	
Chain of Custody	/ / Sample	Documen	tation Pr	ese	ent?			_	/			
Chain of Custody	/ / Sample	Documen	tation Co	om	olete?				1			
Holding Time Ac	ceptable?											
	Date/Tin			Ir	itials:		Lo	cation:	R-13,	WR-2		
Logged In:	05/11/2	21 0854			uws ——		Sh	elf/Rack	: <u>a-1</u> ,	£-6,	<u> </u>	
COC Anomaly/Sample Acceptance Form completed?								√	✓			
Comments:												

ID.: LR - SLC

Rev No.: 6

Rev Date: 07/16/2020

Page: 1 of 1

CoC/Label Reconciliation Report WO# 2105073

LabNumber	CoC Sample ID		SampleAlias	Sample Date/Time	Container	BaseMatrix	Sample Comments
2105073-01	A EB-DR-01-210504	d		04-May-21 14:20	HDPE Bottle, 250 mL	Aqueous	v ₁ = 6
2105073-01	B EB-DR-01-210504	<u> </u>		04-May-21 14:20 🗹	HDPE Bottle, 250 mL	Aqueous	
2105073-02	A EB-GW-01-210505	. 🗹		05-May-21 15:55	HDPE Bottle, 250 mL	Aqueous	
2105073-02	B EB-GW-01-210505	□, @		05-May-21 15:55	HDPE Bottle, 250 mL	Aqueous	
2105073-03	A FB-GW-01-210505	d		05-May-21 15:55	HDPE Bottle, 250 mL	Aqueous	
2105073-03	B FB-GW-01-210505	卤		05-May-21 15:55	HDPE Bottle, 250 mL	Aqueous	
2105073-04	A DUP-GW-01-210505	过		05-May-21 00:00 \(\bar{\bar{\bar{\bar{\bar{\bar{\bar{	HDPE Bottle, 250 mL	Aqueous	
2105073-04	B DUP-GW-01-210505	卤		05-May-21 00:00	HDPE Bottle, 250 mL	Aqueous	
2105073-05	A DUP-SB-01-210504	d		04-May-21 00:00 🗖 Ĉ	HDPE Jar, 6 oz	Solid	
C1 1 1			1.1.1	ŭ			

Checkmarks indicate that information on the COC reconciled with the sample label.

Any discrepancies are noted in the following columns.

	Yes	No	NA
Sample Container Intact?	√		
Sample Custody Seals Intact?			√
Adequate Sample Volume?	1		
Container Type Appropriate for Analysis(es)	1		
Preservation Documented: Na2S2O3 Trizma NH4CH3CO2 No	ne O	Other	

Verifed by/Date: WS 05/11/2

Comments: (3) sample label: EE-GW-01-210505

(B) date/fine not listed on sample label. Used 0000 for time
(C) no time listed on COC or sample label. Used 0000

Printed: 5/11/2021 11:22:30AM

Attachment 7 Investigation Derived Waste Analytical Reports

May 17, 2021

Mike Savale TetraTech 710 Avis Drive Suite 100 Ann Arbor, MI 48108

RE: Project: 117-4124161 ASHVIEW TERRACE AP

Pace Project No.: 40226418

Dear Mike Savale:

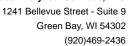
Enclosed are the analytical results for sample(s) received by the laboratory on May 06, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Green Bay

If you have any questions concerning this report, please feel free to contact me.

Sincerely,


Tod Noltemeyer tod.noltemeyer@pacelabs.com

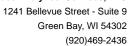
Tod holteneya

(920)469-2436 Project Manager

Enclosures

CERTIFICATIONS

Project: 117-4124161 ASHVIEW TERRACE AP


Pace Project No.: 40226418

Pace Analytical Services Green Bay

North Dakota Certification #: R-150

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 Virginia VELAP ID: 460263

South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157 Federal Fish & Wildlife Permit #: LE51774A-0

SAMPLE SUMMARY

Project: 117-4124161 ASHVIEW TERRACE AP

Pace Project No.: 40226418

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40226418001	WC-WATER-210505	Water	05/05/21 14:45	05/06/21 12:05
40226418002	WC-SOIL-210505	Solid	05/05/21 14:45	05/06/21 12:05
40226418003	ТВ	Water	05/05/21 00:00	05/06/21 12:05

SAMPLE ANALYTE COUNT

Project: 117-4124161 ASHVIEW TERRACE AP

Pace Project No.: 40226418

Lab ID	Sample ID	Method	Analysts	Analytes Reported
40226418001	WC-WATER-210505	EPA 8082	BLM	10
		EPA 6010D	TXW	7
		EPA 7470	AJT	1
		EPA 8270E	RJN	18
		EPA 8260	MDS	13
40226418002	WC-SOIL-210505	EPA 8082	BLM	10
		EPA 6010D	TXW	7
		EPA 7470	AJT	1
		EPA 8270E	RJN	16
		EPA 8260	LAP	13
		ASTM D2974-87	AH	1
40226418003	тв	EPA 8260	MDS	13

PASI-G = Pace Analytical Services - Green Bay

Project: 117-4124161 ASHVIEW TERRACE AP

Pace Project No.: 40226418

Date: 05/17/2021 03:37 PM

Sample: WC-WATER-210505	Lab ID:	40226418001	Collected	: 05/05/21	14:45	Received: 05/	/06/21 12:05 M	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8082 GCS PCB	Analytical	Method: EPA 8	082 Prepara	ation Meth	od: EPA	3510			
	Pace Anal	ytical Services	- Green Bay						
PCB-1016 (Aroclor 1016)	<0.11	ug/L	0.50	0.11	1	05/07/21 11:09	05/10/21 11:21	12674-11-2	
PCB-1221 (Aroclor 1221)	<0.11	ug/L	0.50	0.11	1	05/07/21 11:09	05/10/21 11:21		
PCB-1232 (Aroclor 1232)	<0.11	ug/L	0.50	0.11	1	05/07/21 11:09			
PCB-1242 (Aroclor 1242)	<0.11	ug/L	0.50	0.11	1	05/07/21 11:09		53469-21-9	
PCB-1248 (Aroclor 1248)	<0.11	ug/L	0.50	0.11	1	05/07/21 11:09	05/10/21 11:21	12672-29-6	
PCB-1254 (Aroclor 1254)	<0.11	ug/L	0.50	0.11	1	05/07/21 11:09	05/10/21 11:21	11097-69-1	
PCB-1260 (Aroclor 1260)	<0.11	ug/L	0.50	0.11	1	05/07/21 11:09	05/10/21 11:21	11096-82-5	
PCB, Total	<0.11	ug/L	0.50	0.11	1	05/07/21 11:09	05/10/21 11:21	1336-36-3	
Surrogates		•							
Tetrachloro-m-xylene (S)	87	%	28-124		1	05/07/21 11:09	05/10/21 11:21	877-09-8	
Decachlorobiphenyl (S)	29	%	10-73		1	05/07/21 11:09	05/10/21 11:21	2051-24-3	
6010D MET ICP	Analytical	Method: EPA 6	010D Prepa	ration Met	hod: FF	PA 3010A			
NOTOD MILITION	•	ytical Services	•			7.00107.			
Silver	<3.2	ug/L	10.0	3.2	1	05/13/21 07:57	05/13/21 16:53	7440-22-4	
Arsenic	8.7J	ug/L	25.0	8.3	1		05/13/21 16:53		
Barium	309	ug/L	5.0	1.5	1		05/13/21 16:53		
Cadmium	<1.3	ug/L	5.0	1.3	1		05/13/21 16:53		
Chromium	8.1J	ug/L	10.0	2.5	1		05/13/21 16:53		
_ead	<5.9	ug/L	20.0	5.9	1		05/13/21 16:53		
Selenium	<12.2	ug/L	40.0	12.2	1		05/13/21 16:53		
7470 Mercury	Analytical	Method: EPA 7	470 Prenar:	ation Meth	nd: FPA	7470			
7470 Mercury	•	ytical Services	•		Ju. Li 7	(1410			
Mercury	<0.066	ug/L	0.20	0.066	1	05/07/21 09:50	05/10/21 10:50	7439-97-6	
8270E MSSV Semivolatile Org	Analytical	Method: EPA 8	270E Prepa	ration Met	hod: EF	PA 3510			
		ytical Services							
1,4-Dichlorobenzene	<1.4	ug/L	4.9	1.4	1	05/10/21 11:39	05/11/21 14:28	106-46-7	
2-Methylphenol(o-Cresol)	<0.90	ug/L	4.9	0.90	1	05/10/21 11:39	05/11/21 14:28		
3&4-Methylphenol(m&p Cresol)	<0.59	ug/L	4.9	0.59	1	05/10/21 11:39			
-lexachloroethane	<1.4	ug/L	4.9	1.4	1	05/10/21 11:39	05/11/21 14:28	67-72-1	
Nitrobenzene	<1.0	ug/L	4.9	1.0	1	05/10/21 11:39	05/11/21 14:28	98-95-3	
Hexachloro-1,3-butadiene	<1.1	ug/L	5.3	1.1	1	05/10/21 11:39	05/11/21 14:28	87-68-3	
2,4,6-Trichlorophenol	<0.77	ug/L	4.9	0.77	1	05/10/21 11:39	05/11/21 14:28	88-06-2	
2,4,5-Trichlorophenol	< 0.63	ug/L	4.9	0.63	1	05/10/21 11:39	05/11/21 14:28	95-95-4	
2,4-Dinitrotoluene	<1.0	ug/L	4.9	1.0	1	05/10/21 11:39	05/11/21 14:28	121-14-2	
Hexachlorobenzene	<1.6	ug/L	4.9	1.6	1	05/10/21 11:39	05/11/21 14:28	118-74-1	
Pentachlorophenol	<4.4	ug/L	14.8	4.4	1	05/10/21 11:39	05/11/21 14:28	87-86-5	
Pyridine	<1.5	ug/L	4.9	1.5	1	05/10/21 11:39	05/11/21 14:28	110-86-1	
Surrogates									
Nitrobenzene-d5 (S)	83	%	41-118		1	05/10/21 11:39	05/11/21 14:28		
2-Fluorobiphenyl (S)	80	%	54-107		1	05/10/21 11:39	05/11/21 14:28		
Terphenyl-d14 (S)	94	%	51-129		1	05/10/21 11:39	05/11/21 14:28		
Phenol-d6 (S)	30	%	12-120		1	05/10/21 11:39	05/11/21 14:28	13127-88-3	

Project: 117-4124161 ASHVIEW TERRACE AP

Pace Project No.: 40226418

Date: 05/17/2021 03:37 PM

Sample: WC-WATER-210505	Lab ID:	40226418001	Collected	: 05/05/2	14:45	Received: 05/	06/21 12:05 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qua
8270E MSSV Semivolatile Org	Analytical	Method: EPA 8	270E Prepa	aration Met	hod: Ef	PA 3510			
	Pace Ana	lytical Services	- Green Bay						
Surrogates									
2-Fluorophenol (S)	51	%	23-69		1	05/10/21 11:39	05/11/21 14:28	367-12-4	
2,4,6-Tribromophenol (S)	90	%	62-172		1	05/10/21 11:39	05/11/21 14:28	118-79-6	
8260 MSV	Analytical	Method: EPA 8	260						
	Pace Ana	lytical Services	- Green Bay						
Benzene	0.35J	ug/L	1.0	0.30	1		05/11/21 22:04	71-43-2	
2-Butanone (MEK)	<6.5	ug/L	25.0	6.5	1		05/11/21 22:04		
Carbon tetrachloride	<0.37	ug/L	1.0	0.37	1		05/11/21 22:04		
Chlorobenzene	<0.86	ug/L	1.0	0.86	1		05/11/21 22:04		
Chloroform	1.7J	ug/L	5.0	1.2	1		05/11/21 22:04		
1,2-Dichloroethane	<0.29	ug/L	1.0	0.29	1		05/11/21 22:04		
1,1-Dichloroethene	<0.58	ug/L	1.0	0.58	1		05/11/21 22:04		
Tetrachloroethene	<0.41	ug/L	1.0	0.41	1		05/11/21 22:04		
Trichloroethene	<0.32	ug/L	1.0	0.32	1		05/11/21 22:04		
Vinyl chloride	<0.17	-	1.0	0.32	1		05/11/21 22:04		
Surrogates	<0.17	ug/L	1.0	0.17	'		05/11/21 22.04	75-01-4	
4-Bromofluorobenzene (S)	94	%	70-130		1		05/11/21 22:04	460-00-4	
Dibromofluoromethane (S)	111	%	70-130		1		05/11/21 22:04	1868-53-7	
Toluene-d8 (S)	96	%	70-130		1		05/11/21 22:04	2037-26-5	
Sample: WC-SOII -210505	I ah ID:	40226418002	Collected	. 05/05/21	14.45	Received: 05/	06/21 12:05 Ma	atrix: Solid	
•		40226418002 e adjusted for _l		: 05/05/2° isture, sar	_			atrix: Solid	
•					_			atrix: Solid CAS No.	Qua
Results reported on a "dry weign Parameters	ht" basis and ar	Units	LOQ	LOD	nple si	ze and any diluti Prepared	ons.		Qua
Results reported on a "dry weign Parameters	Results Analytical	Units Method: EPA 8	LOQ 082 Prepar	LOD ation Meth	nple si	ze and any diluti Prepared	ons.		Qua
Results reported on a "dry weign Parameters	Results Analytical	Units	LOQ 082 Prepar	LOD ation Meth	nple si	ze and any diluti Prepared	ons.		Qua
Parameters 8082 GCS PCB	Results Analytical	Units Method: EPA 8	LOQ 082 Prepar	LOD ation Meth	nple si	ze and any diluti Prepared	ons.	CAS No.	Qua
Parameters 8082 GCS PCB PCB-1016 (Aroclor 1016)	Results Analytical Pace Ana	Units Method: EPA 8 lytical Services	LOQ LOQ 082 Prepar - Green Bay	LOD ation Meth	DF od: EP/	Prepared	Analyzed	CAS No.	Qua
Parameters 8082 GCS PCB PCB-1016 (Aroclor 1016) PCB-1221 (Aroclor 1221)	Results Analytical Pace Ana	Units Method: EPA 8 lytical Services ug/kg	LOQ	LOD ation Method	DF od: EP#	Prepared A 3541 05/06/21 16:48	Analyzed 05/07/21 10:47	CAS No. 12674-11-2 11104-28-2	Qua
Parameters 8082 GCS PCB PCB-1016 (Aroclor 1016) PCB-1221 (Aroclor 1221) PCB-1232 (Aroclor 1232)	Results Analytical Pace Ana <17.3 <17.3	Units Units Method: EPA 8 lytical Services ug/kg ug/kg	LOQ 082 Prepar - Green Bay 56.7 56.7	LOD ation Method	DF od: EPA 1	Prepared A 3541 05/06/21 16:48 05/06/21 16:48	O5/07/21 10:47 05/07/21 10:47 05/07/21 10:47	CAS No. 12674-11-2 11104-28-2 11141-16-5	Qua
Parameters 8082 GCS PCB PCB-1016 (Aroclor 1016) PCB-1221 (Aroclor 1221) PCB-1232 (Aroclor 1232) PCB-1242 (Aroclor 1242)	Results Analytical Pace Ana <17.3 <17.3 <17.3	Units Units Method: EPA 8 lytical Services ug/kg ug/kg ug/kg ug/kg	DOQ	LOD ation Method 17.3 17.3 17.3	DF od: EPA	Prepared A 3541 05/06/21 16:48 05/06/21 16:48 05/06/21 16:48	O5/07/21 10:47 05/07/21 10:47 05/07/21 10:47	CAS No. 12674-11-2 11104-28-2 11141-16-5 53469-21-9	Qua
Parameters 8082 GCS PCB PCB-1016 (Aroclor 1016) PCB-1221 (Aroclor 1221) PCB-1232 (Aroclor 1232) PCB-1242 (Aroclor 1242) PCB-1248 (Aroclor 1248)	Results Analytical Pace Ana <17.3 <17.3 <17.3 <17.3	Units Units Method: EPA 8 lytical Services ug/kg ug/kg ug/kg	Dercent mo LOQ 082 Prepara - Green Bay 56.7 56.7 56.7	LOD 17.3 17.3 17.3 17.3 17.3	DF od: EPA	Prepared A 3541 05/06/21 16:48 05/06/21 16:48 05/06/21 16:48 05/06/21 16:48	05/07/21 10:47 05/07/21 10:47 05/07/21 10:47 05/07/21 10:47 05/07/21 10:47	CAS No. 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6	Qua
8082 GCS PCB PCB-1016 (Aroclor 1016) PCB-1221 (Aroclor 1221)	Results Analytical Pace Ana <17.3 <17.3 <17.3 <17.3 <21.4 <21.4 <21.4	Units Method: EPA 8 lytical Services ug/kg Dercent mo LOQ 082 Prepara - Green Bay 56.7 56.7 56.7 56.7 56.7	LOD 17.3 17.3 17.3 17.3 17.3 17.3	DF DG: EP/	Prepared A 3541 05/06/21 16:48 05/06/21 16:48 05/06/21 16:48 05/06/21 16:48 05/06/21 16:48	05/07/21 10:47 05/07/21 10:47 05/07/21 10:47 05/07/21 10:47 05/07/21 10:47 05/07/21 10:47	CAS No. 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1	Qua	
Parameters 8082 GCS PCB PCB-1016 (Aroclor 1016) PCB-1221 (Aroclor 1221) PCB-1232 (Aroclor 1232) PCB-1242 (Aroclor 1242) PCB-1248 (Aroclor 1248) PCB-1254 (Aroclor 1254) PCB-1260 (Aroclor 1260)	Analytical Pace Ana <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.	Units Method: EPA 8 lytical Services ug/kg	Dercent mo LOQ 082 Prepara - Green Bay 56.7 56.7 56.7 56.7 56.7 56.7	LOD 17.3 17.3 17.3 17.3 17.3 17.3 17.3 17.3	DF DG: EPA	Prepared 05/06/21 16:48 05/06/21 16:48 05/06/21 16:48 05/06/21 16:48 05/06/21 16:48 05/06/21 16:48 05/06/21 16:48	05/07/21 10:47 05/07/21 10:47 05/07/21 10:47 05/07/21 10:47 05/07/21 10:47 05/07/21 10:47 05/07/21 10:47	CAS No. 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5	Qua
Parameters 8082 GCS PCB PCB-1016 (Aroclor 1016) PCB-1221 (Aroclor 1221) PCB-1232 (Aroclor 1232) PCB-1242 (Aroclor 1242) PCB-1248 (Aroclor 1248) PCB-1254 (Aroclor 1254) PCB-1260 (Aroclor 1260) PCB, Total	Analytical Pace Ana <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.	Units Method: EPA 8 lytical Services ug/kg Dercent mo LOQ 082 Prepar Green Bay 56.7 56.7 56.7 56.7 56.7 56.7 56.7	LOD 17.3 17.3 17.3 17.3 17.3 17.3 17.3 17.3	DF Dd: EP/	Prepared 05/06/21 16:48 05/06/21 16:48 05/06/21 16:48 05/06/21 16:48 05/06/21 16:48 05/06/21 16:48 05/06/21 16:48	05/07/21 10:47 05/07/21 10:47 05/07/21 10:47 05/07/21 10:47 05/07/21 10:47 05/07/21 10:47	CAS No. 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5	Qua	
Parameters 8082 GCS PCB PCB-1016 (Aroclor 1016) PCB-1221 (Aroclor 1221) PCB-1232 (Aroclor 1232) PCB-1242 (Aroclor 1242) PCB-1248 (Aroclor 1248) PCB-1254 (Aroclor 1254)	Analytical Pace Ana <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.3 <17.	Units Method: EPA 8 lytical Services ug/kg	Dercent mo LOQ 082 Prepar Green Bay 56.7 56.7 56.7 56.7 56.7 56.7 56.7	LOD 17.3 17.3 17.3 17.3 17.3 17.3 17.3 17.3	DF Dd: EP/	Prepared 05/06/21 16:48 05/06/21 16:48 05/06/21 16:48 05/06/21 16:48 05/06/21 16:48 05/06/21 16:48 05/06/21 16:48 05/06/21 16:48	05/07/21 10:47 05/07/21 10:47 05/07/21 10:47 05/07/21 10:47 05/07/21 10:47 05/07/21 10:47 05/07/21 10:47	CAS No. 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 1336-36-3	Qua

Project: 117-4124161 ASHVIEW TERRACE AP

Pace Project No.: 40226418

Date: 05/17/2021 03:37 PM

Sample: WC-SOIL-210505 Lab ID: 40226418002 Collected: 05/05/21 14:45 Received: 05/06/21 12:05 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qua
6010D MET ICP, TCLP	Analytical	Method: EPA	\ 6010D Prepa	aration Met	hod: El	PA 3010A			
	Leachate I	Method/Date	: EPA 1311; 05	5/06/21 14:	00				
	Pace Anal	ytical Service	es - Green Bay	/					
Arsenic	<0.0084	mg/L	0.025	0.0084	1	05/10/21 07:01	05/10/21 17:02	7440-38-2	
Barium	0.18	mg/L	0.0050	0.0015	1	05/10/21 07:01	05/10/21 17:02	7440-39-3	
Cadmium	< 0.0013	mg/L	0.0050	0.0013	1	05/10/21 07:01	05/10/21 17:02	7440-43-9	
Chromium	< 0.0025	mg/L	0.010	0.0025	1	05/10/21 07:01	05/10/21 17:02	7440-47-3	
_ead	< 0.0059	mg/L	0.020	0.0059	1	05/10/21 07:01	05/10/21 17:02	7439-92-1	
Selenium	<0.012	mg/L	0.040	0.012	1	05/10/21 07:01	05/10/21 17:02	7782-49-2	
Silver	<0.0032	mg/L	0.010	0.0032	1	05/10/21 07:01	05/10/21 17:02	7440-22-4	
470 Mercury, TCLP	Analytical	Method: EPA	A 7470 Prepar	ation Meth	od: EPA	٦ 7470			
•	Leachate I	Method/Date	: EPA 1311; 05	5/06/21 14:	00				
			es - Green Bay						
Mercury	<0.066	ug/L	0.20	0.066	1	05/07/21 09:50	05/10/21 09:45	7439-97-6	
3270E MSSV TCLP Sep Funnel	Analytical	Method: EPA	\ 8270E Prepa	aration Met	hod: El	PA 3510			
,	-		: EPA 1311; 05						
			es - Green Bay		50				
		•	•						
,4-Dichlorobenzene	<14.4	ug/L	50.0	14.4	1	05/10/21 11:39	05/11/21 13:45		
,4-Dinitrotoluene	<10.6	ug/L	50.0	10.6	1	05/10/21 11:39	05/11/21 13:45		
lexachloro-1,3-butadiene	<16.5	ug/L	50.0	16.5	1	05/10/21 11:39			
łexachlorobenzene	<11.5	ug/L	55.0	11.5	1	05/10/21 11:39			
lexachloroethane	<14.2	ug/L	50.0	14.2	1	05/10/21 11:39			
2-Methylphenol(o-Cresol)	<9.3	ug/L	50.0	9.3	1	05/10/21 11:39	05/11/21 13:45	95-48-7	
3&4-Methylphenol(m&p Cresol)	<6.1	ug/L	50.0	6.1	1	05/10/21 11:39	05/11/21 13:45		
Nitrobenzene	<10.7	ug/L	50.0	10.7	1	05/10/21 11:39			
Pentachlorophenol	<45.5	ug/L	152	45.5	1	05/10/21 11:39			
Pyridine	<15.1	ug/L	50.0	15.1	1	05/10/21 11:39			
r,4,5-Trichlorophenol	<6.4	ug/L	50.0	6.4	1	05/10/21 11:39	05/11/21 13:45	95-95-4	
2,4,6-Trichlorophenol	<8.0	ug/L	50.0	8.0	1	05/10/21 11:39	05/11/21 13:45	88-06-2	
Surrogates Nitrobenzene-d5 (S)	87	%	41-118		1	05/10/21 11:39	05/11/21 13:45	4165-60-0	
2-Fluorobiphenyl (S)	78	%	54-107		1	05/10/21 11:39	05/11/21 13:45		
2,4,6-Tribromophenol (S)	106	%	62-172		1	05/10/21 11:39	05/11/21 13:45		
Phenol-d6 (S)	38	%	12-120		1		05/11/21 13:45		
3260 MSV TCLP	Analytical	Method: EPA	A 8260 Leacha	ate Method	/Date: I	EPA 1311; 05/11/2	21 13:45		
			es - Green Bay			,			
Benzene	<3.0	ug/L	10.0	3.0	10		05/12/21 15:44	71-43-2	
2-Butanone (MEK)	<65.2	ug/L	250	65.2	10		05/12/21 15:44	78-93-3	
Carbon tetrachloride	<3.7	ug/L	10.0	3.7	10		05/12/21 15:44	56-23-5	
Chlorobenzene	<8.6	ug/L	10.0	8.6	10		05/12/21 15:44		
Chloroform	<11.8	ug/L	50.0	11.8	10		05/12/21 15:44		
,2-Dichloroethane	<2.9	ug/L	10.0	2.9	10		05/12/21 15:44		
,1-Dichloroethene	<5.8	ug/L	10.0	5.8	10		05/12/21 15:44	75-35-4	

Project: 117-4124161 ASHVIEW TERRACE AP

Pace Project No.: 40226418

Date: 05/17/2021 03:37 PM

Sample: WC-SOIL-210505 Lab ID: 40226418002 Collected: 05/05/21 14:45 Received: 05/06/21 12:05 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qua
3260 MSV TCLP	Analytical	Method: EPA 8	260 Leach	ate Method	/Date: El	PA 1311; 05/11/	21 13:45		
	Pace Anal	ytical Services	- Green Ba	/					
Tetrachloroethene	<4.1	ug/L	10.0	4.1	10		05/12/21 15:44	127-18-4	
Trichloroethene	<3.2	ug/L	10.0	3.2	10		05/12/21 15:44	79-01-6	
Vinyl chloride	<1.7	ug/L	10.0	1.7	10		05/12/21 15:44	75-01-4	
Surrogates									
Toluene-d8 (S)	97	%	70-130		10		05/12/21 15:44	2037-26-5	
4-Bromofluorobenzene (S)	100	%	70-130		10		05/12/21 15:44	460-00-4	
1,2-Dichlorobenzene-d4 (S)	101	%	70-130		10		05/12/21 15:44	2199-69-1	
Percent Moisture	Analytical	Method: ASTM	D2974-87						
	Pace Anal	ytical Services	- Green Ba	/					
Percent Moisture	11.8	%	0.10	0.10	1		05/07/21 09:13		
Sample: TB	Lab ID:	40226418003	Collecte	d: 05/05/2°	1 00:00	Received: 05	5/06/21 12:05 Ma	atrix: Water	
Sample: TB Parameters	Lab ID:	40226418003 Units	Collecte	d: 05/05/2 ²	1 00:00 DF	Received: 05 Prepared	6/06/21 12:05 Ma	catrix: Water	Qu
Parameters	Results		LOQ						Qu
Parameters	Results	Units	LOQ 260	LOD					Qu
Parameters 8260 MSV	Results	Units — — — — — — — — — — — — — — — — — — —	LOQ 260	LOD				CAS No.	Qu
Parameters 8260 MSV Benzene	Results Analytical Pace Anal	Units Method: EPA 8. ytical Services	LOQ 260 - Green Ba	LOD	DF		Analyzed	CAS No.	Qu
Parameters 8260 MSV Benzene 2-Butanone (MEK)	Results Analytical Pace Anal <0.30	Units Method: EPA 8. ytical Services ug/L	LOQ 260 - Green Ba 1.0	LOD	DF 1		Analyzed 05/11/21 19:27	CAS No. 71-43-2 78-93-3	Qu
Parameters 3260 MSV Benzene 2-Butanone (MEK) Carbon tetrachloride	Analytical Pace Anal <0.30 <6.5	Units Method: EPA 8. ytical Services ug/L ug/L ug/L ug/L	LOQ 260 - Green Ba 1.0 25.0	LOD / 0.30 6.5	DF 1 1		Analyzed 05/11/21 19:27 05/11/21 19:27	CAS No. 71-43-2 78-93-3 56-23-5	- Qu
Parameters 8260 MSV Benzene 2-Butanone (MEK) Carbon tetrachloride Chlorobenzene	Analytical Pace Anal <0.30 <6.5 <0.37	Units Method: EPA 8. ytical Services ug/L ug/L	LOQ 260 - Green Ba 1.0 25.0 1.0	0.30 6.5 0.37	DF 1 1 1 1		Analyzed 05/11/21 19:27 05/11/21 19:27 05/11/21 19:27	CAS No. 71-43-2 78-93-3 56-23-5 108-90-7	Qu
Parameters 8260 MSV Benzene 2-Butanone (MEK) Carbon tetrachloride Chlorobenzene Chloroform	Analytical Pace Anal <0.30 <6.5 <0.37 <0.86	Units Method: EPA 8. ytical Services ug/L ug/L ug/L ug/L ug/L ug/L	LOQ 260 - Green Ba 1.0 25.0 1.0	0.30 6.5 0.37 0.86	DF 1 1 1 1 1 1		O5/11/21 19:27 O5/11/21 19:27 O5/11/21 19:27 O5/11/21 19:27 O5/11/21 19:27	71-43-2 78-93-3 56-23-5 108-90-7 67-66-3	Qu
Parameters 8260 MSV Benzene 2-Butanone (MEK) Carbon tetrachloride Chlorobenzene Chloroform 1,2-Dichloroethane	Analytical Pace Anal <0.30 <6.5 <0.37 <0.86 <1.2	Units Method: EPA 8. ytical Services ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	LOQ 260 - Green Ba 1.0 25.0 1.0 1.0 5.0	0.30 6.5 0.37 0.86 1.2	DF 1 1 1 1 1 1 1 1 1		05/11/21 19:27 05/11/21 19:27 05/11/21 19:27 05/11/21 19:27 05/11/21 19:27	71-43-2 78-93-3 56-23-5 108-90-7 67-66-3 107-06-2	Qu
Parameters 3260 MSV Benzene 2-Butanone (MEK) Carbon tetrachloride Chlorobenzene Chloroform 1,2-Dichloroethane 1,1-Dichloroethene	Analytical Pace Anal <0.30 <6.5 <0.37 <0.86 <1.2 <0.29	Units Method: EPA 8. ytical Services ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	LOQ 260 - Green Ba 1.0 25.0 1.0 1.0 5.0	0.30 6.5 0.37 0.86 1.2 0.29	DF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		05/11/21 19:27 05/11/21 19:27 05/11/21 19:27 05/11/21 19:27 05/11/21 19:27 05/11/21 19:27	71-43-2 78-93-3 56-23-5 108-90-7 67-66-3 107-06-2 75-35-4	Qu
Parameters 8260 MSV Benzene 2-Butanone (MEK) Carbon tetrachloride Chlorobenzene Chloroform 1,2-Dichloroethane 1,1-Dichloroethene Tetrachloroethene	Analytical Pace Anal <0.30 <6.5 <0.37 <0.86 <1.2 <0.29 <0.58	Units Method: EPA 8. ytical Services ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	LOQ 260 - Green Ba 1.0 25.0 1.0 1.0 5.0 1.0	0.30 6.5 0.37 0.86 1.2 0.29 0.58	DF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		05/11/21 19:27 05/11/21 19:27 05/11/21 19:27 05/11/21 19:27 05/11/21 19:27 05/11/21 19:27 05/11/21 19:27	71-43-2 78-93-3 56-23-5 108-90-7 67-66-3 107-06-2 75-35-4 127-18-4	Qu
Parameters Baco MSV Benzene 2-Butanone (MEK) Carbon tetrachloride Chlorobenzene Chloroform 1,2-Dichloroethane 1,1-Dichloroethene Tetrachloroethene Trichloroethene	Analytical Pace Anal <0.30 <6.5 <0.37 <0.86 <1.2 <0.29 <0.58 <0.41	Units Method: EPA 8. ytical Services ug/L	LOQ 260 - Green Ba 1.0 25.0 1.0 1.0 5.0 1.0 1.0	0.30 6.5 0.37 0.86 1.2 0.29 0.58 0.41	DF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Analyzed 05/11/21 19:27 05/11/21 19:27 05/11/21 19:27 05/11/21 19:27 05/11/21 19:27 05/11/21 19:27 05/11/21 19:27 05/11/21 19:27	71-43-2 78-93-3 56-23-5 108-90-7 67-66-3 107-06-2 75-35-4 127-18-4 79-01-6	Qu
Parameters 8260 MSV Benzene 2-Butanone (MEK) Carbon tetrachloride Chlorobenzene Chloroform 1,2-Dichloroethane 1,1-Dichloroethene Tetrachloroethene Trichloroethene Vinyl chloride	Analytical Pace Anal <0.30 <6.5 <0.37 <0.86 <1.2 <0.29 <0.58 <0.41 <0.32	Units Method: EPA 8 ytical Services ug/L	LOQ 260 - Green Ba 1.0 25.0 1.0 5.0 1.0 1.0 1.0	0.30 6.5 0.37 0.86 1.2 0.29 0.58 0.41 0.32	DF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Analyzed 05/11/21 19:27 05/11/21 19:27 05/11/21 19:27 05/11/21 19:27 05/11/21 19:27 05/11/21 19:27 05/11/21 19:27 05/11/21 19:27 05/11/21 19:27	71-43-2 78-93-3 56-23-5 108-90-7 67-66-3 107-06-2 75-35-4 127-18-4 79-01-6	Qu
Parameters 8260 MSV Benzene 2-Butanone (MEK) Carbon tetrachloride Chlorobenzene Chloroform 1,2-Dichloroethane 1,1-Dichloroethene Tetrachloroethene Trichloroethene Vinyl chloride Surrogates	Analytical Pace Anal <0.30 <6.5 <0.37 <0.86 <1.2 <0.29 <0.58 <0.41 <0.32	Units Method: EPA 8 ytical Services ug/L	LOQ 260 - Green Ba 1.0 25.0 1.0 5.0 1.0 1.0 1.0	0.30 6.5 0.37 0.86 1.2 0.29 0.58 0.41 0.32	DF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Analyzed 05/11/21 19:27 05/11/21 19:27 05/11/21 19:27 05/11/21 19:27 05/11/21 19:27 05/11/21 19:27 05/11/21 19:27 05/11/21 19:27 05/11/21 19:27	71-43-2 78-93-3 56-23-5 108-90-7 67-66-3 107-06-2 75-35-4 127-18-4 79-01-6 75-01-4	Qu
Parameters 8260 MSV Benzene 2-Butanone (MEK) Carbon tetrachloride Chlorobenzene Chloroform 1,2-Dichloroethane 1,1-Dichloroethene Tetrachlorioethene Trichloroethene Vinyl chloride Surrogates 4-Bromofluorobenzene (S) Dibromofluoromethane (S)	Analytical Pace Anal <0.30 <6.5 <0.37 <0.86 <1.2 <0.29 <0.58 <0.41 <0.32 <0.17	Units Method: EPA 8. ytical Services ug/L LOQ 260 - Green Ba 1.0 25.0 1.0 1.0 5.0 1.0 1.0 1.0	0.30 6.5 0.37 0.86 1.2 0.29 0.58 0.41 0.32	DF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Analyzed 05/11/21 19:27 05/11/21 19:27 05/11/21 19:27 05/11/21 19:27 05/11/21 19:27 05/11/21 19:27 05/11/21 19:27 05/11/21 19:27 05/11/21 19:27	71-43-2 78-93-3 56-23-5 108-90-7 67-66-3 107-06-2 75-35-4 127-18-4 79-01-6 75-01-4	Qu	

(920)469-2436

QUALITY CONTROL DATA

Project: 117-4124161 ASHVIEW TERRACE AP

Pace Project No.: 40226418

QC Batch: 384567 Analysis Method: EPA 7470

QC Batch Method: EPA 7470 Analysis Description: 7470 Mercury TCLP

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40226418002

METHOD BLANK: 2218384 Matrix: Water

Associated Lab Samples: 40226418002

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Mercury ug/L <0.066 0.20 05/10/21 09:26

METHOD BLANK: 2217772 Matrix: Water

Associated Lab Samples: 40226418002

Blank Reporting Parameter Units Result Limit Analyzed Qualifiers

Mercury ug/L <0.066 0.20 05/10/21 09:47

METHOD BLANK: 2217773 Matrix: Water

Associated Lab Samples: 40226418002

Blank Reporting Parameter Units Result Limit Analyzed Qualifiers

Mercury ug/L <0.066 0.20 05/10/21 09:54

LABORATORY CONTROL SAMPLE: 2218385

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Mercury ug/L 5 5.3 105 85-115

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2218386 2218387

MS MSD 40226327001 Spike Spike MS MSD MS MSD % Rec Max Conc. RPD Parameter Units Result Conc. Result Result % Rec % Rec Limits **RPD** Qual

Mercury ug/L <0.066 5 5 5.4 4.9 106 98 85-115 8 20

MATRIX SPIKE SAMPLE: 2218388

Date: 05/17/2021 03:37 PM

40226337001 MS MS % Rec Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers Mercury ug/L <0.000066 mg/L 5 5.3 105 85-115

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 117-4124161 ASHVIEW TERRACE AP

Pace Project No.: 40226418

Date: 05/17/2021 03:37 PM

QC Batch: 384570 Analysis Method: EPA 7470
QC Batch Method: EPA 7470 Analysis Description: 7470 Mercury

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40226418001

METHOD BLANK: 2218393 Matrix: Water

Associated Lab Samples: 40226418001

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Mercury ug/L <0.066 0.20 05/10/21 09:57

LABORATORY CONTROL SAMPLE: 2218394

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Mercury ug/L 5.3 106 85-115

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2218395 2218396

MS MSD

40226033016 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Result <0.066 5 20 Mercury ug/L 5 4.9 4.7 98 94 85-115 5

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 117-4124161 ASHVIEW TERRACE AP

Pace Project No.: 40226418

QC Batch: 384655 Analysis Method: EPA 6010D

QC Batch Method: EPA 3010A Analysis Description: 6010D MET TCLP

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40226418002

METHOD BLANK: 2219394 Matrix: Water

Associated Lab Samples: 40226418002

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Arsenic	mg/L	<0.0084	0.025	05/10/21 16:37	
Barium	mg/L	< 0.0015	0.0050	05/10/21 16:37	
Cadmium	mg/L	< 0.0013	0.0050	05/10/21 16:37	
Chromium	mg/L	< 0.0025	0.010	05/10/21 16:37	
Lead	mg/L	< 0.0059	0.020	05/10/21 16:37	
Selenium	mg/L	< 0.012	0.040	05/10/21 16:37	
Silver	mg/L	< 0.0032	0.010	05/10/21 16:37	

METHOD BLANK: 2217760 Matrix: Solid

Associated Lab Samples: 40226418002

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Arsenic	mg/L	<0.0084	0.025	05/10/21 17:05	
Barium	mg/L	< 0.0015	0.0050	05/10/21 17:05	
Cadmium	mg/L	< 0.0013	0.0050	05/10/21 17:05	
Chromium	mg/L	< 0.0025	0.010	05/10/21 17:05	
Lead	mg/L	< 0.0059	0.020	05/10/21 17:05	
Selenium	mg/L	< 0.012	0.040	05/10/21 17:05	
Silver	mg/L	< 0.0032	0.010	05/10/21 17:05	

METHOD BLANK: 2217761 Matrix: Solid

Associated Lab Samples: 40226418002

Date: 05/17/2021 03:37 PM

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Arsenic	mg/L	<0.0084	0.025	05/10/21 17:23	
Barium	mg/L	0.0017J	0.0050	05/10/21 17:23	
Cadmium	mg/L	< 0.0013	0.0050	05/10/21 17:23	
Chromium	mg/L	< 0.0025	0.010	05/10/21 17:23	
Lead	mg/L	< 0.0059	0.020	05/10/21 17:23	
Selenium	mg/L	< 0.012	0.040	05/10/21 17:23	
Silver	mg/L	< 0.0032	0.010	05/10/21 17:23	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 117-4124161 ASHVIEW TERRACE AP

Pace Project No.: 40226418

Barium

Lead

Silver

Cadmium

Chromium

Selenium

Date: 05/17/2021 03:37 PM

LABORATORY CONTROL SA	AMPLE: 2	2219395										
			Spike	LC		LCS	% R					
Parameter		Units	Conc.	Res	ult	% Rec	Limi	ts (Qualifiers	_		
Arsenic		mg/L	0	.5	0.47	94	1 8	30-120				
Barium		mg/L	0	.5	0.47	93	3 8	30-120				
Cadmium		mg/L	0	.5	0.47	94	4 8	30-120				
Chromium		mg/L	0	.5	0.49	98	3 8	30-120				
Lead		mg/L	0	.5	0.48	96	6	30-120				
Selenium		mg/L	0	.5	0.47	95	5 6	30-120				
Silver		mg/L	0.2	25	0.24	96	6 6	30-120				
MATRIX SPIKE SAMPLE:		2219396										
			40226	3186001	Spike	MS		MS	% Red	;		
Parameter		Units	Re	esult	Conc.	Result		Rec	Limits		Qualif	iers
Arsenic		mg/L		<0.0084	0.5).53	106	75	-125		
Barium		mg/L		0.25	0.5).75	98	_	-125		
Cadmium		mg/L		0.0025J	0.5).53	105		-125		
Chromium		mg/L		0.0048J	0.5).51	101		-125		
Lead		mg/L		< 0.0059	0.5).48	96		-125		
Selenium		mg/L		< 0.012	0.5	C).53	106	75	-125		
Silver		mg/L		<0.0032	0.25	().28	112	75	-125		
MATRIX SPIKE & MATRIX SF	PIKE DUPL	ICATE: 2219	9397		2219398	3						
			MS	MSD								
		40226290001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
Arsenic	mg/L	<0.084	0.5	0.5	0.52	0.51	102	100	75-125	2	20	
Barium	mg/L	1.0	0.5	0.5	1.5	1.5	101	97		1		
Cadmium	mg/L	< 0.013	0.5	0.5	0.49	0.48	98	95	75-125	3	20	
Chromium	mg/L	< 0.025	0.5	0.5	0.50	0.48	99	97	75-125	2		
Lead	mg/L	< 0.059	0.5	0.5	0.51	0.51	101	101	75-125	0	20	
Selenium	mg/L	<0.12	0.5	0.5	0.52	0.50	104	99	75-125	5	20	
Silver	mg/L	<0.032	0.25	0.25	0.26	0.26	99	100	75-125	1	20	
MATRIX SPIKE SAMPLE:		2219399										
			40226	337001	Spike	MS		MS	% Red	;		
Parameter		Units	Re	esult	Conc.	Result	%	Rec	Limits		Qualif	iers
Arsenic		mg/L		<0.042	0.5).49	98	75	-125		
D = vices		J.		0.0001	0.5	-		00	7.5			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

0.023J

0.77

< 0.030

< 0.061

< 0.016

<0.0066

0.5

0.5

0.5

0.5

0.5

0.25

0.49

0.48

1.2

0.48

0.51

0.26

93

95

93

95

99

102

75-125

75-125

75-125

75-125

75-125

75-125

mg/L

mg/L

mg/L

mg/L

mg/L

mg/L

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 117-4124161 ASHVIEW TERRACE AP

Pace Project No.: 40226418

QC Batch: 385095 Analysis Method: EPA 6010D
QC Batch Method: EPA 3010A Analysis Description: 6010D MET

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40226418001

METHOD BLANK: 2221788 Matrix: Water

2221789

ug/L

ug/L

Associated Lab Samples: 40226418001

LABORATORY CONTROL SAMPLE:

Selenium

Date: 05/17/2021 03:37 PM

Silver

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Arsenic	ug/L	<8.3	25.0	05/13/21 16:44	
Barium	ug/L	<1.5	5.0	05/13/21 16:44	
Cadmium	ug/L	<1.3	5.0	05/13/21 16:44	
Chromium	ug/L	<2.5	10.0	05/13/21 16:44	
Lead	ug/L	<5.9	20.0	05/13/21 16:44	
Selenium	ug/L	<12.2	40.0	05/13/21 16:44	
Silver	ug/L	<3.2	10.0	05/13/21 16:44	

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	ug/L	500	475	95	80-120	
Barium	ug/L	500	503	101	80-120	
Cadmium	ug/L	500	464	93	80-120	
Chromium	ug/L	500	514	103	80-120	
Lead	ug/l	500	473	95	80-120	

500

250

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2221790 2221791 MS MSD 40226418001 Spike Spike MS MSD MS MSD % Rec Max RPD RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits Qual 20 Arsenic ug/L 8.7J 500 500 491 491 97 75-125 0 Barium 309 500 500 847 833 108 105 75-125 2 20 ug/L Cadmium 500 500 470 471 0 20 ug/L <1.3 94 94 75-125 ug/L Chromium 8.1J 500 500 525 514 103 101 75-125 2 20 ug/L <5.9 500 0 Lead 500 458 459 91 91 75-125 20 Selenium <122 500 500 474 474 95 95 75-125 0 20 ug/L Silver ug/L <3.2 250 250 249 245 gg 97 75-125 1 20

466

233

93

93

80-120

80-120

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(920)469-2436

QUALITY CONTROL DATA

Project: 117-4124161 ASHVIEW TERRACE AP

Pace Project No.: 40226418

QC Batch: 384963 Analysis Method: EPA 8260
QC Batch Method: EPA 8260 Analysis Description: 8260 MSV TCLP

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40226418002

METHOD BLANK: 2220842 Matrix: Water

Associated Lab Samples: 40226418002

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,1-Dichloroethene	ug/L	<0.58	1.0	05/12/21 13:34	
1,2-Dichloroethane	ug/L	<0.29	1.0	05/12/21 13:34	
2-Butanone (MEK)	ug/L	<6.5	25.0	05/12/21 13:34	
Benzene	ug/L	< 0.30	1.0	05/12/21 13:34	
Carbon tetrachloride	ug/L	< 0.37	1.0	05/12/21 13:34	
Chlorobenzene	ug/L	<0.86	1.0	05/12/21 13:34	
Chloroform	ug/L	<1.2	5.0	05/12/21 13:34	
Tetrachloroethene	ug/L	< 0.41	1.0	05/12/21 13:34	
Trichloroethene	ug/L	< 0.32	1.0	05/12/21 13:34	
Vinyl chloride	ug/L	<0.17	1.0	05/12/21 13:34	
1,2-Dichlorobenzene-d4 (S)	%	102	70-130	05/12/21 13:34	
4-Bromofluorobenzene (S)	%	100	70-130	05/12/21 13:34	
Toluene-d8 (S)	%	98	70-130	05/12/21 13:34	

METHOD BLANK: 2220361 Matrix: Solid

Associated Lab Samples: 40226418002

Doromotor	Units	Blank	Reporting Limit	Anglyzad	Qualifiers
Parameter	Onits	Result		Analyzed	Quailliers
1,1-Dichloroethene	ug/L	<5.8	10.0	05/12/21 15:25	
1,2-Dichloroethane	ug/L	<2.9	10.0	05/12/21 15:25	
2-Butanone (MEK)	ug/L	<65.2	250	05/12/21 15:25	
Benzene	ug/L	<3.0	10.0	05/12/21 15:25	
Carbon tetrachloride	ug/L	<3.7	10.0	05/12/21 15:25	
Chlorobenzene	ug/L	<8.6	10.0	05/12/21 15:25	
Chloroform	ug/L	<11.8	50.0	05/12/21 15:25	
Tetrachloroethene	ug/L	<4.1	10.0	05/12/21 15:25	
Trichloroethene	ug/L	<3.2	10.0	05/12/21 15:25	
Vinyl chloride	ug/L	<1.7	10.0	05/12/21 15:25	
1,2-Dichlorobenzene-d4 (S)	%	103	70-130	05/12/21 15:25	
4-Bromofluorobenzene (S)	%	101	70-130	05/12/21 15:25	
Toluene-d8 (S)	%	99	70-130	05/12/21 15:25	

LABORATORY CONTROL SAMPLE: 2220843

Date: 05/17/2021 03:37 PM

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,1-Dichloroethene	ug/L		49.6	99	85-126	
1,2-Dichloroethane	ug/L	50	48.0	96	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 117-4124161 ASHVIEW TERRACE AP

Pace Project No.: 40226418

Date: 05/17/2021 03:37 PM

LABORATORY CONTROL SAMPLE	2220843					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Benzene	ug/L	50	49.4	99	70-132	
arbon tetrachloride	ug/L	50	52.3	105	70-130	
Chlorobenzene	ug/L	50	49.8	100	70-130	
hloroform	ug/L	50	49.1	98	80-122	
trachloroethene	ug/L	50	52.1	104	70-130	
chloroethene	ug/L	50	49.6	99	70-130	
nyl chloride	ug/L	50	49.2	98	63-142	
2-Dichlorobenzene-d4 (S)	%			98	70-130	
Bromofluorobenzene (S)	%			100	70-130	
oluene-d8 (S)	%			99	70-130	

MATRIX SPIKE & MATRIX SP	IKE DUPLIC	CATE: 2221	160		2221161							
Parameter	4 Units	10226418002 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec	RPD	Max RPD	Qual
1,1-Dichloroethene	ug/L	<5.8	500	500	532	531	106	106	76-132	0		
1,2-Dichloroethane	ug/L	<2.9	500	500	500	507	100	101	70-130	1	20	
Benzene	ug/L	<3.0	500	500	513	517	103	103	70-132	1	20	
Carbon tetrachloride	ug/L	<3.7	500	500	543	546	109	109	70-132	1	20	
Chlorobenzene	ug/L	<8.6	500	500	503	513	101	103	70-130	2	20	
Chloroform	ug/L	<11.8	500	500	503	510	101	102	80-122	1	20	
Tetrachloroethene	ug/L	<4.1	500	500	508	521	102	104	70-130	2	20	
Trichloroethene	ug/L	<3.2	500	500	512	514	102	103	70-130	0	20	
Vinyl chloride	ug/L	<1.7	500	500	557	559	111	112	61-143	0	20	
1,2-Dichlorobenzene-d4 (S)	%						99	98	70-130			
4-Bromofluorobenzene (S)	%						102	100	70-130			
Toluene-d8 (S)	%						99	99	70-130			

MATRIX SPIKE SAMPLE:	2221162						
		40226631002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,1-Dichloroethene	ug/L	<0.0058 mg/L	500	528	106	76-132	
1,2-Dichloroethane	ug/L	<0.0029 mg/L	500	468	94	70-130	
Benzene	ug/L	<0.0030 mg/L	500	515	103	70-132	
Carbon tetrachloride	ug/L	<0.0037 mg/L	500	552	110	70-132	
Chlorobenzene	ug/L	<0.0086 mg/L	500	503	101	70-130	
Chloroform	ug/L	<0.012 mg/L	500	508	102	80-122	
Tetrachloroethene	ug/L	<0.0041 mg/L	500	512	102	70-130	
Trichloroethene	ug/L	<0.0032 mg/L	500	511	102	70-130	
Vinyl chloride	ug/L	<0.0017 mg/L	500	554	111	61-143	
1,2-Dichlorobenzene-d4 (S)	%				99	70-130	
4-Bromofluorobenzene (S)	%				100	70-130	
Toluene-d8 (S)	%				99	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 117-4124161 ASHVIEW TERRACE AP

Pace Project No.: 40226418

Date: 05/17/2021 03:37 PM

QC Batch: 384664 Analysis Method: EPA 8260
QC Batch Method: EPA 8260 Analysis Description: 8260 MSV

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40226418001, 40226418003

METHOD BLANK: 2219424 Matrix: Water

Associated Lab Samples: 40226418001, 40226418003

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,1-Dichloroethene	ug/L	<0.58	1.0	05/11/21 17:34	
1,2-Dichloroethane	ug/L	<0.29	1.0	05/11/21 17:34	
2-Butanone (MEK)	ug/L	<6.5	25.0	05/11/21 17:34	
Benzene	ug/L	< 0.30	1.0	05/11/21 17:34	
Carbon tetrachloride	ug/L	< 0.37	1.0	05/11/21 17:34	
Chlorobenzene	ug/L	<0.86	1.0	05/11/21 17:34	
Chloroform	ug/L	<1.2	5.0	05/11/21 17:34	
Tetrachloroethene	ug/L	<0.41	1.0	05/11/21 17:34	
Trichloroethene	ug/L	< 0.32	1.0	05/11/21 17:34	
Vinyl chloride	ug/L	< 0.17	1.0	05/11/21 17:34	
4-Bromofluorobenzene (S)	%	97	70-130	05/11/21 17:34	
Dibromofluoromethane (S)	%	108	70-130	05/11/21 17:34	
Toluene-d8 (S)	%	96	70-130	05/11/21 17:34	

LABORATORY CONTROL SAMPLE:	2219425					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1-Dichloroethene	ug/L	50	57.3	115	85-126	
1,2-Dichloroethane	ug/L	50	55.1	110	70-130	
Benzene	ug/L	50	51.7	103	70-132	
Carbon tetrachloride	ug/L	50	59.6	119	70-130	
Chlorobenzene	ug/L	50	52.1	104	70-130	
Chloroform	ug/L	50	54.5	109	80-122	
Tetrachloroethene	ug/L	50	53.3	107	70-130	
Trichloroethene	ug/L	50	56.3	113	70-130	
Vinyl chloride	ug/L	50	57.2	114	63-142	
4-Bromofluorobenzene (S)	%			102	70-130	
Dibromofluoromethane (S)	%			104	70-130	
Toluene-d8 (S)	%			97	70-130	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2220705 2220706												
Parameter	Units	40226543001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
1,1-Dichloroethene	ug/L	<0.58	50	50	56.3	56.0	113	112	76-132	0	20	
1,2-Dichloroethane	ug/L	< 0.29	50	50	54.1	55.0	108	110	70-130	2	20	
Benzene	ug/L	< 0.30	50	50	51.2	51.0	102	102	70-132	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(920)469-2436

QUALITY CONTROL DATA

Project: 117-4124161 ASHVIEW TERRACE AP

Pace Project No.: 40226418

Date: 05/17/2021 03:37 PM

MATRIX SPIKE & MATRIX SF	PIKE DUPLIC	CATE: 2220	705 MS	MCD	2220706							
Parameter	4 Units	0226543001 Result	Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Carbon tetrachloride	ug/L	<0.37	50	50	58.2	57.9	116	116	70-132	1		
Chlorobenzene	ug/L	<0.86	50	50	52.1	52.3	104	105	70-130	0	20	
Chloroform	ug/L	<1.2	50	50	54.0	53.9	108	108	80-122	0	20	
Tetrachloroethene	ug/L	1.0	50	50	54.6	54.8	107	108	70-130	0	20	
Trichloroethene	ug/L	1.8	50	50	57.7	57.8	112	112	70-130	0	20	
Vinyl chloride	ug/L	<0.17	50	50	56.6	56.8	113	114	61-143	0	20	
4-Bromofluorobenzene (S)	%						102	103	70-130			
Dibromofluoromethane (S)	%						103	102	70-130			
Toluene-d8 (S)	%						96	98	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 117-4124161 ASHVIEW TERRACE AP

Pace Project No.: 40226418

Date: 05/17/2021 03:37 PM

QC Batch: 384527 Analysis Method: EPA 8082
QC Batch Method: EPA 3541 Analysis Description: 8082 GCS PCB

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40226418002

METHOD BLANK: 2218195 Matrix: Solid

Associated Lab Samples: 40226418002

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
PCB-1016 (Aroclor 1016)	ug/kg	<15.2	50.0	05/07/21 08:14	
PCB-1221 (Aroclor 1221)	ug/kg	<15.2	50.0	05/07/21 08:14	
PCB-1232 (Aroclor 1232)	ug/kg	<15.2	50.0	05/07/21 08:14	
PCB-1242 (Aroclor 1242)	ug/kg	<15.2	50.0	05/07/21 08:14	
PCB-1248 (Aroclor 1248)	ug/kg	<15.2	50.0	05/07/21 08:14	
PCB-1254 (Aroclor 1254)	ug/kg	<15.2	50.0	05/07/21 08:14	
PCB-1260 (Aroclor 1260)	ug/kg	<15.2	50.0	05/07/21 08:14	
Decachlorobiphenyl (S)	%	90	47-114	05/07/21 08:14	
Tetrachloro-m-xylene (S)	%	90	67-102	05/07/21 08:14	

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
PCB-1016 (Aroclor 1016)	ug/kg		<15.2			
PCB-1221 (Aroclor 1221)	ug/kg		<15.2			
PCB-1232 (Aroclor 1232)	ug/kg		<15.2			
PCB-1242 (Aroclor 1242)	ug/kg		<15.2			
PCB-1248 (Aroclor 1248)	ug/kg		<15.2			
PCB-1254 (Aroclor 1254)	ug/kg		<15.2			
PCB-1260 (Aroclor 1260)	ug/kg	500	417	83	69-115	
Decachlorobiphenyl (S)	%			88	47-114	
Tetrachloro-m-xylene (S)	%			90	67-102	

MATRIX SPIKE & MATRIX SP	PIKE DUPLIC	CATE: 2218	197		2218198							
Parameter	4 Units	0226418002 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
PCB-1016 (Aroclor 1016)	ug/kg	<17.3			<17.2	<17.2					20	
PCB-1221 (Aroclor 1221)	ug/kg	<17.3			<17.2	<17.2					20	
PCB-1232 (Aroclor 1232)	ug/kg	<17.3			<17.2	<17.2					20	
PCB-1242 (Aroclor 1242)	ug/kg	<17.3			<17.2	<17.2					20	
PCB-1248 (Aroclor 1248)	ug/kg	24.4J			54.4J	41.3J					20	
PCB-1254 (Aroclor 1254)	ug/kg	<17.3			<17.2	<17.2					20	
PCB-1260 (Aroclor 1260)	ug/kg	<17.3	566	566	447	496	79	88	45-120	10	20	
Decachlorobiphenyl (S)	%						79	90	47-114			
Tetrachloro-m-xylene (S)	%						82	89	67-102			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 117-4124161 ASHVIEW TERRACE AP

Pace Project No.: 40226418

Date: 05/17/2021 03:37 PM

QC Batch: 384578 Analysis Method: EPA 8082
QC Batch Method: EPA 3510 Analysis Description: 8082 GCS PCB

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40226418001

METHOD BLANK: 2218419 Matrix: Water

Associated Lab Samples: 40226418001

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
PCB-1016 (Aroclor 1016)	ug/L	<0.11	0.50	05/10/21 10:21	
PCB-1221 (Aroclor 1221)	ug/L	<0.11	0.50	05/10/21 10:21	
PCB-1232 (Aroclor 1232)	ug/L	<0.11	0.50	05/10/21 10:21	
PCB-1242 (Aroclor 1242)	ug/L	<0.11	0.50	05/10/21 10:21	
PCB-1248 (Aroclor 1248)	ug/L	<0.11	0.50	05/10/21 10:21	
PCB-1254 (Aroclor 1254)	ug/L	<0.11	0.50	05/10/21 10:21	
PCB-1260 (Aroclor 1260)	ug/L	<0.11	0.50	05/10/21 10:21	
Decachlorobiphenyl (S)	%	41	10-73	05/10/21 10:21	
Tetrachloro-m-xylene (S)	%	83	28-124	05/10/21 10:21	

LABORATORY CONTROL SAMPLE &	& LCSD: 221842	0	22	218421						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
PCB-1016 (Aroclor 1016)	ug/L		<0.11	<0.11					20	
PCB-1221 (Aroclor 1221)	ug/L		<0.11	<0.11					20	
PCB-1232 (Aroclor 1232)	ug/L		<0.11	<0.11					20	
PCB-1242 (Aroclor 1242)	ug/L		<0.11	<0.11					20	
PCB-1248 (Aroclor 1248)	ug/L		<0.11	<0.11					20	
PCB-1254 (Aroclor 1254)	ug/L		<0.11	<0.11					20	
PCB-1260 (Aroclor 1260)	ug/L	5	4.1	4.7	82	95	64-115	14	20	
Decachlorobiphenyl (S)	%				25	28	10-73			
Tetrachloro-m-xylene (S)	%				75	86	28-124			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 117-4124161 ASHVIEW TERRACE AP

Pace Project No.: 40226418

QC Batch: 384688 Analysis Method: EPA 8270E

QC Batch Method: EPA 3510 Analysis Description: 8270E TCLP MSSV

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40226418002

METHOD BLANK: 2219497 Matrix: Water

Associated Lab Samples: 40226418002

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,4-Dichlorobenzene	ug/L	<2.9	10.0	05/11/21 11:11	
2,4,5-Trichlorophenol	ug/L	<1.3	10.0	05/11/21 11:11	
2,4,6-Trichlorophenol	ug/L	<1.6	10.0	05/11/21 11:11	
2,4-Dinitrotoluene	ug/L	<2.1	10.0	05/11/21 11:11	
2-Methylphenol(o-Cresol)	ug/L	<1.9	10.0	05/11/21 11:11	
3&4-Methylphenol(m&p Cresol)	ug/L	<1.2	10.0	05/11/21 11:11	
Hexachloro-1,3-butadiene	ug/L	<3.3	10.0	05/11/21 11:11	
Hexachlorobenzene	ug/L	<2.3	11.0	05/11/21 11:11	
Hexachloroethane	ug/L	<2.8	10.0	05/11/21 11:11	
Nitrobenzene	ug/L	<2.1	10.0	05/11/21 11:11	
Pentachlorophenol	ug/L	<9.1	30.4	05/11/21 11:11	
Pyridine	ug/L	<3.0	10.0	05/11/21 11:11	
2,4,6-Tribromophenol (S)	%	104	62-172	05/11/21 11:11	
2-Fluorobiphenyl (S)	%	85	54-107	05/11/21 11:11	
Nitrobenzene-d5 (S)	%	93	41-118	05/11/21 11:11	
Phenol-d6 (S)	%	36	12-120	05/11/21 11:11	

METHOD BLANK: 2217774 Matrix: Water

Associated Lab Samples: 40226418002

Date: 05/17/2021 03:37 PM

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,4-Dichlorobenzene	ug/L	<14.4	50.0	05/11/21 14:06	
2,4,5-Trichlorophenol	ug/L	<6.4	50.0	05/11/21 14:06	
2,4,6-Trichlorophenol	ug/L	<8.0	50.0	05/11/21 14:06	
2,4-Dinitrotoluene	ug/L	<10.6	50.0	05/11/21 14:06	
2-Methylphenol(o-Cresol)	ug/L	<9.3	50.0	05/11/21 14:06	
3&4-Methylphenol(m&p Cresol)	ug/L	<6.1	50.0	05/11/21 14:06	
Hexachloro-1,3-butadiene	ug/L	<16.5	50.0	05/11/21 14:06	
Hexachlorobenzene	ug/L	<11.5	55.0	05/11/21 14:06	
Hexachloroethane	ug/L	<14.2	50.0	05/11/21 14:06	
Nitrobenzene	ug/L	<10.7	50.0	05/11/21 14:06	
Pentachlorophenol	ug/L	<45.5	152	05/11/21 14:06	
Pyridine	ug/L	<15.1	50.0	05/11/21 14:06	
2,4,6-Tribromophenol (S)	%	85	62-172	05/11/21 14:06	
2-Fluorobiphenyl (S)	%	66	54-107	05/11/21 14:06	
Nitrobenzene-d5 (S)	%	61	41-118	05/11/21 14:06	
Phenol-d6 (S)	%	28	12-120	05/11/21 14:06	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 117-4124161 ASHVIEW TERRACE AP

Pace Project No.: 40226418

Date: 05/17/2021 03:37 PM

LABORATORY CONTROL SAMPLE:	2219498					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,4-Dichlorobenzene	ug/L	50	32.4	65	46-89	
,4,5-Trichlorophenol	ug/L	50	50.3	101	60-122	
4,6-Trichlorophenol	ug/L	50	51.6	103	59-119	
4-Dinitrotoluene	ug/L	50	52.6	105	70-130	
Methylphenol(o-Cresol)	ug/L	50	43.5	87	47-130	
4-Methylphenol(m&p Cresol)	ug/L	50	40.2	80	43-130	
exachloro-1,3-butadiene	ug/L	50	33.6	67	51-103	
xachlorobenzene	ug/L	50	50.1	100	70-130	
xachloroethane	ug/L	50	26.8	54	35-102	
robenzene	ug/L	50	48.9	98	70-130	
ntachlorophenol	ug/L	50	44.5	89	53-101	
ridine	ug/L	50	31.4	63	10-130	
1,6-Tribromophenol (S)	%			105	62-172	
Fluorobiphenyl (S)	%			94	54-107	
robenzene-d5 (S)	%			97	41-118	
enol-d6 (S)	%			42	12-120	

MATRIX SPIKE SAMPLE:	2219499						
		40226418002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,4-Dichlorobenzene	ug/L	<14.4	250	169	68	46-99	
2,4,5-Trichlorophenol	ug/L	<6.4	250	275	110	24-139	
2,4,6-Trichlorophenol	ug/L	<8.0	250	257	103	18-131	
2,4-Dinitrotoluene	ug/L	<10.6	250	283	113	22-158	
2-Methylphenol(o-Cresol)	ug/L	<9.3	250	235	94	29-130	
3&4-Methylphenol(m&p Cresol)	ug/L	<6.1	250	215	86	19-130	
Hexachloro-1,3-butadiene	ug/L	<16.5	250	174	70	51-113	
Hexachlorobenzene	ug/L	<11.5	250	246	98	70-130	
Hexachloroethane	ug/L	<14.2	250	141	56	35-102	
Nitrobenzene	ug/L	<10.7	250	251	100	51-130	
Pentachlorophenol	ug/L	<45.5	250	174	69	10-200	
Pyridine	ug/L	<15.1	250	159	64	10-130	
2,4,6-Tribromophenol (S)	%				108	62-172	
2-Fluorobiphenyl (S)	%				96	54-107	
Nitrobenzene-d5 (S)	%				99	41-118	
Phenol-d6 (S)	%				42	12-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 117-4124161 ASHVIEW TERRACE AP

Pace Project No.: 40226418

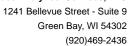
Date: 05/17/2021 03:37 PM

QC Batch: 384689 Analysis Method: EPA 8270E

QC Batch Method: EPA 3510 Analysis Description: 8270E Water MSSV

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40226418001


METHOD BLANK: 2219500 Matrix: Water

Associated Lab Samples: 40226418001

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,4-Dichlorobenzene	ug/L	<1.4	5.0	05/11/21 11:11	
2,4,5-Trichlorophenol	ug/L	< 0.64	5.0	05/11/21 11:11	
2,4,6-Trichlorophenol	ug/L	<0.80	5.0	05/11/21 11:11	
2,4-Dinitrotoluene	ug/L	<1.1	5.0	05/11/21 11:11	
2-Methylphenol(o-Cresol)	ug/L	< 0.93	5.0	05/11/21 11:11	
3&4-Methylphenol(m&p Cresol)	ug/L	<0.61	5.0	05/11/21 11:11	
Hexachloro-1,3-butadiene	ug/L	<1.1	5.5	05/11/21 11:11	
Hexachlorobenzene	ug/L	<1.7	5.0	05/11/21 11:11	
Hexachloroethane	ug/L	<1.4	5.0	05/11/21 11:11	
Nitrobenzene	ug/L	<1.1	5.0	05/11/21 11:11	
Pentachlorophenol	ug/L	<4.6	15.2	05/11/21 11:11	
Pyridine	ug/L	<1.5	5.0	05/11/21 11:11	
2,4,6-Tribromophenol (S)	%	104	62-172	05/11/21 11:11	
2-Fluorobiphenyl (S)	%	85	54-107	05/11/21 11:11	
2-Fluorophenol (S)	%	60	23-69	05/11/21 11:11	
Nitrobenzene-d5 (S)	%	93	41-118	05/11/21 11:11	
Phenol-d6 (S)	%	36	12-120	05/11/21 11:11	
Terphenyl-d14 (S)	%	99	51-129	05/11/21 11:11	

LABORATORY CONTROL SAMPLE &	LCSD: 2219501		22	19502						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
1,4-Dichlorobenzene	ug/L	50	32.4	35.2	65	70	46-89	8	20	
2,4,5-Trichlorophenol	ug/L	50	50.3	50.3	101	101	60-122	0	28	
2,4,6-Trichlorophenol	ug/L	50	51.6	50.9	103	102	59-119	1	29	
2,4-Dinitrotoluene	ug/L	50	52.6	53.8	105	108	70-130	2	20	
2-Methylphenol(o-Cresol)	ug/L	50	43.5	42.9	87	86	47-130	1	31	
3&4-Methylphenol(m&p Cresol)	ug/L	50	40.2	38.7	80	77	43-130	4	28	
Hexachloro-1,3-butadiene	ug/L	50	33.6	31.5	67	63	51-103	7	20	
Hexachlorobenzene	ug/L	50	50.1	51.1	100	102	70-130	2	20	
Hexachloroethane	ug/L	50	26.8	29.8	54	60	35-102	11	22	
Nitrobenzene	ug/L	50	48.9	48.6	98	97	70-130	1	20	
Pentachlorophenol	ug/L	50	44.5	43.3	89	87	53-101	3	24	
Pyridine	ug/L	50	31.4	28.6	63	57	10-130	9	50	
2,4,6-Tribromophenol (S)	%				105	101	62-172			
2-Fluorobiphenyl (S)	%				94	90	54-107			
2-Fluorophenol (S)	%				66	67	23-69			
Nitrobenzene-d5 (S)	%				97	99	41-118			
Phenol-d6 (S)	%				42	41	12-120			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 117-4124161 ASHVIEW TERRACE AP

Pace Project No.: 40226418

Date: 05/17/2021 03:37 PM

LABORATORY CONTROL SAMPLE &		2	219502							
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Terphenyl-d14 (S)	 %				99	102	51-129			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(920)469-2436

QUALITY CONTROL DATA

Project: 117-4124161 ASHVIEW TERRACE AP

Pace Project No.: 40226418

QC Batch: 384576 Analysis Method: ASTM D2974-87

QC Batch Method: ASTM D2974-87 Analysis Description: Dry Weight/Percent Moisture

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40226418002

SAMPLE DUPLICATE: 2218404

Date: 05/17/2021 03:37 PM

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 117-4124161 ASHVIEW TERRACE AP

Pace Project No.: 40226418

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor, percent moisture, initial weight and final volume.

LOQ - Limit of Quantitation adjusted for dilution factor, percent moisture, initial weight and final volume.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

BATCH QUALIFIERS

Batch: 384638

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

Batch: 384797

Date: 05/17/2021 03:37 PM

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

(920)469-2436

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 117-4124161 ASHVIEW TERRACE AP

Pace Project No.: 40226418

Date: 05/17/2021 03:37 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40226418002	WC-SOIL-210505	EPA 3541	384527	EPA 8082	384529
40226418001	WC-WATER-210505	EPA 3510	384578	EPA 8082	384638
40226418002	WC-SOIL-210505	EPA 3010A	384655	EPA 6010D	384754
40226418001	WC-WATER-210505	EPA 3010A	385095	EPA 6010D	385187
40226418002	WC-SOIL-210505	EPA 7470	384567	EPA 7470	384622
40226418001	WC-WATER-210505	EPA 7470	384570	EPA 7470	384623
40226418002	WC-SOIL-210505	EPA 3510	384688	EPA 8270E	384796
40226418001	WC-WATER-210505	EPA 3510	384689	EPA 8270E	384797
40226418002	WC-SOIL-210505	EPA 8260	384963		
40226418001 40226418003	WC-WATER-210505 TB	EPA 8260 EPA 8260	384664 384664		
40226418002	WC-SOIL-210505	ASTM D2974-87	384576		

	(Please	Print Clearly)										UPPER	MIDW	EST R	<u>EGION</u>		Page 1	of (
Company Na	me: Te	ter Trih			1							MN: 6	12-607-	1700	WI: 920-469-2436		\	lια
Branch/Locat		n Arbor		٦,		Pace										40) 26	418
Project Conta		ke Savale		/			www.p	acelabs.c	oom						Quote #:		*	
Phone:		09238076		_ '	(CHA	NI/	OF	CI	US.	TO	DY			Mail To Contact:			
Project Numb		7-4124161		\dashv				*Preserva	ation Code	<u>es</u>]	Mail To Company:			
			0.61			=HCL C= ulfate Soluti			B E=DIV m Thiosulfa		=Methane =Other	ol G=N	аОН		Mail To Address:			
Project Name	11.	wier Terrace Aph	Y PAS	FILT	ERED?		11/	Ι 4/							man 10 Audi 655.			
Project State	- VV	<u> </u>		(YE	S/NO)	YIN	<u>/V</u>	M_									·	
Sampled By ((Print):	dra Gordon			RVATION DDE)*	Pick Letter									Invoice To Contact:	Mike		
Sampled By ((Sign):						25	25							Invoice To Company:	SEKA	tech	
PO #:			Regulate Progra			estec	, metals	Mer				يسنة ا		ļ	Invoice To Address:	710 AV	tcch ig Dr. Sate ime ugiog	100
Data Packa				Matrix Code	s		\$ 5	25,2						-		HVI FIOD	11110 1100	
☐ EP	able) A Level III	On your sample (billable)	C = Charcos	W = Water DW = Drinl al GW = Grou SW = Surfa	ind Water	Analyses Requested	TC1P, VOCS, 5 VOCS, 1 TC18,	W VOCA, SVOCA, MERIS TOTAL PCBS							Invoice To Phone:			
L EP	A Level IV	NOT needed on your sample	SI = Sludge	WW = Was	ste Water	Anal	P, V.	हैं है							CLIENT		OMMENTS	Profile #
PACE LAB'#	CL	IENT FIELD ID	DA		MATRO		12			ļ	<u> </u>	<u> </u>			COMMENTS	(Lab L	Ise Only)	
201	WC-h	1ater-210505	5-5-	ગ્રા ૧૫૫૬	6W			V	<u> </u>							·		
002	WC- 50	1-210505	5-5	21 1445	15	1 1 1 1 1 1			ļ								<u> </u>	
003	OTB					100										WB re	ecepted	in
						2				-						Shilm	ent, lab	added
					1	27.50		1						ļ		10 (() . <	5/6/21
						1		1.	-					ļ		1 10		P
					 		-	-	 			-	-					
					- -							-				 		
					-			ļ	ļ		ļ.,—							
									<u> </u>	·				ļ.,				
					-]	·								
									1				111	1	h			
		ime Requested - Pre		Relinquished By					ate/Time:	/120	<u> </u>	Receive	d B√:\		Mul Sld2	1200	PACE Pro	oject No.
(Rush	TAT subject Date Ne	t to approval/surchargeded:		Andrex Relinquished By					6-21 ate/Time:	/120	<i>57</i>	Receive	d By	4	Jul Slazi Date/Time:		4022	C418
	elim Rush Res	ults by (complete what you			·								V		Date/Time:	·	Receipt Temp =	4,5 %
Email #1: Email #2:				Sayri					SamilDie R	ecelpt pH								
Telephone:				Relinquished By	<i>r</i> :			D	Date/Time: Received By: Date/Time: OK/ Adjust									
Fax:				Relinquished By: Date/Time: Received By: Date/Time: Present / Not P														
	•	LD are subject to		Relinquished By	/ :			D	ate/Time:			Receive	d By:		Date/Time:		Present / N	lot Present IoPhilact7 of 2
sp	ecial pricing an	d release of liability								···		<u> </u>					Version 6.0 06/14/06	

Sample Preservation Receipt Form

All containers needing preservation have been checked and noted below: The DNO AND SINGLE SIN Client Name: Tetyu Tech Initial when Date/ completed: 1 Time: 1003601 Lab Std #ID of preservation (if pH adjusted): VaOH+Zn Act pH ≥9 /OA Vials (>6mm) after adjusted **Plastic Vials** Glass **Jars** General 2SO4 pH ≤2 aOH pH ≥12 Volume INO3 pH ≤2 (mL) WGFU WPFU AG10 BG10 AG1H AG4S AG5U AG2S BG3U BP1U **BP3N BP3S** VG9A **U69/** VG9H **VG9M** VG9D JGFU JG9U **ZPLC BP3U** DG9T SP5T Pace S Lab # 3 2.5 / 5 / 10 001 2.5/5/10 002 3 2.5 / 5 / 10 003 004 2.5/5/10 005 2.5 / 5 / 10 006 2.5/5/10 007 2.5 / 5 / 10 008 2.5/5/10 009 2.5 / 5 / 10 010 2.5/5/10 011 2.5 / 5 / 10 012 2.5/5/10 013 2.5 / 5 / 10 014 2.5 / 5 / 10 2.5 / 5 / 10 015 2.5/5/10 016 017 2.5 / 5 / 10 2.5/5/10 018 2.5 / 5 / 10 019 2.5/5/10 020 Headspace in VOA Vials (>6mm): □Yes 🔊 (□N/A *If yes look in headspace column Exceptions to preservation check: (VOA) Coliform, TOC, TOX, TOH, O&G, WI DRO, Phenolics, Other: AG1U 1 liter amber glass BP1U 1 liter plastic unpres VG9A 40 mL clear ascorbic JGFU 4 oz amber jar unpres BG1U 1 liter clear glass BP3U DG9T JG9U 9 oz amber jar unpres 250 mL plastic unpres 40 mL amber Na Thio AG1H 1 liter amber glass HCL WGFU 4 oz clear jar unpres BP3B 250 mL plastic NaOH VG9U 40 mL clear vial unpres **WPFU** 4 oz plastic jar unpres AG4S 125 mL amber glass H2SO4 BP3N 250 mL plastic HNO3 VG9H 40 mL clear vial HCL AG4U 120 mL amber glass unpres BP3S 250 mL plastic H2SO4 VG9M 40 mL clear vial MeOH SP5T 120 mL plastic Na Thiosulfate VG9D 40 mL clear vial DI **ZPLC** ziploc bag AG5U 100 mL amber glass unpres AG2S 500 mL amber glass H2SO4 GN BG3U 250 mL clear glass unpres

Pace Analytical [®]
1241 Bellevue Street, Green Bay, WI 54302

Document Name:

Sample Condition Upon Receipt (SCUR)

Document No.:

ENV-FRM-GBAY-0014-Rev.00

Document Revised: 26Mar2020

Author:

Pace Green Bay Quality Office

Sample Condition Upon Receipt Form (SCUR)

Client Name: TETVA TECH				Project #:		40226418
Courier: CS Logistics Fed Ex	Speedee E	LIDE	- \	/altco	MOH ·	40220410
Client Pace Other		UFS	[VV	aitco		
Tracking #:	···-				40226418	
Custody Seal on Cooler/Box Present:	ves Exno	Seals	intact:	_ □ ves □ no Ì		
Custody Seal on Samples Present: Ly				☐ yes ☐ no	,	
Packing Material: Bubble Wrap						
Thermometer Used SR - QO	_ ,	of Ice:	(Vet)	Blue Dry None	Samples or	n ice, cooling process has begun
Cooler Temperature Uncorr: 5,0 /	Corr: 4.5		_			Person examining contents:
Temp Blank Present: yes Ino		Biolo	gical T	issue is Frozen:	☐ yes ☐ no	Date: Slul /Initials:
Temp should be above freezing to 6° C. Biota Samples may be received at $\leq 0^{\circ}$ C if shipped	ed on Dry Ice.					Labeled By Initials:
Chain of Custody Present:	[Ses	□No	□n/a	1.		/
Chain of Custody Filled Out:	□Yes	⊠ a¶o	□n/a	2 Mail		5161211
Chain of Custody Relinquished:	≱ Yes	□No	□n/a	3.		
Sampler Name & Signature on COC:	□¥res	□No	□n/a	4.		
Samples Arrived within Hold Time:	⊠ es	□No		5.		
- VOA Samples frozen upon receipt	□Yes	□No		Date/Time:		
Short Hold Time Analysis (<72hr):	□Yes	⊠ ₩₀		6.		
Rush Turn Around Time Requested:	□Yes	J¥√0		7.	1.001	
Sufficient Volume:				8.		
For Analysis: D≪es □no M	S/MSD: □Yes	5 46	□n/a			
Correct Containers Used:	XYes	□No		9.		
-Pace Containers Used:	Yes	□No	□n/a			
-Pace IR Containers Used:	□Yes	□No	D W A			
Containers Intact:	Yes	□No		10.		
Filtered volume received for Dissolved tests	□Yes	□No	₩ V/A	11.		
Sample Labels match COC:	□Yes	□No	□n/a	12.		
-Includes date/time/ID/Analysis Matr		~				
Trip Blank Present:	Yes	□No	□n/a	13. With yell	ived in S	nipwent, lab
Trip Blank Custody Seals Present	yes	□No	□n/a		to coc.	- h 121 N A
Pace Trip Blank Lot # (if purchased): 402				1		SIGICITY
Client Notification/ Resolution:			Date/		checked, see attac	hed form for additional comments
Person Contacted: Comments/ Resolution:			- Dale/			
				-		

PM Review is documented electronically in LIMs. By releasing the project, the PM acknowledges they have reviewed the sample logir

May 28, 2021

Vista Work Order No. 2105076

Mr. Michael Savale Tetra Tech 710 Avis Drive, Suite 100 Ann Arbor, MI 48108

Dear Mr. Savale,

Enclosed are the results for the sample set received at Vista Analytical Laboratory on May 07, 2021 under your Project Name 'Ashview Terrace Apt. PFAS'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

for

Martha Maier Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Analytical Laboratory 1104 Windfield Way El Dorado Hills, CA 95762 ph: 916-673-1520 fx: 916-673-0106 www.vista-analytical.com

Work Order 2105076 Page 1 of 18

Vista Work Order No. 2105076 Case Narrative

Sample Condition on Receipt:

One soil sample was received and stored securely in accordance with Vista standard operating procedures and EPA methodology. The sample was received in good condition and within the recommended temperature requirements.

Analytical Notes:

PFAS Isotope Dilution Method

The sample was extracted and analyzed for a selected list of PFAS using Vista's Isotope Dilution Method. The results for PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Results for all other analytes include the linear isomers only.

Holding Times

The sample was extracted and analyzed within the hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank above the Reporting Limit (RL). The OPR recoveries were within the method acceptance criteria.

The labeled standard recoveries for all QC and field samples were within the acceptance criteria.

Work Order 2105076 Page 2 of 18

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	3
Sample Inventory	4
Analytical Results	5
Qualifiers	12
Certifications	13
Sample Receipt	16

Work Order 2105076 Page 3 of 18

Sample Inventory Report

Vista Sample ID	Client Sample ID	Sampled	Received	Components/Containers
2105076-01	WC-Soil-210505	05-Mav-21 14:45	07-May-21 09:33	HDPE Jar. 6 oz

Vista Project: 2105076 Client Project: Ashview Terrace Apt. PFAS

Work Order 2105076 Page 4 of 18

ANALYTICAL RESULTS

Work Order 2105076 Page 5 of 18

Sample ID: Method Blank PFAS Isotope Dilution Method

Client Data Laboratory Data

Name: Tetra Tech Matrix: Solid Lab Sample: B1E0129-BLK1 Column: BEH C18

Duning Antonian To	A. DEAC	Matrix.	Solid		Laos	ampie.	DILUI2)-	DLKI	Columni	BEH C18	
Project: Ashview Te	errace Apt. PFAS										
Analyte	CAS Number	Conc. (ng/g)	MDL		RL	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBA	375-22-4	< 0.266	0.266		0.500		B1E0129	21-May-21	1.00 g	26-May-21 17:42	1
PFPeA	2706-90-3	< 0.252	0.252		0.500		B1E0129	21-May-21	1.00 g	26-May-21 17:42	1
PFBS	375-73-5	< 0.438	0.438		0.500		B1E0129	21-May-21	1.00 g	26-May-21 17:42	1
4:2 FTS	757124-72-4	< 0.416	0.416		0.500		B1E0129	21-May-21	1.00 g	26-May-21 17:42	1
PFHxA	307-24-4	< 0.638	0.638		1.00		B1E0129	21-May-21	1.00 g	26-May-21 17:42	1
PFPeS	2706-91-4	< 0.324	0.324		0.500		B1E0129	21-May-21	1.00 g	26-May-21 17:42	1
HFPO-DA	13252-13-6	< 0.548	0.548		1.00		B1E0129	21-May-21	1.00 g	26-May-21 17:42	1
PFHpA	375-85-9	< 0.332	0.332		0.500		B1E0129	21-May-21	1.00 g	26-May-21 17:42	1
ADONA	919005-14-4	< 0.350	0.350		0.500		B1E0129	21-May-21	1.00 g	26-May-21 17:42	1
PFHxS	355-46-4	< 0.408	0.408		0.500		B1E0129	21-May-21	1.00 g	26-May-21 17:42	1
6:2 FTS	27619-97-2	< 0.648	0.648		1.00		B1E0129	21-May-21	1.00 g	26-May-21 17:42	1
PFOA	335-67-1	< 0.288	0.288		0.500		B1E0129	21-May-21	1.00 g	26-May-21 17:42	1
PFHpS	375-92-8	< 0.630	0.630		1.00		B1E0129	21-May-21	1.00 g	26-May-21 17:42	1
PFNA	375-95-1	< 0.376	0.376		0.500		B1E0129	21-May-21	1.00 g	26-May-21 17:42	1
PFOSA	754-91-6	< 0.452	0.452		0.500		B1E0129	21-May-21	1.00 g	26-May-21 17:42	1
PFOS	1763-23-1	< 0.764	0.764		1.00		B1E0129	21-May-21	1.00 g	26-May-21 17:42	1
9Cl-PF3ONS	756426-58-1	< 0.714	0.714		1.00		B1E0129	21-May-21	1.00 g	26-May-21 17:42	1
PFDA	335-76-2	< 0.652	0.652		1.00		B1E0129	21-May-21	1.00 g	26-May-21 17:42	1
8:2 FTS	39108-34-4	< 0.538	0.538		1.00		B1E0129	21-May-21	1.00 g	26-May-21 17:42	1
PFNS	68259-12-1	< 0.622	0.622		1.00			21-May-21	1.00 g	26-May-21 17:42	
MeFOSAA	2355-31-9	< 0.384	0.384	(0.500			21-May-21	1.00 g	26-May-21 17:42	
EtFOSAA	2991-50-6	< 0.704	0.704		1.00		B1E0129	21-May-21	1.00 g	26-May-21 17:42	1
PFUnA	2058-94-8	< 0.312	0.312	(0.500			21-May-21	1.00 g	26-May-21 17:42	
PFDS	335-77-3	< 0.752	0.752		1.00			21-May-21	1.00 g	26-May-21 17:42	
11Cl-PF3OUdS	763051-92-9	<1.13	1.13		1.50			21-May-21	1.00 g	26-May-21 17:42	
PFDoA	307-55-1	< 0.408	0.408		0.500			21-May-21	1.00 g	26-May-21 17:42	
MeFOSA	31506-32-8	<3.16	3.16		10.0			21-May-21	1.00 g	26-May-21 17:42	
PFTrDA	72629-94-8	< 0.618	0.618		1.00			21-May-21	1.00 g	26-May-21 17:42	
PFDoS	79780-39-5	<1.01	1.01		1.50			21-May-21	1.00 g	26-May-21 17:42	
PFTeDA	376-06-7	< 0.608	0.608		1.00			21-May-21	1.00 g	26-May-21 17:42	
EtFOSA	4151-50-2	< 5.00	5.00		10.0			21-May-21	1.00 g	26-May-21 17:42	
MeFOSE	24448-09-7	<3.08	3.08		10.0			21-May-21	1.00 g	26-May-21 17:42	
EtFOSE	1691-99-2	<3.52	3.52		10.0			21-May-21	1.00 g	26-May-21 17:42	
Labeled Standards	Туре	% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size		Dilution
13C3-PFBA	IS	132		25 - 150			B1E0129	21-May-21	1.00 g	26-May-21 17:42	1
13C3-PFPeA	IS	82.6		25 - 150				21-May-21	1.00 g	26-May-21 17:42	
13C3-PFBS	IS	87.9		25 - 150			B1E0129	21-May-21	1.00 g	26-May-21 17:42	
13C3-HFPO-DA	IS	80.5		25 - 150				21-May-21	1.00 g	26-May-21 17:42	
								•		•	

Work Order 2105076 Page 6 of 18

Sample ID: Method Blank PFAS Isotope Dilution Method

Solid

Matrix:

Name: Tetra Tech

Client Data

Project: Ashview Terrace Apt. PFAS

Laboratory Data

Lab Sample: B1E0129-BLK1

Column: BEH C18

Labeled Standards	Type	% Recovery	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-4:2 FTS	IS	85.5	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
13C2-PFHxA	IS	85.8	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
13C4-PFHpA	IS	90.9	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
13C3-PFHxS	IS	90.2	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
13C2-6:2 FTS	IS	79.5	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
13C5-PFNA	IS	81.0	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
13C8-PFOSA	IS	47.0	10 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
13C2-PFOA	IS	89.6	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
13C8-PFOS	IS	90.4	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
13C2-PFDA	IS	70.1	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
13C2-8:2 FTS	IS	81.8	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
d3-MeFOSAA	IS	58.7	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
13C2-PFUnA	IS	58.1	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
d5-EtFOSAA	IS	62.4	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
13C2-PFDoA	IS	61.1	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
d3-MeFOSA	IS	18.0	10 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
13C2-PFTeDA	IS	66.4	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
d5-EtFOSA	IS	18.1	10 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
d7-MeFOSE	IS	34.4	10 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
d9-EtFOSE	IS	37.4	10 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:42	2 1
MDI Mathed Detection Limit	DI Donostina limit	The results are report	ad in day waisht	XX/I	, 1 DELL C	DECA DECC M	FOCAA 1Fd	EOS A A include both	

MDL - Method Detection Limit

RL - Reporting limit

The results are reported in dry weight. The sample size is reported in wet weight. Results reported to MDL. When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.

Work Order 2105076 Page 7 of 18

Sample ID: OPR

PFAS Isotope Dilution Method

Client Data Laboratory Data

Name: Tetra Tech Matrix: Solid Lab Sample: B1E0129-BS1 Column: BEH C18

Project: Ashview Terrace Apt. PFAS

Analyte	CAS Number	Amt Found (ng/g)	Spike Amt	% Rec	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBA	375-22-4	1.82	2.00	91.1	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFPeA	2706-90-3	1.95	2.00	97.7	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFBS	375-73-5	2.15	2.00	108	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
4:2 FTS	757124-72-4	2.27	2.00	113	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFHxA	307-24-4	1.92	2.00	96.2	50 - 150	Q	B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFPeS	2706-91-4	1.78	2.00	89.2	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
HFPO-DA	13252-13-6	2.03	2.00	102	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFHpA	375-85-9	2.05	2.00	102	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
ADONA	919005-14-4	2.14	2.00	107	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFHxS	355-46-4	1.75	2.00	87.3	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
6:2 FTS	27619-97-2	1.90	2.00	95.0	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFOA	335-67-1	2.02	2.00	101	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFHpS	375-92-8	1.74	2.00	86.9	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFNA	375-95-1	1.97	2.00	98.5	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFOSA	754-91-6	2.16	2.00	108	50 - 150	Q	B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFOS	1763-23-1	2.20	2.00	110	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
9Cl-PF3ONS	756426-58-1	1.86	2.00	92.8	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFDA	335-76-2	2.08	2.00	104	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
8:2 FTS	39108-34-4	2.23	2.00	112	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFNS	68259-12-1	1.63	2.00	81.4	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
MeFOSAA	2355-31-9	1.66	2.00	83.2	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
EtFOSAA	2991-50-6	2.00	2.00	100	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFUnA	2058-94-8	2.17	2.00	109	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFDS	335-77-3	1.64	2.00	81.9	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
11Cl-PF3OUdS	763051-92-9	2.37	2.00	119	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFDoA	307-55-1	1.99	2.00	99.7	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
MeFOSA	31506-32-8	1.70	2.00	85.1	50 - 150	J	B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFTrDA	72629-94-8	1.83	2.00	91.6	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFDoS	79780-39-5	2.15	2.02	107	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
PFTeDA	376-06-7	1.95	2.00	97.6	50 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
EtFOSA	4151-50-2	1.86	2.00	92.8	50 - 150	J	B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
MeFOSE	24448-09-7	1.67	2.00	83.3	50 - 150	J	B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
EtFOSE	1691-99-2	2.07	2.00	104	50 - 150	J	B1E0129	21-May-21	1.00 g	26-May-21 17:53	1
Labeled Standards		Type		% Rec	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution

Work Order 2105076 Page 8 of 18

Sample ID: OPR

PFAS Isotope Dilution Method

Client Data Laboratory Data

Name: Tetra Tech Matrix: Solid Lab Sample: B1E0129-BS1 Column: BEH C18

Project: Ashview Terrace Apt. PFAS

Tionview Tenace rip.: 11115									
Labeled Standards	Туре	% Rec	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBA	IS	127	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	3 1
13C3-PFPeA	IS	82.8	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	3 1
13C3-PFBS	IS	96.1	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	3 1
13C3-HFPO-DA	IS	75.9	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	3 1
13C2-4:2 FTS	IS	91.2	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	3 1
13C2-PFHxA	IS	84.2	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	3 1
13C4-PFHpA	IS	83.0	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	3 1
13C3-PFHxS	IS	97.6	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	3 1
13C2-6:2 FTS	IS	94.0	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	3 1
13C5-PFNA	IS	79.4	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	3 1
13C8-PFOSA	IS	44.0	10 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	3 1
13C2-PFOA	IS	86.5	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	3 1
13C8-PFOS	IS	94.5	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	3 1
13C2-PFDA	IS	76.4	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	3 1
13C2-8:2 FTS	IS	76.2	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	3 1
d3-MeFOSAA	IS	65.4	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	3 1
13C2-PFUnA	IS	65.9	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	3 1
d5-EtFOSAA	IS	64.6	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	3 1
13C2-PFDoA	IS	68.8	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	3 1
d3-MeFOSA	IS	17.6	10 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	3 1
13C2-PFTeDA	IS	72.6	25 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	3 1
d5-EtFOSA	IS	15.5	10 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	3 1
d7-MeFOSE	IS	33.3	10 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	3 1
d9-EtFOSE	IS	34.6	10 - 150		B1E0129	21-May-21	1.00 g	26-May-21 17:53	3 1

Work Order 2105076 Page 9 of 18

Sample ID: Wo	C-Soil-210505								PFAS Iso	otope Dilution N	Method
Client Data Name: Project:	Tetra Tech Ashview Terrace Apt. PFAS	Matrix: Date Colle	Soil ected: 05-May-21	14:45	Lab S	pratory Data Sample: Received:	2105076-0 07-May-2 85.0		Column	BEH C18	
Analyte	CAS Number	Conc. (ng/g)	MDL		RL	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBA	375-22-4	< 0.261	0.261	0.	.490		B1E0129	21-May-21	1.20 g	26-May-21 18:24	1
PFPeA	2706-90-3	< 0.247	0.247	0.	.490		B1E0129	21-May-21	1.20 g	26-May-21 18:24	
PFBS	375-73-5	< 0.429	0.429	0.	.490		B1E0129	21-May-21	1.20 g	26-May-21 18:24	
4:2 FTS	757124-72-4	< 0.408	0.408	0.	.490		B1E0129	21-May-21	1.20 g	26-May-21 18:24	
PFHxA	307-24-4	< 0.626	0.626	0.	.981		B1E0129	21-May-21	1.20 g	26-May-21 18:24	1
PFPeS	2706-91-4	< 0.318	0.318	0.	.490		B1E0129	21-May-21	1.20 g	26-May-21 18:24	1
HFPO-DA	13252-13-6	< 0.537	0.537	0.	.981		B1E0129	21-May-21	1.20 g	26-May-21 18:24	1
PFHpA	375-85-9	< 0.326	0.326	0.	.490		B1E0129	21-May-21	1.20 g	26-May-21 18:24	1
ADONA	919005-14-4	< 0.343	0.343	0.	.490		B1E0129	21-May-21	1.20 g	26-May-21 18:24	1
PFHxS	355-46-4	< 0.400	0.400	0.	.490		B1E0129	21-May-21	1.20 g	26-May-21 18:24	1
6:2 FTS	27619-97-2	< 0.635	0.635	0.	.981		B1E0129	21-May-21	1.20 g	26-May-21 18:24	1
PFOA	335-67-1	< 0.282	0.282	0.	.490		B1E0129	21-May-21	1.20 g	26-May-21 18:24	1
PFHpS	375-92-8	< 0.618	0.618	0.	.981		B1E0129	21-May-21	1.20 g	26-May-21 18:24	1
PFNA	375-95-1	< 0.369	0.369	0.	.490		B1E0129	21-May-21	1.20 g	26-May-21 18:24	1
PFOSA	754-91-6	< 0.443	0.443	0.	.490		B1E0129	21-May-21	1.20 g	26-May-21 18:24	1
PFOS	1763-23-1	< 0.749	0.749	0.	.981		B1E0129	21-May-21	1.20 g	26-May-21 18:24	1
9Cl-PF3ONS	756426-58-1	< 0.700	0.700	0.	.981		B1E0129	21-May-21	1.20 g	26-May-21 18:24	1
PFDA	335-76-2	< 0.639	0.639	0.	.981		B1E0129	21-May-21	1.20 g	26-May-21 18:24	1
8:2 FTS	39108-34-4	< 0.528	0.528	0.	.981		B1E0129	21-May-21	1.20 g	26-May-21 18:24	1
PFNS	68259-12-1	< 0.610	0.610	0.	.981		B1E0129	21-May-21	1.20 g	26-May-21 18:24	1
MeFOSAA	2355-31-9	< 0.377	0.377	0.	.490		B1E0129	21-May-21	1.20 g	26-May-21 18:24	1
EtFOSAA	2991-50-6	< 0.690	0.690	0.	.981		B1E0129	21-May-21	1.20 g	26-May-21 18:24	1
PFUnA	2058-94-8	< 0.306	0.306	0.	.490		B1E0129	21-May-21	1.20 g	26-May-21 18:24	1
PFDS	335-77-3	< 0.737	0.737	0.	.981		B1E0129	21-May-21	1.20 g	26-May-21 18:24	1
11Cl-PF3OUdS	763051-92-9	<1.11	1.11	1	.47		B1E0129	21-May-21	1.20 g	26-May-21 18:24	1
PFDoA	307-55-1	< 0.400	0.400	0.	.490		B1E0129	21-May-21	1.20 g	26-May-21 18:24	1
MeFOSA	31506-32-8	<3.10	3.10	9	0.81		B1E0129	21-May-21	1.20 g	26-May-21 18:24	1
PFTrDA	72629-94-8	< 0.606	0.606	0.	.981		B1E0129	21-May-21	1.20 g	26-May-21 18:24	1
PFDoS	79780-39-5	< 0.988	0.988	1	.47		B1E0129	21-May-21	1.20 g	26-May-21 18:24	1
PFTeDA	376-06-7	< 0.596	0.596	0.	.981			21-May-21	1.20 g	26-May-21 18:24	1
EtFOSA	4151-50-2	<4.90	4.90	9	.81			21-May-21	1.20 g	26-May-21 18:24	
MeFOSE	24448-09-7	< 3.02	3.02	9	.81		B1E0129	21-May-21	1.20 g	26-May-21 18:24	1
EtFOSE	1691-99-2	<3.45	3.45	9	.81		B1E0129	21-May-21	1.20 g	26-May-21 18:24	1
Labeled Standard	ls Type	% Recovery	L	imits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBA	IS	131	2:	5 - 150			B1E0129	21-May-21	1.20 g	26-May-21 18:24	1
13C3-PFPeA	IS	83.5		5 - 150				21-May-21	1.20 g	26-May-21 18:24	
13C3-PFBS	IS	86.1	2:	5 - 150			B1E0129	21-May-21	1.20 g	26-May-21 18:24	1

Work Order 2105076 Page 10 of 18

Sample ID: WC-Soil-210505 **PFAS Isotope Dilution Method**

Client Data Laboratory Data

Lab Sample: Name: Tetra Tech Matrix: Soil 2105076-01 Column: BEH C18 Date Collected: 05-May-21 14:45 Project: Ashview Terrace Apt. PFAS

0/ C-1:4-85 O

07-May-21 09:33

Date Received:

			9/	6 Solids:	85.0				
Labeled Standards	Туре	% Recovery	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-HFPO-DA	IS	86.4	25 - 150		B1E0129	21-May-21	1.20 g	26-May-21 18:24	1
13C2-4:2 FTS	IS	89.3	25 - 150		B1E0129	21-May-21	1.20 g	26-May-21 18:24	1
13C2-PFHxA	IS	80.9	25 - 150		B1E0129	21-May-21	1.20 g	26-May-21 18:24	1
13C4-PFHpA	IS	88.6	25 - 150		B1E0129	21-May-21	1.20 g	26-May-21 18:24	1
13C3-PFHxS	IS	90.7	25 - 150		B1E0129	21-May-21	1.20 g	26-May-21 18:24	1
13C2-6:2 FTS	IS	83.3	25 - 150		B1E0129	21-May-21	1.20 g	26-May-21 18:24	1
13C5-PFNA	IS	74.4	25 - 150		B1E0129	21-May-21	1.20 g	26-May-21 18:24	1
13C8-PFOSA	IS	60.2	10 - 150		B1E0129	21-May-21	1.20 g	26-May-21 18:24	1
13C2-PFOA	IS	83.3	25 - 150		B1E0129	21-May-21	1.20 g	26-May-21 18:24	1
13C8-PFOS	IS	89.3	25 - 150		B1E0129	21-May-21	1.20 g	26-May-21 18:24	1
13C2-PFDA	IS	73.5	25 - 150		B1E0129	21-May-21	1.20 g	26-May-21 18:24	1
13C2-8:2 FTS	IS	70.1	25 - 150		B1E0129	21-May-21	1.20 g	26-May-21 18:24	1
d3-MeFOSAA	IS	68.2	25 - 150		B1E0129	21-May-21	1.20 g	26-May-21 18:24	1
13C2-PFUnA	IS	68.4	25 - 150		B1E0129	21-May-21	1.20 g	26-May-21 18:24	1
d5-EtFOSAA	IS	67.9	25 - 150		B1E0129	21-May-21	1.20 g	26-May-21 18:24	1
13C2-PFDoA	IS	69.8	25 - 150		B1E0129	21-May-21	1.20 g	26-May-21 18:24	1
d3-MeFOSA	IS	24.2	10 - 150		B1E0129	21-May-21	1.20 g	26-May-21 18:24	1
13C2-PFTeDA	IS	73.2	25 - 150		B1E0129	21-May-21	1.20 g	26-May-21 18:24	1
d5-EtFOSA	IS	24.9	10 - 150		B1E0129	21-May-21	1.20 g	26-May-21 18:24	
d7-MeFOSE	IS	46.8	10 - 150		B1E0129	21-May-21	1.20 g	26-May-21 18:24	1
d9-EtFOSE	IS	49.9	10 - 150			21-May-21	1.20 g	26-May-21 18:24	

MDL - Method Detection Limit

RL - Reporting limit

The results are reported in dry weight. The sample size is reported in wet weight. Results reported to MDL.

When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.

Work Order 2105076 Page 11 of 18

DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank

Conc. Concentration

CRS Cleanup Recovery Standard

D Dilution

DL Detection Limit

E The associated compound concentration exceeded the calibration range of the

instrument

H Recovery and/or RPD was outside laboratory acceptance limits

I Chemical Interference

IS Internal Standard

J The amount detected is below the Reporting Limit/LOQ

LOD Limit of Detection

LOQ Limit of Quantitation

M Estimated Maximum Possible Concentration (CA Region 2 projects only)

MDL Method Detection Limit

NA Not applicable

ND Not Detected

OPR Ongoing Precision and Recovery sample

P The reported concentration may include contribution from chlorinated diphenyl ether(s).

Q The ion transition ratio is outside of the acceptance criteria.

RL Reporting Limit

RL For 537.1, the reported RLs are the MRLs.

TEQ Toxic Equivalency, sum of the toxic equivalency factors (TEF) multiplied by the

sample concentrations.

TEQMax TEQ calculation that uses the detection limit as the concentration for non-detects

TEQMin TEQ calculation that uses zero as the concentration for non-detects

TEQRisk TEQ calculation that uses ½ the detection limit as the concentration for non-

detects

U Not Detected (specific projects only)

* See Cover Letter

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Work Order 2105076 Page 12 of 18

Vista Analytical Laboratory Certifications

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	17-013
Arkansas Department of Environmental Quality	21-023-0
California Department of Health – ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777-26
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2020018
Massachusetts Department of Environmental Protection	M-CA413
Michigan Department of Environmental Quality	9932
Minnesota Department of Health	1980678
New Hampshire Environmental Accreditation Program	207720
New Jersey Department of Environmental Protection	CA003
New York Department of Health	11411
Ohio Environmental Protection Agency	87778
Oregon Laboratory Accreditation Program	4042-016
Pennsylvania Department of Environmental Protection	017
Texas Commission on Environmental Quality	T104704189-21-12
Vermont Department of Health	VT-4042
Virginia Department of General Services	10769
Washington Department of Ecology	C584
Wisconsin Department of Natural Resources	998036160

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request.

Work Order 2105076 Page 13 of 18

NELAP Accredited Test Methods

MATRIX: Air	
Description of Test	Method
Determination of Polychlorinated p- Dioxins & Polychlorinated	EPA 23
Dibenzofurans	
Polychlorinated Dibenzodioxins in Ambient Air by GC/HRMS	EPA TO-9A

MATRIX: Biological Tissue	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution	EPA 1613B
GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C
by GC/HRMS	
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by	EPA 1699
HRGC/HRMS	
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by	EPA 8280A/B
GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

MATRIX: Drinking Water					
Description of Test	Method				
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution	EPA				
GC/HRMS	1613/1613B				
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537				
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537.1				
Determination of Per- and Polyfluoroalkyl Substances in Drinking Water by	EPA 533				
Isotope Dilution Anion Exchange Solid Phase Extraction and Liquid					
Chromatography/Tandem Mass Spectrometry					
Perfluorooctanesulonate (PFOS) and Perfluorooctanoate (PFOA) - Method	ISO 25101				
for Unfiltered Samples Using Solid Phase Extraction and Liquid	2009				
Chromatography/Mass Spectrometry					

Work Order 2105076 Page 14 of 18

MATRIX: Non-Potable Water	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B
Dilution GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C
by GC/HRMS	
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Dioxin by GC/HRMS	EPA 613
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B
Dibenzofurans by GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

MATRIX: Solids	
Description of Test	Method
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613B
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1668A/C
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B
Dibenzofurans by GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

Work Order 2105076 Page 15 of 18

999	
	Vista
	Analytical Laboratory

For Laboratory Use Only Work Order #: 2105076	Temp: \\ 2	°C
Storage ID: <u>UJR-2</u>	Storage Secured: Yes	No 🗌

VISTO Analytical Lab	oratory		CHAIN	OF (cus	OT	ΣY		Work O	der#: <u>211)</u> ID: <u>UIR-2</u>	<i>a</i> v10	Temp: 10 () Storage Secured: Yes 12 No [
Aghvier Tellale, Project ID:	ter Pr	FAS	PO#: [17,4124	161		_Sampl	er: / / / /	(name)		TAT (check one	Standard: e): Rush (sur	charge may apply)	pecify:		
Andra Gordon /	1-0	,	5-6-21	10	00			FedEx				5-6-21	1200		
Relinquished by (printed name			Date	7	Time	R	eceived	by (printed name and sig	nature)			Date	Time		
Feder			05-67-21	09	33	\mathcal{O}	usatin	u Briserus	po-	B_	_	05-07-2	1 0933		
Relinquished by (printed name	ne and signa	ture)	Date		Time	R	eceived	by (printed name and sig	nature)			Date	Time		
SHIP TO: Vista Analytical 1104 Windfield El Dorado Hills, (916) 673-1520 ATTN: Suyly (u	Way CA 95762 * Fax (916) (Method of Shipment:	Add An) Request		////	PK VE PADOLINI			Method orty)			
Sample ID	Date	Time	Location/ Sample Description	Quat	HIT TYPE	Marrix Prof	APFOS PF	AS LIVE A DEBILIES OTHER BEST AND	STATE OF	Produkta produkt	Liston	Comment	s		
IC- Soil-210505	5-5-21	1445		1	PJ 50			×		\Box		_			
				+		++	+	_							
		-		1		++	\perp								
				+-+		++				+					
				+		+			++	+					
						\dagger		-							
Special Instructions/Comment								SEND			1 Savale	<i>P</i>			
								DOCUMENTATION AND RESULTS TO:	Address City Phone	AM A-6 310-92	vis <i>Pi-</i> 0/ 3-7076	State:MI Z	ip: <u>43103</u>		
Container Types: P = HDPE,			Bottle Preserv	-				trix Types: AQ = Aqueo		_			SD = Sediment,		
PY = Polypropylene, O= Oth	ner		TZ= Trizma	:			SL	= Sludge, SO = Soil, W	W = Wastew	rater, B = Blo	od/Serum, O	Other			
ID: LR-537COC					R	ev. No.: 2	Rev. Da	te: 08/03/2020					Page: 1 of		

Sample Log-In Checklist

Vista Work Orde	r #:	2	105076	,)				age # ₋		of	_		
Samples Arrival:	Date/Tim 05/07		33	In	itials		Location: W2-2 Shelf/Rack: NI						
Delivered By:	FedEx	UPS	On Tra	GLS	DHI		Hand Delive	d	Other				
Preservation:	lo	se)	Blu	ue I	ce	Techni Ice Dry Ice				None			
Temp °C: 1.4 Temp °C: 1.3		rected) ted)	Probe use	ed:	Y / 🛈		Thermometer ID: T2-3						
	可量 35 概 2 章 3 章 数 2 章	<u> </u>	1 1 1	· // // // // // // // // // // // // //			至 . E		YEŞ	NO	NA		
Shipping Contain	er(s) Intac	t?							1				
Shipping Custody	y Seals Int	act?											
Airbill ~	Trk	#786	85192	78	77				1				
Shipping Docume	entation Pi	esent?					_	_	,				
Shipping Contain	er		(Vista		Client	F(etain	Re	eturn	Dis	oose		
Chain of Custody	/ / Sample	Docum	entation Pr	ese	ent?				/				
Chain of Custody	/ / Sample	Docum	entation Co	omp	olete?				1				
Holding Time Acc	ceptable?								′				
Logged In:	ogged In: Date/Time Date/Time Initials: Location: \ Shelf/Rack												
COC Anomaly/Sa	ample Acc	eptance	Form com	ple	ted?					\			

Comments:

ID.: LR - SLC

Rev No.: 6

Rev Date: 07/16/2020

Page: 1 of 1

CoC/Label Reconciliation Report WO# 2105076

LabNumber CoC Sample ID	Sample	Alias		Sample Date/Time	Container	BaseMatrix	Sample Comments
2105076-01 A WC-Soil-210505			, we	05-May-21 14:45	HDPE Jar, 6 oz	Solid	
Checkmarks indicate that information on the COC reconciled with the sample Any discrepancies are noted in the following columns.	label.			,			
	Yes	No	NA	Comments:			
Sample Container Intact?	✓						
Sample Custody Seals Intact?			1				
Adequate Sample Volume?	1						
Container Type Appropriate for Analysis(es)	-						
Preservation Documented: Na2S2O3 Trizma NH4CH3CO2 No	ne) (Other					
Verifed by/Date: WWS 05/11/21							

Printed: 5/11/2021 11:43:31AM 2105076 Page 1 of 1

Work Order 2105076